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Abstract

In this research, pulsatile blood flow through a modeled arterial stenosis assuming

Newtonian and non-Newtonian viscous behavior is simulated using direct numerical

simulation (DNS). A serial FORTRAN code has been parallelized using OpenMP to

perform DNS based on available high performance shared memory parallel computing

facilities. Numerical simulations have been conducted in the context of a channel with

varying the degree of stenosis ranging from 50% to 75%. For the pulsatile flow studied,

the Womersley number is set to 10.5 and Reynolds number varies from 500 to 2000,

which are characteristic of human arterial blood flows. In the region upstream of the

stenosis, the flow pattern is primarily laminar. Immediately after the stenosis, the

flow recirculates and an adverse streamwise pressure gradient exists near the walls

and the flow becomes turbulent. In the region far downstream of the stenosis, the

flow is re-laminarized for both Newtonian and non-Newtonian flows.
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Chapter 1

Introduction

1.1 Background

Blood flow through arteries is pulsatile and can be laminar, turbulent or transitional

depending upon the diameter, tortuosity and geometry of the blood vessels. Vascular

disease adds complexity to the vascular geometry and can cause significant narrowing

(stenosis) or expansion (aneurysm) of large arteries that may lead to laminar-

turbulent transitional flow. Arterial stenosis is commonly found in patients who

have vascular disease. It is generally caused by atherosclerosis where cholesterol and

other lipids are deposited beneath the intima (inner lining) of the arterial wall, and

can occur acutely as a result of emboli or trauma. There is often an accompanying

proliferation of connective tissue which forms a thickened area in the vessel wall called

plaque as the amount of the fatty material increases. The vessel wall remodels to

accommodate this condition to varying degrees, but with marked plaque deposition,

the effective cross-section of the vessel reduces and retards blood flow. Furthermore,

blood flow may transit to turbulence and its pressure typically drops in the vessel

section immediately downstream of the stenosis. The alteration in flow dynamics in

turn produces abnormal wall shear stress both at the plaque and at the post-stenotic

region. Once the surface of the stenosis is damaged, it might form a blood clot that

retards blood flow in a cerebral artery or in a coronary artery. Moreover, blood may

stagnate in the post-stenotic region and form a blood clot that may be transferred to

the lung (Ku [2]).

1



With the need for deeper insights into the physics of flows through arterial

stenoses and the advancement of computation technology, the past decade has

witnessed a rapid advancement in numerical simulation of physiological pulsatile flows

through different types of stenoses. To date, the method of DNS has been applied

to several numerical investigations of transitional pulsatile flow (Varghese et al. [3,4],

Bhaganagar [5], Paul and Molla [6]). The computational cost involved in a DNS

approach is typically demanding, as both the temporal and spatial scales of turbulence

need to be fully resolved (including the smallest Kolmogorov scales). Nevertheless,

DNS has the potential to be the most useful tool for numerical investigation of

physiological pulsatile blood flow through arteries as the Reynolds number is typically

low in human arteries [2].

1.2 Newtonian Flow in Stenosis Studies

There are many challenges involved in numerical modeling of blood flows. The

geometry of a stenosis in a blood vessel can be highly irregular and the boundary

material can be nonlinear and elastic, complex physiological conditions such as

pulsations can be involved, and the behavior of the blood fluid itself can be Newtonian

in large arteries and non-Newtonian in small arteries (Molla et al. [7]). In order to

study the physical mechanisms of pulsatile Newtonian blood flows through stenoses,

several experiments have been conducted to investigate the flow pattern and the

shear stresses at the walls under steady and pulsatile flow conditions. Khalifa and

Giddens [8, 9] studied the evolution of post-stenotic flow disturbances using laser

Doppler velocimetry (LDV). Their experimental investigation of the velocity field was

performed along the central streamline of a plexiglass tube. The Reynolds number

and the Womersley number were chosen 600 and 7.6, respectively. Here, the Reynolds

number is defined as Re
def
= Uh

ν
, where U is the bulk velocity and ν is the kinematic

viscosity of the fluid. The Womersley number α is defined as α2 def
= h2 ρω

µ
, where ρ is

the density of the fluid, µ is dynamic viscosity of the fluid, ω = 2π
T

is the frequency of

the pulsations, and T is the time period a pulsation cycle. The Womersley number

2



reflects the ratio of the pulsatile inertial forces to the viscous forces. In their research,

Khalifa and Giddens [8,9] systematically studied a periodic disturbance arising from

the shear layer due to pulsations, coherent structures associated with the initiation of

each pulsatile cycle, and characteristics of the statistically non-stationary turbulence

created by the stenosis.

Peterson and Plesniak [10] conducted an experiment using LDV and particle

image velocimetry (PIV) to determine the influence of two physiologically relevant

inlet conditions on the flow physics downstream of an idealized stenosis. The test case

was run for a stenosis of 75% with mean Reynolds number of 364 and a Womersley

number of 4.6. The two inlet conditions included an asymmetric mean inlet velocity

profile and an asymmetric mean inlet velocity profile superimposed with a secondary

flow as found downstream of a bend. They found that the asymmetric inlet velocity

profile reduced the influence of stenosis by forcing the stenotic jet towards the tube

wall through an induced non-uniform radial pressure gradient, however, the vortex

ring formation was relatively unaffected by the mean velocity gradient and secondary

flow.

Ahmed and Giddens [11, 12] investigated flow disturbances through an axisym-

metric stenosis formed within a rigid tube. They used LDV and a flow visualization

technique to study a stenotic flow with Reynolds numbers ranging from 500 to 2000.

However, the inlet boundary condition in their study was steady, which does not

reflect the pulsatile nature of blood flow in arteries. They reported that the flow field

transitioned to turbulence when Re ≥ 1000 and the maximum streamwise velocity

occurs at the centre of the stenosis. The length of the recirculation zone (distance

from the stenosis to reattachment point) was shorter at Re = 2000 than Re = 1000.

Ahmed and Giddens [13] further investigated the post-stenotic flow behavior using

sinusoidal pulsatile inflow conditions based on a Reynolds number fixed to 600 and

Womersley numbers ranging from 7.5 to 15. They concluded that under the pulsatile

inflow condition tested, even a mild stenosis can lead to transition to turbulent

flow in the post-stenotic region. Cassanova and Giddens [14] also made a similar

3



conclusion based on their case for Reynolds numbers ranging from 318 to 2540 and

Womersley number fixed to 15. Ahmed [15] re-investigated the pulsatile flow through

a smooth constriction using a two-dimensional (2D) LDV. He conducted experiments

at a Reynolds number of 600 and stenoses of 25%, 50% and 75% degree of contraction.

Ahmed [15]found that different types of flow disturbances exist downstream of the

stenosis and they were sensitive to the geometry of stenosis. During the acceleration

phase of the pulse, the average disturbance level was relatively low. At the peak

phase, the highest disturbance level was observed. The disturbance level decreases

significantly during the deceleration phase. The results presented by Ahmed [15]

on post-stenotic turbulent flow physics are similar to those of Yongchareon and

Young [16].

As discussed above, the fluid dynamics of post-stenotic blood flow plays a crucial

role in the diagnosis of arterial disease. So, there is considerable interest in gaining

better insight into the dynamics of post-stenotic flows. Computational fluid dynamics

(CFD) is one of the most popular tools for gaining accurate results and visualizing the

flow field. Several studies have been reported which provide insights into the physical

mechanisms underlying transition-to-turbulent flows through arterial stenoses. Early

studies of pulsatile laminar flow through the model arterial stenosis were represented

by Cheng et al. [17], Daly [18] and O’Brien and Ehrlich [19]. Cheng et al. [17]

investigated a pulsatile flow through a channel with a square shaped stenosis, and

Daly [18] and O’Brien and Ehrlich [19] used an axisymmetric cosine shape stenosis.

Daly [18] used physiological pulsatile flow at the inlet whereas a simple sinusoidal

pulsatile flow was considered by Cheng et al. [17] and O’Brien and Ehrlich [19]. In

their findings, Cheng et al. [17] and Daly [18] concluded that the pressure gradient

and the shear stress drops are maximum at the throat of the stenosis. On the other

hand, O’Brien and Ehrlich [19] found that the peak wall vorticity occurred just prior

to the centre of the stenosis and is proportional to the wall shear stress.

A steady state flow through an axisymmetric stenosis has been investigated

extensively by Smith [20] using an analytical approach which indicates that the flow

patterns strongly depend upon the geometry of the stenosis and upstream Reynolds
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number. Smith [20] concluded that under the conditions of moderately severe and

very severe constrictions and even under any slowly varying constrictions, the major

separation occurs near the maximum constriction point. Since the pulsatile nature

of the flow is fundamentally important, many theoretical and experimental studies of

stenotic flows have been conducted, which include the early influential work of Imaeda

and Goodman [21], Tu et al. [22], and Zendehbudi and Moayeri [23]. Haldar [24] dealt

with the problem of oscillatory blood flow through a rigid tube with mild constriction

under a simple harmonic pressure gradient and examined the effect of stenosis on the

flow field.

Varghese and Frankel [25], Lee et al. [26, 27] and Li et al. [28] studied 2D

laminar-turbulent transitional flows passing an arterial stenosis using a Reynolds-

averaged Navier-Stokes (RANS) approach based on the k-ω turbulence models.

Scotti and Piomelli [29] later indicated that the RANS turbulence models have

some limitations in modeling pulsatile flows where the inlet velocity profile and

pressure gradient oscillate with time. They found that although the RANS models

gave good predictions of mean velocity profiles, their predictions of higher-order

turbulence statistics such as the Reynolds shear stresses, turbulent kinetic energy

and dissipation rate may not be entirely satisfactory. Furthermore, these RANS

models are not capable of simulating instantaneous pulsatile turbulent flows as the

governing equations of the RANS approach are ensemble-averaged.

Stroud et al. [30] investigated the influence of stenosis on pulsatile laminar flow

through stenotic vessels with the Reynolds number ranging from 200 to 1200, whereas

Melaaen [31] studied the steady flow in a constricted tube for Re = 200. Based on

analysis of the results for degree of stenosis 25%, 50% and 75%, Stroud et al. [30]

found that surface irregularity, stenosis aspect ratio, and the pulsatile waveform have

considerable influence on the flow field and on the wall shear stresses on the plaque

deposits. Bertolotti and Deplano [32] analyzed the steady flow pattern for a stenosed

coronary bypass for Re = 250 with and without a 75% severity stenosis for three

different locations. They observed that two counter-rotating structures formed in

crossplanes downstream from the junction and a short area of negative wall shear
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stress developed just after the stenosis.

Dvinsky and Ojha [33] simulated sinusoidal pulsatile laminar flow through an

asymmetric stenosis. Long et al. [34] investigated physiological pulsatile laminar flow

through an axisymmetric arterial stenosis with a Reynolds number of 300. Dvinsky

and Ojha [33] considered a cosine-shaped asymmetric stenosis, whereas in Long et

al. [34], the shape of the stenosis was approximated by two integrated Gaussian

functions at the proximal and distal ends together with a straight segment in between.

Long et al. [34] found that the formation and development of flow separation zones

in the post-stenotic region are very complex, especially during the flow deceleration

phase. They also observed that the flow relaminarizes and becomes fully-developed

earlier for the asymmetric cases than for the axisymmetric cases.

Varghese et al. [3, 4] investigated both pulsatile and non-pulsatile flows in the

context of symmetric and eccentric stenoses using the DNS approach. They analyzed

turbulence statistics downstream of an eccentric stenosis at a relatively low Reynolds

number of 300. For such a low Reynolds number, flow transits from laminar to

turbulent and the shear stress oscillates highly in the post-stenotic region. Sherwin

and Blackburn [35] and Blackburn and Sherwin [36] studied three-dimensional (3D)

instabilities and transition of pulsatile flows in a stenotic tube using DNS based on the

spectral method. For their pulsatile test case, they used simple sinusoidal pulses with

the flow Reynolds number ranging from 250 to 800. They found that after a linear

instability phase, vortex rings were ejected from the stenosis, which rapidly broke

down into finer-scale components. Furthermore, they observed that this characteristic

was similar to the final state of the non-pulsatile flow, however, the instability and

transition mechanisms are very different and occur at a lower Reynolds number.

1.3 Non-Newtonian Flow in Stenosis Studies

The assumption of the Newtonian behavior of blood is pertinent for high shear rate

flow through large arteries. Meanwhile, it has been confirmed by experiments that
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blood behaves as a non-Newtonian fluid at low shear rates and in vessels of small

diameters (Mann and Tarbell [37], Ku [2]), exhibiting marked shear thinning and

significant viscoelastic properties under pulsations (Phillips and Detsch [38]). Since

the shear rate is low on the downstream side of a stenosis, a correct analysis of the

flow pattern should also include the shear-thinning characteristics of blood. Mann

and Tarbell [37] experimentally studied the influence of non-Newtonian rheology on

wall shear rates in steady and oscillatory flows through rigid curved and straight

artery models. They used four fluids: aqueous glycerin (Newtonian), aqueous

polyacrylamide (shear thinning and highly elastic), aqueous Xanthan gum (shear

thinning and moderately elastic), and bovine blood. They concluded that for steady

flow conditions, there was little difference in the wall shear rate levels measured for

the four fluids. They also concluded that polyacylamide is too elastic to provide a

good model of blood flow under oscillatory conditions, particularly when there is wall

shear reversal.

Box et al. [39] investigated the effects of non-Newtonian blood viscosity, variations

in flow rate, and vessel diameter on near-wall flow behavior in a carotid bifurcation

vessel model. The blood viscosity is a function of shear rate, and was calculated

using the Carreau-Yasuda (CY) model. They found that the CY model gave a good

approximation of the viscosity of blood in the shear rate range from 375 to 750 s−1

and maximum wall shear stresses oscillations occurred at the edges of the recirculation

region in a carotid bifurcation. Later, Boyd et al. [40] utilized the Casson and CY

non-Newtonian blood viscosity models to simulate 2D Newtonian and non-Newtonian

flows in the context of a simple steady flow and an oscillatory flow in straight and

curved pipes. They observed that in the steady flow case, both the Casson and CY

models show large differences in the predicted velocity profiles in comparison with

corresponding Newtonian flow velocity profile. It is found that in steady and pulsatile

conditions, the Casson model produced the largest variations from Newtonian flow

behaviors.

Choi and Barakat [41] performed numerical simulations of steady and pulsatile

Newtonian and non-Newtonian flows over a backward facing step. The shear-thinning
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model of Carreau [42] was used for predicting non-Newtonian flows. They observed

that for the pulsatile flow case, the shear stress within the flow recirculation zone

was significantly larger for the Newtonian fluid than for the non-Newtonian fluid.

Nakamura et al. [43] studied a non-Newtonian blood flow through an axisymmetric

stenosis model. They suggested that the axial force acting on the stenosis can become

one of the causes for post-stenotic dilatation. They also found that the non-Newtonian

assumption of blood weakens the distortion of flow pattern, pressure and shear stress

at the wall associated with the stenosis. However, they did not study the effect of

pulsation on the flow.

Ishikawa et al. [44] performed numerical simulations of the pulsatile non-

Newtonian flows through an arterial stenosis using the bi-viscosity model for blood.

They found that the non-Newtonian effects reduced the strength of the vortex

downstream of the stenosis. However, the study was limited to mild stenosis of

severity less than 50%. In their extensive study, Easthope and Brooks [45] found that

the Walburn and Schneck model [46], which can degenerate to the familiar Power-law

relationship for the non-Newtonian flow, is highly effective modeling blood flow within

the shear rate range from 0.03 to 120s−1. Later, Hron et al. [47] investigated pulsatile

flows of a power-law fluid in the presence of stenosis using the FEATFLOW solver.

They conducted simulations at Reynolds numbers of 1000 and stenosis of 50%. Hron

et al. [47] observed a dramatic variation of the wall shear stress in the region of the

stenosis in time and in axial distance.

DNS has only recently been applied to the study of physiological transitional

flow in bio-fluid mechanics. In this research DNS will be applied to simulation of

physiological pulsatile transitional non-Newtonian blood flow with stenosis 60%. It

has great interest to compare the results of Newtonian and non-Newtonian fluids

in a model stenosis. There is an interest for further investigation using DNS in a

physiological pulsatile flow through model arterial stenosis for high Reynolds number

with varying degrees of stenosis. Moreover, 3D simulation of such test cases with

DNS can provide in-depth information of physiological pulsatile blood flow through

arteries.
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FIGURE 1.1: Schematic of an idealized symmetric stenosis model and associated
coordinate system.

1.4 Objective of the Thesis

In this research, physiological pulsatile flows through a 3D stenotic channel with

two-sided constrictions are studied numerically using DNS. The Newtonian and

non-Newtonian effects on physiological pulsatile flows will be analyzed. An in-

house computer code based on curvilinear Cartesian coordinates is used to conduct

the unsteady numerical simulations on the public-domain supercomputer network

WestGrid. The objectives of this research are:

• Parallelize an existing serial FORTRAN code using OpenMP to reduce code

execution time. The serial FORTRAN code is a revised version of the LES-

BOFFIN code, a computer code originally developed by Jones et al. [48,49] for

conducting large-eddy simulations (LES).

• Characterize and compare physiological pulsatile Newtonian and non-Newtonian

flows through a 3D stenotic channel using DNS. The test case is shown in Fig.

1.1.

• Validate DNS results with experimental data in order to examine the predictive

accuracy of the numerical approach.
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Chapter 2

Numerical Method

2.1 Governing Equations

The Navier-Stokes equations of motion are suitable for use in investigating the

flow physics of blood through the arterial stenosis. It is assumed that the fluid is

homogeneous and incompressible. In DNS, the continuity and momentum equations

for a homogeneous incompressible flow take the following forms in a general Cartesian

curvilinear coordinate system
Akj

|J|
∂uj

∂ξk
= 0 (2.1)

∂ui

∂t
+

Akj

|J|
∂uiuj

∂ξk
= −Aki

ρ|J|
∂p

∂ξk
+ ν

Akj

|J|
∂

∂ξk

(

Alj

|J|
∂ui

∂ξl

)

(2.2)

In the above equations, Akj are the elements of the cofactor matrix, A, of the

Jacobian |J|. Cartesian tensor notation is used in the above equations, where xj

is the coordinate system and uj is the corresponding velocity components, p is the

pressure, ρ is the density and ν is the kinematic viscosity of the fluid.

The above equations describe the physics of incompressible fluid motion under

laminar as well as turbulent conditions. It is well-known that DNS of turbulent flows

is still limited to relatively low Reynolds numbers owing to its high demands for

computational resources. In DNS, the numerical resolution has to be fine enough

to represent the dissipative scales. The enormous spatial and temporal resolution

requirements resulting from this constraint for a DNS of turbulent flows have been
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described by Grotzbach [50].

2.2 Direct Numerical Simulation

The most accurate approach for turbulence simulation is to solve the Navier-Stokes

equations without resorting to averaging or approximation other than numerical

discretization whose errors can be estimated and controlled. It is also the simplest

approach from a numerical point of view. In such simulations, all of the motions of

the flow are directly resolved. The computed instantaneous flow field is equivalent to

a single realization of a flow obtained in a laboratory experiment. This approach is

referred to as DNS.

In DNS, in order to assure that all relevant flow structures are captured, the

computation domain must be large enough to include the largest eddies of the flow

field. A useful measure of the latter scale is the integral scale (l) of the turbulence

which is essentially the distance over which the fluctuating component of the velocity

remains correlated. Thus, each linear dimension of the domain must be at least a few

times the integral scale. A valid simulation must also capture all of the kinetic energy

dissipation. This occurs on the smallest scales of turbulence, the ones on which the

molecular viscosity is active. In view of this, the size of the grid must be no larger

than a viscously determined scale, called the Kolmogorov scale, η
l
.

The results of DNS contain very detailed information about the flow. This can

be very useful but DNS is often too expensive to be employed in engineering practice,

especially when the Reynolds number of the flow is high. DNS results are as valuable

as experimental data, and often, DNS are considered as “numerical wind-tunnels and

water-channels”. Furthermore, in comparison with the experiments, DNS offers much

more detailed information on the velocity, pressure, temperature and concentration

fields, locally and instantaneously (at the smallest spatial and temporal scales of

turbulent motions). DNS allows for computation of quantities that can be difficult to

measure in a laboratory, e.g. an instantaneous pressure field. In DNS, it is convenient
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to set up complex boundary conditions and challenging operating parameters that

might be difficult or impossible to realize in a laboratory. The results of DNS can be

used for assessing the predictive accuracy of turbulence models, and sometimes are

even used for examining the quality of experimental data.

2.3 Resolution Requirements for DNS

To obtain an estimate for the resolution requirements for DNS of a free turbulent shear

flow, Kolmogorov’s first principle of similarity can be used [51]. It is assumed that

the small scales of turbulence are locally isotropic, that is, the statistical properties

of the small scale motions are presumed not to depend on the orientation of the

coordinate system or spatial position in a sufficiently small domain within a flow

for which the Reynolds number is sufficiently large. The smallest turbulent scales,

dissipating the turbulent kinetic energy, are therefore presumed to be isotropic and

are insensitive to any orientation that are associated with the mean flow motion and

boundary geometries. Their physical properties can then only depend on the rate

of dissipation, ǫ, and the kinematic viscosity, ν. Here, the TKE dissipation rate is

defined as ǫ = 2ν〈sijsij〉 and sij = 1
2
(
∂u′

i

∂xj
+

∂u′

j

∂xi
) is the strain rate tensor based on

the instantaneous fluctuating velocities. It then follows from dimensional analysis

that the smallest length and time scales in a turbulent flow are characterized by the

so-called Kolmogorov length scale defined as

η
l
≡
(

ν3

ǫ

)
1

4

(2.3)

and the so-called Kolmogorov time scale defined as

η
t
≡
(ν

ǫ

)
1

2

(2.4)

An approximation for the TKE dissipation rate can be obtained from the large scale

motion if the turbulence is locally in equilibrium, that is, if the local rate of production
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of TKE equals the local rate of dissipation. The rate of TKE production, however,

is determined by the large scale motions and can therefore be approximated as being

proportional to the turbulent energy,
u2

0

2
, and a time scale l0

u0

, characterizing the rate

at which energy is transferred from the mean motion to the turbulent fluctuations.

Here u0 is a velocity scale while l0 is an integral length scale characterizing the large

scale turbulent motions. Thus, for turbulence in local equilibrium the dissipation rate

scale is

ǫ ∝ u3
0

l0
(2.5)

Though strictly only true for the artificial case of forced non-decaying homogeneous

turbulence, this relation can be regarded as a scale relation valid for inhomogeneous

turbulence as well. Available experimental evidence suggests (Tennekes and Lum-

ley [52]) that the spectral energy transfer proceeds at a rate dictated by the kinetic

energy of the large eddies, which can be approximated by
u2

0

2
, and their time scale,

l0
u0
. An estimate for the Kolmogorov scales can therefore be obtained from the large

scales of the problem by introducing (2.5) into (2.3).

With an approximation for the smallest turbulent length scales obtained in this

manner, the computational requirements for a 3D DNS of isotropic homogeneous

turbulence can be estimated. For a finite difference or finite volume method, the

number of grid nodes Nxyz, required to resolve the large scale as well as the small

scale motion in the three spatial directions, is

Nxyz ∝
(

l0
η
l

)3

∝
(

(

l0u0

ν

)
3

4

)3

= Re
9

4

T (2.6)

where ReT = l0u0

ν
is the turbulent Reynolds number of the large scale motions.

In DNS, the requirement of time accuracy over a wide range of scales does not

permit very large time steps because it implies that the small scales can have large

errors, which can corrupt the solution. So in order to be accurate, the integration of

the solution must be done with a time step, ηt, small enough such that a fluid particle
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moves only a fraction of the length scale ηl in each step, viz.

Nt ∝
l0
u0

ηt
∝
(

l0u0

ν

)
1

2

∝ Re
1

2

T (2.7)

Equation (2.6) now implies that the grid size for a DNS of homogeneous turbulence

depends on the Reynolds number. As mentioned above, the scale relations represented

by equations (2.3) and (2.4) indicate the requirement on the order of magnitude of

spatial and temporal resolutions in a DNS. Therefore, the number of grid nodes

for complex engineering type applications are expected to grow with Re
9

4 in flow

regimes away from a solid surface. Here, Re is the flow Reynolds number which is

proportional to the turbulent Reynolds number, ReT , characterizing the large scale

turbulent fluctuations. Now if the Reynolds number Re of a turbulent flow is known,

with the relation (2.6) and (2.7) one can estimate the number of grid nodes and

number of time steps required to resolve the flow at the Kolomogorov scales. Because

both spatial and temporal resolutions grow exponentially with Re, application of DNS

to simulation of engineering problems at high Reynolds numbers (e.g., flow in gas

turbines) is usually prohibited due to the high demands for computational resources.

However, given the fact that Reynolds number is typically low in blood vessels, DNS

becomes a practical and promising numerical tool for simulation of blood flows.

2.4 Numerical Algorithm

A finite volume method is used to discretise the governing equations to yield a system

of linear algebraic equations. The diffusion term in the momentum equations is

discretised using a second-order accurate central difference scheme and the convective

term is discretised using the energy conserving discretisation scheme of Morinishi et

al. [53]. The transient term was discretised using a three-point backward difference

scheme and the time step is ∆t = 1.5× 10−3 sec. A Poisson type pressure correction

equation is solved using an incomplete Cholesky conjugate gradient (ICCG) [54]

method at each time step to update the pressure field. The checkerboard effect in the
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pressure field arising from the pressure-velocity decoupling on a collocated grid system

was removed using a nonlinear momentum interpolation scheme [55]. A BI-CGSTAB

solver was used to solve the matrix of velocity vectors. Overall, the in-house code is

second-order accurate with respect to both temporal and spatial resolutions.

The current parallel code was developed using OpenMP based on a serial

FORTRAN code (Molla et al. [7] and Hossain [56]) revised from the LES-BOFFIN

code of Jones et al. [48, 49]. The detailed discretization schemes and algorithm of

the serial N-S solver for numerical simulation of pulsatile stenotic flows have been

well-documented in Hossain [56].

2.5 Boundary Conditions

The physiological pulsatile laminar velocity profile used for generating the time-

dependent pulsatile boundary condition at the inlet of the channel, was obtained by

analytically solving the Navier-Stokes equation in the context of a fully-developed

laminar channel flow when the pressure gradient is approximated as a temporal

Fourier series, ∂p
∂x

= 2
3
A0 − A

∑N
n=1Mne

i(nωt+φn) (see, Womersley [57]). The solution

takes the following form [56]:

u(y, t) = U [1− 4
y2

h2
] + A

n=1
∑

N

Mnh
2

inµα2
[1− cosh(

√
inα y

h
)

cosh(
√
inα 1

2
)
]ei(nωt+φn) (2.8)

In the above equation, thae constants A0 and A correspond to the steady and

oscillatory parts of the pressure gradient; Mn and φn represent coefficients and the

phase angle, respectively; N is the number of harmonics of the flow set to 4; ω
def
= 2π

T

is the frequency of the pulsations, and T is the time period of a pulsation cycle; i

is imaginary unit,
√
−1; and U , µ and h are bulk velocity, viscosity of the fluid and

height of the channel, respectively. The real part of this solution (Eq. (2.8)) is used

as an inlet boundary condition to generate the pulsatile flow.
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At the outlet of the channel, the convective boundary condition is used, viz.

∂ui

∂t
+ Uc

Akj

|J|
∂uj

∂ξk
= 0 (2.9)

where Uc is the mean convective velocity at the outlet.

In the spanwise direction, a periodic boundary condition is applied. Thus the

field at two spanwise boundaries Γ1 and Γ2 is set to be identical, i.e.,

uj(x; t)|Γ1
= uj(x; t)|Γ2

(2.10)

p(x; t)|Γ1
= p(x; t)|Γ2

(2.11)

No slip and no penetration boundary condition is applied to all solid surfaces.

This boundary condition is used for both the lower and upper walls of the model,

which is defined as

uj(x; t)|Γ = 0 (2.12)

2.6 Calculation of Flow Statistics

Owing to the presence of pulsations, it requires that the calculation of statistics needs

to be carefully dealt with. Three averaging techniques are used in this research,

including phase averaging between different pulsation cycles, time-averaging, and

spatial-averaging along the homogeneous (spanwise) direction. Furthermore, these

three averaging methods need to be properly coupled in the calculations in order

to reveal properly the statistical properties of the pulsatile flow field. In general,

the statistical method adopted here is similar to those used in Mittal et al. [58] and

Varghese et al. [3]. The basic concepts of these averaging techniques will be now

clarified.

For a generic flow variable in DNS, f , time-averaging over the period of time Tf
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is defined as

〈f〉 (x, y, z) = 1

Tf

∫ t0+Tf

t0

f(x, y, z, t)dt (2.13)

where t0 is the initial time and Tf = NT and N is the total number of pulsatile

cycles. Following the convention, turbulent fluctuations of the flow variable f with

respect to time-averaging can be determined through the following decomposition

f
′

(x, y, z, t) = f(x, y, z, t)− 〈f〉 (x, y, z) (2.14)

In the spanwise direction, the flow field is statistically homogeneous. Spatial-

averaging along the spanwise direction can be performed as

〈f〉s (x, y, t) =
1

Lz

∫ Lz

0

f(x, y, z, t)dz (2.15)

where Lz = 3h is the width of the channel. In order to separate small turbulent

fluctuations from the large pulsatile fluctuations, a phase-averaging technique is

needed (Hussain and Reynolds [59] and Mittal et al. [58]). Phase-averaging over

Tf (for N pulsatile cycles) is defined as

〈f〉p (x, y, t) =
1

N

N−1
∑

n=0

〈f〉s (x, y, t+ nT ) (2.16)

In order to determine the root mean square (RMS) of a flow variable, all three

averaging techniques mentioned here are needed. First, both phase-averaging and

spatial-averaging (spanwise) are applied to all pulsatile cycles; and second, an

instantaneous field (of the same phase) is compared with the phase- and spatial-

averaged field to extract the random fluctuations within each pulsatile cycle. After

completing these two steps, the influence of large pulsation fluctuations (see,

Fig. 4.2(a)) on the obtained random fluctuating field is removed, which can be

thereafter considered as statistically homogeneous with respect to time at an arbitrary
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spatial location. The random fluctuating field is calculated as

f
′′

(x, y, z, t) = f(x, y, z, t)− 〈f〉sp (x, y, t) (2.17)

Based on the above steps, it is now possible to use time-averaging to determine the

RMS values over the total computational time Tf

frms =

√

1

Tf

∫ t0+Tf

t0

f ′′2dt (2.18)

In the above equations, subscripts p and s are used to denote phase-averaging and

spatial-averaging, respectively.

In the next section, a pair of angular brackets 〈.〉 will be used to represent a

time-averaged quantity following Eq. (2.13) during the analysis of numerical results.

However, without causing any confusion in symbolism, if a homogeneous dimension

presents (typically, along the spanwise direction of the domain), this angular bracket

operator will also imply an additional spatial averaging with respect to that particular

homogeneous dimension [56].

18



Chapter 3

Parallel Programming with OpenMP

3.1 Introduction

Open Multiprocessing (OpenMP) is a shared-memory application programming

interface (API) which allows the facility to use shared-memory parallel (SMP)

programming. The advantage of parallel computers over classical supercomputers

is scalability. In general, a parallel computing strategy can reduce the execution time

of a program significantly in comparison with a sequential computing strategy. To

facilitate parallel computing, available parallel computers may consist of thousands

of processors and terabytes of memory.

OpenMP was developed to enable portable shared-memory parallel programming.

It aims to support parallelization of scientific and engineering computations from

many disciplines including CFD applications. Moreover, it is intended to provide an

approach that is relatively easy to learn as well as to implement. The API is designed

to permit an incremental approach to parallelizing an existing serial code, in which

portions of a program can be parallelized. In OpenMP, a single set of source files

contains the code for both the serial and the parallel versions of a program which

makes it simple and convenient to use.
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3.2 Parallel Programming

Parallel programming is designed as a symmetric multiprocessor system. Individual

processors of a shared-memory parallel computer share memory in such a way that

each of them can access any memory location with the same speed. Many small

shared-memory machines are symmetric in this sense. There are different ways to

parallelize computer programming codes by using shared-memory machines based on

OpenMP, message passing interface (MPI), etc.

3.2.1 OpenMP

OpenMP is suitable for implementation on a broad range of applications. It is not a

new programming language; rather, it is notation that can be added to a sequential

program in FORTRAN, C, or C++. These notations describe how the work is to be

shared among threads that will execute on different processors and to order access

to shared data as needed. The appropriate insertion of OpenMP notations into a

sequential program allows many applications to benefit from shared-memory parallel

architectures often with minimal modifications to the code.

There are some factors involved in successful use of OpenMP. Primarily, it

is highly focused on structured parallel programming. It is also comparatively

simple to use as the burden of working out the details of the parallel program is

automatically taken care of by the compiler. As OpenMP is widely accepted as a

parallel programming strategy, an OpenMP application will run on many different

platforms. In summary, OpenMP is a standard shared-memory programming strategy

which is easy to learn and apply, and has been accepted positively in the research

community.
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3.3 General Description of OpenMP

OpenMP builds on a large body of work that supports the specification of programs

for execution through a collection of cooperating threads [60]. If multiple threads

collaborate to execute a program, they need to share the resources, including the

address space of the corresponding process. The individual threads need a program

counter and a space in memory to save variables that are specific to it. Threads

running simultaneously on multiple processors or cores may work concurrently to

execute a parallel program. Multi-threaded programs can be written in various ways,

some of which permit complex interactions between threads.

OpenMP attempts to provide ease of programming and to help the user avoid a

number of potential programming errors by offering a structured approach to multi-

threaded programming. It supports the so-called fork-join programming model [61].

Under this approach, the program starts as a single thread of execution, just like a

sequential program. The thread that executes this code is referred to as the initial

thread. Whenever an OpenMP parallel construct is encountered by a thread while it

is executing the program, it creates a team of threads, i.e., the “fork”, becomes the

master of the team, and collaborates with the other members of the team to execute

the code enclosed by the construct. At the end of the construct, only the original

thread, or master of the team, continues, whereas all others terminate, i.e., the “join”.

Each portion of code enclosed by a parallel construct is called a parallel region.

OpenMP expects the application developer to give a high-level specification of

the parallelism in the program and the method for exploiting that parallelism. Thus

it provides notations for indicating the regions of an OpenMP program that should

be executed in parallel. It also allows for the provision of additional information on

how this is to be accomplished. The job of the OpenMP implementation is to sort

out the low-level details of actually creating independent threads to execute the code

and to assign work to them according to the strategy specified by the programmer.
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3.4 Specialty of OpenMP

OpenMP comprises a set of compiler directives, runtime library routines, and

environment variables to specify shared-memory parallelism in FORTRAN and

C/C++ programs. An OpenMP directive is a specially formatted comment that

generally applies to the executable code immediately following it in the program. An

OpenMP directive generally affects only those threads that encounter it. Many of the

directives are applied to a structured segment of code. Each structured segment has

a sequence of executable statements with a single entry at the top and a single exit

at the bottom in FORTRAN programs, and an executable statement in C/C++. In

FORTRAN programs, the start and end of a segment of code are explicitly marked

by OpenMP directives.

OpenMP provides means for a programmer to create teams of threads for

parallel execution and specify how to share work among the members of a team.

The programmer can declare both shared and private variables explicitly. Finally,

OpenMP compilers synchronize threads and enable them to perform certain opera-

tions exclusively.

3.5 Programming with OpenMP

OpenMP directives have the flexibility to give the instructions to the compiler to

execute the code in parallel. They also instruct the compiler how to assign the work

among the threads that will run the code. An OpenMP directive is an instruction

format that is understood by OpenMP compilers only. It looks like a comment to

a regular FORTRAN compiler, such that if a compiler is not OpenMP-aware, the

program will be identified as sequential.

To create an OpenMP program from a sequential one, it is necessary to identify

the parallelism it contains. The most important things in identifying parallelism are

finding instructions, sequences of instructions, and even large regions of code that
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may be executed simultaneously by different processors. The developer must identify

portions of a code to obtain independent instruction sequences. Sometimes it may

be necessary to replace an algorithm with an alternative one that accomplishes the

same task. This can be a challenging problem which needs a good deal of knowledge

about the algorithms. There are some typical kinds of parallelisms in programs, and

a variety of strategies are available to make them ready for parallel executions.

After identifying the parallelism in a sequential program, it is necessary to express

the parallelism by using OpenMP directives. The major advantage of OpenMP is that

it can be applied incrementally to create a parallel program from an existing sequential

code. The developer can insert directives into a portion of the code, then compile

and test the code, followed by another portion of the code to be parallelized. The

programmer can finish the parallelization of sequential code once the desired speedup

has been obtained.

3.6 OpenMP Performance

In terms of performance evaluation, it is important to signify the reduction of code

execution time after OpenMP parallelization of a sequential program. If T1 denotes

the execution time of an application on 1 processor, then in an ideal situation, the

execution time on P processors should be T1/P . Let TP denote the execution time

on P processors, and then the parallel speedup, S can be defined as

S =
T1

TP
(3.1)

By using an increasing number of processors, the execution time is reduced in the

parallelized parts of the program. Eventually the execution time is dependent upon

the time taken to compute the sequential portion. This effect, known as Amdahls

law, can be formulated as

S =
1

fpar/P + (1− fpar)
(3.2)
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FIGURE 3.1: Parallel performance based on code execution time with the number of
processors.

where fpar is the parallel fraction of the code and P is the number of processors. In

the ideal case when the entire code runs in parallel, fpar = 1, the expected speedup is

equal to the number of processors. If only 90% of the code runs in parallel (fpar = 0.9),

the maximal speedup one can expect on 8 processors is 4.7 and on 16 processors is

6.4. So it is important to parallelize as much of the code as possible especially when

large numbers of processors are in use.

A measure of a program’s ability to decrease the execution time of the code with

an increasing number of processors is referred to as parallel scalability. To understand

the effect of using a multiprocessor system, a test has been conducted. In Fig. 3.1, the

time required for code executed in parallel is plotted against the number of processors.

It is clearly seen that the execution time has reduced significantly with the increasing

number of processors. But the reduction in the execution time is not linear because

some part of the code cannot be parallelized using OpenMP.
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Chapter 4

DNS of a Physiological Pulsatile

Newtonian Flow in a Model Arterial

Stenosis

4.1 Introduction

In this chapter, DNS is used to simulate the physiological pulsatile flow in a

constricted channel to gain insights into the transition-to-turbulent flow in an artificial

arterial stenosis. The Womersley number tested was fixed to 10.5 and the Reynolds

number was varied from 500 to 2000 in the simulation. In order to understand the

effects of constriction on the flow field in a channel, degree of stenosis were varied

from 50% to 75%. The physical characteristics of the flow field have been analyzed

in terms of the mean streamwise velocity, RMS velocities, TKE, viscous wall shear

stress and wall pressure.

4.2 Test Case

The computational domain consists of a 3D channel with a symmetric cosine-shaped

stenosis on the upper and lower walls (shown previously in Fig. 1.1). Due to the

presence of the stenosis, the height of the channel, δ, is a variable in the streamwise

direction, i.e., δ = δ(x). Away from the stenosis, the height of the channel is
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FIGURE 4.1: Schematic of mesh configuration in x-y plane with 75% degree of
stenosis.

constant and is represented here using h, i.e., δ = h in the region either upstream or

downstream of the stenosis. The width of the channel is set to 3h. Both stenoses are

centered at x/h = 0. In Fig. 1.1, x, y and z are used to represent the streamwise,

vertical and spanwise coordinates, respectively. The stenosis is 5h downstream of the

channel inlet and 15h away from the channel outlet. The form of the stenosis chosen

for this study is
y

h
= 1− fc

2

(

1 + cos
xπ

h

)

, −h ≤ x ≤ h (4.1)

where fc = δmin/h is a parameter for controlling the height of the stenosis. In the

present study, fc is set to
1
2
, 3

5
and 3

4
, which results in 50%, 60% and 75% reduction

of the cross-sectional area at the centre of the stenosis, respectively.

Figure 4.1 shows the schematic of the mesh configuration in the x-y plane. As

the no-slip condition is applied on the top and bottom walls of the channel, the

meshes are refined near the top and bottom walls to increase the resolution in the

near-wall regions. The mesh lines are also concentrated at the centre and immediate

downstream of the stenosis because these are the regions where energetic eddies are

generated and boundary-layer separation occurs. The mesh is uniform in the spanwise

direction. As discussed in the chapter 2, the requirement on the order of magnitude

of spatial and temporal resolutions in a DNS is estimated based on the Reynolds

number. The numerical results for Re = 1200 presented in this chapter are based on

the grid system with 350 × 90 × 90 control volumes (in the streamwise, vertical and

spanwise directions, respectively). As the grid system with 350× 90× 90 was able to

resolve the smallest scale of turbulence at Re = 1200, it is fine enough to resolve the
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FIGURE 4.2: Instantaneous inlet velocity u/U for α = 10.5: (a) time history near
the wall (x/h = −5.0, y/h = 0.01, z/h = 1.5), and (b) at the different time phases for
Re = 1200.

smallest Kolmogorov’s scales at Re = 500.

4.3 Inflow Boundary Condition

In the simulations, the Womersley number is defined as α2 def
= h2 ρω

µ
, where ρ is the

density of the fluid and α is the Womersley number which reflects the ratio of the

pulsatile inertial forces to the viscous forces. If the Womersley number is small (for

α ≤ 1), the frequency of pulsations is low and the viscous forces dominate flow; and

consequently, a cross-sectional parabolic velocity profile develops in response to the

instantaneous streamwise pressure gradient (i.e., the Poiseuille flow behavior) during

each pulsation cycle. However, according to Ku [2], if the Womersley number is large

(for α ≥ 10), the frequency of pulsations is high and the pulsatile inertial forces play

an important role; and consequently, the phase of the velocity field development lags

behind the phase of the instantaneous streamwise pressure gradient (which implies

that the flow behavior deviates from the Poiseuille type). In the present simulation,

the Womersley number is fixed to α = 10.5.

In Eq. 2.8, the value of the amplitude of oscillation, A, varies with the Reynolds

number to maintain the maximum flow rate at the inlet. For Re = 500, 1200, and

2000, the value of A is set to 0.1, 0.25 and 0.4, respectively. For the four different

harmonics, the value of Mn is 0.78, 1.32, −0.74 and −0.41 and the value of φn
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FIGURE 4.3: Comparison of phase-averaged 〈u〉 /U with the experimental results of
Beratlis et al. [1], at (a) x/h = −10, (b) x/h = 2, (c) x/h = 4, and (d) x/h = 6.
Circular symbol for experiment, solid line for present DNS.

is 0.0113446, −1.4442599, 0.4625122 and −0.2879793, respectively [57]. The inlet

pulsatile velocity profile, derived from Eq. (2.8), is demonstrated in Fig. 4.2. The

time history of the velocity field during a full pulsatile cycle at a specific near-wall

location in the crossing line of the spanwise vertical inlet plane (x/h = −5) and the

central streamwise vertical plane (z/h = 1.5) of the domain is shown in Fig. 4.2(a).

The temporal variation of the vertical velocity profile across the centre of the inlet

plane at different phases over a pulsatile cycle is shown in Fig. 4.2(b).

4.4 Results and Analysis

In order to examine the predictive accuracy of our numerical algorithm, the in-house

code has been validated using a bench test case. The numerical results obtained have

been compared with the experimental data (on a post-stenotic flow) of Beratlis et

al. [1]. Beratlis et al. [1] conducted the experiment to investigate pulsatile flow in a

stenotic channel using a single-component LDV. Their measurement system consisted

of a Dantec instrument and computer controlled traverse system. In order to be

consistent with their experimental conditions, the mean bulk velocity was set to

U = 0.082 m/s, with an oscillatory amplitude of ∆U = 0.06 m/s and a period of T = 4
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FIGURE 4.4: Grid sensitivity test with respect to the mean streamwise velocity
〈u〉 /U at (a) x/h = −5.0 (inlet), (b) x/h = 0.0, (c) x/h = 1.0, (d) x/h = 2.0, (e)
x/h = 3.0, (f) x/h = 3.5, (g) x/h = 4.0, (h) x/h = 4.5, (i) x/h = 5.0, (j) x/h = 6.0,
(k) x/h = 10.0, and (l) x/h = 15.0 (outlet). Based on two grid systems, Case 1: solid
line for 350×90×90 control volumes, Case 2: solid line with symbol for 350×120×90
control volumes.

sec. The corresponding Reynolds and Womersley numbers were set to Re = 570 and

α = 8.25, respectively, and at the inlet, the pulsatile boundary condition described

in the previous subsection was used. Figure 4.3 shows the phase-averaged streamwise

velocity at different downstream locations, and it is evident that the present DNS

has well reproduced experimental results of Beratlis et al. [1]. At the stenosis, the

maximum streamwise velocity is seen in Fig. 4.3(b) and the flow begins to accelerate.

In the immediate post-stenotic region, two recirculation zones are generated which

shows that the mean velocity is negative. In addition, the thin shear layer becomes

unstable and rolls up into vortices, which subsequently interact with the recirculating

areas and the flow becomes re-laminarized in the far downstream region.

In order to thoroughly examine the effects of grid resolution on the predicted

results, two different grid systems with 350 × 90 × 90 (Case 1) and 350 × 120 × 90

(Case 2) control volumes (in the x, y and z directions, respectively) were compared at

Re = 1200. The two grid systems are body-fitted reflecting the curvilinear geometry

of the computational domain. The number of streamwise grid points upstream of

the stenosis is always fixed to 50 while the rest of the grid points are distributed
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FIGURE 4.5: The mean streamwise velocity 〈u〉 /U at (a) x/h = −5.0 (inlet),
(b) x/h = 0.0, (c) x/h = 1.0, (d) x/h = 2.0, (e) x/h = 3.0, (f) x/h = 3.5, (g)
x/h = 4.0, (h) x/h = 4.5, (i) x/h = 5.0, (j) x/h = 6.0, (k) x/h = 10.0, and (l)
x/h = 15.0 (outlet). Based on three Reynolds numbers, Case 1: dashed line for
Re = 500, Case 2: solid line for Re = 1500, and Case 3: solid line with symbols for
Re = 2000.

within and downstream of the stenosis. The grid is uniform in the spanwise direction

and significantly refined in the near-wall region in order to accurately resolve the wall

shear stress. The results of Cases 1 and 2 are compared in Fig. 4.4 in terms of the non-

dimensionalized time-averaged streamwise velocity (i.e., 〈u〉/U) at different locations

along the streamwise direction. From Fig. 4.4, it is seen that two grid configurations

used in the present computations can predict correctly the mean velocity field and

are not sensitive to the grid resolution.

4.4.1 Flow Characteristics

Figure 4.5 shows the mean streamwise velocity 〈u〉 (non-dimensionalized using the

bulk velocity, U) at different streamwise locations for Re = 500, 1200, and 2000.

As shown in Fig. 4.5(b), at the centre of the stenosis (x/h = 0), the flow velocity

reaches its maximum value. Triggered by the stenosis, the flow field driven by

the pulsatile inlet condition undergoes laminar-turbulent-laminar patterns in the

streamwise direction (see also Figs. 4.6- 4.8). The flow becomes turbulent immediately
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after the throat location (x/h = 0) of the stenosis. In the far downstream region

(x/h ≥ 6), the flow becomes re-laminarized, and the velocity profile re-establishes

itself to a shape similar to that at the inlet. From Fig. 4.5, it can also be seen that

mean streamwise velocity increases with the Reynolds number at different streamwise

locations to reflect the principle of mass conservation.

The presence of the stenosis not only accelerates the flow (see Fig. 4.5(b)) but

also causes boundary layer separation at the top and bottom walls immediately after

the stenosis. The separation of the boundary layers further results in recirculation

of the flow. As evident in Figs. 4.5(c)-(g), the mean velocity is negative close to

the top and bottom walls, which is an indication of recirculation flow pattern (in

the post-stenotic region). By comparing the velocity profiles of the three Reynolds

numbers, it is interesting to observe that the size of the recirculation bubble (in terms

of height and length) varies with the Reynolds number. A more careful analysis of the

Reynolds number effects on the recirculation of the flow will be conducted later using

Figs. 4.8 and 4.9 based on the contours of the instantaneous streamwise velocity.

Figures 4.6 and 4.7 show the slice view of the isopleths of the non-dimensionalized

instantaneous streamwise velocity field u/U at t/T = 10.25. In Fig. 4.6, the first two

slices show that prior to the stenosis, the flow is laminar and stratified. The third

slice shows that the velocity reaches its maximum at the throat location (x/h = 0) of

the stenosis. The fourth slice shows a very interesting instantaneous flow pattern: in

the immediate post-stenotic region, the velocity is very large (as indicated by the red

color) at the centre of the channel, however, the velocity is negative in the recirculation

region close to the upper and lower walls. This pattern is consistent with the previous

observation of the mean velocity profiles in Fig. 4.5. Turbulence is triggered by the

stenosis. However, as indicated by the last four slices, gradually, the flow becomes

re-laminarized in the far downstream region. The flow physics discussed here are

also clearly demonstrated in Fig. 4.7, which shows the contours of the instantaneous

streamwise velocity profiles in the central x-z plane at two Reynolds numbers 500

and 1200. From both Figs. 4.6 and 4.7, it is observed that due to the presence of the

stenosis, the flow is triggered to a weakly turbulent state at Re = 500 but to a fully
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(a)

(b)

FIGURE 4.6: Slice view of instantaneous streamwise velocity u/U at t/T = 10.25 for
(a) Re = 500, and (b) Re = 1200.
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(a)

(b)

FIGURE 4.7: Contours of instantaneous streamwise velocity u/U in the central x-z
plane with degree of stenosis 75% at t/T = 10.25 for (a) Re = 500, and (b) Re = 1200.
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(a)

(b)

FIGURE 4.8: Contours of the instantaneous streamwise velocity u/U in the central
x-y plane at t/T = 10.25 for (a) Re = 500, and (b) Re = 1200.

turbulent state at Re = 1200 immediately downstream of the stenosis.

Figures 4.8(a), 4.8(b) and 4.9 illustrate the contours of the instantaneous

streamwise velocity at the central plane (z/h = 1.5) for Re = 500, 1200, and 2000,

respectively. The instantaneous vortical structures of the flow are visualized using

the contours of instantaneous streamwise velocity, u/U . For three Reynolds numbers

tested, two distinct recirculation regions appear near the post-lip of the stenosis due to

the separation of the shear layer induced by the stenosis. By comparing Figs. 4.8 (a)

and (b), it is observed that the flow reattaches earlier at the higher Reynolds number,

which agrees qualitatively with the result of Ahmed and Giddens [11, 12] and Mittal

et al. [58]. At Re = 500 and 1200, the location of separation is (x/h)sep = 0.203 and

0.157 and the location of reattachment is (x/h)reatt = 8.92 and 4.17, respectively. At

Re = 2000, another interesting comparison is made at varying degree of stenosis of
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(a)

(b)

FIGURE 4.9: Contours of the instantaneous streamwise velocity u/U in the central
x-y plane for Re = 2000 at t/T = 10.25 with degree of stenosis of (a) 50%, and (b)
60%.

50% and 60%, for which, the location of separation is (x/h)sep = 0.235 and 0.188 and

the location of reattachment is (x/h)reatt = 3.94 and 3.44, respectively. Therefore,

it is seen that the flow reattaches earlier at the higher degree of stenosis. As the

degree of stenosis increases, the flow velocity increases as a result of a narrower cross-

sectional area at the throat location of the stenosis. Therefore, the local Reynolds

number also increases for the higher degree stenosis case. The above observation is in

analogy with the dynamics of a confined jet, in which the flow also reattaches earlier

as the Reynolds number increases.

In Fig. 4.10, the cycle-to-cycle flow development is shown using the contour plots

of the streamwise velocity u (non-dimensionalized using the bulk velocity, U). In

Fig. 4.10(a), it is observed that at the end of the first cycle, two small recirculation
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FIGURE 4.10: Contours of the instantaneous streamwise velocity u in the central
x-y plane at (a) t/T = 1.25, (b) t/T = 2.25, (c) t/T = 4.25, (d) t/T = 6.25,
(e) t/T = 7.25, (f) t/T = 8.25, (g) t/T = 9.25, and (h) t/T = 10.25 for Re = 1200.

regions near the two walls are created. A primary shear layer which is initially

generated at the centre of the stenosis propagates towards the downstream region at

the end of the second cycle (see Fig. 4.10(b)). As shown clearly in Figs. 4.10(c)-(h), as

the flow field evolves with time, the shear layers elongate and finally break down into

vortices and triggers the turbulent flow pattern. The simulation has been carried out

up to the end of the tenth cycle, as it has been tested that the solutions eventually

reach to a statistically stationary state after the eighth cycle, and the flow statistics

accumulated after the eighth cycle, do not vary significantly between the eighth and

tenth cycles.
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FIGURE 4.11: Non-dimensionalized time- and spanwise-averaged profiles of the wall
shear stress 〈τw〉 /1

2
ρU2 for (a) different Reynolds numbers and (b) different degrees

of stenoses at Re = 2000.

4.4.2 Wall Shear Stresses

Figure 4.11(a) displays the profile of the averaged wall shear stress τw = µ∂u
∂y
|w (non-

dimensionalized using 1
2
ρU2) over the upper and lower walls. The maximum wall shear

stress occurs at the throat location (x/h = 0) of the stenosis due to the large vertical

gradient of the mean streamwise velocity. As shown in Fig. 4.11(a), following a sharp

rise close to the centre of the stenosis, the wall shear stress drops rapidly, becomes

negative in the region 0 < x/h < 4, and then slightly rises to an approximately

constant small finite value in the further downstream region. The negative value

of the wall shear stress is a consequence of the boundary-layer separation and flow

recirculation immediately after the stenosis.

In Fig. 4.11(a), a comparison is further made between the three Reynolds numbers

tested. It is observed that in general, the predicted wall shear stress increases as the

Reynolds number increases. This is because the mean streamwise velocity increases

with the Reynolds number (see Fig. 4.5). In Fig. 4.11(b), another comparison is made

among the three different degrees of stenosis at Re = 2000. As the reduction of the

cross-sectional area increases from 50% to 75%, the mean wall shear stress increases.

This is because the mean wall shear stress is determined by the mean velocity field,

which increases as the channel becomes narrower.
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FIGURE 4.12: Non-dimensionalized turbulent shear stress 〈u′′v′′〉 /U2 at (a) x/h =
0.0, (b) x/h = 1.0, (c) x/h = 2.0, (d) x/h = 3.0, (e) x/h = 4.0, (f) x/h = 5.0, (g)
x/h = 6.0, and (h) x/h = 10.0.

The non-dimensionalized turbulent shear stress 〈u′′v′′〉 /U2 is shown in Fig. 4.12

at different streamwise locations. At the throat location (x/h = 0) of the stenosis,

turbulent shear stress is zero. Turbulence is triggered by the stenosis. As shown in

Fig. 4.12, the profiles of the turbulent shear stress is symmetrical in the wall-normal

direction, and because of this symmetrical condition, its value is zero in the centre

(y/h=0). In the post-stenotic region, turbulent shear stress reduces to zero at the

walls due to the no-slip boundary condition. Away from the walls, the turbulent

shear stress increases to a peak value from both sides of the walls. As shown in

Fig. 4.12(d), the magnitude of the peak value reaches the maximum approximately

at x/h = 3.0. Following this rise in the turbulent shear stress, the turbulent shear

stress drops rapidly, in the region further downstream of the stenosis, and eventually

becomes trivial for x/h ≥ 10.0.
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FIGURE 4.13: Non-dimensionalized time- and spanwise-averaged profile of the wall
pressure 〈p〉 /ρU2 for (a) different Reynolds numbers at 75% stenosis and (b) different
degree of stenoses at Re = 1200.

4.4.3 Wall Pressure

The time- and spanwise-averaged wall pressure is shown in Fig. 4.13(a) for the

three different Reynolds numbers tested. Owing to the constriction of the channel,

the wall pressure drops significantly at the centre of the stenosis. As shown in

Figs. 4.13(a) and 4.13(b), the maximum pressure drop occurs within the immediate

post-stenotic region for 0 < x/h < 4, where an adverse pressure gradient presents

and flow recirculates. The signature of the flow recirculation pattern is also evident

in Figs. 4.5(c)-(g), which show that the mean velocity is negative in the region

immediately after the stenosis. Figure 4.13(b) shows the influence of the stenosis

contraction percentage on the wall pressure. From Figs. 4.13(a) and 4.13(b), it is

evident that the maximum wall pressure drop occurs right at the throat location of

the stenosis (for different Reynolds numbers and degrees of stenosis), where the flow

speed is the highest. It is evident in Fig. 4.13(b), as the channel becomes narrower (the

degree of stenosis increases from 50% to 75%), the wall pressure drops significantly.

This is because as the degree of stenosis increases, the flow speeds up which results in

a pressure drop. This effect is similar to the increase of the Reynolds number, which

results have been shown in Fig. 4.13(a).
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FIGURE 4.14: Non-dimensionalized time- and spanwise-averaged profile of TKE
k/U2 for (a) different Reynolds numbers at 75% stenosis and (b) different degree
of stenoses at Re = 1200.

4.4.4 Turbulence Kinetic Energy

Figure 4.14(a) shows the non-dimensionalized time- and spanwise-averaged TKE

k = 1
2
〈u′′

i u
′′

i 〉 of the flow along the streamwise direction for the three different

Reynolds numbers tested. Initially, the flow is fully laminar as it is evident that

k = 0 holds upstream of the stenosis. As soon as the flow passes the centre of

the stenosis, turbulence is triggered and the TKE starts to increase rapidly and

reaches its maximum value in the immediate post-stenotic region (for 2 ≤ x/h ≤ 6).

Further downstream of the stenosis, the TKE decays gradually and finally approaches

zero where the flow is re-laminarized. It is interesting to point out here that this

high level of TKE in the immediate post-stenotic region is closely related to the

interaction between two shear layers formed from the top and bottom walls, both

of which separate from the stenosis and produce the intense pairwise vortices in the

post-stenotic region. Figure 4.14(a) compares the Reynolds number effects on the

TKE. As expected, as the Reynolds number increases, the TKE level increases in the

region immediately downstream of the stenosis where turbulence is just triggered

by the stenosis. However, in the far downstream region of the stenosis, where

turbulence is significantly damped, the Reynolds number effects on the TKE vanishes.

Figure 4.14(b) shows the influence of the stenosis contraction on the TKE. Obviously,

as the channel becomes narrower, the stenosis triggers more severe turbulence.
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FIGURE 4.15: Non-dimensionalized profiles of the RMS velocities at y/h = 0.5 for
Re = 2000.

4.4.5 Root Mean Square Velocities

Figure 4.15 shows non-dimensionalized profiles of the RMS velocities urms
def
= 〈u′′2〉1/2,

vrms and wrms (defined similarly) along the central streamline of the domain (y/h =

0.5). As shown in Fig. 4.15, the value of urms/U , vrms/U and wrms/U are very

close to zero at the inlet, reflecting the nature of the laminar pulsatile flow pattern

in the upstream region. However, after the centre of the stenosis, the RMS values

of the velocities begin to increase and become prominent in the immediate post-

stenotic region (0 < x/h < 6). This physical feature is related to the recirculation

flow pattern in the post-stenotic region. Far downstream of the stenosis (x/h > 6),

the flow is still turbulent but the intensity decreases gradually. The effects of the

Reynolds number on the RMS velocities in the upstream region (x/h < 0) of the

stenosis is indistinctive. However, in the immediate post-stenotic region where the

turbulence level is enhanced due to the stenosis, the Reynolds number effects are

evident. Figures 4.16(a), 4.16(b), and 4.16(c) show that the magnitude of the RMS

velocities increases with the Reynolds number. Figures 4.17(a), 4.17(b), and 4.17(c)

show that the magnitude of the RMS velocities increases as the channel becomes

narrower.
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FIGURE 4.16: Non-dimensionalized profiles of the RMS velocities at y/h = 0.5 for
different Reynolds numbers: (a) urms/U , (b) vrms/U , and (b) wrms/U .

4.4.6 Energy Spectra

In Fig. 4.18, the non-dimensionalized energy spectra Eu′′u′′ = E(fs)U/h are plotted

with respect to the Strouhal number Sr = fsh/U . Here, E(fs) is the spectra of

the square of streamwise velocity fluctuations, u′′2/U2, extracted based on phase-

averaging over the last three pulsatile cycles, and fs is the time frequency of eddy

motions at a specific streamwise location. The frequency spectra is computed using a

fast Fourier transform (FFT) scheme. In order to demonstrate the changes in the slope

of the energy spectrum, two straight lines corresponding to (Sr)−5/3 and (Sr)−10/3 are

included in Fig. 4.18. According to Tennekes and Lumley [52], a frequency spectrum

often includes three distinct subranges. The first subrange contains the energy of the

injected flow at very small time frequencies (spatially, corresponding to large-scale

eddy motions). The second part is the so-called inertial subrange where the energy
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FIGURE 4.17: Non-dimensionalized profiles of the RMS velocities for different
degrees of stenoses: (a) urms/U , (b) vrms/U , and (c) wrms/U .

cascade conserves across each frequency and the spectrum slope is characterized by

a constant value, −5/3, following the well-known“Kolmogorov’s −5/3 law”. Finally,

the third part is the viscous dissipation subrange corresponding to high-frequency

turbulent motions (spatially, corresponding to small-scale eddy motions).

In Fig. 4.18(a), it is shown that prior to the stenosis (x/h = −2), the slope

of the spectrum deviates from the value −5/3, which is the characteristic of the

inertial subrange. This physical feature is expected, because in the upstream region,

the flow is not only laminar but also influenced by the pulsations. This feature of

the spectrum slope extends to the centre of the slope (x/h = 0), where the flow is

still laminar and the onset of turbulence is just triggered due to the constriction of

the channel. The signature of the inertial subrange is evident in Figs. 4.18(c)-(f),

which correspond to the fully turbulent region in the immediate post-stenotic region

43



10-1 100 10110-5

10-4

10-3

10-2

10-1

Sr

E
u″

u″

(c) -5/3 -10/3

10-1 100 10110-5

10-4

10-3

10-2

10-1

Sr

E
u″

u″

(b)
-5/3

-10/3

10-1 100 10110-5

10-4

10-3

10-2

10-1

Sr

E
u″

u″
(e) -5/3 -10/3

10-1 100 10110-5

10-4

10-3

10-2

10-1

Sr

E
u″

u″

(i)

-5/3
-10/3

10-1 100 10110-7

10-6

10-5

10-4

10-3

10-2

10-1

Sr

E
u″

u″

(f)

-5/3

-10/3

10-1 100 10110-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Sr

E
u″

u″

(a)

-5/3

-10/3

10-1 100 10110-5

10-4

10-3

10-2

10-1

Sr

E
u″

u″

(h)

-5/3

-10/3

10-1 100 10110-5

10-4

10-3

10-2

10-1

Sr

E
u″

u″

(g)
-5/3 -10/3

10-1 100 10110-5

10-4

10-3

10-2

10-1

Sr

E
u″

u″

(d) -5/3 -10/3

FIGURE 4.18: Non-dimensionalized energy spectrum related to the streamwise
fluctuations u′′ at the different streamwise locations: (a) x/h = −2 , (b) x/h = 0,
(c) x/h = 2, (d) x/h = 3, (e) x/h = 4, (f) x/h = 5, (g) x/h = 6, (h) x/h = 8, and
(i) x/h = 10.

(1 ≤ x/h ≤ 5). As shown in Figs. 4.18(g)-(i), in the far downstream region of the

stenosis, the interval of the inertial subrange reduces as the turbulent fluctuations

decrease due to the re-laminarization tendency. Furthermore, it is observed that the
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slope of the spectrum changes from −5/3 to −10/3 at the higher Strouhal number,

which pattern is consistent with the results of Lu et al. [62]. In the viscous dissipation

subrange, the TKE eventually converts into thermal energy through the mechanism

of molecular dissipation.

4.5 Summary of the Chapter

DNS has been performed to investigate physiological pulsatile flow with a Newtonian

fluid through a 3D channel with both sided stenosis. The results are presented

in various forms to show the effects of stenosis on the turbulent statistics of the

velocity field. In the region upstream of the stenosis, the viscous forces are dominant

and the flow pattern is primarily laminar. Due to the presence of the stenosis,

the wall shear stress increases significantly and wall pressure decreases drastically.

Immediately after the stenosis, the flow transits from laminar to turbulent flow

patterns. The flow recirculates and an adverse streamwise pressure gradient exists

near the upper and lower walls. Furthermore, the turbulent intensity and stresses

of the flow increase significantly in the immediate post-stenotic region, however, the

turbulence level drops quickly in the streamwise direction and the flow eventually

becomes relaminarized in the region far downstream of the stenosis.

Based on the analysis of results for tested cases, it is understood that turbulent

fluctuations are highly dependent upon the following physical factors: (i) the presence

of the stenosis, which is directly responsible for triggering turbulence and enhancing

the RMS velocity levels; (ii) the degree of the stenosis, which controls the cross-

sectional area of the throat of the stenosis and significantly influences the turbulence

level in the post-stenotic region; and (iii) the Reynolds number, which reflects

the acceleration of the flow to turbulence due to the mean driving inertial forces

(associated with the mean pressure gradient in the streamwise direction) against the

viscous forces (which suppress turbulence through viscous dissipation).
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Chapter 5

DNS of a Physiological Pulsatile

Non-Newtonian Flow in a Model Arterial

Stenosis

5.1 Introduction

Pulsatile laminar-turbulent transitional non-Newtonian fluid flow in a 3D constricted

channel represents a challenging topic and has many important applications in

biofluids engineering. Human blood flow can be treated as a Newtonian fluid in

large arteries, however, in smaller arteries and veins, it behaves typically as a non-

Newtonian incompressible viscoelastic fluid [63]. According to Berger and Jou [64],

if the shear rate is greater than 100 s−1, the blood behaves like a Newtonian fluid

and its viscosity approaches an asymptotic value, µ∞ = 3.45× 10−3 Pa · s. However,
if the shear rate of a blood flow falls below this threshold, its viscosity increases and

non-Newtonian fluid behaviors begin to exhibit. In this chapter, direct numerical

simulations have been conducted to investigate a pulsatile non-Newtonian flow in the

context of a channel with 60% stenosis. For the pulsatile flow studied, the Womersley

number is set to 10.5 and Reynolds number is set to 1500, both of which are the

characteristic of human arterial blood flows. The non-Newtonian flow simulation

results are compared against those obtained based on the Newtonian fluid assumption

under the same test conditions.
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FIGURE 5.1: Relationship between the shear rate and the apparent viscosity for
Newtonian and non-Newtonian fluids.

5.2 Non-Newtonian Blood Viscosity Model

The assumption of the Newtonian behavior of blood is limited to high shear rate

flow through larger arteries. If the shear rate is below 100 s−1, blood behaves as

non-Newtonian fluid (Berger and Jou [64]). The conventional model of Carreau [42]

estimates the non-Newtonian viscosity as

µ = µ∞ + (µ0 − µ∞)[1 + (λ|S|)2]n−1

2 (5.1)

where µ is the viscosity, µ∞ = 3.45×10−3 Pa · s, µ0 = 0.056 Pa · s is the blood viscosity

at zero shear rate, λ = 3.131 is the time constant associated with the viscosity (that

changes with the shear rate), and n = 0.3568. Figure 5.1 demonstrates the functional

relationship between the shear rate and the apparent blood viscosity of the Carreau

model. In this research, the Carreau model is used exclusively for calculating the

molecular viscosity of the non-Newtonian fluid.
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FIGURE 5.2: Schematic of mesh configuration in x-y plane with 60% degree of
stenosis.

5.3 Test Case and Mesh Configurations

The arterial stenosis is simplified as a 3D channel with a symmetric cosine-shaped

stenosis on the upper and lower walls. The parameters have been explained earlier

in chapter 4. In this chapter, fc is fixed to 3
5
, which results 60% reduction of the

cross-sectional area at the centre of the stenosis. In Fig. 5.2, a portion of the mesh

configuration is shown in the x-y plane. The results presented in this section is

produced using Reynolds number, Re = 1500 with 350× 90× 90 control volumes (in

the stream, vertical and spanwise directions, respectively).

5.4 Inflow Boundary Condition

The real part of the solution of Eq. (2.8) is used as an inlet boundary condition

to generate the pulsatile flow. For Re = 1500, the value of A is set to 0.35. The

inlet pulsatile velocity profile derived from Eq. (2.8) is very similar to that shown in

Fig. 4.2, and therefore, is not presented here in order to keep the discussion concise.
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FIGURE 5.3: The mean streamwise velocity 〈u〉 /U at (a) x/h = −5.0, (b) x/h =
0.0, (c) x/h = 1.0, (d) x/h = 2.0, (e) x/h = 3.0, (f) x/h = 3.5, (g) x/h = 4.0,
(h) x/h = 5.0, (i) x/h = 6.0, (j) x/h = 8.0, (k) x/h = 10.0, and (l) x/h = 15.0 (solid
line for the Newtonian flow, and dashed line for the non-Newtonian flow).

5.5 Results and Analysis

5.5.1 Flow Characteristics

Figures 5.3 and 5.4 compare the mean streamwise velocity u (non-dimensionalized

using the bulk velocity U) and the non-dimensionalized time- and spanwise-averaged

TKE, k, respectively, for the Newtonian and non-Newtonian cases at different

streamwise locations. The pulsatile inlet condition and the stenosis jointly trigger

a laminar-turbulent-laminar transition in the streamwise direction. In addition, the

flow separates after the stenosis forming two distinctive recirculation regions. In both

the Newtonian and non-Newtonian cases, the flow velocity reaches its maximum

value at the centre of the stenosis. Immediately downstream of the throat of the

stenosis (x/h = 0), the flow becomes turbulent and then gradually re-laminarizes

in the far downstream region (x/h > 6). Further downstream the flow continues

to develop. From Fig. 5.3, it can be seen that mean streamwise velocity is slightly

higher for Newtonian flow than that for non-Newtonian flow, especially in the region

immediately downstream of the stenosis.
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FIGURE 5.4: Non-dimensionalized time- and spanwise-averaged profile of TKE k/U2

at (a) x/h = −5.0, (b) x/h = 0.0, (c) x/h = 1.0, (d) x/h = 2.0, (e) x/h = 3.0, (f)
x/h = 3.5, (g) x/h = 4.0, (h) x/h = 4.5, (i) x/h = 5.0, (j) x/h = 6.0, (k) x/h = 10.0,
and (l) x/h = 15.0 (solid line for the Newtonian flow, and dashed line for the non-
Newtonian flow).

Figure 5.5 illustrates the contours of the instantaneous streamwise velocity at the

central vertical plane (z/h = 1.5) at Re = 1500 for the non-Newtonian flow. The

time-averaged vortical structures of the flow are visualized using the contours of non-

dimensionalized mean streamwise velocity. Two distinct recirculation regions appear

near the post-lip of the stenosis due to the separation of the shear layer induced by

the stenosis.

Figure 5.6 shows the slice view of the isopleths of the non-dimensionalized

instantaneous streamwise velocity field u/U at t/T = 10.25. The flow entering the

stenosis accelerates while remaining laminar and stratified. Immediately downstream

of the throat of the stenosis, the flow separates from the upper and lower surfaces

but remains stratified. Further downstream (x/h > 1) there is a transition to fully

3D flow. Finally, the flow re-laminarizes (see the last four slices in Fig. 5.6), the flow

re-establishes a stratified profile.

In Fig. 5.7, the cycle-to-cycle flow development is shown using the contour plots

of the streamwise velocity u (non-dimensionalized using the bulk velocity U) for non-

Newtonian flow. A snapshot of the contours is made for the instantaneous streamwise
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FIGURE 5.5: Contour of the instantaneous streamwise velocity u/U at t/T = 10.25
for non-Newtonian flow.

FIGURE 5.6: Slice view of instantaneous streamwise velocity u/U at t/T = 10.25 for
the non-Newtonian flow.

velocity at the end of each cycle for Re = 1500. The simulation has been carried out

up to the end of the tenth cycle. It has been confirmed that the solutions eventually

reach a stationary state after the eighth cycle, and the flow statistics accumulated

after the eighth cycle do not vary significantly between the eighth and tenth cycles.

As shown in Fig. 5.7(a), at the end of the first cycle, it is observed that two small

recirculation regions near the two walls are generated. As shown in Fig. 5.7(b), a

primary shear layer which is initially created at the centre of the stenosis propagates
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FIGURE 5.7: Contours of streamwise velocity u/U at: (a) t/T = 1.25, (b) t/T = 3.25,
(c) t/T = 5.25, (d) t/T = 6.25, (e) t/T = 7.25, (f) t/T = 8.25, (g) t/T = 9.25 and
(h) t/T = 10.25 for the non-Newtonian flow at Re = 1500.

towards the downstream region at the end of the second cycle. As the flow field

evolves with time, the shear layers elongate and finally break down into vortices that

eventually induce the flow a fully turbulent state immediately after the stenosis (see

Figs. 5.7(c)-(h)).

5.5.2 Wall Shear Stresses

Figures 5.8 (a) and (b) display the averaged and instantaneous profile of the wall

shear stress τw = µ∂u
∂y
|w (non-dimensionalized using 1

2
ρU2) over the upper and lower
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walls for both the non-Newtonian and Newtonian cases. The wall shear stress for

the non-Newtonian case is lower than that for the Newtonian case over most of the

channel due to the higher predicted local viscosity by the Carreau viscosity model.

The wall shear stress rises rapidly at the throat location and then drops sharply in

the post-stenotic region where the flow separates. Within 0 < x/h < 6, the wall

shear stress becomes negative due to the recirculation of the flow adjacent to the

wall, and then slightly rises to an approximately constant small finite value in the

further downstream region. For the non-Newtonian flow case, the wall shear stress is

slightly higher close to the re-attachment point.

5.5.3 Wall Pressure

Figure 5.9 illustrates the contour of the non-dimensionalized time- and spanwise-

averaged wall pressure 〈p〉 /ρU2 in the central vertical plane (z/h = 1.5) and Fig. 5.10

shows the non-dimensionalized time- and spanwise-averaged wall pressure distribution

along the streamwise direction of the flow. As evident in both figures, owing to the

constriction of the channel, the wall pressure drops significantly at the centre of the

stenosis. As shown in Figs. 5.9 and 5.10, the maximum pressure drop occurs in the

immediate post-stenotic region for 0 < x/h < 3, where an adverse pressure gradient

presents and flow recirculates. From Fig. 5.10, it is evident that the maximum wall
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FIGURE 5.9: Contours of non-dimensionalized time- and spanwise-averaged wall
pressure, 〈p〉 /ρU2 for the non-Newtonian flow.
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FIGURE 5.10: Non-dimensionalized time- and spanwise-averaged profiles of wall
pressure 〈p〉 /ρU2 for the Newtonian and the non-Newtonian flows.

pressure drop is higher for the Newtonian flow than for the non-Newtonian flow. This

is because the fluid viscosity as predicted by the Carreau model for the non-Newtonian

fluid is higher than the viscosity of the Newtonian fluid. As a result, both pressure

and kinematic energy of the flow dissipates faster in the non-Newtonian case.

5.5.4 Turbulence Kinetic Energy

Figure 5.11 shows the non-dimensionalized time- and spanwise-averaged TKE k of

the flow along the streamwise direction for the Reynolds number 1500. Figure 5.12
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illustrates the contours of the non-dimensionalized time- and spanwise-averaged TKE

k in the central vertical plane (z/h = 1.5). Figure 5.11 compares the effects

of viscosities due to the Newtonian and non-Newtonian fluid assumptions on the

prediction of the TKE. In the turbulent region (for 1 ≤ x/h ≤ 6), the TKE magnitude

for the non-Newtonian flow is slightly lower than that of the Newtonian flow. As

shown in the figure 5.11, for both Newtonian and non-Newtanian fluids, the flow is

fully laminar as it is evident that k = 0 holds upstream of the stenosis. As soon as

the flow passes the centre of the stenosis, turbulence is triggered and the TKE starts

to increase rapidly and reaches its maximum value in the immediate post-stenotic

region (1 ≤ x/h ≤ 6). However, the TKE decays gradually in the far downstream

region and finally becomes trivial where the flow is re-laminarized.

5.5.5 Root Mean Square Velocities

Figure 5.13(a) shows non-dimensionalized profiles of the RMS velocities urms, vrms

and wrms along the central streamline of the domain (y/h = 0.5). As shown in

Fig. 5.13(a), the value of urms/U , vrms/U and wrms/U are very close to zero at the

inlet, reflecting the nature of the laminar pulsatile flow pattern in the upstream region.

However, after the centre of the stenosis, the RMS values of the velocities begin to
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FIGURE 5.12: Contour of non-dimensionalized time- and spanwise-averaged TKE
k/U2 for the non-Newtonian flow.
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FIGURE 5.13: Non-dimensionalized profiles of the RMS velocities at y/h = 0.5; (a)
urms/U , vrms/U , and wrms/U for the non-Newtonian flow and (b) urms/U for the
Newtonian and the non-Newtonian flows.

increase and become prominent in the immediate post-stenotic region (1 < x/h < 6).

This physical feature is related to the recirculation flow pattern in the post-stenotic

region. Far downstream of the stenosis (x/h > 6), the flow is still turbulent but the

intensity decreases gradually. In general, the profiles of RMS velocity exhibited here

are similar to the TKE profiles discussed previously in Fig. 5.13(a). Furthermore,

Fig. 5.13(b) shows that the magnitude of the streamwise RMS velocity is slightly

lower for the non-Newtonian flow than that for the Newtonian flow.
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5.5.6 Energy spectra

Figure 5.14 shows non-dimensionalized energy spectra Eu′′u′′ with respect to the

Strouhal number Sr calculated based on the non-Newtonian blood viscosity model

of Carreau [42]. As shown in Fig. 5.14(a), the slope of the spectrum deviates

from the value −5/3 (which is a characteristic of the inertial subrange) prior to

the stenosis (x/h = −2). For this test case, the flow is not only laminar but also

influenced by the pulsations in the upstream region. This observed physical feature

is expected as the first subrange contains the energy of the injected flow at very

small time frequencies (Tennekes and Lumley [52]). This feature of the spectrum

slope extends to the centre of the slope (x/h = 0), where the flow is still laminar

and the onset of turbulence is just triggered due to the constriction of the channel.

In the immediate post-stenotic region (1 ≤ x/h ≤ 5), the signature of the inertial

subrange is evident in Figs. 5.14(b)-(f), which correspond to the fully turbulent region.

In the far downstream region of the stenosis, the interval of the inertial subrange

reduces as the turbulent fluctuations decrease due to the re-laminarization tendency

(see Figs. 5.14(g)-(i)). Furthermore, the slope of the energy spectra changes from

−5/3 to −10/3 at higher Strouhal numbers. The change in the spectrum slope in

the far downstream region of the stenosis is a consequence of the re-laminarization

process, where the viscous dissipation subrange is predominant and the kinetic energy

dissipates due to the effects of viscosity.

5.6 Summary of the Chapter

Non-Newtonian physiological flow in a model arterial stenosis has been investigated

by using DNS. When the shear rate of the blood flow is less than 100s−1, it

becomes necessary to activate the non-Newtonian blood viscosity model in numerical

simulations. It is observed in this research that the flow characteristics are apparently

altered from the Newtonian flow behaviors once the non-Newtonian viscosity model is

activated. In this research, a high Womersley number (α = 10.5) and a low Reynolds
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FIGURE 5.14: Non-dimensionalized energy spectrum related to the streamwise
fluctuations u′′ at the different streamwise locations: (a) x/h = −2 , (b) x/h = 0,
(c) x/h = 2, (d) x/h = 3, (e) x/h = 4, (f) x/h = 5, (g) x/h = 6, (h) x/h = 8, and
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numbers (Re = 1500) were tested, which are characteristics of blood flows in the

arteries of humans and animals. In comparison with the Newtonian flow behavior,

for the non-Newtonian flow, the mean streamwise velocity is slightly smaller and

the streamwise extent of the recirculation region is slightly longer. In general, the
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wall shear stress for the non-Newtonian case is lower than that for the Newtonian

case. In the immediate post-stenotic region, the pressure drops sharply due to the

sudden acceleration of the flow, and the predicted pressure drop is smaller for the

non-Newtonian flow. As soon as the flow passes the centre of the stenosis, turbulence

is triggered and the TKE starts to increase rapidly and reaches its maximum value

in the immediate post-stenotic region (1 ≤ x/h ≤ 6). The TKE magnitude predicted

by the Carreau model for the non-Newtonian fluid flow is slightly lower than that for

the Newtonian flow due to fact that the viscous dissipation level is slightly higher in

the non-Newtonian flow.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

DNS has been performed to investigate physiological pulsatile flow through a 3D

channel with both sided cosine-shaped stenosis. The physics of the physiological

pulsatile flow under investigation is dominated by three major factors, the pulsatile

inertial forces (as a consequence of the pulsatile inlet boundary condition), the

mean driving inertial forces (associated with the mean pressure gradient in the

streamwise direction), and the geometry of the stenosis. Owing to the narrowing

of the channel, transition of the pulsatile flow from laminar to turbulent pattern

occurs immediately downstream of the stenosis, and the flow becomes re-laminarized

in the far downstream region of the stenosis. The transition-to-turbulence of the

flow is directly triggered by the stenosis, which however, is further complicated by

the pulsatile inertial forces and the mean driving inertial forces. Both the pulsatile

inertial forces and the mean driving inertial forces tend to enhance turbulence and

flow unsteadiness, and the effects of these two types of forces in comparison with

the viscous forces (which tend to suppress turbulence) can be quantified using the

Womersley number and Reynolds number, respectively. For the Newtonian flow, a

high Womersley number (α = 10.5) and three low Reynolds numbers (Re = 500, 1200

and 2000) were tested.

The results of pulsatile Newtonian flows are presented in various forms to show
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the effects of stenosis on the turbulent statistics of the velocity field. In the region

upstream of the stenosis, the flow pattern is primarily laminar. Therefore, the wall

shear stresses are very close to zero. Due to the presence of the stenosis, the wall shear

stress increases significantly and wall pressure decreases drastically. Immediately after

the stenosis, the flow recirculates and an adverse streamwise pressure gradient exists

near the walls. Furthermore, the turbulent intensity of the flow increases significantly

in the immediate post-stenotic region. It is also observed that the TKE of the flow

field is dependent upon the Reynolds number and the degree of stenosis of the channel.

In the region far downstream of the stenosis, the flow is re-laminarized and the value

of these quantities again becomes vanishingly small.

In this research, it is also demonstrated that DNS is a useful predictive tool

for numerical study of the transition and pulsation of a non-Newtonian arterial

stenotic flow. In general, it is observed in this research that the flow characteristics

are apparently altered from the Newtonian flow behaviors once the non-Newtonian

viscosity model is activated. A high Womersley number (α = 10.5) and a low

Reynolds numbers (Re = 1500) were tested, which are characteristics of blood flows in

arteries of human. The results show that the streamwise velocity and TKE predicted

by the non-Newtonian viscosity model are slightly smaller than those predicted by

the Newtonian viscosity model. The maximum wall stresses and wall pressure drop

in the immediate post-stenotic region are also slightly smaller in the context of the

non-Newtonian flow. The TKE magnitude predicted by the Carreau model for the

non-Newtonian fluid flow is slightly lower than that for the Newtonian flow due to

fact that the viscous dissipation level is slightly higher in the non-Newtonian flow.

6.2 Future Work

This research can be extended to investigate more realistic blood flow through arteries.

The following lists the potential research directions for future studies:

• This research considers a modeled stenosis formed between two parallel flat
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plates. In future, different types of modeled stenoses can be also considered,

based on, e.g. circular tubes of regular and irregular streamwise curvatures.

• The boundary of the modeled stenosis is considered rigid in this study. Given

the fact that the arterial walls in real biological system are compliant, future

simulation may include nonlinear and elastic boundary materials.

• The modeled stenosis in the channel was formed smoothly using a mathematical

function (i.e., cosine curve), which deviates in general from clinical conditions.

Back et al. [65] suggests that the more realistic biological stenosis wall is often

rough rather than smooth. In view of this, stenosis of irregular cross-sectional

geometries can be also considered for further investigations.

• In this study, only one single stenosis was considered. Investigation of the effects

of multiple stenoses in a single circular tube can be another interesting topic.
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