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ABSTNACT

As is commonly known, the stress-strain behaviour in sorne soils such as

clays, frozen soils and ice is non-Iinear, irreversible, anisotropic

and time-dependenl. This t,hesis deveLops three types of models to

describe ( 1 ) time-independent stress-strain behaviour in triaxial
stress states (and genenal stress states); (Ð time-dependent

stress-strain behaviour in 1-D straining; and (3) time-dependent

stress-strain behaviour in triaxial stress states (and general stress

states ) .

This thesis first pnesents a three-modulus hypoelasticity model for
time-independent behaviour. Two new methods are suggested for
determining the three moduli in the model using simple conventional

triaxial tests. The model is calibrated for a sand-bentonite mixture

and a medium-stiff plastic Paris clay using isotropic consoLidation

tests and CIÚ tests and for a medium dense Wuhan sand using isotropic

consolidation tests and CID tests. The calibrated models are then used

to predict the behaviour of the soils in different types of tests
(constant-p' compnession tests and a constant stress ratio arla\ test).
The predicted values are compared with the measured results for the

three different soils. validation of the model is then examined.

A new Elastic Visco-Plastic (EVP) model is developed for time-dependent

behaviour of soils in l-D straining based mainly on Bjerrum,s work. A

number of impor-tant new concepts, such as ,,equivalent times",

"reference time Iine", "instant, time rine" are int,roduced. Ä general

ttl



"L - nL - .= - ", relationship is then derived using these concepts.

New methods for determining aII parameters in the model are suggested.

Two particular constitutive models are obtained from the general

relationship using logarithmic functions and power functions. The two

models are calibrated and validated using various types of tests and

soiIs.

Based on the work of hypoelasticity models a¡rd l-D EVp models, a new

fnamework of 3-D EVP models is developed. Some concepts such as ',flow

surfaces", "visco-plastic potential", "consistency conditions', and

"evolution law" are used in the framework. Two 3-D flow functions are

developed for initially isotropic and anisotropic soiIs. Non-linear

strength envelopes may be inconporated in the flow functions. New

scaling and calibration methods are proposed for the 3-D EVp models.

Two specific models from the framework are constructed and applied to a

sand-bentonite mixtune and a frozen sand. The two models are

calibrated using sone tests and are verfied using diffenent tests.

uncertainties and limitations of the three types of models are

discussed. Suggestions for further development and refinement, of these

models are also presented in this thesis.
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Chapter 7

INTRODUCTION

As an intnoduction to the work in the rest of this thesis, some t¡picaJ.

aspects of time and strain effects on the deformation of soils as

observed in both laboratory and field will be examined. Then the role

of constitutive modelling of time-dependent stress-strain behavior is

discussed.

t.L Time-Dependent stress-strain Behavion observed in Laborat.ory

The time-dependent stress-strain behavior of soils has been studied

intensively in laboratory tests. This section shows some features of

the influence of times and strain rates on stress-st,rain behavior of

soils in oedometer tests a¡rd triaxial shear tests.

t.1.7 Time and strain rate effects in l-D straining

In oedometer tests, no lateral strains are permitted and the

deformations are in the vertical direction onJ.y. Here four types of

tests are discussed.



Single-st'age loading tests: The vertical pressure is applied suddenì.y

to a specimen. The data of vertical strain vs. time (e= vs. t) can be

measured, (in some advanced oedometers, t,he excess porewater pressure

vs. time (u vs. t) can also be mea.ured,) (see Fig.1.1 from Brerre and.

Iversen 7972). After primary consolidation of c1ays, the excess

porewater pressure is dissipated; the total vertical stress a= is equal

to ventical effective stress a=, and yet continuing compression is

obsenved. The part of conpnession occuming af t,er the primary

consolidation is called "secondary compression". The d.efon¡nation of

the soiI "skeIeton", that is, the physical framework of mineral

particles, under constant vertical effective stress a= consists of a

time-independent part (also catled instant compression) and a

time-dependent part (a1so called creep deformation on delayed

compression). Creep deformation of soil skeleton actually occurs

during the whole consolidation process, that is, both befone and after

the primary consolidation. Because time-dependent deformations due to

t,he dissipation of excess porewater pressure are coupled with

time-dependent deformations due to the viscous nature of the soil
skeLeton, it is difficult to distinguish thern in the period of primary

consolidation and to define the instant compnession uniquely, (see

Fig. 1.1).

}lurti-stage J.oading tests: In this type of test, the vertical pressure

is applied in steps. Each vertical pressure is kept constant for a

pre-determined time, and curves similar to those in Fig.1. 1 can be
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measured, (Fig. 1.2, Bjerrum 1967a). l.lhen an additional load is applied

after a. period of delayed compnession, an appanent, preconsolidation

Pnessure p^, (also called critical pnessure by Bjerrum 1967a) is found.- -c'

using mu]t,i-stage tests, t,he relationship between void ratio and

vertical effective pressr:re (related to ez vs. a=) can be measu¡ed. It
is found that this relationship is not unique but depends on t,he time

duration of each loading increment, (see Fig.1.2).

Const.ant. rate of strain (CRSN) test.s: In a CRSN test, the specimen is

deformed at a constant, rate of vertical conpression. The vertical

pressure, vert,ical defor¡nat,ion a¡rd porewater pressure at, the und.rained.

bottom of the specimen can be meacured directLy. The effective

vertical stress is est,imated by a'- - c_ - 1 ", where c is total-zz3z
vertical stress and u is the porewater pressure at the bottom. It is

found that the curves of a) vs. .= and preconsolidation pressure fon

most clay soils depend on t,he strain rates, (Fig.1.3, sallfors 1g7s).

Relaxation tests: In this type of test, when a certain st,nain e= is

reached by any type of loading, the strain is held constant,. That iS,

the strain nate å- = O. When this is so, the ventical effective stnessz

is observed to decnease r¿ith time (Fig.1.4, yin and Graham lggga).

This phenomenon is called stress relaxation.
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1,.1.2 Tiæ and strain nate effects in tniaxial stress states

Much soil testing is done under "triaxial" stress states in which

cylindrical specimens are first loaded by all-round (hydrostatic)

pressure in a cel1, and then the æ<ial stress is increaced (or

decreased). The test equipment permits various combinations of

measuring volume changes or porewater pressr:re changes dr:ring shearing.

The results of triaxial tests also show evidence of time and strain

rate effects on the stress-strain behavior of cIays.

Consta¡¡t rate of strain (CRSN) tests: A specimen is shea¡ed at a

chosen constant rate of vertical movement usually under undrained

conditions. The observed curves of deviator stress vs. axial strain (q

vs. e. ) and excess porewater pressure vs. axial strain (u vs. e. )r - 1-

depend on the strain rates used (Fig.1.5, Graham et al 1983). Higher

strain rates result in larger deviaton stresses and porewater

pressures. The r:ndrained shearing strength depends on the strain

rates, (Fig.1.5, Graham et al 1983).

Step-ehanged eonstant rate of strain tests: When the axiaL strain rate

is changed by steps, it is clearer to see that the strain rate affects

the relationships q vs. e, and u vs. "1 
(Fig.1.6, Gnaham et aI 1S83).

Relaxation tests: In this procedure, when specimens are sheared up to

a centaj.n axial strain and then the driving motor of the triaxial

apparatus is shut off, the axial stnain remains aLmost constant, but
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it is found that the deviator stress decreases with time (Figs.1.6 a¡rd

7.7).

Undrained multi-stage q creep tests: This type of tests is a

combination of relaxation a¡rd creep. when running a test, the

volumetric strain e,, and the cell pressure q3 are kept constant, while

the axial stress ø, (i.e. deviator stress q) is increased incrementally

by steps. At each step, the deviator stress q is kept, constant for a

fixed period of time. .It is found that the. effective mean stress p'

decreases with time, while the correspond.ing porewater pressune

increases with time see Fig.1.8. Shear strains increase also with time

with the rate of shear strain depending on the deviator stress. At

lower deviator stresses, the rate decreases with time, whereas at high

deviator stresses leading to failure, the rate increases (Fig.1.g).

1.1.3 Other charact.eristics of stress-strain behavior

The previous two sections outlined the effects of time and strain rate

on the stress*strain behavion of clay soils. As is commonJ.y known, the

stress-strain behavior of clays is non-l inear, irreversible and

dependent on ì.oading history (or stress paths for time-independent

matenials). In some soils, the behavior is initiaJ.Iy isotopic and

becomes anisotropic after shearing. However in most naturaL soils, the

behavior is inherentLy anisotropic (Graham and Houlsby 1983, Graham

et al 19Bg).
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t.2 Time-I),ependent lÞfornation Observed in the field

The Tower of Pisa: The construction

(Kérisel 1385). Since then the Tower

directions, successively to the east, the

the south, while at the sane time it
ground, (Fig.1.9, KériseI 1985).

of the Tower began in tI73

has leant in a variety of

north, the r¡est,. and finally

lowered itself 3 m into the

Croce et, al (1981) reported the results of observations made on the

Tower and on surrounding monument,s during the last decad.es. Fig. 1.10

shows the Tower inclination meaqurements. In Fig.1.1Oa, the values of

O was measured by Pizzetti's method fron 1911 to 1934 (dotted line).

After 1934, the Tower rotation has been meaqured accurately with a

pendulun, refemed to t,wo vertical plans, one of which coincid.es wit,h

the 1934 plan of maximum inclination and forms an angle of only 2026,

with the N-S direction. The two components of the Tower rotation are

indicated as ü. and a in Fie.1.10.NS EI{

Settlement of Konnerud gate 16: Bjemum (1967a) reponted. a case study

on Konnerud gate 16 which was representative of four identicaL

four-storey apartment blocks buiLt between 1950 and 1956 in Dnammen,

Norway. The measu¡ed settlement curve is shown in Fig.1.11.

Piezometers installed in 1964 indicated that the excess porewater

pressures had dissipated ten years after the load was applied. The

11
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settlements in subsequent years had thus occumed at constant effective

stresses and could therefore only be explained by delayed consolidation

(creep) of the plastic c1ay.

Progressive failure in slopes: Fig.1. L2 shov¿s progressive failure of a

slope at Jackfield, England (Skempton 1964). Movenent of the slope

started in 1950. By 1952, a landslide occurred, destroying several

houses and causing major dislocations in a raiJ.way and road. It was

found that when this landslide took pJ.ace, the strength of the clay was

closeLy equal to its residual strength.

It vlas found that progressive slope failure occurned mostIy in
overconsolidated pLastic clay and clay shaLes (Bjerrum 1967b). In the

development of failure, the strength in the soil is transferred from

its peak value to it,s residuaL value. The reduction in strength is

time-dependent and partly due to the viscous nature of the soil
(Bjerrum 1967b).

1.3 The Role of Constitut,ive l{odelling

As shown in the proceding section, because of the viscous nature of

soils, a slope may fail gnaduaLly and settlements of a foundation may

continue over a long peniod, increasing the risk to buildings on the

foundation. In onder to (1) design a geotechnical structure which is

safe, of good performance and economic, (2) analyze a failed structure

1.4



or (3) Predict the performance of a existing structure in the future,

we need to understand and model the time-depend.ent behavion of soils
and to use this model to analyze the stability and deformations of soil
mâqses. The tradit,ional approach in geotechnical engineering has been

to treat the stability and deformation separately, using Iinear
elasticity t,o calculate the deformation and rigid-plasticity to analyze

the stability. As shown in Section 1.1, behavior of real soils is
non-linear, inelastic, anisot,nopic and time-dependent. l.Iith the

development of numenical analysis technigues and the avaitability of

large digital computers and. powerful pensonal microcomputers, it is now

possible to soLve problerns in practice using more complex (and more

realistic) stress-strain behavior and geometry. The key to ana]yzing

the stress, deformation and failure of structures that rest on or use

geotechnical material, whose behavior may be time-depend.ent, is to use

a constitutive model which best represents the real time-dependent

stress-strain behavior of t,he material.

The role of constitutive modelling of time-depend.ent stress-strain

behavior of soils (incl.uding frozen soils and ice used. for geotechnical

structures) is as follows:

(1). Constitutive equations can be combined with other equations in

continuum mechanics to solve boundary value (or mixtured)

probì-ems, that is, to analyze the development of stresses,

porewater pnessures, deformations, and failr:re zones. Results

from these analyses can be used directry, for example, for the

design of a new earth structure, for performance checking of an

15



existing structure, and for finding the causes fon a failed
st,ructure.

(2). constitutive equations can be used. to predict time-dependent

stress-strain behavior in laboratory tests. Results in this

calculation may be used indirectly for the analyses of earth

structures.

(3). The establishment of a const,itutive model is based on fundamental

physical laws, assumptions, observations and qualitative

undenstanding of soil behavior in labonatory tests. At times,

the obsenvations made in laboratory testing may not reflect

completely the entire spectrum of soil behavior. phenomena

observed in the laboratory may seem unrelated. For example, a

clay may exhibit strain rate effect,s in strain controlled. tests,

but exhibit time effects in creep t,ests and relaxation tests. A

constitutive nodel may provide us some understanding of

interrelationships between these phenomena.

t.4 Organization of the Thesis

This thesis consists of eleven chapters.

Chapter 1: Introduction.

Chapten 2: This chapter-

the field of constitutive

gives a critical review of the Iiteratu¡e in

modelJ.ing with emphasis on h¡poelastic models

16



and the modelling of the time-dependent stress-strain behavior. After

this review, the detailed objectives of the thesis are presented.

chapter 3: In this chapter, the framework of a, new three-moduLus

hypoelastic model is described. Two methods are suggested for
determining the modul i.

Chapten 4: Applications of the general framework of the new model in

Chapter 3 to three different soils are presented in this Chapter. The

work includes formulation, calibration and verification of the model.

Chapter 5: This chapter develops a new general Elastic Visco-Plastic

(EVP) model fon time-dependent stress-strain behavior of soils in 1-D

straining. An important concept ca1Ied "equivaJ.ent time" is

introduced.

chapter 6: The general formulation of the new EVP model in chapter 5

is developed for a specific case using the logarithmic functions

commonly used in practice. The model is then calibrated and examined

using the test data from th¡ee different soiIs.

chapter 7: Hene, the general. formulation of the new EVp modeL in

Chapter 5 is specified using poller functions which are better fitted to

test data than logarithmic functions in some soils. Calibration and

validation of the model for two soils are presented.

Chapter 8: This chapter is further development of wonk in the pnevious

chapters. Here, a new general framework is suggested for 3-D Elastic

Visco-Plastic (EVP) straining. Methods for calibrating the new mod.eI

17



are presented.

chapter 9: In this chapten, the new 3-D EVP model in chapter is applied

for the first time to describe the t,ime-dependent stress-strain

behavior of a sand-bentonite buffer material proposed for the Canadian

Nuclear FueI l.Iaste Management Program.

Chapter 10: Here, the new 3-D EVP model is applied to a frozen sand

that has been the subject of recent doctoral studies supervised by Dr.

L. Domaschuk at the University of }4anitoba.

Chapter 11: This chapter summarizes the conclusions of the thesis and

presents suggestions for further research.

Detailed information and reference material required for some chapters

are aII presented in Appendices. A full list of published references

is given at the end of the thesis.
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Chapter 2

CONSTITUTIVE UODELLING

- 
a critical revier.¡ and object ives of the research

This chapter first reviews some representative constitutive models in

the literature. Features, Iimitations and problems associated with

these models are discussed. After this review, the objectives of the

research described in the thesis are presented.

2.1 Modelling of Time-independent Behavion

Chapten L showed that the stress-strain behavior of most soils is

time-dependent. In some theoretical models of soil behavior, time-

dependent strains are decomposed into two parts comprising time-

independent strains and time-dependent strains. For example in Elastic

Visco-Plastic (EVP) models, the total strain rate consists of elastic
(time-independent) strain rate and visco-pJ.astic strain rate. In some

soils like sand, the stress-strain behavior is essentially time-

independent but may be non-Iinear and non-reversible. I..Je may treat

time-independent behavior as a particular case of time-depend.ent

behavior when the viscosity is zero. Separate and distinct nodels may

be required to define the compJ.exity of time-independent behavior.

19



Many constitutive models have been developed in the past fon time-

independent behavior. This section discusses only hypoelastic models

and elastic-pì.astic (Cam-CIay) modeLs. The framework of hypoelastic

models will be used to calculate the time-independent part of strains

of soils in the elastic visco-plastic (EVP) models to be developed

Iater in the thesis. The EVP models will be related to the cam-cLay

models that are representive of the current range of el-astic-plastic

models.

2.L.t fllpoelasticity models

This type of model is

relat ionship (Truesdel 1

characterized by the following constitutive

1955, Truesdell 1965, Coon and Evans 1gZ1):

t.2.11 trj(tnr, å;, "pq, å=a) = o

In this equation, the tensor function F.- is homogeneous in time. This

means that time occr:rs to the same order in all tenms of Eqn.lz.l and

therefone, ilâv be eliminated. Thus Eqn. [2.1J is act,ualIy a

relationship anong infinitesimaL increments, dt;,dr=t and stresses

and strains for t,ime-independent stress-strain behaviol-. This model

describes the mecha¡rica1 behavior of a class of materials in which the

final total strains depend on both the cu.rrent stress state and the

stress paths used to reach that state, but not on time or strain rate.
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Coon and

express i on

Evans ( 1971 )

[2. 1]:

dol = A. .. , (al .) de. .lJ 1JKI rJ rJ

dqi = B. .. , (e. .) de. .IJ IJK] IJ IJ

de. = C. .. , (e. .) dal .rJ rJKl IJ rJ

de. . = D. .. , (al .) do'l .lJ IJKI IJ rJ

presented fou¡ special cases of the general

L2.2al

12.z.b.l

12.2cl

12.zdl

It is seen that the behavior descnibed by Eqn.l2.2) is infinitesimal.Iy

(or incrementally) reversible. This justifies the use of the suffix

"elastic" in the term h¡poelastic used by Truesdell (1955) to describe

the constitutive equation 12.2al (Saleeb and Chen 1981). Based on

1,2.21, two different approaches have been used to deveLop some special

hypoelastic models. One approach is to express the functions Ai¡tt,

Dijtt in a stness tensor series *d Bi¡tt, Ci¡kI in a strain tensor

series. Another approach is to make a further assumption on these

functions to reduce the number of Ai¡tt, Di¡kI, ci¡t I, Di¡kI' The

reduced parameters can then be obtained by differentiating curves

fitted to test data in laboratory.

In the first approach, Coon and Evans (1-97L), for instance, presented a

first onder form for Eqn. [2.2a]:

12.3) Âøl = a. .. . Âe. - + a- -- - c' Âe- -]J rJKl KI rJklmn mn I(t

in which the 36a, ",-, and 216a. .,, are material constants which canlJKr lJKlnn
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not be determined using conventional tests. !.Jhen "ijkl*, = O,

Eqn. [2.3] is zeno order hypoelasticity and is equivalent t,o anisotropic

elast,icity of a Cauchy-type material model. Eqn.t2.3l can be

considerably simplified with the added rest,riction of material isotropy

(Truesdell 1965, Coon a¡rd Evans 1971).

Falling into the second approach are models such as the "h¡perbolic,,

E,p model (Kondnen 1963, Konder a¡rd zelasko 63, Duncan and chang lgzo)

and the K,G model (Domaschuk and tlade 1969, Domaschuk and Valliappan

1975). There are only two "moduLi" in both these models though it
should be pointed out that they are not constants but functions

depending on stress Level, strain, stress history, etc. In the E,ù

model, conventional triaxial shear tests with constant confining

pressures are used t,o determine the modulus funct,ions E a¡rd u. If the

model is used in effective stress analyses, drained cID lest,s aJ-e

required; if the model is used in total stress analyses, then only

undrained, CIÚ tests are required.. A hyperbolic function is best fitted

to the nelationships of (c, - ør) vs. 11 at different confining

stresses n! (Kondnen 1963). The modulus Et for first-Ioading is

expressed as E, = d(a, - tr)/de, at different confining stress ø3. The

modulus Et can then be obtained by differentiating the fitting

functions, it is a function of (o, - ør) and stress cri in cID tests and

a function of (o-, - ar) and 13 in CIÙ tests. The modulus ,t for

first-Ioading is u, = -dea/der. A mathematical function is fitted to

the data of (", vs. "t) at different, confining stresses 13 in cIü

tests, ,L is 0.5. In CID tests, ,t is a function of (a, - aa) and ø!.
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In a simi lar Ì.Jury, modul i

unI oading-re L oading.

determined for

In the K,G model, the bulk ¡noduLus K is defined a-s K = dp'/d,eu, and the

shear modulus is G = dSO,/deO, where the resultant deviatonic stress

S, = (/-2/ß) (an - q.) and nesultant deviatoric strain e, = (Z,E/,/j)crrJ-d
(e. -e^) in triaxial stress states (Domaschuk a¡rd l,Iade, 1969). AIJ

mathenatical function is chosen to fit the data of p' vs. r,, fnom

isotropic consolidation tests. The modulus function K is then obtained

by diffenentiating the fitting function. A series of constant

effective mea¡r stress triaxial compression tests r¿ere used to find the

shear modulus G (Domaschuk and Wade 1969, Domaschuk a¡rd Valliappan

1975). A hyperbolic fr:nction r+a-s used to fit the test dat,a of SO vs.

ed. The modulus function G is then given by the tangent values of the

fitting function. It was found that the modulus K depends on the

effective mean stress p' a¡rd relative density Dr. The modulus G

depends on the effective mean stress p', the resultant deviatoric

stress SO and the relative densitV Dr.

A Iimitation of the E,ù model and K,G model is that they can not

account for volumetric strains produced by shear strains and shear

strains pnoduced by effective mean stresses. Such anisotropic behavior

is known to be conmon in natural soils because of thein mode of

deposition. Graham and Houlsby (1983) suggested a simplified model for

anisotnopic behavior before yielding. Three moduli are used in the

nodeL, the bul.k modulus K, shear modulus G and a cross modulus J which
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expresses the relationships between mea¡r stress and shear stnain and

between shear stness and volr:¡retric strain. A Least squares solution

was used to evaluate these paramet,ers from triaxial tests on Lake

Agassiz clay from l.linnipeg, canada. They found that the ratio= unï",

G/al--, and J/al-- were constant, where al.^ is the preconsoLidationvc' vc 'vc

pressure in the soil.

Yin and Yuan (1985a,b) suggested a hypoelastic model to account for
non-linearity and dilatancy in a medir:m sand. However this model can

not considen the shear strains contributed by effective mean stresses.

The matrix fonm of this mod.el is not s¡rmmetric. Models r¿ith more than

three moduli have been suggested (Darve et al 1986, Da¡ve et aI 1S8g).

Darve et aI (f9ge) developed a second order nodel which can account for

non-linearity, irreversibilit,y and stress path dependence. This model

has eighteen independent moduli, hatf of which are detenmined from

drained compression shear tests, and the other half from drained

extension shear tests.

2.L.2 Cam-Clay Þlodel

The Cam-CIay rnodel will be discussed aq an example of elastic plastic

models. The oniginal Cam-C1ay model and its development, modified

Cam-CIay, have been widely used in numerical modelling of stness-strain

behavior of soiIs. Some elactic visco-pJ.astic models use concepts from

the Cam-Clay model family.
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An important feature used in the cam-clay model is a unique state

Boundary Su¡face (SBS) in p',e,e-space r¿hich was first pnoposed by

Roscoe et al. (1958). In aIl shear tests, the final. failure state

points lie on a Cnitical State Line (CSL) on the SBS. On the CSL,

ôp'/ôe_ = ôq/ôe, = ôe /ô¿ = Q. The CSL is represented in p',q-space.S^SVS

bV C.=/R.= = n.= = M. A feature of the original Can-CIay modeL is the

formulation of an energy dissipation expression based on three

assumptions (Roscoe et aI 1963).

12.41 p'd€ +gde = K ¿p'+Mp'de' v - s l+e s

Using the Associated Flow RuIe, from Eqn. [2.4] we have:

t2.sl E, -9, +M=oap' p

By integrating, t2.51 becomes:

12.61 In(p'/Þ') = O- -o

where på is the point on the p'-axis intencepted by curve t2.61.

Eqn. [2.6J is the yield sr:rface in p',q-space. This yield surface looks

like a bullet shape with a discontinuity at the "nose" on the p'-axis.

It has been found that the constitutive equations using this yield

surface (Eqn.t2.6l) overpredict shear strains at smalI shear stress

levels.

Burland (1969) and Roscoe and Burland (1963) suggested a modified

version of the Cam-Clay model that uses a different energy dÍssipation

cfL+
Mp'
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expression for Eqn.[2.4]. The yield surface nesulting from the

modified energy dissipation expression is an ellipse:

22212.71 p'- - plp' + q",rl'f = O' 'o

whose size depends on the isotropic consolidation pressure po and M =

(q/p'), v¿hich is a function of the clay mineralogy. It can be

summarized that in the modified Cam-C1ay:

(1). the elastic behavior is isotropic;

(2). the yield surface is elliptical, i.e. Eqn. [2.7];

(3). the flow rule is associated flow ruJ-e;

(4). the hardening law is that the plastic volumetric strain eP on the
V

yield surface is constant, i.e. represented by deP = Fpå/påt
(5). the consistency condition is that the current stress point is

kept on the yield surface in yiel-ding.

It has been subsequently found in most natural soils that (1) yield

loci are not elliptical; (2) traces of yield loci in e,In(p')-space are

not straight Iines but have "hook" shapes; (3) behavior before yielding

is not isotropic (Graham et al. 1988, Graham et al. 1gB3). Typical

data are shown in Fi9.2.L. Graham and Houlsby (1983) developed a

simplified transverse anisotropic model to describe anisotropic elastic

behavior inside the yieLd loci. More recently, it r+as found (Wood and

Gr-aham 1987, Graham et al. 19Bg) ttrat the state boundary surface (sBS)

in anisotnopic soils has approximately the same eJ.liptical shape as the

SBS in the modified Cam-Clay. Anisotropic elasticity and normalized

elliptical yield loci can be used to reproduce the asymmetnic yield

surfaces in p' , q-space a¡rd the "hooked" traces of the yield loci in
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e,In(p')-space (Graham et al. 1989).

2.2 l{ode1ling of Time-I}ependent Behavior in 1-D Straining and l-D
Stressing

As shown in Chapten L, the stress-strain behavior in some soils, such

as clays, frozen soils and ice, is time or strain rate dependent. This

r{as not considered by the models in the pnoceding section. In past

decades, a number of models have been developed for time-dependent

straining. These may be roughly divided into three categories

according to the approach they used. The first is based on the

rheoJ.ogical analogy. The second is empirical. The third uses elastic

visco-plasticity. Acconding to the dimensions of the models, we may

divide them into those which describe 1-D straining (and l--D stressing)

and 3-D (or axisymmetric) stressing. Since the procedure used in this

research starts with 1-D models and develops towards 3-D models, it is

appropriate to review some representative models according to the

dimensions of the models. This section neviews models for 1-D

straining and L-D stressing.

2.2.7 Bjerrum's tirne line model (1967a)

In Bjerrun's modeL ( 1967a), the totaL compression is divided into

' instant compression' and 'delayed compressiorr' . The delayed

compression can be described by a system of time lines or curves in an
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e,log(p)-space (Fig.2.2) in which the outermost line (lowest e for a

given pnessure) is the instanl tine line. Bjemurn believed that these

time Iines represent a unisue reLationship between void ratio (nelated

to vertical strains e=), pressure (in particular, the ventical

effective stress a)) and time. This means, in his terms, "that to any

given value of the ovenburden pressure and void ratio there correspond.s

an eguivalent time of sustained loading and a certain rate of delayed

consolidation, independent of the r+ay in which the clay has reached

these values. " Bjerrum believed that the usual separalion of

compression into primary and secondary compression is arbitrary, and

that this division is unsuited to describe the behavior of the soil

structure with respect, to effective stresses. The principle for

computing settlements r:sing these ideas is shown in Fig.2.2 where p"

was called 'critical pressure' by Bjerrum. The pnessure pc results

from creep under t,he previous pressu.re, that is aging and delayed

compression. The p-stress in Figs.2.3 and 2.3 are venticaL effective

stresses and in the remaining chapters will be calred a' . The symboJ.

"p" will then be reserved for mean stresses.

Garlanger (1.972) deveJ.oped a

Iine model. For a pressure

compression at any time t can

equation for Bjenrum's

critical pressure pc,

from:

t + t.I
-T.

I

is the slope on an e-log(p)

p^, C^ is the slope of the
UU

mathemat ical

p above the

be calculated

t ime

the

12.81

where Âe is the change in

diagram of t,he compression

D

Âe=C loq'+Cr -p c-o
P +C los
Df'-'c

ratio, C

from ôo

log

vo id

I ine
r
to
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instant line, co is the slope of the e-Iog(time) curve, and t. is the

time given to the instant line r¿hich is the sane as that defined by

Bjerrum ( 1967a).

The equation that governs the consolidation of a saturated clay

undergoing one-dimensional compression and drainage is:

l2. sl ôe
at

k(1 + e ) ^2odu," ;?
Garlander applied his mathematical model Eqn.[2.S] into Eqn.[2.91

simpty differentiating t2.81 with respect to natural. time ! to get

in Eqn. t2.81. The reason for t,he emphasis of the underlining wiII

seen Iaten.

ch¡istie and Tanks (1985) argued that the'instant time line'used by

Bjerrum (1967) and Garlanger (t972) w¿s arnbiguous. They defined

instant compressibility by a single coefficient, and proposed a Iimit

time line passing through the point L which is obtained by extending AB

in Fig.2.3 to neet the ordinate at the final value of the effective

stress. The time associated with this line, tL, is obtained by

extrapolation of the J.og(e)-Iog(t) data. They stiII used Bjerrun's

method to find other tine lines, that is these lines were obtained by

drawing lines through points representing equal du¡ations of apptied

pnessure. The results from their expenimentaL pnogram "confirmed

Bjerrum's statement that the time Iines represent a rrnigue relalionship

between e, p, and t, independent of the rray in which the clay has

reached these val.ues." For example, the 1-day time Iine could be

by

ôe
ôt
be
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obtained either by applying pressure increments at intervals of 24

hours or by the other loading sequence such as singe-stage loading.

Christie and Tanks (1985) then used the sa:ne procedure as Garlanger

(1.572) to apply their model to solve the consoLidation problem.

Comments:

The contributions in Bjerrum's model (1967a) are:

(1). He divided the total creep strain into "instant" strain and

"deJ.ayed" stnain which occurs during whole consolidation process.

(2). He first presented the "equivalent time" concept. He found that

the "equivaJ.ent time" and the creep rate depend on the vertical

stress and void ratio, but are independent of loading history.

The limitations of the model are:

(1). His instant time line is incorrect. This line is in

observations in high constant rate of strain tests.

(2). He did not give a method for finding the equivaLent

(3). The time lines are obtained directly from

conflict with

t ime.

s i ngle-stage

consolidation tests.

(4). He did not develop general equations for step-wise loading and

continuous loading.

Garlanger worked at developing Bjemum's model. In his work (1,972), he

suggested Eqn.[2.8J fon general loading. However, the rea] time t was

used in this equation. The use of real time t is in conflict with the

uniqueness of the time lines in Bjerrum's model and the idea of
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"equivalent time". Garlanger also used the incorrect insta¡rt time line

used by Bjerum ( 1967a).

Christie and Tanks (1985) correctly used one paraneter to describe the

instant compression and removed the instant time line used by Bjerrum

(1967a) and Garlanger (1,972). However they still had not deveLoped

general equations for any step-chalged loading a¡rd continuous loading.

2.2.2 The model using

Mesri and his co-workers have suggested a model which uses the ratio of

secondary consolidation coefficient Co to compnession index C", that is

c^./c^ (Mesri and GodLewski L977 and 1979, Mesri and choi lg8Sa andq.c

198sb, Mesri and castro 1987). They found that the ratio co/c" is in

the range of 0.02-0. 10 for most clays (Mesri and Godlewski rgTT).

During L-D consolidation, the void ratio at any depth Z is a fu¡ction

of effective stress and time (Mesri and Choi 1985a):

12.1.Ol e = f(ø', t)
V

c/cq.c

Using their notation, the rate of decrease in void ratio with time is:

tz.r1.i dt = rþ,, p * (#)o-,
VV

Then the change in void ratio

compression (Âe)O and secondary

in [2.L1] is the sum of lhe pnimary

compression (Âe)=:

an



[2.1.2] ¡e = (Âe) + (^e)ps

ftp ^ dq'
tz.r3l (^e)* = | 

-rtþ1. 
# * (f)o., I atp 

Jo uuvLuL _v

rt ^ rt 0.434c
lz.r4l (Åe)^=l (#)o,dt=l- , oo.. s lt dLr; lt tJtp v j 

o

Mesri and Choi (1985a) thought that "the end-of-primary void ratio-

effective stress relationship, ( i. e. Eqn. [2.1,31), is practically

independent of the duration of the prinary consoLidation stage. "

"Thus, the e-J.oe(o,r) curve determined from the standard oedometer test

can be used directly to compute primary settlement of the clay layers

in the field. " The calculation of the secondary compression (Âe)= in

Eqn. [2.1.4) was re]ated to the secondary coeff icient Crr.

Using the concept of Co/C", the preconsolidation pressure p' resulted

from aging is (Mesri and Choi, 1979, 1980, 1984):

p' (C /C )/(þ C /C )

l.z.tsf 
== 

(l-) s' c r a'

Þ:t^r p

Mesri and Castro (1987) put [Z.tS] into an expression for the st,atic

pressure coefficient Ko proposed by Mayne and Kulhawy (1982):

, (C^./C^)/(L- C_/C ) / sinQ'
1,2.1,61 Ko = (L - sin@') (i) & c r d'

p

for calculating the time-dependent K
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Comments:

The range of the ratio Co/C" found by Mesri and his co-worker is

valuable. The equations for calculating p;, Ko and settlement are

valid under certain conditions in which the correct time t must be used

in the equat ions. l.Jhat kind of t ine t should be used in

Eqns.12.1.51, [Z.te] for cases of stepwise loading or continuous loading

is not explained. Eqns. lZ.tO),12.LIl are not fundamental constitutive

equations. They simpJ.y state that the void ratio e depends only on the

current state point (rrr, t), not on the loading history of how the soil

reaches this point.

2.2.3 Stress-strain-strain rate relat,ionship

Ler-oueiI et at. (1985) found that the viscous behavior of clays is

controlled by a unique stress-strain-strain rate relationship,

o-'--e.--å--. This relationship is simply described by two curves, c' vs.vvvp
ó,, and (o'],/a'^) vs. e--, where cl is the L-D preconsolidation pressurevvpv'p
(LeroueiI 1988).

In developing the r¿ork of Leroueil et al (1985), Kabbaj et aI (1986)

argued that the model by Leroueil et al (1985) "represents the behavior

of clay in oedometer tests in which the strain is alr+ays increasing.

It should be noted that, when defined in terms of total str-ains, it

presents some shortcomings. In particular, the model cannot nepresent

correctly the behavior observed in relaxation tests in which there is a
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decrease of the effective stress under constant strain.

decreace is most likely a-ssociated with t,he combined effects

and plastic strains." Kabbaj et aI. (1986) then ¡nodified

into two independent relationships, i. e. cl -ei-åpvvv
rc/(I+e ) In(a'/c' ).ovvo

Such a

of eLastic

this nodel

and 
"u =v

Corent s:

The model suggested by Leroueil et al (1385) a¡rd Leroueil (1988) was

mainly based on the tests at constant rate of strain (CRSN). Thus, aq

for:nd by Kabbaj et aI ( 1986 ) , this nodel can onJ.y be appt ied to

calculate strains for this type of test, a¡rd can not be applied to

other types of tests such âs relaxation tests. The modified ¡nodel

proposed by Kabbaj et, aI (1986) introduced the concept of elastic

visco-plastic mechanics. However, in establishing the relationship

r;-eÏ-;Ï, they utilized results that wiLl be seen later to betong to

the 3-D elastic visco-plastic model by Adachi and Oka (1982). The

Iimitations of t,his type of modeL will be discussed in Section 2.3.1.

2.2.4 Rheological models in 1-D stressing

In

the

to

Iinear rheological models,

stress, ø, strain, e, and

time (SukLje, 1969):

there is a Iinear relationship between

their successive derivatives with respect

l2.I7l g e + E.e + E^e + ... = S ø+ S.ø+ S^t+ ...OI¿OI¿
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where Eo, E1, and So, 51, aJ-e consta¡rt. ImportanL Linear

models are the genenalized Keì.vin-Voigt model and the genenalized

I'faxwell model.

Cernocky and Krempl (1979) presented a first ord.en uniaxial non-Iinear

model to consider rate effects, creep and relaxation:

tZ.ß] m(ø, e) å * g(e) = a + k(a, e) å'

wher-e m and k are functions of stress ø and strain e, g is a function

of strain e.

2.3 ìlodelling of Tiæ-IÞpendent Behavior in 3-D stress stat,es

In this section we discuss three t¡pes of models. The first one is

Perz¡ma's elastic-viscoplastic model (1963, 1966), which is also called

an over-stress model. The second type is flow surface nodels. The

third type may be called elastic-plastic-viscous models.

2.3.L IÞveJ.opænt of PerzJ¡na's nodel (1963, 1S66)

A nu¡nber of elastic visco-pJ.astic models have been deveLoped from the

model proposed by Penzyna (1963, 1966). The basic assumptions in this

type of model are:

(1). Total strain nates are the sum of time-independent elastic strain
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rates and tirne-dependent viscoplastic strain rat,es:

12. 1sl ;. . = ;:. * ;YqIJ lJ r-J

(2). A separate elastic constitutive law is nequired to relate the

strain rates å1. to stress rates a. .:IJ IJ

l,2.2of ;:. = Ç. .. .;. .rJ lJKr Kl

(3). Viscoplastic strain rates are calculated from the following flow

rule:

l.2.2rf ;Yl - r <O(F)> ufl'J rJ

where 7 is referred to as the fluidity parameter with units of inverse

time, F is yield function, and Q is pJ.asticit,y potent,ial. If e = F,

Eqn. [2.27] is an associative flow Iaw, if e + F, it is a

non-associative situation. The parameter @ is scalar frrnction where:

<ø(F)>=ø(F)forF>0
12.221

<C(F))=0 forF=0

Zienkiewicz and cormeau (1974) used the following scalar function f:

-trn[2.23] ó = (!-)'t
o

where the yield function F r.ras chosen to be a Drucker-prager yield

surface (Drucker and Pragen 1952) or Mohr-CouLomb yield surface (Nafak

and Zienkiewicz 1972). Fo in L2.231 denotes any convenient reference

value of F to render the expression dimensionless.
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Katona (1984) incorporated a cap model into Perz¡ma's elasto-

viscoplastic theory. The two popular forns of scalar function $ are

Eqn. [2.23] and Eqn. lZ.Zql:

1.2.241 d="*p(F-1"-r
o

The yield function F consists of three regions; namely a cap region, a

failure negion and a tension cutoff region. F is a function of

stresses a, ,, and a strain hardening parameter k, which in turn isr.J'

defined by some hardening function of the viscoplastic strain history,

that is, ]ç = fcf eY!). "For a given value of k, all states of stress1J

that satisfy F = 0 forms the cr:rent 'static' yield strrface in a

six-dimensional stress space (i.e., classical plasticity yield

surface)." Katona (1984) aqsumed the strain hardening paraJneter k r+as:

12.25)
1

= X(ã) = l- rn(3 + r))) 'w
o

and Do are positive material hardening constants; and the

argument, ã, is given by:

where W

hardening

12.261 t,

Desai and Zhang ( 1987) and Vulliet

generalized yield function proposed by

yield function F in Eqns. 12.231,[2.24].

1980, Desai et aI. 1986):

and Desai ( 1989) used the

Desai and co-workens for the

The yieJ.d function is (Desai

ft . ..v= e + | min(r;'l * ;;t. ;l!l ato Jo r

F
S

20

12.271 F= rzn- (--i.lr1)



where JzD i= the second invariant of the deviatoric stress tensor, trj.
Jt is the fir-st invariant of the stress tensor, rij. F= is a shape

function which controls the shape of the yietd surface on n-plane

(Desai 1980, Desai et aI. 1986). The parameter n is a material

constant controlling the shape of the yield surface in Jro,Jr-space.

The material constant t is relate¿ to tÉ = Jronl which def ines a zero

volune change tine by 4 = ,lrn - o. The pararneter c¿ in lz.2|l is a

growth or hardening function which may be expressed as:

l2.2}l a = a-

(Ê )n-vp

where a and T are hardening constants and €,ro is the trajectory of

viscoplastic strain given by:

Il2.2sl Ë. = I ( deT de )t/2-vp 
I "p vp

Adachi and Oka (1982) presented an elasto-viscoplastic constitutive

relationship based on Perz¡rna's elasto-viscoplastic theony and the

original critical state energy theony (Roscoe et al. 1963). In their
model, the scalar function @ in Eqn.12.231 is:

t2.30l z @(F) = c- explm']n(c' (d) I o'G) )lo-mymy

in which c and m' are parameters related to the time-dependento

properties of materials. The stress ol-(=)in t2.3Ol is related to themy

stnain hardening parameter k=, representing strain hardening effects in
the change of stress state from q' = O to o,n = råy. The stres= ,*l=,
controls the position of the static yield surface:
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lz.31.l r= = ,6$l /(Ma'(=)) * rno.r(=) - r.,o;l=' = n=

This yield surface is the same as Eqn.[2.6ì

critical state energy theory (Roscoe et al.

related to the strain hardening parameter,

strain hardening and rate effects. The

position of the dynanic yield surface:

1.2.321 f , =,/-zl^l(uc') + Inø' =o¿mm ko

The function F in [2.23] was defined as:

[2.33] F=f.,/k -1OS

Thus [2.30] becomes:

r Q(F) = co exp(m'F k=)

is related to inelastic volume strain through trrrlj-=),
my

De'

Comments:

Perzyna's eLasto-viscoplastic theory provides some understanding of the

nodel 1 ing of the time-dependent stress-strain behavior in three

dimensions. The question arises why the scalan function @ should be a

function of the yield function F. The mathematical forms of O

(Eqns.l2.23l, t2.241 and 12.341) are much different from one another.

The determination of model parameters are difficult and not clear.

derived from the original

1963). In t2.30l o,' 
(d) is

my

kd, which represents both

, .(d)stress q'- ' controls the
my

Inc' =my

[2.34]

where k

t2. 35l D À-¡<-¡ = 

-
VI I+E In[a'(s)ro' (s),

my myl
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2.3.2 Flow S¡:rface l{odels

Matsui and Abe (1985, 1386) presented a flow surface model based on the

pioneer work of Nahhdi and Murch (1963), Olszak and Perz¡rna (1964,

L966) and Sekiguchi (1984). In their model, the total strain nates are

divided into elastic strain rates and viscoplastic strain rates ac in

Eqn. [2.23). The time-dependent yield sr:rface in the model is called

the flow surface (or loading surface) which is similar to the dynamic

yield surface in Perzyna's approach in the preceding section. The flow

surface F was assumed to be:

where k is the stnain hardening parameter, and r¡ is a paramet,er which

is a function of t,ime. l{hen F equals zeto, both elastic and

viscoplastic strains occur. l.lhen F is negative, only elastic strains

occur. Assuming that the flow surface is convex and that the direction

of t,he viscoplastic st,rain rate vector coincides v¿it,h the direclion of

the outer normal vector to the fLow su¡face at the stress point:

12.37f åYt=À=ôF' -ii '- ôtij

in which À is a positive scalar paramet,er, r¿hich is deternined by the

foJ.lowing equation of the consistency condition:

12.361 F = r(øij, "T3, k, l) = o

' âE AF 'vD[2.38] F==-' c..+ "^ elldc' rJ aeYl rJrJ rJ

In their latest paper (Matsui et

ôF ..+ôEi(+ #r=o

al. 1989), it, is assumed that the flow
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surface is:

t2.3sl F = ¡Itn{å [(1-exp(-9;l ,ll "*pfi) + ð exp(-9;l ,lll - vvP = o

.v
where ð, þ, v'are the viscoplastic ¡oateriar parameters,.,rtP the

viscoplastic voLumetric strain, and t the elapsed time. The scalar

function f in [2.39] is the volumetric strain in the reference state

which is a function of stress. Using Eqns.[2.23], lZ.Z+l and [2.39],

[2. 38 ] , [2. 39] , the resutting constitutive equations are (l,fatsui et al.
1989 ) :

t2.4ol å., = C=.ii<iåtr . f (#lJ 1- 
nn

C
nn

*afrt t aF.

-tdp
dF

ãc-IJ

Comænts:

The feature of flow surface models is that the mod.els employ a flor.¡

function which is a non-stationary loading function, and is used as the

viscopi.astic potential. A consistency condition is used to find the

scalar function in the fLow rule. The probJ.em is how to find the flow

funct ion Eqn. t 2. 36I . Although l'{atsui and Abe ( 1g8s, 1986 ) assumed. a

mone basic equation to derive the flow function [2.39], the theoretical

and experimental basis for the flow function is not cJ.ear, nor is the

determination of the materiaJ. parameters fon the mod.el.

2.3.3 Elastic-plastic-viscous models

Borja and Kavazanjian (1985) suggested an elastic-plastic-viscous mod.el
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ba-sed on Bjerrum's model for 1-D straining ( 1967a), and the modified

Cam-Clay model. This approach Ha-s developed by Liang et aI (1gg7)

using the concepts of the boundary sr:rface pla-sticity. In the model

(Borja and Kavazanjian 1985), the strain rate tenso" å.. is d.ecomposedrJ
into:

tz.4tl ;. . = å:. * åf. * ;!.rJ IJ lJ IJ

whene elastic strain rates ;i¡ are calculated using Eqn. I Z.Z4], time-

independent plastic strain rates åf. are calculated using the same1J

procedure as in the modified Can-Clay rnodel:

1.2.42f ;f =ö=ôF' -ii ' ôqij

and the yieì.d function F is Eqn. t2.71. However the stress parameter

in the equation was assumed to depend on the p].astic volume strain

due to strain hardening, and on the tine t,, due to aging:

12.a31 p =p(eP.t)-o -o v' v

D'o
De'

The scalar factor @

.âF
12.441 F = ="' o.. .ooij r'J

Time-dependent creep

the following rule:

is determined by using the consistency condition:

9¡+;-D=0do 'o
'o

.tstrain rates, e] ,, in 1,2.431 are calculated. fromIJ

-+ aF[2.45] el .=(0-' -ii ' ôÇij

where F is t,he sarne as in 12.42).

with a volumetric scaling method

The scalar function g is determined

or a deviatoric scaling method. In
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the volumetric scaling

compression by p:

meLhod, g is related the rate of secondary

Í2.461 I = (L + ej t (2p - p lv ' 'o

secondary coefficient, and t-_ is the time in volumetricwhere ,1, is

creep.

Comænts:

The featu¡e of the elastic-plastic-viscous model is that totaL strain

rates are decomposed into elastic st,rain raLes, time-independ.ent

plastic strain rates and time-dependent creep strain rates. The

question is how to separaLe the plastic strain rat,es from the creep

strain rates. The deternination of g is related to the time t,r. How

to account for the tine t' is not clear. The instant, time line r:sed in

the model is the same as that defined in Bjerrum's model. As pointed

in Section 2.2.7, this instant time tine is incorrect.

2.4 Objectives of the Research

In the past, many models have been suggested and developed for
time-independent on time-dependent behavior, for one- dimensional cases

on three-dimensional stress states. As reviewed and commented on the

preceding sections, each of these models haq some ad.vantages and some

Iimitalions. This thesis wiLl utilize the work in the existing

literature, overcome some limitat,ions in the ment,ioned models, and
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develop a new constitutive model for the time-dependent stress-strain

behavior of soiIs. To achieve this goal, the detailed objectives in

this research are Iisted as follows:

1. Develop a new three-modulus hypoelasticity model for time-

independent behavior:

(1). The hypoelasticity model can be used to calculate the time-

independent part of the total strains in time-dependent soils, or

to describe the stress-strain behavior of time-independent soils.

Q). The model can account for some principal. characteristics of soil

behavior, such as non-linearity, anisotropy, and the couplings of

D'-e and o-e.S.V

(3). Suggest new methods fon deternining the th¡ee moduli in the mod.el

using simpJ.e conventional triaxial tests.

(4). Calibrate and verify the model using different types of tests.

2. Develop a new Elastic Visco-Plastic (EVP) model fon the time-

dependent behavior of soils in 1-D straining:

( 1 ). Develop a new theonetical framework of EVP models for 1-D

straining based mainly on Bjerrum's work ( 1967a).

(2). The EVP modeLs can account for non-Iinearity, irreversibility,

creep, relaxation, strain rate effects etc. in l.-D straining.

(3). Suggest some new methods for determining all parameters in the
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(4).

model using simple oedometer tests.

The models should be calibrated and

of tests and soils.

J.

validated using va:.ious types

Develop a new Elastic Visco-PIastic (EVP) model for the time-

dependent behavion of soils in general 3-D stress states:

(1). Based on the work of hypoelasticity models and 1-D EVP models,

the framework of 3-D EVP models is developed.

(2). The 3-D EVP models should be capable of describing non-linearity,

irreversibility, anisotropy, creep, reLaxation and strain rate

effects in more general three dimensional stress states.

(3). suggest some new methods to find the model parameters using

simple triaxial tests.

(4). The models should be constructed, calibrated for different soils,

and verified using different tests.

It will be helpful to clarify how the neu/ material in this thesis

relates to previously published wonk by other authors. one, the new

three-moduLus hypoelastic model in chapters 3,4 takes accor:¡t of

additionaL features of soil behavior compared with existing two-modulus

models. It must therefore be considered conceptually superion to the

earler models. Two, the 1-D EVP model in chapters 5,6,7 presents, for

the firsl time in the geotechnical literature, a general mathematical

model that describes the ol-ål-r--å- relationships in ctay soiIs. Thiszzzz
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single model can be used to predict behavior in incremental load.ing,

constant rate of strain, creep and relaxation tests. Three, the EVp

model is also developed for axi-s¡rmmetric stressing. This allows

complex test procedures such as speed changing, relaxation, and loading

history dependency to be predicted by using a singte mathematical

model.

The approach adopted in the thesis has been t,o concentrate on the

mathematical modelling and to introduce vatidation where experimental

data are available. This inevitably means that further research wiII

be required to examine (a) the broader applicability of the assumpt,ions

used in the modelling, and (b) restrictions on when the models can be

used successfuLly.
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Chapter 3

1TYPOELASTI CI TY I,IODELS

3.1 fntroduction

fn some soils such as sandy soils and some inactive clays, strain rate

effects are small and may be ignored. OnIy Lime-independent

stress-strain behavior needs modelling for engineering applications.

However in most clay soils, strain rate and time effects are very

significant (Graham et aI. 1983). However, even in these cases, total

strains may be divided in principle into two part,s, time-dependenL

strains and time-independent strains. When this is done, a

constitutive law is required to calculate each part separately. In

this Chapter, we wiIl deaL wit,h only the time-independent part, and

time dependency will be dealt with later. The main characteristics of

time-independent stress-strain behavior are irreversibility,

non-linearity, anisotropy, expansion or compression during shear, and

the shear strains which can accompany changes in mean stress. Hene we

wilI develop a new pnocedure for hypoelastic (that is, non-Linear

differential elasticity) modelling.

Eringen (1962) and Saleeb and Chen (1S81) have neviewed the techniques

thal are commonly used for constitutive modelling of the

time-independent behavior. The simplest models are ba-sed on linear or
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non-linear elasticity. However, nost soils exhibit non-recoverable

stnaining in at least part of their stress range. This has led to the

development of elast,ic-plastic nodels such âq the Cam-c1ay family

(Roscoe and Burland 1968) in which strains depend, in generaJ-, on both

the stress-path and the stress history of the clay. These models also

include the tendency to volu¡ne change that usually accompanies shearing

in clays. This is commonly known a.s "dilatancy" and may be compressive

or expansive in nature. The applicability of elasto-plasticity to

natural clays has been reviewed by Wroth and Houlsby (1985) and Gnaham

et al. ( 1989).

Another approach is to use hypoeJ-asticity (Truesdell 1955; Truesdell

1965; Coon and Evans 1971) which aqsumes a general incremental

constitutive relationship for time-independent materials:

13.11 F..(c'' ,. c' , € . e.) =OlJ K]' rnn' pq- sf,

provided that this equation is homogeneous in time, i.e. time occurs t,o

the salne order in all terms of the equation and therefore, hâV be

eliminated. This approach emphasizes the non-Iinear nature of soil

response to loading but does not readily include some of the

discontinuous behaviour (for example, porewater pressure generation on

dissipation) that is well handled by elasto-pla-sticity. Hypoelasticity

has drawn some criticism for its lack of incremental continuity of

response along certain load paths (Mroz, 1980).

Coon and Evans (1971) suggest,ed four reduced forms of t3.11. One of

the reduced forms is:



Í3.21 de. . = C. .. . (a' ) da.'-
r J r. JKl rnn Kl

Here C. ,,-, are complementary constitutive tensors (or noduli) which arel JKr.

stress level dependent. Eqn.t3.2l gives a general linear relationship

between incremental strains and incrernental stresses which may then be

inLegrated to determine a required stress-strain relationship.

Two different types of hypoelasticity models have been developed fnorn

the general framewonk given by t3.21. One type expresses Ci¡tt in a

stress tensor series (Coon and Evans 197I; Yin 1984). Obtaining the

resulting material constants is difficult, and sonetines impossible.

The second type makes a further a-ssumption to reduce the required

number of stress level dependent, parameter= Ci¡tt in t3.21. This set

of parameters can be determined by differentiating curves fitted to

experimentally observed st,ress-strain data. Examples of this type are

the E,u model of Dr:ncan and Chang (1970); the K,G model of Domaschuk

and Valliappan (1975); the three modulus model of Yin and Yuan

(1985a,b); and models with more than three moduli, for example by Darve

et al. (1986).

The new model presented in this chapter uses three stress dependent

modulus functions that wilI be referred to subsequently as "moduLi".

These are (1) the bulk modulus K, Q) the shear modulus G, and (3) a

coupl ing modulus J. The model incorporates non-reversibi 1 ity,

nonlinearity, dilatancy, and the related phenomenon which produces

shear strains from mean stress changes. The three moduli ca¡1. be

deternined from routine undrained CIÚ triaxial t,ests or drained CID
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tests.

3.2 Fra-mewonk of H¡rpoelasticity Models

One reduced form from [3.1.] for the time-independent behavior is:

i3.31 de. . = C. ...(a', a ) da'--ij -ijkl'-mn' -pq' --kI

This expression is more general than [3.2]- Moduli Ci¡tf in [3.3] may

depend on both effect,ive stresses and strains. The KGJ nodel to be

discussed in this Chapter and Chapter 4 is based on further reduction

of [3.3]. In the KGJ model, the moduli G and J depend on boLh stresses

and volumetric slrains.

Graham and Houlsby (1983) suggested a constitutive relationship:

fdp'= R de + J ae
t" ¿l ) - v s

l-
Laq=Jde,r+3Gdes

for mod.eLling anisotropic elastic straining, where in triaxial stress

conditions, volumetric strain 
"r, = "1 

* 2"3; deviator strain r= =

2, 1

i(e, - er); effeclive mean st,ress p' = å(ri + 2ar); and deviator stress

q=c1-ø3.

Yin and Yuan (1985a,b) presented a hypoelastic model which can account

for non-linearity and dilatancy in a medium sand:
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laelv
J
laeLS

å'oo' +

1

¡c oq

1

qoo
t3. sl

where Kn is a bulk modulus, K- a shear dilatancy modulus and G a shear
L¿

modulus. Note that this equation is wnitten in compliance form rather

tha¡r the stiffness form in t3.41. It can be seen at once that the

general matrix of the model in [3.5] is not s¡rmmetric. The model does

not therefore incorporate shear strains generated by changes in mean

effective stress p', for example in clays with inherent anisotropy.

In this chapter, a new formulation that includes p'-generated shear

strains is suggested.

13. 61

Here, the bulk modulus K represents the volumetric stiffness of the

clay with respect to dp' (K > 0). The shear modulus G controls shear

deforrnations with respect to dq (C > 0). The coupling modulus J

accounts for the volumetric st,rain produced by aJr increment dq in

deviator (shear) stress, and also the shear strain produced by an

increment dp' in mean effective stress. The formulation assumes that

the dp',de -coupling and the dq,de -coupling are controlled by the sames'v
J-modulus. Positive dilatancy, that is, expansion during shearing, is

associated i^¡ith J < 0. Compression during shearing produces J > 0. If

thene is no dilatancy or no anisotropy, J = co , and [3.6] has the sanne

form ae the K,G model described by Domaschuk and Va]Iiapan (1975).

The moduLi K,G,J may depend on both stresses and strains.

åoo'", oo

3oo'*hoo

lae

ü,=



The elastic nodel in I3.41 had J = 0 for isotropy. Note that the

hypoelastic moduli in [3.6] are not directly comparable to the elastic
moduLi in [3.4] but ca¡r be related to them by inversion. Fon example,

J in t3.61 is equal. to -.t(sKc--¡-z) from t3.41. The difference is due

to the forms chosen for t3.41 and [3.6]. It is also known that the

moduli K,G,J in t3.41 are constant for a given preconsolidation

pressure. While nodulus functions K,G,J in t3.61 depend on both

stresses and strains.

when the current total unit strain energy is lower than any previous

higher strain energy leve1 (for example, during unloading or

reloading), the same form as t3.61 is used but the moduli K, G and J

ane replaced by K", Ge and. Je. Appropriate moduli (K,G and J, or
ôô

K',G"and ¡") are chosen depending on whether the stress changes are for
first-time "loading" on for "unloading,/reloading" expressed in terms of

unit strain energy. The distinction between "first J-oading,, and

"unloading,/reloading" has also been made on t,he basis of previous

higher values of p'or q (Yin et al. lg8g), but the energy criterion
used in this chapter is considered supenior (see also Mroz j.gBO, Duncan

1e81).

It should be pointed out that when the modulus functions K,G,J are used

for first loading and the moduli Ke, G", Jt are used for
unloading,/reloading, deformations may not be reversible for an even

infinitesimal stress cycle. This means that this type of models with

unloading,/reloading moduli is different from the originally defined



hypoelasticity, in which the deformation is reversible in a

infinitesimal stness cycle. In complicated r:ni.oading,/reloading cases,

the use of the model with Ke,Gt,Je should be restricted within the

strength envelope so that the stress trajectories which are not

accessible for geological material can be avoided. For a neutral

Ioading path, there may be an abrupt change in the material behavior,

and the responce is not r.:nique, energy may be continuously extracted

from a sample r¡hen subjecting it to a closed stress cycle (Zytynski

et al. 1978).

Eqn.[3.6ì can also be extended for a general 3-D stress state in tensor

form:

13.7l

where the

invariant,

= j on ð. .

- ..t 1otii = L(oR - gqf

1* fu(ôirô¡,

% - h)tr¡un,. - #'r.rði¡ *

* ðirð¡¡) 1 aa;,

I
=-----;¿qJ

al -ð-- +IJ ICI

deviaton

J, = 1,/2

=0ifi

stress

cc
J. .J. -.1J 1J'

+ j).

I = { Sl, l, is the second d.eviator stress

and ð is the Kronecker delta (Urj 1 if i

Equation [3.7] can be written in matrix form
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for finite elenent applications:

t3.81

dtr. 
r.

dtzz

dt33

d" 
12

d"23

dt3i.

ar+2b.-

ar+br+b,

ar+br+ba

c,/2

c r/2
c r/2

ar+br+b,

ar+2b,

ar+br+b,

cr/2

cr/2

cr/2

t2*br.*b3

ar+br+ba

ar+2b,

cr/2

cr/2

c=/2

o'i 
r

d"Lz

d'åc

ontz

dnäz

d"år

t1 
"z

t1 
"2

c^

cô
J

c
Ĵ

0

0

I
ñ,

are zero and

same form as

has the same

[3.8] is not

t1

T

2G

o1

0

"2

0

2G

0

where a,

bz

t1

k . h' ., = k - h' b1 = ( zarr-a)r-cf.)/(6uJ)

Qa)r-a\r-oå¡).2(6qJ) t bg = (Zar=-at{"äz),2(6qJ)

arr/kJ); c, = a)=/ (qJ); c, = a'rr/(lJ)

Under triaxial stress conditions in which shear stresses

the principal stress ci = rå, 13.81 can be written in the

t3.61. If J = -, and there is no cross-coupling, t3.81

form as the isotropic K,G model. Note that the matrix in

symrnetric.

3.3 I'fethods for Ileternining K,G,J ìloduli

For a model to be useful, the required tests for calibrating the model

must be relatively simpLe to perform and the data should be

consistently reLiable. For example, Duncan and Chang (fSZO) used CID
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data to find E and u ãq functions of q and øi, r¿hile Domaschuk and

Valliapan ( 1975) used isotropic consolidation to find K, and

constant-p' tests to find G as a function of q and p'.

Conventional CID lests or incremental constant p' tests on clays last a

long time, and in the latter case, are relatively difficult to run.

When a Ioad increment is applied, the porewat,er pressure inside the

specimen changes, and the real effective stress path deviates from the

target one. Despite requiring additional instrumentation, CIÚ tests

are in some ways easier to run and more reliable than CID tests. No

water flor+s int,o or away from the specimen, and apart, from some end

effects on localized effects in expansive strain-softening specimens,

effective stresses can often be considered substantially consta¡rt

throughout the specimens. In this case the specimen can be treated as

an infinitesimal element for finding differential relationships for

stress-strain behaviour. Two methods for determining the K,G,J noduli

functions wilI be described below.

3.3.1 Method one: using isotropic consolidation tests and CIU tests

In this method, isotropic consolidation is used to find the bulk

moduJ.us K, while undrained CIÜ tests are used to find the shear mod.ulus

G and the coupling modulus J. Unload-neload cycles are incorporated

into these tests to deterurine the elastic mod,uli Ke,Ge and Je.
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3.3.1.1 Bulk modulus K

Isotropic consolidation pnovides data relating effective mean stresses

p' and volumetric strains r,r. Fitting appropriate mathematical

functions Lo these data produces equations e,, = fr(p') for loading and

"r, = fT(p') for unloading-reloading. The bulk modulus K is then found

from the first equation in t3.61 with dq = g¡

t3.sl --dP'
de

V

and K- is obtained

- --emoctulr K and. K are

in a similar way frorn unload,/reload data.

functions only of p'.

3.3.1.2 Coupling modulus J

In CIU t,ests the lotal confining stress 13

vertical stness n! increases (dq > 0).

increase in specimens that are expansive

decrease when the specimens are compressive

relationships, q vs. p' and q vs. r= can

first relationship is used to determine the

is constant and the total

Mean effective stresses

in shear (dp' > 0), and

(dp' < 0). Two independent

be measr:red directly. The

coupling moduJ.us J.

In undrained shear, the volumetric

from the first equation in [3.6]:

t3. 101
dq
a¡'

strain is constant, de,, = 0.

K has already been determined from isotropic
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consolidation tests; and u, p and q are mea<ured during the t,est. The

g,P' data may be normalized by a facton which is kept consta¡rt during

this type of tests. For example, the g,p' data of CIÜ tests can be

nor¡nalized by consolidation pressures, which is then related the

volumetric strains that are constant during testing. Eqn. [3.10] means

that -J/K can be obtained by differentiating a. curve fitt,ed to the

normalized q vs. p' test data. In this form, [3.10] is valid for first

loading. An unload.-reload. cycle in the CIÚ t,est aI lows Je to be

determined using simi lar procedures.

3.3.1.3 Shear modulus G

Measured e - es

[3. 10] r¿ith the

relationships ca¡r be used. to determine G and Ge. Using

second equation in t3.61, we have:

3GJz

J--3GK
13. 11 l

where

q vs.

3D=99
cle

S

3D

5

is introduced for convenience to denote the loca1 sJ.ope

calLed the apparent shear modulus. From [3.11]:

t3.1.zr G = +
J-+3DK

If the soil is neither expanding or compressing in shean, then J = co,

and the shear modulus G equals the apparent shear nodulus D. Again, G

is a function of p'and q, and varies r¿ith the total ",, pr-oduced by

Dt'cons
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In a general caqe, K, K", J and Je have aì.ready been d.et,ermined at this

stage. The q, e= data can be normalized by the same factor as used for

Q,P' data. Then an appropriate nathematical function is fitted to the

data, a¡td is differentiated to pnovide D. The shear modulus G is then

obtained fnon t3.121. As in previous caqes, unloading-reloading cIû

data a1low d.etermination of the e1a-stic shear moduLi De and Ge.

Details of t,his method will be described in section 4.1 of chapter 4

using the resulLs from triaxial tests on 50-50 mixtures by dry maqs of

bentonite and sand proposed. for nuclear fuel r+aste managenent in

Canada.

3.3.2 Ìlethod two: using isotropic consolidat,ion tests and CID tests

This method also uses isotropic consolidation tests to find the bulk

modulus K. The difference in this nethod is that drained CID tests

(and not cIÚ tests) are then used to find the moduli J a¡rd G. The

appJ.ication of this method wilI be presented in section 4.2 of

chapter 4 using test data on a medium dense sand from wuhan, china.

3.3.2.1 Coupling modulus J

In cID tests, two independent relationships were obtained, namely

volumetric strain vs. deviator stress, e,, - g, and shear strain vs.

deviaton stress, r= - g. The first of these rerationships can be used
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to find the coupling modulus J.

The e,r,q data may be normalized by a factor which is kept constant. In

cID tests, the confining pressure ai is constant, a fr¡nction of which

can be used for t.he normalization. We define dq,zde,, as ," which is

differentiation of q,e,r. From the first equation in t3.61, we can find

the relation between J and J:ê

?KJ
13. 131 J -- ----:-r¡K - Je

where r - dq,/dp' - 3 for ciD tests. lJe can obtain K from isotropic

tests and we have J. by differentiating the function fitted to ev,e

data. Eqn. [3.13] allows calculation of J.

3.3.2.2 Shear modulus G

If we define a equival.ent shear modulus Gu which is equal

(dq/de^)/3, then from the second equation in t3.61, we have:.S

to

TG^J
[3.14] G = -'--:--- AJ -3G.

where, again, rl = dqldp'. Therefore if we know G" in t3.141 we caJr

find the shear modulus G. The e=,e data are normaLized by the same

factor as used fon e,r,g data. A appropriate function is used to fit
these data. By differentiating we can obtain G

e

using the same procedure, and from the data of untoading,/reloading in
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CID test,s, we can find Je and Ge

The first method is suitable to soils with either

high perneability. Howeven the second method is

high penmeable soils since it is very difficult to

from drained CID tests on low permeabl.e soils.

Iow permeability or

only suitable to the

obtain reliable data
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Chapter 4

APPLICATIOT{S OF THE KGJ }IODN.

4.1 l{ethod 1: calibrat.ion for Buffer l{aterials and paris clay

The framework of the KGJ model (Eqns.[:.0] a¡rd t3.71 or t3.81)

presented in Chapter 3 is itself a assr:mption. Validation of the model

needs to be established using data from a variety of soils and test

conditions. In this section, undrained test nesults from two

sand-bentonite buffer materials and a Paris cJ.ay are used to calibrate

the KGJ model. The subsequent section uses d¡ained test data from

Wuhan sa¡d. In each case, predictions from the model are compared with

measured results which had not been previously used in the calibration.

4. t.1, Br¡ffer naterials and test ing

The dominant constituent of the "buffer" is sodium-based bentonite with

Iiquid limit 250% and plasticity index 200% (Graham et al. 1989). It
controLs the sweIling, strength and hydraulic conductivity of the

mixlr.re. The composition of the bentonite was reported by Dixon and

l'ioodcock (1986) a¡d Quigley (1984). The sand component, is a uniformly

gnaded mixture of sub-rounded fine to nedium crushed quartz (Gray

et, aI . 1984 ) .
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In a larger program at the University of l,lanitoba associated r¡ith the

canadlan Nuclear Fuel lJaste Management Program, test specimens, so ¡nm

diameter a¡d 100 mm high, were forned by static compaction of mixtures

of dry sand, bentonite and distilled water t,o 85% or g5% ASTM Modified

Density. Details of the densities, r+at,er contents and saturations

after compaction are given in Table 4.1 (Saadat, 1989). Dixon a¡rd

Woodcock (1986) and Graham et aI. (1989) showed that the buffen

properties are doninated by the clay component and can be nelated to

the density or specific volume of the clay-r+ater phase. The sand acts

nostly as an inert filler but is effective in increasing t,he thermal

conductivity and reducing shrinkage j.n t,he buffer. The triaxial test

arrangement,s included spiral filter drains, double membranes separated

by silicone oi1, drainage from the bot,tom of the specimen, and deaired

cell water. Three series of tests were done at confining pressures up

to 10 MPa - (f) isotropic consolidat,ion; (2) undrained triaxial

compression with porewater pressure measr:rement; and (3) drained

incremental shea¡ i.oading at constant p'. Application of 0.2 to 0.s

MPa back pressure generally produced B-values of 0.gB - L.OO,

indicat,ing acceptable satr:ration. The majority of the specinens in

this program have been sheared in undrained triaxial compression and

will be used to evaluate the K,G,J model. The model r¡il1 then be

compared with results from the constant-p' tests.
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Tab1e 4.1 Consistency of Speciæns aften Coupaction

ASTM Modified Dry Density

Dry density, W^3
Moisture content, %

Satr:rat,ion, %

CIay specific volurne

1.50 r
2A.4 t

98t
2.58 t

0.02

0.9
1.5

0. 04

1.66 ! 0.01

22.5 ! O.2

97 t 0.9

2.24 ! O.OI

FulI delails of the testing program have been given by Graham et aI.

(1989). Some comments need to be made about the applicabilit,y of the

effective stress principle to the bentonite in the nixture. It is

assumed here that the properties of the br:ffen can be related to the

tensor difference betr¿een externally applied pressures and porewaten

pressures measured on externaLì.y mounted pressure transducers. More

detailed discussion of this important assunption has been given by

Graham et al. (1988b,1989).

4.L.2 Evaluat,ion of K,G,J moduli using æthod one

The permeabilit,y of the buffen materials is very Iow. The hydraulic

conductivity is 7O-L2 to 10-13 m,/s for high density buffer (ZO = 1..67
.'

l4g/m') (Dixon and Gray 1985). This mearls, for example, that there was

sti1l 709 kPa of excess porewater pressr:re left in test T1OO1 after 76

days of isotropic consolidation (ce11 pressure was 3s0o kpa, back

pressure was 500 kPa). The excess porewater pressure in test T1002 r*¿s



89 kPa after 84.75 days of isotropic consolidation (ceII pressure was

3500 kPa, back pressure wa-s 500 kPa). (More details can be found in

Chapter 9. ) As a result, d¡ained shear tests in the buffer r.¡ould take

a very long tirne, and the data obtained nay be difficult to interpret,.

However, undrained shear tests are relativeLy easier to rurl, and the

test data appear rnore reIiable. It is therefone appropriate to use the

first method discussed in chapter 3 (that, is, using cIú tests) to

calibrate t,he KGJ model for buffer.

4.L.2.1 üean pressure-vol¡æ change relationship fon K and Ke

Fig.4.1 shows p',€v relationships fron isotropic consolidation tests

on sand-bentonite buffer mat,erials wit,h two different dry densities,
?e

Zd = 1.50 l4g/m" and Zd = 1.66 lúg/m'. These data can be represented,

(see Fig. 4.2), by,

t4. 1l V = -À In(p' ) + Vc c 'cons co

where the clay specific volume v" is the volume of clay and water

occupied by unif volume of clay solids. The relation between V and V.

(tnat is, between the specific volume V for the sa¡d-clay-waten mixture

and t,he clay specific volume V. in the clay-water phase) is V = 0.4g1V.

+ 0.50S (Graham et aI. 1989). This produces from [4.1]:

14.21 V = -Àln(påo.,=) + Vo

the corresponding relationship between cv and p'
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t4.31 e =^/V. In(p' )+ev 1 -cons vo

where V. = 1 + e . the initial specific volume before straining.10

Fig.4. 1 was drawn using strains accumuLated in t,he first th¡ee days of

each increment (Mesri and C'odlewski 1977; Gratram et aI. 1983) for both

densities of buffer. In Fig.4. 1 the 1.50 Mg,zm3 buffer sr+ells when the

confining pressure is less than 0.7 MPa. The corresponding pressure
.)

for 1.66 Mg./m- buffer is 1.7 MPa (Saadat, 1989).

The behaviour of buffer is strongly time-dependent (Graham et al. 1S8g)

and test durations up to 60 days were at times reguired to reduce

volumetric straining rates to o.!% /day, a rate that, was taken to

indicate "end-of-consoLidation". Fig.4.2 shows "end-of- consolidation"

(Eoc) relationships rather than the "3-day" results shown in Fig.4.1.

The lines in Fig.4.2 }:rave been drawn through data from specimens that,

were compressive (that is, they showed increasing porewater pressures)

during subsequent undrained shearing. Fig.4.2 includes data fron a

Iimited number of specimens with different initial densities. Those

with densities 1.58 W^3 (soz ASTM Modified Densit,y) or less, have

been included with the 1.50 Mgz*3 data. The remainder have been

included with the 1.66 l4g,/n 3 d"t". Table 4-Z shows the EOC

parameters in [4.3] that result from this data. The compnession index

À is larger than the coresponding value neacured from the "3-day" data

in Fig.4.1. This suggests the specimens were not fuJ.ly equilibrated

at the earlier stage (Graham et aI. 1989).
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Saadat (1989) showed however that specimens were about 95% consolidated

at EOC. Multiple regression analysis on tests with different

consolidation times suggests that the durations of the tests were

sr:fficiently long that the effects of tine on the EOC relationships in

Fig.4.2 should be small. The long-tern swelling pressure of the buffen

aL 85% ASTM modified density is esti¡aated at 1.0 MPa from the EOC data

rather than 0.7 l@a fron 3-day dat,a (Saadal 1983).

The elastic bulk compressibility of the buffer is determined through an

isotropic swe1l-compression cycle represented mathematically by:

= rc/Y. ln(p' ) + e"v I -cons vo14.4l

The data show

S-day strains

strains and

neeqonable to

t</Y. = O.O1OS (R2 = 0.95)I

respectively in 1.50 Mg,/n3

strain rates are smalI

use short dr:ration data-

and rc./V. = O.O1ZS for 3-day and
1

buffer (Saadat 198S). Because

in the elastic range, it is

Applying t3.91 and differentiat,ing t4.31 and t4.41, the bulk moduli K

- --eand. K are:

[f = p' /(À./y)
t4.sl .{

lã

LK- = P',/(rc/Y)

The introduction of p' in t4.51 instead of påo.r= in t4.31 and 14.41

involves an important a-ssumption that the volumetric strain induced by

p' is independent of q. Using Table 4.2 and the EOC data in Fig.4.2

for 1.50 Mg/m3 buffer prod.uces U{ = L3.7. The S-day unload,/reload

data suggest in [4.4] tnzt Ke/p' = 80.0, (Ultre = 5.8).
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Table 4.2 Ctnve-fitting Parareters in KGJ t{odel

K-modulus J-rnodulus G-modulus
Soi I

x/v.
I R2R2f

T

¿

,l

.o73 -0.003 0.92

.052 -0.039 0.95

.o29 -O. t72 0.98

I.32 0. 81 0. 81

7.25 0.65 0.64

-8.93 1 0.98

0.0086 2-15
0.0108 1.83

0.0039 0.92

0.96

0. 99

SoiI: 1.

2.

Ĵ.

Sand-bentonite buffer .rO = !.50 Mg,zm3

Sand-bentonite buffer Zd = 1.66 Mg,zm3

Paris c1ay, Fnance (Azizi, 1987)

(Graham et al. 1988)

(Grabran et aI. 1988)

4-7.2.2 Effective rea¡r st.ress-deviator stress rerationship for
J and Je

Figs.4.3a,b show data from compressive CIU specimens r¿ith initial
d,ensities 1.50 ugz*3 and 1.66 ¡lgzr3 respectively. The stress paths

incline leftwa:nds at the beginning of shearing indicating anisotropy.

The p',q data have been normalized by påorr= in the range o.g - 3.0 Mpa.

They normalize into reasonabJ.y restricted zones in t,he Figures and this
has been taken to support the use of "effective stresses" to describe

the tests. A power law 14.61 ha-s been used to describe the best-fit
normalized stress paths:

t4.61 q/p' = A(1 - -P' )'' 'cons D'
^ cons

values of A, n and R2 a¡-e given in Table 4.2. The R2 coefficient
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reflects variabilit,y of the normalized stress paths due to differences

in initial density, fabric struct,ure and consolidation duration.

Using [3.10] and differentiating I4.61 with nespect to p', t,he coupling

modulus can be written:

l4.Tj J/Ke = *r/n (q/p' ,(n-l)/n- - cons

= c (p' lq)d- cons

where . = ,rAllt = 1.05, d = (1-n) /n = o.4!. using the value

f"Zpl^-^ = 80 obtained in the previous section fron t4.51, the coupling'cons

modulus for buffer with 1.50 Mg,/m3 irritial dry density is:

14.81 J = 1.OS x 8Op' (0.962 exp(13. tzeu)tt)o'4I

It can be seen that J a¡rd Je are functions of p' and e, and vary with

the volumetric strain ",, from the beginning of the test due t,o

consoLidation under påorr=. l.Jhen g = 0, the coupling modulus J = o,

implying that the initial behaviour in shear is isotropic. This

deviates from the observed average behaviour in Fig.4.3 which is

initially anisotropic, probably because the specimens were formed by

compaction in rigid molds..

4.L.2.3 Und.rained shear stress-strain relationship for G and, GL

Fig.4.4 shows neasonably consistent results fnom compressive specimens

with initial densities 1.50 tlgZr3 and 1.66 W^3 and effective
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confining pressures in the nange

been normalized by Þ' Peak- 'con.S

at about 4% shear strain a¡rd the

a sma1I amount (average 4%)

stress-strain relationship ha,s

hyperbolic function (Duncan and

1e75 ) :

t4.91 q/p' =- - cons

0.8 - 3.0 MPa. The q-dat,a have again

shear stresses were generally reached

shearing resista¡rce only decreases by

with further straining. The shear

been ¡node 1 Ied us i ng a. bes t -f i t

Chang 1970, Doma-schuk and Valliappan

E+Fe

Va1ues of E, F and R2

differentiat,ing [4. 9] :

[4. 10]

are shor+n in Table 4.2. Using [3. 11]

Þt

3D=-'Ë*(i-FOJ;l'

Then replace p' with e from [4.3]:' 'cons v

14. 111 3D = 111.86 exp( 13.72e..) Lt - 2.235 q exp(-13. Z2e--)12-vv"

for buffer with 1.5 t'lg,zm3 init,ial dry densit,y. This shows D to be a.

function of q and the strains e.,, produced by påorr=. The parameter D

represents an equivaì.ent shear modulus a.O (Graham and Houlsby 1983)

for an idealized isotropic elastic material. using Ke = 8op' from

[4.5], J obtained from t4.81, and D obtained from [4.].11, the shear

modulus G can be found from [3.t2] as a function of p', q and e,r.

The elastic paramet,er De haq been meaqured as Delp' = 3T.S fnom the'cons
results of unload-reload cycJ.es in an undrained shear test on 1.so

-'
llg/m' buffer. It is assumed here that, the unload-reload behaviour is
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isotropic elastic, so, from [3.12], Ge = De

4.1.3 Calibration for Paris clay

The KGJ model t3.61 has also been calibrated for a nedium-stiff plastic

clay from Paris, France (Azízi, 1987). The same method as for buffen

materials was used to find K,G,J ¡nodu1i. The curve fitting functions

for Paris clay were Eqns.t4.3l, [4.6], [4.S]. Figs.4.S,4.6 and 4.2 show

the best fitt,ings. The pararneters of K,G,J moduli for paris clay are

shor+n in Table 4.2.

4.2 ìlethod 2: Calibration fon l{r¡han Sa¡rd

As a further development of the KGJ model and an example

applications of Method 2 lor drâined tests in Chapter 3, the

l.Iuhan sand are now used to ca1ibrate the model-

4.2.7 Calibration using æthod tl¡o

The Wuhan sand âq tested Has medium dense with relative density Io =

57% and, dry density za = 1.55 W^3. The coefficient of r:niformitv c,,

(defined * Dso/Dto) is 2.13. As we know, sand has high permeability.

During shearing, excess porer+ater pressures can quickly reach

equilibriurn. If a drained shearing test is run, the excess porewater

of the

data on
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pressure is almost zelo throughout the specinen. Data fnon drained

t,ests on sand are thenefore highly reLiable. The following sections

use the second method outlined ln Chapter 3 to calibrate the KGJ model

for l{uhan sand.

4.2.7.t lÞtenmination of bulk modulus K

At this step, the method

consolidation tests to find

consolidation t,est data for

hyperbol ic fr:nct ion:

14. Lzl

where R = 6867

bulk modulus K

is the sane âe Method 1, using isotropic

bulk modulus K. Fig.4.8 shows isotropic

l.Iuhan sand. The dat,a have been fitted by a

Dt
^ cons

R-T-=;'-
^ cons

kPa, S = 39.4. Differentiating [+.tZl using t3.S], the

is:

(6867 + 39. + p')21 6ea7t 4. 131 (=

4.2.7.2 Determination of coupling modulus J

Three drained CID tests were done with confining pressure 98. t kPa,

196.2 kPa and 392.4 kPa respectively. Two independent relationships

were obtained, namely volumetric strain vs. deviator stress, e,, - g,

and shear strain vs. deviator stress, "= - g. The first of these

relationships ca¡r be used t,o find the coupJ.ing nodulus J.
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The first approach to nonnalize the ev-q data was to use the confining

pressure øi in the salne way a-s in clays. It lJas found however that

data norrnalized in this Hay lrere scattered, probably as a result of

non-linearity of the strength envelope of the sand (Fig.4.10). However

if {r¡)0'85 was used. in the normalization, a good relationship was

obtained, in Fig.4.9, m = 0.85. The sâme fîå)O'85 *iII also be used. t,o

normalize e- - q data in the following section for the shear modulus G.S

The following function provides a good curve fitting of the data in
Fig.4.9:

1,4. t4l

where U =

U(U.U)
o^=-v - U-U-uIt

q/(ar)n, m =0.85, T =0.0015, Uo = 7, U,rr, = 10.

The "equivalent coupling modulus" J" is, by differentiat,ing [4.r4]:

[4. 1s] = 1q = (al)meoeJ v

(u - uult)2
2

tJ" - 2w -. - u u -u]t o ul-t

From Eqn.[3.13], we can find the coupling modulus J.

4.2. 7.3 lÞterminat.ion of shear modulus G

Fig. 4. 11 shows t,he .=

function was then used

- q data normalized

to fit these data:
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e
14. 16 J q/G=¡' = *ftn-

where m = 0.85, V = 0.001 (lcpa)m-1, ll = O. 10 (kpa)t-1. Differentiating

[4. 16]:

14.771 G" = å *q= = ('ål'i tl - 1¡ ( .'=.1* l2

The shear nodulus G is then found using t3.141.

So fa¡ we have obtained all three moduli for lluha¡r sand fnom a

isotropic consolidation test and th¡ee drained shear tests.

As mentioned in the last section, normalizing by (ci)m is related to

the curved strength envelope of the sand. From [4.16], at failure,

ør/(or)n = R, where R is a constant depending on the definition of

failure. We know that in CID tests p' = rå + q/3. So the strength

envelope implied by the nonlinear normalization with (øi)t i=,

t4.18f oi = (crlR)t/m + qr/3

The cr:¡ved strength envelope represented by [+. fS] is shown in

Fig.4. 10.

4.3 Validation of the KGJ tlodel

The model outlined in the previous sections is of counse general in the

sense that it can be applied to any soil and any stness path, if
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suitable

examined

which had

test data are

by comparing

not been used

available. Validation of the KGJ rnodel ca¡r, be

the predicted and meacured results for tests

in originally calibrating the modeI.

4.3.1 Pnediction of constant p' tests on buffer

The values of 
^./V., 

€vo, A, n, E and F in TabLe 4.2 calibrate the

general modeL fon buffer with two different initial densities. Now the

calibrated model will be used to predict the results of drained t,ests

with constant p' on buffer materials. These predicted results will be

checked against experimentally measured values which were not used in

forming the original model.

In drained constant p' tests, the reguired condition is dp' = Q. From

t3.61 , 14.71 and [4.5], using an "unloading,/reloading" criterion for Ke

when o' < D' :' 'max

ñt.¡
[4. 19] ur--c [exp(-e,roV.,/À) exp(e' Y./À,)/q)* de., = ¿O

I

r¿hich on integration and combination with [4.3] gives:

l4.zol ",, = |.r'tp,) + 
",ro 

* fr r"lr + niånãt$, l1*dt
II

The volumetric strain produced by shearing is then:

tq.ztl Âe,, = å rn[1 + 11iå1;o rfi, l1*di
I

which is a function of n = (q/p'). Substituting appropriate values for

br.rffer parameters in [4.21]:
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1,4.221 Âtu, = 0. 178 ln[ 1 + 0. 0475 (q/p' ) 
1 ' 41 

]

Fig.4.L2 shows the calculated rerationship resulting from t4.zzl

between q,/p' and Â€,r, and also experinentally meacured relationships

from four constant-p' tests at different stress levels. Although there

is some scatter in the data, the prediction looks promising consid.ering

the smalI volume strains that are typically encountered in these

consLant-p' tests and the relative insensitivity of volume change

meaqurements.

It is also possible to predict q vs. "= relationships in constant-p'

tests. Fron the second equation in t3.61 with dp' = O:

[4.23] dq = 3G(p', e, err)de=

where G is expressed in terns of D a¡rd J from [q.n] and t4.gl with

Ke = 8op'. An analytical solution cannot be obt,ained for Eqn. [ 4.23] and

it has been solved with the for:rth-order Runge-Kutta method in

conjunction with t4.20l. Fig.4.13 compares predicted and measured.

results for q/p' vs. "" for two different densities of buffer. The

predicted normalized curve for different constant-p' values is unique

and agrees well with the test, data, especially when it is remembened

that the tests were perfonmed by increment,al loading a¡d are known to

be difficult to interpret.
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4.3.2 Prediction of a drained consta¡tt stress ratio test on Paris clay

Fig 4.14 compares predicted arrd meaeured results from a drained shear

test on Paris clay with constanl stress ralio arta, = 0.6 (ezizt 1987).

In this c2se some account of "elaetic" straining has been built into

the predictive model to accor:nt the ealy pre-yield straining observed

in the testing prograJn. The measr¡red volume strains appear Lo be

predicted reasonably well by the model. However the shear strains

appear to be underpredicted.

4.3.3 Prediction of tr¡o constant, p' t.ests on lluhan sand

The progran on l.Iuhan sand (Yin and Yuan 1985) also contained test,s at

constant mean effective stresses. The calibrated model for the sand

has also been used to calculate the stress-strain curves for these

tests which had not been used in t,he calibration. The predicted and

measured results in Fig.4.15 are in good agreement for the two

different, confining pressures shown.

4.4 Discussions and Connænts on KGJ l{odel

The modeL described in the preceding sections can be applied to a wide

variety of soils and testing conditions- This is shown by its ability

to determine the K, G, a¡rd J functions from either undrained tests in

the sand-bent,onite buffer materials and Paris c1ay, on from drained
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tests in lJuhan sand, and the promising predictions from the model shown

in the previous section.

Ïn terms of constructing the nodel, the pnincipal uncertainties at this

stage involve the assurnption in t4.51 and t4. 131 tfrat K and Ke are

independent of r¡ = e/p', and the relationship between J and Je. One

restniction of the model is that the data should be capable of being

normalized into g/påorr= r=. p'lpåons and g/p'orr= vs. "= on

(tar)m lrs. 
"u and O,/Gi)m vs. .= relationships. Thus in cJ.ays, the

modelling parameters (Tab1e 4.2) will vary with overconsolidation ratio
(OCR). In sands, normalization is only possible when specimens have

the saJne "state parameter" ry' (Been and Jefferies 1985). Solutions

based on elastic-plastic soiL necha¡rics appear more suit,able than

hypoelasticity when different OCR's or ú' s have t,o be considered.

The stress states used for calibrating and verifying the model have

only been t,riaxial (axisymmetric). The model needs to be developed and

verified for more general stress states. However, with the restriction

that it must be possible to normalize the data, the model can account

for irreversible, nonlinear, shear-compressive or shear-expansive

characteristics of soil behaviour, and the shear strains which can

accompany changes in mean effective stress.
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Chapter 5

T-D EL.LSTIC VISCO-PI.ASTIC I{ODF'T T 1¡6

5.1 Introduction

The stress-strain behaviour of nany Iight,ly ovenconsolidated clays is

guite stnongly time-dependent. For ex4mp1e, undrained shear' strengths

and preconsolidation pressunes depend more strongly on the speed of

testing than is commonly appreciated (Graharn et aI. 1983). This can

affect the stress distribution, deformat,ion a¡rd capacity of foundation

soils beneath embankments, oil tanks, silos, etc., especially when the

stresses are high enough to cause yielding.

In recent years, increased attention (LeroueiI et, al. 1985; Crawford

1986; Mesri and Castro 1987; Leroueil 1988) nas been paid to the

effects of time and strain naLe on the effective stress-strain

behaviour of the particle structr:re of clays. Most of this research

fit,s rather simple functions (usual.ly graphical functions) to data

collected in the Iaboratory.

This chapter develops arr alternative approach using an important

concept of "equivalent times" and th¡ee relationships for elaqtic,

elastic-plastic and time-dependent straining. The resulting

constitutive model predicts the behavior¡r of clay unden step-wise

Ioading, constant rate of st,raining, rela:<ation, and constant rate of



effective stress applicat,ion.

5.2 Tire and Strain Rate Effects a¡rd l{odelling

The nost conmon example of tirne dependent behaviou¡ in clays is

terminating creep (secondary consolidation) observed after the excess

porewater pressures have completely dissipated. Creep displacements in

clays are usually considered (Ladd et al. 1977) to vary linearly with

1og(time), and the coefficient of secondary consolidation is defined by

alternative relationships Co. = LV/Log(t-/to); Cr," = ?to*, L-/Lo); lt =

Âv,zln(L,/L^) where the specific volume v = 1+ e. one difficulty with10

t'hese relationships involves deciding when creep movements actually

begin, that, is, the value of to (Crar+ford 1986). On one hand, Mesri

and Choi (1985a,b) argue that compression strains at the "end of

primary" (EOP) consolidation are "unique", that is creep only commences

after excess porewater pressures have reduced to zero.

It is now frequently accepted that the compression index c. and the

preconsolidation pressure nL. (corunonly called o,,r. or ";) should be

measured from stress-st,rain curves derived from EoP strains on1y.

Mesni and Choi (1985a,b) defined the behaviour of the clay in terms of

the e,log ø.'-^ relationship at EOP, and the ratio C -/C_ r^¡hich they-VCC['eC

consider constant for a given clay. (Gratram et aI. 1983 suggest that

the c-^/c^ ratio is strain dependent). However Kabbaj et al. (1988)

showed that the laboratory EoP curve underestimates in situ

settlements. This implies that the EOP stress-strain relationship is



not unique but depends on the duration of primary consolidation. If
so, viscous deformation occurs dr:ring the whole consolidation process.

Alternatively, l.iahls (1962), MitchelI (1976) and Crar+ford (1S86) among

others, have suggested that the separation of consolidat,ion strains

into primary and secondary stages is arbitrary. Adjustment of the

int'ennal structure of the clay involves time dependent deformations and

it seems neasonable to include sone elements of time dependency during

primary consolidation. In a similar r+ay, Bjerrurn (1967a) argued that

time dependent straining would occur at t,he same time as hydrodynamic

consolidation. He divided the observed displacements into "instant

compnession" and "delayed compression", although he recognized that the

instant compression stnains would take place in finite time because of

hydrodynamic consolidat,ion, see Figs.s.1 and s.z. He proposed that

dei.ayed consolidation could be described by pararlel Iines ( in

V,1og ar)-sRace representing a series of equilibriurn relationships

after different durations of sustained loading.

The reductions in volume that occur during delayed compnession Lead to

more stable cì.ay microstnucture. Thus during delayed compression on

"aging", a clay develops increaqed strength and a reserve resistance

against fr¡rther compression, Fig.5.2, (Bjerrun 1967a). An apparent

preconsolidat,ion pressure is found when stresses are again incneased.

aften delayed compression at constant effective stress. This accounts

fon the small amor:nts of overconsolidation found in natural clays that

have never experienced the usual causes of overconsolidation such as

offloading, gror:ndwater level changes, weathering, or cenentat,ion. The
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preconsolidation pressure nesuLting fron secondary compression can be

predicted fnom the relationship ocR = (Lltr)cu/(cc-cr) (Mesri and

choi 1984). They also derived a related expression in terms of

straining nates. However the relationships are not fulIy general since

they do not, for exâmp1e, include the effects of relæ<ation on

step-changes in straining rate.

To overcome this deficiency, Leroueil et aI. (1985) used oedometer data

from four clays fnom Canada and France to demonstrate that rheological

behaviour of clays is controlled by a unique stress-strain-strain rate

(c]-e--å-) relationship. They presented. t,he results in the form of azzz
unique normalized curve of G=la)") vs. e= plus a curved relationship

betr¿een preconsolidation pressure cr" and 1og (strain rate å=) fon each

c1ay, see Figs.5.3 and 5.4.

In developing this work, Kabbaj et al. (1986) point,ed out that the

(cr]-e--å-) relationship can not nepresent relaxation tests in r¿hich thezzz
effective stresses decrea.e at constant strains. Such a decrease is

most likely associat,ed with the counteracting effects of elastic el andz
DÞlastic e' componenls of straining. Kabbaj et al. modified the'z

(cl-e--å-) model of Leroueil et al. 1985 by assuming unique a:-el-å!z z -z-z-z
and ee = f, f"tr;/a)o) relationships. The nodified model was used to

calculate time dependent deformations and porewaten pressure

distributions for different types of 1-D tests.

The models that have iust been described aL1 lack generality and for

various nathematical reâeons can not conveniently describe the futl
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range of procedures including Dulti-stage loading (MSL), relan€tion and

constant strain rate testing that are currently used in geotechnical

laboratories. In a general sense, they can not describe relaxation on

unloading-reloading tests because they lose their ability to nodel time

effects if t,he stnain rate is acsumed zero. The best of these models

(by Kabbaj et aI. 1986) can describe relæ<ation lests but d.oes not

properly describe the viscous- e1a-stic response that occurs dr:ring

reloading.

In developing a const,itutive model for the time dependent,

behavior of soils in 1-D straining, we use the following

stress-strain

po ints:

consolidation(1) Time dependent deformations occur during aII

process, before and after primary consolidation.

Q). Time and strain rate effects are related to the viscous nature

soils througth the constitutive relationships.

(3). The tests ald procedure for determining the model parameters

s imple.

(4). A general model should account fon all aspects of the viscous

behavior under general test conditions.

The 1-D elastic visco- plastic model suggested in this chapten is a

mathematical extension of Bjenn:m's work. It is a furthen development

of the a'-,a-,å--modeI meaqured, experimentally by Leroueil and hisz'z'z-
co-workers (Leroueir et aI. 1985, Kabbaj et al. 1986), a¡rd the

conceptual model outlined by Crar+ford (1988). An important concept of

of
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"equivalent time" is r:sed to modeL the differing creep behavior:r of
normally consolidated and overconsolidated specimens â< a function of
a=, ã;, tz, and å=. This al1or.rs clay behaviour to be predicted in I,fsL

tests, relaxation tests, and tests with constant rate of strain (CRSN)

or constant rat,e of stress change (CRSS).

5.3 Tiæ Lines a¡rd Equirralent Tiæs

Bjernum ( 1967a) proposed a series of paralle1 "time Iines', in

e,Ioe(a))-space to represent (a) nultistage loading (¡'fSL) t,ests with

different, durations, (b) instant compnession produced, instantly after
loading, (c) delayed compnession at constant, effective stress und.er

engineered structures, and (d) "aging" in nat,r:ral deposits (Fig. s. 2 ) .

It can be seen in Fig.5.2 that t,he line of "insta¡rt compression" has

almost' the same slope as othen time lines. This inplies that there are

elastic plastic defonnations loading along this "instant, conpression,'

I ine.

Saturated clays are two-phase materials. tlhen total stresses are

suddenly applied, the effective stresses are onJ.y able to increace at

the same rate âc the porewat,er pressures decreace. consequently t,he

neal stnain-time relation fon the soil skelet,on can not be measured. for
primary consolidat,ion, see Fig.s.t. Results of CRSN tests with high

strain rates show that the observed compnession lines are often far
above the 24-hour line from stepped 1oading. This implles that the

instant time line lies we1l above the 24-hour time rine.

103



In the proposed nodel of this chapter, the "time lines,, are defined æ

the lines which have the same values of "equivalent time, tu,, not the

same values of real duration times used ln Bjemr:m's definition, see

Figs.5.2 and 5.5. The "equivarent t,ime, t"" at a state point is
defined as the time which would be needed to creep from the reference

time line to this point unden the same effective stress. For example

the equivalent time t"a,, at point 3" in Fig.5.5 is the time which would

be needed to creep from point 3' to 3". In fact, the specimen does not

experience this loading history. Thenefore according to this

definition, the equivalent tines are independent of loading history but

depend on state points n),t=. it wirl be seen in section s.4 that

equivalent times have a unique relationship with creep rates. Thus,

creep rates depend on only t,he st,ate points nL, "=. In Fig. S. S,

equivalent times are positive below the reference time line and

negative above the line.

An import'ant clarification in the proposed model is that "instant

compression" is the time-independent deformation that occurs in ze..o

time after loading. This instant, deformation is treated as elastic

deformation in the proposed model, Fig.s.s. The instant d.eformation

line is determined from unloading,/reloading tests. The slope of this
line is completely different frorn the slopes of Bjerrum's time lines.

That is, the "instant compression" line here is not one of Bjemum,s

time Iines which experience both elastic and plastic d,eformations.

Fig.5.5 shows that time-independent behaviour is restrict,ed to elastic
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straining, that is, to I-2-3"-4", or to (i)-(i+1)". It will be

remembered that 4' represents the relationship betr¿een t= and a= at

some chosen time after loading. This could reaqonably taken at the end

of primary consolidation or at some other time nhich establishes a

"reference time" for predicting creep strains. Here the "reference

time line" is defined as the line on r¿hich a chosen "equivalent time"

t is zel^o. Thus aq the specinen creeps from 4' to 4, t goes frome-
zeto at 4' to te4 at 4, and the straining rate decreaees. If very

rapid loading places the specimen in the range 4"-4' then very high

creep rates are obsenved, starting with t"n,, < 0. The slower creep

rates thaù are observed in the overconsolidated range 3"-3 sta¡'t from

t.3,, > 0, and end with te3. The increment dnL produces an elastic

strain del ana creep strains aelp starting from te(i+1¡,, ând continuingz-
to te(i+t). This formulation means that the model âqsumes ela-stic

visco- plastic (EVP) behaviour.

Details in determining the "instant compression Iine", "reference time

line" and cneep parameters will be explained in Chapter 6 and

Chapten 7.

5.4 General Constitutive Relationships

The model

of three

straining

neact ion

assumes

strain

only;

of the

that strain changes e" in a

components; one, 11 d,ue to'z
the second, "lP due toz

soil skeleton to effective

soil element are made up

" instantaneous" eIastic

time-independent plastic

stress changes; ar¡d the
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third, "lp arr. to time-dependent strains at constant effective stress.

Tlra f i e.

ts.1l e = ee + csp * 
"tPzzzz

where the functional relatlonships for ee, esP a¡rd .tP u.r" written:'z'zz--

(1). Elastic straining (elastic line in Fig.5.5)

t5.21 e" = f"(a')zz

Elastic strains are recoverable by definition, and instantaneous.

Insta¡rt strains are time-independent and may, on may not be recoverable.

(2). Elastic plastic straining (reference time Iine in Fig.5.5)

ls.3l .uP = "" * r"P = feP(r')zzzz

(3). Creep straining (time dependent straining)

ts.4l rtP = rtP(t .c')ze'z

The relationships fe, feP and ftP are obtained by fltting appnopriate

functions to observed labonatory data. Thus in Fig.5.5, a specimen

would move from 1 to 3 by first moving along the elastic line to 3" and

then cneeping at constant øia to 3. To move from 1 to 4, it would move

finst (under very rapid loading) to 4", before compnessing wifn

consta¡rt al to 4' and 4. In reality of course, hydrodynamic
z

consolidation affects the behaviour, and the clay neven actually

attains lhe state at 4".

Using Eqns. t5.31 and [5.4], Eqn. [5. 1] becomes:
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ts.sl r= = f"P(2) + rtP{t.,r;)

Eqn.[5.5] is a. general eguation for calcuJ.ating total strains under

stepped loading. From [5.5] ]re may solve fon the equivalent time t" *
a function of state points nL,"=. Applications of this equation l¡iII
be presented in the next trro Chapters.

Eqn.[5.5] is developed for stepped J.oading without considering in

detail how the effective stresses actually increased. In practice,

effective stresses va-ry continuously in laboratory tests and in field

applications. Even in stepped loading tests such as the standard 24

hour odometer test (srD), multipre-stage Ioading (l'{sl), and

single-stage loading (SSL), only the total stress is a constant and the

effective stresses increase cont,inuously as excess poreuater pressures

dissipate with time. In other laboratory tests such aq the constant

rate of strain test (CRSN), the controlled gradent test (CGT), the

constant rate of loading test (CRL), and. the cont,inous load test (CL),

the total and effective stresses both vary systenatically. At

ful1-scale, effective stresses beneath a geotechnical structu¡e change

as the external loads and the porewater pressunes change.

Continous loading can be considered âq a series of infinitesimalty

smarl incremental loads dc' in tine dt. At any point i in Fig.5.s, to

move from (i) Lo (i+1) under a stress change dø' in time dt, the cJ.ay

first moves elastically to (i+1)" and then creeps to (i+1¡, so:
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ts.6l - = ds: + de:p = (dfe./dc:)aa1 + (afLp/aL )dtz z z z' z e'--

where (ôftp,/ôt^) is the creep rate at the current point. It is knowne

from t5.41 that the creep rate may depend on equivalent times and

vertical effective stresses. That is, the creep rate depends onl.y on

the state points and not on the loading history. From [S.6]:

ts.7l (df"./da')
z

¿-
z

+ (arLp/ate)

t5.71 using appropriate values of tu provides a

relationship for any 1-D toading.

C,
Z

Solving t5.51

seneral c'-c,-ezz

and

-azz

It will remembered that the reference time Iine is not unique but

requires careful selection. Procedures for applying the model to

real laboratory data will be prepared shortly. The proposed method

uses a mathematical function to fit r,rlo data after excess ponewater

pressures have dissipated under a given vertical stress. The function

may have tv¡o features - when t. * -, "to . constant, and. when t. = -to,
a constant determined from fitting the creep curve data, then åtP + -.z

Procedures for identifying the reference time Iine witt be explained in

Chapters 6 and 7.
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Chapter 6

l.D EVP ì{ODF'J I ING T'SING LOGARITHI.ÍIC FI.]I{CTIONS

6.1 General o' - e_ - t, Relationship for Stepped Loadingzze

Oedometer tests with nui.ti-stepped loading (l'fSL) cumently forn the

generaJ. basis on which consolidation behavior¡r is evaluated. More

recently, CRSN tests have offered a faster !¡ay of determining the

behaviour and have been correlated with experience from stepped loading

tests (Sä1lfors 1975; Crawford 1986). Bjerrum's (1g67a) representation

of time-dependent behavior:r and the evaluat,ion by Mesri and Choi (1979)

of apparent preconsolidation pressures were also derived from stepped

Ioading tests.

In section 5.4 of Chapler 5, we have developed a general equation [S.5]

for stepped loading. In this section, we will specify this equation by

using logarithmic functions which are conmonly used to fit oedometer

test data in soil mechanics.

( 1 ). Time-independent eIa-stic straining is assumed linear in

e^, In(øl)-space (rc - line in Fig.6.1):ø7

t6.11 el =fe(al)=ee +5In(ø')zzzovz'

Q). Elastic ptastic strains rlp "* be obtained fro¡n the slope À,/y ofz
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the e . Inø'z'z relationship at

Note that this is

stresses higher than a=. (À - linein

also the reference tine line:Fig.6. 1 ).

t6.21 e€P =z

In Fig. 6. 1,

using t6.21

t6.41 ez

feP(o') = ,tP *zzo In(a'/t' )zzo
À

v

(3). Creep compression at const,a¡t a) is aqsu¡ned to be given by:

t6.31 "to = rtP(te, nL) = $ r^r!, %¡
o

This equation is a modification of the usual "secondary consolidat,ion"

relationship in which strains vary linearly wit,h In(time) but are not

defined when time is zeno. Note however that in t6.31 the cneep

strains are assr:med to depend on only "equivalent tines" and are

definedwhent =Q.e

In these definitions of À, rc and ú (Eqns. t6.11, [6.2], [6.3]), V is t,he

specific volume of the clay (1+e). The eeo, t</y; "::, n)o, À,/v; and

to, ,tr/V in Eqns.t6.1l,[6.2],6.31 are all material parameters

determined by fitting test data.

the total strains at any point can be written from [S.S],

and [6.3] as:

=':: * | r"ro; /a)o) * $ r"t (r. * ro)./tol.

This is a specified general equation for stepped loading using

logarithnic functions. The reLation between the equivalent time tu in

t6.41 a¡rd neal creep time t r¿iII be given in Sections 6.2,6.3.
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6.2 l,lethodology for IÞtermining llodel paraneters

In order to apply t6.41 to calculate strains

have to know the parameters in this equation,

time t^ to the real loading time t.

under stepwise loading, we

and relate the equivalent

( 1) . Parameters in [ 6. 1. ] :

The parameters in t6. 1l can be estirnated by fitting first J.oading or

unloading,/reloading data. Here we assume that the slope of first
Ioading data and the slopes of unloading,/reloading afe the same,

Fig.6. L,6.2. We know this is only an approximation.

(2). Parameters in [6.3]:

To determine parameters rþ/Y and to and relate equival.ent time t" to

real time t, we must first chose a reference state point. This point

is on the reference time line, and t" at this point is zero.

For example, assume we apply a single stage stress a), Lo the specimen,

point 1. in Fig.6.2 and assume aLso that we know the strain vs. time

curve like that in Fig.6.3 under the stress "Lt. Then, we can use

point L as the reference point. The instant elastic strain in Fig.6.3

can be calcul-ated from I6.11, the parameters in which are already

known. As pointed out in Chapten 5, the real time dependent behavior of

the soil skeLeton can not be measured dr:ring the period of primary

consolidation shown in Fig.6.3. Basical.Iy we use Eqn.l6.3l to fit
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between the dat,a taken after the primary consolidation is cornplete a¡td

the point of the instant elastic strain determined from t6.11. In this

way, to and rþ/Y are naterial pan'aneters. In this particular case the

eguivalent t^ is equal in value to the real duration of loading time t.

In other caqes, specifically when the current staLe lies belov¡ the

reference time 1ine, for example in overconsolidated specimens, t^ and

t are different. This is exa¡rined in a following section.

(3). Parameters in [6.2]:

Eqn.t6.21 is the reference tirne line that goes through reference point

1 in Fig.6.2. Supose we now have another single stage loading test,

for example a creep t,est under stress o)Z in Fig.6.2. We can also

obtain a strain vs. time cr:rve simila¡ to that in Fig.6.3 from this new

test. This means that, the final creeP strain e=r, in Fig.6.2 is known

under stress cl" with dtrration t.
Z¿.

Relation between t. and t:

The instant eLastic strain at point 2" caÍt be calculated from [6.1]:

tc.Sl ezz,,= "Z= r7o * f, r"to';rl

The equivalent time te.,, at point 2" can be found by the following

procedure, using t6.41 a¡rd [6.5]:

t6.61
CDe'zo

À¡-.V
+r+

rnd)r/a=] * $ rr, ,'o 
' "e2") 

= "lo *o

K
v In(ø'^)z¿

From which:
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t6.71 . ("2o - 'l\trt,¡tvtEez" = to [e zo'. - G;r)ÙÚ (o,-^/a'--)-x/þ - t lz¿ zo

t,he equivalent, tine t. above the reference

relation betwe.n tez, and t is:

G;r)K/Ú . GLz/nLo)-^/t l

the reference time line

is zero and the strain e=,

So using t6.41 and [6.1]:

As explained in Chapter 5,

time line is negative. The

t6.81 + te2"

Equations for solving À.fY and ø'_:zo

From [6.4], the final creep strain e=r, at point,2', using t6.41, [6.2]

and [6.8] is:

by

is

t6.sl szz,= ":: * $ rnr'; z/nLo) . I tr, ,to ] 
t'z',

= ":: * $ r"t a)r/a)o) +

ôôñ
ú, - .r {eio-e"=p/(lt/v)

+VIntf*e
o

The reference state

definition. We know

equal to the instant

point 1 must be on

that, t . at point 1et
eLastic strain eezL'

16.1ol eeP * \ ln(a' -/a' ) = ee +zoYzlzozo
K
v In(a'- )

ZL

The parameters e:^ , K./V, t- and ,lt/V have been detennined. in thezo' o

previous paragraphs. The constant "Îl is the initial strain beforezo

Ioading, so it is also known. Thus the neaning of parameter nLo is

that when c' = nL' e= is equal to e::. The position of a'o is shown

in Fig.6. 1 and 6.2. In Eqns. t6.91 and [6. 10] there are only tr¿o
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unknowns left,

equat ions.

À,/V and a'
zo

ùo f ind x/V a¡rd c'zo

So they can be obtained by solving the two

In practice, He rûay have more than two

It is found that Egns.t6.9l and [6.10] naice up a non-Iinear eguation

system with unknoç¡ns À,zV and a'o which can not be solved directly. l.Je

can use any approximate nethod to get the roots of this euqation

system, for exarnple using the simple bisection ¡oethod or using more

sophisLicated Ner+ton' s second-order ¡rethod.

Using the above procedure, only two single-stage creep tests a¡e needed.

single-stage tests available. rn this câq€, we may use another

graphical approach to find À,zV and aio. In this approach, we try a

nurnber of assumed values or À,/1'l attd a)o, then see in graph whether the

modelled values of c' vs. ez aîe close to the measured varues. This

graphical approach is more flexible and should be used when only

multi-stage test data are avaitable or the fitting functions are more

complicated than t6.11 - [6.3], He should use this graphic approach.

This will be explained in t,he following Chapten.

6.3 Calculat.ion of Apparent Preconsolidation pressrre

It' is known t,hat the preconsolidation pressure from first Ioading

depends on creep times a¡rd strain rates (Graham et al. 1983, Crawfond

1986, Lerouei I et al . 1985 ) . Apparent preconsol idat ion pressures

nesulted from creep strains due t,o aging ha-s t,he sâme nature âq
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first-loading preconsolidation pressure. Eqn.[6.4] can be used to

calculate the apparent preconsolidation pressure from single-stage

loading creeping or multi-stage loading creeping.

consider a single-stage loading creeping with stress "Ls and time t,

see Fig.6.2. In t,errns of equivalent, time, the f inal creep strain at

point 3' is:

16.11 I .=r,= ":: * | rnf '; s/n)o) . g rr,,to I 
t"si

o

If the specimen is then loaded again, t,he "reloading" trace r¿iII move

elastically to point 4 on the reference tine line. The pressure a'n at

point 4 is the so-called preconsolidation pnessure from aging. Thus

the strain at 4 is:

Í.6.72J "=n = ê23, * f f"tt= +/nLS)

The state point (n'=q,"=+) is on the reference t,ime line wit,h t" = O:

[6.13] e, = r1P * ! rrr(n' ^.rn' )z+ zo Y z4 zo.

Cornbining [ 6. 13 ] and Í,6. 72J us ing [ 6. 11 ] , the apparent preconso I idat ion

pressure resulting from aging under stress øra with creep time t is:

t +t
t6.141 nL3," = nL+ = nLz, 

-o 
- 

-e3' 
¡r!/(\-rc)

o

where t,he equivalent time tua, is found by using the same pnocedure aq

te2, from [6.7] a¡rd t6.81 in the single-stage loading câee.

In the caqe of multi-st,age loading, for example in Fig.5.5 loading from

119



point i-1 (ez,î-I,n'=,i-t) to point i ("=L,cr=r) with a real creep tine t

rrnder stress nLi, the apparent preconsolidation Pressure refenned to

the reference time line is:

[6.ls] oLi,"

The values of

t6.161 '13 
.

Frorn which:

IG.17] tei,,

= n;, i*t = cLí

tei, in [6.15]

f;t"t"=.r";ol +

,'o 
* tei' .,ry'l(À-rc)\-T-'

o

is found from:

t+t
$r"ct') = ez,r-L

o

* f,r"t";, /nL, i-t)

[6.18] t"i, = t *

=t+

= | t.('l, r-r-'lll 
/ot'/v (þ-)*rú (n:,/a,-^)-x/ú - t )-o- 'nL,i-t' zr zo

Lei 
"

, I.(tl, ,-r-""=f,ltott/v rþ-r*tú (r:. /t,_^)-x/ú - ü-o- 'nL,i-t zr zo

Eqn.[6.18]givesageneralrelationshipbetweeneguivalenttuandreal

creep tine t fon single-stage loading or nulti-stage loading'

Eqn. [6.15] with [6.18] is therefore a general equation for calculating

theapparentpreconsolidationpressurefromagingunderanystepwise

Ioading with respect to the reference time line' Fig'6'2'

As mentioned previor.rsly, the apparent preconsolidation Pressure is

defined with respect to the reference tine line. The reference time

line is not unique, but must be chosen by the analyst. Thus, the

apparentpreconsolidationpressureisitselfalsonotunique.
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Pressures determined frorn t6.141 on t6.151 should perhaps be called

"reference" apparent preconsolidation pressures. According to the

basic assumptions used in fornulating the model, instant compression is

excLusively elastic. Howeven, the reference time line is not a line

describing instant, responses, so the true apparent preconsolidation

pressure is the stress that can be applied after aging.

6.4 General a'_ - a'_ - e_ - e_ Relationship for Continuous Loadingzzzz

The preceding sections developed Eqns. t6. 41, [6. 18J using logarithrnic

functions for the case of stepped loading. In this section we wiII

develop a more generaJ. constiLutive equation for continous loading

using the framework in Chapter 5.

According to Eqn.[5.7J in Chapter 5, using Eqn.[6.1] and tG.4], Hê

have:

út/V+ ----.:-t +Loe

. K 1 ..
"==v7ntz

t6. 1sl

According

we find:

to Eqn.t5.5l, in the cese specified by Eqn. [6.4],

[6.20]

Substituting for (to+t.) fnom [6.20] into IG.19]:

(r -"tP)vz,l,
_+t_-t " 

z-zo'--- (a,/a, )-x/'ltoeozzo
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t6.211
. K 1 ..
"==i7n=¿

, -(e -rtP)* J_ . '-z -zo'u'r 
,n, rn, )^/,t,'Vt " z zoo

Eqn. [6.21] provides a general constitutive nodel specified by

logariLhmic functions for continuous reloading. The equation is valid

for p + g, and therefore includes the wide range of natural clays r¿hich

show creep and strain-rate effects throughout their deformation process

(Graham et al. 1983, Mesri a¡rd choi 1984, Kabbaj et al. 1996). The

unloading behavior is aqsumed to be compretely elastic and

time-independent. Eqns. t6.11 and ï,6.2I1 form a general a;-i;-e=-à=

constitutive model that describes the time dependent behaviour of clays

unden continuous one-dimenslonal loading, reloading or unloading.

6.5 Applications of the llodel

This sect,ion develops the general equation t6.211 into applications for
particular strain and stress conditions.

6.5.1 Creep

The condition for creep in [6.21] is when the effective ventical stress

is constant (å = O):z

16.22l L= = h "*oi -{e=-t"p)vtúl(aLtalor^'f
o

Integrating this equation with the initial conditions tz = ezi,
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a'_ = a'_,, t = 0 to produce the strains generated during creep, andz zr'
using the equivalent time t.. inslead of e=. in [6.4] leads to:

t6.23 1 .== ":: * $ rr,tn)t/nlo) . f In[(t * ti" + to),/toJ

This equation ls the same aq t6.41 for stepped loading but it has now

been obtained from t,he model for continuous loading.

6.5.2 Relaxation

In geotechnical testing, relaxation tests are usually done by switching

off the moton drive of the machine and allowing t,he energy stored in

the t,est frame to drive t,he specimen with increasing strain at

decreasing strain rates (Grahan et aI. 1983). However, using the

classical condition å- = 0 (e- = constant), assu¡ning elP = O, t6.211zz'zo
becomes:

16.241 2 n'/n' = -1J-1 (a'/q' )À/Ú 
"*o( -e Y/út)vzzYLzzo'z

o

As before, integrate the equation with initial conditions t.,
I

ZL

- (r-r. )

t6.251 c' = q' tI'-, 
-i' 

+ (a' -/a' )-^/'lt exp(e -V/{t)lzzoKr-zrzo'zr
o

The stress decreases with increasing time (t-t.) from

relaxation. Again using the equivalent tine tiu

16.251 can also be rrritten:

c'- and
ZL

-V/\ 
"*o(e .Y/À,)- 21

the beginning of

instead of Ezi,
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t6. 26l

This equation contains the

combined in the interesting

Mesri and C,odlewski (1977 )

0.08; and (2) K/^ which

mecha¡rics with values about

(À./t<)(t - t.¡ + t. +I Ie o

three nodelling parameters

ratios (1) ú/^, the sâme âc

suggest lies conmonly in the

commonly occurs in Critical

o.t - o.2.

ft=c'.tzzL

t. + tleo ,lt/x
l-I

À, K, and ú

C /C whichøec
range 0.04 -

State soil

Appendix 6.

equivalence

1 presents an alternative

ofe =esP=0.zz

derivation of [6.26] basea on the

6.5.3 Constant rate of strain

The required condit,ion is

constant and integrating

obtained by setting

the general eguation

the strain rate t,erm

[6.21] , assuning elf'zo

z

=0:

16.27 l
(a'

q' = s' ), ,- zo 
rÀ'/rltz zol q'-

Lzl
_ Ol'/v)/Lo 

"r-"=, 
t,,.t-Cll t'r-"zi ) {}l t 

*
.è (ç*tx)

z

1tt/v)/L (-e Yl fÚtx* o 
" =V t

"-(t-*tÐ 
- 

Jz

r.Ihere c'., a_. are the initial conditions. Eqn. [6.27J can be used toZL' ZT

express the effective stress vs. vertical strain relationship in the

cJ.ay for different rates of straining, for example in cRSN tests. If a

test is restarted after a period of unloading, then the lnitial values

724



should be reassigned. Eqn. [6.27J can also be r+nitten:

16.281 e =\Ln(n'.rn') +zYzzo ln-.)\/þ- -(v/v)/to 
"(-e=.Y/lt), xLL e=(I-rc/À,)

v/tt' -(L) (" -' . r f ll J * 
((ttvltto 

1
' K z zr 

;=tr-u^i j

g,"{,,,;"

le
xe

Note that the slope

constant strain rates

examined more closely

of the log(stress)-strain curves for different,

is now slightly. different from À,/V. This wiII be

in a lat,er section.

An alternat ive formulation for CRSN tests is given in Appendix 6.2.

6.5.4 Constant rate of effect,ive stress

The required condition in [6.21] is nol¡ c'= constant,.
z By integration:

[6.29] e =z

-øtÀ-.2
o rntf,

zo
).$ ,"{.

(e.V/tlt)'-zi" '' (n, /a, .¡K/ú qn, ,n, ,(À,-rc)/rlt *zozLzoz

, 
Ú"o 

l-Í'-.-' - (o., . ,n, ,(À'-rc)/{t
è)À-rc+t¡l z zL zr z' ,i

It can be seen from [6.29] and Fig.6.4 t,hat the slope of constant rate

of stress tests in the vEF region is slightly steeper than À,/V. Note

that because the behaviour is non-Iinear, the rate of strainins å= and

t,he rate of stressing å1 can not bot,h be constant at the same ti¡ne butz
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are reLated through t6.211.

6.6 hediction a¡rd Couparison

The 1-D continuous EVP model will now be conpared with published

results from CRSN tests on two natr:ral clays, and results from a

stepped CRSN - relæ<ation test on reconstituted clay.

The model uses only three parameters À, K and V, all of r.¿hich are

relatively easily determined from stepped loading creep test,s. The

methodology for det,ermining the paramet,ers needed by the mod.e] l¡as

presented in Section 6.3. It is commonly found that the slope of the

reference time line (À-line) is close t,o the slope of stepped loading

creep lines with constant duration (Bjerrurn 1967a). Therefone, when

using the method in t,his section, lle can first try the À,/V found from

oedometer tests with constant du¡ation Ioading.

In order to find þ,/Y artd to, at least tr.ro creep tests should last long

enough to pernit reliable determination of the two parameters. This is

probably best done in the nonmally consolidated (EVP) range under the

À-Iine with o{> a'__. Although ry',zV is determined from straining onlyzzc
aft'en primary consolidation has finished, it should be remembered that

the same coefficient, is used for the viscous component associated with

slower straining under the rc-Iine, in non-equilibrated CRSN tests, and

during primary consol idat ion. In this r.ray, it differs f¡rndarnental ly
from the st,rain dependent Co-pararneter used by ì,lesni and his co-workers
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(Mesri and Choi 1985a,b, Mesri and Castro 1987).

6. 6. 1 l,lodel l ing of Backebol clay

Sällfors (1975) presented bdSL and CRSN tests on soft high-plastic clay

from BäckeboL, Sweden. Basic classification information for the clay

is given in Table 6. L. The rates used in the t,ests ranged. from sxl-o-7
-F -1to i..67x10 - s'. From comparable test results, it is estimated that

"l3 = O, À./Y = O.4LO, rc,/Y = O. O1O, ald Vr/V = O.0205. The resulting

ratio rc/À, = o.o244 is low but not totai.Iy unexpected for a highly

sensitive clay. The value lt/^ = 0.050 is in the range proposed by Mesri

and choi (1985a). A value of 600 s is found for to and this give= o)o

= 81 kPa. The initial values in the CRSN tests were nLi = LO kpa, azi=

o.25 %. Fig.6.4 shows the À-1ine and rc-Iine interpreted from MSL

tests, and the curve obtained from [6.29] when the rate of effective

stress applications is 1x1o-3 kPa/sec. The vaLues of rc,À and ry' were

then used in [6.27] to modeL CRSN tests run at strain rates of
-^ -1 -R -1 -7 -17.5x10 - s ', 2.ox1o-" s-' and s.0x1o ' =-t respectiveì.y. The results

are shown at logarithmic scale in Fig.6.5a and at arithmetic scale in
Fig.6.5b. The calculated curves are in good agreement with the

experimental data shov¡n in the Figures.

The distance between the CRSN lines in Fig.6.s is quite sensitive to

the magnitude of the creep coefficient,tt Iargen ry'-values produce

wider separations between the various strain rate lines. Even though

the value of rþ/À. = 0.05 is well within the range proposed by Mesri et
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Choi (1985b), the separations predicted by the rnodel are rather smaller

than the meacured ones. l.Ihen ty'lV = 0.0205 = 0.05À./V, a tenfold change
.-a-1-E-1

in c from 10 " sec^ to 10 " sec causes v.2% chanee in c' al e =-z-- z z

5%. llhen //V is increased to O.O287 = O.O7À,/Y, the corresponding change

in a) is 17.5%. That is, increasing ry' increaqes the variability of a'

v¡ith å-. Reasonable values of the paramsls¡ ,tt therefore produce
z

simi lar est imates of the depend.ency of nL" on år, âq the empiricaJ-

parameter r¡0.1 proposed by Grahan et aL. (1383).

Table 6.1 Properties of Clays

Fig.6.6 shows that 16.271 can also be used to find the relationship

between effective stresses and strain rates at selected strain leveIs.

The faster the strain rale, the higher will be the stress reached at a

given strain. The predicted and mea.ured results in Fig.6.6 are in

fair agreement although once again t,he strain rate dependency was

underpnedicted by the ry'-value determined from STD tests.

The EVP model also permits calculation

preconsolidation pnessure on strain rate.

of the dependency

In sensitive clays,

of

it

Clays Depth
(m) l.I (%) Hr (%) wfl)p r (%)

p
5,

f,

azc

(kPa)

UI ay
Content

(%)

Bäckebol Clay 7 t02 99 34 65 25 72 70

Batiscan Clay 7.3 7S.6 43 22 2t 125 88 81

Reconst ituted
I I I ite 51 61 ¿ô 35 70 61
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appea-rs reâqonable (Gratra¡n et aI . 1988) to assume that preconsolidat,ion

pressures are reached at about constant st,rain "= through t,he

intersections bet,ween the ¡<-Iine and the À-line fon different, strain

rates. The finding by Lenoueil et al. (1985) of a normalized effective

stress (a'-/a'-^)- strain (e-) relationship fro¡o CRSN test,s supports thiszzcz
assumption. The value of e] at the ¡<-À intersection can be found fromz

16. 1l , [6.2] :

*
[6.30] e =z In(a' /a' .) - e .lzo zL zl

*
For Bäckebol c1ay, .== 2.40 % a¡rd this produces the prediction for the

dependency of preconsolidation pressure on strain rat,e shown in

Fig.6.7. Once again, the model tends to underpredict, the dependency.

Graha¡n et al. (1983) also showed high strain rate dependencies in

sensitive clays.

6.6.2 l{odelling of Batiscan clay

Leroueil et aI. (1985) presented creep and CRSN tests on Batiscan clay

(Tab1e 6.1). Published results have again been used to determine À./Y =

0.55, nLo= 128 kPa; rc/Y = O.O2; and to = 6Os Vt/V = O.O22 for the EVP

model, that is t</À. = 0.0364, tþ/x = 0.04. At strains larger than 16%,

the c',8 -relalionship becomes curved and the K,À and ,lt parametersz'z
change. The published data show initial conditions ø'. = 68.4 kpa, ezi

= O. Using these values in 16-271 produces the stress-strain rate

relations shown in Fig.6.8. The predicted curves agree well r¿ith the

l.K

- 

t_
À-rc 'V

132



o
o-
i<

I

.O
INo

t?o

ilo

roo

90

80

70

ÞU

8ÄcKEBoL cLAY

PR EDICTED

O MEASURED

too 200

SCALE

Fate relationship for

ro 20 50
at

€rxlO'S'-LOG

Fig.6.7 Pneconsolidat,ion pressure - strain
Bäckebot ctay (Sältfors lgZS)

133



o
o-

I

INo

r80

r60

r40

120

roo

80

BATISCAN CLAY

PREDICTE D

o

+

_a _ErdÞ ro-3

LOG SC AL E

to8 to
a 

-t€zs
ro-a

Fig.6.8 Stress-strain nate relationships
(Batiscan clay: Leroueil et al.

at different strains
198s)

134



test dat,a

Eqn. [6.27]

pressure -

but again underpredict the dependency on strain rate.

has also been used to calculate the preconsolidation

strain rate relationship shown in Fig.6.g.

6.6.3 Dlodelling of reconstit¡¡Led iltite

Specimens 256 nn dianeter a¡rd 2OO mm high Here first prepared fron

slr:rry (Table 6.1) by one-dimensional consolidation to a= = TO kpa

(Graham and Lau 1988). These were then cut into oed.ometen specimens 76

mm diameter 20 run high and tested using 200 kPa back pnessu¡e to ensure

saturation. The specimens Here first cor¡solidated to a) = ZOO kpa

using a load increment ratio = 1.0 and increment durations of 24 hours.

The 200 kPa stress l.ras held for four days and then the specimens were

unroaded to 2.4 kPa in four increments each Ia-sting one day. This

produced unloaded specinens r¿ith a known preconsolidation pressure.

Fig.6. 10 shows results fron one of these specimens run in a

strain-controlled test in which the strain rate r+as changed at several

stages during t,he t,est. At 24.6% strain, the machine drive was

switched off to allow relaxation. As mentioned earlier, this does not

produce the classic condition for relæ<ation because energy is fed into

the specimen and some fr:rther straining occurs, in this case, an

additional 0.3%.

The stepped loading portions of the test

600s, lt/V - 0.004; \/Y= O.tO, n'=o = 47 l<Pa,
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= 0.04. These ratios indicate

than either of the two highly

sect ions.

that the clay is a much more normal clay

sensitive clays descnibed in preceding

In t'he CRSN portion of the test, the initial varues lrere ezi = g.42%,

"Li = 22.8 kPa. Using these parameters in 16.27l produces the

predicted stress-strain curves shorsn in Fig.6. 10. I.Ihen the strain rate

is changed, the strain and stress at this point are used ae inltial
values fon the following section of the calculations. The calculated

curve is in good agreement with the test data.

Fig.6. 11 shows resuLts calculat,ed using [6.25] for the relaxation

portion of the test. The neasr:red stresses decreaqed more rapidty with

time t,han the calcul.ated values. However, since the specimens

experienced some addit,ional straining drring this period,, (as opposed

to t'he constant strain assr:-urption used in the analysis), the agreement,

is pronising.

6.7 Discussion and Conclusions

standard oedometer tests are easy to run and allow relatively easy

determination of the parameters À, rc and ry'. However natural stnains

(not engineering strains) ray need to be r:sed for plotting the data if
large compressions al'e encotrntered and the normal consolidation line

is slightly curved (Graharn et al. 1982).
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Oedometer tests (and especially CRSN tests) are not ideal for finding

effective stress relationships. The effective stresses are not

measured directly, but must be evaluated on the ba-sis of assumptions in

each cãqe. In MSL tests lt is aqsumed that after Eop no excess

porer+ater pressures exist in the specinen. In CRSN tests it is common

to assurne a parabolic porewat,er presstrre distribution in the specimen

provided the strain rat,e is not excessive. It is also conmon to ignore

the effects of different stiffnesses âc the preconsoì.idation front

moves through the specimen with time (l.Ialker and Raymond 1968).

In this Chapter three logarithmic functions have been used to fit test

data. If the clay shows linearly ela.stic behaviour before yielding

(Graham et al. 1988) then the rc parameter nay be only an approximation

of the true behavior:r. Sini lar1y, the ry'-parameter requires

linearization of the creep data in log (time) and of course this only

corresponds to attenuating primary creep. In some soils, À-parameter

is not a constant. However, once the three parameters have been

determined, the model calr then be used to predict the nesult,s that

r¿ou1d be obtained from other types of tests.

The equations used in the model do not depend on the transient

conditions of porewater pressure dissipation but instead deal with

time-dependent hardening of the clay skeJ.eton. The model can therefone

be appl ied in princ iple to other rnaterials such a-s ice, and frozen

soils and provided the hardening laws t6.11, [6.2] and t6.31 can be

defined for elastic hardening, for tine-independent, plastic hardening

and for time-dependent plastic hardening. The model can also be
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developed for isot,nopic consolidation and the prediction of tines of

consoL idat ion.

The model agrees well with test results fron reconstitut,ed illite but

tends to underestinate the influence of time-effect,s and strain rate

effects in the tr¡o sensitive clays that have been examined. Graham et

al. (1983) report large changes in und¡ained shear strength and

preconsolidation pressure with changes in strain rate. This wilI

require careful selection of model pan'ameters or even selection of

different functions to fit elastic, elastic-plastic (reference time

Iine) and time-dependent behavior more accurately. Chapten 7 wilI

present solutions developed using power functions for fitting

experiment,al data.
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Chapter 7

l-D EVP IIODF'J T I}¡G USII{G PC}I{ER FUI{CTIONS

T.L Specified 1-D EV? ìlodel

Chapter 6 developed a 1-D EVP model using logarithmic relationships

with rc, À, *d {,, Fig.7.1a. l.Jhile these relationships are reaqonable

approximations for the behavior of nany clays, there are other c]ays,

particularly postglacial clays with high sensitivity, for which they

are unsuitable, Fig.7.1b. Overconsolidated compression is oft,en linear

in c',e--space, not In(øl),e--space. Norna1Iy consolidated behavior ofZ' z ' z"-z -'
natural clays is freguently curved, not straight in In(cri),ez-space.

secondary consolidation (creep) is often curved in In(time),e=-space

and the parameter ry' depends on time and vertical effective stress.

Ïn this Chapter three power functions are used to fit (a) the insta¡rt

elastic Iine, (b) the reference time 1ine, and (c) creep strains.

using the framework in chapter 5, a 1-D EVp model is developed and used

to predict the time dependent behavior of Batiscan clay and lJinnipeg

clay. An improved prediction for Batiscan clay is obtained fron this

mode I .

Fig.7.2 and 7.3 show data obtained by Leroueil et aI. (1985) from long

duration constant stress tests on sensitive Champlain Sea clay from

Batisca¡¡, 100 km west of Québec City. The pnocedure involves finding
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the three functions ft, fep and ftp in Eqns.ts.2l, Is.3], and Is.4l

that best fit the experimental data in Figs.7.2 and 7.3 in the required

range of stresses and time. The following functions have been trsed.

Remember however that the rnodel framework in Chapter 5 is general and

any suitable functions can be used.

( 1). For t,he elastic line:

n.
l7.tj et = fe = a. + a^(d/a, + c, /a,) I

zI¿ztJzoeu'

where øl_ is unit stress which rnakes the equation dinensionless.u

Q). For t,he elastic p1a-stic line, the reference time line with t^ = 0

is:

n^
17.21 "tP = feP = b. [1 - (ø' /s') ¿of

zolozoz

and r¿hen with t_ = co in the limiting câqe:
e

t7.31 .lo = ,io = b1@[1 - (a=./a))t2']

(3). For the viscous plastic strain vs. time:

tn_
17.41 'lP = ftP = (r:o - reP)ll - (fl -r

zûo"o

l.lhen the equivalent t" in 17.41 is inf inite, the limit of creep

strains is (reP - reP).
o

Using Eqns. Í7.21,Í,7.4) in Eqn. t5.51, the general equation for stepped
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loading is:

n^tn^
t7.sl .== brol,t - G=ota)) ¿ol * (f:p - tioltl - (I-l) 3l

eo

Using Eqns. t7.11 ,17.4J in Eqn. t5.71, we have:

n- -1 n^ t n-+1
t7.61 ; = a^n. (c'/c,-c' /cl )L n'ln' + (fep - leP) .l t-ll'z ¿l z u zoe u z v cr¡ o I' t,+toeo

From [7.5]:

t e -ftP r/n^
l7.7l j-= (1 - z o ) t

E +f, ^ep ^epe o r - -rcr! O

Using 1,7.71 in [7.6], the l-D EVP model for Batiscan clay is:

c' c' n.-1 å' n^ e -feP (n^+l),/n^
tz.8l å =.^rr.(:- 3, "l' :+ (feP-fepljtr- z o )r 3

z ¿ L c' ta t, cfr o 
"o feP_fuPcoO

7.2 lþtermination of ]lodel Para.æters

As mentioned in Section 6.3 of Chapten 6, when the fitting functions

are complicated or there are more test data than strictly required for

solving modeL parameters, graphical approaches are mone practical and

s impIe.

The basic principle of the graphical approach for determining the model

parameters is:

1.47



(a)

(b)

(c)

Assume values of the paramls¡s ba.sed on pnevious experience;

Then use the model to fit all the available creep test data;

If the calculated curves from the nodel are in a good vlsual

agreernent wlth these creep test data, then the parameter values

that have been aqsu¡ned are acceptable.

using this graphical approach, we first can determine the instant

elastic line in Fig.7.2. using the information fron reloading data.

The values of a'a,,c;oe,n1 are given in Table 7. 1.

Table 7. 1 Parareters fon Eqns. t7. 1l , L7.21, [7.3] and [2.4] , Bat isca¡r
Clay (Lenoueil et aI. 1985) and lJinnipeg CIay (Au 19g2)

Bat isca¡r l.Iinnipeg Batiscan l.Jinnipeg

uI
uz

cr, (kPa)

a' (kPa)
zoe

t1
bi.o

t' (kPa)
zo

-0.60
o.42

1.0

100.0

0.07

o.262

11S. 3

4.10
0.0326

1.0

50.0

0.235

s.50

289.0

J.b

o.2a4
(kPa) 72.3

2.9
(hours) 1.0

o.27

n
¿̂o

b,
l-6

C,zû
n

¿̂@

t,
o

t3

0.0240

5.54

190.0

o.0220

1.0

0. 28

To determine the paramet,ers in Eqns .1,7 .21, [7.3], ÍT.41, we have to f irst
guess t,he parameters in t7.21 and t7.31, since Eqn. [2.¿] contains all
panameters. From experience, t,he shapes of [7.2] a¡td tZ.3] are similar

to the shape of the t,ime Iine r¿ith constant long dr:rations from

singJ.e-stage creep tests or multi-stage creep tests (BJerrum 1967a).
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Their shapes are different fron the tirne line with short creep

durations. In fact, the time line r¿ith infinite creep dr:¡ation is the

Eqn. [7.3] r.iith t. = co, independent of whet,her singLe-stage creep tests

or multi-stage creep tests a¡e used.

For Batiscan clay, b1o = 0.262, nLo= 119.3 kPa, r2o = 3.6; O1_ =

0.284, nL_= 72.3 I<Pa, r',o = 2.9 have been chosen, so that the shapes

of Eqns.l7.zl a¡rd t7.31 are similar to the shape of time line of 64 day

duration in Fig.7.2. Then to = 1.0 hour, n, = O.27 were selected in

Eqn.l7.4J to fit the instant point from [7.1] and creep test data after

primary comsol idat ion.

For example,

nL = tog kPa,

elastic strain

to fit the creep data under a single-stage Ioading

using the parameter values in Tab1e 7.1, the inst,ant

is, fron [7.I]z

t7.91 e! = -0.6 + 0.42(1os + 1oo)0'07 = 0.01046z

The strain at t_ = 0, from [7.2]:ô

t7. 10 I rlo

The strain at t = co, from [7.3]:

= f:p = o.262t1 - ( ttg.3/rog)3'61 = -0. 1006o

17.7Ll tlp = feP = O.284[t - (72.3/IOg)2'9] = O. 1976z@

So the linit of creep

17.721 ttP - feP = o.coo

strain at ø' = 721 kPa is:z

1976 -(-0.1006) = 0.2982

1.49



The relation between equivaJ.ent t. and real du¡ation time t can be

found as follov¡s. The equivarent time t"i at the instant point with

tzi = rl = O.01046 from [7.9] is, fron Eqn. t7.61

t7.131 o.01046 = -e.1006 + o.zs}zf l - (E .1; i)o-271e1

from which:

17.14) t =EI

The equivalent

0.01046+0. 1006 -t/o.27
1 -1 = 4.616 (hour)lr -

time t

o.2982

is:

t7. 1sl

e

= 4.616 + t
e

Therefore the equation for fiting the creep test data is, from [z.s]:

t7. 16 7 "= = -e. 1006 + o.zslz f r- t4g5-j-¡¡)o'27l

For example when t = 1G0o hours, the st,rain is o.1szo. The strains at

1 day, 8 days and 64 days are o.ozg1s, 0.1261, o.1s6s respectively.

The curve fitting done on this basis is shor.rn in Figs.7.2 and,7.3.

Using the same procedure, lre can fit creep test,s for effective vertical
stresses 90 kPa, gg kpa, tzt kpa, 133 kpa, 13S kpa and 151 kpa.

Flg.7.2 shows the ovenall fitt,ings fon creep durations 1 day, g days

and 64 days respectively. Fig.7.3 shows the typical cr:¡ve fittings fon

stress 109 kPA, 121 kPa and 133 kpa. It is seen from the two figures

that good agreement has been obtained., and so the curve fitting
parametes shor+n in Table 7.1 can be used in the general. model.
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7.3 Validation of the l-D EVP Hodel

As pointed out in previous Chapters, the validation of a constitutive

modeL should be examined using the test data which was not used in

calibrating the model. In this section, having calibrated the model

from single-stage loading creep tests, Hê wiII use it to conpare

predicted and meaqured values from CRSN tests on Batiscan clay and from

a sLep-changed constant Rate of strain (CRSN) test on Llinnipeg clay.

7.3.7 Predict,ion of CR.SN tests on Batisca¡r cl4y

Calibration parameters for the general EVP rnodel in Eqn.t7.8l are shown

in Table 7. L for Batiscan clay. What now nust be done is to examine

whether the model based on creep loading data wiJ.I predict results from

other types of 1-D test and therefore by implication, field
performance.

Figs.7.4 and 7.5 show resurts from CRSN tests on Batiscan clay

( Leroue i 1 et al . 1985 ) . In Fig.7 . 4, predicted values of the

e-,4'-relationship are compared with experimental values for th¡eez'z
different strain rates. The analyses used initial values azi = O.OOL,

c'-, = 67 kPa. The agreement is good. Fig.7.5 shows the meastred valuesZI

of ø1 t+hich produced vertical strains of 5%, 10% and 15% for differentz'
straining rates. The Figure also shor¿s values predicted by the ear-Lier

logarithmic modelling (Yin and Graha¡n 1989a) in chapter 6 and by the

151



ñ
I

N
\IJ

40 80

Fig,.7.4 Predict ion of ø' , e

- CRSN (Batiscan
-behavior forz

clay: Leroueil
different strain rat-es

et al. 1985)

tzru-

q'
t60

- kPo

200 240

ã.¿MEASURED a

2 
-c-l-z v

1.43 x lO

2.13 x lO

l.07 xlO

PREDICTED

BATISCAN CLAY
(LEROUEIL ET AL. I985)

152



tBo

r60
o
o-5 r4o

I

-¡N

o t20

too

80

BATISCAN CLAY
(LEROUEIL ET AL. I985)

€ z=5 "/"

AUTHOR. A

15"/"

YIN AND GRAHAM 1989a

ro-I to7 10 6 lo-5 lo-4

STRAIN RATE-SI

Fig.7.5 Prediction oî c',er-behavior for different strains - CRSN

(Batiscan clay: Leroueil et al. 1985)

153



new modelling represented by

fon this clay is noticeably

modeì.1ing in this Chapter

experimental results compared

Chapter 6.

Eqn. t7.81. The e=,Iog(a' )-relationship

non-linear and thus the new power-law

produces improved agneement r¡ith the

vith the logarithrnic nodelling shown in

7.3.2 I'lodelling of the coefficient of seeondary consolidation C

The conventional secondary consolidation coefficient

terms of real duration time (Graham et aI. 1983):

ee

is defined in

17.r71 C = detP.zdtoe(t)gE,z-

It is found that Co" varys with vertical effective stresses and

duration times (Gnahan et aL. 1983, clausen et aI. 1984), see Figs.z.6

and 7.7. To calculate creep strains, we have to chose a proper value

of c , depending on the stress range and the time range (Mesri andgE'

Choi 1985a, b).

In the L-D EVP model specified in Eqn.l7.4l, the equivalent time t" is

used to calcuLate attenuating creep strains over the fult range of

stresses incLuding overconsolidated range and normally consolidated

range. The para-neters used for specifying the cneep behavior are

constant, not tike c&e. Acconding to Eqn.[7.4], the larger the

equivalent tirnes, the smallen wlII be the creep rates. The general

euqation can be used to explain why cn" is s¡naller in the

overconsol idated range even t,hough t,he irùrerent creep behavior
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Parameters remain constant.

using Eqns.t7.5l and [7.1], the equivalent time t.. on the elastic line

can be calculated from:

[2.18] ,:o * (r:e - ,3oll1 - (i-+T)'31 = r'
eI 0

from which:

fu - ftP -L/n^
t7.191 t.=l [t- o ] 3-t

el o ^ep ^eÞ or - -1rfr o

We know that t_ = | + t^.. So Eqn. t7. J can be r+ritten:eel

l7.zol "lp = ftP = (reP - rlpl ¡, - ¡.-,lg , it 1' -z co o * 't +t .+t'eI 0

According to the definition of C-_ in 17.I7l:
c¿e

de de
17.21 C = ,, z, . = 2-3o3 L z

' -s.a dlogTE) - G'uvr " Af-

Then, differentiating Eqn. [7.20], from Eqn. [7.21]:

t7.zzl co, = 2.303 ', t- (r'p - r:p) r-þit.t
oel 0

It can be seen from t7.221 tt¡at cn" depends on stresses and times.

using the parameter values for Batiscan clay again in Table 7.1,

Eqn.[7.22] can then be used to calculate the conventional secondary

consolidation coefficient Cæ. Fig.7.6 shows the caLculated curves

fon 1 day, 10 days and 100 days from Í7.221 and the mea-sured values for
l day and 10 days. A r+ritten Discussion ha-s been received. fnom Mesri
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( 1990 ) on this topic. It r¿i I1 be int,eresting to see whether Mesri

(Mesri and choi 1985a,b), vrho has identified the stress-dependency of

CoE, has aLso identified time-dependency.

7-3-3 Prediction of a step-changed CRSN test on llinnipeg cray

The 1-D EVP model in Eqn.17.8l is also calibrated using creep test data

on ltinnipeg clay. The values of nodel parameters are Iisted in

Tab1e 7.L. Fig.7.8 shows data meaqured frorn tlinnipeg clay (eu 1gB2)

using step-changed strain rates between 1.3x10-7 s-1 and 1.3x10-6 s-1.

Values predicted using initial values tzi= 0.0026 and ø=, = 63.7 kpa

are in good agreement with the rneasured results.

7.4. Discussion and Conclusions

At finst sight, 1-D oedoneter tesLing is sinple. In the cornmor¡ MSL

tests, a load is applied, held consta¡rt untit the induced porer+ater

pressures dissipate, and then another load is added. This procedr:re

clearly arose from the important early emphasis on hydnodynamic

consolidation. More recently however it ha-s become clea¡- that clay

behavior:r depends quite strongly on strain rate. Thus, MSL tests in
which strain rates vary continuousLy dru-ing a loading increment, give

only an approximate, empirical indication of the behaviour of the clay

unless careful attention is also given to seconda¡-y consolidation.
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That has been done in this chapten, by wr-iting functional expressions
for elactic, erastic-prastic, and time-dep,end.ent compression, a¡d by
giving careful attention to defining the time-scale for time-dependent
compression, it has been possible to r+rite a general 1-D constitutive
equation that can moder a wide variety of test types.
Figs' 7 ' 4,7 '5,7.6,7.8 show t,hat good agreernent ca¡r be obtained betr¿een

predicted and observed results for tests different fron those used to
form the model' The Figures show that successful agreement has been

obtained for two very different types of c1ay, one a highiy sensitive
postplacial marine clay from Eastern ca¡¡ada a¡rd the second a pnoglacial
Iacustrine pÌastic clay from l.Iestern Ca¡rada.

Perhaps the most irnpontant finding is the nathematical fnamework for
understanding the second.ary consolidation coefficient co". Bjerrum
(1967) showed that creep settrements of field structu¡es depend

strongly on the relationship between ai and øi.. settlement rates wene

slow when nL , nL", and higher when c, , nL". Fig.7.6 shows that C--
is not constant but depends on stress 1eve1 and. stress duration.

.T
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Chapter I

3.D ELÀSTIC VISCO-PLASTIC (EVP) }IODF"JTING

8.1 Fonsulation of 3-D EVP llodels

chapters 3,4 developed hypoelasticity models for time independent,

stress-strain behavior of soils. Chapters 5,6,7 presented elastic

visco-plastic models for ùime-dependent stress-strain behavior in 1-D

straining (1-D EVP). AIl these nodels are applicable under certain

restricted conditions. It is known that the stress-strain

relationships of clays and frozen soils are time-dependent. In the

fie1d, the stress states are more complicated, usually in general three

dimensional states where ni * a) * a'r. This Chapter will develop a

constitutive model that can account for time and strain rate effects in

general stress conditions.

As seen in Eqns.t5.7l,[6.21] and t7.81, the vertical strain rate in 1-D

straining was earlier divided into aJr elastic strain nate and a

visco-plastic strain rate. It is neaconable to generalize this and to

assume that in 3-D stress states, the strain rates (å. .) consist of
1J

elastic strain rates råf,t and visco-pla-stic strain rates råYlllJ - -i.j'
(Perzyna 1963, 1966):

18.11 å.. = åÎ. * åYllJ IJ ]J
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An elastic constitutive law is needed to calculate the elastic strain
rates. In general, the framework of hypoelastic models in chapten 3

may be used. In simple cases, the time-independent behavior can be

assumed to be isotropic elasticity. Thus, elastic strain rates are:

18.2t 'T¡ = t(åR - h)ur¡un, * fato.na.jl*ðirð.ç)låLr

The visco-plastic strain rates are considered to foLlow the flow rule:

18.31 ;Yl=sg--ii - arij

where s is a, scaling function which controls the magnitude of
visco-plastic strain rates, and S = O. The F in tg.3l is the

visco-plastic potential function. The partial differentiation ôF/ôol .

controls the direction of visco-plastic strain rates, see Fig.g.1. It
is found that the flow rule in t8.31 for calculating visco_plastic

strain rates is similar to the flow rule for plastic strain increments

in elastic plastic theory, see Appendix g.2. The geometry represented.

by function F in stress space is called the flow surface which can go

forwards and backwards, see Figs.8.i. and g.2. It is seen that the flow
surface is different from a yield surface which can go onJ.y forwards in
strain hardening and nay go backr+ards in strain softening. perzyna

(1963) proved that the flow surface must convex.

The flow surface F may be assumed to be elJ.iptic, see Figs.g. r.,g.2:

tg.4l F = p,, -o;0, * qznÊ = o

As mentioned in Chapter 3, mean stress p' = ,kk, the general deviator
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stress q in t8.41 is q = (3J2)t/2 - (3 
=r¡ar¡ )t/2, where srj = ,i¡

1

ã or.tði¡' The p' in t8.41 is a stress parameter on the meam stress,

p' , coordinate axis, (Fig.8. 1) that ',scaÌes,, the various f low

surfaces. .

The strength envelope can then be defined ac the line on which the

strain rate vector directions are in the direction of deviator stress,

g, coordinate axis. That is, where ôF/ôp, = O, visco-plastic shear

strain nate åIp =r co, see Figs.8.1,8.2. This definition is similar toS

the definition of the Critical State Line (Roscoe and Burland, 1968,

l.Iroth and Houlsby 1985). From [8.4]:

t8.sl g. = 2Þ' - Þ'dp' ^ ^m

from which the mean stress at failure:

t B. 6l pç = V^tZ

The equation of strength envelope in p',q-space is, from [g.4], using

[8.6]:

t8.71 r, = øltvr' = ,? = ,ê

whene M represents the strength envelope. A new technique is developed.

to generalize the flow surface Eqn.[8.4J and the stnength envelope

Eqn. [8.7J in p',q-space into expressions for general three dimensiona]

stress states. It is assumed that the strength envelope in general

stress states is expressed as:

[8.8a]
,P

¿CrI= "_(1+Bsin3o)m
t (1 *F)*

where parameter g is the Lode angle, defined as (HiIL 1gE0):
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t8.8bl sin3e =+ J3/J'/2

11
whene Jz= à =rjtr.,t J3 = å Sijsjtsti (HitI lsso). The

a parameten which controls the shape of the strength

planes (constant p' ), see Fig.8.3. The pararneter p ln

obtained as follows. I{hen Lode angle e = +30o, ?f must

denoting the triaxial compression (TC) strength of the

-3Oo, ?f must be egual to M" denoting the triaxial

strength, see Fig.8.3. Thus, fron Eqn. [8.8a]:

[8.ea] ,?= 4 (r+6¡'=¡Ft (1 *F)t c

The Eqn. t8.9bl is used to find p in [8.8i:

(t4 /t4 )2/^ - t
18. 1ol I = t " =,, * (""rr")tr^

I'Je know:

m in [8.8a] is

envelope on Í.

[8.8a] can be

be equal to M"

soil, when g =

extension (TE)

=ìfe

[8.11a] M =c

[8.11b] M" =

where ó' and'c
respect ive1y.

a modification

The modified

65in@'

=._--...-rJ - 5rn9-

65in{'
il-ninq

þ¿ are fricLion angles in compression and extension

The strength envelope described by Eqns.tS.Zl-t8.111 is

of the Mohr-Coulonb strength envelope, see Figs.8.2,9.3.

strength envelope has definition at corners of the
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Mohr-Coulomb strength envelope in Fig.8.3. In Figs.B.2,g.3, Cå = Cå =

20.670, M. = 0.8, M. = 0.6316. It is seen in Fig.g.3a,b that when

shape parameten m = 0.5, the strength envelope on n-plane is concave,

when m = 10, the strength envelope is convex. The shape of the

stnength envelope therefore depends also on m as l¡el.L as M" and M". In

elastic-plastic theony, the shape of the strength envelope and the

yield surface should be convex on n-p1ane (HiII lgSO). The parameter M

in Eqn.t8.41 can be obtained from Eqns.[8.8a] a¡rd tB.Zl. As shown in

Fig.8.2, if M. * M., the flow surface is not symrnetric about the

p'-axis in p' , q-space.

Eqns.t8.1l-[8.4] form a genenal 3-D elastic visco-plastic model (EVp

model) for any stress or strain conditions. Under trixial stress

states, q = ø1 - 13, p' = (ri + 2rä)/3. Using t8.41, ôF/ôp' - Zp,

pl, ôF/ôq = ZqlV?, the constitutive relationship for triaxial stress

states is, from [8.1] and t8.31, see Fig.8.1:

[8. 72]
(2p' - p')- -m

zqtf

e+

.e
t+

S[=

4l:From [8.

[8. 13]

and so,

[8. 13].

if a state point (p' , q) is knor+n, p, can be calculated from

2,q?- )p'lf
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4.2 Scaling l{ethods

The scaling functions in Eqns.t8.3l a¡d [8.12] control the magnitude of

visco-pla-stic st,rain rates. This scaling function is similar to the

scale factor in elastic-plastic models, which controls the magnitude of

incremental plastic strains, see Appendix 8.2. In this section, He

will introduce three methods for deternining the scaling functions in

the elastic visco-plastic model.

A.z.L General ni-fi-errr-e, relationship in isotropic stressing

The scaling function is related to a general constitutive equation for

isotropic stressing. l.Je will extend the work of 1-D EVp models in

Chapters 5,6,7 for l-D straining to for¡nulate a general n*-n*-e,.r-å,r,

relationship for isotropic stressing.

It, is assumed that in isotropic stress states, the totat volumetric

strain is devided into three component,s:

tg.14l , =," *,=P * 
"tPvm vm vm vm

rvhere recoverable instaneous elastic strains can be found from

reloading on unloading tests, see Fig.8.1:

t8.151 ee = fe(p')vm -m

The elastic-plastic strain is (on the reference time line in Fig.8.1)

is given by:
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18.161 eeP = rt + esp = feP(p')vm vn vItr -m

The time-dependent plastic strain is:

lB. 171 rtP = ftP(t . p' )vm e'- n

where t is eguivalent time as defined in chapter 5. Fnom [8.14] to

t8. 171, the equation for isotropic stepped loading is:

[8.18] e = feP(p') + rtP(t ,p')vm - m e-'m

In the same way as in 1-D EVP inodels, the equation for continuous

loading is:

.^e -^tpÕr.[8.19] e = (it.)p' + 3vm oD' -m dE'm e

Substituting t from [8.18] into [8.19], we can obtain a general
e

pl-p|-e.--å.- reLationship for isotropic stressing.'o ^o v v

For example, if we use logarithinic functions:

t8.2ol fe = ee * 5 t.r(o' )vmo v 'm

-Dt
ls.21.l r"P = rtP * I r"r-* Ivmo , pro

lg.z2l "LP = 9 trr,'"]'o,vmuao

where the parameter= rTrno, t</Y; r;lo, pro, À./Y; and to, ,lt/V can be

determined using isotropic creep tests with the same nethods as for 1-D

EVP nodels in Chapters 5,6,7. Using Eqns. [8.18], [8.19] with
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[8.2O]-[8.22], we have:

[8.23]

whene "t* is from Ig.20],VM

Eqn.[8.23] is a p -i -r -;-m'n vm

multi-stage, singLe-stage

logarithmic funct ions.

and according

relat ionshio
VM

or continous

to [8. 16], rlf = fep - fe.-vm
for any isotropic stressing,

loading specified by using

.Kç=--vm V o;'o; * # "o

-(e -evm " -r=P)v,r¿vm vm

4.2.2 I'lethod 1

Determining the scaling fu¡rctions needs the use of an evolution law and

a consistency condition in the sane lray as determining the scale factor
in elastic-plastic models, see Appendix g.2. The evolution Law and

consistency condition have to relate in some way the visco-plastic
strain rates at any state point to the rates in isotropic stressing,

see Fig.8. L.

The evolution law in Method 1 is that the rates of visco-plastic
volumetric strain on the flow surface is kept constant. This means

that the rates åtP at any state points are equar to ,;l "" the mean

stress p', axis. This law is similar to the strain hardening law in
the modified cam-cJ.ay model in which the ptastic voLumetric strain is
kept constant, see Appendix g.2. From Eqn. Ig.23], using Ig.21]:
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rs.z4l ;'p = J_ "-(e,rn-ee*-tlfllvz,l,vm vt
(J

- vl ^-(et'*-eeflolvz'¿ ,P^,xl,pvt- = t;;-J
o .-mo

The visco-plastic volumetric strain rate at any point is, from Ig.12]

t8.2sf ;;o=s(2p'-p;)

Using the evolution law and S = 0, the scaling function is:

LB.z6l s = ú.-(',r*-'Tlolu'ú tþ )^/ú tlzp,- n,nl = ooPmor^

where pm is found from Eqn. [9.13] for any state point using the

consistency condition that the current point must be kept on the flow
surface. Th" ",.* in [8.26] ca¡ be obtained by solving Eqn.[g.27]:

ts.zrl è,r,n = io;ro;. #"-(""*-'Ïlolvt'¡ cLlÀ/ú
o -mo

This procedure for determining the scaling function is quite
complicated, and, to simplify this procedure, ev can be used instead of
.,r,n in [8.26] to avoid solving the diferential equation lg.2TJ. The

scaling function S is then:

ts.2sl s = ü "-(e,r-e'polu'ú rþ )\/ú tlzp,- p;l
oPmor¡

By comparing [S.23] with [9.t2], we have:

t8.2er ;; = i o;ro; = Ç n' h,

where we can use p' instead of p;. This involves assuming that the
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time-independent behavior is isotropic elasticity. using this
assumption, Eqn. [8.20] can be r+riten aq:

t8.3ol et ="" e K- 'vm ,, =.rro + O In(R,)

The 3-D EVP model for triaxiat stress states is then:

where the elastic shear mod.ulus G is estimated from unloading,/reloading

shear tests.

8.2.3 l{et.hod 2

This method considers the difference in the eLastic strain and the

time-independent plastic strain in Eqn. t8.231. The el* is from [8.30],vmsp-e ' ts f'rom:
vm

t8.szr ';l = r'îlo. f r",fr.l -r"î*o * f, i.,rn;lJ

Thus the scaling function is:

i8.331 s = # .-(e,r-eepo 'uttlt (*l*/ú rLlÀ/ú
o ' tfr'"' tp;:'"'' /lzq' - P;l

where we stil1 use e-- instead of r,.* to simptify the scaling function.

[8.31]

,, = f p' tp' - # .-(et'-e"P ]vtr¡t tþlÀ/u
o Pmo

= 1 ; * ut o-(e,.-tep Jv/ll ,P^ ,xl,¡, zql#s 3G - v.o " 'Ç, nF-=-t
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Eqn.[8.33] can be used to ra'ite a sinilar equation syst,en to [g.31] for
triæ<ial stress states.

8.2.4 llethod 3

The strength of overconsolidated clays and frozen soils depends on both

time and strain nate, and it is not easy to d.eterrnine a unique strength

envelope. Sometimes however, it is possible to find the 1ine on which

the visco-plastic volumetric strain rates in shear test,s are zeno and

this will be called the "neutral line". Consider for the moment that
t'his Iine is known. Method 3 âqsumes that visco-plastic volumetnic

strain rates, å;e are zeno on the "neutrar line,,, are egual to ów on

the mean stress, p', axis. Thus, we have:

r.B.3zl s = # .-t',r'-';:"lu'ú rþ Ì/ú ft:o Pmo ^ln

to ¡neet the required condition, thaL is, on the ,,neutral line',:

t8.33r ;;o = 4 "-(e"'-eelotvt'¡' rfilÀ/u (2e; n*)zn, = o

wher p' is the stress on the "neutral line", and on the p' axis:

t8.341 ;;o = t.-(e"*-e'po'u" ,* Ì/ú ev;- pr)zp, = ;;l

As derived earlier for Eqn.Ig.6] because of the assumption of an

ellipse for t,he flow surface, pn= n^lZ in Ig.35].
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Ife is used instead of e,rn in Eqn. t8.341, we have:

I8. 38 l

K

I

SJ(J

p'/p' úr+ ----:- ô'vt
o

-(or \e
ut:ô

Vt
o

t8.371 s = # .-t",,-"Tlolu'ú rþ t^/þ tp^
o 'no

The constitutive equations fon triæ<ia1 stress states are, from [8.12]

using [8.37]:

Chapter 10 will show an application of this scaling method to a frozen

sand.

In Eqns. t8.311, [8.38], t,he visco-plastic strain rates åIp = O and
V

åIp = O in loading and r:ni.oading/reloading when (Zr '- p:) > o ar¡dS-
)Zq/lf > O nespectively. In the câce of unloading where Âp' < 0 and

Âq < 0, it is found that the change in visco-pla-stic strain eneigy is

Al.Jvp = 
^p'åtPÀt 

* ¡qåtP¡t = o. It is known in elastic naterial that^ V .S

the cha¡ge in elastic strain energy Âl,Je = O for unloading. That

Â!.Je = O implies that the elastic naterial possesses the potential of

elastic strain enengy in unloading, and caJr do work on objectives

outside. While thal 
^WvP = 0 in unloading implies that the

visco-plastic matenial ca-rr' not do work on objectives outside, but

exhausts energy from outside even in the unloading process. Therefore
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the Eqns'[s.sr],18-361 satisfy the second thermodynamic raw and can be

appl ied to calculate the time-dependent behavior in Loading and

unloading,/reloading in the visco-plastic region.

8-3 simuration of a cru rest using the ìrodified cam-cray ìroder and
EVP llodels

It l.ras found in 1-D EVp modelling (yin and Graham lggga,b) that when

the creep parameten lJ/v approached zero, the resurts from the model

approached the elastic rine and the elastic-pì.astic line (reference

time line). This section wirr examine resur.ts from EVp modelling, and

also the simirarities and differences between EVp moders and the
modified cam-clay elast,ic plastic model. It wirl be remembened that
the modefied cam-clay moder takes no account of strain rate effects.

Formulation of the modified

is presented in Appendix

effective stress path in p'

isotnopic consolidation, is:

[8.40] Ae =
S

Cam-Clay model (Roscoe a¡d Blurland 196g)

8.2. Using this mod.el., the undrained

, q-space, started at a point (0, pi ) after

t8.391 q = Mp'[ (p]/p' ,À'l(À-rc) -lI/2

The Q-e= curve can be obtained by solving the foIlowì.ng differentiation
equation in conjunction with [9.39], see Appendix 8.2:

1.

scdq* qtrtF-q¡ r (zp'-n,) 
Ua 

an' * (#t'ort

Eqns'[8.39],[8.40] are used. to mod.eI the stress-strain behavior of a
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undrained CIú test, see Figs. IS.4l-tB.gl

Effective stress paths and g-e= curves for the cIú test are

from EVP models by solving the following differentiation
system. Fnom Eqn. [8.1.2], using the undrained. condition å = o:

V

obtained

equat ion

[8.3e]

(Yp'/t<) S (2p'-p' )

12
3cq*5Zq/W

Three different scaling functions can be obtained using the three

methods given in the pnevious sections.

The paramet,ers used in the modelling were: rc/y = 0.02s (rc/À, = o.2s),

"iro = -0.0963; À,./Y = O.7, p*o = 4T Kpa, rl|o = O, V,/V = 0.004, O.OO04

(rþl^ = 0.04, 0.004), to = t hour; M" = 0.8, G = 10OO Kpa. The initial
point used in all calculations rvas chosen on the referemce time line:

P, = 100 KPa, Qi = O, evi = À,zV Ìn(ni/plì = 0. O7SS, ti = O hour.

Fig.8.4 shows the simulated e-e= and effective stress path of the cIú
test using the modified cam-clay model and a EVp model with scaling

function in Eqn. [8.26] in Method 1. The creep parameter ry',/V used was

0.004. Fig.8'5 shows the simulation of the same test, where the creep

parameter þ/V was reduced to 0.0004.

In Figs.8.6 and 8.7, the scaling function Ig.31] in Scaling Method 2

was used in EVP modelling of the same cIü test. The creep parameter

tþ/Y was 0.004 in Fig.8.6, and 0.0004 in Fig.g.7. Figs.g.g and g.9 used

i:=
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the scaling function [8.35] in Method 3 witt. rþ/v = o.004 and o.ooo4

nespectively.

It is seen in Figs.8.4-8.9 that the stress-strain curves a¡rd effective

stress paths were strain rate dependent and sensitive to the parameter

,lt/V in EVP modelling. When the creep parameter rþ,/v approached zero,

the simulated curves from EVP models using scaling Method 2 and

Method 3 approached the curves from the modified cam-clay modeI.

However, curves from the EVP model using scaling Method L were not.

The general shapes of the curves aJ'e similar to those found in CIU

tests at different straining rates. The modified Cam-Clay model is a

particular example, when viscosity is zeîo, of the more general EVp

model with rigorous scaLing of the function [S.26]
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Chapter 9

EI.ASTIC VISCO.PL.ISTIC (EVP) }IODF'Í T IT{G OF

SÆ{D.BE{TONITE BI,'I¡FER I,IÀTERIAL

Chapter 8 developed the framevrork of 3-D elastic visco-plastic (EVP)

models to simulate the time dependent stress-stnain behavior of soils.

In this Chapter, we apply this framework to the sand-bentonite buffer

material that has been proposed for us¡e in the Canadian FueI tJaste

Managenent Progran (see also Graham et aI. 1989). An EVP model is

developed for this material and calibrated using available test data.

it is then venified using test data that has not previously been used

in buiJ.ding t,he model.

9.1 Test Program and Results

A test prograln was performed by the author to collect additional test

data from triaxial tests on the buffer material. These data have been

combined with previous test results presented, for example, by Graham

and Saadat (1987), Graham et al. (1989), and will be used for the

calibration and verification of the proposed EVP model.
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9.1.1 Preparation and properties of specimens

In specimen preparation, an improved compaction frame (yarechev¿ski

1988) r+as used to produce high density specimens at 95% ASTM Modified
,)

Standard Density, Td. = I.6T l4g/n" (Gr.ham et al. 1gg8). The

properties of specimens T1001, T1o02 after compaction, are in
Tabte 9. L. The targeted dry density r{as t.6T l4g/n3. As usual in
expenimental work, the measured values deviated from the targeted

ones. In Table 9. L, the subscript "o¡'¡ d.enotes the neasr:red properties

right after compaction of those specimens. The zai in Tab1e g.1 is
the comected dry density after installation of the specimen in
triaxial ceì-1, see Appendix g. i..

Table 9.1 Properties of Specirens T1OO1 and T1OO2

Specimen too . "o
lúg/m" %

T1001 1.678 22.33 99.04 0.6089 L.6089 2.053 2.7 1..577

T1002 1.696 20.63 94. L0 0.592 1. . 592 2. 046 2.7 L. 68s

9.1,.2 Triaxial tests and results

Seroo Vxo "o ^
l4g/mr

7¿i 
^

l"1g/mJ

The tniaxial cells used in the progran

cells with capacity 3500 kpa. These were

frame with loading capacity 10, OOO kg and

were Brainerd-KiIIman

installed in an ELE

a wide speed range,

(8. K. )

J.oading

0.00005
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mmlmin to 0.125 mm,/min. An improvement in this test progran in
comparison with the pr-evious test prograJns described. by sr:n (19g6), l.lan

(1987) and Saadat (fSgS) was that a double drainage system was used in

the B.K. celIs. The advantages of such a drainage system are:

(1). In consolidation or drained tests, if both top and bottom ends

are allowed to drain, the process of consolidation or porewater

pressure dissipation can be accelerated. rf only the top end is

drained, then the bottom end can be closed and used. to measure

porewater pressure at the bottom of the specimen. In this way,

the process of porewater pressure dissipation can be monitored.

(2). In undnained shear tests, the two d.rains are closed and used to

measure the porewater pressure.

In the test program, two types of shear Lests were designed, one was a

multi-stage q creep shear test under undrained condition (on specimen

T1001). The second r^¡as a step-changed constant strain rate shear test

rrnder undrained condition (on specimen T1002). The two specimens wene

first isotropically consolidated for a long time u¡rder multi-stage

isotropic pnessures (184.5 days for TLooj. and zr7.s d.ays for Tlooz).

The resulting consolidation data wiII be used. to determine the scaling

function in the EVP model. The undrained shear test data r¿iII be used

mostly to examine the validation of the EVp model.

1.87



9. 1.2. 1 Isotropic consolidation tests

As mentioned in the preceding paragraph, specimens T1001 a¡d T1002 were

isotropically consolidated using nulti-stage loading. The back

pressure r:sed w'as 500 kPa. The principal results of the consolidation

tests are in Table 9.2 and complete details are given in Appendix 9.2.

In TabLe 9.2, the consolidation pressure p"or, = 13 - %, the excess

porewater pressure Âu = u -,rb, r¿here 13 is the ceII pressure, % is

the back pressure, u is the porewater pressure. In the test pnograJn,

the salne filter paper strips (Whatman #1) âq used in previous tests

(sun 1986, I.Ian 1987, sa¿.dat 1g8g) were put on the lateral sr:rface of

the specimen fon radial drainage. However, It has been found by James

M. Oswell (personal com¡nunÍcation) that, the permeabilit,y of the filter
papen strips is very low and impermeable at pressures higher than 800

kPa. It was assumed that the relationship betneen the back pressure

applied at the top of the specimen and the porewater pressure mea.qured.

at the bottom is parabolic, and the effective mean stress p' values in

Table 9.2 were estimated fronn the reLationship (p^-_ - ! a"l.
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Table 9.2 Result,s of Isotropic Consolidat,ion Tests

Specimen

227.6 -13.85 200

T100 1 1558.4 -285

2642.9 1. 88 2688

200 231.4 -10.13 197.3

T1002 1000 2955.3

2034.7 2.62 89 2940.7

During specimen preparation, there are usually some deviations from the

t'argeted dry density and the satr:ration is not LOO %. Furthermore when

instarling specimen in the test celIs, the dry density of specimens

might be changed. Appendix 9.1 presents a technique for the calculation

of volumetric strains considering these variat,ions in dry density and

unsatr:ration. The e-- values in Table 9.2 are the corrected values.

Figs.9.1-9.3 show the curves of volumetric strain vs. time (e,, vs. t)

and excess porewater pressure vs. time (Âu vs. t) for specimen T1OO1.

Figs.9.4-9.6 show the same curves fon specimen T1002. The data of

volumetnic strain vs. effective mean stress (r' vs. p') at the final

stage of each muLti-stage loading are shown in Figs.g.g and 9.8. In

Fig.9.2, the porewater pressure Has negative but the volumetric strain

was increasing. It r+as subsequently found that the hole accessing the

porewater pressure transducer wa^s blocked and the negative porewater

D'con
kPa

t
hour

p'

kPa%

Au

kPa
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pressures seem to be related to temperatr:re changes rather than to
swelling potentiaÌ. In Fig.9.5, the excess porevrater was close to

zero and the volumetric strain approaches a constant. However, in

both specimens, there were some residual excess porewater pnessures

Ieft at the final stage of consolidation. In T1001, there was 46g kpa

left aft'er 2642.9 hours of consolidation, while in T1OO2 t,here r+as 8g

kPa left after 2034. L hours of consolidation.

9.t.2.2 Triaxial shear tests

In specimen T1001, after multi-stage isotropic consolidation, there

was 468 kPa excess porewater pressure at the bottom end of the

specimen but of course zero aT the top end where the back pressure was

applied. The porer+ater pressure distribution was not uniform. if
shearing then comrnenced immediately, we could not measure the tnue

response of porewater pressure, since the distribution of porewater

pressure would be changing as a result of the initiat ponewater

gradients and shear-induced porewater pressures. In order to equalize

the initial porewater pressures, the drainage valve at the top was

closed, and the specimen was neLaxed for 2L3.3 hours unden undrained

conditions. At the end of this relaxation, the porewater pressure at

the top was the same as the pnessure at the bottom, with an excess

porewater pnessure magnitude of 1045 kpa. The specimen was then

sheared by applying multi-stage constant deviator stresses under

undrained conditions. At each stage, the deviaton stness increment was
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applied suddenLy, then L¡as kept constant, and delayed compression

movements were allowed to occur. Due to the increaqe in section area

of the specimen, the deviator stress decreased by small amounts. The

complete test data of this test are presented in Appendix 9.2.

Fig.9.9 shor¿s the curves of shear

porewater pressure vs. time (Âu

686.8, 866.0, 1,041.9, IO77.O

characteristics are found:

(4). When q was

further and

strain vs. time (e= vs. t) and excess

vs. t ) for deviat,or stresses 315.7,

kPa respect ively. The foI lowing

increased to IO77.O kPa, the rate r "as increased
S

faiLure followed after about 30 minutes.

(1). For each suddenly appried deviator stress, there were "instant"

responses of shear strain and porewater pressure. These may be

treated as time-independent behavior.

Q). The rates of shear strain e= changes decreased with time fon q =

315.7, 686.8 a¡¡d 866.0 kPa. So did the excess porewater pressure

changes Âu, except for some scatter of Åu, t data for q = 686. B

kPa. This means the specimen wiII not fail due to delayed

straining when the deviator stress is below 866.0 kPa.

(3). when q = 1041.9 kPa, the rate e= increased with time in the final

stage of Loading. The specimen exhibited accelerating creep and

this is a definition of faillrre (Vaid and Campanella 1977). The

conresponding rate Aù decreased with time, indicating the

specimen was tending to expand during shear.
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Fig.9.10 shows the effective stress path in the test. It is noted

that the instantaneous effective stress paths respond.ing to the

suddenly applied deviator stnesses, were not vertical, but inclined to
right side (Lq/Lp' > 0) ir q,p'-space. The ratios of Âq,zÂp' for q =

315.7 and 686.8 kPa were 3.636 and 2.66T respectively. l.Je know that

if the eLastic behavior of a soil is isotropic, the instant effective

stress paths would be vertical, namely Lq/Lp, = @. The instantaneous

effective stress paths measured in the test indicated that the

time-independent behavior is anisotropic. This result is consistent

with some findings reported by Graham and Saadat (1s97) and Graham

et aI (1989).

In specimen T1002, at the end of consolidation, there was only gg kpa

excess porewater pressure left. In order to make the distribution of
porewater pressure in the specimen uniform, the specimen was

isotropically relaxed for 32.5 hours after consolidation under

undrained conditions. After relaxation, the excess porewater pressure

increased to 306.6 kPa. The effective mean stress p, at this stage was

2693.4 kPa. The specimen was then sheared using step-changed constant

strain rates under undrained condition. The strain rates used were
_1 _1 _1

o.00036 h', 0.oOs8 h-'and o.og4 h-1. The complete test data for this
specimen are in Appendix 9.2

Fig.9.11 shows the curves of deviator stress vs. shear strain (q

e^) and. excess porewater pressure vs. shear strain (Âu vs. e ) for
S

VS.

the

201.
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test. In the test, the specimen was unloaded and reloaded at .= =

7.31 % with strain rate å- = -0.00s8 r/h for unloading and o. oOsg 1./hS

for reloading, see Fig.9.11. At e= = 10.06 %, the driving machine was

shut off and the specimen was relaxed for 46.6 hours. Dtrring shear

relaxation, the deviator stress decreased with time and approached a

constant, see Figs.9. 1.L and 9.1,2.

The effective stress path of the test is shown in Fig.g.13. It is
found that the first part of effective stress path in the undrained

shear was straight and inclined to the right side. The ratio of Lq/Lp,

for this part was 5.455. The effective stress path in unloading and

reloading was also inclined towards the right side on average. The

ratio of Âq,/Âp' in the unloading,/reloading lras 12.903. All of this
indicated again that the time-independ.ent behavior of the high density

specimens is anisotropic.

9.2 EVP llodel and Its Calibrat.ion

This sect,ion develops an EVP modeL for the sand-bentonite buffer

material using the framework given in chapt,er g and considering the

characteristics of the material measured in T1oo1 and T1002. The

scaling function will be detenmined using the data from isotropic

consoLidation. The strength envelope fo¡- the modeL is taken from

previous test results given by Graham and Saadat (19g7) and Graham

et al. ( 1989 ).
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9.2.1 Equations of EVP model

As discussed in the previous section, the effective stress paths of

time-independent behavior of the high density specimens (T1001 and

(T1OO2) were str-aight and inclined. to right side (Lq/Lp, > O) in
undnained shear conditions, (see Figs.g.LO, g-13). This type of

effective stress path carì also be found in Fig.g.14 (Graham and

Saadat, 1987) and Fig.9.15 (Gralam et aL, 1g8g). However in these

Figures, more effective stress paths turn to ieft side (Lq/Lp, < O).

This may be explained by (1) excess porewater pressr¡res remaining

after consoLidation that were not measured and corrected in the plots;

(2) the dry density was low so that the initial state was close to
nonmalJ.y consolidated states and visco-plastic behavior d.ominated the

effective stress paths. Graham et aI. (1989) say that these specimens

ane at "swelIing EquiIibrium". That the ratio of Lq/Lp, is targer

than zer-o impì.ies that deviaton stresses produce negative volumet.ric

stnains i.e. a tendency to shear- expansion in constant-voLume tests.

The KGJ model developed in Chapter 4 can be employed to describe the

anisotnopic t ime-independent behavior. Here, we make the same

assumption used earlier, that total strain rates are the sum of

t ime-independent slnain rates and visco-plastic strain nates.

Referring to Eqns.[8.1j, tB.3] and tB.I2l, the constitutive equation

fon triaxial stress states can then be expressed as:
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ls. 1l

+S(2p'-o)^ 'm-

+ s eqt#)

where in the absence of detailed test data it is assumed that the

flow surface is an ellipse (Fig.10.16), expressed by Eqn.tg.4l. It is

found fr-om Figs.9.14,9.Ls (Graham et aL. lg8g) that the strength

envelope is curved. A hyperbolic fr:nction can be used to fit these

data in Figs. g. 14,9. 15:

(å

1

tJ

1.

¡ol
1 .,
3c qj

ts. 2l
pi

d=--f a+bpf'

where the parameters a and

see Figs.9. 14,9. 15,9. 16.

Fig.9. 16 that pi = n,n/z anO

is:

te.3l

te.4l o'='m

b were 1.3 a¡¡d O.0OO2 tPa-1 respectiveJ.y,

From Eqns. t8.6l ,lB-7 I it is known from

q^/p_l = M. Thus from IS.2l the parameter M-1 -ï

M=Mc a*uni a+0.5bp'

Introducing this expnession fon M into tB.4l

parameter p' sives:

and solving for the stness

rp'-.uq2l -
,

It should be pointed out that in Eqn.[9.1],
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describe the tine-independent behavior which nay on nay not be e1a-stic.

The strain responses defined by the KGJ model rnay depend on the stress

paths and may not be ful1y reversible. usable test data are not yet

avai labIe.

9.2.2 Conceptual model fon isotropic suelling and creep

To detenmine the scaling function s in Eqn.t9.ll, we have to use the

isotropic creep test data shor+n ea¡lier in Figs. t9.11-t9.81. However,

the behavior of the sand-bentonite buffer material is very complicated.

This material exhibits both slrelling and creep characteristics (Graham

et al. 1986, Grahan et aI. 1989). In orden to describe these

phenomena, an extended conceptual ¡nodel is developed from the nodel

suggested by Graharn et aI. (1986).

As shown in Fig.9.17, the swelling eguilibriu¡n line (SEL) is reached by

swelling (expansion) of a¡r infinite tine. The new model introduces a

"creep equilibrium line" (CEL) which is reached by creep compression of

an infinite time. In general, one would expect the SEL to be belor¿ the

CEL as shown in Fig.9.t7. According to this definition of SEL and CEL,

the specimen at the state points below the SEL will swell to approach

to SEL. The specimen at the state points above the CEL will compress

to approach to the CEL. At the state points between the CEL and StrT,

the behavior wiIl be neutral, with neither creep nor swe1I being

observed,, and the behavior is completely time-independent. According
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Fig-9.17 Conceptual nodel for sselling and creep behavior

in isotropic stressing
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to this model, the swelling pressure, p= at a given specific volume is
the pnessure on the sEL at which the volumetric strain, €v, is
constant, (Fig.9.17). similarly, the relaxation pressure, p; at a

given specific volume is the pressure on the cEL a¡rd which the

volumetric strain, eu is constant.

This conceptual model explains why in some soils there are large creep

movements, whereas in other soils like sand, the behavior is almost

completely time-independent. According the model in Fig.g.17, when

the sEL is far on the left side of the cEL, then there is only creep

behavior above the CEL and time-independent behavior beLow the CEL.

If both the SEL and cEL are fr:rther separated, then the behavior is

completely time-independent. The sand-bentonite mixture in the

program has both swelling and creep. so there must exist both a sEL

and a cEL in the e,r,p'-space. The determination of the sEL and cEL by

testing is difficult due to the coupl_ing of hydrodynamic

consolidation. No detailed examination of existing data or new

testing specifically aimed at distinguishing the SEL a¡¡d CEL have yet

been undertaken, (see for example Graham et al. lgggb).

9.2.3 Determination of scaling frrrct.ion S

The difficulty in determining the scaling function S in Eqn.t9.1l is
that there are at t,his stage no completely reLiable creep cv,p'data
available from isotropic consolidation tests. These would nonmally be
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needed t,o find Èhe neference time line, the elastic time line and the

creep pan'anneters required in the scaling function. The permeability of

the sand-bentonite nixture is very low, of the order ro-tz - 10-13 rzs.

The dissipation of excess porewaten pressures will not finish in a 1ong

time for consolidation pressures higher thaJr p.or = 3OOO kpa, see

Figs.9.3,9.6, (see arso Saa.dat 1989). In t,his case, the effective mean

stress p' is increasing all the time a¡d is not const,ant, so the dat,a

are not technically creep data at aII. At, lower pressures, for exarnple

p = 200 kPa, the soiL swells and the swelling will not finish in a'con
Iong time, see Figs.9.1,9.4 and the sãme cornment hoIds. Even the

relationship of rrr, p' for unJ.oading and reloading is also

tine-dependent,, and cannot be meacured accurately due to excess

porer+ater pressu.res in the specimen. In the following section, the

elastic Iine, reference time Iine and creep parameters wiII be

estimated using the available information conbined with present

understanding of the behavior of the naterial.

The elastic line:

In(p'. + Þ') - ee- oI 'm vmo
CKc=--vm V

has

The

ts.5l

been assigned the values rc/Y = 0.03, påf = 5OO kPa, see Fig.g.7.

parameter ee-- will not be used in Lhe mod.elling.' vmo

The reference

CD

vm

tine line:

À .Påz 
* På,

V Lnr 
ü_

ts.6l
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has vaLues À,/Y = 0.05, påZ = 0.5 kPa, påe = 2500 kPa, see Fig.9.8. This

estimated reference time line is close to the equation of "end-

of-consolidalion" used by Saadat (1989), see Fig.g.8.

The creep equation:

rs.7r 'lf=$r"r$-roe

has been assigned ú/V = 0.0025, to = 0. t hour.

The equation for calculating creep strains under any stepwise isotropic

Ioading is, using tS.6l and [9.7]:

ts.Bl ";l = | r"cË',5) . # r"cji--l
-oJ o e

Using the method in Chapter 8, the general constit,utive equation for

continuous isotropic stressing is:

lg.gl ; = - 
*/Y ttt 

"-(Y/Ú)eu'o ,påz 
* pt,

vm oor*4n-P;*tov po3

Using the scaling Method 2 in Chapter 8, the scaling function in

Eqn. [9.1] is:

rs. 1or s = 4 "-(v/Ú)eu ,ffi,"'* ,oå'¡;; i )^/ú t t2p' - p;l

The parameters in Eqns.t9.5l-t9.71 have been best-estirnated by the

graphical met,hod explained in chapter 8. The curves fitted by using

217



19.81 are shown in

will be presented in

Fig.9. 18a, b.

Chapten 10.

The details of the graphical method

9.2.4 D,eterminat ion of moduli K, G, J

using Method 1 in chapter 3, the data from isotropic unloading and

reloading consolidation tests are used to find the bulk modulus K.

Data from undrained unloading and reloading shear tests are used to

find the coupling nodulus J and the shea¡ ¡nodulus G. The modulus K is

obtained by differentiating [9.5] or taken froro [9.g]:

The J modulus is found to be:

t9. 121 J = -K g, = -Q.601 Kdp'

Here again, the use of p'

of deviat,or stresses.

instead of p; âesumes that K ls independent

of the time-independent responses were

9.14 a¡rd 9.15. The average vaLue of

by Saadat (1389) and for T1001 and T1OO2

The effective stress paths

Iinear, see Figs.9. 10, 9. 13,

dq/dp' for 6 specimens tested

in this test program is 4.601.

The apparent moduLus D (Eqn. t3.111) is

data from the unloading and reloading

found to be 45000 kPa, using

tests given in Fig.9.11.

the

The
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shear modulus G is found from Eqn. [3.12], using îg.IZl and D:

19.131 G = =ot' = D 1 
= = 4sooo

Jz + grK r + 3DK/Jz 
= 45ooo T +trTT:z/K

where K is given by [9.11].

9.3 Verification of the EVP ùlodel

In the pneceding section, the EVP model was formulated and calibrated

for the sand-bentonite buffer material. Now the model will be used. to

predict two different t¡pe of tests. one is an undrained multi-stage q

creep shear test, and t,he other is an undrained. step-changed constant

strain rate shear test.

9-3.1 Moderling of an r¡rdrained multi-st.age q creep shear test

After isotropic consol idation and reJ.axation, specimen T100 1 l¡as

sheared using mult i-stage deviator stresses und.er und.rained

conditions. The loading history for this undrained. shear test is in
Table 9.3. The detaiLed data are given in Appendix g.2.
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Table 9.3 Loading History,
Calculated e=,p'

Initial Conditions and l{easured and

Ilata at. the End of Each Loading

q (kPa) 315'.7 686. 8 866. 0 1041. I 7077.O

Duration (hour) 695.2 317.2 L44.3 29.7 0.53

pi (kPa) (initial) 2455 2200.9 2080.3 1986. 4 1941,.2

( initial ) .0053 .0L32 .0271. .0341

a . (initial)
v1 0.0188 0.0188 0. 0188 0.0188 0.018

p' (kPa) (calcu. ) 2200.9 2080.3 1986.4 1947.2 1945.5

(kPa) (test ) 2215.5 16S0.8 1897.6 1959.9 1941.8

(calcu. ) .0053 .0L32 .o21.1 .0341 .0350

(test ) .003s . o136 .021.4 .0473 .0976

In the test, each deviator stress increment was applied to the specimen

suddenly (over a period of a few seconds), and then held constant.

From Eqn. t9.11 the instantaneous nesponses due to the sudden loading

are given by:

€
S1

Is.14]

Using

Is. 14 ]

4. 601 .

stnain

Âp' +

Àp' +I
1.

R

L

J

3oo

hoo

the undnained condition Âe,, = 0

, the ratio Lq/Lp' = -J/K, and

Using this ratio in the second

is:

into the first equation in

this has been measr:red to be

equation in tS. 141, the shear
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te.lsJ Âe= = (mh- * Sl aa

So if the deviator stress increment, Âg, is knowrì, Eqn. [9.15] can be

used to calculate the insta¡rt shear strain increment, Âr=.

Using conditions r., = 0 and q

stress p', and shear strain

deviator stresses are:

= Q from Eqn.t9.1l, the effective mean

€s, during undrained creep under the

[= = } o' + s zq/tÊ = Ij (ep' - p;) + zq/rt) s

creep shear strain rate å depend.s on the cr:rrent

The excess porewater pressure, Âu, is:

^"-pi+q/3-p'

is the initial effective mean stress on p'-axis.

= -K S (2p' -p')' ^m

Note here that the

stress state p' , e.

te. 161

ts.17l

where p'.

The initial conditions used in cai.culating the p' , t- and ,=, t-
relationships for different deviator stresses are shor¡n in Table g.3.

Note that when the deviator stress is newly increased, new initial

conditions should be used. These new initial conditions are the final

values at the end of the last deviator stress, see Table 9.3.

Eqns.[9.15],[9.16] are used to calculate the relationships of p'vs. t
and e vs. t. Eqn. [S.16] is a non-linear differential equation systemS

for which no analytical solution can be obtained. The fourth-order
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Runge-Kutta method was used to solve [S. f0] numerically. The computer

prograr for using this method is given in Appendix 9.3. Eqn.[S.17] is

used to calculate the relationship of Âu vs. t. Tab1e 9.3 shows the

initial values, final predicted p',Es values, and their equivalent

measured test values for each deviator stress q.

Fig.9. 19 shows the comparison of the measured and predicted shear

strain vs. time (e= vs. t) relationships for five different deviator

stresses. It is seen in the Figure that the calculated curves agrees

well with the test data. The calculated Âu vs. t in Fig.g.2O and q

vs. p' in Fig.9.2L for q = 315.7 kPa agree with the measured. data.

Howeven, the model tends to underpredict the porer+ater pressures (and

hence the p',q,t-relationships) for higher deviator stresses.

9.3.2 llodelling of an undrained step-changed const.ant strain rate
shear test

Specimen T1002 wzts sheared using step-changed constant strain rates

under undrained condit ions after isotropic consol idat ion and

relaxation were completed. The detai Ied data are given in

Appendix 9.2. The schedule for changing the strain rates is shown in

Table 9.4 as a function of t,he shear level during the test.

222



7

6

5

4

5

2

N
N)(J

bs

z
?d
|.-
an

Ét
:E
v,

q = 1077.0 kPa

q = 1041.9 kPa

q = 866.O kPa

Fig.9.19 Ìfeasured and predicted e=,t-relationships - T1001

q = 686.8 kPa

400

ïME (HoUR)
PREDICTION

q = 315.7 kPa



1.6

1.5

1.4

1.J

1.2

1.1

1

o.9

o.8

o.7

o.6

o.5

o.4

o.3

o.2

o.1

o

T\)
N]
rÞ

î
ÀJ^vo
0-Eìo
o-3
o9vtl-gõ
ñ

q = lO77.O kPa

q = 1041.9 kPa

q = 866.O kPa

q = 686.8 kPa

Fig.9.2O ìleasured

q = 315.7 kPa

TrME (HouR)

and predicted Åu,t-relationships - TIOOl

PREDICTION



o

1.9
1.4
1.7
1.6
1.5
1.4
1.5
1.2
1.1

1

o.9
o.a
o.7
o.6
o.5
o.4
o.3
o.2
o.1

o

_

o
fL
-y

Oa
(o

U¡.d
lAc
l¡l o
d6L-ftno

_Ê.

8t-j=
g
6trl

t\)
N
ut

o

Ü-

ETItr f]E@

Fig.9.21 l{easured and predicted effective stress paths

TEST

2
(Thouoonda)

EFFtcrlvE MEAÑ STRESS p'(Ep--:)
DATA PREDICTION

E¡ECTSIE-T

- T1001



Table 9.4 Schedule of Stnain Rate Changes

The equations for cal.culating

t9.11, using the condition å
V

p' vs. e= and q vs.

=0:

a ane obtained from
S'

Ie.18]

'=-K

-J(J

1.tru+

7[e -=SJ

S(2p' - p')l- -m

Ë' - s(zq/t?)l

The initial condition at the beginning was ei = O, pi = 269S kpa and

a-, = o, a. = 0.0262. The strain rate was o.os4 h-1. If the strainsl vl

rate was changed, then the nevt strain rate and new initial vaLues

should be used in the calculation of [9.13]. The new initial values

are the final values at the end of shearing with the previous strain

rate. The computer progran for solving [9.19] numericaJ.ly is in

Appendix 9.4.

For comparison purposes, Figs. g.22,g.23,g.24 present the measured and

predicted q, e=-relationships, Âu,e=-relationships a¡rd effective stress

paths respectively. The ¡nodelling is generally good. It is seen in

Fig'9.22 that the model overestimates q values in the shear strain
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range 0.5 % - 7.35 %. Because of

did not reproduce the loop in the

the test, see Figs. 9.22,9.24. In

compared with the test dat,a. The

the way the model was formulated., it
unJ.oading and reload.ing measured in

Fig.9. 12 t,he predicted q,t data are

model overestimates the g-values.

Fig.9.25 shows a simulation of constant strain rate shear tests (CRSN)

which have not yet been produced in the 1aboratory. Fig. g.26 shows the

comparison of the q, e=-values measured. from the step-changed constant

strain rate shear test (T1002) and calculated in the sinulated CRSN

tests. !'Ie can see the strain effects produced by the EVp modeL.

It is seen from these comparisons that some of modelled values are not

especially close to the corresponding test data. However, bearing in

mind the restricted data base that r+as used to calibnate the model for
"buffer", some encouraging features of the EVp mod.el can be seen from

these Figures. The model can simulate the effect,s of varying stnain

rate, relaxation and creep. It is also interesting to note that

Eqn. [9.18] can model unloading and reloading cycles simply by using

negative and positive strain rates respectively without any additional

condi t ion.

9.4 Discussion

The sand-bentonite buffen material
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characteristics. Time-dependent behavior of this ¡naterial is therefore

compi. icated and difficuLt to meâqure. Due to the coupl ing of

hydrodynamic consoLidation and low permeability (to-72 to 10-13 m./s,

Dixon and Gray 1985), it is in principle difficult to separate effects
of time dependency such as creep or swelling from time dependent

behavior related to dissipation of porer+ater pressr:re. The resutt is
that it is difficult to get reliable creep p',err-data required in the

determination of the scaling function. AII the parameters in the

scaling function have been estimated using engineering judgement.

There are therefore experimental uncertainties in some of the

parameters, and this of course directly affects the quaJ.ity of the

modeL predictions. No systematic study of the influence of these

errors has been undertaken in the thesis.

In determining the K,G,J moduli, it was assumed that the apparent

modulus D and the ratio J/K were constant,. It is considered possible

that they might depend on stress levels. The time-independent behavior

of the buffer needs further examination in an extended Iaboratony

prograJn. In the formulation of the EVP model, an elliptic flow surface

was assumed, and an associated flow rule was used. The true shape of
this surface and the flow rule require to be examined by stress-probe

tests. Such work is cumently being undertaken in the Univensity of
Manitoba by doctoral candidate J.M. Oswell.

The EVP model developed. in this chapter is used, to mod.eI time-

dependent' stress-strain behavior which is related to voLumetric creep
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in p',e,r-space. In other words, this model applies only to state

points above the swelJ.ing equilibrium Iine (SEL) in Fig.9.17. This

model can not at this stage deal with any time effects resulting from

swelling. It does include the normal time-independent behavion

associated with the Cam-Clay modelling in the overconsolidated range.

The work in this chapter is very preJ.iminary. More work needs to be

done.
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Chapter 1.0

ELÀSTIC VISCO-PI.ASTIC (EVP) ËONfl T T¡¡G OF T, FROZEN SAIID

10.1 Introduction

Considerable laboratory testing of frozen soils and modelling of the

stress-strain-time relationship, have been carnied out. To dat,e, no

one single model has gained universal acceptance because of the

complexity and variability of the behavioru' of the soils. Essent,ially,

the behaviour includes components of ela-sticity, plasticity, and

viscosity. So¡ne models combine two of these components, for example,

Budkowska and Fu, 1989, a¡rd Sun et a1., 1989. Othen models are not

based on the behavior:¡ of ideal naterials, but simply analyze the

behaviour in terms of strain rates which are related to such factors as

stress level, tine, and temperature for a given material. Most models

are based on uniaxiaL deformation. In this Chapter, a 3-D EVP model is

developed from on the framework presented in chapter 8. This nodel

inconporates all the aforementioned components. It is applied to the

results of triaxial compression creep tests canried out on a frozen

sand by Rahman 1988.

Ilany creep theories âqsume that frozen soils are incompressible and

their creep behaviour is not influenced by rnean (hydrostatic) stress

level. However, experimental results show that volu¡retric creep rates
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are significant and depend on both time and mean stress (Ðomaschuk

et al. 1985). The 3-D EVP rnodel in this chapter can account for
volumetric and shear creep under general stress conditions.

7O.2 Equations of the EVP llodel for a Frozen Sand

Here, the frozen sand is treated as one phase naterial, and thus no

distinction is made between t,otal stresses a¡rd effective stresses.

In the proposed nodel, elastic responses are aqsuned to be isotropic,

using Eqn.[8.2]. The flow su¡face is aqsumed to be an ellipse, using

Eqn. [8.4ì. Under triaxial stress states, the constitutive relationship

for the frozen sand is:

t10.11

A strength envelope is also required for t,he model. It was found. from

creep shea¡ test data that the strengt,h envelope, defined âc

ôe-/ôe--= ø, was not unique, but tine-dependent (Rahnan lsgg). TheseSV

data therefore could not be used to determine the strength envelope.

However, Fig.10.1 shows the "zero volumetric strain rate 1ine" found

from those creep tests. The behaviour below the line r¿as compressive,

the behaviour above the line Ha-s expansive, and the behaviour on the

line llas zero, namely å-- = å1- + åW = O. Since both deviator stress-vvv
and mean stress at any point on the line are consta¡rt, the elastic

l;.s(2p-pr)

þa. seqtt?)
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strain nate should be zer:o åe = O. Thereforev

volurnetric strain rates on the line were also zeîo,

In Chapter 8, the envelope on which visco-plastic

rates are zero was defined as a "neutral Iines", see

the visco-plastlc

that is åW = o.v

volumetric strain

Fig.10.1.

For the frozen sand in this test series, the zero å3 envetope (that isv

t,he neutral line in q, p-space in t,riaxial conpression tests) r¿a-s

curved. It has been fitted by a h¡perbolic function:

D'nc
d=--nc a+bD'nc

t 10. 21

where cf and D are stresses'nc ^ nc

Using graphical technique, the
_1

b = O.0OO4 (kPa) ' This line is

on the neutral line

constants in t10.21

shown in Fig.10.1.

1n

a

compression.

= 0.45, and

Because åIp = O on this line, Eqn.[10.1] requires that ðF,zôp is alsoV

zeno = Q on the neutral line, since S + 0. This implies that the

visco-plastic volumet,ric strain rate vectors of the visco-plastic

potential F on the neutral line are vertical in q-p space. Using the

condition L}:raL ôF/ôp = 0 in combination with Eqn. [8.4]:

[10.3] p =p/2-nc -m

and

)2tt10.41 F =q"/o'=|,fn 'nc 'nc

Using Eqn. [10.2], the paraneter, M, in [8.4] or I10.41 is r+ritten:
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t10.sl M=M =
1

-=

a+bp'nc a + O.Sbpn

for M int,o [8.4] and solving for the stressIntroducing this expnession

para-neten p, gives:

t10.o, pm - tP-"uqzl -
2(o. sbq)2

Given any stress point (p,q), the point 1Or,O) intercepted by t,he

eIJ.iptical flow surface with the p coordinate, can be calculated frosr

[10.6].

Creep shear tests in triæ<ial extension may be used t,o find the neutral

line in extension, nameì.y M". Then applying Eqns. t8.71, [8.8], the flow

surface and the r""o åtP envelope ir q,p-space can be generalized for
general 3-D stress states (fig.8.3).

10. 3 D,etermination of Scaling Fr.rrction

Eqn. [ 10. 1] provides a general fra'nework fon the time-depend.ent

stress-strain behaviour of the frozen sand. For applications, the

scaling function S in [10.1] must be determined from test data.

Scaling Method 3 (using a neutral line) in Chapter 8 is used here to

deter¡nine S. This method can meet the condition t,hat the visco-plastic

volu¡netric strain rates, ;l-, must alrrays be zero for the stress' vTtc'



points (prr. grr.) or the neutral line, namely:

l10.7l ;tp =S(2p -p)=S[2(p/2) -p]=0vnc -nc -m 'n

Unden isot,ropic stress conditions, fron [10.1]:

t10.8l s = LUP/pvn -m

where åp i= the visco-plastic strain volu¡netric rate when q = g. Thisvm

strain rate can be found by using the procedure in Chapter 8.

Only one isotropic nulti-stage loading creep test was available from

the earlier tests on the frozen sa¡d (Figs.70.2,10.3). The dat,a from

this test Here used to determine al1 the parameters necessaJ.y for

cai.culating the visco-plastic strain rate e:. It should be polnted
vm

out t,hat the numerical procedures are simpler, if a nu¡nber of single

stage loading creep tests are performed.

The following fitting functions illustrated in Fig.10.2 were used to

model the isotropic test data.

Elastic line (elastic strain):

t10.91 ee ="1n¡Po1*Pt,vm v Þ-- oI

in which: t</Y = 0.0013, Po1 = 10 kPa. It Ha-s aqsumed that this

equation was valid for all st,ness states.

Reference tine line (elastic plastic strain, t" = 0):

240



d

\/

o

o.4

o.8

t.?

1.6

2.O

2.4

?.8

o roo 200

p (k Po)

300 400

Fig.10.2 Elastic line, reference tire line and cr.rve

fitting of creep test data - an isotropic
nulti-stage loading creep test

241

ELASTICå.k
,rru 

,

{t.,

tr TEST DATA

- CURVE FITTING

I

I

ùL- _+
g
F
¡

ù
I

û



N)

'Þt\)

t23

ACCUMULATED TIME (I-IRxIO3)

Fig.10.3 Curve fitting of creep test data - an isotropic
multi-stage loading creep test

TEST DATA

CURVE FITTING



t10.1or ';l = | r,'t4l
-oJ

r¿here \/Y = 0.017, poz = 190 kPa, *d Po3 = 195 kPa.

Creep equation (time dependent plastic strain):

r10. 11r ,lfl = $,"r$1
o

where ú/V = 0.007, to = 6OO hr, t. is eguivalent tine.

Using [10.10] and [10.11], the equation for calculating creep strains

under any stepwise isotropic loading is:

t10. 1zl €v = I r"t\]) - #,","i!,

Then using the method in Chapter 8, the general constitutive equation

for continuous isotropic stressing can be r+ritten:

t 10. 13r å,r* = qfFp," i^ . # .-(v/ry')e"* ,poz-l-p'n,À/Ú

In this way, the mathematical fr:nctions [10.9], [10.10] and [10.11] are

used to describe the characteristics of the soil behaviour. The basic

principle for determining the pararneters in [10-9], [10.10],and [10.11]

is that the parameters are chosen so that the calculated curve from

[10.12] or [10.13] best matches the test data fron isotopic loading

shor+n in Figs . lO.2,10.3. Details of the cu¡ve f itt ing calculations are

in Table 10.4 of Appendix 10.1.
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Introducing [10.13] into [10.1], and replacing the bulk nodulus with

the expression (po1 + p)/k/V) = K, the expression for the ela-stic

strain rate can be r+ritten:

t1o.14l ;" - r/Y ' = uY 
o- v¡n Po1 * Pxo ^t Po1 * P ^

The use of p instead oa pn in this relationship again mea-ns a-ssuming

that the elastic volu-metric strain is independent of deviator stresses,

that is, isotropic elasticity. According to Rahnan (1988), the average

elastic shea¡ modulus fon the frozen sand was G = 112,500 kPa.

The visco-plastic strain rate is, fron [10.13]:

So from t10.8l and [10.15] ttre scaling function is:

t 10. 1sl åtp
vm

[ 10. 16]

r¿here asain e
vm

-(Y/ú)eu .poz * p^,\/ú 
.e t-) /p

Po3 - ln

is replaced bV e,r.

ttt

tv-
o

"= 
ú

IV
o

10.4 llodelling l{ult i-stage Creep Tests

In the previous section (10.2), the EVP nodel r+a-s scaled and calibrated

for frozen sand. In the section, the model is used to predict the

results of two t,riaxial compression tests performed on specimens of the

same sand. The stress paths in these tests were different from t,hose

used to ca1 ibrate the nodel. One test r¡a-s a nulti-stage, constant ¡nean



nornal stress, test, while the other wa-s a

pressure test. A comparison is then made

stralns and those predicted by the rnodel.

10.4.1 Equations fon uulti-stage creep tests

mult i-stage, const,a¡rt ceI l

between the observed creep

and p were kept constant at each

aften applying mean stress p and

responses from [10.1] and t10.161

In nulti-stage creep tests in which q

stage, the initial elastic re5ponses

deviator stress q are:

þ'; = å oo'

t 10. 171 {
I

l¡r. = h oo
LS

The incremental visco-plast,ic strain

are:

[ 10. 18]

Integrating [ 10. 18] with initial conditions:

":f, the total visco-plastic strains are:s1'

vD ttt -(v/vt)e',, .Poz* Pm.À'l'l'=:=.v toV' ' Ooa '

vD ú, -(v/tþ)e,. .po2* pm.À,/ú
-=-ai_t

s tV"o Po3

(2p -p )- -m_dt
Ð'm

)
Qq/f ) ..' ctt

D
^m

t=o."tP='v
VDe:andVI

V1)

s
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where the initial strains are:

The total

trrtl (olr*o lG*t,tl,Poz*PmrÀ /ú:P P\ 
+ e

"o Po1 pn Pn

( V/rr) evl'vleP _v
V

[ 10. 1e]

1 10. 201

110.211

2
vD Zc/l{ , vD vD. vo- = * (€ - - e -.J + e -.

S ZD-D V VI 51' ^m

are:

Þ-+p, ,'o1 vpIn(-J + e
Po1 v

Vl)+e'
S

point (p. . q. ) to' -r'-1

the tot,al strains

vÞevo€'. = e - a .: anct e'- = evI vI vl' sI sl
e
SI

strains

frc

.J'"=o
I

þ==*l

Loading from

(Pi*t, 9i*1 )

[ 10.20], are:

(Oi*r,gi*1) with creep time t, at

after shearing, using [ 10. 19] and

v v, lso ={$ ,rr, t ,Pot+Pi+t ) 
(-;) 

,Po2+Pm,l, 
t,lt ,2Pi*t-Pn, *

"o Po1 P3 Pm

tf,P,vt'lt- K - .Por*Pi*r,'l+e J*vt"t por JJ-e.,,iso

(zq(a+.Sbp )z
-r. =.1 : 't[((e-e 

)s s, rso 
L 

.Pi*r-P, v v, lso +e
v, lso

,rr,Po1*Pi*t, ,
Po1

K
V

vD.-e'. l+v1

s, lso
Ì
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where ev, lso

IIO.22J e . =v, lso

is the strain after isotropic stressing, and is given by:

À
v

À
v

In(
Po2 o Pi=o-

-)

Po3

-,Poz*Pi=o.tn(_J +
Po3

t +t
tn{o[ ")

o

tntl + ,Po-r*Pi=o,ã
"o Pol

ú
v+

,l!

v

The shear strain, es, iso
stressing and is equal to

is found from [10.5] r+hen

in lLO.21l is the strain after isotropic

zero fron t10.11. The stress p, in ÍIO.2I)

we know the cument stress state (p,q).

10.4.2 Prediction of test llST2

The mean stress p = 280 kPa was kept constant throughout the test.

deviator stress increment, Âe, was Lzo kpa. Temperatr:re was -3

The loading history is given in Table 10.1.

Table 10.1 Loading History of l{ST2, p = 28O kpa

q (kPa) 120 240 360 480

Duration (h¡s) 475 504 1006 1393 984

Eqn. [ 10.2L] na-s used to pnedict the (", - r,r, i=o) vs. t and (r=

€- .^^) vs. t relations. Fig.10.4 shows the comparison between thes, lso
predicted and the observed volurnetric and shear creep strains.

GeneralIy, the model overpredicted the shear strains and, underpredicted

The

co.
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t,he volumetric strains. The diffenence betl¡een predicted and observed

tended to increase with elapsed time. However the rnodel showed some

interesting features. Its predictlon of the start of dilation a¡rd the

onsel of tertiary creep corresponded with the observed tine, which r¡as

approximately 3300 hours. This is very significa¡rt in view of the fact

that the model was calibrated by rneals of an isotropic conpression test

which did not, involve shear strains. Details of this prediction a¡e in

Table 10.5. of Appendix 10.2.

10.4.3 Prediction of test l,lSTlO

This was a consta¡rt cel1 pressure triæ<iaI compression test.

Temperature lrzrs -3 Co. The loading history is given in Table 10.2.:

Table tO.2 Loading History of I{ST1O, c, = 7O kPa

q (kPa) 100

p (kPa) 76.7 83.3 96.7 103.3

Duration (h¡s) 744

r20 140 160 180 240 2AO

110 L16.7 723.3 130 136.7 150 163.3 776.7 1S0

372 503 154S 1223 719 AO7 13 19

Eqn. [ 10.21i in conjunction with I LO.22] is used to make the prediction.

r44r77
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Ðetails a-re in Table 10.6 of Appendix IO.Z.

observed shear a¡rd volumetric strains with

roodel, is shown in Fig. 10.5. It is seen that

observed and predicted shea¡ strains is guite

there is poon agreement between predicted

strains.

A comparison of the

those predicted by the

the agreement bet,ween the

good. On the other hand

and observed volu-netric

10.5 Discussion and Conclusions

In calibrating the EVP nodel, deterroining the scal.ing fr:nction is very

important becar:se it controls the magnitude of all the visco-plastic

strain rates. Thr:s, arìy erron in this function, significantly affects

the predictive accuracy of the mode1. In this part,icular study, only

one multi-stage isotropic test wa-s available for determining the

scaling function. The fact that it rras a nulti-stage test rather t,han

a series of single-stage tests, made the procedure for finding the

scaling function more complicated than necessary and subject to

inaccr:racies- This may be the source of the obtained d,iscrepancies

between measured and predicted creep strains, particularly volqmetric

creep strains.

Accurate establishnent of the neutral line in Fig.10.1 is essential to

the model predictive capability. In this study, the neutral line r¿as

based on results from constant, mean normal stress triaxiaL tests. The

increments of stress used in the tests were reLatively lal-ge and this
nade it impossible to define the neutral line accurately. Fr:rther



8
o
I
U'tt/

I
tn

v

¡\J
CIl

MST lO, A q /Ap =3

TEST DATA (€r- €.,,.o)
TEST DATA (€v- €v, rso)
PREDlCTIONS

\oo-

:
o
9

\t/
I

v

-l

-2

-3

-4

Fig.10.5

ACCUMULATED TIME (HRXIO3)

Pnedicted and measured (e -e ) vs. t and
S S, ISO

(e__-e__ ,_^) vs. t for a multi-stage, constantv v, lso
Ín, triaxial compression creep test - I'íST10

J



tests wiLh smalLer stress increments r¿ould inprove t,he accuracy of the

model.

It should be noted lhat there are a numben of a-ssurnptions in the mode1.

The flow ruLe in Eqn.[10.1] â<sumes that the visco-plast,ic strain rates

are normal to a flow surface r¿hich is identical to a visco-plastic

potential function. This flow rule is similar to the associated flow

rule used in e1a-sto-plastic t,heony. It is assumed. t,hat the frow

surface is an ellipse in q-p space. The real srrrface should be

determined from a senies of tests. The time-independent part of

strains is assr:med to be isotnopicaJ.ly elastic. The scallng functlon S

is simplified by r:sing e,, instead of errr. As point.ed out for 1-D EVp

models in chapter 5, sone assurnptions are made to find ;tp in the
vm

scaling function S.

Despite the differences between observed creep strains and those

predicted by the model, the nodel presents a. rational framework

representing the complex behaviour of frozen soil. Fr:¡ther test,ing is

now needed to exannine and refine the assumptions r:sed in the mod.el, and,

to provide additional data for its vaLidation.

¿J¿



Chapter L1

CONCLUSIONS A¡IÐ ST]GGESTIOI{S FOR FIJRTHER YORK

chapters 3 and 4 discussed the framework of t,hree-mod.u1us

hypoelasticity models and their applicat,ions to three different soi1s.

chapters 5, 6, and 7 presented the generar theoretical work of 1-D

Elastic Visco-Plastic (EVP) models and the detailed construction,

calibration and verification of the models. chapters g, g and 10,

contained the framework of 3-D EVP models and their applications to

sand-bentonite buffer materials and a frozen sand. The featr:res and

limitations of these models have been discussed following the

presentation of each model. This chapter wiII summarize those

discussions starting wit,h 3-D models, draw some conclusions fron the

models, and make some suggestions for further research in this field.

11.1 3-D Elastic Visco-Plastic (EVp) ìlodels

The features of 3-D EVP models

structure, calibration methods and

may be summarized according to the

functions of the models.

1. Structure of 3-D EVP models:

(1). Tota1 strains are the sum of
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time-independent strains (not



necessary elast,ic) and time-dependent strains.

(2). The time-independent part of total strains nay be modeled. by a

isotropic model a-s for the frozen sand, on by an anisotropic KGJ

model as for the sand-bentonite material.

(3). The time-dependent part of the tot,al strains is calculat,ed using

a flow ru1e.

(4). The flow surface defined in Chapter 8 uray be elliptical as useld

here in the models for the sa¡ld-bentonit,e material and the fnozen

sand, on some ot,her shapes.

(5). The strength envelope (or zero ;:p Iine) may be curved inv

q, p-space and smooth on the n-plane as used in the model for

sand-bentonite (or in the nodel. for the frozen sand).

2. Methods for determining model paramet,ers:

( 1 ) . A number of single-stage isotropic consol idat ion tests at

different confining pressures are preferred to find t,he

parameters fon scaling functions. The procedr.¡re using this type

of tests is simple. A multi-stage isotropic consolidation test

may also be used to find aII parameters in the scaling function

as shown in the ¡nodelì.ing of the frozen sand. However, in this

case the procedure for finding Lhose parameters is more

complicated than that using single-stage tests.

Q). The ultimate strength envelope used in the model for the sand-
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bentonite material may be found from a number of undrained or

drained shear tests. The ze?o ;Ip line in the modeL for theV

frozen sand can be for-nd from a number of multi-stage q creep

tests at consta¡t mean stresses.

(3 ) . The modul i K, G, J (or K, G) can be deterrnined. using the sanne

procedure as that in hypoelast,icity models using

unloading,/reloading data in isotropic consolidation tests and

undrained shear tests.

(4). The flow surface here r+as basically assumed and further work is

required on its experimental determination.

3. The models can consider the following characteristics of soil
behavior:

( 1 ). Non-linearity: models are sets of nonlinear differential
equat ions.

(2). freversibility: no unloading,/reloading criteria are need.ed if
using a logarithmic function for creep, i.e. Eqn,Ig.zz], [9.7] or

[10.11]. For loading, positive strain rates (or positive stress

rates) are used. Negative strain rates (or negative stness rates)

are used to model unloading.

(3). rnherent anisot.ropy is described by the KGJ model; induced,

anisotropy is described through the flow rule equations.

(4). Tire and strain effects: like creep, reraxation and. strain rate
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dependency.

(5). Loading

loading

stresses

history: if only final states are the same, but the

histories to the states are different, then the final
or strains wiIl be different.

The work of 3-D EVP modelJ.ing is stiLl at preliminary stage. There are

a number of uncertainties and limitations in the modeLs at this stage.

1,. Uncertaint ies:

(1). The flow function eras assumed. The real shape of this flow

function in q,p-space and on n-pLanes may be identified by using

appropriate tests.

(2). It is unclear what is the suitable evolution law for different

soils, that is experimental studies are required to examine what

evolution law are most suitable to desribe the behaviour- of soiIs.

(3). The suitable scaling function is also not known with certainty.

(4). The stress path dependency of time-independent behavion is

largely unknown. Adequate testing progran have not yet been

undertaken.

2. Limitations:

(i). The models can not considen any time or strain rate effects

related to the swelling potential of soils such as the
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sand-bentonite material described in t,he Chapters 8,9. The work

on sand-bentonite therefore relates only to it,s compression (not

expansive) behavion.

(2). The models can not produce the hysteritic loops in unloading-

reloading as found in aII soiIs.

Based on the research done so far on 3-D EVP modelling, the foLJ-owing

suggestions are made for its further development.

7. Better understanding is required for the physical basis of the

flow ru1e, flow surface and visco-plastic potential function.

2. The evolution Law in Scaling Methods 1,2,3 of Chapter 8 should be

given further study.

3. Other scaling methods should be developed. For example, use

oedometen tests to find the scaLing function.

4. Develop test techniques to measr:re the shape of flow surface.

5. The constructed models need more verification for different soiLs

and more general stress states.

6. At a later stage the models should be incorporated into numerical

analyses, such as finite element analysis.
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1.t.2 1-D Elastic Visco-Plastic (EVP) l{ode1s

Compared with 3-D EVP models, the study of 1-D EVP models is more

complete. The features of this type of models are:

1. Structure of 1-D EVP models:

(1). Total strains are the sum of time-independent elastic strains

(i.e. instant) and time-dependent visco-plastic strains.

(2). Some important concepts are defined and used in constructing the

EVP models. These include the "instatrt time line", "equivalent

time", and "reference time Iine".

(3). The general framework that has been d,eveloped provides wide

applicability of 1-D EVP models to different soils. For example,

Iogarithmic functions or power functions may be used to

particularize the general formulation depending on the nature of

the soil.

2. Methods for detenmining the model parameters:

(1). The number of parameters depends on the fitting functions.

Q). Two nethods have been developed, an analytical method and a

graphic method.

(3). It is pneferable that a number of single-stage creep tests at

different pressures are used to find the paranneters. In this
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case, we may use the analytical method or the graphic method

depending on the complex of the fitting functions.

(4). multi-stage creep tests can also be used to find the modelling

parameters. However in this case, only the graphic method may be

used- In general, the procedure in finding the parameters is

quite complex.

3. The model has the following capabilities:

( 1 ). Non-linearity.

(2). Time effects: such as creep, relaxat,ion.

(3). Strain rate effects.

(4). First Ioading and unloading./reloading: no unloading./reJ.oading

criteria are needed if a logarithmic function is used for creep

i.e. Eqn.[6.3]. If a power fr:nction is used with limits to the

region of creep behavior (for example Eqn. [7.4]), then the 1eft

side of the infinite time line (see Fig.T.z) is pure elastic, the

right side is elastic visco-plastic behavior.

The uncertainties in the models are:

1. The slope of the elastic line in the models may depend on loading

history.

2. The infinite time Iine is extrapolated.
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The li¡nitations of the nodels a.re:

1. They can not consider any tine and strain rate effects resulting

from the swelling potentials in the soil.

2. The capabilities of models need further validat,ion.

Suggestions for further resea¡ch:

t. Apply the models to solve consolidation problems, compare

calculated values with meastu'ed vaLues. Thus validation of the

model can be examined,.

2. App1y the model to different soils, alrd compare the predicted

nesults r¿ith test data meaeured in the laboratory.

11. 3 Three-l{odulus l(ypoelasticity l{odels

The proposed three modulus hypoelasticity models are used for

descnibing tirne-independent stress-strain behavior. The features of

the model are:

1- The structure of the models is simple. There are three moduLi in

the modeI.

2. New methods have been suggested to deternine these moduli fr:nctions

using isotropic consolidat,ion tests and undrained shear tests or

drained shear tests.
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3. The model can account for non-linearity, anisotropy, and the

coupling of q,e*, and p',cs.

The limitrations of the model are:

7. The model can not consider time effects, or cyclic effects.

2. The applicability of the models to general stress states and more

complicated loading conditions, Iike unloading./reloading, needs

funthen examination.

3. In general, the model should be applied only to monotonic on

pnopot ional loading condit ions.

The suggestion for the development of hypoelasticity models is to apply

the models to solve boundary value problems, and to examine the

validation of the models t¡nder general loading conditions.
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APPENDIX.6.1 Alternative lþrivrat,ion of t6.261 for Rela*ation Test,s

During relaxat,ion the total strain e= is kept constant a¡rd it appears

reasonable to aesume that the tot,at tine-independent pì.a-stic strain esP
z

is also constant. That is, the viscous creep strain elp increases,z
r¿hiIe the elastic strain "Z d.ecreaqes at the sâme rate (Fig.6. 12).

This is similar in principle to the condition e D

"a, = -"',, in und¡ained

tniæ<ial tests in Critical State nodelling. Using this assumption at a

point such ac (i+n) fon example in Fig.6.72, the increace of viscous

creep strain fron [6.4] must equal the decreaqe of elastic strain from

[6. 1]:

t6.311
K--v rn

c' . +dc'z,l+n - z, i+n = ú ., -c' V^"z, r+n

t,. +dt - +t
1+n, e I+n o

t. +t
r+n, e o

dø'
t6.32t -;;'=

z, L+rL

Since dø' , ,_ , dt. ,_ a.re small, [6.31] reducesz, l+n i.+n

dt.
1+nil--rr+n, e o

integrated directly because the equivalent time

is different from real time t. However a.

and t^ can be for¡nd as folLows. Relaxation frome

Fig.6. 12 produces the nel.ationship:

=vv

Eqn.[6.32J can not be

t. in the denominator

relationship between t

point i to point, i+L in

16. 33l

l{hen dt,. and da'i ---- -- zi

16.341 ti*l, 
" 

=

. øt.

^-K 
- zI+ _ tn' r ^^'-t'=ãF.

ZT ZL

[6.33] can be combined to give:

$t" =$r'

are small, [6.32] and

À+-
K

t.
1e

dt.
1
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using the same procedure from point (i+1) to (i+2) ln Fig.6.12:

t6.351 t. ^ =f,. - + L¿t-i+Z,e -i+L,e rc --i+1

Now repla"" ti*1,s wit¡ [6.34]:

16.361 ti*r,. = ti" * à (dt.+dt.*r)

Sinilarly for any general point (i+n):

16.371 ti*rr," = ti" * à (dti+dti+1+dti+2+ ... *dti*rr_l)

Whenn+co, t6.37 1 becomes:

t6.381 t =1. *It
EIEK

Substituting [6.38] into the relaxation equation [6.32] for any general

point produces:

dq' dt
r6.3er -; ;=Y ----r _z '-i"* ã t*to

Integrating [6.39] r¿ith initial values t = ti, nL = n)i produces the

same equation as [6.26].
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APPEI¡DIX 6.2 An Eryinical l{odelling Equetion fon the CRSN Test

Under CRSN conditions, the theoretical solution tO.Zgl shows that

stness-strain lines for different strain rates are paralleI, with

approximately equal separations for each tenfold change in strain rate

Figs.5a,b. The slope of these CRSN lines is almost (but not

completely) egual to the slope of corresponding lines in srD tests, see

Eqn. [6.28i, Figs.4,5a,5b. From this, the foì.lowing empiricar egr:ation

is suggested to fit experinental data:

where À is nohr evaluat,ed frorn

ln(stress)-vertical strain space.

parameter Ø ..tt be found from CRSN

point,s A and B have the sa¡ne strain

[6.40] e = î. In(a'/a' )zzzo

[6.41] e = À- In(q' /a' )zA zA zo-

16.421 = À- ln(ø' /a' )zB zo'

tlt/L
+ 

'y' 
1n(---")

ez

ú,tt.^
+ r/ 1n(- ")

ez^

ûtt
+ r/ In(---)

¿
ZB

the sì.ope of

The value of t,he

data as follor¿s.

e = e then:ZA ZB'

CRSN tests in

viscous plast,ic

In Fig.5a, when

this accuracy, the same

thenpredicts[=0.030

and t6.421. From these

and these two equations can be solved for [:

t6.431 ú = x tn(c' la' )/In(ä lèzA zB zA zB

In Bäckebol clay (SäIIfors 1375) À is 0.41, at

as the value of À,/Y given earlier. Eqn. [6.43]

and allows øl- ar¡d t^ to be found fron [6.41]zoo
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it is easy t,o calculate the relationship between st,ness and strain rate

fon diffenent strains in [6.40]. Fig.6.13 shor¿s that results computed

from [6.40] agree well with the neasu.ed test data.

If it is again aesr:med that the pneconsolidation pressures nL"

corresponding to different strain rates all occur at the same vertical

strain e_ = constant, then [6.40] can also be used to evaluate thez

relat,ionship between o'-^ and å-. Fie.6. 14 shows t,hat the modellingzcz"
matches the test dat,a closely. Eguation [6.40] fras the sâme

mat,hematical fonn a-s that suggested by Kabbaj et aL. (1986) but the new

fornulation gives clearer insight into the mechanisns of strain rate

dependency in CRSN testing.
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APPENDIX 8.1 Flow S¡nface and Strength Envelope for Anisotropic Soils

It was shown by earlier researches t,hat the yield loci of natu¡al clays

are not, symnetric to the p' a><is in q,p' space, and are tirne dependent

(crooks and Gratra-n 1976, Tavenas et aI . 1978, Graham et al . 1gg3,

Graham et, al . 1388 ) . The "yield loci " or " yield sllrfaces,' used by

these authors ane called "flow surfaces" in the elastic visco-plastic

modelling that, has been developed here.

This Appendix wiIl develop an appropriate urathenatical function to

model both asymnetric flow su¡faces and strength envelope. This

function nay be used in EVP nodels to describe the time dependent

stress-strain behavior of anisotropic soils.

Asymrnetric flor¿ surfaces in p',q-space nay be described by

fo1 lowing mathenatical eguation:

the

lg.4zl F = q2 * Ap,t - ro,c - Ap;(z-n) o,D = o

where parameters A may depend on Lode angle as defined in [8.9], B is a

constant controlling the degree of asyrunetny of t,he flow surface, n is

a constant which controlls t,he shape of the flow surface in p',q-space

(Figs.8.10, 8.11). In Eqn.l8.42J n, is a paraneter on mean stress, p',

axis. From [8.42]:

[8.43] p' ='m t(q2 * Ap'2 - Bp'q) / Ap'n rr/(Z-n)

If a state point (p' , q) is

flow surface in Eqn. [8.421

known, using [8.+t] r¿e can find p'. The

is a nodification of the yield function
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proposed by Desai et ar. (1986, 1987) for initicalry lsotropic soiIs.

The strength envelope is again- defined by points

surfaces where normal vectors are perp,endicular

ôF/ôP' = 0, see Fig.8.10. From [8.42J:

18.441 *,= 2Ap' -Bq -Anpl(2-n)o'n-l = 0dp' ^n

from which:

18.451 2A - s?f -*o;t' ' oit-' = o

on

to

successive flow

p'axis, nanely

where nf = qf/pf. On the strength envelope, ESn. [S.42J can be written:

ts.46 I ,?+A-s?f Ao'(2-tt)oit-'=o

Using [8.45] into [8.46]:

tl.4rt ,? - (r - |le'r, + (1 - lla = o

Eqn.[8.471 is the strength envelope in p',q-space. A new technigue is

developed to generalize the flor¿ function F in Eqn.[8.421 and the

strength envelope in Eqn.Ie.47] in p',q-space into expressions for
general th¡ee-dimensional stress st,ates.

The three dimensional strengt,h envelope is aesumed to be:

[8.48] ,, =

where M isc

p' , q-space,

Mc (t+
(1 + P¡m

the slope of

0 is t,he Lode

Bsin3o ) 
m

the strength envelope in compression

angle as defined in Eqn.l8.9l, m is

IN

a.
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constant controlling the shape of the strength envelope on r-pLane

(Fig.8.12). The pan'ameter F in [8.48] can be found as follows. I.Ihen

0 = -3Oo ?f = M. in triæ<ial extension, from [g.48]:

M

18.491 t^= c ( r-B)m=Mt (1 * F)* e

from which:

1 - (M t¡'t )t/^
l8.5ol Ê= t t,,

1 * (t,t /14 )I/nec

The parameten A in [8.42] is then found from [8.4G] using l9.47l:

?î;-(1 -1,2n)Ba, f u
I8's1l A= =ttefu(t+Êsin3o)'12*

Ml
- B(1 - t/n) " = 

( t + Fsin3ol^l I (t - 2/¡)
(1 +B¡n )

l.Jhen l,. = M. in the case of triaxial compression tests in p' , q-space:

Ê.- t1 - 1.zn)BM.
t'.szl A=_+

l.lhen I,. = M. in the case of triæ<ia1 extension tests in p',q-space:

#*t1 -1,2n)BM
18. 521 I =

Using Eqn. [8.421:

18.531 q=o.S{Bp',. l

Eqn.[8.53] can be used to calculate the flow surfaces in p',q-space.

For example, the stress pararnet." p; = 2OO kPa, the friction angle f,' =
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Cl = 35o which leads to M^ = 1.418 and M- = 0.963. Fig.8.10 shor¿s the'e c e

comparison of the flow surfaces in which the pararneters n = 1, B = O;

n = 1.5, B = 0.25; n = 1.9, B = 0.25 respectively. It is seen from

this flgr:re that when n = 1, B = 0, the above flow surface ls half an

ellipse with æ<is length M"n, ln q direct,ion; the below flow surface ls

half an ellipse with axis length M"n, in q direction. The influence of

the parameter n on the flow surfaces can be seen fro¡n Fig.8.10 when

n = 1.5, B = 0.25; n = 1.9, B = 0.25 respectively. Fig.8.11 shor¿s the

influence of the parameter B on the flow sr:rfaces when n = 1.5,

B = 0.25; n = 1.5, B = 0.5 respectively. The larger the value of the

parameter B is, the more stronger the anisotropy of the flow surface

will be.

Eqn.[8.48] is the equation of the strength envelope for generaJ. stress

states. The strength envelope in p',q-space is represented in this

model by two straight lines with a slope M. in compression and M. in

extension, see Figs.8.10, 8.11. The strength envelope on n-plane is

shown in Fig.8.72. It is seen in Fig.8.12 that, the strength envelope,

Eqn.[8.48], is snooth at the corners of the Mohr-Coulomb strength

envelope.
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APPENDIX 8.2 llodified CarCIay Modet

The Modified Carn-Clay Model ha^s been suggesLed for tine independent

stress- strain behavior (Burland 1969, Roscoe and Bur1a¡rd 1969). This

nodel. uses:

(1). Totat incremental strains are divided into ela-stic increnental

strains and plastic incremental. strains:

[8.s4] ae..=deÎ.+aef.rJ lJ lJ

where the elasticity is isotropic. Grahan and Houlsby (1SA¡) suggested

a simplified transverse anistropic eIa^sticity to calculate the ela-stic

strains.

(2). Associated flow rule:

t8.5sl del. = ds ôF
' --ij '" ãõl .1J

where F is a yield function which is identical to the plastic potential

function for t,he soil. The geometry of the yield function is a yield

surface which is assumed a ellipse:

t8.s6l F = p'2 - p*n' * qznf = o

where the pan'ameter p' is:

2
I8.szl p'=Þ'+ 9=' -m ' o'r?

(3) Logarithrnic strain har.dening law fron isotropic st,ressing:



t8.s8l deP = À;* dD'/o'vm V 'm'm

under triaxial stness states, the constitutive relationship is:

[or,, = fu.,00' 
+ as ffi,

t8. ss I .{

l. 1

Lo"==äoo.orfr
where the isotropic elasticity is characterized. by two mo¿uli, butk

modulus p'Y/r< and shear nodulus G. The plastic volumetnic strain at

any point is:

tg.Gol deP = o= 3å,= ds (2p' - p;)

The strain hardening law states that the plastic volumetric strain on

the yieì.d rsu¡face is kept t,he sarne. using this condition, that is
deP = arl-, from Eqns.18.s8l and [g.60], the scare factor ds is:v vm'

t8 61r as = +¡;12þre
Using the consistency condition, that is the cument stress point must

be kept on the yield surface, from Eqn. tg.56l or [g.57]:

ts.62, anå = [(2p' - pr) ap' *'å oot , o'

Thus Eqn. [8.61 ] becomes:

t8.631 as = + #F="e r(2p,- p;) dp, *rþ oo,

Using [8.63] into [8.59]:
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APPEI¡DrX 9.1 correctior¡s in the calcurat,ion of vol'ræt,ric strains
in Isotropic Consolidation Tests

The calculation of volumetric strains in isotropic consolidation tests

on sand.-bentonite buffer naterials ls not as sinple as ls conrnonly

a<sumed. Specimens of sand-bentonite conpacted in the usual rray wlt,h a

hydraulic jack in a compaction mould are not fu1ly saturated. The dry

density obtained after compaction is not equal to the designed dry
-)

density which is rd. = 1.67 l4g/m". In installing the specimen into a

triæ<ial ceII, the specimen nay get access to r+ater and swell. This

happens, for example, when the top valve (and,/or botton valve) is open

or when thene is excess r+ater on pedestal. Then the specimen absords

water and swells before taking the initial bureLte readings used fon

establishing volume changes. The dry density of the specimen is

changed by this process. subseguent volr:me change readings do not

reflect the real volume cha¡ges taking place in the specimen when

expressed in terms of r.,¡ater content or specific volune. Sucking some

r+ater before taking burette readings is usually identified by measuring

the f inal r¿ater content at the end of the test. In the t,est ing of

sand-bentonite bt¡ffer materials at the University of I'lanitoba, many

?tests have been done on low density buffen, Zd. = 1.SO Mgln". l.Ie nay

v¡'ant to use them t,ogether with the test data on high density buffer to

study the behavior of the sand-bentonite mixtures. In this Appendix,

we present some techniques to correct these variations and to calculate

the real volumetric strains, using the dat,a of T1001 and T1002 as an

example.
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Correction on dry density:

?The targeted dry density wa-s Td.= I.67 l,lg/n". The dry density after

conpaction and before putting ln a tniæ<iaI cell is zoo r¿hich nay not

egual rd. The engineering strains are defined referring to the

targeted dry density. This neans that the configuration represented by

the targeted dry density is used to be a reference at which the

volr:metric strains a¡e zero. This reference ca¡r be chosen arbit,rarily,

but as long as it is deternined, it, should be used in all calculations

of volumetric strains, specifically when relating them to specific

volumes in the specinens

Volu¡netric strain is:

v,-v
tS.19l t,, = 

ï

where V, is targeted specific volume refenring to Zd = I.6T lig/m3, V is

ctrrenL specific volur¡e. Using Vo to denote the specific volume

coffesponding to the dry densitv 
"do 

after compaction, [s.19] can be

written:

V. -V +V-V Vt-Vo Vo-V
t9.2ol e = " ==o== 

o v'-v -Tiv[uo= \-*-f
V

o-v,

We know t,hat V
o

volr:metric strain

[9.20] becomes:

= G=Tn/rdo, Vt = G=T,/T.. Using rrro to denote the

refeming to Vo, the configuration after compaction,
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LS.ZL] "r, = (1 - tO/rOo) * "rro rd/Tdo

This equation allows for differences of targeted dry density and

neasured dry density. The difference in the dry densities ha-s a

relatively large correction on volumetnic strains. For exanple when

Zdo = 1.57 and I.77, with respect to ZO = 1.67, the starting values of

(t - zo/tdo) = -6.369 % and 5.114 % respectively.

Correction on vohæ changes in installation

When being instal.led, a specimen nay get access to water such ac any

excess water on the filter stone, or r¿ater in a burette where valve is

not closed. As a result, the r+ater content and voids ratio of the

specimen increa-se, and the dry density decreaqes. The increaqe in

water content can be found by cornparing the meaqured r.+ater content at,

the end of the test and the r¿ater neasured 1n t,he buret,te with the

initial r¿ater content after compaction. The change in initial water

content should consid.ened in the calculation of volumetric strains.

Let w. denote the increased water content after inst,allation, and w1"e

denote the r¿'ater content at the end of test, for example in a cIU test,

at, the end of undrained shearing. Also let AI/0, denote the waten volume

meaqured in the burette. l.Ie have the foltowing eguation of water

conservation, assurning there is no leakage:
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LVx
lg.22l ti = *. * -ftJS

where I.i= is the total weight of soil ln the specinen a¡rd ls unchanged

throughout the test.

V

t9.231 w= = G=7"v= = G=7" rå
o

where e is init,ial void ratio aflen compaction, I/^ is the total volu¡ne-O-- O

of the specinen after conpaction. The void ratio increnee in the

installation is, using 1,9.221, [9.23]:

G w. ÂI/ ( 1+e, )

ls.24l ", = €j = G=["" * -Fìzsr.

The dry density decreace in the installation is:

G

ts.2sl ,ai = r *? 
"0,I

The corresponding volume of the specimen increase in the installation

is:

19.261 7i = (1 + e.) W=/(G=zor)

Example 1, T1001:

ts.26l w= = 2.7 #H* = 337.+7 (e)

ls.27l t, = o.2179 .'# = c,-2862

ts.z8r ", = ''Éi3¿37ut = 0.7803
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where S. ls assumed to be S__ = O.S9O4 which ls the lnitla] degree ofnl ro

saturation after compactlon.

ts.zsl ,¿i = THrñf = 1.5166 (Mezn3)

t9.3ol [i = 337.47 (l + 0.7803) /2.7 = 222-SZ (c¡n3)

Example 2, T1002:

te.31l H= = 2.7 r#*å:- = 341 .zz G)

t9.321 "i = o.2o7:- * #r, = o.21oo

ts.33t ., = ''ãiSfått = o.Go2B

where S ls assumed to be S = 0.9410.I-1 ro

ts.34l zdi = ,+;* = 1.6846 (t'tezm3)

19.35) Vi=347.72 (1 + 0.6028) /2.7 =202.85 (.t3)

Correction for trtsatr¡ration

The compacted specimens are not fully saturated. However they become

saturated after using back pressure and long consolidation time.

During the process of saturation, t,he specimens need to take in some

r*ater a¡d this is recorded with the burette readings. The changes of

burette readings part,ially compensat,e the saturation and do not reflect

directty the neal volume changes. lJe know that when the specimen is

not saturated, the r*ater content w = S"e/G=; when satu¡'at,ed w = e/G=.
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ts.36l aw=(1-sr)f=C1 -sr)(lz -1)/G
= 

' 7do't s

The amount of r+ater taken in to nake the specinen saturated can be

calculated as fol}ov¡s:

t9.371 aW = Aw l.I= = Àw G=V=Z', = Aw GsZw 1ä
o

r.¡here v is total volume of the specimen. The volume of Ât.J, using

[9.36], [9.37], is:

ts.38I w - LV/rr= (1-Sr) ,a- t
o

For example in T1001:

ts.ssl w = (1 - o.ss04) #ffi zor.r1 (cm3) = o.zgoz (cm3)

For example in T1002:

Is.4ol ¡r¡ = (1 - o.s41ol f*.ffiõ. zot. s ("*3) = 4.4206 ("r3)

The final corrections in the calculation of volumetric strains are,

using [9.2I] and pnevious data:

for T1O01:

le.41l e =(1 -1'9T=l*(av-l-o'7307),, 1'q=' -v r.str' zzz.s- ^ 1.517

for T1002:

The difference on wat,er contents is:
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r^ .^r r. 1.67 ' (^t/ + 4.4206) 1.67t 9 L2 I e = I I I + _' -v 1.685' 202.85 ^ 1.685

r.rhere (w + O.73O7 ) is the volume change modified on unsaturation for

T1001. The equivalent expression for T1002 ls (w + 4.4206). The

corrected volr:metric strains are in Appendix 9.2
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^APPENDIX 9.2 Test Ilata in Isotropic Consolidation Tests and Undrained

Shear Tests

1. IsotroPic Consolldation Tests

(1). T1001

Dry dens iËy = 1. 517 H9,/m^3, des igned dry density = 1.67 Mg,/m^3

ELAPSED CELL PWP

TTHE PRESSURE À1 BOTTOH
( HOUR ) kPa kPa

':::-t::' = :'-:-:-:o o 

-1n-:---

þ t ¡l.l.¡

GUAGE
nm

voL.
CHÀNGE

ml

voL.
STRÀIN

3

^ 
ñl.EÃL.úÞ ù tr

P9TP ESTI HÀTED
kPa kPa

Drained at
0

0.016655
0.033333
0.115666
0.283333

1.5
8.67

15.57
35.35
61.03
84.55

154.15
227.62

Drained at
0

0.033333
0.083333

0.55
1.465556
4.033333

L2.L5
22 .56666
51.38333
95.11656

168.35
264.45

382.9
458.28
525.93
695.75
862.45
1055.4
1199. I

1558.43

top end
13 09 6 796

29L 606
352 565.3333
47L 486
499 467.3333
508 451.3333
492 472
471 482
453 498
393 538
340 573.3333
27t 6L9.3333
205 563.3333
200 556.6565
158 694.6666
119 720.6666
90 740

-'t6 850.5556
-260 973.3333
-285 990

both top and bottom ends
596 501 2.52

2.645
2.66

)1
2.735
) 1AQ

2 .69
2.52

) aÀ'l
2.225

L.4
0.71
0.38

10.2 -9.50760
9.55 -9.18664
9.45 -9 .L3726
9.1 -8.96443

8.57 -8 .75210
7.45 -8.14968
6.83 -7.84353
7.7 -8.273L3

9.42 -9.L2245
11.45 -10.1248
13.16 -10.9692
t6.7 4 -L2.7369

19 -r3.8529

19 -13.8529
18.9 -13.8035
18.8 -13 .1542
18.6 -13.5554

18.36 -13.5369
17.95 -13.339 4

17 .11 -L2.9L97
16.38 -L2.5592
14.94 -11.8481
13.36 -11.0579
11.55 -L0.2236
10.25 -9 .53229

9 -8.91505
8.4 -8.61878

I -8. 42]-26
7.LL -7.98179
6.55 -7 .10527
6.L4 -1.50281
5.98 -7.42381
5.42 -7.L4't28

506
79L
852
9?1
999

1008
992
977
otr?
893
840
17L
705
?00
658
619
590
424
240
2L5

0.375
0.18

0.246
0.246
0.259
0.259
0.259
0.259

0.26
0.261
0.261
0.309
0.309
0.309
0.308
0.305
0.306

0.36
0.359
0.205

I day pwp equilibrium with both top and bottom ends closed
Dralned at toP end

0349026252.3725.42-7.L47282L251583.333
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0.03
0.95
6 .37

23.33
49 .08

102.L7
121.81
72L.82
L46.2

274 .85
338.38

504.2
672.77
867 .77
867 .7 7

1060.33
1343.09
L824.L2
1967.35
2280 .7 5
2642.85

bur e tte
adJ us ted

burette
ad J us ted

5.2L -7.04359
4.9 -6.89051

4.28 -6.58436
3.3 -5.10045

2.34 -5.6264L
0.94 -4.93510
0.5 -4.71783

9 .02 -4.7L783
8.5 -4.46106
7 ,2 -3.81913

5.37 -2.91550
3.45 -1 .967 42
2.02 -L.26130
0.71 -0.51443

17.05 -0.61443
L6.I2 -0.15521
14 .9 8 0. 407708
13 . 57 1.1039 52
13.21 L.28L7L7
L2.6 L.582929

L2 L.879204

2L25 L58 3.333
2L26 1582.656
2154 1554
2L54 156 4

2151 1559.333
2120 Is86.666
2092 1505.333
2092 1505.333
2061 L626
1983 1678
1858 1754.655
1647 L902
1480 2013.333
L3L5 2L23.333
1315 2123.333
1216 2189.333
9s4 2364
709 2527.333
674 2550.566
555 2629.333
468 2688

2625
2626
2654
2654
266I
2620
2592
2592
256L
2483
2368
2]-47
1980
1815
1815
17 16
1454
1209
LL7 4

10 55
968

2.372
2.372
2.372
2.372
2.372
2.372
2.372
2.372

2 .37
2 .37

2 .369
2.37L
2.373
2.432
2.432
2.425
2 .458
2.456
2,456
2.484
2.5L2

(2') . T1002

Dry density = 1.685 Mg,/m^3, designed dry density = 1.67 Mg/m^3

ELAPSED CELI
TIME PRESSURE

(HOUR) kPa

PI{P

kPa

GI ÀL
GUÀGE

mm

vor,.
CHÀNGE

mI

vot.
STRAIN

t

EXCESS P 'PWP ESTIMATED
kPa kPa

Back pressure = 500 kPa

Drained at top end
700 500

501
507.9
504.4
50s.8

506
500
505
505
509
509
504

504
820.5
t2t2

1233.5
1727

1070.6
875
615

0
0.05

0.417
3.73
L6 .2
39. 4

64.3
8',1 .L
87.1

135.7
t82.8
23]..4

bur e tte
ad j us ted

24.86 3.050053
23.55 3.590102
23.32 3.802477
25.L 2.932792

29.64 0.714609
36.11 -2.44654

40 -4.347t4
42.L8 -5 .4L226
26.5 -5.4L226
31.4 -7.80634
34.2 -9.17438

36.16 -10.1320

36 .17 -l_0.1368
35.27 -9 .69711
33.18 -8.67602
31.5 -7.85519

30.88 -7 .55227
28.55 -6.41386
24.I -4.23965
2L.5 -2.96933

0 200
r 199.3333

7 .9 L94.7333
4.4 197 .0666
5.8 196.1333

5 195
0 200
5 195.6566
5 196.6556
9 194
9 19 4

4 r9'7.3333

197.3
400
500
s11
586

619.6

Drained at
0

0.45
6.58

2L.36
22.9
50.7

167.1
335.1

top end
1500 4

320.5
1L2

733.5
627

570.6
375 750
116 9 22 .6666
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527
767.3
955.8

L254
1517. 4

1823.5
2rI4.3
252L.2
2955.3

Drained at
0

18.9
44.5
44 .6
90.5

152.5
311.3
598.3
931.4

L299 .6
1627.2
1890.2
2034.L

Èop end
3500

571
504
643
571
609
520
530
530
530

629
2330
1540
13 71
1358
1409
10 21

972
844
7L3
595
553
589

20.4 -2.43188
19.97 -2.22L79
19 . 71 -2.09 47 6

L9.62 -2.05079
19.46 -L.9726L
19.36 -L.92375
19.3 -1 .89444

19 .15 -1.82115
19 .15 -1 . I 2115

19 .15 -1. 82115
19 .15 -1.82115
19 .15 -1.82115
19.07 -L.78206

17 -0.77069
15.76 -0.16484

14 0.595066
L2.07 1.638038
11.05 2.136396
10.41 2.449092
10.25 2.527265
10.18 2.561467
10 .06 2.620097

7L 952.6666
104 930.6566
143 904.6666
1L 952.6665

L09 927.3333
20 986.6666
30 980
30 980
30 980

L29 980
1830 1780
1040 2306.666

87L 2419.333
858 2428
909 239 4

52r 2652.665
472 2685.333
344 2770.666
2L3 2858
95 2936.666
53 2964.666
89 2940.666

2. Undrained Shear Tests

(1). T1001

Dry dens ity = 1. 517 Hg,/m^3 r deslgned dry densltY = I.67 Hglm^¡

ELÀPSED CEtL
TIME PRESSURE
Hour kPa

PWP

kPa

GI.ÀL
GUAGE

m.m

ÀXI.âT
STRÀIN

t
EXCESS P ' q

PWP ESTIMÀTED
kPa kPa kPa

Back pressure = 500 kPa

Isotropic consolidation
4428.9 3500 968 468 2688

hour isoÈropic undrained relaxation
0 2455 0

36 2524.5 315 .704L
52 2508.s 315.6531
92 2468 .5 315. s895

r07 2453 .5 315.5608
150 2400 .5 315 .462L
183 2377 .5 315 .4L44

Step 1: q
0

0.016556
0 .117
1.23
2.92

23 .85
46.9

2.5L2

2L3.3
4.9

5.15
5.166
5.186
5.195
5.226
5.24r

0
0.251458
0.267551
0.287668
0.296720
0.32790L
0.342989

= 315.7 kPa. Àfter
3500 1045

10 81
1097
113 7
II52
L205
]-228
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118.6
L72.5
386.9
551. 3
695.2

Step 2: q
0

0.0167
0.18
L.2

3.57
24.5r

48.7
9 4.7

167.1
239 .7
311. 2

SÈep 3: q
0

0.03
1.1

5.22
7.08

20
4s.3
58.5
93.5

116.8
L44.3

Step 4z q
0

0.0167
o .67
L .67
2 .58
5.85
9.08
22.5

29 .72

Step 5: q
0

0.0167
0.17
0.32
0.4

0 .467
0.5

0 .52
0.533

686.8 kPa
3500

= 856.0 kPa

= 1041.9 kPa

= 1077.0 kPa

5.255 0.357071
5.26L 0.363105
5.278 0.380205
5.285 0.387246
5.292 0.394286

5.29 0 .392275
5.652 0.756387
5.725 0.829872
5.805 0.9L0279
5.866 0.971635
5.995 1.101388
6.02r L.r27539
6.075 1.181854
6.r78 1.285455
6.2t5 L.32267L
6.249 1.355869

6.249 1.356869
6 . 405 1.5137?9

5.5 1.509334
6.602 L.7Lrg29
5 .521 1.731040
6.715 1.825588
6.841 L.952323
6.902 2.0L3679
5.945 2.056930
6.985 2.097163
7 .023 2.135385

7 ,023 2.135385
7 .L75 2.28827L
7.445 2.559847
7.691 2.807282
7.855 2.972238
8.325 3.444980
8.725 3.847314
9.185 4.309997
9 .505 4.732448

9.605 4.732448
9.685 4.812914
9.803 4.931603
10.15 5.280627
10.44 5.572319
10.95 5.085294
11.54 6.678736
L2.22 7 .362703
14.6 9.755588

362 2322.833
415 2269.833
447 2237.833
503 2181.833
59t 209 3.833
660 2024.833
658 2026.833
56 3 2119 .117
905 1779.833
884 1800.833
994 1690.833

853 1884.633
828 1919.633
838 1909.633
805 19 42.633
823 L924.633
820 L927.633
843 1904.533
802 1945.533
813 1934.533
790 1957.633
850 1897.533

850 1959.856
871 1938.866
893 1916.865
905 1904.866
912 L897.866
934 1875.866
928 1881.866
894 1915.865
850 1959.866

850 1981.833
862 1969.833
874 L957.833
882 1949.833
888 1943.833
891 1940.833
893 1938.833
890 1941.833
890 l-941.833

315.3698
315.3507
31s.2965
3L5.27 43
3L5.2520

686.7952
684.2847
683 .77 I 4

683.2236
582.8005
581.90s9
68L.7256
581.3511
680.6367
680.3801
680.1443

855.9880
854.6105
863.7715
852.8709
862.7031
861.8731
860.7505
860.22L9
859.8422
859.4890
859.1534

1041.856
1040.239
LO37.347
1034.7L3
1032.957
L027 .924
1023.641
1018.7t-5
1014.218

1076.999
1075.089
L07 4 .7 48
1070.802
1067.504
1061.705
1054.996
L047.264
L020.20L

L2',15
L329
1313
t329
1390

7407
1450
L492
1548
1636
170 5
1703
1608
1950
L929
2039

1908
1873
1883
18 50
1868
1865
1888
1847
1858
1835
1895

189 5
19 16
1938
1950
]-957
19 79
I97 3
19 39
1895

1895
19 07
19 19
t927
1933
1936
19 38
1935
193s

230
284
268
284
345

2330.5
2276.5
2292.5
227 6 .5
22L5.5
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(2). T1002

Dry density = 1.585 Ïg/u^3, designed dry density = 1.57 Hg/n^:

HOTES EPLÀSED ÀXIÀL VTRTICÄL

ÀIID TII{E DISPL. FOCRE

SPEED Hour rur ¡l

Back pressure = 500 kPa

PM CEtt ÀXIÀt
PRESSURE STRÀII{

kPa kPa t

q

kPa

PrrfP

ÀFÎSR

SI{BÀR

kPa

p' STRÀIN

RÀTB

kPa l/hour

Isolrogic consol idation
5220.8 589 3500

Àfter 32.48 hour isotropic undrained relaxalion,
start undr.rined Ehear

0.183333 1.?00603 589.2747 805.554 3564.05
3551.350.15

nn/min
0.25 2.322544 839.5025 837.9288

2.51 911

29 40 .',I

0 0 02593.{46
0 167.7052 16.5752 2132,612

2.77 1988

2.89 2253
0.01 0.416566 3.086778 2220.LïL 1009.891

mn/nin 0.583333 3.181224 233L.427 1052.274
0.75 3.285079 2429 .983 1056.096

0.916655 3.3?8529 2512.311 1108.900
I.083333 3.475151 2585.195 I150.588

1.25 3.5ir659 2657.769 1183.244
1.{16565 3.655I09 27L2.080 1210.689

0.0006 1.583333 3.577569 2577.523 1218.331
nni nin

3557 0.188341 202.6407 24.7461 2735.246
3567 0.,t49558 731.7281 112.?{64 2824.508
355? 0.570135 860.9985 I42.7464 2837.599

3551.95 0.767847 843.1997 I88.6382 27A5.874
3550.55 0.852735 895.8715 23L02I 276L382 0.005693
3556.35 0.967080 944.1411 234.8424 2773.3t7 0.006260
3554.6 1.0609?1 983.{820 287.5472 2733.626 0.005533
3553.2 1.159056 10I8.092 329.3352 2703.,r75 0.005S85
3551.8 1.255013 1050.065 351.9908 2681.{?5 0.005757

3550.05 1.348904 I077.969 389.4354 2663.333 0.005533
3548,55 1.361423 L0t2.270 397.0782 2633.791 0.00075I
3547.25 1.368747 993.7929 405.7632 2518.94? 0.000.139

3541.3 1.38?525 975.3550 400.8996 2617.998 0.000175
3523.8 1.{61574 988.5487 46,r.1264 2558.835 0.000370

3499.55 1.537i51 1012.326 428.3442 2602.543 0.000380
3493.35 1.618059 1031.290 {31.8182 2605.391 0.000401
3497.9 1.581718 1055.129 467.253 2571..a02 0.000318
3497.2 1.756831 1073.512 495.045 2556.238 0.000375

3493 1.825586 1089.491 512.7624 2543.347 0.000349
35I6.2 1.913315 1107.97{ 620.I09 2442.561 0.000.t31

3487.05 1.966521 1108.659 589.5378 2{73.451 0.000256
3472.35 2.035375 1125.290 581.2002 2481.342 0.000349
3457.1 2.108350 1134.736 58?.4534 2484.238 0.000359

3480.05 2.188731 1144.925 594.054 2{81.033 0.000401
3480.75 2.263844 1155.8?0 602.0447 2416.692 0.000375
3{75.85 2.335827 tl55.269 598.2228 2483.5.{6 0.000]59
3468.85 2.409876 1174.058 592.6544 2492.L34 0.000370
3453.5 2.{89I83 r183.906 581.2002 2505.881 0.000396

3459.75 2.563232 1I92.381 573.557,t 25L7.349 0.000370

3458.15 2.640410 1202.354 569.736 2524..t98 0.000385
3{59.75 2.709764 1211.440 573.2L 7524.049 0.000344
:r586..t5 2.796896 122{.518 554.5762 2437.042 0.000438

3605.75 2.829257 1302.294 697.5792 2429.964 0.000420
3505.4 1.105717 I456.191 721.5498 2457.293 0.092.191

3575.65 3.4I8707 146r.730 720.1502 2460.545 0.093590

3565.8 1.733743 1457.853 72t.2024 2458.19{ 0.0945I0
1564.75 4.051909 I.t53.?34 725.3712 2452.653 0.095449
3564.4 4.353879 1449.008 729.8814 2{46.551 0.093590

290

845

934

964

0.15
mn/roin

1.75 3.6848s8 2539.?s3 1227.0L6
2.25 3.?03548 2504.343 L222.r53
4.25 3.177249 2530.901 1285.38
6.25 3.853068 2581.359 t249.597
8.25 3.932999 2522.080 1253.071

10.25 3.996358 2672.539 1288.506
12.25 4.0?1118 27L2.080 1316.298
1.t.25 4.140644 2746.604 1334.016
15.25 4.225868 2?85.735 144I.352
18.25 4.279823 2789.391 1410.791
20.25 4.349149 2825.391 I402.,t53
22.25 4.420994 2846.636 1408.70?
24.25 4.500988 2859.653 1{15.307
76.25 4.575i48 2894.1,14 L423.297
28.25 4.5.r7393 2915.390 1419.476
30.25 4.721094 2935.,t55 1413.9r8
32.25 4.800028 2957.881 l{02.453
34.25 1.873729 2977.357 1394.811
35.25 4.950544 3000.078 1390.989
38.25 5.019074 3020.733 i394.453
40. 25 5. i0629 4 3050.241 t,r85. s2e

41.02 5.138504 3213.126 1518.832
41.05 5.{l.r6i9 3542.{35 1542.803

41.08333 5.725183 3563.975 1541.413
41.I1665 6.038739 3555.746 1542.455

41.15 6.355409 3557.222 1546.624
{1.18333 5.6659I3 3561.222 1551.141



41.21565 6.9?9{69 3560.730 1555.657
0.01 41.25 7.060459 3322.89s t544.5{0

mm/min 41.28333 7.0?9149 3299.8?9 1542.803
11.31 7.091609 3291.027 1542.456

41.32388 7.100954 3288.655 1541.761
41.35527 7 .120703 3286.601 1511. {13
41.38851 7,137211 3287.191 1541.413

{1.{5 7.178829 329L.02',t 1542.I08
41.s8333 7.253589 3301.945 1544.5{0

{1.75 7.353269 33t3.158 1550.098
12.25 7.645079 3333.223 1559.825
42.75 ?.9399{8 33{0.305 1559.826
43.25 8.23481{ 33{0.895 1561.910

43.57.t44 8.{80899 3339,420 1565.7?4
0.0006 43.75055 8.487129 3202.503 1561.215

mn/nin 43.764i6 8.{91303 3193.550 1560.520
43.79583 8.489184 3175.241 1558.783
{3.82916 8.491303 3151.{54 i557.046

43.95 8.498529 3059.127 1551.835
44.25 8.505819 3101.290 1543.845
{5.25 8.545254 3103.651 1530.991
47.25 A.6i2788 3r31.388 1511.537
49.25 8.587548 3150.274 1505.531
51.25 8.760189 3157.093 1491.735
53.25 8.837068 3181.552 1491.735
55.25 8.906594 3195.{21 1495.209
57.25 8.984469 3203.978 1495.557
59.25 9.055118 32rr.355 L492.771
61.25 9.135049 3217.257 1489.651
63.25 9.214979 3219.912 1505.979

0.01 53.28333 9.228499 3316.699 1512.5?9
nn/min 63.31666 9.245129 3370.993 1518.485

53.35 9.263750 339?.255 1523.001
63.41666 9.3011{0 3419.387 1528.907

63.5 9.353099 3419.682 1535.508
63.58333 9.401A?9 3413.{85 t540.3?r

63.75 9.501559 3397.256 1545.235
63.91666 9.596059 3385.{52 r550.146

Unload 61,95 9.602299 3262.109 15s0.098
-0.01 53.98333 9 .602299 3019.848 1545.235

un/min 54.01555 9.589839 285?.58? 1540.024
64.05 9.577379 2762.243 1533.{23

64.08333 9.559685 2655.152 ls26.128
64 .16565 9 .521309 7449 .754 150?.716

64.25 9.476539 2256.18I 1489.551
54.33333 9. {3{089 2088.576 1470.891
64.{1666 9.390479 1937.790 1453.17.t
64.58331 9.290?99 1679.595 1389.252
64.55565 9.?4301.t I555.989 1370.493

64.75 9.t983{5 1461.531 1353.{70
54.83333 9.147509 1364.745 1334.363
64 .91656 9 .101780 1275.630 13I?.688

55 9.056114 1190.352 1301.707
65.08333 9.010449 987.0426 1288.85{

55.25 8.919054 830.0600 1261.755
55.{1665 8.822{89 699.63{6 1235.?01

3564,05 4.678915 1441.178 734.4036 2139.{35 0.094510

3563.7 4.750288 1328.056 723.2858 2{r2.844 0.02,r.r11

3553.7 4.779066 1316.968 72L.5498 2410.S85 0.00s633
r553.35 {.791585 13L2.622 72L.2024 2409.787 0.004594

3563 4.800974 1311.392 770.5076 2410.059 0.006750
3562.65 {.8208t5 1310.148 720.1602 2,ll0.001 0.006321

3561.95 4.83?.r56 1310.196 i20.1602 2{10.017 0.004s95
356r.25 4.8792L7 1311.{2{ 720.855 2409.732 0.005800

35s9.85 4.954330 1315.51{ 723.2868 2408.664 0.00s633
3557.75 5.054481 1319.387 728.8452 2404.396 0.006009
3551.{5 5.348573 1324.5E0 738.5724 2396.{33 0.005883
35{5.85 5.643930 1323.849 738.5724 2396.155 0.005905
3539.55 5.940188 1319.956 7{0.6558 2392.778 0.005925

353{.65 6.18?435 1315.813 745.5204 2385.530 0.00s825

3533.95 6.193695 t252.28r 739.962 2370.911 0.000822

3533.5 6.19?889 12{8.123 739.2672 2370.219 0.00i031
3533.25 6.195760 1240.084 737.5302 2369.27'l -0.00067
3532.9 6.197889 1228.571 735.7932 2367.L76 0.000638

3531.5 6.205150 1I90.332 730.5822 2359.641 0.000600

3528.35 6.2t2473 1205.140 722.592 2312.561 0.0002{4

3517.15 6.252095 1205.724 709.7382 2385.515 0.000395

3{9{.05 6.31994? 12L7.681 690.2838 2109.058 0.000339

3471.55 5.395060 1225.443 684.378 2417.549 0.00037s

3455.55 6.468045 L232,258 670.{82 2433.716 0.000354

3459.05 6.545286 1237.916 670.482 2435.602 0.000386

3{61.85 6.615142 12{3.388 673.956 2{33.9s2 0.000349

3462.55 6.693384 L246.290 674.3034 ?434.572 0.000391

3451.15 6.754355 L248,740 67L.3217 2{lB,168 0.000154

3459.05 6.844574 1250.380 668.3976 2441.841 0.000401

3{83.55 6.924983 1250.523 584.725{ 2{25.561 0.000401

3485.55 5.938566 1294.833 691.326 2433.73r 0.0040?4

348?.75 6.955280 1319.5{1 697.2318 2435.06r 0.005314

3489.85 5.973994 1331.358 701.748 2435.484 0.005314

3493.35 7.011551 13{0.986 70?.6538 2432.787 0.005533

3498.25 7.063754 1340.358 7L4.2544 2425.98r 0.005264

3502.i 7.112?65 1336.818 ?19.tl8 2419.934 0.00s.e81

3510.5 7.212916 132?.938 723.9816 2412.110 0.005009

35i7.85 7.30i871 1321.175 729.L926 ?404.645 0.005597

35i9.25 ?.31413r 1264.611 728.8452 2386.138 0.00187i
3521 7.314131 1153.696 723.9815 2354.029 0

3522.,1 7.301512 1084.131 718.7706 2136.052 -0.00375

3523.{5 7.289093 i035.033 7L2.r7 2326.620 -0.00375

3524.85 7.271316 991.7538 704.S746 2319.i59 -0.00533

3528 7.232758 893.{662 686.{624 2304.805 -0.00452

3531.5 7.1S?878 805.1518 568.3975 2293.432 -0.00538

3534.3 ?.145121 728.6457 6,19.538 2286.689 -0.00513

3537.1. ?.101311 559.7947 631.9205 2281.455 -0.00525

34S1. {5 i.001160 54r.8938 557.,â99 2306.078 -0.00500

3480.75 5.95i150 489.957i 549.2394 2i07.s25 -0.005?6

3{S0.05 5.908270 .{42.1586 5i2.2158 ?208.çLi -0.00538

3{79.7 6.857193 397.8598 513.1098 23i2.959 -0.005i2
347S.65 6.8112{9 357.0444 496.4346 2115.026 -0.0055I

3478 .3 6.765358 317.9 449 180. {542 2314.973 -0.00550

3477.25 6.?19{S6 224.4L99 {67.500{ 2300.652 -0.00550

3476.2 6.621560 152.2351 440.5032 2303.58? -0.00550

3{75.15 6.530639 92.17410 414.4482 2309.122 -0.00582

29r



Re load 65.5 8.83 49 49 10c2.385 1239 .175

0.01 65.58333 8.885845 123S.{50 1255.t5t
nm/nin 65.75 3.97.1065 I619.103 1294.'lI2

55..ai666 9.070530 t912.77{ 1332.973
56.08333 9.155794 ?.204.512 1r'69. {50

66.25 9.2{8185 2444.73't l{03.843
66.{1655 9.341635 2660.146 L432.677
66.58333 9.422625 29?2.L71 l{55.258

66.75 9.5i50?9 3115.339 1475.755
65.9t556 9.607,t59 3201.618 1.i92.083
67.08333 9.7071{9 3250.601 1504.589

67.25 9.80?889 3281.8?9 153{.813
67.41565 9.905450 3300.{69 1558.783

67.58333 10.00724 33u.977 1580.57

6?.75 10.10898 3315.518 1595.508
67.91665 10.20449 3316.699 !508,11{
58.08333 10.30522 3317.S79 1616.452

68.25 10.40596 331?.584 1624.{{2
58..11666 10.{9941 3315.518 1528.611
68.58333 t0 .59803 3298.599 1608.,162

68.75 10.697?1 3302.240 1605.682
0.15 68.78333 10.75484 1477.517 1513.6?l

nninin 68.81655 11.06946 345I.845 1516.104

68.85 i]..386t3 3428.829 t515.10{
68.88333 11.70I80 3408.469 i515.75?
6A.9r665 12.01536 339t.944 t615.{1

68.95 12.33826 i378.i70 161{.357

34i4.{5 6.543158 23L.9278 4L'1.9222 2352.833 0.001502

34?,1.t 6.595299 3.10.7171 {34.597{ 2372.420 0.006256

3472.7 5.582931 515.3519 .173.1588 239?.24L 0.005257

3{71.3 5.179952 659.7671 5i1.7202 2{0I.548 0.C05821

3459.55 6.S65518 784.1913 548.19?2 2405.545 0.005133

3{68.5 6.958346 893.8037 582.5898 2{08.790 0.005559

3457.1 7.057237 991.8037 611.{2{ 24L2.673 0.005633

3{65.05 7.133609 1I11.138 534.005 2429.520 0.004882

3465 7.2?6499 1199.00? 654.5015 2438.613 0.005573

1463.95 7.319325 1236.849 570.829{ 2434.899 0.005569

346.r.55 7.4L9477 1257.913 583.3358 2479.4r4 0.006009

350?.35 ?.520692 12'.10.82't 713.5595 2{03.{95 0.006072

3538.5 7.61S714 L277.963 737.5302 2381.903 0.005881

3560.55 7.120993 1281.794 759.{164 2361.294 0.006i36
35?6.65 7.923209 12S1.987 774.3545 23{5.420 0.005i32
1589.25 ?.91,q166 12S1.189 785.86I 2333.6,18 0.005757

359?.55 8.020381 1280.317 i95.1985 2325.019 0.0060?2

3602.55 8.12I595 L278.774 803.1888 2315.515 0.006072

3606.05 8.2154S? 12?6.531 807.3576 2311.598 0.005633

3555.1 8.3145?4 1267.535 787.2084 2328.749 0.005945

3557.75 8.414?25 1267.753 784.4292 2331.501 0.005009

355?.,r 8.472L73 13{5.205 792.{194 23{9.76I 0.017219

355i.05 8.788224 1329.989 794.8512 234L.924 0.094830

3556.? 9.106390 1315.016 794.8512 2i36.933 0.095449

3556.35 9.{23555 1301.317 794.5038 2332.7r4 0.095149

3556 9.?3Ss92 L289.423 794.1564 2329.097 0.094510

3555.65 10.06301 L278.759 793.1142 2326.584 0.097327

3555.3 10.11309 1169.158 779.5555 2103.503 0.015022

3554.95 10.11522 1143.580 773.3124 2301.326 0.000938

3554.25 10.11?28 1128.530 768.4{88 2301.207 0.000319

3551.45 10.11835 1090.099 ?48.9944 2307.S18 0.000053

3544.8 10.12041 1059.28? 726.056 2320.475 0.000041

3532.55 10.12148 1033.728 106.2642 233L.'.t57 0.000010

3485.3 10. t2{61 954.9587 622.5408 2389.22{ 0.00000?

1439.1 10.12451 899.5750 550.0088 2433.328 0

3406.55 10.1256? S6S.3452 5I6.9312 2455.,q63 0.000005

3399.9 10.i255? 854.9831 493.308 ?185.132 C

346r.25 10.1255? S6i.t29i 574.94? 2406.375 0

3561.25 10.12461 929.1509 tj?2.9138 2330.249 -0.00000

3582.95 10.Ir935 943.2235 102.44?8 2305.411 -0.00001

3565.45 10.1308? 927.?523 539.5534 2352.966 0.000028

3556,? 10.12{61 896.3999 655.196{ 2337.049 -0.00001

3540.95 10.I2461 892.3388 561.797 2i23.095 0

35?2.05 10.12041 888.8432 678.I248 2111.602 -0.0000I

3517.S5 10.121.18 S89.3567 681.5988 2i08.299 0.00001{

l5l?.35 10,30613 1309.425 127.4556 2102.465 0.055395

351?.5 10.50S55 i320.'.t15 740.5564 :393.047 0.090755

l5ii.5 10.9i955 1302.028 745.35?8 2i8l'58? 0.09127I

3516.1 11.33787 1065.779 729.i925 2319.845 0.C13421

35I5.1 i1.33993 t064.423 729.1926 2i1.9.052 0.00i615

l516.t 11.33?8? 1058.330 728.1504 2i21.105 -0-00027

3514.7 11.14832 I0?9.575 725.3452 232'1.{59 0.000391

3512.5 11.35084 i085.{95 737.5302 2317.747 0.00025t

3505.25 il.{0879 ll0?.248 77L.9228 2290.506 0.000319

3{95.I 11.{8184 LLIï.7Z2 798.6726 7267.680 0.000165

148r.8 11..55588 ll2l.?82 788.598 2278.115 0.0001i0
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Relaxa. 68.98333 t2.38810 3133.f59 1600.819

0 59.01665 L7.39122 3075.618 1594.556
nn/urin 69.05 12.39227 3041.9?9 1589.702' 

59.25 12.39333 2955.226 1570.248
69.?5 12.39539 2885.882 1547.319

70.?5 12.39645 2828.34r 1527.517
74.75 12.39955 2650.998 t443.794
78.75 12.39956 2526.47.1 1381.262
82.75 12.{0162 2455.950 1338.184
s5.75 12.40162 2425.8s2 i314.561
90.?5 12.40162 244s.327 i396.200
94.75 12.39956 2592.857 1494.167
98.75 12.39433 2524.{{1 1s23.696

102.75 12.40579 2588.736 1460.31?
t06.75 12.39955 2519.097 1476 . {5

110.75 12.39956 2509.950 1481.050
114.75 I2.39519 2501.983 I499.378

115.4833 12.396,r5 2503.163 1502.852
0.15 1t5.5166 12.58021 3455.i86 I548.709

rm/min il5.55 12.$8133 3491.091 155i.910
115.5833 13.190i7 3458.927 1557. t2l

0.0006 115.iJ95 i1.507i.: 1935.750 i550.446
mn/rain 115.9077 13.60918 2930.{39 1550.446

115.9833 13.60712 7939.291 1549.404

u6.25 13.61753 2955.258 1550.098

116.75 13.62999 2979.r27 1558.783
us.25 13.6?7?1 3030.175 i593.176
120.25 13.75041 3058.504 1519.925
L22.25 13.82412 3067.65I 1509,851



1?l 1(

126.25
128.25
t30.25
1i2.25
134.25

135.5556

13.90?22 307?.091 1557.394

13.9?887 3085.356 15{5.582
11.0505i 3097.74,0 1533.771
1i.12004 i101.2{l 152{.0{i
1{.19586 3110.733 1519.180

1{.26856 3114.274 1515.358
14.32045 3115.749 1518.138

3464.65 1.1.53939 i121.844 736.1406 2332.253 0.00011?

3{52.75 u.?1137 112?.531 724.329 23{4.960 0.000359

3448.55 11.78335 1132.013 ?12.51?1 2358.t66 0.000359

i4i?.:.5 11.85321 It33.9{3 702.7902 2158.536 0.0003{9
3{17.i5 1.1.92938 1135.787 597.9256 2374.115 0.000380

34{6.8 12.002{3 1136.384 69{.1052 1378.135 0.000365
3446.8 12.054s7 1136.352 695.8844 2375.345 0.000358
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APPEIIDIX 9.3 Corrpuler Program for the Calculation of Undrained

l{ulti-stage q CreeP Shear Tests

10 CLS:
20 REM FILENAHE ECQKGJ-z, SCALING METHOD 2
3O PRINT:PRINT:PRINT
40 pRINT"Evp KGJ ModellIng of Undralned Hultl-stage g creep Shear Tegtsr
50 pRINT"Uslng ElIlptlcal Flow surface and Hyperbollc Strength Envelope't
6O PRINT:PRINT:PRINT
70 INPUT ''LOTUS Data Fllenamerr; X$
80 OPEN X$+''.PRN'' FOR OUTPUT AS #]-
90 INPUT"Hater. Parameters, T0rP0(sec, kPa)";T0rP0
100 INPUT"Mater. Param. Lambda,Kappa,Psi ( L/V) ";LAMBDA'KÀPPÀ'PsI
110 INPUT"Mater. Param. ArB(kPa^-1)rD(kPa)";A,B,D
l2O INPUT''InltIal Values,Tl(h),E1,EvlrPt(kPa),Q1(kPa)r';TI,EItBvl,PI,OI
130 INPUT"TIme Incre. and q Incre., H(h),DQ(kPa)r';HrD0
140 INpUT'rTlme Range, TRNG(h)r';TRNG
150 REM TO SOLVE DIFFERENTIAL EQUÀTION
160 PRINT:PRINT:PRINT
170 PRINTTT Calculation ln Progress'r
180 PRINT|T order 4 Runge & Kuttars Method'r
190 PRINT:PRINT:PRINT
2oo DrM T(2500),8(2500),P(2500)
210 B1=KAPPÀ/LÀHBDA: B2=LÀHBDÀ,/PSI
220 GOSUB 570
230 T( 0 )=TI :E( 0 )=Er+DES :P(0)=PI :II=5
240 FOR I=1 TO 2500
250 IF I=5 THEN H=10*H
260 IF I=L0 THEN H=10*H
270 IF I=15 THEN H=10*H
280 IF I=20 THEN H=10*H
290 T1=T(I-1)
300 Yl=P ( I -1 )

310 GosuE 620
320 KL=ZI:LL=22
330 T1=T(I-l)+,5xH
340 Y1=P(I-1)+.5*H*K1
350 cosuB 620
360 K2=ZLzL2=22
370 y1=p ( I-1 ) +.5*H*K2
380 cosuB 620
39 0 K 3=ZL:L3=7,2
400 T1=T( I-1) +H
410 Y1=P ( I_1 ) +H*K3
420 cosuB 620
430 K A=ZLzL4=22
440 T(r)=T(I_1)+H
450 P ( I )=P( I-1)+H*(K1+2*R2+2*K3+R4l /6
460 E ( I ) =E ( I -1 ) +H* (L1+2*L2+2*L3+L4) /6
47O IF T(I)>TRNG GOTO 5OO

480 rF (E(r)-E(0))>.1 Goro 500
490 NEXT I

294



500 FOR J=0 TO I STEP II
510 I{RITE il1rT(J),E(J)*100,P(J)
520 IF J>50 II=10
530 NEXT J
540 CtosE *1
550 END
560 REH CALCULATION OF ELÀSTIC RESPONCES
570 DP=DQ / 4. 60L:PI=PI+DP :QI=QI+De
580 K= ( 500+PI )/KÀPPÀ: Jll=-4. 60l*K : c-D*JM*JMI ( JH*JH+3*D*K )
590 DES=DP/JI{+DQ/3/G
6OO RETURN
510 REH ELÀSTIC VISCOUS PLÀSTIC HODEL
620 BB= ( Y1-A*B*OI *0I ) / ( . 5*g*Ql ) ^2 : cc= ( A*À*oI *oI+y1*y1 ) / ( . 5*B*QI ) ^2
630 PH= .5*4reCc/ (ne+1BB*BB-4*cc) ^.5 )
640 H=L/(À+.5*B*PM)
650 A2=2x YI-PH zA3=2*ef/ú/H
660 K= ( 500+Y1),/KÀPPÀ:JM=-4. 60L*K :G-D*JM*JM,/(JM*JM+3*D*K )
670 c1=PSÍ/T0*(EXP(-EVrILAMBDA)*((.5+pU)/pO)*((500+y1),/(500+ptr))^81)^82
680 z1=-K*Cl*À2,/ÀBS (À2 )
59 0 Z2=ZI/Jl4+C1*À3,/ÀBS ( À2 )
70O RETURN
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APPENDIX 9.4 Couputer Program for the Calculation of Undrained

Constant Strain Rate Shear Tests

10 CLS:
20 REM FILENÀHE BUDKGJ-2, SCALING HETHOD 2
3O PRINT:PRINT:PRINT
40 PRINTTIEVP KGJ HodeIlIng of Undralned Constant Strain Rate shear Tests,
!q EBINTtrUslng ElltpttcaL Flow Surface and Hyperboltc Strength Envelope"5O PRINT:PRINT:PRINT
70 INPUT nLOTUS DaEa Filenamer';XS
80 OPEN Xç+''.PRNT' FOR OUTPUT ÀS S1
90 INPUT'f Hater. parameters, T0rp0 (secrkpa)'r;T0rp0
100 rNPUT"Mater. param, Lambda,Kappa,psi (t/v)uilaueoa,KÀppA,psr
110 INPUT"Hater. paran,A,B(kpa^-1j,D(kpa¡ ";À,8,DL20 INPUT"InIÈta1 values, TIrEIrEvIrpI,eI "-;Ti rEf rEvIrpI reI130 INPUT'fstraln Rate & Tlme Incre., REpSI (I/hl,Htnj ";nepSf,H140 REM TO SOLVE DIFFERENTIÀ¡ EQUATION
150 PRINT:PRINT:PRINT
160 PRINT" Calculatlon in progress"
170 PRINT" Order 4 Runge & Kuttars Method"
180 PRINT:PRINT:PRINT
190 DrH T(2500),8(25001,p(2500),Q(2500)
2 0 0 B1=KÀPPÀ,/LÀHBDtr: B2=LÀHBDÀ,/PS I
210 T( 0¡='¡¡ :E(0)=EI*100:P(0)=pI :e(0)=g¡
220 FOR I=1 TO 2500
230 IF I=5 THEN H=10*H
240 IF I=10 THEN H=10*H
250 IF I=15 THEN H=10*H
260 IF' f=20 THEN H=10*H
270 T1=T ( I-1 )

280 Y1=P ( I-1) :y2=e(I-t)
290 GOSUB 550
300 K1=ZL zL]-=22
310 T1=T(I-1)+.5*H
320 Y1=p ( I-1 ) + . $*¡¡*¡ç1 : y2=o ( I -1) + . 5*HiL1
330 GOSUB 550
340 K2=2]-:L2=22
350 Y1=P( I-1)+.5*H*K2:y2=e( I-1)+.5rH*L2
360 cosuB 550
370 K3=Zl zL3=22
380 T1=T(I_1)+H
390 Yl=P ( I-1) +H*K3 :Y2=Q( I-1) +H*L3
400 cosuB 550
410 K 4=ZL:L4=22
420 T( r )=T( r-1)+H:E(I )=E( I-1)+REpSr*H*100
430 P ( I ) =P ( i-l )+H* (K1+2*R2+2*K3+K4 )./5
440 Q( I )=Q( I-1)+H*(Ll+2rL2+2ltL3+t 4)/6
450 rF E( I ) >10 coTo 480
450 NEXT I
470 I I =10
480 FOR J=0 TO I STEP II
490 llRITE Ë1rT(J),8(J),P(J),0(J)
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500 IF E(J) >3 THEN II=20
510 NEXT J
520 cl,osE #1
530 END
540 REM ELÀSTIC VISCO-PLÀSTIC MODEL
550 IF v2<.01 THEN GOTO 570
560 GOTO 590
570 PH=Y1
580 coTo 610
59 0 BB= ( y1_À*B*y2*y2,) / ( . S*B*!Z) ^ 2 : CC= ( À*A*y2 *y2+yL*yl ) / ( . SxB*yz ) ^ 2
600 pM= .5tc A*cc/ ( Be+ I BB*BB_4*CC) ^. 5 )
610 H=1,/(À+.5*B*PM)
620 A2=2* Y1-PM t A3=2*Y2/14/lt
530 C1=pSI/TO* (EXp(-EVI,/tÀMBDA¡*1(.5+pM)/p0l *( (500+y1),/(500+pM) )^81)^82
640 K=( 500+Y1)./KÀPPÀ:JH=-4. 601*K :G-D*JM*JMl( JM*JM+3*DtK)
650 zt= +22 / 4 . 601__K*cl*A2 / ABS ( A2 )

660 Z2=3* G* ( REPS I -ZI/ Jl4-c7*À3,/ABS ( A2 ) )

670 RETURN
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APPENDTX 10.1. c¡rve Fitting of a ltulti-stage rsotropic creep Test

In the test progr2m (Rah¡nan i988), the soil used in the tests Has

uniforn, quan-tz-carbonate medir.:rn-grain sand with uniformity (DeoÆro)

2.o. The specific weight wa-s 2.7o. specinen preparation involved

three stages, namely, ( 1) sand deposition, Q) saturation, a¡rd (3)

freezing. The specimen size HELS 76 mm diameter and zoo nm height.

Stage 1 attenpted to make the density of the specinen uniform and

constant. However the maxinum variation of Ha-s 7% in density. In

stage 2, each specinen r+a-s satr:rated under a vacuum pressure of 55 kPa

applied at the top. In stage 3, the specinen was placed in a chest

fneezer with temperat,trre -zOoC for 48 hours. The specimen l¡a-s then

prepared for triaxÍaI testing in a cold room at temperature -3oc

(Rahman 1988).

In the multi-stage isotropic stress creep test, the isotropic stress

was applied to the specimen suddenly, and r¿a-s then held a constant for

a period of time until the next load was added. The loading history is

shown in Table 10.3.

Table 10.3 Loading History for a l{ulti-Stage p Creep Test

P (kPa) 100 150 200 300

Duration (hrs) 313. 5 216.5 527.5 1247.5 2153.5

530

50

Total Elap. (hrs) 313.5
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In the following calculations,

simpl icity, the subscript ¡rmrr

all stress states

has been deleted.

are isotropic, and for

The general equation t 10. 121 for calculating creep strains

multi-stage isotropic creep tests is:

Ln

[10.23]

l1.O-241 t - = fe,I+l o

The equivalent time t

I.r(Po2 
* P)

Po3

t +t
ln[o. e)

o

tlt+:
V

À
-vV

The eguivalent tine t. is different from the duration time t of loading

(see chapter 8). The time t. is negative for state points above the

reference time line, positive below the line and zeto on this line.

The t for a state point (p,e*r) ls the time that would be required fore ' '- v

the specirnen to creep r:nder the consta¡rt stress from the neference t,i¡ne

line to t,his point no natter what the loading history lras to reach this

state point.

Considering a load increment from point i to (i+l) in Fig.10.2 and then

creeping fron point (i+l) to (i+1)'under the stress pi*l with neal

duration time t, the equivalent time te,i+1 at point, (i+1) is, from

[ 10.23]:

[""t, i*1(vltP¡ 
(

" 
in [ 10.23] in

Poz * Pi*1.,-Àl,y'

t* - 1l

[10.2s] =t+t €rA

the final creep

terms of real duration time t is:

Using Eqns. l70.23l -[ 10. 25],
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t 10. 26l t., = ï

where

v, i+1 
(v/qt),Poz*Pi*1 

)-x/,t)
Po3

-.Po2*Pi*1.Int 

-J

Po3
*$r"l!-*u

o

l7o.27l e =e +5rn(
v,1+I Vr l V

Po1 * Pi*l.
---._---:-JPo1* Pi

Eqn. [ 70.26] with 1,70.27I can be used to do curve fitting fon the

multi-st,age isotnopic creep test. The paraneters rc/Y = .0013 *d po1

10 kPa were estinat,ed by fitting the instant test points in the first

loading increment. Then try using À./Y = .OI7, poz = 19O kPa, poa = 195

kPa; Vt/V =.007, t_ = 600 hr. Detailed results a¡e in Table 10.4.

p (kPa) 150 200

t, (hrs) 313.5 216.5 527.5 t247.5 2159.5

50 100

e. (%)vt
av, i+1

a (%)

The overal I cr:rve

Figs. IO.2,10.3. The

it can be assumed

determined.

fitting of the

caLculated curves

that t,he fitting

laboratory data is shown in

marched the test data well and

parameters have been adequately

o.622 0.937 1.466 2. 161

o.233 0.690 0.978 1.495 2.2t7

o.622 0. 937 1. 466 2.161 2.908

lable 10.4 C¡¡rve Fit,t,ing of t,he ltulti-St,age p Creep Test
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APPENÐIX 10.2 Fredictions of llST2 and l,lSTlO

Eqns.[10.211,1tO.22] aIlows calculation of (".r-",r, i=o) vs. t
(e_-e_ .__) vs. t in nulti-stage q and p creep tests. Details fors s, lso

calculation of MST2 and MST10 are in Table 10.5,10.6 respectively.

Table 10.5 Predict,ion of llST2, rr, iso = O.O1737

q (kPa) 120 240

p (kPa) 280

t (h¡s ) 475 504 1006 1393 s84

and

the

VDe'.v1

p (kPa)-m

(e -e ).v v,LSo I

293.31 334.98 4tL.t7 535.36 739.68

.01299 .01651 .01869 .O2t77 .02172

.003s2 .oo577 .00818 .00873

.00118 .00281 .00647 .01341

.00352 .OO577 .00818 .00873

.00035 .00153 .00317 .00683 .01376

.00352 .00577 .00818 .00873 .00374

.00118 .00281 .00647 .01341 .02568

e
S1

(e -e ).v v, ISo 1+.1

es, i+1
(e-e )v v, ISo

(e-e )s s, lso
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Table 10.6 Prediction of I{ST1O, ev,iso = 0.00794

(kPa)

76.7 83.3

t (hrs ) tt7 144 L44

p (kPa)'m 77.83 87.50 98.83 111.46 125.74 139.91 155.58

.00524 .00708 .00s98 .01051 .01110 .07242 .07417

(e -e ).v v, ISo 1
.00194 .00495 .00556 .00623 .00764 .00346

VDe:
v1

100 L20 140

96.7 103.3 110 116. 7

312

.ooo27 .00097 .00120 .00152 .00231 .00357

.00010 .00204 .00504 .00565 .oo7t7 .00867 .01062

. 00006 . 00033 . 00103 . 00126 . 00205 . 00302 . 004s3

.00194 .00495 .00556 .00623 .00764 .00946 .011s5

.ooo27 .00097 .00120 .00152 .00231 .00357 .00531

180

123.3 130 736.7 150 163.3 t76.7 190

L223 7t9 13 19

378.51

.02290 .02319

.01687 .Ot778 .01825 .01867 .01906

.01631

.01876 .01S15

.01038 .01113 .01246 .OI342 .01468 .01703

.01906 .01916

(e -e ).v v, rso I+I
es, i+1
(e-e )v v, lso
(e -e )s s, LSo

q (kPa)

p (kPa)

t (hrs )

p (kPa)'m

(e -e ).V V,ISO I

S1

S1

VD

vt

(e -e ).v v, lso I+t

as, I+l
(e-e )v v, ISo

(e -e
S
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