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ABSTRACT

As 1s commonly known, the stress-strain behaviour in some soils such as
clays, frozen soils and ice is non-linear, irreversible, anisotropic
and time-dependent. This thesis develops three types of models to
describe (1) time-independent stress-strain behaviour in triaxial
stress states (and general stress states); (2) time-dependent
stress-strain behaviour in 1-D straining; and (3) time-dependent
stress-strain behaviour in triaxial stress states (and general stress

states).

This thesis first presents a three-modulus hypoelésticity model for
time-independent behaviour. Two new methods are suggested for
determining the three moduli in the model using simple conventional
triaxial tests. The model is calibrated for a sand-bentonite mixture
and a medium-stiff plastic Paris clay using isotropic consolidation
tests and CIU tests and for a medium dense Wuhan sand using isotropic
consolidation tests and CID tests. The calibrated models are then used
to predict the behaviour of the soils in different types of tests

> test).

(constant-p’ compression tests and a constant stress ratio Ué/ol

The predicted values are compared with the measured results for the

three different soils. Validation of the model is then examined.

A new Elastic Visco-Plastic (EVP) model is developed for time-dependent
behaviour of soils in 1-D straining based mainly on Bjerrum’s work. A
number of important new concepts, such as "equivalent times",

“reference time line"”, "instant time line” are introduced. A general

iii



o; - &é e, - éz relationship is then derived using these concepts.
New methods for determining all parameters in the model are suggested.
Two particular constitutive models are obtained from the general
relationship using logarithmic functions and power functions. The two

models are calibrated and validated using various types of tests and

soils.

Based on the work of hypoelasticity models and 1-D EVP models, a new
framework of 3-D EVP models is developed. Some concepts such as "flow
surfaces", ‘“visco-plastic poténtial“, “consistency conditions" and
"evolution law" are used in the framework. Two 3-D flow functions are
developed for initially isotropic and anisotropic soils. Non-linear
strength envelopes may be incorporated in the flow functions. New
scaling and calibration methods are proposed for the 3-D EVP models.
Two specific models from the framework are constructed and applied to a
sand-bentonite mixture and a frozen sand. The two models are

calibrated using some tests and are verfied using different tests.
Uncertainties and 1limitations of the three types of models are

discussed. Suggestions for further development and refinement of these

models are also presented in this thesis.
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Chapter 1

INTRODUCTION

As an introduction to the work in the rest of this thesis, some typical
aspects of time and strain effects on the deformation of soils as
observed in both laboratory and field will be examined. Then the role
of constitutive modelling of time-dependent stress-strain behavior is

discussed.

1.1 Time-Dependent Stress-Strain Behavior Observed in Laboratory

The time-dependent stress-strain behavior of soils has been studied
intensively in laboratory tests. This section shows some features of
the influence of times and strain rates on stress-strain behavior of

soils in oedometer tests and triaxial shear tests.

1.1.1 Time and strain rate effects in 1-D straining

In oedometer tests, no lateral strains are permitted and the

deformations are in the vertical direction only. Here four types of

tests are discussed.



Single-stage loading tests: The vertical pressure is applied suddenly
to a specimen. The data of vertical strain vs. time (ez vs. t) can be
measured, (in some advanced oedometers, the excess porewater pressure
vs. time (u vs. t) can also be measured,) (see Fig.1.1 from Brerre and
Iversen 1972). After primary consolidation of clays, the excess
porewater pressure is dissipated; the total vertical stress T, is equal

to vertical effective stress o;, and yet continuing compression is

observed. The part of compression occurring after the primary
consolidation is called "“secondary compression®. The deformation of
the soil ‘'skeleton", that is, the physical framework of mineral

particles, under constant vertical effective stress cé consists of a
time-independent part (also called instant compression) and a
time—-dependent part (also called creep deformation or delayed
compression). Creep deformation of soil skeleton actually occurs
during the whole consolidation process, that is, both before and after
the primary consolidation. Because time-dependent deformations due to
the dissipation of excess porewater pressure are coupled with
time—-dependent deformations due to the viscous nature of the soil
skeleton, it is difficult to distinguish them in the period of primary
consolidation and to define the instant compression uniquely, (see

Fig.1.1).

Multi-stage loading tests: In this type of test, the vertical pressure
is applied in steps. Each vertical pressure is kept constant for a

pre-determined time, and curves similar to those in Fig.1.1 can be
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measured, (Fig.1.2, Bjerrum 1967a). When an additional load is applied
after a period of delayed compression, an apparent preconsolidation
pressure p_, (also called critical pressure by Bjerrum 1967a) is found.
Using multi-stage tests, the relationship between void ratio and
vertical effective pressure (related to ez vs. a;) can be measured. It
is found that this relationship is not unique but depends on the time

duration of each loading increment, (see Fig.1.2).

Constant rate of strain (CRSN) tests: In a CRSN test, the specimen is
deformed at a constant rate of vertical compression. The vertical
pressure, vertical deformation and porewater pressure at the undrained
bottom of the specimen can be measured directly. The effective

vertical stress is estimated by U; =0, -

win

u, where o, is total
vertical stress and u is the porewater pressure at the bottom. It is
found that the curves of W; vs. €, and preconsolidation pressure for

most clay soils depend on the strain rates, (Fig.1.3, Sallfors 1975).

Relaxation tests: In this type of test, when a certain strain g, is
reached by any type of loading, the strain is held constant. That is,
the strain rate éz = 0. When this is so, the vertical effective stress
is observed to decrease with time (Fig.1.4, Yin and Graham 1983a).

This phenomenon is called stress relaxation.
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1.1.2 Time and strain rate effects in triaxial stress states

Much soil testing is done under "triaxial" stress states in which
cylindrical specimens are first loaded by all-round (hydrostatic)
pressure in a cell, and then the axial stress 1is increased (or
decreased). The test equipment permits various combinations Qf
measuring volume changes or porewater pressure changes during shearing.
The results of triaxial tests also show evidence of time and strain

rate effects on the stress-strain behavior of clays.

Constant rate of strain (CRSN) tests: A specimen is sheared at a
chosen constant rate of vertical movement usually under undrained
conditions. The observed curves of deviator stress vs. axial strain (q
vs. el) and excess porewater pressure vs. axial strain (u vs. 81)
depend on the strain rates used (Fig.1.5, Graham et al 1983). Higher
strain rates result in larger deviator stresses and porewater

pressures. The undrained shearing strength depends on the strain

rates, (Fig.1.5, Graham et al 1983).

Step-changed constant rate of strain tests: When the axial strain rate
is changed by steps, it is clearer to see that the strain rate affects
the relationships g vs. g and u vs. gy (Fig.1.6, Graham et al 1883).

Relaxation tests: In this procedure, when specimens are sheared up to
a certain axial strain and then the driving motor of the triaxial

apparatus 1s shut off, +the axial strain remains almost constant, but
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it is found that the deviator stress decreases with time (Figs.1.86 and

1.7).
Undrained multi-stage q creep tests: This type of tests is a
combination of relaxation and creep. When running a test, the

volumetric strain £, and the cell pressure U3 are kept constant, while

the axial stress Ty (i.e. deviator stress q) is increased incrementally
by steps. At each step, the deviator stress q is kept constant for a
fixed period of time. It.-is found that the_effective mean stress p’
decreases with time, while the corresponding porewater pressure
increases with time see Fig.1.8. Shear strains increase also with time
with the rate of shear strain depending on the deviator stress. At

lower deviator stresses, the rate decreases with time, whereas at high

deviator stresses leading to fallure, the rate increases (Fig.1.8).

1.1.3 Other characteristics of stress-strain behavior

The previous two sections outlined the effects of time and strain rate
on the stress-strain behavior of clay soils. As is commonly known, the
stress—-strain behavior of <clays 1is non-linear, irreversible and
dependent on loading history (or stress paths for time-independent
materials). In some soils, the behavior is initially isotopic and
becomes anisotropic after shearing. However in most natural soils, the
behavior 1is inherently anisotropic (Graham and Houlsby 1983, Graham

et al 1989).
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1.2 Time-Dependent Deformation Observed in the field

The Tower of Pisa: The construction of the Tower began in 1173
(Kérisel 1985). Since then the Tower has leant in a variety of
directions, successively to the east, the north, the west. and finally
the south, while at the same time it lowered itself 3 m into the

ground, (Fig.1.9, Kérisel 1985).

Croce et al (1881) reported the results of observations made on the
Tower and on surrounding monuments during the last decades. Fig.1.10
shows the Tower inclination measurements. 1In Fig.1.10a, the values of
& was measured by Pizzetti’s method from 1811 to 1834 (dotted line).
After 1834, the Tower rotation has been measured accurately with a
pendulum, referred to two vertical plans, one of which coincides with
the 1934 plan of maximum inclination and forms an angle of only 2%26"
with the N-S direction. The two components of the Tower rotation are

indicated as «_ and «_ in Fig.1.10.
NS EW

Settlement of Konnerud gate 16: Bjerrum (1967a) reported a case study
on Konnerud gate 16 which was representative of four identical
four-storey apartment blocks built between 1950 and 1958 in Drammen,
Norway. The measured settlement curve is shown in Fig.1.11.
Piezometers installed in 1964 indicated that the excess porewater

pressures had dissipated ten years after the load was applied. The

11
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settlements in subsequent years had thus occurred at constant effective
stresses and could therefore only be explained by delayed consolidation

(creep) of the plastic clay.

Progressive failure in slopes: Fig.1.12 shows progressive failure of a
slope at Jackfield, England (Skempton 1964). Movement of the slope
started in 1950. By 1852, a landslide occurred, destroying several
houses and causing major dislocations in a railway and road. It was
found that when this landslide took place, the strength of the clay was

closely equal to its residual strength.

It was found that progressive slope failure occurred mostly in
overconsolidated plastic clay and clay shales (Bjerrum 1967b). 1In the
development of failure, the strength in the soil is transferred from
its peak value to its residual value. The reduction in strength is
time-dependent and partly due to the viscous nature of the soil

(Bjerrum 1967b).

1.3 The Role of Constitutive Modelling

As shown in the proceding section, because of the viscous nature of
soils, a slope may fail gradually and settlements of a foundation may
continue over a long period, increasing the risk to buildings on the
foundation. In order to (1) design a geotechnical structure which is

safe, of good performance and economic, (2) analyze a failed structure

14



or (3) predict the performance of a existing structure in the future,
we need to understand and model the time-dependent behavior of soils
and to use this model to analyze the stability and deformations of soil
masses. The traditional approach in geotechnical engineering has been
to treat the stability and deformation separately, using linear
elasticity to calculate the deformation and rigid-plasticity to analyze
the stability. As shown in Section 1.1, behavior of real soils is
non-linear, inelastic, anisotropic and time-dependent. With the
development of numerical analysis techniques and the availability of
large digital computers and‘powerful personal microcomputers, it is now
possible to solve problems in practice using more complex (and more
realistic) stress-strain behavior and geometry. The key to analyzing
the stress, deformation and failure of structures that rest on or use
geotechnical material, whose behavior may be time-dependent, is to use
a constitutive model which best represents the real time-dependent

stress—-strain behavior of the material.

The role of constitutive modelling of time-dependent stress-strain
behavior of soils (including frozen soils and ice used for geotechnical

structures) is as follows:

(1). Constitutive equations can be combined with other equations in
continuum mechanics to solve boundary value (or mixtured)
problems, that is, to analyze the development of stresses,
porewater pressures, deformations, and failure =zones. Results
from these analyses can be used directly, for example, for the

design of a new earth structure, for performance checking of an

15



existing structure, and for finding the causes for a failed

structure.
(2). Constitutive equations can be used to predict time-dependent
stress-strain behavior in laboratory tests. Results in this

calculation may be used indirectly for the analyses of earth

structures.

(3). The establishment of a constitutive model is based on fundamental
physical laws, assumptions, observations and qualitative
understanding of soil behavior in laboratory tests. At times,
the observations made in laboratory testing may not reflect
completely the entire spectrum of scil behavior. Phenomena.
observed in the laboratory may seem unrelated. For example, a
clay may exhibit strain rate effects in strain controlled tests,
but exhibit time effects in creep tests and relaxation tests. A
constitutive model may provide us some wunderstanding of

interrelationships between these phenomena.

1.4 Organization of the Thesis

This thesis consists of eleven chapters.

Chapter 1: Introduction.

Chapter 2: This chapter gives a critical review of the literature in

the field of constitutive modelling with emphasis on hypoelastic models

16
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and the modelling of the time-dependent stress-strain behavior. After

this review, the detailed objectives of the thesis are presented.

Chapter 3: In this chapter, the framework of a new three-modulus
hypoelastic model 1is described. Two methods are suggested for

determining the moduli.

Chapter 4: Applications of the general framework of the new model in
Chapter 3 to three different soils are presented in this Chapter. The

work includes formulation, calibration and verification of the model.

Chapter 5: This chapter develops a new general Elastic Visco-Plastic
(EVP) model for time-dependent stress-strain behavior of soils in 1-D
straining. An  important concept called ‘“equivalent time" is

introduced.

Chapter 6: The general formulation of the new EVP model in Chapter 5
is developed for a specific case wusing the logarithmic functions
commonly used in practice. The model is then calibrated and examined

using the test data from three different soils.

Chapter 7: Here, the general formulation of the new EVP model in
Chapter 5 is specified using power functions which are better fitted to
test data than logarithmic functions in some soils. Calibration and

validation of the model for two soils are presented.

Chapter 8: This chapter is further development of work in the previous
chapters. Here, a new general framework is suggested for 3-D Elastic

Visco-Plastic (EVP) straining. Methods for calibrating the new model

17



are presented.

Chapter 9: In this chapter, the new 3-D EVP model in Chapter is applied
for the first time to describe the time-dependent stress-strain
behavior of a sand-bentonite buffer material proposed for the Canadian

Nuclear Fuel Waste Management Program.

Chapter 10: Here, the new 3-D EVP model is applied to a frozen sand
that has been the subject of recent doctoral studies supervised by Dr.

L. Domaschuk at the University of Manitoba.

Chapter 11: This chapter summarizes the conclusions of the thesis and

presents suggestions for further research.

Detailed information and reference material required for some chapters
are all presented in Appendices. A full list of published references

is given at the end of the thesis.

18



Chapter 2

CONSTITUTIVE MODELLING

—— a critical review and objectives of the research

This chapter first reviews some representative constitutive models in
the literature. Features, limitations and problems associated with
these models are discussed. After this review, the objectives of the

research described in the thesis are presented.

2.1 Modelling of Time-independent Behavior

Chapter 1 showed that the stress-strain behavior of most soils is
time-dependent. In some theoretical models of soil behavior, time-
dependent strains are decomposed into two parts comprising time-
independent strains and time-dependent strains. For example in Elastic
Visco-Plastic (EVP) models, the total strain rate consists of elastic
(time-independent) strain rate and visco-plastic strain rate. In some
soils like sand, the stress-strain behavior is essentially time-
independent but may be non-linear and non-reversible. We may treat
time-independent behavior as a particular case of time-dependent
behavior when the viscosity is zero. Separate and distinct models may

be required to define the complexity of time-independent behavior.
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Many constitutive models have been developed in the past for time-
independent behavior. This section discusses only hypoelastic models
and elastic-plastic (Cam-Clay) models. The framework of hypoelastic
models will be used to calculate the time-independent part of strains
of soils 1n the elastic visco-plastic (EVP) models to be developed
later in the thesis. The EVP models will be related to the Cam-Clay
models that are representive of the current range of elastic-plastic

models.

2.1.1 Hypoelasticity models

This type of model 1is characterized by the following constitutive

relationship (Truesdell 1955, Truesdell 1965, Coon and Evans 1971):

[2.1] Fij(akl’ o epq, est) =0

In this equation, the tensor function Fij is homogeneous in time. This
means that time occurs to the same order in all terms of Eqn.[2.1] and
therefore, may be eliminated. Thus Egn.[2.1] is actually a
relationship among infinitesimal increments, dw&n, dsst and stresses
and strains for time-independent stress-strain behavior. This model
describes the mechanical behavior of a class of materials in which the

final total strains depend on both the current stress state and the

stress paths used to reach that state, but not on time or strain rate.
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Coon and Evans (1871) presented four special cases of the general

expression [2.1]:

[2.2a] dcij = Aijkl(oij) deiJ
[2.2Db] do;j = Bijkl(sij) deij
[2.2¢c] deij = Cijkl(eij) daij
[2.2d] deij = Dijkl(cij) daij

It is seen that the behavior described by Eqn.[2.2] is infinitesimally
{(or incrementally) reversible. This Jjustifies the use of the suffix
"elastic" in the term hypoelastic used by Truesdell (1955) to describe
the constitutive equation [2.2a] (Saleeb and Chen 1981). Based on
[2.2], two different approaches have been used to develop some special
hypoelastic models. One approach is to express the functions Aijkl’
Dijkl in a stress tensor series and Bijkl’ Cijkl in a strain tensor
series. Another approach is to make a further assumption on these

functions to reduce the number of A, The

15k1’ Pigkrr ik Pigka-
reduced parameters can then be obtained by differentiating curves

fitted to test data in laboratory.

In the first approach, Coon and Evans (1871), for instance, presented a

first order form for Eqn.{2.2al:

[2.3] Aei s =2 00 8o+ 2 G ik

in which the 36a. . and 216a. . are material constants which can
ijkl ijklmn
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not be determined using conventional tests. When a, . =
ijklmn

’

Eqn. [2.3] is zero order hypoelasticity and is equivalent to anisotropic
elasticity of a Cauchy-type material model. Eqn.{2.3] can be
considerably simplified with the added restriction of material isotropy

(Truesdell 1965, Coon and Evans 1971).

Falling into the second approach are models such as the "hyperbolic"
E,v model (Kondner 1963, Konder and Zelasko 63, Duncan and Chang 1970)
and the K,G model (Domaschuk and Wade 1969, Domaschuk and Valliappan
1975). There are only two "moduli" in both these models though it
should be pointed out that they are not constants but functions
depending on stress level, strain, sﬁress history, etc. In the E,v
model, conventional triaxial shear tests with constant confining
pressures are used to determine the modulus functions E and v. If the
model is used in effective stress analyses, drained CID tests are
required; 1if the model is used in total stress analyses, then only
undrained CIU tests are required. A hyperbolic function is best fitted

to the relationships of (01 - 03) vs. €, at different confining

stresses oy (Kondner 1963). The modulus Et for first-loading is

expressed as E at different confining stress o.. The

= d(cr1 - 63)/d£ 3

t 1

modulus Et can then be obtained by differentiating the fitting

functions, it is a function of (o, - 03) and stress ¢, in CID tests and

3

a function of (Gl - aé) and Ty in CI1U tests. The modulus v, for

1

first-loading is v, = —dsa/del. A mathematical function is fitted to

the data of (83 vs. el) at different confining stresses o In CIU

tests, vy is 0.5. In CID tests, v, is a function of (Gl - 03) and Gé.
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In a similar way, moduli Eur and v can be determined for

unloading-reloading.

In the K,G model, the bulk modulus X is defined as K = dp’/dev, and the

shear modulus is G = de/ds where the resultant deviatoric stress

d’
Sd = (V2/V3) (01 - 03) and resultant deviatoric strain gy = (2v2/v3)

(e, -e€,) in triaxial stress states (Domaschuk and Wade, 1969). A

1 3

mathematical function is chosen to fit the data of p’ vs. g, from
isotropic consolidation tests. The modulus function K is then obtained
by differentiating the fitting function. A series of constant
effective mean stress triaxial compression tests were used to find the
shear modulus G (Domaschuk and‘ Wade 1869, Domaschuk and Valliappan
1978). A hyperbolic function was used to fit the test data of Sd Vs.
€4 The modulus function G is then given by the tangent values of the
fitting function. It was found that the modulus K depends on the
effective mean stress p’' and relative density Dr' The modulus G
depends on the effective mean stress p’, the resultant deviatoric
stress Sd and the relative density Dr'

A limitation of the E,v model and K,G model is that they can not
account for volumetric strains produced by shear strains and shear
strains produced by effective mean stresses. Such anisotropic behavior
is known to be common in natural soils because of their mode of
deposition. Graham and Houlsby (1883) suggested a simplified model for

anisotropic behavior before yielding. Three moduli are used in the

model, the bulk modulus K, shear modulus G and a cross modulus J which
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expresses the relationships between mean stress and shear strain and
between shear stress and volumetric strain. A least squares solution
was used to evaluate these parameters from triaxial tests on Lake
Agassiz clay from Winnipeg, Canada. They found that the ratios K/c;c,

G/G;c, and J/U;C were constant, where 0;0 is the preconsolidation

pressure in the soil.

Yin and Yuan (1985a,b) suggested a hypoelastic model to account for
non-linearity and dilatancy in a medium sand. However this model can
not consider the shear strains contributea by effective mean stresses.
The matrix form of-this model is not symmetric. Models with more than
three moduli have been suggested {Darve et al 1986, Darve et al 1989).
Darve et al (1986) developed a second order model which can account for
non-linearity, irreversibility and stress path dependence. This model
has eighteen independent moduli, half of which are determined from
drained compression shear tests, and the other half from drained

extension shear tests.

2.1.2 Cam-Clay Model

The Cam-Clay model will be discussed as an example of elastic plastic
models. The original Cam—Clay model and its development, modified
Cam-Clay, have been widely used in numerical modelling of stress-strain
behavior of soils. Some elastic visco-plastic models use concepts from

the Cam-Clay model family.
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An important feature used in the Cam-Clay model is a unique State
Boundary Surface (SBS) in p’,q,e-space which was first proposed by
Roscoe et al. (18858). In all shear tests, the final failure state

points lie on a Critical State Line (CSL) on the SBS. On the CSL,

6p’/8es = aq/aes aev/aes = 0. The CSL is represented in p’,g-space

»

by a__/p M. A feature of the original Cam-Clay model is the

cs =

cs cs
formulation of an energy dissipation expression based on three

assumptions (Roscoe et al 1963).

K

[2.4]1 p de  + qde_ = +——

dp’ + Mp dss
Using the Associated Flow Rule, from Egn.[2.4] we have:

dgq

251 2 -9 i M=o
[ dp P

By integrating, [2.5] becomes:
g_._ ’ ’ =
[2.8] Mp” + 1n(p /po) 0

where pé is the point on the p’-axis intercepted by curve [2.6].
Eqn.[2.8] is the yield surface in p’,q-space. This yield surface looks
like a bullet shape with a discontinuity at the "nose" on the p’'-axis.
It has been found that the constitutive equations using this yield
surface (Eqn.[2.8]) overpredict shear strains at small shear stress

levels.

Burland (1969) and Roscoe and Burland (1863) suggested a modified

version of the Cam-Clay model that uses a different energy dissipation
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expression for Eqn.[2.4]. The yield surface resulting from the

modified energy dissipation expression is an ellipse:
[2.7] p’2 - pép’ + qZ/M2 =0

whose size depends on the isotropic consolidation pressure pé and M =

(q/p’)f which is a function of the clay mineralogy. It can be

summarized that in the modified Cam-Clay:

(1). the elastic behavior is isotropic;

{2). the yield surface is elliptical, i.e. Eqn.[2.7];

(3). the flow rule is associated flow rule;

(4). the hardening law is that the plastic volumetric strain 85 on the
vield surface is constant, i.e. represented by dss = a—\—_,——Edpz)/pc’);

(5). the consistency condition is that the current stress point is

kept on the yield surface in yielding.

It has been subsequently found in most natural soils that (1) yield
loci are not elliptical; (2) traces of yield loci in e, ln(p’)-space are
not straight lines but have "hook" shapes; (3) behavior before yielding
is not isotropic (Graham et al. 1888, Graham et al. 1983). Typical
data are shown in Fig.2.1. Graham and Houlsby (1983) developed a
simplified transverse anisotropic model to describe anisotropic elastic
behavior inside the yield loci. More recently, it was found (Wood and
Graham 18987, Graham et al. 19839) that the state boundary surface (SBS)
in anisotropic soils has approximately the same elliptical shape as the
SBS in the modified Cam-Clay. Anisotropic elasticity and normalized
elliptical yield loci can be used to reproduce the asymmetric yield

surfaces in p’,g-space and the "hooked" traces of the yield loci in
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"hooked" traces in V,p’-space for natural plastic clay from

from Winnipeg (after Graham et al. 1883)
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e, In(p’ )-space (Graham et al. 1989).

2.2 Modelling of Time-Dependent Behavior in 1-D Straining and 1-D

Stressing

As shown in Chapter 1, the stress-strain behavior in some soils, such
as clays, frozen soils and ice, is time or strain rate dependent. This
was not considered by the models in the proceding section. In past
decades, a number of models have been developed for time-dependent
straining. These may be roughly divided 1into three categories
according to the approcach they used. The first 1is based on the
rheological analogy. The second is empirical. The third uses elastic
visco-plasticity. According to the dimensions of the models, we may
divide them into those which describe 1-D straining (and 1-D stressing)
and 3-D (or axisymmetric) stressing. Since the procedure used in this
research starts with 1-D models and develops towards 3-D models, it is
appropriate to review some representative models according to the
dimensions of the models. This section reviews models for 1-D

straining and 1-D stressing.

2.2.1 Bjerrum’s time line model (1987a)

In Bjerrum’s model (1967a), the total compression is divided into

"instant compression’ and ’delayed compression’. The delayed

compression can be described by a system of time lines or curves in an
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e, log(p)-space (Fig.2.2) in which the outermost line (lowest e for a
given pressure) is the instant time line. Bjerrum believed that these
time lines represent a unique relationship between void ratio (related
to vertical strains ez), pressure (in particular, the vertical
effective stress G;) and time. This means, in his terms, “that to any

given value of the overburden pressure and void ratio there corresponds

an equivalent time of sustained loading and a certain rate of delayed
consolidation, independent of the way in which the clay has reached
these values." Bjerrum believed that the wusual separation of
compression into primary and secondary compression is arbitrary, and
that this division is unsuited to describe the behavior of the soil
structure with respect to effective stresses. The principle for
computing settlements using these ideas is shown in Fig.2.2 where P
was called ’critical pressure’ by Bjerrum. The pressure P, results
from creep under the previous pressure, that is aging and delayed
compression. The p-stress in Figs.2.3 and 2.3 are vertical effective
stresses and in the remaining Chapters will be called cé. The symbol

“p" will then be reserved for mean stresses.

Garlanger (1972) developed a mathematical equation for Bjerrum’s time
line model. For a pressure p above the critical pressure P. the
compression at any time t can be calculated from:

t + t,
1

t

pC D
[2.8] Ae = C. log 5; + C_ log 5; + C, log 1

where Ae 1s the change in void ratio, Cr is the slope on an e-log(p)

diagram of the compression line from P, to P Cc is the slope of the
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log(e),log(p)-space (after Christie and Tanks 1985)
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instant line, Ca is the slope of the e-log(time) curve, and ti is the

time given to the instant line which is the same as that defined by

Bjerrum (1867a}.

The equation that governs the consolidation of a saturated clay

undergoing one-dimensional compression and drainage is:

k(1 + eo) azu

[2.9] >

Q)IQ)
ct| D

7w az

Garlander applied his mathematical model Egn.[2.8] into Eqn.[2.8] by

simply differentiating [2.8] with respect to natural time t to get g%
in Eqn.[2.8]. The reason for the emphasis of the underlining will be

seen later.

Christie and Tanks (1885) argued that the ’instant time line’ used by

Bjerrum (1867) and Garlanger (1972) was ambiguous. They defined

instant compressibility by a single coefficient and proposed a limit
time line passing through the point L which is obtained by extending AB
in Fig.2.3 to meet the ordinate at the final value of the effective
stress. The time associated with this line, tL, is obtained by
extrapolation of the log(el)-log(t) data. They still used Bjerrum’s
method to find other time lines, that is these lines were obtained by
drawing lines through points representing equal durations of applied
pressure. The results from their experimental program ‘“confirmed
Bjerrum’s statement that the time lines represent a unique relationship
between e, p, and t, independent of the way in which the clay has

reached these values." For example, the 1-day time line could be

31



obtained either by applying pressure increments at intervals of 24
hours or by the other loading sequence such as singe-stage loading.
Christie and Tanks (1985) then used the same procedure as Garlanger

(1972) to apply their model to solve the consolidation problem.

Comments:

The contributions in Bjerrum’s model (1867a) are:

(1). He divided the total creep strain into "instant" strain and
"delayed" strain which occurs during whole consolidation process.

(2). He first presented the "equivalent time" concept. He found that
the "equivalent time" and the creep rate depend on the vertical

stress and void ratio, but are independent of loading history.

The limitations of the model are:

(1). His instant time line is incorrect. This line is in conflict with
observations in high constant rate of strain tests.

(2). He did not give a method for finding the equivalent time.

(3). The time lines are obtained directly from single-stage
consolidation tests.

(4). He did not develop general equations for step-wise loading and

continuous loading.

Garlanger worked at developing Bjerrum’'s model. In his work (1972), he
suggested Eqn.[2.8] for general loading. However, the real time t was
used in this equation. The use of real time t is in conflict with the

uniqueness of the time lines in Bjerrum’s model and the idea of

32



"equivalent time". Garlanger also used the incorrect instant time line

used by Bjerrum (1967a).

Christie and Tanks (1985) correctly used one parameter to describe the
instant compression and removed the instant time line used by Bjerrum
(1967a) and Garlanger (1972). However they still had not developed

general equations for any step-changed loading and continuous loading.

2.2.2 The model using Ca/cc

Mesri and his co-workers have suggested a model which uses the ratio of
secondary consolidation coefficient Ca to compression index Cc’ that is
Ca/Cc (Mesri and Godlewski 1977 and 1979, Mesri and Choi 1985a and
1985b, Mesri and Castro 1987). They found that the ratio Ca/Cc is in
the range of 0.02-0.10 for most clays (Mesri and Godlewski 1977).
During 1-D consolidation, the void ratio at any depth Z is a function

of effective stress and time (Mesri and Choi 1985a):
[2.10] e = f(o&, t)

Using their notation, the rate of decrease in void ratio with time is:

do”’

Vv
e g * ¢

de _  de

de ( de
dt = ‘8o’
A\

[2.11] EE)

o_’
Y
Then the change in void ratio in [2.11] is the sum of the primary

compression (Ae)p and secondary compression (Ae)S:
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[2.12] Ae = (Ae)_ + (Ae)
P s

]

t
p do’
de v de
[213] (Ae)p J' [(W)t W + (BT)O"] dt
0 \4 \'4

t t

J e J 0.434 Ca
(z7) , dt = - —— dt
¢ at o, t t

P P

[2.14] (Ae)
s

Mesri and Choi (1985a) thought that "the end-of-primary void ratio-
effective stress relationship, (i.e. Egn.[2.13]), 1is practically

independent of the duration of the primary consolidation stage."

“Thus, the e—log(o;) curve determined from the standard oedometer test
can be used directly to compute primary settlement of the clay layers
in the field." The calculation of the secondary compression (Ae)S in

Egn. [2.14] was related to the secondary coefficient Ca'

Using the concept of Ca/cc’ the preconsolidation pressure pé resulted

from aging is (Mesri and Choi, 1978, 1980, 1984):

e

é t (Ca/CC)/(l— Cr/Ca)
P: t
i p

Mesri and Castro (1987) put [2.15] into an expression for the static

pressure coefficient KO proposed by Mayne and Kulhawy (1982):

(Ca/CC)/(l— Cr/ca) / sing’
[2.16] Ko = (1 - sing’) (E_)
p

for calculating the time-dependent KO.
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Comments:

The range of the ratio Ca/cc found by Mesri and his co-worker is
valuable. The equationsvfor calculating pé, Ko and settlement are
valid under certain conditions in which the correct time t must be used
in the -equations. What kind of time t should be wused in
Egns.[2.15],[2.16] for cases of stepwise loading or continuous loading
is not explained. Eqgns.[2.10],[2.11] are not fundamental constitutive
equations. They simply state that the void ratio e depends only on the
current state point (U;, t), not on the loading history of how the soil

reaches this point.

2.2.3 Stress-strain-strain rate relationship

Leroueil et al. (1985) found that the viscous behavior of clays is
controlled by a unique stress-strain-strain rate relationship,
o;—sv—év. This relationship is simply described by two curves, Gé vVSs.

év and (0;/0;) vs. €, where 0; is the 1-D preconsolidation pressure

(Leroueil 1988).

In developing the work of Leroueil et al (1985), Kabbaj et al (1988)
argued that the model by Leroueil et al (1985) "“represents the behavior
of clay in oedometer tests in which the strain is always increasing.
It should be noted that, when defined in terms of total strains, it
presents some shortcomings. In particular, the model cannot represent

correctly the behavior observed in relaxation tests in which there is a
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decrease of the effective stress under constant strain. Such a

decrease 1s most likely associated with the combined effects of elastic

and plastic strains." Kabbaj et al. (1986) then modified this model
into two independent relationships, i.e. G;‘Ss-és and 83 =

;c/(1+eo) ln(crv/o‘vo).

Comments:

The model suggested by Leroueil et al (1985) and Leroueil (1988) was
mainly based on the tests at constant rate of strain (CRSN). Thus, as
found by Kabbaj et al (1986), this model can only be applied to
calculate strains for this type of test, and can not be applied to
other types of tests such as relaxation tests. The modified model
proposed by Kabbaj et al (1886) introduced the concept of elastic
visco-plastic mechanics. However, in establishing the relationship
o;—es-és, they utilized results that will be seen later to belong to

the 3~D elastic visco-plastic model by Adachi and Oka (1982). The

limitations of this type of model will be discussed in Section 2.3.1.

2.2.4 Rheological models in 1-D stressing

In linear rheological models, there is a linear relationship between
the stress, o, strain, €, and their successive derivatives with respect

to time (Suklje, 1969):

[2.17] Eoe + Ele + E28 + ... = SOU + Slw + SZU + ...
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where Eo’ E and So’ Sl’ ... are constant. Important linear

1,
models are the generalized Kelvin-Voigt model and the generalized

Maxwell model.

Cernocky and Krempl (1973) presented a first order uniaxial non-linear
model to consider rate effects, creep and relaxation:

[2.18] m(o, €) ¢ + gle) = o + k(o, €) &

where m and k are functions of stress o and strain e, g is a function

of strain e.

2.3 Modelling of Time-Dependent Behavior in 3-D stress states

In this section we discuss three types of models. The first one is
Perzyna’s elastic-viscoplastic model (1963, 1966), which is also called
an over-stress model. The second type is flow surface models. The

third type may be called elastic-plastic-viscous models.

2.3.1 Development of Perzyna’s model (1963, 19686)

A number of elastic visco-plastic models have been developed from the
model proposed by Perzyna (1963, 1966). The basic assumptions in this

type of model are:

(1). Total strain rates are the sum of time-independent elastic strain
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rates and time-dependent viscoplastic strain rates:

[2.19] e, =¢5. + &k
1 7 71 i

(2). A separate elastic constitutive law is required to relate the

. ue 3
strain rates eij to stress rates Uij:

le .
[2.20] €y = Cijklo-kl
(3). Viscoplastic strain rates are calculated from the following flow

rule:

‘Vp _ aqQ
[2.21] eij = g <¢(F)> R

iJ
where ¥ is referred to as the fluidity parameter with units of inverse
time, F is yleld function, and Q is plasticity potential. If Q =F,
Egn.[2.21] is an associative flow law, if Q = F, it is a

non-associative situation. The parameter ¢ is scalar function where:

<p(F)> = ¢(F) for F > 0
[2.22]

0 for F =0

<¢(F)>

Zienkiewicz and Cormeau (1874) used the following scalar function ¢:

[(2.23] ¢ = (g—)n

o

where the yield function F was chosen to be a Drucker-Prager yield
surface (Drucker and Prager 1952) or Mohr-Coulomb yield surface (Nayak

and Zienkiewicz 1972). Fo in [2.23] denotes any convenient reference

value of F to render the expression dimensionless.
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Katona (1984) incorporated a cap model 1into Perzyna’s elasto-
viscoplastic theory. The two popular forms of scalar function ¢ are

Eqn. [2.23] and Eqn.[2.24]:

F .n
f—) -1
o

[2.24] ¢ = expl
The yield function F consists of three regions; namely a cap region, a
failure region and a tension cutoff region. F is a function of
stresses Uij, and a strain hardening parameter k, which in turn is
defined by some hardening function of the viscoplastic strain history,
that is, k = k(e??). "For a given value of k, all states of stress
that satisfy F = 0 forms the current ’static’ yield surface in a

six-dimensional stress space (i.e., classical plasticity vyield

surface)." Katona (1984) assumed the strain hardening parameter k was:

[2.25] k = X(g) = ln(% + 1)

UI-—'

o
where W and Do are positive material hardening constants; and the

hardening argument, £, is given by:

t

— - — . va -Vp .vp
[2.26] € = et J; mln(e11 * e, * 833) dt

Desai and Zhang (1987) and Vulliet and Desai (1983) wused the
generalized yield function proposed by Desai and co-workers for the
vield function F in Egns.[2.23],[2.24]. The yield function is {Desail

1980, Desai et al. 1986):

_ _,__.n - 2
[2.27] F = JZD ( aJl + 7J1) Fs
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where JZD is the second invariant of the deviatoric stress tensor, Sij'

J1 is the first invariant of the stress tensor, Gij' FS is a shape

function which controls the shape of the yield surface on n-plane

(Desai 1980, Desai et al. 1988). The parameter n is a material
constant controlling the shape of the yield surface in JZD,Jl—space.
The material constant ¥ is related to Mi = JZD/Ji which defines a zero

volume change line by Mi = 2y/n - a. The parameter « in [2.27] is a

growth or hardening function which may be expressed as:

a

[2.28] « = —
(Evp)

where a and 7m are hardening constants and gvp is the trajectory of

viscoplastic strain given by:

T

_ - 1/2
[2.29] gvp = J ( devp devp)

Adachi and Oka (1882) presented an elasto-viscoplastic constitutive
relationship based on Perzyna’s elasto-viscoplastic theory and the
original critical state energy theory (Roscoe et al. 19863). In their

model, the scalar function ¢ in Eqn.[2.23] is:

(d)

- , , , (8)
[{2.30] 7 ¢(F) = c, explm ln(ohy /o )1

my

in which <, and m’ are parameters related to the time-dependent

(s).

properties of materials. The stress o’ in [2.30] is related to the

my

strain hardening parameter kS, representing strain hardening effects in

the change of stress state from ¢ = 0 to ¢ = ¢’ . The stress 0’(3)
m m my my

>

controls the position of the static yield surface:
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(s) (s) ,(s) _

}) + 1lno’ = lno k
n

(2.311 £ = v235) /(m0
S 2 m my s

This yield surface is the same as Eqn.[2.6] derived from the original
critical state energy theory (Roscoe et al. 1963). 1In [2.30] G&;d) is
related to the strain hardening parameter, kd’ which represents both
strain hardening and rate effects. The stress a&éd) controls the

position of the dynamic yield surface:

[2.32] fd = V2J2/(M0m) + lmrm = an‘my = kd

The function F in [2.23] was defined as:

[2.33] F = f‘d/kS -1

Thus [2.30] becomes:

[2.34] 7 ¢(F) = <, exp(m’F ks)

(s):

where kS is related to inelastic volume strain through 1n¢$

P__P _A-K ,(s), ,(s)
[2.35] €, €54 Tre 1n[o*my /Gmyi ]

Comments:

Perzyna’s elasto-viscoplastic theory provides some understanding of the
modelling of the time-dependent stress-strain behavior in three
dimensions. The question arises why the scalar function ¢ should be a
function of the yield function F. The mathematical forms of ¢
(Eqns. [2.23], [2.24] and [2.34]) are much different from one another.

The determination of model parameters are difficult and not clear.
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2.3.2 Flow Surface Models

Matsui and Abe (13985, 1986) presented a flow surface model based on the
pioneer work of Nahhdi and Murch (1963), Olszak and Perzyna (1964,
1966) and Sekiguchi (1984). In their model, the total strain rates are
divided into elastic strain rates and viscoplastic strain rates as in
Eqn. [2.23]. The time-dependent yield surface in the model is called
the flow surface (or loading surface) which is similar to the dynamic
yield surface in Perzyna’s approach in the preceding section. The flow

surface F was assumed to be:

, SYP, k, ) =0

[2.38] F = F(Ui 3

J
where k is the straln hardening parameter, and m is a parameter which
is a function of time. When F equals zero, both elastic and
viscoplastic strains occur. When F is negative, only elastic strains
occur. Assuming that the flow surface is convex and that the direction
of the viscoplastic strain rate vector coincides with the direction of

the outer normal vector to the flow surface at the stress point:

VP _ oy aF

[2.37] i Er

in which A is a positive scalar parameter, which is determined by the

following equation of the consistency condition:

[2.38] F = oF ..+ oF .YP + oF kK + oF ﬁ =0
do, . iJ vp 1] dk an
ij aeij

In their latest paper (Matsui et al. 19839), it is assumed that the flow
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surface is:

v

[2.39] F = uln{é [(l-exp(—g Q: t)) exp(g) + 8 exp(—g Qr t)1y - vP =0

where &8, u, Q: are the viscoplastic material parameters, v'P the
viscoplastic volumetric strain, and t the elapsed time. The scalar
function f in [2.38] is the volumetric strain in the reference state
which is a function of stress. Using Eqns.[2.23], [2.24] and [2.39],

[2.38], [2.38], the resulting constitutive equations are (Matsui et al.

1889):
. _ . gr - oF aF 8F
[2.40] Sij = Cijklo.kl + [(8-?_— O‘mn + E) / 55] 3_0‘_
mn ij
Comments:

The feature of flow surface models is that the models employ a flow
function which is a non-stationary loading function, and is used as the
viscoplastic potential. A consistency condition is used to find the
scalar function in the flow rule. The problem is how to find the flow
function Egn.[2.36]. Althbugh Matsui and Abe (1985, 1988) assumed a
more basic equation to derive the flow function [2.39], the theoretical
and experimental basis for the flow function is not clear, nor is the

determination of the material parameters for the model.

2.3.3 Elastic-plastic-viscous models

Borja and Kavazanjian (1985) suggested an elastic-plastic-viscous model
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based on Bjerrum’s model for 1-D straining (1967a), and the modified
Cam-Clay model. This approach was developed by Liang et al (1987)
using the concepts of the boundary surface plasticity. In the model
(Borja and Kavazanjian 1985), the strain rate tensor éij is decomposed

into:
[2.41] e..=¢°, + &P, + e°,
ij

where elastic strain rates é?j are calculated using Eqn.[2.24], time-
independent plastic strain rates é§J are calculated using the same

procedure as in the modified Can-Clay model:
P o= 2T
[2.42] eij @

and the yield function F is Eqn.[2.7]. However the stress parameter P,

in the equation was assumed to depend on the plastic volume strain 85

due to strain hardening, and on the time tv due to aging:
= p
[2.43] P, = P (g, t,)

The scalar factor ¢ is determined by using the consistency condition:

OF o LOF 4oy
Bwij ij apo o

[2.44] F =

Time-dependent creep strain rates, é;j’ in [2.43] are calculated from

the following rule:

-t 8F
{2.45] eij =9 35
1J
where F is the same as in [2.42]. The scalar function ¢ is determined
with a volumetric scaling method or a deviatoric scaling method. In
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the volumetric scaling method, ¢ is related the rate of secondary

compression by y:

B Y
(2.48] ¢ = 5= t, @2 - p)

where Y is secondary coefficient, and tv is the time in volumetric

creep.

Comments:

The feature of the elastic-plastic-viscous model is that total strain
rates are decomposed into elastic strain rates, time-independent
plastic strain rates and time-dependent creep strain rates. The
question is how to separate the plastic strain rates from the creep
strain rates. The determination of ¢ is related to the time tv' How
to account for the time tv is not clear. The instant time line used in
the model is the same as that defined in Bjerrum’s model. As pointed

in Section 2.2.1, this instant time line is incorrect.

2.4 0Objectives of the Research

In the past, many models have been suggested and developed for
time-independent or time-dependent behavior, for one- dimensional cases
or three-dimensional stress states. As reviewed and commented on the
preceding sections, each of these models has some advantages and some
limitations. This thesis will utilize the work in the existing

literature, overcome some limitations in the mentioned models, and
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develop a new constitutive model for the time-dependent stress-strain
behavior of soils. To achieve this goal, the detailed objectives in

this research are listed as follows:

1. Develop a new three-modulus hypoelasticity model for time-

independent behavior:

{1). The hypoelasticity model can be used to calculate the time-
independent part of the total strains in time-dependent soils, or

to describe the stress-strailn behavior of time-independent soils.

(2). The model can account for some principal characteristics of soil

behavior, such as non-linearity, anisotropy, and the couplings of

?

P e and q-e,.

(3). Suggest new methods for determining the three moduli in the model

using simple conventional triaxial tests.
(4). Calibrate and verify the model using different types of tests.
2. Develop a new Elastic Visco-Plastic (EVP) model for the time-
dependent behavior of soils in 1-D straining:

(1). Develop a new theoretical framework of EVP models for 1-D

straining based mainly on Bjerrum’s work (1987a).

(2). The EVP models can account for non-linearity, irreversibility,

creep, relaxation, strain rate effects etc. in 1-D straining.

(3). Suggest some new methods for determining all parameters in the

46



model using simple ocedometer tests.

(4). The models should be calibrated and validated using various types

of tests and soils.

3. Develop a new Elastic Visco~Plastic (EVP) model for the time-

dependent behavior of soils in general 3-D stress states:

(1). Based on the work of hypoelasticity models and 1-D EVP models,

the framework of 3-D EVP models is developed.

(2). The 3-D EVP models should be capable of describing non-linearity,
irreversibility, anisotropy, creep, relaxation and strain rate

effects in more general three dimensional stress states.

(3). Suggest some new methods to find the model parameters using

simple triaxial tests.

(4). The models should be constructed, calibrated for different soils,

and verified using different tests.

It will be helpful to clarify how the new material in this thesis
relates to previously published work by other authors. One, the new
three-modulus hypoelastic model in Chapters 3,4 takes account of
additional features of soil behavior compared with existing two-modulus
models. It must therefore be considered conceptually superior to the
earler models. Two, the 1-D EVP model in Chapters 5,8,7 presents, for
the first time in the geotechnical literature, a general mathematical

model that describes the Ué—&é—gz_éz relationships in clay soils. This
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single model can be used to predict behavior in incremental loading,
constant rate of strain, creep and relaxation tests. Three, the EVP
model is also developed for axi-symmetric stressing. This allows
complex test procedures such as speed changing, relaxation, and loading
history dependency to be predicted by using a single mathematical

model.

The approach adopted in the thesis has been to concentrate on the
mathematical modelling and to introduce validation where experimental
data are available. This inevitably means that further research will
be required to examine (a) the broader applicability of the assumptions
used in the modelling, and (b) restrictions on when the models can be

used successfully.
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Chapter 3

HYPOELASTICITY MODELS

3.1 Introduction

In some soils such as sandy soils and some inactive clays, strain rate
effects are small and may be ignoréd. Only time-independent
stress-strain behavior needs modelling for engineering applications.
However in most clay soils, strain rate and time effects are very
significant (Graham et al. 1983). However, even in these cases, total
strains may be divided in principle into two parts, time-dependent
strains and time-independent strains. When +this is done, a
constitutive law is required to calculate each part separately. In
this Chapter, we will deal with only the time-independent part, and
time dependency will be dealt with later. The main characteristics of
time~independent stress-strain behavior are irreversibility,
non-linearity, anisotropy, expansion or compression during shear, and
the shear strains which can accompany changes in mean stress. Here we
will develop a new procedure for hypoelastic (that 1is, non-linear

differential elasticity) modelling.

Eringen (1862) and Saleeb and Chen (1881) have reviewed the techniques
that are commonly used for constitutive modelling of the

time-independent behavior. The simplest models are based on linear or
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non-linear elasticity. However, most soils exhibit non-recoverable
straining in at least part of their stress range. This has led to the
development of elastic-plastic models such as the Cam-clay family
(Roscoe and Burland 1868) in which strains depend, in general, on both
the stress-path and the stress history of the clay. These models also
include the tendency to volume change that usually accompanies shearing
in clays. This is commonly known as "dilatancy" and may be compressive
or expansive in nature. The applicability of elasto-plasticity to
natural clays has been reviewed by Wroth and Houlsby (1885) and Graham

et al. (1989).

Another approach is to use hypoelasticity (Truesdell 1955; Truesdell
1965; Coon and Evans 1971) which assumes a general incremental

constitutive relationship for time-independent materials:

o’ e ,e.)=0

[3.1] Fi.( st

3%1" “mn Spq
provided that this equation is homogeneous in time, i.e. time occurs to
the same order in all terms of the equation and therefore, may be
eliminated. This approach-emphasizes the non-linear nature of soil
response to loading but does not readily include some of the
discontinuous behaviour (for example, porewater pressure generation or
dissipation) that is well handled by elasto-plasticity. Hypoelasticity
has drawn some criticism for its lack of incremental continuity of

response along certain load paths (Mroz, 1980).

Coon and Evans (1971) suggested four reduced forms of [3.1]. One of

the reduced forms is:
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[3.2] deij = Cijkl(o-mn) dcrkl

Here Cijkl are complementary constitutive tensors (or moduli) which are
stress level dependent. Eqn.[3.2] gives a general linear relationship
between incremental strains and incremental stresses which may then be

integrated to determine a required stress-strain relationship.

Two different types of hypoelasticity models have been developed from
the general framework given by [3.2]. One.type expresses Cijkl in a
stress tensor series {(Coon and Evans 1971; Yin 1984). Obtaining the
resulting material constants is difficult, and sometimes impossible.
The second type makes a further assumption to reduce the required

number of stress level dependent parameters Ci' in [3.2]. This set

Jki

of parameters can be determined by differentiating curves fitted to
experimentally observed stress-strain data. Examples of this type are
the E,v model of Duncan and Chang (1970); the X,G model of Domaschuk
and Valliappan (1975); the three modulus model of Yin and Yuan

(1985a,b); and models with more than three moduli, for example by Darve

et al. (1986).

The new model presented in this chapter uses three stress dependent
modulus functions that will be referred to subsequently as "moduli".
These are (1) the bulk modulus K, (2) the shear modulus G, and (3) a
coupling modulus J. The model incorporates non-reversibility,
nonlinearity, dilatancy, and the related phenomenon which produces
shear strains from mean stress changes. The three moduli can be

determined from routine undrained CIU triaxial tests or drained CID
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tests.

3.2 Framework of Hypoelasticity Models

One reduced form from [3.1] for the time-independent behavior is:

{3.3] deij = Cijkl(wmn’ epq) dokl

This expression is more general than [3.2]. Moduli Ci'k in {3.3] may

Jkl

depend on both effective stresses and strains. The KGJ model to be
discussed in this Chapter and Chapter 4 is based on further reduction
of [3.3]. In the KGJ model, the moduli G and J depend on both stresses

and volumetric strains.

Graham and Houlsby (1983) suggested a constitutive relationship:

dp’= K dev + J des

[3.4] _ _
dq = J de_ + 3G de
v S

for modelling anisotropic elastic straining, where in triaxial stress

conditions, volumetric strain sv =g, + 2¢ deviator strain es =

3;

(01

Wl -

%(8 - £,); effective mean stress p’ =

1 3 + 203); and deviator stress

Yin and Yuan (1985a,b) presented a hypoelastic model which can account

for non-linearity and dilatancy in a medium sand:
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dev = Eldp + = dq
[3.5]
de = L dgq
s 3G

where Kl is a bulk modulus, K2 a shear dilatancy modulus and G a shear
medulus. Note that this equation is written in compliance form rather
than the stiffness form in [3.4]. It can be seen at once that the
general matrix of the model in [3.5] is not symmetric. The model does

not therefore incorporate shear strains generated by changes in mean

effective stress p’, for example in clays with inherent anisotropy.

In this chapter, a new formulation that includes p’-generated shear

strains is suggested.

_ 1 , 1
dev =z dp’ + 3 dg
[3.6] 1 1
des =3 dp’ + 3ic dg

Here, the bulk modulus K represents the volumetric stiffness of the
clay with respect to dp’ (K > 0). The shear modulus G controls shear
deformations with respect to dg (G > 0). The coupling modulus J
accounts for the volumetric strain produced by an increment dg in
deviator (shear) stress, and also the shear strain produced by an
increment dp’ in mean effective stress. The formulation assumes that
the dp’,dss—coupling and the dq,dsv—coupling are controlled by the same
J-modulus. Positive dilatancy, that is, expansion during shearing, is
associated with J < 0. Compression during shearing produces J > 0. If
there is no dilatancy or no anisotropy, J = o , and [3.6] has the same
form as the X,G model described by Domaschuk and Valliapan (197%5).

The moduli X,G,J may depend on both stresses and strains.
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The elastic model in [3.4] had J = 0 for isotropy. Note that the
hypoelastic moduli in [3.8] are not directly comparable to the elastic
moduli in [3.4] but can be related to them by inversion. For example,
J in [3.8] is equal to —57(3K§—52) from [3.4]. The difference is due
to the forms chosen for [3.4] and [3.6]. It is also known that the
moduli K,G,J in [3.4] are constant for a given preconsolidation
pressure. While modulus functions K,G,J in [3.8] depend on both

stresses and strains.

When the current total unit strain energy is lower than any previous
higher strain energy level (for example, during unloading or
reloading), the same form as [3.6] is used but the moduli K, G and J
are replaced by Ke, G and J%. Appropriate moduli (X,G and J, or
Ke,Geand Je) are chosen depending on whether the stress changes are for
first-time "loading" or for "unloading/reloading" expressed in terms of
unit strain energy. The distinction between "first loading" and
“unloading/reloading” has also been made on the basis of previous
higher values of p’ or gq (Yin et al. 1988), but the energy criterion
used in this chapter is considered superior (see also Mroz 1980, Duncan

1981).

It should be pointed out that when the modulus functions K,G,J are used
for first loading and the modul i Ke,Ge,Je are used for
unloading/reloading, deformations may not be reversible for an even

infinitesimal stress cycle. This means that this type of models with

unloading/reloading moduli is different from the originally defined
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hypoelasticity, in which the deformation is reversible in a
infinitesimal stress cycle. In complicated unloading/reloading cases,
the use of the model with X°,G%,J° should be restricted within the
strength envelope so that the stress trajectories which are not
accessible for geological material can be avoided. For a neutral
loading path, there may be an abrupt change in the material behavior,
and the responce is not unique, energy may be continuously extracted
from a sample when subjecting it to a closed stress cycle (Zytynski

et al. 1978).

Egn. [3.6] can also be extended for a general 3-D stress state in tensor

form:

! LI )s. .5 1

1 1, ,
[3.71 dey = [(g - 3qJ “mn T 86°°15%1 * 297 “%1%15 Y 3q7 %1%t

1 ,
*agtOndy 818y dogy

where the deviator stress q = v 3J2, J2 is the second deviator stress

invariant, J, = 1/2 S, .S, ., and 8 is the Kronecker delta (8.. = 1 if i
2 1713 ij

= j or aij =0 if 1 = J). Equation [3.7] can be written in matrix form
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for finite element applications:

I R » b r s
de11 a1+2b1 a2+b1+b2 a2+b1+b3 c1 02 c3 dvll
d€22 a2+b1+b2 a1+2b2 a2+b2+b3 c1 02 03 daéz
d€33 a2~l-b1+b:3 a2+b2+b3 a1+2b3 c1 02 03 dcég

[3.8] < y = <

1 ,
d€12 cl/2 02/2 c3/2 3G 0 0 d¢12
1 )
d823 01/2 02/2 03/2 0 5G 0 d¢23
1 ,
.é€3ld -Fl/z c2/2 c3/2 6] 0 EEJ ~é0é1J
where a, = Lyl a, = L1 b, = (207 ,~0._ -0¢..)/(8qJ)
1 9K 3G 2 9K BG’ 1 11 "22 "33
b, = (205,707 1=03,)/(Bqd); by = (207 -07,-07,)/(6qJ)
cy = 012/(qJ); c, = 023/(qJ); Cqy = 031/(qJ)

Under triaxial stress conditions in which shear stresses are zero and

the principal stress qé = vé, [3.8] can be written in the same form as
[3.6]. If J = o, and there is no cross-coupling, [3.8] has the same

form as the isotropic K,G model. Note that the matrix in [3.8] is not

symmetric.

3.3 Methods for Determining K,G,J Moduli

For a model to be useful, the required tests for calibrating the model
must be relatively simple to perform and the data should be

consistently reliable. For example, Duncan and Chang (1970) used CID
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data to find E and v as functions of q and ¢, while Domaschuk and
Valliapan (1975) wused isotropic consolidation to find K, and

constant-p’ tests to find G as a function of q and p’.

Conventional CID tests or incremental constant p’ tests on clays last a
long time, and in the latter case, are relatively difficult to run.
‘When a load increment is applied, the porewater pressure inside the
specimen changes, and the real effective stress path deviates from the
target one. Despite requiring additional instrumentation, CIU tests
are in some ways easier to run and more reliable than CID tests. Né
water flows into or away from the specimen, and apart from some end
effects or localized effects in expansive strain-softening specimens,
effective stresses can often be considered substantially constant
throughout the specimens. In this case the specimen can be treated as
an infinitesimal element for finding differential relationships for
stress-strain behaviour. Two methods for determining the K,G,J moduli

functions will be described below.

3.3.1 Method one: using isotropic consolidation tests and CIU tests

In this method, isotropic consolidation is used to find the bulk
modulus K, while undrained CIU tests are used to find the shear modulus

G and the coupling modulus J. Unload-reload cycles are incorporated

into these tests to determine the elastic moduli Ke,Ge and Je.
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3.3.1.1 Bulk modulus K

Isotropic consolidation provides data relating effective mean stresses
p’ and volumetric strains e, Fitting appropriate mathematical
functions to these data produces equations g, = fl(p’) for loading and
g, = fi(p’) for unloading-reloading. The bulk modulus K is then found

from the first equation in [3.6] with dq = O:

= dp’
{3.9] K = e
v

and Ke is obtained in a similar way from unload/reload data. The

moduli X and X° are functions only of p’.

3.3.1.2 Coupling modulus J

In CIU tests the total confining stress T is constant and the total

vertical stress o increases (dg > 0). Mean effective stresses
increase in specimens that are expansive in shear (dp’ > 0), and
decrease when the specimens are compressive (dp’ < 0). Two independent

relatlionships, q vs. p’ and q vs. g, can be measured directly. The

first relationship is used to determine the coupling modulus J.

In undrained shear, the volumetric strain is constant, dev = 0. So

from the first equation in [3.8]:

_ dq

J

b3

where p p - u; K has already been determined from isotropic
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consolidation tests; and u, p and q are measured during the test. The
q,p’ data may be normalized by a factor which is kept constant during
this type of tests. For example, the q,p’ data of CIU tests can be
normalized by consolidation pressures, which is then related the
volumetric strains that are constant during testing. Eqn.[3.10] means
that -J/K can be obtained by differentiating a curve fitted to the
normalized q vs. p’ test data. In this form, [3.10] is valid for first
loading. An unload-reload cycle in the CIU test allows J® to be

determined using similar procedures.

3.3.1.3 Shear modulus G

Measured q - g relationships can be used to determine G and G°. Using

[3.10] with the second equation in [3.8], we have:

2
[3.11] 3D = gg = —ggi—-
s  JP-a3ck

where 3D is introduced for convenience to denote the local slope of

qvs. £, called the apparent shear modulus. From [3.11]:

DJ2

J2+3DK

[3.12] G =

If the soil is neither expanding or compressing in shear, then J = o,
and the shear modulus G equals the apparent shear modulus D. Again, G

is a function of p’ and g, and varies with the total g, produced by

?

pcons'

59



In a general case, K, Ke, J and Je have already been determined at this
stage. The q, € data can be normalized by the same factor as used for
q,p’ data. Then an appropriate mathematical function is fitted to the
data; and is differentiated to provide D. The shear modulus G is then
obtained from [3.12]. As in previous cases, unloading-reloading CIU

data allow determination of the elastic shear moduli De and Ge.

Details of this method will be described in Section 4.1 of Chapter 4
using the results from triaxial tests on 50-50 mixtures by dry mass of
bentonite and sand propoesed for nuclear fuel waste ﬁanagement in

Canada.

3.3.2 Method two: using isotropic consolidation tests and CID tests

This method also uses isotropic consolidation tests to find the bulk
modulus K. The difference in this method is that drained CID tests
(and not CIU tests) are then used to find the moduli J and G. The
application of this method will be presented in Section 4.2 of

Chapter 4 using test data on a medium dense sand from Wuhan, China.

3.3.2.1 Coupling modulus J

In CID tests, two independent relationships were obtained, namely
volumetric strain vs. deviator stress, e, -4 and shear strain vs.

deviator stress, g, - g The first of these relationships can be used
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to find the coupling modulus J.

The €, 9 data may be normalized by a factor which is kept constant. In
CID tests, the confining pressure cé is constant, a function of which
can be used for the normalization. We define dq/deV as Je which is
differentiation of q,ev. From the first equation in [3.8], we can find

the relation between Je and J:

nKJe
e
where m = dg/dp’ = 3 for CID tests. We can obtain K from isotropic

tests and we have Je by differentiating the function fitted to sv,q

data. Eqgn.[3.13] allows calculation of J.

3.3.2.2 Shear modulus G

If we define a equivalent shear modulus Ge which is equal to

(dq/des)/B, then from the second equation in [3.6], we have:

nGeJ
e
where, again, m = dq/dp’. Therefore if we know Ge in [3.14] we can
find the shear modulus G. The £.,9 data are normalized by the same

factor as used for £, q data. A appropriate function is used to fit

these data. By differentiating we can obtain Ge.

Using the same procedure, and from the data of unloading/reloading in
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CID tests, we can find JS and GS.

The first method is suitable to soils with either low permeability or
high permeability. However the second method is only suitable to the
high permeable soils since it is very difficult to obtain reliable data

from drained CID tests on low permeable soils.
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Chapter 4

APPLICATIONS OF THE KGJ MODEL

4.1 Method 1: Calibration for Buffer Materials and Paris Clay

The framework of the KGJ model (Eqns.[3.6] and [3.7] or [3.8])
presented in Chapter 3 is itself a assumption. Validation of the model
needs to be established using data from a variety of soils and test
conditions. In this section, undrained test results from two
sand-~bentonite buffer materials and a Paris clay are used to calibrate
the KGJ model. The subsequent section uses drained test data from
Wuhan sand. In each case, predictions from the model are compared with

measured results which had not been previously used in the calibration.

4.1.1 Buffer materials and testing

The dominant constituent of the "buffer" is sodium-based bentonite with
liquid limit 250% and plasticity index 200% (Graham et al. 1983). It
controls the swelling, strength and hydraulic conductivity of the
mixture. The composition of the bentonite was reported by Dixon and
Woodcock (1986) and Quigley (1984). The sand component is a uniformly
graded mixture of sub-rounded fine to medium crushed quartz (Gray

et al. 1984).
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In 2 larger program at the University of Manitoba associated with the
Canadian Nuclear Fuel Waste Management Program, test specimens, 50 mm
diameter and 100 mm high, were formed by static compaction of mixtures
of dry sand, bentonite and distilled water to 85% or 95% ASTM Modified
Density. Details of the densities, water contents and saturations
after compaction are given in Table 4.1 (Saadat, 1989). Dixon and
Woodcock (1986) and Graham et al. (1983) showed that the buffer
properties are dominated by the clay component and can be related to
the density or specific volume of the clay-water phase. The sand acts
mostly as an inert filler but is effective in increasing the thermal
conductivity and reducing shrinkage in the buffer. The triaxial test
arrangements included spiral filter drains, double membranes separated
by silicone oil, drainage from the bottom of the specimen, and deaired
cell water. Three series of tests were done at confining pressures up
to 10 MPa - (1) isotropic consolidation; (2) undrained triaxial
compression with porewater pressure measurement; and (3) drained
incremental shear loading at constant p’. Application of 0.2 to 0.5
MPa back pressure generally produced B-values of 0.98 - 1.00,
indicating acceptable saturation. The majority of the specimens in
this program have been sheared 1Iin undrained triaxial compression and
will be used to evaluate the K,G,J model. The model will then be

compared with results from the constant-p’ tests.
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Table 4.1 Consistency of Specimens after Compaction

ASTM Modified Dry Density

85% 85%
Dry density, Mg/m> 1.50 + 0.02 1.66 + 0.01
Moisture content, % 28.4 £ 0.9 22.5 £ 0.2
Saturation, % g8 + 1.5 97 £ 0.9
Clay specific volume 2.58 £ 0.04 2.24 £ 0.01

Full details of the testing program have béen given by Graham et al.
(1988). Some comments need to be made about the applicability of the
effective stress principle to the bentonite in the mixture. It is
assumed here that the properties of the buffer can be related to the
tensor difference between externally applied pressures and porewater
pressures measured on externally mountéd pressure transducers. More
detailed discussion of this Iimportant assumption has been given by

Graham et al. (1988b, 1989).

4.1.2 Evaluation of K,G,J moduli using method one

The permeability of the buffer materials is very low. The hydraulic

12 to 10—13

conductivity is 10~ n/s for high density buffer (7d = 1.87
Mg/m3) (Dixon and Gray 1985). This means, for example, that there was
still 709 kPa of excess porewater pressure left in test T1001 after 78
days of isotropic consolidation (cell pressure was 3500 kPa, back

pressure was 500 kPa). The excess porewater pressure in test T1002 was
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89 kPa after 84.75 days of isotropic consolidation (cell pressure was
3500 kPa, back pressure was 500 kPa). (More details can be found in
Chapter 9.) As a result, drained shear tests in the buffer would take
a very long time, and the data obtained may be difficult to interpret.
However, undrained shear tests are relatively easier to run, and the
test data appear more reliable. It is therefore appropriate to use the
first method discussed in Chapter 3 (that is, using CIU tests) to

calibrate the KGJ model for buffer.

4.1.2.1 Mean pressure-volume change relationship for K and K°®

Fig.4.1 shows p’,ev relationships from isotropic consolidation tests
on sand-bentonite buffer materials with two different dry densities,
¥y = 1.580 Mg/m3 and ¥q < 1.86 Mg/ma. These data can be represented
(see Fig.4.2), by:

[4.11 V= -aln(p, )+ V__

where the clay specific volume VC is the volume of clay and water
occupied by uniﬁ volume of clay solids. The relation between V and VC
(that is, between the specific volume V for the sand-clay-water mixture
and the clay specific volume Vc in the clay-water phase) is V = O.491VC

+ 0.509 (Graham et al. 1989). This produces from [4.1]:
[4.2] V= -Aln(pcons) + V

[¢]

and the corresponding relationship between €, and p’ is:
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[4.3] €, = A/Vi ln(pcons) + €,

where Vi =1 + e, the initial specific volume before straining.

Fig.4.1 was drawn using strains accumulated in the first three days of
each increment (Mesri and Godlewski 1977; Graham et al. 1983) for both
densities of buffer. In Fig.4.1 the 1.50 Mg/m3 buffer swells when the
confining pressure is less than 0.7 MPa. The corresponding pressure

for 1.866 M,g/m:3 buffer is 1.7 MPa (Saadat 1989).

The behaviour of buffer is strongly time-dependent (Graham et al. 1989)
and test durations up to 80 days were at times required to reduce
volumetric straining rates to 0.1% /day, a rate that was taken to
indicate "end-of-consolidation". Fig.4.2 shows "end-of- consolidation"
(EQC) relationships rather than the "3~day" results shown in Fig.4.1.
The lines in Fig.4.2 have been drawn through data from specimens that
were compressive (that is, they showed increasing porewater pressures)
during subsequent undrained shearing. Fig.4.2 includes data from =a
limited number of specimens with different initial densities. Those
with densities 1.58 Mg/m:3 (90% ASTM Modified Density) or less, have
been included with the 1.50 Mg/m3 data. The remainder have been
included with the 1.66 Mg/m 3 data. Table 4.2 shows the EOC
parameters in [4.3] that result from this data. The compression index
A is larger than the corresponding value measured from the "3-day" data

in Fig.4.1. This suggests the specimens were not fully equilibrated

at the earlier stage (Graham et al. 1989).
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Saadat (19839) showed however that specimens were about 95% consolidated
at EOC. Multiple regression analysis on tests with different
consolidation times suggests that the durations of the tests were
sufficiently long that the effects of time on the ECC relationships in
Fig.4.2 should be small. The long-term swelling pressure of the buffer
at 85% ASTM modified density is estimated at 1.0 MPa from the EOC data

rather than 0.7 MPa from 3-day data (Saadat 1889).

The elastic bulk compressibility of the buffer is determined through an

isotropic swell-compression cycle represented mathematically by:

, e
[4.4] £, = ;c/Vi ln(pcons) + £

The data show K/Vi = 0.0105 (R2 = 0.95) and lc/V.1 = 0.0125 for 3~day and
5-day strains respectively in 1.50 Mg/m3 buffer (Saadat 19839). Because
strains and strain rates are small in the elastic range, it |is

reasonable to use short duration data.

Applying [3.9] and differentiating [4.3] and [4.4], the bulk moduli K

and Ke are:

K

p’/{A/V)

[4.5]
K©

p’ /(k/V)

The introduction of p’ in [4.5] instead of péons in [4.3] and [4.4]
involves an important assumption that the volumetric strain induced by
p’ is independent of q. Using Table 4.2 and the EOC data in Fig.4.2
for 1.80 Mg/m3 buffer produces K/p’ = 13.7. The 5-day unload/reload

data suggest in [4.4] that K°/p’ = 80.0, (K/K° = 5.8).
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Table 4.2 Curve-fitting Parameters in KGJ Model

K-modulus J-modulus G-modulus
Soil
AV, € R? A n R2 E F R?
i Vo
.073 -0.003 0.82 1.32 0.81 0.81 0.0086 2.15 0.398
.062 -0.038 0.85 1.25 0.85 0.64 0.0108 1.83 0.99
.028 -0.172 0.98 -8.83 1 0.98 0.0039 0.92 -~
Soil: 1. Sand-bentonite buffer ¥y, = 1.50 Mg/m3 (Graham et al. 1988)

1.86 Mg/m:3 (Graham et al. 1988)
Paris clay, France (Azizi, 1987)

Sand-bentonite buyffer 74

4.1.2.2 Effective mean stress-deviator stress relationship for

J and J°

Figs.4.3a,b show data from compressive CIU specimens with initial
densities 1.50 Mg/m3 and 1.66 Mg/m3 respectively. The stress paths
incline leftwards at the beginning of shearing indicating anisotropy.
The p’,q data have been normalized by péons in the range 0.8 - 3.0 MPa.
They normalize into reascnably restricted zones in the Figures and this
has been taken to support the use of “"effective stresses" to describe

the tests. A power law [4.8] has been used to describe the best-fit

normalized stress paths:

’

; _ _ p’ \n
[4.8] q/pconS = AQ1 ; )
cons
Values of A, n and R2 are given in Table 4.2. The R2 coefficient
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reflects variability of the normalized stress paths due to differences

in initial density, fabric structure and consolidation duration.

Using [3.10] and differentiating [4.6] with respect to p’, the coupling

modulus can be written:

e _ _,1/n , (n-1)/n
[4.7] J/K” = nA (q/pcons)
. d
=¢c (pcons/q)
1/n .
where ¢ = nA = 1.05, . d = (1-n)/n = 0.41. Using the value
Ke/p(’:ons = 80 obtained in the previous section from [4.5], the coupling

modulus for buffer with 1.350 Mg/m3 initial dry density is:

[4.8] J = 1.05 x 80p’ (0.962 exp(13.728v)/q)0'41

It can be seen that J and J® are functions of p’ and gq, and vary with
the volumetric strain g, from the beginning of the test due to
consolidation under péons' When q = 0, the coupling modulus J = o,
implying that the initial behaviour in shear 1is isotropic. This
deviates from the observed average behaviour in Fig.4.3 which is

initially anisotropic, probably because the specimens were formed by

compaction in rigid molds..

4.1.2.3 Undrained shear stress-strain relationship for G and c°

Fig. 4.4 shows reasonably consistent results from compressive specimens

with 1initial densities 1.50 Mg/m3 and 1.66 Mg/m3 and effective
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confining pressures in the range 0.8 - 3.0 MPa. The g-data have again
been normalized by péons' Peak shear stresses were generally reached
at about 4% shear strain and the shearing resistance only decreases by
a small amount (average 4%) with further straining. The shear
stress-strain relationship has been modelled wusing a best-fit
hyperbolic function (Duncan and Chang 1970, Domaschuk and Valliappan

1975):

>4
S

[4.9] q/pcons = E + Fss

Values of E, F and R2 are shown in Table 4.2. Using [3.11] and

differentiating [4.9]:

)

Pcons
E

[4.10] 3D = 2

(1-F 32—
pcons

Then replace Plons with £, from [4.3]:
[4.11] 3D = 111.86 exp(13.728v) [1 -2.235 g eXp(—13.728v)]2

for buffer with 1.8 Mg/m3 initial dry demnsity. This shows D to be a

b4

function of q and the strains e produced by p .
\% cons

The parameter D
represents an equivalent shear modulus Geq (Graham and Houlsby 1983)
for an idealized isotropic elastic material. Using k° = 80p’ from

[4.8], J obtained from [4.8], and D obtained from [4.11], the shear

modulus G can be found from [3.12] as a function of p’, q and g,

The elastic parameter D® has been measured as De/p(’:ons = 37.5 from the
results of unload-reload cycles in an undrained shear test on 1.50

Mg/m3 buffer. It is assumed here that the unload-reload behaviour is
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isotropic elastic, so, from [3.12], G° = D°.

4.1.3 Calibration for Paris clay

The KGJ model [3.8] has also been calibrated for a medium-stiff plastic
clay from Paris, France (Azizi, 1987). The same method as for buffer
materials was used to find K,G,J moduli. The curve fitting functions
for Paris clay were Eqns.[4.3],[4.61,[4.9]. Figs.4.5,4.6 and 4.7 show
the best fittings. The parameters of K,G,J moduli for Paris clay are

shown in Table 4.2.

4.2 Method 2: Calibration for Wuhan Sand

As a further development of the KGJ model and an example of the
applications of Method 2 for drained tests in Chapter 3, the data on

Wuhan sand are now used to calibrate the model.

4.2.1 Calibration using method two

The Wuhan sand as tested was medium dense with relative density ID =
57% and dry density 7d = 1.58 Mg/m3. The coefficient of uniformity Cu

(defined as D /D1o) is 2.13. As we know, sand has high permeability.

60
During shearing, excess porewater pressures can quickly reach

equilibrium. If a drained shearing test is run, the excess porewater
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pressure 1is almost zero throughout the specimen. Data from drained
tests on sand are therefore highly reliable. The following sections
use the second method outlined in Chapter 3 to calibrate the KGJ model

for Wuhan sand.

4.2.1.1 Determination of bulk modulus K

At this step, the method is the same as Method 1, using isotropic
consolidation tests to find bulk modulus K. Fig.4.8 shows isotropic
consolidation test data for Wuhan sand. The data have been fitted by a

hyperbolic function:

_ Pcons
v R+Sp
cons

[4.12] €

where R = 6867 kPa, S = 33.4. Differentiating [4.12] using [3.9], the

bulk modulus K is:

[4.13] K= (68687 + 39.4 p’)z/ 8867

4.2.1.2 Determination of coupling modulus J

Three drained CID tests were done with confining pressure 98.1 kPa,
196.2 kPa and 392.4 kPa respectively. Two independent relationships
were obtained, namely volumetric strain vs. deviator stress, g, -~ 4
and shear strain vs. deviator stress, g, ~ g The first of these

relationships can be used to find the coupling modulus J.
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The first approach to normalize the €,~q data was to use the confining

pressure cé in the same way as in clays. It was found however that

data normalized in this way were scattered, probably as a result of

non-linearity of the strength envelope of the sand (Fig.4.10). However

if (03)0'85 was used in the normalization, a good relationship was

obtained, in Fig.4.9, m = 0.85. The same (05)0'85 will also be used to

normalize g, ~ g data in the following section for the shear modulus G.

The following function provides a good curve fitting of the data in

Fig.4.9:
u(u - UO)
[4.14] e =T ——-—r—"
v U= Uit
_ , - —_ = =
where U = q/(oé) , m =0.85, T =0.0015, Uo 7, Uult 10.

The "equivalent coupling modulus"” Je is, by differentiating [4.14]:

2
(U-1U,,)

v - 2W e~ YoVt

49 _ [ ,\m
[4. 15] Je = (TS—; = (0'3)

From Eqn.[3.13], we can find the coupling modulus J.

4.2.1.3 Determination of shear modulus G

Fig.4.11 shows the €.~ 9 data normalized by (05)0'85. A hyperbolic

function was then used to fit these data:
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€

N s
[4.18] q/(dé) v—:—wgg

where m = 0.85, V = 0.001 (kPa)™ !, W= 0.10 (xPa)™ . Differentiating

[4.186]:

dq — » 41 1 _ » 1 2
ES = (0'3) V [1 W q/(0'3) ]

[4.17] G_=
e

(A

The shear modulus G is then found using [3.14].

So far we have obtained all three moduli for Wuhan sand from a

isotropic conscolidation test and three drained shear tests.

As mentioned 1in the last section, normalizing by (aé)m>is related to
the curved strength envelope of the sand. From [4.16], at failure,
qf/(vé)m = R, where R is a constant depending on the definition of
failure. We know that in CID tests p’ = aé + q/3. So the strength

envelope implied by the nonlinear normalization with (cé)m is:
y 1/m
[4.18] pp = (qf/R) + qf/3

The curved strength envelope represented by [4.18] 1is shown in
Fig.4.10.
4.3 Validation of the KGJ Model

The model outlined in the previous sections is of course general in the

sense that it can be applied to any soil and any stress path, if
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suitable test data are available. Validation of the KGJ model can be
examined by comparing the predicted and measured results for tests

which had not been used in originally calibrating the model.

4.3.1 Prediction of constant p’ tests on buffer

The values of A/Vi, g0 A, n, E and F in Table 4.2 calibrate the
general model for buffer with two different initial densities. Now the
calibrated model will be used to predict the results of drained tests
with constant p’ on buffer materials. These predicted results will be
checked against experimentally measured values which were not used in

forming the original model.

In drained constant p’ tests, the required condition is dp’ = 0. From

[3.8]1, [4.7] and [4.5], using an "unloading/reloading" criterion for K®

’

when p’ < Prax’

>

P _ d -
[4.19] E7Vic [exp( svoVi/h) exp(ev Vi/A)/q] dev dq

which on integration and combination with [4.3] gives:

(g, y1+dy

, A kd
iln(p )+t v.d Inl1 + = 9ywe

<|>

[4.20] g, =

The volumetric strain produced by shearing is then:

kd (g,)1+d

(1+d)ac 'p ]

A
[4.21] ASV = 'Vi—d ln[l +

which is a function of n = (gq/p’). Substituting appropriate values for

buffer parameters in [4.21]:
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1

[4.22] Aev = 0.178 1n[1 + 0.0475 (q/p’)l'4 ]

Fig.4.12 shows the calculated relationship resulting from [4.22]
between g/p’ and Aev, and also experimentally measured relationships
from four constant-p’ tests at different stress levels. Although there
is some scatter in the data, the prediction looks promising considering
the small volume strains that are typically encountered in these
constant-p’ tests and the relative insensitivity of volume change

measurements.

It is also possible to predict q vs. es relationships in constant-p’

tests. From the second equation in [3.8] with dp’ = 0:
[4.23] dgq = 3G(p’, q, sv)des

where G is expressed in terms of D and J from [4.11] and [4.8] with
k° = 80p’. An analytical solution cannot be obtained for Eqn.[4.23] and
it has been solvea with the fourth-order Runge-Kutta method in
conjunction with [4.20]. Fig.4.13 compares predicted and measured
results for g/p’ vs. es for two different densities of buffer. The
predicted normalized curve for different constant-p’ values is unique
and agrees well with the test data, especially when it is remembered

that the tests were performed by incremental loading and are known to

be difficult to interpret.
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4.3.2 Prediction of a drained constant stress ratio test on Paris clay

Fig 4.14 compares predicted and measured results from a drained shear
test on Paris clay with constant stress ratio cé/wi = 0.6 (Azizi 1887).
In this case some account of "elastic" straining has been built into
the predictive model to account the ealy pre-yield straining observed
in the testing program. The measured volume strains appear to be

predicted reasonably well by the model. However the shear strains

appear to be underpredicted.

4.3.3 Prediction of two constant p’ tests on Wuhan sand

The program on Wuhan sand (Yin and Yuan 1985) also contained tests at
constant mean effective stresses. The calibrated model for the sand
has also been used to calculate the stress-strain curves for these
tests which had not been used in the calibration. The predicted and
measured results in Fig.4.15 are in good agreement for the two

different confining pressures shown.

4.4 Discussions and Comments on KGJ Model

The model described in the preceding sections can be applied to a wide
variety of soils and testing conditions. This is shown by its ability
to determine the K, G, and J functions from either undrained tests in

the sand-bentonite buffer materials and Paris clay, or from drained
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tests in Wuhan sand, and the promising predictions from the model shown

in the previous section.

In terms of constructing the model, the principal uncertainties at this
stage involve the assumption in [4.5] and [4.13] that K and K° are
independent of 7 = g/p’, and the relationship between J and JC. One
restriction of the model is that the data should be capable of being
normalized into q/p’cons vs. p’/péons and q/péons vs. £ or
q/(aé)m vs. £ and q/(aé)m vs. € relationships. Thus in clays, the
modelling parameters (Table 4.2) will vary with overconsolidation ratio
{OCR). In sands, normalization is only possible when specimens have
the same "state parameter" Y (Been and Jefferies 1985). Solutions

based on elastic-plastic soil mechanics appear more suitable than

hypoelasticity when different OCR’s or ¥’s have to be considered.

The stress states used for calibrating and verifying the model have
only been triaxial (axisymmetric). The model needs to be developed and
verified for more general stress states. However, with the restriction
that it must be possible to normalize the data, the model can account
for irreversible, nonlinear, shear-compressive or shear-expansive
characteristics of soil behaviour, and the shear strains which can

accompany changes in mean effective stress.
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Chapter 5

1-D ELASTIC VISCO-PLASTIC MODELLING

5.1 Introduction

The stress-strain behaviour of many lightly overconsolidated clays is
quite strongly time-dependent. For example, undrained shear- strengths
and preconsolidation pressures depend more strongly on the speed of
testing than is commonly appreciated (Graham et al. 1883). This can
affect the stress distribution, deformation and capacity of foundation
soils beneath embankments, o0il tanks, silos, etc., especially when the

stresses are high enough to cause yielding.

In recent years, increased attention (Leroueil et al. 1985; Crawford
18986; Mesri and Castro 1987; Leroueil 1888) has been paid to the
effects of time and strain rate on the effective stress-strain
behaviour of the particle structure of clays. Most of this research
fits rather simple functions (usually graphical functions) to data

collected in the laboratory.

This Chapter develops an alternative approach using an important
concept of ‘"equivalent times" and three relationships for elastic,
elastic-plastic and time-dependent straining. The resulting
constitutive model predicts the behaviour of clay under step-wise

loading, constant rate of straining, relaxation, and constant rate of
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effective stress application.

5.2 Time and Strain Rate Effects and Modelling

The most common example of time dependent behaviour in clays is
terminating creep (secondary consolidation) observed after the excess
porewater pressures have completely dissipated. Creep displacements in
clays are usually considered (Ladd et al. 1977) to vary linearly with
log(time), and the coefficient of secondary consolidation is defined by
alternative relationships Cae = AV/log(ti/to); Cas = é%/1og(ti/to); Yy =
AV/ln(ti/to) where the specific volume V = 1 + e. One difficulty with
these relationships involves deciding when creep movements actually
begin , that is, the value of to (Crawford 1986). On one hand, Mesri
and Choi (1985a,b) argue that compression strains at the "end of
primary" (EOP) consolidation are “unique”, that is creep only commences

after excess porewater pressures have reduced to zero.

It is now frequently accepted that the compression index CC and the
preconsolidation pressure wéc (commonly called o;C or o%) should be
measured from stress-strain curves derived from EOP strains only.
Mesri and Choi (18985a,b) defined the behaviour of the clay in terms of
the e, log G;C relationship at EOP, and the ratio Cae/cc which they
consider constant for a given clay. (Graham et al. 1983 suggest that
the Cae/cc ratio is strain dependent). However Kabbaj et al. (1988)
showed that the laboratory EOP curve wunderestimates in situ

settlements. This implies that the EOP stress-strain relationship is
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not unique but depends on the duration of primary consolidation. If

so, viscous deformation occurs during the whole consolidation process.

Alternatively, Wahls (1862), Mitchell (1976) and Crawford (1986) among
others, have suggested that the separation of consolidation strains
into primary and secondary stages is arbitrary. Adjustment of the
internal structure of the clay involves time dependent deformations and
it seems reasonable to include some elements of time dependency during
primary consolidation. In a similar way, Bjerrum (1967a) argued that
time dependent straining would occur at the same time as hydrodynamic
consolidation. He divided the observed displacements into "instant
compression” and "delayed compression", although he recognized that the
instant compression strains would take place in finite time because of
hydrodynamic consolidation, see Figs.5.1 and 5.2. He proposed that
delayed consolidation could be described by parallel 1lines (in
V,log W;)—space representing a series of equilibrium relationships

after different durations of sustained loading.

The reductions in volume that occur during delayed compression lead to
more stable clay microstructure. Thus during delayed compression or
“aging”, a clay develops increased strength and a reserve resistance
against further compression, Fig.5.2, (Bjerrum 1967a). An apparent
preconsolidation pressure is found when stresses are again increased
after delayed compression at constant effective stress. This accounts
for the small amounts of overconsolidation found in natural clays that
have never experienced the usual causes of overconsolidation such as

offloading, groundwater level changes, weathering, or cementation. The
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preconsolidation pressure resulting from secondary compression can be

. . . _ C /(C -C) .
predicted from the relationship OCR = (t/tp) a ¢ r (Mesri and
Choi 1884). They also derived a related expression in terms of
straining rates. However the relationships are not fully general since
they do not, for example, include the effects of relaxation or

step-changes in straining rate.

To overcome this deficiency, Leroueil et al. (1885) used oedometer data
from four clays from Canada and France to demonstrate that rheological
behaviour of clays is cohtrolled by a uniéﬁe étress—strain—strain rate
(cé-ez—éz) relationship. They presented the results in the form of a
unique normalized curve of (a;/a;c) vs. £, plus a curved relationship
between preconsolidation pressure wéc and log (strain rate éz) for each

clay, see Figs.5.3 and 5.4.

In developing this work, Kabbaj et al. (1986) pointed out that the
(wé-ez-éz) relationship can not represent relaxation tests in which the
effective stresses decrease at constant strains. Such a decrease is

most likely associated with the counteracting effects of elastic ei and

plastic eg components of straining. Kabbaj et al. modified the
(¢7-_~€_) model of Leroueil et al. 1985 by assuming unique o’ -eP-gP

zZ z z zZ z z
and e; = % ln(a;/a;o) relationships. The modified model was used to

calculate time dependent deformations and ©porewater pressure

distributions for different types of 1-D tests.

The models that have just been described all lack generality and for

various mathematical reasons can not conveniently describe the full
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range of procedures including multi-stage loading (MSL), relaxation and
constant strain rate testing that are currently used in geotechnical
laboratories. In a general sense, they can not describe relaxation or
unloading-reloading tests because they lose their ability to model time
effects if the strain rate is assumed zero. The best of these models
(by Kabbaj et al. 1986) can describe relaxation tests but does not
properly describe the viscous- elastic response that occurs during

reloading.

In developing a constitutive model for the time dependent stress-strain

behavior of soils in 1-D straining, we use the following points:

(1). Time dependent deformations occur during all consolidation

process, before and after primary consolidation.

(2). Time and strain rate effects are related to the viscous nature of

soils througth the constitutive relationships.

(3). The tests and procedure for determining the model parameters are

simple.

(4). A general model should account for all aspects of the viscous

behavior under general test conditions.

The 1-D elastic visco- plastic model suggested in this chapter is a
mathematical extension of Bjerrum’s work. It is a further development
of the c;,sz,éz—model measured experimentally by Leroueil and his
co-workers (Leroueil et al. 1885, Kabbaj et al. 19868), and the

conceptual model outlined by Crawford (1988). An important concept of
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"equivalent time" is used to model the differing creep behaviour of
normally consolidated and overconsolidated specimens as a function of
¢, ¢, €, and e, This allows clay behaviour to be predicted in MSL
tests, relaxation tests, and tests with constant rate of strain (CRSN)

or constant rate of stress change (CRSS).

5.3 Time Lines and Equivalent Times

Bjerrum (1967a) proposed a series of parallel "time 1lines" in
e,log(wé)—space to represent (a) multistage loading (MSL) tests with
different durations, (b) instant compression produced instantly after
loading, (c) delayed compression at constant effective stress under
engineered structures, and (d) "aging" in natural deposits (Fig.5.2).
It can be seen in Fig.5.2 that the line of "instant compression" has
almost the same slope as other time lines. This implies that there are
elastic plastic deformations loading along this "instant compression"

line.

Saturated clays are two-phase materials. When total stresses are
suddenly applied, the effective stresses are only able to increasé at
the same rate as the porewater pressures decrease. Consequently the
real strain-time relation for the soil skeleton can not be measured for
primary consolidation, see Fig.5.1. Results of CRSN tests with high
strain rates show that the observed compression lines are often far
above the 24-hour line from stepped loading. This implies that the

instant time line lies well above the 24~hour time line.
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In the proposed model of this Chapter, the "time lines" are defined as
the lines which have the same values of "equivalent time, te" not the
same values of real duration times used in Bjerrum’s definition, see
Figs.5.2 and 5.8. The "equivalent time, te" at a state point is
defined as the time which would be needed to creep from the reference
time line to this pointbunder the same effective stress. For example
the equivalent time te3" at point 3" in Fig.5.5 is the time which would
be needed to creep from point 3’ to 3". In fact, the specimen does not
experience this loading history. Therefore according to this
definition, the equivalent times are independent of loading history but
depend on state points a;,sz. It will be seen in Section 5.4 that
equivalent times have a unique relationship with creep rates. Thus,
creep rates depend on only the state points c;,ez. In Fig.5.5,
equivalent times are positive below the reference time 1line and

negative above the line.

An important clarification in the proposed model 1is that “instant
compression" is the time-independent deformation that occurs in zero
time after loading. This instant deformation is treated as elastic
deformation in the proposed model, Fig.5.5. The instant deformation
line is determined from unloading/reloading tests. The slope of this
line is completely different from the slopes of Bjerrum’s time lines.
That is, the "instant compression” line here is not one of Bjerrum’s

time lines which experience both elastic énd plastic deformations.

Fig.5.5 shows that time-independent behaviour is restricted to elastic
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Fig.5.5 Definition of ’equivalent time’, ’instant elastic line’

and ’reference time line’
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straining, that 1is, to 1-2-3"-4", or to (i)-(i+1)". It will be
remembered that 4’ represents the relationship between £, and a; at
some chosen time after loading. This could reasonably taken at the end
of primary consolidation or at some other time which establishes a
"reference time" for predicting creep strains. Here the "reference
time line" is defined as the line on which a chosen "equivalent time"
te is zero. Thus as the specimen creeps from 4’ to 4, te goes from

zero at 4’ to te at 4, and the straining rate decreases. If very

4

rapid loading places the specimen in the range 4"-4’ then very high

creep rates are observed, starting with te4“ < 0. The slower creep

rates that are observed in the overconsolidated range 3"-3 start from

t > 0, and end with te The increment daé produces an elastic

strain dez and creep strains dezp

e3" 3°

starting from te(i+1)" and continuing

to This formulation means that the model assumes elastic

te(i+1)

visco- plastic (EVP) behaviour.

Details in determining the "instant compression line", "reference time
line" and creep parameters will be explained in Chapter 8 and
Chapter 7.

5.4 General Constitutive Relationships

The model assumes that strain changes £, in a soil element are made up
of three strain components; one, ez due to '"instantaneous" elastic
straining only; the second, eip due to time-independent plastic

reaction of the soil skeleton to effective stress changes; and the
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third, e;p due to time-dependent strains at constant effective stress.

That is:
[5.1] e =¢e° + P 4 etp
z z yA z
: . e sp tp .
where the functional relationships for sz, ez and ez are written:

(1). Elastic straining (elastic line in Fig.5.5)
[5.21 €5 =£%(c7)
z z

Elastic strains are recoverable by definition, and instantaneous.

Instant strains are time-independent and may, or may not be recoverable.

(2). Elastic plastic straining (reference time line in Fig.5.5)

[5.3] eP = % + &P = £%P(o)
z z z z

(3). Creep straining (time dependent straining)

tp _ otp ,
[5.4] e = f (te,az)

The relationships fe, fep and ftp are obtained by fitting appropriate
functions to observed 1abbratory data. Thus in Fig.5.85, a specimen
would move from 1 to 3 by first moving along the elastic line to 3" and
then creeping at constant aés to 3. To move from 1 to 4, it would move
first (under very rapid loading) to 4", before compressing with
constant G; to 4’ and 4. In reality of course, hydrodynamic

consolidation affects the behaviour, and the clay never actually

attains the state at 4".
Using Eqns.[5.3] and [5.4]1, Eqn.[5.1] becomes:
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_ ~P, , tp,,
[5.5] £, = f (az) + f (te,wz)

Eqn.[5.5] is a general equation for calculating total strains under
stepped loading. From [5.5] we may solve for the equivalent time te as
a function of state points a;,ez. Applications of this equation will

be presented in the next two Chapters.

Eqn.[5.8] is developed for stepped loading without considering in
detall how the effective stresses actually increased. In practice,
effective stresses vary continuously in laboratory tests and in field
applications. Even in stepped loading tests such as tﬁe standard 24
hour odometer test (STD), multiple-stage loading (MSL), and
single-stage loading (SSL), only the total stress is a constant and the
effective stresses increase continuously as excess porewater pressures
dissipate with time. In other laboratory tests such as the constant
rate of strain test (CRSN), the controlled gradent test (CGT), the
constant rate of loading test (CRL), and the continous load tést (cLy,
the total and effective stresses both vary systematically. At
full-scale, effective stresses beneath a geotechnical structure change

as the external loads and the porewater pressures change.

Continous loading can be considered as a series of infinitesimally
small incremental loads dc; in time dt. At any point i in Fig.5.5, to
move from (i) to (i+1) under a stress change dc; in time dt, the clay

first moves elastically to (i+1)" and then creeps to (i+l), so:
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[5.6] de_ = de + de'P = (afr/do’ Jdo” + (58P 5t )at
Z A Z A A e

where (6ftp/6te) is the creep rate at the current point. It is known
from [5.4] that the creep rate may depend on equivalent times and
vertical effective stresses. That is, the creep rate depends only on

the state points and not on the loading history. From [5.61]:
[5.71 e = (df%/de’) o + (arP/at )
z z Tz e

Solving [5.5] and [5.7] using appropriate values of te provides a

general Gé—&;-ez—éz relationship for any 1-D loading.

It will remembered that the reference time line is not unique but
requires careful selection. Procedures for applying the model to
real laboratory data will be prepared shortly. The proposed method
uses a mathematical function to fit t,ezp data after excess porewater
pressures have dissipated under a given vertical stress. The function
may have two features - when te = o, ezp = constant, and when te = —to,
a constant determined from fitting the creep curve data, then é;p = oo.

Procedures for identifying the reference time line will be explained in

Chapters 6 and 7.
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Chapter 6

1-D EVP MODELLING USING LOGARITHMIC FUNCTIONS

6.1 General U; -, - te Relationship for Stepped Loading

QOedometer tests with multi-stepped loading (MSL) currently form the
general basis on which consolidation behaviour is evaluated. More
recently, CRSN tests have offered a faster way of determining the
behaviour and have been correlated with experience from stepped loading
tests (S&llfors 1975; Crawford 1886). Bjerrum’s (1967a) representation
of time-dependent behaviour and the evaluation by Mesri and Choi (1879)
of apparent preconsolidation pressures were also derived from stepped

loading tests.

In section 5.4 of Chapter 5, we have developed a general equation [5.5]
for stepped loading. In this section, we will specify this equation by
using logarithmic functions which are commonly used to fit oedometer

test data in soil mechanics.

(1). Time-independent elastic straining is assumed linear in

ee,ln(vé)-space (k - line in Fig.8.1):

e _ e N - e E s
[6.1] € = f (GZ) =e g ln(wz)

P

(2). Elastic plastic strains 82 can be obtained from the slope A/V of
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Fig.6.1 Schematic representation of 1-D EVP model for

incremental loading
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the ez,lnc; relationship at stresses higher than a;c (A - linein

Fig.6.1). Note that this is also the reference time line:

ep _ 8P, .y _ &P . A s
[B6.2] e = f (UZ) € 0 + v 1n(”é/°éo)

(3). Creep compression at constant 0; is assumed to be given by:

t +¢t
e

[o]
1n(———-E—
Q

<

tp _ otp 'y =
[6.3] e, = f (te,cz) )

v
This equation is a modification of the usual "secondary consolidation”
relationship in which strains vary linearly with In(time) but are not
defined when time 1is =zero. Note however that in [6.3] the creep

strains are assumed to depend on only "equivalent times" and are

defined when te = 0.

In these definitions of A, k and ¥ (Egns.[6.1]1, [6.2], [6.3]), V is the

specific volume of the clay (1+e). The e , k/V; eep, ¢ , A/V; and
Z0o Zo Z0

to’ YV in Eqns.[6.1],(6.2],6.3]1 are all material parameters

determined by fitting test data.

In Fig.6.1, the total strains at any point can be written from [5.5],

using [6.2] and [6.3] as:

€

_ 8P LA Y
[6.4] e, =€ * g ln(cz/czo) + v ln[(te + to)/to].

This 1is a specified general equation for stepped loading using
logarithmic functions. The relation between the equivalent time te in

[6.4] and real creep time t will be given in Sections 6.2,86. 3.
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6.2 Methodology for Determining Model Parameters

In order to apply [6.4] to calculate strains under stepwise loading, we
have to know the parameters in this equation, and relate the equivalent

time te to the real loading time t.

(1). Parameters in [6.1]:

The parameters in [6.1] can be estimated by fitting first loading or
unloading/reloading data. Here we assume that the slope of first
loading data and the slopes of unloading/reloading are the same,

Fig.6.1,6.2. We know this is only an approximation.

(2). Parameters in [6.3]:
To determine parameters y/V and to and relate equivalent time te to
real time t, we must first chose a reference state point. This point

is on the reference time line, and te at this point is zero.

For example, assume we apply a single stage stress Uél to the specimen,
point 1 in Fig.8.2 and assume also that we know the strain vs. time
curve like that in Fig.6.3 under the stress Oél‘ Then, we can use
point 1 as the reference point. The instant elastic strain in Fig.6.3
can be calculated from [6.1], the parameters in which are already
known. As pointed out in Chapter 5, the real time dependent behavior of

the soil skeleton can not be measured during the period of primary

consolidation shown in Fig.B.3. Basically we use Eqn.[6.3] to fit
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Fig.6.2 Schematic representation of creep tests for calculations of

model parameters and apparent preconsolidation pressure
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between the data taken after the primary consolidation is complete and
the point of the instant elastic strain determined from {6.1]. In this
way, to and Y/V are material parameters. In this particular case the
equivalent te is equal in value to the real duration of loading time t.
In other cases, specifically when the current state lles below the
reference time line, for example in overconsolidated specimens, te and

t are different. This is examined in a following section.

(3). Parameters in [6.2]:

Eqn.[6.2] is the reference time line that goes through reference point
1 in Fig.6.2. Supose we now have another single stage loading test,
for example a creep test under stress 0;2 in Fig.8.2. We can also
obtain a strain vs. time curve similar to that in Fig.86.3 from this new
test. This means that the final creep strain €5 in Fig.6.2 is known
under stress o’ _ with duration t.

z2

Relation between te and t: .
The instant elastic strain at point 2" can be calculated from [6.1]:

=g =g + & in(o’ )

[6.5] 822“ z ZO \' z2

The equivalent time teZ" at point 2" can be found by the following

procedure, using [6.4] and [6.5]:

[6.86] eP & A In(e¢’
y4e) v

, Y o
22/620) * In (

v

From which:
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e

4
(ZO

[6.7] te2" = to e

ep
- e_ ")/ (ys/v) _
Zo (0; )K/w (o’ /" ) A/Y

2 : z2" "zo -1l

As explained in Chapter 5, the equivalent time te above the reference

time line is negative. The relation between te2’ and t is:

[6.8] t =t + te

e2’

Equations for solving A/V and 0;0:

From [8.4], the final creep strain e at point 2’, using [6.4], [6.7]

z2’
and [6.8] is:

ep . A Y to T Cep
[6.9] €50 = E, 0t ln(céz/wzo) + g In ( to )
= 8P A sy
ety ln(czz/vio)'+
(e —eep)/(w/V)
] t Zo Zo , K, y \TAY
*y ln[to+ e (022) '(aéz/czo) 1

The reference state point 1 must be on the reference time line by

definition. We know that te at point 1 is zero and the strain ¢ is

1 zl

equal to the instant elastic strain 821' So using [86.4] and [6.1]:

A
v

H 3 _ e E
1n(021/020) =€ty

ep y
[6.10] et ln(crZ )

1
The parameters 820’ k/V, to and /¥ have been determined in the

previous paragraphs. The constant szg is the 1initial strain before

loading, so it is also known. Thus the meaning of parameter Géo is

s e
, €_ 1s equal to ¢ P
z Zo

b

that when o’ = ¢
z Zo

The position of G;o is shown

in Fig.8.1 and 6.2. In Egns.[6.89] and [6.10] there are only two
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unknowns left, A/V and Géo' So they can be obtained by solving the two

equations.

It is found that Eqns.[6.9] and [6.10] make up a non-linear equation
system with unknowns A/V and 0;0 which can not be solved directly. We
can use any approximate method to get the roots of this euqation
system, for example using the simple bisection method or using more

sophisticated Newton’'s second-order method.

Using the above procedure, only two single-stage creep tests are needed

to find A/V and véo. In practice, we may have more than two
single-stage tests available. In this case, we may use another
graphical approach to find A/V and c;o. In this approach, we try a

number of assumed values of A/V and a;o, then see in graph whether the
modelled values of 0; vs. € are close to the measured values. This
graphical approach is more flexible and should be used when only
multi-stage test data are available or the fitting functions are more
complicated than [B8.1] - [6.3], we should use this graphic approach.

This will be explained in the following Chapter.

6.3 Calculation of Apparent Preconsolidation Pressure

It is known that the preconsolidation pressure from first loading
depends on creep times and strain rates (Graham et al. 1983, Crawford
1986, Leroueil et al. 1985). Apparent preconsolidation pressures

resulted from creep strains due to aging has the same nature as
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first-loading preconsolidation pressure. Eqn.[6.4] can be used to
calculate the apparent preconsolidation pressure from single-stage

loading creeping or multi-stage loading creeping.

Consider a single-stage loading creeping with stress ¢’

and time t,
z3

see Fig.B.2. In terms of equivalent time, the final creep strain at

point 3’ is:

t
= %P L A 'y e Y
[6.11] €3 =€ + 7 ln(azs/azo) + 7 In(

If the specimen is then loaded again, the "reloading” trace will move

elastically to point 4 on the reference time line. The pressure 0;4 at

point 4 is the so-called preconsolidation pressure from aging. Thus

the strain at 4 is:

— E > b
[8.12] €4 = €,9 + 7 ln(aé4/023)

The state point (0;4,824) is on the reference time line with te = Q:

- .€Pb _ A , ,
[8.13] €4 =0 % 7§ 1n(°24/céo)

Combining [6.13] and [6.12] using [6.11], the apparent preconsolidation

pressure resulting from aging under stress o’

23 with creep time t is:

to * ez us(a—k)
o]

[6.14] 023 ¢ = Ton = Tpg

where the equivalent time te is found by using the same procedure as

3,
t o from [6.7] and [6.8] in the single-stage loading case.

In the case of multi-stage loading, for example in Fig.5.5 loading from
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point i-1 (ez,i—l’vz,i—l

) to point 1 (ezi’céi) with a real creep time t
under stress o;i, the apparent preconsolidation pressure referred to

the reference time line is:

to ¥ tei’)w/(k—n)

t
o]

[6.15] céi,c = wz,i+1 = 9% (

The values of tei’ in [6.158] is found from:

ep A w ottein
[6.18] e + Vln(vzi/czo) + vln(——g————

_ K v
70 - ) = e . + Vln(ozi/w )

z,i-1 z,i-1

From which:

(e . - P/ (pV) o,
(6.171 t .. =t le 21 (2L N (o e MY -1
el ° o_ . zi zo
z,i-1
[6.18] t ., =t +t ..,
el el
(e2 . —Py/uv) o, _
° Wz i-1 zi" "zo

Eqn. [6.18] gives a general relationship between equivalent te and real
creep time t for single-stage loading or multi-stage loading.
Eqn. [6.15] with [6.18] is therefore a general equation for calculating
the apparent preconsolidation pressure from aging under any stepwise

loading with respect to the reference time line, Fig.6.2.

As mentioned previously, the apparent preconsolidation pressure is
defined with respect to the reference time line. The reference time
line is not unique, but must be chosen by the analyst. Thus, the

apparent preconsolidation pressure is itself also not unique.
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Pressures determined from [6.14] or [6.15] should perhaps be called
"reference” apparent preconsolidation pressures. According to the
basic assumptions used in formulating the model, instant compression is
exclusively elastic. However, the reference time line is not a 1line
describing instant responses, so the true apparent preconsolidation

pressure is the stress that can be applied after aging.

6.4 General c; - &; -g, - éz Relationship for Continuous Loading

The preceding sections developed Egns.[6.4],[6.18] using logarithmic
functions for the case of stepped loading. In this section we will
develop a more general constitutive equation for continous loading

using the framework in Chapter 5.

According to Egn.[5.7] in Chapter 5, using Egn.[6.1] and [6.4], we

have:

6.18]1 ¢ =51l & o ¥4
z o

K YV
V' A t +t
z o] e

According to Eqn.[5.5], in the case specified by Eqn.[B.41],
we find:

(ez—ezS)V/w
[6.20] t +t =t e (02 /0 )
o e o z zo

-ASY

Substituting for (t0+te) from [6.20] into [B6.18]:
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- _°P
1 o+ Y e (82 gzo)V/w (¢ /0’ )
c; A Vto z " zo

[6.211 ¢ =% ALY

Eqn. [6.21] provides a general constitutive model specified by
logarithmic functions for continuous reloading. The equation is valid
for ¥ # 0, and therefore includes the wide range of natural clays which
show creep and strain-rate effects throughout their deformation process
(Graham et al. 1983, Mesri and Choi 1984, Kabbaj et al. 1986). The
unloading behavior is assumed to be completely elastic and
time—~independent. Eqns.(S.l] and I8.21] form a general oé-&;—sz—éz

constitutive model that describes the time dependent behaviour of clays

under continuous one-dimensional loading, reloading or unloading.

6.5 Applications of the Model

This section develops the general equation [6.21] into applications for

particular strain and stress conditions.

6.5.1 Creep

The condition for creep in [6.21] is when the effective vertical stress

is constant (&z = 0):

oY (e~ _oSP y 0 AP
[6.22] g, = Vggexp[ (ez eZO)V/w](cz/aéo)

Integrating this equation with the initial conditions g, =€
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o_’ = o_’

> iy t = 0 to produce the -strains generated during creep, and

using the equivalent time t, instead of € ., in [6.4] leads to:
ie zi

= ep & ’ » lﬁ
[6.23] €, =€ty ln(céi/céo) g In{(t + tie + to)/to]

This equation is the same as [6.4] for stepped loading but it has now

been obtained from the model for continuous loading.

6.5.2 Relaxzation

In geotechnical testing, relaxation tests are usually done by switching
off the motor drive of the machine and allowing the energy stored in

the test frame to drive the specimen with Iincreasing strain at

decreasing strain rates {(Graham et al. 1983). However, using the
classical condition éz =0 (82 = constant), assuming ezs =0, [86.21]
becomes:
K °, Y e w > > A/‘# -

[6.24] 7 Uz/dé = (VE;) (az/czo) exp( szV/w)

As before, integrate the equation with initial conditions ti’ Géi and
€_.:

zi

(t-t.)
[6.25] o’ = o’ [E Los (0. /0" ) A exple . V/y)] v exp(e_.V/A)
z Z0 K zi” "zo zi zi

o)

The stress decreases with increasing time (t—ti) from the beginning of
relaxation. Again using the equivalent time tie instead of ezi’

[6.25] can also be written:
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t, +t
0

s ) ie
[6.26] 2 T %21 [(A/K)(t - ti) T

YA
T ]

This equation contains the three modelling parameters A, k, and ]
combined in the interesting ratios (1) y/A, the same as Cae/cc which
Mesri and Godlewski (1877) suggest lies commonly in the range 0.04 -
0.08; and (2) k/A which commonly occurs in Critical State soil

mechanics with values about 0.1 - 0.2.

Appendix 6.1 presents an alternative derivation of [B8.28] based on the

SP2 0.

equivalence of €, = €,

6.5.3 Constant rate of strain

The required condition is obtained by setting the strain rate term éz =

constant and integrating the general equation [6.21], assuming ezg = 0:

ALY

(prV)/t (-e_. zi)(w

v A
i ﬁ) [—(E)(SZ_S

e le +

o_’
6.271 o) = o JI(ZMY
zi .ez(l—K/A)

y— % ZV¥

W/t (- Yy }‘w/l
e (1-k/A)
z

where U;i, €, are the initial conditions. Eqn.[6.27] can be used to
express the effective stress vs. vertical strain relationship in the

clay for different rates of straining, for example in CRSN tests. If a

test is restarted after a period of unloading, then the initial values
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should be reassigned. Eqn.[86.27] can also be written:

(l,/l/V)/to

ANy NEINZ I

A Y
[6.28] e_ = Zln(o’ /0’ ) + Elnd{ (o’ /o .) ————
z \'s Zz " zo \' { zo zi ez(l—n/h)

W

X e +

A \'
[szV/w -(E)(ez—ezi)(—)] (z/t/V)/to
éz( 1-Kk/2)

Note that the slope of the log(stress)-strain curves for different
constant strain rates is now slightly different from A/V. This will be

examined more closely in a later section.

An alternative formulation for CRSN tests is given in Appendix 6.2.

6.5.4 Constant rate of effective stress

The required condition in [6.21] is now &;= constant. By integration:

o’ (e_.V/y)
_ A- Z ll’ Z1 ] ’ K/l)(l ’ ) (A"K)/lll
[6.29] €, =7 ln(E;O) g ln<e (céo/vzi) (aéo/cz) +
w/t
+ T—~———2—— [G’—U’_(G’./U’)(A-K)/w ]
07, (A-K+y) 22z

It can be seen from [6.28] and Fig.6.4 that the slope of constant rate
of stress tests in the VEP region is slightly steeper than A/V. Note
that because the behaviour is non-linear, the rate of straining éz and

the rate of stressing &é can not both be constant at the same time but
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are related through [6.21].

6.6 Prediction and Comparison

The 1-D continuous EVP model will now be compared with published
results from CRSN tests on two natural clays, and results from a

stepped CRSN — relaxation test on reconstituted clay.

The model uses only three parameters A, k and y, all of which are
relatively easily determined from stepped loading creep tests. The
methodology for determining the parameters needed by the model was
presented in Section 6.3. It is commonly found that the slope of the
reference time line (A-line) is close to the slope of stepped loading
creep lines with constant duration (Bjerrum 1867a). Therefore, when
using the method in this Section, we can first try the A/V found from

oedometer tests with constant duration loading.

In order to find y¥/V and to’ at least two creep tests should last long
enough to permit reliable determination of the two parameters. This is
probably best done in the normally consolidated (EVP) range under the
A-line with a;> U;C. Although ¥/V is determined from straining only
after primary consolidation has finished, it should be remembered that
the same coefficient is used for the viscous component associated with
slower straining under the k-line, in non-equilibrated CRSN tests, and
during primary consolidation. In this way, it differs fundamentally

from the strain dependent Ca-parameter used by Mesri and his co-workers
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(Mesri and Choi 1985a,b, Mesri and Castro 1987).

6.6.1 Modelling of Backebol clay

Séllfors (1975) presented MSL and CRSN tests on soft high-plastic clay
from Bickebol, Sweden. Basic classification information for the clay

is given in Table 6.1. The rates used in the tests ranged from 5x10-7

to 1.67x107° s™1. From comparable test results, it is estimated that
e) =0, A/V = 0.410, x/V = 0.010, and y/V = 0.0205. The resulting
ratio k/A = 0.0244 is low but not totally unexpected for a highly
sensitive clay. The value y¥/A = 0.050 is in the range proposed by Mesri
and Choi (1985a). A value of B00 s is found for to and this gives U;o
= 81 kPa. The initial values in the CRSN tests were G;i = 10 kPa, €=
0.25 %. Fig.6.4 shows the A-line and k-line interpreted from MSL
tests, and the curve obtained from [6.29] when the rate of effective
stress applications is 1x10_3 kPa/sec. The values of k,A and Y were
then used in [6.27] to model CRSN tests run at strain rates of
'7.5><10_6 s_l, 2.0><10_8 sa1 and 5.O><10—7 s_1 respectively. The results
are shown at logarithmic scale in Fig.6.5a and at arithmetic scale in

Fig.6.5b. The calculated curves are in good agreement with the

experimental data shown in the Figures.

The distance between the CRSN lines in Fig.6.5 is quite sensitive to
the magnitude of the creep coefficient y — larger y-values produce
wider separations between the various strain rate lines. Even though

the value of Y/A = 0.05 is well within the range proposed by Mesri et
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Choi (1885b), the separations predicted by the model are rather smaller

than the measured ones. When Y/V = 0.0205 = 0.05A/V, a tenfold change

in éz from 10_8 seE1 to 10—5 sec—1 causes 12.2% change in c; at g, =

5%. When y/V is increased to 0.0287 = 0.07A/V, the corresponding change
in 0; is 17.5%. That is, increasing ¥ increases the variability of Gé
with éz. Reasonable values of the parameter Y therefore produce

-

similar estimates of the dependency of c;c on £  as the empirical

parameter L proposed by Graham et al. (1883).

Table 6.1 Properties of Clays

o Clay
Clays D?ﬁgh W) (W G (W ()T () St 2¢ | content
P P (kPa)| (%)
Bickebol Clay| 7 102 | 99 34 65 25 | 72 70
Batiscan Clay| 7.3 | 79.6 | 43 22 21 125 | 88 81
Reconstituted 51 61 26 35 70 61
Illite

Fig.6.6 shows that [6.27] can also be used to find the relationship
between effective stresses and strain rates at selected strain levels.
The faster the strain rate, the higher will be the stress reached at a
given strain. The predicted and measured results in Fig.6.6 are in
fair agreement although once again the strain rate dependency was

underpredicted by the y-value determined from STD tests.

The EVP model also permits calculation of the dependency of

preconsolidation pressure on strain rate. In sensitive clays, it
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O

appears reasonable {Graham et al. 1988) to assume £hat preconsolidation
pressures are reached at about constant strain €, through the
intersections ©between the x-line and the A-line for different strain
rates. The finding by Leroueil et al. (1985) of a normalized effective
stress (a;/véc)— strain (ez) relationship from CRSN tests éupports this
assumption. The value of e: at the k-A intersection can be found from
[6.1],[6.2]:

[6.30] e =< [ in(e” /o°.) - ¢ ]
) z A-k OV zo zi zi

For Backebol clay, e: = 2.40 % and this produces the prediction for the
dependency of preconsolidation pressure on strain rate shown in
Fig.6.7. Once again, the model tends to underpredict the dependency.
Graham et al. (1983) also showed high strain rate dependencies in

sensitive clays.

6.6.2 Modelling of Batiscan clay

Leroueil et al. (1985) presented creep and CRSN tests on Batiscan clay
(Table 6.1). Published results have again been used to determine A/V =
0. 585, oéo= 128 kPa; k/V = 0.02; and to = B80s yY/V = 0.022 for the EVP
model, that is k/A = 0.0364, ¥/A = 0.04. At strains larger than 186%,
the a;,ez—relationship becomes curved and the x,A and y parameters
change. The published data show initial conditions o;i = 68.4 kPa, g,
= 0. Using these values in [6.27] produces the stress-strain rate

relations shown in Fig.6.8. The predicted curves agree well with the
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test data but again underpredict the dependency on strain rate.
Egn.[6.27] has also been used to calculate the preconsolidation

pressure - strain rate relationship shown in Fig.6.9.

6.6.3 Modelling of reconstituted illite

Specimens 256 mm diameter and 200 mm high were first prepared from
slurry (Table 6.1) by one-dimensional consolidation to o; = 70 kPa
(Graham and Lau 1988). These were then cut into oedometer specimens 76
mm diameter 20 mm high and tested using 200 kPa back pressure to ensure
saturation. The specimens were first consolidated to U; = 200 kPa
using a load increment ratio = 1.0 and increment durations of 24 hours.
The 200 kPa stress was held for four days and then the specimens were
unloaded to 2.4 kPa in four increments each lasting one day. This

produced unloaded specimens with a known preconsolidation pressure.

Fig.6.10 shows results from one of these specimens run in a
strain-controlled test in which the strain rate was changed at several
stages during the test. At 24.8% strain, the machine drive was
switched off to allow relaxation. As mentioned earlier, this does not
produce the classic condition for relaxation because energy is fed into
the specimen and some further straining occurs, in this case, an

additional 0.3%.

The stepped loading portions of the test produced x/V = 0.025; to =

600s, y/V = 0.004; A/V= 0.10, 0;0 = 47 kPa, from which x/A = 0.25, y/A
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= 0.04. These ratios indicate that the clay is a much more normal clay
than either of the two highly sensitive clays described in preceding

sections.

In the CRSN portion of the test, the initial values were £ . = 9.42% ,
c;i = 22.8 kPa. Using these parameters in [6.27] produces the
predicted stress-strain curves shown in Fig.B8.10. When the strain rate
is changed, the strain and stress at this point are used as initial

values for the following section of the calculations. The calculated

curve is in good agreement with the test data.

Fig.6.11 shows results calculated using [6.25] for the relaxation
portion of the test. The measured stresses decreased more rapidly with
time than the calculated values. However, since the specimens
experienced some additional straining during this period, (as opposed
to the constant strain assumption used in the analysis), the agreement

is promising.

6.7 Discussion and Conclusions

Standard ocedometer tests are easy to run and allow relatively easy
determination of the parameters A, k and y. However natural strains
(not engineering strains) may need to be used for plotting the data if
large compressions are encountered and the normal consolidation line

is slightly curved (Graham et al. 1982).
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Oedometer tests (and especially CRSN tests) are not ideal for finding
effective stress relationships. The effective stresses are not
measured directly, but must be evaluated on the basis of assumptions in
each case. In MSL tests 1t is assumed that after EOP no excess
porewater pressures exist in the specimen. In CRSN tests it is common
to assume a parabolic porewater pressure distribution in the specimen
provided the strain rate is not excessive. It is also common to ignore
the effects of different stiffnesses as the preconsolidation front

moves through the specimen with time (Walker and Raymond 1988).

In this Chapter three logarithmic functions have been used to fit test
data. If the clay shows linearly elastic behaviour before yielding
(Graham et al. 1888) then the k parameter may be only an approximation
of the true behaviour. Similarly, the yY-parameter requires
linearization of the creep data in log (time) and of course this only
corresponds to attenuating primary creep. In some soils, A-parameter
is not a constant. However, once the three parameters have been
determined, the model can then be used to predict the results that

would be obtained from other types of tests.

The equations used in the model do not depend on the transient
conditions of porewater pressure dissipation but instead deal with
time-dependent hardening of the clay skeleton. The model can therefore
be applied in principle to other materials such as ice, and frozen
soils and provided the hardening laws [6.1], [6.2] and [6.3] can be
defined for elastic hardening, for time-independent plastic hardening

and for time-dependent plastic hardening. The model can also be
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developed for isotropic consolidation and the prediction of times of

consolidation.

The model agrees well with test results from reconstituted illite but
tends to underestimate the influence of time-effects and strain rate
effects in the two sensitive clays that have been examined. Graham et
al. (1883) report large changes in undrained shear strength and
preconsolidation pressure with changes in strain rate. This will
require careful selection of model parameters or even selection of
different functions to fit elastic, elastic-plastic (reference time
line) and time-dependent behavior more accurately. Chapter 7 will
present solutions developed wusing power functions for fitting

experimental data.
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Chapter 7

1-D EVP MODELLING USING POWER FUNCTIONS

7.1 Specified 1-D EVP Model

Chapter 6 developed a 1-D EVP model using logarithmic relationships
with k, A, and y, Fig.7.la. While these relationships are reasonable
approximations for the behavior of many clays, there are other clays,
particularly postglacial clays with high sensitivity, for which they
are unsuitable, Fig.7.1b. Overconsolidated compression is often linear
in aé,ez-space, not ln(c;),ez—space. Normally cbnsolidated behavior of
natural clays is frequently curved, not straight in ln(wé),ez—space.
Secondary consolidation (creep) is often curved in ln(time),sz—space

and the parameter ¥ depends on time and vertical effective stress.

In this Chapter three power functions are used to fit (a) the instant
elastic line, (b) the reference time line, and (c) creep strains.
Using the framework in Chapter 5, a 1-D EVP model is developed and used
to predict the time dependent behavior of Batiscan clay and Winnipeg
clay. An improved prediction for Batiscan clay 1is obtained from this

model.

Fig.7.2 and 7.3 show data obtained by Leroueil et al. (1985) from long
duration constant stress tests on sensitive Champlain Sea clay from
Batiscan, 100 km west of Québec City. The procedure involves finding
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the three functions £°, f°P and £'P in Eqns.[5.2], [5.3], and [5.4]
that best fit the experimental data in Figs.7.2 and 7.3 in the required
range of stresses and time. The following functions have been used.
Remember however that the model framework in Chapter 5 is general and

any suitable functions can be used.

(1). For the elastic line:

n

b $ 4 3 1
[7.1] e = f~ = a, + az(wz/vu + Géoe/cu)

where U; is unit stress which makes the equation dimensionless.

(2). For the elastic plastic line, the reference time line with te = 0

is:

n
ep _ .ep _ (et gy 20
[7.2] e = fo blo[l (Géo/cé) ]

and when with te = o in the limiting case:

n,

17.31 P =¢P -1 [1- (¢ /o) 2
VA « 1l Zw 2

(3). For the viscous plastic strain vs. time:

t n

o ) 3
t +t
e o

[7.4] ezp = ¢tP - (fzp - fip)[l - ( ]

When the equivalent te in [7.4] is infinite, the 1limit of creep
strains is (£°F - £°P).

[} (o]
Using Eqns.[7.2]1,[7.4] in Eqn.[5.5], the general equation for stepped

146



loading is:

20 ep ep to R
[7.81 e, =b, (1= (o) /7) 1 + (£2° = £.0)[1 = (=) 1
e o
Using Eqns.[7.1]1,[7.4] in Eqn.[5.7], we have:
. n1—1 . ep ep n3 to n3+1
[7.8] e, = a2n1(€é/0u_¢zoe/cu) Uz/cﬁ + (f‘D° - fo ) e (ffﬂ?J
o ‘e o
From [7.5]:
t, €, - fip 1/n,
[7.71 = (1 - )
te+to f,c-:-p ~ f.ep
© o

Using [7.7] in [7.8], the 1-D EVP model for Batiscan clay is:

? 44

*, ep
o o n, -1 n g -f (n,+1)/n
[7.8] & =an (2-20%1 2, (PP 3 __2 0 3 3
z 271 . %u o © 0 to £EP_peP

«© o

7.2 Determination of Model Parameters

As mentioned in Section 6.3 of Chapter 6, when the fitting functions
are complicated or there are more test data than strictly required for
solving model parameters, graphical approaches are more practical and

simple.

The basic principle of the graphical approach for determining the model

parameters is:
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(a) Assume values of the paramters based on previous experience;

(b) Then use the model to fit all the available creep test data;

(c) If the calculated curves from the model are in a good visual
agreement with these creep test data, then the parameter values

that have been assumed are acceptable.

Using this graphical approach, we first can determine the instant
elastic line in Fig.7.2. using the information from reloading data.

The values of a_,,a.,c’ ,n

122 %0e are given in Table 7.1.

1

Table 7.1 Parameters for Eqns.[7.11,[7.2]1,[7.3] and [7.4], Batiscan
Clay (Leroueil et al. 1985) and Winnipeg Clay (Au 1982)

Batiscan Winnipeg Batiscan Winnipeg
a -0.60 -0.10 n 3.8 0. 0240
1 20
a 0.42 0.03286 b 0.284 5.54
2 lo
o’ (kPa) 1.0 1.0 o’ (kPa) 72.3 180.0
u ’ Zo
a’ (kPa) 100.0 50.0 n 2.9 0.0220
zZoe 20
n, 0.07 0.235 to (hours) 1.0 1.0
b10 0.262 5.50 n 0.27 0.28
o’ (kPa) 118.3 288.0
Z0

To determine the parameters in Eqns.[7.2],[7.31,[7.4], we have to first
guess the parameters in [7.2] and [7.3], since Eqn.[7.4] contains all
parameters. From experience, the shapes of [7.2] and [7.3] are similar
to the shape of the time line with constant long durations from

single-stage creep tests or multi-stage creep tests (Bjerrum 1867a).
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Their shapes are different from the time 1line with short creep
durations. In fact, the time line with infinite creep duration is the
Eqn.[7.3] with te = », independent of whether single-stage creep tests

or multi-stage creep tests are used.

For Batiscan clay, blo = 0.282, e = 119.3 kPa, N, = 3.6; blm =

0.284, o;m = 72.3 kPa, n2°° = 2.9 have been chosen, so that the shapes
of Eqgns.[7.2] and [7.3] are similar to the shape of time line of 64 day
duration in Fig.7.2. Then to = 1.0 hour, n3 = 0.27 were selected in
Eqn.[7.4] to fit the instant point from [7.1] and creep test data after

primary comsolidation.

For example, to fit the creep data under a single-stage loading
cé = 108 kPa, using the parameter values in Table 7.1, the instant
elastic strain is, from [7.11]:

[7.9] ez = -0.6 + 0.42(108 + 100)O°07 = 0.01046

The strain at te = 0, from [7.2]:

0.262(1 - (119.3/109)3'8] = -0. 1006

[7.10] &P = ¢®P
2 Q

The strain at t = o, from [7.3]:

0.284[1 - (72.3/109)2'91 = 0.19786

[7.11] eip = P

oo}

So the limit of creep strain at U; = 121 kPa is:

e

[7.12] pr - fzp = 0.1976 -(-0.1008) = 0.2982
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The relation between equivalent te and real duration time t can be

found as follows. The equivalent time tei at the instant point with

€, = e; = 0.01046 from [7.8] is, from Eqn.[7.6]
[7.13] 0.01048 = -0.1006 + 0.2982[1 - (E~—l:—T)o'27]
ei
from which:
-1/0.27
_ ., _ 0.01046+0. 10086 .
[7.14] tei = [1 0. 298> 1 1 = 4.816 (hour)

The equivalent time te is:
[7.15] te = 4.816 + t
Therefore the equation for fiting the creep test data is, from [7.5]:

1
4.816 + t + 1

0.27

[7.16] e, = -0.1008 + 0.2982 [1- ( ) ]

For example when t = 1600 hours, the strain is 0. 1570. The strains at
1 day, 8 days and 64 days are 0.07815, 0.1261, 0.1585 respectively.

The curve fitting done on this basis is shown in Figs.7.2 and 7.3.

Using the same procedure, we can fit creep tests for effective vertical
stresses 90 kPa, 98 kPa, 121 kPa, 133 kPa, 139 kPa and 151 kPa.
Fig.7.2 shows the overall fittings for creep durations 1 day, 8 days
and 64 days respectively. Fig.7.3 shows the typical curve fittings for
stress 108 kPA, 121 kPa and 133 kPa. It is seen from the two figures
that good agreement has been obtained, and so the curve fitting

parametes shown in Table 7.1 can be used in the general model.
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7.3 Validation of the 1-D EVP Hodel

As pointed out in previous Chapters, the validation of a constitutive
model should be examined using the test data which was not used in
calibrating the model. In this section, having calibrated the model
from single-stage loading creep tests, we will use it to compare
predicted and measured values from CRSN tests on Batiscan clay and from

a step-changed Constant Rate of Strain (CRSN) test on Winnipeg clay.

7.3.1 Prediction of CRSN tests on Batiscan clay

Calibration parameters for the general EVP model in Eqn.[7.8] are shown
in Table 7.1 for Batiscan clay. What now must be done is to examine
whether the model based on creep loading data will predict results from
other types of 1-D test and therefore by implication, field

performance.

Figs.7.4 and 7.5 show results from CRSN tests on Batiscan clay
(Leroueil et al. 1985). In Fig.7.4, predicted values of the
ez,mé—relationship are compared with experimental values for three
different strain rates. The analyses used initial values 821 = 0.001,

»

oLy = 67 kPa. The agreement is good. Fig.7.5 shows the measured values
of c; which produced vertical strains of 5%, 10% and 15% for different
straining rates. The Figure also shows values predicted by the earlier

logarithmic modelling (Yin and Graham 19839a) in Chapter 6 and by the
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new modelling represented by Eqn.[7.8]. The ez,log(cé)-relationship
for this clay is noticeably non-linear and thus the new power-law
modelling 1in this Chapter produces improved agreement with the
experimental results compared with the logarithmic modelling shown in

Chapter 6.

7.3.2 Modelling of the coefficient of secondary consolidation Cae
The conventional secondary consolidation coefficient Cas is defined in

terms of real duration time (Graham et al. 1983):
[7.171 C__ = deP/dlog(t)
: oe Z

It is found that Cas varys with vertical effective stresses and
duration times (Graham et al. 1983, Clausen et al. 1984), see Figs.7.6
and 7.7. To calculate creep strains, we have to chose a proper value
of Cag, depending on the stress range and the time range (Mesri and

Choi 1985a,b).

In the 1-D EVP model specified in Eqn.[7.4], the equivalent time te is
used to calculate attenuating creep strains over the full range of
stresses including overconsolidated range and normally consolidated
range. The parameters used for specifying the creep behavior are
constant, not 1like Cas' According to Eqn.[7.4], the larger the
equivalent times, the smaller will be the creep rates. The general
eugation can be wused to explain why C is smaller in the

224

overconsolidated range even though the inherent creep behavior
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parameters remain constant.

Using Egns.[7.5] and [7.1], the equivalent time tei on the elastic line

can be calculated from:

17.18] £P + (£%P - £°Py[1 - ¢
o © o) t .
el [e]

from which:

£ - P _1m
o) 3

[7.19] tei = tO [1 - —E———“—g— ] - tO
£SP _ £OP
2] [¢]

We know that te =t + tei' So Eqn. [7.4] can be written:

t n

tp _ . tp _ ep _ .ep - o)
[7.20] sz =T = (f°° fo )1 (E_:E;;IEg

3

According to the definition of Cae in [7.17]:

de de

A

Then, differentiating Eqn.[7.20], from Egn.[7.21]:

t ep ep to n3+1
[7.22] C&S = 2.303 I'13 i (foo - fo ) (t—_*_{_“;l—_*_{c))

It can be seen from [7.22] that cae depends on stresses and times.
Using the parameter values for Batiscan clay again in Table 7.1,
Eqn.[7.22] can then be used to calculate the conventional secondary
consolidation coefficient Cas' Fig.7.6 shows the calculated curves
for 1 day, 10 days and 100 days from [7.22] and the measured values for

1 day and 10 days. A written Discussion has been received from Mesri
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(1980) on this topic. It will be interesting to see whether Mesri
(Mesri and Choi 1985a,b), who has identified the stress-dependency of

Cas’ has also identified time-dependency.

7.3.3 Prediction of a step-changed CRSN test on Winnipeg clay

The 1-D EVP model in Eqn.[7.8] is also calibrated using creep test data
on Winnipeg clay. The values of model parameters are 1listed in
Table 7.1. Fig.7.8 shows data measured from Winnipeg clay (Au 1982)

"1 and 1.3x107% §7L.

using step-changed strain rates between 1.3><10—7 s
Values predicted using initial values €, = 0.0026 and o;i = B63.7 kPa

are in good agreement with the measured results.

7.4. Discussion and Conclusions

At first sight, 1-D oedometer testing is simple. In the common MSL
tests, a load is applied, held constant until the induced porewater
pressures dissipate, and then another load is added. This procedure
clearly arose from the important early emphasis on hydrodynamic
consolidation. More recently however it has become clear that clay
behaviour depends quite strongly on strain rate. Thus, MSL tests in
which strain rates vary continuously during a loading increment, give
only an approximate, empirical indication of the behaviour of the clay

unless careful attention is also given to secondary consolidation.
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That has been done in this Chapter, by writing functional expressions
for elastic, elastic-plastic, and time-dependent compression, and by
giving careful attention to defining the time-scale for time-dependent
compression, it has been possible to write a general 1-D constitutive
equation that can model a wide variety of test types.
Figs.7.4,7.5,7.6,7.8 show that good agreement can be obtained between
predicted and observed results for tésts different from those used to
form the model. The Figures show that successful agreement has been
obtained for two very different types of clay, one a highly sensitive
postplacial marine clay from Eastern Canada and the second a proglacial

lacustrine plastic clay from Western Canada.

Perhaps the most important finding is the mathematical framework for
understanding the secondary consolidation coefficient Cae' Bjerrum
(1967) showed that creep settlements of field structures depend
strongly on the relationship between aé and o;c. Settlement rates were

b

slow when o) < o , and higher when ¢’ > o’ . Fig.7.6 shows that C
z zc z zc ag

is not constant but depends on stress level and stress duration.
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Chapter 8

3-D ELASTIC VISCO-PLASTIC (EVP) MODELLING

8.1 Formulation of 3-D EVP Models

Chapters 3,4 developed hypoelasticity models for time independent
stress-strain behavior of soils. Chapters 5,8,7 presented elastic

visco-plastic models for time-dependent stress-strain behavior in 1-D

straining (1-D EVP). All these models are applicable under certain
restricted conditions. It is known that the stress-strain
relationships of clays and frozen soils are time-dependent. In the

field, the stress states are more complicated, usually in general three
dimensional states where ci * cé # c%. This Chapter will develop a
constitutive model that can account for time and strain rate effects in

general stress conditions.

As seen in Egns.[5.7]1,[6.21] and [7.8], the vertical strain rate in 1-D
straining was earlier divided into an elastic strain rate and a
visco-plastic strain rate. It is reasonable to generalize this and to
assume that in 3-D stress states, the strain rates (éij) consist of
elastic strain rates (é?j) and visco-plastic strain rates (é;?)

(Perzyna 1963, 1966):

[8.1] e..=¢°, X
ij ij ij

1
+
]
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An elastic constitutive law is needed to calculate the elastic strain
rates. In general, the framework of hypoelastic models in Chapter 3
may be used. In simple cases, the time-independent behavior can be

assumed to be isotropic elasticity. Thus, elastic strain rates are:

8. )lo

)8, .8 3. +6.11 k) 1%

. N 1 N 1—(8
ij 9K B8G 7ij kil 4G "1k g1

The visco-plastic strain rates are considered to follow the flow rule:

[8.3] &P =g
iJ o, .
1)

where S 1s a scaling function which controls the magnitude of
visco-plastic strain rates, and S = 0. The F in [8.3] 1is the
visco-plastic potential function. The partial differentiation 8F/6¢;j
controls the direction of visco-plastic strain rates, see Fig.8.1. It
is found that the flow rule in [8.3] for calculating visco-plastic
strain rates is similar to the flow rule for plastic strain increments
in elastic plastic theory, see Appendix 8.2. The geometry represented
by function F in stress space is called the flow surface which can gd
forwards and backwards, see Figs.8.1 and 8.2. It is seen that the flow
surface is different from a yield surface which can go only forwards in
strain hardening and may go backwards in strain softening. Perzyna

(1963) proved that the flow surface must convex.

The flow surface F may be assumed to be elliptic, see Figs.8.1,8.2:
[8.4] F = p’2 —p&p’ + qz/M2 =0

As mentioned in Chapter 3, mean stress p’ = o

Kk’ the general deviator
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. . _ 72 _ .3 172 -
stress q in [8.4] is q = (3J2) = (2 Sijsij) , where Sij = Gij
1 ? 3 s 3
3 0kkaij' The p, in [8.4] is a stress parameter on the mean stress,
p’, coordinate axis, (Fig.8.1) that ‘“scales" the various flow
surfaces. .

The strength envelope can then be defined as the line on which the
strain rate vector directions are in the direction of deviator stress,
q, coordinate axis. That is, where 8F/8p’ = O, visco-plastic shear

p 2 o, .see Figs.8.1,8.2. This definition is similar to

strain rate é;
the definition of the Critical State Line (Roscoe and Burland, 1968,
Wroth and Houlsby 1985). From [8.4]:

F _ ., _
[8.5] " 2p o)

m

from which the mean stress at failure:

[8.6] L= p&/z

Pp
The equation of strength envelope in P’ ,g-space is, from [8.4], using

[8.81]:

(8.7]  F, = a2/p’ = a2 = M

where M represents the strength envelope. A new technique is developed
to generalize the flow surface Eqn.[8.4] and the strength envelope
Egn. [8.7] in p’,g-space into expressions for general three dimensional

stress states. It is assumed that the strength envelope in general

stress states is expressed as:

M

_ c . m
[8.8a] T)f. = (—1+—B)—m (1 + Bsin30)

where parameter 6 is the Lode angle, defined as (Hill 1950):
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. _ 3v3 3/2
[8.8b] sin3s = = J3/J2

_ 1 o 1 . , :
where J2 =5 Sijsij’ J3 3 Sijsjkski (Hill 1950). The m in [8.8al is

a parameter which controls the shape of the strength envelope on w

planes (constant p’), see Fig.8.3. The parameter B in [8.8a] can be

obtained as follows. When Lode angle @ = +30°, e must be equal to MC

denoting the triaxial compression (TC) strength of the soil, when 6 =
!

-30°, nf must be equal to Me denoting the triaxial extension (TE)

strength, see Fig.8.3. Thus, from Eqn.[8.8a]:

M2
[8.9a] 3= —2 1+ "= M
(1 + B)
[8.9b] n? = ———Ei—ji (1-p"= Mi
(1 +R8)

The Eqn.[8.9b] is used to find B in [8.8]:

(MM )™y
C e

[8.10] B =
1+ (M oM )M
c e
We know:
68in¢é
[8.11a] Mc = 3 = Sing’
c
6Sing;
{8.11b] Me = B—T—Sl—mb’e

where ¢é and ¢é are friction angles in compression and extension
respectively. The strength envelope described by Eqns.[8.7]1-[8.11] is
a modification of the Mohr-Coulomb strength envelope, see Figs.8.2,8.3.

The modified strength envelope has definition at corners of the
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Mohr-Coulomb strength envelope in Fig.8.3. In Figs.8.2,8.3, ¢é = ¢é =
20.670, Mc = 0.8, Me = 0.863186. It is seen in Fig.8.3a,b that when
shape parameter m = 0.5, the strength envelope on m-plane is concave,
when m = 10, the strength envelope is convex. The shape of the
strength envelope therefore depends also on m as well as MC and Me. In
elastic-plastic theory, the shape of the strength envelope and the
yield surface should be convex on m-plane (Hill 1950). The parameter M
in Eqn.[8.4] can be obtained from Eqns.[8.8a] and [8.7]. As shown in
Fig.8.2, if Mc # Me, the flow surface is not symmetric about the

p’ -axis in p’,g-space.

Eqns. [8.1]-[8.4] form a general 3-D elastic visco-plastic model (EVP

model) for any stress or strain conditions. Under trixial stress

states, q = o, - 0., p = (ai + 205)/3. Using [8.4], 8F/8p’ = 2p’ -

1

2q/M2, the constitutive relationship for triaxial stress

P dF/8q

states is, from [8.1] and [8.3], see Fig.8.1:

e

€ =¢g +5S (2p’ - p2)
(g.121 {V VY n
e =¢% 4+ 529
s S
From [8.41]:

s _ s q
[8.13] p, =P+

p’M2

and so, if a state point (p’,q) is known, pﬁ can be calculated from

[8.13].
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8.2 Scaling Methods

The scaling functions in Eqns.[8.3] and [8.12] control the magnitude of
visco-plastic strain rates. This scaling function is similar to the
scale factor in elastic-plastic models, which controls the magnitude of
incremental plastic strains, see Appendix 8.2. In this section, we
will introduce three methods for determining the scaling functions in

the elastic visco-plastic model.

8.2.1 General p;-ﬁé-evm-évm relationship in isotropic stressing

The scaling function is related to a general constitutive equation for

isotropic stressing. We will extend the work of 1-D EVP models in

Chapters 5,6,7 for 1-D straining to formulate a general p’—b’—e -&
m°m vm vm

relationship for isotropic stressing.

It is assumed that in isotropic stress states, the total volumetric

strain is devided into three components:

[8.14] = =e° + 5P 4 etp
vm vm vm vm

where recoverable instaneous elastic strains can be found from

reloading or unloading tests, see Fig.8.1:

e _ e, ,
[8.15] €om = f (pm)

The elastic-plastic strain is (on the reference time line in Fig.8.1)

is given by:
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[8.18]1 °2 = &% 4+ 5P = £%P(p)
v v vm m

The time-dependent plastic strain is:
tp _ otp ,
[8.17] €om = f (te,pm)

where te is equivalent time as defined in Chapter 5. From [8.14]1 to

[8.17], the equation for isotropic stepped loading is:
= £€P tp ,
[8.18] g, = f (pm) + £ (te,pm)

In the same way as in 1-D EVP models, the equation for continuous

loading is:

e tp
df . arf

[8.19] € = ( )pm Fra
e

vm 55;

Substituting te from [8.18] into [8.19], we can obtain a general

pé—bé—ev-év relationship for isotropic stressing.

For example, if we use logarithmic functions:

e _ e K ,
[8.201 f~ = €omo ¥ T ln(pm)

b

p
[8.21]1 £%P = ¢SP 4 A5
vmo v P
mo
t +t
tp _ ¢ e o
[8.22] o =V 1n( T )
o]
where the parameters et , K/V; e°P , P., A/V; and t_, Y/V can be
vmo vmo mo o]

determined using isotropic creep tests with the same methods as for 1-D

EVP models 1in Chapters 5,6,7. Using Egns.[8.18]1,[8.19] with
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[8.20]1-[8.221, we have:

- _S _.SP
7/ (evm evm evm)V/w

K s
m vt

[8.23]1 & =2%p

vm ~ V m/p

where e\e,m is from [8.20], and according to [8.16], eiﬁ = P o £®
Eqn.[8.23] is a pm—pm-svm—evm relationship for any isotropic stressing,

multi-stage, single-stage or continous loading specified by using

logarithmic functions.

8.2.2 Method 1

Determining the scaling functions needs the use of an evolution law and
a consistency condition in the same way as determining the scale factor
in elastic-plastic models, see Appendix 8.2. The evolution law and
consistency condition have to relate in some way the visco-plastic
strain rates at any state point to the rates in isotropic stressing,

see Fig.8.1.

The evolution law in Method 1 is that the rates of visco-plastic

volumetric strain on the flow surface is kept constant. This means
- Vp . e

that the rates sv at any state points are equal to evm on the mean

stress p’, axis. This law is similar to the strain hardening law in

the modified Cam-Clay model in which the plastic volumetric strain is

kept constant, see Appendix 8.2. From Eqgn. [8.23], using [8.21]:
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(e -¢° —esP)V/w
vin vm - vm

ep )
] (8vm evmo)V/w P ASY
=Y . (=)
Vit P
o] mo

The visco-plastic volumetric strain rate at any point is, from [8.12]
Vb _ s
[8.25] g, S (2p pm)

Using the evolution law and S = 0, the scaling function is:

~(e -g°P Wy op?
S = _g_ e VIt vVmo (2

o mo

A/Y

[8.26] /l2p’ - p2| =0

where p& is found from Egn.[8.13] for any state point using the
consistency condition that the current point must be kept on the flow

surface. The €om in [8.268] can be obtained by solving Eqn.[8.271:

(e _-¢°P Wiy p’
[8.27] & =KX p’ /p. + Y e VM VWO (—$~)A/w
vm V- m"m VtO no

This procedure for determining the scaling function is quite
complicated, and, to simplify this procedure, ev can be used instead of
€, in [8.26] to avoid solving the diferential equation [8.27]. The

scaling function S is then:

ep ,

-(e -¢ VY p

AW

[8.28] S= Y o Vv VWO (- /l2p’ - p’
Vto pmo I P pmI

By comparing [8.23] with [8.12], we have:
. _ K .
[8.29] £ = Vp

where we can use p’ instead of p&. This involves assuming that the
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time-independent behavior is isotropic elasticity. Using this

assumption, Eqn.[8.20] can be writen as:

[8.30] eim =e°=¢% 4 % In(p’)

The 3-D EVP model for triaxial stress states is then:

—(e -£°P ’
K om + ¥ o (sv Svmo)V/w (EE_)A/w
v vy PP vt p.
o mo
[8.31] <

—(g —£%P )
1 - 1 (ev sva)V/w P AY 2q/M2

é=—q+——e (—)'_) D y
s 3G Vto Po [2p pm]

where the elastic shear modulus G is estimated from unloading/reloading

shear tests.

8.2.3 Method 2

This method considers the difference in the elastic strain and the

time-independent plastic strain in Eqn.[8.23]. The eim is from [8.30],
e=P is from:
vin

P
[8.32] &P = [P 4 % 1n(52 )1 = Teg + S in(pr)]

v vino v
mo
Thus the scaling function is:

ep ,

~(g_-¢ Wy , p
[8.33] s=gloe vV VRO RLRA (DAY o0
vVt p m

o m mo

where we still use ev instead of evm to simplify the scaling function.
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Eqn. [8.33] can be used to write a similar equation system to [8.31] for

triaxial stress states.

8.2.4 Method 3

The strength of overconsolidated clays and frozen soils depends on both
time and strain rate, and it is not easy to determine a unique strength
envelope. Sometimes however, it is possible to find the line on which
the visco-plastic volumetric strain rates in shear tests are zero and
this will be called the "neutral line". Consider for the moment that
this line is known. Method 3 assumes that visco-plastic volumetric
strain rates, é:p are zero on the “neutral line", are equal to ézg on

the mean stress, p’, axis. Thus, we have:

-(e g°P Wy p’
[8.32] S = % o Vm vmo (B Ay /P
o pmo

to meet the required condition, that is, on the "neutral line":

-(e. ~SP Yy p
Ve _ ¥ vm Svmo m \A/Y , .
[8.33] £, VE; e (pﬁo) (2p pm)/pm 0

wher pﬁ is the stress on the "neutral line", and on the p’ axis:

-(e, -e2 vy p’
Ve _ ¥ vm vmo m \A/Y , y _ VP
[8.34] £, ——; e (p;o) (ZP pm)/pm =&,

As derived earlier for Egn.[8.6] because of the assumption of an

ellipse for the flow surface, pﬁ = p;/z in [8.35].

174



If g, is used instead of €om in Egn. [8.34], we have:

[8.37] S= L e YV VW (=

The constitutive equations for triaxial stress states are, from [8.12]

using [8.37]:
- - €p ’ y »
; R (ev E:vmo)V/"[’ (pm )A/w 2p Pn
o mo m

[8.38] < ep

e = 1 - + 1/} e—(ev—evmo)V/w (pm )A/w 2q/M2

s 3T W p’ p’
L o) mo m

Chapter 10 will show an application of this scaling method to a frozen

sand.
In Eqgns.[8.311,18.38]1, the visco-plastic strain rates ézp =2 0 and
P >0 in loading and unloading/reloading when (2p’ - p%) =0 and

s
2q/M2 =z 0 respectively. In the case of unloading where Ap’ < 0 and
Ag < 0, it is found that the change in visco-plastic strain energy is
AW'P = Ap’éZpAt + Aqé;pAt = 0. It is known in elastic material that
the change 1in elastic strain energy AW® = 0 for unloading. That
aW® = 0 implies that the elastic material possesses the potential of
elastic strain energy in unloading, and can do work on objectives
outside. While that AW'P =0 in unloading implies that the

visco-plastic material can not do werk on objectives outside, but

exhausts energy from outside even in the unloading process. Therefore
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the Eqns.[8.311],[8.36] satisfy the second thermodynamic law and can be
applied to calculate the time-dependent behavior in loading and

unloading/reloading in the visco-plastic region.

8.3 Simulation of a CIU Test Using the Modified Cam~Clay Model and
EVP Models

It was found in 1-D EVP modelling (Yin and Graham 1883a,b) that when
the creep parameter y/V approached zero, the results from the model
approached the elastic line and the elastic-plastic line (reference
time line). This section will examine results from EVP modelling, and
also the similarities and differences between EVP models and the
modified Cam-Clay elastic plastic model. It will be remembered that

the modefied Cam-Clay model takes no account of strain rate effects.

Formulation of the modified Cam-Clay model (Roscoe and Blurland 1968)
is presented in Appendix 8.2. Using this model, the undrained
effective stress path in P’ ,q-space, started at a point (O,pi) after

isotropic consolidation, is:

A/ (A=k)_ 172

[8.38] g = Mp’[(pi/p’) 1]

The q—es curve can be obtained by solving the following differentiation

equation in conjunction with [8.39], see Appendix 8.2:

1 A-K I~ 29,2
[8.40] de_ = z= dq + — 2 =y [(2p'-p’) == dp’ + (£2)%dq]
s 3G mep (2p pm) m M2 M2

Egns. [8.39],[8.40] are used to model the stress-strain behavior of a
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undrained CIU test, see Figs.[8.4]-[8.9].

Effective stress paths and q—es curves for the CIU test are obtained
from EVP models by solving the following differentiation equation

system. From Eqgn.[8.12], using the undrained condition év = QO:

P’ = (Vp’/k) S (2p’ ~p’)

[8.39] .
q+ S 2q/M2

0}
W] =
al

Three different scaling functions can be obtained using the three

methods given in the previous sections.

The parameters used in the modelling were: k/V = 0.025 (k/\ = 0.25),

e° = -0.0963; A/V = 0.1, p’_ = 47 KPa, &P = 0, Y/V = 0.004, 0.0004
mvo mo mvo
(/A = 0.04, 0.004), t_ =1 hour; M_=0.8, G= 1000 KPa. The initial

point used in all calculations was chosen on the referemce time line:

P} = 100 KPa, q; = R €4 = AV ln(pi/poo) = 0.0755, ti = 0 hour.

Fig.8.4 shows the simulated q-e_ and effective stress path of the CIU
test using the modified Cam-Clay model and a EVP model with scaling
function in Eqn.[8.26] in Method 1. The creep parameter Y/V used was
0.004. Fig.8.5 shows the simulation of the same test, where the creep

parameter ¥/V was reduced to 0.0004.

In Figs.8.6 and 8.7, the scaling function [8.31] in Scaling Method 2
was used in EVP modelling of the same CIU test. The creep parameter

Y/V was 0.004 in Fig.8.8, and 0.0004 in Fig.8.7. Figs.8.8 and 8.9 used
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the scaling function [8.35] in Method 3 with ¥/V = 0.004 and 0.0004

respectively.

It is seen in Figs.8.4-8.9 that the stress-strain curves and effective
stress paths were strain rate dependent and sensitive to the parameter
Y/V in EVP modelling. When the creep parameter yY/V approached zero,
the simulated curves from EVP models using Scaling Method 2 and
Method 3 approached the curves from the modified Cam-Clay model.
However, curves from the EVP model using Scaling Method 1 were not.
The general shapes of the curves are similar to those found in CIU
tests at different straining rates. The modified Cam-Clay model is a
particular example, when viscosity is zero, of the more general EVP

model with rigorous scaling of the function [8.26]
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Chapter 9

ELASTIC VISCO-PLASTIC (EVP) MODELLING OF
SAND-BENTONITE BUFFER MATERIAL

Chapter 8 developed the framework of 3-D elastic visco-plastic (EVP)
models to simulate the time dependent stress-strain behavior of soils.
In this Chapter, we apply this framework to the sand-bentonite buffer
material that has been proposed for use in the Canadian Fuel Waste
Management Program (see also Graham et al. 1989). An EVP model is
developed for this material and calibrated using available test data.
It is then verified using test data that has not previously been used

in building the model.

9.1 Test Program and Results

A test program was performed by the author to collect additional test
data from triaxial tests on the buffer material. These data have been
combined with previous test results presented, for example, by Graham
and Saadat (1987), Graham et al. (1889), and will be used for the

calibration and verification of the proposed EVP model.
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8.1.1 Preparation and properties of specimens

In specimen preparation, an improved compaction frame (Yarechewski
1888) was used to produce high density specimens at 95% ASTM Modified

Standard Density, = 1.67 Mg/m3 (Graham et al. 1988). The

¥4
properties of specimens T1001, T1002 after compaction, are in
Table S.1. The targeted dry density was 1.87 Mg/mg. As usual in
experimental work, the measured values deviated from the targeted
ones. In Table 9.1, the subscript “o" denotes the measured properties
right after compaction of those specimens. The Y41 in Table 9.1 is

the corrected dry density after installation of the specimen 1in

triaxial cell, see Appendix 9.1.

Table 9.1 Properties of Specimens T1001 and T1002

Specimen ydo 5 wo Sro eo VO 70 5 GS ydi 5

Mg/m % % Mg/m Mg/m
T1001 1.878 22.33 ~ 99.04 0.8083 1.68089 2.053 2.7 1.517
T1002 1.696 20.863 94.10 0.592 1.8582 2.048 2.7 1.685

8.1.2 Triaxial tests and results

The triaxial cells used in the program were Brainerd-Killman (B.K.)

cells with capacity 3500 kPa. These were installed in an ELE loading

frame with loading capacity 10,000 kg and a wide speed range, 0.00005
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mm/min to 0.125 mm/min. An improvement in this test program in
comparison with the previous test programs described by Sun (1988), Wan
(1987) and Saadat (1989) was that a double drainage system was used in

the B.K. cells. The advantages of such a drainage system are:

(1). In consolidation or drained tests, if both top and bottom ends
are allowed to drain, the process of consolidation or porewater
pressure dissipation can be accelerated. If only the top end is
drained, then the bottom end can be closed and used to measure
porewater pressure at the bottom of the specimen. In this way,

the process of porewater pressure dissipation can be monitored.

(2). In undrained shear tests, the two drains are closed and used to

measure the porewater pressure.

In the test program, two types of shear tests were designed, one was a
multi-stage g creep shear test under undrained condition (on specimen
T1001). The second was a step-changed constant strain rate shear test
under undrained condition (on specimen T1002). The two specimens were
first isotropically consolidated for a long time under multi-stage
isotropic pressures (184.5 days for T1001 and 217.5 days for T1002).
The resulting consolidation data will be used to determine the scaling
function in the EVP model. The undrained shear test data will be used

mostly to examine the validation of the EVP model.
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8.1.2.1 Isotropic consolidation tests

As mentioned in the preceding paragraph, specimens T1001 and T1002 were
isotropically consolidated using multi-stage loading. The back
pressure used was 500 kPa. The principal results of the consolidation
tests are in Table 9.2 and complete details are given in Appendix 9.2.
In Table 8.2, the consolidation pressure pcon = 05 - ub, the excess
porewater pressure Au = u - o, where oq is the cell pressure, u, is
the back pressure, u is the porewater pressure. In the test program,
the same filter paper strips (Whatman #1) as used in previous tests
(Sun 1986, Wan 1987, Saadat 19839) were put on the lateral surface of
the specimen for radial drainage. However, It has been found by James
M. Oswell (personal communication) that the permeability of the filter
paper strips is very low and impermeable at pressures higher than 800
kPa. It was assumed that the relationship between the back pressure
applied at the top of the specimen and the porewater pressure measured

at the bottom is parabolic, and the effective mean stress p’ values in

Table 8.2 were estimated from the relationship (pCon - 2 Au).
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Table 9.2 Results of Isotropic Consolidation Tests

Specimen Pcon t gy Au p’
kPa hour % kPa kPa
200 227.8 -13.85 200

T1001 800 1558. 4 -7.15 -285 980
3000 2642.9 1.88 468 2688
200 231.4 -10.13 4 197.3

T1002 1000 2855.3 -1.82 30 3880
3000 2034.1 2.82 88 2840.7

During specimen preparation, there are usually some deviations from the
targeted dry density and the saturation is not 100 %. Furthermore when
installing specimen in the test cells, the dry density of specimens
might be changed. Appendix 9.1 presents a technique for the calculation
of volumetric strains considering these variations in dry density and

unsaturation. The sv values in Table 8.2 are the corrected values.

Figs.8.1-9.3 show the curves of volumetric strain vs. time (ev vs. t)
and excess porewater pressure vs. time (Au vs. t) for specimen T1001.
Figs.9.4-9.6 show the same curves for specimen T1002. The data of
volumetric strain vs. effective mean stress (ev vs. p’) at the final
stage of each multi-stage loading are shown in Figs.9.9 and 8.8. In
Fig.9.2, the porewater pressure was negative but the volumetric strain
was increasing. It was subsequently found that the hole accessing the

porewater pressure transducer was blocked and the negative porewater
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pressures seem to be related to temperature changes rather than to
swelling potential. In Fig.8.5, the excess porewater was close to
zero and the volumetric strain approaches a constant. However, in
both specimens, there were some residual excess porewater pressures
left at the final stage of consolidation. In T1001, there was 468 kPa
left after 2642.9 hours of consolidation, while in T1002 there was 89

kPa left after 2034.1 hours of consolidation.

9.1.2.2 Triaxial shear tests

In specimen T1001, after multi-stage isotropic consolidation, there
was 468 kPa excess porewater pressure at the bottom end of the
specimen but of course zero at the top end where the back pressure was
applied. The porewater pressure distribution was not uniform. If
shearing then commenced immediately, we could not measure the true
response of porewater pressure, since the distribution of porewater
pressure would be changing as a result of the initial porewater
gradients and shear-induced porewater pressures. In order to equalize
the initial porewater pressures, the drainage valve at the top was
closed, and the specimen was relaxed for 213.3 hours under undrained
conditions. At the end of this relaxation, the porewater pressure at
the top was the same as the pressure at the bottom, with an excess
porewater pressure magnitude of 1045 kPa. The specimen was then
sheared by applying multi-stage constant deviator stresses under

undrained conditions. At each stage, the deviator stress increment was
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D

applied suddenly, then was kept constant, and delayed compression
movements were allowed to occur. Due to the increase in section area
of the specimen, the deviator stress decreased by small amounts. The

complete test data of this test are presented in Appendix 9.2.

Fig.9.9 shows the curves of shear strain vs. time (es vs. t) and excess
porewater pressure vs. time (Au vs. t) for deviator stresses 315.7,
686.8, 866.0, 1041.9, 1077.0 kPa respectively. The following

characteristics are found:

(1). For each suddenly applied deviator stress, there were "instant"
responses of shear strain and porewater pressure. These may be

treated as time-independent behavior.

(2). The rates of shear strain és changes decreased with time for q =
315.7, 686.8 and 866.0 kPa. So did the excess porewater pressure
changes Au, except for some scatter of Au,t data for q = 686.8
kPa. This means the specimen will not fail due to delayed

straining when the deviator stress is below 866.0 kPa.

(3). When g = 1041.9 kPa, the rate és increased with time in the final
stage of loading. The specimen exhibited accelerating creep and
this is a definition of failure (Vaid and Campanella 1977). The
corresponding rate Au decreased with time, indicating the

specimen was tending to expand during shear.

(4). When g was increased to 1077.0 kPa, the rate és was increased

further and failure followed after about 30 minutes.
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Fig.9.10 shows the effective stress path in the test. It is noted
that the instantanecus effective stress paths responding to the
suddenly applied deviator stresses, were not vertical, but inclined to
right side (Aq/Ap’ > 0) in q,p’-space. The ratios of Aq/Ap’ for g =
315.7 and 686.8 kPa were 3.836 and 2.867 respectively. We know that
if the elastic behavior of a soil is isotropic, the instant effective
stress paths would be vertical, namely Aq/Ap’ = w. The instantaneous
effective stress paths measured in the test indicated that the
time-independent behavior is anisotropic. This result is consistent
with some findings reported by Graham and Saadat (1987) and Graham

et al (1989).

In specimen T1002, at the end of consolidation, there was only 89 kPa
excess porewater pressure left. In order to make the distribution of
porewater pressure in the specimen uniform, the specimen was
isotropically relaxed for 32.5 hours after consolidation under
undrained conditions. After relaxation, the excess porewater pressure
increased to 306.6 kPa. The effective mean stress p’ at this stage was
2693.4 kPa. The specimen was then sheared using step-changed constant
strain rates under undrained condition. The strain rates used were

1 1 1

0.00036 h ~, 0.0058 h ~ and 0.094 h ~. The complete test data for this

specimen are in Appendix 8.2

Fig.8.11 shows the curves of deviator stress vs. shear strain (q vs.

es) and excess porewater pressure vs. shear strain (Au vs. es) for the
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test. In the test, the specimen was unloaded and reloaded at es =
7.31 % with strain rate és = -0.0058 1/h for unloading and 0.0058 1/h
for reloading, see Fig.9.11. At g, = 10.08 %, the driving machine was
shut off and the specimen was relaxed for 46.6 hours. During shear
relaxation, the deviator stress decreased with time and approached a

constant, see Figs.9.11 and 9. 12.

The effective stress path of the test is shown in Fig.9.13. It is
found that the first part of effective stress path in the undrained
shear was straight and inclined to the right side. The ratio of Aq/Ap’
for this part was 5.455. The effective stress path in unloading and
reloading was also inclined towards the right side on average. The
ratio of Aq/Ap’ in the unloading/reloading was 12.903. All of this
indicated again that the time-independent behavior of the high density

specimens is anisotropic.

9.2 EVP Model and Its Calibration

This section develops an EVP model for the sand-bentonite buffer
material using the framework given in Chapter 8 and considering the
characteristics of the material measured in T1001 and T1002. The
scaling function will be determined using the data from isotropic
consolidation. The strength envelope for the model is taken from
previous test results given by Graham and Saadat (1987) and Graham

et al. (1889).
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8.2.1 Equations of EVP model

As discussed in the previous section, the effective stress paths of
time-independent behavior of the high density specimens (T1001 and
(T1002) were straight and inclined to right side {Ag/Ap’ > 0) in
undrained shear conditions, (see Figs.8.10, 9.13). This type of
effective stress path can also be found in Fig.9.14 (Graham and
Saadat, 1987) and Fig.9.15 {Graham et al, 1989). However in these
Figures, more effective stress paths turn to left side (Aq/Ap’ < 0).
This may be explained by (1) excess porewater pressures remaining
after consolidation that were not measured and corrected in the plots;
(2) the dry density was low so that the initial state was close to
normally consolidated states and visco-plastic behavior dominated the
effective stress paths. Graham et al. (1989) say that these specimens
are at "“Swelling Equilibrium". That the ratio of Ag/Ap’ is larger
than zero implies that deviator stresses produce negative volumetric

strains i.e. a tendency to shear- expansion in constant-volume tests.

The KGJ model developed in Chapter 4 can be employed to describe the
anisotropic time-independent behavior. Here, we make the same
assumption used earlier, that total strain rates are the sum of
time-independent strain rates and visco-plastic strain rates.
Referring to Eqgns.[8.1], [8.3] and [8.12], the constitutive equation

for triaxial stress states can then be expressed as:
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s, = (gD +>a) +S (2 - p)

\4 KP
[9.11
. _ 1 -, 1 .
EZS = (j p + 3G q) + 8 (Zq/Mz)

where in the absence of detailed test data it is assumed that the
flow surface is an ellipse (Fig.10.16), expressed by Eqn.[8.4]. It is
found from Figs.8.14,3.15 (Graham et al. 19838) that the strength
envelope 1is curved. A hyperbolic function can be used to fit these

data in Figs.9.14,3.15:

y

Pe

19214 = 5y

where the parameters a and b were 1.3 and 0.0002 kPa.—1 respectively,
see Figs.9.14,9.15,9.186. From Egns.[8.6],[8.7] it 1is known from
Fig.9.16 that p% = p&/z and qf/p% = M. Thus from [9.2] the parameter M
is:

1 1

(s.3] M= Mc T AT bp% T aF O.pr&

Introducing this expression for M into [8.4] and solving for the stress

parameter ph gives:

(p’—aqu) - I(p’—aqu)2 - 4(0.5bq)2(a2q2+p’2)
2(0.5bq)?

[9.4] P, =

It should be pointed out that in Egqn.[9.1], the KGJ model is used to
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describe the time-independent behavior which may or may not be elastic.
The strain responses defined by the KGJ model may depend on the stress
paths and may not be fully reversible. Usable test data are not yet

available.

9.2.2 Conceptual model for isotropic swelling and creep

To determine the scaling function S in Eqn.[S.1], we have to use the
isotropic creep test data shown earlier in Figs.[9.1]-[9.8]. However,
the behavior of the sand-bentonite buffer material is very complicated.
This material exhibits both swelling and creep characteristics (Graham
et al. 1986, Graham et al. 1989). In order to describe these
phenomena, an extended conceptual model is developed from the model

suggested by Graham et al. (1986).

As shown in Fig.8.17, the swelling equilibrium line (SEL) is reached by
swelling (expansion) of an infinite time. The new model introduces a
“creep equilibrium line" (CEL) which is reached by creep compression of
an infinite time. In general, one would expect the SEL to be below the
CEL as shown in Fig.8.17. According to this definition of SEL and CEL,
the specimen at the state points below the SEL will swell to approach
to SEL. The specimen at the state points above the CEL will compress
to approach to the CEL. At thé state points between the CEL and SEL,
the behavior will be neutral, with neither creep nor swell being

observed, and the behavior is completely time-independent. According
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Fig.9.17 Conceptual model for swelling and creep behavior
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to this model, the swelling pressure, p; at a given specific volume is
the pressure on the SELL at which the volumetric strain, ev, is
constant, (Fig.9.17). Similarly, the relaxation pressure, p; at a

given specific volume is the pressure on the CEL and which the

volumetric strain, Sv is constant.

This conceptual model explains why in some soils there are large creep
movements, whereas in other soils like sand, the behavior is almost
completely time-independent. According the model in Fig.8.17, when
the SEL is far on the left side of the CEL, then there is only creep
behavior above the CEL and time-independent behavior below the CEL.
If both the SEL and CEL are further separated, then the behavior is
completely time-independent. The sand-bentonite mixture in the
program has both swelling and creep. So there must exist both a SEL
and a CEL in the ev,p’—space. The determination of the SEL and CEL by
testing is difficult due to the coupling of hydrodynamic
consolidation. No detailed examination of existing data or new
testing specifically aimed at distinguishing the SEL and CEL have yet

been undertaken, (see for example Graham et al. 1989b).

8.2.3 Determination of scaling function S
The difficulty in determining the scaling function S in Eqn.[9.1] is

that there are at this stage no completely reliable creep sv,p’ data

available from isotropic consolidation tests. These would normally be
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needed to find the reference time line, the elastic time line and the
creep parameters required in the scaling function. The permeability of
the sand-bentonite mixture is very low, of the order 10“12 - 10”1:3 n/s.
The dissipation of excess porewater pressures will not finish in a long
time for consolidation pressures higher than pcon = 3000 kPa, see
Figs.8.3,9.6, (see also Saadat 1983). In this case, the effective mean

stress p’ is increasing all the time and is not constant, so the data

are not technically creep data at all. At lower pressures, for example

pCon = 200 kPa, the soil swells and the swelling will not finish in a
long time, see Figs.9.1,9.4 and the same comment holds. Even the
relationship of ev,p’ for unloading and reloading 1is also

time-dependent, and cannot be measured accurately due to excess
porewater pressures in the specimen. In the following section, the
elastic line, reference time line and creep parameters will be
estimated using the available information combined with present

understanding of the behavior of the material.

The elastic line:

e

_ Kk , vy _ €
[9.5] €om = T ln(p01 + pm) €m0

has been assigned the values k/V = 0.03, pél = 500 kPa, see Fig.9.7.

The parameter eimo will not be used in the modelling.

The reference time line:

p ., + p
[9.6] s\e,fl =2 n22_m
poS

<

2186



has values A/V = 0.085, péz = 0.5 kPa, pég = 2500 kPa, see Fig.8.8. This
estimated reference time 1line is close to the equation of "end-

of-consolidation” used by Saadat (1989), see Fig.9.8.

The creep equation:

t
tp _ ¢ o
[9.7] 154 = = 1n(m—)
o] e

<

has been assigned ¥/V = 0.0025, to = 0.1 hour.

The equation for calculating creep strains under any stepwise isotropic

loading is, using [9.6] and [9.7]:

p ., + p : t

[9.8] &°P = A 1n(_3§T___E) + ¥ In(—2
vm P v t +t

03 o} e

)

<

Using the method in Chapter 8, the general constitutive equation for

continuous isotropic stressing is:

" ~(V/¢)€vm P> * P
v fmtEVE (—%—)
pm o) P o3

[9.9] e = _T_ffy__ 57

ol

Using the scaling Method 2 in Chapter 8, the scaling function in

Eqn. [9.11] is:

9.101 s= ¥ o V% Por TP oy Po2 t Py
) Vt p’ + p’ p’ p pm
o ol m o3

The parameters in Eqns.[9.5]-[9.7] have been best-estimated by the

graphical method explained in Chapter 8. The curves fitted by using
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[9.8] are shown in Fig.8.18a,b. The details of the graphical method

will be presented in Chapter 10.

9.2.4 Determination of moduli K,G,J

Using Method 1 in Chapter 3, the data from isotropic unloading and
reloading consolidation tests are used to find the bulk modulus K.
Data from undrained unloading and reloading shear tests are used to
find the coupling modulus J and the shear modulus G. The modulus K is

obtained by differentiating [9.5] or taken from [9.9]:

[9.11] K = — Kk/V k/V  _  0.03

p01 * pm pol P 500 + p

Here again, the use of p’ instead of p; assumes that K is independent

of deviator stresses.

The J modulus is found to be:

dq

[8.12] J = -K ap’ = -4.601 K

The effective stress paths of the time-independent responses were
linear, see Figs.9.10, 9.13, 9.14 and 9.15. The average value of
dg/dp’ for 6 specimens tested by Saadat (1983) and for T1001 and T1002

in this test program is 4.601.

The apparent modulus D (Eqn.[3.11]) is found to be 45000 kPa, using the

data from the unloading and reloading tests given in Fig.9.11. The

218



e o

shear modulus G is found from Eqn.[3.12], using [9.12] and D:

2
DJ 1 1
[8.13] G=—>  =p—1 - 45000
J° + 3K 1 + 3DK/J° 1+ 8377.2/K

where K is given by [9.111].

9.3 Verification of the EVP Model

In the preceding section, the EVP model was formulated and calibrated
for the sand-bentonite buffer material. Now the model will be used to
predict two different type of tests. One is an undrained multi-stage q
creep shear test, and the other is an undrained step-changed constant

strain rate shear test.

9.3.1 Modelling of an undrained multi-stage q creep shear test

After Iisotropic consolidation and relaxation, specimen T1001 was
sheared using multi-stage deviator stresses under  undrained
conditions. The loading history for this undrained shear test is in

Table 9.3. The detailed data are given in Appendix 9.2.
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Table 9.3 Loading History, Initial Conditions and Measured and

Calculated ss,p’ Data at the End of Each Loading

q (kPa) 315.7 686.8 866.0 1041.8 1077.0
Duration (hour) 695.2 311.2 144.3 28.7 0.83
pi (kPa) (initial) 2455 2200.8 2080.3 1986. 4 18941.2
€. (initial) 0 . 0053 .0132 .0211 .0341
€5 (initial) 0.0188 0.0188 0.0188 0.0188 0.018
p’ (kPa) (calcu.) 2200.9  2080.3 1986. 4 1941.2 1945.5
p’ (kPa) (test) 2215.5 1690.8 1897.86 1958.8 1941.8
g (calcu.) . 0053 .0132 .0211 . 0341 . 0350
€ (test ) .0038 .0138 .0214 . 0473 . 0978

In the test, each deviator stress increment was applied to the specimen
suddenly (over a period of a few seconds), and then held constant.
From Eqn.[S.1] the instantaneous responses due to the sudden loading

are given by:

I e

Aev Ap’ + % Aq
[9.14]

, 1

[

Ae
s

Using the undrained condition Asv = 0 into the first equation in
[9.14], the ratio Ag/Ap’ = -J/K, and this has been measured to be
4.601. Using this ratio in the second equation in [9.14], the shear

strain is:

220



L 1—) Aq

[9.15] Ass = (ZTEET—E * 35

So if the deviator stress increment, Aq, is known, Eqn.[S.15] can be

used to calculate the instant shear strain increment, Aes.

Using conditions év = 0 and é = 0 from Eqn.[8.1], the effective mean
stress p’, and shear strain g during undrained creep under the

deviator stresses are:

g
it

’ -K S (2p’ ~p&)
[9.16]
é =%b) +SZCI/M2= [—5 (zp, -'p;n) +2q/M2] =)

Note here that the creep shear strain rate és depends on the current

stress state p’,q. The excess porewater pressure, Au, is:
[9.17] Au = pi +q/3 - p’

where pi is the initial effective mean stress on p’-axis.

The 1initial conditions used in calculating the p’,t- and es,t—
relationships for different deviator stresses are shown in Table 9.3.
Note that when the deviator stress is newly increased, new initial
conditions should be used. These new initial conditions are the final
values at the end of the 1last deviator stress, see Table 9.3.
Egns. [9.15],[9.16] are used to calculate the relationships of p’ vs. t
and e Vs. t. Eqn.[9.16] is a non-linear differential equation system

for which no analytical solution can be obtained. The fourth—-order
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Runge~Kutta method was used to solve [9.16] numerically. The computer
program for using this method is given in Appendix 9.3. Eqn.[8.17] is
used to calculate the relationship of Au vs. t. Table 9.3 shows the
initial values, final predicted p’,es values, and their equivalent

measured test values for each deviator stress q.

Fig.8.19 shows the comparison of the measured and predicted shear
strain vs. time (ss vs. t) relationships for five different deviator
stresses. It is seen in thé Figure that the calculated curves agrees
well with the test data. The calculated Au vs. t in Fig.9.20 and q
vs. p’ in Fig.9.21 for gq = 315.7 kPa agree with the measured data.

However, the model tends to underpredict the porewater pressures (and

hence the p’,q,t-relationships) for higher deviator stresses.

9.3.2 Modelling of an undrained step-changed constant strain rate

shear test

Specimen T1002 was sheared using step-changed constant strain rates
under undrained conditions after 1isotropic consolidation and
relaxation were completed. The detailed data are given in
Appendix 9.2. The schedule for changing the strain rates is shown in

Table 8.4 as a function of the shear level during the test.
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Table 8.4 Schedule of Strain Rate Changes

g 0 . 0057 .0135 .0280 . 0488 . 0619 . 0692
és .094 . 0058 .00036 .084 . 0058 . 00036 .0058
g .0731 . 0653 .0841 . 1006 .1012 . 1082 .1134
és -.0058 +.0058 .094 0 .084 . 00036 end

The equations for calculating p’ vs. g and q vs. g are obtained from

[9.11, using the condition év = 0:

., 1 . s s

p’ = -K [j q + S(2p’ - pm)]
[3.18]
P’ - S(2q/M%)]

[SN

q = 3G [es ~

The initial condition at the beginning was q; = o, pi = 2693 kPa and
e, =0, g, =0.0262. The strain rate was 0.094 h™'.  If the strain
rate was changed, then the new strain rate and new initial values
should be used in the calculation of [8.18]. The new initial values
are the final values at the end of shearing with the previous strain

rate. The computer program for solving [9.18] numerically is in

Appendix 9.4.

For comparison purposes, Figs.9.22,9.23,9.24 present the measured and
predicted q,ss—relationships, Au,ss—relationships and effective stress
paths respectively. The modelling is generally good. It is seen in

Fig.9.22 that the model overestimates q values in the shear strain
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range 0.5 % - 1.35 %. Because of the way the model was formulated, it
did not reproduce the loop in the unloading and réloading measured in
the test, see Figs.9.22,9.24. 1In Fig.9.12 the predicted q,t data are

compared with the test data. The model overestimates the g-values.

Fig.9.25 shows a simulation of constant strain rate shear tests (CRSN)
which have not yet been produced in the laboratory. Fig.39.26 shows the
comparison of the q,és—values measured from the step-changed constant
strain rate shear test (T1002) and calculated in the simulated CRSN

tests. We can see the strain effects produced by the EVP model.

It is seen from these comparisons that some of modelled values are not
especially close to the corresponding test data. However, bearing in
mind the restricted data base that was used to calibrate the model for
"buffer"”, some encouraging features of the EVP model can be seen from
these Figures. The model can simulate the effects of varying strain
rate, relaxation and creep. It is also interesting to note that
Eqn. [9.18] can model unloading and reloading cycles simply by using
negative and positive strain rates respectively without any additional

condition.

9.4 Discussion

The sand-bentonite buffer material has both swelling and creep
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characteristics. Time-dependent behavior of this material is therefore
complicated and difficult to measure. Due to the coupling of

12 6 10713 s,

hydrodynamic consolidation and low permeability (10~
Dixon and Gray 1985), it is in principle difficult to separate effects
of time dependency such as creep or swelling from time dependent
behavior related to dissipation of porewater pressure. The result is
that it is difficult to get reliable creep p’,ev-data required in the
determination of the scaling function. All the parameters in the
scaling function have been estimated using engineering judgement.
There are therefore experimental uncertainties in some of the

parameters, and this of course directly affects the quality of the

model predictions. No systematic study of the influence of these

errors has been undertaken in the thesis.

In determining the K,G,J moduli, it was assumed that the apparent
modulus D and the ratio J/K were constant. It is considered possible
that they might depend on stress levels. The time-independent behavior
of the buffer needs further examination in an extended laboratory
program. In the formulation of the EVP model, an elliptic flow surface
was assumed, and an associated flow rule was used. The true shape of
this surface and the flow rule require to be examined by stress-probe
tests. Such work is currently being undertaken in the University of

Manitoba by doctoral candidate J.M. Oswell.

The EVP model developed in this chapter is used to model time-

dependent stress-strain behavior which is related to volumetric creep
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in p’,ev—space. In other words, this model applies only to state
points above the swelling equilibrium line (SEL) in Fig.9.17. This
model can not at this stage deal with any time effects resulting from
swelling. It does include the normal time-independent behavior
associated with the Cam-Clay modelling in the overconsolidated range.
The work in this chapter is very preliminary. More work needs to be

done.
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Chapter 10

ELASTIC VISCO-PLASTIC (EVP) MODELLING OF A FROZEN SAND

10.1 Introduction

Considerable laboratory testing of frozen scils and modelling of the
stress—strain-time relationship, have been carried out. To date, no
one single model has gained universal acceptance because of the
complexity and variability of the behaviour of the soils. Essentially,
the behaviour includes components of elasticity, plasticity, and
viscosity. Some models combine two of these components, for example,
Budkowska and Fu, 1989, and Sun et al., 1989. Other models are not
based on the behaviour of ideal materials, but simply analyze the
behaviour in terms of strain rates which are related to such factors as
stress level, time, and temperature for a given material. Most models
are based on uniaxial deformation. In this Chapter, a 3-D EVP model is
developed from on the framework presented in Chapter 8. This model
incorporates all the aforementioned components. It is applied to the
results of triaxial compression creep tests carried out on a frozen

sand by Rahman 1988.

Many creep theories assume that frozen soils are incompressible and
their creep behaviour is not influenced by mean (hydrostatic) stress

level. However, experimental results show that volumetric creep rates
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are significant and depend on both time and mean stress (Domaschuk
et al. 1985). The 3-D EVP model in this Chapter can account for

volumetric and shear creep under general stress conditions.

10.2 Equations of the EVP Model for a Frozen Sand

Here, the frozen sand is treated as one phase material, and thus no

distinction is made between total stresses and effective stresses.

In the proposed model, elastic responses are assumed to be isotropic,
using Eqn.[8.2]. The flow surface is assumed to be an ellipse, using
Egn. [8.4]. Under triaxial stress states, the constitutive relationship

for the frozen sand is:

™.
|

1 .
= K p + S (2p "pm)
[10.1] ,
q+s (2q/M2)

s~ 3G
A strength envelope is also required for the model. It was found from
creep shear test data that the strength envelope, defined as
aes/aev = o, was not unique, but time-dependent (Rahman 1888). These
data therefore could not be used to determine the strength envelope.
However, Fig.10.1 shows the "zero volumetric strain rate line" found
from those creep tests. The behaviour below the line was compressive,
the behaviour above the line was expansive, and the behaviour on the
VP

. . le . R
line was zero, namely g, = g + e, = 0. Since both deviator stress

and mean stress at any point on the line are constant, the elastic
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strain rate should be =zero éi = 0. Therefore the visco-plastic
volumetric strain rates on the line were alsc zero, that is ézp = 0.
In Chapter 8, the envelope on which visco-plastic volumetric strain

rates are zero was defined as a "neutral lines", see Fig.10.1.

For the frozen sand in this test series, the zero ézp envelope (that is
the neutral line in q,p-space in triaxial compression tests) was
curved. It has been fitted by a hyperbolic function:

Pne

[10.2] C{nc = ;T—BE;C

where U and p . are stresses on the neutral line in compression.
Using graphical technique, the constants in [10.2] a = 0.45, and
b = 0.0004 (kPa)_l. This line is shown in Fig.10.1.

A"
Because avp

= 0 on this line, Eqn.[10.1] requires that 3F/3p 1is also
zero = 0 on the neutral line, since S # O. This implies that the

visco-plastic volumetric strain rate vectors of the visco-plastic

potential F on the neutral line are vertical in g-p space. Using the

condition that 8F/8p 0 in combination with Eqn.[8.4]:
[10.3] P~ pm/2

and

2,2
[10.4]1 F_=q /P M2

Using Eqn.[10.2], the parameter, M, in [8.4] or [10.4] is written:
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Mo= 1 1

[10.5] M =
c a + bpnc a + O.prm

Introducing this expression for M into [8.4] and solving for the stress

parameter P, gives:

- (p—aqu) - pr—aqu)z - 4(0.5bq)2(a2q2+p2)

2(0. 5bq)

[10.6] Py

Given any stress point (p,q), the point (pm,O) intercepted by the
elliptical flow surface with the p coordinate, can be calculated from

[10.8].

Creep shear tests in triaxial extension may be used to find the neutral
line in extension, namely Me. Then applying Eqns.[8.7],[8.8], the flow

p

surface and the zero éz envelope in q,p-space can be generalized for

general 3-D stress states (Fig.8.3).

10. 3 Determination of Scaling Function

Eqn.[10.1] provides a general framework for the time—-dependent
stress-strain behaviour of the frozen sand. For applications, the

scaling function S in [10.1] must be determined from test data.

Scaling Method 3 (using a neutral line) in Chapter 8 is used here to
determine S. This method can meet the condition that the visco-plastic

volumetric strain rates, ézic’ must always be 2zero for the stress
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points (pnc’qnc) on the neutral line, namely:

VP _ - = - =
[10.7] € ne S (anc pm) S [2(pm/2) pm] 0
Under isotropic stress conditions, from [10.1]:
- VP
[10.8] S = evm/pm

vp
vm

where & is the visco-plastic strain volumetric rate when q = 0. This

strain rate can be found by using the procedure in Chapter 8.

Only one isotropic multi-stage loading creep test was available from
the earlier tests on the frozen sand (Figs.10.2,10.3). The data from

this test were used to determine all the parameters necessary for

vp

calculating the visco-plastic strain rate évm'

It should be pointed
out that the numerical procedures are simpler, if a number of single

stage loading creep tests are performed.

The following fitting functions illustrated in Fig.10.2 were used to

model the isotropic test data.

Elastic line (elastic strain):

P, *+tpP
[10.9] eim = % ln(—gl———iﬂ)
pol
in which: k/V = 0.0013, p01 = 10 kPa. It was assumed that this

equation was valid for all stress states.

Reference time line (elastic plastic strain, te = 0):
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P+ P
[10.10] %P = A (22 " m
vm vV

p03

where A/V = 0.017, Poo = 190 kPa, and P53 = 185 kPa.

Creep equation (time dependent plastic strain):

t +t

tp _ ¢ o} e
[10.11] €om = 1n(———€;——)

<

where y/V = 0.007, to = 600 hr, te is equivalent time.

Using [10.10] and [10.11], the equation for calculating creep strains

under any stepwise isotropic loading is:

P, *+P t +t
_ A o2 m 14 o) e
[10.12] €, =7 In(———) + 7 1n(—~—f———

)
poB o)

Then using the method in Chapter 8, the general constitutive equation

for continuous isotropic stressing can be written:

/N . o —(V/w)evm Pos * Pp A/

[10.13] € = —f" — p + T— e (—==E—)
v p01 * pm mn toV p03

In this way, the mathematical functions [10.9], [10.10] and [10.11] are
used to describe the characteristics of the soil behaviour. The basic
principle for determining the parameters in [10.8],[10.10],and [10.11]
is that the parameters are chosen so that the calculated curve from
[10.12] or [10.13] best matches the test data from isotopic loading
shown in Figs.10.2,10.3. Details of the curve fitting calculations are

in Table 10.4 of Appendix 10.1.
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Introducing [10.13] into [10.1], and replacing the bulk modulus with
the expression (p01 + p)/(k/V) =K, the expression for the elastic

strain rate can be written:

[10.14] =% = SLA BN G4 S
Po1 Pp Po1 P

The use of p instead of Py in this relationship again means assuming
that the elastic volumetric strain is independent of deviator stresses,
that is, isotropic elasticity. According to Rahman (1988), the average

elastic shear modulus for the frozen sand was G = 112,500 kPa.

The visco-plastic strain rate is, from [10.13]:

-(V/y)e + A/
fo.181 & = 4o ovm Bo2 T Pay MY
) vm t Vv P
e} 03

So from [10.8] and [10.15] the scaling function is:

—(V/lp)sv (poz + 1 A

) /p

[10.16] s n

]
[0}

o} poB

where again €, 1S replaced by g,

10.4 Modelling Multi-stage Creep Tests

In the previous section (10.2), the EVP model was scaled and calibrated
for frozen sand. In the section, the model is used to predict the
results of two triaxial compression tests performed on specimens of the
same sand. The stress paths in these tests were different from those

used to calibrate the model. One test was a multi-stage, constant mean
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normal stress, test, while the other was a multi-stage, constant cell
pressure test. A comparison is then made between the observed creep

strains and those predicted by the model.

10.4.1 Equations for multi-stage creep tests

In multi-stage creep tests in which q and p were kept constant at each
stage; the initial elastic responses after applying mean stress p and

deviator stress q are:

e 1

Asv =¥ Ap,
[10.17]
e _ 1
ASS = ﬁ Aq

The incremental visco-plastic strain responses from [10.1] and [10. 16]

are:
t - -
vp o W (V/l/l)ev Poot P Ay (2p pm)
o o3 pm
[10.18] <
vp _ ¥ _(V/w)ev Poot Pp AY (2q/M2)
dss =TV e (—~Er———) —— dt
L o] 03 pm

Integrating [10.18] with initial conditions: t = 0, €'F = ¢'P and e;p =

s!?, the total visco-plastic strains are:
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. _ vp
ep ¥ . .t Po1™P (/) Po2tPm asy, 2P Py (VAple
e, =5 ln[g (—) (——) (—) + e ]
(o} p01 pm pm
[10.18] <
e P = _ngﬁi (e'P - £"P) 4+ P
s 2p - P, Vv vi si
-
where the initial strains are: evP =g , - ee.; and ev? =g ., - se..
vi vi vi si si si
The total strains are:
P tp
e =Kinel ) . WP
v \" o1 v
[10.201
- _49 vp
s T 36 T %5

Loading from point (pi,qi) to (pi+1,qi+1) with creep time t at

(pi+1’qi+1) the total strains after shearing, using [10.19] and
[10.201, are:
( Clw ot Po1*Pisr (-5) Po2™Pp asy  2Pi+17Pp
€,7€, iso = 17 1n[€ (——) " ¢y (—) (———) +
’ o} Po1 p3 Py
vp
Syi VY« Po1tPiyg
te I+ v In(————) - €y, iso
p01 ’
[10.211 A
2
2q(a+.5bpm)
8s—ss iso = 2 - [((Sv—ev iso) * 8v iso
H pi+1 pm b »
P_,*P.
- K ogpol ity VP g
\'s vi
ol
+ (g - ?_i_) + E:-_l_ -
si 3G 3G s, iso
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where g is the strain after isotropic stressing, and is given by:

v, iso
P, * P t o+t
[10.22] e, =12 1n( %2 IS0y ¥ 0 e
v, iso \ P \']
o3 o
P_+D P *Pi. & p_+p._ -
_ A o2 “iso /] t ol “iso.y o2 “iso, Y
=3 In(—————=) + v ln[E + ( ) ( ) ]
Po3 o] p01 po3
The shear strain, €. ieo in [10.21] is the strain after isotropic

stressing and is equal to zero from [10.1]. The stress P, in [10.21]

is found from [10.5] when we know the current stress state (p,q).

10.4.2 Prediction of test MST2

The mean stress p = 280 kPa was kept constant throughout the test. The

deviator stress increment, Aq, was 120 kPa. Temperature was -3 CO.
The loading history is given in Table 10.1.

Table 10.1 Loading History of MST2, p = 280 kPa

q (kPa) 0] 120 240 360 480 600

Duration (hrs) 596 4758 504 1006 1383 984

Eqn.[10.21] was used to predict the (¢. - & . ) vs. t and (g =~
v v, iso s

g iso) vs. t relations. Fig.10.4 shows the comparison between the

predicted and the observed volumetric and shear creep strains.

Generally, the model overpredicted the shear strains and underpredicted
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the volumetric strains. The difference between predicted and observed
tended to increase with elapsed time. However the model showed some
interesting features. Its prediction of the start of dilation and the
onset of tertiary creep corresponded with the observed time, which was
approximately 3300 hours. This is very significant in view of the fact
that the model was calibrated by means of an isotropic compression test
which did not involve shear strains. Details of this prediction are in

Table 10.5. of Appendix 10.2.

10.4.3 Prediction of test MST10

This was a constant cell pressure triaxial compression test.

Temperature was -3 CO. The loading history is given in Table 10.2.:

Table 10.2 Loading History of MST10, og = 70 kPa

q (kPa) 0 20 40 60 80 100

p (kPa) 70 76.7 83.3 80 96.7 103.3

Duration (hrs) 407 226 503 117 144 144

120 140 160 180 200 240 280 320 360

110 116.7 123.3 130 136.7 150 1863.3 176.7 1890

312 503 1548 720 1223 719 807 1318 958

Eqn.[10.21] in conjunction with [10.22] is used to make the prediction.
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Details are in Table 10.6 of Appendix 10.2. A comparison of the
observed shear and volumetric strains with those predicted by the
model, is shown in Fig.10.5. It is seen that the agreement between the
observed and predicted shear strains is quite good. On the other hand
there 1is poor agreement between predicted and observed volumetric

strains.

10.5 Discussion and Conclusions

In calibrating the EVP model, determining the scaling function is very
important because it controls the magnitude of all the visco-plastic
strain rates. Thus, any error in this function, significantly affects
the predictive accuracy of the model. In this particular study, only
one multi-stage isotropic test was available for determining the
scaling function. The fact that it was a multi-stage test rather than
a series of single-stage tests, made the procedure for finding the
scaling function more complicated than necessary and subject to
inaccuracies. This may be the source of the obtained discrepancies
between measured and predicted creep strains, particularly volumetric

creep strains.

Accurate establishment of the neutral line in Fig.10.1 is essential to
the model predictive capability. In this study, the neutral line was
based on results from constant mean normal stress triaxial tests. The
increments of stress used in the tests were relatively large and this

made it impossible to define the neutral 1line accurately. Further
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tests with smaller stress increments would improve the accuracy of the

model.

It should be noted that there are a number of assumptions in the model.
The flow rule in Eqn.[10.1] assumes that the visco-plastic strain rates
are normal to a flow surface which is identical to a visco-plastic

potential function. This flow rule is similar to the associated flow

rule used in elasto-plastic theory. It is assumed that the flow
surface is an ellipse in g-p space. The real surface should be
determined from a series of tests. The time-independent part of

strains is assumed to be isotropically elastic. The scaling function S
is simplified by using g, instead of €om’ As pointed out for 1-D EVP
models in Chapter 5, some assumptions are made to find é:i in the

scaling function S.

Despite the differences between observed creep strains and those
predicted by the model, the model presents a rational framework
representing the complex behaviour of frozen soil. Further testing is
now needed to examine and refine the assumptions used in the model, and

to provide additional data for its validation.
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Chapter 11

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

Chapters 3 and 4 discussed the framework of three-modulus
hypoelasticity models and their applications to three different soils.
Chapters 5, 6, and 7 presented the general theoretical work of 1-D
Elastic Visco-Plastic (EVP) models and the detailed construction,
calibration and verification of the models. Chapters 8, 9 and 10,
contained the framework of 3-D EVP models and their applications to
sand-bentonite buffer materials and a frozen sand. The features and
limitations of these models have been discussed following the
presentation of each model. This chapter will summarize those
discussions starting with 3-D models, draw some conclusions from the

models, and make some suggestions for further research in this field.

11.1 3-D Elastic Visco-Plastic (EVP) Models

The features of 3-D EVP models may be summarized according to the

structure, calibration methods and functions of the models.

1. Structure of 3-D EVP models:

(1). Total strains are the sum of time-independent strains {(not
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(2).

(3).

(4).

(8).

2.

(1).

(2).

necessary elastic) and time-dependent strains.

The time-independent part of total strains may be modeled by a
isotropic model as for the frozen sand, or by an anisotropic KGJ

model as for the sand-bentonite material.

The time-dependent part of the total strains is calculated using

a flow rule.

The flow surface defined in Chapter 8 may be elliptical as useld
here in the models for the sand-bentonite material and the frozen

sand, or some other shapes.

The strength envelope (or zero ézp line) may be curved in
q,p-space and smooth on the m-plane as used in the model for

sand-bentonite (or in the model for the frozen sand).

Methods for determining model parameters:

A number of single-stage isotropic consclidation tests at
different confining pressures are preferred to find the
parameters for scaling functions. The procedure using this type
of tests is simple. A multi-stage isotropic consolidation test
may also be used to find all parameters in the scaling function
as shown in the modelling of the frozen sand. However, in this
case the procedure for finding those parameters is more

complicated than that using single-stage tests.

The ultimate strength envelope used in the model for the sand-
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N

bentonite material may be found from a number of undrained or
drained shear tests. The zero é:p line in the model for the
frozen sand can be found from a number of multi-stage q creep

tests at constant mean stresses.

(3). The moduli K,G,J (or K,G) can be determined using the same
procedure as that in hypoelasticity models using
unloading/reloading data in isotropic consolidation tests and

undrained shear tests.

(4). The flow surface here was basically assumed and further work is

required on its experimental determination.

3. The models can consider the following characteristics of soil
behavior:

(1). Non-linearity: models are sets of nonlinear differential
equations.

(2). Irreversibility: no unloading/reloading criteria are needed if

using a logarithmic function for creep, i.e. Eqn,[8.22], [9.7] or
[10.11]. For loading, positive strain rates (or positive stress
rates) are used. Negative strain rates (or negative stress rates)

are used to model unloading.

(3). Inherent anisotropy is described by the KGJ model; induced

aniéotropy is described through the flow rule equations.

(4). Time and strain effects: like creep, relaxation and strain rate
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dependency.

(5). Loading history: if only final states are the same, but the
loading histories to the states are different, then the final

stresses or strains will be different.

The work of 3-D EVP modelling is still at preliminary stage. There are

a number of uncertainties and limitations in the models at this stage.

1. Uncertainties:

(1). The flow function was assumed. The real shape of this flow
function in q,p-space and on m-planes may be identified by using

appropriate tests.

(2). It is unclear what is the suitable evolution law for different
soils, that is experimental studies are required to examine what

evolution law are most suitable to desribe the behaviour of soils.

(3). The suitable scaling function is also not known with certainty.

(4). The stress path dependency of time-independent behavior is
largely wunknown. Adequate testing program have not yet been

undertaken.

2. Limitations:

(1). The models can not consider any time or strain rate effects

related to the swelling potential of soils such as the
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(2).

sand—bentonite material described in the Chapters 8,3. The work
on sand-bentonite therefore relates only to its compression (not

expansive) behavior.

The models can not produce the hysteritic loops in unloading-

reloading as found in all soils.

Based on the research done so far on 3-D EVP modelling, the following

suggestions are made for its further development.

1.

Better understanding is required for the physical basis of the

flow rule, flow surface and visco-plastic potential function.

The evolution law in Scaling Methods 1,2,3 of Chapter 8 should be

given further study.

Other scaling methods should be developed. For example, use

oedometer tests to find the scaling function.

Develop test techniques to measure the shape of flow surface.

The constructed models need more verification for different soils

and more general stress states.

At a later stage the models should be incorporated into numerical

analyses, such as finite element analysis.
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11.2 1-D Elastic Visco-Plastic (EVP) Models

Compared with 3-D EVP models, the study of 1-D EVP models is more

complete. The features of this type of models are:

1. Structure of 1-D EVP models:

(1). Total strains are the sum of time-independent elastic strains

(i.e. instant) and time-dependent visco-plastic strains.

(2). Some important concepts are defined and used in constructing the
EVP models. These include the "instant time line", "equivalent

time", and "reference time line".

(3). The general framework that has been developed provides wide
applicability of 1-D EVP models to different soils. For example,
logarithmic functions or power functions may be wused to
particularize the general formulation depending on the nature of

the soil.

2. Methods for determining the model parameters:

(1). The number of parameters depends on the fitting functions.

(2). Two methods have been developed, an analytical method and a

graphic method.

(3). It is preferable that a number of single-stage creep tests at

different pressures are used to find the parameters. In this
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case, we may use the analytical method or the graphic method

depending on the complex of the fitting functions.

(4). multi-stage creep tests can also be used to find the modelling

parameters. However in this case, only the graphic method may be

used. In general, the procedure in finding the parameters is

quite complex.

3. The model has the following capabilities:

{(1). Non-linearity.

(2). Time effects: such as creep, relaxation.

(3). Strain rate effects.

(4). First loading and unloading/reloading: no unloading/reloading
criteria are needed if a logarithmic function is used for creep
i.e. Eqn.[6.3]. If a power function is used with limits to the
region of creep behavior (for example Eqn.[7.4]), then the left
side of the infinite time line (see Fig.7.2) is pure elastic, the

right side is elastic visco-plastic behavior.

The uncertainties in the models are:

1. The slope of the elastic line in the models may depend on loading

history.

2. The infinite time line is extrapolated.
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The limitations of the models are:

1. They can not consider any time and strain rate effects resulting

from the swelling potentials in the soil.

2. The capabilities of models need further validation.

Suggestions for further research:

1. Apply the models to solve consclidation problems, compare
calculated values with measured values. Thus validation of the

model can be examined.

2. Apply the model to different soils, and compare the predicted

results with test data measured in the 1laboratory.

11.3 Three-Modulus Hypoelasticity Models

The proposed three modulus hypoelasticity models are wused for
describing time-independent stress-strain behavior. The features of

the model are:

1. The structure of the models is simple. There are three moduli in

the model.

2. New methods have been suggested to determine these moduli functions
using isotropic consclidation tests and undrained shear tests or

drained shear tests.
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3. The model can account for non-linearity, anisotropy, and the
coupling of a4, and p 1B

The limitations of the model are:

1. The model can not consider time effects, or cyclic effects.

2. The applicability of the models to general stress states and more
complicated loading conditions, like unloading/reloading, needs

further examination.

3. In general, the model should be applied bnly to monotonic or

propotional loading conditions.

The suggestion for the development of hypoelasticity models is to apply
the models to solve boundary value problems, and to examine the

validation of the models under general loading conditions.
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APPENDIX 6.1 Alternative Derivation of [6.26] for Relaxation Tests

During relaxation the total strain e, is kept constant and it appears
reasonable to assume that the total time-independent plastic strain ezp
is also constant. That is, the viscous creep strain e;p increases,
while the elastic strain 82 decreases at the same rate (Fig.6.12).
This is similar in principle to the condition 83 = ‘83 in undrained
triaxial tests in Critical State modelling. Using this assumption at a
point such as (i+n) for example in Fig.6.12, the increase of viscous

creep strain from [6.4] must equal the decrease of elastic strain from

[6.11]:
[6.31] K in O'Z,i+n+d°_z,i+n =¥ 1n i+n,e+dti+n+to
. v o, . \' t. +t
Z,1+n i+n,e "o
Since doy , ., dt, = are small, [6.31] reduces to:
[8 32] _E do‘z, i+n = g dti"l’n
z,i+n v ti+n,e+to

Eqn. [6.32] can not be integrated directly because the equivalent time
te in the denominator is different from real time t. However a
relationship between t and te can be found as follows. Relaxation from

point 1 to point i+1 in Fig.6.12 produces the relationship:

t +t t. +dt, +t o’
v itl,e o _ ¥y ie i 0, Ak zi
[6.33] v 1n —t =y 1n T * 5 in -
o o zi zi

When ci’c.1 and do;i are small, [6.32] and [6.33] can be combined to give:

A
[6.34] ti+1,e = tie * e dti
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Using the same procedure from point (i+1) to (i+2) in Fig.6.12:

_ A
[6.35] ti+2,e = ti+1,e + < dti+1
Now replace ti+1,e with [6.34]:
[6.38] t =t + 2 (dt +dt, )
: i+2,e ie K i i+l

Similarly for any general point (i+n):

— A . o 9
(8371 tiin,e = tie * ¢ (dby¥dby grdby o+ o wdt, )

When n > ©, [6.37] becomes:

[6.38] t =¢t, =+
e ie

i P
ot

Substituting [6.38] into the relaxation equation [6.32] for any general

point produces:

K da; v dt
z t, + = t+t
ie «k o
Integrating [6.39] with initial values t = ti, 0; = o;i produces the

same equation as [6.26].
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APPENDIX 6.2 An Empirical Modelling Equation for the CRSN Test

Under CRSN conditions, the theoretical solution [6.28] shows that
stress-strain lines for different strain rates are parallel, with
approximately equal separations for each tenfold change in strain rate
Figs.5a,b. The slope of these CRSN lines 1is almost (but not
completely) equal to the slope of corresponding lines in STD tests, see
Eqn. [6.28], Figs.4,5a,5b. From this, the following empirical equation

is suggested to fit experimental data:

Y/t

14
z

2)

[6.40] e, = A ln(a;/czo) + ¥ In(

where A is now evaluated from the slope of CRSN tests in
In(stress)-vertical strain space. The value of the viscous plastic

parameter ¥ can be found from CRSN data as follows. In Fig.5a, when

points A and B have the same strain eZA= SZB, then:
3 3 xf/to
[6.41] €, = A ln(aéA/oéo) + Y ln(é )
ZA
_ B ¢7/to
[6.42] €0 = A ln(vzs/azo) + Y ln(é )
ZB

and these two equations can be solved for y:
[6.43] y = A ln(aéA/aés)/ln(SZA/eZB)

In Bickebol clay (Sillfors 1975) A is 0.41, at this accuracy, the same
as the value of A/V given earlier. Egn.[6.43] then predicts y = 0.030

and allows c;o and to to be found from [6.41] and [6.42]. From these
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it is easy to calculate the relationship between stress and strain rate
for different strains in [6.40]. Fig.6.13 shows that results computed

from [6.40] agree well with the measured test data.

If it 1is again assumed that the preconsolidation pressures véc

corresponding to different strain rates all occur at the same vertical

strain g, = constant, then [6.40] can also be used to evaluate the
relationship between a;c and éz' Fig.6.14 shows that the modelling
matches the test data closely. Equation [6.40] has the same

mathematical form as that suggested by Kabbaj et al. (1986) but the new
formulation gives clearer insight into the mechanisms of strain rate

dependency in CRSN testing.

268



120 T I T T I
BACKEBOL CLAY
FITTED
s 100 F
a
>
!
TN
b 8ok
60 L | | | 1

5 10 20 50 100 200

é,x107 S — LOG SCALE

Fig.6.13 Alternative fitted modelling of stress - strain rate

relationships (Bickebol clay: Sidllfors 1975)
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Fig.6.14 Alternative fitted modelling of preconsolidation pressure -

strain rate relationships (Bickebol clay: Sillfors 1975)
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APPENDIX 8.1 Flow Surface and Strength Envelope for Anisotropic Soils

It was shown by earlier researches that the yield loci of natural clays
are not symmetric to the p’ axis in q,p’ space, and are time dependent
(Crooks and Graham 1976, Tavenas et al. 18978, Graham et al. 1983,
Graham et al. 1988). The "yield loci" or " yield surfaces" used by
these authors are called "flow surfaces" in the elastic visco-plastic

modelling that has been developed here.

This Appendix will develop an appropriate mathematical function to
model both asymmetric flow surfaces and strength envelope. This
function may be used in EVP models to describe the time dependent

stress-strain behavior of anisotropic soils.

Asymmetric flow surfaces in p’,q-space may be described by the

following mathematical equation:

, (2-n) p,n

[8.42] F = q2 + Ap’2 - Bp’q - Apm

=0

where parameters A may depend on Lode angle as defined in [8.9], B is a
constant controlling the degree of asymmetry of the flow surface, n is
a constant which controlls the shape of the flow surface in p’,g-space
(Figs.8.10, 8.11). In Eqn.[8.42] p& is a parameter on mean stress, p’,

axis. From [8.42]:

n ;1/(2-n)

[8.43] pr’n = [(q2 + Ap’2 - Bp'q) / Ap ]

If a state peint (p’,q) is known, using [8.41] we can find p;. The

flow surface in Eqn.[8.42] is a modification of the yield function
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q (kPa)

300 400

P* (kPa)
] =1,B=0 ¢ n=15B=.25 A n=1.9,B8=25

Fig.8.10 Asymmetric flow surfaces and strength envelope in p-q space
-n=1, B=0; n=1.5, B=0.25 n=1.3, B=0.25
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Fig.8.11 Asymmetric flow surfaces and strength envelope in p-q space
-n=1, B=0; n=1.5 B = 0.25 n=15, B=0.5
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proposed by Desai et al. (1886, 1987) for initically isotropic soils.

The strength envelope is again defined by points on successive flow
surfaces where normal vectors are perpendicular to p' axis, namely

8F/8p’ = 0, see Fig.8.10. From [8.42]:

af - ., , 4o, (2-n) ,n-1 _
[8.44] 5" 2Ap’° -Bg Anpm p =0
from which:

,(2-n) _,n-2 _
[8.45] 2A an Anpm P =0
where ne = qf/p%. On the strength envelope, Eqn.[8.42] can be written:
2 ,(2-n)_,n-2 _

[8.48] N * A an Apm Pe =0

Using [8.45] into [8.461]:

2

[8.47] ne

3 -2 =
- (1 - 2)Bn. + (1 -2)A=0

Eqn. [8.47] is the strength envelope in p’,q-space. A new technique is
developed to generalize the flow function F in Egn.[8.42] and the
strength envelope in Eqn.[8.47] in p’,q-space into expressions for

general three-dimensional stress states.

The three dimensional strength envelope is assumed to be:

M
c

[8.48] =, = ( 1 + Bsin3e)™

(1 + B)m

where MC is the slope of the strength envelope in compression in

p’,qg-space, 6 is the Lode angle as defined in Eqn.[8.8], m is a
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constant controlling the shape of the strength envelope on m-plane
(Fig.8.12). The parameter 8 in [8.48] can be found as follows. When

g = -30° np = Me in triaxial extension, from [8.48]:

M
_ c P I
[8.49] nf‘ = m (1 B) Me

from which:

1 - (Me/Mc)l/m
[8.50] B =

1+ (M oM )D
e [

The parameter A in [8.42] is then found from [8.46] using [8.47]:

2
. - {1 - 1/n)By M
[8.51] A = - L —— L [—=— (1 +gsin3e)™ 1% +
(1 + B)
Mc m
- B{(1 - 1/n) — ( 1+ Bsin36) } / (1 - 2/n)
(1 + B)
When Ne = MC in the case of triaxial compression tests in p’, g-space:
Mi - (1 - 1/n)BMc
[8.52] A = - T =57n
When Ne = Me in the case of triaxial extension tests in p’, g-space:
M+ (1 - 1/n)BM,
[8.52] A = -

1 -2/n

Using Eqn. [8.42]:

[8.53] q = 0.5{ Bp’ * v/(-Bp’)Z - 2A[p’? - p;(z_n)p’n)] }

Eqn. [8.53] can be used to calculate the flow surfaces in p’ ,g-space.

For example, the stress parameter p; = 200 kPa, the friction angle ¢é =
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Fig.8.12 Strength envelopes on m-plane, ¢":
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ereterewif

¢’

e = 35° which leads to MC = 1.418 and Me = 0.963. Fig.8.10 shows the

comparison of the flow surfaces in which the parameters n =1, B = 0;
n=1.5 B=0.25 n=1.8, B = 0.25 respectively. It is seen from
this figure that when n =1, B = 0, the above flow surface is half an
ellipse with axis length Mcp; in q direction; the below flow surface is
half an ellipse with axis length Mep; in q direction. The influence of
the parameter n on the flow surfaces can be seen from Fig.8.10 when
n=1.5 B=20.25 n= 1.9, B = 0.25 respectively. Fig.8.11 shows the
influence of the parameter B on the flow surfaces when n = 1.5,
B=0.25; n=1.5, B=0.5 Péspectively. The larger the value of the
parameter B is, the more stronger the anisotropy of the flow surface

will be.

Egn. [8.48] is the equation of the strength envelope for general stress
states. The strength envelope in p’,g-space is represented in this
model by two straight lines with a slope MC in compression and Me in
extension, see Figs.8.10, 8.11. The strength envelope on m-plane is
shown in Fig.8.12. It is seen in Fig.8.12 that the strength envelope,
Egn. [8.48], is smooth at the corners of the Mohr-Coulomb strength

envelope.
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APPENDIX 8.2 Modified Cam—Clay Model

The Modified Cam—Clay Model has been suggested for time independent
stress- strain behavior (Burland 1969, Roscoe and Burland 1968). This

model uses:

{(1). Total incremental strains are divided into elastic incremental

strains and plastic incremental strains:

[8.54] de, ., = de°, + deP,
ij ij iJ

where the elasticity is isotropic. Graham and Houlsby (1983) suggested

a simplified transverse anistropic elasticity to calculate the elastic

strains.

(2). Associated flow rule:

[8.55] deP. = as &,
ij ado .

1J

where F is a yield function which is identical to the plastic potential

function for the soil. The geometry of the yield function is a yield

surface which is assumed a ellipse:
[8.56] F =p'2 - pp + A =0

where the parameter pi is:

[8.57] p’ =p’ + q

p’M2

(3) Logarithmic strain hardening law from isotropic stressing:
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P = ;K. ’ ?
[8.58] devm 7 dpm/pm

Under triaxial stress states, the constitutive relationship is:

K R 8F
dsv = VS, dp + dS 6—5,
[8.59]
1 F
d&:s = :—3—5 dq + dS E

where the isotropic elasticity is characterized by two moduli, bulk
modulus p’V/k and shear modulus G. The plastic volumetric strain at

any point is:

P _ 8r _ s
[8.80] de = dsS 3" ds (2p p;)

The strain hardening law states that the plastic volumetric strain on

the yield surface is kept the same. Using this condition, that is

des = desm, from Eqns. [8.58] and [8.80], the scale factor dS is:

dp&

A-K
[8.681] dS = 5 —
v pm(2p pm)

Using the consistency condition, that is the current stress point must

be kept on the yield surface, from Eqn.[8.58] or [8.57]:

[8.62] dp& = [(2p’ - p&) dp’ + 29 dql 7/ p’

'S

Thus Eqn. [8.81] becomes:

dp’
A-K m 2q
Y DR 3 [(2p’ - p’ ) dp’ +t - dCI]

v p P (2p pm) m MZ

[8.83] dS =

Using [8.63] into [8.59]:
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K + A—K . 23

de = =, dp’ ——r5——— [(2p’-p’) dp’ dql (2p’-p’)
v Vp mep (2p pm) m MZ m
[8.64]
1 A—K 2q 29
de_ = == dq + ) pl—— [(2p’ —p,) dp’ + — dq] _
3G mep (2p pm) m M2 M2
which can be written:
L i > » _ A ? 2 Zq r 2 »
dev v 0 |(dp (p pm) §§(2p pm) dp
A-K
[8.85] = +
vp,p: (zp) _p: )
1 m m’ {2q » s 2q.2
d€s 0 5(-;— dq P(Zp pm) (;2*) dg

This is a matrix form of the modified Cam-Clay model under triaxial

stress conditions.
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APPENDIX 9.1 Corrections in the Calculation of Volumetric Strains

in Isotropic Consolidation Tests

The calculation of volumetric strains in isotropic consolidation tests
on sand-bentonite buffer materials is not as simple as is commonly
assumed. Specimens of sand-bentonite compacted in the usual way with a
hydraulic jack in a compaction mould are not fully saturated. The dry
density obtained after compaction is not equal to the designed dry
density which is ¥y~ 1.87 Mg/mg. In installing the specimen into a
triaxial cell, the specimen may get access to water and swell. This
happens; for example, when the top valve (and/or bottom valve) is open
or when there is excess water on pedestal. Then the specimen absords
water and swells before taking the initial burette readings used for
establishing volume changes. The dry density of the specimen is
changed by this process. Subsequent volume change readings do not
reflect the real volume changes taking place in the specimen when
expressed in terms of water content or specific volume. Sucking some
water before taking burette readings is usually identified by measuring
the final water content at - the end of the test. In the testing of
sand-bentonite buffer materials at the University of Manitoba, many

tests have been done on low density buffer, = 1.50 Mg/mg. We may

T4
want to use them together with the test data on high density buffer to
study the behavior of the sand-bentonite mixtures. In this Appendix,
we present some techniques to correct these variations and to calculate

the real volumetric strains, using the data of T1001 and T1002 as an

example.
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Correction on dry density:

The targeted dry density was ¥q = 1.87 Mg/ms. The dry density after
compaction and before putting in a triaxial cell is LI which may not
equal LFT The engineering strains are defined referring to the
targeted dry density. This means that the configuration represented by
the targeted dry density is used to be a reference at which the
volumetric strains are zero. This reference can be chosen arbitrarily,
but as long as it is determined, it should be used in all calculations
of volumetric strains, specifically when relating them to specific

volumes in the specimens.

Volumetric strain is:
[9.19] g, =

where Vt is targeted specific volume referring to ¥q = 1.67 Mg/ms, V is

current specific volume. ~ Using Vo to denote the specific volume

corresponding to the dry density Ydo after compaction, [9.18] can be

written:

V-V +V -V Vo=V V=V
[9.20] e, = AR Vo =V R

We know that VO = Gsyw/ydo’ Vt = Gsyw/gd. Using evo to denote the
volumetric strain referring to Vo’ the configuration after compaction,

[9.20] becomes:
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[8.21] g, = (1 - a'd/gfdo) + € 7d/7do

This equation allows for differences of targeted dry density and
measured dry density. The difference in the dry densities has a
relatively large correction on volumetric strains. For example when
7do = 1.57 and 1.77, with respect to ¥g = 1.67, the starting values of
(1 - 7d/3rdo) = -6.369 % and 5.114 % respectively.

Correction on volume changes in installation

When being installed, a specimen may get access to water such as any
excess water on the filter stone, or water in a burette where valve is
not closed. As a result, the water content and voids ratio of the
specimen increase, and the dry density decreases. The increase in
water content can be found by comparing the measured water content at
the end of the test and the water measured in the burette with the
initial water content after compaction. The change in initial water

content should considered in the calculation of volumetric strains.

Let L denote the increased water content after installation, and W,
denote the water content at the end of test, for example in a CIU test,
at the end of undrained shearing. Also let AVw denote the water volume
measured in the burette. We have the following equation of water

conservation, assuming there is no leakage:
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[9.22] w, = W +

where WS is the total weight of soil in the specimen and is unchanged

throughout the test.

|4
0

[8.23] Wg = Gy Vg = 67y, T+e,

where e, is initial void ratio after compaction, VO is the total volume
of the specimen after compaction. The void ratio increase in the

installation is, using [9.22],[8.23]:

Gswi AVw(1+eo)
[9.24] o - Gs[we * __E_V_“__]/Sri
ri s o

The dry density decrease in the installation is:

G
s

(8.251 74 = Tv e, w

The corresponding volume of the specimen increase in the installation

is:

[9.26] Vi = (1 + ei) WS/(GSVW)

Example 1, T1001:

_ 202.11 _

[9.286] WS = 2.7 1T+ 06089 _ 337.47 (g)
_ 23.06 _

[98.27] W, = 0.2179 + ™7 47 - 0.2862
_ 2.7x0.2862 _

[9.28] ei = W = 0.7803
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where Sri is assumed to be Sro = 0.9904 which is the initial degree of
saturation after compaction.

2.7

_ - 3
Tar = T+ o.7803 - 5166 (Me/m')

[9.29]

[9.30] V1 = 337.47 (1 + 0.7803) /2.7 = 222.52 (cma)

Example 2, T1002:

201. 49

[9.31] WS = 2.7 T—;—O—:gg—éﬁ = 341.72 (g)
0.88 _
[9.32] wi = 0.2075 + A7 0.2100
_ 2.7x0.2100 _
[9.33] ei = W = 0.6028

where S . is assumed to be S_ = 0.9410.
Tl ro

2.7

. _ 3
= -1——_:—-0'.—6—0§§ = 1.6846 (Mg/m )

[9.34] Y43

[9.35] V.1 = 341.72 (1 + 0.6028) /2.7 = 202.85 (cmg)

Correction for unsaturation

The compacted specimens are not fully saturated. However they become
saturated after using back pressure and long consolidation time.
During the process of saturation, the specimens need to take in some
water and this is recorded with the burette readings. The changes of
burette readings partially compensate the saturation and do not reflect
directly the real volume changes. We know that when the specimen is

not saturated, the water content w = Sre/Gs; when saturated w = e/GS.
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The difference on water contents is:

G
=(1-S)(=5 -1)/G
P W s

e
= (1-8 ) 2
[8.36]1 Aw = (1-S)) g

The amount of water taken in to make the specimen saturated can be

calculated as follows:

= - _ 14
[8.37] AW = Aw WS = Aw GSszw = Aw quw T—;—Eg

where V 1is total volume-df the specimen. The volume of AW, using

[9.361,[9.371, is:

-_— - - _—0
[9.38] AV = AW/'a'w (1 SP) = . v
For example in T1001:

_ _ 0.8089 3, _ 3
[3.39] AV = (1 0.9804) 1T+ 06083 201.11 (em™) = 0.7307 (cm™)
For example in T1002:

_ _ " 0.5820 3 _ 3
[9.40] AV = (1 0.9410) 1T+ 0.5920 201.49 (cm™) = 4.4206 (cm™)

The final corrections in the calculation of volumetric strains are,

using [9.21] and previous data:

for T1001:

1.67  , (AV + 0.7307) 1.87
1.517 222.5 X 1.517

[9.41] g, = (1 -

for T1002:
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_ ., _ 1.87 (AV + 4.4208) 1.67
[9.42] =, = (1 - 775575) 202.85 X 1,885

where (AV + 0.7307) is the volume change modified on unsaturation for
T1001. The equivalent expression for T1002 is (AV + 4.4208). The

corrected volumetric strains are in Appendix 9.2
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APPENDIX 9.2 Test Data in Isotropic Consolidation Tests and Undrained

Shear Tests

1. Isotropic Consolidation Tests

(1). Ti001

pry density = 1.517 Mg/m~3, designed dry density = 1.67 Mg/m"3

ELAPSED CELL PwWP GIAL VOL. VOL. EXCESS p!
TIME PRESSURE AT BOTTOM GUAGE CHANGE STRAIN pPwp ESTIMATED
(HOUR) kPa kPa mm ml % kPa kPa

Back pressure = 500 kPa

Drained at both top and bottom ends

0 656 501 2.52 10.2 -9.50760
0.016666 2.645 9,55 -9.18664
0.033333 2.66 9.45 -8.13726
0.116666 2.7 9.1 -8.396443
0.283333 2.735 8.67 -8.75210
1.5 2.748 7.45 -8.14968
8.67 2.65 6.83 -7.84353
15.57 2.52 7.7 -8.27313
35.35 2.341 9.42 -9.12245
61.03 2.225 11.45 -10.1248
84.65 1.4 13.16 -10.9632
154.15 0.71 16.74 -12.736°9
227.62 0.38 19 -13.8529
Drained at top end
0 1309 506 0.375 19 -13.8529 6 796
0.033333 791 0.18 18.9 -13.8035 291 606
0.083333 852 0.246 18.8 =-13.7542 352 565.3333
0.55 971 0.246 18.6 -13.6554 471 486
1.466666 999 0.258 18.36 -13.53689 499 467.3333
4,033333 1008 0.259 17.96 ~13.3394 508 461.3333
12.15 992 0.258 17.11 -12.9197 492 472
22.56666 9717 0.259 16.38 -12.5592 477 482
51.38333 953 0.26 14.94 -11.8481 453 498
96.11666 893 0.261 13.36 -11.0679 393 538
168.35 840 0.261 11.65 -10.2236 340 573.3333
264.45 771 0.309 10.25 ~-9.53229 271 619.3333
382.9 705 0.309 9 -8.91505 205 663.3333
458.28 700 0.309 8.4 -8.61878 200 666.6666
525.93 658 0.308 8 -8.42126 158 694.6666
695.75 619 0.305 7.11 -7.98179 119 720.6666
862.45 590 0.306 6§.55 =7.70527 90 740
1055.4 424 0.36 6.14 -7.50281 -76 850.6666
119s8.1 240 0.359 5.98 -7.42381 -260 973.3333
1558.43 215 0.205 5.42 -7.14728 -285 390

1 day pwp equilibrium with both top and bottom ends closed
pralned at top end
o 3490 2625 2.372 5.42 -7.14728 2125 1583.333
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0.03
0.95
6.37
23.33
49.08
102.17
121.81
121.82
146.2
214.85
338.38
504.2
672.77
867.77
867.77
1060.33
1343.09
1824.12
1967.35
2280.75
2642.85

(2).

Dry density =

burette
adjusted

burette
adjusted

T1002

2625
2626
2654
2654
2661
2620
2592
2592
2561
2483
2368
2147
1980
1815
1815
1716
1454
1208

1174 .

1056
9638

1.685 Mg/m"3,

ELAPSED CELL PwWP
TIME PRESSURE
{HOUR) kPa kPa
Back pressure = 500 kPa
Drained at top end
0 700 500
0.05 501
0.417 507.9
3.73 504.4
16.2 505.8
39.4 506
64.3 500
87.1 burette 505
87.1 adjusted 505
135.7 509
182.8 509
231.4 504
Drained at top end
0 1500 504
0.45 820.5
6.68 1212
21.36 1233.5
22.9 1121
50.7 1070.6
167.1 875
335.1 616

GIAL
GUAGE

287

2.02
0.71
17.05
16.12
14.98
13.57
13.21
12.6
12

designed dry density =

VOL.
CHANGE

24.86
23.55
23.32
25.1
29.64
36.11
40
42.18
26.5
31.4
34.2
36.16

36.17
35.27
33.18
31.5
30.88
28.55
24.1
21.5

-7.04359
-6.89051
-6.58436
-6.10045
-5.62641
-4.93510
-4.71783
-4.,71783
-4.46106
-3.81913
-2.91550
-1.96742
-1.26130
-0.61443
-0.61443
-0.15521
0.407708
1.103952
1.281717
1.582923
1.879204

VOL.
STRAIN

3.050053
3.690102
3.802477
2.932792
0.714609
-2.44654
-4.34714
-5.41226
-5.41226
-7.80634
-9.17438
-10.132¢0

-10.1368
-9.69717
-8.67602
-7.85519
-7.55227
-6.41386
-4.23965
-2.96933

2125
2126
2154
2154
2161
2120
2092
2092
2061
1983
1868
1647
1480
1315
1315
1216

954

709

674

556

468

1.67 Mg/m"~3

EXCESS

PWP
kPa

(SRS |

O WO LOHO

320.5
712
733.5
621
570.6
3175
116

1583.333
1582.666
1564
1564
1559.333
1586.666
1605.333
1605.333
1626
1678
1754.666
1902
2013.333
2123.333
2123.333
2189.333
2364
2527.333
2550.666
2629.333
2688
Pl
ESTIMATED
kPa
200
199.3333
194.7333
197.0666
196.1333
196
200
196.6666
196.6666
194
194
197.3333
197.3
400
500
511
586
619.6
750
922.6666



527 571 20.4 -2.43188 71 952.6666
767.3 604 19.97 -2.22179 104 930.6666
965.8 643 18.71 -2.09476 143 904.6666

1254 571 19.62 -2.05079 71 952.6666
1517.4 609 19.46 -1.97261 109 927.3333
1823.5 520 19.36 -1.92375 20 986.6666
2114.3 530 19.3 -1.89444 30 980
2521.2 530 19.15 -1.82115 30 980
2955.3 530 19.15 -1.82115 30 98¢0

Drained at top end
0 3500 629 19.15 -1.82115 123 980

18.8 2330 19.15 -1.82115 1830 1780

44.5 1540 19.15 -1.82115 1040 2306.666

44.6 1371 19.07 -1.78206 871 2419.333

90.5 1358 17 -0.77069 858 2428

162.5 1409 15.76 -0.16484 309 2394
311.3 1021 14 0.695066 521 2652.666
598.3 872 12.07 1.638038 472 2685,333
931.4 844 11.05 2.136396 344 2770.666
1299.6 713 10.41 2.449092 213 2858
1627.2 595 10.25 2.527265 95 2936.6656
1890.2 553 10.18 2.561467 53 2964.666
2034.1 589 10.06 2.620097 89 2940.666
2. Undrained Shear Tests
(1). Ti001
Dry density = 1.517 Mg/m"3, designed dry density = 1.67 Mg/m"3
ELAPSED CELL Pwp GIAL AXIAL EXCESS p!
TIME PRESSURE GUAGE STRAIN pwp ESTIMATED
Hour kPa kPa mm % kPa kPa kPa
Back pressure = 500 kPa
Isotropic consolidation
4428.9 3500 368 2.512 468 2688 0]
Step 1: g = 315.7 kPa. After 213.3 hour isotropic undrained relaxation
0 3500 1045 4.9 0 0 2455 0
0.016666 1081 5.15 0.251458 36 2524.5 315.7041
0.117 1097 5.166 0.267551 52 2508.5 315.6531
1.23 1137 5.186 0.287668 92 2468.5 315.5895
2.92 1152 5.195 0.296720 107 2453.5 315.5608
23.85 1205 5.226 0.327901 160 2400.5 315.4621
46.9 1228 5.241 0.342989 183 2377.5 315.4144
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118.6 1275 5.255 0.357071 230 2330.5 315.3698
172.5 1328 5.261 0.363106 284 2276.5 315.3507
386.9 1313 5.278 0.380205 2638 2292.5 315.2966
551.3 1329 5.285 0.387246 284 2276.5 315.2743
695.2 1390 5.292 0.39428¢6 345 2215.5 315.252¢0
Step 2: 686.8 kPa
0 3500 1407 5.29 0.392275 362 2322.833 686.7952
0.0167 1460 5.652 0.756387 415 2269.833 684.2847
0.18 1492 5.725 0.829812 447 2237.833 683.7784
1.2 1548 5.805 0.910279 503 2181.833 683.2236
3.57 1636 5.866 0.971635 591 2093.833 682.8005
24.51 1705 5.995 1.101388 660 2024.833 681.9059
48.7 1703 6.021 1.127539 658 2026.833 681.7256
94.7 1608 6.075 1.181854 563 2119.117 681.3511
167.1 1950 6.178 1.285455 905 1779.833 680.6367
239.7 1929 6.215 1.322671 884 1800.833 680.3801
311.2 2039 6.249 1.356869 994 1690.833 680.1443
Step 3: 866.0 kPa
1908 6.249 1.356869 863 1884.633 865.9880
0.03 1873 6.405 1.513778 828 1919.633 864.6105
1.1 1883 6.5 1.6039334 838 1909.633 863.7716
5.22 1850 6.602 1.711929 805 1942.633 862.8709
7.08 1868 6.621 1.731040 823 1924.633 862.7031
20 1865 6.715 1.825588 820 1927.633 861.8731
45.3 1888 6.841 1.952323 843 1904.633 860.7605
68.5 1847 6.902 2.013679 802 1545.633 860.2219
93.5 1858 6.945 2.056930 813 1934.633 859.8422
116.8 1835 6.985 2.097163 790 1957.633 859.4890
144.3 1895 7.023 2.135385 850 1897.633 859.1534
Step 4: g = 1041.9 kPa
0 1895 7.023 2.135385 850 1959.866 1041.866
0.0167 1916 7.175% 2.288271 871 1938.866 1040.239
0.67 1938 7.445 2.559847 893 1916.866 1037.347
1.67 1950 7.691 2.807282 905 1904.866 1034.713
2.58 1957 7.855 2.972238 912 1897.866 1032.957
5.85 1979 8.325 3.44498¢0 934 1875.866 1027.924
9.08 1973 8.725 3.847314 928 1881.866 1023.641
22.5 1939 9.185 4.,309997 894 1315.866 1018.715
29.72 1895 9.605 4.7324438 850 1959.866 1014.218
Step 5: g = 1077.0 kPa
18385 9.605 4.732448 8§50 1981.833 1076.999
0.0167 1907 9.685 4.812914 862 1969.833 1076.089
0.17 1919 9.803 4.931603 874 1957.833 1074.748
0.32 1927 10.15 5.280627 882 1949.833 1070.802
0.4 1933 10.44 5.572319 888 1943.833 1067.504
0.467 1936 10.95 6.085294 891 1940.833 1061,705
0.5 1938 11.54 6.678736 893 1938.833 1054.99¢6 -
0.52 1935 12.22 7.362703 890 1941.833 1047.264
0.533 1935 14.6 9.756588 890 1941.833 1020.201
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{2). 11002

Dry density = 1.685 Mg/m"3, designed dry density = 1.57 Mg/m"3

NOTES EPLASED AXIAL VERTICAL Bwp
AND TIME DISPL. FOCRE
SPEED Hour mm N kPa
Back pressure = 500 kPa
[sotropic consollidation
5220.8 589

After 32.48 hour isotropic
start undrained shear

------- 0.183333 1.700603

0.15 0.25 2.322544

mm/min

0.01 0.4166406
mm/min  0.583333
0.75

0.916666
1.083333

1.25

------- 1.416666
0.0006 1.583333
mm/min 1.75
2.25

4.25

6.25

8.25

10.25

12.25

14.25

16.25

18.25

20.25

22.25

24.25

26.25

28.25

30.25

32.25

34.25

36.25

38.25

------- 40.25
0.15 41.02
mm/min 41.05
41.08333
41.11666

41.15

41.18333

(=2l o W= I IS L RO R R I R O Y - ST - Y —Sv-SRuy -G — A VeV - Sy 5% T DY Y O N DU I UV Iy DU U S DU I 5 I U6 I SN I DU I U6 Y DO )

2.51
2.1
2.89

086778
181224
.285079
378529
.476153
.571659
.665109
677569
.684858
. 703548
77249
.853068
.932999
.996358
.071118
.140644
.226368
.279823
.349349
. 420994
.500988
575748
547393
121094
.300028
873729
.950544
019074
.106294
.138504
414679
. 725183
.038739
.355408
665913

CELL

PRESSURE

kPa

undrained relaxation,

589.2747 806.554
839.5026 337.9288

911

1988
2253
2220.181
2331.427
2429.983
2512.311
2585.195
2652.769
2712.080
2577.523
2539.753
2504.343
2530.901
2581.359
2622.080
2672.539
2712.080
2746.604
2786.735
2789.391
2825.391
2846.636
2869.653
2894.144
2915.390
2935.455
2957.881
2977.357
3000.078
3020.733
3050.241
3213.126
3542.435
3563.976
3565.746
3567.222
3567.222

1009

127
1222

1249
1253

1410

1408

1390

1394.
1485.
1518.
1542,
1541,
1542.
1546.
155L.

1285.38
.597
A7
1288,
1316.
1334,
1441,
L1791
1402.
L1707
1415,
1423.
1419.
1413.
1402,
1394.
.989

846
934
964

.891
1052.
1056.
1108.
1150.
1183,
1210.
1218.

274
096
500
588
244
639
331

016

153

506
298
016
362

453

307
297
476
918
453
811

463
329
832
803
413
456
624
141

3564.05
3563.35
3567
3567
3567
3561.95
3560.55
3556.35
3554.6
3553.2
3551.8
3550.05
3548.65
3547.25
3541.3
3523.8
3499.65
3493.35
3497.9
3497.2
3493
3616.2
3487.05
3472.35
3467.1
3480.05
3480.75
3475.85
3468.85
3463.6
3459.75
3458.35
3459.75
1586.45
3606.75
3606.4
3576.65
3565.8
3564.75
3564.4

290

AXIAL q PWP D STRAIN
STRALN AFTER RATE
£ kPa SHEAR kPa 1/hour
kPa
0 2940.7
] 0 0 2693.446
0 167.7052 16.6752 2732.672
.188341 202.6407 24.7464 2736.246
.449568 731.7281 112.7464 2824.508
.570135 860.3985 142.7464 2837.699
.767842 843.1997 188.6382 2785.874
.862735 896.8715 231.021 2761.382 0.005693
L967080 944.1411 234.8424 2773.317 0.006260
.060971 983.4820 287.6472 2733.626 0.005633
.159056 1018.092 329.3352 2703.475 0.005885
.255013 1050.065 361.9908 2681.476 0.005757
.348904 1077.969 389.4354 2663.333 0.005633
.361423 1012.270 397.0782 2633.791 0.000751
.363747 993.7929 405.7632 2618.947 0.000439
.387525 976.3550 400.8996 2617.398 0.000375
.461574 988.5487 464.1264 2558.835 0.0003790
.537751 1012.326 428.3442 2602.543 0.000380
.618059 1031.290 431.8182 2605.391 0.000401
.681718 1055.129 467.253 2577.902 0.000318
.756831 1073.512 495.045 2556.238 0.000375
.826686 1089.491 512.7624 2543.347 0.000349
.913316 1107.974 620.109 2442.661 0.000433
.966521 1108.659 589.53738 2473.461 0.000266
.036376 1125.290 581.2002 2487.342 0.000349
.108360 1134.736 587.4534 2484.238 0.000359
.188731 1144.925 594.054 2481.033 0.000401
.263844 1155.870 602.0442 2476.692 0.000375
.335827 1165.269 598,2223 2483.546 0.000359
.409876 1174.058 592.6644 2492.134 0.000370
.489183 1183.906 581.2002 2506.881 0.000396
.563232 1192.381 573.5574 2517.349 0.000370
.640410 1202.364 569.736 2524.498 0.000385
.709264 1211.440 573.21 2524.049 0.000344
.796396 1224.518 664.5762 2437.042 0.000438
.829257 1302.294 637.5792 2429.964 0.000420
.106737 1456.191 721.5498 2457.293 0.092433
.418707 1461.780 720.1602 2460.545 0.093590
.733743 1457.853 721.2024 2458.194 0.094510
.051909 1453.734 725.3712 2452.653 0.095449
.363879 1449.008 729.8874 2446.561 0.093590



------- 41.21666 6.379469 3560.730 1555.657 3564.05 4.678915 1441.178 734.4036 2439.435 0.094510
0.01 41.25 7.060459 3322.895 1544.540 3563.7 4.760288 1328.056 723.2868 2412.844 0.024411

om/min  41.28333 7.079149 3299.879 1542.803  3563.7 4.779066 1316.968 721.5498 2410.885 0.005533
41.31 7.091609 3291.027 1542.456 3563.35 4.791585 1312.632 721.2024 2409.737 0.004694

41,32388 7.100954 3288.666 1541.761 3563 4.800974 1311.392 720.5076 2410.069 0.0067560
41.35527 7.120703 3286.601 1541.413 13562.65 4.820816 1310.148 720.1602 2410.001 0.006321
41.38861 7.137274 3287.191 1541.413 3561.95 4.837466 1310.196 720.1602 2410.017 (.004935

41.45 7.178829 3291.027 1542.108 3561.25 4.879217 1311.424 720.855 2409.732 0.006300

41.58333 7.253589 3301.945 1544.540 3559.85 4.354330 1315.514 723.2868 2408.664 0.005633

41.75 7.353269 3313.158 1550.093 3557.75 5.054481 1319.387 728.8452 2404.396 0.006009

42.25 7.646079 3333.223 1559.826 3551.45 5.348673 1324.680 738.5724 2396.433 0.005383

42.75 7.939948 3340.305 1559.826 3545.85 5.643930 1323.849 738.5724 2396.156 0.005905

43.25 8.234814 3340.895 1561.910 3539.55 5.940188 1319.966 740.6568 2392.778 0.005925

------- 43.67444 8.480899 3339.420 1566.774 3534.65 §.187435 1315.813 745.5204 2386.530 0.005825
0.0006 43.75055 8.487129 3202.503 1561.215 3533.95 6.193695 1252.281 739.962 2370.911 0.000822
mm/min  43.76416 8.491303 3193.650 1560.520 3533.6 6.197889 1248.123 739.2672 2370.219 0.003031
43.79583 8.489184 3176.241 1558.783 3533.25 6.195760 1240.084 737.5302 2369.277 -0.00067
43.32916 8.491303 3151.454 1557.046 3532.9 §.197889 1228.571 735.7932 2367.176 0.000638

43.95 8.498529 3069.127 1551.835 3531.5 6.205150 1190.332 730.5822 2359.641 0.000600

44,25 8.505819 3101.290 1543.845 3528.35 6.212473 1205.140 722.592 2372.567 0.000244

45,25 8.545254 3103.651 1530.991 3517.15 6.252095 1205.724 709.7382 2385.615 0.000396

47.25 3.612788 3131.388 1511.537 3494.05 6.319947 1217.687 690.2838 2409.058 0.000339

49.25 8.687548 3150.274 1505.631 3471.65 6.395060 1225.443 684.378 2417.549 0.000375

51.25 8.760189 3167.093 1491.735 3455,55 6.463045 1232,258 670.482 2433.716 0.000364

53.25 8.837068 3181.552 1491.735 3459.05 6.545286 1237.916 670.482 2435.602 0.000386

55.25 8.906594 3195.421 1495.209 3461.85 6.615142 1243.388 673.956 2433.952 0.000349

57.25 8.984469 3203.978 1495.557 3462.55 6.633384 1246.290 674.3034 2434.572 0.000331

7.
7.
1.
1.
1.
1.
7
7
1
1
8
8
8
8
8
8
8
8
8
3
8
8
8
8
8
59.25 9.055118 3211.355 1492.777 3461.15 6.764366 1248.740 §71.5242 2439,168
61.25 9.135049 3217.257 1489.651 3459.05 6.844674 1250.380 668.3976 2441.841

9 .924983 1250.523 684.7254 2425.561

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

8

8

.938566 1294.833 691.326 2433.731

.000354
.000401
000401
004074

------- 63.25 9.214979 3219.912 1505.979 3483.55
0.01 63.28333 9.228499 3316.699 1512.579 3485.65

OO D OO OO DOOMOMOOMODOOEDOoOOo oo

mm/min  63.31666 9.246129 3370.993 1518.485 3487.75 6.956280 1319.541 697.2318 2436.061 0.005314
63.35 9.263760 3397.256 1523.001 3489.85 6.973994 1331.358 701.748 2435.484 0.005314

63.41666 9.301140 3419.387 1528.907 3493.35 7.011551 1340.986 707.6538 2432.787 0.005633

63.5 9.353099 3419.682 1535.508 3498.25 7.063754 1340.368 714.2544 2425.981 0.006264

£3.58333 9.401879 3413.485 1540.371 3502.1 7.112765 1336.818 719.118 2419.934 0.005281

63.75 9.501559 3397.256 1545.235 3510.5 7.212916 1327.938 723.9816 2412.110 0.006009

------- 63.91666 9.596069 3385.452 1550.446 3517.85 7.307871 1321.175 729.1926 2404.645 0.005697
Unload 53.95 9.602299 3262.109 1550.098 3519.25 7.314131 1264.614 728.8452 2386.138 0.001877
-0.01 63.98333 9.602299 3019.848 1545.235 3521 7.314131 1153.696 723.9816 2354.029 0
mm/min 64.01666 9.589839 2867.587 1540.024  3522.4 7.301612 1084.131 718.7706 2336.052 -0.00375
64.05 9.577379 2762.243 1533.423 3523.45 7.289093 1036.033  712.17 2326.620 -0.00375

64.08333 9.559685 2665.162 1526.128 3524.85 7.271316 991.7638 704.3746 2319.159 -0.00533
64.16666 9.521309 2449.754 1507.716 3528 7.232758 893.4662 686.4624 2304.305 -0.00462

64.25 9.476639 2256.181 1489.651  3531.5 7.187878 805.1518 668.3976 2293.432 -0.00538

64.33333 9.434089 2088.576 1470.891  3534.3 7.145127 728.6457 649.638 2286.689 -0.00513
64.41666 9.390479 1937.790 1453.174  3537.1 7.101311 659.7947 631.9206 2281.456 -0.00525
64.58333 9.290799 1679.595 1389.252 3481.45 7.001160 541.8938 567.399 2306.078 -0.00600
64.56666 9.243014 1565.989 1370.493 3480.75 6.953150 489.9573 549.23%4 2307.525 -0.00576

64.75 9.198345 1461.531 1353.470 13480.05 6.908270 442.1586 532.2163 2208.515 -.00533

64.83333 9.147509 1364.745 1334.363  3479.7 6.857193 397.8698 513.1098 2312.959 -0.00612
64.91666 9.101780 1275.630 1317.688 3478.55 6.811249 357.0444 496.4346 2316.026 -0.00551

65 9.056114 1190,352 1301.707  3478.3 6.765368 317.9449 480.4542 2318.973 -0.00550

65.08333 9.010449 987.0426 1288.854 3477.25 6.719486 224.4199 467.6004 2300.652 -0.00550

65.25
------- 65.41666

919054 830.0600 1261.756  3476.2

. .627660 152.2351 440.5032 2303.687 -0.00550
.822489 699.6346 1235.70L 3475.15

.530639 92.17410 414.4482 2309.722 -0.00582

mmo*-mmmmm\a~J\x\)\:\a\3\3\1\:\)qq\i\)mmmma\mmmmmma\mmmmmmmmwmmm.&..u.:..u.u.“.z-
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Reload
0.01 65
mn/min

65.

66

66.
66.

66

67.

67.
67.

67
68

68.
68.

0.15 68

nm/min 68.

68

63

Relaxa. 68
¢ 69

5.5 8.
.58333

&5
91
.08

66

66

.15
566
333
.25

41666
58333

15

91664

87

87

08333

.25

41664
58333

15

.91666
.08333

68

68

.25

41666
58333

.15

78333

68

81666

.85

.88333
.91666

68

.95

.38333
01666

69
§9
89
70

74.
78.
82.

36

0.
94.
98.
102,
106.
114.
114.

.05
.25
15
.75
15
75
75
.75
75
75
15
75
75
15
15

------- 115.4833
0.15 115.516%

il1s

.35

------- 115.5833
0.0006 115.855

mm/min  115.9077
115.5833

116
116
113
120
122

.25
.15
.25
.25
.25

8.
3
9
9
9
9.
9
9
9
9
9

9.

10.

10
10

10.
10.
10.

10
10

10.
11.
11.
11.
12.
12.
12.

12
12
12

12.
12.
12.

12

12,
12,
12.
12,
12,
12.
12.

12

1z.

12

12,
12.
13.
el

id

13

13.
13.
13.
13.
13.

13

834949 1002.386

386845

374065
.070630
.155794
.248185

341635

422625
.515079
.607469
.707149
.807839

905450
00724
.10898
. 20449
30522
40596
49941
.59803
.89711
75484
06946
38613
70180
01536
33826
38810
39122
.39227
39333
39539
39645
39956
.39956
40162
40162
40162
39956
39433
40579
39956
.39956
39539
.39645
58023
38133
13077
S07L2
.60918
60712
61753
62999
67711
75041
.832412

1238.
1619.
1332.

2204
2444
2660
2922

3116,

3201

3250.
3281,
3300.
3311,
3315.
3316.
3317,
3317,
3315.
3298.

3302

3477,
3451,
3428,
3408.
339L.
3378,
3133,
3075,
3041.
2955,
2885.

2828
2650
2526
2455
2425
2445
2592
2624
2588
2519
2509
2501
2503
3455
3491
3458
2935
2930
2939
2965
2979
3030
3058
3067

450
103
114
542
137
.146
AN
339
.618
601
879
469
m
518
699
879
584
518
699
.240
517
845
829
469
944
370
159
618
979
226
382
341
.998
474
.950
.852
30
.§67
441
136
097
.950
383
.163
.386
091
927
150
.439
291
.258
127
176
504
.651

1239
1255.
1294.
1132
1369
1403.
1432,
1455,
1475
1492
1504
1534,
1558,

175

351
412

873
. 450

843
§717
258

155
.083
.589

813
783

1580.67

1595.
1608,
1616.
1624.
1628.
1608.
1605.
1613.
1616
1616
1615.

608
114
452
442
611
462
582
673

.104
104

151

1615.41

1614
1600
1594
1589.
1570.
1547.
1527,
1443,
1381.
1334.
1314
1396
1494
1523.
1460.

.367
819
566

702
248
319
517
794
262
184

.561
.200
.167

696
817

1476.45

1483,
1499
1502.
1548
1561.
1567.
1550.
1554.
1549.
1550.
1558,
1593.
1619.
1609.

050

.378

852

.109

910
121
446
446
404
098
783
176
926
851

3474.45
3474.1
3472.17
347133

3469.55
3468.5
3467.1

3466.05

3465

3463.95

3464.65

3507.35
3538.5

3560.55

3576.65

3589.25

3597.65

3602.55

3606.05
3565.1

3557.75
3557.4

3557.05
35%6.7

3556.35

3556

3555.65
3555.3

3554.95

3554.25

3551.45
3544.8

3532.55
3485.3
3438.1

3406.55
3399.9

3463.25

3561.25

3582.95

3565.45
3556.7

3540.95

3522.05

3517.85

3517.85
3517.
3517,
3516.
3516.
3516.
3514,
3512,

3505.25
3495.1
3481.8

)

O =3 b = e U

292

6.543158 231.
6.595299 340.

.682931
.779952
.365518
.958346
.052237
.133609
.226499
.319326
419477
.520692
618714
. 120993
.823209
919166
.020381
121596
.215487
314574
414725
472123
.788224
106330
. 423555
. 738592

.06301
11309
11622
11728
.11835
12041
12148
12461
12461
12667
.12687
12667
12461
11935
.13087
12461
.12461
12041
.12148
.30613
50865
.91955
.337817
. 33993
.33787
. 14832
.36084
.40879
.48184
.55588

515.
659.
784.
893.
991.
1111

1199.

1238
1257

1270.
1277.

1281

1281,
1281.
1280.

12718

127s.

1287

1267.

1346
1329

1315,
1301.
1289,
1278.

1169

1143.

1128

1090.
1059.

1033
954,
899.
863.
854
363,
929
943.
927.
896.
892.
888.
889.

1309,
1320.
1302.
1666.
1064.
1068.

1079

1085,
1107.
1118.

1121

9278
7171
3639
7671
1913
3037
8037
138
007
849
.913
8217
963
194
987
189
317
74
531
.535
753
205
.989
016
311
423
799
.168
580
.630
099
287
128
95817
6750
3452

9831

5291

L1509

2235
2523
3999
3388
3432
1567
425
775
028
779
123
330
.575
495
2438
722
.182

417.9222
434.5974
473.1588
511.7202
548.1972
582.5898

611.424

634.005
654.5016
670.8294
683.3358
713.55%6
737.5302
759.4164
774.3546

786.361
795.1986
803.18838
807.3576
787.2084
784.4292
792.4194
794,8512
794.8512
794.5038
794.1564
793.1142
779.5656
773.3124
768.44838
748.9944

726.066
706.2642
§22.5408
560.0088
516.9312

493.308

574.941
672.9138
702.4428
639.5634
£55.1964

§61.797
678.1248
£81.5988
727.4556
740.6568
745.3673
729.1926
729.1926
728.1504
728.3452
737.5302
771.9228
798.6716

788.598

2352
2372
2392
2401
2406
2408
2412
2429
2438
2434

2429.
2403,

2381

2361,
2346.

2333

2325,

2316

2311
2328,
2331,

2349

2341,

2336

2332.

2329
2326
2303

2301.
2301,

2307

2320.
2331,
2389.

2433

2465,

2485

2406.

2330

2308,

2362

2337.

2329
2311
2308
2402
2393
2381
2319
L

232

2324
2317
2230
2267
2278

.833
.420
241
.548
.545
.790
.623
.820
613
399
414
495
903
294
420
648
019
515
598
749
601
761
924
.933
714
097
.584
.603
326
207
.318
475
751
224
.328
963
132
375
.249
411
.966
049
.095
.602
.299
. 465
047
.587
.346
.062
.405
. 459
47
.606
.630
L1758

0.001502
0.006236
0.005257
0.005821
0.005133
0.005569
0.005633
0.004382
0.005573
0.005589
0.006009
0.006072
0.005381
0.006136
0.006132
0.005757
0.006072
0.006072
0.005633
0.005945
0.006009
0.0L7219
0.094830
0.095449
0.095149
0.094510
0.097327
0.015022
0.000938
0.000319
0.000053
0.000041
0.000010
0.000007
0
0.000005
0
0
-0.06000
-0.00001
0.000028
-0.00001
0
-0.0000L
0.000014
0.055395
0.090755
0.093271
0.013421
0.001616
-0.00027
0.000391
0.000250
0.000319
0.000365
0.00037



124,25 13.90722 3077.094 1557.394 3464.65 11.63939 1124.844 736.1406 2332.253 0.000417

2t

126.25 12.97887 3085.256 1545.882 3452.75 11.71137 1127.331 724.329 2344.960 0.000359

128.25 14.05051 3097.749 1533.771 3448.55 11.78335 1132.013 712.5174 2358.266 0.000359

130,25 14,12004 3104.241 1524.043 3447.15 11.85321 1133.943 702.7902 2368.636 0.000343
132.25 14.19586 3110.733 1519.180 3447.15 11.92938 1135.787 697.9266 2374.115 0.000380
134.25 14.26856 3114.274 1515.358  3446.8 12.00243 1136.384 694.1052 2378.135 0.000365

135.6666 14.32046 3115.749 1518.138  3446.8 12.05457 1136.352 696.8844 2375.345 0.000368
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APPENDIX 9.3 Computer Program for the Calculation of Undrained

340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490

Multi-stage q Creep Shear Tests

CLS:
REM FILENAME BCQKGJ-2, SCALING METHOD 2

PRINT:PRINT:PRINT
PRINT"EVP KGJ Modelllng of Undralined Multi-stage q Creep Shear Tests"
PRINT"Uslng Elliptical Flow Surface and Hyperbollic Strength Envelope"
PRINT:PRINT:PRINT
INPUT "LOTUS Data Filename";Xs
OPEN X$+".PRN" FOR OUTPUT AS #1
INPUT"Mater. Parameters, TO0,P0(sec, kPa)";TO0,PO
INPUT"Mater. Param. Lambda,Kappa,Psi(l/V)";LAMBDA,KAPPA,PSI
INPUT"Mater. Param. A,B(kPa~-1),D(kPa)";A,B,D
INPUT"Initlial Values,Ti(h),Ei,EVl,Pi(kPa),Qi(kPa)";TI,EI,EVI,PI,QI
INPUT"Time Incre. and q Incre., H(h),DQ(kPa)";H,DQ
INPUT"Time Range, TRNG(h)";TRNG

REM TO SOLVE DIFFERENTIAL EQUATION
PRINT:PRINT:PRINT

PRINT" Calculation in Progress"
PRINT" Order 4 Runge & Kutta's Method"

PRINT:PRINT:PRINT o

DIM T(2500),E(2500),P(2500)
B1=KAPPA/LAMBDA:B2=LAMBDA/PSI
GOSUB 570
T(0)=TI:E(0)=EI+DES:P(0)=PI:II=5
FOR I=1 TO 2500

IF I=5 THEN H=10%*H

IF I=10 THEN H=10%*H

IF I=15 THEN H=10%H

IF 1=20 THEN H=10%H

T1=T(I-1)

Y1=P(I-1)

GOSUB 620

K1=21:L1=72

T1=T(I-1)+.5%H
Y1=P(I-1)+.5%H*K1

GOSUB 620

K2=21:L2=22
Y1=P(I-1)+.5%H*K2

GOSUB 620

K3=21:L3=22

T1=T(I-1)+H

Y1=P(I-1)+H*K3

GOSUB 620

K4=Z71:L4=22

T(I)=T(I-1)+H
P(I)=P(I-1)+H*(K1+2%K2+2*K3+K4)/6
E(I)=E(I-1)+H*(L1+2*L2+2*L3+L4)/6
IF T(I)>TRNG GOTO 500

IF (E(I)-E(0))>.1 GOTO 500
NEXT I
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500 FOR J=0 TO I STEP II

510 WRITE #1,T(J),E(J)*100,P(J)

520 IF J>50 II=10

530 NEXT J

540 CLOSE #1

550 END

560 REM CALCULATION OF ELASTIC RESPONCES

570 DP=DQ/4.601:PI=PI+DP:QI=QI+DQ

560 K=(500+PI)/KAPPA:JM=-4,601*K:G= D*JH*JM/(JM*JM+3*D*K)
590 DES=DP/JM+DQ/3/G

600 RETURN

610 REM ELASTIC VISCOUS PLASTIC MODEL

620 BB=(Y1-A*B*QI*QI)/(.5*B*QI)~2:CC=(A*A*QI*QI+Y1%Y1)/(.5%*B*QI)~2
630 PM=.5*%4*CC/{BB+(BB*BB-4*CC)".5)

640 M=1/(A+.5%B*PM)

650 A2=2%Y1-PM:A3=2%QI/M/M

660 K=(500+Y1)/KAPPA:JM=-4.60L*K :G=D*IM*IM/ (IM*IM+3*D*K)
670 Cl=PSI/TO*(EXP(~-EVI/LAMBDA)*((.5+PM)/P0)*((500+Y1)/(500+PM))~B1)~B2
680 Z1=-K*Cl*A2/ABS(A2)

690 Z2=Z1/JM+Cl*A3/ABS(A2)

700 RETURN
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APPENDIX 8.4 Computer Program for the Calculation of Undrained
Constant Strain Rate Shear Tests

10 CLS:

20 REM FILENAME BUDKGJ~-2, SCALING METHOD 2

30 PRINT:PRINT:PRINT

40 PRINT"EVP KGJ Modelling of Undrained Constant Strain Rate Shear Tests"
350 PRINT"Uslng Elliptical Flow Surface and Hyperbolic Strength Envelope"
60 PRINT:PRINT:PRINT

70 INPUT "LOTUS Data Filename";Xs

80 OPEN X$+".PRN" FOR OUTPUT AS 41

90 INPUT"Mater. Parameters, TO0,PO0 (sec,kPa)";T0,PO

100 INPUT"Mater. Param, Lambda,Kappa,Psi (1/V)",;LAMBDA,KAPPA,PSI

110 INPUT"Mater. Param,A,B(kPa~-1),D(kPa)";A,B,D"

120 INPUT"Initial Values, TI,EI,EVI,PI,QI";TI,EI,EVI,PI,QI

130 INPUT"Strain Rate & Time Incre., REPSI (1/h),H(h)";REPSI,H

140 REM TO SOLVE DIFFERENTIAL EQUATION

150 PRINT:PRINT:PRINT

160 PRINT" Calculation in Progress"

170 PRINT" Order 4 Runge & Kutta's Method"

180 PRINT:PRINT:PRINT

190 DIM T(2500),E(2500),P(2500),Q(2500)
200 B1=KAPPA/LAMBDA:B2=LAMBDA/PSI

210 T(O0)=TI:E(Q)=EI*100:P(0)=PI:Q(0)=QI
220 FOR I=1 TO 2500

230 IF I=5 THEN H=10%H

240 IF I=10 THEN H=10*H

250 IF I=15 THEN H=10%H

260 IF I=20 THEN H=10%*H

270 Tl=T(I-1)

280 Y1=P(I-1):¥2=Q(I-1)

290 GOSUB 550

300 K1=Z21:L1=22

310 T1=T(I-1)+.5*H4

320 Y1=P(I-1)+.5%H*K1:Y2=Q(I~1)+.5%H*L1
330 GosuB 550

340 K2=21:L2=Z2

350 Y1=P(I-1)+.5*%H*K2:Y2=Q(I-1)+.5%H*L2
360 GOSUB 550

370 K3=21:L3=Z2

380 T1=T(I-1)+H

390 Y1=P(I-1)+H*K3:Y¥2=Q(I-1)+H*L3

400 GOSUB 550

410 K4=21:L4=72

420 T(I)})=T(I-1)+H:E(I)=E(I-1)+REPSI*H*100
430 P(I)=P(I-1)+H*(KL+2*K2+2*K3+K4)/6
440 Q(I)=Q(I-1)+H*(L1+2*L2+2*L3+L4}/6

450 IF E(I)>10 GOTO 480
460 NEXT I

470 1I1=10
480 FOR J=0 TO I STEP II
430 WRITE #1,T(J),E(J),P(J),Q(J)
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500 IF E{(J) >3 THEN II=20

510 NEXT J

520 CLOSE #1

530 END

540 REM ELASTIC VISCO-PLASTIC MODEL

550 IF ¥Y2<.0l1 THEN GOTO 570

560 GOTO 590

570 PM=Y1

580 GOTO 610

590 BB=(Y1-A*B*Y2*Y2)/(.5*B*Y2)"2:CC=(AXA*Y2*Y2+Y1*Y1)/(.5%B*Y2)"2
600 PM=.5*%4*CC/(BB+(BB*BB-4*CC)~.5)

610 M=1/(A+.5*B*PM)

620 A2=2%Y1-PM:A3=2*Y2/M/M

630 Cl=PSI/TO*(EXP(~-EVI/LAMBDA)*((.5+PM)/P0O)*((500+Y1)/(500+PM))"~B1l)"B2
640 K=(500+Y1)/KAPPA:JM=-4.601*K:G=D*JM*JIM/ (TM*IM+3*D*K)

650 Z1=+22/4.601-K*C1*A2/ABS(AZ2)

660 Z22=3*G*(REPSI-Z1/JM-C1*A3/ABS(A2))

670 RETURN
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APPENDIX 10.1. Curve Fitting of a Multi-Stage Isotropic Creep Test

In the test program (Rahman 1888), the soil used in the tests was
uniform, quartz-carbonate medium-grain sand with uniformity (DBO/DIO)
2.0. The specific weight was 2.70. Specimen preparation involved
three stages, namely, (1) sand deposition, (2) saturation, and (3)
freezing. The specimen size was 76 mm diameter and 200 mm height.
Stage 1 attempted to make the density of the specimen uniform and
constant. However the maximum variation of was 7% in density. In
stage 2, each specimen was saturated under a vacuum pressure of 55 kPa
applied at the top. In stage 3, the specimen was placed in a chest
freezer with temperature -20°C for 48 hours. The specimen was then
o

prepared for triaxial testing in a cold room at temperature -3°C

(Rahman 1988).

In the multi-stage isotropic stress creep test, the isotropic stress
was applied to the specimen suddenly, and was then held a constant for
a period of time until the next load was added. The loading history is

shown in Table 10.3.

Table 10.3 Loading History for a Multi-Stage p Creep Test

P (kPa) 50 100 150 200 300
Duration (hrs) 313.5 216.5 527.5 1247.5 2158.8
Total Elap. (hrs) 313.5 530 1057.5 2305 4464.5
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In the following calculations, all stress states are isotropic, and for

simplicity, the subscript "m" has been deleted.

The general equation [10.12] for calculating creep strains in

multi-stage isotropic creep tests is:

P + p t +t
[10.23] e =2 1n(22 ) + ¥ (2 &
v VvV Po3 v to

The equivalent time te is different from the duration time t of loading
(see Chapter 8). The time te is negative for state points above the
reference time line, positive below the line and zero on this line.
The te for a state point (p,ev) is the time that would be required for
the specimen to creep under the constant stress from thelreference time
line to this point no matter what the loading history was to reach this

state point.

Considering a load increment from point i to (i+1) in Fig.10.2 and then
creeping from point (i+l1) to (i+l1)’ under the stress Piq with real

duration time t, the equivalent time te at point (i+l1) is, from

,i+1
[10.231]:

(V/y)

€y, i+1 (poz * p1+1)—A/w

po3

[10.24] t =t [e

e,1+1 o) - 1]

The equivalent time te in [10.23] in terms of real duration time t is:

[10.28] t =t + t
e e,A

Using Eqns.[10.23]-[10.25], the final creep strain at point (i+1)’ is:
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‘e

P_,+P s (V) p P, .
[10.26] e, =5 122210 L ¥ . o Vit (92 _Ti*1)=A/y
p03 o poB
where
p + D,
_ K ol i+1
[10.27] eV,i+1 = Sv,i + v— 1n(w)

Eqn.[10.26]1 with [10.27] can be used to do curve fitting for the

multi-stage isotropic creep test. The parameters x/V = .0013 and Poy =
10 kPa were estimated by fitting the instant test points in the first
loading increment. Then try using A/V = .017, Py = 180 kPa, Py3 = 185
kPa; y/vV = .007, to = 600 hr. Detailed results are in Table 10.4.

Table 10.4 Curve Fitting of the Multi-Stage p Creep Test

p (kPa) 50 100 150 200 300

t (hrs) 313.5 218.5 527.5 1247.5 2158.5

€4 (%) 0 0.622 0.937 1.4686 2.1861

sv,i+1 (%) 0.233 0.8690 0.978 1.485 2.211

£, (%) 0.622 0.937 1. 466 2.181 2.908
The overall curve fitting of the laboratory data is shown in

Figs.10.2,10.3. The calculated curves marched the test data well and

it can be assumed that the fitting parameters have been adequately

determined.
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APPENDIX 10.2 Predictions of MST2 and MST10

Egns. [10.21], [10.22]

(e _-¢

s

. ) vs.
s, iso

allows calculation of

(e -2

v v,iso

t in multi-stage q and p creep tests.

) vs. t and

Details for the

calculation of MST2 and MST10 are in Table 10.5, 10.6 respectively.

Table 10.5 Prediction of MST2, € ,_ = 0.01737

q (kPa) 0 120 . 240 360 480 600

p (kPa) 280 280 280 280 280 280

t (hrs) 580 475 504 1006 1393 984

p_(KkPa) 280 293.31 334.98 411.11 535.38 739.88

ezﬁ .01299 .01651 .01889 .02117 .02172

(e~ . ). 0 .00352 .00577 .00818 .00873
v V,1S0 1

e 0 .00118 .00281 .00647 .01341

(e ~ . ). 0 .00352 .00577 .00818 .00873
v v,iso’i+l

e . .00035 .00153 .00317 .00683 .01378

s, 1i+1

(e e . ) .00352 .00577 .00818 .00873 .00374
v "v,iso

(e ~¢_ . ) .00118 .00281 .00647 .01341 .02568
S S, 1sS0
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Table 10.6 Prediction of MST10, ev iso = 0.00724
q (kPa) 0 20 40 60 80 100 120 140
p (kPa) 70 76.7 83.3 30 96.7 103.3 110 116.7
t (hrs) 407 226 503 117 144 144 312 503
pm(kPa) 70 77.83 87.50 98.83 111.46 125.14 139.91 155.58
SX? .00524 .00708 .00998 .01051 .01110 .01242 .01417
(e - . ). 0 .00194 .00485 .00556 .00623 .007684 .00946
v Vv,iso’i ,
esi o .00027 .00097 .00120 .00152 .00231 .00357
(e = . ). .00010 .00204 .00504 .00565 .00717 .00867 .01082
v Vv,iso’ i+l
es i+1 .00006 .00033 .00103 .00126 .00205 .00302 .00453
(ev-ev iso) .00194 .00485 .00558 .00623 .00764 .00846 .01185
(es—es iso) .Q0027 .00097 .00120 .00152 .00231 .00357 .00531
q (kPa) 160 180 200 240 280 320 360
p (kPa) 123.3 130 136.7 150 163.3 176.7 190
t (hrs) 1549 720 1223 719 807 1319 959
pm(kPa) 172.02 189.32 207.38 245.87 286.89 331.13 378.51
s:? .01618 .01832 .02137 .02220 .02253 .02280 .02319
(e ~e . ). .01155 .01475 .01887 .01778 .01825 .01867 .01806
v v,iso’i
esi .00531 .00852 .01107 .01234 .01330 .01456 .01691
(e = . ). .01286 .01830 .01693 .01787 .01835 .018768 .01815
v v,iso’i+1
ss 141 .00662 .01038 .01113 .01246 .01342 .01468 .01703
(e =, ) .01475 .01887 .01778 .01825 .01887 .01808 .013916
v v,iso
(es—es iso) .00852 .01107 .01234 .01330 .01456 .01691 .01801
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