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ABSTRACT

This thesis presents the development of an on—chip built—in testable error correction
circuit (on~chip BIT ECC) for embedded memories in VLSI/ASIC systems. First, error
control coding (ECC) for high—speed memories is briefly reviewed, focus is placed on the
modified Hamming (n,k) SEC-DED codes and a parallel VLSI implementation. Second,
built—in test as a solution to VLSI/ASIC designs is studied, a built—in testable architecture
and design method for on—chip ECCs for embedded memories is proposed. The desi gnrep-
resents a solution for built-in self testing of embedded memories with on—chip ECC in a
divide—and—conquer strategy. It features: i) >99% fault coverage for the stuck—at faults
in the on—chip ECC circuitry; ii) integrates the advantages of multiple BIST technologies,
such as pseudorandom test, pseudoconcurrent/interleaved test, and scan test; iii) impacts
the system performance by only one gate delay regardless of the size of the on—chip ECC
implemented; and iv) uses up to 50% less on—chip test generation hardware and reduced
testing time overhead than customary BIST implementations, as a result of test stimulus
compaction and mappings dictated by the ECC codes implemented. The same built—in test
circuitry can be dynamically reconfigured under software control to support four self test
modes, corresponding to different BIST environments. The design method has been im-
plemented and verified, through the development of a built—in testable Hamming (22,16)
SEC-DED circuit, using the Cadence™ CAD tools, Verilog HDL, and Verilog—XL simula-

tor. A prototype was produced using Xilinx FPGAs under the same EDA environment.
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CHAPTER 1

INTRODUCTION

The evolution of computer architecture and the advance of VLSI technology have
enabled advanced features, such as higher integration of VLSI processor (signal processor)
chip sets, and system~on—a—chip ASICs. VLSI/ASIC solutions are key to many technolo gy
companies keeping pace in today’s competitive market. One of the dominant characteris-
tics of a VLSI system solution is that it may include processors (RISC processors, DSP
cores), memories, system control and interface logic, and perhaps most of the system pe-
ripherals on the same chip [WILS93]. This dramatically improves system functionality,
speed, reliability, and serviceability of modern computer/communications systems. At the
same time, this has presented serious testing obstacles. The design may be beyond the reach

of design simulation tools, making it virtually untestable.

Fault tolerant VLSI/ASIC systems trade—off hardware/software redundancy and
operating speed to achieve a higher degree of system reliability and availability [WALT90].
The use of error control coding (ECC) techniques in high speed memories (i.e. cache me-
mories, private memories, embedded memories) may be one of the simplest ways in which
this redundancy—speed-reliability trade—off is implemented. Error control codes (ECC)
have been applied in various aspects of the modern computer systems: memory, arithmetic,
logic, and communications [RaFu89]. For high performance embedded memory units in
VLSI/ASIC systems, on—chip ECC is the principle candidate to ensure data integrity of the
memory internal to the system. On—chip ECC circuits consume about 10% to 20% of the
total on—chip memory area, and help enhance theoretical yield by a factor of 3 (at about 2.5

particles/cm? defect density), and depress the soft error rate at a factor of 10 (at an o—flux



density of 1 cm= h™!) [FaSa91, RaFu89, FuAr89, MANOS83]. On—chip ECC is also re-
garded as one of the concurrent test methods, based upon its capability of detecting and/or
correcting errors on the fly and reporting error occurrence synchronously. Still, questions
may exist such as: What if on—chip ECCs fail due to faults on the on—chip ECC circuit itself
with the same error rate as on the memory cell arrays? What effective measures should be
taken to capture a faulty on—chip ECC, if any, at run times to ensure the concurrent judge

of data integrity is jﬁdging correctly?

In any event, embedded memory is becoming a key component of VLSI/ASIC sys-
tem chips, as memory bandwidth is one of the most serious bottlenecks to the system per-
formance. In addition, today’s silicon VLSI/ASIC process technology can afford large
memory integration with other logic circuitry. For the sake of improved system reliability,
embedded memories with built—in ECC (or on—chip ECC) are integrated in VLSI/ASIC
system chips. The challenging task is the vendor and manufacturing test of those embedded
memories with built-in ECC. In embedded memories, the address, data, and read/write in-
puts may not be directly controllable and the data output may not be directly observable
through the I/O pins of the VLSI/ASIC chip. As a matter of fact, on—chip ECC is internal
to the embedded memories, and transparent to the user. Though self testing is a solution
to the problem, the issue of testing embedded memories with on—chip ECC in its entirety
has not yet been addressed in the literature. Built-in self-test (BIST) methods for em-
bedded RAMs or ROMs have been proposed, which aim at self testing of the memory cell
arrays [JaSt86, SuWa84, FASA90, Zolv92], or aim at self testing of the information bits

and check bits of memory cell arrays when on—chip ECC is employed [FrSa91].

On—chip ECC circuitry is sizable enough to itself warrant provisions for testability.
Being fully combinational, as the parallel implementation of Hamming (n,k) SEC-DED

code in this thesis, the on—chip ECC circuitry is a prime candidate for built—in self test. The




ultimate objective of this thesis study is, therefore, to develop a built—in testable architec-
ture and a design method for the on—chip ECC. It shall provide a design—for—testability
method for modular development of on—chip built—in testable ECCs (on—chip BIT ECCs)
for embedded memories in VLSI/ASIC systems. It shall employ a divide—and-conquer
strategy for self testing embedded memories with on—chip ECC in its entirety. It shall fully
support dynamic system reconfigurability by taking part in automatic fault reporting logic
of the system. Furthermore, it shall support self-testing an array of homogeneous em-
bedded memories effectively under a single or multiple~processor based system environ-
ment. In a homogeneous multi-processor system all local (private) memories with built—in
ECCs may have same configuration, test vectors can be supplied to all on—chip ECC cir-
cuits on the system chip in parallel from a single on—chip test generation circuit, and self
testing of those on—chip ECCs for the embedded private memory arrays can all be done in
parallel. Another objective of this thesis study is to minimize the size of this on—chip test

generator, given an on—chip ECC of any size.

The test can then be used on demand, as in power—up self test (POST) or diagnostic
test. It can also be repeated at dedicated intervals of time interleaved with the process. In
the case of interleaved self test, a very short test sequence is desirable in order to minimize
the impact on processor performance. Another objective of this thesis study is to minimize

the test time.

The interleaved self test can be taken as pseudoconcurrent test. It allows the on—
chip ECC to make use of the processor’s idle time to perform partial self test, without steal-
ing any time away from normal processor operation. In a scan test environment, the same
built-in test hardware should be reconfigured under software control to form a portion of
register chain to support scan test of the on—chip ECC circuit itself or other system modules

on the same register chain in the system. Another objective of this thesis study is, therefore,




to develop dynamically reconfigurable (programmable) built-in test circuitry to support

multiple self test methods integrated in the proposed built—in testable architecture.

In this thesis, Chapter 2 will briefly review error control coding (ECC) theory and
techniques for high speed memories. Generic memory—chip codes and on—chip ECC struc-
ture shall be described in the light of improving yield and error rate. In addition, a modified
Hamming (n, k) SEC-DED codes and an optimized (parallel, bit-sliced, and fully combi-

national) VLSI implementation are examined in detail.

Chapter 3 gives an overview of built—in test for VLSI/ASIC systems under the head-
ing of design—for—testability. Fundamentals in modern test theory such as structural test,
fault models and fault coverage, fault grading methods are studied; followed by discussions
of some of the built—in test technologies and structures in testable VLSI/ASIC designs. It

shows that built-in test has become a portion of VLSI/ASIC design.

Chapter 4 starts with testability analysis on the major components of an optimized
on—chip ECC implementation for the modified Hamming (22, 16) SEC-DED codes. A
natural partition for testability is then proposed. Different stages in developing a compact
set of test vectors that guarantees >99% coverage of single stuck-at faults in the on—chip
ECC circuitry is described. It is noted that the test vector matrix compaction rule, dictated
by the ECC codes, resulted in up to 50% less on—chip test generation hardware and a re-

duced testing time than conventional BIST implementatjons.

Alsoincluded in Chapter 4 is a BIST architecture for an on—chip ECC that integrates
the advantages of multiple BIST technologies: pseudorandom test, pseudoconcurrent test,
scan test and scan path. This feature is facilitated through dynamic reconfigurable hard-

ware design of the built—in test circuitry. Four programmable self test modes are dedicated



to different BIST environments under which the VLSI/ASIC system may operate. The con-

chapter.

Chapter 5 presents a structured modular VLSI implementation of all components
and the integrated built—in testable on—chip ECC module itself. Considerations behind
each of the configurations are presented. The measure taken to feature particular logic de-
signs, for instance, to suppress aliasing problems inherently with signature generation tech-

niques, are described.

The integrated VLSIEDA tools from Cadence Design Systems Inc. are extensively
used throughout from design implementation, simulation and verification, to rapid proto-
typing. It is worthwhile to mention that the hardware description language (HDL) Verilog
(as high level simulation language) was used in the development of stimulus for design sim-
ulations using the high performance Verilog—XL simulator; Xilinx FPGA development
package, and Xilinx 4000 series technology library cells and devices were used, which en-
abled us to implement, verify and validate the built—in testable design method in a well—
structured and easy—to—implement way. A brief description of using the Verilog HDL and
high performance Verilog—XL simulator under the integrated Cadence™ (V4.2) EDA en-

vironment is also included in Chapter 5.

Chapter 5 concludes with rapid design prototyping and validation. After the design
implementation has been verified through logic and timing simulation, design prototyping
is illustrated by downloading the netlist information of the design onto a target Xilinx field
programmable gate array (FPGA) chip on a demonstration board. The Xilinx Development
System with Xilinx 4000 family demonstration board integrated into the Cadence™ (V4.2)

on a desktop of SparcStation 10 under UNIX operating system was used. Evaluations of



the prototype on the FPGA device XC4003b are presented, which help to validate the solu-

tion previously proposed and implemented.

Chapter 6 draws the conclusions of this thesis research work. Further development
of this research work are proposed. A direct work plan may include the investigations of
approaches and techniques to convert the modular built—in testable design method into

VLSI/ASIC design aids in EDA systems.




CHAPTER 2

ON-CHIP ERROR CHECKING AND CORRECTING

2.1 Introduction

In computer systems, large amounts of data move between various subsystems. For
instance, the data traffic between the CPU and main memory may be of the order of 100
million bits every second. Even though the system is designed for very high reliability,
there are bound to be a few errors in these communications caused by such things as the
atmospherics noise, electrical noise, component or device malfunctions, or sometimes de-
sign or program faults. It is imperative that the system detects/corrects these errors as and
when they occur. Some remedial action such as error correction or error recovery must take

place before a more serious situation like a system crash arises.

Error control coding for computer systems is now an established field of study
[RaFu89]. Itis an extension of error control coding for communications, but stresses the
problems of reliable computation which significantly differs from the problems of reliable
communications. For instance, the later assumes perfect reliable computing and processing
at the transmitter and receiver, and has less severe restraints on computation time for error
correction. Further, in communication systems error detection combined with acknowl-
edgement and retransmission protocols often provides a satisfactory method of obtaining
reliable communication in the presence of communication channel errors. However, in
computing if the presence of errors is detected in a word retrieved from memory, there may

be no way of determining what the correct word is.



In this chapter we shall briefly review various aspects of the on—chip ECC codes for
high speed memories. Generic on—chip ECC structures are described with respect to chip
yield and error rate improvement. The modified Hamming (n, k) SEC-DED codes and a
parallel, bit—sliced, and fully combinational VLSI implementation are to be examined in
detail, illustrating that self testing is a solution for embedded on—chip ECC logic. We shall
also take a brief look at some other fault tolerant methods such as self checking for on—chip
ECCs. We defer the testability analysis of the optimized implementation of the Hamming
(n,k) SEC-DED codes to Chapter 4 where we shall elaborates the controllability and ob-
servability (testability) of each of the major components of the on—chip ECC circuit and
propose a design—for—testability (DFT) solution to a modular on—chip built—in testable

ECC design.

2.2 Codes for high speed memories

Several types of error correction codes (ECC) have been successfully applied to
memory systems, including high speed memories (i.e. control memories, cache memories,
private memories, and embedded memories). Every memory designer has adopted for
some form of error checking or correcting (ECC) code in order to enhance reliability. The
ECC codes used at present for on—chip ECC are from the class of linear codes, and involve
adding check bits to the information bits. The embedding ECC logic is transparent to the
user. For improved reliability, concurrent ECC capacity has been found essential for over

megabyte-level chip designs [FuAr89, KALT90].

There are basically two categories of ECC codes for high speed memories: bit error
correcting/detecting codes and byte (burst) oriented error correcting/detecting codes. In
each category, code classes are designated based on the capacity features of the codes.

There exist many resources in the literature on coding theory and techniques for high speed




memories and embedded memories [FuPr90, YAMASS, PETE61, RaFu89, LoHu 88,
FASA90]. In [RaFu89] two chapters are dedicated to error control codes for high speed
memories. Included are modified Hamming SEC-DED codes, memory chip codes, dou-
ble-bit—error correcting codes, code design techniques for high speed memories, and single
byte—error detecting (SbEC) codes, single-byte—error correcting and double-byte—error

detecting (SbEC-DbED) codes, and byte/burst—error detecting SEC-DED codes.

One of notable features of the codes for high speed memories is that parallel encod-
ing and decoding is required to maintain high rates of throughput. Therefore, the encoding
and decoding circuits are implemented by combinational logic instead of linear feedback

shift registers (LFSR).

We restrict our discussion to the class of modified Hamming (n,k) SEC-DED
codes, one of the most widely used on—chip (n,k) codes for high speed memories. A modi-
fied Hamming (22,16) SEC-DED code and its parallel VLSI implementation had been se-
lected in this thesis as a starting point for developing a built—in testable architecture and

design—for—testability method for an on~chip Hamming (n,k) SEC-DED circuit.

2.3 Modified Hamming (n,k) SEC-DED codes

A Hamming SEC-DED code can correct single-bit errors and detect double—bit er-
rors. This code can be formed by extending a Hamming SEC code with an overall parity
check, that is, a check on all the symbols in the code. The Hmatrix of an original Hamming
(n,k) SEC-DED code is shown in Fig. 2-1. Heren represents the number of bits in a coded
memory word, k the number of bits in original memory word. The original Hamming (n,k)
SEC-DED code can be modified and optimized, by applying algebraic operations over the

rows and columns of its H matrix. The resulting code is called a modified Hamming (n,k)



SEC-DED code. The H matrix of modified Hamming (22,16) SEC-DED code (also

known as Hsiao code) is shown in Figure 2-2.

0000000000000001111111
000000001 1111111000000

H - 0000111100001111000000
B 0011001100110011001T100
010101010101 010101010°1
1111111111111111111111J

Fig. 2-1 H matrix of original Hamming (22,16) SEC-DED code

1101100011 100100100000
1011011010010010010000

H - 0110110101001 001001000
- 111000110011 1000000100
0600011111000001110000T10
0000000011111 11100000°1

Fig. 2-2 H matrix of modified Hamming (22,16) SEC-DED code

The minimum distance of a SEC-DED code is at least 4. Since an n—tuple of weight
3 or less is not a codedword, any set of three columns of the H matrix should be linearly
independent. Note that the sum of two odd—-weight r tuples is an even—weight r tuple. For
this property, a SEC-DED code with r check bits can be constructed with its H matrix being
constituted of distinct nonzero r—tuples of column vectors having odd weight [HSIA70].
This code is different from the original Hamming SEC-DED code whose H matrix has an
all I’srow vector in addition to the SEC code H matrix. The modified Hamming code, more
specifically, is an odd-weight—column SEC-DED code, for every H matrix column vector

is odd weight. Itis also noted the modified Hamming (22,16) SEC-DED code has a optimal
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minimum number of 1°s in its H matrix, which makes the hardware implementation and the
speed of encoding/decoding circuit optimal. It satisfies the condition of minimum-equal-

weight code, and hence it is called an optimal code from the practical point of view.

Figure 2-3 illustrates a memory model using on—chip (n,k) codes. For simplicity,
we have illustrated an example H matrix (with n=22 and k=16), rather than to give complex
mathematic expressions to construct this code. From practical view of point, it is important
to realize how the ECC structure effects real hardware implementations of the code con-
cerned; and how the ECCs such as the Hamming (n,k) SEC-DED code minimizes the real
probability of miscorrection whenever triple or more errors occur. A miscorrection here
refers to an erroneous decoding that results in an actual increase in the number of errors in
the decoded word. This may happen when a syndrome pattern coincides with some column

of H, then the decoder mistakes it for a single error and applies a miscorrection.

It is found that odd-weight-column SEC-DED codes have practical advantages
and also a lower probability of erroneous decoding and are widely implemented in such
computer systems as IBM 370/168, 303X, 308X, 4300 series, Cray 1, Tandem, and so on
[CHENS&4].

2.4 Generic on—chip ECC structure and logic implementation

From this section on, we will refer discussions of on—chip ECC only to its decoding
architecture and parallel logic implementation. A block diagram of a generic on—chip ECC
(decoding) circuit is shown in Fig. 2—4. This circuit consists of a parity generator (PG), a

syndrome generator (SG), a syndrome decoder (SD), and a correction circuit (COR).

Assume a (n,k) code is to be implemented, PG will generate r (r = n—k) parity bits,
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Fig. 24 A generic on—chip ECC model

and SG will generate r syndrome bits from the n-bit input data (k information bits and r
check bits) simultaneously. SD will decode the syndromes and generate k error patterns
that indicate if an error occurred in any bit, and COR will generate the corrected data using
the error patterns. Usually, COR does not generate the corrected check bits. ED belongs to
the synchronous error/fault reporting system and will generate the error signals to indicate

the occurrence and the types of memory error(s).

As mentioned earlier, an on—chip ECC circuit is composed mainly of extra memory

13




cells and the error decoding circuit. In order to implement an on—chip ECC circuit, it is
necessary to reduce the silicon area used for the ECC circuitry and the encoding, decoding,
and correcting logic delay. Figure 2-5 shows an implementation with logic diagram of an

on—chip ECC decoding circuit for a modified Hamming (22,16) SEC-DED code.

2.5 Self test solution vs. self checking method

It is a fact that an increase in the memory readout data size will increase the size of
the on—chip ECC circuit, and therefore increase the probability of circuit failure. The ECC
portion of the system is exposed to the same error prone environment as the memory cells
due to physical defects or operational conditions. Thus the ECC circuit has to withstand
failure in itself without transmitting erroneous data. Research work on fault tolerant ECC
designs using built—in self checking have been reported [GAIT 88]. The simplest method
for self—checking of an ECC circuit is to re—enter the corrected output, including corrected
check bits, to another syndrome generator; if the syndromes are all zeros, then it is assumed
the ECC circuit is fault free. The built—in test solution represents more recently developed
self-testing methods for VLSI/ASIC designs. It holds the same capacity of fault detection,
but emphasizes structured modeling of the type of faults expected and providing test vec-
tors with high fault coverage. Fault analysis is performed on a nodel bases for the circuit
under test. This feature is imperative in the initial stages of design development, furthering
the quality of the design. It may also be extended to support built—in self—-diagnosis (BISD)
methods in which self-repair may be undertaken if the VLSI/WSI desi gnitself is internally

repairable [TrAg93, LoHu88].

14




Sl

Information bit cell Check bit cell
(DO-D15) (CO-C15)

e
N i S SN s e
T 9
11 11 111 1 Lo ﬁ: 30
| 9 — e
1 11 11 1 1 1 1 ﬁ: £ =
: 9 & 7
[H] = 11 11 1 1 1 1! 1 ] %’ 52
' -
111 11 111 1 - S ’———53
9 r &
11111 111 1 _ . ]L
9 —

c ! ss
%r;figted L 1 ﬁ: F
Y0, iré—~—l 16 o

N X //\ ]

i (— ey

< —
R — -
1/0 /——3
bufferig \ o%——
. : Frbn
: L
Y15 ( \ /“‘&
VN

Fig. 2-5 Implementation scheme and logic diagram of an on—chip ECC circuit
for a modified Hamming (22,16) SEC-DED code



CHAPTER 3

BUILT-IN TEST FOR VLSI/ASIC

3.1 Introduction

Testing of VLSV/ASIC designs is a major portion of the effort in their design, and
manufacturing, and even in their operations at run time. Ever—increasing levels of integra-
tion, and innovations of fault tolerant VLSI/ASIC system architecture demand that VLSI/
ASIC test technology (i.e. test hardware, test software, and test theory) evolve to a high
degree of sophistication. As the number of transistors that can be integrated into one piece
of silicon approaches millions, it would seem that some small portion of those circuits
could be devoted to testing the function the remainder are to implement. This concept is
called "Built—In Test” [McCL86, BARD87, MILL88, ARGA93]. Built-in test (BIT) rep-

resents a philosophy in VLSI, namely, design for testability (DFT).

In this chapter, we shall start with a brief review of some of the fundamental but
important concepts related to the modern test theory and technology [WiPa83, MCCLS86].
We shall study general guidelines, applied techniques and evaluation methods for built—in
testable VLSI/ASIC design. We shall proceed with built—in test architectures or circuit
structures, in respect to test generation, test response compression and analysis, and test
control and support integration. This study would serve as theoretical and technology prep-
aration for developing the proposed BIT solution to on—chip ECC design for embedded me-
mories. The design method, implementation, verification, and validation are to be covered

in the next two chapters.
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3.2 Built-in test and external-applied test

Built-in test as a major design—for—testability technology addresses the test prob-
lems associated with digital networks of the size that are encountered in working with
VLSV/ASIC systems. As increased circuit density continues to force very large scale inte-
gration (VLSI) to grow, conventional externally applied tests, structural or functional, be-
come less and less satisfactory. Alternative to the externally applied tests is built—in test.
Built-in test refers to any digital test technique where the generation of the tests and the
mechanism for analyzing the responses to these tests is an integral part of the circuit being
designed. The dependence on the latest, most sophisticated and costly test systems are less-

ened to a great extent [ABRA90].

Providing built-in test has now become a part of the VLSI/ASIC design process.
As VLSI reaches commercial applications, quality demands will force some form of de-
sign—for—testability into the system. Taking silicon from the functionality of the design
into built—in test functions is greatly enhanced by the capacity of VLSI digital circuits
themselves. The incremental circuit and area overhead taken by the built—in test structures
can be a small (or affordable) price to pay for the assured testability and the resultant quality

that ensues.

3.3 Structural test and functional test

In 1959, R. D. Eldred showed that there was an effective way to test the hardware
of a system rather than its function [BARDS87]. This was the beginning of structural test
as we know it today. The structural approach proposes that a digital network or system can
be described in terms of logic primitives and macros (AND, OR, NOT, XOR, FLIP-FLOP

and ADDERS). If a test is generated to test the fault of each logic elements in turn, or to
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make the test pattern more effective and practical according to test algorithms, the faulty
component(s) could be detected and located, and then be removed or substituted by a
stand-by. In contrast, functional test demonstrates an adder could add and so forth, which
provides a more direct measure in design verification and manufacturing test of a digital
network or system. It is recognized that in some cases it is not practical and economically
impossible to exhaustively test all intended functions of a VLSI/ASIC system of sophisti-

cated complexity or of poor testability.

Built-in test can be either structural or functional in nature. Pseudorandom test and
scan test are types of built—in test that perform a structural test of the digital network or sys-
tem. A particularly appealing feature of psudorandom test is that the test patterns can be
generated by simple built-in generators. There are other built—in test methods which per-
form either functional or structural tests, they either work with stored deterministic test pat-
terns or execute functional programs that are designed to exercise specific parts of the digi-

tal network or system.

3.4 Fault models and fault coverage

The structural approach vs. the functional test also suggests that there is a model
of faults of faults to be detected. Defects introduced during manufacturing, such as, open
interconnections, shorts between conductors, excess leakage current and others, or from
service-related problems such as electromigration, overloading, or burnout will all affect
the logical behavior of the network. Fault modeling in a manner that is consistent with the
representation of the network abstracts the effect of a physical defect into a stuck or faulty
condition on one of the terminals of the gate that hosts the defect. This represents a system-

atic way to assess the malfunction of the network caused by a variety of actual defect(s).
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The circuit fault model specifies the range of physical defects that can be detected
by a given test procedure. Take the classic stuck—at model as an example, it is generalized
to apply to any fault condition that causes a logic gate to behave as though one of its inputs
or outputs is stuck at logic 1 or 0. Stuck—at faults affect only the interconnections (or lines)
between gates in a logic circuit. The defect can be caused by connections within the gate
being open, as well as by shorts to ground (stuck-at-0), or to the potential of the power

supply (stuck—at-1) and so forth.

The stuck—at model has been the mainstay of the development of test theory. More
complexed fault models have been proposed [MoTh86, ZHAN94]. Some of them are as

follows:

e  Sequential Fault Model
If two or more lines that are shorted together and form a feedback path that
creates a new state in which the network can exist, the fault is called a

sequential fault.

e  Combinational Fault Model
If two or more lines that are shorted together do not form a feedback path
that creates a new state in which the network can exist, the fault is called

a combinational fault.
e  Parametric Fault Model
For instance, if a fault causes abnormal currents the fault is classified as a

parametric fault.

e  Pattern Sensitive Fault Model
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If the effect of the fault is dependent on the state of some other circuit

in the network, the fault is called pattern sensitive fault.

e  Delay Fault Model
If a fault causes a combinational circuit to fail to propagate data in time for

clocking into next stage, the fault is classified to be a delay fault.

Fault coverage is a measure of test quality. Fault coverage analysis requires fault
modeling. Fault models help in the generation of test patterns and in the evaluation of test
quality in terms of coverage (the percentage of faults detected by a set of test patterns) of
modeled faults [AgSc88]. Fault coverage can be determined by fault simulation, which
may take a prohibitive amount of computer time for simulation of all faults in a large cir-
cuits in a VLSI/ASIC design. Recent EDA systems provide fault grading tools, such as
Verifault from Cadence, QuickGrade II from Mentor Graphics. Some of those tools come

with the graphics user interfaces (GUI), making them easier to use.

3.5 Design verification and test

Modern logic and timing simulation tools play an increasing important role in
VLSI/ASIC design verification. During a simulation, the designer can apply many stimuli
to the software model of the digital system and evaluate the responses. In this way, the
designer can assure the design meets the logic and timing requirements. The simulation
may be entirely in software on a general purpose computer workstation. Alternatively, the
simulation can be done in a hybrid fashion, where those portion of the system available in
hardware are used in conjunction with software models of the portion being evaluated
[WIER93]. In either way, modern simulation tools associated with sophisticated VLSI/

ASIC EDA tools are now available to VLSI/ASIC designers for design verification.
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Often the simulation is based on a register transfer level (RTL) of the design. Since
this design must be translated to devices and interconnections at the silicon level, several
sources of errors must be dealt with. Automatic programs that translate from RTL to gate
level description and gate level descriptions to mask level layout descriptions are available
in varied degree of sophistication. These automatic programs as CAD tools for VLSI/
ASIC design preserve the correctness of the design, thus allowing the design to rely heavily
on the software verification done at the higher level. Simulation at lower levels, such as
the simulation after the place and route would provide the desi gn verification with a collec-
tion of more realistic parameters of the design such as the real circuit delays, and offers
more sufficient timing verification of the design. A unit-delay model is often used in simu-

lations at higher levels.

If sufficient design verification is done in the software stages of implementation,
the purpose of the test is to determine that the hardware has been properly fabricated to the
specification. The strict sense of test in this context is by no means to mislead to a “begins
with design and ends with test” conjecture. In more and more technology companies, mar-
ket demands for ever higher quality products are forcing a high testability requirement into
initial specifications. When built—in test is incorporated in the VLSI/ASIC designs to meet
testability specification, the distinction between design and test become moot. At that

point, test is a part of design [BARDS7].

3.6 On-line test and off-line test

When the system is operated as intended to perform some assigned function, it is
said to be “on-line”. Often itis desired to test the system after it has been put on-line. This
may be to assure readiness for a critical mission or job, or may be required to monitor error

recovery procedures, or to measure the fault—tolerant status of the system. If a procedure
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to test the system is performed as a task in the job stream of the system while other tasks
are ongoing, the test is said to be an on—line test. On the other hand, if the system must be
shut down and/or dedicated to the test procedure in such a manner that normal system func-
tion stops completely, the test procedure is said to be an off-line test. In other words, the

system must be taken off-line for the test to be performed.

The on-line test implies the test runs at full speed of the system that is under test
and in normal operation. The off-line test may be performed at a speed that is lower than

the one at which the system runs in normal operation.

3.7 Built—in test as a solution to testable VLSI/ASIC designs

The ultimate in testable VLSI/ASIC design is to make the design test itself. To meet
testability specification, a built~in test architecture is a central task in developing any of
testable VLSI/ASIC designs. Building test into the design, as expected, consumes added
circuit and I/O overhead, but at the same time results in visible reductions to the costs of
testing when compared with an external test using automatic test equipment. Built—in test

achieves these savings through the following factors:

i) eliminating (or at least reducing) the costs of test pattern generation and
fault simulation,

ii) shortening the time duration of tests (by running tests at circuit speeds),

iii) simplifying the external test equipment, and

iv) easily adapting to engineering changes.

Concurrent or on-line built—in test includes such methods as error detection and

correction circuitry, totally self—checking circuits, self—verification, and others. It is worth
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noting that some of the important techniques, such as triple modular redundancy (TMR),
provide an instantaneous correction of errors caused by either permanent or intermittent
faults. An off-line or built—in test of these circuits must ensure that the redundancy exists
and is active. TMR is less reliable than its simplest version if it does not begin operation
in a fault—free condition. A complete test of error correction circuitry (ECC) in this context

is a mandatory requirement.

A nonconcurrent built-in test requires a mechanism for supplying test patterns to
the circuit being tested and a means for comparing the responses from the circuit under test
(CUT) to the known good responses as suggested in Figure 3—1. Both mechanism and

means must be compact enough to reasonably be built into the circuit.

Stimulus B Functional . Response
Generator Circuit Analyzer

!

Controller

Fig. 3-1 A general nonconcurrent BIST structure

3.7.1 Built-in test methodologies

There are many ways to generate the tests, with the simplest categorization being
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in terms of the type of testing used: 1) exhaustive test; 2) random test; 3) pre—stored test;

and 4) functional test.

In exhaustive test, the test length is 2%, where n is the number of inputs to the circuits
under test (CUT). Since all possible test patterns are applied, all possible single and multi-
ple stuck faults are detected (redundancies excepted). The tests are generated with any pro-
cess that cycles exhaustively through the circuit input space, such as a binary counter, a
Gray code generator, a LFSR, or a n—stage nonlinear feedback shift register. Exhaustive
test for high input pin count structures requires relatively long test times, but it has been
suggested that circuits can be added to partition such structures into subcircuits, each of
whose input pin count is low enough to permit exhaustive test in a reasonable amount of

time.

Random test implies the application of a randomly chosen subset of the 27 possible
input patterns. (Random testing is a misnomer because the tests are actually chosen pseu-
dorandomly so that the test set is repeatable). A guarantee of the test coverage for the subset
can be obtained by running the test against a fault model of the circuit, or a probabilistic
measure of coverage can be obtained by analytical methods. The number of applied tests
or the size of the subset is constrained by the economically allowable test time. While cir-
cuit partitioning is not needed, some logic modification may be necessary to ensure ade-
quate coverage from the limited test set. Linear feedback shift register (LFSR) or cellular

automata circuits [HoMc90] are the usual choices for a random test generator.

Pre—stored testing, on the other hand, requires a preliminary step of test generation.
The cost of test generation can be offset by the savings in the test time resulting from a much
smaller number of applied test. The certainty of a know test coverage is an added bonus.

Given this test set, pre—stored test can be achieved in several ways. The simplest approach
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is to store the test patterns in an on—chip ROM and to use a counter to cycle through the
ROM addresses. For relatively complex circuits, the ROM may be rather large. Another
approach to pre-stored test is a technique called “store—and—generate”. A much smaller
on—chip ROM, an address counter, and a linear feedback shift register (LFSR) are used,
with the ROM contains r words of n bits each. Each of these r words is used sequentially
as a string value (the seeds) for the n—stage LFSR. For each of the seeds, the LFSR will
generate s vectors (of n bits each) that are applied to the n—input circuit as test patterns.
The counter steps the LESR s times for each address of the ROM. This total of r X s patterns

is presumed to be a complete test set for the structural fault model used.

Functional testis a verification of the intended functions of the circuit. In a complex
digital circuit many different failure models are possible. The assumption that faults can
be modeled as logic gate inputs or output fixed to either a logic 0 or logic 1, as in the single
stuck—at fault model, admittedly does not cover all these failure modes but has remained
successful both because it is computationally feasible (for small circuits) and because it
results in a qualitative measure of test coverage. Functional testing, being an alternative
to the single stuck—fault model, is an approach that has been suggested to more realistically
account for the actual effects of physical failures on logic. Failures are then modeled at
the register transfer level (RTL) or the functional level in terms of variations in expected
function. One requirement for successful functional test generation is that it isn’t sufficient
for a functional test to determine whether the intended function has been performed cor-
rectly; a functional test should also verify that no unintended function was additionally

performed.

3.7.2 Built-in test response analysis

Built-in test requires a method of checking the output response of the circuit under
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test that is simpler and is less storage—intensive than the conventional bit-by-bit compari-
son of the actual test output with the expected correct values. The usual method is to per-
form some form of data compression on the test responses before making the reference
comparison. The compressed response is referred to as the “signature” of the circuit under
test, and comparison is made to the precomputed signature of a fault—free version of the

circuit.

The signature and its collection algorithm should meet the following qualitative

guidelines:

1). The algorithm must be simple enough to be implemented as part of the built—

in test circuitry;

2). The implementation must be fast enough to remove it as a limiting factor in

test time;

3). The algorithm must provide approximately logarithmic compression of the

test response data to minimize the reference—signature storage volume.

4). The compression method must not lose information. Specifically, it must not
lose any evidence of a fault indicated by a wrong response from the circuit

under test.

There is no algorithm that unambiguously meets all of these criteria. The greatest
problem is the possibility that the error pattern from a faulty circuit may be compressed
to the same signature code as the fault—free circuit. Since only a function of the test re-

sponse sequence is verified rather than the sequence itself, there is a loss of information
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that can “mask” errors in the sequence. Fault masking in built—in test is measured by the
probability that a compression of a possible error sequence of test response produces the

same signature as the fault—free circuit.

Different compression techniques and methods have been suggested and some are
in actual use. One can refer to [BARD87] for an introduction of the following methods of
test analysis: 1) parity checking; 2) transition counting; 3) syndrome generation; 4) signa-

ture analysis; 5) Walsh spectra; and 6) cyclic codes.

Among these methods, signature analysis has been the most widely used data com-
pression method for built—in test designs. It uses a shift register with various stages tapped
and fed back to an exclusive OR (XOR) gate that in turn feeds the register input. The feed-
back network configuration of the shift register is determined by a primitive polynomial
which has a small number of terms. This implies a simple and effective hardware imple-
mentation of the signature generation circuit. A modified multiple (parallel) input shift

register (MISR) structure is studied and applied in our project.

3.7.3 Built—in test structures

Built-in test is a collection of possibilities, the choice of which depends upon the
application. There is not one best built—in test structure, however, there are factors to con-
sider in relation to evaluation of built—in test structures. These factors are: i) fault coverage
required; ii) system overhead which is tolerable; iii) the impact of the built—in test on the

system performance; and vi) the test time that is allowable.

Implementation approaches are different and versatile in a variety of built—in test

architectures. In this section we can not mention all of them with the rewards and hazards
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of each one. Some of those that have been suggested or used in the past are: LFSR or CA
structures for probability—based (pseudorandom) test generation [HoMc90], and MISRs
for parallel test response compression (as shown in Figure 3-2); Scan—based built—in test
structures (to be briefly described in the next subsections), may use LSSD or BILBO based
structures; Others are for simultaneous self-test (SST) and Fast—forward test. Refer to

[MCCLS86] and [BARD87] for detailed circuit structures for built—in test.

Normal
inputs I} Normal
7 g m output
Functional /
MUX Circuit ’
m
n

Pass/fail

Fig. 3-2  BIST circuit with LFSR and MISR

3.7.3.1 Scan-path structures

Scan path refers to a disciplined design standard for all storage elements (other than
memory arrays) which has the express purpose of making the stored values easy to control
and easy to observe. With this facility the storage element becomes in effect both a primary
input and primary output. Test input signals can be clocked in through one or multiple scan

paths (scan chains) internal to the circuit under test, and test results can be observed wher-
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ever one of the storage elements occurs in the logic circuit. Thus the test problem reduces
to one for the combinational logic between the storage elements. The test results can be
scanned (clocked) out along the internal scan path for verification. It is worth noting that
advanced EDA tools today offer scan insertions for gate level VLSI/ASIC design imple-
mentations. Thus, the configuration needed to convert the storage elements into a chain

of scan registers when in test mode is automated using scan insertion tools.
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Fig. 3-3 A general scan-based BIST design model

3.7.3.2 Boundary scan test

Boundary scan test, the inclusion of shift—registers latches around the periphery of

a VLSI/ASIC chip (or a multiple—chip package), originated from a useful concept for diag-
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nosis at the system or subsystem level. In the most general sense of hardware or system
diagnosis, different diagnostic demands are placed on the testing facility at different pack-
aging levels [GIBr89]. At the chip level, diagnosis of the failing net (or the circuit) is re-
quired for resolution of zero yield situations at first silicon and later for yield improvement.
At the subsystem level the diagnostics must identify a repair action since it is unlikely that
the package is a throwaway item. At the system level, diagnosis must be able to identify
a field replaceable unit. Because a VLSI/ASIC chip is likely to be at any of the levels con-
cerned, boundary scan support has become a standard feature in almost every VLSI tech-
nology devices. Figure 3-3 shows a general scan design including boundary scan and inter-

nal scan chains.

IEEE-1149 boundary scan standard is the documentation of references for all
boundary scan design and implementations. It is worth noting that advanced EDA tools
and many VLSI/ASIC vendors provide ready—to-use boundary macrocells or boundary
scan insertion tools [DONNO1]. Unless optional boundary scan features are of concern the
designer would not be involved in detailed implementations of the boundary scan circuitry
for the VLSI/ASIC design. A proprietary scan design methodology with ATPG (automatic
test pattern generation) tools at Bell-Northern Research is given in [DOSI 92]. Refer to

[MaTu90] for the boundary scan architecture and information on the test access port.

30




CHAPTER 4

A BUILT-IN TESTABLE ON-CHIP ECC

4.1 Introduction

In a system VLSI/ASIC chip, embedded memories with on—chip ECC presents a
solution for wide memory bandwidth and reliable data transfers. Italso presents a challenge
to testing these functional modules internal to the system chip. In the previous chapters,
we have studied error control coding for memory systems, the design for testability (DFT)
philosophy, and the built—in test (BIT) methodology. In this chapter, we shall present a de-
sign—for—testability method for on—chip built—in testable ECCs. First, we shall start with
testability analysis of the on—chip ECC implementation presented in Chapter 3 and propose
anatural partition for testability. Second, we shall demonstrate a procedure of test develop-
ment, mapping, and compaction, resulting in reduced hardware overhead and test time as-
sociated with built—in test. Then, we shall describe a built—in testable architecture that inte-
grates the advantages of multiple self test methodologies, and supports up to four BIST
environments. Finally, a viable BIST structure, intraconnections, and control signals are

explicitly defined for modular design implementations.

4.2 Circuit partitioning for testability

The on—chip ECC can be partitioned as in Fig. 4-1 into two parts: PG/SG and SD/

DC. With reference to logic diagram of the on—chip ECC circuit in Fig. 2-5, the following

analysis can be made with regard to the testability of the ECC circuit.
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4.2.1 The PG/SG Circuit

The PG/SG blocks generate parity and syndromes from the coded incoming data.

The testability features of this portion of the ECC circuit are as follows:

1) Tt consists of only linear circuity (XOR logic) with high controllability and
observability;

2) Itisafully bit-sliced implementation, such that every syndrome bit is generated
by its own circuitry;

3) Each information data bit has a fan—out of 3, which may cause some random

pattern resistance that counteracts the high controllability of the XOR tree.
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i - -k | |

Parity In: r/1 k o r} ki : g Syndrome | & |
I Syndrome I Decoder [7°% Data k, | Data Out
| - Ge?é:rGator : : (SD) Corrector }
| araty | n-k ) DC)

Dataln | k, g-Generator 4>} : [ k ( :

——————e— e

l (PG) I I | Syndrome
: | { nk) Out
| k T
! I I
| I |
| POSe e J

Fig. 4-1 A natual partition of the error correction circuit

4.2.2 The SD/DC Circuit

The SD/DC blocks decode the syndrome and corrects the incoming data when

applicable. The testability features of this portion of the ECC circuit are as follows:
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1) It consists of non-linear circuits;
2) It has high fan—in;

3) These two properties make for low controllability.

In our BIST scheme we first develop a test generator that provides the needed but
perhaps a minimal set of test vectors for testing the PG/SG. The problem on how well this

set of test vectors covers the faults in SD/DC is addressed later in this Chapter.

4.3 Testing PG/SG

The modified Hamming (22,16) SEC-DED code is embodied in the syndromes

equations (S;), as functions of the data bits (D;) and the check bits (Cy:

So=C0+DO+D1+D3+D4+D8+D9+D10+D13
S; = C + Do + Dy + D3 + Ds + Dg + Dg + Dy; + Dyg
Sy, = C2+D1+D2+D4+D5+D7+D9+D11+D15
S3 = C3+ Dg + D + Dy + Dg + D7 + Dig+ Dy; + Dy
S4 = Cs + D3 + Dy + Ds + Dg + D7 + Dys + Dis+ D5

S; = C5 + Dg + Dg + Dig+ Dy + Dy + Diz+ Dys+ Di;
Primary input to the on—chip ECC consists of 16 data bits and 6 check bits that fan
out to the six PG/SG bit slices according to the above code. Fig 4.2 shows one of the six

syndrome bit slices and the structural test vector set T, for testing the bit slice.

The test vectors in test matrix T, cover all single stuck—at faults [BOSS70] in the

bit slice. For every test in T, to reach every one of the six bit slices in PG/SG, we need to
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expand each test in T, to six different tests according to the code. This would establish a

set of test vectors in test matrix T for testing PG/SG as shown in Fig. 4.3.

00 0 0 0 0 0 O 0
11 1 1 1 1 1 1 1
[To] = 1 0 1.0 1 0 1 0 1
I 0 6 0 1 0 0 O 1
1 0 00 0 0 0 0 1

DO DI D2 D3 D4 D5 D6 D7 C

Fig. 4-2 A PG/SG bit slice and bit slice tests
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4.3.1 Test matrix reduction

As shown in Fig. 4-3, the mapping from test matrix T, to test matrix T is according
to the fan—out of the primary inputs dominated by the ECC code. The resultant test matrix
T has a dimension of 18 X 22. This is because the set, reset vectors, i.e., (11111111),
(00000000) are not included. There is no code dependence for these two global operations,

and set or reset tests can be done to all six slices simultaneously.

We shall compact the rows and columns of matrix T, in section 4.3.1.1 and section

4.3.1.2, respectively. The resulting matrix will be reduced to only ei ght 11-bit test vectors.

4.3.1.1 Row compaction

The rows of T are the test vectors needed for all stuck—at faults in PG/SG. Due to

the high sparsity of T with respect to don’t cares, the rows of T can be compacted. The

result of row compact of T is test matrix T, as in Fig. 44.

DODID2D3D4D5D6 D7 D8D9DI0D11 D12D13 D14 D15 :CO C1C2C3C4C5

1 0x 1t 01 01 101 01T 01 0,1 x x x 11

r 10110 1 1 0 0 x 1 1 x 0 0:'x 11 x x x

I 001 x x x 01 x x 0 1 0 x x «x 'xox ox o x 1 x

[ Tc] =1 0 0 0 0 x 0 1 1 0 0 0 0 0 x x.:1 x x 1 x x
8x22 1 1.0 0 0 0 1t 1 0 0 x 0 0 x 0 0:'x 1 1 x x x

X x x 1 0 0 0 1 1 0 0 O 1 0 0 O X ox o x x 11
1000 00 0 0 O0CO0OO0OO0OO0OTUO0OO0O x11 1 x 1 x x

x 101 0 0 0 01 00 0 0 0 0 0 '%x x 1 x 11

Fig. 4-4  Test matrix resulting from row compaction
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In comparison with T that has 18 rows, the test matrix T, has only 8 rows. This
represents a > 50% reduction in the needed test inputs. Still, test vectors in T, are 22 bits
long, the same as the test vectors in test matrix T. Each bit corresponds to a separate bit
of test inputs or the outputs of a on—chip test generator. This suggests that a 22 bit built—in

test generator would still be required should an on—chip test generation be implemented.

4.3.1.2 Column compaction

To minimize the size of the on—chip test generator, we noted that two columns of

the matrix can be supplied from the same bit of the test generator if they represent exactly

DO CO ClI C3 C5

D1 C2

D2 D5

D3 C4

D4 D11 D13

D6

D7

D8

D9 D15

D10 D14

D12

V??V?V??V?é

TO; TL| T2 | T3 | T4 | T5| T6 | T7 | T8 | T9 | TI10

g TEST INPUT 11 BITS >

Fig. 4-5 Eleven (11) groups merged
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the same binary (column) vector. Therefore, all we need to do to compact the columns of
Te is to identify the the columns that can be merged by this rule. For instance, it is easy
to see that the columns Dy and Cy can be merged into one column. We ended with 11 groups

of columns in Te merged as shown in Fig. 4-5, and finally the test matrix Ty for testing PG/

SG in Fig. 4-6.
SO S1 S2 S3 S4 S5
| | | [ I I

PG/SG

@ @ @ @ @ @ bit slices

9 9 9 9 9 9

Fan—out
dominated by
ECC code

Fan—out of PG

lTO TI T2 T3 T4

TS T6 T7 T8 T9 TIO|

1 0110011 0 1 1
1101 1 1100 0 1

1 01 1101000 0

[Td =|1 000001100 0
8x11 1 1.0 0 0 11 0 0 0 0O
0001 0011 0 0 1

1 000000 0O 0 0
1101 0001 00 0

Fig. 4-6 A compact set of test vectors for testing PG/SG

4.3.2 Discussion

For testing PG/SG, the original test matrix T of 18 22-bit test vectors was obtained
by expanding the test vectors for one bit-slice; T can then be downsized, by row compac-

tion, to a 8 22-bit test vector matrix T.. These 8 test vectors cover all stuck—at faults in

38




the PG/SG. They can either be scanned in as test inputs to the circuits in scan test or stored
in a on—chip ROM and applied vector—by-vector by reading from the ROM. The column
compaction concluded with the 11 groups of columns merged. This implies that an 11-bit
(instead of 22-bit) on—chip test generator is sufficient for testing the PG/SG, given the fan—
out of each bit of the test generator determined by the mapping rules. Practically, this means
50% less built—in test generation hardware overhead can be achieved. The uneven fanout

(maximum 5) should not cause any problems with respect to circuit operation.

4.4 Testing SD/COR

We now derive all the test inputs needed to cover the stuck—at faults in SD/DC from
the test vectors needed for testing a bit slice of the syndrome decoder. Figure. 4—7 shows

the one main test and six auxiliary tests which are all needed for testing one bit slice of the

Main Test 001011

Auxillary
Test

OO OO M
OO
bt sk et () Pt it
SO OO0
prt (O bk et ek
O ek prmd ek ok ek

Fig. 4-7 Test vectors for one syndrome decoder bit slice
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b4

syndrome decoder circuit (For each bit slice the expected output of the main test is 1

whereas the expected test output is O for all auxiliary tests). This leads to a set of 112 (7

X 16) test vectors in total for testing the 16 bit slices. Figure 4-8 explicitly shows the 112

, 15). Itis noted that

test vectors with each of 16 main tests referred to as Di (i =0, 1, ..

D4

D3

D2

D1

DO

D8

D7

D6

D5

D14

D13

Di2

b1l

D10

D15

Fig. 4-8 Original test vectors for testing SD/COR
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each auxiliary test vector is one bit different from the main test for the bit slice and, auxilia-

ry test vectors may overlap in the test vector set T although the 16 main tests are distinct.

By combining these ‘overlaps’ in T, a set of 46 test vectors result. Figure 4-9 ex-

plicitly shows the non-overlapped 46 test vectors needed for covering the stuck—at faults

in SD/COR circuit.
1701100011100100011110111000011101000
1011011010010010101110000111101100101
™ = 0110110101001001001001111111001011100
111000110011100011111101101100000001°1
0001111100000111000100010010111111111
0000000011111111000010001001000101101
001110001
010110000
100101000
100000101
100000011
111101111

Fig. 4-9 Non-overlapped test vectors for testing SD/COR

4.4.1 Pipelining the tests for SD/COR and PG/SG

The prime question here is whether the test output from PG/SG form a complete
test set for SD/DC when tests are generated using an on—chip 11 bit PRTG. It is noted that
the fanout derived in the previous section maps the test generator outputs of an n/2 bit wide
test vectors to a much larger space of n-bit vectors; and the ECC code implemented by
PG/SG in turn maps this space into the much smaller space of n—k bit syndrome vectors.

The product of these maps acting on the initial test set does not always generate all of the
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possible 21k syndromes vectors, even if the initial test set is exhaustive (i.e.,2V2-1 vectors
in size). When the vectors in the syndrome space are left out by the above mappings and
happen to coincide with the ones needed by SD/DC, a reduced fault coverage will result.
We simulated the syndrome vectors generated by the PS/SG when fed by 2 11 pseudoran-

dom test vectors to analyze the fault coverage.

It is noted that the 46 test vectors needed occupies 72% of the compete syndrome
space( i.e., 2= 64). We observed that the 46 syndrome vectors needed for testing the SD/
DC circuit were included in the syndrome vector set of the test responses from the PG/SG
circuit when initial test vectors are applied from an on—chip 11 bit PRTG unit with random
seeds. As such, we anticipate a >99% fault coverage for all stuck—at faults in SD/DC as
well as in PG/SG when pipelining the tests for PG/SG and SD/DC on on—chip 11 bit test

generator PRTG circuit.

4.4.2 Linear independency of syndrome equations

Refer to figure 4-5, the syndrome equations in section 4.3 now can be expressed

as functions of the original 11 bit test inputs T[0:10] :

So = To+ T + T3 + Ty + Ty + Tg + Ty

St = To+To+ Tz + Ty+ Ts + Ty + Ty

So = Ty + Ty + T4 + Tg + Ty

S3 = To+ Ty + To+ Ta + Ts + Tg + To + Tjo
Sg = To+ T3 + Ty + Ts + Tg + Tg + Ty

Ss = To+ Ta + T7 + Tg + To+ Tyo

It is noted that these syndrome equations are lineally independent. Therefore, all syn-
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dromes generated corresponding to a given set of 2111 test inputs to PG/SG will be applied
to testing SD/COR. This linear independence implies the possibility of obtaining 100%

fault coverage for SD/DC.

The linear independence of the syndrome equations in our case does not imply the
linear independence of the syndrome equation holds true for all ECC codes. A different
ECC code presents a different map and changes the syndrome equations. However, since
every syndrome equation includes exactly one check bit input, this may be a good tool for
eliminating linear dependencies and increase the fault coverage at no extra cost. One can
redo the second map, namely the fan-out of the test generator, and regroup and merge the
check bit of Figure 44 into different groups as in Figure 4-5. In general, given any linear
dependence X, S; = 0, one needs to pick any one of the syndromes in the sum (e.g. S;) and
provide its check bit from another possible test generator bit, say the bit Tp, instead of Th,
by taking advantages of the don’t—cares. This is equivalent to replacing S;with §;” = S; +

Tm + Ty, which will change the linear sum of syndromes to Y, S; + Th +T, 0.

4.5 Best testable codes

The syndrome decoder has the lowest controllability of all elements in the ECC.
Hence it sets the cap on test time. Even if the syndrome equations is linearly independent,
the 100% fault coverage is only guaranteed if the test generator runs exhaustively (211-1
test vectors in our context). During one test cycle the test generator may not go through
all combinations of inputs exhaustively. The best testable codes are, therefore, defined as
one that requires the least time to test its hard—to—test section, i.e. the syndrome decoder.
From the analyses in section 4.3. it is noted that the more auxiliary vectors overlap, the
more effective the testing the syndrome decoder becomes. An auxiliary test is the main

test with one of its bits flipped. Therefore, a short test time can be achieved by using a code
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whose syndrome space consists of vectors with maximum of Hamming distance of 2 be-

tween them.

4.6 The BIST architecture

The block diagram of the built—in testable ECC module developed in this thesis is
shown in Fig. 4.10. The on—chip ECC core, the PRTG unit, the MISR unit, and the test
controller unit constitute a built—in test structure, which seems to be a conventional BIST
structure that implements built-in pseudorandom test on the on—chip ECC. In this BIST
architecture, however, the capacity of each functional block has been defined not only to
implement the pseudorandom test, but also the pseudoconcurrent test, and the scan test of

the on—chip ECC and other system modules located in a same scan chain when in test mode.

This proposed BIST architecture is designed to support self testing of the on—chip
ECCunder amultiple BIST environment. So itisimperative that a minimal hardware over-
head should be achieved by the BIST architecture. It is noted that internal control signals
and status, combined with the intraconnections of the BIST system structure, inherently
demands advanced hardware design methods such that the same built—in test hardware can
be dynamically configured under software control for each of the four self test modes: 1)
on—demand test mode, 2) pseudoconcurrent (interleaved) test mode, 3) scan test mode,

and 4) scan—path mode.

The BIST architecture also specifies that test stimulus are sourced from either the

on—chip PRTG-based test generator or from the test vectors from a scan test input port.

Before we get to define the independent self-test modes and evaluate the perform-

ance aspect of the BIST architecture in detail, we need to present some general descriptions
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about the operational and control aspects of the built—in test structure as a system.
4.6.1 System constructs and operations

The built—in testable ECC is constructed by five (5) functional blocks: 1) aPRTG-
based test generation or scan test input unit; 2) a multiplexer unit for selecting from normal
memory operation input or self test input to the ECC circuitry; 3) the on—chip ECC core;
4) a MISR-based parallel signature analyzer or scan output unit; and 5) a high perform-

ance self test controller.

The only external controls to the BIST on—chip ECC system are: a dedicated
CLOCK signal to run the test function only; a two-bit signal TEST_MODE[0:1] to chose
one of four self test modes; an ECC_TEST signal to signal the system into and out of self—

test operation; and a global RESET signal for presetting the system to a defined initial state.

During normal memory operation of the system, the coded memory words (22 bits)
are selected by the multiplexer (MUX) as the inputs to the ECC circuits for error checking
and correction. The corrected memory words (16 bits) are send out directly via the memory
output buffer (not shown in Fig. 4-10). The syndrome output bits are optional. They could

be useful in tracking the errors on a production line for fault location purposes.

When the system is called up by the processor for a self test in a given test mode,
such as the on—demand test mode, the MUX would select the pseudorandom test stimulus
generated by the on—chip PRTG to the ECC circuitry. During the test, the outputs from the
ECC would in turn be routed to the on—chip parallel signature analyzer (MISR). The MISR
has the circuitry to generate and match a (final) signature with the known correct signature

in each test cycle. It sets a one—bit ECC_Failure flag if a different signature pattern results
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on the completion of a built-in test cycle.

The SCAN_IN and SCAN_OUT terminals on the PRTG and the MISR units are
dedicated to the two scan—based test modes. In scan-based tests, the test stimulus is serially
shifted from outside of the system and test results are shifted out for analysis. This is basi-
cally accommodated by configuring the flip flops in the PRTG and the MISR into shift reg-
isters. There are differences between these two scan—based test modes. In scan test mode,
the ECC circuit is the circuit under test (CUT); while in the scan path mode, the bit streams
(either as test input or test response) will simply by—pass the ECC model to support scan
test operations on other system modules located in the same scan chain as the ECC model.
Internally in our on—chip ECC, these two scan—based test operations are treated as two in-

dividual self test modes, interpreted as two distinct processor commands.

One major difference in circuit configurations is that in scan path mode the SCAN—
OUT from PRTG is connected to the SCAN_IN on MISR, enabling a chain of by—pass shift
registers. In scan test mode, this net is disconnected. As such, the scan test input will never
be shifted beyond the test input shift register in PRTG, and the test output bit stream will
have a constant extension of its last significant bit. In PRTG, the bit stream of test stimulus
is aligned and converted into a 11 bit test vector, which is selected by the MUX to feed into
the ECC. In the MISR, the test response is captured in parallel and in turn converted back

into a serial bit steam and shift out via the SCAN_OUT port.

As the BIST architecture integrates the advantages of multiple BIST technologies,
it demands an integrated test control unit. Again, minimal and programmable features of
the test controller is desired. The test controller receives from the processor a command
in a 3 bit format, which specifies a test mode in 2 bits and orders assertion or termination

of the self test in 1 bit. These three control bits may be latched into a control register such
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that the host processor can still hold the control bus for other tasks while the self testing
of the on—chip ECC is in progress. The test controller will put the built~in test circuitry
as a whole into a configuration dedicated to the given test mode and operation. For in-
stance, it will set up the proper test data flow path, manage the source of test input, and
so forth. During a self test, the test controller will monitor the internal status or states, gen-
erate the appropriate internal control signals to coordinate or synchronize the operations
of each of the functional units in the BIST structure. In addition, it will manage the timing
of a proprietary system initjation to set the built—in test circuitry to a predefined state before

a new self test cycle begins.

During a self test, the test controller will also be alert to control command changes
(or new commands) to actively respond to the host processor. Take an interleaved test as
anexample. The test controller will generate a HOLD signal when the system is called back
to the normal operation from an on—going pseudoconcurrent test. The HOLD signal will
freeze all the built—in test circuitry so that the system can resume the interleave test from

where it left off.

The on-line error/fault reporting system is composed of three flag signals:
DOUBLE_ERROR, COR_ERROR and ECC_FAILURE. During normal operation the
first two error flags can be monitored concurrently for error detection and correction. The
ECC_FAILURE signal is latched into an one bit flag register on completion of each self
testcycle. The information stored in this register is the conclusion of the signature compar-
ison, and updated in the end of one test cycle. The information stored by this flag can be
used by the system processor to decide whether or not a repair action needs to be taken, for

instance, to replace a faulty on—chip ECC with a stand—by.

In the next sections, we shall define the alternative self test modes and evaluate the
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performance of the built-in testable architecture from a system view. The implementation

of built—in test circuitry and control will be detailed in Chapter 5 of this document.

4.6.2 Alternative self test modes

The definition given below will explicitly specify each individual self test mode
and serve as the guideline for the circuit design of each internal functional unit of the on—

chip BIT ECC.

4.6.2.1 On-demand mode

The on-demand mode is invoked by asserting the ECC_TEST signal with the two—
bit signal T_MODE [1:0] set to (11),, Thatis, T_MODEO =T _MODEI1 = 1. The test cir-
cuitry is then automatically cleared and a test cycle begins. The built—in PRTG circuit with
a hardcoded seed pattern will serve as the source of test inputs. Upon the completion of
one test cycle with 2111 test vectors, the final si gnature is generated by the MISR and com-
pared with a hardcoded correct signature, and a single bit pass/fail result is logged in to the
flag register (0 = pass, 1 = fail). Test circuitry is then cleared and the test cycle repeats
until the system is signaled out of test mode by flipping over the ECC_TEST, in which case

the last completed test result is retained.

4.6.2.2 Pseudoconcurrent mode

Self—test in pseudoconcurrent mode is asserted with the control signals
ECC_TEST=1, T_MODEO = 1, T MODEI1 = 0. Since the ECC core circuitry does not
have a stored state, it can be summoned to serve the system while the information in its test

circuitry is held unchanged. The ECC may enter into self test whenever the system is idle,
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and is allowed to complete as much of the current test cycle as it can before being asked
to serve the system again. The system can leave an interleaved self test cycle by flipping
over the control bit ECC_TEST, and resume the interleaved test by setting up the
ECC_TEST bit again. These test subcycles continue to run, interleaved with the process,
until one cycle is completed. The result is then latched and the test circuitry is reset for a

new cycle to begin. The last completed test result is always available to the processor.

The only major difference between on—demand and pseudoconcurrent test is that
in on—demand mode the test circuitry is reset every time the test mode is entered, but in
pseudoconcurrent test, reset only occurs when one test cycle is completed. The test control-
ler must have a means to detect whether or not a complete test cycle is done when the system
quits the interleaved test mode. The control will branch into different procedures based
on this detection or the state of a interleave test cycle. The intermittent information of an
interleaved test should be held when the system exits from the pseudoconcurrent test mode
and a test cycle is not yet completed. Hence, when the system reenters the self test in pseu-
doconcurrent test mode, the test can resume from where it left off. In the case that another
test mode is entered, the test circuitry would be reset, with the last test result still stored in

the flag bit.

4.6.2.3 Scan test mode

Scan test on the ECC circuit is asserted with the control signals ECC_TEST=1,
T_MODEO =0, T_MODEI = 1. The bit stream of a test vector will be scanned in serially
from the SCAN_IN input port of the PRTG unit. Upon alignment of a test vector’s bits with
the PRTG register bits, the test vector will be purged into and through the ECC circuit. The
outputs from the ECC will then be latched in parallel onto the MISR registers from where

they will be scanned out through SCAN_OUT port on the MISR for verification. The test
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using next test vector can then begin. In scan test mode both PRTG and MISR are confi-
gured into shift registers, no test inputs are generated internally and no test output analyzed
internally. The termination of a scan test is effected when the system resets the control bit

ECC_TEST.

4.6.2.4 Scan path mode

A scan path may be formed to feed the test input serially into “deep” circuitry. With
the control signals ECC_TEST=1, T_MODEQ = 0, T_MODET! = 0, the system will enter
self test in the scan path mode, and configure the registers in PRTG and MISR into one shift
register as aportion of a scan chain. Scan test vectors will be clocked in as in scan test mode,
but bypass the ECC circuitry, for scan test of other system modules. This can be used to
alleviate the complexity in system debugging tasks and enhance the diagnosability of the

overall system.

4.6.3. Performance view of the BIST architecture

We shall now conclude the discussion of the BIST architecture with a brief system
view of its performance. It is noted that one of the features of the proposed architecture
is that, due to the need of selecting the system input or test input to the ECC core, the built—
in tests affect the performance of the system operation by only one gate delay regardless
the size of the on—chip ECC implemented. We had selected Hamming (22,16) SEC-DED
code in this thesis study. With this feature we can anticipate that the BIST architecture can
be equally effective to any modular on—chip BIT ECCs of Hamming (n,k) SEC-DED
codes. Therefore, it can be applied directly to embedded memories in 32-bit, 64—bit or

128-bit systems for improved data integrity.
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CHAPTER 5

VLSI IMPLEMENTATION AND FPGA PROTOTYPE

5.1 Introduction

One purpose of this thesis is to design and develop a built—in testable on—chip ECC
for embedded memories under VLSI/ASIC system environment. In Chapter 4 we pro-
posed a built—in testable architecture and defined high-level functionality and specifica-
tions for the design. In this chapter we shall present the design implementation, verifica-
tion, and prototype aspects of the design project. First, we start with a brief review of basic
VLSI/ASIC design flow. Second, we describe the modular design and test of each of the
internal functional units and the integrated design using VLSI/ASIC CAE tools in Ca-
dence™ (V4.2) EDA environment on Sun SparcStations. We also discuss the design simu-
lation method of using Verilog HDL and Verilog—XL. Finally, we describe rapid design
prototyping using Xilinx FPGA technology under the same integrated Cadence EDA envi-

ronment.

3.2 VLSI/ASIC design procedures

The design of a VLSI/ASIC circuit has several stages. A simplified VLSI/ASIC
design flow is shown in Figure 5-1. The conceptual design refers to an abstraction of what
is to be implemented. This is the creative part of VLSI/ASIC design where the designer
must use his imagination as well as knowledge and experience to solve the problem in ques-

tion. The expected output from this stage may include the fundamental schemes devised.
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the prospective target VLSI/ASIC technology and vendor selected, the EDA environment
and VLSICAD tools to be used, the system view and specifications, and perhaps other sys-

tem considerations such as the interfacing aspects of the design.

The next stage in the design procedure is designing the circuit to be implemented.
A structured approach is usually taken to design the circuits in a hierarchical manner. A
system architecture or structure with blocks of its subsystems is generated first. It specifies
the functionality of the system and its subsystems, and their logic connections. Next, each
of these subsystems are designed in a similar manner until the lowest level is reached,
where the detailed circuitry consisting of the primary logic elements are configured and
implemented. From this point, complex elements may be designed and implemented by
combining the small or simple elements. This is the so called bottom-up design methodol-
ogy. The design scripts generated in the early stages of the design procedure are done in
atop—down fashion. The designer can concentrate on the features and specifications of the

design rather than the quite detailed and low level considerations.

With sophisticated VLSI CAD/CAE tools available today, the next stage in the
VLSI design procedure is called design entry. That is to get the circuit design scripts on
the notebook of the designer to the workspace of the design entry tool on a workstation.
The design methodology schematic capture was used in this project, other methods such
as high level structured design using hardware description languages (HDL) are competi-
tive alternatives. Schematic capture means that the CAD software can generated a series
of netlists of the circuit design in specified target format. A netlist file is a data file that
contains connectivity information of a circuit in specified data format. The netlist files gen-
erated or extracted (captured) from the schematic can be used to generated a layout of the
design for silicon fabrication. The netlists can also be used in logic and/or timing simula-

tions to test the design for verification before the fabrication process is launched. Entering
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a schematic is just like drawing a schematic diagram in a window using the CAD tools.
Library elements for certain technology such as Xilinx 3k or 4k technologies are available.
Candence™ supports hierarchical design, as do most VLSI CAD tools. Thus, schematic

design was done in a bottom-up fashion as mentioned previously.

The next procedure shown in the design process is simulate and generate the net-
lists. Each abstraction entered using schematic capture was tested using a simulator such
as Verilog—XL™ or SILOS ™. If it works correctly by itself, it passes the verification of
functionality on this stage, and can be used in a higher level of the design. Iferrors in opera-
tion or design of the element were found during the simulation, then the circuit design and
corresponding schematic would have to be corrected until the simulation yields the correct
results. The simulation can accept the design entered using VHDL models to verify the
functionality of the design. Logic synthesis and optimization tools then generate either the

gate—level schematics or netlist of the design given the design model in VHDL.

As mentioned, pre-layout logic and timing simulation is done at this point to test
the design before prototyping/manufacturing. This type of simulation models a circuit at
the gate level instead of at the transistor level. Gate level simulation allow circuits to be
simulated independent of the technology to be used in manufacturing. It is to test the func-

tionality of gates and the circuits regardless of the fabrication process.

Normally, after the design has been completely entered and simulated, we are ready
to release the design to a VLSI/ASIC vendor to generate a layout of the chip for prototype
manufacturing. The generation of layout consists of placing and routing standard cells in
a given technology. Placement and routing can be done automatically by routing programs,
but sometimes it may be performed manually for performance reasons. After the genera-

tion of layout, we need to simulate the design annotated with the timing data to ensure that
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capacitances due to layout have not violated the timing specifications or constraints. The
final sign—off of the VLSI/ASIC design to the ASIC vendor is on the completion of this

post-layout verification and a fault grading process for testability.

In our project, we chose a rapid prototype method using field programmable gate
array (FPGA) technology from Xilinx to validate the BIST solution to on—chip ECCs for
embedded memories. The major merits of the FPGA are its instant implementation and
infinite reprogrammable capacity. Itis this feature that provides the VLSI/ASIC designers
with a powerful and economic approach in rapid new design prototyping. Instead of send-
ing the data from the CAD system to drive the pattern generator that transfers the patterns
to photo—sensitive masks used for fabrication process of the chip, and then waiting for a
completed silicon wafer processing cycle before getting design samples, the designer can
instead download the design through a communication cable from the workstation to a Xi-
linx FPGA device. This process uses the connectivity information extracted from the de-
sign and specifically attached data packages for device programing process and configures
the FPGA device into the specified VLSI design as desired. The whole process is com-
pleted in minutes. The design obtained can soon be tested for verification, or applied in

real application if applied.

The final stage of the design procedures is vendor/manufacturing test. The output
from this stage may include the evidence that shows that both desired functionality and test-
ability specification are met. The major objective of this thesis is to develop and implement
acost effective and high performance built—in test solution to designing on—chip BIT ECCs
for embedded memories. It provides a design—for—testability method and modular ap-
proach that greatly reduced the complexity and the requirement imposed on sophisticated

VLSVASIC testers.
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5.3 Modular implementations

The memory data protection that the on—chip ECC can normally provide is through
its on—chip encoding and decoding logic based on the ECC code implemented. In a RAM,
the data to be stored in RAM cells is called codedword. When the data is retrieved, it is
decoded back to the original data. InaROM, the ECC circuitry is the decoding logic itself,
with the encoding process done in some other way than incorporating the encoding logic
on the memory chip. The decoding logic is closely coupled with the data corrector and error
indicator flags. In the literature the decoder of an ECC circuitry often refers to the decoding
logic, error detector/corrector and the error flags as well. Hence decoder is a major design
of any on~chip ECC scheme. In our implementation, the on—chip BIT ECC does not in-

clude the encoder portion.

The design implementation is discussed in terms of its components: the ECC core,
the PRTG, the MUX, the MISR and the test controller. A bottom—up methodology is used
and the circuit design of subsystems is completed first. The bottom-up methods allows
the designer to optimize the low-level implementations by using perhaps minimal hard-
ware resources. The circuit design and simulation is performed in Design Composer™ and

Verilog-XL™ and Xilinx 4k library cells integrated within Cadence™ (V4.2).
5.3.1 The Hamming decoder (the ECC Core)

The modified Hamming (n, k) SEC-DED code is implemented withn =22, k = 16.
The schematic of the decoding logic circuit is shown in Figure 5-2. In this section, we will

briefly describe the features of the ECC core design, and present the design verification

process.
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5.3.1.1 Fully combinational and bit-sliced solution

This decoding circuit maps the coded memory word (n bits) into the corrected
memory word (k bits), and also generates a two-bit error signal for reporting. It is noted
that this implementation is a fully combinational and bit—sliced solution. It is faster in
speed for it has parallel operations on each bit of the operand. Its principle design and im-
plementation can be easily extended to on—chip ECC designs of any size using the modified

Hamming (n, k) SEC-DED code.

5.3.1.2 The PG, SG and COR circuits

In the ECC core, the parity generator consists of 6 parity trees; The parity generator
output is taken as the syndrome vector of the codedword in process. The 6-bit syndrome
vectors are decoded by the 16-bit wide syndrome decoder, each bit of which performs a
different function on the individual bits of syndrome vectors; The data correctoris an array
0f 22 XOR gates. If any bit of syndrome decoder output yields a 1, the corresponding data
bit is to be flipped over (by being XORed with 1). In other words, it is corrected when it
follows through the corresponding bit of the data corrector circuit. Should any bit on the
syndrome decoder output be zero, it indicates the corresponding data bit is correct and then

by—passed through the data corrector.

The error indicator flags will be set when an error or multiple errors are detected
by the ECC circuits. It indicates whether the error detected is correctable or uncorrectable

(multiple errors) using the dedicated flag bits.

At this point, it is worth mentioning that the modified Hamming SEC-DED code

implemented deserves a faster speed implementation. Since it has minimum 1°s in its H
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matrix and each row of the matrix has the same number of 1’s, the decoding circuit’s 6 par-
ity trees all have same number of inputs and hence the same depth. As for the original Ham-
ming SEC-DED code, the last parity tree would have 22 inputs, hence the height of the

parity trees are not even, and the data transfer over the PG circuit would be slower.

5.3.1.3 Design verification

To verify the correct operation of the ECC core itself, it was simulated with coded
words, and some of which are error—-injected with single or multiple errors. The simulation
output concludes that the implementation works correct. The simulation files (the stimulus

files and the simulation output files) are included in the Appendices of this document.

5.3.2 The pseudorandom test generator (PRTG)

The proprietary pseudorandom test generation circuit (PRTG) primarily provides
a set of random and repeated test stimulus for testing the on—chip ECC circuitry in the on—
demand mode and pseudoconcurrent (interleaved) test modes. It generates and receives
internal control signals to monitor the test processes and coordinate with other blocks of
the BIST system. A minor add—up to the premier PRTG configuration makes the circuit
capable to support the other two scan—based self test modes easily. The schematic of the

PRTG circuit is shown in Figure 5-3.
5.3.2.1 The PRTG core
The implementation of the PRTG circuit is based on a simplified BILBO structure.

It mainly consists of a shift register of 11 bits with a multiplexed serial input, a serial output

and multiple parallel outputs. The serial input is either from the scan input or from the feed
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back network. The feed back network configuration is dominated by a primitive polyno-
mial of degree 11: X!! + X2+ 1. This primary polynomial has the least number of terms
in the polynomials of same degree [PETE61]. This implies the simplest hardware configu-

ration can be achieved for generation of the same random stimulus space of order 211 — 1.

The select input of the 2—to—1 MUX picks up the feed back network when its select
input SE1 =0 set by the test controller in on—demand test and pseudoconcurrent test; When
the system is to perform scan-based tests, the signal SE1 is set 1 that allows the scan test
vectors to be clocked in from the input port SCAN-IN, shifted through the PRTG register
and clocked out at the port SCAN_OUT of the circuit.

5.3.2.2 The HOLD status

Besides the clock and reset inputs that are provided to each of the D flip—flops in
the register, each flip—flop has a clock enable input CE that accepts a HOLD signal from
the test controller. The HOLD signal is to hold or *freeze” the stimulus generator (and the
signature analyzer discussed later) whenever an interleaved test is exited as the system is
called back to normal operation while a test cycle is not completed yet. When the system
reenters the self test in pseudoconcurrent mode, the HOLD signal will be released and the

interleaved test can resume from the status it left.

5.3.2.3 The END signal

Also included in the PRTG circuit is a multibit AND function on the bits of output
stimulus vectors to detect the end of each test cycle. Because any two adjunct vectors in
a 2" — 1 vector space can be taken as the seed and the last test vector respectively, and a

deterministic sequences of test vectors are to be generated repeatedly, both the seed and
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the last test vector can be hardcoded into the PRTG circuit. As such, the test pattern gener-
ated always starts with the seed pattern and ended with the last test vector in one test cycle.
In the PRTG implementation, the seed is realized by specifying a default binary value to
the shift register. for instance, a combination of flip flops with either reset or preset termi-
nals connected to the RESET signal will do the work. On the other side, an END signal
is generated by the AND function whose inputs are conditioned according to the last test
pattern. Whenever a test pattern matches the condition set up for the AND function, an
END signal is asserted. The conditioned AND logic is to function as a simple on—chip com-

parator.

The END signal plays an important role in self test operations in on—demand mode
or pseudoconcurrent mode. The signal END is forwarded to the test controller and the
MISR to acknowledged the completion of a test cycle. Responding to the END signal,
some actions would be taken in both test controller and the MISR circuitry with respect to

flag logging and system clear—up for a new test cycle.
5.3.2.4 Fanout realization

The stimulus vector generated by the PRTG is 11 bits. Mapping the PRTG outputs
onto the 22-bit test patterns required for testing the on—chip ECC required an array of buff-
ers to be placed. The fanout configuration is dominated by the merged group table which
resulted from the test matrix reduction in Chapter 4.

5.3.2.5 Design verification

Simulation on the PRTG circuit was performed in two stages. First, the PRTG was

simulated to verify its functionality in generating the set of test stimulus with the seed con
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dition defined in the hardware. This part of logic simulation can be used to determine and
verify the last test pattern in a given test cycle. Second, the overall PRTG circuit was simu-
lated to test the correctness of its operations and functionality. This included the timing
and procedures for the END detection, the HOLD status and resumption from the frozen
state, and the correctness of the test patterns mapped through the fanout circuitry. The
PRTG simulation also covered the operations of serially shifting the possible scan test pat-
terns in and through the PRTG register for scan tests. This includes the test of the 2—to—1
MUX function and appropriate selection of the input resources. The simulation results
concluded that the PRTG implementation worked correctly. The simulation files are in-

cluded in the Appendices of this document.

The step—wise partition coupled with the from—simple—to—complex philosophy
embedded in the PRTG simulation process ensures not only a complete verification of the
components and the whole functional unit, but also an easy—to—debug solution. So itis a
well accepted method in engineering design practice. In some sense, by simulating the
partly—done digital circuit, the simulation is interleaved with circuit design and develop-
ment process. So it can serve not only as a verification tool, but also a circuit design aid

in an incremental circuit development method.

5.3.3 The multiplexer (MUX)

The 22 2-to-1 multiplexer was implemented to select the input data to the ECC
from two separated sources. The switching function depends upon the systems status or
operations. That is, whether the system is in normal memory operation or called upon for

self test. The schematic of the MUX is shown in Fig. 5-4.
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Fig. 5-4 Schematic of 22 2—to—1 multiplexer

5.3.3.1 Standard implementation

The implementation of the MUX here can be taken as standard. The 44 inputs are
form the 22-bit wide coded memory word and the 22-bit wide self test stimulus. The select
input SEQ is the control input that determines which input data path is to be selected active
and routed out through the output OR gates. When SE0=1 it selects the coded memory

word, with SEO=0 it selects the test inputs.

5.3.3.2 Design verification

The multiplexer unit is simulated to verify the correctness of its functionality. Two
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groups of data with each having 22 bits can be multiplexed with the select signal set to 1
or O respectively. The 22-bit output is subsequently compared. The simulation results
shows the MUX implementation works correctly. The simulation files are included in Ap-

pendices of this document.

5.3.4 Multiple input signature register (MISR)

The multiple input signature register (MISR) is capable of handling the on—chip test
result analysis process in a parallel fashion. It takes a multiple bit pattern as its input to
generate the signature. The signature is a test engineering term that was coined to simply
mean a compressed word that represents the results of a particular test. In our design imple-
mentation, the fundamental MISR circuitry must be modified so that the same hardware
block can be configured under software control to support not only the pseudorandom
based self tests but also the scan—based self tests. To obtain the lowest possible error/fault
masking rate in our MISR design, we need to implement a built-in solution to depress the

aliasing problem effectively.

The schematic of the MISR unit is shown in Figure 5-5. The operation of the MISR
consists of: 1) Compacting the test output data and producing the final signature; 2)
Checking this signature against a hardcoded correct signature on the chip, and storing the
result of this comparison in a single bit flag register that is put out to the processor; and

3) Scan test support.

5.3.4.1 BILBO-based MISR structure

The BIST structure BILBO is a prime candidate for the MISR that primarily acts

as either a parallel signature analyzer or a simple shift registers. The configuration of this
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22-stage register is basically determined with a primitive polynomial of degree 22: X22
+ X+ 1. To completely implement the functionality of the MISR unit, we added on a hard-
coded comparator to realize the on—chip signature comparison, and a 1-bit flag register for
automatic fault reporting. A couple of other gates are used to process the internal signals

from other blocks of the system for timing purposes.

When the system is in a self test operation associated with the pseudorandom based
test as in on—demand test or interleaved test, the control input SE2 is set to 1. This allows
the circuit to function as a parallel read register with the signal from the feedback network
being selected to pass through the 2—to—1 MUX and reach the XORed input of the flip flops
at the first stage. Using this approach, a signature of the test in progress can be generated

and read out in parallel.

In scan—based self test of other system modules, the register can be reconfigured
into a serial read—in and serial read-out register with the control input SE2 set to 0. Test
data can then be scanned in via the serial input port or scanned out via the serial output port.
As for scan test of the on—chip ECC circuit itself, the MISR functions as a parallel read—in
and serial read—out register. Hence, a relatively complicated control procedure is needed
such that the control inputs SE2 must be flipped over and over for proper data flow during
the test. A complete application program for the on—chip BIT ECC is out of the scope of
this project due to the limited time frame. However, it is worth noting that the set of test
stimulus for scan test of the on—chip ECC can be much smaller in size. In Chapter 4 we

generated a set of 8 vectors for sufficient testing of PG/SG.

S.3.4.2 On-chip signature comparison

An AND gate structure with hardcoded final signature is used as a simple on—chip
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signature comparator. The input of the AND gate is the 22 bits of the signature generated
by the BILBO. Using this approach, an AND gate is the only cost for on—chip signature
comparison. If the signature generated is the same as the hardcoded correct signature, the
output of the AND gate should be 0; otherwise, it yields a 1 to indicate a faulty ECC is

detected by the built—in test in the last test cycle just finished.

The hardcoded signature is supposed to be the correct one. With high performance
simulation tools, the calculation of the correct signature can be part of logic simulation task.
Upon the completion of the simulation on a partly—done implementation, the designer can
proceed with the hardcoding of the final correct signature on the AND gate in the design.

One may write a high level program in C or Pascal to perform the calculation as well.

5.3.4.3 Depressing the aliasing rate

The aliasing problem is the one inherent with signature compaction using structure
such as the MISRs. The effect of the aliasing problem is the error/fault masking in built—in
test systems [DAMI89, MiZh90]. This means that it is possible that the fault(s) can escape
being caught by the test patterns applied which could have covered the fault(s) in the fault
simulation runs. In reality, this problem will lower the fault coverage of certain test sets.
Investigations and much research work have been done extensively in this area [WILLS9,
StWu90, IvAg88]. According to literature, the aliasing rate, as a probability of error/fault
masking, is on the order of 2, where n is the number of the bits in signature generation

circuits.
It is noted that in our implementation of the MISR unit, we build a 22 bit signature

register, by taking in the 6 bit syndrome vector as well as the 16 bit data output as the inputs

to the signature register. The signature register may have only taken 16 bit data output for
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generating the signature according to conventional MISR configurations. In fact, we used
six (6) more flip flops in the signature register. The trade—off is that we can obtain a factor
of six Jower aliasing rate down to 2722 from 2-16, because the number of the bit in the signa-

ture generation circuit is 22 bits rather than 16 bits.

5.3.4.4 Automatic fault reporting

The last but not the least portion of MISR structure is the fault logging circuit based
on the 1-bit flag register. It has a data input from the signature comparator, and a clock
input from an AND gate where the clock signal is ANDed with the END signal from the
PRTG unit. The one bit fault flag register actually serves part of the automatic fault report-
ing system. Itlatches in and stores the test result: when it stores a logic 0, the ECC_FAIL-
URE=0 indicates fault-free; whereas if it stores a 1, it means a faulty on—chip ECC has
been detected by the self test in the last test cycle finished. In next section, we shall discuss

the implementation of the timing control in clocking the flag register.

5.3.4.5 The END signal

The output of the signature comparator represents the conclusion of one self test
cycle, which is supposed to be latched into the flag register when the last test in a given test
cycle is completed. In fact, the final signature is generated one clock cycle after the last
test stimulus completes. In other words, it takes one extra clock cycle for the test output
to be compacted and the final signature compared with the correct one. The END signal
from the PRTG is primarily devised to signal the end of the test cycle, and used in the MISR
unit to active the clock input on the flag register. This implementation serves the require-
ment of latching in the test result on each test cycle. Because the END signal is generated

simultaneously with the last test stimulus, one flip flop was placed in the MISR for the END
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signal to control the synchronization of the flag logging process.

5.3.4.6 The HOLD status

As discussed in the test pattern generator unit, a HOLD status which is critical for
interleaved self test must be implemented in the MISR unit as well. The HOLD input of
the MISR is connected to the clock enable terminal on each of the flip flops to freeze the
status of the register whenever the system is called back for normal operation from an on—
going interleaved test process whereas a complete test cycle is not yet finished. This holds
up all the test data analysis associated with the hold of the test stimulus generation on the
PRTG unit and ensures that the interleaved test can be resumed later from where it left.
By disabling the clock input, all the intermittent data are stored in the MISR register and

ready for use when the test is resumed by resetting the HOLD signal.

We shall have a detailed discussion on the generation of the HOLD signal and other
internal control signals later in this chapter where the implementation of test controller is

described.

5.3.4.7 Design verification

Simulation of the MISR design, using the integrated Verilog—XL simulator under
Cadence EDA environment plays a triple~fold role in implementing the MISR unit. First,
the BILBO-based 22-stage MISR register itself was simulated to verify the correctness
of its operation, which leaving the implementation of rest of the MISR unit open. Second,
simulation on an integration of the PRTG, the MUX, the ECC core, and the MISR core di-
rectly helped to deduce the correct final signature; It takes 2048 clock cycles to catch the

final signature with the PRTG providing a set of 21! —1 test stimuli for one complete test
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cycle. Third, the full functionality of the MISR-based design was tested after the correct
signature was hardcoded and the fault reporting structure was implemented. Again, the
simulation process can be a powerful design aid in incremental VLSI/ASIC design process.
The simulation on the MISR-based unit concluded that the MISR implementation worked

correctly. The simulation files are included in the Appendices of this document.

5.3.5 Built—in test controller

Self testing of the on—chip ECC with multiple self test modes involves consistent
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operations of all the functional units of the BIST design. A test controller which coordi-
nates the self test procedures was implemented following a simple yet effective theme. The

schematic of the test controller is shown in Figure 5-6.

5.3.5.1 Control signals

Before we describe the circuit configuration and the operational aspects of the test
controller, we need to collect all the control signals external and internal to the on—chip BIT

ECC design.

1) The external control signals from the host processor are:
CLK: a clock signal used to run the self—test functions only;
TEST_MODE[1:0]: a two-bit signal to chose a test mode out of four;
SELF_TEST: a signal for signaling the module into and out of self-test, and
RESET: a global reset to place the built—in test circuitry into a known state.

ii) The internal signal to the input of the test controller is:
END: a signal from the PRTG unit, which signals the detection of the last test

in a psudorandom based test cycle.

iii) The test controller provides five control signals:
SEO0: select test input when true, otherwise select the coded memory word;
SE1: select Scan—In when true, otherwise select the feedback from PRTG;
SE2: Select feedback from the MISR when true, otherwise select the Scan-In;
HOLD: hold intermittent test results when true ( Interleaved test only);

R/S: preset PRTG, clear MISR and other flip flops except the flag when true;

A state table of the built—in test controller is given in Fig. 5-7. The eight states are

defined by SELF_TEST, TEST_MODEQ, and TEST_MODE]1. Please note that for sim-
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plicity the Do, Dy, and D are used in the table to stand for the three bits of test commands,

respectively.

DO D1 D2 SEO SE1 SE2 HOLD R/S

On-Demand Test Mode

Exit from On—Demand test
Psudo—Concurrent Test Mode
Exit from Psudo—Concurrent Test
Scan Test Mode

Exit from Scan Test

Scan Path Test Mode

Exit from Scan Path mode; Reset
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Fig. 5-7 State table of the built—in test controller

3.3.5.2 The scheme for test control implementation

The operation of the controller can be easily verified against the definition of the
3 bit commands from the host processor and corresponding state that the test controller is
in. Before we analyze its operation in terms of each of the alternative self test modes in
next section, we briefly examine some aspects of the approach used in the implementation
of the test controller circuit. In this implementation, three D flip flops are used for latching
in the test commands from the processor. The other two D flip flops are for tuning up the
timing sequences in establishing an SET_RESET (housekeeping) action based upon the
END signaling. The combinational logic block generates the signals required to coordinate
the subsystems. This approach, coupled with the straight forward configuration of the
END signaling and the master RESET resulted in an efficient control logic implementa-

tion.
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It makes a difference in reducing the hardware configurations complexity of the
control logic, if we do the housekeeping at the end of each self test cycle instead of at the
beginning of a new test cycle. The master reset is always available to reset the built—in test
fixture to a predefined state. Suppose the last test vector is now detected. For a new test
cycletobegin, aseed is to be placed in the test generator PRTG when the si gnature analyzer
MISR and all internal flip flops except the flag register are reset. It is noted that the clearing
of the MISR unit should not been done until the output data of the last test has been com-
pacted to form the final signature, and the signature comparison result is latched into the
flag register. Based on this analyses, a simple way to generate the housekeeping signal
Set_Reset is to place two flip flops to postpone the housekeeping signal two clock cycles

after the END signal.

Because the test result is logged upon completion of one self test cycle, and only
overwritten after next test cycle ends, the system could be called upon to exit the self test
in progress without affecting the current logged test result. By using three dedicated regis-
ters for logging the test command, the commands have been designated so that the proces-
sor can issue one of the self test commands on any clock cycle and the text fixture will re-
spond to the command on the next clock cycle. Based on this approach of entering or
exiting any one of the four self test modes, the housekeeping is also done each tim the sys-
tem exits from a self test operation (i.e. SELF_TEST=0), with one exception being exiting
from the interleaved self test mode. The HOLD signal is then generated to hold the inter-
mittent self test results as well as to freeze the test generator and response analyzer. If the
system reenters the interleaved self test, the self test state can be resumed instantly. Howev-
er, if the system is to enter another self test mode, a reset command should be issued before
the system enters the self test operation. The overall synchronous hardware realization of
the built—in test controller is traded—off with the possibility of at most one clock cycle loss

as the system exits from the pseudorandom based self test.
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5.3.5.3 Design verification

The test controller implementation was simulated to verify its correctness. First,
the correlation between the inputs and output signals and their timing relations was ex-
amined to ensure the dynamic reconfigurability is implemented correctly for each and all
alternative self test modes as defined in the specification. Second, the operation of the con-
troller in performing the coordination of each self test was verified. The stimulus was
created to probe key procedures such as the sequential actions when the last test of one test
cycle is reached, and the proper status control as the system exits and/or reenters the inter-
leaved test, and so forth. Third, the housekeeping procedures were tested which may be
invoked by three different sources. The simulation results concluded the test controller im-
plementation worked correctly. The simulation files are included in the Appendices of this

document.

5.4 System integration and verification

With the subsystem modules implemented and verified in a modular fashion, the
top level of the on—chip BIT ECC can be produced easily with the integration of all internal
functional units. The top level circuit design and integration is shown in Figure 5-8. As
this is a full implementation of the built—in testable architecture and specifications de-
scribed in Chapter 4. It realizes all intraconnections and its I/O signals and ports that inter-
face the on—chip BIT ECC module with the embedded memory, the host processor, and oth-
er possible system modules, such as the ones that reside in the same scan test path and

neighboring to the on—chip BIT ECC when the system is configured for scan based self test.

Before we describe the detailed simulation on the top-level design implementation,

let us have a brief review on design simulation using Verilog HDL and high performance
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simulator Verilog—XL integrated within Cadence™ V4.2,

5.4.1. Simulation using Verilog HDL and Verilog—XL simulator

In this thesis, Verilog HDL as a high level stimulus language, is extensively used
in developing all the stimulus for design simulation. A stimulus file written in Verilog is
aformat of inputs that are created to sense or probe the functions bein g verified. Itis similar
to the test patterns for testing but not the same. Test pattens are generated against a certain
type of targeted faults represented by the fault models. Stimulus for simulation focus on
the generating and verifying the intended functions to be tested. The high performance Ver-
ilog-XL™ simulator supports both logic and timing simulations, and can be called upon
from within the Cadence Design Composer™ directly to perform the simulations on the
circuits under design. In this environment, the stimulus must be written in Verilog HDL
in a Verilog—XL recognized format. In order to run the simulation, a netlist file of the desi gn
ina Verilog description format recognized by the simulator is also required. Using Verilog—
XL™ within Cadence, this conversion of the design netlist to Verilog description is auto-
mated. A template stimulus file is also generated by the software to speed up the stimulus

development.

As our design prototype utilized the Xilinx FPGA, XC 4000 library cells were used
in all circuit implementations. The Xilinx technology libraries are also available within
Cadence™ (V4.2). As such, the netlist files extracted in Xilinx xnf format are converted

into a Verilog description ( .v file) internally within Cadence.
Along with the (.v file) is the template stimulus file( .stim file) for the given design

to simulate. By default, the stimulus in the .stim file are null vectors, the desi gner is respon-

sible for the real stimulus patterns needed for the simulation run. The time taken to run a
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real simulation is quite dependent on the size of the design and the functions to be simu-
lated. All relevant data to the simulation process are logged under the design directory for

reference besides the simulation run output ( .log file).

5.4.2 System level design verification

Simulation of the top level design implementation can be taken as an extension of
the simulations on the subsystem blocks. However, in the previous simulations on lower
level internal units, the correctness of internal control signals as inputs to the unit under
simulation have been taken for granted in all separate or individual design verifications.
Now, these internal signals are no longer assumed and only the external control si gnals (the
processor commands) are given to exercise the functionality of the top—level design. The
correctness of generating the internal signals and their real effects on the behavior of each
subsystem and system are to be verified with special attention. The simulation stimulus
injected to the top-level design implementation for simulation purposes may be restricted
as well to a limited number of system input pins. In our case, this is the six input pins on
the top level design shown in Fig. 5-8. In this manner the simulations reflect the system
operations and functionality in a working environment that most closely resembles the
reality. Inother words, only given the commands from the processor, the top level circuitry
should work out the all self test procedures by itself in any given self test mode arbitrarily
assigned. The simulation files for the top level design verification are included in the Ap-

pendices of this document.

In the top level design implementation and verification, the .v file has 433 lines in
itand the .stim file has 191 lines in it. The simulation output file ( verilog.log ) is 2,654,642
byte in size. In the .stim file there are no internal signals in the top level simulation. Only

those input ports of the system are given the stimulus externally. These signals are

79



CLOCK, ECC_TEST, MODEO, MODE1, GLOBALSTRT, RESET, SCAN_IN. For
each self-test mode, two test cycles (4096 clock cycle) are scheduled using a loop. This
tests the behavior of the system entering the designated self test mode and between the test
cycles, that is, when one completes and the next one is to begin. Following this test, exiting
from the self—test mode back to the normal operation is verified. Procedures were designed
to test the interleaved pseudoconcurrent self test with it exiting even though a completed
test cycle has not yet finished. Subsequently, the system resumes the interleaved test. The
simulation shows the intermittent test results were “locked” and served as starting point
when the interleaved self test is resumed. The hardware reconfigurability of the built—in
test circuitry to support the two scan based test modes were tested to ensure test patterns
or the test output can be routed through the registers and the serial ports of the system to
their correct destination. The differentiation between the scan test of the on—chip ECC and

the scan path test mode is visible from the simulation output.

The independency of each self—test mode can be a major concern in such a system
that is supposed to support multiple self test methods. This was given considerable atten-
tion and observation throughout the simulation runs as well as in creating stimulus to sense
and capture the performance concerned. The hardware dynamic reconfigurability was ver-
ified for the worst cases, such as the system accidently enters and exits self test in a mis-
coupled test mode to ensure it is handled smoothly without crashing the system. The simu-

lation results concluded that complete top level design implementation works correctly.

5.4.3 Discussion

It is noted that the built—in test system is designed such that the on—chip ECC both

enters and exits the test mode synchronously. This means that when the module is called

upon to serve the system normal operation, the present test vector is allowed to complete
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and the next test vector is held in the test generator before serving the system. Also, when
it is released by the system for self test, it does not start its test cycle until the start of the
next clock cycle. This is a very safe design but it could result in the loss of one clock cycle

every time pseudorandom based self test is exited.

5.5 Rapid prototyping with Xilinx FPGAs

To validate the BIST solution to on—chip BIT ECC for high speed and high perform-
ance embedded memories, rapid design prototyping using FPGA technology from Xilinx
was implemented. With Cadence 4.2, the Xilinx FPGA development package is a built—in
feature. Downloading the design to a Xilinx FPGA device is done through a communica-
tion cable (Xchecker) connected to a serial port on the workstation and a demo board from
Xilinx. In this project, we used a Xilinx XC4000 family device (XC4003b) to implement
the prototype. On the demo board an appropriate configuration is set up so as to activate
the external control signals to the design and to capture and display the output signals and

flag signals for design evaluation.

The XC4000 families of FPGA is of third generation FPGAs. It provides the bene-
fits of custom CMOS VLSI/ASIC, while avoiding the initial cost, time delay, and inherent
risk of a conventional masked gate array. Since a custom design can be created instantly
by programming a FPGA chip from within the same workstation environment, and since
the chip can be reprogrammed an unlimited number of times, FPGAs are ideal for rapid
prototyping of virtually any innovative VLSI/ASIC design. This has the effect of reducing

the time from specification to a conventional prototype.

We have experimentally analyzed the BIST on—chip ECC design prototype in the

XC4003b chip and evaluated its integrated built—in test features. We primarily observed
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the self test operations in on-demand and interleaved mode using pseudorandom BIST.
As for the two scan based tests, although we did not provide the scan test input to perform
the test on the Xilinx chip, we verified in detail the test fixture to make sure the circuit confi-

gues correctly under the software control so that the scan based tests are truly supported.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

We have studied general aspects of on—chip ECCs, and the testability of parallel im-
plementation of on—chip Hamming (n,k) SEC-DED codes for embedded memories. Based
on the development and implementation of the built-in testable architecture and design

method for on—chip ECCs, the following conclusions are drawn:

The test matrix compaction scheme, dominated by the Hamming (n,k) ECC codes,
constitutes a major component in a cost—effective built—in test architecture for the on—chip
ECC circuitry. The row/column linear compaction, implemented through the test matrix
mappings, resulted ina 50% overhead reduction in the built—in test vector generation circuit

than the customary BIST implementation methods.

The impacts of the built—in test on the normal system performance is a consequence
of any BIST architectures. The built—in test implemented in this study impacted the
memory system speed performance by only one gate delay, due to the need for multiplexing
normal data inputs and test stimulus inputs to the ECC. It is imperative to note that this side

effect is independent of the size of the on—chip ECC.

Testability specification is a measure of the built—in testable VLSI/ASIC design.
We have proposed a natural circuit partitioning, and investigated the coverage of the set
of tests based on the BIST scheme, and found that the test vector space generated and expan-
ded on—the—chip covers all test stimulus required for testing the PG/SG circuitry, and the

syndrome space created from the output of testing the PG/SG covers the test vectors re-
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quired for testing SD/DC portion of the on—chip ECC circuit. Therefore, we anticipated

a >99% fault coverage of the stuck—at faults in the on—chip ECC circuitry.

Aliasing is an error/fault masking problem inherit with test response compression
for signature analyze. We extended the number of input bits to the MISR to 22 bits by add-
ing the 6 syndrome bits; We anticipated, by this approach, the aliasing rate can be of the

order of 2722,

Dynamically reconfigurable built—in test circuitry design embodied in our design
implementation produced a compact on—chip test fixture. Associated with an integrated
built-in test architecture, the same on—chip test circuitry can be easily reconfigured under
software control to support multiple self test methods (on—~demand pseudorandom test, the
pseudoconcurrent (interleaved) test, the scan test and the scan by—pass test). Resetting the
test circuitry when exiting from any test modes except for the psudoconcurrent mode, re-
duces the steps in self test control procedures, and consequently reduce the size of the test

controller.

In summary, this research work has the following contributions:

D A built-in testable architecture is developed for on—chip ECCs. It provides an
alternative BIST solution to self testing embedded memories with on—chip ECC
based on a divide—and—conquer strategies.

2) Identified a test vector compaction scheme, which resulted in a 50% reduction in
on—chip test generation hardware.

3) Developed a design—for—testability method for on—chip ECCs of Hamming (n,k)
SEC-DED codes. It takes advantages of multiple built—in test methodologies and

provides > 99% fault coverage of stuck—at faults in the on—chip ECC circuitry.
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4)

5)

6)

1Y)

2)

3)

The built-in testable on—chip ECC design method is implemented and verified for
a Hamming (22,16) SEC-DED circuit, and prototyped using a Xilinx FPGA.
The BIST solution supports multiprocessor based system solutions with embedded
private memory configurations. Testing an array of homogeneous on—chip ECCs
of embedded memories can be effectively done in parallel by using one on—chip test
generation circuit.

Provided considerable experience and insights into issues facing system designers

in light of increasing levels of integration.

Further development of this research work is recommended as follows:

The design methods may be expanded to high level HDL models with testability.
A modular VHDL model of the built—in testable ECC can be developed.

The BIST architecture and implementation methods may be converted into design
aids in VLSI/ASIC EDA environments. Studies on EDA methodologies such as
logic and test synthesis (compile) methods and techniques are needed.

The algorithms which generates best testable on—chip ECC codes may enhance
the design—for—testability methods directly. This work may also contribute to

practical aspects of applying error coding theory.
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APPENDIX A:

SIMULATION STIMULUS ( .stim Files)

(in Verilog HDL)




The following .stim files record the test patterns developed for design verifications over
the six (6) modular designs in the hierarchy of the on—chip BIT ECC design. The .sim
files were written in Verilog HDL and served as simulation stimulus in the design
verification process using Verilog—XL. The schematics of the design units are cited for
quick references.

i) ecc.stim is for the ECC_CORE unit ( ecc.sch is on p.66, Chapter 5 ).

ii) prtg.stim is for the on—chip PRTG unit ( prtg.sch is on p. 69, Chapter 5 ).

iii) mux.stim is for the multiplexer unit ( mux.sch is on p.72, Chapter 5 ).

iv) misr_core.stim, sig_sim.stim, and misr.stim are for the on—chip MISR unit
( misr.sch is on p.75, Chapter 5 ).

v) t_ctrller.stim is for the built—in test controller unit ( t_ctrller.sch is on p.80,
Chapter 5 ).

vi) ecc_t.stim is for the top level on—chip BIT ECC ( ecc_t.sch is on p.85,
Chapter 5 ).




// ECCF.STIM

‘timescale 1 ns/100 ps
module test;

reg DO,Dl,D2,D3,D4,DS,D6,D7,D8,D9,DlO,Dll,D12,D13,D14,DlS,D16,D17,D18,D19,D20,D21;
wire CORRECTABLE_ERROR;

wire DOUBLE_ERROR;

wire 00;

wire 01;

wire 02;

wire 03;

wire 04;

wire 05;

wire 06;

wire 07;

wire 08;

wire 09;

wire 010;

wire 011;

wire 012;

wire 013;

wire 014;

wire 015;

wire S0;

wire S1; - /
wire S52; {
wire S3; '“j?g;
wire S4;

wire S5;

supplyl XVDD;
supply0 XGND;

ECCF tl

( .CORRECTABLE_ERROR { CORRECTABLE_ERROR) ,

-DOUBLE_ERROR (DOUBLE_ERROR), .D0(DO), .D1(D1),.D2(D2),.D3(D3), .D4 (D4}, .D5(D5),
-D6(D6), .D7 (D7), .D8(D8), .D9 (DY), .D10O(DLO), .D11(D11),.D12(D12),

.D13 (D13}, .D14(D14), .D15(D15), .D16(D16),.D17(P17), .D18(D18),

-D19(D19), .D20(D20), .D21(D21),.00(00), .01(01}, .02(02), .03 (03),

.04 (04}, .05(05), .06(06), .07 (07), .08(08),.09(09), .010(010),
-011(011),.012(012),.013(013),.014(014), .015(015),.S0(S0),
.S1{(81),.82(82),.83(83),.84(84),.85(S85));

initial
begin
#10 // coded word (0000000000000000)
D0=0; // with check bits(000000)

D1=0;



D2=0;
D3=0;
D4=0;
D5=0;
D6=0;
D7=0;
D8=0;
D9=0;
D10=0;
D11=0;
D12=0;
D13=0;
D14=0;
D15=0;
D16=0;
D17=0;
D18=0;
D19=0;
D20=0;
D21=0;

#10
D0=1;
D1=1;
D2=1;
D3=1;
D4=1;
D5=1;
D6=1;
D7=1;
D8=1;
D9=1;
D10=1;
Dl1=1;
D12=1;
D13=1;
D14=1;
D15=1;
D16=0;
D17=0;
D18=0;
D19=0;
D20=0;
D21=0;

#10

D0=0;
Dl1=1;
D2=1;

// coded word (1111111111111111)

/7

with check bits(000000)

// coded word (0111111111111111)

/7

with check bits(110100)



D3=1;
D4=1;
D5=1;
D6=1;
D7=1;
D8=1;
D9=1;
D10=1;
D11=1;
Dl2=1;
D13=1;
D14=1;
D15=1;
D16=1;
D17=1;
D18=0;
D19=1;
D20=0;
D21=0;

#10 // coded word (1011111111111111)
D0=1; // with check bits (101100)
D1=0;
b2=1;
D3=1;
D4=1;
D5=1;
D6=1;
D7=1;
D8=1;
D9=1;
D10=1;
Dli=1;
D12=1;
D13=1;
D14=1;
D15=1;
D16=1;
D17=0;
D18=1;
D19=1;
D20=0;
D21=0;

#10 // coded word (1101111111111111)
DO=1; // with check bits (011100)
D1=1;

D2=0;

D3=1;



D4=1;
D5=1;
D6=1;
D7=1;
D8=1;
D9=1;
D10=1;
D11=1;
Di2=1;
D13=1;
D14=1;
D15=1;
D16=0;
D17=1;
D18=1;
D1%9=1;
D20=0;
D21=0;

#10 // coded word (1110111111111111)
DO=1; // with check bits (110010)
Dl=1;
D2=1;
D3=0;
D4=1;
D5=1;
D6=1;
D7=1;
D8=1;
D9=1;
D10=1;
Dil=1;
D12=1;
D13=1;
D14=1;
D15=1;
Dl6=1;
D17=1;
D18=0;
D19=0;
D20=1;
D21=0;

#10 // coded word (0101010101010101)
D0=0; 7/ with check bits (011110)
Di=1;

D2=0;

D3=1;

D4=0;



D5=1;

D6=0;

D7=1;

D8=0;

D9=1;

D10=0;
D11=1;
D12=0;
D13=1;
D14=0;
D15=1;
D16=0;
D17=1;
D18=1;
D19=1;
D20=1;
D21=0;

#10 // coded word (1010101010101010)
DO=1; // with check bits (011110)
D1=0;
D2=1;
D3=0;
D4=1;
D5=0;
D6=1;
D7=0;
D8=1;
D9=0;
D10=1;
D11=0;
D12=1;
D13=0;
D14=1;
D15=0;
D16=0;
D17=1;
D18=1;
D19=1;
D20=1;
D21=0;

#10 // coded word (0000000000000001)
D0=0; /7 with check bits (001011)
D1=0;

D2=0;

D3=0;

D4=0;

D5=0;

D6=0;



D7=0;

D8=0;

D9=0;

D10=0;
D11=0;
D12=0;
D13=0;
D14=0;
D15=1;
D16=0;
D17=0;
D18=1;
D19=0;
D20=1;
D21=1;

#10 // coded word (0000000000000010)
D0=0; // with check bits(010011)
D1=0;
D2=0;
D3=0;
D4=0;
D5=0;
De=0;
D7=0;
D8=0;
D9=0;
D10=0;
D11=0;
D12=0;
D13=0;
D14=1;
D15=0;
D16=0;
D17=1;
D18=0;
D19=0;
D20=1;
D21=1;

#10 // coded word (0000000000000100)
D0=0; /7 with check bits (100011)
D1=0;

D2=0;

D3=0;

D4=0;

D5=0;

D6=0;

D7=0;

D8=0;



D9=0;

D10=0;
D11=0;
D12=0;
D13=1;
D14=0;
D15=0;
Dl16=1;
D17=0;
D18=0;
D19=0;
D20=1;
D21=1;

#10 // coded word (0000000000001000)
D0=0; // with check bits (001101)
D1=0;
D2=0;
D3=0;
D4=0;
D5=0;
D6=0;
D7=0;
D8=0;
D9=0;
D10=0;
D11=0;
D12=1;
D13=0;
D14=0;
D15=0;
D16=0;
D17=0;
D18=1;
D19=1;
D20=0;
D21=1;

#10 // coded word (0000000000010000)
D0=0; // with check bits (010101)
Di=0;

D2=0;

D3=0;

D4=0;

D5=0;

D6=0;

D7=0;

D8=0;

DS=0;

D10=0;



D11l=1;
D12=0;
D13=0;
D14=0;
D15=0;
D16=0;
D17=1;
D18=0;
D19=1;
D20=0;
D21=1;

// inject errors

// sequence: no error, 1 error, 2 errors

#10 // coded word (0000000000000000)
D0=0; /7 with check bits(000000)
D1=0;
D2=0;
D3=0;
D4=0;
D5=0;
D6=0;
D7=0;
D8=0;
D9=0;
D10=0;
D11=0;
D12=0;
D13=0;
D14=0;
D15=0;
D16=0;
D17=0;
D18=0;
D19=0;
D20=0;
D21=0;

#10 // coded word (0000000000000000)
D0=0; 7/ with check bits(000000)
D1=0;

D2=0;

D3=0;

D4=0;

D5=0;

D6=1; // 1 bit error

D7=0;

D8=0;



DS=0;

D10=0;
D11=0;
D12=0;
D13=0;
D14=0;
Di5=0;
D16=0;
D17=0;
D18=0;
D19=0;
D20=0;
D21=0;

#10 // coded word (0000000000000000)
DO=0; 7/ with check bits(000000)
D1=0;

D2=0;

D3=0;

D4=0;

D5=0;

D6=1; // 1 bit error
D7=0;

D8=0;

DS8=0;

D10=0;

D11=0;

D12=0;

D13=0;

D14=0;

D15=0;

D16=0;

D17=0;

D18=0;

D19=1; // 1 bit error
D20=0;

D21=0;

// inject errors

// sequence: no error, 1 error, 2 errors

#10 // coded word (1111111111111111)
DO=1; // with check bits(000000)
Dl=1;

D2=1;

D3=1;

Dd=1;

D5=1;

D6=1;



D7=1;

D8=1;

D9=1;

D10=1;
Dl1l=1;
D12=1;
D13=1;
D14=1;
D15=1;
D16=0;
D17=0;
D18=0;
D19=0;
D20=0;
D21=0;

#10 // coded word (1111111111111111)
DO=1; /7 with check bits(000000)
D1=0; // 1 bit error
D2=1;

D3=1;

D4=1;

DS5=1;

D6=1;

D7=1;

D8=1;

D9=1;

D10=1;

Dil=1;

D12=1;

D13=1;

D14=1;

D15=1;

D16=0;

D17=0;

D18=0;

D19=0;

D20=0;

D21=0;

#10 // coded word (1111111111111111)
DO0=1; /7 with check bits(000000)
D1=0; // 1 bit error

D2=1;

D3=1;

Dd=1;

D5=1;

D6=1;

D7=1;



D8=1;
D9=1;
D10=1;
D1i=1;
D12=1;
D13=1;
D14=0; // 1 bit error
D15=1;
D16=0;
D17=0;
D18=0;
D19=0;
D20=0;
D21=0;

// inject errors

// sequence: no error, 1 error, 2 errors

#10 // coded word (01111111311111111)
D0=0; // with check bits(110100)
Dl=1;
D2=1;
D3=1;
D4=1;
D5=1;
D6=1;
D7=1;
D8=1;
D9=1;
D10=1;
Dil=1;
D12=1;
D13=1;
Dl4=1;
D15=1;
D16=1;
D17=1;
D18=0;
D19=1;
D20=0;
D21=0;

#10 // coded word (0111111111111111)
D0=0; // with check bits(110100)
Di=1;

D2=1;

D3=1;

D4d=1;

D5=1;



D6=1;
D7=1;
D8=1;
D9=1;
D10=1;
D1i=1;
D12=1;
D13=1;
D14=1;
D15=0; // 1 bit error
Dl6=1;
D17=1;
D18=0;
D19=1;
D20=0;
D21=0;

#10 // coded word (0111111111111111)
D0=0; /7 with check bits(110100)
Dl1=1;

D2=1;

D3=1;

Déd=1;

D5=1;

D6=1;

D7=1;

D8=0; // 1 bit error
D9=1;

D10=1;

D11=1;

D12=1;

D13=1;

D14=1;

D15=0; // 1 bit error
Di6=1;

D17=1;

D18=0;

D19=1;

D20=0;

D21=0;

#10 // coded word (1011111111111111)
DO0=1; /7 with check bits (101100)
D1=0;

D2=1;

D3=1;

Dd=1;

D5=1;

D6=1;



D7=1;
D8=1;
D9=1;
D10=1;
DLl1=1;
D12=1;
D13=1;
D14=1;
D15=1;
D16=1;
D17=0;
D18=1;
D19=1;
D20=1; // 1 bit error
D21=0;

#10 // coded word (1011111111111111)
DO=1; // with check bits (101100)
D1=0;

D2=1;

D3=1;

D4=1;

D5=1;

D6=1;

D7=1;

D8=1;

D9=1;

D10=1;

D11=1;

D12=1;

D13=1;

D14=1;

D15=1;

D16=1;

D17=0;

D18=1;

D19=0; // 1 bit error
D20=1; // 1 bit error
D21=0;

// triple and quatple errors

#10 // coded word (00006000000000000)
D0=0; /7 with check bits{000000)
D1=0;

D2=0;

D3=0;

D4=0;

D5=0;

Dé=1; // 1 bit error



D7=1; // 1 bit errot
D8=0;
D9=0;
D10=0;
D11=0;
D12=0;
D13=0;
D14=0;
D15=0;
D16=0;
D17=0;
D18=0;
D19=1; // 1 bit error
D20=0;
D21=0;

#10 // coded word (0000000000000000)
D0=0; // with check bits(000000)
D1=0;

D2=0;

D3=0;

D4=0;

D5=0;

D6=1; // 1 bit error
D7=1; // 1 bit errot
D8=0;

D9=1; // 1 bit error
D10=0;

D11=0;

D12=0;

D13=0;

D14=0;

D15=0;

D16=0;

D17=0;

D18=0;

D19=1; // 1 bit error
D20=0;

D21=0;

#10000 $stop; // Change data every 1 MHz

end
initial
begin
Sdisplay (” DDDDDDDDDDDDDDDDDDDDDDOOC0000000000000SESSSSSCD” ) ;
Sdisplay (” 0123456789111111111122012345678911111101234500") ;
Sdisplay (” 012345678901 012345 RU”) ;
Sdisplay (” RB”);

S$display (” EL");



Sdisplay (”

$display (”

Sdisplay ("

Sdisplay (”

Sdisplay (”

Sdisplay (”

sdisplay (“

Sdisplay (”

sdisplay (”

S$display ("

(
(
Sdisplay (”
(
(
(

Sdisplay (”

$monitor (Stime,,

end

initial

D0, Di, D2, D3, D4, D5,

b6, D7, D8, D9, D10, D1i,
D12, D13, D14, D15, Dl6, D17,
pls, D19, D20, D21, 00, 01,
02, 03, 04, 05, 06, 07, 08,
09, 010, 011, ©12, 013, 014,
oi5, s0, 81, s2, S3, sS4, s5,

CORRECTABLE_ERROR, DOUBLE_ERROR) ;

Sgr_waves (

initial

#10000

“D0”,D0, "D1",D1,"D2",D2,"D3",D3,"D4",D4, "D5", D5,
“D6",D6,"D7",D7,“D8",D8, “D9”,DY, *D10”,D10, *D11~,D11,
“D12",D12,”D13%,D13, "D14",D14, “D15%,D15, D167 ,D16, “D17%,D17,
“D18",D18, “D19”,D19, “D20",D20, "D21",D21, “00“,00, “01”,01,
"02",02,"03",03,"04",04, 05" ,05,"06",06, 07" ,07, “08", 08,
"09",09,7010",010,7011",011, 012,012, "013",013, “014",014,
"O15,015, "80", 50, "S1",81,"S2",82,"S3",S3, "84, 54, 7§57, S5,

“CORRECTABLE_ERROR” , CORRECTABLE_ERROR,
“"DOUBLE_ERROR”, DOUBLE_ERROR) ;

Sps_waves (“gr_wave.ps”, "“ECC_Core”);

endmodule



/7 PRTG.STIM

‘timescale 1 ns/100 ps

module test;

reg CLK,GLOBALSTRT, HOLD, RESET, SCAN_IN, SE1;
wire TO;
wire T1;
wire T2;
wire T3;
wire T4;
wire T5;
wire T6;
wire T7;
wire T8;
wire T9;
wire T10;

integer i;

supplyl XVDD;
supply0 XGND;

PRTG_COREF tl

(.CLK(CLK), .GLOBALSTRT (GLOBALSTRT) , . HOLD (HOLD) ,
-RESET (RESET) , . SCAN_IN(SCAN_IN), .SE1(SELl),.TO(TO),.T1(T1),
.T3(T3),.T4(T4), .T5(T5), .T6(T6),.T7(T7),.TB(T8),

.T10(T10));

initial
begin
#5 CLK=1;
#5 CLK=~CLK;
GLOBALSTRT=0;
HOLD=0;
RESET=0;
SCAN_IN=0;
SE1=0;
#5 CLK=~CLK;
#5 CLK=~CLK;
#5 CLK=~CLK;
#5 CLK=~CLK;
#5 CLK=~CLK;
for( i=0; i < 4096; i=1i+1)
begin
#5 CLK=~CLK;

end

.TS(T9),

.T2(T2),



#10000 S$stop; // Change data every 1 MHz

end
initial
begin
Sdisplay (” CGHRSSTTTTTTTTTTT") ;
$display (” LLOECE01234567891") ;
Sdisplay (“” KOLSAl 0");
Sdisplay (” BDEN ")
Sdisplay (” A T_ "y
Sdisplay(” L I ")
Sdisplay (“ s N ")
$display (” T "y
$display (” R "y,
$display (” T “y,

$monitor($time,, CLK, GLOBALSTRT, HOLD,
RESET, SCAN_IN, SE1, TO0, T1,
T2, T3, T4, TS, T6, T7, T8,
T9, T10};

end
initial
$gr_waves (“CLK",CLK, “GLOBALSTRT”, GLOBALSTRT, “HOLD” , HOLD,
"RESET”,RESET, "SCAN_IN”,SCAN_IN, “SE1*,SE1l, *T0”,T0Q,“T1",T1,
“T2”,T2,*T3",T3,"T4",T4,"T5",T5, "T6”,T6,“T7",T7, "T8", T8,
“T9”,T9,“T10”,T10};

endmodule



‘timescale 1 ns/100 ps

module test;

reg CLK,GLOBALSTRT,HOLD, RESET, SCAN_IN, SE1;
wire END;
wire SCAN_OQUT;
wire TO;
wire T1;
wire T2;
wire T3;
wire T4;
wire T5;
wire T6;
wire T7;
wire T8;
wire T9;
wire T10;
wire T11;
wire T12;
wire T13;
wire T14;
wire T15;
wire T16;
wire T17;
wire T18;
wire T19;
wire T20;
wire T21;

integer i;

supplyl XVDD;
supply0 XGND;

PRTGF tl

(.CLK(CLK), .END(END) , .GLOBALSTRT (GLOBALSTRT) , . HOLD (HOLD) ,

-RESET (RESET) , . SCAN_IN(SCAN_IN), .SCAN_OUT (SCAN_OUT), .SE1(SEl), .T0(TO),
LT1(T1), . T2(T2), .T3(T3),.T4(T4),.T5(T5), .T6(T6), .T7(T7),

.T8(T8), .T9(T9), .T10(T10),.T11(T11),.T12(T12),.T13(T13),

.T14(T14}), .T15(T15), .T16(T16),.T17(T17), .T18(T18),.T19(TL9),
.T20(T20), .T21(T21));

initial
begin
#5 CLK=1;
#5 CLK=~CLK;



GLOBALSTRT=0;
HOLD=0;
RESET=0;
SCAN_IN=0;
SE1=0; //MUX selects feedback
#5 CLK=~CLK;
#5 CLK=~CLK;
#5 CLK=~CLK;
#5 CLK=~CLK;
#5 CLK=~CLK;
for( i=0; 1 < 4096; i=i+1)
begin
#5 CLK=~CLK;

end

#5 CLK=~CLK;
SE1=1; // MUX selects Scan_In input
SCAN_IN=1;
for(i=0; i<50; i=i+1)
begin
#5 CLK=~CLK;

end
#5 CLK=~CLK;
SEl=1; // MUX selects Scan_In input
SCAN_IN=0;

for(i=0; 1<50; i=i+1)
begin
#5 CLK=~CLK;

end

#10000 $stop; // Change data every 1 MHz

end
initial

begin
Sdisplay (” CEGHRSSSTTTTTTTTTTTTTTTTTTTTITT ) ;
Sdisplay (” LNLOECCE(123456789111111111122");
Sdisplay (” KDOLSAAL 012345678901");
Sdisplay (” BDENN ")
Sdisplay ( AT “);
Sdisplay (* L IO ")
Sdisplay (” S NU ")
Sdisplay (" T T ")
Sdisplay (” R ")
Sdisplay (” T ")
Smonitor{$time,, CLK, END, GLOBALSTRT,

HOLD, RESET, SCAN_IN,
SCAN_OUT, SE1, TO, T1, T2, T3, T4,



T5, T6, T7, T8, T9, T10,
T11, T12, T13, T14, T15, Tle,
TL7, T18, T19, T20, T21);

end
initial

$gr_waves (“CLK”,CLK, “END”, END, “GLOBALSTRT", GLOBALSTRT,
“HOLD” ,HOLD, "RESET" , RESET, “SCAN_IN”, SCAN_IN,
“SCAN_OUT”, SCAN_OUT, “SE1”, SE1, »T0*,T0, "T1",T1, "T2%,T2,”T3%,T3,*T4",T4,
“Ts”,T75,”T6",T6,"T7",T7,"18"”,T8,*T9”,T9, "T10",T10,
*T11*,T1i,”T1l2*,T12,T13~,7T13,%T147,T14,”T15",T15, “T16",T16,
“T177,T17,”T1i8",7T18,“T19”,T19, "T20",T20,”T21",T21) ;

endmodule



‘timescale 1 ns/100 ps

module test;

reg
AQ,Al,A2,A3,A4,A5,R6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17,A18,A19,A20,421,B0,B1,B
2,B3,B4,B5,B6,B7,B8,B%9,B10,B11,B12,B13,B14,B15,B16,817,B18,B19,B20,B21, SEQ;
wire X0;

wire X1;

wire X2;

wire X3;

wire X4;

wire X5;

wire X6;

wire X7;

wire X8;

wire X9;

wire X10;

wire X11;

wire X12;

wire X13;

wire X14;

wire X15;

wire X16;

wire X17;

wire X18;

wire X19;

wire X20;

wire X21;

supplyl XVDD;
supply0 XGND;

MUXF tl

(.A0(AQ), .AL(AL), .A2(A2),.A3(A3), .A4(A4), .A5(AS),

-A6(A6), .A7T(A7), .AB(AB), .A9(AY9), .AL0(AL0), .AL1(ALLl), .AL2(AL12),
.AL13(ALl3),.A14(A14), .A15(A15), .A16(A16), .AL7(AL7), .A18(Al8),
-A19(Al9), .A20(A20), .A21(A21), .BO(B0O), .B1(B1l), .B2(B2), .B3(B3),
.B4(B4), .B5(B5), .B6(B6), .B7(B7), .B8(B8), .B9(B9), .BL0(B10),
.B11(B11),.B12(B12),.B13(B13),.B14(B14}, .B15(B15}), .B16(B16),
.B17(B1i7), .B18(B18), .B19(B19), .B20(B20), .B21(B21), .SEO(SEQ),
LX0(X0), .X1(X1),.X2(X2),.X3(X3), .X4(X4), .X5(X5), .X6(X6),
CXT7(X7), .X8(X8), .X9(X9), .X10(X10), .X11(X11), .x12(x12),
SX13(X13), .X14(X14), .X15(X15), .X16(X16), .X17(X17), .X18(X18),
LX19(X19), .X20(X20), .X21(X21));



initial
begin

AQ=1;
Al=1;
A2=1;
A3=1;
Ad=1;
A5=0;
A6=0;
A7=0;
AB=0;
A9=0;
Al0=1;
All=1;
Al2=1;
Al3=1;
Ald=1;
Al5=0;
Al6=0;
Al7=0;
Al8=0;
Al9=0;
A20=0;
A21=0;
BO=0;
B1=0;
B2=0;
B3=0;
B4=0;
B5=1;
B6=1;
B7=1;
B8=1;
B9=1;
B10=0;
B11=0;
B12=0;
B13=0;
B14=0;
B15=1;
Bl6=1;
B17=1;
B18=1;
B19=1;
B20=1;
B21=1;
SEQ=0;
#10000 $stop; // Change data every 1 MHz

end



initial

begin

$display (” AAAAAAAAAAAAAADAAAAAAAABBBEBBBBBBBBBBBBBBBBBBSXXXXX XXXX XXXXXXX") ;
$display(” 01234567891111111111220123456789111111111122E0123456789111111111122");
Sdisplay (” 012345678901 0123456789010 012345678901") ;
Smonitor($time,, A0, Al, A2, A3, A4, A5,

A6, A7, A8, A9, Al0, Aal1i,

Al2, Al3, Al4, Al5, ale, Aal7,

Al8, AlS, A20, A21, BO, Bi,

B2, B3, B4, B5, B6, B7, BB,

B9, B10, B1l, B12, B13, Bl4,

B15, Bl6, B17, B18, B19, B20,

B21, SEO, X0, X1, X2, X3, X4,

X5, X6, X7, X8, X9, Xx10,

X111, X12, X13, X14, X15, Xils,

X17, X18, X19, X20, X21):

end
initial

$gr_waves (“A0”,AQ, "Al”,AL,"A2",A2,”A3" ,A3,"A4"” A4, "A5" A5,
"A6",A6,"A7" ,AT7,"A8",A8,"A9",A9,”A10",A10,”Al11"”,ALL,
"Al2”,Al12,”A13",A13,"Al4",Al4,"AL5",AL5, "Al6",A16,"A17”,ALT,
“Al8",Al18,”A19”,A19,"A20",A20,”A21",A21,"B0”,B0, “B1",B1,
“B2",B2,"B3”,B3,"B4",B4, "B5",B5,"B6",B6, "B7",B7, "B8”, B8,
“B9”,B9,”B10”,B10,”B11”,B11,"B12",B12,B13”,B13, “B14” ,B14,
”“Bi5”,B15,”B16”,B16,”B17”,B17,"B18~,B18,”B19”,B19, “B20”,B20,
“B21",B21,"SE0",SEQ, “X0”,X0,X1",X1,"X2",X2,"X3" ,X3,"X4" ,%4,
"X57,X5,"X6",X6,"X7",X7,"X8",X8,”7X9",X9,"X10",X10,
"X117”,X11,7X127,X12,"X13",X13,"X14",X14,"X15",¥15,"X16",X16,
“X177,¥17,7¥18",X18,7X19”,X19,"X20",X20,"X21",X21};

endmodule



‘timescale 1 ns/100 ps

module test;

reg CLK, GLOBALSTRT, HOLD, RESET, SCAN_IN, SE1,SEZ2;
wire COR_ERROR;
wire CO;
wire C1;
wire C2;
wire C3;
wire C4;
wire C5;
wire C6;
wire C7;
wire C8;
wire C9;
wire C10;
wire C11;
wire C12;
wire C13;
wire C14;
wire C15;
wire Cl16;
wire Cl17;
wire C18;
wire C19;
wire C20;
wire C21;
wire DOUBLE_ERROR;
wire DO;
wire Di1;
wire D2;
wire D3;
wire D4;
wire D5;
wire D6;
wire D7;
wire D8;
wire D9;
wire D10;
wire D11;
wire D12;
wire D13;
wire D14;

wire D15;



wire D16;
wire D17;
wire D18;
wire D19;
wire D20;
wire D21;
wire SGO;
wire SG1;
wire SG2;
wire SG3;
wire SG4;
wire SG5;
wire SG6;
wire SG7;
wire SG8;
wire SG9;
wire SG10;
wire SG11;
wire SG12;
wire SG13;
wire SG14;
wire SG15;
wire SG16;
wire SG17;
wire SG18;
wire SG19;
wire S5G20;
wire SG21;

integer i;

supplyl XVDD;
supply0 XGND;

SIG_SIMF tl

(.CLK(CLK), .COR_ERROR (COR_ERROR), .C0O(C0), .C1(C1),
.C2(C2),.C3(C3), .C4(C4), .C5(C5), .C6(CB),.CT7(CT), .C8(C8),
.C9(C9), .Cc10(C10), .Cl1(C11),.Cl2(C12),.C13(C13}),.C14(C14),
.C15(C15), .Cl6(C16), .CL7(C17),.Cl8(C18),.CLlY(C19),.C20(C20),
.C21(C21), .DOUBLE_ERROR (DOUBLE_ERROR}, .D0(DO), .D1(D1), .D2(D2),
.D3(D3),.D4(D4), .D5(D5), .D6(D6), .D7 (D7), .D8(D8), .DI (DY),
.b10(D10), .D11(D11},.D12(D12), .D13(D13),.D14(D14), .D15(D15),
.D16(D16),.D17(D17),.D18(D18),.D19(D19), .D20(D20), .D21(D21),
-GLOBALSTRT (GLOBALSTRT) , . HOLD (HOLD) , . RESET (RESET) , . SCAN_IN(SCAN_IN), .SE1(SE1),
.SE2(SE2), .5G0(5G0), .SG1(SG1), .SG2(SG2), .SG3(SG3), .SG4 (8G4),
-8G5(8GS), .8G6(SG6), .SG7(SG7), .SGB(SG8), .SG9(SGY), .SG10(SG10),
-SG11(8G11),.SG12(8G12),.SG13(8G13), .8G14(SGl4), .SG15(SG15),
.SG16({S8G16), .SG17(SG17), .5G18(3G18), .SG19(S8G19), .SG20(SG20),
.8G21(8G21}));



initial
begin
#0 RESET=1;
#10 CLK=1;

//to set seed and clear MISR

#10 CLK=~CLK;
GLOBALSTRT=0;

HOLD=0;
RESET=0;
SCAN_IN=0;
SE1=0;
SE2=1;

#10 CLK=~CLK;
#10 CLK=~CLK;
#10 CLK=~CLK;

for( i=0; 1

begin

< 4096; i=1i+1)

#10 CLK=~CLK;

end

#10000 $stop; // Change data every 1 MHz

end

initial
begin
$display (”

Sdisplay ("
$display (”
$display ("
S$display (*”
$display{”
S$display (”
S$display ("
$display ("
Sdisplay ("
$display (”

$display (”

Smonitor{$time,,
Cc3, C4, C5, C6, C7, C8,
ci0, €11, c12, c13, C14,

cz,
c9,
Cls,
ca1,
D2,
D9,
D15,
D21,

CCCCCCCCCCCCCCCCCCCCCCCChbbDbDDDDDDDDDDDDDDDDDDGHR

S5S555555555585S §55");

10012345678911111111112200123456789111111111122LOECEEGGGCGCGGGGGGGGGGGEGGGGGEEY ) ;

KR 012345678901U
- B
E L
R E
R -
[¢] E
R R

R
0
R

CLK, COR_ERROR, CO, C1,

Ccle, C17, C1i8, Cl9, C20,
DOUBLE_ERROR, DO, DI,

D3, D4, DS, D6, D7, D8,
D10, D11, D12, D13, D14,

Dlé, D17, D18, D19, D20,

GLOBALSTRT, HOLD, RESET,

SCAN_IN, SE1, SE2, SGO0, SGl, sG2,

SG3,
5G9,

5G4, SG5, S5G6, SG7, SG8,
5G10, sGi1, SG12, sG13,

0123456789010LSA120123456789111111111122");

BDEN

012345678901");
")
"y

)i



end
initial

$gr_waves

endmodule

SG14, sG15, SGl6, SG17, SG18,
SG19, SG20, sG21);

("CLK”, CLK, “COR_ERROR", COR_ERROR, "C0",CO0, “C1”,C1,
“Cc2”,C2,"C3",C3,"C4”,C4,"C5",C5,“C6",C6,"C7",C7,“C8",C8,
“c9”,C9,”CL0”,C10, C11”,¢1l, “Cc12#,C12, “C13%,¢l13, "Cl47,Cl4,
"C157,C15, "C167,C16, “C177,C17, “C187,C18, “C197,C19, 7C20",C20,
“C21",C21, “DOUBLE_ERROR” , DOUBLE_ERROR, “D0", D0, "D1”,D1,
"D2",D2,"D3",D3, “D4”,D4, “D5”, D5, "D6,D6, “D7 ", D7, "D8", D8,
“D9*,D9, “D10“,D10, "D11”,D11, “D12#,D12, “D13~,D13, "D14, D14,
"D15”,D15,“D16",D1l6,”D17",D17, “D18",D18, “D19~,D19, “D20", D20,
“D21”,D21, “GLOBALSTRT”, GLOBALSTRT, “HOLD" , HOLD, “RESET* , RESET,
“SCAN_IN", SCAN_IN, "SE1”, SE1, "SE2",SE2, “SG0”, $G0, "SG1”, 5G1, "$G2", SG2,
“SG3”,8G3, "SG4”, 5G4, “SG5", SG5, "SG6”, SG6, “SG7“, SG7, “SG8”, SG8,
"$G@9, 8G9, "8G10“,8G10, “SG11”,SG11, "SGL2",8G12, "SG13 7, SG13,
“SG@14",8G14, “SG15",SG15, "SG16", SG16, "SG17,8G17, "SG18", SG18,
“SG19”,5G19, "SG20", SG20, “SG21¥, SG21) ;



‘timescale 1 ns/100 ps

module test;

reg
CLK, GLOBALSTRT, HOLD, RESET, SCAN_IN, SE2, S0, 81,52,83,54,55,Y0,vY1,Y2,Y¥3,Y4,Y5,Y6,Y7,Y8,Y9
,Y10,Y11,v12,Y13,Y14,Y15;
wire WO;

wire W1;

wire W2;

wire W3;

wire W4;

wire W5;

wire Wé6;

wire W7;

wire W8;

wire W9;

wire Wi0;

wire Wll;

wire W12;

wire W13;

wire Wl4;

wire W15;

wire W16;

wire W17;

wire W18;

wire Wi9;

wire W20;

wire W21;

integer i;

supplyl XVDD;
supply0 XGND;

MISR_COREF t1

(.CLK(CLK), .GLOBALSTRT (GLOBALSTRT) , . HOLD (HOLD) ,

.RESET(RESET), .SCAN_IN(SCAN_IN}, .SE2(SE2),.50(S80),.S1(S81),.82(s2),
-83(83),.84(84),.85(85), .WO(W0), .WL(WLl), .W2(W2), .W3(W3),

-W4(W4), .W5(W5), .W6(W6), . W7 (W7), .WB(W8), .WI(W9), .WLO0 (W10),
CWLIL(W1Ll), .Wi2(W12), .WI3(W13),.Wl4d (Wld), .W15(W15), .Wl6 (Wi6),

W17 (W17), W18 (W18}, .W19(W1%), .W20(W20), .W21(w21),.Y0 (YD),
SYL(Y1), . Y2(Y2), .Y3(Y3),.Y4(Y4), . .¥Y5(YS), . .Y6(Y6),.Y7(Y7),
-Y8(Y8),.Y9(Y9), .¥Y10(Y10), .¥Y11(Y1l), .Y12(Y12),.Y13(Y13),
.Y14(Y14), .Y15(Y15));



initial
begin
#0 CLK=0;
RESET=1;
#20 CLK=~CLK;

// add to try final signature
#20 CLK=~CLK;
GLOBALSTRT=0;
HOLD=0;
RESET=0;
SCAN_IN=0;
SE2=1; // select feedback
Y0=0;

Y1=0;
Y2=0;
Y¥3=0;
Y4=1;
Y5=0;
Y6=1;
Y7=1;
Y8=1;
Y9=0;
Y10=0;
Y1ll=1;
Y12=0;
Y13=1;
Yid=1;
Y15=1;
50=1;
S1=0;
S2=0;
3$3=0;
S4=0;
55=0;
#20 CLK=~CLK;
#20 CLK=~CLK;

#20 CLK=~CLK;
GLOBALSTRT=0;
HOLD=0;
RESET=0;
SCAN_IN=0;
SE2=1; // select feedback
Y0=1;

Yi=1;

Y2=1;

Y3=1;

Y4=1;



¥5=1;
Yé=1;
Y7=1;
¥8=1;
Y9=1;
Y10=1;
Yil=1;
Y12=1;
Y13=1;
Y1i4=1;
Y15=1;
s0=1;
Si=1;
S2=1;
S$3=1;
S4=1;
S$5=1;

#10 CLK=~CLK;
GLOBALSTRT=0;
HOLD=0;
RESET=0;
SCAN_IN=1;
SE2=1; // select feedback
Y0=0;

Y1=0;

Y2=0;

Y3=0;

Y4=0;

¥5=0;

Y6=0;

Y7=0;

Y8=0;

Y9=0;

Y10=0;

Y11=0;

Y12=0;

Y13=0;

¥14=0;

Y15=0;

50=0;

S1=0;

52=0;

S$3=0;

54=0;

55=0;

#10 CLK=~CLK;
GLOBALSTRT=0;
HOLD=0;



RESET=0;
SCAN_IN=0;
SE2=1; // select feedback
Y0=1;
Yl=1;
Y2=1;
Y3=1;
Y4=1;
Y5=1;
Y6=1;
Y7=1;
Y8=1;
Y9=1;
¥10=1;
Y1l=1;
Y12=1;
Y13=1;
Y14=1;
Y15=1;
s0=1;
Sl=1;
52=1;
S3=1;
S4=1;
s5=1;

for(i=0; i<6; i=i+1)
begin
#10 CLK=~CLK;

end

GLOBALSTRT=0;
HOLD=0;
RESET=0;
SCAN_IN=1;
SE2=1; // select feedback
Y0=0;

Y1=0;

Y2=0;

¥3=0;

Y4=0;

Y5=0;

Y6=0;

Y7=0;

Y8=0;

Yo=0;

Y10=0;

Y¥11=0;

Y1i2=0;

Y13=0;




Y14=0;
Y15=0;
50=0;
51=0;
S2=0;
$3=0;
$54=0;
$5=0;

for(i=0; i<6; i=i+1)
begin
#10 CLK=~CLK;

end

#10 CLK=~CLK;
GLOBALSTRT=0;
HOLD=0;
RESET=0;
SCAN_IN=0;
SE2=0; // select scan-in
Y0=1;

Yl=1;

Y2=1;

Y3=1;

Y4=1;

Y5=1;

Yé=1;

Y7=1;

Y8=1;

Y9=1;

Y10=1;

Y1l=1;

Y12=1;

Y13=1;

Y14=1;

Y15=1;

50=1;

S1=1;

S2=1;

S3=1;

S4=1;

85=1;

for{(i=0; 1<35; i=i+1)
begin
#10 CLK=~CLK;

end

#10 CLK=~CLK;



GLOBALSTRT=0;
HOLD=0;
RESET=0;
SCAN_IN=1;
SE2=0; // select scan-in
Y0=0;
Y1=0;
Y2=0;
Y3=0;
Y4=0;
Y5=0;
Y6=0;
Y7=0;
Y8=0;
Y9=0;
¥10=0;
Y11=0;
Y12=0;
Y13=0;
Y14=0;
Y15=0;
50=0;
S1=0;
52=0;
$3=0;
S4=0;
S5=0;

for(i=0; i< 45; i=i+1)
begin
#10 CLK=~CLK;

end

#10000 $stop; // Change data every 1 MHz

end
initial
begin
Sdisplay (7 CGHRSSYYYYYYYYYYYYYYYYSSSSS SWWWWWWWWNWWWWWWWWWWWNW " ) ;
Sdisplay (” LLOECE01234567891111110123450123456789111111111122");
Sdisplay (" KOLSA2 012345 012345678901") ;
Sdisplay(” BDEN ")
Sdisplay (” A T_ ")
Sdisplay (" L I ") ;
Sdisplay (” S N "y
$display (” T ay,;
$display (” R “y s
$display (” T ")

Smonitor($time,, CLK, GLOBALSTRT, HOLD,



RESET, SCAN_IN, SE2,

Y0, Yi, Y2, Y3, Y4, Y5, Ys6,
Y7, ¥8, ¥$, Y10, Y11, Y12,
Y13, vi4, Y15, S0, 81,

S2, S3, S4, 85, W0, W1, w2,
W3, W4, W5, W6, W7, W8, W9,
W10, Wil, wl2, W13, W14, W15,
Wl6, W17, Wi8, W19, W20, wW21);

end
initial
$gr_waves(”CLK”,CLK,”GLOBALSTRT”,GLOBALSTRT,”HOLD”,HOLD,
"RESET”,RESET, “SCAN_IN”,SCAN_IN, "SE2",SE2,
"Y0”,Y0, "¥Y1",Y1, "Y¥2",Y2,"Y3",¥3,"Y4", Y4, "Y5" Y5, "Y6", Y6,
"Y7v,Y7,7Y8”,¥8,"Y9",v9,#y10”,Y10, "Y1l~”,v11l, "Y1i2”,Y12,
"Y13”,Y13,%Y14",Y14,7Y15",Y15,
»so0~,s0,”s1”,81, "s27,52,783”7,83,7S4",84,785",35,
WO, WO, "WL”, W1, “W2”, W2,
"W3",W3, "W4”,Wa, "W5" , W5, "W6" W6, “WT" , W7, “W8”, W8, “W9”, W9,
“W10”, W10, "Wll”,WLl1, “Wi2”, W12, "W13", W13, "Wld",Wild, “W15”, W15,
"W16” ,Wl6, "W17”,W1l7, "W18~”,W18, "W19”,W19, “W20", W20, "W21" ,W21) ;

endmodule




‘timescale 1 ns/100 ps

module test;

reg
CLK,END,GLOBALSTRT,HOLD,RESET,SCAN_IN,SEZ,SO,Sl,82,33,84,SS,YO,Yl,Y2,Y3,Y4,Y5,Y6,Y7,Y
8,Y9,Y10,Y11,Y12,Y13,v14,Y15;

wire ECC_FAILURE;

wire SCAN_OUT;

supplyl XVDD;
supply0 XGND;

MISRF tl

(.CLK{CLK), .ECC_FAILURE (ECC_FAILURE), .END(END),

-GLOBALSTRT (GLOBALSTRT) , . HOLD (HOLD) , .RESET (RESET) , . SCAN_IN(SCAN_IN),

. SCAN_OUT (SCAN_OUT), .SE2(SE2), .S0(S0), .S1(S1),.82(82),.83(83),.84(84),
.85(85), .XGND (XGND) , .XVDD(XVDD), .Y0(Y0), .Y (Y1), .Y2(Y2),
CY3(Y3),.Y4(Y4), .¥Y5(¥5),.¥Y6(Y6),.Y7(Y7),.¥Y8(Y¥8),.¥Y9(Y9),

SY10(Y10), .Y11(Y11),.Y12(Y12),.Y13(Y13),.Y14(Y14),.Y15(Y15));

initial
begin

#0 CLK=1;
END=0;
GLOBALSTRT=0;
HOLD=0;
RESET=1;
SCAN_IN=0;
SE2=0;

#10 CLK=~CLK; //select multi-inputs
RESET=0;

SE2=1;

Y0=0; //set register output as correct signature
¥1=0;

¥2=0;

Y3=0;

Y4=1;

Y5=0;

Y6=1;

Y7=1;

¥8=1;

Y9=0;

Y10=0;

Y1ll=1;



Y12=0;

Y1i3=1;

Y14=1;

Y15=1;

50=1;

S1=0;

52=0;

353=0;

54=0;

$5=0;

END=1; //to compare the signature
#10 CLK=~CLK;

#10 CLK=~CLK;

END=0;

#10 CLK=~CLK; //read the flag ( that should be 0 )
#10 CLK=~CLK;

#10 CLK=~CLK; //flip all input to be 0, and continue generating signatures
#10 CLK=~CLK;
Y0=0;

Y1=0;

Y2=0;

Y3=0;

Y4=0;

¥5=0;

Y6=0;

Y7=0;

Y8=0;

Y9=0;

Y1i0=0;

Y11=0;

¥12=0;

Y13=0;

Y14=0;

Y15=0;

30=0;

S1=0;

52=0;

53=0;

54=0;

55=0;

#10 CLK=~CLK;
#10 CLK=~CLK;
#10 CLK=~CLK;
#10 CLK=~CLK;

#10000 S$stop; // Change data every 1 MHz

end




initial

begin

Sdisplay (" GCREHSSYYYYYYYYYYYYYYYYSSSSSSSE”) ;
S$display (“ LLENOEC0123456789111111012345CC") ;
Sdisplay(” OKSDL2A 012345 AC") ;
Sdisplay (” BEDN N_");
$display (” AT _ _F"y;
sdisplay{(” L T OA") ;
Sdisplay (” s N U1”)
Sdisplay (” T TL") ;
Sdisplay (" R u”)
Sdisplay (” T R”)
Sdisplay (“ E”)
$monitor($time,, GLOBALSTRT, CLK, RESET, END,

HOLD, SE2, SCAN_IN,

Yo, v1, Y2, Y3, Y4, Y5,

Y6, Y7, ¥8, Y9, Y10, Y11,

Y12, vi3, Yi4, Yi5, SO, s1, 82, s3, s4,

35, SCAN_OUT, ECC_FAILURE );
end
initial

$gr_waves ( “GLOBALSTRT”, GLOBALSTRT, “CLK”,CLK, “RESET” , RESET, “END”, END,
“HOLD” ,HOLD, “SE2”, SE2, “SCAN_IN”, SCAN_IN, "Y0”,Y0,”Y1"”,Y1,

“Y2",¥2,"Y3%,Y3,"Y4", Y4, "YS, Y5,

"Y157,Y15,

endmodule

“Y6",Y6, Y7, YT, "Y8", Y8,
“¥97,Y9,"Y10",¥10,"Y1l",¥11, "Y12",¥12, "¥13",¥13, "Y14", V14,
"80”,80,7s1”,81,"S2”,52,"53",83,"84",84,"S5", S5,
“SCAN_OUT”, SCAN_OUT, "ECC_FAILURE”,ECC_FAILURE);




‘timescale 1 ns/100 ps

module test;

reg CLK, END,GLOBALSTRT, RESET, SELF_TEST, TEST_MODEOQ, TEST_MODE1 ;
wire HOLD;

wire SET_RESET;

wire SEQ;

wire SE1;

wire SE2;

integer i;

supplyl XVDD;
supply0 XGND;

TEST_CONTROLLERF tl

(.CLK(CLK), .END(END) , .GLOBALSTRT (GLOBALSTRT) , . HOLD (HOLD) ,

-RESET (RESET) , .SELF_TEST(SELF_TEST), .SET_RESET(SET_RESET), .SE0(SE0Q),
.SE1(SEl), .SE2(SE2), .TEST_MODEO (TEST_MODE() ,

.TEST_MODEL (TEST_MODEL), .XGND(XGND) , .XVDD(XVDD) ) ;

initial
begin

#1 CLK=1;
#5 CLK=~CLK; // On-Demand-Test mode
END=0;
GLOBALSTRT=0;
RESET=1;
SELF_TEST=1;
TEST_MODEQ=1;
TEST_MODE1l=1;
#5 CLK=~CLK;

#5 CLK=~CLK; // exit from ODT mode
END=0;

GLOBALSTRT=0;

RESET=1;

SELF_TEST=0;

TEST_MODE(O=1;

TEST_MODE1=1;

#5 CLK=~CLK;
#5 CLK=~CLK; // Psudo-Concurrent Test mode
END=0;

GLOBALSTRT=0;
RESET=1;




SELF_TEST=1;
TEST_MODEO=1;
TEST_MODE1=0;
#5 CLK=~CLK;

#5 CLK=~CLK; // exit from PCT mode
END=0;

GLOBALSTRT=0;

RESET=1;

SELF_TEST=0;

TEST_MODEO=1;

TEST_MODE1=0;

#5 CLK=~CLK;

#5 CLK=~CLK; // Scan~Test mode
END=0;

GLOBALSTRT=0;

RESET=1;

SELF_TEST=1;

TEST_MODEQ=0;

TEST_MODEl=1;

#5 CLK=~CLK;

#5 CLK=~CLK; // exit from ST mode
END=0;

GLOBALSTRT=0;

RESET=1;

SELF_TEST=0;

TEST_MODEO=0;

TEST_MODE1=1;

#5 CLK=~CLK;

#5 CLK=~CLK; // Scan-Path ring
END=0;

GLOBALSTRT=0;

RESET=1;

SELF_TEST=1;

TEST_MODEO=0;

TEST_MODE1=0;

#5 CLK=~CLK;

#5 CLK=~CLK; // Reset
END=0;

GLOBALSTRT=0;

RESET=1;

SELF_TEST=0;

TEST_MODEO=0;
TEST_MODE1=0;

#5 CLK=~CLK;




#5 CLK=~CLK; // On-Demand-Test mode
END=0;

GLOBALSTRT=0;

RESET=1;

SELF_TEST=1;

TEST_MODEQ=1;

TEST_MODE1l=1;

#5 CLK=~CLK;

#5 CLK=~CLK; // ODT Test Cycle End
END=1;

GLOBALSTRT=0;

RESET=1;

SELF_TEST=1;

TEST_MODEO=1;

TEST_MODEl=1;

#5 CLK=~CLK;

#5 CLK=~CLK; // On-Demand-Test mode
END=0;

GLOBALSTRT=0;

RESET=1;

SELF_TEST=1;

TEST_MODEQ=1;

TEST_MODE1=1;

#5 CLK=~CLK;

#5 CLK=~CLK; // Psudo-Concurrent Test mode
END=0;

GLOBALSTRT=0;

RESET=1;

SELF_TEST=1;

TEST_MODEQ=1;

TEST_MODE1=0;

#5 CLK=~CLK;

#5 CLK=~CLK; // PCT Test Cycle End
END=1;

GLOBALSTRT=0;

RESET=1;

SELF_TEST=1;

TEST_MODEQ=1;

TEST_MODE1=0;

#5 CLK=~CLK;
#5 CLK=~CLK; // Psudo-Concurrent Test mode
END=0;

GLOBALSTRT=0;
RESET=1;




SELF_TEST=1;
TEST_MODEO=1;
TEST _MODEL1=0;
#5 CLK=~CLK;

#5 CLK=~CLK;
#5 CLK=~CLK;
#5 CLK=~CLK;
#5 CLK=~CLK;
#5 CLK=~CLK;

#10000 S$stop; // Change data every 1 MHz

end

initial

begin
$display (”
Sdisplay ("
Sdisplay (7
Sdisplay(”
Sdisplay ("
Sdisplay (”
Sdisplay (”
Sdisplay (”
Sdisplay (“
Sdisplay (”

smonitor({$time,, GLOBALSTRT, CLK,

END, RESET, SEO, SEl, SE2,

end

initial

Sgr_waves (

") ;

R");

")

SII) ;
") i
) ;

GCSTTERSSSHS”) ;
LLEEENEEEEOE”) ;
OkLSSDSQ12LT”) ;
B FTT E D_
A___ T

L TMM E

S EOO

T SDD

R TEE

T 01

“);

HOLD, SET RESET };

SELF_TEST, TEST_MODEO, TEST_MODEL,

"GLOBALSTRT”, GLOBALSTRT, “CLK“,CLK,”SELF_TEST”,SELF_TEST,

"TEST_MODEQ”, TEST_MODEO, “TEST_MODELl”,
"RESET”, RESET, ”SE0”, SEO,

"SET_RESET”, SET_RESET ) ;

endmodule

“SRE1” ,

SE1,

TEST_MODEL,

"SE2”,SE2,

"END” , END,
"HOLD” , HOLD,




// ECCT.STIM

‘timescale 1 ns/100 ps

module test;

reg CLOCK, ECC_TEST,GLOBALSTRT, RESET, SCAN_IN, T_MODEQ,T MODE1;
wire COR_ERROR;

wire DOUBLE_ERROR;

wire ECC_FAILURE;

wire SCAN_OUT;

integer i;

supplyl XVDD;
supply( XGND;

ECC_TF t1

(.CLOCK (CLOCK) , . COR_ERROR (COR_ERROR} ,

.DOUBLE_ERROR (DOUBLE_ERROR) , .ECC_FAILURE (ECC_FAILURE), .ECC_TEST (ECC_TEST),
.GLOBALSTRT (GLOBALSTRT) , .RESET (RESET) , . SCAN_IN(SCAN_IN), .SCAN_OUT (SCAN_OUT),
.T_MODEQ (T_MODEQ) , .T_MODE1 (T_MODE1), . XGND (XGND) , .XVDD (XVDD) ) ;

initial
begin
#0 RESET=0; // reset the whole system
#35 CLOCK=1;
#35 CLOCK=~CLOCK; // On-Demand-Test mode
GLOBALSTRT=0;
RESET=1;
SCAN_IN =1;
ECC_TEST=1;
T_MODEQO=1;
T_MODEl=1;
#35 CLOCK=~CLOCK;
#35 CLOCK=~CLOCK;
#35 CLOCK=~CLOCK;
for(i=0; i < 4096; i=i+1)
#35 CLOCK=~CLOCK;

#35 CLOCK=~CLOCK; // exit from ODT mode
GLOBALSTRT=0;

RESET=1;

SCAN_IN =1;

ECC_TEST=0;

T_MODEO=1;

T_MODEl=1;

#35 CLOCK=~CLOCK;

#35 CLOCK=~CLOCK;




#35 CLOCK=~CLOCK;
for(i=0; i < 4096; i=i+l)
#35 CLOCK=~CLOCK;

#35 CLOCK=~CLOCK; // Psudo-Concurrent Test mode

GLOBALSTRT=0;

RESET=1;

SCAN_IN =1;

ECC_TEST=1;

T_MODEQ=1;

T_MODE1=0;

#35 CLOCK=~CLOCK;

#35 CLOCK=~CLOCK;

#35 CLOCK=~CLOCK;

for(i=0; i < 4096; i=1i+1)
#35 CLOCK=~CLOCK;

#35 CLOCK=~CLOCK; // exit from PCT mode

GLOBALSTRT=0;

RESET=1;

SCAN_IN =1;

ECC_TEST=0;

T_MODEQ=1;

T_MODE1=0;

#35 CLOCK=~CLOCK;

#35 CLOCK=~CLOCK;

#35 CLOCK=~CLOCK;

for(i=0; 1 < 4096; i=1i+1)
#35 CLOCK=~CLOCK;

#35 CLOCK=~CLOCK; // Scan-Test mode
GLOBALSTRT=0;

RESET=1;

SCAN_IN =1;

ECC_TEST=1;

T_MODEQ0=0;

T_MODEl=1;

#35 CLOCK=~CLOCK;

#35 CLOCK=~CLOCK;

t35 CLOCK=~CLOCK;
for(i=0; i < 4096; i=1i+1)

#35 CLOCK=~CLOCK;

#35 CLOCK=~CLOCK; // exit from ST mode
GLOBALSTRT=0;

RESET=1;

SCAN_IN =1;

ECC_TEST=0;

T_MODEQ=0;




T_MODEl=1;

#35 CLOCK=~CLOCK;

#35 CLOCK=~CLOCK;

#35 CLOCK=~CLOCK;

for(i=0; i < 4096; i=i+1)
#35 CLOCK=~CLOCK;

#35 CLOCK=~CLOCK; // Scan-Path ring

GLOBALSTRT=0;

RESET=1;

SCAN_IN =1;

ECC_TEST=1;

T_MODEQ=0;

T_MODE1=0;

#35 CLOCK=~CLOCK;

#35 CLOCK=~CLOCK;

#35 CLOCK=~CLOCK;

for(i=0; i < 4096; i=1i+1)
#35 CLOCK=~CLOCK;

#35 CLOCK=~CLOCK; // Global Reset

GLOBALSTRT=0;

RESET=1;

SCAN_IN =1;

ECC_TEST=0;

T_MODE0=0;

T_MODEL=0;

#35 CLOCK=~CLOCK;

#35 CLOCK=~CLOCK;

#35 CLOCK=~CLOCK;

for(i=0; 1 < 4096; i=i+1)
#35 CLOCK=~CLOCK;

end
initial
begin
Sdisplay (” CRGETTSSCDE”) ;
Sdisplay (” LELC__ccooc”) ;
Sdisplay (” OSOCMMAARUC”) ;
Sdisplay (” CEB_OONN_B_") ;
Sdisplay (” KTATDD__ELF”") ;
Sdisplay (“ LEEEIOREA”") ;
$display (” SSOINUR_I”);
Sdisplay (" TT TOEL") ;
Sdisplay (” R RRU”} ;
Sdisplay (“ T RR"};
Sdisplay (" OE") ;
Sdisplay{” R ");

$monitor($time,, CLOCK, RESET,GLOBALSTRT,




ECC_TEST, T_MODEO, T_MODE1l, SCAN_IN,
SCAN_OUT, COR_ERROR, DOUBLE_ERROR, ECC_FAILURE);

end

initial
$gr_waves {“CLOCK”, CLOCK, “RESET” , RESET, “GLOBALSTRT” , GLOBALSTRT,
"ECC_TEST”, ECC_TEST, “T_MODE(Q”, T_MODEQ, “T_MODE1”, T_MODE1,
"SCAN_IN”, SCAN_IN,
“SCAN_OUT"”, SCAN_OUT, “COR_ERROR”, COR_ERROR,
“DOUBLE_ERROR” , DOUBLE_ERROR, “ECC_FAILURE” , ECC_FAILURE) ;

endmodule




APPENDIX B:

SIMULATION OUTPUT ( .log Files)

( from Verilog—XL simulator )




The following .log files represent the design simulation output for the six (6) modular
designs in the hierarchy of the on—chip BIT ECC design. The .log files were produced
and logged by the Verilog—XL simulator during the simulation process, given the design
netlist files (.v file) and the stimulus files (.stim file).

i) ecc.log is for the ECC_CORE unit.

ii) prtg.log is for the on—chip test generator PRTG unit.

iii) mux.log is for the ECC input multiplexer unit.

iv) misr_core.log, sig_sim.log and misr.log are for the on—chip
signature analyzer MISR unit.

v) t_ctrller.log is for the built—in test controller unit.

vi) ece_t.Jog is for the top-level design of the on—chip BIT ECC.

It is noted that these six (6) .log files will take about 500 pages of papers if printed. As
such they are stored electronically in a floppy disk. The .log files as well as the thesis
write—up are also FTP accessible through the internet network.




