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ABSTRACT

Fungal infection is responsible for 5 to l0% of global food losses which can be

reduced by early detection of fungal infection. Conventional methods currently being

used for fungal detection are time consuming and tedious. Therefore, a fast, reliable,

user friendly and easily upgradeable fungal detection method is necessary. In this

study, the potential of a soft X-ray method for detection of fungal infection in stored

wheat was explored. X-ray images of healthy wheat kernels and wheat kemels

infected with Aspergillus niger, Aspergillus glaucus, and Penicillium spp. were

acquired ar.l84 pA currentand 13.6 kV voltage. Atotal of 34 features extracted from

X-ray images were used to discriminate healthy and fungal-infected kernels.

Statistical classifiers (linear, quadratic, and Mahalanobis) were applied to develop

two-class, and four-class models. The maximum classification accuracy of 98.9%owas

obtained by the two-class model. The Mahalanobis discriminant classifier correctly

identified on average 94.4% infected kernels. Four-class linear and quadratic

classifiers could identify Penicillium with accuracy greater than 85%. Conversely,l.

niger, A. glaucus, and healthy kernels were poorly classified by all statistical

classifrers.
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1. INTRODUCTION

The most important cereal crop in Canada is wheat. Canada is the sixth largest wheat

producer in the worìd (Dakers and Frechette, 1998). Total annual production of the

wheat in the world is 603 Mt, of which canada produces 20.1 Mt (usDA,2008).

Most of the wheat production in Canada is concentrated in Ontario and Prairie

Provinces (Alberta, Manitoba, and Saskatchewan). Canadian wheat is grouped into

eight classes namely Canada Prairie Spring Red (CPSR), Canada Prairie Spring White

(cPSw), canada western Amber Durum (cwAD), canada western Extra Strong

(cwES), canada western Hard white spring (cwHws), canada western Red

Spring (CWRS), Canada Vy'estern Red Winter (CWRW), and Canada Western Soft

White Spring (CWSWS). The CWRS class is the largest wheat class in production,

area under coverage, and consumer demand.

Canada occupies the second place in wheat exportation in the world preceded by

the United States (U.S.) (Dakers and Frechette, 1998). The wheat from Canada is

exported mainly to Asia, South America, the Middle East, and the U. S. The grains

are inspected for varietal purity, test weight, soundness, vitreousness, foreign

material, and insect and fungal infection before shipment. The fungal growth in stored

cereals is a serious problem which leads to qualitative and quantitative losses. Fungi

are responsible for 5 To 10%o of global food losses (Williams and Wood, 1986). Fungal

growth causes loss in germinability, discolouration of grain, heating, mustiness,

biochemical changes, undesirable odour and appearance, and weight loss of the grain

kernels which lowers the grading quality and hence, market value of the crop

(Christensen and Meronuck, 1988).



The fungi can be classifìed into field fungi and storage fungi. Field fungi invade

developing and mature seeds in the field before the harvest. This invasion may be

severe in a rainy season and in a humid region. The storage fungi mainly attack the

grain after harvest except infection of developing ears of corn by Aspergillus flavus

(Seitz et a1.,1975). Alternaria, Cladosporium, Fusarium, and Drechslera are common

species of field fungi while Aspergillus, Penicillium, Rhizopus, Mucor, and

Nigrospora are species of storage fungi. If grains are heavily infected by field fungi

then they become more resistantto storage fungi (Seitz etal., 1975). Some fungi may

have a few benef,rcial uses, e.9., A. niger can be used in preparing artificial citric acid

and A. flavus is used to produce a sweetened rice juice called Koji (Grainaissance

Inc., 1999).

The main threat for stored cereals arise from Aspergillius spp., Penicillium spp.,

and the field fungus Fusarium spp. which may produce mycotoxins such as aflatoxin,

cithrinin, xanthoquinones, ochratoxin A, Sterigmatocystin, and Penicillic acid.

Though visual molds can be removed from the kernels, mycotoxins can not be

removed from the final products as they are usually integral to grain kernels and are

not degraded during processing. Therefore, final products can be poisonous for the

consumer. Also, utilization of the raw material by removing infected parts can be

dangerous since toxins can be spread to uninfected parts by diffusion (Gourama and

Bullerman, 1995). Fungi reproduce through the production of spores which are

generally microscopic and invisible to the naked eye. Therefore, the f,rrst stage of

development of fungi cannot be detected without a microscope. Wind, insects, birds,

and contaminated trucks and equipment aid in the dispersal of the spores which



remain dormant until the proper conditions for growth occur. Generally, the fungi

need 70Vo relative humidity and temperature over 30oC for several days to a week to

start their life cycle (Council for Agricultural Science and Technology, 1989). The

suitable conditions for growth are specific for each particular group of fungi and

therefore, growth of particular fungi may be stopped by changing the surrounding

conditions, i.e., temperature and humidity but those changes may lead to the growth

of different fungi. In grains, adequate food supply, environmental conditions, and

exposure duration affect the extent of fungal contamination. Also, exposure of under-

dried grains to the changes in weather may provide proper conditions for fungi to

continue their growth. In severe cases, fungal infection can be responsible for the

death of animals and human beings. International Agency for Research on Cancer

(IARC) (Council for Agricultural Science and Technology, 1989) stated that there is

definite link between Aflatoxin Bl and cancer in animals. Mycotoxins have probable

links with birth defects in animals, nervous system problems, and tumours of liver,

kidneys, digestive tract, urinary tract, and the lungs (Council for Agricultural Science

and Technology, 1989).

Proper control measures in combination with an efficient detection technique may

help in controlling storage losses which occur due to fungal infection. Chemical

methods, immunological method, electrical impedance method, selective and

differential media, fungal volatiles, most probable number (MPN) method, Howard

mold count (HMC) method, polymerase chain reaction (PCR), and image analysis

method are currently being used to detect fungal infections (Sukurai and Shiota, 1977;

Seitz et a1.,1977,1979; Brodsky et al., 1982; Jarvis et al., 1983; Gaunt et al., 1985;

Notermans et a1.,1986; sashidhar et al., 1988; Kamphuis et al., 1989; Notermans and



Kamphuis, 1992; Borjesson et al., 1993; Zeringue et al., 1993; Gourama and

Bullerman, 1995; Manonmani et al., 2005; Scotter eT a1.,2005; Pearson and Wicklow,

2006; Singh et al., 2007). These methods are reliable but most of these methods are

time consuming and tedious since sample preparation requires a long time. The

proteins and carbohydrates of the cereals may interfere with the fungi which may lead

to misinterpretation of the results. Also, these methods need skilled personnel.

Therefore, it is necessary to develop an ideal method for the detection of fungal

infection which will be fast, reliable, user friendly, and easily upgradable.

As compared to conventional methods, soft X-ray method is a simple, fast, and

non destructive method. The reviewed literature revealed that the soft X-ray method

could be used for detection of internal defects and insect infection in agricultural

produce (Karunakaran et al., 2004a,2004b; Neethirajan et a1.,2004). Sprouting and

vitreousnss can also be detected successfully by this method (Neethirajan et al.,

2007a, 2007b). The soft X-ray method has also shown potential in the fungal

detection (Pearson and Wicklow, 2006). Fungal infection in grains leads to change in

the density of the grains. This density change can be detected by comparing the

features extracted from the X-ray images of healthy and infected kernels. Statistical

classifiers and artificial neural network (AI.IN) based on pattern recognition

techniques can be used for detection of fungal infection (Jayas et al., 2000;

Karunakaran et al., 2004a,2004b; Neethirajan et a1.,2004; Neethirajan et al., 2007a,

2007b). Therefore, this study was undertaken with the following objectives:

1. To explore the potential of a soft X-ray method to detect fungal infection in

wheat by Aspergillus glaucus, A. niger, and Penicillíum spp.



2. To extract X-ray image features for development of classification algorithm.

3. To assess the performance of statistical classifiers and ANN in identifying

wheat kernels infected by different types of fungi.



2. REVIEW OF LITERATIIRE

2.1. Background

Several species of fungi produce pathogenic byproducts called mycotoxins and hence,

on the basis of this ability, the fungi can be classified into mycotoxic fungi and non-

mycotoxic fungi. There is no direct relationship between visible mold in grain and the

presence or lack of mycotoxins. Aflatoxin, deoxynivalenol (DON), zearalenone

(ZEN), fumonisin, and T-2 ate common mycotoxins (Prescott et al., 2007).

Aspergillus, Penicillium, Fusarium, Alternaria, and claviceps have mycotoxigenic

strains of fungi. Mycotoxic molds lower the nutritional quality of grain by decreasing

the fat, protein, and vitamin content of the grain and these molds may be toxic to

animals and humans. Alternia, Fusarium, and Helminthosporium species cause seed

sterility, germ death, discolouration, and odour in kernels of wheat and barley and

typically occur in the field.

Fifty species of Aspergillus produce mycotoxins which include aflatoxin,

ochratoxin A, sterigmatocystin, cyclopiazonic acid, citrinin, patulin, and tremorgenic

toxins. In 1965, the Food and Drug Administration in the USA set the maximum level

of Aflatoxin at 20 ppb in all food and feeds (Council for Agricultural Science and

Technology, 1989). The Penicillium genus includes 150 species out of which l7

species secrete mycotoxins such as citreoviridin, citrinin, cyclopiazonic acid,

ochratoxin 4., patulin, penitrem A, PR toxin, RoquefoÉine C, and Secalonic acid D.

These toxins are mainly classified into fwo groups: toxins affecting liver and kidney

functions; and neurotoxins.



Fusarium, a plant pathogen, is mostly found in soil. It can contaminate corn,

wheat, barley, rye, triticale, millet, oats, and their products and produce a metabolite

called deoxynivalenol (DON) or vomitoxin. Fusarium graminiarum can produce

deoxyvalenol, zearalenone, 3-acetyldeoxynivalenol, 15-acetylaldeoxynivalenol,

diacetyldeoxynivalenol, and diacetoxyscirpenol. Alternaria infects plants in fields and

may affect wheat, barley, and sorghum by producing toxins which include alternariol,

alternariol monomethyl ether, altenuene, tenuzonic acid, and alertoxins.

Many species of fungi may cause diseases in grain and animals. Claviceps

purpurea, ergot mold, causes human mycotoxicosis which is called ergotism. It can

also contaminate barley, oat, rye, and wheat by producing ergotamine. Penicillium

spp. cause blue green discoloration in the germ area which is called blue eye rot while

Ustílage maydis is responsible for corn smut. Karnal Bunt (Tilletia indica) is a non-

mycotoxigenic fungus which is named after Karnal, India. Its spores attack

developing kernels within the seed head. There is little or no external sign of

infection. The kernels are shrunken at the germ end and covered with the sori which

discolor the flour. The kernels then impart a fishy odor. Black tip (black point) is

another non-mycotoxigenic fungus associated with seedling blight and root rot which

forms dark brown to black sooty mold and hence its name. Tilletia tritíci and Tilletia

lea¡tes cause common smut or bunt mainly in winter wheat but sometimes spring

wheat is also affected. It reduces wheat yield and grain quality. Infected kernels have

a pungent and fishy odor with dark appearance (Wiese, l99l). Direct and indirect

losses in grain due to the fungi can be prevented by detecting the fungal infection at

very early stages.



2.2Detection of Fungal Infection

Different fungal detection methods currently being used and their advantages and

limitations are discussed in this section.

2.2.lFungal enzymes

Fungal species produce a variety of enzymes during deterioration of the grains such as

cellulase, polygalacturonase, pectin methyl esterase, l-4-fl-glucanase, fl-glucosidase,

and fl-xylosidase (Sellars et al., 1976) which can be used as an indicator of fungal

growth. The enzymes and their production in culture and on mold can be calculated

by using chromogenic 4-nitrophenyl substrates (Jain et al., 1991). In this method,4-

nitrophenyl is liberated within t h after termination of a reaction which causes an

increase in optical density and aids in the measurement of enzyme activity. This

method requires I to 2 h for fungal detection. The micro-titre plates and a multi-scan

plate reader system not only allow analyses of a large number of samples in less time

but also can accurately enumerate enzyme activity. The only disadvantage of this

method is that it can be used as a rapid method only for selected species in specific

conditions because these enzymes may differ in quantity with species of fungi, e.g., A.

flavus has an ability to produce alarge quantity of o-amylase and sucrase as compared

to A. restrictus and Penicillium spp. (Ghosh and Nandi, 1986, Matrai et al., 2000).

Also, enzyme production depends on water activity and temperature of the incubation

(Flannigan and Bana, 1980). Therefore, this method hardly provides an overall

solution for detection of fungi.



2.2.2 Chemical methods

Fungal infection causes chemical changes in grains which lead to changes in seed

color and appearance. Many molds use grain lipids for their growth. The lipids are

broken down into free fatty acids and glycerol by lipases. Thus, in a reverse way, one

can say that the level of free fatty acid in the grain can be used as indication of mold

infection. Chemical methods include determination of chitin, adenosine triphosphate,

and ergosterol.

2.2.2.1Chitin

Chitin is present in the walls of fungal spores and mycelia and it can be detected by

using nuceller epidermis of developing wheat kernel as a true biological receptor

(Baldo et al., 1982). Fluorescein-labeled wheat germ lectin has a specific binding

affinity for N-acetyl-D-glucosamine, which reacts with the nuceller epidermis of a

developing wheat kernel and results in fluorescence. This reaction can be completely

inhibited if the chitin-like structure is present in the nuceller epidermis wall. This fact

was used to indicate the presence of fungi in grain. The concentration of fungi is

highly corelated with the glucosamine level (Lin and Cousin, 1985) which can be

measured by analyzing chitin (C8Hr3o5N)n (Ride and Drysdale, 1972). Chitin is

hydrolyzed to N-acetyl-D-glucosamine and finally deaminated to aldehydes which are

measured by a colorimetric method for the presence of fungi in food. N-acetyl-D-

Glucosamine content changes with the age and species of fungi (Sukurai and Shiota,

t977).



2,2.2.2 Adenosine triphosphate

Adenosine triphosphate (ATP) is a measure of metabolic activities and the principle

of this method is based on the production of light dueto the utilization of ATp in the

luciferin-luciferase enzyme system. This technique can be used for detection of

Trichoderma reesei (Gaunt et al., 1985).

2.2.2.3 Ergosterol

Ergosterol is a better tool ofdetection than plating because ergosterol can detect both

viable and non-viable strains of fungi. Ergosterol is a component of fungal cell

membranes and the principal sterol of ftrngi with few exceptions such as ceftain

phycomycetes and rust fungi (Weete, 1980). It serves the same function that

cholesterol serves in animal cells. The normal range of ergosterol is 0.2 to 0.60/o of the

dry weight but it can vary with age and growing conditions (Newell, 1992). Its

presence in fungal cells and absence in animal cells make it useful in the preparation

of antifi.rngal drugs. High performance liquid chromatography (HPLC) assay was

efficient for detection of ergosterol and had a good resolution. At the same time,

ergosterol can strongly absorb wavelengths ranging from 240 to 300 nm and hence

ultraviolet (UV) light can be used ro detect fungi in grain (Seitz et al., lg77,lg7g).

Sashidhar et al. (1988) iodinated ergosterol to make it fluorescent under long

wavelengths of Iight and then used it as an index of fungal contamination of grains.

2.2.3 Selective and differential media

Selective media inhibits the growth of fungal species other than the one being sought,

usually using a combination of antifungal compounds, e.g., A. flavus and A.

parasiticus agar (AFPA) (Pitt et al., 1983, 1990). Conversely, differential media are

10



used to show an obvious change in the presence of a certain fungal species, e.g.,

Apergillus differential medium (ADM) contains feric citrate (0.05%) which on

reaction with Kojic acid, byproduct of A. flavus, produces a bright yellow-orange

pigment (Bothast and Fennell,l974; Assante et al., 1981). In addition, aflatoxigenic

molds produce blue and yellow fluorescence on coconut extract agar (cEA)

(Gourama and Bullerman, 1995). Nash Snyder medium Q.JS) and modified Czapek-

Dox (MCz) medium are good media for detecting Fusarium species (Bullerman and

West, 1990). Also, dichloran glycerol 18%o agar (DGl8) with 0.95 a* or malt extract

yeast extract 50% glucose agar (MY 50G) with 0.89 a* can be used for detection of

xerotolerant fungi (Samson et al., 1996). Since low-pH media can be harmful for

fungal spores, the neutral-pH media in combination with antibiotics such as

chloramphenicol, chlortetracycline, oxytetracycline, gentamicin, and streptomycin are

used to detect fungi (Gourama and Bullerman, 1995).

2.2.4ßungal volatiles

Different volatiles or Aspergillus spp., Fusarium spp., and Penicillium spp. havebeen

identified and can be used for detection and identification of fungal species

(Borjesson et al., 1993, zeringue et al., 1993). common volatiles are 2-methyl-l-

propanol, 3-methyl-l- butanol, 1-octen-3-ol, 3-octanone, 3-methylfuran, ethyl acetate,

malodorous 2-methyl- isoborneol, and geosmin (Schnurer et al., 1999). Metabolic

pathway for biosynthesis of the main fungal volatile metabolites is given in Fig.2.l.

Selected ion flow tube-mass spectrometry (SIFT-MS) method (Fig.2.2) is based on

the chemical ionization of volatile compounds and can be used for detection of

reactive volatile compounds with low molecular weight produced by A. flovus, A.

ll
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fumigatus, candida albicans, Mucor racemosus, F. solani, and cryptococcus

neoformans (Scotter et a|.,2005). Although real time quantitative monitoring can be

used in this method, the production of volatile compounds highly depends on the

culture medium, e.g., carbohydrate-rich media gave the maximum quantity of volatile

compounds.

2.2.5 Electrical impedance method

In this method, change in impedance of a medium is measured since it is highly

correlated with a level of conidia, i.e., immotile vegetative tissue of fungi (Jarvis et

al., 1983). For food samples, antibiotics should be used to prevent the growth of

bacteria and other microorganisms. Also, detection time decreases when there is a

large number of colonies present on the medium.

2.2.6 Immunological methods

Immunological methods have been used for the detection of fungal infection in food

and feed since 1973 since there is a conelation between antigens and mycelial growth

(Notermans et al., 1986). In this method, fluorescent antibody conjugate or

fluoroscent dye Iinked with fungi specific antibody is applied to the sample which is

observed directly under the microscope in UV light. It becomes fluorescent if a

specifÏc antigen is present. It is possible to detect Ahernaria, Aspergillus, Penicillium

and Fusarium species in grain (Hornok and Jagicza, 1973; warncock, 1973; yong

and Cousin,2001). An enzyme-linked immunosorbent assay (ELISA) can be used to

detect the antigens separated from Penicillium spp., Mucor spp., Cladosporium spp.,

Fusarium spp., and H. lanuginose (Notermans and Heuvelman, 1985; Dewey et al.,

1992). Mold latex immunoaggutination kit developed by Holland Biotechnology
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(HBT, the Netherlands) can detect Aspergillus spp. and Penicìllium spp. reliably and

quickly (Kamphuis et al., 1989; Notermans and Kamphuis, 1992). In this method,

Iatex beads are coated with immunoglobulin and they form a glue-like complex after

coming in contact with extra cellular polysaccharides.

2.2.7 Most probable number (MPN) method

Dilution series of samples are made and the growth of microorganisms is observed

and compared with the most probable number (MPN) table (Oblinger and Koburger,

1975). Quality Assurance (QA) Laboratories Limited designed the hydrophobic grid

membrane fìlters (HGMF) on the principal of MPN method which had a grid made up

of 1600 growth compartments of agar. It was more efficient than traditional methods,

required less media, glassware, and time; and it could enumerate the molds but it

could not identi$, species of mold. Also, it was hectic and time-consuming for a large

number of samples. Therefore, HGMF was automated by using a black and white

camera and a computer (Brodsky et al., 1952). Since each colony produces different

colour, automated HGMF can differentiate between the species.

2.2.8 Polymerase chain reaction (PCR)

Polymerase chain reaction (PCR) is a biochemical and molecular-biological technique

for isolating sequence of Deoxyribo Nucleic Acid (DNA). Certain genes are

responsible for aflatoxin production, e.g., aflRl and afl-Z (payne et al., 1993). pCR is

highly sensitive for aflRl and therefore, A. flavus and A. parasiticus can be easily

detected (Manonmani et al., 2005) but it is hardly sensitive for lower concentrations

of fungal infection (Farber eta1.,1997).

l4



2.2.9Howard mold count (HMC)

Howard mold count (HMC) has been in use for 90 years as the universal standard for

mold assessment (Magan, 1993).It is a direct method and in this method, slides of

material are inspected through microscopes for the presence of fungi. It is commonly

used for fungal detection in tomato. Fungal fragments present in the sample indicate

the presence of fungi and possible presence of mycotoxins.

2.2.t0Image analysis

Electromagnetic radiation can be described as a stream of photons, each traveling in a

wave-like pattern, moving at the speed of light and carrying some amount of energy.

The energy spectrum includes radio waves, microwaves, terahertz radiation, infrared

radiation, visible light, ultraviolet radiation, X-rays, and gamma rays. photon energy

increases in ascending order from radio waves to gamma rays as shown in Fig. 2.3.

The amount of energy of a photon makes it behave like a wave and sometimes like a

particle. This is called the "wave-particle duality" of light. Low-energy photons (e.g.,

radio waves) behave more like waves, while higher energy photons (e.g., X-rays)

behave more like particles.
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Fig. 2.3 Electromagnetic spectru m (wikimedia Foundafion Inc., 2007 a)
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Different frequencies can be used for the detection of fungal growth. Visible

spectra can correctly classify corns into healthy and infected kernels with 82.5%

accuracy (Pearson and Wicklow, 2006) while Ordaz et al. (2003) used natural

fluorescence of aflatoxin to detect aflatoxin producing species using ultraviolet (UV)

light but UV lights failed to identify the species of fungi. Ultrasound signals are

inversely related to the level of fungal infection (r2 : 0.85) (Walcott et al., 1998).

A unique chemical composition causes molecules to absorb near infrared

(NIR) light and vibrate at specific frequency (Munay and Williams, 1990). Near

infrared (NIR) can excite and oveftone the molecular vibrations to high energy levels.

Transmittance and reflectance spectra can detect fungal infection with 8l to 98%

accuracy (Pearson et a1.,2001; Delwiche,2003; Pearson et a1.,2004; Wang et al.,

2004; Pearson et al., 2006; Singh et a1.,2007) but this method hardly does not work

for l0-100 ppb aflatoxin concentration. Also, this method has a difficulty to classif,i

different species of fungi (Delwiche, 2003). Mass and density of infected kernels are

lower than healthy kernels (Pearson et a1.,2006). Therefore, X-rays can be used to

detect fungal infection. Pearson et al. (2006) detected fungal-infected corn kernels by

a soft X-ray method with82% accuracy.

2.3 Advantages and Limitations of the Detection Methods

The above listed methods have their own limitations and not a single method can be

generalized for detection of alltypes of fungi. Chemical methods are accurate but they

are time consuming due to sample preparation and long observation duration. Since

chitin is a cuticular component of insects also, it creates confusion in the results while

separation of fungal ATP from plants' and other microorganisms' ATP is difficult.
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Therefore, these techniques are not popular for fungal detection in food. The

ergosterol method is a quick, easy, and sensitive indicator of fungal infection (Seitz et

al., 1979) but it cannot differentiate between species of fungi. A lot of work is done in

detection of fungi using media culture. Also, this method is easier, quicker, and more

economical than the chemical methods for detection of mycotoxigenic fungi but it is

difficult to find the right medium for a given species. The use of electrical impedence

method is also limited due to its medium-sensitivity, a.8., a bactometer P32 can detect

A. ochracezs at its maximum efficiency only with Blakeslee's malt extract agar

(Williams and Wood, 1986). In addition, electrical impedance may vary with the ionic

solutes and pH of the medium. In the immunoassay method, the quantification of

molds and their growth levels is difficult (Hornok and Jagicza, 1973; Warncock,

te73).

Mold latex immunoaggutination kit is faster but less sensitive than ELISA

(Kamphuis et al., I989). Also, the possibility of false positive is high and it requires

purifìcation of samples (Manonmani et al., 2005). Immunoassay method can also be

used for detection of metabolic byproducts of fungi (Notermans et al., 1986). This

method is better than thin layer chromatography since antigens can be detected earlier

than aflatoxins.

Most probable number (MPN) method is more accurate, reliable, and quicker

than the conventional aerobic plate method and can detect fungi even when they are

small in number (Hastings et al., 1984), but it needs skilled personnel. Polymerase

chain reaction (PCR) method is quicker, more sensitive, and more flexible than

ELISA (Arnheim and Erlich, 1992) but it cannot detect probable invasion (White et
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al., 2005). Also, the fat, protein, and carbohydrate content in the foods can interfere in

analysis. Howard mold count (HMC) method cannot identifu fungi. Also, the slide

preparation is time consuming and it requires skilled persons.

Use of the energy spectrum in the detection of fungal infection need little

sample preparation and reduces detection time and human labour. Near infrared CNIR)

spectroscopy can be used for detection of infection in bulk sample but a X-ray method

is preferred when the number of infected kernels is required because the infection

level in the soft X-ray method is measured by counting the number of infected and

healthy kernels whereas in the NIR spectroscopy, infection is measured by

determining the mass of infected and healthy kernels (Karunakaran et al., 2005).

2.4X-rays

X-rays are used to observe underlying tissues and internal defects. In 1895, a German

physicist (Roentgen) discovered X-rays and named them Roentgen rays. He called

them X-rays because of their unknown nature at first (The Columbia Electronic

Encyclopedia, 2007). In a vacuum, X-rays travel in a straight line in the form of

waves and are undetectable to the naked eye. X-rays are a form of ionizing and

electromagnetic radiation with wavelength in the range of 0.1 to 100 nm and

frequency in the range of 30 x 10rs to 30000 x 10r5Hz (Wikimedia Foundation Inc

2007b.).

When X-rays pass through an object, they strike a photographic plate or a

fluorescent screen. The darkness of the shadows produced on the plate or screen

depends on the relative density of different parts of the object and it results in a visual
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image of the interior structure. Photographs made with X-rays are known as

radiographs or skiagraphs. X-rays are divided into fwo classes, hard X-rays and soft

X-rays, on the basis of their energy level. Hard X-rays have higher energy (up to 300

keV) than soft X-rays (up to l0 keV) (Kylafis,2005). Hard X-rays also have higher

frequency, shofter wavelength, higher penetration power, and higher intensity than

soft X-rays.

2.4.1 Production of X-rays

2.4.1J X-ray tube

An X-ray tube consists of two electrodes, a cathode and an anode (Fig.2.Ð. X-rays

are produced by two different processes (The Columbia Electronic Encyclopedia,

2007). In the first process, radiation is emitted by electrons themselves when their

speed is lowered while passing near the positively charged nuclei of the anode

material. The kinetic energy of electrons is converted into photon energy which is

given by the Eq. 2.1.

Electonbeam Xnys

Fig,2.4 Schematic diagram of X-ray tube (Anonymous, 2007)

6.3
Vac

Electon beam
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(2.1)
"V =hCI

where,

e : Charge of electron, 1.6 t lO-le C,

V: Voltage, V,

h: Planck's constant, 6.6 x 10-34 Js,

C: Speed of light, 3 x 108 m/s, and

l": Wavelength of radiation, nm.

In this process, X-rays are produced in the continuous frequency range.

The minimum wavelength of X-rays is given by Curry et al. (1990) (8q.2.2).

lmin = (2.2)
VoltageinkV

X-ray approaches are most likely to be successful when the X-ray absorption in the

defective area is different from that in healthy area. The intensity of X-rays is given

by Richards et al. (1960):

I = Ioe-o*x

where,

I : Intensity of the transmitted beam, Jm-2s-1,

16: Intensity of the incident beam, Jm-2s-1,

1.24

(2.3)
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pav: Average linear absorption coefficient of the medium, m-I, and

X: Thickness of the medium, m.

¡t: kpZ3X3

where,

(2.4)

k: Constant parameter,

p: Density of the material, kg.-',

1": Effective X-ray wavelength, m, and

Z: Effective atomic number.

In the second process, a high voltage between the electrodes causes the accelerated

streams of electrons (cathode rays) from the cathode to the anode and produce X rays

in a discrete frequency range as they strike the anode. Tungsten, alloys of tungsten,

rhenium, copper, and cobalt are commonly used as anodes while molybdenum is used

for special ized appl ications (The Columbia Electronic Encycloped ia, 2007 ).

2.4.1.2 Synchrotron

A synchrotron is a particle accelerator in which electric and magnetic fields are

synchronized with the moving particles (Fig. 2.5). When accelerated particles move in

a curved trajectory in the presence of magnetic field, X-rays are produced tangentially

to the trajectory path (Attwood, 1999).
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Fig. 2.5 schematic diagram of synchrotron (Monash university, 2003)

2.4.2 Applications of X-rays

Soft X-rays are mainly used for non-destructive detection of internal defects in a

material. Most of the applications of X-rays depend on their penetration ability,

energy, intensity, and the type of material. The intensity of the X-rays exiting the

product depends on the incident energy, atomic number, and absorption/attenuation

coefficient, and density and thickness of the product. X-rays mainly detect variations

in density, mass, and the quality parameters associated with them. The density and

thickness of agricultural produce changes with maturity and vigor. Therefore, soft X-

rays can be used for quality control of agricultural produce. Due to the high moisture

content in fruits and vegetables, water dominates X-ray absorption (Tollner et al.,

1992; Shahin and rollner, 1997; Abbofl, l9g9) but the moisture content has no

significant effect on the classification accuracy of grain. Soft X-rays can be used to

detect sprouting and virtuousness of wheat kernels (Ì.,leethirajan et al., 2006b,2007a).

Vitreous kernels have high grey value and larger area than non vitreous kernels

(Neethirajan etal.,2006b). The classification accuracy of dual energy X-ray imaging
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was higher than simple transmission X-ray imaging (Neethirajan et a\.,2007b). Soft

X-rays can be used for flow rate measurement of grains and chemicals which is

important for designing handling equipment. Flow rate measurement is related to the

attenuation coefficient of material which depends on its density and atomic number.

Information can be extracted from a thin slice of sample by evaluating the cross

section of an object using a movable X-ray source and detector set up in computerized

axial tomography (cAT) (Sonego et al., 1995). Neerhirajan et al. (2004) srudied

orientation, lengfh, and area of air flow path using a soft X-ray CT scanner to find the

reason behind the higher values of vertical air flow resistance than horizontal air flow

resistance in the bulk grain. It was difficult to find out the orientation of kernels using

CT scan images. Hence, visible images were studied which showed that kernels tend

to lie horizontally. From CT scan images, it was found that there was only 9olo

difference between horizontal and vertical air flow paths. X-ray CT numbers can be

used to represent the X-ray absorption characteristics which differentiate the food and

foreign materials, but application of this method is limited to small particles only

(Ogawa et al., 1998). X-ray method can detect live or dead insects, fractures or cracks

in grains, infected kernels, and bones in deboned poultry (chen et al., 2001). This

method is being used extensively in flour mills in the US for detecting insect infection

(Schatzki and Fine, 1988).

2.4.2.1Detection of internal defects in fruits and vegetables

X-ray imaging is the most sensitive and effective method to detect structural

discontinuities and density differences inside the material (ogawa et al., 1998;

Bowers, 1989). X-ray machines are commercially in use for detection of hollow

hearts in potatoes (Rex and Mazza,l989). The internal cavity of the potato is highly
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correlated with the second derivative of the X-ray density curve (r2 :0.97) (Finney

and Norris, 1978). The X-ray density (D) is the measure of a density curve and it is

calculated by F,q.2.5.

D: Ion 
Xl

"x2 (2.s)

where,

Xl: Quantity of X-rays measured without potato

X2: Quantity of X-rays measured with potato

The second derivative of density curve cannot detect splits in peach because of their

non uniform cross-section. Therefore, the detection algorithm was developed on the

basis of maximum and minimum intensities for each individual peach and then the pit

area was isolated by calculating threshold value (Han et al., 1992). The algorithm

could detect 98% of the healthy peaches correctly. Though X-ray absorption for all

the cultivars was almost the same, there was a considerable effect caused by the

orientation of peaches on the absorption of X-rays.

In certain apple cultivars, watercore is a serious internal problem which results

in death of surrounding tissue and internal browning. This fluid replaces voids in the

tissue, making bruised apple denser than healthy apple. The density of healthy apple

ranges from 0.699 to 0.850, while the density of watercore apple is up to l.l (Fiedler

et al., 1973 cited by Kim et al., 2000). Therefore, soft X-rays can sort out watercore

apples from healthy apples with 5-8% false positive to negative ratio (Schatzki et al.,

1997; Kim et a1.,2000). Similarly, density of a lettuce head increases with maturity
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and hence, penetration of X-rays decreases. Lenker and Adrian (1971) used this fact

in their design of a mechanical harvester for leffuce heads in which an X-ray sensor

was used. The mechanical harvester picked only 4Yo soft lettuce compared to l3o/o

soft heads picked by experienced workers. The X-rays can also be used to determine

the maturity stage of tomato and peach (Lenker and Adrian, 1971; Brecht et al., 1997;

Barcelon et al., 1999).

Detection of spongy tissue in Alphanso mango is very difficult with the naked

eye due to lack of external symptoms. It is a ripening disorder in which fissures and

air cavities are observed in the tissue. Since healthy tissue is denser than affected

tissue, absorption coefficient of X-rays is higher in healthy tissue than diseased tissue

(Thomas et al., 1993). In the X-ray images, the spongy tissue and healthy tissue can

be recognized by dark grey and light grey color, respectively. The results obtained

from X-ray photography and those from internal detection of cut fruits were highly

correlated. X-ray imaging can classify healthy and poor quality onions with 90%o

accuracy on the basis of their rigidity (Shahin et al., 2002). Onion bulbs consist of

continuous and concentric layers of laminae starting from the base. The laminae in

diseased onions are not as rigid as in healthy onions due to the change in density and

water content. These physiological changes appear in the form ofexpanded boundary

and radial bar defects in X-ray images (Tollner et al., 1995 cited by Shahin et al.,

2002). X-rays can also indicate sprouting in onions by detecting altered moisture

distribution in the center of the bulb (Shahin et al., 2002).
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2.4.2.2 Detection of internal infections in grain

Early detection of infection is very important in grain storage to reduce the storage

Iosses. Trained persons can recognize external infection with only B¡yo accuracy

which increases exponentially with maturity of insects (Keagy and Schatzki, 1991).

X-rays were used for the first time in 1932 for detection of pink bollworm in cotton

seeds (Fenton and waite, 1932). However, X-rays also can be used to study the

developmental stages and behavior of insects without dissecting the grains (pederson

and Brown, 1960; Mills and wilbur,1967; Sharifi and Mills, l97la,lg7lb).Density

of healthy kernels is different from infected kemels. Stermer (lg7}) used an aqueous

solution of potassium carbonate (K2CO3) to enhance this density difference which

fills voids and produces opacity under influence of vacuum. Use of K2CO3 improves

accuracy of the X-ray method up to 90% in early stages (egg and small larvae) of

infection and up to l00Yo in kernels infected by pupae and adults. Sometimes

mechanically damaged kernels can be identified as infected kernels due to the

chemical entry into the kernel while sometimes the chemical cannot enter due to the

blocked egg holes. Analog X-ray film images, obtained at 12 to 30 kV potential and g

to l0 mA current for 3 to 5 s, can detect all the stages of internal infection and

estimate the extent of losses (Milner et al., 1950). Currently, digitized X-ray imaging

is being used for detection of intemal infection in grain (Keagy and Schatzki, lgg3)

which not only detects and identifìes insect species but also determines a life stage of

the insect by comparing image features (Karunakaran et al., 2004a,2004b; Fornal et

al., 2007). Though fìlm imaging gives more accurate results than digital imaging,

analysis of film images is hectic, subjective, and time consuming (Milner et a1.,1952;

Haff and Slaughter, 2002).lnitial cost of digital imaging is higher than film imaging

but it reduces cost of film and film developing (Haff and Slaughter,2002). Haff and
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Slaughter (2004) employed real time X-ray imaging for detection of granary weevil in

wheat which could accurately detect 84.4% of infected kernels while the accuracy of

film imaging was 90.2%. Long time exposure of kernels to X-rays in film imaging is

beneficial in detecting early stages of infection. The youngest insects cannot be

detected by digital image analysis. Therefore, real time X-ray imaging is useful only

if the grain has been in storage for several months. The soft X-ray method has

potential to detect fungal infection in grains (Pearson and Wicklow, 2006) since

healthy kernels are denser than fungal damaged kernets. Therefore, healthy kernels

produce darker images than fungal-infected kernels.

2.4.3Hazards of X-Ray use

X-rays ionize the matter by ejecting electrons from their atom. X-rays are measured

by two types of survey meters, Geiger counter and ionization chamber. The Geiger

counter counts individual photons while the later counts ion pairs produced by

radiation. Ionization and absorption of X-rays depend on radiation flux, intensity, and

photon energy of radiation and the nature of the material. Ionization is measured in a

standard unit Roentgen (R) while absorption is measured in rad (Roentgen absorbed

dose), rem (Roentgen equivalent man), and Gray (lcy: 100 rem). Though X-ray

absorption up to 0.5 mGy/yr by living organism is harmless, large dose in short

exposure may result in tissue damage, e.g., reddening or destruction of skin (Jerkins

and Haas, 1973). The maximum permissible dose equivalent is 20 mGy/yr for

radiation workers and I mGy/yr for a common person (International Commission on

Radiological Protection, 1990). In regular life, common man is exposed to0.02-1.74

mGy/yr due to natural radiation, colour television, and medical X-rays (Robertson,

1976). A worker operating a real-time automatic X-ray inspection system is exposed
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to 7.2 mGy/yr which is much lower than the maximum permissible level for radiation

workers (Robertson, 1976). The operator should wear finger or wrist type radiation

monitoring devices. The amount of radiation on the whole body can be measured by

wearing monitoring devices on chest or abdomen. When the film badge is wom at

proper height and facing the radiation source, it records an exposure history for a

person. This badge should be changed in2-4 weeks cycles (Jerkins and Haas, 1973).

Irradiation is used on agricultural produce to control infection and food

spoilage. The World Health Organization declared that food irradiated with a dose of

l0 kGy is safe for consumption but exposure of cereal grains to the X-rays higher

than 3-5 kGy can cause major damages to the processing quality. X-rays can also

cause mutation in seeds on exposure to high levels (Belcher, 1968 cited by Schnurer

et al., 1999). The maximum permissible X-ray dose for cereal grains is 0.75 kGy in

Canada (Banks and Fields, 1995). In practice, X-ray inspection system exposes the

grains to less than 0.1 Gy X-ray doses (Tollner, 1993). Haskin and Moore (1935)

observed premature flowering, discolouration, duplication, and twisting in citrus

exposed to 3-13 Gy of radiation. On the other hand wheat kernels exposed to 0.6 to

1.14 Gy showed accelerated growth rate and an increase in weight (Wort, 1g4l).

2.4.4Data analysis

Image analysis is usually performed to extract meaningful information from images

and it includes three main steps which are explained below:
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2.4.4.1 Image acquisition

In digital radiography, digital images are obtained either by digitizing the analog

images using a digitizer or frame grabber or by convefting X-rays into light which is

captured by a light sensitive digitizing system. In fluoroscopy, the photographic plate

is replaced by a fluorescent screen. It is advantageous over radiography in terms of

cost and time but images obtained have less sharpness. Information can be extracted

from a thin slice of sample by evaluating the cross section of an object using a

movable X-ray source and detector set up in computerized axial tomography (CAT)

(Sonego et al., 1995). Large variations in sample thickness can be placed in one range

by keeping the voltage and curent of the X-ray tube at minimum. This can also be

helpful in obtaining good resolution (Thomas et al., 1993). An automated X-ray

detector for grain inspection requires image resolution of 65 pm or smaller (Keagy

and Schatzki, 1991). Different combinations of voltage and current are listed in Table

2.1. crease down view of a grain kernel is the most promising view (Myers and

Edsall, 1989) while it is diffìcult to place a grain kernel for side view (Barker et al.,

1ee2).
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Table 2.l Reported combinations of current and voltage used for image acquisition.

Crop

Wheat

Wheat Rhyzopertha dominica,

Tribolium. castaneum

Wheat Sitophilus granarius L.

Wheat Sprouted kernels

Corn Fungal infected kernels

Wheat Vitreous and non-Vitreous

kernels

Rice Cracks

Application

Granary weevils

Current

(pA)

99000

65

Voltage

l2keV

15 kv

Resolution

(pm)

60

r85

3000

65

20 kv

l3.s kv

l8 kv

l7 kv

100

16.7

Time (s)

0.727mm2/pixel

62.5

3t.7

t6.66

8000 12 keV

0.149

3-5

Haff and Slaughter (2002)

Karunakaran et al. (2004a),

Karunakaran et al. (2004b)

Fornal etal. (2007)

Neethirajan et al. (2007)

Pearson and Wicklow (2006)

Neethirajan et al. (2006)

Reference

120

3-5

t20

3-5

t27 l0 Kumar and Bal (2007)
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2.4.4.2 Feature extraction and selection

Segmentation is a process of dividing a digital image into multiple regions of interest

to extract more meaningful information for the further analysis. Thresholding method

is commonly used for segmentation (Karunakaran ef a|.,2004a,2004b; Neethirajan et

a1.,2006a:. Kumar and Bal, 2007). Analysis of a segmented image is then aided by

extracting useful quantitative attributes, i.e., features which can be classified into

external and internal features (Pavlidis, 1980). External image features are derived

from the boundary co-ordinates of an image while internal image features are

extracted from the properties of pixels inside the boundary. External features include

morphological features that describe shape, e.g., Fourier descriptors, wavelet

transforms, boundary chain codes and internal features take account of textural

features, moments, colour. Since extemal features are not sufficient for high

performance inspection, they need to be combined with internal features for

classification of grains (Luo et al.,1999; Paliwal et al., 1999). Statistical measures of

shape of an image are provided by spatial moments while colour features represent

brightness of an image (Jayas et al., 2000). Similarly, textural characteristics of an

image such as granulation, smoothness, roughness, fineness, coarseness, and

randomness can be shown by textural features on the basis of distribution of colour

with respect to spatial coordinates (Gonzalez and Woods, 1998). Selection of the best

representing features is very important for best classification results (Jayas et al.,

2000). For illustration, external features are important for classification of kernels into

different varieties (Paliwal et al., 2005) but internal features are important for

detection of infection and virteousness (Karunakaran et a|.,2004a,2004b; Neethirajan

et a1.,2006). Principal component analysis is a popular technique in feature selection

that compresses the data of high dimensional vectors into low dimensional vectors in
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terms of least mean square error. Computer programs written in MATLAB (The

MathWorks Inc, Natick, MA) or SAS can be used for feature extraction and selection.

2.4.4.3 Classification

The objects can be classified according to the extracted features either by statistical

classifiers or multi-layer neural networks (MLNN). Barker et al. (1992) used

parametric and non-parametric methods for pattern recognition of eight Australian

wheat varieties. Parametric methods can be used if there is multivariate normal

within-class distribution otherwise it is advised to use non parametric methods (Jayas

et al., 2000). It was found that non-parametric methods made samples more consistent

and hence, performance of classifier was improved. Neethirajan et al. (2006b) used

and compared quadratic function parametric classifier and non-parametric Bayesian

classifier for identification of vitreous and non-vitreous kernels. It was found that

Bayesian classifier performed better than quadratic function parametric classifier.

Shahin and Tollner (1997) used fuzzy logic on the X-ray images of water-core in

apples and separated three different watercore levels with 64%ó accuracy. These

results were improved up to 79% accuracy by applying Bayesian classifier with global

(spatial and transform) features such as discrete wavelet transform (DWT) and

discrete cosine transform (DCT) (Shahin et al., 1999).

Jayas et al. (2000) stated that MLNN facilitates with adaptively, fault

tolerance, and massive parallel processing could be used as an alternative to statistical

methods in classifìcation and identification of agricultural products. It was also stated

that back propagation neural network (BPNN) performs best in grain discrimination.

Patel et al. (1996) trained neural network models using extracted features from gray
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scale images of eggs and classified the eggs into eggs with blood spot and eggs with

din stains with an accuracy of 85.6 and 80.0%, respectively. Karunakaran et al.

(2004a, 2004b) tested BPNN and statistical classifiers. Back propagation neural

network (BPNN) performed better than parametric and non parametric statistical

classifiers for Rhyzopertha dominica but there was no significant difference between

the performance of BPNN and statistical classifiers for Tribolium castaneum.

Neethirajan et al. (2007) found that the BPNN had better accuracy (90 and 95%o for

sprouted and healthy kernels, respectively) than that of statistical classifìers (87 and

92Yo for sprouted and healthy kernels, respectively). Wang et al. (2004) classified

soybean kernels into healthy and damaged kernels by using a diode array NIR

spectrometer with the help of a partial least square model and aftifìcial neural network

(AÌ.IN) model with 93.5 to 94.6%o accuracy.

To summarize,the X-ray method is a multitask system which can be used with

statistical classifiers and MLNN for detection of internal disorders, infection,

vitreousness as well as sprouting.
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3. MATERIALS AND METHODS

The experiments were conducted to assess the capability of a soft X-ray method to

detect infection in stored wheat due to Aspergillus niger, A. glaucus, and Penicillium

spp. using different statistical and neural network classifiers. The main steps of the

experiment are as shown in Fig. 3.1.

Data analysis

Fig.3.1 Flow-diagram of X-ray image analysis
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3.1 Sample Preparation

Samples of wheat kernels infected with A. glaucus, A. niger, and Penicillíum spp.

were prepared separately at the Cereal Research Centre, Agriculture and Agri-Food

Canada, Winnipeg, Manitoba, Canada. The wheat kernels infected with fi.rngal species

were plated on filter paper saturated with 7.5 mL aqueous NaCl in petri dishes for one

week. Then pure fungal lines oflsp'ergillus spp. and Penicillium spp. from infected

kernels were placed on potato dextrose agar (pDA) for seven days at 30oC and lOoC,

respectively. After that PDA with fungi was placed in a plastic spray bottle containing

200 ml sterilized water with one drop of Tween 20 and the whole mixture was shaken

up to prepare the fungal solution. A 20 kg sample of Canada western red spring

(CWRS) wheat (cv. AC Barrie) with l7o/o moisture content (wet basis) was surface

sterilized by soaking in l%o sodium hypochlorite for 2 min. The wheat kernels were

thoroughly washed using sterilized water and then placed on paper towel for 2 h. For

each fungus, about I kg of moistened wheat, placed a few layers deep in a large

plastic tub, was misted with the fungal solution in a fume hood and covered with a

loose plastic bag for I weeks at 30oC. Each sample in a fume hood was shaken up for

I min in four plastic bags sequentially and poured into a fifth plastic bag before

imaging to simulate the process of mixing of grain during handling. All the samples

were air-dried to reduce their moisture content to l5%o (dry basis) which was then

measured using the oven-dry method.

3.2Image Acquisition

The main components of X-ray imaging system (Fig.3.2) were l. Lixi fluoroscope

(LX-85708, Lixi Inc., Downers Grove, lL);2. ccD black and white camera (sony

xc-75175c8); ¡. black and white moniror; and 4. image digitizer (TV@Anywhere
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Plus, MSI: s36-000031 I -K45, Taiwan, china). A single kernel image of 300 wheat

kemels from each fungal infected sample (A. glaucus, A. niger and Penicillium spp.)

and 300 kernels of healthy kernels were acquired with 62.5 pm screen resolution

using the Lixi fluoroscope that consisted of X-ray tube, X-ray detection system, and

power supply unit. X-ray tube and X-ray detection system were lz.7 mm and 25 mm

in diameter, respectively, and they were encased in the stainless steel cabinet with X-

ray shield for safety. The current and voltage of the X-ray tube could be adjusted in a

range of 0-200 pA and 0-50 kV, respectively, with the help of control knobs provided

on the power supply unit. The combination of 13.6 kV voltage and 184 pA current

was fixed for image acquisition of wheat kernels by conducting the preliminary

experiments. The wheat kernels to be X-rayed were manually placed in crease down

position on the XY motorized manipulator (saran wrap) situated between the detector

and X-ray tube. X-ray image of a single kernel at a time was then acquired by

adjusting its position in the centre of screen with the press buttons provided on the

cabinet to move the saran wrap in horizontal and vertical directions. Analog images

were digitized into 8 bit gray scale images at 60 pixels/mm resolution using a capture

card called rv@Anywhere Plus (MSI: s36-0000311-K45, Taiwan, china). Digital

images were stored in a personal computer for futher analysis.

3.3 Pre-processing

Images obtained were cropped manually. The grey level was not constant throughout

the image. Also, the background and kernel had some grey levels in common.
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Monitor

Saran wrap

Press buttons
Lixi fluoroscope

Fig. 3.2 Experimental set up

Therefore, it was difficult to remove a kernel from the background without losing any

information from the kernel by a simple thresholding method. Hence, the kernel was

separated from the background using bwlabel MATLAB (The Mathworks Inc.,

Natick, Mass.) function which returns a matrix of original image size but label only

the kernel i.e. the connected objects (4 or 8 neighbours) excluding the background.

3.4 Feature Selection and Extraction

Healthy kernels vary from fungal-infected kernels in density (Pearson et a1.,2006).

Also, changes in the textural properties of grain surface such as smoothness,

coarseness, fineness, and granulation are observed due to fungal infection. These

textural properties of healthy and infected kernels can be determined using a gray

level co-occurrence matrix (GLCM). Therefore, a total of 6 first order statistical and

28 textural features were selected (Table 3.1) and extracted from soft X-ray images of

wheat kernels applying an algorithm developed in MATLAB (The Mathworks Inc.,

Natick, Mass.) with the assistance of Chandra Singh.
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Table 3.1 List of the features extracted from soft X-ray images of wheat kernels.

Number Feature Code

1 Maximum gray level

2 Minimum Gray level

3 Mean Gray level

MaxGL

MinGL

Mean

4 Median Gray level Med

5 Standard deviation Gray level Ð

6 Variance Gray level V

7-10 GLCM Energy GEl, GE2, GE3, GE4

ll-14 GLCM Homogeneity GHl, GH2, GH3, GH4

15-18 GLCM Contrast GCl, GC2, GC3, GC4

19-22 GLCM Corelation CRl, CR2, CR3, CR4

23-26 GLCM Mean GMl, GMZ, GM3, GM4

27-30 GLCM Entropy GEl, GE2, GE3, GE4

3l-34 GLCM Maximum Probability Gpl, Gp2, Gp3, Gp4

3.4.1 Gray level co-occurrence matrix (GLCM)

A gray level co-occurrence matrix (GLCM) is a distribution of co-occurring gray

scale values of pixels over an image at given offset. In other words, GLCM is an

information of how often specific combinations of gray level values occur in an

image. GLCM considers a relationship between two pixels, one as a reference pixel

and another as a neighbour pixel, at a time. Neighbour pixel may be in 0, 45,90, and

l35o direction. Each pixel of an image, starting from upper left hand cornerto lower

right hand corner, gets a chance to be a reference pixel. If neighbour pixel is in the
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right direction of the reference pixel then it can be represented as (1, 0) that means I

pixel in x direction and 0 pixel in y direction (Fig. 3.3).

The following properties were calculated from the GLCM (MATLAB, The

Mathworks Inc., Natick, Mass.; Majumdar and Jayas, 2000)

Mean: li* r çi,¡¡ (3.1)
i, j

Contrast: I I t-¡l'?rç,¡) i:.2;
i,j

Correlation -,G - tt')(i - tt¡)P(¡' i)
¡.i o¡a i 

(3'3)

Energy : ZP(¡, j)' e.4)
¡, j

Entropy : ÐP(¡, j) Iog (P(i,7)) (3.5)
¡,j

Homogeneity: IJ-U J)

¡'j '*11 
(3'6)

Maximum Probability: Max (P (i, j)) (3.7)

where,

P (í, j) = Matrix of relative frequencies,

i,j:Graylevels,

þ¡, þj: Mean of i andT gray levels, and

F G,Ð: Joint probability occurrence of specified pixel pairs.
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Level
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0 4 2 I 0

I 2 4 0 0

2 1 0 6

3 0 0 2

(b) Matrix

GLCM (0o direction) GLCM (45o direction)

GLCM (90o direction) GLCM (135o direction)

Total GLCM

Fig.3.3 Example of gray level co-occurrence matrix

Gray
Level

Gray Level
0 1 ) 3

0 2 J 0

I 1 2 I 0

2 3 0 2

3 0 0 2 0

Gray
Level

Gray Level
0 I 2 3

0 6 0 2 0

I 0 4 2 0

2 2 2 2 2

3 0 0 2 0

Gray
Level

Gray Level
0 I 2 3

0 4 I 0 0

I 2 2 0

2 0 2 4 1

3 0 0 0

Gray
Level

Gray Level
0 I 2 3

0 t6 4 6 0

I 4 12 5 0

2 6 5 12 6

3 0 0 6 2
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3.5 Data Analysis

3.5.1 Statistical analysis

In the discriminant analysis, the groups and classification rule are predetermined from

the training set and then tested with the test set. The discrimination classification

method is based on Bayes classification rule that reduces a proportion of misclassified

objects to minimise total error of classification (TEC), i.e., the probability of the

misclassification of objects. Bayes criteria assign an object to a group with the highest

conditional probability by Eq. 3.8 (Mitchell, 2006):

P(ilx) =
P@lù.P(i)

(3.8)
l,pt4¡>.pt¡>
vj

where,

x: Set of measurement,

i, j : Groups into which objects are to be separated,

P(il fi: Probability of an object to belong ro group i for x,

P(xl i ) : Probability of getting.r of the objects from group i,

p@lì: Probability of getting x of the objecrs from group j, and

P(ì), PQ): Prior probabilities of group i andj, respectively.

The classification accuracies of the statistical classifiers for fungal detection of wheat

were tested using an algorithm developed in MATLAB (The Mathworks Inc., Natick,

Mass.). For statistical classification, the sample set was divided randomly into

independent training (240 kernels) and test (60 kernels) sets (true validation) and

average results of three trials were reported.
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3.5.2 Statistical classifi ers

3.5.2.1 Linear discriminant analysis (LDA)

Linear discriminant analysis (LDA) is used when groups can be separated by linear

combination of features. A separator may be a line for two features, a plane for three

features or a hyper-plane for a number of features. It is assumed that the data have

multivariate normal distribution and have identical covariance (pooled covariance) for

each ofthe groups.

3.5.2.2 Quad ratic discriminan t analysis (eDA)

Quadratic discriminant analysis (QDA) is closely related

assumption of identical covariance for each of the classes.

each class is calculated separately.

to

A

LDA but there is

covariance matrix

no

for

3.5.2.3 Mahalanobis classification

Mahalanobis classifier uses mahalanobis distance, a multivariate measure of

separation of data from a point in space, with stratified covariance estimates. It is

useful to relate samples of unknown class to samples of known class. While using this

method for classification of samples into different classes, a covariance matrix of each

class is calculated from a training set and then, Mahalanobis distance of each sample

in the test set is determined. Finally, a sample is classified into a class having

minimum Mahalanobis distance.
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3.5.3 Artificial neural nefwork (ANN)

"An artificial neural network is a mathematical or computational model. It consists of

an interconnected group of artificial neurons and processes information using the

learning rule which is developed on the basis of external or internal information that

flows through the network during the learning phase" (Wikimedia Foundation Inc.,

2007c). Artificial neural network comprises of three types of neuron layers: input,

hidden, and output layer. Eq. 3.9 describes the relationship between input and output

layer (Gurney,1997):

y = .f (x) = Køf,(w,x, - 0)
,=l

(3.e)

where,

K: A constant,

/ : Nonlinear function,

w¡: weight (i: 1,2,3,...,n, where n

xi: Input variables, and

0: Threshold value.

is the number of input variables),

Number of hidden layers can be changed according to the requirement. The

leaming time, size of network, and the performance quality increases with number of

hidden layers. Therefore, determination of an optimal number of hidden layers is very

important for the best performance of ANN. Number of neurons in a hidden layer was

determined by Eq. 3.10 (Neuroshell 2, version 4.0, ward systems Group, Frederick,

MD):
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Next Layer (a)

Lateral
<--------------+ooo

Feedback
Feedforward

ooooo
Input (x)

Fig.3.4 Connections of Weight Building Box in ANN

o

^r_ 
Input+Output,t-.-,V05 (3.10)

where,

Y: number of patterns.

Weight building blocks play an important role in conveying information from

one layer to another. These building blocks can be connected in four different ways

such as feed-forward, feedback, lateral, and time delayed connection (Fig. 3.a).

Behaviour and performance of the neural network varies with the connections of

building blocks.

In feed-forward connection, the data are forwarded from one neuron ¡ayer to

the next without cycling while in feedback connection the data are transfered back to
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the previous layer in cycles. Lateral connection allows the neurons to preserve a

specific ordering relationship. Whereas time delay connection includes time delay

elements and it is suitable for temporal pattern recognition. There are different types

of ANN on the basis of number of layers, nodes, and types of connections such as

back-propagation (BPNN), probabilistic, Kohonen, and general regression network

(Neuroshell 2, version 4.0, Ward Systems Group, Frederick, MD). However,

feedforward BPNN is suitable for discrimination of agricultural produce into different

classes (Jayas et al., 2000).

The three layer back-propagation neural network was selected. There were

two neurons in output layers and 34 neurons in input layer for pair-wise and two class

classifrcation models. The hidden layer consisted of 38 neurons as calculated by Eq.

3.10. Similarly, there were 4,48, and 34 neurons in output, hidden, and input layers

for four class classification model. The hidden and output layer had logistic function

(f(x):1/ (l+e--)) while the input layer had linear [-1, 1] funcrion. All the layers of

ANN had learning rate, initial weight, and momentum of 0.1, 0.3, and 0.1,

respectively. Calibration interval (events) was fixed at 200 for the test set. The

network was trained for the best test set until the number of events was more than

20000 for the test set after it had reached to the minimum average error for the test

set. The performance of all classifiers was tested by pair-wise, two class, and four

class classification methods.

NeuroShell 2 (Ward Systems Group, Inc., Frederick, MD) software was used

to develop a neural network model for classification of patterns into several classes.

The sample set of 300 kernels was divided into independent training (210 kernels),
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test (60 kernels), and validation (30 kernels) sets. The neural network was trained by

comparing the input pattern presented to net with the target output. The weights were

adjusted according to the learning rule and the difference between target output and

network output. In BPNN, erors are always passed backward from output to input in

the training. The local minima of error weight function were minimized by random

presentation of input patterns to the network in training. The information obtained in

training was stored in the interconnections or weights and then applied to the test set.

The analysis was repeated for three different training, test, and validation sets for each

fungal species and average results were repofted.

3.5.4 Classification methods

The classification accuracies of all statistical and neural network classifier were tested

by pair-wise, two class, and four class classification methods. In Pair-wise

classification, total sample set of 600 kernels (300 healthy kernels + 300 infected

kernels) was tested for classification accuracy of healthy kernels vs. each fungal-

infected species by all the classifiers. The two class method was performed in two

different ways. In case l, all the fungal damaged samples were grouped into one

group (900 kernels) and healthy kernels into the other group (300 kernels) while in

case 2, 100 kernels for each fungal species were grouped into one group (300 mixed

infected kemels) and healthy kernels into the other group (300 kernels). In the four

class classification was performed by grouping each damaged species into

independent groups (1, 2, 3) and healthy kernels into another group (4). For all

classification methods, each group was divided into 80% training and 20%o test

samples for statistical classifiers and 70o/o training, 20%o testing, and l0o/o validation

for the neural network.
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4. RESULTS AND DISCUSSION

The pair-wise, two-way, and four-way classification methods were used to classifyl.

niger, A. glaucus, and Penicillium spp. from healthy wheat kernels. Each sample set

of 300 kernels was divided into 80:20 ratio for training (240 kernels) and test set (60

kernels) for statistical classifìcation whereas for artificial neural network each sample

set was divided into 70:20:10 for training (210 kernels), test set (60 kernels), and

validation (30 kernels). The statistical (linear, quadratic, and Mahalanobis) and back

propagation neural network (BPNN) classifiers were tested with 6 statistical and ZB

textural features.

4.1 Statistical Classification

4.1.1 Pair-wise classification

The pair-wise classification was carried out to test the potential of the soft X-ray

method for identification of healthy and fungal infected kernels (Table 4.1). All

classifiers correctly classified all fungal species from healthy wheat kernels with

accuracy above 75% (Table 4.1). Linear classifier gave the best classification results

for all fungal species and healthy kernels with average accuracies of 9l.l and gg.Syo,

respectively, whereas quadratic and Mahalanobis classifiers poorly discriminated

healthy kernels from A. niger with accuracy lower than 80%. Average classification

results obtained by the quadratic and Mahalanobis classifiers were lower than the

linear classifier. It might be due to the difference between linear and other classifìers

in calculating the covariance matrices. Linear classifier applies the same pooled

covariance for all classes while quadratic classifier estimates covariance for each class

separately.
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Table 4.1 Pair-wise classification of healthy and fungal infected wheat kernels by

statistical classifi ers.

Classifier Healthy Ys. A. niger Healthy Vs.,4. glaucus Healthy Ys. Penicillium

Healthy A. niger

(%) (%\

Healthy A. gløucus

(%) (%')

Healthy Penicillium

(%) (%)

Linear

Quadratic

Mahalanobis

90.0

77.8

78.9

87.2

90.0

86. r

87.8

83.3

85.6

90.6

86.7

85.6

90.6

85.0

93.3

9s.6

96. r

89.4

Table 4.2 Pair-wise classification of fungal infected wheat kernels by statistical

classifiers.

Classifier A. niger Vs.l. glaucus A. nigerYs. Penicillium A. glaucusYs, PenicÍllíum

A. niger A. glaucus A. niger Penicillium A. glaucus Penicíllium

(%\ (%\ (%) (%) (%') (%)

Linear

Quadratic

Mahalanobis

68.3

67.8

77.2

60.0

62.2

43.3

82.2

68.3

93.3

88.3

88.3

69.4

88.9

65.0

81.7

91.7

93.9

85.0
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Also, this method was tested to discriminate between the fungal species (Table

4.2). Penicillíum spp. was correctly classified from A. glaucus with accuracy above

85% by all the classifiers except the quadratic classifier. Mahalanobis classifier

conectly classified A. niger and A. glaucus from Penicillíum with maximum accuracy

(93.3% and 81 .7%o, respectively) but it failed to differentiate Penicillium from A.

niger (<75%o). All classifiers poorly separated A. glaucus and A. niger by all the

classifiers. It might be due to lack of significant difference in density between these

two species. Linear classifier gave the best average classification results (79.9%) that

might be due to the same reason as stated above.

4.1.2 Two class method

In case l, all the classifiers detected all types of fungal species with l-10%

misclassifications demonstrating the potential of soft X-rays to separate infected

kernels from healthy kernels (Tables 4.3, 4.4). The classification accuracy of linear

classifier was better than the rest of the classifiers for healthy kernels in the both

cases. In case l, Mahalanobis classifier gave the best results for all types of fungal

species especially lor Penicillium (98.9%) (Table 4.3). In case 2, the results for all the

classifiers were slightly improved for healthy kernels whereas classification accuracy

for fungal infected kernels was slightly reduced (Table 4.4). The difference in

classifrcation accuracies of healthy and fungal infected kernels in case I and case 2

might be due to the number of kernels in sample set. Case 2 has more unbiased

distribution of healthy and infected kernels than case I as it has equal number of

healthy and infected kernels (300 each).
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However, this method is not able to differentiate between the infected species. This

could be potentially due to lower but similar density in all fungal damaged kemels

and thus similar grey-level distribution of the infected kemel images.

Table 4.3 Two class classification of wheat kernels by various statistical

classifiers (Case l: 300 healthy and 900 all infected kernels).

Healthy A. niger A. glaucus penicillium

(%) (%) (%) (%)

Linear 82.8 89.4 91.1 92.8

Quadratic 73.9 90.0 91.1 g7.z

Mahalanobis 71.7 92.2 9Z.Z 9g.9

Table 4.4 Two class classification of wheat kernels by various statistical

classifiers (Case 2: 300 healthy and 300 mixed infected kernels equal for each

species).

Healthy Infected kernels

%%

Linear 86.7

Quadratic 76.1

Mahalanobis 78.3

86.1

86.6

84.4
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4.1.3 Four class method

In four class method, very poor classification results were obtained by all classifiers

with exception of linear and quadratic classifiers, which correctly classified

Penicillium samples with accuracy more than 85o/o (Tables 4.5, 4.6,4.7). All the

classifiers highly misclassifìed A. glaucus and A. niger with each other which might

be due to the same reason discussed above. Also, this method gave poor results for

healthy kernels.

Table 4.5 Four class classification of wheat kernels by linear statistical classifier.

Healthy A. niger A. glaucus Penicillium

(%) (%) (%\ (%)

Healthy 74.4 5.0

A. niger 7 .8 57.2

A. glaucus 5.6 26.1

Penicillium 2.2 6.7

10.0

27.2

60.0

5.6

10.6

7.8

7.2

8s.6
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Table 4.6 Four class classification of wheat kernels by quadratic statistical

classifier.

Healthy

(%)

A. niger

(%)

A. glaucus

(%\

Penicillium

(%)

Healthy

A. niger

A. gløucus

Penicillium

69.4

6.7

5.6

1.1

15.6

51.7

22.2

8.3

7.8

2l.t

s0.6

4.4

7.2

20.6

21.7

86.1

Table 4.7 Four class classification of wheat kernels by Mahalanobis statistical

classifier.

Healthy

(%)

A. níger

(%)

A. gløucus

(%)

Penícíllium

(%)

Healthy

A. niger

A. glaucus

Penicillium

7s.0

9.4

s.6

5.6

17.8

68.3

33.9

23.3

6.7

17.8

47.8

4.4

0.6

4.4

12.8

67.2
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4.2 Artificial Neural Network

4.2.1 P air -wise classification

In pair-wise method, BPNN classifier discriminated fungal infected kernels from

healthy kernels correctly with 80 to 94.6 o/o classification accuracy for training, testing

and validation sets (Table 4.8). Training set of Penicillium spp. infected kernels

attained the maximum accuracy of 94.6% whereas testing set of A. niger had the

lowest classification accuracy of 80%. Validation sets had almost the same accuracy

for A. niger (87.8yo), A.glaucus (86.7%), and penicillium spp. (gg.g%). Average

classification accuracies of training, testing and validation sets of healthy kernels were

89. l, 84.6, and 90.4%o, respectively.

Back-propagation neural network classifier was also tested for classification

within fungal infected species by the pair-wise method (Table 4.9). Penicillium spp.

was classified from A. glaucus with the highest classification accuracy in training

(88.7%), testing (85.6%), and validation set (gz.z%). A. niger and A. glaucus were

highly misclassified with each other in training, testing and vatidation sets and hence

attained comparatively poor classification accuracy (<s0%). A. glaucus was

discriminated from Penicillium spp. with accuracy >83.3% while l. niger and

Penícillium spp. were discriminated with 80 to 88.9% accuracy in all the sets.
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Table 4.8 Pair-wise classification of healthy and fungal infected wheat kernels by

BPNN classifiers.

Healthy Ys A. niger Healthy Ys. A. glaucus Healthy Ys. Penicil lium

Ilealthy A. niger

" t/o

Healthy A. glaucus

% o/o

Healthy Penicillium

o/" o/"

Training

Testing

Validation

90.0

83.3

90.0

86.8

80.0

87.8

87.8

82.2

90.0

89.s

83.9

86.7

89.4

88.3

9l. r

94.6

88.9

88.9

Table 4.9 Pair-wise classification

classifiers.

of fungal infected wheat kernels by BpÌt{N

A. nigerYs. A. glaucus A. nigerYs. Penicittium A. glaucus Ys. Penicìllium

A. niger A. gløucus A. niger Penicillium A. graucus peniciaíum

o//oo//o%o//oo//oo//o

Training

Testing

Validation

70.s

68.3

76.7

62.2

58.9

63.3

85.7

8r.l

88.9

86.8

82.8

80.0

88.4

83.3

86.7

88.7

85.6

92.2
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4.2,2 Tw o class classification

In case l, two class method discriminated A. niger, A. glaucus, and penicillium spp.

with accuracy >90%o (Table 4.10). The maximum accuracy was attained for the

validation set of Penicillium sample (97.8%) preceded by training set of L glaucus

(96%) whereas BPNN classifier was unable to identifu healthy kernels by this method

(<75%). Test set of A. niger and Penicillium spp. had accuracy of 95.6%o while test set

of A. glaucus and training set of l. niger were identified with accura cy of about 94o/o.

validation sets of A. niger and A. glaucus attained gz.2% accuracy. In case z, the

classification accuracy for healthy kernels was improved tremendously (gz.z%)

whereas accuracy for fungal infected kernels was reducedfo 84.4Vo in validation set

(Table 4.ll). The increase in classification accuracies of healthy kernels could be due

to unbiased distribution of healthy and infected kernels (300 kernels each) in training

set.

4.2.3 Four class classification

Training set of Penicillium spp. was correctly identified by BPNN classifier with four

class classification method with maximum accuracy of 9l .3% (Table 4.12). This

method poorly classified healthy, A. niger, and A. glaucus (<75%).
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Table 4.10 Two class classification of wheat kernels by BPitfN classifiers (Case 1:

300 healthy and 900 all infected kernels).

tlealthy

o//o

A. niger

o//o

A. glaucus

o//a

Penícillium

o//o

Training

Testing

Validation

62.7

s7.8

60.0

93.8

9s.6

92.2

96.0

93.9

92.2

9s.9

9s.6

97.8

Table 4.11 Two class classification of wheat kernels by BPI\IN classifiers (Case 2:

300 healthy and 300 mixed infected kernels equal for each species).

Healthy

o//î

Fungal Infected kernels

%

Training

Testing

Validation

87.5

80.6

92.2

83.2

82.2

84.4

Table 4.12 Four class classification of wheat kernels by BPNN classifiers.

Healthy

o//o

A. niger

o//o

A. glaucus

o//o

Penícìllium

o//o

Training

Testing

Validation

62.7

s3.9

s8.9

20.6

17.8

12.2

44.8

43.3

5l.l

91.3

84.4

88.9
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Pearson etal. (2006) reported accuracy of 82.5% for visible spectra while Walcott et

al. (1998) used ultrasound signals to detect the level of fungal infection with 12:0.85.

Also, transmittance and reflectance spectra can detect 8l to gSyo fungal infection

(Pearson et a1.,2001; Delwiche, 2003; Pearson et al., 2004: wang et a1.,2004;

Pearson et a1.,2006). Pearson et al (2006) stated classification accuracy of BZYo for

fungal infected maize kernels and 100%o for healthy kernels for soft X-ray method. In

the present study, all classifiers could ciassify healthy kernels with accura cy >B5o/o by

the pair-wise method. Fungal infected kernels were discriminated from healthy

kernels with the 80 to 98.9o/o accuracy by statistical and neural network classifiers

with pair-wise and two class methods whereas the four class method was unable to

classif, healthy and infected kernels with good accuracy. Linear classifier gave better

results for healthy kernels (82.8%) than neural network classifier (<75%) by the two

class method.
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5. CONCLUSION

The soft X-ray method has the potential to detect fungal infection by A. niger, A.

glaucus, and Penicillium spp in stored wheat. This method can differentiate healthy

and infected kernels by linear statistical classifier and neural network classifier with

accuracy >85o/o.

In pair-wise method, linear statistical classifier classified 87 to 95yo infected and 87 to

90o/o healthy kernels. Quadratic and Mahalanobis classifiers detected 83.3 to 96.1%o

infected kernels but highly misclassified healthy kernels with A. niger. Neural

network classifier detected healthy kernels with accuracy >90%o and infected kernels

with accuracy 86.7 to 88.9%o. Whereas all the classifìers misclassified A. níger and A.

glaucus infected kernels.

In two class method (Case l: 300 healthy and 900 all infected kernels), quadratic and

Mahalanobis classifier classified 90.0 to 98.9% infected kernels but gave high false

positive enor (26.1 and' 28.3Yo, respectively). Linear classifier classified 82.8%

healthy kernels but only detected 89.4 to 92.8% infected kernels. Neural network

classifier detected 92.2 to 97.8o/o infected kernels but gave very high false positive

(40%).

In two class method (Case 2: 300 healthy and 300 mixed infected kernels equal for

each species), linear classifier discriminated healthy and infected kernels with 86.7

and 86.lYo. The quadratic and Mahalanobis classifiers detected infected kernels with

accuracy 86.6 and 84.4o/o, respectively but highly misclassified healthy kernels

58



(<80%). Neural network classifìer detected 92.2% healthy kernels and 84.4Yo infected

kernels.

In four class method, all the classifiers poorly classified healthy and fungal infected

kernels.
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Appendix I

Pair-wise classification of healthy and fungal infected wheat kernels by statistical
classifiers

Healthy Ys. A. niger Healthy Vs.l. gløucus Healthy Ys. Penicillium

Healthy A. niger

(%) (%)

Healthy A. gløucus

(%) (%)

Healthy Penicillium

(%') (%\

Linear

Set 1

Set 2

Set 3

93.3

83.3

93.3

88.3

86.7

86.7

86.7

88.3

88.3

91.7

90.0

90.0

86.7

100.0

100.0

88.3

95.0

88.3

Mean 90.0 87.2 87.8 90.690.6

Quadratic

Set I

Set 2

Set 3

80.0

73.3

80.0

86.7

91.7

91.7

83.3

90.0

81.7

88.3

100.0

100.0

88.3

83.3

88.3

73.3

88.3

88.3

96.186.777.8 90.0Mean

Mahalanobis

Set I

Set 2

Set 3

80.0

76.7

80.0

8s.0

86.7

86.7

76.7

90.0

90.0

86.7

83.3

86.7

93.3

96.7

90.0

8 r.7

91.7

95.0

89.493.3Mean
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Appendix 2

Pair-wise classification of fungal infected wheat kernels by statistical classifiers

A. niger Vs.l. glaucus A. nigerYs. Penicillium A. glaucus Ys. Penicillium

A. niger A. glaucus A. niger Penicillium A. glaucus Penicillium

(%) (%) (%) (%) (%) (%)

Linear

Set I

Set 2

Set 3

73.3

65.0

66.7

66.7

56.7

56.7

75.0

86.7

85.0

96.7

71.7

96.7

95.0

86.7

8s.0

100.0

7s.0

r 00.0

Mean 82.2 91.7

Quadratic

Set I

Set 2

Set 3

61.7

76.7

65.0

75.0

38.3

I J.5

68.3

66.7

60.0

70.0

73.3

6l.7

95.0

76.7

93.3

r 00.0

81.7

100.0

67.8 62.2 93.9

Mahalanobis

Set I

Set 2

Set 3

66.7

86.7

78.3

45.0

30.0

55.0

96.7

93.3

90.0

80.0

46.7

81.7

76.7

86.7

81.7

96.7

61.7

96.7

Mean 77.2 93.3 69.4 8t.743.3
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Appendix 3

Two class classification of wheat kernels by various statistical classifiers (Case 1:
300 healthy and 900 all infected kernels)

Linear Quadratic Mahalanobis
o/o%%

Healthy

Set I

Set 2

Set 3

83.3

81.7

83.3

76.7

71.7

73.3

71.7

75.0

68.3

Mean 82.8 73.9 71.7

A. niger

Set 1

Set 2

Set 3

88.3

9r.7

88.3

90.0

91.7

88.3

91.7

93.3

91.7

Average 89.4 90.0 92.2

A. glaucus

Set 1

Set 2

Set 3

91.7

90.0

91.7

91.7

95.0

86.7

91.7

98.3

86.7

Average 91.1 91.1 92.2

Penicillium

Set I

Set 2

Set 3

88.3

93.3

96.7

95.0

98.3

98.3

96.7

100.0

t00.0

Average 92.8
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Appendix 4

Two class classification of wheat kernels by various statistical classifiers (Case 2:

300 healthy and 300 mixed infected kernels equal for each species).

Ilealthy

o/o

Fungal infected kernels

o//o

Linear

setl

set2

set3

85.0

8s.0

90.0

80.0

96.6

81.6

Mean 86.7 86.1

Quadratic

setl

set2

set3

80.0

73.3

7s.0

83.3

95.0

8r.6

76.1

Mahalanobis

setl

seÍZ

set3

88.3

75.0

71.6

75.0

9s.0

83.3

Mean 84.4
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Appendix 5

Four class classification of wheat kernels by linear statistical classifier

Healthy

(%)

A. níger

(%)

A. glaucus

(%\

Penicillium

(%\

Healthy

Set I

Set 2

Set 3

71.7

75.0

76.7

1.7

6.7

6.7

13.3

8.3

8.3

r 3.3

r0.0

8.3

74.4 10.65.0 10.0

A. niger

Set I

Set 2

Set 3

10.0

3.3

10.0

58.3

51.7

61.7

2s.0

35.0

21.7

6.7

10.0

6.7

7.87.8 57.2 27.2

A. gløucus

Set 1

Set 2

Set 3

3.3

6.7

6.7

36.7

20.0

21.7

s3.3

68.3

58.3

6.7

s.0

10.0

7.226.1Mean

(Continued)
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(Continued)

Healthy

(%)

A. niger

(%)

A. glaucus

(%)

Penicillium

(%)

Penicillium

6.7

0.0

0.0

Set I

Set 2

Set 3

10.0

5.0

5.0

15.0

0.0

1.7

68.3

95.0

93.3

5.66.7t',Mean
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Appendix 6

Four class classification of wheat kernels by quadratic statistical classifier

Healthy

(%)

A. níger

(%)

A. glaucus

(%)

Penícillium

(%\

Healthy

Set I

Set 2

Set 3

70.0

70.0

68.3

11.7

18.3

16.7

10.0

6.7

6.7

8.3

5.0

8.3

Mean 69.4 15.6 7.27.8

A. niger

Set I

Set 2

Set 3

6.7

6.7

6.7

53.3

51.7

50.0

15.0

16.7

31.7

25.0

2s.0

11.7

Mean 20.66.7 51.7 21.1

A. glaucus

Set 1

Set 2

Set 3

J.J

6.7

6.7

JJ.J

58.3

60.0

15.0

25.0

25.0

48.3

r 0.0

8.3

Mean 5.6 t1 1 50.6 21.7

(Continued)
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(Continued)

Healthy

(%)

A. niger

(%\

A. glaucus

(%)

Penicillium

(%)

Penicillium

Set 1

Set 2

Set 3

J.J

0.0

0.0

15.0

5.0

5.0

13.3

0.0

0.0

68.3

95.0

95.0

86.14.41.1Mean
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Appendix 7

Four class classification of wheat kernels by Mahatanobis statistical classifier

Healthy

(%)

A. niger

(%)

A. glaucus

(%\

Penicillium

(%)

Healthy

1.7

0.0

0.0

Set I

Set 2

Set 3

71.7

78.3

75.0

16.7

16.7

20.0

t0.0

5.0

5.0

Mean 17.8 0.66.7

A. niger

Set I

Set 2

Set 3

6.7

11.7

10.0

76.7

68.3

60.0

1 3.3

13.3

26.7

3.3

6.7

J.5

Mean 9.4 t7.8

A. glaucus

Set I

Set 2

Set 3

3.3

6.7

6.7

61.7

31.7

8.3

30.0

53.3

60.0

5.0

8.3

25.0

Mean 33.9 47.8 12.8

(Continued)
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(Continued)

Healthy

(o/o)

A. niger

(%\

A. glaucus

(%)

Penicillium

(%)

Penicillium

4s.0

80.0

76.7

Set I

Set 2

Set 3

8.3

1.7

6.7

JJ.J

20.0

16.7

13.3

0.0

0.0

Mean 23.3 4.4 67.2
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Appendix 8

Pair-wise classification of healthy and fungal infected wheat kernels by BpNN

classifiers

Healthy Ys A. niger Healthy vs.l. glaucus Hearthy ys. penicilrium

flealthy A. niger Healthy A. glaucus

(%) (%)

Healthy Penicillium

(%) (%)(%) (%)

Training

Set I

Set 2

Set 3

91.9

90.8

87.6

79.5

89.5

91.4

92.4

90.0

81.0

84.3

92.4

91.9

8s.7

95.7

86.7

93.3

97.1

93.3

Mean 90.0 87.8 89.s 94.689.4

Testing

Set 1

Set 2

Set 3

80.0

95.0

75.0

81.7

88.3

70.0

83.3

70.0

93.3

83.3

75.0

93.3

85.0

93.3

86.7

90.0

86.7

90

83.3 82.2 83.9 88.9

Validation

Set I

Set 2

Set 3

93.3

86.7

90.0

86.7

90.0

86.7

100.0

86.7

83.3

80.0

86.7

93.3

90.0

90.0

93.3

90.0

83.3

93.3

88.990.0 91.187.8 90.0 86.7
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Appendix 9

Pair-wise classification of fungal infected wheat kernels by BPIIN classifiers

Training

A. nigerYs.A. glaucus

A. niger A. glaucus

(%) (%)

Set 1

Set 2

Set 3

Mean

72.4

69.5

69.s

Testing

A. nigerYs. Penicillium A. glaucusYs. Peniciltium

Set I

Set 2

Set 3

A. niger

(%)

(Continued)

70.5

47.6

67.6

71.4

Penicillium A. glaucus Penicillium

(%) (%) (%)

Mean

71.7

6t.7

71.7

79.s

86.7

91.0

62.2

68.3

56.7

48.3

71.7

9r.0

8s.7

83.8

85.7

78.3

85.0

80.0

s8.9

82.9

90.s

91.9

86.8

83.3

83.3

81.7

81.1

92.9

88. I

8s.2

88.4

80.0

86.7

83.3

82.8

88.7

88

90.0

8s.0

81.7

83.3 8s.6



(Continued)

Validation

A. niger Vs.l. glaucus

A. niger A. glaucus

(%) (%)

Set 1

Set 2

Set 3

Mean

73.3

s6.7

100.0

A. niger Ys. Penicillium

A. niger Penicillium

(%) (%)

76.7

56.7

s3.3

80.0

86.7

90.0

90.0

A. glaucus Ys. Penicillium

A. glaucus Penicillium

(%) (%\

88.9

76.7

80.0

83.3

80.0

86.7

86.7

86.7

86.7

83.3

96.7

96.7

92.2
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Appendix 10

Two class classification of healthy and fungal infected wheat kernels by BPI{N
classifiers (Case 1: 300 healthy and 900 all infected kernels)

Healthy

(%)

A. niger

(%)

A. glaucas

(%)

Penicillium

(%)

Training

Set 1

Set 2

Set 3

70.0

63.8

54.3

93.3

91.4

96.7

95.7

95.7

96.7

97.6

92.4

97.6

Mean
62.7 93.8 95.996.0

Testing

Set L

Set 2

Set 3

6s.0

58.3

50.0

100.0

100.0

86.7

93.3

93.3

95.0

98.3

95.0

93.3

Mean
s7.8 93.9 95.6

Validation

Set 1

Set 2

Set 3

70.0

66.7

43.3

93.3

90.0

93.3

90.0

90.0

96.7

96.7

96.7

100.0

Mean
60.0 97.8
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Appendix 1l

Two class classification of wheat kernels by BPNN classifiers (Case 2: 300

healthy and 300 mixed infected kernels equal for each species).

Healthy

o//o

Fungal Infected kernels

o//o

Training

Set I

Set 2

Set 3

81.4

89.5

9t.4

89.0

8r.9

78.6

Mean 87.5

Test

Set I

Set 2

Set 3

76.7

81.7

83.3

80.0

90.0

76.7

Mean 82.2

Validation

Set I

Set 2

Set 3

86.7

96.7

93.3

83.3

86.7

83.3

Mean 84.4
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Appendix 12

Four class classification of healthy and fungal infected wheat kernels by BPIIN

classifiers

Healthy

(%)

A. niger

(%)

A. gløucus

(%)

Penicíllíum

(%)

Training

Set 1

Set 2

Set 3

63.3

62.4

62.4

12.9

22.4

26.7

30.0

49.0

55.2

82.4

93.3

98. l

62.7 20.6 91.3

Testing

Set I

Set 2

Set 3

55.0

55.0

5t.7

11.7

18.3

25.5

JJ.J

40.0

s6.7

65.0

96.7

91.7

Mean
53.9 t7.8 43.3

Validation

Set 1

Set 2

Set 3

60.0

66.7

s0.0

10.0

13.3

13.3

50.0

40.0

63.3

73.3

96.7

96.7

Mean
s8.9 12.2 51.1 88.9
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