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ABSTRACT

The work presented in this thesis deals with the analysis of arched
folded plates (of translation) utilising the finite strip method., A
translational arched folded plate structure is obtained by translating the
folds along a curve,

Based on this analysis a computer programme titled "Archfold" has
been written incorporating the direct stiffness technique. This programme
éananalyseboth arched and conventional (straight) folded plate structures
subjected to any t&pe of loading. Archfold is also capable of dealing
with structures having intérmediate supports and structures with rigid
end supports. -

The results of various tests carried out with the programme compared
very satisfactorily with other existing solutions. Some of these results

together with the results of sample anlyses are presented in the thesis.
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CHAPTER I

INTRODUCTION
1.1 Description

A prismatic folded plate structure is an assemblage of thin plate
elements interconnected along longitudinal edges and framing into trans-
verse end diaphragms. These types of structures can have various cross-
section as shown in Fig. 1.1 and often give a pleasing appearance. Folded
plate structures combine the‘strength characteristics of shell structures
with the simplicity of plate type structures. Extensive use has been made
of them in roofs, box girder bridges, floors, and foundations.

The conventional folded plate structﬁres carry the superimposed
load to thei: subports through considerable bending action in the longi-
tudinal direction. This often results in large values of longitudinal
(tensile) stresses. It is in this context that an arched folded plate
structure becomes of interest (Fig. 1.2)._ An arched construction may be
obtained in one of two wgys,viz. (a) Rotation of the folds about an axis
and (b) translation of the folds along a curve thch is usually shallow,
as shown in Fig. 1.3. The former is referred to as an arched folded plate
of revolution (of rotation) while the latter earns the name arched folded
plate of translation. The distinction between the two types is shown in
detail in Fig. 1.4. It is of interest to know that an arched folded plate
structure posseéses the strength of a doubly-curved shell and yet it is

easy to form due to straight edges in one direction.

Note: Numbers in the brackets [ ] designate the References given at the

end of the thesis.




(a)

(b)

(c).

(d)

Figure 1.1 SOME CROSS-SECTIONS OF FOLDED
PLATE STRUCTURES
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Figure 1.2. FOLDED PLATE STRUCTURES.




(a). Rotational type.
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Figurel.3. ARCHED FOLDED PLATES.
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1.2 Background of Analyses

Considerable work has been carried out in the analysis of folded

plate structures. The methods of analysis varied through the years. It

is of interest to trace back some of the important methods used to date.
Originally the classical theory was employed to analyse folded

plate structures making use of equilibrium and compatibility conditions

between adjacent plates in turn. The works of Goldberg and Leve [1] and

that of De Fries and Scordelis [2] are noteworthy examples of this. However,

this method becomes rather tedious for 1arge structures and certainly not
suited for complicated goemetries. It was also not possible to analyse
the structures subjected to'any arbitary type of loading. A comprehensive
report on the analyses of folded plate structures has been given by the
ASCE task committee in 1963 [3].

The next phase was the use of thé direct stiffness method to analyse

folded plate structures. The stresses and displacements in each plate

element being computed by classical thin plate -bending theory and two-
dimensional plane-stress élasticify theory. The use of the Direct

Stiffness method facilitated programming the analysis. Much work has been

done by Scordelis in this context. The programme "MUPDI3" is an example of
such work by Scordelis and Lin- [4].

The use of the finite element method made it possible to analyse

a great many structures subjected to arbitary loading conditions. However,
for this type of analysis a large computer programme and a fair-sized

computer were necessary.




The finite strip method which closely resembles the finite element
method was first used by Cheung [5] to analyse straight folded plate
structures. The programme size was considerably réduced by the use of this
method which proved very suitable for the analysis of plate structures.
Meyer and Scordelis utilized this technique to analyse folded plate struc-
tures curved in plan [6]. On the basis of their analysis Meyer and
Scordelis presented the programme "CURSTR" which essentially deals with
shells of revolution.

Work on arched folded plates of translation has been quite limited.
Shah and Lansdown [7] analysed the above type using the classical theory

of shallow shells.

1.3 Object of Study

The object of this thesis is.to extend the finite strip method
for the analysis of arched folded plate structures of translation, utilizing
the direct stiffness technique. An attempt is made to provide a general"
computer‘programme which is capable of analysing the majority of arched
folded plate structures subject to any type of loading. The analysis
requires the structure to be simply supported at its two transverse ends.
Provision is made to acéomodate structures with intermediate supports in the
form of plane frames and/or rigid diaphragms.

Chapter II of the thesis deals with the geometry of arched folded
plates, the assumptions made in the analysis and a description of the
finite strip method.

Chapter III presents the analysis proper, while Chapter IV deals with
the computer programme. The various tests carried out with the programme

to show its validity and possible applications are described in Chapter V.




Results in this context are presented.in graphical form in this chapter.
The last chapter concludes the thesis with a discussion on the

results obtained.




" CHAPTER II

PRELIMINARIES

2.1 Gebmetry of an Arched Folded Plate of Translation

As shown in Figs. 1.2b and 1.3b, an arched folded plate structure
(ofltranslation) is obtained by translating the folds albng a curve which
is shallow for the case presented in this thesis. For the purpose of
analysis, a global co-ordinate system, X, Y, Z for the entire structure
and a local co-ordinate system, x, y, z for each element (or plate of
the structure are defined. These are shown in Fig. 2.1 where the global
X axis and the local x axis are coincident and in the longitudinal direc-

tion. The equation of the shallow translational shell is given by
2 % :
Z' = = X' + tan¢ Y! . _ (2.1)

where H = maximum‘rise, L = span.vand H/L < 1/5, ¢ = inclination angle
of plate. Also curvature in Z'X' plane = 1/R1 = 822'/8X'2 = BZZ/BX2 =
8H/L2 while curvature in Z'Y' plane = 1/R2 = 322'/8Y'2 = BZZ/BY2 = 0.
Since there is only a curvature in ZX. plane, the subscript is omitted
and the curvature denoted by %u |

Each element (plate) of the structure which in the present analysis
will be finite strip, has two nodes or joints i and j; these joints
extending in the full longitudinal direction.

The positive direction of the y (transverse) axis is from node

i, to node j, while the positive direction of the z axis is normal to the

plate as shown. The transverse co-ordinate and the plate width are designated

S and S12 respectively. For convenience a natural co-ordinate system

n is defined with origin at the centre of the plate width and having




- 10.

GLOBAL-CO-ORDINATE SYSTEM
X,U
. z’.w/g\y.v
LOCAL CO-ORDINATE SYSTEM
CUZ .

\.. J

Uz\

w2 V2

GEOMETRY OF STRUCTURE
Figure. 2.1
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values -1 and +1 at nodes 1 and j respectively. The plate thickness

is designated by h.

2.2 Displacements and Transformation Matrix.

Associated with each co-ordinate direction in both the global and

local systems we have the following displacement components at each node.

global system : local system
X -U X -u
Y -V , y(s) -v
Z-NW y/ -w

In addition to the above, there is a rotation about the longitudinal
axis, which is designated by § in the global system and w in the local
system. It is seen fhat w = gg-. During the analysis procedure it will
become necessary to transform values from the local co-ordinate system
to the global and vice-versa. Therefore, it becomes convenient‘td define

a transformation matrix pertaining to the above displacements (or forces

in the same directions). This matrix is given by
fu,} = [A] {03 (2.2)
i i :

for the transformation of the displacement components from the global to

the local system as shown in Fig. 2.2.

T NOTATION: { } = column vector, < > = row vector, [ ] = rectangular matrix.
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Yzw

Local Syéfem Global System

Figure 2.2 LO.CAL AND GLOBAL SYSTEM




where

and

[A] =

T
{u}

T
{u.}

0

-sing

cosd sing

0

cos¢p

Vi oV, W
Q1U1V2 w2
1 0
0 0
0 0
0 cos¢
0 0
0 -sind
0 0

0 0

sing
0
-cosd
0
O.

13.
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The matrix [A] is called the "Transformation Matrix'". This transformation
matrix will later be used to transform the element stiffness matrix and

the 1oad matrix from the local to the global system.

2.3 Interpolation Functions

In the analysis it becomes necessary to relate the internal

displacement of a point in an element to the nodal displacements.

Interpolation functions are used for this purpose. The functions used

in this work assume a linear variation of the in-plane displacement
" components and a cubic variation of the normal displacement comppnent

between the nodes in the transverse direction. These functions which

are derived in detail in Appendix A are given by
<¢u> = %4'<(1—n) A+n)> for the longitudinal component
<¢V>  = %— <(1-n) (1+n)>' for the transverse component'
1 3 3. 512 2 3. 512 2 3
<¢.> =7 <@2-3ntn7) (2+3n-n") 5= (-n-n"+n") = (l-n*n"-n")>
for the normal component (2.3)

2.4 Assumgtions

The following assumptions are made in the theory:

1. The structure is made up of an assembly of strip elements and

is simply supported by diaphragms at its two ends. The diaphragms are

infinitely stiff in their own plane but perfectly flexible normal to their
own plane.
2. The thickness of each strip element is constant and small

compared with the other strip dimensions.
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3. Straight lines which are perpendicular to the middle surface of
the underformed element remain straight and perpendicular to the deformed
middle surface.

4. The material is homogeneous and linearly elastic, with
orthotropic pfoperties which are constan£ throughout any element.

5. Deflections and deformations are small.

6. A second-degree symmetrical curve is assumed for the generatrix.

7. The shell is assumed shallow in the longitudinal direction.

The above-mentioned assumptions limit the application of the
theory as follows: |

(I) Due to the last assumption a restriction on the maximum rise-
to-spanvratio(H/L) is imposed. This ratio is approeximately %—.
(2) Even though the shell is not assumed to be shallow in the

transverse direction, the parametric curves are assumed to be orthogonal.

This assumption restricts the angle of inclination ¢ of the straight
line generater. This angle was found to be appreximately 40° for the
results of the analysis to compare satsifactorly with those of other
existing solutionms.

Despite these two limitations, it is possible to apply the analysis
to the majority of arched folded plate structures (of translation) found

in practice.

| 2.5 The Finte Strip Method

In this method the structure which is simply supported at the two
longitudinal ends by diaphragms is divided into a number of strips as
shown in Fig. 2.3. It is not necessary for the strips to have equal

widths.
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Strip elements

Nodes or Joints

Support Diaphragm

Folded Plate Sructure -

Figure 2.3 THE FINITE STRIP
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The longitudinal sides of the strip are denoted by i and j
and called joints corresponding to nodes in a bar type element (or in a
finite element). The properties of the strip are reggrded as constant in
its own strip but can differ from strip to strip so as to approximate
non—homogeneoﬁs cases. Thus the finite strip becomes the '"element' in
the folded plate structure and as described in section 2.1 will have fourA
degrees of freedom at every joint or node. These are the three displacement
components u, Vv, and w and the rotation w as shown in Fig. 2.2.

The finite strip method resembles the finite element method in
assuming displacement Patterns. Trigonometric displacement patterns are
assumed in thé longitudinal direction, while displacement functions are
used in the transverse direction to relate the displacements of interior
points to the edge (nodal) displacemehts. These functions ¢u? ¢V, and
¢w were given in section 2.3. However, the number of elements is very
much smaller in the finite strip.method resulting in a much simpler
computer programme. The method utilizes the direct stiffness technique.

The essence of the method is to compute the stiffness matrix of a
typical strip element and then to assemble the overaii structuré stiffness
matrix. The loading can be arbitary. All loads, displacements and forqes
are developed into Fourier Series. The whole process is Vefy smooth
‘and involves only a serieé of matrix operations. Due to thé incorporation
of the direct stiffness solution and the small number of elements, the

finte strip method lends itself very suitably for programming.
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CHAPTER III

STIFFNESS ANALYSIS FOR FINITE STRIP ELEMENTS

3.1 Stiffness Matrix for an Element

3.1.1 Displacement Functions

We assume a pattern for the transverse variation of the displace-
ments by means of displacement functions, which relate the displacements
of the internal points to thé nodal values. In the longitudinal direction
the displacements are formed.into Fourier Series, making use of the simple

support conditions at the ends. We, therefore, have for any point (n, x)

u(n,x) w |8,(n) cos E}Il
v(n,x) = Z vn(n) sin E%E.»V _ (3.1)
' ) n=1 :
LW(n,X) w (). sin n—g—’i_
nmx .

o <¢u(n)> cos —p— 0 0 uy
= ' . DX :
= 2 0 <¢v(n)> sin —5 0 1Y

n=1 e . DTX
0 0 <¢w(n)>51n 7 wol o
where < (M)> =<4 (M)> = 2 <¢(1-n) (1+n)>
| 1 3 3, 512 2.3 S 2, 3
and  <¢_(M)> =7 <(2-3n+n7) (2+3n-n") —= (I-n-n"+n7) == (-1-n#n"4n7P>
Uy Vs Y1
by Faf 3 Wiln Spvm s Midn =W
2in 2
w
: 1
“2in

are the nodal displacement components for a typical harmonic n.

ow _ ow _ on 2 ow

9s on 9s 812 an

w =




3.1.2 Strain Displacement Relationships

19.

The equations given by Munroe [8] or Novozhilov [9] are used

(e Y du ¥
“x x R
ov
€ 3
du ov
Yxs 38 " %
< =
; 22,
X - 2
9x
Bzw
K -2
S 95
— 2 32w
st 9x3s
[ om
2 < d)u
0
3du nmx
© < ds > cos 2
Ay
= L
n=1 0
0
0
or - o
{e} = [T] {ui} = I [T]
where

T .
{e}” = <:€x € Yye K.

1 . NTX
7 - §-< ¢w-> sin —=
odv nix
< os g 2 0
nmw nmx
T < ¢ > cos - 0
n, 2 nmx
0 (E_a <¢,>sin N
82¢ ﬁnx
0 -< L >sin ——
2 %
os
2nm dow nmx
° TTZ S %s 7% Tq
{ui}n (3.2)
Ks sz:>




3.1.3

N .
xs’

in Fig. 3.1(d). N,

. (local y) directions respectively, while Nxs is the in-plane shear

force.

longitudinal (x) axes respectively, while st is the twisting moment .
The shear forces QX and Qs act normal to the plane of the element on
planes perpendicular to the x and y (local) axes respeetively. These
shear forces being derivatives of the moments are not invblved in the
stiffness analysis.

In classical theory the other internal forces (in-plane forces/unit length

Stress (Force/Unit Length) - Strain Relationships

At each point in an element we have the in-plane forces

M
X

moments Mx’

M, M
S Xs

and :Ns are in the longitudinal (x) and transverse

They are obtained later from the values of the moments.

and the normal shears, Qx’

and moments per unit length) are related to the strains by

(1
N
X

M

XSJ

id

h E vI h E
m Xm sSX m sm
l—vm vm 1-V" vm
sSX XS . sX sX
vt h E: heE
XS m X m sm
IR R T i
SX XS SX Xs
0 0
0 0
0 0
0 0

0 0
0 0
0 0
3 3
hb Exb st 1"'b Esb
b b ... b b.
12A-v_ V. .) 12Q1-v_ v )
b 3 3
st hb Exb hb Bsb
b_.b b b
12(1-vsxvsx) 12(1-vsxvxs)
0 0

N_,

X

as shown

~and Ms are moments about the transverse (local y) and

20.




W,Fv

(a) Globcjl joint displacements U,V ,W, N and loads
Fe, Fu, Fv,Fm

Pvi Pvj

Oy
- S,V
Y __joint i L Z,W i
4] | (c) Surface loads and
(b) Joint co-ordinates .element displacements.

X .
f;s Mx/st

L

MsY Qs
(d) Internal forces and moments

Figure 3.1 SIGN CONVENTION FOR STlFFNESS
. ANALYSIS

:
/ Qx¥ Msx

21.
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Oor

{c}= [Dp] {e} = [D] [T] {ui} =z, [D1 [T {ui}n (3.3)

where the subscript ‘m denotes membrane or in-plane characteristics while
subscript b stands for bending properties, E, G, and Vv are elastic

modulus, shear modulus, and Poisson's ratio respectively. The members of
the 6 x 6 [D] matrix will later be referred to by Di" For an isotropic,

J

homogeneous material,

sm sb xm xb

E

SX XS m b 2(1_'_\))

3.1.4 Potential Energy Due to Straining

As a result of straining the potential energy V in an element is

given by
V= % I {37 {o}da } ’ (3.4)
A
From equations (3.2) and (3.3)
o o T SlZ % .
o 1 T : ‘
V=3 I § {ui}n[ | [T D] [T] ds dx {ui}m. (3.5)
n=1 n=1
$=0 X=0

Because of the orthogonality relationships the cross product term

T
[T]n [ij 'will yield zero upon integration for n # m and %— for

n = m, since
L L v o when n#m
. nmx . WX
sin ——
{ 2
o . a-when n=m
(3.6)
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Using (3.6), equation (3.5) becomes

'S
- 1 T 4 12 p
== X > T = .
v z o fu,} 3 [T], [p] [T], ds = {u,} _(3.7)
o)
in which [’f‘]n = [T]n with all sin'E%E- and cos 2%E-Ierms deleted.

Since potential energy = %»{ui}T [K] {ui} the element stiffness

for a typical harmonic n is given by

S
9 12 T _
[kl = 5 [ [T1, [0] [T]_ ds (3.8)
o
Since é§-= gg—-, equation (3.8) will become
12
+1
LS
(K], = —&= ] [T} [0] 1T]_ o (3.9)
-1 .

. +1
2812 = T =
therefore [k] = —+— [T] (b1, . [T] dn will be an
n Ngxe  OXC " Mgyg
-1

8x8 matrix and can be partitioned as

R X k]
uu uv uw
2S
™12
[kl = —— U (3.10)
(éymm) k
L W lgxs
.where kuﬁ: is | ]2x2’ kuv is | ]2x2’ kuw is [ ]2x4’
ko ois [ 1,5, kK, 1is [ ]2x4 while k = is [1, ,-

[k]n is derived in detail in Appendix B, using a closed form solution for

the integrals. Finally the stiffness matrix is transformed to the global

system accordhg to [i]n = [A]T [k]n [A] where [A] is the transformation

matrix.
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3.2 Load Analysis

It was mentioned earlier that the aréhed folded plate structure
could be subjected to any type of loading, viz. uniformly distributed
loads, line loads, point loéds, etc. Point loads and line loads in the
longitudinal direction are treated as joint loads by forming a node or
joint at the points of application.

| For distributed loads over the whole width of a plate element with
an arbitary variation in the longitudinal direction the components in the
plane of the element (x and y directions) and the components normal to the
element (z direction) (as shown in Fig. 2.1) are. considered. As in the
case of displacements, we use Fourier Series representation in the
longitudinal direction and the interpolation functions < ¢p >=<4_ >
in the transverse direction to represent the loads. In all three
directions we utilize the same interpolation fuﬁctioni < ¢P > , thereby
assuming a linear variation of all components of the distributed loads
between the nodes. i.e., < ¢ (n) > =< ¢ > = %— < (1-m) (1+n) >

The value of the distributed load pi(n,x) at any point is given by

tp; (.0} = [0)] {p; 0 | (3.11)
where
- |e i
[¢p] < ¢p > 0 A 0
0 <4, > 0




and

[ nmx
cos —g— 0
o0
{p.(x)} = z 0 sin 20X
i 2
n=1
0 0
n denoting the particular harmonic. Thus

25.

7] A
0 {pu}
0 {pv} >
sin‘g%z- {pw}J n

{pi(x)} gives the intensities

of the distributed load components at the nodes. The Fourier Series

representation of the load vector"{pi(n,x)} is applied to its nodal

values only as [¢p] is a function of n only. Therefqre,
—<¢ >cosn—ﬂ—x— 0 0 —[{ ]j
o P L Py
v ~ . TTX ' :
= < > —_—
{piOW,x)} 'nil 0 ¢p sin == 0 +p,}
. - NTX
0 0 < ¢P > sin == {PWU
(3.12)

In consistent load analysis, the above mentioned distributed loads are

replaced by equivalgnt' nodal loads using the principle of Virfual work

(variation principle). If the nodal loads are {Ri(x)} whare

It~~1 8
=1
3
Y

'{Ri(x)} = .

T

0 {r }
u

0 <R 1P (3.13)
o2 | g
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we have by the principle of virtual work

s [
’{ui}:' {r;} = _él J ['{ui(n,x)_}T' {p; (n,x)} dn dx (3.14)
n-’x
where
{Ru}
{Ri}n’ = {Rv}
HR }
W 8x1

The above equation (3.14) is solved for '{Ri}n in Appendix C to give the
load vector.

Since '{Ri}n is in terms of the nodal values of the distributed
loads {pi}n in the u, v and w directions, the horizontal and
vertical intensities (Phi, and Pvi) .of the load at a typicél joint i as
shown in Fig. 3.1(0)‘are'resolved along and perpendicular to the plate

element to give Pvl and Pwl respectively. (Fig. 3.2).

Er— - Y
¢ P . AN
Q*“ Hi
P .-
Al *N\ i

Figure 3.2 RESOLVING NODAL LOADS.




27.

Finally, '{Ri}n; has to be transformed to the global co-ordinate
system. This is accomplished by utilizing the transformation matrix [A].

The -global comppnents of the joint loads FP’ FH’ FV and FM are

shown in Fig. 3.1(a).

3.3 Direct Stiffness Technique

The stiffness matrices and the load vectors developed for all the

strip elements are assembled together after transformation to the global

system to give the structure stiffngss matrix [K] and the structure
load vector {P}. These constitute the required set of equilibrium
equations of the form {P} = [K] {A} where the joint displacements '{A}
are solved for as the unknowns.

At each node of joint there will be four global displacement g
compoﬁents U, Vv, Q and W) giving eight displacement components for |
each element. These global joint displacement cémponents are first
transformed to the local system by utilizing the transformation matrix

[A] to give eight local displacement components '{ui}. Thus, the

end displacements {ﬁi} of an element are given by {ui} = [A] {Ui}

where {Ui} is the global joint displacement vector.

3.4 Calculation of Internal Forces and Displaceménts

Once the end displacements of an element are known, the internal

forces in the element are calculated using equation (3.3)

we had { o} = [D] {e}= [D] [T] {ui} - (3.3)




n

From the above the stress resultants can be

written as

[+
N, = I
X n=1

-D

D

where
(o}l = <N N N_M M M >
X' s XS X' s XS
T
= >
{u; ) UV Yy
D11 D12 0 0 0
D12 D22 0 0 0
0 0 D33 0 0
0 0 0 D D
44 45
[D] =
0 0 0 D45 D55
0 0 0 0 0
" and
[oe]
T= I [T]_
n=1
where
[T] is given in Section 3.1.2.

nmw

nm nnx
11 &

< > sin
¢u A

{ui}n * D12

nmx

11 ' . ;
< ¢, > sin —if—{wi}n

R

66
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is the constitutive
matyrix
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© . A 1o .
nm nmx \4 . Amx
= - — > ——— ——em —_— -
N, 4n§1 Dy, g < ¢, sin Hu it * Dy, < 5o > sin 5= v, 1
..D
12 o il TTX
"R < ¢W > sin N {Wi}n
e ,‘BQJ . nmwx - nm _nmx
= —_— > —_— > —_— :
Nes = E o Dgg <35 7 cos T luh e Dy gmcgy >cos T vyl
s m, 2 | m 32¢
_ n . OTX - _ ._ ITX
M, = '§ Dy, GO < ¢ > sin == {w.} Dye < —5— > sin —Ef-{wi}n
n=1 as
> ., 2 82¢
- n W . nmx:
M, E Dy GO < ¢, > sin ———-{w b, - Dee<—5= sin —zf-{wi}n
n=1 9s
oo oo
_ 2nm w nmx: ‘
M = nil - Deg g <35 > cos 4 w3 : | (3.15)

From equation (3.1) the displacement components at any internal point

" can be written as

[s.0]
_ 1 1 nmx
u = § {2 (1 -n) u * 3 1 +n u2} cos —— (3.16)
n=1
| 1 m -
. nTX :
vs= X {5-(1 - vyt A+ v2} sin —— _ (3.17)
n=1
| | 3 1 3. S 2 .3
w= I F@2-3n+n)w, + (2 +3n-n)w,+ - nT)w
4 1 4 2 1
n=1
SlZ 2 3 nmx
+ (-1-n + n° + n)w;} sin ——
2 2
(3.18)

where subscripts 1 and 2 denote values at the joints i and j of an

element, respectively.

+
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Also
2 o o 3mPe1 321y 1 .2
weg— gy = I gty - STt ¢ g Gn-an-1)wy ¢
12 M p=1 12 12
12 . himx
t T ($n +2n-1)w2} sin —— (3.19)

using the notations

=L 1
Pl— 2 (1 n)ul + 2 (1"‘71)112
P, = l-(1 -N)v, + l-(1 - n)v
2 2 1 2 2
u u
Py= (-5 52 )
12 12
v v
Py = 5t g
12 12
S
1 3 1 3. .12 2, 3
Po=7 (@ -3n +nw + 722+ 3n-n)w, + —= (I-n-n+nju, +
S
12 2 3
+ —g—'(-l-ﬂ + 07+ 7w,
we have
(>}
u= L P_ cos nrx
- 1 L
n=1
(o]
v= L P_ sin LLUES
2 L
n=1
e N
- ;o DX
w= L P5 sin = (3.20)




From equation (3.15) we get

as.

From equation (3.19)

3. ., 3 -
2 5 2 1.5 2 2 1., 2
st s < <z (7D - 2 (1) § Gnl-nel) $Gnlene1) >
12 12 ‘ 12
therefore
524
N 2<2_n i Z_n (32-1) (32+1)>
5s S 12 12
12 -
If |
Po= 22 %y, - 22 P-w, + = (Gn2-2n-Dw. + L GBnPsan-1)w
65 178 2t 7 147 2
12 12
and
Py = 6T]2 b 6ﬂz Wy (gnvl)‘”l ¥ (32—1)‘”2
S S 12 12

12 12
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am . NTX ."nﬂi . nux
nfl - D11 " P1 sin ——= - D11 Py sin ) + D12 P4 sin == (3.21)
30 o a V1
v o .2 9 1
<z > vyl =g— 5 7@ -m a+m >
12 v
2
v, v
- G35 r 5 = P
12 12
o D12 -
nmw . nTX . NMX . nTX
21 D12 T P1 sin —p= - —— P5 sin == + D22 P4 sin == (3.22)
nnx nmw nmx :
nfl D33 P3 cos —p= + 933 T P2 cos —p— | (3.23)
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From equation (3.15) we have

_ > nm 2 . nTX . ATX
Mx = nil 44 Q{ﬂ 5 sin == D45 P7 sin == (3.24)
z nm 2 . DX . NTX
M n§1 Dss (?T) Py sin 5= - Dgp Py sin == (3.25)
. 2nt nimx
MXS = nil D66 2 P6 cos —p— | (3.26)

Shear "Forces

The shear forces per unit length given by Munroe [8] or
Novozhilov [9] are

oM oM
X XS

Qx T x * 9s

and .
ast BMS
Qs = TBx * as

From equations (3,24) and (3.26)

oM 0
X m. 3 nTx nwx
w02 Paa @7 Py ocos T o Dyg () Py cos %
oM o 9P o
XS _ _ 2nm 6 nmx _ 2ntu nmx
5s = L " Dgg g s c0s g = I - DggTp Py cos g
n=1 n=1
therefore
_ e AT 3 nmx
Qx-nzl{(z) D4 (2)P 45-—2(2)PD}cos——2
(3.27)
From equations (3.25) and (3.26)
oM o oP
S _ nm 2 . X 7 R
35 - Z Dys G Pgsin T - Dy 5 sin Ty

n=1
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ast > T onm., 2 "nﬁi
x o Pee @) Pesing
,3P7 . 12wl _:,12w ; Gwl . 6w2
0s g 3 s 3 g 2 g 2
12 12 12 12
If
. aP., _ 12w, ) 12w, . 6. . 6w,
8 ds g 3 g 3 s 2 g 2
12 12 12 12
we have
® T2 2
-5 o (AT, n. _ . NTX
Q = n§1~{ Dgs 2" Pg * Dyg ()" P - D Py } sin T (3.28)

3.5 Outline of Analysis Procedure

Due to the simple supports at the ends of the structure it was
possible to have a Fourier Series representation in the longitudﬁﬁdi(x)
diréction for the. loads and displaceménts and to perform a direct stiffness -
harmonic anlaysis. In this manner the problem was reduced to a truly
two-dimensional one (at the transverse cross-section).

The solution technique is established for one particular harmonic
n, and the super-position principle is used. In this way the method
lends itself well for programming.

The entire longitudinal joint may be treated as a single nodal
point, since the analysis for each harmonic load will produce displacements
of the same variation. For example, a displacement pattern ¥(x) =

. nm . . . . . .
Y. sin EEE gives the displacements at every point in the longitudinal

(o)

direction for different values of x. Thus, the pattern could well be

described merely by the parameters Yo which is the amplitude of that




particular digplacement. In this way we could focus our attention on
the nodes at one cross-section, instead of dealing with the full lengths
of all the longitudinal joints.

If the conditions of equilibrium and compatibility are satisfied
at a nodal ppint in a transverse section, they will also be satisfied
along the entire longitudinal joint.

The steps in the analysis procedure in this thesis using the
finite strip methéd and the direct stiffness technique may be summarized
-as below.

a. All surface or line loads distributed across the width of a
strip element are replaced by a set of equivalent nodal loads. -This is
equivalent to finding fixed end forces. These nodal components are then
transformed to the global system X, Y, Z as shown in Fig., 2.1.

b. The joint or nodal loads thus fdrmed are resolved into
Fourier Series in the longitudinal direction and tﬁe load vector {P}n
is formed from all components for a typicallterm of the series. The
" dimension m of this vector will equal four times the number of joints
(nodes) in the structure (section 3.2). |

c. The 8 x 8 stiffness matrix' [k]n is calculated far each

strip for a typical term of the Fourier Series (section 3.1).'

d. The stiffness matrix of each element is next transformed to the

global co-ordinate system so that thé strucfure stiffness matrix [K]n
may be assembled, using the direct stiffness technicue. This m x m

matrix (where m = 4 x number of joints) together with the load vector
constitute the set of equilibrium equations for a typical téfm of the

Fourier series expansion.

34,
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e. The equations in (d) are solved for the unknown joint
displacements {A}n.

f. The joint displacements are transformed back to the relevant
element co-ordinate systems to determine the edge displacements of the
strips for this particular harmonic.

g. The strip (element) internal forces are calculated for the
same harmonic.

h. All of the above are repeated for each harmonic of the
Fourier Series and the contributions of each term are added up to obtain
the final displacements and internal stress resultants throughout the

structure.

3.6 Provision for Intermeédiate Supports

The aﬁalysis procedure is exteﬁded to analyse structures that have
intermediéte supports. The supports could be in the form of plane frames
and/or rigid diaphragms which are externally supported. A force method
of analysis is used in which the interaction forces between the folded
plates and the intermediate supports are treated as redundants. The
interaction forces are assumed to act only at the common joints of con-
nection as shown in Fig. 3.3. At each such joint there are three
components of the interaction forces; viz. horizontal, verticél and
rotational components. Longitudinal restraint between the foldéd plates
and the intermediate support is neglected. The method is described in the
foliowing steps.

a. First the folded plate structure is analysed for the given
external loading, with the redundants set to zero. This is the

primary structure (Fig. 3.3(b).




A LL4

(a) Structure with intermediate support (elevation)

" ———— o —
— ey - - ——
T e e e e —

ad —
—
—— e—— - ——
e — — — i et —

~(¢) Structure under unit redundant force

G 5" N,

Interaction forces in A Interaction

folded plate forces in
intermediate
7777 support

Figure 3.3 PROVISION OF INTERMEDIATE SUPPORTS
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A

b. The displacements 4{6}0 at the points where the redundants

are to act are determined.

{6}: 1 8y e § >, (3.29)

It
A
©2
(o)

|

displacements of joints connected to the intermediate support

c. The folded plate structures is next anlaysed for unit values of
~each of the redundant forces (Q) and the cofresponding displacements of

the joints '{6}1 determined (Fig. 3.3(c)) i.e.,

'{6}1 = [F]l'{Q} - (3.30)
where
{6}T=<6 6 c e v e 6 >
1 1 72 c 1
and
[F], = flexibility matrix of the folded plate structure.
1 .

d. If the intermediate support is a plane frame the total
structure stiffness matrix of the frame is formed using a plane frame
analysis (programme) and then a static condensatién is carried out to
eliminate the degrees of freedom not corresponding fo redundant forces.
Next the stiffness matrix is inverted to give the displacements {6}2 at

the required points of the frame, i.e.,

{6}

5 [F]z‘{Q} (3.31)

where

flexibility matrix of the frame.

)

[F1,
e. Finally the compatibility condition at each point of redundancy

requires that
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{sr + [F], {Q} + [F1, {Q} =0 (3.32)

or

{6}0_+ [F] {Q} =0

where

[F] = [F], + [F],

Q) =-[F]‘1'{6}o - ' (3.33)

giving the redundant interaction forces. It is to be noted that
[F]2 =0 for a rigid'diaphragm.'

f. When the interaction forces between the folded plate structure
and the intermediate support are known, the simply-supported folded-plate
structure could be analysed subjected to the total load of eiternal loads
plus interaction forces to give the true internal forces and displacemeﬁts.

If the intermediate support is a plane frame, it is analysed for the

interaction forces {Q} plus any external load to which it is subjected

to. If the intermediate support is a rigid diaphragm [F]2 =0 in (d)

above and that step is by-passed.
If there are more than one intermediate support {frames or
diaphragms), the analysis procedure is essentially the same with the

redundants at each intermediate support.

It must be noted that conventional folded plate structures can be

R

this case it is also possible to analyse structures having intermediate

analysed by the theory presented in this work, by letting L. 0. For

flexible movable diaphragms. The method of analysis with these type of




diaphragms is presented in Appendix D. Flexible movable diaphragms are

used mainly with box girder bridges.

3.7 ~Simulation of Fixed-end Conditions

In the theory presented here arched (or conventional) folded plate
structures having rigid diaphiagms as intermediate supports could be
analysed. However, the structure has to be simply supporfed at the two
ends. An‘attempt is made to simulate fixed-end support conditions by
having rigid diaphragms very close to the end supports. This technique

is illustrated in Chapter IV under '"Applications of ARCHFOLD".

39.
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CHAPTER IV

COMPUTER PROGRAMME "ARCHFOLD"

4.1 Programme Description

On the basis of the theory presented earlier, a computer prdgramme
titled "Archfold" has been written in Fortran IV language for the. IBM 360
éomputer at the University of Manitoba. It consists of one main programme
and several subroutines that are called in. "Archfold" provides a rapid
solution to arched folded plate structures simply supported at the ends
and subjected to any arbitary type of loading. The structure can have
intermediate supports in the form of rigid diaphragms or flexible plane
frames. Straight conventional folded plate structures can also be apalysed
by inputting the parameter %- (= X R in programme) = O.

Uniform or partial surface loads may be'applied anywhere in the
folded plate strﬁcture.

The restrictions on the number of joints, number of intermediate
supports, number of elements, terms of Fourier Series etc., are given in
Appendix E under the subtitle ”Eorm of Imput'".

The computer solution based on the finite analysis utilizes the
direct stiffness technique. Compatibility at the interior supports is
accomplished by a force (flexibility) method of analysis. A harmonic
analysis with up to 100 non-zero terms of the appropriate Fourier Series
is used for the loads. A special moment integration option permits the
evaluation of moments and the percentage of the total moment of a cross-

when the angle of inclination ¢ of the elements is not restricted. This

section taken by each member. This can be used only for the case
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moment integration is specially applicable in analysing box girder bridges.
As mentioned earlier a plane frame programme (P FRAME) is incorpor-
ated to analyse any intermediate support that may be in the form of a

planar frame.

4.2 Input and Output

The sign convention used in the programme is the same as that in
the analysis. For inputting the co-ordinaté'of the intermediate plane
frame supports any arbitary origin and any‘rectangular co-ordinate system
may be chosen. A detailed description of the input which has been designed
‘to require a minimim of effect in preparation is given under "Form of
Input" in Appendix E.

A brief description of the input requirements is given below.

1. Span of structure.

8H

L2

2. Curvéturé of the arch in terms of XR =

|-

3. Typical transverse section propérties in terms of number of
plates, number of joints, number of intermediate supports and :co-ordinates
of all joints with respect to the chosen origin.

4. Maferial properties of the elements as required for the
constitutive matrix [D].

5. Desciption of the loading which may consist of surface loads,
varying linearly across the width of an element and constant over a
specified portion in the iongitudinal direction. The structure may also
be subjected to joint loads extending either uniformly over the whole
length of a joint_or over a particular portion of it.

6. Specification of transverse section at which output is desired.

7. Maximum number of terms to be used in the Fourier Series analysis.
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The output consists of the following information.

(1) The complete input data, properly labelled for checking
purposes.

(2) The interaction forces between the folded plates and the
intermediate supports if any. |

(3) The displacements of all joints in the global system.

(€))] The internal forces and displacements for all elements for each
longitudinal section along a plate width and at the transverse sections
‘specified. |

(5) For XR = O,. when analysing structurés with girders, the
moments taken by each girder at the spécified cross-sections.-

(6) For plane frame intermediate supporfs the complete énalysis

in the form of joint displacements, member end forces, etc.

4.3 Special Considerations

If there is longitudinal symmetry of the structure.about a transverse.
plane, a saving in the computing effort may be obtained by making use of
the symmetry or anti—symmetry of the loading with respect to the transverse
section of symmetry. For a symmetrical structure subjected to a symmetrical
loading, only the odd terms of the Foﬁrier Series have to be used.(Fig. 4.1(a)).
For anti-symmetric loading only the efen terms are required. This could
be achieved in the programme by specifying it in the "control card".
Advantage of symmetrical loading can be taken only in the cases
of one centre support or no_intefmediate éupport, as the loading (which
has to be symmetric) includes the external loads and the interaction forces.
Advantage of anti-symmetry can be taken only‘in cases without any inter-

mediate supports (Fig. 4.1(b)).
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Figure 4.1 LONGITUDINAL AND TRANSVERSE SYMMETRY
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If there is symmetry in the transverse section (i.e., about a
longitudinal plane) of the structure, advantage of symmetry or anti-

symmetry may be taken by analysing only one half of the cross-section

and imposing proper boundary conditions at the longitudinal plane of
Symmetry (Figs;4.1(c) and Fig. 4.1(d)).

When there are intermediate supports, it is necessary to specifiy
a relatively large number for the maximum Fourier Series limit. This is

because the analysis will involve expanding the interaction forces acting

over narrow widths into Fourier Series and the convergence of the output

quantities such as moménts in the vicinity of the force will be very slow.
A satisfactoryloutput could be obtained by studying the-convergence for
an increasing number of harmonics. This can be accomplished in one run
of the programme as it has-the option to print out the results after a
required number of harmonics.Generally 80 terms or 40 non-zero terms in
symmetrical cases are recommended.

The connection between the folded plate structure and the inter-

mediate support is only at discrete points. This may be a limitation in

some cases where there is a continuous connection in reality. In such

cases some averaging process has te be used to obtain meaningful values for
the internal forces and moments if a plane frame is used as the intermediate

support.
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CHAPTER V

APPLICATIONS OF “'ARCHFOLD"

5.1  Introduction

Thé computer programme "Archfold" was specially written for
the analysis of arched folded plate structures of translatién utilizing
the finite strip and direct stiffness techniques.  But as stated earlier,
it could very well be used for the analysis of conventional (stxaight)
folded plate stfuctures by inputting XR = 0. The Qtructure could also
be subjected to any type of loading. Thus, a greaf variety of problems,
hitherto difficult and impossible to solve, could easily be solved. The
various parameters that influence the results such as span, curvaturé of
arch, thickness of plate, inclinatidn angle of element, strip width etc.,
~could be studied. The results of "Archfold" are compared with analeis
by classical theory [7], ""CURSTR" [6] (thch'is a programme for analysing
folded plate structures of rotation) and with "MUPDI 3" [4] when XR = 0.

Presented below are some of the studies mentioned.

5.2 Test Cases

5.2.1 Test Case (a): - Comparison With Classical Solution and "CURSTR"

The geometry of the cross-section is shown in Fig. 5.la. This
simple two-fold structure simply éﬁpported at the extreme longitudinal
edges was chosen to test the Validity of the programme. For increased
accuracy the structure was divided ihto eight strips. ‘Tﬁe other details
‘and dimensions were so chesen to match the classical analysis of Shah

and Lansdown [7]. Thus, we have the following details.
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\ 2.5'i 2.5'“2.5'l 2.5'! E2.5'| 2.5'l 2.5':i 2.5,

Archfold

H=(i) 10", (i) 16"
R=(i) 85", (ii) 58"

Bo= (i) 56.158°, (i) 87.158°
Test case(a) I0'-0"

be— 10'- 0" ——1< 10-0"—= ',

io-oo /7
tan¢ = 0.2,0.4,0.6,0.7,0.8,1.0
XR= 0.0, R=104', H= 8 l

Test case (b)

Curstr
NOTE: All plots are for the left hand plate (iel* 4 elements

Figure 5.1
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span of structure = 80.0 feet

curvature (XR = %-) = (1) 0.0125 (i) 0.02
these correspond td %4=(’). %— (ii) -%

inclination angle ¢ = 20°

fatio of plate width to span = 0.133

load on structure = 100 lbs/ft2 (inclined area)

thickness of plate = 4 inches = 0,333 feet

To utilize "CURSTR" the structure has to be rotated through 90°
about a horizontal axis to obtain the curvature in plan The radius.
of curvature in the horizontal plane and the angle 60 are obtained
using the values of H as shown in Fig. 5.1(a).

Since the longitudinal bending moments were quite small a
' compari