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Abst ract 

A directed rod theory describes the deformation of a long, thin body called a 

rod. The rod is modeled as curve (the rod axis) with additional structure 

provided by a triad of vectors at each point along the rod axis. A 

hypereiastic rod is one which is associated with a scalar function called the 

strain energy density. Field equations and constitutive restrictions forrn the 

theory describing the deformation of hyperelastic rods. The field equations 

are derived from a variational principle relating the virtual work (which 

depends on the strain energy density) to an arbitrary virtual displacement of 

the rod. Two constitutive restrictions are assumed to apply to the rod 

undergoing deformation. Material frame indifference states that strain 

energy density is invariant under a rotation of the rod system following a 

deformation. Monotropic symmetry states that strain energy density is 

invariant under special rotations and reflections prior to deformation. 

Uniform rods are those which have a constant twist about the rod axis 

described by a constant skew-symmetric tensor. Normal rods are those in 

which the cross-section of the rod is perpendicular to the rod axis at every 

point. Normal uniform rods have a limited number of possible shapes: 

straight, circular and helical. Normal uniform deformations are those 

deformations in which the initial and final configurations of the rod are 

normal and uniform. Four normal uniform deformations are solved where the 

initial state is straight and untwisted. 
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Chapter 1 

Introduction 

Continuum mechanics is concerned with the behavior of materials, especially how they deform 

under the effects of forces and loads. Although it is possible to develop theories for bodies of 

arbitraq shape, it is usefui to take advantage of specific shapes, at least in a general kind of a 

way. One possibility is rod theory. In rod theory, the bodies wbich are studied are long in one 

dimension and smail in the remaining dimensions. 

Rod theory, in turn, may be studied in more than one way. One obvious way is to consider 

the rod as a material body in space and mode1 the deformation of the body as a transformation 

in the mathematical sense. Thus each point in the body is mapped fiom its location before 

deformation to its location after deformation. A theory based on this approach is called a 

derived theory. 

An alternative approach is directed rod theory. In this case, we take advantage of the general 

shape of the rod by considering it as a c w e  in space with additional structure at each point 

dong the c w e .  The c w e  is a one dimensional mathematical object. The additional structure 

provides the substance of the rod turning it into a three dimensional object. A deformation 

of a rod is a transformation from one curve to another and a transformation of the additional 

structure point by point aIong the cunres. 

1.1 Objective 

The goals of this thesis are threefold: 



1. develop the theory of directed rods based on a variational principle applied to a s d a r  

function, 

2. define and describe normal uniform rods and normal uniform deformations and 

3. solve four specific normal uniform deformations. 

These three goals are intended to reproduce the results of a paper written by A. Cohen [II. 

Cohen's paper omits the details of items 1 and 3 listed above. This thesis provides those details 

as well as a thorough exphnation of item 2. 

Development of the Theory 

Theories describing the deformation of material bodies c m  be divided into three parts: geometry 

of the body, field equations and constitutive restrictions. 

There are two distinct types of theories of materiai deformation. In a dynamical theory, the 

various mathematical quantities of the model are considered to be Functions of tirne. A static 

theory is not concerned with the behavior of the body over time, only its initial and final states. 

This thesis develops a static theory. 

1.2.1 Geometry 

The &st part of the theory consists of defining the geometry used to describe the body. Directed 

rod theory is based on the idea of considering the rod as a cuve in space with additiond 

structure associated at  each point of the curve. The theory of C U N ~  is a weU established part 

of differential geometry and we utilize the knowledge of c w e s  (e.g. Frenet frames) throughout 

the thesis. The additiond structure is provided by the introduction of three linearly independent 

members of the tangent space at each point of the cuve- These vectors are called directors and 

together with the curve describing the rod, form the basic geometry of the directed rod. Ali 

other geometric quantities are dehned as teasor products among the directors, their derivatives 

and basis vectors of the physical space in which the rod is ernbedded. Thus the other geometric 

quantities in the model are second order temors. 



We can distinguish between two types of second order tensors used in the geometric descrip- 

tion of directed rods. One type describes the behavior of the directors in a directed rod and 

the other kind describes the deformation of a directed rod fiom one state to another. 

1.2.2 Field Equations 

The second part of the theory is the field equations. This is the physics of materials: it provides 

fundamental equations describing how a body behaves under the application of forces or loads. 

The field equations are often c d e d  Euler's Laws. 

To derive field equations, wiie introduce several physical quantities such as the vectors de- 

scribing forces and loads, Although the theory may be developed in terms of these vectors, we 

choose to work with second order temors defined as tensor products of the physicai vectors with 

the directors and their derivatives We then state several postdates to describe how physicd 

quanti ties are related to geometric ones. From these postdates, the fundamental equations of 

the theory (the field equations) are obtained. 

The field equations may be derived in more than one way. They are usudy founded on a 

general concept of conservation or balance of quantities, as described by Leigh (71. For example, 

the theory includes the postdate that the total mass of the rod must be conserved under a 

deformation and would inchde an integral equation corresponding to this postdate. In fact, 

Leigh provides a general balance integral, which may be thought of as a template to generate 

the various balance laws forming the field equations. Each one of these conservation or balance 

laws is a postdate of the theory. 

In this thesis, the field equations are derived in a different fashion, although reference to 

at least one balance law is necessary. We ernploy a variational method to derive the field 

equations, as done by Cohen 121 and Ericksen [4]. The variational approach is based on the 

postulate there exkts a strain energy density function E associated with the rod. Materiak in 

which the strain energy density is assumed to exist are c d e d  hyperelastic and it is this class of 

rods we are solely concerned with in this thesis. The quantity E is a scalar which is assumed to 

be a function of the deformation tensor and its ûsst derivative with respect to the parameter 

of the curve describing the rod axis. This dehes  E as a constitutive relation or equation (for 

non-hyperelastic theories, the constitutive equations are usually expressed as  the stress tensor 



as a function of the deformation tensor and, possibly, its derivative). The exact functional form 

of E is not specified and depends upon the material of which the rod is composed. Applying a 

variation principle to E, we obtain Euler's equations in a form relating the derivatives of E to 

physicd quantities such as the stress tensor and tensor-moments. 

1.2.3 Constitutive Restrictions 

The third part of the theory is the constitutive restrictions. When deriving the field equations, 

the constitutive relation e is introduced* The constitutive restrictions are constraints imposed 

on E indicating sorne type of symmetry, either in space or in the materid of the rod. The 

constitutive restrictions may be dehed by providuig a specific form for the huiction (e.g. 

linear) . Alternatively, the constitutive restrictions may be assumptions about properties of the 

function E without stating the function explicitly. 

In the mode1 discussed in this thesis, there are two properties described by the constitutive 

restrictions: material £rame-indifference and material symmetry. Material frame-inciifference 

describes the effect of rotating the rod after it has been deformed while material symmetry 

describes the effect of rotations of the rod prior to deformation. Although the two constitutive 

pro pert ies seem similar mat hematicdy, they have quite dinerent implications physically. Ma- 

terial frame-indifference is really concerned with the symmetry of the space in which the rod is 

embedded. Material symmetry, as the name suggests, is concerned with syrnrnetry inherent in 

the body itself. 

1.3 Normal Uniform Rods 

An arbitrary deformation of a directed rod is described by a system of nonlinear differential 

equations (the field equations) and these may be very hard or impossible to solve. However, 

certain special cases may occur in which the dinerential equations can be solved in closed form. 

In fact, as Ericksen [4] first showed, there exist special geometries of the rod which turn 

the differential equations into algebraic relationships which can be solved for exact answers. 

Building on Erickson's work, we define normal uniform rods. Erickson showed the axis of such 

rods can only assume a s m d  class of familiar shapes - straight lines, circular arcs and helices. 



After carefully defining normal uniform rods and deriving several mathematical properties 

of such rods, we solve four of the transformations in which the rod is normal and uniforrn 

both prior to and after deformation. These are cailed normal uniform deformations Even 

though these will be aigebraic equations (as opposed to differential equations), it stili requires 

considerable effort to find solutions. In ail four problems, we must use both field equations and 

constitutive restrictions to obtain the desired solution. 

1.4 Cornparison With the Literature 

A s  already suggested, there are several ways to build a theory of directed rods. It seems 

appropriate to highlight some of the clifferences between theories as they appear in the literature 

and the approach used in this thesis. 

As dready indicated, the deformation of directed rods may be modelled dynamically 

or statically. A dynamical theory includes tirne as a variable whereas the static theory 

ignores time and considers the deformation in terms of a state before deformation (the 

reference configuration) and after (the deformed configuration). This theory considers the 

static model. An example of a dynamical mode1 may be found in reference [3]. Examples 

of static models may be found in references [l] , [2] and [4]. 

The stress tensors appearing in the theory can be fonned from tensor products of vectors 

both in the deformed configuration (Cauchy stress tensor) or one vector fiom the reference 

configuration and the other from the deformed configuration (Piola-Kirchoff stress tensor). 

This thesis uses the PioIa-Kirchoff stress tensor. References [l], [2], 131 and [4] use the 

Cauchy stress tensor. 

There are a t  leaçt two ways of deriving the field equations: from balance laws or from a 

variational principle. This thesis derives the field equations from a variational principle. 

Reference [l] does not derive the field equations, but simply states them based on the 

balance laws. Reference (31 derives the field equations using balance laws. References [2] 

and [4] use a variational principle to obtain the field equations. 



4. Reference [4] introduced the basic idea of uniform rods. Reference [l] and this thesis 

apply rod theory to normal uniforrn rods. 

These are the major differences arnong directed rod theories. There are other differences as 

well, sorne of which are mentioned in this thesis as  they occur. 

1.5 Notation 

Letters in caagraphic type will denote sets. Second order tenson wiil be appear as upper 

case bold letters. Lower case bold letters denote vectors. ReguIar Latin letters represent 

indices, scalars, matrices or functions. Greek let ters may represent indices, scaiar quantities or 

operators. 

The Einstein siimmation notation is assumed - there is a sum over any index which appears 

as both a subscript and a superscript in the same expression. Occasionally, the sum must be 

done on the same index appearing twice as a subscript or twice as a superscript. In this case, 

the summation symbol wiU be employed or one of the repeated symbois with be enclosed in 

parenthesis. Latin and Greek letters used as indices indicate summation from 1 to 3 and 1 to 

2 respectively. Other notation conventions will be mentioned as they appear. 

Equations are numbered only if they are refened to subsequently in the text. 



Chapter 2 

Rod Geometry 

The goal of this chapter is to describe the geometry of a directed rod. This is done in two 

sections. The &st section reviews tensors and proves some resuks required in deriving the Eeid 

equations. The second section describes the geometry of a directed rod before and after the 

rod has been deformed. Directors and three tensors are introduced in this section. Some useful 

Iemmas regarding these tensors are stated and proved. 

2.1 Mat hematical Prelirninaries 

In this section, we prove some general results to be used later in the thesis. We use real vector 

spaces although many of the following comments would apply to vector spaces over any field. 

Much of the information for this section inciudixig the notation was taken £rom Bowen and 

Wang [IO]. 

Recall that every finite-dimensional vector space V has a d u d  space V* consisting of the set 

of linear transformations to real numbers on V. Thuç if u* E V*, a, b E V and a, /3 E R, then 

u* is a linear map on the members of V and thus u' (ua + Pb) = au* (a) +pu* (b). Members 

of the dual space are often called covectors. The scalar product (, ) : V* x V -, 82 is defined by 

(LI* , v) = u* (v) for every u* E V* and v E V. It is straightforward to show the scalar product 

is bihear and definite- 
1 2 3  If a basis {el, ez, ea, . . . , eN)  is chosen for Y ,  the dual basis {e , e , e , . . . , eN) for V. is 

dehed  by ei (ej )  = 6 f .  In terms of the scalar product , (ai, e j )  = 4. If a, v E V, u*, b* E V*, 



the tensor product of a and b* is denoted a@ b* and is a mapping a@ b* : V* x V -. 8 defbed 

by a 8 b* (u*, v) = (u*, a) (b*, v). The tensor product is also bihnear and definite. Note that 

the tensor product may be considered as a mapping of a covector and vector to a reai number 

or as a mapping of a vector to another vector. That is, the tensor product is equivalentiy an 

endomorphism on the vector space defined by a @ b'v = (b', v) a- 

The identity endomorphism is that endomorphism which maps any vector to itsell. The 

relationship between the identity endomorphism and the tensor product is given in the following 

lemma. 

Lemma 1 If {el, ez, es, . . . , eN) LÎ a b a i s  for V with dval basis {el, eZ, e3,. . . , eN}, then 

ei 69 ei is the identity e n d o m o r p h h  on V .  

Proof. Let v E V so v =de j .  Then 

Since q @ ei maps an arbitrary vector v to itself, it foilows that 8 ei is the identity 

endamorp hism. 

A d u d  space is itself a vector space with the same dimension as the original vector space. 

Thus V and V* are isomorphic. In general there is no naturd (Le. canonical) isomorphism 

between them. If an inner product 

- : v x  v - 4 %  

is defined for the vector space, we Say V is ar? inner product space. This establishes a canonical 

isomorphism given by a b = (a, b) . In this case, m y  member of V or V* may be expressed 

in tenns of a basis from either vector space. This thesis uses b e r  product spaces and hence 

the notation a - b wiil be used exclusively. Notice this means the tençor product acting as an 

endomorphism may now be written as a @ bv = (b - v) a where a, b, v V. 

In an inner product space, the dual basis becomes the reciprocal basis. If the baçes deked  

above are dual bases, in the inner product space they becorne reciprocal bases. Hence ei-ej = 4. 
If a vector space has an inner product defxned on it, then it is always possible to h d  an 

orthonormal basis for that space. The dual basis of an orthononnd basis is also orthonormal. 



The set of endomorphisms on a vector space V is denoted L (V, V) .  C (V, V )  is also a vector 

space over the same field as V .  If V has dimension N, then L (V, V) has dimension N2. 

If A E C. ( V ,  V ) ,  then the transpose of A is denoted AT and dehed to be the endomorphism 

such that u - (Av) = (A~u) - v for a l l  u, v E V. Let A, B, O, 1 E 13 (V,  V )  , O and I are the zero 

and identity endomorphism respectively and a, b E V. The transpose operation can be shown 

to have the foLlowing properties: 

Proof. Let A = a @ b and u, v E V. Then 

But 

Since u and v are arbitrary, this implies 

ATu- (u-a)b = O  and A ~ U =  (wa)b.  

12 



But b 8 au = (u - a)  b so A*U = b @ au. Since u is arbitrary, it foliows that = b @ 8 

~ h u s  (a@ blT = b @ a  

Proof. Let u E V. Then 

(Aa) @ b u  = b - u ( A a )  = A ( ( b - u ) a )  = A ( a 8 b u )  

and since u is arbitrary, (Aa) @ b = A (a @ b)- 

Let B = a (Ab). Then 

using the second property of transposes mentioned above. Taking the transpose again gives 

Thus a@ (Ab) = (a8 b) A*. 

Lemma 4 I f a , b , c , d ~ V ,  then ( a @ b ) ( c @ d )  = a @ ( b - c ) d .  

Proof. Let u E V. Then 

But since u is arbitrary, (a 8 b) (c @ d) = a @ (b - c) d.. 

The trace of T E L (V, V) is defined by trT = TL where are the components of the 

endomorphism with respect to some basis. n a c e  can be shown to have the foiiowing properties 

( s u p p o s e A , B ~ t ( V , V ) ,  X E  Si): 



1. Trace is independent of the component representation of A (or B)- 

Lemma 5 Let V be a real znner product space. Then for al1 a, b E V, a - b = tr(a 8 b) - 

Proof. Let {el, es, e ~ ,  . . . , eN) denote a basis for V with correspondhg reciprocd basis 

{el, e2, e3,. . . , eN). If a, b, u,v E V, we write these in terms of the bases as a = aiei, 

b = b , d ,  v = del and u = uiek. Notice b and u are written in terms of the reciprocal basis. 

Then 

Since v is arbitrwy, the component representation for a@b is given by aibj for al1 i, j E {l, 2,3, . . . , N ) .  

If T = a @ b, then T E L jV, V) and = aibj. By definition, trT = T E .  Then 

Now consider the component form of a - b: 

Comparing equations (2.1) and (2.2) shows a. b = tr(a b). D 



Lf V is an inner product space, then an inner product on L (V, V) is defined by 

It is straightforward to prove this definition satisfies the dennition of an inner product. 

Proof. From equation (2.3), 

using Lemmas 2, 4 and 5. . 
2.2 Geometry of a Directed Rod 

In this section, the geometnc description of the rod in its undeformed and deformed states is 

given. This description requires introduction of direct ors and the deformation tensor. 

W e  assume the rod is embedded in a bdimensional Euclidean point space which is associated 

with an inner product space. This inner product space is also known as the translation space. 

We use the rectangular Cartesian coordiiate system with the inner product as the usual scalar 
1 2  3 product for vectors. The natural basis is denoted {el, q, es) with dual basis (e , e , e ) and 

in the rectangular Cartesian coordinate system these bases are orthnormal so q . ej = 6, and 

ei d = 6". In fact we can identïfy ei with ei as the same vector so = eà for i = 1,2,3 - 
Thus we may freely raise and lower indices as required using these bases. 



2.2.1 The Curve and Curve Parameter 

The rod is modelled as a c w e  with additional structure associated at each point on the curve. 

The curve is called the rod axis- Since we're interested in deforrning the rod, we need to consider 

two curves and their additional structure and the mappings €rom one curve with its structure 

(representing the undefonned rod) to the other (representing the deformed rod) . 
For the moment, we'll represent the deformation by the notation F without s p e c w g  how 

F is defined. We assume that however F is defined, it wiii have the appropriate properties of 

continuity and smoot hness. 

The directed rod is said to be in a reference configuration prior to deformation. To denote 

this, various symbols are subscripted with the letter R. The R does not assume any numerical 

value - it a notational convenience. 

Let the rod axis in the reference configuration be denoted by r R  : [aR, bRj * * and the rod 

axis in the deformed configuration be denoted by F : [a, 61 p. W e  use SR as the parameter 

for rR : [aR, bR] - @ and s as the parameter for Z : [a, b] -t p. Then the deformation F 

includes a mapping fiom SR to s denoted by 

Thus we write 
F 

r R  (SR)  - p (4 (2-4) 

where is it understood that the s on the right side is obtained from the SR on the left side via 

the transformation F. 

Denote the function between s and SR by s = f (SR) where the fundion f : [aR, bR] -+ [a, b] 

is assumed to be continuous, have first derivatives, is monotonically increasing, f (UR) = a and 

f (bR) = b. The c w e  in the deformed state is a function of SR by 

and thus the deformed curve may be expressed in terms of the reference configuration parameter. 

Define r = F O f where denotes function composition. Then 



so F (s) and r ( s R )  trace out the same curve, but with a different pararnetnzation. 

Differentiation with respect to the parameter SR is denoted by '. F'rom elementary differ- 

ential geornetry, 2 (sR) = ~R is a tangent vector to the reference curve at any point dong 

the curve. In the deformed confguration, a tangent vector to the cunre is given by (s). 

The relationship between tangent vector 2 and the vector & is obtained by differentiating 

equation (2-5) with respect to SR and applying the chain nile: 

where X = = f' (s). Since f is assumed to be rnonotonicaLly increasing, X > O for all SR. 
&R 

Notice this implies & and are parallel to each other. Thus a tangent vector at each point on 

the deformed cume may be obtained by differentiating the curve with respect to the reference 

parameter. r' is used as a tangent vector to r (equivalently F) throughout this thesis. 

Notice the function f may be selected in infinitely rnany ways. The simplest way is to 

choose f is to be linear. 

Lernma 7 There is a unique linear function satisjijng the requirements for f .  

Proof. The proof consists of demonstrating the function. Since f : 92 -, R and f is linear, it 

must be of the form f (SR) = AsR + B for some coefficients A and B. Since f (aR) = a and 

f ( b ~ )  = b, the following equations must be simultaneously satisfied: 



so a solution exists. Since b > a, ( b ) * is not the zero vector so the solution 

is unique. Completing thls cdculation gives 

a-b bRa - aRb 
f ( S R )  = SR - 

a~ - b~ a R  - b~ 

Finally, note A > O since a - b < O and aR - bR < O which means X = f (sR) = A is always 

positive. Thus this unique Linear function satisfies the requirements for the transformation 

between the parameters in the reference and deformed curve. H 

This last lemma demonstrates it is always possible to End a desired transformation between 

the parameters. The transformation does not have to be ünear: it only has to satisS the 

requirements for f given above. 

2.2.2 Directors 

At each point of a curve, there is a tangent and cotangent space. The addîtional structure of the 

directed rod is dehed in terms of these spaces. Specifically, at each point dong either curve, 

we select three linearly independent vectors from the tangent space. These vectors are known 
- - 

as the directors and are denoted as dm, dR2 and ciR3 in the reference configuration and di, d2 

and dl in the deformed configuration. Since they are linearly independent and the dimension 

of the tangent space is three, the directors form a basis for the tangent space. A directed rod 

with directors shown at one point is illustrated in Figure 2-1. 



Figure 2-1: Diagram Showing Rod h i s  and Directors at a Point 

Since there is a tangent space at every point dong the curve and we select directors in 

each tangent space, it follows that each of the directors dRi ,  dm and dR3 are functions of the 
- - 

parameter SR and the directors di, d2 and d3 are functions of S. We assume these functions 

are continuous and smooth and denote the transformation of directors as 

Each of the directors in the deformed configuration is a function of the reference parameter by 

- 
and we may w-rite di = di 0 f .  In order to use the same parameter for 

dl, d2 and dg a s  the directors in the deformed configuration. 

The collection of al1 sets of directors at d l  points dong the rod axis 

all quantities, we use 

defines the additional 

structure of the rod- Any point in the rod is given as a linear combination of the directors and 

the curve r R  (in the reference configuration) or r (in the deformed configuration). 

Although the directors may be any h e a r  independent set from the tangent space, we 

introduce the constraint that one of the directors is always tangent to  the curve at  any point 

dong the rod axis. In most cases, we choose the notation so dR3 (or ds) is the tangent vector 

to the curve and thus dR3 = r& and ds = r'. This identifies dm (or d3) with the placement 



of the rod sus. The two dimensiond subspace spanned by dRi and dm (or dl and d2) may 

be thought of a cross-section of the rod at  any point dong the c w e .  With this constraint, the 

directed rod is caiied a real rod- 

For the directors IdRl, dm, dR3}, the reciprocal basis is denoted {db d:, dg). Similady, 

{dl, d2, d3} is the reciprocal basis for {di, da, d3). The following lemma is usehtl in relating 

the directors and their derivatives 

Lemma 8 dki - d$ + dRi - (di)' = O and di dj +di  - (dj)'= O for al1 i, j E {1,2,3). 

(dRl, dR2 , dR3) and {dk, di,  di}  are reciprocal bases, d~~ - d i  = for all 

Differentiating this equation with respect to SR gives 

and applying the product rule for differentiation gives 

The proof for di dj + di (dj)' = O is aoalogous. I 

The following definitions of symbols wiii also be helpful in deaiing with the inner product 

of directors and derivatives of directors. The idea here is to express derivatives of directors in 

tenns of the basis of the directors: 

Since {di, dh, dk), {dhl, d', , dh) , {(dl)' , (d2)' , (d3)') or { ( d ~ ) '  , (di)' , (d~)' ) are bearly 

independent sets, then the inverse of the quantities defined in equation (2.7) are also useful. 

Define d ,  pii, V$ and vkj such that 



in which case 

Using these notations in the result of Lemma 8, nre have 

2.2.3 Direct or, Wryness and Deformation Tensors 

We introduce three second order tenson which are useful in descnbing the rod and its behavior 

under deformation. These tenson are members of 'lf (V) where V is the translation space 

corresponding to the Euclidean point space. As such, tensors are iïnear maps between members 

of the translation space: i.e. if X E 'T;' (V) , then X : V -+ V and X is tinear. 72 (V) is itself a 

vector space of dimension nine. A basis for (V) is given by the set {ei 8 d : i, j E {l, 2,3)}. 

The director tensor is defined by 

and describes the distribution of directors dong the rod auis. The director tensor maps a vector 

expressed in the natural basis {el, 4 ,  e3) into the corresponding vector in the director basis. 

Lernma 9 Ifv = d e j ,  then DV = vjd,. 

Proof. 

DV = di O eidej = vj (ei e j )  di = $64 = d d j .  

Proof. If v = e, then d = 6: and from the proof of the lemma, Dei = 6?;dj = di. . 
Lernma 10 The director tensor is invertible and the inverse ik gzuen by 



Proof. The proof that the director tensor is invertible will follow from demonstrating that 

D-' is the inverse of D. 

using Lemrna 4. By Lemma 1, DD-' = di 8 di is the identity tensor. Since DD-L maps an 

arbitrary vector to itseif, then D-l is a right inverse to D- Naw consider 

using Lemma 4. By Lemma 1, D-'D = ei @ ei is the identity tensor. Since D-'D maps an 

arbitrary vector to itself, then D-l is a left inverse to D. Since D-' is both a left and right 

inverse to D, then D-' is the inverse of D. . 
The wryness tensor characterizes the differential geometry of the rod describing how the 

directors are changing dong the rod axis. This tensor is definecl by 

It ha. the effect of mapping a director to its first derivative with respect to the curve parameter. 

Lemma 11 If v = &dj, then Wv = d d ; .  

Coroilary 2 Wdi  = di. 

Lemma 12 The unyness and director t m o r s  are related by 

Proof. Rom D = di @ ei, 



since ei is a constant vector and doesn't depend on SR. Then from equation (2.12) and using 

Lemma 4, 

which is the definition of W- Hence W = D'D-'. 1 

The notation DR and WR refers to the director and wrynes tensors in the reference con- 

figuration. In this case, all the directors in the dennitions of the director and wryness tensors 

would be reference directors. 

CVe can now define a second order tensor describing the deformation from the reference 

configuration to the deformed configuration. The deformation tensor is defmed by 

Lemma 13 The deformation tensor is expressed as a tensor pmduct by 

Proof. From equation (2.12)' 

so using Lemrna 4, 

which verifies equation (2.13). 1 

Note the important property of F: it maps vectors describing the rod in the reference 

configuration to the corresponding vectors describing the rod in the deformed configuration. 

Proof. If v = vkdRk, 



Proof. In particuiar, if v = dm so vk = 6,, then Fv = FdRc = Gdi = di- 

Thus the deformation tensor maps a reference director into its corresponding director in the 

deformed configuration. 

In the next lemma, we derive expressions for FT, F-1 and (F~) -'which wiU incidently prove 

the deformation tensor and its transpose are invertible. 

Lemma 15 With the dejomation tensor defined by equation (2. i3), 

and 

-1 -r (FT)-l = (F ) =4dj@dw = d i @ d R i .  

Proof. Taking the transpose of both sides of equation (2.13) gives 

using Lemma 2. This demonstrates equation (2.14). 

To prove equation (2.15), evaluate FF-' as a tensor product using Lemma 4. 

By Lemma 1, FF-' = di @ di is the identity tensor. Since FF-' maps an arbitrary vector to 

itself, then F-' is a right inverse to F. Now consider 

using Lemma 4. By Lemma 1, F-'F = dRi 8 d& is the identity tensor. Since F-'F maps an 

arbitrary vector to itseif, then F-' is a leR inverse to F. Since F-' is both a lefk and right 

inverse to F, then Fa' is the inverse of F. 



To prove equation (2-16), take the transpose of equation (2.15): 

( ~ - 1 ) ~  = (dRi @ di)T = di @ dRi 

using Lemma 2. The remit (F-')~ = (FT)-' is given as one of the properties of transpose. W 

and 

which proves the statements of the coroilary.. 

Thus FT maps the dual of the directors in the deformed configuration to the corresponding 

dual of the directors in the reference configuration, F-' maps a director in the deformed con- 

figuration to the correspondhg director in the reference configuration and (F-')* mapg the 

dual of the directors in the reference configuration to corresponding dual of the directors in the 

deformed configuration. 

Lemma 16 The relationship between the wryness and defonnation tensors ïs gzven by 



where the second last step uses Lemma 8 and the last step uses the definition given in equation 

(2.7)- The second tenn evaluates as 

But by definition, W = di @ di and therefore W = FT-' + FWRF-'. . 
In Lemmas 10 and 15, the tensor product forms of D-'and F-' were derived. An analogous 

result for the wryness tensor is not as simple. In fact, the wryness tensor may not have an 

inverse. If W is invertible, the next lemma provides the expression and derivation of W-' . 

Lemma 17 Using the definitions in equations (2.7) and (2.9), W-1 = di 8 pidj. 

Proof. Find the tensor product form of WW-' and W-'W and ver* it is the identity 

tensor. 



() 

Table 2.1: Tensor Product Expressions for The Director, Wryness and Deformation Tensors 

inverse to W. Now consider 

() Expressed As 1 ()* Expressed As 

1 aTensor Product 

using Lemma 4. By Lemma 1, W-l W = di 8 d' is the identity tensor. Since W-lW maps an 

arbitrary vector to itseif, then W-1 is a left inverse to W. Since W-l is both a left and right 

inverse to W, then W-' is the inverse of W. . 
Notice the inverse for the wryness tensor is more complicated than that of the director or 

deformation tensors. This is due to the presence of the derivative of the director in the definition 

of the wryness tensor. The wryness tensor is invertible if {di, di, dh} is a lineariy independent 

set. Equivdently, the wryness tensor is invertible if the matrix of coefficients 2- has a nonzero 

det erminant . 
It is possible to derive tensor product expressions for DT, (DT) = ( D - I ) ~  , and 

(v)-' = (w-')~.  The method for proving these tensor product forms is cornpletely anal- 

ogous to that of Lemma 15. Ratber than showing these caicuIations in detail, the results are 

summmized in Table 2.1. The notation () refers to any of D, W or F. 

aTemrProduct  
et @O di 
di @ di 
dh @ di 

D 
W 
F 

() -' Exprgsed As 
di 8 et 
di 8 di 
di @ dR 

(O-') Eqxessed As 
aTensor Product - a ~ e n s o r  Product 

ei @ d' t da @ ei 
di a pidl 
dl3 @ di 

dj pidi 
di @ dRi 



Chapter 3 

Mat hernat ical Preliminaries to 

Deriving the Field Equations 

In the next two chapters, the field equations for the directed rod model wiU be derived. These 

required some sophisticated mathematical tools. The purpose of this chapter is to develop these 

tools as general results- 

3.1 Calculus of Real Inner Product Spaces 

In this section, we derive the caiculus of reai inner product spaces. Spivak [12] has done this 

for maps of the form f : %* + Rm where n and m are any positive integers. A more general 

treatment for calculus on Banach spaces can be found in Lang [16],[17]. We develop in detail 

the differential calculus of general vector spaces V and U witb maps # : V -, U. 

Definition 1 Limit: Let a E V and # : V -, U. Then lim,,,, 4 (v) = u where u E 2.4 is the 

limit as v appmaches a of t# i f  for euery E > O, there ezLpts 6 > O such that 19 (v) - u12 < o 

whenever I V  - all c 6. u ïs called the limit of t# ut a. 



Definition 2 Continuous: Let a E V and qî : V - U. If d (a) is defined, Lm,,, 4 (v) exists 

and 4 (v) = @ (a), then 4 is said to be con tinuous at a. 

Definition 3 Differentiabfe: Let a E V and $ : V + U. Q is said to be diflerentiable at the 

point a if there exists a linear transfonnation X : V - U such that 

Definition 4 Defiuatzue: The linear transfomation X : V + U appeanng in the prewious 

defin2tion is called the deriuatiue of 4 at the point a. This is denoted D+ (a). 

Lemma 18 If 4 : V -t U is diflerentiable at a E V ,  t h e  is a unique iinear transfonnation 

Proof. By definition, X exists. It remains to prove it is unique. Suppose C : V -. U is a linear 

transformation such that 

For brevity, denote @ (a + h) - # (a) by d (h). Now consider 

If x E V and t E 91, then tx -. O as t -. O. Then if x # O, we may replace h with tx to get 



using the linea.rity of X and c. But 

SO 

implying 

This is true for ail nonzero x so the functions X and C are the same and thus the derivative is 

unique- 

Lemma 19 Let 4 : V + U is diflerentiable at a E V .  If q5 is Zhear, then D# (a) = 4 .  

Proof. Substitute q5 for X in the definition of differentiable to get 

using the fact q5 is linear. Since the linear transformation called the derivative must be unique, 

it follows that 4 = Dq5 (a). 

Theorem 1 (Chain Rule): Suppose q5 : V -, U is differentiable ut a E V and @ : U -, W 2s 

differentiable at 6 (a) E U. Then the composition .Sr O 6 : V -, W i s  diflerentiable at a and 

(2i04) (4 = D+(@(a)) o W ( 4 -  

Proof. For brevity, let u = +(a), X = D4(a) and p = D*(+(a))  = D+(u). Define the 

following maps: 

v(x) = 444 -@(a) - V x - a ) ,  (3-1) 



and 
lim IC (y113 = lim I $ ( Y )  -36 (u) - P ( Y  -u)l3 = O. 
y-u ly - uI2 Y-u lu - 4 2  

We wish to show 

Now 

from equation (3.1). Then 

since p is linear and using equation (3.2). Thus we would like to prove 

and 

Consider equation (3.7) first. 

where p is a linear transformation operating on 4 (x) - 4 (a) - A (x - a). In the t heory of vector 



spaces, it can be shown that Ip (p (x))j3 5 M I<P ( x ) [ ~  for some positive reai number M. Thus 

iim IP ('P (x))l3 lim fil IV H l 2  = M I, IV ( ~ 1 1 2  = O  
x4a 1x-alr x4a IX - all x-a IX - 4 r 

which estabiishes equation (3.7). 

Now consider equation (3.6). Let y = C$ (x). From equation (3.5) and by definition of the 

iimit, if E > O and 

there exists 6 > O so (4 (x) - uI2 < 6 which is true if lx - ail < 61 for some 61 > O. That is, 

But X is a linear operator on x - a so IX (x - a)!, 5 M lx - all for some positive real number 

Icf and thus 

IC (4  (x))IJ C E IP ( ~ 1 1 2  + CM IX - a11 8 

and taking the limit through this inequality, 

Lm IC (4  (XI) 13 < lim IV ( ~ 1 1 2  + 

x-ra Ix-aI1 X-a IX - all 

But it has aiready been shown that 

lim IC (4 (x))b , ,, 
x-a lx- all 



and since E may be taken as close to O as desired, it fotlows that 

which establishes equation (3.6). 

Since equations (3.6) and (3.7) are true, 

which proves the statement D ($ a 4) (a) = D@ (4 (a)) O Dq5 (a). . 
The above resdts are all we need for the mode1 developed in this thesis. We now consider 

how these results relate to that given in Spivak. 

Here is a brief surnmary of differential calculus for functions of the form f : Rn 4 Rm based 

on Spivak [12]. If y = f (x) where x E Rn and y E Rm, then x = (zl, z2, z3, . . . , zn)= and 

y = (#, Y2, y3, . . . , vm)T represent the cornponents of the vectors with respect to the standard 

bases for 92" and Sm. The b c t i o n  f : !Rn + 92" has component functions f : 9L" + 92 

so y' = f' (xl, x2, x3, . . . , zn). The derivative of f : Wn -t Rm is d e h e d  to be a linear 

transformation from Rn to Rm. Ekthermore this linear transformation is the m x n mat* of the 

partial derivatives of the cornponent functions f l ,  f , f 3, - . - , f"with respect to the coordinates 

xl, x2, x3, . . . , xn, again defbed with respect to the standard basis for Rn and Sm. That is, 

where D f (a) denotes the derivative of f at some point a E Sn. 

The derivative of f or 9 is only defined at a particular point. However, there are many 

things which are true about derivatives at al1 points (where the derivative exists) and hence 

it is convenient to use the notation Df or D#. It must be understood that these syrnbols 

stand for an entire class of linear transformations and D f (a) is not necessarily the same linear 



transformation as D f (b) if a and b are different points- 

The connection between calculus on mappings such as 4 : V -, U and that given by Spivak 

occurs when we select bases for V and U, which is normally what we must do in order to solve 

specific problems. Suppose V has dimension n and a bas% for V is (vl, v2, v 3 ,  . . . , Y,)- Suppose 

U has dimension rn and a basis for U is { u l ,  U*, ~ 3 ,  - . . , h) Then for any v E V , v = v'vi 

and for any u E U, u = uiui. A mapping C$ : V -, U becomes a mapping #* : !Rn -, Sm because 

the choice of a basis for V and U establishes canonical isomorphisms V c-, Rn and U - Rrn 

defined by the components of any vector with respect to its basls. 

Let a denote this canonical isomorphism hom V to Rn (Le, a : V -* Rn) and let p denote 

this canonicd isomorphism £kom U to Sm (i.e. p : U -. Zm) . Then at any point a E V, 

o (a) = (a1, a2, a3, . . . , anlT where a =aivi. Similady if b E 24, p (b) = (bl, b2, b3, . . . , bm)= 

where b =biui. The canonical isomorphisms are defined by the bases chosen. 

Since o and p are isomorphisms, they have inverses O-' and p-l and naturdy these give 

and 

1 2 3  o-' ((a , a ,a , . . .,an)=) = a 

p-l ( (61 ,  b2, b3, - . . , bm) ') = b. 

Thus, if C$ (a) = b, we automatically have 9' (o (a)) = p (b), or in longer notation, 

T 4' ((a', a2, a3,.  . ., clT) = (bl ,  b2, b 3 , .  . ., 6") . 

Proof. 4' (O (a)) = p (b) which can also be written as Y O a (a) = p (b) . Then 

which can also be written as 

P-l~<b*~cr(a) = b. 

But q5 (a) = b and since a is arbitrary, it follows that q5 = p-l O 4' O o. 



Consider q5 (a) = b and 

a = o-' ((a', a2, a3, . . . , an)=) 

4 (O-' ((a', a2, a3, . . . , an) ')) = b 

which can also be written as 

which c m  also be written as 

2 3 1 2 b3 4 0 0 ~ '  ( ( a l , a  ,a , . . . ,anlT) = (b , b  , , . ., am)* . 

But 
1 2 3  T 

4* ( ( a  , a , a , . . . , an)=) = (b l ,  b2, b3, -. -, bm) 

so it follows that $* = p O 4 O o-'. . 
Lemma 21 The isornorph.isms a and p are linear. 

Proof. Let a, b E V. Let k E P. Let {vl, vn, V J ,  . . . , vn) be a basis for V ,  so a = aivi and 

b = b iv i .  Then k a  = kaivi and 

T a (ka)  = (ka', ka2, ka3,. . . , kan) . 

However , 
2 3 T T ko (a) = k (a1, a , a , . . . , an) = (ka1, ka2, ka3,. . . , kan) 

a (ka)  = ka (a) . 



Now consider 

Then 

a + b = aivi + bivi = (a' + 6') vi. 

T u(a+  b) = (a1 + b1,a2 +bz,a3 +b3 ,  .. . ,an +bn) . 

However , 

o (a) + u (b) = (a1,  a2, a3, . . . , anlT + (b', b2, b3, . . . , bn) 

= (a1 t bl, a2 + b2, a3 + b3, . . . , an + bn) T 

so a(a+ b) = a ( a )  +a(b). 

Since a (ka) = ka (a) and a (a + b) = a (a) +a (b), a is linear. The proof for p is identical. . 
We now consider the relationship between the derivative D$ (a) and D$' ((a1, a2, a3, . . . , an)*) . 

Lernma 22 Dt$ (a) = o D4' (a (a)) O a and D4* ((a1, a2, a3, . . . , an) ') = p 0 D$ (a) 0 O-'. 

Proof. Using Lemma 20 and the chain rule gives 

D$ (a) = D (p- l  0 4' o 0) (a) 

= op-' (#* O o (a)) O D (4' O u (a)) . 

But we can apply the chah rule to D (gY o a (a)) and get 

D (4' 0 a (a)) = D$* (n (a)) 0 Do (a) 

SO 

D4 (a) = D ~ - '  (6' o o (a)) 0 Dd* (CT (a)) o Du (a) . 

But DP-l (Q O u (a)) = p-l since p-l is linear and Do (a) = a since u is linear so 



and 

which is the other result to be proved- I 

Thus the derivative in the generai vector spaces V and U relate to the derivative in the spaces 

Sn and Rm exactly the same way as the original functioas 4 and fl as described by Lemma 

20. Since this result doesn't depend on the specific point a, we may write D Q  = p o D# 0 O-' 

at any point where 4 has a derivative. 

Given the mapping q5 : V -, U, we've defbed the corresponding map 4' : Rn -r Rm which 

depends on the basis {vit vl, v3,. . . , v,) chosen for V and the basis {ui, u2, u3,. . . , um) chosen 

for 24. If different bases were chosen, say (G1 , q2, G3, . - - Gn) and {ûl , û2, Û3, . . . , Ûm), this 
--• 

would give rise to a different corresponding rnap 4 : Rn + Sm. We consider the relationship 

between the derivative of 6 and the derivative of ;*. 

Recall if two different bases are chosen for a vector space V, the mernbers of one basis are 

related to the other basis by a change of basis matrix. Let V = V! denote the change of bais  [ J-1 
matrix from {vl, vz, VJ, . . . , vn) to {Yl, VÎy G3,. . ., Yn}. That is, Cj = ?vi. The mat* V is 

invertible and its inverse is denoted V = Vt . Of course this is the change of basis matrix 
A [-il 

from {Fi, S2, Y3, . . . , v,) to {vl , VZ, v3, . . . , v,) so vi = ckGk. Similarly, in the vector space U, 
-k^ the change of basis matrices are U = [q] and O = [Û'] defined by Ûj = U;U~ and ui = Cli U r -  

Lemma 23 Suppose v E V with representations vivi and BGi zin two different bases 
h 

{VI, v z ,  va, . . . , v,} and {Y1, Va, G3, . - . , vn). Then the components u' and Q are related by 

-k- Proof. Given v = v'vi = Û.SVk and using vi = vi, as described above, then vigk'l*t = *k 
- -k-  

or vzV, vk - GkYk = O . That is, (v iek - G ~ )  Yk = O and since {Y1 , G2 , Y3, . . . , Gn) are Ln- 



early independent, it foiIows that v i p  - Ûk = O and thus Ûk = Ekvi. On the other hand we 

could use Y k  = V;vi as described above so vivi = UkV;vi and vivi - ÛkV;vi = O.  That is, 
- A (v' - @Vi) vi = O and since {vil v2, VQ, . . . , vn) are hearly independent, u' - vkv; = O and 

thus vi = v@. 8 
A 

The analogous result for a member of the vector space U is ui = (If$ and 2 = Ujuj. Notice 

these results can be written as the folionring matrix equations: 

Lernma 24 Let a denote the canonical isornorphism from V to Rn for the b a s 6  

{VI , v2 , Vgl . . . , vn) and let Û denote the canonical âsomorphism f rorn V to Rn for the bas& 

{ci, V2, T3,. . . , G,). Then a = V a  and E = Po. 

Proof. Let v E V with representations vivi and $Yi- Since 

and 

d (v) = v (û',~~,ii3, + - - , P ) ~  = VÔ(V). 

Since v is arbitrary, we may write a = Vô and ô = Pn. . 
Lemma 25 If p denotes the canonical ïsomorphism h m  U to SJZm under the basis 

Cu1, u*, u3, . . . , um) and S denotes the canonical isomorphism fiom U to Sm under the b a i s  

{Ûi, Û2, Ûal . . . , G) , then = p-'U. 



Proof. Applying Lemma 24 to the vector space U gives C< = Up and = op. Then 

p o p - ' = u p o i ; - L ( r  

and 

Lemma 26 Let & : V -+ 24. Let 4' : Rn - Sim be the cmespmding  map which depends on 

the b a i s  {vl, vp, vg, . . . , Y,) chosen for V and the busis  Cui, UZ, ~ 3 , .  . . , b} chosen for U. Let 

3' : Xn + Rm be the conesponding map which depends on the bases {Yl, ii2, VJ, . . . , qn) and 

{Û1, Û2, Û3, - .  . , Ûm}. Let V, 9, W and Û be the change of 6asi.s mat*ces as dejîned above. Then 
hl h 

D g  = ( I D 4  V and DZ- = ÛD$*v. 

Proof. From Lemmas 20 and 22 

and 
"* 

D ~ = ~ - ~ ~ D Q * O O = ~ - ~ O D #  OZ. 

From Lemmas 24 and 25, G = pcr and p-' = P-'U so 

p - ~ o ~ + * ~ O = p - l u o ~ & V ~  

-* 
and it foilows that D g  = UD$ V. Inverting this procedure gives DT = ÜDCV. . 

At 

Note this result agrees with the actual representation as matrices. In the product UD4 V, 

U is an rn by rn matrix, DF is an rn by n rnatrix and P is an n by n rnatrix so the product 

is an m by n rnatrix. But DO* is also an rn by n matrix. Thus the derivatives DO* snd DJ* 

are related by the change of basis matrices. This means that in applying these resdts to a 

particuiar problem, we can choose specific bases to work in. If we need to use difFerent bases, 

we rnultiply results appropriately by the change of basis matrices. Of course it is exactly the 

same derivative for the transformation q5 between the underlying vector spaces V and U. 



We now consider applying these results to a specid vector space. Let V denote some vector 

space of dimension n and let C ( V )  denote the set of linear transformations fiom V to V -  It 

is straightfomard to show t (V) is also a vector space having dimension n2. However, unlike 

an arbitrary vector space, it is possible to unarnbiguously define a binary operation on C ( V )  

which, together with C ( V ) ,  form a group. This makes L (V)  an associative algebra. Of course, 

since C (V) is a vector space, we can apply the vector space cdculus to C (V). 

The binary operation on L ( V )  is really function composition. Lf R, Q, F E C ( V )  and 

v E V, then Fv and Qv are members of V, and so are RFv and FQv. Thus the products RF 

and FQ are also members of L (V). Our interest is in relatiog the derivative of a function q5 

at F to the derivatives of q5 at  RF and FQ. That is, to examine at the effect of left and right 

multiplication by constants on the derivative. 

Let q5 : C ( V )  -, R. Then Dq5(F) is some iinear transformation fiom C(V) into the real 

numbers. That is, Dtj (F) E L (C (V)  , 72). Notice in this case D4 (F) is in the dual space of 

L (V). Thus C (L (Y) , R) is isomorphic to C (V)  . I f  we assume an inner product on C (V) ,  there 

is a canonical isomorphism between C (L (V) , R) and 13 ( V )  and we may naturally identify any 

member of L ( L  (V) , R) with a member of L (V). This means the binary operation on L ( V )  

can be applied to Dq5 (F) and members of L: (V).  

Theorem 2 Let R, F E L ( V )  and RF denote their product (function composition). Consider 

4 : L ( V )  -, R . If q5 .is differentiable at the points F and RF, then 

where the right side Zs understood to be the product of the transpose of R un'th D$ ( R F ) .  

Proof. W e  assume a basis for L: (V)  which establishes a canonical isomorphism o : L (V) - zn2. 



Let X = RF. Then under the isomorphism o, F has n2 components and forms an n by n mat&: 

4' maps this matris to a real number and we consider 4' to be a real vaiued function of 

n2 variables. Then 06' (a (F)) is a Linear transformation given by a 1 by n2 matrix whose 

components are the partial derivatives of 4' with respect to each component q. However, we 

may mite D4' (a (F)) as an n by n matrix 

' * aéI_ ad' * . +  

a ~ j  BF,L a ~ ;  aF; 

Notice in this form Dd* (u (F)) may be thought of a ünear transformation fiom V to V. Applyllig 

this to the linear transformation X gives the matrix: 

But X = RF for some R E L (V) . Then in component form, we must have Xj = R~F;. NOW 

we're interested in the relationship between D g  (o (F)) and D4* (0 (X)). Since these are both 

n by n matrices, we consider the relationship between % and 8<. ax, X; is a hinction of the 

components so these partial derivatives can be related. F'rom the chah d e  in multivariable 



calculus (fixing indices k and I ) ,  we have 

* a q  axj 

Now 

This result Looks iïke the (k, 1 )  entry of the product of two matrices. R has the matrix repre- 

sentation 

a (R) = 

Looking at a (R*) Dq5* (u (X)) in its mat* form gives 

whose (k, 1 )  entry is xy=L=, I Z ~  3. Thus % is the (k, 1) entry of the above matrix multiplication 

and Dd* (u (F)) = o (RT) D4* (u (X)). Since X = RF, then D f  (O (F)) = o ( R ~ )  06. (O (RF)). 

This result does not depend on the basis chosen for L (V), (Le. the function a could be any 



isornorphism), so it follows that 

0 4  (F) = R ~ D I  (RF) 

relating the derivat ive of q5 at F to the derivative of t$ at RF. I 

Theorem 3 Let Q, F E t (V) and F Q  denote Meir product (function composition). Consider 

4 : L ( V )  -. R . If 4 is diflérentiable at the points F and FQ, then 

w (FI = DQ (FQ) Q* 

where the right side is understood to be the product of Dq5 (FQ) with the transpose of 4. 

Proof. We assume a basis for L (V) which establishes a canonical isornorphism o : L (V) -r 7ZnR"'. 

Let X = FQ. Then equations (3.8) and (3.9) as given in the proof of Theorem 2 stU hold. 

This means Xi = E Q j m  From the dain nile in multivariable calculus (fixing indices k and 

11. we have , , * a g  axj 
i=l j=l 

This result looks Like the (k, 1) entry of the product of two matrices. Q has the matrix repre- 

sentation 



Looking at  Dq5' (o (X)) o ( Q ~ )  in its component form gives 

whose (k, i) entry is 'j& %Q:- Thus 3 is the (k, f )  entry of the abave mat* multiplication 

and DqS (0 (F)) = DQ* (O (X)) Q (QT). Since X = FQ, then Dd* (O (F)) = D P  (o (FQ)) o (QT) . 

This resuit does not depend on the basis chosen for C (V), (Le. the function u could be any 

isomorphism), so it foIlows that 

relating the derivative of # at  F to the derivative of r# at FQ. H 

The final consideration in this section concerns derivatives of functions of two vectors: 

that is, $ : V x V -+ U. In particular we are concerned with how to differentiate with re- 

spect to one dot, but not the other. To do this, we define (v) = 4 (v, w) for any fixed w 

and define the derivative of # with respect to the first do t  to be the derivative of $. That 

is, Dl+ (v, w) = D+ (v). Similarly, we define cp (w) = 4 (v, w) for any k e d  v and de- 

fined the derivative of # with respect to the second slot to be the derivative of 9. That is, 

D24 (v, w) = D<p (w) . Note that the subscripts on the D indicate which dot is being ciifferen- 

tiated. Then al1 of the above development of the calculus on vector spaces immediately applies 

to  Di and D2. The derivatives Di and Dz are c d e d  partial derivatives [16], Il?]. 

An important observation needç to be made here. If q5 : V x V -+ U, then Dit$ is independent 

of whatever is in the second dot providing the second dot  is completely independent of the fi& 

slot. Thus Dig5 (v, w) = Di4 (v, K (w)) for any function tc : V -, V if w is not a function of v 

and vice-versa. Similarly, fi4 (v, w) = D24 (77 (v) , w) for any function 77 : V -, V under the 

same assumption. 



3.2 An Integration Theorem 

In this section we wish to prove an integration theorem which d l  6iI in an important step in 

the derivation of the field equations. Two lemmas are proven which lead to the statement and 

proof of the required theorem. The method of proving Lemma 27 is found in Arnold [13]. 

Lemma 27 suppose f' : [sI, sz] - W, hi : [si, sz] + P, i = 1,2,3,. .., n are continuous 

functions for al1 i E (1,2,3,. . . , n). If 

Ji:' 1. (s) hi (s) ds = O 

for al1 such functions hi, then f' G O for al1 i E {l, 2,3 , .  . . , n}. 

Proof. Let s* E (si, sa). Let 1- c {1 ,2 ,3 , .  . . , n) be the set of indices such that P (s*) < O 

if i E I-.  Let I+ c {1,2,3,  . . . , n} be the set of indices such that f (s*) > O if i E I+.  Let 

Io c {1 ,2 ,3 , .  . . , n) be the set of indices such that f (s*) = O if i E Io. Assume 1- u I+ is not 

empty and attempt to derive a contradiction- 

Consider the functions fi for which i E I-. Since ail these functions are continuous, there 

exists a value c- < O in an open intenal s* - d- < s < s* + d- such that fi (s) < c- for 

1 i 1 Now let hi ( s )  be dehed  in such a way that hi (s) = O outside this open interval, 

hi (s) < O inside this i n t e d  and hi (s)  = -1 in the subintenral s* - ad- < s < s* + i d - .  

Then (s) hi (s) > O for al1 i E 1- in the intervai s* - kd- < s < s* + f d- ,  f' (s) ha (s) 2 O 

everywhere else in s* - d- < s < s* + d- and f (s )  hi (s) = O outside of s* - d- < s < s* + 6. 

Consider the functions f for which i E If. Since all these functions are conthuous, there 

exists a value cf > O in an open interval s* - df < s < s* + di such that f ' (s)  > c* for 
d i 1 .  Now let hi (s) be dehed in such a way that hi (s) = O outside this open interval, 

hi (s) > O inside this interval and hi (s) = 1 in the subinterval s* - idt < s < s* + idc. 
Then f (s) hi (s) > O for all i E If in the intervai s* - i d -  < s < s* + i d - ,  f(s) hi (s) >_ O 

everywhere else in s* - d+ < s < s* + d+ and f (s) hi (s) = O outside of s' - d+ < s < s* + d+. 

Then 



$2 / f (s) hi (s)  ds d+c+ > O if i E IC and 

b:' p(s )h i ( s )ds  = O i f i  E I O -  

It follows that 

if I -  U I+ is not empty. But this contradicts the hypothesis 

so the assumption I- U IC is oot empty must be incorrect and we conclude 1- u I+ is empty. 

This means I O  = {1 ,2 ,3 , .  . . , n} and f (s*) = O for ad i E {1,2,3, . . . , n }  . But s* is an arbitrary 

point. I t  follows that f E O for d i E {l, 2 ,3 , .  . . , n). 
Notice Lemma 27 c m  be expressed in terms of the inner product of two vector hinctions as 

explained in the following corollary. 

Corollary 5 Suppose V is a real inner product space. Let f : [si, s2J + V and h : [si, sz] V 

be continuow vector functions. If 

l:' f (s) - h (s) ds = O 

f o r  al1 such vector finctions h, then f = 0.  

Proof. Since V is an inner product space, it is always possible to choose an orthonormal 

basis for V. Denote this basis {el, 4, e ~ ,  . - . , e,). Then the vector hinctions f (s)  and h (s) 

have component representations f (s) = f' (s)  Q and h (s)  = hi (s) ej. Since f (s)  and h (s )  are 

continuous, each of their component functions are continuous. Then 

and 



The proof of the Lemma 27 showed this impües = O for al1 i E {1,2,3, . . . , n) which means 

f - 0 . .  

Lemma 28 Suppose V is a real inner product s p c e .  Let f : [sl ,  s2] + v , g : (SI, ~ 2 1  - V , 

h : [si, s2j V be continuous vector functions. If 

for all such vector finctions h, then f G O and g ( S I )  = g (sa) = 0 .  

Pro of. Consider three cases- 

1. Suppose f = O. Then 

f (s )  - h ( s )  ds = O 

for any choice of the huiction h. This means g (s )  - h (s)  1:: = O .  Since h may be chosen 

to be any continuous vector function, then 

only if g (sz )  = g ( s i )  = 0- 

2. Suppose f # O and g (s i)  = g (s2) = O .  Then g (s )  h (s)  1:: = O for any hinction h. This 

l; f (s)  - h (4 = O 

for any h c t i o n  h. But it was shown in CorolIary 5 this implies f = O contradicting the 

assumption f # O. 

3. Suppose f # O and g ( s i )  # O or g (sz )  # O. From the proof for Lemma 27, it is always 

possible to find a function h such that 

L : ~ ( s )  - h(s)ds  > O  and h(s1) = h(s2) =O. 



This means 

which contradicts the hypothesis 

Cases 2 and 3 show the hypothesis canot be satisfied if f # O. Case 1 showed f = O implies 

g (si) = g (s2) = O. From the conclusion of each of these three cases, it follows that 

implies f O and g (si) = g (s2) = 0- . 
Theorem 4 Let U and V denote inner product spaces. Let o and - denote znner products on 

U and V respectively. Let F : [sl,s2] -2.4 , H : [si,s2] +Li , f : [sl,sz] V , g : [s1,s2] + V 

and h : [si, s2j -+ V 6e continuous uector functions. If 

Jor all vector ftmctions H and h, then F O, f z O and g (si) = g (s2) = 0. 

Proof. There are eight cases to consider, but four of these may be handled as one. 

1. Suppose F = O. This leaves 

As shown in Lemma 28, this implies f = O and g (si) = g (sa) = 0. 



2. Suppose F # O, f = O and g (sr) = g (sz) = O- This Ieaves 

lr F (s) o H (s) ds = O. 

But from Coroliary 5, this implies F = O contradicting the assumption F # O. Thus this 

case cannot happen. 

3. Suppose F # O, f # O and g (sr) = g(sa) = O. This Ieaves 

Following the proof of Lemma 27, we can always find H and h such that 

1; F (s) o H (s) ds + f (s) h (s) ds  > O. 

This contradicts the hypothesis given in equation (3.10) and thus thîs case cannot happen- 

4. Suppose F # O, f -= O and g (si) # O or g (4 # O- This leaves 

We can dways choose h such that h (sl) = h (s2) = O- This wodd leave 

g ' F  (E) O H (s) ds = O. 

But from Coroilary 5, this implies F O contradicting the assumption F # O. Thus thk 

case cannot happen. 



5. Suppose F # O, f # O and g (si) # O or g (s2) # O- R o m  the proof of Lemma 27, we can 

always fhd H and h such that 

with H (sl) = H (4 = O and h (sl) = h (s2) = O. Then 

and 

l: F (s) 0 H (a) ds + f (s) - h (s) d;. > O b" 
contradicting the hypot hesis given in equation (3.10). Tbus this case cannot happen. 

From cases 2 through 5, the hypothesis given in equation (3.10) cannot be satisfied unless 

F = O. Case 1 showed F = O implies f O and g(si) = g(s2) = O. Thus F = O, f = O and 

g (sl) = g (4 = O in order for 

to be true for al1 H and h- I 



Chapter 4 

The Field Equations 

The aim of this chapter is to derive the field equations from a variational principle. The 

derivation combines the approach of Cohen [2] and Cohen and Sun [3]. It makes use of the 

variational operator 6 for which several useful mathematical properties may be proved [8]. Once 

the field equations have been derived, they are compared with field equations appearing in the 

literature, specifically Cohen and Sun [3] and Cohen [II. 

4.1 Derivation of The Field Equations 

In Chapter 2, several quantities were introduced: the cuve  forming the rod axïs, the directors 

aad the deformation tensor. These quantities are of geometric character, used to describe 

the geometry of the rod and its deformation. To develop the theory of directed rods, we 

must introduce physical quantities and some relationships between the physical and geometrical 

quantities defined. The deformation of a directed rod is caused by forces applied to the rod, 

bot h ext ernally (surface forces) and intemally (body forces). 

The physical quantities introduced here are those given by Cohen and Sun [3] with some 

changes in the notation. 

1. Let f denote the body force density vector. 

2. Let 11, L2, l3 denote the director body force density vectors. 

3. Let n denote the contact (axial) force. 



4. Let ml, m2, m3 denote the contact (axial) director force vectors. 

5. Let p2, p3 denote the intrinsic director force densities. 

The quantities listed as i t e m  1 through 4 are used in the derivation of the field equations. 

The fifth set of vectors will be introduced later when cornparhg Our derived field equations 

with field equations found in the literature. 

Each of these vectors is a function of the parameter SR. We wish to consider the foliowing 

expressions: 

p( f -r+1 ' -d l+ lZ-d2+13-d3)  = p ( f - r t ~ i - d i )  

and 

where p is the Linear mass density dong the rod axis. Let 1' and mi be expressed in ternis of 

the basis {dl, d2, d3} as li = lidj and mi = mfdj. The two formulas become 

These last expressions look like the traces of some second order endomorphisms. D e h e  such 

endomorphisms as follows: 

Notice and M are defined in terms of a mixed tensor product . Using Li = lidj and mi = mf di, 

these definitions are 
- 
L lid3 @ dRi and M ,id' @ dRi- (4.1) 

Then and &Ï have the components 2 and mi respectively. The expressions may be written 

P ( f - r + l i - d i )  =p( f  - r + l i )  = p ( f  -r+trL) (4-2) 



and 

n - r + m a - d i  = n - r t m ;  = n - r + t r m  

using the definition of trace for an endomorphism. 

Lemma 29 o F = trz  and M o F = t r m  where F is the defonnation tensor. 

Proof. 

using Lemma 6. The steps to prove o F =trM are identicai. . 
Equations (4.2) and (4.3) become 

Now consider the curve descnbing the rod axis .in some state cd (not necessarily the reference 

configuration) and a smali virtual displacement of the cuve 6r, Sdl, Sdz and 6d3 for some 

arbitrary segment c of the rod. Each point on c is displaced to a corresponding point on the 

perturbed cume c*. The curve c is described by the function r with directors dl, d2 and ds. 

The cune c* is described by the function r + 61. wit h directors di + adl, d2 + 6d2 and d3 + 6d3. 

Postulate 1 The virtual work done in moving a point on c to the corresponding point on c* 

is given by 



Integrating over the above e.xpression with respect to s gives the virtual work done on 

the entire segment of the curve due to the virtual displacements 6r, Mi, & and 6d3. The 

term n - 6r + m" -di is o d y  integrated over the ends of the rod segment while the term 

p (f 6r + 1' - 6di) is integrated over the entire rod segment. This is expressed as 

then from equations (4.4) and (4.5) we obtain 

Noting that n and M act only at  the ends of the rod segment, we get the next postdate- 

Postdate 2 LE A is the vïrtual work associated with an arbitrary, virtual &placement h m  

the configuration c denoted as Sr and adi: 

where a 5 si < s2 b and the interval [si, sa] is the domain of the parameter of the 

arbitrary segment of cuve. 

Let W be the energy stored (Le. work) during deformation. 

Postdate 3 There exists a scalar h c t i o n  E = E (F, Fr) with the property that W = 1: p~ ds- 

The function E is c d e d  the strain energy density h c t i o n  and materiais for which a strain 

energy density is postulated to exist are called hyperelastic. The function E = E (F, F3 is a 

constitutive relation or equation. This means its h c t i o n a l  form depends upon the material of 

which the rod is composed. 



Postdate 4 A = 6 W .  

This is the key relationship in denving the field equations from a variational principle. 

It connects the strain energy density to the interaction between the geometric and phyçical 

quantities describing the deformation of the rod. 

Postulate 5 b ( p  ds) = 0. 

This postdate is a statement of the principle of mass conservation of the rod under defor- 

mation, 

6iV is evaluated using the properties of the variation operator 6: 

using Postdate 5. F'urthermore, 

using the notation for derivatives discussed in the previous chapter. Thus 

Rom Postdate 4, the following integral equation is obtained: 

In order to use equation (4.9) to derive the field equations, we need to manipulate both 

equations (4.7) and (4.8) into other forms. 

We wish to absorb the term ne 6r 1:: into the integral in equation (4.7). To do this, use 



But 
d(n-6r) - d ( n - b r ) d s R  1 - - = - (n - br)' 

ds d s ~  ds 

r e c a h g  that X = & and the relationship between s and SR is assumed to be such that X # 0. 

Then 

where the last step follows from the fact that the operators 6 and & cornmute. 

Equation (4.7) becomes 

To remove the n - br' term in the integral, we use the foUowing theorem- 

Theorem 5 n 6r1= (n@ I$J O 6E'. 

Proof. The definition of 6F is given in equation (4.6) which can also be written as 

where (rfi)' is the dual vector to rfi (Le. (+)* = d;). Rom the dennition given in equation 

(2.31, 



+ (n @ &) O (6rt @ (&IR).) - 

Applying Lemma 6 to each term on the right side of this equation gives: 

(n g~ &) O 6F = (n bdi) (rk - dk)  + ( n  - 6d2)  (rh - dg) + (n - 6r') (rk - (.A)') - 

But 

since {dk, dk, (I?~)*) is the reci~rocal bask to {clRi,  dm, ~ R }  and thus 

which is the result to be proved. I 

The formula for the virtual work is now given by 

In equation (4.8), we would like to remove the (pD2&) O 6Ft from under the integral on the 

right side. This can be done with integration by parts after changing the differential ds to d s ~ .  

where the switch is made from d s ~  back to &s in the last step. So 



Equation (4.9) becornes 

which, bringing everything to the left side and combining the integr&, is 

Since this integral equation must be true for ali possible variations 6r and 6F, it satkfies 

the conditions of Theorem 4. Invoking this theorem and simplifving, we obtain 

n' + X p f  = 0, 

(XpDzo)' - X p D l a  + n 8 r i  + A& = O 

and 

(M - X&E) (SI) = (M - X ~ D ~ E )  (sa) = o. 

and 



so the functions M and *D2& agree at the endpoints of the rod segment. Since s i  and s2 

are arbitrary values and equations (4.13), (4.14) and (4.15) would be exactIy the same for all 

choices of si and SZ, it follows that and XpDzs would agree at ail points dong the rod and 

t hus 

Letting 

gives the field equations for the directed rod as equation (4.13) and 

The field equations are often c d e d  Euier's Laws. 

4.2 Cornparison With Field Equations in the Literature 

It is instructive to compare the field equations (4.13) and (4.18) with those found in the Iit- 

erature. Such a cornparison provides additional relationships among the various geometrical 

and physical quantities which are both interesting and useful in applying the field equations to 

specific problems. 

The field equations (4.13) and (4.18) may not appear to be the same as those found in the 

literature. There are several reasons for this. 

1. Different notations for the same geometric or physical quantity may be used. 

2. Directed rod theory may be developed as statia (no motion) or dynamio (accounting for 

motion of the rod). The field equations in a dynamical theory will include te- which 

are differentiated with respect to tirne. In the static theory, these tenns are zero. 

3. Second order tensors in field equations may be expressed in different types of bases. These 

bases are seen as tensor products of the physicai and geometric vectors (always including 

at least one director). There are three possibilities. 



(a) Both vectors in the tensor product are in the reference configuration. 

(b) Both vectors in the tensor product are in the deformed configuration. 

(c) One vector is taken fiom the deformed configuration and one vector from the refer- 

ence configuration. 

4. A given field equation may be expressed in terms of its transpose- 

5. There is more than one method of handling the parametrization of the reference and the 

deformed configurations and their reiationship. 

In this section, fields equations (4.13) and (4.18) wiil be compared with those given in Cohen 

and Sun [3] and Cohen (11. The apparent differences in the fieid equations will be resolved by 

o b s e ~ n g  one or more of the reasons listed above. 

Observe that the second order tensors used in this thesis are defined as tensor products of 

a vector £tom the reference configuration and a vector from the deformed configuration- 

4.2.1 The Field Equations of Cohen and Sun [3] 

The field equations in [3] were derived for a dynamic theory using balance laws. Here are the 

field equations of interest (using the equation numbering from that paper prefixed with CS): 

nt + Xp (b- i) = O 

and 

where over a symbol denotes differentiation with respect to t h e .  Another equation of signif- 

icance is 

Pi 8 di = di 8 (CS2-12) 

The symbols in CS2.24 are dehed by 



Cohen and Sun [3] 
C 

T hesis 1 Description 

- 

SR 

s 
TR 

dRl dm, dR3 
r 
dl1 d2r d3 
n 
f 
I l y  12! l3 
pLY p21p3 
ml, m2, m3 

Table 4.1: Cornparison of Scalar and Vector Symbois Between Cohen and Sun and Thesis 

- 
Parameter for curve in reference configuration 
Parameter for cuve in deformed configuration 
Curve in the reference configuration 
Directors in the reference configuration 
Curve in the deformed configuration 
Directors in the deformed configuration 
Contact force (&O called axial force) 
Body force density 
Director body force demity 
Intrinsic director force density 
Director force density 

Notice the second order tenson are defined as tensor products of vectors both fiom the deformed 

configuration. Table 4.1 compares the notation between the scalar and vector quantities in (31 

and the corresponding quantities used in this thesis- 

a 

To convert equations (CS2.8) and (CS2.24) to field equations for a static theory, set h= O, 

H= O and L = O- RepIacing N with its dennition, Equations (CS2.8) and ((252.24) become 

and 

respectively. Cornparhg equations (CSS. 12) and (CS2.20) gives 

From Table 4.1, it is immediately clear equations (4.13) and (4.19) are identical. Rearranging 

equation (4.20) slightly @ves 



which looks something like equation (4.18). We manipulate equation (4.18) to show these 

equat ions are synonymous. 

From Corollary 3, Fdm = d3 which is the same as  Frk = r' since dR3 = and d3 = r'. 

Recalling F is invertible, we may use & = F-'r' in equation (4.18) to get 

From Lemma 3, this is the same as 

and from properties of the transpose, 

Multiplying through equation (4.23) on the right by FT gives 

F'rom Table 4.1, r is synonymous with x so equation (4.24) looks very similar to equation (4.22). 

The following lemmas establish the relatiooships between the second order tenson in these two 

equations. 

Lemma 30 For the puantities given in equations 14-24] and (4.22), 

and 

Proof. From the definition given in equation (4.l), Z 1' @dw. n o m  Table 2.1, = djR@dj. 

Then using Lemma 4 





which relates the total Cauchy stress to the derivatives of the strain energy density function 

with respect to both slots. Of course this means we may solve for the derivatives in terms of 

each other. We obtain 

D ~ E F ~  = P - (Dg) (F~)' 

and 

( D ~ E )  (F~)' = P - D~EF*  

We can use these results to express Die and D2e in terms of tensor products. Rom equation 

(4.16) and M = mi 8 dRi, 

X p D 2 ~  = mL @ dRi 

O btaining an expression for D 1 ~  is more involbed. 

Lemma 32 Using the definitions found in equution (2.7), 

Proof. Since FT = d i  8 dj, (F~)' = (di) ' @ dj + d i  8 di. Using the expression for (F~) -' 
from Table 2.1 and Lemma 4, we have 



From equation (4.32) and using Lemma 4, 

Using P = pi 8 di and Lemma 4 , 

Then from equation (4.30), 



and using equation (2.1 l), 

which is the resdt to be proved. . 
4.2.2 The Field Equations of Cohen [l] 

Cohen [Il states, but does not derive, field equations for static directed rod theory. He does 

not distinguish between the parameter used in the reference configuration and in the deformed 

configuration. The symbol S denotes the parameter and is cailed a material coordinate. In the 

deformed state, S is viewed as a "convected" material coordinate. As a result of this approach, 

the stretch factor X does not appear in any of the field equations given in [II - However, when 

specific problems to solve are addressed, X is introduced into the deformed configuration. All 

symbols used for scalars and vectors except for S have the sanie meaning in [l] and in this 

thesis. Note that some of the symbols used here (such as M and N) do not have the sarne 

meaning as in the previous subsection. 

In Cohen's field equations, the second order tensors are expressed as tensor products in 

which both vectors are from the deformed configuration. Here are the field equations from [l] 

using Cohen's equation numbering prefbced 6 t h  the letter C. 

nf + pf = 0, 

and 

skN = 0. 

Equation (C2.15) means N is syrnmetric and thus may also be written as 

N = N ~  



which will be more useful later. Cohen identifies M as the cross-sectional tensor moment, N 

as the intemal force moment and n as the rucial force. The quantities f and L are body force 

distributions. We make the folIowing replacements to the body force distributions to introduce 

X into the field equations: 

f -,Xf,L-,XL. 

Equations (C2.13) and (C2.14) now appear as 

and 

M t - N + r r @ n + X p L  = O .  

Cornparhg these field equations with those derived ui this thesis, equations (4.13) and (4.34) 

are identical. Equations (4.18) and (4.35) appear to be quite similar. If we manipulate equation 

(4.18), we can verify that the two equations are identical and establiih the relationships between 

the various tensor quantities in both equations. 

Field equation (4.18) may be converted to the field equation given by Cohen as follows. 

Rom Lemma 15, F-l exists and hom Corollary 4, + = F-Irf. Thus equation (4.18) may be 

From Lemma 3, we obtain 

Now take the transpose of both sides of equation (4.36) to get 



using properties of the transpose including Lemma 2. Multiplying through the 1 s t  equation by 

F on the left will give 
T I F (M ) -FR* + rf@n+ A ~ F L ~  =O.  

Comparing equations (4.35) and (4.37) suggests the following relationships: 

-T M = F M  

and 

L = FE*. 

Lemma 33 If equations (4.38) and (4.39) hold, then 

Proof. Comparing equations (4.35) and (4.37) and using equation (4.39) @ves 

Differentiating equation (4.38) gives 

-T I 
MI = (FTM~)' = + F (M ) . 

-T -T F > M ~ + F ( M  ) ' -N=F(M ) - F N ~  

and solving for N gives equation (4.40). 

Lemma 34 If equations f4.38) and (4.99) hold, then 



and 

Proof. Using Lemmas 2 and 4, 

which establishes equation (4.11). Equation (4.42) is derived in exactly the same manner. W 

Thus the transformations given by equations (4.38), (4.39) and (4.40) illustrate that the 

Beld equations in the thesis and those given by Cohen [Il are the same. Multiplication by 

F on the left is an adjustment hom the use of mixed tensor products to vectors only in the 

deformed configuration and an adjustment to the transpose of the field equations. Comparing 

the definitions for M and L with equations (4.41) and (4.42) clearly illustrate this. 

Cohen includes equation (C2.15) as a field equation although this is often regarded as being 

a constitutive restriction. In te- of the tensors M and N, equation (C2.15A) would be 

FfmT + FR* = 

Finally, we note with Cohen [l] that f and L are body force distributions on the rod which 

may occur as a result of boundary tractions and body forces in the case where the rod is viewed 

as pseudo-rigid [6]. Cohen postdates that force and torque results of these distributions d h .  

That is, f = O and 

Rom equation (4.13), this implies nr = O giving the interesting result that n is a constant 

vector dong the rod &S. The condition given by equation (C2.16) means L is symmetric and 



is equivalent to L = L ~ .  From equation (4.39), 

FE' = (FE=) 

Thus ~ ~ ~ i s  a symmetric tensor. We summarize this as the following postdate. 

Postdate 6 f = O and 3?zT = LFT. 

In this chapter, the field equations of a directed rod were derived using a variation principle. 

The strain energy density iunction E = E (F, F') and its derivatives Dl€ and D2€ were btro- 

duced. Equations (4.13), (4.18) and (4.43) (with the definitions (4.16) and (4.17)) are the 

field equations in which the tenson are expressed as rnixed tensor products (one vector in the 

reference configuration and one vector in the defonned configuration)- 

The field equations of Cohen and Sun [3] given by (CS2.8), (CS2.24) and (CS2.12) are shown 

to be the same as those derived in this thesis via the relationships (4.25), (4.26) and (4.27). 

Using these relationships, explicit expressions relating Die and D2e are given in equation (4.29). 

Expressions for Die and Dp& in terms of tensor products of vectors are given in equations (4.33) 

and (4.32). 

The field equations of Cohen [II given by (C2.13), (C2.14) and (C2.15) were &O shown 

to be the same as those derived in this thesis via the relationships (4.38), (4.39) and (4.40). 

Equation (CS. 15) provides the field equation (4.43) using the tensor quantities d e h e d  in this 

thesis. 



Chapter 5 

Constitutive Restrictions 

In Chapter 4, the strain energy density function was introduced as a constitutive equation. 

This means that the nature of this function depends on the material composing the rod. Thus 

t here are constitutive quantities (the derivatives of the strain energy density) built into the field 

equations. Notice that the field equations themselves are independent of the functional form of 

these quantities. In this chapter, we impose constraints on the strain energy density function 

(and consequently its derivatives) which provides additional information with which to solve 

problems in directed rod theory- These constraints are caiied the constitutive restrictions. 

The constitutive restrictions are physical postdates - properties which the particular rod is 

believed to possess and depending on the rod material. Constitutive restrictions in a directed 

rod theory are typically given by expressing the stress tensors as functions of the deforrnation 

and derivatives of the deformation with respect to the parameter describing the rod axis (Cohen 

[l]). If the stress tensor is a h c t i o n  of the deformation, but none of its derivatives, then it is 

said to describe a first-grade material. Fht-grade materials are also known as simple materids 

(Leigh, [7]). If the stress tensor is a function of the deformation and the fist derivative of 

the deformation, it is said to describe second-grade material. Since the strain energy densiw 

function is postulated to be a function of both the deforrnation tensor and its Eîrst derivative, 

the model we are using describes second-grade materials. 

We introduce two physical postulates in this directed rod model. Both of these postdates 

are based on one fundamental idea: strain energy E is invariant under a rotation of the rod. 

The physical meaning of the two postulates is quite different. 



The next section reviews matrix groups as these provide a description of the linear transfor- 

mations required to rotate a vector in space. The remaining two sections discuss two constitutive 

restrictions introduced into the model. 

5.1 Review of the Matrix Groups 

Before discussing the constitutive restrictions, it is useful to provide a brief review of matrix 

groups. 

Let V and L (V,  V )  denote an N-dimensional real inner product space and the set of en- 

domorphisms on that space. Suppose A E L (V,  V ) .  Once a basis has been chosen for V ,  the 

linear transformation A has a matrix representation with respect to that basis which wiil be 

denoted as A. Let M N  (8) denote the set of al1 N by N real matrices. Then A E M N  (R). 

Matrix groups are special subsets of M N  (92) characterized by the fact each subset is a group 

under matrix multiplication. 

The generai iinear group is denoted ÇL (N, R) and is the set of aU N by N matrices which 

have an inverse. AU the matrix groups are subsets of the general linear group. 

The special iinear group is denoted S C  (N, R) and defined by 

The orthogonal group is denoted O (N, 8) and defined by 

where (, ) denotes the inner product on the vector space. The following theorems state the most 

important properties about the orthogonal group. 

Theorem 6 O ( N ,  R) i s  a group under matriz multiplication. 

Theorem 7 Let A E M N  (R). The folloving conditzons are equiualent. 

2- (Aei, Aej)  = 6ij where {el, ez, e3, . . . , eN} is an orthonormal basis for V .  



3. A maps orthonormal bases to orthonormal bases. 

4. The rows of A form an orthonormal basis. 

5. The columns of A form an orthonormal basis. 

Theorem 8 Let A E M N  (R). A E O ( N ,  R) if and only if A preserves l a g t h s  of vectors. 

Theorem 9 IfA E O (N, 911, then det (AI* = 1 and thus det (A) = -1 or det (A) = 1. 

The special orthogonal group is denoted by SO (N, R) and defined by 

So (N, 92) = O ( N ,  32) n SC (N, R) . 

The special orthogonal group is the subset of the orthogonal group whose determinant is 1- 

This is sometimes c d e d  the rotation group because it consists of t h e  set of ail matrices whose 

effect is to rotate vectors. Members fiom this matrix group play an important role in d e f i g  

the constitutive restrictions. 

We rnay apply the terminology of matrix groups to linear transformations and thus, for 

example, we may speak of a iinear transformation P as a member of the special orthogonal 

SOUP - 

5.2 Material Frame Lndifference 

To motivate the fkst constitutive restriction, we consider a curve r : 92 4 923 whose parameter 

is denoted as SR : we may write r = r (sR). Suppose this curve is rotated about a fixeci d- 

Such a rotation rnay be done by a linear transformation P E SO (3, SZ) acting on each point on 

the curve r. The result wiU be a new curve denoted as F and given by F = Pr. Since P is Gxed, 

the result of differentiating both sides with respect to SR gives F* = Pr'. Thus the tangent vector 
- 
r' along the curve is rotated by the same linear transformation as the c m e .  If we consider the 

cuve r to have three directors a t  each point along the cuve* the curve F will have corresponding 

directors rotated by the same linear transformation. Thus d.' = Pd,, a = 1,2,3. 



Lemma 35 If P is a rotation of a dil-ected rodfollowing a deformation F ,  the result is a (new) 

deformation given by PF = 4 (Pdi) 8 di. 

using Lemma 3.1 

These results suggest the first constitutive postdate cailed material kame inciifference. The 

principle of materid frame indifference states strain energy density is invariant under rotations 

of the rod following deformation. This is expressed mathematicaily as 

for dl deformations F and fixed rotations P. Since P is h e d  (i.e., not a h c t i o n  of SR), then 

equation (5 -2) becomes a (F, F') = E (PF, PFr). 

We now consider how to express material frame indifference in t e m  of DIE (F, F3 and 

D2& (F, F'). We consider the efkct of differentiating with respect to the first slot on both sides 

of equation (5.2). This is given by applying Theorem 2 , namely 

Dia (F, Fi)  = P ~ D ~ E  ( P F ,  PF) 

DL?& (F, E") = P ~ D ~ E  (PF, PF) 

for al1 P E SO (3,X). Thus the rotation P carries through on the derivatives DIE and DZE and 

equation (5.2) implies equations (5.3) and (5.4). 

Let 5 denote the set of aii possible deformations that could be done on a directed rod. If 

F E 3, let G - F mean G = PF where P is any rigid rotation. Of course G E 5. 

Theorem 10 - is a equivalence relation. 

Proof. Test the axioms for equivalence relations. 

1. Identity. If P = 1 (where I is the identity tensor satisfying IV = v for ali vectors v), then 

G = IF = F. This means F - F. 



2. Reflexive. Suppose G - F so there exists P with G = PF. Since P E SO (N, !R), P must 

be invertible and P-' E SO ( N ,  92). So P-'G = P-'PF = IF = F or F = P-'G. Thus 

i f G - F ,  t h e n F - G .  

3. Transitive. Suppose G - F so there euists Pi such that G = PIF. Further, suppose 

H - G so there exists Pp SU& that H = PâG. Then H = P2PiF. But P = P2Pi is 

also a rotation since the set of rotations forms a group under composition. Thus H = PF 

which means H - F. So if G - F and H - G, then H - F . 

Since -. includes identity and is reflexive and transitive, then - is a equivaience relation. I 

Lemma 36 II G .- F then Gr - F'. 
Proof. Since G - F there exists P with G = PF. Then G' = (PF)' = P'F + PF' = PF' (the 

rotation P d o s  not depend on the parameter s R )  This means G' - F'. 
Corollary 6 If G - F, then E (F, Fr)  = E (G, Gr). 

Proof. If G - F then G' - Fr and there exists rotation P such that G = PF and 

From the material frame indifference postdate (equation (5.2)), 

E (F, F') = E (PF, ( P F ) ~  = E (G, G') 

which is the desireci result. I 

The property - partitions the set 5 into mutually disjoint subsets characterized by the fact E 

is invariant for any two members and their derivatives fiom the same subset. Any representative 

member of a subset may be used in evaluating E.  In particular, if the deformation F is a 

rotation, then F = FI so F - 1 and E (F, F') = E (1, P) corresponciing to the strain energy for 

no deformation. Of course this is sensible because a rigid rotation of the rod really doesn't 

deform the rad: it only changes its orientation in space. 



This has further implications for the dependence of strain energy on deformation and its nrst 

derivative. We invoke the polar decomposition theorem which states any second order tensor 

F with nonzero determinant may be written F = PU where P is an orthogonal tensor and U 

is a right stretch tensor (the proof of the polar decomposition theorem is given in Appendùt 

A). Of course F is reaily a tensor field, defined dong each point of the c w e  formiog the rod 

axis so the orthogonal tensor P is now a h c t i o n  of SR . If the polar decomposition theorem is 

applied at each point along the curve, the result is 

and 

F' (SR) = [P (SR) U (SR)]' = P' (SR) U (SR) f P (SR) Ur (SR) - 

We'll now assume P is a member of the special orthogonal group so 

E (F, Fr) = E (PU, (PU)') = E (PU, P'U + PU') . 

Since P is a rotation, pTP = I and differentiating with respect to SR gives 

(pT)'p +pTpr = P + pTpr = 0. 

Solving for Pt leaves 

Pr = -P ( q T p .  

Substituting this into equation (5.5) yields 

If we consider a particular point on the rod a&, E is considered to be invariant under the 

rotation P so we obtain 

E (F, F') = E (u, Ut - (P')~PU) - 



Notice if the deformation F happens to be such that P (sR) is constant, then equation (5.6) 

reduces to .E (F, F') = E (U, U') agreeing with Corollary 6. We use this kind of analysis later in 

the thesis to assist in solving deformations of normal uniform rods. 

In the case of a simple material, it can be shown material frarne indifference implies the 

strain energy depends only the stretch portion of the deformation tensor (Leigh, [7]). For 

second-grade materials, equation (5.6) indicates that the dependence of e on the deformation 

tensor and its derivative is not so simple. 

5.3 Material Symmetry 

Material symmetry is the second constitutive restriction to be considered. This constitutive 

restriction attempts to describe symmetry inherent in the rod material as opposed to its em- 

bedding in space. Material symmetry is not a well developed concept for directed rods: there 

is no general theory to guide the application of this principle (Cohen[l]). This thesis uses a 

particular form of material symmetry c d e d  monotropic symmetry. It shodd be noted there 

are ot her ways to formulate material symmetry as a constitutive restriction. 

We could attempt to develop material symmetry dong the same lines as material fiame 

indifference. In this case, we would consider the effect of rotating the c w e  prior to deforming 

it. As in the previous section, it seems reasonable to suppose the strain energy doesn't depend 

on the rotation Q (whether the rotation is done before or after deformation is immaterial - it 
is no effect on the strain energy). This might suggest we follow the pattern of equation (5.2) 

and postdate 

for all Q E S0 (3,X), and work out expressions for the derivatives analogous to those of 

equations (5.3) and (5.4). 

However, the constitutive restriction in this case is not as straightforward as this. There 

is a significant difference physically between rotating after deformation and rotating prior to 

deformation. Rotating after deformation irnplies the independence of the strain energy £rom 

the coordinate system in which the rod is embedded - material frame inciifference. But rotating 

prior to deformation has another implication - a symmetry in the materiai itself. 



It should be noted that material symmetry in derlved theories is a weU d e h e d  and under- 

stood constitutive restriction. A common way of implementing material symmetry in a denved 

theory is to view the material as isotropic so there is symmetry in ail possible directions. The 

rotation operator is any member of the special orthogonal group. In this case, equation (5.7) 

would hold with Q E SO (3, '32). 

In this thesis, we follow CohenEl] and develops the principie of material symmetry for a 

directed rod by postulathg the need for both symmetry and anti-symmetry transformations, 

Such transformations are brought about by members of the specid linear group. This implies 

the required transformations for the desired symmetry and anti-symmetry effects must corne 

from one of a pair of subsets of this group. Cohen developed material symmetry in the context 

of tensor pairs [l]. Unfortunately, this is not appropriate for the variational method employed in 

t his t hesis. However, carefd investigation of Cohen's approach provides the necessaq conditions 

to dupiicate the constitutive restrictions for materiai symmetry in the variational approach. 

Appendk B contains a general development of group theory for pairs of members of the 

general linear group. Appendix C reviews Cohen's tensor pairs and his development of material 

symmetry applying the results of Appendix B. 

Cohen required the set of tensor pairs for the symmetry transformations to form a group 

under composition. The union of both sets of tensor pairs (symmetry and anti-symmetry) was 

also required to be a group. These tensor pairs are built on subsets of the special linear group. 

The key result from Appendix B is a description of the conditions which must apply to the 

pairs of subsets required for material symmetry. - 

Let U and V be these subsets of the special linear group corresponding to the symmetry and 

anti-symmetry transformations respectively. Then U and V must satisfy one of the following 

conditions in order for the tensor pairs to form groups as described above. 

1. U is a subgroup of the special h e a r  group and U = V. 

2. U is a subgroup of the special iinear group, U n V = 0 and U U V is a subgroup of the 

special iinear group. 

A directed rod is said to be materiaiiy symmetric if equation (5.7) holds for all Q E U U V 

where 24 and V must satisfy one of the conditions iisted above. 



This definition of materially symmetric implies there may be many -es of material sym- 

metry determined by the choice of the sets 2.4 and V. Rom the principle of material symmetry, 

Cohen chose a specific case called monotropic symmetry. A rod point is said to be materidy 

monotropic if the set U contains the transformation effecting a rotation of ?r radians about a 

fixed axis e. This transformation rnay be denoted Q,. 

Since U is a subgroup of the speciai linear group, Q, E: U implies the inverse of Q, is ais0 

in U. In fact, Qe is its own inverse, since two successive applications of Q, to any vector m u t  

return the same vector. The minimal such group U which may be used to impose monotropic 

symrnetry is given by U = (I,Q,). The proof of this is straightforward and may be found in 

Appendix C. Using U = (1, Qe) provides monotropic symmetry about one axis. More generally, 

we can choose U to impose monotropic symmetry about as many axes as desired provided the 

group property is retained. 

The symmetric form of monotropic symmetry does indeed imply the invariance of the strain 

energy density after a rotation of .rr radians about the axis. Q,x is a reflection of the point x 

though the axis of rotation. This c m  be written as 

where I$ is the unit tensor in the plane orthogonal to e. In anti-symmetric form, the point is 

first rotated by x radians as in the symmetric form, i.e. Q,x, and then reflected through the 

plane perpendicular to Q,x to give the effect of -Q,x. A transformation such as this is known 

as a roto-inversion. A roto-inversion may be written as 

We still need to specify how to Yaplement monotropic symmetry using the strain energy 

density funct ion. As already mentioned, we wiç h to include bot h symmetric and anti-symmet ric 

properties. Thus there are actudy two formulas to define the constitutive restriction of 

monotropic syrnmetry - a symmetric form and an anti-syrnmetric form. Let Q, E U U V. 



The symmetric form of monotropic symmetry (4, E U) is defined by 

whiie the anti-symmetrïc form of monotropic symmetry (Q, E V) is defmed by 

A particular member of U U Y must satis& one or the other forms, but generdy cannot satisfy 

both (them are special cases in which a member Q, does satisfy both forms). Notice that if U 

is to be a group, it must contain the identity transformation 1. The identity does not cause a 

rotation, but it does satisfy 

E (FI, (FI)') = E (F, F') (5.12) 

which is a special case of the definition given by equation (5.10). 

Using Theorem 3, the constitutive restrictions for material symmetry can be written in 

terms of the derivatives of the strain energy densiS. function. Since there are two dots to 

differentiate and two forms of material symmetry (symmetric and anti-symmetric), there will 

be four derivative expressions. These are given as 

and 

for the symmetric form and 

for the anti-symmetric forrn. 



5.4 Summary of the Constitutive Restrictions 

To summarize the results obtained thus f x ,  we now write the constitutive restrictions as pos- 

tulates of the theory- 

Postulate 7 Material Frame Indifference. The postulate of material frame indifference states 

E (F,Fr) = E (PF, (PF)') = E (PF, PI?) (5.13) 

for dl P E SC? ( 3 , s ) .  This impiies 

and 

or (equivaiently) 

and 

&E (F, FI) = P * D ~ E  (PF, Pl?') 

DI& (F, F') = P ~ D ~ E  (PF, PF1) 

Die (PF, PB) = PDi€ (F, F') 

since pT = P-l. 

This postdate is stating that the strain energy function is invariant if the directed rod is 

rotated following a deformation. Alternatively, it may also be interpreted to mean that rotatuig 

the coordinate system in which the rod is embedded does not effect the strain energy- 

Equations (5.14) and (5.15) may also be expressed as 

N (F, FI) = PTN (PF, PF) 

and 
- 
M (F, FI) = PTM (PF, PI) 



by rnultiplying through equations (5.14) and (5-15) by Ap and using the definitions given by 

equations (4.16) and (4.17). 

An expression for the deformation F foiiowed by the rotation P is given by 3 (Pdi) @ di *  

The post ulate of material symrnetry considers the effects on strain energy of a rotation prior 

to deformation. 

Postulate 8 Material Symmetry- Suppose Q, E U U V .  Then 

for the symmetric case (Q, E U) and 

for the anti-symmetric case (Q, E V) . In the syrnmetric case, this implies 

or (equivalent ly ) 

Dia (FQ,. F'Q,) = DIE (F, FI) Q;= 

For the anti-symmetric case, equation (5-21) implies 

and 



or (equidently) 

Die (FQ,, -E"Qe) = Dia (F, FI) QcT 
and 

&E (FQ,. -F'Q,) = - D*E (F, EU) QpT. 

These rnay also be expressed as 

- 
N (F, FI) = Si (FQ,, F'Q.) Q: 

and 
- 
M (F, FI) = M (FQ,, F'Q.) QT 

for the symmetric case and 

for the anti-symmetric case by multiplying through equations (5.26), (5.2?), (5 .S8) and (5.29) 

by Xp and using the dehitions given by equations (4.16) and (4.17). 

The expressions given in equations (5.18), (5.19), (5.30), (5.31), (5.32) and (5.33) are more 

usehl in the next section and when solving specific deformations in subsequent chapters. 

5.5 Cornparison With Cohen's Constitutive Restrictions [l] 

In Chapter 4, we showed the field equations derived in this thesis were equivalent to those 

given by Cohen [Il. In this section, we show the constitutive restrictions postulated above are 

equivalent to those given in Cohen's paper. We recall the relationships between the quantities 

in Cohen [l] and those of this thesis. These are equations (4.38), (4.39 ) and (4.40). For 



convenience, they are reproduced here (we donTt need equation (4.39)). 

and 

where 
- 
M (F, F') = (P, F') and N (F, Fq = ApDie (F, . 

5.5.1 Mat erial Rame Indifference 

We consider material frame indifference in terms of the stress functions N and M used in 

Cohen's paper[l]. These quantities are assumed to be functions the deformation tensor and its 

first derivat ive: 

N =fi (F,F') and M =M (F,F') . 

Cohen expressed materid frame indifference as 

M (PF, PF) = PM (F, F') pT 

and 

N (PF, PF) = PR (F,F/) P*. 

for al1 deformations F and fixed rotations P. 

Let P f SO (3, R). Taking the transpose of equation (5.19) gives 

- - 
M (F, F ' ) ~  = M (PF, PP)* P 

and multiplying through by PT = P-I on the right gives 



Multiplying through equation (5.38) on the left by PF yieids 

PFM (F, F ~ ) ~ P ~  = PFM (PF, P F ) ~  . 

Apply equation (5.34) to the terrn on the left side of this equation gives 

PG (F, F') pT = PFM (PF, P E " ) ~ .  

Replacing F with PF in equation (5.34) gives 

M (PF, PF') = PFM (PF, PF') 

and putting this into equation (5.39) gives 

PG (F, F') pT = kZ (PF, PFt) . 

This is equation (5.36), one of the constitutive restrictions postulated in Cohen's paper. 

Taking the transpose of equation (5.18) gives 

- - 
N (F, F')' = N (PF, PI?')= P 

and multiplying through this equation by PT = P-1 on the right and F on the left resdts in 

FR (FI F ' ) ~  pT = FN (PF, PF' )~ .  

Add F'M (F, F ' ) ~  PT to the left and F'm(PF, P F ) ~  to the right sides of this equation. F'rom 

equation (5.38), these two expressions are equal so the result is 

F m  (F, F'lT pT + FN (F, F ' )~P=  = FIfM (PF,  PF')~ +FR (PF, PI?')=. 

Now multiply through this equation by P on the left to get 

PF'M (F, F ' ) ~  pT + PFN (F, ~3~ P* = PPM (PF, P B ) ~  + PFN (PF, P F ) ~ .  (5-41) 



Replacing F with PF in equation (5.35) gives 

N (PF, PB) = PF'M (PF, PB)* + PFN (PF, PF')~  

and substituting this into equation (5.41) gives 

Multiplying through this equation by PT on the le& and P on the right gives 

pTN (PF, Pl?') P = F'M (F, F ' ) ~  + FN (F, Fr)= 

and using equation (5.35) to replace the right side of the last equation yields 

Multiplying equation (5.35) on the lefi by P and on the right by PT gives 

which is equation (5.37), the other constitutive restriction for material fiame inmerence pos- 

tulated by Cohen. 

Thus starting with the constitutive restrictions postulated in this thesis for material frame 

indieerence and using the relationships between Cohen's quantities fi (F, Fr) and M (F, Fr) 

and the derivatives N(F, Fr) and M (F, F3, we can derive Cohen's postulated constitutive 

restrictions. Thus the constitutive restrictions for material hame inciifFerence postulated by 

this thesis and in Cohen's paper are identical. 

5.5.2 Material Symmetry - The Symmetric Case 

Cohen expressed the symmetric case of mat erial symmetry as 

M (F, F') = M (FQ, FQ) 



and 

N (F, I) = N (FQ, BQ) 

for al1 deformations F and Q E U to be used as a symmetric transformation. 

Suppose Q E U. Taking the transpose of equation (5.31) gives 

and multiplying both sides by F on the left yields 

Replacing F with FQ in equation (5.34) gives 

G (FQ, F'Q) = FQM (FQ, F'Q)~ 

and placing this into equation (5.46) results in 

FM (F, F ' ) ~  = M (FQ, F'Q) . 

Using equation (5.34) again to replace the term on the left side of this equation results in 

M (F, FI) = M (FQ, FQ) . 

But this is equation (5.43), one of Cohen's constitutive restrictions for the symmetric form of 

material symmetry. 

Taking the transpose of equation (5.30) results in 

- 
N (F, F')* = QN (FQ, F'Q)~  

and multiplying by F on the left gives 



Add F<M (F, F ' ) ~  to the left side and F'QM (FQ, F 'Q)~  to the nght side of this equation. 

From equation (5.45), these two quantities are equal so the resdt is 

F I E  (F, F') + FN (F, F ' ) ~  = F'QM (FQ, F'Q) + FQN (FQ, F'Q) '. (5-48) 

Replacing F with FQ and F' with F'Q in equation (5.35) gives 

and uçing this result in the nght side of equation (5.48) gives 

F m  (F, F")= + FN (F ,F ' )~  = N (FQ, F'Q) . 

Applying equation (5.35) to the left side of the Iast equation results in 

N (F, Fr) = N (FQ, F'Q) . 

This is equation (5.44). the other constitutive restriction postulated by Cohen for the symmetric 

form of material symmetry. 

Thus we are able to derive Cohen's postulated constitutive restrictions for the symmetric 

form of material symmetry from the corresponding postulated constitutive restrictions for thiç 

t hesiç. 

5.5.3 Material Symmetry - The Anti-symmetric Case 

Cohen expressed the symmetric case of material symmetry as 

and 

N (F, FI) = N (FQ, - I Q )  

for al1 deformations F and Q E V to be used as an anti-symmetric transformation. 



Taking the transpose of equation (5.33) gives 

- 
M (F, qT = -QM (FQ, -F /Q)~  

and multiplying through this equation by F on the left yields 

FM (F, = -FQM (FQ, - E V Q ) ~ .  

Replacing F with FQ and F' with -FrQ in equation (5-34) gives 

M (FQ, - F f Q )  = FQM (FQ, -E"Q)~  

and replacing the right side of equation (5.52) with  this expression results in 

CY 

FM (F, F ' ) ~  = -M (FQ, -FfQ) - 

Applying equation (5.34) to the left side of this la& equation yields 

- M (F, F') = -M (FQ, -FtQ) 

which is equation (5.49), one of Cohen's constitutive restrictions for the anti-symmetric form 

of material symmetry. 

Taking the transpose of equation (5.32) gives ' 

- 
N (F, F ' ) ~  = QN (FQ, -F'Q)= 

and multiplying both sides by F leaves 

FN (F, F ) ~  = FQN (FQ, -F'Q)~. 

Add F'M (F, F ' ) ~  to  the lei% and -F~QM (FQ, 4'' Q ) ~  to the right side of this equation. Rom 



equation (5.51), these two quantities are equal so the result is 

F'M (F, FI)' + FR (F, F ' ) ~  = -F'QM (FQ, -F'Q)~ + FQN (FQ, -F'Q)= . (5.53) 

Replacing F with FQ and F' with -F'Q in equation (5.35) gives 

and substituting this into the right side of equation (5.53) gives 

- 
F'EE (F, F ' ) ~  + FN (F, F ' ) ~  = N (FQ, -F1Q) . 

Applying equation (5.35) to the Ieft side of this last equation results in 

N (F, Ft) = N (FQ, -FtQ) 

which is equation (SSO), the other constitutive restriction postulated by Cohen for the anti- 

syrnmetric form of materid symmetry. 

Thus we are able to denve Cohen's postdated constitutive restrictions for the anti-symmetric 

form of material symmetry fiom the correspondhg postulated constitutive restrictions for this 

thesis. 

5.6 Using the Constitutive ~estrict ions 

We can combine the constitutive restrictions given by Postdates 7 and 8 into two d e s ,  one 

for the symmetric case and one for the anti-symmetric case. We illustrate using N (F, FJ) and 
- 
M (F, FJ). 

Observe that the left side of equation (5.18) is the same as the left side of equation (5.30) 

and the left side of equation (5.19) is the same as the left side of equation (5.31). Thus we may 

equate the right sides to obtain 

- 
prN (PF, PB) = N (FQ, FIQ) 



and 
- PTM (PF, PB) = M (FQ, F f Q )  Q ~ .  

Now if it is possible to fhd P and Q such that PF = FQ, we may define 

- 
W = N (PF, PI) = N (FQ, PQ) 

and 
- - 
M* M (PF, PI?) = M (FQ, F f Q )  

I 

from which PF = FQ would imply PT = TQ* and PW = M Q ~ .  Note we are assiiming 

P and Q are constants so PF = FQ automatically means PF' = F'Q. However, in this case 

we can use 
- 
N (F,Ft) = PT, 

N (F, FI) = WQ=, 

and 

and arrange these as 

and 

frorn which we get 

- 
M (F, F') = WQ* 

W = PN(F,B), 

R = N (F,F') Q-TI 

K = PM (F, F') 



and 

Equations (5.54) and (5.55) will prove to be the more convenient forms to use. They only apply 

if 

PF = FQ. (5.56) 

By a sUnilar argument comparing equations (5.18) and (5.32) and equations (5.19) and 

(5.33), we find 

PR (F,F3 = N (F,F3 Q - ~  (5.57) 

and 

for the anti-symmetric case, provided PF = FQ and PF' = -FrQ. Since P and Q are constants, 

differentiating both sides of PF = FQ with respect to SR gives PF' = FrQ. Then F'Q = -FtQ 

or F'Q = O. Since Q muçt be a member of the specid linear group, it has determinant one. 

Thus this case cannot occur unless the determinant of F' is zero. 

Consider the monotropic case in which we choose Q to be Q, where e is some fixed vector 

and Q, is the rotation of 7r radians about the axis defined by e. Then Q, is also a member of the 

speciai orthogonal group. We may calculate P as P = FQeF-l (recall F is always invertible) 

so equation (5.56) is satisfied. If this P is orthogonal, equations (5.54), (5.55), (5.57) and (5.58) 

may be replaced with 

F Q ~ F - ~ N  (F, P) = N (F, F') Q:~, 

F Q ~ F - ~ N  (F, Fr) = N (F, F') QI 

and 
- FQ,F-'M (F, FI) = -M (F, F3 Q ; ~  

Since Q. is an orthogonal tensor, Q: = QG' and thus = Q, so in fact these equations 



may be written as 

and 

FQ,F-% (F, F') = Sf' (F, Qe 

for the symmetric case and 

and 

for the anti-symmetric case. 

We can generalize this a bit more. If R is another member of the special orthogonal group 

(Le. another rotation) which rotates vecton about the axis d e h e d  by the vector ë and we 

defme 
- 
Qii = R Q ~ R ~ ,  

and we may choose P to be q,, then these four equations may be written as 

-- 
QeN (F, F') = N (F, F') Q, 

and 
-- 
QEM (FI F') = M (FI F') Q. 

for the symmetric case 

for the anti-symmetric case. Equations (5.59) through (5.62) are vaiid as an expression of the 



combined symmetry (using monotropic symmetry) only if 

- 
QeF = FQe 

and 

in the symmetric case and 
- 
QeFt = -F'Qe 

in the anti-symmetric case. This anti-symmetric case still requires the determinant of Ft to 

be zero for the reasons discussed earlier. Notice that equation (5.61) is actually redundant - it 
contains exactly the same information as equation (5.59). 

The field equations of Chapter 4 apply to ail hyperelastic rods. However, additional information 

is required to completely specib the deformation of a directed rod. This information must reflect 

properties of the material of the rod- 

In this thesis, we are concerned with two kinds of constitutive restrictions: Material hame 

indifference which implies the deformation is independent of the orientation of the rod in space 

and materiai symmetry implying a symmetry within the materid itself. Postdate 7 gives the 

constitutive restriction describing material frame ïndifference. Materiai symmetry has both a 

symmet ric and anti-symmetric part. Postdate 8 provides the constitutive restriction describing 

material symmetry. 

The constitutive restrictions postulated in this thesis are equivdent to those postulated in 

Cohen [l]. 

The constitutive restrictions may be combined into fewer expressions. E'urthermore, there 

are special cases of these combined expressions which are particularly simple to use. 



Chapter 6 

Furt her Rod Geometry 

In this chapter, we Iook at special deformations which simpl% the rod geometry to aUow 

solutions of the differential equations. The solutions are derived in the foilowing chapter. 

6.1 Normal Uniform Rod Configurations 

In this section, we consider the special geometry of normal uniform rods. This geometry leads 

to deformations which can be solved exactly for the stress tensors. 

The geometry to be considered in this chapter is based on Ericksen's results for what he 

called uniform states [4]. Ericksen discusses special rod configurations in which differential 

equations of deformation may be replaced by algebraic relationships and shows there are ody 

three shapes of the rod a for which this possible: straight, circular and helicai. The distrib- 

ution of the directors aiong the rod axis may have a constant twist rate. Thus in the straight 

case, the directed rod may have constant directors or the directors may be twisted dong the 

axis. 

In this chapter we consider a subset of Ericksen's uniform states- In subsequent chapters, we 

actually solve the deformation of a straight rod to any of the other four possible configurations. 

6.1.1 Mat hematid Preliminaries 

To develop the ideas of uniform rods requires introduction of some special tensors and their 

properties. These tensors are closely related to the m e s s  tensor introduced in Chapter 2. 



We continue to use {el, 4, q} as the naturai basis for Euclidean three dimensional space. 

In the foliowing dennitions, ali indices are elements of the set (1,2,3}. Define the foIiowing 

tensors: 

Eij = q B e,, (6-1) 

and 
EZ3 - E3* if k = lZ 

E13 - ESl if k = 2, 

Ql -Et2 i f k = 3 .  

Wë state and prove several results with respect to these temors. 

Lemma 38 Ikel = 6il% + 6jcej where i # j ,  i # k and j # k. 

Proof. 

Corollary 7 Iiek = 0. 

Proof. I:ec = Gik- 4- bjkej = 0 sbce i # k and j # k. . 



Lemma 39 

Proof. 

Lemma 41 (I:)~ = I:, that is, 1: is symmetric. 

using properties of transpose and Lemma 40.. 

Lemma 42 (A:)~ = -A$, that is, A: is skm-symmetric. 



and 
T 

(A:) = (E2i - ~ 1 2 ) ~  = ( ~ 2 1 ) ~  - ( ~ 1 ~ ) ~  = El2 - b1 = -A$ 

using properties of transpose and Lemma 40. 

It is helphil to have a product table of E,, 1: and A:. Using Lemma 43 and the dekit ions 

of these quantities, the foliowing tabIe can be created. The calculations of these products are 

omitted. 

The set {Eij ,  i, j = 1,2,3) serves as a basis for second order tensors. If T is a second 

order tensor with components T" with aii possible values i, j E (1,2,3), then we may write 

T = T'Eij. 

Lemma 44 If T is any second oràer tensor, then T~A$T is skew-symmetric. 



Proof. Let T = 'FEj -  Then EijEkl = &,&if 

using Lemrna 43 several times. Since PT" - T%!'*' = - (T*-'T" - T I  lPi) for any choice of i 

and 1 and, in particular, T ~ ~ T ~ ~  - TETU = O if i = I , then T=A$T must be skew-symmetric. 

CVe now wish to consider a second skew-symmetric tensor T. A skew-symmetric tensor has 

and in particular 

Pi = O  for i = 1,2,3. 

In this situation, the entire tensor is determined uniquely by only three components. This is 

nicely summarized in the following lemma. 

Lemrna 45 A skew-symmetric tensor T may be wrïtten as 

Proof. If we &te the second order tensor in terms of the basis Eij we obtain 



using the definition in equation (6.3). . 
This suggests that any skew-symmetric tensor may be completely speci£ied by a unique 

vector. Let t denote this vector with componeots tl, t2 and t3. t is defined by 

It can be shown that t is an axial vector and thus t is calied the axial vector of the tensor T. 

Notice that given an axid vector t, it uniquely detemines a skew-symmetric tensor T by the 

rehtionships in equation (6.5). From the defmition (6-51, equation (6-4) becomes 

The magnitude of the vector t is denoted t and dehed by t = where - denotes inner 

product. With the natural basis {el, e2, es) , 

The magnitude of the second order tensor T is denoted T and defined by T = Jftr  (TT=). 

For the next lemma, it is easier to use t2 = t - t and T2 = tr (TT=) . 

Lernma 46 If t is the axial vector of the skew-syrnmetric tensor T ,  then T = t. 

Proof. Compare the expressions for T~ and ta to see if they're equal. 

Evaluate TT to get 



Using Table 6.1 and rearranging gives 

To evaluate the trace of TT, we need only consider the coefficients of Ell, EZ and E33. We 

get 

1 T~ = --ti (TT) 
2 

Now consider the expression for t2 = t t: 



Comparing the expressions for T* and tZ shows T2 = t2. Since the magnitude of both the tensor 

and the vector must be nonnegative, it follows that T = t- 

This is not a surprishg result since the vector t contains the same information as the second 

order tensor T. 

The next lemma indicates the effect of T acting on the vector t- 

Lemma 47 If t is the axial vector of the skew-symmetrïc tensor T ,  then t is in the kernel of 

Proof. Recail 

ker T = {x E V such that Tx = 0 )  . 

Thus we consider solving the equation Tx = O. This has nontrivial solutions if and only if 

det T = O. Evaluating det T gives 

and thus T is singular so nontrivial solutions to Tx = O &. That is, kerT is not the trivial 

set {O). To determirie this set, solve the system of iinear equations given by 

and 



From equation (6.7) 

Rom equation (6.8) 

n o m  equation (6.9) 

Thus equation (6-9) is redundant. The result is 

( ~ ~ ~ e ~  - T~~~ + ~ ' ~ e 3 )  for al1 k E R 

This can be verified by multiplying T by (T23e1 - T13e2 + T12e3). Thus the kernel of T is 

a one-dimensional subspace of V .  Choosing k = -Tl2 yields 

using the definitions given in equation (6.5). Thi t E ker T which is the result to be proved. H 

Thus the kernel of T may be thought of as al1 vectors parallel and anti-parallel to the 

axial vector t. This lemma implies Tt = O, ( ~ t ) ~  = oT or, using properties of the transpose, 

t T ~ T  = O. But since T is skew-syrnrnetric, T~ = -T so - t * ~  = O or tTT = 0. 

Lemma 48 Let t b e  the -al vector of the skew-symmetnc tensor T. If x E V then Tx = t x x 

where x denotes the vector cross product. 

Proof. Let x = xiei. Then 



Applying the results of Lemma 39 gives 

Now consider t x x. Using the determinant method of evaluating a cross product yields 

t x x = det 

Comparing the resdt of Tx and t x x shows Tx = t x x. W 

6.1.2 Normal Uniform Rods 

A rod configuration is defined to be isometric if the director distribution is given by 

where O is a proper orthogonal tensor function of the curve parameter and dio = di (sRo) is 

the director basis at a fixeci, arbitrary point SRO. Notice that this defines a.II directors in terms 

of a single set of directors at a iked point dong the rod. Severai interesting relationships arise 

from this type of rod configuration- 

Lemma 49 For an isometric md conFgumtion, di = O'dio. 



since dio is a fixed vector (not a function of sR) and hence dio = 0. . 
Lemma 50 For an isometric rod confiqumtion, W = 0'0-' where W is the wryness tensor. 

Proof. Rom Corollary 2, Wdi = di - that is, W maps a director to its derivative. Consider 

the effect of on a director. 

using the result of the Lemma 49. Since W and Oro-' have the same effect on an arbitrary 

director, it follows that W = 0'0-'. 

Lemma 51 If a rod configuration is isometric, W Es skew syrnrnetric. 

Proof. W = 0'0-1 from Lemma 50. Taking transpose on both sides gives 

using the fact O is orthogonal so O-' = OT and properties of transpose. Then 

where I is the identity tensor. Then W = -w and thus W is skew symmetric. . 
Lemma 52 For an isometrïc rod configuration, 0' = WO. 

Proof. Rom Lemma 50, W = 0'0-'. Multiplying on the right by O gives the desired result. . 
A rod configuration is defined to be uniform if it is isometric and the wryness tensor is 

constant. To emphasize this, we write Wo for W when discussing uniform rod configurations. 

Since Wo is a constant, the rotation must have a h e d  axis dong the axial vector of Wo. We 

denote the axial vector as wo. Of course this vector is &O fixecl, Denote the components of wo 

as w i ,  the magnitude of wo as wo and the magnitude of Wo as Wo. F'rom Lemma 46, Wo = wo. 



Lemma 53 Let O be a proper orthogonal tensor functim whose uxis of rotation is the axial 

vector of a constant wryness tensor Wo. Then WoO = OWo. 

Proof. The proof of this lemma is based on the fact that the axial vector of Wo is the aJgs of 

rotation for the orthogonal tensor O. It can be shown ([5],[14],[15]) that any proper orthogonal 

operator O may be written in the form 

where 6 is the angle of rotation, 1 is the identity tensor, t is the unit vector along the avis 

of rotation of O and T is a tensor which has the effect of the cross product by t; that is, 

Tx = t x x. Frorn Lemma 48, we kmw thk meam T is the skew-symmetric tensor whose axial 

vector is t. Note that 

Now consider a proper orthogonal tensor whose axis of rotation is wo/wo where wo is the axial 

vector of Wo. Then 

(1 - cos 8 )  T (sine) 
O = (cos0) 1 + wowo + - 

WO 
wo - 

wo' 

(1 - cos 8) - w0o = (cos 8) wo + (sin 8) 
wowow; + - 

wo 
wowo- â 

But from Lemma 47, Wowo = O so 

(sin 8) 
WoO =(cos 8)  Wo + - 

wo 
wowo. 

Now 
(1 - cos 8) (sin 8) 

OWo= (cos 8) Wo + WOW~TWO + - 
WO 

wowo- 4 



But from Lemma 47, wzWo = O so 

(sin 8)  
OW0= (cos 8 )  wo + - 

wo 
w o w o -  

Comparing equations (6.10) and (6.11) shows W o O  = OWo. I 

The next few lemmas provide a specific example of the relationship between O and Wo- 

This particular case is one which wiU be used in later chapters- 

Lemma 54 If wo = w o e ~ ,  then Wo = WoAt and 

O = cos (wOsR) 1: + sin (w0sR) A$ + E33. 

Proof. wo = waes means w: = wg = O and wi = WQ. Then 

using equation (6.6) and Lemma 46. 

To show equation (6.12) is true, we show (6.12) satisfis the differential equation O' = WoO. 

Evaluate both sides of the differential equation and compare the results. 

Rom equation (6.12) 

0' = -wo sin ( ~ 0 s ~ )  I$ + wo COS ( W ~ S R )  A+. 

Evaluating the right side of the differential equation gives 

W o O  = WOA$ (COS (WOSR) I& + sin ( ~ 0 s ~ )  A: + ~ 3 3 )  

I I = wo cos ( w o s ~ )  A + I ~  + w0 sin (wOsR) A3 A3 + W O A ~ E ~ ~  

= -wo sin ( W ~ S R )  I$ + wo COS ( ~ 0 s ~ )  A: 

using Table 6.1. Comparing the expressions for 0' and WoO shows the differential equation is 

satisfied. It follows that equation (6.12) is true. I 



using Lemma 37 and Corollaries 7 and 8.. 

A rod configuration is said to be normal if it satisfies the condition 

di -dâ=O for i E {1,2). 

Thus in a normal rod configuration, the two dimensional subspace spanned by dl and d2 is 

always perpendicular to the rod awis. This two dimensionai subspace may be thought of as a 

cross-section to the rod. 

6.1.3 Deformations and Normal Uniform Rods 

The previous section d e h e d  and described a normal uniform rod configuration. In this section, 

we consider how this might affect a deformation tensor if we assume any rod configuration 

before and after deformation is normal and uniform. Such a deformation is described as normal 

uniform. It turns out normal uniform rods are severely restricted with respect to the possible 

geometries they rnay assume. 

Let O denote the orthogonal tensor in the reference configuration so dRi = OdRio. Let 

WRo denote the wryness tensor. Of course WRo is fixed dong the rod axis. Let Wo denote 

the wryness tensor in the deformed configuration. Then di = FdRi kom Corollary 3 and since 

dRi = OdRio, we obtain 

di = FOdRio. 

This means that in the case of normal uniform rods, any director in the deformed configuration 

is completely specified by the deformation tensor, the orthogonal tensor and one director in 



the reference configuration. R e c d  that the director tensor D $di @ d = & @ ei was the 

tensor describing the distribution of the directors along the rod axis. In the case of a normal 

uniform rod, the distribution of the directors is aIso described by the orthogonal tensor 0. If 

we adjust the reference director dR, to coincide with the vector î, D = O where we now use D 

as the director tensor in the reference configuration. FD is the director tensor in the deformed 

configuration. 

If we consider the special case in which Wh = O, then h m  Lemma 16 we have 

and since F is always invertible, we obtain 

F' = WoF. 

This particular case corresponds to a configuration 

(6.13) 

in which the directors in the reference 

configuration remain paralle1 along the entire rod axis. Another way of saying this is that the 

directors in the reference configuration are constants, Le. they do not depend on the parameter 

SR. We obtain further simplification by choosing our directors in this configuration to be the 

standard basis el, e2, es. 

6.1.4 Four Types of Configurations For Normal Uniform Rods 

We now indicate the four types of normal uniform rod configurations. In each of these, note that 

the parameter SR is now arc leagth and summation over the indices a and P is from one to two. 

Al1 s d a r  quant it ies appearing are constants (independent of SR unless ot herwise specified) . 

1- Straight. In this case, the rod axis is given by r = s ~ e 3 ,  the director distribution is given 

by di = Dei where 

D = D%, 8 eg + E33 and Wo = 0. 

This describes a straight rod in which a given director is paraliel dong the entire rod &S. 



2. Straight Twisted. In this case, the rod axis is given by r = sRe3 ,  the director distribution 

is given by di = ODq where 

D = lIaPe, @ eg + ~ 3 3 ,  

O = cos ( ~ 0 s ~ )  13 + sin ( ~ 0 s ~ )  A; + E33, 
Wo = WOA+- 

This describes a straight rod, but the directors are twisting about the rod a x k  at a 

constant rate given by &Vos 

3. Circular. In this case, the rod axis is a circular arc with equation r = aOei, the director 

distribution is given by di = One; where 

D = + + + D ~ ~ E ~ ~  + ~ ~ ~ 3 3 3 ,  

O = cos ( W ~ S R )  I+ + sin ( ~ 0 s ~ )  A$ + E33,  

Wo = w ~ A ~ .  

The geometry for this case is modified so d2 = r' and dl and ds span the cross-section of 

the rod. The radius of the circle is given by a and this is related to the twist by wo = $. 

4. Helical. In this case, the rod axïs is a circular helix with radius a and pitch b. Let 

c = d v .  The equation of the rod axis is given by r = aOei + bsRe3, the director 

distribution is given by di = OOIDei where 

D =  ~ ~ e , @ e ~ + & 3 ,  

O = cos ( ~ 0 s ~ )  131 + sin (wosR) A: + E33i 
Wo = w~A$, 

b a 
oi=c(En+E33)+-(Eu-En)+Eii -  c 

Notice this case is made more difficult by the fact the axial vector of the wryness tensor 

is not the axis of rotation of OOID. 



Our concern wiU be with deformations from straight configuration to each of the four con- 

figurations listed above. This particular case means the twist in the reference cootiguration is 

zero, that is, Wb = 0, and so equation (6.13) applies. We now consider the effects of this on 

the field equations. 

6.2 The Field Equations of Normal Uniform Rods 

In this section, we derive the special form of the field equations for normal uniform rods. 

6.2.1 Tensor Form of The Field Equations of Normal Uniform Rods 

To see the effects of the conditions of normality and uniformity on the field equations, we use the 

polar decomposition theorem. The statement and proof of this theorem are given in Appendix 

A. The theorem states that we can decompose any nonsingular second order tensor as follows: 

where V and U are symmetric tensors and R is orthogonal. Rirthermore this decomposition 

is unique. Since R is orthogonal, it does not change the lsngth of any vector it operates on, 

but only rotates or refiects the vector. V and U are c d e d  the left and right stretch tensors 

respectively. Their effect is to lengthen any vector operated on by F. Since the deformation 

tensor F is alnrays invertible, the polar decomposition theorem always applies to F. 

Of course in general, F is a function of the parameter s a  and so we would need to write 

For normal uniform rods, this general statement may be simplified. In a deformation from 

a straight configuration to any of the above four configurations, the rod must remain normal. 

That is, its crosssection must stay normal to the rod axïs. This means there can be no shearing 

effects of the rod materid under deformation. This, in turn, means the right stretch tensor U 

must be constant with respect to the parameter SR. Thus U(sR)  = UO where UO denotes a 

constant symmetric xight stretch tensor. Thus we may write F ( S R )  = R (sR) UO for the type 



of deformations we are interested in which wiii more briefly be written as 

From equation (6.13), we obtain (RUO)' = WoRUo or, upon applying the product rule to the 

left side, R'Uo + RU; = RfUo = WoR&. If Uo is invertible (as we will choose it to be), 

Notice if we speciFy R and Uo, we completely determine the deformation tençor F and the 

wryness tensor Wo. If we specify the wryness tensor, we can use the differential equations 

R' = WoR and F' = WoF to determine R and F to within arbitrary constants. The property 

RTR = 1 further reduces the possibIe values for the constants, but do not miqueiy determine 

them. To determine the constants exactly, we need to speci& the axis of rotation of R (in the 

case where R is a member of the special orthogonal group). 

We now define a quantity Z as 

z = R ~ W , R  

so WoR = RZ. Then equation (6.15) becomes 

and 

We are interested in an expression such as equation (6.17) in order to apply the constitutive 

restriction of material frame indifference. 

We now prove that 2 is skew-symmetric and constant. 

Proof. We know Wo is skew-symmetric. Since Wo = MR*, then R Z R ~  is skew-symmetric. 

This means 

RZR* = - (RZRT)~ 



and appiying the d e s  of transpose gives 

RZRT = - (RT)~ ZTRT = -RZ~RT.  

Multiplying through this equation by R= on the left and R on the right leaves 

= - z T  

which means Z is skew-symmetric. II 

Lemma 57 If Z E R T W o ~ ,  then Z is a constant. 

Proof. We start with Wo = R Z R ~  and differentiate both sides with respect to SR. Since Wo 

is independent of SR, this leaves 

and rearranging and using the fact (RT)' = ( R ' ) ~  $ves 

RZ'RT = -R'ZR~ - RZ (RI)=. 

Multiplying through this equation by R~ on the left and R on the right gives 

z1 = -R~R~ZR.TR - R ~ R Z  ( ~ 1 ) ~  R = -RTRIZ - z  RI)^ R 

using the fact RTR is the identity tensor. Rom equation (6.15), R' = WoR so 

R ~ R '  = R ~ W ~ R  = Z. 

Then taking the transpose of this gives 

(RTR')~ = zT 

and since Z is skew-symmetric as proved in the previous lemma and using properties of tram- 
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pose, we obtain 

(R' )~  R = -2. 

Putting this information h t o  the equation for 2' gives 

Sirce Z' = O, it foliows that Z is independent of SR, that is, Z is a constant. . 
To ernphasize Z is a constant, we now mite it as Zo. Thus we have F = RUo and 

F f  = RZoUo so both F and Fr can be expressed as the product of the orthogond tensor 

R and some constant tensor. 

There is an important special case of the above results. If R is a member of the special 

orthogonal group, it has the &ct of rotating any vector it operates on. If the axis of rotation 

of R is pardel to the axial vector of Wo, then fÎom Lemma 53, WoR = RWo ând thus 

R' = RWo and R=R' = Wo. This means F f  = WoRUo = RWoUo. Since R' = RZo, this 

implies Zo = Wo. 

We may apply this to the field equations using the constitutive restrictions. Recall the field 

equations are given as 

nf + Xpf = 0, (6.18) 

and Postdate 6 states 

F L ~  = L F ~ .  

Notice we have chosen to use M (ï?, F') = X ~ D ~ E  (Fi Fr) and N (F, F3 = ApDaa (F, F') in the 

field equations. This turns out be more convenient since it means we do not have to worry 

about the Xp factor. 

We now consider equations (6.19) to (6.21) in turn. Replace F with RUo in equation (6.19) 

to give 
- - 
M (RUo, (RU,,)')' - N (RUo, (RU*)') + n @ rh + A& = O 



and simpliwng this yields 

using equation (6-17) replacing the symbol Z with Zo as discussed above. Applying the consti- 

tutive restrictions given by equation (5.18) gives 

Notice that a (Uo , ZoUo) and N (uO,  ZoUo) are constant tensors, independent of the parame- 

ter SR since Uo and ZoUo are independent of SR. This means (Ua, ZoUo)' = O and applying 

the product rule to the first term of equation (6.22) giva 

Notice that if we know R., this is no longer a differentid equation! This is the benefit of 

considering normal uniform rods - we turn differentid equations Into algebraic relationships. 

Let Mo aad No denote M(Uo, ZoUo) and N(Uo,  ZaUa) respectively. Then 

or 

X & = R N ~  -Rmo -n@rh. 

Multiplying through by RT gives 

A~RT = ~~m~ - R*R= - ~~n @ rk 

This is the basic field equation we use to solve the special deformations of normal uniform rods. 

In the special case where the ax ïs  of rotation of R is pardel to the axial vector of Wo, we can 



replace this equation with 

and we may use this as our basic field equation. 

Equation (6.20) may be w-ritten as 

which becomes 

- 
F W  (F, F ) ~  + FN (F* F ' ) ~  = M (F, Ft) ( F ' ) ~  + N (F, Fi) F=. 

Replacing F and Fi with RUo and RZoUo respectively yields the following: 

Using Postulate 7 (material frame indifference) , t his becomes 

mou0 (RM (UO, 2 0 ~ 0 ) ) ~  + RU0 (RN (Uo, Z O U O ) ) ~  

and introducing the notation and No dehed above and multiplying through the equation 

by FtT on the left gives 

Furt her simplification gives 



But Uo = and Zo = -2;. Placing these in the equation and rnultiplying by R through the 

equation on the right gives 

In the special case where the axis of rotation of R is pardel  to the axial vector of Wo, we can 

replace this equation with 

-T - 
WoUoM0 + IJoFT; = Noua - MoUoWo. 

Replace F with RUo in equation (6.21) to give 

which simplifies to 

which becornes 

using the fact that Uo is symmetric. 

The geometry of normal uniform rock is very restricted - the rod axis ean only assume the 

shapes of straight iines, cùcles or circuiar helices. Rirthermore, the wryness tensor must be 

a constant. Combining this information with the polar decomposition theorem gives rise to 

special field equations for deformations of normal uniform rods. The right stretch tensor U 

must be a constant Uo. Specifying the right deformation tensor Uo and the orthogonal tensor 

R completely specifies the deformation tensor F and the wryness tensor Wo (which is a constant 

skew-symmetric tensor). These field equations are given as 

n' + Xpf = 0, 



and 
- 

R U ~ L ~  = L U ~ R ~ .  

In the special case where the d s  of rotation of R is pardel to the axial vector of Wo, we can 

replace equations (6.24) and (6.25) with 

and 

respectively. 

Notice t hat the constitutive restriction of material hame inditference has been incorporated 

into the field equations (6.24) and (6.25) or (6.27) and (6.28). 



Chapter 7 

Solving Four Special Deformat ions 

In this chapter, we develop a scheme for solving the four special deformations described in the 

previous chapter. This plan of attack is based on exploiting the symmetry properties of various 

quantities arising from the field equations and the nature of the stress-tensor as a cross-section 

tensor. 

By solving the deformations, we have two goals: 

- - 
1. Reduce the tensors = M (Uo, ZoUo) and No = N (Uol ZoUo) to as few nonzero 

components as possible; 

2. Express the components of n and in terms of the components of and K. 

Essentiaiiy we are characterizhg the tensor -and the vector n in terms of the components 

of Mo and No which are the derivatives of the strain energy density hinction evaluated at the 

special point (Uo , ZoUo). 
In k t ,  we actually do step 2 £imt as far as it is possible. This is done by simply manipulating 

the field equations to get as much information as possible about the relationships among the 

components of these tensors. We then finish each problem by introducing the appropriate 

transformations for monot ropic symmetx-y. This accomplishes step 1 and completes step 2. 



Figure 7-1: Reference Configuration For q = 3 

7.1 The Reference Configuration 

The reference configuration wilI be the same in aIi four cases, namely the straight configuration 

described in detail in the previous chapter. However, the axis dong which the straight reference 

configuration is orientated varies from case to case- This d be designated by a parameter 

q E (1,2,3)  . Once q is specified, it means the curve of the reference configuration is parde l  to 

e,. In the reference configuration, the cuwe parameter SR will be the arc length of the c w e  

denning the rod axis. The curve is expressed by r~ (sR) = sRe,. Then $ (sR) = eq and thus is 

a constant in al1 cases. The directors in the reference configuration will be given by dR, = e,. 

The reference configuration for q = 3 is shown in Figure 7-1. 

7.2 Component Form of the Tensors 

This section provides the notation for the component form of the tensors. To solve the four 

special deformations, i t  is necessary to use component equations. The objective of this chapter 

is determine all the relationships among the componentç of the various tensors which hold for 

any problem. The additional information about a specific problem may be used to simpl* 

these relationships. 



In dl four deformations, the problem will be solved with respect to the natural basis with 

orthonormal vectors {el, ez, e3) and duai basis {el, e2, e3). It will be necesary in a couple of 

problems to employ other bases to describe the problem. The basis for the second order tensors 

wiU either be ei @ d or E, = ei 8 e,. In view of the equivaience q = ei, there is no distinction 

between these bases and we use them interchangeably- 

Here are the component forms of al1 the second order tensors in the ei O & basis. The 

stretch tensor Uo is given by 

the orthogonal tensor R is given by 

The stress tensor is given by 

and 

The wryness tensor Wo is defùled by 

The tensors Mo and No will have component forms 

- i M~ = M ~ % o &  

and 



respectively. Notice q, R$ and are hinctions of SR whereas and @ are constants. The 

vector n is expresed as n = ntei where, from Postdate 6, the ni are constants. The second 

order tensor n g~ rh may be written as nie @ eq where q was de6ned earlier or in the equivalent 

In all cases Wo = W o ~ t  (Wo is a constant which may or may not be zero). Thus in al1 

cases where there is an axis of rotation, the axis is always es. 

The right stretch tensor Uo will is given by equation (7.1) (the index in parenthesis indicates 

it is to be included with the siimmation). Notice this may also be written as 

The quantities A(i) represent stretch factors in their respective directions. The stretch factors 

are constants. In every case, two of stretch factors will be equal, but which stretch factors are 

equal varies from case to case. 

This scheme of hding solutions leans heavily on the polar decomposition theorem, in par- 

ticular F = RUo. In some cases, R and Uo will be specified and thus F is automatically 

determined. Ln other cases, the directors wili be specified, thus defining F. Then a polar de- 

composition R W  for this deformation tensor MLL be given. In all cases, the right stretch tensor 

Uo will be that as given above. The tensor R will vary £rom case to case. 

The work developed in this chapter applies to the first three deformations considered in 

subsequent chapters. In these three deformations, Wo is either zero or the axis of rotation 

of R is parallel to the axial vector of Wo. This means we can apply equations (6.27) and 

(6.28). These are the equations used in the followbg sections. The fuial deformation must use 

equations (6.24) and (6.25) and hence the results from many of the remaining sections in this 

chapter wili not apply. 



7.3 The Cross-Sectional Stress Tensor 

There is one more piece of information regarding the stress tensor T = pL in Cohen's paper (11 

which has not been discussed. This is related to the quantity appearing in the field equations. 

The stress tensor pL is a cross-sectional tensor which means it is nonzero only in the subspace 

spanned by the two directors defining the cross-section. In the case of normal rods, this meam 

L is nonzero only in the two dimensional subspace perpendicular to the director acting as the 

tangent vector in the deformed configuration. Recail equation (4.39) 

Let the cornponents of F-* be given as 

(we donyt actually care about the values of Xj for this calculation). If the cross-section of the 

deforrned rod is parallel to one of the principal planes (that is, a plane spanned by ei and ej 

for some distinct i, j E {1,2,3)), then five of the components of L will be zero in the Cartesian 

basis. The value q discussed earlier denotes the direction in which L does not act. That is, 

q # i and q # j. Then ail cornponents of the form L: and Lz are zero where k E {1,2,3}. 

As an example, suppose the tangent vector to  the cuve in the deformed configuration is 

parallel to e ~ .  Then the components of L satise 



Calculating LTF-= gives 

When 1 = 3 or k = 3, the coefficient is zero. It foliows that the coefficients 

and e~ @ e3 are al1 zero which shows 

More generdy, the cross-section spanned by the two non-tangent directors is not parallel 

to a standard plane, and in fact the orientation of the plane of the cross-section may vary from 

point to point. In that case, it is necessary to express the tensor L in some coordinate system 

in which five components of L are zero. Then a transformation to the Cartesian basis must be 

made followed by the transformation to The objective of this exercise is to  see if there are 

components of which are zero in the Cartesian basis. Zero components signincantly simpüfy 

the comput ations. 

7.4 Component Equations From Symmetry 

In t his section, we consider several symmetric equat ions and derive their component forms. 

7.4.1 Symmetry Equations for L 

We wish to consider the symrnetry of for any tensor R and the stretch tensor Uo given by 

equation (7.1). The symmetry of L is expressed in equation (6.26). However, for our purposes 



it is easier to express this symmetry by 

or, equivaiently, 

We use the definitions given in equations (7.1) to (7.4)- 

Then the quantity EUo evaluates as 

and 

The quantity ( L U ~ R T ) ~  evaluates as 

The symmetry equation is satisfied if 



Thus corresponding components can be set equal to each other to give 

for al1 possible choices of i and j. This gives rise to nine equations. In f a t  there are only three 

independent equations since swôpping the roles of a given i and j produces the same equation 

and in the case i = j, the equation is trivially tme. Hence we need only consider the cases 

(i, j )  = (1,2), (i, j) = (1,3) and (i, 3) = (2,3)- 

For (i, j) = (1,2) we obtain 

For (i, j) = (1,3) we obtain 

For (i, j) = (2,3) we obtain 

We now prove RTUO is symmetric using the symmetry of L. This is shown in the following 

lemma. 

Lemma 58  If L and are second order tensors relateci 6y L =  RU&^ when R is a spe- 

cial odhogonal terrpor, Uo is a syrnmetric tensor and L is ako symmetric, then RqUo is 

symmetric. 



using the fact Uo is a symmetric tensor. Multiplying on the right by R and on the left by RT 

gives 

which uses the fact R i s  an orthogonal tensor. Since L is symmetric, this may be written as 

But 

since L is symmetric. Thus R T ~ R  must also be symmetric. But if R ~ L R  is symmetric then 

R m o  is symmetric. . 
Now derive the component forms of this symmetry. We continue to w the definitions given 

in equations (7.1) to (7.4). 

Evaluate RTL as 

and evaluate R ~ E u ~  as 



The expression (RTEU~) ' is given by 

We may now equate components. By the same argument as above, it is sdficient to consider 

o d y  the cases (i, j) = (1,2) , (i, j) = (1: 3) and (i, j) = (2,3). The component equation for 

(i, 3) = (1,2) is given as 

the component equation for (i, j )  = (1,3) is given as 

(R:z; + R;Z~ + R:L~) X~ = (~j-i: + R~Z: + ~31:) X~ 

and the component equation for (i, j) = (2,3) is given as 

7.4.2 Symmetry Equations Of No and Mo 

We now derive component equations of equation (6.28) which is repeated here for convenience: 

For our purposes, it is more convenient to express this as 

-T -T -T = WoUoMo + U Q N ~  = ( W ~ U ~ M ,  + UoNo) 



or, equivaiently 
- - - 
NoUo - MoUoWo = (NotJo - &UOWO)~.  

The various quantities are those as defined in equations (Tl) and (7.5) through (7.7). 

The two terrns in the expression e d u a t e  as  

and 

Equating components from the two expressions gives 



for i, j = 1,2,3. We expect that if i = j, the equations are trivial and no information is 

obtained. Also, switching the values of a given i and j wilI result in the same equation. Thus 

there rvill be only three independent equations, corresponding to (il j )  = (1,2), (i, j) = (1,3) 

and (i, j) = (2,s). For (i, j) = (1,2), the equation is 

for (i, j )  = (1,3), the equation is 

and for (i, j) = (2,3), the equation is 

If we multiply through the field equation (6.27) on the right by Uo, we get 

Since the quantity R=uo is symmetric, then (No - wo& - ~~n 8 Uo must also be 

symmetric. We now compute the component form of this expression. 

First we evaluate No - wom0 in component form. The expression No - wom0 cornputes 



Now consider the expression RTn @ +. The term $ is always eq for some fixeci q (either 

one or three). Equation (7.8) gives the component form of n Q rk- Then ~~n @ rJR evahates 

Combining these last two results together, the quantity No - Wo& - RTn 8 4 evduates 



The quantity X is symmetrïc so X = XT. Calculate XT as  

We can now equate components. Following the same arguments given eariier, it is sdcient to 

equate only the cases (i, j) = (l,2), (i, j) = (l,3) and (i, j) = (2,3). 

The component equation for (i, j) = (1,2) is given as 

the component equation for (i, j) = (l,3) is given as 

q = 1 : N3 + w ~ M ~ )  A3 = (z - ~jnl- ~ z n *  - *n3) Xi, 
(-l 

-3 q = 3 : (N; + W& - ~ : n '  - ~ ! n ~  - gn3) X3 = NIAl, 

and the component equation for (i, j) = (2,3) is given as 



In several cases, it can be shown that R ~ L  is symmetric. From equation (6.27), this impiies 
- 
No - WoMo - ~~n @ r'R is symmetric. We can derive component equations for this situation 

which are simpler than those derived above. 

We've already shown 

When this quantity is symmetric, this means 

or as a component equation 

for i, j = 1,2,3.  Writing the component equations for (i, j) = (1,2) gives 

E: + wos; - C ~ f n * ~ ;  = N: - W& - C R,cnkq, 
k k 

for (i, j) = ( l ,3)  gives 



and for (i, j) = (2,3) gives 

Equations (7.27) through (7.29) are a bit simpler than those of equations (7.24) through 

(7.26). However, equations (7.24) through (7.26) apply in all cases: equations (7.27) through 

(7.29 ) ody apply if it has been shown that RTL is symmetric. 

7.5 Transformations for Monotropic Symmetry 

In each of the four deformations, we introduce monotropic symmetry. The only rotations we 

consider are those about the axes el, e:! and eg. These rotations are denoted as QI, Qz and 

Q3 respectively. Rom equation (5.8), we must have 

for i = 1,2,3. Since eQei  = Eii and Ii = Ejj  +EkL, where i # j, i # k and j # k, we conclude 

and 

4 3  = -En - E22 + E33- 

We now consider how to monotropic syxmnetry to normal uniform rods. We have 

- 
N (F, F') = (Uo, ZoUo) = -O 

and 



Applying these to equations (5.59) through (5.62) gives 

- 
Q , ~ O  = m0Qa 

and 

for the symrnetric case and 

and 
- 
Q~R.M~ = - R M 0 ~ ,  

for the ant i-symmetric case where 

and R* is some orthogonal tensor. These were valid as an expression of the combined symmetry 

(using monotropic symmetry) only if 

and 

in the symmetric case and 

in the anti-symmetnc case. An obvious choice for R* is R in which case the left side of the 

equations reduce to 

RQ.R~R.& = RQ,& 

and 

RQ,R~RM~ = RQJG 



and the cornbined symmetry equations are 

- 
Q~NO = NoQa 

and 

for the symmetric case 

and 
- 

Q~UO = -MoQe 

for the anti-syrnrnetric case. The condition for this to hold is 

and 

in the symmetric case and 

in the anti-symmetric case- We base our application of monotropic symmetry for normal uniform 

rods on equations (7.30) through (7.36)- In the case where the ax id  vector of the wryness tensor 

Wo is pardel to the axis of rotation of R, we may substitute Wo for Zo in equations (7.35) 

and (7.36). 

Since al1 of the problems we wiii consider use the same tensor Uo defined in equation (7.1) 

and three of the problems use the same Wo dehed  in equation (7.5) (the only exception to 

this haç Wo = O), we will establish equations (7.34) and (7.35) or (7.36) for the monotropic 

transformations QI, Q2 and Q3 defined above. We wiU use Zo = Wo. 

The quantity QiUo cornputes as 



The quantity UoQl computes as 

Thus QIUo = UoQl so equation (7.34) is tme for the monotropic transformation QI. 

The quantity Q2U0 cornputes as 

The quantity UoQ2 computes as 

Thus Q2Uo = UOQ2 so equation (7.34) is true for the monotropic transformation Q2. 

The quantity Q3U0 computes as 



The quantity U0Q3 cornputes as 

Thus Q3U0 = UOQ3 so equation (7.34) is true for the rnonotropic transformation Q 3 .  

The quantity WOUo computes as 

The quantity QI WOUo computes as 

The quantity WoUoQl computes as 

Thus Ql WOUo = -WoUoQl so equation (7.36) is tm for the monotropic transformation QI. 



Thus Q1 may be used as an anti-symmetric monotropic transformation for this choice of Uo 

and Wo. 

The quantity Q2WoUo computes as 

The quantity WoUoQz computes as 

Thus Q2 WOUo = -WoUoQ2 so equation (7.36) is true for the monotropic transformation Q2. 

Thus Q2 may be used as an anti-syrnmetric monotropic transformation for this choice of Uo 

and Wo. 

The quantity Q3WOU0 cornputes as 

The quantity WOU0Q3 computes as 



Thus Q3WoUo = WoUoQs so equation (7.35) is true for the monotropic transformation Q3. 

Thus Q3 may be used as a symmetric monotropic transformation for this choice of Uo and Wo. 

Finally, we consider what sets U and V may be formed for this choice of Uo and Wo. 

Obviously U can contain only 1 and Q3 where 1 is the identity tençor and V can only contain 

Q1 and $2. It is straightforward to see 

so each of these monotropic elements is its only inverse, as it must be geometr idy (two 

rotations of rr radians about a fked awis must return a vector to itself). We now compute QiQj 

for i # j to see what values these give. We iliustrate the calculation for (i, j) = (1,2) and give 

the other products in a table. The quantity QlQ2 cornputes as 

QiQ2 = (En - &2 - E33) (-El1 + &2 - E33) 

= Ell (-Eli + E22 - E33) - E22 (-&I + En - E33) - E33 (-El1 + ETL - E33) 
= -Ell - E2z + E33 

= Q3- 

Using analogous calculations, the following table shows all the products among the three ele- 

ments $1, Qz and Q3: 

I I  1 1 I 

Table 6.2 

By examining the products in the Table 6.2, we can see that in order to keep 24 and U U V 

as groups, the only way of deb ing  these sets is as foliows: 

U = (1) and V empty, 



24 = (1) and V = {QI) ,  

u = (1) and V = ( Q 2 )  

U = (1, Q 3 )  and V empty 

and 

With this information, we can calculate al1 the possible effects of monotropic symmetry 

on the components of No and MO using the monotropic transformations QI, Q2 and Q3 and 

continuing to use the same choice of Uo and Wo. 

To facilitate the calculationç, define the three indexed quantities cl, c2 and c3 whose values 

depend on which monotropic element is being considered. We can express an monotropic 

transformation Qp as 

Q p  = E(i)ei 8 et 

where p E {l, 2,3} . The values of depend on the value of p- 

Computing Q ~ N ~  gives 

and computing N O ~ p  g i v ~  

and equating components gives 
-i 
NjF(il = 

for aii values i, j = 1,2,3. Obviously when i = j ,  the equations contain no information. The 



remaining six component equations are 

The calculation for Qp& = %&Q~ is identical to that for No. This occurs when p = 3 since 

Q3 is the only monotropic transformation for the symmetric case. The resulting component 

- 
The calculation for Q& = -MOQp is identical to that for No except for the presence of 

the negative sign on the right side. This occws when p = 1 or p = 2 since QI and Q2 are the 

monotropic transformations for the aati-symmetric case. The resulting component equation 

must be 

which gives the six component equations 

However, we also must consider the case when i = j and this gives 

-2 - -3 
which implies M: = M2 - M 3  = 0. 

For p = 1, that is, using monotropic element QI, the values of E(i )  are assigned as cl = 1, 

c2 = -1 and & = -1. This gives the six component equations of No as 



from which we can conclude 
-1 -1 -2 - N 2 = N 3 = N l = $ = 0 -  

The component equations of Mo are 

1 1 -1 -2 -2 -2 -2 -3 -3 -3 -3 mk = 11.12, hl3 = M3, - Ml = - M l ,  - M3 = M3,  - M1 = - M l ,  - M2 = M2, 

-1 -1 -2 -2 -3 
M l  = -Ml ,  M2 = -M2 and Z: = -M3 

from which we can conclude 

For p = 2, that is, using monotropic element Q2, the values of E(i) are assigned as  cl = -1, 

c2 = 1 and f3 = -1. This gives the six component equations of No as 

from which we can conclude 

The component equations of Mo are 

-1 -1 -2 -9 -3 M l  = - M l ,  M ,  = - M i  and mi = -M3 

from which we can conclude 

For p = 3, that is, using monotropic element Q3, the values of are assigned as = -1, 



- c2 = -1 and c3 = 1. This gives the six component equations of No as 

from which we can conclude 
-1 lV3=x:=$ =*2=0. 

The component equations of Mo are 

-1 -1 -1 -1 -2 -2 -2 -2 -3 -3 -3 - -M2 = -A.l,, - M ,  = MJ, - = -1% - MJ = Mt, M i  = -Mi and M 2  = -4 



Chapter 8 

Solving Straight to Straight and 

Straight Twisted 

In this chapter, the simplest two deformatioc probierns for normal unifom rods are solved. 

These are deformations from straight to straight and hom straight to straight twisted. 

8.1 Straight to Straight 

The first case is a deformation from a straight configuration to a straight configuration without 

twisting the rod. This is a particdarly simple case. The deformation is Uustrated in Figure 

8-1. 

The curie in the deformed state is defined by r (sR) = A 3 s ~ e 3  where X3 is a constant quantity 

called the stretch (the scalar quantity appearing in the defiaition of Uo). The orthogonal tensor 

is given by R = 1 where 1 is the identity tensor. It immediately follows that Wo = Zo = 0. 

For monotropic symmetry, we use U = {1, Q3) and V = {1, Q3} . 

Equations (6.24) to (6.26) become 



Figure 8-1: Straight to Straight 

and 
- 
 LU^ = U~E* 

respectively. Since Uo is symmetric, these Iast two equations may be written as 

- 
NoUo = ( m J O ) =  

and 



Equating components on both sides of this equation gives three nontriviai equations; namely 

and 

Similady 

and 
-2 -3 N3X3 = N2X2. (8-5) 

If we use Xi = X2 = A, we obtain L: = L: and N: = N:. 
Cohen's stress tensor L operates only in the plane spanned by dl and da. Ln this case, the 

same plane is spanned by el and ez. This means 

which was shown in the previous chapter to imply 

b r n  equations (8.2) and (8.3), we get L; = E: = O. This means is s-etrie in th& case. 

Then No - n @ r'' must &O be symmetric. 

The value of q is 3 so applying the symmetry equations (7.27) to (7.29) gives 



and 

AIso note that 

The field equation (8.1) can now be written in component form as the following nine equa- 

and 

O = x  -n3. 
Combining equations (8.4) with (8.14) and (8.5) with (8.15 ) , it follows that N: = N: = O. From 

equatious (8.6) and (8.?), this impües n1 = n2 = O. Since n1 = n2 = O, then n = n3e3 = 

where no is the length of n. Then 



We cari now write equation (8.1) as 

and can immediately conclude the foiIowing: 

and 
-3 N 3  =na. 

Notice up to this point, we have no information about and indeed, up until now, it is 

completely arbitrary- 

To complete the problem, we now introduce monotropic symmetry about the e3 axis. The 

condition given as  equation (7.34) becomes 

and this condition has been shown to be true in Chapter ?. We now consider the conditions 

under which 
- 
1MOQ3 = Q 3 M o i  (8.17) 

and 
- 
NoQ3 = Q3No- 

Notice that since F' = 0, aU three of these conditions must be satisfied. Siimming equations 

(8.17) and (8.18) gives & Q ~  = O. Evaluating m 0 ~ 3  gives 



-7 
Equating components on both sides of this equation, we h d  M = O. Thus monotropic sym- 

rnetry about the es aiBs implies = 0. 

Using equation (8.20). we see 

Then equation (8.19) implies 

Equating components from both sides of the quatibn gives four nontrivial equations: -gl = p l ,  
-13 -13 -23 -23 -3 -1 -2 - N ~ ~  = **, N = -N N = -IV . It foilows that  = N2 = N, = N, = O. Notice 

this is exactly what has already ben determined lrom the field equations. 

To summarize, 
- 
Mo = O or, equivalently m,=0 for i, j = 1,2,3 



In terms of Mo and No, 

-L -2 N' -1 -2 N2 -2 1: = - + L * = L ~  = -,L2 =- 
X ~ P  XJP 

N2 and 
X ~ P  

-3 -1 -2 -3 z; = L, = L, = L3 = L3 = O  

describes the components of the tensor The vector n is given by 

8.2 Straight to Straight Twisted 

In this deformation, the deformed state is straight, but with a twist which is constant along 

the rod aùs. This case uses r R  (sR) = s ~ e 3  so %(SR) = e3. Then the stretch factors Xi, A2 

and X3 satisb Xi = X2 = X and the field equation (6.24) is 

The sets for monotropic symmetry are U = II, Q3} and V = {QI, Q2). The orthonogal tensor 

is given by 

so the quantity ~~n 8 will be 

~~n @ rk = (nl coswos~  + n2 sin wosg) el 8 e3 

+ (n2 cos w o s ~  - n' sinwosR) e2 8 e3 + n3e3 d e3. 

Figure û-2 illustrates this deformation. 

We note that the rotation axis of R (the line along the es vector) is pardel to the axial 



Figure 8-2: Straight to Straight Twisted 

vector of Wo. Hence we can use equations (6.27) and (6.28) so the basic field equation becomes 

For this geometry, Cohen's cross-sectional tensor L satisfies equation (7.9). This was shown 

to Mply equation (7.10), that is, = O for i = 1,2,3. Combining this information with the 

fact Xi = XÎ = X aad using equations (7.11) to (7.13) and equations (7.15) through (7.17) &es 

the following component equations: 

-2 -2 -1 -1 L1 cos w o s ~  - L2 sin W ~ S R  = Li sin WOSR + L2 COS WOSR, (8.21) 

-1 -2 -1 -2 L2 COS W ~ S R  + L2 sin WOSR = -Li sin w o s ~  + LI COS WOSR, 

O = L;A 



and 
-3 O = L,X. 

Equations (8.21) and (8.22) are identicai. Rom the remaining equations we have 

indicating L is a cross-sectional tensor. 

Now consider the components of RTL. We are interested to s e  if RTL is symmetric. We 

now compute (RTL): with i # j and look for symmetry. For (i, j )  = (1,2), we obtain 

E+om equation (8.22), the right sides of these two equations are equal so 

For (i, j) = (1,3) we obtain 

(RV~ = O and (RTL): = O 

For (i, j) = (2,3) we obtain 

(R%): = O  and (RT)~ = O  

Thus R q  is a symmetric tensor in this case. 

Since RTL is symmetric, this implies No - wom0 - RTn 8 rh must be symmetric. This 

means equations (7.27) to (7.29) may be applied. Using q = 3, we get the following component 

equations: 
-1 -2 -2 
N2 + WoM2 = N1 - w ~ M : ,  (8.23) 



-1 2 N, + W ~ M ~  - n' cos w o s ~  - n sin wosR = 

Equation (8.23) is exactly equation (7.18). Now rearrange equation (8.24) as  

Since everything on the left is constant and n' and n2 are constants, the only possible values 

for n1 and n2 whkh satisfy this equation are n' = n2 = O. This implies 

Consider equation (8.25). Since we've already deterrnined n1 = n2 = O, this leaves 

The fact n1 = n2 = O means n = n3e3 = noeg where no is the length of n which implies 

RTn O rk = noE3j. 

We now write the equation 

in component form. Since we know this equation is symmetric, we need only consider the terms 

indexed (1,l)  , (1,Z) , (1,3) , (2,2) , (2,3) and (3,3). These six component equations are as 

follows. 
-1 -1 L~ cos WOSR + sin w o s ~  = N~ + W ~ M ~  (8.28) 



and 

o = Z - ~ ~ .  

Using equation (8.26) in equation (8.30) gives 

which gives 
- 
l$ =o. 

Putting this result into equation (8.26) results in 

Using equation (8.27) in equation (8.32) gives 

which gives 
- 4 = o .  

Putting this result into equation (8.27) gives 



Since no = n3, then equation (8.33) becomes 

-3 0 = N 3 - n o  

no =$. (8 -34) 

-3 -3 Rom equation (8.34), we have n = N3e3 and RTn 8 r i  = N3e3 63 e3. The field equation is 

At this point, we introduce monotropic symmetry. As in the straight to straight case, we 

consider the rotation of T radians about the es axis, namely 

(7.42), we know 

Q3. Rom equations (7.41) and 

and 

Xotice this agrees with the result for the components N: and 3 and is consistent with the 

relationships of M: with N: and M: with N: h m  consideration of the field equations. 

In addition to monotropic symmetry about the es axis, we also include monotropic anti- 

symmetry using the element QI representing rotation of ?r radians about the el axis. Rom 

equations (7.37) and (7,38), we kmw 

In order to keep the symmetry set a group under composition, we must include the element 



Q2 which represents the rotation about the q &S. F'rom equations (7.39) and (7.40) we know 

-1 -2 -2 - N 2 = N 3 = N 1 = & = 0  

and 

results we have already obtained fkom looking at the other symmetries. Thus including Q2 

as an anti-symmetry element adds no information, but nevertheless is included to force the 

combined material symmetry set to be a group- 

Combining al l  t hese monotropic resul ts, we conclude 

and 
-1 -2 -3 -3 - 1  -2 -3 M 3 = M 3 = M 1 = n / l 2 - M l = M Z = M 3 = 0 .  

The components of x ~ ~ R T L  are now 

and 

x ~ ~ R ' %  = (N: + wO-:) E~~ + (pi - w~M:)  QZ. 

To find an expression for E, multiply through this equation by R W e  omit this calculation 

here. 



Chapter 9 

Solving Straight to Circular and 

Helical 

This chapter describes the solutions of the deformations from straight to circdar and straight 

to helical. These deformations are more difEcult to solve than those of the previous chapter- 

9.1 Straight to Circular 

In this deformation, the deformed state is a circular arc centered at the origin. The rod axis 

lies in the plane spanned by el and e? having radius a. The tensors Wo , Uo and R are exactly 

those given in the previous problem. The value of Wo = wo is chosen so that 

This case uses r R  (sR) = s ~ e i  so flR (sR) = el. In the deformed configuration, dz is chosen as 

the director to be the tangent vector to the cuve (th& is different kom the other three cases). 

Then the stretch factors Xi, X2 and X3 satisfy Xi = A3 = X and the field equation (6.24 ) is 



Figure 9-1: Straight to Cïrcular 

The sets for monotropic symmetry are U = {II Q3)  and V = {QI, Q2}. The quantity RTn@flR 

will be 

~~n @ rk = (nl COS W ~ S R  + n2 sin wOsR) Ell 

+ (n2 cos WOSR - n1 sin wOsR) &1 + T L ~ E ~ ~ .  

This deformation is illustrateci in Figure 9-1. 

We note that the rotation axis of R (the line dong the es vector) is parallel to the axial 

vector of W o .  Hence we can use equations (6.27) and (6.28) so the basic field equation becomes 

For some aspects of this case, it is simpler to use cylindnd polar cood.hates (Tl O, 2) with 

basis vectors {*, es, e3). The relationship between the bases (el, e2, es) and {+, ee, e3) is 

given by (Cohen [l]) 

+ = ( c m ~ ~ s ~ )  el + (s inwos~)  e~~ 

ee = - (sin wosR) el + (cos w0sR) e* 



and 

These are easily inverted to give 

e2 = (sin WOSR) et + (COS wOsR) e~ 

and 

e3 = e3. 

Note that {q, ee, e3} is an orthonormal set, so the normality conditions for normal uniforxn 

rods are still be described by this set. 

In the defonned configuration, the equation of the rod axis is given by 

The terrn Rel eduates as 

((COS WOSR) 1: + ( ~ Z U O S R )  A$ + ~ 3 3 )  ei 

(cos W O S R )  1;el f (sin uosR) ~ k e l +  E3m 

(COS WOSR) el + (sin woss) e;! 

e, 

so in fact r (sR) = a-. Then r' (sR) = aRfe1 = ae: = a w o e e  = A2ee (using wo = h/a) so the 

tangent vector to the rod axis in the deformed state is ee. 

In terms of the directors, this means 



Then the deformation tensor is 

and using the above relationships between (+, ee, es) and (el, e2, e3) , tbis gives 

The polar decomposition of this tensor is F = RUo where R is given as previously and Uo is 

as defined in equation (7.1). 

Evidently we can ais0 establish a cylindrical polar coordinate b a i s  for the second order 

tensors. The members of this basis are denoted 

and are defined by 

Using the relationships between {el, e2, e3) and {e,ee, e3), it is possible to etablish the 

relationships between 

(rectangular coordinates) and CPC (cylindrical polar coordinates). The calcdations are tedious 

but straightforward. Here are the relationships establishing the members in the set RC in tenns 



of the members of the set CPC : 

2 = COS wosRE, - sin w o s ~  COS wOsREre - sin WOSR cos w0sREe, + sin2 wosaEOe, 

and 

It is important to realize that in the notation for these basis vectors, r and 8 are not 

indices which may assume numerical values - they are just symbols designating a member of 

the cyhdrical polar bais-  

The tensor L fiom Cohen's paper is still a cross-sectional tensor, but now the cross-sections 

are not parallel as S R  varies as they were in the previous two cases. However, the nonnality 

condition implies that the cross-sections will be normal to the tangent vector ee- This means 

that if the components of L are expressed with respect to the cylindrical polar basis, several of 

the cornponents will be zero. That is, if L is expressed in te= of the basis CPC say by 

then only components acting the plane normal to ee are nonzero. This means all components 



with 8 as an index, either upper or lower, are zero- That is 

Li = g ",= J = ,53 = L; = O 

and 

Despite the advantages of working in the cylindrid polar coordinate system, it is easier to 

solve this case in rectangular coordinates. This means it is necessary to express L in te= of 

the basis RC and then convert this to the tensor The objective for doing this is to determine 

which components of E are zero. 

The tensor L is expressed in terms of the basis RC by the following: 

L = ~ : e , @ e ' + L ~ e , @ e ~ + ~ f e ~ @ e ' + ~ ~ e ~ @ e ~  

= L: (cos wosRel + sin wosRez) @ (cos wOsRel + sin wosRe2) 

+L$ (cos w0sRel + sin wOsRe2) @ e3 

+L;e3 O (cos wosRel + sin wosRe2) + L& e3 

= L: cos2 w o s ~ e l  B el + L: sin WoSR cos WoS~el g~ e2 

+L: sin w o s ~  COS w ~ s ~ e ~  GD e' + Lz sin2 w o s ~ q  e2 

+y cos w o s ~ e 1 8  e3 + Li sin w o s ~ 4  8 e3 

3 +L, cos w o s ~ e s  @ e' + ~f sin wosae3 O e2 + ~ i e 3  e e3. 

Now relate this to the tensor via the relationship = L* (F=)-'. Since 

F = X~ cos wosRel Q e' + X~ sin w o s ~ w  O el - A2 sin w o s m  B e 2 

+A2 cos w o s ~ e z  €3 e2 + X3e3 @ e3 



and 

cos WQSR sin w o s ~  sin W O S R  
el@el- el 8 e2 + e2 @ el 

Al A2 A1 

as can be verified by muitiplying the expressions for and (FT) -' to get the identity tensor. 

After a lengthy computation, the tensor is evaluated as 

- L:: 1 L? 3 L; - - cos wgs~el8 e + - cos wgs~el@ e + - sin w o s ~ e 2  @ e 1 
Al A3 Al 

The important thing to observe here is that 

(we're really not interested ia how depend on L:, Li, Lg etc., except for poasibly checking 

that our solution agrees with Cohen's solution). 

Equations (7.11) through (7.13) become 

Equations (7.15) to (7.17) become 



and 
-1 -2 -LS sin WOSR + L3 COS WOSR = 0. 

Obviously equations (9.11) and (9.14) are identical. If we consider equations (9.12) through 
-1 -1 -2 -2 

(9.16) to be a system of linear equations in the components LI, L3, Li, L3 and L:, we obtain 

the following matrix equation: 

This has only trivial solutions unless 

is zero. Evaluating this determinant shows in fact it is zero so there are nontrivial solutions. 

Solving the system of equations gives 

and 

Using equation (7.14), we can write the components of RTL for this case. Since we're 

interested in whether RTL is symmetric, we consider only components with i # j -  These give 

-1 -2 (RTL) = L~ cos w o s ~  + L, sin wosR = O 



and 
-1 -2 (RTL) : = - L, sin w o s ~  + LI cos w o s ~  = O 

and 

(RTE); = O  

so (RT~;): = (RTL): and 

( R T ~  = O 

and 

(RTE); = O 

so ( R T Q ~  = ( R T ~ ; .  This means RTL is symmetric. 

Since RTE is symmetric, this Mplies No - WoMo - ~~n @ + must be symmetric and we 

may apply equations (7.27) through (7.29). We obtain the following three component equations: 

2 E: + wo@ = N: - WZ; + n1 sin wosR - n cos wosa, (9.17) 

and 
-l- N: - W ~ M ,  = 3. (9.19) 

Equations (7.181, (7.20) and (7.22) become 

and 



From equation (9.17) we have 

Since everything on the right side oE this equation is constant and n1 and n2 are constants, the 

only possible values for n' and n2 which satisfy this equation are n1 = n2 = O. This implies 

The fact nl = n2 = 0 means n = n3e3 = noe3 where no is the length of n which unplies 

1 RTn @ rk = nOe3 8 e . 
From equation (9.18) we obtain 

From equation (9.19) we get 

We now form the component equations of 

using the information derived above. The component equations are 

-2 ~~p (L: cos wosR + L~ sin w o s ~  1 = F: + w~M: ,  



and 

From equation (9.27) we get 

and combining with equation (9.23) g i v s  

This result also foilows fiom equation (9.29). 

Rom equations (9.28), (9.30) and (9.31) we get 

and 

Equation (9.33) is 

combining it with equation (9.25) gives 



consistent with the result frorn equation (9.31). From equation (9.32), we have 

no =$ 

which is consistent with equations (9.24) and (9.28). 

The rnonotropic symmetry to be applied for this deformation is identical to that of the 

previous case- Thus we can immediately Say monotropic syrnmetry implies 

and 
-2 -3 -3 -1 -2 -3 M ~ = M , = & ~ ~ = M , = M , = M , = M ~ = ~ .  

Notice this means n = O. The components of x ~ ~ R T  are now 

Afp (RTL): = N: + w&, 

A2p (RT-L): = 

and 

x2p (RTI;)~ = O 

for d l  other choices of i and j -  In tensor form, this result is expressed as 

x ~ ~ R T L  = (?$ + woIV:) Ell + z~33. 

We could find by muitiplying through this equation by Et, but we omit this calcuiation. 

9.2 Straight to Helical 

In this deformation, the defomed state is a piece of circular heik with aJcis parallel to e3 and 

centered at the origin. The h e h  has radius a and pitch b. The tensors Wo and Uo are exactly 



those given in the previous problem- The value of Wo = wo is chosen so that 

A3 wo = - 
C 

w here 

The equation of the rod axïs in the reference configuration is given by 

so d; = rRr(sR) = e3. The other directors are chosen so dh = el and d: = e2. Then the 

stretch factors XI, & and X3 satisfy AL = A2 = X and the field equation (6.24) is 

The equation of the rod axis in the deformed configuration is given by 

r (sR) = a cos wosRel+ a sin wosRe2 + h o s ~ e s .  

The sets for monotropic symmetry are U = {1) and V = {QI}. An illustration of this defor- 

mation is given as Figure 9-2. 

The directors in the deformed configuration are chosen to be pardel to the Frenet-Serret 

frame (T, N, B) given by unit vectors 

when the helix is parameterized with respect to arc lengtii. The quantities (Tl N, B) are given 

by P81 

T=-- h o  woa sin w o s ~ e l +  cos wosRe2 + - e3, 
A3 A3 A3 

N = - cos wosRel- sin wosRe2 



Figure 9-2: Straight to Helical 

and 

The c w t u r e  and torsion of the helix are givea by 

and 

Note these are both constants (a special property of a few cuves including the helix). Then 

and 

Note that 



It is also convenient to define 
- 
K = CWQK and 7 = C W ~ T .  

T hus 

T = -KC sin w o s ~ e l  + ~ c c o s  wos~e2 + 7ce3, 

N = - cos utosRe1 - sin wosRe2 

and 

B = rcsin wosRel - TC cos w ~ s ~ e z  + &ce3 

give the fieneesenet hame for the circular helix. 

The basis {eT,eN,ea) is a convenient one in this case. We relate these to the standard 

basis { e l ,  e l ,  e2)  by  the foilowing expressions. 

e~ = T = -KC sin w o s ~ e l f  rcc cos wosRe2 + ~ c e 3 ,  

eN = -N = cos wosRel+ sin w o s ~ e 2  

and 

eB = -B = -~cs in  w o s ~ e l +  TC cos Wos~ez - mes, 

It is easy to see the set {q, e ~ ,  es) is orthonormal. 

The directors are now expressed as 

d3 = X 3 ~  = X3T = -rc& sin wosRel + K C A ~  COS wos~e2  + rCX3e3. 



Then the deformation tensor is given by 

As usual, the polar decomposition of F is F = RUo where Uo is given by equation (7.1). In 

this case, the rotation tensor is more complicated. The foIlowing Lernrna shows this tensor may 

be decomposed into the rotation tensor of the previous two deformations (straight to straight 

twisted and straight to circular) and another orthogonal tensor. 

Lemma 59 In the decomposition F = RUo, R = R3R1 where 

R3 = cos wos& + sin w o s R ~ +  + Eg3 

and 

Ri = T C I ~  + + Ell. 

Proof. The proof is done by showing RUo = R3RiUo gives the expression for F given above- 

The component form of R is given by 



Using Table 6.1 and rearr<mging the order in which the terms are written, we obtain 

Now multipiying this by Uo gives 

Comparing this with the expression for F given above, shows the expressions are identical.. 

It is usehl to have RT = ( R ~ R ~ ) ~  = R:Et3=- Calculate RT as 

where 1 denotes the identity tensor. Computing RTRl gives 



Using Table 6.1, we obtain 

using equation (9.39). Since RFR~ = 1, then RTR = I which confirms R is orthogonal. 

It should be noted that in this deformation, the axis of rotation of the rotation tensor R is 

not p a r d e l  to the axial vector of Wo. Thus we need to cornpute 

Since the axis of rotation of the rotation tensor Rû is parde l  to the &al vector of Wo, we 

have from Lemma 53 that WoR3 = R3w0 so 

using the fact qTR3 = 1. The computation of Zo*is as foilows: 



using Wo = WOA$ and the information in Table 6.1 The various tenson remainuig in the 

expression for Zo evaluate as foilows: 

and 

using the definitions in equation (9.40) and the field equation 

becomes 
- 

A ~ ~ R %  = No - TA* + K A ~ ~ O  - R ~ Q  @ &- 



The quantity RTn 8 $ needs to be calculated. This evaluates as 

From the results on straight to straight tnristed, 

~ 3 n  €3 r)R = (n' cos w ~ s ~  + n2 sin wOsR) E13 

+ (n2 cos w o s ~  - n1 sinwosR) + n3& 

~~n 8 r& = (ni cos W o s ~  + n2 sin wOsR) R T E ~ ~  
+ (n2 cos w o s ~  - n' sin wOsR) R T E ~ ~  + n3~:333 

and it necessary to cornpute R T E ~ ~ ,  F€.TJl& and R F E ~ ~ .  The quantity R ~ E ~ ~  eduates  as 

and 

SO 



The quantity RT& evaluates as 

These tensor components e d u a t e  as 

and 

The quantity R T E ~ ~  evaluates as 

using Table 6.1. Then 

~~n @ rk = (ni cos w o s ~  + n2 sin wosa) EI3 

+ (n2 cos w o s ~  - n1 sin W ~ S R )  (7- + ncE33) + n3 (rCE33 - ~eE23) 

= (nl cos wosR + n2 sin wosa) E13 

2 + ( ~ c n  cos w0sR - rcn' sinwos~ - n a 3 )  

2 + ( ~ c n  cos wosR - ~cn' sin wosR + rm3) Em 



Now define a ba i s  for second order tenson by 

3Sc = {Err, Env, ETB, ENT, ENN¶ ENB, EBT, EBN, EBB) 

where 

Using the relationships between {el, e*, eJ} and {eN, ee, q) , it is possible to establish the 

relationships between members of 3SC (Frenet-Serret coordinates) and members of 

ha te s ) .  The calculations to do this are straightforward, but tedious and are 

omitted. The resuits are as foilows: 

2 2 & = n2c2 sin2 W O S R E ~ ~  - K C sin w O S ~  COS w ~ s ~ E ~ ~  - KTC* sin wOsREI3 

-n2c2 sin w o s ~  COS W ~ S ~ G ~  + K * C ~  cos2 w ~ s ~ E ~ ~  + KTC* COS wOsR& 

-&TC* sin w ~ s R E ~ ~  4- nrc2 cos w ~ s ~ E ~ ~  + ~ ~ ~ 3 ~ 3 ,  

WEI = -KC sin w O s ~  COS w ~ s ~ E ~ ~  - KC sin2 w0sREl2 + KC COS* wOsRfil 

+K;C sin WOSR COS W O s R G 2  + T C  COS w ~ s ~ E ~ ~  t T C S ~  w ~ s ~ E ~ ~ ,  

fis = mc2 sin2 w o s ~ ~ l l  - nrc2 sin wosR cos wOsRE12 + 2 c Z  sin wOsREl3 

-nsc2 sin w o s ~  cos wOsRbI + nrc2 cos2 wOsRG2 - (ç2c2 COS wOsR- 

-r2c2 ~h wOsR&q f ?c* COS w ~ s ~ E ~ ~  - K T C * E ~ ~  



EN* = -TCSin wOsR COS wOsREll f TC cos2 w ~ s ~ E ~ ~  - KC COS WOSRE~J 

-7csin2 wOsREZl + TC COS WQSR sin w o s R ~ a  - iccsin W O S R & ~ ,  

EBT = mc2 sin2 w ~ s ~ E ~ ~  - m c 2  sin wOsR cos w ~ s ~ E ~ ~  - 72c2 sin WOSRE~J 

- K T C ~  sin wosR cos wOsRE21 + nrc2 cos2 wosR& + 2 c 2  COS WOSR% 

+K~c'  sin was RE31 - ir2c2 COS wOsRE32 - K T C ~ E ~ ~ ,  

EBN = - T C S ~  wOSR COS wosREl1 - rcSin2 ?U0sREl2 + TC cos2 w ~ s ~ E ~ ~  

+TC SiIl 2üOsR COS wOSRG2 - KC COS wOsRE3i - KC siIl w ~ s ~ E ~ ~  

and 

The sigdicant thhg about using the coordinates with respect to the basis given by FSC is 

that Cohen's stress tensor L bas severai zero components in this basis. Since this stress tensor 

is cross-sectional, ail components referring to the tangentid direction (Le. with index T) must 

be zero. Thus 

L = LNENN + L ~ E N B  + LNEBN + L ~ E B B  

For purposes of this thesis, we need the zero components of in the basis 'RC. To fhd these, 

we express L in the bais  RC and then convert to using equation (4.39). Cdcdating L in 



the basis RC gives 

L = L N E N N  + L ~ E N B  + L N E ~ N  + L ~ E B B  

= LN cos2 , w ~ s ~ E ~ ~  + L$ sin wosR cos wOsREt2 + LN cos WOSR sin w ~ s ~ & ~  

+LN sin2 w o s R h  

N 2 N - L ~ T C S ~ ~  WOSR cos wosREl1 + L*TCCOS w0sREl2 - LB KC COS wOsREl3 

- L ~ T C  sin2 wosRE2i + L ~ T C  cos w0sR sin w ~ s ~ & ~  -  LE^ sin w o s R h  

B -LNrcsin w o s ~  COS w ~ s ~ E ~ ~  - ~ z ~ c s i n ~  wDsREU + L$TCC& wOsR& 

B B +LNrc sin WOSR COS w ~ s ~ E ~ ~  - LNnc COS w ~ s ~ E ~ ~  - LEKC sin w a s R ~ 3 2  

B 2 2  + L B ~  C sin2 wosREil - LEPc~ siIl wosR COS w ~ s ~ E ~ ~  + L ~ K T C ~   hl wOsREl3 

B 2 2  8 2 2  - L ~ T  c sin wosR cos w o s R ~ i  + LB7 c cos2 w ~ s ~ & ~  - LEKTC~ COS wOsR- 

+ L ~ K T C ~  sin w ~ s ~ E ~ ~  - L ~ K T C *  COS w ~ s ~ E ~ ~  + L:IC*C~E~~ 

which simplifies to  

L = (LN cos2 WoSR - (L: f LN) TC sin W ~ S R  cos 'W@R f L ~ T ~ C ~  sin2 w0sR) Ell 

B 2 2  N -k ((LN - LB7 C ) siIl 'WOSR COS wO.SR f L ~ T C   COS^ WOSR - L E T C S ~ ~  w0sR) E12 

+ ( ~ g r c r c ~  s i n w o s ~  - L ~ K C  cos uosR) E13 

8 2 2  + ((LE: - L B ~  c ) sin WOSR COS WOSR - L$rcsin2 WOSR + LNTCCOS~ wOsR) fi1 
B 2 2  + (L: sin2 w0sR + (LE + LN) rc sin dosR cos w o s ~  + L B ~  c cos2 wOsR) 

- ( ~ g n c  sin w o s ~  + L E ~ C ~  cos wOsR) & 

+ ( L ~ K T C ~  sin vos^ - ~ N n c c o s  wOsR) E31 

- ( L ~ K C  sin wosR + L ~ K T C *  cos wosR) E3* 

+ L ~ ~ c ~ E ~ ~  . 

This is the tensor L with  respect to the basis RC. 

To calculate from this, rearrange equation (4.39) as 



The most straightforward way to compute F - ~  is as folIows. F'rom 

we get 

using the facts that Uo is symmetric and Ri and R3 are orthogonal. Then 

Since Uo is diagonal, it is straightforward to calculate its inverse as 

The rotation tensor R3R1 has been calculated earlier. Thus 

NOW calculate the term E~~U;' : 

Substituting this into the expression for F-= gives 



1 TC K;C +- sin wOsRbl  + - COS wOsRE& + - COS W O S R ~  
A1 A2 A3 

Now calculate L = L*F- by 

1 TC CGC = - cos W ~ S ~ L * E I  - - sin WOSRL*EI~ - - sin W O S R L ~ E ~ ~  
A l  A2 A3 

It is necessary to calculate LTEu done by 

N 2 L*E, = ( L ~  COS WOSR - (L: + LN) TCS~ILUI~SR COS WOSR + LEPC~ sin2 wosp) EliEij 

B 2 2  +((LN - L ~ T  c ) sin WOSR COS wosR 

N + L ~  TC cos2 WOSR - L ~ T C  sin2 w ~ s ~ ) E ~ ~ E ~ ~  

+ ( L ~ K T C ~  S ~ ~ Z U ~ S R  - L ~ K C C O S  wOsR) E13Eij 

8 2 2  f ( ( L E  - L B r  C ) sin wosR cos w o s ~  

- L ~ T C  sin2 t ü a s ~  + LNTC COS? w ~ s ~ ) & ~ E ~ ~  

+(LN sin2 W~SR + (L: + L N )  ~ c s i n w ~ s ~  cos wosR 

8 2 2  +LBr C cos2 

- ( ~ ~ ~ c s i n t u ~ s ~  + L ~ K T C *  COS wOsR) %Eij 

+ ( ~ i n r c ~  sin w o s ~  - LEM cos wosR) E31Eij 

- ( ~ ~ ~ c s i n w ~ s ~  + L ~ K T C ~  COS wOsR) E3*Eij 

which becomes 



Then, for example, 

The other cdcdations are done anaiogously. The calcuiations are tedious and the rest of this 

calculation for are omïtted. The final result is 

T C  + (;LE cos wosR - -L: ~2 sin wasR 



Note 

For brevity, we now define r cos w o s ~  and C sin wosa. Equations (7-11) to (7.13) and 

(7.15) to (7.17) are given as foilows: 

and 

-1 -1 -1 -2 -2 -2 -3 -3 
This is a system of six linear equations in the nine u n k n o m  LI, La, L3, LI, L2, L3, LI, L2 

and ~ 3 -  Solving this system gives 

and 



Using the information 

the components of satisfy 

-1 -2 L1 S ~ W ~ S R  - Li cos WosR = 0, 

and 
-1 -3 -2 -3 LB = L1 = L3 = L3 = O 

with no restriction on the d u e  of ~2 (i-e. 12 is a parameter). 

Now calculate R ~ E  using equation (7.14). We're particularly interested to see if this quantity 

is symmetric. Thus we first consider the components in which i # j .  These components of 

RTE axe as follows: 

-3 7-3 (R'TL): = - L, cos w o s ~  sin w o s ~  - - L ~  COS wO.!JR sin wOsR = O, 
K K 

and 

SO 

and 

-1 ( R ~ L )  = - n d t  sin vosR + KCZ: cos wosR = O 



and 
-3 (RT; = - n ~ ~  sin vosR sin wosR - c r ~ z  cos w o s ~  cos w o s ~  + TZ; = O 

Thus the quantity ~q is symmetnc and is, in fact, diagonal. Now compute the diagonal 

elernents of R ~ L  as 
-1 -2 (R~E) : = L, cos WQSR + L~ sin wosa, 

= -(  r2 2 
72 

c- sin wosn + c- cos2 wDsR + irc) Z: 
tc ri 

- 1 -3 - --La 
tcc 

using equation (9.39) and 

(RV~ = 0- 

Since the lefi side of equation (9.41) (that is, RTL) is symmetric, then the right side of 

equation (9.41) must &O be symmetric. Thus, 

is symmetric. F'rom equation (6.25), we also have 



and substituting for the value of Zo, this becomes 

We need to calculate cornponent representations of both of these tensor equations to establish 

relationships among the components of No, Mo and n. 

We 6rst consider the expression 

The quantity A + M ~  is caiculated as folIows: 

The quantity  ka^ is calculated as follows: 



The quantity ~~n @ rk was calcdated earlier. Putting d l  this together, the component repre- 

sentation of X is given as 

Since X is syrnmetric, we must have Xf = X: for al1 i, j = 1,2,3. When i = j, this is trivial 

and contains no infornation. We need only consider the three cases Xi = x:, Xi = Xf and 

X: = xZ. For Xi = X: the component equation is 

For Xl = X: the component equation is 

-1 1 
N~ + ?a: + EZ: - (n cos w o s ~  + n2 sin wosR) = N: - &fi. (9.43) 

For X: = X; the component equation is 

Now rearrange equation (9.43) as 

In this form, the right side consists entirely of constants. Since n1 and na are also constants, 



this equation ean only be true for al1 values of SR if nl = n2 = O. Thus equations (9.43) and 

(9.44) reduce to 

N: - ~ V ~ + E ~ F : + ~ E & T Ï Ï  = O  

and 
-2 -TZ +tccn3 =N: - I C M ~  --1 

respectively This means a = n3e3 = noe3 and 

and the field equation becomes 

The quantity no is the length of the vector n. Solving for n3 = no in equation (9.44) and using 

We now consider the symmetry of 

We first calculate a component expression for Y. !Che quantity Noua evaluates as 

The quantity evaluates as 



so the quantity &u~A$ evaluates as 

The quantity UoA$ evaluates as 

so the quantity @Uo~& evaluates as 



The expression represented by Y is now expressed in component from as 

Since Y is symmetric, we must have = ~j for d i, j = 1,2,3. When i = j ,  this is trivial 

and contains no information. We need ody consider the three cases Y: = Y:, Y31 = Y: and 

Y: = Y?. For Y: = Y: the component equation is 

For Y: = q3 the component equation is 

For Y: = Y; the component equation is 

~~375 + EAJ@: = X ~ N ;  + TA~ÂT:- 

Solving for A& in equation (9.49) gives 

~ ~ 3 7 3  = A2$ + 7AlEf: - EX~X~:. 

Multiply through equation (9.46) by X3 to get 

and substituting for ~337: @es 

X3n0 = 
Y.. 



which simplifies to 

using equations (9.35) and (9.40) 

We can now mite the cornponent form of the field equation (9.45). The components of 

the left side of this equation have already been calculated (when it was shown that R% was 

symmetric and, in fact, diagonal). Equating these with the components of the right side of 

equation (9.45), the component equations are as foiiows: 

--1 FEom equation (9.58), we have = nM2 and thus 



using equations (9.35) and (9.40). Then equation (9.50) becomes 

which simplifies to 
T ( X 3 X i ;  - ~~37:) + K (XJ@ - ~~37:) 

no = 
)CC 

If we muitiply through the sum of equations (9-56) and (9.58) by X3 we obtain 

A ~ N :  + ~ 3 3 7 3  - ~ ~ ~ 3 7 :  - TA~M;  + n c ~ ~ n ~  = O. 

Rearranging equation (9.49) gives 

~ ~ 3 7 :  + E X ~ M :  - ~ 2 %  - 7 ~ 1 ~ ;  = O 

w hich, upon simplifying gives 

Thus the field equation (9.45) becomes 

X3 ,~ 'L  = (N: +TM: + KR) Ell + (R: - TM:) E& 

We now apply monotropic symmetry with the identity as the symmetrïc element and QI 

as the anti-symmetric element. Hence we use equations (7.32) and (7.33). In order to use this, 



we need the conditions to be satisfied: 

The first of these conditions was shown to be true in Chapter 7. W e  now show the second 

condition is true. 

The quantity ZoUo is calculated as 

using Table 6.1. 

The quantity QIZoUo is calculated as 

The quantity ZoUoQl is calculated as 

Thus QIZoUo = -ZoUoQ1 and the second condition is satisfied. 



Since both conditions are satidied, we may use equations (7.32) and (7.33) to describe the 

monotropic symme try : 
- 

QI& = NoQi 

and 
- 

Qi- = -MoQi- 

Rom equations (7.37) and (7.38), we know 

and 

These results for monotropic symmetry are consistent with satisfying equations (9.52), (9.54) 

and (9.57). They do not effect any of the other equations for this case. 

9.3 Calculation of the Wrench 

In this section, we further consider the straight to helical deformation by computing the resulting 

torque on the ends of the rod. We then see that the deformation may be accomplished by the 

application of a wrench. The wrench is defined to be the pair (n, Co) where n = noes and the 

quantity Co is the torque and is given by 

where M is the tensor in Cohen's paper. The quantity Co represents the resulting torque acting 

on the ends of the rod to produce the deformation. Note 



Rom equations (C2.14), (C2.15) and (C2.16), 

sk (M' + rl@n) = O 

so Co = O. Thus Co is a constant skew-symmetric tensor. Then Co must have an axial vector. 

The objective of this section is to express Co in terms of the tensor A$ and show the axial 

vector of Co is pardel to es. 
-T 

Ln this thesis, M is related to W by M = FM . Thus we codd write 

This evaluates as 

using the definition of skew-symmetnc and properties of transpose. 

The quantity is given by 

and F is given by the polar decomposition 

and thus 



using properties of transpose and the fact Uo is symmetric. The objective of this section is to 

compute a component fonn representation of Co. 

The equation of the deformed rod axis is given by 

r (SR) = a cos w ~ s ~ e l +  a sin w o s ~ e ~  + btU0sRe3- 

We showed earlier that n = noe3 = nge3- Thus the quantity n  8 r  calculates as 

n 8 r = noerB (a cos wosire1 + a sin wosRe2 + bwosRe3) 

= anocoswosRe39e1 + a n ~ s i n u t ~ s ~ e ~ @ e ~ + b u g n ~ s ~ e ~ ~ e ~  

and its transpose is given by 

( n ~ r ) ~ - n @ r  = a n ~ c o s w o s R e l ~ e 3  +anosinwosRe2@e3 

2 -an0 cos wosRe3@e1 - an0 sin wosae3@e . 

We now calculate m o ~ o ~ T .  We include the results of monotropic symmetry so 

-0 = COS W ~ S R E ~ ~ @ I  - TC sin wosRE12Mo - rrc sin w o s R ~ i 3 ~  

+ sin w o s ~ E h ~  + TC cos w o s R & z ~ o  + KX cos wosR%& 

+ ~CE33mo.  



Computing these tetms gives 

The quantity UoRT is FT. Using the expression for F given earlier, F can be expressed in 



component form by 

W e  compute each of these tenns separately. Then 

E I I F ~  = A1 COS wOsfiEllEll + X1 sin w ~ ~ ~ E ~ ~ E ~ ~  - rd2 sinwosREllEz; 

+TC& COS . u I o s ~ E ~ ~ & ~  - K c A ~ E ~ ~ E ~ ~  - K C X ~  sin zqpREll Esl 

+&ch COS wos~EziE32 + T c X ~ E ~ ~ E ~ ~  

= A1 COS WOSREL~ + XI sin w ~ s ~ E ~ ~ ,  

~ 1 2 ~ ~  = A1 COS + AI sin wosRElzE12 - rd2 sinwosREi2&1 

+ T c X ~  COS w ~ s ~ E ~ ~ & ~  - R C X ~ E ~ E ~ ~  - &cX3 sin w ~ s ~ E ~ ~ E ~ ~  

+KCXQ COS W O S R E ~ ~ E ~ ~  + 7cX3E12E33 

= - r d 2  sin wOsREi1 + rd2 COS wOsREIZ - K c A ~ E ~ ~ ,  



~ 2 3 ~ ~  = Al COS ~ o s ~ E ~ ~ E ~ ~  + Al sin wOsRfi3E12 - 7 d 2  sin w ~ s R & ~ & ~  

+ r d 2  COS w ~ s ~ & ~ & ~  - KcX~E&E~~ - K C X ~  sin wosRE23E31 

+ K c A ~  COS w ~ s ~ & ~ E ~ ~  + T c X Q ~ E ~ ~  

= -KCXQ siIl wosREzr + tccA3 COS wOsRG2 + 7cX3h3 

and 

~ 3 1  F~ = Al COS wO~RE31&1 + X1 sin wO~RE31E12 - TC& sin w ~ s ~ E ~ ~ E ~ ~  

+rd2 COS w ~ s ~ E ~ ~ & ~  - I C C ~ ~ E ~ ~ %  - mA3 sin wosRE3iE31 

+ K c X ~  COS w ~ s ~ E ~ ~ E ~ ~  + T ~ ~ E ~ ~ E ~ ~  

= ~lcoswosR~31  +XIsin~O~RE32. 



which simplifies to 

Now we can calculate the components of 

Co = 1 (RU~~:RT - R.%&uoR~ + (n 8 rlT - n O r) . 
2 

Since this is a skew-symmetric tensor, we need only calculate three components, namely (2, l), 

(1,3) and (2,3) (we choose to calculate ( 2 , l )  instead of (1,2) for a slight convenience later). 

Then 



and 

Since Co must be a constant tensor and components (1,3), (2,3), ( 3 , l )  and (3,2) are 

functions of SR, the following equation must be satisfied: 

This means 



which can be expressed succinctly as 

Ca = 1 (TC;W_:X? + x c * . ~ ~  - - K C X X ~ )  A$- 
2 

We can write this as 

R e d 1  equation (9.60) which is reproduced here for convenience: 

and multiplying through this last equation by 7 gives 

Substituting this into equation (9.61) yields 

Multiplying through this by C gives 



and from equation (9.39), we get 

Finally, consider 

This expression is analogous to the one given in Cohen [l] and can be shown to be identicai to 

it. 

Notice Co is pardel to A$ so the axial vector of Co is paralle1 to e3. Thus the deformation 

of the directed rod for the straight to helical case can be effected by the vector n and the torque 

given as equation (9.62), both acting at the ends of the rod and both pardel to e3. 



Appendix A 

Polar Decomposit ion Theorem 

This appendix states and supplies a proof of the Polar Decomposition Theorem. This theorern 

and its proof are restricted to second order tensors. 

Theorem Il Suppose F is a second order nonsingular tensor. Then there exiit second order 

tensors R, U and V such that F = RU (right decomposition) and F = VR (left decomposition) 

in whzch R is orthogonal (Le. R-' = RT) and U and V are symmetric and positive. 

Proof. Let F be a nonsingular tensor- Then if v is any vector and w = Fv, w = O if and only 

if v = O. In component fom, wi = Fijvj- 

Then WiWi = (Fijvj)  (Fikvk) = FijFikvjvk which must be a positive dennite quadratic fom.  

This form can be associated with a symmetric m a t e  C via c j k  = (FTF)jk or C = FTF. 

Since the form is positive definite, C has positive eigenvalues. So dong the principal axes, 

C is represented by a diagonal matrix with positive entries. 

Now define U to be the tensor whose representation with respect to these axes is a diagonal 

mat* consisting of the positive square roots of correspondhg entries for C. In this basis, and 

hence in all bases, U has the property that = U and W = C. 

Since U has positive eigenvalues, it must be nonsingular and hence invertible. Thus we may 

define R by R = FU-'. Then F = RU. 

It remains to show R is orthogonal. Consider 



the identity tensor. 

Thus given F, we can constnict U and F with the indicated properties. Now consider 

whether this decomposition is unique. Suppose F = RU and F = RU for two posçibly 

different decompositions. Then 

- - 
Hence UU = W. From uniqueness of positive square root, it follows that U = U. Then 

R = R from R = FU-' and R = FU-'. 

Now suppose F = VP provides a left decomposition. Since P-' = pT, we can write 

But P is a rotation tensor and by the uniqueness of F = RU, RU = P (P*vP) or R = P 

and PTvp = U. Consequently, the decomposition F = VR exists if F = RU exits. Since the 

latter has been shown to uniquely exist, then the statement of the theorem is true. . 



Appendix B 

Algebra of Tensor Pairs 

This appenduc develops the algebra of tensor pairs of the general linear group- It is purely 

mathematical in character - its application to directed rod theory is given in Appendix C- 

B. l Preliminary Definitions and Lemmas 

The general Linear group on P~ wiii be denoted ÇL (N, 91) throughout this appendix. 

Definition 5 Pair Set P Ç f  ( N ,  92): The pair set on the general linear group oves RN consiSts 

of pairs of membe~s of ÇL (N, 3). Thus (N, %) := { (G,  H) 1 G, H E GC ( N ,  2)). 

Definition 6 Pair Prodaet: Let Gi, G2, Hl, I& E ÇL ( N t  R). If we form the pairs (Gl, G z ) ,  

(Hi, Hz) E PÇL ( N ,  R), the pair product is the binary operation 

* : PÇL (N, R) x PÇL (N, 92) -, PÇL (N, 92) 

Lemma 60 Let 1 be the identity member of ÇL (N, R) . Then (1,I) d l  act as the identity 

elernent under the operation * in any subset of PGL (N, R) àncluding PÇL (IV, R). 



Proof. Let X (N, 32) be any subset of'PÇL (IV, R). By definition, (1,I) E PÇC (N, 8). Let 

(Gl, Ga) E X (N, S). Then 

and thus (1,I) is an identity for any member of X (N, IR). In particular, this must be true for 

X (N, 8) = PÇL ( N ,  R). I 

Lemma 61 (PÇL ( N ,  R) , *) is a p u p .  

Proof. Since is a binary operation on PGL: (N, P), this set is closed under this operation. It 

remains to prove the axioms of a group are satisfied. For purposes of this proof, let (Gi, G2), 

(Hl, Hz) , (JI, J2) E PÇL (N, P) . Let G ; ~  and 62l be the inverses of Gl and G2 respectively 

so (GY', G;') E PÇC ( N ,  91). 

1. Associativity. 

Thus * is associative- 

2. Identity. As shown in Lemma 60, (1,I) E PÇC (N, R) and acts as an identity for * in 
PÇL (N, %) . 

3. Inverse. 



Thus if (Gi, G2) E PÇL (N, R), there exîsts a member of PBL (N, a), nauirly (G;', G;'), 

which is the inverse of (Gr, G2) - Every member of PÇC (N, R) has an inverse. 

Since the group axioms are satisfied for * ui the set PÇC (N, R), then (PFL (N, 9) , *) is a 

group. II 

Our interest is in three special classes of subsets of PÇC (N, S). 

Definition 7 ÇRf (): Let U c ÇL ( N ,  P). Then Gj: (U) := {(G,  G )  1 G E U) - 

Definition 9 8, (1: Let V C GL(N, 8). Then ÇR (V )  := {(G, -G) 1 G E V )  - - 
Definition 10 41: If (G, -G) E GR (V )  for some V c GL(N1 P), the member (G, -G) is 

denoted G1. That is, G- := (G, -G). 

Definition 11 Cf: The notation G* denotes ezther G+ or G- . 

Note that the sets U and V  may be identical, different or even disjoint. Quite often, they 

are understood to be present and the notation is simpliiied so Çg = Ç z  (U), ÇR = ÇR (V) and 

ÇR = GR (U, V). In this simplified notation, we cogd write GR := Çg U GR- 

We ais0 no te that Çg (U) , Ç z  (V), GR (U, V) C PÇL (N, R) . In particular, Lemma 60 applies 

to (u), (V) a d  BR (UI VI- 

The purpose of this appendix is to characterize the relationçhip between U and V  SO that 

ÇZ (2.4) and GR (24, V) are groups under *. To begin, we note the five distinct ways nonempty 

U and Y may be related- 

1. U = V (same set), 

2. V c U, V  #U (V is a proper subset of U), 

3. U c V ,  U # V (2.4 is a proper subset of V), 



4. U n V # 0, V i U, V g Li (U and V have nonempty intersection, neither is a subset of the 

other) and 

5. 2.4 n V = 0 (U and V are disjoint). 

In this appendix, it wili be shown ÇR (U, V) can be a group only if case one or five holds. 

For purposes of brevity, the expression "U is closed" will mean U is closed under the binary 

operation of composition of members of the general iinear group. SimiIarly, "24 is a subgroup" 

will mean U is a subgroup of the general linear group. 

B.2 Condition Under Which Ç i  (24) 1s A Group 

Lemma 62 (Gz (24) , *) is closed under t if and only if U is closed. 

Proof. 

1. Suppose 2.4 is closed. Let G, H E U. Then (G, G) and (H, 8) are members of (Bg (U) , *). 
(G,  G)+(H, H) = (GH, GH). But U is closed so GH E U . Then (GH, GH) E (Ç; (U) , *) 
a-hich shows ( ~ j $  (U) , *) is closed under *. 

2. Suppose (Ç; (24) , *) is closed under *. If (G, G) and (H, H) are members of ( Ç i  ((U , *), 

then G, H E U. But (G, G) * (H, H) = (GH, GH) E (Çg (2.4) , *) so GH E U showing U 

is closed. 

Thus the staternent of the lemma is proven. 

Proof. 

1. Suppose U is a subgroup. The previous lemma showed if U is closed, Çg (Li) must also 

be closed under the operation *. Now demonstrate the three axiorns of a group. 

(a) Associative. It has already been shown that PÇL (N, 92) is associative under * and 
since Ç$ (24) c P Ç t  (N ,  B), it foilows that Gg (24) is associative under *. 



(b) Identity. Since U is a subgroup, it must contain the identity element 1. Then 

(1,I) E Ç i  (U). But it was shown in Lernma 60 that (1,I) is the identity element for 

any subset of P4L (N, 92) and since Ç i  (U) c PÇL (N, R), (1,I) wiii also serve as an 

identity for Ç; (U) under *. 

(c)  Inverse. If G E U, then G-' E 24 sinceU is a subgroup. This implies (Gl G) E Ç; (24) 

and (G-' , G-' ) E Ç z  (U) - As shown eariier, (G-l, G-') is the inverse for (G, G )  

(and vice-versa) for the operation t. Thus every member of 92 (U) has its inverse 

in Ç g  (24). 

Since the three d o m s  of a group are satisfied for the subset Çg (U), it follows 

( Ç i  (U) , *) is a subgroup of (PGt (N, P) , *). 

(a) Associative. (9; (U) , *) is associative so 

or 

(GH, GH) * (K, K) = (G, G) * (HK, HK) - 

But this means (GH) K = G (HK), so G, Hl K E U are associative. 

(b) Identity. ( Ç z  (U) , *) contains the identity (III). Thus ((3, G )  * (1,I) = (G, G )  and 

(1,I) * (G, G )  = (G, G)  for di (G, G) E Ç z  (U). That is, GI = G and IG = G for 

al1 G E U. Then I E U is the identity element on U. 

(c) Inverse. Suppose (G-Il G-') is the inverse of (G, G) , so (G-', G-') *(G, G )  = (Il 1) 

and (G, G)  * (G-', G-l) = (1,I). Then G - ~ G  = 1 and GG-' = 1 where 1 is the 

identity element in U. This means every G E 2.4 had an inverse G-' E 2.4. 



Since the three axioms of a group are satisfied for the subset U , it follows 2.4 is a 

subgroup of the general linear group. 

Thus the statement of the lemma is proven. . 
Although V may be a group and contain the identity element 1, (GR (V) , *) c m  never be a 

group, since ÇR (V) never contains the identity element (1,I). Is it possible to make GR (U, V) 

a group? The remainder of this appendix investigates tbis question. 

B.3 Conditions Under Which ÇR (U, V )  1s A Group 

This section examines the conditions under which (GR (U, V) , *) is a group given (Ç; (U) , *) is 
a subgroup of (PÇL (N, 92) , *) (our interest in only in the case where ( Ç z  (U) , *) is a ~ubgroup). 

From Lemma 63 this means we're workhg under the hypothesis U is a subgmup of the general 

linear group. The subsequent investigation will show GR (U, V) may be a group for o d y  two of 

the five ways the sets U and V may be related to each other. 

This section is divided into two subsections. The hrst subsection deais with the case 

U = V. This special case can be completely characterized with regard to  the group property 

of (GR (U, V) , *) - both necessary and sufncient conditions can be demonstrated. The second 

subsection addresses the rernaining cases. O d y  necessary conditions are given for (GR (U, V) , *) 
to be a group. 

The &st concern in both subsections is to determine the conditions under which (GR (U, V) , *) 

is closed under *. The foliowing lemma will be ve& useful. It shows the results of the products 

of members of U and V if GR (24, V) is closed. 

Lemma 64 Suppose U, V c ÇL (N, '8) and suppose ÇR (U, V )  is closed under *. Then the 

following holds: 

1. U is closed. 

2. The product of a member of U with a member of V is a member of V. 

3. The product of a member of V with a member of U is a member of V .  

4. The product of two members of V is a member of U. 



Thus U U V is closed- 

Proof. Look at each of the four cases. 

1. Suppose (G, G) , (H, H) E GR (U, V). Then 

(G, G) * (H, H) = (GH, GH) E GR (U, V) - 

This means G, H E U and GH E U. Thus U is dosed. 

2. Suppose (G, G) , (H, -Hf E GR (U, V ) .  Then 

(G, G) * (H, -H) = (GH, -GH) E GR (U, V) . 

This means G EU,H E V and GH E V. 

3. Suppose (G, -G) , (H, H) E GR (U, V ) .  Then 

(G, -G) * (H, H) = (GH, -GH) E GR (U, V) - 

This means G E V, H E U and GH E V. 

4. Suppose (G, -G) , (H, -H) E ÇR (2.4, V). Then 

Thus a l l  four cases have been established. Since the product ûf any two members of either 

set is in one of the sets, U U V is closed. W 

Note the last lemma is true, regardles of how U and V are related to each other. 

B.3.1 The Case U = V 

Lemma 65 If V c U c ÇL (N, W), U is  closed and G-, H- E Ç i  (V), then G- * H- E ~2 (u). 



Proof. G- = (G, -G) and H- = (H, -H)- Then 

Since V c u, G , R  E U and thus (G, G) ,  (H,H) E Çg (U). Since U is dosecl, (ÇRf (U) , *) is 

closed under * as sho- in Lemma 62 and thus (GH, GH) E  GR^ (U), i-e. G- * H- E GR (U). 

Lemma 66 GR (U, U) is closed under * if and only if U ii closed. 

Proof. 

1. Assume 24 is closeci and attempt to demonstrate GR (KU) is closed. By dennition, 

BR (2.4, U) := Çg (24) U ÇR (2.4) - Thus there are four cases to consider. 

Using the same argument as the previous case, G- * Hi E Ç z  ((U C ÇR (U, U). 

Since the product of any two members of GR (2.4, U) is another member of GR (U, U), 
this set must be closed under the binary operation *. 

2. Now assume ÇR (U, 2.4) is closed. By Lemma 64 U is closed. 



This proves the statement of the lemma- I 

Thus if U is closed, then we may legitimately write 

or, suppressing the U from the notation as described earlier, 

Theorem 12 (ÇR (Li, U) , *) i s  a gmup i.. and anly if U is a subgrmp. 

Proof. The previous lemma demonstrated ÇR (U, U) is closed under * if U is closed and vice- 

versa. It remains to show the group axioms hold. 

1. Assume U is a subgroup. 

(a) Associative. It was shown in Lemma 61 that (PÇL ( N ,  R) , *) is a group. Since 

ÇR (U, 2.4) C PÇL ( N ,  R), the associative property of * must also hold for ÇR (U, U) . 

(b) Identity. Since (1,I) E Ç; (24) c ÇR (2.4, U), (1,I) is the identity element. 

(c) Inverse. It was demonstrated earlier that g z  (U) contains inverses for each of its 

members. Suppose G- E ÇR (U), i.e. (G, -G) E ÇR (U). Then G E U and suice U 

is a subgroup, G-l E U. Then (G-l, -G-l) E ÇR (U). We try this as the inverse 

of G- in the set ÇR (U,U). 

Thus (G-' , -G-') is the inverse for (G, -G) . Therefore, every member of ÇR (24, U) 

has an inverse with the identity element (I, 1). 

Since aii the axioms of a group are satisfied, (ÇR (24, 2.4) , *) is a group. 
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2. Assume (GR (24. U) , *) is a group. R e c d  ER (U, U) = GR (U)uÇji (U). Then (U) must 

be associative, must contain the identity element since (1, 1) E GR (U, U) and every mem- 

ber of Ç i  (U) must have its inverse since (G-', G-') E GR (U, U) if (G,  G) E FR U)- 

Thus (GR (U) , *) is a group. But by Lemma 63, this means U is a subgroup. 

Thus the statement of the theorem is proved. I 

B.3.2 The General Case 

There is second way Li and V may be related to each other which may d o m  GR (U, V) to be 

closed under *. Throughout this section, U is a subgroup- 

Theorern 13 GR (U, V) is closed under * only if U = V or  U f~ V = 0 and U U V is a monoid. 

Proof. Note this theorem is providing necessary, but not sufIicient conditions for ÇR(U,V) 

to be closed. The objective of the theorem is to show that of the five ways U and V may be 

related, only the two mentioned in the statement of the theorem are possible if GR (24, V) is to 

be closed. Thus this proof is done by considering the five ways U and V may be related and 

showing that in cases two through four, this leads to a contradiction- In all of these cases, the 

hypothesis GR (U, V) is closed under * plays an important role. W e  use G E U and H E V. 

1. The case U is closed (since U is a subgroup) and U = V has been handled in Lemma 66. 

Indeed, if U = V ,  this lemma demonstrated this is a sdlicient condition for GR (24, V) to 

be closed. 

2. Assume V C U, V # U and attempt to derive a contradiction. Then GH E V for ail 

G E U and H E V based on Lemma 64. Since V c Li, V # U, there must exist K E U 

with K # V. Since V c U, H E U and it has an inverse H-' E Cf. Since K, H-' E U, 

L = KH-1 is &O a member of 24. Then LH = KH-~H = KI = K, that is K = CH. 

But L E U and H E V and thus K E V .  This contradicts the earlier assertion K 4 V. 

Thus the assumption V c U, V # U must be false and ÇR (U, V) csnnot be closeci under 

* with thii relationship between U and V. 

3. Assume U C V, U # V and attempt to derive a contradiction. In this case, KH f U for 

all H E V and K E V based on Lemma 64. Since U c V ,  U # V, it is possible to pick 



K E U and H 4 U. Then G = KH E U since K and H are both rnembers of V. K-l 

exists since U is a subgroup so K-'G = K-'KH = M = H , that is H = K-lG. But 

K-l, G E Li and thus H E U. But this contradicts the earlier assertion H $ U. Thus the 

assumption U C V, Li # V must be false and GR (U, V )  cannot be dosed under * with this 

relationship between U and V. 

4. Assume U f~ V # 0, U # V, V p U, V 24 and attempt to derive a contradiction. If 

K, H E V, then KH E U based on Lemma 64. Now pick K f U n V and H E V with 

H 4 U. Let G = KH so G E U sirice K and Ei are both members of V -  Then K-' 

exists since U is a subgroup. K-'G = K-' KR = IH = H, that is H = K-'G . 

But K-'G E U since U is a subgroup and thus H E U. But this contradicts the earlier 

assertion H 2.4. Thus the assumption U n V # 0, U # V, V U, V U must be false 

and ÇR (U, V) cannot be dosed under * with this relationship between U and V .  

5. Assume U n V = 0. By Lemma 64, U U V is closed. Since U is a subgroup, it contains 

the identity so 2.4 U V contains the identity. Since GR (U, V) is associative under * (by 

inheritance from (PÇL (N, 92) , *)) , the group product in U u V is associative (thk is 

proved in detail in the next theorem). This defines U U V as a monoid. 

This cornpletes the proof of the theorem. H 

Corollary 9 Let U, V E GL: (N, 32). (GR (2.4, V) , *) is  a group onlz i fU = V or U n V = 0 and 

U U V is a subgroz~p. 

Proof. From Theorem 12, U = V provides both necessary and sufficient conditions for 

(ÇR (U, V) , *) to be a group. 

Consider the case in which U n V = 0. Look a t  the three axioms of a group. 

1. Associative. Suppose G*, H*, K* E (GR (2.4, V) , *). Let G* = (G, Go), H* = (H, H*) and 

K* = (K, K*) where G* = G in the case of the plus sign and G* = -G in the case of 

the minus sign and similady for the other letters. Since (GR (U, V) , +) is associative, we 

m u t  have 



(GH, G'H*) * (K, K') = (Gy G') * (HK, H*K*) 

and 

((GH) K, (G'H') K*) = (G (HK) , G* (H'K*)) . 

From this we see (G'H*) K* = G* (H'K') which shows U U V is associative. 

2. Identity. (GR (U, V )  . *) is a group and thus contains (1,I). Thus 1 E U u V. 

3. Inverse. Suppose (G, G) E (GR (24, V )  , +). Then (G-', G-') E (GR (U, V) , *) since 

(GR (Ul V) *) is a group. Since G, G-' E U, this means U is a subgroup, consistent with 

our hypothesis. Now consider (H, -H) E (GR (U, V )  , *) . Then (H-' , -H-') E (GR (2.4, V )  , *) 
since (GR (U, V )  , *) is a group. Thus H, EX-I E V. We note HH-' = 1 E U which is con- 

sistent with Lemma 64. Thus if G ,  H E 2.4 U V, then GM1, H-' € U u II. 

Since the group property of (GR (24, V) , *) irnplies al1 the group axioms for U U V, then U U V 

is a subgroup of the general linear group. . 
It shouId be emphasized that we have provided oniy necessary conditions for (GR (U, V) , *) 

to be a group. In the case U = V, these are also sficient conditions. For the case U n  V = 0 

and U U V is a subgroup, we would have to provide some additional hypothesis regarding how 

members of U U Y multiply together (we could use Lemma 64 as a guide). The above resdts 

are sufficient for purposes of this thesis. 



Appendix C 

Tensor Pairs in Directed Rod 

Theory 

Throughout th& appendix, let F, M and N denote the tensor quantities in the main body of 

the  thesis. Let ' continue to denote differentiation with respect to the parameter for curvature. 

We make the following definitions of tensor pairs: F = (F, FI), T = (N, M), G = (G, G )  

and Q = (QI  Q) where G is any member of the special linear group SC (3, Si) and Q is any 

member of the speciai orthogonal group. Note F, T, G, Q E POL (3,R) and G E BR (24) for some 

U C Gt (3, R) as defined in Appendix B (notice we use N = 3). We need to consider the binary 

operation on tensor pairs as defined in Appendix B and 

if G, H E PÇC (3, SZ), G * H = CH. 

In this appendix, we wish to briefly review Cohen's 

the formulation of monotropic symmetry. Tensor pairs 

constitutive restrictions. 

denoted *. We drop the notation * so 

use of tensor pairs [l], particuiarly in 

provide a compact way of expressing 

In Cohen's paper, the constitutive equations are expressed by stress tensors as a function of 

deformation and its first derivative- The quantity F is cailed the generalized deformation and 

the  quantity T is called the generalized stress. The constitutive equation is 



which is an abbreviated way of writing 

We now consider how frame inciifference and monotropic symmetry are expressed in the 

notation of tensor pairs. Rame indifference is straightforward; the expression is 

= Q? ( F )  Q'= 

where QT denotes the transpose of Q. Since Q is any member of the specid orthogonal group, 

it represents a rotation and thus Q = (Q, Q) represents a pair of identical rotations. NaturnUy 

QT = (QT, QT). This expression indicates a rotation of the rod foilowing deformation has no 

effect on the stress tensors. 

Material symmetry is developed by Cohen in tenns of material symmetry and material 

anti-symmetry sets. The underlying sets U and V are restricted to subsets of the speciai linear 

group SL (N, 32). These are d e h e d  as follows, 

Definition 13 Material Symmetry Set: A rnaterial symmetry set is Ç; (U) for U C SC. (3, %) 

where 8; (U) is defined in Appendix B. 

Definition 14 Material Anti-symmetry Set: A material anti-symmetry set is BR (V)  for V c SC (3,91) 

where ÇR ( V )  is defined in Appendix B. 

Definition 15 Combined Material Symmetw S e t  A cornbined rnaterial synmetry set is GR (U, V )  

for some 24, V c SL: (3,R) where Ç R  (U, V )  2ç defi7ted in Appendiz B. 

Of course, once a material symmetry set and material anti-symmetry set have been defined, 

the combined material syrnmetry set is imrnediately defined. Recall fiom Appendix B the 

notation Gf indicates either G+ or G- where Gf denotes a member of the material symmetry 

set and G- denotes a member of the material anti-symmetry set. 

Definition 16 PTinciple of Combined Maten'al Symmetry: The principle of combined material 

symmetry states that the constitutive restriction C.1 satisfies the transformation 

f (FI = T? (FG*) 



for al1 admissible generalized defornations F and al1 admissible G* in the m b i n e d  material 

syrnrnetry set. 

This is a way of expressing that the effect of the deformation on the stress tensors remaîns 

invariant if the rod is first rotated (but only by members of Li and V) and then deformed- 

The question then is how to chose  the sets U and V. Cohen suggested the material symme- 

try and combined material symmetry sets be groups under the binary operation on tensor pairs. 

In Appendix B it was demonstrated that this is only possible if U is a subgroup of the general 

linear group and U = V or U n V = 0 and 24 U V is a subgroup. This places some restrictions on 

the sets U and V .  Cohen defines monotropic symmetry by making special choices for the set U 

a n d V  w i t h U n V = 0 .  

Definition 17 Materially Monotropic: A rod point is said to be materially monotropic i f  its 

combined m a t e ~ a l  symrnetry set contains at leost one of the elernents Q: where Q. = (Qe, Q,) 

in which Q, is a rotation of angle 7r about a &ed azb e (e is u edement of the tangent space at 

sorne point P on the rod d). 

We now wish to look at this special case of U and ÇR (U, U), namely when U = {1, Q,) 

where Q, is the rotation described above. 

Theorem 14 If U = (1, Q,) with Q, defined as above, then U is a stlbgroup of the special 

linear group S L (3,X). 

Proof. Tensors which have the effect of rotating a vector about a fixed axis belong to the 

special orthogonal group SO (3, R). S 0  (3 .8 )  is defined as SL (3, R) n 0 (3, R) where O (3, %) 

is the orthogonal group. Thus S0 (3, !R) c SL (3,821. Since Q, E 50 (3, R), Q, E SIC (3,R). 

Since 1 E SC (3, S), it foilows that U = (1, Q,) c SC (3 , s ) .  It rem- to show U is closed 

under the group product and satides the group axioms. 

Now Qe is a rotation of angle R radians and thus Q,Q, must be a rotation of 27r radians. 

If v E @, QeQcv = V, the original vector. That is, QeQe = 1. Of course IQ, = Q.1 = Q, 

and II = 1 which shows U is closed under the binary operation on SC (3 , s ) .  

1. Associative. This is obvious since U c SC(3,R). 



2. Identity. U contains the identity 1. 

3. Inverse. Q,Q, = 1 so Q, is its own inverse. Of course 1 is its own inverse. Then every 

member of U has its inverse in U. 

Since U = (1, Q,} c St (3.92) c ÇL (3, R), U is clmed under the group product and satWes 

the group axioms, then U is a subgroup of the speciai linear group SL (3, R). . 
The set U = (1, Q,) becomes the defining set for monotropic symmetry for the symmetric 

case for this thesis, as explained in Chapter 5. Then we must make 2 careful choice of V such 

that Un V = 0, U UV is a subgroup and V contains members of SL (3, S) representing rotations 

of ?r radians about an &S. Alteniatively, we may d o w  V to be empty which wili still satisfy 

the conditions U n V = 0 and U U V is a subgroup. 

If V is empty, then the monotropic symmetry imposed has o d y  a symmetric case, corre- 

sponding to rotation of T radians. If V is not empty, the monotropic symmetry also inciudes 

an antisymmetrïc case which are actuaily reflections in the plane orthogonal to the direction of 

the axis of rotation. 
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