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Abstract

A directed rod theory describes the deformation of a long, thin body called a
rod. The rod is modeled as curve (the rod axis) with additional structure
provided by a triad of vectors at each point along the rod axis. A
hyperelastic rod is one which is associated with a scalar function called the
strain energy density. Field equations and constitutive restrictions form the
theory describing the deformation of hyperelastic rods. The field equations
are derived from a variational principle relating the virtual work (which
depends on the strain energy density) to an arbitrary virtual displacement of
the rod. Two constitutive restrictions are assumed to apply to the rod
undergoing deformation. Material frame indifference states that strain
energy density is invariant under a rotation of the rod system following a
deformation. Monotropic symmetry states that strain energy density is
invariant under special rotations and reflections prior to deformation.
Uniform rods are those which have a (‘:onstant twist about the rod axis
described by a constant skew-symmetric tensor. Normal rods are those in
which the cross-section of the rod is perpendicular to the rod axis at every
point. Normal uniform rods have a limited number of possible shapes:
straight, circular and helical. Normal uniform deformations are those
deformations in which the initial and final configurations of the rod are
normal and uniform. Four normal uniform deformations are solved where the

initial state is straight and untwisted.
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Chapter 1

Introduction

Continuum mechanics is concerned with the behavior of materials, especially how they deform
under the effects of forces and loads. Although it is possible to develop theories for bodies of
arbitrary shape, it is useful to take advantage of specific shapes, at least in a general kind of a
way. One possibility is rod theory. In rod theory, the bodies which are studied are long in one
dimension and small in the remaining dimensions.

Rod theory, in turn, may be studied in more than one way. One obvious way is to consider
the rod as a material body in space and model the deformation of the body as a transformation
in the mathematical sense. Thus each point in the body is mapped from its location before
deformation to its location after deformation. A theory based on this approach is called a
derived theory. .

An alternative approach is directed rod theory. In this case, we take advantage of the general
shape of the rod by considering it as a curve in space with additional structure at each point
along the curve. The curve is a one dimensional mathematical object. The additional structure
provides the substance of the rod turning it into a three dimensional object. A deformation
of a rod is a transformation from one curve to another and a transformation of the additional

structure point by point along the curves.

1.1 Objective

The goals of this thesis are threefold:



1. develop the theory of directed rods based on a variational principle applied to a scalar

function,
2. define and describe normal uniform rods and normal uniform deformations and

3. solve four specific normal uniform deformations.

These three goals are intended to reproduce the results of a paper written by H. Cohen [1}.
Cohen'’s paper omits the details of items 1 and 3 listed above. This thesis provides those details

as well as a thorough explanation of item 2.

1.2 Development of the Theory

Theories describing the deformation of material bodies can be divided into three parts: geometry
of the body, field equations and constitutive restrictions.

There are two distinct types of theories of material deformation. In a dynamical theory, the
various mathematical quantities of the model are considered to be functions of time. A static
theory is not concerned with the behavior of the body over time, only its initial and final states.

This thesis develops a static theory.

1.2.1 Geometry

The first part of the theory consists of defining the geometry used to describe the body. Directed
rod theory is based on the idea of considering t;he rod as a curve in space with additional
structure associated at each point of the curve. The theory of curves is a well established part
of differential geometry and we utilize the knowledge of curves (e.g. Frenet frames) throughout
the thesis. The additional structure is provided by the introduction of three linearly independent
members of the tangent space at each point of the curve. These vectors are called directors and
together with the curve describing the rod, form the basic geometry of the directed rod. All
other geometric quantities are defined as tensor products among the directors, their derivatives
and basis vectors of the physical space in which the rod is embedded. Thus the other geometric

quantities in the model are second order tensors.



We can distinguish between two types of second order tensors used in the geometric descrip-
tion of directed rods. One type describes the behavior of the directors in a directed rod and

the other kind describes the deformation of a directed rod from one state to another.

1.2.2 Field Equations

The second part of the theory is the field equations. This is the physics of materials: it provides
fundamental equations describing how a body behaves under the application of forces or loads.
The field equations are often called Euler’s Laws.

To derive field equations, we introduce several physical quantities such as the vectors de-
scribing forces and loads. Although the theory may be developed in terms of these vectors, we
choose to work with second order tensors defined as tensor products of the physical vectors with
the directors and their derivatives. We then state several postulates to describe how physical
quantities are related to geometric ones. From these postulates, the fundamental equations of
the theory (the field equations) are obtained.

The field equations may be derived in more than one way. They are usually founded on a
general concept of conservation or balance of quantities, as described by Leigh (7]. For example,
the theory includes the postulate that the total mass of the rod must be conserved under a
deformation and would include an integral equation corresponding to this postulate. In fact,
Leigh provides a general balance integral, which may be thought of as a template to generate
the various balance laws forming the field equations. Each one of these conservation or balance
laws is a postulate of the theory.

In this thesis, the field equations are derived in a different fashion, although reference to
at least one balance law is necessary. We employ a variational method to derive the field
equations, as done by Cohen [2] and Ericksen [4]. The variational approach is based on the
postulate there exists a strain energy density function € associated with the rod. Materials in
which the strain energy density is assumed to exist are called hyperelastic and it is this class of
rods we are solely concerned with in this thesis. The quantity € is a scalar which is assumed to
be a function of the deformation tensor and its first derivative with respect to the parameter
of the curve describing the rod axis. This defines € as a constitutive relation or equation (for

non-hyperelastic theories, the constitutive equations are usually expressed as the stress tensor



as a function of the deformation tensor and, possibly, its derivatives). The exact functional form
of £ is not specified and depends upon the material of which the rod is composed. Applying a
variation principle to €, we obtain Euler’s equations in a form relating the derivatives of € to

physical quantities such as the stress tensor and tensor-moments.

1.2.3 Constitutive Restrictions

The third part of the theory is the constitutive restrictions. When deriving the field equations,
the constitutive relation € is introduced. The constitutive restrictions are constraints imposed
on ¢ indicating some type of symmetry, either in space or in the material of the rod. The
constitutive restrictions may be defined by providing a specific form for the function (e.g.
linear). Alternatively, the constitutive restrictions may be assumptions about properties of the
function € without stating the function explicitly.

In the model discussed in this thesis, there are two properties described by the constitutive
restrictions: material frame-indifference and material symmetry. Material frame-indifference
describes the effect of rotating the rod after it has been deformed while material symmetry
describes the effect of rotations of the rod prior to deformation. Although the two constitutive
properties seem similar mathematically, they have quite different implications physically. Ma-
terial frame-indifference is really concerned with the symmetry of the space in which the rod is
embedded. Material symmetry, as the name suggests, is concerned with symmetry inherent in
the body itself.

1.3 Normal Uniform Rods

An arbitrary deformation of a directed rod is described by a system of nonlinear differential
equations (the field equations) and these may be very hard or impossible to solve. However,
certain special cases may occur in which the differential equations can be solved in closed form.

In fact, as Ericksen [4] first showed, there exist special geometries of the rod which turn
the differential equations into algebraic relationships which can be solved for exact answers.
Building on Erickson’s work, we define normal uniform rods. Erickson showed the axis of such

rods can only assume a small class of familiar shapes - straight lines, circular arcs and helices.



After carefully defining normal uniform rods and deriving several mathematical properties
of such rods, we solve four of the transformations in which the rod is normal and uniform
both prior to and after deformation. These are called normal uniform deformations. Even
though these will be algebraic equations (as opposed to differential equations), it still requires
considerable effort to find solutions. In all four problems, we must use both field equations and

constitutive restrictions to obtain the desired solution.

1.4 Comparison With the Literature

As already suggested, there are several ways to build a theory of directed rods. It seems
appropriate to highlight some of the differences between theories as they appear in the literature

and the approach used in this thesis.

1. As already indicated, the deformation of directed rods may be modelled dynamically
or statically. A dynamical theory includes time as a variable whereas the static theory
ignores time and considers the deformation in terms of a state before deformation (the
reference configuration) and after (the deformed configuration). This theory considers the
static model. An example of a dynamical model may be found in reference [3]. Examples

of static models may be found in references (1] , [2] and {4].

2. The stress tensors appearing in the theory can be formed from tensor products of vectors
both in the deformed configuration (Cauchy stress tensor) or one vector from the reference
configuration and the other from the deformed configuration (Piola-Kirchoff stress tensor).
This thesis uses the Piola-Kirchoff stress tensor. References [1], [2], [3] and [4] use the

Cauchy stress tensor.

3. There are at least two ways of deriving the field equations: from balance laws or from a
variational principle. This thesis derives the field equations from a variational principle.
Reference [1] does not derive the field equations, but simply states them based on the
balance laws. Reference (3] derives the field equations using balance laws. References [2]

and [4] use a variational principle to obtain the field equations.



4. Reference {4] introduced the basic idea of uniform rods. Reference [1] and this thesis

apply rod theory to normal uniform rods.

These are the major differences among directed rod theories. There are other differences as

well, some of which are mentioned in this thesis as they occur.

1.5 Notation

Letters in calligraphic type will denote sets. Second order tensors will be appear as upper
case bold letters. Lower case bold letters denote vectors. Regular Latin letters represent
indices, scalars, matrices or functions. Greek letters may represent indices, scalar quantities or
operators.

The Einstein summation notation is assumed - there is a sum over any index which appears
as both a subscript and a superscript in the same expression. Occasionally, the sum must be
done on the same index appearing twice as a subscript or twice as a superscript. In this case,
the summation symbol will be employed or one of the repeated symbols with be enclosed in
parenthesis. Latin and Greek letters used as indices indicate summation from 1 to 3 and 1 to
2 respectively. Other notation conventions will be mentioned as they appear.

Equations are numbered only if they are referred to subsequently in the text.



Chapter 2

Rod Geometry

The goal of this chapter is to describe the geometry of a directed rod. This is done in two
sections. The first section reviews tensors and proves some results required in deriving the field
equations. The second section describes the geometry of a directed rod before and after the
rod has been deformed. Directors and three tensors are introduced in this section. Some useful

lemmas regarding these tensors are stated and proved.

2.1 Mathematical Preliminaries

In this section, we prove some general results to be used later in the thesis. We use real vector
spaces although many of the following comments would apply to vector spaces over any field.
Much of the information for this section including the notation was taken from Bowen and
Wang [10].

Recall that every finite-dimensional vector space V has a dual space V* consisting of the set
of linear transformations to real numbers on V. Thus if u* € V*, a,b € V and o, € R, then
u” is a linear map on the members of V and thus u* (aa + 8b) = au® (a) + fu* (b). Members
of the dual space are often called covectors. The scalar product {,) : V* x V — R is defined by
{(u*,v) = u*(v) for every u* € V* and v € V. It is straightforward to show the scalar product
is bilinear and definite.

If a basis {e;,ez,e3,...,en} is chosen for V, the dual basis {el,e?,e?,... ,eN} for V* is

defined by e (e;) = 6%. In terms of the scalar product, (€', e;) = &. If a,v € V, u*,b* € V",

10



the tensor product of a and b* is denoted a@® b* and is a mapping a®b* : V* x V — R defined
by a® b* (u*,v) = (u*,a) (b*, v). The tensor product is also bilinear and definite. Note that
the tensor product may be considered as a mapping of a covector and vector to a real number
or as a mapping of a vector to another vector. That is, the tensor product is equivalently an
endomorphism on the vector space defined by a® b*v = (b*,v)a.

The identity endomorphism is that endomorphism which maps any vector to itself. The
relationship between the identity endomorphism and the tensor product is given in the following

lemma.

Lemma 1 If {e;,ez,e3,..., en} is a basis for V with dual basis {el,ez, e3,...,eN}, then

e; ® €' is the identity endomorphism on V.

Proof. Let ve Vsov =‘ujej. Then
e:® e'v = (', v) e; = (', e} e; = v7 (&, e} e; = vible; = vie; = v.

Since e; ® e' maps an arbitrary vector v to itself, it follows that e; ® e is the identity
endomorphism. 1

A dual space is itself a vector space with the same dimension as the original vector space.
Thus V and V* are isomorphic. In general there is no natural (i.e. canonical) isomorphism
between them. If an inner product

-2 VPx VR

is defined for the vector space, we say V is an inner product space. This establishes a canonical
isomorphism given by a - b = (a, b) . In this case, any member of V or V* may be expressed
in terms of a basis from either vector space. This thesis uses inner product spaces and hence
the notation a - b will be used exclusively. Notice this means the tensor product acting as an
endomorphism may now be written as a® bv = (b-v)a where a,b,ve V.

In an inner product space, the dual basis becomes the reciprocal basis. If the bases defined
above are dual bases, in the inner product space they become reciprocal bases. Hence e'-e; = 6_‘,

If a vector space has an inner product defined on it, then it is always possible to find an

orthonormal basis for that space. The dual basis of an orthonormal basis is also orthonormal.

11



The set of endomorphisms on a vector space V is denoted £ (V, V). L (V, V) is also a vector
space over the same field as V. If V has dimension N, then £(V, V) has dimension N2.

If A € £L(V,V), then the transpose of A is denoted AT and defined to be the endomorphism
such that u-(Av) = (ATu) - v for all u,v € V. Let A,B,0,I€ £(V, V), 0 and I are the zero
and identity endomorphism respectively and a,b € V. The transpose operation can be shown

to have the following properties:

1. fA,B e £(V,V), then (A +B)T = AT + BT,

2. (AT)T = A,
3. 0T =0,
4. IT =1,

5. (AB)T = BTAT,
6. (A~1)T = (AT)7" if A is invertible.
Lemma 2 I[fa,beV, (a®b)T =b®a.

Proof. Let A=a®b and u,v € V. Then
u-(Av) =u-(a®bv)=u-(b-v)a=(u-a)(b-v) = ((u-a)b)-v.

But
(ATu) -v=u-(Av)=((u-a)b)-v
SO

(ATu)-v—((u-a)b)-v
(ATu—(u-a)b)-v = 0.

)
o

Since u and v are arbitrary, this implies

ATu—(u-a)b=0and ATu=(u-a)b.

12



But b®au = (u-a)b so ATu = b®au. Since u is arbitrary, it follows that AT = b®a.
Thus (a@b)T = boa B

Lemma 3 Ifa,be VandA € L(V,V), then (Aa)®b = A (a®b) anda®(Ab) = (a®b) AT.

Proof. Let u € V. Then
(Aa)®@bu=b-u(Aa)=A((b-u)a) = A(a® bu)

and since u is arbitrary, (Aa)®@ b= A (a®b}.
Let B = a® (Ab). Then

BT = (a® (Ab))T = (Ab)@a=A(b®a)
using the second property of transposes mentioned above. Taking the transpose again gives
BT =B=(A(b®a))"=(b®a)TAT = (a®b)AT.

Thus a® (Ab) = (a®b) AT. B
Lemma 4 Ifa,b,c,d €V, then (a®b)(c®d)=a® (b-c)d.

Proof. Let u € V. Then

(a®@b)(c®d)u = (a®b)(c®du)=(a®b)(d-u)c
= (d-u)(a®b)c=(d-u)(a®bc)
= (d-u)(b-c)a=(b-c)(d-u)a
= (b-c)(a®du)=(b-c)(a®d)u
= (a®(b-c)d)u.

But since u is arbitrary, (a®b)(c®d) =a®(b-c)d. B

The trace of T € L(V,V) is defined by trT = T§ where T} are the components of the
endomorphism with respect to some basis. Trace can be shown to have the following properties
(suppose A . Be L(V,V), A€ R):

13



1. Trace is independent of the component representation of A (or B).
2. tr(A + B) = trA+trB.

3. tr(AB) = tr(BA).

4. trAA = AtrA.

5. trAT = trA.
Lemma 5 Let V be a real inner product space. Then for alla,be V,a-b=tr(a®b).

Proof. Let {e;,eze3,...,ey} denote a basis for V with corresponding reciprocal basis
{el,e?,e%...,eN}. If a,b,u,v € V, we write these in terms of the bases as a = a'e;,
b= bjei, v = v*e; and u = ure*. Notice b and u are written in terms of the reciprocal basis.

Then

a®@bv = (b-v)a
= (bjej - v‘e;) aiei
= a'bjv’ (/e e
= abjv'tle;

= aiijj e;.

Since v is arbitrary, the component representation for a®b is given by @b, foralli,j € {1,2,3,...,N}.
IfT=a®b, then T e L(V,V) and T; = a'b;. By definition, trT = T’,g. Then

tr (a®b) = trT = T% = o*b;. (2.1)
Now consider the component form of a - b:
a-b=bje’ - a'e; = bja'e - e; = a'b;& = a'b;. (2.2)

Comparing equations (2.1) and (2.2) showsa-b=tr(a®@b). B

14



If V is an inner product space, then an inner product on £ (V, V) is defined by
AoB =tr(ABT). (23)

It is straightforward to prove this definition satisfies the definition of an inner product.
Lemma 6 (a®b)o(c®d)=(a-c)(b-d).

Proof. From equation (2.3),

(a®@b)o(c®d) = tr((a@b)(c@d)T)
= tr((a®b)d®c))
= tr(a®(b-d)c)
= (b-d)tr(a®c)
= (b-d)(a-¢)
= (a-c)(b-d)

using Lemmas 2,4 and 5. 8

2.2 Geometry of a Directed Rod

In this section, the geometric description of the rod in its undeformed and deformed states is
given. This description requires introduction of directors and the deformation tensor.

We assume the rod is embedded in a 3-dimensional Euclidean point space which is associated
with an inner product space. This inner product space is also known as the translation space.
We use the rectangular Cartesian coordinate system with the inner product as the usual scalar
product for vectors. The natural basis is denoted {e;, ez, e3} with dual basis {e!,e?,e*} and
in the rectangular Cartesian coordinate system these bases are orthnormal so e; - e; = §;; and
e -el = §7  In fact we can identify e; with e* as the same vector so e; = e fori = 1,2,3 .

Thus we may freely raise and lower indices as required using these bases.

15



2.2.1 The Curve and Curve Parameter

The rod is modelled as a curve with additional structure associated at each point on the curve.
The curve is called the rod axis. Since we’re interested in deforming the rod, we need to consider
two curves and their additional structure and the mappings from one curve with its structure
(representing the undeformed rod) to the other (representing the deformed rod).

For the moment, we’ll represent the deformation by the notation F without specifying how
F is defined. We assume that however F' is defined, it will have the appropriate properties of
continuity and smoothness.

The directed rod is said to be in a reference configuration prior to deformation. To denote
this, various symbols are subscripted with the letter R. The R does not assume any numerical
value - it a notational convenience.

Let the rod axis in the reference configuration be denoted by rg : [ag, bg] — R3 and the rod
axis in the deformed configuration be denoted by T : [a, b] — R3. We use sg as the parameter
for rg : [ar,br] — R and s as the parameter for T : [a,b] — R3. Then the deformation F

includes a mapping from sg to s denoted by
F
Sp — S.

Thus we write

rr (sRr) —— F(s) (2.4)

where is it understood that the s on the right sidc.a is obtained from the sg on the left side via
the transformation F'.

Denote the function between s and sg by s = f (sg) where the function f : [ag, br] — [a, b]
is assumed to be continuous, have first derivatives, is monotonically increasing, f (eg) = a and

f (br) = b. The curve in the deformed state is a function of sg by

£(s) =7(f (sr))

and thus the deformed curve may be expressed in terms of the reference configuration parameter.

Define r =T o f where e denotes function composition. Then
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v (s) =T(f(sr)) =r(sr) (2.5)

so T (s) and r (sg) trace out the same curve, but with a different parametrization.

Differentiation with respect to the parameter sg is denoted by ‘. From elementary differ-
ential geometry, %ﬁ (sr) = r'y is a tangent vector to the reference curve at any point along
the curve. In the deformed configuration, a tangent vector to the curve is given by 4 (s).
The relationship between tangent vector g and the vector 3;‘—‘;- is obtained by differentiating
equation (2.5) with respect to sg and applying the chain rule:

where A = d—% = f’(s). Since f is assumed to be monotonically increasing, A > 0 for all sg.

Notice this implies fi= and £ are parallel to each other. Thus a tangent vector at each point on
the deformed curve may be obtained by differentiating the curve with respect to the reference
parameter. r’ is used as a tangent vector to r (equivalently T) throughout this thesis.

Notice the function f may be selected in infinitely many ways. The simplest way is to

choose f is to be linear.
Lemma 7 There is a unique linear function satisfying the requirements for f.

Proof. The proof consists of demonstrating the function. Since f : R — R and f is linear, it
must be of the form f (sg) = Asg + B for some coefficients A and B. Since f(ar) = a and

f (br) = b, the following equations must be simultaneously satisfied:

Aar+B = a,

Abp+B = b.

or

ap 1 A\ a
bp 1 B)
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Since br > ap,

ap 1
det =agp—br#0
b 1

T
so a solution exists. Since b > a, ( a b ) is not the zero vector so the solution

-1
A ap 1 a

B br 1 b
is unique. Completing this calculation gives

A a—b

— ar—br
_brpa—agbd
B ar—bg
SO
a—b bra —agb
Sp— .
ar — br ar—br

f(sr) =

Finally, note A > 0 since a — b < 0 and ar — br < 0 which means A = f’(sg) = A is always
positive. Thus this unique linear function satisfies the requirements for the transformation
between the parameters in the reference and deformed curve. @

This last lemma demonstrates it is always possible to find a desired transformation between
the parameters. The transformation does not have to be linear: it only has to satisfy the

requirements for f given above.

2.2.2 Directors

At each point of a curve, there is a tangent and cotangent space. The additional structure of the
directed rod is defined in terms of these spaces. Specifically, at each point along either curve,
we select three linearly independent vectors from the tangent space. These vectors are known
as the directors and are denoted as dg;, dge and dgs in the reference configuration and d;,d;
and d3 in the deformed configuration. Since they are linearly independent and the dimension
of the tangent space is three, the directors form a basis for the tangent space. A directed rod
with directors shown at one point is illustrated in Figure 2-1.
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Figure 2-1: Diagram Showing Rod Axis and Directors at a Point

Since there is a tangent space at every point along the curve and we select directors in
each tangent space, it follows that each of the directors dg1,dg2 and dg3 are functions of the
parameter sg and the directors dy, d2 and d3 are functions of s. We assume these functions

are continuous and smooth and denote the transformation of directors as
F 5 .
dgr; — d;, :=1,2,3. (2.6)
Each of the directors in the deformed configuration is a function of the reference parameter by
a-‘i (S) - a‘i (f(sR)) = di (SR) 1 1= 1: 23 3

and we may write d; = d; ® f. In order to use the same parameter for all quantities, we use
d,,d; and d3 as the directors in the deformed configuration.

The collection of all sets of directors at all points along the rod axis defines the additional
structure of the rod. Any point in the rod is given as a linear combination of the directors and
the curve rg (in the reference configuration) or r (in the deformed configuration).

Although the directors may be any linear independent set from the tangent space, we
introduce the constraint that one of the directors is always tangent to the curve at any point
along the rod axis. In most cases, we choose the notation so dgs (or d3) is the tangent vector

to the curve and thus dr3 = r; and d3 = r’. This identifies dr3 (or d3) with the placement
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of the rod axis. The two dimensional subspace spanned by dg1 and dgrz (or d1 and d3) may
be thought of a cross-section of the rod at any point along the curve. With this constraint, the
directed rod is called a real rod.

For the directors {dg1, d g2, dgrs}, the reciprocal basis is denoted {d}, d%,d}}- Similarly,
{d!,d?,d3} is the reciprocal basis for {d1,d2,d3}. The following lemma is useful in relating

the directors and their derivatives.
. . 4 . .
Lemma 8 df; -d% +dpg; - (dJR) =0andd;-d? +d;- (d’)' =0 foralli,je {1,2,3}.

Proof. Since {dgm,drs,drs} and {dk,d%,d%} are reciprocal bases, dg; - d = & for all
i,j € {1,2,3}. Differentiating this equation with respect to sg gives

.\ AN
(drc- ) = (81) =0
and applying the product rule for differentiation gives
. . \7
R dh+dri- (d) =0.

The proof for d’ - d7 + d; - (d7 )' =0 is analogous. @
The following definitions of symbols will also be helpful in dealing with the inner product
of directors and derivatives of directors. The idea here is to express derivatives of directors in

terms of the basis of the directors:

B =d &, o =dy; - df, 7 = (dY) - d;, 7%, = (dk) - day (2.7)
SO
di = Eld;, dp; = Fdr;, (&) =Vjd’ and (df) = Thjdh. (2.8)

Since {df, dj, d3}, {d;, da da} { (@)’ (d7)', (@)} or { (dR)’, (d)’, (d%)'} are Linearly
independent sets, then the inverse of the quantities defined in equation (2.7) are also useful.
Define u‘Z , u‘}'ﬁ, uj- and Utkj such that

Béul = 6, Bhudy, = 6, ?5v] = 6] and P, = 6 (2.9)
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in which case

. . . . ot i R N/
di = pld}, dp: = pydp;, d = v} (&) and df = vk, () - (2.10)
Using these notations in the result of Lemma 8, we have
B + P =0and & + 7% = 0. (2-11)

2.2.3 Director, Wryness and Deformation Tensors

We introduce three second order tensors which are useful in describing the rod and its behavior

under deformation. These tensors are members of 77! (V) where V is the translation space

corresponding to the Euclidean point space. As such, tensors are linear maps between members

of the translation space: i.e. if X € T} (V), then X : V — V and X is linear. 7! (V) is itself a

vector space of dimension nine. A basis for 7;! (V) is given by the set {e; ® e : 4, j € {1,2,3}}.
The director tensor is defined by

Dségdi®ej=di®ei

and describes the distribution of directors along the rod axis. The director tensor maps a vector

expressed in the natural basis {e;, e;, 3} into the corresponding vector in the director basis.
Lemma 9 Ifv =1/ej, then Dv = v7d;.

Proof.
Dv =d; ® elv'e; =17 (e -ej)d; = vicf}d,- =v'd;. W

Corollary 1 De; = d;.
Proof. If v = e;, then v/ = 6{ and from the proof of the lemma, De; = 6{dj =d;. B
Lemma 10 The director tensor is invertible and the inverse is given by

Dl =¢6e;0d =e; 0d". (2-12)
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Proof. The proof that the director tensor is invertible will follow from demonstrating that

D™! is the inverse of D.
DD ! = (d;®¢€') (e;®d’) =d;: @ (¢! -e;) d =d; ®6:d’ =d; @ d°

using Lemma 4. By Lemma 1, DD~! = d; ® d* is the identity tensor. Since DD~! maps an

arbitrary vector to itself, then D! is a right inverse to D. Now consider
DD = (e,®d‘) (d,-@ej) =ei®(di»d,-) e7=e,®5;e’ =e¢®ei

using Lemma 4. By Lemma 1, D-1D = ¢; ® €' is the identity tensor. Since D™D maps an
arbitrary vector to itself, then D~! is a left inverse to D. Since D! is both a left and right
inverse to D, then D1 is the inverse of D. B

The wryness tensor characterizes the differential geometry of the rod describing how the
directors are changing along the rod axis. This tensor is defined by

W=sidied =d;@d".

It has the effect of mapping a director to its first derivative with respect to the curve parameter.
Lemma 11 Ifv =17d;, then Wv = vid.
Proof. )
Wv = d} @ d'v’d; =7 (d° - d;) di = v76d; = +'d;. &
Corollary 2 Wd; =d!.
Proof. If v = d;, then v = &} and from the proof of the lemma, Wd; = §{d; = d}. ®

Lemma 12 The wryness and director tensors are related by
W =DD1

Proof. From D = d; ® €f,
D' = (d,'@ﬁi)l = di@e"
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since €' is a constant vector and doesn’t depend on sg. Then from equation (2.12) and using

Lemma 4,
D'D7!' = (d;®e’) (e;®d7) =d;® (¢'-¢;)d’ =d} ® 6id’ =5;di @ d’

which is the definition of W. Hence W = D’'D~!. @

The notation Dz and W g refers to the director and wryness tensors in the reference con-
figuration. In this case, all the directors in the definitions of the director and wryness tensors
would be reference directors.

We can now define a second order tensor describing the deformation from the reference

configuration to the deformed configuration. The deformation tensor is defined by
F =DD;.
Lemma 13 The deformation tensor is expressed as a tensor product by
F = §id; ® dh = d; ® df. (2.13)

Proof. From equation (2.12),
Dpl=e;® di

so using Lemma 4,
F=DD7' = (di®¢) (e; @ d}) =d; ® 8id} = 8id: @ d; = di @ df

which verifies equation (2.13). B
Note the important property of F: it maps vectors describing the rod in the reference

configuration to the corresponding vectors describing the rod in the deformed configuration.
Lemma 14 Ifv = v'fzdgk, then Fv = vfld,-.

Proof. If v = vidgsk,

Fv =d; ® dijv = (d} - v) d; = v§ (dk - dri) di = vE6pd; = vhd;. @
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Corollary 3 Fdpi = dg-

Proof. In particular, if v = dgi so vh = &}, then Fv = Fdge = §3d; = d;. @

Thus the deformation tensor maps a reference director into its corresponding director in the
deformed configuration.

In the next lemma, we derive expressions for FT, F~! and (FT) ~!which will incidently prove

the deformation tensor and its transpose are invertible.

Lemma 15 With the deformation tensor defined by equation (2.13),

FT =§d,0d;:=d;®d;, (2.14)
F!'=6dn®d =dm®d’ (2-15)

and
EH) 7 =(FN = §d’ @ dp: = d* @ dgi- (2.16)

Proof. Taking the transpose of both sides of equation (2.13) gives
FT = (d; ®d)" =d,®d;

using Lemma 2. This demonstrates equation (2.14).

To prove equation (2.15), evaluate FF~! as a tensor product using Lemma 4.
FF ! = (d; ®d}) (dr; ®d’) =d; @ (d} - dg;) & =d: @ i =d; @d".

By Lemma 1, FF~! = d; ® d? is the identity tensor. Since FF~! maps an arbitrary vector to

itself, then F~1! is a right inverse to F. Now consider
F7'F = (dr: ® &) (d; @ d}) = dr: @ (d' - d;) &} = ds ® 6}d% = dm @

using Lemma 4. By Lemma 1, F~!F = dg; ® d%, is the identity tensor. Since F~IF maps an
arbitrary vector to itself, then F~1 is a left inverse to F. Since F~! is both a left and right

inverse to F, then F~! is the inverse of F.

24



To prove equation (2.16}, take the transpose of equation (2.15):
FN' =drod) =d'®dx

using Lemma 2. The result (F‘l)‘r = (FT) ~! is given as one of the properties of transpose. B
Corollary 4 FTd® =d%, F~ld, =dg, and (F~1)Td% =d°.

Proof.
FTd® = d} @ did® = (d; - d%)d% = §2d% = d%,

F~!d;, =dp; ®d'd, = (d° -d.) dri = §;dri =dga

and

(F-I)Td?l=di®dﬁi aR=(dRi' ‘k)di=6gdi=da

which proves the statements of the corollary. B

Thus FT maps the dual of the directors in the deformed configuration to the corresponding
dual of the directors in the reference configuration, F~! maps a director in the deformed con-
figuration to the corresponding director in the reference configuration and (F‘I)T maps the
dual of the directors in the reference configuration to corresponding dual of the directors in the
deformed configuration.

Lemma 16 The relationship between the wryness and deformation tensors is given by
W=FF ! 4+FWxrFL (2.17)
Proof. Since F =d; ® di, F' = (d; ® d})’ =d! ® d; +d: ® (d%)’. Then

FFl = (d;- @di+d; ® (d"R)’) (dr; ® &)
= (d®d}) (dr; @ d) + (d: ® (dk)") (dr; @ &)
= d;® (di-dry) & +d; ® ((dk)’- dr;) &
d; ® 5;d’ — d; ® (dy - dfg;) &’
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= d{®@d -d; ®ukd’

where the second last step uses Lemma 8 and the last step uses the definition given in equation

(2.7). The second term evaluates as
FWRF™' = (d;@d}) (dk; ®@dh) (dre @ d*)
= (diod) (dr; @ (dk-dre) d*)
= (di®dy) (dk; @ (6) &)
= (d:®d) (dk; 8 d)
= d; ® (d%-dg;) &

= d; ® fig;d’.

Then
FF'+FWpF! =d @d - d; ® Tg;d’ +d; @ ik;d’ =d;®d".

But by definition, W = d! ® d* and therefore W = F'F~! + FWirF-1. &
In Lemmas 10 and 15, the tensor product forms of D~'and F~! were derived. An analogous
result for the wryness tensor is not as simple. In fact, the wryness tensor may not have an

inverse. If W is invertible, the next lemma provides the expression and derivation of W—1.
Lemma 17 Using the definitions in equations (2.7) and (2.9), W™l =d; ® uid’.

Proof. Find the tensor product form of WW ™! and W~'W and verify it is the identity

tensor.
WW = (d; @ d) (d; @ 1fd*) = d @ iuld* = d| ® ujd*
using Lemma 4. Let v = v/d;. Then
WW-ly = d} @ pid*vd; = vipf (d° - d;) df = o/piébd] = vipid] = vid; = v
using equation (2.10). Since WW™! maps an arbitrary vector to itself, then W1 is a right
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0 | O Expressed As | ()T Expressed As | ()~! Expressed As (()“1)T Expressed As
a Tensor Product { a Tensor Product { a Tensor Product a Tensor Product

D d;®e* et ®d; e;d* d ®e;

W died d'e® d; d; @ pid’ d’ ® puid;

F d: @d% di; ®d; dp: ®d* d* @ dp;

Table 2.1: Tensor Product Expressions for The Director, Wryness and Deformation Tensors

inverse to W. Now consider
WoIW = (d: @ pid*) (df @ &) = d; @ iifd’ = d; @ 6id? =ds @

using Lemma 4. By Lemma 1, W-IW = d; ® d* is the identity tensor. Since W~1W maps an
arbitrary vector to itself, then W-1 is a left inverse to W. Since W1 is both a left and right
inverse to W, then W—! is the inverse of W. B

Notice the inverse for the wryness tensor is more complicated than that of the director or
deformation tensors. This is due to the presence of the derivative of the director in the definition
of the wryness tensor. The wryness tensor is invertible if {d}, d),d}} is a linearly independent
set. Equivalently, the wryness tensor is invertible if the matrix of coefficients ‘fi_‘, has a nonzero
determinant.

It is possible to derive tensor product expressions for DT, (DT) = (D"I)T, WT and
(WT) gl (VV“)T . The method for proving these tensor product forms is completely anal-
ogous to that of Lemma 15. Rather than showing these calculations in detail, the results are

summarized in Table 2.1. The notation () refers to any of D, W or F.
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Chapter 3

Mathematical Preliminaries to

Deriving the Field Equations

In the next two chapters, the field equations for the directed rod model will be derived. These
required some sophisticated mathematical tools. The purpose of this chapter is to develop these

tools as general results.

3.1 Calculus of Real Inner Product Spaces

In this section, we derive the calculus of real inner product spaces. Spivak [12] has done this
for maps of the form f : R® — R™ where n and m are any positive integers. A more general
treatment for calculus on Banach spaces can be found in Lang [16],{17]. We develop in detail
the differential calculus of general vector spaces V and U with maps ¢ : V — U.

In the following definitions and theorems, let V, U and W denote inner product spaces with
inner products (,); :VxV =R, {(,}o:U xU — Rand (,); : W x W — R and corresponding
norms |v|; = /{v,Vv), for any v € V, |u|, = \/{u, u),for any u € U and |w|; = V (W, w)zfor

any w € W.

Definition 1 Limit: Leta €V and ¢ : V — U. Then limy—a @d(v) = u where u € U is the
limit as v approaches a of ¢ if for every € > Q, there ezists § > 0 such that [p(v) —uj; < €

whenever [v — al; < 8. u is called the limit of ¢ at a.
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Definition 2 Continuous: Leta € V and ¢ : V — U. If ¢ (a) is defined, limy—a @ (V) ezists

and limy_.a @ (v) = ¢ (a), then ¢ is said to be continuous at a.

Definition 3 Differentiable: Leta € V and ¢ : V — U. ¢ is said to be differentiable at the

point a if there erists a linear transformation A : YV — U such that

i 8@ +R) —g(a) — AW, _
h—0 fhl,

Definition 4 Derivative: The linear transformation A : V — U appeering in the previous

definition is called the derivative of ¢ at the point a. This is denoted D¢ (a).

Lemma 18 If ¢ : V — U is differentiable at a € V, there is a unique linear transformation

AV — U such that
i 1802+ h) — 6 @) = A ()l _

0.

Proof. By definition, A exists. It remains to prove it is unique. Suppose { : V — U is a linear

transformation such that

L It h) 4@~y _,
h—0 th|;

For brevity, denote ¢ (a + h) — ¢ (a) by d (h). Now consider

A -¢M)ly _ o A®) —d(h) +d () — (),

) Thi, T b0 [
. JA(h) =d()l; . [d(h) - (h)],
S TR TRR T W,
= 0.

IfxeV andteR, then tx — 0 as t — 0. Then if x # 0, we may replace h with tx to get

. A(h)=¢Mh), . Ix(ex) = ¢ (ex)

o ], * = lim [, :

A (x) — ¢ (x)]

= lm e, :

L 1A GO = ¢ (ol
t—0 ltIIX|1
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MG - ¢l

|}

using the linearity of A and ¢. But

L 0 -l _
t—0 {tx|

SO

A0 ¢l _

0
Ix|

implying
A(x) =¢(x)-

This is true for all nonzero x so the functions A and ¢ are the same and thus the derivative is

unique. B
Lemma 19 Let ¢ : V — U is differentiable at a € V. If ¢ is linear, then D¢ (a) = ¢.
Proof. Substitute ¢ for A in the definition of differentiable to get

i 2@+ B) — 6 (@)~ 9 (h)ly _ | [6(a)+ 4 (h) —d(a) (), _

h—0 |h|; " h—0 (k]

using the fact ¢ is linear. Since the linear transformation called the derivative must be unique,

it follows that ¢ = D¢ (a). B

Theorem 1 (Chain Rule): Suppose ¢ : V — U is differentiable ata € Vand vy : U — W is
differentiable at ¢ (a) € U. Then the composition oo : ¥V — W is differentiable at a and

D (40 ¢)(a) = DY (¢(a)) o Dg (a).

Proof. For brevity, let u = ¢(a), A = D¢ (a) and g = Dy (¢(a)) = Dy (u). Define the

following maps:

p(x) =d(x)-¢(a) - A(x—a), (3-1)
CY)=v)-¢v(u)-ply—u), (3-2)
p(X) =9 od(X)—pod(a) —poA(x—a). (3.3)
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Then

i 22 _ 9 —d@) —Ax—a)l, _ (3.4)
x—a[x —a|, x—a [x —al;
and
tim SN _ o ) —Ypu)—ply—wls _, (3.5)
y—u |y—ul2 y—u ly — ul,
We wish to show
i s _ o Wod(x) —wos(a) —modlx=a)ls _,
fim e—al, — i I — al;

Now

p(x) = ¥((x))—¥(u) —p(A(x—-a))
= (@) -9 (u)—p(@x) -o(a) —¢(x))

from equation (3.1). Then

p(x) = (X)) —%)—pudkx)-9¢(@))]+plex)
= ((p(x) +pu(p(x))

since p is linear and using equation (3.2). Thus we would like to prove

ISCIC) (3.6)

x—°a [x —al;

and
lim |I‘ (‘P (x))IS = Q. (3.7)

x—a |x —al;

Consider equation (3.7) first.

lim (oGN3 _ o (@) —d(a) = Ax— a))ls
x—a [x —al; x—a |x - al;

where p is a linear transformation operating on ¢ (x) —¢ (a) — A (x — a). In the theory of vector
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spaces, it can be shown that [u (¢ (x))i; < M ¢ (x)|, for some positive real number M. Thus

i 12Nl o Mol _ o oGl
s Px—al Cxea [x—al; | x-ajx—al,

which establishes equation (3.7).

Now consider equation (3.6). Let y = ¢ (x). From equation (3.5) and by definition of the

limit, if ¢ > 0 and
1€ (¢ (x))I3
| (x) — ul,

there exists § > Q so [¢ (x) — uf, < § which is true if [x — a|; < §; for some §; > 0. That is,

<€,

IC(@(x))]3 < eld(x) —ul; =€lp(x) +é(a) +A(x—a) - d(a)l,,

1€ (@ (N3 < el (X) + A (x—a)l; <elp(X)l; +efA(x—a)l,.
But X is a linear operator on x — a so |A (x — a)|, < M |x — a|; for some positive real number
M and thus
I (6 (x))lz < elp(X)l; +eM |x —al;,
K@ _ le@lz ,

|x - al; |x — al;

and taking the limit through this inequality,

ACIC) S T c) 1A

x—oa [x al, x—a |[X — a|1

+eM.

But it has already been shown that

x—a |x — al; al,

SO

po @D _

x—a |x —al,
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and since € may be taken as close to 0 as desired, it follows that

@ _,
x—a |x-—al;
which establishes equation (3.6).
Since equations (3.6) and (3.7) are true,

o 1ol

=0
x—a |x — al;

which proves the statement D (¢ o ¢) (a) = D¥ (¢ (a)) o Do (a)- W

The above results are all we need for the model developed in this thesis. We now consider
how these results relate to that given in Spivak.

Here is a brief summary of differential calculus for functions of the form f : R* — R™ based
on Spivak [12]. If y = f(x) where x € R" and y € R™, then x = (z!, 22,25, -..,:z:“)T and
y=(Ly%y . y"‘)T represent the components of the vectors with respect to the standard
bases for R and R™. The function f : R* — R™ has component functions f* : R* — R
so ¥t = fi(z!,z%2%,...,2"). The derivative of f : ®* — R™ is defined to be a linear

transformation from R™ to ®™. Furthermore this linear transformation is the m xn matrix of the

partial derivatives of the component functions f!, f2, f3,..., fmwith respect to the coordinates
z! 22,23, ... =™, again defined with respect to the standard basis for R” and R™. That is,
arf! aft .8 1 oft
(%5 %55 - 85 )
8f2 LY F ] 2 F.) 2
— afs afrs  af afs
prw-| % % & - &
afm™ 9fm™ @ af™
\ —8:L1 oz 73% R T )

where D f (a) denotes the derivative of f at some point a € R™.

The derivative of f or ¢ is only defined at a particular point. However, there are many
things which are true about derivatives at all points (where the derivative exists) and hence
it is convenient to use the notation Df or D¢. It must be understood that these symbols

stand for an entire class of linear transformations and D f (a) is not necessarily the same linear
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transformation as D f (b) if a and b are different points.

The connection between calculus on mappings such as ¢ : V — U and that given by Spivak
occurs when we select bases for V and U, which is normally what we must do in order to solve
specific problems. Suppose V has dimension n and a basis for V is {v, V2, v3, ..., va}. Suppose
U has dimension m and a basis for & is {u;, uz2,us,...,um}. Then foranyveV ,v= viv;
and for any u € U, u = v*u;. A mapping ¢ : V — U becomes a mapping ¢* : R* — R™ because
the choice of a basis for V and U establishes canonical isomorphisms V «— R" and U «—— R™
defined by the components of any vector with respect to its basis.

Let o denote this canonical isomorphism from V to R™ (i.e. ¢ : V — R™) and let x denote
this canonical isomorphism from U to R™ (i.e. p: U — R™). Then at any point a € V,
o (a) = (a',a?%,d3,..., a.")T where a =a'v;. Similarly if b € U, p(b) = (b,4%,63,..., b"‘)T
where b =b*u;. The canonical isomorphisms are defined by the bases chosen.

Since o and p are isomorphisms, they have inverses o~! and p~! and naturally these give
o1 ((a.l, a?, a3, .. .,a")T) =a

and

p (6%, 0% . 6™)T) = b
Thus, if ¢ (a) = b, we automatically have ¢* (¢ (a)) = u (b), or in longer notation,
o* ((a.l, a,ad,..., a")T) = (b1, 62, B3, ..., b"‘)T )
Lemma 20 ¢ = p~lo¢® oo and ¢* = podpoo'.

Proof. ¢* (o (a)) = ¢ (b) which can also be written as ¢* oo (a) = u(b) . Then

pl(¢* oo (a)) =p7 (u(b))

which can also be written as

plog®oo(a) =b.
But ¢ (a) = b and since a is arbitrary, it follows that ¢ = u~1 o ¢* 0 0.
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Consider ¢ (a) = b and

a=c"1 ((a.l, a%, a3, ..., a.")T)

so

¢ (a"1 ((a.l, a%,a?, ...,a") T)) =b
which can also be written as

poot ((a.l, a?,a3,..., a")T) =b.
Then

u(s007 ((@"a% ... 0")7)) = (b)

which can also be written as
T

podoot ((aha%a®,...,a"") = (1,821, .. ™)

But
¢ ((at,a?a%...,a")T) = (61,630 L bmT

so it follows that ¢* = pogpoc~t. B

Lemma 21 The isomorphisms o and p are linear.

Proof. Let a,b € V. Let £k € R. Let {V1,V2,V;;,..-,Vn} be a basis for V, so a = a*v; and

b = biv;. Then ka = ka*v; and
o (ka) = (kal, ka® ka3, ..., lc:a.")T .

However,

ko (a) = k (a!,a?,d?, ... ,a"‘)T = (kal, ka®, ka®,..., ka")T

(e

o(ka) = ko (a).
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Now consider

a+b=dv,+bv; = (ai + bi) vi.

Then
o(a+b) = (al +bl,a2+bz,a3+bs,...,a“+b")T.

However,

c(@)+o() = (a'dds..., a")T + (b, 0%, 65,.. ., b")T

= (a1+b1,a2+62,a3+63,...,a"-{-b”)T

sooc(a+b) =c(a)+o(b).
Since o (ka) = ko (a) and o (a + b) = o (a)+0 (b), o is linear. The proof for u is identical. B
We now consider the relationship between the derivative D¢ (a) and D¢* ((al, a%,ad,..., a")T) .

Lemma 22 D¢ (a) = u~ o D¢" (0 (a)) oo and D¢* ((al, a2,a3,..., a")T) = poD¢(a)oo™ .

Proof. Using Lemma 20 and the chain rule gives

D¢(a) = D(ulog*o o) (a)
= Du (¢ o0 (@) oD (4" 00 (a))-

But we can apply the chain rule to D (¢* o o (a)) and get
D (¢* oo (a)) = Dg" (0 (a)) o Do (a)

so

D¢ (a) = Dp™' (4" 00 (a)) o D¢" (0 (a)) o Do (a) -

But Dp~1(¢* oo (a)) = p~! since u~! is linear and Do (a) = o since o is linear so

D¢(a) =p~' o D¢" (0 (a)) o0
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which is the desired resuit. Then

1 (Do (a)) = o Dé (a) = Dg" (o (a)) o 0

and

poDe¢(a)oa™! = D¢* (0 (a))

or

D¢ ((e'a*a%...a")) = o Dg(a) oo™

which is the other result to be proved.

Thus the derivative in the general vector spaces V and U relate to the derivative in the spaces
R™ and R™ exactly the same way as the original functions ¢ and ¢* as described by Lemma
20. Since this result doesn’t depend on the specific point a, we may write D¢* = po Dpoo~t
at any point where ¢ has a derivative.

Given the mapping ¢ : V — U, we've defined the corresponding map ¢* : R* — R™ which
depends on the basis {v;, va, V3, ..., Va} chosen for V and the basis {u;, uz, us, - . ., um} chosen
for U. If different bases were chosen, say {¥1,V2,V3,...,V,} and {U, U2, Us,...,Un}, this
would give rise to a different corresponding map 3‘ : R* — R™. We consider the relationship
between the derivative of ¢* and the derivative of é .

Recall if two different bases are chosen for a vector space V, the members of one basis are
related to the other basis by a change of basis matrix. Let V = [VJ‘] denote the change of basis
matrix from {vi,v2,V3,...,Vn} to {¥V1,V2,¥3,...,V,}. That is, ¥; = V}v;. The matrix V is
invertible and its inverse is denoted V = [VJ‘] Of course this is the change of basis matrix
from {¥1,V2,V3,...,Va} to {v1,Vv2,V3,...,Va} sov;= V;-k?k. Similarly, in the vector space U,

the change of basis matrices are U = [UJ‘] and U = [ﬁ;] defined by U; = U}u.- and u; = ﬁf‘ﬁk.

Lemma 23 Suppose v € V with representations v'v; and 3°¥; in two different bases

{v1,v2,Vs,...,vn} and {¥1,¥2,¥3,...,Vs}. Then the components v* and v* are related by

vt = VJ-"uAj and vt = ‘71-"1)-7_.

Proof. Given v = v'v; = 55V, and using v; = V¥V, as described above, then v*V¥ ¥, = 5V,
or viVi"i"k — 9*Vr = 0 . That is, (viV;" -'ﬁk) Vi = 0 and since {V,V2,V3,...,V,} are lin-
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early independent, it follows that v*¥*¥ — 7 = 0 and thus 3 = V¥v. On the other hand we
could use ¥ = Viv; as described above so viv; = 7*V}v; and viv; — 5*V}iv; = 0. That is,
(v' = 3*V}{) vi = 0 and since {vy,Vs,Vv3,...,V,} are linearly independent, v* — 5%V} = 0 and
thus v* = Vio7. @

The analogous result for a member of the vector space U is u* = Uf## and T* = ﬁ;uj . Notice

these results can be written as the following matrix equations:

(W1, 0% 08,00 = v (8,9%,8°,---, 597,
'51,'172,'1?3,~-,§")T = T?(ul,vz,vs,---,v")'r,
(ul’u2’u3’._.,un)T = U ﬁl‘ﬁ2’ﬁ3,_“’an)'r and
(ﬁl,ﬁz,ﬁs,---,ﬁ.")T = ﬁ(ul,uz,u:s,---,u“)'r.

Lemma 24 Let o denote the canonical isomorphism from V to R™ for the basis
{v1,v2,Vv3,...,vp} and let G denote the canonical isomorphism from V to R™ for the basis

{¥V1,¥2,V3,...,Vn}. Theno=VG and5 = Vo.

Proof. Let v € V with representations v*v; and %*V;. Since

o(v) = (v}, 4% 4%, -, oM 7T and 5 (v) = (34,935,385, ---,3")7,
then
g (v) =V (2}, 0% 4%, -'~,u")T =Vo(v)
and
o(v) =V @#,3%5%---,5) =V&(v).

Since v is arbitrary, we may write 0 = V5 and 5 = Vo. B

Lemma 25 If i denotes the canonical isomorphism from U to R™ under the basis
{u1,uz,us,...,un} and @i denotes the canonical isomorphism from U to R™ under the basis

{ﬁ].) ﬁza ﬁ-?n ceey ﬁfm.}: then ﬁ—l = II-IU-
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Proof. Applying Lemma 24 to the vector space U gives u = Uz and i = Up. Then

1

pofiTl =URop™' =U

and
pltopon™ =p7lU,
that is, i7' =~ lU. B

Lemma 26 Let ¢ : V — U. Let ¢" : R — R™ be the corresponding map which depends on

the basis {vy,va,Vs,..., v} chosen for V and the basis {uy, uz, U3, ..., un} chosen for . Let
d : R™ — R™ be the corresponding map which depends on the bases {V1,V2,Vs,...,Vp} and
{4y, U2, 03,...,Um}. LetV, ¥, U and U be the change of basis matrices as defined above. Then

D¢* =UD@ V and D = UD¢*V.
Proof. From Lemmas 20 and 22

p=plog*co=flos o5
and
D¢=p"10D¢'oo’=ﬁ_loD$‘oa.

1

From Lemmas 24 and 25, 7 = Vo and 2~ = u~ U so

g loDg¢*od =p"WoD¢ oVo

and it follows that D¢* = UDg V. Inverting this procedure gives D¢ = UD¢"V. R

Note this result agrees with the actual representation as matrices. In the product U Da.‘?,
U is an m by m matrix, D¢ isanm by n matrix and V is an n by n matrix so the product
is an m by n matrix. But D¢"® is also an m by n matrix. Thus the derivatives D¢* and Da‘
are related by the change of basis matrices. This means that in applying these results to a
particular problem, we can choose specific bases to work in. If we need to use different bases,
we multiply results appropriately by the change of basis matrices. Of course it is exactly the

same derivative for the transformation ¢ between the underlying vector spaces V and U.

39



We now consider applying these results to a special vector space. Let V denote some vector
space of dimension n and let £ (V) denote the set of linear transformations from V to V. It
is straightforward to show £ (V) is also a vector space having dimension n2. However, unlike
an arbitrary vector space, it is possible to unambiguously define a binary operation on L (V)
which, together with £ (V), form a group. This makes £ (V) an associative algebra. Of course,
since L (V) is a vector space, we can apply the vector space calculus to £ (V).

The binary operation on L (V) is really function composition. If R, Q, ¥ € £ (V) and
v € V, then Fv and Qv are members of V, and so are RFv and FQv. Thus the products RF
and FQ are also members of £ (V). Our interest is in relating the derivative of a function ¢
at F to the derivatives of ¢ at RF and FQ. That is, to examine at the effect of left and right
multiplication by constants on the derivative.

Let ¢ : L(V) — R. Then D¢ (F) is some linear transformation from L (V) into the real
numbers. That is, D¢ (F) € L(L (V),R). Notice in this case D¢ (F) is in the dual space of
L (V). Thus L(L (V),R) is isomorphic to £ (V) . If we assume an inner product on £ (V), there
is a canonical isomorphism between £ (£ (V),R) and £ (V) and we may naturally identify any
member of £ (L (V),R) with a member of £ (V). This means the binary operation on £ (V)
can be applied to D¢ (F') and members of £ (V).

Theorem 2 Let R, F € L (V) and RF denote their product (function composition). Consider
¢: L(V) = R . If ¢ is differentiable at the points F and RF, then

D¢ (F) = RTD¢ (RF)

where the right side is understood to be the product of the transpose of R with D¢ (RF).

Proof. We assume a basis for £ (V) which establishes a canonical isomorphism o : £ (V) — R™.
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Let X = RF. Then under the isomorphism o, F has n? components and forms an n by n matrix:

(Fi B} R} B
c®)=| F} F F - F
\ Ff 5 F§ - F2)

¢* maps this matrix to a real number and we consider ¢* to be a real valued function of
n? variables. Then D¢* (o (F)) is a linear transformation given by a 1 by n? matrix whose
components are the partial derivatives of ¢* with respect to each component FJ‘ However, we

may write D¢" (o (F')) as an n by n matrix:

aFf o@F} oF} 9F}
% % i o o
D¢t (0’ (F)) = g%:j g%‘;i g% - gF;{ . (3.8)
\ % % & - &)

Notice in this form D¢"* (¢ (F)) may be thought of a linear transformation from V to V. Applying

this to the linear transformation X gives the matrix:

[ 8¢ 8e" 8¢° . B& \
axXT ax} ax} axt
ag°  ae°  9¢” . . 09"
aX? aXZ 9x3 axz
Dé* (o (X)) = | 8¢ o8¢ ae .. 8 || (3.9)
¢* (o (X)) axXT 9x3 9x3 ax3
Xy 09Xy Xy axz

But X = RF for some R € £(V). Then in component form, we must have XJ‘: = R}cFJ" Now
we're interested in the relationship between D¢* (o (F)) and D¢* (o (X)). Since these are both
n by n matrices, we consider the relationship between g—% and g%. XJ‘Z is a function of the
components FF so these partial derivatives can be related. From the chain rule in multivariable
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calculus (fixing indices k and l), we have

o¢* BX‘
3F" ;;ax;apk
Now
3Xt . R . i -
3Fk (Rm,) Fk(RF + RyF2 + RLF3 +---+ RLFT) = 6] RL
SO

99" i i ; 09"
af* ZZ:ax*‘sﬂ':‘ ZRkaxr

i=1 j=1
This result looks like the (k,{) entry of the product of two matrices. R has the matrix repre-

sentation

(Rl R} R} -~ RL) (R} R} R} --- R}
R} R} R} - R Ry B R} - R
cR)=| R} R} R} --- R} | soo(RT)=| R} R} H§ R}
\ R R} R} - R \RL R R - Rp)

Looking at o {RT) D¢* (o (X)) in its matrix form gives

2 86" 94~ 04 a°
( R} R} R} --- R} ) ( aXT 3x3 ax} aXL )

1 p2 PR3 8¢ 8¢° 94 a¢°

R; R; R --- R} aX7 0XZ 0X3 ax2

1 2 3 . n aé. 8o 90" . a!-

Ry R3 Ry R3 ax3 oax3 ax3 ax3

1 p2 R3 ... pn ) as" 8¢~ 94" a¢°
\ B R R R\ % % )

=
a3

whose (k, 1) entry is 3 - R;b-% Thus 5%,: is the (k, {) entry of the above matrix multiplication
and D¢* (o (F)) = o (RT) D¢* (¢ (X)). Since X = RF, then D¢" (¢ (F)) = o (RT) D¢* (o (RF)).

This result does not depend on the basis chosen for £ (V), (i.e. the function o could be any
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isomorphism), so it follows that
D¢ (F) = RTD¢ (RF)

relating the derivative of ¢ at F to the derivative of ¢ at RF. B

Theorem 3 Let Q, F € £ (V) and FQ denote their product (function composition). Consider
¢ L(V) = R . If ¢ is differentiable at the points F and FQ, then

D¢ (F) = D¢ (FQ) Q"

where the right side is understood to be the product of D¢ (FQ) with the transpose of Q.

Proof. We assume a basis for £ (V) which establishes a canonical isomorphism o : £L(V) — R™.
Let X = FQ. Then equations (3.8) and (3.9) as given in the proof of Theorem 2 still hold.
This means X} = F5,Q7. From the chain rule in multivariable calculus (fixing indices k and

l), we have

. ox;
gﬁk Z Z g;; oFF
Now :
o = o (.07 = o (F1Q} + FIQ} + FIQS -+ FI}) = 810}
SO

" .
aFk ZZ ax-.é-;cQJ Z axk

=1 =1
This result looks like the (k,!) entry of the product of two matrices. Q has the matrix repre-

sentation
(QF Q@ Q@ --- @) (QF @ @ - Q)

Qt @3 &4 - @ Q @3 @ - @
c(Q=| Q@ @ @ - Q1 |s0c(@Q)=| & @ o - @

\ @ Q3 Q1 - Q1) \ Q. Q2 @2 - Q1)
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Looking at D¢* (o (X)) ¢ (QT) in its component form gives

o 28n 2er . 9\ /o1 o2 on

( ax! axi oax} X1 ( Qi Qi @ --- QF \
8¢ 8¢ 988" 9" L A2 3
X2 axZ 9xZ aX2 Q; @ Q@ --- QF
d¢° d¢° 90° ag* 1 2 3 . n
X3 3x3 oax3 =~ 9x3 Q; Q3 Q3 5
36°  3d" 9" 3¢ ) 1 A2 A3 ... On )

\ axX7 0X3 9Xg T aXgp \ Qn Qn Qn Qn

whose (k, 1) entry is 37, :%;.L;Qg.- Thus 22 is the (k, [) entry of the above matrix multiplication

2 !
and D¢* (o (F)) = D¢" (¢ (X)) o (QT). Since X = FQ, then D¢* (¢ (F)) = D¢" (o (FQ)) = (QT).
This result does not depend on the basis chosen for £(V), (i.e. the function o could be any

isomorphism), so it follows that

D¢ (F) = D¢ (FQ) QT

relating the derivative of ¢ at F to the derivative of ¢ at FQ. &

The final consideration in this section concerns derivatives of functions of two vectors:
that is, ¢ : V x ¥V — U. In particular we are concerned with how to differentiate with re-
spect to one slot, but not the other. To do this, we define ¥ (v) = ¢ (v, w) for any fixed w
and define the derivative of ¢ with respect to the first slot to be the derivative of ¥. That
is, D1¢p(v,w) = Dy (v). Similarly, we define ¢ (w) = ¢(v,w) for any fixed v and de-
fined the derivative of ¢ with respect to the second slot to be the derivative of ¢. That is,
Dy¢(v,w) = Dy (w). Note that the subscripts on the D indicate which slot is being differen-
tiated. Then all of the above development of the calculus on vector spaces immediately applies
to D; and Ds. The derivatives D; and D, are called partial derivatives [16], [17].

An important observation needs to be made here. If ¢ : VxV — U, then D;¢ is independent
of whatever is in the second slot providing the second slot is completely independent of the first
slot. Thus D;¢ (v,w) = Dy¢ (v, (w)) for any function « : ¥V — V if w is not a function of v
and vice-versa. Similarly, D¢ (v, w) = D2¢ (n(v),w) for any function n: V — V under the

same assumption.



3.2 An Integration Theorem

In this section we wish to prove an integration theorem which will fill in an important step in
the derivation of the field equations. Two lemmas are proven which lead to the statement and

proof of the required theorem. The method of proving Lemma 27 is found in Arnold [13].

Lemma 27 Suppose f* : [s1,52] — R, h* : [s1,52] — R, i = 1,2,3,...,n are continuous

functions for alli € {1,2,3,...,n}. If

/32 ) Ff(s)R (s)ds =0
1

St 4=

for all such functions h*, then f* =0 for alli e {1,2,3,...,n}.

Proof. Let s* € (s1,s2). Let I~ C {1,2,3,...,n} be the set of indices such that f*(s*) <0
ifi e I-. Let I* c {1,2,3,...,n} be the set of indices such that fi(s*) > 0 ifi € I*. Let
I° c {1,2,3,...,n} be the set of indices such that f*(s*) =0if i € I°. Assume I-UI% is not
empty and attempt to derive a contradiction.

Consider the functions f* for which ¢ € I~. Since all these functions are continuous, there
exists a value ¢~ < 0 in an open interval s* — d~ < s < s* + d~ such that fi(s) < ¢~ for
all i € I~. Now let h'(s) be defined in such a way that h*(s) = 0 outside this open interval,
hi(s) < O inside this interval and h*(s) = —1 in the subinterval s* — 3d~ < s < 5* + 3d™.
Then f*(s)h*(s) > 0 for all i € I™ in the interval s* — 1d- < s <s*+3id7, fi(s)h*(s) 20
everywhere else in s* —d~ < s < s*+d~ and f*(s) h*(s) = Qoutside of s* —d~ <s < s*+ d~.

Consider the functions f* for which Z € I'*. Since all these functions are continuous, there
exists a value ¢t > 0 in an open interval s* — dt < s < s* + d¥ such that fi(s) > c¢* for
all 7 € I'". Now let h*(s) be defined in such a way that h*(s) = 0 outside this open interval,
hi(s) > 0 inside this interval and h*(s) = 1 in the subinterval s* — }d* < s < s* + id*.
Then fi(s)hi(s) > 0 for all i € I* in the interval s* — 1d~ < s < s* + 3d~, f*(s)hi(s) =0
everywhere else in s* —d¥ < s < s* +d* and f* (s) h*(s) = 0 outside of s* —d* < s < s* +d*.

Then

32 . R
/ F(s)hi(s)ds > d-|c|>0ifiel
81

45



$2 i
FP(s)R*(s)ds > dYct>0ifie It and

S

szf"(s)h"(s)ds = 0ifiel°.

sy

It follows that

/ Zf‘(s)h‘(s)ds>0

1 {=1

if I" U IT is not empty. But this contradicts the hypothesis

f Zf‘(s)h‘(s)ds 0

3 i=1

so the assumption I~ U It is not empty must be incorrect and we conclude 7~ U It is empty.
This means 1% = {1,2,3,...,n} and fi (s*) =0foralli € {1,2,3,...,n}. But s* is an arbitrary
point. It follows that ff =0 foralli € {1,2,3,...,n}. @

Notice Lemma 27 can be expressed in terms of the inner product of two vector functions as

explained in the following corollary.

Corollary 5 Suppose V is a real inner product space. Letf :[s1,s5] =V and h: [s1,s2] =V

be continuous vector functions. If

/”f(s).h(s)ds=o

for all such vector functions h, then f = 0.

Proof. Since V is an inner product space, it is always possible to choose an orthonormal
basis for V. Denote this basis {e;, ez, e3,...,e,}. Then the vector functions f (s) and h(s)
have component representations f (s) = f*(s) e; and h(s) = h7 (s) e;. Since f (s) and h(s) are

continuous, each of their component functions are continuous. Then
- . - - - - n - -
£(s)-h(s) = f(s)e;i-h (s)ej = f(s)h' (s)ei-e5 = fi(s)hi (s) Bi =D f*(s) k' (s)
i=1

and

/ £(s)- h(s)ds-/ Zf‘(s)h‘(s)ds=o

s 51 =1

46



The proof of the Lemma 27 showed this implies f* =0 for all ¢ € {1,2, 3, ..., n} which means
f=0.10

Lemma 28 Suppose V is a real inner product space. Letf : [s1,s0] =V , g :[s1,82] =V,

h : [s1,82] = V be continuous vector functions. If

/”f(s) ‘h(s)ds+g(s)-h(s)[2 =0

S

for all such vector functions h, then f =0 end g(s1) =g(s2)=0.
Proof. Consider three cases.

1. Suppose f = 0. Then
s2
/ f(s)-h(s)ds=0
3

1
for any choice of the function h. This means g(s) - h(s)[3? = 0. Since h may be chosen

to be any continuous vector function, then
g(s)-h(s)Z =g(s2)-h(s2) —g(s1)-h(s1) =0

only if g (s2) = g (s1) = 0.

2. Suppose f # 0 and g (s1) = g(s2) = 0. Then g(s) - h(s) |52 = 0 for any function h. This

means

/szf(s)-h(s)ds=0

for any function h. But it was shown in Corollary 5 this implies f = O contradicting the
assumption f # O.

3. Suppose f # 0 and g(s1) # 0 or g(s2) # 0. From the proof for Lemma 27, it is always
possible to find a function h such that

/32f(s) -h(s)ds >0and h(s;) =h(s2) =0.
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This means

/szf(s)-h(s)ds-{—g(s)-h(s)[:f - /”f(s).h(s)ds
+g (s2) -h(s2) —g(s1) -h(s1)
= /szf(s)-h(s)ds>0

which contradicts the hypothesis
/ £(s)-h(s)ds +g(s)-h(s)|2 =

Cases 2 and 3 show the hypothesis cannot be satisfied if f # 0. Case 1 showed f = O implies

g(s1) = g (s2) = 0. From the conclusion of each of these three cases, it follows that

[t b +e) B -
implies f = 0 and g (s1) = g(s2) =

Theorem 4 Let U and V denote inner product spaces. Let o and - denote inner products on
U and V respectively. Let F : [s;,s2] = U , H:[s1,52] = U , f:[s1,52] =V, g:[s1,82] =V

and h : [s1, s2] — V be continuous vector functions. If

f F (s) o H (s) ds +/ £(s)-h(s)ds +g(s) -h(s)[ = (3.10)
for all vector functions H and h, then F=0, f =0 and g(s51) =g(s2) =
Proof. There are eight cases to consider, but four of these may be handled as one.

1. Suppose F = 0. This leaves

/ £(s)-h(s)ds+g(s)- h(s)[Z =0.

As shown in Lemma 28, this implies f =0 and g (s1) =g(s2) =0.
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2. Suppose F # 0, f =0 and g(s1) = g (s2) = 0. This leaves

/st(s)oH(s)ds=o.

But from Corollary 5, this implies F = 0 contradicting the assumption F # 0. Thus this

case cannot happen.

3. Suppose F #0, f # 0 and g (s;) = g(s2) = 0. This leaves

/st(s)oH(s)ds-&—/szf(s)-h(s)ds:O.

1§

Following the proof of Lemma 27, we can always find H and h such that
S2 52
/ F(s)OH(s)ds>Oa.nd/ f(s)-h(s)ds>0
S1 81
so

/st(s)oH(s)ds-&-/szf(s) -h(s)ds > 0.

1 1

This contradicts the hypothesis given in equation (3.10) and thus this case cannot happen.

4. Suppose F # 0, f =0 and g(s1) # 0 or g(s2) # 0. This leaves
sz
/' F(s) o H(s)ds +g(s) - h(s) [ =0.
sy
We can always choose h such that h{s;) = h(s2) = 0. This would leave
s2
/ F(s)oH(s)ds =0.
S1

But from Corollary 5, this implies F = 0 contradicting the assumption F 3 0. Thus this

case cannot happen.
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5. Suppose F # 0, f # 0 and g(s1) # 0 or g(s2) # 0. From the proof of Lemma 27, we can
always find H and h such that

/st(s)OH(s)ds>0, /”f(s)-h(s)dwo

1

with H(s;1) =H(s2) =0 and h(s;) = h(s2) = 0. Then

g(s)-h(s)is2 =

and

/st(s)OH(s)ds-i-/szf(s) “h(s)ds >0

contradicting the hypothesis given in equation (3.10). Thus this case cannot happen.

From cases 2 through 5, the hypothesis given in equation (3.10) cannot be satisfied unless
F = 0. Case 1 showed F = 0 implies f = 0 and g(s;) = g(s2) =0. Thus F=0, f =0 and
g(s1) =g (s2) =0 in order for

/st(s)oH(s)ds+/szf(s)-h(s)ds+g(s)-h(s) 2=

to be true for all H and h.
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Chapter 4

The Field Equations

The aim of this chapter is to derive the field equations from a variational principle. The
derivation combines the approach of Cohen [2] and Cohen and Sun {3]. It makes use of the
variational operator § for which several useful mathematical properties may be proved [8]. Once
the field equations have been derived, they are compared with field equations appearing in the

literature, specifically Cohen and Sun [3} and Cohen [1].

4.1 Derivation of The Field Equations

In Chapter 2, several quantities were introduced: the curve forming the rod axis, the directors
and the deformation tensor. These quantities are of geometric character, used to describe
the geometry of the rod and its deformation. To develop the theory of directed rods, we
must introduce physical quantities and some relationships between the physical and geometrical
quantities defined. The deformation of a directed rod is caused by forces applied to the rod,
both externally (surface forces) and internally (body forces).

The physical quantities introduced here are those given by Cohen and Sun [3] with some

changes in the notation.

1. Let f denote the body force density vector.
2. Let 11, 12, I3 denote the director body force density vectors.
3. Let n denote the contact (axial) force.
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4. Let m!, m2?, m3 denote the contact (axial) director force vectors.

5. Let p!, p?, p® denote the intrinsic director force densities.

The quantities listed as items 1 through 4 are used in the derivation of the field equations.
The fifth set of vectors will be introduced later when comparing our derived field equations
with field equations found in the literature.

Each of these vectors is a function of the parameter sg. We wish to consider the following

expressions:

p(f-r+1-dy+12-dp+ P -d3g) =p(f-r+1-dy)

and

n-r+m!-d;+m?-dy+m?®-d3g=n-r+m‘-d;

where p is the linear mass density along the rod axis. Let I* and m* be expressed in terms of

the basis {d',d?,d%} as I = [}d’ and m* = mid?. The two formulas become
p(E-r+1-di) =p(E-r+Ld i) =p(E-r+08]) =p(E-r+1))

and

n-r+m'-di=n-r+mjd-d;i=n-r+mié =n-r+m;

These last expressions look like the traces of some second order endomorphisms. Define such

endomorphisms as follows:
f55{1i®daj =1'®dg; and M = 5‘Zmi®d}zj =m’®dg;.

Notice L and M are defined in terms of a mixed tensor product. Using I* = l{d7 and m* = m}d’,
these definitions are

L =ld ®dp; and M =mid’ @ dg:- (4.1)

Then L and M have the components [} and m}, respectively. The expressions may be written
p(E-r+l-di)=p(f-r+1i) =p(f-r+trL) (4.2)
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and

n-r+m‘-di=n-r+mi{=n-r+trtM (4.3)
using the definition of trace for an endomorphism.
Lemma 29 LoF =trl, and Mo F = trM where F is the deformation tensor-.
Proof.
LoF = (id@dm)o (deody)
= 6(d ®dr:) o (de ® df)

= (- di) (dr:-d})

- Gsist=li=ul

using Lemma 6. The steps to prove Mo F =trM are identical. Bl
Equations (4.2) and (4.3) become

p(f-r+1-d;)=p(f-r+8) =p(f-r+LoF) (4.4)
and
n-r+mi-d,-=n-r+m::=n-r+ﬁoF. (4.5)

Now consider the curve describing the rod axis in some state cq (not necessarily the reference
configuration) and a small virtual displacement of the curve ér, 6d;, 6d2 and 8d3 for some
arbitrary segment c of the rod. Each point on ¢ is displaced to a corresponding point on the
perturbed curve ¢*. The curve c is described by the function r with directors d;, d2 and dj.

The curve c* is described by the function r+ ér with directors d; + éd;, d3 +6d2 and d3 +édj.

Postulate 1 The virtual work done in moving a point on ¢ to the corresponding point on c*

is given by

p(E-(x+6r)—f-r+1° (di +6d;) — I - d;)
4n-(r+ér)—n-r+m’-(d; +6d;) —m’-d;
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=p(f-6r+1°-6d;) +n-ér+m’-&d;.

Integrating over the above expression with respect to s gives the virtual work done on
the entire segment of the curve due to the virtual displacements ér, éd;, éd2 and éd3. The
term n - 6r + m® - §d; is only integrated over the ends of the rod segment while the term
p (f -8r +1*- 6d;) is integrated over the entire rod segment. This is expressed as

A=/p (f-6r+1'-6d;) ds+ [ (n-6ér+m'-6d;)ds.
c dc

If we define
OF =6d; ® d‘k, (4.6)

then from equations (4.4) and (4.5) we obtain
A=/p(f-6r+fo6F) ds+ [ (n-ér+MoéF)ds.
c 8c

Noting that n and M act only at the ends of the rod segment, we get the next postulate.

Postulate 2 If A is the virtual work associated with an arbitrary, virtual displacement from

the configuration ¢ denoted as ér and éd;:
s2 - —
A-——/ p (f-6r+LoéF) ds+ (n-r + Mo éF) |3 (4.7)
S

where a < s1 < s» < b and the interval [sq, so| is the domain of the parameter of the

arbitrary segment of curve.
Let W be the energy stored (i.e. work) during deformation.
Postulate 3 There exists a scalar function ¢ = ¢ (F, F') with the property that W = f:l 2 pe ds.

The function ¢ is called the strain energy density function and materials for which a strain
energy density is postulated to exist are called hyperelastic. The function € = ¢(F,F") is a
constitutive relation or equation. This means its functional form depends upon the material of

which the rod is composed.
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Postulate 4 4 = 6W.

This is the key relationship in deriving the field equations from a variational principle.
[t connects the strain energy density to the interaction between the geometric and physical

quantities describing the deformation of the rod.
Postulate 5 § (p ds) = 0.

This postulate is a statement of the principle of mass conservation of the rod under defor-
mation.

8W is evaluated using the properties of the variation operator é:

52 52 2 52 32
5W=6[ peds=[ 6(psds)=/ (b's)pds-{-[ 56(pds)=/ (8€) p ds
sy s S1 s s

1 3

using Postulate 5. Furthermore,
oe = Dleob'F+D2506F'
using the notation for derivatives discussed in the previous chapter. Thus
s2
5W=/ p (Dig 0 6F + Dae o 8F') ds. (4.8)
S
From Postulate 4, the following integral equation is obtained:

$2 — P
/ p(f-6r+LoéF)ds+ (n-ér+ModF) |2 (4.9)

§1

= /2p(D1€O(5F+D2€O6F’) ds.

s1

In order to use equation (4.9) to derive the field equations, we need to manipulate both
equations (4.7) and (4.8) into other forms.
We wish to absorb the term n - ér [ into the integral in equation (4.7). To do this, use

2 d(n-oér)
.érls2 = bl St
n-dr|3 -/3x I ds.
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But
d(n-ér) d(n-ér)dsgp _

1
ds dsgp ds A

(n - ér)

recalling that A = -;;‘-*’E and the relationship between s and sg is assumed to be such that A # Q.
Then

s 2 1 4
n-ér|3 = / X(n-6r)ds

S1

= /32 (ln'-b'r-i-in-(é'r)' ds
- st \A A

= -l—n'—ﬁr-i-ln»ér' ds
X Y

s

where the last step follows from the fact that the operators § and g“; commute.

Equation (4.7) becomes

s2 - —
A = / p (f-6r +LobF) ds+ (n-6r+ Mo éF) |2

S

52 _ s2 1 2 1 —_
= / p (f-6r + Lo 6F) ds+/ Xn’-érds-}—/ Xn-6r'ds+Mo6F[:’,§
g1 S1

sy

S2 — .

= / [(pf+%n') -6r+%n-6r'+pLo§F} ds + Mo 6F |2
s1

To remove the n - ér’ term in the integral, we use the following theorem.

Theorem 5 n-6r' = (n® rky) o 6F.

Proof. The definition of §F is given in equation (4.6) which can also be written as
6F = 6d; ® d}; + 6d, @ d% + 6r' ® (ri)°

where (rz)" is the dual vector to rf (i.e. (rg)” = d}). From the definition given in equation
(23),

(n®rR)o6F = (n®rfg)o (6d1®dL +6d;® d% +6r' @ (rR)")
(n®r%) o ((6d1 @ df) + (6d2 ® d%) + (6 ® (rR)"))
= (n®rf)o (6d; ®dy) + (n®r}) o (6d2 ® d%)
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+(n®rg) o (6r' @ (rR)") .
Applying Lemma 6 to each term on the right side of this equation gives:
(n®r1}R) o 6F = (n-6d1) (rr-df) + (n-6ds) (rh-dk) + (n-6r') (k- (vR)°) -

But

rR-dh =0,rg-dik=0andry- (r) =1

since {d},d%,, (r;g)"} is the reciprocal basis to {dg1,dr2, rz} and thus
(n®rR) o 6F =n-6ér’

which is the result to be proved. &

The formula for the virtual work is now given by

S
A = /2p(f-5r+fociF) ds + (n-ér+Mo 6F) |32

1
S2 — —_—
A = / [(pf—f-%n')-5r+;(n®rh)05F+pLo¢5F]ds+Mob'F|jf
s2 1 1 - - .
A = /sl [(pf-{v-‘xn')-5r+(Xn®r'R+pL)05F]ds+M05F|,f. (4.10)

In equation (4.8), we would like to remove the (pD2€) o 6F’ from under the integral on the
right side. This can be done with integration by parts after changing the differential ds to dsr.

$2 2
/ pDae o 6F'ds = / pDse o 6F' Adsgp

S1 51

s2
= ApDje o 6F ij - f (A\pD2¢) 0 6F dsp
S1

52
= ApDyeodF |3 — / ; (ApD2¢) o 6F ds

S1

where the switch is made from dsg back to ds in the last step. So

s2
§W = / p (D1€ o 6F + Dae o 6F') ds

L33
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32 82
SW = / pDieo 6Fds+/ pDse o 6F' ds

8132 | 3132 1 , )
W = / pDieo §F ds — X (ApD2¢e)" o 8F ds + ApDse o 8F [s:

81 Sy

144

]

52 1 .
/ﬂ [lee Y ()\ngs)'] o 0F ds + ApDqe o 6F Isf . (4.11)

Equation (4.9) becomes
s2 1, 1 p = NN 52
/ pf+n')-6r+ | n@rg+pL | ooF ds + Mo 6F |22 (4.12)

51

52
= / [les - % (z\ngé’)’] 0 6F ds + ApDae o §F |32 .
sy
which, bringing everything to the left side and combining the integrals, is

s2 82 -
/ (pf + %n’) .érds + (-; (ApD2g) — pD1e + %n Qrp+ pL) o 6F ds
s S1

+ (M —XpD2€) o 6F |2 =

Since this integral equation must be true for all possible variations ér and 4F, it satisfies

the conditions of Theorem 4. Invoking this theorem and simplifying, we obtain

n' + Apf =0, (4.13)
(ApD2e) —ApD1e+n@rg + ApL =0 (4.14)

and
(M — ApDe) (s1) = (M — ApD2¢) (s2) = 0. (4.15)

From equation (4.15),
M (s1) = (ApDz¢) (51)

and

M (s2) = (ApD3¢) (s2)
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so the functions M and AoD-.e agree at the endpoints of the rod segment. Since s; and s>
are arbitrary values and equations (4.13), (4.14) and (4.15) would be exactly the same for all
choices of s, and sa, it follows that M and ApD,e would agree at all points along the rod and
thus

M = MpDae. (4.16)

Letting
N = ApDse (4.17)

gives the field equations for the directed rod as equation (4.13) and
M -N+ n@rl+ ML =0. (4.18)

The field equations are often called Euler’s Laws.

4.2 Comparison With Field Equations in the Literature

It is instructive to compare the field equations (4.13) and (4.18) with those found in the lit-
erature. Such a comparison provides additional relationships among the various geometrical
and physical quantities which are both interesting and useful in applying the field equations to
specific problems.

The field equations (4.13) and (4.18) may not appear to be the same as those found in the

literature. There are several reasons for this.

1. Different notations for the same geometric or physical quantity may be used.

2. Directed rod theory may be developed as statics (no motion) or dynamics (accounting for
motion of the rod). The field equations in a dynamical theory will include terms which

are differentiated with respect to time. In the static theory, these terms are zero.

3. Second order tensors in field equations may be expressed in different types of bases. These
bases are seen as tensor products of the physical and geometric vectors (always including

at least one director). There are three possibilities.

59



(a) Both vectors in the tensor product are in the reference configuration.
(b) Both vectors in the tensor product are in the deformed configuration.

(¢) One vector is taken from the deformed configuration and one vector from the refer-

ence configuration.

4. A given field equation may be expressed in terms of its transpose.

5. There is more than one method of handling the parametrization of the reference and the

deformed configurations and their relationship.

In this section, fields equations (4.13) and (4.18) will be compared with those given in Cohen
and Sun [3] and Cohen [1]. The apparent differences in the field equations will be resolved by
observing one or more of the reasons listed above.

Observe that the second order tensors used in this thesis are defined as tensor products of

a vector from the reference configuration and a vector from the deformed configuration.

4.2.1 The Field Equations of Cohen and Sun (3]

The field equations in [3] were derived for a dynamic theory using balance laws. Here are the

field equations of interest (using the equation numbering from that paper prefixed with CS):
n’ + Ap (b- 1'1) =0 (CS2.8)
and
®
M +N + Ap (B ~P-H +HLT) =0 (CS2.24)

where @ over a symbol denotes differentiation with respect to time. Another equation of signif-
icance is

p'®d; =d; @ p*. (CS2.12)

The symbols in CS2.24 are defined by

= med;;N=n®x,B=b®d;,P=p'®d;, (CSs2.20)
d: ®d’. (CS2.21)

=
1
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Cohen and Sun [3] Thesis Description

S SR Parameter for curve in reference configuration
s s Parameter for curve in deformed configuration
X TR Curve in the reference configuration

D, D,, D3 dRr1,dgr2, drs | Directors in the reference configuration

X r Curve in the deformed configuration
d,,d,,ds d;,d;.d; Directors in the deformed configuration

n n Contact force (also called axial force)

b f Body force density

b!, b2, b3 14,128 Director body force density

p!, p%, p? pl, p2, p3 Intrinsic director force density

m!, m2, m3 m!, m?, m3 Director force density

Table 4.1: Comparison of Scalar and Vector Symbols Between Cohen and Sun and Thesis

Notice the second order tensors are defined as tensor products of vectors both from the deformed
configuration. Table 4.1 compares the notation between the scalar and vector quantities in (3]

and the corresponding quantities used in this thesis.

To convert equations (CS2.8) and (CS2.24) to field equations for a static theory, set 1.1= 0,
H=0 and L = 0. Replacing N with its definition, Equations (CS2.8) and (CS2.24) become

n +Xpb=0 (4.19)

and

M +n@x'+2pB — AP =0 (4.20)

respectively. Comparing equations (CS2.12) and (CS2.20) gives
skP =0. (4.21)

From Table 4.1, it is immediately clear equations (4.13) and (4.19) are identical. Rearranging
equation (4.20) slightly gives

M-XMP+n@x +2pB=0 (4.22)
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which looks something like equation (4.18). We manipulate equation (4.18) to show these
equations are synonymous.

From Corollary 3, Fdgs = d3 which is the same as Fry = r’/ since dgz = rp and d3 =r’.
Recalling F is invertible, we may use rp = F~1r’ in equation (4.18) to get

M - N+n® (FIt') + (L =0.
From Lemma 3, this is the same as
M -N+ner (FH +3L=0
and from properties of the transpose,
M -N+ner (FT)7 +AL =0 (4.23)
Multiplying through equation (4.23) on the right by FT gives
MFT —NFT +n®r + ApLFT =0. (4.24)

From Table 4.1, r is synonymous with x so equation (4.24) looks very similar to equation (4.22).
The following lemmas establish the relationships between the second order tensors in these two

equations.

Lemma 30 For the quantities given in equations (4.24) and (4.22),
B =LFT (4.25)

and
M = MFT. (4.26)
Proof. From the definition given in equation (4.1), L = '®d ;. From Table 2.1, FT = dﬁ@dj.
Then using Lemma 4
LFT = (f 9 dgy) (47, ® ;) =F @ (dpi - df) d = F @ 5ld; = F @ ds.
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From equation CS2.20, B = b’ ®d;. From Table 4.1, b¢ is synonymous with I so we may write
B =1!®d;. Thus B = LFT.

From the definition given in equation (4.1}, ™M = m* ®@ dg;. Then using Lemma 4
MFT = (m ® dg;) (4 ®d;) = m'® (dm: -d}) d; =m'@8ld; = m' @ d..
But from equation (CS2.20), M = m’ ® d;. Thus M =MFT. &
Lemma 31 For the quantities given in equations (4.24) and (4.22),
AP = NFT + M (FT)". (4.27)
Proof. Comparing equations (4.24) and (4.22) and using B = LFT, it follows that
M’ — AP = M'FT — NFT. (4.28)
Differentiating both sides of equation (4.26) with respect to sp gives
M’ = (MFT)' = M'FT + M (FT)".
Then
MFT + M (FT) — AP = MFT - NF”

and solving for A\pP gives equation (4.27). B

The effect of the FT operating on the right in equations (4.25), (4.26) and (4.27) is to
adjust for the difference in expressing the tensors in a mixed basis (as derived in the thesis) or
deformed basis. Thus the field equations from [3] really are the same as those derived earlier
in this chapter.

As explained in [3], the p* are intrinsic forces arising from resistance to deformation of the
directors. P is the total Cauchy stress. Substituting equations (4.16) and (4.17) into (4.27), we
obtain

ApP = A\pD1eFT + Ap(Dqe) (FT)'
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or

P = D1eFT + (Dye) (FTY (4.29)

which relates the total Cauchy stress to the derivatives of the strain energy density function
with respect to both slots. Of course this means we may solve for the derivatives in terms of
each other. We obtain

D1eFT = P — (Dy¢) (FT)’

or

Die =P (FT) ™' — (Dag) (FT) (FT) ™ (4.30)

and

(Dye) (FT)' = P — D\eFT

or

Do =P ((FT)') T DT (7)) - (431)

We can use these results to express D;e and Dse in terms of tensor products. From equation
(4.16) and M = m’ @ dp;,
ApDae = m'® dp;

or

1 .
Dae = * (m*®dg;) . (4.32)
Obtaining an expression for D, is more involved.

Lemma 32 Using the definitions found in equation (2.7),
AR B
Die= P + 5, (FR; —E) m’ ) @ dgs. (433)

Proof. Since FT =d’, ®d;, (FT) = (d’é)l ® d; +d% ® d/,. Using the expression for (FT)™*

from Table 2.1 and Lemma 4, we have

(FT) (FT) = ((d{z)l®dj+d-}}_®d§) (d° ® dgs)
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((d’}z)' ® dj) (& @ dms) + (dh ® d}) (d' @ drs)
(diz), ® (dj - di) dg; + d';t ® (d; . d") dg:
(d{;t)' ® 5§dni + d{;t ® ﬁ;dﬁi

(dk)' @ dg: + df @ Bidm:.

From equation (4.32) and using Lemma 4,

Dae () (F1) " =

1
Ap

1
Ap
1
Ap
1

Ap L

Ap

1
Ap

(m @ dre) ((dh)' @ des + @i d)
(@ drs) (@R’ @ ) + (m" 0 ) (k@7
:m" ® (drs (d7)') dr: + m* ® (d‘"‘ -df) ﬁ;d"‘]

‘m* ® Thdr + mF @ 6{ﬁ§dai]

m* ® P dr: + m* ® Fidai|
m* ® (T + aL) dri

(Tax + ) m* @ dps-

Using P = p* ® d; and Lemma 4 ,

P(FT)™ = (p'ed) (¢ @dg))

Then from equation (4.30),

D1€

= p'®(d;-d?)dg;
= p'@dldg

= pi®dﬂi.

fl

. 1, . ) )
p' ®dg; — ,\—p- (F;Uc +[_i},) m’ @ dg;

= (p*' - 11; (T + Bx) mf) ®@dg:
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and using equation (2.11),

R N L A
D = (p -:\;(—ukk +.k) m’) ®@dr:

0

N .
D& (P‘ + Y (Fax — BL) m’) ®dg:

which is the result to be proved. B

4.2.2 The Field Equations of Cohen [1]

Cohen [1] states, but does not derive, field equations for static directed rod theory. He does
not distinguish between the parameter used in the reference configuration and in the deformed
configuration. The symbol S denotes the parameter and is called a material coordinate. In the
deformed state, S is viewed as a “convected” material coordinate. As a result of this approach,
the stretch factor A does not appear in any of the field equations given in [1]. However, when
specific problems to solve are addressed, A is introduced into the deformed configuration. All
symbols used for scalars and vectors except for S have the same meaning in [1] and in this
thesis. Note that some of the symbols used here (such as M and IN) do not have the same
meaning as in the previous subsection.

In Cohen’s field equations, the second order tensors are expressed as tensor products in
which both vectors are from the deformed configuration. Here are the field equations from [1]

using Cohen’s equation numbering prefixed with the letter C.

n' +pf =0, (C2.13)
M -N+r'®n+pL =0, (C2.14)

and
skN = 0. (C2.15)

Equation (C2.15) means N is symmetric and thus may also be written as

N =NT (C2.15A)
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which will be more useful later. Cohen identifies M as the cross-sectional tensor moment, N
as the internal force moment and n as the axial force. The quantities f and L are body force
distributions. We make the following replacements to the body force distributions to introduce
A into the field equations:

f — Af,L — AL.

Equations (C2.13) and (C2.14) now appear as
n’+Apf =0 (4.34)

and

M-N+r®@n+ AL =0. (4-35)

Comparing these field equations with those derived in this thesis, equations (4.13) and (4.34)
are identical. Equations (4.18) and (4.35) appear to be quite similar. If we manipulate equation
(4.18), we can verify that the two equations are identical and establish the relationships between
the various tensor quantities in both equations.

Field equation (4.18) may be converted to the field equation given by Cohen as follows.
From Lemma 15, F~! exists and from Corollary 4, rl = F~!r’. Thus equation (4.18) may be
written

M -N+n® (F'r') + ML =0.
From Lemma 3, we obtain
M -N+ner (F‘I)T + ApL = 0. (4.36)
Now take the transpose of both sides of equation (4.36) to get

(M' N+ ner(F ) + Apf)T = of
(M’)T -N"+(ner (F‘l)T)T +(ME)" = 0
()" =N+ (#97) @er)" + (D) = o

(_I\/T)T ~NT+F!(rfen) + (}L)" = 0
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(M") -N" +F~ (Fen) + (L) = o0

using properties of the transpose including Lemma 2. Multiplying through the last equation by

F on the left will give
F (HT), —FN' +r'®n+ \FLT =0.

Comparing equations (4.35) and (4.37) suggests the following relationships:

M=FM'

and
T

L=FL".
Lemma 33 If equations (4.38) and (4.89) hold, then
N=FM +FN'.
Proof. Comparing equations (4.35) and (4.37) and using equation (4.39) gives
M ~N=F(M') -FN",
Differentiating equation (4.38) gives
M = (FM") = FM +F (M)

Then
FM +F (‘MT)' -N=F (M‘T)' —FNT

and solving for N gives equation (4.40). l

Lemma 34 If equations (4.38) and (4.89) hold, then

M=d,—®mi
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and

L=L®m' (4.42)

Proof. Using Lemmas 2 and 4,

M = FM'®
= (di@dk) (m ®dg;)”
= (d: ®dg) (dr; ® m’)
= d;® (di -dg;) m’
= d:®8&m’

= d,;@mi

which establishes equation (4.41). Equation (4.42) is derived in exactly the same manner. B
Thus the transformations given by equations (4.38), (4.39) and (4.40) illustrate that the
field equations in the thesis and those given by Cohen [1] are the same. Multiplication by
F on the left is an adjustment from the use of mixed tensor products to vectors only in the
deformed configuration and an adjustment to the transpose of the field equations. Comparing
the definitions for M and L with equations (4.41) and (4.42) clearly illustrate this.
Cohen includes equation (C2.15) as a field equation although this is often regarded as being

a constitutive restriction. In terms of the tensors M and N, equation (C2.15A) would be
— — ' —\T
FM' +FN'T = (1?’1\71‘:T + FNT) : (4.43)

Finally, we note with Cohen [1] that £ and L are body force distributions on the rod which
may occur as a result of boundary tractions and body forces in the case where the rod is viewed
as pseudo-rigid [6]. Cohen postulates that force and torque results of these distributions vanish.
That is, f = 0 and

skpL = 0. (C2.16)

From equation (4.13), this implies n’ = 0 giving the interesting result that n is a constant

vector along the rod axis. The condition given by equation (C2.16) means L is symmetric and
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is equivalent to L = LT. From equation (4.39),
- —m\T
FL" = (FL")

or

FL' =LFT.
Thus FL is a symmetric tensor. We summarize this as the following postulate.

Postulate 6 f = 0 and FL© = LFT.

4.3 Summary

In this chapter, the field equations of a directed rod were derived using a variation principle.
The strain energy density function € = € (F,F') and its derivatives D,e and Dje were intro-
duced. Equations (4.13), (4.18) and (4.43) (with the definitions (4.16) and (4.17)) are the
field equations in which the tensors are expressed as mixed tensor products (one vector in the
reference configuration and one vector in the deformed configuration). )

The field equations of Cohen and Sun (3] given by (CS2.8), (CS2.24) and (CS2.12) are shown
to be the same as those derived in this thesis via the relationships (4.25), (4.26) and (4.27).
Using these relationships, explicit expressions relating Dje and D¢ are given in equation (4.29).
Expressions for Di€ and D»¢ in terms of tensor products of vectors are given in equations (4.33)
and (4.32). '

The field equations of Cohen [1] given by (C2.13), (C2.14) and (C2.15) were also shown
to be the same as those derived in this thesis via the relationships (4.38), (4.39) and (4.40).
Equation (C2.15) provides the field equation (4.43) using the tensor quantities defined in this

thesis.
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Chapter 5

Constitutive Restrictions

In Chapter 4, the strain energy density function was introduced as a constitutive equation.
This means that the nature of this function depends on the material composing the rod. Thus
there are constitutive quantities (the derivatives of the strain energy density) built into the field
equations. Notice that the field equations themselves are independent of the functional form of
these quantities. In this chapter, we impose constraints on the strain energy density function
(and consequently its derivatives) which provides additional information with which to solve
problems in directed rod theory. These constraints are called the constitutive restrictions.

The constitutive restrictions are physical postulates - properties which the particular rod is
believed to possess and depending on the rod material. Constitutive restrictions in a directed
rod theory are typically given by expressing the stress tensors as functions of the deformation
and derivatives of the deformation with respect to ‘the parameter describing the rod axis (Cohen
[1]). If the stress tensor is a function of the deformation, but none of its derivatives, then it is
said to describe a first-grade material. First-grade materials are also known as simple materials
(Leigh, [7]). If the stress tensor is a function of the deformation and the first derivative of
the deformation, it is said to describe second-grade material. Since the strain energy density
function is postulated to be a function of both the deformation tensor and its first derivative,
the model we are using describes second-grade materials.

We introduce two physical postulates in this directed rod model. Both of these postulates
are based on one fundamental idea: strain energy ¢ is invariant under a rotation of the rod.

The physical meaning of the two postulates is quite different.
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The next section reviews matrix groups as these provide a description of the linear transfor-
mations required to rotate a vector in space. The remaining two sections discuss two constitutive

restrictions introduced into the model.

5.1 Review of the Matrix Groups

Before discussing the constitutive restrictions, it is useful to provide a brief review of matrix
groups.

Let V and L (V,V) denote an N-dimensional real inner product space and the set of en-
domorphisms on that space. Suppose A € £(V,V). Once a basis has been chosen for V, the
linear transformation A has a matrix representation with respect to that basis which will be
denoted as A. Let My (R) denote the set of all N by N real matrices. Then A € My (R).
Matrix groups are special subsets of My (R) characterized by the fact each subset is a group
under matrix multiplication.

The general linear group is denoted GL (N, R) and is the set of all N by N matrices which
have an inverse. All the matrix groups are subsets of the general linear group.

The special linear group is denoted SL (N, R) and defined by
SL(N,R)={AeMpy(R)|det(4) =1}.
The orthogonal group is denoted O (N, R) and defined by
O(N,R) = {A € My (R) | (Ax, Ay) = (x,y) forall x,y € RV}

where (,) denotes the inner product on the vector space. The following theorems state the most
important properties about the orthogonal group.
Theorem 6 O(N,R) is a group under matriz multiplication.
Theorem 7 Let A € My (R). The following conditions are equivalent.
1. Ac O(N,R).
2. (Aej, Aej) = §;; where {e1, ez, e3,...,ex} is an orthonormal basis for V.
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3. A maps orthonormal bases to orthonormal bases.
4. The rows of A form an orthonormal basis.

5. The columns of A form an orthonormal basis.

6. AT = A-1.
Theorem 8 Let A € My (R). A O(N,R) if and only if A preserves lengths of vectors.
Theorem 9 If A € O(N,R), then det (A)? =1 and thus det (A) = —1 or det(A) = 1.

The special orthogonal group is denoted by SO (N, R) and defined by
SO(N,R)=0O(N,R)NSL(N,R).

The special orthogonal group is the subset of the orthogonal group whose determinant is 1.
This is sometimes called the rotation group because it consists of the set of all matrices whose
effect is to rotate vectors. Members from this matrix group play an important role in defining
the constitutive restrictions.

We may apply the terminology of matrix groups to linear transformations and thus, for
example, we may speak of a linear transformation P as a member of the special orthogonal

group.

5.2 Material Frame Indifference

To motivate the first constitutive restriction, we consider a curve r : ® — R whose parameter
is denoted as sg : we may write r = r (sg). Suppose this curve is rotated about a fixed axis.
Such a rotation may be done by a linear transformation P € SO (3, R) acting on each point on
the curve r. The result will be a new curve denoted as T and given by T = Pr. Since P is fixed,
the result of differentiating both sides with respect to sg gives T = Px’. Thus the tangent vector
T along the curve is rotated by the same linear transformation as the curve. If we consider the
curve r to have three directors at each point along the curve, the curve ¥ will have corresponding

directors rotated by the same linear transformation. Thus &: =Pdg, a=1,2,3.
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Lemma 35 IfP is a rotation of a directed rod following a deformation F, the result is a (new)

deformation given by PF = 5; Prd;)) ® d{z.

Proof. Since F = §d; ® d%, multiplying by P gives
PF =P (5id; @ d};) = 6P (d: @ d}) = &} (Pdi) @ d} (5.1)

using Lemma 3. B
These results suggest the first constitutive postulate called material frame indifference. The
principle of material frame indifference states strain energy density is invariant under rotations

of the rod following deformation. This is expressed mathematically as
e (F,F) =< (PF, (PF)) =¢ (F,F) (5.2)

for all deformations F and fixed rotations P. Since P is fixed (i.e., not a function of sg), then
equation (5.2) becomes ¢ (F, F') = ¢ (PF, PF’).

We now consider how to express material frame indifference in terms of Die (F,F’) and
D2 (F,F'). We consider the effect of differentiating with respect to the first slot on both sides
of equation (5.2). This is given by applying Theorem 2 , namely

Die (F,F)) = PTD:(PF,PF) (5.3)
D2e (F,F') = PTD. (PF,PF) (5.4)

for all P € SO (3, R). Thus the rotation P carries through on the derivatives D& and D¢ and
equation (5.2) implies equations (5.3) and (5.4).

Let ¥ denote the set of all possible deformations that could be done on a directed rod. If
F € §, let G ~ F mean G = PF where P is any rigid rotation. Of course G € §.

Theorem 10 ~ is a eguivalence relation.
Proof. Test the axioms for equivalence relations.

1. Identity. If P = I (where I is the identity tensor satisfying Iv = v for all vectors v), then
G =IF = F. This means F ~ F.
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2. Reflexive. Suppose G ~ F so there exists P with G = PF. Since P € SO (N, R), P must
be invertible and P~! € SO (N,R). So P"!G=P~'PF =IF = F or F = P~1G. Thus
ifG~F, then F ~ G.

3. Transitive. Suppose G ~ F so there exists P; such that G = P,F. Further, suppose
H ~ G so there exists P2 such that H = P>2G. Then H = P,P;F. But P = P;P; is
also a rotation since the set of rotations forms a group under composition. Thus H = PF

which means H~F. Soif G~Fand H~ G,then H~ F .
Since ~ includes identity and is reflexive and transitive, then ~ is a equivalence relation. @
Lemma 36 If G ~ F then G' ~ F'.

Proof. Since G ~ F there exists P with G = PF. Then G’ = (PF)’ = P'F + PF' = PF' (the

rotation P does not depend on the parameter sg). This means G’ ~ F'. @
Corollary 6 If G ~ F, then e (F,F") =¢(G, G).

Proof. If G ~ F then G’ ~ F’ and there exists rotation P such that G = PF and
G' =PF = (PF)'.
From the material frame indifference postulate (equation (5.2)),
e (F,F') = ¢ (PF, (P.F)') =¢(G,G)

which is the desired result. B

The property ~ partitions the set ¥ into mutually disjoint subsets characterized by the fact €
is invariant for any two members and their derivatives from the same subset. Any representative
member of a subset may be used in evaluating ¢. In particular, if the deformation F is a
rotation, then F = FIso F ~ I and ¢(F,F’) = ¢ (I,I') corresponding to the strain energy for
no deformation. Of course this is sensible because a rigid rotation of the rod really doesn’t

deform the rod: it only changes its orientation in space.
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This has further implications for the dependence of strain energy on deformation and its first
derivative. We invoke the polar decomposition theorem which states any second order tensor
F with nonzero determinant may be written F = PU where P is an orthogonal tensor and U
is a right stretch tensor (the proof of the polar decomposition theorem is given in Appendix
A). Of course F is really a tensor field, defined along each point of the curve forming the rod
axis so the orthogonal tensor P is now a function of sg . If the polar decomposition theorem is

applied at each point along the curve, the result is

F (sg) = P(sr)U(sg)

and

F/(sr) =[P (sr) U(sr)l' =P’ (sr) U(sr) + P (sr) U’ (sr)-

We'll now assume P is a member of the special orthogonal group so
¢ (F,F) =¢(PU,(PU)) = (PU,P'U + PU"). (5.5)
Since P is a rotation, PTP = I and differentiating with respect to sg gives
(PTY P +PTP' = (P) TP + PTP' =0.

Solving for P’ leaves

P’ =P (P)P.

Substituting this into equation (5.5) yields
e (F,F) =< (PU,-P (P")"PU+PU') =¢ (PU,P (U’ - (P")'PU)).

If we consider a particular point on the rod axis, € is considered to be invariant under the

rotation P so we obtain

e(F,F) =« (U,U' - (P)"PU). (5.6)
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Notice if the deformation F happens to be such that P (sg) is constant, then equation (5.6)
reduces to € (F,F’) = € (U, U’) agreeing with Corollary 6. We use this kind of analysis later in
the thesis to assist in solving deformations of normal uniform rods.

In the case of a simple material, it can be shown material frame indifference implies the
strain energy depends only the stretch portion of the deformation tensor (Leigh, [7]). For
second-grade materials, equation (5.6) indicates that the dependence of € on the deformation

tensor and its derivative is not so simple.

5.3 Material Symmetry

Material symmetry is the second constitutive restriction to be considered. This constitutive
restriction attempts to describe symmetry inherent in the rod material as opposed to its em-
bedding in space. Material symmetry is not a well developed concept for directed rods: there
is no general theory to guide the application of this principle (Cohen[1]). This thesis uses a
particular form of material symmetry called monotropic symmetry. It should be noted there
are other ways to formulate material symmetry as a constitutive restriction.

We could attempt to develop material symmetry along the same lines as material frame
indifference. In this case, we would consider the effect of rotating the curve prior to deforming
it. As in the previous section, it seems reasonable to suppose the strain energy doesn’t depend
on the rotation Q (whether the rotation is done before or after deformation is immaterial - it
is no effect on the strain energy). This might suggest we follow the pattern of equation (5.2)

and postulate

e (FQ, (FQ)) = (FQ,FQ) =« (F,F') (5.7)

for all Q € SO (3,R), and work out expressions for the derivatives analogous to those of
equations (5.3) and (5.4).

However, the constitutive restriction in this case is not as straightforward as this. There
is a significant difference physically between rotating after deformation and rotating prior to
deformation. Rotating after deformation implies the independence of the strain energy from
the coordinate system in which the rod is embedded - material frame indifference. But rotating

prior to deformation has another implication - a symmetry in the material itself.
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It should be noted that material symmetry in derived theories is a well defined and under-
stood constitutive restriction. A common way of implementing material symmetry in a derived
theory is to view the material as isotropic so there is symmetry in all possible directions. The
rotation operator is any member of the special orthogonal group. In this case, equation (5.7)
would hold with Q € SO (3, R).

In this thesis, we follow Cohen[l] and develops the principle of material symmetry for a
directed rod by postulating the need for both symmetry and anti-symmetry transformations.
Such transformations are brought about by members of the special linear group. This implies
the required transformations for the desired symmetry and anti-symmetry effects must come
from one of a pair of subsets of this group. Cohen developed material symmetry in the context
of tensor pairs [1]. Unfortunately, this is not appropriate for the variational method employed in
this thesis. However, careful investigation of Cohen’s approach provides the necessary conditions
to duplicate the constitutive restrictions for material symmetry in the variational approach.

Appendix B contains a general development of group theory for pairs of members of the
general linear group. Appendix C reviews Cohen’s tensor pairs and his development of material
symmetry applying the results of Appendix B.

Cohen required the set of tensor pairs for the symmetry transformations to form a group
under composition. The union of both sets of tensor pairs (symmetry and anti-symmetry) was
also required to be a group. These tensor pairs are built on subsets of the special linear group.
The key result from Appendix B is a description of the conditions which must apply to the
pairs of subsets required for material symmetry. .

Let I and V be these subsets of the special linear group corresponding to the symmetry and
anti-symmetry transformations respectively. Then &/ and V must satisfy one of the following

conditions in order for the tensor pairs to form groups as described above.

1. U is a subgroup of the special linear group and U = V.

2. U is a subgroup of the special linear group, U MV = @ and U UV is a subgroup of the
special linear group.

A directed rod is said to be materially symmetric if equation (5.7) holds for all Q e Y UV

where U and V must satisfy one of the conditions listed above.
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This definition of materially symmetric implies there may be many types of material sym-
metry determined by the choice of the sets I and V. From the principle of material symmetry,
Cohen chose a specific case called monotropic symmetry. A rod point is said to be materially
rmonotropic if the set U contains the transformation effecting a rotation of 7w radians about a
fixed axis e. This transformation may be denoted Q..

Since I{ is a subgroup of the special linear group, Q. € U implies the inverse of Q. is also
in Y. In fact, Q. is its own inverse, since two successive applications of Q. to any vector must
return the same vector. The minimal such group i which may be used to impose monotropic
symmetry is given by U = {I, Q.}. The proof of this is straightforward and may be found in
Appendix C. Using U = {I, Q.} provides monotropic symmetry about one axis. More generally,
we can choose U to impose monotropic symmetry about as many axes as desired provided the
group property is retained.

The symmetric form of monotropic symmetry does indeed imply the invariance of the strain
energy density after a rotation of 7 radians about the axis. Q.x is a reflection of the point x

though the axis of rotation. This can be written as
Q.=-I1+exe (5-8)

where I is the unit tensor in the plane orthogonal to e. In anti-symmetric form, the point is
first rotated by m radians as in the symmetric form, i.e. Q.x, and then reflected through the
plane perpendicular to Q.x to give the effect of —Q.x. A transformation such as this is known

as a roto-inversion. A roto-inversion may be written as
-Q.=I-e®e. (5.9)

We still need to specify how to implement monotropic symmetry using the strain energy
density function. As already mentioned, we wish to include both symmetric and anti-symmetric
properties. Thus there are actually two formulas to define the constitutive restriction of

monotropic symmetry - a symmetric form and an anti-symmetric form. Let Q. € U U V.
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The symmetric form of monotropic symmetry (Q. € U) is defined by
£ (FQ., (FQ,)) =¢(F.F) (5.10)
while the anti-symmetric form of monotropic symmetry (Q. € V) is defined by
e (FQ., - (FQ,)) =< (F,F). | (5.11)

A particular member of &/ U V must satisfy one or the other forms, but generally cannot satisfy
both (there are special cases in which a member Q. does satisfy both forms). Notice that if I/
is to be a group, it must contain the identity transformation I. The identity does not cause a
rotation, but it does satisfy

e (FL, (FI)') =¢ (F,F') (5.12)

which is a special case of the definition given by equation (5.10).

Using Theorem 3, the constitutive restrictions for material symmetry can be written in
terms of the derivatives of the strain energy density function. Since there are two slots to
differentiate and two forms of material symmetry (symmetric and anti-symmetric), there will

be four derivative expressions. These are given as

Die (FQ., (FQ.)) Q: = Die (F,F)

and

Dae (FQ., (FQ.)) Qf = D¢ (F,F')
for the symmetric form and
Die (FQ,, - (FQ.)) Q7 = Die (F,F)

and

—Dse (FQ,, — (FQ,)) QI = Doe (F,F)

for the anti-symmetric form.
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5.4 Summary of the Constitutive Restrictions

To summarize the results obtained thus far, we now write the constitutive restrictions as pos-

tulates of the theory.

Postulate 7 Material Frame Indifference. The postulate of material frame indifference states
e (F,F) =¢(PF,(PF)) = ¢ (PF, PF') (5.13)

for all P € SO (3, R). This implies

Die (F,F) = PTD¢ (PF,PF) (5.14)
and
Doe (F,F') = PTDye (PF,PF') (5.15)
or (equivalently)
Die (PF,PF') = PDqe (F, F) (5.16)
and
Dz&‘ (PF, PF’) = PDQEI (F, F') (5.17)

since PT = P~L.

This postulate is stating that the strain energy function is invariant if the directed rod is
rotated following a deformation. Alternatively, it may also be interpreted to mean that rotating
the coordinate system in which the rod is embedded does not effect the strain energy.

Equations (5.14) and (5.15) may also be expressed as
N (F,F) = P'N (PF, PF') (5-18)

and

M (F,F') = PTM (PF, PF') (5.19)
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by multiplying through equations (5.14) and (5.15) by A\p and using the definitions given by

equations (4.16) and (4.17).

An expression for the deformation F followed by the rotation P is given by 6; (Pd:) ® d‘}}.

The postulate of material symmetry considers the effects on strain energy of a rotation prior

to deformation.

Postulate 8 Material Symmetry. Suppose Q. € I{ U V. Then
e(F,F) =¢(FQ.,FQ.)
for the symmetric case (Q. € U) and
e (F,F) =¢(FQ.,-F'Q.)
for the anti-symmetric case (Q. € V). In the symmetric case, this implies
Dae (F,F) = D1 (FQ.,.F'Q.) QF

and

Doe (F,F') = D (FQ,, F'Q.) QF

or (equivalently)
Die (FQ., F'Q.) = Die (F,F) QT

and
Dse (FQ..F'Q.) = D (F,F') Q.T.

For the anti-symmetric case, equation (5.21) implies
Die (F,F') = Die (FQ,,~-F'Q.) Q7

and

Dae (F,F) = —D:e (FQ,, -F'Q.) QT
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or (equivalently)
Die (FQ,, -F'Q.) = D1e (F,F) Q.T (5.28)

and

Dse (FQ,,-F'Q.) = ~Da¢ (F,F) Q. (5-29)

These may also be expressed as

N(F,F) =N (FQ.,F'Q.) Q7 (5.30)
and
M(FF) =M (FQ.,F'Q.) Q; (5.31)
for the symmetric case and
N (F,F) =N (FQ.,-F'Q.) Q7 (5.32)
and
M (F,F) = -M (FQ.,-F'Q.) Q (5.33)

for the anti-symmetric case by multiplying through equations (5.26), (5.27), (5.28) and (5.29)
by Ap and using the definitions given by equations (4.16) and (4.17).
The expressions given in equations (5.18), (5.19), (5.30), (5.31), (5.32) and (5.33) are more

useful in the next section and when solving specific deformations in subsequent chapters.

5.5 Comparison With Cohen’s Constitutive Restrictions [1]

In Chapter 4, we showed the field equations derived in this thesis were equivalent to those
given by Cohen [1]. In this section, we show the constitutive restrictions postulated above are
equivalent to those given in Cohen’s paper. We recall the relationships between the quantities
in Cohen [1] and those of this thesis. These are equations (4.38), (4.39 ) and (4.40). For
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convenience, they are reproduced here (we don’t need equation (4.39)).
M=M(F,F)=FM(F,F)T (5.34)

and

N =N(F,F) =FM (F,F)" +FN (F,F)” (5.35)

where

M (F,F’) = \pDs¢ (F, F’) and N (F,F') = ApDe (F,F).

5.5.1 Material Frame Indifference

We consider material frame indifference in terms of the stress functions N and M used in
Cohen'’s paper[l]. These quantities are assumed to be functions the deformation tensor and its

first derivative:

N =N (F,F') and M =M (F,F’).

Cohen expressed material frame indifference as
M (PF,PF') = PM(F,F)P" (5.36)

and

N (PF,PF') = PN (F,F)) P". (5.37)

for all deformations F and fixed rotations P.
Let P € SO (3, R). Taking the transpose of equation (5.19) gives

M (F,F)T = M (PF,PF')" P
and multiplying through by PT = P-! on the right gives

M (F,F)" PT = M (PF,PF)". (5.38)

84



Multiplying through equation (5.38) on the left by PF yields
PFM (F,F')'PT = PFM (PF,PF)".

Apply equation (5.34) to the term on the left side of this equation gives

PM (F,F) PT = PFM (PF,PF)". (5.39)
Replacing F with PF in equation (5.34) gives

M (PF, PF’) = PFM (PF,PF") T (5.40)
and putting this into equation (5.39) gives
PM (F,F) PT = M (PF, PF').

This is equation (5.36), one of the constitutive restrictions postulated in Cohen’s paper.

Taking the transpose of equation (5.18) gives
N (F,F)' =N (PF,PF)"P
and multiplying through this equation by PT = P-! on the right and F on the left results in
FN (F,F)TPT = FN (PF,PF)".

Add F'M (F, F')T PT to the left and F'M (PF, PF')T to the right sides of this equation. From
equation (5.38), these two expressions are equal so the result is

FM (F,F)"PT + FN (F,F)"PT = FF'M (PF,PF')" + FN (PF,PF)".
Now multiply through this equation by P on the left to get
PF'M (F,F')TPT + PFN (F,F)" PT = PF'M (PF,PF')" + PFN (PF,PF)". (5.41)
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Replacing F with PF in equation (5.35) gives
N (PF, PF') = PF'M (PF,PF")" + PFN (PF,PF")" (5.42)
and substituting this into equation (5.41) gives
N (PF, PF’) = PF'M (F,F)" PT + PFN (F,F))T P™.
Multiplying through this equation by PT on the left and P on the right gives
PTN (PF,PF)P =FM (F,F)” + FN (F,F)"
and using equation (5.35) to replace the right side of the last equation yields
PN (PF,PF)P =N (F,F').
Multiplying equation (5.35) on the left by P and on the right by PT gives
N (PF,PF) = PN (F,F') PT

which is equation (5.37), the other constitutive restriction for material frame indifference pos-
tulated by Cohen.

Thus starting with the constitutive restrictions postulated in this thesis for material frame
indifference and using the relationships between Cohen’s quantities EI(F, F’) and M(F,F’)
and the derivatives N (F,F’) and M (F,F’), we can derive Cohen’s postulated constitutive
restrictions. Thus the constitutive restrictions for material frame indifference postulated by

this thesis and in Cohen’s paper are identical.

5.5.2 Material Symmetry - The Symmetric Case

Conen expressed the symmetric case of material symmetry as
M (F,F) = M (FQ,F'Q) (5.43)
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and

N (F,F) =N (FQ FQ) (5.44)

for all deformations F and Q € U to be used as a symmetric transformation.
Suppose Q € U. Taking the transpose of equation (5.31) gives

M(F, )T = QM (FQ,F'Q)* (5.45)
and multiplying both sides by F on the left yields
FM (F,F)T = FQM (FQ,F'Q)". (5.46)
Replacing F with FQ in equation (5.34) gives
M (FQ,F'Q) = FQM (FQ,F'Q)" (5.47)
and placing this into equation (5.46) results in
FM (F,F)" =M (FQ,FQ).
Using equation (5.34) again to replace the term on the left side of this equation results in
M (F,F) =M (FQ.F'Q).

But this is equation (5.43), one of Cohen’s constitutive restrictions for the symmetric form of
material symmetry.
Taking the transpose of equation (5.30) results in

N(F,F)'=QN (FQ,F'Q)"
and multiplying by F on the left gives
FN (F,F)T =FQN (FQ,F'Q)".
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Add F'M (F, F')T to the left side and FFQM (FQ,F’Q)T to the right side of this equation.

From equation (5.45), these two quantities are equal so the result is
F'M(F,F)T+FN (F,F)" =FQM (FQ,F'Q)" + FQN (FQ,FQ)". (5.48)
Replacing F with FQ and F’ with F'Q in equation (5.35) gives
N (FQ,F'Q) = F'QM (FQ,F'Q)” + FQN (FQ,F'Q)"

and using this result in the right side of equation (5.48) gives

FM(F,F)T +FN(F,F)" =N (FQ,F'Q).
Applying equation (5.35) to the left side of the last equation results in

N (F,F) =N (FQ,FQ).

This is equation (5.44), the other constitutive restriction postulated by Cohen for the symmetric
form of material symmetry.

Thus we are able to derive Cohen’s postulated constitutive restrictions for the symmetric
form of material symmetry from the corresponding postulated constitutive restrictions for this

thesis.

5.5.3 Material Symmetry - The Anti-symmetric Case

Cohen expressed the symmetric case of material symmetry as
M (F,F) = -M (FQ,-F'Q) (5.49)

and

N (F,F) =N (FQ,-FQ) (5.50)

for all deformations F and Q € V to be used as an anti-symmetric transformation.
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Taking the transpose of equation (5.33) gives
M(F,F)" = -QM (FQ,-FQ)" (5.51)
and multiplying through this equation by F on the left yields
FM (F,F)T = -FQM (FQ, -F'Q)". (5.52)
Replacing F with FQ and F’ with —F’'Q in equation (5.34) gives
M (FQ, -F'Q) =FQM (FQ, -F'Q)”
and replacing the right side of equation (5.52) with this expression results in
FM (F,F)" = -M (FQ, -F'Q) .
Applying equation (5.34) to the left side of this last equation yields
M (F,F) = -M (FQ, -F'Q)

which is equation (5.49), one of Cohen’s constitutive restrictions for the anti-symmetric form
of material symmetry.
Taking the transpose of equation (5.32) gives

N(F,F)T =QN (FQ,-F'Q)"
and multiplying both sides by F leaves
FN (F,F)T =FQN (FQ, -F'Q)".

Add FM (F, F)T to the left and ~F'QM (FQ, —F’ Q)T to the right side of this equation. From
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equation (5.51), these two quantities are equal so the result is
F'M (F,F)" + FN(F,F)T = -F'QM (FQ,-F'Q)” + FQN (FQ,-F'Q)".  (5.53)
Replacing F with FQ and F’ with —F’Q in equation (5.35) gives
N (FQ,-F'Q) = -FFQM ( FQ",-F Q)T +FQN (FQ, —F’Q)T

and substituting this into the right side of equation (5.53) gives

FM(F,F) +FN(F,F)" =N (FQ,-F'Q).
Applying equation (5.35) to the left side of this last equation results in

N (F,F) = N (FQ, -F'Q)

which is equation (5.50), the other constitutive restriction postulated by Cohen for the anti-
symmetric form of material symmetry.

Thus we are able to derive Cohen’s postulated constitutive restrictions for the anti-symmetric
form of material symmetry from the corresponding postulated constitutive restrictions for this

thesis.

5.6 Using the Constitutive Restrictions

We can combine the constitutive restrictions given by Postulates 7 and 8 into two rules, one
for the symmetric case and one for the anti-symmetric case. We illustrate using N(F,F’) and
M (F,F).

Observe that the left side of equation (5.18) is the same as the left side of equation (5.30)
and the left side of equation (5.19) is the same as the left side of equation (5.31). Thus we may

equate the right sides to obtain
PTN (PF,PF) = N (FQ,F'Q) Q*
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and

P™™ (PF,PF) = M (FQ,F'Q) QT.

Now if it is possible to find P and Q such that PF = FQ, we may define
N =N (PF,PF) =N (FQ,F'Q)

and

M’ =M (PF,PF) =M (FQ,F'Q)

from which PF = FQ would imply PTN" = N"QT and PTM’ = M QT. Note we are assuming

P and Q are constants so PF = FQ automatically means PF' = F'Q. However, in this case

we can use
N(F,F) =PTN",
N(F,F)=NQT,
M (F,F) =P™
and

M(F,F)=MQT

and arrange these as

N =PN(F,F),
N =N(F,F)Q°T,
M =PM(F,F)

and

M =M(F,F)Q T

from which we get

PN(F,F)=N(F,F)QT (5.54)
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and

PM (F,F)=M(F,F)QT. (5.55)

Equations (5.54) and (5.55) will prove to be the more convenient forms to use. They only apply
if
PF =FQ. (5.56)

By 2 similar argument comparing equations (5.18) and (5.32) and equations (5.19) and
(5.33), we find
PN (F,F) =N (F,F)QT (5.57)

and

PM (F,F)=-M(F,F)Q T (5.58)

for the anti-symmetric case, provided PF = FQ and PF’ = —F'Q. Since P and Q are constants,
differentiating both sides of PF = FQ with respect to sg gives PF' = F'Q. Then F'Q = —-F'Q
or F'Q = 0. Since Q must be a member of the special linear group, it has determinant one.
Thus this case cannot occur unless the determinant of F’ is zero.

Consider the monotropic case in which we choose Q to be Q. where e is some fixed vector
and Qg is the rotation of n radians about the axis defined by e. Then Q. is also a member of the
special orthogonal group. We may calculate P as P = FQ.F~! (recall F is always invertible)
so equation (5.56) is satisfied. If this P is orthogonal, equations (5.54), (5.55), (5.57) and (5.58)
may be replaced with

FQF'N(F,F) =N (F,F)Q.",
FQ.F'M (F,F) = M(F,F)Q.",
FQ.F'N (F,F) =N (F,F) Q:T

and

FQ.F M (F,F) = -M(F,F)Q.”

Since Qe is an orthogonal tensor, Q = Qz! and thus Q;T = Q. so in fact these equations
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may be written as

FQ.F N (F,F) =N (F,F) Q.

and

FQJF'M (F,.F) =M(F,F) Q.

for the symmetric case and
FQ.F'N (F,F) =N (F,F) Q.

and

FQ.F'M(F,F) =-M(F,F) Q.

for the anti-symmetric case.

We can generalize this a bit more. If R is another member of the special orthogonal group
(i.e. another rotation) which rotates vectors about the axis defined by the vector € and we
define

€ = RQeRTx

and we may choose P to be Qg, then these four equations may be written as

QN (F.F)=N(F,F)Q. (5.59)
and
QM(F,F)=M(F,F)Qe (5.60)
for the symmetric case
Q:N(F,F) =N (F,F') Q. (5.61)
and
QM (F,F') = -M(F,F) Q. (5.62)

for the anti-symmetric case. Equations (5.59) through (5.62) are valid as an expression of the
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combined symmetry (using monotropic symmetry) only if

—‘e'F = FQe
and
Q.F =FQ.
in the symmetric case and
—E ' = -FQe

in the anti-symmetric case. This anti-symmetric case still requires the determinant of F’ to
be zero for the reasons discussed earlier. Notice that equation (5.61) is actually redundant - it

contains exactly the same information as equation (5.59).

5.7 Summary

The field equations of Chapter 4 apply to all hyperelastic rods. However, additional information
is required to completely specify the deformation of a directed rod. This information must reflect
properties of the material of the rod.

In this thesis, we are concerned with two kinds of constitutive restrictions: Material frame
indifference which implies the deformation is independent of the orientation of the rod in space
and material symmetry implying a symmetry within the material itself. Postulate 7 gives the
constitutive restriction describing material frame indifference. Material symmetry has both a
symmetric and anti-symmetric part. Postulate 8 provides the constitutive restriction describing
material symmetry.

The constitutive restrictions postulated in this thesis are equivalent to those postulated in
Cohen [1].

The constitutive restrictions may be combined into fewer expressions. Furthermore, there

are special cases of these combined expressions which are particularly simple to use.
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Chapter 6

Further Rod Geometry

In this chapter, we look at special deformations which simplify the rod geometry to allow

solutions of the differential equations. The solutions are derived in the following chapter.

6.1 Normal Uniform Rod Configurations

In this section, we consider the special geometry of normal uniform rods. This geometry leads
to deformations which can be solved exactly for the stress tensors.

The geometry to be considered in this chapter is based on Ericksen’s results for what he
called uniform states [4]. Ericksen discusses special rod configurations in which differential
equations of deformation may be replaced by algebraic relationships and shows there are only
three shapes of the rod axis for which this possible: straight, circular and helical. The distrib-
ution of the directors along the rod axis may have a constant twist rate. Thus in the straight
case, the directed rod may have constant directors or the directors may be twisted along the
axis.

In this chapter we consider a subset of Ericksen’s uniform states. In subsequent chapters, we

actually solve the deformation of a straight rod to any of the other four possible configurations.

6.1.1 Mathematical Preliminaries

To develop the ideas of uniform rods requires introduction of some special tensors and their

properties. These tensors are closely related to the wryness tensor introduced in Chapter 2.
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We continue to use {e;, ez, e3} as the natural basis for Euclidean three dimensional space.

In the following definitions, all indices are elements of the set {1,2,3}. Define the following

tensors:

E;;=e;®ej,

Ex—-Epifk=1,
Ag={ E-Eyifk=2
Egl—Elzifk=3.

We state and prove several results with respect to these tensors.

Lemma 37 E{jek = §jre;.
Proof. E;jer =e; @ ejer = (e;-ex)e; = bxe;. B
Lemma 38 Ile; = §;e; + 6jiej wherei # j, i # k and j # k.
Proof.
Ié‘eg = (Eii + Ejj) e
= E;e + Ejjel
= e;®e;e+e; @e;e

= (ei-e)e;+(ej-e)e;

= bge; + 6'j1e_,-- [ ]
Corollary 7 Iex =0.

Proof. I}er =6ire; + §jxe; =0sincei #kand j # k. B

96

(6.1)

(6.2)

(6-3)



Lemma 39

dzez —byez if k=1,
Aper = bye —byes if k=2,

dues — dyer if k =3.

Proof.
Ate; = (Ex3 —Es)e = Exe; —Ejze; = 63e2 — o€,
Afe; = (Ei3—Ej)e =Eze; —Eze = 631 — byes,
Ate; = (Ez —En)e =Ee ~Epe = 6e2 — 62e1. @

Corollary 8 Aiek = 0.

Proof.
Ate; = 63e—6ne3=0,
Aze; = bpe; — ez =0,
AgLez = 51382 - 62381 =0.8

Lemma 40 (Eij)T = Ej,;. In pa.rticula.r, (Eii)T = E{i SO E,;,' s symmetric.
Proof. Since E;; = e; ® e, then (E{j)T =e;®e;=E;; B
Lemma 41 (I1)T =}, that is, I} is symmetric.

Proof.
T
(It) = (Bi +Ej5)" = (Ba)" + (Bj3)" =Ba+Ey; =1

using properties of transpose and Lemma 40. &
Lemma 42 (Af)T = —AL, that is, A} is skew-symmetric.

Proof.
T
(A1) = (B —Ea)" = (Bz3)" - (Bso)™ = Es2 — Ezs = AL,

97



T
(A%) = (Eiz — En)T = (B13)T - (B31)T =E3; — B3 = —A7

and

T
(a$) = (Ba—En)" = (Exa)" - (Br)" = Bz —En = —Ag
using properties of transpose and Lemma 40. B
Lemma 43 E;;Ex = 6xEq.

Proof.
EjEy =(e:®¢ej)(ex®e) =e;®@(ej-ex)er=6xe; 0 e = 65;:Eu. B

It is helpful to have a product table of E;;, I,J; and A;c'-. Using Lemma 43 and the definitions
of these quantities, the following table can be created. The calculations of these products are

omitted.

En | Ex |Eu | It |IF| It | AL | A | A4

Euy || En 0 0 0 |En| En 0 Eiz | —E2
Eg 0 E2 0 E22 0 | Exx | Ex 0 Ex
Ea3 0 0 E3z | E33 | Ea3 0 —E3 | —Ez 0

I 1] Ex | Ea3 I+ | Es3| Ex A{ | —E31 | Ex
Iy [ En 0 Esg3 | Es3 | I3 | Eny | -Ex2 | A | —-Ep2
IF | Ex | Ex 0 Ex {(En| IF Ezz | Eis AF
A 0 | -Ex| Exz | Af [Eyp | ~Esx| -If | -Ey; | —Eg
At || —Ex 0 Ezs | Eis |Af | -Es1 | ~E12 | -I7 | E32

Aj || Ez | —Ep;2 0| -En |Exn| Af | -Euz| Exz | Iy
Table 6.1

The set {E;;, 7,7 =1,2,3} serves as a basis for second order tensors. If T is a second
order tensor with components T with all possible values i, j € {1,2,3}, then we may write
T = T"J' Eij.

Lemma 44 If T is any second order tensor, then TTAFT is skew-symmetric.
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Proof. Let T = T’JE-,,J Then Engk[ = 5jkEil

TTAIT = T7Ei (Ea — Ei2) T¥En
= THE {EnTHEw — TPE;E1.THEy
= TITH§,EnEy — TT*6;1 BBy
= THTH§61Eu — TH T 5162k Eq
= (TziT“ - T“Tﬂ) Ex

using Lemma 43 several times. Since T%#TH — THT2? = — (TATY — THUT?) for any choice of
and [ and, in particular, T%TY — THT2 = ( if i = [, then TTA# T must be skew-symmetric.
We now wish to consider a second skew-symmetric tensor T. A skew-symmetric tensor has

components satisfying
T = —T%

and in particular

T® =0fori=1,2,3.

In this situation, the entire tensor is determined uniquely by only three components. This is

nicely summarized in the following lemma.

Lemma 45 A skew-symmetric tensor T may be written as
T =TBAL + TBAy — THAg. (6.4)
Proof. If we write the second order tensor in terms of the basis E;; we obtain

T = TYE;
= TRE;; + TBE;3 — T?Eg; + TREg; ~ T¥E3, — T®Es2
= T2 (E;; — En)+ T8 (Ei3 — Es1) + T2 (E2s — Ea3)
= T2 (Egs — Egg) + T3 (Ei3 — Ea1) — T'? (E21 — En2)
= TBA;: +THBAy -TRAT
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using the definition in equation (6.3). B
This suggests that any skew-symmetric tensor may be completely specified by a unique
vector. Let t denote this vector with components ¢!,¢? and #3. t is defined by

tr=T3,2=T"and * = -T2 (6.5)

It can be shown that t is an axial vector and thus t is called the axial vector of the tensor T.
Notice that given an axial vector t, it uniquely determines a skew-symmetric tensor T by the

relationships in equation (6.5). From the definition (6.5), equation (6.4) becomes
T = t'Af + 2AF + 2AF = AL (6.6)

The magnitude of the vector t is denoted ¢ and defined by ¢ = /t - t where - denotes inner
product. With the natural basis {e;, e3, e3},

t-t =t + 262 + 345,

The magnitude of the second order tensor T is denoted T and defined by T = ‘/%tr (TTT).

For the next lemma, it is easier to use t2 =t -t and T? = Ltr(TTT).
Lemma 46 If t is the arial vector of the skew-symmetric tensor T, then T =t.

Proof. Compare the expressions for T2 and t? to-see if they're equal.
s 1 1 1
T = Etr (TT ) = -2—tr (-TT) = -—Etr (TT).
Evaluate TT to get

TT = (T®A{+TYAf-T2A7) (T®Af +TPA; - T1Af)
= TBTBATA] +TRTRATA; -TRTRATAz
+TRTBAF AL + TBTPAFA; - THRTHRAT AT
—TRTBAFAT — TPTRATA; + TPTR AT AS.
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TT = (T®A{+TPAf -TA7) (TPA] +TA; - TA7)

—TBTBL — TRTRE,y + TT®E;,
_TI3T23E12 _ T13T1312..L _ T12T13E32
+TRT®E 3 — TRTYEy — TPTPI .

Using Table 6.1 and rearranging gives

TT = _T23T231_1L _ T13T13I'2L _ T12T121:J;.
~TBTB (Ey; + Ep2) + TRT3 (B3, + E13) — THTY (Ej2 + Eaa)
= —TBTB(Ey + Eg) — TBTB (BEqy + Es3) — TR (Eqy + Ez)
~TBTB (Ey; + Eyp) + TRT3 (Ea; + E13) — THT (Es2 + Eaa)
- (T12T12 + T13T13) E; — (TuTm +T23T23) Egp — (T13T13 + T23T23) Ea3
—TBTBE, + TRTBE; - TBTBE,, — TRTBE,, - T2TBE; + TR2PBE,,.

To evaluate the trace of TT, we need only consider the coefficients of E11, E22 and Ej3. We
get

T2 = —-;—tr (TT)

= —-%tl‘(—— (T12T12 + T13T13) E11 — (T12T12 + T23T23) E;
_ (T13T13 + T23T23) E33)
= _l (_T12T12 - T13T13 - T12T12 _ T23T23 _ T13T13 . T23T23)
2

— T12T12 + T13T13 + T23T23
Now consider the expression for t2 =t -t:
£ = t-t

= ! + 262 + 365,
= (-T%) (-T%) + (1) (T%) + (-T") (-T*)
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T12T12 +T13T13 +T23T23.

Comparing the expressions for T2 and t? shows T? = t2. Since the magnitude of both the tensor
and the vector must be nonnegative, it follows that T =¢t. I8

This is not a surprising result since the vector t contains the same information as the second
order tensor T.

The next lemma ipdicates the effect of T acting on the vector t.

Lemma 47 If t is the azial vector of the skew-symmetric tensor T, then t is in the kernel of

T.
Proof. Recall

ker T = {x € V such that Tx =0} .

Thus we consider solving the equation Tx = 0. This has nontrivial solutions if and only if
det T = 0. Evaluating det T gives

detT = Tll (T22T33 _ T32T23)
_T12 (T21T33 - T31T23)
+T13 (T21T32 _ T31T22) i

Using T% = 0 and T% = —T7* gives

det T = —TRTBT3 L pPR2pBTA _

and thus T is singular so nontrivial solutions to Tx = 0 exist. That is, ker T is not the trivial

set {0}. To determine this set, solve the system of linear equations given by

T1222 + TBz3 =0, (6.7)
T2z + T3 =0 (6.8)

and
—TBz! —T2z22 = 0. (6.9)
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From equation (6.7)

" T13
= = —T—u-:l: .
From equation (6.8)
T23
1 -
T =T12%

From equation (6.9)

T23 T‘23 T13 T23
1 __ 2 31 3
=73t T (—ﬁi) (“ﬁx ) =Tt -

Thus equation (6.9) is redundant. The result is

k

ker T = {ﬁ

(TRe; — THey + T'2%e3) forallk € ?R} )

This can be verified by multiplying T by 7z (T?3e; — T'%e2 + T'2e3). Thus the kernel of T is
a one-dimensional subspace of V. Choosing k = —T"'2 yields

T12

T3 (T2381 _ T1362 + T12e3) = (T%el —'T1382 + T1283)
= —T23e1 + Tlaez - Tme3
= tlel + t2e2 + t3e3

= t

using the definitions given in equation (6.5). Thus t € ker T which is the result to be proved. @
Thus the kernel of T may be thought of as all vectors parallel and anti-parallel to the
axial vector t. This lemma implies Tt = 0, (Tt)T = 0T or, using properties of the transpose,

tTTT = 0. But since T is skew-symmetric, TT = —T so -tTT =0 or tTT = 0.

Lemma 48 Let t be the axial vector of the skew-symmetric tensor T. Ifx € V then Tx = t xx

where x denotes the vector cross product.

Proof. Let x = z*e;. Then
Tx = t'Afrle;
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= tiziAle,
= tl:z:IA‘l"el + tlzzAf'ez + tl:z:sAiLeg
+t°z' ATe; + t2z?Ate; + t2z3Ates

+t3z'Ate; + 322 Aze; + 323 Ates.
Applying the results of Lemma 39 gives

Tx = tz2e; — t'zle; — 2zle; + t23e; + 2rles — 32%e

= (t2z% - 32%) ey — (t'2® - £2z') ex + (t'2? — t2z!) €.

Now consider t x x. Using the determinant method of evaluating a cross product yields

ey e; €3
txx = det| ¢ 2 £
£l g2 23

= (2 -2 e — (t'z® — P2') ex + (t'z® — t22') es.
Comparing the result of Tx and t x x shows Tx =t x x. B

6.1.2 Normal Uniform Rods

A rod configuration is defined to be isometric if the director distribution is given by
d; = Odj

where O is a proper orthogonal tensor function of the curve parameter and dig = d; (sgo) is
the director basis at a fixed, arbitrary point srg. Notice that this defines all directors in terms
of a single set of directors at a fixed point along the rod. Several interesting relationships arise

from this type of rod configuration.

Lemma 49 For an isometric rod configuration, d; = O'd.
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Proof. Since d; = Od,
d; = (Odj)' = O'dy + Odjy = O'dyg

since dyg is a fixed vector (not a function of sg) and hence dj; =0. 8@
Lemma 50 For an isometric rod configuration, W = O'O~lwhere W is the wryness tensor.
Proof. From Corollary 2, Wd; = d! - that is, W maps a director to its derivative. Consider
the effect of O'O~! on a director.

O’O‘Idi =0'dy = d:
using the result of the Lemma 49. Since W and O’O~! have the same effect on an arbitrary
director, it follows that W = O'O~1. @
Lemma 51 If a rod configuration is isometric, W is skew symmetric.

Proof. W = O’O~! from Lemma 50. Taking transpose on both sides gives
wT = (0'0)" = (07)" (0)" =0 (0)" =0 (0")
using the fact O is orthogonal so O~! = OT and properties of transpose. Then
W+ WT=00T+0(0%) = (00T)' =I'=0

where I is the identity tensor. Then W = —WT and thus W is skew symmetric. @
Lemma 52 For an isometric rod configuration, O' = WO.

Proof. From Lemma 50, W = O’O~1. Multiplying on the right by O gives the desired result. &

A rod configuration is defined to be uniform if it is isometric and the wryness tensor is
constant. To emphasize this, we write Wy for W when discussing uniform rod configurations.
Since Wy is a constant, the rotation must have a fixed axis along the axial vector of Wy. We
denote the axial vector as wy. Of course this vector is also fixed. Denote the components of wg

as wa, the magnitude of wg as wg and the magnitude of Wy as Wy. From Lemma 46, Wy = wg.
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Lemma 53 Let O be a proper orthogonal tensor function whose azis of rotation is the azial

vector of a constant wryness tensor Wg. Then WO = OW,.

Proof. The proof of this lemma is based on the fact that the axial vector of Wy is the axis of
rotation for the orthogonal tensor O. It can be shown ([5],{14],(15]) that any proper orthogonal

operator O may be written in the form
= (cos0) I + (1 — cos 8) ttT + (sin6) T

where @ is the angle of rotation, I is the identity tensor, t is the unit vector along the axis
of rotation of O and T is a tensor which has the effect of the cross product by t; that is,
Tx = t x x. From Lemma 48, we know this means T is the skew-symmetric tensor whose axial

vector is t. Note that
= (cosf)x+ (1 —cosf) t(t-x)+(sin@)t x x.

Now consider a proper orthogonal tensor whose axis of rotation is wo/wo where wy is the axial

vector of Wy. Then

— (cosg) 1+ LS o G2y
wo wo

Then

W()O = (COS 6) WQ + L_;_“_QW (Sm 6) WOWO

0
But from Lemma 47, Wowg =0 so
(sm )
W3O =(cos8) Wq + WoW,. (6.10)

Now

OW = (cos8) Wy + (L};z—“-@wowo'fwo + (83 O w,w,.

0
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But from Lemma 47, wj Wy = 0 so

(sin @)
wg

OWj=(cos0) Wy +

WoWp. (6.11)

Comparing equations (6.10) and (6.11) shows WO = OW,. 8
The next few lemmas provide a specific example of the relationship between O and Wy.

This particular case is one which will be used in later chapters.
Lemma 54 If wg = wges, then Wy = Wy A and
O = cos (wpsr) Iy + sin (wesr) Az + Eas. (6.12)
Proof. wg = wgez means w} = w§ = 0 and wj = wq. Then
Wo = wiAl + wiAy + wiAT = wiAT = weAT = WoAF

using equation (6.6) and Lemma 46.

To show equation (6.12) is true, we show (6.12) satisfies the differential equation O’ = W;,O.
Evaluate both sides of the differential equation and compare the results.

From equation (6.12)

O’ = —wgsin (wgsgr) I+ + wo cos (wosgr) A3
Evaluating the right side of the differential equation gives

WO = woAé' (cos (wosRr) I;% + sin (wosr) Ai‘ + E33)
= 1wy cos (wgsSRr) Af,LIgL + wq sin (wosgR) Aé‘A;‘,L + qué‘E;;;;

= —wpsin (wosr) Iy + wocos (wosg) Ay

using Table 6.1. Comparing the expressions for O’ and WO shows the differential equation is
satisfied. It follows that equation (6.12) is true. @

Lemma 55 Owg = wyg.
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Proof.

Owy = (cos (wosr) Iy + sin (wosg) Ax + E33) wges
= wpgcos (wgsg) I+es + wo sin (wosr) AFes + woEazes
= wpbazes
= wpes

= WO

using Lemma 37 and Corollaries 7 and 8. B

A rod configuration is said to be normal if it satisfies the condition
d;-d3 =0 forie {1,2}.

Thus in a normal rod configuration, the two dimensional subspace spanned by d; and d2 is
always perpendicular to the rod axis. This two dimensional subspace may be thought of as a

cross-section to the rod.

6.1.3 Deformations and Normal Uniform Rods

The previous section defined and described a normal uniform rod configuration. In this section,
we consider how this might affect a deformation tensor if we assume any rod configuration
before and after deformation is normal and uniform. Such a deformation is described as normal
uniform. It turns out normal uniform rods are severely restricted with respect to the possible
geometries they may assume.

Let O denote the orthogonal tensor in the reference configuration so dp: = Odpg;,- Let
W g, denote the wryness tensor. Of course W, is fixed along the rod axis. Let Wq denote
the wryness tensor in the deformed configuration. Then d; = Fdg; from Corollary 3 and since
dgr; = Odg;,, we obtain

d; = FOdpg,,-

This means that in the case of normal uniform rods, any director in the deformed configuration

is completely specified by the deformation tensor, the orthogonal tensor and one director in
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the reference configuration. Recall that the director tensor D = 6}di ® e =d; ® et was the
tensor describing the distribution of the directors along the rod axis. In the case of a normal
uniform rod, the distribution of the directors is also described by the orthogonal tensor O. If
we adjust the reference director dg;, to coincide with the vector e;, D = O where we now use D
as the director tensor in the reference configuration. FD is the director tensor in the deformed
configuration.

If we consider the special case in which Wg, = 0, then from Lemma 16 we have
Wo=FF ! +FWgpF!=FF!
and since F is always invertible, we obtain
‘ F' = WoF. (6.13)

This particular case corresponds to a configuration in which the directors in the reference
configuration remain parallel along the entire rod axis. Another way of saying this is that the
directors in the reference configuration are constants, i.e. they do not depend on the parameter
sg. We obtain further simplification by choosing our directors in this configuration to be the

standard basis e, es, es.

6.1.4 Four Types of Configurations For Normal Uniform Rods

We now indicate the four types of normal uniform rod configurations. In each of these, note that
the parameter sg is now arc length and summation over the indices « and S is from one to two.

All scalar quantities appearing are constants (independent of sg unless otherwise specified).

1. Straight. In this case, the rod axis is given by r = sre3, the director distribution is given
by d; = De; where
D = D%%e, ® eg + Eaz and Wy = 0.

This describes a straight rod in which a given director is parallel along the entire rod axis.
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2. Straight Twisted. In this case, the rod axis is given by r = sge3, the director distribution

is given by d; = ODe; where

D = D%, ® eg + Eas,
O = cos (wgsr) Ié‘ + sin (wosg) Ag" + E33,

Wy = WAz

This describes a straight rod, but the directors are twisting about the rod axis at a

constant rate given by Wp.

3. Circular. In this case, the rod axis is a circular arc with equation r = aQe,, the director

distribution is given by d; = ODe; where

D = E;; + D'Eq; + DP¥Eq3 + D3E;; + D33Egs,
O = cos (wosr) Ig-'; + sin (wosgr) Aé‘ + Ea3,

Wy = WoA7.

The geometry for this case is modified so da =r’ and d; and d3 span the cross-section of

the rod. The radius of the circle is given by a and this is related to the twist by wg = -}.—

4. Helical. In this case, the rod axis is a circular helix with radius a and pitch b. Let
c = va? + b2. The equation of the rod axis is given by r = aOe; + bsges, the director
distribution is given by d; = O0;De; where

D = D*fe, ® eg + Eaa,

O = cos (wpsg) I + sin (wosg) Ax + Eas,
Wy = WoAjz,

O, = % (Ez2 +Eg3) + % (E23 — Eg2) + E11.

Notice this case is made more difficult by the fact the axial vector of the wryness tensor

is not the axis of rotation of OO;D.
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Our concern will be with deformations from straight configuration to each of the four con-
figurations listed above. This particular case means the twist in the reference configuration is
zero, that is, Wg, = 0, and so equation (6.13) applies. We now consider the effects of this on
the field equations.

6.2 The Field Equations of Normal Uniform Rods

In this section, we derive the special form of the field equations for normal uniform rods.

6.2.1 Tensor Form of The Field Equations of Normal Uniform Rods

To see the effects of the conditions of normality and uniformity on the field equations, we use the
polar decomposition theorem. The statement and proof of this theorem are given in Appendix

A. The theorem states that we can decompose any nonsingular second order tensor as follows:
F=VR=RU

where V and U are symmetric tensors and R is orthogonal. Furthermore this decomposition
is unique. Since R is orthogonal, it does not change the length of any vector it operates on,
but only rotates or reflects the vector. V and U are called the left and right stretch tensors
respectively. Their effect is to lengthen any vector operated on by F. Since the deformation
tensor F is always invertible, the polar decomposition theorem always applies to F.

Of course in general, F is a function of the pa;;'a.meter sgr and so we would need to write
F (sr) = V (sa) R (sg) = R (sz) U (sR).

For normal uniform rods, this general statement may be simplified. In a deformation from
a straight configuration to any of the above four configurations, the rod must remain normal.
That is, its cross-section must stay normal to the rod axis. This means there can be no shearing
effects of the rod material under deformation. This, in turn, means the right stretch tensor U
must be constant with respect to the parameter sg. Thus U (sg) = Uy where Up denotes a

constant symmetric right stretch tensor. Thus we may write F (sgr) = R (sg) Uy for the type
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of deformations we are interested in which will more briefly be written as
F = RU,. (6.14)

From equation (6.13), we obtain (RUg)’ = WoRUj or, upon applying the product rule to the
left side, R'Ug + RUj = R'Ug = WoRUjp. If Uy is invertible (as we will choose it to be),

R’ = WoR. (6.15)

Notice if we specify R and U, we completely determine the deformation tensor F and the
wryness tensor Wy. If we specify the wryness tensor, we can use the differential equations
R’ = WgR and F' = WgF to determine R and F to within arbitrary constants. The property
RTR = I further reduces the possible values for the constants, but do not uniquely determine
them. To determine the constants exactly, we need to specify the axis of rotation of R (in the
case where R is a member of the special orthogonal group).
We now define a quantity Z as
Z =RTW R

so WgR = RZ. Then equation (6.15) becomes
R =RZ (6.16)
and
F = R'Ug = WoRUg= RZU,. (6.17)

We are interested in an expression such as equation (6.17) in order to apply the constitutive
restriction of material frame indifference.

We now prove that Z is skew-symmetric and constant.
Lemma 56 IfZ = RTWyR, then Z is skew-symmetric.

Proof. We know W, is skew-symmetric. Since Wy = RZRT, then RZRT is skew-symmetric.
This means

RZRT = — (RZRT)"
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and applying the rules of transpose gives
RZRT = — (RT)" ZTRT = -RZ"R".
Multiplying through this equation by RT on the left and R on the right leaves
Z=-2"

which means Z is skew-symmetric. B
Lemma 57 IfZ = RTWR, then Z is a constant.

Proof. We start with Wy = RZRT and differentiate both sides with respect to sg. Since Wy

is independent of sg, this leaves
0 = (RZRT) = R'ZRT + RZ'RT + RZ (RT)’
and rearranging and using the fact (RT)’ = (R’ )T gives
RZ'RT = —-R'’ZRT —-RZ (R))".

Multiplying through this equation by RT on the left and R on the right gives

Z' = -RTR'’ZR'R - RTRZ (R’)'T R=-RTRZ-Z(R)"R
using the fact RTR is the identity tensor. From equation (6.15), R’ = WoR so

RTR' =RTWR =Z.
Then taking the transpose of this gives
(RTR))" = 2T

and since Z is skew-symmetric as proved in the previous lemma and using properties of trans-
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pose, we obtain

R) R=-Z

Putting this information into the equation for Z’ gives
Z =-22Z-Z(-2Z)=-2Z+Z7ZZ=0.

Since Z' = 0, it foliows that Z is independent of sg, that is, Z is a constant.

To emphasize Z is a constant, we now write it as Zg. Thus we have F = RUjp and
F’ = RZyUjy so both F and F’ can be expressed as the product of the orthogonal tensor
R and some constant tensor.

There is an important special case of the above results. If R is a member of the special
orthogonal group, it has the effect of rotating any vector it operates on. If the axis of rotation
of R is parallel to the axial vector of Wy, then from Lemma 53, WoR = RWy and thus
R’ = RWg and RTR/ = W,,. This means F/ = WoRUp = RWyUj,. Since R’ = RZ,, this
implies Zg = Wj.

We may apply this to the field equations using the constitutive restrictions. Recall the field

equations are given as

n’ + Apf =0, (6.18)
M(F,F) -N(F,F') + n®rk+ ML =0, (6.19)
FM (F,F)" +FN (F,F)" = (FM(F,F)" +FN (F, F’)T)T (6.20)
and Postulate 6 states
FL® =TFT. (6.21)

Notice we have chosen to use M (F,F’) = ApD2¢ (F,F') and N(F,F') = \pD2¢(F,F’) in the
field equations. This turns out be more convenient since it means we do not have to worry
about the Ap factor.

We now consider equations (6.19) to (6.21) in turn. Replace F with RUj in equation (6.19)
to give

M (RUj, (RUo))' — N (RUp, (RUp)) +n®rg +ApL =0
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and simplifying this yields
M (RUq, RZyUp) — N (RUp, RZoUp) +n®@rp + AL =0

using equation (6.17) replacing the symbol Z with Zy as discussed above. Applying the consti-

tutive restrictions given by equation (5.18) gives
(RM (Uo, ZoUo)), —~ RN (U, ZUUO) +n® l';z + /\pf = 0. (6.22)

Notice that M (Uyg, ZoUg) and N (Ug, ZgUj) are constant tensors, independent of the parame-
ter sg since Ug and ZgUjp are independent of sg. This means M (Ug, ZoUp)’ = 0 and applying
the product rule to the first term of equation (6.22) gives

R'M (U, ZoUyp) — RN(UQ, ZoUp) +n@® l"R + /\pr = 0.

Notice that if we know R, this is no longer a differential equation! This is the benefit of
considering normal uniform rods - we turn differential equations into algebraic relationships.

Let Mg and Ny denote M (Ug, ZgUp) and N (Ug, ZqUp) respectively. Then
RM; -RNy+n®ry+ApL =0

or

AL = RNy -~ R'Mp —n®rk.
Multiplying through by RT gives
MRTL = RTRN; - RTR'My — R™n®r;

which becomes
/\pRTr = No - ZQMO - RTn D 1’;3.

This is the basic field equation we use to solve the special deformations of normal uniform rods.

In the special case where the axis of rotation of R is parallel to the axial vector of Wy, we can
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replace this equation with
MRTL =Ng - WoM; -RTn® ry

and we may use this as our basic field equation.

Equation (6.20) may be written as
FM(F,F)" +FN (F,F)" = (FM (F,F')T)T + (FN(F, F’)T)T
which becomes
FM (F,F)" +FN (F,F)" =M (F,F) (F)" + N (F,F) FT.
Replacing F and F’ with RUg and RZqUj respectively yields the following:

RZ,UoM (RUp, RZ,Uj)T + RUN (RUy, RZ,Up)*
= M (RUjg, RZ¢Uy) (RZoUp)T + N (RUo, RZoUp) (RUp)T .

Using Postulate 7 (material frame indifference), this becomes

RZoUp (RM (Uy, ZoUo)) " + RU, (RN (Ug, ZoUyp)) "
= RM (U, ZoUo) (RZoUo)" + RN (Uo, ZoUo) (RUo)"

and introducing the notation Mg and Ny defined above and multiplying through the equation
by RT on the left gives

ZoU, (RMo) ™ + Up (RNo) ™ = M, (RZoUo)T + No (RU)T .
Further simplification gives

ZoUoM, RT + UgN, RT = MyUTZTRT + NoUTRT.

116



But Up = UT and Zo = —2]. Placing these in the equation and multiplying by R through the

equation on the right gives
ZoUo_l\TIg: + l'.r(]—].\r_‘;,r = ﬁoUo - —ﬁoUoZo.

In the special case where the axis of rotation of R is parallel to the axial vector of Wj, we can

replace this equation with
WoUgM.: + UoN; = NoUop — MoUoWo,.
Replace F with RUjp in equation (6.21) to give
RULLT =L (RUo)"
which simplifies to
RU,L" = TUTRT

which becomes

RU,L" = LU,RT
using the fact that Ug is symmetric.

6.2.2 Summary

The geometry of normal uniform rods is very restricted - the rod axis can only assume the
shapes of straight lines, circles or circular helices. Furthermore, the wryness tensor must be
a constant. Combining this information with the polar decomposition theorem gives rise to
special field equations for deformations of normal uniform rods. The right stretch tensor U
must be a constant Up. Specifying the right deformation tensor Uy and the orthogonal tensor
R completely specifies the deformation tensor F and the wryness tensor Wy (which is a constant

skew-symmetric tensor). These field equations are given as

n’ + Mf =0, (6.23)
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MRTL =N — ZoMy — RTn® r, (6.24)
ZoUoMj + UoNa = NoUo — MoUoZo, (6.25)

and

RUOLT = TURT. (6.26)

In the special case where the axis of rotation of R is parallel to the axial vector of Wy, we can

replace equations (6.24) and (6.25) with
AMRIL =Ny - WMy -RTn®rk (6.27)

and

WQUom_g + Uoﬁ’g = N()Uo - —MOUOWO (6.28)

respectively.
Notice that the constitutive restriction of material frame indifference has been incorporated

into the field equations (6.24) and (6.25) or (6.27) and (6.28).
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Chapter 7

Solving Four Special Deformations

In this chapter, we develop a scheme for solving the four special deformations described in the
previous chapter. This plan of attack is based on exploiting the symmetry properties of various
quantities arising from the field equations and the nature of the stress-tensor as a cross-section
tensor.

By solving the deformations, we have two goals:

1. Reduce the tensors Mg = M (Uy, ZoUy) and Ny = N (Uy, ZoUp) to as few nonzero

components as possible;

2. Express the components of n and L in terms of the components of Mg and Nj.

Essentially we are characterizing the tensor L and the vector n in terms of the components
of Mg and Nj which are the derivatives of the strain energy density function evaluated at the
special point (Ug, ZqUp).

In fact, we actually do step 2 first as far as it is possible. This is done by simply manipulating
the field equations to get as much information as possible about the relationships among the
components of these tensors. We then finish each problem by introducing the appropriate

transformations for monotropic symmetry. This accomplishes step 1 and completes step 2.
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Figure 7-1: Reference Configuration For ¢ =3
7.1 The Reference Configuration

The reference configuration will be the same in all four cases, namely the straight configuration
described in detail in the previous chapter. However, the axis along which the straight reference
configuration is orientated varies from case to case. This will be designated by a parameter
q € {1,2,3}. Once q is specified, it means the curve of the reference configuration is parallel to
eg. In the reference configuration, the curve parameter sg will be the arc length of the curve
defining the rod axis. The curve is expressed by rg(sr) = sreq. Then rz (sr) = €4 and thus is
a constant in all cases. The directors in the reference configuration will be given by dg, = e,.

The reference configuration for ¢ = 3 is shown in Figure 7-1.

7.2 Component Form of the Tensors

This section provides the notation for the component form of the tensors. To solve the four
special deformations, it is necessary to use component equations. The objective of this chapter
is determine all the relationships among the components of the various tensors which hold for
any problem. The additional information about a specific problem may be used to simplify
these relationships.
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In all four deformations, the problem will be solved with respect to the natural basis with
orthonormal vectors {e;, ez, e3} and dual basis {e!,e? e*}. It will be necessary in a couple of
problems to employ other bases to describe the problem. The basis for the second order tensors
will either be e; ® €/ or E;; = e; ® e;. In view of the equivalence e; = €', there is no distinction
between these bases and we use them interchangeably.

Here are the component forms of all the second order tensors in the e; ® e basis. The

stretch tensor Uy is given by
Ug = /\(i)e; Qe = Aer® el + Azes ® e’ + Azes ® 83, (7.1)

the orthogonal tensor R is given by

R = Rie;® ¢ (7.2)
so
RT = S Rle; . (7.3)
ij
The stress tensor L is given by
L=Le®¢ (7.4)

and
' = foe;@e".

tj

The wryness tensor Wy is defined by
Wi =wp (e2Qe! —e; ®e?). (7.5)

The tensors My and Np will have component forms

M, = Mie: @ (7.6)
and
ﬁo = _N_;& > e (7-7)
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respectively. Notice F}, R} and f; are functions of sg whereas M; and N are constants. The
vector n is expressed as n = n'e; where, from Postulate 6, the n® are constants. The second
order tensor n ® ry may be written as n‘e; ® e? where g was defined earlier or in the equivalent

form

nRry= nié}e,- Re. (7.8)

In all cases Wy = WgAZ$ (Wp is a constant which may or may not be zero). Thus in all
cases where there is an axis of rotation, the axis is always e3.
The right stretch tensor Uy will is given by equation (7.1) (the index in parenthesis indicates

it is to be included with the summation). Notice this may also be written as
Uo = MEn + AEg; + A3Eas.

The quantities A(;) represent stretch factors in their respective directions. The stretch factors
are constants. In every case, two of stretch factors will be equal, but which stretch factors are
equal varies from case to case.

This scheme of finding solutions leans heavily on the polar decomposition theorem, in par-
ticular F = RUjp. In some cases, R and U, will be specified and thus F is automatically
determined. In other cases, the directors will be specified, thus defining F. Then a polar de-
composition RUj for this deformation tensor will be given. In all cases, the right stretch tensor
Up will be that as given above. The tensor R will vary from case to case.

The work developed in this chapter applies to the first three deformations considered in
subsequent chapters. In these three deformations, Wy is either zero or the axis of rotation
of R is parallel to the axial vector of Wy. This means we can apply equations (6.27) and
(6.28). These are the equations used in the following sections. The final deformation must use
equations (6.24) and (6.25) and hence the results from many of the remaining sections in this

chapter will not apply.
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7.3 The Cross-Sectional Stress Tensor

There is one more piece of information regarding the stress tensor T = pL in Cohen’s paper (1]
which has not been discussed. This is related to the quantity L appearing in the field equations.
The stress tensor pL is a cross-sectional tensor which means it is nonzero only in the subspace
spanned by the two directors defining the cross-section. In the case of normal rods, this means
L is nonzero only in the two dimensional subspace perpendicular to the director acting as the

tangent vector in the deformed configuration. Recall equation (4.39)
L=FL
or
giving
L=LT(FT)"' =LTF T
Let the components of F~T be given as
FT=Xe®¢

(we don’t actually care about the values of X ; for this calculation). If the cross-section of the
deformed rod is parallel to one of the principal planes (that is, a plane spanned by e; and e;
for some distinct i, j € {1, 2, 3}), then five of the components of L. will be zero in the Cartesian
basis. The value g discussed earlier denotes the direction in which L does not act. That is,
¢ #iand g # j. Then all components of the form L and L are zero where k € {1,2,3}.

As an example, suppose the tangent vector to the curve in the deformed configuration is

parallel to e;. Then the components of L satisfy

Ly=L3=L3=L3=L}=0. (7.9)
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Calculating LTF-T gives

LTF-T = (; t(1-8) (1-8)ec® e‘) (Xie; ® &)
= Srxi(1-8) (1-8) (e 0¢) (@)
= i LLxist (1-85) (1- &) ex®e
= §:L§¢XJ‘- (1-6) (1-6}) ece.

T

When [ = 3 or k = 3, the coefficient is zero. It follows that the coefficients of ez ® e!, e; @ e?

and e; ® €3 are all zero which shows
L3 = Ll = L2 = O- (7-10)

More generally, the cross-section spanned by the two non-tangent directors is not parallel
to a standard plane, and in fact the orientation of the plane of the cross-section may vary from
point to point. In that case, it is necessary to express the tensor L in some coordinate system
in which five components of L are zero. Then a transformation to the Cartesian basis must be
made followed by the transformation to L. The objective of this exercise is to see if there are
components of L which are zero in the Cartesian basis. Zero components significantly simplify

the computations.

7.4 Component Equations From Symmetry

In this section, we consider several symmetric equations and derive their component forms.

7.4.1 Symmetry Equations for L

We wish to consider the symmetry of L for any tensor R and the stretch tensor Uy given by
equation (7.1). The symmetry of L is expressed in equation (6.26). However, for our purposes
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it is easier to express this symmetry by
=T =T\T
RU,L” = (RUCL")
or, equivalently,
LUGRT = (TURT)".

We use the definitions given in equations (7.1) to (7.4).
Then the quantity LU} evaluates as

LU, = (f;et ®e ) (Me; ® el + Azer ® €2 + Aze3 @ €?)
= Alf;é{e; Qe! + Azf-;ﬁgeg ®e?+ Aafj-é'%ei ®e?
= /\lz-iei Qe+ /\2Z;e-i Qe+ Agf;ei ® e’

= /\(J'):—L—;'ei ®€

and

onRT = (/\(j)f;-ei ® e’) (Z Ri.ek 2 el)
kl
Kl
= S apliRleod
Kl

=) Mo LeRiei @
ki

The quantity (ngRT)T evaluates as

k3

The symmetry equation is satisfied if

S apIiRie®e =S AyLiRie®e.
kj kj
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Thus corresponding components can be set equal to each other to give
PIRICYZL D PRIRY 22
k k

for all possible choices of 7 and j. This gives rise to nine equations. In fact there are only three
independent equations since swapping the roles of a given i and j produces the same equation
and in the case ¢ = j, the equation is trivially true. Hence we need only consider the cases
(G7) =(1,2), (i,7) = (1,3) and (&, 5) = (2,3).
For (i, j) = (1, 2) we obtain
ST awIRE =Y A IiRE
k k

or
MIZRY + M LiRL + AsLaR) = ML R2 + ALy RE + M L3 R3 (7.11)
For (¢, j) = (1,3) we obtain
-3 =1
D AwIeRi =) AwLeRE
k k
or
MIZR! + MToRL + AsIoRL = ML RS + MILR3 + A3L3R3 (7.12)
For (4, j) = (2,3) we obtain
=3 -2
D MwIeRE =Y MwLeRE
k k
or
MISR2 + ApLoR2 + AsToR2 = M L-R3 + MI2R3 + AsL3RS. (7.13)
We now prove RTLUj is symmetric using the symmetry of L. This is shown in the following

lemma.

Lemma 58 If L and L are second order tensors related by L = RUofT where R is a spe-

cial orthogonal tensor, Uy is a symmetric tensor and L is also symmetric, then RTLUj is

symmetric.
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Proof. From L = RUng we obtain
LT=TU;RT = LU R"

using the fact Up is a symmetric tensor. Multiplying on the right by R and on the left by RT
gives

RTLTR = RTLU,
which uses the fact R is an orthogonal tensor. Since L is symmetric, this may be written as
RTLR = R'LU,.
But
(RTLR)" = RTLT (RT)" =RTLR

since L is symmetric. Thus RTLR must also be symmetric. But if RTLR is symmetric then
RTL U is symmetric. B

Now derive the component forms of this symmetry. We continue to use the definitions given
in equations (7.1) to (7.4).

Evaluate RTL as

R'L = (Z Rle;® e‘) (Creco ) =3 R Sei0e =Y RiLje®e  (7.14)
il 1 ik

i

and evaluate RTLUj as

Tt = (TR Zeod) e oo
tk
= Z R?E?A(j)6§‘ei ®e
ik
= 2 RIT)geiee.
ik
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Since RTLUj is symmetric, then
RTLU, = (RTTU,)".
The expression (R":on)-r is given by
(RTCU)" =Y RIS M e @ @
ik

We may now equate components. By the same argument as above, it is sufficient to consider
only the cases (z,7) = (1,2) , (4,5) = (1,3) and (%, 5) = (2,3). The component equation for
(i,5) = (1,2) is given as

(R{z‘; + R2L2 + Rﬁg) Ay = (R;z} +R3LI + Rgzi‘) A1, (7.15)
the component equation for (z, j) = (1, 3) is given as

(RIL: + RIS + RIT;) A = (RIL; + R3L; + RL)) M (7.16)
and the component equation for (7, j) = (2, 3) is given as

(Rgz; + REL; + R3L3) A = (RAL; + R3L; + R3L;) A (7.17)

7.4.2 Symmetry Equations Of Ny and M,

We now derive component equations of equation (6.28) which is repeated here for convenience:
WoUoMo + UONO = NoUy — MgUgWy.
For our purposes, it is more convenient to express this as

P — —_ —7T\T
WQUUME + U'ol\}'o'r = (WoUQMg + UONE)
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or, equivalently
— =~ ~ T
NoUp — MyUgW, = (NoUp — MU W)

The various quantities are those as defined in equations (7.1) and (7.5) through (7.7).

The two terms in the expression evaluate as

NoUo = (N e; ® e’) (z\(k)b'f‘ek ® e‘)
= Nj)‘(kjél (e; ®e) (ek ® e‘)
= Nipbitle; @
= N;-/\([)a'{ei ®e
= Np\ge:®e

and

MUgWy = Wy (M;et ® ei) (A2e2 ® e! — \je; ® €?)
= Wol M (e:@¢) (e2®@e!) — Wohi T} (e; ® &) (&1 ® €?)
= WOAZ'ZVI;&;.e,- ®el - Wox\lM 57 1€i ®e?
= WoreMoe; @ el — Wor Mie; ® €2
= WolMyble; @ el — Wor M 6% ® &
= (WoraPT38} - WoM1152) e @ €

SO

NoUo ~ MoUsWo = (W) + Wo M16% — Woro M35} ) e; @ .

Then (ﬁoUo —HoUoWo)T evaluates as

(N-QUQ —_M—oUoW()) Z (N /\(,) + Woz\]_MltSz W0A2M251) e® e’
5]

Equating components from the two expressions gives
Moy Vi + Wo i 362 — Woro M6} = WAy + WoAi P13 62 — WoloM56%
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for i,7 = 1,2,3. We expect that if ¢ = j, the equations are trivial and no information is

obtained. Also, switching the values of a given i and j will result in the same equation. Thus

there will be only three independent equations, corresponding to (%, j) = (1,2), (i,7) = (1,3)

and (4, j} = (2,3). For (Z,5) = (1, 2), the equation is

Alﬁf - WoAzM-g = TV_;/\z + Wo)\l-ﬁi

or

=1 __ 1 =2 A2
M“WON‘ Wolt

—1 A2
Na- 3

for (z,7) = (1, 3), the equation is
AN — WorsMs = AsN>

or
AL I-VIS Az =1

-—3
=N - N
My Woda ' Wokp 3

and for (1, 7) = (2, 3), the equation is
Ao s + WoA Mo = NaAs

or

Az =2 A2
—_N: -
Wol 2 Wol

W =

If we multiply through the field equation (6.27) on the right by Up, we get

)\pRTEUo = (—No - Womo —RTn [v7e] l‘;z) Up.

Ma,

Ns.

(7.18)

(7.19)

(7.20)

(7.21)

(7.22)

(7.23)

Since the quantity RTLUj is symmetric, then (No — WoMo — RTn ® r}) Up must also be

symmetric. We now compute the component form of this expression.

First we evaluate Ny — WMy in component form. The expression Ng — WM, computes
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No —~ WM,

Ne,®ef—PVg(eo®e —el®e2) M e; @ e
Jj

31

e;®e — WgM (e2® el) (& ® &) + WM, (e1 ® €?) (e: ® &)

2J

tei® el — Wy 6le; ® & + WoM;6%e, ® &

21J

e._®e1 Woﬂ’[ e2®e-’+WgM e1®e’
N- -®e’-WokI-53,ei®e’+WoM-6‘1ei®ej
(N — WoM6% + Wold; ) e

Now consider the expression RTn ® rf;. The term r’y, is always e? for some fixed ¢ (either

one or three). Equation (7.8) gives the component form of n ® r. Then RTn & r/; evaluates

as

RInerl = (Z Rle; ® e’) (n":Sg-ek ® ej)
il
il
= z Rin*515,e;® &

= ZR’f n*5le; @ €.

ik

Combining these last two results together, the quantity No — WoMj — RTn® r; evaluates

NQ - Woﬁo —RTn R r}z

(ﬁ; - WGH}@ + WoH?&i) e;®e — Z RfnFéle; ® e
ik

= (I_V; - WDH;&; + Woﬂ?&i - Z IFTL"J;) e e.
ik

Then X = (Ng — WoMp — RTn @ r}y) Up is evaluated as

X = ((w_; — W()M:b-tz + Wo-ﬁ?ﬂ - Zan"&f) e; ®e’) ()\(j)ej ®e7)

ik
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(ﬁ; - Woﬁllﬁa + Woﬁ?ﬁ‘l - Z an"éf) A(j) 6561 ® e’
ik

= (N:',\(,-)5§ — WoM [ 85 ;)6% + Wl 8i A8, — ank,\(,-)agé;’) e ®ef
ik

= (Nj.,\(j, ~ WoM);) + WoM36ih ) = 3 an",\(,-,sg) e;®¢.
ik

The quantity X is symmetric so X = XT. Calculate XT as

XT = Z (ﬁgk(i) - Wgﬁ—/f:&ék(l) + WQ-M.?&{A(.E) - Z an",\(l)éf) € el.
G 2

We can now equate components. Following the same arguments given earlier, it is sufficient to
equate only the cases (¢,7) = (1,2), (¢,7) = (1,3) and (3,5) = (2,3).

The component equation for (7, j) = (1, 2) is given as

Nz + WoMjhe — 3 REn*206% = Nod — WoMy Ay — 3 REn*A167, (7.24)
k k

g=1: (N'; + Woﬁg) A = (N? - Woﬁi — Rin! — R2n? - R%ns) A1,
q=3: ('AT§ + W{Mi) Yo = (N1 - Woﬂi) A1,
the component equation for (z, j) = (1, 3) is given as

N3is + WoM3hs — Y REnFXs8% = Nid — 3 Rin*6], (7.25)
k k

g=1: (W; + Woﬁg) A3 = (ﬁi — Rin! - R2n% - Rgn:’) AL
g=3: (Tv’§ + Wo-l\_/fg — Rin! — R3n? — R‘;’ns) Az =17‘;'A1,

and the component equation for (z,j) = (2, 3) is given as

Nahs —WoM3hs - > REnFas6d = Nady — D REnF a6, (7.26)
k k
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g=1: (N§ - WO’M;) Az = Nads,
g=3: (Nﬁ — WO_M—; - Rén1 - R%n2 - Rgna) A3 = Ng)vz.
In several cases, it can be shown that RTL is symmetric. From equation (6.27), this implies
No - WMy -RTn® r’p is symmetric. We can derive component equations for this situation

which are simpler than those derived above.

We've already shown

Ng-WoM; -R™Tne@rh = (]V; - Wo‘ﬁ;@ + Woﬁié‘i - Z R{-‘nkég) e;®e
ik
so
(N:o b Woﬁo - RTII & l‘:Q)T = Z (ﬁz - ‘/VQ_M:&; + W()Hf&{ - Z ankég) e® e’
ij k

When this quantity is symmetric, this means
< — — T
No - WoMy —R™Tn@ry = Ny — WoMy — RTn®rf)
or as a component equation

N; - Wol;6; + Wol36, — 3 REn*6] = NI — W8} + WoM 8] - 3 RS}
k k
for i, j = 1,2, 3. Writing the component equations for (7, j) = (1, 2) gives
Ny + WoMy — Y Rin*6] =N} — WoM, — ) Rin*6], (7.27)
k k
for (z,7) = (1, 3) gives

Ny +WoMj — > Rin*63 =N — > Rénks] (7.28)
k k
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and for (z,7) = (2, 3) gives
N3 - Woly - Y Rin*63 =N; - Y Rin*6l. (7.29)
k k

Equations (7.27) through (7.29) are a bit simpler than those of equations (7.24) through
(7.26). However, equations (7.24) through (7.26) apply in all cases: equations (7.27) through
(7.29 ) only apply if it has been shown that RTL is symmetric.

7.5 Transformations for Monotropic Symmetry

In each of the four deformations, we introduce monotropic symmetry. The only rotations we
consider are those about the axes e;, e2 and e3. These rotations are denoted as Q1, Q2 and

Q3 respectively. From equation (5.8), we must have
Q=-It+te®e;
fori=1,2,3. Since e;®e; = E;; and I; = Ej; + Exk, where i # j, ¢ # k and j # k, we conclude
Q: =E;; — Ex —Eg,

Q: = -Ej; +Ez —Es3

and

Q3 = —E11 — E2 + E33.

We now consider how to monotropic symmetry to normal uniform rods. We have
N (F,F') = RN (Ug, ZoUp) = RN,

and

M (F,F') = RM (Uy, ZoUo) = RM.

134



Applying these to equations (5.59) through (5.62) gives
QzRN; = RNyQ.
and
66Rm—0 = R-_M_OQQ

for the symmetric case and

QzRN; = RNoQ.

and

Q:RM; = -RM;Q.
for the anti-symmetric case where

5= R* QeR'T

and R* is some orthogonal tensor. These were valid as an expression of the combined symmetry

(using monotropic symmetry) only if
Q=RU; = RUQ,
and
QsRZoUp = RZoUpQ.

in the symmetric case and
Q:RZoU; = - RZoU;Q.

in the anti-symmetric case. An obvious choice for R* is R in which case the left side of the
equations reduce to
RQ.RTRN, = RQ.N,

and

RQ.RTRM,; = RQ .M,
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and the combined symmetry equations are

Q.No = NgQ.
and

QeMO = —M-OQe
for the symmetric case

Qe_ﬁo = ITT’E)Q!B

and

QeHO = "MOQe

for the anti-symmetric case. The condition for this to hold is

QeUO = UO Qe

and

QeZoUg = ZoUgQe

in the symmetric case and

QeZoUp = —ZoUoQe

(7.30)

(7.31)

(7.32)

(7.33)

(7.34)

(7.35)

(7.36)

in the anti-symmetric case. We base our application of monotropic symmetry for normal uniform

rods on equations (7.30) through (7.36). In the case where the axial vector of the wryness tensor

W) is parallel to the axis of rotation of R, we may substitute Wy for Zg in equations (7.35)

and (7.36).

Since all of the problems we will consider use the same tensor Uy defined in equation (7.1)

and three of the problems use the same Wy defined in equation (7.5) (the only exception to
this has Wy = 0), we will establish equations (7.34) and (7.35) or (7.36) for the monotropic

transformations Q,, Q; and Q3 defined above. We will use Zy = Wp.

The quantity Q;Ug computes as

QiUp = (E1u1 — Ez2; — E33) (AMEq1 + A2E22 + A3E33)
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= A1 (E1 — Ex — Ez3) Er; + A2 (Eq; — E22 — Eg3) E22 + A3 (E11 — E22 — E33) Eg
= ME1; —AE2 — A3E;z;3.

The quantity UgQ; computes as

UpgQ: = (MEun + A:Ez + A3E33) (E11 — E22 — Ez3)
= MEq (Byp — E2o — Ea3) + A2Eo (E11 — E22 — E33) + A3E33 (B — Eg2 — E33)

= AE11 — ME92 — AzEas.

Thus Q,Ug = UpQ; so equation (7.34) is true for the monotropic transformation Q;.

The quantity Q2Up computes as

Q:Uy = (—En + Ez — Eg3) (M En + A2Ez2 + A3Ea3)
= A1 (—Eu1 + Ez2 — Eg3) Eqy + A2 (-E11 + E22 — Ea3) E2
+A3 (—E11 + Ez2 — Eg3) Eg
= —=ME1n + A2E22 — A3E3;3.

The quantity UpQ2 computes as

UgQ: = (MEqn + A2E2 + 3E33) (—Eq1 + Ez2 — Ess)
= MEn (-Eu + E2 — E33) + A2E2 (—E1n1 + E22 — Ess)
+A3Ea3 (—En + Ex — Eg)
= —A1E11 + A2E22 — A3E33.

Thus Q2Uy = UgQ;, so equation (7.34) is true for the monotropic transformation Qz.

The quantity Q3Uy computes as

Q3Up = (—E1n — E2 + Ez3) (ME11 + ME22 + A3Ea3)
= A (—E11 — E22 + E33) Eq; + A2 (~E11 — E22 + Ea3) Eg
+A3 (—E11 — E22 + E33) E33
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= =NE11 —AEx»n + /\3E33.
The quantity UgQ3z computes as

UoQs = (MEn +A2E2 + A3Ea3) (—E11 ~ E22 + Ess)
= AE11 (—E11 — E2 + Eg) + A2E2 (—Eq; — Ez2 + Eg;)
+A3E33 (—E11 — E2; + Eg3)
= —AMEn1 = AE2 + A3Ezs.

Thus Q3Ug = UpQ3 so equation (7.34) is true for the monotropic transformation Qjs.

The quantity WgUjg computes as

WoUp = wp (Ea — E12) (MEn + A2E2; + A3Ea3)
= wg (B21 (ME1 + 22E22 + M\3E33) — Epa (M Eq; + A2E22 + A3Es3))
= wp (AME21 — AEq2).

The quantity Q; WoUg computes as

QWoUy = (Bu — Ez — Eg3) wo (ME2 ~ A2Ey)
= wo (Bu (ME21 — A2E12) — Eg2 (ME21 — A2E12) — Esz (ME21 — A2Eyp))
= wo (—A2E12 — M E2)
= —wg (A2E12 + ME2) -

The quantity WoUpQ; computes as

WoUoQ: = wo(MEg; — A2Eq2) (Eq; — Ep2 — Ea3)
= wg(MEz2; (E11 — Eg2 — Ez3) — A2Eq2 (E1; — E22 — E33))
= wp(A1E2; + A2Eq2).

Thus Q; WUy = —WuUpQ; so equation (7.36) is true for the monotropic transformation Q;.
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Thus Q; may be used as an anti-symmetric monotropic transformation for this choice of Up

and Wo.

The quantity Q2 WoUjg computes as

Q:WyoUy = (—Eun +Ex — E33) wg (ME21 — A2E12)
= wp(—Eun (ME21 — 2Ep2) + Ex (A1 E21 — A2E12) — Eaz (A E21 — A:2Eq2))
= wg (ME12 + M E2)

The quantity WyUpQ2 computes as

WoUoQ:2

wg (M E21 — A2E12) (-Eq + E22 — Eg3)

wp (A1 E21 (—Eu + Eg2 — Eg3) — ME12 (—Eu1 + Ez2 — Eg3))
wo (—ME21 — A2E12)

—wp (ME21 + A2Eq2)

Thus Q2 WUy = —WUpQ2 so equation (7.36) is true for the monotropic transformation Q2.

Thus Q2 may be used as an anti-symmetric monotropic transformation for this choice of Ug

and Wg.

The quantity QzWUy computes as

Q3WoUy = (—E11 — Ex + Eas3) wo (M E21 = A2Eq2)
= wp (—E1 (\ME21 — A2Ep2) — B2z (ME21 — A2E12) + E3z (A1 Eg; — A2Eq2))
= wp (A2E12 — ME21)

The quantity WUgQ3 computes as

WoUoQs

wo (ME21 — A2E12) (=E11 — Ez2 + Eas)

wo (A1 E21 (—En ~ E22 + Ea3) — 22E12 (—Eu — Eg2 + Egs))
wo (~ME21 + AE12)

wo (A2E12 — M E21)
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Thus Q3 WUy = WUpQ3 so equation (7.35) is true for the monotropic transformation Qgz.
Thus Q3 may be used as a symmetric monotropic transformation for this choice of Ug and Wy.

Finally, we consider what sets & and V may be formed for this choice of Up and Wo.
Obviously U can contain only I and Q3 where I is the identity tensor and V can only contain

Q; and Q3. It is straightforward to see

Qi =Q:Q:=Q3Q3 =1

so each of these monotropic elements is its only inverse, as it must be geometrically (two
rotations of 7 radians about a fixed axis must return a vector to itself). We now compute Q:Q;
for i # j to see what values these give. We illustrate the calculation for (¢, j) = (1, 2) and give
the other products in a table. The quantity Q;Q2 computes as

Q:1Q2 = (Eun — Ez —Egz3) (—Eqn; + E22 — E33)
= E; (—Ey +E2 — E33) — Ex2 (—E1; + Exo — Egj3) — Ez3 (-Eqn1 + Ez2 — Eg3)
= -E1;3 —E22 +Eg33

= Qs-

Using analogous calculations, the following table shows all the products among the three ele-
ments Q1, Qs and Q3:

I | Q|Q|Qs
I ||T |Qi|Q|Qs
Q|| QA |I [Q:] Q2
Q: Q| QI | Qu

Q:{1Q: | Q| Q1|1
Table 6.2

By examining the products in the Table 6.2, we can see that in order to keep f and U UV

as groups, the only way of defining these sets is as follows:

U = {I} and V empty,
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U={I} and V = {Q1},
U={I} and V = {Q2}
U = {I,Qz} and V empty

and

U={LQs} and V= {Q1,Qz}.

With this information, we can calculate all the possible effects of monotropic symmetry
on the components of N; and My using the monotropic transformations Q;, Q2 and Q3 and
continuing to use the same choice of Up and Wy.

To facilitate the calculations, define the three indexed quantities §;, £, and 3 whose values
depend on which monotropic element is being considered. We can express an monotropic

transformation Qp as

Q ={ne:® e

where p € {1,2,3} . The values of £(;) depend on the value of p.
Computing Q,Ny gives

QNo = (Epei @) (Njer 8¢7) = Nypfie @’ = Nite: @
and computing NoQ, gives
NoQ, = (m& ® ek) (f(j)ej ® ej) =._Ni§(j)6;:ei ®e = N;‘f(j)ei e
Then the monotropic equation is
K’j{(i)eg Qe = F;‘E(j)ei ®e

and equating components gives

~i —i
Nj€wm = N,

for all values %, j = 1,2, 3. Obviously when i = j, the equations contain no information. The
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remaining six component equations are
=1 <l, =1 1, =32 -2
N2€i = Ny, N3& = N3k, Ni§ = Ni§y,

Ngfz = Ngfs, ﬁgfa = -N::‘fx and _ﬁgfs = Ngfz-

The calculation for Q,My = MyQ, is identical to that for Ng. This occurs when p = 3 since
Q3 is the only monotropic transformation for the symmetric case. The resulting component
equations must be

—1 —1. =1 —1, 2 —
M€y = MoS,, M3E = M3&3, M § = My§;,

—2 —2 — —3 —

Mgy = M3€s, M16s = M€, and Myfs = Mat,.

The calculation for Q,Mp = ~MQ, is identical to that for N except for the presence of
the negative sign on the right side. This occurs when p =1 or p = 2 since Q; and Q2 are the
monotropic transformations for the anti-symmetric case. The resulting component equation
must be

i i
Mj§w = —M;€g
which gives the six component equations
=1 71, 51 1. =52 -2
M€, = —M36s, M3€, = —M 383, M & = —M14;,
—2 —2_ =3 53, =53 =3
M3y = —M3€3, M1 &3 = —M1§1, M85 = —M3¢,
However, we also must consider the case when 7 = j and this gives
M. =-M!, M: = —Mj and My = — M
e 4 e 4wl =22 =3
which implies M; = M; = M3 =0.
For p = 1, that is, using monotropic element Q;, the values of §(; are assigned as §; =1,
€, = —1 and &3 = —1. This gives the six component equations of Ng as

Mi=-F W=, -M=W, -F=-F} - =W, - W= W}
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from which we can conclude

M=Ni=N=N=0. (7.37)

The component equations of My are
=1 ol el sl —2 a2 =2 = —3 =3 =3
M= Ms=M., ~M: =-M:, —-M:=M3:, —M; =—Ms, — My =M,
M. = -7, Ms = - and My = — My

from which we can conclude

Mz =My =M; =M; =Mz =0. (7.38)
For p = 2, that is, using monotropic element Q, the values of §;) are assigned as §; = —1,
£, =1 and &5 = —1. This gives the six component equations of Np as

—— — —— PR e —" — —" — — _3 e’
~N}=N;, -Ny=-N3, Ni=-N:,N;=-F;, —-Ni=-Njand -V =N,

from which we can conclude

Ni=N=N:=N3=0. (7.39)

The component equations of Mg are

— — —_1 =1 =2 =2 =2 = —3 —3 —3

M= M, -Mi=M. M =M, Ms=M:, —M: =M, —My=-M,
M. = -, % = B2 and M3 = B3

from which we can conclude

ML=M =M =M =M =0. (7.40)

For p = 3, that is, using monotropic element Qg, the values of §;) are assigned as §; = —1,
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€2 = —1 and &3 = 1. This gives the six component equations of Ny as
=W, Wy =W, W= W, - W= W= W and B} = -}

from which we can conclude

N3=Na=N=N3=0. (7.41)

The component equations of My are
ML = ML, — ML =, - M= -3, — M2 =M3, My =M, and M3 =M,

from which we can conclude

Mi=M:=M =Ms=0. (7.42)
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Chapter 8

Solving Straight to Straight and
Straight Twisted

In this chapter, the simplest two deformatior problems for normal uniform rods are solved.

These are deformations from straight to straight and from straight to straight twisted.

8.1 Straight to Straight

The first case is a deformation from a straight configuration to a straight configuration without
twisting the rod. This is a particularly simple case. The deformation is illustrated in Figure
8-1.

The curve in the deformed state is defined by r (s R) = A\3sge3 where )3 is a constant quantity
called the stretch (the scalar quantity appearing in the definition of Uy). The orthogonal tensor
is given by R = I where I is the identity tensor. It immediately follows that Wy = Zg = O.
For monotropic symmetry, we use U = {I, Qs} and V = {I, Qs}.

Equations (6.24) to (6.26) become

A3pL =Ng —n@®rh, (8.1)

NoUp = UgN;
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Figure 8-1: Straight to Straight

and

LU, = ULt
respectively. Since Uy is symmetric, these last two equations may be written as
= T
NoUo = (NoUy)

and

LU, = (EUL)".
Thus NoUp and LU are both symmetric quantities. This means
(Cier®e) (Awer@et) = ((Tieio &) (Aer@et)),
L (e:@¢) (e @e*) = (Tiaw (e @ &) (ex ® e"))T ,
Lawsle: @ et = (L @ e) T
Lage:@e = (Liige:® e")T
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and

f}z\me,- e = f{)\(i)eg Re.

Equating components on both sides of this equation gives three nontrivial equations; namely

Tide =LA,

Lirxg =LA (8.2)
and

I3 = Ioda. (8.3)
Similarly

Nix =W,

Vi = Nox (8.4)
and

N3xs = Nada (8.5)

If we use A, = Ay = A, we obtain L = L; and Ng = V..
Cohen’s stress tensor L operates only in the plane spanned by d; and d». In this case, the

same plane is spanned by e; and e;. This means

which was shown in the previous chapter to imply
=3 =3 =3
L3 == Ll = L2 = 0.

From equations (8.2) and (8.3), we get L3 = L2 = 0. This means L is symmetric in this case.
Then Ny~ n® r)s must also be symmetric.
The value of g is 3 so applying the symmetry equations (7.27) to (7.29) gives

N, =N;,
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_1\7§ -nl = Ni (8.6)
and
N3 -n?=N,. (8.7)

Also note that

RTn@rk =) 6n*sle;@el =nle;®e® +n’e; @’ +nles @ e®.
ik

The field equation (8.1) can now be written in component form as the following nine equa-

tions:
’\3pz']l: = N{a (88)
-1 -==1
A3pLy = Ny, (8.9)
0=DN; —nl, (8.10)
X3pL; = N7, (8.11)
A3pf§ = I_V—z, (8.12)
0=Na -n? (8.13)
=3
0 = Nl, (8.14)
0=N, (8.15)
and
0= N3 —n. (8.16)

Combining equations (8.4) with (8.14) and (8.5) with (8.15 ), it follows that _ﬁé = 1—\f§ = 0. From
equatious (8.6) and (8.7), this implies n! = n? = 0. Since n! = n2 =0, then n = n’e3 = nge3

where ng is the length of n. Then

n ®r;p = ngez ® &3.
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We can now write equation (8.1) as
z\pt = ﬁo —ngez ® e3

and can immediately conclude the following:

o.M M p M W
L, = v Lo=1==L; = v Lo = )
As3p Azp Asp Azp

and

Notice up to this point, we have no information about Mg and indeed, up until now, it is
completely arbitrary.
To complete the problem, we now introduce monotropic symmetry about the e3 axis. The

condition given as equation (7.34) becomes

Q3Up = UpQs

and this condition has been shown to be true in Chapter 7. We now consider the conditions

under which

M;Qs = Q3My, (8.17)
MoQs = -Q3;Mg (8.18)

and
NoQs = Q3No. (8.19)

Notice that since F/ = 0, all three of these conditions must be satisfied. Summing equations

(8.17) and (8.18) gives MQ3 = 0. Evaluating MQj3 gives

MoQ: = (Mjei®¢l)(~En - Exn +Em)
= M7Ei; (-En - Ex +Eg)
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= M7 (-Ei;E1n — E;jEz + E;jE33)
= M’ (—=6;1Ei1 — 0;2E:2 + 6;3E;3)

2

= —M"Ey — M7 Ep+ M Eg. (8.20)

Equating components on both sides of this equation, we find MY = 0. Thus monotropic sym-
metry about the ez axis implies M, =0.

Using equation (8.20), we see
NoQs = ~N"Ey — N"Eg + N Ea.
Now compute Q3Nj as
QsNo = (—Eu — Ex + Egp) NVE;;

= "NijEllEij -~ ExE;; +NijE33Eij

= —_N.ijéuEU - -N'-ij(sziEgj + Nij63;'E3j

= —ﬁlelj - WZjEzj + —N-sjE:;j.
Then equation (8.19) implies

—I_V_ilEﬂ - TV—':ZE{Z +—1\_fi3Ei3 = —ﬁleIj — szE-zj + stE;;j.

Equating components from both sides of the equation gives four nontrivial equations: N = -1\731,
W2 =W NP = N and N® = —N®. It follows that N3 = N3 = N3 = N3 = 0. Notice
this is exactly what has already been determined from the field equations.

To summarize,

M, = 0 or, equivalently M;=0 for i,j = 1,2,3

and
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In terms of My and Ny,

I3 = To=Ti=I;=Ii=0
describes the components of the tensor L. The vector n is given by

n= N§E3.

8.2 Straight to Straight Twisted

In this deformation, the deformed state is straight, but with a twist which is constant along
the rod axis. This case uses rg(sg) = sres so ry (sg) = e3. Then the stretch factors Ay, A2

and A3 satisfy A1 = A2 = \ and the field equation (6.24) is
AspRTE = ﬁo - ZoMu - RTn ® l"R.

The sets for monotropic symmetry are i = {I, Q3} and V = {Q1, Q2}. The orthonogal tensor
is given by

R = coswgsre; ® el —sin wosre1 @ €2 +sin woSpe2 @ el + cos wgSre2 ® e?

+e3 ® el
so the quantity RTn ® r; will be

RTn®ry = (n'coswosr+n?sinwgsg)e: ®@e®

1

+ (n® coswosg — n'sinwosg) e2 ® €* + nlez ® €.

Figure 8-2 illustrates this deformation.
We note that the rotation axis of R (the line along the e3 vector) is parallel to the axial
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Figure 8-2: Straight to Straight Twisted

vector of Wy. Hence we can use equations (6.27) and (6.28) so the basic field equation becomes
/\spRTi:- = _N_Q - W()—LTIQ - RTn R l"R.

For this geometry, Cohen’s cross-sectional tensor L satisfies equation (7.9). This was shown
to imply equation (7.10), that is, fg = 0 for i = 1,2,3. Combining this information with the
fact A\; = A2 = A and using equations (7.11) to (7.13) and equations (7.15) through (7.17) gives

the following component equations:
] =2 . +1 . +1
L] coswgsg — Lysinwgsr = Ly sinwgsg + Ly cos wysRr, (8.21)

=3 =3 .
L;coswgsg — Lysinwgspg =0,

=3 . +3
Lisinwgsp + Lycoswgsg =0,

-1 =2 . -1 . —2
L, coswgsgr + Laysinwgsgp = —L; sinwgsgr + Ly coswgsg, (8.22)

=3
0=Tx
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and

0 =LA

Equations (8.21) and (8.22) are identical. From the remaining equations we have
Ly=Li=L3=TI;=1I5=0,

indicating I is a cross-sectional tensor.
Now consider the components of RTL. We are interested to see if RTL is symmetric. We

now compute (RTf); with ¢ # j and look for symmetry. For (i, j) = (1, 2), we obtain
(RT_I:); = f; coswgsg + Z§ sinwgsg and (lef = —-L—i sinwosg + ff COSWoSR-
From equation (8.22), the right sides of these two equations are equal so

(R'L), = (R'L);.

For (i,7) = (1,3) we obtain
(RTL); =0 and (RTL)] =0
so
1 3
(Rms = (R'D), -
For (i, §) = (2,3) we obtain '
(R'L)2 = 0 and (RTL), =0
so
2 3
(R™L), = (RTL),.
Thus RTL is a symmetric tensor in this case.
Since RTL is symmetric, this implies Ng — WoMj; — RTn ® rf; must be symmetric. This
means equations (7.27) to (7.29) may be applied. Using g = 3, we get the following component

equations:

Ni+ WoMs = N3 — WM, (8.23)
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T\T; + Wo—Ang — n!coswgsp — n?sinwosg = ﬁzl (8.24)

and

‘1V§ - PVQEI_; +n!sinwgsg — n® coswosg = '1\73 (8.25)

Equation (8.23) is exactly equation (7.18). Now rearrange equation (8.24) as
=1 —2 =3 1 2 .
N3+ WoM3z; — N] =n" coswgsgr + n” sinwgsg.

Since everything on the left is constant and n! and n? are constants, the only possible values
g

for n! and n? which satisfy this equation are n! = n? = 0. This implies
—ﬁ; + WOM% - 7\7‘: =0

or

M= Vvl“o (W -7). (8.26)

Consider equation (8.25). Since we've already determined n! = n? = 0, this leaves
N —WoMs —Na=0

or
—1 1 ) S —
M= 5 (N? ~N3)- (8.27)
The fact n! = n? = 0 means n = n3e3 = nge3z where ng is the length of n which implies
RTn ® l‘IR = ﬂoE33.

We now write the equation
AspRT—I: = NQ - WOM.() —ngez el

in component form. Since we know this equation is symmetric, we need only consider the terms
indexed (1,1), (1,2), (1,3), (2,2), (2,3) and (3,3). These six component equations are as
follows.

Licoswosg + L sinwgsg = N; + WoM2 (8.28)
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Aszp (f; cos wosSg + f§ sinwgs R) = Né + Waﬁg, (8.29)

0 =N; + WoM, (8.30)
Aszp (Z§ COS WoSR — _L_; sin wosR) = ﬁi - Wo_JVf;, (8.31)
=2 =1
0= N3 - WOA’[Q' (8.32)
and
0=Ng—nd (8.33)

Using equation (8.26) in equation (8.30) gives
—1 1 (—3 —1
0=Ns+Wo (Wo (N‘}—Ns))

which gives

Using equation (8.27) in equation (8.32) gives

0=N2-W, (%-(wg_wg))

which gives
N3 =0.
Putting this result into equation (8.27) gives
-2
=N
M= 2.
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Since ng = n3, then equation (8.33) becomes

or

ng = Ny. (8.34)

From equation (8.34), we have n = ﬁgea and RTn®rj, = —ﬁges ® €3. The field equation is
/\3pRT_]: = (-I_V_i -+ Woﬁ%) En -f-—N_;E[z +—N;E21 + (-ﬁg — W()H;) Ex.

At this point, we introduce monotropic symmetry. As in the straight to straight case, we
consider the rotation of = radians about the ez axis, namely Q3. From equations (7.41) and
(7.42), we know

M=Ni=N;=N:=0

and

Mo =T =T =o.

Notice this agrees with the result for the components Ni' and N‘Z and is consistent with the
relationships of My with Ng and M, with N; from consideration of the field equations.

In addition to monotropic symmetry about the e3 axis, we also include monotropic anti-
symmetry using the element Q; representing rotz}tion of 7 radians about the e; axis. From

equations (7.37) and (7.38), we know
NN =-M=N=o0

and

_M—§=H3=H}=_ﬂ§=m=0.

In order to keep the symmetry set a group under composition, we must include the element
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Q- which represents the rotation about the e; axis. From equations (7.39) and (7.40) we know
N;=-N§=ﬁ§=-ﬁg =0
and
My =M =M, =Ms=M3 =0,

results we have already obtained from looking at the other symmetries. Thus including Q2
as an anti-symmetry element adds no information, but nevertheless is included to force the
combined material symmetry set to be a group.

Combining all these monotropic results, we conclude
NN =M-M=F=M=0

and

M =B =T =T =3 = 7 = 2 =0,

The components of A3pRTL are now
1 =1 -2
Azp (RIL)1 =N, + WoM;,

\ap (R'L), =0,
Xap (RTE): =0

and
ap (RTL): = N3 — Wol,

SO
A3pRTf = (ﬁi + Woﬂi) En+ (Ng - WoM_;) Eo2.

To find an expression for I, multiply through this equation by R. We omit this calculation

here.
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Chapter 9

Solving Straight to Circular and
Helical

This chapter describes the solutions of the deformations from straight to circular and straight

to helical. These deformations are more difficult to solve than those of the previous chapter.

9.1 Straight to Circular

In this deformation, the deformed state is a circular arc centered at the origin. The rod axis
lies in the plane spanned by e; and e; having radius a. The tensors Wy, U and R are exactly

those given in the previous problem. The value of Wy = wyp is chosen so that

A2
wy = —.
a

This case uses rgp (sr) = sre; so ry (sg) = e;. In the deformed configuration, ds is chosen as
the director to be the tangent vector to the curve (this is different from the other three cases).
Then the stretch factors A1, A2 and A3 satisfy A; = A3 = A and the field equation (6.24 ) is

AszTf =Ng — ZoM, - RTn® rh.
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Figure 9-1: Straight to Circular

The sets for monotropic symmetry ared = {I, Qz} and V = {Q1, Q2}. The quantity RTnery,
will be

R'Tn®rl, = (n'coswgsg+ n?sinwosg)En

+ (17.2 COSWoSR — nlsin wosn) Eo + n3E31.

This deformation is illustrated in Figure 9-1.
We note that the rotation axis of R (the line along the e3 vector) is parallel to the axial

vector of Wg. Hence we can use equations (6.27) and (6.28) so the basic field equation becomes
AZPRT-I—J = NO - WOM-O - RTn @ l"R.

For some aspects of this case, it is simpler to use cylindrical polar coordinates (r, 8, z) with
basis vectors {e,,eg,e3}. The relationship between the bases {e;,ej e3} and {e,,eg,e3} is

given by (Cohen [1])

e, = (coswgsg)e; + (sinwgsgr) ez,
ey = —(sinwosgp) e1 + (cos WoSR) €2
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and

e3 = e3.

These are easily inverted to give
e, = (cos wosg) er — (sinwosg) ee,

e2 = (sin wosg) e, + (coswgsr) eg

and

e3 = e3.

Note that {e,, eg,e3} is an orthonormal set, so the normality conditions for normal uniform
rods are still be described by this set.
In the deformed configuration, the equation of the rod axis is given by

r(sg) =aRe;

SO

r' (sg) = aR'e;.
The term Re; evaluates as
Re; = ((coswosr) I + (sinwosr) Af + E33) el
= (coswgsgr)Iye; + (sinwgsg) Axe; + Esze;

= (coswgsgr)e1 + (sinwgsg) e2

= er
so in fact r (sgr) = ae,. Then r’ (sg) = aR’e; = ae] = awges = Mreg (using wo = Az/a) so the
tangent vector to the rod axis in the deformed state is eg.

In terms of the directors, this means

d; = \jer,d2 = A2 e5,d3 = Aze;.
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Then the deformation tensor is

F = 1®dLh+d;0di +dz3@d}

= Mer®el + 265 @ €%+ \ze3 @€’
and using the above relationships between {e,, eg, €3} and {e;, ez, e3}, this gives

F = A;(coswpsgre; + sinwgsrer) ® e! + Ay (—sinwgsgre; + coswpsger) ® e?
3
+Aze3Re
= )\ coswgsge; @ e! + \; sinwgsgez ® e — Az sinwgsge; ® e?

+A2 coswgspes @ e + Azez ® e3

The polar decomposition of this tensor is F = RUg where R is given as previously and Uy is
as defined in equation (7.1).
Evidently we can also establish a cylindrical polar coordinate basis for the second order

tensors. The members of this basis are denoted
CPC = {Erra Erﬂ: Er?n Eer: an, E83: E3r1 E391 E33}
and are defined by
E+r=e,®e,Eg=e-®esE3 =e-rQes,
Esr =es®e,,Egg = €9 ® €9, Eg3 = €9 D e3,
Eir =e3®e;, Ejg =e3 @ ey, Ezz =e3 Qes.

Using the relationships between {e;, ez e3} and {er,eq, e3}, it is possible to establish the

relationships between

RC = {Eq1, E12, E13, E21, Ex2, Eg3, E31, E3, E33}

(rectangular coordinates) and CPC (cylindrical polar coordinates). The calculations are tedious
but straightforward. Here are the relationships establishing the members in the set RC in terms
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of the members of the set CPC :
E11 = cos? wosrE — sinwgsg cos wosgErg — sin wgsg cos wosgEgr + sin? wgs rEge, (9.1)

E12 = sin wqsg cos wosgE.r + cos® wosgErg — sin® wosgEgr — sin wosg cos wosrEgs, (9.2)
E.3 = coswosgEr3 — sin wgspEg3, (9.3)
E2; = sin wosg cos wosgE,r — sin? wosgrEr9 + cos? wosgEg,- — sin wosg coswosprEge, (9.4)

E2y = sin® wyspE,, + sinwgsg cos wgspErg + sin wosg cos wos g Egr + cos? wosrEgg, (9.5)

Ej3 = sinwosrEr3 + cos wosgEes, (9-6)
E3, = coswgsrEs, — sinwospE3g, (9.7
E3s = sin wosgE3r + cos wpspEgzg, (9.8)
and
Ej3; = E33. (9.9)

It is important to realize that in the notation for these basis vectors, © and 6 are not
indices which may assume numerical values - they are just symbols designating a member of
the cylindrical polar basis.

The tensor L from Cohen’s paper is still a cross-sectional tensor, but now the cross-sections
are not parallel as sg varies as they were in the previous two cases. However, the normality
condition implies that the cross-sections will be normal to the tangent vector eg. This means
that if the components of L are expressed with respect to the cylindrical polar basis, several of
the components will be zero. That is, if L is expressed in terms of the basis CPC say by

L = LTE. + LyE.p + L3E;3 + L?Eg, + L{Egg + LiEs3 + L3E3, + LiE3g + L3Eas,

then only components acting the plane normal to ey are nonzero. This means all components
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with @ as an index, either upper or lower, are zero. That is
Ly=Ll=Lf=Li=L}=0 (9.10)

and

L = L'E,, + L3E 3 + L3E;, + L3E3;.

Despite the advantages of working in the cylindrical polar coordinate system, it is easier to
solve this case in rectangular coordinates. This means it is necessary to express L in terms of
the basis RC and then convert this to the tensor L. The objective for doing this is to determine
which components of I are zero.

The tensor L is expressed in terms of the basis RC by the following:

L = Lle,®@e" +Lje,®e*+Lie;@e + Liez®e?
= L] (coswosre; + sin wgsgez) ® {coswosge! + sinwosge?)
+L3 (cos wgsge; + sin wpsgez) ® el
+Lfe3 ® (cos wosRe1 + sin wosRez) + Lgeg ®el
= LI cos® wgsge; @ el + LT sin wgsg cos wgsge; ® e?
+LT sinwgsg cos wgsges ® el + L7 sin® wosge; ® €2
+L5 coswosge; @ e+ Lisinwgsges ® el

+L3 coswgspes @ e! + Lsinwgsges ® e? + L3e; @ €.
Now relate this to the tensor L via the relationship L = LT (FT) ™. Since

F = M\jcoswgsgpe; ® el + A1 sinwgsges ® el - Agsinwgsge; ® e?

+A2 coswosrez @ e + Azez ® el

then

FT = )\ cos wospe; @ €' — Ay sinwpsgez @ el + \; sinwgsgpe; @ 2

+Ag cos wosrez ® €2 + Aze3 @ €3
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and

-1 COS WoSR sinwgsg sin woSR
(FT) = 2R ®el - LRe; R+ ———er®e!

A A2 AL
1
A2 A3
as can be verified by multiplying the expressions for FT and (FT) ~! to get the identity tensor.
After a lengthy computation, the tensor L is evaluated as

L = LTFH™
r 3 L

L Lt .
= x’-’ coswopsre; @ el + ,\—' coswosrer @ e° + ,\—" sinwgsge; @ et
1 3 1

3 r 3

L L3
+-—Lsinwgspe: ® e+ —3e3 ®el + —§e3 ®e”.
A3 A A3

The important thing to observe here is that
Z; = I§ = Zg =0

(we’re really not interested in how -[_;; depend on LT, L}, Lg etc., except for possibly checking
that our solution agrees with Cohen’s solution).

Equations (7.11) through (7.13) become

f% COSwWgSR = fi sin wgsg, (9.11)
+3 -1
Li coswgsp = Ly (9.12)
and
=3 . —2
L sinwgsg = Lj. (9.13)

Equations (7.15) to (7.17) become
= —zisinwosR +f§ coOswWoSR, (9.14)
+1 =2 . =3
L3 coswgsg + Lasinwgsg = Ly (9-15)
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and

—f; sinwgsg + Z§ coswgsg = 0. (9.16)

Obviously equations (9.11) and (9.14) are identical. If we consider equations (9.12) through
(9.16) to be a system of linear equations in the components fi, f;, fﬁ, f§ and Zi, we obtain

the following matrix equation:

(0 -1 0 0 coswosR\ (fi\ (0\
0

0 0 -1 sin wosg Ly 0
—sinwgsg 0 coswgsg O 0 ff =10
0 COS WoSR 0 sinwgsg -1 _[:2 0
\ 0 —sinwgsg 0 coswgsg O ) \fi } \ 0 )
This has only trivial solutions unless
/ 0 -1 0 0 COSWQSR \
0 0 0 -1 sinwgsg
det | —sinwgsg 0 coswpsg 0 0
0 COS WySR 0 sinwgsg -1
\ 0 —sinugsg 0 coswgspg O J

is zero. Evaluating this determinant shows in fact it is zero so there are nontrivial solutions.

Solving the system of equations gives
=1 . =2
L, sinwgsg — L{coswgsg =0

and

L;=Li=Ii=0.

Using equation (7.14), we can write the components of RTL for this case. Since we're

interested in whether RTL is symmetric, we consider only components with i # j. These give

(RTD; = f; COS WoSR +Z§ sinwgsg = 0
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and

2 =1 . =
(R}T) | = —Lysinwpsg + Lf coswgsg =0

so (RTD; = (RTDT ,

(RTL); =0
and

(RTL), =0
so (RTL)} = (RTL)] and

(RTD); =0
and

(R™L), =0

S0 (RTt)i = (RTf):; . This means RTL is symmetric.
Since RTL is symmetric, this implies Ng — WoMp — RTn ® r; must be symmetric and we
may apply equations (7.27) through (7.29). We obtain the following three component equations:

I—V-; + Wgﬁg = T\ff - Woﬁi + nlsinwysg — n® coswosr, (9.17)
Ni + WoMs = N3 —n3 (9.18)

and
N2 — WoM; = Ny. (9.19)

Equations (7.18), (7.20) and (7.22) become

M2 — WoroM3 = Nady + Woli M, (9.20)
=73 =3 —-—1
and
A2 Vs + Wor M = N3As. (9.22)
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From equation (9.17) we have
1. 2 +7l 72 w72 <71
n' sinwgsg + n°coswgsg = N, + WoM, — Ny + WoM,.

Since everything on the right side of this equation is constant and n! and n? are constants, the

only possible values for n! and n2? which satisfy this equation are n! = n? = 0. This implies
-1 —2 =2 —1
an + WQMZ - N1 + WQA/II =0. (9.23)

The fact n! = n2 = 0 means n = n3e; = ngez where ng is the length of n which implies
RTn @1 = nges ® el.

From equation (9.18) we obtain
n3 = N> —Nj; — WoMs. (9.24)

From equation (9.19) we get
—1 1 —2 =
My = g (W3 - Ni) : (9.25)

We now form the component equations of
/\QPRTE = No - Wuﬁo —nge3 ® el-

using the information derived above. The component equations are

A2p (_Iji coswgSg + ff sin wosR) = ﬁ} + Woﬁf, (9.26)
0 =N, + WoMa, (9.27)
0 = N} + Wols, (9.28)

=2 -1
0 = N ad WOMI: (9'29)

1

-2 <1
0= N, - WoM,, (9.30)

=52 =1
0=N; - WoM;,, (9.31)
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0 =N —ng, (9.32)

0="N, (9.33)
and
+3 _ 3
A2pls = Nj. (9.34)
From equation (9.27) we get
-2 1 —1

and combining with equation (9.23) gives
—*TV-? + Woﬁi =0

or
-1 1 =2
MI = 'VVO'NI.
This result also follows from equation (9.29).

From equations (9.28), (9.30) and (9.31) we get

-2 1 —1
M3 = ———0N3,
1 1 2
M =5 N2
and
1 1 =2
My = VV;N 3
Equation (9.33) is
N2 =0,
combining it with equation (9.25) gives
=1 1 =2
M3 = ‘W‘,UN:;,
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consistent with the result from equation (9.31). From equation (9.32), we have
Ng = —N‘:

which is consistent with equations (9.24) and (9.28).
The monotropic symmetry to be applied for this deformation is identical to that of the

previous case. Thus we can immediately say monotropic symmetry implies
N;=N3=N;=N3=N;=N;=0

and

M. =M;=M =M= =Ms =Mz =0.

Notice this means n = 0. The components of z\ngTf are now
T =1 —2
Ap (RTL), = N1 + WoM,

dop (R'L); = N

d2p (RTL); =0

for all other choices of 7 and j. In tensor form, this result is expressed as
XMpRTL = (N + WM} ) Eny + N3Eas.
We could find L by multiplying through this equation by R, but we omit this calculation.

9.2 Straight to Helical

In this deformation, the deformed state is a piece of circular helix with axis parallel to ez and

centered at the origin. The helix has radius a and pitch b. The tensors Wg and Uy are exactly
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those given in the previous problem. The value of Wy = wyp is chosen so that

Az
wg = —
c

where

c= Va?+ b2

The equation of the rod axis in the reference configuration is given by

R (sR) = sRe3

(9.35)

(9.36)

so d} = rg'(sr) = €3. The other directors are chosen so d}, = e! and d% = e?. Then the

stretch factors \;, Az and Az satisfy A\; = A2 = A and the field equation (6.24) is
/\3pRTE = ﬁo - ZOM—Q —-RTn R l"R.
The equation of the rod axis in the deformed configuration is given by

r (sg) = acoswgsre; + asinwgsgez + bwpsres.

The sets for monotropic symmetry are i{ = {I} and V = {Q;}. An illustration of this defor-

mation is given as Figure 9-2.

The directors in the deformed configuration are chosen to be parallel to the Frenet-Serret

frame (T, N, B) given by unit vectors

(er,en,ep) :=(T,~ N, -B)

when the helix is parameterized with respect to arc length. The quaantities (T, N, B) are given

by [18]
woe . wea bwo
T = - sinwgsSre; + == coswoSrez + —e€3,
Az A3 A3
N = —coswgsgpe; — sinwgsres
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e;

e,

Figure 9-2: Straight to Helical

and

b’wo . b'u.!o awgo
= ——sinwgsre} — —— COSwpSrez + ——e3.
A3 /\3 )‘3

The curvature and torsion of the helix are given by

a
li

I8

and

T

L
5-

Note these are both constants (a special property of a few curves including the helix). Then
2
a=kc (9.37)

and
b=rc?. (9.38)
Note that

a®+b% =Kt + 73t =2
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SO

(FP+) =1 (9.39)
It is also convenient to define
K = cugk and T = CwgT.- (940)
Thus
T = —Kcsinwgsge; + Kccos wgsgres + Tces,
N = —coswgsge; — sinwgsges
and

B = rcsinwgsge; — Tccosunsgez + Kces

give the Frenet-Serret frame for the circular helix.

The basis {er,en,ep} is a convenient one in this case. We relate these to the standard

basis {e;, ez, e2} by the following expressions.

er =T = —kcsinwgsge; + kccoswgsges + Tces,
eny = —N = coswgsge; + sin wosges
and

eg = —B = —Tcsin wgsge; + Tccoswgspey — Kces.

It is easy to see the set {er, en,ep} is orthonormal.

The directors are now expressed as

d; = A\ey = —A1N = A\jcoswgsge; + A; sinwgsges,
ds = Aeg = —A2B = —7cAs sinwgsge; + T¢A2 cos woSre2 — KCA2€e3
and
d3 = Azer = A\3T = —kcA3zsinwgsge; + kKcA3 coswgsges + TcAzes.
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Then the deformation tensor is given by

F = d;9dh+d;@di+d;0d%
= (Ajcoswgsge; + \; sinwpsges) ® el
+ (=T sinwgsge; + TeAa coswyspes — KcAzes) ® e?
+ (—kc)3 sin wgsge; + KcAg cos wospes + TcAzes) @ e’
= Ajcoswgsgpe; ® el — rcAgsinwgsge; ® €® — kcAgsin wysge; @ €
+A1sinwgsges @ el + TCA2 COSWySRE2 & e’ + KCA3 coswgspes ® e

—Kches @ €2 + Tchze3 ® e’

As usual, the polar decomposition of F is F = RUg where Uj is given by equation (7.1). In
this case, the rotation tensor is more complicated. The following lemma shows this tensor may
be decomposed into the rotation tensor of the previous two deformations (straight to straight

twisted and straight to circular) and another orthogonal tensor.

Lemma 59 In the decomposition F = RUp, R = R3R; where
R3 = cos wosRIgL + Sin'onsRAf;L + E33

and

R; = TC:I']'.L + K.CA{‘ + Eq;-
Proof. The proof is done by showing RUg = R3R;Ug gives the expression for F given above.

The component form of R is given by

R = (cos wosrIy + sinwosp AT + E33) (‘rcl‘f + kcAf + Eu)
= rccoswosrIFIi + resinwosp AT + TcE3sly
+rccoswgsrly At + scsinwosprAx A + kcE33 At

+ cos IUgsRIf,LEn + sin 'wOSRA.;';LEu + E3Eq;.
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Using Table 6.1 and rearranging the order in which the terms are written, we obtain

R = coswgsgE11 — TcsinwesgpE1s — kesinwgsrEis

+sin wgsrE21 + TccoswosgEq2 + kccoswospEq3 — kB3 + 7cEj;3.

Now multiplying this by Ug gives

RU, =

coswgspE11Ug — Tesin wgsgE12Up — kesinwgsgE13Ug

+ sinwgsrE21Ug + Tccoswgsp ExaUp + sccoswosrE23Up — kcE32Up + 7cE33Uy
coswosrE11 (M1 E11 + A2E22 + A3E33) — resinwosgE12 (MEq1 + A2E22 + A3E33)
—kcsinwosgrE13 (AME11 + A2E22 + A\3E33) + sinwesgE21 (AME11 + A2E22 + A3E33)
+rccos wospEge (M E11 + A2E22 + A3Es3) + ke coswgspE23 (A E11 + A2E22 + A3E33)
~rcEzz (AME1 + AoE22 + A3E33) + 7cEa3 (MEq1 + A2E22 + A3Ea3)

A1 cos wosprE11 — AaresinwosgpE12 — AzkesinwosgrE 3 + A1 sinwosrE2;

+AaTccoswosrEq + AzkccoswosgEoz — AakcE3z + A31cEass.

Comparing this with the expression for F given above, shows the expressions are identical. B

It is useful to have RT = (R3R)T = RTRYT. Calculate RT as

RT

Then

= coswosprE1; + sin wosgE12 — TesinwgsgE2; + TecoswosgEan — rcEa;

—kesinwysgrEs; + kccoswosprEss + 1cEas.

R'R = (RTRY) (RsR,) = RTRTR;R, = RTIR; = RTR,

where I denotes the identity tensor. Computing RTR; gives

RIR,

= (relf +meAt +En) (rel +rcAf + En)
= (’rcI{' — kcAf + Eu) ("'Clll +KcAT + En)

= TP + hPIFAT + Tt By — Tec2ALTE — 6%c?AT AT — kcATEy
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+TCE111‘1L + KCEllAiL +EnEq;-
Using Table 6.1, we obtain

R"erl = TzCinL + TKC2A{‘ - ﬂcczAf' + nzczlf' +En
= (*++%) I +En
= I +Ey
= Eu +E»2 +Es;
=1

using equation (9.39). Since RTR; = I, then RTR = I which confirms R is orthogonal.
It should be noted that in this deformation, the axis of rotation of the rotation tensor R is

not parallel to the axial vector of Wg. Thus we need to compute
Zo = RTW R = RIRI W R;3R,.

Since the axis of rotation of the rotation tensor Rj is parallel to the axial vector of Wy, we

have from Lemma 53 that WgR3 = R3Wj so
Zo = RTRTR;W R, = RTWoR,
using the fact R;,I'R.g =1I. The computation of Z¢ is as follows:

Zo = RITWoR,
= ('rcIf — kcAj + Eu) Wy (TCI{‘ +KkcA7 + Eu)
= Wo (reltAf — kcAfA$ +EuAf) (relt + neAt + En)
= Wo(7cE21 + kcE31 — Er2) (‘rcI'lL + kcAf + Eu)
= Wo(r2PEnlt + k7c? Egilf — 7cBpolf + s7cPEa1 AT + k2PEqlAf — kcEpAT

+7cE21E11 + kcE3nEq — EpEqy)
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using Wy = WyA+ and the information in Table 6.1 The various tensors remaining in the

expression for Zg evaluate as follows:
Eoilf = Eo; (E22 + Ez3) = Ey B + E21E3z = 0,

Eali = E3; (E22 + Ex3) = Eg1Ep2 + Eg1Ea3 = 0,
E2Ii = E12 (E22 + Eg) = E12E» + Ep2E3zs = Epa,
E2n A7 = Ex (Exz — Ex) = EgEp —EEz =0,
Es1Af = E3;1 (Eg3 — Eg2) = Eg1Eg3 — E31Eg2 =0,

E2A{ = E13 (Ez3 — Eg) = EroEos — Er2Ex; = Ena,

E2 Eq = Eg,
EsnEqn =Ej;
and
E;2E;; =0.
Then

Zg = Wy (—TCEu — kcEi3 + 17cBEo1 + KCE;;],)

= Wy (rc (B — E12) — ke (B3 — E31))
= WyrcAT — WokcAx

= TA3 —RA7
using the definitions in equation (9.40) and the field equation
/\3pRT-I: =Ng — ZoMg — RTn® I‘IR

becomes

A3pRTL = Ny —7AF M, + ®A- My ~ RTn @ rk. (9.41)
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The quantity RTn ® r; needs to be calculated. This evaluates as
RTn®rk =RTRIn®rk.
From the results on straight to straight twisted,

R'fn ®ryr = (n1 cos wgsg + n’sin wosR) E3

+ (n2 cos wgsp — n! sinwosR) E23 + n°Ej3

SO

RTner, = (n! cos wosg + n?sin woSR) RTE;3

+ (n.2 cos wosg — n'sin wosR) R'lrEgg + n3R'1rE33
and it necessary to compute RTEj3, RTE); and RTEs3. The quantity RTE;; evaluates as

RTE;; = ('rcI'lL — kcAT + Eu) Ei3

= TCIiLEm - ICCAIJ‘E13 + EnEqs.

These tensor components evaluate as

ITEi3 = (Ex + E33) Ei3 = ExEq3 + Eg3Ej3 = 651 E23 + 631E33 = 0,
A{E;3 = (Eo3 — E3) Ejy = Ei3Er3 — EgEy3 = 631E03 — 621E33 = 0

and
E;1E3 = 611E13 =Eg3

SO
RTE;3 = Ei3.
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The quantity RTE»; evaluates as

R'szz

(‘rcl‘l" - ncAiL + Eu) E>s
= TCI‘ILEQ:; - KCAI'LEzz + E1Eg3.

These tensor components evaluate as
ITE2; = (E22 + E33) B2z = ExEgs + EgaEos = 622E23 + 632E33 = Eo3,

A7Eg3 = (Ea3 — Ej2) Eaz = ExsEgs — EgoEn3 = 632E23 — §20E33 = —Eg3

and

EnEx; =612E13=0

SO

R}‘EQ;; = 17cEo3 + kcEa3-

The quantity RTE33 evaluates as

RTEs = (rclf —reAf+Eu)Egs
= 1cIfE3; — kcA+Eaz + E1Ess
= 71cEa3 — kcEa3.
using Table 6.1. Then
RTn®ry = (n'coswosg+n’sinwosg)Eis

+ (n2 cos wgsg — n! sin wusR) (1cE23 + kcE33) + n3 (TcE33 — kcEg3)

= (n1 coswgSR + n?sin wosR) Eiz

1

+ (Ten® cos wosp — Ten' sinwgsg — xen®) Eag

L

+ (kcn? coswosg — ken' sinwosg + ren®) Egs-
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Now define a basis for second order tensors by

FSC = {Ert,Ern,Er8,EnT,EnN, Eng, EBT, EBN, EBB}

where

E7T=eT®eT’ ETN=ET®GN. ETB=eT®eB1
Enr =en®er, Exy =ev®en, Eng=en®ep,
Egr =eg®er, Egny =eg®ey and Egp —eg Qep.

Using the relationships between {e;,e2,e3} and {en,ep,er}, it is possible to establish the

relationships between members of FSC (Frenet-Serret coordinates) and members of

RC = {En, E12, Ey3, E21, En, Eg3, E31, Ea2, E33}

(rectangular coordinates). The calculations to do this are straightforward, but tedious and are

omitted. The results are as follows:
Err = &2c*sin® wosgE1 — k2c? sin wosg coswgsrE12 — kTc? sinwgsgEr3

2.2 2

—k2c? sinwgs g cos wosgEgy + k2¢? cos? wosgEas + krc? coswosrEas

—k1c? sinwgspEs + src? coswosgEss + 2c2E33,

Ery = —kcsinwgsgcoswgspEq; — resin® wospEq2 + ke cos® wysgEay

+Kcsinwgsg cos wosgEq2 + TccoswosrEa1 + Tcsin wosrEz2,

Erg = &rc?sin®wgsgE — k7c? sinwgsg cos wosrE12 4+ k2c? sinwosgEis

—kTc? sinwosg cos wosgEy + krc? cos? wosrEa — k3¢ cos wosgBas

—r22 sinwgsgrEa; + 72c? cos wgsgEap — krc?Eas
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Ent = —kcsinwgsgcoswgosgEr + kccos® wosgpE12 + TecoswosgErs

—kcsin? wosgE2 + kccoswgsg sin wosgEq2 + TesinwospEaz,

Enxn = cos? wgsrE11 + sinwgsg cos wosrE12 + cos wosg sinwospE21 + sin® wospEo,

Eng = -—TcsinwgsgcoswosgEq1 + Tccos® wospBi2 — kecoswosrEr3

—7rcsin? wgsgEy + Tccoswosg sinwosgE22 — kesin wosgrEz;,

Egr = ~krc?sin?wgsgEq; — k7c?sin wosg coswosgE12 — 2c% sinwpsgEq13

—k7c? sinwgsg cos wosrE21 + krc? cos® wospEaa + 2¢? coswosgE23

+2¢? sin wosgEs; — k2c? cos wosgEse — k7c?Ess,

Egy = -—rcsinwgsgcoswosprEn — Tesin® wosgEr2 + T¢ cos? wos gEa1

+Tcsinwgsg cos wosrE22 — kccoswgsrE31 — kesinwgsgpEs;
and

Egs = t2c?sin?wgsgEq; — 722 sinwgsg cos wosgE12 + £7¢® sinwosrEis

—72¢? sin wgs cos wosrEa1 + 72¢2 cos? wospE22 — kTc? coswyspEas

+rrc? sinwgsgEs; — £7¢? cos wgsgEsz + k2c?Bas.

The significant thing about using the coordinates with respect to the basis given by FSC is
that Cohen’s stress tensor L has several zero components in this basis. Since this stress tensor

is cross-sectional, all components referring to the tangential direction (i.e. with index T) must

be zero. Thus

L=LNEnxy + LY¥Enp + LEEgy + LEEBs.

For purposes of this thesis, we need the zero components of L in the basis RC. To find these,
we express L in the basis RC and then convert to L using equation (4.39). Calculating L in
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the basis RC gives

L =

LNYEnn + LYENnp + LYEpn + LEEgs

LY cos? wosgEq, + LY sinwgsg coswosrE12 + LY cos wosg sin wosprEa2
N N N

+L sin® wosgrE22

—Lg Tesinwgsg coswespBi + Lg recos® wospE2 — L‘g kccoswgsgEq3

N_ . 2 N : N .
—LgTcsin® wosgE2 + LgTccoswysgsin wospEqp — L kesinwosgEas
—Lf,'rc sinwgsg cos wgsgEq; — L,Bv*rc sin® wosgEi2 + Lg‘rc cos? wospEo

+L§rc sin wgsg cos wosgEos — Lfﬂcc coswosrE3; — Lﬁnc sin wgsrE32

2

LB 72c?sin? wosgE11 ~ Lg'r%2 sin wgsg cos wospE12 + Lgfcrc2 sinwgspE13

—~LE72c% sin wosg cos wospEg1 + LET2c? cos® wospEaz — Lg B rc? cos wospEqs

2

+L krc?sinwgsgEs; — LBm-c cos wgspEay + L3n2c2E33

which simplifies to

L

2

2 wosg — (L%’ + Lf,) Tcsin wgSp cos wosg + Lgr2c2 sin® wosgr) En1

(LY cos

2

+ ((LN — LEr%c?) sinwpsgr cos wosr + LY Tccos? wosg — LErcsin® wosg) Er2

+ (LBm'c sinwgsg — LY ke coswgsgr) E13

+ (LN — LB1%c?) sinwosgr coswosg — L resin® wosg + LETccos® wosg) Exn

2

+ (Lﬁ sin® wosg + (Lg + Lﬁ) Tesin wosg coswosg + LE72¢2 cos wgsR) E22

- (Lg kesinwosg + LBkrc? cos wos r) E23

+ (L kT sinwgsr — LNrcccoswosR) Es
- (Lf,nc sinwgsp + Lgn‘rc2 cos wgs R) Ej3;

+Lgl€262E33.

This is the tensor L. with respect to the basis RC.

To calculate I from this, rearrange equation (4.39) as

L=LTF T,
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The most straightforward way to compute F-T is as follows. From
F =RUp = R3R; Uy
we get
FT = (RsR1Uo)" = UGR{R] = UoR;'R5"

using the facts that Up is symmetric and R; and R are orthogonal. Then
FT = (UoRT'R7Y) ™ = (B5Y) ™ (B 7' Uy = BB

Since Uy is diagonal, it is straightforward to calculate its inverse as

1 1 1
“1_ B 4 — = Eaa.
U, N, Pu + /\2E22 + A3E33

The rotation tensor R3R; has been calculated earlier. Thus
FT = R3:R,U; 1
= cos wosREuUEI — Tcsin wos;;gEnUa1 — kcsin wosRElsUal

+sinwgspE21 Uy 1 4+ rccos wosprE22Uy 1 4+ kecos wosrE23 Uy !

—kcExnUp! + 7cEasUgt.

Now calculate the term E;; Uy L.

E;U;' = Ey (XlIEu + "\1—2E22 + ,\%Eaa)
= %IE:'J'EII + /\leijE22 + AisEiana
= -/\1—15_-,'11'31‘1 + 7\1;51'21‘3:‘2 + ,\iatsjsEia»
Substituting this into the expression for F~T gives
FT = Xl- cos wosrE11 — :T\E sin wosgE12 — :_c sin wosrE13
1 2 3
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1 . TC KC
+— sinwgsgpEs; + — coswgspE2r + — coswospEqs
A1 A2 A3

KC TC
—,\—2E32 + A—3E33.

Now calculate L = LTF-T by

L = LT T
1 TC KC .
= —coswgsgLTE); — — sinwgsgLTE;s — — sinwgsgrLTE 3
AL A2 A3
1 KC
+— sinwosgLTEs; + ™€ cos wosgLTEgs + — coswospLTEy;
A Ao A3
TC
—K—C'LTEaz + -—LTE;;;;.
Az A3
It is necessary to calculate LTE;; done by
LTE,-J- = (Lf, cos® wosgp — (L‘g’ + Lf,) TCSinwgSR COSWoSR + Lgrzc2 sin? wosR) Ej Eqi;

+((LY - Lg'rzcz) sin wgsg cos wgSp

2 2

+L‘g‘rccos wgSR — Lﬁrcsin wosr)E12Eq;

+ (Lg xrc? sinwgsg — LY kccoswysr) Er3Eij
+((L¥ - Lg'rzcz) sin wgsg cos wgsgr

- Lg resin? wosg + Lﬁrc cos? wgs r)E2: E;;j

+(Lx sin® wosg + (Lg + Lfi) TesinwoSp COS WSR
+L872c2 cos® wosr)ExE:; ‘

- (L’g kcsinwosg + LExrc? coswos R) EzE;j

+ (LBkrc? sinwgsp — LEkccoswps r) Ez1E;j

- (L?,rcc sinwgsg + Lg:c'rc2 cos wgs R) E3E;;

+LgRZC2E33E{J‘
which becomes

LTE; = (LN cos®wgsg~ (ng + Lf) rcsinwosgrcos wosk + L8122 sin® wosg) 61:E1;
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+((LY — LBr%c?) sinwosg coswosr

+Lg Tccos® wosg — Lﬁrc sin® wgs R)62:E;

+ (Lgrc-rc2 sinwgsg — LY ke coswosr) 63:E1;

+((LX - Br2c?) sinwosg coswasr

-—Lg‘rc sin2 woSR + Lf,’rc cos? wgs r)01:iE2;

+(L¥ sin® wosp + (LY + Lf,) TcsinwgsSgr COSwosR
LB'rzc cos? wosgr) 62 Ea

- (Lg Kcsinwgsg + Lgm—c2 cos wyps g) 83:Eo0;

+ (L8 Kkrc? sinwosg — LE ke coswysg) 61:Es;

- (Lf,nc sinwgsg + L’gfﬂ'c2 cos wgs R) 62:E3;

+Lgr€26253,;E3j .
Then, for example,

LTE,, = (LY cos® wosr — (LY + Lf,) Tesinwesg coswosg + LBT2c% sin wgsR) Enx
+((Lﬁ - Lgrzcz) sin wgSg COS WoSR
—Lg'rc sin® wosg + Lf,*rc cos? wgsg)Ea;

+ (Lgm-cz sinwgsg — LY ke coswosg) Esi.

The other calculations are done analogously. The calculations are tedious and the rest of this

calculation for L are omitted. The final result is
= 1
L = —Lﬁ,’ COS WgSR — I—ch sinwgsg | E11
A1 A1
1
+ (—Lﬁ COS WSR — El}gsinwos;z) Ei2
+ (/\ LN sin wosg + /\—LB coswgsR) E>;
1
+ (,\ LB coswgSR + -—LN smwosR)
2
=N _ 2
" LB Ej; W LBE32.
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Note

For brevity, we now define I' = cos wgsg and ¥ = sin wgsg. Equations (7.11) to (7.13) and

(7.15) to (7.17) are given as follows:
+2 +2 -2 -1 +1 —1
MEL] = A7cELs — A3kcELy = MEIL; + A1l Ly + A3nclLy,

)\11"1_? - /\grc):Zg - /\;chfg = —z\gKCZ; + Asrcf;,,
-3 —3 —3 -2 -2
MELy + AprelC Ly + A3xcl Ly = —Aakcly + AzTcly,
Ffé + Efg = —‘rcEf{ + ‘rcl."f% - ncfi,
1 =2 —=1 =2 =3
A3LLy + A3X L3 = = kcELy + Mscl'Ly + A\yTely

and

—AgTCEE; + A;;‘rc[‘fg — AakcL3 = —z\gnch; + Agrcl _L_g + ,\grcfg.

.. - . . . =1 =1 =1 +2 +2 =2 =3 =3
This is a system of six linear equations in the nine unknowns L%, L,, L;, Ly, Ly, Ly, Ly, Ly

and Ly. Solving this system gives

F1 . =2
L sinwgsg — Ly coswgsg =0,

=1 T-=3 . A3—3 .
Ly = —L,sinwgsg + —§-L3 sinwgsg,
K ;\2
—=1
L3 = 0,
=2 T—3 A3=3
Ly = ——Lycoswosg — —3L3 cCoswgSgy,
K A2
=2
Ls = 0
and
=3
Ll = 0.
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Using the information

Lo -T =,

the components of L satisfy

-1 . =2
Lisinwgsg — L{ coswgsg =0,

=1 T=3 .
L, = —~L;sinwgsg,
K

—2 T—3
Ly = -—ELZ COSWoSR

and

I;=Li=Ii=I3=0

with no restriction on the value of Ly (i.e. Ly is a parameter).
Now calculate RTL using equation (7.14). We're particularly interested to see if this quantity
is symmetric. Thus we first consider the components in which ¢ # j. These components of

RTL are as follows:
1 T=3 . T—3 .
(RIL)2 = —L, coswpsgsinwgsg — — L, coswgsgsinwgsg =0,
K [

2 +1 . =2
(RTL)| = —7cL; sinwgsg + rcLj coswosg = 0,

so
1 . 2
(th)z = (RTI_‘)1 )
1
(RTL); =0
and
(RTT_._)? = —xcL, sinwgsg + xcLs cos wosg = 0
so
1 3
(RTf)s = (er1
and

(RT); =0

186



and

(erg = —c'rfg sinwosg sinwosg — crz: COS WgSR COS WoSg + TCZ; =0
so
2 3
(R'L); = (R'L);.

Thus the quantity RTL is symmetric and is, in fact, diagonal. Now compute the diagonal
elements of RTL as

1 =1 -2 .
(R.Tf)1 = L, coswgsg + L sinwgsg,

]

(RTD),

T3 . . T+3 =3
~Tc—~L,sinwosgsin wosp — TC— L, cos wosg coswgsg — kcLy,
K

72 2 _

-2 T 2 3

= - (c— sin® wgsg + ¢c— cos® wosp + rcc) L,
K K

2 R
= - (c:— +nc) Lg
K

I
|
|
t-‘

[

using equation (9.39) and
(R'L)S =0.

Since the left side of equation (9.41) (that is, RTL) is symmetric, then the right side of
equation (9.41) must also be symmetric. Thus,

X =Ny -7FAT My + A7 My — RTn@r}
is symmetric. From equation (6.25), we also have

(NoUp — MOUOZO)T = NoUp — MyU,Z,
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and substituting for the value of Zg, this becomes
— J— T —_— —
(NOUO - MyUs (FA% - RA-ZL)) = NoUp - MyUp (?Ag ~7A%)

or

N =NA L =M AR~ =M. L =M. L
(NoUo — "MoUoA$ + RMoUoA$) = NoUo ~ PMoUsAg + RMoUoAsz

We need to calculate component representations of both of these tensor equations to establish
relationships among the components of No, Mg and n.

We first consider the expression
No — FAFM, + RA7 My - RTn @ r.
The quantity A3Mj is calculated as follows:

ATM; = (e2®@el —e1®¢?) (ﬁ?&'@ej)
- T (20¢) (:8) - I, (.0¢) (0¢)
= Misles®e — M;b%e; @
= H;e2®ej—ﬁgfe1®ej
= H}éﬁq@é—ﬁ?ﬁq@ej
= (M6, -M;6}) e @ .

The quantity A3 Mj is calculated as follows:

AiM; = (e1®e®-e3®el) (_mei®ei)
= M (e10¢%) (@) — M (s @€' (s @ &)
= Milei®e —Mbles® e
= _ﬂge1®ej—_ﬁf;es®ej
= Miflei®e —M;fie; @
= (ﬁf&}-ﬁ;&;)e,®e7
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The quantity RTn ® r; was calculated earlier. Putting all this together, the component repre-

sentation of X is given as

X

Nie:®e —7 (M85 — M361) e @ + 7 (M;6 - M;6%) e @ &
— (n' coswosg + n? sinwosg) e1 @ €

lsinwgsg — ncns) e ®ed

— (ren® coswgsg — Ten
(ken? 1. 3 3
— (ken® coswosg — kenlsinwgsg + Ten”) eg3 @ €

(ﬁ;‘. -?(M}&@ -Mﬁag) +z(ﬁgag-ﬁ;ag)) e ®el

— (n! coswgsg + n?sinwgsg) €1 @ €*

1

— (ren® coswosg — Ten! sinwgsg — ken?) e; @ €°

el -
— (ken® cos wesg — skenlsinwgsg + ’rcns) e; ®ed.

Since X is symmetric, we must have XJ‘: = ng forall i, = 1,2,3. When ¢ = j, this is trivial
and contains no information. We need only consider the three cases X = X%, X{ = X} and

X2 = X3. For X} = X2 the component equation is

Ny+7Ms + &My = Nt —7M,. (9.42)

For X} = X} the component equation is
N3 +7Ms + M3 — (n! coswosg + n?sinwgsg) = N3 —%M,;. (9.43)

For X2 = X3 the component equation is
N3 — M3 — (rcn? coswosg — Tent sinwgsg — ken®) = N3 — 7M. (9.44)

Now rearrange equation (9.43) as
n! coswgsg + n?sinwesg = 7\’—; - _1\7‘; +R”M; + ?H§ +Eﬁ§.

In this form, the right side consists entirely of constants. Since n! and n? are also constants,
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this equation can only be true for all values of sg if »! = n? = 0. Thus equations (9.43) and
(9.44) reduce to
N3 — NS +RM, +7M; +EMg =0

and

N3 — 7Mj + xen® = Ny — RM;
respectively. This means n = n3e3 = ngez and

RTn® l"R = —rengEoz + rengEas
and the field equation becomes

A3pRTL = Ny — TAF M, + RAF My + kengEgz — TengEss. (9.45)

The quantity ng is the length of the vector n. Solving for n® = ng in equation (9.44) and using

n! =n? =0 gives
=3 =2 | ==l ==l
Nz—N3+TA/I3—ﬂM2

KC

ng = (9.46)

We now consider the symmetry of
Y = NOUO - ?‘M'OUQAE;L +EﬁoUoA'2L.
We first calculate a component expression for Y. The quantity NoUjg evaluates as

NoUp = (TV*La ® ek) (e ® ¢)

= N};&;?A(,—)ei Q€
The quantity UgA3 evaluates as
UpAy = (/\(k)ek ® e") (e2®el —e;1 ® ez)

= g (e,c ® e") (e2® el) ) (e;c ® e") (e1 ® €?)
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= ,\(k)6§ek ®el — ,\(k)é'fek ®e?

/\282 X el —_ Alel ® e2
so the quantity MgUgA# evaluates as

MyUpA7

(T\/T;ei ® ej) (M2e2® el - \e1® e2)

= XM (e;®e’) (e2®e') — MM (e; @ ¢) (e1 ® €?)
= MM.Se;®@e! — \M5e; ®e?

= MMe;®e! — A Mie; @e?

= XMybte;® e — MM 82e; @ &

= (06l - M8 e @ e,
The quantity UgA7 evaluates as

UoAy = (/\(k)ek ® e") (e1®e®* —ez®el)
= Aw) (ek ® e") (e1 ®@€®) — Ay (ek ® e") (es®el)
= '\(Ic)6lfek ® el — /\(k)5§ek ® el

= Aie;1 ® ed— Aze3 ® e!
so the quantity MgUpA7 evaluates as

MoUpAT = (M;e, ® ef) (Ae1 ® €® — Aze; @ et)
= 1\1-1\—4_;-(61‘®ej) (e1®e3)—)\3.117j»(e,—®ef) (e3®e1)
= ,\{Mj-é'{e{ ®ed - ,\J\Zj-sge; ®e!
= MMie;i®@e® — AMze: ®@ el
= Alﬂ_‘;&?eﬁ Qe — Agmﬁ}e,- Qe

= (MM - 236} e @ .
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The expression represented by Y is now expressed in component from as

Y = MjNje:i®e —7 (M6} — MM 8F) e: @+ (MM163 — AsP36}) e: @ &
= (A N; =7 (%Phs} - MME) +7 (MM16} - MM36}) ) e @

Since Y is symmetric, we must have Y} = Y7 for all 4,5 = 1,2,3. When i = j, this is trivial
and contains no information. We need only consider the three cases Y} = Y%, Y3 = Y and

Y2 = Y3. For Y;' = Y? the component equation is
Ao Ns + MM = M N — FAMs — A M 3. (9.47)
For Y3 = Y? the component equation is
MNs +FMME = M NS — FA My — RA3 My, (9.48)
For Y = Y;} the component equation is
AsN2 +RMM: = ANy +FA M. (9.49)
Solving for A3TV§ in equation (9.49) gives
ANz = Mo Na +FAM M, ~EMM-.
Multiply through equation (9.46) by Az to get

AN — AsN; + FAsM; — RAs M
KC

/\3710 =

and substituting for )‘3_N_§ gives

Aa-ﬁg — (/\21_\[3-2 + _1_"/\1]\_4:; - E/\]_M%) + ?/\3-1‘2; - EA;;H;

KC

A3’no =
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which simplifies to

s (Asﬂg - A;ﬁi) +x (A;ﬁ;" - Am},_)
ng = (9.50)

KC

using equations (9.35) and (9.40)

We can now write the component form of the field equation (9.45). The components of
the left side of this equation have already been calculated (when it was shown that RTL was
symmetric and, in fact, diagonal). Equating these with the components of the right side of

equation (9.45), the component equations are as follows:

f} coswgSg + fi sinwgsg = Ni + ?-Mﬂf + 'FE-M?, (9.51)
0 =N} +7M> + &M, (9.52)
0 =Ni +7M: + &M, (9.53)
-2 1

0=N: —7M,, (9.54)

1=3 <=2 _—
——I;=N>—7 9.55
o L2 N2 TMz, ( )
0 = N3 — M3 + Kcno, (9.56)
0=N, — %M, (9.57)
0=N;—&M, (9.58)

and

0 = N3 —RM; — Tcng. (9.59)

From equation (9.58), we have Ng = EFA?; and thus

(s Aa'\Z)Ni - o 22 = (ha - Ao) w31
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using equations (9.35) and (9.40). Then equation (9.50) becomes

(As = Ao) 5B + 7 (AsBL5 — Alﬁ‘{) +x (M - AsH3)

KC

No

which simplifies to
7 (XaB; - MB1) + (M7 - XoM)

KC

ng

If we multiply through the sum of equations (9.56) and (9.58) by A3 we obtain
AaN3 + A3N3 — RAgMy — TAg M3 + kcAgng = 0.
Rearranging equation (9.49) gives
AN2 + "M — AN —FAMS =0

and adding this to the previous equation gives

AsN2 + RMME = AaNg — T\ Mo + A3Ns + AsNa — RAsMy — FAsM3 + Keng = 0

which, upon simplifying gives

2AsN: + RAs M — A My + RAM M — RAaMy — A My — FAg M3 + Reng = 0

which, in turn, gives
2A3N2 — RAoMy + M M. — FAL My — TAsM3 + Reng = 0.
Thus the field equation (9.45) becomes

XpR™L = (N} +7M; + z'm) Eu + (Ni —7M;) Eaa.

(9.60)

We now apply monotropic symmetry with the identity as the symmetric element and Q,

as the anti-symmetric element. Hence we use equations (7.32) and (7.33). In order to use this,
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we need the conditions to be satisfied:

Q:Up = UoQs

and

Q12U = -Z,UQ;.-

The first of these conditions was shown to be true in Chapter 7. We now show the second
condition is true.

The quantity ZoUjp is calculated as

ZoUy = (?Ag'- - EAz‘L) (MEq1 + A2E22 + A3Ea3)
= TMATEn +TAA5En + TAATEn — RAATEL —RAMAZEy — RAsAZ Egs

= TAME2 —TAE2 + BN E31 — RA3E3

using Table 6.1.
The quantity Q1ZoUj is calculated as

Q1ZyUy = (Ei — Ez2 — Ea3) (TAME21 — TA2E12 + R\ E3; — RA3Eq3)
= TAL(E1; — E22 — E33) E2; —TA2 (E11 — E22 — Ea3) Ep2
+%8A1 (B11 — E22 — Ea3) E3; — RAz (E11 — E22 — E33) Er3

= —=TANEz2; —TAE;2 — A E31 — ®A3Ej3.
The quantity ZgUQ; is calculated as

ZoUpQ: = (FAEa — TA2Ej2 + %\ E3 ~ ®A3E13) (E1n — Ez2 — Egg)
= TMEz2 (B — Ex2 — Eg3) —TAz2E12 (E1; — E2 — Eg3)
+R&MEs1 (En — E22 — E33) — RA3E;3 (Eq — Eg2 ~ Ea3)
= TAME9 +TAE12 + B\ E3; + RA3Eq3.

Thus Q1ZoUp = —ZoUpQ; and the second condition is satisfied.
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Since both conditions are satisfied, we may use equations (7.32) and (7.33) to describe the
monotropic symmetry:

Q:No = NoQ:

and

QM = —-MoQ:.
From equations (7.37) and (7.38), we know
Ny=N3=N1=N:=0

and

Mi =M =M =M; =Mz =0.

These results for monotropic symmetry are consistent with satisfying equations (9.52), (9.54)
and (9.57). They do not effect any of the other equations for this case.

9.3 Calculation of the Wrench

In this section, we further consider the straight to helical deformation by computing the resulting
torque on the ends of the rod. We then see that the deformation may be accomplished by the
application of a wrench. The wrench is defined to be the pair (n, Cg) where n = ngez and the
quantity Cgq is the torque and is given by

Co=sk(M+rQ®n)

where M is the tensor in Cohen’s paper. The quantity Cg represents the resulting torque acting

on the ends of the rod to produce the deformation. Note

o=sk(M+r®n) =sk(M +r' ®n).
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From equations (C2.14), (C2.15) and (C2.16),
sk (M’ +r'@n) =0

so Cj = 0. Thus Cy is a constant skew-symmetric tensor. Then Cy must have an axial vector.
The objective of this section is to express Cgp in terms of the tensor A7 and show the axial
vector of Cg is parallel to e3.

In this thesis, M is related to M by M = FM'. Thus we could write
Co=sk(M+r®n)=sk (FﬁT+(n®r)T) :
This evaluates as
Co = % (F'M’T +mern)T’ - (FﬁT +(n® r)T)T)
= -;- (F_MT +(mer)’ - (Fm—T)T - ((n ® r)T)T>

= .;.(F—MT—_I\ZFT+(n®r)T—n®r)

using the definition of skew-symmetric and properties of transpose.

The quantity M is given by
M = RM (Ug, ZgUo) = RM,
and F is given by the polar decomposition
F =RUjp
and thus

Co = 3 (RUo (RMo)" - RM; (RU)™ + (n@r)” —ner)

= % (RUongT ~RMyUgRT + (n® r)'r -n® r)
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using properties of transpose and the fact Up is symmetric. The objective of this section is to
compute a component form representation of Cg.

The equation of the deformed rod axis is given by
r (sr) = acoswgsgre; + asinwgsgrez + bwosges-
We showed earlier that n = nge® = ngez. Thus the quantity n ® r calculates as

n®r = ngez® (a coswpsgpe’ + asinwgsge?® + bwgsRes)

= @angCoswps rez®e! + angsinwgs Re3®e2 + bwongs Re3®e3
and its transpose is given by
T 3 . 3 3
(n®r)" =ang coswgsre1®e” + ang sin wosgea@e” + bwongsrezPe”.

Then

(n® r)T —n®r = angcoswysge;®e® + angsin wosgpes®e’

—ang cos wyspes®e! — ang sin wgsRe;;@ez.
We now calculate RMyUgRT. We include the results of monotropic symmetry so
Mo = M3E12 + M3E13 + MiEy + M;Ea.
Then

RM, = coswgsgE;1Mg — TesinwosgEaMp — kesinwysgE13Mo
+ sinwgsgE21 Mg + TccoswyspE2Mj + kccoswysrE2sMp

--RCE:mMQ + TCE33M0.
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Computing these terms gives
EnM, = M,EEys + M3E; B3 + MIEnEa + MiEnEs = MzEp; + M3E,

E;2Mp = H;EmEu + -A'—I;Elem + M3E12E21 + M—:];,E12E31 = HfEu,
E3Mp = M,E;3E;; + M3E13E3 + MLE 3By + MiE13E3 = MiEp,
EsuiMy = ME By + M;EnE;3 + EfszlEn + MiEnEs; = MyEg + M;Eas,
S — —1 —2 —3 2
ExxMg = M,EnE;; + M3E»E ;3 + M{ExEs + MExEsn = M{Ey;,
EosMy = M3Ep3E;; + M3EnE 3 + M ExnEy + M-?EZSEIH = H:{sz,

E32Mg = M,EsE;; + M§E32E13 + M$E32E21 + H:;ESZE:H = HfEn

and
— _— — — — -3
E3zMg = M;E33E12 + IVI;];E;;;;E]_;; + M3E33E21 + M?EssE;;]_ = M1E31.
Thus
RM, = M;l,_ coswosrEi2 + Mé cos wosgE13 — 'rcj\/_ff sinwgspE11 — KC_M-:; sinwgsgEn

—1 . —1 . —2
+M, sin wosgE92 + M3 sinwgspEss + TeM | coswospEa1

—3 -2 —3
+rcM coswosrE2 — keM{E3; + 1cMEg;

and upon simplifying

~ —~— —3\ . _— =1
RM; = - TCM% + rch:{) sinwgsgE11 + M; coswospE12 + M 3coswpsprE3
— - -1 . =1 .
+ 'rch + r:cM:;) coswosprE2 + M, sin wospE22 + M 3sinwgsrE23

+ 'rcm - nc_M_f) E3;.

The quantity UgRT is FT. Using the expression for F given earlier, F T can be expressed in
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component form by

FT = AjcoswgsrE; + A;sinwgsrE12 — TcAg sinwosgEs) + TcAg cos wosrEge

—kchE93 — kcA3sinwosgE31 + ke coswospE3z + meAzEas.

Thus

RMoURT

- (-rc—qu + h:c_l\/_I:;') sinwgspE; FT + -H; coswgsgE1oFT
+H; coswgsgEsFT + (‘rcﬁf + xcM_‘;’) cos wosgE FT

+H; sinwospExnFT + 7\/7:1; sin wosgE23FT + TCH:; — keM f) E; FT.

We compute each of these terms separately. Then

E,; FT

EoFT

E;sFT

A1 cos ’LUQSREuEu + AI sin wQSREu_Elz - TC/\Q sin WQSRE11E21
+7cAg cos wpsrE11E22 — kcAE11 B2z — kcAz sinwgspE11 Esp
+rcAzcoswospE11Ea2 + 7cA3E11 Ea3

AjcoswpspE11 + A1 sinwosgEqa,

A1 cos wosprE12Eq1 + A; sinwosgrE12E12 — Te)2 sinwosgE2Eg
+71cA2 coswpspE12Ees — keAsE13Ee3 — keAs sin wospE12E3;
+KCA3 COS ‘ngsREleag + TC)\3E12E33

—T1cAzsin wUSREn + TcAa cos 'wo.SREIz — kcAaEq 3,

Al CcOos wOSREmEu + /\1 sin wOSRE13E12 - TCz\z sin WOSRE13E21
+7cAz coswgsgE13E22 — kcA2E13E23 — ke)3sin wosgE13E3;
+rcA3 cos wosprE13Ea2 + 7cAzE13E33

—kcA3sinwysrEq; + keA3 coswosprE12 + TeAzEq3,

200



EFT = A cos woSrE21E11 + A1 sinwgsgrE21E12 — T2 sinwesgrEq Egy
+7chg cos wospE21 E2e — kcAaEo1 Egz — kc)3 sin wosgrE21 Eap
+xcA3 cos wysgpE21 Eag + 7cA3E21 Ea3

= AjcoswgsgrEs; + A sinwgsgEoas,

E2FT = ) coswgsgExE;]; + A sinwgsgEnE2 — 7chs sinwosprExnEyn
+7cAa coswosprE22Eg0 — kcA2EqEa3 — keAz sin wgps rE20E3;
+kcAz cos wgsrE2Eaz + TeA3ExEss

= —r1cAzsinwgspEo; + TcAz cos wospE22 — kcA2Eas,

E23FT = AjcoswgsgrEa3E 1 + A\ sinwgspE2sEis — 7c)g sinwosrEEy
+TcAz cos wosgpEo3Eag — kcAaEo3Eos — ke sin wospE23Es;
+KcA3 cos wgsgrExEaz + rcAzEzEss

= —krcAzsinwysgrEs; + kcAz coswospE22 + TcA3Ea;

and
Ea; FT = A1 coswospE31Eq11 + A1 sin wosgrEs1 E1a — 7e)2 sinwosrEz1 Egp
+T1cAg coswospE3i1Eos — RC.AQE31E23 — kch3 sinwgspEs1 Ea
+rch3 cos wosgEa1 E3s + TcA3E31 E33
= AjcoswgspE31 + A1 sinwgsgEaz.
Then
RMoUoRT = —(7cM 2 + ncﬁi) sin wesg (A1 cos wgsgrE11 + A\ sinwosrE;?)

=1 .
+M, coswysr (—TcA2 sinwosgrE;; + TeAg cos wosrE12 — nc)«zEla)

=1 .
+M 3 cos wosr (—rcA3 sinwgsrE11 + kcA3 cos wos rE12 + TcA3E13)
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+ ('ravff + ncﬁ:;) cos wosp (A1 cos wospE2; + A1 sinwpsgpE2s)
+—l\7; sinwosg (—TcA2 sin wospE2; + TeA2 cos wosrE22 — kcA2E23)
+ﬁ§ sinwosg (—rcAa sinwgsgE2 + rez cos wosrEa2 + 7eAzE23)

+ (TeM :1; - ncﬁf) (A1 coswosrE3; + A1 sinwosrE32)
which simplifies to

RM U,RT = - ('rcﬁf)q + ncf/[_?_)q +1cMaAs + KC_M—:I;/\;;) sin wosg cos wosrE11
+( TCH;/\g + ncﬂé&) cos® wgsp
~ TCH%AI + ncﬁ?;\l) sin® wosg)E12
+ rc—l\TI';,\;; - ncl_VI-;,\g) cos woSrE13
+( (‘rc]/_f 3 A + rccff[_‘;'/\l) cos® wosSgr
- ('rcxféz\z + ncﬁéx\s) sin® wosr)E21
+ (TCH%M + fcc_M—:;/\l +1cM. ;/\2 + ncEI‘;/\a) sin wpsg cos wospE22
+(TeM ;15/\3 - KCM;/\Q) sinwgspE23
+ ‘rcﬁ:;,\l - ncA_/f%M) cos wosrEa31

+ Tc-ﬁ—/[_i'/\l - nc—l\-/ffz\l) sin wospE32.
Now we can calculate the components of
Co = % (RUM; RT - RMyURT + (n @ 1) - n® r).

Since this is a skew-symmetric tensor, we need only calculate three components, namely (2, 1),
(1,3) and (2,3) (we choose to calculate (2,1) instead of (1,2) for a slight convenience later).
Then

2(Co)> = (RMoUoRT); — (RMoURT): + (r@n)} — (n®r)}
= (rcI/T ;/\2 + ncH;Ag) cos? wgsg — (7eM 31\1 + ncM_i)q) sin® wosg
- ((‘rcﬁ f)q + ncﬁ?/\l) cos?wosg — ('rcl_W— ;1\2 + kcM ;1,/\3) sin® wosn)
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(‘rcxf—;/\g + nc}rI;/\a) cos® wgsg — (‘rc-M_ fh + ncm)\l) sin wosp

-~ ('rcﬁf,\l + KCH?)“) cos? wgsg + (‘rcEféAg + kcM. ;1\3) sin® wosg

= (Tcﬁgz\z + KCH;/\Q,) cos?wosg + (TcMadg + I{CH;/\:;) sin? wgsg
- (Tc_ﬁf,\l + r:cf\/—l':;/\l) sin® wosg — TCM%Al + ncﬂgh) cos® wosr

= (TCA’_Iéz\z + ncﬂé&) (cos? wosg + sin? wosr)

- ((TCH?AI + h?CJ_Vi::A1> (sin® wosg + cos? wosR))

= TCH;)\Z + rcc_ﬂ«-f; Az — 'rc./_\/_[-fz\l - ncl_\/fi)q,

— 3 —_ 1
2(Co)k = (RMoUoRT): — (RMoUoRT), + (r®n)} - (n®r)}
= (Tc]ifﬁ,\l - ncﬁf)\l) coswosg — (TcM3As — ncﬁé/\z) COS WoSR
+ang COs wWoSRr

= (TC—M—::/\], — kM2 — TcMa)g + kcM A + ano) COS WoSR
and

— 3 — 2
2(Co)2 = (RMoUoRT), — (RMyUgRT); + (r®n); — (n®r)}
= (’rcl_\/fi)\l - ncﬁfl\l) sinwgsg — (TC-M;/\:; — Rcﬁéz\z) sinwgsg
+ang sin wosSr

= ('rcflf:{z\l - nc]\/—Ifh — rcﬁ§,\3 + KCM_;/\Q + a.no) sin woSRgR.

Since Cp must be a constant temsor and components (1,3), (2,3), (3,1) and (3,2) are

functions of sg, the following equation must be satisfied:
TcMoAL — keMaAy — TcMaAs + keMahs + ang = 0.
This means

Co = % (raﬁ'?éxz + kcMidg — TeMaAy — nc‘M‘{,\l) (E21 —Er2)
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which can be expressed succinctly as
Co = -;— (TCH;)\?, + ricfl/-[—:l,)\g - ‘rcﬁf,\l - nc'ﬁ‘{,\,) A
We can write this as
1 ~—1 -—2 —1 ==3 .
Co=3 ('rc (3122 - Ml,\l) + K (M3A3 - Ml,\l)) A% (9.61)
Recall equation (9.60) which is reproduced here for convenience:

T (,\3M§ - ,\IH’{) +r (,\lﬁf - /\2-1\/_1;)

KC

Solving for T (,\3H§ - ,\IM‘"I’) gives
T (,\37»7; = MM, = Keng — & (M3 - XaM3)

and multiplying through this last equation by % gives

x2cng

T

ke (Agﬁé - XM) = - ETE (,\l'ﬁi - AZH;) :

Substituting this into equation (9.61) yields

k2ng  KPc
9 - T (A].Ml —)\2M2)) A.iL.

Co= -;- (T‘C (ﬂ—l-;lz -—-M—iz\l) +

Then

Co = 1 (22 (B3~ NE2) + 2 (Tt} - WP + 572 A4

2
=1 (( ) A M - ,\1M1) C:"") AL

Muitiplying through this by £ gives
1 22 K%:c? —1 —2 k2cng 1
T2 (( e T -;T:_) (A2M2 “'AIMI) L ) Az
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and from equation (9.39), we get

171 =1 =2 chsno 1 1 F Vil A2 2.3 4
CO = -2- (T—C (AgA’[z d /\11"[1) + e A3 = % (/\2M2 - AI-A’I]_ +KC TLQ) A3 .
Finally, consider
2 2
P %cs _ a?
o)
1 -— — 2n
Co = -2:‘-: (’\ZM; - )qu + ac 0) AfgL (9.62)

This expression is analogous to the one given in Cohen [1] and can be shown to be identical to
it.

Notice Cy is parallel to A3 so the axial vector of Cy is parallel to e3. Thus the deformation
of the directed rod for the straight to helical case can be effected by the vector n and the torque
given as equation (9.62), both acting at the ends of the rod and both parallel to e3.

205



Appendix A

Polar Decomposition Theorem

This appendix states and supplies a proof of the Polar Decomposition Theorem. This theorem

and its proof are restricted to second order tensors.

Theorem 11 Suppose F is a second order nonsingular tensor. Then there exist second order
tensors R, U and V such that F = RU (right decomposition) and F = VR (left decomposition)
in which R is orthogonal (i.e. R™! = RT) and U and V are symmetric and positive.

Proof. Let F be a nonsingular tensor. Then if v is any vector and w = Fv, w = 0 if and only
if v = 0. In component form, w; = Fjjv;.

Then wyw; = (Fijv;) (Fikve) = Fij Fixvjur which must be a positive definite quadratic form.
This form can be associated with a symmetric matrix C via ¢jx = (FTF)J.k or C = FTF.

Since the form is positive definite, C has positive eigenvalues. So along the principal axes,
C is represented by a diagonal matrix with positive entries.

Now define U to be the tensor whose representation with respect to these axes is a diagonal
matrix consisting of the positive square roots of corresponding entries for C. In this basis, and
hence in all bases, U has the property that UT = U and UU =C.

Since U has positive eigenvalues, it must be nonsingular and hence invertible. Thus we may
define R by R = FU™!. Then F = RU.

It remains to show R is orthogonal. Consider
R'R = (U)TFTFU! = U-CU! = U-lUUU = 1,
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the identity tensor.
Thus given F, we can construct U and F with the indicated properties. Now consider
whether this decomposition is unique. Suppose F = RU and F = RU for two possibly

different decompositions. Then
FTF = UTRTRU = UTU = UU.

Similarly,

FTF =U'R'RU=U'U =TU.

Hence UU = UU. From uniqueness of positive square root, it follows that U = U. Then
R=Rfrom R=FU!and R=FU .

Now suppose F = VP provides a left decomposition. Since P~ = PT, we can write
F=PPTVP =P (PTVP).

But P is a rotation tensor and by the uniqueness of F = RU, RU =P (PTVP) orR=P
and PTVP = U. Consequently, the decomposition F = VR exists if F = RU exits. Since the

latter has been shown to uniquely exist, then the statement of the theorem is true.
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Appendix B

Algebra of Tensor Pairs

This appendix develops the algebra of tensor pairs of the general linear group. It is purely
mathematical in character - its application to directed rod theory is given in Appendix C.
B.1 Preliminary Definitions and Lemmas

The general linear group on RN will be denoted G£ (N, R) throughout this appendix.

Definition 5 Pair Set PGL (N, R): The pair set on the general linear group over RV consists
of pairs of members of GL (N, R). Thus PGL(N,R) :={(G,H) | G,H € GL(N,R)}.

Definition 6 Pair Product: Let G1, Gz, H;, Hy € GL(N,R). If we form the pairs (G1, G2),
(Hy, H2) € PGL (N, R), the pair product is the binary operation

+: PGL(N,R) x PGL(N,R) — PGL(N,R)

deﬁned by (Gl, Gz) * (Hl, Hz) = (G1H1, Gsz).

Lemma 60 Let I be the identity member of GL(N,R). Then (I,I) will act as the identity
element under the operation * in any subset of PGL (N, R) including PGL (N, R).
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Proof. Let X (N,R) be any subset of PGL(N,R). By definition, (I,I) € PGL(N,R). Let
(G1,G2) € X(N,R). Then

(Gl, Gz) * (I, I) = (GlI, Gzl) = (GI,Gg)
(LD *(G1,G2) = (IG,IG2) =(G1,G2)

and thus (I, I) is an identity for any member of X (N, R). In particular, this must be true for
X(N,R)=PGL(N,R). B
Lemma 61 (PGL(N,R), *) is a group.

Proof. Since * is a binary operation on PGL (N, R), this set is closed under this operation. It
remains to prove the axioms of a group are satisfied. For purposes of this proof, let (G, G2),
(Hy,Hb), (J1,J2) € PGL (N, R). Let GT! and G5! be the inverses of Gy and G respectively
so (GT1,G3!) e PGL(N,R).

1. Associativity.
(G, G2) * (Hy, Hp)) * (J1,J2) = (G1H;, G2H2) * (J1, J2)
= (G1H1J1, GoH2J3)

= (G1, Gz2) * (H1J1, HpJ?2)
= (G1,G2) * (Hy, Hp) * (J1,J2)) -

Thus * is associative.

2. Identity. As shown in Lemma 60, (I,I) € PGL(NV,R) and acts as an identity for * in
PGL(N,R).

3. Inverse.

(G1,G2) * (GT1, G31) = (G1GTY, GG = 1).
(GT', G31) #(G1,G2) = (G'G1,G7'Gy) = (LT).
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Thus if (G1, G2) € PGL (N, R), there exists a member of PGL (N, R), namely (GT!, G31),
which is the inverse of (G1, G2). Every member of PGL (N, R) has an inverse.

Since the group axioms are satisfied for * in the set PGL (N, R), then (PGL(N,R),*)is a
group. @
Our interest is in three special classes of subsets of PGL (V, R).

Definition 7 G5 (): LetU C GL(N,R). Then GE (U) == {(G,G) |G €U}.

Definition 8 G*: If (G, G) € G (U) for some U C GL(N,R), the member (G, G) is denoted
G*. That is, Gt := (G, G).

Definition 9 G (): Let V C GL(N,R). Then G5 (V) := {(G,-G) | G € V}.

Definition 10 G~: If (G, —G) € Gz (V) for some V C GL(N,R), the member (G, —G) is
denoted G~. That is, G~ := (G, —-G).

Definition 11 Gf: The notation G denotes either Gt or G~ .
Definition 12 Gg(): LetU,V C GL(N,R). Then Gr(U, V) :=GE U) UG (V).

Note that the sets I and V may be identical, different or even disjoint. Quite often, they
are understood to be present and the notation is simplified so G} = G4 (U), G = Gz (V) and
Gr = Gr (U, V). In this simplified notation, we could write Gr := G5 U Gg.

We also note that G (U), Gz (V), Gr (U, V) C PGL (N, R). In particular, Lemma 60 applies
to G U), Gr (V) and Gr (U, V).

The purpose of this appendix is to characterize the relationship between U and V so that
G (U) and Ggr (U, V) are groups under *. To begin, we note the five distinct ways nonempty
U and V may be related.

1. U =V (same set),
2. VCU,V#U (V is a proper subset of U),

3. UCV,U#YVY (U is a proper subset of V),
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4. UNV#D,VZU, VLU (U and V have nonempty intersection, neither is a subset of the
other) and

5. UNV =0 (U and V are disjoint).

In this appendix, it will be shown Gg (i, V) can be a group only if case one or five holds.
For purposes of brevity, the expression “U is closed” will mean U is closed under the binary
operation of composition of members of the general linear group. Similarly, “U is a subgroup”

will mean U is a subgroup of the general linear group.

B.2 Condition Under Which G} (/) Is A Group
Lemma 62 (G} (U),*) is closed under * if and only if U is closed.
Proof.

1. Suppose U is closed. Let G, H € U. Then (G, G) and (H, H) are members of (G& (i) , *).
(G, G)+(H,H) = (GH, GH). But U isclosed so GH € U/ . Then (GH, GH) € (Gf () ,*)
which shows (G} (i), #) is closed under *.

2. Suppose (G (U) , *) is closed under *. If (G, G) and (H, H) are members of (G£ (), +),
then G,H € U. But (G, G) = (H,H) = (GH, GH) € (G (U) ,+) so GH € U showing U

is closed.
Thus the statement of the lemma is proven. ll
Lemma 63 (G} (U), *) is a subgroup of (PGL(N,R),*) if and only if U is a subgroup.
Proof.

1. Suppose U is a subgroup. The previous lemma showed if U is closed, G5 (/) must also

be closed under the operation *. Now demonstrate the three axioms of a group.

(a) Associative. It has already been shown that PGL (N, R) is associative under * and
since G (U) C PGL (N, R), it follows that G} (U) is associative under *.
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(b) Identity. Since U is a subgroup, it must contain the identity element I. Then
(L,I) € Gf (U). But it was shown in Lemma 60 that (I, I) is the identity element for
any subset of PGL (N, R) and since G} (U) C PGL (N, R), (I, I) will also serve as an
identity for G (U) under *.

(c) Inverse. If G € U, then G™! € U sincel is a subgroup. This implies (G, G) € G (U)
and (G™},G™!) € G (U) . As shown earlier, (G™1, G™!) is the inverse for (G, G)
(and vice-versa) for the operation #. Thus every member of G (i) has its inverse
in GF (U).

Since the three axioms of a group are satisfied for the subset G (i), it follows
(G5 U) , *) is a subgroup of (PGL(N,R), *).

2. Suppose (G (U) , *) is a subgroup of (PGL (N, R), #). Let (G, G), (H,H), (K,K) € G} (U) .

Look at the three axioms of group.

(a) Associative. (GF (U),*) is associative so
(G, G) = (H,H)) = (K,K) = (G, G) * (H,H) * (K,K))

or

(GH, GH) « (K, K) = (G, G) * (HK, HK) .

That is, .
(GH)K, (GH)K) = (G (HK), G (HK)) .

But this means (GH) K = G (HK), so G, H, K € U are associative.

(b) Identity. (G (U),*) contains the identity (I,I). Thus (G,G)* (L I) = (G, G) and
L) *(G,G)=(G,G)forall (G,G) € g; (U). That is, GI = G and IG = G for
all G € U. Then I € U is the identity element on L.

(c) Inverse. Suppose (G™1, G™1) is the inverse of (G, G), so (G™1,G™1)+(G, G) = (L, I)
and (G,G) * (G™1,G™1) = (I,LI). Then G!G =1 and GG™! =1 where I is the
identity element in . This means every G € I had an inverse G™! € U.
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Since the three axioms of a group are satisfied for the subset U , it follows U is a

subgroup of the general linear group.

Thus the statement of the lemma is proven. B
Although V may be a group and contain the identity element I, (G (V) , *) can never be a
group, since G5 (V) never contains the identity element (I,I). Is it possible to make Gr(U,V)

a group? The remainder of this appendix investigates this question.

B.3 Conditions Under Which Gr (U, V) Is A Group

This section examines the conditions under which (Gr (U, V), #) is a group given (G (U) , *) is
a subgroup of (PGL (N, R) , +) (our interest in only in the case where (G# (1) , ) is a subgroup).
From Lemma 63 this means we’re working under the hypothesis U is a subgroup of the general
linear group. The subsequent investigation will show Gg (U, V) may be a group for only two of
the five ways the sets /{ and V may be related to each other.

This section is divided into two subsections. The first subsection deals with the case
U = V. This special case can be completely characterized with regard to the group property
of (Gr (U, V), *) - both necessary and sufficient conditions can be demonstrated. The second
subsection addresses the remaining cases. Only necessary conditions are given for (Gr (U, V), *)
to be a group.

The first concern in both subsections is to determine the conditions under which (Gr (U, V), *)
is closed under *. The following lemma will be vefy useful. It shows the results of the products
of members of &/ and V if Gr (U, V) is closed.

Lemma 64 Suppose U,V C GL(N,R) and suppose Gr (U, V) is closed under . Then the
following holds:

1. U is closed.
2. The product of a member of U with a member of V is a member of V.
3. The product of a member of V with a member of U is a member of V.

4. The product of two members of V is a member of I.
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Thus U UV is closed.

Proof. Look at each of the four cases.

1. Suppose (G, G),(H,H) € Gg (U, V). Then
(G,G)*(H,H)=(GH,GH) e Gg (U, V).

This means G, H € U and GH € Y. Thus U is closed.

2. Suppose (G, G),(H,-H) € Gr (U, V). Then
(G,G)+(H,-H)=(GH,-GH) € Gr (U, V).

This means GeY, He VY and GH € V.

3. Suppose (G, -G),(H,H) € Gr (U, V). Then
(G,-G)+(H,H) = (GH,-GH) e Gr (U, V).
This means GeV, Helf and GH € V.
4. Suppose (G,-G),(H,—H) € Gr (U, V). Then
(G,-G)=(H,-H) = (GH, GH) e Gr(U,V).
This means GeV, HeV and GH e U.

Thus all four cases have been established. Since the product of any two members of either
set is in one of the sets, L{ UV is closed. B

Note the last lemma is true, regardless of how U/ and V are related to each other.

B.3.1 The Case Y =V

Lemma 65 IfV CU € GL(N,R), U is closed and G—,H™ € G (V), then G~ xH™ € G ).
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Proof. G~ = (G, —G) and H™ = (H, —H). Then
G~ +H™ =(G,-G) * (H, -H) = (GH, (-G) (-H)) = (GH, GH) .

Since V C U, G,H € U and thus (G,G), (H,H) € G5 (U). Since U is closed, (GE (U) ,*) is
closed under * as shown in Lemma 62 and thus (GH, GH) € G (U),i.e. G- *H™- € GE (U). @

Lemma 66 Ggr (U,U) is closed under = if and only if U is closed.
Proof.

1. Assume U is closed and attempt to demonstrate Gr(U,U) is closed. By definition,
Gr (U, U) := G (U)UGF (U) . Thus there are four cases to consider.

(a) If G,H € G (U) C Gr (U, U), then G+ H € G (U) C Gr (U, U) since (GF (U),*) is
closed under *.

(b) If G,H € G5 (U) C Gr(U,U), then G +H € G (U) C Gr (U,U) as shown in Lemma
65 (use V =U).

(c) Suppose G* € G (U) and H™ € G5 (U), i.e. (G,G) € G} (U)and (H, —H) € G (U).
Then

Gt «H™ =(G,G)* (H,—H) = (GH, -GH).
Since G, H € U and U is closed, then GH € U and hence (GH, —-GH) € Gz (U)-
That is, Gt *H™ € G (U) C Gr U, U).

(d) Suppose G~ € G (U)and H* € g; U),ie. (G,—G) € Gy (U) and (H, H) e g}g ).
Then
G~ xH' = (G, -G) * (H,H) = (GH, -GH).

Using the same argument as the previous case, G~ *H* € Gz (U) C Gr (U, U).
Since the product of any two members of Gr (U, ) is another member of Gr (U, U),

this set must be closed under the binary operation *.

2. Now assume Ggr (U,U) is closed. By Lemma 64 U is closed.
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This proves the statement of the lemma. @8

Thus if U is closed, then we may legitimately write
*:Gp (U, U) x Gr(U,U) — Gr (U.U)
or, suppressing the I/ from the notation as described earlier,
*:Gr xGr— Gr-

Theorem 12 (Gr (U, U),*) is a group if and only if U is a subgroup.

Proof. The previous lemma demonstrated Gg (U,U) is closed under * if I is closed and vice-

versa. It remains to show the group axioms hold.
1. Assume U is a subgroup.

(a) Associative. It was shown in Lemma 61 that (PGL(N,R),*) is a group. Since
Gr U, U) C PGL(N,R), the associative property of * must also hold for Gr (U, U).

(b) Identity. Since (II) € G} (1) € Gr (U, U), (I, I) is the identity element.

(c) Inverse. It was demonstrated earlier that G5 (i) contains inverses for each of its
members. Suppose G~ € Gy (U), i.e. (G,—G) € Gz (U). Then G € U and since U
is a subgroup, G™! € U. Then (G™1,-G™1) € G (U). We try this as the inverse
of G~ in the set Gg (U, U).

(G,-G)* (G™1,-G™!) = (GG, (-G) (-G™)) = (GG}, GG™) = (L, 1)
and
(G} -G« (G, -G) = (G'G, (-G™1) (-G)) = (G™'G,G7'G) = (L I).

Thus (G™1, —G™1!) is the inverse for (G, —G). Therefore, every member of Gr (U, U)
has an inverse with the identity element (I,I).

Since all the axioms of a group are satisfied, (Gg (U,U) , *) is a group.
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2. Assume (Ggr (U,U),*) is a group. Recall Gr (U,U) = G (U)UGE (U). Then G (U) must
be associative, must contain the identity element since (I,I) € Gg (U,U) and every mem-
ber of G (U) must have its inverse since (G™!,G™1) € Gr (U, U) if (G, G) € Gr (U, U).
Thus (G} (1), *) is a group. But by Lemma 63, this means U/ is a subgroup.

Thus the statement of the theorem is proved. 8

B.3.2 The General Case

There is second way U and V may be related to each other which may allow Gr (U, V) to be
closed under *. Throughout this section, I/ is a subgroup.

Theorem 13 Ggr (U, V) is closed under * only if U =V orUNYV =0 and UU VY is a monoid.

Proof. Note this theorem is providing necessary, but not sufficient conditions for Gg (U, V)
to be closed. The objective of the theorem is to show that of the five ways U/ and V may be
related, only the two mentioned in the statement of the theorem are possible if Gg (U, V) is to
be closed. Thus this proof is done by considering the five ways U/ and V may be related and
showing that in cases two through four, this leads to a contradiction. In all of these cases, the
hypothesis Gg (U, V) is closed under * plays an important role. We use G € U and H € V.

1. The case U is closed (since U is a subgroup) and U = V has been handled in Lemma 66.
Indeed, if i = V, this lemma demonstrated this is a sufficient condition for Gg (U, V) to

be closed.

2. Assume V C U, V # U and attempt to derive a contradiction. Then GH € V for all
G € U{ and H € V based on Lemma 64. Since V C U, V # U, there must exist K € U
with K ¢ V. Since V C U, H € U and it has an inverse H-! € Y. Since K,H™! € U,
L = KH™! is also a member of /4. Then LH = KH!H = KI = K, that is K = LH.
But L € i/ and H € V and thus K € V. This contradicts the earlier assertion K ¢ V.
Thus the assumption V C U, V # U must be false and Gg (U, V) cannot be closed under
* with this relationship between U and V.

3. Assume U C V, U # V and attempt to derive a contradiction. In this case, KH € U for
all H € V and K € V based on Lemma 64. Since 4 C V, Y # V, it is possible to pick
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Kel and Hé¢ U. Then G = KH € U since K and H are both members of V. K-!
exists since U is a subgroup so K-!G = K-'!KH =IH = H , that is H = K-!G. But
K-!, G € U{ and thus H € U/. But this contradicts the earlier assertion H ¢ U. Thus the
assumption i C V, U # V must be false and Gr (U, V) cannot be closed under * with this

relationship between U« and V.

. Assume UNV £ 0, U # V,V € U,V € U and attempt to derive a contradiction. If
K.H € V, then KH € U based on Lemma 64. Now pick K € 4NV and H € V with
H¢ U. Let G = KH so G € U since K and H are both members of V. Then K™!
exists since U is a subgroup. K-!G = K-! KH = IH = H, that is H = K !G .
But K~!G € U since U is a subgroup and thus H € U. But this contradicts the earlier
assertion H ¢ U. Thus the assumption U NV # 0, U # V,V € U,V € U must be false
and Gg (U, V) cannot be closed under * with this relationship between U and V.

. Assume U NV = (. By Lemma 64, U{ UV is closed. Since U is a subgroup, it contains
the identity so &/ U V contains the identity. Since Ggr (U, V) is associative under * (by
inheritance from (PGL(N,R),*)), the group product in & U V is associative (this is
proved in detail in the next theorem). This defines & UV as a monoid.

This completes the proof of the theorem. Wl

Corollary 9 LetU,V € GL(N,R). (Gr(U,V),*) is a group only if U =V orUNV =@ and

UUY is a subgroup.

Proof. From Theorem 12, &4 = V provides both necessary and sufficient conditions for

(Gr (U, V), *) to be a group.

Consider the case in which &/ NV = 0. Look at the three axioms of a group.

1. Associative. Suppose G*, HE, K* € (Gg (U, V), *). Let G* = (G, G*), H¥ = (H,H"*) and
K* = (K,K*) where G* = G in the case of the plus sign and G* = —G in the case of
the minus sign and similarly for the other letters. Since (Gr (U, V), *) is associative, we

must have

(G, G")« (H,H%) + (K,K") = (G, G") » (H, H") * (K,K"))
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(GH,G'H") * (K, K*) = (G,G") * (HK,H'K")

and

(GH)K,(G’H")K") = (G(HK),G*(H'K")) -

From this we see (G*H*) K* = G* (H*K") which shows I/ U V is associative.

1

Identity. (Gr (U, V), *) is a group and thus contains (I,I). ThusI € /{ U V.

3. Inverse. Suppose (G,G) € (Gr(U,V),*). Then (G}, G™!) € (Gr(U,V),*) since
(Gr (U, V), *) is a group. Since G, G~ € U, this means I/ is a subgroup, consistent with
our hypothesis. Now consider (H, ~H) € (Gr (U, V), *). Then (H™, ~H™1) € (Gr (U, V), *)
since (Gr (U, V), *) is a group. Thus H,H? € V. We note HH™! = I € U/ which is con-
sistent with Lemma 64. Thus if G HelWU V, then G, H ' el U U V.

Since the group property of (Gr (U, V), =) implies all the group axioms for YUV, then UUY
is a subgroup of the general linear group. B

It should be emphasized that we have provided only necessary conditions for (Gr (U, V), *)
to be a group. In the case U = V, these are also sufficient conditions. For the case U NV =0
and U/ UV is a subgroup, we would have to provide some additional hypothesis regarding how
members of I UV multiply together (we could use Lemma 64 as a guide). The above results

are sufficient for purposes of this thesis.
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Appendix C

Tensor Pairs in Directed Rod

Theory

Throughout this appendix, let F, M and IN denote the tensor quantities in the main body of
the thesis. Let / continue to denote differentiation with respect to the parameter for curvature.
We make the following definitions of tensor pairs: F = (F,F'), T = (N,M), G = (G,G)
and Q = (Q, Q) where G is any member of the special linear group SL£(3,R) and Q is any
member of the special orthogonal group. Note F, T, G,Q € PGL(3,R) and G € GF (U) for some
U C GL(3,R) as defined in Appendix B (notice we use N = 3). We need to consider the binary
operation on tensor pairs as defined in Appendix B and denoted *. We drop the notation * so
if GGHe PGL(3,R), G«H = GH. .

In this appendix, we wish to briefly review Cohen’s use of tensor pairs (1], particularly in
the formulation of monotropic symmetry. Tensor pairs provide a compact way of expressing
constitutive restrictions.

In Cohen'’s paper, the constitutive equations are expressed by stress tensors as a function of
deformation and its first derivative. The quantity F is called the generalized deformation and
the quantity T is called the generalized stress. The constitutive equation is

T=T() (C.1)
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which is an abbreviated way of writing
N=N(F,F),M=M(F,F).

We now consider how frame indifference and monotropic symmetry are expressed in the

notation of tensor pairs. Frame indifference is straightforward; the expression is
T(QF) =QT(FQT

where QT denotes the transpose of Q. Since Q is any member of the special orthogonal group,
it represents a rotation and thus Q = (Q, Q) represents a pair of identical rotations. Naturally
QT = (QT, QT). This expression indicates a rotation of the rod following deformation has no
effect on the stress tensors.

Material symmetry is developed by Cohen in terms of material symmetry and material
anti-symmetry sets. The underlying sets U and V are restricted to subsets of the special linear
group SL (N, R). These are defined as follows.

Definition 13 Material Symmetry Set: A material symmetry set is Gf (U) for U C SL(3,R)
where G, (U) is defined in Appendiz B.

Definition 14 Material Anti-symmetry Set: A material anti-symmetry set is Gg (V) forV C SL(3, R)
where G (V) is defined in Appendiz B.

Definition 15 Combined Material Symmetry Sef: A combined material symmetry setisGr (U, V)
for some U,V C SL(3,R) where Gr (U, V) is defined in Appendir B.

Of course, once a material symmetry set and material anti-symmetry set have been defined,
the combined material symmetry set is immediately defined. Recall from Appendix B the
notation G¥ indicates either Gt or G~ where G+ denotes a member of the material symmetry

set and G~ denotes a member of the material anti-symmetry set.

Definition 16 Principle of Combined Material Symmetry: The principle of combined material

symmetry states that the constitutive restriction C.1 satisfies the transformation rules

T (F) = T% (FG?)
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for all admissible generalized deformations F and all admissible G* in the combined material

symmetry set.

This is a way of expressing that the effect of the deformation on the stress tensors remains
invariant if the rod is first rotated (but only by members of &/ and V) and then deformed.

The question then is how to choose the sets i and V. Cohen suggested the material symme-
try and combined material symmetry sets be groups under the binary operation on tensor pairs.
In Appendix B it was demonstrated that this is only possible if U is a subgroup of the general
linear group and & = V or UNV = 0 and 4 UV is a subgroup. This places some restrictions on
the sets U and V. Cohen defines monotropic symmetry by making special choices for the set &
and V with U NV =0.

Definition 17 Materially Monotropic: A rod point is said to be materially monotropic if its

combined material symmetry set contains at least one of the elements QF where Qe = (Qe, Qc)
in which Q. is a rotation of angle © about a fized azis e (e is a element of the tangent space at

some point P on the rod azis).

We now wish to look at this special case of & and Ggr (U, U), namely when U = {I, Q.}

where Q. is the rotation described above.

Theorem 14 IfU = {I,Q.} with Q. defined as above, then U is a subgroup of the special
linear group SL (3, R).

Proof. Tensors which have the effect of rotating a vector about a fixed axis belong to the
special orthogonal group SO (3, R). SO (3, R) is defined as SL(3,R) N O (3, R) where O (3, R)
is the orthogonal group. Thus SO (3,R) C SL(3,R). Since Q. € SO 3, R), Q. € SL3, RN).
Since I € SL(3,R), it follows that U = {I,Q.} € SL(3,R). It remains to show U is closed
under the group product and satisfies the group axioms.

Now Q. is a rotation of angle 7 radians and thus Q.Q. must be a rotation of 27 radians.
If ve®Rd Q.Q.v = v, the original vector. That is, Q.Q. = I. Of course IQ, = Q.I = Q.
and IT = I which shows U is closed under the binary operation on SL (3, R).

1. Associative. This is obvious since Y C SL (3, R).
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2. Identity. U contains the identity I.

3. Inverse. Q.Q. = I so Q. is its own inverse. Of course I is its own inverse. Then every

member of I{ has its inverse in U.

Sinceld = {I,Q.} € SL(3,R) C GL(3,R), U is closed under the group product and satisfies
the group axioms, then I is a subgroup of the special linear group SL(3,R). B

The set U = {I, Q.} becomes the defining set for monotropic symmetry for the symmetric
case for this thesis, as explained in Chapter 5. Then we must make 2 careful choice of V such
that YNV = @, U UV is a subgroup and V contains members of S£ (3, R) representing rotations
of 7w radians about an axis. Alternatively, we may allow V to be empty which will still satisfy
the conditions U NV =0 and U UV is a subgroup.

If V is empty, then the monotropic symmetry imposed has only a symmetric case, corre-
sponding to rotation of w radians. If V is not empty, the monotropic symmetry also includes
an antisymmetric case which are actually reflections in the plane orthogonal to the direction of

the axis of rotation.
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