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ABSTRACT

This thesis is concerned with the derivation of new wave
adaptors for the Brune section, the Darlington C and D sections,
and an adéptor for the Twin-T structure.

These wave adaptors have been derived by applying Martens'
and Meerkotter's n-port voltage scattering matrix representation to
the corresponding reference network interconnectioné.

The following results have been obtained:

a) The Brune, C and D adaptors are realized without any
unlt elements.

b) The adaptors in a) are canonical in the number of delays.

c) All the adaptors considered may have a reflection-free
port which makes cascade synthesis possible.

Q) The Brune and C adaptors require six multipliers, four of
which are independent and two of which are identical.

e) The D adaptor réequires a total number of eleven multipliers,
seven of which are indepeﬁdent and two pairs of which are identical.

f) The Twiq—T adaptor requires ten multiﬁliers of which seven
are independent.

g) In a hardware realization, all the adaptors considered are
made to have zero output after a finite time for zero input by means
of a-simple arithmetic procedure.

ITlustrative examples of filters using these structures have



been designed, and simulated on a minicomputer. Their respective impul-

se responses are obtained and show no granularity and/or overflow os-

cillations, as expected.
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CHAPTER 1

INTRODUCTICON

It is well known [1] that real-time digital filters have se-
veral advanﬁages over continuous—time filters. A greater degree of ac-
curacy can be attgined in the digital filter realization. A greater
variety of digital filters can be built, since certain reélization
problems do not arise, for example negative circuit elements. No aging
process can affect the parameters of the digital filter. In addition,
they can operate down to extremely low frequencies where the size of
analog components becomes appreciable.

There are at least three techniques fbr designing infinite
impulse response recursive digital filters which are derived from a
transformation of the transfer function of continuous—time filters.
They are, namely, the impulse invariance, the bilinear transformaticn
and the matched z-transform techniques [2]. The resulting realization
will have either a direct form or a canonic form ags mentioned by Op-
'penheim and Schafér‘{3]. The structure to be used must be chosen ac—
cording to the computational complexity and mainly to its sensitivity
to finite—regiéter—length effects. It is to be expected that some of
these structures will be léss sensitive than others to quantization of
the parameters; i.e., the system function of the realization will be

a closer approximation of the desired system function. Unfortuna-



tely, no systematic method has yet been developed for determining the
best realization giveﬁ constralnts on the number of multipliers, word
length, and the number of delays. In place of a detailed mathematical
analysis of the parameter~éensitivity problem, a common practical ap-
proach is the use of simulation for determining acceptable quantization
of the parameters of a given network. Due to the finite word length,
zero input limit cycles and overflow oscillations can occur in recur-
sive digital filters [4], [5]. Meerkotter and Wegener [6] and Verkroost
and Butterweck [7] have derived structures for a second-order digital
filter section which are free of limit cycles when magﬁitude trunca—-
tion is used for quéntization, and which do not have overflow oscilla-
tions. However, for higher order conventional digital filters, no ge-
neral theory has yet been developed to eliminate those undesirable
oscillations [8].

In order to obtain a solution to these sensitivity and stabi-
lity problems of digital filters, Fettweis [9] has derived a class
of digital filter which has the stopband insensitivity of ladder
structures combined with the passband insensitivity of resistance-
terminated LC filters. These so called Wave Digital Filters [9] have
been'essentially derived from the continuous~-time filters by applying
the bilinear transformation (defined as follows) directly to the
circuit elements of the linear continuous—-time filter. In the conti-
nuous~time filter5 the frequency s is replaced by the frequency

variable V¥ defined by



- -1
l-e i -z aT

— = — = tanh ( 7= ) 1.1
I+ e st 1+ z 1 2 .

sT

Vo=

and for s = jw , (1.1) can be written as

- - wf if4
¥'=3¢ , ¢=rtan7==tan g ' (1.2)
s
where T = ?l~ = the sampling interval; and voltage waves are used
s

as the signal variables so that the reactance elements are characteri-

zed by a delay.

A list of some circuit elements together with their corres—
ponding wave flow diagrams as éerived by Fettiweis [10] is given. in
Appendix I.

By means of the wave adaptors [11] such as the two-port adap—
tor,the n-port parallel adaptor and the n-port series adapteor, Fettweis
and Sedlme?er [12} have obtained a true ladder wave digital structure
from a resistance-terminated LC ladder network.

Such a wave digital realization has the following advantages
over the cénventional digital realization of a transfer function.
First, due to the insensitivity in the stopband as well as in the
passband, a drastic reduction in the coefficient word length is possi-
ble [13,14,15] . Secondly, it has been shown by Fettweis and Meerkltter
[16] , and by Claasen et al. [5] that it is much easier to eliminate
parasitic oscillations, both granularity and overflow, in such a wave
structure. Thirdly, though there are handbooks of digital filter syn-
thesis, it is still convenient to translate directly any well-known
classical ladder filter into a wave digital form.

It is known that resistance~terminated LC filters can be



realized by using Darlington's cascade synthesis as Interpreted by
Guillemin [17] and Youla [18] , or as in Fettwels' cascade synthesis
by transfer matrix factorization [19]. The LC filter is realized in
both methods by cascading zeroth, first, second and fourth order sec-
tions. Fettweis' and Sedlmeyer's ladder wave structure is only capable
of realizing transmission zeros on the imaginary axis of the complex
g-plane. Using the ladder structure, a digital Brune section can be
realized with five multipliers and four delays. However, one of the
port resistances is negative and the resulting wave structure is not
guaranteed to be free of limit cycles [20].

Also, the wave digital lattice [21] or Jauman structure 122]
is restricted becauée it realizes only symmetric reference filters.
Thus, other adaptors must be introduced 1f we want to have a wave cas=
cade synthesis translated directly from a cascade synthesis realization
in the continuous-~time domain. That such a wave cascade synthesis is
possiblé has been shown by Nouta [23] by the introduction of wave adap-
tors for the reciprocal and non-reciprocal zeroth, first, second-order
sections. In particular, Nouta's wave digital realization of the recip-
rocal second-order section requires six multipliers and three delays.

A direct realization of the transfer function of the second-order sec-
ticn would require a minimum number of four multipliers and a minimun
numbeyr of #wo delays. For the reciprocal Darlington D section; Nouta

has referred to Scanlan and Rhodes [24] where the cascading of a fourth-
‘order reciprocal section and a unit eleﬁent, if translated intc the
wave digital fofm, would require ten multipliers and seven delays; while

the canonic numbers of multipliers and delays are, respectively, seven



and four. However, Necuta has '"passified",the introduced structures in
a strictly linear sense only and the given cascade synthesis procedure
suffers from the disadvantage that each section can only be realized
with a cascaded unit element.

Fahmy's digital realization of the Darlington C section from
é microwave structure using two~wire coupled line [25] is canonic in
the number of delays but requires a total number of ten multipliers.-
Also, his digital vealization of the Darlington D section is canonic
in the number of delays but the number of multipliers would certainly
exceed eleven. Scanlan's and Fagan's [26] wave digital realization of
the é section requires five multipliers and three delays. As in the
case of Fahmy's paper, Scanlan's and Fagan's paper does not offer any.
reallzation scheme by which the hardware realization of the section
will be guaranteed to be free of zero input oscillations.

The purpose of this thesis is to derive new wave adaptors for
the reclprocal sections mentioned above, namely, the Brune sectiom,
the Darlington C and D sections with the following properties :
Firstly, wave digital realizations with the canonic number of delays;
seéondly, without any unit elements ; thirdly, with the possibility of
having reflection-free ports, and finally, with a truncation scheme to
guarantee zero input asymptotic stability.

These new wave adaptors have béen derived by applyiﬁg an
extended version of Martens' and Meerkdtter's [27] n-port voltage scat-
tering matrix representation to the considered sections. Also, by
following Martens' and Meerkdtter's scheme for deriving a Bridge-~Tee

adaptor, we present an adaptor for the Twin-T structure which is used



in classical cascade synthesis. '

In Chaéter I1, a brief review of Martens' énd Meerkdtter's
method and its extension to the Brune sectilon, the:Darlington C and
D sections are presented. A general formulation is derived for the
case of an adaptor with a reflection-free port and for the "dependent-
multiplief equations” which relate the dependent multipliers to the
independent multipliers. Problems in the hardware realization of the
adaptors are discussed and a theorem on the stability of the investi-
gated structures is given. In order to implement magnitude truncation,
& few simple rules to calculate the output error of the actual nonli-
near filter output with respect to the output of the non-realizable
associated linear filter are given.

In Chapters I1L, IV and V, respectively, thelnecessary formu~
las and wave flow diagrams for the design of the wave digital realiza-
tion of.the Brune and Darlington C section, the Darlington D section
and the Twin-T structure are presented.

Chapter VI provides a magnitude truncation method which gua-
rantees the asymptotic stability of the investigated adaptors under
zero input. Details of the design of these adaptors are given step by
step. Three illustrative examples of filters whicﬁ have been designed

and simulated on a PDP 11/40 computer system are described.



CHAPTER II

GENERAL FORMULATION FOR THE WAVE DIGITAL REALIZATION

OF THE TWIN-T, BRUNE, C AND D SECTIONS

2.1 REVIEW OF MARTENS' AND MEERKOTTER'S METHOD

In this thesis, we extend Martens' and Meerkotter's method
‘to the case of a reciprocal n-port which may include ideal transformers.
Upon partitioning the ports of the reference network interconnections
into two sets : "link" ports and "tree" ports, Martens' and Meerkotter's
method is applicable if we are able to write the "cutset matrix" Q
and the "circuit matrix" B to express the vectors 1 and Vv of
port currents and voltages as a function of the 1link currents and
tree voltages, respectively,

. _ oL .
-1 = B ig - o (2.1

v =0Q" v, (2.2)

The subscripts t and % identify the "tree" and "1link" ports,
respectively; the superscript 1 denotes transpose. We note that B
. T
and Q must satisfy the orthogonality condition; i.e., BQ =0 .

In particular, this is possible with the Brune section, the



Darlington € and D sections; and the following results will hold.
!
Let the incident and reflected voltage wave vectors be defined

as

v + Ri " (2.3)

a

b=wv-RiL (2.4)

il

respectively, where R is a diagonal matrix of the port resistances,
then we have
b = Sa (2.5)

where § 1is the scatterling matrix.

Partitioning Q= [Qp U], B=1[T Bt] where U denotes
-1 G,Q, 0 '
the unit matrix, and G= R~ = | 4 ' G according to "iink"
t
and ""tree" ports, and defining
T.—-1 T,-1
K = [Q6Q ] "QuGg = [G.+ QuGeQ0e] "QgGy (2.6)

yields the following equivalent representations [27]

511 %12 \
S = : (2.7)
8,1 Sa2
B T T T. T T
204K - U 2Q3 ~ 2Q3KQ}
- (2.8)
T
2K U - 2KQ}
Co 3 v o[ -v of]
. (2.9)
0 U K U 0 U




~v o|fv s |[u o]ly B,
= (2.10)

We note that U is a unit matrix of appropriate dimensions in each case

and all three matrices in (2.9) are self-inverse, hence

S =35 (2.11)
i.e., S is also self-inverse.

From the definition of K (2.6) , it can be shown that

sTe = ¢s (2.12)
and (2.11) and (2.12) vyield

sTes = ¢ (2.13)

Equations (2.12) and (2.13) , respeétively, correspond to the recipro-
city and the losslessness of the given reference network.

According to Martens and Meerkotter, the matrix K has a
simple network interpretation obtained as follows : Terminate all the
"1ink" ports in their port resistances in series with a voltage source
and all the "tree'" ports in their port resistances. Let e, denote the

vector of "link" voltage sources, then we have
v, = K ey (2.14)

where v, is the vector of response voltages across the ''tree' port

resistances.

2.2 ADAPTOR WITH A REFLECTION -~ FREE PORT

In cascade synthesis, it is useful to have a reflection -free



10

port to avoid any delay-free loops which lead to an unrealizable
‘ 1

wave flow diagram when we connect different sections together as

shown in Fig. 2.1.

Fig. 2.1 Direct connection of adaptors with

reflection-free ports.

From Fig. 2.1, port 1 of ﬁhe adaptor B has been made reflection-free;
i.e., the reflected wave bl is no longer dependent on the incident
wave  a;.
Let port 1 be a link port of the n-port network shown in Fig.

2.2, If we want to make it a reflection-free port fhen we must have the
port resistance R1 équal to the input resistance Rin of the reference
network interconnections with all the remaining ports terminated din
their respective port resistances R2 N R3 s vesay Rn'

With Rl = Rin s the entry S11 of the § matrix is equal

to zero; i.e., no delay-free loop will occur, According to (2.8) , 511



il

Fig. 2.2 Network used to determine Rin'

equal to zero alsc means that the (1,1) entry of the matrix

i ZQiK - U ]} is equal to zero. In other word, if we let

then
. = [ 20K ~-U),, =0
11 ' 11
yields '
t .
§ qjl(ijl) - 1=20 (2.15)
i=1
or
t
qll'Zkll =1 - j§2 qjl'zkjl (2.16)

where t is the total number of "tree' branches.
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Fi
Expression (2.16) shows that the existence of a reflection~free port

reduces the number of independent multipliers by one.

2.3 DEPENDENT - MULTIPLIER EQUATIONS

The number of multipliers required to realize (2.10) is equal
to the number of elements of the matrix K plus twice the number of

multipliers which may be contained in the matrix Bt'

Given a reciprocal n-port together with a set R of n port

resistances ri

R

[

{ o i=1+ton} (2.17)

and a set N of p transformer ratios

i

N = { n; i=1¢top} (2.18)

we obtain a set of multipliers

T={ti,i=ltos} ' (2.19)

upon writing the matrices ZK and Bt .

The set T may contain some or all the transformer ratios of
the set N. In general, the number of elements of T exceeds the number
of independent parameters of the network which determine the transfer
function. Therefore, there are independent multipliers as well as depen-
dent multipliers. The number of independent multipliers can be deter—

mined by inspection : It 1is equal to the total number of ports and



transformer ratios minus one;~i.e., n+p-"1.

Among the elements of T, one can choose arbitrarily ntp-1
elements to form the subset M defined as the set of independent mul-
tipliers

M = { m; i =1 to ntp-1 } (2.20)

The remaining elements of T form the subset of dependent mul-
tipliers

H={ hi , i=1to s-npt+l } ‘ (2.21)

We note that T = M+ H , where + denotes set union.

For the structures investigated in this thesis, each element

of H can be expressed explicitly as a function of the elements of M

it

h, ) (2.22)

i fi(M) = fi(ml’mZ"""mn+p—l

for i =1 to s-n-p+l .

These equations expressing the dependence among the multipliers

can be determined by solving for the port conductance ratios of the
network from the set of multipliers T and then checking for consis-

tency among these solutions, as follows

From (2.12) , it is easy to derive the following equations

T T
6]y IogKlyy  [QgK)y, (2.23)
T T |
I6g);  [KQlyy  [QgKlyy
T T,.T
[G6. 1. [Qg - QgKQgl, .
P T D i e N ) (2.24)

13
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6], IRy DKl 259
1613 'y, KRy,

The desired "dependent-multiplier equations' of the investi-
gated structures, except for the Twin-T structure for which we have

another appfoach, which will ‘be presented in Chapter V, are easily ob-

tained upon checking the consistency of the equations (2.23) to (2.25).

For example, we must have

[Gg] [Gyl.
itk N o U for k= 1,2,...,t (2.26)
IGﬂ]j

2.4 HARDWARE REALIZATION

In a hardware realization, all the multipliers of the set T
must be quantized to some finite number of bits due to the available

finite word length. Thus, quantizing the set M of independent multi-

pliers produces the set

M= m, = S P o, i =1 to ntp-1 1} (2.27)

where a and bi are integers and o, is the coefficient quantization

14



error of the independent multipliers.

Corresponding to the set M , we can calculate the set B

defined as

-~

H = {hi=fi(M) uhi~ Z; 3 1=11¢o s-n~p+l } (2.28)

where Ci is the coefficient deviation.
~
In general, the elements hi cannot be realized with a finite

number of bits. These dependent multipliers hi must also be gquantized

in a hardware realization, and are denoted by the set

N A ~
H={ hi = hi_ Gi = 7 3 L =1 to s—a~ptl } (2.29)

where c, and di are integers and Si is the coefficient quantization
error of the dependent multipliers.

Since the coefficient quantization errors cause error in the
digital filter's response (e.g., impulse response, frequency response,
etc. ) [2], the choice of o4 and Si is not arbitrary but is deter-
mined by certain criteria given in the following.

We note at this point that the choice of 61 is determined
by the magnitude truncation technique which will be presented in Chap-
ter VI. As will be seen from Chapter VI, the 6£'S are in general
smaller than the Gi’s; in the following development, we assume that
the dependént multipliers are realized exactly (i.e., with infinite
precision).

From the new set ﬁ , we can calculate the néw sets ﬁ and

"N, which determine a set B of deviations from the original values

defined as
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B={Bi]Bi30 for i=1tdntp } (2.30)
where

Bi = | r, - ;i ! for 1 =1 ton

Bj+n = I nj - ;j | for j=1top

For any particular analog filter design, there is always a
certain tolerance imposed upon the component values determined either
by various semnsitivity analysis methods or just by experience from

practical design. In other words, given a maximum tolerance set .

>0 for i=1tountp } (2.31a)

Bmax =1 Bi maﬁ l Bi max
we must have
Bi < Bi max for 1 =1 to ntp (2.31b)

as the condition that the variation of the element values nust satisfy
to meet the required specifications.

The optimization problem can now be formulated : Given an ac-
ceptable deviation set Bmax of the original sets R and N, we must

calculate a suitable deviation set Emax defined as

E. =1{o0, PO, >0 for i =1 to mtp-1r (2.32a)
max 1 max ' 1 max

in such a way that

m. - < o, => B, < B, (2.32b)
i i i max i j max

for i = 1 to ntp-1

and j = 1 to ntp

In this thesis, the nj's are given by dependent - multiplier



equations; il.e., the nj's are chosen as dependent multipliers
nj = fj( M) for j = ntl to ntp (2.33)

and from Iquations (2.23) to (2.25), it can be seen that the ri's are
explicit functions of the nj's and M or simply functions of M. In

other word, we can write
r, = gi( M) for i=1 to =n (2.34)

If the functions fj and g; are continuous within an

(ntp)—-dimensional neighborhood

By pax 20 » k=1 to wmhp (2.35)

of M, then the optimization problem stated in (2.32) always has a

solution set E .
max

So far, we have assumed that the system is linear. However, in
actual implementation, signal truncation and dependent multiplier
quantization will affect the performance of the filter. Thus, it is
necessary to simulate the hardware realization of the filter on the
computer if we want to know its actual performance. The simulation
proéedure will be discussed in Chapter VI. In the next section, we

will investigate the stability of the structures under investigation.

2.5 STABILITY OF THE WAVE STRUCTURES UNDER INVESTIGATION

~

' "
Besides the coefficient quantization error of M and H men-

tioned in the last section, the result of processing will naturally
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lead to values requiring additional bits for their representation. For
example, an m~bit data input multiplied by an m~bit multiplier results
in a product which is 2m bits long. If in a wave digital filter we do
not quantize the result of arithmetic operations, the number of bits
required will increase indefinitely. Two common methods are used to
eliminate the lower order bits resulting from arithmetic operations in
such a recursive digitral filter : truncation and rounding. Truncation
1s accomplished by digcarding all bits less significant than the least
significant bilt which is retained and rounding of a nunber to m bits,
when the number is initially specified to more than m bits, is accom -
plished by choosing the rounded result as the m~bit number closest to
the original unrounded quantity.

It is well known that the resulting truncation error or
rounding error causes a deadband effect or limit cycle in the filter
output [4,5]. A common type of limit cycle is a zero input limit cycle
where the output of a digital filter remains periodic and nonzero,
after the input has been set to zero.

Another source of error due to the finite word length repre-
sentation is the overflow error which occcurs when a digital filter
computes a number that is too large to be represented in the arithmetic
used in that filter. This kind of error has also been known to produce
éverflow oscillations [8,28] .

As we have mentioned in the intreduction, it has been pointed
out by Claasen et al. [5] that it is possible to design a wave digital

filter of arbitrary order, without limit cycles and-overflow oscilla-



19

?
tions. Using simple arithmetic operation , Fettweis and Meerkdtter [16]

have been able to guarantee the absence of zero input limit cycles in
the wave digital ladder structures for which all port resistances are
positive and moreover are pseudopassive (lossless) according to the
pseudopower function as originally defined by Fettweis [29].

In the following, we derive a theorem which guarantees the

zero input asymptotic stability of the wave structures under investiga-

tion.
b a C S S
Partitioning b = bl , a = al s S = Sll 812
2 21 22
€y 0 -
and G = 0 G according to ports with delay and ports
22

without delay yields the following from the pseudolosslessness alrea-—

dy shown in (2.13) :

511611511 * 521605591 = 11 (2.36)
From (2.5) we can write the system eguations

bl(n) = Sllal(n) + Slzaz(n) | (2.375)

bz(n) = SZlal(n) + 822a2(n) ' (i.37b)
The next input al(n+l) igs given by

al(ﬁ+l) - % b () _ (2.37¢)

where ¥ is a diagonal matrix the elements of which are either 1 or -1
depending on whether the reactive element connected at each port is a

capacitance or an inductance, respectively.

Due to the necessary quantization error of the dependent mul-
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4

tipliers.and the rounding or truncation error mentioned above, the li-
near, pseudolossless discrete wave system S (2.37) which contains
the multiplier sets M and H cannot be physicallﬁ realized. A model
of the actual, finite-state, nonlinear wave digital filter with the
input az(n) set to zeéro is shown in Fig. 2.3, where S represents the
nonrealizable (i.e., with finite precision) linear system (2.37) and

Q represents the signal quantization nonlinearities.

ay (n) _ by ()

Fig. 2.3 Model of actual nonlinear wave digital filter.

Upon defining the Lyapunov energy function

yla (] = a, () G}y a; () (2.38)

which 1s positive definite since Gll-is positive definite, we can
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state the following theorem

THEOREM : The actual finite-state nonlinear realizable
wave digital system of Fig. 2.3 is asymptotically stable
under zero input 1f the output signals are modified in such

a way that the Lyapunov function defined in (2.38) is strictly

decreasing.

Proof : With the input az(n) set to zero, we have from (2.37a) and
(2.37b)

bl(n) = (2.39a)

8118, (™)

bz(n) = S (2.39b)

2121
From the definition of the Lyapunov energy function (2.38) and (2.39a)},

we can write

V[bl(n)] = b (n) G b (n)
= g (n) Sll 11 ll al(n) (2.40)
Let us consider the difference
Via, ()] - VIb ()] = a] () [G, = 51,6,,8,,)a, (n)
1 1 1 11 11 ll 11
which can be rewritten by using (2.36) and (2.39b) as
V[al(n)] - V[bl(n)] = g (n)52l 22 21 l(n) (2.41)
T
= bz(n)Gzzbz(n) > 0 : (2.42)

which is positive semi-definite since G22 is positive definite (semi -
definite since bz(n) could be zero even though al(n) £ 0 ).

Thus for the linear part of the system shown in Tig. 2.3
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Via, @)} > Vib, ()] (2.43)

and for the overall nonlinear system, if the output bl(n) is modifiegd

~

by Q inte an output bl(n) in such a way that
| by | < ] b ) | when bi(n) ¢ 0 (2.44)

i.e., if the vectors bl(n) and bl(n) are given as

i

by @) = [byg (1),byy () servnsby ()]
by @) = Doy @)Dy (s by ()]

for a wave structure with m delays, then we have

| bli(n)] < l bli(n)l for i =1 tom, (2.45)

then we obtain for the nonlinear system

Viay )] > VIb )] > Vb ()] = Viay (D) (2.46)
That is, the fqrward difference |

AV = V[al(n+l)] - V[al(n)] < 0 7 (Z2.47)

is negative definite.
Thus given any input.al(n), (2.38) and (2.47) always hold
"whenever (2.44) dis satisfied. Then, according to Lyapunov's asympto-
tic stability theorem [30], the nonlinear system is asymptotically
stable under zero input. In other words, once the input az(n) is set
to zero, the output bz(n) will be zero after a certain finite time

interval since the number of states of the system is finite.



9.6 CALCULATION OF ERROR

Let us redraw the model of the k-port wave digital f£ilter
shown in Fig. 2.3 without including the delays and without par‘titioning
the ports into ports with delay and ports without delay . We obtain

¥ig. 2.4

b{n) g(n)
> Q om0

-

B a{n)

Fig. 2.4 Model of the k-port wave digital filter.

where
a(n) = [al(n),a (n),----,ak(n)l
and

b(n) = [by (@) by (), . ensby ()]

are, respectively, the inputs and outputs of the linear svstem S.

Due to the gquantizer @ , we have the modified outputs
b(n) = [by(n) ,bz(n),----,bk(n)}

such that the stability condition
G | < | bi(n)] | (2.48)

is satisfled for 1 = 1 to k.

23
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Since the system S {s not realizable, the actual implementa-

tion of TFig. 2.4 is given by Fig. 2.5

~

.
B(n) (n)

wne

( ﬁ y ﬁ ) a{n)

Fig. 2.5 Actual implementation of the wave digital

filter of Fig. 2.4.

“
where § is nonlinear due to signal truncation and not pseudolossless

due to the quantization of the dependent nultipliers.
~ N

. Given an input a{n), the output of S 1is b(n). To implement

”~ ~

Q@ which modifies the signal %(n) into b(n), we have to calculate

the output errors &g {n) defined by
i

1 te k (2.49)

i

~
Ebi(n) = bi(n) - bi(n) for i

Once the output errors €y, (n) are known, @ is implemented as follows:
i .

0y
Corresponding to the input bi(n), the output

~ v
bi(n) = bi(n) + Y, = bi(n) - ebi(n) + Yy (Z2.50)
Y

is obtained by adding to the input bi(n) a corrective term ¥, which

compensates for the output error &, (n) in such a way that
i
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[ b, b o< b ) | (2.51)

In the following section, we assume that the hardware reali-
zation uses fixed-point arithmefic with two's complement representation
for the signals between bullding blocks. We will present a few simple
rules to calculate the oﬁtput error £(n) resulting from two scurces :
the first from the signal truncation after a multiplicaticn and the

second from the gquantization of the dependent multipliers.

RULE 1I1.1 : Signal truncation results in a positive error.
Ky = X~ € : €, > 0 (2.52)
vwhere x, denotes the truncated value of x.

Proof : The proof of Rule II.l1 is given by Oppenheim and Schafer [3].

RULE 1I1II.2 : The errcr of a sum of truncated terms is the sum of the

individual truncaticn errors of each term.

Proof : For the flow diagram shown in ¥ig. 2.6 +e have

S = X % + Xo + ...t X x
= (x1~ €. Yy + (xz— €. Y+ ...+ (xn— €, )
1 2 n
= (x1+x2+. .. .+>;n) - (ex te,, tooote )}
1 2 n
- S _ e (2.53)

RULE IL.3 : The error of a truncated product of a truncated input by

an exact multiplier is equal to the sum of two terms : the



ik
€x
< L
2% .
Ex
2 | S,
A .
—— e n
- £, = >
e s = 121y
P i
______ vy :
xl
n»
£
X
n
Fig., 2.6 Error of a sum.
X* m P*
€ ‘ g
% \\\\_’/// €p = kex + €

¥ig. 2.7 Error of a product.

Fy f//:T\\\\ P,
O arerres

3%

Fig. 2.8 Error of a product by a quantized

dependent multiplier.
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E4

first one is the product of the truncation error of the input
by the multiplier and the second is the truncation error of

the product.

Proof From the flow diagram shown in Fig. 2.7 we have
Po = (kx,), = kx, - &, = kix - Ex) - By
= kx - ( ke ek)
= - . 2.54
P £p o« )
where €y denotes the truncation error of the product.’
RULE IX.4 : If the multiplier in Rule II.3 has a quantization error
o
Gk =k - k , then the error in Rule II.3 is augmented by
the product 5k times the truncated input.
Proof + From the flow diagram shown in Fig. 2.8 we have

, " "
Pp= (kx, ), = kx, ~ € ;’= (k - 5k)x* - € E

= kx, - ka* - € Q’ = k(x - EX) - ka* - € g

= kx - (ke e U &x,)

= P . - £p - (2.55)

By applying these simple rules to any wave flow diagram, it

is always possible to calculate the output error because any realizable

wave flow diagram would consist only of adders and multipliers which

are already investigated by these rules. We have seen from (2.50) that

the corrective term Yi must compensate for the output error €, (n).

1



Consequently, it is necessary to have an’explicit expression for the
output error. Thus, the appropriate modification scheme of the output
is deferred to Chapter VI after we have derived the output error of
the structures under investigation. In the following Chapters IIIL, IV
and V; we present the necessary formulas_for the design of the adap—
tors for the Brune section, the Darlington C and D sections, and

the Twin-T structure.

28



CHAPTER 1III

WAVE ADAPTOR FOR THE BRUNE SECTION AND

THE DARLINGTON C SECTION

In this chapter, we present the wave adaptor for the Brune
.section and the Darlington C section. We follow closely the general
formulation already given in Chapter II to derive the wave flow dia-
gram, the dependent-multiplier equation and the calculation of output
error of the Brune section and the Darlington C section and  of

their equivalent form.
3.1 WAVE FLOW DIAGRAM OF THE BRUNE SECTION

The Brune section and its reference network interconnections
are shown, respectively, in Fig. 3.1 and Fig. 3.2.
The transformer equations are

Ve =0 v, | (3.1

+ i, = -n i2 ‘ _ (3.2)

29
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Fig. 3.1 The Brune section.
*1 1i:n i2
] . 2
SR v "
+
VB.| 5
vy ii‘* 2
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Y4

Fig. 3.2 The reference network of the Brune section.



By choosing port 1 and poxt 2 as "link" ports and by letting

the vectors i and v of port currents and voltages be defined as

. . . . . T

i=14;1, i, 4, ]

v=] Ve Vo V ]T
Yi V2 V3 Yy

then (2.1) and (2.2) can be written as

o 0
0 1 i
{ = Sl B,
-1 -n i
2
- 1 7
v = n 1 Vg - QTv
t
1 0 v4

From (3.5) and (3.6) we get

-1 -1
B =
t -n -1
and ‘
) 1 n
Q, =
% 11

Letting

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

31



Gl Q 0 0 ,
0 G Q g G Lo
J |
G = | cmmema L R = __"___s___., (3.9)
0 0 G3 0 0 : Gt
0 0 0 G4
enables us to write
G, + 2G + G G, + nG
g 1 TRy T s 170y
QGQ™ = : (3.10)
G1 + nG2 G1 + 62 + G4
hence
Gl + G2 + G4 —G1 - nG2
T.-1 1
fQeQ'1 "= % (3.11)
: 5 A
—Gl - n02 Gl + n G2 + G3
where
_ 2. . 2 .
A = G4(6+CG,+G,) + G, (6+n"G,) + (1-n)7G,G, (3.12)
and finally
_ T -1
K = [Q6Q 1776,
1 1 n Gl 0
= [Q6Q7]
1 1 0 G2
[(l——n)G2+G4]Gl j;1:1G4~(l—:n)Gl]Q2
- 4
= 3 (3.13)

HI

[6,-n(1-n)G,]1G, [65+(1-n) G,1G,

11 12

21 22
J

32



33

Upon defining

=2k sy Ry, =2k

1 11 2 12
(3.14)
£3 = 2 kzl . 24 = 2 k22
Equation (2.5) can be written explicitly as
[ b, b,bab, 1= S.[a a, a,a, 11 (3.15)
172 "3 74 ‘ 172 73 74 ‘

where

1000} [10-1-1] 1000 [10-1-1

0-1 00 0 1-n-1 60100 0 I-n-1
S = (3.16)
0010 0010 21221 0 0010

(0001 [ 0001] [[2,2,01f [000 1

and the resulting wave flow diagram is shown in Fig. 3.3.

3.2 DEPENDENT - MULTIPLIER EQUATION

From (3.8) , we can write

T 101 |
L - (3.17)
n 1
. kppt kyq *107 %y |
QK - o (3.18)
nkll+ k2l nk12+ k22 J



O™
Y/

a o ol &
A A A A
(e O]
. @u
A TN
A
® _
DO
g S———
i / m
©
L. (2 o
~ AL T ALF E M
=
e ’
& o 9 Y

the Brune adaptor.
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kpptnkgatigyinlyy  Kyythy tky iy,

QEKQE = (3.19)

2
nkll+n k12+k21+nk22 nk11+k21+nk12+k22

Using (2.23) and (2.24) yields the following

G k., + k

G _ kgt (3.20)
Gl nkll + kZl

G 1 - k,.- k..~ nk,.— nk

S5 117 K17 nkypm nkyy (3.21
Gy - ki

G n - nk,.- k..~ n2k - nk

S _ 117 K21 127 MKyg (3.22)
G, k19

G 1 - k- ko- ko= k

Sq 117 %917 K507 Ky (3.23)
Gy ko

G 1 - nk,.— k..~ nkoo— k :
Sy 11~ Kg1™ mkyp™ Ky . Gaaw)
Gy koo

Equations (3.20) to (3.24) must be consistent; i.e., we must have

¢, |
G G, k 1 —~(k, k. )= (&, 4k,.)
S & _ ke 11791 121590 3.25)
& Gy Ky Urmkyymhyp)=(aky gty

G,

and



G, .
& &5 kypg 1 =yt ) =l Tk, )
G . Gy Ky nQmmkgytkyy)= (kg gty
&)
By letting
u = kll + k21
v = klz + k22
W - ka2
Koy
4 . f12
2
‘11
X = nkl1 + kZl
Y = 1 - nklz - k22

Equation (3.25) can be rewritten as

z _ H1 (1 - u~-vwv)
X Y - X
or
vy = X [Hl(l - u-v) + v]

and (3.26) can be rewritten as

v H2 {1 -u -nv}

X nY - X

(3.26)

(3.27)

(3.29)

36



o

nv‘k = X {Hz (1 -u - nv) + v] (3.30)
Multiplying (3.28) by n gives

nvy = nﬁ [Hl(l - u -v) + v] {(3.31)
Subtracting (3.30) from (3.31) yields

X [nﬂl(l—u—v)+nv-v—Hz(1—u)+nH2v} = ( (3.32)
Since X 4is not zero in general, thé expression inside tﬁe brackets
must be equal to zero; i.e.,

n [Hl(l~u—v)+ v{(1+ HZ)] - v - Hz(l—u) = (3.33)

Solving (3.33) for n yields the dependent-multiplier relation

H2(1 - u) + v
n = (3.34)
Hl(l—u~v) + v{1l + HZ)

k

12
k) (1= k= kyp) + (kyy + kyp)d .
= - (3.33)
K k
22 12
o (kg =y g~k gk )+ (kg ptky o) (I+ )

21 11

3.3 BRUNE ADAPTOR WITH REFLECTION-FREE PORT

1f we choose to make port 1 reflection-free, then according

to (2.16) we have
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qqe2kg g = 1= g2k (3.36)

Since quq = 4,y = 1, (3.36) can be wrlFten as

2kll = ﬂl = 1 - 2k21 =1 - 23 (3.37)

Equation (3.37) allows us to eliminate one multiplier in the realiza-
tion of S . The resulting modified wave flow diagram is shown in Fig.

3.4, We note that b, is independent of =2 from the wave flow dia-

1 1

gram as expected.

Making port 1 reflection-free is equivalent to setting the

port resistance R1 equal to the input resistance Rin when the other

ports are terminated in their respective resistances Rz, R3 and R.4
as shown in Fig. 3.5. Hence for practical purpose of design , we
calculate Rin of the network shown in Fig.3.5 by using simple net-

work analysis

2
v R.R.+ R.R,+ R,R, (1 - n) .
Rin - 1 273 224 374 (3.38)
i, R2+ n R3 + R4

3.4 CALCULATION OF OUTFUT ERROR

In the following, we calculate the error of each output in the
general case where all the multipliers have been approximated; i.e. ,

we have
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Fig. 3.4 Brune adaptor with port 1 reflection-free.
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of Fig. 3.06.
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= n - § (3.39)

=
1
o
1
=¥
-
o
"
|-I
]
|._.\
rt
o

4 (3.40)

{ the superscript " denotés the actual value realized by hardware )

By defining

a;= az= a, ' (3.41)

s 1

and

ay~ a4+ n{~ a3) {(3.42)

as shown in Fig.3.3 , we have from Rules II.2 and IL.4

€, = 0 (3.43)
e, = 6n(- 33) + € ’I\{ {3.44)
since 3147 39 5 AT 3y a3~ 83 » and 8.~ 2, -

Again by inspection and by using Rules II.2 and II1.4

eb' = Rles+ 615*+ e}: + Ezet+ 62t*+ 31
3 1 2
= €} + e’k + 22€t+ 6ls*+ ézt* {3.45)
1 2
Eb = 23€S+ 635*—1— e'i» + £4€t+ Gat*+ E:Q‘j
4 3 4
= ey tep et st d ey (3.46}
3 4
£ = g+ £
bl b3 b4

= g"’Q'\;l+ 55’2(\12-5- g@u3+ e&4+ (2.2+ £4)at+(el+03)s*+(:2<—:4)t*

(3.47)



™
B

-~ €+ e +ne + b teV
2 t ‘n[+ b3 n 3% T n

I

' ’ Yt (4 - n
e}j3+ e’k; n{ e%;r 5,3:2) 4 (A 4+ n&‘vz 1)et+ e

+{ 63+ nﬁl)s* + ( 54+ néz)tﬁ+ San*

i

n N e - "y
efg; Uk&—% n( E?@f; c'?\:z) + & gwl (_!@44- n%z De o
+(1~24~n32)Sna3+(63+n61)5*+ (64+ nﬁz)t*+ 6nb3*

(3.48)
In the following section, we will derive the wave digital rea-
lization of the equivalent form of the Brune section. It will be seen
that all the previous results are still applicable upen making some

simple modifications.

3.5 ADAPTOR FOR EQUIVALENT FORM OF¥ THE BRUNE SECTION

An equivalent form of the Brune section and its reference
network interconnections are shown, respectively, in Fig.3.6 and Fig.

3.7,
The transformer equations are

v = n'y (3.49)
1 -1 = CRNL I
i 1 n' (- iz} (3.50)

By choosing port 1 and port 2 as "link" ports and by letting the

. yyfs“gﬁi“‘—t’k S

i TS

OF MANITOBA

R e e




vectors 1 and v of port currents and’voltages be defined as

T

i = ] i i, i i4 1 (3.51)
v = [ v, v, v, v JT (3.52)
172 '3 74 )
then (2.1) and (2.2) can be written as
1 o ]
0] 1 i
1 = ol BTi2 (3.53)
) -1 n'- 1 i
2
-1 -1
-1 1™
1-1n' 1 v
v = 31 = oY% (3.54)
1 0 v t
4
By letting m= 1 - n' , then (3.533) and (3.54) are similar to Egque-

tions (3.5) and (3.6). Thus, all the results obtained so fzr are appli-

cable to the equivalent form of the Brune section.

- 3.6 ADAPTOR FOR THE DARLINGION € — SECTION

The reference network interconnections of the Darlington C
section is exactly the one shown in Fig.3.2 or in its equivalent form

shown in Fig.3.7. All the results obtained sc far are applicable to the



!

adaptor of the Darlington C-section. The only difference is that the

transformer ratio n is negative.

b4



CHARTER IV

WAVE ADAPTOR FOR THE

DARLINGTON D~SECTICN

In this chapter, the wave adaptor for the Darlington D-section
is derived using all the formulae and results already given in Chapter
1¥I. First, the wave flow diagram is presented, then the dependent-mul-

tiplier equations and the calculation of the output exror are given.

4.1  WAVE FLOW DIAGRAM OF THE DARLINGTON D-SECTION

The Darlington D-section and its reference network intercon-
nections are shown, respectively, in Fig.4.1 and Fig.4.2.

The transformer equations are

A = v, : (4.1)
i, +ti, =-m, 4, (4.2)
v, = ng Ve (4.3)
i+ i, = -ng i, (4.4)
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L
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1: Mg
LSE“""CS
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Fig. 4.1 The Darlington D-section.
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Fig. 4.2 The reference network of Fig. 4.1.



By choosing port 1 and port 2 as "1link' ports and by letting the vec-

tors i and v of port currents and voltages be defined as
io= [y i, 4,1, 41" (4.5)
172 737475 )
v = [ v, v, v, Vv, Vv ]T {(4.6)
- L 72 73 74 75 '

then (2.1) and (2.2) can be written as

1 0
0 1
i
io= -1 -1 o ) (4.7)
i
-1 -1, 2
_—1 —ns—
T1 1 17
1 n n Vs
T
v = 1 6 O vy, = Q v (4.8)
0 1 0 Ve
0 0 1
From (4.7) and (4.8) we get
-1 -1 ~1
B = (4-9)
t -1 -1 -1
4 5

and



1 1 ‘
Qp = |1 7
1 nS
Letting
pwan | =
G, 0 0 0 0
|
0 G, 0 0 0
m e
¢ = 0 0,63 0 O =
i
0 0,0 6 0
H
_0 0,0 0 GS_‘
enables us to write
6,+6,+C, G tn, G,
T- | c4nc C.+n2GC. 4G
QeQ 170452 11246276,
~G1+n5G2 Gl+n4n5G2
hence
Ar A By
T,-1 1
[eQ™] 7= - Ao Ay Byg
A
Agy Agy Agg
where
| A —GG»H"C+GG+ZGG+ZGG+(
RIS A AR R ARIAL SR AS R By

57274

A = (n5~n4)(1—n5)GlG2— G1G5 - n4G2Gr

12

)

2o o
'"'Ill}) Gl(‘r

o

@

2

(4,10)

(4.11)

(4.12)

(4.13)
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A, = (néfHS)(lfna)G G.— G,G,—~ n_G.G

13 1727 P17 5Py

Ayi = By

A .= (1-1.)%G.C.+ C.C.4 C.C.+ G.C.4 GG+ n2C.C

22 5/ UpboT TphgT GobeT b1baT LabgT Rebybg

A23 = (ns-l)(l-na)Gle- GlGB— n4n5G2G3

A3y = Ayg

Agy = Agg

A.. = (1-n,)%G.G.4G.C,+ G.G,+ G,G.+ G.G,+ n°G.G

33 47 PO Te T BpbyT Gy bgT gl M boGg
_ 2

B = 66,6t GyG Gt GGGt G656+ 646, Got n,G,G4Gs
+n2GGG+(l—n)zG-GG+(l—n)ZGGG+(n—n)2GGG

572535 4’ ©1525s 5/ B1525, 5707 G1Y03

and finally

T,-1
K = [Q6Q 17 Q6
11
G, O
T -1 1
= [ QeQ” ] 1 n,
I 0 G2
1 n | =
L. J
Fgll 812, 1k K
| . I :
B £21 S22 0T Tl M2z (4.14)
A i :
f ‘ ! 1. ,
B 832 ., K31 Ko
-t [ d

wiere

g1 = G1[84G5+ nh(na—l)G265+ n5(n5—l)G264]



Equation (2.5)

where

[

—

N

[(nl}-—l)G1

[(1~n5)G2G4+,

374

[(ng=1)6,6,+ n G,C

[(lwnA)GlG5+ (l—nS)GlG4+ G4G5]
I(l—n4)G2G5+ G3G5+ n5(n5"ﬂ4)G2G3]
G5+ n4G3G5+ (naﬂns)GlGBJ

G.G,+ na(n4ﬂn5)G2G3]

4+ (gm0, )6, G4]

2k

1 11 2 12
23 = 2k21 s 24 = 2k22 (4.15)
b o= 2k s Rg = 2Ky
can be written explicitly as
[ b, b, bab, b, 1 = S[a a a,a ) T (4.16)
172 737475 172 7374 75 '
F10000] [1o-i-1-17) [tooo0] [10-1-1-1
0-1 000 0 l-l—n4~n5 01060¢C 0 1-1-n,-n
00100 0010 0 £1221 00 0010 O
00010 000121 D 23240 10 001 O
L0000 (0000 1 | m,Q,S!L()OOl_& 0000 1
(4.17)
and the resulting wave flow diagram is shown in Fig.4.3.

This wave flow diagram requires ten

multipliers. Since port 5
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Fig. 4.3 Wave flow diagram of the

Darlington D adaptor.

JAY



must accommedate
port paréllel ad
free port can be
Fig.4.3 to form
This complete wa
multipliers, sev

of Fig.4.1,

4.2
Trom (4
T -
Q,Q, -
T
K=
Qﬁ
T T
K
Qﬂ Q£
where
dll = k11+ k
d12 = k11+ Kk
d. =

13 kll+ k

an inductance and a capacitance in parallel,.a three-
aptor of Fettweis and‘Sedlméyer with a reflection -
directly connect;d to the wave flow diagram shown in
the complete wave adaptor for the Darlington D-section.
ve flow diagram then requires a total number of eleven

en of which are independent multipliers by inspection

DEPENDENT-MULTIPLIER FEQUATIONS

LA0Y , we can write
1 1 1
(4.18)
_1 n4 n5
lgpt Kyt kg kgt kgt kg
(4.19)
| Frrtmgkoptasks kyatnglyytngks,
dp 4y gy ,
- (4.20)
dop  dgy dyg
o1t Kt Kygt koot Ky
2l+ k31+ n4(k12+ k22+ k32)
21+ k31+ ns(k12+ k22+ k32)



dyp = Ky kot ngko bl o 0l ot ngky,
dyy = kgt myky gt nghkgyt ny (o ok nyd ot ngko,)
dyq = Kyt mk,,t agko b nglly b on k) 4 ngkg))

Using (2.23) and (2.24) yields the following

G k,,+ k,,+ k

S _ 127 Kpot kg C.21)
G kgt ko tngksy

, 1

= = — L= Gy g )=yt ) ] (4.22)
G K

1 11

¢, 1

= = [k kg ok, (kg gtny kg g dngkgy )] (4.23)
G K

2 12

¢, 1

— = = [1-(kq gk kg )ny (ky gk ok o) ] (4.24)
G K

1 21

¢, 1

—_— = {na(l—kl2~n4k22~n5k32)—(kll+n4k21+n5k31)] (4.25)
G K

2 22

6 1 .

= = [ Gy ey ;)= (g kg i) ] (4.26)
1 31 '

6 1

_c;_ = [n5(,1—k12~n4k22-—115k32)-(kll‘i‘nl}kz_{%nSkBl)] (4.27)
2 32

By letting

u = kll+ k21+ kBl



X
Y -

Equations (4.

w

o
-

N [uF

! Lgn

i

kgt Kyt Koy ’

kl+n1< +

1t Ryt ngk

P51

1

k..~ n.k

1= ko= nykyom ngky,

i

21) to (4.27) can be rewritten as

v
= - {(4.28)
X . B .
l~-u-vw
= AER— (4.29)
kg
¥~ X
= —_ . (4.30)
klZ
1 -u -~ n4v
= —— {(4.31)
ko1
naY - X _
koo
1l -u -~ 1’15V
= ——— : (4.33)
kg
n5Y - X
= — (4.34)
K39

28) to (4.34) must be consistent) i.e., we must have

k 1l -u-~v
(4.35)
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4 ¢
‘Eg ) G1 } k22‘ I~u-~- n,v
Gl . G4 k21 nal - X
GZ
S
Eg ) Gl } k32 l-u- nsv
Gl .Ei kBl nSY - X
€y
Upon letting
klZ‘
H, = =
1 K
11
)
H, = —£L
2 k
21
K32
H, = —=
3 k
31

(4.36)

(4.37)

we recognize immediately that Equations (4.35) to (4.37) are similar

to Equations (3.27) and (3.29).

Thus (4.35) and (4.36) give
H2 (1 -u)+ v
n, = {4.38)
Hl(l—u~v) + v(1l + HZ)
k99
X, (1= Tyy= kyy= kg) o+ (kg koot Kyo)
K K
12 %92 ..
o (kg =gy mky =iy g =Ry g7l ) H (U 7 0 (gt tkgy)

.kll 21
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and (4.35) and (4.37) yield :

Hé (1-u)+4 ¥
n = (4.39)
Hl(l*u—v)+ v{1 + H3}

E;z (1 - %k
31

k k

(1-k )+(1,
kll 11 21 31 12 22 32 3

+ k

— 1
117 Ko7 kgpd oGkt koot ko))

)(kl2 297k39)

4.3 ADAPTOR WITH REFLECTION-FREE PORT

If we choose to make port 1 reflection-free, then according

to (2.16) we have

2k (4.40)

Zkyp = 1= dyye2kyy 7 odgy-2kgy

911-°%11

Since 943= 997 937= 1 » (4.40) can be written as

(4.41)

r
w

2kll= 21 =1 - 2(k21+ kBl) =1 - RB -

Equation (4.41) allows us to eliminate one multiplier in the realiza-
tion of S . The resulting modified wave flow diagré: is shown in Fig.
4.4,

Again, for the practical purpose of design, we calculate the
iz.%.5. The input resis—

input resistance R, of the network showm in

tance R, is given by simple network aralvsisz as
in ’ :



Darlington D adaptor with port 1 reflection-free.
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Fig. 4.5 Circuit used to calculate R

in’



¥

2 2 2
N ) jl.: RZCR3+R4+R5)+R3R4(1—H4) +R3R5(l*n5) +RéR3(n4— n5)
in . 2 2
1l R2+ R3+ né R¢+ nS RS
(4.42)

4.4  CALCULATION OF OUTPUT ERROR

In this section, we calculate the error of each output in the

general case where all the multipliers have been approximated; i.e.,

24 = n, - 54 {(&.43a)

%’5' = n - 65 . | (4.43b)

L , for i=1 to 6 (4.43c)
By defining

s = a;- ag 8- ag (4.44)

t = a,= a3+ na(uaé)+ nS(—aS) : (4.45)

as shown in Fig.4.3 , we have from Rules II.2 and II.4

€. 7 0 (4.46)
s
== —_— - + Er\‘/ 2 . ;—:
€, 64( a4)+ éb( aD) n/'+ €n5 (&4.57)
since 8157 81 5 89yT Ay, 84,7 84, A= 2, and a..= 1

By inspection of the wave flow diagram shown in Fig.X.3 and by using
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Rules IX.2 and II.4 , we can write

Eb = £l€S+ Als*+‘€% 4-£2£t+ A2t*+ e%
3 1. 2
= ep. tey Ly et Ast Aty (4.48)
1 2
€y = 23€S+ A33*+ e% + £48t+ Aét*+ e%
4 . 3 4
= ey +tey 2, et At Aty - (4.49)
3 4
€ = ﬁses+ A55*+ ey + £6€t+ A6t*+ ey
5 5 6
= 8% + s% + £6€t + Ass*+ A6t* {4 .50)
5 6 ,
£ = e, + £ + €
bl b3 b4 b5
= ey + ey + ¢ +ev +ey +ey + A+ L+ ) e
%l %3 %s ?52 1’4 3@6 AT VR
t Ot Agt s, + Qo At Aot (4.51)
€ = -¢g+e +ne +68&b,, +ev+ne +5b +ev
b2 t b3 4 b4 47 4% n4 5 b5 575 n5

ev + ey +n,(ev+ ey )tn (ey+ev) - +en
P AN A R R R

+ (22+ n,% + n526} €

4% + (kl+ n

13+ nsls) s, + E%

4 & 5

t

+ Out n At n5A6> t, + 64b4* + 65b5* (4.52)

This concludes the derivation of the wave adaptor for the Darlington
D-section. In the next chapter, we will derive an adaptor for the

Twin—-T structure.



CHAPTER V¥

THE TWIN - T ADAPTOR

In this chapter, the derivation of the wave adaptor of the
Twin-T structure does not follow the approach given in Chapters III
and IV but it rather follows closely Martens' and Meerkotter's deri-

vation of the Bridge-Tee adaptor [27].

5.1 WAVE FLOW DIAGRAM OF K

The 8-port of interconnections of the Twin-T structure toge-
ther with the chosen reference directions for the port variables is
shown in Fig.5.l.

By inspection, the number of "tree" ports is four. Therefore,
if we derive X directly from (2.6), the wave flow diagram of the Twin-
T structure would require sixteen multipliers, nine of which are depen-
dent multipliers. It would be cumbersome to determine the necessary

dependent-multiplier equations. To avoid this difficulty, we will deri-
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Fig.

5.2 Network

used

to

calculate K,



ve K from its network interpretation as mentjoned in Chapter IL.
Thus, port resistances are comnected to the "tree' ports 2,
6 , 7, 8 and port resistances in series with voltage sources are con-

nected to the "1ink" ports 1 , 3, 4 , 5 as shown in Fig.5.2.

To obtain a wave flow diagram for K , this network is now
analyzed in successive steps to relate the "tree" voltages R
Vo, Vg to the "link' source voltages e s €3, €, and € Multi-
plier coefficients are defined as required in the analysis,

The first step is to apply Thevenin's theorem to Fig.5.2 to

obtain Fig.5.3.

—
4 . RT
Rl =

ol S

1

Fig. 5.3 Network obtained from Fig. 5.2 upon
applying Thevenin's Theorem.
where RT is the input impedance and e is the open circuit voltage

of the network shown in Fig.5.4.

Analysis of this network by superposition gives

where
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.+ - D + -
(o (e )
R4 R5
A C + /’A\\—- B
AW e—AM—(
+ R, R \—
i J
ep Ry R é L= =R,
7 <" "8
F
Fig. 5.4 DNetwork used to <calculate RT'
A C + -3 -/ D ~ + A
AN €3 Wy @ —AW: &4
R6 R3 R5 R4

Fig. 5.5 Equivalent network of the network shown in Fig. 5.2.



A= Rz(R6+R7)IRS(RAfR8)+R4(R3+R8)JthR7(R2R6+R3R5)

R, RRe (RoTR )R (,szR J RO IRGR AR (RotR ) ] (5.2)
2 R, T(R,HRG) (R ARG HR, (BRG] + (RyHR) TR, RotRy (RHRS) ]
| +R, [(RytRo) (RoAR, IR, (RAR) T + (RytRy) IR R AR, (R AR ]
| (5.3)
and
eq = A3e3 + A484 + ASeS ' (5.4)
where
Ay = —i—;,;[ R4R7(R2;I-R5+R8) + Rg(R R~ R,R.)] T (5.5)
b, = i—; {R, [(Rg+R;) (RARIHR (RyHRe) I+ (Ro+Rg) [RB(R6+R7I)+R6R7]}
(5.6)
AS = _—i;; [ RéRg(R2+R3+R7) + R7(R3R8-— RZRA)} (5.7
By defining
1t
we can write
vy (1 - Al)el + AleT
= (1 - Al)el + Al(A383+ Ae,t ASeS) (5.9)

and ¥ig.5.2 can be redrawn as shown in Fig.5.5.
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The following step consists of dpplying Thevenin's theorem to

Fig.5.5 to obtain Fig.5.6.

A A=

A 3 Ry Ry

+
+

‘ T .
(O wm £, o e

-F

Fig. 5.6 Network cbteined from Fig. 5.5 upon

applyiﬁg Thevenin's Theorem.

where
R, = R6|| R, (5.10)
Ry = R, || Rg (5.11)
.
L (5.12)
R, + R,
R
g = | (5.13)
R, + Rg

The notation Rx||Ry denotes the parallel equivalent of R, and Ry

Applying Thevenin's Theorem once more to Fig.5.6 yields the

following Fig.5.7 , from which we have

A e e (5.14)
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Fig. 5.7 Network obtained from Fig. 5.6 wupon

applying Thevenin's Theorem.

G e O

Fig. 5.8 Network wused to determine Vg

67



68

By defining :

R, + R
A, = A 3 (5.15)
R+ Ryt [R, |](R5+ Rp) ]
R
Ay = 3 (5.16)
R+ Ryt [R, iI(R5+ Rp)]

we obtain from Fig.5.6 and ‘Fig.5.7

Vop = e3+ A9 {(A7v1—e3)~ AZIAS(V1*64)~'E5]} (5.17)

v, = (A7vlf83 - A6 {(A7vl—63)*A2[A8(vl—e4)—es}} (5.18)

Ve = Ve + v, (5.19)
and from Fig.5.5

Ve = V4 - vy (5.20)

The remaining v, can be determined by examining Fig.5.8. By letting

8
Rg
AlO = —_—— (5.21)
Rg * Ry
we can write
vg = (v2+ es)~ Alo[(vz+ 85)_.A8(Vl— e4)] {(5.22)

The equations (5.9), (5.17), (5.18), (5.19), (5.20), and

(5.22) determine the scught wave flow diagram for the matrix £ which

is shown in Fig.b5.9.



Fig. 5.9 Wave flow dlagram of K.
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5.2  WAVE FLOW DIAGRAM OF TWIN-T STRUCTURE

From ¥ig.5.1, we can write

”il“ 1 0 0 0
i, 01 0 0
i, 00 1 0 - -
i 0 0 0 1 _? )
i, "o 101 T3 =B, (5.23)
i -1 0-1 0 14
i ~1-1-1 0 L0
»18_ 00 1-1]

Hence

B = (5.24)

and the 8§ matrix of the Twin~T structure can be written as

g = ' (5.25)

wal

The resulting wave flow diagram of the Twin-T adaptor is thus shown in

Fig.5.10. The realization requires a total number of ten multipliers,



2w

~NTWO I~ 00

Fig. 5.10 Wave flow diagram

the Twin-T

of

adaptor.
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5.3 DEPENDENT-MULTIPLIER EQUATIONS

Since the Twin-T structure has 8 ports, the number of inde-
pendent multipliers is seven. We can choose arbitrarily Al’ A2, A6,
A?’ Aé,'Ag, AlO to be independent multipliers and we will write the

dependent-multipliers equations for A3, Aa, and AS by seeking first

to determine the port resistances from the independent multipliers.

From (5.12) and (5.13), we can write immediately

R A

A S (5.26)
R6 ’ 1- A7

R A

A - (5.27)
R4 1 - AS

From (5.14) and (5.21), we can write

1-A R. +
TR BT (5.28)
A2 R2
1-4A . B (5.29)
10
Rg + By
Multiplying (5.28) by (5.29) gives
R, |IR R R (1- A, ) (1~ A)
T L T 8 .. 10 22 (5.30)
R2 R2 R2 R&+ RS %2
Since AS = — , we have from (5.30)
R+ R ,
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Dividing

from which we have

Subtracting (5.16)

(5.16)

Since

From (5

Since

—_ = - ' {5.3L)
R2 A2A8
(5.29) by AlO gives
1 - A R R R
e R e S R Ag (5.32)
Mo Rs Rg Rt Rg Rg
R A A
2 = 8 10 . (5.33)
R4 1 - AlO

from (5.15) then dividing the difference by

yields

A~ A R R_||R R R

6 9 _ _A_ _6'"7 _ & __"7 (5.34)

Ay Ry Ry Ry R+ R,

Ry

A7 = » we have

_ Rt Ry

R A - A

6 _ 6 9 (5.35)
Ry Ay By

.15 and. (5.16) , we can write

1 - A R, ||(®A R
—t . 2 il (5.36)
Ag R,
R R+ Ry
1
Ry [ (Rt Rp) £ : Rg = Ay = &g
R+ R+ R
ot Rgt Ry 5 10

73



we have from (5.36) ,
R A (1L - A)
S —— R 6 (5.38)
Rq Ag Ay
Upon introducing the notation
Ax = 1 - AX {(5.39)
and using Equations (5.26), (5.27), (5.31), (5.33), (5.35) and (5.38),
we can write the following
R A — A
6 . 6 9 (5.40)
Ry Ay by
R A, A
R 10 8 (5.41)
Ry Ay Ay
R R R A A
& R T 6 10 (5.42)
Ry Rg Ry Ay Bg Ay
R R R A, - A .
A 7 6 _ __§_.,.,_.?__ (5.43)
Ry Rg Ry Ay By
R R R A
A 6 (5.44)
R, R, R4 A, Ag
R R R, A, A
8 8 4 . 6_10 (5.45)
Ry By By Ay Bg Ag

Inspection of (5.3) and (5.6) allows us to write
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PO S o (5.46)

where
B1 = Rz[(R3+R5) (R6+R7)+R6 (R7+R8)]+(R5+R8) [R3(R6+R7)+R6R7}
(5.47)
B2 = RZ[(R3+R5)(R4+R8)+R4(R7+R8)]+(R3+R7)[RS(R4+R5)+R4R5]

(5.48)

Instead of using (5.47) and (5.48) to evaluate A, , let us d.efine

e

s (5.49)
R
3
and
B
Y = -2 (5.50)
R3
3
then by using Equations (5.40) to (5.45) , we can write
A6 (A6-A9) {A2A6 (A8A10+Alo)+A6 (A8A10+A7Alo)+A2A6A8]
X = (5.51)
T 3.3 %
A2A2A9 A7A7A8
i - — - -
A A [A (A FA V(A ~A Y(A_HFAAY] _
y = 6 1077779 6 &9 2278 »(5.52}
- 2 3 - -
AZA?_ Ag ;\7A8A8
and our first dependent-multiplier equation
A, = (5.53)

75



76

From (5.46), (5.4%9), (5.50) we have ;

%
A = B, +B

3 ,
1 R3 (X+Y) (5.54)

2

From (5.5) and (5.54) we “can write

R4R7(R2+R5+R8)+R8(RSR7—R2R6)

Rg W
A3 = : = (5.55)
X + XY X+ Y
if we define W as fhe numerator of A3.
Also, from (5.7) and (5.54) , we can write
R6R8(R2+R3+R7)+R7(RSRB_R2R4)
Rg Z
AS = = (5.56)
X + Y X+ Y
if we define Z as the numevator of AS'
Again, using Equations (5.40) to (5.45) allows us to write
-2 - — -
(A -A YA, A [A A+ A (AA - AA D]
b e 679’76 P10t Po T Tyl (5.57)
3.2+ = =
by Ay Aghihghoby
. - (A6—A9)A10A6{A85A6A7+A9A2A7+(A6--A9)A2]+A7[AgAZAS—A6A8}}
N .
A2 A2 A9 A7 A8 A7 A8
(5.58)
Equations (5.55) to (5.58) determine completely the last two depen-—

dent-multiplier equations.



From (5.8) , we can write .

R A

1 UL
—-— = —— (5.59)
Rp -4
Using (5.54) , (5.1) «can be rewritten as
A
RT = T (5.60)
R> (33Y)
3 .
from which we derive
A
Ry 2
2 = — (5.61)
R X+ Y

We note that the numerator of (5.61) can be evaluated using Equations

(5.40) to (5.45).

Multiplying (5.59) by (5.61) yields finally

=
oo

A
A
Rq

By

1

'....A
o]

A
A

Ry o Ry 1 XrE

5.4 TWIN~T ADAPTOR WITH REFLECTLON--FREE PORT

By choosing port 1 as a reflection-free port, we have

= e (5.62)
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R, = RT and from (5.8), we can write

e B
Rl+ RT 2

Absorbing the factors 2

gram of K

pliex Al

number of multipliers is reduced to nine.

5.5 CALCULATION

2K  dnside

OF OUTPUT ERROR

78

(5.63)

the wave flow dia-
shown in Fig.5.10 would enable us to delete the multi-

in the wave flow diagram of the Twin-T adaptor. Thus the

For the Twin-T adaptor, the calculation of output error is

more complicated due to the complexity of the wave flow diagram of the

matrix K . Let us assume that the dependent multipliers

5

v
A

i

A are quantized values used in hardware; i.e., we have

A~ &, , for

1 1

From the wave flow diagram of X

M

e1 + AlF
G - ea
A8M - e5
AG -~ e

as shown in Fig.5.9

Ay s

A, and

4

let us define

.64)

.65)

5.66)

L67)

.68)



’

= .
i

H+ (GAON = H+ A)N ' (5.69)
P = e + v2 (5.70)
Q = P - A ' (5.71)

We note that all the independent multipliers have no quantization error
and that- the notation A' denotes =-A,

These newly defined expressidns allow us to write

v, = H+ Aé W . (5.72)
vy =V, + eq + Ag W (5.73)
Ve = G - v, (5.74)
Ve = P + Aio Q {(5.75)

Noting that the inputs ey e3, e4, and eS ~have no truncation error
and applying Rules 1I.1 to II.4 to Expressions (5.64) to (5.71)

yield successively

€p = 53e3+ 64e4+'55e5+ ek +,ek + ex (5.76)
3 4 5
EG = AleF + EA
1
= Ai(63e3+64e4+65e5)+ Al(g?i +€K +e’[\\: )RS € 7 (5.77)
3 4 5 1
ey = &g (5.78)
ey = ASEG + €A8 (5.79)
€q = Afg F €A7 (5.80)
e. = e_+Ale  + &
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- '
Ayt AJAL) e, + A) € A FiEy tey, (5.81)
8 7 2
Ep = €, (5.82)
2
?Q = €p = €y = €p = AS €, = EAS {(5.83)

Applying the same rules to Expressions (5.72) to (5.75) gives

evz = | ey + Aé eq T £A6 (5.84)
Ev7 = €V2 + Ay gt €A9

= €y f (Aé + Ag) ey eA5 + EAg (5.85)
€v6 = € = €v7 (5.86)
€v8 = s + Aio EQ + e, 10

= (1+ A' )(e +Aéew+eA,) Alo e€a AiOEA + €, (5.87)

8 10

" To simplify the expressions of the output errors, we choose to express
each output error as a function of €q - The exact expression of each
output error can then be obtained by replacing €G by dits value given
by (5.77).

Inspection of the wave flow diagram of the Twin-T adaptor

shown in Fig.5.10 vyields

n

1 4
Ag Ay AL 6 N

(5.88)

At 1
[A7FA6(A +A A )]s + A6(A £, +e +e Y + EA,+ £



£ = g
b7 v7
= . t 1 1 t
[A74 (A6+ Ag)(A7+ A2A8)] € + (A6+ Ag)(A25A8+€Aé+€A7)
+ (eAé+ €A7+ EAQ)
{5.89)
€ = £ = €.~ €
b6 v6 G b7
= — - £ N 1 7 — T T
[1 A7 (A6+A9)(A74 AZAS)} o (A6+ Ag)(A2€A8+sAé+EA7)
- (e ,+e, +¢e, )
Ag Ay Ay (5.90)
£ = g
bg Vg
. ' 1 Tt oAt ot
[(1+ Alo)(A7+ A6A7+ A2A6A8) A10A8] o A108A8+ EAJO
+ (1+ A} DAl (Ale, +e,,+ e, )+ (e,,+ e, )]
10 62 AS A2 A7 A6 A7
(5.91)
£ = £ + € = £ : (5.92)
bl b6 b7 G
£ = € - € = Ag.+ €
b3 v7 v2 97V A9
_ 1 1 I -
= A9(A7+A2A8) eG+ Ag(aA + AzeA b EA,) + £y (5.93)
7 8 2 9
£ = I S - € = g.- &€
b4 Ve v, o Vg G b8

il

_ ' ' Pl Al ' _
i1 (1+A10)(A7+A6A7+A2A6A8)+\10A8] EG + AlOEAS EAiO

- (I AL AL (e, + Al

10 y +€A,)+(€ + ¢, )] (5.94)

1
7 dg Ay Ay Ay

and finally
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il

v o opt tata
AlO(A74 A6A7+ A2A6A8 A8) €. + EAiO

. t 1 ] —
+ Alﬁ[ A6(€A7+ A2€A8+ sAé) + (EAé+ eA £

(5.95)

Having calculated the output error of each adaptor and having
obtained the necessary wave flow diagrams, we are now able to present
in the following chapter a design procedure using the investigated
.adaptors and a magnitude truncation scheme which guarantees the zero

input asymptotic stability of the wave structure.



CHAPTER VI

DESIGN PROCEDURE AND SIGNAL TRUNCATION SCHEME

In this chapter, a general wave cascade design procedure from
a reciprocal analog filter is outlined. Then a signal truncation sche-
me to eliminate granularity and/or ovexflow oscillations is given. Me-
thods and means of simulation of the hardware realization are presented.
Finally, three illustrative examples of wave digital filter using the

investigated structures are described.

6.1 DESIGN PROCEDURE

It is well known that any linear,lossless, reciprocal, conti-
nuous-time referemce filter derived from Darlington cascade synthesis
or from Fettweis' transfer matrix factorization method requires for
its realization the following reciprocal zero-producing sections

1) the zeroth-order section such as the two-port transformer
which can be realized digitally by Fettweis [10] or Nouta

[23].
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2) the first~order section which consists of a reactive ele-
ment in series or in shuﬁt and which can be realized di-
gitally by Fettweis' n—-port adaptors [11].

3) the second-order sections suqh as the Brune section and
the Darlington C-section which can be realized digitally
by the adaptors given in Chapter IIIL.

4) the fourth—order section such as the Darlington D-section
which can be realized digitally by the adaptor investiga-

ted in Chapter IV.

Since these basic adaptors all have a reflection-free port, a
wave cascade synthesis which translates any linear, lossless, conti-
nuous-time reference filter derived from Darlington cascade synthesis
or from Feftweis‘ transfer matrix factorization method into a wave di-
gital form is thus possible. Such a general design can be outlined
as follows :

A) From the reference filter, we can identify the cascaded
zero-producing sections and draw the equivalent wave casca-
de realization using the reciprocal zeroth, first, second
and feourth—order wave adaptors.

B) We choose the reflection-free ports for the directly con-
nected adaptors of the equivalent wave cascaderrealization.
This usually leaves one adaptor with no reflection-free
port.

C) For every adaptor

c.1) We attribute to each port resistance its corresponding
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parameter X, imposed by thg-element oY source to which
the port belongs.

c.2) In case of a reflection~free port, the port resistan-
ce must be set equal to the input resistance Rin'

c¢.3) From the sets R and N, we calculate the set of mul-
tipliers T =M+ H.

( + denotes set union and R, N, T, M and H are already
defined in Chapter II )’

c.4) Given a certain tolerance on the sets R and N, we
quantize the set M to get a suitable set ﬁ .

c.5) From the set Q , we calculate the set ﬁ using the
dependent-multiplier equations.

c.6) From the calculation of the output error and from the
choice-of the implementation of the magnitude truncation
which is necessary to suppress zero input oscillations ,
and which will be described in the next section, we can
decide on the quantization of g to get the set % .

c.7) Using the sets ﬂ and ﬁ , we calculate the new set
of port resistances E which is to be used in the ceor-

responding adaptors.

c.8) We repeat step c.l to step c.8 for the next adaptor.

6.2 MACNITUDE TRUNCATION METHOD

The calculation of the output error of the investigated struc-



tures has produced the following result. Tf b is the exact output of
the associated linear filter of which all the dependent multipliers are
realized exactly and all the multiplications are carried out exactly
(without aﬁy rounding or truncation error), then the actual truncated
output b, of the actual nonlinear filter with its dependent multi-

pliers quantized is

b = b -~ € ' (6'1)

where Eb is the calculated total error of the output b .

Tf N is the total number of multipliers of the realized wave
flow diagram of an m-port network, then we can write for each €y

using for example Expression (3.48)

. N N
€ = L x, €, ~- L y,E& + Z (6.2)

where

X, and y; are positive constants determined from the cal-

culation of error in a partieular adaptor.

Ei is the truncation error after =multiplier i

ZA is an amplitude-dependent expression which can be written

explicitly as

K 5

Z, = iil z; (£ A ) (6.3)

where

]
=,

z, are positive constants determined from the czlcuiation
i

error; z, are functions of the quantization errors ol the



dependent multipliers; i.e., zy = fi (51,62,...,6L) s (L
.is the total number of dependent multipliers )

Ai* can be any input &, » Or any output bi’ or any interme-—
diate truncated result inside the filter.

The -+ or - sign inside the brackets is determined by the

numerical calculation of output error.

The Theorem in Chapter II has given a sufficient condition
that guarantees the wave adaptor to be asymptotically stable for zero

input. Let bi be the modified outputs, then they must satisfy
(6.4)

Let us assume that the hardware realization uses fixed-point
arithmetic with two's complement representation for the signals bet-
ween building blocks. If there are m bits dg’ dl, eiaey d in a

-1

number, its value is given by

m-1
- _ -u -
dDA dledB""" dm—l = do + dp 2 {6.5)
u=1
. . , , -+l ,
The highest value which this number can take is 1 - 2 , and the
lowest is -1 .
We note that we must provide enough additional <Iront bits

inside the filter to avoid discarding any possible overilew which mav
occur before the output stage. This can be done by inspecticn of the
wave flow diagram. A rule of thumb is to previde =n zadditicnel bits

n o, C s
for an adder of up te 2 inputs. Thus, we have to provide rour addi-

tional front bits for the Brune, the Darlington C and 9 acdaptor if



all the multipliers are less than 1 , and four additional front bits
for the Twin-T adaptor.
Against possible overflow oscillations when the output is

elther greater than 1 or lower than -1 , any number bO of the form

(6.5) 'satisfies (6.4) in either case and is thus acceptable. Hence, -

we can reduce the output b either by a saturation characteristic or
by a "modulo 2" characteristic as mentioned by Fettweis and Meerkotter

f16] , and by Claasen et al. [5].

Against granularity oscillations, we can use the following

scheme. Let us define

N N
Sp = an upper bound of izlxi g = ( iil X Ei)max (6.6)
N N
: Sn = an upper bound of 'Z Yy €5 = ( .Z Y i)max (6.7)
i=1 i=1
. . -mt+1
These bounds are easily found by letting, for example, e, = 2

For each zg of (6.3), we can find an upper bound Ei which is given

by the quantization characteristic shown in Fig.6.1 where q = 2 .

z,
i
IR % Uit s
|
/04 ) SO ! |
t
gl -~ - 1 l
! '
{ [
2 b . ! { i [ Fig. 6.1 Quantization
[ TR I
q 1 i ( i characteristic
: : 1 1 t
0 3 A X } L for =z,.
q 2q 3q 4q 5q z; . *
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5

To obtain the corrected outputs ., bi from the actual ocutput

bi* , the following logic flow diagram is given in Fig.6.2.

Care should be taken when the magnitude of b is less than

*
one of the upper bounds. To avoid ~error in that case, the output 1is
simply.set to zero whenever there is a change of sign after each cor-
rection as shown in Filg.6.2.

Since the =z

i's are equal to a power of 2 , the product

Ei ( + Ai*) is simply obtained by retaining some of the most signifi-
cant bits of Ai*' Therefore, no extra multiplier is required in the
realization of the logic flow diagram of Fig.6.2. Tor example, a possi-
ble hardware realizaéion of the logic flow diagram of Fiz.6.2 with

K = 2 is shown in Fig.6.3. We note that there are K iterative cells.
Each iterative cell contalns two exclusive-or gates and one adder.
The '‘add enable" input of the adder (1) dis controlled by the Oth

bit of the output b, which adds the preset (- Sn) or ( Sp) to b,.
The exclusive~or gate (1) detects the change of sign and clears

the output register. The quantities i;i Ai* need not be stored since
they can be wired directly from the Ai*' The output of the exclusive-
or gate (2) will eﬁable the adder (2) to add jﬁi Ai* or O to.
the input of the adder (2) . Again, the output of the exclusive—-or
gate (3) will detect the change of sign and will set the output re-
gister to zero. The operation of the next iterative cell is didentical
to the first one.

Since the available range of the hardware is [ -1, 1 1, we

have | Ai*‘ < 1 for i =1 to K. Thus, it is possible to find



Actual output ‘b,

dy= 0 dg= 1
| by > 02
Vs - N
Add ({ ~Sn ) Add S
to b* to b* P
g | &
i=1 i=1
b = S
b
Add
to
A (+4.) <0
—«i:-':
i = i+1 B4
v
L M
Y &

Fig. 6.2 Logic flow diagram used to modify any output b,

-

to satisfy the asymptotic stability condition.
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bit

Enable |

® (1)
4ag]Enable o™ bit
ADDER __.__._..> ADDER
(1 (2)
7
i T 4\’ Add | ?

Preéet to 0
or 1 depen-
ding on the
logic flow

diagram.

0

*“ (5)

Register

th . . Clear

bit
k-

Preset to O
or 1 depen-
ding on the
flow

diagram.

logic

0

QUTPUT REGISTER

Fig. 6.3 Possible hardware realization of the logic flow diagram shown in Fig. 6.2 with X =.2.
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Actual output

by

dg= © Check do= 1
sign bit of
b,
w
\ 7
b0= b, - (S +2) b0= b, + (s + Zu)

Check
sign bit of ~ sign bit o
bO b = O bo
d0= 0 d0= 1
3 b = by

Fig. 6.4 Alternate logic flow diagram for magnitude truncation.
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an upper bound of ZA as

K
= X

K
Zy = ¢ E i lAi*l )max z

(6.8)
=1 3=1 *

An alternate way to modify the outputs b, to satisfy (6.4) is now

given by the logic flow diagram shown in Fig.6.4.
A possible hardware realization of this logic flow diagram is

shown in Fig.6.5

by E‘_".‘:‘;“'\V ADDER §> OUTPUT REGISTER

)
-nable Register | Clear

ot pie ot bit

W

Fig. 6.5 Possible hardware realization of the logic

flow diagram shown in Fig. 6.4.

where the Oth bit {the sign bit do) of b* will enable the adder ¢to

- S + d tth itput regis i
add ( €n+ Zu) or ¢ Sp Zu) to b, and the outpu ag er 1is

T

cleared if the output of the exclusive-or gate 1is 1 ; i.e., if there
is a change of sign.

The hardware realization of such a logic diagram is much sim-
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pler than the previous one since there are no iterxative cells. However,
to avold large error, Zu must be comparable in magnitude to SP and
Sn s hence a longer word length representation for the dependent mul~
tipliers is necessary since the zi's depend.on the quéntization error
6i's. Thus, the choice of Gi is determined by the magnitude truncation

method wused to eliminate parasitic oscillations.

6.3 SIMULATION

Having calculated the sets of multipliers ﬁ and ﬁ s we
simulate the filter and obtain the impulse response éf the wave digital
filter. A PDP 11/40 mini-computer has been used for the task. It is a
16-bit general purpose computer using two's complement arithmetic with
8K of core memory. The programming languages used are

~a) BASIC : By using BASIC, all arithmetic operations are
performed in floatingwpoiht with great accuracy thus there
is almost no truncation error. '

b) ASSEMBLER : By using ASSEMBLER, all the arithmetic ope~-
rations of the hardware which uses fixed-point arithmetic
with twe's complement representation are simulated in
software. Magnitudé tyuncation of every output signal ac-

cording to (6.4) dis implemented.



From the calculated impulse response using elther BASIC ox
ASSEMBLER, it is possible to determine the frequency response of the
simulated filter by using an available subroutine language called
SPARTA which computes the FFT of thé impulse response and yields
both the magnitude and phase response of the filter. A graphics ter-
minal which is part of the PDP 11/40 system is used to display those
responses.

In the following section, we present three illustrative exam-
ples of filters using the Brune section, the Dariington D-section and

the Twin~T section.

6.4 TLLUSTRATIVE EXAMPLES

6.4.1 TFirst Example : TFifth-order elliptic low-pass filter.

The data of a fifth order elliptic low-pass filter designated
as CC 05 20 36 is given by Zverev [31], Its frequency response is gi-

ven by Fig.6.6 and its circuit is given by Fig.6.7, where

R, =140 » C 1.21244 F ¢, = 0.11019 F

1 1 > 72
L2 = 1.23669 H , C3 = 1,85307 F . C4 = (.30614 F
L, = 1.04011 H , C. = 1.05244 T , R, = 1 Q

4 5 5

Let us consider the circuit shown in Fig.6.8 . First, we de-
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Attenuvation (dB)

wtm e cenm w8

fioemn  cmmy amed d me —— m— —

2.7089

Normalized frequency

Fig. 6.6 Attenuvation characteristic of the reference filter.

Fig. 6.7 The reference filter of the first .example.
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¥
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1
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i

Cll hasamiend i Ct

Fig. 6.9 Equivalent circuit of Fig. 6.8.

Cll .

Fig. 6.10 FEquivalent circuit of Fig. 6.9.
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compose the capacitance C_ into two capgcltances C; and C; such
that
1 + T -
C cy C , _ (6.9)

X

1 1 =
CX Cy + CX Cz + Cy CZ = 0 (6.10)

to obtain an equivalent circuit of Fig.6.8 as shown in Fig.6.9.

Solving Equations (6.9) and (6.10) yields

C
¢ = ¢ o+ —% (6.11)
p:4 X
k
where
c C +cC
kK = 1 + —d—m = £ 7 > 1 (6.12) .
Coc c
Z z2

From Guillemin [17], an equivalent circuit of Fig.6.9 1s given by

¥Fig.6.10 , where

2
L = L k 6.13
. ( )
CZ
C = (6'14>
k
1 C
n = 1 - — = @ —a < 1 (6.15)
k Cz+ C

Applying the above t%ansformation to the loop of capacitances (CB’ CA’
CS) of Fig.6.7 vyields the circult of Fig.ﬁ.ll.

Applying again the transformation to the loop of capaﬁitances (Cl, CZ’
C¥) vyields the final equivalent circuit of the reference filter as

3

shown in Fig.6.12., where

LA = 1.733225 1 , CA = 0.815285 F
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:::: T
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Fig. 6.12 FPquivalent circuit of the reference filter.



- C, = 1.989698 F

‘ 3 .-
L, = 1.370243H  , ¢
n, = 0.225338 , my, =0.0499825

¢f =1.304183F , R, = 0.985839 0

and which uses two Brune sections and a total number of five reactive
elements. We can draw by inspection an equivalent wave cascade reali-

zation as shown in Fig.6.13

Fig. 6.13 Wave cascade realization of the reference filter.

which uses one threefport parallel adaptor of Fettweis and Sedlmeyer
and two Brune adaptors labelled Ba and Bb' Port 3 of the parallel
adaptor and port 1 of Ba are chosen as reflection-free ports. The
structure is canonic in the number of delays since the order of the
filter is five,

Upon imposing a 5% relative error on the set of dependent
multipliers and applying the steps of design outlined in Section 6.1,

we have the following set of multipliers for the wave filter
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a) For Ba :

213 = 1- £3a

° - 7 -

Lgg = 32 a

2 - i3 .

QBa a b4 h

" - 29 _

IZ'421 - 64 .

~ 13 x 1399

n, = T/
78816

b) For Bb

0 . 2 _

glb 8 -

~ 1

fb T T B -

0 - 45 _

23b T 256 -

. - -89 _

24b T 512 -

~ 18 x 23

np = ==
8653

0.23075264

0.047844678

¢) For the parailel adaptor

Upon using the transformation

shown in Fig.6.14

, where

(6.16)
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b
L1113
lin |1
i
L e cb
C, == m= C
L <
T

Fig. 6.14 Transformation of the Brune section into

a ladder structure.

1

— C! i R!
>

Fig. 6.15 Modified reference filter resulting fron the

quantization of the independent multipliers.
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C - nt (6.17)
b 1 - m2
C
CC = —— {(6.18)
1l -n
2
L = L (1 - n) {(6.19)

and the above multipliers, we can draw the corresponding modified lad-

der filter shown in Fig. 6.15 , where

Ri = 0.985839 & , Ci = 1.20450 F s Cé = 0.10468 F

Lé = 1,24128 ®H , Cé = 1.84201 F s C& = 0.31369 F
| B - S

L4 1.02263 H , C5 1.064575 F s R5 180

By comparing these new values with the original values, we have at
most a 5% relative error in 02 . If we were able to realize linearly
the wave adaptor, then its performance would be similar to the conti-

nuous structure shown in Fig.6.15. Instead, due to the finite word

length available in the hardware realization, the quantized multipliers

5 i o a. U hoosi

n, and mn, are used. Upon choosing
Y. g2t 78 L2
A
?{B R

and the simplified magnitude truncation scheme shown in Fig.6.4, it can
be shown that up to 3 bits are used to modify the outputs Lo suppress
granularity oscillations. In other word, if the signals at the delays

~ . = ~ 1
are represented by n bits of the format dyh dld2 . dn-l ,
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then the magnitude-truncated outputs are obtained from the actual

outputs by adding or subtiacting at most a numerical value equal to

7 x len according to the sign of the actual outputs; i.e., we add

if the outﬁut is negative and subtract if the output is positive.
Simulation of the hardware realization is then carried out

by a program written in Assembler language. Photograph 1 shows the

impulse response which is finite due to the magnitude truncation of

the output . Photograph IT shows the attenuation cbaraéteristic vs

the fractionél bandwidth f/fS where fs is the sampling frequency or

operating frequency of ;he filter. Photograph 1II shows the-passband

characteristic wvs the fractiomnal bandwidth. Tc compare these charac-

teristics with the criginal attenuation characteristic shown in Fig.

i

6.6 , these graphs have to be plotted again vs the frequency ¢

h

Tf ,
tan .
f
s

Thus, the computer printout for Photegraph IV gives the

location of zeros of transmission

¢, = 1.7907
¢, = 2.822

and the minimum attenuation Amin in the stopband
Amin: 51.82 dB , for 1.7158 < ¢ < o0

We note that $ = o when f/fS = 0.5 .

~ The computer printout for Photograph V gives the maximum ripple Amax

in the passband

A= 0,192 dB , for 0 < ¢ < 1
max = -

These values which have been obtained without using-any Ilteration in
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PHOTOGRAPH T Impulse response of fifth-order wave digital

low-pass filter.
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PHOTOGRAPH TII Passband characteristic vs f/fs'.
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theboptimizatien procedure are close to the original specifications.
If they are to satisfy the specifications, one could always go back to
optimize the multiplier wvalues or to start the design with another
set of network parameters which exceed the original specifications.
As a possible application, such a fifth order elliptic wave
digital filter could be used in PCM codecs that convert voice to

digital signals as mentioned by Falk [32].

6.4.2 Second Example : Tenth order equiripple delay and attenuation

. low—pags filter.

The reference filter of the second example has been taken from
Kwan and Bach [33]. It is shown in Fig.6.16.

The finite zeros of transmission of this filter are given as

£, = 1.039051% j , £, = -1.0390514 j
fjr - 1.3472503 § , £, = -1.3472503 j

£ o= -.31959 + .20921 § , £ = -.31959 ~ .20921 ]
£,= .31959 + .20921 j , £g = .31959 - .20921

It is a tenth~order”equiripple delay and attenuation low-pass filter,
the specifications of which are given by the following :
a) Minimum stopband attenuation Amin = 63 dB , for 1.013 <w < w
b) Maximum passband attenuation ripple Amax = 0.164 dB , forx
0 < w < 0.4 rad/s

¢) A linear bhase over 0‘§ w- < 0.7 rad/s with a mean time

delay T = 15.355 s.
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Fig. 6.16 Refercnce filter of the second example.
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We note first that Martens' and ‘Meerkdtter's Bridge~Tee adap-
tor [27] might have been used together with Fettweis' and Sedlmeyer's
adaptors [12] to realize the filter in wave digital form if the induc-

tance L, were positive. Since L6 is negative, we might not be able to

6

guarantee the asymptotic stability of the wave filter under zero input.

The two loops of capacitances (Ci, C2’ C3) and (C3, Cé’ CS) can be
transformed into two Brune seétions using the transformation given in
the first example. For the remaining Bridge~Tee structure; we proceed
in the following manner.

First, let us consider the Bridge-Tee structure shown in Fig.
6.17. Analysis of the structure yields the input impedance zin as

. - lez(za+zs)+z324(Zl+zz)+zllzs(21"“23)+Z3z5(21+22) ' 6.20)

in
Zl(zz+z3+zs)+22(23+Z4+Z5)+Z4(Z3+25)

Upon letting

Zl = LS s = 5.242296 s
22 = L7 s = 4,58035 s

1 - L606 52 14 1.05375 x 8.83105 82
7z = =

3 C6 s 8,.83105 s
1 1

Zé = = ————

CSS 0.38932 s

1 1

Zg = 1 T 1

C7 s 4+ 2.449091 s + ——

R 1.040802
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Fig. 6.17 Bridge-Tee structure.
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Fig. 6.18 Realization of Zin'
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7
the input impedance Zian) can be written as

342.42718A+1l5.91183+64.8782+9.4376S+l
Z, {8) = -
in 115.0285 +45.12655 +119. 41055433 59752411 . 286+0.960798
(6.21)
Upon removal of a parallel capacitance C = 115.028 ¥ = 0.3359204 F ,

342.4271

the remalning driving-point impedance ZR(s) is

1
ZR(S) = Zin(s) T
Cs

(362. 42718 64 .87 %+1)+ (115.9116°49.43768)

(6.18965%+30.4266452+0.960798)+(97. 61938 +10. 9442s)
(6.22)
If ZR(S) is to be realized as a resistively terminated lossless net-
work, then the zeros of transmission are the roots of the following

polynomial

4

(342.427ISA+64.8752+1}(6.18965 +30.42664sz+0.960798)

- (115.91153+9.43768)(97.619353+10.94425)

P(s)

i

= 2119.4881555-494,727565%4119.1225885°-10. 533355240, 960798
(6.23)

Solving P(s) = 0 vyields the quadruplet of zeros of transmission

s, = £0.319613 + 0.209261 j (6.24)

which corresponds to the given frequencies fS’ f6’ f7, f8'

Knowing SO’ we can realize ZR(S) using a Darlington D-sec-

tion. According to Scanlan and Rhodes [34], the elenent values of the



Darlington D-section can be found to be the one given by Fig.6.18 which
shows the realization of Zin(s).
C = 0.33592 F with

Combining the capacitance of Fig.6.18

C5 and then using the transformation given in the first example yield
the realization of the given filter which features two Brune sections
and one Darlington D-section as shown in Fig.6.19. We note that the

realization contains ten reactive elements. From Fig.6.19, we can draw

the equivalent wave cascade realization with the chosen reflection-free

ports as shown in Fig.6.20. The wave realization has two Brune adaptors

ilabelled Ba and Bb’ one Darlington D adaptor labelled D, two 3-port
parallel adaptors of Fettweis labelled Pa and Pb, and one 3-port series
adaptor of Fettweis labelled S. It is canonic .in the number of delays
since the number of delays ié equal to the order of the filter which
is ten .

- Upon dimposing a 3% relative error bound on the set of depen-

dent multipliers and applying the design steps outlined in Section 6.1,

we have the following set of multipliers for the wave digital filter

a) For D :
Eld = ~5—59_—2~ = 270y 7
Eéd - % - 27
£3d= l”gla‘gsd - %
Ead - 1'%— = 2t - o
PN = TS

5d 256
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’st - "“?‘3"2" = -2 2
54 = 0.1366058511
;5 = - 1.117849167
b} For Ba
Ela = 1 - £3a = I =1 -2
g2a = 522 = 20 4 27
EBa - —18_ - 2’—3
E4::1 N 13—5 - ?&2 - 2—4
ﬁa = 0.1606524636
¢) For Bb
Elb - = = a1+t 34 07
Ezb = - %zli = - 2_~3 PRI
EBb - %i = 2P 7
A - 7
;b = 0.1442006
d) ¥or P
o = i3 = 27 0 g g
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~ ) . )
e) For Pb :
~ B 17 B -2 ~6
o = i = 274 2
f) For S :
~ _ 19 _ -1 -3 -5
o = 35 = 2 74+ 2 2

Corresponding to the above multipliers, we would_have a modified refe-
rence filter as shown in Fig.6.21, By comparing the new element values
with the original vglues, it can be seen that the highest relative er-
ror is 4.86% for the inductance of the Brune section which is adjacent
to the Darlington D-section. All the other relative errors are less
than 3%.

Upon choosing

N, = 27347078 _ 5713

4

e T B R et B e
?{a = 27342 8

A, - - - - _

Boo= 2704208 g2 e

and the simplified magnitude trunéation scheme as shown in Fig.6.4, it
can be shown that up to 3 bits are used to modify the outputs to
suppress granularity oscillations.

Simulation of the hardware realization is carried out by two
programs, one written in BASIC and one written in ASSEMBLER, with

: AV VIR ¥ n,
both using the quantized dependent multipliers Doy N, ony, and ng.
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Running the program under BASIC introduces practically no
truncation error because all arithmetic operations produce results in
floating-point humbers which have a wider range than fixédnpoint
arithmetic . Photograph VI shows the impulse response of the
filter which is decreasing rapidly.towards zero. Photographs VII
and VIII show, respectively, the stopband and the passband attenuation
characteristics vs the fractional bandwidth f/fs . Photographs 1IX
and X show again the same curves in Photographs VII and VIII which

TE . Coag
are plotted vs the frequency ¢ = tan T to permit a direct
8

comparison with the original specifications of the ceontinuous—time
filter. From the computer printout for these photographs we have

a) zeros of transmission at ¢1 = 1.0503 , ¢2 = 1.2895

b) A . = 58.8 dB , for 1.0062 < ¢ < o
min inad

c) A = 0.15535 dB, for 0 < ¢ < 0.4
max — —

Photograph XI shows the phase of the filter plotted wvs ¢ which is

linear over 0 < ¢ < 0.7 with a2 mean time delay

13
.85

i

T = 15.2941 s

These values have been obtained if there is almost no truncation error.
Running the simulation under ASSEMBLER gives the following results.
Photograph XII shows the finite impulse response and Photograph XIII
shows the stopband attenuation characteristic wvs f/fs. From the com-
puter printout for these photographs we have a

A, = 59 dB , for 1 < ¢ < ®
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and two zeros of transmission at

4, = 1.0248
%)

The computer printout for Photograph ZXIV gives a maximum ripple

i

1.2895

A = 0.2323 a8 , for 0 < ¢ < 0.4
max ST -

Photograph XV shows the phase plotted vs ¢ which is still linear
over 0 < ¢ < 0.7 with a slope T = 15.2941 s . The curve
seems to be the same as the oneralready shown in Photograph XI.

We note that truncation error in this case has degraded the
performance of the filter in the passband. In the stopband, the zeros

are displaced but the stopband attenuation is still as good as the

one shown in Photograph VII.

6.4.3 Third Example : Twin-T filter.

As reference filter for the third example, we have the fol-
lowing Twin~T filter shown in Fig.6.22.

According to Appendix II, if we let

R, = R, = 1 @
Cg = C, = 1.5F
L4 = L5 = %- H
L7 = 1 H
Cg = 1F

then we have the transfer voltage function -
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v, ( s2 + >1 )
tv(s)= e

€y

3

£
26045, 33357411, 3338 112, 44h4s H10. 3338245 . 33342

(6.25)

From (6.25) , it ig seen that the transfer function has third-order
zeros of transmission at w = + 1 . The Twin-T filter behaves as a
notch filter at the frequency ® =+ 1 witha 3 dB rejection band-
width over the range 0.465 rad/s < W < 2,125 rad/s .

We immediately can draw the équivalent wave realizatilon upon
labelling the Twin-T adaptor as the block TT in Fig.6.23.‘

We note again that the realization is canonic in the number
" of delays since the order of the filter is six

Using the given numerical element values then following clo-
sely the design steps detailed in Section 6.1, we have the following
set of multipliers upon imposing a tolerance of 0.5% on the dependent

multipllers AB’ A4, A which are , respectively, 0.136364, 0.5 ,

5
and 0.136364.

21 = %%% - 27l ol 2;5~ o8

23 = 0.135931

;4 = 0.499556

Es = 0.13602

N - PRETEP RTINS P

6 512

127
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27 = -g%;— I T AP AT ey P
a = Sy = 22 a7 o
Klo = 3 =227

The modified reference filter corresponding to the above set of multi-
pliers is shown in Fig.6.24.
It can be seen from Fig.6.24 that the highest relative error

is 0.56% for the inductance L

»
0.665507 H 0.665074 H
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5
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1.5059946 F 1.499999 F '
I 11

¥ I

<>
0.9%944 H

Fig. 6.24 Modified reference filter,



Upon choosing

2(3 TR TR A S PP
v - —
PR RS
4
X = 273 ol 78l 710, o-12

5

and the simplified magnitude truncation scheme as shown in Fig.ﬁ.A,Iit
can be shown that up to 3 bits are used to modify the outputs to sup-
press granularity oscillations.

We note that the low tolerance 0.5% dmposed upon the depen-
dent multipliers requires a longer word length representation of the

ta) o~

guantized independent multipliers such as A6, Aj and XB'

Simulation of the hardware realization has been again carried
out by two programs, cne written in BASIC and one written in ASSEMBLER.
Photograph XVI sﬁows the impulsé response of the filter
obtained from the BASIC program. Photograph XVII shows two frequency
responée curves : the fainter one is the frequency response of the
ideal linear filter s f/fS and the brighter one is the frequency

response of the simulated filter without truncation error vs f/fc.

The computer printout for these curves shows a displacement of the

zeros of transmission from the original ¢ = 1.0 to the frequency

¢ = tan 7(0.2588) = 1.057 , and a lower minimum attenuatiocn in the
neighborhood of this zero of transmission probably due to the resolu -
tion of the FIT 'subroutine SPARTA.

The impulse response obtained from the ASSEMBLER program is
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shown to be finite in Photograph XVIIL. Photograph XIX shows the deg-
radation in performance of the hardware realization of the filter when
there is truncation error i the fainter curve -corresponds to the fre-
quency response of the filter when there is no tyuncation error and
is " a ‘duplication of the brighter cuxve of Photograph XVIL while
the brighter curve corresponds to the frequency response>0f the actual
hardware realization of the given filter. Photograph XIX shows no
change in the passband but it does show a smaller attenuation in the
neighborhood of the zero of transmission. This dégradation of perfor-
mance is expected since the filter has been 'passified" and thus has

lost its good insensitivity property in the stopband.



CHAPTER VITI

CONCLUSLONS

In thils thesis, wave adaptors for the Brune section, the Dar-
ldngton € and D sections, and the Twin-~T structure have been deri-
ved together with the necessary formulas and wave flow diagrams for
their realization .

The wave adaptors for the Brune section, the Dariington C
and D sections have beeﬁ realized without any unit elements and
since they all may have a reflection~free port, these sections together
with Fettweis' parallel, series, and lattice adaptors as well as
Fettweis' or Nouta's wave realization of a transformer are sufficient
to translate any reciprocal cascade realization resulting  from
Darlington's cascade synthesis or from Fettwels' factorization of the
transfer matrix into a true and direct wave digital cascade synthesis.

The investigated adaptors mentioned above are canonical in

the number of delays. The wave adaptors for the Brune section and the
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Darlington C-section each require a total number of six multipliexs
of which two are identical multipliers. The wave realization of the
Darlington D-section requires a total number of gleven multipliers
of which there are two pairs of identical multipliers.

The Twin~T adaptor requlires a total number of ten multipliers
of which seven are independent multipliers. Lt may have a reflection-
free port. For the structures investigated in this thesis, the presen-
ce of a reflection-free port always reduces the total nuﬁber of multi-
pliers by omne,

For the hardware realization of the investigated adaptors,
the optimization problem for the gquantization of the independent mul-~
tipliers has been formulated and proven to always have a solution if
the dependent-multiplier. functions are continuous. Although the thesis
does not offer an optimization technique, such a technique can be
chosen among the already available programming techniques,

A sufficient condition which guarantees the zero input asymp-
totic stability of the»investigated structures together with some 7ru-
les to calculate the output errors of the hardware implgmentation using
fixed-point arithmetic and two's complement arithmetic representation
from the wave flow diagrams has enabled us to present a magnitude
truncation scheme which determines the quantization of the dependent
multipliers and which guarantees the zero input asymptotic stability
of the hardware realization by means of a simple arithmetic procedure.
Though the performance of these adaptors is expected to be degraded

due to thig magnitude truncation procedure, the effect of such an error
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on their performance still is subject to further investigation.
Illustrative examples of filters using the investigated adap-

tors have been designed and implemented on a small PDP 11/40 computer.

Their respective impulse responses are obtained and show no granulari-

ty and/or overflow oscillations, as expected.



APPENDIX X

WAVE FLOW DIAGRAMS OF SOME BASIC CIRCULT ELEMENTS

In this appendix, we present the wave flow diagrams of some
basic circuit elements as derived by Fettweis [10] upon applying di-
rectly the bilinear transformation to these elements. The instanta-—
neous incident wave a{t) and reflected wave b(t) are defined by
means of a port resistance equal to the resistance constant R occur-
ring in the definition of the element under consideration. The follow-
ing table will give the wave flow diagrams of gome basic cilrcuit ele-
ments such as a.resistive source, a resistance R, an inductance and a
capacitance together with the difference equations which result from

the wave digital realization.

ELEMENT . WAVE FLOW DIAGRAM DIFFERENCE EQUATION
R
+ R L
e(t) Y ) al{t) = e(x)
=
- g b -
Resistive source.
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WAVE FLOW DIAGRAM

DIFFERERCE EQUATION

Resistance R.

ELEMENT
lu a
o .__,%__{ }
g womeme
v §R () = 0
: b =0
- G o

- G b 5 ‘m(w‘@_

Inductance of impedance

b(t) = —-a(t-T)

Capaciltanceof impedance
R/Y

RY
l\ a _..._‘.?,._—1_.
+ Q  eeelpr
R . b(t) = a(t-T)
. o B T (&) = a(
- : b | D S——
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APPENDIX  IT

VOLTAGE TRANSFER FUNCTION OF THE TWIN-T STRUCTURE

Let us comsider the Twin-T filter as shown in Fig.II.A, where
(1) , (2) , (3) , (4) and (5) are the vertices of the network.

Upon transforming the voltage source ey into the Thevenin's
current source Il = Glel ,2we have the equivalent network shown in
Fig.II.B.

According to Seshu and Reed [35) , we can write

v 2
2. 12,3 (I1.1)
Il v oY)
where
VY = I {(tree-admittance products)
and
5T is the sum of 2-tree products in which the ver-
2 12,3
3

tices (1) and (2) are in one connected part and the vertex (3) is
in the other connected part.

The voltage transfer function can be written from (II.1) as
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Fig. I1.A Twin-T
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3
p ¢, =
| L gel . 2 =
(3
Fig. IT.B Twin-T filter with current source I.= G, e

1

1

1
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g, = 2 = 12,3 (11.2)
e v (¥)
where
b T2 12.3 = Y3Y6Y8+ Y4Y5Y7+ Y3Y5Y6+ Y3Y4Y5+ Y4Y5Y6+ Y3Y4Y6
and
V_(Y) = Gle(Y7Y8+ Y5Y6+ Y3Y4+ Y4Y6+ Y3Y5+ Y3Y8+ Y4Y7

+ Y6Y8+ Y5Y7) + G1Y3(Y7Y8+ Y5Y6+ Y4Y5+ Y5Y7+ Y6Y8

+‘Y5Y8+ Y4Y6) + GlYS(Y6+ Y7)(Y4+ Y8) - Y7Y8(Y3Y4

YN A VNV Yok VY YY)+ GV, (VY YT

+ Y5Y7+ Y6Y8+ Y6Y7+ Y3Y5+ YSYS) + Y6Y8(Y3Y4+ Y3Y5

+ Y2Y3+ Y4Y5) + Y6Y7(Y3Y4+ Y4Y5+ Y3Y5+ YZYS)

+ Y3Y5(Y4Y7+ Y2Y6+ Y4Y8)

Upen letting

Y3 = CBS{
Y = L
4 I.,s
4
Y = 1
3 L_s
5
&6 = C6s
v - 1
L_s



we have

where
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Y

t, ()

C

+

4

+

+

4

4

+

B
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= —= = - (11.3)
el D
Icec,Cc L, L L s6+ C,C.L_{(L,+ L )34 + L {(C+ ¢ )sz%l}
1 376 8747577 376774 5 73 67"

6 .
3C6C8L4L5L7(Gl+ Gz)s + I G1G2L4L5L7C8(CB+ C6)

- . 5
CBC608(L4LSF L4L7+ L5L7) I1s7 + ] GI(CBCSL4L5

C3C6L4L?+ C3C8L4L7+ C3C6L5L7+ C6CSL4L7) + G2(06C8L4L5

4
C3C6L5L7+ C6C8L5L7+ C3C6L4L7+ C3C8L5L7) Is

[ G1G2(08L4L5+ C6L4L7+ 03L5L7+ C6L5L7+ C3L4L7)

3
C6C8(L4+ L7) + CB(C8L5+ C6L5+ C8L7+ C6L4) Is

[ L7(Gl% Gz)(C3+ C6) + LA(G1C8+ G1C3+ G2C6)

) .
G2L5(C6+ C8) Is™ + [ C34 C6+ C8+ Gle(Lé+ 15) Is

{ Gl + G2 )
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