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Abstract

The thesis is based on using dynamical systems theories and techniques to study the
qualitative dynamics of herpes simplex virus type 2 (HSV-2), a sexually-transmitted
disease of major public health significance. A deterministic model for the interaction
of the virus with the immune system in the body of an infected individual (in vivo)
is designed first of all. It is shown, using Lyapunov function and LaSalle’s Invariance
Principle, that the virus-free equilibrium of the model is globally-asymptotically stable
whenever a certain biological threshold, known as the reproduction number, is less than
unity. Furthermore, the model has at least one virus-present equilibrium when the
threshold quantity exceeds unity. Using persistence theory, it is shown that the virus
will always be present in vivo whenever the reproduction threshold exceeds unity. The
analyses (theoretical and numerical) of this model show that a future HSV-2 vaccine
that enhances cell-mediated immune response will be effective in curtailling HSV-2
burden in vivo.

A new single-group model for the spread of HSV-2 in a homogenously-mixed sexually-
active population is also designed. The disease-free equilibrium of the model is globally-
asymptotically stable when its associated reproduction number is less than unity. The
model has a unique endemic equilibrium, which is shown to be globally-stable for a
special case, when the reproduction number exceeds unity. The model is extended to
incorporate an imperfect vaccine with some therapeutic benefits. Using centre manifold
theory, it is shown that the resulting vaccination model undergoes a vaccine-induced
backward bifurcation (the epidemiological importance of the phenomenon of backward
bifurcation is that the classical requirement of having the reproduction threshold less
than unity is, although necessary, no longer sufficient for disease elimination. In such
a case, disease elimination depends upon the initial sizes of the sub-populations of
the model). Furthermore, it is shown that the use of such an imperfect vaccine could
lead to a positive or detrimental population-level impact (depending on the sign of a
certain threshold quantity). The model is extended to incorporate the effect of vari-
ability in HSV-2 susceptibility due to gender differences. The resulting two-group
(sex-structured) model is shown to have essentially the same qualitative dynamics as
the single-group model. Furthermore, it is shown that adding periodicity to the corre-
sponding autonomous two-group model does not alter the dynamics of the autonomous
two-group model (with respect to the elimination of the disease). The model is used
to evaluate the impact of various anti-HSV control strategies.

Finally, the two-group model is further extended to address the effect of risk struc-
ture (i.e., risk of acquiring or transmitting HSV-2). Unlike the two-group model de-
scribed above, it is shown that the risk-structured model undergoes backward bifur-
cation under certain conditions (the backward bifurcation property can be removed
if the susceptible population is not stratified according to the risk of acquiring infec-
tion). Thus, one of the main findings of this thesis is that risk structure can induce
the phenomenon of backward bifurcation in the transmission dynamics of HSV-2 in a
population.
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Chapter 1

Introduction

1.1 Herpes Simplex Virus Type 2 (HSV-2)

HSV-2 is a highly-prevalent sexually-transmitted disease (STD) that causes severe
public health burden globally, with the highest prevalence in sub-Saharan Africa and
some Asian countries [94]. Approximately 22% of the general population in the United
States is infected with HSV-2 [10, 35]. In general, HSV-2 seroprevalence is high in
populations whose behavior leads to high risk of acquiring other STDs (some studies
show more than 80% HSV seropositivity in sex workers [94]) [6, 27, 51, 63, 68, 90, 92,
94]. Furthermore, data shows that HSV-2 seropositivity is uniformly higher in women
than in men, and increases with age [94].

Of the twenty five types of HSV viruses, nine are known to infect humans [69].
Theses are: Herpes simplex-1 (HSV-1; commonly associated with oral infection), Her-
pes simplex-2 (HSV-2; associated with genital infection), Varicella Zoster virus (VSV),
Epstein-Barr Virus (EBV), Cytomegalovirus (CMV), Herpes lymphotropic virus, Hu-
man herpes virus-7 (HHV-7), Human herpes virus-8 (HHV-8) and Kaposi’s sarcoma-
associated herpes virus (KSHV). Among the nine types that infect humans, only HSV-

2 is primarily transmitted sexually (although HSV-1 may also be transmitted sexually



[69]).

HSV-2, a large double-standard DNA virus, targets and infects almost any human
cell (such as endothelial cells and fibroblasts) [69]. The virus binds on to the surface
of the host cell using its glycoproteins. After binding to the surface of the host cell,
the virus then fuses with the plasma membrane of the host cell (using gB) to release
some of its proteins into the cytoplasm of the host cell [69]. Subsequently, the virus
replicates within the cell (see Figure 1.1), and viral particles are released back into
the body of the infected host after the affected cell has disintegrated (following lysis).
It is also known that HSV-2 is able to pass through intercellular junctions, thereby

spreading from cell-to-cell [69].

Figure 1.1: Schematic diagram of HSV replication [97].

HSV-2 is most easily transmitted by direct contact with a lesion or body fluid of an
infected individual. Transmission may also occur through skin-to-skin contact during
periods of asymptomatic shedding [97]. The incubation period is typically between 2
and 20 days [102]. The common symptoms of HSV-2 include itching or pain, followed

by sores that appear a few hours to a few days later. The sores, which normally appear
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on the genital areas, start out as red bumps that soon turn into red, watery blisters.
HSV-2, like HIV, can also be transmitted vertically (from an infected mother to a
child) at time of delivery (leading to devastating systemic infection with encephalitis).
HSV-2 infection is lifelong, and latent infection can re-activate to cause one or more
round of disease. Genital herpes is commonly caused by HSV-2 (it can also be caused
by HSV-1, but less commonly).

As noted by Corey and Handsfield [24], “a crucial issue in the public health problem
of genital herpes is the high proportion of genital HSV infections that are unrecognized
by both patients and clinicians. Persons who are HSV-2 seropositive may be symp-
tomatic but nevertheless fail to recognize genital herpes, thereby serving as reservoir
for transmission”. In other words, not all people infected with HSV-2 will develop
symptoms (transmission appeared in about 70% of patients following sexual contact
during the periods of asymptomatic viral shedding [65]). As many as 60-70% of people
with evidence of HSV-2 infection (as diagnosed by a blood test) have not had symptoms
diagnosed as genital herpes [37, 65]. Thus, asymptomatic transmission is an important
feature of HSV-2 disease that needs to be taken into consideration in HSV-2 modelling
studies.

There is currently no cure for HSV-2. However, the use of condoms is known to
offer significant protection against HSV-2 infection, particularly in susceptible women
[14, 91]. Similarly, antiviral drugs (such as, aciclovir (Zovirax), valaciclovir (Valtrex),
famciclovir (Famuir), peniciclovir) can reduce the frequency, duration and severity
of outbreaks (antiviral drugs also reduce asymptomatic shedding [12, 52, 59, 77]).
Although no suitable anti-HSV-2 vaccine is currently available for use in humans,
numerous HSV-2 vaccine studies, have been embarked upon (dating back to the 1920s),
and a number of candidate vaccines are undergoing various stages of clinical trials (see,
for instance, [5, 10, 50, 57, 74, 80, 87] and some of the references therein).

Data shows that HSV-2 seropositivity is uniformly higher in women than in men



[12, 23, 64, 94]. This may be due to a number of reasons, such as the fact that male-
to-female transmission is more likely than female-to-male transmission [23] and the
higher rate of disease recurrences in men (which may make them more infectious [12],
and, hence, more likely to transmit the disease to their female partners). Furthermore,
studies have shown that the majority of HSV-2 infections is largely due to individuals

in high-risk populations [25, 34]. These high-risk populations include:

(i) sexually-active females (HSV-2 seropositivity is uniformly higher in females than

in males [12, 25, 94]);

(i) sexually-active adults (especially those who had first intercourse at early age)

[34];
(ili) sexually-active adults of lower socio-economic status [25, 34];
(iv) sexually-active individuals with previous history of other STDs [25, 34];

(v) sexually-active individuals with multiple sex partners (this includes elderly people

as well) [25, 34];

(vi) sexually-active individuals who do not practice safe sex (e.g., these who do not

use condoms consistently) [25].

Figure 1.2 depicts the age- and sex-specific rates of HSV-2 infection in a suburban
population in the USA [33] . The figure shows that the relative risk of acquisition of
infection is always higher for women than for men. It is also noticeable from Figure 1.2
that, for the 18-49 year age bracket, HSV-2 seropositivity (for both males and females)
increases with increasing age (see also Table 1.1 for a data set for HSV-2 seropositivity

from Rome, Italy [81]).
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Figure 1.2: Age-specific and sex-specific genital herpes prevalence data for a suburban
population [33].



Table 1.1: HSV-2 seroprevalence among various populations in Rome, Italy [81].

No. of individuals No. of HSV-2 positive % HSV-2 positive (95% CI)

Total 673 37 5.5 (3.9-7.5)
Sex

Males (%) 448 22 4.9 (3.1-7.3)
Females (%) 225 15 6.7 (3.8-10.8)

Age (years)

1-19 168 6 3.6 (1.3 - 7.6)
20 - 29 152 12 7.9 (4.1-13.4)
30 - 39 171 7 4.1 (1.7-8.3)
40 - 49 08 6 6.1 (2.3 - 12.8)
50 - 99 84 6 7.1 (2.7 - 14.9)
Groups Studied

Military recruits 156 6 3.8 (1.4 -8.2)
Outpatients 272 15 5.5 (3.0 - 8.7)
Blood donors 179 11 6.1 (3.1 -10.7)
Pregnant women 66 5 7.6 (2.5 - 16.8)

1.2 Mathematical Modelling of Infectious Disease

The history of the use of mathematical modelling in disease transmission dates back
to the pioneering works of the likes of Daniel Bernoulli, Sir Ronald Ross, Kermack
and McKendrick (see, for instance, [2, 3, 8, 43, 53, 54, 73|). The modelling work
typically involves the design of models for the transmission dynamics of emerging and

re-emerging diseases of public health interest (the models are generally of the forms of



systems of non-linear differential equations), which are then used to evaluate various
strategies for controlling the spread of the disease in a population (e.g., vaccination,
use of antiviral drugs, quarantine and isolation).

The Kermack-Mckendrick type population-level models are typically designed by
splitting the total population at time ¢, denoted by N(t), into mutually-exclusive com-
partments (depending on disease status of the individuals in the populations). For
instance, N(t) can be divided into compartments for individuals who are suscepti-
ble (S(t)), infected (I(t)) and recovered or removed (R(t)), resulting in the classical
SIR model. Over the decades, numerous extensions of the Kermack-McKendrick SIR
model, incorporating other important epidemiological concepts (such as vaccination,
quarantine, isolation, antiviral treatment, periodicity/seasonality considerations), have
been designed and used in the mathematical epidemiology literature (see, for instance,
1, 2, 3, 16, 30, 39, 40, 43, 62, 71, 75, 76] and some of the references therein). Some of

these models include a class for exposed individuals (denoted by E).

1.3 Motivation and Organization of the Thesis

The central theme of this thesis is to provide deeper qualitative insights into the trans-
mission dynamics and control of HSV-2 in vivo (i.e., in the body of an infected host)
and in a population. This thesis focuses on the design and mathematical analyses of
new and more comprehensive mathematical models for the dynamics of HSV-2 in vivo
and in a population (it should be mentioned, however, that all the population-level
models to be designed are based on a homogenously-mixed heterosexual population).
Furthermore, although HSV-2 can be transmitted wvia other means (such as vertical,
needle-sharing etc), this thesis considers only sexual mode of HSV-2 transmission.
Emphasis is placed on the determination of the existence and stability of associated

solutions (equilibria), as well as to characterize the kind of bifurcations the resulting



models will undergo. Knowledge of these dynamical properties is crucial in determining

epidemiological thresholds that govern the persistence or elimination of the HSV-2 dis-

ease in vivo or in the population. Some of the main mathematical and epidemiological

questions the thesis seeks to address are:

(a)

What kind of dynamics does the virus and the associated host cells exhibit in
vivo? In particular, what is the impact of cell-mediated and humoral immune
responses on HSV-2 dynamics in vivo? Under what condition(s) can the virus

be cleared from the body of an infected host?

What are the main qualitative features of a single-group model for HSV-2 spread
in a homogenously-mixed heterosexual population? What is the impact of an

imperfect vaccine on HSV-2 transmission dynamics in a population?

What is the effect of sex-structure (i.e., gender variability) on HSV-2 transmis-
sion dynamics in a heterosexual population? What is the role of disease re-
lapse/recurrence on the transmission dynamics of HSV-2 in a population? What
is the potential population-level impact of the use of condoms, an imperfect vac-

cine and antiviral treatment on HSV-2 dynamics?

What is the effect of stratifying the sexually-active heterosexual population in
terms of risk of acquiring or transmitting infection on the dynamics of HSV-2 in

a population?

The thesis is organized as follows. In Chapter 2, some of the basic mathematical

preliminaries, needed to qualitatively analyse the models considered in this thesis, are

reviewed. A basic mathematical model for HSV-2 in vivo is designed and rigorously

analysed in Chapter 3. The model is extended to incorporate the effect of humoral

and cell-mediated immune responses. In Chapter 4, a single group model for HSV-2

spread in a homogeneously-mixed heterosexual population is designed. It is extended



to include an imperfect vaccine. A new two-group (sex-structured) model for HSV-2
transmission in a population is designed and analysed in Chapter 5. A non-autonomous
version of the model designed in Chapter 5, which accounts for the effect of periodicity
on HSV-2 transmission dynamics, is also considered (and qualitatively analysed). The
effect of risk structure on HSV-2 transmission dynamics in a population is studied in

Chapter 6. Finally, the main contributions of the thesis are summarized in Chapter 7.



Chapter 2

Mathematical Preliminaries

This chapter summarizes some of the main mathematical theories and methodologies

relevant to the thesis.

2.1 Equilibria of Linear and Non-linear Systems

Consider the equation
i=f(z,t;pn), € UCR", tcR' and peV CRP, (2.1)

where, U and V are open sets in R” and R?, respectively, and p is a parameter (and the
dot represents differentiation with respect to time). The equation (2.1) is an ordinary
differential equation (ODE) and the right-hand side function, f(x,¢;u), is called a
vector field. ODEs which explicitly depend on time are called non-autonomous, while
those that are independent of time are called autonomous.

Consider the following general autonomous system:

&= f(x), xeR" (2.2)

10



Definition 2.1. An equilibrium solution of the system (2.2) is given by v = = € R,

where f(z) = 0. The number T is called an equilibrium point.

Theorem 2.1 (Fundamental Existence-Uniqueness Theorem [70]). Let E be an open
subset of R™ containing xo and assume that f € CY(E). Then, there exists an a > 0

such that the initial value problem (IVP):

= f(z), x(0)= o,

has a unique solution x(t) on the interval [—a,al.

Lemma 2.1. [70]. Let E be an open subset of R" and let f : E — R". Then, if
f e CYE), fis locally Lipschitz on E.

Definition 2.2. The Jacobian matriz of f at the equilibrium T, denoted by D f(Z), is

the matrix,

ofr ofi ,_
a—m(x) axn("”)
J(z) = : : : ,
Ofn ,_ Ofn , _
a—m(x) axn("”)

of partial derivatives of f evaluated at T.

Definition 2.3. Let x = & be an equilibrium solution of (2.2). Then, T is called
hyperbolic if none of the eigenvalues of Df(Z) have zero real part. An equilibrium

point that is not hyperbolic is called non-hyperbolic.

Definition 2.4. [96]. The equilibrium T is said to be stable if given € > 0, there exists
ad = 0(e) > 0 such that, for any solution y(t) of (2.2) satisfying |z — y(to)| < 9,

|z —y(t)| < € fort >ty to € R.

11



Definition 2.5. [96]. The equilibrium T is said to be asymptotically-stable if (i) it is
stable and (i) there exists a constant ¢ > 0 such that, for any solution y(t) of (2.2)

satisfying |T — y(to)| < ¢, then tlim |z —y(t)] = 0.
Definition 2.6. A solution which is not stable is said to be unstable.

Theorem 2.2 ([96]). Suppose all the eigenvalues of D f(Z) have negative real parts.

Then the equilibrium solution x = T of the system (2.2) is locally-asymptotically stable.

Definition 2.7. Let,
= f(z,p), v€R, peR, (2.3)

be a one-parameter family of one-dimensional ODEs. An equilibrium solution of (2.3)
given by (z,pn) = (0,0) is said to undergo bifurcation at p = 0 if the flow, for u near

zero, and x near zero is not qualitatively the same as the flow near x =0 at p = 0.

The theorem below is used to prove the presence of backward bifurcation in some of

the models developed in the thesis.

Theorem 2.3 (Castillo-Chavez & Song [19]). Consider the following general system

of ordinary differential equations with a parameter ¢

fi_f:f(x,@, f:R*"xR—Rand f € C*(R" x R), (2.4)

where 0 is an equilibrium point of the system (that is, f(0,¢) =0 for all ¢) and assume

Al: A=D,f(0,0) = <§£j (0, O)) is the linearization matriz of the system (2.4) around
the equilibrium 0 with ¢ evaluated at 0. Zero is a simple eigenvalue of A and other

eigenvalues of A have negative real parts;
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A2: Matriz A has a right eigenvector w and a left eigenvector v (each corresponding

to the zero eigenvalue).

Let fi be the kth component of f and

_ N & fi 0,0
a = Z Ukwiwjm( ,0),
ki, j=1 L

- O fi
b = Zl 'Uk'UJiW(O, 0)

The local dynamics of the system around 0 is totally determined by the signs of a and

b.

ia>00>0 When ¢ <0 with |p| < 1, 0 is locally asymptotically stable and there
exists a positive unstable equilibrium; when 0 < ¢ < 1, 0 is unstable and there

exists a negative, locally asymptotically stable equilibrium;

it a<0,0<0. When ¢ <0 with |¢p| < 1, 0 is unstable; when 0 < ¢ < 1, 0 is locally

asymptotically stable equilibrium, and there exists a positive unstable equiltbrium;

iii a > 0,0 < 0. When ¢ < 0 with |¢| < 1, 0 is unstable, and there exists a locally
asymptotically stable negative equilibrium; when 0 < ¢ < 1, 0 is stable, and a

positive unstable equilibrium appears;

iv.a < 0,b > 0. When ¢ changes from negative to positive, 0 changes its stability
from stable to unstable. Correspondingly a negative unstable equilibrium becomes

positive and locally asymptotically stable.

Particularly, if a > 0 and b > 0, then a backward bifurcation occurs at ¢ = 0.
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2.2 Lyapunov Functions Theory

Definition 2.8. A point vy € R" is called an w—1Ilimit point of v € R", denoted by

w(z), if there exists a sequence {t;} such that
o(ti,x) — x9 as t; — oo.

Definition 2.9. A point vy € R" is called an a—Ilimit point of v € R", denoted by

a(z), if there exists a sequence {t;} such that
o(ti,x) — xg as t; — —oo.

Definition 2.10. [96]. The set of all w—limit points of a flow is called the w—Ilimit

set. Similarly, the set of all a—limit points of a flow is called the a—limit set.

Definition 2.11. [96]. Let S C R™ be a set. Then, S is said to be invariant under the

flow generated by = f(x) if for any o € S we have z(t,0,zq) € S for allt € R.

If the region S is restricted to positive times (i.e., t > 0), then S is a positively-invariant

set. That is, solutions in a positively-invariant set remain there for all time.
Definition 2.12. A function V : R" — R is said to be positive-definite if:
o V(zx) >0 forallx #0,
o V(x) =0 if and only if x = 0.

Definition 2.13. Consider the following system
&= f(z), ~eR" (2.5)

Let, T be an equilibrium solution of (2.5) and let V : U — R be a C' function defined

on some neighbourhood U of & such that
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i) V is positive-definite,
ii) V(z) <0 in U\{Z}.

Any function, V, that satisfies the Conditions (i) and (i7) above is called a Lyapunov

function [47, 96]. The general Lyapunov Function Theorem is given below.

Theorem 2.4 (LaSalle’s Invariance Principle [41]). Consider the following system
(2.5). Let,
S={zxeU: V(z)=0}, (2.6)

and M be the largest invariant set of (2.5) in S. If V is a Lyapunov function on U
and vt (o) is a bounded orbit of (2.5) which lies in S, then the w—limit set of v (xg)

belongs to M; that is, x(t,z0) — M ast — co.

Corolary 2.1. If V(z) — 0o as |z| — oo and V < 0 on R", then every solution of
(2.5) is bounded and approaches the largest invariant set M of (2.5) in the set where

V = 0. In particular, if M = {0}, then the solution x = 0 is globally-asymptotically
stable (GAS).

Theorem 2.5 ( [41, 58]). Suppose there is a continuously differentiable, positive defi-

nite, and radially unbounded function V : R™ — R, such that

%(I 7 f@)=VV(z—1)- f(z) <W(z) <0, VaeR,

where W (z) is any continuous function on U. Then, T is a globally-stable equilibrium.

The solution z(t) converges to the largest invariant set S contained in E = {x € R" :

W(x) = 0}.
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2.3 Comparison Theorem

The use of comparison theorem offers an alternative approach for establishing the global
asymptotic stability of equilibria. The methodology entails comparing the solutions of

the system of differential equations (assumed to have unique solution)

&= f(t x); (2.7)
with that of the differential inequality system

z < f(t,2), (2.8)

or,

y = f(ty), (2.9)

on an interval. Consider the autonomous system (2.2), where f is continuously differ-

entiable on an open subset D C R™.

Definition 2.14. [78]. f is said to be of Type K in D if for each i, fi(a) < f;(b) for

any two points in D satisfying a < b and a; = b;.

Definition 2.15. [78]. D is p-convex if tx + (1 —t)y € D for allt € [0,1] whenever

x,y €D and x < y.

Thus, if D is a convex set, then it is also p-convex. If D is a p-convex subset of R” and

Of;
(9:17]-

>0, i#£j, x€D, (2.10)

then f is of Type K in D.

Theorem 2.6 (Comparison Theorem [79]). Let f be continuous on R x D and of type

K. Let z(t) be a solution of (2.7) defined on [a,b]. If z(t) is a continuous function
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on [a,b] satisfying (2.8) on (a,b), with z(a) < z(a), then z(t) < x(t) for all t in
la,b]. If y(t) is a continuous on [a,b] satisfying (2.9) on (a,b), with y(a) > x(a), then

y(t) > x(t) for all t in [a,b].

2.4 Next Generation Operator Method

The next generation operator method [28, 88] is popularly used to compute the asso-
ciated reproduction number, and also to establish the local asymptotic stability of the
associated disease-free equilibrium, of disease transmission models. The formulation in
[88] is reproduced below.

Suppose the given disease transmission model, with non-negative initial conditions,

can be written in terms of the following autonomous system:
& = f(z:) = Fi(x) = Vi(x), i=1,---,n, (2.11)

where V; = V; — V' and the function satisfies the following axioms below. First of all,
Xs={x>0]z; =0, i =1,--- ,m} is defined as the disease-free states (non-infected
state variables) of the model, where x = (z1,--- ,z,)", x; > 0 represents the number of

individuals in each compartment of the model.

(A1) if £ >0, then F;, VI, V; >0fori=1,---,m.

(A2) if z; =0, then V; = 0. In particular, if x € X then V;, =0fori=1,--- ,m.
(A3) F, =0ifi > m.

(A4) if z € X, then Fi(x) =0 and V() =0 fori=1,---,m.

(A5) If F(z) is set to zero, then all eigenvalues of D f(xy) have negative real part.

In the description above, F;(z) represents the rate of appearance of new infections in

compartment 4; V() represents the rate of transfer of individuals into compartment
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i by all other means, and V; (z) represents the rate of transfer of individuals out of
compartment . It is assumed that these functions are at least twice continuously-

differentiable in each variable [88].

Definition 2.16. (M —Matrix). An n X n matriz A is an M—matriz if and only if

every off-diagonal entry of A is non-positive and the diagonal entries are all positive.

Lemma 2.2. (van den Driessche and Watmough [88]). If  is a DFE of (2.11) and
fi(x) satisfy (A1) — (AD), then the derivatives DF(Z) and DV(Z) are partitioned as

F 0 V 0
DF(z) = , DV(z) = ,
0 0 Js Jy

where F and V' are the m X m matrices defined by,

F = L{hj (ZL')] and V = {axj (ZL')] with 1 <14, 7 < m.
Further, F' is non-negative, V 1is a non-singular M—matriz and Js, J, are matrices
associated with the transition terms of the model, and all eigenvalues of Jy have posi-

tive real parts.

Theorem 2.7 (van den Driessche and Watmough [88]). Consider the disease trans-
mission model given by (2.11) with f(x) satisfying axioms (Al) — (A5). If & is a DFE
of the model, then T is LAS if Ro = p(FV~') < 1 (where p is the spectral radius), but

unstable if Ry > 1.

The aforementioned formulation has been extended for use to establish the local sta-

bility of the disease-free solution of non-autonomous models for disease transmission

88].
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It should be mentioned that, since all the models to be developed in this thesis mon-
itor cell, viral or human populations, all the associated parameters are non-negative.

Furthermore, all the numerical simulations in this thesis are carried out using ODE45

(a MATLAB routine).
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Chapter 3

Model for HSV-2 Dynamics 2n vivo

3.1 Introduction

Genital herpes, caused by herpes simplex viruses (notably HSV-2), is one of the most
prevalent sexually-transmitted diseases globally [6, 27, 51, 63, 68, 71, 90, 92, 94]. Al-
though no cure or suitable vaccine for HSV-2 exist at the present time, it is known
that treating HSV-infected individuals with antiviral drugs (such as aciclovir (Zovi-
raz), valaciclovir (Valtrez), famciclovir (Famwvir), peniciclovir) reduces the frequency,
duration and severity of outbreaks [12, 52, 59, 77]. Furthermore, a number of candi-
date HSV-2 vaccines are undergoing various stages of clinical trials [5, 10, 50, 57, 74,
80, 82, 87]. For instance, several protein subunit candidate vaccines, based on HSV-2
envelope glycoproteins, have reached advanced-phase clinical trials [82]. It is clear,
however, that the successful design of such anti-HSV-2 pharmaceutical interventions
(antiviral or vaccine) depends on acquiring deeper understanding of the mechanisms
of HSV-2 dynamics in vivo, as well as the immune response to HSV-2 infection. Con-
sequently, the purpose of this chapter is to provide qualitative insight, via the use of
mathematical modelling and analyses, into HSV-2 dynamics in vivo.

As stated earlier, HSV-2 targets and infects almost any human cell [69]. The virus
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binds on to the surface of the host cell using its glycoproteins ( glycoprotein B, denoted
by gB; glycoprotein C, denoted by gC; glycoprotein D, denoted by gD and glycoprotein
H, denoted by gH). While the glycoprotein gB is involved in the fusion of the viral
membrane with that of the host cell, the glycoproteins gC, gk and gl help the virus
escape the associated immune response [69]. Furthermore, when the HSV-2 virion lacks
gC, the released virus loses its ability to effectively bind to the surface of the host cell,
and the infectivity of the virus is decreased by a factor of 10 [49].

After binding to the surface of the host cell, the virus then fuses with the plasma
membrane of the host cell (using gB) to release some of its proteins into the cytoplasm
of the host cell [69]. Subsequently, the virus replicates within the cell, and viral par-
ticles are released back into the body of the infected host after the affected cell has
disintegrated (following lysis). It is also known that HSV-2 is able to pass through
intercellular junctions, thereby spreading from cell-to-cell [69].

Upon entering the body, HSV-2 penetrates the nerve cells (primary sensory neurons)
in the lower layers of the host’s skin tissue and replicates itself in the cell nuclei (thereby
destroying the host cells). Following the destruction of the nerve cells, blisters and
inflammation develop in the region where the virus was contracted. Towards the end
of the visible infection period (typically 3-14 days), viral particles are carried from the
skin through the branches of nerve cells to ganglia, where the virus persists in a latent
form (until it recurs in an active, visible form) [66]. It is known that stress, strong
sunlight and fever can trigger the re-activation of the (latent) virus [69].

Although the dynamics between the immune system and the virus in the body
of an infected host is not fully understood, studies have shown that humoral immune
response (i.e., the release of antibodies against surface glycoproteins) and cell-mediated
immune response (which involves the activation of macrophages, natural killer cells,
antigen-specific cytotoxic T-lymphocytes (CTLs), and the release of various cytokines

in response to HSV-2 infection) are required to fight HSV-2 infection in vivo.
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The aim of this chapter is to use mathematical modelling and analyses to understand
the dynamics of HSV-2 in the body of an infected host. In particular, to assess the
impact of cell-mediated and humoral immune responses on HSV-2 dynamics in vivo.
Although a number of mathematical models have been designed and used to study the
transmission dynamics of HSV-2 in human populations (see, for instance, [9, 10, 38,
71, 74]), to the author’s knowledge, no other mathematical model for HSV-2 dynamics

in vivo has so far been published in the literature.

3.2 Model Formulation

The model for HSV-2 dynamics in vivo is constructed as follows. Let H(t) represents
the density of host healthy (uninfected) cells at time ¢, V(t) represents the density of
HSV-2 with gC at time ¢, V(t) represents the density of HSV-2 without gC at time
t, Ly (t) represents the density of HSV-2 that become latent in the neurons (within
the nerve cells) at time ¢, I(t) represents the density of HSV-2-infected cells at time ¢,
C'(t) represents the density of CTLs produced by the cell-mediated immune response
at time ¢ and A(t) represents the density of HSV-2 specific antibodies produced by the
humoral immune response at time t.

It is assumed that healthy host cells are produced at a constant rate II. These cells
become infected, either by the HSV-2 with gC (at a rate (y) or by the virus without
gC (at a reduced rate 00y, with 0 < # < 1 accounting for the fact that HSV-2 without
gC' is less likely to infect a healthy cell (due to its reduced ability to bind to the host
cell [49]), in comparison to the virus with gC) or by cell-to-cell infection [69] (at a rate
Bc). It is assumed that healthy host cells are lost naturally at a rate py (it is assumed

that the latent virus (Ly) is not transmitted). Thus,

dH
E:H—ﬂvHVC—eﬂvHv—ﬂcHI—MHH. (31)
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The rate of change of the density of infected cells is increased by the infection of
host cells (as described above). Infected cells are lost due to viral lysis (at a rate =)
and by cell-mediated immune response (at a rate pec, where 0 < ¢ < 1 is the efficacy

of the CTLs to remove infected cells). Hence,

dl
E = 6VHVC + HﬁvHV + 6@[‘[] - ’)/] — p600]. (32)

It is assumed that each infected cell produces N viral particles after its disinte-
gration (following viral lysis). It is further assumed that a proportion, N; > 1, of
these (N) viral particles have gC (and are moved to the Vi class) and another propor-
tion, Ny > 1, have no gC (and are moved to the V' class). The remaining proportion,
N3 = N—N;— Ny, are assumed to enter the neurons and become latent (and are moved
to the Ly class). Thus, the population of viral particles with gC is increased at the
aforementioned rate Ny, and by the re-activation of latent viruses (at a rate ay(1—w),
where w represents the fraction of re-activated latent viruses without gC). This popula-
tion (of viral particles with gC) is reduced by infection of healthy cells by the virus (at
the rate By ), humoral immune response (at a rate {ey, where 0 < ey < 1 represents
the efficacy of the antibody to neutralize the virus) and natural viral clearance (at a

rate py). Thus,

dVe
d—tc = Nl”)/[ —+ (1 — w)aLLV — 6\/HVC — £€HVCA - :U’VVC- (33>

Similarly, the rate of change of the density of viral particles without gC is given by

O = Nyl +warLy — 00y HV — EeqVA— V. (3.4)

Latent viruses are generated at the rate N3y, and are reduced due to re-activation (at
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the rate ay) and natural clearance (at a rate ur). Thus,

dL
d—tV = NyyI —apLy — prLy. (3.5)

It is assumed that HSV-specific antibodies (generated from humoral immune re-
sponse) are produced at a rate proportional to the number of infected cells (given by
aal, where a4 is the production rate of antibodies). Similarly, HSV-specific CTLs are
assumed to be produced at a rate proportional to the number of infected cells (given
by acl, where a¢ is the production rate of CTLs). The antibodies and CTLs are lost

at a rate ua and pe, respectively. Thus,

dA aC
= = aal — psA and - = acl — pcC. (3.6)

In summary, the model for the dynamics of HSV-2 in vivo, in the presence of hu-
moral and cell-mediated immune responses, is given by the following system of equa-
tions (a flow diagram of the model is given in Figure 3.1, and the associated variables

and parameters of the model are described in Table 3.1):

dH
v II - BvHVe =08y HV — BcHI — ppH,
dl
o = B HVe + 0By HV + foHT =41 = pecCl,
dVe
7l Nyl + (1 —w)arLy — By HVe — Eeg Ve A — iy Ve,
av
i Noyl +warLy — 0By HV — ey VA — uy'V, (3.7)
dL
d—tV = N3yl —arLy — prLy,
dA
— =aqul — ur A
dt QA HAaA,
dC
& el = peC.
dt ac He

The model (3.7) incorporates the following main features:
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(i) Cell-mediated immune response against HSV-2 infection (at a rate pec);
(ii) Humoral immune response against HSV-2 infection (at a rate ep);

(iii) Three viral classes: two infectious (Vi and V; with and without gC'|, respectively)

and one latent (Ly);
(iv) Cell-to-cell transmission of HSV-2 (at a rate f(¢);

(v) Re-activation of latent virus (at a rate ar).

Table 3.1: Description of variables and parameters of the model (3.7).

Variables Description

H(t) Density of host healthy cells

Ve(t) Density of HSV-2 with glycoprotein (gC)
V(t) Density of HSV-2 without gC

Ly (t) Density of HSV-2 latent in the neurons
I(t) Density of HSV-2 infected cells

C(t) Density of CTLs cells produced by the

cell-mediated immune response
A(t) Density of HSV-2 specific antibodies

produced by the humoral immune response
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Parameter Description Assumed Baseline values/hour
IT Production rate of healthy epithelial cells Variable
By Effective contact rate between host cells and HSV-2  0.001
I6%6. Effective contact rate between host cells and HSV-2

infected cells 0.001
0 Modification parameter for the reduced ability

of HSV-2 without gC to blind to host cells 0.1
~y Rate of disintegration of infected cells 1
Ny Proportion of new viral particles with gC 600
Ny Proportion of new viral particles without gC 200
Nj Proportion of new viral particles that become latent 200
p Rate of removal of infected cells by CTLs Variable
€c Efficacy of CTLs to remove infected cells (0,1)
aa Rate of production of HSV-2 specific antibodies 0.5
Qo Rate of production of HSV-2 specific CTLs 0.5
19 Rate of neutralization of virus by HSV-2 specific

antibodies Variable
€n Efficacy of humoral antibodies (0,1)
w Fraction of re-activated virus assumed to have gC 0.9
ar, Re-activation rate of latent virus 0.5
L A; Clearance rates for compartments H (t); A(t);
Lo L C(t); Ly (t), respectively 110, %, %, %
Wy Viral clearance rate 1—10
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H(t)

kA
(Bwct Bel + BByV)H

Figure 3.1: Schematic diagram of the model (3.7).

Before analysing the dynamical features of the model (3.7), it is instructive to, first of all,
consider a special case of the model in the absence of the cell-mediated and humoral immune
responses. The objective is to determine whether such immune responses alter the qualitative

dynamics of the model without such responses. This is done below.
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3.3 Analysis of Model Without Immune Response

Consider the model (3.7) in the absence of immune response (i.e., consider the model (3.7)
with p = a4 = ac = § = 0). The model (3.7), in the absence of immune response, reduces

to the following (reduced model):

dd_i[ — - M(OH() — Ao (DH () — As()H () — pp H(2),
O = MOH®) + Mol H (W) + X0V H (1) —71(1),
d% = NiyI(t) + (1 — w)ar Ly () - MO H() — pvVe(?), (38)
% — NoyI(t) + war Ly (t) — Ma() H(t) — m/ V (2),
dﬁ_tv — Ny I() — ki Ly (D),

where,

A(t) = By Ve(t), Aa(t) =008y V(t), As3(t) =BcI(t) and ki = urp + af.

3.3.1 Basic Properties

To be biologically meaningful, it is important to prove that the solutions of the reduced model

(3.8), with non-negative initial data, will remain non-negative for all time ¢ > 0.

Theorem 3.1. Let the initial data be H(0) > 0, I1(0) > 0, V=(0) > 0, V(0) > 0 and
Ly (0) > 0. Then, the solutions (H,I,Vc,V, Ly) of the reduced model (3.8) are non-negative

for allt > 0.

Proof. Let T = sup{t > 0: H(t) > 0,1(t) > 0,Vo(t) > 0,V (t) > 0,Ly(t) > 0}. Thus,

T > 0. The first equation of (3.8) can be re-written as:

% + (A(t) + pp)H =10, where \t) = A\ (t) + Aa(t) + As(t).
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Thus,

d

o {H(t) exp [/OT /\(u)du+,uHT] } = Hexp [/OT A(u)du +MHT] ,

so that,

H(T)exp [ /0 N+ MHT} —H(0) = /0 e [ /0 " Au)du + umg} .

H(T) = H(0)exp { - [ /0 " N+ ;AHT} }

—I—eXp{ - [/OTA(u)du—i—uHT} } « /OTHeXp [/Ox)\(u)du+uH:E] ,

> 0.

Similarly, it can be shown that I(t) > 0, V(t) > 0, V(t) > 0 and Ly (¢) > 0 for all ¢ > 0.
Hence, all solutions of the reduced model (3.8) remain positive for all non-negative initial
conditions, as required. O

Since all the parameters and state variables of the reduced model (3.8) are non-negative

for all ¢ > 0 (Theorem 3.1), it follows from the first equation of (3.8) that

H
dd—t :H—Al(t)H—)\Q(t)H—)\g(t)H—uHH§H—MHH. (39)

It follows, by comparison theorem (Theorem 2.6), that

I
H(t) < H(0)e PHE 1 — (1 — ¢7rut),
HH

1I
In particular, H(t) < — if H(0) < . Consequently, the following biologically-feasible

1I
HH HH
region

D={(HI,Ve,V,Ly) €R’: H<U/up,I >0,Ve >0,V >0,Ly >0},
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is positively-invariant for the reduced model (3.8). In other words, all solutions of the reduced
model (3.8), with initial conditions in D, will remain in D for all ¢ > 0. It is, therefore,
sufficient to consider the solutions of the model in D. In this region, the usual existence,
uniqueness and continuation results hold for the model (3.8) (see also [43]). This result,

combined with Theorem 3.1, is summarized below.

Lemma 3.1. The region D is positively-invariant for the reduced model (3.8) with initial

conditions in Ri_ .

Furthermore, it is convenient to define the region:

3.3.2 Existence and Stability of Equilibria

The reduced model (3.8) has a virus-free equilibrium (VFE), obtained by setting the right-

hand sides of the equations in (3.8) to zero, given by:
* * * * * H
So = (H*, I*, Vi, V* L) = <—,0,0,0,0> . (3.10)
HH

The linear stability of & can be established using the next generation operator method
on the system (3.8). Using the notations in [88], the matrices F' and @, for the new infection

terms and the remaining transfer terms, are, respectively, given by,

[BcIl  ByIl  0ByIT T

0
HH mH mH
0 0 0 0
F= ,
0 0 0 0
0 0 0 0

and,
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~ 0 0 0
II
—Niy prll [y 0 —(1-w)ay
HH
Q=
06y 11
—Nay 0 by + puy —way,
HH
—N37 0 0 k‘l
Thus,
1I 1INV 116 N-
Ro = p(FQ™) = Be By 1IN, By 110N,

+
pay  Bvll+pypg  08vIL+ pyung
(3.11)

By arlIN3[08vIT+ py pgbw + py g (1 — w)]
kv(BvI+ py ) (0B IL + py )

where p is the spectral radius. Hence, using Theorem 2.7, the following result is established.

Lemma 3.2. The VFE, &, of the reduced model (3.8), given by (3.10), is locally-asymptotically

stable if Rg < 1, and unstable if Rg > 1.

The threshold quantity, Ry, is the reproduction number of the reduced model (3.8). It
measures the average number of new infected cells produced by a single HSV-2 particle in
vivo [2, 43, 88]. Lemma 3.2 implies the HSV-2 can be cleared from the body of an infected
host (when Ry < 1) if the initial sizes of the sub-populations of the model (3.8) are in the
basin of attraction of the VFE (&y). To ensure that the viral clearance is independent of the
initial sizes of the sub-populations of the model (when Ry < 1), it is necessary to show that

the VFE is globally-asymptotically stable.
Theorem 3.2. The VFE, &, of the reduced model (3.8), is GAS in D if Ro < 1.

Proof. Consider the Lyapunov function

F = fil({t)+ f2Vo(t) + f3V(t) + fily (1),
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where,

fi = Beki(BvIL+ pypm)OBvIL+ py ) + Yk By N1 (08vIL + py pup)
+k1008v e No(BvIL + pypr) + vBvarpa Ns(Byv I+ py e ) (06vII+ py pw),
fo = kiBvpayOBvIL+ pvpm), f3 = ki08vuay(BvIL+ pypm),

fa = PBvarpay[0vI + 0wpypmr + pypm(l — w)l,

with Lyapunov derivative given by (where a dot represents differentiation with respect to t)

F=fI@) + f2Va(t) + V@) + falv (),

= NPy Vo) H(t) + 08y V() H () + Bol (t)H (1) —vI(t)]

+ k1Bvpay(OBvIL + py ) [IN1YI(t) — By Ve (t) H(t) — pvVe(t) + (1 — w)ar Ly (1))

+ k10Bv Y (Bv I+ py g ) [NayI(t) — 08y V () H(t) — pvV () + warLy (1))

+ Bvappry[0BvIL+ Owpvpn + pvpr (1 — w)][NsyI(t) — kiLy (1)),
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= Bk (BvIL+ pvpm)(08vIL+ pyv ) [Bv Ve (t) + 0BV (t) + Bel () H (1)

+ k1 By e (08vIL+ pypw) (N1 — 1)Bv V H (t)

+ k1 By pa N1 (OBvIL+ iy ) 108V V (E) + Bod (t) H (t)

+ k10Bv g (B + py e ) (N2 — 1)08y Ve H (t)

+vk10By g No(Bv IL+ py ) [By Ve () + Bl ()] H (1)

+BvaruaNs(ByIl+ pypm ) (0BvIL+ py ) [By Ve (t) + 08y V () + Bel ()] H(t)
— yk1Bv papy (08vIL+ py ) Ve (t) — vk 0By prpy (Bv I+ py )V (t)

— k1 (BvI + pvpm) (OBvIL+ py ) Bel(t),

< Bk (ByIL+ pyv ) (0BvIL+ py ) [Bv Vo (t) + 08y V (t) + Bol (t) H”

+ k1 By e (0BvIL+ py ) (N1 — 1) By V (6 H”

+ k1 By e N1 (08vIL+ pv ) [08vV (8) + Be I (¢)] H”

+ k100 i (Bv T+ py ) (N2 — 1)00y Ve (1) H*

+ Yk10By o No(BvIL + puv puw ) [By Vo (t) + BeI(4)| H

+vBvarpa N3 (BvIl+ pypm)(08vIL+ pv pw)[Bv Ve (t) + 0BvV (t) + Be ()] H”
— vk By prpy (OBvIL+ py ) Ve (t) — vk 0By pr pv (Bv I+ py pw )V (t)

— k1 (BvI + pvpw) (OBvIL+ py ) Be (1),
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which can be simplified to

F < AlBvVe(t) + 08V () + BcI(t) H
— vk1 By pr (0BvIL+ py ) By V (O H™ = vka0By gy (By 1L+ py )V (2)
— k1B prpv (O8I + pv pa) Ve (t) — vk 0By pa (Bv L+ pyv pm) 0By Ve () H

— k1 (BvI + pyvpm)(OBvIL 4 py ) Bel (),

= filBvVe(t) +08vV (t) + Bol(t)| H*

— k1 (BvIL + py ) (OBvIL 4 pv ) [Byv Ve (t) + 08vV (t) + Bl (t)],

= vk (BvIL+ pv ) (OBvIL + py ) [Bv Ve (t) + 06y V (t)

SHLH” _
+ Bel(t)] T Gy T+ ) OB+ v

= k1 (Bv I+ py g ) (OBvIL+ pypw) By Vo(t) + 08vV () + Bel(t)|(Ro — 1),

<0 for Ry < 1.

Since all the model parameters and variables are non-negative for all ¢ > 0 (Theorem
3.1), it follows that F < 0 for Ry < 1 with F = 0 if and only if Vo (t) = V(t) = I(t) = 0.

Thus, it follows, using the LaSalle’s Invariance Principle (Theorem 2.5), that

(I(t),Ve(t),V(t)) — (0,0,0) as t — co.

Hence, for any € > 0 sufficiently small, there exists a ¢, > 0 such that if ¢ > ¢,, then

I(t) <e, Vo(t) <€ V(t) <eand Ly(t) <e. (3.12)
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Consequently, for ¢t > ¢, (and noting (3.12)),

dH

o = L= BvVeH(t) —08vV()H() — fcl()H() — nrH (1),

I — [(Bv + 0By + Bc)e + up)H(),

v

so that, by comparison theorem (Theorem 2.6),

11
liminf H(t) > i 3.13
i) 2 [(Bv + 0Bv + Bc)e + p] (3.13)
Since € > 0 is arbitrarily small, letting ¢ — 0 in (3.13) gives
11
liminf H(t) > —. (3.14)
It should be recalled from Section 3.3.1 that
. 11
limsup H(t) < —, (3.15)
t—o00 HH
so that, by combining (3.14) and (3.15),
11
lim H(t) = —.
t—o0 ng

Hence,

Ji (0 100, Vo0, V(). Ly (0) = (1-.0,0,0,0) =&

Thus, every solution to the equations of the reduced model (3.8), with initial conditions in
D, approaches the VFE, &, as t — oo, whenever Ry < 1. O

The biological significance of Theorem 3.2 is that HSV-2 will be cleared from the body
of an infected host if the threshold quantity, R, can be brought to (and maintained at) a
value less than unity (that is, for the reduced model (3.8), Ry < 1 is necessary and sufficient

for HSV-2 clearance in vivo). Figures 3.2A and B depict the solution profiles of the reduced
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model (3.8) for the case when Ry < 1, showing convergence (of the total healthy epithelial
cells and the infected epithelial cells) to the VFE, & (in line with Theorem 3.2).

Let,

81 — (H**7 I**7 V**7 V**7L>’{/*)7

denotes any arbitrary equilibrium of the reduced model (3.8). Furthermore, let

= B VES, A =08,V and AS = Bol™ (3.16)

be the associated forces of infection of the reduced model (3.8) at steady-state. To find
conditions for the existence of virus-present equilibrium (VPE) (that is, equilibria for which
there are HSV-2 particles in the body of the infected host; so that the components I**, V3*,
V** and L7 are non-zero), the equations in (3.8) are solved in terms of the aforementioned
forces of infection at steady-state. Setting the right-hand sides of the reduced model (3.8) to

7Zero gives

e _ 1 oo AT+ A5+ A7)
A+ A A+ YT+ A+ N+ )

por - I + A [N1ky + (1 - w)ap Ns] + A3"(1 — w)ar Ng + Ay"ki (V1 — 1)}
pv k(AT + A3+ A5+ ) ’

(3.17)
e — HIT 4 A5) (N +wag Ng) + A*war Ny + A"k (Na — 1)
vk (N £ 5+ A5+ ) ’
e AT+ A5" 4+ A5*)N3
LV ==

k(AT NS A 4 ug)
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Substituting (3.17) into the expressions for Aj*, A3* and A%* in (3.16) gives,

o _ ﬂvﬂ{()\f* + )\?)[lel + (1 — w)aLNg] + )\5*(1 — w)aLNg + )\z*kl(Nl — 1)}
! vk (N X5 A+ ) ’

o _ Qﬂvﬂ[()\i* + )\5*)(le1 + waLNg) + )\E*WQLNg + )\E*kl(Ng — 1)]
2 pv ki (AT + A5+ A+ ) ’

(3.18)

yoe — BCTIOT + X5 +7)
B N N NS +um)

Further simplification of the equations in (3.18) shows that the non-zero (virus-present) equi-

libria of the reduced model (3.8) satisfy:

FOT) = ao(AT)? + a1(AT)? + agAT* + a3 = 0, (3.19)

where,

a0 = pd kLB (1 - 0),

a1 = kipy (1= 0)(BvIL + papv)(Bepyv +vB8v) + kipyy087 (By + iy ) Na
+ K185 v N 0By T+ py s — (1= 0)(By Tl — pv )] + k7 vy B3, N3 [By 01T
+pvpn(l—w) + bwpppy — (1= 0)(1 — w)(BvIl — pyvpm)],
(3.20)
ag = kify k1N + (1 — w)ar Ns|{ Bokipy (BvIL + py ) (26v 011 — By Tl + py )
= Bvk10(BvIL — pov pupr ) (BvIL + pv e )No — vBv ki (Bv L — py ) (08I + puv pupr ) Na
— kipv e ByyIL(L — 0) N1 — vy (BvIL — py ) ar [BvOIL + py o + py g (1 — w)] Ny

— pypaBeylar(l — 0)(1 — w)N3 +vBvki (Bv I+ py pw)[By 0T + pyvpup (2 — 0)]},

a3 = BEkipuay[ki N1 + (1 — w)ar N3 (By T 4 pv ) (08vIL + py ) (1 — Ro).
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It can be seen from the expressions in (3.20) that ag > 0 (since all the model parameters
are non-negative, and 0 < # < 1). Furthermore, ag < 0 whenever Ry > 1. Thus, the number
of possible positive real roots the polynomial (3.19) can have depends on the signs of the
coefficients a1 and ao. This can be analysed using the Descartes Rule of Signs on the cubic
f(z) = apz® + a12? + asx + as, given in (3.19) (with # = A\}*). The various possibilities for

the roots of f(x) are tabulated in Table 3.2.

Table 3.2: Number of possible positive real roots of f(x) for Ry > 1.

Cases | ag | a1 | az | az | Number of Number of possible positive

sign changes | real roots (endemic equilibrium)

1|+ + | - 1 1
2 |+ - | - 1 1
3|+ |-+ - 3 1,3
4 |+ -1]-]- 1 1

The result below follows from the various possibilities enumerated in Table 3.2:

Theorem 3.3. The reduced model (3.8) has at least one VPE, of the form &, whenever
Ro > 1.

In summary, it is shown that the reduced model (3.8) has a globally-asymptotically stable
virus-free equilibrium (&) whenever Ry < 1. It has a unique virus-present equilibrium (&;)

whenever Ry > 1. The full model (3.7) will now be rigorously analysed.

3.4 Analysis of Model with Immune Response

3.4.1 Basic Properties

The approach in Section 3.3.1 can be used to prove the following result.
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Theorem 3.4. Let the initial data be H(0) > 0, I(0) > 0, A(0) > 0, C(0) > 0, Vc(0) > 0,
V(0) > 0 and Ly(0) > 0. Then, the solutions (H,I,A,C,Ve,V,Ly) of the model (3.7) are

non-negative for all t > 0.

As in the case of the reduced model (3.8), all the parameters and state variables of the
model (3.7) are non-negative for all ¢ > 0. Using the approach in Section 3.3.1, it can be

shown that the region
Dl = {(H717A707VC7V7LV) ERZ-HSH/MH7IEO7A2070207VC 207V207LV 20}7

is positively-invariant for the model (3.7).

3.4.2 Existence and Stability of Equilibria

The VFE of the model (3.7) is given by
* * * * * * * H
Eon = (H", I",A*,C*, V5, V¥, L},) = <M—,0,O,0,O,0,O> . (3.21)
H

The next generation matrices associated with the model (3.7) (denoted by F; and Q1) are
given, respectively, by:

[ Gell ByIL 66y T1

0

0 0 —
mH mH HH
0 00 0 0 0
0 0 0 0 0 0
Fl = ’
0 0 0 0 0 0
0 00 0 0 0
0 0 0 0 0 0

and,
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so that,

~ 0 0 0 0
—og A 0 0 0
—ag 0 we 0 0
11

— N1y vt +uy 0 —(1—-w)ag

122¢4 05,11
— Noy 0 0 0 L%

HH

— Ny 0 0 0 0

Ro1 = p(F1Q7") = Ro.

Hence, the result below follows from Theorem 2.7.

(3.22)

Lemma 3.3. The VFE, &£y, of the model (3.7), given by (3.21), is LAS if Ro1 < 1, and

unstable if Ro1 > 1.

Theorem 3.5. The VFE, £y, of the model (3.7), is GAS in D1 if Ro1 < 1.

Proof. Consider the model (3.7) with Rp; < 1. The proof is based on using a comparison

theorem (Theorem 2.6) [56, 79]. It is worth noting, first of all, that the equations for the

infected components of the model (3.7) can be written in matrix-vector form as:

where,

= (F1 — Q1)

, (3.23)



with,

0 0 pecC 0 0 0
00 0 fegA EepA

o

0 0 0 0 0 0
Fy

0 0 0 0 0 0
00 0 0 0 0
0 0 0 0 0 0

It should be noted that F; and F» are non-negative matrices. Furthermore, since H(t) <

H* in Dy, it follows that the matrix P is non-negative. Thus, it follows from (3.23) that

1(t) 1(t)
A(t) A(t)
% O cm-on| Y | (3.24)
Vo (t) Vo (t)
Vi(t) Vi(t)
Ly (t) Ly(t)

Using the fact that the eigenvalues of the matrix F; — @ all have negative real parts (see
the local stability result in Section 3.4.2, where p(F1Q7 ") < 1if Ro; < 1, which is equivalent
to F1 — @1 having eigenvalues with negative real parts when Rg; < 1 [88]), it follows that
the linearized differential inequality system (3.24) is stable whenever Rg; < 1. It follows, by

comparison theorem (Theorem 2.6), that
tlim (I(t), A(t),C(t),Ve(t),V(t), Ly (t)) — (0,0,0,0,0,0).

Thus, for any € > 0 sufficiently small, there exists a t. > 0 such that if ¢ > t., then

I(t) <e, A(t) <e, C(t) <€, Vo(t) <e V(t) <eand Ly(t) <e. (3.25)
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Consequently, for ¢t > t. (and noting (3.25)),

dH

o = L= BvVeH(t) —08vV()H() — fcl()H() — nrH (1),

I — [(Bv + 0By + Bc)e + up)H(),

v

so that, by comparison theorem (Theorem 2.6),

11
liminf H(t) > . 3.26
i) 2 [(Bv +0Bv + Be)e + pm] (3:26)
Since € > 0 is arbitrarily small, letting ¢ — 0 in (3.26) gives
o IT
liminf H(t) > —, (3.27)
t—o0 wg
and it should be recalled from Section 3.4.1 that
. 11
limsup H(t) < —. (3.28)
t—o00 HH
Combining (3.27) and (3.28) gives
11
lim H(t) = —.
t—o0 ng

Hence,

t—o0

lim (HL(£), 1(8), A(t), C(t), Vo (£), V(£), Ly (£)) = <M£H,o,o,o,o,o,o> — .

Thus, every solution to the equations of the model (3.7), with initial conditions in D, ap-
proaches the VFE, &y, as t — oo, whenever Rg1 < 1. O
The biological implication of Theorem 3.5 is that HSV-2 will be cleared from the body of an

infected host whenever Rg; < 1.
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Let,

sokk pRokok Hokk ok ok
52:(H 7I 7A 70 7VC 7V***7L>\k/**)7

denotes any arbitrary equilibrium of the model (3.7). Furthermore, let

(3.29)

be the associated forces of infection of the model (3.7) at steady-state. Setting the right-hand

sides of the model (3.7) to zero gives

R —

sokk

AR —

O —

VC*V** —

V*** _

kkk

II

Pl AT AT N )

) 3.30

I{y(AT™ + A5 + A7) [Niky + (1 — w)ar Ns| = AT k(v + A7)}

Faliv 28007 + A0 + A8 + AT+ ) |

Iy (AT + A5 + A3™) (N1k1 + wa N3) — A57 ki (v + A7)

k(v + M) (7 + A7) (A 4+ X5 + A5™ + )

RO AT AT AT )
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Substituting (3.30) into the expression for A\7**, A3**, A5**, A7** and A\f** in (3.29), gives,

_ By (AT + A5 + A5™) [Nk 4+ (1 — w)ar Na| — A7k (y + A1)}

A\ ,
N OBy Iy (AT + N5 + N5™)(N1k1 + war N3) — X5 ki (v + A7)
(v ATF)AT™ + A5 4+ A5 + )
AFEE pGCHaC()\T** + )‘3** + )‘g**)
5 =

Bl + NN TN )

so that (following further simplifications) the non-zero equilibria of the model (3.7) satisfy:

GOF) = b5 )5+ br(NF)P 4 ba (A7) + by (A5™)2 4 ba(AJ*)2 + bsAj™ + bg = 0, (3.32)

where,

bo = By A0k Be,

(3.33)
bi = k1papdBy (3pav0B8cBv e + pabuupecacPyv — polemaapnBe

— pobegaapnfBe),
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ba

= By ANk pr pecacOug — By i pey0Nok i pecac

— p&(BEpanbwarpmpecac + By uA (1 — w)arpmpecact)Ns
+ pe (=200 By pakieraapn — By pikipy papecac

— pv pipmpecactByvk + pelenadniky + 3ucy? By pa 0k
— 38v I pecactks — 2ucéeraapnydBy paks)Bo

+ e (—By pakiéenaapipecac + 3y a0k pecac

— Cegaapi 0By pakipecac),

= pol—pv e’ epodd Byk — 280k pepadd ki
+2ucBe(Mpapec ackiéenaapn By + Segaapirkipy papecac

+ EenaapndPy pakillpecac) — ey By pakiéenaapn Be

— neenaapny’0 Py pakiBe — 2ucy? By i (1 — w)or Napppecact

— 2 ey By pi0war, Nspppecac + poyBy paNikipfpecacéeraa

— 6ucy B 4l ki Bollpecac — 2uey By ua Nokipim pecac

— 2ucpv A  pecacyOBv ki Be + peberaapgy0By maNoky pecac

+ pobermaapiy0By pawar Nspecac — 2ucéegaapuvBy paki pecoc

+ peyBypa(l — w)ap Nspfpecacéeman — 2 poy By pakipy i pecac e
+ 3 ey’ By a0 ki pecac — 2ucyBy pakiegaapdpecoc

— 2 ey’ By pa N1k pm pecact — By pikypy i g o

+ po€ e plkipecac + g’ By pi0 kifo + pdBoy kpgai ey,
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by = —pecucac(—2acpecy By pua*0 ki pm — acpecy By pa’kipy

3,2 2 2 2

+ uey By a0 kipn — poy Bvpakiegaapn”) Ny

— pecpcoc(—pcéenaann®y*0 By paky + pey’ By’ pa0 kipy

— 2acpecy By a0 kipg — acpeciy iy 0 By ki) No

— pecpoac(—acpecpy paphy0Bvwar — 2 acpecy By i (1 — w)arLpmfIl

— pey*Brpa(l — w)appflegan — acpecy By na’(l — w)or pfpy

— peenaapi 0By paw o + pey? By phbwor g — 2 acpec Bpllpy 0w o g

4 3122 2 _ 9 N _ _ 2 .2 2 k

pey” By na(l —w)appupb) N3 — pecpicac(—acpec iy papik

29 2 9 2 250 2

+ polegaapuki Il — 2 pclegaapn kipy pay + poy” By wakipy e

— 2 pcy By paki€erraapnl + popy piuny?0 Bvki + 3 pey? 8o 10 ki 1T

—2uctegaapuny 0 By kil — 2 acpecuy i pmd By k 1T

— 3acpecBE? 140 ky — 2acpecBv Tl kipy i) Bo

— pecticoc(—pey By 140 kipa — peéeodwikyy

+ ey By pakiegaapis + petepaapfy’0 By pak:

— 2acpectenaapikipypa + 2 acpecuy iy 0 By ki

— acpecBvil pakibegaapd; + 2 acpecy By ik pv pdy

+ dacpecy By pi0 Mkipg — acpecéenaapn Bvll paks),
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bs = pPetuac(2puay B ucO Whkipg — Byl ki€emaapc iy
2 2 22 2 2 02
+ pay By pckipy g ) N1+ p ecnact (2 pay By pcd ki
— pobemaapi0 By kiy + papy g0 By kipuc) Ny
+ 2 2 2 2 29 2 1— 2
precpacc”(papy gy 0 Byw appc + pay By (1 — w)appi iy pe
+ 2 pay* B pebwarpall — pefemaapiyy 0 fywarll — yBy (1 — w)arphegaapcll
+ 2047687 (1 — w)appnd peT)Ns + p*etpact(—2pcéemapik py Il
— BvIlPki€egraapcm + 2 papy a0 BvkipcIl — pcéegaapnt ByIl*ky
+ 2 pay By pckipy paIl + papd pikiy po + 3 pay By nctky) Bo
2 2 2 2 3 2
+ precpaas(paacpecpy ikt + paacpeciy ppt By Ilk
+ 2 pebegaapiski vy — pay? By ek py pip + paacpec B0 ky
+ Byl ki€egaapcpn®y + paccpec Bl kipy pdy — papy phy*0 By kipc
+ pobemaapdif By kiy — 2 pay* BeucO kipn ),

bs = plegpdodk i (nmpy + ByID)(0BvIL+ v ) (1 — Ror).

It follows from the expressions for b; (i = 0,--- ,6) in (3.33) that by > 0 (since all the model
parameters are non-negative). Furthermore, the coefficient bg < 0 whenever Ry; > 1. Thus,
the number of possible positive real roots the polynomial (3.32) can have depends on the
signs of by, bo, b3, by and bs. This can be analysed using the Descartes Rule of Signs on the
sixth degree polynomial g(x) = bz® + bya® + bya* + bgz3 + bya?® + bsz + bg, given in (3.32)
(with z = Af**). A table similar to Table 3.2 can be constructed, from which the following

result can be established.
Theorem 3.6. The model (3.7) has at least one VPE, of the form &, whenever Ro; > 1.
In summary, the full model (3.7) has the following qualitative features:
(i) It has a GAS VFE, given by &£y1, whenever Ry < 1;

(ii) It has at least one VPE, of the form &, whenever Rgy; > 1.
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The analyses in Sections 3.3 and 3.4 show that the two models, (3.7) and (3.8), exhibit the
same qualitative dynamics (each model has a GAS VFE whenever the associated reproduction
number is less than unity; each model has at least one VPE when the associated reproduction
number exceeds unity). In other words, adding immune responses to the reduced model (3.8)
does not alter its qualitative asymptotic dynamics (with respect to the clearance or persistence

of the virus in vivo).

3.4.3 Sensitivity Analysis

A sensitivity analysis is carried out on some of the key parameters of the model (3.7) (namely,
0,w and ar) to measure their impact on HSV-2 dynamics in vivo. This entails computing
the partial derivatives of Ry with respect to these parameters. It follows from the expression

for Ro1, given in Section 3.4.2, that

ORo1  PvIlpgpy (Noky 4+ warp N3)

= > 0,
90 k1 (OTBy + pv i )?
ORo1 ByvIlpmgarN3py (1 —6)
= — <0, 3.34
Ow k1 (O11By + py prr ) (IBy + py pirr) (3:34)

ORo1  PyIlpur N3[0U By + py pr (1 — w) + Owpmpy]

= > 0.
dar, k2(ON1By + py ) X1By + py purr)

The expressions in (3.34) show that decreasing the ability of the virus without gC to bind to
the host cell (i.e., decreasing 6) and decreasing the re-activation rate for latent viruses (i.e.,
decreasing ar) will help reduce the burden of HSV-2 in vivo (since they result in a decrease
in the reproduction number Ryi; and a decrease in reproduction number is known to be
positively-correlated with a decrease in HSV-2 burden in vivo). Furthermore, it follows from
(3.34) that increasing the fraction of re-activated latent viruses without gC (i.e., increasing
w) will also reduce the burden of HSV-2 in vivo. Overall, the above analyses show that a

future HSV-2 vaccine will be effective in reducing HSV-2 burden in vivo if it:
(i) reduces the ability of HSV-2 without gC to the bind to host cell (i.e., reduce 0);

48



(ii) reduces the re-activation rate for HSV-2 (i.e., reduce ay);

(iii) increases the fraction of re-activated latent HSV-2 without gC (i.e., increase w).

3.5 Numerical Simulations and Discussions

The model (3.7) with immune response is simulated, using the parameter values given in
Table 3.1 (unless otherwise stated), to assess the impact of immune response on HSV-2
dynamics in wvivo. It should be mentioned that since the model presented in this chapter
is completely new (no similar in-host model for HSV-2 dynamics has (yet) been published
in the literature to the author’s knowledge), appropriate data for estimating the associated
parameters are not available at the present time. Thus, the parameter values chosen for the
numerical simulations below may not all be realistic biologically (although such uncertainties
in parameter values are partially addressed below by considering different effectiveness levels
of the immune responses in the simulations, it is prudent to emphasize that the simulation

results obtained should be interpreted bearing these uncertainties in mind).

3.5.1 Humoral Immune Response Only Strategy

The model (3.7) is considered in the presence of humoral immune response only (i.e., in
the absence of cell-mediated immune response, so that p = e = C' = 0). For simulation

purposes, the following levels of effectiveness are considered (arbitrarily):
(i) low effectiveness level of the humoral immune response only strategy (£ = 0.05, ey = 0.1);

(ii) moderate effectiveness level of the humoral immune response only strategy (£ = 0.5, ey =

0.2);
(iii) high effectiveness level of the humoral immune response only strategy (§ = 5,eg = 0.3).

In other words, the effectiveness level is increased (from low to high) based on concomitant
increase in the associated rate of humoral immune response (£) and efficacy (ef). For this

scenario, the simulation results obtained show a decrease in the total number of infected
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cells with increasing effectiveness level of the humoral immune response (Figure 3.3). These
simulations show that the low and moderate effectiveness levels of the humoral immune
response offer very little, or no, impact in curtailing HSV-2 burden in vivo (in fact, the low
effective humoral immune response coincides with the worst-case scenario, where no anti-
HSV-2 immune response in mounted). However, the high effectiveness level of the humoral

immune response strategy results in a significant reduction of HSV-2 burden in vivo.

3.5.2 Cell-mediated Immune Response Only Strategy

In this scenario, only cell-mediated immune response is allowed (so that, £ = ey = A = 0).

Here, too, the following effectiveness levels are considered:

(i) low effectiveness level of the cell-mediated immune response only strategy (p = 0.05,ec =

0.1);

(ii) moderate effectiveness level of the cell-mediated immune response only strategy (p =

0.5,ec = 0.3);

(iii) high effectiveness level of the cell-mediated immune response only strategy (p = 5,ec =

0.6).

Here, too, the effectiveness level is increased (from low to high) based on concomitant
increase in the associated rate of cell-mediated immune response (p) and efficacy (ec). Figure
3.4 shows that, while the low effectiveness level of the cell-mediated immune response offers
marginal reductions in the number of infected cells, the moderate and high effectiveness levels
result in a dramatic reduction of HSV-2 burden in vivo. Furthermore, it is clear from Figures
3.3 and 3.4 that each of the three effectiveness levels of the cell-mediated immune response
strategy is more competitive than its corresponding effectiveness level for the humoral immune
response strategy. In other words, these simulations suggest that the cell-mediated immune
response is more effective than the humoral immune response in reducing HSV-2 burden in

VI00.
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3.5.3 Combined Immune Response Strategy

In this section, a combined immune response strategy (where both the humoral and cell-
mediated immune responses are mounted) is considered. The following levels of effectiveness

are considered for this (combined immune response) strategy:

(i) low effectiveness level of the combined immune response strategy (£ = p = 0.05,eg =

ec = 0.1);

(ii) moderate effectiveness level of the combined immune response strategy (£ = p = 0.5, ey =

0.2,e = 0.3);

(iii) high effectiveness level of the combined immune response strategy (£ = p = 5,eg =

0.3,ec = 0.6).

Figure 3.5 shows that, while the low and moderate effectiveness levels of the combined
immune response strategy essentially coincide with their corresponding levels under the cell-
mediated immune response strategy (depicted in Figure 3.4), the high effectiveness level of the
combined immune response strategy gives the most reduction in the number of infected cells

(in comparison to all other effectiveness levels). Thus, these simulations show the following:

(a) The humoral immune response offers marginal or no impact in reducing HSV-2 burden

in vivo (except if its effectiveness level is high);

(b) The cell-mediated immune response is always more competitive than the humoral im-

mune response strategy in reducing HSV-2 burden in vivo;

(c) The high effectiveness level of the combined immune response strategy offers the greatest

reduction of HSV-2 burden in vivo.

3.6 Summary

In this chapter, a deterministic model for the dynamics of HSV-2 in wvivo is designed and

rigorously analysed. The main findings of this chapter are itemized below:
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(i) The reduced model (3.8), without immune response, has a GAS VFE whenever Ry < 1

(Theorem 3.2);

(ii) The reduced model (3.8) has at least one VPE, of the form &;, whenever Ry > 1

(Theorem 3.3);

(iii) The extended model with immune response (3.7) has a GAS VFE whenever Rg; < 1

(Theorem 3.5);

(iv) The extended model with immune response (3.7) has at least one VPE, of the form &,

whenever Rg; > 1 (Theorem 3.6);

(v) A future HSV-2 vaccine will be effective in reducing HSV-2 burden in vivo if it reduces
the ability of the virus without glycoprotein C (gC) to bind to the host cell, or if
it reduces the re-activation rate of latent HSV-2. Additionally, the vaccine will be

effective if it results in an increase in the fraction of re-activated latent viruses without

gC.

The mathematical analyses carried out in this chapter showed that the two models, with
and without immune responses, have the same qualitative features (pertaining to the clear-
ance or persistence of HSV-2 in vivo). Furthermore, numerical simulations of the model (3.7)

show that:

(a) The humoral immune response offers marginal or no impact in reducing HSV-2 burden

in vivo (except if its effectiveness level is high);

(b) The cell-mediated immune response is more competitive than the humoral immune

response strategy in reducing HSV-2 burden in vivo;

(¢) The high effectiveness level of the combined immune response strategy offers the great-

est reduction of HSV-2 burden in vivo.

In summary, the main public health finding of this chapter is that, based on the parameter
values used in the numerical simulations, a future HSV-2 vaccine that boosts cell-mediated

immune response will be effective in reducing HSV-2 disease burden in vivo.
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Figure 3.2: Simulations of the reduced model (3.8) using parameter values given in
Table 3.1, with IT = 10 and N; = Ny = N3 = 1 (so that, Ry = 0.88 < 1)
and various initial conditions. (A) Total density of healthy epithelial cells.
(B) Total density of infected cells.
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Figure 3.3: Simulations of the extended model (3.7) in the absence of cell-mediated
immune response (p = 0) with different rates ({ = 0.05,0.5,5) and effi-
cacy (eg = 0.1,0.2,0.3) of humoral immune response. Plot depicts the
total density of the infected epithelial cells as a function of time. Other
parameter values used are as given in Table 3.1.
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Figure 3.4: Simulations of the extended model (3.7) in the absence of humoral im-
mune response (¢ = 0) with different rates (p = 0.05,0.5,5) and efficacy
(e¢ = 0.1,0.3,0.6) of cell-mediated immune response. The plot depicts the
total density of the infected epithelial cells as a function of time. Other
parameter values used are as given in Table 3.1.
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Figure 3.5: Simulations of the extended model (3.7) with combined cell-mediated and
humoral immune responses (p = ¢ = 0.05,0.5,5) and efficacies (eg =
0.1,0.2,0.3 and ec = 0.1,0.3,0.6). The picture depicts the total density of
the infected epithelial cells as a function of time. Other parameter values
used are as given in Table 3.1.
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Chapter 4

Single Group Model with

Vaccination

4.1 Introduction

As stated in Chapter 1, a number of candidate anti-HSV-2 vaccines are undergoing various
stages of clinical trials [5, 10, 50, 57, 74, 80, 82, 87], with promising prospects. For instance,
some phase 1 and 2 clinical trials showed that humans mount antibody- and T cell-specific
responses when they are immunized with HSV-2 gB, and gD4 [57, 74]. Furthermore, a DNA
vaccine that encodes gDs, which is intended to elicit HSV-cellular and humoral immune re-
sponses, is in phase 2 trials [50, 74, 80]. Although the concerted global effort to design an
effective HSV-2 vaccine is, indeed, promising, it is plausible to expect that any such vac-
cine will be imperfect (that is, it may not offer full and lasting protection in all vaccinated
individuals). The purpose of this chapter is to theoretically assess the potential impact of
an imperfect HSV-2 vaccine in a population. The vaccine will be assumed to have some
therapeutic benefits (such as, blocking transmission with some efficacy, reducing the trans-
missibility of break-through infection, slowing onset of symptoms and reducing mortality rate
in vaccinated infected individuals).

A few mathematical models, notably by Blower and co-workers (see, for instance, [9,
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10, 38, 74]), have been designed and used to gain insight into the transmission dynamics
of HSV-2 in a population. Many of these models take the form of deterministic systems
of continuous-time differential equations. El-Gohary et al. [29] used a stochastic model for
the study of optimal stabilization of the steady-states of the genital herpes epidemic. This
chapter complements many of the earlier published modelling studies by providing rigorous
qualitative analysis of a new realistic mathematical model for HSV-2 transmission dynamics
in a homogeneously-mixed heterosexual population. A notable feature of the model is that
it allows for disease transmission by asymptomatically-infected individuals (i.e., infected in-
dividuals who do not display clinical symptoms of the disease) in addition to including an

imperfect HSV-2 vaccine.

4.2 Model Formulation

Before designing the vaccination model, a basic HSV-2 transmission model (without a vaccine)
will be formulated (and analysed) first of all. The basic model is designed by sub-dividing
the total, homogeneously-mixed, heterosexual, sexually-active population at time ¢, denoted
by N(t), into mutually-exclusive compartments for individuals that are susceptible (S(t)),
exposed to HSV-2 but show no clinical symptoms of the disease (E(t)), infectious (virus-
shedding) with clinical symptoms of HSV-2 (H,(¢)) and infectious but their infection is

quiescent (@ (t)), so that

N(t) = S(t) + E(t) + Hy(t) + Qu(t).

The susceptible population is increased by the recruitment of new sexually-active individ-
uals (assumed susceptible) into the population (at a rate II). This population is diminished
by natural death (at a rate p) and the acquisition of infection, following effective contact

with infectious individuals (in the H, and @, classes), at a rate A\, where,
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B(Hy + 0Qy)

A= e

is the force of infection and ( is the effective contact rate. Furthermore, the modification
parameter 0 < 6 < 1 accounts for the assumed reduction of infectivity of infectious individuals
in the quiescent class (Q,,) in comparison to those in the H,, class (that is, it is assumed that
infectious individuals in the quiescent state are less infectious than non-quiescent infectious
individuals (in the H, class), because of their assumed reduced viral load). It is worth
emphasizing that the model to be designed is robust enough to allow for disease transmission
by individuals in the quiescent state (at the reduced rate 63; such transmission can be relaxed
by setting # = 0). Putting the above assumptions and definitions together gives the following

equation for the rate of change of the susceptible population:

ds
= == \S - pS.

The population of exposed humans (that is, newly-infected individuals who have not
yet displayed clinical symptoms of the disease) is generated by the infection of susceptible
individuals (at the rate A). It is reduced by the development of clinical symptoms by exposed
individuals (at a rate o) and natural death (at the rate p). Thus,

dE

— =\S—0F — uFE.
i AS —o n

The population of infectious non-quiescent individuals (H,,) is increased by the development
of symptoms of exposed individuals (at the rate o) and by the re-activation of symptoms by
individuals in the quiescent state (at a rate r,). Furthermore, this population is diminished
by the acquisition of quiescence status (at a rate g,), natural death (at the rate p) and

disease-induced death (at a rate §,). Thus,
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df,
dt

=ob +r,Qu— qHy, — puH, — OuHy.

Similarly, the rate of change of the population of individuals in the quiescent class (Q,,)
is increased by the acquisition of quiescence of individuals in the H, class (at the rate g¢,)
and decreases by re-activation of symptoms (at the rate r,), natural death (at the rate u)

and disease-induced death (at a rate d4,, where 64, < 0,). This gives

dQu
dt

= quHy — 1y Qu — pQy — 6unu

Thus, the basic model for the transmission dynamics of HSV-2 in a population is given by

the following system of non-linear differential equations [71]:

ds
22— \S —
dt S = s,
d—E =AS—oF —puFE,
dg’f (4.1)
dtu =B +1,Qu— qH, — pH, — 6,H,,
dQy
dt = quHy — 1y Qu — :uQu - 5unu

The basic model (4.1) is an extension of the basic (treatment-free) model in [9, 10, 38] and

the vaccination-free model in [74], by:

(i) incorporating a compartment for exposed individuals (E);

(ii) adding disease-induced death for infectious individuals (d,, for individuals in H,, class;

and dg,, for those in @, class); and

(iii) assuming that quiescent infectious individuals can transmit infection (albeit at a lower

rate, 460, with 0 < # < 1, in comparison to the non-quiescent infectious individuals).

In addition to the aforementioned extensions, this study contributes to the literature by
carrying out a detailed rigorous analysis of the basic model and the extended vaccination

model (no such analysis is given in [9, 10, 38, 74]).
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4.2.1 Basic Properties

Lemma 4.1. Let the initial data S(0) > 0, E(0) > 0, H,(0) > 0 and Q,(0) > 0. Then, the

solutions (S, E, Hy, Q) of the model (4.1) are non-negative for all t > 0. Furthermore,

limsup N(¢) <

t—o00

=

Proof. Let T'=sup{t > 0: S,E,H,,Q, > 0}. Thus, T" > 0. It follows from the first

equation of the differential equation system (4.1) that

%{S(t) exp [/Ot Aw)du + ,ut} } ~ Mexp [/Ot Au)du + ut] .

Thus,

S(T) exp [ /0 N+ MT] _S(0) = /0 e [ /0 " Aw)dv + wg] da,

so that,

S(T) = S(0)exp {_ /0 T/\(u)du+uT} + exp [— /0 T/\(u)dquuT} «

t T
/ IMTexp [/ A(v)dv + ,u:v] dz > 0.
0 0

Similarly, it can be shown that £ > 0, H,, > 0 and ,, > 0 for all ¢ > 0. Thus, all solutions
of the basic model (4.1), with non-negative initial data, remain non-negative for all ¢ > 0.

Adding all the equations of the basic model (4.1) gives,

%}ft) =11 — uN(t) — 6, Hu(t) — 64uQu(t). (4.2)

Noting that 0 < H,(t) < N(t) and 0 < Q,(t) < N(t), and considering 6 = max{dy, g}, it

follows from (4.2) that
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IT—(p+20)N(t) < o <IT — uN(t)
Thus,
II 1I
< liminf N(t) < limsup N(t) < —,
pt20 T t—oo t—o0 w
so that,

limsup N (t) <

t—o00

, as required.

= A

The above result can also be established using Proposition A.1 in Appendix A of [86].

Consider the biologically-feasible region

D = {(S,E,Hu,Qu) ERY:SHE+H,+Q,< %}

The following steps are followed to establish the positive invariance of D (i.e., all solutions in
D remain in D for all ¢ > 0). The rate of change of the total population, obtained by adding

all the equations in the model (4.1), is given by

% =1 — uN — 6, Hy — SquQu- (4.3)

It follows that if N > II/u, then dN/dt < 0. Since dN/dt < II—puN from (4.3), a standard

1I
comparison theorem (Theorem 2.6) can be used to show that N (t) < N(0)e™# 4+ —(1—e™ ).
W

I I

In particular, N(t) < — if N(0) < —. Thus, every solution of the model (4.1), with initial
H H

conditions in D, remains there for all ¢ > 0 (that is, the w-limit sets of the system (4.1) are

contained in D). Hence, D is positively-invariant. This result is summarized below:

Lemma 4.2. The region D is positively-invariant for the model (4.1) with initial conditions

T
in RY .
As a consequence of Lemma 4.2, it is sufficient to consider the dynamics of the flow
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generated by the basic model (4.1) in D. In this region, the model can be considered epi-

demiologically and mathematically well-posed [43].

4.2.2 Local Stability of Disease-free Equilibrium (DFE)

The basic model (4.1) has a DFE given by
* * * * H
& = (5" E*", H,,Q,) = <p,0,0,0>. (4.4)

The linear stability of & is studied using the next generation operator technique in [88].
The associated non-negative matrix, F}, for the new infection terms, and the non-singular

M-matrix, ()1, for the remaining transfer terms, are given, respectively, by

0 B8 B kL0 0
Fi=lo00 0 |and Q= ¢ Kk —r, |
00 0 0 —qu ks

where, k1 =0+ p, ko = qu + 1+ 6, and k3 = 1, + p1 + gy Thus, it follows that [88]

o -1\ ﬁo-(kii‘i’HQu)
Ro = p(FlQl ) N kl(k2k3 - ruQu) '

(4.5)

It is worth mentioning that koks — ru,qu = ¢u(pt + dqu) + (1t + 0u)ks > 0, so that Ry > 0 (since
all the parameters of the model are non-negative). Thus, using Theorem 2.7, the following

result is established.

Lemma 4.3. The DFE, &, of the basic model (4.1), given by (4.4), is locally-asymptotically

stable if Rg < 1, and unstable if Rg > 1.

The threshold quantity, Rg, measures the average number of secondary cases generated
by a single infected individual in a completely susceptible population [3, 43]. Lemma 4.3
implies that a small influx of infectives would not generate large outbreaks if Ry < 1. In

order for disease elimination to be independent of the initial sizes of the sub-populations of
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the model when Rg < 1, a global asymptotic stability property must be established for the

DFE when Ry < 1. This is explored below.

4.2.3 Global Stability of DFE

Theorem 4.1. The DFE, &, of the model (4.1), is globally-asymptotically stable in D if
Ro < 1.

Proof. Consider the Lyapunov function
F = [HE+ folHu+ f3Qu,
where,
fi = o(ks+0qu), fo=Fki(ks+0q,) and f3 = ki(r, + 0k2),

with Lyapunov derivative given by

F=HE+ foHy, + f3Qu,

_ |:5(Hu+9Qu)S
=f|l—/————

N - klE:| + f2(O'E + TuQu - k2Hu) + f3(QuHu - k3Qu)y

S S
= ki(kaks — Tuqu) <NR0 - 1> Hy + 0ky(koks — ruqu) <NR0 - 1) Qus

< ki(koks — ryqu)(Ro — 1) (Hy + 0Qy), since S < N in D.

Thus, F < 0 if Rg < 1 with F = 0 if and only if H, = Q, = 0 (it should be recalled that

koks — ryqy > 0). Also, E — 0 ast — oo if H, = Q, = 0 (since \ = w =0, in this
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case). It follows, from the LaSalle’s Invariance Principle [58], that
(Hu(t), Qu(t)) — (0,0) as t — oo.
Thus, for any € > 0 sufficiently small, there exists a t, > 0 such that if ¢ > ¢,, then
E(t) <€, Hy(t) < eand Q,(t) < e. (4.6)

d
Consequently, it follows from the equation for d—j in (4.1) (and noting the inequalities in
(4.6)) that, for t > t,,
a5 BS()[Hu(t) + 0Qu ()]

- = I N —pS(t) > = B(1+ 0)e — S,

so that, by comparison theorem (Theorem 2.6),

IT—-B(1+40)e

. S
htn_l)égf Sit) > p (4.7)
Since € > 0 is arbitrarily small, letting € — 0 in (4.7) gives
liminf S(t) > 2 48
iminf S(t) > o (4.8)
Similarly, it can be shown that
. II
limsup S(t) < s (4.9)
t—o0

Hence, it follows by combining (4.8) and (4.9) that

=

lim S(t) = —.

t—o0 M
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Thus, in summary,

lim (S(2), B(t), Ha (1), Qu(t)) = <%,0,0,0> _ &

t—o00

This proves that every solution to the equations of the reduced model (4.1), with initial
conditions in D, approaches the DFE, &), as ¢ — oo, whenever Ry < 1. O

The epidemiological implication of the above result is that HSV-2 will be eliminated
from the community if the threshold quantity, R, can be brought to (and maintained at) a
value less than unity. The result of Theorem 4.1 is illustrated numerically by simulating the
model (4.1), for the case when Ry < 1, using various initial conditions. The solution profiles
obtained, depicted in Figure 4.2, show convergence to the DFE (&), in line with Theorem

4.1.

4.2.4 Existence and Local Stability of Endemic Equilibria (EEP)

In this section, conditions for the existence of non-zero (endemic) equilibria of the model
(4.1) (that is, equilibria for which HSV-2 is endemic in the community) will be determined.
Let,

£ = (S, B, H™, Q)

denotes any arbitrary equilibrium of the model (4.1). The equations in the model (4.1) are

then solved in terms of the associated forces of infection at steady-state, namely

AP = w (4.10)

Setting the right-hand sides of the equations in (4.1) to zero gives the following expressions

for the state variables of the model (in terms of A**) :

I AT kso N 11
S** E** — H;* — ,
kl(k2k73 - ruQu)(/\** + /‘)

:)\**_‘_'u’ kl()\**_‘_ﬂ),
Q** _ QUU)\**H
Y Ki(koks — ruqu) (N 4 )

(4.11)
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By substituting the expressions in (4.11) into equation (4.10), and simplifying, it follows
that the non-zero equilibria of the model system (4.1) satisfy the following polynomial (in
terms of \**),

AN +ay = 0, (4.12)

where,

a1 = (koks — ruqy) + 0(ks +qu) and ay =1— Ry.

The coefficient a; is always positive (since koks — ryq, > 0, and all the model parameters
are non-negative). The coefficient ag is positive (negative) if Ry is less than (greater than)
unity. Thus, the solution A\*™ = ;—‘12 < 0 when Ry < 1 (hence, the model has no positive
real root in this case). Furthermore, when Ry = 1, the coefficient ay = 0, and the equation
(4.12) reduces to a3 A** = 0, with solution \** = 0 (corresponding to the DFE, &). For
the case when Ry > 1, the coefficient ay < 0, so that the model has one positive real root
(given by \** = ;—‘12 > 0). The components of this endemic equilibrium can then be obtained

by substituting the positive root of (4.12) into the expressions in (4.11). These results are

summarized below.

Theorem 4.2. The basic model (4.1) has one positive (endemic) equilibrium, of the form

&1, whenever Ry > 1, and no positive equilibrium otherwise.

The local stability of the EEP, &£, of the basic model (4.1) is considered for the special
case when the associated disease-induced mortality is zero (i.e., §, = dq, = 0). Setting
0y = 0qu = 0 in (4.1) gives

dN(t)

S - uN(t
g pN(t),

so that, N(t) — II/u = N** as t — co. Using N = N**, and the definition S = N** — F —

67



H, — Qy, in the basic model (4.1), gives the following reduced model:

dE_ B(H,+6Q.)(N** — E — H, — Q)

= _ —oF — uFE

dt N+ oE TR
dH,

dt =ok + 7unu — quHy, — ,UfHua (413)
dQy

:uHu_uu_ U
0 1 ruQu — HQ

It can be shown that the reduced system (4.13) has a unique EEP, of the form & =

E1l(5u=54u=0) = (B, Hy*, Qy"), whenever Ro1 = Ro|(5,=5,,—0) > 1-

Theorem 4.3. The unique endemic equilibrium, £, of the reduced model (4.13) is LAS

whenever Ryp > 1.

Proof. The proof is based on using a Krasnoselskii sub-linearity trick, as described in [84]
(see also [31, 32, 44]). Assume, first of all, that the reduced model (4.13) has solution of the

form:

Z(t) = Zoe™, (4.14)

with ZO = (Zl, Z, Zg) and 7,7; € C (’L = 1,2,3).
The goal is to show that Re(r) < 0. Substituting a solution of the form (4.14) into the
linearized system of (4.13) (around the equilibrium &}) gives the following system of linear

equations:

iy = [P OQE) ), [BS7 G 000
pes _ ot 4 6031
+|: P *ok Z3’
N N (4.15)

TZQ = O'Zl — kQZQ + Tu23,

TZ3 = quZo — k3Zs.

Solving for Z3 from the third equation of (4.15), and substituting the result into the remaining
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equations of (4.15), and simplifying, gives the equivalent system

{1 . k:il [T L BET + 9@**)} }Zl _ 1 [ﬁS** BHL + 9@2*)} Z

N** kl N** N**
L L[pos™ _ U +0Qi))
kl N N
. (4.16)
T (o uw
1+ — | Zy=—Z1+-2Z
( + k2> 2 s 1+ oy 35
T qu
14+ — | Z3 = —2,.
( +k:3> 3T 1

Adding the first and the third equations of (4.16) and substituting Z, from the third equation

to the first equation, and moving all the negative terms to their respective left-hand sides,

gives:
21+ Fy(7)] + Zs[1+ F3(7)] = (MZ)1 + (M 2)3, .
Zs[1 + Fy(1)] = (M Z)s,
where,
Fl(T)zki1 T—l—%], FQ(T):]%,
F3(7) = k’lg n kilﬁ(H;’;Vt*eQ;*) <1 N kquurT>7 (4.18)
with,

0 I@s** ,BGS**
N**k)l N**k)l

M = o Ty
ko 0 ko
qu

The notation M(Z); (with ¢ = 1,2,3) denotes the ith coordinate of the vector M(Z). It
should be noted that the matrix M has non-negative entries, and the equilibrium 511 satisfies

&l = MEL. Furthermore, since the coordinates of £} are all positive, it follows then that if Z
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is a solution of (4.17), then it is possible to find a minimal positive real number, s, such that

| Z |< s&f, (4.19)

where, | Z |= (| Z1 |,| Z2 |,| Z3 |) with the lexicographic order and | - | is a norm in C.
As stated above, the goal is to show that Re(7) < 0. Assume the contrary (i.e., Re(7) > 0).

The following two cases are considered.

Case 1: 7=0

Suppose, first of all, that the complex number, 7, is zero (i.e., 7 has zero real and imaginary
parts). It follows then that (4.16) is a homogeneous linear system in the variables Z; (i =
1,2,3). The determinant of this system corresponds to that of the Jacobian of the system

(4.13) evaluated at £, which is given by

1
N**

A =

*k k% *kk S**
(BH" + B0Qy" ) (k2ks — mugqu) + N k1 (kaks — 7uqu) <1 - anﬂ. (4.20)

It can be shown that % = %m’ Thus (noting from Section 4.2.2 that keks — 7,q, > 0),

A= BH." + 50Q;") (kaks — ruqu)} <0. (4.21)

_W(

Consequently, in this case (with 7 = 0), the system (4.16) can only have the trivial solution

Z = 0 (which corresponds to the DFE, &, of the model (4.1)).

Case 2: T #0

Consider, now, the case when 7 # 0. It follows, by assumption, that Re(r) > 0. Thus,
| 1+ Fi(7) |> 1 for i = 1,2,3. Define F(7) = min |1+ Fi(7) |, i = 1,2,3. Then, F(r) > 1.
Therefore, ﬁ < s. Since s is a minimal positive real number such that | Z |< s&{, it follows
that

| Z |> mgll. (4.22)
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Taking norms on both sides of the second equation of (4.18), and using the fact that M is

non-negative, gives
F(r) | Zo|< M(| Z )2 < s(M | €] )2 < sH. (4.23)

Thus, it follows from the inequalities in (4.23) that | Zs |< ﬁHi*, which contradicts (4.22).
Hence, Re(7) < 0, which implies that the equilibrium, &£, is LAS if R, > 1. O

The epidemiological implication of Theorem 4.3 is that the disease will persists in the
community if the associated basic reproduction threshold, Rgq, exceeds unity. Numerical
simulations, depicted in Figure 4.3, using numerous initial conditions, show convergence of

the solutions to the endemic equilibrium, 511, for the case when Rgp > 1.

4.2.5 Global Stability of EEP: Special Case

The global stability of the EEP of the basic model (4.1) is considered for the special case
where the HSV-2-induced mortality is negligible (so that, d,, = d4, = 0) and individuals in
the quiescent state do not re-activate and progress to the symptomatic stage (i.e., r, = 0).
Setting 6, = dgy, = 7, = 0 in the basic model (4.1), and adding all the equations of the model,
gives the following equation for the rate of change of the total population:

dN (t)

S I — uN(1).
pm pN(t)

Thus, N(t) — % as t — o0o. Using N = % (and noting that 6, = ¢, = 7, = 0) in the basic

model (4.1) gives the following limiting (mass action) system:

s Bu(Hy + 0Qu)
a1 i 5= pS,
aE = Ms — oE — uE,
dg’f II (4.24)
dt =0l — quH, — /LHuv
dQu
a quH, — ﬂQu

71



The basic reproduction number of the reduced model (4.24), denoted by Rg2, is given by

Bo(u+ 0q.)
(o + ) (qu + p)

Ro2 = Rol(5,=5qu=ru=0) = (4.25)

Using the approach in Section 4.2.4, it can be shown that the reduced system (4.24) has a
unique EEP, of the form & = &1|5,—5,,=r,—0) = (S, £, H;;*, Q") (where, S** > 0, E** >

0,H* > 0and @ > 0), whenever Rp2 > 1. It is convenient to define the region:

Dy ={(S,E,H,,Q,) €D : E=H, =Q, =0}

Theorem 4.4. The unique EEP, &, of the reduced model (4.24), is GAS in D\ Dy whenever

Roo > 1.

Proof. Consider the non-linear Lyapunov function

F = <S ) S ln—S**> + <E E E lnE**>
(4.26)

BS** (0qu + 1)
(qy + 1)

(HU—H;*—H;*lnH“>+BS f

koK kK Qu
)t (Qu—czu - Qiin )

Q**
u
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with Lyapunov derivative given by,

< S>+< E) T Ml )M a.)?
(SN [y Bu(Hy +6Qu) BN\ [Bu(Ha +0Qu) o
_<1 S){H S S|+ (1 = S —oFE — uE
=+ 1-— oF — Hu — Hu + 1-— uHu - u)s
o 26“ *ok ok *ok ok _ i _ g _ ﬁ:u’ ok ok (S**)2 _

E** 0 Bb4q. **
ﬁwS**QZ* ﬁwS**Qu Buo . o Ho
— S™E —S™FE
T n T gt ) i,
+ 7H(qu+m(s B = STE) + S (STHT = ST H) + S =
B . B S B S** 5MHZ*S** B g B i B SE**HU
= ws (2o ) T (0 - - )

BroQy s s B SETQ Puo - o Hy

e (3 — - E — S*™E
* n \’" 5 B sEor) e\ L% P,

+ —S"E-STFE + S™H;" —S™H,

(qy + 1) Hu II Qu
_ wifo S ST puHS™ (, S  SEYH, EH}”
= uS (2 S 8 > T (3 S~ S™EH: EHu>

I S S*EQy EvH, HyQ.)

In the above calculations, the following relations

state &) were used:

II

II

- S, HY =
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qu + /"

(obtained from (4.24), at the endemic steady-

L and Q)7 Guo B

ol )

k%
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Since the arithmetic mean exceeds the geometric mean, it follows then that

S S** S SE*H, EH

2 <0, 4

'S S*EH E*H,

— <0, 3-
Gk S — 7

so that F < 0 for Rg2 > 1. Thus, by the Lyapunov function F, and the LaSalle’s Invariance
Principle [58], every solution to the equations in the model (4.24) approaches the unique
EEP, &, as t — o0, for Rgo > 1. ([l
It is worth mentioning that extensive numerical simulations of the basic model (4.1) suggest
that the unique endemic equilibrium, &1, may be globally-asymptotically stable when Ry > 1

(hence the following conjecture).

Conjecture: The EEP, &, of the basic model (4.1) is globally-asymptotically stable in D\ Dy
whenever Ry > 1.

In summary, the basic HSV-2 model (4.1) has a globally-asymptotically stable DFE when-
ever Rg < 1, and a unique EEP if Ry > 1. It is shown that the unique EEP of the model
(4.1) is globally-asymptotically stable, for the special case when 6,, = d4, = r,, = 0, whenever
Roo > 1. The basic model (4.1) will now be extended to incorporate an imperfect HSV-2

vaccine, as follows.

4.3 Model With Vaccination

To design the HSV-2 vaccine model, the following new state variables are introduced for the
populations of vaccinated individuals (V' (t)), exposed vaccinated individuals (E,(t)), infec-
tious vaccinated individuals (H,(t)) and quiescent vaccinated infected individuals (Q,(t)).

Thus, the total population at time ¢, denoted by N (t), is now given by:

N(t)=S(t) + V(t) + Bu(t) + Ep(t) + Hu(t) + Hy(t) + Qu(t) + Qu(?).
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A fraction, pe, of the new sexually-active (adolescent) individuals recruited at the rate II is
vaccinated (where p is the proportion of these individuals that are vaccinated and e repre-
sents the proportion of these vaccinated individuals in whom the vaccine takes). Susceptible
individuals are vaccinated at a rate £, and the vaccine is assumed to wane at a rate w. Fur-
thermore, since the vaccine is assumed to be imperfect, vaccinated individuals can acquire
break-through infection at a reduced rate (1 —)\,, where 0 < ¢ < 1 represents the vaccine
efficacy (degree protection against infection). In line with Schwartz and Blower [74], it is

assumed that vaccinated individuals have:

(a) shorter average length of viral shedding;
(b) fewer viral shedding episodes; and

(c) lower transmission probability, in comparison to unvaccinated individuals.

The associated force of infection is given by

ﬁ[Hu + 771Hv + H(Qu + 772@11)]

AU: N ’

where, 0 < 11,12 < 1 are the modification parameters accounting for the vaccine-induced
reduction of infectiousness for individuals in the H, and @, classes, respectively, in compar-
ison to unvaccinated infectious individuals (in the H, and @, classes, respectively). Thus,
the rates of change of the population of susceptible and vaccinated individuals are given,

respectively, by

ds
dv

The population of exposed vaccinated individuals (E,) is generated by break-through

infection (at the rate (1 —)\,) and is decreased by the development of symptoms (at a rate
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09) and natural death (at the rate ), so that

dE,
dt

=1 —=Y)NV — (02 + p)E,.

It is assumed that o9 < o1, to account for the assumption that exposed vaccinated
individuals develop clinical symptoms of HSV-2 at a slower rate in comparison to exposed
unvaccinated individuals. Infectious vaccinated individuals (in the H, class) are generated
by the progression of exposed vaccinated individuals (at the rate o2) and by the re-activation
of vaccinated individuals in the quiescent state (at a rate r,). This population is decreased
by progression to quiescence (at a rate g, ), natural death (at the rate p) and disease-induced

death (at a reduced rate 6, < &,). Thus,

dH,
dt

= ook, + Tva - (QU +p+ 61))Hv'

Finally, the population of vaccinated infectious individuals in the quiescent state (Q,) is
increased by the progression to quiescence of infectious vaccinated individuals (at the rate
qv). The rate of change of this population is reduced by re-activation (at the rate 7,), loss
of vaccine-induced immunity (at a rate a), natural death (at the rate ) and disease-induced
death (at a rate d4,). Individuals in the @, class who lose their vaccine-induced immunity

are moved to the @, class (at the rate o [74]). Hence,

dQy
dt

= quH, — (Tv +a+pu+ 5qv)Qv'

Thus, considering the above descriptions, together with the basic model (4.1), the ex-
tended vaccination model for the transmission dynamics of HSV-2 in a population is given
by the following system of non-linear differential equations [71] (a schematic diagram of the

model is depicted in Figure 4.1; the associated variables and parameters of the model are
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described in Table 4.1).

ds

= TI(1 = pe) = A+ — (€ + )8,
dVv

e =Tpe+£5— (L= AV — (w+ )V,
dE,

dt = )\US - (01 + M)ETM

dE,

Zo (1A~ (02 + 0B
o (4.27)
dtu =01 B, + TuQu - (Qu + u+ 5u)Hm
dH,

dt =o0oF, + TUQU - (QU +p+ 5v)Hvy
dQy,

i = QUHu + an - (Tu +up+ 6qu)Qu7
dQy

(ji = quH, — (Tv +a+pu+ 5qv)Qv'

In summary, the extended model (4.27) incorporates an imperfect HSV-2 vaccine with

the following (assumed) therapeutic characteristics:

(i) it blocks infection with some efficacy;
(ii) it reduces transmissibility in break-through infections;
(iii) it slows development of symptoms in exposed vaccinated individuals; and

(iv) it reduces mortality rate in break-through infections.

The aforementioned vaccine characteristics are in line with the expected characteristics of
an ideal HSV-2 vaccine given in [4]. Furthermore, the model (4.27) is an extension of the

vaccination model in [74], by:

(a) including two additional compartments for exposed unvaccinated and vaccinated indi-

viduals (E, and FE,);
(b) incorporating disease-induced mortality;

(c) allowing for disease transmission by individuals in the unvaccinated and vaccinated

quiescent states (Q, and Q,);
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ered in [74]); and

incorporating continuous vaccination and cohort vaccination (only the latter is consid-

(e) incorporating some therapeutic vaccine characteristics (such as Items (i7i) and (iv)

above).

Table 4.1: Description of variables and parameters of the vaccination model (4.27).

Variables  Description

S(t) Susceptible individuals

V(t) Vaccinated individuals

E,(t) Unvaccinated exposed individuals

E,(t) Vaccinated exposed individuals

H,(t) Unvaccinated infectious individuals

H,(t) Vaccinated infectious individuals

Q.(t) Quiescent unvaccinated infectious individuals

Q. (1) Quiescent vaccinated infectious individuals

Parameter Description Baseline values/year
IT Recruitment rate 10000
I Natural death rate 7—10

B Contact rate 0.3 [74]
& Vaccination rate of susceptible individuals 0.6

Y Efficacy of vaccine 0.6

w Waning rate of vaccine = [74]
P Proportion of new recruited individuals vaccinated 0.5

78



01

)

Ty

4y

4y

T, M2

Ous Oqu
Ov; Oqu

Proportion of recruited susceptible individuals in whom
vaccine takes

Progression rate to symptoms development of unvaccinated
exposed individuals

Progression rate to symptoms development of vaccinated
exposed individuals

Activation rate of unvaccinated infectious individuals in the
quiescent state

Activation rate of vaccinated infectious individuals in the
quiescent state

Rate at which infectious unvaccinated individuals

revert to quiescent state

Rate at which infectious vaccinated individuals

revert to quiescent state

Progression rate to quiescent unvaccinated infectious individuals
of quiescent infectious vaccinated individuals

Modification parameter for lower infectiousness of individuals
in quiescent class

Modification parameters for reduced infectiousness of
vaccinated infectious individuals

Disease-induced death rate for unvaccinated infectious individuals

Disease-induced death rate for vaccinated infectious individuals

0.6

365
15

365
18

35 [74]

20[74]

5

0.5

0.7,0.6
0.007,0.006
0.005,0.004
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Figure 4.1: Schematic diagram of the HSV-2 vaccination model (4.27).

Furthermore, unlike in [74] and the other aforementioned HSV-2 modeling studies, detailed

(rigorous) mathematical analysis of the vaccination model (4.27) will be provided.

4.3.1 Basic Properties

Using the approach in Section 4.2.1, the following biologically-feasible region

D, = {(S,V,Euy, Ey, Hy, Hy,Qu, Q) € RS :

S+V+Eu+Ev+Hu+Hv+Qu+QvEH/M},

80



can be shown to be positively-invariant for the vaccination model (4.27). Furthermore, the

vaccination model (4.27) has a DFE, given by

53:(5*7V*7EZ7E:7H27H;7 ZaQT))
_ (H[(l — pe)kar + pew] TI[(1 — pe)& + pekqi]
karp +&p karp +&p

(4.28)

70707070707O>7

where, k13 = £ + p and k91 = w + p. The associated non-negative matrix (Fh) and the

non-singular M-matrix (Q2) are given, respectively, by

0 BS* B8S*m BS*0 BS*0m2
N~ N~ N~ N~
0 BA=p)V*  BA=P)V*m1  BA=Y)V*E  BA=y)V*On
N* N* * N*
Fy 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
k31 0 0 0 0 0
0 ka1 0 0 0 0
—01 0 ]{751 0 —Tu 0
Q2 = ,
0 —09 0 kﬁl 0 —Ty
0 0 —quy 0 k71 —
0 0 0 —qv 0 k‘gl
where,
k31 = o1+p, kg =02+ u, ksi=qu+p+ou, ke =qu+p+dy,
kri = ry+p+0q and kgy =17y + o+ p 4 Ogo-
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It follows then that the associated vaccination reproduction number, denoted by Ryqc, is

given by
_ k310208(1 — )V* Ay + ka10185* By
Rvac — F ! — ) 4.29
PR, ) N*kz1kar (ks1kr — qury) (ke1kst — quro) (4.29)
with,
Ar = aqy(ry + 0ks1) + (ksikn — quru) (mkst + 0n2qy), B = (k71 + 0qu) (ke1ks1 — qury)-

It is worth stating that, in (4.29), ksik71 — quru = qu(dgu + 1) + (0u + p)k71 > 0 and
ke1ks1 — quro = qu(ov 4 0gp + 1) 4 (0 + p)kg1 > 0 (so that, Ryee > 0). Thus, by Theorem 2.7,

the following result is established.

Lemma 4.4. The DFE, &, of the model with vaccination (4.27), given by (4.28), is LAS if

Ruae < 1, and unstable if Ryqe > 1.

The threshold quantity, Ryqc, measures the average number of secondary cases generated
by a single infected individual in a susceptible population where some of the susceptible
individuals are vaccinated. Lemma 4.4 implies that a small influx of infectives will not
generate large outbreaks if R,.. < 1. However, it will be shown, in Section 4.3.2 below,
that the classical requirement of the vaccination reproduction number being less than unity

becomes only a necessary, but not sufficient, condition for disease elimination.

4.3.2 Endemic Equilibria and Backward Bifurcation

To establish the existence of endemic equilibria of the extended vaccination model (4.27), the
following steps are considered. Let, & = (8™, V** EX* E** H* H}* QF, Q) represents
any arbitrary endemic equilibrium of the vaccination model (4.27). Furthermore, let

BIH +niHy + 0(Q5 + n2Q57)]
N**

A = (4.30)
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(the force of infection of the extended model (4.27) at steady-state). It follows, by solving the
equations in (4.27) at steady-state (and substituting the resulting expressions into (4.30)),
that the non-zero equilibria of the extended model (4.27) satisfy the following quadratic

equation (in terms of \}*)
ar (A2 4 b A ¢ =0, (4.31)

where,

ar = (1— 1/1){(1 — pe)kar(kr1 + qu)(ks1ke1 — Tvqu)o1 + peksi (ks1 + go) (kr1ks1 — Tugu)o2
+ aks1peqy(ks1 + 1u)o2 + (ksipe + (1 — pe)kar) (kr1ks1 + ruqu) (ks1ker — Tqu)},
by =—-p(1 - 7[)){(]%1]‘571 — quru)(0M2qu + mks1)o2ksipe
+ (ke1ks1 — quro)(0qu + k71)(1 — pe)karor + peksioaaqy (1, + Hksl)}
+(1— pe){(kﬁlkéﬂ — qury)ko1ks101(qu + kr1) + (1 — ¥) k31098 [(ks1k71 — qura)(go + ks1)
+ aqu(ks1 + ro)] + (ksikrn — qura) (kerkst — quro)[ks1 (1 — ) (€ + kar) + k21k‘41]}
+ pﬁ{(kmk?l — quru)[(ke1ks1 — quro) (kar + k11 (1 — ) ka1 + (1 — ¥) (g + ks1)o2ks1 k11
+ (ke1ks1 — quro) [wka101(qu + k1) + karw(ksikr — quru)] + (1 — ) (ry + k51)k310'204%)k11}7

c1 = ksikai(ksikri — qury) (ks1kst — qury)[(1 — pe) (€ + k21) + pe(w + k11)](1 — Ryac)-

The quadratic equation (4.31) can be analyzed for the possibility of multiple endemic
equilibria when R, < 1. It is worth noting that the coefficient, aq, is always positive, and
c1 is positive (negative) if Ryqc is less than (greater than) unity. Hence, the following result

is established:

Theorem 4.5. The vaccination model (4.27) has:

(1) a unique endemic equilibrium if ¢c; < 0 < Ryge > 1;

(ii) a unique endemic equilibrium if by < 0, and c¢; = 0 or b3 — 4ajc; = 0;
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(iii) two endemic equilibria if ¢; > 0, by < 0 and b% —4aicq > 0; and
(iv) no endemic equilibrium otherwise.

Thus, it follows from Case (i) of Theorem 4.5 that the vaccination model (4.27) has a unique
EEP whenever R4, > 1. Furthermore, Case (iii) indicates the possibility of backward bi-
furcation (where a locally-asymptotically stable DFE co-exists with a locally-asymptotically
stable endemic equilibrium when the associated reproduction threshold, R, is less than
unity, see, for instance, [11, 30, 36, 75]) in the vaccination model (4.27). The epidemiological
importance of the phenomenon of backward bifurcation is that the classical requirement of
Ruyae < 1 is, although necessary, no longer sufficient for disease elimination. In such a sce-
nario, disease elimination would depend upon the initial sizes of the sub-populations (state
variables) of the model. In other words, the presence of backward bifurcation makes disease
elimination more difficult (using the imperfect vaccine).

To check for the possibility of backward bifurcation in the vaccination model (4.27), the

discriminant b3 — 4ajc; of the equation (4.31) is set to zero, and the result solved for the

critical value of R4, denoted by R¢,.. This gives:
2
Riae =1— h )
darkgi ka1 (ks1kr1 — quru) (ke1kst — qury)[(1 — pe)(§ + k21) + pe(w + k11)]

from which it can be shown that backward bifurcation occurs for values of R4 such that

RC

vac

< Ryae < 1. This phenomenon is numerically-illustrated by simulating the model (4.27)
with the following set of parameter values: II = 50,3 = 0.6,p = 0.1, = 0.6,w = 0.0004, & =
0.6,9 = 0.87,a = 0.009, = 0.008, 5, = 0.0009,0,, = 0.009, 04, = 0.09,64, = 0.009,01 =
0.8,09 = 0.7,q, = 0.07,7, = 50,11 = 0.02, 72 = 0.09, ¢, = 0.04,7, = 50 and 6 = 0.9 (so that,
0.84 = R¢,. < Ryae = 0.95 < 1). It should be stated that the aforementioned parameter
values chosen for the numerical simulations may not all be realistic epidemiologically (they
are chosen only to illustrate the backward bifurcation phenomenon; the reader may refer to
[60] for discussions on whether or not backward bifurcation can occur using a realistic set of

parameter values).
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The simulation results obtained, depicted in Figure 4.4, show that the model has a disease-
free equilibrium (corresponding to A%* = 0) and two endemic equilibria (corresponding to
A = 0.1523686255 and A5* = 0.01420615479, respectively). One of the endemic equilibria
(Ar* = 0.1523686255) is LAS, and the other (A* = 0.01420615479) is unstable (a saddle).
The disease-free equilibrium (corresponding to A3* = 0) is LAS. This clearly shows the co-
existence of two stable equilibria when R4 < 1, confirming that the extended model (4.27)
exhibits backward bifurcation for Rf,. < Ryec < 1.

Thus, in summary, the vaccination model (4.27) exhibits backward bifurcation when

Case (7i7) of Theorem 4.5 holds and R,

vac

< Ryae < 1. It should be stated that the backward
bifurcation phenomenon of the vaccination model (4.27), described above, is only illustrated
numerically. A more rigorous proof, based on using the centre manifold theory [13, 36, 88],
is given in Appendix A.

The presence of backward bifurcation in the HSV-2 transmission model (4.27) suggests
that the feasibility of controlling or eliminating HSV-2 from a population (using a vaccine)
when Ryec < 1 could be dependent on the initial sizes of the sub-population of the model
(4.27). Tt is worth mentioning that the vaccination model presented by Schwartz and Blower
[74] also exhibits backward bifurcation (albeit not shown or discussed in that study). Although
backward bifurcation has been established in a number of epidemiological models (such as
those in [11, 30, 36, 75] and the references therein), this is (to the author’s knowledge) the
first time such a phenomenon has been rigorously established in the transmission dynamics of
HSV-2 in a population. As is typically the case with vaccination models, the imperfect nature
of the vaccine is one cause for the presence of backward bifurcation in disease transmission
models. This claim is verified below in the context of the extended model (4.27) .

Consider the vaccination model (4.27) with a perfect vaccine (so that, ¢» = 1). In this
case, the coefficients a1,b; and ¢, of the quadratic (4.31), reduce to a3 = 0, by > 0 and
¢1 > 0 whenever Ryq. < 1. Thus, when ¢ = 1, the quadratic (4.31) becomes linear, with a
(unique) solution given by \¥* = —4 <0 (hence, the model (4.27) has no positive endemic

equilibrium in this case). This rules out backward bifurcation phenomenon (since backward
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bifurcation requires the presence of multiple endemic equilibria when R 4. < 1).
The above fact can also be illustrated in the following alternative way. Setting ¢ = 1 in

the extended model (4.27) gives:

% = II(1 — pe) — AS + wV — £S5 — S,

% = IIpe + &S — wV — uV,

B NS~ 1By~ B, (4.52)
di;“ = 01Ey + 14Qu — quHy — pHy — 0y Hy,

1,00 0.

with the associated force of infection now given by

B(Hy 4 0Qu)

Ay = .
S+V + Ey+ Hy + Q.

(4.33)

It can be shown that the reproduction number of the model (4.32), with (4.33), is given by

1 BS*o1(kr1 + 0qy)
= 4.34
Ruac Nk (ksikr1 — Tuqu)’ (434)

% _ H[(1—pe)ka1+pew] « _ I . . :
where S* = R YT TR and N* = e Define the invariant region,

IT
Dy = {(S,V,Ey, Hy, Q) €ERY : S+ V + Ey + Hy + Qy < ;}, (4.35)

for the model (4.32). The DFE of the model (4.32) is given by & = (S*,V*,0,0,0), where

V= W. Furthermore, let ® = }3—1 (ie, ® <1).
Theorem 4.6. The DFE, &}, of the model (4.32), with (4.33), is GAS in Dy whenever
Rl

vac

<P <1
Proof. Consider the Lyapunov function
Fi = giEu+ g2Hy + 93Qu,
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where,

g1 = o1(kn +0qu), g2 = k3i1(kr1 + 0qy) and gz = k31 (ry + Oks1),

with Lyapunov derivative given by

Fi = glEu + 92Hu + 93Qu7

H,+600Q,)S
=0 [w - kglEu] + g2(01Ey + 14Qu — ks1 Hy) + g3(quHy — ki Qu),
SN* SN*
= ka1 (ks1kri — Tuqu) (N—S*Rtl;ac - 1> Hy + Oks1(ks1kry — ruqu) (N—S*Rtlmc - 1> Qu,

1

< k31 (ks1hkr1 — ruqu) <%§”c — 1> (Hy, +0Qy), since S < N in D;.

Thus, F; < 0 if R.,. < ® < 1 with | = 0 if and only if H, = Q, = 0 (it should be
recalled that ks1k71 — ryqy > 0). Furthermore, £, — 0 as t — oo if H, = @, = 0 (since

A= w = 0 in this case). It follows, from the LaSalle’s Invariance Principle [58], that

(Hy(t),Qu(t)) — (0,0) ast — oo.

Using the similar approach as in Section 4.2.3, it can be shown that

lim S(t) = (1 = pe) and lim V(t) = T + pen)

tmoo (€4 p) t—o0 p(€+p)

Thus,

lim (S(t), V(t), Eu(t), Hy(t), Qu(t)) = <S*,V*,0,0,0> =&l

t—o00

Hence, every solution to the equations of the reduced model (4.32), with initial conditions in
Dy, approaches the DFE, 5&, as t — oo, whenever R} . < &y < 1. O

In summary, it is shown that the use of an imperfect HSV-2 vaccine induces the phe-

nomenon of backward bifurcation in the transmission dynamics of HSV-2 in a population,
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and such phenomenon does not occur if the vaccine is 100% effective. Thus, adding vaccina-
tion to the basic model (4.1) induces the phenomenon of the backward bifurcation in HSV-2
transmission dynamics (it should be recalled that the basic model (4.1) does not undergo

backward bifurcation).

4.3.3 Assessment of Vaccine Impact

In this section, the potential impact of the HSV-2 vaccine is assessed by carrying out sensi-
tivity analysis on the vaccination threshold, R,q.. The quantity R,q. is, first of all, expressed

as a function of the fraction of susceptible individuals vaccinated at steady-state (given by

P = ]‘\/,*) That is,

_ ﬁk‘gl(l — ¢)O’2’PA2 + ﬁk‘410'1(1 — P)Bg

Rvac = Rvac(P) C2 5

where,

Ay = agqy(ry + 0ks1) + (ksikr — qura) (mkst + 0n2qy),
By = (kn +0qy)(keiksi — quTy),

Cy = ksikai(ksikrt — qura)(ke1kst — qury)-

Differentiating R,,. partially with respect to P gives

(4.36)

ORvac k41801Bo
— 1_
(S
with,

_ k31(1 — ¥)oaAs
k4101Bs

\%

Since Ay > 0, By > 0,C5 > 0 (noting that ks1k71 — qury > 0 and kg1 kg1 — qury > 0, as shown

in Section 4.3.1) and Ryqc > 0, it follows from (4.36) that 67;—7“3“ < 0 whenever V < 1. That
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is, Ryac is a decreasing function of the vaccinated fraction, P, whenever V < 1. Furthermore,
owing to the fact that a reduction in reproduction number implies reduction in disease burden
(measured in terms of generation of new infections, disease-induced mortality, hospitalizations
etc.), the above analyses show that a HSV-2 vaccine will have positive population-level impact
in reducing disease burden (in the community) whenever V < 1, and will not otherwise. This

result is summarized below:

Lemma 4.5. Consider the vaccination model (4.27). The vaccine will have:

(1) positive population-level impact (i.e., reduce disease burden) if V < 1;

(ii) no population-level impact if V = 1;

(iii) detrimental population-level impact (i.e., increase disease burden) if V > 1.

The above result is illustrated numerically by depicting the total number of infection as a
function of time. Figure 4.5A shows the case with ¢ = 0.6 (corresponding to a vaccine efficacy
of 60%) and other parameters chosen such that V = 0.36 < 1, from which it is evident that
the vaccine has a positive impact, since it reduces the number of infections in comparison
to the case when the vaccine is not used. Figure 4.5B depicts the solution profiles obtained
for the case when the vaccine efficacy is reduced to 20% (i.e., ¢ = 0.2) and choosing other
parameter values so that V = 1.48 > 1. It is clear from these simulations that, for the case
V = 1.48 > 1, the use of the vaccine increases the number of infections, in relation to the
case when the vaccine is not used. It should be emphasized that although the threshold V
is a decreasing function of 1, the vaccine can only have positive impact if its efficacy is high
enough (to make V < 1).

In fact, the threshold value of the vaccine efficacy (denoted by 1).) needed to ensure
positive population-level vaccine impact can be obtained by setting V = 1 and solving for

.. Doing so gives

(4.37)
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where P; = kyyo1By and Py = k31094, (it should be noted that the Condition P; < Py is

needed to ensure that 0 < 1. < 1). Thus, the following result is established:
Lemma 4.6. An imperfect HSV-2 vaccine will have:

(1) positive population-level impact if 1 > )g;

(ii) no population-level impact if 1 = 1b.; and

(iii) negative population-level impact if ¥ < 1.

Alternatively, the vaccine impact can be measured by re-writing Ryq. as

V* Ruac
vac — 1— 1—- 0 5 4.
S

where,

Bo(kn + bqu)

Ro = , 4.39
© 7 ka1 (ks1kr — rugu) (439)
is the basic reproduction number (defined in Section 4.2.2), and
1-— k 012q,

ka1 (ke1kst — qury)

is the reproduction number when every individual in the population is vaccinated (it should
be recalled that ksik71 — 74qu > 0 and kei1ksi — qury > 0, so that Ro and Ry are non-
negative). Using the notation in [9, 30], it follows from (4.38) that the associated vaccination
impact factor, denoted by ¢ (with 0 < ¢ < 1), is given by

V* R'U(IC
= 1— 29 ). 4.41
o= (1- 55 (1.41)

It should be noted from (4.41) that if R§* < Rp, then the impact factor, ¢, is positive.
Hence, vaccination will reduce the reproduction number (R,q.), and, therefore, the vaccine

will have positive population-level impact. On the other hand, if R§* > Ry, then ¢ < 0.
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In this case, vaccination will have negative population-level impact (by increasing disease
burden). If ¢ = 0, then R{* = Rp; and the vaccine will have no population-level impact in

this case. These results are summarized below.

Theorem 4.7. The use of an imperfect HSV-2 vaccine will have:
(1) positive population-level impact in the community if ¢ > 0 (R{™ < Ryo);
(71) no population-level impact if ¢ =0 (R{*™ = Ro); and
(111) negative population-level impact in the community if ¢ <0 (RE* > Ro).

Figure 4.5A shows that when ¢ = 0.78 > 0, the vaccine will have a positive impact,
while Figure 4.5B shows that the vaccine will be detrimental (increase total infection) when
¢ = —0.05 < 0. It should be stated that not all of the parameter values used in these
simulations are obtained from epidemiological data/studies (and some may not be completely
realistic; hence, it is likely that, with a complete set of realistic parameter values, the case
where V > 1 or ¢ < 0 would not arise. In other words, it is most probably the case that the
vaccine will always have positive impact if all the parameter values used in the simulations
are realistic).

Contour plots of Ryqc, as a function of the fraction of individuals vaccinated at steady-

state (P = X}*) and vaccine efficacy (1), are depicted in Figure 4.6, using a reasonable set
of parameter values (mostly within the ranges given in [74]). It is clear from Figure 4.6 that
effective HSV-2 control or elimination is feasible if the vaccine efficacy (/) and the fraction
of susceptible individuals vaccinated at steady-state (P) are high enough (at least 80% each),

since such a combination can reduce R,q. to values less than unity and elimination results

for values of Ryqc < 1 outside the backward bifurcation range (R¢,,.

< Ryae < 1). On the
other hand, disease elimination is not possible if the vaccination efficacy is low (less than
60%) irrespective of the size of the fraction of susceptible individuals vaccinated at steady
state.

It is worth stating that Schwartz and Blower [74] showed, using a reasonable ranges of

parameter values (taking into account uncertainties in these ranges, based on using Latin
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Hypercube Sampling technique), that the use of an imperfect vaccine could induce a modest
reduction in incidence of infection in the USA (estimating a reduction of more than 1 million
infections within a decade of its introduction). Overall, the theoretical and numerical analyses
in this chapter suggest that the prospect of effectively controlling the spread of HSV-2 in a

population, using an imperfect vaccine with a reasonably high efficacy, is promising.

4.4 Summary

A basic deterministic model for the transmission dynamics of HSV-2 in a population is
designed in this chapter. The basic model is extended to incorporate an imperfect HSV-
2 vaccine, with some therapeutic characteristics. Rigorous mathematical analyses are carried
out to gain insights into the qualitative dynamics of the two models. Some of the main

mathematical and epidemiological findings of this chapter include the following:

(i) The model without vaccination has a globally-asymptotically stable disease-free equilib-
rium whenever its associated reproduction number is less than unity (Theorem 4.1). It
has a unique endemic equilibrium if the associated reproduction number is greater than
unity (Theorem 4.2). The endemic equilibrium is shown to be locally- and globally-

asymptotically stable for a special case (Theorems 4.3 and 4.4);

(ii) The model with vaccination undergoes the phenomenon of backward bifurcation when
the associated reproduction number is less than unity. The presence of this phe-
nomenon, which does not arise if the vaccine is 100% effective, implies that the effort
to effectively combat the spread of HSV-2 in a population, using an imperfect vaccine,

could be dependent on the initial sizes of the sub-populations of the model;

(iii) An imperfect HSV-2 vaccine could have positive, no, or negative population-level im-
pact depending on whether or not a certain threshold quantity (V) is less than, equal
to, or greater than unity (Theorem 4.5), respectively. This result is also expressed in

terms of a “vaccine impact factor”, ¢ (Theorem 4.6);
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(iv) Numerical simulations suggest that disease elimination is possible if the vaccine efficacy
and the fraction of individuals vaccinated at steady-state are high enough (at least 80%

each).

It should be mentioned that the single-group models presented in this chapter did not
incorporate the role of sex structure in HSV-2 transmission dynamics. In other words, the
single-group models, (4.1) and (4.27), are limited to some epidemiological settings, such as
studying HSV-2 transmissions in populations with one-to-one gender ratio or equal average
rates of sexual activity between the sexes. A new model that incorporates sex structure (and,

therefore, more realistic) is designed in Chapter 5.

x 10*
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Figure 4.2: Simulations of the basic model (4.1) showing the total number of infected
individuals (E + H, + @) as a function of time using the parameters in

Table 4.1, with £ = 0.01, u = % and 0 = %5 (so that, Rg =0.34 < 1).
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Figure 4.3: Simulations of the basic model (4.1) showing the total number of infected
individuals (E + H, + @) as a function of time using the parameters in
Table 4.1, with = 0.1,y = %,ru = 0,0, = 0,0y, = 0 and o = %5 (so
that, Ro; = 4.20 > 1).
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Figure 4.4: Simulations of the vaccination model (4.27) showing the backward bifurca-
tion phenomenon. Parameter values used are as given in Section 4.3.2.
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Figure 4.5: Simulations of the vaccination model (4.27) showing the total number of
infected individuals (E, + E, + H, + H, + Q. + Q,) as a function of
time in the presence or absence of vaccination. (A) V = 0.36 < 1 and
¢»=0.78>0 (Ryse = 1.19, Ry = 9.69 and R{* =4.23). (B) V=148 >1
and ¢ = —0.05 < 0 (using € = 0.3, = 0.2,01 = 155,02 = 155, = 4,70 =
2, Ryae = 3.25, Ry = 3.09 and R{* = 4.39). All other parameters are as
given in Table 4.1.
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Figure 4.6: Simulations of the vaccination model (4.27) showing contour plots of R

as a function of the fraction of individuals vaccinated at steady-state (P =
Y>) and vaccine efficacy (¢) with 8 = 0.1. All other parameters are as

given in Table 4.1.
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Chapter 5

Two-group Model

5.1 Introduction

An important biological feature of HSV-2 disease is the fact that seropositivity is uniformly
higher in women than in men [12, 23, 64, 94]. This is attributed to a number of reasons, such
as the fact that male-to-female transmission is more likely than female-to-male transmission
[23] and the higher rate of disease recurrences in men (which may make them more infectious;
and, therefore, more likely to infect their female partners) [12]. Hence, as stated in Chapter
4, realistic models for HSV-2 transmission dynamics in a population should incorporate such
heterogeneity in susceptibility due to gender variability (i.e., sex structure). Consequently,
the aim of this chapter is to model the transmission dynamics of HSV-2 in a sex-structured
heterosexual population. The deterministic model to be designed, which is an extension of
the model (4.1), will be used to evaluate the impact of various intervention strategies, such
as the use of condoms, antiviral drugs and an imperfect HSV-2 vaccine. As stated in Chapter
1, condoms are known to offer significant protection against HSV-2 infection, particularly in
susceptible women [14, 91]. Similarly, antiviral drugs (such as, aciclovir (Zoviraz), valaci-
clovir (Valtrex), famciclovir (Famwir), peniciclovir) can reduce the frequency, duration and
severity of outbreaks [12, 52, 59, 77]. Furthermore, a number of candidate HSV-2 vaccines

are undergoing various stages of clinical trials.

98



Thus, it is significant to evaluate the impact of the aforementioned pharmaceutical and
non-pharmaceutical interventions in curtailing the spread of HSV-2 in a sexually-active sex-
structured population. In addition to evaluating the impact of the control strategies, the
objective of this chapter is to determine whether or not adding sex structure to the basic

HSV-2 model (4.1) affects the qualitative dynamics of the single-group model (4.1).

5.2 Model Formulation

The total sexually-active population at time ¢, denoted by N(t), is sub-divided into two
groups, namely, the total male population (N,,(t)) and the total female population (N¢(t)).
The total male population is further sub-divided into four mutually-exclusive compartments
for males that are susceptible (S,,(t)), exposed to HSV-2 but show no clinical symptoms of
the disease (E,(t)), infectious (virus-shedding) with clinical symptoms of HSV-2 (H,,(t))

and infectious, whose infection is quiescent (Q;,(t)), so that

Nm(t) = Sm(t) + Em(t) + Hm(t) + Qm(t)

Similarly, the total female population is further sub-divided into four mutually-exclusive
compartments for females that are susceptible (Sf(t)), exposed to HSV-2 but show no clinical
symptoms of the disease (E¢(t)), infectious (virus-shedding) with clinical symptoms of HSV-2

(H(t)) and infectious, whose infection is quiescent (Qf(t)), so that

Nf(t) = Sf(t) + Ef(t) + Hf(t) + Qf(t).
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The model to be considered consists of the following system of differential equations [72]:

dSm,
W - Hm - )\me - ,Umea
dE,,
T ApSm = (Om + 1) Eny,
dH,,
7 = opmbim + TQO - (Qm +p+ 51)Hm7
dQm
& = QmHm - (rm + 52)Qm7
dt
@ (5.1)
f
DF 11— Ay — Sy,
il f = AmSy = pSy
dE
d—tf = AnSf — (of + p)Ey,
dH
d—tf = O'fEf + Tfo — (Qf + u+ 51)Hf,
d@
d—tf = quf — (Tf + u+ (52)Qf.

In (5.1), the parameters II,, and IIy represent the recruitment rate of males and females
into the sexually-active population, respectively. Susceptible males acquire HSV-2 infection

following effective contact with infectious females at a rate Ay, given by

o (H
A o= Brem( ]{r;_anf)j (5.2)

where 3y is the probability of infection (from females to males) per contact and c,, is the
average number of male sexual partners (for females) per unit time. Similarly, susceptible
females acquire HSV-2 infection following effective contact with infectious males at a rate A,

(the reader may refer to [43] on the derivation of the infection rates, Ay and A,), where

A = . , (5.3)

with ¢¢ and 3, having similar definitions as ¢, and §; (it is, however, assumed that 3,, > B
since females are more susceptible to HSV-2 infection than males [94]). Unlike in many other
HSV-2 modelling studies (including those in [10, 74]), it is assumed that infected individuals

in the quiescent state (i.e., those in the @, and Q classes) can indeed transmit infection.
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The modification parameters 0 < 7,,,ny < 1 account for the assumption that quiescent
individuals transmit infection at a slower rate than the corresponding infected individuals
with clinical symptoms of the disease (in the H,, and Hy classes), due to their assumed
reduced viral load (it is assumed that viral load is positively correlated with infectiousness).
Individuals in each epidemiological compartment suffer natural death at a rate pu.

Newly-infected individuals move to the exposed class E,,(Ef) at the rate Af(\y,) for
males (females). Exposed individuals develop symptoms at a rate o,, (o) for males (females).
Quiescent individuals re-activate (relapse) their infection (and become symptomatic) at a rate
rm(rf) for males (females), and move to the corresponding H,,(Hy) class. Individuals with
clinical symptoms of the disease become quiescent at a rate ¢,,(q¢) for males (females). The
parameters 0; and o represent the disease-induced death for individuals with symptoms (in
H,, or Hy class) and those in quiescent state (in Q,, or Q class), respectively. It is assumed
that 9 < 4.

The model (5.1) is an extension of the one-group HSV-2 transmission model presented
by Podder and Gumel [71], by considering a two-group (males/females) structure (that takes
into account the differential susceptibility to HSV-2 infection between the two genders). It
should be mentioned that although numerous two-sex models have been published in the
literature (see, for instance, [17, 20, 22, 21, 40, 45, 48, 83]), no such model has so far been
published in the context of the transmission dynamics of HSV-2 in a population.

The main objective of the current study is to determine whether or not adding sex struc-
ture to the single-group HSV-2 model presented in [71] alters its qualitative (equilibrium)
dynamics. It is worth mentioning that an important feature of a sex-structured model is that
the total number of sexual contacts females make with males must equal the total number of
sexual contacts males make with females. Thus, the following group contact constraint must

hold (see also [16, 17, 98]) :

cmNm = Cfo. (5,4)

It is assumed that male sexual partners are abundant, so that females can always have enough
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number of sexual contacts per unit time. Hence, it is assumed that cy is constant (and ¢y, is

calculated from the relation ¢, = Cfvjif) (see, for instance, [15, 18, 16, 17, 46, 55, 67, 95, 100]

for further discussions on multi-group models). Using the constraint (5.4) in (5.2) and (5.3),

the basic model (5.1) can be re-written as:

Dot 11— ZEL (87 4+ 0008 15,

U DI 11, 10,150 o+ )

cllj_tm = OmEm + 1mQm = (gm + p+ 01) Hp,

dg_tm = gmHpm — (rm + p + 62)Qum, (5.5)
dd—Stf =11 — ﬁ’?\;m (Him + nmQm) Sy — uSy,

% _ ﬂn&jm (Hp + 110 Q) Sy — (07 + 1) By,

% =05Ey +rQf — (a5 + p+ 61)Hy,

dd;Qtf =qrHy— (ry+p+62)Qy.

The two-group HSV-2 transmission model (5.5) is an extension of the single-group HSV-2
model (4.1), by incorporating sex-structure. In other words, the model (5.5) relaxes the
assumption (in (4.1)) that every sexually-active individual has the same likelihood of ac-
quiring HSV-2 infection (this assumption seems unrealistic, since data shows that HSV-2
seropositivity is uniformly higher in women than in men [12, 23, 64, 94]).

The model (5.5) will now be analysed for its basic properties.

5.2.1 Basic Properties

Using the approach in Section 4.2.1, the following result can be proven.

Theorem 5.1. Denote z;(t) = (S;(t), Ei(t), Hi(t),Qi(t)), i = m,f. Let the initial data

(m(0),2£(0)) > 0. Then the solutions (xp,(t),zf(t)) of the basic model (5.5) are positive for
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all t > 0. Furthermore,

Define the region:

The following result can also be shown using the approach in Section 4.2.1.

D

t—o0

II
limsup Ny, (t) < —=, limsup Ny(t) <
i

t—o0

II
ij Sg+Er+Hp +Qp < —

nf}‘

I

oy

{(Sm>Em>Hm>QmasfaEf,Hf,Qf) € Ri_ :

Lemma 5.1. The region D is positively-invariant for the basic model (5.5) with initial con-

ditions in Ri .

5.3 Existence and Stability of Equilibria

5.3.1 Local Stability of DFE

The DFE of the model (5.5) is given by

&o

II II
(St B Hi Qo7 B 7.0 = (£22,0,0,0,2,0,0,0)

(5.6)

Using the notations in [88], the next generation matrices F' and V', associated with the model

(5.5), are, respectively, given by,

ﬂm Cm nmﬂmcm

0
0

0
0

0 Brer mpBrer

0
0
0

0
0
0

0
0
0
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with, my1 = o, + @, m2 = @ + p+ 01, m3 = Ty + p+ 92, M1y = op +p, Moy = qy +p+ 01

and mgz; = ry + p + d2. Hence, it follows that

Ro = p(FV ™) = \/RnRy, (5.7)
where,
R, = 5fcf0'm(m3+77QO), (58)
mi(mam3 — gmrm)
and,
R, - Bmcmoy(ma1 +nrqy) (5.9)

mu(maimsy — qpry)

It should be mentioned that, in (5.8) and (5.9), mams — ¢mrm = gm(p+d2) + ms(u+3d1) > 0
and moyms1 — qyry = qf(p+ 02) + ma1(u + 91) > 0. Consequently, it follows from Theorem

2.7 that:

Lemma 5.2. The DFE of the model (5.5), given by (5.6), is locally-asymptotically stable

whenever Ry < 1, and unstable if Ry > 1.

The threshold quantity, Ry, is the aggregate (geometric) product of the average number
of new cases generated by females (denoted by R ) and males (denoted by R,,). It measures
the average number of secondary cases generated by a single infectious male (female) in a
completely susceptible population [3, 43]. The epidemiological implication of Lemma 5.2 is
that a small influx of infectious individuals will not generate large outbreaks in the population
if Ry < 1. In order for disease elimination to be independent of the initial sizes of the sub-
populations of the model when Ry < 1, a global asymptotic stability property must be

established for the DFE (&) of the model when Ry < 1. This is explored below.

5.3.2 Global Stability of DFE
Theorem 5.2. The DFE, &, of the basic model (5.5), is GAS in D if Ry < 1.
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Proof. Consider the Lyapunov function

F = fiBn+ foHp + f3Qm + faEy + fsHy + f6Qy,

where,

fi = P2P3Roommit, fo = PaPsRomimir, fz = PaRomimii(rm + nmma),

fao = ®3P4Bfcromoy, f5 = P3Pufrcrommi, fo = P3frcrommar(ry +npmar),
with,

Q1 = mom3 — Gmrm, P2 = morms1 — qyry, P3=m3 + Nnqm and @4 = m31 +nrqs.
The Lyapunov derivative of F is given by

F = AEn+ foHp+ [3Qm + f1Er + fsHy + f6Qy.

= fl [%(Hf + Tlfo)Sm - mlEm:| + fQ(UmEm + TQO - m2Hm) + f3(QmHm - mBQm)

+ fa [m&jm'(Hm + N @m) Sy — mnEf] + folopEp +77Qp —marHy) + folgr Hy — ma1Qy),

AeNe (S Am AV, S
= $oP3myicron, J;mf (N—:nnRo - 1> + P1Pomimi1Ro ﬁ”:nc;n <FJ;R0 - 1>7

IN

AN AmNm
(I)Q(I)gmllcfam J; / <R0 — 1> + &1 Pymimi11Ro B0 <R0 — 1>,
m mCf

since Sy, < Ny, and Sy < Ny in D.

Thus, F < 0 if Ro < 1 with F = 0 if and only if B, = Hy,, = Q= Ef = Hy = Q; = 0. Tt

follows, from the LaSalle’s Invariance Principle [58], that

(EmaHM7QmaEf7Hf7Qf) — (070707070,0) ast — oo.
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Thus, for any € > 0 sufficiently small, there exists a t; > 0 such that if ¢ > t;, then

E, <e€ Hp<e€ Qn<e Ef<e, Hf <eand Qf <e. (5.10)

Now, it follows from the equations for Sy, and Sy in (5.5) that for ¢ > ¢; (and noting (5.10))

dSp,
W = I, — Af(t)sm(t) - /LSm(t) > 1L, — Cfﬁf(l + 77f)€ - :usm(t),
ds
d—tf = Hf — )\m(t)Sf(t) — ,qu(t) > Hf — Cmﬂm(l + nm)ﬁ — ,uSm(t).

Thus, by comparison theorem,

11,, —Cfﬁf(l—l-’l’}f)e Hf —Cmﬁm(l—l-’l’}m)e

o S . S ‘
hgégf Sm(t) > . , htrggolf S¢(t) > . (5.11)
Since € > 0 is arbitrarily small, letting e — 0 in (5.11) gives
11, II
liminf S, (£) > —2 and liminf Sp(t) > —L. (5.12)
t—o0 7 t—o00 Hu
Similarly, it can be shown that
11, II
limsup Sp,(t) < — and limsup S¢(t) < -, (5.13)
t—o00 1% t—00 2
Hence, it follows from (5.12) and (5.13) that
tlirglo S (t) = e and tlirglo St(t) = e
Thus,
tligt(sm(t)a Em(t)v Hm(t)v Qm(t)v Sf(t)7 Ef (t)v Hf(t)v Qf (t))
11, 1T
- <—,0,0,0,—f,0,0,0> = &.
[ [
]
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The epidemiological implication of Theorem 5.2 is that the classical epidemiological require-

ment of Ry < 1 is necessary and sufficient for the elimination of HSV-2 from the community.

5.3.3 Existence and Stability of Endemic Equilibria

The existence of an EEP of the model (5.5) is considered for the special case where the
associated disease-induced mortality is negligible (so that, d; = d2 = 0). Setting d; = d2 =0
in the model (5.5), and adding all the equations of the model, gives the following equations

for the rate of change of the total male and female populations, respectively:

AN, (1) dN¢(t)
=1II,, — pNp () and =11y — uN¢(t).
ph plm(t) and — §— 1N (t)
Thus, Ny, (t) — HT’" and Ny(t) — % as t — oo. Using N,,, = HT’" and Ny = % (and noting

that 1 = 02 = 0) in the basic model (5.5) gives the following reduced or limiting (mass

action) system:

dSm ﬁfo,u,

— =Ty — K(Hf +17Qf)Sm — Sm,

df_tm = @HL:L(HJI +nfQf)Sm — p1Em,

Cf_tm = 0mEm + rmQm — p2Hp,

dff—tm = Gt = psQum, (5.14)
dd_?‘ . @’QHL]’:””‘(H,” + 1mQm) S — pSy,

dd% — 5”"{%’?”(%&1 + 0 Qm)Sy — P11 Ey,

% =o0Er+15Qp — paHy,

dc%f =qrHy; — p31Qy,

where, p1 = o + i1, P2 = Gm + [, P3 = Tm + i, P11 = Of + 1, p21 = g5 + p and p3y = Tp + p.

To obtain conditions for the existence of non-zero (endemic) equilibria of the mass action
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model (5.14), it is convenient to let

gl = (SZk’E::vH** ™ S**7E}<*7H;‘<'*7Q}*)7

m mo

denotes any arbitrary equilibrium of the mass action model (5.14). The equations in the
model (5.14) are then solved in terms of the associated forces of infection (Af; and Ay,1) at

steady-state (obtained from (5.2) and (5.3) at steady-state), namely

e _ BpogpUHF +1pQF) e BnCmpt (Y + i @Q3)

= = 5.15

It follows that the basic reproduction number associated with the reduced model (5.14),

denoted by Rq, is given by

Ry = Rolis. s, oy = 1| 21 6mCs oms (03 + i) (31 + 1174y)
( 1= 2—0) plpll(p2p3 — qmrm)(p21p3l - quf)

where, pap3 — ¢mrm = p(gm + p3) > 0 and pa1p3r — qyry = gy + p31) > 0.

Setting the right-hand sides of the equations in (5.14) to zero gives the following expres-

sions for the state variables of the model (in terms of A%} and A7 ):

P N Vi (R DTN T o _ DX
TN O ) T pieps — rman) AT ) T N (5.16)
kk Hf B — A;k;:ll_[f H** — p310—f)\::1nf Q** _ B2A:;1Hf
f _/\** + s Hf T (/\** + )7 f - ( — )()\** )7 f - A** )

ml T p11( Ay + 1 P11(P21P31 — Tfqy)( Ay + 1 m1 T H
where,
k
B = 39m and By = 5194 (5.17)

P1(P2P3 — Tmdm) p11(p2ips1 — rrqy)

By substituting the expressions in (5.16) (and noting (5.17)) into equation (5.15), and simpli-

fying, it follows that the non-zero equilibria of the model system (5.14) satisfy the following
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polynomial (in terms of A}]):

a1 Ay + a2 =0, (5.18)
where,
a1 = p3191 B1llmps + p3192 B1llyimdm + p31pps,
and,
az = Epip11(paps — Tmdm) (p21ps1 — 7rqp) (1 — R3),
with, g1 = Bﬁ% and g9 = ﬁmn;;"“

Clearly, the coefficient, a1, of the linear equation (5.18), is always positive (since all the
model parameters are positive). Furthermore, since pops — r,qm > 0 and paips1 — rrqp > 0,
it follows that the coefficient ag is positive (negative) if Ry is less than (greater than) unity.
Thus, the unique solution of (5.18), given by = 2, is negative whenever Ry < 1 (so
that the model has no positive real root in this case). When R, = 1, the coefficient ay = 0,
and the equation (5.18) reduces to a; =0 (with solution 71 = 0; corresponding to the
DFE, &). For the case when R; > 1, the coefficient ay < 0, so that the model has one
positive real root, given by }’i = ;—‘12 > 0 (the components of this endemic equilibrium, for

the case Ry > 1, can then be obtained by substituting the positive root of (5.18) into the

expressions in (5.16)). These results are summarized below.

Lemma 5.3. The reduced model (5.14) has one positive (endemic) equilibrium, of the form

&1, whenever Rq > 1, and no positive equilibrium otherwise.

The local stability property of the unique endemic equilibrium (1) of the reduced model

(5.14) is now explored. For mathematical convenience, the substitutions S,, = N3 — E,,, —
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Hp,

— Qm and Sy = N;* — Ey — Hy — Q will be used in (5.14), giving

dEm 5 c kk
7 = %(Hf + ’I’}fo)(Nm -FE,—-H,— Qm) _plEmy
Hp,
% = ombm + TQO - p2Hm7
dQm
T = qmHy — p3Qm,

P ) (5.19)
F = N}k* (Hm+77QO)(Nf _Ef _Hf _Qf) _pllEf’
dH

d—tf = O'fEf +Tfo _p21Hf7

d@Q

d—tf =qHy —pn1Qy.

Theorem 5.3. The unique endemic equilibrium, &, of the model (5.19) is LAS whenever

Rq1> 1.

The proof of Theorem 5.3 is given in Appendix B.

The global stability of the EEP (&) of the model (5.14) is considered for the special

case where quiescent individuals do not transmit infection (i.e., ny = 1y, = 0) or re-activate

their infection (i.e., 7, = 7y = 0). Substituting ny = 1, = 1 = rp = 0 in (5.14) gives the

following system:

dSm Bresp

:Hm_ H m T ms
dt 10, 7 Sm = S
dEp, ﬁfo,u,

S DI S, — B,

dt 10, §Sm =P
dH,,
- = mEm_ Hma

a bz

dQm
dt = qmHm — p3Qm,

155 B (5.20)
dEf 5mcm:u'

f H,,S¢ — p11E;,
dt 11 Sy —puky
dH;

s R S P Y ¢ |

7 orEy —poarHy,

dQ

d—tf =qrHy —p31Qy.
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The reproduction number associated with the system (5.20) is given by

BmBfCmCromo

(5.21)
p1P11P2P21

R = Rl 0) = \/

Using the approach in Section 5.3.3, it can be shown that the reduced system (5.20) has a

unique EEP, of the form
& = ( ;1*17 ::17 ;:1*17 Q;:,klv S?{’E?{’H;Tv Q}?)

(where, S > 0,E", > 0,H, > 0,Q: > 0, St > 0,E7 > 0,Hp) > 0, and Q> 0),

whenever Ry > 1. It is convenient to define the region:
DO = {(SM7EM7H7TI7QmquuEf7Hf7Qf) €D: Hm = Qm = Hf = Qf = 0}

Theorem 5.4. The unique EEP, &, of the reduced model (5.20) is GAS in D\ Dy whenever

Ro > 1.

Proof. Tt should be noted from the system (5.20), first of all, that the variables Q,,
and )y do not feature in any of the other equations of the model. Hence, these variables
can be (temporarily) removed from the analysis of the system (5.20), by considering a sub-

dQm dQy

system of the model (5.20) without the equations for =¢™ and —*. Furthermore, consider

the non-linear Lyapunov function

S, E
F= <Sm — S — Sﬁﬂ”%) + (Em - B - Eﬁﬂ”%)
Eml

ml

+ H, — —H In——-—-) + o | Of — S — SHin 5.92
o m ml ml Hml gQHml Sfl f f1 f1 Sfl ( )
ng}T :rzkl Hm

Ey g 1S 05 +
g2HmISf1 < d d ! B3 g2HmISf1 of " " U HR,

where, g1 and go are as defined in Section 5.3.3. Thus, the Lyapunov derivative of F is given
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— 1— ml - _ ~ml -
Fo= (1-50)s, s (1- )

+ O-m+1u<1— ml>I_Im"|’g1 {ki n:i <1_£>Sf

Ex* ) o+ H** .
+ < —i>Hf+ / “(1— fl)Hf
Ey of Hy

_ <1— ml)(nm—ﬁfcf“Hme—uSm>+(1—%><ﬁfcf“Hme—plEm>

Sm I, Ep, I,
Om + 1 H;ﬁ ng;;T :;;1 S;?{ BmCmp
1——= E,, — poH, — |1 - == I, — H,S;—uS
T o < 1, ) (7nEn =2 m)+ng?§15}’{ sy )\ T T e

af !

w g v Hp  SuHEDE
g M1< Smo Si fremt Smo Hpp  SihHPER B

k% k% k% m k% k% k% k%
92Hm15f1 Sy Sfl Sy Hih SleflEf Efl

m1< Smo S g2HmISf1 n Sy Sfl
. SmHpER Sp SpHwBER B Hy EfH?T>

E*%x H%x
f1 BmCmt of+ f1
R (Pl S pnE 1- Y (o/B — porH
" < Ef>< Iy 51~ pu f>+ < H ><Uf fop f)]

F17m1 Sm  SghH[Em Sy SjpH}E; EH., FEfH;

It should be stated that, in the above calculations, the following relations (obtained from

(5.20) at the endemic steady-state, &) have been used:

5foMH**1 **1 o ﬁmcm,uHﬁS;?{ .
M= ==+ S, Hf:H—erqul,
ﬁfouS;fl ﬁmcm:us?i
Kk — E** — S
(Jm + :u) ml Hm ) (Jf + lu’) f1 Hf )
(gm + W Hy = omERy, (gm +p)Hyy = onEn).
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Since the arithmetic mean exceeds the geometric mean, it follows then that

*k S**
9 _ml_‘S:Z: §0,2_£_S*f*_,
6 — mi SmHpE ﬁ B SpHmEF  EnHi B ErHpy <0

Sm, S:,le]’iTEm Sy S}’{H}TEJ[ EX Hp, E}’{Hf_’

so that F < 0 whenever Ry > 1. Thus, F is a Lyapunov function of the sub-system of

the model (5.20) without the equations for dcj—t’” and dg—tf. It then follows, by the LaSalle’s

Invariance Principle [58], that

Hm Sy, (t) = S**, lim En(t) = EX, lim Hy(t) = H*,
t—o00 t—o00 t—o00 (523)
tllglosf(t):‘sfv tli)I&Ef(t):Efv tll)I?OHf(t):Hf

It is clear from (5.23) that limsup E,,, = E,,". Thus, for sufficiently small x > 0, there exists

t—oo

a constant 7 > 0 such that limsup E,, < E;" + & for all t > 7. It follows from the fourth

t—oo

equation of the model (5.20) that, for ¢ > 7,

Qm < qm(H:ﬁk + "{) — p3Qm.-

Thus, by comparison theorem (Theorem 2.6),

H**
Q> = limsup Q,, < w, (5.24)
t—00 b3

so that, by letting k — 0 in (5.24)

H**
Q3 = lmsupQ, < qmp3m . (5.25)
— 00

Similarly (by using litm inf H,, = H.), it can be shown that
— 00

H**
Qoo = liminf Qp, > Imim (5.26)
- p3
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Thus, it follows from (5.25) and (5.26) that

qmH Y
b3

Hence,

m H**
Jim Q,, = Gm(Hu') _ oer (5.27)

Similarly, it can be shown that

lim = = Q5. 9.28
t—o00 Qf P31 Qf ( )

Thus, by combining (5.23), (5.27) and (5.28), it follows that every solution to the equations
of the model (5.20), with 7, = 1y = ry, = 7y = 0 and initial conditions in D\ Dy approaches
& ast — oo, for Ry > 1. O

In summary, the basic two-group HSV-2 model (5.5) has the following qualitative prop-

erties:

(i) it has a GAS DFE whenever the reproduction threshold (Ry) is less than unity (Theorem

5.2);

(ii) the model with §; = d2 = 0 has a unique endemic equilibrium (€;) whenever the
associated reproduction number (R;) exceeds unity (Lemma 5.3). The unique endemic

equilibrium is LAS when it exists (Theorem 5.3);

(iii) the EEP of the model with §; = d2 = 0 is GAS for the special case when quiescent
individuals do not transmit infection (i.e., ny = n,, = 0) and also do not re-activate
and progress to the symptomatic stage (i.e., 1, = ry = 0), whenever the associated

reproduction threshold (R2) exceeds unity (Theorem 5.4).

These results are generally consistent with those reported in Chapter 4 [71], for the single
group HSV-2 transmission model (4.1). In other words, adding sex-structure to the single-

group HSV-2 model (4.1) does not alter the main qualitative (equilibrium) dynamics of the
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single sex model (it is worth recalling that the basic single-group model (4.1) has a GAS
DFE whenever its associated reproduction threshold is less than unity, and it has an endemic
equilibrium whenever the threshold exceeds unity. This endemic equilibrium was shown to

be GAS for a special case).

5.4 Model in Periodic Environment

In this section, the effect of “periodicity” on the transmission dynamics of HSV-2 in a sex-
structured population will be qualitatively assessed. The case for periodicity in HSV-2 trans-
mission dynamics in a sexually-active population stems from the fact that HSV-2 infection
is lifelong, and latent infection can re-activate. This re-activation can occur regularly, pro-
ducing a relapse period of infectiousness [10, 89]. The frequency and amplitude (severity)
of recurrence (relapse) of HSV-2 vary greatly, depending on the individual and various envi-
ronmental factors including stress (both physical and mental) [42]. To incorporate such time
varying recurrence, it is assumed that the associated transmission and relapse parameters
of the model (5.5) are periodic (i.e., By, = Bm(t), Br = Br(t), rm = rm(t) and 7y = rf(t)).
It should, however, be mentioned that (at the moment) there is no clear epidemiological
evidence in favor or against this (periodicity) assumption in this context.

Using the aforementioned definitions for 3,,, ¢, m and ry in the model (5.5) gives

the following non-autonomous, sex-structured, two-group model for HSV-2 transmission in a
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population:

dj—tm =1L, — ijs,icf (Hf +17Qf)Sm — p1Sm,

dim _ 5f]£;n)ff (Hp +10/Q1)Sm — (0 + 1) Enm,

% = OB + T ()@ — (@ + 1+ 61) Hop,

dff_tm = GuHm — [rm(t) + 1+ 02)Qum, (5.20)
T 1y = PO 4,0, S,

ddEtf - ﬁm](\f;Cm (Hp +1m@m) Sy = (o7 + 1) Ey,

% = orEr+rp(t)Q — (q5 + p+ 61)Hy,

dd%f = qpHy — [ry(t) + p + 6] Q.

The objective is to determine whether or not adding periodicity to the autonomous two-group

model (5.5) alters its qualitative dynamics (particularly with respect to the elimination of

the disease).

5.4.1 Basic Properties

It is convenient to define the regions:

and the function,

X = {(Sm7Em7H7TI7QM7Sf7Ef7Hf7Qf) S Ri_ :
Sm+ Em+ Hy + Qum < Nypand Sy + Ey + Hy + Qf < Ny},

Xo = (Spy, Ey, Hy,, Q0 51, B, H3, Q).

g = g(Sm7Em7HmaQm75faEf7Hf7Qf)-

Lemma 5.4. The non-autonomous model (5.29) has a unique and bounded solution with the
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wniatial data Xo, where Xog € X. Further, the compact set

T, I
D= {(SmyEmyHTrwvasfvEf7Hf7Qf) €eX:Ny,< 7 and Nf < If},
18 positively-invariant and attracts all positive orbits in X.
Proof. Following [61], let g € (R%,R) be defined by:
07 (SM7EM7H7TL7QM7Sf7Ef7Hf7Qf) = (070707070707070);
Brep(Hy +nyQf)Sm
g= | Drelfly Q) (Stns Eons s Qo) € B2 {(0,0,0,0)};

S+ Ep + Hy + Quy”
5mcm(Hm +anm)Sf

S+ Ep+Hp +Qy ’

(Sy, Ey, Hy,Qy) € R\ {(0,0,0,0)}.

Hence, the function ¢ is continuous and globally lipschitz on Ri. It follows, from Theorem
5.2.1 of [78], that the non-autonomous model (5.29) has a unique non-negative local solution

(SmaEmaHman7Sf7EfaHf7Qf) with

= (Sp. BN, Hy), Q.. S, EY, HY, Q) € RY.

Adding the first four equations of the model (5.29) gives

dNy,
7 = Hm - NNm - 61Hm - 52Qm < Hm - ,Ume7

from which it is clear that the associated linear differential equation,

dNp,

Y :Hm_ Nm7
dt a

II
has a unique equilibrium N, = —2, which is globally-asymptotically stable. Thus, it can
w
be shown, using comparison theorem [56], that N,,(¢) is bounded. Similarly, it can be shown
that Ny (t) is bounded. Hence, the solution of the model (5.29) exists globally on the interval

[0, 00). O
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5.4.2 Stability of DFE

The disease-free equilibrium solution of the system (5.29) is the same as &, given in (5.6).

The equations for the rates of change of the infected components (Ey,, Hy, Qm, Ef, Hf, Q)

of the linearized version of the system (5.29) at the DFE (&) are given by

d;lE—tm = Br(t)es(Hy + Q) = (om + 1) Em,
dg_tm = oLy + 1 (t)Qm — (qm + o+ 01) Hpn,
dfl?_tm = G Hom — [P (£) + 2+ 52 Qi

% = B (t)em(Hm + 1mQm) — (o7 + p) By,
% = 0By +rp()Qr — (ay + p+01)Hy,
dd%f = qpHyp —[ry(t) + 1+ 62)Qy.

Using the notation in Wang and Zhao [93], the matrix F'(t) (of new infection terms) and

the M- matrix V(t) (of the remaining transition terms) associated with the non-autonomous

model (5.29) are given, respectively, by

0 0 0 0 Br(t)ey nyBr(t)ey

0 0 0 0 0 0

0 0 0 0 0 0
o Buen mmBu®lem 0 0 o |

0 0 0 0 0 0

0 0 0 0 0 0
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and,

my 0 0 0 0 0
—om ma  —rp(t) 0 0 0
V(t) = 0 —Qm ms 0 0 0 ’
0 0 0 mip; 0 0
0 0 0 —o5 ma —7(t)
0 0 0 0 —qr m3

with, m1 = 0y, + pt, Mo = G + 1+ 01, M3 = 1 (t) + e+ 62, myy = oy +p, Mo = qp + p+ 01
and m31 = Tf(t) +u+ 52.
As in [93], let @37 be the monodromy matrix of the linear w— periodic system

iz

— =Mt)Z
dt () )

and p(®ps(w)) be the spectral radius of ®y/(w). It is convenient to define

Y(t,s), t>s,

as the evolution operator of the linear w— periodic system

dy

—=-V(t) y.
7 () y
That is, for each s € R, the associated 6 x 6 matrix, Y (¢, s), satisfies:

ay (t,s)
dt

=-V(@)Y(t,s) Vt>s, Y(s,s)=1.

Furthermore, in line with Wang and Zhao [93], it is assumed that ¢(s) (w—periodic in s) is
the initial distribution of infectious individuals. That is, F'(s)¢(s) is the rate at which new
infections are produced by infected individuals who were introduced into the population at

time s [93]. Since t > s, it follows then that Y (¢,s)F(s)¢(s) represents the distribution of
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those infected individuals who were newly-infected at time s and, remain infected at time ¢.
Thus, the cumulative distribution of new infections at time ¢, produced by all infected

individuals (¢(s)) introduced at a prior time s = t, is given by

W(t) = /_too Y (t,s)F(s)p(s)ds = /000 Y(t,t —a)F(t — a)p(t — a)da.
Let C,, be the ordered Banach space of all w—periodic functions from R to RS , with maximum
norm ||.|| and positive cone
CH={peC,:¢(t) >0,V teR}.
Following Wang and Zhao [93], define a linear operator L : C,, — C,, by

(L) (1) = /0 TVt —a)F(t—a)p(t —a)da ¥ LER, ¢ECy. (5.30)

The associated reproduction ratio (denoted by R,) is given by the spectral radius of L (that
is, R, = p(L) [93]). The quantity R, measures the average number of new HSV-2 cases
generated by a single infectious individual in a completely susceptible population. Methods
for computing R,, for non-autonomous systems have been developed by a number of authors
(see, for instance, [7, 93]). The method in [93] will be used in this thesis. First of all, it
is shown in Appendix C that the system (5.29) satisfies Assumptions A1-A7 in [93]. Thus,

using Theorem 2.2 in [93], the following result is established.

Lemma 5.5. The DFE of the model non-autonomous (5.29), given by (5.6), is LAS whenever

Ry < 1, and unstable if R, > 1.

Theorem 5.5. The DFE, &, of the non-autonomous model (5.29), given by (5.6), is GAS

in D whenever R, < 1.

The proof of Theorem 5.5 is given in Appendix D.
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The epidemiological implication of Theorem 5.5 is that, as in the case of the autonomous
two-group model (5.5), HSV-2 will be eliminated from the community if the associated re-
production number (R,) is brought to (and maintained at) a value less than unity. Thus, the
analyses in this section show that adding periodicity to the corresponding autonomous model
(5.5) does not alter the dynamics of the autonomous model (5.5) (with respect to disease
elimination). The basic model (5.1) will now be extended to incorporate the effect of three

control strategies on the transmission dynamics of HSV-2 in a population.

5.5 Autonomous Model with Intervention Strate-
gies

To extend the basic autonomous model (5.1) to include three intervention strategies (namely,
the use of an imperfect vaccine, condoms and antiviral treatment), the following 16 new state

variables are introduced:

(i) unvaccinated exposed males and females (E,,(t) and Ey,(t), respectively),

(ii) vaccinated exposed males and females (E,,,(t) and Ey,(t), respectively),

(ili) unvaccinated infectious males and females (H,,,(t) and H,(t), respectively),

(iv) vaccinated infectious males and females (H,,,(t) and Hy,(t), respectively),

(v) unvaccinated quiescent infected males and females (Qmy(t) and Qg (t), respectively),

(vi) vaccinated quiescent infected males and females (Qm,(t) and Q,(t), respectively),
(vii) unvaccinated treated infected males and females (15, (t) and Ty, (t), respectively),

(vili) vaccinated treated infected males and females (T3, (t) and T't,(t), respectively).
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Thus, the total male and female populations at time t (denoted by Np.(t) and Ny.(t),

respectively), are now given by

Nme(t) = Sm(t) + Vin(t) + Enu(t) + Emo(t) + Hpa(t)

+ Ho(t) + Quu(t) + Qmo(t) + Trnu(t) + T (1),

and,

Npo(t) = Sp(t) + Vi(t) + Eru(t) + Ep(t) + Hyu(t)

+ Hyo(t) + Qpult) + Qro(t) + Trult) + Tro(?).

A fraction ppen(prer), of the new sexually-active (adolescent) males (females) recruited at
the rate II,,,(Ilf) is vaccinated (where p,,(ps) is the proportion of these individuals that are
vaccinated and €, (€¢) represents the proportion of these vaccinated individuals in whom the
vaccine takes). Susceptible males (females) are vaccinated at a rate &, ({s), and the vaccine
is assumed to wane at a rate w,,(wy). The use of condoms is incorporated using the term
(1 — vic) in the male population (and (1 — voc) in the female population), where 0 < vy < 1
(0 < vy < 1) is the condom efficacy and 0 < ¢ < 1 represents the compliance in condom
use. Furthermore, since the vaccine is assumed to be imperfect, vaccinated males (females)
can acquire break-through infection at a reduced rate, (1 — v¥)(1 — v1c)Ape for males and
(1 —¥)(1 — vac)Ame for females (where 0 < 1p < 1 represents the vaccine efficacy against
infection).

Following Schwartz and Blower [74], it is assumed that vaccinated individuals have:
(a) shorter average length of viral shedding;
(b) fewer viral shedding episodes; and
(c) lower transmission probability, in comparison to unvaccinated individuals.

Furthermore, following [4], it is assumed that the imperfect HSV-2 vaccine offers the following

therapeutic benefits (to vaccinated individuals):
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(i) it blocks infection with some efficacy;

(i) it reduces transmissibility in break-through infections;
(iii) it slows development of symptoms in exposed vaccinated individuals;
(iv) it reduces mortality rate in break-through infections.

The populations of exposed vaccinated males (Ei,,) and females (Ef,) are generated by
break-through infection (at the rate (1—1)(1—v1¢)Afe and (1 —1)(1 —va2c¢)Ape, respectively)
and are decreased by the development of symptoms (at the rates o,,, and o, respectively).
Here, it is assumed that 0,,, < omy and oy, < 0y, to account for the assumption that
exposed vaccinated individuals develop clinical symptoms of HSV-2 at a slower rate in com-
parison to exposed unvaccinated individuals.

Infectious vaccinated individuals (H,,, and Hy,) are generated by the progression of ex-
posed vaccinated individuals (at the rates o, and oy, respectively) and by the re-activation
of vaccinated individuals in the quiescent states (at the rates ry,, and 7y,, respectively).
Vaccinated infectious males (females) are treated at a rate Ypmy(7Vhfv), While unvaccinated
infectious males (females) are treated at a rate Yhmu(Yhfu). These populations are further
decreased by progression to quiescence (at the rates g,, and ¢y, respectively), and disease-
induced death (at a reduced rate, d, < d,).

The populations of vaccinated infectious individuals in the quiescent states (Qmv, Qo)
are increased by the progression to quiescence of infectious vaccinated individuals (at the
rates ¢my and gy, respectively). These populations are reduced by re-activation (at the rates
Tmo and 7, respectively), loss of vaccine-induced immunity (at the rates ., and oy, respec-
tively), treatment (at the rates ygm, and vy sy, respectively) and disease-induced death (at a
rate 04p). Individuals in the @, and Qy, classes who lose their vaccine-induced immunity
are moved to the respective Q,,, and Qy, classes (at the rates a,, and ay, respectively [74]).

Natural death occurs in all epidemiological classes at a rate pu.
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The associated forces of infection are given by

Brem(Hpy +mHpy +12Q f0, + 13Q f0 + MLy + 15T fy)

A - ’
: Nye (5.31)
A o ﬁmcf(Hmu + anmv + 772Qmu + 773va + 774Tmu + 775va)
me — )
Nme

where, 0 < 15 < Mg < M3 < 12 < 1 < 1 are the modification parameters that account for the
vaccine-induced reduction of infectiousness of vaccinated infected individuals in comparison
to unvaccinated infectious individuals.

Thus, considering the above descriptions and assumptions, together with the basic model
(5.1), the extended autonomous model for the transmission dynamics of HSV-2 in a sex-
structured population is given by the following system of non-linear differential equations

(the associated parameters of the model are described in Table 5.1).
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5 =11 (1 — pmem) + wmVin — Afe(1 — v1¢)Sm — k1S,

dt
AV,
7 = ILnpmem + EmSm — )\fe(l - VIC)(l - TZJ)Vm — kaVi,
dEmy
dt = )\fe(l — Vlc)Sm — kgEmu,
dEmy
7 = )\fe(l — Vlc)(l — ¢)Vm — k4Emv,
dH
dt = Omubimu + TmuQmu — ks Hps
dH
dt = OmoEmo + vava - kGHmva
AdQmu
= muHmu m«my — mus
D0 o+ Qo — 112
AQmu
= mvav —k mus
o q 3@
ATy
dt = ’YhmuHmu + ’quuQmu — koTinu,
AT
= ’Yhmvav + ’quvav — k10T,
dt
@ (5.32)
d—tf = Hf(l —prf) + CfoVf — )\me(l — I/QC)Sf — k‘nSf,
dV,
d—tf = prfEf + ffo — )\me(l — 1/26)(1 — ¢)Vf — k‘lgi,
dE,
dl{ = )\me(l — I/QC)Sf — k713Efu,
dE ¢,
d—g = )\me(l - 1/26)(1 - 1/J)Vf - k14Efv,
dH ¢,
dtf = 0By + 1 Qpu — k15 H py,
dH ¢,
dtf =0 By +150Qp0 — k16H po,
dQ sy
dz{ = qruHpy +apQpy — k17Q fu,
deU
= UH v k v
g oy 18Qf
dT's,,
di = Ynfu fu + YqruQ fu — k19T fu,
dT'¢,
di = YnfoH fo + Vg Qo — k20T 0,
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where, k1 = & + 1, ko = wim + 1y k3 = Oy + s ks = 0o + 1, ks = Gmu + Yhma + B+ Ou,s
k6 = Gmov~+Yhmo+ 1+ 0v, K7 = Pout-Ygmut B+ Oqus ks = T+ +Ygmo + 11+0qu, kg = prt-0tu,
k1o = p+04, k11 = §p+p, k12 = wptp, k13 = oy, kia = o+, kis = qpu+Yapu 140y,
k16 = qro+npo T +00, k17 = TrutYgpu R+ 0qus kis = 7ot ap g0+ p+0qu, k19 = 10
and kg = p + S

The extended two-group HSV-2 transmission model (5.32), subject to the constraint

condition (5.4), will now be analysed to gain insight into its qualitative properties.

Table 5.1: Description of parameters of the vaccination model (5.32).

Parameter Description Baseline Values/Year
IL,,, I1f Recruitment rates for male and female 10000 (Assumed)
,u Natural death rate & [71]
Brm, By Infection probabilities for males/females 0.5 and 0.4, resp. (Assumed)
cm(cy) Average number of male(female) sexual partners
for females(males) per unit time 2 (Assumed)
Em, & Vaccination rate of susceptible males and females 0.6 [71]
P Efficacy of vaccine 0.6 [71]
Wi,y W Waning rate of vaccine for males and females 1—15 [71, 74]
Pm>Df Proportion of new recruited males and
females vaccinated 0.5 (Assumed)
€ms €F Proportion of vaccinated males and females
in whom the vaccine takes 0.6 [71]
v(v =v1 =1,) Condom efficacy 0.87 [26]

c Condom compliance 0.6 (Assumed)
Tmus O fu Progression rate to symptoms development of
unvaccinated exposed males and females % [71]
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Omu; O fo

Tmus T fu

Tmu, T fov

dmu; 9 fu

dmu, 4 fv

O, O f

1,73, 14

72,15

Yhmus Yhmo

Ygmus Vgmu

Yhfu> Yhfo

Yafu> Vqfv

Ou; Oqu

Ov; Ogu

Progression rate to symptoms development of vaccinated
exposed males and females

Activation rate of unvaccinated infectious males and
females in the quiescent state

Activation rate of vaccinated infectious males and
females in the quiescent state

Rate at which infectious unvaccinated males and females
revert to quiescent state

Rate at which infectious vaccinated males and females
revert to quiescent state

Progression rate to quiescent unvaccinated infectious males
and females of quiescent infectious vaccinated individuals
Modification parameters for reduced infectiousness of
vaccinated infectious individuals

Modification parameters for reduced infectiousness of
unvaccinated infectious individuals

Treatment rates for H,,, and H,,,, respectively
Treatment rates for @y, and @Q,, respectively
Treatment rates for Hy, and Hy,, respectively
Treatment rates for Qr, and Qy,, respectively
Disease-induced death rate for unvaccinated

infectious individuals

Disease-induced death rate for vaccinated

infectious individuals

365 171, 74]
365 (71, 74]
365 (71, 74]
365 171, 74]
5= (71, 74]

0.4,0.1 and 0.001, resp.

0.2 and 0.01, resp.
Variable
Variable
Variable
Variable
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5.5.1 Basic Properties

Using similar approach as in the basic model (5.5), the following biologically-feasible region
Te=Tpe UTf, € R x RY,
where,

Pme = {(SmymeEmuaEmvyHmuaHmanmqumvmiuava) ER}J,_O:

Tre = {(St, V1, Eu, Epos Hpws Hpvy Qru, Q oy Tru, Tpo) € RI
Sf—l-Vf—i-Efu—i-Efv+Hfu+va+qu+va+Tfu—|—va SHf/,u},

can be shown to be positively-invariant for the extended model (5.32) with the contact con-

straint (5.4). Furthermore, the model (5.32) has a DFE, given by

* * * * * * * * * *
Eo2 = <Sm7 Vm? Emu? Emv? Hmu? Hmv? Qmu? mu> Tmu? va?

s;t,v;,E;:u,E;,,,H;H,H;U,Q;U,Q;U,T;U,T;Q

5.33
ki1kg — gmwm ’ k1kg — EmwWm T
Uylprerwr + kia(1 — preg)] Myplknpres +&5(1 — pyey)]

0,0,0,0,

) 7070707070707070 M
k11k1s —ffOJf k11k12 _gfwf )

where, 1 — ppe, > 0, 1 —preyp > 0, 1 — ¢ > 0, k1ky — §uwm = Enp + pka > 0 and
ki1kio — §pwyp = §pp + pkig > 0.
Using the constraint (5.4) in (5.32), it can be shown that the associated next generation

matrices, F, and V,, are given, respectively, by
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08><8 F1 Vl 08><8

Fe = P ‘/e: P
Fy  Ogyxg Osxs Vo
where,
B = 02x2  (Fi1)2x6 B 022 (F21)2x6 |
Osx2  Osxe Osx2  Ogxe
and,
. Br B Bz Bz Bima Bins . B3 Bsnr Bsnz Banz Bana B3
= v Far =
Ba Bom  Bamz Pomz Boma Bans Ba Bam  Bamz Banz Bana  Bans
ks 0 0 0 0 0 0 0
0 ky 0 0 0 0 0 0
—Omau 0 ks 0 —Tmu 0 0 0
V= 0 —Omuw 0 ke 0 —Tme 0 0 |
0 0 —Qmu 0 k7 —a;m 000
0 0 0 Gmu 0 ks 0 0
0 0 ~Yhmu 0 —Ygmu 0 k9 0
0 0 0 —Yhmv 0 —Ygmv 0 k1o
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ki3 0 0 0 0 0 0 0
0 k14 0 0 0 0 0 0
—0Ofy 0 ks 0 —Tfy 0 0 0
no| O om0 ke 000 |

0 0 —qfu 0 k17 —ap 0 0
0 0 0 —qw O ks 0 0
0 0 —Ynfu 0 ~VYgfu 0 kg O

0 0 0 =Y 0 =y 0 koo

with,

(1 —v10)Bes Sy, (1 —vic)(L —9)BresVi

51 - N;;Le ) 52 - N;;Le )
(1 — v20)Brmem St (1 —v20)(1 =) Bmen Vi
pBs = N , B = N :
fe fe

It follows then that the associated effective reproduction number for the model (5.32) with

(5.4), denoted by R., is given by

Rc = p(Fe‘/e_l) =V RmeRfea

where,

A B B

Rme = —————— and Rye ;
kskykokioAzAs / k13k1aki19koo A2 Ay
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with,

A = Promukiki0As A7 + BaomukskoAsAig + P20 mymGmokskio Al

B = B30fuk14kooAsAe + B10pok13ki19 A2 Ag + Ba0 paipqruki3koo Ag,

Ay = kiski7 — qpurpu > 0, A3 = kskr — gmuTmu > 0,

Ay = kigkis — qporo > 0, As = keks — GmoTmw > 0,

A = kirkig + Ynpunak17 + Mg o e + 124 ruk9,

A7 = krko + Yhmunakr + NaYgmumu + M2qmuko,

Ag = qpumskoo + mkigkoo + N5k fok1s + M50 F0 Vg fos

Ay = ryuki9 + mavgrukis + Mavnput fu + m2k15k19,
A0 = M5Vhmwks + @menskio + mkskio + GmunsYgmo
A1l = Ygmuks + TmaaYema + Tmuke + n2ksk.

Thus, by Theorem 2.7, the following result is established.

Lemma 5.6. The DFE (£y2) of the extended autonomous model (5.32) with the contact

constraint (5.4), given by (5.33), is LAS whenever R. < 1, and unstable if R, > 1.

It should be mentioned that, like in the case of the single group HSV-2 vaccination
model (4.27), the extended sex-structured model (5.32) (with (5.4)) can be shown to undergo
a vaccine-induced backward bifurcation (this phenomenon is not established here, for the
model (5.32), to avoid repetition). It will, however, be shown (in Section 5.5.2 below) that
the model (5.32), with the constraint (5.4), has a globally-stable DFE for a special case

(ruling out backward bifurcation for this particular special case).

5.5.2 Global Stability of DFE: Special Case

Let, 6, = 0y = 0qu = 0gqv = Otu = Ot = 0. The global asymptotic stability property of
the DFE (&p2) of the model (5.32) (with (5.4)) will be explored for the special case where

the disease-induced mortality is negligible (so that, 6 = 0). Setting 6 = 0 in (5.32) leads
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to Npme = Ny — W /p and Nye = N7, — Iy/p as t — oo. Furthermore, the forces of

infection, Afe and Aye, given in (5.31), now reduce to Afee and Apec, where (it should be

noted that the constraint (5.4) is used in (5.34))

Brep[Hpy +mHpy +12Q pu + 13Q o + 14T o + 14T p0)

A =
fec N;;Le )
A . ﬁmcm [Hmu + 771Hmv + 772Qmu + 773va + 774Tmu + 774va]
mec — .
N*
fe

Let, Ree = Re|s—o. Furthermore, define

= { <Sm7 Vma EmU7Emv7 Hmua Hmv: Qmu: vaaTmU7vaa Sf7 Vf, EfU7 Efva

Hfuavanyqufvnymva> ele: Sm < S:navm < V;qu < S;’;,Vf < Vf}

(5.34)

(5.35)

Theorem 5.6. The DFE of the model (5.32), with (5.4) and (5.34), given by Eye2, is GAS

m 'y if Rce < 1.

Proof. First need to prove that the set I'y is positively-invariant and attracts all solutions

in I'e, and then use a comparison argument. It can be seen from the first equation of the

system (5.32) (where, now, Ny (t) = Ny, = 1m and Ny (t) = N, = %) that

I

dg—tm = IL,(1 = pmem) + wnVin — Apec(1 — v16)Sm — (§m + 1) S,
< (1 = pméem) + wmVim — (§n + 1) Sm,
< (1 = pmem) + wim (/10— S = Enu — B — Hu
—  Hpw — Qo — Qv — Trnw — Tiw) — (Em + 1) S,
< (1 = pmem) + wmlln /10— (Wm + &m + 1) S,

= (W +&m + 1)(S5 — Sm)-

Hence,

S (t) < 85— [SE — S (0)]e™ WmHEmtmt
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It follows that either S,,(t) approaches S}, asymptotically, or there is some finite time after

which Sy, (t) < S, [75]. Finally, it follows from the second equation of (5.32) that

T Mt + EmSim = Agee(l = 110) (1~ 9)Vin — (@ + Vi,
< Hpmem + EmSm — (Wm + 1) Vin,
< Hppmem + EmIln/p — Vi — Emy — Eny — Hima
— Huw — Qmu — Qv — Tonw — Tonw) — (Wi + 1) Vi,
< Hppmem + +mIm/p) — (Wi + &m + 1) Vi,

= (Wm +&n + 1)V, = Vin).
Thus,
Vin(t) < Vi — [Vt — Vi (0)]e = @mHemtilt,

Hence, it follows that either V,,(t) approaches V. asymptotically, or there is some finite time
after which V;,(¢) < V5. Similarly, it can be shown that Sy(¢) < S} and Vy(t) < Vj. Thus,
the set I'y is positively-invariant and attracting for the model (5.32), with (5.4) and (5.34).

Define:

Y - <Sm7 Vm7 Emu7 Em'l)? Hmu7 Hmv7 Qmu7 va7 Tmu7 va7
St Vi Epuy Eppy Hpuy, Hpp, Q oy Q oy Thu, va) T

The equations for the infected components of (5.32), with (5.4) and (5.34), can then be

re-written as:

ay

— =Fe—Va-U K
7 ( 1—-U)

where, V.1 = V¢|s—o and the matrices F, and V, are as defined in Section 5.5.1. The matrix
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U is given by

Osxs  Un
U = ,
Us  Ogxs
where,
11 21
022 Usyyg O2x2  Usyg
UIZ 5 U2: 3
Osx2  Osxe Osx2  Ogxe
and,
11 Q1 oqn aqfz ainz s s 21 Q3 aQalp Qglg Q3nz Q3”4 Q375
U = , U =
Qg  Qal)p Qalg (ol Qally  Q2l)s Qg gl Qa2 Qqn3 QqMa Qql)s

with, a1 = (1 = vie)Brep2-(1 = §2), as = (1= vie)(1 — ) Brep = (1 — ),

S S Vv V,
az = (1-— Vgc)ﬁmcmN—;e(l — S—;) and ag = (1 — vee)(1 — w)ﬂmcmN—i( — V—JJ;)

Since S, <S5, Vi, < Vi, Sp < SJ’E and Vy < V]Zk (for all t > 0) in I'y, it follows that the

matrix U is non-negative. Thus,
< (F, - Va)Y. (5.36)

Furthermore, if R.. < 1, then p(F.V,;') < 1 (from the local stability result given in Lemma
5.6, which is equivalent to F, — Ve having all its eigenvalues in the left-half plane [88]). It
follows that the linearized differential inequality system (5.36) is stable whenever R. < 1.

Consequently, by comparison theorem [56], it follows that

(EmuyEmvaHmuyHmmQmanmvaTmumiv) - (0707 0707 0707 070)7
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and,

(Efuy Efva Hfua va, qu, va, Tfuy va) - (07 07 0) 07 0) 07 07 0)'

Using similar argument as in the proof of Theorem 5.2, it follows that

i (S (2), B (1), Ermo (), Hyns (8); Hin (8), Qunas (8), Qunos (8)s T (£), T (1),

Sf(t)v Ef“(t)vEfU(t)vau(t)v HfU(t)v qu(t)v va(t)vau(t)7TfU(t))

1L, 1I
= <770707070707070707 7f707070707070707 07) = 502'

Furthermore, since I'y is positively-invariant, it follows that every solution to the equations
of the model (5.32), with (5.4) and (5.34), approaches the DFE, &y, as ¢ — oo whenever
Ree < 1. O

The epidemiological implication of Theorem 5.6 is that HSV-2 can be eliminated from
the community if the three intervention strategies (namely, the use of a vaccine, condoms
and drug treatment) can bring (and maintain) the associated threshold quantity, R, to a

value less than unity.

5.5.3 Existence of EEP: Special Case

The existence of endemic equilibria of the model (5.32) with (5.4), is considered for the special
case with 0 = 0, so that the associated forces of infection of the model are given by Ay.. and
Amec in (5.34). Let,

m'm mu’ muv? mu? mu’ muvr T mu’ T mu?

(5.37)
S VI BL B B HE ;z,Q;z,T*z,T*:),
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represents any arbitrary equilibrium of the model (5.32), with (5.4) and (5.34). The expres-

sions for Ase. and Ajec at steady-state are given by:

Bresp <H}k2 +mHj, + Q7 + 3@, + mTy, + 774T*{f>

koK

fecl — I )
m (5.38)
B (Hm o, 4 Qs+ msQ + T + mm)
;k;ecl = Hf

Using the approach in Section 5.3.3, it can be shown (after some tedious algebraic manipu-

lations) that the non-zero equilibria of the model (5.32) with (5.4) and (5.34) satisfy

bl( ;k;Lkecl)4 + b2( ;k;Lkecl):s + b3( ;kr;:ecl)2 + b4( ;k;Lkecl) + b5 =0, (539)

where,

by = O3D3+ Cyg1D16D3 + C3gi D3,
by = 2C3giDi¢D17 — g192C16DT + Cag1 D16Ds — g192C17D3D16 + Cag1 D17D3 + 2C5 D3 Dy,
by = —2¢792Ci6Di6D17 + C39i Dir + Cagr D17 Da — g192C17D3 D1y

+ 2C5D3Ds5 + C5Dj + Cug1D16Ds — g192C17D4Dig,
by = 2C5D4Ds5 — gig2C16D7; — 9192C17 D5 D16 + CagiD17Ds — g192C17DaDry,

bs = DsC2 {1 — (Rce)z] : (5.40)

The expressions for the C;’s and D;’s in (5.40) are given in Appendix E.
In (5.40), by > 0. Since C5 > 0 and D5 > 0, it follows that b5 < 0 if R.e > 1. Thus, using
the Descartes Rule of Signs, the polynomial (5.39) has at least one positive root. Hence, the

following result is established.

Theorem 5.7. The extended model (5.32), with (5.4) and (5.34), has at least one (positive)

endemic equilibrium, of the form Es, whenever Ree > 1.
Theorem 5.7 shows the existence of at least one endemic equilibrium when R > 1. The
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global asymptotic stability of this equilibrium is explored for a special case below.

5.5.4 Global Stability of EEP: Special Case

Define,

Dl = {FlSmZVm:Emu:Emv: mu — mv:Qmu:va
T,

|
3
e
53

v:Sf:Vf:Efu:Efv:Hfu:HfU:qu:QfU:Tfu:vazo}'
Furthermore, let,

sign(Sm — Sp) = sign(Viy, — V') = sign(Epmu — Ery,) = sign(Emy — Eyy)
= sign(Hyu — Hyyy,) = sign(Hme — Hyyy) = sign(Qua — Q)
= sign(Qmv — Q) = sign(Tmu — Tit) = sign(Tinw — Tiy) (5.41)
= sign(Sy — S}°) = sign(Vy — V™) = sign(Ey, — E¥,)
= sign(Eypy — E},) = sign(Hyy — Hy,) = sign(Hy, — Hpy)
= sign(Qru — Q) = sign(Qpo — Q) = sign(Tyu — Tf,) = sign(Ty, — T},).
Theorem 5.8. The EEP, &3, of the extended model (5.32), with (5.4) and (5.34), is GAS

in 'y \ D1 whenever Ree > 1 and Condition (5.41) holds.

Proof. Let Ree > 1, so that (by Theorem 5.7) an EEP of the form, &3, exists for the model
(5.32). Furthermore, let Condition (5.41) holds. Consider the Lyapunov function (Lyapunov

functions of this type have been used in the literature, such as in [99])

G = [Sm =Sy 1+ Vi = Vo'l + | Bmu = Egl + [ Eme — Eny | + [ Himu — Hyp |

U v

+ [ Hpo = Hopy | + [Quma — @il 4 @mv — @1 + [Tonw = Tl + [Tonw — T35 |

+

1Sy = SF 1+ Vi = Vit + [Epu = Epol + [Epo — Eppl + |Hpu — Hy,

+ [Hypy — Hipl +1Qpu — Qpul + Qo — Q7 + [Tru — Tiul + | Tpo — Ty
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The right derivative, DTG, of G along the solutions of (5.32), is given by

DTG = sign(S,, — S:¥) [wm(Vm = Vi) = Apee(1 = v16)Sim + Afe(1 — v10) Sy — K1 (S — S:,jf)}
gV = Vi) 6 = $50) = Apell = 01 = )V + Xj2(1 = 101 = 0113
KV = V)] + 0 (B = B35 [Nt = 1060850 = X1 = 1101857 — KB — B33
g = B35) | Aee(l = 1161 = 6)Vin = (1 = 116)(1 = 9V, = KB — B3|
g (H = H35) 9 B = )+ Qo = Q) = Ko — 135
tsign(Hons = H5) [ (B = E3) + @ = Qi) = Koo — 53]

570 Qo = Qi) (o = H32) + (@ = Qi) = Ko Qo = Qi)

+ 5ign(Qus — Q1) [qm(Hm )~ K(Quo — Q)

19T = 752 [t Hos = 5320+ Qo = Qi) = o = T3

81T = T2 o = F35) 4 2@ = Q) = 1T = T35

+ sign(Sy — S7*) [w]v(Vf = Vi) = Anee(1 = v26) S5 + Ao (1 — 1) ST* — Ko(Sy — S}*)}

+ sign(Vy — Vi) [gf(sf — S7) = Amee(1 = v20)(1 = )V + N (1 = voc) (1 — )V

- KV~ V7")

+ sign(Ep, — E7,) [Amec(l —12¢) S5 = Apee(1 = 12¢) S5 — K11 (Epy — E;Z)}

gl gy = 75) Amec1 = 1)1 = 00V = Nl = m0)(1 = OV} = Kl Ego ~ )|

e signltg, ~ H72) | onuEpu = 7 + rpu(@pa — Q) - Kua(Hpa — )|

+ sign(Hy, — Hy,) [va(Efv Ef) +750(Qpo — QFy) — Kia(Hypy — H*Zﬁ)}
+ sign(Qpu — QFr) [qu(Hfu Hin) 4 ap(Qpo — QFy) — Kis(Qpu — Q?Z)}

T sign(Qp, — Q) [qMva _HE) - Ki(Qp - Q7
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T+ sign(Tp, — T3 [vhfuwfu CHE) 4+ vae(Qa — Q) — (T — T*:;)}

T sign(Ty, - TE) [fyhﬁ(va CHE) + a0 (Qo — Q) — (T T*:f)] |

where, K1 = &, + 1, Ko = wpy + 11, K3 = oy + ty Ko = 0y + 14, K5 = Gmu + Yamu + 14,

K6 = qmv + Yhmo + 1 K7 = T + Yomu + 15 K8 = T + Qi + Ygmo + 1, Ko = & + 4,

Kio = wy + p, Kin = opu + py Kio = 0p0 + 1, K13 = qpu + Yngu + 1, K14 = qpo + ngo + 1

Kis = gy + Ygpu + p and Kig = 75 + o + gp0 + -

It follows, after some algebraic manipulations and taking into account Condition (5.41),

that

DG = _u{wm S5 Vi = Vi | 4 | B = Bl + 1B — B + o — Hi
b Hoe = B3 1@ — Qi 1@ = @t + T = T+ Tone — Ty
+ ISy =SP4+ Vs = Vi*| + |Epu — Bl + |Epo — Ey| + |Hpu — Hyy,

+ |Hpp = Hpj| +Qpu — Q7| + Qo — Q7 + | Thu — Tal + T — T;:;;\} = —uG.

Thus, tll)lglo G(t) = 0. Hence, the equilibrium, &, of the extended model (5.32), with (5.4) and
(5.34), is GAS in I'; \ D; whenever R > 1 and Condition (5.41) holds. O
It should be stated that Condition (5.41) seems somewhat restrictive, but it is necessary for
the proof to work using the Lyapunov function chosen. In summary, the extended model

(5.32), with (5.4) and (5.34), has the following qualitative properties:

(i) it has a LAS DFE whenever the reproduction threshold (R.) is less than unity (Theorem
5.6). The DFE is GAS if the associated epidemiological threshold (R.e) is less than

unity for the special case when the disease-induced death is negligible (Theorem 5.6);

ii) it has at least one (positive) endemic equilibrium whenever the associated reproduc-

ii) it has at least iti demi ilibri h th iated d
tion number (R..) exceeds unity, for the case when the disease-induced death is zero
(Theorem 5.7). An endemic equilibrium is GAS in I'y \ D; for a special case (Theorem

5.8).
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5.6 Numerical Simulations

The extended model (5.32), subject to (5.4) and (5.34), is numerically-simulated, using the
parameter values given in Table 5.1 (unless otherwise stated), to evaluate the impact of the
various intervention strategies discussed earlier. The following initial conditions were used
in the simulations: S,,(0) = Sf(0) = 500,000, V,,,(0) = V¢(0) = 500, Ey,,(0) = Eppp(0) =
E4,(0) = Efy(0) = 100, Hpu(0) = Hmp(0) = Qmu(0) = Qmo(0) = Hypyy(0) = Hy,(0) =
Qfu(0) = Q¢ (0) = 10, and T3, (0) = T (0) = T, (0) = T4, (0) = 10.

The effect of condom use and treatment is monitored by simulating the extended model in
the absence of vaccination. Figure 5.1A shows that, for low treatment rates and 87% condom
efficacy (estimated in [26]), a condom compliance of at least 90% is needed to effectively
control the disease (i.e., make R.. < 1; it should be noted from Theorem 5.6 that, for the full
model (5.32), the requirement R.. < 1 is necessary and sufficient for disease elimination). On
the other hand, if the treatment rates are increased (e.g., by two-fold), the condom compliance
needed for effective disease control reduces to about 70% (see Figure 5.1B). However, if
a vaccine is added to the combined treatment/condom strategy, it is shown (Figure 5.2)
that even for relatively low treatment and vaccination rates, the disease will be eliminated
regardless of the level of condom compliance (since all the R, contours in Figure 5.2 are less
than unity; and Theorem 5.6 guarantees HSV-2 elimination if R.. < 1).

More simulations are carried out to evaluate the impact of the targeted use of the vacci-
nation program administered as a sole intervention (i.e., in the absence of condom use and
drug treatment). For instance, if only susceptible females are vaccinated, the simulations
show that over 12,000 new female infections will be averted over a period of ten years (Figure
5.3A). This figure further shows an indirect benefit for the male population (since equally high
number of new infections in the male population is averted). Similar situation is observed
if only susceptible males are vaccinated (Figure 5.3B). Thus, these simulations show that
(based on the parameter values used in the simulations) vaccinating one sex group induces
an indirect benefit (preventing new cases) in the other sex group. It is worth noting from

Figure 5.3B that even if only males are vaccinated, more new cases of females are averted in
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comparison to the new cases of males averted. This may be due to the fact that females are

more susceptible to infection than males (3, > ff).

5.7 Summary

A deterministic model for the transmission dynamics of HSV-2 in a sex-structured population,

which incorporates the effect of three intervention strategies (namely: the use of an imperfect

vaccine, condoms and drug treatment), is designed and qualitatively analysed. The main

theoretical findings of this chapter are:

(i)

The basic model (without any of the three interventions), given by (5.5), has a globally-
asymptotic stable disease-free equilibrium whenever the associated reproduction thresh-
old (Ryp) is less than or equal to unity (Theorem 5.2). This model has a unique endemic
equilibrium, which is shown to be globally-asymptotically stable for a special case, when

the reproduction threshold exceeds unity (Theorem 5.4);

The non-autonomous model (5.29) has a GAS DFE whenever the associated reproduc-

tion threshold (R,) is less than unity (Theorem 5.5);

The extended model (that incorporates the use of condom, drug treatment and an im-
perfect vaccine) has a GAS DFE whenever its associated reproduction threshold (R.)
is less than unity, for a special case when the disease-induced mortality is negligible
(Theorem 5.6). It has at least one EEP when R.. > 1 (Theorem 5.7). It is shown that

the model has a GAS EEP, for a special case (Theorem 5.8).

Numerical simulations of the extended model (5.32), subject to (5.4) and (5.34), reveal the

following:

(a)

For low treatment rates, very high condom compliance (at least 90%) will be required
to effectively control the spread of the disease in the absence of vaccination. The level
of condom compliance required for effective disease control reduces if the treatment

rates are increased;
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(b) The combined use of vaccination, treatment and condoms will be very effective in
curtailing (or eliminating) HSV-2 in (from) the population even if the vaccination and

treatment rates are low;

(c) Using vaccination as a singular control strategy, the targeted vaccination of one sex
group (only) induces an indirect benefit in the other sex group. Under this vaccine-only
strategy, more new cases of females are prevented than new cases of males regardless
of which sex group is targeted for vaccination (i.e., regardless of which sex group is

vaccinated).

Overall, the analyses in this chapter suggest that adding sex structure to the single-group
HSV-2 transmission model (4.1) does not alter its main equilibrium dynamics (pertaining
to the persistence or elimination of the disease). Furthermore, adding periodicity to the
corresponding autonomous model (5.5) does not alter the dynamics of the autonomous model
(5.5), with respect to the elimination of the disease. Finally, the prospect of effectively
controlling the spread of HSV-2 in a population, using an imperfect vaccine, drug treatment

and condoms, is bright.
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are vaccinated.
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Chapter 6

Two-group Model with Risk

Structure

6.1 Introduction

In this chapter, the two-sex model, given by (5.1), is extended to include the effect of risk
structure (defined in terms of the risk of acquiring or transmitting HSV-2 infection) on the
transmission dynamics of HSV-2 in a population. The motivation for including such hetero-
geneity stems from the fact that majority of HSV-2 infections are generated by individuals

in high-risk populations, such as [12, 25, 34, 94]:

(i) sexually-active females (HSV-2 seropositivity is uniformly higher in females than in

males);
(ii) sexually-active adults (especially those who had first intercourse at early age);
(iii) sexually-active adults of lower socio-economic status;
(iv) sexually-active individuals with previous history of other STDs;

(v) sexually-active individuals with multiple sex partners (this includes elderly people as

well);
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(vi) sexually-active individuals who do not practice safe sex (e.g., these who do not use

condoms consistently).

The objective of this chapter is to determine whether or not stratifying the entire sexually-
active heterosexual population in terms of their risk of acquiring or transmitting HSV-2
infection will alter the qualitative dynamics of the equivalent non-stratified two-group HSV-2

model (5.5) considered in Chapter 5.

6.2 Model Formulation

The total sexually-active population at time ¢, denoted by N(t), is divided into two groups,
namely the total male population (denoted by N,,(t)) and the total female population (de-
noted by Nf(t)). The total male population is further sub-divided into eight mutually-
exclusive compartments of low-risk susceptible males (S,,;(t)), high-risk susceptible males
(Smn(t)), low-risk males exposed to HSV-2 but with no clinical symptoms of the disease
(Emi(t)), high-risk males exposed to HSV-2 but show no clinical symptoms of the disease
(Emn(t)), low-risk infectious males with clinical symptoms of HSV-2 (H,,;(t)), high-risk in-
fectious (virus-shedding) males with clinical symptoms of HSV-2 (H,,;,(t)), low-risk infectious
males, whose infection is quiescent (@Q,;(t)) and high-risk infectious males, whose infection
is quiescent (Qn(t)).

Similarly, the total female population is sub-divided into low-risk susceptible females
(S#(t)), high-risk susceptible females (S (t)), low-risk females exposed to HSV-2 but with
no clinical symptoms of the disease (E(t)), high-risk females exposed to HSV-2 but with no
clinical symptoms of the disease (Ej(t)), low-risk infectious females with clinical symptoms
of HSV-2 (Hy(t)), high-risk infectious females with clinical symptoms of HSV-2 (H (1)), low-

risk infectious females whose infection is quiescent (Q(t)) and high-risk infectious females
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whose infection is quiescent (Q¢p(t)). Thus, N(t) = Np,(t) + Ny (t), where,

Nm(t) = Sml(t) + Smh(t) + Eml(t) + Emh(t) + Hml(t) + Hmh(t) + le(t) + th(t)7

Ny(t) = Su(t)+Sm(t) + En(t) + Epm(t) + Hpu(t) + Hen(t) + Qpu(t) + Qrn(?).

In other words, the model to be developed stratifies the total population in terms of risk of
acquisition and transmission of HSV-2 infection. Furthermore, for mathematical tractability,
this study lumps all individuals in the various risk groups, defined by Items (i) to (vi) of
Section 6.1, as high-risk (that is, all individuals that fall under the Categories (i) to (vi) in
Section 6.1 are considered as high-risk, while the remaining sexually-active members of the
community are considered low-risk). It is worth clarifying that “exposed individuals” are
those who are newly-infected with the disease but have not shown clinical symptoms of the
disease.

The susceptible populations (for both males and females) are increased by the recruitment
of new sexually-active individuals (assumed susceptible) into the population at a rate II,,
and II; for the male and female populations, respectively. A fraction py, (py) of the newly-
recruited sexually-active individuals is assumed to be in the high-risk group for the male
(female) populations, while the remaining fraction, 1 —py, (1 —py), is considered to be in the
low-risk class for the male (female) population. Susceptible males (both low- and high-risk)
acquire HSV-2 infection and become exposed, following effective contact with infected females
(i.e., those in the Hyy, Hyp, Q¢ and Q sy, classes), at a rate Af, given by A(t) = Mg () +Aa(2),

where,

cmBr[Hp(t) +npQpi(t)]
Ny (1)

_ SremBr[Hyn(t) +1yQpn(t)]
Ni(t) ’

)\fl(t) = and )\fh(t) (61)

with Af(t) and Azp,(t) representing the forces of infection associated with HSV-2 transmission
by low-risk and high-risk infected females, respectively.
Similarly, susceptible females (both low- and high-risk) acquire HSV-2 infection following

effective contact with males (i.e., those in the H,,;, Hyp, Q@ and @y, classes) at a rate Ay,
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given by A\, () = A\ (t) + A (), where,

) _ cfﬁm[Hml(t) + anml(t)]
Nin(t)

_ Cmcfﬁm [Hyn () + 1 Qi ()]

/\ml(t Nm(t) ’

and \p,p(t) (6.2)

with A\, (t) and A\p,p(t) representing the forces of infection associated with HSV-2 transmis-
sion by low-risk and high-risk infected males, respectively.

In (6.1) and (6.2), B, (8y) is the probability of HSV-2 infection per contact from male-
to-female (female-to-male). It is assumed that (3,, > B, since females are more susceptible
to HSV-2 infection than males [25]. The terms c¢,, and ¢y represent the rates at which males
and females acquire new sexual partners per unit time, respectively. Thus, c;3,, and ¢, 3
represent the effective contact rates for male-to-female and female-to-male transmission of
HSV-2, respectively. Unlike in other modeling studies for HSV-2 (such as those in [71]), this
study assumes that infected individuals in the quiescent state (i.e., those in the Qmi, Qmn, Q1
and @, classes) can transmit infection. The modification parameters 0 < n,,,n; < 1 account
for the assumption that quiescent individuals transmit infection at a slower rate than the
corresponding infected individuals with clinical symptoms of the disease (in the H,,;, Hyp, H 7l
and Hyyp, classes), due to their assumed reduced viral load (it is assumed that viral load is
positively correlated with infectiousness). Furthermore, the modification parameters ¢, > 1
and (y > 1 account for the assumed increase in the relative infectiousness of individuals in
the high-risk group in comparison to those in the low-risk group for the male and female
populations, respectively.

It is assumed that susceptible individuals can change their risk status, by switching from
low- to high-risk status and vice versa. Susceptible males (females) switch from low- to high-
risk status at a rate &7° ({{), and switch from high- to low-risk status at a rate &° ({5),
respectively. Newly-infected individuals in any group move to the corresponding exposed
classes Ep; Epp (Ep; Egn) at the rates A 0\ p (Am; 0 Ary,) for males (females). The pa-
rameters ¢, > 1 and 6y > 1 account for the fact that high-risk uninfected individuals are
more susceptible to HSV-2 infection than those in the low-risk susceptible group. Exposed

individuals (either in the low- or high-risk group) develop symptoms at a rate o,, (o) for
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males (females). Exposed individuals change their risk status from low- to high-risk at a rate
&y (f?{ ) for males (females), and switch from high- to low-risk at a rate &} (@{ ), for males
(females), respectively.

Infectious individuals (both low- and high-risk) become quiescent at a rate g, (qs) for
males (females). Infectious individuals switch from low- to high-risk status at a rate £ (fg )
for males (females), and switch from high- to low-risk status at a rate & (ég ) for males
(females), respectively. Quiescent individuals (both low- and high-risk) re-activate (relapse)
their infection (and become symptomatic) at a rate rp,; 7, (7f;75,) for males (females),
and move to the corresponding H,y,; Hyp (Hypi; Hyp) classes. Quiescent individuals switch
from low- to high-risk status at a rate &7 (d ) for males (females), and switch from high-
to low-risk status at a rate £J° (ég ) for males (females), respectively. Furthermore, natural
mortality occurs in all classes at a rate . The parameters d; and d9 represent the disease-
induced death for individuals (both males and females) with symptoms in low-risk (H,,,
Hy;), and in high-risk (H,5, Hyp) groups, respectively. Similarly, 63 and ¢4 represent the
disease-induced mortality rate for low-risk quiescent individuals (in the @,,; and Q; classes)
and high-risk quiescent individuals (in the @, and Qyy, classes), respectively.

Combining all these definitions and assumptions, it follows that the risk-structured, two-
sex, model for the transmission dynamics of HSV-2 in a sexually-active population is given
by the following system of differential equations (the associated variables and parameters of

the model are described in Table 6.1):
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dsml
dt
dSmn,

dt
dEml

dt
dE

dt
dH

dt
deh

dt
del
dt

d?l;nh — QmHmh(t) + é';anl(t) — (gén + Toh + 1+ 54)th(t),
(6.3)

= (1 - pm)Hm + génsmh(t) - Af(t)sml(t) - (g{n + :u)Sml(t)a

= pmHm + ginsml(t) - em)‘f(t)smh(t) - (gén + :u)Smh(t)’

= )‘f(t)sml(t) + ST mh(t) - (gg” +om+ N)Eml(t)y
= Hm)‘f(t)smh(t) + SgnEml(t) - (&T +om + N)Emh(t)7

= UmEml(t) + Tleml(t) + ggnHmh(t) - (Sgn + gm + H + 51)Hml(t)a

= 0m B (t) + Tmn Qi (t) + &5 Hyi(t) — (&6" + @m + 1+ 02) Hpp (),

= QmHml(t) + géanh(t) - (67771 + Tl + 0+ 53)le (t)a

% = (1 — pp)Iy + &L Ssn(t) — Am(t)Sult) — (& + w)Su(t),

% = plly + & Sp(t) = OAm(®)Sa(t) — (65 + 1) Spn(t),

% = A (8)S71(t) + E Epn(t) — (6] + op + ) Ep(t),

di{h = 0 ()Spn(t) + ESEp(t) — (€] + o + w) Epm(t),

% = ot Ep(t) + ruQu(t) + & Hpn(t) — (& + qp + n+ 00 Hp(t),
dljf” = o Epn(t) +rpnQpn(t) + L Hp(t) — (&€ + ap + p+ 62) Hyn(8),
% = qrHp(t) + & Qum(t) — (& +rp+ pu+83)Qu(t),

ditf L= qrHpn(t) + EQu(t) — (6] +rpn + 1+ 50)Qn(2).

In summary, the risk-structured HSV-2 model (6.3) is constructed based on the following key

assumptions:

(i) Quiescent individuals (in the @, Qmn, @ and Qg classes) can transmit infection

(this assumption is also made in [71]);

(ii) High-risk susceptible individuals acquire infection at a faster rate than low-risk sus-
ceptible individuals (with the associated parameters 6, > 1 and 67 > 1 for males and

females, respectively);
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(iii) High-risk infected individuals transmit infection at a faster rate than the corresponding
low-risk infected individuals (with the associated parameters ¢, > 1 and (y > 1 for

males and females, respectively);

(iv) All individuals can change their risk status, by switching from low- to high-risk status

and vice-versa.

The model (6.3) is an extension of the sex-structured HSV-2 transmission model (5.5), by
incorporating risk-structure into the model (this entails adding eight new epidemiological
compartments to the model (5.5). As in Section 5.2, the following group contact constraint

must hold:

cmNm = Cfo. (6,4)

Furthermore, it is also assumed that male sexual partners are abundant, so that females can
always have enough number of sexual contacts per unit time (i.e., ¢s is constant, and ¢, is

calculated from the relation ¢, = %, as discussed in Section 5.2).

Table 6.1: Variables and parameters of the risk-structured model (6.3).

Variables Description

Spi(t); Smn(t)  Population of low- and high-risk susceptible males
Se(t); Sen(t) Population of low- and high-risk susceptible females
Eni(t); Epn(t)  Population of low- and high-risk exposed males
E4(t); Esn(t)  Population of low- and high-risk exposed females
H,(t); Hpn(t)  Population of low- and high-risk infectious males
Hg(t); Hpn(t)  Population of low- and high-risk infectious females
Qumi(t); Qmn(t) Population of low- and high-risk quiescent males

Qn(t);Qsn(t)  Population of low- and high-risk quiescent females
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Parameter Description

IL,,; I Recruitment rates for males and females

Pm;Df Fraction of recruited individuals that are high-risk for males and females
Brm; By Probability of transmission for males and females

Cmi Cf Average number of new sexual partners for males and females per unit time
Cmi Cr Modification parameters for relative infectiousness

of high-risk individuals in comparison to low-risk
N Nf Modification parameters for infectiousness
of infectious individuals in relation to exposed individuals
1 Natural death rate
Om;0f Progression rates to symptoms development of
exposed males and females
Tl T fl Activation rate of low-risk infectious males and
females in the quiescent state
Tmhs T fh Activation rate of high-risk infectious males and
females in the quiescent state
am: 4y Rate at which infectious males and females
revert to their quiescent states
Om; 0 Modification parameters for increased HSV-2 susceptibility

by males and females in high-risk

M 5{ Rate of behavioral change from low- to high-risk
(1=1,3,5,7)

e 5; Rate of behavioral change from high- to low-risk

(j =2,4,6,8)
01; 99 Disease-induced death rate for infectious individuals
03; 04 Disease-induced death rate for quiescent individuals
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6.2.1 Basic Properties

The following result can be proven (using the approach in Section 4.2.1 or in Appendix A of

[86]).

Theorem 6.1. Let x;(t) = (Su(t), Eu(t), Hu(t), Qu(t)) and zin(t) = (Sin(t), Ein(t), Hin(t), Qin(t))
fori = m, f. Let the initial data (2,;(0),2#(0), Zpn(0),2¢,(0)) > 0. Then the solutions
(Xmi(t), Tomn(t), x1(t), £ (t)), of the basic model (6.3), are positive for all t > 0. Further-
more,

11, 1I
limsup Ny, (t) < — and limsup Nf(t) < i
i

t—o00 H t—o0
The risk-structured HSV-2 model (6.3) will be analyzed in a biologically-feasible region as

follows. Consider the region
D =7D,UD; C R} xRY,
with,

Dy, = {(SmbSmhaEmlaEmhyHmlyHmhanlmeh) € R%— :

II
Sml+Smh+Eml+Emh+Hml+Hmh+le+th < Tm}a

and,
Dy = {(SflasfhaEfl,th,HflaHfhanl,th) € RY :
1Ly
Spu+ S+ En+Ep+Hp+ Hpp +Qpi+ Qpn < e

Adding the first eight and the last eight equations of the model (6.3) gives

% < I, — uNy,(t) and % < IIp — puNg(t). (6.5)
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A comparison theorem (Theorem 2.6) can then be used to show that

II,, II .
Np(t) € Np(0)e#t 4 —2 <1 - e_“t> and Np(t) < Np(0)e M + 7f <1 —e “t>.
i

In particular,
i i I I
Np(t) < =2 if Np(0) < —2 and Ny(t) < 7/‘ if Np(0) < 71"
Jz w

This result is summarized below.

Lemma 6.1. The region D is positively-invariant for the model (6.3) with initial conditions

. 16
an+.

6.3 Existence and Stability of Equilibria

6.3.1 Local Stability of DFE

The DFE of the model (6.3) is given by

* * * * * * * * * * * * *
&0 =(Smt> Smns Emis Evans Hnts Hopgy @t Qi S5 St Efis Ens Hpy

H}h7Q}luQ;h) = ( :nl7 :nha07070707070757%75;}1707070707070) )

where,

* _ Hm[pm%n + k2(1 _pm)] x Hm[fin(l _pm) + klpm]
m kiky — EMER » Tmh kiky — EMER ’
o Iylpr€d + kin(l—pp)] o T4 (1 py) + kupy)

Spo= TS ;

kiikio — 5{55 kiiki2 — 5{55

with k1 = ko = p, k3 = ks = o+, ks = qm+p+901, ke = gm+p+02, k1 = ropy+qm + 1+ 03,
ks = Tmn 4 Gm + 04, k11 = k12 = p, k13 = k14 = op+p, kis = qp +p+01, ki = qf +p+92,

kit =rp+qp+p+03, kis =rm+qp+p+ s
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Using the notations in [88], the matrices F' and V, for the new infection terms and the

remaining transfer terms, are, respectively, given by (where 0,,x, represents a zero matrix

with m rows and n columns),

Osx6 I Vi Ogxe
F = , V = ,
Fy  Ogxe Osx6 Vi
where,
(F11)2x6 (F51)2x6
Fl — 5 F2 = 5
04x6 O4x6
and,
0 0 S 5SSy Spunf SruCeny
N7, N7, N7, N7,
Fll = * * * * Cfﬂf,
O O emsmh Gmsthf emsmhnf GmSthf"?f
N, Ny, Ny, m
00 S, S51Gm S5y S%1Cmtim
Ny Ny Ny Ny
o = 0;5%  0;5* 0,5% 0,5% Cm P
0 0 I2fh I2fh Cm FRnTim fOrh CmMm
Ny Ny Ny Ny
ks + om  —EM 0 0 0 0
—& kit om 0 0 0 0
—Om 0 ks + dm _één —T'mi 0
Vi= )
0 —Om _Sgn ke + qm 0 —Tmh
0 0 —Qm 0 k7 4+ Tt —&
0 0 0 —Qm =& ks + Tmn

156



kis+op  —€] 0 0 0 0

—f:]; kia+oy 0 0 0 0
Py 0 ksta & - 0
Vi= f
0 —oy =& kst ay 0 ~Tfh
0 0 —qf 0 kir + g —&f
0 0 0 —qf —& kst
Thus,
Ro = p(FV 1) = \/RnRy, (6.7)
where,
R = Ruu + Rmn, Ry =TRp+ Rpn, (6.8)
with,
Rt = Cmﬁmam(S;@lAll + emS;%hAﬂ) Ry = Cmﬂmam(S;lAm + HmS;lhA22)
" (St Sid " St Sdd
o ctBrop(Sy By + 07S%,Bar) o cBro (S Bia + 075%, Bas) (6.9)
! (S5 + S5,)B el (S5 + S5,)B ’
and,
A = (omGm + omke + qmka + kake + §5°85") (krks — £7°€8") + omrmi(keks + mnke)

+  gmTmi(Omks + E5°E8") + rinTmi(kake + £67E5") + ik (gmka + kake + £67E5")
+ Tmhk7(0mk6 + kake + fénﬁgn) + an72n(O-mk:18 + églgén + k4k78) + anm[k(S(Umrmh

+ k4k8 + O'mk8) + k4(rmhk6 + égnggn) + (ggnéénrmh + O’mfgnféﬂ)],
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A = Cm(%nffm + 5?164 + ggan + k5£§n)(k7k78 - 5?7’531) + CQOTmh(ggnkW + fgnkW
+ ggno'm + é’;nk4) + Cmamrml (575%/?8 + égnrmh) + Cm(rmlkéi + Tmhk'? + Tmleh)(é-gnkﬁl + fénks)
+ Cmnmqrzn(f’;nkﬁl + fénk7 + f?lam) + Cmanm[(k4 + Um)(fénk? + é’;nk(i)

+ (85" ks + &5 om + €57 ka) + &5" (kskr + &67¢7"));

Asi = (om&g" + &6 ks + qm&l" + £ ke) (krks — £7°68") + (rmiks + romnk7 + TmnTmi)
(E7Ke + E0'ks + E5'0m) + Qi (€8 k3 + E'ks + E8° ) + N (€1 ks + €8 + K3€LY)

+  Dmdm[0m (§6 ks + &6 Tmn + Kks&8") + rimn (&6 ks + €5 ke) + 4" (keks + £5768") + k3 (&6 ks + €8 ks)],

A22 = Cm(ka?: + omks + ksks + &ngb + O'QO)(]WkS - ;ngén) + CQOrmh(k?:k? + é‘llné‘;n + O'mk7)
+ G (Tmiks + Tonkr + Tonrin) (E5EE + ksks + ksom) + Cnlim @ (E7EF + kskr + o kr)

+ Cm"?QO[(k3k5 + 5?5? + k50-m)(k7 + Tml) + g;n(génkii + 521]{76 + O-mgén)]a

By = (opqr +orkie + qrkia + kiakie + fg{fg)(k17k18 - é%[ég{) +orp(kiskis + rnkie)
+ qprp(orkis + elel) + rnrpi(kiakie + elel) + rrkis(qrkia + kiakis + elel)
+ k(o ke + kakis + €5€]) + a7 (orkis + i€l + kakis)

+ nrqrlkie(oprin + kiakis + opkig) + ka(renkis + elel) + (égéérfh + Uffgfg)],

Bio = C(p(loy+ ki + qp + kis&l) (kirkis — L€]) + Craprpn(€lrr + Elkrr + Elap + €l kra)
+ Croprp(€lkis + Elrn) + Cp(rpuks + rpnkur + ) (€l kia + € krs)
+ Gy ad (ki + Ekir + €l ap) + Cmpapl (s + 0p)(E kar + E kig) + 7

(&l ks + égaf + &l k) + € (kiskir + €1l
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Boy = (0p&) +&lkis + qre] + &l kie) (krrkis — E260) + (rikas + rpnkar + rpnrp)
(&l k1o + ks + &l op) + aprp(& ks + E kas + eloy) + mpad (€l ks + op + kised)

+ ﬂfo[Uf(fgkls + §ngh + k15§£) + Tfh(fgklg + fﬁjk‘m) + &{(/ﬁﬁ/ﬂs + §§§£) + k13(§g/€18 + fgkls)],

By = (r(qrkis + ofkis + kizkis + £Zf£§ +orqr)(kirkig — £$££) + Crarrpn(kizkir + f{ﬁ; + orkir)
+ Cp(rpikis + rpnkar 4+ e ) (ELED + kiskis + kisop) + Cfﬁfﬁf(f{fg + kiskir + opkir)

+ Cnparl(kiskis + E1€L + kisop) (kar + rpr) + EL (€L kaz + €] ki + 0 4€0)),

A = [(ksha— EPED) + omlom + ks + ko) [<k7ks e (haks — E0ET)
+  (kske — &8°E8") (rmuirmn + ksTmi + k77mb) + @mrmn(kekr — &6°E7)

+ gmrmi(ksks — E5€T) + (krks — €758 (g2, + qmks + qm/%)] :

B = [(kiskis — ééf&ff) +os(of + kg + kia)] |:(k‘17k718 - £$£§)(k15k16 - 55]:5(];)
+ (kiskis — L&) (rpirn + kasr i + kvergn) + aprpn(kiskar — €1€0)

+ qprplkiskis — €€]) + (kirkis — Siig)(qi + qpkis + ka'm)] :

It should be mentioned that, in the above expressions, k3ks — £5°§)" > 0, kekr — £5°&7" > 0,
kske — EDED > 0, ksks — EDEY > 0, krks — €€ > 0, kigkir — €60 > 0, kughkia — €5¢] > 0,
kiskis — €160 > 0, kiskis — &l&l > 0, and ki7kis — €1¢] > 0 (so that, R, > 0, Ry > 0 and

Ro > 0). Consequently, it follows from Theorem 2.7 that:

Lemma 6.2. The DFE of the model (6.3), given by (6.6), is locally-asymptotically stable

whenever Ro < 1, and unstable if Ry > 1.

The threshold quantity (Rg) has the same interpretation as given for the corresponding

quantity for the model (5.5).
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6.3.2 Existence of Endemic Equilibria

To determine the number of possible equilibrium solutions the model (6.3) can have, it is

convenient to let

51 = ( ;an f;km ::h ::m :r;klv ﬁh? Q:;Lklv Q:z;kfw }77 }Z?E;ZK?E;Z?H}T?H}Z? Q?lkv Q?;L)?
be any arbitrary equilibrium of the model. Furthermore, let

Cfﬁm [H;zk[ + CmH;zkh + an;;k[ + Cman:;kh]

)\** —
m N;;l* ?
v Cmﬁf[ T Cr Tt anfl + Cfanfh]
I N}k* ’

be the associated forces of infection for males and females, respectively, at steady-state. To
find conditions for the existence of equilibria of the model (6.3) for which HSV-2 infection
is endemic in the population (i.e., the components of EX% E*%  H* H* Q. Q. EY,
E}Z, H}T, H}k}i, Q;’{, Q}’;L are non-zero), the equations in (6.3) are solved in terms of the

aforementioned forces of infection at steady-state.

Setting the right-hand sides of the model (6.3) to zero gives

Hm(mlo)\f + m11) Hm(mgo)\f + mgl)

S = y S, - )

m m00/\§c + mo1Ap + mo2 mh m00/\§c + mo1Ap + mo2
B, = Hm)\f(mgo)\f + TTL31) B = Hm/\f(m40)\f + m41)

m (moo)\?p + m01)\f + mog)Al ’ m (moo)\? + m01)\f + mog)Al ’

(6.11)

Hoy— Hmam)\f(m50)\f + m51) = Hmam)\f(mﬁo)\f + m61)

" (moo)\ff +moiAs +mga)Ad " (m()o)\?: + mor A g + mg2) A’

Hmam)\f(mm)\f + m71) Hmam)\f(TrLgo/\f + m81)

le = th =

(moo)\?p + m01)\f + TTl()Q)A7 (moo)\? + mm)\f + TTl()Q)A7
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Iy (n10Am + n11)

Iy (n20Am + n21)

b
nooAZ, + 1no1Am + no2

Iy A (P40 A + 141)

(noo)\gn + n01)\m + Tlog)Bl ’

HfO’f)\m(n(;Q)\m + n61)

S — s S =
T ngoA2, + 101 Am + 1o I
B = I A (n30Am + n31) B
fl — P) ) fh —
(noo)\m + n01)\m + Tlog)Bl
H | = Hfaf)\m(n50)\m + n51) .
! (noo)\gn + n01)\m + Tlog)B7
oA n70)\ + nr
Qn=—1 m (10 ) Qrn =

where,

(noo)\gn + n01)\m + Tlog)B’

o (noo)\?n + nm)\m + 71()2)B7

Hfdf)\m(ngo)\m + ngl)

(noo)\gn + nm)\m + nog)B’

Ay = [(ksks — EFET) + 0m(0m + k3 + ka)] and By = [(kizkia — E4€]) + 07 (07 + iz + k1a)],

with m;; > 0 and n;; > 0 (but not reported here since their expressions are too lengthy).

Substituting (6.11) into the expressions for A;7 and A} in (6.10) gives:

A1 Bmer(prids + pi2)Ay

kk
Ay =

p13>\3c + puuAs +p1s

and )\}* =
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BioBrcm(p2iAm + p22)Am

P23AZ, + paadm + pas

)

(6.12)



where,

P11 = (M50 + (60 + MmGmM70 + Cnllm@mMso); P12 = M1 + (uMel + MmdmMm71
+  Cmlim@mmsi,

P13 = Amgo+ Amao + o Armso + omAi1meo + oOmgmA1mio + omgmAi1mso,

pa = A1Amyg+ AiAmog + Amay + Amyy + o Aymsy + 0 Aimet + omGmAimn

+  omgmAimasi,

p1i5 = Ai1A(mi +ma1), pas = BiB(ni1 + nay),

p2a1 = (ns0+ (rneo + nparnro + Cpnpgrnso), P2 = M1+ Cpner + Npqrn7 + Cpnygrnst
p23 = Bngo+ Bnyy + opBinso + orBingo + orqrBinro + 0 rqpBinso,

p2a = Bi1Bnig+ B1Bngy + Bngy + Bny + opBinsi + oyBingt + opqrBinm

+ orqrBingi,

so that the non-zero equilibria of the model (6.3) satisfy:
4 .
> a ()t =o. (6.13)

=0

The coefficient ag > 0 (but is not reported here, because its expression is too lengthy).

Furthermore, a; (i = 1,---,3) may be positive or negative (the coefficients, a; with i =
1,---,3, are also not reported here for the same reason), and
as = AA2B1B(ma1 + moa1)?(n11 + na1) (1 — RY). (6.14)

It follows from (6.14) that a4 > 0 whenever Rg < 1. Thus, the number of possible real roots
the polynomial (6.13) can have depends on the sign of a; (i = 1,--- ,3). Using the Descartes
Rule of Signs on the equation (6.13), the various possibilities for the roots are tabulated in

Table 6.2.
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Table 6.2: Number of possible positive real roots of (6.13).

Cases | ap | a1 | a2 | a3 a4 Number of Number of possible positive
sign changes | real roots (endemic equilibrium)

1 + | + + | + (for Ry < 1) 0 0

2 + | + - | + (for Ry < 1) 2 0,2
3 + |+ -] -]+ (for Rp<1) 2 0,2
4 + |+ - |+ |+ (for Rp<1) 2 0,2
5 + -] -1]- |+ (for Rp<1) 2 0,2
6 + | - + |+ (for Rp<1) 2 0,2
7 + | - - |+ (for Ry<1) 4 0,2,4
8 + - - + (for Ro < 1) 2 0,2
9 + | + - (for Ry >1) 1 1

10 |+ |+ |+ | -] -(for Rgp>1) 1 1

11 |+ |+ -] - |- (for Rg>1) 1 1

12 |+ |+ |- |+ |- (for Rg>1) 3 1,3
13 |+ |-1]-1]-/|-(for Rg>1) 1 1

14 |+ - + | - (for Rp>1) 3 1,3
5 |+ - - | - (for Rp>1) 3 1,3
16 |+ |- -|+]|- (for Rg>1) 3 1,3

The following result is established (the endemic equilibria of the model (6.3) are obtained by
substituting the positive solutions of (6.13) into (6.3)) from the various possibilities enumer-

ated in Table 6.2:
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Theorem 6.2. The model (6.3) could have no, two or four endemic equilibria if Ry < 1,

and at least one endemic equilibrium whenever Rg > 1.

The existence of multiple endemic equilibria when Ry < 1 (in Theorem 6.2) suggests
the possibility of backward bifurcation in the model (6.3), when the associated reproduction
number (Rg) is less than unity. This is explored below, using centre manifold theory [13].

Let, for mathematical convenience,

Smi = 1, Smn = T2, By = 23, By, = T4, Hyy = x5, Hypp = 26, Qru = 27, Qmn = 23,

Sp =9, Spn = x10, Bt = 211, Eppy = w12, Hpy = w13, Hpp = 214, Q1 = 715, Q pp = T16.

Thus,

Ny =21+ 20+ 23+ 24 + 5 + 26 + 7 + T3, Nf:a:g+x10+x11+x12+a:13+a:14+x15+x16.

Further, by using vector notation X = (x1,29, - ,216)", and F = (f1, fo, -+ , f16)", the
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X

model (6.3) can be written in the form % = FX, as follows:

dl‘ m m

d—tl = (1 = pi)Ily + €520 — Ap(t) 21 — (1" + p)1,
dl‘ m

0 DTl €1 — Oy (O — (6 + ),

dﬂj m m

d—t?) = Ap(t)r1 + &' za — (&5" + om + p)z3,

dx

— = O (D2 + s — (€ + om + )2,

d.Z'E, m m

= Om¥3 Tt + &6 s — (&5" + gm + p+ 01)xs,
dﬂj6 m m

= OmTa T Tmhds + &5 — (6" + gm + 1+ d2) s,
dx

d—; = @¢mTs5 + fgnxg — ({?1 + g+ (53).%'7,

dl‘g

g = mTe 7w — (§8" 4 Tn + 1+ 04) s,
(6.15)

dxg
— = (L= pp)f + a0 = Am(t)zo — (€] + w)as,
dajlo . f f
g = Pl &ze = OpAm(t)zi0 — (& + )z,
da:ll
T Am(t)zg + E] 212 — (6] + of+ )T,
d:L'12 - f f
T O m(t)z10 + &2 — (§ + of + p)x12,
dZL'13 . f f 5
T orrin +ruxis + g — (§ + qf + o+ 01)xis,
dzx
—dt14 =ofr12 +7pT16 + 55]:11713 - (5(]; +ap +ptd)rng,
dajlg,
g = 4t lr1e — (& +rp + o+ 83)1s,
da:16
g Tt elars — (€] +rpn + 1+ 01)z16,
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with,

Af = )\fl + Afh, ArrL = )\ml + Amhv

ctBr(x13 +nrxis)

A = ,
s T txotx3txat+a5+26+27+ 28
Ny = CrepBy(r1a +1ny216)
4 21+ To + 23 + T4 + 25 + 26 + T7 + 28
A ;| = Cmﬁm(xS + 77m337)
m x9+x10+x11+x12+x13+x14+x15+a;16’
A _ Cmcmﬁm(xﬁ +Tlfx8)
mh =

Tg + x10 + x11 + T12 + T13 + T14 + T15 + T16

The Jacobian of the system (6.15), at the associated DFE (&), is given by

J1 Jo

where,

-k & 0 0 0 0 0 0

Jl: )
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Jy =

J3 =

1

Jy =

¢f
—k12

0 —
0 —Po
0 ¢
0 &

—
3,
3
Dy

—CPr —vpdy
—CP2 —vp®o
P11 v
P2 vpPy
0 0
0 0
0 0
0 0
—CmP3 —VmP3
—(m®Ps —vm Py
m®Ps v P3
m®Ps VP
0 0
0 0
0 0
0 0
0 0 0
0 0 0
0 0

—k14 0 0
0 —kis &
of §§ —k16
0 qr 0
0 0 qf
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—Cprp®y
—Cprp®a
CrvpdPy

CrvrPo

_Cmqu>3
_Cme(I)4
CmVmP3

Cme(I)4

T 0
0 Tth
~kir €
&l —kasg]|




with,

o — crBrxy B — OmerBras B — CmBmTs B OrnCrm Bm g
1 = * x ) 2 = * x ) 3= % x 3= * *
Ty + x5 Ty + T4 Tg + 27, A

Y

*
ml>

J (&), that (as in Section 6.3.1):

and, =] = x5 = Spp, T = Sy, ip = Sy, are as defined before. It can be shown, from

Ro = \/CfcmﬁfﬁmafaleZg, (6.16)

where,

xik(All + A12) + meZ(Agl + Agg)
(z7 + 23)A

xS(Bll + Blg) + fo’{O(Bgl + ng)
(x5 + 279)B ’

Z3

With, AH, Alg, Agl, AQQ, BH, Blg, Bgl, BQQ, A and B as defined in Section 6.3.
Consider the case when Ry = 1. Suppose, further, that (3, is chosen as a bifurcation

parameter (without loss of generality). Solving for (3, from Ry = 1 gives

1
m pr— * = . 6-17
b b cremBrofom 4y Zy ( )

It should be noted that the transformed system (6.15), with 3,, = 8%, has a hyperbolic equi-
librium point (i.e., the linearized system has a simple eigenvalue with zero real part). Hence,
the centre manifold theory [13] can be used to analyse the dynamics of (6.15) near 3,, = 8*.

In particular, to apply Theorem 2.3, the following computations are necessary.
Eigenvectors of J(&)

Bmzﬁ*

It can be shown that the Jacobian of (6.15) at 3,,, = 3* (denoted by Js+) has a left eigenvector
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(associated with the zero eigenvalue), given by

where,
(A
Ve =
v11 =
vi4 =
with,
aq
as
as
az

vV = [’Ul,’UQ,'Ug,’U4,’U5,'U6,’U7,'U8,’Ug,Ul(],Ull,’UlQ,Ulg,U14,U15,U16],

0, UQZO, V3 = Vg =

ksks — E°E

§5tar + ksag _ &Flag + kgas _ &lag + kray

777)_771)_71%7)1"0:0’” :0,
kske — EPE" 1 kykg — EPED 0 kokg — €T Y 10

Uf(ﬁgjjvm + ki4v13) o1y = Uf(f£U13 + k13v14) i = Sgaa + kigas
kigkia — 53{&{[ kiskie — 6566

kigkia — 5;{ &{

§£a5 + kisa6 B §$a8 + kigar B Sg{CL? + ki7ag
P Uls——ff, 016——”,
kiskie — &5 &5 ki7kis — &7 &3 ki7kis — &7 &3

= gmvr + P3v11 + Pyvi2, a2 = ¢pus + (nP3v11 + G Pav12,
= TpUs + U P3v11 + v Puvi2, ag = rinve + Cnlm ®3v11 + Gruvm Pavia,
= Pruz + Povy + qru1s, ag = (rP1vs + (rPovy + qrv1s,

= qu)lvg + l/f(I)QU4 + rgvi3, ag = Cfl/fq)lvg + Cfuf<1>2v4 + T fRV14-

Furthermore, Jg- has a right eigenvector (associated with the zero eigenvalue)

T
W = [w17w27w37w47w57w67w77w87w97w107w117w127w137w147w157w16] B
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O'm(é'énvﬁ + k’4’U5) Jm(&“% + k‘3’06) vy — 5?&2 + kgaq
kskq — E0E kske — €T



where,

kaby + ba&y? kiba + b1&7" kab1 + ba&)? k3bg + b1&5"
w T g W2 T T ey W3 T Ty WA= o
k‘lk‘2 - 51 52 k«'lk'2 - 51 52 k3k74 - 53 54 k73k74 - 53 54
kebs + ba&g" k5bs + b3&5" kgbs + be&g" k7bg + bs&7"
ws T mem W6 = T —gmems W1 = T gmem W8 = T mem:
kske — &LEG kske — &LEG krkg — &7EL krkg — &7EL
B k12b7 4 bsfg  knbs+ b?f{ _ kiabr + bs&{ _ kigbg + b?fy{
Wo = —o—— g W= T W s o W s o
k11k12 — &§1 &5 k11k12 — &1 & kizkis — &3€y k13k1s — £3&,
k16bg + bio&] _ kisbio + bot! _ kigbi1 + bio€] _ kizbio + biiél
wiy = o W= o, Wi = o, Wi =
kiskie — &5&5 kiskie — &5&5 ki7kis — &7 &3 ki7kis — &7 &3
with,
by = Prwiz + (fPrwig + vpPrwis + CrrpPrwie, b2 = Powiz + (Powis + vy Powrs + (rrpPowss,
b3 = opw3+ Wy, by = opws + ryppws, bs = grws, be = gmws,
by = ®3ws + (nP3ws + v P3wr + (nmPaws, bg = Pqws + (G Paws + Vi Pawr + (rm Paws,
by = ojwir +rpwis, bio = orwiz + rrpwie, b1 = qrwiz, b2 = qrwig.

It should be mentioned that all the eigenvectors (v and w, with the exception of wy, ws, wo

and wyg) are non-negative (see Section 6.3.1).

Computation of bifurcation coefficients a and b

By computing the non-zero partial derivatives of F at the DFE (&), it can be shown, after

some algebraic manipulations, that the associated backward bifurcation coefficient, a [19], is

170



given by:

2
a = Z 'L)kwiwjaafki(o’o)’

2,02 ;
k,i,j=1 Lt

1
- m{chﬁf(wlg + w14Cf + wisvy + leCfo)

[(v3w1 — VawW70p, — VaWsHr, — V4WAO, — VAW By, — VaWGEOm — VaW30rn — VaW5O ) T2

+ (—v3w4 — V3Wg — V3W7 — V3Wg — V3Ws + v4w20m — V3wg — ’L)glUg)l‘l] } (6'18)

1
— m {2cmﬁm(w6gm + WiV + W8V + W)

[(vi2w128f + vigwishy + vigwiaby — viywg + vigwely + vigwis8y + viswishs + vi2wi16))T10

+ (vi1wip + vi1wig + viiwis + V1w + viwis + viiwie — viswioly + 011w12)$9] }

Furthermore, it can be shown that the bifurcation coefficient, b [19], is given by:

16
02 fy 1
b= ; U G S F T T E o em(Ws + WeCm + WrVm + WsCmVm) (V1129 + v120f210) > 0.

Since the coefficient b is always positive, it follows from Theorem 2.3 that the system (6.15)

will undergo backward bifurcation if @ > 0. This result is summarized below.

Theorem 6.3. The transformed model (6.15), or equivalently (6.3), exhibits backward bifur-

cation at Ro = 1 whenever the bifurcation coefficient, a, given in (6.18), is positive.

The result of Theorem 6.3 is illustrated numerically by simulating the model (6.3) with
the following set of parameter values: y = m,nm = 5,1y = 5,11, = 1000, II; = 1000, B, =
0.0265, By = 0.02,017 = 0,02 = 10,04, = 1,0y = 1,qm, = 1,q5 = Lirpyp, = Lirpp, = Ly =
Liry = 1,7 = 0.001, zi5" = 0.001,&5" = 0.001,&5" = 10,£5" = 10,&5" = 10,47 = 10,&£8" =
10,¢/ = 0.001,&) = 0.001,&] = 0.001,&f = 10,6/ = 10,¢] = 10,¢f = 10,¢] = 10,p,, =

0.99,pf = 0.99,0,, = 2,05 = 2,Cn = 5.1,(p = 5.1,¢m = 5,5 = C”;ij’(';)(“ (so that, Ry =

0.91). The simulations show that, for the case when Ry < 1, the profiles can converge to
either the DFE or and an endemic equilibrium point, depending on the initial sizes of the

sub-populations of the model (owing to the phenomenon of backward bifurcation). It is
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worth stating that like in the simulation of the vaccination model (4.27), the aforementioned
parameter values are chosen only to illustrate the backward bifurcation phenomenon of model
(6.3), and may not all be realistic epidemiologically.

Figure 6.1A shows convergence to the DFE and the EEP for the total infected male
population when Ry < 1 (it should be mentioned that the simulations have to be run for a
long period of time in order for the backward bifurcation phenomenon to be clearly captured).
A similar plot, for the total infected female population, is depicted in Figure 6.1B. The
epidemiological consequence of this result is that the effective control of HSV-2 in a population
(when Ry < 1) is dependent on the initial sizes of the sub-populations of the model (the

disease would persist if the number is high, and can be eliminated otherwise).
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Figure 6.1: Simulations of the model (6.3) showing the total number of infected (A)
males and (B) females as a function of time, using various initial conditions.
Parameter values used are: p = m,nm = 5,15 = 5,11, = 1000,1T; =
1000, B,, = 0.0265, 3y = 0.02,0; = 0,02 = 10,0, = 1,0y = 1,¢, =
1,(]f = 1,’/“mh = 1,’/“fh = 1,7’m1 = 1,’/“fl = 1,5{”’ = OOOl,ZL’ZEn = 0001,5?” =
0.001,&7 = 10, = 10,&" = 10,&m = 10,€ = 10,¢/ = 0.001,¢] =
0.001,& = 0.001,¢ = 10,¢f = 10,¢] = 10, = 10,¢ = 10,p,, =
0.99, p; = 0.99,0,, = 2,05 = 2,C = 5.1,¢s = 5.1, ¢p = 5 and ¢ = C@LV%”
(so that, Rg = 0.91).

It should be recalled that the equivalent two-group HSV-2 model (5.5), which was not
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stratified according to risk of acquiring or transmitting infection, does not exhibit backward
bifurcation. Thus, the analyses in this chapter shows that adding risk structure to the model
(5.5) causes a new dynamical feature (backward bifurcation) in the transmission dynamics
of HSV-2 in a population. It is instructive, therefore, to determine the ”cause” or ”causes”
of the backward bifurcation property of the risk-structured model (6.3). This is considered

below.

6.4 Effect of Risk of Susceptibility: Reduced Model

The risk-structured model (6.3) is considered for the case where the susceptible individuals are
not stratified according to their risk of acquiring HSV-2 infection (that is, every susceptible
male or female is equally likely to be infected as every other susceptible male or female,
respectively). It should be mentioned that the exposed and infected classes (E, H and Q)
are still stratified according to their risk (low or high) of transmitting HSV-2 infection.

Let Sp,(t) and Sf(t) represent the population of susceptible males and females at time ¢,
respectively. Furthermore, IL,,, (II;) represents the per capita recruitment of sexually-active
males (females) into the population. Let v, (v) represent the fraction of new infected males
(females) who are in the low-risk category, and the remaining fraction, 1 — v, (1 —v¢), is in
the high-risk category. It follows that the rates of change of the susceptible male and female

populations are given by

dg—tm =1, — Ap(t)Sm(t) — pSm(t) and dd—? =TI — A (£)Sy(t) — 1S (1), (6.19)

where, A\, (t) and Af(t) are as defined before. Combining the HSV-2 model (6.3) with (6.19),
it follows that the reduced model for HSV-2 transmission dynamics, in the absence of risk

structure in the susceptible populations, is given by
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dSm,
dt
dEml

dt
dE mh

dt
del

dt
dH

dt
del

dt

de;nh = QmHmh(t) + é;anl(t) - (gén + Tmp + 0+ 54)th(t),
(6.20)

= Il — Ap(£)Sm(t) — pnSm(t),

= Vm)\f(t)sm(t) + éZ,LnEmh(t) - (&T + om + M)Eml(t)y

= (1 - Vm))‘f(t)sm(t) + giTEml(t) - (&T +om+ N)Emh(t)a

= UmEml(t) + Tleml(t) + génHmh(t) - (Sgn + gm + H + 51)Hml(t)a

= UmEmh(t) + 7thth(t) + ggnHml(t) - (fgL + gm + H + 52)Hmh(t)a

= QmHml(t) + fganh(t) - (g;n + Tl + 0+ 53)le (t)a

D8 1= 0 ()0 - 150,

% = VA (t)Sy(t) + ELEm(t) — (€ + of + ) Epl(t),

% = (1= v)Am()Sp(t) + E Ep(t) — (€] + op + w)Ep(t),

% = o7 Ep(t) +rpQu(t) + & Hen(t) — (€ + ap + p+ 61 Hp(t),
dfl[tfh = 07 Bpn(t) + rQpn(t) + & Hu(t) — (65 + a5 + p+ 62) Hpn (1),
% = qpHp(t) + & Qm(t) — (& +rp+ 1+ 03)Qu(t),

di{" = qrHp(t) + £ Qu(t) — (& +rm + 1+ 00)Qun(t).

6.4.1 Basic Properties

As in Section 4.2.1, the following result can be proven for the model (6.20).

Theorem 6.4. Denote z;(t) = (Ey(t), Hy(t),Qu(t)) and z;n(t) = (Epn(t), Hin(t), Qin(t))
fori=m, f. Let the initial data (S, (0),S¢(0), Zmi(0), 2 £(0), Tmn(0), 2, (0)) > 0. Then the

solutions (Spm(t), S¢(t), mi(t), Tmn(t), xs1(t), x¢n(t)) of the reduced model (6.20) are positive
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for all t > 0. Furthermore,

II II
limsup Ny, (t) < —= and limsup Ny(t) < =,
1

t—o00 1% t—00

Consider the feasible region
Dr = Dmr UDfT’ C RZ— X RZ—)
with,

Dmr = {(SmaEmlyEmhaHmlyHmhanlmeh) € RZ— :

1I
Sm+Eml +Emh+Hml+Hmh+le +th < Tm}y

and,

Dy, = {(Sf,Efl,th,HflaHfhanlanh)GRZ-:

11

Using the same approach as in Section 4.2.1, it can be shown that the region D, is positively-

invariant for the model (6.20).

6.4.2 Existence and Stability of Equilibria

The DFE of the model (6.20) is given by

*

* * * * * * * * * * *
Ea = (S, Epts B Hyts Hoops Qs Qs St St B By Hiy,

Hiy,, Q. Q) = < —L

(6.21)
7070707070707 70707070707O>'
1 1
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The next generation matrices, F, and V', associated with the reduced model (6.20), are given,

respectively, by

Oxs  Fr1
FT’ — )
Fro  Ogxe
where,
(Fri1)2x6 (Fr21)2x6
Fq= , Fro = ’
04><6 04><6
and,
0 0 Urn Vs U f UmCfny
Foi = By,
00 (M=vm) A=v)l (I=wvm)ny (1 —vm)(my
00 VG Vi) V§Cmiim
Fro = " " CmFm,

00 (T—vy) A=vp)lm (A=ve)nm (1 —vp)Cnim

with the matrix V as defined in Section 6.3. Thus,

R, = p(EV ™Y = /RemRy s, (6.22)
where,
Rom = M[melll + (1 — vm)A21 + v Ais + (1 — vyy,) Aga],
gA (6.23)
& g
rf = 7/[5 LlvpBiy+ (1= vp)By + vy Bia + (1 — vy) Baa),

With, All,A12,A21,A22,Bn,Blg,Bgl,ng,A and B as defined in Section 6.3. ThUS, this

result follows from Theorem 2.7.
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Lemma 6.3. The DFFE of the reduced model (6.20), given by (6.21), is LAS whenever R, < 1,

and unstable if R, > 1.

It should be stated that the epidemiological thresholds, R, R, and R,;, have similar

definitions as Rg, R, and Ry, respectively.
Theorem 6.5. The reduced model (6.20) does not undergo backward bifurcation at R, = 1.

The proof is given in Appendix F.

In other words, Theorem 6.5 shows that the absence of risk of susceptibility to HSV-2 infection
(within the male and female populations) removes the backward bifurcation property of the
risk-structured model (6.3) (eventhough infected individuals are stratified according to their
risk of transmission of infection). This result is further emphasized by proving the global

asymptotic stability property of the DFE (&2) of the reduced model (6.20) below.
Theorem 6.6. The DFE of the reduced model (6.20), given by &2, is GAS in D, if R, < 1.

Proof. The proof is based on using a comparison theorem (Theorem 2.6) [56]. Let,

Y = <Eml7Emha Hyp, Hoh, Quats QuanE gt Epn, Hypy Hyp, Q th) T

so that the equations for the infected components of (6.20) can be re-written as:

dy
— = (FE-V-D)Y,

where the matrices F. and V are as defined above, and the matrix U is given by

O6x6 U

Us  Ogxo
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with,

Ui1)2x6 Us1)2x6

U — (U11)2x Uy (U21)2x |
O4x6 466

00 vy U U UGy

Sm
Un=[00 (I=vm) (I=vm)ls (L—vm)ny (L—vm)Cmy | SBr <1 B m)

and,

00 v ViCm VNm VECmTim
s = / 76 1 7Gm o B (1 _ 5 )
00 (1- I/f) (1- Vf)Cm (1- Vf)Tlm (1- Vf)Cmnm

Since Sy, < Npp and Sy < Ny (for allt > 0) in D,., it follows that the matrix U is non-negative.

Thus,

ay
dt

<(F-V)Y. (6.24)

Furthermore, if R, < 1, then p(F,V~!) < 1 (from the local stability result given in

Lemma 6.3, which is equivalent to F;. — V having all its eigenvalues in the left-half plane

[88]). It follows that the linearized differential inequality system (6.24) is stable whenever

R, < 1. Consequently, by comparison theorem, it follows that

(Emb Epn, Hygy Hipp, lea th) - (07 0,0,0,0, 0)7

and,

(Eflath7Hfl7Hfh7Qfvafh) - (07070707070)‘
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Thus, for any € > 0 sufficiently small, there exists a t; > 0 such that if ¢ > t;, then

Eml <e Emh <e Hml <e Hmh <€, le <€, th <e

(6.25)
Efl <€, th < €, Hfl <€, Hfh < €, Qfl < e and th < €.
It follows from the equations for S,, and Sy in (6.20), noting (6.25), that
dSp,
W = 1L, — )\f(t)sm(t) - ,U*Sm(t) > 1y, — Cfﬁf(l + T,f)(l + Cf)6 - NSm(t)y
dsy
W = 1_[f - )\m(t)sf(t) - NSf(t) > Hf - Cmﬁm(l + nm)(l + Cm)e - NSm(t)'
Thus, using comparison theorem,
II,, — 1 1
> H (6.26)

Hf - Cmﬁm(l + nm)(l + Cm)e
1

o S
htIE(l)Iolf Se(t) >

Since € > 0 is arbitrary, letting € — 0 in (6.26) gives

IT,, IT
liminf S,,(t) > — and liminf S;(t) > =,
t—o0 7 t—o0 7
Similarly, it can be shown that
IT,, IT
limsup Sy, (t) < — and limsup S¢(t) < =,
t—o00 1% t—00 2
Thus,
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and,

lim (Sm (t), Eml(t)7 Enp (t)v Hyy (t)v Hpp, (t)v le (t)7 th (t)v Sf (t)7

t—o00

En(t), Epn(t), Hu(t), Hyn(t), Qpu(t), Qpa(t))

1,
— < .0,0,0,0,0,0, f000000>=52.
7 7

Hence, every solution to the equations of the reduced model (6.20), with initial conditions in
D,., approaches the DFE, &, as t — oo whenever R, < 1. O
As in Section 6.3.2, the number of possible endemic equilibria of the reduced model (6.20)

is explored by letting

kok ok ok kok ok ok kok ok ok ok
E = (Sp» Emts Erps Hots Hys Qs Qs S5 B Ery Hyp' Hyg,, Q1 Q)

be any arbitrary equilibrium of the reduced model (6.20). Further, let

_ Cfﬁm[ oyt CnH S+ Qi+ CmMm @ ]

)\**
rm Ny ’ (6.27)
e ConBgHF 4 G H B+ Q7+ S Q) '
rf = Ny ’

be the associated forces of infection for males and females, respectively, at steady-state.

Setting the right-hand sides of the reduced model (6.20) to zero gives:

m )\** n k‘ 9 ml — (A?} + kl)mO(]’ mh — (A** i kl)mOO’ ml = ()\** i kl)m00m017
H OmAim 1I DNy II X (6.28)
o mImA 114 _— mImdmA,. ¢115 _— mOmdmA,. ¢11%6
mh (A7 =+ k1)moomor’ mt (A7 =+ k1)moomor’ mh (Ar3 + k1)moomor’
S — Hf *zk _ Hf/\** *Z _ Hf/\** *7 _ Hfaf)‘*>|<
! /\** A kn)noo = O, + kn)noo f (>\** + k11)noono
- . t.20)
H B HfO’f)\ o HfO’fo)\ o HfO’fo)\
fh fl =

(Ag, + kll)noonm (Ag, + kll)noonm e e, + kll)noonm
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with m;; > 0, ng; > 0, my > 0 and ng > 0 (but not reported here since their expressions are
too lengthy). Substituting (6.28) and (6.29) into the expressions for A7} and A7} in (6.27)
gives,

(m3 + GnMma + M Gmms + Cmanmmﬁ))\:;Umﬂmcf
m%)\:}i + (mami + 0pM3omMma + 4mommMs + Gmomme) S + mooma’

Aom =
(6.30)

- (n3 + Cpna +npapns + Cnparne) Aot Brcm

" nINg + (namy + opnsopng + qro s + qropne) A, + noont

It follows from (6.30) that the endemic equilibria of the reduced model system (6.20) satisfy:
rr(a2A; +a1) =0, (6.31)
where,

ay = {[(n3mg + NaN1Me) BmCrom + (n3me + qrnsme + qneme + 1ame) BmCromo flGm
+ (ngnims + n%mE’)ﬂmcfo'm + (nams + qrnsms + n3ms + qrnems) B Cromo f }amnm
+ (nonime + nonims)omqm + nonimems + [(nonimg + n%m4)ﬂmcfam
+ (grnsmyg + namy + ngmy + qnema) B CromoplCm + [(nfms + nan1m3)Bmcy
+ nonimy + nonims|oy, + (grnsms + nagms + ngms + qpnems) BmCromoy + nOnlm% > 0,

ap = nonlmoml[l - (Rr)z]'

Equation (6.31) has two solutions, namely Ap = (which corresponds to the DFE, &) and
)\j} = ;—‘;l The coefficient ay is always positive, and the coefficient a; is positive (negative) if
R, is less than (greater than) unity. Thus, the coefficients of the quadratic (6.31) are positive
whenever R, < 1 (hence, the model has no positive real root in this case). For the case
when R, > 1, the coefficient a; < 0, so that the model has one positive real root (given by
/\i} = ;—‘;l > 0) in this case. For the case when R, = 1, the coefficient a; = 0 and )\:;‘c =0

(which corresponds to the DFE, &). These results are summarized below.

Theorem 6.7. The reduced model (6.20) has one positive (endemic) equilibrium, of the form
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&3, whenever R, > 1, and no positive equilibrium otherwise.

Theorem 6.7 shows the existence of a unique endemic equilibrium when R, > 1. The

global asymptotic stability of this equilibrium is explored for a special case below.

6.4.3 Global Stability of EEP: Special Case

Define,

D, = {DmrUDfTZSm: ml = Emn = Hyp = Hypp = Quu

= Qun=5Sf=FEp=FEm=Hpu=Hp=Qp :th:()}_
Furthermore, let,

sign(Sm, — Sp¥) = sign(Epy — Ery) = sign(Emp — Ery,) = sign(Hyy — HY)

ml

= sign(Hyn — Hyyp,) = sign(Qmi — Qpay) = sign(Qmn — Qup)
(6.32)
= sign(Sy — S}) = sign(Ey — EY) = sign(Eyp, — Efp,)
= sign(Hyp — Hy) = sign(Hyp, — Hyp) = sign(Qp — Q1) = sign(Qpn — QFp)-
Theorem 6.8. The EEP, &3, of the reduced model (6.20), is GAS in Dy, UDy, \ D1 whenever
R, > 1 and Condition (6.32) holds.

Proof. Consider the Lyapunov function (as in Section 5.5.4)

G = [Sm =Syl + [Em — Byl + [Emn — Epip| + [Hmy = Hyg| + [Hmp — Hygy |
+ Qi = @l + Q@mn — Qap| + 155 = S + [Ep — Efi[ + [Egn — EFy |

+ [Hp— Hy [+ |Hpn — Hpp| +1Qp — QY| + [Qpn — Q-
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The right derivative, DTG, of G along the solutions of (6.20), is given by

DTG = sign(S,, — S:¥) [—)\me + A7 S — u(Sm — S)
+ sign(Ep — En) [AfVmSm = AN vmSyy + & (Emn — Eqy) — ma (B — frfz)]
g B = B | M (1= )i = X5 (1= )35+ €5 (Bt~ E3) — B~ B
e sign (= H33) o (Bt = E53) + 1t (@t = Qi) + € (Ho — F353) = (s — 135
g (H = H5) [0 (B = E) + (@ — Qi) + €5 (ot~ H35) = maaFo — 135
g1 Qunt = Q55) [ (o = F33) + €8/ — Q55) = 5 @t — Q5]
Qo = Q5 [ Fon = F35) + €' (@t = Q) = (@ — Q50|
+ sign(Sy — S7°) [—Amsf +ASE = (S — 57
+ sign(Ep — E}7) {Amufsf — NvpST 4+ €l (Bpn — Ejy) — mn(Epy — E};‘)}
+ sign(Eygy — E5) [Am(l —U)Sy = N1 — ) SE + € (B — B3 — ma(Eyn — E;:;;)]

+ sign(Hy — HJJ) [Uf(Efl — ER) 4 rp(Qp — QFF) + €5 (Hpn — Hpy) — mo(Hyy — H}T)}

+ sign(Hy, — Hpp) [Uf(th — E5) +ren(Qpn — Q) + EL(Hp — Hip) — muo(Hypp, — H}?i)}
+ sign(Q — Q) [Qf(Hfl — H3) +€1(Qpn — Q%) — man(Qpu — Q}}k)]
+ sign(Qpn — Q1) [Qf(Hfh — Hi) +&(Qp— Q%) — mia(Qpn — Q?Z)}

where, my = &'+ 0m + pt, My = &' + 0+ 1, M3 = &+ G+ pt 01, g = G g+ p 02,

ms = & + T + p 03, me = &0+ Tt + 10+ O, m7:§?]:+0-f+:u7 m8=§£+0f+ﬂa

my = £§+qf—|—,u+51, mig = 5£+Qf+,u+52, mip = £;+Tfl+,u+53 and mip = 5£+Tfl+ﬂ+54-
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It follows, after some algebraic manipulations and taking into account Condition (6.32), that

DYG = —p| 1S = S|+ | Bt = B2 + | B — B2 + | Hont — HES| + | Hoy — HI
Qi — Q4 |Quan — QI 18y — 85|+ |Epy — B3|+ |Epn — E3)
n rHﬂ—H;:fr+\Hfh—H;;r+\@ﬂ—cz;ﬂ+\@fh—Q;z@

- 0

—_

\Hyt — H5| + [Hp1 — H;tf@ 5, [\Hmh CHE 1 H - H;t;;@

= 03(|Qmi — Quul +1Qp — QF|| — 04 |1Qp — QY| + [Qpn — QT

= —uG =61 ||Hp — Hpy| + ’Hfl - H}T@ — 0y [\Hmh — Hyol + ‘Hfh - H}k;@

= 03]|Quu — Quul + 1@ — Q| — 04 |1Qp — Q|+ 1Qpn — QFl |-

Thus, tlim G(t) = 0. Hence, the equilibrium, &;, of the reduced model (6.20) is GAS in

Dy U Dy, \ D1 whenever R, > 1 and Condition (6.32) holds. O

6.5 Summary

The main theoretical findings of this chapter are itemized below.

(i) The model (6.3) exhibits the phenomenon of backward bifurcation, where the stable
disease-free equilibrium co-exists with a stable endemic equilibrium, when the associ-

ated reproduction number (Rg) is less than unity (Theorem 6.3);

(ii) The backward bifurcation property of the model (6.3) can be removed if the susceptible
individuals (both males and females) are not stratified according to risk of acquiring
infection (Theorem 6.5). That is, the backward bifurcation phenomenon of the model
(6.3) is removed if every susceptible male (female) is equally likely to acquire HSV-
2 infection as every other susceptible male (female). Hence, this study shows that
the backward bifurcation phenomenon of the risk-structured model (6.3) arises due to
the stratification of the susceptible male and female populations in terms of risk of

acquiring HSV-2 infection;
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(iii) The DFE of the reduced model (6.20), which does not stratify the susceptible popula-
tion based on risk of acquiring HSV-2 infection, is GAS if the associated reproduction
number (R,;) is less than unity (Theorem 6.6). This model has a unique endemic equi-
librium if R, > 1 (Theorem 6.7). The endemic equilibrium is GAS for a special case

(Theorem 6.8).

In summary, it is shown in this chapter that adding risk-structure to the two group
HSV-2 transmission model (5.5) alters the qualitative dynamics of the risk-free model (5.5)
(by inducing the phenomenon of backward bifurcation of the model). It is shown that the
backward bifurcation property of the risk-structured model presented in this chapter arises
due to the stratification of the susceptible male and female populations in terms of risk of

acquiring HSV-2 infection.
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Chapter 7

Summary of Contributions and

Future Work

The main contributions of this thesis can be classified into three main categories namely:

(1) Formulation of new realistic mathematical models for the transmission dynamics of

HSV-2 in vivo and in a population-level;

(2) Rigorous mathematical (dynamical) analysis of the resulting deterministic systems of

non-linear differential equations;

(3) Public health contributions (by giving qualitative and quantitative insights into the
mechanisms of disease spread in vivo as well as in a population; together with the

assessment of various anti-HSV control strategies).

7.1 Model Formulation

The thesis consists of six new models for HSV-2 dynamics (two for in-host dynamics, and

four for population-level dynamics). These are summarized below.

(1) A new deterministic model for HSV-2 in vivo is designed in Chapter 3. This model

was extended to incorporate the effect of cell-mediated and humoral immune responses
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against HSV-2 spread in vivo.

(ii) A single-group model for HSV-2 spread in a heterosexual homogeneously-mixed popu-

lation is designed in Chapter 4. It is extended to include an imperfect vaccine.

(iii) A new two-group (sex-structured) model, which extends the basic model (in Chapter
4), is designed in Chapter 5. It was further extended to incorporate the effect of various

anti-HSV-2 control strategies.

(vi) The two-group model in Chapter 5 is extended, in Chapter 6, to incorporate the effect
of risk structure (by stratifying the entire sexually-active population based on risk of
acquiring or transmitting HSV-2 infection) on the transmission dynamics of HSV-2 in

a population.

7.2 Mathematical Analysis

This thesis further contributes by giving detailed qualitative analyses (using a robust collec-
tion of non-linear dynamical systems theories and techniques) of all the new models developed
in the thesis (which are relatively large). Some of the main mathematical results obtained

are summarized below.

Chapter 3

In this chapter, the new deterministic model designed for HSV-2 dynamics in vivo is rig-
orously analysed. It is shown, using Lyapunov function theory and LaSalle’s Invariance
Principle, that the model has a globally-asymptotically stable virus-free equilibrium when-
ever the associated reproduction threshold is less than unity. Furthermore, the model has at
least one virus-present equilibrium whenever the associated reproduction threshold exceeds
unity. The extended model, which incorporates immune responses, is also shown to exhibit
similar dynamics. The results in this chapter show, for the first time, that HSV-2 exhibits

the classical threshold dynamics in vivo (with a GAS VFE whenever Ry < 1; and at least
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one VPE whenever Ry > 1).

Chapter 4

A new mathematical model for the transmission dynamics of HSV-2, which takes into account
disease transmission by infected individuals in the quiescent state and an imperfect HSV-2
vaccine, is designed and qualitatively analyzed. In the absence of vaccination, it is shown
(using Lyapunov function theory and LaSalle’s Invariance Principle) that the model has a
globally-asymptotically stable disease-free equilibrium point whenever the associated repro-
duction number is less than unity. Furthermore, this model has a unique endemic equilibrium
whenever the reproduction number exceeds unity. Using a non-linear Lyapunov function, it
is shown that the unique endemic equilibrium is globally-asymptotically stable (for a special
case) when the associated reproduction threshold is greater than unity. On the other hand, it
is shown (using centre manifold theory) that the extended model with vaccination undergoes
a vaccine-induced backward bifurcation, where the stable disease-free equilibrium co-exists
with a stable endemic equilibrium when the reproduction threshold is less than unity. Thresh-
old analysis of the vaccination model reveals that the use of an imperfect HSV-2 vaccine could

have positive or negative population-level impact (in reducing disease burden).

Chapter 5

In this chapter, the two-group model is shown to have a globally-asymptotically stable disease-
free equilibrium whenever the associated reproduction threshold is less than unity. It has a
unique endemic equilibrium, which is shown to be globally-asymptotic stable for a special
case, when the reproduction threshold exceeds unity. The extended model (which incorpo-
rates an imperfect vaccine, condoms and drug treatment) has a globally-asymptotic stable
disease-free equilibrium whenever its associated reproduction threshold is less than unity.
Furthermore, it is shown that the extended model has at least one endemic equilibrium when
the threshold exceeds unity. This endemic equilibrium is globally-asymptotically stable under

certain conditions.
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Chapter 6

The qualitative analysis of the new risk-structured model (that stratifies the entire population
based on risk of acquiring or transmitting infection), using centre manifold theory, reveals that
it exhibits the phenomenon of backward bifurcation. On the other hand, a reduced version
of the model, which does not stratify the susceptible population based on risk of acquiring
HSV-2 infections, is shown to have a globally-asymptotically stable disease-free equilibrium
when the associated reproduction threshold is less than unity. The reduced model has a
unique endemic equilibrium when the associated reproduction number exceeds unity, and
the endemic equilibrium is globally-asymptotically stable for a special case. It is shown that
adding risk-structure to the two group HSV-2 transmission model (5.5) studied in Chapter
5 alters the qualitative dynamics of the risk-free model (5.5) (by inducing the phenomenon
of backward bifurcation of the model). Furthermore, it is also shown that the backward
bifurcation property of the risk-structured model presented in this chapter arises due to the
stratification of the susceptible male and female populations in terms of risk of acquiring

HSV-2 infection.

7.3 Public Health

Some of the main public health contributions of the thesis are summarized below.

7.3.1 Effect of Immune Responses

The analysis of the in-host model in Chapter 3 reveals that cell-mediated immune response
is more effective than humoral immune response in reducing HSV-2 burden in vivo. Further-
more, it is shown that a future HSV-2 vaccine that boosts cell-mediated immune response

will be quite effective in reducing HSV-2 burden in vivo.
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7.3.2 Effect of Vaccination as a Singular Intervention

(i) A future HSV-2 vaccine will be effective in reducing HSV-2 burden in vivo if it reduces the
ability of the virus without glycoprotein C (gC) to bind to the host cell, or if it reduces
the re-activation rate of latent HSV-2. Additionally, the vaccine will be effective if it

results in an increase in the fraction of re-activated latent viruses without gC;

(ii) A future HSV-2 vaccine could lead to effective disease control or elimination if the vaccine
efficacy and the fraction of susceptible individuals vaccinated at steady-state are high

enough (at least 80% each);

(iii) The targeted vaccination of one sex group (only) induces an indirect benefit in the other

sex group.

7.3.3 Effect of Combined Interventions

(i) For low treatment rates, very high condom compliance (at least 90%) will be required to
effectively control the spread of the disease in the absence of vaccination. The level of
condom compliance required for effective disease control reduces if the treatment rates

are increased;

(ii) The combined use of vaccination, treatment and condoms will be very effective in cur-
tailing (or eliminating) HSV-2 in (from) the population even if the vaccination and

treatment rates are low.

7.4 Future Work

The thesis can be extended in several directions, both in terms of model construction and

associated mathematical analysis. These include:

(i) Establishing the global dynamics of the endemic equilibria of the models (without

considering special cases);
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(ii) Extending the in-host model presented in Chapter 3 to further assess the potential

impact of a future HSV-2 vaccine;

(iii) Using separate sub-groups for each of the risk groups considered in Chapter 6 (instead

of lumping all individuals in the various high-risk groups as “high-risk”);

(iv) Carrying out detailed uncertainty and sensitivity analysis in the models (to study the

effect of such uncertainties on some of the simulation results obtained);

(v) Studying the interaction between HSV-2 and other STDs (particularly HIV). This
is especially relevant since it is known that HSV-2 infection can increase the risk of

acquiring and transmission of other infectious diseases (such as HIV);

(vi) Investigating the impact of other modes of HSV-2 transmission (such as mother-to-child

and needle-sharing).
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Appendices

Appendix A: Backward Bifurcation in Model (4.27)

As in Section 6.3.2, let
S =1,V =29, Fy =23, B, = x4, Hy = x5, H, = 26, Qo = 27, Qv = T3,

so that,

N=x1+x0+ 23+ T4+ 25 + 26 + 7 + 25.

Further, by using vector notation X = (wl,wg,wg,w4,w5,x6,x7,x8)T, the vaccination model

(4.27) can be written in the form % = (f1, fo, f3, f1, f5, fo, f1, f3) T, as follows:

dzq Blxs + maxe + 0(x7 + noxs)|r1

— = f1 =1I(1 — pe) — +wxg — (§ + p)xy,
g T ) e e i o T 2o 1o T 1n 2~ (4 pm
dx Blzs + mxe + 0(x7 + n2xs)|(1 — ¥)wo

— = fo =1IIpe+&x1 — — (w + p)xo,

T L S ey L b
dxs Blxs + maxe + 0(x7 + naxsg)]xy

_:f3: [ ( )] _(0'1—1‘/.1)1:3,

dt T1 + x2+ 23+ T4+ x5 + 6 + T7 + 28

dxy Blrs + mxe + 0(x7 + moxg)| T2

S N e ek ) S P P

dt x1+ 22+ 23+ 24 + 25 + 26 + X7 + 8 (A1)
dl’5

T f5 = o123 + ryxr — (qu + p + 6u)xs,

d(EG

o= fo = 02x4 + ryxg — (qu + p + 0y) 6,

d(E7

P f1 = qurs + axg — (ry + p + Oqu) 27,

d(Eg

E:fSZQUxG_(TU"i_a"’_,U"’_(qu)xS-
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The Jacobian of the system (A.1), at the associated DFE &3, is given by J(&3) = [R8X5 S8><3:| ,

where,

—(€+n) w
3 —(w+p)
0 0
0 0
R =

0 0
0 0
0 0
0 0

_ Baim

x4+

_ Bm(A—v)x3

* *
T +s

Bxim
* *
ritTs

B (1—y)x3
x]+x3
0

—(qv + 0y + 1)
0

Qv

Bz]
0 0 B m’l‘—l—;c;
BL—)z3
0 0 T
—(o1+ p) 0 xlﬁ-ﬁ%
B(l—vp)z3
0 —(o2tp) T
o1 0 —(qu + 0u + 1)
0 02 0
0 0 qu
0 0 0
b=} _ Bbn2xy
Ty i +ax
8003 _Bom(—y)r
i tah i +xs
B0z BOnaxy
i tag x]+5
BO(1—1p)a BOn2(1—1h)as
T atrag x]+a5
Tu 0
0 Ty
_(Tu + 1% + 5qu) o
0 _(Tv"i_a"’_:u'—’_(sqv)

Consider the case when Ry, given in (4.29), equals unity. Suppose, further, that ( is

chosen as a bifurcation parameter. Solving for § from Ry.. = 1 in (4.29) gives

B =8=

N*Ekz1ka1 (ks1kr1 — qura) (ke1kst — quTo)
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where, k31, k41, k51, k61, k71, kg1, A1, B1, 5%, V* and N* are defined in Section 4.3.1. It should
be noted that the transformed system (A.1), with § = 5%, has a hyperbolic equilibrium point
(i.e., the linearized system has a simple eigenvalue with zero real part). Hence, the centre
manifold theory [13] can be used to analyse the dynamics of (A.1) near § = 3*. In order to
apply Theorem 2.3 to prove the backward bifurcation phenomenon of the system (A.1) (or,

equivalently, (4.27)), the following computations are necessary.

Eigenvectors of J(&;)
p=p*

It can be shown that the Jacobian of (A.1) at 3 = 3* (denoted by Jg«) has a right eigenvector

(associated with the zero eigenvalue), given by w = [wy, wa, w3, wy, ws, we, wr, ws]’, where

(& + p)wr + miws + mymwe + Omyws + Omynaws

w; = wi, w2 = w ’
w miws + mimweg + Omiwr + Ominaws w niws + nimwes + Onjwr + Ininows
3 = 4 =
o1+ W ’ o9 + b ’
Ty + o+ f1+ Ogy)w ws + ow
ws = ws >0, 'UJ6:(U o ) 8, w7:qu578, wg = wg > 0,
Qv Ty + W+ 5qu
. _ Bzl _ pr(A—)z3
with, mq = Ty M T o
Further, Jg- has a left eigenvector v = [v1,v2,v3,v4, V5, v, v7,v8] (associated with the
zero eigenvalue), where
o1+ up)v
vy = 0, vo=0, v3=v3>0, vg =vq4 >0, 052(17/03,
o1

(o2 +poa  _ Omivs + Onava + ruvs
02 n T ry +p+ 5qu
roUg + av7 + Omynavs + Oninavy

o + o+ p+ gy

)

vy =
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Computation of a :

Starting with the expression (from Theorem 2.3)

Y - ka ,]afk(oo)

0xi0x;
kyi,j=1 J

it can be shown, after some algebraic manipulations, that

1 *k
a= W[Qﬂ (Ml + My)(Onaws + wen1 + ws + w79)], (A.3)
with,
M, = —S*Ug(’wg + w3 + wy + ws + wg + wy + wg) + S*w2(1 — ¢)U4
My = —V*(l — ¢)U4(’w1 + w3 + wy + w5 + we + wy + wg) + V*wivs.

and S* and V* are defined in Section 4.3.1.

Computation of b :

Substituting the vectors v and w and the respective partial derivatives (at the DFE, &) into

- w2
VEpW; o 8/8* )
gives,

1 )
b= Gy VT = v+ sl (Onaws + wem + ws + wrf) > 0.

Since the coefficient b is always positive, it follows (using Theorem 2.3) that the system (A.1)

will undergo backward bifurcation if @ > 0 . This result is summarized below.

Theorem 7.1. The model (A.1) (or, equivalently, (4.27)) exhibits backward bifurcation at

Ruyac = 1 whenever the bifurcation coefficient, a, given by (A.3), is positive.
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Appendix B: Proof of Theorem 5.3

Proof. As in Section 4.2.4, the objective is to show that the system (5.19), around the

equilibrium &7, has no solutions of the form
Z(t) = Zoe™, (B.1)

with Zg € C%\ {0}, 7 € C, Z; € C and Re(r) > 0. The consequence of this is that the
eigenvalues of the characteristic polynomial associated with the linearized method will have
negative real part; in which case, the unique endemic equilibrium, &7, is LAS.

Linearizing the model (5.19) around the endemic equilibrium, &, gives

dE
— = (a1 + 1) By — 01 Hy — 01Qm + azHy + a2y Q)
dH
d—tm = O'mEm + TQO - p2Hm7
d
% = gmHpm — p3Qm,
@ (B.2)
d—tf = azHp, + a3nmQm — (o +p11)Ep — ayHyp — a4 Qy,
dH
d—tf =osEp+r5Qp —pnHy,
dQy
22 g H, —
o = Uiy p31Qy,
where,
ﬂfo s . ﬂfoS** BmcmS;;* BmcmS;;* o %
o = g 7 Q). o2 = TRt 09 = T on = g U+ Q).

Substituting a solution of the form (B.1) into the linearized system of (B.2), around the
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equilibrium &1, gives the following linear system

TZ1 = —(a1 +p1)Z1 — a1Zy — a1 Z3 + aoZs + agny Zs,
Thy = OmZ1 + Tm 23 — pala,

TZ3 = qmZa — P33,

TZ4 = a3Zy + aznmZs — (u + p11)Zs — auZs — ayZ,
TZ5 = 0yZy+1Zs — pa1Zs,

TZ6 = Q545 — P31 Z6-

Firstly, all the negative terms in the second, third, fifth and sixth equations of system (B.3)
are moved to their respective left-hand sides and then substituted some of the results into the
remaining equations of the system. Finally, all the negative terms of the remaining (first and
fourth) equations are moved to the right-hand sides. These algebraic manipulations result in

the following system:

Zi[1 4+ F (7)) + Z3[1 + F3(7)] = (M Z)1 + (M Z)3,

Zo[1+ Fy(7)] = (M Z)s,

(B.4)
Zo[1 4+ Fy(7)] + Zg[1 + Fs(7)] = (M Z) 4 + (M Z)s,
Zs[1 + F5(1)] = (M Z)s,
where,
_ THog _ T
Fi(r) = o Fz(T)—m,
By = L+ a1(ps +7)
p3 pP1P3qm (B.5)
_ THoy _ T
F4(T) B P11 7 FS(T) B p217
Fy(r) = L 4 Qale 1)

b31 b11p31qy
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with,

@ agnyf
0 0 0 0 p—f o1

3
M =
Q3 A30m
0 P11 P11 0 0

In the above computations, the notation M(Z); (for ¢ = 1,--- ,6) denotes the ith coordinate
of the vector M(Z). It should further be noted that the matrix M has non-negative entries,
and the equilibrium &; satisfies & = M&;. Furthermore, since the coordinates of & are all
positive, it follows then that if Z is a solution of (B.4), then it is possible to find a minimal

positive real number s such that

1Z]|< sé), (B.6)

where, || Z ||= (]| Z1 ||,--- , || Z¢ ||) with the lexicographic order, and || - || is a norm in C.
The main goal is to show that Re(7) < 0. Assume the contrary (i.e., Re(7) > 0). The

following two cases are considered.

Case 1: 7=0

Suppose 7 = 0. Then, (B.3) is a homogeneous linear system in the variables Z; (i = 1,--- ,6).

The determinant of the system (B.3) corresponds to that of the Jacobian of the system (B.2)
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evaluated at &, which is given by

A BmBremes

/3 C k% k%
+ ;*Tpl(pzp:a — qmrm) |0p(qr + p31) + (p21p31 — qpry)| ¢ (Hpy + 10m Q)
f
6 Cf ok ok
+ NP (P2pst = a57p) | O (G + P3) + (P2p3 = qmrm) | (HF + 0y Q)
m

S+ G
f7z>.

+ p1p11(P2p3 — gmTm) (P21031 — qf7F) <1 - NN 1

By solving (5.19) at the endemic steady-state (£1), and using the first and fourth equations
of (5.19), it can be shown that

Swsy 1
NN RY

Hence, since pap3 — gm7m > 0 and pa1p31 — qpry > 0, it follows from (B.7) that A> 0. Con-
sequently, the system (B.3) can only have the trivial solution Z = 0 (which corresponds to

the DFE, & of the system).
Case 2: T#0

Consider, now, the case 7 # 0. Since, by assumption, Re(7) > 0, it follows that | 1+ F;(7) |> 1

for all i. Let, F'(7) = min | 1+ F;(7) | (for i =1,---,6). Then, F(1) > 1. Hence, F(S ) =
T

The minimality of s implies that || Z ||> %81. On the other hand, taking norms of both

sides of the second equation of (B.3), and using the fact that the matrix M is non-negative,

gives
F(r) || Z2 |I< M| Z )2 < s(M || &1 [)2 < sH,, (B.8)

%H:ﬁk , which contradicts

Re(F;(7)) > 0. Hence, Re(7) < 0, so that the endemic equilibrium, &, is LAS if Ry > 1. O

Then, it follows from the above inequality that || Zs ||<

200

|:O-m(Qm + p3) + (p2p3 — erm):| [Uf(Qf +p31) + (pa1ps1 — qpry) | (HF" +1,QF)

(B.7)



Appendix C: Verification of Assumptions A1-A7 in
93]

Following the notation as in [93], system (5.5) can be re-written as follows:

) = F(ta(t) =Vt a(t) = f(t, 2(t)), (C.1)

where,

S 0

E, BrepSm(Hp+nsQy)

H,, OmEm + 7”m(t)Qm

m mHm
x = @ , F= ¢ )

S; 0

Ef f(Nf Ui )

Hf O'fEf—i-Tf(t)Qf

Qy qfHy
and,

10, + 5foSm(]€£+17fo) + 1S

(Um + :“)Em
(gm + 1+ 01)Hp,

(rm (t) + p + 02)Qm

mcmS (H'm"‘nrnQ'm)
I Bmem f
Ft N,

(o +u)Ey
(qf +p+061)Hy

(rp(t) +p+02)Qf

+ Sy
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Further, let,

V=

and

S (H ¢+
Bycy (]an anf)—l-,USm

(om + 1) Em
(qm + p+61)Hp,
(rm(t) + 1+ 02)Qm
ﬁmCme(ZI{;;Jranm) + Sy
(of + p)Ey
(g5 +p+01)Hy

(re(t) +p+02)Qy

It is clear that V =V~ — V*. The function F, VT and V~ satisfy the following:

(A1) For each 1 < i < 8, F(t,z), Vi (t,x) and V; (¢,z) are non-negative, continuous on
R x Ri and continuously differentiable with respect to x, (since each function denotes

a direct non-negative transfer of individuals).

(A2) By assumption (note that it is assumed that some of the model parameters are w—periodic
functions), there exists a real number w > 0, such that F;(¢,z), V; (t,x) and V; (¢, )

are w—periodic in t.
(A3) If ; =0, then V;” =0 for i = 2,3,4,6,7,8.

(Ad) Fi=0fori=1,5.
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(A5) Define z3 = {x > 0:2; =0 fori =2,3,4,6,7,8} . Thus, if z € X, then 7; =V, =0
I II
fori = 2,3,4,6,7,8. System (5.5) has a disease-free periodic solution z* = (—m, 0,0,0, —f, 0,0, 0) .
7 1

Define a 2 x 2 matrix

M(t) = <8fi8(7;?*)> '
J ij=1,5

It follows from (C.1), and the definitions of matrices F and V), that

(A6) Since M (t) is a diagonalizable matrix with negative eigenvalues, then p(®s(w)) < 1.

(A7) Similarly, —V(¢) is a diagonalizable matrix with negative eigenvalues. Hence, p(®_V (w)) <

1.

Appendix D: Proof of Theorem 5.5

Proof. Tt follows from Lemma 5.5 that the DFE, &, of the system (5.29) is asymptotically-
stable if R, < 1. Using the fact that S,,(t) < Ny, (t) and Sy(t) < Ng(t) for all ¢ > 0 in D,
the infected compartments of the system (5.29) can be re-written in terms of the following

differential inequality system (see also [93]):

dE,,
at < ﬁfcf(Hf(t) + anf) — (om + 1) B,
dH,,
7 =omEm + rm(t)Qm - (Qm +u+ 51)Hm7
dQm
i = QmHm - (Tm(t) + M + 52)@777,7
dt (D.1)
dEy '
W < Bmcm(Hm + TlQO) - (Uf +N)Ef7
dH
d—tf = O’fEf —I-Tf(t)Qf — (Qf +u+ 51)Hf,
d@
d—tf =qpHy — (r§(t) + p+ 62)Qy.
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The equations in (D.1), with equality used in place of the inequality, can be re-written in

terms of the next generation matrices F'(t) and V(¢) defined in Section 5.4.2, as follows:

% = [F(t) - V()W (). (D.2)

It follows from Lemma 2.1 in [101] that there exists a positive w—periodic function, w(t), such
that W (t) = e’ w(t), with ¢ = 5lnp[¢p_v(u))], is a solution of (D.2). By Theorem 2.2 in
[93], Rp < 1 implies that p[¢p_y(w)] < 1. Hence, ¥ is a negative constant. Thus, W (t) — 0
as t — oo. This implies that the trivial solution of system (D.2), given by W (t) = 0, is
GAS. For any non-negative initial solution (FE,,(0), Hy,(0), Qm(0), Ef(0), Hr(0),Qs(0))T, of

the system (D.2), there exists a sufficiently large M* > 0, such that
(Em(0), Hin(0), @ (0), E£(0), Hy(0), Q(0)T < M*w(0).
Thus, by comparison theorem (Theorem 2.6), it follows that
(Emy Hiny Qm, Ep, Hp, Q)T < M*W(t) for all ¢ >0,

where, M*W (t) is also a solution of (D.2).

Hence,

t—o0

lim (Em(t),Hm(t),Qm(t),Ef(t),Hf(t),Qf(t)> — (0,0,0,0,0,0).

10, 1
Finally, by Theorem 1.2 in [85], it follows that S,,(t) — e and Sf(t) — Tfas t — oo.

Hence,

lim (Sm(t)Em(t),Hm(t),Qm(t),Sf(t),Ef(t),Hf(t),Qf(t)) — 50, whenever Rg < 1. O

t—o0
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Appendix E: Definitions for Terms in Equation (5.40)

C1 = Hm(l - 7/))(1 - 1/16)(1 _pmem)a Cy = IL,,wmpmem + Hmk2(1 _pmem)a

C; = (1 — 1/16)2(1 — ¢), Cy = (1 — 1/16)]{72 + (1 — 1/16)(1 — ¢)]{71,

Cs = kike — Wmm, Ce = Hmpmem(1 - 1/16), Cr = Hmpmemkl + Hmém(l - pmem)y
1—-1c (1 —=9)(1 —rvic) Omu K3
cy = — 1 o= Cho =
8 k3 ’ ? k4 ’ 10 KGKS - varmv’
_ Ormu K7 . T"muCmmu
Cll B K5K7 - Qmurmu7 Cl2 B K8(K5K7 - Qmurmu)7
1L, I R (k1ke — Emwm
Cis = —(kika —&nwm), Cir = Ukks = € )
I uprcy
Cie = CC1Ci+ CyC19C12Cs +mCyC1oCe + %772(0801101 + CyC10C12Cs)
20m4mo N34mu NaYhmu
= ———CqC1oC CqC10C CsC11C
+K7K89106+K89106+K9(8111
+ CyC10C12Cs) + M(C@CHC& + CyC10C12Cs)
K7 Ky
N YgmuOmdmo T15Yhmov 5 Ygmo9mo
+ T Ko KsKoe C9C10Cs + K CyC10Cs + KK CyC10Cs,
Dy = (1 =) —vac)(l = pyreg), Dy =Tjwppper +Kia(l = pyey),

Ds = (1 — 1/20)2(1 — 1/1), Dy = (1 — V2C)K12 + (1 — Vgc)(l — ¢)k117

Ds = kukiy —wply, De =1 prep(1 —vac), Dy =Typresky +p&r(1 — prey),
1— 1— 1-— K
De = vac Dgz( ¥)( Vzc), D = orfis
k13 k14 Ki6K18 — qfoT fo
Dy = o ru kK17 Dig = T FuC Qs
KisKi7 — qpurfu’ Kis(K1i5K17 — qpuTfu)’
i R (kyy kg — &
Dis = —f(k11k12_§fwf)7 Dy = 1 slkiikiz = & f)7
o WBmCm

205



q
D¢ = DgD11Dy + D9D1gD12Dg + m1DgD1oDg + %Uz(D8D11D1 + DgD19D12Dg)

earq 713q N4Yh
+ #I(J;;)DQDIODG + KIJ;U DyD19Dg + Klgu (DgD11Dq
4 q
+ DgDigD12Dg) + %(Dsl)nl% + D9 D19D12Ds)
NaYqfuCfqfo I5Yhfo 15Yq fvdfo
— 2 = DogD1gD DgD19gD — = _DgD10D
+ K7 K5 K 9 D106 + Koo 9106 + K15 Koo 9106,

with, K5 = AmutYhmut i, K6 = GmotYamo+i, K7 = TmutYgmut 1, Kg = Tmot0m+"Ygmo+H,
Ky = p, k1o = p, K15 = qpu + Yapu + 1, Ki6 = qpo + Yoo + 1 K17 = Tpu + Yopu + 15

Kis =1 + oy + g0 + 1, K19 = pand Ko = p.

Appendix F: Proof of Theorem 6.5

Proof. As in Section 6.3.2, let

Sm = I, Eml = $27Emh = I3, Hml = :E47Hmh = Ts, le = Te, th = T,

Sy =wx8,Ep =x9, Epp = 10, Hpp = w11, Hyp, = 212, Q1 = 713, Qfp = T14.

Thus,
Ny =214+ 22+ 23+ 24 + 5 + 26 + 27, Nf:xg—i-xg—l—a:lo—i-a:ll+a:12+x13+x14.

Further, by using vector notation X = (x1, 9, x3, x4, x5, T, T7, T, T9, T10, T11, T12, L13, x14),T

and F = (f1, f2, f3, fas f55 fos f1: fss fos fr0s f11s iz, f13, f14)," the reduced model (6.20) can

be written in the form
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as follows:

with,

dl‘l

dt
dxg

dt
dx 3

dt
dx4

dt
dl‘5

dt
dl‘ﬁ

dt
dx7

dt
dxg

dt
dxg

dt
dx19

dt
dz1q

dt
dxi2

dt
dx 13

dt
dx 1

dt

=1L, — Ap(t)z1 — pay,

= vmAp(t)r1 + £ w3 — (85" + om + )22,

= (1 = vm)Ap(t)2r + 3" w0 — (& + o + p)3,

= o2 + rmixe + &6 x5 — (&5 + @m + 10+ 01) T4,

= 03 + rmp®7 + &8s — (§5" + @m + 1+ 02) 5,

= qmTs5 + &' w7 — (&7 + Ty + 11+ 03) 6,

= qmT6 + &7' 06 — (§8" + Tmn + 1+ 0a)T7,

(F.1)

=1y — A (t)wg — pas,

= vpAm(t)zs + w10 — (€ + 0f + p)o,

= (1= vp)Aa(O)zs + &g — (€] + 0f + w210,

=059 + 1213 + 5{;:1712 - (55{ +qr+p+ 01)x11,

= 05210 + Tfpx14 + 55]::1311 - (5(]; +qr+p+ 52)x127

=qrrn + ££$14 - (5; +rp 4 p+ 03)x3,

= qpr1a + El iy — (&) + 4 p+ 0a)x1a,

Arfl
Arfh
)\rml

)\rmh

Al + Nephs Arm = Aot + Aemns
crBr(w11 +nyr13)
r1+ T2+ 23 + T4 + T5 + 6 + 27
CrepBr(xia + npxra)
T +332+:E3+:E4+335+336+:E7’
Cmﬂm(x4 + nme)
8 + T9 + T10 + T11 + T12 + T13 + T14
CmCmBm (x5 + 77f5177)
xg + g + 10 + T11 + T12 + 13 + T1a
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The Jacobian of the system (F.1), at the associated DFE (&), is given by

with,

@)

[an}

208

(&) = Jr1 Jr2 |
Jr3 Jra
0 0 0 0 0 0 ]
ks € 0 0 0 0
& kg 00 0 0
Om 0 ks & 7T 0 |>
0 om &' —ke 0 Ty
0 0 gn 0 —ky &
0 0 0  gm &' —ks
0 —®p1 —CpPpr1 —vpPr1 —Cprp®Pr
0 @0 (P2 vpPr2  (rpPio
0 @3 (Pr3  vpPr3  (prpPrs
0 0 0 0 0 )
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
P11 =@ V@1 G @
Pro1 nPrr vm®Pra1 Gl ®Pran
Pr31 m®Prs1 v ®Pr31 G @3
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




—ki1 0O 0 0 0 0 0

Jrg = 0 of 0 —k15 féc Tyl 0 )
0 0 of & ks 0 rp
0 0 0 qs 0 —kir 5{;[

0 0 0 0 a & —kis

where,

Q1 = ctfBf, Pro=vmcsBy, Prg = (1 —vm)crfBy,

Q11 = cmbBms Pro1 = ViemPBms P31 = (1 —vy)emfBm.

It can be shown, from J(&;), that (as in Section 6.3):

R, = \/Cfcmﬁfﬁmafo-mzrlzr% (F2)

where,

7 . Vm(All + A12) + (1 — num)(A21 + Agg)
rl  — A )

7. — ViBu+Bi)+ (1 -nuy)(By + Bx)
r2 - B ,

with, A1, A9, A21, Ao, B11, B1a, Bo1, Bos, A and B as defined in Section 6.3.
Consider the case when Ry = 1. Suppose, further, that (3, is chosen as a bifurcation

parameter (without loss of generality). Solving for (3, from R, = 1 gives

1
m = * prmng . F'3
bm = P cremBrotomZr Zro (F:3)

Eigenvectors of J,.(&)
Bm=p*
It can be shown that the Jacobian of (F.1) at 3,, = #* (denoted by J, 3+) has a left eigenvector
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(associated with the zero eigenvalue) given by

V= [UlaU27U37U47U57U67U77U87U97U107U117U127U137U14]7

where,
om (&5 vs + kavy) _ om(&va + k3vs) _ &Fag + keay
vy = 0, vy = — vy = ey =
k73k4 - 53 54 k73k4 - 53 54 k5k76 - 55 56
&gar + ksao §7'ay + kgas §g'as + kray
Vs = T U6 = T man UT= T3 zmen U8 =0,
kske — &5&¢ krks — &7°&8 krks — &7°&
v = o (Efv1a + krav11) - o (Efvi1 + k1zv12) S el ag + kigas
kiskia — 5;{51 kigkia — 53{&{ kiskie — 55{ g
_ €las + kisag  ag + kisar  &lar + kizas
V12 — —f7 Ulg_—f7 v14_—f7
kiskie — &5&5 ki7kis — &7 &3 ki7kis — &7 &3
with,
a1 = qmve + Pro1v9 + Pr31010, a2 = @7 + (R Pr21v9 + G Pr31010,
az = U7 + U P®ro1v9 + v ®r31010, a4 = rppvs + G, @r21v9 + GV, 31010,
as = Ppovy + Pr3vs + qrv13, ag = (rProva + (pPr3v3 + qrv14,
ay = Vf®pova +vp®rguz +rpvi1, ag = (prpProva + CrrpPr3vg + rppv12.

Further, J, g« has a right eigenvector (associated with the zero eigenvalue)

T
W = [w17w27w37w47w57w67w77w87w97w107w117w127w137w14] )
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where,

with,

b1
bo
b3

b7

bg

w2

Ws

wg

Wy

w12

1
= _k_(<1>r1w11 + (rPriwie + vyp®rwiz + CrrpPriwig),
1

~ kaby 4+ b2& ws = k3by + b1 &5 wi = kebs + ba&g" 7
o ksks — £ kska — &5°E1° kske — 55“55
~ ksby + b3&Y _ kgbs + bs&g" _ krbg + b5&7

W = , wy = P
kske — €T krks — &7 &L krkg — &77E8

1
= ——(Pr11ws + G Priiws + v @ri1we + (rVm Pri1wy),

k11
f
~ kubr + bs&{ ~ kizbs + b?fg{ Wy = k16bg + b10&;
T ik — el T sk — elel] Fskis — el
13k14 — §5&; 13k14 — &3&; 15k16 — &5 ﬁf
 kasbio + bot  kasbiy + biog] _ kizbia + 11 &y

, W13 = , W14 = )
kiskis — £1€] kirkis — &1€] kirkis — &1€]

Qw11 + (fProwin + vy Prowiz + (frpProwiy,

®,3wi1 + (fPr3win + v ®r3wiz + (rpPr3wig,

OmW2 + Tmiwe, ba = omws + rmpwr, bs = gmws, bs = gmws,
Qro1ws + Gr®Pra1ws + Vi Pra1we + (rlm Pra1wr,

Q3104 + Gr®Pr31ws + Vi Pr31we + (rlm Pra1wr,

ofwg + rpwis, b = orwio + w1, b1 = qrwir, b2 = qrwis.
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Computation of coefficients a and b : It can be shown, after some algebraic manipulations,

that

Z S ]3 fx(0,0)

i 0x;0x;
_ {QCfﬁf

1

2¢m. B
+ ;*m (w4 + w5 + WeVim + W5 + W7Gnlm) (Wy + wip + w11 + wi2 + wiz + wis)

8

(wo + w3 + wy + ws + we + wr)(W1apry + wiavf + w1 + wigvy)[v3(1 — vi) + vavp]

[l/fvg + Ulo(l — I/f)]} < 0.

Furthermore, it can be shown that:
0 f
b = kawiT = cm[vyvg + vi0(1 — vp)|(wa + wsCom + WV + W7Cnlm) > 0.
1

Since the coefficient a is negative, and b is always positive, it follows (by Theorem 2.3) that

the system (F.1) will not undergo backward bifurcation. O

212



Bibliography

1]

Adewale S.0O., Podder C.N., and Gumel A.B. Mathematical analysis of a TB trans-
mission model with DOTS. Canadian Applied Mathematics Quarterly, To Appear.

2010.

Anderson R.M. and May R.M. Population Biology of Infectious Diseases. Springer-

Verlag Berlin, Heidelrberg, New York, 1982.

Anderson R.M. and May R.M. Infectious Diseases of Humans: Dynamics and Control.

Oxford University Press, Oxford, 1991.

Au E. and Sacks S.L. Therapeutic options for herpes simplex infections. Current

Infectious Disease Reports, 5: 23-27, 2003.

Aurelian L. Herpes simplex virus type 2: new ground for optimism? Clinical and

Diagnostic Laboratory Immunology, 11 (3): 437445, 2004.

Auvert B., Ballard R., Campbell C., Carael M., Carton M., and Fehler G. et al. HIV
infection among youth in a South African mining town is associated with herpes simplex

virus-2 seropositivity and sexual behaviour. AIDS, 15: 885-898, 2001.

Bacder N. and Guernaoui S. The epidemic threshold of vector-borne diseases with
seasonality. the case of cutaneous leishmaniasis in Chichaoua, Morocco. J. Math. Biol.,

3: 421-436, 2006.

Bernoulli D. Essai dune nouvelle analyse de la mortalité causée par la petite

vérole.mém. Math. Phys. Acad. Roy. Sci., pages 1-45, 1766. Reprinted in: L.P. Bouck-

213



aert, B.L. van der Waerden (Eds.), Die Werke von Daniel Bernoulli, Bd. Analysis und
Wahrscheinlichkeitsrechnung, Birkhauser, Basel, 1982, p. 235. English translation en-
titled An attempt at a new analysis of the mortality caused by smallpox and of the
advantages of inoculation to prevent it in: L. Bradley, Smallpox Inoculation: An Eigh-
teenth Century Mathematical Controversy, Adult Education Department, Nottingham,
1971, p. 21. Reprinted in: S. Haberman, T.A. Sibbett (Eds.) History of Actuarial Sci-
ence, vol. VIII, Multiple Decrement and Multiple State Models, William Pickering,

London, 1995, p. 1.

Blower S.M., Koelle K., and Mills J. Health policy modeling: Epidemic control, HIV
vaccines, and risky behavior. In Kaplan and Brookmeyer (Eds). Qualitative Evaluation

of HIV Prevention Programs. Yale University Press, 2002.

Blower S.M., Porco T.C., and Darby G. Predicting and preventing the emergence of

antiviral drug resistance in HSV-2. Nature Medicine, 4: 673678, 1998.

Brauer F. Backward bifurcations in simple vaccination models. J. Math. Anal. and

Appl., 298(2): 418-431, 2004.

Brugha R., Keersmaekers K., Renton A., and Meheus A. Genital herpes infection: A

review. International Journal of Epidemiology, 24(4): 698-709, 1997.
Carr J. Applications of Centre Manifold Theory. Springer-Verlag, New York, 1981.

Casper C. and Wald A. Condom use and the prevention of genital herpes acquisition.

Herpes, 9(1): 10-14, 2002.

Castillo-Chavez C. Multiple Group Models, Mathematical and Statistical Approaches
to AIDS Epidemiology, pp. 200-217. Lecture Notes in Biomathematics. Volume 83.

Springer-Veralg, Berlin-Heidelberg-New York, 1989.

Castillo-Chavez C., Cooke K., Huang W., and Levin S.A. Results on the dynamics for
models for the sexual transmission of the human immunodeficiency virus. Appl. Math.

Letters, 2: 327-331, 1989.

214



[17]

[18]

[21]

[22]

[23]

[24]

Castillo-Chavez C., Huang W., and Li J. The effects of females’ susceptibility on the
coexistence of multiple pathogen strains of sexually transmitted diseases. J. Math.

Biol., 35: 503-522, 1997.

Castillo-Chavez C., Cooke K., Huang W., and Levin S.A. Multiple group models
with heterogeneous mixing for the transmission dynamics of HIV/AIDS. International

Conference on AIDS Abstracts Publications, Section A, 605: 178, 1989.

Castillo-Chavez C. and Song B. Dynamical models of tuberculosis and their applica-

tions. Math. Biosci. Engrg., 1(2): 361-404, 2004.

Castillo-Chavez C., Huang W., and Li J. Competitive exclusion in gonorrhea models
and other sexually-transmitted diseases. SIAM Journal of Applied Mathematics, 56

(2): 494-508, 1996.

Castillo-Chavez C., Huang W., and Li J. On the existence of stable pair distributions.
J. Math. Biol., 34: 413441, 1996.

Castillo-Chavez C. Velasco-Hernandez J.X. and Fridman S. Modelling contact struc-
tures in biology: Lecture notes in biomathematics 100, S.A. Levin (ed.). Frontiers of

Theretical Biology. Springer-Verlag, Berlin-Heidelberg-New York., 1994.

CDC. Genital Herpes-CDC  Fact Sheet. http://www.cdc.gov/std/herpes/

STDFact-herpes.htm. Accessed: January, 2010.

Corey L. and Handsfield H.H. Genital herpes and public health: addressing a global
problem. JAMA, 283(6): 791-794, 2000.

Corey L., Wald A., Patel R., Sacks S.L., Tyring S.K., Warren T., Douglas Jr. J.M.,
Paavonen J., Morrow R.A., Beutner K.R., Stratchounsky L.S., Mertz G., Keene O.N.,
Watson H.A., Tait D., and Vargas Cortes M. Valacyclovir HSV Transmission Study
Group. Once-daily valacyclovir to reduce the risk of transmission of genital herpes. N.

Engl. J. Med., 350(1): 1120, 2004.

215



[26]

[27]

[29]

[31]

David K.R. and Weller S.C. The effectiveness of condoms in reducing heterosexual

transmision of HIV. Fam. Plann. Perspect, 31(6): 272-279, 1999.

del Mar Pujades Rodriguez M., Obasi A., Mosha F., Todd J., Brown D., and
Changalucha J. et al. Herpes simplex virus type 2 infection increases HIV incidence: a

prospective study in rural Tanzania. JAMA, 16: 451462, 2002.

Diekmann O., Heesterbeek J., and Metz J. On the definition and computation of the ba-
sic reproduction ratio R¢ in models for infectious disease in heterogeneous population.

J. Math. Biol., 28: 365-382, 1990.

El Gohray A. and Bukhari F.A. Optimization stabilization of steady-states of the
genital herpes epidemic during infinite and finite time intervals. Applied Mathematics

and Computation, 137: 37-47, 2003.

Elbasha E.H. and Gumel A.B. Theoretical assessment of public health impact of imper-
fect prophylactic HIV—1 vaccines with therapeutic benefits. Bull. Math. Biol., 68: 577—

614, 2006.

Esteva L., Gumel A.B., and Vargas de Leén C. Qualitative study of transmission
dynamics of drug-resistant malaria. Mathematical and Computer Modelling, 50: 611—

630, 2009.

Esteva L. and Vargas de Leén C. Influence of vertical and mechanical transmission on

the dynamics of dengue disease. Math. Biosci., 167: 51-64, 2000.

Fatahzadeh M. and Schwartz R.A. Harvard women’s health watch. Sezually Transmit-

ted Disease, 31(5): 311-316, 2005.

Fatahzadeh M. and Schwartz R.A. Human herpes simplex virus infections: Epidemiol-
ogy, pathogenesis, symptomatology, diagnosis, and management. Journal of the Amer-

ican Academy of Dermatology, 57(5): 737-763, 2007.

Fleming D.T. et al. Herpes simplex virus type 2 in the United States. N. Engl. J. Med.,
337: 1105-1111, 1994.

216



[47]

Garba S.M., Gumel A.B., and Abu Bakar M.R. Backward bifurcations in dengue

transmission dynamics. Mathematical Biosciences, 215(1): 11-25, 2008.

Genital Herpes. Herpes Simplex Virus (HSV). http://www.bazi.com.cn/sex/eng/

atsk/std/herpes.htm. Accessed: April 2010.

Gershengorn H.B. and Blower S.M. Impact of antivirals and emergence of drug resis-

tance: HSV-2 epidemic control. AIDS Patient Care and STDs, 14(3): 133-142, 2000.

Gumel A.B., Ruan S., Day T., Watmough J., Brauer F., van den Driessche P., Gabriel-
son D.; Bowman C., Alexander M.E., Ardal S., Wu J, and Sahai B.M. Modelling
strategies for controlling SARS outbreaks. Proc. R. Soc. Lond. Series B., 271: 2223—

2232, 2004.

Hadeler K.P. and Castillo-Chavez C. A core group model for disease transmission.

Math. Biosci., 128: 41-55, 1995.

Hale J. Ordinary Differential Equations. Wiley-Interscience, New York, 1969.
Herpetica. Herpes Virus. http://wuw.herpetica.com/ Accessed: April, 2010.
Hethcote H.W. The mathematics of infectious diseases. SIAM Rewv., 42: 599-653, 2000.

Hethcote H.W. and Thieme H.R. Stability of the endemic equilibrium in epidemic

models with subpopulations. Math. Biosci., 75: 205-227, 1985.

Hethcote H-W. and Yorke J.A. Gonorrhea: Transmission Dynamics and Control.

Lecture Notes in Biomathematics 56. Springer-Verlag, 1984.

Hethcote H.W., Yorke J.A., and Nold A. Gonorrhea modeling: a comparison of control

methods. Math. Biosci., 58(1): 93-109, 1982.

Holmes P. and Guckenheimer J. Nonlinear Oscillations, Dynamical Systems, and Bi-

furcations of Vector Fields. Springer-Verlag, New York Inc., 1990.

217



[48]

Huang W, Cooke K., and Castillo-Chavez C. Stability and bifurcation for a multiple
group model for the dynamics of HIV/AIDS transmission. SIAM Journal of Applied

Mathematics, 52 (3): 835-854, 1990.

Jessica H. Life Cycle of Herpes Simplex Virus. http://www.bio.davidson.edu/

people/sosarafova/Assets/Bio307/jehodge/page0l.html. Accessed: April, 2010.

Jones C.A. and Cunningham A.L. Vaccination strategies to prevent genital herpes and

neonatal herpes simplex virus (HSV) disease. Herpes, 11: 12-17, 2004.

Kamali A., Nunn A.J., Mulder D.W., Van Dyck E., Dobbins J.G., and Whitworth J.A.
Seroprevalence and incidence of genital ulcer infections in a rural Ugandan population.

Sex Transm. Infect., 75: 98-102, 1999.

Kaminester L., Pariser R., Pariser D., Weiss J., Shavin J., Landsman L., Haines H., and
Osborne D. A double-blind, placebo-controlled study of topical tetracaine in the treat-
ment of herpes labialis. Journal of the American Academy of Dermatology, 41(6): 996—

1001, 1999.

Kermack W.O. and McKenrick A.G. A contribution to the mathematical theory of

epidemic. Proc. Royal Soc., London, Series A., 115: 700-721, 1927.

Kermack W.O. and McKenrick A.G. A contribution to the mathematical theory of

epidemics, Part II. Proc. Royal Soc., London, Series A., 138: 55-83, 1932.

Lajmanovich A. and Yorke J.A. A deterministic model for gonorrhea in a nonhomoge-

neous population. Math. Biosci., 28: 221-236, 1976.

Lakshmikantham V., Leela S., and Martynyuk A.A. Stability Analysis of Nonlinear

Systems. Marcel Dekker, Inc., New York and Basel, 1989.

Langenberg A.G., Burke R.L., and Adair S.F. et al. A recombinant glycoprotein vac-
cine for herpes simplex virus type 2: safety and immunogenicity. Ann. Intern.Med.,

122: 889-898, 1999.

218



[58]

[59]

[61]

[62]

[63]

LaSalle J.P. The Stability of Dynamical System. Regional Conference Series in Applied
Mathematics. SIAM. Philadelphia, 1976.

Leone P. Reducing the risk of transmitting genital herpes: advances in understanding

and therapy. Current Medical Research and Opinion, 21(10): 1577-1582, 2005.

Lipsitch M. and Murray M.B. Multiple equilibria: tuberculosis transmission require

unrealistic assumptions. Theor. Popul. Biol, 63(2): 169-170, 2003.

Liu L., Zhao X., and Zhou Y. A tuberculosis model with seasonality. Bull. Math. Biol.,
72: 931-952, 2010.

Lloyd-Smith J.O., Galvani A.P., and Getz W.M. Curtailing transmission of severe
acute respiratory syndrome within a community and its hospital. Proc. R. Soc. Lond.,

B, 170: 1979-1989, 2003.

McFarland W., Gwanzura L., Bassett M.T., Machekano R., Latif A.S., and Ley C. et
al. Prevalence and incidence of herpes simplex virus type 2 infection among male

Zimbabwean factory workers. J. Infect. Dis., 180: 14591465, 1999.

Mertz G.J. Epidemiology of genital herpes infections. Infectious Disease Clinics of

North America, 7(4): 825-839, 1993.

Mertz G.J., Benedetti J., Ashley R., Selke S.A., and Corey L. Risk factors for the

sexual transmission of genital herpes. Ann. Intern. Med., 116(3): 197-202, 1992.

Miller C. Herpes Transmission and Safe Sex. Australian Herpes Managemant Forum

(AHMF). http: //www. herpes. on. net/genital_herpes/antiviral. htm., 2007.

Nold A. Heterogeneity in disease transmission modeling. Math. Biosci., 52: 227-240,
1980.

Obasi A., Mosha F., Quigley M., Sekirassa Z., Gibbs T., and Munguti K. et al. Antibody
to herpes simplex virus type 2 as a marker of sexual risk behavior in rural Tanzania.

J. Infect. Dis., 179: 16—24, 1999.

219



[69] Patrick R.M., Kenneth S.R., and Michael A.P. Microbiology and Immunology Medical

Microbiology (5th Edition). Publisher: Elsevier Mosby, PA;USA, 2005.

[70] Perko L. Differential Equations and Dynamical Systems. Text in Applied Mathematics.

Volume 7, Springer, Berlin., 2000.

[71] Podder C.N. and Gumel A.B. Qualitative dynamics of a vaccination model for HSV-2.

IMA Journal of Applied Mathematics., 75(1): 75-107, 2009.

[72] Podder C.N. and Gumel A.B. Transmission dynamics of a two-sex model for herpes

simplex virus type 2. Canadian Applied Mathematics Quarterly, To Appear, 2010.
[73] Ross R.A. The Prevention of Malaria. Second Edition, Murray, London, 1911.

[74] Schwartz E.J. and Blower S. Predicting the potential individual and population-level
effects of imperfect herpes simplex virus type 2 vaccines. Journal of Infectious Diseases,

191: 1734-1746, 2005.

[75] Sharomi O., Podder C.N., Gumel A.B., Elbasha E.H., and Watmough J. Role of inci-
dence function in vaccine-induced backward bifurcation in some HIV models. Mathe-

matical Biosciences, 210: 436-463, 2007.

[76] Sharomi O., Podder C.N., Gumel A.B., and Song B. Mathematical analysis of the
transmission dynamics of HIV/TB coinfection in the presence of treatment. Math.

Biosci. and Engrg., 5(1): 145-174, 2008.

[77] Simons F.E., Gillespie C.A., and Simons K.J. Local anaesthetic creams and intradermal

skin tests. Lancet, 340(8812): 188, 1992.

[78] Smith H.L. Monotone Dynamical Systems: An Introduction to the Theory of Com-
petitive and Cooperative Systems. Mathematical Surveys and Monographs. American

Mathematical Society; Providence. 41, 1995.

[79] Smith H.L. and Waltman P. The Theory of the Chemostat. Cambridge University

Press, 1995.

220



[80]

[81]

[83]

Stanberry L.R., Cunnigham A.L., and Mindel A. et al. Prospects for control of herpes

simplex virus disease through immunization. Clin. Infect. Dis., 30: 549-566, 2000.

Suligoi B., Cusan M., and Santopadre P. et al. HSV-2 specific seroprevalence among

various populations in Rome, Italy. Sex. Transm. Infect., 76: 213-216, 2000.

Tengvall S., Lundqvist A., Eisenberg R.J., Cohen G.H., and Harandi A.M. Mucosal ad-
ministration of cpg oligodeoxynucleotide elicits strong cc and cxc chemokine responses
in the vagina and serves as a potent thl-tilting adjuvant for recombinant gd2 protein

vaccination against genital herpes. Journal of Virology, 80(11): 5283-5291, 2006.

Tennenbaum S., Kassem T.G., Roudenko S., and Castillo-Chavez C. The role of
transactional sex in spreading HIV/AIDS in Nigeria. American Mathematical Society,
410: 367-389, 2006. Printed in: Mathematical Studies on Human Disease Dynamics:
Emerging Paradigms and Challenges. Gumel A., Castillo-Chavez C., Clemence D.P.,
and Mickens R.E. (Eds.).

Thieme H.R. Local stability in epidemic models for heterogenous populations. Lec-
ture Notes in Biomathematics. Editors: V. Capasso, E. Grosso, S.L. Paveri-Fontana.

Springer, 57: 185—189, 1985.

Thieme H.R. Convergence result and a Poincare-Bendison trichotomy for asymptotical

autonomous differential equations. J. Math. Biol., 30: 755-763, 1992.
Thieme H.R. Mathematics in Population Biology. University Press, 2003.

Us D. Herpes simplex virus vaccine studies: from past to present. Mikrobiyol Bul.,

40(4): 413-433, 2006.

van den Driessche P. and Watmough J. Reproduction numbers and sub-threshold
endemic equilibria for compartmental models of disease transmission. Math. Biosci.,

180: 29-48, 2002.

van den Driessche P. and Zou X. Modeling relapse in infectious diseases. Mathematical

Biosciences, 207: 89-103, 2007.

221



[90] Wagner H.U., Van Dyck E., Roggen E., Nunn A.J., Kamali A., and Schmid D.S. et
al. Seroprevalence and incidence of sexually transmitted diseases in a rural Ugandan

population. Int. J. STD AIDS, 5: 332-337, 1994.

[91] Wald A., Langenberg A.G.M., Link K., Izu A. E., Ashley R., Warren T., Tyring S.,
Douglas J.M., and Corey L. Effect of condoms on reducing the transmission of herpes

simplex virus type 2 from men to women. JAMA, 285: 3100-3106, 2001.

[92] Walraven G., Scherf C., West B., Ekpo G., Paine K., and Coleman R. et al. The
burden of reproductive-organ disease in rural women in the Gambia, West Africa.

Lancet, 357: 1161-1167, 2001.

[93] Wang W and Zhao X.-Q. Threshold dynamics for compartmental epidemic models in

periodic environments. J. Dyn. Diff. Equat., 20: 699-717, 2008.

[94] Weiss H. Epidemiology of herpes simplex virus type 2 infection in the developing world.

Herpes, 11 Supplement 1, 2004.

[95] Wenzhang H., Cooke K.L., and Castillo-Chavez C. Stability and bifurcation for a
multiple-group model for the dynamics of HIV/AIDS transmission. SIAM Journal on

Applied Mathematics, 52(3): 835-854, 1992.

[96] Wiggins S. Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer-
Verlag, New York, 1983.

[97] Wikipedia. Herpes Simplex Virus. www.en.wikipedia.org. Accessed: April, 2010.

[98] Xiaodong L., Hethcote H.-W., and van den Driessche P. An epidemilogical model for

HIV/AIDS with proportional recruitment. Math. Biosci., 118: 181-195, 1993.

[99] Yang Y. and Xiao Y. Threshold dynamics for an HIV model in periodic environment.
JMAA, 361(1): 59-68, 2010.

[100] Yorke J.A., Hethcote H.-W., and Nold A. Dynamics and control of the transmission of

gonorrhea. Sexually Transmitted Diseases, 5: 51-56, 1978.

222



[101] Zhang F. and Zhao X-Q. A periodic epidemic model in a patchy environment. J. Math.

Anal. Appl., 325: 496-516, 2007.

[102] Zuckerman J.N. Principles and Practice of Travel Medicine. Wiley, Chichester, 2001.

223



