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Abstract

A survey of relevant literature on the topic of wave propagation and scattering in pipes

is given first. This review is followed by a theoretical framework which is pertinent to

wave propagation in homogeneous, isotropic, pipes. Emphasis is placed on approxim-

ate solutions stemming from a computer based, Semi-Analytical Finite Element (SAFE)

formulation. A modal analysis of the dynamic response of homogeneous, isotropic pipes,

when subjected to a transient ultrasonic excitation, demonstrates that dominant features, i.e.,

singularities in an unblemished pipe’s displacement Frequency Response Function (FRF)

coincide with its cutoff frequencies. This behaviour is confirmed experimentally. A novel

technique is developed to deduce such a pipe’s wall thickness and elastic properties from

three cutoff frequencies. The resulting procedure is simulated numerically and verified ex-

perimentally. Agreement between the new ultrasonic procedure and traditional destructive

tests is within experimental uncertainty. Then a hybrid-SAFE technique is used to simulate

waves scattered by various open rectangular notches. The simulations show, for the first

time, that singularities distinct from the unblemished pipe’s cutoff frequencies arise in a

displacement FRF when an axisymmetric notch is introduced. They also suggest that the

new singularities depend on the properties of the parent pipe and the finite element region

but effects are local to a notch. It is demonstrated further that the difference between the fre-

quency at which a singularity introduced by a notch occurs and the nearest corresponding

unblemished pipe’s cutoff frequency is a function of the notch’s dimensions. By plotting

contours of constant frequency differences, it is shown that it is usually possible to charac-

terize the notch’s dimensions by using two modes. However, the frequency difference for

a third mode may be also needed occasionally. The more general case of nonaxisymmetric

notches is shown to be a straightforward extension of the axisymmetric case.
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Chapter 1

Introduction, Overview of Dissertation, and

Literature Survey

1.1 Introduction

The Alberta Energy and Utilities Board (EUB) reports [1] that a total of 234,411 miles

(377 248 km) of energy related pipeline was under its jurisdiction at the end of 2005. This

total represents an increase of about 40% over the previous 8 year period [1, 2]. On the oth-

er hand, the EUB also indicates there were a total of 12 848 (12 137) pipeline “incidents”1

between 1990 and 2005 (1980 and 1997). About 94% of the reported incidents led to a pipe-

line leak or rupture [1]. Moreover, corrosion was cited [1, 2] as the primary form of failure,

representing between 63% and 70% of pipeline failures. Hidden, internal corrosion was

responsible for around four times more failures than external corrosion [1, 2]. Although

these statistics are the most currently available, they apply only to Alberta, Canada. Not-

withstanding, it is clear that extensive networks of pipelines are in widespread use and they

are prone to occasional failure. Given that the monetary and, less often, human costs of a

pipeline failure can be extraordinarily high [3], a method of inspecting pipelines is required

to detect and size defects. Furthermore, the method must be nondestructive and ideally

non-invasive because the infrastructure is already in service.

DeGarmo, Black, and Kohser [4] provide a convenient summary of “classical”2 non-

destructive inspection and testing techniques, along with their relative merits. The seven

“core” techniques are:

1. visual inspection,

1Note that incidents occurring within facilities such as satellites, batteries, or plants are not considered
part of the pipeline system and, therefore, are not included in these statistics.

2Specialized inspection techniques other than ultrasonic based are beyond the scope of this thesis.
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2. liquid penetrant inspection,

3. magnetic particle inspection,

4. Ultrasonic Inspection (UI),

5. radiography,

6. eddy current testing, and

7. Acoustic Emission (AE) monitoring.

A brief overview of each of these classical nondestructive inspection techniques is given

next. It is based on the information presented in [4] and summarises the physical principle,

advantages, disadvantages, and limitations of each of the above techniques.

A visual inspection involves examining, by eye, the surface of a specimen under illumin-

ation. Optical aids or assists may be used. The technique is simple, easy to use, portable,

and inexpensive. Its application is limited, however, by the skill and knowledge of the per-

son performing the inspection. Moreover, only an external surface of the specimen may

be inspected. Records of the inspection can be made by using, for example, photographs,

videotapes, or written reports.

An inspection which incorporates a liquid penetrant may be considered an enhancement

of a visual inspection. It combines a visual inspection with the use of a liquid penetrant

which is drawn into surface breaking flaws by a capillary action. The liquid penetrant is

“revealed” subsequently by employing a developer which makes a flaw more discernible.

However, the penetrant may be “washed out” of large defects which would increase the

probability of “false negatives.” Surface coatings may be a hindrance and specimens should

not have a porous surface.

Magnetic particle inspection takes advantage of a magnetic field which is induced only

in ferromagnetic materials. When magnetized, defects in a ferromagnetic material dis-

tort the induced magnetic field. Magnetic particles tend to be attracted strongly to surface

2
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regions where the magnetic flux is concentrated, hopefully around any defects. This tech-

nique is relatively simple to implement, fast and easy to interpret. Moreover, portable field

units are available. Subsurface flaws, having depths up to about 0.25 inch (6.4 mm), as well

as “small tight” cracks may be revealed but a specimen must be relatively clean. Further-

more, the orientation of a flaw relative to the magnetic field affects the procedure’s sensitiv-

ity so that multiple inspections may be required that utilize differently orientated magnetic

fields. The process is power intensive as it requires large electrical currents to magnetize

specimens. Its severest limitation is that it can be applied only to ferromagnetic materi-

als; nonferrous materials and austenitic stainless steels cannot be inspected successfully.

Specimen geometries are limited, in practice, only by the ability to induce a reasonably

uniform magnetic filed. On the other hand, records of magnetic particle inspections can be

preserved by applying transparent lacquer to the specimen or transferring the observation

to transparent tape which can be removed later.

An Ultrasonic Inspection (UI) uses the propagation of sound waves, having 20 kHz or

higher frequencies, through a specimen. Sound which is transmitted or reflected can be

monitored to detect a crack or flaw with “high sensitivity.” UI testing can be performed

quickly and the results may be displayed or recorded “immediately.” Penetration of the

sound waves is relatively great with 60 feet (18 m) quoted as a possible upper limit in steel

[4]. Flaws can be detected, located, and “sized” even if they are hidden whilst a material’s

thickness and properties can also be measured. UI can be applied to most engineering

materials although interpretations for nonhomogeneous or anisotropic materials may be

challenging. No radiation or other safety hazards are thought to be associated with UI

[4]. On the other hand, it is more difficult to apply UI to “complex” geometries, large

volumes and small, thin, or rough specimens. Couplants are required usually to minimize

the differences in the acoustic impedances of the ultrasonic transducer, air, and specimen.

An overriding concern is that properly “trained, experienced, and motivated” inspectors are

required for its implementation.
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Radiography uses the differing absorption by different materials of some form of radi-

ation. This approach is particularly sensitive to density changes so that internal features are

revealed readily. However, radiography is the “most costly” nondestructive testing method

and precautions are required to avoid human exposure to radiation. Defects must be suffi-

ciently large and cracks must be orientated favourably for their detection as cracks parallel

to the radiation beam may be invisible. Locating and sizing internal defects may require at

least two inspections at different illumination angles and, furthermore, two-sided access is

required. Indeed, appropriate exposures for complex shapes may be difficult to determine.

Eddy current testing uses the interaction of magnetic fields, one generated by inducing

surface (eddy) currents in a specimen and the other from the inducing coil itself. The eddy

currents are sensitive to material properties and irregularly shaped geometries which are on

or near a conductive ferrous or nonferrous metal’s surface. It is also sensitive to variations

in an alloy or heat treatment, a plating or coating thickness, and wall thickness. Contact

with the specimen is not required and an inspection can be automated at low cost and with

no clean-up requirements. As for UI, an eddy current’s sensitivity to several variables may

complicate the interpretation of an inspection.

Acoustic Emission (AE) monitoring takes advantage of high frequency sound which is

emitted when a specimen is stressed, deformed, or changed structurally by, for example, the

creation of a defect. All points of a specimen are advantageously monitored simultaneously

and the source of an emission can be determined by using triangulation. An inspection can

be done in harsh environments and it is not generally limited by a specimen’s material.

However, AE is a “passive” technique as it can only detect a flaw when it “grows.” Flaws

which may be present but not “active” cannot be detected. Moreover, AE does not indicate

the size and shape of a flaw [4]. Furthermore, background noise can make selecting an

appropriate trigger level to initiate an “event count” difficult.

Visual, liquid penetrant, and magnetic particle inspections are unsuitable for pipeline

testing because they can detect only surface flaws. A magnetic particle approach is undesir-
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able because it is limited to ferromagnetic materials. (It should be noted that aluminium and

austenitic stainless steel are sometimes, although not commonly, used as a pipeline materi-

al.) Radiography provides a good diagnostic tool but it is not ideal for pipeline inspection

because of its high cost and the risk of radiation exposure. Eddy current testing, on the

other hand, lacks the penetration required for reliable detection of hidden corrosion in pipe-

lines. Finally, acoustic emission is unsuitable because it incapable of detecting defects that

are present but not active. Therefore UI appears to be one of the most suitable choices.

Two principal difficulties with UI for pipeline inspection are the limited volume that can

be inspected in a single measurement and the difficulty of interpreting measurements. The

former disadvantage is ameliorated by employing guided waves while the latter factor is

the subject of this dissertation.

Two kinds of body (bulk) waves, which are dispersionless, can exist in (semi-) infinite,

homogeneous, and isotropic solids. They are shear and longitudinal waves [5, 6]. When

boundaries are introduced, for example in plates, cylinders (pipes), or shells, so-called

guided waves arise from the multiple interactions of body waves with the bounding sur-

faces [5, 6]. Body waves have been used for many years in a variety of UI applications,

such as pulse-echo, through-transmission, resonance, etc., to perform tasks like flaw detec-

tion, thickness measurement, and characterization of a material’s properties [6]. However,

guided wave based UI is superior for the following reasons.

1. Their multi-modal and dispersive behaviour can quickly provide information over a

range of frequencies [7].

2. The propagation speed of guided waves is very sensitive to material and geometrical

properties [7].

3. Guided waves are capable of rapidly interrogating entire structures, including inac-

cessible regions [8], because they can propagate over long distances, say tens of feet

or metres [8, 9].

5
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4. Compared to body waves, guided waves have a lower rate of attenuation with increas-

ing propagation distance [9].

The remainder of this dissertation is devoted to guided wave propagation and scattering in

pipes that is relevant to UI. An introductory literature survey of these particular aspects is

given next.

1.2 Literature Survey

The very advantages of guided waves which make them attractive for a pipeline inspection

complicate the interpretation of data. Complications arise because, in principle, an infinite

number of generally dispersive, guided wave modes can exist simultaneously in a pipe.

Two excellent sources of information on guided waves in pipes can be found in [5] and

[10]. Exhaustive listings of the primary literature are provided in both these texts. The

second source, however, is especially useful in providing listings of the references most

pertinent to the use of guided waves for pipe inspections. Two texts which address better

the needs of the practitioner are [6] and [11]. Topics relevant to the guided wave inspection

of pipes can be classified broadly into the following three areas:

1. the development of the dispersion relations in pipes using exact or approximate meth-

ods,

2. modelling, which is usually numerical, the scattering of waves by inhomogeneities

in pipes, and

3. experimental investigations.

Of course, the three areas may overlap. Important developments are surveyed in each area

next.
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The first dispersion relations published for axisymmetric, harmonic waves in homogen-

eous, isotropic rods of infinite length appears to be the often cited, Pochhammer-Chree rela-

tion [12, 13]. (Lord Rayleigh [14] and Lamb [15] provided similar contributions for plates.)

Significant developments for rods seemed to have stalled [5] until Davies [16] investigated,

theoretically and experimentally, the Pochhammer-Chree relation and developed the “first

few” branches [5] from this relationship for propagating modes. This important contribu-

tion was supplemented when complex wavenumbers were employed to describe the non-

propagating and evanescent, axisymmetric modes [17]. Given the complexity of solving

“exactly” the equations of motion for rods, particularly for a forced motion [5], a number

of approximations evolved. They were surveyed by Green [18]. The most important ref-

erences are [19] and [20] where axisymmetric wave modes were considered. Following

Gazis’s [21] approach for “hollow circular cylinders,” the dispersion relation for rods was

described later by Meeker and Meitzler [22] in terms of torsional, longitudinal, and (non-

axisymmetric) flexural modes. Three-dimensional solutions for pipes that were based on

linear elasticity theory appear to have been considered first by Gazis [21, 23].

All the references cited so far pertain to homogeneous, isotropic rods and pipes com-

posed of a single material. Additional complexity is introduced when rods and pipes consist

of several materials or an anisotropic material. To the best of the author’s knowledge, there

has been no analytical solution published for guided waves in cylindrical shells consisting

of materials having the most general form of constitutive relations. Solutions are available,

however, for special cases. Waves in infinitely long, orthotropic rods and pipes have been

investigated in, for example, [24–29]. Solutions for solid rods having an internal homogen-

eous, isotropic core which is bonded perfectly to an outer coaxial, hollow cylinder com-

posed of a different homogeneous, isotropic material have been developed for longitudinal

[30] and torsional [31] modes. Solutions for the flexural modes of comparable bi-material

rods have been investigated in, for example, [32–34]. In addition, exact solutions for lon-

gitudinal waves in infinitely long, composite hollow cylinders comprised of three different
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transversely isotropic layers have been published by Keck and Armenàkas [35]. Although

this technique can be extended to a cylinder created by laminating together many isotropic

layers, it is cumbersome to apply [36]. A more convenient and efficient propagator matrix

approach, based on three-dimensional elasticity, was developed [37] to give the dispersion

characteristics of such cylinders.

Approximate solutions to the equations of motion for more general rods and pipes are

appropriate when “exact” solutions are unavailable. Several approximate methods have

been used. Membrane shell theory, in which only the normal and shear forces acting in

the mid-surface are considered, has been applied in, for example, [38, 39] where addition-

al membrane related references may be found. These methods are unsuitable, however,

for wave scattering because they are insufficiently accurate [36]. The Rayleigh-Ritz, fi-

nite element procedure for representing the motions through a pipe’s wall, combined with

a separation of variables strategy for the other coordinates (i.e., a Semi-Analytical Finite

Element [SAFE] approach), seems to have been reported first for cylinders in [40]. This

method, which appears to be relatively easy to apply, has been also adopted for wave prop-

agation in laminated composite cylinders. Further enhancements include the modelling of

anisotropic, electrical, thermal, and viscoelastic effects. Contributions are described in, for

example, [41–49].

Emphasis in the previous citations has been the determination of dispersion relations

which are inherently frequency based. However actual guided wave, UI measurements are

conducted necessarily in time. Early efforts to predict transient, temporal responses based

on the exact equations of elasticity were limited to rods, They can be found in, for instance,

[16, 50–52]. Corresponding approximate methods are located in [53–55]. Later simulations

of time responses for pipes that use the SAFE methodology are given in, for example, [47,

49, 56, 57]. Of particular relevance to this thesis is the observation that singularities in an

unblemished pipe’s displacement response coincide with its cutoff frequencies. To the best

of the author’s knowledge, this aspect was reported first in [57] and confirmed later in [49].
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Numerical approaches have been used most often to model guided wave scattering in

rods and pipes because of the naturally inherent complexities. Investigations using approx-

imate models of wave reflections from the free ends of such structures have been reported

in, for instance, [58–61]. On the other hand, a wave propagation method employing finite

elements has been utilized in [62] to investigate the effects of dispersion and end condi-

tions on axisymmetric pulses propagating in laminated, semi-infinite cylinders possessing

radial inhomogeneity. A wave expansion method, in which wave functions were calculated

by using both the propagator matrix and SAFE techniques, has been employed in [63] to

determine the amplitudes and energy fluxes of waves reflected from a free end of a lam-

inated circular pipe. An extension of this approach combined a finite element model of

a volume enclosing only an inhomogeneity in an otherwise blemish free pipe to create a

“hybrid” method suitable for wave scattering. This approach has been applied successfully

to axisymmetric and nonaxisymmetric wave scatterers in, for example, [64–68]. A math-

ematical crack, having an arbitrary circumferential length and radial depth in a pipe, was

modelled in [69] by using a wave function expansion along the pipe’s axial direction and

decomposing the problem into the equivalent sum of a symmetric and an anti-symmetric

component. Consequently, the otherwise three-dimensional problem was reduced to essen-

tially two separate, quasi-one-dimensional problems to alleviate the computational burden.

Approaches based on membrane models, [70, 71] for example, or solely finite element

models, [70, 72–74] amongst other references, have been used to model wave scattering in

pipes. The Boundary Element Method (BEM) is an attractive alternative technique because

only a discretization of a structure’s boundary is required [36]. Hence the dimensionality

of a problem is reduced by one. The BEM has been employed in, for example [36, 75, 76],

to study wave scattering by inhomogeneities in pipes.

The experimental discovery of the end mode was reported first in [77] where the reflec-

tions of axisymmetric waves from a free end of an elastic rod were investigated. Longitud-

inal and flexural modes induced in a rod by a “step” load were studied in [78]. Similar work
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was done in [79] for axisymmetric and nonaxisymmetric modes in pipes. Early attempts

in [80] and [81], for instance, of using guided waves for pipe inspection focussed on the

torsional and longitudinal wave modes and considered spurious reflections as an indication

of damage. More recent work, for example [8, 9, 70, 72, 74, 82–84], has focussed also on

reflections of axisymmetric pipe modes from defects. The use of flexural waves for inspect-

ing pipes has been somewhat infrequent [85–88] because “the acoustic field is much more

complicated than the case of axisymmetric modes” [85].

In order to excite specific modes, or “focus” them at a desired location, special ring or

“comb” transducers as well as equipment like angle beams, wedges, or time-delay, periodic

linear arrays/phased arrays were employed [8, 9, 80, 81, 89, 90]. For example, electro-

dynamic coils with the spacing of the windings of the coils selected to excite preferentially

the T(0,1) and L(0,2) modes were used in [80] to detect notches in an austenitic pipe. Simil-

arly, the L(0,1), and to a lesser extent, the L(0,2) modes were excited by using piezoelectric

ultrasonic probes in [81] to investigate the potential for employing these two modes to

inspect “U-bends” and detect notches. Ditri et al. [91] described in theoretical terms the

generation of waves, minimizing the contributions of nonaxisymmetric modes, through the

use of a multi-element, normal incidence transducer. The use of “wedge type” transducers

to excite axisymmetric modes and “comb” transducers to excite (nonaxisymmetric) modes

that have wavelengths equal to the spacing between the centres of the fingers of the comb

(divided by some integer) was described in [92]. Alleyne et al. [9] developed a dry-coupled,

piezoelectric transducer system that utilized sixteen piezoelectric elements to approximate

an axisymmetric loading. The system described in [9] was used to preferentially excite the

L(0,2) mode [70] and later the T(0,1) mode [93] to detect notches in pipes. Higher order

longitudinal modes, i.e., the L(0,3) and L(0,4) modes, were excited successfully using flex-

ible Polyvinylidene Fluoride (PVDF) comb transducers in [82]. The use of variable angle

beam shoes to excite the F(3,3), F(4,3), F(5,3), and F(6,3) nonaxisymmetric modes was

described in [85]. These modes were used to remotely detect multiple notches cut in a pipe.
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Many more examples of selecting particular modes for specific inspection purposes can be

found in the literature. However, use is made in all cases of a pipe’s dispersion curves and

mode shapes to choose an appropriate frequency bandwidth and spatial variation in order

to excite the desired mode(s).

Related to the excitation of specific modes for inspection purposes is the study of wave

scatting from defects, e.g., cracks and notches. Several examples have been mentioned

already. Aspects of the wave scattering problem have been studied numerically in, for

example, [64–74]. Wave scattering from notches has been investigated experimentally in,

for example, [8, 70, 71, 80–82, 85, 93, 94]. Common to all these examples is the concept

of reflections from a notch. Either reflection coefficients are computed or reflections from a

notch are simulated or measured. Numerous newer references, e.g., [95], continue to build

upon the concepts developed in these seminal papers. A philosophy which complements

the advances outlined in this literature survey is explored here.

The determination of an unblemished pipe’s material properties or dimensions using

guided wave speeds or dispersion curves has been reported in, for example, [96–99]. How-

ever, there appears to be only one reference [100] employing guided wave cutoff frequen-

cies of an unblemished pipe to simultaneously find its wall thickness and material properties.

On the other hand, although noticeably more effort has been expended in detecting damage

in pipes (and plates) by using reflections as well as changes in wave speeds and also dis-

persion curves of guided waves, their cutoff frequencies have been used merely to detect

thinning in plates [101–103]. Thinning was examined by exciting a guided wave mode near

its cutoff frequency and monitoring the disappearance of the modal response when part of

the plate’s thickness was below the critical value for the mode to propagate. However, the

seemingly straightforward extension to pipes does not seem to have been given. Moreover

the identification of spatially decaying modes, which are introduced in a pipe by a notch

and are analogous to end modes [77], has not been reported. The singularities correspond-

ing to these modes are utilized here to characterise the dimensions of axisymmetric notches
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in pipes. The extension to nonaxisymmetric notches is suggested. (As an aside, a compre-

hensive review of the use of guided waves in plates for their characterisation is given in

[104]. Wave speeds, dispersion curves and reflections are featured prominently. However,

there is no mention of employing an unblemished plate’s cutoff frequencies for material

characterisation or additional singularities arising from a defect’s introduction.)

1.3 Overview of Dissertation

An introduction and overview of this dissertation is given in this chapter in addition to a sur-

vey of relevant literature. A theoretical framework, based invariably on small-strain linear

elasticity, is presented in Chapter 2. It forms the basis of the inverse procedure described

in Chapter 3. The procedure is used to simultaneously recover a pipe’s wall thickness and

elastic properties from the cutoff frequencies of ultrasonic guided waves. The scattering of

guided waves by axisymmetric and more general three-dimensional notches is described in

Chapter 4. An easy to measure metric is identified in Chapter 4 that allows the local detec-

tion and “sizing” of a single axisymmetric notch in a pipe. A straightforward extension to

a single nonaxisymmetric notch is also suggested. The dissertation ends in Chapter 5 with

conclusions and recommendations for further work. Conjectures describing the anticipated

outcomes of possible future investigations are also given. A series of appendices supports

the main text without disrupting its flow.

1.4 Contributions and Novelty

The mathematical bases of previously available modelling techniques are adapted and mod-

ified substantially to more readily relate numerical data and experimental results. Specific-

ally, extensive use is made of Zhuang et al.’s [43] SAFE procedure that provides a compu-

tationally efficient method to obtain, for both axisymmetric and nonaxisymmetric modes,
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approximate wavefunctions for an unblemished pipe. The related hybrid(-SAFE) technique

[64–68], which makes use of the approximate wavefunctions from SAFE, provides a com-

plementary tool and it is used to model wave scattering from various, single open rectan-

gular notches. The computational tools were developed previously as an “end in them-

selves.” Consequently solutions have been typically computed by using, at a given time, a

new numerical method and compared to another set of numerical data or, perhaps, limited

experimental measurements. Here, on the other hand, “best practices” are combined creat-

ively to simulate and interpret better the basic behaviour of unblemished and notched pipes.

Results are verified experimentally by comparisons with new and personally performed

measurements for unblemished pipes and the use of previously existing, but more limited

experimental data for a singly notched pipe. It is demonstrated that the computational mod-

els provide sufficiently accurate analogues to commercially available pipes and, hence, can

serve as the basis of inverse solvers to characterize them. However, the inverse procedures

developed are unsuitable if a rapid deviation from homogeneity, geometrical uniformity or

both occurs in spatial regions where the pipe’s dynamic behaviour is expressed in terms

of wavefunctions, i.e., outside a finite element region. Such variations are unlikely to be

encountered in commercially available pipes which comply with, for example, ASTM In-

ternational 106M, American Petroleum Institute (API) SPEC 5L, or Canadian Standards

Association (CSA) Z245.1. The principal contributions lie, therefore, with the applica-

tion of the computational techniques to fundamental aspects arising in the Non-Destructive

Testing (NDT) of pipes and represent an important step in reconciling theory and practice.

Philosophies are advanced that exploit simple experimental procedures. Furthermore,

straightforward heuristics are identified that make the interpretation of measured multi-

modal data tractable. Moreover, the use of specialized transducers, which have numerous

elements to reduce the number of excited modes, is avoided. In addition, the standard re-

quirement for dynamically well behaved transducers and their repeatable attachments to a

pipe is ameliorated because amplitude and phase independent metrics are used. However,
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the results presented here are “proof of concept” in nature and they illustrate principally

the overall philosophy. Further efforts are required, of course, to develop more fully the

methodologies for the practical field inspection of pipes. On the other hand, suggestions

are made to extend the present advances to general inverse problems related to the charac-

terization of more arbitrary defects.

Frequencies at which singularities from an unblemished or blemished pipe arise are

exploited for the first time. Distinctions are made in this dissertation between a “cutoff fre-

quency” and a “singularity frequency.” The former expression indicates a singularity which

occurs in an unblemished pipe’s Frequency Response Function (FRF) and, of course, coin-

cides with one of its cutoff frequencies. The latter, on the other hand, is used to describe

a singularity which is distinct from a cutoff frequency and is introduced by a notch. The

term “singularity” is employed also in a generic sense with the intended meaning suggested

by the context. The ultrasonic behaviour near singularities of an unblemished pipe’s well

known cutoff frequencies are akin to unbounded resonant responses at undamped natural

frequencies of low frequency vibrations. Therefore singularities in a wave mode’s displace-

ment FRF are shown in Chapter 2 to coincide, not unexpectedly, with an unblemished pipe’s

cutoff frequencies. A related procedure has been applied which incorporates, for the first

time, the contributions of singularities to time histories determined from an inverse Fourier

transform of modal data in order to ensure causality.

A new technique is developed in Chapter 3 to simultaneously measure an unblemished,

homogeneous, isotropic pipe’s wall thickness and elastic constants by using three cutoff

frequencies obtained from a single ultrasonic measurement. These cutoff frequencies are

extracted from a time history by applying a standard nonlinear, least-squares curve fitting

procedure in a novel way. The curve fitting is required to overcome the frequency limit-

ations associated with Discrete Fourier Transform (DFT) and other frequency extraction

techniques.

Singularities, similar but not coincidental with cutoff frequencies, are shown to occur,
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for the first time, when an axisymmetric, outer surface breaking notch having sharp, rec-

tangular boundaries is introduced into an otherwise unblemished pipe. Such notches are

considered first because they are computationally more tractable. Moreover, computer and

experimental results are available for these notches to partially validate the present com-

putations. It is suggested that the singularities introduced by such a notch depend on the

properties of the parent pipe and the notch but the effects are local to the notch. It is demon-

strated further that the difference between the frequency at which a singularity is introduced

by a notch and the nearest unblemished pipe’s cutoff frequency is a function of the notch’s

dimensions. By plotting contours of constant frequency differences, it is shown that it is

usually possible to characterize an axisymmetric notch’s dimensions by using merely two

modes. However, depending on the set of modes for which information is available, the

frequency difference for a third mode may be needed occasionally for a unique determina-

tion. A three-dimensional, nonaxisymmetric notch having a geometry similar to that of the

axisymmetric case is shown to be a straightforward, but significantly more computationally

demanding, extension. The use of the singularities introduced by a notch is suggested to

be a potentially useful screening tool for its local detection and characterization. It would

complement, therefore, the commonplace use of a single nondispersive guided wave mode

for the remote defection of flaws.

Generally applicable advances in computing are also reported here. Standard “symbolic

math” engines are applied to derive approximate forms of the equations of motion suitable

for a numerical simulation. Novelty is introduced by manipulating the output from these

tools so that computer code is produced that actually implements the numerical simulations.

This procedure has two advantages: (i) development time is reduced significantly, and (ii)

the process is more reliable as fewer programming errors are likely made. Consideration

is also given throughout to generate computer code which is readily parallelizable and dis-

tributable.

The overall philosophy advanced here has a number of practical advantages. It is easier
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to elicit measurable responses, with modest power inputs, when exciting any pipe around

the frequencies of its singularities because of the higher sensitivities there. The excitation of

several modes, which is counter to current experimental practice, is required invariably for

a unique characterisation. Fortunately this requirement is implementable straightforwardly

and in a time effective manner by using a single, small transducer (which effectively acts at

a point) to produce a pulse having a suitable frequency bandwidth. This type of excitation

may simultaneously and beneficially excite all possible modes. However, the pipe’s natur-

al filter-like behaviour will make some modes easier to excite. Only modes excited most

readily by a purely radial point excitation applied to the pipe’s outer surface and having a

frequency bandwidth between 35 kHz and 107 kHz are examined here. The spatial vari-

ation of the applied excitation is selected on the basis that it is simple to implement. The

bandwidth, on the other hand, is chosen so that comparisons to previously published data

can be made. This illustrative selection excites predominately the F(8,1) through F(13,1)

modes, as seen later. The inverse procedures’ general applicabilities, however, remain

mostly unaffected by the modes selected. Indeed, as later examples suggest, almost any set

which contains a sufficient number of accurate, non-zero3 singularity frequencies will give

the same inverse solution. This statement applies to the procedures which characterise an

unblemished pipe or “size” an axisymmetric notch. Hence, the modes may be selected gen-

erally on the basis of ease of experimental implementation. For example, Figure 2.9 shows

that the F(3,2) and F(11,2) modes have no radial displacement component at their respective

cutoff frequencies. Consequently, neither mode would be detectable at its cutoff frequency

by a transducer which measures a solely radial displacement. Hence, these modes would

be unsuitable for the inverse procedure described in Chapter 3 if such a transducer is used.

Finally, all the suggested characterisation techniques require, in principle, solely a single

measurement to provide useful information about a pipe’s condition if the desired location

of inspection is known approximately.

3The T(0,1), L(0,1), and F(1,1) modes are excluded because they always have a zero singularity frequency
for a homogeneous, isotropic pipe and, hence, they are unsuitable.
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1.5 Justification of the Computational Approach

The SAFE and hybrid-SAFE techniques have been adopted for a number of pedagogical

and practical reasons. The reasons are summarised briefly next.

1. SAFE is computationally very efficient because approximate solutions to three-di-

mensional problems are obtained from one or two-dimensional finite elements by

using analytical expansions for two or one of the waveguide’s spatial dimensions,

respectively.

2. While somewhat pedagogical, SAFE provides wavefunctions which include wave-

numbers and mode shapes rather than vibration modes. The wavenumbers are re-

quired to plot phase spectra and dispersion curves.

3. An individual wave mode’s contribution to an evoked response can be extracted very

straightforwardly, in either time or frequency, from a SAFE approximation. On the

other hand, a determination of these contributions from a solely finite element model

typically requires significant signal processing of time histories found at many spatial

points. The additional signal processing is disadvantageous for two reasons: (i) it

adds additional steps to an analysis, and (ii) more importantly, undesirable artefacts

may be introduced to a post-processed signal.

4. Spectral data can be obtained from the SAFE and hybrid-SAFE procedures with an

almost arbitrarily fine frequency resolution. Conversely, spectral data from a DFT of

a short time history can have only a limited frequency resolution. This advantage is

essential to the reliable identification of singularities.

5. There are no spurious reflections from the infinitely remote ends of a SAFE model.

Consequently the computational expense and “tuning” required for perfectly match-

ing or absorbing boundaries (commonly used in purely finite element approaches) is

avoided.
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6. Modal conversions at wave scatterers can be computed directly with no additional

signal processing operations required.

7. Both the SAFE and hybrid-SAFE procedures produce mathematical forms that are

embarrassingly parallelizable. (Computer run times may be reduced by about an

order of magnitude by using even modest parallel computing facilities.)

8. Fast forward solvers based on SAFE and hybrid-SAFE lend themselves naturally to

an “inverse” procedure which repeatedly solves the corresponding forward problem.

Purely finite element models, particularly those based on commercial software pack-

ages, are not so amenable to this approach.
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Chapter 2

Wavefunctions of a Pipe and the Forward Problem

2.1 Introduction

The solutions of the differential equations which model the wave motion in a pipe are con-

sidered in this chapter. They give metrics, which are developed further in Chapters 3 and

4, to serve as the basis by which actual pipes can be characterised and defects can be de-

tected. The pipe is idealized invariably as an infinitely long, hollow, right circular cylinder

so that a cylindrical coordinate system is assumed throughout. (An infinite pipe is com-

monly reconciled with a practical pipe having a finite length by time gating out the latter’s

end reflections.) One-half of the idealized pipe with the cylindrical coordinate system su-

perimposed is shown in Figure 2.1. The pipe is taken to be uniform, homogeneous, and

isotropic with negligible material damping. Moreover, displacements are assumed to be so

small that linearity applies. Exact solutions based on three-dimensional elasticity are giv-

en first. These solutions are presented because of their historical significance. Moreover,

they serve as a “cross-check” on the accuracy of the more convenient and computationally

tractable, although approximate solutions from the Semi-Analytical Finite Element (SAFE)

z
r
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r
r

H

R

i o

Figure 2.1. An idealized pipe and superimposed cylindrical coordinate system.
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formulation to be presented in Section 2.3. A comparison between the two approaches is

limited here, however, to the metric of interest, the cutoff frequencies. The chapter is con-

cluded with an illustrative simulation which highlights salient features of an unblemished

pipe’s behaviour. These features are key to implementing the inverse procedure described

in Chapter 3.

2.2 Exact Wavefunctions

The solution presented in this section is based upon that described first in [21]. It has been

modified slightly to appear more consistent with the solutions from SAFE presented in

Section 2.3. Navier’s differential equations of wave motion for homogeneous and isotropic

media, written in terms of displacement, are given by [5]

(λ + µ)∇∇ · u(r, t) + µ✡u(r, t) + ρf(r, t) = ρü(r, t). (2.2.1)

Here λ and µ are Lamé’s constants and ∇ is the “del” operator. The displacement vector

is denoted by u, where the bold upright typeface indicates a vector or matrix, the context

of which is implied. The u has radial, circumferential, and axial components u, v, and w,

respectively. On the other hand, the Laplacian operator for vector fields is indicated by the

symbol ✡, ρ is the (mass) density and f is an externally applied, body force vector. Both

u and f are functions of time, t, and the position vector r = (r, θ, z) where r, θ, and z are

the radial, circumferential and axial coordinates, respectively. See the previous Figure 2.1.

An overdot indicates differentiation with respect to time, once for each dot. A centre dot

symbol, ·, on the other hand, is used to indicate the divergence operator. The displacement

vector is resolved, using the Helmholtz decomposition, into a dilatational scalar potential,
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Φ, and an equivoluminal vector potential, H, as in [5, 21, 105]. Then

u = ∇Φ(r, t) + ∇ ×H(r, t) (2.2.2a)

with

∇ ·H = F(r, t). (2.2.2b)

The × in equation (2.2.2a) denotes the curl operation, while F in equation (2.2.2b) is a

function of r and t. Function F can be chosen arbitrarily due to gauge invariance [5, 21,

105]. By substituting equation (2.2.2a) into equation (2.2.1), it can be shown [5], after

tedious vector calculus manipulations, that

∇
[
(λ + 2µ)∇2Φ + ρ f − ρΦ̈

]
+ ∇ ×

[
µ✡H + ρB − ρḦ

]
= 0, (2.2.3)

where the body force has been resolved into the scalar and vector potentials, f (r, t) and

B(r, t) respectively. Furthermore, ∇2 is the Laplacian operator for scalar fields. Equa-

tion (2.2.3) is satisfied if both its bracketed terms vanish simultaneously, i.e.,

(λ + 2µ)∇2Φ + ρ f − ρΦ̈ = 0 (2.2.4a)

and

µ✡H + ρB − ρḦ = 0. (2.2.4b)

The former and latter equations have a scalar and vector form, respectively. A separation

of variables strategy is applied next to equation (2.2.4).

Separable trial functions are assumed and harmonic solutions are sought for Φ as well

as the r, θ, and z components of H, Hr, Hθ, and Hz respectively. The resulting forms are

Φ = q(r)e jnθe jkze−jωt, (2.2.5a)

Hr = gr(r)e jnθe jkze−jωt, (2.2.5b)
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Hθ = gθ(r)e jnθe jkze−jωt, (2.2.5c)

and

Hz = gz(r)e jnθe jkze−jωt. (2.2.5d)

The q, gr, gθ, and gz in equation (2.2.5) are scalar functions of r that have to be determined

still. Moreover, j =
√
−1 is the complex unit, ω is the circular frequency, whereas n and

k are the circumferential and axial wavenumbers, respectively. Note that n is permitted to

take only integer values due to the requirement that the displacement field be single-valued.

Substituting equation (2.2.5) into equation (2.2.4) gives, after manipulations and neglecting

body forces,

∂2q

∂r2
+

1

r

∂q

∂r
−

(
n2

r2
− α2

)
q = 0, (2.2.6a)

∂2gr

∂r2
+

1

r

∂gr

∂r
−

(
(n2 + 1)

r2
− β2

)
gr −

j2n

r2
gθ = 0, (2.2.6b)

∂2gθ

∂r2
+

1

r

∂gθ

∂r
−

(
(n2 + 1)

r2
− β2

)
gθ +

j2n

r2
gr = 0, (2.2.6c)

and

∂2gz

∂r2
+

1

r

∂gz

∂r
−

(
n2

r2
− β2

)
gz = 0, (2.2.6d)

where α2 = ω2/c2
1 − k2 and β2 = ω2/c2

2 − k2. The c1 and c2 correspond to the dilational and

shear wave speeds, respectively. They can be expressed as

c1 =
√

(λ + 2µ)/ρ, (2.2.7a)

and

c2 =
√
µ/ρ. (2.2.7b)

Equations (2.2.6a) and (2.2.6d) are Bessel’s differential equation in q and gz, respectively.

On the other hand, gr and gθ appear to be coupled in equations (2.2.6b) and (2.2.6c). They
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can be decoupled by making use of the gauge invariance of F which, consequently, can

be chosen arbitrarily. Making the substitution gθ = −jgr in equations (2.2.6b) and (2.2.6c)

reduces them to

∂2gr

∂r2
+

1

r

∂gr

∂r
−

(
(n + 1)2

r2
− β2

)
gr = 0. (2.2.8)

Equation (2.2.8) also has the form of Bessel’s differential equation in gr.

The solutions to equations (2.2.6a), (2.2.8), and (2.2.6d) can be written in terms of

Hankel functions such that

q(r) = A1H(1)
n (αr) + B1H(2)

n (αr), (2.2.9a)

gr(r) = A2H
(1)
n+1(βr) + B2H

(2)
n+1(βr), (2.2.9b)

and

gz(r) = A3H(1)
n (βr) + B3H(2)

n (βr). (2.2.9c)

The Ai and Bi, i = 1, 2, 3, are constants which need to be determined and H
(1)
n (H(2)

n ) is a

Hankel function of order n of the first (second) kind.

The dispersion relation is obtained by applying traction free boundary conditions to the

inner and outer surfaces of the unblemished pipe, which correspond to r = ri and r = ro,

respectively. Equation (2.2.9), along with the relation gθ = −jgr, are substituted into equa-

tion (2.2.5). The result is substituted, in turn, into equation (2.2.2). These manipulations

give the displacement field in terms of the six constants introduced in equation (2.2.9).

Then displacements are substituted into the (small) strain-displacement relations to give

the corresponding stress field. The detailed results are presented in Appendix A.

For traction free conditions to exist on a pipe’s inner and outer surfaces, the σrr, τrθ, and

τrz components of the stress tensor (defined in Appendix A) must vanish simultaneously on

these surfaces. Consequently

P
[

A1 A2 A3 B1 B2 B3

]T
=

[
0 0 0 0 0 0

]T
, (2.2.10)
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where P is matrix whose elements are given in Section A.5 of Appendix A. Superscript T

indicates the matrix transpose. The determinant of matrix P must vanish for a nontrivial

solution of equation (2.2.10) to exist, i.e.,

det (P) = 0, (2.2.11)

which leads to the dispersion relation of the pipe.

Equation (2.2.11) provides a transcendental equation in the wavenumber k if the (cir-

cular) frequency ω is specified, or ω if k is specified, for a pipe having given dimensions

and material properties. Although the frequency is always taken to be real here, k is gen-

erally complex. Real (imaginary) k correspond to propagating (non-propagating) waves,

which may (not) propagate freely, i.e., without external excitation, in a pipe. A complex k

is associated with so called evanescent waves. In principle, propagating modes can travel

indefinitely in a pipe having no material damping. Non-propagating and evanescent waves,

on the other hand, decay exponentially from the axial origin of their source. Evidently, if

k is a wavenumber satisfying equation (2.2.11) then so are both −k and −k̃, where an over

tilde represents complex conjugation [7, 75]. The mode shape components through the

wall of the pipe, which are unique apart from a multiplicative constant, can be found by

using equation (2.2.10) after the roots of equation (2.2.11) have been determined. Then the

response of a pipe to a prescribed excitation can be described by a linear combination of

the doubly infinite (n and k) set of wave modes. It is worth remarking that the results are ap-

plicable solely to pipes which are hollow and consist of a single isotropic material. Special

considerations are required for solid rods [21]. The so called propagator matrix technique

[37] generalizes the previously described technique to pipes having an arbitrary number of

perfectly bonded annular layers, if each layer is isotropic.

A closer examination of the matrix P detailed in Appendix A suggests that it is “most

complicated [5].” Moreover, although the roots can be found by “some search method,”
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the approach is “computationally formidable since the roots are sparsely scattered [7].”

On the other hand, no analytical solution has been published, to the best of the author’s

knowledge, for pipes made from a material possessing general anisotropy. To overcome

these difficulties, solutions based on the more convenient and computationally tractable,

although approximate, Semi-Analytical Finite Element formulation are introduced next.

2.3 Wavefunctions Derived From Semi-Analytical Finite

Element (SAFE)

2.3.1 Overview

The mathematical basis of the numerical procedures developed by Zhuang [43] to calculate

the three dimensional, steady state Green’s functions of an infinitely long cylinder is presen-

ted next. A SAFE formulation is used, in conjunction with a separation of variables, due

to the complexities described previously. The axial and circumferential variations, as well

as all time dependencies of a wave field, are treated analytically. The radial dependence,

on the other hand, is modelled by using one-dimensional, quadratic finite elements. The

governing differential equations are discretized such that a quadratic, algebraic eigenvalue

problem is produced. A Fourier series representation of the circumferential dependence of

the wave field allows the latter to be written as a summation. For a given circumferential

wavenumber, the solution of the resulting, three parameter, quadratic eigenvalue problem

provides the dispersion relation for the pipe. The response of the pipe to an external harmon-

ic force can be described, for a given circumferential wavenumber, by a modal summation

over the axial modes. A similar summation over the circumferential wavenumbers gives

the steady state Green’s functions. Then the (output) time response to a transient (input)

point force is determined by treating each Green’s function as a Frequency Response Func-

tion (FRF) and convolving it with the transient point force. An inverse Fourier transform
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applied to the convolved FRF gives the time response at a spatial point of interest.

2.3.2 Discretizing and approximating the equations of motion

The unblemished pipe under consideration is assumed to have the properties described in

Section 2.1. The principal difficulty in calculating numerical values from the exact solution

presented earlier arises from the Hankel functions. These functions describe the radial

(r) variation of the displacement field. To ameliorate this difficulty, the radial variation

through the thickness is modelled approximately by using quadratic, one dimensional finite

elements. The cylinder is divided into N layers through the thickness as shown in Figure 2.2

where N is illustrated as six. Each cylindrical layer corresponds to a finite element. The

thickness of, say, the kth layer is Hk and it extends radially from rk to rk+1, as shown in the

figure.

The SAFE technique is used, in conjunction with the continuity requirements of the

displacement field, to represent the governing differential equations in an approximate but

more numerically tractable form. Applying the finite element methodology to the discret-

z
r

θ

H
k

r
k+1

H
R

r
k

r
i

r
o

k  layer

th

Figure 2.2. Illustrating a pipe’s discretisation.
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ized pipe allows the displacement field to be approximated by

u(r, θ, z, t) = N(r)U(θ, z, t) (2.3.1)

where N(r) interpolates the nodal displacements over the entire cylinder and U(θ, z, t) is

the corresponding array of nodal displacements. Approximate equations of motion are

obtained by using Hamilton’s principle. This procedure is described more completely in

Appendix B in order not to disrupt the main text. The result may be expressed in the form

K1U +K2U,θ +K3U,z −K4U,θθ −K5U,θz −K6U,zz +MÜ = F, (2.3.2)

where the Ki, for i = 1, 2, 3, . . . , 6, are separated stiffness matrices, M is the mass matrix,

and F is a consistent force vector. A comma in equation (2.3.2) indicates differentiation

with respect to any spatial variable that follows. The detailed forms of the Ki, M, and F are

also given in Appendix B.

2.3.3 Approximate wavefunctions

In seeking harmonic wave solutions, the consistent force vector and the resulting displace-

ment interpolation function are assumed to be: (i) time harmonic and (ii) periodic in the

circumferential coordinate. Consequently they can be expressed in a Fourier series form as

F(θ, z, t) = e−jωtF(θ, z) = e−jωt

n=∞∑

n=−∞
e jnθFn(z), (2.3.3a)

and

U(θ, z, t) = e−jωtU(θ, z) = e−jωt

n=∞∑

n=−∞
e jnθUn(z), (2.3.3b)
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respectively. (Note the similarities between equations (2.3.3b) and (A.2.1) of Appendix A.)

Combining equations (2.3.2) and (2.3.3) yields a system of ordinary differential equations

for the Fourier coefficients, Un, in terms of z. The nth term takes the form

(
K1 + jnK2 + n2K4 − ω2M

)
Un +

(
K3 − jnK5

)
Un,z −K6Un,zz = Fn. (2.3.4)

Applying the Fourier integral transform to equation (2.3.4) transforms the governing

equations from the spatial (z) domain to the (axial) wavenumber (kn) domain. The resulting

equations can be expressed as

(
K1 + jnK2 + n2K4 − ω2M

)
Un + jkn

(
K3 − jnK5

)
Un + k2

nK6Un = Fn, (2.3.5)

where an over bar indicates a Fourier transformed variable.

Equation (2.3.5) is quadratic in kn but it can be written in first order form as

[A(n, ω) − knB] Qn = Pn, (2.3.6)

where

A(n, ω) =


0 I

(
K1 + jnK2 + n2K4 − ω2M

)
j
(
K3 − jnK5

)

 , (2.3.7a)

B =


I 0

0 −K6

 , (2.3.7b)

Qn =



Un

knUn


, (2.3.7c)

Pn =



0

Fn


, (2.3.7d)

and 0 (I) is the null (identity) matrix. Note that equations (2.3.5) and (2.3.6) take the form
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of three parameter, algebraic eigensystems in n, ω, and kn when Fn is the null matrix. The

Un and Qn can be written as a modal summation of the resulting normal vectors. While any

one of n, ω, or kn can be used as the eigenvalue parameter, specific values are assigned here

to n which must be an integer.

Consider now the more complicated but common form of the two eigenvalue problems.

A nontrivial solution of the homogeneous form of equation (2.3.6) requires that the determ-

inant of the coefficient matrix Qn vanish for a given ω and n. The resulting polynomial

equation in kn, whose solution yields 12N +6 roots, is used as the (approximate) dispersion

relation for the pipe. Each root, knm where m is a positive integer indicating the mth axial

mode, is an eigenvalue which represents an axial wavenumber for the assigned frequency

and circumferential wavenumber, n. As before, a real axial wavenumber corresponds to a

propagating wave travelling along an infinitely long pipe. An imaginary (complex) axial

wavenumber, on the other hand, represents a spatially decaying, non-propagating (evanes-

cent) mode in a semi-infinitely long pipe that decays exponentially as the axial (z) coordin-

ate increases from the mode’s source of excitation. One-half of the 12N + 6 axial wave-

numbers correspond to wave modes which are admissible solutions for non-negative axial

coordinates; the remaining half are admissible solutions for non-positive axial coordinates.

(It is assumed that the first [last] 6N + 3 wavenumbers are admissible for non-negative

[non-positive] axial coordinates.) Associated with each eigenvalue knm, is a right and left ei-

genvector, φR
nm, and φL

nm, respectively. The approximate wavenumbers play the same role as

those found by using equation (2.2.11). On the other hand, theφR
nm replace equation (2.2.10)

when describing the radial variation of the displacement field. Approximate (displacement)

Green’s functions are constructed next by using the approximate wavefunctions.

2.3.4 Green’s displacement function

The displacement field induced by a harmonic, point-like excitation is synthesized by lin-

early superimposing a pipe’s normal modes. From the definition of the eigenvalue problem,
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the eigenvectors satisfy the relations

[A(n, ω) − knmB]φR
nm = 0, (2.3.8a)

[
AT(n, ω) − knmBT

]
φL

nm = 0, (2.3.8b)

(
φL

nm

)T
BφR

np = Bnmδmp, (2.3.8c)

and

(
φL

nm

)T
A(n, ω)φR

np = knmBnmδmp, (2.3.8d)

where δmp is the Kronecker delta. The right and left eigenvectors are partitioned into the

following upper and lower halves:

φR
nm =

[
φR

nmu φ
R
nml

]T

, (2.3.9a)

and

φL
nm =

[
φL

nmu φ
L
nml

]T

. (2.3.9b)

Subscripts u and l denote the upper and lower halves, respectively1. Vector Qn can be

represented, for a nonvanishing Pn, in the transformed domain of the linear eigenvalue

problem by summing the 12N + 6 right eigenvectors as

Qn =

12N+6∑

m=1

Qnmφ
R
nm =

12N+6∑

m=1

(
φL

mn

)T
Pn

(knm − kn)Bnm

φR
nm. (2.3.10)

Use has been made here of equations (2.3.6) and (2.3.8). Then the solution vector Un,

which occupies the upper half of Qn, can be written as

Un =

12N+6∑

m=1

(
φL

mnl

)T
Fn

(knm − kn)Bnm

φR
nmu, (2.3.11)

1Unless noted otherwise, the right eigenvectors are normalized by using a scheme that makes the mag-

nitude of the vector norm of their upper halves (the mode shapes) unity; the directions returned by the eigen-
value solver are unaltered.
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by using equations (2.3.6), (2.3.8), and (2.3.10). Finally, the inverse Fourier transform

applied to equation (2.3.11) gives the (displacement) response of the cylinder to the nth

circumferential harmonic in the spatial domain, Un(z), as

Un(z) =
1

2π

12N+6∑

m=1

∫ ∞

−∞

(
φL

mnl

)T
Fn

(knm − kn)Bnm

φR
nmue jknzdkn. (2.3.12)

A point force applied at r = r0, θ = 0, z = 0 can be represented in the spatial domain as

F(θ, z) = δ(θ)δ(z)F0, (2.3.13)

where δ is the Dirac delta function and F0 describes the radial distribution of the force

vector. Subscript 0 denotes a quantity associated with the point force. The Dirac delta

function is approximated circumferentially, as shown in Figure 2.3. It can be observed that

a “narrow” pulse of uniform intensity q0 = (2r0θ0)−1, which extends over a circumferential

distance 2r0θ0, is employed to avoid the non-convergence of the Dirac delta function2. Then

≈

θ=0

H

r0

2rθ
0

0

θ
0

r

1/(2rθ )
0 0

θ=0

H

r
0

r

(a) (b)

Figure 2.3. Illustrating the approximation of (a) a point force with (b) a uniform pulse.

2All terms in a Fourier series expansion of the Dirac delta function have an amplitude of 1/(2π) which
does not decrease with increasing harmonic number.
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a force which is applied at the point r = r0, θ = 0, z = 0 can be approximated spatially as

F(θ, z) =



1

2r0θ0
δ(z)F0 if − θ0 ≤ θ ≤ θ0,

0 otherwise.

(2.3.14)

Applying the Fourier transform to the Fourier series expansion of equation (2.3.14)

transforms the nth term of the force’s approximation from the spatial to the wavenumber

domain. Substituting the result into equation (2.3.12) leads to the nth circumferential har-

monic of the Green’s function in the spatial domain to be

Un(z) =
sinc(nθ0)

4π2r0

12N+6∑

m=1

∫ ∞

−∞

(
φL

mnl

)T
F0

(knm − kn)Bnm

φR
nmue jknzdkn. (2.3.15)

Cauchy’s residue theorem is applied to equation (2.3.15) to give the nth circumferential

mode of the Green’s function as

Un(z) =



−jsinc(nθ0)

2πr0

6N+3∑

m=1

(
φL

mnl

)T
F0

Bnm

φR
nmue jknmz, z ≥ 0,

jsinc(nθ0)

2πr0

12N+6∑

m=6N+4

(
φL

mnl

)T
F0

Bnm

φR
nmue jknmz, z ≤ 0.

(2.3.16)

The contour of integration, which is applied in conjunction with Cauchy’s residue theorem,

is selected by using the radiation condition. This condition requires that (i) waves radiate

outward from the applied force, and (ii) the displacement field remains finite. Substituting

equation (2.3.16) into equation (2.3.3b) and using the result, in turn, in equation (2.3.1)

gives the Green’s displacement function for a harmonic force. The approximate strain and

stress fields can be derived straightforwardly from this function by using equations (A.3.2)

and (A.4.2) of Appendix A.

The displacement response to a multi-frequency, input force can be found by merely su-

perimposing the responses caused by each individual frequency component because linear
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elasticity is assumed. Hence the displacement at the radial coordinates of the finite element

nodal surfaces can be written as

U(θ, z, t) =

−j

4π2r0

∫ ∞

−∞
p(ω)e−jωt

n=∞∑

n=−∞
sinc(nθ0)


6N+3∑

m=1

(
φL

mnl

)T
F0

Bnm

φR
nmue jknmz

 e jnθdω,
(2.3.17a)

for z ≥ 0, and

U(θ, z, t) =

j

4π2r0

∫ ∞

−∞
p(ω)e−jωt

n=∞∑

n=−∞
sinc(nθ0)


12N+6∑

m=6N+4

(
φL

mnl

)T
F0

Bnm

φR
nmue jknmz

 e jnθdω,
(2.3.17b)

for z ≤ 0. The p(ω) in equation (2.3.17) is the Fourier transform of the input force which

scales the amplitude and phase shifts the Green’s function for each of its frequency com-

ponents. The approximate displacement field throughout the entire pipe, u, can be found

by invoking equation (2.3.1).

2.4 Overview of Computer Implementation

Computer programs to calculate the approximate wavefunctions are implemented using

Matlabr (by the MathWorksr) scripts and functions. Element matrices are computed first

in closed (symbolic) form [106] by utilizing the (pre R2008b3) Symbolic Math Toolbox™

and Extended Symbolic Math Toolbox Software™ to implement equation (B.4.7) for a

single element. The process is simplified by choosing the “middle” node to coincide with

the geometric centre of the finite element. Then the determinant of the Jacobian matrix of

the transform between r and ζ is a constant. See Section B.5 of Appendix B for details.

The outputs from the symbolic engines are used as the basis of creating Matlabr functions

3MathWorksr changed the symbolic engine in Matlabr R2008b from a Maplesoftr Maple™ based
engine to a MuPADr (by SciFace Software GmbH & Co. KG) based engine. It was found that the new engine
performed too slowly to be useful for this procedure. Hence, Maple™ 13.02, developed by Maplesoftr, and
the complementary Maple Toolbox for Matlabr was used subsequently.
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to compute the element matrices. A careful choice of the names given to variables in the

symbolic computations and a judicious use of the “find and replace” command in a “regu-

lar expression” capable text editor minimizes manual typing errors. Indeed minimal “hand

written” code is required to complete the functions. Furthermore, functions to compute the

element matrices are simplified greatly and, consequently, the software runs faster when

components of the element matrices are evaluated from closed form expressions rather than

by numerical integration. A conventional “direct” assembly method [107] is used to cre-

ate global stiffness and mass matrices from the individual element matrices. This result is

integrated into functions that also take, as input, the material and dimensional information

of the unblemished pipe to produce the approximate wavefunctions. Documentation of the

above process is located, along with representative annotated code listings, in Appendix C.

The overall process represents a successful first step towards developing computer code

that, itself, writes computer code for the finite element analysis.

2.5 Illustrative Example

2.5.1 Preamble

Computer code has been written to (a) form the previously described eigensystem, (b) solve

the resulting eigenvalue problem, and (c) perform the summations and integrations inherent

to equation (2.3.17), as described previously. As an illustration, a typical 3 inch Nominal

Pipe Size (NPS) [80 mm Diameter Nominal (DN)], Schedule 40, carbon steel pipe, whose

assumed properties4 are summarized in Table 2.1, is considered. This pipe is used consist-

ently for all the remaining numerical simulations. It is subjected invariably to the commonly

used, Gaussian modulated sine wave excitation detailed in Appendix D. Moreover, time is

4Note that only two elastic properties and dimensional properties are independent. The Lamé constants,
as well as the outer diameter and wall thickness, are specified directly. The remaining properties are found
from these assigned values by applying standard linear elasticity equations and simple geometrical relations.
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Table 2.1. Properties assigned to the unblemished pipe.

Property Assigned Value

Density, ρ, slug/ft3 (kg m−3) 15.39 (7932)
Outer diameter, Do, in (mm) 3.496 (88.8)
Wall thickness, H, in (mm) 0.220 (5.59)
Mean radius, R, in (mm) 1.638 (41.60)
Thickness to mean radius ratio, (H/R) 0.134
Young’s modulus, E, ksi (GPa) 31, 460 (216.9)
Lamé constant (Shear modulus), µ (G), ksi (GPa) 12, 230 (84.3)
Lamé constant, λ, ksi (GPa) 16, 410 (113.2)
Ratio of Lamé constants, (λ/µ) 1.34
Poisson’s ratio, ν 0.286

always measured relative to the initial instant that this excitation is applied. The excitation

is orientated radially, unless specified otherwise, i.e., normal to the pipe’s external surface,

at θ = 0 in the plane z = 0. Moreover, the (body force) amplitude is taken invariably as

A = µ/H which corresponds to a nondimensionalized unit amplitude. This particular pipe

is selected because it is commercially important. At the end of 1997, for example, there

was approximately 40,300 miles (64 900 km) of such pipe in industrial use as energy re-

lated pipeline in Alberta, Canada [2]. Consequently it has been studied extensively in, for

example, [70, 71]. The pipe’s displacement is represented by the radial component on its

outer surface at θ = 0 and z∗ = z/H = 5.1, and θ = 0 and z∗ = 25.5, where a superscript

asterisk indicates a nondimensionalized variable. These locations correspond to simple

axial offsets from the force’s application point. Ten finite elements are used to uniformly

discretise the pipe’s wall thickness, H. The individual Hk are presumed to be identical for

simplicity. Circumferential angle, 2θ0, over which the spatial pulse approximates the Dirac

delta function, is taken to be 0.002 radians (0.1◦). Circumferential wavenumbers n, from 0

to ±16, and all the corresponding axial modes are incorporated into the computations.

2.5.2 Results and discussion

Figure 2.4 (a) presents the magnitudes of the spectral densities of the nondimensional, radi-
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Figure 2.4. Giving (a) the spectral density of the radial displacement on the pipe’s outer
surface at θ = 0, z∗ = z/H = 5.1 before and after convolution with the excitation and (b)
the latter’s time history.
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al displacement’s FRF, before and after its convolution with the excitation at a purely axial

offset of 5.1H. The frequency range considered is 35 kHz to 107 kHz. It can be observed

from an examination of Table 2.2, where the pipe’s cutoff frequencies below 150 kHz are

tabulated, and Figure 2.4 (a) that the “peaks” of a pipe’s radial FRF occur at modal cutoff

frequencies. The corresponding wavenumbers are zero at these particular frequencies. This

behaviour can be observed also in Figures 2.5 (a) and 2.6 (a) where analogous information

is shown for two representative individual modes. (Also shown in these two figures are the

(axial) wavenumber and the phase and group wave speeds.) Although the character [108] or

frequency locations [101] of the peaks in a FRF are seen later in Chapter 4 to be modified in

the presence of a defective wall thinning, they are invariant here. Cutoff frequencies of the

noticeably excited modes given in Figure 2.4 (a) are labelled as f c
F(n,m) where superscript c
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Figure 2.5. Behaviour of the F(3,1) mode on the pipe’s outer surface at θ = 0, z∗ = z/H =

5.1.
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Table 2.2. Cutoff frequencies below 150 kHz obtained from “exact” theory and SAFE.

Mode(s) “Exact” cutoff Cutoff frequency
frequency, kHz from SAFE, kHz

T(0, 1) 0.000 0.000
L(0, 1) 0.000 0.034
F(±1, 1) 0.000 0.055
F(±2, 1) 2.153 2.154
F(±3, 1) 6.002 6.003
F(±4, 1) 11.281 11.282
F(±1, 2) 12.480 12.480
F(±5, 1) 17.806 17.806
L(0, 2) 20.921 20.921
F(±2, 2) 24.960 24.960
F(±6, 1) 25.405 25.406
F(±1, 3) 29.454 29.454
F(±7, 1) 33.918 33.918
F(±3, 2) 37.439 37.439
F(±8, 1) 43.196 43.197
F(±2, 3) 46.463 46.463
F(±4, 2) 49.917 49.917
F(±9, 1) 53.112 53.112
F(±5, 2) 62.393 62.393
F(±10, 1) 63.553 63.554
F(±3, 3) 65.628 65.628
F(±11, 1) 74.427 74.426
F(±6, 2) 74.867 74.867
F(±4, 3) 85.467 85.467
F(±12, 1) 85.651 85.651
F(±7, 2) 87.338 87.338
F(±13, 1) 97.164 97.163
F(±8, 2) 99.807 99.807
F(±5, 3) 105.548 105.548
F(±14, 1) 108.906 108.907
F(±9, 2) 112.272 112.273
F(±15, 1) 120.840 120.839
F(±10, 2) 124.734 124.734
F(±6, 3) 125.696 125.696
F(±16, 1) 132.919 132.921
F(±11, 2) 137.192 137.192
F(±7, 3) 145.819 145.819
F(±12, 2) 149.645 149.646
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Figure 2.6. Behaviour of the F(11,1) mode on the pipe’s outer surface at θ = 0, z∗ = z/H =

5.1.

indicates a cutoff frequency. Their numerical values are rounded in Figure 2.4 (a) for visual

clarity. Subscript F in the label of f c represents a flexural mode5 with the circumferential

wavenumber (n) and order (m) given in parentheses. A sharp increase in the magnitude of a

FRF at a cutoff frequency arises because the corresponding Bnm in equation (2.3.17) tends

to zero as the cutoff frequency is approached, i.e., a singularity happens in the nm mode’s

FRF. This feature occurs because there is a repeated eigenvalue6 at each cutoff frequency.

Hence a defective7 eigensystem exists. Consequently the corresponding left and right ei-

genvectors are orthogonal to the B matrix defined in equation (2.3.7b). As a result Bnm also

5Modes are labelled by using the standard convention employed in [81].
6A repeated eigenvalue is guaranteed to exist at a cutoff frequency because zero is its own negative

complex conjugate and both knm and −k̃nm are eigenvalues.
7A defective eigensystem is one in which an eigenvalue is repeated, say integer r times, but fewer than r

unique (right) eigenvectors exist for the repeated eigenvalue [109].
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becomes zero [109]. A physical, but somewhat philosophical explanation for singularities

having large displacement amplitudes that coincide with cutoff frequencies can be found in

the wavelength at a cutoff frequency. A wave mode’s wavenumber is zero at its cutoff fre-

quency, which corresponds to a wavelength that is infinitely long. No boundary conditions

which restrict a pipe’s motion have been applied to the pipe’s ends at (plus and minus) infin-

ity. Such a pipe has no inherent resistance to a wave mode’s motions at a cutoff frequency

so that large displacement amplitudes are observed. Note that, despite the assumed absence

of material damping, the “resonant”-like displacement amplitudes given in Figure 2.4 (a),

while large, are surprisingly not infinite. This apparently abnormal behaviour is attributable

to numerical truncations and a small (1 Hz in a neighbourhood within 500 Hz of a cutoff

frequency) but necessarily finite frequency increment not permitting a precise coincidence

with a cutoff frequency. On the other hand, the cutoff frequencies obtained from SAFE

are, with the exception of the L(0,1) and F(1,1) modes, within an acceptable 2 Hz or less

of those based on “exact” three dimensional elasticity found by applying equation (2.2.11).

This observation is corroborated by comparing the second and third columns of Table 2.2.

Figure 2.4 (b) shows the time history produced by superimposing the computed his-

tories obtained, on a mode by mode basis8, from the inverse Fourier transformation of

the convolved FRF of each mode considered. (Figure 2.4 is demonstrated in Chapter 3 to

reasonably represent measurements made on a physical specimen. The representation is

improved even further when measured material properties and the dynamic behaviour of

the measurement instrumentation are incorporated, as shown in Chapter 3.) The inverse

Fourier transform is approximated by applying a standard trapezoidal integration scheme

involving a variable frequency step to the transform’s basic definition, with the approxima-

tion truncated outside the 35 kHz to 107 kHz range of interest. Moreover, advantageous use

is made of the property that the displacement response to a real excitation is also real. This

important property implies that the response at a negative frequency is the complex con-

8Note that the integration in equation (2.3.17) is performed before the summations.
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jugate of the corresponding positive frequency. Hence, the response needs to be computed

only at positive frequencies9.

Care needs to be taken when performing the inverse Fourier transform because its dir-

ect application does not explicitly include initial conditions unlike, say, an inverse Laplace

transform. Therefore, initial conditions are incorporated by enforcing causality on the sum

of the homogeneous and particular solutions. The inverse Fourier transforms of the con-

volved FRFs are particular solutions to the equations of motion. However, they may have

non-zero displacements or velocities at the instant, t = 0, that the excitation is applied first.

“Extraneous” values are eliminated by superimposing on the particular solution, homogen-

eous solutions that are constrained to satisfy causality. The homogeneous solutions are

sinusoids having frequencies identical to the cutoff frequencies of the unblemished pipe.

Their amplitudes and phases are found from the extraneous displacement and velocity val-

ues at t = 0 by constraining the superimposed values to be zero. Further details are provided

in Appendix E. Experience has shown that the homogeneous solution hardly contributes to

the response of a mode whose cutoff frequency is outside the excitation’s principal band-

width. See Figure 2.5. Otherwise the converse is true, as indicated in Figure 2.6. The

former behaviour is expected intuitively because the spectral density of a mode whose cutoff

frequency lies outside the excitation’s bandwidth resembles that of the excitation which is

essentially causal. However a resonance is excited strongly in the opposite situation. This

behaviour is supported by the distribution of energy10 in the spectral densities of the con-

volved radial displacements. In the first case the energy is distributed more broadly over

a range of frequencies than in the second case where the energy is localized in a narrow

band of frequencies around the cutoff frequency. Although the peak radial displacements

are comparable in Figures 2.5 and 2.6 (b), the radial displacement’s time history shown in

Figure 2.6 (b) clearly “rings” while that illustrated in Figure 2.5 (b) does not. Consequently,

9While two-sided (Fourier) transforms are used in the derivations, all figures, unless noted otherwise,
present single-sided transforms that increase the amplitude of the nonzero frequency components by a factor
of two.

10The term “energy” is used here in the signal processing sense [110, 111].
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after a brief initial period, those modes having cutoff frequencies in the excitation’s prin-

cipal bandwidth dominate the convolved FRF and, hence, a displacement’s time history.

Figures 2.5 and 2.6 give representative radial displacement responses to exemplify the two

contrasting situations at the same location of the illustrative pipe. They confirm the ba-

sic nature described earlier of the noticeably larger response component around a cutoff

frequency.

Figure 2.7 shows the magnitude of the reassigned pseudo Margenau-Hill time-frequen-

cy distribution for the radial displacement history given in Figure 2.4 (b). The Margenau-

Hill time-frequency distribution is an integral transform which is conceptually similar to a

short period DFT or wavelet transform. It allows a nonstationary signal’s frequency evolu-

tion to be visualized over time. This particular transform is selected because it appears to

simultaneously reduce “smearing” on the time and frequency axes [112]. The transform is

described more fully in [113]. Figures 2.7 (a) and (b) use linear and logarithmic scales for

the amplitude of the transform, respectively. The amplitude scale in Figure 2.7 (a) has been

“clipped11” at 0.01 to show more clearly the relatively small amplitudes that occur during

the pipe’s ringing. On the other hand, the entire range of amplitudes is presented in Fig-

ure 2.7 (b). The logarithmic scale aids the visualization of small response amplitudes but it

also reduces the clarity of the image because the effects of noise are also emphasised. Both

figures show that the F(±9,1), F(±10,1), F(±11,1), and F(±12,1) modes dominate the pipe’s

response after about 150 µs. Figure 2.7 (b), on the other hand, enhances somewhat the con-

tributions of the additionally labelled, weakly excited F(±8,1) and F(±13,1) modes to make

them more visible. The initial broadband behaviour followed by the ringing of each mode

is indicated in Figure 2.7 by the broad peaks in the frequency direction narrowing after

about 150 µs. Therefore, the reassigned pseudo Margenau-Hill time-frequency distribution

is a useful tool for visualizing the temporal evolution of a signal. Cutoff frequencies, how-

ever, give more readily obtained, identifiable features that can be related more easily to a

11The value of 0.01 was assigned also to higher values.
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mathematical model. Consequently, they are used in the next chapter to recover a homogen-

eous, isotropic pipe’s two independent elastic constants and wall thickness from its known

density and outer diameter by utilizing only a single ultrasonic measurement.

To better interpret Figure 2.4, Figure 2.8 (a) gives the (nondimensional) maximax radial

displacement on the pipe’s outer surface at θ = 0, z∗ = z/H = 5.1 for modes which propag-

ate over some or all of the frequency range of interest. They are sorted by descending amp-

litudes with corresponding arrival times shown in Figure 2.8 (b). As an aside, the largest

maximax radial displacement of the remaining non-propagating and evanescent modes is

approximately 7.3×10−6. The latter value corresponds to an axisymmetic mode. It is about

three orders of magnitude smaller than those of the F(±10, 1) modal contributions. On the

other hand, the largest maximax radial displacement for a mode having a circumferential

wavenumber of 16 is even smaller, being less than 3.6 × 10−7. These clear differences sug-

gests that the error introduced by neglecting circumferential harmonics whose wavenumber,

n, is outside ±16 is negligible at distances sufficiently removed from the force’s application

point. Figures 2.8 (c) and (d) present identical information to Figures 2.8 (a) and (b) but

with the modal responses sorted by increasing arrival times.

Figure 2.8 simplistically quantifies the relative modal contributions and the effect of

dispersion. Figures 2.8 (c) and (d), for example, demonstrate that the arrival times of the

modes which propagate over the entire excitation’s bandwidth are smaller than those corres-

ponding to a transition from an evanescent or non-propagating behaviour to a propagating

one. Moreover, sub-figures (a) and (c) show that the T(0,1) mode is not excited by a radial

force, as expected. Somewhat more surprising is the relatively small radial contributions of

the F(n, 2), 1 ≤ n ≤ 13, modes. This phenomenon can be explained partly by referring to

Figure 2.9. There the magnitudes of the normalized mode shapes through the pipe’s wall,

evaluated at their respective cutoff frequencies, are plotted for the representative F(3,m)

and F(11,m), m = 1, 2, 3, modes. It can be seen that the F(n, 1) and F(n, 3) modes have

no axial displacement components. Conversely the F(n, 2) modes have no radial or circum-
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Figure 2.8. Sorting the maximax radial displacement on the pipe’s outer surface at θ = 0,
z∗ = z/H = 5.1 by (a), (c) amplitudes and (b), (d) arrival times for individual propagating
modes.
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Figure 2.9. Magnitude through the pipe’s wall of the (a) F(3,1), (b) F(3,2), (c) F(3,3),
(d) F(11,1), (e) F(11,2), and (f) F(11,3) normalized displacement mode shapes evaluated
at their respective cutoff frequencies. The solid (—) curve gives the radial component; the
dashed (- -) and dotted (· · · ) curves correspond to the circumferential and axial components,
respectively.

ferential displacement components at their respective cutoff frequencies. (Moreover, very

small components occur in these directions at frequencies near the cutoff frequencies.) The

disappearances at cutoff frequencies are to be expected [21]. As a practical aside, how-

ever, the ease of exciting a pipe’s guided waves around the cutoff frequencies, combined

with the associated vanishing displacement components, may be used to excite particular

guided wave modes. For instance, a narrow band excitation applied along the pipe’s axis

with a centre frequency around 63.4 kHz would strongly excite the F(5, 2) mode with the

F(10, 1) and F(3, 3) modes largely suppressed. Figures 2.8 (a) and (c) support the obser-

vation arising from examining Figure 2.4 (a) that the relative modal contributions of the

F(n, 3) modes are significantly less than those of the F(n, 1) modes. Consider, say, the en-
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ergy12 contained in the frequency bands around the F(2, 3) and F(8, 1) cutoff frequencies

shown in Figure 2.4 (a). The peak around the F(2, 3) cutoff frequency is much narrower and,

hence, contains less energy than that around the F(8, 1) cutoff frequency. This behaviour

is beneficial because it suggests that modal summations associated with the axial wave-

numbers converge quickly so that relatively few modes (and consequently finite elements)

can be employed to reliably approximate displacements at distances a few wall thicknesses

from the force’s application point. More modes are needed, of course, for a comparable

convergence of the stress or strain fields.

The results shown in Figure 2.8 correlate qualitatively with the reassigned pseudo Mar-

genau-Hill time-frequency distribution given in Figure 2.7. Large amplitudes which are

present for the entire duration of the signal are seen in the time-frequency distribution at

frequencies around13 53 kHz, 64 kHz, 74 kHz, and 86 kHz. These frequencies are in

good agreement with the cutoff frequencies listed in Table 2.2 for the F(±9,1), F(±10,1),

F(±11,1), and F(±12,1) modes, i.e., the modes whose cutoff frequencies are relatively cent-

ral in the excitation’s bandwidth. Such modes have relatively large contributions in Fig-

ures 2.8 (a) and (c). On the other hand, a more broadband response is seen in Figure 2.7 up

to about 75 µs . This time frame and the corresponding broadband response agree with the

amplitudes and arrival times shown in Figures 2.8 (b) and (d) for the L(0,1) and F(±n,1),

n ≤ 7, modes.

Figures 2.10 and 2.11 provide analogues to Figures 2.4 and 2.8, respectively, but for

a nondimensional axial offset of 25.5 rather than 5.1. A comparison of Figures 2.4 and

2.10 (a) indicates that, due to dispersion, a peak around a cutoff frequency widens as the

axial separation from the excited point to a receiving location increases. The same effect

can be also seen by comparing Figures 2.4 and 2.10 (b). This behaviour is discussed further

in the next chapter in the context of the accuracy of measurements needed to determine an

12The term energy is used again in the signal processing sense.
13The frequency resolution of the reassigned pseudo Margenau-Hill time-frequency distribution shown in

Figure 2.7 is limited to 1 kHz.
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Figure 2.11. Sorting the maximax radial displacement on the pipe’s outer surface at θ = 0,
z∗ = z/H = 25.5 by (a), (c) amplitudes and (b), (d) arrival times for individual propagating
modes.
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unblemished pipe’s material and dimensional properties.
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Chapter 3

Unblemished Pipe’s Characterization–An Inverse

Problem

3.1 Introduction

Material and dimensional information constitute fundamental knowledge for assessing the

current behaviour or “health” of a structure. From a practical perspective, in situ meas-

urements should be used that are quick, reliable and non-destructive. An ultrasonic-based

approach is one plausible candidate. Indeed ultrasonic body (bulk) waves are employed

commonly to accurately measure fine dimensions at locations where material properties

are known independently [6]. Single or “focussed guided waves,” on the other hand, can

propagate at least several metres so they have been used to remotely interrogate inaccess-

ible locations [70, 71, 82, 90]. The behaviour of a single, essentially non-dispersive mode is

interpreted relatively easily [70, 71] but it is quite difficult to implement. Even if excited, a

single mode is likely converted to additional modes at geometrical discontinuities [70, 71].

Such modes are generally dispersive so that the form of a propagating wave packet changes

as it travels along a structure. The objective here is to develop a non-destructive proced-

ure involving several guided waves that can be automated to give material and dimensional

data simultaneously. It may be extended, in the future, as a means of non-destructively

screening corrosion. Although the procedure could be applied, in principle, to any plate-

like structure, it is illustrated here by using a homogeneous, isotropic steel pipe. (The pipe

is assumed to be reasonably modelled as uniformly right circular, homogeneous, linearly

elastic, and isotropic in order to be consistent with Chapter 2.) Such pipes are employed

ubiquitously in industry [2].

Defining a pipe’s linear but otherwise unknown character from its measured response

to a specified excitation is an example of an inverse procedure. Even a computational in-
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version procedure, in which errors and uncertainties are generally less than those arising

from experimental measurements, may not produce a unique solution [114]. Moreover, an

inversion is often based upon a more computationally efficient forward solver [114]. (A

forward solver determines the response when both the excitation and pipe’s character are

known.) This indirect approach is adopted here because an uncertainty analysis can be per-

formed fairly straightforwardly. The forward solver is based upon the well known SAFE

formulation described in Chapter 2. The novelty, therefore, lies in its successful practical

application to solving an inverse problem. On the other hand, the linear modal decom-

position produced inherently by SAFE is crucial to understanding why simple features of

a pipe’s temporal and corresponding frequency behaviour can be exploited in the inverse

problem. However, the solution of the resulting nonlinear equations is sensitive to “noise.”

An overriding concern is that a pipe’s properties should be measured straightforwardly

with basic equipment. Therefore, a short duration excitation is applied radially at an easily

accessible external surface of the pipe. No effort is made to avoid dispersive wave modes

in contrast to current common practice. The modes are received at a single, axially offset

transducer which is linked to a signal processing capability. Both the transmitting and

receiving transducers’ dimensions are assumed to be much smaller than the excited modes’

predominant wavelengths. Therefore, they are idealized as acting at points. Moreover, mass

loading effects are neglected.

A Discrete Fourier Transform (DFT) is employed with a temporal curve fitting scheme

to analyse the receiving transducer’s time varying signal. The aim of this contorted pro-

cedure is to refine the frequency values of the predominant modal contributions before the

arrival of extraneous reflections from the ends of a finite length pipe. These frequencies are

generally not related harmonically. They correspond to the pipe’s cutoff frequencies which

are common to most pipe locations [21]. Therefore, the choice of measurement location

is relatively unimportant if nodal points of modes are avoided. However, measured cutoff

frequencies still have to be reconciled with their forward (SAFE) computed counterparts.
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This task is accomplished by taking the “true” set of pipe properties as the one for which

three measured and three corresponding computed cutoff frequencies are closest. Likely un-

certainties are estimated from a sensitivity assessment around the selected set of properties.

The procedure is simulated first by using the illustrative example presented previously in

Chapter 2. Then the method is applied to two physical examples of metal pipes. Agreement

is shown to be good with independently but destructively assessed data.

3.2 Inversion Scheme and Extraction of Cutoff Frequen-

cies

3.2.1 Preamble

The cutoff frequencies have been demonstrated in Section 2.5 to be easily identified features

that can be related to the mathematical model. They depend, through the stiffness and

mass matrices produced by SAFE, on the pipe’s elastic properties, density, and geometrical

dimensions. It is assumed that the pipe’s outer diameter and density are readily available so

that the elastic properties and wall thickness remain to be determined1. Two independent

elastic constants are sufficient to characterize a homogeneous isotropic material. Therefore,

three independent parameters (two elastic constants and the wall thickness) are needed to

describe an unblemished pipe.

Buckingham’s π theorem [116] and physical constraints are used to reduce the search

space, through nondimensionalisations, in order to make calculations more tractable. It

will be seen that the application of the theorem allows the search space to be reduced from

three to two dimensions. Moreover, both upper and lower bounds for the resulting two in-

dependent nondimensional parameters, (λ/µ) and (H/R), can be established. These seem-

1There are other plausible variations of this problem, e.g., when Poisson’s ratio and the outer diameter
are known but the wall thickness is to be determined [115].
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ingly subtle differences permit a standard constrained optimization solver to be employed

efficiently and straightforwardly.

To facilitate the application of Buckingham’s π theorem, the nondimensional cutoff

frequency ratio

ωc∗
F(n,m) =

ωc
F(n,m)

ωref
(3.2.1)

is introduced for a given circumferential wavenumber, n, and axial order, m. Here ωref is

c2/H and ωc
F(n,m) is the cutoff frequency of the F(n,m) flexural mode.

The ωc∗
F(n,m) can be expressed more simply in terms of the nondimensional parameters

(H/R) and (λ/µ) where R = (ro + ri)/2 is the pipe’s mean radius, whereas the desired

elastic properties and wall thickness also require ωref as well as the unblemished pipe’s

presumed density and outer diameter. An inequality 0 < (H/R) < 2 arises physically

because these lower and upper bounds relate to a pipe having no wall thickness and a solid

pipe, respectively. On the other hand, (λ/µ) is bounded reasonably as 0 ≤ (λ/µ) . 10 by

using the standard elasticity relation 0 ≤ ν ≤ 0.5 where ν is Poisson’s ratio. Note that, if the

Buckingham π theorem had not been applied, the equivalent dimensional problem would

require two independent elastic properties (say E and G) as well as the wall thickness to

be found. The elastic properties cannot be bounded but they must be non-negative. On the

other hand, H is constrained by the requirement that it be less than or equal to Do/2. There

is no obvious way to take further advantage of the interrelationships required to find the

elastic properties and wall thickness when using a dimensional space. The disadvantage of

working in a hybrid space, however, is that additional transformations are required to relate

the dimensional and nondimensional variables.

If the SAFE model is perfect and the cutoff frequencies are known exactly, then

ωrefω
c∗
F(ni,mi)

− ω̂c
F(ni,mi)

= 0 for i = 1, 2, 3, (3.2.2)

where ωc∗
F(ni,mi)

are predicted by SAFE and correspond to three measurable (dimensional)
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cutoff frequencies ω̂c
F(ni,mi)

. Equation (3.2.2) implicitly gives three relations in three un-

knowns, ωref , (H/R), and (λ/µ). Therefore a solution provides a largely nondimensional

characterization of the pipe. The system described by equation (3.2.2) is inherently nonlin-

ear because the eigenvalues are nonlinear functions of (H/R) and (λ/µ). Indeed, the change

in a typical flexural mode’s nondimensional cutoff frequency is approximately sigmoidal in

(H/R) and about exponential or logarithmic in (λ/µ), depending on the value of (H/R). This

behaviour is illustrated in Figure 3.1 where the typical, nondimensional cutoff frequency of

the F(11,1) mode is plotted as a function of both (H/R) and (λ/µ). An estimate of (λ/µ) is

more susceptible to errors because a nondimensional cutoff frequency is a much stronger

function of (H/R) than of (λ/µ) in this figure.

3.2.2 Practical extraction of cutoff frequencies

Empirical experience suggests that a solution which simultaneously and exactly satisfies

each constraint of equation (3.2.2) may exist only if each of three measured cutoff frequen-
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Figure 3.1. Nondimensional cutoff frequency of the F(11,1) mode.
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cies are known with a precision of about 10 Hz. Unfortunately it is difficult to achieve this

level of accuracy in practice. Basic experimental data are measured time histories which

must be processed to extract the cutoff frequencies. In addition, a real pipe does not have

the assumed infinite length. If a finite time window is introduced to truncate a response his-

tory, and thereby exclude reflections from a pipe’s ends, harmonic distortion is produced in

a numerically approximated Fourier transform. On the other hand a DFT, which is calcu-

lated from the truncated time history, has a finite frequency resolution. For example, a time

window with about a 900 µs duration is needed to exclude end reflections from a measure-

ment at the middle of a 3 m long, steel pipe. Then the finest frequency resolution possible

with a DFT is about (900 µs)−1 or 1.1 kHz. This value is two orders of magnitude greater

than the 10 Hz or so resolution required. Furthermore, the DFT implicitly presumes that

the truncated history is periodic which, in turn, erroneously implies that the cutoff frequen-

cies are related harmonically. Other DFT2 based techniques which may potentially give

a finer frequency resolution, like a “zoom” Fast Fourier Transform (FFT), require longer

time records which are not feasible even for the longest (50 ft [13 m]) commonly available

pipe. To overcome the frequency resolution problem, curve fitting is applied straightfor-

wardly to a time history. Then a conventional least-square solver is employed to minimize

the function

η =

I∑

i=1

ui −
J∑

j=1

e−ξ j(ti−τ j)A j cos(ωc
jti − φ j)



2

, (3.2.3)

where I is the total number of data points, at a given pipe location, in the “free vibration”

portion of the time history3. Furthermore, J is the assumed number of modes contributing

to this point’s radial displacement, ui, at the typical ith instant, ti. For the jth mode, ξ j rep-

2A cepstrum analysis can be considered a DFT based technique because it essentially post-processes a
DFT.

3The time history of an individual modal contribution to the overall radial response (see, for instance,
Figures 2.5 and 2.6 located in Chapter 2) suggests that the history can be divided into three distinct portions.
An initial “forced vibration” period is followed by “free vibrations.” Then a third segment can be identified
which includes the first and subsequent reflections from the ends of a finite length pipe. Although a pre-
cise demarcation is not required, the “free vibrations” should exclude the other two portions as well as the
transducers’ ring down after the excitation’s termination to advantageously avoid contamination.
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resents a viscous like decay4, τ j is the time at which the free vibrations begin5, whereas

A j, ωc
j
, and φ j are the modal amplitude, cutoff frequency, and phase, respectively. The min-

imization of equation (3.2.3) is equivalent to computing a terminated, overall “best” fitting

Fourier series in which the frequency components are related non-harmonically [117]. Ini-

tial approximations for the A j, ωc
j
, and φ j are provided conveniently by the DFT of a time

history up to almost the first, clearly observed end reflection. Based upon experience, the

ξ j and τ j are taken initially as zero and 200 µs, respectively.

Figure 3.2 (a) presents computer data which simulates the radial displacement on the

outer surface of the illustrative pipe at θ = 0 and z∗ = z/H = 5.1. (Also see Figure 2.4 (b)

given in Chapter 2.) A rectangular time window is adopted that has a duration of 600 µs
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Figure 3.2. Showing (a) synthesized time history on the pipe’s outer surface at θ = 0 and
z∗ = z/H = 5.1 with (b) the magnitude of the corresponding DFT, and (c) the reconstructed
temporal curve fit of the free vibrations.

4This term is included for a potential extension to damped viscoelastic materials. It is virtually zero here.
5Experiments with both synthesized and measured signals suggest that this term is essentially mode

independent.
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and is positioned between the two shaded regions of Figure 3.2 (a). Figure 3.2 (b) gives the

corresponding frequency information from a DFT of the windowed history. Five obvious

peaks and their cutoff frequencies are identified easily but approximately from this figure.

They are related to their corresponding modes. These peaks and their relative amplitudes

correlate relatively well, but imperfectly, with the modes having the largest maximax radi-

al displacements shown in Figure 2.8. The discrepancy is due to the different techniques

used in the two figures to quantify the relative contribution of a mode’s radial displacement

history. The peaks shown in Figure 3.2 (b) correlate nearly perfectly, however, with the fre-

quency content for the amplitude of the reassigned pseudo Margenau-Hill time-frequency

distribution shown in Figure 2.7. No simultaneous time information is available, of course,

from Figure 3.2 (b) to compare with Figures 2.7 and 2.8. On the other hand, Figure 3.2 (c)

shows the consequence of minimizing equation (3.2.3) and using the result to reconstruct

the free vibration history. The trace shown in Figure 3.2 (c) is visually indistinguishable

from the one given in Figure 3.2 (a). Table 3.1 compares the cutoff frequencies from “exact”

theory (which simulates the desired ideal but practically unachievable result), the computed

FRF, the DFT, and the temporal curve fitting procedure. The last procedure is seen to in-

variably give significantly closer estimates to the FRF than the DFT. Further improvements

may be possible by including all the cutoff frequencies which are less pronounced in the

DFT than those shown in Figure 3.2 (b). Moreover, taking a shorter time window which

emphasises the later portion of the response history may be also advantageous because it

Table 3.1. Cutoff frequencies obtained from “exact” theory, the FRF, DFT, and temporal
curve fit.

Mode Cutoff Frequencies, kHz Difference Between

“Exact” FRF DFT Curve Fit DFT and FRF, Hz Curve Fit and FRF, Hz

F(8,1) 43.197 43.197 43.332 43.184 135 −13
F(9,1) 53.113 53.113 53.331 53.041 218 −72
F(10,1) 63.554 63.554 63.307 63.568 −247 14
F(11,1) 74.427 74.427 74.969 74.421 542 −6
F(12,1) 85.652 85.652 84.965 85.667 −687 15
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would reduce the effects of initial startup transients. A more appropriate time window can

be selected, however, by simply using the reassigned pseudo Margenau-Hill time-frequency

distribution shown in Figure 2.7 of Chapter 2 as a guide. It can be found from this figure by

noting the duration over which the bands in the frequency direction are narrowest and con-

tributions of the noise are smallest. Consequently a more reasonable start of the window is

seen to be closer to 400 µs than the approximately 300 µs used. Unfortunately this insight

came retroactively. It should be noted too that a solution which satisfies equation (3.2.2)

could not be found if a solver employs the F(10,1), F(11,1), and F(12,1) cutoff frequencies

elicited from the temporal curve fit. This is a result of the differences between the true and

curve fitted cutoff frequencies being larger than 10 Hz. Essentially exact counterparts from

the FRF are required. Consequently an alternative “nearest neighbour,” inversion scheme,

which is based on minimizing the square of an error, is proposed next.

3.2.3 Description of inversion scheme

3.2.3.1 “Initial” inversion by finding the “nearest neighbour”

One approach to “solving” equation (3.2.2) is to find the nearest point in the (ideal) solution

space to a “contaminated” result. It is located by minimizing the objective function

Γ =

3∑

i=1

(
ωrefω

c∗
F(ni,mi)

(λ/µ,H/R) − ω̂c
F(ni,mi)

)2
(3.2.4)

for which the sum of the squares of the differences between the previously extracted

ω̂c
F(ni,mi)

components and the corresponding ωrefω
c∗
F(ni,mi)

are computed. The minimization

is performed by using the robust direct search method described in [118]. Once ωref , (λ/µ)

and (H/R) are known, the solution can be transformed into a physically meaningful space
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by using

H =
(H/R)Do

2 + (H/R)
, (3.2.5a)

µ = G = ρ(Hωref)
2, (3.2.5b)

and

λ = µ(λ/µ). (3.2.5c)

These expressions, along with standard geometrical and elasticity relations, are used to cal-

culate the individual initial values given in Table 3.2. They can be seen to agree reasonably

well with the corresponding values that are preassigned in the computer simulation.

Table 3.2. Comparing preassigned data with the initial nominal and revised values from the
nearest neighbour inversion.

Property Preassigned Initial Revised
value value range

Density, ρ, slug/ft3 (kg m−3) 15.39 — —
(7932)

Outer diameter, Do, in (mm) 3.496 — —
(88.8)

Wall thickness, H, in (mm) 0.220 0.220 0.217±0.008
(5.59) (5.59) (5.5±0.2)

Mean radius, R, in (mm) 1.638 1.638 1.640±0.003
(41.60) (41.60) (41.65±0.08)

Thickness to mean radius ratio, (H/R) 0.134 0.134 0.132±0.004
Young’s modulus, E, ksi (GPa) 31, 460 31, 430 32, 000±2, 200

(216.9) (216.7) (220±15)
Lamé constant, µ, (Shear 12, 230 12, 240 12, 200±700
modulus, G), ksi (GPa) (84.3) (84.4) (84±5)
Lamé constant, λ, ksi (GPa) 16, 410 16, 060 20, 600±8, 600

(113.2) (110.7) (142±59)
Ratio of Lamé constants, (λ/µ) 1.34 1.31 1.7±0.7
Poisson’s ratio, ν 0.286 0.284 0.31±0.05
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3.2.3.2 Uncertainty estimation

Estimates of uncertainties are developed more straightforwardly if they are based upon fre-

quency ratios rather than the cutoff frequencies themselves. This is a consequence of being

able to decouple the effects of (H/R) and (λ/µ) from those of ωref. Therefore, given the

cutoff frequencies ω̂c
F(n1,m1), ω̂

c
F(n2,m2), and ω̂c

F(n3,m3) of any three modes, the three independ-

ent6 ratios

Q1 =
ω̂c

F(n1,m1)

ω̂c
F(n2,m2)

=
ωrefω

c∗
F(n1,m1)

ωrefω
c∗
F(n2,m2)

=
ωc∗

F(n1,m1)

ωc∗
F(n2,m2)

, (3.2.6a)

Q2 =
ω̂c

F(n3,m3)

ω̂c
F(n2,m2)

=
ωrefω

c∗
F(n3,m3)

ωrefω
c∗
F(n2,m2)

=
ωc∗

F(n3,m3)

ωc∗
F(n2,m2)

, (3.2.6b)

and

Q3 =
ω̂c

F(n1,m1)

ω̂c
F(n3,m3)

=
ωrefω

c∗
F(n1,m1)

ωrefω
c∗
F(n3,m3)

=
ωc∗

F(n1,m1)

ωc∗
F(n3,m3)

(3.2.6c)

are introduced. The rightmost sides of equation (3.2.6) indicate that the Qi, i = 1, 2, 3, are

independent of ωref. Consequently values of (λ/µ) may be found, for a specified (H/R),

such that

Q1 −
ωc∗

F(n1,m1)

ωc∗
F(n2,m2)

= 0, (3.2.7a)

Q2 −
ωc∗

F(n3,m3)

ωc∗
F(n2,m2)

= 0, (3.2.7b)

and

Q3 −
ωc∗

F(n1,m1)

ωc∗
F(n3,m3)

= 0 (3.2.7c)

are satisfied individually. Reasonable approximations to the Qi, i = 1, 2, 3, are given by the

ratios of the values of ωrefω
c∗
F(ni,mi)

obtained from minimizing equation (3.2.4).

Uncertainties are assessed by perturbing each ω̂c
F(ni,mi)

in equation (3.2.6) over a range

of ±160π rad/s. This perturbation’s magnitude corresponds to the rounded extreme of the

6Other combinations of the cutoff frequencies can be used to form similar ratios. However, they are
simply “rearrangements” of the three selected ratios.
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moduli of the cutoff frequency differences presented in the rightmost column of Table 3.1.

The maximum and minimum values of (λ/µ), (λ/µ)max and (λ/µ)min respectively, which

satisfy equation (3.2.7) are recorded for the perturbed Qi when (H/R) is taken from the

minimization procedure. A uniform probability density function [119] is assumed between

(λ/µ)min and (λ/µ)max. Then the expected value of (λ/µ), (λ/µ)ex, is merely the average

value (1/2)[(λ/µ)min + (λ/µ)max] [119]. The uncertainty is taken as plus or minus one

standard deviation, ±(1/
√

12)[(λ/µ)max − (λ/µ)min]. A similar procedure is performed to

estimate the expected (H/R), (H/R)ex, and its uncertainty when the extreme (H/R) ratios,

(H/R)min and (H/R)max are evaluated using (λ/µ)ex. Then the uncertainty in ωref is indic-

ated by the absolute difference between ωref , determined by minimizing equation (3.2.4),

and the average ωref found by solving equation (3.2.6) for each of the ω̂c
F(n,m), with (H/R)

and (λ/µ) equalling (H/R)ex and (λ/µ)ex, respectively. These revised quantities are reported

in Table 3.2. They can be seen to agree, within the estimated uncertainties, with the values

preassigned in the simulation. The uncertainties in (H/R), (λ/µ), and ωref are propagated

conventionally [120] to extend them to the individual E, H, etc., values. Note that Do and ρ

are assumed to be exact in the simulation. The process to estimate the uncertainty in (H/R)

and (λ/µ) is illustrated graphically in Figure 3.3.

3.3 Experimental corroboration

3.3.1 Preamble

The procedure described previously is applied next to a physical specimen. The specimen is

an arbitrarily selected, commercial 3 inch NPS (80 mm DN), Schedule 40, seamless, carbon

steel pipe, about 114 inches (2.90 m) long. This pipe resembles closely, but not exactly, the

one used in the computer simulation. The cutoff frequencies of the same three ultrasonic

guided wave modes used in the simulation are measured. Conventional but destructive
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tension-compression and torsion-torsion tests are also performed on a short sample of the

pipe to corroborate data.

3.3.2 Experimental apparatus

Figure 3.4 shows a schematic of the experimental apparatus. A digital representation of the

pulse is programmed into an Agilent Technologies [121] 33120A, 15 MHz, function/arbit-

rary waveform generator. It is scaled to produce an output signal from the 33120A that is

essentially 20 Vppk with no Direct Current (DC) component. This voltage signal is applied

to the transmitting transducer, a Digital Wave Corporation [122] (DWC) B225, broadband

(30 kHz to 300 kHz) ultrasonic transducer. The transducer is “coupled” to a pipe by using

a thin, fairly uniform, layer of beeswax. The transmitting transducer is assumed to pro-

duce a force which is proportional to the applied voltage signal7. The ensuing radial wave

motion at the pipe’s outer surface is measured by using a nominally identical transducer

coupled similarly to the pipe. The output of the receiving transducer is conditioned by em-

ploying a DWC PA2040G/A, broadband (5 kHz to 4 MHz) preamplifier. The conditioned

displacement history is captured with an Agilent Technologies DSO6014A, 100 MHz digit-

DWC PA2040G/A

preamplifier

Beeswax

coupling

Agilent Technologies

DSO6014A digital

storage oscilloscope

Pipe

Agilent Technologies

33120A function/

arbitrary waveform

generator 

Personal computer

equipped with USB 2.0

and IEEE 488 (GPIB)

interfaces

Digital Wave Corporation

(DWC) B225 ultrasonic

transducer

Figure 3.4. Schematic of the equipment.

7Note that the force was “coloured” by the transducer’s and couplant’s convolved FRF. See the later
comment regarding the convolved FRF of the instrumentation chain.

64



Chapter 3. Pipe’s Characterization 3.3. Experimental corroboration

al storage oscilloscope, which is also used to “monitor” the output of the 33120A. Both the

33120A and DSO6014A are “supervised” by a Personal Computer (PC) using bidirection-

al communication. All interconnections in the analogue measurement chain use shielded,

coaxial cables.

3.3.3 Ultrasonic testing

Figure 3.5 (a) shows the radial displacement history measured on the steel pipe’s outer sur-

face at θ ≈ 0 and z∗ = z/H ≈ 5. The “free vibration” portion is shown between the two

shaded regions so that the asterisked end reflection and its effect on a DFT are avoided. Ini-

tial approximations of the cutoff frequencies, their amplitudes, and phases are elicited from

the DFT of the history before the right shaded region. The magnitude of this DFT is shown
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Figure 3.5. Showing (a) the radial displacement measured on the outer surface of a steel
pipe at θ ≈ 0 and z∗ = z/H ≈ 5, (b) temporal curve fit of “free vibration” portion, and (c)
DFT of time history before first end reflection’s arrival in (a). +End reflection.
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in Figure 3.5 (c). These approximations are utilized initially in the temporal curve fitting

procedure. The refined values of the cutoff frequencies are also reported in Figure 3.5 (c),

with the initial approximations given in parentheses. The reconstituted time history from

the refined values is presented in Figure 3.5 (b). It agrees well, over the corresponding

duration, with the original history of Figure 3.5 (a). A comparison of Figure 3.5 (c) with

Figure 3.2 (b) as well as Figure 2.4 (a) of Chapter 2 suggests that several modes [e.g., the

F(8,1) and F(9,1) modes] are “missing” in Figure 3.5 (c). The explanation is that the miss-

ing modes are attenuated strongly by the FRF of the analogue instrumentation chain, as

discussed later.

The previous inversion and uncertainty estimation procedures are applied using the

cutoff frequencies obtained from the temporal curve fit of the experimental history. The

results are summarized in Table 3.3. The pipe’s outer diameter and density are determined

separately and their measurement uncertainties are propagated in the derived quantities.

Table 3.3. Comparing conventionally and ultrasonically measured values for an actual steel
pipe.

Property Conventional Initial ultra- Revised ultra-
approach sonic value sonic range

Density, ρ, slug/ft3 (kg m−3) 14.9±0.4 — —
(7700±200)

Outer diameter, Do, in (mm) 3.496±0.004 — —
(88.80±0.09)

Wall thickness, H, in (mm) 0.220±0.004 0.22 0.217±0.007
(5.6±0.1) (5.6) (5.51±0.17)

Mean radius, R, in (mm) 1.638±0.004 1.638 1.640±0.005
(41.6±0.1) (41.6) (41.65±0.13)

Thickness to mean radius ratio, (H/R) 0.134±0.003 0.134 0.132±0.004
Young’s modulus, E, ksi (GPa) 29, 300±900 29, 200 29, 600±2, 300

(202±6) (201) (204±16)
Lamé constant, µ, (Shear 11, 500±300 11, 900 11, 700±900
modulus, G), ksi (GPa) (79±2) (82) (81±6)
Lamé constant, λ, ksi (GPa) 14, 400±7, 800 9, 900 12, 900±5, 900

(99±54) (68) (89±41)
Ratio of Lamé constants, (λ/µ) 1.3±0.7 0.8(4) 1.1±0.5
Poisson’s ratio, ν 0.28±0.07 0.23 0.27±0.06
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3.3.4 Conventional testing

Separate experiments were performed to verify the accuracy of the ultrasonic measure-

ments. The outer diameter, Do, and wall thickness, H, for example, were gauged at each

end of the pipe, 18 and 36 times respectively, by using an outside micrometer and calliper.

Dimensional data are reported in the first column of Table 3.3 as the average value plus

or minus one standard deviation. The pipe’s mean radius, R, and thickness to mean radius

ratio, (H/R), were based upon these measurements and conventionally calculated uncertain-

ties [120]. Its length and weight were obtained by using a tape measure and weighing scale,

respectively. Then the pipe’s density, ρ, was calculated straightforwardly by using standard

geometrical relations. Experimental uncertainties were propagated as before. (Note that

the Do and ρ values given in Table 3.3 were used, with their corresponding uncertainties, in

the ultrasonic inversion procedure.)

A standard destructive test was undertaken to determine the pipe’s elastic properties.

A 7 inch (18 cm) or so sample length was cut from one end of the pipe. End plates

and gripping shafts were welded to this sample, as shown in Figure 3.6 (a), which was

heat treated afterwards to relieve residual stresses. Two nominally identical, Vishay [123]

EA-06-062RB-120 option LE, three-element strain gauge rosettes were bonded, using

Vishay [123] M-Bond 610, at diametrically opposed locations in the specimen’s midplane.

Surface preparation and bonding followed the manufacturer’s instructions [123]. The align-

ment of the gauges was better than ±2◦. Strain gauge conditioning was provided by a Vishay

[123] Series 7000 Data Acquisition System. Then the instrumented pipe sample was moun-

ted in an Instron [124] universal material testing machine, as shown in Figure 3.6 (b), and

loaded pseudo-statically in either “pure” tension-compression or torsion-torsion. Element-

ary strength of materials calculations were performed to determine discrete data points

on axial stress-strain, lateral-axial strain, and shear stress-strain curves arising from both

sensors. A linear, least square regression [119] was calculated for each curve. The co-

efficient of determination, R2, was invariably greater than 0.998. The curves are shown in
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(a)

(b)

Figure 3.6. Showing (a) the tension-torsion specimen and (b) the specimen strain-gauged
and mounted in the load frame.

Figure 3.7, along with the least square regression lines. The tension-compression data were

used to estimate Young’s modulus, E, and to provide a later cross check on the calculated

Poisson’s ratio, ν. The torsion test gave the shear modulus, G. These values are also re-

ported in Table 3.38. Knowing E and G, other elastic constants were calculated by using

standard formulae. Uncertainties were propagated as before9.

It can be seen from Table 3.3 that E, G, and the dimensional information found ul-

trasonically for the steel pipe always correlate well with corresponding values from the

pseudo-static experiments. Similar uncertainties occur in this information, regardless of

the approach. On the other hand, noticeably large uncertainties arise invariably in the Lamé

constant, λ, and Poisson’s ratio, ν. The λ, ν, and (λ/µ) agree within the estimated experi-

mental uncertainties. It is interesting, however, that the uncertainties in the measured elastic

8Nominal values reported in Table 3.3 for E and G are the averages of the slopes found from the linear
regression of data from the two sensors. Uncertainties are taken as one-half the corresponding differences.

9Note that the value of ν calculated from E and G agreed, within experimental uncertainty, with that
measured from the negative ratio of the lateral to axial strains in the tension-compression experiment.
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Figure 3.7. Showing the experimental (a) tension stress-strain, (b) lateral-axial strain, and
(c) torsion stress-strain curves.

properties are somewhat less than in the computer simulation due to the varying sensitivity

of primarily (λ/µ) around the initial solution points.

3.3.5 Frequency response of the instrumentation chain and transduc-

er coupling

As stated previously, a comparison of Figures 3.2 (b) and 3.5 (c) suggests that the F(8,1) and

F(9,1) modes, for instance, are “missing” in Figure 3.5 (c). A series of experiments were

conducted [125–127] to confirm that the instrumentation chain’s FRF can explain the ap-

parent discrepancies. The experimental apparatus was arranged as shown in Figure 3.4 but

with the pipe removed. The Agilent Technologies waveform generator was programmed to
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produce a series of sinusoidal10 signals having an amplitude of 20 Vppk and no DC compon-

ent. A signal was applied to the transmitting transducer which was coupled directly to the

receiving transducer11 by using a thin, reasonably uniform layer of beeswax. The output of

the receiving transducer was conditioned by employing a DWC preamplifier configured for

no voltage gain. The conditioned output from the preamplifier was captured by employing

the Agilent Technologies digital storage oscilloscope. This configuration characterized not

only the receiving transducer and its associated coupling and conditioning but also that of

the transmitting transducer. Moreover the captured output was compared and found to be

identical in frequency with the very stable and pure sinusoidal output from the waveform

generator. Figure 3.8 [125] shows a representative FRF result. The magnitude in Fig-
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Figure 3.8. A representative measure of the (a) normalized magnitude and (b) phase angle
of the instrumentation chain’s FRF.

10One test of the linearity of a system is its response to a constant amplitude sinusoidal input having
various individual frequencies. A linear system must have a sinusoidal output having the same frequency as
the sinusoidal input. No marked deviation from this requirement was observed for the instrumentation chain
under consideration.

11Reciprocity was checked by observing no difference in a given signal after interchanging the transmitting
and receiving transducers.
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ure 3.8 (a) has been normalized by the maximax voltage output. It is seen that the analogue

instrumentation chain strongly attenuates frequency components below about 55 kHz.

Figure 3.9 compares radial displacements which are simulated and measured at θ = 0

and z∗ = z/H = 5.1. They are normalized by their corresponding maximax values so that

direct comparisons are easier. The present simulation [125], unlike before, incorporates the

FRF (shown in Figure 3.8) in the p(ω) term of equation (2.3.17). An arithmetic average

of the E and G reported in Table 3.3 for the conventional and ultrasonic measurements is

used in the simulation. On the other hand, purely conventionally measured nominal dimen-

sions are employed. The simulated and measured data given in Figure 3.9 show that the

agreement between the simulation and measurement is improved greatly, in comparison to

Time, µs

N
o
rm

al
iz

ed
 r

ad
ia

l 
d
is

p
la

ce
m

en
t (a)

0 200 400 600
−1.0

−0.5

0.0

0.5

1.0

Time, µs

(b)

0 200 400 600
−1.0

−0.5

0.0

0.5

1.0

Frequency, kHz

M
ag

n
it

u
d
e 

o
f 

F
F

T
 o

f
n
o
rm

al
iz

ed
 r

ad
ia

l 
d
is

p
la

ce
m

en
t

//

(c)

40 60 80 100
0.00

0.05

0.10

0.15

0.20

0.25

Frequency, kHz

//

(d)

40 60 80 100
0.00

0.05

0.10

0.15

0.20

0.25

Figure 3.9. Comparing (a) and (c) simulated and (b) and (d) measured normalized radial
displacements at θ = 0 and z∗ = z/H = 5.1 with allowances made for the instrumentation’s
frequency response.

71



Chapter 3. Pipe’s Characterization 3.3. Experimental corroboration

Figures 3.2 and 3.5, by incorporating the instrumentation chain’s FRF. It may be possible

to improve the agreement even further with a more faithful characterization of the instru-

mentation’s FRF by better controlling the coupling between the transducer and pipe in the

manner described next.

Although the agreement between the more realistic simulation and the measurement is

quite good, the latter must be repeatable to be practically useful. (It is unnecessary, on the

other hand, for the instrumentation to have an ideal frequency response because an imper-

fect but consistent behaviour can be removed with post-processing [125, 127].) Therefore a

series of experiments was performed to determine a measurement’s repeatability [126, 127].

It was shown [126] that the ambient air temperature and the transducer coupling are the two

most influential factors. The first factor may be significant as a result of seasonal changes in

the field but it is relatively unimportant under controlled laboratory conditions. Therefore,

only the second factor was considered in somewhat more detail.

Several coupling techniques were assessed. They included dry coupling (with a con-

trolled force used to push back-to-back transducers together), a viscoelastic coupling, and

beeswax. Of the options examined, a beeswax coupling had the greatest sensitivity and

best repeatability [126]. However, the formation of a beeswax slug was found to be cru-

cial [126]. A uniform sheet of beeswax was produced carefully at a controlled temperature.

Then individual cylindrical slugs were punched from the sheet so that each slug had a dia-

meter of 0.25 inch (6.35 mm) and a height of 0.028±0.003 inch (0.53±0.08 mm). A single

slug was used to couple the two back-to-transducers before measuring the FRF. Normaliz-

ation of a FRF followed the same procedure as that described for Figure 3.8. The results

from eight different slugs are presented in Figure 3.10 [126, 127]. They are seen to be

respectably repeatable.
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Figure 3.10. Showing the experimental (a) normalized magnitude and (b) phase angle of
the instrument chain’s FRF when using a controlled beeswax coupling.

3.3.6 Aluminium pipe

The procedure employed for the steel pipe was essentially repeated for an aluminium pipe.

Figure 3.11 (a) shows the radial displacement history measured ultrasonically on the alu-

minium pipe’s outer surface at θ ≈ 0 and z∗ = z/H ≈ 5.1. However arithmetic averaging,

on a sample by sample basis, was done over 1024 separate trials to reduce the incoherent

electrical noise. The selected “free vibrations” are shown, as previously, between the two

shaded regions given in Figure 3.11 (a). Initial approximations of the cutoff frequencies,

their amplitudes, and phases were elicited from the DFT as before. The magnitude of this

DFT is shown in Figure 3.11 (c). The initial frequency approximations were utilized in

the temporal curve fit of the free vibrations to refine their values. Both the initial approx-
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Figure 3.11. Showing (a) the radial displacement measured on the outer surface of an alu-
minium pipe at θ ≈ 0 and z∗ = z/H ≈ 5.1, (b) temporal curve fit of “free vibration” portion,
and (c) DFT of time history before the first end reflection’s arrival in (a).

imations and the refined cutoff frequencies are presented in Table 3.4. The reconstituted

time history derived from the refined frequencies, phases, and amplitudes is shown in Fig-

ure 3.11 (b). It agrees well with the corresponding original history of Figure 3.11 (a).

The nearest neighbour inversion procedure was applied and the results are summar-

ized in Table 3.5. The pipe’s outer diameter, Do, wall thickness, H, and density, ρ, were

determined independently as before. However the elastic properties are compared now

Table 3.4. Initial and refined cutoff frequencies for the aluminium pipe.

Mode Initial Approximation, kHz Refined Value, kHz

F(10,1) 61.029 61.502
F(11,1) 72.059 71.771
F(12,1) 83.088 83.063
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Table 3.5. Comparing (a) [(b)] conventionally [typically] and ultrasonically measured val-
ues for an aluminium pipe.

(a)

Property Conventional Initial ultra- Revised ultra-
approach sonic value sonic range

Density, ρ, slug/ft3 (kg m−3) 5.0±0.4 — —
(2600±200)

Outer diameter, Do, in (mm) 3.50±0.01 — —
(88.8±0.3)

Wall thickness, H, in (mm) 0.22±0.01 0.22 0.22±0.01
(5.5±0.3) (5.6) (5.5±0.3)

Mean radius, R, in (mm) 1.642±0.008 1.634 1.64±0.01
(41.7±0.2) (41.5) (41.6±0.3)

Thickness to mean radius ratio, (H/R) 0.131±0.009 0.134 0.132±0.008

(b)

Property Typical Initial ultra- Revised ultra-
value sonic value sonic range

Young’s modulus, E, ksi (GPa) 10, 000–10, 400 9, 900 10, 000±1, 500
(69–72) (68) (69±10)

Lamé constant, µ, (Shear modulus, G), 3, 800–3, 900 4, 000 4, 000±600
ksi (GPa) (26–27) (28) (28±4)
Lamé constant, λ, ksi (GPa) 4, 800–12, 600 3, 000 3, 900±3, 200

(33–87) (21) (27±22)
Ratio of Lamé constants, (λ/µ) 1.2–3.3 0.76 1.0±0.8
Poisson’s ratio, ν 0.28–0.38 0.22 0.2(5)±0.1

against typical values obtained from readily available, published sources. The ultrasonic

measurements generally agreed, within experimental uncertainty, with the corresponding,

conventionally determined or typical values.

3.4 Conclusions and closing remarks

A computer based, inverse procedure was described that simultaneously determined a ho-

mogeneous, isotropic pipe’s elastic properties and wall thickness. The procedure, which is

very straightforward to implement, is summarised next.
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1. Choose a forcing pulse with a frequency bandwidth that contains several cutoff fre-

quencies of the pipe of interest.

2. Carefully attach two transducers to the pipe’s outer surface. Guidelines for selecting

their separation are given below.

3. Pulse the transmitting transducer by using the forcing pulse selected in step 1.

4. Record a digital representation of the signal measured by the receiving transducer.

5. Estimate the cutoff frequencies from the signal recorded in step 4. The following

sub-steps are required.

(a) Compute the DFT of the signal collected in step 4.

(b) Determine the frequencies at which the dominant peaks of the DFT’s magnitude

occur. Note the corresponding amplitudes and phase angles.

(c) Apply the curve fitting technique described in Section 3.2.2 to the time his-

tory recorded in step 4 to recover refined estimates of the cutoff frequencies.

An appropriate time window can be determined by computing the reassigned

pseudo Margenau-Hill time-frequency distribution of the time history recorded

in step 4. (Convenient initial approximations to the modal amplitudes, phase

angles, and cutoff frequencies were determined in step 5b.)

6. The pipe’s elastic constants and wall thickness, along with estimates of their uncer-

tainties, can be determined by using the minimization and uncertainty estimation

procedures detailed in Section 3.2.3. (The cutoff frequencies to be used in these

procedures were determined in step 5c.)

The above procedural steps used the cutoff frequencies of three ultrasonic guided wave

modes that were employed with a SAFE forward solver and the pipe’s known density and
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outer diameter. Dimensional and elastic properties were shown to agree, within estim-

ated uncertainties, with those preassigned in a forward computer simulation. Then the

practical viability was demonstrated experimentally by using two commercial pipe speci-

mens. The dimensional and elastic properties agreed again, within estimated uncertainties,

with corresponding values obtained conventionally. However, large uncertainties were en-

countered invariably for the Lamé constant, λ, and Poisson’s ratio, ν. The F(10,1), F(11,1),

and F(12,1) modes were used in this chapter to illustrate the procedure. Extensive com-

puter simulations suggested, however, that any three convenient modes can be utilized in

the procedure providing the caveats given in Section 1.4 are observed. A statistical ana-

lysis [128] of a data set containing approximately 125 measured time histories indicated

that the cutoff frequencies extracted using the curve fitting procedure given in Section 3.2.2

agree best with predictions when they are recovered at virtually pure axial offsets around

2.55 . z/H . 10.2. The present technique can be automated and adapted, with straightfor-

ward modifications, as a corrosion screening tool providing variations in the circularity of

a pipe’s cross section and its axial variations are not severe.

The previously described procedure leads inherently to a pipe that conforms to the as-

sumptions made in the SAFE model. Of these assumptions, the ones which may most limit

the procedure’s application are those related to the pipe’s assumed geometry. Out-of-round-

ness or a wall’s thickness variations in a cross section may be handled straightforwardly by

using a two-dimensional finite element model of the cross section rather than the one-dimen-

sional model and Fourier series expansion used presently. A wall thickness which varies

along the pipe’s axis is a more difficult problem. The hybrid-SAFE technique described

in Chapter 4 can be employed straightforwardly to model arbitrary wall variations if it is

sufficient to consider only the variations between the input and monitoring locations. The

effect of including a mating finite element region depends on the severity of the wall vari-

ations. No significant change in the cutoff frequencies is expected if the wall variations are

small and smooth relative to the nominal wall thickness. However, if this is not the case,
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significant wave scattering can be introduced so that the procedure described in Chapter 4

is more appropriate. On the other hand, if the wall thickness variations remote from the

two transducer locations are significant then it is probable that a fully three-dimensional

finite element approach using time integration is more appropriate. Such considerations

are beyond the present scope.
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Wave Scattering–Another Forward Problem

4.1 Introduction

Detecting and sizing flaws is a first step towards assessing the “health” of a structure. From

a practical perspective, in situ measurements which are quick, reliable and non-destructive

are desirable. An ultrasonic-based approach is one plausible candidate. A particular attrac-

tion of single or “focussed guided waves” is that they can propagate at least several metres

so they have been used to interrogate otherwise inaccessible locations [9, 70, 71, 82, 90].

In comparison to the simultaneous presence of many modes, the behaviour of a single,

essentially non-dispersive mode seems capable of being interpreted more easily and, con-

sequently, forms a more common experimental platform [70, 71]. However, a single mode’s

excitation is quite difficult and expensive to implement relative to the simultaneous gener-

ation of several modes by a “point”-like force. Even if excited, a single mode is likely

converted to additional modes at geometrical discontinuities [69, 71]. Such modes are gen-

erally dispersive so that the form of a propagating wave packet changes as it travels along

a structure. Moreover, not all modes are scattered equally by a given discontinuity [69].

The objective here is to computationally assess the feasibility of using a single Frequency

Response Function (FRF) of several guided wave modes, rather than a detailed response

around the circumference of the pipe at a single frequency [87], to detect and characterize

notch-like defects in a homogeneous, isotropic steel pipe. This type of defect is chosen

because computed and experimental results are available for the reflection coefficients of

the essentially nondispersive L(0,2) mode [70]. Therefore, a useful check is provided.

An axisymmetric notch (i.e., wave scatterer) is explored first because it gives a reference

for more realistic, nonaxisymmetric geometries and it permits the modelling of a variety of

practical geometries (e.g., welds and flanges [65]). Moreover, a straightforward extension
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of the hybrid SAFE technique [65] is possible in which finite element and wave propa-

gation regions, around the notch and elsewhere respectively, are coupled. The extension

is used to model the scattering of higher order, nonaxisymmetric guided waves with less

computational burden than that expended when employing solely three-dimensional finite

elements [66–68, 73]. Also, important insight is provided by the modal analysis inherent to

the hybrid SAFE technique. This frequency oriented information is not obtained so readily

if a time marching, finite element procedure is used.

The technique which utilized cutoff frequencies in Chapters 2 and 3 to find an unblem-

ished pipe’s dimensional and elastic properties is extended to locally detect and charac-

terize an axisymmetric notch in the pipe. The approach proposed complements the cur-

rent use of employing one non-dispersive, guided wave mode to detect a remote defect.

Illustrative examples show, for apparently the first time, that singularities at frequencies

in a FRF caused by a notch are distinct1 from the unblemished pipe’s cutoff frequencies.

Moreover, the frequency differences between these singularities and an unblemished pipe’s

cutoff frequencies are shown to depend on a notch’s dimensions. The procedure suggested

for nonaxisymmetic notches is a straightforward generalization of the axisymmetric case.

However, at least two frequency differences are needed even for an axisymmetric notch.

Although attempts have been made previously [101–103] to use cutoff frequencies to “de-

tect and classify” corrosion, these procedures involved a single mode’s cutoff frequency

which is applicable only to a spatially uniform thinning and not notches. On the other hand,

predictions have been shown to improve for the analogous low frequency vibrations of a de-

fective beam when an increasing number of up to four (natural) frequencies are employed

as in, for example, [129–131].

1Previous studies, for example [65, 68], have noted strong wave scattering “at” cutoff frequencies. The
frequency resolution was so coarse, however, that the scattering appeared artificially to coincide with a cutoff
frequency of the unblemished pipe.
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4.2 Axisymmetric Scatterers

4.2.1 Preamble

The idealizations of a pipe and an axisymmetric wave scatterer are described first. Then a

comprehensive outline is given of the (axisymmetric) finite element model and its interface

to a connecting region in which a wavefunction expansion is employed. Imposing continu-

ity conditions on this interface allows the effect of wave scattering to be determined in the

otherwise infinite waveguide. Results are presented for several simulations of wave scat-

tering by an outer surface breaking notch2. Comparisons are made between the new and

previous simulations as well as available experimental data. Finally, interpretations and

conclusions are drawn.

4.2.2 Description of pipe, notch, and finite element region

4.2.2.1 Description of pipe and notch

The infinitely long pipe illustrated in Figure 4.1 is considered. It is assumed to be modelled

reasonably as uniformly right circular, homogeneous, linearly elastic, and isotropic. Then

the wavefunctions described in Chapter 2 can be used again to describe the displacement

fields in the “parent” pipe which excludes the defective region. In particular, the pipe

has Lamé constants λ and µ, density ρ, a constant mean radius R, outside diameter Do,

and wall thickness H, in addition to traction free, inner and outer surfaces. The radial

variation in the parent pipe is modelled by utilizing N finite elements through the pipe’s wall.

Positions and displacements are described in terms of a right hand cylindrical coordinate

system (r, θ, z), with solely the r and z axes illustrated in Figure 4.1. An axisymmetric

2All illustrative examples use outer surface breaking notches because they are easiest to simulate exper-
imentally. Consequently such notches have been studied more extensively. The modelling technique can be
applied, in principle, to any arbitrary axisymmetric scatterer by generating a finite element mesh appropriate
to the scatterer’s geometry.
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Figure 4.1. Model of part of the parent pipe and the axisymmetric notch.

wave scatterer is assumed to exist between −l ≤ z ≤ 0. This scatterer, which can have

any axisymmetric geometry, is shown in the figure as a rectangular shaped, open notch

having depth, d, and axial length, l. The motions caused by a transient force are modelled

by using a(n approximate) wavefunction expansion in the region denoted by R+ in addition

to an axisymmetric finite element model in the region bounded by B+ and B−. The latter

two boundaries, which coincide with the planes z = 0 and z = −l/2, define the axial

extents of half the axially symmetric notch. The notch is introduced into an otherwise
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unblemished pipe by simply removing finite elements, as illustrated in Figure 4.1. It is

well understood [68–70, 132] that singularities in the stress field that occur at the notch’s

corners are not described accurately by this method3. However, the far field behaviour is

modelled with sufficient accuracy to be meaningful [68–70, 132]. The defective pipe is

symmetrical4 about the plane z = −l/2 so that, as implied previously, only half the pipe

and scatterer need be considered but with appropriate boundary conditions prescribed on

B−. Motions are obtained for z ≤ −l from those found in R+ by using appropriate symmetry

and antisymmetry arguments.

4.2.2.2 Finite element region

Eight node, quadratic, quadrilateral finite elements [107] are used to describe the motions

in the finite element region bounded by the planes z = 0 and z = −l/2. The application

of Hamilton’s principle to the finite element region, which is described more completely in

Appendix F, gives

Sq = P (4.2.1)

where

S = KI − ω2MI. (4.2.2)

S is a dynamic stiffness matrix whereas q and P are assembled vectors of nodal displace-

ments and forces, respectively, for the finite element region. The KI and MI in equa-

tion (4.2.2), on the other hand, are the assembled stiffness and mass matrices, respectively,

of the finite element region and ω is the angular frequency of the externally applied excita-

3Crack-tip elements, having their “side nodes at quarter points of their respective sides,” could have
been used to improve the near field accuracy [107]. However, these elements were not used for the sake of
simplicity.

4This restriction can be removed by enclosing the entire scatterer in a finite element region and enforcing
continuity conditions at both z = 0 and z = −l. The modifications can be implemented straightforwardly but
more computational effort would be required.
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tion. Equation (4.2.1) can be partitioned as


SII SIB

SBI SBB





qI

qB


=



PI

PB


(4.2.3)

where subscript I (B) refers to a node of the finite element region that is inside (on the

boundaries [B+ or B−]) of the finite element region. By assuming that no external force is

located in the finite element region (i.e., all the forces are applied to B+ or B− of the finite

element region), then PI = 0. It follows that:

SIIqI + SIBqB = 0 (4.2.4a)

and

SBIqI + SBBqB = PB, (4.2.4b)

where, from equation (4.2.4a),

qI = −S−1
II SIBqB. (4.2.5)

From equations (4.2.4b) and (4.2.5)

SBI

(
−S−1

II SIBqB

)
+ SBBqB =

(
−SBIS

−1
II SIB + SBB

)
qB = PB. (4.2.6)

Let

S̆ =
(
−SBIS

−1
II SIB + SBB

)
, (4.2.7)

so that, from equations (4.2.6) and (4.2.7),

S̆qB = PB. (4.2.8)
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Equation (4.2.8) contains only force and displacement components on the boundaries B+

and B−. Matrices can be partitioned, as before, to give


S̆−− S̆−+

S̆+− S̆++





q−

q+


=



P−

P+


, (4.2.9)

where subscript − (+) refers to a node of the finite element region that is on boundary B−

(B+).

4.2.3 Boundary conditions on B
−

To take advantage of the (assumed) symmetry of a defective pipe about the plane z = −l/2,

a force in R+ is represented by the superposition of symmetrical and antisymmetrical forces.

The principle is illustrated in Figure 4.2 for a radial point force, P. For (anti) symmetrical

loading, the displacement in the (r and θ) z direction(s), as well as the stresses (σzz) σrz

and σθz vanish on B−. The disappearance of a stress gives a corresponding null (consistent)

nodal force. (Nodal forces fr, fθ, fz correspond to the σrz, σθz, σzz stress components,

respectively.) The assembled displacement and force vectors, q− and P− respectively, are

partitioned and simplified as

qs− =
[
usr− usθ− 0

]T and Ps− =
[
0 0 fsz−

]T (4.2.10a)

qa− =
[
0 0 uaz−

]T and Pa− =
[
far− faθ− 0

]T
, (4.2.10b)

where subscript (a) s denotes the (anti) symmetrical loading. Note that, where a displace-

ment is known on B−, the corresponding (reaction) force is unknown. Condensing out the

zero displacements on B− and ignoring the unknown reaction forces (as they are not of

interest presently), allows the deletion of the (first) last (2N1) N1 rows and columns of S̆−−,

(first) last (2N1) N1 rows of S̆−+, and the (first) last (2N1) N1 columns of S̆+− as well as the
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Figure 4.2. Illustrating the decomposition of a radial point force, P, into a superposition of
two symmetrical and antisymmetrical forces, P/2, about the plane z = −l/2.
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corresponding rows of q− and P−, in the (anti) symmetrical case. The N1 is the number of

nodes which are common to the finite element and wavefunction expansion regions. See

Figure 4.1. Such modifications allow equation (4.2.9) to be simplified to


Sz−− Sz−+

Sz+− S++





qz−

q+


=



0

P+


(4.2.11)

for both the symmetrical and antisymmetrical cases. Superscript z indicates the condens-

ation of the appropriate zero displacements and the neglect of the reaction forces on B−.

Equation (4.2.11) leads to

Sz−−q
z
− + Sz−+q+ = 0 (4.2.12a)

and

Sz+−q
z
− + S++q+ = P+, (4.2.12b)

whereas, from equation (4.2.12a),

qz− = −Sz−−
−1

Sz−+q+, (4.2.13)

so that, from equations (4.2.12b) and (4.2.13),

Sz+−

(
−Sz−−

−1
Sz−+q+

)
+ S++q+ =

(
−Sz+−S

z
−−
−1

Sz−+ + S++

)
q+ = P+. (4.2.14)

Let

S‡ =
(
−Sz+−S

z
−−
−1

Sz−+ + S++

)
(4.2.15)

so that equation (4.2.14) takes again the more convenient notational form

S‡q+ = P+. (4.2.16)
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Equation (4.2.16) contains only a known dynamic stiffness matrix and, as yet, unknown

displacements and forces on the boundary B+. It is “interfaced” in the next section with

the parent pipe (which acts as a waveguide) by applying continuity conditions between the

finite element and wavefunction expansion regions to eliminate the unknown variables.

4.2.4 Interface between wavefunction and finite element regions

4.2.4.1 Representation of the displacement field in R+ by a modal expansion

Consider, for convenience, a single harmonic wave mode with circular frequency, ω, hav-

ing circumferential wavenumber nin, order min, and unit amplitude that is incident on the

plane z = 0. This wave is scattered generally at the interface between the parent pipe and

the finite element region whose cross sectional boundaries coincide with those of a notch.

Consequently, reflected and transmitted wave fields are created by the interface. The trans-

mitted field is obtained straightforwardly from knowledge of the reflected field by taking

advantage of the symmetry about the plane z = −l/2. Therefore only the reflected field

needs to be considered in detail. The displacements in the reflected wave field (at the radial

coordinates of the finite element nodal points and θ = 0) that lie in region R+ can be written,

for a given circumferential wave number nscat, in the form

qscat
+ =

6N+3∑

mscat=1

Anscatmscatφ
R
nscatmscatue jknscatmscat z = GA. (4.2.17)

Here Anscatmscat , φ
R
nscatmscatu, and knscatmscat are the amplitude, mode shape, and axial wave number,

respectively, of the mth scattered mode. Only modes having non-negative (non-positive)

imaginary wave number components are admissible in the reflected (incident) field as a

consequence of the radiation condition described on page 32. Moreover, no modal coupling

exists between different n because the parent waveguide and finite element region are both

axisymmetric so that nscat necessarily equals nin. Furthermore, the exponential term used
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in equation (4.2.17) is unity because the displacements are evaluated at z = 0 due to the

choice of the coordinate system’s origin. Consequently, G in equation (4.2.17) is simply a

matrix containing the mode shapes of the scattered wave field. On the other hand, A is a

vector which “collects” the scattered waves’ amplitudes.

4.2.4.2 Force free nodes

The last N2 nodes illustrated in Figure 4.1 belong solely to the parent waveguide and, hence,

they are traction (force) free. It follows that:

fin + fscat = 0, (4.2.18)

where fin and fscat are the assembled (consistent) forces acting at these nodes. They cor-

respond to the incident and scattered wave fields, respectively. Nodal forces arising from

the incident wave field can be calculated from the Green’s function. This derivation is dis-

cussed more conveniently in Appendix F. On the other hand, fscat may be expressed, as

detailed in Appendix F, in the form

fscat = Fs1A, (4.2.19)

where Fs1 is a matrix that “maps” vector A (of scattered wave amplitudes) into the last N2

nodal forces.

4.2.4.3 Continuity conditions on boundary B+

Consider now the common boundary, B+, between the parent waveguide and finite element

regions. Continuities of the nodal forces and displacements on boundary B+ require that

q+ = qin
+ + qscat

+ (4.2.20a)
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and

P+ = fin
+ + fscat

+ . (4.2.20b)

Both fin
+ and qin

+ can be calculated from the known Green’s function. Moreover, fscat
+ takes

the same general form as fscat.

The use of equations (4.2.16) and (4.2.20) leads to

S‡q+ = P+ = S‡
(
qin
+ + qscat

+

)
= fin
+ + fscat

+ , (4.2.21)

which, after rearrangement, gives

S‡qscat
+ − fscat

+ = fin
+ − S‡qin

+ . (4.2.22)

Substituting equation (4.2.17) into equation (4.2.22) produces

S‡GA − Fs2A =
(
S‡G − Fs2

)
A = fin

+ − S‡qin
+ (4.2.23)

where Fs2 is a matrix, similar to Fs1, that “maps” A into the first N1 scattered nodal forces.

4.2.5 Resulting system of linear equations

Suppose next that

(
S‡G − Fs2

)
= F2 (4.2.24a)

and

fin
+ − S‡qin

+ = RB. (4.2.24b)
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It can be shown, by substituting the definitions given in the last two equations into equa-

tion (4.2.23), that

F2A = RB. (4.2.25)

Combining equations (4.2.18), (4.2.19), and (4.2.25) yields


F1

F2

 A =



fin

RB


= FA = R (4.2.26)

where F1 = −Fs1, F =
[
F1 F2

]T, and R =
[
fin RB

]T. The amplitudes of the scattered

waves can be recovered as

A = F−1R. (4.2.27)

Note that matrix F in equation (4.2.27) is square and invertible because all 6N + 3 axial

modes are retained for each circumferential harmonic wavenumber. If the effects of one

or more of the axial wave modes are neglected, a minimization procedure such as the one

used in [65] would be required to “solve” a linear system similar to equation (4.2.27). This

last process will be employed later for three-dimensional (i.e., nonaxisymmetric) notches.

Equation (4.2.27) must be evaluated for both the symmetrical and antisymmetrical com-

ponents of the excitation in order to recover their combined effect. The reflected and

transmitted wave amplitudes for the nmth scattered wave mode, RMin(nin,min),Mscat(nscat,mscat) and

TMin(nin,min),Mscat(nscat,mscat) respectively, which are both complex, are given by

RMin(nin,min),Mscat(nscat,mscat) =
(
As

nscatmscat
+ Aa

nscatmscat

)
/2 (4.2.28a)

and

TMin(nin,min),Mscat(nscat,mscat) =
(
As

nscatmscat
− Aa

nscatmscat

)
/2. (4.2.28b)

Anscatmscat is the nmth scattered wave amplitude and superscript (a) s denotes the solution cor-

responding to the (anti) symmetrical boundary conditions. The RMin(nin,min),Mscat(nscat,mscat) and
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TMin(nin,min),Mscat(nscat,mscat) symbolize the standard normalized reflection and transmission coef-

ficient [70], respectively, because they are calculated for each individual incident mode by

presuming it has a unit amplitude5 at the coordinate system’s origin. Moreover, these co-

efficients represent the amplitudes of the scattered waves at the planes z = 0 and z = −l,

respectively. All the reflection and transmission coefficients are identified by utilizing sub-

scripts that give both incident and scattered modes caused by cross coupling. This situation

may exist between different scattered wave modes. Corresponding labels take the forms

RMin(nin,min),Mscat(nscat,mscat) and TMin(nin,min),Mscat(nscat,mscat) for the reflection and transmission coeffi-

cients. Subscript M is a “place-holder” for one of T, L, or F which indicate a torsional,

longitudinal, or flexural mode, respectively. On the other hand, n and m represent the cir-

cumferential wavenumber and axial order, respectively. Indicators “in” and “scat” are used

to denote the incident and scattered wave modes. The reflection coefficient RL(0,2),F(1,1), for

example, represents the reflected contribution of the F(1,1) mode caused when the L(0,2)

mode is incident on the wave scatterer6. The rationale for choosing the subscripts in this

fashion is that they are consistent with the modal identification scheme used in [81].

4.2.6 Scattered displacement fields

The reflection and transmission coefficients defined in equation (4.2.28) are convenient

mathematical concepts which have important properties that provide convenient checks of

a computer program’s accuracy. (Appendix H uses several of these properties to validate

the numerical accuracy of the programs used here.) However, their practical usefulness is

limited. Limitations are due mainly to the doubly infinite set of the unblemished regions

of the notched pipe’s wave modes which may exist, in principle, simultaneously. Even

if a single mode is excited, it may be converted partially into other modes at the geomet-

5The magnitudes of RMin(nin,min),Mscat(nscat,mscat) and TMin(nin,min),Mscat(nscat,mscat) depend on the scaling of the mode
shapes for modes excited by modal conversions, i.e, mscat , min for axisymmetric scatterers. All the mode
shapes are scaled to have a vector norm magnitude of unity. See footnote 1 located on page 30.

6This particular modal conversion cannot occur with an axisymmetric scatterer but it is used to illustrate
the general case.
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ric discontinuity of the notch. All such modes act together so that the measurement of a

particular mode’s reflection and transmission coefficients becomes challenging because in-

dividual modal contributions need to be separated. An illustration of this difficulty is given

later when considering a three-dimensional notch. The direct determination of the reflec-

tion and transmission coefficients also presumes that a scattered pulse can be isolated in

time from the direct7 wave(s). Although a point-like excitation is attractive, as it is easier

to implement, it appears to make this modal resolution more difficult because the num-

ber of participating modes is generally increased. However, a simple metric is identified

later whose appearance is similar to the cutoff frequencies utilized in Chapter 3 to find a

pipe’s properties. This metric can be used to characterize a notch when the notched pipe

is “interrogated” by simultaneously using several modes having cutoff frequencies in the

excitation’s bandwidth. The approach taken here for the simultaneous excitation and meas-

urement of this metric (by employing multiple modes) is similar to that used in Chapter 3.

Further details will be provided later.

Two advantages of this metric, besides convenience, are that the scattered waves need

not be separated from the direct waves and, furthermore, wave amplitudes are not required.

Consequently the need for a transducer’s consistent coupling to a pipe is ameliorated. How-

ever, a compromise must be made. The metric depends upon singularities which are in-

troduced by the notch. Each singularity occurs at a frequency somewhat below that of the

unblemished pipe’s nearest cutoff frequency. Its effects are localized to a region around

the notch which makes the metric more suitable for “spot” checks or monitoring locations

close to a likely defect (e.g., a weld, say). Therefore it complements the use of propagating

modes which have been employed individually for the remote inspection of long lengths of

pipe [9, 70, 71, 82, 90].

Scattered wave fields are required to illustrate the usefulness of the newly identified

singularities. Consequently, modal summations which describe the corresponding displace-

7Direct waves are defined here as waves which, after being excited externally, arrive at an observation
point on a pipe without interacting with a wave scatterer like a notch.
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ment fields are discussed next. Point-like or pencil break excitations are simple to imple-

ment. Moreover, they readily excite the desired pipe modes so that more emphasis is placed,

in this thesis, on this type of excitation. Furthermore, scattering solutions for a single in-

cident mode are merely a subset of the several modes generally produced by a point-like

excitation. However, the former solutions can be “extracted” readily as a result of the modal

analysis inherent to a hybrid SAFE model.

The derivation of equation (4.2.28) has assumed a single harmonic wave of unit amp-

litude. However, as shown in Chapter 2, a point-like transient excitation generates many

modes which have frequency dependent amplitudes. The temporal variation of the displace-

ments in the resulting reflected wave field can be found by using a modal summation and

inverse Fourier transform. This procedure is similar to the one employed to derive equa-

tion (2.3.17). Then the reflected displacement field caused by an incident mode having

circumferential wavenumber nin and order min can be written as

Uninmin(θ, z, t) =

1

2π

∫ ∞

−∞
p(ω)e−jωtAin

ninmin


6N+3∑

mscat=1

RMin(nin,min),Mscat(nscat,mscat)φ
R
nscatmscatue jknscatmscat z

 e jnscatθdω

(4.2.29)

at the radial coordinates of the finite elements’ nodal surfaces. Note that a total of 6N + 3

axial modes, per circumferential wavenumber, are available from the SAFE idealization to

describe the reflected wave field. Moreover, Ain
ninmin

is the frequency dependent amplitude

of the incident mode. It can be determined, by using equation (2.3.16), to be

Ain
ninmin
=

jsinc(ninθ0)

2πr0

(
φL

minninl

)T
F0

Bninmin

e−jkninmin
zL , (4.2.30)

where, from Figure 4.1, zL is the axial coordinate at which the point force is applied. Sum-

ming displacement contributions produced by all the incident n and m waves gives the total
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reflected field (at the radial coordinates of the finite elements’ nodal surfaces) as

U(θ, z, t) =
∞∑

nin=−∞

12N+6∑

min=6N+4

Uninmin(θ, z, t). (4.2.31)

Note that the index for the summation over the axial modes uses the 6N + 3 leftward

admissible waves from the SAFE idealization to describe the incident wave field. The

approximate reflected displacement field through the pipe’s wall can be found straightfor-

wardly by invoking equation (2.3.1). The transmitted field takes a similar form. It is re-

covered by using symmetric-antisymmetic arguments. Hence, TMin(nin,min),Mscat(nscat,mscat) and

(−z − l), where l is the notch’s (positive axial) length, replace RMin(nin,min),Mscat(nscat,mscat) and

z, respectively, in equation (4.2.29). The signs of the axial displacement components are

also modified to accommodate leftward rather than rightward admissible wavefunctions.

Equations (4.2.30) and (4.2.31) can be used subsequently for the transmitted wave field.

4.2.7 Work balance

A convenient useful check of predicted modal conversions is derived from the conservation

of energy principle. Consider initially the instantaneous power, Pin
ninmin

, of a single harmonic

wave mode, Min(nin,min), having circular frequency, ω, when it is incident on the finite

element region’s boundary B+. The Pin
ninmin

can be written mathematically as

Pin
ninmin
=

1

2

∫ ro

ri

∫ 2π

0

τninmin
rz

‚�duninmin

dt
+ τ

ninmin

θz

·�dvninmin

dt
+ σninmin

zz

‚�dwninmin

dt

+‡τ
ninmin
rz

duninmin

dt
+‡τ

ninmin

θz

dvninmin

dt
+‡σ

ninmin
zz

dwninmin

dt

)
rdθdr,

(4.2.32)

where the (incident) stress and displacement fields are evaluated on B+. The time averaged

integral over one period, 2π/ω, gives the corresponding time averaged, work done per cycle
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of the incident mode, Ein
ninmin

. Consequently,

Ein
ninmin
=

1

(2π/ω)

∫ 2π/ω

0

Pin
ninmin

dt. (4.2.33)

The total incident, time averaged work done per cycle, Ein
tot, is simply the summed contribu-

tions of all the incident modes so that

Ein
tot =

∞∑

nin=−∞

12N+6∑

min=6N+4

Ein
ninmin
. (4.2.34)

The analogous total, time averaged work done per cycle on the finite element region due

to the scattered waves, Escat
tot , can be deduced similarly. Equation (4.2.32), in which all the

variables have been replaced by their reflected counterparts, is evaluated initially at B+ for

the reflected waves produced by each incident mode. Then the required time averaging

and summations are performed. This procedure is repeated by using the symmetry-anti-

symmetry arguments for the transmitted waves and evaluating equation (4.2.32) at B−. It

is followed by the required time averaging and summation. The sum of the time averaged,

work done by the reflected and transmitted waves gives the total, time averaged work done

per cycle on the finite element region by the scattered waves. As the total energy for the

finite element region is constant, on average, the conservation of energy gives

Ein
tot − Escat

tot = 0. (4.2.35)

On the other hand, a slight numerical deviation from the equality of equation (4.2.35) is to

be expected because approximate wave functions are used computationally. The deviation’s

magnitude is a measure of the consistency of the solutions recovered for the scattered wave

field. Note, however, that nonpropagating and evanescent8 modes do no net9, time aver-

8Evanescent modes must be taken in their complex conjugate pairs for this property to apply.
9Note that these modes do work on an instantaneous basis but the algebraic work done over one sinusoidal

excitation period vanishes.
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aged, work per cycle on the finite element volume [133, 134]. This last observation is a

consequence of only the propagating modes radiating energy to infinity.

4.2.8 Illustrative examples

4.2.8.1 Overview

Computer code was written in Matlabr to (i) solve equation (4.2.27) for the symmetrical

and antisymmetrical boundary conditions, and (ii) superimpose the results. A similar ap-

proach was followed to the one adopted in Chapter 2. It is documented more conveniently

in Appendices F and G. As before computer code writes the computer code for the finite

element analysis.

The illustrative pipe is identical to the one described in Chapter 2. In particular, its

material and dimensional properties are summarized in Table 2.1. Moreover, the same

discretization and wavefunctions detailed in Section 2.5 are used to represent motions in

the parent, unblemished parts of the waveguide. Transparency checks are run before a

notch is introduced in order to validate the basic software. Results are given in Appendix H.

Note that the smallest propagating wavelength occurring in the excitation’s bandwidth10 is

about 3.4H. This particular wavelength corresponds to that of the L(0,1) mode11. It is

an important factor in deciding upon a sufficiently fine discretization of the finite element

region in the pipe’s axial direction. Approximately ten elements per shortest wavelength

is considered reasonable [70, 71]. Additional elements can be used, of course, but more

computational effort would be required.

Results are given first for a simulation of the one-half wall thickness deep, axisymmet-

ric notch considered previously in a seminal paper [70]. Computed reflection coefficients

are compared to more limited finite element predictions and sparse measurements to ensure

that the present simulations are plausible. Then displacement time histories produced by

10The excitation and its bandwidth are described in Appendix H.
11Modes are labelled again by using the standard convention employed in [81].
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an axisymmetric force applied in the pipe’s axial direction are simulated. This simulation

mimics the experimental configuration used in [70], but with somewhat different transducer

locations. The new transducer locations are selected so that (i) the direct wave path is con-

sistent with the transducer locations used earlier in Chapters 2 and 3, and (ii) to illustrate the

difficulties which may occur when apportioning individual modal contributions from a time

history, even when relatively few (propagating) modes are excited. Also, the reflected and

transmitted fields created by a radial point force are computed for the same combination of

notch and pipe. These simulations demonstrate that singularities caused by the notch cor-

respond to frequencies which differ from the unblemished pipe’s cutoff frequencies. Then

a brief parametric study is performed to supplement previously known [70] effects of the

excitation frequency and an axisymmetric notch’s depth and axial length.

4.2.8.2 A familiar axisymmetric notch

An axisymmetric notch having the dimensional properties summarized in Table 4.1 was

considered initially. However, a brief summary of the methodology used in [70] is war-

ranted in view of later extensive comparisons. A specially designed “ring” transducer, de-

scribed in [9], was utilized in [70] to simulate an axisymmetric force applied axially on the

pipe’s outer surface. The excitation was nearly axisymmetric12 and it produced principally

longitudinal wave modes. (A purely axisymmetric force can excite only modes having no

circumferential variation. Torsional modes, conversely, arise only from a circumferential

force.) A transient excitation was applied to the ring transducer and the reflection from

Table 4.1. Dimensions of the outer surface breaking, axisymmetric notch.

Property Assigned Value

Depth of notch, d, in (mm) 0.110 (2.79)
Axial length of notch, l, in (mm) 0.125 (3.17)
Depth to wall thickness ratio, (d/H) 0.500
Axial length to wall thickness ratio, (l/H) 0.568

12Although this transducer reasonably suppresses nonaxisymmetric wave modes, traces presented in [9]
suggest that they are not eliminated completely.
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the free end of a pipe was measured. Then the procedure was repeated to measure the

separate reflections from a series of individual notches. The invariant temporal form of

the excitation was similar to the one described in Appendix H. It had the same general

form and centre frequency but with a slightly narrower, 60 kHz to 85 kHz or so, frequency

bandwidth as ten rather than seven temporal cycles were used. The only propagating lon-

gitudinal modes generated in this bandwidth were L(0,1) and L(0,2). A modest distance

between the transducer’s location and the pipe’s end permitted individual end reflections

from these two modes to be distinguished as a consequence of their distinct arrival times at

the receiving cross section. The amplitude of the end reflection13 of the L(0,2) mode was

employed as a reference for the “strength” of this mode’s reflection from various notches.

The ratio, at a given location, of the reflection amplitude from a notch to that of the free end

reflection was taken to be the reflection coefficient for the L(0,2) mode14. This particular

mode was selected because it (i) had the largest group wavespeed, and (ii) was essentially

nondispersive over the frequency bandwidth employed. Consequently the displacement

responses created by the L(0,2) mode could be identified straightforwardly.

An axisymmetric finite element model, comparable to the one described here but in-

volving linear (four node) finite elements and time marching integration rather than the

hybrid SAFE scheme, was used in [70] for numerical simulations. Therefore additional

data post-processing would have been required to identify and suppress extraneous modal

effects. Such effects are completely available in the frequency domain when using SAFE.

Moreover, a direct time marching scheme requires many more finite elements. For example

when finite elements, each having axial lengths of 1.6 mm are used, as seems the case in

[70], the idealization of the pipe’s 1.2 m length would require 750 elements. In contrast,

only one finite element is needed for a comparable mesh size with a hybrid-SAFE approach.

Eight node, axisymmetric finite elements [107] were utilized in the present simulations

13The L(0,2) mode is reflected perfectly at a free end.
14The only reflection coefficient considered in [70] was that of the L(0,2) mode when it was incident and

scattered alone, i.e., RL(0,2),L(0,2). When comparisons are made later to this reference, RL(0,2),L(0,2) is termed
“the reflection coefficient of the L(0,2) mode.”
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for the finite element region around the axisymmetric notch. Ultimately, ten (five) finite ele-

ments described the behaviour over the wall thickness in the wave function (finite element)

region. Furthermore, four finite elements, which together correspond to half the notch’s

axial extent, were utilized axially. This uniform idealization was selected after empirically

checking the convergence of the L(0,2) reflection coefficient for one notch. Convergence

was assessed by using mesh configurations that included one, two, or four finite elements

in the axial direction and twenty (ten), ten (five), six (three), or four (two) finite elements in

the radial direction for the wave function (finite element) region, respectively. The resulting

magnitudes15 of the representative L(0,2) reflection coefficient, evaluated at 70 kHz for the

notch described in Table 4.1, are presented in Table 4.2. The reflection coefficient changed

by less than 1% so it is essentially independent of the different finite element meshes invest-

igated. Similar results are seen in Table 4.1 for |RL(0,1),L(0,1)| and |RF(10,1),F(10,1)|. The last two

reflection coefficients were selected on the basis that they represent modes which propagate

at 70 kHz and have the smallest axial and circumferential wavelengths. Four finite elements

were used subsequently in the axial direction and ten (five) finite elements were employed

radially in the wave function (finite element) region. This selection allowed longer axial

notches to be represented without the need for additional axial finite elements. As noted

previously, the smallest propagating wavelength over the excitation’s bandwidth was about

Table 4.2. Magnitude of reflection coefficients for the L(0,2), L(0,1), and F(10,1) modes at
70 kHz for the axisymmetric notch described in Table 4.1.

Number of finite elements Reflection coefficient

Axial direction Radial direction |RL(0,2),L(0,2)| |RL(0,1),L(0,1)| |RF(10,1),F(10,1)|
One Ten 0.4058 0.1474 0.0199
One Five 0.4050 0.1455 0.0198
Two Five 0.4054 0.1471 0.0195
Four Five 0.4057 0.1480 0.0194
Four Three 0.4033 0.1456 0.0200
Four Two 0.4033 0.1425 0.0211

15The reflection and transmission coefficients are complex numbers. However, only the corresponding
magnitudes are given usually.
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3.4H. Consequently, the ratio of the smallest (axial) wavelength excited to a finite ele-

ment’s axial length was approximately 48, almost five times larger than the recommended

guideline [70, 71] of ten elements per shortest wavelength. Furthermore, the spatial aspect

ratio (i.e., the ratio of the finite elements’ dimensions in the radial and axial directions) was

approximately 1.4 which is near the desirable value of 1.0. Therefore, each finite element

is quite “compact” and likely to behave reasonably [107].

The normalized reflection coefficient of the L(0,2) mode, RL(0,2),L(0,2), was computed

straightforwardly by using equation (4.2.28a) with all the wavefunctions required by equa-

tion (4.2.27) retained. Results are compared in Figure 4.3 with the previously published

experimental and finite element values. The predicted trend for the L(0,2) reflection coeffi-

cient is similar to the experimental data but with an essentially constant offset around 13%.

The earlier finite element result lies approximately midway between the current prediction

and the measurement. Plausible suggestions for this difference include a slightly varying

Frequency, f, kHz

N
o
rm

al
iz

ed
 R

ef
le

ct
io

n
 C

o
ef

fi
ci

en
t,

 |R
L

(0
,2

),
L

(0
,2

)|

 

60 65 70 75 80 85
0.0

0.1

0.2

0.3

0.4

0.5

Current study

Experimental data [70]

Finite element [70]

Figure 4.3. Comparing the magnitude of the computed normalized reflection coefficient of
the L(0,2) mode for an axisymmetric notch with previous [70] measurements and predic-
tions.
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pipe wall thickness and a possible error in the measured, reference end reflection16 [70]. On

the other hand, the somewhat higher reflection coefficient predicted here could stem, in part,

from the fewer (six) and lower order (linear) stiffer elements used in [70]. Another contrib-

uting factor could arise from an ambiguous axial extent of the notch. It was suggested to be

1.6 mm (0.062 inches) for the finite element analysis but a 3.2 mm (0.13 inches) diameter,

“slot drill cutter” was used for its machining. This difference is unimportant if the notch’s

axial length is insignificant. To further assess the discrepancy, an axisymmetric notch was

simulated that had the same depth but one-half the axial length of the notch described in

Table 4.1. The calculated L(0,2) reflection coefficient was reduced from 0.41 to 0.36 which

agrees very well with the value of 0.37 given in [70] for the simulation. Indeed the reflec-

tion coefficient for the L(0,2) and, later, the T(0,1) mode was found to be “sensitive to the

axial extent of a part-through but not a through-wall notch” [70, 74].

To illustrate the practical difficulties associated which may be encountered when meas-

uring the reflection coefficient, a transient axisymmetric force was applied axially to the

simulated pipe’s outer surface. It had the temporal form shown in Figure D.1 and was po-

sitioned at z∗L = zL/H = 5.1, where zL is the transmitting transducer’s axial17 location. This

force excited only longitudinal modes in which L(0,2) was dominant18. Moreover, no mod-

al cutoff frequency existed in the bandwidth of this axisymmetric excitation. The resulting

axial displacement was computed on the pipe’s outer surface at z∗R = 10.2 and z∗T = −5.1,

where zR and zT are the axial coordinates of the receiving transducers which are located

in the reflected and transmitted fields, respectively. All pertinent positions are shown in

Figure 4.1.

Figure 4.4 presents the axial displacements, in both time and frequency, for (i) the dir-

ect waves (i.e., waves which would have been observed had there been no notch), (ii) the

16This comment is expanded later when considering a nonaxisymmetric notch.
17Circumferential coordinates are immaterial in this example because the geometry and external loadings

are all axisymmetric.
18The L(0,1) mode was generated also as a by-product of this stimulus. Consequently the peak axial

displacement of the L(0,1) mode was a not insignificant 40% or so of that of the L(0,2) mode alone. Moreover,
the L(0,1) mode was also excited by the modal conversion from L(0,2) into L(0,1) at the notch.
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Figure 4.4. Axial displacement predicted within the reflected field for an axisymmetric
notch. Sub-figures (a) and (b) [(c) and (d)] {(e) and (f)} give the direct [reflected] {super-
position of direct and reflected} waves produced by an axisymmetric axial force.
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reflected waves scattered “back” from the notch, and (iii) the (linear) superposition of the

previous two cases. Figure 4.5 gives the corresponding information for the transmitted

wave field where superposition is not required because no direct wave path exists “behind” a

notch. Furthermore, Figure 4.6 graphs the spectral density produced from equation (4.2.34)

for the incident waves and their scattered counterparts. The curves are indistinguishable so

that, as expected for no material damping, energy is conserved.

Several interesting observations arise from Figures 4.4 and 4.5. The amplitudes of the

direct waves appear to be larger in the reflected field of Figures 4.4 (a) and (b) than in the

transmitted field given in Figures 4.5 (a) and (b). This seeming anomaly is a consequence

of dispersion and the excitation of both the L(0,1) and L(0,2) modes. These modes are

essentially in (out of) phase in the reflected (transmitted) field at the two reception points

considered. Moreover, the individual effects of the two modes cannot be distinguished eas-

ily in either the time or frequency domains. This difficulty occurs because the difference

between the wave speeds of the L(0,1) and L(0,2) modes is not great enough to separate

the corresponding pulses. On the other hand, larger separation distances between the trans-

mitting and receiving transducers would allow the modal effects to be distinguished in time.

A reflection can be seen clearly in the reflected (but not the transmitted) field after intro-

ducing the notch, even though the wave packets associated with the incident and reflected

waves overlap. Therefore, spatial separations required to use the technique described in

[70] for measuring the reflection coefficient might not be possible. On the other hand, con-

sider the corresponding spectral density shown in Figure 4.4 (f) which can be measured

straightforwardly. This figure unmistakeably indicates the presence of the axisymmetric

notch because the single peak in the spectral density of Figure 4.4 (b) becomes two local

maxima, one on either side of the original peak. The change is caused by the destructive

interference of the back scattered waves and the incident waves. However, it is position and

defect dependent. Somewhat paradoxically, a comparison of the peaks in the spectral dens-

ities of Figure 4.5 (a) and (c) suggests that the notch’s introduction has an “amplifying”
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Figure 4.5. Axial displacement predicted within the transmitted field for an axisymmetric
notch. Sub-figures (a) and (b) [(c) and (d)] give the direct [transmitted] waves produced by
an axisymmetric axial force.
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Figure 4.6. Spectral density of the work done, per period, on the finite element region by
waves produced by an axisymmetric axial force and scattered by an axisymmetric notch.

effect in the transmitted field. This behaviour is explained by an amplitude reduction of

the L(0,1) component19 in the transmitted field so that it is less “destructive” to the L(0,2)

component. Phase effects are obviously significant.

One phenomenon which is expected [73], but not seen, in Figures 4.4 and 4.5 are dis-

tinct wave packets representing reflections from the “front” (z = 0) and “back” (z = −l)

of the notch. These wave packets are created by superimposing, both constructively and

destructively, steady state waves having different frequencies and wavelengths. The excita-

tion pulse’s duration is too long and the notch’s axial extent is too short in this example to

19The amplitude of the L(0,2) mode is also reduced in the transmitted field by the notch’s introduction.
The reduction of the L(0,1) mode’s destructive behaviour is more important, however, in determining the
overall amplitude at this location in the transmitted field.
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see easily the separate reflections from the front and back edges of the notch.

A radial point force, whose temporal character is retained from before, is considered

next for the same notch, finite element idealization, and (axial) monitoring locations. These

last locations are simply offset axially from the position of the force’s application. Circum-

ferential wave numbers between −16 ≤ n ≤ +16 are used in the modal expansion, as in

Section 2.5. All the available wavefunctions are kept for each circumferential wave number

required in the computations of equation (4.2.27). Figures 4.7, 4.8, and 4.9 are analogous

to Figures 4.4, 4.5, and 4.6. The curves in Figure 4.9 are visually indistinguishable over the

excitation’s entire bandwidth but, unlike Figure 4.6, they differ at singularities near but not

coinciding with the F(±4,2), F(±5,2), and F(±6,2) cutoff frequencies. The work done by

the incident and scattered waves no longer appear to be identical at these singularities. Dis-

crepancies arise because corresponding wave amplitudes cannot be evaluated directly from

a conventional Fourier analysis which disregards initial temporal conditions. Analogous

behaviour was observed previously for the unblemished pipe when additional terms related

to its cutoff frequencies needed to be introduced in order to ensure causality.

Figures 4.7 and 4.8 seem more complicated than their counterpart Figures 4.4 and 4.5.

Several useful observations can be made nonetheless. A much richer palette is apparent

for the point excitation because several cutoff frequencies of the (unblemished) pipe lie

within its frequency bandwidth. The effects of individual modes are difficult to discern,

however, because of the numerous modes that “ring.” On the other hand, dominant features

around the unblemished pipe’s cutoff frequencies are obvious. These features occur at val-

ues slightly lower than nearby cutoff frequencies. The frequency differences are presented

in Table 4.3. A typical difference is seen more clearly in Figures 4.10 (a) and (b) which

reproduce Figures 4.7 (f) and 4.8 (d), respectively, but with the common frequency scale

expanded about the unblemished pipe’s F(±10,1) cutoff frequency of 63.554 kHz. The new

singularity at 63.362 kHz does not coincide with any of the pertinent resonant frequencies

given in Table 4.4 for solely the finite element region. In addition to this notch-induced
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Figure 4.7. Radial displacement predicted within the reflected field for an axisymmetric
notch. Sub-figures (a) and (b) [(c) and (d)] {(e) and (f)} give the direct [reflected] {super-
position of direct and reflected} waves produced by a radial point force.
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Figure 4.8. Radial displacement predicted within the transmitted field for an axisymmetric
notch. Sub-figures (a) and (b) [(c) and (d)] give the direct [transmitted] waves produced by
a radial point force.
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waves produced by a “point” radial force and scattered by an axisymmetric notch.

Table 4.3. Frequencies that correspond to the readily identified singularities appearing in
Figures 4.7 (d) and 4.8 (d). They are distinct from the unblemished pipe’s cutoff frequen-
cies.

Circumferential Axial Frequency of Difference between cutoff
wavenumber order singularity (kHz) and singularity frequency (kHz)

n = ±8 m = 1 43.112 0.085
±2 3 46.462 0.001
±4 2 49.623 0.294
±9 1 52.983 0.129
±10 1 63.362 0.192
±11 1 74.153 0.273
±12 1 85.274 0.377
±13 1 96.660 0.503

110



Chapter 4. Wave Scattering 4.2. Axisymmetric Scatterers

(a)

Frequency, f, kHz

S
p
ec

tr
al

 d
en

si
ty

 o
f 

n
o
n
d
im

en
si

o
n
al

 r
ad

ia
l 

d
is

p
la

ce
m

en
t,

 1
0

6
×

|u
*
(ω

)|
, 
H

z−
1

//

↑Cutoff frequency of

unblemished pipe

↓Singularity introduced by notch

60 62 64 66 68 70
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

(b)

Frequency, f, kHz

//

↓Singularity introduced

   by notch

60 62 64 66 68 70
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

↓“Plateau”

↓
“Null”

Figure 4.10. Spectral densities in the (a) reflected, and (b) transmitted field for an axisym-
metric notch having d/H = 0.500 and l/H = 0.568. The frequency scales are enlarged
about the unblemished pipe’s F(±10,1) cutoff frequency.

singularity, which is common to the reflected and transmitted fields, a “plateau”(“null”)

occurs in the reflected (transmitted) field above 63.554 kHz.

Figure 4.11 shows other normalized reflection and transmission coefficients predicted

for the flexural F(n, 1) modes, where n equals 8 through 13, for an axisymmetric notch hav-

ing d/H = 0.500 and l/H = 0.568. Each curve represents a single F(n, 1) mode which is

reflected and transmitted into itself. (Modal conversions from F(n, 1) into F(n,m), m , 1,

are presented in Appendix I for completeness. Such conversions are required to satisfy con-

tinuity and boundary conditions.) For easier comparisons, the frequency axis in Figure 4.11

has been normalized by the cutoff frequency of the mode in question. It is noteworthy now
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Table 4.4. Resonant frequencies between 35 kHz and 110 kHz of solely the finite element
region.

Circumferential Frequency Boundary conditions
wavenumber (kHz) on B−

n = ±8 95.593 Antisymmetric
±9 31.177 Symmetric
±9 34.572 Antisymmetric
±9 107.250 Antisymmetric
±10 38.080 Symmetric
±10 42.202 Antisymmetric
±11 45.587 Symmetric
±11 50.387 Antisymmetric
±12 53.598 Symmetric
±12 59.077 Antisymmetric
±13 62.072 Symmetric
±13 68.223 Antisymmetric

that each curve can be seen to possess two singularities, rather than one. The singularity

near a normalized frequency of 1.0 occurs, as before, at a frequency just below the un-

blemished pipe’s relevant cutoff frequency. This observation can be corroborated by noting

that the normalized reflection and transmission coefficients always pass through the points

(1.0, 1.0) and (1.0, 0.0), respectively, for these modes. On the other hand, the singularity

around the normalized frequency of 0.7 always corresponds to a mode transitioning from

evanescent to non-propagating. The practical usefulness of this singularity, however, may

be limited. Waves scattered from the axisymmetric notch at frequencies near this singu-

larity decay exponentially from the notch’s vertical boundaries at a rate of about exp(−z∗d).

The z∗d is the distance from the notch’s boundary, nondimensionalized by the unblemished

pipe’s thickness, H. The decay rate in the axial direction is determined approximately

based on the behaviour of the representative F(10,1) mode’s axial wavenumber found from

Figure 4.12. The latter figure shows that the imaginary part of the nondimensional axial

wavenumber of this mode is almost one when the mode transitions from evanescent to non-

propagating. The quite large exponent suggests that the effect is very localized and likely

to be masked by the propagating modes. The singularity just below the cutoff frequency of
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Figure 4.11. Normalized (a) reflection and (b) transmission coefficient caused by flexural
F(n, 1) modes, where n is 8 through 13 inclusive, and an axisymmetric notch having d/H =

0.500 and l/H = 0.568. The f c
F(n,1) is the cutoff frequency of the unblemished pipe’s F(n, 1)

mode.

63.553 kHz, on the other hand, is more interesting. Its effect is not so localized because the

magnitude of the imaginary part of its wavenumber is much closer to zero. Indeed, another

“back of an envelope” calculation20 based on Figure 4.10 (a) suggests that the axial decay

rate is about exp(−0.15z∗d) at the notch-induced singularity. As a consequence of the smaller

exponent, this last singularity may be detectable to about 10H or 2 inches (5 cm) from the

axisymmetric notch’s vertical boundaries.

Tables 4.3 and 4.4 indicate that the frequency of the possibly more important singularity

20This calculation plausibly assumes that the spectral density’s amplitude at the higher frequency singu-
larity is at least four times greater than that at the “plateau” or “null.”

113



Chapter 4. Wave Scattering 4.2. Axisymmetric Scatterers

63.554 kHz44.725 kHz

Frequency, f (kHz)

N
o

n
d

im
en

si
o

n
al

 w
av

en
u

m
b

er
, 

k
* =

kH

 

 

30 40 50 60 70 80 90 100 110
0.0

0.2

0.4

0.6

0.8

1.0

1.2

ℜ(k
*
)

ℑ(k
*
)

PropagatingNonpropagating

Evanescent

Figure 4.12. Real and imaginary parts of the unblemished pipe’s F(10,1) nondimensional
wavenumber, k∗, as a function of frequency.

does not correspond to a resonant frequency of the finite element region alone. It depends

presumably upon the properties of both the finite element region and the parent waveguide.

Moreover, the last column of Table 4.3 shows that the difference between the frequency

of this singularity and the corresponding unblemished pipe’s cutoff frequency grows con-

tinuously as the circumferential wavenumber increases. Advantage might be taken of this

trend by increasing the centre frequency of the point force to excite modes having larger

circumferential wavenumbers in order to make the frequency differences easier to measure.

Previous observations are summarized now. An axisymmetric notch may be detected

with a single mode, whose cutoff frequency lies outside the excitation’s bandwidth, by

simply searching a time history for a spurious reflection providing (i) the reflection from

the notch is not “masked” by the direct waves, and (ii) the reflection is sufficiently strong
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that it can be separated from the measurement equipment’s noise floor. The correspond-

ing spectral density of the superimposed incident and back scattered waves indicates the

notch’s introduction by causing the formerly single maximum amplitude of the incident

FRF to “split” into two local maxima. However, the detection in a time history of “spuri-

ous” reflections from a notch is more difficult when multiple modes are excited. On the

other hand, the reflection and transmission coefficients of these modes become very large

near their cutoff frequencies [65, 68]. Moreover, well defined peaks which are quite isol-

ated in the incident FRF are mostly split into two again in the reflected wavefield. They are

merely shifted (down) in frequency, however, in the transmitted field. These changes have

been exemplified in Figure 4.10 by using the the representative F(10,1) mode.

4.2.8.3 Parametric study of wave scattering by axisymmetric notches

Figure 4.13 compares the present and published [70] reflection coefficient, |RL(0,2),L(0,2)|,

for axisymmetric notches. A comprehensive assessment of such a notch’s axial extent is

provided in addition to confirming previously noted effects of different excitation frequen-

cies as well as an axisymmetric notch’s depth. Each parameter is varied individually in

a given subfigure with the remaining parameters kept at constant reference values. The

reference depth and axial length are presented in Table 4.1 and the reference frequency is

70 kHz. Figure 4.13 (a) shows that the reflection coefficients found by different authors is

invariably within a reasonable 13%. Plausible reasons for the differences are given earlier

in Section 4.2.8.2. It is seen again that |RL(0,2),L(0,2)| is (i) a weak function of the exciation fre-

quency over the given bandwidth, and (ii) a stronger function of the axisymmetric notch’s

depth for the 70 kHz excitation. Although the corresponding trend for axial length changes

is more modest than that for the depth, the changes are not negligible.

Figure 4.14 gives information for the same notches considered in Figure 4.13 but for the

L(0,1), T(0,1), F(3,1), and F(10,1) modes. The reflection coefficient of the T(0,1) and, to a

less extent, the L(0,1) mode behave similarly to that of the L(0,2) mode. The L(0,1) and also
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Figure 4.13. Magnitude of the reflection coefficient, |RL(0,2),L(0,2)|, for various (a) excitation
frequencies and axisymmetric notches having different (b) depths, and (c) axial lengths.

the F(3,1) reflection coefficient has a high change rate (or sensitivity) in Figures 4.14 (b)

and (c) when (d/H) or (l/H) increase beyond about 50%. Clearly these sensitivities are

nonlinear. On the other hand, they are seen in Figure 4.14 (c) to be most sensitive to axial

length changes below about 10%. Finally, the reflection coefficient of the F(10,1) mode

is generally least sensitive for the modes and parametric values considered in Figure 4.14.

Overall the L(0,2) and T(0,1) modes, which are both essentially nondispersive over the

chosen frequency range, seem more amenable to a single mode approach for detecting

and characterizing axisymmetric notches. However, even a cursory examination of Fig-

ures 4.13 (b) and (c) shows that an axisymmetric notch’s dimensions cannot be determined

uniquely by using the reflection coefficient of solely one mode. Of particular interest here,
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Figure 4.14. Reflection coefficients of individual L(0,1), T(0,1), F(3,1), and F(10,1) modes
for different (a) excitation frequencies and axisymmetric notches having various (b) depths
and (c) axial lengths. Only |RMin(nin,min),Mscat(nscat,mscat)|, where Min = Mscat, nin = nscat, and
min = mscat, is plotted for each mode.
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however, is the behaviour of a pipe’s dominant response features near its cutoff frequencies

after an axisymmetric notch is introduced. Then the F(3,1) and F(10,1) reflection coeffi-

cients presented in Figure 4.14 (a) suggest that similar, easily distinguished features still

exist even after the notch’s appearance. Just as importantly, the corresponding frequencies

do not coincide with the unblemished pipe’s cutoff frequencies. Therefore, the frequency

differences may provide a more easily measured alternative to the reflection coefficient.

This conjecture is assessed next by performing a preliminary parametric study that illus-

trates how an antisymmetric notch’s dimensions may be determined uniquely by using the

singularities of two or three modes, depending on the notch’s dimensions.

Wave scattering by axisymmetric notches having various dimensions was modelled by

using the finite element idealization described previously. Figures 4.15, 4.16, and 4.17

present the frequency difference, ∆ f , from the nearest cutoff frequency of the unblemished
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Figure 4.15. Frequency differences, ∆ f , from the unblemished pipe’s F(10,1) cutoff fre-
quency introduced by axisymmetric notches having various dimensions.
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Figure 4.16. Frequency differences, ∆ f , from the unblemished pipe’s F(11,1) cutoff fre-
quency introduced by axisymmetric notches having various dimensions.

pipe and a singularity frequency caused by a notch. Illustrative F(10,1), F(11,1), and F(12,1)

modes are shown. Frequency differences can be seen to depend upon an axisymmetric

notch’s depth and, to a less degree, its axial length. To determine these two dimensions,

constant frequency differences for each of these modes are projected onto their common

horizontal plane. The projections are superimposed in Figure 4.18. Not surprisingly it can

be seen that, due to the contours’ “U-shapes,” the depth of a notch for a given axial length,

l/H, and constant frequency difference, ∆ f , cannot be found absolutely from any single one

of the three modes. Consequently more than one mode has to be employed—a situation

which is common to a reflection based procedure [74].

The intersection of the contours of two different flexural modes is usually unique. See,

for example, the 200 Hz and 300 Hz contours for the F(11,1) and F(12,1) modes, respect-

ively. The single intersection of the contours provides two coordinates that uniquely define
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Figure 4.17. Frequency differences, ∆ f , from the unblemished pipe’s F(12,1) cutoff fre-
quency introduced by axisymmetric notches having various dimensions.

the two dimensions of an axisymmetric notch. (Interpolations are obviously needed if a

frequency difference does not lie precisely on a contour line.) There are instances, how-

ever, when the curves for two different modes intersect more than once. One such example

seen in Figure 4.18 occurs for the 400 Hz and 600 Hz contours of the F(11,1) and F(12,1)

modes, respectively. In this instance the two arrowed distances from the F(10,1) mode’s

200 Hz reference contour may be used to help distinguish the two intersections. Then, by

interpolating linearly between the 200 Hz and 300 Hz contours of the F(10,1) mode, a fre-

quency difference for the F(10,1) mode of around 225 Hz would suggest a notch having

(d/H) ≈ 0.73 and (l/H) ≈ 0.78. On the other hand, a frequency difference of about 260 Hz

in the F(10,1) mode would give a notch having (d/H) ≈ 0.62 and (l/H) ≈ 0.70. Clearly

each additional intersection requires knowledge of another mode’s frequency difference to

uniquely determine a notch’s dimensions. Note, however, that if information for the F(10,1)
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mode and either the F(11,1) or F(12,1) mode is available, then these two notches can be

sized without the need for a third mode. Apparently the selection of modes is more im-

portant if only two modes are utilized to characterise an axisymmetric notch. Fortunately

the contours plotted in Figure 4.18 can be generated straightforwardly for any range of ax-

isymmetric notch sizes once the nominal pipe and modes of interest have been identified.

Furthermore an excitation such as a point force which simultaneously excites several modes

becomes more advantageous as the number of required modes increases.

Figure 4.18 also suggests that, for a given frequency difference and notch depth, a flex-

ural mode having a higher circumferential wavenumber leads to a lower ordinate position.

Consequently such modes are more sensitive to notches having smaller axial extents. Fur-

thermore, it can be observed that frequency differences for a given mode decrease for notch-

es with progressively smaller axial extents, i.e., they become like a circumferential crack.

This trend implies that the technique of measuring frequency differences is likely more ef-

fective at characterising “volumetric” voids rather than a crack. It is interesting to note that

the constant frequency contours for a single mode are spaced more closely in Figure 4.18

if the axial dimension of the notch is relatively long. It follows, therefore, that sizing is

likely more accurate for longer axial notches. This observation reaffirms the previous com-

ment that the measurement of frequency differences is likely to be more challenging for

crack-like defects.

The dimensions of the notch described in Table 4.1 are superimposed in Figure 4.19

on the same contour mapping of Figure 4.18. This superposition demonstrates that the

selection of modes is relatively unimportant in determining an axisymmetric notch’s size.

Note that the ∆ f values for the F(10,1), F(11,1), and F(12,1) modes, obtained by linear

interpolations between encompassing contours, are also given in Figure 4.19. These values

also appear in Table 4.3. The two sets of (frequency) values are in excellent agreement. It

may be seen from Figure 4.19 that the dimensions of the notch described in Table 4.1 can

be determined uniquely given the frequency differences for any permutation of pairs of the
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three available frequency differences. The principle illustrated in Figure 4.19 extends to

other modal selections providing the caveats detailed in Section 1.4 are observed.

The size of the mark used in Figure 4.19 to indicate the dimensions of the notch de-

scribed in Table 4.1 suggests how uncertainties in a notch’s dimensions may be assessed

from those arising in measured frequency differences. Assuming that the frequency dif-

ferences are estimated by using the curve fitting technique described in Section 3.2.2, it is

reasonable to assume, based on the results shown in Table 3.1, that a frequency difference

might have an uncertainly of about ±25 Hz. A perturbation of ±25 Hz about the mark-

er shown in Figure 4.19 for solely the F(10,1) frequency contours gives an uncertainty of

around ±3% and ±5% for (d/H) and (l/H), respectively. Hence the procedure, not unex-

pectedly, produces better estimates for the depth than the length of an axisymmetric notch.

These uncertainties are likely to be approximately doubled when the uncertainties for two

frequency contours are considered together. It may be possible to reduce the uncertain-

ties by considering the simultaneous, feasible solution space suggested by more than the

minimum number of modes. A more precise uncertainty analysis, however, requires the

actual uncertainty in each frequency difference and the gradients in the neighbourhood of

the nominal solution to be considered.

4.2.8.4 Experimental procedure to determine frequency differences

Limited experiments were conducted solely by the author, Mr. K. A. Adeogun and the au-

thor, or K. A. Adeogun to confirm that singularities, distinct from those of an unblemished

pipe, are introduced by a notch and that their frequencies are measurable. Reflections from

a free end (i.e., an axisymmetric geometry) were investigated first as they were easiest to

observe. The remainder of the notches were nonaxisymmetric. The procedure followed for

the axisymmetric and nonaxisymmetric notches was identical. It is summarised next.

1. The cutoff frequencies of the pipe were determined on a section known to be “un-

blemished” by following the procedure given in Section 3.4.
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2. One of the two readily accessible free ends of the pipe was used as the “notch” after

which a notch was “machined” in the pipe.

3. Two transducers were attached carefully to the pipe’s outer surface near the location

of the notch or one of the free ends. The guidelines given in Section 3.4 for selecting

transducer separations were essentially followed. Moreover, the transducer locations,

relative to the notch’s geometric centre, also followed these guidelines, i.e., the trans-

ducers were located between 2.55 and 10.2 wall thicknesses from the centre of the

notch with essentially no circumferential offset.

4. The transmitting transducer was pulsed by using the forcing pulse described in Ap-

pendix D.

5. A digital representation of the signal measured by the receiving transducer was recor-

ded.

6. The frequencies of the singularities were estimated from the time history recorded in

the previous step. This step had the following sub-steps.

(a) The DFT of the signal collected in step 5 was computed. Then the frequencies

at which the dominant peaks of the DFT’s magnitude occurred were determined,

and the corresponding amplitudes and phase angles were noted.

(b) The curve fitting technique described in Section 3.2.2 was applied to the time

history recorded in step 5 to recover refined estimates of the singularities’ fre-

quencies. Convenient initial approximations to the modal amplitudes, phase

angles, and singularities’ frequencies were determined in step 6a.

7. The singularities’ frequencies, obtained in step 6b, were compared to the unblem-

ished pipe’s cutoff frequencies found in step 1. The absolute value of the simple

arithmetic difference between a singularity’s frequency and the unblemished pipe’s

nearest cutoff frequency gave the desired frequency difference.
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The procedure readily and simultaneously excited a number of modes. By following

the procedural steps given above, a number of frequency differences were measured. These

differences could be plotted on a contour map similar to the ones shown in Figures 4.18 and

4.19. The graphical procedure illustrated in Figure 4.19 could be applied next to estimate

the notch’s dimensions.

4.2.8.5 Concluding remarks for axisymmetric notches

In addition to corroborating the hybrid computational procedure, it has been confirmed

that the axial length of an axisymmetric notch affects the wave reflection of the L(0,2) and

T(0,1) pipe modes [70, 74] but to a less extent than the notch’s depth. This conclusion has

been seen to hold for flexural modes having higher order, circumferential wavenumbers.

“Double” or spurious peaks in spectral densities found at receiving positions within the

nearby reflected field have been demonstrated, for the first time, to be a particularly telling

feature of an axisymmetric notch’s presence. A preliminary parametric study has suggested

that it is feasible to estimate such a notch’s dimensions from frequency differences of the

dominant spectral features associated with at least two modes. These differences have been

seen to depend upon the properties of the combined unblemished pipe and finite element

regions. They can be found by using a single point-like excitation and a simple receiver.

Experimental investigations are required to confirm that a flexural mode having a higher

circumferential wavenumber is more capable of discriminating a smaller notch at the likely

expense of reducing the feasible detection distance. The computational extension to nonax-

isymmetric notches is considered next.
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4.3 Three-dimensional Scatterers

4.3.1 Preamble

The hyrid SAFE technique for three-dimensional scatterers is a straightforward extension

[66, 67] of the procedure detailed for an axisymmetric notch. Consequently only notable

differences are described and explained. The idealization of the previously considered pipe,

but with a nonaxisymmetric notch, is described first. Then an overview is given of the three-

dimensional finite element model and its interface to a pipe region in which a wavefunction

expansion is employed again. Imposing continuity conditions on this interface allows the

effect of wave scattering to be determined on the otherwise infinite waveguide. Computer

results are presented for an outer surface breaking, three dimensional notch. They are com-

pared, where possible, with published data [70]. Lastly, interpretations and conclusions are

drawn.

4.3.2 Description of pipe, notch, and finite element region

4.3.2.1 Description of pipe and nonaxisymmetric notch

The infinitely long, notched pipe illustrated in Figure 4.20 is considered. The pipe is as-

sumed, as before, to be uniformly right circular, homogeneous, linearly elastic, and isotrop-

ic. Then the wavefunctions described in Chapter 2 can be used to describe the displacement

fields in the “parent” pipe on either side of the notched region. In particular, the pipe has

Lamé constants λ and µ, density ρ, a constant mean radius R, outside diameter Do, and wall

thickness H, in addition to traction free, inner and outer surfaces. Positions and displace-

ments are described in terms of the cylindrical coordinate system (r, θ, z), whose r, θ, and z

axes are shown in Figure 4.20 with their origin, O . A nonaxisymmetric notch having depth

d, circumferential extent c, and axial length l is bounded between the planes z = 0 and

z = −2zFE. Motions caused by the transient force detailed earlier are modelled by using a(n
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approximate) wavefunction expansion in the regions z ≥ 0 and z ≤ −2zFE and, now, a three-

dimensional finite element model between the planes z = 0 and z = −zFE. The notched

pipe is assumed to be symmetrical21 about the plane z = −zFE so that only half the pipe and

notch is modelled with appropriate boundary conditions prescribed on z = −zFE. Motions

are obtained for z ≤ −2zFE from those found for z ≥ 0 by using appropriate symmetry and

antisymmetry arguments again.

4.3.2.2 Finite element region

Twenty-seven node, brick finite elements based on quadratic Lagrangian interpolation func-

tions [107] are used to describe the motions in the finite element region bounded by the

planes z = 0 and z = −zFE, i.e., boundaries B+ and B−, respectively. An arbitrary geo-

metry can be contained in this finite element region by generating a mesh that reasonably

approximates the geometry. The application of Hamilton’s principle to the finite element

region, which is presented more completely in Appendix J, gives equation (4.2.1) again.

The procedure used to derive equation (4.2.9) from equation (4.2.1) still applies so that

equation (4.2.9) also remains pertinent for the three-dimensional case.

4.3.3 Boundary conditions on z = −zFE

To take advantage of the symmetry of the defective pipe about the plane z = −zFE, a force

applied at an arbitrary z > 0 is represented again by the superposition of a symmetrical and

an antisymmetrical load, as illustrated in Figure 4.2. The boundary conditions on the plane

z = −zFE do not change from the axisymmetric case so that equations (4.2.10) through

(4.2.16) are still applicable.

21This restriction can be removed, as for the axisymmetric notch, by considering a finite element region
extending from z = 0 to z = −2zFE and enforcing continuity conditions at both z = 0 and z = −2zFE.
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4.3.4 Interface between the wavefunction and finite element regions

4.3.4.1 Modal representation of the displacement field in R+

A single harmonic wave mode with circular frequency, ω, circumferential wavenumber nin,

order min, and unit amplitude is considered to be incident on the plane z = 0. This wave

is usually scattered at the interface between the parent pipe and finite element (or notched)

region to create reflected and transmitted wave fields. The transmitted field may be obtained

straightforwardly from a known reflected field by taking advantage of the symmetry about

the plane z = −zFE. Therefore only the reflected field needs to be detailed.

The displacements of the reflected wave field, which lie in region R+, can be written in

the form

Uscat
+ =

∞∑

nscat=−∞

6N+3∑

mscat=1

Anscatmscatφ
R
nscatmscatue jknscatmscat ze jnscatθ (4.3.1)

at the radial coordinates of the finite elements’ nodal points. The nomenclature employed

in equation (4.3.1) has been described previously. Only those modes having non-negative

imaginary wave number components are admissible in the reflected field. However, all

the circumferential wavenumbers are required now because the finite element region is no

longer axisymmetric.

4.3.4.2 Continuity conditions on boundary B+

Consider the boundary B+ which is common to the parent waveguide and the finite element

region. A schematic of this boundary is shown in Figure 4.21 by itself. At least one “com-

plete” ring of finite elements is assumed to be coupled perfectly to the wave function region.

This assumption simplifies the enforcement of continuity conditions22 on B+ but it does not

limit the general application of the modelling. As for the axisymmetric case, continuities

22No finite element nodal points on B+ are force free when this assumption is made. It follows, therefore,
that mixed boundary conditions [69] need not be considered.
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θ

r
c

Elements behind

plane removed to

represent notch

Figure 4.21. Schematic of the finite element region’s B+ boundary where no force free
nodes exist.

of the nodal displacements and forces on boundary B+ require

q+ = qin
+ + qscat

+ (4.3.2a)

and

P+ = fin
+ + fscat

+ , (4.3.2b)

where the incident and scattered displacements as well as the forces are evaluated at each

of the nodal points on B+ shown in Figure 4.21. Displacements created by the scattered

waves can be determined by applying equation (4.3.1) at the nodal points on boundary B+.

They are written, in shorthand form, as

qscat
+ = GA, (4.3.3)

where G is a matrix that “maps” the scattered wave amplitudes, A, into the required nodal

displacements. The G matrix is similar to the one encountered in the two-dimensional case

but it contains (matrix) elements now that describe the circumferential variation of the wave
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field. The scattered (consistent) forces are obtained straightforwardly at the nodal points

on B+ by applying standard finite element methodology [107]. They can be expressed as

fscat
+ = FscatA, (4.3.4)

where matrix Fscat “maps” the scattered wave amplitudes, A, into the required nodal forces.

Nodal displacements and forces are determined similarly in the incident wave field from

the prescribed incident wavefunctions.

4.3.5 Resulting system of linear equations

Equations (4.2.16) and (4.2.20) lead again to the result that

S‡q+ = P+ = S‡
(
qin
+ + qscat

+

)
= fin
+ + fscat

+ . (4.3.5)

Equation (4.3.5), however, is unlikely to produce a square order system of linear equations

that can be inverted to determine the scattered wave amplitudes, A. This difficulty arises

because the number of finite element nodes on boundary B+ is not generally identical to

the number of modes assumed in the wavefunction expansion. (This difficulty was not en-

countered in the previous axisymmetric problem because all the available wave functions

were retained so that the resulting system of linear equations was invertible.) The principle

of virtual work is applied, therefore, to the finite element region in order to obtain an invert-

ible system of equations. No real or virtual work is performed on the boundary z = −zFE

because, at each nodal point on this boundary, all the nodal forces in each coordinate dir-

ection, or their complementary displacement components, are identically zero. Therefore,

the virtual work done on the finite element region, δEvirt, can be written as

δEvirt =
1

2

(
δ̃q+

TP+ + δq
T
+P̃+

)
, (4.3.6)
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where δ indicates the first variation which vanishes for equilibrium. By performing this

variation, the resulting equation

δ̃q+
TP+ = 0 (4.3.7)

can be shown to be sufficient for the virtual work to be stationary. The δ̃q+T can be determ-

ined, by using equation (4.3.2a), to be

δ̃q+
T = δ̃qin

+
T +
˜
δqscat
+

T. (4.3.8)

The displacements of the incident wavefield are prescribed at the finite elements’ nodal

points and, therefore, have no variation, i.e., δ̃qin
+

T = 0. Consequently, equation (4.3.8)

reduces to

δ̃q+
T =
˜
δqscat
+

T. (4.3.9)

Substituting equation (4.3.3) into equation (4.3.9) and noting that G is constant gives

δ̃q+
T = δ̃ATG̃T. (4.3.10)

Applying the principle of virtual work to equation (4.3.5) produces

δ̃ATG̃TS‡q+ = δ̃A
TG̃TP+ = δ̃A

TG̃TS‡
(
qin
+ + qscat

+

)
= δ̃ATG̃T

(
fin
+ + fscat

+

)
= 0, (4.3.11)

when equations (4.3.7) and (4.3.10) are utilized. Equation (4.3.11) implies that

G̃TS‡
(
qin
+ + qscat

+

)
= 0 (4.3.12a)

and

G̃T
(
fin
+ + fscat

+

)
= 0, (4.3.12b)
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because δ̃AT is arbitrary. Setting equations (4.3.12a) and (4.3.12b) equal leads, after re-

arrangements, to

G̃T
(
S‡qin

+ − fin
+

)
= G̃T

(
fscat
+ − S‡qscat

+

)
. (4.3.13)

The right side of equation (4.3.13) can be expressed in terms of the scattered wave amp-

litudes by using equations (4.3.3) and (4.3.4). Hence,

G̃T
(
S‡qin

+ − fin
+

)
= G̃T

(
FscatA − S‡GA

)
= G̃T

(
Fscat − S‡G

)
A. (4.3.14)

The matrix product G̃T
(
Fscat − S‡G

)
is square and invertible so that

A =
[
G̃T

(
Fscat − S‡G

)]−1
G̃T

(
S‡qin

+ − fin
+

)
. (4.3.15)

As for the axisymmetric case, equation (4.3.15) must be evaluated for both the symmetrical

and antisymmetrical force components in order to recover their combined effect. Then the

ensuing reflected and transmitted wave amplitudes may be found by using equation (4.2.28).

4.3.6 Scattered displacement fields

Modal summations required to describe the scattered displacements from a three-dimen-

sional notch are described next. They are similar to the two-dimensional axisymmetric

case but contain an additional summation to include additional conversions from one to

another circumferential wavenumber. However, the modal summation and inverse Fourier

transform procedures used to derive equation (2.3.17) are still pertinent. Consequently the

displacements in the reflected wavefield that are caused by a typical mode having circum-
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ferential wavenumber nin and order min, can be written as

Uninmin(θ, z, t) =

1

2π

∫ ∞

−∞
p(ω)e−jωtAin

ninmin


∞∑

nscat=−∞

6N+3∑

mscat=1

Rnscatmscatφ
R
nscatmscatue jknscatmscat z

 e jnscatθ dω
(4.3.16)

at the radial coordinates of the finite elements’ nodal surfaces. As before, Ain
ninmin

is the

frequency dependent amplitude of an incident mode. Equations (4.2.30) and (4.2.31) can

be used to recover the displacements caused by the reflected waves. Then the displacements

in the transmitted wave field are found from their reflected counterparts by making the same

modifications described in the axisymmetric case.

4.3.7 Illustrative examples

4.3.7.1 Overview

Computer code implementing the hybrid SAFE technique for two-dimensional problems

was extended to accommodate three-dimensional wave scatterers. The unblemished pipe

considered before was retained. Its material and dimensional properties are summarized

in Table 2.1. Transparency tests were run to validate the extended software. These results

are given in Appendix H. Note that the smallest propagating wavelength in the excitation’s

bandwidth, which is about 3.4H, still corresponded to the L(0,1) mode. Consequently

the discretization and wavefunctions detailed in Section 2.5 were used, after introducing a

nonaxisymmetric notch, to represent motions in the parent waveguide.

Computer results are given for an outer surface breaking notch which has a depth of

one-half the wall thickness, an axial length to wall thickness ratio of 0.568, and extends

over one-half the pipe’s circumference. The resulting reflection coefficients are compared

to the measured values and finite element predictions given in [70]. These comparisons

serve to add plausibility to the present numerical results. Then time histories are simulated
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in the reflected and transmitted wave fields for an axisymmetric force applied in the axial

(z) direction so that the experiments are mimicked. Direct comparisons are made, when

possible, between the simulated histories and the measured traces given in [70]. A modal

analysis, which illustrates the importance of modal conversions, is inherent to the simula-

tions. A treatment which is analogous to that given for the axisymmetric notch is extended

to a radial point force acting on the nonaxisymmetric notch. Having validated several of the

present numerical results, a wider parametric study is undertaken that is similar to before.

4.3.7.2 A three-dimensional notch

A nonaxisymmetric notch having the dimensional properties summarized in Table 4.5 was

considered because experimental and finite element data are again available for compar-

isons. Twenty seven node, brick finite elements using quadratic Lagrange interpolation

polynomials in each coordinate direction [107] were employed for the finite element region

around the notch. The notch was modelled again by simply removing finite elements23. As

in the axisymmetric case, the singularities at the notch’s corners are not described accur-

ately by this method, which limits the accuracy of the stresses in the near field. The far field

behaviour is, however, modelled with sufficient accuracy to be meaningful. Ultimately, ten

(five) finite elements described the behaviour over the full (half) wall thickness. To min-

imize computer waiting time, the minimally acceptable two finite elements represented the

notch’s axial extent. However, 126 elements were deployed around the pipe’s circumfer-

Table 4.5. Dimensional properties of the outer surface breaking, nonaxisymmetric notch.

Property Assigned Value

Depth of notch, d, in (mm) 0.110 (2.79)
Axial length of notch, l, in (mm) 0.125 (3.17)
Circumferential extent of notch, c, degrees (rad) 180 (π)
Depth to wall thickness ratio, (d/H) 0.500
Axial length to wall thickness ratio, (l/H) 0.568

23Crack-tip elements, having their “side nodes at quarter points of their respective sides,” could have been
used but were not considered necessary again.
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ence. The radial discretization of ten elements through the pipe’s wall was selected so that

the wavefunctions from the previous axisymmetric analysis could be employed.

The appropriateness of the minimal axial discretization was checked by simulating the

axisymmetric notch described in Section 4.2.8.2 with the three-dimensional software. A

comparison of the the two sets of reflection and transmission coefficients showed that they

were essentially indistinguishable. The circumferential discretization was determined, after

selecting the radial and axial discretizations, by considering the results from the transpar-

ency tests. The number of finite elements around the unblemished pipe’s circumference

was increased gradually until the reflection coefficient was less than 0.01 for all the modes

propagating in the excitation’s bandwidth. (See Appendix H and Figure H.59 in particular.)

Therefore any reflection coefficient calculated with the stated circumferential mesh that has

a magnitude greater than 0.01 for a propagating mode has an inconsequential error from

this modelling component. Not surprisingly, the F(13,1) mode dictated the circumferential

discretization as it has the the smallest (3.6H) circumferential wavelength of the propagat-

ing modes. On the other hand, the propagating L(0,1) mode has a somewhat smaller axial

wavelength of around 3.4H. Consequently, the ratio of the smallest axial wavelength of all

the propagating modes to a finite element’s axial length was approximately 12—a value

which is above the recommended lower bound of ten elements per shortest wavelength

[70, 71]. Similarly, the ratio of the F(13,1) mode’s (circumferential) wavelength to a finite

element’s circumferential length was virtually 10. Moreover, the spatial aspect ratios (i.e.,

the ratios of the finite elements’ lengths in the axial and circumferential directions to those

in the radial direction) were approximately 2.4:0.4:1.0 which, experience suggests, is near

the desirable value of 1.0. Hence each finite element is reasonably “compact” and likely to

behave well [107].

Figures 4.22, 4.23, and 4.24 are analogous to Figures 4.4, 4.5, and 4.6, respectively.

The excitation and monitoring locations were modified, however, to better mimic the ex-

perimental configuration of [70]. Therefore, the axisymmetric excitation and reflected field
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Figure 4.22. Axial displacement predicted within the reflected field for a nonaxisymmet-
ric notch. Sub-figures (a) and (b) [(c) and (d)] {(e) and (f)} give the direct [reflected]
{superposition of direct and reflected} waves resulting from an axisymmetric axial force.
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Figure 4.23. Axial displacement predicted within the transmitted field for a nonaxisymmet-
ric notch. Sub-figures (a) and (b) [(c) and (d)] give the direct [transmitted] waves resulting
from an axisymmetric axial force.
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Figure 4.24. Spectral density of the work done, per period, by waves produced by an axi-
symmetric axial force, and scattered by a nonaxisymmetric notch.

monitoring locations were positioned on the pipe’s outer surface at z∗L = zL/H = z∗R =

zR/H ≈ 304. On the other hand, the monitoring location in the transmitted wavefield

was located on the pipe’s outer surface at z∗T = zT/H ≈ −161. As before, zL, zR, zT are

respectively the axial locations of the excitation, as well as the reflected and transmitted

fields’ monitoring locations. These positions are illustrated relative to the origin, O, in

Figure 4.20. They are located centrally to the notch in the circumferential direction.

Figure 4.24 is identical to Figure 4.6 as the waves which carry energy to the finite ele-

ment region are the same. The work done per period by the waves incident on the finite

element region coincides again with that of the scattered waves. A comparison of Fig-

ures 4.22 and 4.4 shows that, as in the axisymmetric case, the contributions of the L(0,1)
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and L(0,2) modes cannot be distinguished easily in the time histories of Figure 4.22 (a), (c),

and (e). On the other hand, Figure 4.23 (a) indicates that the relatively large axial separa-

tion between the circumferential planes of the excitation’s application and the monitoring

position in the transmitted field allows the effects to be separated easily in time. The most

noticeable modal conversions introduced by the nonaxisymmetric notch are seen in Fig-

ures 4.22 (c) and 4.23 (c). The primary involvement of the F(±1,m), m = 1, 2, 3 modes

is investigated later. Spectral densities indicate the presence of the notch by the smooth,

single peak in the spectral densities of Figures 4.22 (b) and 4.23 (b) becoming more numer-

ous and sharper in Figures 4.22 (f) and 4.23 (d). The notch appears to act like a comb filter

because a large number of modes are excited through modal conversions at the notch. Just

as importantly, these conversions introduce a corresponding number of different relative

phases.

A cursory comparison of the modal amplitudes annotated in Figures 4.22 and 4.23 with

the appropriate reflection and transmission coefficients given in Appendix I for this notch

was informative. Such a comparison showed that they were qualitatively in good agree-

ment. Moreover the time histories appearing in these figures, which were obtained from

an inverse Fourier transform of the accompanying spectral densities, appeared intuitively

to be “reasonable,” with the effects of dispersion clearly visible. The spectral densities in

the two figures were cross-checked by computing the DFT of a recovered time history and

comparing it with the corresponding spectral densities. Excellent agreement was seen in

all cases.

To illustrate the importance of the modal conversions more clearly, Figures 4.25 and

4.26 present the principal modal contributions when the L(0,2) and L(0,1) modes are incid-

ent individually on the same notch. In order to be consistent with Figures 4.22 and 4.23,

only modes having circumferential wavenumbers m = 0 or m = ±1 appear in Figures 4.25

and 4.26. Modal conversions involving a circumferential wavenumber greater than two

provide negligible contributions to the reflected and transmitted wave fields for this particu-
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Figure 4.25. Predominant axial displacements in the (a) and (b) reflected field, and (c)
and (d) transmitted field induced by the L(0,2) mode solely incident on a nonaxisymmetric
notch. Subfigures (a) and (c) give the axisymmetric contributions; subfigures (b) and (d)
show the contributions of the F(1,m) modes.
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Figure 4.26. Predominant axial displacements in the (a) and (b) reflected field, and (c)
and (d) transmitted field induced by the L(0,1) mode solely incident on a nonaxisymmetric
notch. Subfigures (a) and (c) give the axisymmetric contributions; subfigures (b) and (d)
show the contributions of the F(1,m) modes.
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lar notch. Nevertheless, a rich pallet of modes is produced by each single incident mode. Of

particular interest here is that the contributions of the L(0,2) and F(±1,3) reflections cannot

be separated in time when the L(0,2) mode is incident on the notch. Therefore the meas-

urements made in [70] may underestimate the reflection coefficient |RL(0,2),L(0,2)| because of

the difficulty in separating these two modal contributions. If the separation of the F(±1,m)

modes by the transducer used in [70] is slightly imperfect, the F(±1,3) mode will be gener-

ated and reflected from the free end of the pipe. However, the contributions of the L(0,2)

and F(±1,3) modes have been seen to be virtually indistinguishable and the latter may ar-

tificially increase the amplitude of the end reflection. On the other hand, as the reflection

coefficients given in Appendix I show, the F(±1,3) mode is reflected less strongly than the

L(0,2) mode from the notches simulated here. These observations lead to the suspicion

that the measurements made in [70] may underestimate |RL(0,2),L(0,2)|. On the other hand,

the measurement of a reflection coefficient for merely a single mode appears to be difficult,

even when extraordinary care is taken.

The simulated time histories shown so far have represented displacements at a point.

The transducer used in [70] is designed, however, to suppress all but the axisymmetric dis-

placement components in either the axial or circumferential direction. Therefore all but

the axisymmetric displacement components could be suppressed in Figure 4.27 (b) which

reproduces the measured time history presented in [70]. On the other hand, Figure 4.27 (a)

gives the simulated axial displacement for solely the reflection from the notch when all but

the axisymmetric displacement components are eliminated completely. (The annotations

employed in Figure 4.27 (b) are identical to those used in [70].) The two time histories

are seen to be similar overall. For example, the initial arrival times of the reflections agree

closely. Furthermore, the shorter excitation duration for the simulation is clearly apparent

at the end of the first wave packet. Discrepancies between the relative maximum amplitudes

of the first and second wave packets are, not surprisingly, evident because reflections from

the free end are not simulated. Moreover, a finer comparison of the last two wave pack-
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Figure 4.27. Comparing (a) the simulated axial displacement for the reflection from the
nonaxisymmetric notch when all but the axisymmetric displacement components are sup-
pressed with (b) the measured time history given in [70].

ets suggests that the measured “end reflection” labelled in Figure 4.27 (b) also contains

reflected contributions from the notch. If so, the interpretations of time history is not so

straightforward and the need for an alternative approach is desirable. One possibility is the

procedure explored previously that is based upon global frequency differences.

Figures 4.28, 4.29, and 4.30 are analogous to Figures 4.7, 4.8, and 4.9, respectively.

The excitation and monitoring locations have invariant axial coordinates but their common

circumferential coordinate always coincides now with the centre of the notch. Slight dif-

ferences between Figures 4.30 and 4.9 arise from a time-saving, coarser frequency step

used for the former figure that limits the resolution of “spike-like” features. Nevertheless,

the work done by the incident and scattered wave fields are still in good overall agreement.
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Figure 4.28. Radial displacement predicted within the reflected field when a nonaxisym-
metric notch is present. Sub-figures (a) and (b) [(c) and (d)] {(e) and (f)} give the direct
[reflected] {superposition of direct and reflected} waves resulting from a radial point force.
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Figure 4.29. Radial displacement predicted within the transmitted field when a nonaxisym-
metric notch is present. Sub-figures (a) and (b) [(c) and (d)] give the direct [transmitted]
waves resulting from a radial point force.
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Figure 4.30. Spectral density of the work done, per period, by waves produced by a radial
point force and scattered by a nonaxisymmetric notch.

Similarly the “resonant-like” behaviour seen in Figures 4.28 and 4.29 is also caused by a

coarser frequency step in the computation of the corresponding spectral densities. Con-

sequently, the energy around singularities that is introduced by the notch are narrower in

frequency than around the cutoff frequencies of the unblemished pipe. As a result, the

energy is overestimated which could explain the greater displacement amplitudes in Fig-

ures 4.28 and 4.29 in comparison to Figures 4.7 and 4.8. Regardless, the frequencies of the

scattered waves’ singularities caused by the nonaxisymmetric notch’s introduction do not

coincide with the unblemished pipe’s cutoff frequencies. This last statement is confirmed

most easily by examining Figure 4.31, where a frequency step of 50 Hz has been used in

the neighbourhood of the F(13,1) mode’s cutoff frequency, rather than the 500 Hz step used
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elsewhere. The line and markers used in Figure 4.31 to denote the various modal reflec-

tion and transmission coefficients are consistent with Figure H.1. The singularity in the

nonaxisymmetric notched pipe corresponding to the F(13,1) mode is seen to be bounded

between 97.00 kHz and 97.05 kHz in this figure. On the other hand, the cutoff frequency

of the F(13,1) mode is found from Table 2.2 to be 97.164 kHz. Therefore the previous

assessment of an axisymmetric notch’s dimensions from such differences likely extends to

nonaxisymmetric notches.

4.3.7.3 Parametric study of wave scattering by three-dimensional notches

Figure 4.32 compares present and published [70] reflection coefficients, |RL(0,2),L(0,2)|, for

nonaxisymmetric notches24. A more complete assessment of the effect of such a notch’s

axial extent is provided in addition to confirming previously published results. The format

and reference values employed in the development of Figure 4.13 for the axisymmetric

notches are retained. However, a nonaxisymmetric notch no longer extends completely

around the pipe’s circumference. The half (or 50%) circumferential notch considered in

Figure 4.32 (a) is reduced to 11% in Figures 4.32 (b) and (d), so that direct comparisons

can be made with [70]. Previous observations based upon Figure 4.13 still apply. Fig-

ure 4.33, on the other hand, gives analogous information for the nonaxisymmetric notches

considered in Figure 4.32 but for the L(0,1), T(0,1), F(3,1), and F(10,1) modes. Again,

observations similar to those stemming from Figure 4.14 remain valid. One important dif-

ference between Figures 4.32 (a) and Figure 4.33 (a) is noteworthy. In the former case,

singularities in a reflection coefficient could be related to a modal cutoff frequency having

the same circumferential wavenumber. In the latter case, multiple singularities are seen in a

mode’s reflection coefficient, that can be related to modal cutoff frequencies having different

circumferential wavenumbers. This is due, of course, to the cross coupling between various

24The finite element results in [70] are extrapolated by multiplying each result from a corresponding
axisymmetric notch by the percentage ratio of the part circumferential notch length to the pipe’s total circum-
ference.

150



Chapter 4. Wave Scattering 4.3. Three-dimensional Scatterers

(a)

Frequency, f, kHzN
o
rm

al
iz

ed
 r

ef
le

ct
io

n
 c

o
ef

fi
ci

en
t,

 |R
L

(0
,2

),
L

(0
,2

)|

 

 

60 65 70 75 80 85
0.00

0.05

0.10

0.15

0.20

0.25

Current study

Alleyne, Lowe, and Cawley [70]

(b)

Depth of notch, d/H, percentN
o
rm

al
iz

ed
 r

ef
le

ct
io

n
 c

o
ef

fi
ci

en
t,

 |R
L

(0
,2

),
L

(0
,2

)|

 

 

0 20 40 60 80 100
0.00

0.05

0.10

0.15
Current study

Alleyne, Lowe, and Cawley [70]

Finite element [70]

(c)

Circumferential length of notch, percent of circumferenceN
o
rm

al
iz

ed
 r

ef
le

ct
io

n
 c

o
ef

fi
ci

en
t,

 |R
L

(0
,2

),
L

(0
,2

)|

 

 

0 20 40 60 80 100
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
Current study

Alleyne, Lowe, and Cawley [70]

Finite element [70]

(d)

Axial length of notch, l/H, percentN
o
rm

al
iz

ed
 r

ef
le

ct
io

n
 c

o
ef

fi
ci

en
t,

 |R
L

(0
,2

),
L

(0
,2

)|

 

 

0 20 40 60 80
0.00

0.01

0.02

0.03

0.04

0.05

Current study

Alleyne, Lowe, and Cawley [70]

Finite element [70]

Figure 4.32. Magnitude of the normalized reflection coefficient, |RL(0,2),L(0,2)|, for different
(a) excitation frequencies, (b) depths, (c) circumferential extents, and (d) axial lengths of
nonaxisymmetic notches.

circumferential wavenumbers that can occur for a nonaxisymmetric geometry. Furthermore

two additional noteworthy comments can be made that arise from Figure 4.33 (c) . A lin-

ear variation of a reflection coefficient with a decreasing circumferential extent of a notch

does not apply universally. This observation is substantiated by examining, for example,

the curve of the F(10,1) mode given in Figure 4.33 (c). Therefore care should be taken

particularly when “scaling” flexural mode data from axisymmetric notches. Moreover, no

mode represented in Figure 4.33 (c) produces a particularly strong reflection at 70 kHz for

(crack like) notches having a small circumferential extent. A stronger reflection may be

seen, however, if the excitation is relocated to a position which is offset circumferentially

from this type of defect.

151



Chapter 4. Wave Scattering 4.3. Three-dimensional Scatterers

(a)

Frequency, f, kHzN
o
rm

al
iz

ed
 r

ef
le

ct
io

n
 c

o
ef

fi
ci

en
t,

 |R
M

(n
,m

),
M

(n
,m

)|

60 65 70 75 80 85
0.0

0.1

0.2

0.3

(b)

Depth of notch, d/H, percentN
o
rm

al
iz

ed
 r

ef
le

ct
io

n
 c

o
ef

fi
ci

en
t,

 |R
M

(n
,m

),
M

(n
,m

)|

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

(c)

Circumferential length of notch, percent of circumferenceN
o
rm

al
iz

ed
 r

ef
le

ct
io

n
 c

o
ef

fi
ci

en
t,

 |R
M

(n
,m

),
M

(n
,m

)|

 

 

0 20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

0.5
L(0,1)

T(0,1)

F(3,1)

F(10,1)

(d)

Axial length of notch, l/H, percentN
o
rm

al
iz

ed
 r

ef
le

ct
io

n
 c

o
ef

fi
ci

en
t,

 |R
M

(n
,m

),
M

(n
,m

)|

0 20 40 60 80
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

↓Singularity caused by F(10,1)

Singularity caused by F(3,3)

Singularity caused by F(11,1)

Figure 4.33. Magnitude of the normalized reflection coefficients of the L(0,1), T(0,1),
F(3,1), and F(10,1) modes for different (a) excitation frequencies, (b) depths, (c)
circumferential extents, and (d) axial lengths of nonaxisymmetic notches. Only
|RMin(nin,min),Mscat(nscat,mscat)|, where Min = Mscat, nin = nscat, and min = mscat, is plotted for each
mode.

4.3.7.4 Concluding remarks for nonaxisymmetric notches

Conclusions derived from axisymmetric notches generally extend straightforwardly to non-

axisymmetric notches. Therefore it should be possible, in principle, to use analogous fre-

quency differences introduced by a nonaxisymmetic notch to estimate its dimensions. How-

ever, additional modes and, hence, frequency differences are most likely needed. Compu-

tational requirements could be made less onerous if advantage is taken of the need for only

frequency information rather than a complete solution of the linear equations describing

the wave scattering problem.
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4.4 Conclusions and closing remarks

The hybrid-SAFE technique was used in this chapter to simulate wave scattering by axisym-

metric and nonaxisymmetric notches. The numerical simulations showed that singularities,

which are distinct from those corresponding to an unblemished pipe’s cutoff frequencies,

noticeably affected a notched pipe’s displacement FRF. The simulations also indicated that

the newly observed singularities depend on the properties of the parent pipe and the finite

element region and could be used, therefore, to determine a notch’s dimensions. However,

their effects are local to a notch. Consequently, although the new singularities may provide

a convenient means of estimating a notch’s dimensions, they do not offer a good alternative

for the “long range” detection of notch-like defects in pipelines. For short range detection of

notch-like defects, on the other hand, the use of these singularities should provide generally

better sensitivity than that from a single, non-dispersive mode. None of the modes surveyed

produced a strong reflection at 70 kHz for crack-like notches having a small circumferen-

tial extent. An assessment of such types of defects likely requires different locations from

those employed here.
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5.1 Conclusions

After surveying relevant literature on wave propagation and scattering in pipes in Chapter 1,

theoretical frameworks pertinent to the study of wave propagation in homogeneous, iso-

tropic pipes were reviewed in Chapter 2. Approximate, computer based solutions were

based upon the Semi-Analytical Finite Element (SAFE) formulation which was shown to

provide a convenient tool for studying the dynamic response of these pipes to transient, ul-

trasonic excitations. The principal advantage of the approach was that modal information

was provided inherently and efficiently. Such information demonstrated that the dominant,

easily noticed singularities in an unblemished pipe’s displacement Frequency Response

Function (FRF) coincided with its cutoff frequencies. This coincidence was confirmed ex-

perimentally. Practical use was made indirectly in Chapter 3 of three singularities to obtain

an unblemished pipe’s wall thickness and elastic properties from the corresponding cutoff

frequencies. The procedure was first simulated numerically and then implemented for two

physical pipe specimens. The newly developed ultrasonic procedure and more traditional

destructive tests agreed within experimental uncertainty. Extensive numerical simulations

suggested that, in the absence of noise, the solutions recovered by the procedure were

unique. A mathematical proof was beyond the present scope.

Wave scattering by axisymmetric notches was simulated in Chapter 4. A hybrid-SAFE

technique was used. This technique combined a finite element model, which enclosed a

single notch whose geometry can be changed straightforwardly, with a wavefunction expan-

sion in the remainder of the pipe. Simulations showed, for the first time, that singularities

which are distinct from the unblemished pipe’s cutoff frequencies were incorporated into

a displacement FRF when an axisymmetric notch was introduced. The frequencies of the
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new singularities depended on the properties of both the parent pipe and the finite element

region. However, measurable effects were assessed to be local to the notch. Furthermore,

it was demonstrated that the difference in frequency at which a new singularity appeared

and the nearest cutoff frequency of the originally unblemished pipe depended upon an ax-

isymmetric notch’s dimensions. By plotting contours of constant frequency differences it

was illustrated that it is usually possible to uniquely characterize an axisymmetric notch’s

dimensions by using such differences from two modes. However, the frequency difference

of a third mode was required when the contours of two modes intersected more than once.

The uniqueness was suggested only by example and not proven rigorously. If sufficient

accuracy (±25 Hz) in measured singularity frequencies is accomplished, such a notch’s

depth and axial extent may be determined to around 5% and 10%, respectively. The more

general situation of nonaxisymmetric notches was considered afterwards and it appears to

be a straightforward but computationally expensive extension of the axisymmetric case. In

summary, therefore, the newly discovered singularity frequencies introduced by a notch, if

corroborated by further extensive laboratory and field work, could be applied in the follow-

ing ways.

1. To confirm a defect’s location found more remotely by using a nondispersive guided

wave, and

2. locally characterise the defect’s dimensions.

5.2 Recommendations

The following recommendations are made.

1. The technique developed in Chapter 3 should be extended to multilayer pipes and

anisotropic materials in order to measure a coating’s (e.g., chromium over a high

strength low alloy steel) thickness or material properties, say.
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2. The SAFE technique should be applied to elliptical cross sections to assess the effect

of a pipe’s out-of-roundness. As noted in Section 3.4, out-of-roundness or a wall

thickness variations in a cross section may be handled straightforwardly by using a

two-dimensional finite element model of the cross section rather than the one-dimen-

sional model and Fourier series expansion used presently.

3. The frequency dependent behaviour of the present instrumentation should be meas-

ured to find its absolute sensitivity. A laser vibrometer could provide the required

information.

4. Experiments should be conducted to confirm that singularities are truly introduced

by a notch. Preliminary experiments, which conveniently used reflections from a

pipe’s free end, confirmed that the anticipated frequency shifts are observable and

measurable in this case.

5. A computational technique should be developed to calculate the frequencies of the

singularities introduced by notches without the need to find scattered wave amp-

litudes.

6. The minimization technique used in Chapter 3 should be automated and extended to

the characterization of a notch’s dimensions by using the method demonstrated in

Chapter 4.

7. A plot similar to Figure 4.33 (a), but for a notch having a small circumferential extent,

should be created to determine whether or not the use of the singularities provides a

practical means of screening this type of defect.

8. Geometries should be investigated that are more general than straight sided notches

[73]. As noted in Chapter 4, the hybrid-SAFE can be applied straightforwardly to any

arbitrary geometry, provided that a finite element mesh suitably represents the geo-

metry. The wave scattering caused by notches having, say, “V” or elliptical shaped
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boundaries can be studied straightforwardly using hybrid-SAFE by simply replacing

the existing finite element idealization with a more suitable one. Then the procedures

illustrated in Chapter 4 can be applied with little or no modification. Based upon the

results presented in Chapter 4, it is conjectured that notches with “V” or elliptical

shaped boundaries will introduce singularities that are distinct from an unblemished

pipe’s cutoff frequencies. Moreover, it is speculated that the singularities introduced

by such notches will occur at frequencies somewhat different from those observed

here. Furthermore it is postulated that at least one frequency difference may be re-

quired per dimensional degree of freedom in an idealized notch’s description in order

to characterize it uniquely.

Additional recommendations to improve the computing cluster are made in Appen-

dix L.
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Appendix A

Results From the Derivation of Exact

Wavefunctions

A.1 Introduction

The displacement, strain, and stress fields that result from the Helmholtz decomposition

presented in Chapter 2 are summarized in this appendix. The fields are presented in matrix

form and the nomenclature defined in Chapter 2 is used. This appendix is concluded with

the requirements needed for a hollow isotropic pipe to have traction free, inner and outer

surfaces. Finally, the elements of the matrix P , whose determinant serves as the dispersion

relation for such a pipe, are described.

A.2 Displacement Field

The displacement field is given by

u =
[
u v w

]T
= C

[
A1 A2 A3 B1 B2 B3

]T
e jnθe jkze−jωt, (A.2.1)

where C is a 3 × 6 matrix having the elements:

C1,1 = −
αrH

(1)
n+1(αr) − nH

(1)
n (αr)

r
, (A.2.2a)

C1,2 = −kH
(1)
n+1(βr), (A.2.2b)

C1,3 =
jnH

(1)
n (βr)

r
, (A.2.2c)

C1,4 = −
αrH

(2)
n+1(αr) − nH

(2)
n (αr)

r
, (A.2.2d)

C1,5 = −kH
(2)
n+1(βr), (A.2.2e)
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C1,6 =
jnH

(2)
n (βr)

r
, (A.2.2f)

C2,1 =
jkH

(1)
n (αr)

r
, (A.2.2g)

C2,2 = jkH
(1)
n+1(βr), (A.2.2h)

C2,3 =
βrH

(1)
n+1(βr) − nH

(1)
n (βr)

r
, (A.2.2i)

C2,4 =
jkH

(2)
n (αr)

r
, (A.2.2j)

C2,5 = jkH
(2)
n+1(βr), (A.2.2k)

C2,6 =
βrH

(2)
n+1(βr) − nH

(2)
n (βr)

r
, (A.2.2l)

C3,1 = jkH(1)
n (αr), (A.2.2m)

C3,2 = −jβH(1)
n (βr), (A.2.2n)

C3,3 = 0, (A.2.2o)

C3,4 = jkH(2)
n (αr), (A.2.2p)

C3,5 = −jβH(2)
n (βr), (A.2.2q)

and

C3,6 = 0. (A.2.2r)

A.3 Strain Field

The strain field is given by

ε =
[
εrr εθθ εzz γrθ γrz γθz

]T
, (A.3.1)

where ε represents the strain tensor expressed in vector form. Moreover, ε is a normal

strain and γ is a(n engineering) shear strain. The double subscripts for ε and γ give the

directions of the strain. The first subscript indicates the normal of the plane in which the
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quantity in measured; the second subscript gives the direction. Moreover, the strain tensor

is symmetrical so that the order of the subscripts may be reversed without changing the

value. The elements of the strain tensor are related to the displacement field by the (small)

strain-displacement relations. These are given in cylindrical coordinates by

εrr =
∂u

∂r
, (A.3.2a)

εθθ =
1

r

∂v

∂θ
+

u

r
, (A.3.2b)

εzz =
∂w

∂z
, (A.3.2c)

γrθ =
1

r

∂u

∂θ
+
∂v

∂r
− v

r
, (A.3.2d)

γrz =
∂w

∂r
+
∂u

∂z
, (A.3.2e)

and

γθz =
∂v

∂z
+

1

r

∂w

∂θ
. (A.3.2f)

Substituting the displacement field into equation (A.3.1) and making use of equation (A.3.2)

gives

ε = D
[

A1 A2 A3 B1 B2 B3

]T
e jnθe jkze−jωt, (A.3.3)

where D is a 6 × 6 matrix having the elements:

D1,1 =
−α2r2H

(1)
n (αr) + n2H

(1)
n (αr) + αrH

(1)
n+1 − nH

(1)
n (αr)

r2
, (A.3.4.i)

D1,2 =
k
(
−βrH

(1)
n (βr) + nH

(1)
n+1(βr) + H

(1)
n+1(βr)

)

r
, (A.3.4.ii)

D1,3 =
−jn

(
βrH

(1)
n+1(βr) + H

(1)
n (βr) − nH

(1)
n (βr)

)

r2
, (A.3.4.iii)

D1,4 =
−α2r2H

(2)
n (αr) + n2H

(2)
n (αr) + αrH

(2)
n+1 − nH

(2)
n (αr)

r2
, (A.3.4.iv)

D1,5 =
k
(
−βrH

(2)
n (βr) + nH

(2)
n+1(βr) + H

(2)
n+1(βr)

)

r
, (A.3.4.v)

D1,6 =
−jn

(
βrH

(2)
n+1(βr) + H

(2)
n (βr) − nH

(2)
n (βr)

)

r2
, (A.3.4.vi)
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D2,1 =
−n2H

(1)
n (αr) − αrH

(1)
n+1(αr) + nH

(1)
n (αr)

r2
, (A.3.4.vii)

D2,2 =
−k(n + 1)H(1)

n+1(βr)

r
, (A.3.4.viii)

D2,3 =
jn

(
βrH

(1)
n+1(βr) − nH

(1)
n (βr) + H

(1)
n (βr)

)

r2
, (A.3.4.ix)

D2,4 =
−n2H

(2)
n (αr) − αrH

(2)
n+1(αr) + nH

(2)
n (αr)

r2
, (A.3.4.x)

D2,5 =
−k(n + 1)H(2)

n+1(βr)

r
, (A.3.4.xi)

D2,6 =
jn

(
βrH

(2)
n+1(βr) − nH

(2)
n (βr) + H

(2)
n (βr)

)

r2
, (A.3.4.xii)

D3,1 = −k2H(1)
n (αr), (A.3.4.xiii)

D3,2 = βkH(1)
n (βr), (A.3.4.xiv)

D3,3 = 0, (A.3.4.xv)

D3,4 = −k2H(2)
n (αr), (A.3.4.xvi)

D3,5 = βkH(2)
n (βr), (A.3.4.xvii)

D3,6 = 0, (A.3.4.xviii)

D4,1 =
−2jn

(
H

(1)
n (αr) − nH

(1)
n (αr) + αrH

(1)
n+1(αr)

)

r2
, (A.3.4.xix)

D4,2 =
−jk

(
2H

(1)
n+1(βr) − βrH

(1)
n (βr) + 2nH

(1)
n+1(βr)

)

r
, (A.3.4.xx)

D4,3 =
−2n2H

(1)
n (βr) − 2βrH

(1)
n+1(βr) + β2r2H

(1)
n (βr) + 2nH

(1)
n (βr)

r2
, (A.3.4.xxi)

D4,4 =
−2jn

(
H

(2)
n (αr) − nH

(2)
n (αr) + αrH

(2)
n+1(αr)

)

r2
, (A.3.4.xxii)

D4,5 =
−jk

(
2H

(2)
n+1(βr) − βrH

(2)
n (βr) + 2nH

(2)
n+1(βr)

)

r
, (A.3.4.xxiii)

D4,6 =
−2n2H

(2)
n (βr) − 2βrH

(2)
n+1(βr) + β2r2H

(2)
n (βr) + 2nH

(2)
n (βr)

r2
, (A.3.4.xxiv)

D5,1 =
−2jk

(
αrH

(1)
n+1(αr) − nH

(1)
n (αr)

)

r
, (A.3.4.xxv)

D5,2 =
−j

(
−β2rH

(1)
n+1(βr) + βnH

(1)
n (βr) + k2rH

(1)
n+1(βr)

)

r
, (A.3.4.xxvi)
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D5,3 =
−knH

(1)
n (βr)

r
, (A.3.4.xxvii)

D5,4 =
−2jk

(
αrH

(2)
n+1(αr) − nH

(2)
n (αr)

)

r
, (A.3.4.xxviii)

D5,5 =
−j

(
−β2rH

(2)
n+1(βr) + βnH

(2)
n (βr) + k2rH

(2)
n+1(βr)

)

r
, (A.3.4.xxix)

D5,6 =
−knH

(2)
n (βr)

r
, (A.3.4.xxx)

D6,1 =
−2knH

(1)
n (αr)

r
, (A.3.4.xxxi)

D6,2 =
−k2rH

(1)
n+1(βr) + βnH

(1)
n (βr)

r
, (A.3.4.xxxii)

D6,3 =
jk

(
βrH

(1)
n+1(βr) − nH

(1)
n (βr)

)

r
, (A.3.4.xxxiii)

D6,4 =
−2knH

(2)
n (αr)

r
, (A.3.4.xxxiv)

D6,5 =
−k2rH

(2)
n+1(βr) + βnH

(2)
n (βr)

r
, (A.3.4.xxxv)

and

D6,6 =
jk

(
βrH

(2)
n+1(βr) − nH

(2)
n (βr)

)

r
. (A.3.4.xxxvi)

A.4 Stress Field

The stress field is given by

σ =
[
σrr σθθ σzz τrθ τrz τθz

]T
, (A.4.1)

where σ represents the stress tensor expressed in vector form. The σ and τ in equa-

tion (A.4.1) are a normal and shearing stress, respectively. As before, the double subscripts

indicate the directions of the stress. The strain tensor is also symmetrical. For isotrop-

ic materials, elements of the stress tensor are related to the strain field, when cylindrical
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coordinates are employed, by

σrr = (λ + 2µ)εrr + λεθθ + λεzz, (A.4.2a)

σθθ = λεrr + (λ + 2µ)εθθ + λεzz, (A.4.2b)

σzz = λεrr + λεθθ + (λ + 2µ)εzz, (A.4.2c)

τrθ = µγrθ, (A.4.2d)

τrz = µγrz, (A.4.2e)

and

τθz = µγθz (A.4.2f)

Substituting the displacement field into equation (A.4.1) and making use of equation (A.4.2)

gives

σ = E
[

A1 A2 A3 B1 B2 B3

]T
e jnθe jkze−jωt, (A.4.3)

where E is a 6 × 6 matrix having the elements:

E1,1 = −
(
λα2r2 + 2µα2r2 + λk2r2 − 2µn2 + 2µn

)
H

(1)
n (αr)

r2
+ 2
µαH

(1)
n+1(αr)

r
, (A.4.4.i)

E1,2 =
2µk(n + 1)H(1)

n+1(βr)

r
− 2µkβH(1)

n (βr), (A.4.4.ii)

E1,3 =
−2jµn(−n + 1)H(1)

n (βr)

r2
−

2jµnβH(1)
n+1(βr)

r
, (A.4.4.iii)

E1,4 = −
(
λα2r2 + 2µα2r2 + λk2r2 − 2µn2 + 2µn

)
H

(2)
n (αr)

r2
+ 2
µαH

(2)
n+1(αr)

r
, (A.4.4.iv)

E1,5 =
2µk(n + 1)H(2)

n+1(βr)

r
− 2µkβH(2)

n (βr), (A.4.4.v)

E1,6 =
−2jµn(−n + 1)H(2)

n (βr)

r2
−

2jµnβH(2)
n+1(βr)

r
, (A.4.4.vi)

E2,1 = −
(
λα2r2 + λk2r2 + 2µn2 − 2µn

)
H

(1)
n (αr)

r2
−

2µαH
(1)
n+1(αr)

r
, (A.4.4.vii)

E2,2 =
−2µk(n + 1)H(1)

n+1(βr)

r
, (A.4.4.viii)
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E2,3 =
2jµn(−n + 1)H(1)

n (βr)

r2
+

2jµnH
(1)
n+1(βr)

r
, (A.4.4.ix)

E2,4 = −
(
λα2r2 + λk2r2 + 2µn2 − 2µn

)
H

(2)
n (αr)

r2
−

2µαH
(2)
n+1(αr)

r
, (A.4.4.x)

E2,5 =
−2µk(n + 1)H(2)

n+1(βr)

r
, (A.4.4.xi)

E2,6 =
2jµn(−n + 1)H(2)

n (βr)

r2
+

2jµnH
(2)
n+1(βr)

r
, (A.4.4.xii)

E3,1 =
(
−λα2 − λk2 − 2k2µ

)
H(1)

n (αr), (A.4.4.xiii)

E3,2 = 2µkβH(1)
n (βr), (A.4.4.xiv)

E3,3 = 0, (A.4.4.xv)

E3,4 =
(
−λα2 − λk2 − 2k2µ

)
H(2)

n (αr), (A.4.4.xvi)

E3,5 = 2µkβH(2)
n (βr), (A.4.4.xvii)

E3,6 = 0, (A.4.4.xviii)

E4,1 =
−2µjn

(
H

(1)
n (αr) − nH

(1)
n (αr) + αrH

(1)
n+1(αr)

)

r2
, (A.4.4.xix)

E4,2 =
−jµk

(
2H

(1)
n+1(βr) − βrH

(1)
n (βr) + 2nH

(1)
n+1(βr)

)

r
, (A.4.4.xx)

E4,3 =
−2µn2H

(1)
n (βr) − 2µβrH

(1)
n+1(βr) + µβ2r2H

(1)
n (βr) + 2µnH

(1)
n (βr)

r2
, (A.4.4.xxi)

E4,4 =
−2µjn

(
H

(2)
n (αr) − nH

(2)
n (αr) + αrH

(2)
n+1(αr)

)

r2
, (A.4.4.xxii)

E4,5 =
−jµk

(
2H

(2)
n+1(βr) − βrH

(2)
n (βr) + 2nH

(2)
n+1(βr)

)

r
, (A.4.4.xxiii)

E4,6 =
−2µn2H

(2)
n (βr) − 2µβrH

(2)
n+1(βr) + µβ2r2H

(2)
n (βr) + 2µnH

(2)
n (βr)

r2
, (A.4.4.xxiv)

E5,1 =
−2jµk

(
αrH

(1)
n+1(αr) − nH

(1)
n (αr)

)

r
, (A.4.4.xxv)

E5,2 =
−jµ

(
−β2rH

(1)
n+1(βr) + βnH

(1)
n (βr) + k2rH

(1)
n+1(βr)

)

r
, (A.4.4.xxvi)

E5,3 =
−µknH

(1)
n (βr)

r
, (A.4.4.xxvii)

E5,4 =
−2jµk

(
αrH

(2)
n+1(αr) − nH

(2)
n (αr)

)

r
, (A.4.4.xxviii)
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E5,5 =
−jµ

(
−β2rH

(2)
n+1(βr) + βnH

(2)
n (βr) + k2rH

(2)
n+1(βr)

)

r
, (A.4.4.xxix)

E5,6 =
−µknH

(2)
n (βr)

r
, (A.4.4.xxx)

E6,1 =
−2µknH

(1)
n (αr)

r
, (A.4.4.xxxi)

E6,2 =
−µk2rH

(1)
n+1(βr) + µβnH

(1)
n (βr)

r
, (A.4.4.xxxii)

E6,3 =
jµk

(
βrH

(1)
n+1(βr) − nH

(1)
n (βr)

)

r
, (A.4.4.xxxiii)

E6,4 =
−2µknH

(2)
n (αr)

r
, (A.4.4.xxxiv)

E6,5 =
−µk2rH

(2)
n+1(βr) + µβnH

(2)
n (βr)

r
, (A.4.4.xxxv)

and

E6,6 =
jµk

(
βrH

(2)
n+1(βr) − nH

(2)
n (βr)

)

r
. (A.4.4.xxxvi)

A.5 Traction Free Inner and Outer Surfaces

Theσrr, τrθ, and τrz components of the stress tensor must vanish simultaneously on the inner

and outer surfaces of the pipe for these two surfaces to be traction free. These constraints

require, as stated in equation (2.2.10) and repeated here, that

P
[

A1 A2 A3 B1 B2 B3

]T
=

[
0 0 0 0 0 0

]T
. (A.5.1)

Components of matrix P are:

P1,1 = −
(
λα2r2

i + 2µα2r2
i + λk

2r2
i − 2µn2 + 2µn

)
H

(1)
n (αri)

r2
i

+ 2
µαH

(1)
n+1(αri)

ri
, (A.5.2.i)

P1,2 =
2µk(n + 1)H(1)

n+1(βri)

ri
− 2µkβH(1)

n (βri), (A.5.2.ii)

P1,3 =
−2jµn(−n + 1)H(1)

n (βri)

r2
i

−
2jµnβH(1)

n+1(βri)

ri
, (A.5.2.iii)
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P1,4 = −
(
λα2r2

i + 2µα2r2
i + λk

2r2 − 2µn2 + 2µn
)

H
(2)
n (αri)

r2
i

+ 2
µαH

(2)
n+1(αri)

ri
, (A.5.2.iv)

P1,5 =
2µk(n + 1)H(2)

n+1(βri)

ri
− 2µkβH(2)

n (βri), (A.5.2.v)

P1,6 =
−2jµn(−n + 1)H(2)

n (βri)

r2
i

−
2jµnβH(2)

n+1(βri)

ri
, (A.5.2.vi)

P2,1 = −
(
λα2r2

o + 2µα2r2
o + λk

2r2
o − 2µn2 + 2µn

)
H

(1)
n (αro)

r2
o

+ 2
µαH

(1)
n+1(αro)

ro
, (A.5.2.vii)

P2,2 =
2µk(n + 1)H(1)

n+1(βro)

ro
− 2µkβH(1)

n (βro), (A.5.2.viii)

P2,3 =
−2jµn(−n + 1)H(1)

n (βro)

r2
o

−
2jµnβH(1)

n+1(βro)

ro
, (A.5.2.ix)

P2,4 = −
(
λα2r2

o + 2µα2r2
o + λk

2r2 − 2µn2 + 2µn
)

H
(2)
n (αro)

r2
o

+ 2
µαH

(2)
n+1(αro)

ro
, (A.5.2.x)

P2,5 =
2µk(n + 1)H(2)

n+1(βro)

ro
− 2µkβH(2)

n (βro), (A.5.2.xi)

P2,6 =
−2jµn(−n + 1)H(2)

n (βro)

r2
o

−
2jµnβH(2)

n+1(βro)

ro
, (A.5.2.xii)

P3,1 =
−2µjn

(
H

(1)
n (αri) − nH

(1)
n (αri) + αriH

(1)
n+1(αri)

)

r2
i

, (A.5.2.xiii)

P3,2 =
−jµk

(
2H

(1)
n+1(βri) − βriH

(1)
n (βri) + 2nH

(1)
n+1(βri)

)

ri
, (A.5.2.xiv)

P3,3 =
−2µn2H

(1)
n (βri) − 2µβriH

(1)
n+1(βri) + µβ2r2

i H
(1)
n (βri) + 2µnH

(1)
n (βri)

r2
i

, (A.5.2.xv)

P3,4 =
−2µjn

(
H

(2)
n (αri) − nH

(2)
n (αri) + αriH

(2)
n+1(αri)

)

r2
i

, (A.5.2.xvi)

P3,5 =
−jµk

(
2H

(2)
n+1(βri) − βriH

(2)
n (βri) + 2nH

(2)
n+1(βri)

)

ri
, (A.5.2.xvii)

P3,6 =
−2µn2H

(2)
n (βri) − 2µβriH

(2)
n+1(βri) + µβ2r2

i H
(2)
n (βri) + 2µnH

(1)
n (βri)

r2
i

, (A.5.2.xviii)

P4,1 =
−2µjn

(
H

(1)
n (αro) − nH

(1)
n (αro) + αroH

(1)
n+1(αro)

)

r2
o

, (A.5.2.xix)

P4,2 =
−jµk

(
2H

(1)
n+1(βro) − βroH

(1)
n (βro) + 2nH

(1)
n+1(βro)

)

ro
, (A.5.2.xx)
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P4,3 =
−2µn2H

(1)
n (βro) − 2µβroH

(1)
n+1(βro) + µβ2r2

oH
(1)
n (βro) + 2µnH

(1)
n (βro)

r2
o

, (A.5.2.xxi)

P4,4 =
−2µjn

(
H

(2)
n (αro) − nH

(2)
n (αro) + αroH

(2)
n+1(αro)

)

r2
o

, (A.5.2.xxii)

P4,5 =
−jµk

(
2H

(2)
n+1(βro) − βroH

(2)
n (βro) + 2nH

(2)
n+1(βro)

)

ro
, (A.5.2.xxiii)

P4,6 =
−2µn2H

(2)
n (βro) − 2µβroH

(2)
n+1(βro) + µβ2r2

oH
(2)
n (βro) + 2µnH

(2)
n (βro)

r2
o

, (A.5.2.xxiv)

P5,1 =
−2jµk

(
αriH

(1)
n+1(αri) − nH

(1)
n (αri)

)

ri
, (A.5.2.xxv)

P5,2 =
−jµ

(
−β2riH

(1)
n+1(βri) + βnH

(1)
n (βri) + k2riH

(1)
n+1(βri)

)

ri
, (A.5.2.xxvi)

P5,3 =
−µknH

(1)
n (βri)

ri
, (A.5.2.xxvii)

P5,4 =
−2jµk

(
αriH

(2)
n+1(αri) − nH

(2)
n (αri)

)

ri
, (A.5.2.xxviii)

P5,5 =
−jµ

(
−β2riH

(2)
n+1(βri) + βnH

(2)
n (βri) + k2riH

(2)
n+1(βri)

)

ri
, (A.5.2.xxix)

P5,6 =
−µknH

(2)
n (βri)

ri
, (A.5.2.xxx)

P6,1 =
−2jµk

(
αroH

(1)
n+1(αro) − nH

(1)
n (αro)

)

ro
, (A.5.2.xxxi)

P6,2 =
−jµ

(
−β2roH

(1)
n+1(βro) + βnH

(1)
n (βro) + k2roH

(1)
n+1(βro)

)

ro
, (A.5.2.xxxii)

P6,3 =
−µknH

(1)
n (βro)

ro
, (A.5.2.xxxiii)

P6,4 =
−2jµk

(
αroH

(2)
n+1(αro) − nH

(2)
n (αro)

)

ro
, (A.5.2.xxxiv)

P6,5 =
−jµ

(
−β2roH

(2)
n+1(βro) + βnH

(2)
n (βro) + k2roH

(2)
n+1(βro)

)

ro
, (A.5.2.xxxv)

and

P6,6 =
−µknH

(2)
n (βro)

ro
. (A.5.2.xxxvi)

The previous components are obtained from equation (A.4.3) by evaluating σrr (first and

second rows of P), τrθ (third and fourth rows of P), and τrz (fifth and sixth rows of P) at the
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inner and outer surfaces of the pipe, respectively.

The axisymmetric case is special. Substituting n = 0 into equation (A.5.2) yields:

P1,3 = 0, (A.5.3a)

P1,6 = 0, (A.5.3b)

P2,3 = 0, (A.5.3c)

P2,6 = 0, (A.5.3d)

P3,1 = 0, (A.5.3e)

P3,4 = 0, (A.5.3f)

P4,1 = 0, (A.5.3g)

P4,4 = 0, (A.5.3h)

P5,3 = 0, (A.5.3i)

P5,6 = 0, (A.5.3j)

P6,3 = 0, (A.5.3k)

and

P6,6 = 0. (A.5.3l)

Then the determinant of matrix P can be written as the product of two subdeterminants.

This observation can be verified by expanding the determinant down the sixth column. The

result is

det (P) = det




P3,6 P4,6

P3,3 P4,3



 det





P1,1 P1,2 P1,4 P1,5

P2,1 P2,2 P2,4 P2,5

P5,1 P5,2 P5,4 P5,5

P6,1 P6,2 P6,4 P6,5





. (A.5.4)

The second subdeterminant corresponds to longitudinal modes where radial and axial dis-

placements appear to be coupled. On the other hand, the first subdeterminant in equation
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(A.5.4) corresponds to torsional modes, which involve a displacement component only in

the circumferential direction. It is interesting to note that β = 0 causes the first subdetermin-

ant to vanish. This case corresponds to the non-dispersive, lowest torsional mode.
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Appendix B

Derivation of Approximate Equations ofMotion

Using SAFE

B.1 Introduction

The approximate displacement field is written in this appendix in terms of interpolation

functions and a nodal displacement vector. The strain-displacement matrices are introduced

to describe the strain and stress fields in terms of the approximate displacement field. Then

approximate equations of motion are obtained, along with initial and boundary conditions,

by applying Hamilton’s principle to the appropriate functional for the complex displace-

ment fields when no material damping is present.

B.2 Approximate Displacement Field

The displacement field is approximated initially as

u(r, θ, z, t) = N(r)U(θ, z, t), (B.2.1)

where

N(r) =



N(r) 0 0

0 N(r) 0

0 0 N(r)


, (B.2.2)

N are the assembled interpolation functions over the entire cylinder, and U(θ, z, t) is the

corresponding array of nodal displacements. The N is obtained by a conventional finite

assembly process over all elements. (See, for example, [107].) The U(θ, z, t), can be written
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as

U(θ, z, t) =
[
U(θ, z, t) V(θ, z, t) W(θ, z, t)

]T
, (B.2.3)

where U, V, andW are arrays containing 2N + 1 elements corresponding to the radial,

circumferential, and axial nodal displacements, respectively. The interpolation functions,

n, used here in any sublayer of the pipe, are quadratic isoparametric elements having the

specific forms

n(ζ) =
[

nb(ζ) nm(ζ) nf(ζ)
]
=

[
1
2ζ(ζ − 1) (1 − ζ2) 1

2ζ(ζ + 1)
]
. (B.2.4)

The nb, nm, nf are shape functions associated with the “back” (inner), “middle”, and “front”

(outer) nodal surfaces, respectively. Moreover, ζ is a dimensionless radial coordinate in the

local, isoparametric finite element’s coordinate system that is given by

ζ =
2(r − rkm)

Hk

,−1 ≤ ζ ≤ 1. (B.2.5)

The rkm in the above equation is the radial coordinate of the kth layer’s middle surface, which

is taken to be the arithmetic average of the element’s inner and outer radial coordinates.

B.3 Approximate Strain and Stress Fields

The following three strain transformation matrices are introduced:

B1 =



N,r N/r 0 0 0 0

0 0 0 N,r − N/r 0 0

0 0 0 0 N,r 0



T

, (B.3.1a)
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B2 =



0 0 0 N/r 0 0

0 N/r 0 0 0 0

0 0 0 0 0 N/r



T

, (B.3.1b)

and

B3 =



0 0 0 0 N 0

0 0 0 0 0 N

0 0 N 0 0 0



T

(B.3.1c)

to simplify the computation of the approximate strain field. Then the strain and stress

tensors can be written in vector form as

ε = B1U + B2U,θ + B3U,z (B.3.2a)

and

σ = DB1U + DB2U,θ + DB3U,z, (B.3.2b)

respectively, where D is a symmetric matrix composed of the isotropic elastic moduli given

by

D =



λ + 2µ λ λ 0 0 0

λ λ + 2µ λ 0 0 0

λ λ λ + 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ



. (B.3.3)
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B.4 Application of Hamilton’s Principle

Hamilton’s principle can be expressed in the form

δ

∫ t2

t1

(
T − V

)
dt = 0, (B.4.1)

where δ indicates the first variation and T and V are the total kinetic and potential energies,

respectively. They are given by

T =
1

2

∫

z

∫

θ

∫

r

ρ ˙̃uTu̇rdrdθdz (B.4.2a)

and

V =
1

2

∫

z

∫

θ

∫

r

ε̃Tσrdrdθdz + Ve =
1

2

∫

z

∫

θ

∫

r

ε̃TDεrdrdθdz + Ve, (B.4.2b)

where use has been made of equation (B.3.2b) and Ve is the potential energy due to the

external forces. External forces that are body-force like are assumed now for convenience.

Surface tractions are assumed not to exist. This assumption is the same one made when the

exact wavefunctions were derived. With this assumption, the Ve can be represented as

Ve = −
1

2

∫

z

∫

θ

∫

r

(
ũTp + p̃Tu

)
rdrdθdz, (B.4.3)

where p is a body force vector that is a function of the spatial coordinates and whose spe-

cific form depends on the external forces. (The only external loadings considered here are

“point-like” forces applied at a finite element model’s nodal points so that the form of p

is quite simple.) Substituting equation (B.2.1) into equation (B.4.2), making use of equa-

tion (B.3.2a) and noting that N and D are both real and independent of time, gives

T =
1

2

∫

z

∫

θ

∫

r

ρ ˙̃UT
N

T
NU̇rdrdθdz (B.4.4a)
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and

V =
1

2

∫

z

∫

θ

∫

r

(
ŨTBT

1 DB1U + ŨTBT
1 DB2U,θ + ŨTBT

1 DB3U,z

+ ŨT
,θB

T
2 DB1U + ŨT

,θB
T
2 DB2U,θ + ŨT

,θB
T
2 DB3U,z

+ŨT
,zB

T
3 DB1U + ŨT

,zB
T
3 DB2U,θ + ŨT

,zB
T
3 DB3U,z

)
rdrdθdz

− 1

2

∫

z

∫

θ

∫

r

(
ŨT
N

Tp + p̃T
NU

)
rdrdθdz,

(B.4.4b)

by making use of equation (B.4.3). Making the substitutions U = ℜ(
U
)
+ jℑ(U)

and

p = ℜ(
p
)
+ jℑ(p)

, where ℜ and ℑ indicate the real and imaginary part respectively, into

equation (B.4.4) gives

T =
1

2

∫

z

∫

θ

∫

r

ρ
(
ℜ(

U̇
)T
N

T
Nℜ(

U̇
)
+ ℑ(U̇)T

N
T
Nℑ(U̇))

rdrdθdz (B.4.5a)

and

V =
1

2

∫

z

∫

θ

∫

r

(
ℜ(

U
)T

BT
1 DB1ℜ

(
U
)
+ℜ(

U
)T

BT
1 DB2ℜ

(
U,θ

)

+ℜ(
U
)T

BT
1 DB3ℜ

(
U,z

)
+ℜ(

U,θ
)T

BT
2 DB1ℜ

(
U
)

+ℜ(
U,θ

)T
BT

2 DB2ℜ
(
U,θ

)
+ℜ(

U,θ
)T

BT
2 DB3ℜ

(
U,z

)

+ℜ(
U,z

)T
BT

3 DB1ℜ
(
U
)
+ℜ(

U,z
)T

BT
3 DB2ℜ

(
U,θ

)

+ℜ(
U,z

)T
BT

3 DB3ℜ
(
U,z

)
+ ℑ(U)T

BT
1 DB1ℑ

(
U
)

+ ℑ(U)T
BT

1 DB2ℑ
(
U,θ

)
+ ℑ(U)T

BT
1 DB3ℑ

(
U,z

)

+ ℑ(U,θ
)T

BT
2 DB1ℑ

(
U
)
+ ℑ(U,θ

)T
BT

2 DB2ℑ
(
U,θ

)

+ ℑ(U,θ
)T

BT
2 DB3ℑ

(
U,z

)
+ ℑ(U,z

)T
BT

3 DB1ℑ
(
U
)

+ ℑ(U,z
)T

BT
3 DB2ℑ

(
U,θ

)
+ ℑ(U,z

)T
BT

3 DB3ℑ
(
U,z

)

−2ℜ(
U
)T
N

Tℜ(
p
) − 2ℑ(U)T

N
Tℑ(p))

rdrdθdz,

(B.4.5b)

by making use of the fact that each matrix product gives rise to a scalar. Hence

jℑ(U̇)T
N

T
Nℜ(

U̇
)
= ℜ(

U̇
)T
N

T
N jℑ(U̇)

, for example.
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Substituting equation (B.4.5) into equation (B.4.1) and taking the first variation gives

1

2

∫ t2

t1

(∫

z

∫

θ

∫

r

−2
{
δℜ(

U
)T

[
ρNT
Nℜ(

Ü
)
+ BT

1 DB1ℜ
(
U
)

+
(
BT

1 DB2 − BT
2 DB1

)
ℜ(

U,θ
)
+

(
BT

1 DB3 − BT
3 DB1

)
ℜ(

U,z
)

− BT
2 DB2ℜ

(
U,θθ

) −
(
BT

2 DB3 + BT
3 DB2

)
ℜ(

U,θz
) − BT

3 DB3ℜ
(
U,zz

)

−NTℜ(
p
)]
+ δℑ(U)T

[
ρNT
Nℑ(Ü)

+ BT
1 DB1ℑ

(
U
)

+
(
BT

1 DB2 − BT
2 DB1

)
ℑ(U,θ

)
+

(
BT

1 DB3 − BT
3 DB1

)
ℑ(U,z

) − BT
2 DB2ℑ

(
U,θθ

)

−
(
BT

2 DB3 + BT
3 DB2

)
ℑ(U,θz

) − BT
3 DB3ℜ

(
U,zz

) −NTℑ(p)]}
rdrdθdz

)
dt

+
1

2

∫ t2

t1

∫

z

∫

θ

∫

r

2

{
d

dt

[
δℜ(

U
)T
ρNT
Nℜ(

U̇
)]

+
d

dt

[
δℑ(U)T

ρNT
Nℑ(U̇)]}

rdrdθdzdt

+
1

2

∫ t2

t1

∫

z

∫

θ

∫

r

2

{
d

dθ

(
δℜ(

U
)T

[
BT

2 DB1ℜ
(
U
)
+ BT

2 DB2ℜ
(
U,θ

)

+BT
2 DB3ℜ

(
U,z

)])
+

d

dz

(
δℜ(

U
)T

[
BT

3 DB1ℜ
(
U
)
+ BT

3 DB2ℜ
(
U,θ

)

+BT
3 DB3ℜ

(
U,z

)])
+

d

dθ

(
δℑ(U)T

[
BT

2 DB1ℑ
(
U
)
+ BT

2 DB2ℑ
(
U,θ

)

+BT
2 DB3ℑ

(
U,z

)])
+

d

dz

(
δℑ(U)T

[
BT

3 DB1ℑ
(
U
)
+ BT

3 DB2ℑ
(
U,θ

)

+BT
3 DB3ℑ

(
U,z

)])}
rdrdθdzdt = 0.

(B.4.6)

The first integral in equation (B.4.6) represents the approximate equations of motion. On

the other hand, the second and third integrals give approximate initial conditions and bound-

ary conditions, respectively. The mass, M, stiffness Ki, i = 1, 2, 3, . . . , 6, and consistent

force, F, matrices are defined now as:

M =

∫ ro

ri

ρNT
Nrdr, (B.4.7a)

K1 =

∫ ro

ri

BT
1 DB1rdr, (B.4.7b)

K2 =

∫ ro

ri

(
BT

1 DB2 − BT
2 DB2

)
rdr, (B.4.7c)
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K3 =

∫ ro

ri

(
BT

1 DB3 − BT
3 DB1

)
rdr, (B.4.7d)

K4 =

∫ ro

ri

BT
2 DB2rdr, (B.4.7e)

K5 =

∫ ro

ri

(
BT

2 DB3 + BT
3 DB2

)
rdr, (B.4.7f)

K6 =

∫ ro

ri

BT
3 DB3rdr, (B.4.7g)

and

F =

∫ ro

ri

NTprdr. (B.4.7h)

Note that M, K1, K4, K5, and K6 are symmetric but K2 and K3 are antisymmetric. Substi-

tuting equation (B.4.7) into the approximate equations of motion gives

1

2

∫ t2

t1

{∫

z

∫

θ

−2
(
δℜ(

U
)T

[
Mℜ(

Ü
)
+K1ℜ

(
U
)
+K2ℜ

(
U,θ

)
+K3ℜ

(
U,z

)

−K4ℜ
(
U,θθ

) −K5ℜ
(
U,θz

) −K6ℜ
(
U,zz

) −ℜ(
F
)]

+ δℑ(U)T
[
ρMℑ(Ü)

+K1ℑ
(
U
)
+K2ℑ

(
Uθ

)
+K3ℑ

(
U,z

) −K4ℑ
(
U,θθ

)

−K5ℑ
(
U,θz

) −K6ℑ
(
U,zz

) − ℑ(F)])
dθdz

}
dt = 0.

(B.4.8)

It follows that

Mℜ(
Ü
)
+K1ℜ

(
U
)
+K2ℜ

(
U,θ

)
+K3ℜ

(
U,z

) −K4ℜ
(
U,θθ

)

−K5ℜ
(
U,θz

) −K6ℜ
(
U,zz

) −ℜ(
F
)
= 0

(B.4.9a)

and

Mℑ(Ü)
+K1ℑ

(
U
)
+K2ℑ

(
U,θ

)
+K3ℑ

(
U,z

) −K4ℑ
(
U,θθ

)

−K5ℑ
(
U,θz

) −K6ℑ
(
U,zz

) − ℑ(F)
= 0

(B.4.9b)

for equation (B.4.8) to be generally satisfied because δℜ(
U
)T and δℑ(U)T are independent.

Multiplying equation (B.4.9b) by j and adding the result to equation (B.4.9a) gives

MÜ +K1U +K2U,θ +K3U,z −K4U,θθ −K5U,θz −K6U,zz = F. (B.4.10)
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Equation (B.4.10) is identical to equation (2.3.2) given in the main text and it is the desired

result.

B.5 Note on Integrating the Finite Element Matrices

In practice the matrices given in equation (B.4.7) are evaluated by “assembling” finite ele-

ment matrices. The element matrices for the kth element take the same form as the matrices

in equation (B.4.7) but with integration limits of rk and rk+1 instead of ri and ro. (See also

subsection 2.3.2 and Figure 2.2.) A typical element of these matrices can be written in the

form

E =
∫ rk+1

rk

I(r, ζ)rdr, (B.5.1)

where E is an arbitrary matrix element and I is the integrand arising from the required

matrix multiplications. The variable of integration in equation (B.5.1) is r but the integrand

is a function of both r and ζ (which is also a function of r). The well known change of

variables theorem from multivariable calculus is invoked to evaluate equation (B.5.1). The

result is

E =
∫ rk+1

rk

I(r, ζ)rdr =

∫ 1

−1

I′(ζ)
(
Hkζ + rkm

2

) (
Hk

2

)
dζ. (B.5.2)

Use is made of the relation r = (Hkζ + rkm)/2 which is obtained from equation (B.2.5).

Moreover, I′(ζ) can be derived straightforwardly from I(r, ζ) by using the chain rule and

the previously stated relation between r and ζ. On the other hand, the Hk/2 factor appearing

in equation (B.5.2) arises from the use of the determinant of the Jacobian matrix in the

change of variables theorem. For this particular case, the Jacobian matrix, J, is a scalar and

it is given simply by

J =
∂r

∂ζ
=

Hk

2
(B.5.3)

so its determinant, |J|, is merely

|J| = Hk

2
. (B.5.4)
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The Jacobian matrix is a scalar as a result of using a one-dimensional finite element. On

the other hand, the Jacobian matrix given by equation (B.5.3) is a constant when the radial

coordinate of the kth layer’s middle surface is chosen to coincide with the arithmetic average

of a finite element’s inner and outer radial coordinates.
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Appendix C

Code Listings and Sketches to Implement SAFE

C.1 Overview

This appendix contains annotated code listings and “sketches” (where sections of code are

removed for brevity) of illustrative Matlabr scripts and functions used to implement the

SAFE method. This method is described for isotropic pipes in Chapter 2 and Appendix B.

The code listings and sketches introduce an approach which allows a partial automation of

writing finite element programs by taking advantage of readily available commercial tools.

Moreover, several Matlabr “best practices,” such as preallocating memory for arrays and

“vectorizing code” rather than using a loop, are illustrated as a matter of course in the

numerical implementations. Although the programs presented in this appendix have been

“parallelized” to run simultaneously on a several computing cores, only “serial” or single

computer1 versions are presented here. A discussion of parallel and distributed computing

is deferred to Appendix L.

C.2 Annotated Code Listings

An annotated Matlabr code listing to evaluate (in closed form) the finite element stiffness

and mass matrices is provided in Listing C.1. A high level flowchart for this program is

given in Figure C.1. Listing C.2, on the other hand, gives illustrative code to assemble

the global K1 stiffness matrix from the element matrices. Figure C.2 gives a high level

flowchart for this listing. The script is run once for each Ki and M. A “find and replace”

is used to change a matrix designation. The output of the two previously described scripts

is copied into programs which implement the eigenvalue problems to produce the approx-

1Note that Matlabr supports implicit parallelization that speeds code execution for serial programs.
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✗
✖

✔
✕Start

❄

Clear workspace

❄

Define geometric variables (required to be real)

❄

Define material properties (can be complex)

❄

Define the shape functions, equation (B.2.4)

❄

Define matrix of elastic constants, equation (B.3.3)

❄

Compute strain transformation matrices, equation (B.3.1)

❄

Define shape functions for mass matrices

❄

Compute the determinant of the Jacobian matrix

❄

Evaluate the Ki and M matrices, equation (B.4.7)

❄

Write the evaluated Ki and M to file
✂
✂✂

✂
✂✂

❄✗
✖

✔
✕Stop

Figure C.1. A high level flowchart for Listing C.1.
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☛
✡

✟
✠Start

❄

Clear workspace

❄
Open file to write code to assemble

global stiffness matrix

❄

Initialize row counter

❄
Initialize column counter

based on row counter

❄
Determine location in global matrix

where to write element matrix element

❄
Write element in upper half of assembled

stiffness matrix to file✂
✂
✂✂

✂
✂
✂✂

❄
Write element in lower half of assembled stiffness

matrix to file using symmetry/anti-symmetry
✂
✂
✂✂

✂
✂
✂✂

❄

�
�

�
�

❅
❅

❅
❅

�
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❅
❅

❅
❅

Done
all
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✲ Increment column
counter

✛

❄

�
�

�
�

❅
❅

❅
❅

�
�

�
�

❅
❅

❅
❅

Done
all

rows?

No

Yes

✲ Increment row
counter

✛

❄

Close output file

❄☛
✡

✟
✠Stop

Figure C.2. A high level flowchart for Listing C.2.
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imate wavefunctions. Listings C.3 and C.4 provide “sketches” of these Matlabr programs.

High level flowcharts for the listings are provided in Figures C.3 and C.4, respectively.

The first of these two listings solves the eigenvalue problem given in equation (2.3.5); the

second implements the eigenvalue problem of equation (2.3.6). Both eigenvalue problems

have practical interest but in different scenarios. Note that the program Listings C.3 and

C.4 implement not only the general three-dimensional case (where displacements in the

radial, circumferential and axial directions can exist simultaneously) but also simplifica-

tions arising from the axisymmetric case. Both axisymmetric wave types labelled either

torsional, which involve purely circumferential displacements, or longitudinal, in which ra-

dial and axial displacements can exist simultaneously, are implemented. The element and

global stiffness and mass matrices for these special cases are derived using programs that

are similar, yet simpler, than those presented in Listings C.1 and C.2. These listings are

modified by deleting the relevant displacement components and accommodating the dele-

tions in the assembly process. Discussions of the additional code required to distribute

the programs to a cluster of computers are deferred until Appendix L. (Note that in later

implementations of these programs the [frequency independent] global mass and stiffness

matrices are written to disk to be “read in” when required, rather than recomputing them

for each frequency and circumferential wavenumber of interest. These matrices are stored

by using Matlabr’s built-in, binary storage scheme which encodes numerical information

much more efficiently than a “plain text” storage scheme.)
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✗
✖

✔
✕Start

❄

Process input arguments

❄

Calculate all finite elements’ node coordinates

❄

Allocate memory for global mass
and stiffness matrices

❄

Compute element mass and stiffness matrices
and assemble into global matrices

❄

Form eigenvalue problem

❄

Solve eigenvalue problem returning either solely
the frequencies or the frequencies and mode shapes

depending on the number of output arguments

❄✗
✖

✔
✕Stop

Figure C.3. A high level flowchart for Listing C.3.
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✓
✒

✏
✑Start

❄

Process input arguments

❄

Calculate all finite elements’ node coordinates

❄

Allocate memory for global mass
and stiffness matrices

❄

Compute element mass and stiffness matrices
and assemble into global matrices

❄

Form (linear) eigenvalue problem

❄

Solve left and right eigenvalue problems

❄

Sort and classify eigenvalues and eigenvectors

❄

Compute “scaling factors,” Bnm

❄

Return wavenumbers, mode shapes, and
scaling factors.

❄✓
✒

✏
✑Stop

Figure C.4. A high level flowchart for Listing C.4.
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Listing C.1. Matlabr code to compute (finite) element stiffness and mass matrices.

1 clear; %Clear the workspace.
2 clc; %Clear the screen.
3

4 syms xi r rkm Hk rki rko real %Define the "base" symbolic variables
5 %which are required to be real.
6 syms lambda mu rho %Define the symbolic variables which correspond
7 %to the material properties.
8

9 N=[1/2*xi*(xi−1) (1−xi^2) 1/2*xi*(xi+1)] %Define the shape functions,
10 %i.e., equation (B.2.4).
11

12 %Note: xi=2*(r−rkm)/Hk, equation (B.2.5).
13

14 %Compute derivative of shape functions using "Chain rule."
15 %N_r=diff(N,'xi')*diff(xi,'r').
16 N_r=diff(N,'xi')*2/Hk
17

18 %Matrix of elastic constants for equation (B.3.3).
19 D=[lambda+2*mu lambda lambda 0 0 0;
20 lambda lambda+2*mu lambda 0 0 0;
21 lambda lambda lambda+2*mu 0 0 0;
22 0 0 0 mu 0 0;
23 0 0 0 0 mu 0;
24 0 0 0 0 0 mu]
25

26 %Note: r=Hk*xi/2+rkm [Derived from equation (B.2.5).]
27

28 %Compute strain transformation matrices, equation (B.3.1).
29

30 B1=[N_r 0 0 0 0 0 0;
31 N/(Hk*xi/2+rkm) 0 0 0 0 0 0;
32 0 0 0 0 0 0 0 0 0;
33 0 0 0 N_r−N/(Hk*xi/2+rkm) 0 0 0;
34 0 0 0 0 0 0 N_r;
35 0 0 0 0 0 0 0 0 0];
36

37 B2=[0 0 0 0 0 0 0 0 0;
38 0 0 0 N/(Hk*xi/2+rkm) 0 0 0;
39 0 0 0 0 0 0 0 0 0;
40 N/(Hk*xi/2+rkm) 0 0 0 0 0 0;
41 0 0 0 0 0 0 0 0 0;
42 0 0 0 0 0 0 N/(Hk*xi/2+rkm)];
43

44 B3=[0 0 0 0 0 0 0 0 0;
45 0 0 0 0 0 0 0 0 0;
46 0 0 0 0 0 0 N;
47 0 0 0 0 0 0 0;
48 N 0 0 0 0 0 0;
49 0 0 0 N 0 0 0]

(Continued on next page. . . )
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Listing C.1. Matlabr code to compute (finite) element stiffness and mass matrices. (Con-
tinued from previous page.)

51 %Set up shape functions for element mass matrix.
52 NM=[N 0 0 0 0 0 0;
53 0 0 0 N 0 0 0;
54 0 0 0 0 0 0 N];
55

56 %Notes on the Jacobian:
57 %X=N*[rkm−Hk/2 rkm rkm+Hk/2]',
58 %dXdxi=diff(X,'xi').
59

60 %Compute determinant of the Jacobian matrix.
61 detJ=Hk/2;
62

63 %Symbolically evaluate the element stiffness and mass matrices,
64 %equation (B.4.7).
65 K1=simple(int(B1'*D*B1*(Hk*xi/2+rkm)*detJ,'xi',−1,1))
66 K2=simple(int((B1'*D*B2−B2'*D*B1)*(Hk*xi/2+rkm)*detJ,'xi',−1,1))
67 K3=simple(int((B1'*D*B3−B3'*D*B1)*(Hk*xi/2+rkm)*detJ,'xi',−1,1))
68 K4=simple(int(B2'*D*B2*(Hk*xi/2+rkm)*detJ,'xi',−1,1))
69 K5=simple(int((B2'*D*B3+B3'*D*B2)*(Hk*xi/2+rkm)*detJ,'xi',−1,1))
70 K6=simple(int(B3'*D*B3*(Hk*xi/2+rkm)*detJ,'xi',−1,1))
71 M=simple(int(rho*NM'*NM*(Hk*xi/2+rkm)*detJ,'xi',−1,1))
72

73 %Write individual stiffness and mass matrices to ASCII plain text
74 %files for later use by assembly routine. Use the ccode command
75 %to convert from symbolic data type to a string of characters.
76

77 fid=fopen('K1.txt', 'wt');
78 for i=1:1:9
79 for j=i:1:9
80 fprintf(fid,'%s%d%d%c%c\n','K1_',i,j,'=',ccode(K1(i,j)));
81 end
82 end
83 fclose(fid);
84

85 fid=fopen('K2.txt', 'wt');
86 for i=1:1:9
87 for j=i:1:9
88 fprintf(fid,'%s%d%d%c%c\n','K2_',i,j,'=',ccode(K2(i,j)));
89 end
90 end
91 fclose(fid);
92

93 fid=fopen('K3.txt', 'wt');
94 for i=1:1:9
95 for j=i:1:9
96 fprintf(fid,'%s%d%d%c%c\n','K3_',i,j,'=',ccode(K3(i,j)));
97 end
98 end
99 fclose(fid);

(Continued on next page. . . )
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Listing C.1. Matlabr code to compute (finite) element stiffness and mass matrices. (Con-
tinued from previous page.)

100

101 fid=fopen('K4.txt', 'wt');
102 for i=1:1:9
103 for j=i:1:9
104 fprintf(fid,'%s%d%d%c%c\n','K4_',i,j,'=',ccode(K4(i,j)));
105 end
106 end
107 fclose(fid);
108

109 fid=fopen('K5.txt', 'wt');
110 for i=1:1:9
111 for j=i:1:9
112 fprintf(fid,'%s%d%d%c%c\n','K5_',i,j,'=',ccode(K5(i,j)));
113 end
114 end
115 fclose(fid);
116

117 fid=fopen('K6.txt', 'wt');
118 for i=1:1:9
119 for j=i:1:9
120 fprintf(fid,'%s%d%d%c%c\n','K6_',i,j,'=',ccode(K6(i,j)));
121 end
122 end
123 fclose(fid);
124

125 fid=fopen('M.txt', 'wt');
126 for i=1:1:9
127 for j=i:1:9
128 fprintf(fid,'%s%d%d%c%c\n','M_',i,j,'=',ccode(M(i,j)));
129 end
130 end
131 fclose(fid);
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Listing C.2. Sample Matlabr code to assemble global matrices from element matrices
using the K1 stiffness matrix as an illustration.

1 clear; %Clear the workspace.
2 clc; %Clear the screen.
3

4 fid=fopen('assemble.txt', 'wt'); %Open file to write the assembled
5 %global matrix.
6

7 %There are 9 rows and 9 columns of each element stiffness and mass
8 %matrix giving a total of 81 elements. Loop over all elements and
9 %assign them to the correct location in the global matrix. Note

10 %that "i" is the element number and (2*N+1) is the total number of
11 %nodes. This value is used to "offset" the circumferential and axial
12 %components of the element matrices to the global matrices.
13

14 %Loop over all element matrix components.
15 for n=1:1:9
16 for m=n:1:9
17 %Main diagonal.
18 if m==n
19 if n<4
20 if m<4
21 %No row or column offset needed.
22 str=['K1(2*(i−1)+' num2str(n) ',2*(i−1)+'...
23 num2str(m) ')=K1(2*(i−1)+' num2str(n)...
24 ',2*(i−1)+' num2str(m) ')+K1_' num2str(n)...
25 num2str(m) ';%K1(' num2str(n) ','...
26 num2str(m) ')'];
27 fprintf(fid,'%s\n',str);
28 elseif m<7
29 %No row and one column offset needed.
30 str=['K1(2*(i−1)+' num2str(n) ',2*(i−1)+'...
31 num2str(m−3) '+2*N+1)=K1(2*(i−1)+'...
32 num2str(n) ',2*(i−1)+' num2str(m−3)...
33 '+2*N+1)+K1_' num2str(n) num2str(m)...
34 ';%K1(' num2str(n) ',' num2str(m) ')'];
35 fprintf(fid,'%s\n',str);
36 else
37 %No row and two column offsets needed.
38 str=['K1(2*(i−1)+' num2str(n) ',2*(i−1)+'...
39 num2str(m−6) '+4*N+2)=K1(2*(i−1)+'...
40 num2str(n) ',2*(i−1)+' num2str(m−6)...
41 '+4*N+2)+K1_' num2str(n) num2str(m)...
42 ';%K1(' num2str(n) ',' num2str(m) ')'];
43 fprintf(fid,'%s\n',str);
44 end
45 elseif n<7
46 if m<4
47 %One row and no column offset needed.
48 str=['K1(2*(i−1)+' num2str(n−3)...
49 '+2*N+1,2*(i−1)+' num2str(m)...

(Continued on next page. . . )
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Listing C.2. Sample Matlabr code to assemble global matrices from element matrices
using the K1 stiffness matrix as an illustration. (Continued from previous page.)

50 ')=K1(2*(i−1)+' num2str(n−3)...
51 '+2*N+1,2*(i−1)+' num2str(m) ')+K1_'...
52 num2str(n) num2str(m) ';%K1(' num2str(n)...
53 ',' num2str(m) ')'];
54 fprintf(fid,'%s\n',str);
55 elseif m<7
56 %One row and column offset needed.
57 str=['K1(2*(i−1)+' num2str(n−3)...
58 '+2*N+1,2*(i−1)+' num2str(m−3)...
59 '+2*N+1)=K1(2*(i−1)+' num2str(n−3)...
60 '+2*N+1,2*(i−1)+' num2str(m−3)...
61 '+2*N+1)+K1_' num2str(n) num2str(m)...
62 ';%K1(' num2str(n) ',' num2str(m) ')'];
63 fprintf(fid,'%s\n',str);
64 else
65 %One row and two column offsets needed.
66 str=['K1(2*(i−1)+' num2str(n−3)...
67 '+2*N+1,2*(i−1)+' num2str(m−6)...
68 '+4*N+2)=K1(2*(i−1)+' num2str(n−3)...
69 '+2*N+1,2*(i−1)+' num2str(m−6)...
70 '+4*N+2)+K1_' num2str(n) num2str(m)...
71 ';%K1(' num2str(n) ',' num2str(m) ')'];
72 fprintf(fid,'%s\n',str);
73 end
74 else
75 if m<4
76 %Two row and no column offsets needed.
77 str=['K1(2*(i−1)+' num2str(n−6)...
78 '+4*N+2,2*(i−1)+' num2str(m)...
79 ')=K1(2*(i−1)+' num2str(n−6)...
80 '+4*N+2,2*(i−1)+' num2str(m) ')+K1_'...
81 num2str(n) num2str(m) ';%K1(' num2str(n)...
82 ',' num2str(m) ')'];
83 fprintf(fid,'%s\n',str);
84 elseif m<7
85 %Two row and one column offsets needed.
86 str=['K1(2*(i−1)+' num2str(n−6)...
87 '+4*N+2,2*(i−1)+' num2str(m−3)...
88 '+2*N+1)=K1(2*(i−1)+' num2str(n−6)...
89 '+4*N+2,2*(i−1)+' num2str(m−3)...
90 '+2*N+1)+K1_' num2str(n) num2str(m)...
91 ';%K1(' num2str(n) ',' num2str(m) ')'];
92 fprintf(fid,'%s\n',str);
93 else
94 %Two row and column offsets needed.
95 str=['K1(2*(i−1)+' num2str(n−6)...
96 '+4*N+2,2*(i−1)+' num2str(m−6)...
97 '+4*N+2)=K1(2*(i−1)+' num2str(n−6)...
98 '+4*N+2,2*(i−1)+' num2str(m−6)...

(Continued on next page. . . )
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Listing C.2. Sample Matlabr code to assemble global matrices from element matrices
using the K1 stiffness matrix as an illustration. (Continued from previous page.)

99 '+4*N+2)+K1_' num2str(n) num2str(m)...
100 ';%K1(' num2str(n) ',' num2str(m) ')'];
101 fprintf(fid,'%s\n',str);
102 end
103 end
104 else
105 %Off diagonal terms. Take advantage of symmetry (in
106 %this case). Note the usefulness of interchanging
107 %indices.
108 if n<4
109 if m<4
110 %No row or column offset needed.
111 str=['K1(2*(i−1)+' num2str(n) ',2*(i−1)+'...
112 num2str(m) ')=K1(2*(i−1)+' num2str(n)...
113 ',2*(i−1)+' num2str(m) ')+K1_' num2str(n)...
114 num2str(m) ';%K1(' num2str(n) ','...
115 num2str(m) ')'];
116 fprintf(fid,'%s\n',str);
117 str=['K1(2*(i−1)+' num2str(m) ',2*(i−1)+'...
118 num2str(n) ')=K1(2*(i−1)+' num2str(m)...
119 ',2*(i−1)+' num2str(n) ')+K1_' num2str(n)...
120 num2str(m) ';%K1(' num2str(m) ','...
121 num2str(n) ')'];
122 fprintf(fid,'%s\n',str);
123 elseif m<7
124 %No row and one column offset needed.
125 str=['K1(2*(i−1)+' num2str(n) ',2*(i−1)+'...
126 num2str(m−3) '+2*N+1)=K1(2*(i−1)+'...
127 num2str(n) ',2*(i−1)+' num2str(m−3)...
128 '+2*N+1)+K1_' num2str(n) num2str(m)...
129 ';%K1(' num2str(n) ',' num2str(m) ')'];
130 fprintf(fid,'%s\n',str);
131 str=['K1(2*(i−1)+' num2str(m−3)...
132 '+2*N+1,2*(i−1)+' num2str(n)...
133 ')=K1(2*(i−1)+' num2str(m−3)...
134 '+2*N+1,2*(i−1)+' num2str(n) ')+K1_'...
135 num2str(n) num2str(m) ';%K1(' num2str(m)...
136 ',' num2str(n) ')'];
137 fprintf(fid,'%s\n',str);
138 else
139 %No row and two column offsets needed.
140 str=['K1(2*(i−1)+' num2str(n) ',2*(i−1)+'...
141 num2str(m−6) '+4*N+2)=K1(2*(i−1)+'...
142 num2str(n) ',2*(i−1)+' num2str(m−6)...
143 '+4*N+2)+K1_' num2str(n) num2str(m)...
144 ';%K1(' num2str(n) ',' num2str(m) ')'];
145 fprintf(fid,'%s\n',str);
146 str=['K1(2*(i−1)+' num2str(m−6)...
147 '+4*N+2,2*(i−1)+' num2str(n)...

(Continued on next page. . . )
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Listing C.2. Sample Matlabr code to assemble global matrices from element matrices
using the K1 stiffness matrix as an illustration. (Continued from previous page.)

148 ')=K1(2*(i−1)+' num2str(m−6)...
149 '+4*N+2,2*(i−1)+' num2str(n) ')+K1_'...
150 num2str(n) num2str(m) ';%K1(' num2str(m)...
151 ',' num2str(n) ')'];
152 fprintf(fid,'%s\n',str);
153 end
154 elseif n<7
155 if m<4
156 %One row and no column offset needed.
157 str=['K1(2*(i−1)+' num2str(n−3)...
158 '+2*N+1,2*(i−1)+' num2str(m)...
159 ')=K1(2*(i−1)+' num2str(n−3)...
160 '+2*N+1,2*(i−1)+' num2str(m) ')+K1_'...
161 num2str(n) num2str(m) ';%K1(' num2str(n)...
162 ',' num2str(m) ')'];
163 fprintf(fid,'%s\n',str);
164 str=['K1(2*(i−1)+' num2str(m) ',2*(i−1)+'...
165 num2str(n−3) '+2*N+1)=K1(2*(i−1)+'...
166 num2str(m) ',2*(i−1)+' num2str(n−3)...
167 '+2*N+1)+K1_' num2str(n) num2str(m)...
168 ';%K1(' num2str(m) ',' num2str(n) ')'];
169 fprintf(fid,'%s\n',str);
170 elseif m<7
171 %One row and column offset needed.
172 str=['K1(2*(i−1)+' num2str(n−3)...
173 '+2*N+1,2*(i−1)+' num2str(m−3)...
174 '+2*N+1)=K1(2*(i−1)+' num2str(n−3)...
175 '+2*N+1,2*(i−1)+' num2str(m−3)...
176 '+2*N+1)+K1_' num2str(n) num2str(m)...
177 ';%K1(' num2str(n) ',' num2str(m) ')'];
178 fprintf(fid,'%s\n',str);
179 str=['K1(2*(i−1)+' num2str(m−3)...
180 '+2*N+1,2*(i−1)+' num2str(n−3)...
181 '+2*N+1)=K1(2*(i−1)+' num2str(m−3)...
182 '+2*N+1,2*(i−1)+' num2str(n−3)...
183 '+2*N+1)+K1_' num2str(n) num2str(m)...
184 ';%K1(' num2str(m) ',' num2str(n) ')'];
185 fprintf(fid,'%s\n',str);
186 else
187 %Two row and column offsets needed.
188 str=['K1(2*(i−1)+' num2str(n−3)...
189 '+2*N+1,2*(i−1)+' num2str(m−6)...
190 '+4*N+2)=K1(2*(i−1)+' num2str(n−3)...
191 '+2*N+1,2*(i−1)+' num2str(m−6)...
192 '+4*N+2)+K1_' num2str(n) num2str(m)...
193 ';%K1(' num2str(n) ',' num2str(m) ')'];
194 fprintf(fid,'%s\n',str);
195 str=['K1(2*(i−1)+' num2str(m−6)...
196 '+4*N+2,2*(i−1)+' num2str(m−6)...

(Continued on next page. . . )
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Listing C.2. Sample Matlabr code to assemble global matrices from element matrices
using the K1 stiffness matrix as an illustration. (Continued from previous page.)

197 '+2*N+1)=K1(2*(i−1)+' num2str(m−6)...
198 '+4*N+2,2*(i−1)+' num2str(m−6)...
199 '+2*N+1)+K1_' num2str(n) num2str(m)...
200 ';%K1(' num2str(m) ',' num2str(n) ')'];
201 fprintf(fid,'%s\n',str);
202 end
203 else
204 if m<4
205 %No row or column offsets needed.
206 str=['K1(2*(i−1)+' num2str(n−6)...
207 '+4*N+2,2*(i−1)+' num2str(m)...
208 ')=K1(2*(i−1)+' num2str(n−6)...
209 '+4*N+2,2*(i−1)+' num2str(m) ')+K1_'...
210 num2str(n) num2str(m) ';%K1(' num2str(n)...
211 ',' num2str(m) ')'];
212 fprintf(fid,'%s\n',str);
213 str=['K1(2*(i−1)+' num2str(m) ',2*(i−1)+'...
214 num2str(n−6) '+4*N+2)=K1(2*(i−1)+'...
215 num2str(m) ',2*(i−1)+' num2str(n−6)...
216 '+4*N+2)+K1_' num2str(n) num2str(m)...
217 ';%K1(' num2str(m) ',' num2str(n) ')'];
218 fprintf(fid,'%s\n',str);
219 elseif m<7
220 %One row and column offset needed.
221 str=['K1(2*(i−1)+' num2str(n−6)...
222 '+4*N+2,2*(i−1)+' num2str(m−3)...
223 '+2*N+1)=K1(2*(i−1)+' num2str(n−6)...
224 '+4*N+2,2*(i−1)+' num2str(m−3)...
225 '+2*N+1)+K1_' num2str(n) num2str(m)...
226 ';%K1(' num2str(n) ',' num2str(m) ')'];
227 fprintf(fid,'%s\n',str);
228 str=['K1(2*(i−1)+' num2str(m−3)...
229 '+2*N+1,2*(i−1)+' num2str(n−6)...
230 '+4*N+2)=K1(2*(i−1)+' num2str(m−3)...
231 '+2*N+1,2*(i−1)+' num2str(n−6)...
232 '+4*N+2)+K1_' num2str(n) num2str(m)...
233 ';%K1(' num2str(m) ',' num2str(n) ')'];
234 fprintf(fid,'%s\n',str);
235 else
236 %Two row and column offsets needed.
237 str=['K1(2*(i−1)+' num2str(n−6)...
238 '+4*N+2,2*(i−1)+' num2str(m−6)...
239 '+4*N+2)=K1(2*(i−1)+' num2str(n−6)...
240 '+4*N+2,2*(i−1)+' num2str(m−6)...
241 '+4*N+2)+K1_' num2str(n) num2str(m)...
242 ';%K1(' num2str(n) ',' num2str(m) ')'];
243 fprintf(fid,'%s\n',str);
244 str=['K1(2*(i−1)+' num2str(m−6)...
245 '+4*N+2,2*(i−1)+' num2str(n−6)...
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Listing C.2. Sample Matlabr code to assemble global matrices from element matrices
using the K1 stiffness matrix as an illustration. (Continued from previous page.)

246 '+4*N+2)=K1(2*(i−1)+' num2str(m−6)...
247 '+4*N+2,2*(i−1)+' num2str(n−6)...
248 '+4*N+2)+K1_' num2str(n) num2str(m)...
249 ';%K1(' num2str(m) ',' num2str(n) ')'];
250 fprintf(fid,'%s\n',str);
251 end
252 end
253 end
254 end
255 end
256

257 fclose(fid); %Close the output file.
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Listing C.3. Sketch of the Matlabr code used to compute the approximate wave functions
from equation (2.3.5).

1 function [Omega,CEV]=Omegakin(lambda_mu,H_R,n,k,N,dof)
2 % Returns the non−dimensional frequency for a homogeneous,
3 % isotropic cylinder when given the wave−number.
4 % Omegakin(lambda_mu,H_R,n,k,N,dof) returns the non−dimensional
5 % frequency for a homogeneous, isotropic cylinder when given the
6 % non−dimensional wave−number, k.
7 % lambda_mu = ratio of Lame constants lambda and mu.
8 % H_R = ratio of wall thickness, H, to mean pipe radius, R.
9 % n = circumferential wave−number (defaults to 0).

10 % k = non−dimensional wave−number (defaults to 0).
11 % N = number of finite elements (defaults to 10).
12 % dof = number of displacement degrees of freedom at each node
13 % (defaults to 3).
14

15 % Code to check number and type of inputs and set default values.
16 % Actual code removed for brevity.
17

18 % Code to perform "sanity" checks. %Actual code removed for brevity.
19

20 % Set H=1, mu=1, rho=1, non−dimensional values are used throughout.
21 H=1;
22 mu=1;
23 rho=1;
24

25 %Calculate R and lambda
26 R=H/H_R;
27 lambda=mu*lambda_mu;
28

29 %Pre−allocate memory for coordinates of finite elements' middle
30 %nodes.
31 rkm=zeros(N,1);
32

33 %Calculate element thicknesses and mean radii
34 Hk=H/N*ones(N,1);
35

36 % Inner radius of pipe.
37 Ri=(2−H_R)/2/H_R*H;
38

39 % First middle node location.
40 rkm(1)=Ri+Hk(1)/2;
41

42 % Remaining middle node locations
43 for i=2:1:N
44 rkm(i)=rkm(i−1)+(Hk(i)+Hk(i−1))/2;
45 end
46

47 % Element and global stiffness and mass matrices for the general
48 %case.
49 if dof==3

(Continued on next page. . . )
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Listing C.3. Sketch of the Matlabr code used to compute the approximate wave functions
from equation (2.3.5). (Continued from previous page.)

50 %Allocate memory for K1 and M (always used).
51 K1=zeros(dof*(2*N+1));
52 M=zeros(dof*(2*N+1));
53 %Allocate memory for K2 and K4 (used if n~=0).
54 if n~=0
55 K2=zeros(dof*(2*N+1));
56 K4=zeros(dof*(2*N+1));
57 end
58 %Allocate memory for K3 and K6 (used if k~=0).
59 if k~=0
60 K3=zeros(dof*(2*N+1));
61 K6=zeros(dof*(2*N+1));
62 %If n~=0 K5 is also required.
63 if n~=0
64 K5=zeros(dof*(2*N+1));
65 end
66 end
67

68 %Compute element matrices and assemble.
69 %Loop over all elements.
70 for i=1:1:N
71 %Compute non−zero elements of K1. This code is pasted
72 %from the output of Listing C.1.
73 %Zero elements are ignored and advantage is taken of
74 %symmetry.
75

76 %Actual code removed for brevity.
77

78 %Perform assembly for K1. This code is pasted from the
79 %modified output of Listing C.2.
80 %Zero elements are ignored and advantage is taken of
81 %symmetry.
82

83 %Actual code removed for brevity.
84

85 %Compute non−zero elements of M. This code is pasted
86 %from the output of Listing C.1.
87 %Zero elements are ignored and advantage is taken of
88 %symmetry.
89

90 %Actual code removed for brevity.
91

92 %Perform assembly for M. This code is pasted from the
93 %modified output of Listing C.2.
94 %Zero elements are ignored and advantage is taken of
95 %symmetry.
96

97 %Actual code removed for brevity.
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Listing C.3. Sketch of the Matlabr code used to compute the approximate wave functions
from equation (2.3.5). (Continued from previous page.)

99 if n~=0
100 %Compute non−zero elements of K2. This code is pasted
101 %from the output of Listing C.1.
102 %Zero elements are ignored and advantage is taken of
103 %anti−symmetry.
104

105 %Actual code removed for brevity.
106

107 %Perform assembly for K2. This code is pasted from the
108 %modified output of Listing C.2.
109 %Zero elements are ignored and advantage is taken of
110 %anti−symmetry.
111

112 %Actual code removed for brevity.
113

114 %Compute non−zero elements of K4. This code is pasted
115 %from the output of Listing C.1.
116 %Zero elements are ignored and advantage is taken of
117 %symmetry.
118

119 %Actual code removed for brevity.
120

121 %Perform assembly for K4. This code is pasted from the
122 %modified output of Listing C.2.
123 %Zero elements are ignored and advantage is taken of
124 %symmetry.
125

126 %Actual code removed for brevity.
127 end
128

129 if k~=0
130 %Compute non−zero elements of K3. This code is pasted
131 %from the output of Listing C.1.
132 %Zero elements are ignored and advantage is taken of
133 %anti−symmetry.
134

135 %Actual code removed for brevity.
136

137 %Perform assembly for K3. This code is pasted from the
138 %modified output of Listing C.2.
139 %Zero elements are ignored and advantage is taken of
140 %anti−symmetry.
141

142 %Actual code removed for brevity.
143

144 %Compute non−zero elements of K6. This code is pasted
145 %from the output of Listing C.1.
146 %Zero elements are ignored and advantage is taken of
147 %symmetry.
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Listing C.3. Sketch of the Matlabr code used to compute the approximate wave functions
from equation (2.3.5). (Continued from previous page.)

148 %Actual code removed for brevity.
149

150 %Perform assembly for K6. This code is pasted from the
151 %modified output of Listing C.2.
152 %Zero elements are ignored and advantage is taken of
153 %symmetry.
154

155 %Actual code removed for brevity.
156

157 if n~=0
158 %Compute non−zero elements of K5. This code is
159 %pasted from the output of Listing C.1.
160 %Zero elements are ignored and advantage is taken
161 %of symmetry.
162

163 %Actual code removed for brevity.
164

165 %Perform assembly for K5. This code is pasted
166 %from the modified output of Listing C.2.
167 %Zero elements are ignored and advantage is taken of
168 %anti−symmetry.
169

170 %Actual code removed for brevity.
171 end
172 end
173 end
174 %Longitudinal modes. Already checked to ensure that n=0.
175 elseif dof==2
176 %Allocate memory for K1 and M (always used).
177 K1=zeros(dof*(2*N+1));
178 M=zeros(dof*(2*N+1));
179

180 %Allocate memory for K3 and K6 (used if k~=0).
181 if k~=0
182 K3=zeros(dof*(2*N+1));
183 K6=zeros(dof*(2*N+1));
184 end
185

186 %Compute element matrices and assemble.
187 %Loop over all elements.
188 for i=1:1:N
189 %Compute non−zero elements of K1. This code is pasted
190 %from the output of Listing C.1.
191 %Zero elements are ignored and advantage is taken of
192 %symmetry.
193

194 %Actual code removed for brevity.
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Listing C.3. Sketch of the Matlabr code used to compute the approximate wave functions
from equation (2.3.5). (Continued from previous page.)

195 %Perform assembly for K1. This code is pasted from the
196 %modified output of Listing C.2.
197 %Zero elements are ignored and advantage is taken of
198 %symmetry.
199

200 %Actual code removed for brevity.
201

202 %Compute non−zero elements of M. This code is pasted
203 %from the output of Listing C.1.
204 %Zero elements are ignored and advantage is taken of
205 %symmetry.
206

207 %Actual code removed for brevity.
208

209 %Perform assembly for M. This code is pasted from the
210 %modified output of Listing C.2.
211 %Zero elements are ignored and advantage is taken of
212 %symmetry.
213

214 %Actual code removed for brevity.
215

216 if k~=0
217 %Compute non−zero elements of K3. This code is pasted
218 %from the output of Listing C.1.
219 %Zero elements are ignored and advantage is taken of
220 %anti−symmetry.
221

222 %Actual code removed for brevity.
223

224 %Perform assembly for K3. This code is pasted from the
225 %modified output of Listing C.2.
226 %Zero elements are ignored and advantage is taken of
227 %anti−symmetry.
228

229 %Actual code removed for brevity.
230

231 %Compute non−zero elements of K6. This code is pasted
232 %from the output of Listing C.1.
233 %Zero elements are ignored and advantage is taken of
234 %symmetry.
235

236 %Actual code removed for brevity.
237

238 %Perform assembly for K6. This code is pasted from the
239 %modified output of Listing C.2.
240 %Zero elements are ignored and advantage is taken of
241 %symmetry.
242

243 %Actual code removed for brevity.
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Listing C.3. Sketch of the Matlabr code used to compute the approximate wave functions
from equation (2.3.5). (Continued from previous page.)

244 end
245 end
246

247 %Torsional modes. Already checked to ensure that n=0.
248 else
249 %Allocate memory for K1 and M (always used).
250 K1=zeros(dof*(2*N+1));
251 M=zeros(dof*(2*N+1));
252

253 %Allocate memory for K6 (used if k~=0). (K3 vanishes for
254 %this case.)
255 if k~=0
256 K6=zeros(dof*(2*N+1));
257 end
258

259 %Compute element matrices and assemble.
260 %Loop over all elements.
261 for i=1:1:N
262 %Compute non−zero elements of K1. This code is pasted
263 %from the output of Listing C.1.
264 %Zero elements are ignored and advantage is taken of
265 %symmetry.
266

267 %Actual code removed for brevity.
268

269 %Perform assembly for K1. This code is pasted from the
270 %modified output of Listing C.2.
271 %Zero elements are ignored and advantage is taken of
272 %symmetry.
273

274 %Actual code removed for brevity.
275

276 %Compute non−zero elements of M. This code is pasted
277 %from the output of Listing C.1.
278 %Zero elements are ignored and advantage is taken of
279 %symmetry.
280

281 %Actual code removed for brevity.
282

283 %Perform assembly for M. This code is pasted from the
284 %modified output of Listing C.2.
285 %Zero elements are ignored and advantage is taken of
286 %symmetry.
287

288 %Actual code removed for brevity.
289

290 if k~=0
291 %Compute non−zero elements of K6. This code is pasted
292 %from the output of Listing C.1.
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Listing C.3. Sketch of the Matlabr code used to compute the approximate wave functions
from equation (2.3.5). (Continued from previous page.)

293 %Zero elements are ignored and advantage is taken of
294 %symmetry.
295 %Actual code removed for brevity.
296

297 %Perform assembly for K6. This code is pasted from the
298 %modified output of Listing C.2.
299 %Zero elements are ignored and advantage is taken of
300 %symmetry.
301

302 %Actual code removed for brevity.
303 end
304 end
305 end
306

307 %Solution phase.
308

309 %Form the coefficient matrices for the generalized eigenvalue
310 %problem described by equation (2.3.5).
311 if dof==3
312 if k~=0
313 if n~=0
314 A=K1+j*n*K2+n*n*K4+j*k*(K3−j*n*K5)+k*k*K6;
315 else
316 A=K1+j*k*K3+k*k*K6;
317 end
318 else
319 if n~=0
320 A=K1+j*n*K2+n*n*K4;
321 else
322 A=K1;
323 end
324 end
325 elseif dof==2
326 if k~=0
327 A=K1+j*k*K3+k*k*K6;
328 else
329 A=K1;
330 end
331 else
332 if k~=0
333 A=K1+k*k*K6;
334 else
335 A=K1;
336 end
337 end
338

339 if nargout==1
340 %Solve eigenvalue problem and take the square root to get the
341 %frequencies corresponding to the assigned wave−numbers.
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Listing C.3. Sketch of the Matlabr code used to compute the approximate wave functions
from equation (2.3.5). (Continued from previous page.)

342 Omega=sort(sqrt(eig(A,M)));
343 else
344 %Solve for the mode shapes as well as the frequencies because the
345 %user supplied two output arguments. See MATLAB documentation for
346 %use of sort command.
347 [CEV,EV]=eig(A,M);
348 [Omega,idx]=sort(sqrt(diag(EV)));
349 CEV=CEV(:,idx);
350 end
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Listing C.4. Sketch of the Matlabr code used to compute the approximate wave functions
using equation (2.3.6).

1 function [RREV,kR,RLEV,kL,Bnm]=kOmegain(lambda_mu,H_R,n,Omega,N,dof)
2 % Returns the right and left eigenvalues and eigenvectors and
3 % "scaling factor," Bnm, between the left and right eigenvectors,
4 % for positive axial offsets, for a homogeneous, isotropic cylinder
5 % when given the frequency and circumferential wave number.
6 % [RREV,kR,RLEV,kL,Bnm]=Ring_Loads(lambda_mu,H_R,n,Omega,N,dof)
7 % takes:
8 % lambda_mu = ratio of Lame constants lambda and mu,
9 % H_R = ratio of wall thickness, H, to pipe mean radius, R,

10 % n = circumferential wave−number (defaults to 0),
11 % Omega = non−dimensional frequency (defaults to 0),
12 % N = number of finite elements (defaults to 10),
13 % dof = number of displacement degrees of freedom at each node
14 % (defaults to 3), and returns
15 % RREV[2*dof*(2N+1)xdof*(2N+1)] = right eigenvectors,
16 % kR[2*dof*(2N+1)x1] = right eigenvalues,
17 % RLEV[2*dof*(2N+1)xdof*(2N+1)] = left eigenvectors,
18 % kR[2*dof*(2N+1)x1] = left eigenvectors,
19 % Bnm[2*dof*(2N+1)x1] = "scaling factors." See
20 % equation (2.3.8).
21

22 % Code to check number and type of inputs and set default values.
23 % Actual code removed for brevity.
24

25 % Code to perform "sanity" checks.
26 % Actual code removed for brevity.
27

28 % Set H=1, mu=1, rho=1, non−dimensional values are used throughout.
29 H=1;
30 mu=1;
31 rho=1;
32

33 %Calculate R and lambda
34 R=H/H_R;
35 lambda=mu*lambda_mu;
36

37 %Pre−allocate memory for coordinates of finite elements' middle
38 %nodes.
39 rkm=zeros(N,1);
40

41 %Calculate element thicknesses and mean radii
42 Hk=H/N*ones(N,1);
43

44 % Inner radius of pipe.
45 Ri=(2−H_R)/2/H_R*H;
46

47 % First middle node location.
48 rkm(1)=Ri+Hk(1)/2;
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Listing C.4. Sketch of the Matlabr code used to compute the approximate wave functions
using equation (2.3.6). (Continued from previous page.)

49 % Remaining middle node locations
50 for i=2:1:N
51 rkm(i)=rkm(i−1)+(Hk(i)+Hk(i−1))/2;
52 end
53

54 % Element and global stiffness and mass matrices for the general
55 % nonaxisymmetric case.
56 if dof==3
57 %Allocate memory for K1, K3, and K6 (always used).
58 K1=zeros(dof*(2*N+1));
59 K3=zeros(dof*(2*N+1));
60 K6=zeros(dof*(2*N+1));
61

62 %Allocate memory for K2, K4, and K5 (used if n~=0).
63 if n~=0
64 K2=zeros(dof*(2*N+1));
65 K4=zeros(dof*(2*N+1));
66 K5=zeros(dof*(2*N+1));
67 end
68

69 %Allocate memory for M (used if Omega~=0).
70 if Omega~=0
71 M=zeros(dof*(2*N+1));
72 end
73

74 %Compute element matrices and assemble.
75 %Loop over all elements.
76 for i=1:1:N
77

78 %Compute non−zero elements of K1. This code is pasted
79 %from the output of Listing C.1.
80 %Zero elements are ignored and advantage is taken of
81 %symmetry.
82

83 %Actual code removed for brevity.
84

85 %Perform assembly for K1. This code is pasted from the
86 %modified output of Listing C.2.
87 %Zero elements are ignored and advantage is taken of
88 %symmetry.
89

90 %Actual code removed for brevity.
91

92 %Compute non−zero elements of K3. This code is pasted
93 %from the output of Listing C.1.
94 %Zero elements are ignored and advantage is taken of
95 %anti−symmetry.
96

97 %Actual code removed for brevity.
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Listing C.4. Sketch of the Matlabr code used to compute the approximate wave functions
using equation (2.3.6). (Continued from previous page.)

98 %Perform assembly for K3. This code is pasted from the
99 %modified output of Listing C.2.

100 %Zero elements are ignored and advantage is taken of
101 %anti−symmetry.
102

103 %Actual code removed for brevity.
104

105 %Compute non−zero elements of K6. This code is pasted
106 %from the output of Listing C.1.
107 %Zero elements are ignored and advantage is taken of
108 %symmetry.
109

110 %Actual code removed for brevity.
111

112 %Perform assembly for K6. This code is pasted from the
113 %modified output of Listing C.2.
114 %Zero elements are ignored and advantage is taken of
115 %symmetry.
116

117 %Actual code removed for brevity.
118

119 if Omega~=0
120 %Compute non−zero elements of M. This code is pasted
121 %from the output of Listing C.1.
122 %Zero elements are ignored and advantage is taken of
123 %symmetry.
124

125 %Actual code removed for brevity.
126

127 %Perform assembly for M. This code is pasted from the
128 %modified output of Listing C.2.
129 %Zero elements are ignored and advantage is taken of
130 %symmetry.
131

132 %Actual code removed for brevity.
133 end
134

135 if n~=0
136 %Compute non−zero elements of K2. This code is pasted
137 %from the output of Listing C.1.
138 %Zero elements are ignored and advantage is taken of
139 %anti−symmetry.
140

141 %Actual code removed for brevity.
142

143 %Perform assembly for K2. This code is pasted from the
144 %modified output of Listing C.2.
145 %Zero elements are ignored and advantage is taken of
146 %anti−symmetry.
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Listing C.4. Sketch of the Matlabr code used to compute the approximate wave functions
using equation (2.3.6). (Continued from previous page.)

148 %Actual code removed for brevity.
149

150 %Compute non−zero elements of K4. This code is pasted
151 %from the output of Listing C.1.
152 %Zero elements are ignored and advantage is taken of
153 %symmetry.
154

155 %Actual code removed for brevity.
156

157 %Perform assembly for K4. This code is pasted from the
158 %modified output of Listing C.2.
159 %Zero elements are ignored and advantage is taken of
160 %symmetry.
161

162 %Actual code removed for brevity.
163

164 %Compute non−zero elements of K5. This code is pasted
165 %from the output of Listing C.1.
166 %Zero elements are ignored and advantage is taken of
167 %symmetry.
168

169 %Actual code removed for brevity.
170

171 %Perform assembly for K5. This code is pasted from the
172 %modified output of Listing C.2.
173 %Zero elements are ignored and advantage is taken of
174 %symmetry.
175

176 %Actual code removed for brevity.
177 end
178 end
179 %Longitudinal modes. Already checked to ensure that n=0.
180 elseif dof==2
181 %Allocate memory for K1, K3, and K6 (always used).
182 K1=zeros(dof*(2*N+1));
183 K3=zeros(dof*(2*N+1));
184 K6=zeros(dof*(2*N+1));
185

186 %Allocate memory for M (used if Omega~=0).
187 if Omega~=0
188 M=zeros(dof*(2*N+1));
189 end
190

191 %Compute element matrices and assemble.
192 %Loop over all elements.
193 for i=1:1:N
194 %Compute non−zero elements of K1. This code is pasted
195 %from the output of Listing C.1.
196 %Zero elements are ignored and advantage is taken of
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Listing C.4. Sketch of the Matlabr code used to compute the approximate wave functions
using equation (2.3.6). (Continued from previous page.)

197 %symmetry.
198

199 %Actual code removed for brevity.
200

201 %Perform assembly for K1. This code is pasted from the
202 %modified output of Listing C.2.
203 %Zero elements are ignored and advantage is taken of
204 %symmetry.
205

206 %Actual code removed for brevity.
207

208 %Compute non−zero elements of K3. This code is pasted
209 %from the output of Listing C.1.
210 %Zero elements are ignored and advantage is taken of
211 %anti−symmetry.
212

213 %Actual code removed for brevity.
214

215 %Perform assembly for K3. This code is pasted from the
216 %modified output of Listing C.2.
217 %Zero elements are ignored and advantage is taken of
218 %anti−symmetry.
219

220 %Actual code removed for brevity.
221

222 %Compute non−zero elements of K6. This code is pasted
223 %from the output of Listing C.1.
224 %Zero elements are ignored and advantage is taken of
225 %symmetry.
226

227 %Actual code removed for brevity.
228

229 %Perform assembly for K6. This code is pasted from the
230 %modified output of Listing C.2.
231 %Zero elements are ignored and advantage is taken of
232 %symmetry.
233

234 %Actual code removed for brevity.
235

236 if Omega~=0
237 %Compute non−zero elements of M. This code is pasted
238 %from the output of Listing C.1.
239 %Zero elements are ignored and advantage is taken of
240 %symmetry.
241

242 %Actual code removed for brevity.
243

244 %Perform assembly for M. This code is pasted from the
245 %modified output of Listing C.2.
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Listing C.4. Sketch of the Matlabr code used to compute the approximate wave functions
using equation (2.3.6). (Continued from previous page.)

246 %Zero elements are ignored and advantage is taken of
247 %symmetry.
248

249 %Actual code removed for brevity.
250 end
251 end
252 %Torsional modes. Already checked to ensure that n=0.
253 else
254 %Allocate memory for K1 and K6 (always used).
255 K1=zeros(dof*(2*N+1));
256 K6=zeros(dof*(2*N+1));
257 if Omega~=0
258 M=zeros(dof*(2*N+1));
259 end
260

261 for i=1:1:N
262 %Compute non−zero elements of K1. This code is pasted
263 %from the output of Listing C.1.
264 %Zero elements are ignored and advantage is taken of
265 %symmetry.
266

267 %Actual code removed for brevity.
268

269 %Perform assembly for K1. This code is pasted from the
270 %modified output of Listing C.2.
271 %Zero elements are ignored and advantage is taken of
272 %symmetry.
273

274 %Actual code removed for brevity.
275

276 %Compute non−zero elements of K6. This code is pasted
277 %from the output of Listing C.1.
278 %Zero elements are ignored and advantage is taken of
279 %symmetry.
280

281 %Actual code removed for brevity.
282

283 %Perform assembly for K6. This code is pasted from the
284 %modified output of Listing C.2.
285 %Zero elements are ignored and advantage is taken of
286 %symmetry.
287

288 %Actual code removed for brevity.
289 if Omega~=0
290 %Compute non−zero elements of M. This code is pasted
291 %from the output of Listing C.1.
292 %Zero elements are ignored and advantage is taken of
293 %symmetry.

(Continued on next page. . . )
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Listing C.4. Sketch of the Matlabr code used to compute the approximate wave functions
using equation (2.3.6). (Continued from previous page.)

295 %Actual code removed for brevity.
296

297 %Perform assembly for M. This code is pasted from the
298 %modified output of Listing C.2.
299 %Zero elements are ignored and advantage is taken of
300 %symmetry.
301

302 %Actual code removed for brevity.
303 end
304 end
305 end
306

307 %Solution phase.
308

309 %Form the coefficient matrices for the generalized eigenvalue
310 %problem described by equation (2.3.6).
311 %Convert quadratic eigenvalue problem to linear eigenvalue problem.
312 if dof==3
313 if n~=0
314 if Omega~=0
315 A=[zeros(dof*(2*N+1)) eye(dof*(2*N+1)); ...
316 K1+j*n*K2+n*n*K4−Omega*Omega*M j*(K3−j*n*K5)];
317 B=[eye(dof*(2*N+1)) zeros(dof*(2*N+1)); ...
318 zeros(dof*(2*N+1)) −K6];
319 else
320 A=[zeros(dof*(2*N+1)) eye(dof*(2*N+1)); ...
321 K1+j*n*K2+n*n*K4 j*(K3−j*n*K5)];
322 B=[eye(dof*(2*N+1)) zeros(dof*(2*N+1)); ...
323 zeros(dof*(2*N+1)) −K6];
324 end
325 else
326 if Omega~=0
327 A=[zeros(dof*(2*N+1)) eye(dof*(2*N+1)); ...
328 K1−Omega*Omega*M j*K3];
329 B=[eye(dof*(2*N+1)) zeros(dof*(2*N+1)); ...
330 zeros(dof*(2*N+1)) −K6];
331 else
332 A=[zeros(dof*(2*N+1)) eye(dof*(2*N+1)); ...
333 K1 j*K3];
334 B=[eye(dof*(2*N+1)) zeros(dof*(2*N+1)); ...
335 zeros(dof*(2*N+1)) −K6];
336 end
337 end
338 elseif dof==2
339 if Omega~=0
340 A=[zeros(dof*(2*N+1)) eye(dof*(2*N+1)); ...
341 K1−Omega*Omega*M j*K3];
342 B=[eye(dof*(2*N+1)) zeros(dof*(2*N+1)); ...
343 zeros(dof*(2*N+1)) −K6];

(Continued on next page. . . )
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Listing C.4. Sketch of the Matlabr code used to compute the approximate wave functions
using equation (2.3.6). (Continued from previous page.)

344 else
345 A=[zeros(dof*(2*N+1)) eye(dof*(2*N+1)); K1 j*K3];
346 B=[eye(dof*(2*N+1)) zeros(dof*(2*N+1)); ...
347 zeros(dof*(2*N+1)) −K6];
348 end
349 else
350 if Omega~=0
351 A=[zeros(dof*(2*N+1)) eye(dof*(2*N+1)); ...
352 K1−Omega*Omega*M zeros(dof*(2*N+1))];
353 B=[eye(dof*(2*N+1)) zeros(dof*(2*N+1)); ...
354 zeros(dof*(2*N+1)) −K6];
355 else
356 A=[zeros(dof*(2*N+1)) eye(dof*(2*N+1)); ...
357 K1 zeros(dof*(2*N+1))];
358 B=[eye(dof*(2*N+1)) zeros(dof*(2*N+1)); ...
359 zeros(dof*(2*N+1)) −K6];
360 end
361 end
362

363 %Call eigenvalue solver.
364

365 %Right Eigenvalue Problem.
366 [REV,Rval]=eig(A,B);
367 Rval=diag(Rval);
368 %Left Eigenvalue Problem.
369 [LEV,Lval]=eig(A.',B.');
370 Lval=diag(Lval);
371

372 %Sort Eigenvalues, keep only those propagating and/or stable to
373 %the right.
374

375 %Right Eigenvalue Problem.
376

377 %Real Eigenvalues:
378

379 %Handle eigenvalues almost equal to zero, select based on stability.
380 krrR=Rval(abs(Rval)<1E−6&imag(Rval)>=0);
381 krrR=[krrR Rval((abs(imag(Rval)))<1E−4&real(Rval)>=0&...
382 abs(Rval)>=1E−6)];
383 tmp=real(krrR);
384 [tmp,Index]=sort(tmp,'descend');
385 krrR=krrR(Index);
386

387 %Imaginary Eigenvalues:
388 kirR=Rval(imag(Rval)>=1E−4&abs(real(Rval))<1E−4);
389 tmp=imag(kirR);
390 [tmp,Index]=sort(tmp,'ascend');
391 kirR=kirR(Index);

(Continued on next page. . . )
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Listing C.4. Sketch of the Matlabr code used to compute the approximate wave functions
using equation (2.3.6). (Continued from previous page.)

393 %Complex Eigenvalues:
394 kcrR=Rval(imag(Rval)>=1E−4&abs(real(Rval))>=1E−4);
395 kcrR=sort(kcrR,'ascend');
396

397 if mod(length(kcrR),2)~=0
398 warning(['Complex eigenvalues for the right eigenproblem do'...
399 'not occur in pairs.']);
400 end
401

402 for i=1:1:length(kcrR)/2
403 if real(kcrR(2*i−1))<0
404 tmp=kcrR(2*i−1);
405 kcrR(2*i−1)=kcrR(2*i);
406 kcrR(2*i)=tmp;
407 end
408

409 if abs(conj(kcrR(2*i−1))+kcrR(2*i))>1E−4
410 warning(['Complex eigenvalues for the right eigenproblem'...
411 'do not occur in negative complex conjugate pairs.']);
412 end
413 end
414

415 if ~isempty(krrR)&&~isempty(kirR)
416 kR=[krrR;kirR];
417 elseif ~isempty(kirR)&&isempty(krrR)
418 kR=kirR;
419 elseif ~isempty(krrR)&&isempty(kirR)
420 kR=krrR;
421 elseif isempty(krrR)&&isempty(kirR)
422 kR=[];
423 else
424 error(['Unhandled number of propagating and non−propagating'...
425 ' modes']);
426 end
427

428 kR=sort(kR,'ascend');
429 for i=1:1:length(kcrR)/2
430 Index=sum(abs(kR)<abs(kcrR(2*i−1)));
431 kR=[kR(1:Index);kcrR(2*i−1);kcrR(2*i);kR(Index+1:end)];
432 end
433

434 %Left Eigenvalue Problem.
435

436 %Real Eigenvalues:
437 %Handle eigenvalues almost equal to zero, select based on stability.
438 krrL=Lval(abs(Lval)<1E−6&imag(Lval)>=0);
439 krrL=[krrL Lval((abs(imag(Lval)))<1E−4&real(Lval)>=0&...
440 abs(Lval)>=1E−6)];
441 tmp=real(krrL);

(Continued on next page. . . )
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Listing C.4. Sketch of the Matlabr code used to compute the approximate wave functions
using equation (2.3.6). (Continued from previous page.)

442 [tmp,Index]=sort(tmp,'descend');
443 krrL=krrL(Index);
444

445 %Imaginary Eigenvalues:
446 kirL=Lval(imag(Lval)>=1E−4&abs(real(Lval))<1E−4);
447 tmp=imag(kirL);
448 [tmp,Index]=sort(tmp,'ascend');
449 kirL=kirL(Index);
450

451 %Complex Eigenvalues:
452 kcrL=Lval(imag(Lval)>=1E−4&abs(real(Lval))>=1E−4);
453 kcrL=sort(kcrL,'ascend');
454

455 if mod(length(kcrL),2)~=0
456 warning(['Complex eigenvalues for the left eigenproblem'...
457 'do not occur in pairs.']);
458 end
459

460 for i=1:1:length(kcrL)/2
461 if real(kcrL(2*i−1))<0
462 tmp=kcrL(2*i−1);
463 kcrL(2*i−1)=kcrL(2*i);
464 kcrL(2*i)=tmp;
465 end
466

467 if abs(conj(kcrL(2*i−1))+kcrL(2*i))>1E−4
468 warning(['Complex eigenvalues for the right eigenproblem'...
469 'do not occur in negative complex conjugate pairs.']);
470 end
471 end
472

473 if ~isempty(krrL)&&~isempty(kirL)
474 kL=[krrL;kirL];
475 elseif ~isempty(kirL)&&isempty(krrL)
476 kL=kirL;
477 elseif ~isempty(krrL)&&isempty(kirL)
478 kL=krrL;
479 elseif isempty(krrL)&&isempty(kirL)
480 kL=[];
481 else
482 error(['Unhandled number of propagating and non−propagating'...
483 ' modes']);
484 end
485 kL=sort(kL,'ascend');
486

487 for i=1:1:length(kcrL)/2
488 Index=sum(abs(kL)<abs(kcrL(2*i−1)));
489 kL=[kL(1:Index);kcrL(2*i−1);kcrL(2*i);kL(Index+1:end)];
490 end

(Continued on next page. . . )
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Listing C.4. Sketch of the Matlabr code used to compute the approximate wave functions
using equation (2.3.6). (Continued from previous page.)

491

492 if max(abs(kR−kL))>=1E−7
493 disp(['Eigenvalues for the left and right eigenvalue problems'...
494 'are not equal.']);
495 warning(['Maximum difference in magnitude of difference: '...
496 num2str(max(abs(kR−kL))) '.']);
497 end
498

499 %Reorder Eigenvectors by using the previously sorted Eigenvalues
500 %Right Eigenvectors and Left Eigenvectors
501 RREV=zeros(2*length(kR),length(kR));
502 RLEV=zeros(2*length(kL),length(kL));
503 for i=1:1:length(kR)
504 RREV(:,i)=REV(:,Rval==kR(i));
505 RLEV(:,i)=LEV(:,Lval==kL(i));
506 end
507

508 %Compute "scaling" factor
509 Bnm=diag(RLEV.'*B*RREV);
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Appendix D

Input Signal

D.1 Excitation

The function p which describes the variation of the applied force and is associated with

equation (2.3.17) is idealized as the commonly used Gaussian modulated sine wave that

has the temporal form

p(t) =



0, t < 0

Ae−a(st−τ)2
sin(sω0t), t ≥ 0,

(D.1.1)

where A is an amplitude, a determines the rate of decay of the pulse, s serves to “scale”

time, τ centres the pulse in time, t, and ω0 sets the centre frequency of the sine wave. The

Fourier transform of equation (D.1.1) is

p(ω) =
−jA
√
π

4s
√

a

[
exp

(
(ω + sω0)(−ω − sω0 + 4jτas)

4as2

)

− exp

(
(ω − sω0)(−ω + sω0 + 4jτas)

4as2

)

+ erf

(
jω + 2asτ + jsω0

2s
√

a

)
exp

(
(ω + sω0)(−ω − sω0 + 4jτas)

4as2

)

−erf

(
2asτ + jω − jsω0

2s
√

a

)
exp

(
(ω − sω0)(−ω + sω0 + 4jτas)

4as2

)]

(D.1.2)

where exp is the exponential function and erf is the error function which takes complex

arguments. The constant a, s, τ, and ω0 are taken invariably in this thesis to be

a = 2.29595 × 1010 s−2 (D.1.3a)

s = 0.28 (D.1.3b)

τ = 1.4 × 10−5 s (D.1.3c)
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and

ω0 = (5 × 105)π rad/s. (D.1.3d)

The previously described pulse is smooth (i.e., differentiable) in both time and frequency

and, with the chosen constants, simultaneously has a relatively short duration, narrow fre-

quency bandwidth. The short duration is useful for “time of flight” applications; the narrow

band frequency character allows the Fourier transform to be approximated by assuming a

finite bandwidth. For the given constants, the force has a 70 kHz centre frequency and over

99% of its energy is contained within a 35 to 107 kHz bandwidth. Therefore the Fourier

integral transform of p(t), p(ω), may be assumed reasonably to be contained within this

finite bandwidth. The resulting forms of p(t) and |p(ω)| are illustrated in Figure D.1.
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Figure D.1. Applied excitation in (a) time and (b) frequency.
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Appendix E

Enforcing Causality

E.1 Introduction

Although the superposition of modal responses from a steady-state excitation is generally

applicable to linear systems, this procedure is used most commonly in vibration and wave

propagation problems. The inverse Fourier transform of the modal summation gives the

corresponding temporal behaviour. The purpose of this appendix is to demonstrate that the

latter need not automatically satisfy the physical requirement of causality. Then a straight-

forward extension of the better known mathematical procedure for a periodic excitation is

proposed as a remedy. Two illustrative examples are given that arise in calculating time re-

sponses to a known pulse which is adapted to excite i) vibrations of an ideal single oscillator

or ii) numerous ultrasonic waves in a steel pipe.

Finding the response of a linear, time invariant system is usually somewhat easier for

a steady sinusoidal excitation than for a transient pulse. Moreover, physical insight into

the system’s dynamic behaviour is often gained advantageously in the process of comput-

ing its Frequency Response Function (FRF). The FRF describes the magnitude and phase

of a steady-state motion as a function of frequency [135]. The well known inverse and

forward Fourier transforms permit a transient temporal response to be determined from

knowledge of an excitation’s Fourier transform and a system’s FRF, and vice-versa. A

Fourier transform is a simpler concept than the alternative Laplace transform because si-

nusoidal excitations are visualized and interpreted not only more easily than their complex

exponential counterparts but they can be implemented physically. Furthermore, the evalu-

ation of an inverse Fourier transform involves a more tractable integration along the real

(frequency) axis rather than the contour integration in the complex domain required by an

inverse Laplace transform. Unfortunately the inverse Fourier transform, unlike its Laplace
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counterpart, does not contain explicit information about a system’s initial conditions—a

deficiency which may lead to a non-causal response.

Situations exist when a computed prediction and a physical measurement must be com-

pared in the time domain. This comparison can be troublesome when predictions are non-

causal. See, for example, [56, 136, 137]1. While non-causal responses are merely un-

desirable numerical artefacts for most vibration work, there are situations (e.g., simulating

shock loadings) where knowledge of the initial conditions is critical. Similarly, non-causal-

ity from a wave’s propagation makes it impossible to accurately compute its time of flight,

a duration which is used frequently to characterize or detect defects [6]. Therefore, a pro-

cedure is presented here in which non-causal predictions arising from an inverse Fourier

transform are remedied straightforwardly. Although conceptually comparable to a math-

ematical approach developed for a periodic excitation [135, 138, 139], the albeit simple

extension to transient excitations, as well as dependent practical applications, has not been

reported to the best of the author’s knowledge . The procedure is illustrated by first consid-

ering a Single Degree Of Freedom (SDOF) oscillator’s vibrations when excited over both

a continuous and discretized time base. Then a practical example is presented that arises

when predicting the analogous time response of an industrial pipe to the same excitation

shifted upwards into the ultrasonic frequency range.

E.2 Theoretical and Physical Arguments

The following outline considers the linear vibrations of an illustrative, undamped SDOF

oscillator which is excited transiently. Similar arguments can be made for any form of

linear damping (e.g., viscous, proportional and hysteretic damping [135, 140]) although

the resulting FRFs are more complicated. By taking advantage of the decoupling inherent

to a modal analysis, the theory can be extended straightforwardly to Multi-Degree Of Free-

1Note that these last two references use the more computationally efficient Fast Fourier Transform (FFT)
pairs.
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dom (MDOF) vibration and wave propagation problems involving excitations applied at

multiple locations. Brevity precludes these developments. Although a continuous time base

is assumed in the present derivations the principle applies also to discrete time systems, as

illustrated later.

The forced displacement and velocity at any instant t, xf(t) and vf(t) respectively, of an

undamped SDOF oscillator produced by an excitation p(t) are [135, 139–141]2:

xf(t) =
1

2π

∫ ∞

−∞

(
p(ω)

k − ω2m

)
e−jωtdω (E.2.1a)

(E.2.1b)

and

vf(t) =
1

2π

∫ ∞

−∞

(−jωp(ω)

k − ω2m

)
e−jωtdω. (E.2.1c)

The displacement FRF, H(ω), which depends more generally upon the existence and form

of damping, corresponds to (k − ω2m)−1 in the above equations. The k and m are the

oscillator’s stiffness and mass, respectively, whilst ω ( f ) represents frequency in rad/s (Hz).

p(ω) is the Fourier transform of p(t) and j =
√
−1. The integrands of equation (E.2.1)

are singular but a standard integration of improper integrals can be applied if limits exist

[142]. Then the forced displacement and corresponding velocity, xf(0) and vf(0), which are

caused solely by the excitation can be determined at t = 0, the instant of initially applying

the excitation. These values are real and sometimes negligibly small as a later example

demonstrates.

Formulae for the free vibration displacement and velocity , xh(t) and vh(t), of the un-

damped oscillator are well known [135, 139–141] to be:

xh(t) = Ah cos (ωnt − φ) (E.2.2a)

2It is implied in these references that the expressions give the total displacement and velocity. Note that
the Fourier transform pairs defined here are comparable but inconsequentially different from those given in
[135, 139–141].
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and

vh(t) = −ωnAh sin (ωnt − φ) (E.2.2b)

where ωn =
√

k/m. The amplitude, Ah, and phase, φ, are found by enforcing causality at

t = 0 for the linearly superimposed forced and free vibration solutions. Hence;

xf(0) + xh(0) = 0 (E.2.3a)

and

vf(0) + vh(0) = 0, (E.2.3b)

which lead, in conjunction with equations (E.2.1) and (E.2.2), to:

Ah =
−xf(0)

cos (−φ) , (E.2.4a)

and

φ = arctan

(
vf(0)

ωnxf(0)

)
. (E.2.4b)

Causality is enforced for a MDOF rather than a SDOF system on a mode by mode basis at

each location of interest.

E.3 Illustrative Examples

Two examples are given. One relates to the time varying vibrations of an undamped SDOF

oscillator caused by a transient excitation. The second, more complex example arises from

the Semi-Analytical Finite Element (SAFE) formulation for ultrasonically generated waves

in a continuous pipe having negligible material damping. See, for example, [46]. The pipe’s

cutoff frequencies (at which the wave number is identically zero) represents a juncture

where the “character” of a pipe mode changes from an overall vibration to a propagating
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wave [21]. Moreover, the displacement at a cutoff frequency becomes unbounded in the

absence of damping so it is analogous to the behaviour at an undamped natural vibration

frequency [21].

E.3.1 Excitation

A transient excitation having the invariant character in the time and frequency domains

shown in Figure E.1 is applied to both the SDOF oscillator and on the outer surface of a
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hollow steel pipe. The lower (upper) time and frequency scales labelled “vibration” (“ul-

trasonic”) are for the pulse applied to the SDOF system (pipe). The transposed time and

frequency scales reflect the low and high frequencies inherent to the SODF vibrations and

ultrasonic pipe waves, respectively. Vertical scales on the left are for continuous time while

those on the right are for discrete representations. (See [111] for discrete time expressions

similar to those used in the current development.) The excitation is effectively band-limited

because over 99.9% of its energy3 is contained between 350 Hz and 1070 Hz or between

35 kHz and 107 kHz for the vibration and ultrasonic cases, respectively.

E.3.2 SDOF example

The vibration producing excitation is applied to the undamped SDOF oscillator whose mass

and stiffness values are given in Table E.1. The oscillator’s resulting frequency and time

behaviours are shown in Figure E.2. Plots presented in the left (right) column of this figure

correspond to continuous (discrete) time calculations. Figures E.2 (a) and E.2 (b) give the

FRFs in which the oscillator’s 450 Hz natural frequency is seen to be superimposed on the

excitation’s spectrum of Figure E.1 (b). (Note that the spectral densities shown involve the

convolution of a FRF with the excitation’s spectral density.) Reference displacement histor-

ies are presented, on the other hand, in Figures E.2 (c) and E.2 (d). They are derived from

the convolution integral [111, 135, 139] of closed form expressions and are essentially exact.

Corresponding time histories found from the inverse Fourier transforms of Figures E.2 (a)

and E.2 (b) are illustrated in Figures E.2 (e) and E.2 (f), respectively. However, only every

Table E.1. Properties assigned to the SDOF oscillator.

Property Assigned Value

Mass, m, slug (kg) 6.8522 × 10−2 (1.0000)
Stiffness, k, kip/ft (MN m−1) 547.79 (7.9944)
Undamped natural Frequency, ωn ( fn) 2.8274 × 103 rad s−1 (450.00 Hz)

3The term “energy” is used here in the signal processing sense [110, 111].
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Figure E.2. Representative response of a SDOF oscillator in (a) and (b) frequency and (c)
through (e) time.

fourth sample over the first 12 ms [rather than the 30 ms duration implicit to Figure E.2 (b)]

of the discretized history in Figure E.2 (f) is shown to enhance visual clarity. Other time

histories are made, as far as possible, compatible with Figure E.2 (f). Histories labelled

“original” are unprocessed inverse transforms; “post-processed” histories incorporate the

additional causality conditions, i.e., equations (E.2.3a) and (E.2.3b).

A comparison of Figures E.2 (c) and E.2 (d) establishes that the discrete counterpart

coincides with the exact continuous time history. Similar agreement holds not only between

the original but also the post-processed histories of Figures E.2 (e) and E.2 (f). Therefore

discretization is not the source of the non-causality exhibited by the original history of

Figure E.2 (f). Moreover, imposition of the causality conditions consistently corrects the

deficiency regardless of whether the history is discrete or continuous. Consequently there

is a need to specifically incorporate equations (E.2.3a) and (E.2.3b) for the (discrete or

continuous) inverse Fourier transform to be complete and always precise.
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Appendix E. Enforcing Causality E.3. Illustrative Examples

E.3.3 MDOF example

The previous SDOF example is extended to a MDOF steel pipe. The hollow pipe is excited

radially on its outer surface by using a pulse have the same overall character as before but

shifted upwards in frequency. The pipe’s dimensional and material properties are identical

to those given in Table 2.1. They match those encountered commonly in the petrochemical

industry. Ensuing individual radial displacement components on the pipe’s outer surface at

a location having a purely axial offset (which is 5.1 wall thicknesses from the pulse’s point

of application) are extracted initially for two instructive wave modes. The first mode has a

6.004 kHz cutoff frequency which is outside the excitation’s 35 kHz and 107 kHz effective

bandwidth. Conversely the 74.426 kHz cutoff frequency of the second mode lies almost

centrally within this bandwidth. The frequency and time behaviours of the two modes are

presented separately on the left and right, respectively, of Figures E.3 (a) through E.3 (d).

On the other hand, Figures E.3 (e) through E.3 (f) show the analogous but total radial

displacement when all the 2000 or so modes which are considered are superimposed. The

previous meanings of “original” and “post-processed” are retained in these figures.

The contribution of a mode acting individually is indicated by a noticeable spike at

its corresponding cutoff frequency in Figures E.3 (a) and E.3 (c). This behaviour is sim-

ilar to that observed earlier in Figures E.2 (a) and E.2 (b) for the SODF oscillator. The

corresponding time histories given in Figures E.3 (b) and E.3 (d) show that the free vibra-

tions occurring after the pulse’s termination are prolonged only when a spike is within the

pulse’s frequency bandwidth. This was also the situation for the oscillator and, not surpris-

ingly, each individual mode’s post-processed displacement history is always causal. On the

other hand, the agreement between the original and post-processed histories given in Fig-

ure E.3 (b) suggests a less imperative need for post-processing when a cutoff frequency is

outside the pulse’s bandwidth. This is not the case in Figure E.3 (d) or Figure E.3 (f) where

the 2000 or so modes considered introduce several cutoff frequencies in this bandwidth.
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Figure E.3. Representative responses in frequency and time for (a) and (b) [(c) and (d)]
a single mode whose cutoff frequency lies outside [inside] the excitation’s effective band-
width and (e) and (f) the superposition of about 2000 wave modes. +Scales are insufficiently
sensitive to clearly delineate all the cutoff frequencies, most of which lie outside the excit-
ation’s bandwidth.

E.4 Conclusions

A mathematical procedure for a periodic excitation is extended to a transient pulse which is

used commonly in ultrasonic testing. The extremes of a single vibration mode of a simple

oscillator and the many wave modes propagating simultaneously in a real pipe illustrate that

the extended procedure can remedy non-causal predictions. The extension is shown to ap-

ply to both continuous and discrete time problems but it must be applied disadvantageously

to each mode of a MDOF system.
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Appendix F

Axisymmetric Finite ElementModelling

F.1 Introduction

The approximate displacement field of an axisymmetric finite element volume is written

in this appendix in terms of interpolation functions and a nodal displacement vector. The

strain-displacement matrices are introduced to describe the strain and stress fields in terms

of the approximate displacement field. Then approximate equations of undamped motion

are obtained by applying Hamilton’s principle to the appropriate functional for complex

displacement fields.

F.2 Approximate Displacement Field

The displacement field in the axisymmetric finite element region is approximated initially

as

u(r, θ, z, t) =
∞∑

n=−∞
Nn(r, θ, z)e−jωtUn, (F.2.1)

where

N(r, θ, z) =



Nn(r, θ, z) 0 0

0 Nn(r, θ, z) 0

0 0 Nn(r, θ, z)


. (F.2.2)

The Nn are the assembled interpolation functions over the finite element region and Un is

the corresponding array of nodal displacements. A time, t, harmonic excitation and dis-

placement response, both having circular frequency ω, have been assumed implicitly in

equation (F.2.1). The Nn and Un both depend on the circumferential harmonic (wavenum-

ber), n. The Nn is obtained by a conventional finite assembly process over all elements. See,
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Appendix F. Axisymmetric Finite ElementModelling F.2. Approximate Displacement Field

for example, [107]. The Un are represented, as in Appendix B, by

Un =
[
Un Vn Wn

]T
, (F.2.3)

whereUn, Vn, andWn are arrays containing the radial, circumferential, and axial nodal

displacements, respectively, for the nth circumferential wavenumber. Isoparametric, axi-

symmetric finite elements are utilized. A representative finite element with its numbering is

shown in Figure F.1 for an elevation perspective. In addition, global coordinates, (r, z), are

shown in Figure F.1 (a) whereas the local coordinates (ζ, η) are illustrated in Figure F.1 (b).

The radial coordinates of the finite element’s nodal coordinates are selected so that:

r1 = ri, (F.2.4a)

r2 = (ri + ro)/2, (F.2.4b)

r3 = ro, (F.2.4c)

r4 = ri, (F.2.4d)

r

z

1

2

3

6

7

8

4

5

1

2

3

6

7

8

4

5

ζ

η
↔

(a) (b)

Figure F.1. Showing a representative isoparametric, axisymmetric finite element’s nodal
numbering in (a) global, and (b) local coordinate frames.
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Appendix F. Axisymmetric Finite ElementModelling F.2. Approximate Displacement Field

r5 = ro, (F.2.4e)

r6 = ri, (F.2.4f)

r7 = (ri + ro)/2, (F.2.4g)

and

r8 = ro. (F.2.4h)

Here ri (ro) is the radial coordinate of the finite element’s inner (outer) surface. (Note

that in this context ri and ro refer to a finite element’s inner and outer radii, and not to the

pipe’s inner and outer radii.) Similarly the axial coordinates of the finite element’s nodal

coordinates are selected so that:

z1 = zf, (F.2.5a)

z2 = zf, (F.2.5b)

z3 = zf, (F.2.5c)

z4 = (zb + zf)/2, (F.2.5d)

z5 = (zb + zf)/2, (F.2.5e)

z6 = zb, (F.2.5f)

z7 = zb, (F.2.5g)

and

z8 = zb, (F.2.5h)

where zf (zb) is the axial coordinate of the finite element’s front (back) face and zf > zb.

With the finite element’s nodal coordinates selected in the fashion described by equa-

tions (F.2.4) and (F.2.5), the individual matrix elements of the shape function vector, n,
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Appendix F. Axisymmetric Finite ElementModelling F.2. Approximate Displacement Field

(which is used in each finite element) can be expressed as

n1,1 =
(
−1/4 + 1/4ζ2 − 1/4ηζ + 1/4η2 + 1/4ηζ2 − 1/4η2ζ

)
e jnθ, (F.2.6a)

n1,2 =
(
1/2 + 1/2η − 1/2ζ2 − 1/2ηζ2

)
e jnθ, (F.2.6b)

n1,3 =
(
−1/4 + 1/4ζ2 + 1/4ηζ + 1/4η2 + 1/4ηζ2 + 1/4η2ζ

)
e jnθ, (F.2.6c)

n1,4 =
(
1/2 − 1/2ζ − 1/2η2 + 1/2η2ζ

)
e jnθ, (F.2.6d)

n1,5 =
(
1/2 + 1/2ζ − 1/2η2 − 1/2η2ζ

)
e jnθ, (F.2.6e)

n1,6 =
(
−1/4 + 1/4ζ2 + 1/4ηζ + 1/4η2 − 1/4ηζ2 − 1/4η2ζ

)
e jnθ, (F.2.6f)

n1,7 =
(
1/2 − 1/2η − 1/2ζ2 + 1/2ηζ2

)
e jnθ, (F.2.6g)

and

n1,8 =
(
−1/4 + 1/4ζ2 − 1/4ηζ + 1/4η2 − 1/4ηζ2 + 1/4η2ζ

)
e jnθ. (F.2.6h)

The ζ and η are dimensionless radial and axial coordinates, respectively, that are specified

in the local, isoparametric element coordinate system. They are related to the global co-

ordinate system by

ζ =
2r − (ro + ri)

(ro − ri)
,−1 ≤ ζ ≤ 1 (F.2.7a)

and

η =
2z − (zf + zb)

(zf − zb)
,−1 ≤ η ≤ 1. (F.2.7b)
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F.3 Approximate Strain and Stress Fields

The following strain-displacement transformation matrix:

Bn =



Nn,r Nn/r 0 jnNn/r Nn,z 0

0 jnNn/r 0 Nn,r − Nn/r 0 Nn,z

0 0 Nn,z 0 Nn,r jnNn/r



T

(F.3.1)

is introduced to simplify the computation of the approximate strain field in the axisymmet-

ric, finite element volume, for the nth circumferential wavenumber. Then the corresponding

strain and stress tensors which are expressed in vector form, can be written as

ε = BUn (F.3.2a)

and

σ = DBUn, (F.3.2b)

respectively, for a given circumferential wavenumber, n. The D is a symmetric matrix

which is composed from the isotropic elastic moduli given in equation (B.3.3).

F.4 Application of Hamilton’s Principle

Hamilton’s principle can be expressed for the axisymmetric finite element volume in the

form used in equation (B.4.1). Moreover, the kinetic and total potential energies are still

given by equation (B.4.2). By following a procedure similar to the one used in Section B.4

to derive equation (B.4.10) from equation (B.4.1), the approximate equations of motions of

the axisymmetric finite element volume can be shown, for a single circumferential harmon-

ic, to be
(
KI(n) − ω2MI

)
Un = Fn. (F.4.1)
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Appendix F. Axisymmetric Finite ElementModelling F.4. Application of Hamilton’s Principle

Equation (F.4.1) becomes identical to equation (4.2.1) when Un and Fn are replaced by q

and P, respectively, in the last equation.

The KI and MI appearing in equation (F.4.1) can be computed by evaluating the integ-

rals

KI(n) =

∫ 0

−l/2

∫ π

−π

∫ ro

ri

B̃n

T
DBnrdrdθdz (F.4.2a)

and

MI =

∫ 0

−l/2

∫ π

−π

∫ ro

ri

ρÑn

T
Nnrdrdθdz, (F.4.2b)

where the limits of integration are determined by referring to Figure 4.1. Note that KI is a

function of n, but MI is independent of n. However, it is possible [107] to express KI(n) as

KI(n) = K0 + nK1 + n2K2, (F.4.3)

where K0, K1 and K2 are all independent of n. On the other hand, Fn can be found by

following the procedure given in [107] for the computation of consistent force vectors for

external forces. The integral

Fn =

∫ π

−π

∫ ro

ri

Ñn

T



τrz

τθz

σzz



rdrdθ, (F.4.4)

gives the required consistent force vector. The Ñn in equation (F.4.4) is evaluated on the

plane z = 0. Moreover, τrz, τθz, and σzz are stresses from the wavefunction expansion that

act on the plane z = 0. This is the only plane where distributed external forces are applied

to the finite element region. They may be found for a single mode of the wavefunction

expansion region by applying equations (A.3.2) and (A.4.2) of Appendix A to the (approx-

imate) displacement field given in equation (B.2.1) for that mode. Briefly, the displacement,
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unm, in the wavefunction expansion region can be expressed, for a single mode having unit

amplitude, as

unm = Nφ
R
nmue jknmze jnθ. (F.4.5)

As before, N are the assembled interpolation functions over the entire pipe in the wave-

function expansion region. Furthermore, φR
nmu is the nmth mode shape for which knm and n

are the axial and circumferential wavenumbers, respectively. Applying equations (A.3.2)

and (A.4.2) to equation (F.4.5) and making evaluations in the z = 0 plane gives the required

stresses as 

τrz

τθz

σzz



= D



jknmN 0 N,r

0 jknmN jnN/r

0 0 jknmN


φR

nmue jnθ. (F.4.6)

Substituting equation (F.4.6) into equation (F.4.4) and evaluating the result leads to a col-

umn vector. Collecting the column vectors for all the scattered modes (essentially contain-

ing both the Fs1 and Fs2 used in Section 4.2.4) results in the shorthand notations used for

fscat and fscat
+ given in Section 4.2.4. Similarly, the fin is a single column vector as a result

of applying equation (F.4.4) for a single incident mode.

F.5 Note on Integrating the Finite Element Matrices

In practice the matrices given in equation (F.4.2) are evaluated by “assembling” element

matrices. The element matrices for the kth element take the same form as the matrices

in equation (F.4.2) but they have integration limits which span each finite element’s loc-

al dimensions only. (See equations (F.2.4) and (F.2.5) as well as Figure F.1.) A typical

component in these matrices can be written in the form

E =
∫ zf

zb

∫ π

−π

∫ ro

ri

I(r, θ, z, ζ, η)rdrdθdz, (F.5.1)
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where, as before, E is an arbitrary matrix element and I is the integrand arising from the

required matrix multiplications. The variables of integration in equation (F.5.1) are r, θ, and

z but the integrand contains ζ and η which are functions of the other spatial variables. The

well known change of variables theorem from multivariable calculus is invoked to evaluate

equation (F.5.1). The result is

E =
∫ zf

zb

∫ π

−π

∫ ro

ri

I(r, θ, z, ζ, η)rdrdθdz

=

∫ π

−π

∫ 1

−1

∫ 1

−1

I′(θ, ζ, η)
(
[ro − ri]ζ + [ro + ri]

2

) (
[zf − zb][ro − ri]

4

)
dζdηdθ

(F.5.2)

Equation (F.5.2) makes use of the relation r = (roζ − riζ + ro + ri)/2 which is obtained from

equation (F.2.7a). Moreover, I′(ζ) can be derived straightforwardly from I(r, ζ) by using

the chain rule and the previously stated relations between r and ζ as well as z and η. On

the other hand, the (zf − zb)(ro − ri)/4 factor appearing in equation (F.5.2) arises from the

determinant of the Jacobian matrix in the change of variables theorem. For this particular

case, the Jacobian matrix, J, is given by

J =



∂r
∂ζ

∂z
∂ζ

∂r
∂η

∂z
∂η

 =



(ro−ri)
2 0

0 (zf−zb)
2

 (F.5.3)

so that the determinant, |J|, is

|J| = (zf − zb)(ro − ri)

4
. (F.5.4)

A similar procedure can be applied to evaluate the consistent force vector given in equa-

tion (F.4.4).
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Code Listings and Sketches Implementing hybrid

SAFE for Axisymmetric Scatterers

G.1 Overview

This appendix contains annotated code listings and “sketches” (in which sections of code

are removed for brevity) of illustrative Matlabr scripts and functions. The code is used to

implement the hybrid SAFE method for axisymmetric scatters. This method is described in

Section 4.2 of Chapter 4 and Appendix F. Code listings and sketches illustrate a work flow

which allows the writing of finite element programs to be automated partially by taking ad-

vantage of readily available commercial tools. Moreover, several Matlabr “best practices,”

such as preallocating memory for arrays and “vectorizing code” rather than using a loop,

are illustrated as a matter of course. Although the programs presented in this appendix

have been “parallelized” to run simultaneously on a several computing cores, only “serial”

or single computer1 versions are presented here. A discussion of parallel and distributed

computing is deferred to Appendix L.

G.2 Annotated Code Listings

An annotated Matlabr code listing to evaluate (in closed form) the axisymmetric finite

element stiffness and mass matrices is provided in Listing C.1. A high level flowchart for

this program is given in Figure G.1. Listing G.2, on the other hand, gives code to evaluate

(in closed form) the consistent force vector for external forces acting on the B+ surface of

the axisymmetric finite element volume. Figure G.2 gives a high level flowchart for this

listing. Finally, Listing G.3 provides a “sketch” of the Matlabr program that implements

1Note that Matlabr supports some implicit parallelization that speeds code execution for serial programs.
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☛✡ ✟✠Start

❄
Clear workspace

❄
Define nondimensional coordinates, geometric and material

properties. (All these variables are assumed to be real)

❄
Add additional assumptions

❄

Define radial coordinates

❄

Define axial coordinates

❄
Define shape function polynomial

❄
Define the value of the shape functions

at each nodal coordinate

❄

Define elastic constant matrix

❄

Define vectors for radial and axial coordinates

❄
Compute Jacobian matrix

❄

Introduce circumferential variation

❄
Define strain-displacement operators

❄
Define finite element stiffness matrix integrand

❄

Evaluate the element stiffness matrix

❄
Factor the finite stiffness matrix into
constant, linear, and quadratic terms

❄
Define the finite element mass matrix integrand

❄

Evaluate the element mass matrix

❄

Write results to file
✂
✂✂

✂
✂✂

❄☛✡ ✟✠Stop

Figure G.1. A high level flowchart for Listing G.1.
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☛✡ ✟✠Start

❄
Clear workspace

❄
Define nondimensional coordinates, geometric and material

properties. (All these variables are assumed to be real.)

❄
Add additional assumptions

❄

Define radial coordinates

❄
Define shape function polynomial

❄
Define the value of the shape functions

at each nodal coordinate

❄

Define elastic constant matrix

❄

Define vector for radial coordinate

❄
Compute Jacobian matrix

❄

Introduce circumferential variation

❄
Define strain-displacement operators

❄
Compute strains and stresses in a finite element

❄
Define consistent force vector integrand

❄

Evaluate the consistent force vector

❄
Calculate transformation matrix to map

finite element nodal displacements to forces

❄

Write results to file
✂
✂✂

✂
✂✂

❄☛✡ ✟✠Stop

Figure G.2. A high level flowchart for Listing G.2.
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the hybrid-SAFE procedure for axisymmetric notches. Note that reflections from a free end

are also accommodated in this program. A high level flowchart for this listing is given in

Figure G.3.
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✞✝ ☎✆Start

❄
Clear workspace

❄
Define material and geometric properties

❄
Define meshing scheme for wavefunction

expansion and finite element regions

❄

�
��

❅
❅❅

�
��

❅
❅❅

Free end
reflection?

Yes No✛Mesh finite element region

❄
Compute element mass and

stiffness matrices and
assemble into global mass

and stiffness matrices

❄
Read wavefunctions for

circumferential wavenumber✂
✂

✂
✂

❄
Compute dynamic

stiffness matrix

❄
Compute incident and

scattered fields

❄
Condense internal nodes

❄
Apply symmetric-anti-

symmetric boundary conditions

❄
Form and solve linear systems

(symmetric and antisymmetric cases)

❄
Do energy check

❄

�
�
��

❅
❅
❅❅

�
�

��

❅
❅

❅❅

Done all
frequencies?

No

Yes
❄

Write results to file
✂
✂

✂
✂

❄

�
�
��

❅
❅
❅❅

�
�

��

❅
❅

❅❅

Done all
circumferential
wavenumbers?

No

Yes
❄✞✝ ☎✆Stop

✲ Increment
circumferential

wavenumer

✛

✲ Increment
frequency

✛

✲ Read wavefunctions for
circumferential wavenumber✂

✂
✂
✂

❄
Compute incident and

scattered fields

❄
Form and solve linear system

of equations

❄
Do energy check

❄

�
�

��

❅
❅

❅❅

�
�

��

❅
❅

❅❅

Done all
frequencies?

No

Yes
❄

Write results to file
✂
✂

✂
✂

❄

�
�

��

❅
❅

❅❅

�
�

��

❅
❅

❅❅

Done all
circumferential
wavenumbers?

No

Yes
❄✞✝ ☎✆Stop

✲ Increment
circumferential

wavenumer

❄

✲ Increment
frequency

✛

Figure G.3. A high level flowchart for Listing G.3.
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Listing G.1. Matlabr code to compute axisymmetric element stiffness and mass matrices
for the axisymmetric case.

1 %Clear workspace
2 clear;
3 clc;
4

5 %Define symbolic variables using real values
6 syms xi eta ri ro zu zl n theta lambda mu rho real;
7

8 %Add additional assumptions
9 maple('assume(n,integer)');

10 maple('assume(ri,positive)');
11 maple('assume(ro,positive)');
12 maple('assume(lambda,positive)');
13 maple('assume(mu,positive)');
14 maple('assume(rho,positive)');
15 maple('additionally(ri<ro)');
16 maple('additionally(zl<zu)');
17

18 %Define radial coordinate locations
19 r1=ri;
20 r3=ro;
21 r2=(r1+r3)/2;
22 r4=r1;
23 r5=r3;
24 r6=r1;
25 r7=r2;
26 r8=r3;
27

28 %Define axial coordinate locations
29 z1=zu;
30 z2=zu;
31 z3=zu;
32 z4=(zu+zl)/2;
33 z5=z4;
34 z6=zl;
35 z7=zl;
36 z8=zl;
37

38 %Define shape function polynomial. See [107].
39 P=[1 xi eta xi^2 xi*eta eta^2 xi^2*eta xi*eta^2];
40

41 %Define values of P at nodal coordinates.
42 %See [107].
43 A=[1 −1 1 1 −1 1 1 −1;
44 1 0 1 0 0 1 0 0;
45 1 1 1 1 1 1 1 1;
46 1 −1 0 1 0 0 0 0;
47 1 1 0 1 0 0 0 0;
48 1 −1 −1 1 1 1 −1 −1;
49 1 0 −1 0 0 1 0 0;
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51 1 1 −1 1 −1 1 −1 1];
52

53 %Define matrix of elastic constants
54 E=[lambda+2*mu lambda lambda 0 0 0;
55 lambda lambda+2*mu lambda 0 0 0;
56 lambda lambda lambda+2*mu 0 0 0;
57 0 0 0 mu 0 0;
58 0 0 0 0 mu 0;
59 0 0 0 0 0 mu];
60

61 %Convert A from numeric to symbolic variables
62 A=sym(A);
63

64 %Derive shape functions from P and A.
65 %See [107].
66 N=simple(P*inv(A));
67

68 %Define vectors of radial and axial
69 %nodal coordinates
70 rc=[r1; r2; r3; r4; r5; r6; r7; r8];
71 zc=[z1; z2; z3; z4; z5; z6; z7; z8];
72

73 %Define continuous radial and axial
74 %coordinate variable
75 r=simple(N*rc);
76 z=simple(N*zc);
77

78 %Compute the Jacobian matrix
79 J=simple([diff(z,eta) diff(r,eta);diff(z,xi) diff(r,xi)]);
80

81 %Compute the inverse of the Jacobian matrix
82 Gamma=simple(inv(J));
83

84 %Define the assumed circumferential variation
85 N2=simple(N*exp(j*n*theta));
86

87 %Define operators to give the radial, circumferential, and axial
88 %displacement and their derivatives which are required to compute
89 %the strain tensor
90 ou=simple([N2 zeros(1,16)]);
91 our=simple([diff(N2,eta)*Gamma(2,1)+diff(N2,xi)*Gamma(2,2) ...
92 zeros(1,16)]);
93 ouz=simple([diff(N2,eta)*Gamma(1,1)+diff(N2,xi)*Gamma(1,2) ...
94 zeros(1,16)]);
95 out=simple([diff(N2,theta) zeros(1,16)]);
96 ov=simple([zeros(1,8) N2 zeros(1,8)]);
97 ovr=simple([zeros(1,8) diff(N2,eta)*Gamma(2,1)+diff(N2,xi)*...
98 Gamma(2,2) zeros(1,8)]);
99 ovz=simple([zeros(1,8) diff(N2,eta)*Gamma(1,1)+diff(N2,xi)*...
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100 Gamma(1,2) zeros(1,8)]);
101 ovt=simple([zeros(1,8) diff(N2,theta) zeros(1,8)]);
102 owr=simple([zeros(1,16) diff(N2,eta)*Gamma(2,1)+diff(N2,xi)*...
103 Gamma(2,2)]);
104 owz=simple([zeros(1,16) diff(N2,eta)*Gamma(1,1)+diff(N2,xi)*...
105 Gamma(1,2)]);
106 owt=simple([zeros(1,16) diff(N2,theta)]);
107

108 %Assemble a strain displacement operator
109 B=simple([our;ou/r+ovt/r;owz;ovz+owt/r;ouz+owr;out/r+ovr−ov/r]);
110

111

112 %Define the integrand for the finite element stiffness matrix
113 IK=B'*E*B*r*det(J);
114

115 %Define a matrix to hold the integrated finite element stiffness
116 %matrix
117 K=sym(zeros(size(IK)));
118

119 %Integrate the integrand of the finite element stiffness matrix
120 for a=1:1:size(IK,1)
121 for b=1:1:size(IK,2)
122 disp(['a=' int2str(a) ', b=' int2str(b)]);
123 K(a,b)=simple(int(int(int(IK(a,b),xi,−1,1),theta,−pi,pi),...
124 eta,−1,1));
125 end
126 end
127

128 %Define matrices to factor the finite element stiffness matrix into
129 %terms that are constant, linear, and quadratic in n. See [107].
130 K0=sym(zeros(size(K)));
131 K1=sym(zeros(size(K)));
132 K2=sym(zeros(size(K)));
133

134 %A test matrix
135 K3test=sym(zeros(size(K)));
136

137 %Define two working matrices
138 I1=sym(zeros(size(K)));
139 I2=sym(zeros(size(K)));
140

141 %Loop over all matrix components
142 for a=1:1:size(IK,1)
143 for b=1:1:size(IK,2)
144 disp(['a=' int2str(a) ', b=' int2str(b)]);
145

146 %Set n=0 in K to get constant term
147 if (subs(K(a,b),n,0)==0)
148 K0(a,b)=sym(0);
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149 else
150 K0(a,b)=simple(subs(K(a,b),n,0));
151 end
152

153 %Compute result of removing constant term and store
154 %the result in the first working matrix
155 I1(a,b)=simple(K(a,b)−K0(a,b));
156

157 %Divide the working matrix by n and subsequently set n=0.
158 %This leaves only the terms linear in n.
159 I1(a,b)=simple(I1(a,b)/n);
160 if (subs(I1(a,b),n,0)==0)
161 K1(a,b)=sym(0);
162 else
163 K1(a,b)=simple(subs(I1(a,b),n,0));
164 end
165

166 %Compute result of removing constant term and linear terms
167 %and store the result in the second working matrix
168 I2(a,b)=simple((K(a,b)−K0(a,b)−K1(a,b)*n));
169

170 %Divide the working matrix by n^2 and subsequently set n=0.
171 %This leaves only the terms quadratic in n.
172 I2(a,b)=simple(I2(a,b)/n^2);
173 if (subs(I2(a,b),n,0)==0)
174 K2(a,b)=sym(0);
175 else
176 K2(a,b)=simple(subs(I2(a,b),n,0));
177 end
178

179 %Test that the sum of K0+n*K1+n^2*K2=K
180 K3test(a,b)=simple(K(a,b)−K0(a,b)−K1(a,b)*n−K2(a,b)*n^2);
181 end
182 end
183

184 %Define the integrand for the finite element mass matrix
185 IM=rho*[N2 zeros(1,16);zeros(1,8) N2 zeros(1,8);zeros(1,16) N2]'*...
186 [N2 zeros(1,16);zeros(1,8) N2 zeros(1,8);zeros(1,16) N2]*...
187 r*det(J);
188

189 %Define a matrix to hold the integrated finite element mass matrix
190 M=sym(zeros(size(IM)));
191

192 %Integrate the integrand of the finite element mass matrix
193 for a=1:1:size(IM,1)
194 for b=1:1:size(IM,2)
195 disp(['a=' int2str(a) ', b=' int2str(b)]);
196 M(a,b)=simple(int(int(int(IM(a,b),theta,−pi,pi),xi,−1,1),...
197 eta,−1,1));
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198 end
199 end
200 %Write K0, K1, K2, and M to m files.
201 fid=fopen('K0.m','wt')
202

203 for a=1:1:size(K0,1)
204 for b=1:1:size(K0,2)
205 disp(['a=' int2str(a) ', b=' int2str(b)]);
206 fprintf(fid,'K0fe(%d,%d)=%s;\n',a,b,char(simple(K0(a,b))));
207 end
208 end
209

210 fclose(fid)
211

212 fid=fopen('K1.m','wt')
213

214 for a=1:1:size(K1,1)
215 for b=1:1:size(K1,2)
216 disp(['a=' int2str(a) ', b=' int2str(b)]);
217 fprintf(fid,'K1fe(%d,%d)=%s;\n',a,b,char(simple(K1(a,b))));
218 end
219 end
220

221 fclose(fid)
222

223 fid=fopen('K2.m','wt')
224

225 for a=1:1:size(K2,1)
226 for b=1:1:size(K2,2)
227 disp(['a=' int2str(a) ', b=' int2str(b)]);
228 fprintf(fid,'K2fe(%d,%d)=%s;\n',a,b,char(simple(K2(a,b))));
229 end
230 end
231

232 fclose(fid);
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1 %Clear the workspace
2 clear;
3 clc;
4

5 %Define symbolic variables which are required to be real
6 syms xi ri ro n theta lambda mu rho z real;
7

8 %Define nodal displacements in a layer
9 syms u1 u2 u3 v1 v2 v3 w1 w2 w3 k;

10

11 %Add additional assumptions
12 maple('assume(n,integer)');
13 maple('assume(ri,positive)');
14 maple('assume(ro,positive)');
15 maple('assume(lambda,positive)');
16 maple('assume(mu,positive)');
17 maple('assume(rho,positive)');
18 maple('additionally(ri<ro)');
19

20 %Define radial coordinate locations
21 r1=ri;
22 r3=ro;
23 r2=(r1+r3)/2;
24

25 %Define shape function polynomial. See [107].
26 P=[1 xi xi^2];
27

28 %Define values of P at nodal coordinates.
29 %See [107].
30 A=[1 −1 1;
31 1 0 0;
32 1 1 1];
33

34 %Define matrix of elastic constants
35 E=[lambda+2*mu lambda lambda 0 0 0;
36 lambda lambda+2*mu lambda 0 0 0;
37 lambda lambda lambda+2*mu 0 0 0;
38 0 0 0 mu 0 0;
39 0 0 0 0 mu 0;
40 0 0 0 0 0 mu];
41

42 %Convert A from numeric to symbolic variables
43 A=sym(A);
44

45 %Derive shape functions from P and A.
46 %See [107].
47 N=simple(P*inv(A));
48

49 %Define vectors of radial coordinates
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50 rc=[r1; r2; r3];
51

52 %Define continuous radial coordinate variable
53 r=simple(N*rc);
54

55 %Define continuous displacement variables
56 u=simple(N*[u1;u2;u3]);
57 v=simple(N*[v1;v2;v3]);
58 w=simple(N*[w1;w2;w3]);
59

60 %Compute the Jacobian matrix
61 J=simple([diff(r,xi)]);
62

63 %Incorporate the circumferential and axial variations in the
64 %displacement variables
65 u=u*exp(j*n*theta)*exp(j*k*z);
66 v=v*exp(j*n*theta)*exp(j*k*z);
67 w=w*exp(j*n*theta)*exp(j*k*z);
68

69 %Compute the strain over the layer
70 e=simple([diff(u,xi)/J;
71 u/r+diff(v,theta)/r;
72 diff(w,z);
73 diff(u,z)+diff(w,xi)/J;
74 diff(u,theta)/r+diff(v,xi)/J−v/r;
75 diff(v,z)+diff(w,theta)/r]);
76

77 %Remove the circumferential variations from the strain.
78 %(It will be reintroduced later.)
79 e=e/exp(j*k*z);
80

81 %Compute the stress over the layer
82 s=simple(E*e);
83

84 %Reintroduce the circumferential variations from the stress
85 Nt=(N*exp(j*n*theta))';
86

87 %Compute the consistent force vectors by integrating over the
88 %axisymmetric element's face. See [107].
89

90 %Radial
91 Fr=simple(int(int(Nt*s(4)*r*J,theta,sym('−pi'),sym('pi')),xi,...
92 sym('−1'),sym('1')));
93 %Circumferential
94 Ft=simple(int(int(Nt*s(6)*r*J,theta,sym('−pi'),sym('pi')),xi,...
95 sym('−1'),sym('1')));
96 %Axial
97 Fz=simple(int(int(Nt*s(3)*r*J,theta,sym('−pi'),sym('pi')),xi,...
98 sym('−1'),sym('1')));
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99 %Assemble the force vector
100 F=[Fr;Ft;Fz];
101

102 %Define a matrix to map the nodal displacements in a layer into
103 %consistent nodal forces
104 AT=sym(zeros(9,9));
105

106 %Loop over all elements of the matrix that maps the nodal
107 %displacements into consistent nodal forces, AT. Set all
108 %displacements except one to zero to get the contribution
109 %to the nodal force vector of that one displacement
110 %component.
111 for a=1:1:9
112 for b=1:1:9
113 dv=sym(zeros(1,9));
114 dv(b)=sym(1);
115 AT(a,b)=simple(subs(F(a),{u1,u2,u3,v1,v2,v3,w1,w2,w3},dv));
116 end
117 end
118

119 %A test, Chk should be a null vector.
120 Chk=simple(F−AT*[u1;u2;u3;v1;v2;v3;w1;w2;w3])
121

122 %Write the matrix that maps the nodal
123 %displacements into consistent nodal forces, AT, to file.
124 %Minimal hand written code is required to complete
125 %a function which takes the nodal displacements in a layer
126 %and computes the (consistent) nodal force vector.
127 fid=fopen('AT.m','wt');
128

129 fprintf(fid,'%s\n',a,b,char(simple(AT)));
130

131 fclose(fid);
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1 %Clear workspace
2 clear;
3 clc;
4

5 %Control Information
6 %Define circumferential wavenumbers
7 Nm=[−16:1:16];
8

9 %Common Information, material and dimensional properties
10 lambdap=113.2E9; %First Lame constant
11 mup=84.3E9; %Second Lame constant
12 l_m=lambdap/mup; %Ratio of Lame constants
13 rhop=7932; %Density
14 Hp=0.220*25.4E−3; %Wall thickness
15 Do=3.4960*25.4E−3; %Outer diameter
16 Rp=(Do−Hp)/2; %Mean radius
17 H_R=Hp/Rp; %Wall thickness to mean radius ratio
18 wref=1/Hp*sqrt(mup/rhop);%Reference frequency
19 mu=1; %Nondimensional shear modulus
20 lambda=l_m*mu; %Nondimensional Lame constant
21 rho=1; %Nondimensional mass density
22

23

24 %Wave function expansion information
25 H=1; %Nondimensional wall thickness
26 N=10; %Number of elements in wave function expansion region
27 dof=3; %Number of nodal degrees of freedom
28 L=(2*N+1)*dof; %Length of mode shape vectors, number of axial modes
29

30 %Finite element region information
31 Rip=(2−H_R)/2/H_R*H; %Inner radius of finite element region
32 Rop=Rip+1; %Outer radius of finite element region
33 zby2=3.1750E−3/Hp*1/4; %Half length of finite element region
34 Nz=4; %Number of elements in the axial direction
35

36

37 %Mesh in radial direction
38 [rife,rofe,rmfe,rki,rko,rkm,FE,Er]=HMesh(H_R,N,Rip,Rop);
39

40 if Er
41 error('An error was detected in HMesh.');
42 end
43

44 %Mesh in axial direction
45 [zl,zu,Er]=ZMesh(zby2,Nz,FE);
46 if Er
47 error('An error was detected in ZMesh.');
48 end
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49 if ~FE %This is the case for a notch
50

51 %Create FE mesh...
52

53 %Number of nodes in FE region
54 Nfe=length(rife); %Number of elements in the radial direction...
55 %in the FE region
56 Mfe=length(zl); %Number of elements in the axial direction in...
57 %the FE region
58 FEN=(3*Mfe+2)*Nfe+2*Mfe+1; %Total number of nodes in the FE...
59 %region
60

61 %Assign memory for global mass and stiff matrices
62 Mg=sparse(3*FEN,3*FEN); %Mass matrix
63 K0g=sparse(3*FEN,3*FEN); %Constant stiffness matrix
64 K1g=sparse(3*FEN,3*FEN); %Stiffness matrix in n
65 K2g=sparse(3*FEN,3*FEN); %Stiffness matrix in n^2
66

67 %Loop over all elements
68 for nfe=1:1:Nfe
69 for mfe=1:1:Mfe
70 %Element matrices
71

72 %Mass matrices
73 [Me,Er]=M(rife(nfe),rofe(nfe),zl(mfe),zu(mfe),rho);
74 if Er
75 error('An error was detected in M.');
76 end
77

78 %Constant stiffness matrices
79 [K0e,Er]=K0(rife(nfe),rofe(nfe),zl(mfe),zu(mfe),...
80 lambda,mu);
81 if Er
82 error('An error was detected in K0.');
83 end
84

85 %Stiffness matrix in n
86 [K1e,Er]=K1(rife(nfe),rofe(nfe),zl(mfe),zu(mfe),...
87 lambda,mu);
88 if Er
89 error('An error was detected in K1.');
90 end
91

92 %Stiffness matrix in n^2
93 [K2e,Er]=K2(rife(nfe),rofe(nfe),zl(mfe),zu(mfe),...
94 lambda,mu);
95 if Er
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96 error('An error was detected in K2.');
97 end
98

99 %Assembly
100 %Calculate element nodes
101 Nodenums=Nodes(Nfe,nfe,mfe);
102 Rows=[Nodenums;FEN+Nodenums;2*FEN+Nodenums];
103 Cols=Rows;%[Nodenums;FEN+Nodenums;2*FEN+Nodenums];
104

105 %Do assembly
106 for a=1:1:length(Rows)
107 Mg(Rows(a),Cols)=Mg(Rows(a),Cols)+Me(a,:);
108 K0g(Rows(a),Cols)=K0g(Rows(a),Cols)+K0e(a,:);
109 K1g(Rows(a),Cols)=K1g(Rows(a),Cols)+K1e(a,:);
110 K2g(Rows(a),Cols)=K2g(Rows(a),Cols)+K2e(a,:);
111 end
112 end
113 end
114

115 %Loop over all circumferential wavenumbers
116 for n=1:1:length(Nm)
117

118 disp(['n= ' num2str(Nm(n)) ' out of ' num2str(length(Nm))]);
119

120 %Clear data from previous circumferential wavenumber
121 if n~=1
122 clear 'fwhole' 'Rvalf' 'REVf' 'LRvalf' 'LREVf';
123 end
124

125 %Load wavefunctions from file
126 load(['L:\RASD2010\WF\F_' num2str(Nm(n)) '.mat'],...
127 'fwhole', 'Rvalf', 'REVf', 'LRvalf', 'LREVf');
128

129 %Define arrays
130 %Solutions to symmetric and antisymmetric loading problems
131 Asym=zeros(length(fwhole),size(Rvalf,2),size(Rvalf,2));
132 Aasym=zeros(length(fwhole),size(Rvalf,2),size(Rvalf,2));
133 %Work balance
134 %Incident
135 workin=zeros(length(fwhole),L);
136 %Reflected
137 workr=zeros(length(fwhole),L,L);
138 %Transmitted
139 workt=zeros(length(fwhole),L,L);
140

141 %Calculate FE global mass and stiffness matrices
142 K=K0g+Nm(n)*K1g+Nm(n)^2*K2g;
143 M=Mg;
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144 %Loop over all frequencies
145 for f=1:1:length(fwhole)
146

147 disp(['f= ' num2str(f) ' out of '...
148 num2str(length(fwhole))]);
149

150 %Compute dynamic stiffness matrix
151 S=K0g+Nm(n)*K1g+Nm(n)^2*K2g−(fwhole(f)/wref)^2*Mg;
152

153 %Find (force) free nodes on B+
154

155 %Nodes on Wave Function Expansion (WFE)
156 rnwfe=sort([rki;rkm;rko(end)],'ascend');
157

158 %Nodes on Finite Element Region (FER)
159 rnfer=sort([rife;rmfe;rofe(end)],'ascend');
160

161 %Find free nodes on FER
162 FNFE=[];
163 for a=1:1:length(rnfer)
164 if min(abs(rnfer(a)−rnwfe))>1E−6
165 FNFE=[FNFE;a];
166 end
167 end
168

169 %Find free nodes on WFE
170 FNWF=[];
171 for a=1:1:length(rnwfe)
172 if min(abs(rnwfe(a)−rnfer))>1E−6
173 FNWF=[FNWF;a];
174 end
175 end
176

177 %Define array of incident nodal forces
178 Fin=zeros(3*(2*N+1),size(LRvalf,2));
179

180 %Calculate incident field. Assume only one mode
181 %having unit magnitude
182

183 %Nodal displacements
184 qin=zeros(3*(2*N+1),size(LRvalf,2));
185

186 for mm=1:1:size(LRvalf,2)
187 qin(:,mm)=(squeeze(LREVf(f,:,mm))).';
188 end
189

190 %Find incident nodal forces
191 for mm=1:1:L
192 for a=1:1:N
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193 %Force in each finite element
194 [fint,Er]=fin(lambda,mu,rko(a),rki(a),Nm(n),...
195 LRvalf(f,mm),qin([2*(a−1)+1:1:2*(a−1)+3 ...
196 2*(a−1)+1+(2*N+1):1:2*(a−1)+3+(2*N+1)...
197 2*(a−1)+1+2*(2*N+1):1:2*(a−1)+3+2*(2*N+1)],...
198 mm));
199 %Assembled forces
200 Fin([2*(a−1)+1:1:2*(a−1)+3 ...
201 2*(a−1)+1+(2*N+1):1:2*(a−1)+3+(2*N+1)...
202 2*(a−1)+1+2*(2*N+1):1:2*(a−1)+3+2*(2*N+1)],...
203 mm)=Fin([2*(a−1)+1:1:2*(a−1)+3 ...
204 2*(a−1)+1+(2*N+1):1:2*(a−1)+3+(2*N+1)...
205 2*(a−1)+1+2*(2*N+1):1:2*(a−1)+3+2*(2*N+1)],...
206 mm)+fint;
207 end
208 end
209

210 %Scattered displacements
211 G=squeeze(REVf(f,:,:));
212

213 %Find scattered nodal forces
214 Fscat=zeros(3*(2*N+1),3*(2*N+1));
215

216 for b=1:1:3*(2*N+1)
217 for a=1:1:N
218 %Force in each finite element
219 [fint,Er]=fin(lambda,mu,rko(a),rki(a),Nm(n),...
220 Rvalf(f,b),G([2*(a−1)+1:1:2*(a−1)+3 ...
221 2*(a−1)+1+(2*N+1):1:2*(a−1)+3+(2*N+1)...
222 2*(a−1)+1+2*(2*N+1):1:2*(a−1)+3+2*(2*N+1)],...
223 b));
224 %Assembled forces
225 Fscat([2*(a−1)+1:1:2*(a−1)+3 ...
226 2*(a−1)+1+(2*N+1):1:2*(a−1)+3+(2*N+1)...
227 2*(a−1)+1+2*(2*N+1):1:2*(a−1)+3+2*(2*N+1)],...
228 b)=Fscat([2*(a−1)+1:1:2*(a−1)+3 ...
229 2*(a−1)+1+(2*N+1):1:2*(a−1)+3+(2*N+1)...
230 2*(a−1)+1+2*(2*N+1):1:2*(a−1)+3+2*(2*N+1)],...
231 b)+fint;
232 end
233 end
234

235 %Do condensation of internal nodes of FE region...
236 %SII=[SIIrr SIItr SIIzr];
237 SII=[S(2*Nfe+2:1:FEN−2*Nfe−1,[2*Nfe+2:1:FEN−2*Nfe−1 ...
238 2*Nfe+2+FEN:1:FEN−2*Nfe−1+FEN 2*Nfe+2+2*FEN:1:FEN−...
239 2*Nfe−1+2*FEN]);
240 S(2*Nfe+2+FEN:1:FEN−2*Nfe−1+FEN,...
241 [2*Nfe+2:1:FEN−2*Nfe−1 2*Nfe+2+FEN:1:FEN−2*Nfe−1 ...
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243 +FEN 2*Nfe+2+2*FEN:1:FEN−2*Nfe−1+2*FEN]);
244 S(2*Nfe+2+2*FEN:1:FEN−2*Nfe−1+2*FEN,...
245 [2*Nfe+2:1:FEN−2*Nfe−1 2*Nfe+2+FEN:1:FEN−2*Nfe−1 ...
246 +FEN 2*Nfe+2+2*FEN:1:FEN−2*Nfe−1+2*FEN])];
247 %SIB=[SIBrr SIBtr SIIzr];
248 SIB=[S(2*Nfe+2:1:FEN−2*Nfe−1,[1:1:2*Nfe+1 ...
249 FEN−2*Nfe:1:FEN FEN+1:1:FEN+2*Nfe+1 ...
250 FEN+FEN−2*Nfe:1:FEN+FEN 2*FEN+1:1:2*FEN+2*Nfe+1 ...
251 2*FEN+FEN−2*Nfe:1:2*FEN+FEN]);
252 S(2*Nfe+2+FEN:1:FEN−2*Nfe−1+FEN,[1:1:2*Nfe+1 ...
253 FEN−2*Nfe:1:FEN FEN+1:1:FEN+2*Nfe+1 ...
254 FEN+FEN−2*Nfe:1:FEN+FEN 2*FEN+1:1:2*FEN+2*Nfe+1 ...
255 2*FEN+FEN−2*Nfe:1:2*FEN+FEN]);
256 S(2*Nfe+2+2*FEN:1:FEN−2*Nfe−1+2*FEN,...
257 [1:1:2*Nfe+1 FEN−2*Nfe:1:FEN FEN+1:1:FEN+2*Nfe+1 ...
258 FEN+FEN−2*Nfe:1:FEN+FEN 2*FEN+1:1:2*FEN+2*Nfe+1 ...
259 2*FEN+FEN−2*Nfe:1:2*FEN+FEN])];
260

261 %SBI=[SBIrr SBItr SBIzr];
262 SBI=[S([1:1:2*Nfe+1 FEN−2*Nfe:1:FEN],...
263 [2*Nfe+2:1:FEN−2*Nfe−1 2*Nfe+2+FEN:1:FEN−2*Nfe−1+...
264 FEN 2*Nfe+2+2*FEN:1:FEN−2*Nfe−1+2*FEN]);
265 S([FEN+1:1:FEN+2*Nfe+1 FEN+FEN−2*Nfe:1:FEN+FEN],...
266 [2*Nfe+2:1:FEN−2*Nfe−1 2*Nfe+2+FEN:1:FEN−2*Nfe−1+...
267 FEN 2*Nfe+2+2*FEN:1:FEN−2*Nfe−1+2*FEN]);
268 S([2*FEN+1:1:2*FEN+2*Nfe+1 2*FEN+FEN−2*Nfe:1:2*FEN...
269 +FEN],[2*Nfe+2:1:FEN−2*Nfe−1 2*Nfe+2+FEN:1:FEN−2 ...
270 *Nfe−1+FEN 2*Nfe+2+2*FEN:1:FEN−2*Nfe−1+2*FEN])];
271 %SBB=[SBBrr SBBtr SBIzr];
272 SBB=[S([1:1:2*Nfe+1 FEN−2*Nfe:1:FEN],[1:1:2*Nfe+1 ...
273 FEN−2*Nfe:1:FEN FEN+1:1:FEN+2*Nfe+1 ...
274 FEN+FEN−2*Nfe:1:FEN+FEN 2*FEN+1:1:2*FEN+2*Nfe+1 ...
275 2*FEN+FEN−2*Nfe:1:2*FEN+FEN]);
276 S([FEN+1:1:FEN+2*Nfe+1 FEN+FEN−2*Nfe:1:FEN+FEN],...
277 [1:1:2*Nfe+1 FEN−2*Nfe:1:FEN FEN+1:1:FEN+2*Nfe+1 ...
278 FEN+FEN−2*Nfe:1:FEN+FEN 2*FEN+1:1:2*FEN+2*Nfe+1 ...
279 2*FEN+FEN−2*Nfe:1:2*FEN+FEN]);
280 S([2*FEN+1:1:2*FEN+2*Nfe+1 2*FEN+FEN−2*Nfe:1:2 ...
281 *FEN+FEN],[1:1:2*Nfe+1 FEN−2*Nfe:1:FEN...
282 FEN+1:1:FEN+2*Nfe+1 FEN+FEN−2*Nfe:1:FEN+FEN...
283 2*FEN+1:1:2*FEN+2*Nfe+1 ...
284 2*FEN+FEN−2*Nfe:1:2*FEN+FEN])];
285

286 %Sq=P
287

288 %[SII SIB;SBI SBB]{qI qB}^T={PI PB}^T={0 PB}^T
289 %SII*qI+SIB*qB=0 −> qI=−SII^−1*SIB*qB
290 %So: (−SBI*SII^−1*SIB+SBB)=PB=Scup*qb
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292 Scup=−SBI*(SII\SIB)+SBB;
293

294 %Number of nodes now in FE region
295 FENcup=2*(2*Nfe+1);
296

297 %Modify Scup for free nodes on B+ of the FE region
298 if ~isempty(FNFE)
299

300 %Non−free nodes on B+
301 NFFE=1:1:FENcup;
302 NFFE(FNFE)=[];
303

304 %[Scup00 Scup0f;Scupf0 Scupff]{q0 qf}^T={0 P}^T
305 Scup00=[Scup(FNFE,[FNFE FNFE+FENcup FNFE+2*FENcup]);
306 Scup(FNFE+FENcup,[FNFE FNFE+FENcup...
307 FNFE+2*FENcup]);
308 Scup(FNFE+2*FENcup,[FNFE FNFE+FENcup...
309 FNFE+2*FENcup])];
310

311 Scup0f=[Scup(FNFE,[NFFE NFFE+FENcup NFFE+2*FENcup]);
312 Scup(FNFE+FENcup,[NFFE NFFE+FENcup...
313 NFFE+2*FENcup]);
314 Scup(FNFE+2*FENcup,[NFFE NFFE+FENcup...
315 NFFE+2*FENcup])];
316

317 Scupf0=[Scup(NFFE,[FNFE FNFE+FENcup FNFE+2*FENcup]);
318 Scup(NFFE+FENcup,[FNFE FNFE+FENcup...
319 FNFE+2*FENcup]);
320 Scup(NFFE+2*FENcup,[FNFE FNFE+FENcup...
321 FNFE+2*FENcup])];
322

323 Scupff=[Scup(NFFE,[NFFE NFFE+FENcup NFFE+2*FENcup]);
324 Scup(NFFE+FENcup,[NFFE NFFE+FENcup...
325 NFFE+2*FENcup]);
326 Scup(NFFE+FENcup,[NFFE NFFE+FENcup...
327 NFFE+2*FENcup])];
328 Scup=−Scupf0*(Scup00\Scup0f)+Scupff;
329 size(Scup)
330 end
331

332 %Nodes on B+
333 NBplus=1:1:2*Nfe+1−length(FNFE);
334 %Nodes on B−
335 NBminus=NBplus(end)+1:1:NBplus(end)+(2*Nfe+1);
336

337 %Numbr of remaining nodes now in FE region
338 FENcup=length(NBplus)+length(NBminus);
339

340 %Symmetric case
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342 %[Sscup−− Sscup−+;Sscup+− Sscup++]{q− q+}^T={P− P+}^T
343 %q−={ur− ut− 0}^T P−={0 0 fz−}^T
344

345 %Ignore fz−, condense out uz−
346 Sstars=Scup;
347 %Delete columns corresponding to uz−
348 Sstars(:,NBminus+2*FENcup)=[];
349 %Delete rows corresonding to fz− (not of interest)
350 Sstars(NBminus+2*FENcup,:)=[];
351

352 %[Sstars−− Sstars−+;Sstars+− Sstars++]*...
353 %[q−stars q+stars]^T=[0 P+]^T
354

355 %Eliminate q−stars (Note, no z component for
356 %displacement on B− and no r
357 %or theta component for force on B−).
358

359 Sstarsmm=[Sstars(NBminus, [NBminus NBminus+FENcup]);
360 Sstars(NBminus+FENcup, [NBminus NBminus+FENcup])];
361

362 Sstarsmp=[Sstars(NBminus, [NBplus NBplus+FENcup...
363 NBplus+2*FENcup]);
364 Sstars(NBminus+FENcup, [NBplus NBplus+FENcup ...
365 NBplus+2*FENcup])];
366

367 Sstarspm=[Sstars(NBplus, [NBminus NBminus+FENcup]);
368 Sstars(NBplus+FENcup, [NBminus NBminus+FENcup]);
369 Sstars(NBplus+2*FENcup, [NBminus NBminus+FENcup])];
370

371 Sstarspp=[Sstars(NBplus, [NBplus NBplus+FENcup...
372 NBplus+2*FENcup]);
373 Sstars(NBplus+FENcup, [NBplus NBplus+FENcup...
374 NBplus+2*FENcup]);
375 Sstars(NBplus+2*FENcup, [NBplus NBplus+FENcup...
376 NBplus+2*FENcup])];
377

378 Sstars=−Sstarspm*(Sstarsmm\Sstarsmp)+Sstarspp;
379

380

381 %Anti−symmetric case
382 %[Sscup−− Sscup−+;Sscup+− Sscup++]{q− q+}^T={P− P+}^T
383 %q−={0 0 uz−}^T P−={fr− ft− 0}^T
384

385 %Ignore fr− fr+, condense out ur− and ut−
386 Sstara=Scup;
387 %Delete columns corresponding to ur− and ut−
388 Sstara(:,[NBminus NBminus+FENcup])=[];
389 %Delete rows corresponding to fr− and ft− (not of
390 %interest)...
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392 Sstara([NBminus NBminus+FENcup],:)=[];
393

394 %[Sstara−− Sstara−+;Sstara+− Sstara++]...
395 %[q−stara q+stara]^T=[0 P+]^T
396

397 %Eliminate q−stara (Note, no r or theta component for
398 %displacement on B− and no z
399 %component for force on B−).
400

401 Sstaramm=Sstara(NBminus+2*length(NBplus),...
402 NBminus+2*length(NBplus));
403

404 Sstaramp=Sstara(NBminus+2*length(NBplus),...
405 [NBplus NBplus+length(NBplus)...
406 NBplus+2*length(NBplus)]);
407

408 Sstarapm=[Sstara(NBplus, NBminus+2*length(NBplus));
409 Sstara(NBplus+length(NBplus),...
410 NBminus+2*length(NBplus));
411 Sstara(NBplus+2*length(NBplus),...
412 NBminus+2*length(NBplus))];
413

414 Sstarapp=[Sstara(NBplus, [NBplus NBplus+length(NBplus)...
415 NBplus+2*length(NBplus)]);
416 Sstara(NBplus+length(NBplus), [NBplus NBplus+...
417 length(NBplus) NBplus+2*length(NBplus)]);
418 Sstara(NBplus+2*length(NBplus), [NBplus NBplus+...
419 length(NBplus) NBplus+2*length(NBplus)])];
420

421 Sstara=−Sstarapm*(Sstaramm\Sstaramp)+Sstarapp;
422

423 %Form linear systems...
424 %Find matching nodes from FE and WFE
425 %First node
426 FN=find(abs(rnfer(1)−rnwfe)==min(abs(rnfer(1)−rnwfe)));
427 %Last node
428 LN=find(abs(rnfer(end)−rnwfe)==min(abs(rnfer(end)...
429 −rnwfe)));
430

431 %Symmetric case...
432 Rs=Fin;
433 Kfinals=−Fscat;
434

435 %Force free nodes already done...
436 Rs([FN:1:LN FN+(2*N+1):1:LN+(2*N+1) FN+2*(2*N+1):1:LN+...
437 2*(2*N+1)],:)=Rs([FN:1:LN FN+(2*N+1):1:LN+(2*N+1)...
438 FN+2*(2*N+1):1:LN+2*(2*N+1)],:)−Sstars*qin([FN:1:LN...
439 FN+(2*N+1):1:LN+(2*N+1) ...
440 FN+2*(2*N+1):1:LN+2*(2*N+1)],:);
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441 Kfinals([FN:1:LN FN+(2*N+1):1:LN+(2*N+1) ...
442 FN+2*(2*N+1):1:LN+2*(2*N+1)],:)=Kfinals([FN:1:LN FN...
443 +(2*N+1):1:LN+(2*N+1) FN+2*(2*N+1):1:LN+2*(2*N+1)],...
444 :)+Sstars*G([FN:1:LN FN+(2*N+1):1:LN+(2*N+1)...
445 FN+2*(2*N+1):1:LN+2*(2*N+1)],:);
446

447 As=Kfinals\Rs;
448 Asym(f,:,:)=As;
449

450 %Anti−symmetric case...
451 Ra=Fin;
452 Kfinala=−Fscat;
453

454 %Force free nodes already done...
455 Ra([FN:1:LN FN+(2*N+1):1:LN+(2*N+1) ...
456 FN+2*(2*N+1):1:LN+2*(2*N+1)],:)=Ra([FN:1:LN FN+...
457 (2*N+1):1:LN+(2*N+1) FN+2*(2*N+1):1:LN+2*(2*N+1)]...
458 ,:)−Sstara*qin([FN:1:LN FN+(2*N+1):1:LN+(2*N+1)...
459 FN+2*(2*N+1):1:LN+2*(2*N+1)],:);
460 Kfinala([FN:1:LN FN+(2*N+1):1:LN+(2*N+1) ...
461 FN+2*(2*N+1):1:LN+2*(2*N+1)],:)=Kfinala([FN:1:LN FN...
462 +(2*N+1):1:LN+(2*N+1) FN+2*(2*N+1):1:LN+2*(2*N+1)]...
463 ,:)+Sstara*G([FN:1:LN FN+(2*N+1):1:LN+(2*N+1)...
464 FN+2*(2*N+1):1:LN+2*(2*N+1)],:);
465

466 Aa=Kfinala\Ra;
467 Aasym(f,:,:)=Aa;
468

469 %Energy Check − This code works but is slow.
470 %An alternative method is used in practice.
471

472 %Incident
473 for mm=1:1:L
474 for a=1:1:N
475 %Work in each layer
476 [workl,Er]=Work(lambda,mu,rko(a),rki(a),...
477 Nm(n),LRvalf(f,mm),squeeze(LREVf(f,...
478 [2*(a−1)+1:1:2*(a−1)+3 2*(a−1)+1+...
479 (2*N+1):1:2*(a−1)+3+(2*N+1) 2*(a−1)+1+2*...
480 (2*N+1):1:2*(a−1)+3+2*(2*N+1)],mm)).');
481 %Total over all layers
482 workin(f,mm)=workin(f,mm)+workl;
483 end
484 end
485

486 %Reflected
487 for mm=1:1:L
488 for b=1:1:L
489 for a=1:1:N
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490 %Work in each layer
491 [workl,Er]=Work(lambda,mu,rko(a),rki(a),...
492 Nm(n),Rvalf(f,b),(Asym(f,b,mm)+...
493 Aasym(f,b,mm))/2*squeeze(REVf(f,...
494 [2*(a−1)+1:1:2*(a−1)+3 2*(a−1)+1+...
495 (2*N+1):1:2*(a−1)+3+(2*N+1)...
496 2*(a−1)+1+2*(2*N+1):1:2*(a−1)...
497 +3+2*(2*N+1)],b)).');
498 %Total over all layers
499 workr(f,b,mm)=workr(f,b,mm)+workl;
500 end
501 end
502

503 %Transmitted
504 for b=1:1:3*(2*N+1)
505 for a=1:1:N
506 %Work in each layer
507 [workl,Er]=Work(lambda,mu,rko(a),rki(a),...
508 Nm(n),LRvalf(f,b),(Asym(f,b,mm)−...
509 Aasym(f,b,mm))/2*squeeze(LREVf(f,...
510 [2*(a−1)+1:1:2*(a−1)+3 2*(a−1)+1+...
511 (2*N+1):1:2*(a−1)+3+(2*N+1) 2*...
512 (a−1)+1+2*(2*N+1):1:2*(a−1)+3+2*...
513 (2*N+1)],b)).');
514 %Total over all layers
515 workt(f,b,mm)=workt(f,b,mm)+workl;
516 end
517 end
518 end
519 end
520

521 %Write results to file
522 save(['F_' num2str(Nm(n)) '.mat'], 'fwhole', 'Asym',...
523 'Aasym','workin','workr','workt');
524 end
525 else %Free end...
526

527 %Loop over all circumferential wavenumbers
528 for n=1:1:length(Nm)
529

530 disp(['n= ' num2str(Nm(n)) ' out of ' num2str(length(Nm))]);
531

532 %Clear data from previous circumferential wavenumber
533 if n~=1
534 clear 'fwhole' 'Rvalf' 'REVf' 'LRvalf' 'LREVf';
535 end
536

537 %Load wavefunctions from file
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538 load(['L:\RASD2010\WF\F_' num2str(Nm(n)) '.mat'],...
539 'fwhole', 'Rvalf', 'REVf', 'LRvalf', 'LREVf');
540

541 %Define arrays for solutions
542 %Amplitude of reflection
543 AFE=zeros(length(fwhole),size(Rvalf,2),size(Rvalf,2));
544 %Work done by incident waves
545 workin=zeros(length(fwhole),L);
546 %Work done by reflected waves
547 workr=zeros(length(fwhole),L,L);
548

549 %Loop over all frequencies
550 for f=1:1:length(fwhole)
551

552 disp(['f= ' num2str(f) ' out of '...
553 num2str(length(fwhole))]);
554

555 %Define array for incident nodal forces
556 Fin=zeros(3*(2*N+1),size(LRvalf,2));
557

558 %Calculate incident field. Assume only one mode
559 %having unit magnitude
560 qin=zeros(3*(2*N+1),size(LRvalf,2));
561

562 for mm=1:1:size(LRvalf,2)
563 qin(:,mm)=(squeeze(LREVf(f,:,mm))).';
564 end
565

566 %Find incident nodal forces
567 for mm=1:1:L
568 for a=1:1:N
569 %Force in each element
570 [fint,Er]=fin(lambda,mu,rko(a),rki(a),Nm(n),...
571 LRvalf(f,mm),qin([2*(a−1)+1:1:2*(a−1)+3 ...
572 2*(a−1)+1+(2*N+1):1:2*(a−1)+3+(2*N+1)...
573 2*(a−1)+1+2*(2*N+1):1:2*(a−1)+3+2*(2*N+1)],...
574 mm));
575 %Assembled nodal forces
576 Fin([2*(a−1)+1:1:2*(a−1)+3 ...
577 2*(a−1)+1+(2*N+1):1:2*(a−1)+3+(2*N+1) ...
578 2*(a−1)+1+2*(2*N+1):1:2*(a−1)+3+2*(2*N+1)],...
579 mm)=Fin([2*(a−1)+1:1:2*(a−1)+3 ...
580 2*(a−1)+1+(2*N+1):1:2*(a−1)+3+(2*N+1)...
581 2*(a−1)+1+2*(2*N+1):1:2*(a−1)+3+2*(2*N+1)],...
582 mm)+fint;
583 end
584 end
585

586 %Scattered displacements
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587 G=squeeze(REVf(f,:,:));
588

589 %Find scattered nodal forces
590 Fscat=zeros(3*(2*N+1),3*(2*N+1));
591

592 for b=1:1:3*(2*N+1)
593 for a=1:1:N
594 %Force for each element
595 [fint,Er]=fin(lambda,mu,rko(a),rki(a),Nm(n),...
596 Rvalf(f,b),G([2*(a−1)+1:1:2*(a−1)+3 ...
597 2*(a−1)+1+(2*N+1):1:2*(a−1)+3+(2*N+1)...
598 2*(a−1)+1+2*(2*N+1):1:2*(a−1)+3+2*(2*N+1)]...
599 ,b));
600 %Assembled nodal forces
601 Fscat([2*(a−1)+1:1:2*(a−1)+3 ...
602 2*(a−1)+1+(2*N+1):1:2*(a−1)+3+(2*N+1)...
603 2*(a−1)+1+2*(2*N+1):1:2*(a−1)+3+2*(2*N+1)],...
604 b)=Fscat([2*(a−1)+1:1:2*(a−1)+3 ...
605 2*(a−1)+1+(2*N+1):1:2*(a−1)+3+(2*N+1) ...
606 2*(a−1)+1+2*(2*N+1):1:2*(a−1)+3+2*(2*N+1)],...
607 b)+fint;
608 end
609 end
610

611 %Form linear systems...
612

613 R=Fin;
614 Kfinal=−Fscat;
615

616 A=Kfinal\R;
617 AFE(f,:,:)=A;
618

619 %Energy Check − This code works but is slow.
620 %An alternative method is used in practice.
621

622 %Incident
623 for mm=1:1:L
624 for a=1:1:N
625 %Work done in each layer
626 [workl,Er]=Work(lambda,mu,rko(a),rki(a),Nm(n),...
627 LRvalf(f,mm),squeeze(LREVf(f,...
628 [2*(a−1)+1:1:2*(a−1)+3 2*(a−1)+1+...
629 (2*N+1):1:2*(a−1)+3+(2*N+1) 2*(a−1)+...
630 1+2*(2*N+1):1:2*(a−1)+3+2*(2*N+1)],mm)).');
631 %Total work over all layers
632 workin(f,mm)=workin(f,mm)+workl;
633 end
634 end
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635 %Reflected
636 for mm=1:1:L
637 for b=1:1:L
638 for a=1:1:N
639 %Work done in each layer
640 [workl,Er]=Work(lambda,mu,rko(a),rki(a),...
641 Nm(n),Rvalf(f,b),AFE(f,b,mm)*...
642 squeeze(REVf(f,[2*(a−1)+1:1:2*(a−1)+3 ...
643 2*(a−1)+1+(2*N+1):1:2*(a−1)+3+(2*N+1)...
644 2*(a−1)+1+2*(2*N+1):1:2*(a−1)+3+...
645 2*(2*N+1)],b)).');
646 %Total work over all layers
647 workr(f,b,mm)=workr(f,b,mm)+workl;
648 end
649 end
650 end
651 end
652

653 %Save results to file
654 save(['F_' num2str(Nm(n)) '.mat'], 'fwhole', 'AFE',...
655 'workin','workr');
656 end
657 end
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Appendix H

Transparency Checks

H.1 Summary

This appendix gives the magnitudes of the normalized reflection and transmission coeffi-

cients for selected modes which are incident on and scattered by the finite element region.

They provide transparency checks for the axisymmetric and three-dimensional computer

programs. The finite element meshes which produced the results presented here are identic-

al to those employed in Chapter 4 but with no elements removed to represent the notches

described in Tables 4.1 and 4.5. The modes selected for inclusion have a non-negative

circumferential wavenumber and propagate over at least part of the excitation’s bandwidth.

This selection is compatible with Appendix I. The lines and markers employed in Fig-

ures H.2 through H.59 to denote various modal reflection and transmission coefficients are

summarized in Figure H.1. (Note that Figure H.1 is identical to Figure I.1.) Each incident

mode is indicated in a figure’s caption.

Regardless of frequency, every normalized reflection coefficient should be zero to sat-

isfy the transparency check. All reflection coefficient values in the following figures have

a magnitude that is less than an insignificant 0.02. Similarly the normalized transmission
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Figure H.1. Legend indicating mode line and marker styles.
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coefficient should be unity for an incident propagating mode. Moreover, no modal conversa-

tions should be seen. Visual inspections indicate that this situation always holds. However,

the normalized transmission coefficient should be less than one for incident, nonpropagat-

ing and evanescent modes because these modes decay as they travel from the origin of the

coordinate system. The incident mode is assumed to have unit magnitude at the origin.

No modal conversations to other modes should be seen. This is visually the case again.

(Note that differences between the transmission coefficients computed by separately using

the axisymmetric and three-dimensional computer programs for the nonpropagating and

evanescent modes is due to the different axial extents used in the two finite element meshes.

This change modifies the axial separation between the coordinate system’s origin and the

axial cross section where the transmission coefficient is evaluated.) Frequencies at which a

mode transitions from evanescent to nonpropagating are seen easily in Figures H.2 through

H.59. For convenient illustrative purposes, these points are labelled only in Figure H.16

where both types of transitions occur.

H.2 Transparency Check for Axisymmetric Program

Normalized reflection and transmission coefficients for selected modes incident on and

scattered by the finite element region are given in Figures H.2 through H.30 as a check

for the transparency of the axisymmetric program when no scatterer is present. The sum-

mary of annotations given in Section H.1 remains applicable.
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Figure H.2. Normalized reflection and transmission coefficients for the axisymmetric trans-
parency check and the incident T(0,1) mode.
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Figure H.3. Normalized reflection and transmission coefficients for the axisymmetric trans-
parency check and the incident L(0,1) mode.
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Figure H.4. Normalized reflection and transmission coefficients for the axisymmetric trans-
parency check and the incident L(0,2) mode.
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Figure H.5. Normalized reflection and transmission coefficients for the axisymmetric trans-
parency check and the incident F(1,1) mode.
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Figure H.6. Normalized reflection and transmission coefficients for the axisymmetric trans-
parency check and the incident F(1,2) mode.
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Figure H.7. Normalized reflection and transmission coefficients for the axisymmetric trans-
parency check and the incident F(1,3) mode.
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Figure H.8. Normalized reflection and transmission coefficients for the axisymmetric trans-
parency check and the incident F(2,1) mode.
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Figure H.9. Normalized reflection and transmission coefficients for the axisymmetric trans-
parency check and the incident F(2,2) mode.
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Figure H.10. Normalized reflection and transmission coefficients for the axisymmetric
transparency check and the incident F(2,3) mode.
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Figure H.11. Normalized reflection and transmission coefficients for the axisymmetric
transparency check and the incident F(3,1) mode.
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Figure H.12. Normalized reflection and transmission coefficients for the axisymmetric
transparency check and the incident F(3,2) mode.
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Figure H.13. Normalized reflection and transmission coefficients for the axisymmetric
transparency check and the incident F(3,3) mode.

285



Appendix H. Transparency Checks H.2. Transparency Check for Axisymmetric Program

30 40 50 60 70 80 90 100 110
0.0

0.2

0.4

0.6

0.8

1.0

(a)

Frequency, kHz

N
o

rm
al

iz
ed

 r
ef

le
ct

io
n

 c
o

ef
fi

ci
en

t

30 40 50 60 70 80 90 100 110
0.0

0.2

0.4

0.6

0.8

1.0

(b)

Frequency, kHz

N
o

rm
al

iz
ed

 t
ra

n
sm

is
si

o
n
 c

o
ef

fi
ci

en
t

Figure H.14. Normalized reflection and transmission coefficients for the axisymmetric
transparency check and the incident F(4,1) mode.
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Figure H.15. Normalized reflection and transmission coefficients for the axisymmetric
transparency check and the incident F(4,2) mode.
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Figure H.16. Normalized reflection and transmission coefficients for the axisymmetric
transparency check and the incident F(4,3) mode.

288



Appendix H. Transparency Checks H.2. Transparency Check for Axisymmetric Program

30 40 50 60 70 80 90 100 110
0.0

0.2

0.4

0.6

0.8

1.0

(a)

Frequency, kHz

N
o

rm
al

iz
ed

 r
ef

le
ct

io
n

 c
o

ef
fi

ci
en

t

30 40 50 60 70 80 90 100 110
0.0

0.2

0.4

0.6

0.8

1.0

(b)

Frequency, kHz

N
o

rm
al

iz
ed

 t
ra

n
sm

is
si

o
n
 c

o
ef

fi
ci

en
t

Figure H.17. Normalized reflection and transmission coefficients for the axisymmetric
transparency check and the incident F(5,1) mode.
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Figure H.18. Normalized reflection and transmission coefficients for the axisymmetric
transparency check and the incident F(5,2) mode.
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Figure H.19. Normalized reflection and transmission coefficients for the axisymmetric
transparency check and the incident F(5,3) mode.
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Figure H.20. Normalized reflection and transmission coefficients for the axisymmetric
transparency check and the incident F(6,1) mode.

292



Appendix H. Transparency Checks H.2. Transparency Check for Axisymmetric Program

30 40 50 60 70 80 90 100 110
0.0

0.2

0.4

0.6

0.8

1.0

(a)

Frequency, kHz

N
o

rm
al

iz
ed

 r
ef

le
ct

io
n

 c
o

ef
fi

ci
en

t

30 40 50 60 70 80 90 100 110
0.0

0.2

0.4

0.6

0.8

1.0

(b)

Frequency, kHz

N
o

rm
al

iz
ed

 t
ra

n
sm

is
si

o
n
 c

o
ef

fi
ci

en
t

Figure H.21. Normalized reflection and transmission coefficients for the axisymmetric
transparency check and the incident F(6,2) mode.
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Figure H.22. Normalized reflection and transmission coefficients for the axisymmetric
transparency check and the incident F(7,1) mode.
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Figure H.23. Normalized reflection and transmission coefficients for the axisymmetric
transparency check and the incident F(7,2) mode.
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Figure H.24. Normalized reflection and transmission coefficients for the axisymmetric
transparency check and the incident F(8,1) mode.
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Figure H.25. Normalized reflection and transmission coefficients for the axisymmetric
transparency check and the incident F(8,2) mode.
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Figure H.26. Normalized reflection and transmission coefficients for the axisymmetric
transparency check and the incident F(9,1) mode.
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Figure H.27. Normalized reflection and transmission coefficients for the axisymmetric
transparency check and the incident F(10,1) mode.

299



Appendix H. Transparency Checks H.2. Transparency Check for Axisymmetric Program

30 40 50 60 70 80 90 100 110
0.0

0.2

0.4

0.6

0.8

1.0

(a)

Frequency, kHz

N
o

rm
al

iz
ed

 r
ef

le
ct

io
n

 c
o

ef
fi

ci
en

t

30 40 50 60 70 80 90 100 110
0.0

0.2

0.4

0.6

0.8

1.0

(b)

Frequency, kHz

N
o

rm
al

iz
ed

 t
ra

n
sm

is
si

o
n
 c

o
ef

fi
ci

en
t

Figure H.28. Normalized reflection and transmission coefficients for the axisymmetric
transparency check and the incident F(11,1) mode.
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Figure H.29. Normalized reflection and transmission coefficients for the axisymmetric
transparency check and the incident F(12,1) mode.
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Figure H.30. Normalized reflection and transmission coefficients for the axisymmetric
transparency check and the incident F(13,1) mode.
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H.3 Transparency Check for Three-dimensional Program

Normalized reflection and transmission coefficients for selected modes incident on and

scattered by the finite element region are given in Figures H.31 through H.59 as a check

for the transparency of the nonaxisymmetric program when no scatterer is present. The

summary of annotations given in Section H.1 remains applicable.
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Figure H.31. Normalized reflection and transmission coefficients for the three-dimensional
transparency check and the incident T(0,1) mode.
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Figure H.32. Normalized reflection and transmission coefficients for the three-dimensional
transparency check and the incident L(0,1) mode.
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Figure H.33. Normalized reflection and transmission coefficients for the three-dimensional
transparency check and the incident L(0,2) mode.
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Figure H.34. Normalized reflection and transmission coefficients for the three-dimensional
transparency check and the incident F(1,1) mode.
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Figure H.35. Normalized reflection and transmission coefficients for the three-dimensional
transparency check and the incident F(1,2) mode.
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Figure H.36. Normalized reflection and transmission coefficients for the three-dimensional
transparency check and the incident F(1,3) mode.
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Figure H.37. Normalized reflection and transmission coefficients for the three-dimensional
transparency check and the incident F(2,1) mode.
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Figure H.38. Normalized reflection and transmission coefficients for the three-dimensional
transparency check and the incident F(2,2) mode.
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Figure H.39. Normalized reflection and transmission coefficients for the three-dimensional
transparency check and the incident F(2,3) mode.
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Figure H.40. Normalized reflection and transmission coefficients for the three-dimensional
transparency check and the incident F(3,1) mode.
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Figure H.41. Normalized reflection and transmission coefficients for the three-dimensional
transparency check and the incident F(3,2) mode.
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Figure H.42. Normalized reflection and transmission coefficients for the three-dimensional
transparency check and the incident F(3,3) mode.
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Figure H.43. Normalized reflection and transmission coefficients for the three-dimensional
transparency check and the incident F(4,1) mode.
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Figure H.44. Normalized reflection and transmission coefficients for the three-dimensional
transparency check and the incident F(4,2) mode.
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Figure H.45. Normalized reflection and transmission coefficients for the three-dimensional
transparency check and the incident F(4,3) mode.
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Figure H.46. Normalized reflection and transmission coefficients for the three-dimensional
transparency check and the incident F(5,1) mode.
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Figure H.47. Normalized reflection and transmission coefficients for the three-dimensional
transparency check and the incident F(5,2) mode.
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Figure H.48. Normalized reflection and transmission coefficients for the three-dimensional
transparency check and the incident F(5,3) mode.
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Figure H.49. Normalized reflection and transmission coefficients for the three-dimensional
transparency check and the incident F(6,1) mode.
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Figure H.50. Normalized reflection and transmission coefficients for the three-dimensional
transparency check and the incident F(6,2) mode.
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Figure H.51. Normalized reflection and transmission coefficients for the three-dimensional
transparency check and the incident F(7,1) mode.
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Figure H.52. Normalized reflection and transmission coefficients for the three-dimensional
transparency check and the incident F(7,2) mode.
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Figure H.53. Normalized reflection and transmission coefficients for the three-dimensional
transparency check and the incident F(8,1) mode.
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Figure H.54. Normalized reflection and transmission coefficients for the three-dimensional
transparency check and the incident F(8,2) mode.
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Figure H.55. Normalized reflection and transmission coefficients for the three-dimensional
transparency check and the incident F(9,1) mode.
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Figure H.56. Normalized reflection and transmission coefficients for the three-dimensional
transparency check and the incident F(10,1) mode.
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Figure H.57. Normalized reflection and transmission coefficients for the three-dimensional
transparency check and the incident F(11,1) mode.
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Figure H.58. Normalized reflection and transmission coefficients for the three-dimensional
transparency check and the incident F(12,1) mode.
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Figure H.59. Normalized reflection and transmission coefficients for the three-dimensional
transparency check and the incident F(13,1) mode.
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Appendix I

Reflection and Transmission Coefficients

I.1 Summary

This appendix gives the magnitudes of the normalized reflection and transmission coeffi-

cients for selected modes incident on and scattered by the finite element region. The notch-

es are described in Tables 4.1 and 4.5. Modes selected for inclusion have a non-negative

circumferential wavenumber and propagate over at least part of the excitation’s bandwidth.

This selection is compatible with Appendix H. The line and markers used in Figures I.2

through I.59 to denote the various modal reflection and transmission coefficients are indic-

ated in Figure I.1. This last figure duplicates Figure H.1 for convenience. Each incident

mode is indicated in a figure’s caption.

Figures I.2 through I.4 are interesting in that, as expected, they indicate that no modal

conversions between the longitudinal and torsional modes occur for axisymmetric notches.

Figures I.4, I.7, I.33, and I.36 show that the F(1,3) mode is reflected less strongly than the

L(0,2) mode for each of the two notches considered. This observation supports, in part, the

conjecture made in Section 4.3.7.2.
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Figure I.1. Legend indicating mode line and marker styles.
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Appendix I. Reflection and Transmission Coefficients I.2. Coefficients for Axisymmetric Notch

I.2 Reflection and Transmission Coefficients for Axisym-

metric Notch

Magnitudes of the normalized reflection and transmission coefficients are given in Fig-

ures I.2 through I.30 for selected modes incident on and scattered by the axisymmetric

notch considered in Section 4.2.8.2. The summary presented in Section I.1 is applicable

still.
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Figure I.2. Normalized reflection and transmission coefficients for the axisymmetric notch
and the incident T(0,1) mode.
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Figure I.3. Normalized reflection and transmission coefficients for the axisymmetric notch
and the incident L(0,1) mode.
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Figure I.4. Normalized reflection and transmission coefficients for the axisymmetric notch
and the incident L(0,2) mode.
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Figure I.5. Normalized reflection and transmission coefficients for the axisymmetric notch
and the incident F(1,1) mode.
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Figure I.6. Normalized reflection and transmission coefficients for the axisymmetric notch
and the incident F(1,2) mode.
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Figure I.7. Normalized reflection and transmission coefficients for the axisymmetric notch
and the incident F(1,3) mode.
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Figure I.8. Normalized reflection and transmission coefficients for the axisymmetric notch
and the incident F(2,1) mode.
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Figure I.9. Normalized reflection and transmission coefficients for the axisymmetric notch
and the incident F(2,2) mode.
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Figure I.10. Normalized reflection and transmission coefficients for the axisymmetric
notch and the incident F(2,3) mode.
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Figure I.11. Normalized reflection and transmission coefficients for the axisymmetric
notch and the incident F(3,1) mode.
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Figure I.12. Normalized reflection and transmission coefficients for the axisymmetric
notch and the incident F(3,2) mode.

345



Appendix I. Reflection and Transmission Coefficients I.2. Coefficients for Axisymmetric Notch

30 40 50 60 70 80 90 100 110
0.0

0.2

0.4

0.6

0.8

1.0

(a)

Frequency, kHz

N
o

rm
al

iz
ed

 r
ef

le
ct

io
n

 c
o

ef
fi

ci
en

t

30 40 50 60 70 80 90 100 110
0.0

0.2

0.4

0.6

0.8

1.0

(b)

Frequency, kHz

N
o

rm
al

iz
ed

 t
ra

n
sm

is
si

o
n
 c

o
ef

fi
ci

en
t

Figure I.13. Normalized reflection and transmission coefficients for the axisymmetric
notch and the incident F(3,3) mode.
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Figure I.14. Normalized reflection and transmission coefficients for the axisymmetric
notch and the incident F(4,1) mode.
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Figure I.15. Normalized reflection and transmission coefficients for the axisymmetric
notch and the incident F(4,2) mode.
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Figure I.16. Normalized reflection and transmission coefficients for the axisymmetric
notch and the incident F(4,3) mode.
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Figure I.17. Normalized reflection and transmission coefficients for the axisymmetric
notch and the incident F(5,1) mode.
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Figure I.18. Normalized reflection and transmission coefficients for the axisymmetric
notch and the incident F(5,2) mode.
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Figure I.19. Normalized reflection and transmission coefficients for the axisymmetric
notch and the incident F(5,3) mode.
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Figure I.20. Normalized reflection and transmission coefficients for the axisymmetric
notch and the incident F(6,1) mode.
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Figure I.21. Normalized reflection and transmission coefficients for the axisymmetric
notch and the incident F(6,2) mode.
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Figure I.22. Normalized reflection and transmission coefficients for the axisymmetric
notch and the incident F(7,1) mode.
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Figure I.23. Normalized reflection and transmission coefficients for the axisymmetric
notch and the incident F(7,2) mode.
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Figure I.24. Normalized reflection and transmission coefficients for the axisymmetric
notch and the incident F(8,1) mode.
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Figure I.25. Normalized reflection and transmission coefficients for the axisymmetric
notch and the incident F(8,2) mode.
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Figure I.26. Normalized reflection and transmission coefficients for the axisymmetric
notch and the incident F(9,1) mode.
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Figure I.27. Normalized reflection and transmission coefficients for the axisymmetric
notch and the incident F(10,1) mode.
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Figure I.28. Normalized reflection and transmission coefficients for the axisymmetric
notch and the incident F(11,1) mode.
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Figure I.29. Normalized reflection and transmission coefficients for the axisymmetric
notch and the incident F(12,1) mode.

362



Appendix I. Reflection and Transmission Coefficients I.2. Coefficients for Axisymmetric Notch

30 40 50 60 70 80 90 100 110
0.0

0.2

0.4

0.6

0.8

1.0

(a)

Frequency, kHz

N
o

rm
al

iz
ed

 r
ef

le
ct

io
n

 c
o

ef
fi

ci
en

t

30 40 50 60 70 80 90 100 110
0.0

0.2

0.4

0.6

0.8

1.0

(b)

Frequency, kHz

N
o

rm
al

iz
ed

 t
ra

n
sm

is
si

o
n
 c

o
ef

fi
ci

en
t

Figure I.30. Normalized reflection and transmission coefficients for the axisymmetric
notch and the incident F(13,1) mode.
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Appendix I. Reflection and Transmission Coefficients I.3. Coefficients for Nonaxisymmetric Notch

I.3 Reflection and Transmission Coefficients for Nonaxi-

symmetric Notch

Magnitudes of the normalized reflection and transmission coefficients are given in Fig-

ures I.31 through I.59 for selected modes incident on and scattered by the axisymmetric

notch considered in Section 4.3.7.2. The summary presented in Section I.1 is applicable

still.
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Figure I.31. Normalized reflection and transmission coefficients for the nonaxisymmetric
notch and the incident T(0,1) mode.
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Figure I.32. Normalized reflection and transmission coefficients for the nonaxisymmetric
notch and the incident L(0,1) mode.
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Figure I.33. Normalized reflection and transmission coefficients for the nonaxisymmetric
notch and the incident L(0,2) mode.
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Figure I.34. Normalized reflection and transmission coefficients for the nonaxisymmetric
notch and the incident F(1,1) mode.

368



Appendix I. Reflection and Transmission Coefficients I.3. Coefficients for Nonaxisymmetric Notch

30 40 50 60 70 80 90 100 110
0.0

0.2

0.4

0.6

0.8

1.0

(a)

Frequency, kHz

N
o

rm
al

iz
ed

 r
ef

le
ct

io
n

 c
o

ef
fi

ci
en

t

30 40 50 60 70 80 90 100 110
0.0

0.2

0.4

0.6

0.8

1.0

(b)

Frequency, kHz

N
o

rm
al

iz
ed

 t
ra

n
sm

is
si

o
n
 c

o
ef

fi
ci

en
t

Figure I.35. Normalized reflection and transmission coefficients for the nonaxisymmetric
notch and the incident F(1,2) mode.
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Figure I.36. Normalized reflection and transmission coefficients for the nonaxisymmetric
notch and the incident F(1,3) mode.
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Figure I.37. Normalized reflection and transmission coefficients for the nonaxisymmetric
notch and the incident F(2,1) mode.
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Figure I.38. Normalized reflection and transmission coefficients for the nonaxisymmetric
notch and the incident F(2,2) mode.
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Figure I.39. Normalized reflection and transmission coefficients for the nonaxisymmetric
notch and the incident F(2,3) mode.
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Figure I.40. Normalized reflection and transmission coefficients for the nonaxisymmetric
notch and the incident F(3,1) mode.
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Figure I.41. Normalized reflection and transmission coefficients for the nonaxisymmetric
notch and the incident F(3,2) mode.
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Figure I.42. Normalized reflection and transmission coefficients for the nonaxisymmetric
notch and the incident F(3,3) mode.
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Figure I.43. Normalized reflection and transmission coefficients for the nonaxisymmetric
notch and the incident F(4,1) mode.
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Figure I.44. Normalized reflection and transmission coefficients for the nonaxisymmetric
notch and the incident F(4,2) mode.
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Figure I.45. Normalized reflection and transmission coefficients for the nonaxisymmetric
notch and the incident F(4,3) mode.
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Figure I.46. Normalized reflection and transmission coefficients for the nonaxisymmetric
notch and the incident F(5,1) mode.
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Figure I.47. Normalized reflection and transmission coefficients for the nonaxisymmetric
notch and the incident F(5,2) mode.
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Figure I.48. Normalized reflection and transmission coefficients for the nonaxisymmetric
notch and the incident F(5,3) mode.
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Figure I.49. Normalized reflection and transmission coefficients for the nonaxisymmetric
notch and the incident F(6,1) mode.
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Figure I.50. Normalized reflection and transmission coefficients for the nonaxisymmetric
notch and the incident F(6,2) mode.
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Figure I.51. Normalized reflection and transmission coefficients for the nonaxisymmetric
notch and the incident F(7,1) mode.
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Figure I.52. Normalized reflection and transmission coefficients for the nonaxisymmetric
notch and the incident F(7,2) mode.
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Figure I.53. Normalized reflection and transmission coefficients for the nonaxisymmetric
notch and the incident F(8,1) mode.
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Figure I.54. Normalized reflection and transmission coefficients for the nonaxisymmetric
notch and the incident F(8,2) mode.
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Figure I.55. Normalized reflection and transmission coefficients for the nonaxisymmetric
notch and the incident F(9,1) mode.
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Figure I.56. Normalized reflection and transmission coefficients for the nonaxisymmetric
notch and the incident F(10,1) mode.
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Figure I.57. Normalized reflection and transmission coefficients for the nonaxisymmetric
notch and the incident F(11,1) mode.
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Figure I.58. Normalized reflection and transmission coefficients for the nonaxisymmetric
notch and the incident F(12,1) mode.
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Figure I.59. Normalized reflection and transmission coefficients for the nonaxisymmetric
notch and the incident F(13,1) mode.
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Appendix J

Three-dimensional Finite ElementModelling

J.1 Introduction

The approximate displacement field of a three-dimensional finite element volume is written

in this appendix in terms of interpolation functions and a nodal displacement vector. The

strain-displacement matrices are introduced to describe the strain and stress fields in terms

of the approximate displacement field. Then approximate equations of motion are obtained

for no material damping by applying Hamilton’s principle to the appropriate functional for

complex displacement fields.

J.2 Approximate Displacement Field

The displacement field in the finite element region is approximated first as

u(r, θ, z, t) = N(r, θ, z)e−jωtU, (J.2.1)

where

N(r, θ, z) =



N(r, θ, z) 0 0

0 N(r, θ, z) 0

0 0 N(r, θ, z)


. (J.2.2)

The N represent the assembled interpolation functions over the finite element region and

U is the corresponding array of nodal displacements. A time, t, harmonic excitation and

displacement response, both having circular frequency ω, have been assumed implicitly

in equation (J.2.1). The N is obtained by a conventional finite assembly process over all
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Appendix J. Three-dimensional Finite ElementModelling J.2. Approximate Displacement Field

elements. See, for example, [107]. The U can be represented, as in Appendix B, by

Un =
[
U V W

]T
, (J.2.3)

where U, V, and W are arrays containing the radial, circumferential, and axial nodal

displacements, respectively. Isoparametric finite elements are utilized. The interpolation

functions, on the other hand, are quadratic Lagrange polynomials. A representative element

is shown in Figure J.1 with an illustration of the numbering of the finite element’s nodes.

Global coordinates, (r, θ, z), are used in Figure J.1 (a), while local coordinates (ζ, η, ξ) are

illustrated in Figure J.1 (b).
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Figure J.1. Showing a representative isoparametric, three-dimensional finite element’s nod-
al numbering in (a) global, and (b) local coordinate frames.
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Appendix J. Three-dimensional Finite ElementModelling J.2. Approximate Displacement Field

A slightly different approach from the one taken for axisymmetric scatterers is em-

ployed. No restrictions1 are placed on the finite element’s nodal coordinates. The shape

functions are known immediately from Lagrange’s formula [107]. The individual matrix

elements of the shape function vector, n, used in any finite element can be expressed as

n1,1 =
1

8
ξ (ξ + 1) η (η + 1) ζ (ζ − 1) , (J.2.4.i)

n1,2 = −
1

4
ξ (ξ + 1) η (η + 1)

(
ζ2 − 1

)
, (J.2.4.ii)

n1,3 =
1

8
ξ (ξ + 1) η (η + 1) ζ (ζ + 1) , (J.2.4.iii)

n1,4 = −
1

4
ξ (ξ + 1) ζ (ζ − 1)

(
η2 − 1

)
, (J.2.4.iv)

n1,5 =
1

2
ξ (ξ + 1)

(
η2 − 1

) (
ζ2 − 1

)
, (J.2.4.v)

n1,6 = −
1

4
ξ (ξ + 1) ζ (ζ + 1)

(
η2 − 1

)
, (J.2.4.vi)

n1,7 =
1

8
ξ (ξ + 1) η (η − 1) ζ (ζ − 1) , (J.2.4.vii)

n1,8 = −
1

4
ξ (ξ + 1) η (η − 1)

(
ζ2 − 1

)
, (J.2.4.viii)

n1,9 =
1

8
ξ (ξ + 1) η (η − 1) ζ (ζ + 1) , (J.2.4.ix)

n1,10 = −
1

4
η (η + 1) ζ (ζ − 1)

(
ξ2 − 1

)
, (J.2.4.x)

n1,11 =
1

2
η (η + 1)

(
ξ2 − 1

) (
ζ2 − 1

)
, (J.2.4.xi)

n1,12 = −
1

4
η (η + 1) ζ (ζ + 1)

(
ξ2 − 1

)
, (J.2.4.xii)

n1,13 =
1

2
ζ (ζ − 1)

(
ξ2 − 1

) (
η2 − 1

)
, (J.2.4.xiii)

n1,14 = −
(
ξ2 − 1

) (
η2 − 1

) (
ζ2 − 1

)
, (J.2.4.xiv)

n1,15 =
1

2
ζ (ζ + 1)

(
ξ2 − 1

) (
η2 − 1

)
, (J.2.4.xv)

n1,16 = −
1

4
η (η − 1) ζ (ζ − 1)

(
ξ2 − 1

)
, (J.2.4.xvi)

n1,17 =
1

2
η (η − 1)

(
ξ2 − 1

) (
ζ2 − 1

)
, (J.2.4.xvii)

1It is assumed that the finite elements are not “badly shaped,” possess a right handed coordinate system,
and have a Jacobian which is defined over the finite element’s entire volume and has a positive determinant.
See also [107].
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n1,18 = −
1

4
η (η − 1) ζ (ζ + 1)

(
ξ2 − 1

)
, (J.2.4.xviii)

n1,19 =
1

8
ξ (ξ − 1) η (η + 1) ζ (ζ − 1) , (J.2.4.xix)

n1,20 = −
1

4
ξ (ξ − 1) η (η + 1)

(
ζ2 − 1

)
, (J.2.4.xx)

n1,21 =
1

8
ξ (ξ − 1) η (η + 1) ζ (ζ + 1) , (J.2.4.xxi)

n1,22 = −
1

4
ξ (ξ − 1) ζ (ζ − 1)

(
η2 − 1

)
, (J.2.4.xxii)

n1,23 =
1

2
ξ (ξ − 1)

(
η2 − 1

) (
ζ2 − 1

)
, (J.2.4.xxiii)

n1,24 = −
1

4
ξ (ξ − 1) ζ (ζ + 1)

(
η2 − 1

)
, (J.2.4.xxiv)

n1,25 =
1

8
ξ (ξ − 1) η (η − 1) ζ (ζ − 1) , (J.2.4.xxv)

n1,26 = −
1

4
ξ (ξ − 1) η (η − 1)

(
ζ2 − 1

)
, (J.2.4.xxvi)

and

n1,27 =
1

8
ξ (ξ − 1) η (η − 1) ζ (ζ + 1) . (J.2.4.xxvii)

The radial, r, circumferential, θ, and axial, z, coordinates in a finite element are related to

the interpolation functions by

r = nrc, (J.2.5a)

θ = nθc, (J.2.5b)

and

z = nzc, (J.2.5c)

where rc, θc, and zc are vectors containing the finite element’s nodal coordinates.
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J.3 Approximate Strain and Stress Fields

The following strain-displacement transformation matrix, B is introduced:

B =



0 0 0

1/r 0 0

0 0 0

0 −1/r 0

0 0 0

0 0 0



N +



1 0 0 0 0 0 0 0 0

0 0 0 0 1/r 0 0 0 0

0 0 0 0 0 0 0 0 1

0 1/r 0 1 0 0 0 0 0

0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 1/r 0





Γ 0 0

0 Γ 0

0 0 Γ





N,ζ

N,η

N,ξ

N,ζ

N,η

N,ξ

N,ζ

N,η

N,ξ



(J.3.1)

to simplify the computation of the approximate strain field in the entire three-dimensional

finite element volume. The Γ in equation (J.3.1) is the matrix inverse of the Jacobian matrix,

J, which is given by

J =



∂r
∂ζ

∂θ
∂ζ

∂z
∂ζ

∂r
∂η

∂θ
∂η

∂z
∂η

∂r
∂ξ

∂θ
∂ξ

∂z
∂ξ


. (J.3.2)

Then the strain and stress tensors in the entire three-dimensional finite element volume can

be expressed in vector form as

ε = BU (J.3.3a)

and

σ = DBU, (J.3.3b)

respectively. The D is a symmetric matrix composed of the isotropic, elastic moduli given

in equation (B.3.3).
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Appendix J. Three-dimensional Finite ElementModelling J.4. Application of Hamilton’s Principle

J.4 Application of Hamilton’s Principle

Hamilton’s principle can be expressed for the entire finite element volume in the form

used in equation (B.4.1). Moreover, the kinetic and total potential energies are given still

by equation (B.4.2). By following a procedure similar to the one used in Section B.4 to

derive equation (B.4.10) from equation (B.4.1), the approximate equations of motions of

the complete finite element volume can be shown to be

(
KI − ω2MI

)
U = F. (J.4.1)

Equation (J.4.1) is the same as equation (4.2.1) when the U and F in the former equation

are replaced by q and P, respectively. The KI and MI can be computed by evaluating the

integrals

KI =

∫ 0

−zFE/2

∫ π

−π

∫ ro

ri

B̃TDBrdrdθdz (J.4.2a)

and

MI =

∫ 0

zFE/2

∫ π

−π

∫ ro

ri

ρÑ
T
Nrdrdθdz. (J.4.2b)

The F in equation (J.4.1) can be found by following the procedure given in [107]. This

procedure leads to the integral

F =

∫ π

−π

∫ ro

ri

Ñ
T



τrz

τθz

σzz



rdrdθ (J.4.3)

which gives the desired consistent force vector. The Ñ in equation (J.4.3) is evaluated on

z = 0. Moreover, τrz, τθz, and σzz are stresses from the wavefunction expansion that act on

z = 0 because external stresses are applied to the finite element region only on this plane.

These stresses may be found for a single mode of the wavefunction expansion region by
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applying equations (A.3.2) and (A.4.2) of Appendix A, for that mode, to the displacement

field given by equation (B.2.1). The procedure is the same as that described in Section F.4.

Collecting the resulting column vectors for all the scattered modes give the matrix Fscat used

in Section 4.3.4. Similarly, fin is a single column vector found by applying equation (F.4.4)

for a single incident mode.

J.5 Note on Integrating the Finite Element Matrices

The matrices given in equation (J.4.2) are evaluated in practice by “assembling” element

matrices. The element matrices take the same form as those used in equation (J.4.2) but

have integration limits that span only each finite element’s dimensions. As in Section F.5,

the integrals of equation (J.4.2) are transformed into functions of only the isoparametric

coordinates by using the change of variables theorem from multivariable calculus. The

result, for a single element, is

Ke =

∫ 1

−1

∫ 1

−1

∫ −1

−1

B̃TDBnrc |J| dζdηdξ (J.5.1a)

and

Me =

∫ 1

−1

∫ 1

−1

∫ −1

−1

ρ



n 0 0

0 n 0

0 0 n



T 

n 0 0

0 n 0

0 0 n


nrc |J| dζdηdξ, (J.5.1b)

where the strain-displacement transformation matrix, B, appearing in equation (J.5.1a) ap-

plies only over a single finite element. Equation (J.5.1) also makes use of equation (J.2.5a).

Evaluating the integrals in equation (J.5.1) in closed form is onerous because the lack of

restrictions on the finite element’s nodal coordinates greatly complicates the integrands. Nu-

merical, Gaussian integration [107] is used, therefore, to compute approximations for the

matrices described in equation (J.5.1). However, the closed form expressions used in Sec-

tion F.4 for the consistent force matrices are retained. This is because the only modification
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Appendix J. Three-dimensional Finite ElementModelling J.5. Integrating the FE Matrices

required to extend the axisymmetric forces to three-dimensions is that the corresponding

integration in the circumferential direction needs to be over solely the three-dimensional

finite element’s face on the plane z = 0 rather than from −π to π.
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Appendix K

Code Listings and Sketches Implementing hybrid

SAFE for Three-dimensional Scatterers

K.1 Overview

This appendix contains annotated code listings and “sketches,” in which sections of code

are removed for brevity, of illustrative Maple™ and Matlabr scripts and functions used to

implement the hybrid-SAFE method. This method has been described previously in Sec-

tion 4.3 of Chapter 4 and Appendix J for three-dimensional scatterers. The code listings

and sketches demonstrate a work flow that allows a partial automation of writing finite

element programs by taking advantage of readily available commercial tools. Moreover,

several Matlabr “best practices,” such as preallocating memory for arrays and “vectoriz-

ing code” (rather than using a loop) are illustrated as a matter of course in the numerical

implementations. Furthermore, the Matlabr programs in this appendix have been partially

“parallelized” (i.e., they run on several computing cores simultaneously). Lines 87, 158,

and 109 and 205 of Listings K.2, K.3, and K.4 show the start of the sections of code that

run in parallel. A discussion of the effectiveness of these efforts is deferred to Appendix L.

K.2 Annotated Code Listings

An annotated Maple™ code listing to evaluate symbolically the Jacobian, strain-displace-

ment operator, shape function, and radial coordinate matrices for the nonaxisymmetric scat-

tering program is provided in Listing K.1. A high level flowchart for this program is given

in Figure K.1. Listing K.2, for which a high level flowchart is shown in Figure K.2, is

used to numerically evaluate the (finite) element mass and stiffness matrices and assemble
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Appendix K. Code Listings for hybrid SAFE and Three-dimensional Scatterers K.2. Code Listings

✎
✍

☞
✌Start

❄

Apply assumptions to nodal coordinates and material properties

❄

Define “general” quadratic Lagrange polynomials

❄

Define vectors of nodal coordinates

❄

Create shape functions for each coordinate direction

❄
Multiply shape functions for all coordinate directions

to create three-dimensional interpolation functions

❄

Create coordinate interpolations

❄

Define elastic constant matrix

❄

Define and compute Jacobian matrix and its inverse

❄

Define matrices required for strain-displacement
transformation matrix

❄

Create strain-displacement
transformation matrix

❄

Write the Jacboian, strain-displacement, and shape function
matrices as well as the radial coordinate vector to file

✂
✂
✂
✂

✂
✂
✂
✂

❄✎
✍

☞
✌Stop

Figure K.1. A high level flowchart for Listing K.1.
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✎
✍

☞
✌Start

❄

Clear workspace

❄

Define control information

❄

Call meshing routines

❄

Assign memory for element matrices

❄

Compute, in parallel, the element mass and
stiffness matrices

❄

Assemble element mass and stiffness matrices
into global mass and stiffness matrices

❄

Write global mass and stiffness matrices, as well
as information about deleted elements to file

✂
✂
✂
✂

✂
✂
✂
✂

❄✎
✍

☞
✌Stop

Figure K.2. A high level flowchart for Listing K.2.

them into global mass and stiffness matrices. Listing K.3, on the other hand, is used to

condense the internal nodes from the finite element’s dynamic stiffness matrix. It is used

also to apply the symmetric and antisymmetric boundary conditions on the assumed plane

of symmetry. A high level flow chart for this listing appears in Figure K.3. Listing K.4 is

the last listing given in this appendix. It is used to interface the finite element volume to the

wave function expansion regions by applying continuity conditions on the plane z = 0. A

flow chart depicting the most important elements of the program appears in Figure K.4.
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Appendix K. Code Listings for hybrid SAFE and Three-dimensional Scatterers K.2. Code Listings

☛
✡

✟
✠Start

❄
Clear workspace

❄
Define control information

❄
Call meshing routines

❄
Load information from file for any deleted elements

✂
✂

✂
✂

❄
Remove nodes for deleted elements

❄
Find interior and boundary nodes

❄
Load stiffness and mass matrices from file

✂
✂

✂
✂

❄
Initiate frequency counter

❄
Compute dynamic stiffness matrix

❄
Partition dynamic stiffness matrix

❄
Condense internal degrees of freedom using LU

decomposition. Operate column wise using a parallel loop

❄
Partition resulting matrix

❄
Apply symmetric/antisymmetric boundary conditions

❄
Write the condensed matrices to file

✂
✂

✂
✂

❄

�
�

�
�

❅
❅

❅
❅

�
�

�
�

❅
❅

❅
❅

Done for all
frequencies?

No

Yes

✲ Increment frequency
counter

✛

❄☛
✡

✟
✠Stop

Figure K.3. A high level flowchart for Listing K.3.
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☛✡ ✟✠Start
❄

Clear workspace

❄
Define control information

❄
Call meshing routines

❄
Load information from file for any deleted elements

✂
✂

✂
✂

❄
Remove nodes for deleted elements

❄
Find interior and boundary nodes

❄
Assign memory for displacement matrices

❄
Load wave functions from file✂

✂
✂
✂

❄
Compute, in parallel, incident and scattered displacements

❄
Assign memory for force matrices

❄
Load wave functions from file✂

✂
✂
✂

❄
Compute, in parallel, incident and scattered nodal forces

❄
Load condensed dynamic stiffness matrix from file

✂
✂

✂
✂

❄
Form and solve linear system of equations
for symmetric and antisymmetric problems

❄
Write the results to file✂

✂
✂
✂

❄

�
�

�
�

❅
❅

❅
❅

�
�

�
�

❅
❅

❅
❅

Done for all
frequencies?

No

Yes

✲ Increment frequency
counter

✛

❄☛✡ ✟✠Stop

Figure K.4. A high level flowchart for Listing K.4.
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Listing K.1. Maple™ code to derive the Jacobian, strain-displacement operator, shape func-
tion, and radial coordinate matrices for the nonaxisymmetric scattering program.

1 #Add assumptions to radial coordinates
2 assume(r1>0);
3 assume(r2>0);
4 assume(r3>0);
5 assume(r4>0);
6 assume(r5>0);
7 assume(r6>0);
8 assume(r7>0);
9 assume(r8>0);

10 assume(r9>0);
11 assume(r10>0);
12 assume(r11>0);
13 assume(r12>0);
14 assume(r13>0);
15 assume(r14>0);
16 assume(r15>0);
17 assume(r16>0);
18 assume(r17>0);
19 assume(r18>0);
20 assume(r19>0);
21 assume(r20>0);
22 assume(r21>0);
23 assume(r22>0);
24 assume(r23>0);
25 assume(r24>0);
26 assume(r25>0);
27 assume(r26>0);
28 assume(r27>0);
29

30 #Add assumptions to material properties
31 assume(lambda>=0);
32 assume(mu>=0);
33 assume(rho>=0);
34

35 #Add assumptions to circumferential coordinates
36 assume(theta1,real);
37 assume(theta2,real);
38 assume(theta3,real);
39 assume(theta4,real);
40 assume(theta5,real);
41 assume(theta6,real);
42 assume(theta7,real);
43 assume(theta8,real);
44 assume(theta9,real);
45 assume(theta10,real);
46 assume(theta11,real);
47 assume(theta12,real);
48 assume(theta13,real);
49 assume(theta14,real);

(Continued on next page. . . )
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Listing K.1. Maple™ code to derive the Jacobian, strain-displacement operator, shape func-
tion, and radial coordinate matrices for the nonaxisymmetric scattering program. (Contin-
ued from previous page.)

50 assume(theta15,real);
51 assume(theta16,real);
52 assume(theta17,real);
53 assume(theta18,real);
54 assume(theta19,real);
55 assume(theta20,real);
56 assume(theta21,real);
57 assume(theta22,real);
58 assume(theta23,real);
59 assume(theta24,real);
60 assume(theta25,real);
61 assume(theta26,real);
62 assume(theta27,real);
63

64 #Add assumptions to axial coordinates
65 assume(z1,real);
66 assume(z2,real);
67 assume(z3,real);
68 assume(z4,real);
69 assume(z5,real);
70 assume(z6,real);
71 assume(z7,real);
72 assume(z8,real);
73 assume(z9,real);
74 assume(z10,real);
75 assume(z11,real);
76 assume(z12,real);
77 assume(z13,real);
78 assume(z14,real);
79 assume(z15,real);
80 assume(z16,real);
81 assume(z17,real);
82 assume(z18,real);
83 assume(z19,real);
84 assume(z20,real);
85 assume(z21,real);
86 assume(z22,real);
87 assume(z23,real);
88 assume(z24,real);
89 assume(z25,real);
90 assume(z26,real);
91 assume(z27,real);
92

93 #Add assumptions to nondimensional coordinates
94 assume(xi,real);
95 assume(eta,real);
96 assume(phi,real);

(Continued on next page. . . )
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Listing K.1. Maple™ code to derive the Jacobian, strain-displacement operator, shape func-
tion, and radial coordinate matrices for the nonaxisymmetric scattering program. (Contin-
ued from previous page.)

97 #Define general, quadratic Lagrange polynomial
98 N1:=x*(x−1)/2;
99 N2:=(x+1)*(x−1)/(−1);

100 N3:=x*(x+1)/2;
101

102 #Define vectors of finite element's nodal coordinates
103 rc:=Vector[column]([r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,r13,r14,
104 r15,r16,r17,r18,r19,r20,r21,r22,r23,r24,r25,r26,r27]);
105

106 thetac:=Vector[column]([theta1,theta2,theta3,theta4,theta5,theta6,
107 theta7,theta8,theta9,theta10,theta11,theta12,theta13,theta14,
108 theta15,theta16,theta17,theta18,theta19,theta20,theta21,theta22,
109 theta23,theta24,theta25,theta26,theta27]);
110

111 zc:=Vector[column]([z1,z2,z3,z4,z5,z6,z7,z8,z9,z10,z11,z12,z13,z14,
112 z15,z16,z17,z18,z19,z20,z21,z22,z23,z24,z25,z26,z27]);
113

114 #Define shape functions in coordinate directions
115 N1xi:=subs(x=xi,N1);
116 N2xi:=subs(x=xi,N2);
117 N3xi:=subs(x=xi,N3);
118 N1eta:=subs(x=eta,N1);
119 N2eta:=subs(x=eta,N2);
120 N3eta:=subs(x=eta,N3);
121 N1phi:=subs(x=phi,N1);
122 N2phi:=subs(x=phi,N2);
123 N3phi:=subs(x=phi,N3);
124

125 #Associate shape functions with each nodal coordinate
126 Nphi:=Vector[row]([N3phi,N3phi,N3phi,N3phi,N3phi,N3phi,N3phi,N3phi,
127 N3phi,N2phi,N2phi,N2phi,N2phi,N2phi,N2phi,N2phi,N2phi,N2phi,N1phi,
128 N1phi,N1phi,N1phi,N1phi,N1phi,N1phi,N1phi,N1phi]);
129

130 Neta:=Vector[row]([N3eta,N3eta,N3eta,N2eta,N2eta,N2eta,N1eta,N1eta,
131 N1eta,N3eta,N3eta,N3eta,N2eta,N2eta,N2eta,N1eta,N1eta,N1eta,N3eta,
132 N3eta,N3eta,N2eta,N2eta,N2eta,N1eta,N1eta,N1eta]);
133

134 Nxi:=Vector[row]([N1xi,N2xi,N3xi,N1xi,N2xi,N3xi,N1xi,N2xi,N3xi,
135 N1xi,N2xi,N3xi,N1xi,N2xi,N3xi,N1xi,N2xi,N3xi,N1xi,N2xi,N3xi,N1xi,
136 N2xi,N3xi,N1xi,N2xi,N3xi]);
137

138 #Combine shape functions
139 N:=simplify(Nphi*~Neta*~Nxi);
140

141 #Define continuous coordinate interpolations
142 r:=simplify(N.rc);
143 theta:=simplify(N.thetac);
144 z:=simplify(N.zc);

(Continued on next page. . . )
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Listing K.1. Maple™ code to derive the Jacobian, strain-displacement operator, shape func-
tion, and radial coordinate matrices for the nonaxisymmetric scattering program. (Contin-
ued from previous page.)

145 #Define matrix of elastic constants
146 E:=Matrix([[lambda+2*mu,lambda,lambda,0,0,0],
147 [lambda,lambda+2*mu,lambda,0,0,0],
148 [lambda,lambda,lambda+2*mu,0,0,0],
149 [0,0,0,mu,0,0],[0,0,0,0,mu,0],[0,0,0,0,0,mu]]);
150

151 #Define Jacobian matrix
152 J:=Matrix(3);
153

154 J[1,1]:=simplify(diff(r,xi));
155 J[1,2]:=simplify(diff(theta,xi));
156 J[1,3]:=simplify(diff(z,xi));
157 J[2,1]:=simplify(diff(r,eta));
158 J[2,2]:=simplify(diff(theta,eta));
159 J[2,3]:=simplify(diff(z,eta));
160 J[3,1]:=simplify(diff(r,phi));
161 J[3,2]:=simplify(diff(theta,phi));
162 J[3,3]:=simplify(diff(z,phi));
163

164 #Define symbolic inverse of Jacobian matrix
165 #(numerical values from Jacobian are used
166 #in the computations)
167 Gammaa:=Matrix(3,3,symbol=Gamma);
168

169 #Get the size of the shape function matrix
170 tmp:=ArrayTools[Size](N);
171

172 #Define shape functions for use in computing strain−displacement
173 #operators
174 Nt:=Matrix(3,3*tmp[2]);
175 Nt[1,1..tmp[2]]:=N;
176 Nt[2,tmp[2]+1..2*tmp[2]]:=N;
177 Nt[3,2*tmp[2]+1..3*tmp[2]]:=N;
178

179 #Get the size of the inverse of the Jacobian matrix
180 tmp:=ArrayTools[Size](Gammaa);
181

182 #Create a matrix of the inverse of the Jacobian matrix for use
183 #in computing strain−displacement operators
184 Gammam:=Matrix(3*tmp[1],3*tmp[2]);
185

186 Gammam[1..tmp[1],1..tmp[2]]:=Gammaa;
187 Gammam[tmp[1]+1..2*tmp[1],tmp[2]+1..2*tmp[2]]:=Gammaa;
188 Gammam[2*tmp[1]+1..3*tmp[1],2*tmp[2]+1..3*tmp[2]]:=Gammaa;
189

190 #Get the size of the shape function matrix
191 tmp:=ArrayTools[Size](N);

(Continued on next page. . . )

410



Appendix K. Code Listings for hybrid SAFE and Three-dimensional Scatterers K.2. Code Listings

Listing K.1. Maple™ code to derive the Jacobian, strain-displacement operator, shape func-
tion, and radial coordinate matrices for the nonaxisymmetric scattering program. (Contin-
ued from previous page.)

192 #Compute the operators on the shape function matrix used in
193 #computing strain−displacement operators
194 No:=Matrix(9,3*tmp[2]);
195 No[1,1..tmp[2]]:=simplify(map(diff,N,xi));
196 No[2,1..tmp[2]]:=simplify(map(diff,N,eta));
197 No[3,1..tmp[2]]:=simplify(map(diff,N,phi));
198 No[4,tmp[2]+1..2*tmp[2]]:=simplify(map(diff,N,xi));
199 No[5,tmp[2]+1..2*tmp[2]]:=simplify(map(diff,N,eta));
200 No[6,tmp[2]+1..2*tmp[2]]:=simplify(map(diff,N,phi));
201 No[7,2*tmp[2]+1..3*tmp[2]]:=simplify(map(diff,N,xi));
202 No[8,2*tmp[2]+1..3*tmp[2]]:=simplify(map(diff,N,eta));
203 No[9,2*tmp[2]+1..3*tmp[2]]:=simplify(map(diff,N,phi));
204

205 #Compute strain−displacement operators
206 B1:=simplify(Matrix([[0,0,0],[1/r,0,0],[0,0,0],[0,0,0],[0,−1/r,0],
207 [0,0,0]]).Nt);
208 B2:=simplify(Matrix([[1,0,0,0,0,0,0,0,0],[0,0,0,0,1/r,0,0,0,0],
209 [0,0,0,0,0,0,0,0,1],[0,0,1,0,0,0,1,0,0],[0,1/r,0,1,0,0,0,0,0],
210 [0,0,0,0,0,1,0,1/r,0]]).Gammam.No);
211 B:=B1+B2;
212

213 #Write results to file
214 save J,"K:\\3Ddevs\\MapleGen\\Jgen.txt";
215 save B,"K:\\3Ddevs\\MapleGen\\Bgen.txt";
216 save Nt,"K:\\3Ddevs\\MapleGen\\Ntgen.txt";
217 save r,"K:\\3Ddevs\\MapleGen\\rgen.txt";
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Listing K.2. Matlabr code to compute the finite element stiffness and mass matrices and
assemble them into the global matrices for the nonaxisymmetric scattering problem.

1 clear
2 clc
3

4 %Control Information
5 lambda=113.2E9; %First Lame constant
6 mu=84.3E9;%Second Lame constant
7 l_m=lambda/mu; %Ratio of Lame constants
8 rho=7932;%Mass density
9 Hp=0.220*25.4E−3;%Wall thickness of pipe

10 Do=3.4960*25.4E−3;%Outer diameter of pipe
11 R=(Do−Hp)/2;%Mean radius
12 H_R=Hp/R;%Wall thickness to mean radius ratio of pipe
13 wref=1/Hp*sqrt(mu/rho);%Reference frequency
14

15 %Common Information
16 mu=1; %Nondimensional shear modulus
17 lambda=l_m*mu; %Nondimensional Lame constant
18 rho=1; %Nondimensional mass density
19

20 %Material property matrix
21 E=[lambda+2*mu,lambda,lambda,0,0,0;
22 lambda,lambda+2*mu,lambda,0,0,0;
23 lambda,lambda,lambda+2*mu,0,0,0;
24 0,0,0,mu,0,0;
25 0,0,0,0,mu,0;
26 0,0,0,0,0,mu];
27

28

29 %Wave function expansion information
30 H=1; %Nondimensional wall thickness of pipe
31 Nr=10; %Number of elements in wave function expansion region
32

33 %Finite element region information
34 Nzfe=2; %Number of elements in the axial direction
35 Nthetafe=126; %Number of elements in the circumferential direction
36 Thetafer=pi/180*[0 360]; %Circumferential extent of FE volume
37 Zfer=[−3.1750E−3/Hp 0];%Axial extent of FE volume
38 %List of elements to delete to form notch
39 Edelete=sort([1266:10:1266+10*62 1267:10:1267+10*62 ...
40 1268:10:1268+10*62 1269:10:1269+10*62 1270:10:1270+10*62]);
41

42 %Number of Gauss integration points
43 Ng=4;
44

45 %Define Gauss integration weights as a function of number of Gauss
46 %points
47 if Ng==1
48 W=[2];
49 L=[0];
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Listing K.2. Matlabr code to compute the finite element stiffness and mass matrices and
assemble them into the global matrices for the nonaxisymmetric scattering problem. (Con-
tinued from previous page.)

50 elseif Ng==2
51 W=[1 1];
52 L=[−1/sqrt(3) 1/sqrt(3)];
53 elseif Ng==3
54 W=[5/9 8/9 5/9];
55 L=[−sqrt(3/5) 0 sqrt(3/5)];
56 elseif Ng==4
57 W=[(18−sqrt(30))/36 (18+sqrt(30))/36 (18+sqrt(30))/36 ...
58 (18−sqrt(30))/36];
59 L=[−sqrt((3+2*sqrt(6/5))/7) −sqrt((3−2*sqrt(6/5))/7)...
60 sqrt((3−2*sqrt(6/5))/7) sqrt((3+2*sqrt(6/5))/7)];
61 elseif Ng==5
62 W=[(322−13*sqrt(70))/900 (322+13*sqrt(70))/900 128/225 ...
63 (322+13*sqrt(70))/900 (322−13*sqrt(70))/900];
64 L=[−sqrt(5+2*sqrt(10/7))/3 −sqrt(5−2*sqrt(10/7))/3 0 ...
65 sqrt(5−2*sqrt(10/7))/3 sqrt(5+2*sqrt(10/7))/3];
66 else
67 error('Unhandled number of Gauss points.');
68 end
69

70 %Call meshing subroutine and return the number of points,
71 %the number of points on the Finite Element (FE) boundaries,
72 %the number of interior points, and the radial,
73 %circumferential, and axial coordinates of the FE nodal points
74 [Nc,BN,IN,rfe,Thetafe,zfe,Er]=Mesh3D2(Nr,Nthetafe,Nzfe,...
75 H_R,Thetafer,Zfer);
76

77 %Assign memory, for each finite element, to store the global
78 %stiffness and mass matrices
79 Ke=zeros(Nr*Nthetafe*Nzfe,81,81);
80 Me=zeros(Nr*Nthetafe*Nzfe,81,81);
81

82 %Open a parallel computing session
83 matlabpool open
84

85 %Loop over (parallized) all finite elements and compute the element
86 %mass and stiffness matrices
87 parfor i=1:Nr*Nthetafe*Nzfe
88 disp(num2str(i));
89 %Convert element number to element position in mesh
90 [n,m,o]=ind2sub([Nr Nthetafe Nzfe],i);
91 %Get element node numbers
92 Nn=Nodes(n,m,o,Nr,Nthetafe);
93 %Get node coordinates
94 rc=Nc(Nn,1);
95 thetac=Nc(Nn,2);
96 zc=Nc(Nn,3);
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Listing K.2. Matlabr code to compute the finite element stiffness and mass matrices and
assemble them into the global matrices for the nonaxisymmetric scattering problem. (Con-
tinued from previous page.)

97 %Special case for last circumferential element. For
98 %convenience, elements run from 2pi to zero.
99 if m==Nthetafe

100 thetac([7 8 9 16 17 18 25 26 27])=0;
101 end
102

103 %Assign memory for the element stiffness and mass matrices
104 Kw=zeros(81,81);
105 Mw=zeros(81,81);
106

107 %Skip any elements that are to be deleted
108 if ~any(i==Edelete)
109

110 %Gauss integration in three dimensions
111 for a=1:1:Ng
112 phi=L(a);
113 Wp=W(a);
114 for b=1:1:Ng
115 eta=L(b);
116 We=W(b);
117 for c=1:1:Ng
118 xi=L(c);
119 Wx=W(c);
120 %Call (numerical) Jacobian subroutine
121 [J,detJ,Gamma]=Jacobiang(rc,thetac,zc,xi,eta,phi);
122 %Call (numerical) radial coordinate subroutine
123 r=rgen(rc,xi,eta,phi);
124 %Call (numerical) displacement−strain subroutine
125 B=Bg(rc,xi,eta,phi,Gamma);
126 %Call (numerical) shape function subroutine
127 N=Ngen(xi,eta,phi);
128 %Add increments to element stiffness and mass
129 %matrices
130 Mw=Mw+Wp*We*Wx*(N'*N)*rho*r*detJ;
131 Kw=Kw+Wp*We*Wx*(B'*E*B)*r*detJ;
132 end
133 end
134 end
135

136 end
137

138 %Write element stiffness and mass matrices to global matrices
139 Ke(i,:,:)=Kw;
140 Me(i,:,:)=Mw;
141 end
142

143 %Done with parallel session
144 matlabpool close

(Continued on next page. . . )
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Listing K.2. Matlabr code to compute the finite element stiffness and mass matrices and
assemble them into the global matrices for the nonaxisymmetric scattering problem. (Con-
tinued from previous page.)

145 %Vectors for each row and column address of each element matrix
146 RI=zeros(numel(Ke),1);
147 CI=zeros(numel(Ke),1);
148 %Assign memory (vectors) for assembly of the global stiffness and
149 %mass matrices
150 Ka=zeros(numel(Ke),1);
151 Ma=zeros(numel(Me),1);
152

153

154 count=1;
155 %Loop over all finite elements
156 for i=1:1:Nr*Nthetafe*Nzfe
157 disp(num2str(i));
158 %Convert element number to element position in mesh
159 [n,m,o]=ind2sub([Nr Nthetafe Nzfe],i);
160 %Get node numbers for element
161 Nn=Nodes(n,m,o,Nr,Nthetafe);
162 %Get row and column positions in global matrices for each finite
163 %element
164 Rows=[Nn;Nn+length(Nc);2*length(Nc)+Nn];
165 Cols=Rows;
166

167 %Convert three dimensional array to two dimensional array
168 Kw=squeeze(Ke(i,:,:));
169 Mw=squeeze(Me(i,:,:));
170

171 %Copy element matrices to global stiffness and mass matrix
172 %vectors
173 for a=1:1:length(Rows)
174 for b=1:1:length(Cols)
175 RI(count)=Rows(a);
176 CI(count)=Cols(b);
177 Ka(count)=Kw(a,b);
178 Ma(count)=Mw(a,b);
179 count=count+1;
180 end
181 end
182 end
183

184 %Assemble global stiffness and mass matrices using MATLAB sparse
185 %command properties
186 K=sparse(RI,CI,Ka,3*length(Nc),3*length(Nc));
187 M=sparse(RI,CI,Ma,3*length(Nc),3*length(Nc));
188

189 %Remove any fully empty rows and columns of the mass and stiffness
190 %matrices created by removing finite elements
191 FNAK=find(full(~any(K)));
192 FNAM=find(full(~any(M)));
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Listing K.2. Matlabr code to compute the finite element stiffness and mass matrices and
assemble them into the global matrices for the nonaxisymmetric scattering problem. (Con-
tinued from previous page.)

193 K(FNAK,:)=[];
194 K(:,FNAK)=[];
195 M(FNAM,:)=[];
196 M(:,FNAM)=[];
197

198 %Write global stiffness and mass matrices to file
199 save 'KandM.mat' K M
200 %Write deleted element information to file
201 save 'Chole.mat' FNAK FNAM Edelete
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Listing K.3. Matlabr code to condense the complete finite element volume’s dynamic
stiffness matrix for the nonaxisymmetric scattering problem.

1 %Clear workspace
2 clear
3 clc
4

5 %Control Information
6 lambda=113.2E9;%First Lame constant
7 mu=84.3E9;%Second Lame constant
8 l_m=lambda/mu;%Ratio of Lame constants
9 rho=7932;%Mass density

10 Hp=0.220*25.4E−3;%Wall thickness of pipe
11 Do=3.4960*25.4E−3;%Outer diameter of pipe
12 R=(Do−Hp)/2;%Mean radius of pipe
13 H_R=Hp/R;%Wall thickness to mean radius ratio of pipe
14 wref=1/Hp*sqrt(mu/rho);%Reference frequency
15

16 %Common Information
17 mu=1;%Nondimensional shear modulus
18 lambda=l_m*mu; %Nondimensional Lame constant
19 rho=1; %Nondimensional mass density
20

21

22 %Wave function expansion information
23 H=1; %Nondimensional Wall thickness
24 Nr=10; %Number of elements in wave function expansion region
25

26 %Number of circumferential wavenumbers to use
27 Mwn=[−15:1:15];
28

29 %Finite Element (FE) region information
30 Nzfe=2; %Number of elements in the axial direction
31 Nt=126; %Number of elements in the circumferential direction
32 Thetafer=pi/180*[0 360]; %Circumferential extent of FE volume
33 Zfer=[−3.1750E−3/Hp 0]; %Axial extent of FE volume
34

35 %Call meshing subroutine that returns the number of FE nodal points,
36 %the number of points on the FE boundaries, the number of FE
37 %interior points, and the radial, circumferential, and axial
38 %coordinates of the FE nodal points
39 [Nc,BN,IN,rfe,Thetafe,zfe,Er]=Mesh3D2(Nr,Nt,Nzfe,H_R,Thetafer,Zfer);
40

41 %Load information from file about any deleted elements
42 load('T:\3D\50H50CA2\Refine\Chole.mat', 'FNAK', 'FNAM', 'Edelete')
43

44 %Remove nodal numbers of deleted nodes
45 Nc(FNAK(1:length(FNAK)/3),:)=[];
46

47 %Find nodes that are on boundaries B+ or B−
48 BN=Nc(:,3)==Zfer(1)|Nc(:,3)==Zfer(2);
49 %Find interior nodes, i.e., not on boundaries B+ or B−
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Listing K.3. Matlabr code to condense the complete finite element volume’s dynamic
stiffness matrix for the nonaxisymmetric scattering problem. (Continued from previous
page.)

50 IN=~BN;
51 %Get nodal numbers of nodes on boundaries B+ or B−
52 BN=(1:1:length(BN)).'.*BN;
53 BN=nonzeros(BN);
54 %Get nodal numbers of interior nodes
55 IN=(1:1:length(IN)).'.*IN;
56 IN=nonzeros(IN);
57

58 %Used to define nodes on mathematical crack face
59 CN=[];
60

61 %Load stiffness and mass matrices from file
62 load('T:\3D\50H50CA2\Refine\KandM.mat', 'K', 'M')
63

64 %Load excitation frequencies to run from file
65 load('T:\BASEWF\Refine\fHz.mat', 'fall')
66

67 freq=2*pi*fall;
68 clear fall;
69

70 %Start routine, noting no excitation frequency point has been run yet
71 done=false(size(freq));
72

73 %Total number of nodes
74 Nn=length(Nc);
75 %Number of nodes on the boundaries on boundaries B+ or B−
76 Rn=length(BN);
77 %Number of nodes on boundary B+
78 Pn=sum(Nc(:,3)==Zfer(2));
79

80

81 %Loop until all excitation frequencies are done
82 while ~all(done)
83

84 %The process can fail, so use try catch block
85 try
86 %Loop over all excitation frequencies
87 for i=1:length(freq)
88

89 %Skip excitation frequencies already done
90 if ~done(i)
91 disp(['Doing ' num2str(i) '...']);
92

93 %Compute dynamic stiffness matrix
94 S=K−(freq(i)/wref)^2*M;
95

96 %Partition S matrix
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Listing K.3. Matlabr code to condense the complete finite element volume’s dynamic
stiffness matrix for the nonaxisymmetric scattering problem. (Continued from previous
page.)

99 SII=[S(IN,IN) S(IN,IN+Nn) S(IN,IN+2*Nn);
100 S(IN+Nn,IN) S(IN+Nn,IN+Nn) S(IN+Nn,IN+2*Nn);
101 S(IN+2*Nn,IN) S(IN+2*Nn,IN+Nn)...
102 S(IN+2*Nn,IN+2*Nn)];
103 disp('Done SII');
104

105 SIB=[S(IN,BN) S(IN,BN+Nn) S(IN,BN+2*Nn);
106 S(IN+Nn,BN) S(IN+Nn,BN+Nn) S(IN+Nn,BN+2*Nn);
107 S(IN+2*Nn,BN) S(IN+2*Nn,BN+Nn)...
108 S(IN+2*Nn,BN+2*Nn)];
109 disp('Done SIB');
110

111 SBB=[S(BN,BN) S(BN,BN+Nn) S(BN,BN+2*Nn);
112 S(BN+Nn,BN) S(BN+Nn,BN+Nn) S(BN+Nn,BN+2*Nn);
113 S(BN+2*Nn,BN) S(BN+2*Nn,BN+Nn)...
114 S(BN+2*Nn,BN+2*Nn)];
115 disp('Done SBB');
116

117 SBI=[S(BN,IN) S(BN,IN+Nn) S(BN,IN+2*Nn);
118 S(BN+Nn,IN) S(BN+Nn,IN+Nn) S(BN+Nn,IN+2*Nn);
119 S(BN+2*Nn,IN) S(BN+2*Nn,IN+Nn)...
120 S(BN+2*Nn,IN+2*Nn)];
121 disp('Done SBI');
122

123 %Remove dynamic stiffness matrix from memory
124 S=[];
125

126 %Do condensation of internal nodes, using the fastest
127 %method found to date
128

129 disp('Starting Sstar');
130

131 %Assign memory for Sstar
132 Sstar=zeros(size(SIB));
133

134 %Do LU decomposition on SII. See MATLAB
135 %documentation for descriptions of L, U, p, q, and R
136 [L,U,p,q,R]=lu(SII,'vector');
137 %Remove SII from memory
138 SII=[];
139 disp('Done LU');
140

141 %Adjust SIB for scaling from LU decomposition
142 SIB=(R\SIB);
143

144 %Remove R from memory
145 R=[];
146 disp('Done R\SIB');
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Listing K.3. Matlabr code to condense the complete finite element volume’s dynamic
stiffness matrix for the nonaxisymmetric scattering problem. (Continued from previous
page.)

147 %Reorder SBI to match reordering from LU
148 %decomposition
149 SBI=SBI(:,q);
150

151 %Remove q from memory
152 q=[];
153

154 %Open a parallel computing session
155 matlabpool open 4
156

157 %Create Sstar by operating on SIB columnwise
158 parfor n=1:size(SIB,2)
159 temp=SIB(:,n);
160 temp=U\(L\temp(p));
161 Sstar(:,n)=full(temp);
162 end
163

164 %Remove SIB from memory
165 SIB=[];
166

167 %Next step of finding Sstar
168 Sstar=−SBI*Sstar;
169

170 %Remove SBI from memory
171 SBI=[];
172

173 %Last step of finding Sstar
174 Sstar=Sstar+SBB;
175

176 disp('Done Sstar');
177

178 %Remove SBB from memory
179 SBB=[];
180

181 %Close parallel computing session
182 matlabpool close
183

184 %Remove LU decomposition parameters
185 U=[];
186 L=[];
187 p=[];
188

189 %Partition Sstar matrix
190 Spp=[Sstar((1:Pn),(1:Pn)) Sstar((1:Pn),(1:Pn)+Rn)...
191 Sstar((1:Pn),(1:Pn)+2*Rn);
192 Sstar((1:Pn)+Rn,(1:Pn)) Sstar((1:Pn)+Rn,...
193 (1:Pn)+Rn) Sstar((1:Pn)+Rn,(1:Pn)+2*Rn);
194 Sstar((1:Pn)+2*Rn,(1:Pn)) Sstar((1:Pn)+2*...
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Listing K.3. Matlabr code to condense the complete finite element volume’s dynamic
stiffness matrix for the nonaxisymmetric scattering problem. (Continued from previous
page.)

195 Rn,(1:Pn)+Rn)...
196 Sstar((1:Pn)+2*Rn,(1:Pn)+2*Rn)];
197

198 Spm=[Sstar((1:Pn),(Pn+1:Rn)) Sstar((1:Pn),...
199 (Pn+1:Rn)+Rn) Sstar((1:Pn),(Pn+1:Rn)+2*Rn);
200 Sstar((1:Pn)+Rn,(Pn+1:Rn))...
201 Sstar((1:Pn)+Rn,(Pn+1:Rn)+Rn)...
202 Sstar((1:Pn)+Rn,(Pn+1:Rn)+2*Rn);
203 Sstar((1:Pn)+2*Rn,(Pn+1:Rn))...
204 Sstar((1:Pn)+2*Rn,(Pn+1:Rn)+Rn)...
205 Sstar((1:Pn)+2*Rn,(Pn+1:Rn)+2*Rn)];
206

207 Smp=[Sstar((Pn+1:Rn),(1:Pn)) Sstar((Pn+1:Rn),...
208 (1:Pn)+Rn) Sstar((Pn+1:Rn),(1:Pn)+2*Rn);
209 Sstar((Pn+1:Rn)+Rn,(1:Pn))...
210 Sstar((Pn+1:Rn)+Rn,(1:Pn)+Rn)...
211 Sstar((Pn+1:Rn)+Rn,(1:Pn)+2*Rn);
212 Sstar((Pn+1:Rn)+2*Rn,(1:Pn))...
213 Sstar((Pn+1:Rn)+2*Rn,(1:Pn)+Rn)...
214 Sstar((Pn+1:Rn)+2*Rn,(1:Pn)+2*Rn)];
215

216 Smm=[Sstar((Pn+1:Rn),(Pn+1:Rn)) ...
217 Sstar((Pn+1:Rn),(Pn+1:Rn)+Rn)...
218 Sstar((Pn+1:Rn),(Pn+1:Rn)+2*Rn);
219 Sstar((Pn+1:Rn)+Rn,(Pn+1:Rn))...
220 Sstar((Pn+1:Rn)+Rn,(Pn+1:Rn)+Rn)...
221 Sstar((Pn+1:Rn)+Rn,(Pn+1:Rn)+2*Rn);
222 Sstar((Pn+1:Rn)+2*Rn,(Pn+1:Rn))...
223 Sstar((Pn+1:Rn)+2*Rn,(Pn+1:Rn)+Rn)...
224 Sstar((Pn+1:Rn)+2*Rn,(Pn+1:Rn)+2*Rn)];
225

226 %Remove Sstar matrix from memory
227 Sstar=[];
228

229 %Find Sstar for symmetric and anti−symmetric
230 %problems, write matrices to disk
231 Sstars=Spp;
232 Spp=[];
233 Sstara=Sstars;
234 Spms=Spm(:,1:(size(Spm,2)*2/3));
235 Spma=Spm(:,(size(Spm,2)*2/3+1:size(Spm,2)));
236 Spm=[];
237 Smms=Smm(1:(size(Smm,1)*2/3),1:(size(Smm,2)*2/3));
238 Smma=Smm((size(Smm,1)*2/3+1):size(Smm,1),...
239 (size(Smm,2)*2/3+1):size(Smm,2));
240 Smm=[];
241 Smps=Smp(1:(size(Smp,1)*2/3),:);
242 Smpa=Smp((size(Smp,1)*2/3+1):size(Smp,1),:);
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Listing K.3. Matlabr code to condense the complete finite element volume’s dynamic
stiffness matrix for the nonaxisymmetric scattering problem. (Continued from previous
page.)

243 Smp=[];
244 Sstara=Sstara−Spma*(Smma\Smpa);
245 saveSstara(Sstara,i)
246 disp('Done Sstara');
247 Sstara=[];
248 Spma=[];
249 Smma=[];
250 Smpa=[];
251

252 Sstars=Sstars−Spms*(Smms\Smps);
253 saveSstars(Sstars,i)
254 disp('Done Sstars');
255 Sstars=[];
256 Spms=[];
257 Smms=[];
258 Smps=[];
259

260 %After successful writes, this excitation frequency
261 %point is done
262 done(i)=true;
263 end
264 end
265 %Handle errors
266 catch ME
267 disp('Some error detected...');
268 ME
269 ME.message
270 pause(10);
271 disp('Trying again...');
272 try
273 %Try to close matlabpool. An error is produced if an
274 %attempt to start a second instance is made and the
275 %matlabpool is already running.
276 matlabpool close force
277 catch
278 end
279 end
280 end
281

282 %Close parallel computing session
283 matlabpool close
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Listing K.4. Matlabr code to form and solve the linear system of equations for the nonax-
isymmetric scattering problem.

1 %Clear workspace
2 clear
3 clc
4

5 %Control Information
6 lambda=113.2E9;%First Lame constant
7 mu=84.3E9;%Second Lame constant
8 l_m=lambda/mu;%Ratio of Lame constants
9 rho=7932;%Mass density

10 Hp=0.220*25.4E−3;%Wall thickness of pipe
11 Do=3.4960*25.4E−3;%Outer diameter of pipe
12 R=(Do−Hp)/2;%Mean radius of pipe
13 H_R=Hp/R;%Wall thickness to mean radius ratio of pipe
14 wref=1/Hp*sqrt(mu/rho);%Reference frequency
15

16 %Common Information
17 mu=1;%Nondimensional shear modulus
18 lambda=l_m*mu;%Nondimensional Lame constant
19 rho=1;%Nondimensional mass density
20

21

22 %Wave function expansion information
23 H=1; %Nondimensional wall thickness
24 Nr=10; %Number of finite elements in wave function expansion region
25

26 %Length of eigenvectors, number of axial modes per circumferential
27 %wavenumber
28 Na=3*(2*Nr+1);
29

30 %Number of circumferential wavenumbers to use
31 Mwn=[−15:1:15];
32

33 %Finite Element (FE) region information
34 Nzfe=2; %Number of finite elements in the axial direction
35 Nt=126;%Number of finite elements in the circumferential direction
36 Thetafer=pi/180*[0 360];%Circumferential extent of FE volume
37 Zfer=[−3.1750E−3/Hp 0];%Axial extent of FE volume
38

39 %Call meshing subroutine that returns the number of FE nodal points,
40 %the number of points on the boundaries, the number of
41 %interior points, and the radial, circumferential, and axial
42 %coordinates of the FE nodal points
43 [Nc,BN,IN,rfe,Thetafe,zfe,Er]=Mesh3D2(Nr,Nt,Nzfe,H_R,Thetafer,Zfer);
44

45 %Load information concerning any deleted elements from file
46 load('T:\3D\50H50CA2\Refine\Chole.mat', 'FNAK', 'FNAM', 'Edelete')
47

48 %Remove nodal numbers of deleted nodes
49 Nc(FNAK(1:length(FNAK)/3),:)=[];

(Continued on next page. . . )
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Listing K.4. Matlabr code to form and solve the linear system of equations for the nonax-
isymmetric scattering problem. (Continued from previous page.)

50 %Find nodes which are on boundaries B+ or B−
51 BN=Nc(:,3)==Zfer(1)|Nc(:,3)==Zfer(2);
52 %Find interior nodes, i.e., not on boundaries B+ or B−
53 IN=~BN;
54 %Get nodal numbers of nodes on boundaries B+ or B−
55 BN=(1:1:length(BN)).'.*BN;
56 BN=nonzeros(BN);
57 %Get nodal numbers of interior nodes
58 IN=(1:1:length(IN)).'.*IN;
59 IN=nonzeros(IN);
60

61 %Used to define nodes on mathematical crack face
62 CN=[];
63

64 %Load excitation frequencies to run from file
65 load('T:\BASEWF\Refine\fHz.mat', 'fall')
66 freq=2*pi*fall;
67 clear fall;
68

69 %Start routine, noting no excitation frequency point has been run yet
70 done=false(size(freq));
71

72 %Total number of FE nodes
73 Nn=length(Nc);
74

75 %Total number of FE nodes on the boundaries B+ or B−
76 Rn=length(BN);
77 %Number of FE nodes on the boundary B+
78 Pn=sum(Nc(:,3)==Zfer(2));
79

80 %Loop until all excitation frequencies are done
81 while ~all(done)
82

83 %The process can fail, so use try catch block
84 try
85

86 %Open a parallel computing session
87 matlabpool open
88

89 %Loop over all excitation frequencies
90 for i=1:length(freq)
91

92 %Skip excitation frequencies already done
93 if ~done(i)
94 %Assign arrays for the incident and scattered nodal
95 %displacements on B+
96 G1pr=complex(zeros(Pn,length(Mwn)*Na));
97 G1pt=complex(zeros(Pn,length(Mwn)*Na));
98 G1pz=complex(zeros(Pn,length(Mwn)*Na));

(Continued on next page. . . )
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Listing K.4. Matlabr code to form and solve the linear system of equations for the nonax-
isymmetric scattering problem. (Continued from previous page.)

100

101 G2r=complex(zeros(Pn,length(Mwn)*Na));
102 G2t=complex(zeros(Pn,length(Mwn)*Na));
103 G2z=complex(zeros(Pn,length(Mwn)*Na));
104

105 %Displacements
106 disp('Displacements...');
107

108 %Read wavefunctions from file
109 parfor p=1:length(Mwn)*Na
110

111 %Relate circumferential wavenumber to loop
112 %counter
113 m=ceil(p/Na);
114

115 %Relate axial wavenumber counter to loop counter
116 n=p−(m−1)*Na;
117

118 %Load wave functions from file into a MATLAB
119 %structure
120 LD=load(['T:\BASEWF\Refine\F_' num2str(Mwn(m))...
121 '_' num2str(i) '.mat'],'phir','phil',...
122 'kr','kl');
123

124 %Separate variables from loaded MATLAB structure
125 phir=LD.phir;
126 phil=LD.phil;
127 kr=LD.kr;
128 kl=LD.kl;
129

130 %Remove loaded MATLAB structure
131 LD=[];
132

133 %Assign memory to operate on columns of
134 %displacement matrix
135

136 G1prc=complex(zeros(Pn,1));
137 G1ptc=complex(zeros(Pn,1));
138 G1pzc=complex(zeros(Pn,1));
139

140 G2rc=complex(zeros(Pn,1));
141 G2tc=complex(zeros(Pn,1));
142 G2zc=complex(zeros(Pn,1));
143

144 %Axial coordinate of B+ face
145 z=zfe(1);
146

147 %Axial decay terms (always 1 here)
148 ezr=exp(1i*kr(n)*z);

(Continued on next page. . . )
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Listing K.4. Matlabr code to form and solve the linear system of equations for the nonax-
isymmetric scattering problem. (Continued from previous page.)

149 ezl=exp(1i*kl(n)*z);
150 %Count row number
151 rstart=1;
152

153 %Rotate displacements
154 for a=1:1:2*Nt
155 theta=Thetafe(a);
156 et=exp(1i*Mwn(m)*theta);
157 G1prc(rstart:1:rstart+2*Nr)=...
158 phir(1:1:2*Nr+1,n)*et*ezr;
159 G1ptc(rstart:1:rstart+2*Nr)=...
160 phir(2*Nr+2:1:4*Nr+2,n)*et*ezr;
161 G1pzc(rstart:1:rstart+2*Nr)=...
162 phir(4*Nr+3:1:end,n)*et*ezr;
163

164 G2rc(rstart:1:rstart+2*Nr)=...
165 phil(1:1:2*Nr+1,n)*et*ezl;
166 G2tc(rstart:1:rstart+2*Nr)=...
167 phil(2*Nr+2:1:4*Nr+2,n)*et*ezl;
168 G2zc(rstart:1:rstart+2*Nr)=...
169 phil(4*Nr+3:1:end,n)*et*ezl;
170

171 %Increment row counter
172 rstart=rstart+2*Nr+1;
173 end
174

175 %Assign columns to full matrix
176 G1pr(:,p)=G1prc;
177 G1pt(:,p)=G1ptc;
178 G1pz(:,p)=G1pzc;
179

180 G2r(:,p)=G2rc;
181 G2t(:,p)=G2tc;
182 G2z(:,p)=G2zc;
183 end
184

185 %Assemble component matrices into full matrix
186 G1=[G1pr;G1pt;G1pz];
187 G2=[G2r;G2t;G2z];
188

189 %Assign arrays for the incident and scattered nodal
190 %forces on B+
191

192 F1pr=complex(zeros(Pn,length(Mwn)*Na));
193 F1pt=complex(zeros(Pn,length(Mwn)*Na));
194 F1pz=complex(zeros(Pn,length(Mwn)*Na));
195

196 F2r=complex(zeros(Pn,length(Mwn)*Na));
197 F2t=complex(zeros(Pn,length(Mwn)*Na));

(Continued on next page. . . )
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Listing K.4. Matlabr code to form and solve the linear system of equations for the nonax-
isymmetric scattering problem. (Continued from previous page.)

198 F2z=complex(zeros(Pn,length(Mwn)*Na));
199

200 disp('Forces...');
201

202 %Nodal forces...
203

204 %Read wavefunctions from file
205 parfor p=1:length(Mwn)*Na
206

207 %Relate circumferential wavenumber to loop
208 %counter
209 m=ceil(p/Na);
210

211 %Relate axial wavenumber counter to loop counter
212 n=p−(m−1)*Na;
213

214 %Load wave functions from file into a MATLAB
215 %structure
216 LD=load(['T:\BASEWF\Refine\F_' num2str(Mwn(m))...
217 '_' num2str(i) '.mat'],'phir','phil','kr',...
218 'kl');
219 %Separate variables from loaded MATLAB
220 %structure
221 phir=LD.phir;
222 phil=LD.phil;
223 kr=LD.kr;
224 kl=LD.kl;
225

226 %Remove loaded structure
227 LD=[];
228

229 %Assign memory to operate on columns of
230 %force matrix
231 F1prc=complex(zeros(Pn,1));
232 F1ptc=complex(zeros(Pn,1));
233 F1pzc=complex(zeros(Pn,1));
234

235 F2rc=complex(zeros(Pn,1));
236 F2tc=complex(zeros(Pn,1));
237 F2zc=complex(zeros(Pn,1));
238

239 %Axial coordinate of B+ face
240 z=zfe(1);
241

242 %Force vectors for one finite element face
243 Fps=complex(zeros(27,Nr));
244 Fpi=complex(zeros(27,Nr));
245

246 %Compute the force vector for the scattered

(Continued on next page. . . )
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Listing K.4. Matlabr code to form and solve the linear system of equations for the nonax-
isymmetric scattering problem. (Continued from previous page.)

247 %and incident modes along one radius
248 for a=1:1:Nr
249 Ftemp=Forcezp(rfe(2*a+1),rfe(2*a−1),...
250 Thetafe(1),Thetafe(3),z,Mwn(m),kr(n),...
251 phir([2*a−1:1:2*a+1 2*a−1+2*Nr+1:1:2*...
252 a+1+2*Nr+1 2*a−1+4*Nr+2:1:2*a+1+...
253 4*Nr+2],n),lambda,mu);
254 Fps(:,a)=Ftemp;
255 Ftemp=Forcezp(rfe(2*a+1),rfe(2*a−1),...
256 Thetafe(1),Thetafe(3),z,Mwn(m),kl(n),...
257 phil([2*a−1:1:2*a+1 2*a−1+2*Nr+1:1:2*...
258 a+1+2*Nr+1 2*a−1+4*Nr+2:1:2*a+1+4*...
259 Nr+2],n),lambda,mu);
260 Fpi(:,a)=Ftemp;
261 end
262

263 %Rotate forces around all the radii
264 for a=1:1:Nr
265 for b=1:1:Nt
266 et=exp(1i*Mwn(m)*(b−1)*(Thetafe(3)−...
267 Thetafe(1)));
268 Nodes=Nodef(a,b,Nr,Nt);
269 F1prc(Nodes)=F1prc(Nodes)+Fps(1:9,a)*et;
270 F1ptc(Nodes)=F1ptc(Nodes)+Fps(10:18,a)*et;
271 F1pzc(Nodes)=F1pzc(Nodes)+Fps(19:27,a)*et;
272

273 F2rc(Nodes)=F2rc(Nodes)+Fpi(1:9,a)*et;
274 F2tc(Nodes)=F2tc(Nodes)+Fpi(10:18,a)*et;
275 F2zc(Nodes)=F2zc(Nodes)+Fpi(19:27,a)*et;
276 end
277 end
278

279 %Assign columns to full matrix
280 F1pr(:,p)=F1prc;
281 F1pt(:,p)=F1ptc;
282 F1pz(:,p)=F1pzc;
283

284 F2r(:,p)=F2rc;
285 F2t(:,p)=F2tc;
286 F2z(:,p)=F2zc;
287 end
288

289 %Assemble component matrices into full matrix
290 F1=[F1pr;F1pt;F1pz];
291 F2=[F2r;F2t;F2z];
292

293 %Solve symmetric and anti−symmetric problems
294

295 %Load anti−symmetric dynamic stiffness matrix from

(Continued on next page. . . )
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Listing K.4. Matlabr code to form and solve the linear system of equations for the nonax-
isymmetric scattering problem. (Continued from previous page.)

296 %file into a MATLAB structure
297 LD=load(['T:\3D\50H50CA2\Refine\Sstara_'...
298 num2str(i) '.mat'], 'Sstara');
299

300 %Form left and right hand sides of linear system of
301 %equations
302 LHS=G1'*(LD.Sstara*G1−F1);
303 RHS=G1'*(F2−LD.Sstara*G2);
304 %Calculate anti−symmetric solution
305 Aa=LHS\RHS;
306 %Remove anti−symmetric dynamic stiffness matrix from
307 %memory
308 LD=[];
309

310 %Load symmetric dynamic stiffness matrix from
311 %file into a MATLAB structure
312 LD=load(['T:\3D\50H50CA2\Refine\Sstars_' ...
313 num2str(i) '.mat'], 'Sstars');
314

315 %Form left and right hand sides of linear system of
316 %equations
317 LHS=G1'*(LD.Sstars*G1−F1);
318 RHS=G1'*(F2−LD.Sstars*G2);
319 %Calculate symmetric solution
320 As=LHS\RHS;
321 %Remove anti−symmetric dynamic stiffness matrix from
322 %memory
323 LD=[];
324

325 %Compute reflection and transmission coefficients
326 Rc=(Aa+As)/2;
327 Tc=(As−Aa)/2;
328

329 %Save results to file
330 savescat(As,Aa,Rc,Tc,i);
331

332 %This excitation frequency completed successfully
333 done(i)=true;
334 disp(['Done ' num2str(i)]);
335

336 %Clean up memory
337 As=[];
338 Aa=[];
339 Rc=[];
340 Tc=[];
341 LHS=[];
342 RHS=[];
343 G1=[];
344 G2=[];

(Continued on next page. . . )
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Listing K.4. Matlabr code to form and solve the linear system of equations for the nonax-
isymmetric scattering problem. (Continued from previous page.)

345 F1=[];
346 F2=[];
347 end
348 end
349 catch ME %Error handler
350 disp('Some error detected...');
351 ME
352 ME.message
353 pause(10);
354 disp('Trying again...');
355 try
356 %Try to close matlabpool. An error is produced if an
357 %attempt to start a second instance is made and the
358 %matlabpool is already running.
359 matlabpool close
360 catch
361 end
362 end
363 end
364

365 %Close parallel computing session
366 matlabpool close
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Appendix L

Facilities for Parallel and Distributed Computing

L.1 Overview

As discussed in Chapter 4 and other appendices, the application of the hybrid-SAFE wave

function method requires: (i) determining the wave functions (normal modes) of an un-

blemished waveguide, (ii) developing a conventional finite element model of a volume that

(potentially) encloses a flaw, (iii) enforcing displacements and force (stress) continuities

between the finite element region and the parent waveguide, where the field equations are

written in terms of wave functions, and, finally, (iv) solving the resulting linear equations.

This process is implemented computationally here. However, hybrid-SAFE wave function

expansion modelling can be expensive in terms of computer wait times. Moreover, depend-

ing on the number of finite elements required to model the finite element volume, it can

be memory intensive. Indeed, a numerical solution of the final linear equations may re-

quire so much memory that they cannot be solved straightforwardly by employing a single

computer1.

Although evolving platforms that invariably involved Personal Computers (PCs) were

employed to compute the results given in the main text, a PC equipped with an Intel®

Core™ i5 processor, 16 GB of memory, and running 64-bit software was used to gener-

ate most of the results. Notwithstanding, techniques are outlined next to ameliorate the

previously described difficulties, in a “proof of concept” environment. The “test bed” de-

scribed in Section L.2 would be suitable for performing all the calculations required to im-

1It may be simply impossible to solve the equations by utilizing convenient, conventional linear solvers
on a single computer having 32-bit memory addressing. The problem can be alleviated by using 64-bit
memory addresses. Note, however, that 64-bit memory addressing does not preclude distribution of memory
requirements. It does allow larger problems to be solved before distribution is required providing sufficient

Random Access Memory (RAM) is available. Parallelization can be beneficial regardless of the memory
addressing scheme used.

431



Appendix L. Facilities for Parallel and Distributed Computing L.2. Description of Computing Cluster

plement the hybrid-SAFE if the straightforward and relatively inexpensive modifications

to the “head” node suggested in Section 5.2 were implemented. Although the methods

discussed may seem intuitively obvious, a feasible solution may not be claimed until it is

implemented successfully. This appendix documents a “proof of concept” implementation.

Further insights are gained by using illustrative examples.

L.2 Description of Computing Cluster

The Wawanesa Mutual Insurance Company generously donated their ageing surplus com-

puters which permitted the assembly of an 18 node computing cluster for a “proof of

concept test bed.” All nodes use readily available hardware and software—principally Mat-

lab
® and its associated Parallel Computing Toolbox™. The 17 “compute” nodes are nom-

inally International Business Machines (IBM®) Corporation, 8187-WC4 PCs. The total

available memory is 16.75 GB, which is distributed between the compute and “head” (con-

troller) nodes. Furthermore 32-bit software is utilized throughout. The computing cluster is

shown in Figure L.1. A 100 Mbit Ethernet Transmission Control Protocol/Internet Protocol

(TCP/IP) model is used to network the computers.

L.3 Distinction Between CPU and Memory Limited Prob-

lems

The hybrid-SAFE scattering technique makes extensive use of spectral decomposition

which requires the numerous solution of similar problems (i.e., once for each frequency

in the spectral decomposition). Problems which fit into the memory of a single computer

are limited by the speed at which computations can be performed and, hence, become Cen-

tral Processing Unit (CPU) limited. On the other hand, problems not fitting into the memory

of a single computer become memory limited. Problems of the first kind can benefit from
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Nodes 1–4

UPS 1 and 2

Nodes 5–8

Switch 1

Head Node

(Cropped out)

Rack 1

Air-conditioning

Unit

Nodes 9–12

UPS 3 and 4

Nodes 13–17

Switch 2

Rack 2

Air-conditioning

Exhaust

Figure L.1. The assembled computing cluster.

parallelization in which a single occurrence of a problem is run simultaneously on several

computers or processing cores. Problems of the second kind are solved more easily if they

are distributed so that the memory requirement of a single case is split amongst several

computers. The Parallel Computing Toolbox™ of Matlab® straightforwardly and flexibly

implements both types of problems. Its “parfor” structure is useful for the former problems

while the “spmd” construct is utilized for the latter problems. The two approaches can be

useful at different stages of a given hybrid-SAFE scattering problem, as described next.
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L.4 Illustrative Examples

Immediately after assembling the computing cluster described in Section L.2, an early (be-

fore optimization) version of the axisymmetric wave scattering program described in Ap-

pendix G was modified for parallel execution and run on the cluster. The purpose of this

exercise was to assess the potential of using a computing cluster to reduce the wait time. Ax-

isymmetric scattering problems are small enough that they fit into memory and, therefore,

are ideal for parallel execution.

Table L.1 gives the “speed up” ratios achieved by using 1, 8, 16, and 17 computing

cores in parallel. Figure L.2 shows the same information in graphical form. The speed up

ratio, S , is defined as

S =
tserial

tparallel
, (L.4.1)

where t is the waiting time corresponding to the subscripts “serial” and “parallel” which

denote a program run using serial and parallel execution, respectively. Increasing values

of S that are larger than unity represent a greater reduction in waiting time with parallel-

ization which, consequently, is increasingly beneficial. However, the overhead associated

with starting a distributed computing session and the time taken to distribute data to a re-

mote computer over a network cause the speed up to be less than unity when distributing

to merely one core. Notwithstanding, the results shown in Table L.1 and Figure L.2 are

generally encouraging as they suggest that distributed computing can be beneficial.

Table L.1. “Speed up” ratios achieved by parallelizing a job that is CPU rather than memory
limited.

Computing configuration Speed up ratio

Serial program 1.0
Distributed to 1 core 0.74a

Distributed to 8 cores 5.2
Distributed to 16 cores 8.3
Distributed to 17 cores 9.6

aA slow down!
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Figure L.2. Graphical illustration of the data presented in Table L.1.

The second step in applying the hybrid-SAFE procedure to wave scattering problems

requires a conventional finite element model. The computation of finite element mass and

stiffness matrices typically involve modest memory requirements but this process is CPU

limited. Consequently parallelization, in a manner similar to the calculation of the wave

functions, is beneficial. The computational effort to assemble the global matrices is insigni-

ficant compared to the calculation of the element matrices. The assembly results in a large,

sparse set of linear equations having the form


SII SIB

SBI SBB





qI

qB


=



0

PB


. (L.4.2)

Here S is a dynamic stiffness matrix whereas q and P are nodal displacement and force

vectors, respectively. Furthermore subscripts I and B denote interior and boundary nodes,

respectively. A boundary node is one that is common to both the finite element volume and

a wave function expansion region. An internal node has no direct connection to either of
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the two wave function expansion regions.

Condensation of the internal nodes of the finite element volume presents a formidable

challenge. The process can be written mathematically as

(
−SBIS

−1
II SIB + SBB

)
qB = PB. (L.4.3)

The challenge arises in evaluating the matrix product −SBIS
−1
II SIB. Although SII is sparse, its

inverse is not and, hence, requires significant storage memory. One solution is to distribute

the memory requirement among several computers to subsequently perform the required

matrix operations. Figure L.3 shows the waiting time required to perform these operations

for the computation at a single frequency point with a different number of distributed com-

puter nodes. The illustrative finite element mesh has a total of 790, 27 node quadratic

Lagrangian elements. Ten (forty) [two] elements are used in the radial (circumferential)

[axial] direction. (Note that this mesh is appropriate only for circumferential wavenumbers
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Figure L.3. Time required to invert an illustrative, square dynamic stiffness matrix having
order 25,074.
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having a magnitude of 4 or less.) Ten elements are removed to idealize a through hole. It

is clear from Figure L.3 that the optimal number of distribution nodes for this particular

mesh is four. To reduce the waiting times further, a combination of distributed and parallel-

ized computing can be performed. A good arrangement for this last approach is to use two

“head” nodes, each of which simultaneously controls two jobs distributed to four computer

nodes. The configuration is illustrated graphically in Figure L.4, for which four frequency

points are evaluated simultaneously.

Two additional examples of the speed up ratios achieved by using parallel computing

are shown in Figures L.5 and L.6. The first figure gives the ratios when computing the

approximate wavefunctions by using SAFE for a single circumferential harmonic at (a)

145 and (b) 721 frequency points. The mesh for this example is identical to the one used in

Chapter 2. The second figure, on the other hand, shows the speed up ratios when solving the

axisymmetric scattering problem for a single circumferential harmonic at (a) 145 and (b)

721 frequency points. Then the mesh corresponds to the one employed in Chapter 4. More

modest speed up gains are seen in Figure L.6 compared with those given in Figure L.2. In

the former case, the program had been improved to be significantly (about a factor of 60
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Figure L.4. Optimal computing arrangement for the second illustrative problem.
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Figure L.5. Speed up ratio, S , achieved when calculating wavefunctions for a single cir-
cumferential harmonic at (a) 145 and (b) 721 frequency points.

times fewer floating point operations) more efficient. For this reason, there is significantly

more overhead involved in starting and stopping the parallel computations. This overhead

is reduced, as a percentage of the total waiting time, with each increase in the time taken for

the program to execute a parallel code. This phenomenon explains the larger speed ups seen

in Figures L.5 (b) and L.6 (b) relative to those of Figures L.5 (a) and L.6 (a), respectively.

L.5 Conclusions

Illustrative examples have shown that parallel and distributed computing can be applied ad-

vantageously to the hybrid-SAFE procedure for wave scattering problems. Two categories

of problems were described, CPU and memory limited problems. Parallel computing has
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Figure L.6. Speed up ratio, S , achieved when solving the axisymmetric scattering problem
for a single circumferential harmonic at (a) 145 and (b) 721 frequency points.

been seen appropriate for the former class but distributed computing was required for the

second class. Parallel computing was shown to reduce the waiting time by nearly an order

of magnitude when the majority of a program’s execution time was spent in parallel execut-

ing, i.e., network overhead and serial execution time was negligible. Distributed computing,

on the other hand, was demonstrated to be a feasible approach when there was otherwise in-

sufficient RAM to solve a memory demanding problem. However, the optimal allocation of

computing resources was not always obvious. Therefore, empirical benchmarking should

be used to select an optimal, problem dependent, computing arrangement. The following

recommendations are made to further improve the performance of the computing cluster.

1. The “head” node of the present computing cluster should be replaced with a 64-bit

Personal Computer (PC) having at least 16 GB of memory,
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2. The “compute” nodes of the computing cluster should be upgraded when economic-

ally feasible.

3. The cluster’s network should be upgraded to “gigabit” speeds when economically

feasible.

4. The feasibility of performing hypbrid-SAFE finite element computations by using

Graphics Processing Units (GPU) should be explored.
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