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ABSTRACT

This thesis is concerned with 1inear time-invartant

systems with numerator dynamics in their forward transfer
functions and a time delay in the feedback path.
Theorems on the Controllability and Stability of

. such systems are presented. The major pért of the thesis

ihvestigates.the.prob1em of fihding a control which will
bring the odtput of the system from some initial state to
zero in minimum time and keép it there afterwards. Necessary.
conditions for such a time optimal control to exisf are
derived._ Based on these conditions, the optimal control

can be found by an iterative brocedure. The pattern search

" of Hooke and Jeeves is introduced. Twoiexamp]es are given

to demonsfratelthe techniqueslbf finding the time optimal

control.
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CHAPTER I
INTRODUCTION
I. GENERAL INTRODUCTION

In the mathematical formu]at1on of a physical process,
it is often assumed that the. future behav1or of the system
depends only upon the present state, and that the 1nf1uence
" of the present state is 1nstantaneous The latter assumption

leads to a system of ordinary d1fferent1a1 equat1ons, which
satisfactorily describes a great variety of physical processes.
For many b]ants, howeVer, this description is inadequate; and
the mathematical models canhdt be readily derived unless.
Mre]ations invoiving time delays are edmitted. The time delay
may afise as a resu]t'of'the distributed nature of the

process, inherent transport lag, br as a consequence of
mathematical epproximations ;.‘These processes with

hereditery effects cgn be described‘by a‘system'of differential-

difference equations

In recent years, considerable attention has been

1
A.T. Fuller,"Optimal Nonlinear Control of Systems

with Pure Delay", Internat1ona] Journal of Contro], Vol.8,
No.2, 1968, pp.145-168. v

2
R. Bellamn and K. Cooke, Differential-Difference
Equations, (New York: Academic Press, 1963) 462pp.




devoted to the optimal control of these systems with time

delay. Due to the difficulties inherent in the analytic
treatment of the differential-difference equations, most of
these investtgations are on systems with only‘poles in their
transfer function, or on the optimal control of systems whose
target-Set consists of a single point which ts‘usua]1y the
oriéin of the state space Very 11tt1e attent1on has been
directed towards the prob]em of obta1n1ng the opt1ma1 contro]
for systems with zeros in the1r transfer funct1ons (i.e. systems
w1th numerator dynam1cs), or of contr0111ng the state of a system
to a target set’ wh1ch is more than one s1ng1e po1nt in the

state space. Many phys1ca] processes, however, can on]y be
approx1mated mathemat1ca11y by system mode]s W1th numerator
oynam1cs It 1s 1mportant, therefore, to estab11sh techn1ques

for the opt1ma1 contro] of such systems.
II. THE PROBLEM

Th1s thes1s is concerned with the prob]em of obtaining
the time optimal controls for systems w1th zeros in their
forward transfer function and a pure time delay in the feedback
path. This type of problem arises quite frequently in feedback
controT processes, where there is often an inevftab]e time lag

in the transmission of signals between the sensing device and



the controller. Figure (I-1) depicts the class of systems that

will be gonsidered.

u(s) sy | )
’Q —— u(s) = M&) oo
-5 ol - D(s)
;Ts v , B :

Figure (I- 1) Biock Diagram of a’ system with numerator

dynam1cs and t1me de]ay in the feedback.

| THe?transfeEVfunétion;=H(s)} isuof'the.form'“

spec1f1ca11y,

N(S) ',= b-s-l‘-.:r”'.




n n-1 :
and D(s) =s + a s + ... +tas + a I-3
n-1 1 0

0:],2,---,""]

where aj and by are real constants for all i
and j = 0,1 2,...,k, and k is less than n.

Suppose that
v(t) = u(t) - y(t-1) I-4

where u(t) is the control force which is assumed bounded,
]u(t)]i 1; y(t) is the output, and t,‘the time delay.

Theh the.transfer-funétion H(s) tepresents a single- 1nput-

s1ng1e output p]ant wh1ch can be descr1bed by the n-th order

11near d1fferent1a1 equat1on

]an1 + o.. + a]D + a ]y(t)

k o k-1 I-5

= [bD" + b, D"+ ...+ + byD + b ]v(t)

n
[D + g

where D = d /dt, k<n.
The problem is to find the opt1ma1 contro] strategy
.wh1ch w111 drive the output y(t) of the system from some
initial state
¥i (o) = y(ty+o), o e [=1, 0] : I-6
) . R : ,

to the final state;

'y-t*'i“[.(o-) = 0, 0 € ["T, 0] I1-7

in minimum time t*.
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Since systems with numerator dynamics involve deriv-
atives of the control variable, it is often'more desirable to
convert the systém state from one co-ordinate system into
another in which the deriVatives of the cdntro] disappear.

‘fn §o doing, the target set is usually transformed from a one-
point set to a smooth k-fold in the new co-ordinate system.
Hence the problem of confro]]ing the output state of the plant

with numerator dynamics'to the zero state is equivalent to the

-problem of contro]]indha system from an initial state to a

~function in the state space.

ITI. A BRIEF SUMMARY AND
PREVIOUS RELATED WORK

The second chapter of this thesis deals with the

'transformation of the stéte variables of the plant from one
co~-ordinate system into another which does not involve

derivatives of the contro]‘force; u(t). Various transformation

,technidues for the,ordinary systems without time delay have
been”developed, and treated quife exhaustively in literature;

see, for example, the papers by Lee3,.Athanassiades and

3 ,
« . E.B. Lee, "On the Time-optimal Regulation of Plants with
Numerator Dynamics", IRE Transaction -on Automatic Control,
Vol. 6, No. 3, 1961, pp.351-352. :




5 6

Fa1b4, Laning and Battin®, and Hutchinson”. Most of these
techniques are also applicable to systems with time delay.
Westda]7 has taken some of the results from previous

studies, for example, from Weiss®

and Bucka]og, to establish
controllability and stability criteria fon the general linear
time-delay systems Chdpter III restates, extends and proves
some of these theorems presented by Westdal in order to

‘obtain more comp]ete and easily app11cab1e cond1t1ons on

4
M. Athanassiades and P. Falb, "Time Optimal Control for
Plants with Numerator Dynam1cs IRE Transact1on on Automatic

5
J.H. Laning and R.H. Batt1n,ARandom Processes in
Automatlc Contro], (New York McGraw H1]1, 1963) PP. ]91 197

6 :

. C.E. Hutchinson, "Minimum-Time Control of a Linear
Combination of State Variables", Technical Report No. 6311
(Stanford, California: System Theory Laboratory, Stanford
University, August, 1963 o '

7 .

-John A.S. Westdal, "Time 0pt1ma1 Control of Linear
Systems with Delay" (Unpub11shed Master's thesis, The
University of Manitoba, 1969)

8
L. Weiss, "On the Control]ab1]1ty of Delay- D1fferent1a]

'Sysyems » SIAM Journal on Contro], Vol. 5, No. 4, 1967, -
pPP. 575 587.

-9

A.F. Buckalo, “Exp]icit'Conditions for Controllability
of Linear Systems with Time Lag", IEEE Transactions on




cancellation, controllability and stability of the time delay
system with numerator dynamics. The idea of cancellation and
stability for ordinary systems witheut de]ay has been
investigated by Butman and Sivan]9 as well as by Ogata11.
It is foUnd that most of these resu]ts can be applied to
systems with numerator dynam1cs with or without time de1ay
The optimal control prob]em for time delay systems has
-been 1nvest1gated extens1ve1y 1n 11terature. In many of the
studies of the opt1ma] contro] prob]em the de]ay system was
considered to have a d1st1nct1ve d1fference from the ordinary

-d1fferent1a] equat1on system However, Rep1n]2 13

and Ichikawa
' showed that the dynamics of a time de]ay could be approximated
by a system of ordinary differential equations, if their

dimensionality is allowed to become infinite. Chapter IV

10
S. Butman and R. S1van, "On Cance]]at1ons,‘antrollab111ty.

and Observability", IEEE Transact1ons on Automat1c Contr01
Vol.9, Jduly ]964 pp 317-318. :

11
K. Ogata, State Space Ana]ys1s of Control Systems,
(Englewood Cliffs: Prentice-Hall Inc., 1967), pp. 388-392.

12
Tu.M. Repin, "On the Approximate Replacement of
Systems with Lag by Ordinary Dynamical Systems", Journal of
Applied Mathematics and Mechanics, Vol. 29, No. 2, 1965,
pp. 254-264. :

13
K. Ichikawa, "Pontryagin's Maximum Principle in
0pt1m1z1ng Time-Delay Systems", Electrical Engineering in
Japan, Vol. 87, No. 12, Dec. 1967, pp. 75-83.




follows Ichikawa's approach to obtain the optimal conditions
for the linear time-invariant system with delay. The time

optimal problem has been investigated before, see, for example,

the papers by Oguztorelil4, Kharat1shv1]1]5

_Stap]eton]G, Ba]akirev17, and Stebbing]g.

» Ragg and

These studies were
“only concerned with the problem of reducing the error to zero
in minimum time, without consideration of the problem of
keeping'it'there afterwards. In other words, these studies

" were on the attainability prob]eM'rather“than on the settling

14 :
M.N. Oguztore11, "A Time Optimal Control Prob1em for
Systems Described by Differential Difference Equat1ons", SIAM
»Journal on Control, A-I-3, 1963, pp. 290-310. -

15
G.L. Kharatishvili, "The Maximum Principle in the
Theory of Optimal Processes with a Delay", Soviet Mathematics -
Doklady, Vol. 2, 1961, pp. 28-32.

16 : .
B.C. Ragg and C.A. Stapleton, "Time Optimal Control of
Second Order Systems with Transport Lag", International Journal
of Contro] Vol. 9, No. 3, 1969, pp. 243-257.

17 .
‘V.S. Balakirev, "The Principle of the Maximum in the
Theory of Second Order Optimal-Systems", Automation and Remote
Control, Vol. 93, No. 8, Aug. 1962, pp. 948-956.

18

J.D. Stebbing, "An Investigation into the Time Optimal
Control of Linear Systems with Delay" (unpublished Master's
thesis, The University of Manitoba, 1967).




problem. Westdall9 considered the settling problem; however,
he only dealt with a one-point target set. In systems with
numerator dynamics, the target set is usually a function in

the state space. The time optimal regqgulation problem for

these systems is equivalent to that of controlling the state
qf a delay system,to'a smooth k-fold and keeping it there
afterwards. Very l1ittle attention has been devoted to this

| problem. Chung and Lee?0 have considered the optimal control

problem of steering the system state to a target set G; how-

ever, they used quite a general cost index and specified the
final time. Chapter Iv, therefore, also investigates the
transversality conditions for this type of settling problem,
in particu]ar; on plants with n poles and one zero. Chapter V
concentrates on the second and third order systems with only
one zero;'tWo examples are given here.

Progress in the field of optimal control for systems

with de]ay has been hampered by the difficulties involved in

the analysis of differential-difference equations. It is

important, therefore, to deve]op»éfficient algorithms to
handle these'equations. In synthesizing the optimal contro]

.................

19 4
Westdal, loc. cit.

20
D.H. Chung and E.B. Lee, "Linear Optimal Systems with
Time Delays", SIAM Journal on Control, Vol. 4, 1966,
pp.548-575. )




10
for time delay systems, especially in the Ease of systems with
numerator dynamics and where usually more than two system
parameters are involved, it is almost impossible to obtain
a solution unless some sort of multidimensional direct |

"search strategy is used. KramerZ] has developed a method for
solving the'prob1em of optimaT control based on the theory of

22

‘Dynamic Programming, and MacKinnon introduced an algorithm

- for the numerical calculation of an optimal control by means

of a variational calculus approach. However, both methods
depend on known terminal time; therefore, they cannot be used

for the time optimal.control problem. McAu]ay23

has recently
published a method for finding the control function u(t)
 .“wh1ch minimizes a function of the ffnai values of the state
‘variables P[&(t])]‘byvmeans of a gradient method. Again
| McAulay's method requires that the terminal time be known.

Appendix A introduces a multidimensional direct search strategy,

21

J.D.R. Kramer Jr., "On Control of Linear Systems with
Time Lag", Information and Controi, Vol. 3, 1960, pp. 299-326.

22

D. MacKinnon, "Optimal Control of Systems with Pure Time
"Delays using a Variational Programming Approach", IEEE Trnasactions

~on Automatic Control, Vol. 12, No. 3, June 1967, pp. 255-262.

23
R.J. McAulay, "A Gradient Method for Systems with Time
Delays and its Applications to Waveform Design", -IEEE Transactions
“on Automatic-Control, :Vol. 14, No. 3, June 1969, pp. 230-237.

T
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the péttern-search of Hooke and Jeeve524. Differential-
difference equations can be solved quite easily on the IBM
System 360 digital computer by means of the Continuous System
Modelling Program (CSMP s/360). Coupled with CSMP s/360,

by adjustment of the system parameters methodically in
accordance with the pattern search strategy, the time optimal
control for the delay systems can be obtained quite easily.
Some of thé computer programmes used in this thesis are given

in Appendices B and C.

24
R. Hooke and T.A. Jeeves, "'Direct Search' Solution

of Numerical and Statistical Problems", Journal of the

" 'Association for Computing Machinery, Vol. 8, pp. 212-229,
April 1961.
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‘may cause discontinuities in some of the variables used to

describe the movement of the system; therefore, it is often
~Under such a transformation, the target is usually transformed
from a one-point set to a smooth k-fold. 'Chapter II is devoted

'system, and on the resulting target set under such a transfor-

- mation. The transformation techniqué used here is completely

CHAPTER 11
TRANSFORMATION

Consider the problem given in Section (I.2). In many

‘practical schemes, the time optimal control is usually a relay-

type control. Consequently, plants with numerator dynamics
} . o ‘ ‘

~more desirable to consider the problem in a co-ordinate system

which does not involve derivatives of the control variable.

to the probﬁem of finding such a state representation of the

ana]ogbus to that for ordinary systems without time de]ay].

k¢

1. TRANSFORMATION

Consider the plant (I-5). The numerator polynomial N(s)

in the transfer function is assumed to be of order k = (n-1);

L
3
i:-.

'l : . i
' M. Athans and P.L. Falb, Optimal Control,(New York:
McGraw-Hi11 Book Company; 1966) pp. 182-187.

i
P
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~y(s) . N(s) ..,n-]._,..j..an ...... ii{, .“1 ...... 0
H(S) = = = 11-1
v(is) D(s) n

In order to eliminate the derivatives in the control force, a
state vector x(t) is constructed with components x](t), xz(t),

- xn(t)2 such that

x;(t) = y(t)

x,(t) = y(t) = hyv(t)

x5(t) = y(2)(£) - hov(e) - hv(t) I1-2
| ) ( -.I) . ° .in:-zi . . .

xn(t) =y h (t) - h]v ) - e - hn—]V(t)

Or, written in a concise form;’for i=2,3, ... . n

y(t)

x](t). |
y(-Te) -

x.(t)
i

i

-1 ‘
5 vm=-T)eyn. o 11-3
m=1 1-m

Following the derivation technique of Athans and Fa1b3,-

2

Note that this transformation technique can only be
applied to the time delay systems with ki(n-1). If k=n, then
X;{t) = y(t) - hyu(t) + hyy(t-r). It would be impossible to
obtain an explicit relation of y(t) in terms of x(t) and u(t).

3
Athans and Falb, op. cit.

gy



14
if h., h are.éhosen such that
1 n-m
“hy = b B
T “n-l n-m-1 I1I-5
hn-m = bm - g;]- hiai+ﬁr‘
fOY‘ m ='],2,A..-.',(n'2) , ;
e - 11-6
h =5b - ad.Ny’ : ) -
R T g T - |
. then it can be pfoved that
x (t) = x () +h v(t),
i i+l . i ’
fOY"i = ]’2, LY ’(n-]) o II-7
| . n-1 ” |
and' }xn(t) = - 135 a, x1+](t) + hnv(t)
Derivatives in v(t) have thereby been eliminated.
~ Recall that
v(t) = u(t) - y(t-¢) | 11-8
- ) ’ X . .

so that the differential-difference equation satisfied by x(t)

can be wr1tten 1n the form

;. "~f' N

/ , SN
k](t) 0 1.0 ... 0 Xi(t)
x,(t) o' 0 ;;f] ,i;i;. o.: xz(t)
)'(n_.l (t) 0 o 0 | 0 ‘.. "'l ' Xn-l.(t) .
X, (t) -a -ay  md, il -a x (t)
n 0 2 n-1{"n*"
L / K ) AN -/

"fg(gq'n..cont'd;).
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| /
~h 0 0 ... 0 X (t-1)
1

-h 0 0 ... 0 | | x (t-1)

0 Rk 0. xn_l(t.T)
~h o 0o ...-0 x (t-1)

e
-
N
—
=
N

+ . u(t) ' , I11-9

or, more succinctly, as
“x(t) = A x(t) +A x(t-t) + hu(t) I1-10
0 1 :
Suppose that the transfer function has only k-zeros
and n-poies, with k<(n-1). Substituting in -
bn—] = bn-2 = e =‘bk+1,=_0’v

and bk # 0, it can be seen that Eqs. (I1-9) and (II-10) still
hold, except that

h, = h, = ... = h =0 o 11-11

and hpog = bs | 11-12
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n-m-1 _ :
h = b - P} h.a, II1-13
n-m m i i+m
i=n-k
m = 1’2, « e ,(k"])
n-1
h =b - z a.h. I11-14
n o . i i

Under this transformat1on of co-ordinate systems, the
target set, of course, w111 also be changed The fo]10w1ng

section is concerned W1th the transformed target set. The case

of the dynam1ca1 system with k-zeros (k < (n-1)) w11] be discussed.

The new target set, under th1s transformat1on, is essent1a1]y
the same as that for the ord1nary system W1thout time de]ay

For the case k = (n- 1), the der1vat1on is more stra1ght forward
2and is comp]ete]y ana]ogous The der1vat1on here fo]]ows the

..method by Athans and Fa]b4
II. TRANSFORMED TARGET SET

Suppose that there'eXists an admissible time'optimal
control u(t) (i e. |u t)] < 1) wh1ch steers the output y(t) from
some 1n1t1a1 state yt (o), oe [-T, 0], to zero in minimum time

t*, and keeps it there for a]] t > t* Then the output vector

4 :
Athans and Falb, op. cit., pp. 647-660.

Fnbeits
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/ \
y(t)
y(t)
Cy(t) = ceee =0 I1-15
yi-2 ey | |
y(n-])(t)
N 7 for all t > t¥*,
Setting h] = h2 f ver = hn-k-] = 03 the dynamical system

with n-poles and k-zeros cah be represented by the following

system: |

>'<‘](t) = x (t)

2
x (t) = x (t)
2 3
X (t) = x (t)

f-k-1 -k |
x (t) = x (t) - h  x (t-t) + h u(t) 11-16
n-k n-k+1 n-k 1 n-k

X (t) = x (t) - h x (t-t) + h u(t)
n-k+1 : n5k+2 n-k+1 1 ~ p=k+]
. n-1 . ' A
xn(t) = - I aixi+](t) - hnx](t—r) + hnu(t)

i=0
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where
x (t) = y(t
1
x (t) = y(t
2 .
“(n
xn_k(t) =y
(1) (n
X =
n-k+1 Y
o (i) (n
x = :
n-k+2 Y
“x (t) = y(n

n .

Setting y(t) = y(t)
that -

XT(t) = x (t)

2
and

X

(t)
n-k+1

.18

)
)
-k-1)
- (t)
-k) ” : -
(t) + b y(t-1) - h u(t) -
- n- - n-k
-k+1) o .
(t) + h  y(t-t) - h u(t)
- n- . n-k '
+ h - y(t-1) - h u(t)
n-k+1 n-k+1
1) (k-1) |
(8) +h y (ter) + ot h y(ger)
. n-k S - n-1 :
- (k-1) '
- h u (t) - ... - h u(t)
n-k 3 : n-1 .
| (n-1) : o
.=y - (t) = 0, for t > t*, implies
= X (t) = 0 for all t > f*. I1-18
n-k -
= h

[x (t-1) - u(t)] for all t > t*
n-k 1 -

I1-19




Let n(t) represent the k-dimensional vector whose

19.

components are the last k components ‘of the vector x(t); i.e.

n(t)

Substituting
R

/
n (t)
1"

n'(t)
2

n (t)
-k

N\

N\ /
X
n-k+1

X. -
n-k+2

x
)ﬁ N ?

X (t)
n-k+1

(t)

(t)

.OQV'

t)

\

7

+,u(t)i.for,a11 t

11-20

C1I-21

‘ fnto'the last k-eqdationé-of eq_(fIQZO), it can be shown that

N(t) = Qu(t) | for allot X x

o 11-22
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-k 1 0 0
h
n-k
i |
n-k+2 0 1 . 0
Q = 'hn—k

h
n
- - ~a ,('an—k+1) ("an-kfz) e (-an_])
n-k '
\ /
I1-23
is a k x k matrix. _
The solution to Eq. (II-22) is
N ’ t—t* A . N
n(t) = L0 {t-t%) n(t*), for all t > t* 11-24
Q(t-t*) S |
where e - is the fundamental matrix of Eq. (II-22).
Let | | '
a'(t) = [oy(t) a,(t) ... q ()] 11-25
- ' Q(t-t*)
represent the first row vector of the fundamental matrix e .

Then, for t > t¥,

<alt), (e

k
zoq (t) n (t*) 11-26
= i i

n (t)
'l .

i=1
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k
or, X (t) = = q (t) x (t*) I1-27
i=1 i n-k#i - -

for all t ; t*.

If u(t) steers the output y(t) to zero and keeps it

there afterwards, then

x (t-1) = 0, for all t > t* + ¢ . 11-28
From Eq. (II-19) and the constraint Ju(t)] < 1, it can be
deduced that ' |

X (¢) = -h u(t) forall ts>t*+ ¢ I1I-29
n-k+1 . - - n-k - L. T : .

and hence that

o L | | |
- x  (t) | =21 for all t > t* + ¢ 11-30
_ h n-k+1 - = . _
n-k s

Eq. (II-30), in turn, implies that

< 1 for all t 2t + 1 II-31

J - o ae)
- n-k :

From Eq. (II-12), it is known that

h = b 11-32
n-k -k ' o

Therefore, Eq. (II-31) may be written as

o A e o T s e g N a aea by
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: .
— <<g(t), g(t*i>’ <1 for all t > t* + 1 I1-33
k
or
1 k :
— I q (t+g) x (t*) | <1 11-34
b i=1 i : n-k+i -
for all t > t*,
-Let G denote the set of states of x giten by
G = { x: X =X = ... =X = 0;
1 2 n-k :
k ' A , - _
,2] 4  (t+7) X pei (8%) | < 15 for all t > t* } 11-35
1= . - o =

The time optimal problem of steering the output y(t)

to zero in minimum time t*, and keeping it there afterwerds,

therefore, requires that the state x (o), o e[—f, 0],

: t+g
belong to the set G for all t > t*; hence G is called the

-target set.

When the plant has n-poles and k zeros, but no time

5
de]ay, 1t is known that the target set

b—<ﬂ"°5’n<’t*> |
-t ,

G' = {x: x =X = ... =X

= —S'I;
1 2 n-k -

for all t > t*} I1-36

Ibid.
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Except for the term gq(t) and g(t+T), the two sets G and G‘
are identical. Therefore, rather than reproducing proofs
which are completely anangous to those for the systems with-
out deIay, three theorems are now stated W1thout proof. The
interested reader is asked to refer to Athans and FaIb for

deta1Is of the ver1f1cat1ons

Theorem II-1

The e1genva]ues of the matr1x Q are the zeros of the

system (II 1)

Theorem I11- 2
| * The target set G, def1ned by Eq (II 35), is cIosed and

convex, and the org1n 5 = 0 is an eIement of G

Theorem II 3
B If any of the zeros of the system (II 1) lie in the

right- hand compIex pIane, then the target set G cons1sts of a

| -s1ngIe point, the or1g1n of the state space, i.e.

G = {x: x = 0} , 11-37

From Theorem II-1, the vector g(t+t), and hence the

Ibid.

Lngmy
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set G for the system (II-1) can be constructed if the zeros
are known... =’ | ‘-"

From Theorem II-2, it can be established that if the
target set G is closed and convex, then the opt1ma] control
must sat1sfy Pontryag1n S Max1mum Pr1nc1p]e7 Hence for the
]1near prob]em, the t1me opt1ma] contro] must be bang- bang in
nature, unt11 the traJectory 1ntersects the target set G.
After 1ntersect1on, the contro] u(t) must be changed S0 as to

keep the state X (o), cge [-1, 0], in G for all t > t*,

'For X (o) in G, z(t) can be found from Eq (II 19)

“ From Theorem II- 3, 1t is seen that 1f the system (II 1)
'conta1ns zeros in the r1ght hand plane, the opt1ma1 contro]
1.prob1em is essent1a1]y the same as that for systems w1thout
anumerator dynam1cs Th1s top1c has been 1nvest1gated by

.Westdai 5 therefore, the case of r1ght hand p]ane zeros W111

not be cons1dered in th1s thes1s

7

L.I. Rozonoer, "L.S. Pontryagin's Pr1nc1p1e of
Maximum in the Theory of Optimal Systems", Avtomatika i
Telemakhanika, Vol. 20, Nos. 10-12, 1959, pp. T1447-T458;
E.B. Lee,‘lgg. cit. : o ‘

. |
- J.A.S. Westdal, "T1me ‘Optimal Control of Linear
Systems with Delay" (unpublished Master's thes1s, the
University of Man1toba, 1969).

LR




CHAPTER 111
CONTROLLABILITY AND STABILITY

The properties of stability and controllability play
an important role in the control theory. Most of the criteria
used for testing the controllability of a dynamical system
with éeros can also be applied to.the system with time delay

in the feedback. This chapter develops some properties of

controllability and stability.
I. CANCELLATION AND CONTROLLABILITY

Consider the system

i(t) = A0£(£5~+ Ali(t-w) + hu(t) I11-1

s

where A , A are constant n x n matrices,

0 1 S . -
h = a constant n x 1 vector, :
x(t) = an n-dimensional vector, '
u(t) = the control input}

and‘r is a positive'conétant representing the time delay.

t

Let E, be the initial time segment sdch that
o .

Eto 5 {t: t ¢ [to‘T, to]} I111-2

Let ¥ represent the Banach space of real n-vector-valued
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continuous functions, defined on Et » and T, 'the Tinear space
of functions, def1ned on the 1nterva1 [t*, t*+T] The system
(ITI-1) is said to be controllable to a funct1on g(t) e T
with“fespect to the space of initial funct1on v if, for any
_g1ven $ € ¥, there ex1sts a time t¥*, t < t*'< ©, and an

adm1ss1b1e control segment u[t » such that

s t¥*+q
x(tsty,0,u) = g(t), t e [t*, tg+r], waere x(tst ,g,u) is the
so]dtion of (III- 1), start1ng at t s w1th 1n1t1a1 funct1on
"¢ and contro] u(t)

The: system is said to be comp]ete]y state contro]]ab]e
to g(t) 1f for any 1n1t1a] set E , it is poss1b1e to'
construct an adm1ss1b]e contro] u(%) e Uy wh1ch will transfer

_a]] g1ven cont1nuous 1n1t1a1 funct1ons g(t) to g(t) in the

f1n1te t1me 1nterva] [t . £ +T]

The fo]]oW1ng theorem estab]1shes a necessary and
suff1c1ent cond1t1on for the contro]]ab111ty of a genera]
11near t1me de]ay system w1th a sca]ar 1nput Proof of th1s

- theorem fo]]ows that.g1ven by Westda].2

1 : '
Uy, ther] denotes the segment of the function

u(t) ¢ U over the interval [to, t*+t]. U is the set‘of
adm1ss1b1e controls. o

2

Westdal, wg.’cit., pp. 5-9.




Theorem 111~

1

The system

nonzero Y‘DW

where I repr

that

x (t)
2

=

=
™
=
o
3
]

Q
=
o,
>
i x
- Came
ot o+
~—
i it

Proof

x (1)

x(t) = A x(t) + A x(t-1) + hu(t)
0 .

vector H ex1sts, such that

‘ o 'TS -]
.ﬁ(sI -A -Ae ) h=0
‘ 0 1 ‘

esents the n x n matr1x

— [x(t) - x (t)].
= L [x (t) - x (8)]
T/m 1 -2

= —[x (t) - x (t)]
5

/m m-1

some arbltrar11y Iarge 1nteger

an n- d1mens1ona1 vector, =1,2,

TS . 1 m
= 1im { ——— )
Comre | T+ TS/m _

.27

I11-3

is compIeter state controIIabIe if and on]y 1f no constant

ITI-4

Suppose that there ex1sts a mn x 1 system such

ITI-5

the n d1mens1ona] vector of the system (III 3)

.M.

ITI-6
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It has been shown by Repin3 that gm(t) converges to X(t—r) as

‘m>~  for any funct1on x(t) wh1ch fulfills the requ1rements

of cont1nu1ty in the 1nterva1 [t -Ts t*], ji.e.

' gm(t) = x(t-t) as m » o,

IT1-7

Hence the system (ITI- 3) can be approx1mated by the

fo]]ow1ng system of ord1nary d1fferent1a] equat1ons of order

(m+1)n
x(t) = A x(t) + A x (t) + hu(t)
R L
x (t) = —[x (t) - x (t)]

S . T/m -'I-'l.

where i =1, 2, ... , m, and x (t) = x(t).

Let
W
x(t)
X(t) = Lo » a (m+1)n vector
: ém(t)’
\ /
/N
h
_(_)_:
B = "~ , a (m+1)n vector
0
N/
3

e

Repin, op. cit. pp. 254-261.

ITI-8

I11-9

ITI-10
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and
‘ )
AO 0 0 0 A]
m m
- 1 -— 1 0 0 0
. T n T n - - . -
A= 111-11
m | m
0 0 0 -1, -— 1
v . T .t N
\ ¢ | ) . . /

“a (m+1)n x (m+1)n matrix, where In is the n x n identity
matrix. Then the system (III?S) can be represented by the

System
X(t) = A i(t) + E u(t) B - HI-12

It is well known that the system (III 12) is comp]eter
state contro]]ab]e 1f and onIy 1f the compos1te (m+])n X (m+1)n

matr1x Pt, where

Pr=C[B:AB: ... A" g1 N ¢ s R ES

is of rank n%. It has been nroven by Brockett and Mesarovic5

4
K. Ogata, State Space Analysis of Control Systems,
(Eng]ewood CI1ffs Prentice-Hall Inc., 1967), pp. 385.

5

R.W. Brockett and M.D. Mesanov1c, "The Reproducibility
of Multivariable Systems", Journal of Mathematical Analysis
and Applications, Vol. II, Ju]y 1963" pp. 548-563.
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that the matrix P' will have rank n if and only if no constant

nonzero row vector H exists, such that

it
o

-
H(sI -A) B 111-14

WEstdaI6 has shown that in thé& limit as'm » =,
-1 . - TS
(sI ~A) B=(sI -A -Ae ) h ITII-15
R 0 1 -
Therefore, the system (III 3) will be compIeter state
controIIabIe 1f N0 NONzero row vector H ex1sts, such that
"TS
H (sI - A -A e ) h =0
_ 0. _ .
Q.E.D.

Suppose that the system (III ]) represents a system w1th
numerator dynam1cs and the transfer funct1on 1s.

n-1 n-2 | |
N(s) Pp-1s *hppst T+ ... 4 bys + by

S+ a + ... *+ a.s + a
' | 1 )

ITI-16

where D(s) the denominator polynomial of H(s)

=s"+a s"V 4 .. +as+a
n-1 1 0

6 :
Westdal, op. _cit. pp. 7-9.
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and N(s) = the numerator polynomial of H(s)
- n-1 n-2 ‘
= b,_qs * bn_zs + o0 4 b]s f bp
Then
0 1 0 0
0 0 1 0
A = . . . c- . . . o« . . * s . .« . III—]7
0 0 0 1
-a0 —a] -2, aC IR
\ : /
7 \
~-h 0
h 0 0
-hz 0 0 . 0 : ) |
A] = R I11-18
hpy 00 0
-hn 0 0 0
N /
/ N\
an.d h-l
L ) |
h = 2 , 111-19
h
n
\ /
where‘ hy = bn_] _
’ I11-20
n-m-1 _
hn"m = bm - .iE_'l h a'i’l"m

m = 0, ], 2, “ .o 3 n"‘z.
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If N(s) is of order k < {(n-1), then

h = h = . = h =
1 2 : n-k=-1
h =D 111-21
n-k . k .
n-m-1 : :
hn'm = bm - Yz]:-k h'ia-i.'.m' l“n." .0’]92, .--.’., k"]

From Eq. (III 17), us1ng repeated row operat1ons, it

_can be deduced that

/
. | wqls)
-1 1 w.(s)
(T -A) "h =———| 2
o .0 E LsI'- 601 EREE g
4w (s)
)
N(s) '
sN(s) - h.D(s)
. A
= ( ) B . e e I1I-22
- D(s - -2 - '
ST M ANs) - ‘s“, i 2n (s )
- i=1
n_]'- ‘ n-1" n-i-j
s"TIN(s) - % © h.D(s)
o R 1
N | )

The matrix (sI - AO)
if and on]y 1f the po]ynom1als w](s), wz(s), -

'lsI - A ] have no common factor, If (sI - A )

-1

h is said to have no cance]]at1on

G wn(s) aad

ﬂ has a
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cancellation, then the system cannot be controlled in the
direction of the cancelled mode. The foIIoming Iemma is
ihtroduced to provide a hecessary and sufficient condition
for canceIIation in the transfer matrix. | Proof of Lemma ITI-1
for the de]ay system is compIeter ana]ogous to that g1ven by

7

Ogata for systems W1thout de]ay

‘ Lemma III 1

-1 | _
The matr1x (sI - A ) h has a cancellation if and only

1f the rank of the matr1x

P=1[h." A i .e. T A "f?g ] : - II1-23

~is less than n.

As a consequence of the Iemma; the foIIow1ng theorem is

| estab11shed

7Theorem III 2

Cons1der the- system with numerator dynam1c$,

k() = Aoa(t) + Ali(t'T) + b ou(t) - 111-24

Ay and h are as given by Egs. (III-17), (III-18)

whehe AO’

and (III-19) respectively. A necessary and shfficient

7
Ogata, op. cit., p.389
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condition for the system to be completely state controllable
is that (sI - Ao)fln has no cancellations.

Proof If (sI - AO)'] has no cancé11ations, then the

rank of

is equa1 to n. From Brockett and Mesarovics, it is known that
the matr1x P w11] have rank n 1f ‘and on]y 1f no constant

nonzero row vector H ex1sts such that
“H(sI - Ag)"Th = 0 | 111-25

It is known that

/ .
. N(s) )
‘ sN(s) Q}h]D(s)
(s1 - Ag)~'h = — . I11-26
' D(s) )
- _- n- _._ .
s" ZN(S) - x "1 2h.D(s)
R B L
' " n-1 .
sh=TN(s) - =z sn—1-]h.D(s)
\ S - )

where N(s) and D(s) represent'the numerator and denominator
po]ynom1a15 of the transfer functlon H(s) as g1ven in |

Eq. (111 16). |

" From Eqs. (III-17) to (III-19), it can be deduced that

8
Brockett and Mesarovic, loc. cit.

—— So———
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N\
( N(s)
. sN(s) - hqD(s)
( ’ —TS)—] ]
sI-A_-A.e h =
. 0 ] - ’?D'('S)'!'N(S)E-TS
. N , n-2 .
s"2N(s) - % s"=1-2 p(s)
i=1 !
- n-1 ~i-1
M IN(s) - sn41 hiD(s)
\ ‘l_=1 /
111-27
Therefore,
” | ( - -ts)-Ih D(s) ( . )-I
sI - A - Aje ~h = sI - A h
e T TLoD(s) + N(s)eTTS 007
- o 111-28

From Theorem III 1, 1t is proved that the system (III 24)
is compIeter state controIIabIe 1f and onIy 1f no constant
'_nonzero row vector H ex1sts, such that

-
.8 Sy 'y =0 - 111-29

ﬁ(?? '4Ao_’ A h
Hence it can be concIuded that 1f no constant nonzero row
vector H ex1sts such that B
-1 :
H(sI - AO) h =20 111-30
then, no constant nonzero row vector H can make

: =15 =] -
~H(sI - AO - A]e ) h=20
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In other words, the system (III 24) is completely
state controIIabIe if (sI - A ) ]h has no canceIIat1ons

Conversely, if the system (I11-24) is not completely
state controllable, then thefe exists a constant nonzero
row vector H, such that | | |

-1ts -1

H(sI - A0 - Aje ) h=0 I111-31

-which implies that

-1
H(sI - A)) h =0 111-32

_1'
Hence P has rank less than n, 1nd1cat1ng that (sI - A') h has
0 .

a canceIIat1on

Q.E.D.

From Theorem III 2, 1t can thus be concIuded that the

deIay system with zeros is compIete]y state controIIabIe 1f

and onIy 1f the rank of the matrix P, where

. . n-1
ong SR

is equal to n.

II. STABILITY

Consider the homogeneous linear time-invariant system

with delay:
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X(t) = Agx(t) + A

(x(t-T) " 111-33

which represents the dynamicaIVpIant with numerator dynamics
and u(t) = 0. A_ and A] are as given in Eqs. (III-17) and

0 : .
(ITI-18). Figure (IIT-1) depicts such a homogeneous system. |

'.\
=X
w.
S~
!

’17

_"l;s

F1gure (III 1). ‘Bquk“Diagram‘of the Homogeneous

. System w1th T1me De]ay

"Theorem III 3

The system (III 33) is stab]e, 1n the sense of. bounded-
input- bounded -output, if and on]y 1f aII the roots of the

polynomial

¥(s) = D(s) + N(S)effs

"
o

I11-34

‘lie in'the open Teft-hand plane.
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D(s) = the denominator polynomial in H(s)
= s+ an_]s"f] Foeotas +a
. _ II1-35
and N(s) = the numerator polynomial in H(s)
- n-1 n-2 ‘
bn_]s oo+ bn_zs ‘ + ak + bIS + b0

" Proof. From Egs. (III 3) .to (III 12), 1t has been shown
that the system (I11- 3) can be represented by a system of
Tord1nary d1fferent1a] equat1ons Sett1ng u(t) =0, therefore,
- the system (III 33) .can be represented by the foIIOW1ng system

of order (m+1)n, in the I1m1t as m + o
X(t) A X(t) II11-36

"where ‘the matr1ces X(t), and A are as def1ned in Eqs (II1-9)
and (111 ). |

9

It is weI] known” that the system (III 36) is stabIe if

and on]y if every e1genva]ue A of A sat1sf1es Re{A} < 0

'Now, the e1genva1ues of A can be obta1ned by sett1ng
et. (A -A ) =0 : I11-37

- But

¢ .m A) = (A | '")'""( D(A) ¥ — N(x).}
et. - A) = (A + WAy —— N
- S G (T +28) J q11.38

Athans and Falb, op. citiyp. 149
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In the Timit as m » =,
' . pJmn -tx _
det. (AI - A) = lim {2 +‘;) [D(X) + e N(x)] I111-39
Moo . : .
Since the roots of ( At —) always lie in the left-hand
p]ane for m>0and v >0, therefore the system (III-33) will

be stab]e 1f and only if the e1genva1ues of the po]ynom1a1
D(r) + ef*TN(x) =0 - I111-40

lie in the Teft hand plane.
| Q.E.D.

Various graphical techniques are available for determ1n1ng
“the roots of the po1ynom1a1 (IT1- 40) " For examp]e, the Satche

D1agram]0 can be applied to obtain the p]ots of f(s) D(s)/N(s),

and the unit c1rc]e g(s) = -e” TS, as s enc1rc1es the right

half comp]ex p]ane The system W111 be stable 1f the two plots

..are. comp]ete]y d1sao1nt, or, 1f the two 1ntersect, then if

' Re[g(s)] > Re[f( )] when f(s) 11es w1th1n the unit circle.

Other methods that can be app]1ed are, Just to mention a few,
the D1rect Nyqu1st p]ot, the D decompos1t1on and the root 1ocus
method.

'Appendix C gives a FORTRAN IV'computer programme which

10 - -
-Bellman and Cooke, op. cit., pp. 452-453,
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can be used to determine the stability of the system (III-33)

using the rbot Locus method; as developed by Huang and Li]].

This method considers the equation:

D(s) + KN(s)e ™ =0 CI11-41

where K is the forward gain of the system. If the complex

variable
S =+ - | . 111-42

then setting the real and imaginary parts of Eq. (III-41)-

equal to zero, it can be deduced that

Im[D(w,p) 3 Im[N(w,p)] +'Re[D(w,p)]»ReEN(w,p)]

cot wt = ‘ - 2 . s ‘
- Re[D{w,p)].In[N(w,p)] - In[D(w,p)].Re[N(w,p)]
= Fluw,p) o - 111-43
and o ) ,
' K = l N “fp eTP | R 111-44
N(w,p) | | o

From Eq. (IIIe43),Ausing p as a parameter, solutions

of w can be obtained graphically by plotting cot (wt) and

F(wsp) versus w. From the so]utions in w and p, the complete

11 :
I. Huang and L.L. Li, "Root Locus Determination of
Linear Systems with Transport Lag", IEEE Transactions on

Automatic ‘Control,Vol. 12, -No. 357 0ct. 1967, pp. 632-634.
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root locus, and hence the gain curve, can be plotted. With
K= 1, the corresponding characteristic vaIues of p of the
system (III 33) can be determ1ned from the ga1n curve. The

system w1II be stabIe 1f aII these p s are Iess than zero.
ITI. DOMAIN OF CONTROLLABILITY

Consider again the control process

Cx(t) = A x(t) + A

0 (X(t-1) + hu(t) 111-45

which represents the system with numerator dynam1cs The

output of the system is y(t) = x](t)

The domain of G- controIIab1I1ty is def1ned as the set

“of continuous funct1ons X, (c) d(o )]2, o e [ -1, 0], wh1ch

can be steered to the target set G in the n- d1mens1ona1

Banach space of reaI cont1nuous funct1ons by an adm1ss1b1e

“control u(t) on some. f1n1te 1nterva] t £ [t R t*+T] The

“control u(t) is adm1ss1bIe 1f 1t sat1sf1es the constra]nt

lu(t)] < 1. If the system has k. zeros, the target set G

" is defined by Eq (I1-35); 1.

. ] k ) ' . .
=) |- > 4 *
' .' 2 n-k .0,’ bk 1E]qi(t+T)xn-k+i(t)

for all t > t*} . I11-46

4
-
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Th1s def1n1t1on is similar to that for the domain of

Null Contro]]ab111ty g1ven by Westda]]B

* ‘Theorem 111-4
Consider the system (II;—45)

x(t) = Agx(t) + Ajx(t-1) + hu(t) 111-45

O

with control cohstraint
lu(t)] < 1 111-47

AO’ A; and h are as def1ned in Eqs (IIIf]7),'(III—18) andj
(III- 19) respect1ve1y If 1 S
(a) the system is comp]ete]y state contro11ab1e, and
-(b) every e1genva1ue A of :
. - -tS . .
v(s) = D(s)_+ N(s)e : 111-48
satisfies Re[A] < 0,

then the domain of G- contro]]ab111ty is the set of a]] real
funct1ons x(t) in ?, the Banach- space of rea] cont1nuous
.n d1mens1ona1 funct1ons on-the 1nterva1 [to-T, to]
- 1'l4

Proof. It has been proved by Westda that if the

13 :
Westdal, op. cit., p. 13.

14
Westdal, op. cit., pp. 13-14.




system (111-45) satisfies condltlons (a) and (b), then a]]
X (o) £ C°[t —T, t ]]5 can be steered to the or1g1n of the
state space.

Now, it has also been established in Theorem II-2
that the set G defined by (III-46), is closed and convex,
.haV1ng the origin x = 0 as an element. Since all |
Xy (0) e C [t -T, t ] can be steered to a point within G,
therefore, the doma1n of G- contro]]ab1]1ty is a]]
X(U)sC[t-T,t]
| Q.E.D.

15

43

Co[to—r, to]l represents the set of real functions

continuous for t ¢ [to-T» t,l.




T e s St AT

CHAPTER v
OPTIMALITY CONDITIONS

It has been shown by Ichikawa] and Repin2 that the
dynamics of a time delay system described by-a set of
differential-difference equations can be expressed in terms
of an infinite-dimensional system of ordinary differential |
equations. "It has also been established fn Chapier II that
the tdrget set G of the delay system with numerator dynamics
is closed and convex so that the optimal contro]iforce must
satisfy Pontryagin's Maximum Princiﬁ]e This chapter is
concerned with the 1nvest1gat1on of the opt1ma] cr1ter1a
and the transversa11ty cond1t1ons of the costate of the time
optimal regulation problem. The results obtained, except

for the transversality conditiens, are simi]ak to the ’

optimality conditions given by Kharatishvi1i3 and Westda14.

1 ,
Ichikawa, loc. cit.
2
Repin, loc. cit.
3

L.S. Pontryagin et. al. The Mathematical Theory of
Optimal Processes, (New York: Interscience Publishers, 1962),
pp. 213-226. - S

4
Westdal, op. cit., pp. 15-27.

SOSRAL . I
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I. THE ADJOINT SYSTEM

Consider the system

x(t) = Aoi(t) * Ax(t-t) + nq(t) IV-1
~ with continqous initial function |
i(to+o) = éto(a) = g(c) R g e [-1, 0] IV-2

where T > 0 is the time delay,
- AO’ A.l are nxn constant matricés,
“h is a nx1 constant column matrix,
g(t), the n-dimensiona] state vector,

and u(t), the control with constraint
lu(t)] < 1 : 1v-3

The probTem is to find an optimal control segment u(t t*+1]
. . . . . 09

that will steer the state x(t) from the initial state

&t (6) = ¢(c), 0 ¢ [-1, 0], to the target set G in minimum
0 . .

time t*, and to keep it there afterWards; i.e.

x,. (o) & G, for all t > t*. IV -4
o L=

Such a problem is called a time optimal regulation problem,

or a sett]ing problem.
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" Theorem IV-1

Let”u(t) be a time optimal control for Problem IV-1

which transfers the initial state Xy (o), oe[-1, 0], to the
| target set G Let x (c) denote the state of the system
(IV-1) on the time opt1ma1 traaectory correspond1ng to u(t).
Let t* be the m1n1mum t1me Then there exists a costate

. vector p(t) such that
. | . T T
(a) R(t) = 'Ao E(t) - A]~‘ ~E(t+T) IV-5

“where AiT denotes the transpose of Ai'

(b) u(t) = - sgn {h'p(t)} te[t,, t*] IVv-6
where u(t) = - sgn {0} implies that u(t) is undefined.
‘Pronf | | | )

The system (1V- 1) can be represented mathemat1ca]]y

by the ord1nary vector d1fferent1a1 equations'

’&(t) = A &(t) + A, (1) +‘hu(t)»
9 L
&](t) = r/m [x(t) - x (t)]
Ep(t) = [.51_“;) 7102 A
Xn(t) =7 b q(8) - x (0]




e

U

x (t) = x(t-1) as m > o,
- S IV-8

[}
=
Q.
>
—
“*
~r
i

- x(t Qvil) is an n—dimensjonal vector
r=1, 2, e sm
Eq. (IV-7) can be written more succinctly as
X(t) = AX(t) + gp(t) V-9

where X(t), A and B are as defined in Eqs. (III-9), (III-11)
and (III-10) respectively. The initial state.z_t (o) = ¢(o),
: 0

o e [-1, 0], implies an-friitial condition

X(t)) =X | IV-10

o

and the target set §t+T(o) e G, for t > t*, implies a target

set
X(t) ¢ 6G' , for all t > t¥Hg ' IV-11

where G' represents the target set in the (m+1)n-dimensional

space; i.e.

I o ' ' *'.
G {X: x5 X Xps «ov » X € 6, for a]] t > t*+7}

Iv-12

so that G' is closed and convex if G is closed and convex.
Suppose that the costate vector corresponding to the

state is
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_ T T T T '
CH() = Tw () T (8] L (1) Iv-13

where y_i(t) is an n-vector, i =1, 2, ... , m, and yo(t) = w(t).

The Hamiltonian for the system (IV-9) is

41 + <\_X_(t); H(t> + <§u(t), ﬂ(t> | ‘IV—14
1 +-<:§0£(t), E(tz>> + <<}]5m(t), y(€£> + <:§y(t), ﬂ(€2>
+<a]ﬁ[_&kt)f§](t)]s ﬁ](t_> +<ﬂ1ﬁ[5—](t)f_iz(t_)]’ y_z(t>

... +<;]7E[5m_](t)-5m(t)], ﬂm(t>

pm o4
"

From Pontry,agin's. Principle, it can be deduced that5

u(t) = -sgn {BTW(t)} IV-15
and o H(t) = - 34 1V-16 |
. | 2X o |

Eqs. (IV-15) and (IV-16) imply that

u(t) = -sgn {hTw(t)} Iv-17
and T w(t) = -A Tw(t) - w.(t)
| . ¥ o ¥ 7w 4t
° 'l ) ,
wo(t) = — [w.(t) - w, .(t)]
J /m 9 J+1 IV-18
( | J = ]s 2’ s s m-1
W(t) = <A Tw(t) + — w (t)
_m . 1= 'r/m -m

5 )
Athans and Falb, op. cit., p. 383.
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Let " p(t) = u(t)
; o ) IV-19
“p () =— w.(t)
an E?(’).“x/m W,

J=1,2, /oo s m

Then the following relations can be obtained:

B(E) = -agTR(E) - py(t)
e |

IV-20-
j = ]’ 2’ LI ’Am-]

by(t) = o= L= Ta(t) + p ()]
A

and u(t) —sgn‘{ﬂ?g(t)} ) Iv-271

~ Taking .the Laplace transform of Eq.'Kiv-éo)ef"it:can
be shown that’ | '
1
(1= sr/m)m

B, (s) ATTa(s) T vz

In the Timit as m + o ,

. 2
B (s) = A]TE(s)eTs: o - IV-23
which implies that
T .
py(t) = A, p(t+T) 4 | | IV-24

6
. Ichikawa, loc. ci

t
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Therefore,

o -
~~~
‘—i-
N
]

_AdTB(t) - A Tp(t+r) IV-25

and u(t) = -sgn {h'p(t)} for t e [t., t*] 1V-26
0

Q.E.D.

For the system (II-9)'with k‘zeros in the forward

transfer function,

/- | | | N

0 1 0 . 0
-0 0 T ... 0
AO = " . . . . . . - . . . . . . . IV'27
0 00 1
-2, -3y -ay -an_]‘
\ ,/l
and :
( )
0 0. 0 0
0 0 0 e 0 '
A] = ‘ IV-28
—hn_k 0 0 Ceae 0
-h 0 0 0
n

\ _ /

From Eqs. (IV-25) and (IV-2 ), the following corollary can

be formed:




Consider the system with forward transfer function,

k k-1
~y(s) b,s®™ + bp_qs + ... + bqs + b
H(s) = - X k-1 ! ° IV-29

n n-1
v(s) s +a .s + ... + a.s + a
n-1 1 0

and time delay in the feedback path. The control u(t) has
constraint |u(t)| < 1. -For u(t) to be time optimal, it is

necessary that

. n
(a) p(t) =agp (t) - 2 h.p,(t+r)
i=n-k
IV-30
pi(t) = a.i_-lpn(t) - p.i_](t>’
i=2,3, ... ,n.
and (b) u(t) = -sgn' { = hip.(t) } - IV-31
q=n-k 1!
where
T ' , .
p(t) = Ipy(t)  py(t) ... p ()] IV-32
is the adjoint corresponding to the state'vectorli(t)
describing the system (IV-29);
-k = By
n_

m=-1 - IVv-33
and ' h =hb - z h.a '
n
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m=20, 1, 2, ... , k-1

For the system with k zeros, from Eq. (II-35), the

target set is

1 k
= {y: SX = ... = =03 S . + . * 3
G .'{5 X, =X, Xk 0 bk iE] q,(t T)Xn_k+1(t ) | £ 1
for all t > t*} IV-34
Let 3G denote the boundary of the set G. Then
1T k
= . = = = =0 — . . * = 3
3G {L. X=X ove =X 0; bk 121 q1(t+T)¥n_k+1(t ) 1
for all t > t*} ' IV-35

3G is a smooth (k-1)-fold.

In general, the target set is in such a form that no
easy algebraic expression can be written for 3G. Rather than
spending a lot of effort in search for an aTgebrgic expression,
only dynamical systems with one zero will be considered from

now on.’

II. TRANSVERSALITY CONDITIONS

Consider the dynamical system whose transfer function

has only one zero, i.e.




where.ai, bj = real constants.
The control process with a time delay in the feedback

can be represented by the following systems of differential-

difference equations:

x(t) = A x(t) + Ax(t-t) + hu(t) ' IV-37
where
/ N
0 1 0 0
0 1 1 0 |
Ay = o 1V-38
0 0 0 1
-ao -a] -a2 -an_])
/ , N
0 0 0 0
0 0 0 0
A]=-............'.. 1V-39
0 0 0 0
-h 0 0 0
n-1
-h 0 0 0
n




|
y
{
|
|
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/ N
0
-0
“h = T IV-40
0 .
hn-]
h
. N /
n-1 - b]
| ; IV-41
and h =b - a b
n 0 n-1"1 .
Suppose that
x1(t) ='x2(t) s ... = xn_](t) =0, for all t > t* 1V-42
Then v
: _.xn(t) ' '
u(t)-é x](t-r) - : for all t > t* 1V-43
and x(t) = x (%) e BUEE) el gy 4 ) g 1V-44
b
where B = — : I1v-45
b1 - _

From Eqs. (II-20) to (II-35), it can be deduced that
"hyule) = x (£) = x ()e BT eor gy by e 1y-ss

Hence the target set G is defined by the relation:
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=" M = = = ={)* oo : -_BT .
G = {x: Xy=Xp,= ... =X Q,: lxh(tf)]'é [b]je ;

n-1
for all t > t*} 1vV-47
Futhermore,
x (t)
xq(t-1) = A 4 y(t) for all t > t* - IV-48
b .
1

‘Since both [x (t)] and |u(t)] are bounded for all t > t*,

v

therefore lXi(t-T)I is also bounded for all t > t*. Using

Schwarz's inequality, it can be deduced that
()] < [0+ e BT for a11 ¢ e [tx-r, t]

Howevér, this is oh]y a crude upper bound for ]x1(t)!.'
Derivation of the exact boundary for |x](t)| in the interval,
t ¢ [t*-t, t*], is quite involved, and is beyond the scope

of this thesis. At ihis point, it is sufficient to realize
that a least upper bound does exist for Ix](t)l in

t e [t*-t, t*]. This least upper bound can be described by

a bounded positive real decreasing function y(t) defined

on't g [t*-7, t*] such that
|x,(t)] = v(t) for all t ¢ [t*-1, t*] IV-49

Let the-de]ay_éystem-be'?epresented,bygthe‘equiva1ent

infinite-dimensional system
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CX(£) = AX(x) + Bu(t) IV-50

where B and A are as defined in Eqs. (III-10) and (I11-11).
Then the target set G' in the (m+1)n-dimensional space is

specified-by the equations:
x](t) = x . (t) = cee = xh_](t) = 0 1V-51

% ()] < Ibi]eBT  1v-s2 3

%75 ()] = v, (2%)

[x7208)] 2 v, (t%)

for t > t* IV-53

[ (8)]

A

Yy (8%)

where x]r(t) represents the first component of the state

vector
(t) = x(t-It
m
IV-54
— _‘rT .
and YY‘(.t) " 'Y(t —m-)a

YER) 2y g (8%) 2 el 2 y(e%)

If there exists a time optimal control which steers
the output y(t) = X1 (t) from some initial state yt (o),

e [-t, 0], to zero, and keeps it.there, at t = t*, one of




the

(a)

of x](t) for cases (a) and (b) and cases (c) and (d) respectively.

. The trajectory hits the end point of G and some’ equalities

57

following considerations applies:

The trajectory hits the end point of the target set G,

i.e. at }xn(i%)l = ]bileBT, and none of the equalities

in Eq. (IV-53) is satisfied. | | |
The trajectory intersects the target set G at a point in

the interior of G, and none of the equalities in Eq.

(IV-53) is satisfied; i.e. the trajectory hits the

interior of the target set G'.

in (IV-SS) are satisfied.
The trajectory hits the interior of G, and some of the
equalities in (IV-53) are satisfied.

Figures (IV-1) and (IV-2) illustrate the time response

I

\

\V4

Figure (IV-1). x](t) 1s steered .to the target x](t*)=0 -

- and none of the equalities 1in (IV-53) is satisfied.
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x, (£) A

vy (%)

¥ ; '
0 (¢ 1L///’;:— £

Figure (IV-2). x](t) reaches the target x;=0 at t=t*

and some of the equalities in (IV-53) are satisfied.

Case (a
Consider first the case when the trajectory hits.the

end point of G, so that G' is specified by the equations:
xa(t%) =0, a-=1, 2, R
_ BT ’ -
'lxn(t*)] = ]blle : IV-55
ir(t*) = free , r=1,2, ... ,m

Consider the costate W(t) again. From Pontryagin's Maximum
Principle, it can be deduced that

w(t*) =k, - a=1,2, ... ,n

o a | | IV-56

and yr(t*)

fl
o
™
-
i
—
.
NN
v
-
3




Recall that
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“p(t) = w(t)
IV-57
. o .
and t) = w.(t R =1, 2, «v. ,
n py(t) =——w;(t) m
Therefore,
p (t*) =k s o = ]s 2: s N
o o IV-58
and - Er(t*) =0, r=1, 2, s M

From Eqs. (IV-20) to (IV-24), it can be established

that

By (£) = A Tp(t+r)

By (t) = py (- ) = A" p(t

P_](t =

Em(t)

1 * = * = = *
Since R](t.) Ez(t ) cen Em(t~)
Therefore in the limit as m + » ,

A]T p(t+z) = 0 for t ¢

Hence if the trajectory hits the

(m-1)
+ - T)
 IV-59
T
p(t + E)
0
(t*-7, t*] 1V-60

boundary of the target
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set G, the costate must satisfy the condition

“p(t) = - AOT' p(t) - AT p(t+r)  for t e [ty, t*]
where
' IV-61
A]T p(t+t) = 0 - for t e (t*-1, t*]
or, more simply, the conditions
Pyt = agp (t) + bypy ((t+c) + (b, - ay 1by)p, (t+1)
for t ¢ [to, t*-1]
and . IV-62
p,(t) =ap (t) for t e (t¥-1, t*]
1 0 n
and
pi(t) = ai_]pn(t) - pi_](t) for t ¢ [to, t*] IV-63
i=2, 3, s N
with the terminal'conditions
(t*) =k, a=T1, 2, .. 5 IV-6
Pa(t~) ka a =1 n | 4

" 'Case (b
If the trajectory hits the interior of the target set

G, the necessary conditions that the costate must satisfy are
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the same as those in case (a), i.e. Egs. (Iy-ﬁl) to (IV-63)

still ho]d; ekcept that the terminal condition is now

Pd(t*)

[}
~
-
Q
it
—
-
N
-

-
=
]
-

IV-65

]
o

énd pn(t*)

From cases (a) and (b), it .can be seen that the costate

" p(t) must satisfy the conditions:
. T T .
p(t) = - Ay R(t) - A 'p(t+r) for t e [t,, t*]

with _‘ ~ IV-66
A]TR(t'l'T) =0 for t ¢ (t*"_"l‘s t*] |

Condition (IV-66) is exactly the same as that given by

Kharatishvi116

Case (c

Suppose that the trajectory_hits the end point of the

target set G, and at some point x (t*) on the boundary

Tyr+]
- defined by the equalities of Eq. (IV-53), such that

x](t*)'=}x2(t*) = .., = xn_](t*) =0
|x (t*)] = |b ]eBT
n (L 1V-67

ij(t*) = free, J =7,2, ..., r, re2, r+3, ..oy m

(eq'n cont'd)

6
Pontryagin et. al., loc. ci




and

Then, in additiqn

p,(t*)

i)

{=]

and Ej(t*)

there may be a

Er+](t*)

Now from Egs.

Rr+1(t) - Er(t

or that

Let

62

3 G::-l, 2, ,n
IV-68
j=1,2, s Ty P2, P43, ... ., m
( N
Ky
0
# 0 IV-69
. .
0
N 7
_(IV—Z])'to‘(IV-24), it is known that
T ) = p. (t - 3¢5 IV-70
m 1 m
=p . (t+ L) IV-71
] m :
’ T 2 ';0 Iv-72




then ' R](t) = 0. for t e (t*-t, t*] IvV-73
except at t = t* - 7'
In Section (IV-1), it has been shown that
T
By (t) = A" plter) IV-24
Thergfore
AT B(tr) = 0 for b (trer, t4]
\ IV-74

except at t = t* - ¢',

Hence if the trajectory hits the end point of G, and

if, at some point
I*] S r+] (t*) ] = Ye+1 (t*.)

is satisfied, then the costate must satisfy the necessary

conditions

é(t) == AOTR(t) - A]TR(tfr), for t e [t,, t¥-1]
| '  IV-75a
and é(t) = - AOTg(t) for t g (t*-7, t*] I1V-75b
with A Tp(EReragt) g - IV-75c
and pa(tf) = kd a =1, 2, > N - 1Y-75d

Since Eq. (IV-75) is a system of .1inear differential-




difference equations, it can be represented by a linear

combination of the equations

p(t) = - A Tp(t) - A Tp(t+r) for t e [t,, t*]
0 1 ' 0 .

with A]Tg(t+7) =0 for t e (t*-1, t*]
and pa(t*) = ka s 06 =142, voo 5 N

‘and the equations

p(t) = - A Tp(t) - A Tp(t+r)  for te [y, t*-c]
p(t) = -AOTE(t) for t e.(t*fr,'t*jh

with' A}Tg(t*+r-r') % g 0

and p(t*) = 0 .
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IV-76a
IV-76b

IV-76c

IV-77a
IV-77b
I1V-77c¢

IV-77d

If the trajectory intersects the targef set G, and more

than one of the equality conditions in Eq. (IV-53) are

satisfied, then the'costate p(t) can be described by a linear

combination of the solutions of Eq. (IV-76), and of Eq. (IV-77),

each of which satisfies the corresponding terminal condﬁtions

T. b oo bkt T pm_ong T
A] p(t+t) # 0 at t = t*-7'+ i t¥*-7"+ n

‘where t*-t', t*-7", ... , are the instants in which the

equalities in Eq. (IV-53) are satisfied.

IVv-78
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Substituting in AOT and A]T from Eqs. (IV-38) and

(IV-39) into-Eqs. (IV-76) and (IV—Z7), the costate p(t) can

- be éxpressed as a linear combination of the solutions to the

fo]]owing equations

Py(t) = a pn(t) + byp, ;(t+c) + (ba-b]an_])pn(t+f)y

IV-79a
fOY‘ t Sv [to, t*."'l']
py(t) = applt)  for toe (t¥-q, t*] 1V-79b
p;(t) = ai;]pn(t) - pi_](t) for t e [t,, t¥] IV-79c¢
i =2, 3, ... 50
7 . * = - -
w1th pa(t ) ka s a =1, 2, R IV-80
and "
P](t) = aopn(t).+‘b]Pn_](tf1) + (bo-b1an_])pn(t+t)
' IV-81a
for t e [tO’ t*'T]
p,(t) = ap,(t) for “t e (t*-1, t*] " Iv-81b
pi(t) = ai_]pn(t) - pi-l(t) for t ¢ [Po, t?] I1V-81c
.i = 29 3, .-.‘.',.,n
with b]pn_](t+r) +'(bo-b]an_])ph(t+r) #0 - | I1V-82a

for t = t* - !
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and " p(t*) = 0. I1V-82b

It is interesting to note that the results obtained
here agree exactly with those given by Westda17 who used a

reversed time approach.

Case (d
When the trajectory hits the interior of G, and the

boundary point
%9 pag (B * Y () | IV-83

following the derivation as in case (c), it can be shown that
Eqs. (IV-76) to (IV-82) still hold, except that the terminal
conditions in Eqs. (IV-76c) and (IV-80) now becomes

p(t*) =k , a=1,2, ... , n-1
o o | 1V-84

i}
o

and pn(t*)

To recapitulate, it cén'be concluded that if there
exists a time optima1 control which steers thé'output y(t)
of the nth-order dynamical system with onﬁy one zero from
some initial state to zefo in"minimum time t*, and keeps it
there afterwafds,'then'the?following”conditions must be

satisfied:

7
Westdal, op. ¢it., pp. 15-27.
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(1) The costate p(t) must be a solution to the system of

differential-difference equations

pp(t) =a p (t) + h _qp . (t+7) + h p (t+7)

for t e [to, t*-1] IV-85a
pq(t) ='aopn(t) for t e (t*-1, t*] I1V-85b
; - - . " -
pi(t) ai-]?n(t) pi-l(t) for t € [to, t J IV-85¢

i=2y,3, «¢ec 5 N

(2) If the trajectory hits the interior of the target set G,
then the costate p(t), as defined by Eqs. (IV-85), must

satisfy the terminal conditions

]
o
w
Q
]
ot
"3
N
°
")
=
]
—

X - -

p, (%)
*
P, (t*)
If the trajectory hits -the boundary of G, then

a T 1V-86

p(t*¥) =k, » a=1,2, ..., 1V-87

(3) If the trajectory intersects the target set G, and if at

some point

..'_:r.. = *.."..1 -
.lxl(t* T Y o= y(t* -1 m{) 1V-88

where. © > ' > 0

t
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is satisfied, then the costate B(t) is a linear combination
of the solution of Eq. (IV-85), with terminal condition

as described in (2), depending on the situation, and

the solution of the following systems of differential-

difference equations:

Py(t) = a p (t) + hn_1pn_](t+r) * h op,(t+q)
for t ¢ [to, t*-1] I1V-89a
p () = agp (1) for t e (t*-1, t*] |  IV-89b
.. = - *
pj(t) ;7P (t) pi_](t). for t e [t;, t*] [V-85c
.i = 2’ 3, LY 9 n -
WIth  hp gPpq (E¥+T=T') 4 b pp(t*ee-c?) £ 0 1V-90a
and ' p(t*) = 0 » IV-90b

If more than one equality conditions in Egq. (IV-53) are
satisfied in the process as'the'output is steered to

the zero state, say at t =.t* -t - q/m, t* - " - o/m,
t¥ - ¢'" - ¢/m, and so on, then the costate p(t) is the
resultant vector of the superposition of the solutions

of equations similar to Eq. (IV-89), with terminal.

conditions satisfying

hp1Pp-q(t+T) 4 h p (t+r) # 0 o IV-91




(5)
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at t = ft*' T E s ¥ Y, L R % » and so on,

and  p(t*) = 0,

upon the ]1near'combination of the solutions to Egs.
(Iv-85) and (IV-89).

If the control has constraint [u(t)]| < 1 for-all t > 0,
then

u(t) = -sgn {h'p(t)} for t e [ty, t*] IV-92
and
u(t) = xq(t-1) - -l])— x,(t) for t e (t*, t*+t] IV-93
. 1
) . -e{t-t*
u(t) = - %— x,(t*) e 2 ) for t > t*+ ¢ IV-94
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CHAPTER Y
EXAMPLES - -

In Chapter IV, necessary conditions have been given

for the existence of a time optimal control, which brings the

th

output y(t) of the n""-order dynamical plant with one zero

- from some initial state Yy (¢) = ¢(0)s o € [-1, 0] to the
) 0

zero state and maintains it there for all t > t*. Based on
these necessary conditions, the optimal control can be found
quite easily byemeans of an iterative procedure. To

demonstrate the technique, two examples are given here.

From Eq. (IV-75), it has been shown that ‘the costate of

~the system (IV-37) can be described by a system of differential-

difference equations with advanced arguments, which implies

~ that the adjoint system may only be solved for decreasing

time. The,cosfate can be obtained by means of the method of
steps; but this method can'be qufte tedious. It is more
desirable to implement the problem oh anaTog or digital computers.
However, most computers can only work in incfeasing time;
therefore, to tackle this synthesis problem of optimal control,
it is necessary to convert the costate to a system of linear

d1fferent1a1 difference equations: w1th retarded arguments,

“and.solve- the adjoint 1n reversed t1me.4 A state z(t) is
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if defined such that
“z(t) = p(t*-t) V-1

Since the system considered is time invariant, to
simplify mathematical derivations,Afrom now on, it will be
assumed that t_ = 0. |

In Egs- (iV-85) to (IV-94), let p(t) be replaced by

' z(t*-t){ Then if there exists a time optimal control for
tﬁe dynamical system (IV-37), the fo]]owing conditions must

be satisfied:

(1) z(t) must be a solution to the equations

Z'll(t) = -aozn(t) - hn_.lzn_](t-'r) - hnzn(t-'r)
V-2a
for t e [t, t*]
z](t) = -aozn(t) for t e [0, T) V-2b
and )
, = o o V * -
zi(t) ai_]zn(t) + zi_](t) for t e [0, t*] V-2c¢

i=2,3, ... 5N

(2) If the trajectory hits the interior of the target set
G, then z(t), as defined by Eq. (V-2), must satisfy

the terminal conditions

z (0) = k_ , a =1, 2, ..,', n-1
o o . ' V-3
zn(O) =0 .
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If the trajectory hits the boundary 3G, then
z.(0) =k, o=1,2, ... ,n V-4
(3) If the trajectory intersects G, and at somé point
X (8% = ' = )| = y(t* - 70 - ) V-5
- "L' - — = -— T - — -
] - . Y' m

then z(t) is the superposition of the solutions of Egs.

(V-2) and the equations:

z,(t) = - agz,(t) for t e [0, 1) V-6a
z](t) = -aozn(t) - hn_]zn_](t-r) - hnzn(t-r)
. V-6b
for t e [1, t*]
Zi(t) = -ai_]zn(t) + zi_](t) for t e [0, t*] .
i=2, 3, » N
with )
L +' o
hn-lznf](T T) hnzn(r ) £ 0 -
and z(0) =0 where 7 > t' > 0

(4) If the control u(t) has constraint lu(t) | < 1, then

u(t) = -sgn {h'z(t*-t)} for t e [0, t*¥] V-9
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u(t) = xp(t=r) <= x () for te (t*, trar]

I —_—

u(t) B(t-t*)

xp(t*) e for t > t*+r

o

1
Eqs. (V-2) and (V-6) are differential-difference
equations with retarded arguments and can be simulated quite
easily on compﬁters. To distinguish the two states in Eqsf
(V-2) and (V-6) from dne another, the notations Z(t) and
Y(t), respectively, will be used. | |
Based on these necessary conditions, the time optimal

control can be synthesized by using the following procedure:

-0

(1) Approximate a minimum time t* [TF]; it is assumed that
the output can be brought from an initial state to
zero and maintained there in the time interval
t e [0, t*+r].

(2) To simplify the problem, it is also assumed that the
trajectory hits the envelope of x](t), as defined by .
Eq. (IV-53), at t = t* - " --t/m, and slides along

the envelope so that

le (t‘T)l = v(t) for t ¢ tt* - " - %, t* - ' - %]

1

where T > " > t' > 0

t' and t" are denoted as TPI and TII respectively in

the computer program. It can be seen from the relation
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hpoq2goq (E827) + bz (t-1) £0 J1s

for  t e [1", Tf]

that any shape of the terminal condition for the super-
imposed costate Y(t) can be approximated by varying
' and T".

To generate the control u(O £xa] [U], the terminal

conditions for the adjoint system 210, 720, Y10, Y20,

etc. are also approximated. Together with TF, ¢' and
" the adjoint system is simulated in reversed time to

obtain SIG, where

SIG = h! (Z+Y) for t e [0, t*] V-13

From SIG, the SW1tch1ng instants TA and TB are obtained,
and hence the contro] segment [U].

Applying the control force u(t) as described by Egs.
(V-9) and (V-10), the system is simulated. The time

in which the output reaches the zero state is denoted

as t, - TEND - 1, where.TEND is the settling time.

Let ERRTF stand for the difference. between t, and TF,
the final time [TF] will be equal exactly to the minimum
time t* if ERRTF = 0. |

By adjustment of the parameters TF, TPI, Z10, 720, Y10,

Y20, etc., the minimum time t*, and hence the control
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segment Ui, t*er]? can bequund, by which the output

can be steered from an initial state to zero and kept

there afterwards.

The system (IV-37), of course, can be simulated on
an analog computer, and the parameters adjusted by hand
after each run. However this'procedure can be rather tedious,
if done manually. Use of the digital computer is more

desirable.

Simulations can be set up quite easily on an IBM
System/360 computer by means of the Continuous System
Modeling Program (s/360 CSMP)]. Coupled with a multi-
dimensional direct search subroutine, the system can be
simulated on a digita1 computer, and the parameter adjusted

in accordance to the search strategy to obtain the solution.

The pattern search of Hooke and Jeeve;z is used in the
examples presented here. A brief description of the search

method can be found in Appendix A. The search routine was

3

origfna]]y written for use with FORTRAN IV . To 5“it;the

1 ' :
System/360 Continuous System Modeling Program (360-
CX-16X) User's Manual (H20-0367-2). IBM Corporation,
Technical Publications Department, White Plains, New York,

2
Hooke and Jeeves, loc. cit.

e e

‘ 3 . ‘ : < Ce b
S MacDonald, Toc. cit.
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the purpose here, the routine is rewritten for use with
s/360 CSMP. |
The search strategy will be most effective if an

appropriate objective function can be found to represent

the system. The objective function to be minimized, 1n

the time optimal problem here, is ERR, where

ERR

"

E1 + m ISEU + m,yISEX2 + ... V-14

E1 2

'|ERRTF| + (ERRTF)
| V-15
ERRTF = t, - TF

and ISE stands for integral square error, so that
ISEU is the integral square error in u(t), and ISEX2 is the
integral square error in xz(t) and so on for t > t*. mi,

m . are arbitrary large constant mu1t1p11ers, so that a

5
run may be penalized for any deviations of the system state

from the target set G, i.e. x(t) ¢ G, and for any inadmissible

control, i.e. |u(t)] >.1, for any t > ty. Figure (V-1) gives
the general flow diagram of the problem (IV-1).

A SECOND ORDER EXAMPLE

Consider a second order'dynamica1 system with forward

transfer function
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. Figure (V-1). ‘General flow diagram of Problem (IV-1).
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s+
H(s) = V-17
s(s+2)

There is a time delay of 1 second in the feedback path, and
a control force u(t) satisfying the constraint |u(t)] <1

for all t > 0. Figure (V-2) depicts such a system.

uls) + TS ‘ ylo)
_7\ His) - s{s+2)
-4
e

Figure (V-2). A Second Order System.
From Eqs. (II-3) to (II-10), letting

y(t)

xq(t) =
] . V-18
Xo(t) = y(t) + y(t-1) - u(t)
the control process can be described by the system
x(t) = Ax(t) + A x(t-1) + hu(t) V=19

!
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where

g |
Ay = A, = L | y-20

ho = V-21

From Eq. (IV-47), the target set

G = {x: X, = 03 |x,(t*)] < e for all t > t*}

V-22

The costate described in reversed time, is the linear

combination of the solutions of the following equations:

i](t) =0 for t e [0, 1)
i](t) = -Z,(t=1) + Z,(t-1) for t e [1, t*]
. V-23
Zz(t) = Z](t) - 222(t) - for t e [0, t*]
Z(0) = k
and 7
Y](t) = 0 for t e [0, 1)
9](t) = =Y, (t-1) * Y, (t-1) for t e [1,t*]
V=24

| Qz(t) = Y () - 2¥,(t) for t e [0, t*]
Y(0) =0 . |
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WIth  Yp(t=1) = Y(t-1) £ 0 for t . [r',7"]

where 1 > t" > ' > 0

The system (V-19) is completely state controllable

“because the matrix P, where

P=r[h ‘VAoﬁJ = N V-25

has rank 2.
From Theorem (III-3), the system (V-19) is stable in
the bounded- 1nput -bounded-output sense because the roots of

the equation
p(s) = sZ 4 2s + e-Ts(s+1) =

Tie in the open left-hand plane. Hence the domain of G
controllability is the entire two dimensioné] Banach space

of real continuous functions.

The system (V-19) was simulated on an IBM System/360

Model 65 computer. The minimum time t* and control segment

Yo £¥] for various initial states were found by means of
, ‘ .

the pattern search. Figure (V-3), (V-4) and (v-5) show

the system responses and control segments required to steer
the output from three different 1n1t1a1 states to zero in

minimum time t* and ma1nta1n it . there afterwards. The dashed
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Tines in the figures indicate the natural responses of the
system (¥-19) when u(t) = 0. Figure (V-6) depicts the
trajectories 6n the (x]—xz) plane. The computer program

used. for simulating the second order system can be found

in Appendix B.
Contruction of the optimal control segment for the
system (V-19) was first attempted using only the solution

of Eq. (V-23) as the costate. In other words, keeping Zq,

and 220 fixed, the optimal control was synthesized by a one
dimensional search on TF. However, in so doing, it was

" discovered that for certain initial states, it was impossible
to maintain the system states in the target set G without
violating the control constraint lu(t)] <1 for t > TF.

The T1inear combination of Eqs. (V-23) and (V-24) was then
used as the adjoint system for the system (V-19). Keeping
Z]0 and 220 fixed as before, this became a five dimensional
search: namely on TF, 1', 1", Y,, and Y, . It was found

20
that all initial states cqu]d now be steered to G and

maintained there. Tables (V-1). and (Veé) show some of the

~data obtained.
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Figure (V-5). Optimal Solution for the

System (V-19) with x(0) = (-5, 3).
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TF 1.17 *kk kK *kk 3.76 4.17

ERRTF 0 okk *k*x *kk .004 .003

Table (V-1). A one dimensional search on TF.

*** jindicates that the trajectory originating from this

initial state could not be maintained in G.

Y14 1 4.52- 6 - 5 4.95 12

-1 0.1. .0.075 - 5

0
5 5 5 5. - 5
220 6. o 0o 0 0 0
0

0.46 - 0.09  0.51  0.83
o ] 1 0.96 1 0,68 1

TF 1.176 . 2.05 2.0 3.95  3.76  4.18

ERRTF 0.001 ~0.006° 0.004 0.001 0.004 0.009

Table (V=2). A five dimensional search.




A THIRD ORDER EXAMPLE

Consider a third order system with a time delay of

0.2 second in the feedback path and a forward transfer function

| §+0'. 3
H(s) = ' V-26 o
(s+1)(s+2)(s+5) ' N R

The control force u(t) must gatiéfy the contraint

i,
any I 5+0.3 y(s)
> His) - A >
T /<' P (et ) (s+2) (5+5) | |
.ero.ZA-

Figure (V-7). A third order system with numerator

dynamics and delay in the feedback.

The process can be represented by the system

CA() = Agx(t) + Ayx(t-0.2) + hu(t) V-28




where
( 0
A0 = 0
-10
o=
with

To bring the

88

1 0 [0 0 0
0 1 Ay = |- 0 0l V=29
-17 -8 7.7 0 0
0
1 V-30
-7.7
x](t) = y(t)
xz(t) = y(1)<t) : V-31

x,(8) =y B (e) + y(t0.2) - u(t)

output y(t) to zero and keep it there is

equivalent to bringing the state x(t) to the target set G,

where

is given by -

PXp T Xy =05 |xg(t*)| < 1.068 for all t » t*)

V-32
= [ h:Agh : AgPh ]
0 1 7.7
= |1 7.7  44.6 Ve33.
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From Theorem (III-2), the system is completely state
controllable because P has rank 3.
The adjoint system, in reversed time, can be described

by a linear combination of the following equations:

Z,(t) = -10Z4(t) for te [0, 0.2)
Zy(8) = -102,(t) - Z,(t-0.2) + 7.724(t-0.2) for t e [0.2, t*]
Z,(t) = Z.(t) - 17Z,(t - - V-

2l ? 1( ) 3( ) for t ¢ [0, t*] 3
Z3(t) = Z,(t) - 825(t)

and
Yp(t) = -10Y,(t) | "for t e [0, 0.2)
Vp(E) = =10¥4() - Yp(£-0.2) + 7.7Y5(£-0.2) for t e [0.2, t*]
Y, (t) = Y (e) - a7y (t) '4 Cv-35
3 Cfor toe [0, t]
V3(t) = Yp(t) - 8Y4(t)
With — ¥,(t-0.2) = 7.7Y5(t-0.2) # 0 for t e [r', ]

where 0.2 > " > 7' > 0.

From Eqs. (V=9), (V<10) and (V¥-13),
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u(t) = -sgn {SIG} for te (0, t*]

V-36
where SIG ='{22(t) + 7.723(t)} +'{Y2(t) - 7.7Y3(t)}
V-37
and u(t) = x](t—O.Z) - x3(t) Cfor t e [t*, t*+0.2]
YT V-38
= xy () o0-3(t-t%)

for t > t*+0.2
Using u(t) = 0, for all t > 0, the system (Vv-28)
found to be stable, because simulations show that the system
state x(t) eventually settles down to the drigin from any
arbitrary initial state.
~Construction of the time optimal control u(t) was
attempted, at first, using only Eq. (V-34) as the costate.
However, it was discovered that for the third order system
(V-28), it was impossible maintain the system state in the
target set G without violating the control constraint
ju(t)| < 1, for t > TF. The synthesis problem was then tackled
again using the superposition of Eqs.(V-34) and (V-35) as the
adjoint system. The prob]em;.using pattern search,.now
‘became a seven-dimensional search problem: namely on TF, Z]o’
Zao» s ' Yqg and Y, . Figure (V-8) and (V-9) show the |
subsequent system responses from two different initial states
. and the corresponding optimal control ségment u

(0, t*+0.2]"
Figure (V-10) is the proaect1on of the tra3ector1es on the
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(x7-x,)s (x3=x,) and (xq-x3) planes. The computer program

used to simulate the.system (V=28) can be found in Appendix B.

In the examples, it was assumed that the trajectories
will hit the interior of the target set G, rather than the
boundary 5G. Attempts have been made to force the trajectory
to the boundary éG of the target set. However, these were
.successful only for certain initia] states in the state
space; and the amount of computer time required proh1b1ted
a detail mapping of the initial states from which the system
state can be steered to 3G. Derivation of the conditions,
which determines when the trajectory would hit the interior
of G, and when it.would hit 3G, is rather invo]Qed, and not
as straightforward as in the case of dynamical systems without
- time delay, and is beyond the scope of this thesis. However, |
it can be mentioned that in the case of the second order
system (V-19), those system states,'that could not be maintained
in the target set G after hitting the target at an interior
point without using a superposition on the adjoint system,
could not be steered to 3G as well. From the examples
considered, it can be concluded that a Boundary region does
exist for x](t-T}, for t e [t*, t*+t]; therefore, to bring
the output of the system from an initial state to zero 1in
minimum time and keep it there afterwards, it is required

that the adjoint must be a linear combination of the solutions




of Eqs. (V=2), (V«6) and (veZ).

To give aniapproximate idea of the computing time;
assuming that a reasonably good initial approximation has
been made on the values of the system parémeters, a typical
run on the second order system requires approximately nine
minutes, and on the third order system, approximately twenty
minutes'of Central Processing Unit (CPU) Time on the computer
in order to obtain the optimal solution. The number of
iterafions and computer time required to obtain the time
optiﬁa] control, of course, are highly dependent on the

initial guess of the values of the parameters to be adjusted.




CHAPTER VI
CONCLUSIONS AND PRQBLEMS
FOR FURTHER STUDIES

The movement of a control process with numerator
dynamics can be described in a co-ordinate system which does
.not involve derivatives of the control function u(t). The
“transformation technique used is applicable to systems with
or without time lag. In the regulation problem, the target
set is transformed from a one-point set to a smooth k-fold.

It has been proved that the system with numerator
dynamics is completely state.controllable if and only if no
cancellations .occur. This condition is sjmilar to the
contro]]abi]ity criterion for systems without delay. From
controllability, it has been .further deriVed.that if the
system is stable, all initial states in the Banach space of
real continuous functions can be steered to the target set
G by using a bounded control |u(t)] < 1.

The optima]ity cohditions for the delay system with
only one zero have also been given. In working out the
examples, it was discovered that, for some cases, the system
state could not be brought to the target set G, and.kept
‘there, unless the transversa]ityvconditions were applied.

It would certainly be desirable to extend these conditions
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to systems with more than one zero.
The delay system with numerator dynamics only brings
out a particular case in the optimal control of system state
to a function in the Banach space. When the target set
consists of more than one single point in the state space,
the general attainabi]ify and settling problems are practically

lTeft untouched in literature. More research on time delay

systems could be directed to this area. It is believed that

extra necessary conditions can be obtained by a study of the
target set and the set of attainability.

From the investigation of the delay system with only
one zero, it appears that no easy conclusion can be drawn on
the condition which determines when the trajectory would hit
the interior of the target set G, or when it would hit the
boundary. It would be desirable if some compiete theory
could be developed in this area.

The IBM System/360 digital computer provides facilities
for solving the time de]ay~prob]em'ih the form of
Continuous System Modeling Program (s/360 CSMP). Coupled
with some direct search strategy;,solutions to the delay
system can be obtained fairly easily by trial and error.

The pattern search of Hooke and Jeeves has been rewritten

'for use with s/360 CSMP. The search strategy handles the

problem quite efficiently even when the system involves
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three or more parameters that require adjusting. By suitable
representation of the objective function to be optimized, the
search strategy should be able to handle problems with any

general cost functional.
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APPENDIX A
PATTERN SEARCH
I. INTRODUCTION

The synthesis prob]em for a 1inear dynamical control

: process w1th time delay can be solved by s1mu]at1ng the system

- on a computer and obtain the opt1ma] contro] by trial and
“error. If the p]ant 1nvo]ves two or more system parameters
that requ1re adJust1ng, the opt1ma1 control w111 not be

read11y determ1ned un]ess some scheme of sequent1a] search
Strategy is used S1mu1at1on of the system can’ be set up on

an IBM System/360 d1g1ta1 computer w1th the help of the'
-Cont1nuous System Modeling Program The d1rect search strategy
‘used in this- thes1s for synthez1ng the t1me opt1ma1 contro]

for the de]ay system w1th numerator dynam1cs is the pattern
'Search method of Hooke and Jeeves] It is fe]t that if an

obJect1ve funct1on can’ be set up proper]y, the pattern search

1
R. Hooke and T.A. Jeeves, "'"Direct Search' Solution of
Numerical and Statistical Prob]ems", Journal of the Association

- for Computing Machinery, Vol. 8, ApriTl.1961, pp. 212-229;

'D.J. Wilde and C.S. Beightler, Foundat1ons of Optimization,
(Englewood C1iffs: Prentice-HalT Inc., 1967) - pp. 307-313;

~ J.W. Bandler, "Optimization Methods .for Computer-Aided Des1gn"

‘Bepartment of Electrical Engineering Publications (Winnipeg:
University of Manitoba, February, 1969) pp. 27-28.
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should be able to handle the linear time delay problem with
any cost functional. When the program is set up to search
for the optimal control, care should be taken in handling
the parameter constraints of the system. The interested
reader is asked to refer to Bandler? and Box3 for a detail

‘discussion on parameter'constnaints.
II. PATTERN SEARCH

Pattern search is a direct search routine for minimizing
an objective function E(w) of several variables, where
‘ wT (w Wy T een wk). The argument w is var1ed until the
minimum E(ﬂ) is obtained. The pattern search rout1ne determines
the sequence'of values for w, while an independent routine
'computeS'the function'Va]ues of E(w) F1gure (A 1) shows a
“two dimensional example of pattern search.

I

“A‘point w' is arb1trar11y selected to be the first

“"base po1nt", wh1ch is denoted as t1s w1th E(w ) = E(t’) = E1

1

fSuppose thatan exp]oratory move: made from t in the +w]

' d1rect10n to- wz with 1ncrement s] resu]ts 1n an obJect1ve

/

Bandler, op. cit., pp. 14-22.

3
M.J. Box, "A Compar1son of Several Current Optimization
Methods, and the Use of Transformations in Constraint Problems",

Computer Journa], Vo] 9, May 1966, pp 67-77.
c
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‘ *
Figure A-1. Example of a 2-dimensional pattern search.

* Bandler, op. cit., p. 61.
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1 2

function value E? < E'; then w* is retained. The exploration

is continued by incrementing W, to w¥. Suppose that

3

E(ﬁs) = g% < EZ, then ﬂ is retained in place of ﬂz, and a

set of "exploratory moves" is said to have been completed

3 2

W’ is designated as the second base point t°.

A “"pattern move" is now made from 32 tovg4, so that
wf =2 2 - ¢] A-1

E4 is not immediately compared with E3. Instead, a local

ekp]oratién is éarried out aboﬁt y4 to correct the tentative

seﬁbnd pattern. Suﬁpose that.a move in the previous

successful +w] direction'fo ES is a success (f.e. E? < E3),

and subsequent moves in the W, direction is a failure, then
“w® becomes the third base point t?. The pattern search

continues with another pattern move to ﬂg so that
w' =21’ - t? A-2

If the pattern move and subsequent exploratory moves

fail, the pattern is destroyed, and local exploratory moves
afe starte; af the previous base.point 33. If this scouting
.expedition locates a better point, then a new.pattern 1s.
startéd aéain. But if, as in Figure (A-]}, no better'point
is found, the parameter increments are reduced, and the
whole procedure is restarted again af théAprevious bése

point, in this case 33. The search is terminated when the
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parameter incremen;s fall below a preselected value.

A flow diagram of pattern search is given in Figure
(A—Z): Tﬁe sequence following the label (:) is for an
initial set of exploratory moves from a base point when a
new pattern must be established. The sequence following (:)
is the basic iterative loop consisting of a pattern followed
by a set of exploratory moves. The sequehce <:> contfo]s
the reduction of step size and terhination of ihe search.

In the time optimal control problem for the systems
with'de]ay, the objective function is chosen as the difference
between the estimated minimum time tf, and the actual minimum
time t*, based on this initial guess, for the state to be
steered to.the target set G. The independent routfne for
calculating the value of the'objeétiVe function is a
simulation of the 'system in this case. A computer program of
‘pattern search rewrjtten for use witﬁ s/360 CSMP is presented
in Appendix'Bf This program is bésed on another computer

‘program written in FORTRAN IV.4,

P.A. MacDonald, "Locating the Minimum of a Function

by Pattern Search", Department of Electrical Engineering

Publications, 69-TR-T2, G-0T1, (Winnipeg: University of
Manitoba, April 1969) ‘ : .
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Figure A-2. Descriptive flow diagram for pattern se-arch:.*
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Hooke and Jeeves, op. cit.,p. 225.




APPENDLX B
$/360 CSMP PROGRAMMES

‘ Both the second and third order examples given in
Chaptéf V were solved by simulating the system on the digifa1
computer and constructing the optimal control by means of
pattern search. Figure (B-1) gives the computer program
used for-simu1ating Fhe second order example with an initial
condition of x = 6 and Xoo = Q. The s/360 CSMP program

lo
used in the third order example with the initial condition

' X(O) = (4, 0, 0) is given in Figure (B-2). Both the second

and third order examples used the Pattern Search Package,

which can be found in Figure (B-3).
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FEEDPROBLEM INPUT STATEMENT Sk

stk OPTIMAL STRATEGY FOR (S+1)/S$(§+2) sk
A E=D SEARCH

INITIAL

FIXSED MeMyNByLIMITHI84141T44,K
ETORAGE S(8),y, M(8), W(8), T(8)
CONST NB=0, N=1, J=0

CONST I5=1, I=1, IT=0

USER SUFPPLIEN INITIAL CONDITIONS

CONET K=%

CONST 5L=00ly RHD=0o%5, LAMBDA=0,0001, LIMIT=100, H=1000000
CONET 210=%,0, 7120=0, ' ‘
CONSYT X10=6,0, X20=0,

CONST TF=5,0, Y10=%.0,y Y20=C,

TABLE W(2)=0,%, W{3)=0,¢

CONST D3=0

NDSART

IF (1I& «NEo 1) GO 7O 81

DELTE =£51L

CHANGE SYSTEM PARAMETER INTC CO=0RDINATE W(I)
WI1)=AL2G(TF)
W4)=031%YLD
W{5)=0o1%Y2D
INTTIALIZE BASE POINT, INCREMENT, CONTRﬁL NO»

DO 52 J=1,K

TLJI=WLJ)
SUJV=DELTA
M(J)=0
CONT INUF

CHANGE CO=CRDINATE VALUE BACK TO SYSTEM PARAMETER VALUE

TE=EXP{W{L))

WT=6%W(2)

WI=6®W(32)

TPI=1oOXSIN(WT)HSIN(WT)

TFIT ={3o0=TPII*COS{WII*COS(WII+TPFI

Figure (B-1). s/360 CSMP Program for the Second Order

Example.
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S Y10=10%W{4)
Y20=10%W(5)

¥eome USTR SUPPLIGZD SYSTEM STMULATION
SORT

TENCDO=1o0=TF
S7={710=220) + (Y10=Y2(0)
Uszi\@SW(gZy”ioO,loO)
DI=INSWIXI0,=16045100)
D2=INSW{X20,=100,100)

CYY=IOR(TPI,K=5)

DYNAMICT
s FREd THE ADJDINT SYSTEM  #odwwk
£31=720=71D

Zi=INTGRL{Z1G,42)

ZiD=DELAY(100451.0,21)
120=DELAY{10Qy100422)
A3=COMPAR(TIME,0,999)

B=0, 5¥73%
Y2D=Y20+CLlY*C2Y* (1o O=A3)%CYY+L34DELAY(100+31,0,Y2)

YiD=YI0¥CLlY#®C2Y# {1, 0=A3)+A3¥DELAY(100+10,Y1)
ClY=COMPAR(TIME,TPI=1,0E=5)
C2Y=COMPAR(TII+1,0F=5,TIME)
Y1=INTGRL(Oo sY1IN)
Y2=INTGRL{Q, ,Y2N)
YIN=(Y2D=Y1D)*COMPAR(TIME,TFI)
Y2N=Y]1=2,0%Y2
1572=71=22
YS5Y=Y1l=Y2
SIG=Z5Z+YSY
TAF={AND{AA, TIME=2,5) 1%L
TBF=(AND(AB,2:5=T IME) ) %L
BA==SIGRUP
£3=5 IG*UP
L=COMPAR(TF,TIME)
GA=INTGRL{Z2:.5,TAF)
FA=COMPARITE,2,5)
Ta={TF=GA)*FA
GB=INTGRL (0, 4TRBF)
TB=TF=(GR

¥ e ol e THE SYSTEM Aok
XID=DFLAY(100,100,9X1)
Vi={X2=X1D+U)*COMPAR{TIME ,TF=1,08=5)

Figure (B-1) cont'd.




V2= XiD=2o 0% X2=U) HCOMPAR{TIME y TF=1,08=5)

X1=IMNTGFL{X10,V1)
X2=IMTGRL(X2T,V2)
UA=COMPAR(TIME=TF,T4A)
UB=COMPZR(TIME=TE,TR)
Q=n1%X1
TMF=COMFER(Q,0,001)
UTF=(XID=X2)% (1, 0=TMF)

UsUBRETMFR(1 0= )% {=1,0+2,0%UA=2, 0%UB} +UTF

EX2=ABS{X2)=2,71823
CI=COMPARI(EX2,0,)
C2=C1+(1,0=C1)%D3
SUE=UERUES{1,0=TMF)
EX2=EX2HTX2EC2% (1, 0=TMF)

CU=COMPAR(ABE{UTF) 1,001

UE={ABS(UTF)=1,0)%EU
ISEXZ2=INTGRL{0.,5X2)
ISFU=INTGRL (00 ySUE)
TEND=INTGRL{TENCO, TMF)
TIMA=YIME=TF

TIMER DELT=0,002, FINTIM=14,0

FINISH TEND=TIMA

TERMINAL

)
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#m=== SET APPROPIATE OBJECTIVE FUNCTIONM, ERR

Wams o £ 7

33
22
23
24
35
&,
&5

Hrmes e

ERRTF=TEND=TF=1,0

FLl=FRRTFHERRTF+ABS (FRRTF)

ERR=F1+IBEX2+100, 0% ISEU

USER SUFPLIED DEEIRED PRINT QUT

WRITE (£,31) X10,X20
WRITE (£,32) XL,X2

WRITE (£,33) 210, 720
WRITE (&£,45) Y10, Y20

WRITE (&,34) TF,TEND,TA,

WRITLE (6,35) ERRTF, ISEU,

FORMAT (' X10 = ' F10oK,
FORMAT (' X1 = ! F10o5,
FORMAT (' 710 = ' Fl0o%,
FORMAT (
EORMAT {
(
(

FORMAT

1

1

1

/* TF
FROaMAT '

yig

nf

'F106.5,

PATTERN SEARCH ROUTINE

Figure (B-1) cont'd.

WRITE {6,44) TFy, TPI 4 TII

T8
5X

35Xy
EXs

55X,

]

! F10057}CX1'

L]

ISEX2

X20C
X2=

720 = v e e
TFE=1F1005,5Xy!' TEND='FLOcT48Xy" TA='F1005,5X,s " TR="F1005)
ﬁRR?F = ’F100515X9’

L

ISEU =

TPI
Y20

o

' Fl0o3)
F1065)
' F10e.5).

TF1l065,5X,?
'"Fl0e5+10X,?
"F100.5)

I5EX2
TIT =

= 'F10,5)
TF1Ge5//)
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FEELA0BLEM INPUT STATEMENTS®®%

iR

NITIAL

#RskkE 4 THIRD DRDER SYSTEM sk
Bgkdkkdk T = (,2  huckdkskk
; ik TARGET IS X1=0y X220y, X3 olEe 10618 ok

STORAGE 5{(8), M(8), WlB), T(8)

FIXZD
CONSY
CONST
CONST
TABLE
CONST
CONST
CONST

MOSORT

IF {18 oNEo 1) GO TOD 51
DELTA=
W{L1)=ALOGITF)
W{2)=001%1710

NaMyNByLIMIT, 18,1417 3JdyK

X10=4,0, X20=0o04 X30=0,

210=2000y 220=004+ Z130=0,

TF=5001 Y10=Go, YZQ=“2600y Y30=1690

W(@)ZOQQQ W{B)=0,3

SL=001,y RHD=005, LAMBDA=0,0001, LIMIT=100,y H=1000,0
K=7

NB=0, N=1, J=0, 18=1, I=1, IT=0

SL

W{3)=0o1%*220
W{6)=001%Y20
W{7)=01%Y30D

DO 82

J=1,K

T{J)=Wi)
S{J)=DELTA

&2 M{J)=0

61 CONTINUE
TE=EXPLWL))
Zi0=10,0%W(2)
220=10.0%W(3)
TPI=0»

ZEFIN{W(E)I I=SIN(W(4))

TII={0c2=TPI)*COSIW(5) ) RCOSIWIB) )+TPI
Y20=10o 0% {5 )

Y30=10,0%W{7)

CYY=IOR{TPI, K=7)

SORT
TENCO

DYNAMIC

=0o2=TF

SZ={7120=To7*I3D)+{Y¥20=To T:Y30)
UP=IN§W(SZ,=10011003

Figure (B-2). /360 CSMP Program for the Third Order

Example.




dedokdokk THE ADJOINT  deckokdoksk

Z3=INTGRL{Z13,D7Y)
Z2=INTGRL(Z20,D12)
I3=INTGRL(Z30,DZ23)
DZi==10o0%73+4{7, 7*ZBP=ZZD)*€Z
D12=71=37,0%123

DI3=12=-8,0%73
CZ=COMPAR(TIME,0,199)
I81=12=ToT*13
120=7220%(100=CZ)+DELAY{50,4002422)%C7
I3D=7130%{1,0=CZ)+DELAY(504002523)%C2
YI=INTGRLI{Y10,DY1)
Y2=INTGRL{Oo 4DY2)
Y3=INTGRL (0, 4DY3)
DY1l==1000%Y3+(7,7%Y3D=Y2D)
DY2=Y1=1T7,0%Y3

113

DY3=Y2=8,0%Y3

CiY=COMPAR(TIME,TPI=1,0F=5)
C2Y=COMPARITII+1,0E=5,4TIME)
Y2D=Y20*CLY#C2Y*{1o0=CZ)+CZ*DELAY(50,002,Y2)

Y3D=Y30RCLYRC2YXCYY*{Lo0=C2)+C2Z¥DELAY{50,002,Y3)

YSY=Y2=To THY3
SI1G=75Z+YSY

TAF= (ANDTAA,TIME=1,2))%L
TBF={AND{8B,102=T IME)) %L -
AA==SIGHUP

AB=SIG*UP
L=COMPAR(TF,TIME)

GB=INTGREL{0o yTBF)
FA=COMPAR(TF,1.2)
GA=INTGRL{1,2,TAF)
TA={TF=CA)*FA
TB=TF=GR

gAogdkk THE SYSTEM  dkadakadonsk

X1=INTGRL{X10,V1)
X2=INTGRLI{X20,V2)
X3=INTGRL{X30,V3)
Vi=X2¥CX*TMF
VZ2={X3=X1D+U}#%CX

V3={ (=106 0*%X1=17o0%X2) ¥TMF=8, 0% X347, 7*(X1D=U) ) %CX

XiD=DELAY{50,002,4X1)

CX COMPAR(TIME,TF=1,0E=5)
=COMPAR(TIME=TF,TA)

UB=COMP§R(TIME=TF,TB)

TMF=COMPAR{Q,0,001)

Figure (B-2) cont'd.
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- QE=X2%*(1.0=-Q0)+Q0

QA=COMPAR(TF+003, TIMEF)
UTF=(XID=X3)1¥(1,0=TMF)
U=UPRTMFRCX*{(=1,042,0*UA=2, 0%UB) +UTF

 EX3=8BS{X3)=1,0%18

CI1=COMPAR(EXR,00)
CU=COMPAR(ABRS(UTF),1,001)
UFE={ABRS(UTF)=1,0)%EY
SUF=UBRUER(1,0=TMF)
SX3=EX3¥EX3RC1%(1s O=TMF)
C2=COMPARI{ABS(X2),0.001)
XE2={ABS (X2) )%(C2
EX2=XE2*XED % (1, 0=TMF)
FX1=COMPAR(ABS{X1) 40,001}
XE1=(ABS(X1) )*EXL
SX1=XEL#XE1%{1o0=TMF)
ISEU=INTGRL{ 0o ,SUE)
ISEXI=INTGRL{0,,5X1)
ISEX2=INTGRL {00 45X2)
ISEX3=INTGRL{ 00y 8X3)
TEND=INTGRL{TENCH,TMF)
TIMA=TIME=TF

FINISH TEND=TIMA _
TIMER DELT=0,01, FINTIM=28,0

TERMINAL

31
32
33
3
35
&4
#5
46

ST

FRRTF=TEND=TF=0,2
E1=ERRTF®*ERRTF+4BS (ERRTF)

ERR=F1+500% ISEU+100%{ ISEXI+ISEX24I8EX3)

WRITE (&,31) X1N,X20, X30

WRITE (£,32) X1,X2, X3

WRITE (£,4%) TF,TPI,TII

WRITE (&,33) 710, 220 , 130

WRITE {&,4%4) Y10, Y20, Y30

WRITE (£434) TF,TEND,TA,TB

WRITE (6,35) ERRTF, ISFU

WRITE {(&,46) ISEX2, ISEX3

FORMAT (¢ X100 = 'FlQoSySXy' X23 = 'F10059EX9'X3Q = 'Fi0.5)
FORMAT {* X1 = 1 F1l0o5, SXy, ' X2= ' F1005,5X,? X3 TF1065)
FORMAT I10 = 'F100545X," Z273 = 'F1065,5X,' 130 1F1065)
FORMAT TF="F10.5,5Xy? TEND='F10o545Xy!' TE="F1065,5Xs'TB="F10.5)
FORMAT ERRTF = 'F10o5,5X, ' ISEU = '"F10.5)

FORMAT(' Y13 = 'F10o5y S5Xy ' Y20 = *F10:5y 5Xy ! Y30 = 1 FiCe5)
FORMAT (* TF = 'Fl00595Xs? TPL = 'F1065,5Xy "' TII = 'F10.577)
FORMAT (' ISEX2 = 'Fl0oS5,6Xys" ISEX3 = 1F10,5) ‘

ion

- . -

PATTERN SEARCH ROUTINE

Figure (B-2) cont'd.
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SEARCH PACKAGE

BUILY=IN QUTPUT

WRITH
WRITE
WRITE
WRITE
IFLITY

{£436) (WlJ)ed=1sK)
(£437) S{JdYyd=1,4K)
(£538) H,FRR
{6939) NyNB,
oF Qo 1) GO TO 96

115

(MUJ)YyJd=1,K)

USER CAN SUPPLY DESIRED PRECISION FACTOR HERE FOR

PREMATURE STDP OF RUN

IF {FRR oLTo 0,01) G0 T0O g7
IF {15 oEQe 1) H=FERR

15=0

IF (N oGTe
IF {NB oLTe
NB=3

I=}

H=FRER

GD 70 4
START EXPLORATORY MOVES
IF (M{31} oMNE, D) GO TO 2
HH=H

GO 1O &

IF {(H oGTo
IF (M{1) oEQo3)
Bl ==8{1)
WIT)=W{I)
M{I)=3

GO TN ©g
WIT)=W{I)=581(1)
M{Ii=4

GO T3 @

H=ERE

IF {MII) oBRe 2
WII)=W({I)+8({ 1)
M{T)=2

GO TD ¢¢

M{I)=1
IF {1
I=1+3
GO 7O &

I1F {NB oGEs

LIMITY GG TO 98
2) GO0 T 1

ERR)Y GO TO 4
GO TO 3

+ 2,0%8{1)

oDRe M{I) HE

K)y 60 706 9

e GEo

1) G0 7o 13

Figure . (B-3). The s/360

Qo
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CSMP Pattern Search Routine.
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IF (HH 06T HY GO TO 11

WRITE (&4%1) HH

G T 17

PATTERN MOVE

nn 12 leyK

IF (WlJ) oGTo T(J) oANDe ${J) oLTs Co ooo
oRe WI(J) oLEs T{U) oANDo 5{J) oGEs Dot S(Ji==5{J)
P=70J4)

T =WIJ)

WlJI=2.C*%WlJ) = P

WRITE (6442) (T(J),ed=1,K)
HB=H

MB=2

I=1

GO TDh 9E

NB=0

IF (H oLTs HR} GO TO 15

WRITE (£6,43) HB
H=HB

DO 14 U=1,K
M({J)=C
WiJ)=T(J)

I=1

G 10 1

DD 14 J=1,K

IF (ABS(W(J)=T{J}) oGTo 0.5%DELTA) GO TO 11
CONT INUF

IF (DFLTE oLTe LAMBDAY GO TO €7
DELTA = FKHO % DELTA

RIE I Ao J=11K

M{J)=0

S{I)=RHO%S ()

W{JdY=T{J)

I=1

GO TD 1

WRITE {&421N

FORMAT (' CONVERGENCE OBTAINED AFTER ' 13, * EVALUATIONS')

IT=1%
GO TO ¢4

WRITE (£,22) N

FORMAT (' N2 CONCLUSION AFTER ' I3, ' EVALUATIONS')

GO 70 9¢

08 921 J=1,K
M{Ji=0
N=N+1

CALL RERUN

Figure (B-3) cont'd.
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END
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MAT W
MET A
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%@T
ENRMAT
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MAT

PLT X311{X2

1
EXPLORATION MOVE UN
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NE) P BF10.5)

J) ' BF1004/)
= 1 Fl@o%, 5X7 '
= 114,5Xs* NB =

[}

ERR =1 FlDo%/)
I14,5X M{J) = ' 81&4//)
SUCCFQSFULy HH = ' F10.5/77)

J) = ' 8F10.%)

PATTERN MOVE UNSUCCESSFULs HB = ' F10.5/7)

2y TIMA,U)

TIMER QUTDEL=0,05

END

8701

'PUT VARIABLE SE
005 DFLTA

DA
3%
Y2
TR
Ug

N
=

IEEX2

TE
710
A
v2
GR
U
Fy

12002% H

HB

TPUTE

(B00)

NB

INPUTS

e/

QUENCE

WT

57
220008
L

Q

Vi

UE

I8

I

PARAMS

17101400)  23(400

WI TPI TII Y10 Y20 TENCO
up cYy 23 71D 72D &1

72 c2y €1y  viD Y2D YIN
YSY 157 SIG A2 TAF GA
TMF X1D UTF T8 UR Fa

X1 V2 X2 EX2 c1 )
Sy ISEU  TEND  TIMA  ERRTF &3

NB I H HH H I

NB H 1 DELTA I 1T

INTEGS + MEM BLKS FORTRAM DATA CDS
Y} 11+ 5= 146{300% 183(600) 15

Figure (B-3) cont'd.




APPENDIX ©
STABLLITY

The stability of a system with time delay can be
determined by means of graphical methods. However, to do
a point by point'plotting manua]]j can be rather tedfous
and time consumfng. Use of the dIgita] computer and |
CALCOMP Pen Plotter offers‘en easier approech to this prob]em.
In the case of the dynam1ca1 system with numerator dynamics
and a time deIay 1n the feedback path the method of Huang
and L1'I

Let

can be used to determ1ne the stab1]1ty of the system

s=p+jow “ I | c-1

and t be the time deIay ‘Using p as a parameter, the
‘sqution fo Eq. (III 43) cah be found from the graphs of
cot (wt) and F(w, p) wh1ch are p]otted against w. Figure
: (C-I).shows the FORTRAN program used in computing and
calling the CALCOMP subroutine52 to plot these functions.

1
Huang and Li, loc. cit.

—

2 ' ' :
: Programming CALCOMP Pen Plotters, (Anaheim: California
Computer Products Inc., 1968) 24pp.
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The system used here {s the second opder example, The
intersection. po1nts of tha functLon F(m,p) and. cot(wrl can
‘then be used as the Tnput data for tﬁe second computer

program given in Figure (C<2). From this second program,

the root locus and gain curve (Eq. (III-44)) of the system

can be obtained. From the gain curve of the system, with
K=1, the'charaéteristic va]ués of p, and hence the stability
and domain of G contro]]abi]ity can be found. Figures (C-3),
(Cf4) and . (C-5) Qemonstrate the graphical technique that can
be used to determine the stability of the system (V-19).
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G LEVIL 18 ME TN DATE = 70023 10735725

Coe=m TO FIND THE CHARECTERISTIC ROODTS OF A SYSTEM WITH OPEN-LDOP
I R FUNCTION H H(8)/D(8) BY MEANS OF A GRAPHICAL MFTHQD .
EVELDIPED B8Y HUANG %ND LI '
DIMENSION IBUF({ICOC) X{500),Y(500},2{500),V{(500)
(==== TNITIALIZING THE PLOTTER
CALL PLOTE(IBUF,1000,¢€)
Coe== SETTING OF THE JORIGIN
CAELL PLOT(Go 9009=3)
REAL IMD,IMN
COMPLEX 5,D,AN
P==2%,0

M=0

Cee== CELCULATE AND PLCT (OT{W)
W=0s
I=0

PI=3c142
A W=W+0o 2
I=741
FCOT=CO3 W)/ IN{W)
AFC=ABS{FCOT)
IF{AFD oGTo 600} FLOT=&,0%FCOT/AFC
X(I)=Y
Y{I)=FCOT
=P I=Y
IF (WW olEoe (0o1l7) GG TO 3
WRITE(L,101) FCOTeW,I
12 FORMAT (' FCOT = Y Fllo%45Xy! W= TF6o3458XyY I = 7 1I3)
G TQ 4
3 W=PI+0,01
PI=PI+3, 142
IF (W oLTs 2060) GO TO 4
{me== SCALE THE RANGE OF DATA
CELL SCALE {X,1060, I51)
CALL SCALE (Yy1000y 1,19
Le=== THE X=AXI%
CALL AXIS{0o0 11000 sbHW=AXIS y+464 10609009 X{I+1)eX(1+2))
C==== THE Y=AXIS
CALL AXIZ{=0059009156HF=AXIB 3444310009900y Y{I+1),Y(I42))
CALL LINE(X,Y,132,0,0)
L===e CAHLCULATE AND PLOT F{P,W)
11 P=P+5,0 :
13 W=0,
J=0

Figure (C-1). Computer Program for plotting F(w, p)

and Cot (wt) versus w.
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J=J+]
S=CMPLXIP, W)
Lmem== H{E) = {5+41)/5(5+2)

THE NUMERATOR PCLYNOMIAL IN H(S)
MR HIMPLX (1604006

Figure (C-1) cont'd.
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G LEVeL 313 MA TN DATE = 70023 10735725

s Eakal

IMD=AIMAG(D)
REN=RTAL(AN)
IMN=4TMAG(AN)
FPW={ IMDEIMMNEREDHREN )/ {RED¥ IMN=IMD®REN)
AF=ABS{FPW)
IF(AFLGTof o) FPW=A DRFPH/AF
WhITE {(A4102) FPWsPy W J
102 FORMAT (' FPW = ' FiQod,y 55Xy ' P= 'FlOo4, 55Xy * W = 1 Fl0o4%:5X,
v J =1 13)
V()=
Z{JY=FPW
IF (W oLEe 20.0) GO 7O 12
VEJ+L1)=X(1+1)

NAJ+2)Y=X1T142)
Z{J+1)¥=¥Y{1+1)
Z{J+2)¥=Y{1+2)

LC===e BLOT F{W,P) V&, W USING P AS & PARAMETER

CALL LINE(V.Z4J31,0,0)
IF {M oNie 1) GO TQ iz
P=P+0. 5%
IF (P oEQo Do) P=0o%
IF (P oEQo 500) GO TO 15
GO T 132

14 IF (P oLT, 2Go0) GO TO 11

60 TG 13
C==== ENDING THE PLOTTING PRNCEDURE
15 CALL PLOT (1260400 ,999)
CALL EXIT
END

Figure (Cfl) cont'd.




FORTREN

0001%
oee2

Q003
0004
8101654
0008

Q007
once
0009
0010

00311
0012
0013
0014
0018
09014
0017
0018
0012
0020

0021

Q022
0023
G024
0028
QN24
0027
0023
0029
0030
00313
0032
0033

[SVIRLN ]

e N |

38 MATIM DATE = 70023

T PLOT THE ROOT LOCUS AND GAIN=CURVE FOR THE SYSTEM
(¢+“)/”( S+2)
W% vlﬁ)vX(ﬁC) Y{(20),2(20),IBUF{1000)}

PEAL IMN,IMD
N=15

M=3

THE VALUES OF P AND W (OMEGA) ARE OBTAINED FROM THE COT{W)
F{P,W) PLOT

READ (5,101) (P(I), I=1,N)

D A5,1) (IHII43)3d=1,4N)sI=1,M)

123

FORMAT (13F502)
FORMAT (15F5.2)
INITIALIZE PLOT ROUTINE

~CALL PLOTS{IBUF,1000)

C2LL PLDT{00 900 9=3)
I1=0

Nl=M+1

Ni=Ni=1

I=1+1

X(1)=pP{1)
YiIy=W{NL,1)
A=EXP{X{I))
S=CMPLXIXITY,Y(IY))
AN = NUM*RxT”R PLOYNOMIAL
= R4]
E+CMPILX{1090c )

AN=
D= DENMINATOR POLYNOMIAL
= 5(5+2)

D=3%54+2,0%8

RED=REAL(D)

IMD=ATMAG(D)

REN=REAL(AN)

IMN=ATIMAGIAN)
RE=REN®COS(Y(I))+IMN=EIN(Y{I))
IF {8BS(RS) olLEes 1o08E=¢) 60O 70 7
R=RED®A/RS

GG 10 2

R=1060

K=ABS(R)

IF (K oGTo 2000) K=2000

Figure (C-2). Computer Program for plotting the

root locus and gain curve.




0034
0035
0024
Q037
0038
0039
Q040
0N41
G042

oy YTy

Z{1)=K

WRITE (b4%) X{I)aY(I),2(1)

> FORMAT (% P = 1F1Co% 45X,

IF (I oLT, N)Y GO TO 3

IF (NL oLTe M) GO TO 5
J=1+1

Y{JY=W{1,N)

CALL SCALE(Y 16009de1)

Y{I+2)=Y{J+1)

Figure (C-2) cont'd.
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FORTRAM

NOL3
N04 %
0043
N3&A
00a7
0042
D&%
0080
0083
QoR2
0053
0054
Q0as5
00546
0057
00%8
00se
00&0
0081
0n&2
0063
0064
0065
Qnes
087
f0s8
0069
0070
0073

Iv

G

LEVEL
C
C
C

A

ie MA TN DATE = 70023 if

Y{I+2)=Y{J+2}

C2LL SCALE(X4H600,1,1)
CALL BCALE(L,6,041,1)
Pil=X{1I+})

P2=X{1+2}

QI=Y{1+1)

QZ2=Y{I1+2}

S1=211+})

£2=1101+2)

CELL AXIS(00 900 98HP=8XISy=64800300 ¢X(I+11,X(I+2))

CALL AXIS{00 400 +6HW=AXIS 846004500, Y1I+1),Y{I42))
X{I+1)=P1

X{1+2)=P2

Y{I+1)=Q1

Y{I+2)V=0Q2

CALL LINE(XeYsIslsels2)
CatLt PLQT(&QoOyOo)”B)

IF (N1 LLT, M) GO TO &
CALL AXIZ(Q. 200 9B HP=AXI83=64800400 2 XOI+L),XUI42) )
CALL AXIS{0090096HK=AXIS 159600990042 (I+11,70142))
Z{1+1)=5}

Z{1+2)V=582

CALL LINE(IX,yZyIsdyel,e2)

CALL PLOT(=1200400+=3)

1=0

IF (K1 26T, 1) 6070 2

CALL PLOT{24.0506,99%9)

CALL EXIT

END

Figure (C-2) cont'd.
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Tlaure (C-4).  Root Locus of the' system (y-70).
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- Figure (C-5). Gain Curve of the System (V-19).
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