
A Fuzzy Real Option Model for Pricing Grid
Compute Resources

by

David Allenotor

A Thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements of the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science

University of Manitoba

Winnipeg

Copyright c⃝ 2010 by David Allenotor

Abstract

Many of the grid compute resources (CPU cycles, network bandwidths, computing power,

processor times, and software) exist as non-storable commodities, which we call grid compute

commodities (gcc) and are distributed geographically across organizations. These organizations

have dissimilar resource compositions and usage policies, which makes pricing grid resources

and guaranteeing their availability a challenge. Several initiatives (Globus, Legion, Nimrod/G)

have developed various frameworks for grid resource management. However, there has been a

very little effort in pricing the resources. In this thesis, we propose financial option based model

for pricing grid resources by devising three research threads: pricing the gcc as a problem of real

option, modeling gcc spot price using a discrete time approach, and addressing uncertainty

constraints in the provision of Quality of Service (QoS) using fuzzy logic.

We used GridSim, a simulation tool for resource usage in a Grid to experiment and test our

model. To further consolidate our model and validate our results, we analyzed usage traces from

six real grids from across the world for which we priced a set of resources. We designed a Price

Variant Function (PVF) in our model, which is a fuzzy value and its application attracts more

patronage to a grid that has more resources to offer and also redirect patronage from a grid that is

very busy to another grid. Our experimental results show that the application of the PVF has

helped achieve equilibrium between users satisfaction measured as QoS and recovery of the

infrastructure investment made by the providers. In the absence of pricing benchmarks, we setup

Commodity Base Prices (CBP) and then integrated our PVF and CBP with GridSim to price grid

compute resources.

In summary, this thesis provides the design of a model to price grid compute resources using

financial options theory. The model achieves mutual benefit for users and providers in the grid

environment. The mutual benefit is expressed in terms of QoS to the users and recovery of

investments on the grid infrastructure for the providers. This thesis has opened up many different

opportunities for further research especially in the era of enterprise computing with clouds.

Contents

Abstract . ii
Table of Contents . v
List of Figures . viii
List of Tables . x
Acknowledgments . xii
Dedication . xvii

1 Introduction and Motivation 1
1.1 Commercial Grid Resource Providers 5
1.2 Definition of Terms . 7

1.2.1 Financial Option . 8
1.2.2 Real Option Theory . 10
1.2.3 Fuzzy Set Theory . 12

1.3 Problem Statement . 14
1.4 Solution Strategy . 17
1.5 Contributions . 19
1.6 Summary of Knowledge Advanced . 21
1.7 Thesis Organization . 23
1.8 Chapter Summary . 25

2 Literature Survey 26
2.1 Grid Computing Related to Pricing 26
2.2 Grid Middleware . 29

2.2.1 Globus . 31
2.2.2 Gridbus . 33
2.2.3 Condor . 33
2.2.4 Nimrod-G . 34
2.2.5 Enabling Grid for EsciencE (EGEE) 35

2.3 Grid Services . 36
2.3.1 Simple Storage Service (S3) 36
2.3.2 Simple Queue Service (SQS) 37

v

Contents vi

2.3.3 Elastic Cloud Compute (EC2) 38
2.3.4 Grid Resources for Industrial Applications (GRIA) 39

2.4 Grid Simulators . 40
2.5 Economics of Grid Marketplaces: Scheduling and Reservations 43
2.6 Financial Options . 46
2.7 Chapter Summary . 48

3 Methodology 50
3.1 Model Architecture and Model Design 51

3.1.1 Model Architecture . 51
3.1.2 Assumptions and Systems Model Theory 54

3.2 Grid Traces and Analysis . 55
3.2.1 SHARCNet . 57
3.2.2 WestGrid . 58
3.2.3 Phase One: Feasibility . 60
3.2.4 Phase Two . 63

3.3 Chapter Summary . 66

4 System Implementation and Simulation with GridSim 70
4.1 GridSim Toolkit Simulator . 70
4.2 Integrating Pricing Architecture in GridSim 73
4.3 Financial Option Pricing and the GridSim Simulation Environment . 73
4.4 Implementation . 76

4.4.1 Simulation Setup . 77
4.4.2 Creation of the Grid Scenario 77
4.4.3 Creation of Individual Machines: Resource Assignment Setup 81
4.4.4 Creation of the Grid . 82

4.5 Chapter Summary . 83

5 Discrete Time Financial Option Model for Pricing Grid Resources 84
5.1 Asset Pricing . 85
5.2 Binomial Tree . 86
5.3 Trinomial Tree . 89

5.3.1 Integrating pf into the Trinomial Algorithm 94
5.3.2 American Style Option Pricing Algorithm 95

5.4 Reverse Dutch Auction (RDA) . 96
5.5 Chapter Summary . 97

6 Results and Discussion 98
6.1 Grid5000 and NorduGrid . 99

6.1.1 Phase Three: (a) Grid5000 . 100
6.1.2 Phase Three: (b) NorduGrid 101

Contents vii

6.2 Price Variant Function Design . 103
6.3 Price Variant Function . 104
6.4 Commodity Base Price (CBP) . 106
6.5 Phase Four: AuverGrid and LCG . 109
6.6 Experiments and Results . 109
6.7 Chapter Summary . 116

7 Conclusions and Future Directions 118
7.1 Conclusions . 119
7.2 Future Directions . 121

7.2.1 Multi-Resource/ Service Pricing Across Clouds 122
7.2.2 Integrating I-O Analysis and Variable Commodity Base Prices 124
7.2.3 Pricing and Management of Cloud Compute Resources 125
7.2.4 Pricing Green Energy . 125

Bibliography 127

A Input Output Analysis (IOA) and Activity Based Costing (ABC) 148

B Derivation of the Black-Scholes Formula 152
B.1 Prerequisites . 152
B.2 Formula Derivation . 153

C Service Level Agreement (SLA) and Quality of Service (QoS) 158
C.1 Service Level Agreement (SLA) . 159
C.2 User Quality of Service (QoS) . 161

C.2.1 Mapping QoS to Computed Option Value 163
C.2.2 A Mapping Example . 164

List of Figures

1.1 Triangular Membership Function. 13
1.2 Trapezoidal Membership Function. 14
1.3 Canarie Network [1]. 18
1.4 Thesis Organization. 24

2.1 Grid Layered Architecture [2]. 29

3.1 Phases of Development. 51
3.2 Pricing Architecture. 54
3.3 Compute Cycles Obtained for Three Months Expiration. 63
3.4 CPU Time Vs. Number of Jobs for SHARCNet. 64
3.5 Grid Resource Usage by Provinces in Western Canada 68

4.1 GridSim Toolkit Layered Architecture [3]. 72
4.2 gcc and Grid Resource Setup. 72
4.3 Integrated Architecture. 74
4.4 GridSim Processes. 76
4.5 Simulation Interface. 78
4.6 Simulation Configuration Interface. 78
4.7 User Configuration Setup Interface. 79
4.8 Job Assignment Setup. 80
4.9 User Jobs Assignment Setup. 80
4.10 Resources Setup. 81
4.11 Assign Machine to Grids. 82
4.12 Create Grid for Simulation. 82
4.13 Load Parameters to Run Trinomial in Simulation. 83

5.1 One-Step Binomial Tree. 87
5.2 Two-Step Binomial Tree. 89
5.3 Multi-Step Binomial Tree. 90
5.4 One-Step Trinomial Tree. 91

viii

List of Figures ix

5.5 n-Step Trinomial Tree. 93

6.1 Job in Grid5000 by CPU Time (Utilization Trace Collected June 2008). 101
6.2 Job in NorduGrid by CPU Time (Utilization Trace Collected June 2008).102
6.3 Price Variant Function (pf). 104
6.4 Trapezoidal Membership Function for Flexibility Opportunity. 105
6.5 Price Variant Function Controller. 105
6.6 Increasing Commodity Base Prices (G1 : $2.00, G2 : $2.50, G3 : $3.00). 107
6.7 Decreasing Commodity Base Prices (G1 : $3.00, G2 : $2.50, G3 : $2.00). 108
6.8 Job in AuverGrid by CPU Time (Utilization Trace Collected June 2008).110
6.9 Job in LCG by CPU Time (Utilization Trace Collected June 2008). . 111
6.10 Option Value for RAM. 112
6.11 Money Option Value for RAM. 112
6.12 Option Value for CPU. 113
6.13 Option Value for HD. 114
6.14 Option Value for CPU. 115
6.15 Execution Time for Various Commodities. 116
6.16 Option Value for Various Commodities. 117

7.1 Futuristic Overview of the Short term and Long Term Goals. 122
7.2 Multidimensional Grid and Resource Pricing. 123

List of Tables

1.1 Instances of EC2 in the United States 7
1.2 Instances of EC2 in Europe . 8
1.3 Cost Comparison . 8

2.1 Globus Toolkit Protocols and Standards 32
2.2 Grid Simulators . 42

3.1 Field Description of the Grid Trace Data from GWA 59
3.2 Average Monthly CPU Utilization in Polaris Parallel Machine in 2007 61
3.3 Excerpt of Grid Resource Utilization Trace: WestGrid (Nexus Group). 65
3.4 Excerpt of Grid Resource Utilization Trace: WestGrid (Cortex Group). 66
3.5 Excerpt of Grid Resource Utilization Trace: SHARCNet. 67
3.6 Grid Resource Usage by Provinces in Western Canada: Source [1] . . 68

A.1 Input-Output Table (in dollars). 149
A.2 Computed Technology Coefficients. 150

C.1 The Rated QoS Levels. 161

x

List of Algorithms

1 American Style Option: (K,S,N, T, σ, r, pf , dx) 95

xi

Acknowledgments

Forever I will sing the goodness of the Lord. Psalm 89:1

Rejoice in the Lord always. I shall say it again: rejoice! Philippians 4:4.

As I finish this thesis, I indeed cannot help rejoicing in the Lord - not only because I

am finally done (which is a miracle in itself!), but even more because, as I look back

on these past years, I recall all the ways God has blessed me, and it just fills me with

gratitude and joy. In this short section, I would like to acknowledge the biggest of

these many blessings - the people in my life who, in one way or another, whether they

know it or not, have been instruments of God’s grace and love for me throughout this

long and lonely journey of PhD.

First, I would like to thank my advisor Dr. Ruppa K. Thulasiram for his kind

support and help throughout the concluding part of my M.Sc. and for all the years of

my PhD program at the University of Manitoba. I also want to express my profound

thanks to my thesis committee members; Prof. Charles Mossman, Prof. Desmond

Walton, Prof. Peter Graham, and Prof. Rajkumar Buyya. They made this thesis

possible. Thank you for all your feedback, your ideas, and for your time. I would

also like to give my very special thanks to Dr. Daniel O. Obasogie, my mentor and

advisor (Diploma (E/Electronics)) at the Federal Polytechnic, Auchi. He was also

my mentor and my advisor (B.Sc. and M.Sc. Computer Science) at the University

of Benin, Benin City, Nigeria. Dr. Obasogie was first to teach me the fundamentals

of Fuzzy logic design and digital control circuits. There is a little beginning to every

great height of achievement in life. One of such humble beginnings is my journey to

Canada for further studies which would not have been possible without the help of

xii

Acknowledgments xiii

Dr. S.A. Ehikioya. I appreciate the Ehikioya’s family for their wonderful support and

love towards my family and study in Canada.

Special thanks to my children: My daughter Ella (Kulukulu), and my two sons,

David (Toopee) and Jesse (Anebhe-eEziza). I specifically thank my daughter, Ella

who has not only been caring to me, but who has also unknowingly played a key part

in this thesis – she always ask me “Daddy when will you be done schooling? Did

your teacher give you too much home work? Can I help you?” Those words have

put much challenge in me to get done quickly. Thanks also to my officemate at the

University of Manitoba, Dr. Rodrigo Vivanco for his company and friendship. I also

want to thank all the members of my labs; the Computational Financial Derivatives

(CFD) Laboratory and the InterDisciplinary Evolving Algorithmic Science (IDEAS)

for their ideas during the early stages of my PhD. research.

Finally, special thanks to the people back home without whom, I could not have

gotten to the University of Manitoba. Thanks to the Head, Department of Computer

Science, University of Benin, (Dr. S.C. Chiemeke) and the Vice Chancellor of Univer-

sity of Benin, for approving my study leave at the University of Manitoba. I thank

all staff and colleagues at the department of Computer Science University of Benin.

Also, I thank my very good friend Bamidele Ola. We came a long way and God

came true for us in our M.Sc. days at the University of Manitoba. Others include

the families of Sylvester Aghidi, Femi Olumofin, John Akinyemi, Christopher Iyogun,

and the Nwani (Nnamaka, Kingsley, Nwanyor, and Ebele) family, and everyone in

Canada (Winnipeg) who have positively influenced my study in Canada.

After all these years of my study (27 years in total from kindergarten), I have

Acknowledgments xiv

come to realize that life is really not just all about research and work. In fact, if

there is one lesson that I have learned in all the years of my Ph.D. education at the

University of Manitoba, it is that life is a whole lot more than just research and work.

Discovering new ideas, writing programs and papers, and going to conferences are all

great, but in the end, these are all vanity compared to the more important things in

life - how we love others, experience their love, and grow in God together. In this

light, I would also like to thank all the people who have not necessarily contributed

directly to this thesis, but who have, by their love and friendship, nevertheless made

all this, and more, possible.

Most importantly, I would like to thank my childhood guardians/adopted parents,

the families of Thuruthel Jacob (Ajith, Sarah, Sabeena, and John) and the Paul Jacob

family (Mr. and Mrs. Paul Jacob and their Children, Ruth and Reuben). My tender

age also was supported by the families of Chief Augustine A. Amune who was so

proud of calling me a son. All these people filled my life with love, care, and support

from the very beginning, and they have taught me virtues that keep me till date.

They raised me up well, and taught me the important things in life. Without them, I

would not be where I am, and who I am, right now. This thesis is every bit theirs as

much as it is mine. I can only hope that as I now reach the summit of my academic

education, I can continue in the rest of my life’s education by learning to be as loving

as they are.

I also thank my siblings: Mrs. Theresa Owobu, Mrs. Maggie Okonufua, Mr.

Monday Allenotor, and Dr. Wilson Allenotor for your love, prayers, and support, and

for making me enjoy and look forward to see you someday. I could not have done my

Acknowledgments xv

thesis without them. Thanks too to my uncle Chief Ehibor Oriarewo and family for

prophesying good things to my life when he discovered my professional calling at a

tender age. I thank also all other uncles, aunts, and cousins for their love, friendship,

and support since I was little boy. Thanks to all my friends from back home, who

have supported me with their prayers and friendship even from a distance. Special

thanks to my best man Clement Okosun and Friday Ator (the rabbit-man).

Very special thanks to my brethren in the Redeemed Christian Church of God

(RCCG) Winnipeg. They have been instruments of God’s peace and love to me, and

I have grown a lot because of them. Aside from my brethren in RCCG, God has also

sent me good shepherds to strengthen, guide, and encourage me along my spiritual

journey. First, I would like to thank my pastor, Pastor Joseph Okunnu and family

for their love and encouragement during “my stormy sea” I also want to thank God

for the life of our Pastor Akindele Odeshi for making me to stand in front of the

congregation to speak to the people of God. Pastor Odeshi actualized God’s desire

for my life. He taught me the wonders and mysteries of God’s love, kindness, and

endurance through the grace of God. Pastor Odeshi has done so, not only through

his kind and wise words in teaching the gospel, but even more through the example

of his life.

Finally, I would like to thank my dearest friend, and God’s most wonderful gift

to me, my wife, Anna. She has been with me through the hardest times of my stay

at the University of Manitoba and in Canada, and has made these times also the

happiest. My life has truly been so much more joyful since I have met her, and I feel

so blessed and thankful to God for blessing us with three children while I was doing

Acknowledgments xvi

my PhD research.

As I end here, I would like to thank God again, who has given all these blessings,

and without whose grace none of this would have been possible. It always amazes

me how God’s plans for us are so much bigger and better than we can ever imagine

ourselves. So now, I look forward with much joy and anticipation to what He has

planned next for my life Ephesians 3:20 “Now to him who is able to do immeasurably

more than all we ask or imagine, according to his power that is at work within us”

Thank you so much, Lord!

I dedicate this thesis to the loving memory of my late parents “Abba

ogie” Dr. Ate.si Allenotor (who left me to be with The Lord three

months after I was born) and my mother Mrs. Ibhanabhor Allenotor

(ododo nee re. gue.gbe.), and to the loving memory of Mr. and Mrs.

Thuruthel Varkey Jacob. ad majorem Dei gloriam. Peaceful sleep until

we meet and stay together forever.

xvii

Chapter 1

Introduction and Motivation

One of the key trends in today’s computing and Information Technology (IT)

is service-oriented computing. Service-oriented computing is entirely driven by dis-

tributed computing technologies such as Service-Oriented Architecture (SOA) which

is similar to the grid computing idea. Grid computing refers to the sharing of com-

puting resources such as CPU cycles among a set of distributed computers. A compu-

tational grid is analogous to an electrical power grid [2] with a common vision to offer

dependable, consistent, pervasive, and inexpensive access to high-end resources irre-

spective of their location to users. The origin of the grid concept may be traced back

to the late 1990s [4] with the need to deploy massive gigabit testbeds such as Collabo-

rative Adaptive Sensing of the Atmosphere (CASA) [5] to link super-computing sites

across the United States. There are various definitions for the grid, however, Foster

et al. [2] and Buyya and Venugopal [6] describe a computational grid as a parallel

and distributed system (software and hardware infrastructure) that enables the shar-

ing, selection, and aggregation of geographically distributed autonomous resources

1

Chapter 1: Introduction and Motivation 2

dynamically at runtime depending on their availability, capability, performance, cost

(resource pricing), and user preferences (e.g. users’ satisfaction guarantee). The ma-

jor objective that a grid computing paradigm strives to achieve is the provision of

shared compute services or resources [2] to users with a high Quality of Service [7]

(QoS).

A well known example of a grid computing project is the Intel’s NetBatch Grid

project uses spare computing power available in Intel’s various offices to process engi-

neering simulation jobs. Intel estimates that NetBatch has saved the firm $50M over

10 years and increased computer utilization by 45% over the same period [8]. Grid

computing offers great benefits in solving computationally complex problems such

as those related to financial modeling, weather prediction and molecular modeling

for Biotech applications. As a result, there has been a considerable increase in the

use of grid resources. Several firms including Sun, IBM, and Amazon have expended

considerable research effort towards offering grid resources as services. For example,

Sun Microsystems recently launched the Sun Grid where users can submit large jobs,

and charged they are $1.00 per CPU hour. IBM runs three grid centers in the US

and one in France; they currently charge $0.47 per hour for CPU usage. The resource

usage charging scheme used by these initiatives is static, and in several instances

they are profit-driven. Similarly, Amazon’s Simple Storage Service (S3) and Elastic

Cloud Compute (EC2) now charge for use of grid resources. Section 1.1 decribes the

charging scheme used by Amazon and other commercial grid resource providers.

The term “service” as used in a grid computing context, in general, and in this

thesis in particular, describes the provision and exchange of information/data made

Chapter 1: Introduction and Motivation 3

available to a subscribed user by a Grid Service Provider (GSP). In the context of

this dissertation, quality is used to describe the degree of satisfaction of service to a

subscribed user’s expectations in a computational grid. Therefore, a user’s perception

of a service to a set of predefined service conditions (service agreements) necessary to

achieve the specified service quality is described as quality of service and measured

by QoS1 and these service agreements are contained in the Service Level Agreement

(SLA) [7]. A grid QoS-SLA document describes the contract relationship between

the grid resource provider and the resource user. Often times, the user specifies the

expected level of service during the terms of the contract (see Appendix C for a

typical SLA template). The SLA document protects the grid resource provider and

user by ensuring that they adhere to the terms of the contract. However, several

factors hinder grids in providing effective service.

First, a grid is a capital-intensive infrastructure to own as an individual. As a re-

sult, ownership of the grid resources (CPU cycles, memory, network link bandwidths,

disks, various visualization tools, software, and specialized instruments – which I call

grid compute commodities gcc-s) come from different domains which makes access

policies as varied as the owner organizations.

Second, the grid has a resource availability issue. In a grid, the gccs are available

in a non-storable fashion i.e. as compute cycles. This means that a resource that

is available at one time may become unavailable at other times. This problem of

grid resource availability is one of the major issues since the gccs are federated from

geographically distributed sources with different operational and access polices. Non-

storable characteristics of grid resources also affect the overall Quality of Service

1QoS is a fuzzy expression of the level of user satisfaction.

Chapter 1: Introduction and Motivation 4

(QoS) for the reason that the grid QoS is a global function of the individual local

Service Level Agreements (SLAs) and it is hard to create a globally consistent SLA.

Third, Information Technology (IT) is continuously advancing. For example,

changes such as newer technologies, faster algorithms or improved devices may re-

sult in a huge change (a drop in the projected resource utilization or a cancelation

of initially booked service) in grid user’s behavior. This behavior could be attributed

to the fact that most of the applications that run on the grid are pre-budgeted by

way of an indication to use the resources in the future. Therefore, the design of

underlying grid middleware architecture should incorporate the dynamics that can

handle such changes. Similarly, most businesses find it difficult to adjust to rapid

changes (since adjusting to changes most often result in extra operational costs) in

IT such as regular upgrades in applications, hardware, and other specialized tools

that additional investment in IT infrastructure. The objective of my dissertation is

to price grid resources under these complex situations. To achieve this objective, I

treat gcc as real assets and employ the following techniques:

1. Financial Options – since grid resource availability is transient and usage is

based on availability, I treat the grid resources as compute commodities and

apply the theory of financial option pricing to price them. The major objective

that a grid computing paradigm strives to achieve is the provision of shared

compute resources [2] to users at a high QoS. Other sub-objectives include the

provision of grid resources to users at prices significantly lower than the sep-

arate market cost and at the same time ensure that the provider recovers the

investment on the grid infrastructure. One of the ways to achieve these objec-

Chapter 1: Introduction and Motivation 5

tives is to increase grid patronage. This will keep the grid busy and guarantee a

faster rate of cost recovery on infrastructure expenses incurred by the providers.

However, it is hard to achieve these objectives in the presence of flexibility for

the use of grid resources, which is characterized by user opportunities from the

decisions to utilize the resources. Such flexibilities can be accurately captured

using real options so that asset prices could be computed using financial options

pricing techniques.

2. A discrete time trinomial lattice technique is employed to compute price (option

value) for the gccs. This step in pricing is done by formulating the grid compute

commodities pricing problem as a real option pricing problem. I apply a “real

option” approach to capture uncertainties that abound in making the decision

to exercise the option for using grid resources.

3. Fuzzy Logic is used to capture the uncertainties in the provision of user QoS.

Since currently there are no benchmarks for pricing grid resources using financial

options, I apply the principles of Activity Based Costing (ABC) [9] to compute the

resources’ base prices by taking into consideration infrastructure cost only. Other

overhead costs (for example building, mortgage, equipment insurance, salaries, equip-

ment upgrades, heating, cooling etc.) are not considered in this thesis.

1.1 Commercial Grid Resource Providers

Due to the cost of system upgrades, maintenance, and a rapid depreciation of com-

puting infrastructures, various IT businesses (e-business and e-commerce activities)

Chapter 1: Introduction and Motivation 6

prefer to rent resources (services) instead of buying them for computation purposes.

Several companies are now offering access to resources as a service. Some of these

companies include: AppNexus [10], GoGrid [11], Joyent [12], RackSPace [13], Google

Application Engine [14], Amazon Web Services (AWS) [15] and Microsoft Grid [16].

Amazon Web Services (AWS) include the Simple Service Storage [17] (S3), the Elas-

tic Compute Cloud (EC2), and the Simple Queue Service [18] (SQS). EC2 is a Web

service that provides access to resizable compute capacity or Web-scale computing.

The related Amazon Simple Storage Service (Amazon S3) is a cloud storage service

that provides storage on demand [18]. Cloud computing is a system that involves

dynamic scaling of virtualized resources which are provided as services (storage, plat-

form, computing power, application, software, and hardware) – resource offered as a

service (Resource as a Service (RaaS)) over the Internet.

Amazon EC2 is a Web-based computing service that provides resizable compute

capacity [19]. It offers on-demand computing resources in the form of a virtual ma-

chine that is accessible via the Internet. Using Amazon EC2, a user has full control

of virtual machines equivalent to a 1.7GHz Xeon CPU, 1.75GB RAM, 160GB HDD,

250Mb/s network at a price of $0.10 per instance-hour (or part hour) [18]. Amazon’s

EC2 uses the XEN [20] virtual image platform to offer an on-demand operating sys-

tems of choice that provides a complete virtual computer with a CPU, memory, and

disk space. The pricing scheme offered by Amazon is simple. Charging is done per in-

stance hour used. It is not possible to apply dynamic prices or reserve computational

power [19]. Tables2 1.1 and 1.2 show the per hour static prices (as of June 2010) of

an Amazon EC2 instance machine in the United States and Europe respectively. An

21 Month = 4 weeks (24× 7× 4 = 672 hours).

Chapter 1: Introduction and Motivation 7

Amazon instance machine could either be a 32bit or a 64bit machine. For instance,

the first entry in Table 1.1 corresponds to a small 32 bit system with 1.7GB of RAM

and 160GB Hard Disk space. This machine could run a Linux Operating System

(OS) for $0.10 per hour (ph) or a Windows OS for $0.125 ph. Similarly, Table 1.2

shows a small 32 bit instance machine of the same configuration but for the Linux

OS the cost of use is $0.11 per hour (ph) or for a Windows OS, $0.135 ph.

Table 1.1: Instances of EC2 in the United States

RAM DISK LINUX Windows SQL
Server

Small(32bit) 1.7GB 160GB $0.10 ph $0.125 ph
$72 monthly $90 monthly

Large(64bit) 7.5GB 850GB $0.40 ph $0.50 ph $1.10 ph
$284 monthly $360 monthly $792 monthly

Extra Large(64bit) 15GB 1690GB $0.80 ph $1.00 ph $2.20 ph
$568 monthly $720 monthly $1584 monthly

High CPU(32bit) 1.7GB 350GB $0.20 ph $0.30 ph
$142 monthly $214 monthly

High Extra CPU(64bit) 7GB 1690GB $0.80 ph $1.20 ph $2.40 ph
$568 monthly $864 monthly $1728 monthly

Table 1.3 shows a comparative summary of monthly resource costs for six compa-

nies that provides resources as services.

1.2 Definition of Terms

Financial options, real options, fuzzy logic, and the basics of cost accounting

principles are the four research threads that form the background of this thesis. This

section presents definition of terms in the context of their meaning for this thesis.

Chapter 1: Introduction and Motivation 8

Table 1.2: Instances of EC2 in Europe

RAM DISK LINUX Windows SQL
Server

Small(32bit) 1.7GB 160GB $0.11 ph $0.135 ph
$79 monthly $97 monthly

Large(64bit) 7.5GB 850GB $0.44 ph $0.54 ph $1.14 ph
$316 monthly $388 monthly $792 monthly

Extra Large(64bit) 15GB 1690GB $0.88 ph $1.08 ph $2.28 ph
$633 monthly $777 monthly $1584 monthly

High CPU(32bit) 1.7GB 350GB $0.22 ph $0.32 ph
$158 monthly $230 monthly

High Extra CPU(64bit) 7GB 1690GB $0.88 ph $1.28 ph $2.48 ph
$633 monthly $921 monthly $1785 monthly

Table 1.3: Cost Comparison

Amazon GoGrid FlexiScale Mosso ElasticHosts Joyent

Memory 7GB 8GB 8GB 15GB 8GB 32GB
Hard Disk 1690GB 480GB 100 620 1862GB 100GB
Cost/Hour $0.08 $.037 $0.53 $0.096 $0.76 $5.95
Cost/Month $537.60 $255.35 $358.50 $645.12 $510.72 $4, 000

Each of the terms is defined in relation to resource pricing.

1.2.1 Financial Option

A financial option is a contract that gives the right to its holder to exercise the

option. That is, a financial option (see, for example [21]) gives the right to buy or

sell an asset (for example, a stock) under certain future terms for a given period.

Since the holder has rights but without obligations, the option has value. An option

Chapter 1: Introduction and Motivation 9

is a derivative because its value depends on the value of another asset which is called

the underlying asset. Examples of underlying assets are stocks, foreign currencies,

stock indices, debt instruments, futures contracts, and commodities. In the case of

real options (Chapter 5), the underlying assets include expected results of cash flow

from projects (for example, the expected preset cash flows from an investment in grid

resources).

Two types of options are call options (calls) and put options (puts). A call option

gives the option holder the right to buy an underlying asset by a certain date for a

certain price. A put option gives the option holder the right to sell an underlying

asset by certain date for a certain price. The option holder may decide to use or not

to use the option. If the holder decides to buy/sell the underlying asset using the

option, it is said that the option is exercised. The price at which the asset can be

bought or sold is called the strike price or exercise price of the option. The date when

the contract expires is known as the maturity or expiration date. These two types of

options are available in many different styles. A European option can be exercised

only on the maturity date, while an American option can be exercised any time up

to the maturity date. The writer of the option gets the price of the option or the

option premium, when the contract is agreed upon and the writer accepts potential

liabilities in the future.

If the asset price S is less than the strike price K of the option, the holder of

a call option may not want to exercise the option because the same asset can be

bought from the market at a lower price. However, whenever S is greater than K,

the call option can be exercised and the holder of the option can make some profit

Chapter 1: Introduction and Motivation 10

equivalent to (S − K) since the holder can buy the underlying asset for a price at

K and sell immediately at price S. The difference between the asset price and strike

price at maturity is generally referred to as the pay-off. At any time until maturity,

the difference between asset and strike price is called the intrinsic value of a call

option. This would be the pay-off if the option was exercised instantly. If C denotes

call option and P denotes a put option, then the general formula for the value of a

call option C and a put option P at maturity [21] is given as:

C = max(0, S −K) or

P = max(0, K − S)

(1.1)

Equation (1.1) implies that higher asset prices give higher values for a call options. For

put options, it is just the opposite. The length of time to maturity affects the option

value. For example, for an American option, a longer time to maturity increases the

option value because the holder of the option has all the exercise opportunities open

through the life of the option. For a European option, the effect of time to maturity

is ambiguous. However, a longer time to maturity increases the value of a European

call option, where there are no dividends during the life of the option.

1.2.2 Real Option Theory

Real option analysis provides evaluation schemes for major large projects includ-

ing assessments, Information Technology projects. Real option is advantage over the

traditional quantitative capital budgeting techniques such as various Discounted Cash

Flow (DCF) methods including Net Present Value (NPV), and Internal Rate of Re-

Chapter 1: Introduction and Motivation 11

turn (IRR) is seen in its ability to recognize management flexibility ([22] and [23].

These managerial flexibility include the choice to execute a project, abandon a project

or wait for a better time. To evaluate world wide Information Technology spending,

estimated to be around $3.00 trillion [24] in 2008, NPV, DCF, and IRR will fail to

capture the estimated spending because of the inherent uncertainties involved. Real

option theory provides a mechanism for valuating investment opportunities in situ-

ations where the cash flows are not deterministic. Real option application can also

be useful when quantifying the accrued gains from prototyping a product as well

as in managerial flexibility. Several of these gains can ordinarily be hard to quan-

tify [25]. As a result, a comparison of alternative opportunities becomes harder to

evaluate whenever managerial flexibility varies across the opportunities. This is the

case with a computational grid system. A grid’s ownership, policies (managerial/ad-

dministrative), and operating functions vary across wide geographical zones. Given

such variabilities in the grid, traditional valuation schemes such as DCF and NPV

are unsuitable for use because the NPV and DCF analysis ignore the effects of uncer-

tainty. For example, grid resource use requested at a time t, may be for immediate

use when t = 1, or in the future (if t is large positive). So, I say flexibility abounds

in the decision to use the resource. The presence of these flexibilities grants the user

an obligation-free grid resource usage. If the users’ computing needs change in the

future, the user may modify the requests to reflect the anticipated usage. Therefore,

to price grid resources in the presence of these flexibilities, I treat the Grid Compute

Commodities (gcc) as real assets and I employ three steps: (a) I model the pricing

function as a real option problem by formulating the grid compute commodities pric-

Chapter 1: Introduction and Motivation 12

ing problem as a real option pricing problem, (b) I model the grid resources spot

prices using a discrete time approach, and I apply a trinomial lattice with multi-asset

gccs in the option and (c) I address uncertainty constraints inherent in achieving

required quality of service (QoS) and grid resources availability using fuzzy logic. I

have also introduced a PVF (Section 6.2) to achieve the objective of pricing the grid

resources.

1.2.3 Fuzzy Set Theory

Zadeh [26] introduced fuzzy set theory as a technique that models uncertainty

(impreciseness) in natural language. In the traditional (crisp) set theory, an object

has two distinct possible membership values: Either the object is a member of the set

or it does not belong to the set. Therefore, a logical proposition either holds or does

not hold for a traditional set. In fuzzy set theory, a membership function describes

the degree to which an object belongs to a fuzzy set. Let X be a non-empty set; then

a fuzzy set A in X is characterized by its membership function given as:

µA(x) : X → [0, 1] (1.2)

where µA(x) is called the degree of membership of the element x in fuzzy set A for

each x ∈ X, that is,

A = (x, µ(x))|x ∈ A, µA(x) ∈ [0, 1] (1.3)

A membership function µA(x) specifies the grade or degree of membership to

Chapter 1: Introduction and Motivation 13

which x belongs to the fuzzy set A. The mapping in Equation (1.2) associates each

element in the fuzzy set A to a real number. Thus, as µA(x) tends to 1, the degree of

membership function tends to 100%. The choice of membership function is application

dependent [27]. Membership functions have many shapes that depend on the fuzzy

data set. The most common shapes of functions are triangular, trapezoidal, bell

shaped, and parabolic. In this thesis, the trapezoidal membership function is used

for its simplicity [28] in the analysis of fuzzy logic systems. It can be considered an

extension of the triangular membership function. The general form for the triangular

membership function is given in Equation (1.4) as:

µ∆(x) =



1 for x = b

x−a
b−a

for a ≤ x ≤ b

c−x
c−b

for b ≤ x ≤ c

0 otherwise i.e., for x /∈ [a, c]

(1.4)

where [a, c] denotes the universe of discourse and b = (a+ c)/2 is the value for which

µ∆(x) = 1. Figure 1.1 shows a triangular membership function. The general form of

 a b c

0.0

1.0

M

e
m

b
e

r
s

h
i

p

F

u
n

c
t

i
o

n

x

Figure 1.1: Triangular Membership Function.

Chapter 1: Introduction and Motivation 14

the trapezoidal membership function is given in Equation (1.5) as:

µTrap(x) =



1 for x ∈ [b, c]

x−a
b−a

for a ≤ x < b

d−x
d−c

for c < x ≤ d

0 otherwise i.e., for x /∈ [a, d]

(1.5)

Figure 1.2 shows a trapezoidal membership function. In Figure 1.2, [a, d] marks

0.0
 b

0.5

1.0

Time
a
 d
c

D

e

g

r
e

e

o

f

M

e

m

b

e
r

s
h

i
p

Figure 1.2: Trapezoidal Membership Function.

the universe of discourse, b and c are the values of X between which µTrap(x) = 1.

Readers are referred to [28], [29], and [30] for discussions on other forms of membership

functions.

1.3 Problem Statement

Grid computing became popular in the late 1990s. One of its major advantages

is in creating the ability for individual users to access personal grid computing in-

frastructure. Existing grid infrastructures are owned and funded by corporate bodies

Chapter 1: Introduction and Motivation 15

or government organizations that make the resources available to the users (for re-

search and academic purposes only) free of charge. Consequently, several application

areas such as Science, Engineering, and Business, (where computational needs exceed

their locally available capacity) run their applications on the grid. Currently there

is over 80% grid resource utilization in production environments [31]. As a result of

no cost to users due to government funding there are no efforts towards pricing the

grid resources. Research efforts have focused mostly on issues such as security [32],

middleware and grid infrastructure [2], advanced reservations ([33], [34], and [35]),

and Grid resource management and scheduling [36].

In recent years, grid computing has become a popular means for executing com-

putationally intensive and resource-intensive applications. The characteristic nature

of the computational grid makes it difficult to price the resources using a few avail-

able economic models such as Discounted Cash Flow (DCF) and Net Preset Value

(NPV) [25]. The DCF analysis represents the NPV of the projected cash flows avail-

able to all providers of capital (investors), net of the cash needed to be invested for

generating a projected growth. The concept of DCF valuation is based on the princi-

ple that the value of a business or asset is inherently based on its ability to generate

cash flows for the investors. As a result, the DCF relies on the expectations of the

business i.e. on a set of assumptions. The accuracy of the valuation determined us-

ing the DCF method is highly dependent on the quality of the assumptions. In real

projects such as the grid investments, uncertainties which were unplanned for may

set into the project development. In DCF a business owner (such as a grid resource

provider) who wants to invest in grid infrastructure must need to first determine the

Chapter 1: Introduction and Motivation 16

variability of the grid investment (i.e. determine how many users can be attracted

to the grid). Based on this information, the provider comes up with a static price.

This type of pricing has only one opportunity opened to the provider – to make profit

without a corresponding choice for the user.

In the context of grid resources utilization, pricing the grid resources is a challenge

because any model that prices grid resources must also resolve uncertainties such as

resource availability, guarantee QoS while considering grid resources that are owned

and operated by geographically dispersed owners. Such uncertainties may not be

captured accurately using traditional DCF or NPV models which do not account for

the real value of the grid compute commodities. I have proposed in this thesis a

finance option model to price grid resources which will achieve the following benefits.

To the provider, it will help to recover the investment of the grid infrastructure and

on the user side, it will provide the resources at a guaranteed QoS.

To price grid resources, I need a pricing scheme that guarantees resources avail-

ability and QoS (satisfy a user’s computing needs). I propose a real option valuation

pricing architecture to price grid resources. I develop my model using financial option

theory from a real option perspective and value the grid resources by treating them

as real assets. This approach is novel and distinct from existing economic models

that apply a generic and traditional valuing methods such as DCF and NPV which

does not account for the real value of the grid compute commodities. I apply a fuzzy

real options valuation method to address QoS, a hybridized solution scheme that com-

bines the advantages of both fuzzy logic reasoning and real options of a decision-based

system to develop the pricing architecture.

Chapter 1: Introduction and Motivation 17

1.4 Solution Strategy

The basic idea of this thesis is to price resources of a grid computing system.

In an initial näıve approach, I collected compute resource utilization data for an

Education grid (WestGrid), observed the usage patterns and analyzed the collected

data. Figure 1.3 shows the Canada grid – Canarie and WestGrid. WestGrid is one

of Canada’s largest High Performance Computing (HPC) consortium. The Canarie

project uses CAnet 4 and the regional networks in British Columbia (BCNet) and

Alberta (Netera Alliance) to connect more than 1, 000 researchers across Canada to

grid-enabled HPC and collaboration infrastructure located at institutions in Western

Canada. My results in a preliminary study [37] concluded that grid resource availabil-

ity and guaranteeing QoS are two important factors that challenge the development

of pricing models. Therefore, I suggested a mix of the application of real option and

financial option theory to overcome the challenges I observed. Basically, I applied

economic principles that are based on grid activities associated with resource usage

and assigned cost as a result of the entire grid overhead; I apply fuzzy logic to capture

uncertainties in the availability of grid resources; real options to capture the realis-

tic value of the priced resource; and financial option pricing to compute the option

value of the resources. My approach has the following general expectations: (i) my

intended pricing model should be generic (independent of the environment of the grid

– does not depend on whether the grid’s environment is educational, commercial or

experimental), (ii) the data collected should not bear any relationship to pricing using

financial options.

The core idea of this thesis is to price grid resources and to strike and maintain

Chapter 1: Introduction and Motivation 18

Figure 1.3: Canarie Network [1].

equilibrium between service satisfaction of grid users and cost recovery for service

providers. As a user identifies the resources of a grid that are required for a computa-

tion, the user places a request based on the budget and time of usage constraints. The

compute resources assigned for computations are selected based on a scheme similar

to a reverse Dutch auction to price the grid resources in my simulation as described

in Section 5.4.

Chapter 1: Introduction and Motivation 19

Extensive simulations were carried out using a grid simulation tool called GridSim.

I collected data in the form of actual traces from seven real grids: one commercial

grid (Grid3 [38]), two experimental grid platform (Grid5000 [39], and LCG [40]), two

research grids (Shared Hierarchical Academic Research Computing Network (SHAR-

CNet) [41] and Western Canada Research Grid (WestGrid) [42]), Auvergrid, Nor-

duGrid [43]; Then I applied my pricing model to these grids. I compared the com-

puted prices of utilized grid compute resources across various grids in simulation and

in experiment with real grid data. The results of my simulations indicate that the

user and the provider of the grid resources benefit (in terms of early recovery on

investments of infrastructures) from using my grid resources pricing model, with the

option to fine tune the model towards profitability of providers.

1.5 Contributions

The contributions of the research presented in this thesis are both specific and

general. The general impacts of the contributions are as follows:

1. The thesis proposes a resource pricing model that improves resource utilization

and justifies information technology investments in a grid.

2. The thesis proposes a generic plan for managing the resources/infrastructure of a

grid that is essential for meeting the peak demands of grid resources utilization.

3. To the government and funding agency that funds the grid, this thesis con-

tributes in the following ways: (i) It will justify government spending and

quantify the services provided in terms of actual value and (ii) It will provide

Chapter 1: Introduction and Motivation 20

effective management of the distributed resources.

The specific contributions of this dissertation are in the area of grid resource pricing

using finance option theory and are:

1. As a resource pricing architecture, this thesis uses a modified reverse Dutch

auction to price the grid resources. Using this procedure, the user is able to

set usage preferences according to available budget and time deadlines. Two

advantages of this are (i) a system that guarantees user’s QoS for resource

utilization and eliminates the possibility of increasing the cost of computation

for jobs that have lower waiting times3 and (ii) a system that keeps the grid

busy for optimal gain (user and provider “profitability”); this will avoid idle

states in the grid.

2. The model will also guarantees service and satisfaction in terms of the QoS

requirements for grid resource users and resource owners through a regulated

Service Level Agreements (SLAs)-based resource pricing infrastructure.

3. Design of pricing architecture.

4. My model uses the in-built flexibility available in option theory (real option

based) for pricing the grid resources by providing a handle of control for both

users and the provider benefits; the users’s QoS is not compromised while the

provider achieves the benefits of early infrastructure investment recovery.

5. My incorporated trinomial lattice with the pricing model shows a bridge between

the pricing grid resources and gap

3One of the shortcomings of EGEE (see Section 2.2.5)

Chapter 1: Introduction and Motivation 21

6. Adapting and implementing of my pricing model with GridSim simulator demon-

strates the possible adaptation of my model in a real grid middleware which will

open up more research in the area of grid resources pricing.

7. The design of commodity base prices in the absence of standard pricing bench

marks and the analysis I made using real grid trace data shows that my model

can be used to achieve the desired purpose of pricing grid resources in grids.

1.6 Summary of Knowledge Advanced

Following a review of related work in financial options and grid middleware frame-

works, I collected and analyzed resource usage and users’ behaviors in a computing

environment (Polaris parallel machine the University of Manitoba) in a one year

period. The observations from the utilization pattern indicates that grid resources

pricing can be modeled using financial options. Data collection was extended to West-

Grid High Performance Computing (HPC) consortium (as a case study). Following

the usage analysis, as a proof of concept, I developed the idea of an initial model using

hypothetical data on a trinomial lattice (see Section 3.1.2 for model assumptions).

Important results at this stage of research showed that the price of a grid resource is

determined by the effects of the exercise time of the option to use the grid resource

even in the presence of uncertainties that are hard to determine using conventional

techniques such as Net Preset Value (NPV) or Discounted Cash Flow (DCF). This

finding lead to the deduction that grid resources may be priced using real options as

a tool. The initial findings are published in [37].

Chapter 1: Introduction and Motivation 22

The extension that involves more than one grid type was the next stage in the

thesis workflow. This stage used data from a grid other than the WestGrid – the

Shared Hierarchical Academic Research Computing Network (SHARCNet) [41]. This

led to the development of a conceptual and formal middleware architecture. This stage

emphasized increased profitability and imposes stringent conditions for the users QoS

and I applied fuzzy logic to model the users’ expected QoS. However, I observed that

in both SHARCNet and WestGrid, sometimes the number of jobs supported (the

grid patronage) significantly decreases and makes the grid idle (some periods in a

given year). A low patronage makes it hard to guarantee the providers profitability.

Therefore, I need to increase patronage by applying a price controller into my model.

Following this observation, I proposed an initial idea of a price adjustment system.

Results at this stage led to the development of the Price Variant Function (PVF or

pf) [44] to control the large fluctuations in grid resource utilization. The PVF is an

important function of my model and its based on advances in technology. The design

of PVF in a multi-grid multi-resource system with a very large numbers of users could

be a hard problem. However (in my future work), the application of input-output

Economics [45] when applied will reduce the complexity involved in a large system

into an inputs and outputs interaction.

In what followed, grid resources usage trace data were collected from five other real

grids to test feasibility of PVF in my model (see Chapter 1 for a detailed description).

Since there are no benchmarks for resource base prices, I choose some reasonable and

justifiable base values for an initial test in [46]. Several experiments have been carried

out to show the application (control of fluctuations in the resource prices) of the PVF

Chapter 1: Introduction and Motivation 23

in [47].

1.7 Thesis Organization

The rest of this thesis is organized as shown in Figure 1.4 where each shaded block

represents a “module”. The introduction module consists of two chapters. Chapter 1.

The thesis introduction and general overview are motivated in Chapter 1 while the

terminology, definitions, and a description of the problem to be solved are explained

in Chapter 1. The literature review module presents work related to the current

research. Related areas to the current research which I reviewed in Chapter 2 include

financial options, real options, fuzzy logic, grid computing, grid services, economics of

grid marketplaces, and cost accounting. Chapter 3 is contained in a separate design

module called the basic design (methodology) module. In Chapter 3, the basic model

design is presented using trace analysis (phase one and phase two) obtained from two

Canadian academic and research grids (SHARCNet [41] and WestGrid [42]). This

stage of my design is the initial and basic model which was refined in the integration

and simulation module discussed in Chapter 4. In the simulation and integration

module, I review how I integrated the basic design into GridSim and applied financial

option pricing theory. A refinement of the results after simulation was also carried

out in the results and discussion module. The results and discussion module consists

of two chapters: Chapter 5 and Chapter 6. Chapter 5 includes trace data from five

another grids (Grid5000 [48], AuverGrid [49], DAS-2 [50], LCG [40], NorduGrid [43])

were analyzed. The results of the trace analysis and the resulting refinement are

discussed in Chapter 6. The conclusion module consists of Chapter 7. In this chapter,

Chapter 1: Introduction and Motivation 24

I provide the research conclusion and future research directions.

RESULTS/

DISCUSSION

d

LITERATURE

REVIEW

BASIC DESIGN

(Methodology)

CONCLUSION

Introduction:

Terms definition and

problem statement

(Chapters 1)

INTRODUCTION

SIMULATION/

INTEGRATION

(Chapters 2)

(Chapters 3)

(Chapters 4)

(Chapters 5 and 6)

(Chapters 7)

Model refinement:

Financial option pricing

in discrete time and

trace analysis 5 grids

using five other grids.

Discussion of results

from refined model.

System

Implementation

and simulation using

GridSim Toolkit:

Auctions Systems

and

financial option

Conclusion

and

Future Directions

Financial option,

Fuzzy logic,

cost accounting,

grid computing,

grid services, and

grid marketplaces.
 Basic trace

analysis:

Initial architecture

and model design

Figure 1.4: Thesis Organization.

Chapter 1: Introduction and Motivation 25

1.8 Chapter Summary

In this chapter, I provided the essential motivation for grid computing to the

general reader while exploring the architecture of grid middleware. I also exam-

ined existing commercial grid resource providers and their charging schemes. The

non-storable characteristics of grid resources make it difficult to price them. I then

conclude that grid resource pricing should involve provisions than assigning cost of

usage. I identified other parameters to associate with simple charging, such as the

ability to guarantee resource availability measured as QoS. In this chapter I identified

that the use of conventional methods such as the DCF or the NPV cannot guarantee

effective measurement of the characteristics value of the priced grid resource, and

hence motivated the objective of this thesis. I defined some of the terminology that I

will use throughout the thesis. I provided some common definitions associated with

financial options. I also described the essential principles of fuzzy set theory and the

mathematics of fuzzy modeling.

Chapter 2

Literature Survey

This chapter provides a review of related research in grid computing, resource

management, financial options, real options, and resource pricing. The chapter also

examines the relationship between the related work understudy and resource pricing

in a grid market.

2.1 Grid Computing Related to Pricing

Besides the focus on security related issues [32], middleware and grid infrastruc-

ture [2], most of the current research related to grid resource pricing focuses on market

based economy approaches (for example [51], [52], [53], [54]) and contingent bids in

auctions [55]. These research efforts use economic principles to decide a fair share of

grid resources that involves resource redistribution and scheduling. Currently, there

is no charge for using grid resources. However, a trend is developing for public com-

puting using a grids. Therefore, a sudden explosion of grid use is expected in near

26

Chapter 2: Literature Survey 27

future. Iosup et al. [31] analyzed and compared the resource utilizations of four Grids,

one academic and three production. Their analysis was seen from both a user and a

system perspective. They observed that despite a high percent of grid applications

employ a parallel model, grids were not yet utilized at their full capacity. They sug-

gested that grid resources use will reach a peak value soon and this could lead to grid

capacity problem [31] whereby the grid will have more jobs than it can handle or will

grant resources to users while compromising the users’ QoS. To address the problem of

sudden explosion in the use of computing resource, Amazon’s Simple Storage Service

(S3) [17] now offers a pay-as-you-go online storage. The S3 has gradually developed

into EC2 and provides an alternative to in-house mass computing.

Several other research efforts explore the possibilities of incorporating resource

pricing into the grid infrastructure. These include Kang et al. [56] and Tan and

Gurd [57]. Researches in grid followed two distinct approaches; they either extend

the existing standardized grid middleware or to see pricing problem as a resource

allocation and resource management issue. However, resource management is not only

about scheduling large and compute-intensive applications (or resources), or some

form of advanced reservations [58], [34], [35]. Resource management also involves the

manner of putting compute resources to work for the benefit of the user and owner [44];

that is, service for the users and profitability for the provider. Similarly, Chunlin

and Layuan [59] presented an optimization-based resources pricing algorithm. They

focus on resource sharing in a computational grid while they keep increasing the grid

providers’ effective gain. In another related study on grid resource valuation, Sulistio

et al. [60] evaluated the effectiveness of grid revenue management using resource

Chapter 2: Literature Survey 28

reservations as a focus. They show that charging customers with differentiated prices

will increase the effective total revenue for the resource in question. They also showed

that their scheme guarantees a fair share of the resources applications with highest

computing priorities.

Kang et al. [56], Tan et al. [57], and Sulistio et al. [60] focus on resource sharing

and resource scheduling with specific reference to a market economy. Mutz et al.

modeled job priority in a batched queue system using the efficient design mechanism

previously by Krishna and Perry in [61] based their proposal on a compensation

function that schedules jobs for a time ti. Mutz et al. concluded that a compensation

function d should be paid by n given job at tn−1 that wishes to access computation at

tn. The compensation may be disbursed as incentives (say more gccs) to jobs willing

to wait.

Bhargava and Sundaresan [55] model a computing utility and examine the possi-

bility to extend the pay-as-you-go pricing using an auction system. Their proposal is

limited by some assumptions. They assume that the participants operate under risk

neutral conditions; i.e., a bidder that fails to participate in a bidding process gets a

refund. In a recent study [47], I focused on balancing the grid profits as seen from the

perspectives of the grid resources provider. I use (i) an option with dividend (divi-

dend is treated as incentive) paying the underlying asset and (ii) a penalty function

– the PVF. (Section 6.2 provides details).

Chapter 2: Literature Survey 29

2.2 Grid Middleware

Foster and Kesselman [62] describe a grid middleware as an architecture that con-

sists of fundamental system components such as the application layer, the collective

layer, resource layer, connectivity layer, and the fabric layer. A grid architecture

consists of a set of protocols that defines the basic mechanisms by which virtual

organizations, users, and grid resources negotiate to establish, and manage shar-

ing relationships in a grid. The middleware specifies the purpose and function of

the components and indicates how the various components interact with each other.

Figure 2.1 shows the layers required to form a grid as described Foster et al. in [2].

Connectivity

Resource

Application

Fabric

Collective

Application

Link

Internet

Transport

I
n

t
e

r
n

e
t

P

r
o

t
o

c
o

l

A

r
c

h

i
t

e
c

t
u

r
e

G

r
i

d

P

r
o

t
o

c
o

l

A

r
c

h

i
t
e

c
t

u

r
e

Figure 2.1: Grid Layered Architecture [2].

According to Foster [2], the grid is organized into five layers which include a fabric

layer, the connectivity layer, resource layer, collective layer, and the application layer.

The fabric layer is located at the lowest level of the grid architecture. It consists of

the shared resources such as computational resources, storage systems, catalogs, net-

works, sensors, and processors. The connectivity layer provides core communication

Chapter 2: Literature Survey 30

and authentication protocols needed for the grid network transactions and also for

inter-layer communications between the fabric and resource layers. In addition to

providing communication functionalities for the grid, the connectivity layer also pro-

vides secured resource-sharing operations for the grid services. The resource layer

is located on the top of the connectivity layer and defines protocols similar to the

connectivity layer except that they are concerned entirely with individual grid re-

sources instead of the global grid state and the distributed resource collections. Two

primary resource layer protocols are the information protocol and the management

protocol. The information protocol obtains information regarding the structure and

policy attributes of a grid resource. These include the resource configuration, current

load, existing usage policies (especially cost of resources). Various user negotiations

such as resource requirements, advanced reservation, access priorities, QoS, sharing

relationships among users and processes are managed by the management protocols.

The focus of the resource and connectivity layers could be summarized as the pro-

vision of interactions. The next layer in the grid architecture is the collective layer

which provides protocols for global grid interactions. The collective layer contains

protocols, services, and Application Programming Interfaces (APIs) that implement

interactions across other grids. The top layer of the grid architecture is the application

layer. The application layer includes various applications as portals and development

toolkits to support the applications. In this layer, users actually connect to the grid

via user interface and interact with the rest of the grid. The following sections provide

a description of grid middleware and projects that support pricing services.

Chapter 2: Literature Survey 31

2.2.1 Globus

The Globus toolkit defines the basic core services required for a computational

grid. While constructed as a layered architecture, it sits on the essential low-level core

services. Foster and Kesselman [63] describe the Globus Metacomputing Toolkit (or

simply Globus Toolkit (GT)) as “a system that specifies the requirements necessary

to construct a computational grid” The GT provides a uniformity of platform that

orchestrates all computing resources, communication (reliability becomes a concern

as individual systems have different architectures and communicate over non-uniform

network connections), and security of the computing environment. GT ([64] and [65])

provides a basic Grid middleware based on open standards and components. These

components1 include:

1. The Hypertext Transfer Protocol (HTTP)-based Globus Toolkit Resource Al-

location Manager (GRAM) protocol. The GRAM is used for allocating, moni-

toring and the control of computational resources,

2. Resource reservation and allocation via Globus Advanced Reservation and Al-

location (GARA),

3. Authentication and security related services using the Grid Security Infrastruc-

ture (GSI), and

4. Distributed access to structure and state information based on the Lightweight

Directory Access Protocol (LDAP).

1The precise set of components depends on the Globus version.

Chapter 2: Literature Survey 32

The current version of the GT is the Globus Toolkit version 4.0 (GT4). GT4 is used

to manage, share, and use computational resources across corporate, institutional,

and geographic boundaries without sacrificing local autonomy. The GT can be used

to build further services and high-level grid frameworks such as Gridbus [66]. In

addition to the basic functionality provided by GT4. The GT4 also provides third

party solutions. One example is the Swedish Grid Accounting System (SGAS) [67].

The SGAS provides accounting functionality using the SGAS add-on. However, the

SGAS lacks economic-aware components such as a proper billing system with pric-

ing, charging, and accounting for commercial services. Other advantages of the GT4

include the use of established standards from communities such as Internet Engineer-

ing Task Force (IETF), World Wide Web Consortium (W3C), Organization for the

Advancement of Structured Information Standards (OASIS), and Global Grid Forum

(GGF). Table 2.1 shows some GT protocols and the standards they use.

Table 2.1: Globus Toolkit Protocols and Standards

Protocols Standard

Secure Socket Layer/Transport Layer Security v1.0 (SSL/TLS) OpenSSL and IETF
Lightweight Directory Access Protocol v3.0 (LDAP) IETF
X.509 Proxy Certificates IETF
Simple Object Access Protocol (SOAP) W3C
Hypertext Transfer Protocol (HTTP) W3C
GridFTP v1.0 GGF
Open Grid Services Infrastructure v1.0 (OGSI) GGF

Chapter 2: Literature Survey 33

2.2.2 Gridbus

The Gridbus project [68] is focused on producing a set of economic grid middle-

ware services to support e-science and e-business applications using the computational

grid service architecture. One of the components of the Gridbus middleware is the

Grid Bank. The grid bank provides the infrastructure for Grid accounting and pay-

ment [69]. It uses SOAP over Globus Toolkit’s sockets. The grid bank service lacks

support for pricing schemes that support reservations or dynamic prices. Moreover,

computational resources can have only a single dimension (e.g. CPU cycles).

2.2.3 Condor

Condor [70] [71] is a high-throughput computing system that exploits the idle cy-

cles in a network of workstations. A good example of such a community is the set of

personal workstations that sit on the desks of workers in an office or home building.

Such a community of workstations is characterized by the possibly heterogeneous na-

ture of each workstation specialized to its owner’s needs. Each workstation is likely to

have different resources (a different amount of memory and disk size, different range

of processor speed, and different software and operating system). These differences

in workstation configurations affect the QoS provided in the computing environment.

The Condor project addresses concerns in its design principles. Similar to other mid-

dlewares, the Condor provides different levels of access rights, computing privileges,

and job scheduling.

Legion [72] and Oceano [73] are two other systems that have features similar to

those of a grid system. Oceano provides a highly scalable and manageable infrastruc-

Chapter 2: Literature Survey 34

ture for operating a grid. In addition, it provides its users with the necessary resources

to balance a contracted service level. Oceano attempts to resolve the problems associ-

ated with non-dedicated resources for each customer in a grid. These problems include

over-resource provisioning and lack of rapid response associated with inflexibility in

high cost of providing QoS in a grid system. Oceano provides a cost alternative solu-

tion to the QoS problems. It automatically and dynamically reassigns resources that

meet resource demands of the customers as the resource become available. In these

research efforts, very little attention has been paid on pricing grid resources.

2.2.4 Nimrod-G

Nimrod-G performs the function of a resource scheduler, and also manages task-

farming applications [74], [75]. The four components of Nimrod-G include the task-

farming engine, a scheduler, a dispatcher, and resource agents. The task-farm engine

is a user-defined scheduler system with customized applications. The dispatcher uses

Globus for deploying Nimrod-G agents on remote resources to manage the execution

of scheduled and assigned jobs. The scheduler has the capability for supporting

resource discovery selection, scheduling, and the execution of applications on remote

ends. For example, a user could provide parameters such as set deadlines time when

processing needs to be completed, and the Nimrod-G does the job of finding the best

resources available in the grid that meets the user’s deadline in a minimized cost of

execution.

Nimrod-G supports applications for user-defined deadline with specific emphasis

on budget constraints for managing the supply and demand or grid resources. It

Chapter 2: Literature Survey 35

achieves this set objective using a set of trading services called Grid Architecture for

Computational Economy (GRACE) [75]. The four scheduling algorithms in Nimrod-

G [76] include: (a) Cost optimization – uses cheapest resources to meet deadlines

at a minimized computational cost (b) Time optimization – combines all available

resources to process jobs in parallel, (c) Cost-time optimization – similar to (b), but

applies time optimization strategy for multiple resource requests, and (d) Conser-

vative time strategy – similar to (c) guarantees a minimum budget-per-job for each

unprocessed job.

2.2.5 Enabling Grid for EsciencE (EGEE)

Enabling Grid for EsciencE [77] (EGEE) project focuses on maintaining the gLite

(pronounced “gee-lite”) middleware and on operating a large computing infrastruc-

ture for the benefit of a vast and diverse research community. The gLite middleware

provides a basic framework for building grid application that leverage distributed

computing and storage resources across the Internet [78]. The Distributed Grid Ac-

counting System [79] (DGAS) is an important component of EGEE and it implements

a pricing scheme using a Price Authority (PA). The PA assigns prices to the subset

of grid resources within its administrative domain [79]. The prices are stored in a

historic database and are then assigned manually. One of the shortcomings of this

pricing scheme is that the default dynamic pricing procedure increases the price for

jobs with lower waiting times.

Chapter 2: Literature Survey 36

2.3 Grid Services

Generally, the grid encapsulates modular complexities which are managed by a set

of middleware frameworks to meet the diverse users’ needs in the areas of infrastruc-

ture, collaborations, tailored applications, and domain portals. These are collectively

called a middleware. Some of the middleware that are most significant to date in-

clude Globus [62] and Nimrod-G [80]. The focus of these middlewares is essentially

resource scheduling and management. As a new and evolving area, grid computing

has attracted considerable research interest. The most notable of these include the

NASA’s Information Power Grid [81] which runs on the Globus toolkit and the new

grid LCG [40] being constructed for analyzing data from the Large Hadron Collider

(LHC) project at CERN [82].

2.3.1 Simple Storage Service (S3)

Currently, there is no cost for utilizing grid resources (for research purpose only,

for example [83]). However, the grid is slowing developing into a commercial system

due to a large interest in grids for public computing. Hence, a sudden explosion of

grid usage is expected in the near future which may lead to . To avoid bottlenecks,

Amazon has introduced a Simple Storage Service (S3) [17] for grid consumers. S3

offers a pay-as-you-go online storage, and as such, it also provides an alternative

to in-house mass storage. Palankar et al. [17] reviewed the features of Amazon S3,

focusing on the core concepts: the security model and data access protocols. After

characterizing science storage grids in terms of data usage characteristics and storage

requirements, they proceed to benchmark S3 with respect to data durability, data

Chapter 2: Literature Survey 37

availability, access performance, and file download via BitTorrent (in order to reduce

cost). With this information as a baseline, they evaluate S3’s cost, performance, and

security functionality.

Palankar et al. concluded by observing that many science grid applications do not

necessarily need all three most desirable characteristics of S3: high durability, high

availability, and fast access. Finally, Palankar et al. noted that S3’s current security

architecture is inadequate for science collaborations such as DZero2 in terms of access

control, support for delegation and auditing (pricing), and built-in trusts (which were

basically a set of assumptions).

2.3.2 Simple Queue Service (SQS)

Amazon’s Simple Queue Service (SQS) allows users to create one or more named

queues. SQS supports three basic operations. A named message consisting of up to

256K of data and 4K of metadata can be written into a queue; one or more messages

can be read from a queue; and one or more named messages can be deleted from

a queue. When a message is read from SQS the reading process specifies a time

lock. While the message is locked, no other read request will return the message.

The reading process must delete the message before its time lock expires, otherwise

another concurrent process may read the message instead.

2The DZero (Dϕ) Experiment consists of a worldwide collaboration of scientists conducting re-
search on the fundamental nature of matter. The experiment is located at the world’s premier
high-energy accelerator, the Tevatron Collider, at the Fermi National Accelerator Laboratory (Fer-
milab) in Batavia, Illinois, USA. (http://www-d0.fnal.gov/).

Chapter 2: Literature Survey 38

2.3.3 Elastic Cloud Compute (EC2)

Amazon charges separately for computer resources consumed and for bandwidth.

The pricing model underwent a significant change on June 1, 2007. This section

presents S3 and EC2 pricing models. Amazon’s pricing for EC2 is $0.10 per hour

for each instance, with fractional hours rounded up. Instances must be shut down

with the EC2-terminate-instances command. Instances that have crashed and not

automatically rebooted continue to acquire charges. Storage for S3 is charged on a

flat basis of $0.15 per gigabyte stored per month, with the amount of data stored

being calculated twice each day. Amazon S3 uses buckets (similar to file directory) to

store files. A few important S3 commands include PUT (put filename.xyz s3 – to

load a file to a bucket (if bucket is s3)), LIST (ls s3 – list the contents of a bucket),

and GET (get s3 – download the contents of a bucket). Starting June 1, 2007,

Amazon has also charged a per-transaction fee of $0.10 for every 1,000 PUT or LIST

requests, and $0.10 for every 10,000 GET requests. Use of SQS is charged at $0.10 for

every thousand messages sent. Originally pricing for bandwidth for the Amazon Web

Services (AWS) was charged on a flat basis of $0.20 per gigabyte transferred in or

out of the Amazon network. Under the new pricing model Amazon charges $0.10 per

gigabyte sent from the Internet to Amazon. Bandwidth from Amazon is charged at

$0.18 per gigabyte transferred for the first 10 TB of data transferred per month, $0.16

per gigabyte for the next 40 TB transferred, and $0.13 for each gigabyte transferred

thereafter. There is no charge for moving data between EC2, S3, and SQS.

Chapter 2: Literature Survey 39

2.3.4 Grid Resources for Industrial Applications (GRIA)

The Grid Resources for Industrial Applications [84] (GRIA) is a lightweight eco-

nomic middleware infrastructure that allows businesses to supply and/or procure and

federate computational services on a commercial basis. It enables businesses to use

the grid in a secure, inter-operable, and flexible manner based on Web Services and

SLAs [85]. The GRIA SLA management service accounts for the use of CPU, cur-

rent activities, disk space, for jobs with a possibility to define customized resource

types. The drawback of the charging service offered by GRIA is that the resources

in GRIA have a single dimension and prices are statically defined in the associated

SLA document. Other GRIA limitations include the absence of dynamic pricing, lack

of resource price history, inability to provide an automated negotiation between two

different business processes because of the complexities posed by QoS and SLAs [85].

I have presented some examples of existing pricing schemes in Section 2.3. The

resource charging concept is usage based. For example, the cost of computation

(to use a CPU based on time) is obtained by multiplying the price per compute

cycle with the number of compute cycles that the computation used. This type of

static pricing scheme does not provide a fair charge for computations that requires a

shorter time to complete. Amazon EC2 charges per instance hour. For example, it

offers computational power equivalent to a server with 1.7GHz Xeon CPU, 1.75GB

RAM, 160GB HDD, and 250Mb/s of network speed at a price of $0.10 per instance-

hour [86]. In a similar approach, SUN Grid charge $1.00 per CPU hour. In contrast

to Amazon, SUN does not provide any specification for the equivalence of hardware

they offer for use. The SUN Grid is similar to paying a high penalty for jobs that

Chapter 2: Literature Survey 40

take longer to complete on average. Although that may seem to charge a flat rate

of $1.00 per CPU hour, however, users may actually pay for unused cycles if they

over-estimate the compute resource requirements for their jobs. The goal of SUN

Grid and EGEE (EGEE uses the same charging technique as SUN Grid, known as

Price Authority [79]) is to minimize the queue wait time using economic scheduling.

The grid is a dynamic resource reservoir and as a result, static charging (usage-based

charging, flat-rate charging, and wait time charging) does not capture the essential

goals that I address in my research (see Section 1.5).

2.4 Grid Simulators

This thesis employs the use of a simulator. Simulators are useful to mimic the

behavior of a real. In this thesis, I use a simulator instead of a real grid middleware

because in a real grid middleware, access is restricted by the administrator. The fun-

damental advantage of simulators is their independence from the execution platform

and ability to control the system variables in order. Simulating a mechanism of a one

million node distributed system on a single personal computer is rare. This advantage

is made possible because the simulator does not run the real distributed system but

an abstract model of it. Table 2.2 provides an overview of some existing Grid simu-

lators: Bricks [87], SimGrid [88], GridSim [3] [89], GangSim [90], and OptorSim [91].

Table 2.2 compares the characteristics of other grid simulators and GridSim.

GridSim is similar to SimGrid (SimGrid2 provides similar abstraction through

the notion of Agents) in that it is a discrete event simulator. However, compared to

SimGrid, GridSim’s design considers the existence of several brokers. GridSim man-

Chapter 2: Literature Survey 41

ages several abstractions also called entities. These include user, broker, resource,

grid information service, input and output. Users in GridSim are characterized by

job type (execution time, number of parametric replications, etc.), scheduling opti-

mization strategy, activity rate, time zone, absolute deadline and budget and their

associated relaxation parameters. When the brokers receive the tasks submitted by

users they carry out their scheduling algorithm. However, because users must compete

for the same set of finite resources, brokers have to find tradeoffs (to meet all project

deadlines) among user requirements. GridSim describes its resources as number of

processors, cost of processing, performance, internal scheduling policy, workload, and

time zone.

One of the significant differences between GridSim and other simulators is seen

in the management of inputs to the toolkit and outputs. Comparatively, GridSim is

a higher-level simulator designed to investigate interactions and interferences among

scheduling decisions taken by distributed brokers. For example, at the user code layer,

individual resources, machines and grids can be specified. Also, user job attributes

such as the job length, file input and output size (bytes), RAM size, and disk size

can be specifies.number of

Chapter 2: Literature Survey 42

T
ab

le
2.
2:

G
ri
d
S
im

u
la
to
rs

G
ri
d

S
im

u
la
-

to
r

M
o
ti
v
a
ti
o
n

P
ri
n
ci
p
le
s

Im
p
le
m
e
n
ta
ti
o
n

A
p
p
li
ca

ti
o
n

(S
e
rv

ic
e
s)

B
ri
ck
s
[8
7]

T
o

st
u
d
y

an
d

m
ak
e

co
m
p
ar
is
on

s
b
et
w
ee
n

sc
h
ed
u
li
n
g

al
go
ri
th
m
s

an
d
fr
am

ew
or
k
s.

E
ve
n
t

d
ri
ve
n

si
m
u
la
-

to
r

w
it
h

re
p
la
ce
ab

le
co
m
p
on

en
ts

Im
p
le
m
en
te
d

in
J
av
a.

S
cr
ip
ts

u
se
d
to

sp
ec
if
y

th
e
en
v
ir
on

m
en
ts
.

N
et
w
or
k

tr
affi

c
m
on

i-
to
ri
n
g/
p
re
d
ic
ti
on

,
P
er
-

fo
rm

an
ce

an
al
y
si
s

of
sc
h
ed
u
li
n
g

an
d

re
p
li
ca
ti
on

al
go
ri
th
m
s
in

d
at
a
G
ri
d
s.

S
im

G
ri
d

an
d

S
im

-
G
ri
d
2
[8
8]

T
o

st
u
d
y

si
n
gl
e

cl
ie
n
t

m
u
lt
i-
se
rv
er

sc
h
ed
u
li
n
g

sy
st
em

s
in

h
et
er
og
en
eo
u
s

en
v
ir
on

m
en
ts
.

E
ve
n
t

d
ri
ve
n

si
m
u
la
-

ti
on

.
Im

p
le
m
en
te
d
in

C
.

C
om

p
il
e

ti
m
e

sc
h
ed
u
li
n
g

an
d
R
u
n
ti
m
e
sc
h
ed
u
li
n
g
al
-

go
ri
th
m
s.

G
ri
d
S
im

[3
]

S
im

il
ar

to
S
im

G
ri
d
.

G
ri
d
S
im

fo
cu
se
s
on

gr
id

ec
on

om
y,

P
ro
d
u
ce
rs

/
C
on

su
m
er
s

/B
ro
ke
rs
,

d
es
ig
n
ed

fo
r

d
ea
d
li
n
e

sc
h
ed
u
li
n
g
st
u
d
ie
s

D
is
cr
et
e

ev
en
t

si
m
u
-

la
to
r,

B
ro
ke
rs

re
ce
iv
e

ta
sk
s,

fi
n
d

tr
ad

e
off

s
ac
ce
p
ta
b
le
fo
r
al
l
u
se
rs

(t
o

m
ee
t

th
e

d
ea
d
-

li
n
es
)

Im
p
le
m
en
te
d

in
J
av
a

on
to
p

of
S
im

J
av
a.

E
n
ti
ti
es

ru
n

in
se
p
a-

ra
te

th
re
ad

s.

C
os
t-
ti
m
e

op
ti
m
iz
at
io
n

al
go
ri
th
m
s

an
d

ec
on

om
y

b
as
ed

d
is
tr
ib
u
te
d

re
so
u
rc
e

m
an

ag
em

en
t.

G
an

gS
im

[9
0]

T
o

st
u
d
y

th
e

b
eh
av
io
r

of
V
ir
tu
al

O
rg
an

iz
at
io
n

sc
h
ed
u
le
rs

as
a
fu
n
ct
io
n

of
sc
h
ed
u
li
n
g
p
ol
ic
y,

re
-

so
u
rc
e
u
sa
ge

p
ol
ic
ie
s
an

d
w
or
k
lo
ad

s

D
is
cr
et
e
ev
en
t
si
m
u
la
-

to
r.

D
er
iv
ed

fr
om

G
an

gl
ia
.

A
d
d
s
to
ol
s
fo
r
w
or
k
-

lo
ad

sp
ec
ifi
ca
ti
on

an
d

to
ge
n
er
at
e
G
ri
d
en
v
i-

ro
n
m
en
ts

S
y
n
ch
ro
n
ou

s
an

d
as
y
n
-

ch
ro
n
ou

s
w
or
k
lo
ad

s.

O
p
to
rS
im

[9
1]

T
o

st
u
d
y

d
at
a

re
p
li
ca
-

ti
on

:
C
re
at
io
n
an

d
m
an

-
ag
em

en
t
of

d
at
a
re
p
li
ca
s

in
d
iff
er
en
t
ge
og
ra
p
h
ic
al

lo
ca
ti
on

s.

S
it
es

p
ro
v
id
e

co
m
p
u
-

ta
ti
on

an
d
/o
r

d
at
a

st
or
ag
e
re
so
u
rc
es
.

M
o
d
u
la
r
ar
ch
it
ec
tu
re
,

S
im

u
la
ti
on

b
as
ed

on
th
e
ar
ch
it
ec
tu
re

of
th
e

E
U

D
at
a
G
ri
d
p
ro
je
ct

S
ev
er
al

re
p
li
ca
ti
on

st
ra
te
-

gi
es
.

Chapter 2: Literature Survey 43

Compared to SimGrid, which is implemented in C, GridSim is implemented in

Java on top of an existing discrete event simulation engine (SimJava) which runs

entities in separate threads. GridSim is mainly used to study cost-time optimization

algorithms used for scheduling task farming applications on heterogeneous grids. A

wider application considers grid economy based distributed resource management

using deadline and budget constraints.

2.5 Economics of Grid Marketplaces: Scheduling

and Reservations

A primary area of focus in grid economics is related to resource allocation and

resource management. Several studies in resource allocation and management have

only applied market mechanisms to allocate compute resources to job requesting

services. For example, Feldman et al. [92] formulate a resource allocation game and

study the efficiency and fairness of the Nash equilibria (see for example [93]) that

results. Wellman et al. [94] propose an auction mechanism to allocate distributed

resources to users.

Several scheduling approaches have been proposed in the literature, including the

Tycoon [95] and Condor systems [96]. Most current systems (for example, [56]) as-

sume the resource requirements can be estimated a priori by the users. Condor

scheduling systems typically perform a matchmaking function, matching jobs to re-

sources based on resource requirements and available resources. However, several

empirical studies ([56], [92], and [97]) have found that users provide very inaccu-

Chapter 2: Literature Survey 44

rate estimates of resources required and job run times. Providers encourage users

to provide good (accurate) estimates (which allows for better planning) by offering

incentives for faithful reporting. However, users still do not give good estimates.

Using the backfilling technique ([92], [98]) for example, jobs in the queue that have

less computing requirements are executed earlier than jobs that have more compli-

cated requirements. This would mean providing incentives to jobs with low runtime

requirements. However, jobs may be evicted from the queue if the actual runtime is

higher than the estimate, ensuring that users do not deliberately quote low resource

and runtime estimates. The prevalence of inaccuracies in the estimates, despite the

incentive mechanisms, show a fundamental problem.

Under-estimated job requests or over-estimated computational job requests can

significantly undermine the efficiency of the scheduling algorithms. Normally, users

will estimate the costs based on the resource requirements and pricing policies of the

grid system. The provider estimated utilization costs may be considerably different

from users’estimates. This difference between the providers’ estimated utilization cost

and the users’ estimates (projected cost of resource usage) could cause considerable

and undesirable regret on the part of both parties. Solutions are needed to address

inaccuracies caused by poor estimates of resource requirements so that buyers can

better estimate costs, schedulers can better assign jobs to resources, and resource

providers can better plan their computational capacity ahead.

Mutz et al. [99] apply a simple form of batched-queue of jobs ji for i = 1, 2, · · · , n

waiting to be granted resources; where ji receives service before ji+1. Owner’s re-

quirements determine the resources allocated. Mutz et al. model their payment

Chapter 2: Literature Survey 45

function on the assumption that users’ behaviors imposes some undesirable external

constraints on the jobs in the batched-queue. With specific reference to the job value

vi (currency based), and the delay in total turnaround time d expressed as a tolerance

factor, Mutz et al. obtained a job priority model using an efficient design mechanism

described in [61]. They proposed a penalty function based on the urgency with which

a job owner wants his/her job to be executed. Whenever an urgent request for exe-

cuting a job is made, a penalty is paid by the job owner and the penalty is disbursed

as incentives (i.e., compensation) to the jobs that are bumped. The scheme described

in [99] is typical of an airline reservation system. For example, the holder of an air

ticket may decide to postpone, advance the travel date or cancel the flight after the

flight has been confirmed. In any of these cases, the ticket acquires pays a penalty.

My work is novel in applying real options to the grid resources pricing problem

and consideration of QoS. Also, in my grid resources pricing model, I introduce a

compensation function called a price variant function (pvf) or simply pf , details of

which are explained later. Kang et al. [100] considered one of the major challenges in

managing the shared resources of a computational grid. This challenge is providing

flexibility of use of grid resources and satisfying the users’ QoS. This challenge be-

comes more prevalent when resources are orchestrated from less reliable desktop PCs,

or a user’s requirement is biased toward some specific constraints: e.g., a request for

99% resource reliability for 24 hours. Therefore, matching the cost of resource usage

based on the forces of demand and supply may yield undesirable pricing results.

Existing pricing mechanisms (market-based economy) [52] have limitations in con-

trolling mismatches between users’ QoS and market resource supplies. These mecha-

Chapter 2: Literature Survey 46

nisms do not foster the utilization of the under-used, low-quality resources. A highly

available job execution service (HA-JES) [100] dynamically and transparently visu-

alizes underlying low-level computational resources to meet imbalance and unpre-

dictable resource usage. HA-JES sits between a user and grid resources and consists

of the underlying underutilized low-quality resource. The HA-JES idea is to build a

high-quality resource that satisfies user requirements. It achieves this objective by

replicating copies of the grid resources and places the redundant resources close to

the tasking that needs them. Using the HA-JES may not necessarily guarantee a

high and continual profit for the provider since s/he must maintain a consistent high

volume of resources to guarantee availability.

Closely related is the work of Tan and Gurd [57], in which they modeled grid

resources as a dynamic, distributed, two-sided market. The problem they attempted

to solve is the uncooperative habits of grid resource users where concurrent com-

ponents need to be co-allocated. They applied a Stable Continuous Double Auction

(SCDA) scheme, based on the more conventional Continuous Double Auction (CDA).

In their results, the SCDA delivered a continuous resource matching, high efficiency

and low cost, allied with low price volatility and low bidding complexity, and achieved

superiority in terms of performance over the CDA.

2.6 Financial Options

The literature on financial options show diverse methodologies and approaches

for pricing options, for example, closed-form solutions such as the Black-Scholes-

Merton [101], and Merton [102] model, Monte Carlo simulation methods (see for

Chapter 2: Literature Survey 47

example [103] and [104]), lattice techniques (binomial and trinomial (for example [105]

and [106])), and other numerical techniques (for example; Fast Fourier Transform [107],

Finite Difference [108], Multithreaded Fast Fourier Transform [109], Second Order L0

Stable Algorithm [110], and Collateralized Debt and Real Options [111]). These

approaches focus on financial options.

In a recent study, Goolsbee and Klenow [112] value consumer products (time-

intensive goods such as the Internet access) by the time spent using them. Goolsbee

and Klenow [112] have not considered users’ flexibility in using resources. A real

options framework captures the set of assumptions, concepts, and methodologies for

creating decision flexibility in a known future. Flexibility in investment decisions

(such as the decision to use, postpone usage to later date in the future) is critical

because not all of decisions have value in the future. Therefore, uncertainty abounds

in the decision to either exercise or not to exercise options. This challenge in the real

options has propelled several recent research efforts.

Current literature on real option approaches to valuing projects presents a real

options framework in eight categories described in [113]: option to defer, time-to-

build option, option to alter, option to expand, option to abandon, option to switch,

growth options, and multiple integrating options. There are also efforts reported

towards improving the selection and decision methods used in the prediction of the

capital that an investment may consume. Carlsson and Fullér [114] apply a hybrid

approach to valuing real options. Their method incorporates real options and fuzzy

logic and some aspects of probability to account for the uncertainty involved in the

valuation of future cash flow estimates. The results of the research in [114] and [113]

Chapter 2: Literature Survey 48

have no formal reference to the QoS that characterizes a decision system. Carlsson

and Fullér [114] apply fuzzy methods to measure the level of decision uncertainties;

however, there is a lack of indication of how accurate the decisions could be. Other

notable literature Gupta [115] and Amico [111] evaluated real options and applied it

to spot pricing. Similarly, in [116], d’Halluin et al. applied modern financial option

pricing methods to a network investment decision problem. d’Halluin et al framework

applies estimation techniques to manage the resulting network bandwidth capacity

uncertainties. In contrast to [116], I capture uncertainty in my model parameters

using fuzzy logic methods. Fuzzy logic has in the inherent property of determining

unprecise and vaguely represented variables such as the satisfaction derived by a user

measured as QoS. All these research efforts did not consider the development of a

price-based grid infrastructure as a means to capture the value of the gcc. In a grid

system, resources are non-storable and a user who predicts that he/she might need

more computing power in the future must pay upfront today to hold the right to

exercise the option when he/she needs the computing resources at the stated future

date. My research is unique because formulating/transforming the grid resources

pricing problem is done using real option concepts and I verify the results with the

actual machines usage pattern in the grid.

2.7 Chapter Summary

In this chapter, I presented a review of the related work in the aforementioned

areas and examined them in the context of resource pricing. I examined the charging

schemes used by one of the early commercial grid service providers – Amazon. I

Chapter 2: Literature Survey 49

observed that there is the need to provide a dynamic pricing approach instead of

static charging. The chapter also reviewed the economics of grid market places and

observed that existing systems often assume that resource requirements could be

estimated a priori by users. This assumption is sometimes in correct due to erroneous

job specifications. Some studies that attempt to circumvent the problem associated

with erroneous job specifications suggest the application of a penalty function as a

way to control users’ excesses.

Chapter 3

Methodology

In this thesis, the solution methodology consists of four phases of developments.

Phase one of the model design is a description of the model architecture and the

model design assumptions. A description of the grid trace data and the analysis

which lead to the evolution of the pricing model is presented in phase two. Phase

three and phase four are presented in Chapter 6. A complete work flow structure of

the research methodology showing the relationships of the progressions of research

methodology and phases of development is presented in Figure 3.1. Major highlights

of Figure 3.1 are seen in the research progress and refinement blocks. The following

section presents more details of the model development.

50

Chapter 3: Methodology 51

Resource Usage:

Polaris

(University of Manitoba)

Hypothetical

Data on

Trinomial lattice

Develop Initial

Valuation Model

Dev. Pricing

Architecture

Price Variant

Factor (PVF)

Price Variant

Factor (PVF)

Research

Progress

Trinomial lattice

Integrated

Architecture

Integrated Trinomial

GridSim

Dev. Commodity

Base Prices (CBP)

Trinomial lattice

Commodity

Base Prices (CBP)

Trinomial lattice

Refinements:

Basic assumptions

made and early version

or pricing architecture

is designed

Final Pricing Architecture:

Modify assumption

on CBP & apply

Economic principles

 of Input Output Analysis

pricing architecture

PHASE - I

Resource usage

from the Polaris

machine, University

of Manitoba

PHASE III

Development of

the PVF & CBP

PHASE IV

Other Grids

PHASE - II

SHARCHNet

Trace data

Phases of

Developments

WestGrid

SHARCHNet

Various Grids

DAS-2

 NorduGrid

 LCG

 Grid’5000

 AuverGrid

 DAS-2

Data
 Refinements

Figure 3.1: Phases of Development.

3.1 Model Architecture and Model Design

3.1.1 Model Architecture

The grid infrastructure is the underlying core for all grid applications. In anal-

ogy to the physical infrastructures such as roads, power grids, telephone lines, and

Chapter 3: Methodology 52

domestic utility systems, the grid infrastructure provides the pieces of distributed

computer processes, information, computations, and technologies that are bundled

together. These distributed components integrate to form a functional structure.

Figure 3.2 shows an abstract representation of the thesis model pricing architecture.

This architecture comprises a four-level infrastructure model.

Level-0 – Grid resources: The level-0 of the pricing architecture1 consists of a

pool of available grid compute commodities (gcc) such as CPU cycles, mem-

ory, network link bandwidths, disks, various visualization tools, software, and

specialized instruments. The grid infrastructure provides a description of the

available resources, application capabilities, and defines inter-component rela-

tionships among the various clusters that comprise the grid.

Level-1 – Resource modeling: The grid infrastructure provides a description of

the available resources, application capabilities, and defines the inter-component

relationship among the various clusters that comprise the grid. The grid re-

sources modeling approach facilitates resource discovery, provisioning, and qual-

ity of service management.

Level-2 – Monitoring and notification: The function available at level-2 is the

provision of updates regarding the states of available resources. At any time

during a grid computation, the infrastructure ensures that it provides updates

regarding the state of use of resources. These include notifications for changes

in projected utilization levels and application notification regarding service

1For describing the pricing architecture, the use of “grid” and “pricing architecture” are inter-
changeable.

Chapter 3: Methodology 53

changes. The monitoring capability also helps to maintain resource discov-

ery and maintain QoS that is necessary for grid resource usage. In the pricing

architecture, resource discovering means ability of the architecture to discover

what resources will best be suitable for a specific computation. The monitoring

level also provides notifications which may require resource re-deployment or

resource re-allocation for higher availability using some form of reservation.

Level-3 – Accounting and auditing2: Level-3 of the grid resource pricing archi-

tecture consists of user-codes. At this level, several authenticated users log in

to the grid to access compute commodities. The objective of a logged-on user is

to gain access to the computing commodities for a small price while attaining

the highest level of QoS as defined in the SLA. To achieve this objective, the

Grid Resources Broker (GRB) or schedulers must map the available physical

resources (gcc-s) onto the virtual grid space to make for resource shareabil-

ity. The accounting and auditing module also uses the generated user and job

information in order to transform shared resource usage (utilization) into cost.

This thesis focuses on level-3 of the model architecture – the application layer where

a larger part of resource usage is evaluated. Transformation from utilization to cost is

achieved when a user’s request Ri, for computing resources such as ji, (i = 1, 2, · · · , n)

is granted. If requests were made in sequence, then Ri receives service before Ri+1

if all conditions of the Service Level Agreement (SLA)-QoS remain equal. Later in

Chapter 4, a financial option based model for pricing grid resources with GridSim is

provided.

Chapter 3: Methodology 54

USER 1
 USER 2
 . . .
USER 3
 USER N

SLA:

Monitoring

QoS:

Monitoring

GRID RESOURCES

BROKER (GRB)

GRID RESOURCES

BROKER (GRB)

GRID

RESOURCES

GRID

MIDDLEWARE

LEVEL 0

LEVEL 1

LEVEL 2

LEVEL 3

META-

SCHEDULER

USER APPLICATIONS

CHARGING & ACCOUNTING

GRID SERVICES

USER

CODE

Condor G
 Condor G

META-

SCHEDULER

PRICING MODEL /

ALGORITHMS

GRID MIDDLEWARE

(GLOBUS)

GRID MIDDLEWARE

(NIMROD/G)

GRID COMPUTE COMMODITIES (gcc)

Figure 3.2: Pricing Architecture.

3.1.2 Assumptions and Systems Model Theory

As a preliminary to developing my pricing model for grid resources, and in the

absence of grid resource pricing benchmarks I make the following assumptions: (1) I

set prices called base prices for the gcc-s. These assumed prices are the prices that

reflect real market prices but discounted such that the grid provider recovers 100% of

the expenses incurred on the infrastructure within a specified period of time without

compromising the users’ QoS. For example, if 2GB of Random Access Memory (RAM)

costs $140, I set a price of $0.07 a week for 1MB of memory. The option holder has

the right to exercise the option any time before the end of the contract (American

style option). (2) There are other expenses incurred by the providers, such as cost of

Chapter 3: Methodology 55

the building, mortgage, equipment insurance, salaries, equipment upgrades, heating,

and cooling. In this thesis I do not consider these overhead costs while computing

prices for grid resources. This aspect of research has been reserved for future work

(Chapter 7). (3) Since the resources exist in non-storable states, I value them as real

assets. This assumption qualifies them to fit into the general stream of investment

estimates included in the real option valuation approach. A holder of an option

has an obligation-free chance of exercising the right to use the grid resources. The

obligation-free status enables me to apply existing finance option valuation theory

to model my pricing scheme. For example, consider an asset whose price is initially

S0 and an option on the asset whose current price is f . Suppose the option has a

lifetime of T . The price can either move up from S0 to a new level S0u with a payoff

value of fu, remain steady (without any upward or downward move) at S0 with a

payoff of fm or move down from S0 to a new level, S0d with a payoff value of fd in

these movements. Further discussions on resource pricing using a trinomial lattice

approach are presented in Chapter 5.

3.2 Grid Traces and Analysis

One of the challenges faced by grid researchers, grid system administrators, and

grid system designers is the lack of availability of grid workload data (trace data).

Two important reasons are responsible for the limited accessibility to grid trace data.

(a) Security issues and (b) Lack of a standard format to represent the grid trace

data. The Grid Workloads Archive (GWA) [31] was created to address this problem

by providing a freely accessible website that makes grid workload traces anonymized.

Chapter 3: Methodology 56

The GWA provides several grid traces using a text-based format. Using packages such

as Excel, Statistical Analysis System (SAS), or Statistical Package for Social Sciences

(SPSS) analysis can be carried out on the traces. Another workload trace format

is the Grid Workload Format (GWF) which is similar to the well-known Standard

Workloads Format (SWF) used by the Parallel Workloads Archive [117]. The GWA

has an an advantage over the syntectic traces in that workload traces often requires

special acquisition techniques which could be reading hardware counters for computer

traces, or capturing packets ??. Obtaining information from several events in the

grid is easier because most grid middleware log all job-related events. In addition,

the GWA provides a comprehensive summary of real-world grid workload traces.

Table 3.1 provides some of the characteristics of the grid traces.

This thesis analyzes the various grid trace data collected from real world grids in

four phases3. The first stage of phase one trace data analysis verifies the feasibility for

the application of a financial option-based pricing approach to price grid resources and

the second stage of phase one trace data analysis extracts more detailed characteristics

of the utilization trends observed in the collected traces. Based on the utilization, a

price variant function – the PVF was designed.

For this research, I collected grid utilization data (grid trace data) from various

real grids (experimental grids, production grids, and research or academic grids) and

study grid resource users’ behavior. The main motivation for this is that there are no

benchmarks in grid resource pricing. The results obtained from the trace study and

analysis provided a basis for the development of a financial option pricing model to

3Note that in this thesis, there are four phases of development. Each phase contains at lease one
state activity. Thus, I can have several stages within any phase.

Chapter 3: Methodology 57

price grid resources as well as a realistic evaluation and justification for the pricing

model. I started by collecting data from two Canadian grids, SHARCNet [41] and

WestGrid [42], discussed in this chapter, while developing the base price model. Fur-

ther refinement of the pricing model was done using more grid trace data that includes

data from Grid5000 [48], AuverGrid [49], DAS-2 [50], LCG [40], NorduGrid [43] and

which are discussed later in Chapter 6 with results and discussions. The following

section provides a description of WestGrid and SHARCNet trace data used in phase

one and phase two respectively.

3.2.1 SHARCNet

SHARCNet is a institutional (both a research and an academic grid) high per-

formance computing infrastructure and spans 16 leading academic institutions across

South Western, Central and Northern Ontario. It is structured as a cluster of clus-

ters consisting of a total of 6, 828 CPUs. Over a period of 1 year, SHARCNet records

trace data of about 1.2 million tasks. The purpose for the design of SHARCNet

is to meet the computational needs of researchers in a diverse number of research

areas and to facilitate the development of leading-edge tools for High Performance

Computing (HPC). The SHARCNet trace data that was collected for analysis in this

thesis contains about a year’s worth of trace records from the SHARCNet clusters

installed at several academic institutions in Ontario, Canada. The traces used are

for the year 2007, during the period January 01, 2007 till December 31, 2007. The

specific resources that are extracted for this thesis include the number of processors,

memory, CPU time, various job run times, wait times, and hard disc space required.

Chapter 3: Methodology 58

Table 3.5 shows an excerpt from the SHARCNet trace. Field descriptions from left

to right includes submit time (seconds), wait time (seconds), run time (seconds),

number of allocated processors (integer number), average CPU time used (seconds),

used memory (KB), requested number of processors (integer number), requested time

(seconds), requested memory (KB/processor), user ID, and group ID.

The analysis of the grid trace data was carried out in three phases in order to

visualize the progressions of the developments of the grid resource pricing model as

previously provided in the phases of model development (Figure 3.1).

3.2.2 WestGrid

In the WestGrid HPC consortium, utilization traces for eight machines (Arcturns,

Australis, Bigfoot, Borealis, Cortex, Dendrite, Nexus, and Synapse all located in Al-

berta) which represents over 43% grid resource utilization by the province [118] were

analyzed. Figure 3.5 shows the grid resource utilization by province in Canada. West-

Grid operates an HPC, collaboration and visualization infrastructure across Western

Canada. The WestGrid compute resources are distributed across fourteen partner

institutions in four provinces. Since the University of Manitoba is a partner in the

WestGrid consortium, I chose WestGrid as an initial case study for this thesis. Since

2004, WestGrid has built a user community across Canada in disciplines ranging from

the sciences and engineering to arts and humanities. Therefore, the collected data

are from a wider and a multi-disciplinary user community.

Chapter 3: Methodology 59

Table 3.1: Field Description of the Grid Trace Data from GWA

Trace Item Description
Submit Time
(seconds)

The earliest time the log refers to is zero, and is the submittal
time of the first job. The lines in the log are sorted by ascending
submittal times.

Wait Time
(seconds)

The difference between the job’s submit time and the time at which
it actually began to run.

Run Time
(seconds)

The wall clock time the job was running (difference between end
time and start time). Alternatively, “wait time” and “run time”
are used as equivalent to “start time” and “end time”. Note that
when values are rounded to an integral number of seconds (as often
happens in logs) a run time of 0 is possible and means the job ran
for less than 0.5 seconds.

No. of Allo-
cated Proces-
sors (integer)

This is also same as the number of processors the job uses; if the
job does not use all of them.

Average CPU
Time Used

Both the user and system specific average CPU time is provided in
seconds. This is the average over all processors where CPU time is
used, and may be less than the wall clock runtime. To derive this
average, the total CPU time used by all the processors is divided
by the number of allocated processors.

Used Memory
(KB)

This provides the average used memory per processor

Requested
No. of Pro-
cessors.

Number of processors

Requested
Time

The requested time can either be runtime (measured in wallclock
seconds), or average CPU time per processor (also in seconds) – the
exact meaning is determined by a header comment. In many logs
this field is used for the user runtime estimate (or upper bound)
used in backfilling. If a log contains a request for total CPU time,
it is divided by the number of requested processors.

Requested
Memory
(KB per
processor)

Requested memory uses a status flag where the flag is 1 if the job
was completed, 0 if it failed, and 5 if was canceled.

User ID An integer, between one and the number of different users.
Group ID An integer, between one and the number of different groups. Some

systems control resource usage by groups rather than by individual
users.

Chapter 3: Methodology 60

3.2.3 Phase One: Feasibility

The objective of phase one of my methodology was to verify the feasibility of the

design of a resource pricing model for a computational grid system using financial

options. Resource valuation is an important research issue in the implementation

of grid resource management. For computational grids, for example, resource man-

agement involves (among others), the charging of utilized CPU cycles among various

grid users. However, the grid resource users in a grid environment have different com-

putational needs and exhibit dissimilar usage patterns. As a result of the differing

utilization patterns exhibited by various users, an understanding of the resource uti-

lization patterns is considered an important step for modeling grid resource pricing.

The resource usage patterns enable me to identify users’ resource requirements in a

grid. Therefore, as a proof of concept and as a case study, I started the resource

pricing model design by using the usage activities of the Polaris parallel machine at

the University of Manitoba for a period of twelve months (between January 2007 and

December 2007). Table 3.2 shows the average monthly CPU utilization obtained from

the polaris parallel machine observed during this period. The utilization trend shows

that most CPU cycles were under-utilized for the periods of January 2007 to August

2007. For example, in January 2007, an average monthly CPU demand of 135 cycles

was requested and only 75 cycles were utilized. It is important to note that CPU

cycles is a measure of the numbers of computing power that was required to execute

a request in the Polaris machine. In the months of September 2007 to December

2007, the average monthly requests and actual utilization were zero cycles. Using

these sample utilization pattern I observe that for optimum gain and justification for

Chapter 3: Methodology 61

Table 3.2: Average Monthly CPU Utilization in Polaris Parallel Machine in 2007

Month
(2007)

CPU (cycles)
Requested

CPU (cycles)
Utilized

January 135 75
February 105 95
March 125 80
April 140 80
May 165 95
June 175 100
July 200 100
August 125 100
September 75 75
October 65 65
November 50 50
December 75 75

infrastructure investment in the distributed system the under-utilized cycles should

be as close to zero as possible (the case for the months of September 2007 to December

2007). One of the ways to get the optimal benefits of the distributed environment is to

utilize the resources to its fullest. In other words, I keep the distributed system busy

and eliminate idle cycles. I also noted that within the individual months, availabil-

ity of the requested cycles tends to fluctuate erratically, making availability a major

concern. To capture the behavior exhibited in terms of cycles availability, I treat the

cycles as assets and attempt to valuate them using financial options. For this current

research (phase one), I observe that the utilization trends do not follow a particular

known trend. To verify the suitability of pricing the resources using a financial op-

tion model, I introduced artificial spot prices for the cycles at various times of their

availability (which is the same as the contract period) as exemplified by the trinomial

tree structure of the solution space (further detail is provided in Chapter 5). I then

Chapter 3: Methodology 62

compute the option values (prices) and study the variation in a space of 6 months to

determine the effects of time of exercise on option value. Time of exercise here means

the time at which the grid compute commodities are going to be utilized, up to six

months in the future. Figure 3.3 shows the effects of time of exercise on the cycles. I

run the trinomial lattice using the following hypothetical values: For example, for a

one-step trinomial tree I set strike price (K = $70.00), resource price (S = $80.00),

expiration time (T = 0.5 in years), interest rate (r = 0.06), volatility (σ = 0.2), and

the number of time steps (Nj = 2N +1). I extend my study by varying the volatility

σ in steps of 0.0, 0.1, · · · , 0.7 and N = 4, 8, 16, 24 (where N is the step size in the

trinomial tree). For a 6 month contract (expiration time in months), for example,

N = 3 would mean a 2 month step size and N = 12 would mean a 2 week step size.

At various times (i.e., first month, second month, · · ·, sixth month), I have different

option values. Figure 3.3 shows option values for three months only. As expected,

the option values that occurred at earlier months are lesser than the option value at

later months for the same resource. The reason is that a guaranteed availability in

terms of QoS is hard to ascertain. The results obtained also shows a dependence on

the future price rather than the spot price. I observe that from the date of signing the

contract to the actual date of utilization, the price variation is due to various factors

such as change in demand on grid resources and advancement in technology. Based on

these changed prices of the grid resource commodities (in other words, the underlying

assets for the option) the option values are calculated. From the utilization trends

in WestGrid the generic problem – that is, to satisfy every resource requested and

guarantee their availability to users. Phase one [37] of my analysis also shows that

Chapter 3: Methodology 63

T
i
m
e
(
3
m
o
n
t
h
s
)

60.00

O

 p

 t
i

o

n

 V

 a
 l

u

 e

 (

$
)

G
r
i
d
R
e
s
o
u
r
c
e
s

Expiration at 3 Months Only

cc1

cc2

cc3

cc4

cc5

cc6

0.00

10.00

20.00

30.00

40.00

50.00

cc1
 cc2
 cc3
 cc4
 cc5
 cc6

Figure 3.3: Compute Cycles Obtained for Three Months Expiration.

the price of a resource is determined by the effects of time T and volatility σ (one of

the most subjective and perhaps the most difficult factors to measure).

3.2.4 Phase Two

Important findings of phase one include a verification of the application of a

financial option theory to price grid resource usage. The behavior exemplified in the

observed utilization patterns show that users’ request for resources are characterized

by uncertainties in the decision of the user to make a choice for resource use. To model

the associated resource prices, in this thesis I use the application of a real option idea

as proposed in [37]. The application of financial option enables the association of the

uncertainties present in the observed utilization patterns as exercise opportunities in

real options. The principal advantages of using real options include: (a) using real

options will help to value the gain of investing now or making follow-up investments

later if the original project is successful, (b) real options will also be useful because

I am interested in valuing the possibility that a user may decide to opt out from

the decision to utilize the proposed portion of the grid compute cycles (this situation

Chapter 3: Methodology 64

may result in an exit option), (c) real options, when integrated in financial option

pricing can help to value the user’s inputs and output response to possible changes

in technologies (a flexibility option), and (d) generally, real options will enable the

valuation of the possibility to wait, learn or deal with uncertainty prior to deciding

whether to exercise the options based on the profitability of the exercise.

In the following section, I analyze traces from WestGrid and SHARCNet. The

analysis enables me to make specific comparisons of resource usage behavior across

various grids. Table 3.3 and Table 3.4 show excerpts of the resource utilization col-

lected from WestGrid (Nexus and Cortex machines) and Table 3.5 shows an excerpt

of the resource utilization collected from SHARCNet.

0

100

200

300

400

500

600

700

800

No. of Jobs

(x10
 3
)

CPU Time (Sec.)

SHARCNET: CPU Time Vs. No. Jobs

Figure 3.4: CPU Time Vs. Number of Jobs for SHARCNet.

The trace data were collected from January 2007 to December 2007. Characteris-

tics that describe the trace data are provided in Table 3.1. Figure 3.4 shows the used

CPU time and the number of jobs it supports in SHARCNet. From this figure, it can

be observed that in SHARCNet more number of jobs are supported in the early part

of the year. However, there is a sharp drop in the number of jobs supported in the

Chapter 3: Methodology 65

Table 3.3: Excerpt of Grid Resource Utilization Trace: WestGrid (Nexus Group).

later part of the year. This behavior is somewhat skewed from the grid’s expectation:

the larger the number of jobs the grid has to satisfy, the higher the CPU time (and

the larger wait time) especially if the required computation is resource intensive. An

exception is the possibility for most of the jobs to take larger CPU time than neces-

sary. This situation may lead to a waste of compute cycles. It can also be seen that

the times of low CPU availability make the grid jobs request more wall clock time.

To make the grid busy, I need to attract more users to the grid so that the idle cycles

can be turned into productive computations. How to attract more patronage and

thereby encourage the grid provider without compromising the service objectives or

Chapter 3: Methodology 66

Table 3.4: Excerpt of Grid Resource Utilization Trace: WestGrid (Cortex Group).

quality was a major concern of Phase two. In this thesis, I introduce a control factor

called the price variant function (PVF) to modulate the grid resource utilization for

optimal profitability for the provider and satisfaction for the user. However, further

analysis is necessary to support the conceptual framework for PVF.

3.3 Chapter Summary

In this chapter, I presented my basic design and the approach to develop the model.

The objective of phase one and phase two of the design methodology is to test the

suitability of applying financial options to price grid resources. In phase one of my

Chapter 3: Methodology 67

Table 3.5: Excerpt of Grid Resource Utilization Trace: SHARCNet.

design, I describe the model architecture and present the design assumptions. In phase

two of my design, I described the real grid trace data that I used. I also presented

the analysis which evolved from the pricing model and extended trace analysis from

WestGrid to traces obtained from SHARCNet. The objective of phase one and phase

two of my methodology is a proof of concept for the use of hypothetical data to run

trinomial and a design of the pricing architecture. The results of the analysis of phase

one and phase two provide lead to the initial version of my pricing architecture which

is based on the trinomial lattice approach.

Limitations of the initial pricing architecture include the absence of benchmark

values which will serve as my reference point to price the grid resources. This prelimi-

Chapter 3: Methodology 68

Table 3.6: Grid Resource Usage by Provinces in Western Canada: Source [1]

Province Large
Shared
Memory
Usage (%)

Message
Passing
Systems
Usage (%)

Cluster Us-
age (%)

Average
Usage (%)

Alberta 52.3 44.1 31.4 42.6
British
Columbia

17.6 21.0 59.0 32.5

Ontario 14.3 4.3 0.6 6.4
Quebec 13.0 2.5 1.1 5.5
Nova Scotia 2.0 6.7 2.7 3.8
Saskatchewan 0.8 10.1 3.0 4.6
Newfoundland 0.0 6.1 0.3 2.1
Manitoba 0.0 5.2 0.6 1.9
Prince Ed-
ward Island

0.0 0.0 1.3 0.4

0

5

10

15

20

25

30

35

40

45

Usage

(%)

Province

Average Resource Usage in Westgrid by Province

Figure 3.5: Grid Resource Usage by Provinces in Western Canada

nary base model design helped to motivate the need for: (a) a Price Variant Function

(PVF) to control prices and increase the utilization of grid resources; and (b) the use

of Commodity Base Prices, since there are no standards or benchmarks available for

grid resources prices. I will use trace from other non-Canadian grids and in other

Chapter 3: Methodology 69

application areas. Chapter 6 provides more details of the traces from five other grids.

Chapter 4

System Implementation and

Simulation with GridSim

This chapter presents the system implementation and simulation with GridSim. I

also describe how I integrate the basic design into GridSim to enable me to apply fi-

nancial option pricing theory. I also present the user interface design for the simulator

which simplified the use of GridSim in my experiments. The user interface was im-

plemented using the Java Abstract Window Toolkit (AWT) that supports Graphical

User Interface (GUI) programming.

4.1 GridSim Toolkit Simulator

The GridSim [89] toolkit is based on Simjava2 which is a general purpose discrete-

event simulator. GridSim that manages time-variable resource assignments. That is,

a user job that runs in GridSim uses variable amount of time which depends on the

70

Chapter 4: System Implementation and Simulation with GridSim 71

job characteristics as specified by the user. Figure 4.1 shows the GridSim multi-layer

architecture. The first layer (from the bottom) consists of the Java Virtual Machine

(JVM). The first layer manages the events or interaction among GridSim compo-

nents. The second layer contains the GridSim infrastructure components, such as the

resource and network hardware simulator, which are developed using the interfaces

provided by the first layer. The third layer is concerned with modeling and simulation

of computational grid, and the fourth layer facilitates the modeling and simulation of

data grids. Some GridSim components are also extended from the third layer to sup-

port the requirements for implementing data grids. These components include grid

information service and job management which maintains a log of the grid directory

service and maintains a list of jobs to support scheduling respectively. The fifth layer

is the simulation of Grid resource brokers or schedulers. The top layer is reserved for

customized user code development with different scenarios in GridSim.

To simulate the grid environment using GridSim, grid entities such as resources,

users, jobs, and machines are created and assigned during the simulation. The sim-

ulation consists of created entities; an example is the gridlet (a Gridlet object is a

package that contains all information related to a grid job execution, especially, man-

agement details such as processing requirements, disk I/O operations, output file size,

input file size). In this thesis, Gridlets correspond to the gccs defined earlier. Each

gcc is characterized by the required number of Processing Elements (PEs), length of

the job (in Millions of Instruction (MI)), and the processing cost required to execute

it on the grid. The PEs are then combined to form a machine, where one or several

objects of the machine forms a grid resource. A grid resource consists of a set of grid

Chapter 4: System Implementation and Simulation with GridSim 72

Grid Resource Brokers or Schedulers

SimJava Simulation Kernel

Grid Scenarios
 User Requirements

Application

configuration

Network
 Traffic Generator
 Resource

(Clusters, SMPs)

Reservation

Resource

Allocation

Workload

Traces

Data Set

Replica

Catalogue

Replica

Manager

Grid

Information

Service

Job

Management

User

Codes

Data

Grid

Computa-

tional Grid

Core

Elements

Figure 4.1: GridSim Toolkit Layered Architecture [3].

tasks. Each task (a grid application) uses processor time, computational resources,

and some I/O. Figure 4.2 shows gccs as resources in a grid scenario. Several PEs form

a machine and several machines join together to form the grid. A grid gcc can have

GCC
 GCC

cc
1
 cc
2
 cc
m

Machine
 Machine

1
 j

GRID

cc
1
 cc
2
 cc
m

GRID
m
1

Figure 4.2: gcc and Grid Resource Setup.

a minimum of zero resources, however, within a grid the maximum resource available

to the user is j ∗ gcc where j is the number of available machines that forms a grid.

Chapter 4: System Implementation and Simulation with GridSim 73

4.2 Integrating Pricing Architecture in GridSim

The integrated pricing architecture consists of my model pricing architecture (Sec-

tion 3.1.1, Figure 3.2) combined with the GridSim layered architecture shown in Fig-

ure 4.1. The integration of the pricing model into GridSim is done at the user code

level in GridSim. The user code level in GridSim was substituted using the price

and usage optimization level in my pricing architecture (Figure 3.2). GridSim uses

Dutch auction bidding process to allocate jobs. The Dutch auction was modified to

use the reverse (reverse Dutch auction which is described in detail in Section 5.4.

Another significant aspect of my model is addition of pf , SLA and QoS relationships,

and generation of a trinomial tree in every round of the bidding process. Chapter 5

explains the trinomial lattice approach for pricing resources. Figure 4.3 shows the

resulting integrated simulation-based pricing architecture used in my evaluation.

4.3 Financial Option Pricing and the GridSim Sim-

ulation Environment

The simulated grid environment consists of heterogeneous resources and user en-

tities. The computational capacity of the grid is shared among the users based on

their computational needs. I consider two computational constraints; the cost of

computation and the quantity of time a computation takes to complete. The status

information of the resource changes dynamically1. GridSim charges the grid users

1GridSim manages the dynamic resource changes by regular updates in the Grid Information
System module.

Chapter 4: System Implementation and Simulation with GridSim 74

SimJava Simulation Kernel

Network
 Traffic Generator

Resource

(Clusters, SMPs)

Reservation

Resource

Allocation

Workload

Traces

Data Set

Replica

Catalogue

Replica

Manager

Grid

Information

Service

Job

Management

User

Codes

Data

Grid

Computa-

tional Grid

Core

Elements

USER 1
 USER 2
 . . .
USER 3
 USER N

SLA:

Monitoring

QoS:

Monitoring

GRID RESOURCES

BROKER (GRB)

GRID RESOURCES

BROKER (GRB)

META-

SCHEDULER

USER APPLICATIONS

Condor G
 Condor G

META-

SCHEDULER

PRICE & USAGE

OPTIMIZATION

Figure 4.3: Integrated Architecture.

for the portion of the computational resource capacity used. It is rare that these

computational resources are allocated totally to a single user; even if a user chooses

to purchase an entire resource, I expect at some point that the resource will be par-

titioned. Although computational resources are not continuously divisible, in my

simulation I see all resources (CPU cycles, memory, network link bandwidths, disks,

various visualization tools, software, and specialized instruments) as compute com-

modities which enable me to measure usage quantitatively.

My simulation was carried out on a 32-bit Windows based PC operating system.

The system specifications include an Intel processor with a Duo Core 2.20GHz, 4.00

Chapter 4: System Implementation and Simulation with GridSim 75

GB RAM, and 320 GB of Hard Disk. Figure 4.4 shows the various stages of the pro-

cesses carried out in GridSim (GridSim processes). In my simulation using GridSim, I

start with stage 1, creation of users and user jobs where the users specify the job char-

acteristics such as expected computation length and file size. Using this information

a reversed Dutch auction (details provided in Section 5.4) computes the winners (jobs

that wants to use gccs at the computed option value and above) and sets up a priority

list in stage 3. At stage 4, I create the various resources which consist of various ma-

chines that form a particular grid. Stage 5 of the GridSim processes uses my model

which at this stage is already integrated into GridSim in stage 6 to compute the op-

tion values for the resource utilization. Figure 4.6 shows the simulation configuration

for the experiment. The simulation begins with the creation of the grid simulation

scenario. This consists of the creation of PEs, new machines, and resources. The next

step in the simulation (after the grid scenario is created) is the creation of the users’

scenario which includes the creation of a grid task for each user. The bidding process

and integrated trinomial tree are then loaded to start the process of simulation. The

configured simulation entities include users, jobs, machines, simulation parameters,

job assignments to users, resources, machine assignments, and option pricing settings.

The simulation achieves the following; (a) accepts user job requirements, (b) uses re-

verse Dutch auction to compute jobs that wants to be executed first, i.e. users who

are willing to pay anything starting from the computed option value (also seen as the

available budget), (c) creates a priority list of the winners based on budget and job

requirements, (d) creates grid scenario, (e) price the gccs using the pricing model.

Chapter 4: System Implementation and Simulation with GridSim 76

Resource (gcc)

Job
 Job
 Job

WJob
 WJob
 WJob

User 1
 User 2
 User m

Job

Requirements

1
 2
 n

1
 2
 n
Priority Assignment

Compute Winners

PRICING MODEL

GRIDSIM

Reversed Dutch

Auction
Winner’s Job

1

2

3

4

5

6

GCC

cc
1

c

c
2

c

c
m

Machine

1

GCC

cc
1

c

c
2

c

c
m

Machine

2

GCC

cc
1
 cc
2
 cc
m

Machine

j

GCC

cc
1

c

c
2

c

c
m

Machine

1

GCC

cc
1

c

c
2

c

c
m

Machine

2

GCC

cc
1
 cc
2
 cc
 m

Machine

j

GCC

cc
1

c

c
2

c

c
m

Machine

1

GCC

cc
1

c

c
2

c

c
m

Machine

2

GCC

cc
1
 cc
2
 cc
 m

Machine

j

GRID 1

GRID 2

GRID m

Figure 4.4: GridSim Processes.

4.4 Implementation

In my simulation using GridSim I configure four environments. These include

the creation of the grid scenario, creation of individual machines, trinomial tree, and

initialization of GridSim to start the simulation. GridSim implements four types of

Chapter 4: System Implementation and Simulation with GridSim 77

auctions (first price sealed auction, English auction, Dutch auction, and Continuous

Double auction) and their reverses. The Reverse Dutch Auction (RDA) that is native

to GridSim applies a method where buyers start the auction and the lowest bid is

considered best. In this approach, the Dutch auction becomes ascending and starts

with a minimum price going until the maximum price. My pricing model considers

users whose willingness to bid for a resource is uncertain at a time as a result of the

uncertainty in the resource availability. At this time since the resource availability is

uncertain, I use the reverse Dutch auction for trinomial (see Section 5.4).

4.4.1 Simulation Setup

The user interface was implemented using the Java Abstract Window Toolkit

(AWT) that supports Graphical User Interface (GUI) programming. The AWT and

Java Swing Application Programming Interface (API) enhanced the user interface

component as well as flexibility of window layouts. To create the grid scenario I use

the GridSim simulator interface. Figure 4.5 shows the user’s simulation interface for

resource pricing. The Exit option under the file tab terminates the simulator.

4.4.2 Creation of the Grid Scenario

Figure 4.6 shows the simulation configuration interface. Using the simulation con-

figuration interface, inputs to the simulator such as users’ jobs, machine configuration,

simulation parameters, job assignments, resources, machine assignments, and option

pricing parameters are configured prior to the simulation. This interface has a main

menu which consists of file, configuration, and simulation functionalities. The con-

Chapter 4: System Implementation and Simulation with GridSim 78

Figure 4.5: Simulation Interface.

figuration tab performs functions which include configuring of users, jobs, machines,

simulation parameters, assignment of jobs to users, resources, resources, assignment of

machines to resources, and tab to financial option pricing integrated into the GridSim.

The simulation sub-menu loads the simulation parameters and starts the simulator.

In the following, I provide the setup guide for my implementation.

Figure 4.6: Simulation Configuration Interface.

Chapter 4: System Implementation and Simulation with GridSim 79

User Configuration Setup

To start the simulation, from the main menu “configuration” enable us to configure

or define the grid which include setting up users, jobs, machines, resources, and the

pricing parameters. The parameters that define a user include user name, baud

rate, budget (the budget defines the willingness to be able to make an early bid

in the future), deadline (speculated), and bidding policy applied (where bidding is

of type RDA, prioritized cost, prioritized time, or balanced). Figure 4.7 shows the

user setup interface for my simulation. At any time before the simulation starts, the

configuration file may be edited and any of the inputs modified. At any time the

parameters that define the user are completed, one user is set up in the configuration

file.

Figure 4.7: User Configuration Setup Interface.

Job Configuration Setup

Figure 4.8 shows the job configuration interface. It specifies the job name, job

length (million instruction per second (MIS)), file input size (bytes), file output size

(bytes), RAM size (MB), and Disk size (RAM).

Chapter 4: System Implementation and Simulation with GridSim 80

Figure 4.8: Job Assignment Setup.

Job Assignment Setup

The job assignment configuration setup takes a user and maps jobs that are pre-

viously defined in job configuration to the user. Figure 4.9 shows the interface for

mapping jobs to users.

Figure 4.9: User Jobs Assignment Setup.

Chapter 4: System Implementation and Simulation with GridSim 81

4.4.3 Creation of Individual Machines: Resource Assignment

Setup

Each machine is defined by the following parameters; PEs, million instructions

per second (MIPS) per PE, available RAM (MB), and available HD (GB). For every

machine specified, a resource is created. Figure 4.10 shows the machine mapping and

the resources available in the simulation.

Figure 4.10: Resources Setup.

Assignment of Machines to Grids

Figure 4.11 shows the available machines in the grid (left vertical pane). During

the resource assignment setup, machines that were created were each assigned to the

grid. For each selected grid, a number of available machines are added.

Chapter 4: System Implementation and Simulation with GridSim 82

Figure 4.11: Assign Machine to Grids.

4.4.4 Creation of the Grid

Figure 4.12 shows the interface to set up grid specific parameters for my simula-

tion. It specifies the grid name, the base costs, and baud rate. Figure 4.13 shows

Base Cost:

Grid Name:

Baudrate:

Figure 4.12: Create Grid for Simulation.

the interface to set up grid specific parameters for my simulation. It specifies the

grid name, the base costs, and baud rate. Figure 4.13 shows the interface for setting

Chapter 4: System Implementation and Simulation with GridSim 83

up option pricing parameters for the trinomial tree. I set up values for the strike

price, time in years, commodity base price, number of time steps, volatility, and the

incentive opportunity. These parameters are loaded prior to the simulations using

the load parameter interface in Figure 4.13 and the simulation starts.

Figure 4.13: Load Parameters to Run Trinomial in Simulation.

4.5 Chapter Summary

In this chapter, I integrated my grid resource pricing model architecture into the

GridSim toolkit in the user code layer. I also showed the configurations for the entities

involved in my simulations such as users, gccs, and grid.

Chapter 5

Discrete Time Financial Option

Model for Pricing Grid Resources

In Chapter 1 I explained that the option price of an asset can be computed with

some certainty. However, it is hard to determine the price of a grid resource with

any certainty because of the characteristics of the grid resources (Chapter 1) and

the non availability of benchmark information to price grid resources. If realistic

information about the resource price at expiration becomes available, it can help

predict the future grid resource price with near certainty. I use the Cox, Ross, and

Rubinstein (CRR) [105] model to build a tree to compute the grid resource price.

I begin this chapter with an introduction to the mathematical foundations of my

pricing model. The data analyzed in Chapter 3 shows that grid resources utilization

evolves unpredictably through time. Since the utilization trend changes in such an

unpredictable manner, the resource price follows a stochastic process. I formulate the

pricing model in a discrete time framework following an intuitive approach suggested

84

Chapter 5: Discrete Time Financial Option Model for Pricing Grid Resources 85

by the CRR model [105].

5.1 Asset Pricing

I start with a well known hypothesis made by Black and Scholes [101] about asset

price behavior. This hypothesis states that future returns on a stock are normally

distributed with a mean upward drift, and a standard deviation that can be estimated

using historical data [119]. This means that the distribution of the stock price is

asymmetric with future values above the current price more likely than values below

the current price. In other words, price changes follow a Geometric Brownian Motion

(GBM) governed by the stochastic differential equation in Equation (5.14):

dS = µSdt+ σSdz. (5.1)

where z is called the Wiener process, drift, µ, and the volatility of the asset, σ, are

known constants and dS is the change in the level of the asset price over a small

interval of time dt. If I divide all through by S, I have:

1

S

dS

dt
= µ+ σ

dz

dt
. (5.2)

In Equation (5.2), the percentage change or the return in asset price dS
S
, tells me two

things; (a) in the time interval dt, the average return on the asset due to drift µ,

(µdt) is deterministic (b) added to the drift term is a random component which is

characterized by a change dz, in a random variable z and the volatility σ of the asset.

Chapter 5: Discrete Time Financial Option Model for Pricing Grid Resources 86

The random variable z is a Wiener process [21]. Following (a) and (b) above, two

key properties define the Wiener process; (i) dz is normally distributed with mean

zero and variance dt and (ii) the values of dz over two different, non-overlapping

increments of time are independent.

5.2 Binomial Tree

The CRR model [105] is the discretized version of Black-Scholes-Merton (BSM)

model [101]. I start with the basic CRR [105] model and use it to analyze price

fluctuation. The time period T is divided into N smaller intervals: t1, t2, · · · , tN .

Suppose Sn is the price at the n-th step, then the CRR model defines the price at

the next step Sn+1 such that:

Sn+1 =


uSn with a probability p

dSn with a probability q = 1− p.

(5.3)

where u (> 1) and 0 < d < 1 are the two price movement factors. I compute the

option price by building a discrete time and state binomial model of the asset price

and then apply the discounted expectations. Figure 5.1 shows the one-step binomial.

S0 is the current asset price (today at the node A). In a given short duration, ∆t,

the asset price S0 can either go up with a probability of pu to a new level uS0 (of

node B) or go down with a probability pd to a new level dS0 (of node C) . When the

price moves up to uS0, the pay-off for a call option at node B is fu (max(0, uS0−K),

where K is the strike price of the option) for a call option and when the price moves

down to dS0, the pay-off at node C fd (max(0, dS0−K), where K is the strike price

Chapter 5: Discrete Time Financial Option Model for Pricing Grid Resources 87

A

B

C

t

t=0

S

p
d

p

u

0

f
u

f
d

S
0
d

S
0
u

Figure 5.1: One-Step Binomial Tree.

of the option). The BSM model sets up a riskless portfolio that consists of ∆, the

number of underlying assets, and an option such that the portfolio value will be the

same regardless of whether the asset price goes up or down over the period δt. That

is, the option value at the end of the contract term T (= δt in one-step binomial

tree) for the up movement is S0uδ− fu and for the downward movement, its given as

S0dδ − fd. That is:

S0uδ − fu = S0dδ − fd. (5.4)

or

∆ =
fu − fd

S0(u− d)
. (5.5)

where δ is the ratio of the change in option price to the change in asset price. The

variables u and d are the factors by which the asset price moves up or down and are

expressed as [105]:

u = eσδt. (5.6)

Chapter 5: Discrete Time Financial Option Model for Pricing Grid Resources 88

and

d = e−σδt. (5.7)

The current value of the portfolio for this future option price can be given by the

following expression:

(S0∆− fu)e
rδt. (5.8)

where r is the risk-free interest rate. Given that the cost of setting up the portfolio

is (S0δ − f), the riskless portfolio is:

S0∆− f = (S0∆− fu)e
−r∆t. (5.9)

and substituting in ∆ in Equation (5.5) into Equation (5.9), I have:

f = e−r∆t(pfu + (1− p)fd). (5.10)

where p = er∆t−d

u−d
is called the probability of an up movement in the asset price and

pfu + (1 − p)fd is the weighted sum of the future pay-off and f is the current value

of the option. In other words, the value of an option is the discounted value of the

weighted sum of the future pay-off. Figure 5.2 shows a two-step binomial tree and

the pay-off and option values are given by:

fu = e−r∆t(pfuu + (1− p)fud). (5.11)

fd = e−r∆t(pfud + (1− p)fdd). (5.12)

Chapter 5: Discrete Time Financial Option Model for Pricing Grid Resources 89

A

S

f

d

u

f
u

f
d

f

f

D

E

F

S
u

S
d

S
u
2

S
ud

f
ud

S
d

2

f
dd

f
uu

B

C

Figure 5.2: Two-Step Binomial Tree.

f = e−2r∆t(p2fuu + 2p(1− p)fud + (1− p)2fdd). (5.13)

5.3 Trinomial Tree

In this section, I extend the binomial approach to trinomial tree to a price grid

resources. The novelty of the extension from binomial to trinomial in my model is

in the application of my compensation function, which, conceptually is similar to an

airline system in my model. In an airline system for example, a reverse Dutch auc-

tion (Section 5.4) could be used to find someone willing to delay travel plans on an

overbooked flight. In this case, the airline applies a strategy of raising the compen-

sation until someone raises his or her hand (a willingness) that ends the auction. A

passenger unwilling to give up his or her seat for a free lunch may be more likely to

Chapter 5: Discrete Time Financial Option Model for Pricing Grid Resources 90

0,0

j

i

1,1

1,0

2,2

2,1

2,0

N-1,N-1

N,0

N-1,1

N-1,0

N,1

N,N

N,N-1

Figure 5.3: Multi-Step Binomial Tree.

relinquish it for free flight, $20.00, or other higher compensatory values (incentives). I

model the received incentive as a compensation function which I call the Price Variant

Function1 (PVF), pf . The primary goal of my model is to recover grid infrastructure

expenses within a stated time (two years for example). To achieve this objective, I

develop my model in analogy to an option with a dividend paying underlying asset

and use the pf as a control function.

I consider a trinomial tree of asset price in a small time interval ∆t based on the

original binomial tree in CRR[105]. A trinomial tree has three branches that proceed

1I use pf and PVF interchangeably for my computation notation and readers’ convenience.

Chapter 5: Discrete Time Financial Option Model for Pricing Grid Resources 91

from each of the tree nodes.2 Figure 5.4 shows a one-step trinomial tree. From

node A in the figure, there are three branches: x + ∆x at node B with a transition

probability pu, x at node C with a transition probability of pm, and x−∆x at node D

with a transition probability of pd. The transition probabilities are constrained to be

non-negative (i.e., pu ≥ 0, pm ≥ 0, pd ≥ 0) and the sum of the probabilities is equal to

one (pu + pm + pd = 1). The price dynamics for a dividend paying asset in the BSM

B

C

t

t=0

x

u

p

D

x
m
p

d

p

A

u
f

m
f

d
f

x -
 x

x +
 x

Figure 5.4: One-Step Trinomial Tree.

model is

dS = (r − δ)Sdt+ σSdz. (5.14)

The dividend in my grid pricing model is the incentive given to the users of the grid

for changing their job schedule, which is controlled through the price variant factor

pf . Therefore, Equation (5.14) reduces the drift rate by an amount pf and we can

2The number of branches could also be more than three and can vary from node to node, in
which case, it is called a multi-nomial tree.

Chapter 5: Discrete Time Financial Option Model for Pricing Grid Resources 92

re-write the basic Equation (5.14) as:

dS = (r − pf)Sdt+ σSdz. (5.15)

Second, similar to the binomial tree, I set the parameters of the asset price which

can be captured in the simplified discrete process using ∆x, pu, pm, and pd, where ∆x

for a trinomial tree is given by ∆x = σ
√
3δt [105]. Following similar steps as for the

binomial lattice, the probabilities in a trinomial can be derived as follows:

pu =
1

2

(
(σ2δt+ v2∆t2)

∆x2
+

vδt

∆x

)
(5.16)

pm = 1−
(
σ2δt+ v2δt2

∆x2

)
(5.17)

pd =
1

2

(
(σ2δt+ v2δt2)

∆x2
− v∆t

∆x

)
(5.18)

Figure 5.5 shows an n-step trinomial tree. For number of time steps (horizontal

level), the number of leaves (height) in the tree is 2n + 1. That is, the number of

nodes at any time step i, is given as 2i+ 1. An indexed node has a pair (i, j) where

i (row index) points to the time level and j (column index) indicates the distance

from the top. The time corresponding to a level i can be calculated t = iδt. From

Figure 5.5, node (i, j) is thus connected to three other nodes (A) in the upward move

(i + 1, j + 1), (B) steady move to node (i + 1, j) and, (C) downward move to node

(i + 1, j − 1). The option price and the asset price at node (i, j) are denoted as

C[i, j] = Ci,j and S[i, j] = Si,j respectively. The asset price could be computed from

the number of up and down moves required to reach (i, j) from the root node (0, 0)

Chapter 5: Discrete Time Financial Option Model for Pricing Grid Resources 93

1

0,0
 1
 2

2

2

2

2

A

C

B

1,3

1,2

1,1

2,5

2,4

2,3

2,2

2,1

i+1,j+1

i+1,j

i+1,j-1

i

j

(i,j)

0

1

1

1

B

2

2

2

2

2

A

C

i

i

i

Figure 5.5: n-Step Trinomial Tree.

and is given by S[i, j] = S[0, 0](uidj). The option value at maturity is determined by

the local pay off. So for a call option, the pay off Cn,j = Max(0, Sn,j − K) and for

a put option, Cn,j = Max(0, K − Sn,j), in both cases where value K represents the

strike price. To compute option prices, I apply the discounted expectations under the

risk neutral assumption. For an American put option for i < n

Ci,j = max(e−rδt(puCi+1,j + pmCi+1,j+1 + pdCi+1,j+2), K − Si−j). (5.19)

A grid is a multi-resource system with many grid compute commodities gcci =

{gcc1, gcc2, · · · , gccN} where N is the number of available grid compute commodi-

ties. For each gcci I fit a trinomial lattice with µgcci and σgcci , as the expected growth

Chapter 5: Discrete Time Financial Option Model for Pricing Grid Resources 94

rate and volatility respectively. For each such tree (gcc) I compute the option value

and combine all these option values from various trees according to certain weights

attached to each gcc (user specified) to find the price on the set of gccs requested by

the user. Faster processors or latest technology could make a particular gcc of higher

value than another gcc.

5.3.1 Integrating pf into the Trinomial Algorithm

As mentioned, I developed my model in analogy to options with dividend paying

asset and use pf as a control function. Let the incentive on a grid resource be δ, then

the price on the resource becomes (r− δ), and it is necessary to substitute this price

into the formulas. Thus, the probability of an up movement becomes:

p = e(r−δ)δt−d
u−d

(5.20)

At any time iδt, the nodes on the trinomial tree correspond to the asset prices given

as:

S∗uidi−j + δ j = 1, 2, · · · , i+ 1. (5.21)

when iδt < τ and

S∗uidi−j − pf j = 1, 2, · · · , i+ 1. (5.22)

when iδt ≥ τ . τ is the time when the incentive is offered. The gcc price will be

reduced after this date. If I have incentives, then I must ensure that the risk-neutral

probability stays positive at all times.

Chapter 5: Discrete Time Financial Option Model for Pricing Grid Resources 95

5.3.2 American Style Option Pricing Algorithm

Algorithm 1 shows trinomial tree algorithm that integrates incentive pf for pricing

grid resources assuming American style options.

Algorithm 1 American Style Option: (K,S,N, T, σ, r, pf , dx)

1: δt = T
N

{initialize parameters}
2: v = pf − 1

2
∗ σ2

3: edx = exp(dx)
4: pu ← 0.5 ∗ ((σ2 ∗ δt+ v2 ∗∆t2/∆x2) + (v ∗ δt/∆x))
5: pm ← 1.0− (σ2 ∗ δt+ v2 ∗∆t2)/∆x2

6: pd ← 0.5 ∗ ((σ2 ∗ δt+ v2 ∗∆t2/∆x2)− (v ∗ δt/∆x))
7: disc← exp(−r∆t)
{Calculate asset prices at maturity}

8: St[−N] = S ∗ exp(−N ∗ dx)
9: for j = 1 to 2i+ 1 do
10: St[j] = St[j − 1] ∗ edx
11: end for
{Calculate option values at maturity}

12: for i = 1 to i+ 1 do
13: for j = 1 to 2i+ 1 do
14: C[i, j] = max(0, K − St[j])
15: end for
16: end for
{Step back through the lattice}

17: for i = 1 to i+ 1 do
18: for j = 1 to 2i+ 1 do
19: C[i, j] = disc ∗ (pu ∗ C[i+ 1, j + 2] + pm ∗ C[i+ 1, j + 1] + pd ∗ C[i+ 1, j])
20: end for
21: end for
22: American.put= C[0, 0]

Chapter 5: Discrete Time Financial Option Model for Pricing Grid Resources 96

5.4 Reverse Dutch Auction (RDA)

In a classical forward Dutch auction (for one item only), the auctioneer begins

with a high price and then continues to lower the price until a successful bidder wins

the bid. For multiple items, the auctioneer continues to reduce the price until either

all items are sold or the seller’s reserve price is attained. For simplicity of presentation

I assume one user and one resource system in my computational grid.

In a Reverse Dutch Auction (RDA) operation, I assume that the resource users

have a level of willingness wi initially set to 0, i.e., w0 = 0 to pay a price p0 for

utilizing the resources. At this stage, the number of bids submitted Nb is also set

to 0 (initially Nb = 0). Following these initializations, I allow an increment in the

willingness by resource users to increase from the initial w0 to w1 for the same p0. At

this stage, I let the price corresponding to w0 (that is p0) become the reserve price

of the resources. The bid for resources with a user’s favorite prices continues while I

check for availability of more bids. If there are any bids (increase the number of bids

until there are no more bidders), allocation of resources is based on the total capacity,

GCC, available after committing some gcc resources based on the willingness wi on

these gccs, where GCC = {gcc1, gcc2, · · · , gccn}. That is, the available resource can

be seen as:

GCC =
∑
i

wi ∗ gcci (5.23)

where gcci ∈ GCC. Allocation of the resource is computed and the winner gets the

allocation; and for remaining capacity and willingness to pay (this time willingness

is increased from w1 to w2 and the new reserve price of the resource becomes w1) is

Chapter 5: Discrete Time Financial Option Model for Pricing Grid Resources 97

updated. The process continues by checking for more bids until the max grid capacity

is attained, that is, during any Nb, the total capacity requested should not exceed the

available capacity,
∑

i gcci ∗ wi ≤ GCC.

5.5 Chapter Summary

In this chapter, the mathematical foundation of my computation using trinomial-

based option pricing was presented for resource pricing in a grid. The idea of this

chapter is based on the trace analysis carried out in Chapter 3. The novelty of the

trinomial algorithm is seen in the introduction of the pf function. The consequences

of my integrated pricing function were also investigated in a sample run. Without a pf

in the trinomial tree, for a hypothetical set of parameter conditions (K = $100, T =

1, S = $100, σ = 0.2, r = 0.06, δ = 0.03, N = 3,∆x = 0.02) I computed the option

value as $10.30. Using these same hypothetical values, but, introducing a pf of 0.03,

where the value of pf was chosen based on the remaining GCC in the grid system I a

computed an option value of $2.05. That is my new trinomial framework will attract

more users wanting to patronize the grid since I obtained a reduction in resource

price from $10.30 to $2.05. This means that using the pf -based resource pricing

could attract more users to the grid and will help the providers in recovering the

infrastructure cost. This chapter also introduced a reversed Dutch auction using the

willingness of users as a strategic means to win bidding prices.

Chapter 6

Results and Discussion

In Chapter 3, I described the initial financial option based pricing model using

the trace analysis (phase one and phase two) of two Canadian grids (WestGrid and

SHARCNet). In Chapter 5, I refined the initial model by introducing an incentive-

paying opportunity in the option value computation using a price variant function,

pf . However, in the absence of existing standard for pricing grid resources, I carry out

further trace data analysis of four real grids, two experimental grids (Grid5000 and

LCG) and two production grids (NorduGrid and AuverGrid) across several applica-

tion areas. To price the grid resources using financial options, I refined the model

presented in Chapter 5 in the following ways; (a) I expanded the trace analysis to other

grids (phase three and phase four), (b) I integrate Commodity Base Prices (CBP)

into the pricing model, and (c) I experiment with the trinomial lattice approach in

the integrated architecture (trinomial-GridSim) to compute option values.

This chapter discusses the findings of this thesis in terms of trace data analysis,

conceptual ideas such as Commodity Base Prices (CBP), price variant function, and

98

Chapter 6: Results and Discussion 99

experimental results using the integrated GridSim simulator.

6.1 Grid5000 and NorduGrid

Grid5000 is a 5000 CPU nation-wide infrastructure that supports research in grid

computing [120]. Grid5000 is an experimental grid platform with nine sites geographi-

cally distributed across France. Each of the distributed sites has one or several clusters

to a total of fifteen clusters. The traces obtained from Grid5000 were recorded by

the batch schedulers that handle the individual clusters. The collected traces include

periods from June 2008 to June 2009.

Grid trace data were also collected from NorduGrid [121]. In Scandinavia and

Finland, NorduGrid operates as a production grid. NorduGrid runs a testbed based

on Globus toolkit. Since 2003 NorduGrid has been used for a production grid compu-

tations. It offers light weight general purpose and portable grid middleware. Another

advantage of the testbed is that it requires minimal changes to adapt it to experi-

ments and it has a large pool of CPUs (approximately 1000) which are accessible 24

hours a day and 7 days a week. In NorduGrid, non-dedicated resources are connected

using the Advanced Resource Connector (ARC) as grid middleware. The status of

all the sites composing the NorduGrid is available through the online ARC Grid

Monitor [121].

Chapter 6: Results and Discussion 100

6.1.1 Phase Three: (a) Grid5000

The resource usage patterns obtained from Grid5000 and NorduGrid include mem-

ory usage, average processor utilization, and number of processors. Using the traces

collected I show the relationship between the number of jobs executed in the Grid5000

and the CPU time needed to support the jobs. Figure 6.1 shows utilization over time

for the research grid Grid5000. For ease of comparison with other real grid traces

used in this section, the number of jobs executed in the grid is depicted on the vertical

axis while the utilization time (in seconds) is scaled on the horizontal. Figure 6.1 also

depicts that a larger number of jobs are supported by the grid at CPU time ≤ 10000

seconds. At CPU times greater than 10000 seconds, the number of jobs supported

by the grid is negligible. I interpret this behavior to mean that only a small number

of users actually submit very long running jobs to the grid or only a few of the jobs

submitted to the grid are actually supported by the grid. The consequence of a low

utilization of the grid resources mean that it will take a much longer time for the

provider to recover the investment on infrastructure. To make a quick recovery on

investment on the infrastructure, the provider may want to charge resource utilization

at a higher rate or apply a static or fixed cost for resource utilization (as in the case

of Amazon). What the pf does is to control the cost of using resources in a way to

attract more users at a reduced rate.

Another perspective of the utilization as seen in Figure 6.1 is the possibility that

some jobs may have occupied larger CPU time than was actually specified. When

fewer jobs occupy larger CPU time, it results in under-utilization of the resources by

the processor. In Grid5000 (in grid generally), without any loss of generality, I assume

Chapter 6: Results and Discussion 101

that most jobs are sent to a grid because they are resource intensive. Therefore, it is

implied that these times of low CPU availability (causing the jobs to stay longer) are

due to a wait state (where priority jobs are served by the grid).

Figure 6.1: Job in Grid5000 by CPU Time (Utilization Trace Collected June 2008).

6.1.2 Phase Three: (b) NorduGrid

Figure 6.2 shows the job utilization in NorduGrid with a peak value of 10×103 jobs

compared to Grid5000 which has a spike value of 100× 103 jobs. NorduGrid has low

utilization on average (10% lower than Grid5000). Comparing the jobs supported

in Grid5000 and NorduGrid, it is observed that NorduGrid has a somewhat ideal

expectation of resource utilization, in the sense that at any time, the grid has jobs

running. The NorduGrid, therefore, meets one of the set goals that describes optimal

resource utilization. However, the average number of jobs that run on NorduGrid

is less than the average number of jobs that run on Grid5000. With a low ratio of

Chapter 6: Results and Discussion 102

number of jobs of NorduGrid to Grid5000 (1 : 10), more CPU time is used up in

NorduGrid to execute a small number of jobs. For this scenario, it can be inferred

that the cost recovery on infrastructure investment may take a longer time to attain.

Expediting the cost recovery time on infrastructure investment is one of the major

goals of my model design.

The characteristics of the NorduGrid depicted in the trace analysis in Figure 6.2

reveals that more years will be required to recover the investment on infrastructure

compared to my set limit of 2 years. The drawback of a prolonged delay in recovering

of the grid infrastructure expenditure (beyond 2 years set in this study) is that newer

technologies may emerge to replace existing ones. When this happens, it becomes

hard to attract users that prefer newer technologies to use the grid resources, and

older infrastructure becomes obsolete and underutilized.

Figure 6.2: Job in NorduGrid by CPU Time (Utilization Trace Collected June 2008).

Chapter 6: Results and Discussion 103

6.2 Price Variant Function Design

The pf is a fuzzy controller. Its value (0 ≤ µ(pf) ≤ 1) expressed as a fuzzy

membership function, depends on changes in technological developments such as new

and faster algorithms, faster and cheaper processors, and changes in access rights and

policies. Whenever such improvements in technology happen, users’ behavior also

changes in response to the observed technological changes. One of the obvious effects

of faster algorithms, faster and cheaper processors is that more users will be willing to

use these to complete their computations in a shorter time. Hence, more users have

to be accommodated to avoid idle resources. To meet the goal of shorter recovery

time for the cost of the grid infrastructure, I allow the membership function of pf to

vary between 0.0 and 1.0 in a range of choice of categories that allows the users a

wide window of opportunities. The function of the pf is to identify changes in the

technology etc., the computed option value (Ci,j in Equation (5.19)) into the class

of flexibility opportunity (real option) using the trapezoidal membership function as

shown in Figure 6.3. Equation (6.1) presents the trapezoidal membership function of

pf :

trap(t : pfa , pfb , pfc , pfd) =



0 t < pfa , and t ≥ pfd

1 pfb ≤ t < pfc

t−pfa
pfb−pfa

pfa ≤ t < pfb

pfd−t

pfd−pfc
pfc < t ≤ pfd

(6.1)

where (t < T) represents a small window of opportunity available to the user. The

user can either exercise (the options), wait (while expecting a better choice in the

future), select an alternative (to take advantage of other available choices at a trade-

Chapter 6: Results and Discussion 104

1.0

p

f

0.5

0.0

Time of Exercise

(T months)

Membership

Function

p

f
a

p

f
b

p

f
c

p

f
d

Type of

opportunity

Figure 6.3: Price Variant Function (pf).

off that is not considered a disadvantage to the user), defer (the right of exercise

to a known future date), or abandon (an option that will never be exercised). The

individual opportunities in Figure 6.4 such as exercise, defer, alternative, wait, and

abandon can be mapped to the fuzzy membership function of pf in Figure 6.3. In

order words, a classification of the opportunities available to the user mapped into

the fuzzy membership function such that for each class of user opportunities, and for

each of the levels in the corresponding membership function, there is a corresponding

QoS also classified with respect to the user opportunities as very low QoS (vLQoS),

Low QoS (LQoS), Mid QoS (MQoS), high QoS (HQoS), and very high QoS (vHQoS).

6.3 Price Variant Function

Figure 6.5 shows my design of the pf controller. Using fuzzy logic to capture the

inherent uncertainty to classify the Quality of Service (QoS) in terms of the price of

Chapter 6: Results and Discussion 105

Time of Exercise

(Months)

0.0

1.0

Exercise
 Defer
 Abandon
Alternative
 Wait

M

e

m

b
e

r
s

h
i

p

F

u
n

c
t

i
o

n

Figure 6.4: Trapezoidal Membership Function for Flexibility Opportunity.

FUZZY

SCHEDULE

RULE-BASE
F

U

Z

Z

I
F

I
C

A

T

I
O

N

D

E

F

U

Z

Z

I
F

I
C

A

T

I
O

N

GridSim

Simulation

Toolkit

Trinomial

simulation

Parameters

p
f

Time to

Exercise

(t)
p

f
~

(t)
p
f

Time (Months)

Figure 6.5: Price Variant Function Controller.

a resource and the service quality received. The classification follows the class of real

option defined as a trapezoidal membership function as in Figure 6.4. The certainty

in predicting the effects caused by technological developments could be captured by

integrating pf and the trinomial approach in Algorithm 1. For example, if the grid

resources are under utilized (as in the case of NorduGrid in Figure 6.2 and in Grid5000

in Figure 6.1), pf could be set to a value that yields a positive dividend pf = r − δ.

Chapter 6: Results and Discussion 106

6.4 Commodity Base Price (CBP)

Grid computing (though a relatively new phenomenon), has recently become a

popular means for executing computationally-intensive and resource-intensive appli-

cations. The nature and vastly differing characteristics of the grid make it difficult

to price the resources using a few available economic models. There are no pricing

standards available in the literature since (a) efforts are focused more on one aspect

of the grid such as resource management (allocation, scheduling, and security) and

the development of standards for middleware and grid infrastructure and (b) the use

of grid resources has been available for free (for various government funded projects

and in academic research) and as a result, research efforts have neglected the need to

price the resources. While considerable research efforts and time have been devoted

to (a) and (b) above, there are no standards for pricing grid resources. In the ab-

sence of a pricing standard, this thesis develops a base resource price to start with for

pricing grid resources for utility purposes. A standard Commodity Base Price (CBP)

is required for use across various grids. The CBP is also required to help fix a time

(for example, 2 years) to recover 100% of the infrastructure cost for the grid provider.

The resulting minimal prices will attract a larger number of users to keep the grid

busy.

To test the relevance of CBP in my model, I configure the parameters as follows:

Asset Price S, Strike Price K, Time to Maturity T , Interest Rate r, Number of Steps

N , Interval time between 2 steps ∆t, and Volatility σ. I show first results for 3 grids,

G1, G2, and G3; 3 users, user1, user2, and user3, and 15 grid resources. I let the users

provide specifications for their jobs and apply the inverse Dutch auction to allocate

Chapter 6: Results and Discussion 107

the jobs based on the users’ needs. Figure 6.6 shows my first test case to verify CBP.

In G1, I set a CBP at a presumed value of $2.00, (i.e., G1 : $2.00), G2 : $2.50, and

G3 : $3.00. In Figure 6.6 G1 executes 5 × 103 jobs at a CBP of $2.00, G2 executes

2 × 103 jobs at a CBP of $2.50, and G3 executes 1 × 103 jobs at a CBP of $3.00.

In Figure 6.7, I reversed the CBP values for the three grids shown in Figure 6.6.

0

1

2

3

4

5

6

Grid 1 = $2.0
 Grid 2 = $2.5
 Grid 3 = $3.0

Individual Grids and Base Prices

Jobs Vs. Base Prices

No. of Grid

Jobs (x10)
3

Figure 6.6: Increasing Commodity Base Prices (G1 : $2.00, G2 : $2.50, G3 : $3.00).

The result shows that only 1 × 103 grid jobs are executed in grid G1 compared to

the 5 × 103 in Figure 6.6. Following the results and observations in Figure 6.6 and

Figure 6.7, I set base prices of the individual resources based on the current market

value as followings:

• For a 2GB of RAM that costs $140.00, I set a base price of $9.589×10−5/day/MB

• A 200GB Hard Drive (HD) disk whose market price is $100.00, I set a base

price of $6.849× 10−5/day/MB

• Processor cycles are charged at $6.849× 10−5/day/MHz of CPU cycles.

Chapter 6: Results and Discussion 108

0

1

2

3

4

5

6

Grid 1 = $3.0
 Grid 2 = $2.5
 Grid 3 = $2.0

Individual Grids and Base Prices

Jobs Vs. Base Prices

No. of Grid

Jobs (x10)
3

Figure 6.7: Decreasing Commodity Base Prices (G1 : $3.00, G2 : $2.50, G3 : $2.00).

The justification for the base prices that I set is based on the static charges that

existing commercial grid operatives offer as well as the market value of the resources.

For example, in Section 1.1, I provided a summary of the static charges for the use

of grid resources in the United States of America and in Europe in Table 1.1 and

Table 1.2 respectively. Table 1.3 shows the summary of the commercial industry,

minimum cost/hour, cost/month as follows: Amazon, $0.08/hour, $537.60/month;

GoGrid, $0.04/hour, $255.35/month; FlexiScale, $0.53/hour, $358.50/month; Mosso,

$0.10/hour, $645.12/month; ElasticHosts, $0.76/hour, $510.76/month; and Joyent,

$5.95/hour, $4, 000.00/month. My base prices of $9.589 × 10−5/day/MB for the

memory, $6.849×10−5/day/MB for the HD, and $6.849×10−5/day/MHz for the CPU

cycles are insignificant compared to any of the commercial grid resource providers.

Chapter 6: Results and Discussion 109

6.5 Phase Four: AuverGrid and LCG

Figure 6.8 shows the actual resource utilization trace in AuverGrid. The trace data

of the AuverGrid were collected at the same time of the Grid5000 and the NorduGrid.

The figure shows that as AuverGrid supports more jobs with an increasing CPU time

as the number of jobs increased from from 0 to 100×103. Although, the grid provided

support in terms of CPU time, the number of jobs running in the grid experienced

a sharp drop to 5 × 103. Similarly, Figure 6.9 shows the number of jobs supported

in LCG and the corresponding CPU time. In Figure 6.9, increasing the CPU time

does not necessarily mean executing more jobs in the grid. For example, the CPU

time increased from 10000 seconds to 19999, and the corresponding number of jobs

remained low on average. Comparatively, the LCG supports more jobs at similar

CPU times as compared to AuverGrid, however, the idle times of LCG are higher

than the idle times of the AuverGrid. The depletion in the number of jobs in LCG

means a longer time to recover the investment on infrastructure.

6.6 Experiments and Results

In my experiments, I price grid resources by simulating my trinomial-based Grid-

Sim (GridSim with an embedded trinomial lattice – (see the integrated pricing ar-

chitecture in Figure 4.3)). I run the trinomial lattice using the following model

parameters: S = $6.849.00 × 10−7, T = 0.5, r = 0.06, N = 4, 8, 16, 24, σ = 0.2,

and Nj = 2N + 1; I vary K = 6.847.00× 10−7 for both advantageous (in-the-money

options), S > K for call (user) or S < K for put (provider) and disadvantageous

Chapter 6: Results and Discussion 110

Figure 6.8: Job in AuverGrid by CPU Time (Utilization Trace Collected June 2008).

(out-of-the-money) S < K for call (user) or S > K for put (provider) direction for

the users and providers. For a 6 months contract, for example, N = 3 would mean

a 2 months step size and N = 12 would mean a 2 week step size. For a user in-the-

money means the contract price is lower than the market price and out-of-the-money

means the contract price is higher than the market price. On the other hand, for a

resource provider, in-the-money means the contract price is higher than the market

price and out-of-the-money means contract price is lower than the market price. My

discussions in this chapter are mainly from the users’ perspective.

For a call option, I simulate the effects of time of use of one of the gcc-s such

as memory (RAM), hard disk (HD), and CPU. In other words, I study the effect

of exercise time of the option. I start with memory (one of the gcc-s) using the

parametric values (provided above). The value ofK was varied for both advantageous

Chapter 6: Results and Discussion 111

Figure 6.9: Job in LCG by CPU Time (Utilization Trace Collected June 2008).

(in-the-money) and disadvantageous (out-of-the-money) options for the users. These

values reflect the market value of this raw infrastructure which I obtained from my

commodity base price mapping from the traces to the raw infrastructure available

in example grids. This is true for other gcc-s such as CPU and hard disk. In the

simulation, I compute option values for several step sizes. I analyze the effects of the

variations (uncertainty) that exist between the total period of the option contract

and the time of exercise on option value.

Figure 6.10 shows an in-the-money option value for RAM for varying N while

Figure 6.11 shows an out-of-the-money call. I can observe that as the number of

time step increases, the option value appears to reache a steady state. From the

experiment, analysis of the option values shows that the option values converges

(error level set at 0.1%) in 24 steps. Increasing the computation beyond 24 steps did

Chapter 6: Results and Discussion 112

not yield better solutions for the option values, but only increase the computational

cost.

1.518

1.52

1.522

1.524

1.526

1.528

1.53

1.532

1.534

4
 8
 16
 24

Option

Value ($)

10

Number of Step

Option Value for RAM

-4

Figure 6.10: Option Value for RAM.

0.0034

0.0035

0.0036

0.0037

0.0038

0.0039

4
 8
 16
 24

Option

Value

(x10 $)

Number of Step

Option Value for RAM

-7

Figure 6.11: Money Option Value for RAM.

In AuverGrid, the number of jobs running increases steadily throughout the year.

Chapter 6: Results and Discussion 113

In the cases of LCG and SHARCNet, it is likely that some jobs not in the original

batch (queue) were completed before their initially estimated completion time. This

means that some jobs may unnecessarily wait in the original queue. These original

jobs should be compensated by way of (incentive) opportunity. This I achieved using

the price variant factor pf during the option value computation for a specific gcc.

6.4

6.5

6.6

6.7

6.8

6.9

4
 8
 16
 24

Option

Value

(x10
-
6
$)

Number of Time Step

Option Value for CPU

Figure 6.12: Option Value for CPU.

Similarly, I obtain from my simulation the option values for both in-the-money

and out-of-the-money CPU using the limits S = $68.49 and K = $68.47 and $80.47

(all values scaled at (×10−6)) and simulated for a varying time step of 4, 8, 16, 24.

Figure 6.12 shows the in-the-money option value for CPU. The option values for in-

the-money for other gccs under my current study include RAM in Figure 6.10 and

HD in Figure 6.13. This behavior shows that at any given time, a users’ cost for

using the grid resources is the base cost and the extra cost which depends on the

time of use of the gcc and the value of the pf depends on changes in the technology

or architecture of the grid infrastructure. These variations are unknown before using

Chapter 6: Results and Discussion 114

1.518

1.52

1.522

1.524

1.526

1.528

1.53

1.532

1.534

4
 8
 16
 24

Option

Value ($)

Number of Step

Option Value for HD

Figure 6.13: Option Value for HD.

the grid resource by exercising the option. Therefore, deciding the exact price of

a gcc in real life is uncertain and hard to predict. To increase utilization with the

same technology, I set the value of pf to be close to 0.1. With new technology, the

value of pf is set closest to 1.0. Figure 6.3 showed a mapping of the membership

function of pf to time of exercise in the range of fuzzified boundary value of pf is

[0.1, 1.0]. My model, therefore, adjusts the price in the use of grid resources by (p−1
f)

(for the grid operator) while providing quality service to the user. Figure 6.14 shows

a corresponding out-of-the-money option value for CPU. I repeat this experiment

for various gcc-s. Figure 6.15 shows execution time for HD, CPU, and RAM at

various time steps. I stop my computation at step size 24 as reasoned earlier. This

is in contrast to the financial market where stock prices are highly volatile and for

convergence one needs to see very small step sizes (in other words a large number

of steps). The resource provider can benefit for certain values of pf for which the

contract holder will not exercise early. That is, a provider can execute the jobs of

Chapter 6: Results and Discussion 115

2

2.1

2.2

2.3

2.4

2.5

4
 8
 16
 24

Option

Value

(x10
-
6
 $)

Number of Time Step

Option Value for CPU

Figure 6.14: Option Value for CPU.

users willing to pay higher prices for the resources. Therefore, the original contract

holder still has the time value on his/her option to exercise at a later date. This

implies that both the user and the provider can benefit. In other words, the price

varying factor pf helps in achieving the quasi-static equilibrium between the quality

of service that the user requires and the profit level (recovery of the expenses, in my

thesis) that the service provider would expect. Since the value of pf is not changed

for a given experiment, pf is not dynamic. Changing the value of pf dynamically

is bit complicated and I leave that issue for future work. Figure 6.16 shows my

evaluation for various commodities. In these experiments, I computed the option

value for individual gcc only. However, I note that most grid jobs use resources in a

combination of more than two resources. The correlation among such combined set

of gccs is being incorporated into my model to calculate base prices, which will in

turn be used to compute the option values for such combinations of gccs.

Chapter 6: Results and Discussion 116

Number of Time Steps Vs. Execution Time

Figure 6.15: Execution Time for Various Commodities.

6.7 Chapter Summary

I provided trace data analysis for two grids (WestGrid and SHARCNet) in Chap-

ter 3. In this chapter, I extended my trace analysis to other four grids (Grid5000,

LCG, NorduGrid, and AuverGrid) and emphasized the need for a controller and Com-

modity Base Prices (CBP). In this chapter, I also presented the design of pf . Using

the CBP and the pf , I did experiments with trinomial trees in the integrated GridSim

simulator to compute option values of various gccs.

Chapter 6: Results and Discussion 117

0

1E
 -
 10

2E
 -
 10

3E
 -
 10

4E
 -
 10

5E
 -
 10

6E
 -
 10

7E
 -
 10

8E
 -
 10

Option

Value

(x 10
 4
 $)

Option Value for Various Commodities

RAM: K = 6.749
 CPU: K = 68.47
 HD: K = 6.749

Figure 6.16: Option Value for Various Commodities.

Chapter 7

Conclusions and Future Directions

There have been very few efforts to price grid resources, due to the complex

nature of the grid (dispersed ownership, uncertainty in resource availability, resource

access policies, absence of standards, and unavailable pricing benchmarks). Moreover,

funding provided by government and other agencies make grid resources available for

free and has pushed research efforts to price grid resources to secondary importance.

Current interest from businesses and individuals to use grid resources has increased

the need for a pricing mechanism. Many grid services that charge a flat rate exist

these days. This thesis puts forward an important aspect of grid resource management

– resource pricing. I propose a financial options-based pricing model in this thesis.

Specifically, three interdisciplinary research threads (Financial Options, real options,

and fuzzy logic) form the underlying methodologies for the pricing model.

118

Chapter 7: Conclusions and Future Directions 119

7.1 Conclusions

In this thesis, I have formulated grid resource pricing as a discrete time financial

option pricing problem. Treating grid resources as assets enable me to use financial

real options to do the pricing while I use fuzzy logic to provide QoS for the users

satisfaction. For the initial problem formulation I used hypothetical data as well

as traces from two real grids; WestGrid and SHARCNet to verify the suitability of

pricing grid resources using financial options and as an initial proof of concept.

I extended the trace collection and analysis to SHARCNet to validate the observed

fluctuations in WestGrid. The results of SHARCNet traces were similar in their

fluctuation patterns to WestGrid. My pricing architecture was proposed to consist

of a user enhanced SLA document which defines the benefits expressed as QoS (see

Appendix C for more details). The third progressive phase of this thesis also proposed

to apply a trinomial lattice method for pricing resources and using the same test

data as was used in the preliminary studies in [37]. The thesis proposed to balance

the usage between under-utilized resources and periods of high usage. The third

progressive phase also developed a middleware framework in [44]. The emphasis

of the developed framework is the support for increased profitability1. The thesis

achieved a control of the observed fluctuations by using my designed PVF in the

presence of two constraints (from the user (satisfaction) and provider (investment

recovery) perspectives), I focused on obtaining a balance which provides a handle

to manage flexibility for users and provider. For the provider, my model achieved

the following: (a) the provider can determine how many patronage he/she can have

1The user’s QoS and provider’s early recovery on grid infrastructure.

Chapter 7: Conclusions and Future Directions 120

and they by know how long it will take to recover 100% of all the investments in

the grid infrastructure. (b) Ability to know a recovery date can also be applied to

effective management of the grid resources. That is, the provider is able to know how

to control the price of his/her resources in order to stay competitive. The model also

provides user flexibility. I use fuzzy logic to capture the user’s QoS as a measure of

the users’ satisfaction while keeping the prices lowing using my price variant function

(PVF).

I have also demonstrated that grid resources can be priced by using my Commodity

Base Price (CBP). Using the prevailing market prices, I developed CBP which help

my model to recover the provider’s investment in grid infrastructure in a known time

of 2 years. Extending the grid resource utilization trace collection and analysis to

other real grids enable me to analyze utilization pattern and provide a level of QoS

for the users.

Another contribution of my thesis is in the integration of my model in GridSim

toolkit simulator. I incorporated the use of pf with the trinomial approach in a Grid-

Sim simulation to price resources using the discrete time trinomial tree approach and

second, the price variant function, pf , was also incorporated with the reverse Dutch

auction in a GridSim simulation. I mapped the time step in the trinomial lattice

to the rounds of bidding in the reverse Dutch auction and identify compensations

as incentives for the users who are willing to change utilization behavior (willing to

exercise later in future).

The thesis objective was to provide a financial option-based model to price grid

resources. I use my developed price variant function and the commodity base prices

Chapter 7: Conclusions and Future Directions 121

to maintain an equilibrium between users’ expected satisfaction (measured as QoS)

for using grid resources and providers expected early recovery on grid infrastructure.

I analyzed real grid utilization traces and carried my simulation using GridSim.

7.2 Future Directions

The immediate future work plan is expected to span a period between six and

twelve months. Extensions include pricing multiple resources across several grids

(Section 7.2.1), incorporating variable commodity base prices into the current model

and integrating variable overhead costs (for example building, equipment insurance,

staff salaries, equipment upgrades, heating, cooling etc.) into my pricing model (Sec-

tion 7.2.2). In addition, I plan to immediately extend my current pricing model to

cloud services where gccs will be treated as services. That is, a pricing formulated

as cloud compute commodities as priced services (IaapS) – a turn from the usual

Infrastructure as a service (IaaS) (Section 7.2.3). The life of the long term plan may

extend up to 4 years. During this time, I shall extensible capacity of the cloud (resiz-

able compute capacity in the cloud) and green energy resource pricing. I also plan to

introduce “pay-by-barter computing” – a social pricing scheme that exchange services

as a form of payments. Figure 7.1 shows a futuristic plan for the short term and the

long term goals of this thesis.

Chapter 7: Conclusions and Future Directions 122

S
o
c
i
a
l

C

l
o
u
d
s

S
c
i
e

n
c
e

/

E
n
g
i
n
n
e
r
i
n

g

B
u
s
i
n

e
s
s

/

F
i
n
a
n
c
e

E
c
o

n
o
m
i
c
s

G
o
v
e

r
n
e
m
e
n
t

Dev.

Phases

2
0

1
0

2
0

1
6

2
0

1
2

2
0

1
4

2
0

1
8

2
0

2
0

Time (Years)

2
0

2
2

C
l
o
u
d

C
o
m
p
u
t
i
n

g

E
l
a
s
t
i
c

C

l
o
u
d

C
o
m
p
u
t
i
n

g

Current

Work

Long Term

Goals

S

h
o

r
t

T

e
r

m

G

o
a

l
s

Future Goals

C
l
o
u
d

C
o
m
p
u
t
i
n

g

1
9

9
5

.
.
.

G
r
i
d

C
o
m
p
u
t
i
n

g

0

0.5

1

1.5

2.0

2
0

1
1

2
0

0
0

Figure 7.1: Futuristic Overview of the Short term and Long Term Goals.

7.2.1 Multi-Resource/ Service Pricing Across Clouds

The Grid Resources Utilization Matrix (GRUM) provides a mapping of gcc-s to

various grids. The current research prices a resource of one grid or several resources

of the same grid. However, if computations (in real life) require a combination of grid

resources across multiple grids or clouds, I shall be faced with the challenge of asso-

ciating several grids whose characteristic features (ownership, currency, policy, and

zonal time) differ. Consider some grids Gi = g1, g2, · · · , gn and compute commodities

that exist across the grids gcc such as CCi = cc1, cc2, · · · , ccm. Suppose I have set

base prices (some assumed base values) such as Pi = p1, p2, · · · , pn, then I can set up

a Grid Resources Utilization Matrix (GRUM). For the grid resources use of n grids

Chapter 7: Conclusions and Future Directions 123

n

m
m

n

n

g

CC

g

CCm

g

CC

g

CC

g

CC

g

CC

g

CC

g

CC

g

CC

m

p
p
p

p
p
p

p
p
p

CC
CC
CC

2
1

2

2

2

1

2

1

2
1

1

*

1

2
1

CC

1

CC
2

CC
m

.
.
.

.
.
.

Option Value for one gcc

(
)

Figure 7.2: Multidimensional Grid and Resource Pricing.

and m commodities and their prices I have:

(cc1 cc2 · · · ccm)×



pg1cc1 pg2cc1 · · · pgncc1

pg1cc2 pg2cc2 · · · pgncc2
...

...
. . .

...

pg1ccm pg2ccm · · · pgnccm


(7.1)

I treat each instance of [ccm
gn ∗ pgnccm] in Equation (7.1) as a trinomial tree whose

solution requires large computational resources of the grid because of its large size.

Figure 7.2 idealizes the pricing multiple resources across multiple grids. A further

Chapter 7: Conclusions and Future Directions 124

challenge will include the provision of QoS. In multiple grids such as the GRUM, QoS

is provided at the global level rather than at the individual local QoS as in the thesis

work.

7.2.2 Integrating I-O Analysis and Variable Commodity Base

Prices

As additional future work, I will consider the set of inputs to a computational

grid which are necessary to execute user jobs to price grid resources. These sets of

inputs consist of (i) fixed costs of acquiring computational resources (CPU cycles,

memory, network bandwidths, computing power, disks, processor times, and various

visualization tools, software and specialized instruments) that exist as non-storable

compute cycles (grid compute commodities) and (ii) variable overhead costs (building,

fixed financing, equipment insurance, salaries, equipment upgrades, heating, cooling).

The interaction of fixed costs and variable costs must be balanced for the grid to

achieve its objective. Since obtaining a balance (especially in multiple grids) is hard,

I will apply Leontiff’s Input-Output Economics [45] (Input-Output Analysis (IOA))

concept to capture the dependencies that exist between the computational costs (i.e.,

the price of components for executing jobs in a grid) and the various inputs (fixed

and variable costs) to the grid. Since I know that fixed and variable cost of grid

infrastructure across multiple grids can determine the available grid resources, I will

set base prices using the activities within a specific grid instead of market trends. I

will consider applying Activity-Based Costing (ABC) [9] to determine the base costs

of resources.

Chapter 7: Conclusions and Future Directions 125

7.2.3 Pricing and Management of Cloud Compute Resources

The Cloud computing paradigm involves delivering of hosted services over the

Internet. These services are broadly divided into three categories: Infrastructure-

as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS).

A cloud service is elastic (resizable compute capacity in the cloud [122]) and fully

managed by the provider. It can be sold on demand. A cloud can be private or

public. A public cloud sells services to anyone on the Internet. A private cloud is a

proprietary network or a data center that supplies hosted services to a limited number

of people. When a service provider uses public cloud resources to create its private

cloud, the result is called a virtual private cloud. In the future, I plan to move

toward modeling enterprize service architecture for provision of cost, benefits, and

planned management for cloud based services. The model will consist of the cloud

services, data, infrastructure, management, processes, quality assurance, and flexible

pricing achieved using real options. These various components will be modeled as

a priced Service, that is, Infrastructure-as-a-priced-Service (IaapS), Platform-as-a-

priced-Service (PaapS) and Software-as-a-priced-Service (SaapS).

7.2.4 Pricing Green Energy

Another extension of my current research will focus on the pricing and manage-

ment of green energy resources. Currently, research efforts in energy optimization

such as green energy have only considered waste management generally in terms of

cutting down spending (billing) [123]. While I focus on resource and energy manage-

ment for the cloud, I will specifically examine pricing green energy, which, if neglected,

Chapter 7: Conclusions and Future Directions 126

may soon form a significant source of spending in data centers. Some major cloud

providers such as Google are estimated to be spending over $35 Million dollars on

electricity bills each year [124]. From the perspective of resource pricing, I believe

that there is a lot to be discovered. I intend to spend some time to explore the bene-

fits and applications of financial options to pricing green energy as well as managing

the resources.

Bibliography

[1] Canarie, “Canada’s Advanced Research and Innovation Network,” June 2010.

[Online]. Available: http://www.canarie.ca/.

[2] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid: Enabling

Scalable Virtual Organizations,” Int’l. Journal High Performance Computing

Applications, vol. 15, no. 3, pp. 200–222, 2001.

[3] R. Buyya and M. M. Murshed, “GridSim: A Toolkit for the Modeling and Sim-

ulation of Distributed Resource Management and Scheduling for Grid Com-

puting,” Journal of Concurrency and Computation: Practice and Experience

(CCPE), vol. 14, no. 13, pp. 1175–1220, 2002.

[4] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing Infras-

tructure. San Francisco, USA: Morgan Kaufmann Publishers, Inc., 1999.

[5] P. M. Lyster, L. Bergman, P. Li, D. Stanfill, B. Crippe, R. Blom, and D. Okaya,

“CASA Gigabit Supercomputing Network: CALCRUST Three-Dimensional

Real-Time Multi-Dataset Rendering,” in Proc. of Supercomputing, Minneapolis,

November 1992.

127

Bibliography 128

[6] R. Buyya and S. Venugopal, “A Gentle Introduction to Grid Computing and

Technologies,” Computer Society of India (CSI), vol. 1, no. 29, pp. 9–19, 2005.

[7] S. Pantry and P. Griffiths, The Complete Guide to Preparing and Implementary

Service Level Agreements. Library Association Publishing, 1st. Edition, 1997.

[8] R. Krishnan, “Grid Economics: A Selective Discussion of Two Research Prob-

lems,” Grid Computing, vol. 6, no. 3, pp. 219–224, 2008.

[9] R. S. Kaplan and R. Cooper, Cost and Effect: Using Integrated Cost Systems

to Drive Profitability and Performance. Harvard Business School Press, 1998.

[10] AppNexus. (2010, June) Appnexus. [Online]. Available:

http://www.appneus.com/

[11] GoGrid. (2010, June) Cloud Hosting: Instant Windows and Linux Cloud

Servers. [Online]. Available: http://www.gogrid.com/

[12] Joyent. (2010, June) Accelerator. [Online]. Available:

http://joyent.com/accelerator/

[13] Rack Space. (2010, July) Rack Space Hosting. [Online]. Available:

http://www.rackspace.com/index.php

[14] Google. (2010, June) App engine. [Online]. Available:

http://code.google.com/intl/de-DE/appengine/

[15] Amazon. (2010, December) Amazon Web Services. [Online]. Available:

http://aws.amazon.com/

Bibliography 129

[16] Microsoft Corporation. (2010, June) Azure services platform. [Online].

Available: http://code.google.com/intl/de-DE/appengine/

[17] M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel, “Amazon S3 for

Science Grids: A Viable Solution?” in DADC ’08: Proc. of the 2008 Int’l.

workshop on Data-aware distributed computing. New York, NY, USA: ACM,

2008, pp. 55–64.

[18] Amazon.com, “Simple storage system,” June 2010. [Online]. Available:

http://aws.amazon.com/s3/.

[19] A. Caracas and J. Altmann, “A Pricing Information Service for Grid Comput-

ing,” in Proc. of the 5th Int’l. Workshop on Middleware for Grid Computing

(MGC ’07). New York, NY, USA: ACM, 2007, pp. 1–6.

[20] X. Zhang and Y. Dong, “Optimizing Xen VMM Based on Intel R⃝Virtualization

Technology,” in Proc. of the 2008 Int’l. Conf. on Internet Computing in Science

and Engineering (ICICSE ’08). Leipzig, Germany: IEEE Computer Society,

2008, pp. 367–374.

[21] J. C. Hull, Options, Futures, and Other Derivatives. Prentice Hall, 7th Edition,

2009.

[22] A. K. Dixit and R. S. Pindyck, “The Options Approach to Capital Investment,”

in The Economic Impact of Knowledge, D. Neef, G. A. Siesfeld, and J. Cefola,

Eds. Boston: Butterworth-Heinemann, 1998, pp. 325–340.

[23] A. B. Abel, A. K. Dixit, J. C. Eberly, and R. S. Pindyck, “Options, the Value

Bibliography 130

of Capital, and Investment,” The Quarterly Journal of Economics, MIT Press,

vol. 111, no. 3, 1996.

[24] T. P. Morgan, “World IT Spending Estimate,” Windows News and Insight,

vol. 8, no. 5, 2008.

[25] D. M. Chance and P. P. Peterson, Real Options and Investment Valuation. The

Research Foundation of AMIR, 1st. Edition, 2002.

[26] L. Zadeh, “A Fuzzy Set-Theoretic Interpretation of Linguistic Hedges,” Journal

of Cybernetics, vol. 3, no. 2, pp. 4–34, 1972.

[27] D. Dubois and H. Prade, “What are Fuzzy Rules and How to Use Them,” Fuzzy

Sets Systems, vol. 84, no. 2, pp. 169–189, 1996.

[28] S. Mitaim and B. Kosko, “What is the Best Shape for a Fuzzy Set in Function

Approximation?” in Proc. of the 5th IEEE Int’l. Conf. on Fuzzy Systems, vol. 2.

New Orleans, LA USA: Kluwer, B.V., 1996, pp. 1237–1243.

[29] T. J. Ross, Fuzzy Logic with Engineering Applications. John Wiley and Sons

Inc, 1st Edition, 2004.

[30] G. Bojadziev and M. Bojadziev, Fuzzy Logic for Business, Finance, and Man-

agement Modeling. World Scientific Press, 2nd Edition, 2007.

[31] A. Iosup, D. Catalin, E. Dick, L. Hui, and W. Lex, “How Are Real Grids Used?

The Analysis of Four Grid Traces and its Implications,” in Proc. of the 7th

IEEE/ACM Int’l. Conf. on Grid Computing (GRID ’06). Barcelona: IEEE

Computer Society, 2006, pp. 262–269.

Bibliography 131

[32] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, “A security architecture

for computational grids,” in ACM Conf. on Computer and Communications

Security, 1998, pp. 83–92.

[33] R. Buyya, M. Murshed, and D. Abramson, “GridSim: A Toolkit for the Mod-

eling and Simulation of Distributed Resource Management and Scheduling for

Grid Computing,” Journal of Concurrency and Computation: Practice and Ex-

perience (CCPE) Issue 13-15, vol. 14, no. 13, pp. 1175–1220, 2002.

[34] W. Smith, I. Foster, and V. Taylor, “Scheduling with advanced reservations,”

in Proc. of the Int’l. parallel and Distributed Processing Symposium, Cancum

Mexico, May 2000.

[35] A. Sulistio, W. Schiffmann, and R. Buyya, “Advanced Reservation-Based

Scheduling of Task Graphs on Clusters,” in Proc. of the 13th IntI Conf. on

High Performance Computing (HiPC), Bangalore, India, Dec. 18-21, 2006.

[36] K. M. Sim, “Grid Commerce, Market-Driven G-Negotiation, and Grid Resource

Management,” IEEE Transactions Systems, Man, and Cybernetics, Part B:

Cybernetics, vol. 36, no. 6, 2004.

[37] D. Allenotor and R. K. Thulasiram, “A Grid Resources Valuation Model Us-

ing Fuzzy Real Option,” in Proc. 5th Int’l. Symposium on Parallel and Dis-

tributed Processing and Applications. (ISPA-07), I. Stojmenovic, R. K. Thu-

lasiram, L. T. Yang, W. Jia, M. Guo, and R. F. de Mello, Eds. Niagara Falls,

ON, CANADA: Springer, 2007.

Bibliography 132

[38] grid3.com, “Grid3 International,” June 2010. [Online]. Available:

http://www.grid3.com/.

[39] T. G. Johan, J. Montagnat, and I. Cnrs, “An Experimental Comparison of

Grid5000 Clusters and the EGEE grid,” in In Workshop on Grid, 2006.

[40] LCG-LHC, “Large Hadron Collider (LHC),” June 2010. [Online]. Available:

http://lcg.web.cern.ch/LCG/New/index.html

[41] SHARCNet, “Shared hierarchical academic research comput-

ing network (sharcnet).” June 2010. [Online]. Available:

http://www.sharcnet.ca/Performance/cur perf.php.

[42] WestGrid, “Western Canada Reserach Grid,” June 2010. [Online]. Available:

http://www.westgrid.ca/home.html.

[43] NorduGrid, “Nordugrid,” June 2010. [Online]. Available:

http://www.nordugrid.org/.

[44] D. Allenotor and R. K. Thulasiram, “G-FRoM: Grid Resources Pricing A Fuzzy

Real Option Model,” in Proc. 3rd Int’ Conf. on e-Science and Grid Computing

(eScience 2007) Bangalore, India, December 10-13, 2007.

[45] W. Leontief, Input-Output Economics, 2nd ed. Oxford University Press, 1986.

[46] D. Allenotor and R. K. Thulasiram, “Grid Resources Pricing: A Novel Financial

Option Based Quality of Service-profit Quasi-static Equilibrium Model,” in

Proc. of the 2008 9th IEEE/ACM Int’l. Conf. on Grid Computing (GRID ’08).

Tsukuba, Japan: IEEE Computer Society, 2008, pp. 75–84.

Bibliography 133

[47] D. Allenotor, R. Thulasiram, and P. Thulasiraman, “A Financial Option Based

Grid Resources Pricing Model: Towards an Equilibrium Between Quality of

Service for Users and Profitability for Service Providers,” in 4th IEEE Intl.

Conf. on Grid and Pervasive Computing (GPC 2009), N. Abdennadher and

D. Petcu, Eds. Geneva, Switzerland: Springer, 2009, pp. 13–24.

[48] Grid5000, “Grid5000,” June 2010. [Online]. Available:

https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home.

[49] AuverGrid, “Auvergrid,” June 2010. [Online]. Available:

http://www.auvergrid.fr/.

[50] DAS-2, “The Distributed ASCI Supercomputer 2 (DAS-2),” June 2010.

[Online]. Available: http://www.cs.vu.nl/das2/.

[51] R. Buyya, D. Abramson, and J. Giddy, “A Case for Economy Grid Architecture

for Service Oriented Grid Computing,” in Proc. of the 10th Heterogeneous Com-

puting Workshop (in IPDPS ’01). Washington, DC, USA: IEEE Computer

Society, 2001, pp. 4–18.

[52] R. Buyya, D. Abramson, and S. Venugopal, “The grid economy,” in IEEE

Journal, 2005, pp. 698 – 714.

[53] C. S. Yeo and R. Buyya, “Integrated risk analysis for a commercial computing

service,” in Proc. of the 21st IEEE Int’l. Parallel and Distributed Processing

Symposium (IPDPS 2007, IEEE CS Press, LosAlamitos, CA, USA), 2007.

Bibliography 134

[54] R. Wolski, J. Plank, J. Brevik, and T. Bryan, “Analyzing market-based re-

source allocation strategies for the computational grid,” Int. Journal of High

Performance Computing Applications, vol. 15, no. 3, pp. 285–281, 2001.

[55] H. K. Bhargava and S. Sundaresan, “Computing as Utility: Managing Avail-

ability, Commitment, and Pricing Through Contingent Bid Auctions,” Journal

of Management Information Systems, pp. 201–227, 2004.

[56] W. Kang, H. H. Huang, and A. Grimshaw, “A Highly Available Job Execution

Service in Computational Service Market,” in Proc. of the 8th IEEE/ACM Int’l.

Conf. on Grid Computing (GRID ’07). Austin Texas, USA: IEEE Computer

Society, 2007, pp. 275–282.

[57] Z. Tan and J. R. Gurd, “Market-based Grid Resource Allocation Using a Stable

Continuous Double Auction,” in Proc. of the 8th IEEE/ACM Int’l. Conf. on

Grid Computing. (Grid ’07). Austin Texas, USA: IEEE Computer Society,

September 19-21 2007, pp. 283 – 290.

[58] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy, “A

Distributed Resource Management Architecture that Supports Advance Reser-

vations and Co-Allocation,” in Proc. of the 7th Int’l. Workshop on Quality of

Service (IWQoS ’99), 1999, pp. 27–36.

[59] L. Chunlin and L. Layuan, “Pricing and Resource Allocation in Computational

Grid with Utility Functions,” in Int’l. Conf. on Information Technology: Coding

and Computing (ITCC’05)., vol. II, September 2005.

Bibliography 135

[60] A. Sulistio, W. Schiffmann, and R. Buyya, “Using Revenue Management to

Determine Pricing of Revervations,” in Proc. 3rd Int’l. Conf. on e-Science and

Grid Computing (eScience 2007). Bangalore, India: IEEE Computer Society,

December 10-13 2007, pp. 396–405.

[61] V. Krishna and M. Perry, “Efficient Mechanism Design,” Washington University

in St. Louis, EconWPA, The Economics Working Paper Archive, Game Theory

and Information 9703010, March 1998.

[62] I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure

Toolkit,” The Int’l. Journal of Supercomputer Applications and High Perfor-

mance Computing, vol. 11, no. 2, 1997.

[63] ——, “The Globus Project: A Status Report,” Future Generation Computer

Systems, vol. 15, no. 5-6, pp. 607–621, 1999.

[64] GLOBUS, “http://www.globus.org,” 2007.

[65] B. Jacob, L. Ferreira, N. Bieberstein, C. Gilzean, J. Girard, R. Strachowski, and

S. Yu, Enabling Applications for Grid Computing with Globus. IBM Corp., 1st

Edition, 2003.

[66] Globus, “Globus toolkit,” December 2010. [Online]. Available:

http://www.globus.org/toolkit/

[67] E. Elmroth, P. Gardfjll, O. Mulmo, and T. Sandholm, “An OGSA-based Bank

Service for Grid Accounting Systems,” in in Applied Parallel Computing, Lec-

ture Notes in Computer Science. Springer Verlag, 2006, pp. 1051–1060.

Bibliography 136

[68] R. Buyya and S. Venugopal, “The Gridbus Toolkit for Service Oriented Grid

and Utility Computing: An Overview and Status Report,” in 1st IEEE Int’l.

Workshop Grid Economics and Business Models GECON’04. Seoul, Korea:

IEEE Press, New Jersey, USA, 2004, pp. 19–66.

[69] A. Barmouta and R. Buyya, “GridBank: A Grid Accounting Services Archi-

tecture (GASA) for Distributed Systems Sharing and Integration,” in IPDPS

’03: Proc. of the 17th Int’l. Symposium on Parallel and Distributed Processing.

Washington, DC, USA: IEEE Computer Society, 2003, pp. 24–51.

[70] M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor: A Hunter of Idle Work-

stations,” in ICDCS ’88: Proc. of 8th Int’l. Conf. of Distributed Computing

Systems. Los Alamitos, California: IEEE Computer Society Press, 1988.

[71] D. H. J. Epema, M. Livny, R. van Dantzig, X. Evers, and J. Pruyne, “A World-

wide Flock of Condors: Load Sharing Among Workstation Clusters,” Future

Generation Computer Systems, vol. 12, no. 1, pp. 53–65, 1996.

[72] A. S. Grimshaw, W. A. Wulf, J. C. French, A. C. Weaver, and P. F. R. Jr., “Le-

gion: The Next Logical Step Toward a Nationwide Virtual Computer,” Com-

puter Science Department, University of Virginia, Charlottesville, VA, USA,

Tech. Rep., 1994.

[73] K. Appleby, S. Fakhoury, L. Fong, G. Goldszmidth, M. Kalantar, S. Krish-

nakumar, D. P. Pazel, J. Pershing, and B. Rochwerger, “Océano – SLA Based

Management of a Computing Utility,” in Proc. of the 7th IFIP/IEEE Sympo-

Bibliography 137

sium on Integrated Network Management (IM2001). Washington, DC, USA:

IEEE Computer Society, 2001, pp. 855–868.

[74] D. Abramson, J. Giddy, and L. Kotler, “High Performance Parametric Modeling

with Nimrod/G: Killer Application for the Global Grid?” in IPDPS ’00: Proc.

of the 14th Int’l. Symposium on Parallel and Distributed Processing. Washing-

ton, DC, USA: IEEE Computer Society, 2000, pp. 520–528.

[75] R. Buyya, J. Giddy, and D. Abramson, “An Evaluation of Economy-based Re-

source Trading and Scheduling on Computational Power Grids for Parameter

Sweep Applications,” in Proc. of the 2nd Workshop on Active Middleware Ser-

vices (AMS 2000), (In conjunction with HPDC 2001). Pittsburgh, PA, USA:

Kluwer Academic Press, 2000.

[76] D. Abramson, P. Roe, L. Kotler, and D. Mather, “ActiveSheets: Super-

computing with Spreadsheets.” in HPC ’01: Proc. of the High Performance

Computing Symposium, Advanced Simulation Technologies Conf. San Diego,

California, USA: Society for Modeling and Simulation (SCS) Press, 2001, pp.

110–115.

[77] G. Fabrizio and M.-E. Begin, “EGEE - Providing a Production Quality Grid

for e-Science,” in Proc. of the 2005 IEEE Int’l. Symposium on Mass Storage

Systems and Technology, Local to Global Data Interoperability (LGDI ’05) -

Challenges and Technologies. IEEE Computer Society, 2005, pp. 88–92.

[78] J. L. Vázquez-Poletti, E. Huedo, R. S. Montero, and I. M. Llorente, “Coor-

Bibliography 138

dinated Harnessing of the IRISgrid and EGEE Testbeds with Gridway,” J.

Parallel Distributed Computing, vol. 66, no. 5, pp. 763–771, 2006.

[79] GRIA, “DataGrid Accounting System (DAGAS),” July 2009. [Online].

Available: https://edms.cern.ch/file/571271/1/EGEE-DGAS-PA-Guide.pdf.

[80] Nimrod/G, “http://www.csse.monash.edu.au/ davida/nimrod/nimrodg.htm,”

2010.

[81] NASA-PG, “http://www.nas.nasa.gov/about/ipg/ipg.html,” 2010.

[82] CERN, “http://public.web.cern.ch/public/welcome.html,” 2010.

[83] WestGrid, “Western Canada Reserach Grid,” June 2010. [Online]. Available:

http://www.westgrid.ca/home.html.

[84] GRIA, “Grid Resources for Industrial Applications,” June 2010. [Online].

Available: http://www.gria.org.

[85] S. Mike, T. Steve, D. R. David, and Z. Ed, “Experiences with GRIA — Indus-

trial Applications on a Web Services Grid,” in Proc. of the 1st Int’l. Conf. on

e-Science and Grid Computing (e-Science ’05). Melbourne, Australia: IEEE

Computer Society, Dec. 5 - 8 2005, pp. 98–105.

[86] Amazon, “Amazon Elastic Compute Cloud (Amazon EC2),” January 2010.

[Online]. Available: http://aws.amazon.com/ec2/.

[87] A. Takefusa, S. Matsuoka, K. Aida, H. Nakada, and U. Nagashima, “Overview

of a Performance Evaluation System for Global Computing Scheduling Algo-

Bibliography 139

rithms,” in Proc. of the 8th IEEE Int’l. Symposium on High Performance Dis-

tributed Computing (HPDC 1999). Redondo Beach, California, USA: IEEE

Computer Society, July 1999.

[88] A. Legrand, L. Marchal, and H. Casanova, “Scheduling Distributed Applica-

tions: The SimGrid Simulation Framework,” in Proc. of the 3rd Int’l. Sympo-

sium on Cluster Computing and the Grid (CCGRID ’03). Tokyo, Japan: IEEE

Computer Society, 2003, pp. 138–145.

[89] A. Sulistio, U. Cibej, S. Venugopal, B. Robic, and R. Buyya, “A Toolkit for

Modelling and Simulating Data Grids: An Extension to GridSim,” Journal

of Concurrency and Computation: Practice and Experience (CCPE), vol. 20,

no. 13, pp. 1591–1609, 2008.

[90] C. L. Dumitrescu and I. Foster, “GangSim: A Simulator for Grid Scheduling

Studies,” in Proc. of the 5th IEEE/ACM Int’l. Symposium on Cluster Com-

puting and the Grid (CCGrid’05) - Volume 2. Cardiff, UK: IEEE Computer

Society, 2005, pp. 1151–1158.

[91] W. H. Bell, D. G. Camerona, L. Capozza, P. A. Millar, K. Stockinger, and

F. Zini, “OptorSim - A Grid Simulator for Studying Dynamic Data Replica-

tion Strategies,” Int’l. Journal of High Performance Computing Applications,

vol. 17, no. 4, pp. 403–416, 2003.

[92] M. Feldman, K. Lai, and L. Zhang, “A Price-anticipating Resource Allocation

Mechanism for Distributed Shared Clusters,” in Proc. of the 6th ACM Conf. on

Bibliography 140

Electronic Commerce (EC 2005),. Vancouver, BC, Canada: ACM, 2005, pp.

127–136.

[93] C. Daskalakis, G. Schoenebeck, G. Valiant, and P. Valiant, “On the Complexity

of Nash Equilibria of Action-Graph Games,” in Proc. of the 19th Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA ’09). New York Marriott

Downtown, New York, New York: Society for Industrial and Applied Mathe-

matics, 2009, pp. 710–719.

[94] M. P. Wellman, W. E. Walsha, P. R. Wurman, and J. K. MacKie-Mason, “Auc-

tion Protocols for Decentralized Scheduling,” Jornal of Games and Economic

Behavior, vol. 35, no. 1–2, pp. 271–303, 2001.

[95] K. Lai, L. Rasmusson, E. Adar, L. Zhang, and B. A. Huberman, “Tycoon: An

Implementation of a Distributed, Market-based Resource Allocation System,”

Multiagent Grid Syst., vol. 1, no. 3, pp. 169–182, 2005.

[96] D. Thain, T. Tannenbaum, and M. Livny, “Distributed Computing in Practice:

The Condor Experience,” Journal of Concurrency and Computation: Practice

and Experience, vol. 17, no. 2-4, pp. 323–356, 2005.

[97] A. W. Mu’alem and D. G. Feitelson, “Utilization, Predictability, Workloads,

and User Runtime Estimates in Scheduling the IBM SP2 with Backfilling,”

IEEE Transactions on Parallel Distributed Systems, vol. 12, no. 6, pp. 529–543,

2001.

[98] W. Tang, N. Desai, D. Buettner, and Z. Lan, “Analyzing and Adjusting User

Bibliography 141

Runtime Estimates to Improve Job Scheduling on Blue Gene/P,,” in Proc. of

IEEE Int’l. Parallel and Distributed Processing Symposium (IPDPS’10), 2010.

[99] A. Mutz, R. Wolski, and J. Brevik, “Eliciting Honest Value Information in a

Batch-Queue Environment,” in The 8th IEEE/ACM IntI Conf. on Grid Com-

puting. Austin, Texas, USA.: IEEE Press, September 2007.

[100] W. Kang, H. H. Huang, and A. Grimshaw, “A Highly Available Job Execution

Service in Computational Service Market,” in The 8th IEEE/ACM IntI Conf.

on Grid Computing. (Grid 2007). Austin Texas, USA: IEEE Computer Society,

September 19-21 2007.

[101] F. Black and Scholes, “The Pricing of Options and Corporate Liabilities,” Jour-

nal of Political Economy, vol. 81, no. 3, pp. 637–659, 1973.

[102] R. C. Merton, “Theory of Rational Option Pricing,” Bell Journal of Economics,

vol. 4, no. 1, pp. 141–183, 1973.

[103] P. P. Boyle, “Options: A Monte Carlo Approach,” Journal of Financial Eco-

nomics, vol. 4, no. 3, pp. 323–338, May 1977.

[104] S. Rahmail, I. Shiller, and R. K. Thulasiram, “Different Estimators of the Un-

derlying Asset’s Volatility and Option Pricing Errors: Parallel Monte-Carlo

Simulation Integrated Risk Analysis for a Commercial Computing Service,” in

Proc. of the Int’l. Conf. on Computational Finance and its Applications (IC-

CFA). Bologna, Italy: ACM Computer Society, 2004, pp. 121–131.

Bibliography 142

[105] J. C. Cox, S. A. Ross, and M. Rubinstein, “Option pricing: A Simplified Ap-

proach,” Journal of Financial Economics, vol. 3, no. 7, pp. 229–263, 1979.

[106] R. K. Thulasiram, L. Litov, H. Nojumi, C. T. Downing, and G. R. Gao., “Mul-

tithreaded Algorithms for Pricing a Class of Complex Options,” in Proc. (CD-

ROM) of the 15th IEEE/ACM Int’l. Parallel and Distributed Processing Sym-

posium (IPDPS), Anchorage (Alaska) USA, April, 2001.

[107] S. Barua, R. K. Thulasiram, and P. Thulasiraman, “High Performance Com-

puting for a Financial Application Using Fast Fourier Transform,” in Proc.

European Parallel Computing Conf., (EuroPar2005), Lisbon, Portugal, Aug.30-

Sep2, August 2005, pp. 1246–1253.

[108] D. Tavalla and C. Randall, Pricing Financial Instruments: The Finite Differ-

ence Method. John Wiley and Sons, New York, NY, 2000.

[109] R. K. Thulasiram and P. Thulasiraman, “Performance Evaluation of a Multi-

threaded Fast Fourier Transform Algorithm for Derivative Pricing,” The Jour-

nal of Supercomputing, vol. 26, no. 1, pp. 43–58, 2003.

[110] R. K. Thulasiram, C. Zhen, A. Chhabra, P. Thulasiraman, and A. Gumel,

“A Second Order L0 Stable Algorithm for Evaluating European Options,” Int.

Journal of High Performance Computing and Networking (IJHPCN), no. 5-6,

pp. 311–320, 2006.

[111] M. Amico, Z. J. Pasek, F. Asl, and G. Perrone., “Simulation Methodology

for Collateralized Debt and Real Options: A New Methodology to Evaluate the

Bibliography 143

Real Options of Investment Using Binomial Trees and Monte Carlo Simulation,”

in Proc. of the 35th Conf. on Winter Simulation (WSC ’03). New Orleans,

Louisiana: Winter Simulation Conference, 2003.

[112] A. Goolsbee and P. J. Klenow, “Valuing consumer products by the time spent

using them: An application to the internet,” National Bureau of Economic

Research, Inc, NBER Working Papers, Tech. Rep. 1995, August 2006.

[113] A. A. Gray, P. Arabshahi, E. Lamassoure, C. Okino, and J. Andringa, “A

real option framework for space mission design,” NASA, LAB, Tech. Rep. Jet

Propulsion labouratory, August 2004.

[114] C. Carlsson and R. Fullér, “A fuzzy approach to real option valuation,” Journal

of Fuzzy Sets and Systems, vol. 139, no. 2, pp. 297–312, 2003.

[115] A. Gupta, L. Zhang, , and S. Kalyanaraman, “Simulation for Risk Management:

A Two-component Spot Pricing Framework for Loss-rate Guaranteed Internet

Service Contracts,” in Proc. of the 35th Conf. on Winter simulation (WSC’03).

Winter Simulation Conference, 2003, pp. 372–380.

[116] Y. d’Halluin, P. A. Forsyth, and K. R. Vetzal, “Managing capacity for telecom-

munications networks under uncertainty,” Journal of IEEE/ACM Transaction

on Networking, vol. 10, no. 4, 2002.

[117] Parallel-Workloads-Archive, “Logs of Real Parallel Workloads,” March 2010.

[Online]. Available: http://www.cs.huji.ac.il/labs/parallel/workload/logs.html.

[118] Canarie, “Investment and Infrastructure in Support of Innovation:

Bibliography 144

Annual Report to the Minister,” November 2009. [Online]. Available:

http://www.canarie.ca/templates/about/publications/docs/areportminister 2009.pdf.

[119] D. J. Higham, An Introduction to Financial Option Valuation: Mathematics,

statistics and computation. Cambridge, First Edition, 2004.

[120] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot, Y. Jégou,

S. Lanteri, J. Leduc, N. Melab, G. Mornet, R. Namyst, P. Primet, B. Quetier,

O. Richard, E.-G. Talbi, and T. Irena, “Grid’5000: A Large Scale and Highly

Reconfigurable Experimental Grid Testbed,” Int’l. Journal of High Perfor-

mance Computing Applications (IJHPCA), vol. 20, no. 4, pp. 481–494, 2006.

[121] NorduGrid, “Advanced Resource Connector (ARC) Grid Monitor,” June 2010.

[Online]. Available: http://www.nordugrid.org/monitor/loadmon.php.

[122] D. Cui, Y. Wu, and Q. Zhang, “Massive Spatial Data Processing Model Based

on Cloud Computing Model,” in Proceedings of the 2010 Third Int’l. Joint

Conf. on Computational Science and Optimization - Volume 02, ser. CSO ’10.

Washington, DC, USA: IEEE Computer Society, 2010.

[123] A. T. Velte, T. J. Velte, and R. Elsenpeter, Cloud Computing: A Practical

Approach. McGraw Hill, First Edition, 2010.

[124] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs, “Cutting

the Electric Bill for Internet-scale Systems,” in Proc. of ACM Special Interest

Group on Data Communications (SIGCOMM ’09). Spain, Barcelona: ACM

Computer Society, 2009, pp. 123–134.

List of Abbreviations

ABC Activity Based Costing

APIs Application Program Interfaces

CASA Collaborative Adaptive Sensing of the Atmosphere

CBP Commodity Base Price

CDA Continuous Double Auction

DCF Discounted Cash Flow

DGAS Distributed Grid Accounting System

EC2 Elastic Compute Cloud

EGEE Enabling Grid for EsciencE

GARA Globus Advanced Reservation and Allocation

gcc Grid Compute Commodity

G-FRoM Grid Resources Pricing - A Fuzzy Real option Model

GGF Global Grid Forum

145

Bibliography 146

GRIA Grid Resources for Industrial Applications

GSI Grid Security Infrastructure

GSP Grid Service Provider

GT Globus Toolkit

GT4 Globus Toolkit version 4:0

HPC High Performance Computing

HTTP Hypertext Transfer Protocol

IETF Internet Engineering Task Force

IOA Input-Output Analysis

LDAP Lightweight Directory Access Protocol

LHC Large Hadron Collider

NPV Net Preset Value

OASIS Organization for the Advancement of Structured Information Stan-

dards

OGSI Open Grid Services Infrastructure

PVF Price Variant Function

QoS Quality of Service

RaaS Resource as a Service

Bibliography 147

S3 Simple Service Storage

SCDA Stable Continuous Double Auction

SGAS Swedish Grid Accounting System

SHARCNet Shared Hierarchical Academic Research Computing Network

SLA Service Level Agreement

SOAP Simple Object Access Protocol

SQS Simple Queue Service

SSL Secure Socket Layer

TLS Transport Layer Security

W3C World Wide Web Consortium

Appendix A

Input Output Analysis (IOA) and

Activity Based Costing (ABC)

Input Output (I-O) analysis is a process whereby inputs from one sector of an

industry or economy produce outputs for consumption or for inputs for another sec-

tor of industry or economy. The I-O table captures the transactions between various

participating economies. With the I-O table, one can estimate the change in demand

for inputs resulting from a change in production of the final good. IOA [45] is the

analysis of the interactions and the interdependencies between a systems input and

output operations. It identifies the perfect mix of project resources (raw material,

labor, and capital) – called the inputs that is required to achieve the desired produc-

tion goals – called the outputs. The process of determining how and in what measure

the constituent parts of a project or a process, or sectors of an economy interact is

enhanced by the application of IOA. When put into a matrix form, the rows represent

the output of each sector to the other sectors. The columns show how each sector

148

Appendix A: Input Output Analysis (IOA) and Activity Based Costing (ABC) 149

obtains the inputs (i.e., goods and services) that it requires from the other sectors.

The columns represent how a particular sector uses the inputs of the other sectors

including inputs that it requires from its own industry. This matrix reflects the flow

of trade between the different sectors of the economy. Table A.1 shows an example

of the Leontief’s I-O table with all units of measure given in dollars1. Thus, the table

illustrates a grid market place with three grid resources2 R1, R2, and R3 and three

grids G1, G2, and G3. The columns represent the inputs (grid resources) to the grid

marketplace and the rows represent the outputs (computations) from a grid. For

example in Table A.1, column 2 on row 1 request for 19 units of R2 from G1, 7 units

from G2, and 10 units from G3. The elements of Table A.1 show the flow relationship

between three grid resources. The outputs (computations) show that G1 produces 14

units of R1, 19 from R2, and 32 form R3 to produce an output of 65.

Table A.1: Input-Output Table (in dollars).

One important step in the analysis of the Leontief I-O table is the development

1For the purpose of illustration, we use the grid and an economy with grid resources as inputs
and computations as the outputs

2The grid resources R1, R2, and R3 can be any of the resources described in Chapter 1.

Appendix A: Input Output Analysis (IOA) and Activity Based Costing (ABC) 150

a Table of Technology Coefficients (TTCs). The TTCs provides the amount (unit)

of input required from each input to generate one unit of the output for each grid

computation. For example, in Table A.1, let the output elements be denoted by xij

that is, computation j (G1, G2, G3) that consumed resource i (R1, R2, R3); and let

Xi represent the total output from each grid, and yi represents the final demand for

each grid’s output computation. The amount of resource R2 from G1 is given by

xG1,R1 = $19. Let aij be the value of the computed output that is required by the

grid input resource i to produce one dollar’s worth of output of grid computations j.

The table of technology coefficients is obtained by a normalization, that is:

aij =
xij

Xj

(A.1)

Using Table A.1, for example, TTC for a11 can be computed as a11 = 14
65

= 0.215,

a12 = 19
32

= 0.594 and a13 = 32
70

= 0.457 continuing in this manner, the TTC for this

specific example is computed and given in Table A.2. The computed TTCs shows

Table A.2: Computed Technology Coefficients.

that the total amount required to compute one dollar’s worth of the grid output for

Appendix A: Input Output Analysis (IOA) and Activity Based Costing (ABC) 151

resource A (for example), is given as:

3∑
i=1

ai1 = 0.215 + 0.154 + 0.308 = 0.677. (A.2)

Appendix B

Derivation of the Black-Scholes

Formula

B.1 Prerequisites

In this appendix, I intend to provide the derivation of the Black-Scholes formula,

hence, the enthusiastic reader is encouraged to note the following properties of the

normal distribution and the mean value operator. Let X be normally distributed,

that is X ∼ N(µ, σ2). Then

P (X ≤ x) = N(x)

=
∫ x
−∞

1
σ
√
2π
exp

(
− (y−µ)2

2σ2

)
dy

(B.1)

152

Appendix B: Derivation of the Black-Scholes Formula 153

The function N(x) is called the distributed function of X and the function

f(x) = 1
σ
√
2π
exp

(
− (y−µ)2

2σ2

)
(B.2)

is termed density function. Note that because of symmetry, N(x) = 1−N(−x). The

mean value of the random variable X can be calculated as

E[Z] =
∫ x

−∞
y

1

σ
√
2π

exp

(
−(y − µ)2

2σ2

)
dy (B.3)

If g : R → R is an integrable function, then the integral transformation theorem

provides a way of calculatio=ng the mean value of Z = f(X):

E[Z] = E[f(X)]

=
∫ x
−∞ f(y) 1

σ
√
2π
exp

(
− (y−µ)2

2σ2

)
dy

(B.4)

Equation B.4 proves useful in the derivation of the Black-Scholes formula.

B.2 Formula Derivation

I assume that the stock price in a risk-neutral world moves according to a geometric

motion, that is

dS(t) = S(t)rdt+ S(t)bdz(t). (B.5)

Appendix B: Derivation of the Black-Scholes Formula 154

From Hull [21], it is known that S(t) can be written in the more explicit form:

S(T) = S(0)exp

(
(r − b2

2
)T + bz(T)

)
. (B.6)

Since z(T) ∼ N(0, T), S(T) could be interpreted as a random variable of the form

S(T) = Y = f(z(T)) where

f(x) = S(0)exp

(
(r − b2

2
)T + bx

)
. (B.7)

All I need to do in order to calculate the value of an option is to calculate the expected

value of the pay-off and discount it using the risk-free rate r. Hence, for a European

call option initiated at date 0 with an exercise price of K and T years to expiry I

have to calculate.

c(0) = exp(−rT)E[max(S(T)−K, 0)]

= exp(−rT)E[(S(T)−K)+].

(B.8)

Again, the random variable inside the expectation is just a more completed function

of the Wiener process. Specifically

(S(T)−K)+ =
(
S(0)exp((r − b2

2
)T + b

√
T z(T)√

T
)−K

)+
= g(z(T)√

T
).

(B.9)

Note that if z(T) ∼ N(0, T), then z(T)√
T
∼ N(0, 1). So to calculate the mean value in

Equation (B.8), I apply Equation (B.4) by putting µ = 0, σ2 = 1 and X = Z(T)√
T
:

Appendix B: Derivation of the Black-Scholes Formula 155

E[(S(T)−K)+] = E[g
(
z(T)√

T

)
]

=
∫ x
∞ g(y) 1√

2π
exp

(
−y2

2

)
dy

=
∫∞
−∞

(
S(0)exp((r − b2

2
)T + b

√
Ty)−K

)+
1√
2π
exp

(
−y2

2

)
dy.

(B.10)

This integral looks moderately unpleasant, but note that

g(y) ≥ 0 ⇔ S(0)exp((r − b2

2
)T + b

√
Ty) ≥ K

⇔ (r − b2

2
)T + b

√
Ty) ≥ ln

(
K

S(0)

)
⇔ y ≥

ln

(
K

S(0)
−(r− b2

2
)

)
T

b
√
T

⇔ y ≥ −
ln

(
K

S(0)
+(r− b2

2
)

)
T

b
√
T

∆ −d2.

(B.11)

Since the integrand is zero whenever y ≥ −d2 I can replace the lower limit in the

integral in Equation (B.10) by −d2 so that

E[(S(T)−K)+] =
∫∞
−d2

(
S(0)exp((r − b2

2
)T + b

√
Ty)−K

)
1√
2π
exp

(
−y2

2

)
dy

=
∫∞
−d2

(
S(0)exp((r − b2

2
)T + b

√
Ty)

)
1√
2π
exp

(
−y2

2

)
dy

−
∫∞
−d2

K 1√
2π
exp

(
−y2

2

)
dy

= (1)− (2)

(B.12)

Appendix B: Derivation of the Black-Scholes Formula 156

The last two integrals are calculated separately:

(1) =
∫∞
−d2

(
S(0)exp((r − b2

2
)T + b

√
Ty)

)
1√
2π
exp

(
−y2

2

)
dy

=
∫∞
d2

S(0) 1√
2π
exp

(
(r − b2

2
)T + b

√
Ty − y2

2

)
dy

− S(0)exp(rT)
∫∞
−d2

1√
2π
exp

(
− b2

2
T + b

√
Ty − y2

2

)
dy

= S(0)exp(rT)
∫∞
−d2

1√
2π
exp

(
−1

2
(y − b

√
T)2

)
dy.

(B.13)

The last equality is an application of the formula a2 + b2 − 2ab = (a − b)2. Using

integration by substitution, I can put v = y − b
√
T . Then the limits of the integral

have to be changed: y = −d2 ⇒ v = −d2 − b
√
T ≈ −d1, y =∞⇒ v =∞ therefore,

(1) = S(0)exp(rT)
∫∞
−d1

1√
2π
exp

(
−v2

2

)
dv

= S(0)exp(rT)
(∫∞

−∞ exp
(
v2

2

)
dv −

∫−d1
∞

1√
2π
exp

(
−v2

2

)
dv
)

= S(0)exp(rT)(1−N(−d2))

= S(0)exp(rT)N(d1).

(B.14)

This follows since I recognize the integrals as integrals over the density function of a

standard normally distributed random variable. If this observation is kept in mind,

the calculation of (2) is easy

(2) =
∫∞
−d2

K 1√
2π
exp

(
−y2

2

)
dy

= K
∫∞
−d2

1√
2π
exp

(
−y2

2

)
dy

= K(1−N(−d2))

= KN(d2).

(B.15)

I tidy up the calculations to make the call option value easily calculated by discount-

Appendix B: Derivation of the Black-Scholes Formula 157

ing:

c(0) = exp(−rT)E[(S(T)−K)+]

= exp(−rT){(1)− (2)}

= exp(−rT){S(0)exp(rT)N(d1)−KN(d2)}

= S(0)N(d1)−Kexp(−rT)N(d2).

(B.16)

This concludes the derivation of the Black-Scholes formula.

Appendix C

Service Level Agreement (SLA)

and Quality of Service (QoS)

Grid computing has continued to evolve and has become an infrastructure for

providing computational intensive services in research and commercial environments.

As the grid continue to gain wide acceptance, there is need for techniques that could

provide the required service objectives. This could be facilitated by means of elec-

tronic contracts between service consumers and one or more service provider(s), in

order to achieve the necessary reliability and commitment on both sides. Such con-

tracts help to establish a well-defined relationship between a service provider and a

client in the context of a particular service provision. This is especially important if

the services or resources to be used come from different administrative domains, or if

commercial service provision needs to be supported. Over the last years Service Level

Agreements (SLA) increasingly been used to establishing these kinds of guarantees

and relationships.

158

Appendix C: Service Level Agreement (SLA) and Quality of Service (QoS) 159

C.1 Service Level Agreement (SLA)

A Service Level Agreement (SLA) is defined as a contract between a provider and

a user, which specifies the level of service that is expected during the term of the

contract [7]. The distributed computing community’s interest in SLA comes from the

need to guarantee qualities of service (QoS) for distributed services and composite

applications built from those services.

The SLA records a common understanding about services, priorities, responsibili-

ties, guarantees, and warranties. Each area of service scope should have the “level of

service” defined. The SLA may specify the levels of availability, serviceability, per-

formance, operation, or other attributes of the service, such as billing. The “level of

service” can also be specified as “target” and “minimum”, which allows customers to

be informed what to expect (the minimum), whilst providing a measurable (average)

target value that shows the level of organization’s performance. In some contracts,

penalties may be agreed upon in the case of non-compliance of the SLA.

The characteristic nature of grid resources and their ownership however, hinder

the grid from plugging directly into the default SLA that is generally defined. The

reason is that in grid the SLA applicable to one (based on the geographical location

and policies) may not necessarily apply to other grids. In order words, it is hard to

define a global SLAs for grids. However, a SLA document may contain the following

numerous service performance metrics with corresponding service level objectives. A

common case with grid could be designed with the following metric:

1. ABA (Abandonment Rate): Percentage of jobs abandoned while waiting for

service. This metric is sensitive and it must be ensured that it is kept as

Appendix C: Service Level Agreement (SLA) and Quality of Service (QoS) 160

minimum as possible since flexibility in terms of modeling with real option for

the users is built into the pricing model.

2. ASR (Average Speed to Respond): Average time (usually in hours or minutes)

it takes for a job to remain in queue before the required computational resources

become available.

3. TSF (Time to Service Factor): Percentage of jobs served within a definite time

frame, for example, 99% in 2 hours.

4. RA (Reservation Acknowledged): Percentage of priority jobs that can be re-

solved without the use of a incentive or issuing a penalty.

5. TAT (Turn Around Time): Time taken to complete a certain job.

Therefore, to draft an effective SLA for grid, the service levels (such as the following)

that an existing infrastructure can support needs to be identified to make the SLA

comprehensive:

1. The SLA need to clearly define the service provider’s responsibilities (service

provisioning).

2. There is a need to negotiate the SLA with the service provider, while paying

particular attention to what services are being guaranteed, how they will be

measured, the process for realizing agreed-upon remedies, and the amount of

time the service provider has to correct problems if problems occurs.

3. There is a need to implement SLA measurement and enforcement tools and

processes to ensure that every SLA can be measured and enforced as soon as

Appendix C: Service Level Agreement (SLA) and Quality of Service (QoS) 161

the service under consideration is provided.

4. There is a need to enforce SLA compliance, and identify and resolve problems

that arise.

5. There is also, a need to tie the SLA document to government legislations re-

garding compliances from both parties (provider and user).

C.2 User Quality of Service (QoS)

A user’s QoS refers to the users perception of a service to the set of predefined ser-

vice conditions (service agreements) necessary to achieve the specified service quality

as described in the Service Level Agreement document. QoS = {vLQoS, LQoS,MQoS,HQoS, vHQoS}

is a fuzzy set of linguistics variables vLQoS, LQoS, MQoS, HQoS, and vHQoS used to

denote very low QoS, Low QoS Mid QoS, high QoS, and very high QoS respectively.

To compute the corresponding membership functions, the following rated values for

the linguistics variables in Table C.1:

Table C.1: The Rated QoS Levels.

Linguistics Variables a b c d Crisp Values (z∗)

V LQoS a1 b1 c1 d1 z∗v1
LQoS a2 b2 c2 d2 z∗v2
MQoS a3 b3 c3 d3 z∗v3
HQoS a4 b4 c4 d4 z∗v4
V HQoS a5 b5 c5 d5 z∗v5

To defuzzify1 I use Centre of Area (COA) method [28]. The COA method is suit-

1Defuzzification involves the process whereby a non-fuzzy (crisp) output B∗ is obtained from the

Appendix C: Service Level Agreement (SLA) and Quality of Service (QoS) 162

able for point-wise membership functions such as triangular and trapezoidal member-

ship functions. The COA method calculates the centre of gravity of the distribution

of the degrees of membership of B∗. In a discrete universe U , the crisp output value

z∗ is obtained using Equation (C.1).

z∗ =

∑q
i=1 B

∗(xi)ẋi∑q
i=1 B

∗(xi)
. (C.1)

where q is the number of quantization levels of the universe U , xi is the crisp value

for the quantization level i, and B∗(xi) is the inferred fuzzy set, B∗.

µQoS(a1, b1, c1, d1) =



0 t < a1, and t ≥ d1

1 b1 ≤ t < c1

t−a1
b1−a1

a1 ≤ t < b1

d1−t
d1−c1

c1 < t ≤ d1

(C.2)

Generally, the remaining individual membership function corresponding to theQoS =

{vLQoS, LQoS,MQoS,HQoS, vHQoS} can be computed using the following:

µLQoS(a2, b2, c2, d2) =



0 t < a2, and t ≥ d2

1 b2 ≤ t < c2

t−a2
b2−a2

a2 ≤ t < b2

d2−t
d2−c2

c2 < t ≤ d2

(C.3)

fuzzy set, which results from fuzzy inference.

Appendix C: Service Level Agreement (SLA) and Quality of Service (QoS) 163

µMQoS(a3, b3, c3, d3) =



0 t < a3, and t ≥ d3

1 b3 ≤ t < c3

t−a3
b3−a3

a3 ≤ t < b3

d3−t
d3−c3

c3 < t ≤ d3

(C.4)

µHQoS(a4, b4, c4, d4) =



0 t < a4, and t ≥ d4

1 b4 ≤ t < c4

t−a4
b4−a4

a4 ≤ t < b4

d4−t
d4−c4

c4 < t ≤ d4

(C.5)

µV HQoS(a5, b5, c5, d5) =



0 t < a5, and t ≥ d5

1 b5 ≤ t < c5

t−a5
b5−a5

a5 ≤ t < b5

d5−t
d5−c5

c5 < t ≤ d5

(C.6)

Now, QoS can be expressed as:

QoS = {z∗v1 , z
∗
v2
, z∗v3 , z

∗
v4
, z∗v5} (C.7)

C.2.1 Mapping QoS to Computed Option Value

The RHS of Equation (C.7) is crisp value generally expressed as a percentage. An

example for mapping a given user QoS to the computed option value is given below.

Appendix C: Service Level Agreement (SLA) and Quality of Service (QoS) 164

C.2.2 A Mapping Example

In Figure 6.10, the option value has (or convergence) occurred at $1.532 × 10−4

during the 8th time step. However, I also have an option value that occurred during

the 4th time step as $1.524× 10−4. This is my minimal option value for this partic-

ular gcc (RAM). Between these values $1.532× 10−4 (maximum) and $1.524× 10−4

(minimum) , users may have their jobs executed in the grid using the gccs. For exam-

ple, users who offer to pay the minimum will be mapped to z∗v1 QoS while users who

agree to offer the maximum option value will be mapped to z∗v5 . Every other offer in

the middle are correspondingly mapped. I also make a provision for users who want

their jobs executed in front of every other users. That means they offer to pay more

than the maximum of the computed option value of $1.532× 10−4. In this case, the

extra pay is given in the form of incentive (by way of granting more resources to the

bumped out user.)

	FRONT-1
	allenotor_david
	TOP-Pages from Final-PhD-Thesis-Version-David_Allenotor
	allenotor_david
	FRONT-1
	Binder2
	AbstractforeSpace
	Final-PhD-Thesis-Version-David_Allenotor2

