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Introduction
Big data has become a critical technology for developing novel solutions in a wide vari-
ety of fields. For instance, large and complex amounts of structured and unstructured 
data are growing at high-speed rates [1]. The development of these big data will enhance 
the discovery of useful information, such as hidden patterns and unknown correlations, 
that can be useful in many fields, including healthcare, financial, manufacturing, and 
social life [2], such as the failure or malfunction of the sensors that provide information 
or partial observation of an object of interest because of some hidden phenomenon.
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Many real-world applications suffer a common drawback, missing or unknown data. 
For example, some results may be lost in an industrial experiment due to mechanical 
faults during the data gathering procedure. Likewise, some tests cannot be done in med-
ical diagnosis because some medical tests may not be appropriate for certain patients, or 
the medical report proforma permits the omission of specific qualities.

The quality of data [3] is a significant concern to them for conducting effective data 
analytics. Although the outcome of data analysis tasks depends on several factors such 
as attribute selection, algorithm selection, and sampling techniques, a critical depend-
ency relies upon the efficient handling of missing values [4]. The data is either missing or 
incorrectly entered by a human, which results in an incorrect prediction [5, 6], as miss-
ing values degrade performance. Therefore, missing data is a significant issue in big data 
analytics, as it can significantly increase the cost of computation and skew the results [7]. 
As a result, data quality is a fundamental requirement for big data processing, and data 
quality suffers when missing values are present [8].

A data analysis algorithm cannot handle incomplete datasets directly by itself. The 
simplest way to deal with this problem is case deletion, which means directly remov-
ing all the data of cases with missing values [9, 10]. However, if the missing value rate is 
high, the deletion approach affects the remainder of the complete data and can reduce 
the accuracy of the results [11]. As a result, reliable imputation techniques are necessary 
to consider the matter of missing data. Additionally, imputation of missing data can aid 
in the maintenance of the completeness of a dataset, which is critical in small-scale data 
mining projects and big data analytics.

To date, missing value imputation (MVI) has been proposed as a promising solu-
tion for incomplete datasets [12–19]. MVI can be broadly classified into statistical and 
machine learning techniques. The mean and mode are common statistical MVI tech-
nique measurements that typically require a short time to compute. However, machine 
learning MVI techniques, such as support vector machine (SVM), and random forest 
(RF) methods, require a long computation time to achieve high accuracy [20–23]. On 
the other hand, the k-nearest neighbor (KNN) technique [24] requires much less impu-
tation time than other machine learning techniques [25–28]. However, the KNN method 
performs only an online search of the nearest neighbors through the Euclidean distance 
function [29].

Among the KNN-based methods, Troyanskaya et  al. [30] and Daberdaku et  al. [31] 
presented a weighted KNN algorithm for the missing data imputation. Further, Cheng 
et al. [32] proposed a KNN method that used purity to enhance the performance of K 
nearest neighbors. Fan et al. [33] proposes the weighted KNN approach, which uses the 
inverse of the Euclidean distance as the weight for each data point. Of all these KNN-
based weighted methods, the set of nearest neighbors is computed by the weight dis-
tance between the data of missing values and the complete data.

Sometimes, although more complex algorithms might produce better imputation 
results, they will generally require a higher computational cost, which is a considera-
tion in machine learning techniques versus statistical techniques [34]. However, most 
machine learning techniques are usually more computationally expensive than many 
statistical techniques, due to the model training and construction process.
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Recently, class center-based missing value imputation was proposed to produce rela-
tively better imputation results at a lower computational cost [35–37]. The class center 
is based on the mean of the data samples in a specific class, which is similar to the idea 
of the cluster center (or centroid) applied in the k-mean algorithm [38]. Thereafter, the 
Euclidean distances between each data sample and the class center are measured, to 
define a threshold for the later imputation guideline in “Materials and methods” section.

This study aims to propose an algorithm for missing value imputation such that it 
achieves high accuracy, yet requires minimal time. This presents a novel imputation 
method: the adaptive multiple imputations of missing values using the class center 
approach (AMICC). The key contributions of our work are (1) the class center is based 
on the mean/mode of the data samples and replaces values appropriately, according 
to the attribute type of the dataset, (2) the proposed adaptive threshold value follows 
the standard deviation (STD) values, where the computation can indicate how data are 
spread out over a range of normal and filter outliers, and (3) for outlier data, the missing 
values are replaced with more appropriate values by using the median and the average 
weight distance values of the class.

The remainder of this article is organized as follows: “Materials and methods” section 
presents the related work and describes the proposed model, the diversity operator, and 
the AMICC algorithm design. The experimental results are presented in “Experiments 
and results” section, while “Discussion” section offers a discussion and the conclusions 
are presented in “Conclusions” section.

Materials and methods
In this section, we first present the missing value imputation in “Missing value imputa-
tion” section. “Our adaptive multiple imputations of missing values using class centers” 
section details our proposed method, the AMICC algorithm.

Missing value imputation

MVI uses a statistical or machine learning method to estimate the observed data cho-
sen to replace the missing values. The simplest statistical methods for continuous and 
discrete variables are mean and mode imputation [39], respectively. Besides statistical 
techniques, MVI also uses machine learning methods to estimate the observed data cho-
sen to replace the missing values. For instance, MVI analyzes a pattern classification task 
where the missing feature is employed as the target output for the classification model. 
The rest of the complete features are the input attributes used to train and test the model 
[40].

One of the most widely used machine learning techniques is KNN imputation [41], 
where missing values are imputed using the values calculated from the nearest neighbor 
observed data. In finding the nearest neighbors, the preferred choice in nearest neighbor 
classification is to define the Euclidean distance, which is defined as:

(1)dist(xi, xj) =

√

√

√

√

N
∑

n=1

[xni − xnj]2
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where function dist(xi, xj) computes the distance between the instance xi and xj , N is the 
number of attributes or features, and xni represents the ith instance in the nth attribute.

The baselines compared with the proposed method are usually based on statistical and 
machine learning techniques. Two other well-known machine learning techniques for 
MVI are the SVM [42] and RF [43] algorithms. The SVM algorithm uses kernel func-
tions for the nonlinear mapping of an original feature space into a higher dimensional 
feature space to build a hyperplane. The RF algorithm is an ensemble of decision tree 
classifiers, which establishes the outcome based on the predictions of the decision trees. 
RF predicts the outcome by taking the average or mean of the output from various trees.

Our adaptive multiple imputations of missing values using class centers

Several real-world datasets often found with not-a-numbers (NaNs), blank fields, or 
other placeholders may have missing values. Training a model with a dataset of many 
missing values can drastically impact the quality of the machine learning or statistical 
model, resulting in higher computational costs. If the quantum of missing data is large, 
the efficiency will fluctuate accordingly.

As indicated in “Missing value imputation” section, missing values are commonly 
replaced by mean/mode. Hence, in the AMICC method, the class center is based on the 
mean/mode of the data samples in a specific class. In the MVI approach, the AMICC 
method replaces the missing values with the mean or mode depending on the attribute 
type. In the outlier data of each class, the AMICC method identifies the threshold values 
for checking the outlier data; the threshold values are calculated based on the distances 
between the class centers and their correspondence to the complete data.

In Fig. 1, the AMICC approach comprises three modules: the first focuses on data pre-
processing in “Data pre-processing” section, the second calculates the threshold identi-
fication in “Threshold identification” section and the third imputes the missing values in 
“Imputation of missing values” section. These three modules are described in the follow-
ing sub-sections.

Data pre‑processing

In the data pre-processing section, there are some differences in UCI dataset experi-
ments and missing data types based on the missing completely at random (MCAR) 

Incomplete
dataset 

D

D_complete

D_incomplete
Normalization  

dataset D
3. Imputation of
missing values

2. Threshold identification 

1. Data preprocessing

Imputed dataset

Fig. 1  Procedure of the proposed method
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which the presence of missing data does not depend on the input values perse [44]. 
Therefore, in large datasets plagued by MCAR missing data, samples with missing values 
can be discarded without biasing the distribution of the remaining data.

This study simulated missing rates of 10%, 20%, 30%, 40%, and 50% [9, 15, 20, 32, 35, 
41] to compare the proposed method to the imputation methods listed in the UCI data-
sets experiment. As shown in Eq. (2), the missing rate is a percentage of the total number 
of missing values in the dataset. All variables except the class attribute had their missing 
values simulated.

The missing rate of 50% in this study is the highest when the number of examples and 
features is considered. For example, consider the Blood dataset, which contains 748 
examples and nine features, as illustrated in Table  1. According to equation (2), there 
were 3,366 missing values when the missing rate was set to 50% (50 = 3366 × 100 / (748 
× 9)).

Additionally, normalization is a technique frequently used during the data prepara-
tion process. The goal of normalization is to change the values of numeric columns in 
the dataset to a standard scale, without distorting differences in the ranges of values. 
The incomplete dataset must be normalized in the domain [0,1], as normalized data 
on the same scale avoids the effect of different attribute ranges on distance calculation. 
Thereafter, the incomplete dataset is divided into two subsets: one is the incomplete data 
containing the missing values for later imputation, and the other is the complete data 
without missing values for calculating the initial values of the next step.

For example, Fig. 2 shows a three-class incomplete dataset with ten feature dimensions 
( F = 10 ), in which the question marks represent attributes with missing values. Class i (i 
= 1 to N; N = 3) of D, denoted by Di , is divided into Di_complete and Di_incomplete.

(2)missing rate =
number of missing values × 100

number of examples × number of features

F = 10, N = 3

1

?

?

?

?

1

1

1

2

2

?

?

2

2

Incomplete dataset (D)

?

?

3

3

3

?

?

Class 1

D1_complete

D1_incomplete

Class 2
D2_complete

D2_incomplete

?

? ?

?

?

?

?

? ?

Class 3
D3_complete

D3_incomplete

?

Fig. 2  Three-class datasets for subset division
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Threshold identification

Figure 3 shows that the process of identifying the threshold based on the distances between 
the class centers and their correspondences to the complete data described in more detail 
below.

From the incomplete dataset D containing N classes, dataset D is divided into complete 
( D_complete ) and incomplete ( D_incomplete ) subsets, where D_incomplete contains missing 

Start

End

Calculate each class center
cent(Di), modei, and mediani of Di_complete

D_complete

For i = 1 to N

Measure the distances between cent(Di) 
and the data samples in class i

Choose the mean/mode of the distances 
for the threshold Ti of class i

End i

Fig. 3  Threshold identification process
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7

1

1

8

5

7

5

cent(D1)

data j
1

2

3

4

3

9

6

9

Mean (all)

(2-2.75)2+(1-3.50)2+(5-6.25)2+(9-6.75)2+...dist4(data4,cent(D1)) =

(4-2.75)2+(1-3.50)2+(7-6.25)2+(6-6.75)2+...dist3(data3,cent(D1)) =

(2-2.75)2+(7-3.50)2+(5-6.25)2+(9-6.75)2+...dist2(data2,cent(D1)) =

(3-2.75)2+(5-3.50)2+(8-6.25)2+(3-6.75)2+...dist1(data1,cent(D1)) =

Mean(dist1+dist2+dist3+dist4)Threshold(T1) =

(a) Numerical dataset

92 1 5cent(D1)

Mode (all)

(2-2)2+(1-1)2+(5-5)2+(9-9)2+...dist4(data4,cent(D1)) =

(4-2)2+(1-1)2+(7-5)2+(6-9)2+...dist3(data3,cent(D1)) =

(2-2)2+(7-1)2+(5-5)2+(9-9)2+...dist2(data2,cent(D1)) =

(3-2)2+(5-1)2+(8-5)2+(3-9)2+...dist1(data1,cent(D1)) =

Mode(dist1+dist2+dist3+dist4)Threshold(T1) =

(b) Categorical dataset
Fig. 4  Examples of the class center and distance calculations for Class 1 in (a) a numerical dataset and (b) a 
categorical dataset
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values. For the i-th class of Di_complete , the class center (cent(Di)), mode, and median are 
calculated. When computing the class center values for a numerical attribute, the mean 
is used as the class center. Otherwise, if the attribute is categorical, the mode value is the 
class center value.

Next, the Euclidean distances between cent(Di ) and every data sample in Class i are 
computed. Figures 4 and 5 show an example of calculating the center of Class 1, cent(D1 ), 
and the distances between cent(D1 ) and the other data samples.

Based on the distances, in Fig. 4a, the mean is used for calculating the distances for a 
numerical dataset; in Fig. 4b, the mode is used for calculating the distances for a categori-
cal dataset; in Fig. 5, the mean or mode is used for calculating distances for a mixed data-
set, in which the mean or mode of these distances is used as the threshold ( T1 ) for Class 
1. Thereafter, this step is repeated until the threshold for each class is obtained. The pseu-
docode for the threshold identification module is shown in Algorithm 1.

6.752.75 1 5cent(D1)

Mean

(2-2.75)2+(1-1)2+(5-5)2+(9-6.75)2+...dist4(data4,cent(D1)) =

(4-2.75)2+(1-1)2+(7-5)2+(6-6.75)2+...dist3(data3,cent(D1)) =

(2-2.75)2+(7-1)2+(5-5)2+(9-6.75)2+...dist2(data2,cent(D1)) =

(3-2.75)2+(5-1)2+(8-5)2+(3-6.75)2+...dist1(data1,cent(D1)) =

Mode Mode Mean

Mean(dist1+dist2+dist3+dist4)Threshold(T1) = ; for numerical dataset

Mode(dist1+dist2+dist3+dist4)Threshold(T1) = ; for categorical dataset
OR

Fig. 5  An example of the class center and distance calculations for Class 1 for the mixed dataset
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Imputation of missing values

Imputation techniques can be straightforward or quite complicated. These techniques 
compute the mean/mode of the non-missing values in the complete data and replace 
the missing values in incomplete data. A single value replaces a missing value for a sin-
gle imputation, such as the mean of the entire dataset. Multiple imputations are widely 
accepted as the standard for dealing with missing data in a variety of research fields. 
Multiple imputations are used to derive unbiased and valid estimates from available 
data.

In outlier data, the AMICC method checked the normal distribution using the STD 
value to determine whether the given measurement deviates from the mean. In statis-
tics, STD is a frequently used yardstick of measurement variability. A low STD value 
indicates that data points are typically very close to the norm, whereas a high STD value 
indicates that data points span a wide range of values.

Figure  6 shows that the process of the imputation of missing values consists of the 
following two steps; the first step is to perform a preliminary imputation of the missing 
value using the mean/mode of each attribute in a class and the second step is to com-
pare the outlier data with STD values. There are two ways to handle outlier data; (1) if 
STD <= 1, check the outlier data by calculating the distance between the missing value 
and the class center; if the distance exceeds a threshold, the missing value is considered 
outlier data and replaced with the median value. Next, (2) if STD > 1, the missing value 
is considered an outlier. The average weight distance is calculated from the weight dis-
tance between the missing value and its nearest neighbors in the complete data. Then, 
the average weight distance is replaced for the missing value. The proposed method for 
imputed values is described in detail below.

Step 1: For Class i, the incomplete dataset ( Di_incomplete ) is composed of a missing data 
sample (Num). Figures  7, 8, and 9 illustrate examples of a Class 1 incomplete dataset 
( D1_incomplete ) for numerical, categorical, and mixed datasets, respectively, where the data j 
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Fig. 6  MVI process
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(2-2.75)2+(3.50-3.50)2+(6.25-6.25)2+(5-6.75)2+...

52 3.50 6.25

6.752.75 3.50 6.25cent(D1)

imputed data j

dist(data j,cent(D1)) =

data j 52 ? ?

(b) Multiple missing values
Fig. 7  Example of imputing a numerical dataset for (a) a single missing value, and (b) multiple missing values

(2-2)2+(1-1)2+(8-5)2+(5-9)2+...

52 1 8

92 1 5cent(D1)

imputed data j

dist(data j,cent(D1)) =

data j 52 ? 8

(a) Single missing value

(2-2)2+(1-1)2+(5-5)2+(5-9)2+...

52 1 5

92 1 5cent(D1)

imputed data j

dist(data j,cent(D1)) =

data j 52 ? ?

(b) Multiple missing values
Fig. 8  Example of imputing a categorical dataset for (a) a single missing value, and (b) multiple missing 
values
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(j = 1 to Num) contain one missing value in Figs. 7a, 8a, and 9a and multiple missing values 

(2-2.75)2+(1-1)2+(8-5)2+(5-6.75)2+...

52 1 8

6.752.75 1 5cent(D1)

imputed data j

dist(data j,cent(D1)) =

data j 52 ? 8

(a) Single missing value

(2-2.75)2+(1-1)2+(5-5)2+(5-6.75)2+...

52 1 5

6.752.75 1 5cent(D1)

imputed data j

dist(data j,cent(D1)) =

data j 52 ? ?

(b) Multiple missing values
Fig. 9  Example of imputing a mixed dataset for (a) a single missing value, and (b) multiple missing values

Threshold

Preliminary imputed dataset Preliminary imputed dataset
and threshold value

Outlier
data

Outlier data
and threshold value

Fig. 10  The imputing outlier data for STD less than one

52 3 6

7.502.50 3 6Median(D1)

imputed data  j

data  j(outlier) 52 ? ?

Fig. 11  Example of imputing outlier data with median

Outlier data

Preliminary imputed dataset Preliminary imputed dataset
and outlier data

Imputed outlier data

Imputed
Outlier data

Fig. 12  Imputing outlier data for STD greater than or equal to one
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in Figs. 7b, 8b, and 9b. In the examples shown in these figures, the missing feature of data 
j, cent(D1 ), and imputed values are in the red text. The distance between cent(D1 ) and the 
imputed data j is calculated and compared with the threshold T1 in the next step.

Step 2: This step consists of two cases, (1) if STD <= 1, from the preliminary imputed 
dataset from Step 1, Fig. 10 illustrates how to impute outlier data for STD values less than 
one, in which the algorithm compares the outlier data to the threshold value of the class. In 
Fig. 11, for example, if the distance is less than T1 , the imputation process for data j is com-
plete; otherwise, each outlier datum is imputed to the median of Class 1.

In the other case (2), if STD > 1, Fig. 12 shows imputed data to the outlier. According to 
equation (3), the average weight distance [33] is arrived at by calculating the weight distance 
between the missing value and its nearest neighbors in the complete data.

where Wi is a weight distance of ith outlier data, yi is the ith instance of outlier data, 
and x1 is the first instance of complete data. From “Missing value imputation” section, 
function dist(yi, xj) computes the distance between the instance yi and xj . This step is 
repeated until the average weight distance for each instance is obtained.

After computing all average weight distances, the outlier datums are imputed to the 
average weight distance. Algorithm 2 is proposed for missing value imputation.

Experiments and results
This section presents the performance evaluation and comparison of the proposed 
AMICC method and statistical and machine learning methods.

Experimental setup

The experimental data included 13 numerical, six categorical, and eight mixed data-
sets collected from the UCI Machine Learning Repository [45]. These datasets have 

(3)Wi = average

[

1

dist(yi, x1)
+

1

dist(yi, x2)
+ ...+

1

dist(yi, xj)

]



Page 12 of 25Phiwhorm et al. Journal of Big Data            (2022) 9:52 

been the subject of several studies on machine learning methods and cover examples 
of datasets of small-, medium-, and large-size [9, 12, 13, 24, 25, 35, 41]. The character-
istics of these datasets are shown in Tables 1, 2, and 3. All the datasets show consider-
able diversity in the number of examples, features, and classes.

In Table  3, the numbers of numerical and categorical attributes are indicated in 
parentheses for each dataset. The dataset is treated as a numerical dataset if the num-
ber of numerical attributes is greater than that of categorical attributes. Otherwise, 
the dataset is treated as a categorical dataset. For example, as the Abalone dataset 
consists of seven numerical and one categorical attribute, this mixed dataset is treated 
as numerical, in which distances are calculations based on the mean. On the other 

Table 1  Basic information on the numerical datasets

Datasets Examples Features Classes

Blood 748 9 2

Ecoli 336 7 8

Glass 214 9 6

Ionosphere 351 34 2

Iris 150 4 3

Liver cancer 583 10 2

Optdigits 5,620 64 10

Pima 768 8 2

Sonar 208 60 2

Wine 178 13 3

Yeast 1,484 8 10

Column 2C 310 6 2

Column 3C 310 6 3

Table 2  Basic information on the categorical datasets

Datasets Examples Features Classes

Balance scale 625 4 3

Breast cancer 699 9 2

Lymphography 148 8 4

Promoters 106 57 2

Spect 267 22 2

Tic tac toe 958 9 2

Table 3  Basic information on the mixed datasets

Datasets Examples Features Classes

Abalone (7,1) 4,172 8 29

Acute (1,5) 120 6 2

Card (6,9) 690 15 2

Contraceptive (2,7) 1,473 9 3

German (7,13) 1,000 20 2

Heart (5,8) 303 13 2

Zoo (1,15) 101 16 2

Srinagarind (6,2) 3,467 8 3



Page 13 of 25Phiwhorm et al. Journal of Big Data            (2022) 9:52 	

hand, as the Acute dataset consists of one numerical and five categorical attributes, 
it is considered as categorical, in which distances are calculations based on the mode.

In Tables  4, 5, and 6 summarize the total number of missing rates of numerical, 
categorical, and mixed dataset types, respectively, where c is the number of complete 
data, and i is the number of incomplete data. In Section “Data pre-processing”, as 
shown in equation (2), the missing rate is a percentage of the total number of missing 
values in the dataset. All variables except the class attribute had their missing values 
simulated. The simulated missing rates of 10%, 20%, 30%, 40%, and 50%.

The missing rate of 10% in this study is the lowest when the number of examples 
and features is considered. For example, consider the Spect dataset, which contains 
267 examples and 22 features, as illustrated in Table  2. According to equation (2), 
there were 587 missing values (incomplete data) when the missing rate was set to 10% 
(10 = 574 × 100 / (267 × 22)).

Table 4  The total number of missing rate on the numerical datasets

∗ c = complete data, i = incomplete data

Datasets Missing rate

10% 20% 30% 40% 50%

c∗ i∗ c i c i c i c i

Blood 6,059 673 5,386 1,346 4,712 2,020 4,039 2,693 3,366 3,366

Ecoli 2,117 235 1,882 470 1,646 706 1,411 941 1,176 1,176

Glass 1,733 193 1,541 385 1,348 578 1,156 770 963 963

Ionosphere 10,741 1,193 9,547 2,387 8,354 3,580 7,160 4,774 5,967 5,967

Iris 540 60 480 120 420 180 360 240 300 300

Liver cancer 5,247 583 4,664 1,166 4,081 1,749 3,498 2,332 2,915 2,915

Optdigits 323,712 35,968 287,744 71,936 251,776 107,904 215,808 143,872 179,840 179,840

Pima 5,530 614 4,915 1,229 4,301 1,843 3,686 2,458 3,072 3,072

Sonar 11,232 1,248 9,984 2,496 8,736 3,744 7,488 4,992 6,240 6,240

Wine 2,083 231 1,851 463 1,620 694 1,388 926 1,157 1,157

Yeast 10,685 1,187 9,498 2,374 8,310 3,562 7,123 4,749 5,936 5,936

Column 2C 1,674 186 1,488 372 1,302 558 1,116 744 930 930

Column 3C 1,674 186 1,488 372 1,302 558 1,116 744 930 930

Table 5  The total number of missing rate on the categorical datasets

∗ c = complete data, i = incomplete data

Datasets Missing rate

10% 20% 30% 40% 50%

c∗ i∗ c i c i c i c i

Balance scale 2,250 250 2,000 500 1,750 750 1,500 1,000 1,250 1,250

Breast cancer 5,662 629 5,033 1,258 4,404 1,887 3,775 2,516 3,146 3,146

Lymphography 1,066 118 947 237 829 355 710 474 592 592

Promoters 5,438 604 4,834 1,208 4,229 1,813 3,625 2,417 3,021 3,021

Spect 5,287 587 4,699 1,175 4,112 1,762 3,524 2,350 2,937 2,937

Tic tac toe 7,760 862 6,898 1,724 6,035 2,587 5,173 3,449 4,311 4,311
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Next, K-fold cross-validation was used to decrease the bias of the test results [46]. This 
is an effective method of improving the evaluation and comparison of learning algorithms 
by dividing the data into K segments. In each iteration, one of the K segments is used to 
examine the model, and the other K-1 segments are combined to form a training set. This 
study used a tenfold cross-validation intelligent classifier system to reduce the bias associ-
ated with random sampling [47, 48].

In the classification phase, after different techniques individually imputed the missing 
values of the incomplete training subset, each training subset was used to train an SVM 
classifier. The testing subset was used to examine the classification accuracy of the SVM 
classifier. The MCAR mechanism for the incomplete dataset was implemented ten times 
for each missing rate, to avoid biased results, as indicated in “Missing value imputation” 
section.

During the MVI process, the proposed AMICC approach was compared to baseline 
approaches consisting of statistical methods (Mean/Mode imputation), machine learn-
ing methods (SVM [42], KNN [27], and RF [43]), and a class center-based MVI approach 
(CCMVI [35]). In statistical MVI methods, the mean/mode are common statistical meas-
urements used to replace all missing values with the mean/mode value. In machine learn-
ing MVI techniques, SVMs are effective in various pattern recognition problems and 
provide superior classification performance due to their modeling flexibility. KNN is the 
most widely used data mining technique and was developed based on missing value impu-
tation. Additionally, the RF significantly improves correlation; it is reasonable for missing 
data ranging from moderate to high. On the other hand, CCMVI is based on determining 
the class center and using the distances between the class center and other observed data to 
define a threshold for later imputation.

In the evaluation phase, the accuracy of the results obtained from the model is defined, as 
described by Eq. (4).

(4)
Accuracy =

∑N
i=1 f (ni)

N
, ni ∈ N

f (n) =

{

1 if classify(n) = nc
0 otherwise

Table 6  The total number of missing rate on the mixed datasets

∗ c = complete data, i = incomplete data

Datasets Missing rate

10% 20% 30% 40% 50%

c∗ i∗ c i c i c i c i

Abalone (7,1) 30,038 3,338 26,701 6,675 23,363 10,013 20,026 13,350 16,688 16,688

Acute (1,5) 648 72 576 144 504 216 432 288 360 360

Card (6,9) 9,315 1,035 8,280 2,070 7,245 3,105 6,210 4,140 5,175 5,175

Contraceptive (2,7) 11,931 1,326 10,606 2,651 9,280 3,977 7,954 5,303 6,629 6,629

German (7,13) 18,000 2,000 16,000 4,000 14,000 6,000 12,000 8,000 10,000 10,000

Heart (5,8) 3,545 394 3,151 788 2,757 1,182 2,363 1,576 1,970 1,970

Zoo (1,15) 1,454 162 1,293 323 1,131 485 970 646 808 808

Srinagarind (6,2) 24,962 2,774 22,189 5,547 19,415 8,321 16,642 11,094 13,868 13,868
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where N is the number of data points in the dataset to be classified (the test set), n ∈ N  , 
and nc are the original class of item n. Function f is equal to 1 if classify(n) = nc ; other-
wise it is 0.

The root-mean-square error (RMSE) is a commonly used metric for comparing the 
actual values to the values imputed by various MVI techniques [12, 22, 41]. This measure 
is solely appropriate for numerical data values [35]. The RMSE of a model prediction for 
an estimated variable of Xmodel is given below.

where Xobs is the observed value and Xmodel is the modeled value. This study used the 
RMSE to measure the error of the imputation method because a relatively high RMSE is 
undesirable. The smaller the error is, the more accurate the model.

In addition to classification accuracy, the hit rate is the number of hits divided by the 
size of the test dataset. The predicted rating is called a hit if its rounded value is equal 
to the actual rating identified in the test dataset. The hit rate can be used to evaluate 
the performance of a model for categorical data [35], as it represents the percentage 
of instances where the model correctly predicts the actual class of an observation, as 
described by Equation (6).

where nhits is the number of hits associated with the actual rating and ntotal is the num-
ber of test samples.

The performance of the proposed predictive model was measured using the accuracy, 
RMSE, and hit rate to determine the efficiency of the proposed model compared to that 
of other existing methods.

Accuracy analysis

In “Experimental setup” section, Tables 7, 8, and 9 summarize the average classification 
performance of numerical, categorical, and mixed dataset types, respectively. The results 
in Table 7 show the average classification of the Mean method for numerical datasets, 
while the results in Table 8 show the average classification of the Mode method for cat-
egorical datasets. The average results indicated that the AMICC method achieved the 
highest accuracy across all dataset types, at least 79.349%, 87.865%, and 77.721%, respec-
tively, and outperformed the other methods significantly ( p < 0.001). Similarly, Table 9 
shows the average results for real data from Srinagarind hospital, revealing that the 
AMICC approach attained the maximum accuracy of at least 81.094%.

Subsequently, the CCMVI method outperformed the SVM, KNN, and RF methods, all 
of which produced comparable average results, whereas the Mean/Mode method per-
formed poorly.

(5)RMSE =

√

∑N
i=1(Xobs − Xmodel)

2

N

(6)Hit rate =
nhits

ntotal
× 100%
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Figures 13, 14, and 15 show the average classification performance of numerical, 
categorical, and mixed datasets, respectively. Each bar represents the variation in 
accuracy findings over five distinct missing rate ranges (10–50%). The high accuracy 

Table 7  Average classification accuracies of the MVI methods for the numerical datasets

Dataset Accuracy (%)

Mean SVM KNN RF CCMVI AMICC

Blood 73.409 73.832 75.508 74.808 76.535 76.194

Ecoli 70.708 70.833 75.310 75.697 77.107 77.480

Glass 60.056 60.766 63.804 64.869 63.664 69.876

Ionosphere 90.729 90.712 92.308 91.351 93.168 91.377

Iris 88.333 88.627 93.787 94.000 95.080 90.756

Liver cancer 57.977 58.255 58.725 58.771 58.777 57.976

Optdigits 53.820 55.247 54.234 67.799 66.024 97.897

Pima 64.886 64.895 65.353 65.069 65.385 79.366

Sonar 53.923 53.990 56.567 55.904 58.346 87.532

Wine 85.022 83.933 86.764 86.404 89.112 98.127

Yeast 36.956 37.208 39.071 39.365 39.058 47.906

Column 2C 67.729 67.677 67.858 67.607 67.839 84.452

Column 3C 48.381 48.219 48.535 48.555 48.626 72.602

Average 65.533 (6) 65.707 (5) 67.525 (4) 68.477 (3) 69.132 (2) 79.349 (1)

Table 8  Average classification accuracies of the MVI methods for the categorical datasets

Dataset Accuracy (%)

Mode SVM KNN RF CCMVI AMICC

Balance scale 60.310 60.963 60.451 63.034 67.222 79.285

Breast cancer 95.285 95.282 95.951 96.026 96.321 98.713

Lymphography 74.662 75.703 76.959 75.594 82.892 87.072

Promoters 78.943 79.698 86.792 84.868 94.189 95.472

Spect 79.371 79.251 79.026 79.401 80.389 86.941

Tic tac toe 74.342 76.929 80.965 80.403 78.854 79.708

Average 77.152 (6) 77.971 (5) 80.024 (3) 79.888 (4) 83.311 (2) 87.865 (1)

Table 9  Average classification accuracies of the MVI methods for the mixed datasets

Dataset Accuracy (%)

Mean/Mode SVM KNN RF CCMVI AMICC

Abalone 17.950 17.968 18.957 19.060 20.074 30.384

Acute 93.900 96.800 98.867 96.933 98.850 99.389

Card 56.814 56.832 56.919 56.748 57.675 91.681

Contraceptive 52.986 53.101 55.458 56.451 59.589 59.249

German 69.958 70.994 70.176 69.988 71.774 83.707

Heart 54.851 54.970 55.492 54.990 56.198 86.359

Zoo 84.475 85.545 86.614 88.139 89.980 89.901

Srinagarind 73.416 73.174 74.002 73.735 74.420 81.094

Average 63.044 (6) 63.673 (5) 64.561 (3) 64.506 (4) 66.070 (2) 77.721 (1)
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results are consistent with a low missing value rate for the Mean/Mode, SVM, KNN, 
and RF methods [9, 18, 35]. On the other hand, the CCMVI and AMICC methods 
produce highly accuracy results consistent with a high missing rate and achieve 
higher accuracy than the other methods.

For AMICC and CCMVI, the results performed well despite high missing values 
because they replaced missing values with class statistics values. Thus, if the missing 
rate was high and the number of mean/mode values used to replace missing values 
increased, the results were highly accurate.

Fig. 13  Classification accuracies for the different MVI methods and the different missing rates in the 
numerical datasets

Fig. 14  Classification accuracies for the different MVI methods and the different missing rates in the 
categorical datasets
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RMSE and hit rate analysis

Tables 10, 11, 12, and 13 illustrate the distribution of the RMSE/hit rate values over all 
the experiments performed on the numerical, categorical, and mixed datasets, respec-
tively. Each result contains the RMSE/hit rate values attained by each imputation 
method.

Tables 10 and 11 show the average RMSEs of all missing rates of the MVI methods 
for the numerical and mixed datasets, respectively. The AMICC method outperformed 
the other methods, with the RMSEs for numerical and mixed datasets under 0.716 and 
0.785, respectively. Following the best approach, the CCMVI method for the numerical 
under 1.016 and for mixed datasets under 0.993. The other MVI methods demonstrated 
similar average RMSE results.

Fig. 15  Classification accuracies for the different MVI methods and the different missing rates in the mixed 
datasets

Table 10  Average RMSEs of the MVI methods for the numerical datasets

Dataset RMSE

Mean SVM KNN RF CCMVI AMICC

Blood 0.515 0.511 0.495 0.502 0.484 0.488

Ecoli 2.231 2.220 1.925 1.855 1.809 1.740

Glass 1.623 1.655 1.524 1.426 1.334 1.126

Ionosphere 0.304 0.304 0.277 0.294 0.261 0.294

Iris 0.338 0.336 0.246 0.243 0.221 0.303

Liver cancer 0.648 0.646 0.642 0.642 0.642 0.648

Optdigits 2.453 2.524 2.591 2.673 2.891 0.705

Pima 0.593 0.592 0.589 0.591 0.588 0.454

Sonar 0.678 0.678 0.659 0.664 0.645 0.353

Wine 0.451 0.464 0.400 0.404 0.364 0.135

Yeast 2.280 2.283 2.212 2.217 2.185 1.961

Column 2C 0.568 0.569 0.567 0.569 0.567 0.386

Column 3C 1.218 1.220 1.216 1.215 1.215 0.716

Average 1.069 (5) 1.077 (6) 1.026 (4) 1.023 (3) 1.016 (2)
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On the other hand, Table 11 illustrates the average result for real data from Srinagarind 
hospital, demonstrating that the AMICC technique outperformed the other methods, 
with RMSEs for mixed datasets under 0.502.

Tables 12 and 13 show the average hit rates, also known as recall or sensitivity, of 
all missing rates of the MVI methods for the categorical and mixed datasets, respec-
tively. The AMICC method outperformed the other methods with the hit rate for 
categorical and mixed datasets at 50.654% and 33.791%, respectively. The CCMVI 

Table 11  Average RMSEs of the MVI methods for the mixed datasets

Dataset RMSE

Mean/Mode SVM KNN RF CCMVI AMICC

Abalone 3.251 3.251 3.223 3.210 3.217 2.898

Acute 0.229 0.144 0.066 0.158 0.081 0.049

Card 0.657 0.657 0.656 0.657 0.651 0.287

Contraceptive 1.084 1.082 1.044 1.029 0.996 1.026

German 0.548 0.539 0.546 0.548 0.531 0.403

Heart 0.672 0.671 0.667 0.671 0.662 0.369

Zoo 1.157 1.065 0.952 0.903 0.815 0.464

Srinagarind 0.518 0.521 0.511 0.513 0.507 0.502

Average 1.015 (5) 0.991 (4) 0.958 (3) 0.961 (3) 0.933 (2) 0.750 (1)

Table 12  Average hit rates of the MVI methods for the categorical datasets

Dataset Hit rate (%)

Mode SVM KNN RF CCMVI AMICC

Balance scale 30.406 30.749 30.179 31.514 33.587 39.360

Breast cancer 33.671 33.645 34.109 34.163 34.272 33.705

Lymphography 47.568 48.095 46.432 46.203 49.608 53.333

Promoters 41.321 41.358 42.660 41.604 46.528 48.365

Spect 79.341 79.094 78.142 79.401 76.360 72.709

Tic tac toe 57.296 58.050 58.177 57.850 57.382 56.451

Average 48.267 (6) 48.499 (3) 48.283 (5) 48.456 (4) 49.623 (2) 50.654 (1)

Table 13  Average hit rates of the MVI methods for the mixed datasets

Dataset Hit rate (%)

Mean/Mode SVM KNN RF CCMVI AMICC

Abalone 0.199 0.192 0.300 0.296 0.387 0.100

Acute 46.250 47.067 48.433 48.317 48.667 48.556

Card 2.339 2.362 1.835 1.733 2.467 41.768

Contraceptive 6.955 6.974 8.045 8.087 9.946 13.732

German 0.180 1.026 0.224 0.000 1.774 22.320

Heart 53.195 53.274 54.125 54.185 54.257 50.253

Zoo 18.871 18.832 18.911 19.683 19.802 19.802

Srinagarind 73.187 72.918 73.612 73.606 73.604 73.797

Average 25.147 (6) 25.331 (5) 25.686 (4) 26.738 (3) 26.363 (2) 33.791 (1)
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method was the next best method for categorical and mixed datasets at 49.623% and 
19.614%, respectively. The Mean/Mode, SVM, KNN, and RF methods demonstrated 
similar average hit rate results.

Additionally, Table 13 shows the average hit rate for real data from Srinagarind hos-
pital, indicating that the AMICC technique outperformed the other methods, with a 
hit rate at 73.797% for mixed datasets.

Figure  16 shows the boxplots of the average RMSEs of the missing values for the 
MVI methods on the numerical and mixed datasets. Each boxplot displays the aver-
age RMSE result for all the missing rates. The red pluses indicate the means, and the 
blue horizontal line within each box shows the median. The AMICC approach had an 
RMSE value less than those of all the other MVI methods on the numerical and mixed 
datasets, with values under 1.

Figure  17 shows the boxplots of the average hit rate of the missing values of the 
MVI methods on the categorical and mixed datasets. Each boxplot displays the aver-
age hit rate result for all missing rates. The AMICC approach had a hit rate higher 
than those of all the other MVI methods. In addition, the AMICC approach had a 
median value that marked the midpoint of the data in the interquartile range, show-
ing that a hit rate dataset was normally distributed.

Execution time analysis

When choosing a suitable algorithm for missing value imputation, it is necessary to 
consider not only algorithm accuracy but also algorithm execution time.

Table 14 shows the overall average execution time of the MVI methods for the data-
sets. The average execution time results show that the Mean/Mode method required 
the least execution time at 9.612 s. The KNN method had the second-fastest execu-
tion time of 10.905 s, increasing approximately 1.293 s over the Mean/Mode method. 
The KNN method’s execution time was much faster than that of the other machine 
learning techniques because the KNN algorithm is a lazy learning method that does 
not require a model learning process.

(a) (b)
Fig. 16  Boxplots of the average RMSE values for the MVI methods on (a) the numerical, and (b) the mixed 
datasets
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The AMICC method was the third-fastest at 16.392  s and increased from Mean/
Mode about 6.780 s; it took more execution time because it needed to calculate the 
class center distance of the imputed missing data and replace the missing values [27, 
35].

Discussion
The experimental results show that the proposed method with multiple imputations 
using the class center of the average outperforms the other MVI methods. In Table 15, 
the AMICC approach comprises three important algorithms: the first algorithm (1), 
which focuses on check attribute type; the second algorithm (2), which defines the class 

(a) (b)
Fig. 17  Boxplots of the average hit rate values for the MVI methods on (a) the categorical, and (b) the mixed 
datasets

Table 14  Average execution time of the MVI methods

Dataset type execution time (second)

Mean/Mode SVM KNN RF CCMVI AMICC

Numerical dataset 3.520 33.271 4.123 32.296 18.299 8.319

Categorical dataset 23.212 45.004 26.394 35.875 37.627 34.944

Mixed dataset 2.105 10.144 2.198 11.262 10.012 5.912

Average 9.612 (1) 29.473 (6) 10.905 (2) 26.478 (5) 21.979 (4) 16.392 (3)

Table 15  Average classification accuracies for comparison algorithms of the proposed method

Algorithms Dataset types

Numerical Categorical Mixed

Baseline 64.821 67.441 61.562

+ Checking attribute type (1) 65.660 75.436 61.664

+ Defining class center (2) 69.220 80.701 64.634

(1) + (2) 69.246 81.597 64.901

(1) + (2) + Replacing outlier with STD 70.857 82.161 72.041

(1) + (2) + Replacing outlier with weight distance 
and median values (3)

79.349 87.865 77.721
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center; and finally, the third algorithm (3), which replaces outlier with weight distance 
and median values. These three algorithms are described in the following sections.

Table  15 summarizes the average classification accuracies for the comparison algo-
rithms of the proposed method. AMICC verified the type of attribute before replac-
ing the missing values. From Section “Imputation of missing values”, lines 3 to 7 of the 
pseudo-code in Algorithm 2 for the imputation of missing values checks the attribute 
type and replaces the missing values with the mean/mode value. For example, when 
checking attribute type was added to the baseline, the accuracy improved to 65.660%, 
75.436%, and 61.664% for the numerical, categorical, and mixed dataset types, respec-
tively. The performance was enhanced because if missing data was substituted with an 
inappropriate value for the attribute type, the imputed value became noise. In other 
words, if the pseudo-code for checking the attribute type was removed, the result will be 
as described in row 1 of Table 15 for the algorithm Baseline.

In addition, the AMICC method outperformed the others because it defined a class 
center algorithm. The class center was calculated using the mean of the data samples 
within a particular class, which is similar to the cluster center or centroid concept, which 
can represent the content of a class. Section “Threshold identification” defines a class 
center algorithm for lines 8 to 12 of the pseudo-code in Algorithm 1. For example, when 
a defined class center algorithm was included, the accuracy rose to 69.220%, 80.701%, 
and 64.634% for the numerical, categorical, and mixed datasets, respectively. Addition-
ally, the efficiency was boosted because if missing data were replaced with an outer class 
mean value that is not suitable for the class center, the imputed value became inaccurate.

Furthermore, the AMICC method specified a threshold value for outlier detection and 
replaced it with weight distance and median value. Section “Threshold identification”, 
lines 18 to 21 of the pseudo-code in Algorithm 1, illustrates the threshold identification 
for a defined threshold value. The imputation of missing value occurred in Algorithm 2, 
lines 15 to 18 of the pseudo-code. For example, when imputed missing values were 
combined with weight distance and median values, the accuracy enhances to 79.349%, 
87.865%, and 77.721% for the numerical, categorical, and mixed datasets respectively. By 
comparison, the proposed method outperformed the CCMVI method, which relied on 
threshold values and replaced outliers by subtracting and adding STD values. Other MVI 
techniques, such as the SVM, KNN, RF, and Mean/Mode, did not provide a threshold or 
check for outlier data; consequently, if missing data were replaced and then became out-
lier data, the imputed value became noise.

Conclusions
Big data has been applied to provide effective solutions in several fields. However, much 
of the collected big data in various domains contain missing values. In this study, we 
proposed an adaptive multiple imputations of missing values using the class center 
(AMICC) approach to produce reasonably promising imputation results. The AMICC 
method is composed of three modules. The first module focuses on data preprocessing; 
the incomplete dataset must be normalized on the same scale, then split the incomplete 
and complete data. The second module determines the threshold by calculating the dis-
tance between data samples and their associated class centers. Finally, the third module 
discusses missing value imputation.
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The experiments were conducted using numerical, categorical, and mixed datasets. The 
AMICC method was compared with two statistical techniques (i.e., the CCMVI and Mean/
Mode imputation methods) and three well-known machine learning methods (i.e., the 
SVM, RF, and KNN algorithms). The results showed that the proposed AMICC method 
outperformed other techniques on all the datasets by achieving the highest accuracy, the 
lowest RMSE, and the highest hit rate among all six experimented methods. The perfor-
mance of the AMICC method was superior because it checked the type of attributes in the 
dataset and replaced values according to the attribute type. For numerical and categorical 
variables, the AMICC method replaced missing values with class’s mean and mode values, 
respectively. Additionally, it replaced outlier data with weight distance and median values.

As part of our future work, we intend to investigate the following. We wonder whether 
different distance functions can be used for defining the threshold values and compared to 
determine the optimal function. Further, in the case of outlier threshold values, an inves-
tigation into the method selection, including the median, STD, and mean methods, may 
result in increased accuracy and faster computation.
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