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Abstract

Between 2013 and 2015 Aguayo et al. developed an operator theory on the space

c0 of null sequences in the complex Levi-Civita field C by defining an inner product

on c0 that induces the supremum norm on c0 and then studying compact and self-

adjoint operators on c0, thus presenting a striking analogy between c0 over C and

the Hilbert space `2 over C. In this thesis, we try to obtain these results in the most

general case possible by considering a base field with a Krull valuation taking values

in an arbitrary commutative group. This leads to the concept of X-normed spaces,

which are spaces with norms taking values in a totally ordered set X not necessarily

embedded in R. Two goals are considered in the thesis: (1) to present and contribute

to a theory of X-normed spaces, and (2) to develop an operator theory on c0 over

a field with a Krull valuation of arbitrary rank. In order to meet the goal (1), a

systematic study of valued fields, G-modules and X-normed spaces is conducted in

order to satisfy the generality of the settings required. For the goal (2), we identify

the major differences between normed spaces over fields of rank 1 and X-normed

spaces over fields of higher rank; and we try to find the right conditions for which

the techniques employed in the rank-1 case can be used in the higher rank case. For

(1) the author develops a new tool to work with transfinite induction simplifying

the techniques employed in X-normed spaces, thus accomplishing a Generalized

Baire Category Theorem that allows the proof of an Open Mapping theorem for

X-normed spaces. Regarding (2), we show that an operator can be identified as
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compact with adjoint by studying the behavior of the image of any base of c0.

Although characterizations are obtained for some linear operators on c0, it is still

unknown whether the spectral theorem holds for compact self-adjoint operators in

the non-Archimedean case.
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Introduction

In non-Archimedean Analysis, i.e. when we consider a non-Archimedean valued field

as our base field to define normed spaces, we obtain new results that do not hold

in classical Functional Analysis (i.e. when our base field is R or C), however we

lose some other results, thus producing a whole new theory that sometimes demands

a totally new intuition. In this new setting, the results that are possible to obtain

depend greatly on the non-Archimedean valued field we choose to work with and also

depend on the structure of the normed space that we consider. For example, let’s

consider the concept of orthomodularity. Let K be a field with an involution a 7→ a∗.

A vector space E over K with a Hermitian form (·, ·) : E×E → K (linear in the first

variable and (x, y) = (y, x)∗ for all x, y ∈ E) is called orthomodular if the projection

theorem holds: every subspace H of E satisfies: H = H⊥⊥ ⇒ E = H ⊕ H⊥.

Notice that Hilbert spaces can be characterized in terms of orthomodularity. In

fact, if E is an orthomodular space over K admitting an orthonormal sequence,

then K = R or K = C and E is linearly homeomorphic to a Hilbert space [42].

In general, if a non-Archimedean valued field K has finite rank, then there is no

infinite-dimensional Banach space over K that is orthomodular [30, 4.4.6]. However,

if the non-Archimedean valued field K has infinite rank, then we can find an infinite-

dimensional Banach space E over K that is orthomodular (where the norm satisfies

||x||2 = (x, x) for all x ∈ E) [30, 4.4.9].

In the first chapter of the thesis, a deep analysis of the metric and algebraic
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structures of non-Archimedean valued fields is presented, providing among other

things, descriptions of the most commonly used non-Archimedean valued fields. Ad-

ditionally, the relationship between the order structures of ordered fields and their

structure as valued fields is explained. The culmination of this introductory chapter

is the classification of all the valued fields in a meaningful manner that is beneficial

to non-experts and experts in the field alike.

In the Chapters 2–4 of this thesis, we systematically study several aspects of non-

Archimedean Functional Analysis in order to determine the conditions for which we

can conceive compact and adjoint operators in a Banach space equipped with a

Schauder basis in the most general settings possible. Since every Banach space (over

a non-Archimedean valued field K) with a Schauder basis is linearly homeomorphic

to the space c0 of null sequences in K ([32, 2.3.9]), we will focus on the study of

operators defined on c0. As we will see, the properties of c0 vary depending on

whether the valuation takes values in R or in an arbitrary commutative ordered

group; those two cases will be referred to as the rank-1 case and the higher-rank

case, respectively.

In order to understand the impact of the choice of the valued field we will begin

in Chapter 1 with an introduction to ultrametric spaces, where we will study the

metric and topological properties of a non-Archimedean valued field. Then, a variety

of non-Archimedean valued fields will be presented and their properties collected in

an extensive catalog (1.9). We will review the basic structures of valued fields and will

develop the tools that will allow us to fully classify them in 6 distinctive categories

(1.10). Among other results (see List of contributions), we will prove that the order

topology of any non-Archimedean ordered field coincides with the topology induced

by their ‘natural’ valuation (1.8.9). Note that most of Chapter 1 (with the exception

of a couple of new results) is a selection of results which have recently been published

in a refereed paper [8] in Contemporary Mathematics of the American Mathematical
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Society.

In Chapter 2 we will study Banach spaces over non-Archimedean valued fields of

rank 1 and consider their similarities and differences with Banach spaces in classical

Functional Analysis. We will also review linear operators defined on normed spaces

and compare the different norms that can be defined for continuous linear operators

in the non-Archimedean context. Then, we review the concepts of form-orthogonality

and its more general alternative: norm-orthogonality. These concepts will be of great

importance in the subsequent chapters. We will finish the chapter with the concept

that generalizes the concept of separability on normed spaces: being of countable

type. This concept is the key to characterize those Banach spaces that have a

Schauder basis.

Further, in Chapter 3 we will define norms on a vector space E over K that take

values in an ordered set X rather than in R. In this new context, the valuations can

take values in an arbitrary commutative ordered groupG which acts onX turning the

latter into a G-module. With this new object, we will be able to conceive equalities

of the form ||λx|| = |λ|||x|| for λ ∈ K, |λ| ∈ G, x ∈ E and ||x|| ∈ X. In this general

setting we will study continuous linear operators, new Banach spaces and consider

the necessary conditions to have a Schauder basis in every closed subspace of c0.

Here the author develops new results that complement the study of this abstract

area.

In Chapter 4 we will develop an operator theory on the space c0 over a fieldK with

valuation of arbitrary rank. For this we will use an inner product on c0 which will

induce the supremum norm of c0 and therefore we will be able to work with both

form-orthogonality and norm-orthogonality to characterize those closed subspaces

that can be complemented. Additionally, we will study compact operators on c0
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as well as those operators that admit an adjoint. In particular, we will discuss the

difficulties to conceive compact operators on c0 when the valued field has higher rank

and the author will offer an alternative definition trying to capture what is expected

from a compact operator. We will present the work done to generalize several results

regarding operators in the rank-1 case to the higher rank case exhibiting partial

results and some surprising ones.

The contributions made in Chapters 2, 3 and 4 are going to be prepared as a

paper for submission after the distribution of this thesis.

Finally, in Chapter 5 we will briefly discuss future research projects that could

deepen the knowledge reached and address some of the open problems that were

identified in this thesis.



List of contributions

Throughout this thesis several topics will be discussed and a large number of results

will be presented. In order to differentiate between known results and contributions

made by the author of this thesis, the labels Lemma, Theorem and Corollary

will be used to refer to the former kind of results, while the label Proposition will

be reserved for the latter.

In the list below, a contribution in the form of a result will be classified as novelty

(when the result has not been found in the bibliography nor in the literature), original

proof (when the result is known but the presented proof uses an original approach)

or extension (when only a particular case of the same result has been proved before

without reaching the scope of the presented result). Moreover, throughout the thesis

the author’s most significant contributions will the labeled by FProposition and

are listed below using the symbol F.

Not all the contributions of this thesis are in the form of a proposi-

tion. While most of the results in Chapters 1 and 2 are known, the author wishes to

emphasize that a significant amount of time and effort was invested in researching

existing knowledge about non-Archimedean valued fields and organizing it in the way

presented in Chapter 1, which culminated in a classification of all non-Archimedean

valued fields that is useful to both the experts and non-experts in non-Archimedean

Analysis. No such presentation and classification have been done before in the liter-

ature. The work presented in Chapter 1 is a selection of results that have recently
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been published in a refereed paper [8] which received a very positive report from an

expert in the field:

“A few good examples are proposed. For example, conditions to have

a complete ultrametric field that is or is not spherically complete, or to

obtain the completion, an immediate extension.”

“Generalizations are defined in ultrametric spaces which are not so much

known and can be very useful when we study algebras of continuous

functions defined in such an ultrametric space, with values in a complete

ultrametric field. This way, the paper is a very good presentation of

the non-Archimedean topologies that can be very useful to students or

researchers beginning working in ultrametric analysis. Moreover, the

presentation of generalizations of ultrametric values of rank superior to

one are far from well known and can be useful to many specialists.”

The contributions of this thesis in the form of a result are listed as follows:

Contributions in Chapter 1: Non-Archimedean valued fields.

• 1.6.5 on p.31: novelty.

• 1.7.3 on p.34: extension.

• 1.7.5 on p.35: extension. The implication (a)⇒(c) is only found for K = R

using a different and much longer proof in [40, p. 218].

• 1.7.7 on p.35: extension.

• 1.7.8 on p.36: extension.

• 1.8.7 on p.39: extension.

• 1.8.8 on p.40: extension.
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F 1.8.9 on p.40: extension.

Contributions in Chapter 2: Banach Spaces over fields with rank 1

valuations.

• 2.1.6 on p.50: extension. The part (b) is new.

• 2.2.7 on p.54: extension. The parts (b) and (c) are new.

F 2.4.15 on p.65: novelty. It answers a posed problem [32, p. 33].

F 2.4.16 on p.66: novelty.

Contributions in Chapter 3: Normed spaces over fields with valuations

of higher rank.

F 3.1.6 on p.71: novelty.

• 3.4.5 on p.81: extension. Parts (f)-(k) are added to [30, 1.1.4].

• 3.4.17 on p.85: extension. Part (c) is added to [30, 2.2.2].

F 3.4.19 on p.87: original proof.

F 3.4.20 on p.87: original proof. The statement corrects [30, 2.2.5].

F 3.4.22 on p.89: novelty.

• 3.4.23 on p.90: original proof. Part (c) is added to [30, 1.4.1].

• 3.4.28 on p.91: novelty.

• 3.4.29 on p.92: novelty.

• 3.4.31 on p.92: extension. It generalizes the results 2.2.4, 2.2.5 and 2.2.7 to

the higher-rank case.

• 3.4.38 on p.94: original proof.
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F 3.4.39 on p.95: novelty. It generalizes the Baire Category theorem.

F 3.4.40 on p.96: extension. It generalizes part of the Open Mapping theorem

to the higher-rank case.

• 3.4.41 on p.96: novelty.

Contributions in Chapter 4: Operator theory on c0 over fields with

valuation of arbitrary rank.

• 4.1.8 on p.103: extension. It generalizes [29, 7.1] to the higher-rank case.

• 4.2.7 on p.105: extension. It generalizes the result to the higher-rank case. [1,

Proposition 3] to the higher-rank case.

• 4.4.6 on p.114: New definition for compact operators on c0 over a Krull valued

field of higher rank.

• 4.4.7 on p.114: extension. It generalizes [45, 4.40 ε ⇒ α] to the higher-rank

case.

F 4.4.9 on p.115: extension.

• 4.4.10 on p.118: original proof and extension. It generalizes [14, 1.3] to the

higher-rank case.

F 4.4.13 on p.120: original proof and extension. It generalizes [14, 2.7] to the

higher-rank case.

• 4.5.5 on p.128: extension.

• 4.5.6 on p.129: extension.

• 4.5.7 on p.130: extension.

F 4.5.9 on p.131: extension.
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Chapter 1

Non-Archimedean valued fields

In this thesis we will be discussing different aspects of Functional Analysis when

considering scalars in a non-Archimedean valued field. Before we start the develop-

ment of the main theory we will briefly discuss this kind of fields to help the reader

realize that there are big differences with the classical Functional Analysis rooted

in the choice of the basis field. The most remarkable features of this chapter are

the catalog of fields 1.9 and the classification of fields 1.10. For another type of

classification see 1.9.1.

Most of the proofs of the results presented in this chapter will be omitted in order

to avoid the use of a significant amount of space in topics that are out of the scope

of this thesis. For a broader scope and context of these results as well as a more

detailed discussion about them see [8]. Nonetheless some of the results obtained by

the author will be presented here with a proof, including 1.7.7 and 1.7.8 which were

obtained after the publication of [8].

1.1 Ultrametric Spaces

A valued field is a mathematical entity with a topological and an algebraic structures

that will be defined and studied in Section 1.2. In this section we will discuss the

11
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notion of an ultrametric space which is a metric space used to study the metric and

topological properties of a non-Archimedean valued field without worrying about its

algebraic structure.

Let’s begin reviewing the concept of ultrametric and the consequences of the

strong triangle inequality.

1.1.1 Definition. A metric on a set X is a function d : X×X → R satisfying the

following properties for all x, y, z ∈ X:

(a) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y,

(b) d(x, y) = d(y, x),

(c) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

The pair (X, d) is called a metric space.

1.1.2 Notations. Let (X, d) be a metric space, a ∈ X and r > 0. The sets

B(a, r) := {x ∈ X : d(x, a) < r} and B[a, r] := {x ∈ X : d(x, a) ≤ r} are called

the open and closed balls of center a and radius r, respectively. The family

of open balls forms a basis of neighbourhoods for a uniquely determined Hausdorff

topology on X. This topology is called the topology induced by d on X. With

respect to this topology the open balls are open sets and the closed balls are closed

sets in X.

The diameter of a non-empty set Y ⊂ X is diam(Y) := sup{d(x, y) : x, y ∈ Y }

and the distance between two non-empty sets Y, Z ⊂ X is dist(Y,Z) := inf{d(y, z) :

y ∈ Y, z ∈ Z}. The set of values of a metric d : X×X → R is denoted by d(X×X)

and defined as {d(x, y) : x, y ∈ X}.

1.1.3 Definition. A metric d : X × X → R is called an ultrametric when it

satisfies the so-called strong triangle inequality d(x, y) ≤ max{d(x, z), d(z, y)}

for all x, y, z ∈ X. In this case, the pair (X, d) is called an ultrametric space.
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1.1.4 Examples. (a) Let X be a set and d : X ×X → R be the discrete metric,

i.e. d(x, y) = 1 if x 6= y and d(x, x) = 0 for all x, y ∈ X. Then (X, d) is an

ultrametric space. In this case, for x ∈ X, we have that B(x, 1) = B(x, r) for

all 0 < r < 1. Also, for each y in B(x, r), we have that B(x, r) = B(y, r).

As we will see, it is not uncommon to find a ball of an ultrametric space with

infinitely many radii, and where each point of a ball is a center of the ball.

(b) Let p be a fixed prime. The p-adic metric on Z is defined by d(n,m) = 0 if

n = m, and for n 6= m, d(n,m) = p−r where r is the largest non-negative

integer such that pr divides m− n. The pair (Z, d) is an ultrametric space.

(c) Let R[x] be the ring of all polynomials with real coefficients. For each nonzero

polynomial p(x) = a0 + a1x + · · · + anx
n in R[x], put λ(p) = min{i : ai 6= 0}.

Thus the map d : R[x]× R[x]→ R defined by

d(p, q) :=


e−λ(p−q) , if p 6= q

0 , if p = q

is an ultrametric on R[x].

(d) Let N be the set of positive integers and d : N× N→ R be the map defined by

d(m,n) :=


max{1 + 1

m
, 1 + 1

n
} , if m 6= n

0 , if m = n.

Then (N, d) is an ultrametric space.

(e) Any subset of a non-Archimedean valued field (K, | |) with the map (x, y) 7→

|x− y| constitutes an ultrametric space (non-Archimedean valued fields will be

presented later in this chapter). Notice that with this example we have listed
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all ultrametric spaces, since W. Schikhof proved in [36] that any ultrametric

space can isometrically be embedded into a non-Archimedean valued field.

Let (X, d) be an ultrametric space. If x, y, z ∈ X are such that d(x, z) 6= d(z, y),

then d(x, y) = max{d(x, z), d(z, y)}, i.e. every triangle with vertices in X is isosceles.

This condition is called the Isosceles triangle principle.

1.1.5 Theorem ([32, p. 3], [45, 2.A]). Let (X, d) be a metric space. The metric d

is an ultrametric if and only if it satisfies the Isosceles triangle principle.

The following theorem collects the most remarkable results of an ultrametric

space, all direct consequences of the strong triangle inequality.

1.1.6 Theorem ([8, 1.6]). Let (X, d) be an ultrametric space. Then the following

properties hold:

(a) Each point of a ball is a center of the ball.

(b) Each ball in X is closed and open in the topology induced by the ultrametric.

(c) Each ball has an empty boundary.

(d) Two balls are either disjoint, or one is contained in the other.

(e) Let a ∈ Y ⊂ X. Then diam(Y ) = sup{d(x, a) : x ∈ Y }.

(f) The radii of a ball B form the set {r ∈ R : r1 ≤ r ≤ r2}, where r1 = diam(B),

r2 = dist(B,X\B) (r2 =∞ if B = X). It may happen that r1 < r2, so that a

ball may have infinitely many radii.

(g) If B1, B2 are disjoint balls, then dist(B1, B2) = d(x, y) for all x ∈ B1, y ∈ B2.

(h) Let U 6= ∅ be an open subset of X. Given a sequence (rn)n in (0,∞), strictly

decreasing and convergent to 0, there exists a partition of U formed by balls of

the form B[a, rn], with a ∈ U and n ∈ N.
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(i) Let ε ∈ R, ε > 0. For x, y ∈ X the relation d(x, y) < ε is an equivalence

relation and induces a partition of X into open balls of radius ε. Analogously

for d(x, y) ≤ ε and closed balls.

(j) Let Y ⊂ X, B a ball in X, B ∩ Y 6= ∅. Then, B ∩ Y is a ball in Y.

(k) Let (xn)n be a sequence in X converging to x ∈ X, then for each a ∈ X \ {x},

there exists N ∈ N such that d(xn, a) = d(x, a) for all n ≥ N .

(l) There are not new values of an ultrametric after completion, i.e. if (X∧, d∧) is

the completion of an ultrametric space (X, d), then d(X ×X) = d∧(X∧×X∧).

(m) A sequence (xn)n in X is Cauchy if and only if limn→∞ d(xn, xn+1) = 0.

Recall that a metric space is said to be Cauchy complete if every Cauchy sequence

is convergent, or equivalently, if each nested sequence of closed balls whose radius

approaches 0, has a non-empty intersection. This motivates the following:

1.1.7 Definition. An ultrametric space is called spherically complete if each

nested sequence of balls has a non-empty intersection.

1.1.8 Remark. The concept of spherical completeness plays a key role as a necessary

and sufficient condition for the validity of the Hahn-Banach theorem in the non-

Archimedean context ([45, 4.10, 4.15]). Spherical completeness also has implications

related to fixed points ([34, 2.3]) and best approximations ([38, 21.1, 21.2]).

1.1.9 Theorem ([45, 2.3]). Let (X, d) be an ultrametric space. The following state-

ments are equivalent:

(a) (X, d) is spherically complete.

(b) For any collection (Bi)i∈I of balls in X such that Bi ∩Bj 6= ∅ for any i, j ∈ I,

we then have ⋂i∈I Bi 6= ∅.
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(c) Every sequence of balls B[a1, ε1] ⊃ B[a2, ε2] ⊃ · · · for which ε1 > ε2 > · · · has

a nonempty intersection.

It is clear that a spherically complete ultrametric space is Cauchy complete, but

the converse is not always true. For instance, the space of the example 1.1.4(d) is a

complete ultrametric space that is not spherically complete.

1.2 Non-Archimedean valued fields

In Section 1.1 we have presented the most important metric and topological prop-

erties of an ultrametric space, which are satisfied by any non-Archimedean valued

field. In the rest of this chapter we will analyze these properties together with the

algebraic structure of non-Archimedean valued fields and will present the most com-

monly used families of non-Archimedean valued fields. We will see that unlike the

classical case, there are several Cauchy complete non-Archimedean fields, some of

which are algebraically closed and others real closed. Similarly to Section 1.1, most

of the proofs of the results in the reminding sections are omitted with the exception

of some of the results obtained by the author.

1.2.1 Definition. Let K be a field. A valuation on K is a map | · | : K → R

satisfying the following axioms for all x, y ∈ K:

(a) |x| ≥ 0, and |x| = 0 if and only if x = 0,

(b) |xy| = |x||y|,

(c) |x+ y| ≤ |x|+ |y|.

The pair (K, | · |) is called a valued field.

It is not hard to see that |1K | = 1, | − x| = |x| and |x−1| = |x|−1 for x 6= 0. In

the rest of the document we will denote the set K \ {0} by K∗.
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1.2.2 Definition. A valuation | · | on K is called non-Archimedean if it satisfies

the strong triangle inequality |x+ y| ≤ max{|x|, |y|} for all x, y ∈ K. Otherwise

it is called Archimedean.

1.2.3 Theorem. [[45, 1.1], [38, lemma 8.2] ]

Let (K, | · |) be a valued field. The following conditions are equivalent:

(a) | · | is non-Archimedean,

(b) If a, b ∈ K and |a| < |b|, then |b− a| = |b| (Isosceles triangle principle),

(c) the set {|n1K | : n ∈ N} is bounded,

(d) |n1K | ≤ 1 for every n ∈ N,

(e) |2 · 1K | ≤ 1 .

1.2.4 Examples. (a) The usual absolute values in R and C are valuations, and

since the set {|n| : n ∈ N} is unbounded, they are Archimedean.

(b) Let K be a field. The map defined by |x| = 1 for x 6= 0 and |0| = 0 is called

trivial valuation and is a non-Archimedean valuation.

(c) If K is a finite field, then the trivial valuation is the only valuation on K. In

fact, if there is x ∈ K∗ with |x| 6= 1, then the set {|xn| : n ∈ Z} is infinite.

(d) Suppose the characteristic of K is finite, i.e. there is n ∈ N such that n1K =

0. This is denoted by char(K) 6= 0. Then any valuation on K is non-

Archimedean. Indeed, in this case the prime subfield of K (the subfield of

K generated by 1K) is finite. Thus the set {|n1k| : n ∈ N} is bounded.

(e) Let p be a prime number. The p-adic valuation | |p on Q is defined by

|0|p = 0 and ∣∣∣∣∣pvmn
∣∣∣∣∣ = 1

ev
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where e is the basis of the natural logarithms, v ∈ Z, and n,m ∈ Z\{0} are not

divisible by p. Since the set {|n1|p : n ∈ Z} = {e−v : v ∈ N} ∪ {0} is bounded

in R, the p-adic valuation on Q is non-Archimedean.

(f) Let p be an irreducible polynomial in K[x], where K is any field. The p-adic

valuation | |p on the rational function field K(x) (the quotient field of the ring

of polynomials K[x]) is defined by |0|p = 0 and

∣∣∣∣∣pv fg
∣∣∣∣∣ = 1

ev

where v ∈ Z, and f, g ∈ K[x] \ {0} are not divisible by p. Since the set

{|n1|p : n ∈ Z} = {0, 1}, the p-adic valuation on K(x) is non-Archimedean.

For a description of all valuations on K(x) see [35, 3.1.K] and [4].

A valuation | · | on a field K defines the metric d(x, y) := |x− y| for x, y ∈ K. In

particular, any valuation on K induces a metrizable topology on K. If the valuation

| · | is non-Archimedean, then the induced metric d is an ultrametric.

1.3 Completion of valued fields

In this section we will give a brief construction of our first nontrivial examples of

Cauchy complete, non-Archimedean valued fields. Note that in a field K with the

trivial valuation, every Cauchy sequence is eventually constant, and thus K is com-

plete. We are not interested in this case. Notice that Q is not Cauchy complete with

respect to the usual absolute value | · |0 nor with respect to any p-adic valuation since

Q is not a Baire space. Similarly the field of rational functions K(x) is not Cauchy

complete with respect to the x-adic valuation (this is not trivial and it is proved in

section 2.5 of [8]).
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1.3.1 Theorem ([16, 1.1.4]). Let (K, | · |) be a valued field. There exist a Cauchy

complete valued field (K̂, |̂ · |) and an embedding i : K → K̂, such that |x| = |̂i(x)|

for all x ∈ K, and the image i(K) is dense in K̂. If (K̂ ′, |̂ · |
′
, i′) is another such

trio, then there exists a unique isomorphism ϕ : K̂ → K̂ ′ satisfying |̂ϕ(x)|
′
= |̂x| for

all x ∈ K̂ and making the following diagram commutative:

K̂
ϕ // K̂ ′

K
i

__

i′

>>

1.3.2 Definition. A pair (K̂, |̂ · |) as in Theorem 1.3.1 is called a completion of

the valued field (K, | · |).

1.3.3 Remark. Let (K, | · |) be a valued field and (K̂, |̂ · |) its completion with em-

bedding i : K → K̂ such that |x| = |̂i(x)| for all x ∈ K. Then

{|n1K | : n ∈ N} = { ̂|i(n1K)| : n ∈ N} = {|̂n1
K̂
| : n ∈ N}.

Therefore the completion of an Archimedean valued field is an Archimedean valued

field and the completion of a non-Archimedean valued field is a non-Archimedean

valued field. In the latter case, we have that |K| := {|x| : x ∈ K} = {|̂x| : x ∈ K̂} =:

|̂K̂|, by Theorem 1.1.6(l).

It is well-known that every Archimedean valued field (K, | · |) is Cauchy complete

if and only if there exist λ ∈ (0, 1] and a field monomorphism σ : K → C, such

that |x| = (|σ(x)|0)λ for all x ∈ K, satisfying either σ(K) = R or σ(K) = C where

| · |0 denotes the usual absolute value on C (see [8, 2.15], [41, 15.2.2]). As we will

see, in the non-Archimedean case there are different families of Cauchy complete

non-Archimedean valued fields.
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Let (K, | · |) be a non-Archimedean valued field. Then K∗ = {λ ∈ K : λ 6= 0} is a

multiplicative group and so is the value group of (K, | · |) defined by |K∗| = {|λ| :

λ ∈ K∗}. The value group can either be dense in (0,∞) or discrete, where, for the

second possibility, if the valuation is not trivial, then the group |K∗| is cyclic with

generator ρ := max{r ∈ |K∗| : r < 1} ([41, B.5.2]). Any element π ∈ K for which

|π| = ρ is called a uniformizer for | · |. The ‘closed’ unit disk in K, B[0, 1], is a ring

and B(0, 1), the ‘open’ unit disk in K, is a maximal ideal of B[0, 1] ([45, p. 4]).

1.3.4 Definition. Let (K, | · |) be a non-Archimedean valued field. The quotient field

B[0, 1]/B(0, 1) is called the residue class field of K. Moreover, if |K∗| is discrete

in (0,∞), then the valuation | · | is said to be discrete and if |K∗| is dense in (0,∞),

then the valuation is said to be dense.

1.3.5 Examples. Fields with discrete valuation.

(a) Consider (Q, | · |p) for a prime number p. In this case, |Q∗| = {e−n : n ∈ Z} =

〈e−1〉 = 〈|p|p〉 and therefore p is a uniformizer for | · |p.

B[0, 1] =
{
m

n
: m,n ∈ Z, n is not divisible by p

}
and B(0, 1) =

{
pm

n
: m,n ∈ Z, n is not divisible by p

}
.

Notice that B[0, 1] = (Z \ (p))−1Z, i.e. it is the localization of the ring Z

at the prime ideal (p) = pZ, and B(0, 1) = pB[0, 1] is the maximal ideal

of B[0, 1]. Using the first isomorphism theorem for rings, we conclude that

B[0, 1]/B(0, 1) ' Z/pZ. In other words, the residue class field of (Q, | · |p) is

isomorphic to Fp (the only field with p elements). For a simpler but longer

proof see [35, p. 62].

(b) Consider (K(x), | · |p) for an irreducible polynomial p ∈ K[x], where K is a
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field. In this case, p is a uniformizer for | · |p,

B[0, 1] =
{
f

g
: f, g ∈ K[x], g is not divisible by p

}

and B(0, 1) =
{
pf

g
: f, g ∈ K[x], g is not divisible by p

}
.

Analogously to the previous example, B[0, 1] is the localization of the ring K[x]

at the prime ideal (p), and B(0, 1) = pB[0, 1] is the maximal ideal of B[0, 1].

Thus the residue class field of (K(x), | · |p) is isomorphic to K[x]/(p). In

particular, if p(x) = x, then the residue class field of (K(x), | · |p) is isomorphic

to K. For another proof see [35, p. 88].

1.3.6 Theorem ([16, 1.3.4]). Let (K, | · |) be a non-Archimedean valued field and

(K̂, |̂ · |) its completion. If k and k̂ are their respective residue class fields, then k ' k̂

and |K∗| = ̂|K̂∗|.
The following result is going to bring us an explicit description of the completions

of (Q, | · |p) and (K(x), | · |p).

1.3.7 Theorem ([16, 1.3.5]). Let | · | be a discrete valuation on the field K, with

uniformizer π and residue class field k. Then every element x ∈ K∗ can be written

uniquely as a convergent series

x = rvπ
v + rv+1π

v+1 + rv+2π
v+2 + · · · = lim

n→∞

n∑
i=v

riπ
i

where v = log|π| |x|, rv 6= 0, and the coefficients ri are taken from a set R ⊂ B[0, 1]

of representatives of the residue classes in k (i.e., the canonical map B[0, 1] → k

induces a bijection of R onto k).

1.3.8 Remark. If π is a uniformizer then |K∗| = {|λ| : λ ∈ K∗} = {|π|n : n ∈ Z}.

Thus, for every x ∈ K∗, there is v ∈ Z such that |x| = |π|v. Hence log|π| |x| ∈ Z.
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1.3.9 Definition. Let p be a prime number. The completion of the field (Q, | · |p) is

called the field of p-adic numbers and is denoted by Qp.

We checked in 1.3.5 that p is a uniformizer for (Q, | · |p) and that Fp is its residue

class field. By 1.3.6, Qp has the same residue class field and p as a uniformizer.

According to 1.3.7, by taking R = {0, 1, . . . , p − 1}, this field has the following

description

Qp =
{ ∞∑
i=v

rip
i : v ∈ Z, ri ∈ R, rv 6= 0

}
∪ {0},

where the valuation on Qp is defined as |0| = 0 and
∣∣∣∣∣
∞∑
i=v

rip
i

∣∣∣∣∣ = e−v when rv 6= 0.

The closed disk in Qp of center 0 and radius 1, is the ring of p-adic integers:

B[0, 1] = Zp :=
{ ∞∑
i=0

rip
i : ri = 0, 1, . . . , p− 1

}
.

Be aware of the fact that addition of two ‘series’ of the form ∑∞
i=v rip

i is not co-

efficientwise, as the set {0, 1, . . . , p − 1} is not closed under addition. As a simple

example observe that (choosing p = 7)

5pi + 4pi = 5pi + 2pi + 2pi = 7pi + 2pi = pi+1 + 2pi.

1.3.10 Definition. Let K be a field and set p = x ∈ K[x]. The completion of

(K(x), |·|p) is called the field of formal Laurent series and is denoted by K((x)).

In 1.3.5, we saw that x is a uniformizer for (K(x), | · |x) and that K is the residue

class field of this valued field. By 1.3.6, K((x)) has x as a uniformizer and K as the

residue class field as well. By 1.3.7, this field has the following description

K((x)) =
{ ∞∑
i=v

rix
i : v ∈ Z, ri ∈ K, rv 6= 0

}
∪ {0},
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where the valuation on K((x)) is defined as |0| = 0 and
∣∣∣∣∣
∞∑
i=v

rix
i

∣∣∣∣∣ = e−v when rv 6= 0.

The closed disk in K((x)) of center 0 and radius 1, is the ring of formal power

series:

B[0, 1] = K[[x]] :=
{ ∞∑
i=0

rix
i : ri ∈ K

}
.

Notice that K((x)) is the quotient field of K[[x]] ([35, 3.1.L]). Here the addition of

two such series is defined coefficientwise and the multiplication of two nonzero series

is defined as follows:

( ∞∑
j=v1

sjx
j

)
·
( ∞∑
k=v2

tkx
k

)
=
∞∑
i=v

rix
i,

with v = v1 + v2, ri = ∑
j+k=i sjtk = ∑∞

j=v1 sjti−j = ∑∞
k=v2 si−ktk, where sj = 0 for

j < v1 and tk = 0 for k < v2.

The following theorem shows how different a Cauchy complete non-Archimedean

valued field is from their Archimedean analogous R and C.

1.3.11 Theorem ([7, II.1.1]). Let (K, | · |) be a Cauchy complete non-Archimedean

valued field. If (xn)n is a sequence of elements of K, then

∞∑
n=1

xn is convergent in K ⇔ lim
n→∞

xn = 0.

1.4 Ordered fields

In this section we will present some examples of ordered fields and will discuss the

concept of Archimedean extension of a field created by Hans Hahn in 1907 [19].

Formally real fields

By a ring, we will mean a commutative ring with unit 1 6= 0. Let A be a ring that

is an ordered set such that its additive group (A,+) is an ordered group (it has a



24

total ordering which is compatible with the addition). The ring A is ordered if for all

x, y ∈ A, x > 0 and y > 0 implies xy > 0. Note that an ordered ring is necessarily

an integral domain. A field that is an ordered ring will be called an ordered field.

1.4.1 Definition. A field K is formally real if it satisfies the following condition:

given a1, . . . , an ∈ K such that ∑n
i=1 a

2
i = 0, then a1 = · · · = an = 0.

The next result identifies the formally real fields as the fields that can be ordered.

1.4.2 Theorem ([5, 1.70(5) and 1.71(6)]).

Let K be a field. The following conditions are equivalent:

(a) K is formally real,

(b) −1 is not a sum of squares in K,

(c) There exists an order ≤ on K such that (K,≤) is an ordered field.

1.4.3 Examples. (a) If char(K) 6= 0 then, there is n ∈ N such that 0 = ∑n
i=1 12.

Hence K is not formally real. Thus if K is formally real, then char(K) = 0.

(b) The field of complex numbers C cannot be an ordered field, since −1 = i2 and

therefore it is not formally real.

(c) If K is an ordered field then we can define an order in K((x)), which is compati-

ble with the addition and multiplication. Thus K((x)) can be ordered, and there-

fore it is formally real. Such order is defined as follows: for every z ∈ k((x))

there are ri ∈ K such that z = ∑∞
i=v rix

i. We say that z > 0 if z 6= 0 and

rv > 0. Then z1 > z2 if z1 − z2 > 0.

(d) Qp is not formally real because if p = 2, then −7 is a square and if p > 2 then

1− p is a square ([35, p. 144]). Recall that in a formally real field the squares

are non-negative elements. Since Q ⊂ Qp, char(Qp) = 0.
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General Hahn fields and the Embedding theorem

Let’s review the concept of Archimedean extension of a field and the so called general

Hahn fields which play a fundamental role in the classification of valued fields, since

every ordered field can be embedded in a general Hahn field as we will see later.

1.4.4 Definition. Let S be an ordered group. Two elements x, y ∈ S∗ are compa-

rable if there exist n,m ∈ N such that |x|0 < n|y|0 and |y|0 < m|x|0, where

|a|0 :=


a , a ≥ 0

−a , a < 0

Let K be an ordered field. The relation of being comparable is an equivalence

relation on K∗ and to denote ‘x and y are comparable’ we write x ∼ y. This relation

defines a partition of K∗ into equivalence classes, which are called the Archimedean

classes of K. The equivalence class of x ∈ K is denoted by [x]. Let’s denote the

class of all the Archimedean classes by GK.

1.4.5 Theorem. Let K be an ordered field. The class GK is an ordered abelian

group under the order ≺ and addition + defined as follows: for every x, y ∈ K∗

(a) [x] ≺ [y] if and only if ∀n ∈ N, n|y|0 < |x|0, or equivalently, if y 6∼ x and

|y|0 < |x|0.

(b) [x] + [y] := [xy]

In this group, the neutral element is [1], and −[x] = [x−1].

1.4.6 Definition. An ordered field K is Archimedean if GK = {[1]}, i.e. when

any two elements in K∗ are comparable.

It is easily proved in [8, 3.7] that an ordered field K is Archimedean if and only

if for every x ∈ K, there exists n ∈ N such that |x|0 < n1K .
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Thus for every ordered field K, the group GK measures the ‘Archimedicity’ or the

‘non-Archimedicity’ of K. The field R of real numbers (the only ordered, Dedekind

complete field up to isomorphism) is characterized by the fact that each Archimedean

ordered field can be embedded in R ([20, 3.5]). Hans Hahn in [19] (1907) generalized

this property (see 1.4.11) and by doing so he ended up with ordered fields that

contain all the ordered fields with a given ‘level of Archimedicity’.

1.4.7 Definition. Let E/K be an extension of ordered fields, where the order on E

restricted to K coincides with that of K. We say that E is an Archimedean exten-

sion of K if for every x ∈ E, there exists y ∈ K such that x and y are comparable

in E. In that case, GE and GK are isomorphic ordered groups. An ordered field K

is Archimedean complete if it has no proper Archimedean extension fields.

1.4.8 Definition. Let K be an ordered field. If G is an ordered abelian group iso-

morphic to GK, then we say that K is of type G and G is called an Archimedean

group of K.

Notice that R is (up to isomorphism) the only Archimedean complete, ordered

field of type {0} (see [8, 3.10]). Now let’s present the general Hahn fields.

1.4.9 Theorem ([5, 6.20, 6.21, 7.32], [13, 2.15], [19]).

Let K be a field (not necessarily ordered) and G an ordered abelian group. The

set K((G)) := {f : G → K : supp(f) is well-ordered}, where supp(f) := {x ∈ G :

f(x) 6= 0}, is a field under the addition and multiplication defined as follows: for

every f, g ∈ K((G)) and x ∈ G,

(a) (f + g)(x) := f(x) + g(x),

(b) fg(x) :=
∑

a+b=x
f(a)g(b)

Fields of the form K((G)) are called general Hahn fields.
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When K is an ordered field we can define an order on K((G)) generalizing the

definition of the order in K((x)) (see 1.4.3).

1.4.10 Definition (Ordered general Hahn fields). Let K be an ordered field and

consider λ : K((G))∗ → G, λ(f) = min{supp(f)}. For f, g ∈ K((G)) we define:

f < g ⇔ f 6= g and (g − f)(λ(g − f)) > 0.

Then (K((G)),≤) is an ordered field.

Theorem 1.4.11 is crucial for the classification of ordered structures.

1.4.11 Theorem ([12], [21, 3.1], [5, 1.64], [13, 1.35], [19] (Hahn’s Embedding The-

orem)). If K is an ordered field, then for every Archimedean group G of K, there

exists an order-preserving field monomorphism σ from K into R((G)) and R((G)) is

an Archimedean extension of σ(K).

Moreover, we have that R((G)) is a generalization of R in the following sense.

1.4.12 Theorem ([12, pp. 862–863], [21, 3.2], [19] (Hahn’s Completeness Theo-

rem)). If G is an ordered abelian group, then the field R((G)) is (up to isomorphism)

the only Archimedean complete, ordered field of type G.

1.5 Hahn Fields and Levi-Civita fields

In this section a non-Archimedean valuation will be defined in some general Hahn

fields and the family of the Levi-Civita fields will be presented.

1.5.1 Definition. A Hahn field is a general Hahn field K((G)) (1.4.10) for which

G is a subgroup of (R,+) and K is any field.

The distinctive characteristic of a Hahn field is that we can define in a natural

way a non-Archimedean valuation on them.



28

1.5.2 Theorem ([38, A.9 pp. 288–292], [39, II.6 corollary, p. 51]). Let G be a

subgroup of (R,+) and let K be any field. If the map | · | : K((G))→ R is defined by

|f | :=


e−min{supp(f)} , f 6= 0

0 , f = 0,

then (K((G)), | · |) is a Cauchy complete non-Archimedean valued field with residue

class field isomorphic to K and value group |K((G))∗| = {eg ∈ R : g ∈ G}. Moreover,

it is spherically complete.

In 1.3.7 we showed that when a field has a discrete valuation, then every nonzero

element can be written in a unique way as a limit of a convergent power series.

However in some Hahn fields this also is possible when the valuation is dense.

1.5.3 Theorem. Let K be any field. Consider in the field K((Q)) the element

d : Q→ K defined by

d(x) :=


1 , x = 1

0 , x 6= 1.

Then, for any r ∈ Q, we have that

d r(x) =


1 , x = r

0 , x 6= r.

The value group of (K((Q)), | · |) is {e−r = |d r| = |d| r : r ∈ Q}. Furthermore, every

nonzero element f in K((Q)) is the sum of a convergent generalized power series

with respect to the valuation on K((Q)), specifically:

f =
∑
r∈Q

f(r)d r =
∑

r∈ supp(f)
f(r)d r.

Additionally, every generalized power series of the form ∑
r∈Q ard

r for which {r ∈
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Q : ar 6= 0} forms a well ordered subset of Q, is convergent in K((Q)), and if two

series of such form differ in at least one coefficient then their sums are different.

Let’s present another interesting family of valued fields: the Levi-Civita fields.

1.5.4 Definition. Let K be any field and let G be a subgroup of (R,+). The set

L[G,K] := {f : G → K | supp(f) ∩ (−∞, n] is finite for every n ∈ Z}, is a subfield

of K((G)) ([45, 1.3]). When we restrict the valuation of K((G)) to L[G,K], the

latter becomes a Cauchy complete, non-Archimedean valued field with residue class

field isomorphic to K and value group |L[G,K]∗| = {eg : g ∈ G}. Fields of the form

L[G,K] are called Levi-Civita fields.

1.5.5 Theorem ([8, 3.19]). Let K be any field and let G be a subgroup of (R,+).

The following statements hold:

(a) The fields K((G)) and L[G,K] coincide if and only if G is discrete.

(b) The field L[G,K] is spherically complete if and only if G is discrete.

(c) If K is an ordered field, then K((G)) is an Archimedean extension of L[G,K]

with respect to the order defined in 1.4.10. If in addition K is Archimedean,

then both K((G)) and L[G,K] are of type G (see 1.4.8).

1.5.6 Example. If G = (Z,+) and K is any field, then we have that L[Z, K] =

K((Z)) is isomorphic to the field of Laurent series by the isomorphism ϕ : K((x))→

L[Z, K] defined by

ϕ

( ∞∑
i=m

aix
i

)
=
∞∑
i=m

aid
i.

with |q|x = |ϕ(q)| for every q ∈ K((x)), where | · |x is the x-adic valuation in K((x)).

1.5.7 Example. The fields Fp((x)) = Fp((Z)) = L[Z,Fp] and Qp are Cauchy com-

plete with respect to their valuations, both have the same value group {en : n ∈ Z},

and their residue class fields are isomorphic to Fp. However, these fields are not

isomorphic since L[Z,Fp] has characteristic p while Qp has characteristic 0.
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1.6 Real-closed field extensions of R

In this section we will study real closed field extensions of R with non-Archimedean

valuations, in particular, we will see that under some conditions, the smallest among

such (proper) extensions is a Levi-Civita field. Recall that a field K is algebraically

closed if every polynomial in K[x] has a root in K, hence every p ∈ K[x], p 6= 0, has

deg(p) roots in K, counting algebraic multiplicity. If L/K is a field extension and

a ∈ L, then a is algebraic over K if it is the root of a polynomial p ∈ K[x]. If every

element of L is algebraic over K, then L is said to a be an algebraic extension

of K. Also, K is real-closed if K is formally real and does not admit a proper

algebraic extension that is formally real.

1.6.1 Theorem ([24, Chapter XI], [5, 1.71(21),1.71(22)], [11, 5.4.4], [10, Chapter 5,

Section 4, Lemma 4.1]).

Let K be a field. The following conditions are equivalent:

(a) K is real-closed,

(b) x2 + 1 is irreducible in K and K(i) is algebraically closed (i2 = −1),

(c) K is an ordered field, each positive element of K has a square root and every

p ∈ K[x] of odd degree has a root in K,

(d) any sentence in the first-order language of fields is true in K if and only if it

is true in R,

(e) K is an ordered field and the intermediate value theorem holds for all polyno-

mials over K.

The previous theorem shows that if we want to develop a theory of Calculus over

ordered fields for which the intermediate value theorem holds, then our basis field

has to be real-closed at least.
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1.6.2 Definition. Let (xn) be a sequence in an ordered field K. We say (xn) is

Cauchy if for every 0-neighborhood U with respect to the order topology in K, there

exists N ∈ N such that xm − xn ∈ U for all m,n ≥ N . Also, (xn) is convergent to

x ∈ K if for every 0-neighborhood U with respect to the order topology in K, there

exists N ∈ N such that xn−x ∈ U for all n ≥ N . The field K is Cauchy complete

if every Cauchy sequence of K is convergent in the order topology.

The Levi-Civita field is the smallest non-Archimedean real-closed field extension

of R that is Cauchy complete in the following sense:

1.6.3 Theorem ([8, 3.27]). Let K/R be a field extension where K is a Cauchy

complete real-closed field such that:

(a) the order in K extends the one in R,

(b) there exists δ ∈ K such that 0 < δ < r for every r ∈ R+ and (δn) converges to

0 in the order topology.

If d is the element of L[Q,R] defined in 1.5.3, then there exists an order-preserving

field monomorphism σ : L[Q,R]→ K defined by

σ(f) = σ

( ∑
q∈supp(f)

f(q)dq
)

=
∑

q∈supp(f)
f(q)δq.

1.6.4 Remark. An embedding from L[Q,R] into K may exist even when the field K

does not satisfy the condition (b). For example, the field R((Q[x])) extends L[Q,R],

but it does not satisfy the condition (b). In fact, we assert the following:

1.6.5 Proposition. If K is an ordered field such that GK has an infinite subset

of pairwise non-comparable elements that is cofinal in GK (1.4.4), then for each

x ∈ K∗, the sequence (xn)n does not converge to 0 in the order topology.

For example, the field R((Z[x])) satisfies the hypothesis of the proposition but

R((Z3)) does not.
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Proof. By the Hahn’s embedding theorem 1.4.11, the field K can be embedded in

R((GK)) so we can consider the Hahn valuation on K (see 1.8.6, (c)). Let x ∈ K∗

and λ(x) = min{supp(x)} ∈ GK . Then λ(xn) = nλ(x) ∈ GK . By hypothesis we can

choose ε ∈ K, ε > 0 such that λ(ε) > nλ(x) for all n ∈ N. If |x|0 = max{x,−x}, then

λ(xn) = λ((|x|0)n) = λ((|x|0)n− ε) for all n ∈ N. Thus ((|x|0)n− ε)(λ((|x|0)n− ε)) =

((|x|0)n−ε)(λ((|x|0)n)) = (|x|0)n(λ((|x|0)n)) > 0. Therefore (|x|0)n > ε for all n ∈ N.

In other words, xn 6∈ (−ε, ε) for all n ∈ N. Hence, (xn)n does not converge to 0 in

the order topology. �

1.7 Algebraic closure of valued fields and their

completions

In this section we will present non-Archimedean valued fields that are the algebraic

closures of other valued fields, like certain Puiseux series fields or the algebraic closure

of Qp. Also we will review the completion of algebraic closures like the field of p-adic

complex numbers Cp, or the Levi-Civita field L[Q,R] as the completion of a Puiseux

series field.

Recall that an algebraic closure of a field K, from now on denoted by Ka, is an

algebraically closed algebraic extension of K. Each field has an algebraic closure and

any two algebraic closures of a field K are isomorphic by means of an isomorphism

leaving K pointwise fixed ([26, I.8.25], [23, 66], [24, V 2.5, 2.9]).

Consider the field Qa
p with the only valuation that extends |·|p on Qp, also denoted

by | · |p. It its known (e.g. [8, 4.6]) that Qa
p satisfies the following properties:

(a) Qa
p is a proper extension of Qp,

(b) the residue class field of Qa
p is Fap,

(c) |(Qa
p)∗| = {er : r ∈ Q},
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(d) (Qa
p, | · |p) is not locally compact,

(e) (Qa
p, | · |p) is not Cauchy complete,

(f) Qa
p is an infinite dimensional vector space over Qp.

1.7.1 Definition. The completion of the field (Qa
p, | · |p) is called the field of p-adic

complex numbers and it is denoted by Cp. The valuation on Cp which extends | · |p

will also be denoted by | · |p.

It is known (e.g. [8, 4.8]) that the field Cp satisfies the following properties:

(a) the residue class field of Cp is Fap,

(b) |C∗p| = {er : r ∈ Q},

(c) (Cp, | · |p) is not locally compact,

(d) Cp is algebraically closed,

(e) Cp is an infinite dimensional vector space over Qp,

(f) Cp is separable,

(g) Cp and C are isomorphic as fields,

(h) Cp is not spherically complete.

1.7.2 Definition. Let K be a field. The set

K〈〈x〉〉 :=
∞⋃
n=1

K((x 1
n ))

=
{ ∞∑
i=v

rix
i
n : v ∈ Z, ri ∈ K, rv 6= 0, for some n ∈ N

}
∪ {0},

is a field when we adopt the convention x
`p
`q = x

p
q for all ` ∈ Z. In fact, if a ∈ K((x 1

n ))

and b ∈ K((x 1
m )), then both a and b are elements of K((x 1

nm )), and therefore a + b

and ab are well-defined in K((x 1
nm )) and hence in K〈〈x〉〉.
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The mapping θ : K〈〈x〉〉 → ⋃∞
n=1 K

((
1
n
Z
))

defined by

θ

( ∞∑
i=v

rix
i
n

)
=
∞∑
i=v

rid
i
n ,

is an isomorphism such that |θ(f)| = |f | for all f ∈ K〈〈x〉〉. Therefore K〈〈x〉〉 can

be considered as a subfield of K((Q)). When we restrict the valuation of K((Q)) (see

below of 1.3.10) to K〈〈x〉〉, the latter becomes a non-Archimedean valued field with

residue class field isomorphic to K and value group equal to {er : r ∈ Q}. Fields of

the form K〈〈x〉〉 are called Puiseux series fields.

With this field we obtain the following chain of field extensions:

K $ K(x) $ K((x)) $ K〈〈x〉〉 $ L[Q, K] $ K((Q)).

1.7.3 Proposition. If K is any field, then L[Q, K] is the completion of the Puiseux

series field (K〈〈x〉〉, | · |).

Proof. Consider the identification K〈〈x〉〉 = ⋃∞
n=1 K

((
1
n
Z
))

. By 1.5.3, every element

of the Levi-Civita field L[Q, K] has the form f = ∑∞
i=v rid

αi where v ∈ Z, ri ∈ K and

(αi)i is a strictly increasing sequence in Q such that {αi : i = v, v+1, . . . }∩(−∞, n] is

finite for every n ∈ Z. Note that the partial sum sequence (∑n
i=v rid

αi)n is Cauchy in⋃∞
n=1 K

((
1
n
Z
))

with limit f . Hence the theorem holds by 1.3.1, since ⋃∞n=1 K
((

1
n
Z
))

is dense in L[Q, K] and the latter is Cauchy complete (1.5.4). �

The next result together with 1.7.3 shows the interesting analogy of the trios (Qp,

Qa
p, Cp) and (K((x)), K〈〈x〉〉, L[Q, K]) when K satisfies the following conditions:

1.7.4 Theorem ([8, 4.11]). If K is an algebraically closed field of characteristic 0,

then K((x))a = K〈〈x〉〉 and L[Q, K] is algebraically closed.

Now we are able to determine when the Intermediate Value Theorem is valid for

polynomials over K〈〈x〉〉 and L[Q, K].
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1.7.5 Proposition. The following statements are equivalent:

(a) K is real-closed.

(b) K〈〈x〉〉 is real-closed.

(c) L[Q, K] is real-closed.

Proof. (a) =⇒ (b) follows from [9, 2.6 Theorem 2.91] while (b) =⇒ (a) and (c) =⇒

(a) are proved in [5, 6.23 (1)]. Let’s prove (a) =⇒ (c): ifK is real-closed, thenK(i) is

an algebraically closed filed of characteristic 0, where i is a root for x2 +1 = 0 (1.6.1).

By 1.7.4 the field K(i)〈〈x〉〉 is algebraically closed and hence so is L[Q, K](i) =

L[Q, K(i)] ([8, 4.5], 1.7.3). Finally, L[Q, K] is real-closed by 1.6.1. �

We know that the analogy of the trios breaks down when the characteristic of K

is positive, because in that case K〈〈x〉〉 and L[Q, K] are not algebraically closed ([8,

4.13]).

Due to the following theorem we will be able to prove interesting field isomor-

phisms that are far from well-known.

1.7.6 Theorem ([43, p. 125], [22, 1.12, p. 317]). If K1 and K2 are two alge-

braically closed fields of the same characteristic and their cardinality #K1 = #K2 is

uncountable, then K1 and K2 are isomorphic as fields.

1.7.7 Proposition. If K is algebraically closed of characteristic 0 and cardinality

#K = 2ℵ0, then the fields K, K〈〈x〉〉, L[Q, K] and K((Q)) are isomorphic to C.

Proof. By [8, 4.15], it follows that K〈〈x〉〉 and L[Q, K] are algebraically closed fields.

Additionally, by [8, 6.18, 6.20] we have that K((Q)) is algebraically closed. Since

each of these fields contains K and is contained in the space of functions KQ, we

conclude that all these fields have cardinality equal to #K = 2ℵ0 . Thus by 1.7.6, it

follows that these fields are isomorphic to C. �
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1.7.8 Remark. Notice that

C〈〈x〉〉 = R〈〈x〉〉+ iR〈〈x〉〉

L[Q,C] = L[Q,R] + iL[Q,R]

C((Q)) = R((Q)) + iR((Q))

Furthermore, the fields R〈〈x〉〉 and L[Q,R] are real-closed by 1.7.5, and R((Q)) is

real closed by [8, 3.23]. Although we just proved that C〈〈x〉〉, L[Q,C] and C((Q))

are isomorphic to C = R + iR, none of the fields R〈〈x〉〉, L[Q,R] and R((Q)) is

isomorphic to R. In fact, by [5, 1.71.1], for any real-closed field K we have that for

all x ∈ K, x > 0 if and only if x = y2 for some y ∈ K. Thus, if φ : K1 → K2 is a

field isomorphism between real-closed fields K1 and K2, then x > 0 implies φ(x) > 0

for all x ∈ K1. Hence φ is order preserving. Therefore, if a > 0 is an infinitesimal

in K1, then φ(a) > 0 is an infinitesimal in K2.

1.8 General valuations and the higher rank case

Note that in 1.5.2 we have restricted our attention to those Hahn fields of Archime-

dean group embedded in (R,+) in order to define a valuation with values in R.

However it is possible to define a valuation with values in any ordered abelian group.

If | · | : K → R is a valuation on a field K and we consider the function v :

K → R ∪ {∞} defined by v(x) = − ln |x|, then we are shifting our attention to the

additive structure of R rather than the multiplicative one of (0,∞). In particular,

if | · | is a non-Archimedean valuation, then the strong triangle inequality now has

the form: v(x + y) ≥ min{v(x), v(y)} for all x, y ∈ K. In general, if we redefine

valuation as a function of the form v it is possible to rewrite all the previous results

concerning valuations in terms of v and the additive group structure of R without

losing any result in the process. In this section we will use this approach to define a
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generalization of a non-Archimedean valuation.

1.8.1 Definition. Let K be a field and let (G,+) be an ordered abelian group. A

map v : K → G ∪ {∞} is a general valuation (or Krull valuation) on K if:

(a) v is onto,

(b) v(x) =∞ if and only if x = 0,

(c) v(xy) = v(x) + v(y),

(d) v(x+ y) ≥ min{v(x), v(y)},

where ∞ is a symbol that satisfies, for all g ∈ G, the following axioms:

g <∞ and ∞ =∞+∞ = g +∞ =∞+ g.

The group G = v(K∗) is called the value group of (K, v) and the quotient {x ∈

K : v(x) ≥ 0}/{x ∈ K : v(x) > 0} is the residue class field of (K, v). If G is

order-isomorphic to a subgroup of (R,+), then we say that v has rank 111. Otherwise

we say that v is of higher rank. The general valuation v is called discrete if G is

cyclic.

When the general valuation v is discrete and G is not trivial, then it is isomorphic

to (Z,+) and hence v has rank 1.

1.8.2 Theorem ([7, Chapter III, section 3]). An ordered group (G,+) is order-

isomorphic to a subgroup of (R,+) if and only if it is Archimedean, i.e. for any a, b ∈

G, b > 0, there exists n ∈ N such that a < nb. In particular, every Archimedean

ordered group is abelian.

1.8.3 Definition. Let K be a field with general valuation v : K → G ∪ {∞}. The

sets of the form

Uv[a, g] := U [a, g] := {x ∈ K : v(x− a) ≥ g}
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for a ∈ K, g ∈ G, form a basis for a topology on K called the valuation topology

induced by v. When G is not trivial, the sets of the form

Uv(a, g) := U(a, g) := {x ∈ K : v(x− a) > g}

also form a basis for the valuation topology induced by v. The field K equipped with

this topology becomes a Hausdorff topological field ([5, 7.64]).

1.8.4 Definition. Let K be an ordered field and let GK be the ordered group of the

Archimedean classes of K (1.4.4, 1.4.5). The map µ : K → GK ∪ {∞} defined by

µ(x) :=


[x] x 6= 0

∞ x = 0

is a general valuation on K and it is called the order valuation of K ([5, 1.61]).

Notice that if K is an Archimedean ordered field then the valuation topology

induced by the order valuation coincides with the discrete topology.

1.8.5 Theorem ([5, 7.63, 7.64]). Let K be a non-Archimedean ordered field and let

µ be the order valuation on K. Then the order topology on K coincides with the

valuation topology induced by µ.

1.8.6 Examples. (a) If |·| : K → R is a non-Archimedean valuation on a field K,

then the function v : K → R∪{∞} defined by v(x) = − ln |x|, when x 6= 0 and

v(0) =∞, is a general valuation (after a suitable restriction of the codomain).

The topology induced by | · | coincides with the valuation topology induced by v,

since B(x, e−r) = U(x, r) and B[x, e−r] = U [x, r] for every x ∈ K and r ∈ R.

(b) If v : K → G∪ {∞} is a general valuation of rank 1 on K and i : G→ (R,+)
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is an order-preserving homomorphism, then the map | · | : K → R defined by

|x| :=


e−i(v(x)) , x 6= 0

0 , x = 0,

is a non-Archimedean valuation on K. The topology induced by | · | coin-

cides with the valuation topology induced by v, since B(x, |y|) = U(x, v(y)) and

B[x, |y|] = U [x, v(y)] for every x, y ∈ K.

(c) Let K be a field and let G be any ordered abelian group. The map λ : K((G))→

G ∪ {∞} defined by

λ(f) :=


min{supp(f)} , f 6= 0

∞ , f = 0,

is a general valuation on the general Hahn field K((G)) called the Hahn

valuation on K((G)) (compare with the valuation of a Hahn field in 1.5.2).

1.8.7 Proposition. Let K be an Archimedean ordered field, G a nontrivial ordered

abelian group, µ the order valuation on K((G)) and λ the Hahn valuation on K((G)).

The following statements hold.

(a) µ(f) = [f ] = {g ∈ K((G)) : λ(g) = λ(f)} for every f 6= 0,

(b) the valuation topologies induced by µ and λ coincide with the order topology on

K((G)) (defined in 1.4.10),

(c) If G is a subgroup of (R,+), then the valuation | · | of the Hahn field K((G))

defined in 1.5.2, induces the order topology on K((G)).

Proof. To prove the first statement it is enough to note that f and g are comparable

if and only if λ(f) = λ(g). The second statement follows from 1.8.5 and the equalities
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Uµ(f, µ(g)) = Uλ(f, λ(g)) and Uµ[f, µ(g)] = Uλ[f, λ(g)] for all f, g ∈ K((G)). The

last statement follows from part (b) and from example 1.8.6(a). �

1.8.8 Proposition. Let F/K be a field extension and let v : F → G ∪ {∞} be a

general valuation on F . The restriction v|K of v to K is a general valuation on K.

Moreover, if τv (τv|K) denotes the valuation topology on F (on K) induced by v (by

v|K respectively), and τv ∩K denotes the subspace topology on K induced by (F, τv),

then

τv|K = τv ∩K.

Proof. After a suitable restriction of the codomain the map v|K is a general valuation

on K. The second statement follows from the following equalities valid for all x, y ∈

K: Uv|K (x, v(y)) = {z ∈ K : v(x− z) > v(y)} = Uv(x, v(y)) ∩K. �

1.8.9 F Proposition. Let K be a non-Archimeden ordered field. By 1.4.11, K can

be embedded in R((GK)) where GK is the ordered group of Archimedean classes of

K. Let

• τK be the order topology on K,

• τµ the valuation topology on K induced by the order valuation µ of K,

• τ0 the order topology on R((GK)),

• τη the valuation topology on R((GK)) induced by the order valuation η of

R((GK)),

• τλ the valuation topology on R((GK)) induced by the Hahn valuation λ of

R((GK)).

Then τK = τµ = τλ|K = τη|K = τλ ∩K = τ0 ∩K = τη ∩K.

Proof. The equality τK = τµ follows from 1.8.5 while the equalities τλ∩K = τ0∩K =

τη ∩K follow by 1.8.7. The equalities τλ|K = τλ ∩K and τη|K = τη ∩K follow from
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1.8.8. Finally we will show that τµ = τη ∩ K. For every f ∈ K, µ(f) = {g ∈ K :

g is comparable to f}. SinceK is embedded in R((GK)) we have thatK ⊂ R((GK)).

Hence µ(f) ⊂ η(f) = {g ∈ R((GK)) : λ(g) = λ(f)}. It follows that µ(f) = µ(g) if

and only if η(f) = η(g) for all f, g ∈ K. Additionally, µ(f) < µ(g) if and only if

η(f) < η(g). Hence Uη(f, η(g)) ∩K = Uµ(f, µ(g)) for all f, g ∈ K. �

1.8.10 Remark. Let (A,<) be an ordered set with order topology τA and let B be

a subset of A. The order in A induces an order in B which induces a topology

τ< on B. In general the subspace topology τA ∩ B on B may be different from the

topology τ< ([27, p. 90]). Also, it is well-known that if B is a convex subset of A,

then τA ∩ B = τ< ([27, 16.4]). The surprising thing about the previous result is

that for every non-Archimedean ordered field K its order topology τK (which is the

topology induced by the order induced by the order on R((GK))) always coincides with

the subspace topology τ0 ∩K, even when K is not convex in R((GK)). For example,

L[Q,R] is not a convex subfield of R((Q)) and by 1.8.9, the order topology on L[Q,R]

coincides with the subspace topology inherited from R((Q)).

More details about general valuations can be found in [35, 13.1] and [33].

1.9 Catalog of fields

In the following table we summarize the fields and their properties presented so far.

Let G be an ordered abelian group, letK be any field and let p be a positive prime in-

teger. Assume that each of the listed fields has the usual non-Archimedean valuation

(or general valuation) defined in this chapter and it is equipped with the respective

induced topology. Denote the cardinalities of K and G by c and g respectively.

Notice that the first 4 fields of the table form a chain of field extensions in the

mixed characteristic case, i.e. each of the fields has a characteristic different than
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the characteristic of its residue class field:

Q ⊂ Qp ⊂ Qa
p ⊂ Cp. (1.1)

The last 5 fields of the table form a chain of field extensions in the equal charac-

teristic case, i.e. each of the fields has a characteristic equal to the characteristic of

its residue class field. Now consider the chain:

K(x) ⊂ K((x)) ⊂ K〈〈x〉〉 ⊂ L[Q, K]. (1.2)

Note that the chains (1.1) and (1.2) are similar in several ways, for example the

construction of the fields in the i-th position from the fields in the (i−1)-th position

is identical (under certain conditions when it is necessary). Other metric, topological

or algebraic similarities are easily seen from the table.

If the m-th property is satisfied by the n-th field of the table, then the symbol

X will appear in the entry (m,n). Otherwise the symbol 7 will take place. When

a number (n) appears instead, the property is satisfied under certain conditions

specified below the table.

1.9.1 Remark. The study of maximal immediate extension fields has allowed the

author to add the p-adic Mal’cev-Neumann fields (the p-adic analogues of the general

Hahn fields) to the right side of the chain (1.1) and their properties can be found

in a larger catalog presented in [8]. These fields also play an important role in the

classification of non-Archimedean valued fields. In fact, it can be proved that any non-

Archimedean valued field can be embedded into either a general Hahn field or into a

p-adic Mal’cev-Neumann field (see [8, 6.13, 7.2, 7.17]) and therefore the structure of

any non-Archimedean valued field is not as diverse as one initially may think. These

fields have been omitted here because they will not be used in the subsequent chapters

and their mere presentation needs a significant amount of space.
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Q Qp Qa
p Cp K(x) K((x)) K〈〈x〉〉 L[Q, K] K((G))

Totally
disconnected

X X X X X X X X X

Separable X X X X (1) (1) (1) (1) (1)

Cauchy
complete

7 X 7 X 7 X 7 X X

Spherically
complete

7 X 7 7 7 X 7 7 X

Locally
compact

7 X 7 7 7 (2) 7 7 (2)

Algebraically
Closed

7 7 X X 7 7 (3) (3) (4)

Formally real X 7 7 7 (5) (5) (5) (5) (5)

Real-closed 7 7 7 7 7 7 (6) (6) (7)

Archimedean
complete

7 7 7 7 7 (8) 7 7 (8)

Cardinality ℵ0 ℵ1 ℵ1 ℵ1 cℵ0 cℵ0 cℵ0 cℵ0 cg

Residue
class field

Fp Fp Fap Fap K K K K K

Table 1.1: Catalog of fields

(1) Under the assumption that G is a subgroup of (R,+), the field K((G)) is

separable if and only if K and G are countable ([8, 1.9]). Since K ⊂ K(x) ⊂

K((x)) ⊂ K〈〈x〉〉 ⊂ L[Q, K] ⊂ K((Q)), each of these fields is separable if and

only if K is separable.

(2) Under the assumption that G is a subgroup of (R,+), the field K((G)) is

locally compact if and only if K is finite and G is cyclic ([38, 12.2], 1.5.2). In

particular, K((x)) is locally compact if and only if K is finite.

(3) Each of the fields K〈〈x〉〉 and L[Q, K] is algebraically closed if and only if K

is algebraically closed of characteristic 0 ([8, 4.15]).
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(4) The field K((G)) is algebraically closed if and only if K is algebraically closed

and G is divisible, i.e. for every a ∈ G and n ∈ Z, there exists and element

b ∈ G such that a = nb ([8, 6.18, 6.20]).

(5) The field K((G)) is formally real if and only if K is formally real (1.4.10). In

particular, since K ⊂ K(x) ⊂ K((x)) ⊂ K〈〈x〉〉 ⊂ L[Q, K] ⊂ K((Q)), each of

these fields is formally real if and only if K is formally real.

(6) Each of the fields K〈〈x〉〉 and L[Q, K] is real-closed if and only if K is real-

closed (1.7.5).

(7) The field K((G)) is real-closed if and only if K is real-closed and G is divisible

([5, 6.23 (1)-(2)]). In particular, K((x)) is real-closed for no field K.

(8) K((G)) is Archimedean complete of type G if and only if K is isomorphic to

R as ordered field (1.4.12).

1.10 Classification of fields

The following diagram classifies the fields that admit a valuation or general valuation

(nontrivial valuation when the field is infinite) in 6 non-overlapping classes. With

a suitable choice of some of these classes it is possible to obtain partitions for: the

class of ordered fields, the class of Archimedean valued fields, and the class of non-

Archimedean valued fields. Below each of the 6 classes, there are some examples of

their members.
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Non-
formally real
Archimedean
valued fields

Formally real
Archimedean
valued fields

Formally real
fields where
GK 6= {0}
is non-

Archimedean

Formally real
non-

Archimedean
valued fields

Non-formally
real non-

Archimedean
valued fields

Non-formally
real fields

with general
valuation of
higher rank

Archimedean
valued fields

non-Archimedean
valued fields

C

Q(i)
Q(
√

2, i)

R

Q

Q(
√

3)
Q(π)

R((Z3))
L[R2,Q]
Q((x, y))

R((L[Z,Q]))

R(x)
R((x))

Q(e)〈〈x〉〉
L[Q,R]
Q((Q))

Qp, Cp

Fq((x))
Qa〈〈x〉〉
Qp((Q))
L[Q,C]

Qp((Z5))
Fq((x, y))
C((R ⊕ Q))
L[Z2,Qp]

Ordered fields

Fields with general valuations

Table 1.2: Classification of valued fields

In the following, the 6 classes are ordered from left to right.

1. By [41, 15.2.2] the second class can be described as the collection of all the

fields that are isomorphic to a subfield of R or equivalently as the collection of

all the Archimedean ordered fields.

2. By 1.8.2 the third class can be described as the collection of all the non-

Archimedean ordered fields K for which GK cannot be embedded in (R,+)

(GK 6= {0} is not an Archimedean ordered group).

3. By 1.8.2 the fourth class can be described as the collection of all the non-

Archimedean ordered fields K for which GK can be embedded in (R,+) (GK 6=

{0} is an Archimedean ordered group).



Chapter 2

Banach spaces over fields with

rank-1 valuations

In this chapter we will study Banach spaces over non-Archimedean valued fields of

rank 1 and consider their similarities and differences with Banach spaces in classical

Functional Analysis. Also, linear operators will be considered on normed spaces

over non-Archimedean valued fields and the different norms that can be defined for

continuous linear operators will be compared. Then, we will describe the concepts

of form-orthogonality, norm-orthogonality and spaces of countable type that will be

used in subsequent chapters.

2.1 Preliminaries

2.1.1 Definition. Let (K, | · |) be a non-Archimedean valued field and let E be a

vector space over K. A norm on E is a map || · || : E → [0,∞) such that:

(a) ||x|| = 0 if and only if x = 0,

(b) ||λx|| = |λ| ||x||,

(c) ||x+ y|| ≤ max{||x||, ||y||},

46
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for all x, y ∈ E. We call (E, || · ||) a normed space over K and if it is Cauchy

complete with respect to the induced ultrametric (x, y) 7→ ||x− y||, then (E, || · ||) is

called a Banach space. The topology induced by this ultrametric is a vector topology,

i.e. addition of vectors of E and scalar multiplication are continuous functions. The

closed unit ball of a normed space E is the set

BE := {x ∈ E : ||x|| ≤ 1}.

2.1.2 Remark. An A-norm is a map || · || : E → [0,∞) satisfying (a), (b) and the

triangle inequality ||x + y|| ≤ ||x|| + ||y||, (x, y ∈ E), but not (c). For example, if

| · | is a nontrivial valuation on K, then (λ1, λ2) 7→
√
|λ1|2 + |λ2|2 is an A-norm on

K2, whereas (λ1, λ2) 7→ max{|λ1|, |λ2|} is a norm in the sense of 2.1.1. According to

C.Perez-Garcia and W.H.Schikhof ([32, p. 16]), although A-norms can be a source

for interesting topological problems, all spaces that appear naturally in duality theory

carry norms or seminorms in the sense of 2.1.1. Also we have the following result

noted by A.C.M van Rooij in [45, p. 88]: the dual space of a vector space with respect

to an A-norm can be obtained as the dual space of a vector space with respect to a

norm. In fact, let || · || be an A-norm on a vector space E over K. This A-norm

induces a topology on E and we can consider the space EO of all the linear maps

f : E → K continuous with respect to this topology. On this EO we can define a

norm (not merely an A-norm) by

||f ||0 := sup
x 6=0

|f(x)|
||x||

, (f ∈ EO).

Among all seminorms on E that are ≤ || · ||, there is a largest one, say v. Set

N := {x ∈ E : v(x) = 0}. Then N is a subspace of E and v induces a norm on E/N

in a natural way. We have that (E/N)′ and EO are isomorphic Banach spaces.
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2.1.3 Examples ([45, pp. 47–49]). Consider a Cauchy complete non-Archimedean

valued field (K, | |) with nontrivial valuation.

(a) Let e1, . . . , en be a basis of an n-dimensional space over K. Then ∑n
i=1 λiei 7→

maxi |λi| is a norm for which the space is Banach.

(b) Let `∞ be the space of all bounded sequences in K equipped with termwise

operations. For x = (λ1, λ2, . . . ) ∈ `∞, define ||x||∞ := sup{|λn| : n ∈ N}.

With this norm `∞ is a Banach space.

(c) c0 := {(λ1, λ2, . . . ) ∈ `∞ : limn→∞ λn = 0} is a closed subspace of `∞, hence a

Banach space. Notice that for each x ∈ c0, ||x||∞ = max{|λn| : n ∈ N}.

(d) Let X be any set. The bounded maps f : X → K form a vector space over K de-

noted by `∞(X) which is a Banach space under the norm ||f ||∞ := sup{|f(x)| :

x ∈ X}. Notice that `∞ = `∞(N).

(e) c0(X) := {f ∈ `∞(X) : ∀ε > 0, {x ∈ X : |f(x)| > ε} is finite} is a closed

subspace of `∞(X), hence a Banach space. Notice that for each f ∈ c0(X),

||f ||∞ = max{|f(x)| : x ∈ X} and that c0 = c0(N).

(f) Let X be a topological space and BC(X) the space of all continuous and bounded

functions f : X → K. Then BC(X) is a closed subspace of `∞(X) with respect

to the supremum norm || · ||∞ hence a Banach space.

(g) Let F be a complete valued field containing K as a subfield. Then F is a

Banach space over K. In particular, the Levi-Civita field L[Q,R] (see 1.5.4) is

a Banach space over R((x)) = R((Z)). Observe that |L[Q,R]∗| = {er : r ∈ Q}

is a proper superset of |R((x))∗| = {er : r ∈ Z}. This implies that nonzero

vectors cannot always be normalized. For example, d1/2 ∈ L[Q,R] does not

have a multiple of norm 1. In fact, if λ ∈ R((x))∗ then |λ| = en for some
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n ∈ Z and hence |λd1/2| = en−1/2 6= 1 (for the definition of d see 1.5.3). This

leads us to the following open problem.

PROBLEM (1960): Let (E, || · ||) be a Banach space over K. Does there exist

an equivalent norm || · ||0 such that ||E||0 = |K|, i.e. for each nonzero x ∈ E

there exists λ ∈ K such that ||λx|| = 1? There are some partial answers and

reductions, but the complete answer is so far unknown!

In order to overcome the possible non-existence of vectors of norm δ for some

particular δ ∈ R+, we have the following lemma which is appropriate when we only

need the existence of vectors of norm close to δ.

2.1.4 Lemma. Let (E, || · ||) be a normed space over a non-Archimedean valued field

(K, | · |) where | · | is not trivial. The following statements hold:

(a) There exists π ∈ K∗ such that 0 < |π| < 1.

(b) For any δ ∈ R+, π ∈ K∗, 0 < |π| < 1 and for any nonzero x ∈ E, there exists

a unique n ∈ Z such that |π|δ < ||πnx|| ≤ δ.

Proof. (a) Since the valuation on K is nontrivial, there exists y ∈ K∗ such that

|y| 6= 1. Because of the equality |y||y−1| = 1, we can choose |π| = min{|y|, |y−1|}.

(b) Put s := |π| and w := ||x||. Consider n = dlogs(δ/w)e. Then n is such

that snw is as close to δ as possible while still being smaller than or equal to δ, or

equivalently snw ≤ δ < sn−1w. Hence sδ < snw ≤ δ. �

Lemma 2.1.4 is one of the most used basic tools in non-Archimedean Analysis.

For example, it can be found in the proof of the fact that the value group of a

valuation is either cyclic or dense in (0,∞). Also in the proofs of 2.1.6, 2.2.1, 2.2.4,

2.2.5 and 2.2.7.
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2.1.5 Definition. Two norms || · ||1 and || · ||2 on a vector space E over K are called

equivalent if the metrics (x, y) 7→ ||x− y||1 and (x, y) 7→ ||x− y||2 induce the same

topology on E.

2.1.6 Proposition. Let (K, | · |) be a non-Archimedean valued field and E a vector

space over K.

(a) When | · | is nontrivial:

Two norms on E, say || · ||1 and || · ||2, are equivalent if and only if there exist

constants 0 < c < C such that

c|| · ||1 ≤ || · ||2 ≤ C|| · ||1. (♣)

If K is Cauchy complete and E is finite-dimensional, then all norms on E are

equivalent, and the space E is a Banach space with respect to each norm.

(b) When | · | is trivial:

If E is finite-dimensional, then all norms are equivalent to the trivial one, and

the space E is a Banach space with respect to each norm.

If E is an infinite-dimensional space, then there exist equivalent norms on E

that don’t satisfy the inequality (♣) for any positive constants c and C.

Proof. When |·| is nontrivial: for the first statement see [32, 2.1.7] and for the second

statement see [7, IV.1.2 and IV.1.3].

When | · | is trivial: for the first statement suppose that E has dimension n ∈ N

and let {e1, . . . , en} be a basis for E. We will show that there exist positive constants

c and C such that for all nonzero x ∈ E, c ≤ ||x|| ≤ C.

If C =: ∑n
i=1 ||ei|| then for any x = ∑n

i=1 λiei ∈ E, ||x|| ≤ ∑n
i=1 |λi|||ei|| ≤ C. For

each i ∈ N, let Xi ⊆ E be the span of all the vectors x ∈ E such that ||x|| < 1/i.
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We will show that Xk = {0} for some k ∈ N and hence we can put c := 1/k.

Let m = min{dim(Xi) : i ∈ N} and let k ∈ N such that dim(Xk) = m. Since

Xi+1 ⊂ Xi for all i ∈ N, dim(Xi) = m for all i ≥ k. Thus Xk = Xi for i ≥ k,

so Xk = ⋂{Xi : i ≥ k}. Now suppose x ∈ Xk. Then for each i ≥ k, x can be

written as a linear combination of vectors of norm less than 1/i. But this implies

that ||x|| < m/i. Since i is arbitrarily large, this means that ||x|| = 0 and hence

x = 0. Thus Xk = {0}, as desired.

For the second statement suppose that E is infinite-dimensional with basis B.

Let || · ||′ be the trivial norm on E. Consider the map || · || : E → [0,∞) where

||x|| is defined as the number of nonzero coefficients when we write x as a linear

combination of elements of B. Then || · || is a norm on E that is equivalent to || · ||′,

but the quotient ||x||/||x||′ is unbounded on E \ {0}. �

By mimicking the proof of Theorem 1.3.11 we obtain the following generalization:

2.1.7 Theorem. Let E be a Banach space over a non-Archimedean valued field K.

If (xn)n is a sequence of elements in E, then

∞∑
n=1

xn is convergent in E ⇔ lim
n→∞

xn = 0.

In fact, more is true:

2.1.8 Theorem. Let E be a normed space over a non-Archimedean valued field

K. Then E is a Banach space if and only if for each sequence (xn)n on E that is

convergent to 0, the series ∑∞n=1 xn is convergent in E.

Proof. One side of the equivalence is a consequence of 2.1.7. Now suppose that for

each null sequence (xn)n on E, the series ∑∞n=1 xn is convergent in E. Let (sn)n be

a Cauchy sequence in E. Let m1 ∈ N such that ||sm − sm1|| ≤ 1 for all m ≥ m1.

Define inductively m2,m3, . . . such that mn < mn+1 and ||sm − smn|| ≤ 1
n
for all
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m ≥ mn. Thus the sequence xn := smn+1−smn is convergent to 0 and hence ∑∞n=1 xn

is convergent by assumption. Since

smn = sm1 + (sm2 − sm1) + · · ·+ (smn − smn−1) = sm1 +
n−1∑
i=1

xi,

it follows that (smn)n is a convergent subsequence of (sm)m. Hence the latter is

convergent on E. �

2.2 Linear Operators

2.2.1 Theorem. Let E and F be normed spaces over a non-Archimedean valued

field K with a nontrivial valuation and let T : E → F be a linear operator. The

following statements are equivalent:

(a) T is continuous.

(b) T is continuous at 0.

(c) There exists M ∈ R+ such that ||T (x)|| ≤M ||x|| for all x ∈ E.

(d) The set {||T (x)|| : ||x|| ≤ 1} is bounded.

Proof. The implications (a) =⇒ (b), (c) =⇒ (a) and (c) =⇒ (d) are trivial. The

implication (b) =⇒ (c) is proved in [32, 2.1.4] and the implication (d) =⇒ (c) is

proved in [29, 3.3 Lemma 1] with the following correction: where it says " 1
|α|n+1 <

||z|| ≤ 1
|α|n " it should instead say 1

|α|n−1 < ||z|| ≤ 1
|α|n . �

2.2.2 Definition. Let E and F be normed vector spaces over K. The vector space

of all continuous linear maps T : E → F will be denoted by L(E,F ). We write

E ′ := L(E,K) and L(E) := L(E,E). The space E ′ is called the dual space of E.
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2.2.3 Definition. Let E and F be normed vector spaces over a non-Archimedean

valued field with a nontrivial valuation. The map || · || : L(E,F )→ R defined by

||T || := inf{c ∈ [0,∞) : ||T (x)|| ≤ c||x|| for all x ∈ E};

is a norm on L(E,F ).

2.2.4 Theorem. Let E and F be normed vector spaces over a non-Archimedean

valued field with a nontrivial valuation. If E 6= {0} and T ∈ L(E,F ) then:

(a) ||T ||1 := sup
{
||T (x)||
||x||

: x 6= 0
}

= ||T ||.

(b) ||T ||2 := sup
{
||T (x)||
||x||

: 0 < ||x|| ≤ 1
}

= ||T ||.

Proof. (a): As in the classical case, ||T (x)|| ≤ ||T ||1||x|| for all x ∈ E. Thus by

definition of || · || it follows that ||T || ≤ ||T ||1. On the other hand, for all ε > 0 we

have that ||T (x)|| ≤ (||T ||+ ε)||x|| for all x ∈ E. Hence ||T ||1 ≤ ||T ||.

(b): By (a) it is enough to show that ||T ||2 = ||T ||1. By their definition it is

immediate that ||T ||2 ≤ ||T ||1. For the converse, let x ∈ E \ {0}. By 2.1.4 there

exists α ∈ K∗ such that ||αx|| ≤ 1. Then

||T (x)||
||x||

= ||T (αx)||
||αx||

≤ ||T ||2.

Therefore ||T ||1 ≤ ||T ||2. �

2.2.5 Theorem. Let E and F be normed vector spaces over a non-Archimedean

valued field K with a nontrivial valuation. If ||E|| := {||e|| : e ∈ E} = {|λ| : λ ∈

K} := |K| and T ∈ L(E,F ) then:

||T ||3 := sup{||T (x)|| : ||x|| = 1} = ||T ||.
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Proof. It is clear that ||T ||3 ≤ ||T ||1 = ||T ||. To prove the converse, let x ∈ E \ {0}.

By hypothesis there exists α ∈ K∗ such that ||αx|| = 1. Hence

||T (x)||
||x||

= ||T (αx)||
||αx||

= ||T (αx)|| ≤ ||T ||3.

Therefore ||T || = ||T ||1 ≤ ||T ||3. Thus, we have proved that ||T || = ||T ||3. �

2.2.6 Definition. Let E and F be normed vector spaces over a non-Archimedean

valued field with nontrivial valuation. The map || · ||4 : L(E,F )→ [0,∞) defined by

||T ||4 := sup{||T (x)|| : ||x|| ≤ 1}, is a norm on L(E,F ).

In Theorem 2.2.1 we can see that for a given linear operator T : E → F , ||T ||

exists if and only if ||T ||4 does. Unlike the classical case, these norms do not always

coincide but still they are equivalent on L(E,F ) when K is not trivially valued.

Their explicit relation is characterized in the following:

2.2.7 Proposition. Let E and F be normed vector spaces over a non-Archimedean

valued field K with a nontrivial valuation | · |. Let T : E → F be a linear map. The

following statements hold.

(a) T is continuous ⇔ ||T || <∞ ⇔ ||T ||4 <∞.

(b) ||T (x)|| ≤ ||T || ||x|| and ||T (x)|| ≤ ||T ||4 |α| ||x|| for all T ∈ L(E,F ), x ∈ E

and all α ∈ K such that |α| > 1.

(c) |π| ||T || ≤ ||T ||4 ≤ ||T || for all T ∈ L(E,F ) and all π ∈ K∗ such that |π| < 1,

i.e. || · || and || · ||4 are equivalent.

(d) If | · | is a dense valuation on K, then ||T || = ||T ||4 for all T ∈ L(E,F ).

(e) If ||E|| = |K|, then ||T || = ||T ||4 for all T ∈ L(E,F ).

Proof. (a): It follows from 2.2.1.
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(b): For the first inequality it is enough to notice that for x ∈ E \ {0}, ||T (x)||
||x|| ≤

||T ||1 = ||T ||. For the second inequality let x ∈ E \ {0}. Since 2.1.4, for any

given π ∈ K, 0 < |π| < 1, there exists n ∈ Z such that |π| < ||πnx|| ≤ 1. Thus

||T (πnx)|| ≤ ||T ||4. Hence

||T (x)||
||x||

= ||T (πnx)||
||πnx||

≤ ||T ||4
||πnx||

≤ ||T ||4|π|−1.

(c): Let T ∈ L(E,F ) and π ∈ K such that 0 < |π| < 1. The relation |π| ||T || ≤ ||T ||4

follows from the part (b). Now let’s show that ||T ||4 ≤ ||T ||. If T = 0, then ||T ||4 =

||T || = 0. Suppose that E 6= {0} and T 6= 0. For x ∈ E such that 0 < ||x|| ≤ 1 we

have that ||T (x)|| ≤ ||T (x)||/||x||. Hence, by 2.2.4, ||T ||4 ≤ ||T ||2 = ||T ||.

(d): It is enough to consider a sequence (αn)n inK such that |α1| < |α2| < · · · < 1

and limn→∞ |αn| = 1. Then the result follows from (c).

(e): If ||E|| = |K|, then by 2.2.5, ||T || = ||T ||3 ≤ ||T ||4. The converse inequality

follows from (c). �

2.2.8 Remark. When the valuation | · | on K is nontrivial and discrete, the norms

|| || and || ||4 may differ. For instance, consider E = Qp × Qp as a Qp-vector

space with the norm ||(x, y)|| := max{2|x|p, 2|y|p} and let T : E → E be such that

T (x, y) = (x, y). Then T is continuous and ||T || = 1 but ||T ||4 = sup{||T (x, y)|| :

||(x, y)|| ≤ 1} = sup{||(x, y)|| : ||(x, y)|| ≤ 1} = 2e−1. Here we can verify that

2.2.7(c) is satisfied: e−n ||T || < ||T ||4 < ||T || for all n ∈ N. Notice that in this case,

||E|| ∩ |K| = {0}.

2.2.9 Remark. All the theorems presented in this section so far (2.2.1, 2.2.4, 2.2.5

and 2.2.7) fail to be true when the valuation | · | on K is the trivial one. For instance,

consider a field K with the trivial valuation and put E = (K[x], || · ||a) and F =
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(K[x], || · ||b) where || · ||a is the trivial norm on K[x] and || · ||b is defined by

∣∣∣∣∣
∣∣∣∣∣
N∑
n=0

αnx
n

∣∣∣∣∣
∣∣∣∣∣
b

:=


N + 1 if αN 6= 0

0 if αn = 0 for all n.

The identity map I : E → F is continuous but none of the expressions ||I|| and

||I||i, for i ∈ {1, . . . , 4}, is well-defined. Indeed, ||x
n||b

||xn||a = n + 1 for all n ∈ N. For

another example, consider a field K of characteristic 0 with the trivial valuation and

let E = (K[x], || · ||c) where || · ||c is defined by

∣∣∣∣∣
∣∣∣∣∣
N∑
n=0

αnx
n

∣∣∣∣∣
∣∣∣∣∣
c

:=


eN if αN 6= 0

0 if αn = 0 for all n.

Let T : E → E be the differential operator

T

(
N∑
n=0

αnx
n

)
:=


∑N
n=0 nαnx

n−1 if N ≥ 1

0 if N = 0.

Then ||T || = ||T ||1 = e but ||T ||2 = ||T ||3 = ||T ||4 = 0 and hence || · ||2, || · ||3 and

|| · ||4 are no longer norms.

2.2.10 Theorem ([45, 3.M]). Let E,F be normed vector spaces.

(a) If F is Banach then L(E,F ) is Banach.

(b) If E is a Banach space and D is a closed subspace of E then E/D is a Banach

space.

2.2.11 Example ([45, 3.Q]). In complex functional analysis the dual space of c0 is

isomorphic to `1. In the non-Archimedean theory the situation is radically different:



57

For x ∈ c0, y ∈ `∞, say x = (λ1, λ2, . . . ), y = (µ1, µ2, . . . ), put

〈x, y〉 :=
∞∑
n=1

λnµn.

For each y ∈ `∞ define Ty ∈ c′0 by (Ty)(x) := 〈x, y〉 for x ∈ c0. It can be proved that

T maps `∞ linearly and isometrically onto c′0.

The following three theorems are analogous to theorems in the Archimedian case

and the same techniques are used in their proofs.

2.2.12 Theorem. ([45, 3.5] Closed Graph Theorem) Let T be a linear map from a

Banach space E into a Banach space F such that its graph {(x, Tx) : x ∈ E} is a

closed subset of E × F . Then T is continuous.

2.2.13 Theorem. ([45, 3.11] Open Mapping Theorem) If E and F are Banach

spaces and if T ∈ L(E,F ) is surjective, then the image under T of any open subset

of E is open in F .

2.2.14 Theorem. ([45, 3.12] Uniform Boundedness Theorem). Let E be a Banach

space and F a normed vector space. If S is a subset of L(E,F ) such that for every

x ∈ E the set {Tx : T ∈ S} is bounded in F , then S is a bounded set in L(E,F ).

2.3 Orthogonality

An inner product in a vector space E over C is a map (·, ·) : E × E → C that

satisfies:

(i) x 7→ (x, y) is linear in x, for each y,

(ii) (x, y) = (y, x),

(iii) (x, x) > 0 whenever x 6= 0.
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In the non-Archimedean case, we replace complex conjugation by a field auto-

morphism:

2.3.1 Definition. Let E be a vector space over K and consider a field automorphism

λ 7→ λ∗ such that λ∗∗ = λ and |λ∗| = |λ|, for all λ ∈ K. (We allow ∗ to be the

identity).

A map (·, ·) : E × E → K is an inner product (with respect to ∗) if

(a) x 7→ (x, y) is linear, for each y ∈ E,

(b) (x, y) = (y, x)∗ for all x, y ∈ E,

(c) (x, x) 6= 0 whenever x 6= 0.

If the field K is ordered then we replace the condition (c) with the following:

(c’) (x, x) > 0 whenever x 6= 0.

2.3.2 Remark. This definition of inner product for arbitrary valued fields is a nat-

ural generalization of the classical case. In a vector space over C, any form (·, ·)

satisfying (i), (ii) and (c) is either an inner product or −(·, ·) is an inner product.

If E is a vector space over K with inner product (·, ·), then the map || · || : E → R

defined by ||x|| :=
√
|(x, x)|, for x ∈ E, is a norm on E.

Apparently we can have Hilbert spaces as we do in the classical way, but the next

result shows that we cannot proceed with the theory like in the classical case.

2.3.3 Theorem ([32, 2.4.5]). Let (·, ·) be an inner product on a Banach space E over

K such that |(x, x)| = ||x||2 for all x ∈ E. Suppose that for each closed subspace D

of E, there exists a subspace F of E such that E = D + F and (x, y) = 0 for all

x ∈ D and y ∈ F . Then dimE <∞.

An alternative to inner products, is a powerful non-Archimedean concept, valid

in any normed space:
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2.3.4 Definition. Let x, y be elements of a normed space E over K. We say that

the vector x is (norm-)orthogonal to y and write x ⊥ y if

||x|| = min{||x− λy|| : λ ∈ K} = dist(x,Ky).

2.3.5 Theorem ([32, 2.2.1, 2.2.3]). Let E be a normed space and x, y ∈ E.

(a) If ||x− y|| ≥ ||x|| then ||x− y|| ≥ ||y||. (van Rooij Principle)

(b) If x ⊥ y then y ⊥ x. (Symmetry)

(c) x ⊥ y if and only if for every λ, µ ∈ K, ||λx+ µy|| = max{||λx||, ||µy||}.

2.3.6 Remark. In classical analysis the relation ⊥ behaves differently than its coun-

terpart in non-Archimedean analysis. In classical analysis the relation ⊥ is symmet-

ric only on spaces where the norm is induced by an inner product ([6, Theorem

4.6]). In that case, x ⊥ y is equivalent to (x, y) = 0. This equivalence makes norm-

orthogonality a natural alternative to (form-)orthogonality in the non-Archimedean

context. Another difference is illustrated in the following example.

2.3.7 Example. Let (K, |·|) be a non-Archimedean valued field and let K2 be normed

by (λ1, λ2) 7→ max{|λ1|, |λ2|}. The set of vectors {(1, 0), (0, 1), (1, 1)} is pairwise

orthogonal.

2.3.8 Lemma ([37, 2.C]). Let E be a normed space.

(a) The relation 6⊥ (not orthogonal) is an equivalence relation on E \ {0}.

(b) If x ⊥ y and y 6⊥ z then x ⊥ z.

(c) If T ⊂ E is a set of pairwise orthogonal vectors and there are x ∈ T and z ∈ E

such that x 6⊥ z, then z ⊥ y for all y ∈ T \ {x}.

Another difference with classical orthogonality is demonstrated in the following.
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2.3.9 Theorem ([32, 2.2.9]). (Perturbation theorem) Let E be a normed space. If

{en : n ∈ N} ⊂ E is pairwise orthogonal and f1, f2, · · · ∈ E are such that ||fn−en|| <

||en|| for all n, then {fn : n ∈ N} is pairwise orthogonal.

2.3.10 Definition. Let E be a normed space.

(a) For two sets X1, X2 ⊂ E we say that X1 and X2 are (norm-)orthogonal,

and write X1 ⊥ X2, if x1 ⊥ x2 for all x1 ∈ X1, x2 ∈ X2. For x ∈ E we write

x ⊥ X2 instead of {x} ⊥ X2.

(b) For two subspaces D1, D2 ⊂ E we say that D2 is an (norm-)orthogonal

complement of D1 if D1 ⊥ D2 and E = D1 + D2. A subspace D is called

(norm-) orthocomplemented if it has an orthogonal complement.

2.3.11 Remark. Notice that a subspace may have more than one orthogonal comple-

ment. In fact, in example 2.3.7 the subspaces K(0, 1) and K(1, 1) are both orthogonal

complements of K(1, 0)

2.3.12 Theorem ([32, p. 24]). Let D1, D2 be subspaces of E with E = D1 +D2.

(a) D1 and D2 are orthogonal complements of each other if and only if

||d1 + d2|| = max{||d1||, ||d2||}

for each d1 ∈ D1, d2 ∈ D2.

(b) for x ∈ E we have x ⊥ D2 if and only if ||x|| = dist(x,D2).

(c) Orthocomplemented subspaces are closed. (The converse is not always true!)

2.3.13 Notation. If S 6= ∅ is a subset of a normed space, then [S] will denote the

subspace generated by S.

2.3.14 Definition. A subset X of a normed space E, 0 6∈ X, is called an (norm-)

orthogonal system if for each x ∈ X we have x ⊥ [X \ {x}].
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2.3.15 Theorem ([32, p. 25 and 2.2.10]).

Let E be a normed space and X ⊂ E, 0 6∈ X.

(a) X is an orthogonal system if and only if each finite subset of X is an orthogonal

system.

(b) Any orthogonal system is linearly independent.

(c) Every orthogonal system is contained in a maximal one.

(d) Two maximal orthogonal systems in a normed space have the same cardinality.

2.4 Spaces of Countable type

In classical Analysis, every Hilbert space (H, (·, ·)) has an orthonormal basis {eα :

α ∈ I} i.e. each x ∈ E can be written uniquely as x = ∑
α∈I(x, eα)eα where the

series converges to x in the norm induced by the inner product (·, ·) and the set

{α ∈ I : (x, eα) 6= 0} is countable. In particular, we have that [{eα : α ∈ I}] = E.

In this section we are interested in the characterization of Banach spaces E that

contain a countable set X such that [X] = E.

2.4.1 Definition. A normed space E is of countable type if it contains a countable

set X such that [X] = E.

2.4.2 Remark. In the non-Archimedean case it is preferable to work with the con-

cept of ‘being of countable type’ rather than of ‘separability’. This is because if E is

a separable vector space over K, then K has to be separable. Thus the concept of

separability for vector spaces over K is not of use when K is not separable. How-

ever, for vector spaces over K ‘being of countable type’ is a property that doesn’t

add restrictions over the field K. Furthermore, as the next result implies, ‘being of

countable type’ is a natural generalization of separability in the classical case.
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2.4.3 Theorem ([32, p. 28]). Let E be a normed vector space over K and suppose

that K is separable. Then E is of countable type if and only if E is separable.

2.4.4 Examples. (a) Let K be a non-Archimedean valued field. Then Kn with

the supremum norm is of countable type.

(b) The space (c0, || · ||∞) defined in 2.1.3 is of countable type since

c0 = [{en : n ∈ N}]

where en(i) = δi,n for n, i ∈ N.

Now we present a generalization of the concept of orthogonality required to char-

acterize the spaces of countable type.

2.4.5 Definition. Let E be a normed space and let t ∈ (0, 1].

(a) A vector x ∈ E is t-orthogonal to y ∈ E (with respect to || · ||) if

dist(x,Ky) ≥ t||x||.

(b) Let X ⊂ E such that 0 /∈ X. X is called a t-orthogonal system (with respect

to || · ||) if for each x ∈ X, y ∈ [X \ {x}], x is t-orthogonal to y.

Notice that t-orthogonality is symmetric and that 1-orthogonality is the concept

of orthogonality defined in 2.3.4.

2.4.6 Example. The system {en : n ∈ N} of canonical vectors in (c0, || · ||∞) is

orthogonal.

2.4.7 Lemma ([32, p. 27]). Let E be a normed space, t ∈ (0, 1] and X ⊂ E, 0 /∈ X.

The following conditions are equivalent:

(a) X is t-orthogonal;
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(b) each finite subset of X is t-orthogonal;

(c) for each n ∈ Z, each distinct e1, . . . , en ∈ X, and each λ1, . . . , λn ∈ K,

||λ1e1 + · · ·+ λnen|| ≥ t max
1≤i≤n

||λiei||.

2.4.8 Definition. Let E be a normed space, let t ∈ (0, 1]. A sequence e1, e2, · · · ∈ E

is called a t-orthogonal basis of E if {e1, e2, . . . } is t-orthogonal and every x ∈ E

has an expansion x = ∑∞
n=1 λnen, where λn ∈ K. The basis e1, e2, . . . is orthogonal

if t = 1.

2.4.9 Theorem ([32, p. 30]). If e1, e2, · · · ∈ E is a t-orthogonal basis of E then

every x ∈ E has a unique expansion of the form x = ∑∞
n=1 λnen, for λn ∈ K.

Proof. Let x ∈ E. If x = ∑∞
n=1 λnen then by continuity of the norm we have that:

||x|| = lim
m→∞

∣∣∣∣∣
∣∣∣∣∣
m∑
n=1

λnen

∣∣∣∣∣
∣∣∣∣∣ ≥ t lim

m→∞
max

1≤n≤m
||λnen|| = tmax

n∈N
||λnen||,

so if x = ∑∞
n=1 µnen for certain µn ∈ K, then 0 = ∑m

n=1(λn − µn)en, so that

tmax
n∈N
||(λn − µn)en|| = 0, i.e., λn = µn for all n ∈ N. �

2.4.10 Example. The system {en : n ∈ N} of canonical vectors in (c0, || · ||∞) is an

orthogonal basis for c0.

2.4.11 Theorem ([32, 2.3.7]). Let E be a normed space.

(a) If E has a t-orthogonal basis for some t ∈ (0, 1], then E is of countable type.

(b) If E is of countable type then E has a t-orthogonal basis for each t ∈ (0, 1).

Finally we obtain the characterization that we wanted:

2.4.12 Theorem ([32, 2.3.9]). (a) Each infinite-dimensional Banach space of

countable type is linearly homeomorphic to c0.
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(b) Each normed space of countable type is linearly homeomorphic to a subspace

of c0.

Proof. (a) Suppose that E is an infinite-dimensional Banach space of countable type.

Let t ∈ (0, 1). By 2.4.11 there exists a t-orthogonal basis e1, e2, . . . of E. Let π ∈ K

such that 0 < |π| < 1. By using the same technique used in the claim of 2.2.1,

without loss of generality we can assume that |π| ≤ ||en|| ≤ 1 for all n ∈ N. Consider

the map T : c0 → E defined by

T (λ1, λ2, . . . ) =
∞∑
n=1

λnen.

By definition T is linear and since e1, e2, . . . is a t-orthogonal basis of E, T is bijective.

For x = (λ1, λ2, . . . ) ∈ c0, we have that

||T (x)|| =
∣∣∣∣∣
∣∣∣∣∣
∞∑
n=1

λnen

∣∣∣∣∣
∣∣∣∣∣ ≤ max

n∈N
||λnen|| ≤ max

n∈N
|λn| = ||x||.

By t-orthogonality,

||T (x)|| =
∣∣∣∣∣
∣∣∣∣∣
∞∑
n=1

λnen

∣∣∣∣∣
∣∣∣∣∣ ≥ tmax

n∈N
||λnen|| ≥ t|π|max

n∈N
|λn| = t|π|||x||,

so that T is a homeomorphism. �

2.4.13 Remark. This result shows that, for a given K, c0 is (up to linear home-

omorphisms) the only infinite-dimensional Banach space over K of countable type.

This is in contrast to classical Analysis, where there exist separable Banach spaces

without a Schauder basis as Enflo proves in [15], and where two Banach spaces that

have a Schauder basis need not be linearly homeomorphic (e.g. `1 and `2).

The next result highlights a remarkable difference between non-Archimedean and

classical Analysis.
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2.4.14 Theorem ([32, 2.3.13]). Let E be a Banach space of countable type. Then

each closed subspace D of E is complemented, i.e. there is a subspace F of E such

that E = D + F . In fact, for every M > 1 there exists a continuous P ∈ L(E) onto

D such that P 2 = P and ||P || ≤M .

Notice that in classical Analysis this is not true. For each p 6= 2, the separable

Banach space `p has a closed subspace that is not complemented (see [28]).

The following is an open problem asked in [32, p. 33]: Let E be a non-complete

normed space of countable type. Is every closed subspace D of E complemented?

As is shown in the following result, the answer is positive.

2.4.15 F Proposition. Let E be a normed space of countable type. Every closed

subspace D of E complemented.

Proof. Let E be a normed space of countable type and let D be a closed subspace of

E. If the space E is complete, then the result follows from 2.4.14. Now let’s suppose

that E is not complete. Consider Ê the completion of E and D the closure of D

in Ê. First, we will show that Ê is of countable type. By hypothesis, there is a set

{yn ∈ E : n ∈ N} such that for each e ∈ E, and for every neighborhood U ⊂ E of e,

we have that U ∩ [{yn : n ∈ N}] 6= ∅. Since E is dense in Ê, it follows that for every

x ∈ Ê, and every neighborhood V ⊂ Ê of x, V ∩ E 6= ∅. Let e0 ∈ V ∩ E. Then

V ∩ E ⊂ E is a neighborhood of e0 and thus V ∩ E ∩ [{yn : n ∈ N}] 6= ∅. Hence

V ∩ [{yn : n ∈ N}] 6= ∅, so Ê = [{yn : n ∈ N}]. Now by 2.4.14, there exists P ∈ L(Ê)

such that P 2 = P and P (E) = D. Since D is a closed subspace of E, D = E ∩ D

and since P is the identity on D, it follows that P |E ∈ L(E) is a projection onto D

and therefore D is complemented on E. �

A map P ∈ L(E) is called projection when P 2 = P . Before we finish this

section let’s present the existing relation between the norm of a projection and the

t-orthogonality of its kernel and range denoted by ker(P ) and R(P ) respectively.
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2.4.16 F Proposition. Let E be a normed space and let P ∈ L(E) be a projection.

If ||P || ≤M for some M ∈ R (and hence M ≥ 1), then x and y are M−1-orthogonal

for all x ∈ Ker(P ) and all y ∈ R(P ).

Proof. Since P = P 2, 1 ≤ ||P || ≤ M . Let x ∈ Ker(P ) and let y ∈ R(P ). We

have that dist(y,Kx) ≥M−1||y||. Otherwise, the inequality dist(y,Kx) < M−1||y||

implies the existence of a scalar β ∈ K such that ||y − βx|| < M−1||y||. Notice that

y = P (y) = P (y − βx). Thus M ||y − βx|| < ||P (y − βx)|| and hence M < ||P ||

contradicting our hypothesis. �



Chapter 3

Normed spaces over fields with

valuations of higher rank

In this chapter the theory of X-normed spaces over non-Archimedean valued fields

with valuations of higher rank is presented. We will identify the difficulties that

arise when we move from the rank-1 case to the higher rank case and in the process,

some new standalone results will be presented. The main contributions made in this

chapter can be found in subsections 3.4.3, 3.4.4 and 3.4.7.

Although this chapter will help to present the context for the next chapter where

we will study operators on c0 over a non-Archimedean valued field with a valuation

of higher rank, several results presented here will be independent of what we will do

in Chapter 4; but they are included for their own merit and mathematical value as

well as for the completion of the theory developed in this chapter.

We will begin this chapter with the presentation of a generalization of ultrametric

spaces where the metrics take values in an arbitrary totally ordered set X. Such

ultrametric spaces are called scaled spaces and will describe the metric properties of

a generalized concept of normed space presented later on: X-normed spaces, where

the norms take values in X. An X-normed space will have a base field with a general

67
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valuation taking values in an arbitrary ordered commutative group G, and in order

to have a proper scalar multiplication for these X-normed spaces we will need an

action map G×X → X which will equip X with a G-module structure.

Next, in the pursuit of a formalization for the norm of a bounded linear operator

defined in an X-normed space, we will need to study the Dedekind completion of

G-modules in order to use the concept of supremum needed to define the norm of

a bounded linear operator as well as the norm on a quotient space in this general

context.

Then in 3.4.3, the author presents sufficient conditions to prove that the quotient

space of a spherically complete X-normed space is spherically complete. After that

in 3.4.4, the relations of the cofinality and coinitiality between a group G and a

G-module X are studied and their consequences are presented.

Later the concept of a Banach space is defined for this general context and some

related results are presented.

Subsequently in 3.4.7, I present generalized versions of the Baire category theorem

and the Open Mapping Theorem suitable for this new context.

Finally, major properties of spaces of countable type are discussed and an idea

to solve an open problem regarding the existence of bases is presented.

3.1 Scaled Spaces

Before we studied valued fields in Section 1.2 we studied ultrametric spaces in Section

1.1 in order to have a better understanding of the topologies involved in valued fields

without getting distracted by their algebraic structure. We will do the same for X-

normed spaces defined in this chapter. Thus we will briefly discuss abstract structures

called scaled spaces that will describe the topology of an X-normed space.

3.1.1 Definition. Let M be a set, let X be a totally ordered set and let 0 be a symbol
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such that 0 < x for all x ∈ X. An X-valued scale on M is a map d : M ×M →

X ∪ {0} such that for all x, y, z ∈ X:

(a) d(x, y) = 0⇔ x = y,

(b) d(x, y) = d(y, x), and

(c) d(x, z) ≤ max{d(x, y), d(y, z)}.

The space (M,X, d) is called a scaled space (ultrametric space if X ⊂ (0,∞)).

3.1.2 Notation. Let (M,X, d) be a scaled space and consider a ∈ M and r ∈ X.

The sets BM(a, r) := B(a, r) := {b ∈ M : d(b, a) < r} and BM [a, r] := B[a, r] :=

{b ∈ X : d(b, a) ≤ r} are called the open and closed balls of center a and

radius r, respectively. The family of open balls forms a basis of neighborhoods for a

uniquely determined Hausdorff topology on M . This topology is called the topology

induced by d on M .

By noting that the major properties of ultrametric spaces are consequences of

the strict triangle inequality independently of the values of the ultrametric, we can

obtain the result below:

3.1.3 Theorem. Let (M,X, d) be a scaled space. Then the following properties are

satisfied:

(a) Each point of a ball is a center of the ball.

(b) Each ball in M is both closed and open in the topology induced by d.

(c) Each ball has an empty boundary.

(d) Two balls are either disjoint, or one is contained in the other.

(e) If two balls B1, B2 are disjoint, then dist(B1, B2) = d(a, b) for all a ∈ B1, b ∈

B2.
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(f) Let ε ∈ X. For a, b ∈M the relation d(a, b) < ε is an equivalence relation and

induces a partition of M into open balls of radius ε. Analogously for d(a, b) ≤ ε

and closed balls.

(g) Let Y ⊂ X, B a ball in X, B ∩ Y 6= ∅. Then, B ∩ Y is a ball in Y.

(h) Let (an)n be a sequence in M converging to a ∈M , then for each b ∈M \ {a},

there exists N ∈ N such that d(an, b) = d(a, b) for all n ≥ N .

(i) A sequence (an)n in M is Cauchy if and only if limn→∞ d(an, an+1) = 0.

Proof. Analogous to the proof of 1.1.6. �

3.1.4 Definition. A nest of balls in a scaled space is a nonempty collection of

balls that is linearly ordered by inclusion.

In the rank 1 case the condition of spherical completeness is needed in results

regarding: extension of maps like the Hahn-Banach theorem ([45, 4.10, 4.15]), fixed

points ([34, 2.3]) and best approximations ([38, 21.1, 21.2]). We will see in this chap-

ter that we do not always have a first countability condition in the set where a scale

takes values and therefore the condition of Cauchy completeness is inappropriate

to guarantee convergence of nets. It is natural to require stronger conditions when

the context has reached this level of generality and here the concept of spherical

completeness proved to be a natural condition for convergence in scaled spaces. The

next definition is a generalization of the definition 1.1.7.

3.1.5 Definition. A scaled space M is spherically complete if each nest of balls

in M has a nonempty intersection.

As we will see later, the next result is a useful tool to work with spherically

complete scaled and normed spaces in the higher-rank case, and allows a natural

transition from induction on N to transfinite induction.
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3.1.6 F Proposition. A scaled space M is spherically complete if and only if every

nest of balls in M indexed by a limit ordinal has a nonempty intersection.

Proof. If M is spherically complete then every nest of balls in M has a nonempty

intersection.

To prove the other implication suppose that every nest of balls indexed by a limit

ordinal has a nonempty intersection. Let {Bi : i ∈ I} be a nest of balls in M , i.e.

I 6= ∅ is a totally ordered set such that for each i ∈ I, Bi is a ball in M and for

i, j ∈ I, i < j implies Bj ⊂ Bi. If I has a maximum, say k, then ∩i∈IBi = Bk 6= ∅.

Now suppose that I does not have a maximum. It is enough to prove the following

claim.

Claim: There exist a limit ordinal β and a set {iα ∈ I : α < β} that is cofinal

on I.

In fact, if the claim is true, then by hypothesis ∅ 6= ∩α<βBiα = ∩i∈IBi. Let’s

prove the claim. Since I 6= ∅, there exists i0 ∈ I. Since i0 6= max I, we have that

{i ∈ I : i > i0} 6= ∅. So we can choose some i1 ∈ I such that i1 > i0. Suppose that

for an ordinal δ, for every α < δ we choose iα such that {iα ∈ I : α < δ} is strictly

increasing. If {iα ∈ I : α < δ} is cofinal on I, then we are done. Otherwise, we can

choose iδ from {i ∈ I : i > iα for all α < δ}, since it is nonempty. Because of the

axiom of choice, the process has to terminate, otherwise we found an injection from

the proper class of all the ordinals into a set. �

The concept of spherical completeness for scaled spaces offers a result regarding

best approximations similar to [38, 21.1, 21.2] in ultrametric spaces. Specifically, we

have the following:

3.1.7 Theorem ([30, 1.2.3]). Let (M,X, d) be a scaled space and let V ⊂ M be a

spherically complete subspace. Then each x ∈M has a best approximation in V i.e.

min{d(x, v) : v ∈ V } exists.
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The next result characterizes those scaled spaces that can be considered as ul-

trametric spaces:

3.1.8 Theorem ([30, 1.2.4]). Let (M,X, d) be a scaled space. The following state-

ments are equivalent:

(a) M is ultrametrizable, i.e. the topology on M induced by d is also induced by

some ultrametric d′ : M ×M → R.

(b) M is discrete or there exist s1 > s2 > . . . in X such that limn sn = 0.

3.2 Valued fields with valuations of higher rank

In 1.8.1 we defined Krull valuations with values in an additive ordered abelian group

(G,+). In this chapter we will define normed spaces over fields with Krull valuations

for which it is convenient to consider G as a multiplicative group (G, ·) instead.

While an additive group (G,+) satisfying a+ b = b+ a for all a, b ∈ G, is said to be

abelian, a multiplicative group (G, ·) satisfying ab = ba for all a, b ∈ G, is said to be

commutative. Once the terms abelian or commutative are used, then the adjectives

additive and multiplicative will be omitted. Hence, the definition of Krull valuation

is rephrased as follows: given a field K and an arbitrary ordered commutative group

G, a Krull valuation on K is a map | · | : K 7→ G ∪ {0} satisfying:

(a) | · | is onto,

(b) |x| = 0 iff x = 0,

(c) |x+ y| ≤ max{|x|, |y|},

(d) |xy| = |x||y|.

where 0 is a symbol such that 0 < g and 0 = 0g = g0 = 00 for all g ∈ G. With

this new definition, the map |·| is a Krull valuation if and only if the map v(x) = |x|−1
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is a valuation defined as in 1.8.1 but using a multiplicative group instead and putting

0−1 =∞. Notice that the map d : K ×K → G ∪ {0}, d(x, y) = |x− y| is a scale on

K. The topology induced by this scale coincides with the valuation topology induced

by v (see 1.8.3). We will avoid the case when | · | induces the discrete topology on

K, this is when | · | is the trivial valuation, i.e. G = {1}.

In this new setting, the general Hahn field defined in 1.4.9 is adjusted as follows:

3.2.1 Definition. Given a field K and an arbitrary ordered commutative group G,

the general Hahn field K((G)) is the field of all λ ∈ KG, for which supp(λ) is dually

well-ordered in the order of G (i.e. each non-empty subset of supp(λ) has a largest

element), equipped with pointwise addition, i.e. (λ1 + λ2)(g) = λ1(g) + λ2(g) for all

g ∈ G, and with the multiplication defined by (λ1λ2)(g) = ∑
fh=g λ1(f)λ2(h) for all

g ∈ G.

The Hahn valuation defined on K((G)) (1.8.6.c) now is presented as the map

| · | : K((G))→ G ∪ {∞} defined by

|λ| :=


max{supp(λ)} λ 6= 0

0 λ = 0

In 1.8.1 we said that G has rank 1 when it can be embedded in (R,+). Since

now we are using multiplicative groups, we will say that G has rank 1 when it can

be embedded in ((0,∞), ·) and that it has higher rank otherwise. It is necessary to

give a precise definition for the rank of G when its rank is not 1.

3.2.2 Definition. A subset H of a totally ordered group G is convex if x, y ∈ H,

z ∈ G, x ≤ z ≤ y implies z ∈ H. Each proper convex subgroup is bounded from

below and from above. The set of convex subgroups is totally ordered by inclusion.

A convex subgroup H is called principal if there is an a ∈ G such that H is the

smallest convex subgroup of G containing a. The order type of the set of all principal
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nontrivial subgroups is called the rank of G.

3.2.3 Examples. (a) Let F := {en ∈ R : n ∈ Z} the cyclic group generated

by the real number e (the group operation is the multiplication in R). The

commutative group G := {(gn)n ∈
∏∞
n=1 F : {n : gn 6= 1} is finite} with the

anti-lexicographic order (see 3.3.3.b) has rank ω (the first infinite ordinal) and

the nontrivial principal subgroups of G are of the form Hn :=
n∏
k=1

F ×
∞∏

k=n+1
{1},

for n ∈ N.

(b) Given n ∈ N, Zn has rank n.

3.2.4 Notation. From now on, G will be a totally ordered commutative group. If

| · | : K → G ∪ {0} is a Krull valuation, then we will say that G is the value group

of K.

3.2.5 Definition. Let (K, | · |) be a valued field with value group G. The valued field

(K, | · |) is Cauchy complete when each Cauchy net of K is convergent in K.

3.2.6 Theorem ([30, 1.4.1]). Let (K, | · |) be a valued field with value group G. The

following statements are equivalent:

(a) (K, | · |) is metrizable.

(b) (K, | · |) is ultrametrizable.

(c) G has a coinitial sequence (gn)n∈N, i.e. for each g ∈ G, there exists n such that

gn ≤ g.

(d) G has a cofinal sequence (gn)n∈N, i.e. for each g ∈ G, there exists n such that

g ≤ gn.

(e) K \ {0} contains a countable set C for which 0 ∈ C.

(f) K contains a countable subset that is not closed.
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3.3 G-modules

In the new setting, a norm can take values in an ordered set X in which a group G

acts. Let’s define the range of this generalized concept of norm.

3.3.1 Definition. Let G be a totally ordered commutative group. A totally ordered

set X is called a G-module if there exists a map G×X → X, written (g, x) 7→ gx,

such that for all g, g1, g2 ∈ G and all x, x1, x2 ∈ X we have:

(a) g1(g2x) = (g1g2)x;

(b) 1x = x;

(c) g1 ≤ g2 ⇒ g1x ≤ g2x;

(d) x1 ≤ x2 ⇒ gx1 ≤ gx2;

(e) Gx is coinitial in X;

(f) X has no smallest element.

The map (g, x) 7→ gx is called a G-action on X.

The axioms that define a G-action on X produce the following consequences:

3.3.2 Lemma ([30, pp. 246–247]). If X is a G-module, then for all x, x1, x2 ∈ X

and g, g1, g2 ∈ G:

(c ′) the implication g1 < g2 ⇒ g1x < g2x does not hold for some G and X,

(d ′) x1 < x2 ⇒ gx1 < gx2,

(e ′) Gx is cofinal in X,

(f ′) X has no largest element.

3.3.3 Examples. (a) G is a G-module when we consider the multiplication on G

as a G-action on G.
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(b) Let β be an ordinal. For each α < β, put Gα = G. Define

X :=
{

(gα)α<β ∈
∏
α<β

Gα : {α : gα 6= 1} is finite
}

and consider the antilexicographic order on X, i.e. for x = (xα) and y = (yα) in

X, x < y if and only if x 6= y and 1 < yx−1
φ(yx−1) where yx−1 = (yαx−1

α )α<β ∈ X

and φ(x) = max{α : xα 6= 1} (compare with the order defined in 1.4.10).

With the action of G on X defined by gx := (gxα)α<β for all g ∈ G and

x = (xα)α<β in X, we have that X is a G-module.

(c) Let β be an ordinal. For each α < β, let Gα := {gα : g ∈ G} be a copy of G

such that G0 = G and Gα1 ∩Gα2 = ∅ for α1 < α2 < β. Let

X :=
⋃
α<β

Gα

be ordered by stating that for all s, t ∈ G, such that t < s, we put t < sα2 <

sα1 < s for 0 < α1 < α2 < β. Then X becomes a G-module by extending the

multiplication of G by gsα := (gs)α.

3.3.4 Notation. From now on K will be a field with Krull valuation | · | : K →

G ∪ {0G}, where G is a totally ordered commutative group and 0G is an element

adjoined to G satisfying: 0G = 0Gg = g0G = 0G0G for all g ∈ G. Additionally, to

each G-module X we adjoin an element 0X for which, 0X = 0G0X = 0Gx < x for

each x ∈ X. However, we will denote 0G and 0X by 0.

3.3.5 Definition. Let E be a vector space over (K, | · |) and let X be a G-module.

An X-norm on E is a map || · || : E → X ∪ {0} such that for all x, y ∈ E, λ ∈ K:

(a) ||x|| = 0⇔ x = 0;

(b) ||λx|| = |λ|||x||;
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(c) ||x+ y|| ≤ max{||x||, ||y||}.

The space (E, || · ||) is called an X-normed space.

Some examples of X-normed spaces using the G-modules presented in 3.3.3:

3.3.6 Examples. Let K be a field with Krull valuation | · | : K → G ∪ {0}.

(a) The space c0 :=
{

(xn)n ∈
∏
n∈NK : limn xn = 0

}
with the norm ||(xn)n|| :=

max{|xn| : n ∈ N} is an X-normed space where X = G. Here, for (xn)n ∈∏
n∈NK, limn xn = 0 if and only if for all g ∈ G, there exists N ∈ N such that

n ≥ N ⇒ |xn| < g.

(b) Let β be an ordinal and let X be the G-module of 3.3.3.b. The space c00 :={
(xα)α ∈

∏
α<βK : {α : xα 6= 0} is finite} with the norm ||(xα)α|| := (|xα|)α<β

is an X-normed space.

(c) Consider K = R((x)) with the valuation | · | defined after 1.3.10. Hence G =

{en ∈ R : n ∈ Z}. Let β be an ordinal and let X be the G-module of 3.3.3.c.

Define I as the set of all the finite sets of ordinals smaller than β. The space

K(Yα : α < β) := {∑α∈J λαY
nα
α : J ∈ I, λα ∈ K,nα ∈ N} is an X-normed

space with the norm defined as ||∑α∈J λαY
nα
α || := ||λδY nδ

δ || := |λδ|enδα where

δ = max(J).

In the rank-1 case, the topology induced by a norm is a vector topology, i.e. the

addition of vectors and the scalar multiplication are continuous maps with respect

to the topology induced by the norm. In the result below we verify that these facts

are satisfied by every X-normed space among other properties.

3.3.7 Theorem. Let (E, || · ||) be an X-normed space where X is a G-module.

(a) the map d : E × E → X ∪ {0}, d(e, f) := ||e− f || is an X-valued scale.

(b) For every x ∈ E \ {0}, the norm is constant on the ball B(x, ||x||).
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(c) The norm || · || : E → X∪{0} is continuous with respect to the topology induced

by d.

(d) The addition map + : E × E → E is continuous.

(e) The scalar multiplication · : K × E → E is continuous.

(f) For all λ ∈ K \ {0}, T : E → E, T (e) = λe is a homeomorphism.

(g) For any subset A ⊂ E and any λ ∈ K, λA = λA.

Proof. (a): Analogous to the standard proof of a norm inducing a metric.

(b): For any y ∈ B(x, ||x||), we have that ||y − x|| < ||x||. Thus by the strong

triangular inequality of the norm, it follows that ||x|| = ||y||.

(c): Let (ei)i∈I be a net on E convergent to e ∈ E. If e = 0, this means that

for all s ∈ X, there exists j ∈ I such that i ≥ j ⇒ ||ei|| < s. Thus the net

(||ei||)i∈I on X is convergent to 0 = ||e||. Now, if e 6= 0, there exists j ∈ I such that

i ≥ j ⇒ ||ei − e|| < ||e||. By 3.3.7.b, ||ei|| = ||e|| for i ≥ j. Therefore (||ei||)i∈I is

convergent to ||e||.

(d): For all x, y, x′, y′ ∈ E, we have that ||(x + y) − (x′ + y′)|| ≤ max{||x −

x′||, ||y − y′||}. Thus +(B(x, s)×B(y, s)) ⊂ B(x+ y, s) for all s ∈ X.

(e): Let (λi, ei)i∈I be a net on K×E convergent to (λ, e) ∈ K×E. ||λiei−λe|| =

||λiei−λei+λei−λe|| ≤ max{|λi−λ| ||ei||, |λ| ||ei−e||}. By 3.3.7.b, either ||ei|| → 0

or ||ei|| is eventually equal to the constant ||e||. Either way, λiei → λe.

The statements (f) and (g) have standard proofs. �
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3.4 Continuous linear operators and Dedekind

completions

In this section we will study continuous linear operators between normed spaces in

the higher rank case and will develop the necessary means to conceive norms for

bounded operators and for quotient spaces. Throughout this section we will let X, Y

be G-modules, let E be an X-normed space and let F be a Y -normed space.

3.4.1 Theorem. Let T : E → F be a continuous linear map. For every t ∈ X, the

set {||Te|| : ||e|| ≤ t} is bounded above in Y .

Proof. By continuity of T , for each y ∈ Y , there exists x ∈ X such that ||Te|| ≤ y

whenever ||e|| ≤ x. Let t ∈ X. Since Gt is coinitial in X, there exists g ∈ G such

that gt < x. Choose λ ∈ K such that |λ| = g and let e ∈ E be such that ||e|| ≤ t.

Then ||λe|| = |λ| ||e|| ≤ gt < x. Hence ||T (λe)|| ≤ y and thus ||Te|| ≤ g−1y. �

A natural candidate for the norm of a continuous linear map T : E → F would

be a map of the form || · ||t : L(E,F )→ Y , ||T ||t := sup{||Te|| : ||e|| ≤ t} for t ∈ X.

The problem is that the supremum may not exist in Y . To solve this problem we

invoke the concept of Dedekind completion.

3.4.1 Dedekind completion of an ordered set

In order to define a norm that requires the notion of supremum or infimum we

introduce the following:

3.4.2 Definition. A totally ordered set C is called Dedekind complete if each

non-empty subset of C that is bounded above has a supremum.

Notice that a totally ordered set C is Dedekind complete if and only if each

nonempty subset of C that is bounded below has an infimum. In the subsequent
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paragraphs we will study the Dedekind completion of an ordered set and verify that

any ordered set can be embedded in a natural way in a Dedekind complete ordered

set.

3.4.3 Notation. Let A ⊂ B ⊂ C where C is a totally ordered set. We say that

s = supBA if s ∈ B, s ≥ a for all a ∈ A, and if b ∈ B satisfies b ≥ a for all

a ∈ A, then b ≥ s. Similarly, we define infB A. If both supB A and supC A exist,

then supB A ≥ supC A, but we do not always have equality. When there is no possible

confusion, we will sometimes write supA instead of supB A.

The next construction mimics the construction of the ordered set of real numbers

from the rational numbers set as its Dedekind completion.

3.4.4 Definition. Let C be a totally ordered set. A subset S of C is called a cut if

(a) S 6= ∅, S is bounded above;

(b) if x ∈ S, y < x then y ∈ S;

(c) if supS exists then supS ∈ S.

Let C# be the collection of all cuts of C. With the ordering by inclusion C# becomes

a totally ordered set. Let’s verify that C# is Dedekind complete. Let A ⊂ C# be

nonempty and bounded above. There is a cut T such that S ⊂ T for all S ∈ A.

Then V := ⋃
S∈A S is nonempty and bounded above by T , and by adding supC V (if it

exists) to V we obtain a cut equal to supC# A. We have the natural order embedding

ϕ : C → C# given by

ϕ(x) := {a ∈ C : a ≤ x},

which is strictly increasing (order-preserving). Often we shall identify C and ϕ(C).

The ordered set C# is called the Dedekind completion of C, and it is the smallest

Dedekind complete ordered set containing C in the sense that for any given Dedekind
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complete ordered set D and any order embedding f : C → D, there exists a unique

order embedding f : C# → D such that f ◦ ϕ = f . Additionally, C# is unique up to

order-isomorphism. For details see ([44, 5.2]).

In the next result we summarize the main properties that can be obtained from

the intrinsic relation between an ordered set C and its Dedekind completion C#.

3.4.5 Proposition. Let C be a totally ordered set with Dedekind completion C#.

Then the following statements hold:

(a) C is Dedekind complete if and only if C = C#.

(b) C is cofinal and coinitial in C#.

(c) For every s ∈ C#, {c ∈ C : c ≤ s} is a cut in C and every cut in C has this

form.

(d) If s, t ∈ C#, s < t, then there exist x, y ∈ C with s ≤ x < t and s < y ≤ t.

(e) For each s ∈ C#, s = supC#{c ∈ C : c ≤ s} = infC#{c ∈ C : c ≥ s}.

(f) For each s ∈ C#, s0 := max{c ∈ C : c < s} exists if and only if s1 := max{c ∈

C# : c < s} exists. In that case, s0 = s1.

(g) For each s ∈ C#, s = supC#{c ∈ C : c < s} if and only if s = supC#{c ∈ C# :

c < s}.

(h) For each s ∈ C#, supC#{c ∈ C : c < s} = supC#{c ∈ C# : c < s}.

(i) For each s ∈ C#, s0 := min{c ∈ C : s < c} exists if and only if s1 := min{c ∈

C# : s < c} exists. In that case, s0 = s1.

(j) For each s ∈ C#, s = infC#{c ∈ C : s < c} if and only if s = infC#{c ∈ C# :

s < c}.
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(k) For each s ∈ C#, infC#{c ∈ C : s < c} = infC#{c ∈ C# : s < c}.

(l) If A ⊂ C, s = supC A, then s = supC# A. If t = infC A, then t = infC# A.

Proof. The statements (a), (b), (c), (d), (e) and (l) are proved in [30, 1.1.4].

(f): Let s ∈ C# and suppose that s0 := max{c ∈ C : c < s} exists. Then s0 ∈ G

and s0 ≤ sup{c ∈ C# : c < s} := s1. If the inequality were strict, then by 3.4.5.d,

s1 ∈ G. Thus, by the definition of supremum, there would exist t1, t2 ∈ G# such that

s0 < t1 < t2 < s1. Then by 3.4.5.d there would be a g ∈ G such that s0 < t1 ≤ g <

t2 < s1 < s contradicting the definition of s0. Hence s0 = s1 = max{c ∈ C# : c < s}.

Now suppose that s1 := max{c ∈ C# : c < s} exists. Then s1 < s and by 3.4.5.d we

have that s1, s ∈ G. Hence s1 = max{c ∈ C : c < s}.

(g): if s = supC#{c ∈ C : c < s} and s1 = supC#{c ∈ C# : c < s} then s ≤ s1 ≤

s. Now suppose that s = supC#{c ∈ C# : c < s} and let s0 := supC#{c ∈ C : c < s}.

Then s0 ≤ s. If s0 < s, then by definition of supremum there exist t1, t2 ∈ G#

such that s0 < t1 < t2 < s1. Then by 3.4.5.d there would be a g ∈ G such that

s0 < t1 ≤ g < t2 < s1 < s contradicting the definition of s0. Therefore s0 = s.

(h): the supremumM := supC#{c ∈ C# : c < s} can take only two values: either

M = max{c ∈ C# : c < s} or M = s. In the former case, by (f) it follows that

M = max{c ∈ C : c < s}; in the latter case, by (g) we have that M = supC#{c ∈

C : c < s}.

The proofs of (i), (j) and (k) are analogous to the ones of (f), (g) and (h) respec-

tively. �

3.4.2 The Dedekind completion X# as a G-module

For a norm on L(E,F ) we need to make sense of the equality ||λT || = |λ| ||T || for

any T ∈ L(E,F ) and any λ ∈ K. For this end we need a G-module structure in X#.

First, let’s present the behavior of infima and suprema in a G-module with respect
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to its G-action.

3.4.6 Theorem ([30, 1.5.3]). Let X be a G-module.

(a) Let V ⊂ X, g ∈ G. If supX V exists, then g supX V = supX gV . If infX V

exists, then g infX V = infX gV . If V is not bounded above (below), then neither

is gV .

(b) Let W ⊂ G, s ∈ X. If supGW and supXWs exist, then supWs ≤ (supGW )s.

If infGW and infXWs exist, then inf Ws ≥ (infGW )s. The set W is bounded

above (below) if and only if Ws is bounded above (below).

3.4.7 Remark. (a) To express the fact that some subset V of a G-module X is

not bounded below we sometimes write inf V = 0 which can be interpreted as

the infimum taken in X ∪ {0}.

(b) For an example in which the inequalities in (b) above are strict see [30, 1.5.5

(c)].

The next result defines a structure of G-module on X# when X is a G-module.

3.4.8 Theorem ([30, 1.5.4]). Let X be a G-module. The G-action G × X → X

can uniquely be extended to a G-action G×X# → X# making of X# a G-module.

Specifically, the map (g, s) 7→ gs := sup{gx : x ∈ X, x ≤ s} is the only G-action on

X# extending the one on X.

Now we are in position to define a norm in L(E,F ).

3.4.9 Definition. For each t ∈ X, the map || · ||t : L(E,F ) → Y # ∪ {0}, ||T ||t :=

sup{||Te|| : ||e|| ≤ t} defines a Y #-norm on L(E,F ) called a uniform norm.

3.4.10 Remark. (a) For any given s, t ∈ X, there are g, h ∈ G such that

g|| · ||s ≤ || · ||t ≤ h|| · ||s.
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(b) The induced topology on the space L(E,F ) is the topology of uniform conver-

gence on bounded sets (see [30, p. 257]).

3.4.11 Definition. Suppose that X = Y and let Lip(E,F ) be the space of all T ∈

L(E,F ) such that there is a g ∈ G satisfying ||Te|| ≤ g||e|| for all e ∈ E, i.e. T

is a linear Lipschitz map or bounded map. The map || · || : Lip(E,F ) → G#,

||T || := inf{g ∈ G : ||Te|| ≤ g||e|| for all e ∈ E} defines the Lipschitz norm on

Lip(E,F ).

3.4.12 Remark. Unlike the rank(G) = 1 case, it is possible to have Lip(E,F ) $

L(E,F ). See for example [17] and [18, XI].

3.4.3 Quotient spaces of X-normed spaces

In this subsection we will focus on the structure of X#-normed space of a quotient

space and study sufficient conditions to have spherically complete quotient spaces.

3.4.13 Definition. Let E be an X-normed space where X is a G-module. Let D

be a closed subspace of E and let π : E → E/D be the canonical map. The map

||π(e)|| := inf{||e − d|| : d ∈ D} defines an X#-norm on E/D called the quotient

norm.

The following result is mentioned in [30, p. 257] with no proof.

3.4.14 Theorem. Let X, E, D, E/D and π be as in definition 3.4.13. The following

statements hold:

(a) ||π(e)|| ≤ ||e|| for all e ∈ E,

(b) The norm topology on E/D is equivalent to the quotient topology induced by π.

(c) If F is an X#-normed space, T ∈ L(E,F ) and D = ker(T ), then the map

T1 : E/D → F defined by T1(π(e)) := T (e) belongs to L(E/D,F ) and for each



85

s, t ∈ X#, with s < t we have ||T ||s ≤ ||T1||s ≤ ||T ||t. In particular, if T is

Lipschitz then so is T1 and ||T || = ||T1||.

Proof. The proofs of (a) and (b) are analogous to their classical counterparts. In

(c) to prove that T1 is a well-defined continuous linear map it is enough to use

the fact that D = ker(T ) and the definition of the norm in E/D. Let s, t ∈ X#,

with s < t. Let e ∈ E be such that ||e|| ≤ s. Then by (a), ||π(e)|| ≤ s. Hence

||Te|| = ||T1π(e)||. Thus {||Te|| : ||e|| ≤ s} ⊂ {||T1π(e)|| : ||π(e)|| ≤ s} and therefore

||T ||s ≤ ||T1||s. Now suppose ||π(e)|| ≤ s < t. Then there exists d ∈ D such that

||π(e)|| ≤ ||e − d|| < t. Since ||T1π(e)|| = ||Te|| = ||T (e − d)||, it follows that

{||T1π(e)|| : ||π(e)|| ≤ s} ⊂ {||Te|| : ||e|| ≤ t} and therefore ||T1||s ≤ ||T ||t. Finally,

suppose that T is Lipschitz. Then there exists g ∈ G such that ||Te|| ≤ g||e|| for

all e ∈ E. Hence we have that for any d ∈ D, ||T1π(e)|| = ||T (e − d)|| ≤ g||e − d||

which implies that ||T1π(e)|| ≤ g||π(e)||. Thus T1 is Lipschitz and {g ∈ G : ||Te|| ≤

g||e|| for all e ∈ E} ⊂ {g ∈ G : ||T1π(e)|| ≤ g||π(e)|| for all π(e) ∈ E/D}. Now let

g ∈ G be such that ||T1π(e)|| ≤ g||π(e)|| for all e ∈ E. Then ||Te|| = ||T1π(e)|| ≤

g||π(e)|| ≤ g||e|| for all e ∈ E. Therefore {g ∈ G : ||Te|| ≤ g||e|| for all e ∈ E} =

{g ∈ G : ||T1π(e)|| ≤ g||π(e)|| for all π(e) ∈ E/D} and hence ||T1|| = ||T ||. �

3.4.15 Definition. Let X, E, F , D, E/D, π, T and T1 be as in 3.4.14.c. The space

F is called a quotient of E if T ∈ L(E,F ) can be chosen such that the map T1 is

an isometrical isomorphism. Such a T is called a quotient map. A quotient map

T ∈ L(E,F ) is a strict quotient map (and F is called a strict quotient of E)

if for all f ∈ F we have ||f || = min{||e|| : Te = f}.

3.4.16 Remark. A surjective T ∈ L(E,F ) is a quotient map if and only if for each

f ∈ F we have ||f || = inf{||e|| : Te = f}.

The next result characterizes the quotient maps and strict quotient maps.
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3.4.17 Proposition. Let X be a G-module, let E,F be X-normed spaces and let

π : E → F be a linear map. Then the following statements hold.

(a) π is a quotient map if and only if, for each s ∈ X, π(BE(0, s)) = BF (0, s).

(b) π is a strict quotient map if and only if π is a quotient map and for each s ∈ X,

π(BE[0, s]) = BF [0, s].

(c) π is a strict quotient map if and only if, for each s ∈ X, π(BE[0, s]) = BF [0, s].

Proof. The statements (a) and (b) are proved in [30, 2.2.2]. Let’s prove (c). If π is a

strict quotient map, then by (b), π(BE[0, s]) = BF [0, s] for each s ∈ X. Now suppose

that for every s ∈ X, π(BE[0, s]) = BF [0, s]. There are two mutually exclusive cases.

Case 1: s0 := max{x ∈ X : x < s} exists. In this case, BE(0, s) = BE[0, s0] and

therefore π(BE(0, s)) = π(BE[0, s0]) = BF [0, s0] = BF (0, s).

Case 2: s = sup{x ∈ X : x < s}. In this case, BE(0, s) = ⋃
x<sBE[0, x] and

thus π(BE(0, s)) = ⋃
x<s π(BE[0, x]) = ⋃

x<sBF [0, x] = BF (0, s).

Therefore by (a), π is a quotient map and by (b), π is a strict quotient map. �

3.4.18 Corollary ([30, 2.2.3]). Let X be a G-module, let E,F be X-normed spaces,

let π : E → F be a linear map and let f ∈ F and s ∈ X.

(a) If π is a quotient map and B = BF (f, s) then π(BE(e, s)) = B for each e ∈

π−1(B).

(b) If π is a strict quotient map and B = BF [f, s] then π(BE[e, s]) = B for each

e ∈ π−1(B).

The next result shows how strict quotients of spherically complete spaces are

spherically complete while demonstrating the usefulness of our tool, Proposition

3.1.6 allowing the use of transfinite induction. Although this result was first stated

in [30, 2.2.5], the proof offered there is not a clear one and the author thinks that a
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rigorous proof is needed. The proof offered here uses transfinite induction which is

a new approach.

3.4.19 F Proposition. Strict quotients of spherically complete spaces are spheri-

cally complete.

Proof. Let X be a G-module and let E,F be X-normed spaces. Let π : E → F

be a strict quotient map and suppose that E is spherically complete. By 3.1.6 it

is enough to prove that every nest of balls in F indexed by a limit ordinal has a

nonempty intersection. Let β be a limit ordinal and let {Bα : α < β} be a collection

such that for each α < β, Bα = BF [fα, sα] for some fα ∈ F and sα ∈ X satisfying

sα2 < sα1 and Bα2 ⊂ Bα1 whenever α1 < α2 < β. By 3.4.18 Bα = π(BE[a, sα]) for

all a ∈ π−1(Bα) and for every α < β. Let’s introduce our hypothesis of transfinite

induction. Suppose that for some δ < β, we have a nest of balls in E, say {BE[aα, sα] :

α < δ} such that Bα = π(BE[aα, sα]). Let s := inf{sα : α < δ}. Then s ≥ sδ.

Since E is spherically complete, there exists an element a in ⋂
α<δ BE[aα, sα]. By

3.1.3.a BE[a, sα] = BE[aα, sα] and thus BE[a, s] = ⋂
α<δ BE[a, sα] = ⋂

α<δ BE[aα, sα]

and by 3.4.18 BF [fα, sα] = π(BE[aα, sα]) = π(BE[a, sα]) = BF [π(a), sα]. Hence

π(BE[a, s]) = BF [π(a), s] = ⋂
α<δ BF [π(a), sα] = ⋂

α<δ BF [fα, sα] ⊃ BF [fδ, sδ]. Then

there exists aδ in BE[a, s] such that π(aδ) = fδ. Thus BF [fδ, sδ] = π(BE[aδ, sδ]) and

BE[aδ, sδ] ⊂ BE[aδ, s] = BE[a, s]. Now by transfinite induction we can build a nest

of balls {BE[aα, sα] : α < β} such that Bα = π(BE[aα, sα]). Since there exists an

element b in ⋂α<β BE[aα, sα], it follows that π(b) ∈ ⋂α<β Bα. �

In Proposition 3.4.19 the hypothesis over the quotient space of being strict can

be dropped when we assume a certain first countability condition on X#.

3.4.20 F Proposition. Let X be a G-module and let E be a spherically complete

X-normed space. If for every s ∈ X# ∪{0}, such that s = inf{x ∈ X : s < x}, there
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exists a sequence (tn)n∈N in X such that s < tn for all n ∈ N and s = inf{tn : n ∈ N},

then every quotient space F of E is spherically complete.

Proof. Let F be a quotient space of E. By 3.1.6 it is enough to prove that every

nest of balls in F indexed by a limit ordinal has a nonempty intersection. Although

F is a X#-normed space, it is enough to consider nests of balls with radii in X

by 3.4.5.d. Let β be a limit ordinal and let {Bα : α < β} be a collection such

that for each α < β, Bα = BF (fα, sα) for some fα ∈ F and sα ∈ X satisfying

sα2 < sα1 and Bα2 ⊂ Bα1 whenever α1 < α2 < β. Let s := inf{sα : α < β}. By

hypothesis, there exists a sequence (tn)n∈N in X such that s = inf{tn : n ∈ N}.

We can assume that (tn)n∈N is strictly decreasing (by taking a subsequence if it is

necessary). Let x0 = s0 and for each n ∈ N, let xn ∈ {sα : α < β} be such that

xn < min{tn, xn−1}. Then there is a strictly increasing sequence of ordinals αn < β

such that xn = sαn . Thus s = inf{xn : n ∈ N}. Put fn := fαn and Bn = BF (fn, xn)

for each n ∈ N. Let π : E → F be a quotient map and let a1 ∈ π−1(B1). Then

by 3.4.18, π(BE(a1, x1)) = B1. Suppose that for k ∈ N, we have a nest of balls

{BE(an, xn) : 1 ≤ n ≤ k} such that π(BE(an, xn)) = Bn for each n ∈ {1, . . . , k}.

SinceBk+1 ⊂ Bk = π(BE(ak, xk)), there exists ak+1 ∈ BE(ak, xk) such that π(ak+1) =

fk+1. Hence by 3.1.3.a, we have that BE(ak+1, xk+1) ⊂ BE(ak+1, xk) = BE(ak, xk)

and by 3.4.18 it follows that π(BE(ak+1, xk+1)) = Bk+1. Therefore, by induction there

is a nest of balls {BE(an, xn) : n ∈ N} such that π(BE(an, xn)) = Bn for all n ∈ N.

Since E is spherically complete, we can choose an element a in ⋂∞
n=1 BE(an, xn).

Then π(a) ∈ ⋂∞n=1 π(BE(an, xn)) = ⋂∞
n=1 Bn = ⋂

α<β Bα. �

Proposition 3.4.20 is an improvement to [30, 2.2.5] where it is supposed that the

countability condition in G# is enough. This is false and it is proved in 3.4.28.
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3.4.4 Coinitiality and Cofinality of G-modules

In this subsection we will study the coinitiality and cofinality of G-modules and will

see their topological consequences.

3.4.21 Definition. The cofinality (coinitiality) of an ordered set C is the least

ordinal β such that there is a cofinal (coinitial) subset of C of the form {cα ∈ C :

α < β}. It is denoted by cof(C) (coi(C), respectively).

3.4.22 F Proposition. Let X be a G-module. Then coi(X#) = coi(X) = coi(G) =

cof(G) = cof(X) = cof(X#).

Proof. coi(G) = cof(G): It is enough to notice that a set {gα ∈ G : α < β} is

coinitial in G if and only if the set {g−1
α ∈ G : α < β} is cofinal in G.

cof(G) = cof(X): Let β := cof(G). Then there exists a set {gα ∈ G : α < β}

cofinal in G. Let’s prove that the set {gαx ∈ X : α < β} is cofinal in X for

any x ∈ X. Let x ∈ X. For each s ∈ X, there exists g ∈ G such that s ≤ gx

(3.3.2.e’). Then there is an ordinal α < β such that s ≤ gx ≤ gαx. Therefore

cof(X) ≤ β = cof(G). Now put δ := cof(X) and suppose that {xα ∈ X : α < δ} is

cofinal in X. Let x ∈ X. For every α < δ, there exists hα ∈ G such that xα ≤ hαx

(3.3.2.e’). Thus {hαx ∈ X : α < δ} is cofinal in X and hence {hα ∈ G : α < δ} is

cofinal in G. Otherwise, there exists h ∈ G such that hα < h for all α < δ. Then

hαx ≤ hx for all α < δ and thus hx = max(X) which contradicts 3.3.2.f’. Therefore

cof(G) ≤ δ = cof(X).

cof(X) = cof(X#): immediate from 3.4.5.c.

coi(X#) = coi(X) = coi(G): analogous to the proof of cof(G) = cof(X) =

cof(X#). �

The next result characterizes the G-modules associated with ultrametrizable val-

ued fields.
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3.4.23 Proposition. Let (K, | · |) be a valued field and let X be a G-module. The

following statements are equivalent:

(a) (K, | · |) is ultrametrizable,

(b) there exists a sequence (λn)n∈N in K such that limn λn = 0,

(c) there exists a sequence (xn)n∈N in X such that limn xn = 0.

Proof. By 3.2.6 the statements (a) and (b) are equivalent to coi(G) = ω (the first

infinite ordinal). By Proposition 3.4.22, this is equivalent to coi(X) = ω, which

in turn is equivalent to the existence of a countable coinitial subset C ⊂ X. Now

notice that a countable subset C ⊂ X is coinitial if and only if C contains a sequence

(xn)n∈N such that limn xn = 0. �

We will see in the subsection 3.5 that in order to obtain some important results

on X-normed spaces, the order topology on G# is asked to be 1st countable. In the

rest of the subsection we will characterize the valued fields that satisfy this condition.

3.4.24 Definition. Let (K, | · |) be a valued field and let BK = BK [0, 1]. A subset A

of K is absolutely convex if it is a BK-submodule of K, in other words, if 0 ∈ A

and x, y ∈ A, λ, µ ∈ BK implies λx+µy ∈ A. If in addition, there exists a countable

subset R ⊂ A such that every a ∈ A can be written as a = λ1a1 + λ2a2 + · · ·+ λnan,

for some n ∈ N, λi ∈ BK and ai ∈ R, then A is said to be countably generated.

The following result describes the absolutely convex subsets of K.

3.4.25 Theorem ([30, 1.4.3]). Let (K, | · |) be a valued field. The sets {0}, K,

B(0, r) = {λ ∈ K : |λ| < r} and B[0, r] = {λ ∈ K : |λ| ≤ r} for r ∈ G#, are

absolutely convex. Each absolutely convex subset of K is of one of these forms.

The order topology on a totally ordered set C is defined as the topology gen-

erated by the sets of the form {c ∈ C : c > s} and {c ∈ C : c < s} where s ∈ C.
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3.4.26 Theorem ([30, 1.4.4]). Let (K, |·|) be a valued field. The following statements

are equivalent:

(a) Each absolutely convex subset of K is countably generated as a BK-module.

(b) G has a cofinal sequence. For each s ∈ G#, there are g1, g2, · · · ∈ G, gn < s

for all n ∈ N such that supG#{t ∈ G# : t < s} = supG#{gn : n ∈ N}.

(c) G has a coinitial sequence. For each s ∈ G#, there are g1, g2, · · · ∈ G, gn > s

for all n ∈ N such that infG#{t ∈ G# : s < t} = infG#{gn : n ∈ N}.

(d) The order topology on G# satisfies the first axiom of countability. G# has a

cofinal sequence.

3.4.27 Remark. Notice that the condition imposed on G# in 3.4.26.c coincides with

the condition on the G-module X# in 3.4.20 when we replace X# by G# in 3.4.20.

But this does not mean that we have an implication in general as is shown in the

following result.

3.4.28 Proposition. If a valued field (K, | · |) satisfies the statements of Theorem

3.4.26, then a G-module X does not have to satisfy 3.4.26.c, i.e. for some G-module

X there exists an element s ∈ X# such that infX#{t ∈ X# : s < t} < infX#{gn :

n ∈ N} for every sequence (gn)n in X with gn > s.

Proof. Consider G = {en ∈ R : n ∈ Z} with the usual multiplication. Since G

is countable, it satisfies 3.4.26.c. Now consider the G-module X defined in 3.3.3.c

with β := ω1 (the first uncountable ordinal). For n ∈ Z, let s := en. We have

that s = inf{x ∈ X : s < x} = inf{en+1
α : α < β}. If there are x1, x2, · · · ∈ X

such that s < xn for all n ∈ N, then there exists α < β such that en+1
α < xn for

all n ∈ N. Otherwise cof(β) = ω, which contradicts the definition of β. Therefore,

s < en+1
α ≤ inf{xn : n ∈ N}. �
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3.4.29 Remark. Notice that the G-module X of the previous proposition also shows

that the statements 3.4.26.b and 3.4.26.c are not equivalent in every G-module. In

fact, X satisfies 3.4.26.b (every emα ∈ X is the successor of emα+1 and therefore emα+1 =

sup{x ∈ X : x < emα }. Hence X = X# and thus it is enough to choose gn = emα+1 for

all n ∈ N). But X does not satisfy 3.4.26.c as is shown in 3.4.28.

3.4.5 Equivalence of norms in Lip(E,F ) and LipY (E,F )

In section 2.2, we studied the equivalence of 5 norms on L(E,F ) in the rank(G) = 1

case. Now in the general case, as we commented earlier, not every continuous linear

operator is bounded, so we will restrict ourselves to the case in which the operators

are bounded and where we are able to define the usual norms for these operators.

3.4.30 Definition. Let G be a totally ordered commutative group and let K be a

valued field with value group G. Let E be a G-normed space over K and let F be

a Y -normed space over K where Y is a G-module. Consider the set LipY (E,F )

of all the continuous linear maps T : E → F for which there is a y ∈ Y such that

||Te|| ≤ ||e||y for all e ∈ E. This set is a vector space over K. Notice that for Y = G,

we have that LipY (E,F ) = Lip(E,F ). Given T ∈ LipY (E,F ), the expression ||Te||
||e||

will denote ||e||−1||Te|| ∈ Y for ||e|| ∈ G and ||Te|| ∈ Y .

3.4.31 Proposition. Let G, (K, | · |), E, F , Y and LipY (E,F ) be as in defini-

tion 3.4.30. Let T ∈ LipY (E,F ). The following formulas define Y #-norms on
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LipY (E,F ):

||T || := inf
Y #∪{0}

{y ∈ Y : ||Te|| ≤ ||e||y, for all e ∈ E}

||T ||# := inf
Y #∪{0}

{y ∈ Y # : ||Te|| ≤ ||e||y, for all e ∈ E}

||T ||1 := sup
Y #∪{0}

{
||Te||
||e||

∈ Y : e ∈ E \ {0}
}

||T ||2 := sup
Y #∪{0}

{
||Te||
||e||

∈ Y : 0 < ||e|| ≤ 1
}

||T ||3 := sup
Y #∪{0}

{||Te|| ∈ Y : ||e|| = 1}

||T ||4 := sup
Y #∪{0}

{||Te|| ∈ Y : ||e|| ≤ 1}.

Furthermore, ||T || = ||T ||# = ||T ||1 = ||T ||2 = ||T ||3 = ||T ||4 for all T ∈ LipY (E,F ).

Proof. Let T ∈ LipY (E,F ), T 6= 0. The verification of the fact that the formulas

above define Y #-norms is straightforward. In order to prove their equality consider

the set A =
{
||Te||
||e|| ∈ Y : e ∈ E \{0}

}
. Then ||T ||# = inf{y ∈ Y # : a ≤ y, for all a ∈

A} = inf{y ∈ Y # : supA ≤ y} = supA = ||T ||1 where the penultimate equality is

due to 3.4.5.e. By definition, we have ||T ||# ≤ ||T ||. Suppose that ||T ||# < ||T ||.

Then by 3.4.5.d, there exists x ∈ Y such that a ≤ ||T ||# ≤ x < ||T || for all a ∈ A,

contradicting the definition of ||T ||. Therefore ||T ||# = ||T ||. Let i ∈ {2, 3, 4}.

By definition, we have that ||T ||i ≤ ||T ||1. For e ∈ E \ {0}, let λ ∈ K such that

|λ| = ||e||−1. Thus ||Te||||e|| = ||T (λe)||
||λe|| = ||T (λe)|| ≤ ||T ||i. Therefore ||T ||1 = ||T ||i. �

3.4.6 Banach spaces and linear operators with finite rank

In the next chapter we will be working with a Banach space over a field of higher

rank so it is appropriate to mention some known results regarding Banach spaces to

see the similarity with the rank-1 case.

3.4.32 Definition. Let K be Cauchy complete valued field and let X be a G-module.



94

An X-normed space is Banach when each Cauchy net of E is convergent in E.

3.4.33 Example. Let X be a G-module and let s : N → X. Then c0(N, s) is the

space of all the sequences (λn)n in K for which limn |λ|s(n) = 0 with coordinatewise

operations and with X-norm ||(λ1, λ2, . . . )|| = maxn |λn|s(n). If X = G and s(n) = 1

for all n ∈ N we have that c0(N, s) = c0. If K is Cauchy complete then the space

c0(N, s) is Banach. The proof is standard.

3.4.34 Theorem. Let E be a Banach space over a Cauchy complete non-Archimedean

valued field K of higher rank. If (xn)n is a sequence of elements in E, then

∞∑
n=1

xn is convergent in E ⇔ lim
n→∞

xn = 0.

Proof. Analogous to the proof of 2.1.7. �

3.4.35 Theorem ([30, 2.3.5]). Let K be Cauchy complete and let X be a Dedekind

complete G-module. Every continuous linear map from an X-normed space E into

a finite-dimensional X-normed space F is Lipschitz.

3.4.36 Theorem ([30, 2.3.6]). Let E,F be normed spaces over K. If F is a Banach

space, then so is L(E,F ). If, in addition, E,F are both X-normed spaces for some

G-module X that is Dedekind complete, then Lip(E,F ) is a Banach space.

3.4.37 Corollary ([30, 2.3.7]). Let K be Cauchy complete and let E,F be normed

spaces over K. If F is finite-dimensional, then L(E,F ) is a Banach space. In

particular, E ′ is a Banach space.

3.4.38 Proposition. Suppose that K is ultrametrizable. Let X be a G-module, let

E be an X-normed space and let F be a quotient space of E. If E is Banach, then

F is Banach.
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Proof. Since K is ultrametrizable, then there exists a strictly decreasing sequence

(tn)n∈N in X such that inf{tn : n ∈ N} = 0. Now the proof follows as in 3.4.20 with

s = 0. �

3.4.7 Generalizing the Open Mapping Theorem

If the field K is assumed to be ultrametrizable and Cauchy complete, then the

Open Mapping Theorem, the Closed Graph Theorem and the Uniform Boundedness

Theorem are proven in [30, 2.5.4, 2.5.6]. Recall that if K is ultrametrizable, then

cof(G) must be countable (see 3.4.21 and 3.4.23).

In this section we will present the progress made in the pursuit of an Open

Mapping Theorem without restrictions on the group G. First, let’s present our

generalization of the Baire Category Theorem for a spherically complete scaled space.

3.4.39 F Proposition. Let X be a totally ordered set without minimal element.

Suppose that coi(X) = β. Let Z be a spherically complete scaled space with scale

d : Z × Z → X. For any ordinal β′ ≤ β, and any collection {Aα : α < β′} of closed

subsets of Z with empty interior, the union ⋃α<β′ Aα has empty interior.

Proof. Given an open ball U ⊂ Z, we will prove that U 6⊂ ⋃
α<β′ Aα. In view of

Ao0 = ∅, there exists y ∈ U such that y 6∈ A0, and since A0 is closed, we can choose an

open ball U0 ⊂ Z such that U0∩A0 = ∅ and y ∈ U0 ⊂ U . Suppose that for α < β′, we

have a collection {Uγ : γ < α} of open balls in Z such that γ1 < γ2 < α⇒ Uγ2 ⊂ Uγ1

and Uγ ∩Aγ = ∅ for all γ < α. For each γ < α, choose aγ ∈ Z and δγ ∈ X such that

Uγ = B(aγ, δγ). Since Z is spherically complete, we can choose b ∈ ⋂γ<α Uγ. Notice
that α < β′ ≤ β implies that {Sγ : γ < α} is not coinitial. Thus, there exists δα ∈ X,

satisfying δα < δγ for all γ < α. Then Vα := B(b, δα) ⊂ B(b, δγ) = Uγ for all γ < α.

In view of Aoα = ∅, we can choose a ∈ Vα \Aα, and since Aα is closed, there exists an

open ball Uα ⊂ Vα such that Uα ∩ Aα = ∅. By using transfinite induction we have

obtained a nest of balls {Uα : α < β′} in Z such that α1 < α2 < β′ ⇒ Uα2 ⊂ Uα1
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and Uα ∩ Aα = ∅ for all α < β′. Since Z is spherically complete, there exists

x ∈ ⋂α<β′ Uα ⊂ U0 ⊂ U such that x 6∈ ⋃α<β′ Aα. Hence U 6⊂ ⋃α<β′ Aα. �

3.4.40 F Proposition. Let E and F be X-normed spaces for some G-module X.

If F is spherically complete and T ∈ L(E,F ) is surjective, then T (B) is an open

0-neighborhood in F , for each ball B := B(0, ε) in E.

Proof. Put β := cof(X). By 3.4.22, we have that coi(X) = β. Let {εα ∈ X : α < β}

be a cofinal set in X. Then E = ⋃
α<β B(0, εα) and F = T (E) = ⋃

α<β T (B(0, εα)) =⋃
α<β T (B(0, εα)). By 3.4.39, there exists α < β such that T (B(0, εα)) has a non-

empty interior. Hence we can find an open ball B(x, r) ⊂ T (B(0, εα)). Notice that by

the strong triangle inequality, B(0, εα) is an additive group and hence T (B(0, εα))

and T (B(0, εα)) are also additive groups. Thus, for every z ∈ T (B(0, εα)), z +

B(0, r) = z − x+B(x, r) ⊂ T (B(0, εα)) + T (B(0, εα)) + T (B(0, εα)) ⊂ T (B(0, εα)).

Therefore T (B(0, εα)) is open in F . �

An immediate consequence of the previous result is the following:

3.4.41 Proposition. Let E and F be X-normed spaces for some G-module X. If

F is spherically complete and T ∈ L(E,F ) is surjective and closed, then T is open.

Proof. By hypothesis T (B(0, ε)) = T (B(0, ε)) since B(0, ε) is clopen in E for all

ε ∈ X. Now by 3.4.40 we conclude that T (B(0, ε)) is open and therefore T is

open. �

The standard proof of the Open Mapping Theorem uses convergent series to

show that T (B(0, ε)) = T (B(0, ε)) for any surjective T ∈ L(E,F ), where E and

F are Banach spaces. In our case, this technique is not enough when cof(X) is

uncountable (when K is not ultrametrizable) because we cannot properly define a

sum of an uncountable number of vectors in a Banach space.
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3.5 Spaces of countable type and orthogonality

The concepts of norm-orthogonality (2.3.4, 2.3.5), orthogonal system (2.3.14), or-

thogonal complements (2.3.10) and countable type (2.4.1) can be defined in the

general case in the same way. From now on, when referring to norm-orthogonality

we will just say orthogonality.

Regarding spaces of countable type we have to following result.

3.5.1 Theorem ([31, 2.5.1]). Let E be a Banach space of countable type with base

field K. Suppose:

(a) the topology on K induced by the valuation is not metrizable, or

(b) G is principal (see 3.2.2), or

(c) each BK-submodule of K is countably generated.

Then each closed subspace of E is of countable type.

However it is still unknown whether being of countable type is a hereditary prop-

erty, i.e. it is unknown whether a subspace of a space of countable type is of countable

type when none of the conditions (a), (b) and (c) are satisfied.

3.5.2 Definition. Let E be an X-normed space. An orthogonal basis for E is

an orthogonal countable set (xn)n in E such that for each x ∈ E, there is a unique

sequence (λn)n in K satisfying x = ∑∞
n=1 λnxn.

H. Ochsenius and W. H. Schikhof proved the following characterization of those

X-normed spaces that admit a basis under certain countability condition.

3.5.3 Theorem ([30, 3.4.1]). Let E be a Banach space of countable type and suppose

the order topology on G# is first countable and that G# has a cofinal sequence. Then

the following statement are equivalent:
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(a) E has an orthogonal basis.

(b) Each closed subspace of E has an orthogonal basis.

(c) Each finite-dimensional subspace of E has an orthogonal basis.

(d) Each one-dimensional subspace of E is orthocomplemented.

(e) Each finite-dimensional subspace of E is orthocomplemented.

(f) For each finite-dimensional subspace D of E and a ∈ E the set {||a− d|| : d ∈

D} has a minimum.

Notice that the condition imposed over G# in Theorem 3.5.3 has equivalent

expressions stated in 3.4.26. The next result will be used in the next chapter.

3.5.4 Corollary. Suppose that the order topology on G# is first countable and that

G# has a cofinal sequence. Then each closed subspace of c0 has an orthogonal basis.

Proof. By 3.5.3, it is enough to notice that c0 has an orthogonal basis. The canon-

ical vectors en = (δn,m)m∈N form a basis for c0. In fact, for each x = (λn)n ∈ c0

we have that x = ∑∞
n=1 λnen where the uniqueness of the scalars is clear. Since

||∑k
n=1 αnen|| = max{||αnen|| : 1 ≤ n ≤ k} for all k ∈ N, it follows that {en : n ∈ N}

is orthogonal. �

Whether every closed subspace of an X-normed space with an orthogonal basis

also has a basis is an open problem. In particular, it is unknown whether every closed

subspace of c0 has an orthogonal basis when there are no countability conditions over

G. Both answers are positive in the rank-1 case.

However, it is my view that the proof of the rank-1 case with the approach

of Gruson - van der Put [45, 5.7] using projective spaces can be applied to the

higher rank case provided that every quotient space of a spherically complete space is

spherically complete. Thus the contributions 3.4.19 and 3.4.20 aim in that direction.



Chapter 4

Operator theory on c0 over a field

of arbitrary rank

In recent works ([2], [3] 2013-2015), Aguayo, J., Nova, M., and Shamseddine, K.

provided characterizations of several types of operators on c0 over the rank-1 field

L[Q,C] (1.5.4). In this chapter we will present the efforts of the author to generalize

these results to a non-Archimedean valued field of arbitrary rank, the general Hahn

field (3.2.1) equipped with a Krull valuation taking values in an arbitrary ordered

commutative group G. As we will see, only partial results have been accomplished.

First, we will start with the most distinctive difference between the non-Archimedean

and Archimedean cases: there exists an inner product that induces the supremum

norm on c0. Thus the space c0 will be our analogue for `2 in the Archimedean

case. Then we will review the characterization of those closed subspaces of c0 that

admit a normal complementation while studying the projections associated with

these spaces. After that, a brief characterization of the operators that admit an

adjoint will be presented to be complemented later with a study of compact operators

on c0 emphasizing the differences with such operators in the rank-1 case. Finally, an

analysis on spectral theory results is developed for some operators in c0.

99
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4.1 Notation. From now on, K will denote a real-closed field (1.6). If i is a root of

the polynomial x2 + 1 (which is irreducible on K by 1.6.1), then the extension K(i)

of K is an algebraically closed field and therefore it is the algebraic closure of K.

The general Hahn field K((G)) will be denoted by H. Notice that the general

Hahn field K(i)((G)) = H + iH = H(i). For each nonzero z = x + iy ∈ H(i)

(x, y ∈ H) the Hahn valuation defined in Section 3.2.1 satisfies:

|z| = max{supp(z)} = max{max{supp(x)},max{supp(y)}} = max{|x|, |y|}.

The involution x + iy 7→ x+ iy := x − iy is an automorphism on H(i) such that

|z| = |z| and zz ∈ H for all z ∈ H(i).

4.1 Inner product in c0

In this section we will study an inner product on c0 := c0(H(i)) := {(λj)j∈N : λj ∈

H(i), for all j ∈ N such that limj λj = 0} that induces the usual norm on c0. Notice

that c0 = c0(H)⊕ ic0(H), i.e. for each z = (zn) ∈ c0, there are unique x = (xn) and

y = (yn) in c0(H) such that z = x + iy and the G-norm on c0 satisfies:

||z|| = max
n∈N
|zn| = max

n∈N
max{|xn|, |yn|} = max{||x||, ||y||}.

4.1.1 Theorem. Consider the form 〈·, ·〉 : c0× c0 → H(i), 〈z,w〉 = ∑∞
n=1 znwn. The

statements below hold for all z, z′,w ∈ c0 and α, β ∈ H(i).

(a) 〈·, ·〉 is well-defined.

(b) 〈z, z〉 = 0⇔ z = 0

(c) 〈αz + βz′,w〉 = α〈z,w〉+ β〈z′,w〉

(d) 〈z,w〉 = 〈w, z〉
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(e) |〈z,w〉| ≤ ||z|| ||w||

(f) 〈z,w〉 = 0 for all w ∈ c0 if and only if z = 0.

Proof. (a): since z,w ∈ c0, we have that limn znwn = 0. By Cauchy completeness of

H(i) it follows that ∑∞n=1 znwn is convergent in H(i).

(b): Since H is an ordered field (see 1.4.10), 0 < x2 + y2 = zz for all z = x+ iy ∈

H(i) \ {0} (x, y ∈ H). Thus for z = (zn) ∈ c0 \ {0}, there exists k ∈ N such that

zk 6= 0. Therefore, 0 < zkzk ≤ 〈z, z〉. The other direction is obvious.

The statements (c) and (d) have standard proofs.

(e): |〈z,w〉| = |∑∞n=1 znwn| ≤ maxn{|znwn|} ≤ ||z|| ||w||.

(f): It is enough to consider for each m ∈ N, w = em = (wn)n ∈ c0 with

wn = δm,n. �

From now on 〈·, ·〉 will denote the inner product on c0 defined in the previous

theorem.

4.1.2 Lemma. Let (F, | · |) be a valued field with residue class field k and value group

G. The field k is formally real if and only if

|λ2
1 + λ2

2 + · · ·+ λ2
n| = max{|λ1|2, |λ2|2, . . . , |λn|2}

for all n ∈ N, λ1, λ2, . . . , λn ∈ F .

Proof. Suppose that k is formally real and let λ1, λ2, . . . , λn ∈ F . Put M =

max{|λ1|, |λ2|, . . . , |λn|} ∈ G and I = {i : |λi| = M}. For every λ ∈ B[0, 1] ⊂ F , let

λ∗ be its class in k.

Case 1: M = 1. In this case we have that (∑i∈I λ
2
i )∗ = ∑

i∈I(λ∗i )2 6= 0∗

because k is formally real. Hence |∑i∈I λ
2
i | = 1. Since |λi| < 1 for each i 6∈

I, |∑i 6∈I λ
2
i | < |

∑
i∈I λ

2
i |. Thus by the Isosceles triangle principle we have that

|∑n
i=1 λ

2
i | = |

∑
i 6∈I λ

2
i +∑

i∈I λ
2
i | = |

∑
i∈I λ

2
i | = 1 = M2.
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Case 2: 0 6= M 6= 1. In this case, we choose α ∈ F such that |α| = M ∈ G and

apply the proof of the case 1 to the collection α−1λ1, α
−1λ2, . . . , α

−1λn ∈ F .

Now for the converse, suppose that |λ2
1 + λ2

2 + · · · + λ2
n| = max{|λ1|2, . . . , |λn|2}

for all n ∈ N, λ1, λ2, . . . , λn ∈ F . Let σ1, σ2, . . . , σn ∈ k be such that ∑n
i=1(σi)2 = 0∗.

For each i ∈ {1, . . . , n}, let λi ∈ B[0, 1] be a representative of σi, i.e. λ∗i = σi. Then

(
n∑
i=1

λ2
i

)∗
=

n∑
i=1

(λ∗i )2 = 0∗.

Then 1 > |∑n
i=1 λ

2
i | = max{|λ1|2, |λ2|2, . . . , |λn|2} ≥ |λ2

i | for all i ∈ {1, . . . , n}.

Therefore σi = λ∗i = 0∗ for all i ∈ {1, . . . , n}. �

4.1.3 Lemma. For all n ∈ N and z1, z2, . . . , zn ∈ H(i),

|z1z1 + z2z2 + · · ·+ znzn| = max{|z1z1|, |z2z2|, . . . , |znzn|}.

Proof. For k ∈ {1, . . . , n}, let xk, yk ∈ H be such that zk = xk + iyk. Then zkzk =

x2
k + y2

k. Since the residue class field of H is K, which is formally real by choice (see

4.1), the result follows from the previous lemma. �

4.1.4 Theorem. The inner product 〈·, ·〉 induces the norm on c0, i.e. for all z ∈ c0:

|〈z, z〉| = ||z||2.

Proof. By Lemma 4.1.3, for any z = (zn) ∈ c0 we have |〈z, z〉| = |∑∞k=1 zkzk| =

limn |
∑n
k=1 zkzk| = limn max{|z1z1|, |z2z2|, . . . , |znzn|} = maxn∈N |zn|2 = ||z||2. �

Notice that the previous result justifies the analogy between c0 and the separable

Hilbert space `2. However, this analogy is not as profound as one ideally would like

to have because of the following result.

4.1.5 Theorem ([31, 2.6.5]). Let K be metrizable and let G be not principal. Then
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there is a closed subspace D in c0 without closed complement, i.e. there does not

exist a projection P ∈ L(c0) such that P (c0) = D.

4.1.6 Notation. From now on we will assume that G is divisible, i.e. for every

g ∈ G and n ∈ N there exists h ∈ G such that hn = g. With this assumption now we

can write
√
|〈z, z〉| = ||z|| for all z ∈ c0

4.1.7 Definition. A subset D of c0 such that for all x, y ∈ D, x 6= y ⇒ 〈x, y〉 = 0,

is called a normal family. When a normal family is countable, we say that is a

normal sequence. A normal sequence of unit vectors is called an orthonormal

sequence. Notice that if (xn)n is an orthonormal sequence in c0, then 1 = ||xn||2 =

|〈xn, xn〉| but it is not necessary to have 〈xn, xn〉 = 1. A basis of c0 is an orthonormal

sequence (yn)n in c0 such that for each x ∈ c0, there exists a unique λ = (λn)n ∈ c0

satisfying x = ∑∞
n=1 λnyn.

Notice that if (yn)n is a basis of c0, then for every x ∈ c0 we have that

x =
∞∑
n=1

〈x, yn〉
〈yn, yn〉

yn.

We can orthonormalize any linearly independent sequence of c0 by the Gram-

Schmidt procedure, which holds in our general case.

4.1.8 Proposition. If (zn)n is a sequence of linearly independent vectors in c0, then

there exists an orthonormal sequence (yn)n in c0 such that

[{z1, z2, . . . , zn}] = [{y1, y2, . . . , yn}]

for every n ∈ N.

Proof. The proof is analogous to the standard proof. Having obtained the set
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{y1, y2, . . . , yn−1} for n > 1, compute

wn = zn −
n−1∑
i=1

〈zn, yi〉
〈yi, yi〉

yi

and let yn = λwn for some λ ∈ H(i) such that |λ| = ||wn||−1 ∈ G. �

The next result shows that every normal family of vectors in c0 is an orthogonal

family (see 2.3.4 and 2.3.15).

4.1.9 Theorem. Let (xn)n be a normal sequence in c0 and let (λn)n be an arbitrary

sequence in H(i). Then, for all k ∈ N, we have that

∥∥∥∥∥∥
k∑

n=1
λnxn

∥∥∥∥∥∥ = max{||λnxn|| : 1 ≤ n ≤ k}.

Proof. The proof of [2, Lemma 2] can be adapted to our case. �

However, the converse of this result is false (see [29, Example 3.1]). Therefore if

(yn)n is a basis of c0 then it is an orthogonal basis of c0 (see 2.4.8), but the converse

is not always true.

4.2 Normal complement subspaces of c0

In this section we will characterize the linear functionals in c′0 that admit a Riesz

representation and then we will identify those closed subspaces of c0 that are normal

complemented. For both results, the Riemann-Lebesgue property will be key.

4.2.1 Definition. Given a subspace M of c0, the space of all y ∈ c0 such that

〈x, y〉 = 0 for all x ∈ M will be denoted by Mp. When c0 = M ⊕Mp, we say that

M is normal complemented and Mp is called the normal complement of M .

4.2.2 Definition. A sequence (zn)n of nonzero vectors of c0 has the Riemann-

Lebesgue property (RLP) if for all w ∈ c0, limn〈zn,w〉 = 0.
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4.2.3 Example. Any basis of c0 has the RLP. In fact, let (zn)n be a basis of c0, i.e.

for each w ∈ c0, w = ∑∞
n=1〈w, zn〉〈zn, zn〉−1zn. Hence

lim
n
|〈zn,w〉| = lim

n
|〈w, zn〉〈zn, zn〉−1| = 0.

4.2.4 Theorem. If S ⊂ c0 is a finite orthonormal subset, say {z1, z2, . . . , zn}, or is

an orthonormal sequence (zn)n, which satisfies the RLP, then S can be extended to

a basis for c0; that is, there exists a countable orthonormal sequence (wn)n (possibly

finite) such that S ∪ {wn : n ∈ N} is a basis for c0.

Proof. The proof of [29, 8.1] can be adapted to our case. �

4.2.5 Theorem. Let E be an infinite-dimensional Banach space over K. For an

orthogonal sequence e1, e2, . . . in E the following are equivalent:

(a) {en : n ∈ N} is an orthogonal basis for E.

(b) en 6= 0 for each n ∈ N and [{en : n ∈ N}] = E.

Proof. (a)⇒(b) is obvious. To prove (b)⇒(a) we define a linear map T : c0(N, s)→ E

as follows:

T (λ1, λ2, . . . ) =
∞∑
n=1

λnen,

where s(n) := ||en|| for each n ∈ N. Since K is Cauchy complete, so is c0(N, s) (see

3.4.33). Notice that T is an isometry because of the orthogonality of {en : n ∈ N}.

Hence Im(T ) is Banach so it is closed in E. Therefore, the inclusions [{en : n ∈

N}] ⊂ Im(T ) ⊂ E imply that T is onto after considering their closures, proving

(a). �

4.2.6 Notation. From now on we will assume that G is divisible, G has a countable

cofinal subset and that the order topology on G# is first countable (see 3.4.26).

4.2.7 Proposition. Every closed subspace D of c0 admits a basis.
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Proof. Let D be a closed subspace of c0. By 3.5.4, D has an orthogonal basis S.

Since S is countable, we can apply 4.1.8 to obtain a countable orthonormal sequence

{en : n ∈ N} such that [{en : n ∈ N}] = [S] = E. Therefore, {en : n ∈ N} is a basis,

by 4.2.5. �

To study continuous linear functionals on c0, we need to present the space `∞.

4.2.8 Notation.

`∞ := `∞(H(i)) :=
{

(λj)j∈N : λj ∈ H(i), for all j ∈ N, sup
j
|λj| <∞

}
.

The formula ||(λ1, λ2, . . . )|| := supj |λj| defines a G#-norm on `∞ for which `∞

becomes a Banach space. The proof of this statement is standard. Notice that

`∞ = `∞(H) ⊕ i`∞(H), i.e. for each z = (zn) ∈ `∞, there are unique x = (xn) and

y = (yn) in `∞(H) such that z = x + iy and the G#-norm on `∞ satisfies:

||z|| = sup
n∈N
|zn| = sup

n∈N
max{|xn|, |yn|} = max{||x||, ||y||}.

In the Archimedean world the dual space of c0 is isometrically isomorphic to `1.

In our case, however, c′0 is isometrically isomorphic to `∞, as we will see below.

4.2.9 Lemma. For each x = (xk)k ∈ c0 and z = (zk)k ∈ `∞, the formula

B(x, z) :=
∞∑
k=1

xkzk

defines a bilinear form 〈·, ·〉 : c0 × `∞ → H(i) such that B(·, · ) extends the inner

product on c0 defined in 4.1.1.

Proof. Let’s prove that B is well-defined. Let z ∈ `∞ and x ∈ c0. Since, |xkzk| ≤

|xk|‖z‖ for each k ∈ N, we have that limk |xkzk| = limk |xk|‖z‖ = 0, by 3.4.6.b.



107

Hence (∑n
k=1 xkzk)n is a Cauchy sequence, and thus convergent since H(i) is Cauchy

complete. Clearly, 〈·, ·〉 is bilinear. If z ∈ c0, then B(x, z) = ∑∞
k=1 xkzk = 〈x, z〉. �

4.2.10 Theorem ([32, 2.5.11]). The map Υ : `∞ → c′0 defined by Υ(z) := B(·, z)

(z ∈ `∞), is an isometrical isomorphism.

Proof. For each x ∈ c0, |Υ(z)(x)| = |B(x, z)| ≤ ‖x‖‖z‖. Therefore Υ is well-defined

and ||Υ(z)|| ≤ ‖z‖. Since B is bilinear, it follows that Υ is linear. Applying Υ(z) to

the canonical basic vectors en = (δnk)k ∈ `∞ we obtain ||Υ(z)|| ≥ |Υ(z)(en)| = |zn|

for all n ∈ N. Therefore ||Υ(z)|| = ||z||. To prove surjectivity, let g ∈ c′0. Since

|g(en)| ≤ ||g||||en|| = ||g|| for all n ∈ N, we deduce that z := (g(ek))k ∈ `∞. Let x :=

(xk)k = ∑∞
k=1 xkek. Then, by linearity and continuity, Υ(z)(x) = ∑∞

k=1 xkg(ek) =

g (∑∞k=1 xkek) = g(x). �

4.2.11 Definition. A functional f ∈ c′0 is called a Riesz functional if there exists

z ∈ c0, such that f(x) = 〈x, z〉 for all x ∈ c0.

The next result characterizes the continuous linear functionals c0 that are Riesz

functionals.

4.2.12 Theorem. Let f be a nontrivial linear functional on c0. The following state-

ments are equivalent:

(a) f is a Riesz functional,

(b) every basis of ker(f) has the RLP,

(c) ker(f) has a basis with the RLP,

(d) ker(f)p 6= {0},

(e) ker(f)⊕ ker(f)p = c0.

(f) f ∈ [e′n : n ∈ N] ∼= c0, where e′n ∈ c′0 is defined by e′n(x) = λn, for x =∑∞
n=1 λnen, where {en : n ∈ N} is the canonical basis of c0.
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Proof. The proofs are analogous to the ones of the rank-1 case referenced below. For

(a)⇒(b) see [1, Theorem 5]. The implication (b)⇒(c) is trivial. For (c)⇒(a) see [29,

9.2]. For (a)⇔(d) and (a)⇒(e) see [29, 9.1]. Since f 6= 0, the implication (e)⇒(d) is

trivial. For (a)⇔(f) see [1, Proposition 3]. �

4.2.13 Definition. A continuous linear operator P ∈ L(c0) is said to be a normal

projection if it satisfies the following statements:

(a) P 2 = P ,

(b) 〈x, y〉 = 0, for all x ∈ ker(P ) and y ∈ Im(P ).

4.2.14 Lemma. If P 6= 0 is a normal projection on c0, then ||P || = 1.

Proof. If P = 0 or P = Id (the identity operator), then we are done. Now suppose

that 0 6= P 6= Id. For any z ∈ c0, z−P z ∈ ker(P ), and hence 〈z−P z, P z〉 = 0. Then

||P z||2 = |〈P z, P z〉| = |〈z, P z〉| ≤ ||z|| ||P z||. Thus ||P || ≤ 1. On the other hand, for

z ∈ c0 \ ker(P ), we have that ||P (P z)|| = ||P z||. Hence ||P || ≥ 1, by 3.4.31. �

As it is shown in [1, p. 790] not every subspace of c0 has a normal complement. By

4.2.4, it follows that every finite-dimensional subspace of c0 has a normal complement.

The next result characterizes the infinite-dimensional closed subspaces of c0 that are

normal complemented.

4.2.15 Theorem ([29, 8.2],[2, Proposition 4]). Let M be an infinite-dimensional

closed subspace of c0. The following statements are equivalent:

(a) M is normal complemented,

(b) there exists a normal projection P ∈ L(c0) such that ker(P ) = M .

(c) every basis of M has the RLP,

(d) M has a basis with the RLP.
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Proof. (a)⇒(b): Suppose that c0 = M ⊕Mp. Then for each z ∈ c0, there exists a

unique pair (xz, yz) ∈ M ×Mp such that z = xz + yz. Then P : c0 → c0, P z = yz

is a map such that P 2 = P , ker(P ) = M and Im(P ) = Mp. Additionally, ||P z|| =

||yz|| ≤ max{||xz||, ||yz||} = ||z||, by 4.1.9. Therefore, P is a normal projection.

(b)⇒(c): Let z ∈ c0. By 4.2.7, M has a basis {zn : n ∈ N}. If z ∈ ker(P ), then

z = ∑∞
n=1〈z, zn〉〈zn, zn〉−1zn. Hence,

lim
n
|〈z, zn〉| = lim

n
|〈z, zn〉〈zn, zn〉−1| = 0.

If z 6∈ ker(P ), then z− P z ∈ ker(P ) and 〈P z, zn〉 = 0. Thus 〈z, zn〉 = 〈z− P z, zn〉+

〈P z, zn〉 = 〈z − P z, zn〉, and therefore, limn |〈z, zn〉| = limn |〈z − P z, zn〉| = 0. The

implication (c)⇒(d) is trivial. (d)⇒(a): Suppose that M has a basis B = {zn :

n ∈ N} with the RLP. By 4.2.4, there exists a countable orthonormal set D =

{w1,w2, . . . } (possibly finite) such that B ∪D is a basis for c0. Hence c0 = [B]⊕ [D]

where M = [B] and Mp = [D]. �

4.3 Operators on c0 admitting an adjoint operator

In this section we will present the concepts of adjoint and self-adjoint operators and

provide a useful description for those operators on c0 that have an adjoint operator.

4.3.1 Definition. A linear operator S : c0 → c0 is said to be adjoint of a given

operator T ∈ L(c0) if 〈Tx, y〉 = 〈x, Sy〉 for all x, y ∈ c0. If S = T , we say that T is

self-adjoint. By standard techniques it is shown that if T ∈ L(c0) has an adjoint

S, then S is unique and belongs to L(c0). The adjoint operator of T will be denoted

by T ∗.

The next result characterizes the continuous linear operators on c0 that admit an

adjoint operator as those that preserve the RLP generalizing the scope of the result
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[3, Lemma 4].

4.3.2 Theorem ([3, Lemma 4]). For each T ∈ L(c0) the following statements are

equivalent.

(a) T admits an adjoint operator.

(b) {Tyn : n ∈ N} has the RLP for any set {yn ∈ c0 : n ∈ N} with the RLP.

(c) {Tyn : n ∈ N} has the RLP for any basis {yn : n ∈ N} of c0.

(d) There is a basis {yn : n ∈ N} of c0 such that {Tyn : n ∈ N} has the RLP.

Proof. (a)⇒(b): If T has an adjoint operator T ∗ and {yn ∈ c0 : n ∈ N} has the

RLP, then limn〈Tyn, x〉 = limn〈yn, T ∗x〉 = 0 for all x ∈ c0, since {yn : n ∈ N}

has the RLP. The implication (b)⇒(c) is clear since every basis satisfy the RLP

(see 4.2.3). The implication (c)⇒(d) is immediate. (d)⇒(a): Suppose that there

exists a basis {yn : n ∈ N} of c0 such that {Tyn : n ∈ N} has the RLP. Hence

limn

∣∣∣ 〈z,Tyn〉
〈yn,yn〉

∣∣∣ = limn |〈Tyn, z〉| = 0 for all z ∈ c0. Therefore the linear operator

S : c0 → c0 ,

Sz :=
∞∑
k=1

〈z, Tyk〉
〈yk, yk〉

yk

is well-defined for all z ∈ c0. For any x, z ∈ c0 we have that:

〈Tx, z〉 =
〈
T

( ∞∑
k=1

〈x, yk〉
〈yk, yk〉

yk
)
, z
〉

=
〈 ∞∑
k=1

〈x, yk〉
〈yk, yk〉

Tyk, z
〉

=
∞∑
k=1

〈x, yk〉
〈yk, yk〉

〈Tyk, z〉.

Similarly we have that:

〈x, Sz〉 =
〈

x,
∞∑
k=1

〈z, Tyk〉
〈yk, yk〉

yk
〉

=
∞∑
k=1

〈z, Tyk〉
〈yk, yk〉

〈x, yk〉 =
∞∑
k=1

〈Tyk, z〉
〈yk, yk〉

〈x, yk〉.

Thus 〈Tx, z〉 = 〈x, Sz〉 for all x, z ∈ c0. Therefore S = T ∗. �

4.3.3 Theorem ([2, Theorem 6]). Let P ∈ L(c0) be such that P 2 = P . Then P is

a normal projection, if and only if P is self-adjoint.
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In the next result the author clarifies and summarize the presentation of [2,

Theorem 7] providing a clearer proof.

4.3.4 Theorem ([2, Theorem 7]). Let S be a nonempty orthonormal subset of c0.

The operator P ∈ L(c0) \ {0} is a normal projection and S = {y1, y2, . . . , yn} is a

basis for Im(P ) if and only if, for all x ∈ c0,

Px =
n∑
i=1

〈x, yi〉
〈yi, yi〉

yi.

The operator P ∈ L(c0) \ {0} is a normal projection and S = {yn : n ∈ N} is a basis

for Im(P ) if and only if, S has the RLP and for all x ∈ c0,

Px =
∞∑
i=1

〈x, yi〉
〈yi, yi〉

yi.

Proof. Suppose that S is an infinite basis and that P ∈ L(c0) \ {0} is a normal pro-

jection. Notice that, Im(P ) = ker(I−P ) is a closed subspace of c0. Hence, S has the

RLP by 4.2.15. Since S is a basis for Im(P ) (by 4.2.7 there is such a basis), for each

x ∈ c0, there exists a unique α = (αn)n in c0 such that Px = ∑∞
n=1 αnyn. Now since

P is self-adjoint (4.3.3) we have 〈x, yn〉 = 〈x, Pyn〉 = 〈Px, yn〉 = ∑∞
m=1〈αmym, yn〉 =

αn〈yn, yn〉. Thus, for each n ∈ N, αn = 〈x, yn〉〈yn, yn〉−1. Conversely, suppose that

P : c0 → c0 is such that Px = ∑∞
i=1

〈x,yi〉
〈yi,yi〉yi, for all x ∈ c0. Since S has the RLP, the

map P is well-defined. First, let us show that P ∈ L(c0) \ {0}. For any x ∈ c0, we

have that:

||Px|| ≤ sup
i∈N

∥∥∥∥∥ 〈x, yi〉〈yi, yi〉
yi
∥∥∥∥∥ = sup

i∈N
|〈x, yi〉| ≤ ||x||.

Clearly, P is nonzero and linear. Therefore, P ∈ L(c0) \ {0}.

Second, let us verify that P is a projection. For x ∈ c0:

P 2x =
∞∑
i=1

〈Px, yi〉
〈yi, yi〉

yi =
∞∑
i=1

 ∞∑
j=1

〈x, yj〉
〈yj, yj〉

〈yj, yi〉
〈yi, yi〉

 yi =
∞∑
i=1

〈x, yi〉
〈yi, yi〉

yi = Px.
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Third, let us show that P is self-adjoint. For x, z ∈ c0:

〈Px, z〉 =
∞∑
i=1

〈x, yi〉
〈yi, yi〉

〈yi, z〉 =
∞∑
i=1

〈yi, z〉
〈yi, yi〉

〈x, yi〉 = 〈x, P z〉.

Therefore, by 4.3.3, we conclude that P is a normal projection. If S is finite, the

proof follows similarly. �

4.4 Compact operators on c0

As we will see shortly, the concept of compact operator in non-Archimedean func-

tional Analysis is slightly different from the classical one due to the fact that the

compactness of subsets in a vector space is not appropriate to define what is intended

by compact operator in cases where the base field is not locally compact. However,

the non-Archimedean version of this concept allows the approximation of this kind of

operators by operators of finite rank. First we will review the non-Archimedean con-

cept of compact operator when the base field has rank 1, and then we will introduce

a proper adaptation for this concept in the higher rank case.

In order to define a compact operator in the non-Archimedean context we need

the following:

4.4.1 Definition. Let E be a Banach space over a valued field K and let BK be

the unit disc of K. A nonempty subset A of E is absolutely convex if it is a

BK-submodule of E, i.e. if λx + µy ∈ A for all x, y ∈ A and λ, µ ∈ BK. A subset

A of E is called compactoid if for each ε > 0 there is a finite set F ⊂ E such that

A ⊂ B(0, ε) + aco F, where

aco F :=
{

n∑
i=1

λiai : n ∈ N, λi ∈ BK , ai ∈ F, for each i
}

and ‘aco’ stands for absolutely convex hull.
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The next result shows that compactoidness is the natural generalization of pre-

compactness.

4.4.2 Theorem ([45],4.S(vii)). Let E be a normed space over a locally compact

valued field. A subset of E is compactoid if and only if it is precompact.

Now we have the necessary terminology to present the concept of non-Archimedean

compact operator when the base field has rank 1.

4.4.3 Definition. Let E and F be two normed spaces over a non-Archimedean

valued field of rank 1. A linear map T : E → F is said to be compact if T (BE) is

compactoid, where BE = {x ∈ E : ||x|| ≤ 1}.

Notice that if T : E → F is compact, then it is also continuous.

4.4.4 Remark. In the Archimedean case, if E and F are Banach spaces then a linear

map T : E → F is called compact if T (BE) is compact, or equivalently, if T (BE)

is precompact. In the non-Archimedean context when defining a compact operator it

is more appropriate to use the concept of compactoidness instead of precompactness.

There are two reasons for that:

(a) compactoidness is the natural generalization of precompactness (see 4.4.2). For

the same reason, if K is a locally compact non-Archimedean valued field, then

T is compact if and only if T (BE) is compact.

(b) The lack of nontrivial absolutely convex compact subspaces in a Banach space

when the base field is not locally compact. In fact, let F be a Banach space

over a valued field K that is not locally compact. If B ⊂ F is absolutely

convex and compact, then B = {0}. To prove this suppose on the contrary that

there exists x ∈ B \ {0}. If BK is the unit disk of K, then xBK is a closed

subspace of B. Thus BK
∼= xBK is compact and hence K is locally compact,

a contradiction. Therefore, if T ∈ L(E,F ) and T (BE) is precompact, then

T (BE) ⊂ T (BE) = {0}. Hence T = 0.
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When the non-Archimedean field K has rank 1, we have a satisfactory charac-

terization of compact operators that reads as follows:

4.4.5 Theorem ([45, 4.39, 4.40]). Let E and F be two normed spaces over a non-

Archimedean valued field of rank 1. The following conditions are equivalent for all

T ∈ L(E,F ):

(a) T is compact,

(b) for each ε > 0, there exists S ∈ L(E,F ) of finite-dimensional range such that

||T − S|| < ε,

(c) there are vectors a1, a2, · · · ∈ F , and functionals g1, g2, · · · ∈ E ′ such that

limk ||gk||||ak|| = 0 and T = ∑∞
k=1 gkak, i.e. the sequence (∑n

k=1 gk(·)ak)n∈N
converges uniformly to T .

The author has recently come to the conclusion that the proof of the previous

characterization cannot be replicated in the higher rank case because, unlike the rank

1 case, not every compactoid is contained in the closure of the absolutely convex hull

of a sequence tending to 0 (see [30, 3.5.7]). The author has been unable to overcome

this additional difficulty and chose to redefine a compact operator for our higher

rank case as follows:

4.4.6 Definition. An operator T ∈ L(c0) is called compact if there are vectors

a1, a2, · · · ∈ c0, and functionals g1, g2, · · · ∈ c′0 such that limi ||gi||||ai|| = 0 and

T = ∑∞
i=1 giai, i.e. the sequence (∑n

i=1 gi(·)ai)n∈N converges uniformly to T .

4.4.7 Proposition. If T ∈ c0 is a compact operator, then T (B) is a compactoid,

where B := {x ∈ c0 : ||x|| ≤ 1}.

Proof. There are vectors a1, a2, · · · ∈ c0, and functionals g1, g2, · · · ∈ c′0 such that

limi ||gi||||ai|| = 0 and T = ∑∞
i=1 giai
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For each i ∈ N, choose εi ∈ H(i) such that ||εigi|| = 1 whenever gi 6= 0 and

εi = 1 otherwise. Putting hi := εigi and zi := ε−1
i ai we have that ||hi|| ≤ 1 for

all i ∈ N, and T = ∑∞
i=1 hizi. For any given g ∈ G, there is an N ∈ N such

that ||Tx − ∑n
i=1 hi(x)zi|| < g, for all x ∈ c0, whenever n ≥ N . Hence, T (B) ⊂

B(0, g) + aco{z1, z2, . . . , zn}. �

It is not known whether the converse of Proposition 4.4.7 holds in general.

We will show that if T ∈ L(c0) is compact then for any given basis {yn : n ∈ N}

of c0 we are able to find suitable functionals fi such that (∑n
i=1 fi(·)yi)n∈N converges

uniformly to T . First let’s consider the following lemma.

4.4.8 Lemma. For any given basis {y1, y2, . . . } of c0, the projection map y′j : c0 →

H(i) defined by

y′j(x) := 〈x, yj〉
〈yj, yj〉

is a member of c′0 for all i ∈ N. Furthermore, y′j(yi) = δij, ||y′i|| = 1 for all i ∈ N,

x = ∑∞
i=1 y′i(x)yi and ||x|| = maxi∈N |y′i(x)| for all x ∈ c0.

Proof. All the statements have a standard proof except by the last equality. If

x = 0 then we are done. For x ∈ c0 \ {0} we have that x = ∑∞
i=1 y′i(x)yi. Then

lim |y′i(x)| = lim ||y′i(x)yi|| = 0 (3.4.34). Hence, for g ∈ G, g < ||x||, there exists

n0 ∈ N, n0 > 1 such that |y′i(x)| < g for all i ≥ n0. Thus, by the strong triangle

inequality ∥∥∥∥∥∥
∞∑
i≥n0

y′i(x)yi

∥∥∥∥∥∥ ≤ sup
i≥n0

||y′i(x)yi|| = sup
i≥n0

|y′i(x)| ≤ g < ||x||

and therefore by the Isosceles triangle principle

||x|| =

∥∥∥∥∥∥x −
∞∑
i≥n0

y′i(x)yi

∥∥∥∥∥∥ =

∥∥∥∥∥∥
n0−1∑
i=1

y′i(x)yi

∥∥∥∥∥∥ = max
1≤i≤n0−1

||y′i(x)yi|| = max
i∈N
|y′i(x)|.

�
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4.4.9 F Proposition. For any compact operator T ∈ L(c0) and any given basis

{y1, y2, . . . } of c0, there are functionals f1, f2, · · · ∈ c′0 such that limi ||fi|| = 0 and

T = ∑∞
i=1 fiyi.

Proof. By using 4.4.8 together with the linearity and continuity of T , we have that

for each x ∈ c0,

Tx =
∞∑
i=1

〈Tx, yi〉
〈yi, yi〉

yi =
∞∑
i=1

〈
T
(∑∞

j=1
〈x,yj〉
〈yj ,yj〉yj

)
, yi
〉

〈yi, yi〉
yi =

∞∑
i=1

〈∑∞
j=1

〈x,yj〉
〈yj ,yj〉Tyj, yi

〉
〈yi, yi〉

yi

=
∞∑
i=1

∑∞
j=1

〈x,yj〉
〈yj ,yj〉〈Tyj, yi〉
〈yi, yi〉

yi

=
∞∑
i=1

 ∞∑
j=1

〈x, yj〉
〈yj, yj〉

〈Tyj, yi〉
〈yi, yi〉

 yi

=
∞∑
i=1

 ∞∑
j=1

y′i(Tyj)y′j(x)
 yi.

It remains to show that, for each i ∈ N, the map fi : c0 → H(i), defined by

fi(x) := ∑∞
j=1 y′i(Tyj)y′j(x) is a linear functional on c0 such that limi ||fi|| = 0. It

is clear that fi is a linear map. Let’s show it is also continuous. Let x ∈ c0. Since

||y′i|| = 1 for all i ∈ N, it follows that

|fi(x)| ≤ sup
j∈N

∣∣∣y′i(Tyj)y′j(x)
∣∣∣ ≤ sup

j∈N
|y′i(Tyj)|||x|| ≤ ||x||||T ||

Thus, fi ∈ c′0 and in particular ||fi|| ≤ supj∈N |y′i(Tyj)| for all i ∈ N. Since

|y′i(Tyj)| = |fi(yj)| ≤ ||fi|| for all j ∈ N, we conclude that ||fi|| = supj∈N |y′i(Tyj)|.

Now if we prove that limi ||fi|| = 0, then we are done.

By hypothesis, there are vectors a1, a2, · · · ∈ c0, and functionals g1, g2, · · · ∈ c′0

such that limi ||gi||||ai|| = 0 and T = ∑∞
i=1 giai. Without loss of generality, we can

assume that ai 6= 0 for all i ∈ N. For each i ∈ N, choose εi ∈ H(i) such that

||εiai|| = 1. Putting hi := ε−1
i gi and zi := εiai we have that ||zi|| = 1, limi ||hi|| =
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limi ||hi||||zi|| = limi ||gi||||ai|| = 0 and T = ∑∞
i=1 hizi. For each n ∈ N, let βn :=

(βni)i∈N ∈ c0 be such that zn = ∑∞
i=1 βniyi. Hence ||βn|| = ||zn|| = 1 for all n ∈ N.

On the one hand, for all j ∈ N,

Tyj =
∞∑
n=1

hn(yj)zn =
∞∑
n=1

hn(yj)
( ∞∑
i=1

βniyi
)

=
∞∑
n=1

( ∞∑
i=1

hn(yj)βniyi
)
.

On the other hand, by continuity of the projection maps (4.4.8), for all k ∈ N,

y′k(Tyj) =
∞∑
n=1

( ∞∑
i=1

hn(yj)βniy′k(yi)
)

=
∞∑
n=1

hn(yj)βnk.

Therefore, for all i ∈ N, we can write

||fi|| = sup
j∈N
|y′i(Tyj)| = sup

j∈N

∣∣∣∣∣
∞∑
n=1

hn(yj)βni
∣∣∣∣∣.

Since limi ||hi|| = 0, there exists M ∈ G such that ||hi|| ≤M for all i ∈ N. Given

ε ∈ G, there exists N ∈ N such that n ≥ N ⇒ ||hn|| < ε. Let N1 ∈ N such that

N1 ≥ N and i ≥ N1 ⇒ |βni| < M−1ε, for all n ∈ {1, 2, . . . , N}. Then, for any j ∈ N

and i ≥ N1, we have that

|y′i(Tyj)| =
∣∣∣∣∣
∞∑
n=1

hn(yj)βni
∣∣∣∣∣ =

∣∣∣∣∣∣
N∑
n=1

hn(yj)βni +
∞∑

n=N+1
hn(yj)βni

∣∣∣∣∣∣
≤max


∣∣∣∣∣∣
N∑
n=1

hn(yj)βni

∣∣∣∣∣∣,
∣∣∣∣∣∣
∞∑

n=N+1
hn(yj)βni

∣∣∣∣∣∣


≤max
{

max
1≤n≤N

|hn(yj)βni|, max
n≥N+1

|hn(yj)βni|
}

<max{MM−1ε, ε}

≤ε

Therefore, ||fi|| < ε whenever i ≥ N1. �

An immediate consequence is that the identity operator on c0 is not a compact
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operator. Another consequence of the previous result is the following characterization

of compact operators.

4.4.10 Proposition. Let T ∈ L(c0) and let (yi)i∈N be a basis of c0. Then T is

compact if and only if limi supj∈N |y′i(Tyj)| = 0.

Proof. In the proof of 4.4.9, we proved that limi supj∈N |y′i(Tyj)| = 0, whenever T is

compact. Now suppose that limi supj∈N |y′i(Tyj)| = 0. Again, by the proof of 4.4.9,

for each i ∈ N, the map fi : c0 → H(i), defined by fi(x) := ∑∞
j=1 y′i(Tyj)y′j(x), is

a continuous linear functional on c0 such that ||fi|| = supj∈N |y′i(Tyj)| and Tx =∑∞
i=1 fi(x)yi for all x ∈ c0. By hypothesis, limi ||fi||||yi|| = limi ||fi|| = 0, which

implies that the sequence (∑n
i=1 fi(·)yi)n uniformly converges to T , i.e. T is compact.

�

At the beginning of the proof 4.4.9 we saw that if {yi : i ∈ N} is a basis of c0 and

T ∈ L(E,F ) then

Tx =
∞∑
i=1

 ∞∑
j=1

y′i(Tyj)y′j(x)
 yi.

As in the classical case, this implies that any T ∈ L(c0) (not necessarily compact)

is completely determined by the infinite matrix [T ] := (y′i(Tyj))i,j∈N. Actually, more

can be said about this:

4.4.11 Theorem. Let {yi : i ∈ N} be a basis of c0. The correspondence which

associates to any operator T ∈ L(c0) the infinite matrix [T ] = (y′i(Tyj))i,j∈N defines

an isometric linear isomorphism of L(c0) onto the Banach space of infinite matrices

A = (αij)i,j∈N with entries in H(i) satisfying ||A|| := sup{|αij| : i, j ∈ N} ∈ G# and

limi∈N |αij| = 0 for all j ∈ N.

Proof. The proof of [14, 1.1] can be easily adapted to our case. �

4.4.12 Remark. It follows that any continuous linear operator T ∈ L(c0), can be

identified with a bounded matrix whose column vectors are in c0:
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[T ] =

α11 α12 α13 · · ·
α21 α22 α23 · · ·
α31 α32 α33 · · ·
... ... ... . . .
↓ ↓ ↓
0 0 0

where αij = y′i(Tyj) for all i, j ∈ N.

Regarding operators that admit adjoint we can do the following analysis. If T ∈

L(c0) has an adjoint T ∗, then for a given basis {yi : i ∈ N} of c0, we have that

y′i(T ∗yj) = 〈T
∗yj, yi〉
〈yi, yi〉

= 〈yj, Tyi〉
〈yi, yi〉

= 〈Tyi, yj〉
〈yi, yi〉

= y′j(Tyi)
〈yj, yj〉
〈yi, yi〉

Since 〈yi, yi〉 is not necessarily equal to 1, the matrix [T ∗] is not necessarily [T ]t.

However, |y′i(T ∗yj)| = |y′j(Tyi)| and by 4.3.2 and 4.4.11 we conclude that T ∈ L(c0)

admit an adjoint if and only if the row vectors of [T ] are in c0. In this case we have:

[T ] =

α11 α12 α13 · · · → 0
α21 α22 α23 · · · → 0
α31 α32 α33 · · · → 0
... ... ...
↓ ↓ ↓
0 0 0

where αij = y′i(Tyj) for all i, j ∈ N.

Regarding compact operators, according to 4.4.10, an operator T ∈ c0 is compact

if and only if the row vectors of [T ] form a null sequence in `∞, i.e.

[T ] =

α11 α12 α13 · · · ‖r1‖
α21 α22 α23 · · · ‖r2‖
α31 α32 α33 · · · ‖r3‖
... ... ... ↓
↓ ↓ ↓ 0
0 0 0

where αij = y′i(Tyj) for all i, j ∈ N, and ri = (αi1, αi2, . . . ) ∈ `∞ is the i-th row
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vector of [T ].

With this characterization in mind, the author has developed the following proof

for the next result:

4.4.13 F Proposition. Let T ∈ L(c0) be an operator with adjoint operator T ∗. If

T is compact, so is T ∗.

Proof. Let (yi)i∈N be an orthonormal sequence in c0 and suppose that T ∈ L(c0) is a

compact operator with adjoint operator T ∗. According to 4.4.10, it is enough to prove

that limi supj∈N |y′i(T ∗yj)| = 0. By 4.4.10, we know that T satisfies limj supi∈N |y′j(Tyi)| =

0. Also notice that

|y′i(T ∗yj)| =
∣∣∣∣∣〈T ∗yj, yi〉〈yi, yi〉

∣∣∣∣∣ =
∣∣∣∣∣〈yj, Tyi〉
〈yi, yi〉

∣∣∣∣∣ =
∣∣∣∣∣〈Tyi, yj〉
〈yj, yj〉

∣∣∣∣∣ = |y′j(Tyi)|

Therefore, limj supi∈N |y′i(T ∗yj)| = limj supi∈N |y′j(Tyi)| = 0. (1)

Since Tyi = ∑∞
j=1 y′j(Tyi)yj, we have that limj |y′i(T ∗yj)| = limj |y′j(Tyi)| = 0 for

all i ∈ N. Therefore Ri := {n ∈ N : |y′i(T ∗yn)| = supj |y′i(T ∗yj)|} is a nonempty

finite set. Suppose for a moment that limi supj∈N |y′i(T ∗yj)| 6= 0. We will show that

this leads to a contradiction. By our assumption, there exists g ∈ G such that for

all N ∈ N, there exists kN ∈ N satisfying kN ≥ N and supj |y′kN (T ∗yj)| ≥ g. (2)

By (1), there is M ∈ N such that j ≥ M ⇒ supi |y′i(T ∗yj)| < g. Since

|y′kN (T ∗yn)| ≥ g for every n ∈ RkN , we conclude that RkN ⊂ {1, 2, . . .M} for all

N ∈ N. (3)

Since limj |y′i(T ∗yj)| = 0 for all i ∈ N, there exists Q ∈ N such that n ≥ Q ⇒

|y′i(T ∗yn)| < g for i ∈ {1, 2, . . .M}. (4)

But (2) implies |y′kQ(T ∗yn)| ≥ g for all n ∈ RkQ where kQ ≥ Q and RkQ ⊂

{1, 2, . . .M} by (3). This contradicts (4). �

By using the previous analysis on the matrix representation of an operator and

4.4.13, we can conclude that an operator T ∈ L(c0) with adjoint T ∗ is compact
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whenever the row vectors and column vectors of [T ] form null sequences in c0, i.e. T

is identified by a matrix of the form:

[T ] =

‖c1‖ ‖c2‖ ‖c3‖ → 0
α11 α12 α13 · · · → 0 ‖r1‖
α21 α22 α23 · · · → 0 ‖r2‖
α31 α32 α33 · · · → 0 ‖r3‖
... ... ... ↓
↓ ↓ ↓ 0
0 0 0

where αij = y′i(Tyj) for all i, j ∈ N, ri = (αi1, αi2, . . . ) ∈ c0 is the i-th row vector

of [T ], and cj = (α1j, α2j, . . . ) ∈ c0 is the j-th column vector of [T ]. Notice that

||cj|| = ||Tyj|| for all j ∈ N by 4.4.8. We can summarize this characterization in the

following result.

4.4.14 Theorem. Let T ∈ L(c0) be an operator with adjoint operator T ∗ and let

(yj)j∈N be a basis of c0. The following statements are equivalent:

(a) T is compact,

(b) limj→∞ ||Tyj|| = 0,

For an alternative proof of this result, we can adapt the proof of [3, Theorem 8]

to our case.

4.5 Aspects of non-Archimedean Spectral Theory

One of the objectives of this thesis is to generalize the results of [2] and [3] to the

case where the base field has a Krull valuation of higher rank, in particular, to obtain

a spectral theorem for compact self-adjoint operators on c0 over H(i). However, the

author of this thesis has recently found a problem with the proof of the spectral

theorem presented in [3, Theorem 10] and together with the authors of that paper
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has tried to save the result without success until the date of submission of this

thesis. Therefore, it is not known whether the spectral theorem holds even when

the base field has a valuation of rank 1. When trying to prove the spectral theorem

for compact self-adjoint operators in the rank 1 case, the author has come to the

conclusion that the proof of that result in the Archimedean case cannot be adapted

to the non-Archimedean case because in the classical case the proof is based on the

following facts:

(a) the spectrum of a compact self-adjoint operator is non-empty, which is proved

by using Liouville’s Theorem. In the non-Archimedean case Liouville’s Theo-

rem holds for functions f : K → K that admit a power series expansion. But

it is unknown whether a function f : K → K that is differentiable has a power

series expansion. In the classical case this is proved by using the Cauchy’s

Theorem which heavily depends on the connectedness of C. In our case, any

non-Archimedean valued field is totally disconnected.

(b) ||T || or −||T || is an eigenvalue for T , when T is a compact self-adjoint operator

on a Hilbert space. It is unknown in the non-Archimedean context whether

for any given compact self-adjoint operator there exists an eigenvalue λ such

that |λ| = ||T ||. In the Archimedean case, the key point in the proof of this

fact is that any sequence in a compact set has a convergent subsequence. In

the non-Archimedean context we have an analogous result for compactoid sets

but only stated for orthogonal sequences.

The pursuit of a spectral theorem for compact self-adjoint operators in the non-

Archimedean case proved to be a very difficult task and the author has decided to

continue with it in the near future as part of a postdoctoral research.

Now let’s present some examples of operators on c0, and try to find their eigen-

values to see how the non-Archimedean context may or may not affect the nature of
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the procedures employed, and how the results may differ depending on the rank of

the base field.

4.5.1 Example. Consider the Banach space c0 over the Levi-Civita field L[Q,C]. Let

T ∈ L(c0) be the weighted shift operator defined by T (x1, x2, x3, . . . ) = (0, dx1, d
2x2, . . . )

(for the definition of d see 1.5.3). The matrix that defines this operator relative to

the canonical basis of c0 is:

[T ] =



0 0 0 0 · · ·
d 0 0 0 · · ·
0 d2 0 0 · · ·
0 0 d3 0 . . .
... ... ... . . . . . .


By our analysis in matrix representation done in section 4.4 we conclude that T

is a compact operator because the norm of the i-th row vector of [T ] is |di−1| and

limi→∞ |di−1| = 0. Also, since each row vector of [T ] is in c0 we conclude that T

admits an adjoint T ∗ which is also compact and satisfies [T ∗] = [T ]t. This operator

does not have eigenvalues. Otherwise, there is λ ∈ L[Q,C] and a non-zero vector

x = (xn)n ∈ c0 such that Tx = λx. On the one hand, λ 6= 0 since T is clearly

injective. On the other hand, if the first non-zero coordinate of x is in the k-th

position, then by definition of T , the first non-zero coordinate of Tx is in the (k+1)-

th position contradicting the equality Tx = λx.

Notice that if we replace d by any other scalar α ∈ L[Q,C] such that 0 < |α| < 1

then T will still be a compact operator with adjoint and without eigenvalues. This is

no longer true in the higher rank case. In fact, if the base field is H(i) with G = Q[x],

then limn→∞ |α|n 6= 0 for all α ∈ H(i) \ {0} because of 1.6.5. Hence T is no longer

continuous.

Regarding the Archimedean context, if we replace c0 by `2 and choose any d ∈ C

such that 0 < |d| < 1, then T will be a compact operator in `2 with adjoint and

without eigenvalues. The proof of this fact is similar to the one presented above.
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4.5.2 Example. Consider the operator T ∈ c0 defined by T (x1, x2, x3, . . . ) = (x2, x1+

x3, x2 + x4, . . . , xn + xn+2, . . . ) over the field H(i). Notice that T = S + S∗ where S

is the right-shift operator and S∗ is the left-shift operator. The matrix that defines

this operator relative to the canonical basis of c0 is:

[T ] =



0 1 0 0 · · ·
1 0 1 0 · · ·
0 1 0 1 · · ·
0 0 1 0 . . .
... ... ... . . . . . .


By our analysis in matrix representation done in section 4.4 we conclude that T

is not a compact operator because the norm of each row vector of [T ] is 1. Also, since

each row vector of [T ] is in c0 we conclude that T admits an adjoint T ∗. Since [T ] is a

symmetric matrix with entries in H, it follows that T is self-adjoint. This operator

does not have eigenvalues. Otherwise, there is λ ∈ H(i) and a non-zero vector

x = (xn)n ∈ c0 such that Tx = λx. This implies that x2 = λx1 and xn+2 = λxn+1−xn

for all n ∈ N. If x1 = 0 then x = (xn)n = 0 contradicting the hypothesis that x is an

eigenvector of T . Thus x1 6= 0. Without lost of generality, let’s assume that x1 = 1

(if x is an eigenvector, so is x−1
1 x) and hence x2 = λ. We will show that we have a

contradiction for all the possible values of λ.

Case 1: |λ| < 1. In this case, let’s prove by induction that |xn+2| ≤ 1 and

|x2n+1| = 1 for all n ∈ N. Once we do that we have x 6∈ c0 which is a contradiction.

For n = 1, we have that x1+2 = x3 = λx2 − x1 = λ2 − 1. Since |λ2| < 1, we have

that |x3| = 1 by the Isosceles triangle principle (see 1.2.3.b). Suppose that |xk+2| ≤ 1

for all k ∈ {1, . . . ,m}. Then |xm+3| = |λxm+2 − xm+1| ≤ max{|λxm+2|, |xm+1|} ≤ 1.

Thus |xn+2| ≤ 1 for all n ∈ N. Now suppose that |x2k+1| = 1 for some k > 1. By

the previous induction, we have that |x2k+1| ≤ 1 which implies that |λx2(k+1)| < 1 =

|x2k+1|. Thus |x2(k+1)+1| = |λx2(k+1) − x2k+1| = |x2k+1| = 1 by 1.2.3.b. Therefore

|x2n+1| = 1 for all n ∈ N.
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Case 2: |λ| > 1. In this case, let’s prove by induction that |xn| < |xn+1| for all

n ∈ N. Once we do that we have x 6∈ c0 which is a contradiction.

For n = 1, we have that x1+2 = x3 = λx2 − x1 = λ2 − 1. Since 1 < |λ| < |λ2|,

we have that |x3| = |λ2| by 1.2.3.b. Suppose that |xk| < |xk+1| for some k > 1. Then

|xk| < |xk+1| < |λxk+1| and thus we have that |xk+2| = |λxk+1 − xk| = |λxk+1| >

|xk+1|. Thus |xn+2| ≤ 1 for all n ∈ N. Therefore |xn| < |xn+1| and for all n ∈ N.

Case 3: |λ| = 1. In this case, we can prove in a similar way to the case 1 that

|xn| ≤ 1 for all n ∈ N. Let’s prove by induction that 1 ∈ {|xn|, |xn+1|} for all n ∈ N.

Once we do that we have x 6∈ c0 which is a contradiction.

Since x1 = 1, the statement is true for n = 1. Now suppose that 1 ∈ {|xk|, |xk+1|}

for some k ∈ N. Let’s show that 1 ∈ {|xk+1|, |xk+2|}. If |xk+1| = 1 then we are done.

Otherwise we have that |xk+1| < 1 and by our inductive assumption we have |xk| = 1.

Thus |λxk+1| = |xk+1| < |xk|. Then by 1.2.3.b we have that |xk+2| = |λxk+1 − xk| =

|xk| = 1. Therefore 1 ∈ {|xn|, |xn+1|} for all n ∈ N.

Notice that when we study the same operator T in `2 over C, it is also true that T

is a self-adjoint non-compact operator without eigenvalues but in that case the proof

of the last statement is not as simple as the previous one because there we do not have

the Isosceles triangle principle 1.2.3.b. In that case the proof that the author came

up with involves the resolution of the linear recurrence relation xn+2 = λxn+1 − xn

and showing that limn→∞ xn 6= 0 for all λ ∈ C.

4.5.3 Example. Although there is not yet a proof for a spectral theorem for compact

self-adjoint operators in the non-Archimedean case, there are such operators that

admit a spectral decomposition. Consider the Banach space c0 over the Levi-Civita

field L[Q,C]. Let T ∈ L(c0) be defined by

T (x1, x2, x3, . . . ) =
( ∞∑
i=2

xid
i−2, x1, dx1, d

2x1 . . .

)
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(for the definition of d see 1.5.3). The matrix that defines this operator relative to

the canonical basis of c0 is:

[T ] =



0 1 d d2 · · ·
1 0 0 0 · · ·
d 0 0 0 · · ·
d2 0 0 0 . . .
... ... ... . . . . . .


By our analysis in matrix representation done in section 4.4 we conclude that

T is a compact operator because the norm of the i-th row vector of [T ] is |di−2| for

i ≥ 2 and limi→∞ |di−2| = 0. Also, since each row vector of [T ] is in c0 we conclude

that T admits an adjoint. Furthermore, T is self-adjoint because [T ] is symmetric

with entries in H. Let’s find the eigenvalues of T . Suppose λ ∈ H(i) is such that

Tx = λx for some non-zero x = (xn)n ∈ c0. Then we have the following relations:

λx1 =
∞∑
i=2

xid
i−2 and λxn = x1d

n−2 for all n ≥ 2

If λ 6= 0, then x1 6= 0 because x 6= 0. Hence xn = λ−1dn−2x1 for all n ≥ 2 and

by substituting this into the equality λx1 = ∑∞
i=2 xid

i−2 we obtain λ2 = ∑∞
i=0 d

2i.

Since the Levi-Civita field L[Q,R] is real-closed, we can take the square root and

define σ :=
√∑∞

i=0 d
2i. Hence σ and −σ are eigenvalues of T with eigenvectors y1 =

(σ, 1, d, d2, . . . ) and y1 = (−σ, 1, d, d2, . . . ) respectively. Notice that the eigenspaces

corresponding to σ and −σ are 1-dimensional.

If λ = 0, then we conclude that the conditions x1 = 0 and ∑∞
i=2 xid

i−2 = 0

determine the kernel of T . There are several vectors in ker(T ), for instance, for

each n ∈ N, the vector zn :=
(
0, 1, d, d2, . . . , dn−3, d

2(n−2)−σ2

dn−2 , dn−1, . . .
)
∈ ker(T ).

In other words, the vectors zn are 0-eigenvectors of T . Also it can be proved that

{zn : n ∈ N} is linearly independent. Notice that span{y1, y2, z1, z2, z3 . . . } = c0. In
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fact, if en is n-th canonical vector of c0 then

e1 = 1
2σy1 −

1
2σy2 and

en = dn−2

2σ2 y1 + dn−2

2σ2 y2 −
dn−2

σ2 zn for all n ≥ 2.

By using the Gram-Schmidt orthogonalization process in {zn : n ∈ N}, and by ap-

pending y1 and y2 to the resulting collection, we obtain a basis of c0 (after normal-

ization) for which the operator T has the following matrix representation:

[T ] =



σ 0 0 0 · · ·
0 −σ 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 . . .
... ... ... . . . . . .


Diagonal Operators

Since a spectral theorem has not been obtained yet, the author has decided to restrict

the study of operators to the family of diagonal operators on c0 over H(i) to check

whether the theory of diagonal operators is affected in the non-Archimedean case

over a valued field of higher rank.

4.5.4 Definition. An operator T ∈ L(c0) is called diagonal if there exists basis

{yn : n ∈ N} for c0 formed by eigenvectors of T .

It can be easily verified that if T ∈ L(c0) is diagonal and if the set of eigenvectors

{yn : n ∈ N} is a basis for c0 then, the eigenvalues of T form a sequence λ = (λi)i in

`∞ such that, for each x ∈ c0:

Tx =
∞∑
i=1

λi
〈x, yi〉
〈yi, yi〉

yi
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The matrix representation of T with respect to the basis {yn : n ∈ N} will be the

diagonal matrix:

[T ] =



λ1 0 0 0 · · ·
0 λ2 0 0 · · ·
0 0 λ3 0 · · ·
0 0 0 λ4

. . .
... ... ... . . . . . .


By 4.4.11, it follows that ||T || = sup{|λi| : i ∈ N} = ||λ||. By 4.4.12, we can conclude

that T admits adjoint and [T ∗] = [T ]t. In fact, even when 〈yi, yi〉 6= 1 we have that

λi = y′i(T ∗yi) = y′i(Tyi) 〈yi,yi〉〈yi,yi〉 = y′i(Tyi) = λi (compare with 4.4.12). Hence for each

x ∈ c0 we have that

T ∗x =
∞∑
i=1

λi
〈x, yi〉
〈yi, yi〉

yi

and therefore T is self-adjoint if and only if λ ∈ c0(H), i.e. λi = λi for all i ∈ N.

Similarly, by 4.4.12 we have that T is compact if and only if λ ∈ c0.

Now we are in position to present our decomposition theorem for diagonal oper-

ators on c0.

4.5.5 Proposition. For every diagonal operator T ∈ L(c0), there are unique self-

adjoint operators T1, T2 ∈ L(c0) such that T = T1 + iT2, T ∗ = T1 − iT2 and ||T || =

max{||T1||, ||T2||}.

Proof. Let T ∈ L(c0) be a diagonal operator and let {y1, y2, . . . } be a basis for

c0 formed by eigenvectors of T . Then there exists a unique λ = (λi)i∈N ∈ `∞

such that Tx = ∑∞
i=1 λi

〈x,yi〉
〈yi,yi〉yi, for all x ∈ c0. There are unique α = (αi)i∈N and

β = (βi)i∈N in `∞(H), such that λ = α+ iβ (see 4.2.8). Define T1 and T2 as follows:

T1x = ∑∞
i=1 αi

〈x,yi〉
〈yi,yi〉yi, and T2x = ∑∞

i=1 βi
〈x,yi〉
〈yi,yi〉yi. Thus T1 and T2 are self-adjoint

diagonal operators on c0. It is clear that T = T1 + iT2 and T ∗ = T1 − iT2. Finally,

||T || = ||λ|| = max{||α||, ||β||} = max{||T1||, ||T2||} by 4.2.8. �
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The next result shows the basic properties regarding the composition of diago-

nal operators. Notice the special considerations made in the proof of (e) since the

inequality takes place in G#.

4.5.6 Proposition. Let {yi : i ∈ N} be a basis of c0 and let S, T ∈ L(c0) be diagonal

operators defined by

Sx :=
∞∑
i=1

αi
〈x, yi〉
〈yi, yi〉

yi and Tx :=
∞∑
i=1

βi
〈x, yi〉
〈yi, yi〉

yi

for all x ∈ c0 and for some α = (α)i∈N and β = (βi)i∈N in `∞. Then the following

statements hold.

(a) (ST )x =
∞∑
i=1

αiβi
〈x, yi〉
〈yi, yi〉

yi, for all x ∈ c0.

(b) ST = TS

(c) If T 6= 0 satisfies T n = T for some n ≥ 2, then |βi| = 1 for every i ∈ N. In

particular, T n−1 is a normal projection.

(d) T has an inverse in L(c0) if and only if βi 6= 0 for all i ∈ N, (β−1
i )i ∈ `∞. In

this case T−1x = ∑∞
i=1 β

−1
i
〈x,yi〉
〈yi,yi〉yi, for all x ∈ c0.

(e) T is invertible if and only if infi |βi| > 0.

Proof. (a): for any x ∈ c0, we have that:

(ST )x =
∞∑
i=1

αi
〈Tx, yi〉
〈yi, yi〉

yi =
∞∑
i=1

αi
〈∑∞j=1 βj

〈x,yj〉
〈yj ,yj〉yj, yi〉
〈yi, yi〉

yi =
∞∑
i=1

αiβi
〈x, yi〉
〈yi, yi〉

yi.

The statement (b) follows immediately from (a).

(c): By (a) we have that for every n ∈ N and x ∈ c0,

T nx =
∞∑
i=1

βni
〈x, yi〉
〈yi, yi〉

yi.
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Let A := {i ∈ N : βi 6= 0}. If T n = T 6= 0 for n ≥ 2, then βni = βi and hence |βi| = 1

for every i ∈ A. In particular, we have that that βn−1
i = 1 for each i ∈ A. Then

T n−1x =
∑
i∈A

〈x, yi〉
〈yi, yi〉

yi

and therefore, the result follows from 4.3.4.

(d): Suppose that T has an inverse in L(c0). Then, for each i ∈ N, Tyi = βiyi

implies that βi 6= 0, otherwise T is not injective. Hence T−1yi = β−1
i yi and thus

|β−1
i | = ||β−1

i yi|| = ||T−1yi|| ≤ ||T−1||. Therefore (β−1
i )i ∈ `∞. By continuity of T−1,

for every x ∈ c0 we have that:

T−1x = T−1
( ∞∑
i=1

〈x, yi〉
〈yi, yi〉

yi
)

=
∞∑
i=1

〈x, yi〉
〈yi, yi〉

T−1yi =
∞∑
i=1

β−1
i

〈x, yi〉
〈yi, yi〉

yi.

(e): In the proof of (d) we showed that, if T is invertible, then 0 < |β−1
i | ≤ ||T−1|| for

all i ∈ N. Since G is cofinal in G#, we can choose h ∈ G such that ||T−1|| ≤ h. Hence,

0 < h−1 ≤ |βi| for all i ∈ N and therefore, infi |βi| ≥ h−1 > 0. Conversely, suppose

that infi |βi| > 0. Hence, βi 6= 0 for all i ∈ N. Put α := (β−1
i )i. Since G is coinitial

in G#, we can choose g ∈ G such that g < infi |βi|. Hence, 0 < g ≤ |βi| for all i ∈ N.

Then, it follows that |β−1
i | ≤ g−1 for all i ∈ N and therefore, supi |β−1

i | <∞. Hence,

α ∈ `∞ and by using (a), we can verify that Sx := ∑∞
i=1 β

−1
i
〈x,yi〉
〈yi,yi〉yi is the inverse

operator of T . Thus we have proved (d) and (e). �

The next result characterizes those compact diagonal operators on c0 that are

cyclic of finite order, i.e. those whose compositions form a finite magma.

4.5.7 Proposition. Let {yi : i ∈ N} be a basis of c0. Consider a nonzero compact

diagonal operator T ∈ L(c0) defined by

Tx :=
∞∑
i=1

βi
〈x, yi〉
〈yi, yi〉

yi
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for all x ∈ c0 and for some β = (βi)i∈N in c0. If T n = T for some n ≥ 2, then Im(T )

is finite dimensional, the set A = {n ∈ N : βn 6= 0} is finite and |βn| = 1 for every

n ∈ A. In particular, T n−1 is a normal projection.

Proof. By 4.5.6.a, we have that for every n ∈ N and x ∈ c0,

T nx =
∞∑
i=1

βni
〈x, yi〉
〈yi, yi〉

yi.

If T n = T 6= 0, then βni = βi and hence |βi| = 1 for every i ∈ A. Since limi βi = 0, A

must be finite. Then Im(T ) = [yn : n ∈ A]. The rest follows from 4.5.6.c. �

Let’s finish the study of diagonal operators with an inspection of their spectra.

4.5.8 Definition. Let T ∈ L(c0). The spectrum of T is the set

σ(T ) := {µ ∈ H(i) : T − µI is not invertible}.

The spectral radius of T is defined as

rσ(T ) := sup{|µ| : µ ∈ σ(T )}.

4.5.9 F Proposition. Let T ∈ L(c0) be a diagonal operator defined by

Tx :=
∞∑
i=1

λi
〈x, yi〉
〈yi, yi〉

yi,

for each x ∈ c0, where (yi)i∈N is a basis of c0 formed by eigenvectors of T and

λ = (λi)i∈N in `∞. Then the spectrum of T is σ(T ) = {λn : n ∈ N} and the spectral

radius of T is ||T ||.

Proof. Let µ ∈ `∞. For each x ∈ c0 we have that:

(T − µI)x =
∞∑
i=1

λi
〈x, yi〉
〈yi, yi〉

yi −
∞∑
i=1

µ
〈x, yi〉
〈yi, yi〉

yi =
∞∑
i=1

(λi − µ) 〈x, yi〉
〈yi, yi〉

yi.
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On the one hand, by 4.5.6.e, µ ∈ σ(T ) if and only if infn∈N |λn − µ| = 0. On the

other hand, infn∈N |λn − µ| = 0 if and only if there exists a subsequence (λnk)k of

(λn)n such that limk λnk = µ. This is equivalent to µ ∈ {λn : n ∈ N}. Furthermore,

we have that ||T || = sup{|λn| : n ∈ N} ≤ rσ(T ). Suppose that the inequality

is strict. Then there exists µ ∈ {λn : n ∈ N} such that |λn| < |µ| for all n ∈ N.

Hence 0 < |µ| = |µ − λn| = infn |µ − λn| and therefore µ 6∈ σ(T ) (4.5.6.e), a

contradiction. �

Notice that although Proposition 4.5.9 also holds in the Archimedean case, the

proof presented above makes use of the Isosceles triangle principle.

Conclusions

The author has verified that the presented results for diagonal operators hold also in

the Archimedean case, where sometimes the difference is only detected in the proofs.

In the same vein, the author has verified (see idea below) that when the non-

Archimedean valued field has rank 1, the spectrum of an arbitrary operator T ∈ L(c0)

is closed and bounded by ||T ||. Notice that every closed bounded subset of a fieldK is

compact if and only if K is locally compact. In our case, H(i) is not locally compact

(for a complete characterization of locally compact valued fields see [8, 2.32, 2.33]).

Additionally, the space of invertible operators is open in L(c0): if T, S ∈ L(c0), T is

invertible and ||T − S|| < ||T || then S is also invertible. The idea of the proofs in

the non-Archimedean context are very similar to the ones in the Archimedean case,

where the differences are mainly related to:

(a) the use of the inequality ||∑n T
n|| ≤ sup ||T n|| instead of ||∑n T

n|| ≤ ∑n ||T n||,

(b) the convergence of ∑n T
n is obtained from the convergence ||T n|| → 0, while in

the Archimedean case a comparison with a convergent geometric series takes

place.



133

A more substantial difference is visible when we try to obtain the mentioned

results using a non-Archimedean valued field of higher rank. The main difficulty

in this case is the lack of the inequality ||TS|| ≤ ||T || ||S|| for T, S ∈ L(c0). This

inequality requires the existence of a product operation defined on G# that extends

the action of G on G#. The problem is that the only two operations that meet the

requirements are not well-behaved, in the sense that G# will not be a group and

there are elements τ ∈ G# such that sτ = τ no matter how small s ∈ G is chosen.

Nonetheless, not all is lost. If we consider S, T ∈ L(c0) to be compact and self-

adjoint, we have that ||S|| and ||T || are elements of G, i.e. the suprema are attained

by the valuation of some entry in their respective associated matrix. In that case the

inequality ||TS|| ≤ ||S|||T || is back in the game and therefore the results mentioned

above also hold for the higher rank case for compact and self-adjoint operators.



Chapter 5

Future work

While preparing this thesis, the author came across several interesting problems that

would require a significant amount of time to try to solve and hence did not fit in

the time line of producing this thesis. Since the resolution of those problems will

improve the current understanding of non-Archimedean Functional Analysis, the

author plans to work on them in his postdoctoral research.

5.1 Is there a spectral theorem for compact and

self-adjoint operators on c0?

As it is indicated in Section 4.5, it is unknown whether there is an spectral theorem for

compact and self-adjoint operators on c0 even in the rank-1 case. So far, the compact

and self-adjoint operators in L(c0) that the author has studied can be separated in

two groups: (1) operators that are hard to study and it is unclear whether they

have any eigenvalue or not, and (2) operators that satisfy the spectral theorem. Due

to the difficulty to find a counterexample the author is now more inclined to the

possibility that the spectral theorem holds in the rank-1 case.
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5.2 Characterization of Banach spaces with the

complementation property

Let us say that a Banach space E has the complementation property if every

closed subspace of E is complemented, i.e. for each closed subspace D of E, there

exits another closed subspace F of E such that E = D+F and D∩F = {0}. Notice

that orthogonality is not involved in the complementation property.

In classical Functional Analysis, J. Lindenstrauss and L. Tzafriri have proved [25]

that a Banach space over R or C has the complementation property if and only if it

is linearly homeomorphic to a Hilbert space.

An interesting question is the following: what Banach spaces over a non-Archimedean

valued field have the complementation property? In a way, this question tries to

identify the "Hilbert spaces" in the non-Archimedean context.

There are some partial answers to this question:

(a) If the valuation of the base field is discrete then every Banach space has the

complementation property (see [45, 4.7]).

(b) If the valuation of the base field is dense, and if the Banach space is of countable

type, then the latter has the complementation property (see 2.4.15).

The author of this thesis conjectures that if the valuation of the base field is

dense, then a Banach space has the complementation property if and only if it is of

countable type.
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5.3 Is being of countable type an inheritable prop-

erty for normed spaces?

In the case rank(G) = 1, the subspaces of a normed space of countable type are again

of countable type (see [32, 2.3.14]). However, when we are dealing with valuations

of higher rank, the question does not have a complete answer. According to 3.5.1 if

E is a Banach space of countable type with basis field K, then each closed subspace

of E is of countable type whenever one of the following conditions is satisfied:

(a) K is non-metrizable, or

(b) G is principal, or

(c) each BK-submodule of K is countably generated.

The answer otherwise is unknown, this is the case when G is the union of a

strictly increasing sequence of convex subgroups, and G has a countable coinitial set

and not all the BK-submodules of K are countably generated.

As H. Ochsenius andW.H. Schikhof pointed out in [31, 2.5] a major step in solving

the problem would be the answer to the question as to whether closed subspaces of

c0 are of countable type.

5.4 Is the quotient space of a spherically complete

normed space spherically complete?

In the case rank(G) = 1, the answer is positive as it is proved in [45, 4.2]. Such

a proof relies heavily on the countability of the coinitiality of the value group G.

In the higher-rank case, the answer is unknown. But if the answer is positive then

there is a strategy to prove that every subspace of a normed space of countable type
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is of countable type. This would be done by following the ideas of the proof of the

following result:

5.4.1 Theorem ([45, 5.9]). Let E be a Banach space with an orthogonal basis. Then

every linear subspace of E has an orthogonal basis.

5.5 Topological approach to Hilbert-like spaces

In classical Analysis, a Hilbert space (H, (·, ·)) satisfies the following distinctive prop-

erties:

(a) The inner product (·, ·) is continuous with respect to the topology induced by

the norm.

(b) H is a Banach space.

(c) There exists an orthonormal basis {eα : α ∈ I} such that every x ∈ H has

a unique expansion of the form x = ∑∞
n=1 λαneαn , where λαn ∈ R (or C). If

the basis is countable, then H is of countable type (see definition in 2.4.1 and

characterization in 2.4.11).

(d) Every closed subspace D of H is normal complemented (H = D ⊕D⊥).

(e) The topological dual of H is isometrically isomorphic to H (Riesz representa-

tion theorem).

IfH is infinite-dimensional and has a countable orthogonal basis thenH is linearly

homeomorphic to `2.

Our objective is to find a characterization of spaces satisfying these properties in

the context of non-Archimedean analysis using locally convex topologies.

Let K = (K, | · |) be a Cauchy complete non-Archimedean valued field. The

valuation | · | is assumed to be nontrivial. Since we want to define a space satisfying
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properties that are analogous to (b) and (c), let’s consider an infinite-dimensional

Banach space E over K of countable type (see definitions in 2.1.1 and 2.4.1). By

Theorem 2.4.12, E is linearly homeomorphic to (c0, || · ||∞) (see definition in 2.1.3).

Now we need an inner product (·, ·) on c0 such that ||x||∞ =
√
|(x, x)| (see 2.3.1).

Narici proved in [29] that the inner product (·, ·) : c0 × c0 → K defined by

(x, y) :=
∞∑
n=1

xnyn

satisfies the equality ||x||∞ =
√

(x, x) for every x ∈ c0, if and only if the residue class

field of K is formally real (see definitions in 1.3.4 and 1.4.1).

So let’s assume that the residue class field of K is formally real.

As we mentioned in 2.3.3, it is impossible for the space (c0, || · ||∞) to satisfy the

property (d). But we still can ask if there exists a locally convex topology σ on c0

such that:

• (·, ·) is σ-continuous,

• c0 is of countable type with respect to σ,

• D is a σ-closed subspace of c0 if and only if D is a complemented || · ||∞-closed

subspace,

• (c0, σ)′ is linearly isomorphic to c0

In other words, we could look for a topology on c0 that characterizes all the

|| · ||∞-closed subspaces of c0 that admit orthocomplements.

Since we wish to have a result that is analogous to the Riesz representation

theorem on (c0, σ) (i.e. to satisfy (e)) let’s consider the functionals of the form

x 7→ (x, y) where x, y ∈ c0. Then the function py(x) := |(x, y)| is a continuous

seminorm on c0. If R := {py : y ∈ c0} then a good candidate to study would be the

locally convex topology on c0 induced by the family R, i.e σ := σ(c0, R).
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