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ABSTRACT 

Introduction: Administrative health records (AHRs) and electronic medical records (EMRs) are 

the two main sources of population-based data for chronic disease surveillance in Canada. 

Studies have shown that misclassification errors exist in each data source, which can result in 

biased estimates of prevalence and incidence. Previous research suggests combining information 

from data sources, building on their respective strengths to ascertain disease cases.  

Purpose & Objectives: The research purpose was to compare different methods to combine 

information from two error-prone data sources for ascertaining chronic disease cases. The 

objectives were to: (1) evaluate the bias and precision of several rule-based and probabilistic-

based methods using computer simulation, and (2) demonstrate how to apply and use these 

methods with a numeric example for hypertension case ascertainment. 

Methods: Four data-combining methods were compared: (a) rule-based ‘OR’ method, (b) rule-

based ‘AND’ method, (c) rule-based sensitivity-specificity adjusted (RSSA) method and (c) 

probabilistic-based sensitivity-specificity adjusted (PSSA) method. The following simulation 

parameters were investigated: true population prevalence, error-prone data source prevalence, 

correlation between data sources, number of markers for PSSA method, average correlation 

amongst markers, and correlation pattern. Relative bias (RB) and mean squared error (MSE) 

were used for method comparisons. The methods were demonstrated using linked AHRs and 

EMRs from fiscal years 2005/2006 to 2008/2009 to ascertain cases of hypertension.  

Results: The ‘OR’ method had the lowest RB and MSE when the true prevalence was low, and 

the RSSA method had the lowest RB and MSE when true prevalence was high. As the 

correlation between data sources increased, the ‘OR’ method had the lowest RB and MSE. When 

the true prevalence was high, correlation between data sources was high and average correlation 
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amongst markers was low, the PSSA method had the lowest RB and MSE. Our numeric results 

showed a strong correlation between AHRs and EMRs. The estimated prevalence of 

hypertension from all methods was higher than the estimates using AHRs and EMRs, except for 

the ‘AND’ method. 

Conclusion: The results suggest that no single, optimal data-combining method exists. The ‘OR’ 

and ‘AND’ methods are influenced by the correlation amongst the data sources, while the RSSA 

method is dependent on the availability of accurate sensitivity and specificity estimates. The 

PSSA method performs well only when the true prevalence and correlation amongst data sources 

are high and average correlations amongst markers is low. 
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CHAPTER 1 – INTRODUCTION 

1.1 Background 

 Administrative health records (AHRs) and electronic medical records (EMRs) are the two 

main sources of population-based data for chronic disease surveillance in Canada. AHRs, 

including hospital discharge abstract, physician billing claims and prescription drug records, are 

currently used in Canadian provinces and territories through the Public Health Agency of 

Canada’s (PHAC’s) Canadian Chronic Disease Surveillance System (CCDSS) (Pelletier et al., 

2012; Dai et al., 2013; O’Donnell, 2013; Robitaille et al., 2013). The Canadian Primary Care 

Sentinel Surveillance Network (CPCSSN) is the only pan-Canadian EMR data source for chronic 

disease surveillance (Coleman et al., 2015; Williamson et al., 2014). Established in 2008, the 

CPCSSN extracts and processes EMR data from 10 primary care research networks across 

Canada (Garies et al., 2017).  

 Chronic disease case ascertainment algorithms, the criteria used to ascertain individuals 

with a specific condition, have been developed independently for AHRs and EMRs. In EMRs, 

the components of a case ascertainment algorithm include combinations of diagnosis and 

prescription drug codes and structured and unstructured (i.e., text) information drawn from a 

number of sections, including laboratory test results (Williamson et al., 2014). In AHRs, the 

components of a case ascertainment algorithm include the type of data source, diagnostic and 

prescription drugs codes, number of records with the code(s), and number of years of data (Lix et 

al., 2006). 

 Validation studies, in which diagnosed cases are compared with clinically-confirmed 

cases, have been conducted to assess the accuracy of case ascertainment algorithms for both 

AHRs and EMRs. These studies have shown that misclassification errors exist in both data 
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sources (Coleman et al. 2015; Kadhim-Saleh et al., 2013; Lix et al., 2006; Quan et al., 2008; Tu 

et al., 2007; Williamson et al., 2014), including false negative cases in which an individual is 

incorrectly classified as not having a disease and false positives in which an individual is 

incorrectly classified as having a disease (Valle et al., 2015). For example, Quan et al. (2008) 

compared AHRs to data abstracted from physician charts to assess the accuracy of case 

ascertainment algorithms of AHRs for identifying individuals with hypertension. The sensitivity 

(i.e., the proportion of correctly identified positive cases) and specificity (i.e., the proportion of 

correctly identified negative cases) of the case ascertainment algorithms of hypertension from 

AHRs were 75% and 94%, respectively. Williamson et al. (2014) found that the sensitivity and 

specificity of the case ascertainment algorithms of hypertension from EMRs were 85% and 94%, 

respectively. These results indicate that both data sources are imperfect for case ascertainment, 

which can result in biased estimates of disease prevalence and incidence. In addition, 

inconsistencies may exist between the two sources; individuals who are identified as disease 

cases in AHRs may not be disease cases in EMRs, resulting in different disease estimates from 

the two sources (Atwood et al., 2013). Each source has strengths and limitations (Birtwhistle & 

Williamson, 2015; Quan et al., 2012; Singer et al., 2016) as described in Table 1.1. 
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Table 1.1: Strengths and limitations of using administrative health records (AHRs) and Canadian 

Primary Care Sentinel Surveillance Network (CPCSSN) electronic medical records (EMRs) for 

research and surveillance 

Source Limitations Strengths 

AHRs 

Intended for provider reimbursement and 

health system management rather than for 

research and surveillance 

Complete population coverage  

Do not contain patient clinical information, 

such as laboratory test results or biological 

measurements 

Available for many years  

A single diagnosis is recorded in physician 

claims for many provinces (e.g., Manitoba) 

Include records of all filled 

prescriptions and dates of 

fills/refills 

CPCSSN 

EMRs 

Were developed to be used for patient care 

rather than for research or surveillance 

Include laboratory results, which 

may provide clinical indications 

of chronic diseases 

Contain unstructured data, which can be 

challenging to use for research and 

surveillance 

Contain health condition lists  to 

record medical history of patients 

CPCSSN is a voluntary network of primary 

care providers; the patients who see these 

providers may not be fully representative   

of the Canadian outpatient population  

Contain some health risk factor 

information, such as self-reported 

smoking and alcohol use, which 

is important for disease risk 

prediction 

 

 Previous research has suggested combining information from two or more data sources, 

to build on the strengths of each source when ascertaining disease cases. One of these sources 

may contain no misclassification error, or both sources may contain misclassification error. For 

the former, a validation sample, in which disease status is known without error, may be used to 

correct for misclassification bias in an error-prone data source (He & Zaslavsky, 2009; Yucel & 
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Zaslavsky, 2005; Zheng et al., 2006). For the latter, possible solutions range from simple rule-

based to probabilistic-based and latent-class modelling approaches, which rely on estimates of 

sensitivity and specificity of disease case ascertainment algorithms to correct for 

misclassification bias (Bernatsky et al., 2005; Dendukuri & Joseph, 2001; He et al., 2014; 

Reitsma et al., 2009). Rule-based methods classify individuals as having the disease of interest 

based on pre-specified data-combining rules (Alonzo & Pepe, 1999; Martin et al., 2004; Schiller 

et al., 2016). Adjusted rule-based methods ascertain the number of disease cases by using the 

accuracy of case ascertainment algorithms as weights (Couris et al., 2002; Couris et al., 2009; 

Hadgu et al., 2005). Probabilistic-based methods fit regression models, including Bayesian 

models, to select values of the true disease status for a pre-specified distribution. These models 

sample from the posterior distribution conditional on disease markers, using an iterative process 

(He et al., 2014).    

 Data-combining methods based on both deterministic and probabilistic models have been 

proposed but few, if any, studies have compared these methods. As well, there has been limited 

investigation about the factors that may influence the accuracy of these methods. Such 

investigations could assist researchers to make informed decisions when choosing methods to 

combine data sources for case ascertainment and provide recommendation for ease of use. 

Accurate information about disease prevalence and incidence is needed for understanding 

disease burden in the population, and for planning disease treatment and management programs. 
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1.2 Purpose and objectives 

 The purpose of this research was to compare different methods to combine information 

from two error-prone data sources for ascertaining chronic disease cases. The specific objectives 

were:  

1. To evaluate the bias and precision of several rule-based and probabilistic-based methods 

using computer simulation; and 

2. To demonstrate how to apply and use these methods with a numeric example for 

hypertension case ascertainment.   

1.3 Thesis organization 

 This thesis focuses on the use of data-combining methods for chronic disease 

surveillance. Chapter 2 presents relevant literature on the following topics: a) case ascertainment 

with one error-prone data source, b) case ascertainment with one error-prone data source and one 

error-free data source, c) case ascertainment with two or more error-prone data sources, and d) 

accuracy of case ascertainment algorithms for chronic diseases in AHRs and EMRs. Chapter 3 

contains the methods for the simulation study and the numeric example. Chapter 4 presents the 

results of the simulation study. Chapter 5 presents the results of the numeric example. The last 

chapter includes the study discussion, conclusions, and directions for future research.  

 

  



6 

 

CHAPTER 2 – LITERATURE REVIEW 

 This literature review encompasses the following topics: case ascertainment with one 

error-prone data source, case ascertainment with one error-prone data source and one error-free 

data source, case ascertainment with two or more error-prone data sources, and accuracy of case 

ascertainment algorithms for chronic diseases in AHRs and EMRs. 

2.1 Case ascertainment of one error-prone data source 

 First, we define the sensitivity and specificity for case ascertainment algorithms of an 

error-prone data source. Consider a two-way table of observed disease status from an error-prone 

data source versus disease status from a validation study that contains error-free data (Table 2.1). 

Let 𝐷𝑖 denote a binary indicator of the true disease status for the i
th 

individual (i = 1,…, n), where 

1 = disease case and 0 = non-disease case. Let 𝑌1𝑖 denote the observed disease status for the i
th 

individual from an error-prone data source (e.g., AHRs), where 1 = disease case and 0 = non-

disease case.    

Table 2.1: Two-way table for ascertaining disease status from an error-prone data source (𝑌1) and 

a data source containing true disease status (𝐷) 

 

𝑫 

 1 0 Total 

𝒀𝟏 
1 TP FP 

 

TP+FP 

0 FN TN 

 

FN+TN 

Total 

 

TP+FN FP+TN 

 

TP+FP+FN+TN 

     

 The diagonal cells represent correctly classified cases known as true positives (TP) and 

true negatives (TN), respectively. The off-diagonal cells indicate misclassified cases known as 

false positives (FP) and false negatives (FN), respectively. Sensitivity is estimated as the number 

of true positive cases divided by the total number of true disease cases (TP+FN), defined in 
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terms of probability as P(𝑌1=1 | D=1). Specificity is estimated as the number of true negative 

cases divided by the total number of true non-disease cases (FP+TN), defined in terms of 

probability as P(𝑌1=0 | D=0).   

 A data source is said to be imperfect when sensitivity and/or specificity of its case 

ascertainment algorithms do not equal 1.00. From Table 2.1, if sensitivity is less than 1.00, then 

FNs will occur. That is, individuals who are true disease cases will be classified by the error-

prone data source as non-disease cases. If specificity is less than 1.00, FPs will occur where 

individuals who are true non-disease cases will be classified by the error-prone data source as 

disease cases. If more individuals are classified as FNs than FPs, then the overall probability of 

the disease status will be underestimated. If the numbers of FNs and FPs are not equal to zero, 

estimates of disease prevalence and incidence will be biased. 

 To illustrate the effect of misclassification bias on disease prevalence, let 𝑝𝑟𝑒𝑣T denote 

the true disease prevalence and 𝑝𝑟𝑒𝑣𝑌1
denote the observed disease prevalence from AHRs. 

Suppose we wish to evaluate a population where the true prevalence, 𝑝𝑟𝑒𝑣T= 0.30. If AHRs has 

less-than-perfect sensitivity of 0.70, and perfect specificity of 1.00, then by the laws of 

probability (Rogan & Gladen, 1978): 𝑝𝑟𝑒𝑣𝑌1
= 𝑝𝑟𝑒𝑣T (Sn) + (1.00 – 𝑝𝑟𝑒𝑣T) (1.00 – Sp) = 0.30 x 

0.70 + (1.00 – 0.30) x (1.00 –1.00) = 0.21. Hence, the observed disease prevalence from AHRs 

will underestimate the true prevalence. Otherwise, if AHRs have less-than-perfect specificity of 

0.80, and perfect sensitivity of 1.00, then 𝑝𝑟𝑒𝑣𝑌1
= 0.30 x 1.00 + (1.00 – 0.30) x (1.00 – 0.80) = 

0.44. In this case, the observed disease prevalence from AHRs will overestimate the true 

prevalence. When both sensitivity and specificity are less than 1.00, combining both examples, 

𝑝𝑟𝑒𝑣𝑌1
= 0.30 x 0.70 + (1.00 – 0.30) x (1.00 – 0.80) = 0.35. Thus, accurate estimates of disease 

prevalence cannot generally be obtained from an error-prone data source.  
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 Underestimation or overestimation of disease prevalence will result from the less-than-

perfect sensitivity and specificity of case ascertainment algorithms for a data source. In general, 

validation studies done using AHRs and EMRs have found that specificity is higher than 

sensitivity (Coleman et al. 2015; Lix et al., 2006; Quan et al., 2008; Williamson et al., 2014). As 

illustrated above, high specificity and low sensitivity will result in under-reporting of the total 

number of disease cases.   

2.2 Case ascertainment with one error-prone data source and one error-free data source 

 Research in the area of combining information from two sources has looked into the 

situation where one data source is assumed to be accurate and complete for the variable of 

interest in a validation sample of the population, while the other source is error-prone, that is, the 

source is subject to misclassification or missing data (He et al., 2009; Raghunathan et al., 2007; 

Schenker et al., 2010; Schenker et al., 2007; Yucel & Zaslavsky, 2005; Zheng et al., 2006). 

Misclassification in the error-prone data source can be corrected using multiple imputation (MI) 

methods (Rubin 1987). These methods fill in missing observations several times to create 

multiple completed datasets. The results obtained from separate sets of complete data are 

combined into a single inference using simple rules (Rubin 1987). MI methods replace each 

missing value with a set of plausible values that represent the uncertainty about the correct value 

to impute.   

  Raghunathan et al. (2007) and Schenker et al. (2010) discussed combining information 

from the National Health Interview Survey (NHIS), which has self-reported health data, and the 

National Health and Nutrition Examination Survey (NHANES), which has both self-reported 

health data and clinical measures. They constructed a reporting error model that predicts an 

outcome given the self-reported data and covariates. In their context, they obtained a validation 
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sample, which is a sample of individuals for whom both the true value of interest and reported 

value of interest are observed (Pepe, 1992).  Comparable reporting error models were proposed 

by other researchers who obtained similar validation samples to correct for misclassification bias 

(He & Zaslavksy, 2009; Yucel & Zaslavsky, 2005). 

 Yucel and Zaslavsky (2005) considered imputation methods for misclassified binary 

treatment variables in AHRs. The study used AHRs from a cancer registry that collected data on 

treatment and survival for all incident colorectal cancer cases in California. The researchers used 

reported chemotherapy treatment status in which the true chemotherapy status was obtained by 

surveying physicians or reviewing office records (i.e., validation sample). Corrected treatment 

status was obtained by modelling the reporting processes and the relationship of the true 

treatment status to other markers in the registry. He and Zaslavksy (2009) extended this work to 

allow for multivariate responses.   

 He and Zaslavksy (2009) considered under-reporting of adjuvant chemotherapy and 

radiation therapy for breast cancer in a cancer registry. They imputed the treatment information 

from a single inaccurately-reported therapy variable using a model based on a validation sample. 

Using an iterative process, known as the Gibbs sampling algorithm, they estimated the model 

parameters and imputed treatment status. Specifically, the model imputed the adjuvant 

chemotherapy and radiation therapy data separately for each patient for uncollected true therapy 

status in the registry sample.  

2.3 Case ascertainment with two or more error-prone data sources 

 Combining two or more error-prone data sources may correct for misclassification bias 

when ascertaining disease cases (Bernatsky et al., 2005; Bernatsky et al., 2011; Dendukuri & 

Joseph, 2001; He et al., 2014; Joseph et al., 1995). Methods that do not use a validation sample 
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include rule-based methods, Frequentist models, and Bayesian models (Bernatsky et al., 2005; 

Cook et al., 2017; He et al., 2014).  

 Rule-based methods were proposed by Alonzo and Pepe (1999). A simple rule-based 

method is one in which two or more case ascertainment algorithms are applied to the data for all 

patients and a pre-specified (i.e., deterministic) rule is then used to classify patients as having the 

target disease or not (Martin et al., 2004; Schiller et al., 2016). Several definitions for the 

presence of the target disease can be used; the choice depends on whether emphasis will be given 

to detecting or excluding the target disease and the characteristics of the available case 

ascertainment algorithms (Reitsma et al., 2009). For example, the “OR” method identifies a 

patient to be a disease case if he/she was identified as a disease case by either one of the case 

ascertainment algorithms; whereas, the “AND” method identifies a patient to be a disease case if 

he/she was identified as a disease case by two or more two case ascertainment algorithms.  

 The simplest rule-based methods give equal weight to all algorithms. Rule-based methods 

that incorporate weighting factors have also been proposed (Hadgu et al., 2005). Weighted 

methods use information about the accuracy of case ascertainment algorithms (i.e., sensitivity 

and specificity) from published literature as weights (Couris et al., 2002; Couris et al., 2009). 

 Probabilistic models based on the Bayesian framework have also been proposed. The 

data, through the likelihood function, are combined using prior information to derive posterior 

distributions of the values of interest using Bayes' theorem. These posterior distributions contain 

updated beliefs about the values of interest, after taking into account the information provided by 

the data (Joseph et al., 1995). 

 Bernatsky et al. (2011) proposed Bayesian latent class models to address under-

ascertainment of cases of systemic autoimmune rheumatic diseases (SARDs) in AHRs. Their 
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method identifies disease status using error-prone data sources and prior information about the 

sensitivity and specificity of each of the error-prone data sources. Bernatsky et al. selected prior 

information for the Bayesian model based on previous research. Estimates of SARDs prevalence 

from the Bayesian latent class models were consistent with estimates from other population-

based data sources, including health surveys.  

 He et al. (2014) considered the problem where the true outcome of interest is missing 

(i.e., latent) for all individuals. Specifically, the researchers identified two data sources that 

contained reported disease status; data in both sources were subject to misclassification and 

missingness. The researchers decomposed the joint model of the true outcome and the two 

reported statuses into an “outcome” model (true outcome given disease markers) and a 

“reporting” model (reported status given true outcome and disease markers). Their reporting 

model relied on a few assumptions. First, it was assumed that the two reported statuses were 

conditionally independent. In other words, the joint distribution of the two reported statuses was 

conditional on the true disease status and observed markers. Given this independence, the joint 

distribution was decomposed by multiplying the probability of first and second reported statuses. 

Second, it was assumed that the two data sources were subject to under-reporting only. That is, 

the reported status from each data source had less-than-perfect sensitivity but perfect specificity.  

 Cook et al. (2017) proposed a maximum likelihood estimator that corrects for 

misclassification in data from multiple sources. They considered the problem of under-reporting 

or incompleteness of data from primary and secondary media outlets for events such as strikes, 

protests, and conflicts. Their estimator allows researchers to estimate the extent of 

misclassification in a data source, and to obtain corrected estimates of the event of interest. 

Generalization of their estimator allows for models where misclassification is dependent upon 
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covariates. Similar to the assumptions made by He et al. (2014), the data sources in their context 

were assumed to have less-than-perfect sensitivity but perfect specificity.  

2.4 Accuracy of case ascertainment algorithms for chronic diseases in administrative health 

records and electronic medical records  

 A large number of studies have investigated the validity of case ascertainment algorithms 

in AHRs and EMRs for ascertaining cases of chronic disease (Coleman et al. 2015; Kadhim-

Saleh et al., 2013; Lix et al., 2006; Quan et al., 2008; Tu et al., 2007; Williamson et al., 2014). 

Data sources used as the reference (i.e., validation or error-free) data source include medical 

records, patient surveys, and clinical laboratory test results. This section will focus primarily on 

hypertension, because it is the focus of the numeric example that will be considered in this study.  

 Quan et al. (2008) compared data in AHRs to data abstracted from physician charts to 

assess the accuracy of AHR case ascertainment algorithms for hypertension. Physician charts 

were randomly selected for rural and urban areas from the Canadian provinces of Alberta and 

British Columbia during the years 2001 and 2004. The sensitivity and specificity of the 

hypertension case ascertainment algorithms for AHRs were 75% and 94%, respectively.  

 Williamson et al. (2014) validated case ascertainment algorithms used to identify eight 

common chronic conditions in primary care EMRs: chronic obstructive pulmonary disease 

(COPD), dementia, depression, diabetes, hypertension, osteoarthritis, Parkinson’s disease, and 

epilepsy. Patient’s charts were reviewed by research assistants and residents who were blinded to 

the diagnosis. The sensitivity and specificity of the hypertension case ascertainment algorithms 

for EMRs were 85% and 94%, respectively. For the other conditions, sensitivity ranged from 

78% for osteoarthritis to 95% for diabetes, Parkinson’s disease and epilepsy; whereas, specificity 

was above 94% for all conditions.    
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 Several studies have examined the accuracy of diagnosis codes for AHR and EMR case 

ascertainment for various chronic conditions. In general, these validation studies have 

demonstrated high specificity but low sensitivity of diagnoses, although sensitivity and 

specificity vary across chronic diseases (Coleman et al. 2015; Kadhim-Saleh et al., 2013; Lix et 

al., 2006; Quan et al., 2008; Tu et al., 2007; Williamson et al., 2014). 
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CHAPTER 3 – METHODS 

 This study was conducted using computer simulation techniques and analyses involving a 

numeric example based on Manitoba’s AHRs and EMRs. This chapter describes bias in 

prevalence estimates with two error-prone data sources and data-combining methods for two or 

more error-prone data sources. For the simulation study, we describe the simulation parameter 

values, data generation steps, and performance measures. For the numeric example, we define 

the data sources, the study cohort and case ascertainment markers.  

3.1 Bias in prevalence estimates with two error-prone data sources 

 Consider data sources 𝑌𝑗, j = 1, 2, that capture disease status for n individuals. Denote the 

true disease status for the i
th

 individual (i = 1, 2,…, n), by 𝐷𝑖, which takes a value of 1 when the 

individual has the disease of interest, and 0 when the individual does not have the disease of 

interest. Denote the observed disease status from the j
th 

data source for the i
th

 individual by 𝑌𝑖𝑗  , 

which takes a value 1 when the individual is classified as a disease case by data source j, and 0 

when the individual is classified as a non-disease case by source j. Sensitivity of observed 

disease status for the j
th

 data source is denoted as 𝑆𝑛𝑗= P(𝑌𝑗= 1 | D= 1) , and specificity is denoted 

as 𝑆𝑝𝑗= P(𝑌𝑗= 0 | D= 0).  

 When sensitivity and/or specificity for both data sources are less than 1, the data sources 

are imperfect and observed disease status from each data source will be biased. To illustrate, a 

two-way contingency table of observed disease status from AHRs (𝑌1) and EMRs (𝑌2) is 

provided in Table 3.1. Let 𝑌𝑖1 and 𝑌𝑖2 denote the observed disease status for the i
th

 individual 

from AHRs and EMRs, respectively. Let 𝑝𝑟𝑒𝑣𝑌1  and 𝑝𝑟𝑒𝑣𝑌2  denote the naïve disease prevalence 

estimates from AHRs and EMRs, respectively. The naïve disease prevalence estimates are:  

𝑝𝑟𝑒𝑣𝑌1
= 

𝑛11+𝑛10

𝑛11+𝑛01+ 𝑛10+ 𝑛00
                                                                (3-1) 
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𝑝𝑟𝑒𝑣𝑌2  = 
𝑛11+𝑛01

𝑛11+𝑛01+ 𝑛10+ 𝑛00
                                                                (3-2) 

where 𝑛11 is the number of individuals classified as disease cases in both data sources, 𝑛10 is the 

number of individuals classified as disease cases in AHRs but not EMRs, 𝑛01 is the number of 

individuals classified as disease cases in EMRs but not AHRs, and 𝑛00 is the number of 

individuals not classified as disease cases in either data source. These naïve estimates do not take 

into account the likelihood that some individuals could be incorrectly classified, that is, that FPs 

and/or FNs may exist in the data.  

Table 3.1: Two-way table of observed disease status from AHRs (𝑌1) and EMRs (𝑌2). 

  

𝒀𝟏 
 

1 (Disease 

Present) 

0 (Disease 

Absent) Total 

 𝒀𝟐 

1 

(Disease 

Present) 

𝑛11 𝑛01 𝑛11 + 𝑛01 

0 

(Disease 

Absent) 

𝑛10 𝑛00 𝑛10 + 𝑛00 

Total 
 

𝑛11 + 𝑛10 𝑛01 + 𝑛00 𝑛11 + 𝑛01 +  𝑛10 +  𝑛00 

 

3.2 Data-combining methods for two or more error-prone data sources 

 In this section, methods that combine information from error-prone data sources to 

ascertain cases will be defined, including: (a) rule-based ‘OR’ and ‘AND’ methods (Alonzo & 

Pepe, 1999), (b) rule-based sensitivity-specificity adjusted (RSSA) method (Couris et al., 2002), 

and (c) probabilistic-based sensitivity-specificity adjusted (PSSA) method (He et al., 2014).   

3.2.1 Rule-based ‘OR’ and ‘AND’ methods 

 Rule-based ‘OR’ and ‘AND’ methods use a pre-specified rule to classify individuals as 

having the target disease or not. From Table 3.1, the ‘OR’ method assigns a ‘1’ for an individual 

if he/she was classified as a ‘1’ in either data source. The ‘AND’ method assigns a ‘1’ for an 
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individual only if he/she was classified as a ‘1’ in both data sources. Each method produces a 

different estimate of the number of disease and non-disease cases.  

Let 𝑝𝑟𝑒𝑣𝑂𝑅  and 𝑝𝑟𝑒𝑣𝐴𝑁𝐷  represent the estimated disease prevalence using the ‘OR’ and 

‘AND’ methods, respectively. From Table 3.1, prevalence is estimated as: 

𝑝𝑟𝑒𝑣𝑂𝑅= 
𝑛11+𝑛01+ 𝑛10

𝑛11+𝑛01+ 𝑛10+ 𝑛00
                                                               (3-3)                        

𝑝𝑟𝑒𝑣𝐴𝑁𝐷= 
𝑛11

𝑛11+𝑛01+ 𝑛10+ 𝑛00
                                                              (3-4)                                 

where  𝑛11, 𝑛01, 𝑛10, 𝑛00 are defined in equations (3-1) and (3-2).     

 The ‘OR’ method classifies more individuals as disease cases than either data source 

alone, making it suitable when the sensitivities of the two data sources are low, that is, when both 

data sources tend to capture true disease cases poorly. On the other hand, if both data sources 

tend to poorly capture true non-disease cases, then the ‘AND’ method is preferable (Schiller et 

al., 2016).  

 The main assumptions made by the ‘OR’ and ‘AND’ methods include: (i) ‘OR’ and 

‘AND’ methods treat observed disease status from each data source as 100% sensitive and 

specific, and (ii) observed disease status from the two data sources is assumed to be conditionally 

independent. The second assumption implies that for a given individual, observed disease status 

from one data source has no impact on observed disease status of the other data source. Further, 

these methods ignore the possible (and maybe important) relationship between true disease status 

and other variables. The next method relaxes the first assumption.  

3.2.2 Rule-based sensitivity-specificity adjusted (RSSA) method 

 The RSSA method uses information about the accuracy of case ascertainment algorithms 

from prior validation studies to adjust the estimates of the number of true disease cases. That is, 

sensitivity and specificity of the case ascertainment algorithms for a prior data source are used to 
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correct for misclassification bias (Couris et al., 2002; Couris et al., 2009). Let π= P(𝐷𝑖= 1) be the 

probability of the true disease status for the i
th

 individual. The joint probability of the observed 

disease status from the two error-prone data sources, (𝑌1= 𝑦1, 𝑌2= 𝑦2), where 𝑦1, 𝑦2= 0, 1, is 

defined as: 

P(𝑌1= 𝑦1, 𝑌2= 𝑦2) = P(𝑌1= 𝑦1, 𝑌2= 𝑦2| D = 1) P(D = 1) + P(𝑌1= 𝑦1, 𝑌2= 𝑦2| D= 0) P(D = 0)    

                              = P(𝑌1= 𝑦1, 𝑌2= 𝑦2| D = 1) 𝜋 +  P(𝑌1= 𝑦1, 𝑌2= 𝑦2| D = 0) (1 − 𝜋)              (3-5) 

 The RSSA method assumes that the observed disease status from the two data sources is 

conditionally independent given the true disease status. From equation (3-5), the joint 

probabilities are equal to the product of the marginal probabilities:  

         P(𝑌1= 𝑦1| D = 1) P(𝑌2= 𝑦2 | D = 1) 𝜋 + P(𝑌1= 𝑦1| D = 0) P(𝑌2= 𝑦2 | D = 0) (1 − 𝜋)     (3-6) 

 Given this conditional independence, the number of individuals classified as having the 

disease of interest in both data sources, 𝑛11, and the number of individuals classified as not 

having the disease of interest in both data sources, 𝑛00, are assumed to be correct. Therefore, 

adjustments are only made to the total number of individuals with discordant disease status, that 

is (𝑌1, 𝑌2) = (1, 0) and (0, 1). From Table 3.1, the number of individuals in the discordant cells 

(i.e., 𝑛10 and 𝑛01) is allocated, in part, to either of the two cells containing correctly classified 

individuals (i.e., 𝑛11 and 𝑛00) (Naaktgeboren et al., 2013).  

 Consider our example of hypertension. Values of sensitivity and specificity of AHR and 

EMR case ascertainment algorithms of hypertension can be used to weight the disconcordant 

cells. For AHRs, we considered three Canadian validation studies about hypertension (Lix et al., 

2006; Quan et al., 2008; Tu et al., 2007) that were previously identified in a systematic review 

(Pace et al., 2017). For EMRs, we identified the only three Canadian validation studies about 

hypertension done to date (Coleman et al. 2015; Kadhim-Saleh et al., 2013; Williamson et al., 
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2014). The average values of sensitivity and specificity identified from Canadian validation 

studies about hypertension were 0.72 and 0.95 for AHRs and 0.87 and 0.90 for EMRs. The two 

discordant cells, when 𝑌1 and 𝑌2 takes on values (1, 0) and (0, 1), are corrected using these 

sensitivity and specificity values as weights. 

Weight (D= 1) = P(D= 1 | 𝑌1= 1, 𝑌2= 0) + P(D= 1 | 𝑌1= 0, 𝑌2= 1) 

                        = P(𝑌1= 1 | D= 1) P(𝑌2= 0 | D= 1) 𝑛10 + P(𝑌1= 0 | D= 1) P(𝑌2= 1 | D= 1) 𝑛01 

                        = (𝑆𝑛1) (1 − 𝑆𝑛2) 𝑛10 + (1 − 𝑆𝑛1) (𝑆𝑛2) 𝑛01                                                   (3-7) 

Weight (D = 0) = P(D = 0 | 𝑌1 = 1, 𝑌2 = 0) + P(D = 0 | 𝑌1 = 0, 𝑌2 = 1) 

                         = P(𝑌1 = 1 | D = 0) P(𝑌2 = 0 | D = 0) 𝑛10 + P(𝑌1 = 0 | D = 0) P(𝑌2 = 1 | D = 0) 𝑛10 

                         = (1 − 𝑆𝑝1) (𝑆𝑝2) 𝑛10 + (𝑆𝑝1) (1 − 𝑆𝑝2) 𝑛10                                                   (3-8) 

 The RSSA method, too, ignores the possible associations between the true disease status 

and other variables. The method considered next incorporates this association.  

3.2.3 Probabilistic-based sensitivity-specificity adjusted (PSSA) method 

 The PSSA method recognizes the possible associations between true disease status and 

other variables, known as disease markers (He et al., 2014). Here, the sensitivities and 

specificities of the two data sources are related by marker 𝑋𝑖, for the i
th

 individual. In addition to 

the previous notation, let sensitivity and specificity of the j
th

 data source in individuals with the 

vector of markers, X, be written as 𝑆𝑛𝑗(𝑥) = P(𝑌𝑗 = 1 | D = 1, X) and 𝑆𝑝𝑗(𝑥) = P(𝑌𝑗 = 0 | D = 0, 

X), j = 1, 2. These ascertainment accuracy parameters are modelled via a Bayesian regression 

model with a probit link function, which is used to link the outcome variable, D, to the vector of 

markers X. Let 𝛳 indicate some parameters governing the process of ascertainment. The PSSA 

method models the joint distribution of the data as:  

P(𝑌1, 𝑌2, D | X, 𝛳) = P(D | X, 𝛳𝐷) P(𝑌1, 𝑌2 | D, X, 𝛳𝑌)                              (3-9) 
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 The first term named the ‘outcome’ model, relates the true disease status to marker vector 

X, with regression parameters 𝛳𝐷. The second term named the ‘reporting’ model (or the 

sensitivity-specificity model), characterizes the observed disease status from two data sources 

given true disease status, markers, and parameter 𝛳𝑌. The PSSA method assumes that the 

observed disease status from the two data source is independent, conditional on the true disease 

status and markers, that is, 

 P(𝑌1, 𝑌2 | D, X, 𝛳𝑌) = P(𝑌1 | D, X, 𝛳𝑌1) P(𝑌2 | D, X, 𝛳𝑌2)                                (3-10) 

The complete data model is given by: 

𝑍𝐷𝑖= Φ
−1 

[P(𝐷𝑖  = 1| 𝑋𝑖)] = 𝐗𝑖
𝑇

 𝛃D                                                         (3-11) 

𝑍𝑅1𝑖= Φ
−1 

[P(𝑌1𝑖 = 1| 𝐷𝑖 = 1, 𝑋𝑖)] = 𝐗𝑖
𝑇

  𝛃R1                                                            (3-12) 

𝑍𝑅2𝑖  = Φ
−1 

[P(𝑌2𝑖 = 0| 𝐷𝑖 = 0, 𝑋𝑖)] = 𝐗𝑖
𝑇

  𝛃R2                                          (3-13) 

where 𝑍𝐷𝑖
, 𝑍𝑅1𝑖, and 𝑍𝑅2𝑖   are normally distributed latent (i.e., unobserved) variables, 𝛃D, 𝛃R1, 

and 𝛃R2 are vectors of fixed-effects parameters,  𝐗𝑖
𝑇 is the vector of markers, 

T
 denotes the 

transpose operator, and Φ
−1 

is the probit link function.   

 The PSSA method uses a posterior sampling procedure known as data augmentation 

(DA) (Tanner & Wong, 1987) to draw values of the unobserved true disease status D by 

sampling from the posterior distribution, given markers X. Specifically, the Gibbs sampling 

algorithm, which is an iterative Markov chain Monte Carlo (MCMC) technique, is used to draw 

values of the unobserved true disease status D (Casella & George, 1992). Following multiple 

iterations of the algorithm, the generated draws of D eventually converge to the stationary 

distribution, which is the desired posterior distribution. The DA procedure is implemented in two 

steps:  
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 Step 1 (Imputation step): Draw D from a Bernoulli distribution with the conditional 

probability of unobserved true disease status, D, given the observed disease status from the j
th

 

data source. Do this when 𝑌1 and 𝑌2 take on values (1, 1), (1, 0), (0, 1) and (0, 0). For example, 

the decomposition of the joint distribution of P(D, 𝑌1, 𝑌2,  X) when 𝑌1and 𝑌2 takes on values (0,0) 

is calculated as:  

P(D = 1 | 𝑌1 = 0, 𝑌2 = 0, X, 𝛳) 

=
P(𝑌1 = 0 | 𝐷 = 1, 𝐗) P ( 𝑌2 = 0 | 𝐷 = 1, 𝐗) 𝑃(𝐷 = 1|𝐗)

P (𝑌1 = 0 | 𝐷 = 1, 𝐗) P(𝑌2 = 0 | 𝐷 = 1, 𝐗) P(𝐷 = 1|𝐗) +  P (𝑌1 = 0 | 𝐷 = 0, 𝐗) P( 𝑌2 = 0 | 𝐷 = 0, 𝐗) P(𝐷 = 0|𝐗)
 

=
Φ(−𝐗𝑖

𝑇𝛃R1)Φ(−𝐗𝑖
𝑇 𝛃R2)Φ(𝐗𝑖

𝑇 𝛃D)

Φ(−𝐗𝑖
𝑇 𝛃R1)Φ(−𝐗𝑖

𝑇 𝛃R2)Φ(𝐗𝑖
𝑇 𝛃D)+ Φ(𝐗𝑖

𝑇 𝛃R1)Φ(𝐗𝑖
𝑇 𝛃R2)Φ(−𝑋𝑖

𝑇 𝛃D)
               (3-14) 

 Step 2 (Posterior step): Draw new values of 𝛳’s conditional on the imputed D via the 

Gibbs sampling algorithm for probit models (Chib & Greenberg, 1998). That is, latent 

variables 𝑍𝐷𝑖
, 𝑍𝑅1𝑖, and 𝑍𝑅2𝑖, and fixed-effects parameters 𝛃D, 𝛃R1, and 𝛃R2 are drawn from 

truncated and multivariate normal distributions, respectively. Details of the Gibbs sampling 

algorithm are found in the appendix of He et al. (2014).  

 As in all Bayesian approaches, prior distributions are required for each parameter, θ. 

Vague priors for the parameters are the easiest to consider; in this study, flat priors for 𝛃D, 𝛃R1, 

and 𝛃R2 were imposed (Burton, 1994). A flat (or uniform) prior is one that does not favor any 

particular value for the parameter (Spiegelhalter et al., 2004).  

 Convergence assessment of the generated draws of D determines whether the iterations of 

the MCMC chain reached the target posterior distribution or longer iterations are needed. In this 

study, we plotted the results for a visual graphical assessment using trace plots, which are plots 

of the iteration number against the value of the draw of the parameter(s) of interest. By graphing 

the trace plot of the chain starting from different starting positions, one can assess if there is 
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convergence to the same posterior distribution. In addition, we used the Gelman-Rubin 

diagnostic that is based on running and analyzing the difference between two or more chains 

(Gelman and Rubin, 1992). The Gelman-Rubin diagnostic measures whether there is a 

significant difference between the variance within several chains and the variance between 

several chains by a value called “potential scale reduction factors” (PSRF). Large differences 

between these variances indicate nonconvergence. If the chains have converged to the target 

posterior distribution, then the PSRF should be close to 1 (Gelman and Rubin, 1992). The PSRF 

is given by: 

PSRF =√
𝑉𝑎𝑟 (𝜃)

𝑊
 ,                                                                (3-15) 

where W is the within-chain variance and Var(θ) = (1 − 
1

𝑛
) W + 

1

𝑛
 B is the estimated variance of 

the posterior distribution as a weighted average of W and between-chain (B) variance. 

3.3 Simulation study  

3.3.1 Simulation parameter values 

 A simulation study was conducted to assess the bias and accuracy of data-combining 

methods under realistic data-analytic conditions. Observations for the simulation study were 

drawn from an infinitely large population. The following parameters and data characteristics 

were investigated: true population prevalence (𝑝𝑟𝑒𝑣T), error-prone data source prevalence 

(𝑝𝑟𝑒𝑣𝑌1
, 𝑝𝑟𝑒𝑣𝑌2

), correlation between data sources (𝜌𝑌1𝑌2
), number of markers for PSSA method 

(𝑁𝑥), average correlation amongst markers (𝜌̅𝑥) and correlation pattern (𝜌̅𝑥 (pattern)). Each 

parameter and its selected values are shown in Table 3.2. 
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Table 3.2: Simulation study parameters and values 

Simulation 

Parameter Values 

𝑝𝑟𝑒𝑣T 20%, 10% 

𝑝𝑟𝑒𝑣𝑌1
 18%, 15%, 8%, 5% 

𝑝𝑟𝑒𝑣𝑌2
 15%, 10%, 7%, 5% 

𝜌𝑌1𝑌2
 0.65, 0.85 

𝑁𝑥 8, 16 

𝜌̅𝑥 0.00, 0.20, 0.50 

𝜌̅𝑥 (pattern) 𝜌̅𝑥 (exchangeable), 𝜌̅𝑥 (unstructured)  

 

 When true prevalence in the population was set to 20%, the error-prone data source 

prevalence was set to (18%, 15%) for source 1 and 2, respectively, with data source correlations 

of 0.65 and 0.85. Similarly, we set prevalence to (18%, 10%), and (15%, 15%) for source 1 and 

2, with data source correlation of 0.65 and 0.85. Data source prevalence and correlations were 

manipulated by varying the degree of sensitivity and specificity for each data source. The 

number of markers for the PSSA method was fixed to 8 or 16. Three values of the average 

correlation amongst markers (𝜌̅𝑥) were considered: 0.00, 0.20, and 0.50, with an exchangeable or 

unstructured correlation pattern amongst the markers. An exchangeable correlation pattern is one 

where a constant correlation value is imposed amongst all the markers (Barnett et al., 2010). On 

the other hand, an unstructured correlation pattern allows for variability in the magnitude of 

correlations amongst all the markers (Barnett et al., 2010). A total of 144 combination of 

simulation conditions were considered for each of the data-combining methods. A summary of 

each combination of simulation conditions are shown in Appendix A, Table A.1.     

 True prevalence of 20% was chosen to reflect the estimated prevalence of hypertension 

observed in previous studies about prevalence for the entire population (Padwal et al., 2016), 

whereas the true prevalence of 10%  was chosen to reflect the lower prevalence observed in a 
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specific sub-group like younger adults (Robitaille et al., 2012). We selected error-prone data 

source prevalence values that were lower than the true population prevalence to reflect evidence 

from validation studies, which have demonstrated sensitivities less than 1.00 (Coleman et al. 

2015; Lix et al., 2006; Quan et al., 2008; Williamson et al., 2014).  Data source correlation was 

chosen to test the effect of moderate and high association between data sources (Frank, 2016). 

The number of markers for the PSSA method, average correlation amongst markers, and 

correlation pattern were all chosen to reflect data conditions observed in real-world studies. 

 Supplementary analyses were conducted for specific combination of simulation 

conditions, to further explore the performance of our selected methods. Specifically, we 

considered the case when true prevalence was 20% and outcome prevalence was (18%, 10%). 

This condition was chosen because it mirrors our numeric example of hypertension case 

ascertainment. We assessed the effect of low marker prevalence, µ𝑥, for the PSSA method. 

Marker prevalence values that ranged between µ𝑥 = 5% and µ𝑥 = 20% were selected (Table A2, 

Appendix). Secondly, we evaluated the effect of using biased estimates of sensitivity and 

specificity for the RSSA method. We tested three conditions: (1) when estimates of sensitivity 

and specificity were equal to the truth, (2) when estimates of sensitivity were 10% below the 

truth, and (3) when estimates of specificity were 10% below the truth. Finally, we performed 

additional simulations for each data-combining method to explore the potential confounding of 

the correlation between data sources and their sensitivity/specificity. We fixed the correlation 

between the data sources at 𝜌𝑌1𝑌2
 = 0.70, and considered the case when 𝑝𝑟𝑒𝑣T = 20%. We then 

compared the outcome prevalence when (𝑝𝑟𝑒𝑣𝑌1
, 𝑝𝑟𝑒𝑣𝑌2

) = (16%, 16%) with sensitivity 𝑆𝑛𝑌1
 = 

0.65 and specificity 𝑆𝑝𝑌1
 = 0.96, versus (𝑝𝑟𝑒𝑣𝑌1

, 𝑝𝑟𝑒𝑣𝑌2
) = (10%, 10%) with sensitivity 𝑆𝑛𝑌1

 = 

0.50 and specificity 𝑆𝑝𝑌1
 = 0.99. 
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3.3.2 Data generation 

 The simulation study data were generated with the following process:  

1) Using copulas, generate a set of 𝑁𝑥 = 8 and 𝑁𝑥 = 16 binary markers with average 

correlations of 𝜌̅𝑥= 0.00, 0.20 and 0.50, from an exchangeable and unstructured 

correlation matrix, respectively. Copulas are constructed by specifying the joint 

distribution of correlated random variables that each follow a standardized uniform 

distribution, that is, uniformly distributed variables with a minimum of 0 and maximum 

of 1, denoted as, Uniform(0,1).  

2) Generate true disease status from a Bernoulli distribution via a logistic regression model; 

obtain a true prevalence of 𝑝𝑟𝑒𝑣T= 20% and 10%. Specific values of beta 

coefficients, 𝛽𝑥, and marker prevalence, µ𝑥, were used to obtain the true prevalence 

estimates, as shown in Appendix A (Table A.2). These values were selected based on the 

odds ratios for previous epidemiological studies to estimate the prevalence of 

hypertension (Kaplan et al., 2010; Walker et al., 2013).     

3) Generate error-prone measures of disease status from step 2 based on pre-selected values 

of sensitivity (𝑆𝑛𝑌𝑗
) and specificity (𝑆𝑝𝑌𝑗

), j = 1, 2; obtain prevalence for two error-prone 

sources (𝑝𝑟𝑒𝑣𝑌1
, 𝑝𝑟𝑒𝑣𝑌2

) = (5% to 18%). The mechanism for generating an error-prone 

disease status measure is a conditional Bernoulli process that can be characterized via the 

following data generating process (Tennekoon & Rosenman, 2016):  

      𝑌1 = P(D = 1) [U  <  P(𝑌1= 1| D = 1)] +  P(D = 0) [U  < 1 - P(𝑌1= 0| D = 0)]       (3-16) 

where 𝑌1 is the error-prone measure of disease status, P(D = 1) and P(D = 0) are the 

indicators of true disease status in the population, P(𝑌1= 1| D = 1) and P(𝑌1= 0| D = 0) 
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are the sensitivity and specificity of the measure of disease status, respectively, and U is a 

random variable that follows Uniform(0,1).  

4) Calculate disease prevalence using each data-combining method: 𝑝𝑟𝑒𝑣𝑂𝑅,  𝑝𝑟𝑒𝑣𝐴𝑁𝐷, 

𝑝𝑟𝑒𝑣𝑅𝑆𝑆𝐴 and 𝑝𝑟𝑒𝑣𝑃𝑆𝑆𝐴.  Repeat this process K= 500 times.  

5) Calculate the sample mean and variance of the K prevalence estimates from each data-

combining method (m= OR, AND, RSSA, PSSA) as follows: 

𝑝𝑟𝑒𝑣m̅̅ ̅̅ ̅̅ ̅̅  =  
1

𝐾
 ∑ 𝑝𝑟𝑒𝑣m (𝑘)

𝐾
𝑘=1                                                    (3-17) 

𝜎2
𝑝𝑟𝑒𝑣m

= 
1

𝑘−1
 ∑  (𝑝𝑟𝑒𝑣m (𝑘) −  𝑝𝑟𝑒𝑣m̅̅ ̅̅ ̅̅ ̅̅ )2𝐾

𝑘=1                                   (3-18) 

where 𝑝𝑟𝑒𝑣m (𝑘) is the prevalence estimated using a data-combining method from the k
th

 

replication, and K is the total number of replications. K=500 was selected to allow for sampling 

variability.  

3.3.3 Simulation performance measures 

 For each combination of simulation conditions, the data-combining methods were 

evaluated using the following measures of performance: relative bias (RB) and mean square 

error (MSE) (Walther & Moore, 2005). RB and MSE values were averaged across the K=500 

replications. RB was calculated as: 

 RB =  
| 𝑝𝑟𝑒𝑣T − 𝑝𝑟𝑒𝑣m̅̅ ̅̅ ̅̅ ̅̅ ̅ |

𝑝𝑟𝑒𝑣T
  x 100%                                                 (3-19) 

where 𝑝𝑟𝑒𝑣T is the true disease prevalence and 𝑝𝑟𝑒𝑣m̅̅ ̅̅ ̅̅ ̅̅  is the sample mean prevalence for a data-

combining method based on 500 replications. MSE was calculated as: 

MSE= 𝜎2
𝑝𝑟𝑒𝑣m

  + | 𝑝𝑟𝑒𝑣T − 𝑝𝑟𝑒𝑣m̅̅ ̅̅ ̅̅ ̅̅  |2                                                 (3-20) 

where 𝜎2
𝑝𝑟𝑒𝑣m

,  𝑝𝑟𝑒𝑣T , 𝑝𝑟𝑒𝑣m̅̅ ̅̅ ̅̅ ̅̅ , are defined in equations (3-18) and (3-19).  
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 To improve readability of small MSE numbers, we multiplied each MSE value by 100. 

This simulation study was conducted using R programming environment software version R-

3.4.4 for Windows (The R Project for Statistical Computing, 2018). The full simulation study 

program is included in Appendix B.  

3.4 Numeric example 

3.4.1 Data sources 

 This study was conducted using linked AHRs and EMRs from fiscal years 2005/2006 to 

2008/2009 to ascertain cases of hypertension. A fiscal year extends from April 1 to March 31. 

The study data sources were from the Manitoba Population Research Data Repository housed at 

the Manitoba Centre for Health Policy (MCHP). EMRs were linked to AHRs using a unique 

personal health identification number (PHIN). AHRs and EMRs were used to define case 

ascertainment algorithms for hypertension, measures of comorbidity, and socio-demographic 

characteristics of the study cohort.  

 For this study, AHRs included the population registry, hospital discharge abstracts, 

physician billing claims, and Drug Program Information Network (DPIN) records. The 

population registry contains information for all Manitobans registered with the Manitoba Health 

Services Insurance Plan, including healthcare coverage start and end dates, demographics, and 

postal codes. Hospital discharge abstracts contain information about discharges from acute and 

chronic care facilities. Before April 2004, up to 16 diagnosis codes based on the International 

Classification of Diseases (ICD), Ninth Revision, Clinical Modification (ICD-9-CM) were 

recorded. The 10
th

 version of the Canadian version of ICD was introduced on April 1, 2004 and 

captures up to 25 diagnosis codes. Physician billing claims are submitted by fee-for-service 

physicians to the ministry of health for provider remuneration. Each claim includes the date of 
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service and one three-digit ICD-9-CM code for the diagnosis which best reflects the reason for 

the visit. The Drug Program Information Network (DPIN) is an electronic, online, point-of-sale 

database that contains information about prescriptions filled by pharmacies. Each approved drug 

is assigned a Drug Identification Number (DIN) by the Health Canada Drugs Program unit; DINs 

can be linked to Anatomical Therapeutic Chemical (ATC) codes which are maintained by the 

World Health Organization (WHO) Collaborating Centre for Drug Statistics Methodology. 

 EMRs were from the Manitoba Primary Care Research Network (MaPCReN), a network 

of family physicians. They include information on health problems, billing data, medications, 

laboratory results, risk factors, referrals, procedures and socio-demographics (Coleman et al., 

2015). MaPCReN is Manitoba’s network in the CPCSSN (Williamson et al., 2014). 

 Chronic disease case ascertainment algorithms were developed and validated for each 

data source independently. Validated AHR case ascertainment algorithms include the type of 

data source, diagnostic and prescription drug codes, number of records with the codes, and 

number of years of data (Lix et al., 2006). Validated case ascertainment algorithms for EMRs 

include text-based and operational-based definitions. The operational-based definition uses 

information from selected sections within the EMR including encounter diagnoses, health 

condition lists, medications, and lab results (Williamson et al., 2014). The health condition list, 

also known as the problem list, is used by clinicians to record and retrieve a patient’s medical 

history (Singer et al., 2016). The health condition list as well as the encounter diagnoses section 

contains recorded ICD-9 diagnosis codes. The medication section includes one or more 

prescriptions medication names with corresponding ATC codes. The lab results section includes 

all laboratory test results, such as the fasting blood glucose and hemoglobin tests. 
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3.4.2 Study cohort 

 The study cohort included Manitoba residents with at least one encounter in EMR data 

between April 1, 2005 and March 31, 2009 who could be linked to at least one AHR (i.e., 

hospital records or physician billing claims). To be eligible for inclusion in the cohort, an 

individual required a minimum of seven years of health insurance coverage before the study 

index date and seven years of coverage after the index date. Second, an individual was included 

if he/she was at least 18 years of age as of the index date. The study index date was defined as 

the date of the first encounter in the EMR data. AHRs are available starting in 1970/71, whereas 

EMRs are available starting in 1998/99. We chose 2005/06 as the initial study year to allow for a 

seven-year observation window before the index date for case ascertainment in EMR data. 

Moreover, 2008/09 was selected as the end year because it allows for seven years of follow-up 

for case ascertainment in EMR data. 

  A retrospective cohort for hypertension was constructed for which validated AHR and 

EMR case ascertainment algorithms were defined. The components of the AHR and EMR case 

ascertainment algorithms are listed in Table 3.3. To be identified as a hypertension case in 

AHRs, we determined when individuals satisfied the criteria for AHR case ascertainment for 

hypertension in the study observation period. Their case date was defined as the earliest point in 

time at which they met the case ascertainment criteria. We determined when individuals satisfied 

the criteria for EMR case ascertainment for hypertension over a fourteen-year period because 

there is no time constraint applied in the EMR case ascertainment algorithm.  
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Table 3.3: AHR and EMR case ascertainment algorithm for hypertension. 

Data source 
Contact frequency, 

source and duration 

ICD 9-CM/10-CA 

diagnosis codes 
ATC medication codes 

AHR 1+H or 2+P in 2 years                                    ICD-9-CM: 401-405    

ICD-10-CA: I10-I13, I15 

 

EMR (2+P in 2 years) or 

1+PL or 1+Rx ever 

 

ICD-9-CM: 401-405     C07AB04, C09XA02, C03DB01, 

C08CA01, C07AB03,C07CB03, 

C09AA07, C09AA01,C07AG02, 

C03BA04, C09AA08,C09AA02, 

C09BA02, C09CA02, C09DA02, 

C08CA02, C09AA09,C03AA03, 

C03EA01, C03BA11, C09CA04, 

C09DA04, C09AA03,C09BA03, 

C09DA01, C02LB01, C03BA08, 

C09CA07, C07AA06,C09AA10, 

C03DB02, C09CA03, C08DA01 

Note: AHR= administrative health record, EMR= electronic medical record, H = hospital discharge 

abstract, P = physician billing claim, PL = problem list, Rx = drug codes; ICD-9-CM/ 10-CA = 

International Classification of Diseases, 9
th
 Revision, Clinical Modification and 10

th
 version of the 

Canadian version; ATC = Anatomic, Therapeutic, Chemical. 

  

 3.4.3 Study variables 

 Case ascertainment markers were used as model covariates for the PSSA method. Case 

ascertainment markers included: 

 (a) Socio-demographic characteristics: sex, age group (18-44, 45-64, 65+ years), income 

quintile (Q), and region. These variables were defined as of the study index date. Q is an area-

level measure of socioeconomic status defined using Statistics Canada Census data. It is based 

on total household income for dissemination areas, the smallest geographic unit for which 

Census data are publicly released (Mustard et al., 1997). Q1 through Q5 each represent 

approximately 20% of the total Manitoba population; separate quintiles are defined for rural and 

urban residents, but were combined into a single quintile for this study. Postal codes from the 

population registry were used to assign individuals to income quintiles. Region was based on 

regional boundaries and was defined as Winnipeg and non-Winnipeg.  
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  (b) Charlson comorbidity score (CCS):  CCS is a summary measure of a patient’s 

comorbidity that takes into account a number of comorbid conditions based on ICD diagnosis 

codes from hospital discharge abstracts (Quan et al., 2005).  Each comorbid condition has an 

associated weight and the sum of all the weights results in a single comorbidity score for a 

patient. We defined CCS as a categorical variable that took on values of 0 (no comorbid 

conditions), 1-2 (one to two comorbid conditions) and 3+ (three or more comorbid conditions). 

CCS was calculated for the one-year period prior to the study index date using diagnoses in both 

the hospital and physician data.   

 c) Disease-specific case ascertainment markers: chronic obstructive pulmonary disease 

(COPD), diabetes, depression, dementia, obesity, cerebrovascular disease (CD), congestive heart 

failure (CHF), coronary heart disease (CHD), renal disease (RD), and substance abuse (SA). 

These markers were used as independent variables in a logistic regression model to define 

hypertension cases in Peng et al. (2005), as risk factors for hypertension risk-prediction models 

in Echouffo-Tcheugui et al. (2013) and Sun et al. (2017). In this study, the first five diseases 

from the above list were defined from both AHRs and EMRs, while the last five diseases were 

defined from AHRs only. This was due to the fact that EMR case ascertainment algorithms for 

the last five diseases have not been developed. AHR-defined diseases were calculated based on a 

two-year period prior to the index date. EMR-defined diseases were calculated based on a 14-

year period (i.e., seven years before and after the index date) because the case definitions are not 

based on a specified period of time. We defined each disease as a binary variable with values of 

1 representing disease present and 0 representing disease absent. Obesity was defined as a 

dichotomous variable with values of obese (body mass index > 30.0), not obese (body mass 

index ≤ 30.0), and missing. 
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3.4.4 Statistical Analysis  

 Descriptive analyses of the case ascertainment markers were conducted using 

frequencies, percentages, and correlations. Tetrachoric and polychoric correlations (Juras & 

Pasaric, 2006) were calculated to measure the associations amongst the binary and categorical 

case ascertainment markers.   

 Cohen’s kappa (κ) statistic was used to estimate agreement between AHR and EMR case 

ascertainment algorithms overall, by sex, and by age group. We calculated κ with 95% 

confidence intervals The following criteria were used to assess the magnitude of agreement: κ  < 

0.20 is poor agreement, 0.20 ≤ κ ≤ 0.39 is fair agreement, 0.40 ≤ κ ≤ 0.59 is moderate agreement, 

0.60 ≤ κ ≤ 0.79 is good agreement, and κ ≥ 0.80 is very good agreement (Altman, 1990). As 

well, tetrachoric correlations were used to estimate the relationship between AHRs and EMRs 

for the entire cohort, by sex and by age group. Stratification was done because the variable 

association may not stay constant across sex and age.  

 For each data-combining method, overall disease prevalence estimates and 95% 

confidence intervals were calculated. We also calculated sex- and age-stratified disease 

prevalence estimates and 95% confidence intervals. Model fit was assessed for the PSSA method 

containing different sets of case ascertainment markers by using penalized measures of the log of 

the likelihood function, the Deviance Information Criterion (DIC; Spiegelhalter et al., 2002). 

DIC is based on deviance, which is twice the negative observed data log-likelihood denoted as: 

D(θ) = −2 log P(y | θ)                                                          (3-21) 

where P(y | θ) is the likelihood function with θ and y being the parameter vector and the observed 

data, respectively. The DIC is then defined as:  

DIC = 𝐷̅(θ) +  pD                                                                    (3-22) 



32 

 

where 𝐷̅(θ) = E{D(θ)} is the posterior mean of the deviance, pD = 𝐷̅(θ) − D(𝜃̅) is the effective 

number of model parameters with D(𝜃̅) being the deviance evaluated at the posterior mean of the 

parameters.  

 The two components 𝐷̅(θ) and pD measure model goodness of fit and complexity, 

respectively. Smaller values of the DIC indicate a better fitting model. However, if two 

competing models differ in DIC by less than three units, the models are not considered 

statistically different (Gelman et al., 2014). 
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CHAPTER 4 – RESULTS FOR SIMULATION STUDY 

 This chapter describes the results from the simulation study in three sections. The first 

two sections present the simulation performance measures and the estimated prevalence for each 

data-combining method when true prevalence is 20% and 10%, respectively. The third section 

provides an overall comparison of the data-combining methods. 

4.1 True prevalence is 20% 

4.1.1 Scenario 1: Number of case ascertainment markers (𝑵𝒙) is 16 

 The simulation results are described for each of the measures of RB and MSE. Tables 4.1 

and 4.2 present the results when the number of case ascertainment markers was set to 𝑁𝑥 = 16 

and 𝑁𝑥 = 8, respectively.   

 Table 4.1 reveals that RB ranged from 0.9% to 108.8% and MSE ranged from 0.00 to 

5.36 across the simulation conditions that we considered. The ‘OR’ method resulted in the 

smallest RB and MSE values for outcome prevalence (18%, 10%). For the ‘AND’, RSSA and 

PSSA methods, the RB and MSE values were smallest for outcome prevalence (18%, 15%). The 

RSSA method had the smallest RB (7.5% and 1.1% on average) when the correlation between 

the data sources was 𝜌𝑦1𝑦2
 = 0.85 and 𝜌𝑦1𝑦2

 = 0.65 and the ‘OR’ method resulted in RB that were 

the smallest (0.5% and 10.3% on average). 

 When the average marker correlation was either 𝜌̅𝑥 = 0.00 and  𝜌̅𝑥 = 0.20, the PSSA 

method had the smallest RB (3.4% on average) when the correlation between the data sources 

𝜌𝑦1𝑦2
 = 0.85 and outcome prevalence was (15%, 15%). As the average marker correlation 

increased from 𝜌̅𝑥 = 0.00 to 𝜌̅𝑥 = 0.50, the RB and MSE values for the PSSA method increased 

substantially (by more than 90%) irrespective of the correlation between the data sources. 
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Moreover, the RB showed very little variation (less than 7%) when the average marker 

correlation was 𝜌̅𝑥 = 0.00 compared to  𝜌̅𝑥 = 0.20. 

 Except for the RSSA method, all data-combining methods had substantially smaller RB 

and MSE when 𝜌𝑦1𝑦2
 = 0.85 compared to when 𝜌𝑦1𝑦2

 = 0.65, regardless of the outcome 

prevalence. 

 Table 4.1: Relative bias (RB) and mean squared error (MSE) when true prevalence is 20% and 

𝑁𝑥= 16 

Outcome prevalence 

(𝒑𝒓𝒆𝒗𝒀𝟏
, 𝒑𝒓𝒆𝒗𝒀𝟐

) 
𝝆̅𝒙 

RB (%) 

𝝆𝒚𝟏𝒚𝟐
 = 0.85 𝝆𝒚𝟏𝒚𝟐

 = 0.65 

OR AND RSSA PSSA OR AND RSSA PSSA 

18%, 15% 

0.00 9.5 47.5 7.5 9.5 23.1 59.4 1.3 48.3 

0.20 9.0 47.7 7.9 2.1 22.9 59.4 1.5 41.7 

0.50 10.1 47.2 7.0 24.3 23.7 59.1 0.9 99.0 

18%, 10% 

0.00 0.3 58.6 18.2 1.1 10.8 67.1 12.8 28.9 

0.20 0.9 58.9 18.7 5.9 10.5 67.2 13.0 31.1 

0.50 0.2 58.3 17.7 48.8 11.2 66.8 12.4 108.8 

15%, 15% 

0.00 4.1 49.2 11.5 3.7 17.6 61.7 5.8 41.3 

0.20 3.6 49.4 12.0 3.1 17.2 61.9 6.1 37.6 

0.50 4.8 48.7 10.9 20.5 18.1 61.5 5.3 102.0 

    

MSE 

𝝆𝒚𝟏𝒚𝟐
= 0.85 𝝆𝒚𝟏𝒚𝟐

 = 0.65 

OR AND RSSA PSSA OR AND RSSA PSSA 

18%, 15% 

0.00 0.04 0.90 0.02 0.06 0.22 1.41 0.00 0.99 

0.20 0.03 0.91 0.03 0.02 0.21 1.41 0.00 0.82 

0.50 0.04 0.89 0.02 1.06 0.23 1.40 0.00 4.68 

18%, 10% 

0.00 0.00 1.37 0.13 0.02 0.05 1.80 0.07 0.40 

0.20 0.00 1.39 0.14 0.06 0.05 1.80 0.07 0.70 

0.50 0.00 1.36 0.13 2.28 0.05 1.79 0.06 5.36 

15%, 15% 

0.00 0.01 0.97 0.05 0.03 0.13 1.53 0.01 0.74 

0.20 0.01 0.98 0.06 0.02 0.12 1.53 0.02 0.74 

0.50 0.01 0.95 0.05 1.03 0.13 1.51 0.01 4.84 

Note: OR= rule-based ‘OR’ method; AND= rule-based ‘AND’ method; RSSA= rule-based sensitivity-

specificity adjusted method; PSSA= probabilistic-based sensitivity-specificity adjusted method  

 

  



35 

 

 Figure 4.1 depicts the estimated prevalence for all data-combining methods when true 

prevalence is 20% and 𝑁𝑥 = 16. Panels A, B and C represent the following combinations of 

outcome prevalence: (18%, 15%), (18%, 10%) and (15% 15%).  Regardless of outcome 

prevalence, the estimated prevalence for the ‘OR’ method was the closet to the true prevalence of 

20% when 𝜌𝑦1𝑦2
 = 0.85; estimated prevalence ranged from 19.9% to 21.9%. However, when 

𝜌𝑦1𝑦2
 = 0.65, the RSSA method was the best, with estimated prevalence ranging from 18.8% to 

19.8%. 

 When 𝜌̅𝑥 = 0.00 and 𝜌𝑦1𝑦2
 = 0.85, the estimated prevalence for the PSSA method was the 

closet to the truth (20.8% on average). However, when 𝜌𝑦1𝑦2
 = 0.65, the estimated prevalence 

increased by an average of 35% across the three outcome prevalence conditions. Moreover, 

when 𝜌̅𝑥 increased from 0.00 to 0.50, the estimated prevalence increased considerably, especially 

when  𝜌𝑦1𝑦2
 = 0.65. For example, for outcome prevalence combination (18%, 15%), the 

estimated prevalence increased from 28.3% to 40.4%. The estimated prevalence for the ‘AND’ 

method ranged from 10.2% to 10.6% when 𝜌𝑦1𝑦2
 = 0.85, and from 7.6% to 8.2% when 𝜌𝑦1𝑦2

 = 

0.65. 
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Figure 4.1: Estimated prevalence for data-combining methods when true prevalence is 20% and 

𝑁𝑥 = 16 
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4.1.2 Scenario 2: Number of case ascertainment markers (𝑵𝒙) is 8 

 Table 4.2 reveals that RB ranged from 0.3% to 90.1% and MSE ranged from 0.00 to 6.16 

across the simulation conditions that we considered. The results had a similar pattern to the 

results obtained when 𝑁𝑥 = 16. However, overall the MSE values for the PSSA method were 

larger than when 𝑁𝑥 = 16. 

 The RSSA method had the smallest RB (5.7% and 0.30% on average) when the 

correlation between the data sources was 𝜌𝑦1𝑦2
 = 0.85 and 𝜌𝑦1𝑦2

 = 0.65, respectively, and the 

outcome prevalence was (18%, 15%). The ‘OR’ and ‘AND’ methods had the best performance 

in terms of RB and MSE when the correlation between the data sources was 𝜌𝑦1𝑦2
 = 0.85. The 

‘OR’ method resulted in RB estimates that were the smallest (1.8% on average) when outcome 

prevalence was (18%, 10%) and the correlation between the data sources was 𝜌𝑦1𝑦2
 = 0.85 and. 

When the outcome prevalence was (15%, 15%), the PSSA method had the smallest RB (6.8% on 

average) when the correlation between the data sources was 𝜌𝑦1𝑦2
 = 0.85 and the RSSA method 

resulted in the smallest RB (4.2% on average) when the correlation between the data sources was 

𝜌𝑦1𝑦2
 = 0.65. 

 As the average marker correlation increased from 𝜌̅𝑥 = 0.00 to 𝜌̅𝑥 = 0.50, the RB and 

MSE values of the PSSA method increased substantially (by more than 80%) regardless of the 

correlation between the data sources. Under outcome prevalence (18%, 10%) and when the 

correlation between the data sources was 𝜌𝑦1𝑦2
 = 0.85, the PSSA method had the smallest RB 

compared to all other conditions, with a value of 3.0%.  
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Table 4.2: Relative bias (RB) and mean squared error (MSE) when true prevalence is 20% and 

𝑁𝑥= 8 

Outcome prevalence 

(𝒑𝒓𝒆𝒗𝒀𝟏
, 𝒑𝒓𝒆𝒗𝒀𝟐

) 
𝝆̅𝒙 

RB (%) 

𝝆𝒚𝟏𝒚𝟐
 = 0.85 𝝆𝒚𝟏𝒚𝟐

 = 0.65 

OR AND RSSA PSSA OR AND RSSA PSSA 

18%, 15% 

0.00 12.0 46.0 5.3 11.3 25.2 58.3 0.5 49.5 

0.20 11.4 46.4 5.9 7.4 24.8 58.5 0.1 54.3 

0.50 11.6 46.2 5.7 21.1 25.0 58.4 0.3 78.6 

18%, 10% 

0.00 2.1 57.5 16.2 3.0 13.0 66.1 11.0 37.5 

0.20 1.5 57.8 16.7 5.9 12.3 66.3 11.5 54.3 

0.50 1.7 57.7 16.5 26.1 12.5 66.2 11.4 90.1 

15%, 15% 

0.00 6.5 47.8 9.4 4.3 19.8 60.7 3.9 42.5 

0.20 6.9 48.1 10.0 3.6 18.9 61.0 4.6 50.1 

0.50 7.1 48.0 9.7 12.5 19.5 60.8 4.2 70.7 

    

MSE 

𝝆𝒚𝟏𝒚𝟐
 = 0.85 𝝆𝒚𝟏𝒚𝟐

 = 0.65 

OR AND RSSA PSSA OR AND RSSA PSSA 

18%, 15% 

0.00 0.06 0.85 0.01 0.47 0.26 1.36 0.00 1.76 

0.20 0.05 0.86 0.02 0.52 0.25 1.37 0.00 2.25 

0.50 0.06 0.86 0.01 1.47 0.25 1.36 0.00 4.46 

18%, 10% 

0.00 0.00 1.32 0.11 0.69 0.07 1.75 0.05 1.70 

0.20 0.00 1.34 0.11 1.16 0.06 1.76 0.05 3.48 

0.50 0.00 1.33 0.11 2.32 0.06 1.75 0.05 6.16 

15%, 15% 

0.00 0.02 0.91 0.04 0.46 0.16 1.47 0.01 1.62 

0.20 0.02 0.93 0.04 0.72 0.14 1.49 0.01 2.20 

0.50 0.02 0.92 0.04 1.29 0.15 1.48 0.01 3.96 

Note: OR= rule-based ‘OR’ method; AND= rule-based ‘AND’ method; RSSA= rule-based sensitivity-

specificity adjusted method; PSSA= probabilistic-based sensitivity-specificity adjusted method  
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 Figure 4.2 reveals that the prevalence estimates for the ‘OR’, ‘AND’ and ‘RSSA’ 

methods had a similar trend to that shown in Figure 4.1. The ‘OR’ method (see Panels A and B), 

was the closet to the true prevalence of 20% when 𝜌𝑦1𝑦2
 = 0.85. The estimated prevalence was 

on average 21.2% and 20.3% when outcome prevalence was (18%, 15%) and (18%, 10%). 

However, the estimated prevalence from the RSSA method was the best when outcome 

prevalence was (15%, 15%) with 18.9%. Moreover, when 𝜌𝑦1𝑦2
 = 0.65, the RSSA method was 

the best with estimated prevalence ranging from 17.7% to 20.1%. There was no difference in the 

estimated prevalence for the PSSA method when 𝜌𝑦1𝑦2
 = 0.85 and 𝜌𝑦1𝑦2

 = 0.65 across all 

outcome prevalence conditions.  
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Figure 4.2: Estimated prevalence for data-combining methods when true prevalence is 20% and 

𝑁𝑥 = 8 
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4.2 True prevalence is 10% 

4.2.1 Scenario 1: Number of case ascertainment markers (𝑵𝒙) is 16  

 Tables 4.3 and 4.4 present the results when true prevalence is 10% for 𝑁𝑥 = 16 and 𝑁𝑥 = 

8, respectively. Table 4.3 reveals that RB ranged from 0.3% to 333.8% and MSE ranged from 

0.00 to 11.79 across the simulation conditions that we considered. The RSSA method had the 

smallest RB and MSE when outcome prevalence was (8%, 7%), regardless of the correlation 

between data sources. As outcome prevalence went from (8%, 7%) to (5%, 5%), performance of 

the RSSA and ‘AND’ methods got worse. For example, the average RB and MSE for the RSSA 

method went from 8.2% and 0.01 to 30.8% and 0.1, when the correlation between the data 

sources was 𝜌𝑦1𝑦2
 = 0.85. On the other hand, when the correlation between the data sources was 

𝜌𝑦1𝑦2
 = 0.65, the average RB and MSE went from 1.1% and 0.00 to 28.2% and 0.08.   

 The ‘OR’ method resulted in RB that were the smallest (0.5% and 10.3% on average) 

when the outcome prevalence was (8%, 5%) and (5%, 5%) regardless of the correlation between 

the data sources. For example, for outcome (8%, 5%), the average RB and MSE were 3.3% and 

0.00 when the correlation between the data sources was 𝜌𝑦1𝑦2
 = 0.85, and 12.8% and 0.02, when 

the correlation between the data sources was 𝜌𝑦1𝑦2
 = 0.65. 

 Following similar trends as Tables 4.1 and 4.2, the PSSA method had the smallest RB 

(1.1% and 6.3%) for outcome prevalence (8%, 5%) and (5%, 5%) when the average marker 

correlation 𝜌̅𝑥 = 0.00 and correlation between the data sources was 𝜌𝑦1𝑦2
 = 0.85. As the average 

marker correlation increased, the RB and MSE values of the PSSA method increased drastically. 

For example, under outcome prevalence (8%, 5%) and 𝜌𝑦1𝑦2
 = 0.85, the PSSA method had RB 

of 1.1%, 10.7% and 230.5% when the average marker correlation was 0.00, 0.20 and 0.50, 

respectively.  
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Table 4.3: Relative bias (RB) and mean squared error (MSE) when true prevalence is 10% and 

𝑁𝑥= 16 

Outcome prevalence 

(𝒑𝒓𝒆𝒗𝒀𝟏
, 𝒑𝒓𝒆𝒗𝒀𝟐

) 
𝝆̅𝒙 

RB (%) 

𝝆𝒚𝟏𝒚𝟐
 = 0.85 𝝆𝒚𝟏𝒚𝟐

 = 0.65 

OR AND RSSA PSSA OR AND RSSA PSSA 

8%, 7% 

0.00 11.5 55.8 8.4 9.7 29.6 67.1 1.1 76.2 

0.20 10.5 56.1 9.2 42.6 28.7 67.4 0.3 196.7 

0.50 13.1 54.9 7.1 216.1 30.7 66.6 2.0 307.6 

8%, 5% 

0.00 2.9 59.7 16.0 1.1 12.2 73.4 13.5 45.3 

0.20 3.2 59.7 15.8 10.7 12.0 73.9 13.8 235.2 

0.50 3.8 59.2 15.3 230.5 14.2 73.3 12.1 322.2 

5%, 5% 

0.00 14.7 70.0 30.9 6.3 7.4 78.7 28.4 61.0 

0.20 15.4 70.2 31.5 134.4 8.0 78.7 28.8 271.0 

0.50 13.6 69.5 30.0 275.7 6.3 78.2 27.4 333.8 

    

MSE 

𝝆𝒚𝟏𝒚𝟐
 = 0.85 𝝆𝒚𝟏𝒚𝟐

 = 0.65 

OR AND RSSA PSSA OR AND RSSA PSSA 

8%, 7% 

0.00 0.01 0.31 0.01 0.28 0.09 0.45 0.00 0.87 

0.20 0.01 0.31 0.01 1.29 0.08 0.45 0.00 5.19 

0.50 0.02 0.30 0.01 5.60 0.10 0.44 0.00 9.97 

8%, 5% 

0.00 0.00 0.36 0.03 0.12 0.02 0.54 0.02 0.28 

0.20 0.00 0.36 0.03 0.59 0.02 0.55 0.02 7.28 

0.50 0.00 0.35 0.02 6.39 0.02 0.54 0.02 10.91 

5%, 5% 

0.00 0.02 0.49 0.10 0.57 0.01 0.62 0.08 1.92 

0.20 0.02 0.49 0.10 4.82 0.01 0.62 0.08 9.11 

0.50 0.02 0.48 0.09 8.71 0.00 0.61 0.08 11.79 

Note: OR= rule-based ‘OR’ method; AND= rule-based ‘AND’ method; RSSA= rule-based sensitivity-

specificity adjusted method; PSSA= probabilistic-based sensitivity-specificity adjusted method  
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 Figure 4.3 displays the estimated prevalence for data-combining methods when true 

prevalence is 10% and 𝑁𝑥 = 16 for three outcome prevalence: (8%, 7%), (8%, 5%) and (5%, 

5%). In this condition, the estimated prevalence from the ‘OR’, ‘AND’ and ‘RSSA’ methods 

showed comparable trend shown in Figures 4.1 & 4.2. However, for the ‘OR’ method, the 

estimated was the closet to the true prevalence of 10% for both 𝜌𝑦1𝑦2
 = 0.85 and 𝜌𝑦1𝑦2

 = 0.65 

only when the outcome prevalence was (8%, 5%) and (5%, 5%), with prevalence ranging from 

8.5% to 11.4%.  On the other hand, the RSSA method was the best at estimated the true 

prevalence when the outcome prevalence was (8%, 7%) for both 𝜌𝑦1𝑦2
 = 0.85 and 𝜌𝑦1𝑦2

 = 0, with 

prevalence ranging from 9.1% to 10.2%.  

 The estimated prevalence estimated from the ‘AND’ method was unchanging across the 

three outcome prevalence conditions, with prevalence ranging from 3.0% to 4.5% when 𝜌𝑦1𝑦2
 = 

0.85 and 2.1% to 3.3% when 𝜌𝑦1𝑦2
 = 0.65. 

 When the average marker correlation 𝜌̅𝑥 = 0.00 and 𝜌𝑦1𝑦2
 = 0.85, the estimated 

prevalence from the PSSA method was the closet to the truth (10.1% on average) across all three 

outcome prevalence conditions. However, when the average marker correlation 𝜌̅𝑥 increased, the 

estimated prevalence increased drastically, especially when 𝜌𝑦1𝑦2
 = 0.65. 
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Figure 4.3: Estimated prevalence for data-combining methods when true prevalence is 10% and 

𝑁𝑥 = 16 
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4.2.2 Scenario 2: Number of case ascertainment markers (𝑵𝒙) is 8 

 Table 4.4 reveals that RB ranged from 1.1% to 375.0% and MSE ranged from 0.00 to 

18.41 across the simulation conditions that we considered When the number of case 

ascertainment markers 𝑁𝑥 = 8 (Table 4.4), the results showed similar trend to those when the 

number of case ascertainment markers 𝑁𝑥 = 16 (Table 4.3) except for the values of MSE for the 

PSSA method. In this scenario, the values of MSE for the PSSA method have increased 

noticeably. For example, the MSE value went from 3.15 to 4.87 when 𝜌𝑦1𝑦2
 = 0.85 and 6.37 to 

10.98 when 𝜌𝑦1𝑦2
 = 0.65.  

 Under all of the three outcome prevalence conditions, RB and MSE values of the PSSA 

method increased as the average marker correlation increased. As the correlation between the 

data sources went from 𝜌𝑦1𝑦2
 = 0.85 to 𝜌𝑦1𝑦2

 = 0.65, the RB and MSE values increased 

substantially. For example, under outcome prevalence (8%, 7%), the RB and MSE values were 

35.0%, 37.8% and 43.3% for average marker correlation of 0.00, 0.20 and 0.50 when 𝜌𝑦1𝑦2
 = 

0.85, and 154.9%, 217.1% and 286.5%  when and 𝜌𝑦1𝑦2
 = 0.65. 

 The ‘OR’ method resulted in RB that were the smallest (7.8%, 5.4% and 14.1% on 

average) across all three outcome prevalence conditions and regardless of the correlation 

between the data sources except when outcome prevalence was (8%, 7%) and 𝜌𝑦1𝑦2
 = 0.65. The 

RSSA method had the smallest RB and MSE (2.0% and 0.00) when outcome prevalence was 

(8%, 7%) and 𝜌𝑦1𝑦2
 = 0.65.  

 As the outcome prevalence went from (8%, 7%) to (5%, 5%), the RSSA and ‘AND’ 

methods produced larger values of RB and MSE regardless of the correlation between data 

sources. For example, the average RB of the ‘AND’ method were 57.5%, 61.8% and 71.1% for 

𝜌𝑦1𝑦2
 = 0.85, and 68.7%, 74.7% and 79.5% for 𝜌𝑦1𝑦2

 = 0.65. 
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Table 4.4: Relative bias (RB) and mean squared error (MSE) when true prevalence is 10% and 

𝑁𝑥= 8 

Outcome prevalence 

(𝒑𝒓𝒆𝒗𝒀𝟏
, 𝒑𝒓𝒆𝒗𝒀𝟐

) 
𝝆̅𝒙 

RB (%) 

𝝆𝒚𝟏𝒚𝟐
 = 0.85 𝝆𝒚𝟏𝒚𝟐

 = 0.65 

OR AND RSSA PSSA OR AND RSSA PSSA 

8%, 7% 

0.00 7.5 57.8 11.9 35.0 24.8 69.3 3.0 154.9 

0.20 6.7 58.1 12.5 37.8 25.9 68.6 2.0 217.1 

0.50 9.1 56.6 10.4 43.3 27.1 68.3 1.1 286.5 

8%, 5% 

0.00 1.3 61.5 19.5 50.5 9.1 75.3 16.2 114.9 

0.20 2.5 62.0 20.5 85.1 8.8 74.6 16.2 273.4 

0.50 0.1 62.0 18.8 198.2 10.3 74.2 15.1 334.8 

5%, 5% 

0.00 18.8 71.6 34.3 92.1 10.7 79.4 30.9 193.0 

0.20 18.8 71.3 34.2 149.1 11.9 80.2 32.0 217.9 

0.50 16.4 70.5 32.3 222.1 8.2 78.8 29.0 375.0 

    

MSE 

𝝆𝒚𝟏𝒚𝟐
 = 0.85 𝝆𝒚𝟏𝒚𝟐

 = 0.65 

OR AND RSSA PSSA OR AND RSSA PSSA 

8%, 7% 

0.00 0.01 0.33 0.01 2.01 0.06 0.48 0.00 6.33 

0.20 0.01 0.34 0.02 1.31 0.07 0.47 0.00 8.53 

0.50 0.01 0.32 0.01 1.57 0.08 0.47 0.00 12.77 

8%, 5% 

0.00 0.00 0.38 0.04 2.78 0.01 0.57 0.03 4.31 

0.20 0.00 0.38 0.04 3.59 0.01 0.56 0.03 12.63 

0.50 0.00 0.38 0.04 8.45 0.01 0.55 0.02 16.73 

5%, 5% 

0.00 0.04 0.51 0.12 6.96 0.01 0.63 0.10 9.37 

0.20 0.04 0.51 0.12 8.11 0.02 0.64 0.10 9.70 

0.50 0.03 0.50 0.10 10.08 0.01 0.62 0.08 18.41 

Note: OR= rule-based ‘OR’ method; AND= rule-based ‘AND’ method; RSSA= rule-based sensitivity-

specificity method; PSSA= probabilistic-based sensitivity-specificity method  
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 Figure 4.4 revealed that the prevalence estimates for the ‘OR’, ‘AND’ and ‘RSSA’ 

methods were comparable to those shown in Figure 4.3. The ‘OR’ method, under Panel B, was 

the closet to the true prevalence of 10% when the correlation between the data sources 𝜌𝑦1𝑦2
 = 

0.85, with prevalence ranging from 9.8% to 10.0%. The estimated prevalence from the RSSA 

method was the best under Panel A with prevalence ranging from 9.7% to 9.9%. 

 Compared with Figure 4.3, the estimated prevalence from the PSSA method when 𝜌𝑦1𝑦2
 

= 0.65 increased much faster as the average marker correlation increased in all three outcome 

prevalence conditions. However, no visible difference was found when 𝜌𝑦1𝑦2
 = 0.85.  
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Figure 4.4: Estimated prevalence for data-combining methods when true prevalence is 10% and 

𝑁𝑥 = 8 
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4.3 Comparisons amongst data-combining methods 

 In regards to the effect of true prevalence, the results have shown an increase in the 

average RB and MSE for each data-combining method when true prevalence was 10% compared 

to when it was 20%.  Across all simulation conditions, the average RB and MSE were (11.9%, 

0.08), (56.7%, 1.31), (8.7%, 0.04), and (35.6%, 1.68) when true prevalence was 20% and 

(12.7%, 0.63), (68.1%, 3.85), (17.5%, 1.14), and (162.7%, 12.38) when true prevalence was 

10%. Based on these results, the RSSA method performed better than other methods when true 

prevalence was 20% and the ‘OR’ method performed better than other methods when true 

prevalence was 10%.  

 In terms of the effect of the correlation between data sources, the average RB and MSE 

for the ‘OR’, ‘AND’ and PSSA methods became smaller as the correlation increased from 𝜌𝑦1𝑦2
 

= 0.65 to 𝜌𝑦1𝑦2
 = 0.85. The average estimated RB and MSE across all simulation conditions were 

(17.0%, 0.09), (67.9%, 1.05), (10.5%, 0.03), (141.2%, 5.64) when  𝜌𝑦1𝑦2
 = 0.65 and (7.5%, 

0.02), (56.9%, 0.73), (15.7%, 0.06), (57.1%, 2.41) when  𝜌𝑦1𝑦2
 = 0.85 for the ‘OR’, ‘AND’, 

RSSA and PSSA methods, respectively. The best methods were the RSSA when 𝜌𝑦1𝑦2
 = 0.65 

and the ‘OR’ method when  𝜌𝑦1𝑦2
 = 0.85.  

 As for the effect of outcome prevalence, the results revealed that different methods 

responded differently under the three outcome prevalence conditions. The average estimated RB 

and MSE across all simulation conditions for the outcome prevalence combination of (18%, 

15%) when true prevalence was 20% were (17.4%, 0.14), (52.8%, 1.13), (3.7%, 0.01), (37.3%, 

1.55) for the ‘OR’, ‘AND’, RSSA and PSSA methods, respectively. Similarly, for the outcome 

prevalence (18%, 10%) and (15%, 15%), the estimates were (6.4%, 0.03), (62.4%, 1.56), (14.7%, 

0.09), (36.8%, 2.03) and (8.7%, 0.05), (58.9%, 1.40), (11.6%, 0.06), (35.8%, 1.63). When true 
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prevalence was 10%, the average estimated RB and MSE for outcome prevalence combination 

(8%, 7%) was (18.8%, 0.04), (62.2%, 0.39), (5.7%, 0.01), (135.3%, 4.64). Similarly, for outcome 

prevalence combination (8%, 5%) and (5%, 5%), the estimates were (7.0%, 0.01), (67.4%, 0.46), 

(16.1%, 0.03), (158.5%, 6.17) and (12.5%, 0.01), (74.8%, 0.51), (30.8%, 0.06), (194.3%, 6.16). 

 The effect of the average marker correlation on performance of the PSSA method was 

evident for all simulation conditions. The estimated prevalence became more biased as 

correlation increased. The average estimated RB and MSE across all simulation conditions were 

(12.3%, 0.05), (62.5%, 0.89), (13.2%, 0.04), (46.7%, 1.86) when 𝜌̅𝑥 = 0.00; (12.1%, 0.05), 

(62.6%, 0.89), (13.5%, 0.05), (90.3%, 3.53) when 𝜌̅𝑥 = 0.20; and (12.4%, 0.05), (62.1%, 0.88), 

(12.6%, 0.04), (160.4%, 6.68) when 𝜌̅𝑥 = 0.50; for the ‘OR’, ‘AND’, RSSA and PSSA methods, 

respectively. The PSSA method performed well when the average marker correlation was low.  

 In supplementary simulation analyses, we assessed the effect of the marker prevalence on 

the PSSA method for specific combinations of simulation conditions. We found an increase in 

the average RB and MSE when the marker prevalence was low. The RB and MSE was (83.2%, 

8.95) when marker prevalence ranged between 0.05 and 0.20, versus (40.0%, 2.56) when marker 

prevalence ranged between 0.10 and 0.80. For the RSSA method, we evaluated the consequence 

of using biased estimates of sensitivity and specificity on the estimated prevalence. We found 

that when sensitivity estimates were 10% below the truth, the RB and MSE was (2.7%, 0.04) and 

when specificity estimates were 10% below the truth, the RB and MSE was (14.1%, 0.08). These 

results indicate that the RSSA method performs well when estimates of specificity are not 

underestimated. Finally, we investigated simulation conditions that enabled an exploration of the 

potential confounding between data source correlation and sensitivity/specificity. When 𝑝𝑟𝑒𝑣T = 

20%, the results (not shown) revealed that all data-combining methods except the PSSA method 
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produced a larger RB and MSE when outcome prevalence was (𝑝𝑟𝑒𝑣𝑌1
, 𝑝𝑟𝑒𝑣𝑌2

) = (10%, 10%) 

compared to (16%, 16%). Holding data source correlation at 𝜌𝑦1𝑦2
 = 0.70, the average RB 

increased from 16.0% to 20.5% for the ‘OR’ method, 56.7% to 74.6% for the ‘AND’ method, 

5.3% to 36.2% for the RSSA method but decreased 66.4% to 48.5% for the PSSA method. These 

findings suggest that data-combining methods are influenced by the magnitude of the outcome 

prevalence (i.e., sensitivity and specificity of the data sources).  

 For all combinations of simulation conditions, similar results were observed when we 

used an unstructured correlation pattern for the disease markers. Table A.3 to Table A.6 

(Appendix A) presents the RB and MSE when true prevalence is 20% and 10%, respectively. 
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CHAPTER 5 – RESULTS FOR NUMERIC EXAMPLE 

 Results for the numeric example involving hypertension case ascertainment are described 

in this chapter. The first and second sections of the chapter present descriptive analyses of the 

case ascertainment markers in our study cohort. The third section contains model development 

for the PSSA method. The fourth section presents the prevalence estimates for each of the data-

combining methods.  

5.1 Description of study cohort 

  A total of N = 121,144 individuals had at least one encounter in EMRs that could be 

linked to AHRs (i.e., hospital records or physician billing claims) between April 1, 2005 and 

March 31, 2009. After exclusions, the study cohort included n = 68,877 individuals.  

  Cohort members were similar to those in the Manitoba population in terms of sex and 

age, with a slight over-representation of females and older adults, which are the typical kinds of 

patients who are most likely to seek health services (Manitoba Government Population Report, 

2016). Socio-demographic and CCS characteristics of the study cohort are described in Table 

5.1. Close to half of the individuals in the cohort were between 18 and 44 years of age. Slightly 

more than 55% of the cohort members were female and the majority were Winnipeg residents. 

Cohort members were equally distributed across the income quintiles, with the exception of the 

lowest quintiles where they tended to be under-represented. More than 83% of the individuals in 

the cohort had a CCS of zero.  

 Disease-specific markers were identified from both AHRs and EMRs. Individuals with 

depression constituted 10.3% of the study cohort when identified from AHRs and 16.0% when 

identified from EMRs. A total of 1.9 % of the study cohort had chronic obstructive pulmonary 

disease when identified from AHRs and 0.3% when identified from EMRs. The fact that 86.0% 
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of the study cohort is comprised of individuals below 65 years of age may have contributed to 

the low prevalence of the disease-specific markers. Frequency and percentage of disease-specific 

case ascertainment markers from AHRs and EMRs are found in Appendix C (Tables C.1 and 

C.2).    

Table 5.1: Socio-demographic and Charlson comorbidity score (CCS) characteristics of the study 

cohort 

  

 

Note: Q= Income quintile 

 

 

 

 

 

Characteristics Frequency % 

Sex     

 
Male 29802 43.3 

 
Female 39075 56.7 

Age group 
  

 
18-44 years 33007 47.9 

 
45-64 years 26243 38.1 

 
65+ years 9627 14.0 

Region 
  

 
Non-Winnipeg 30871 44.8 

 
Winnipeg 38006 55.2 

Income quintile  
  

 
Not found 8888 12.9 

 
Q1 (lowest) 8858 12.9 

 
Q2 10278 14.9 

 
Q3 12154 17.6 

 
Q4 14106 20.5 

 
Q5 (highest) 14593 21.2 

CCS  
  

 
0 57649 83.7 

 
1 to 2 10348 15.0 

 
3+ 880 1.3 
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5.2 Description of case ascertainment markers 

 This section describes associations amongst the case ascertainment markers selected for 

the PSSA model. Measures of agreement and association between AHR and EMR case 

ascertainment algorithms for hypertension are also described.  

 There were many case ascertainment markers and the full details of their correlations can 

be found in Appendix C (see Table C.3). We highlight, here, where there were strong 

correlations amongst the case ascertainment markers. Let subscripts A and E denote disease-

specific markers that were identified from AHRs and EMRs, respectively. The following case 

ascertainment markers were highly correlated: CDA and COPDE (𝜌𝑥 = -0.99), DiabetesA and 

DiabetesE (𝜌𝑥 = 0.80), CCS and DiabetesA (𝜌𝑥 = 0.78), DementiaA and DementiaE (𝜌𝑥 = 0.68), 

CHDA and CHFA (𝜌𝑥 = 0.61), CCS and CHFA (𝜌𝑥 = 0.66), and SAA and DMA (𝜌𝑥 = 0.60). We 

carefully considered selecting combinations of case ascertainment markers for the PSSA model 

because of high collinearity amongst selected markers. However, overall the mean absolute 

correlation amongst the markers was low, with 𝜌̅
𝑥
= 0.18 and a standard deviation of 𝑠𝑑𝑥 = 0.19. 

When stratifying the study cohort by sex, the mean absolute correlation amongst the markers was 

𝜌̅
𝑥
= 0.19 for males and 𝜌̅

𝑥
= 0.20 for females. When stratifying the study cohort by age group, 

𝜌̅
𝑥
= 0.21, 0.17 and 0.16 for the 18-44, 45-64 and 65+ age group, respectively.   

 Table 5.2 displays Cohen’s kappa (κ) and the tetrachoric correlation (𝜌𝑌1𝑌2
) with 95% 

confidence intervals between AHR and EMR case ascertainment algorithms. Overall there was 

good agreement with κ = 0.68 (95% CI: 0.67 – 0.68). As well, agreement values for males and 

females were good, with κ = 0.67 (95% CI: 0.66 – 0.68) for males and κ = 0.68 (95% CI: 0.67 – 

0.69) for females.  When stratifying by age group, agreement was higher for younger compared 
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to older age groups. The lowest agreement was found for the 65+ age group with κ = 0.45 (95% 

CI: 0.43 – 0.46).   

 The association between AHR and EMR case ascertainment algorithms for hypertension 

was measured using the tetrachoric correlation (𝜌𝑌1𝑌2
). The correlation was high, with 𝜌𝑌1𝑌2

 = 

0.90 (95% CI: 0.89 – 0.90). Similarly, when stratifying the cohort by sex, the degree of 

association between AHR and EMR case ascertainment algorithms was 𝜌𝑌1𝑌2
 = 0.88 (95% CI: 

0.88 – 0.90) for males and 𝜌𝑌1𝑌2
 = 0.90 (95% CI: 0.90 – 0.91) for females. Across age groups, the 

correlation varied considerably. As age increased the correlation decreased, with 𝜌𝑌1𝑌2
 = 0.89 

(95% CI: 0.88 – 0.90) for age group 18-44 years, and 𝜌𝑌1𝑌2
 = 0.76 (95% CI: 0.74 – 0.77) for age 

group 65+ years.   

Table 5.2: Cohen’s kappa (κ) and tetrachoric correlations (𝜌𝑌1𝑌2
) with 95% confidence intervals 

(CIs) for AHR and EMR case ascertainment algorithms  

  
𝝆𝒀𝟏𝒀𝟐

 (95% CIs) κ (95% CIs) 

Overall 

 

  

  

0.90 (0.89- 0.90) 0.68 (0.67 - 0.68) 

Sex 

 

  

 

Males  0.88 (0.88- 0.90) 0.67 (0.66 - 0.68) 

  Females 0.90 (0.90- 0.91) 0.68 (0.67 - 0.69) 

Age group 

  

 

18-44 years 0.89 (0.88- 0.90) 0.63 (0.61 - 0.64) 

 

45-64 years 0.87 (0.86- 0.87) 0.64 (0.64 - 0.65) 

  65+ years 0.76 (0.74- 0.77) 0.45 (0.43 - 0.46) 
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5.3 Model development for PSSA method  

 This section describes the results of the model building steps for the PSSA method that 

was applied to the AHR and EMR data to ascertain hypertension cases. Table 5.3 contains the 

models and selection criteria. Different subsets of case ascertainment markers were used in 

model construction based on theoretical evidence and correlation cut-off values for 

multicollinearity. The maximum number of case ascertainment markers included was 20 (Model 

1), and the minimum was 8 (Model 4).  

Table 5.3: Models and selection criteria for PSSA method 

Model Case ascertainment markers Selection criteria 

1 

age group, sex, region, Q, CCS, COPDA, COPDE, 

DBA, DBE, DMA, DME, DPA, DPE, OBA, OBE, CDA, 

CHFA, CHDA, RDA, and SAA  

Include all markers 

2 
Model 1 excluding COPDA, DBA, DMA, DPA , OBA 

and CCS 

Remove redundant 

markers based on the 

same measure  

3 Model 2 excluding CDA and CHFA 
Remove markers with 

𝜌𝑥> |0.60| 

4 
age group, sex, COPDE, DBE, OBE, CHFA, CHDA, and 

SAA   

Markers selected based 

on prior literature 

Note: Q= Income quintile; CCS= Charlson Comorbidity Score; DB= Diabetes; CHD= Coronary heart disease; OB= 

Obesity; COPD= Chronic obstructive pulmonary disease; CD= Cerebrovascular disease; CHF= Congestive heart 

failure; DP= Depression; DM= Dementia; RD= Renal disease; SA= Substance abuse; Subscripts A and E denote 

whether the marker was identified from AHRs or EMRs, respectively  

  

 For Model 1, all case ascertainment markers were included. For Model 2, COPD, 

diabetes, dementia, depression and obesity were defined in both AHR and EMR data. Since two 

measures of the same disease markers were available, only one measure was used. In addition, 

CCS was calculated based on comorbid conditions, some of which are already identified as 

disease-specific case ascertainment markers. Therefore, CCS was removed from the modeling. 
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For Model 3, we excluded markers with very high or very low correlations to avoid potential 

problems of multicollinearity and model overfitting. For Model 4, the selected markers are those 

potentially associated with hypertension as suggested by previous literature (Echouffo-Tcheugui 

et al., 2013; Sun et al., 2017). The selected markers include age, sex, diabetes, obesity, 

cardiovascular diseases, smoking status and alcohol consumption. COPD was used as a proxy 

measure for smoking status and substance abuse was used as a proxy measure for alcohol intake.                       

 For each of the PSSA models, visual graphical assessment using trace plots demonstrated 

that convergence was reached after the 500th iteration; therefore, we run a total of 10,000 

iterations of the Gibbs sampler for each of the PSSA models. In addition, we used the Gelman–

Rubin diagnostic to ensure the scale reduction, PSRF, of all parameters were smaller than 1.2, 

suggesting that 10,000 iterations were sufficient for attaining convergence. Once we decided that 

the chain has converged at iteration 500
th

, we discarded the first 500 samples as “burn-in” and 

used the remaining 9,500 samples for inferences. In general, there were no problems with 

convergence. Figures D.1 to D.6 (Appendix D) display the trace plots and convergence 

diagnostics for the posterior distribution of our parameter of interest, the disease prevalence.  

5.4 Prevalence estimates for data-combining methods  

 The final two outputs display the estimated hypertension prevalence using each data-

combining method for the entire study cohort, by sex and by age group (Tables 5.4 and 5.5). The 

naïve prevalence of hypertension using AHR and EMR case ascertainment algorithms varied 

slightly, 𝑝𝑟𝑒𝑣𝐴𝐻𝑅𝑠= 30.9% (95% CI: 30.6 – 31.2) versus 𝑝𝑟𝑒𝑣𝐸𝑀𝑅𝑠= 24.9% (95% CI: 24.6 – 

25.2).   

 The estimated hypertension prevalence using the OR method was close to the estimate 

for AHRs alone, 𝑝𝑟𝑒𝑣𝑂𝑅 = 34.4% (95% CI: 34.1 – 34.8) versus 𝑝𝑟𝑒𝑣𝐴𝐻𝑅𝑠= 30.9% (95% CI: 30.6 
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– 31.2). This was expected since there was a large amount of overlap between AHRs and EMRs, 

𝜌𝒀𝟏𝒀𝟐
 = 0.90 (95% CI: 0.89 – 0.90). Using the RSSA method, the estimated hypertension 

prevalence was, 𝑝𝑟𝑒𝑣𝑅𝑆𝑆𝐴= 32.2% (95% CI: 31.8 – 32.6), which was calculated using values of 

sensitivity and specificity of the AHRs and EMRs case ascertainment algorithms of hypertension 

from published Canadian validation studies (Coleman et al. 2015; Kadhim-Saleh et al., 2013; Lix 

et al., 2006; Quan et al., 2008; Tu et al., 2007; Williamson et al., 2014). Specifically, the 

sensitivity and specificity values used were: (0.72, 0.95) for AHRs and (0.87, 0.90) for EMRs.  

 The estimated hypertension prevalence using the PSSA method varied depending on the 

model applied. The mean absolute correlation amongst the case ascertainment markers included 

in models 1 through 4 were as follows: |𝜌̅
𝑥

|= 0.18, 0.17, 0.13, and 0.16, respectively. The 

correlation amongst the case ascertainment markers and prevalence of the markers influenced the 

prevalence estimates, as shown in our simulation results. PSSA Model 1 produced the highest 

prevalence estimate compared to all other data-combining methods, 𝑝𝑟𝑒𝑣𝑃𝑆𝑆𝐴1
= 35.9% (95% CI: 

35.7 – 36.1). This could be due to the high mean absolute correlation amongst the case 

ascertainment markers in Model 1. On the other hand, PSSA Models 2, 3 and 4 produced 

prevalence estimates that were lower, with the lowest being Model 4,  𝑝𝑟𝑒𝑣𝑃𝑆𝑆𝐴4
= 34.3% (95% 

CI: 34.1 – 34.5).     

 When stratifying by sex, the mean absolute correlation amongst the case ascertainment 

markers included in models 1 through 4 for males were: |𝜌̅𝑥|= 0.19, 0.18, 0.14, and 0.19, 

respectively. Similarly, for females, |𝜌̅𝑥|= 0.20, 0.20, 0.16, and 0.20, respectively. Compared to 

results from the entire cohort, for both males and females, very little difference was found in the 

terms of the naïve prevalence estimates of hypertension using AHR and EMR case ascertainment 

algorithms and  𝑝𝑟𝑒𝑣𝑂𝑅, 𝑝𝑟𝑒𝑣𝐴𝑁𝐷, and 𝑝𝑟𝑒𝑣𝑅𝑆𝑆𝐴. The lowest estimated prevalence was obtained 
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from PSSA Model 4 for both males and females with, 𝑝𝑟𝑒𝑣𝑃𝑆𝑆𝐴4
= 35.1% (95% CI: 34.9 – 35.4) 

and 𝑝𝑟𝑒𝑣𝑃𝑆𝑆𝐴4
= 33.2% (95% CI: 32.9 – 33.5), respectively.  

 When stratifying by age group, both the naïve prevalence estimates of hypertension and 

data-combining methods varied across age groups. The naïve prevalence of hypertension using 

AHR and EMR case ascertainment algorithms were lowest for the 18 – 44 age group, 𝑝𝑟𝑒𝑣𝐴𝐻𝑅𝑠= 

10.3% (95% CI: 10.0 – 10.6) versus 𝑝𝑟𝑒𝑣𝐸𝑀𝑅𝑠= 9.0% (95% CI: 8.7 – 9.3), and highest for the 

65+ age group, 𝑝𝑟𝑒𝑣𝐴𝐻𝑅𝑠= 75.3% (95% CI: 74.4 – 76.2) versus 𝑝𝑟𝑒𝑣𝐸𝑀𝑅𝑠= 56.4% (95% CI: 55.4 

– 57.4). Across all age groups, PSSA model 4 produced a lower prevalence estimate compared to 

PSSA model 1, with the lowest for the 18–44 age group,  𝑝𝑟𝑒𝑣𝑃𝑆𝑆𝐴4
= 12.2% (95% CI: 11.9 – 

12.4). However, for the 65+ age group, the prevalence estimate was not that low, 𝑝𝑟𝑒𝑣𝑃𝑆𝑆𝐴4
= 

79.1% (95% CI: 78.8 – 79.5) compared to 𝑝𝑟𝑒𝑣𝑃𝑆𝑆𝐴1
= 79.7% (95% CI: 79.4 – 80.0).  The degree 

of correlation between AHRs and EMRs, and the prevalence of the case ascertainment markers 

may have influenced the prevalence estimates. The mean absolute correlation amongst the case 

ascertainment markers included in models 1 through 4 for the 18 – 44 age group were: |𝜌̅𝑥|= 

0.21, 0.20, 0.16, and 0.20, respectively. Similarly, |𝜌̅
𝑥

|= 0.17, 0.16, 0.13 and 0.13 for the 45 – 64 

age group, and |𝜌̅𝑥|= 0.16, 0.16, 0.13, and 0.17 for the 65+ age group.  

 In terms of model fit statistics for the PSSA methods, Model 4 resulted in a better fit with 

the lowest DIC,  DICPSSA4
 = 165719.00, compared to all other models in the analysis of the 

entire cohort. For sex stratified analysis, Model 4 had a better fit for both males and females with 

DICPSSA4
 = 72705.69 and DICPSSA4

 = 92687.57, respectively. Similarly, for age stratified 

analysis, the best fitting model was PSSA model 4 (Table 5.6).  

 In summary, several factors influenced the estimated prevalence of hypertension using 

each of the data-combining methods. The ‘OR’ and ‘AND’ methods were influenced by the high 
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correlation between AHRs and EMRs of 𝜌𝑌1𝑌2
 > 0.85, except for the 65+ age group. As such, 

𝑃𝑟𝑒𝑣𝑂𝑅 produced estimates that were only slightly higher than the naïve prevalence of AHRs, 

𝑝𝑟𝑒𝑣𝐴𝐻𝑅𝑠, whereas, 𝑝𝑟𝑒𝑣𝐴𝑁𝐷 produced estimates that were lower than the naïve prevalence of 

EMRs, 𝑝𝑟𝑒𝑣𝐸𝑀𝑅𝑠. As well, each of the PSSA models for the 65+ age group produced prevalence 

estimates that were high compared to prevalence estimates produced for the other age groups. In 

addition, the estimated prevalence using PSSA models depended on the types of case 

ascertainment marker. 

Table 5.4: Estimates of hypertension prevalence and 95% confidence intervals (CIs) for data-

combining methods, overall and by sex 

  

Prevalence (95% CIs) 

Overall Males Females 

AHRs 30.9 (30.6 – 31.2)  31.7 (31.2 – 32.2) 30.3 (29.8 – 30.8) 

EMRs 24.9 (24.6 – 25.2) 26.0 (25.5 – 26.5) 24.1 (23.7 – 24.5) 

OR 34.4 (34.1 – 34.8) 35.7 (35.2 – 36.2) 34.0 (33.5 – 34.5) 

AND 21.4 (21.1 – 21.7) 22.1 (21.6 – 22.6) 20.9 (20.5 – 21.3) 

RSSA 32.2 (31.8 – 32.6) 33.4 (32.8 – 33.9) 31.3 (30.6 – 31.8) 

PSSA model 1 35.9 (35.7 – 36.1) 37.1 (36.8 – 37.3) 34.9 (34.7 – 35.1) 

PSSA model 2 35.8 (35.6 – 36.0) 37.0 (36.8 – 37.2) 34.7 (34.5 – 35.0) 

PSSA model 3 35.4 (35.3 – 35.6) 36.5 (36.2 – 36.7) 34.5 (34.3 – 34.7) 

PSSA model 4 34.3 (34.1 – 34.5) 35.1 (34.9 – 35.4) 33.2 (32.9 – 33.5) 
Note: AHRs= Administrative Health Records; EMRs= Electronic Medical Records; OR= rule-based ‘OR’ method; 

AND= rule-based ‘AND’ method; RSSA= rule-based sensitivity-specificity adjusted method; PSSA= probabilistic-

based sensitivity-specificity adjusted method  
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Table 5.5: Estimates of hypertension prevalence and 95% confidence intervals (CIs) for data-

combining methods, overall and by age group 

 

  

Prevalence (95% CIs) 

Overall 18 - 44 years 45 - 64 years 65+ years 

AHRs 30.9 (30.6 – 31.2)  10.3 (10.0 – 10.6) 40.5 (39.9 – 41.1)  75.3 (74.4 – 76.2) 

EMRs 24.9 (24.6 – 25.2) 9.0 (8.7 – 9.3) 33.5 (32.9 – 34.1) 56.4 (55.4 – 57.4) 

OR 34.4 (34.1 – 34.8) 12.8 (12.4 – 13.2) 45.3 (44.7 – 45.9) 78.8 (78.0 – 79.6) 

AND 21.4 (21.1 – 21.7) 6.4 (6.1 – 6.7)  28.7 (28.1 – 29.3) 53.0 (52.0 – 54.0) 

RSSA 32.2 (31.8 – 32.6) 11.9 (11.6 – 12.3) 42.2 (41.6 – 42.8) 73.8 (72.9 – 74.7) 

PSSA model 1 35.9 (35.7 – 36.1) 13.9 (13.7 – 14.2) 46.9 (46.7 – 47.3) 79.7 (79.4 – 80.0) 

PSSA model 2 35.8 (35.6 – 36.0) 13.6 (13.4 – 13.9) 46.1 (45.9 – 46.4) 79.4 (79.1 – 79.7) 

PSSA model 3 35.4 (35.3 – 35.6) 12.8 (12.6 – 13.0) 46.3 (46.0 – 46.6) 79.4 (79.1 – 79.8) 

PSSA model 4 34.3 (34.1 – 34.5) 12.2 (11.9 – 12.4) 44.8 (44.5 – 45.1) 79.1 (78.8 – 79.5) 
Note: AHRs= Administrative Health Records; EMRs= Electronic Medical Records; OR= rule-based ‘OR’ method; 

AND= rule-based ‘AND’ method; RSSA= rule-based sensitivity-specificity adjusted method; PSSA= probabilistic-

based sensitivity-specificity adjusted method  

    

Table 5.6: Model fit statistics for the PSSA method, overall, by sex and age group 

Model 

DIC  

Overall Males Females 18 - 44 years 45-64 years 65+ years 

1 167249.40 73417.96 93565.27 42925.35 71311.35 26719.38 

2 166994.40 73404.73 93493.06 42920.80 70982.53 26554.06 

3 166506.00 73180.58 93350.54 42421.25 71033.17 26621.65 

4 165719.00 72705.69 92687.57 42219.99 70483.41 26524.68 

Note: DIC= Deviance information criterion 
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CHAPTER 6 – DISCUSSION AND CONCLUSIONS 

6.1 Summary 

 In this study, four data-combining methods that use information from two error-prone 

data sources for ascertaining chronic disease cases were compared: (a) rule-based ‘OR’ method, 

(b) rule-based ‘AND’ method, (c) rule-based sensitivity-specificity adjusted (RSSA) method and 

(d) probabilistic-based sensitivity-specificity adjusted (PSSA) method. A simulation study was 

conducted to evaluate the performance of the methods. Then, a numeric example for 

hypertension case ascertainment was used to demonstrate the methods.  

 We investigated the following conditions in the simulation study: true population 

prevalence, error-prone data source prevalence, correlation between data sources, number of 

markers for PSSA method, average correlation amongst markers and marker correlation pattern. 

Performance of each data-combining method was assessed using RB and MSE.  

Under simulation conditions in which the two data sources were highly correlated, the 

estimated prevalence from the ‘OR’ method only slightly overestimated the true disease 

prevalence. On the other hand, for simulation conditions in which the two data sources were not 

highly correlated, the RSSA method had the lowest RB and MSE among all other data-

combining methods. As data source correlation decreased from 0.85 to 0.65, the ‘OR’ method 

and the PSSA method overestimated the true disease prevalence while the ‘AND’ method 

underestimated the true prevalence.  

 The magnitude of true prevalence affected the estimated prevalence for all data-

combining methods in the simulation study. The ‘OR’ method performed better than all other 

data-combing methods when true prevalence was 10% while the RSSA method was best when 

true prevalence was 20%. In general, as the size of the true prevalence decreased from 20% to 
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10%, the estimated prevalence for all data combining methods became more biased and less 

accurate.   

 The average marker correlation had a significant impact on the bias and accuracy of the 

prevalence estimates for the PSSA method in the simulation study. When true prevalence was 

10%, estimates of RB and MSE increased substantially compared to when true prevalence was 

20%. However, number of markers and correlation pattern had little impact on the estimated 

prevalence. The PSSA method performed better than all other data-combining methods only 

when correlation between the two data sources was high, the true prevalence was 20% and the 

average marker correlation was low. Additionally, supplementary analysis showed that the PSSA 

method performed best when prevalence of the markers was not very low.  

 In our numeric example, the four data-combining methods were applied to linked AHRs 

and EMRs to ascertain cases of hypertension. We constructed four PSSA models using different 

subsets of case ascertainment markers. Case ascertainment markers included socio-demographic 

characteristics, comorbidity scores, and disease-specific markers defined from AHRs and EMRs. 

PSSA model 1 included twenty markers selected based on theoretical evidence. Model 2 

included a total of sixteen markers after removing selected markers from Model 1 that were 

potentially redundant. Model 3 included a total of fourteen markers after removing markers with 

high absolute correlation values. Model 4 included a total of eight markers used often in previous 

literature to describe/define hypertension.  

  Our numeric results showed that the estimated prevalence of hypertension using AHR 

and EMR case ascertainment algorithms were 30.9% and 24.9%, respectively. There was a 

strong correlation between the two measures, at 0.90. Overall, the estimated prevalence of 

hypertension from all data-combining methods was higher than the estimates using AHR and 
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EMR case ascertainment algorithms alone, except for the ‘AND’ method where the prevalence 

estimate was lower. The estimated prevalence was 21.4% for the ‘AND’ method, 32.2% for the 

RSSA method, 34.4% for the ‘OR’ method, 35.9% for PSSA model 1, 35.8% for PSSA model 2, 

35.4% for PSSA model 3, and 34.3% for PSSA model 4.  

  When we stratified by sex, the estimated prevalence of hypertension using the data-

combining methods were similar to the results obtained for the full cohort. However, when we 

stratified by age groups, the estimated prevalence using AHR and EMR case ascertainment 

algorithms varied substantially, with low estimates for the 18-44 age group, 10.3% and 9.0% and 

very high estimates for the 65+ age group, 75.3% and 56.3%. For the 18-44 age group, the 

prevalence estimates using data-combining methods ranged from 6.4% for the ‘AND’ method to 

13.9% for PSSA model 1. For the 65+ age group, the prevalence estimates ranged 53.0% for the 

‘AND’ method to 79.7% for PSSA model 1. Each of the four PSSA models produced prevalence 

estimates that were consistently high for the 65+ age group compared to the estimates for the 

younger age groups. The low correlation found between the data sources for the 65+ age group 

may have resulted in the overestimation of prevalence, as supported by the results of our 

simulation study.  

6.2 Discussion 

 AHRs and EMRs are the two main data sources used for chronic disease surveillance in 

Canada. However, these data sources are prone to misclassification errors and the magnitude of 

error may not be the same in each source. It is difficult to choose a single source to use for 

chronic disease surveillance, since there are strengths and limitations to each source. Rather than 

using one data source or the other, a more effective approach might be to combine information 

from both sources to build on their strengths (He et al., 2014; Reitsma et al., 2009; Zheng et al., 
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2006). This study is the first to use linked AHRs and EMRs to ascertain individuals with 

hypertension using data-combining methods. As well, this research revealed, via the simulation 

study, the strengths and limitations of rule-based and probabilistic-based data-combining 

methods to assist researchers in selecting an appropriate method based on their data 

characteristics. Accurate disease case ascertainment is important not only for obtaining accurate 

prevalence estimates but also for producing unbiased epidemiologic and clinical studies about 

disease outcomes. 

 We found a high correlation between the AHR and EMR case ascertainment algorithms 

for hypertension, which left a limited margin of improvement for the data-combining methods. 

Other studies have found a high degree of association between data sources for conditions with 

well-defined diagnostic criteria including hypertension and diabetes (Frank, 2016; Zellweger et 

al., 2014). In our study cohort, the naïve estimates of hypertension prevalence from AHRs 

(30.9%) and EMRs (24.9%) were higher than those obtained from other Canadian studies which 

ranged from 19.6% to 21.3% for AHRs (Pace et al., 2017; Quan et al., 2009; Robiaille et al., 

2012) and 22.8% for EMRs (Godwin et al., 2015), but was consistent with one study with 32.0% 

for AHRs (Tu et al., 2007). However, the patterns in terms of sex and age stratified prevalence 

estimates were consistent with previous studies (Peng et al., 2015; Robiaille et al., 2012; Tu et 

al., 2007), which lends face validity to our findings. 

 Prevalence estimates for the PSSA models were slightly different, but close to the 

estimate for the ‘OR’ method. The low variation in prevalence estimates could be attributed to 

the fact that the mean absolute correlation amongst the markers was moderately low, ranging 

between 0.13 and 0.18 across the PSSA models. Our simulation study revealed that when the 

average correlation amongst the marker was zero (i.e., independent markers), the PSSA method 
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produced prevalence estimates that were comparable to when the average correlation amongst 

the marker was 0.20. Moreover, the average marker correlation was low in our numeric example, 

meaning that each of the markers was providing unique information to the model.  

6.3 Conclusions and recommendations 

 A number of conclusions and recommendations arise from both the simulation study and 

the numeric example. Overall, the choice of a data-combining method depends on the 

characteristics of the data. No single method is preferred. For example, although the ‘AND’ 

method is an inherently conservative method, it depends heavily on the data source correlation, 

and therefore may produce estimates that are not that different from other methods.   

 With respect to the simulation study, we found that correlation between the two data 

sources had a substantial impact on estimates of disease prevalence for all data-combining 

methods. Increasing the correlation reduced the RB and MSE. It is important for researchers to 

carefully consider the amount of correlation between data sources when attempting to estimate 

disease prevalence using any of the data-combining methods. When correlation between data 

sources is very high, using the ‘OR’ method or the ‘AND’ method will result in comparable 

estimates of prevalence. When correlation is low, however, we recommend using the ‘OR’ 

method when the sensitivities of the two data sources are low, that is, when both data sources 

tend to capture true disease cases poorly. And, if both data sources tend to poorly capture true 

non-disease cases, then the ‘AND’ method is preferable.    

 In our simulation study, the RSSA method produced large RB and MSE when we 

underestimated the specificity of case ascertainment algorithms compared to when true estimates 

of specificity of case ascertainment algorithms were defined. Therefore, the RSSA method 

should be used with caution, if accurate estimates of sensitivity and specificity of case 
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ascertainment algorithms are not available. Moreover, the estimated prevalence from the RSSA 

method was less biased when the size of the true prevalence was 20% compared to 10%. Thus, 

we recommended using the RSSA when true prevalence is high, as it is less affected by 

potentially sparse data.  

  For the PSSA method, reducing the marker prevalence increased the RB and MSE, 

regardless of other factors that were considered. As such, we recommend including a rich set of 

markers when implementing the PSSA methods to estimate disease prevalence, especially when 

true prevalence is low. This is reasonable because the larger the prevalence the more information 

is provided to construct this model-based approach. When these quantities are low, problems 

associated with sparse data (i.e., data with few or no subjects at crucial combinations of variable 

values) may arise. We recommend adopting the PSSA method when correlation between the two 

data sources is high, the average marker correlation is low and the true prevalence is high. 

 In the case of conditions with low population prevalence, our simulation study revealed 

that the performance of the data-combining methods tends to deteriorate. The average RB and 

MSE estimates increased for each data-combining method when true prevalence was 10% 

compared to when true prevalence was 20%. The estimates increased by 0.3% for the ‘OR’ 

method, 8.8% for the RSSA method, 11.4% for the ‘AND’ method and 127.1% for the PSSA 

method. Our findings indicate that calculating prevalence for rare conditions using any data-

combining method poses specific challenges (Hampton et al., 2011).  

6.4 Strengths and limitations  

 This study has some limitations. First, the simulation study focused on only a selected 

number of simulation conditions. Selecting a broader set of conditions might have revealed 

different strengths and limitations of each data-combining method. At the same time, we 
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investigated a total of 144 combinations of simulation conditions and selected parameter values 

that reflect scenarios appearing in real-world data (Kaplan et al., 2010; Padwal et al., 2016; 

Walker et al., 2013). Thus, the simulation study overall provides a thorough assessment of the 

RB and MSE of each of the data-combining methods.   

 With respect to the numeric example, in our cohort development, we required seven years 

of coverage before and after an individual’s first EMR encounter, in order to ensure that we 

accurately captured EMR cases of hypertension. The EMR case ascertainment algorithms 

developed by CPCSSN investigators are not specified over a defined period of time. Requiring 

all cohort members to have long periods of coverage could result in selection bias, because less 

healthy individuals would have a lower probability of meeting this criteria.  

 The main strength of this study was the use of both computer simulation and a real 

numeric example to examine the performance of the data-combining methods. The computer 

simulation was used to study the performance of the rule-based and probabilistic-based data-

combining methods for known population characteristics and the numeric example demonstrated 

the application of the methods in the real world. We compared methods using two population-

based data sources (i.e., AHRs and EMRs) that are available in many jurisdictions in Canada. 

Moreover, this research investigated multiple sets of case ascertainment markers when applying 

the PSSA method.     

6.5 Future research 

 The methods used in this study can be extended to combine more than two data sources. 

For example, future research could investigate including survey data as a third data source. For 

example, the population-based Canadian Community Health Survey is often used to produce 

estimates of prevalence for many chronic conditions, including hypertension, which was the 
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focus of the numeric example used in this study (Muggah et al., 2013). Self-report data from 

health surveys are prone to recall bias, and therefore will produce biased prevalence estimates on 

their own. Thus, combining this data source with both AHRs and EMRs might be helpful to 

epidemiologists and public health staff who routinely use only a single source to report disease 

prevalence estimates.   

 The PSSA method used in this study only included case ascertainment markers with 

complete information. However, case ascertainment markers could potentially be characterized 

by missing data. Further research could extend this method to account for missingness in the 

markers (Janssen et al., 2010; Rubin, 1987). Extensions can also be considered for error-prone 

data sources with distributions other than binary (e.g., nominal, ordinal, or continuous).  

 Finally, all of the data-combining methods can be applied to other real-world numeric 

examples. They may be most beneficial for diseases for which there is a low to moderate 

correlation amongst case ascertainment results from error-prone data sources. Examples include 

arthritis and mental disorders such as anxiety and depression.  
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APPENDIX A: Details of the Computer Simulation 

Table A.1: Summary of simulation conditions 

Condition 

# 
𝒑𝒓𝒆𝒗𝐓 𝑵𝒙 𝝆̅𝒙 𝝆̅𝒙 (𝐩𝐚𝐭𝐭𝐞𝐫𝐧) 𝒑𝒓𝒆𝒗𝒀𝟏 𝒑𝒓𝒆𝒗𝒀𝟐 𝝆𝒀𝟏𝒀𝟐

 𝑺𝒏𝒀𝟏
 𝑺𝒑𝒀𝟏

 𝑺𝒏𝒀𝟐
 𝑺𝒑𝒀𝟐

 

1 0.20 16 0.00 ex 0.18 0.15 0.65 0.72 0.96 0.55 0.95 

2 0.20 16 0.20 ex 0.18 0.15 0.65 0.72 0.96 0.55 0.95 

3 0.20 16 0.50 ex 0.18 0.15 0.65 0.72 0.96 0.55 0.95 

4 0.20 16 0.00 un 0.18 0.15 0.65 0.72 0.96 0.55 0.95 

5 0.20 16 0.20 un 0.18 0.15 0.65 0.72 0.96 0.55 0.95 

6 0.20 16 0.50 un 0.18 0.15 0.65 0.72 0.96 0.55 0.95 

7 0.20 16 0.00 ex 0.18 0.15 0.85 0.80 0.98 0.65 0.98 

8 0.20 16 0.20 ex 0.18 0.15 0.85 0.80 0.98 0.65 0.98 

9 0.20 16 0.50 ex 0.18 0.15 0.85 0.80 0.98 0.65 0.98 

10 0.20 16 0.00 un 0.18 0.15 0.85 0.80 0.98 0.65 0.98 

11 0.20 16 0.20 un 0.18 0.15 0.85 0.80 0.98 0.65 0.98 

12 0.20 16 0.50 un 0.18 0.15 0.85 0.80 0.98 0.65 0.98 

13 0.20 16 0.00 ex 0.18 0.10 0.65 0.65 0.94 0.50 0.99 

14 0.20 16 0.20 ex 0.18 0.10 0.65 0.65 0.94 0.50 0.99 

15 0.20 16 0.50 ex 0.18 0.10 0.65 0.65 0.94 0.50 0.99 

16 0.20 16 0.00 un 0.18 0.10 0.65 0.65 0.94 0.50 0.99 

17 0.20 16 0.20 un 0.18 0.10 0.65 0.65 0.94 0.50 0.99 

18 0.20 16 0.50 un 0.18 0.10 0.65 0.65 0.94 0.50 0.99 

19 0.20 16 0.00 ex 0.18 0.10 0.85 0.82 0.99 0.50 0.99 

20 0.20 16 0.20 ex 0.18 0.10 0.85 0.82 0.99 0.50 0.99 

21 0.20 16 0.50 ex 0.18 0.10 0.85 0.82 0.99 0.50 0.99 

22 0.20 16 0.00 un 0.18 0.10 0.85 0.82 0.99 0.50 0.99 

23 0.20 16 0.20 un 0.18 0.10 0.85 0.82 0.99 0.50 0.99 

24 0.20 16 0.50 un 0.18 0.10 0.85 0.82 0.99 0.50 0.99 

25 0.20 16 0.00 ex 0.15 0.15 0.65 0.68 0.97 0.55 0.95 

26 0.20 16 0.20 ex 0.15 0.15 0.65 0.68 0.97 0.55 0.95 

27 0.20 16 0.50 ex 0.15 0.15 0.65 0.68 0.97 0.55 0.95 

28 0.20 16 0.00 un 0.15 0.15 0.65 0.68 0.97 0.55 0.95 

29 0.20 16 0.20 un 0.15 0.15 0.65 0.68 0.97 0.55 0.95 

30 0.20 16 0.50 un 0.15 0.15 0.65 0.68 0.97 0.55 0.95 

31 0.20 16 0.00 ex 0.15 0.15 0.85 0.71 0.98 0.71 0.98 

32 0.20 16 0.20 ex 0.15 0.15 0.85 0.71 0.98 0.71 0.98 

33 0.20 16 0.50 ex 0.15 0.15 0.85 0.71 0.98 0.71 0.98 

34 0.20 16 0.00 un 0.15 0.15 0.85 0.71 0.98 0.71 0.98 

35 0.20 16 0.20 un 0.15 0.15 0.85 0.71 0.98 0.71 0.98 

36 0.20 16 0.50 un 0.15 0.15 0.85 0.71 0.98 0.71 0.98 
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37 0.20 8 0.00 ex 0.18 0.15 0.65 0.72 0.96 0.55 0.95 

38 0.20 8 0.20 ex 0.18 0.15 0.65 0.72 0.96 0.55 0.95 

39 0.20 8 0.50 ex 0.18 0.15 0.65 0.72 0.96 0.55 0.95 

40 0.20 8 0.00 un 0.18 0.15 0.65 0.72 0.96 0.55 0.95 

41 0.20 8 0.20 un 0.18 0.15 0.65 0.72 0.96 0.55 0.95 

42 0.20 8 0.50 un 0.18 0.15 0.65 0.72 0.96 0.55 0.95 

43 0.20 8 0.00 ex 0.18 0.15 0.85 0.80 0.98 0.65 0.98 

44 0.20 8 0.20 ex 0.18 0.15 0.85 0.80 0.98 0.65 0.98 

45 0.20 8 0.50 ex 0.18 0.15 0.85 0.80 0.98 0.65 0.98 

46 0.20 8 0.00 un 0.18 0.15 0.85 0.80 0.98 0.65 0.98 

47 0.20 8 0.20 un 0.18 0.15 0.85 0.80 0.98 0.65 0.98 

48 0.20 8 0.50 un 0.18 0.15 0.85 0.80 0.98 0.65 0.98 

49 0.20 8 0.00 ex 0.18 0.10 0.65 0.65 0.94 0.50 0.99 

50 0.20 8 0.20 ex 0.18 0.10 0.65 0.65 0.94 0.50 0.99 

51 0.20 8 0.50 ex 0.18 0.10 0.65 0.65 0.94 0.50 0.99 

52 0.20 8 0.00 un 0.18 0.10 0.65 0.65 0.94 0.50 0.99 

53 0.20 8 0.20 un 0.18 0.10 0.65 0.65 0.94 0.50 0.99 

54 0.20 8 0.50 un 0.18 0.10 0.65 0.65 0.94 0.50 0.99 

55 0.20 8 0.00 ex 0.18 0.10 0.85 0.82 0.99 0.50 0.99 

56 0.20 8 0.20 ex 0.18 0.10 0.85 0.82 0.99 0.50 0.99 

57 0.20 8 0.50 ex 0.18 0.10 0.85 0.82 0.99 0.50 0.99 

58 0.20 8 0.00 un 0.18 0.10 0.85 0.82 0.99 0.50 0.99 

59 0.20 8 0.20 un 0.18 0.10 0.85 0.82 0.99 0.50 0.99 

60 0.20 8 0.50 un 0.18 0.10 0.85 0.82 0.99 0.50 0.99 

61 0.20 8 0.00 ex 0.15 0.15 0.65 0.68 0.97 0.55 0.95 

62 0.20 8 0.20 ex 0.15 0.15 0.65 0.68 0.97 0.55 0.95 

63 0.20 8 0.50 ex 0.15 0.15 0.65 0.68 0.97 0.55 0.95 

64 0.20 8 0.00 un 0.15 0.15 0.65 0.68 0.97 0.55 0.95 

65 0.20 8 0.20 un 0.15 0.15 0.65 0.68 0.97 0.55 0.95 

66 0.20 8 0.50 un 0.15 0.15 0.65 0.68 0.97 0.55 0.95 

67 0.20 8 0.00 ex 0.15 0.15 0.85 0.71 0.98 0.71 0.98 

68 0.20 8 0.20 ex 0.15 0.15 0.85 0.71 0.98 0.71 0.98 

69 0.20 8 0.50 ex 0.15 0.15 0.85 0.71 0.98 0.71 0.98 

70 0.20 8 0.00 un 0.15 0.15 0.85 0.71 0.98 0.71 0.98 

71 0.20 8 0.20 un 0.15 0.15 0.85 0.71 0.98 0.71 0.98 

72 0.20 8 0.50 un 0.15 0.15 0.85 0.71 0.98 0.71 0.98 

73 0.10 16 0.00 ex 0.08 0.07 0.65 0.56 0.97 0.54 0.98 

74 0.10 16 0.20 ex 0.08 0.07 0.65 0.56 0.97 0.54 0.98 

75 0.10 16 0.50 ex 0.08 0.07 0.65 0.56 0.97 0.54 0.98 

76 0.10 16 0.00 un 0.08 0.07 0.65 0.56 0.97 0.54 0.98 

77 0.10 16 0.20 un 0.08 0.07 0.65 0.56 0.97 0.54 0.98 
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78 0.10 16 0.50 un 0.08 0.07 0.65 0.56 0.97 0.54 0.98 

79 0.10 16 0.00 ex 0.08 0.07 0.85 0.70 0.99 0.59 0.99 

80 0.10 16 0.20 ex 0.08 0.07 0.85 0.70 0.99 0.59 0.99 

81 0.10 16 0.50 ex 0.08 0.07 0.85 0.70 0.99 0.59 0.99 

82 0.10 16 0.00 un 0.08 0.07 0.85 0.70 0.99 0.59 0.99 

83 0.10 16 0.20 un 0.08 0.07 0.85 0.70 0.99 0.59 0.99 

84 0.10 16 0.50 un 0.08 0.07 0.85 0.70 0.99 0.59 0.99 

85 0.10 16 0.00 ex 0.08 0.05 0.65 0.70 0.99 0.35 0.98 

86 0.10 16 0.20 ex 0.08 0.05 0.65 0.70 0.99 0.35 0.98 

87 0.10 16 0.50 ex 0.08 0.05 0.65 0.70 0.99 0.35 0.98 

88 0.10 16 0.00 un 0.08 0.05 0.65 0.70 0.99 0.35 0.98 

89 0.10 16 0.20 un 0.08 0.05 0.65 0.70 0.99 0.35 0.98 

90 0.10 16 0.50 un 0.08 0.05 0.65 0.70 0.99 0.35 0.98 

91 0.10 16 0.00 ex 0.08 0.05 0.85 0.75 0.99 0.50 0.99 

92 0.10 16 0.20 ex 0.08 0.05 0.85 0.75 0.99 0.50 0.99 

93 0.10 16 0.50 ex 0.08 0.05 0.85 0.75 0.99 0.50 0.99 

94 0.10 16 0.00 un 0.08 0.05 0.85 0.75 0.99 0.50 0.99 

95 0.10 16 0.20 un 0.08 0.05 0.85 0.75 0.99 0.50 0.99 

96 0.10 16 0.50 un 0.08 0.05 0.85 0.75 0.99 0.50 0.99 

97 0.10 16 0.00 ex 0.05 0.05 0.65 0.50 0.99 0.40 0.98 

98 0.10 16 0.20 ex 0.05 0.05 0.65 0.50 0.99 0.40 0.98 

99 0.10 16 0.50 ex 0.05 0.05 0.65 0.50 0.99 0.40 0.98 

100 0.10 16 0.00 un 0.05 0.05 0.65 0.50 0.99 0.40 0.98 

101 0.10 16 0.20 un 0.05 0.05 0.65 0.50 0.99 0.40 0.98 

102 0.10 16 0.50 un 0.05 0.05 0.65 0.50 0.99 0.40 0.98 

103 0.10 16 0.00 ex 0.05 0.05 0.85 0.53 0.99 0.53 0.99 

104 0.10 16 0.20 ex 0.05 0.05 0.85 0.53 0.99 0.53 0.99 

105 0.10 16 0.50 ex 0.05 0.05 0.85 0.53 0.99 0.53 0.99 

106 0.10 16 0.00 un 0.05 0.05 0.85 0.53 0.99 0.53 0.99 

107 0.10 16 0.20 un 0.05 0.05 0.85 0.53 0.99 0.53 0.99 

108 0.10 16 0.50 un 0.05 0.05 0.85 0.53 0.99 0.53 0.99 

109 0.10 8 0.00 ex 0.08 0.07 0.65 0.56 0.97 0.54 0.98 

110 0.10 8 0.20 ex 0.08 0.07 0.65 0.56 0.97 0.54 0.98 

111 0.10 8 0.50 ex 0.08 0.07 0.65 0.56 0.97 0.54 0.98 

112 0.10 8 0.00 un 0.08 0.07 0.65 0.56 0.97 0.54 0.98 

113 0.10 8 0.20 un 0.08 0.07 0.65 0.56 0.97 0.54 0.98 

114 0.10 8 0.50 un 0.08 0.07 0.65 0.56 0.97 0.54 0.98 

115 0.10 8 0.00 ex 0.08 0.07 0.85 0.70 0.99 0.59 0.99 

116 0.10 8 0.20 ex 0.08 0.07 0.85 0.70 0.99 0.59 0.99 

117 0.10 8 0.50 ex 0.08 0.07 0.85 0.70 0.99 0.59 0.99 

118 0.10 8 0.00 un 0.08 0.07 0.85 0.70 0.99 0.59 0.99 
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119 0.10 8 0.20 un 0.08 0.07 0.85 0.70 0.99 0.59 0.99 

120 0.10 8 0.50 un 0.08 0.07 0.85 0.70 0.99 0.59 0.99 

121 0.10 8 0.00 ex 0.08 0.05 0.65 0.70 0.99 0.35 0.98 

122 0.10 8 0.20 ex 0.08 0.05 0.65 0.70 0.99 0.35 0.98 

123 0.10 8 0.50 ex 0.08 0.05 0.65 0.70 0.99 0.35 0.98 

124 0.10 8 0.00 un 0.08 0.05 0.65 0.70 0.99 0.35 0.98 

125 0.10 8 0.20 un 0.08 0.05 0.65 0.70 0.99 0.35 0.98 

126 0.10 8 0.50 un 0.08 0.05 0.65 0.70 0.99 0.35 0.98 

127 0.10 8 0.00 ex 0.08 0.05 0.85 0.75 0.99 0.50 0.99 

128 0.10 8 0.20 ex 0.08 0.05 0.85 0.75 0.99 0.50 0.99 

129 0.10 8 0.50 ex 0.08 0.05 0.85 0.75 0.99 0.50 0.99 

130 0.10 8 0.00 un 0.08 0.05 0.85 0.75 0.99 0.50 0.99 

131 0.10 8 0.20 un 0.08 0.05 0.85 0.75 0.99 0.50 0.99 

132 0.10 8 0.50 un 0.08 0.05 0.85 0.75 0.99 0.50 0.99 

133 0.10 8 0.00 ex 0.05 0.05 0.65 0.50 0.99 0.40 0.98 

134 0.10 8 0.20 ex 0.05 0.05 0.65 0.50 0.99 0.40 0.98 

135 0.10 8 0.50 ex 0.05 0.05 0.65 0.50 0.99 0.40 0.98 

136 0.10 8 0.00 un 0.05 0.05 0.65 0.50 0.99 0.40 0.98 

137 0.10 8 0.20 un 0.05 0.05 0.65 0.50 0.99 0.40 0.98 

138 0.10 8 0.50 un 0.05 0.05 0.65 0.50 0.99 0.40 0.98 

139 0.10 8 0.00 ex 0.05 0.05 0.85 0.53 0.99 0.53 0.99 

140 0.10 8 0.20 ex 0.05 0.05 0.85 0.53 0.99 0.53 0.99 

141 0.10 8 0.50 ex 0.05 0.05 0.85 0.53 0.99 0.53 0.99 

142 0.10 8 0.00 un 0.05 0.05 0.85 0.53 0.99 0.53 0.99 

143 0.10 8 0.20 un 0.05 0.05 0.85 0.53 0.99 0.53 0.99 

144 0.10 8 0.50 un 0.05 0.05 0.85 0.53 0.99 0.53 0.99 
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Table A.2: Disease marker prevalence (µ𝒙) and beta coefficients (𝛽𝑥  ) based on true disease 

prevalence (𝑝𝑟𝑒𝑣T) and number of markers (𝑁𝑥) used for data generation  

𝒑𝒓𝒆𝒗𝐓 𝑵𝒙 µ𝒙 𝜷𝒙 

20% 

8 
0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 

0.70, 0.80 

-0.35, 1.20, 0.90, 0.50, 0.15, 0.05,      

-0.20, -0.80, -1.30 

16 

0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 

0.70, 0.80, 0.50, 0.50, 0.50, 0.50, 

0.30, 0.30, 0.70, 0.70 

-0.35, 1.10, 0.80, 0.40, 0.15, 0.04,      

-0.20, -0.35, -1.45, 0.04, 0.04, 0.04, 

0.04, 0.40, 0.40, -0.35, -0.35 

10% 

8 
0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 

0.70, 0.80 

-0.35, 1.10, 0.20, 0.50, 0.15, 0.05,      

-0.50, -1.30, -1.80 

16 

0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 

0.70, 0.80, 0.50, 0.50, 0.50, 0.50, 

0.30, 0.30, 0.70, 0.70 

-0.35, 1.10, 0.20, 0.40, 0.15, 0.02,      

-0.60, -0.50, -1.80, 0.02, 0.02, 0.02, 

0.02, 0.50, 0.50, -0.50, -0.50 

0.20* 

16 

0.05, 0.10, 0.10, 0.05, 0.15, 0.10, 

0.10, 0.15, 0.05, 0.15, 0.15, 0.20, 

0.15, 0.20, 0.10, 0.20 

-0.90, 0.10, 0.05, -0.30, -0.35, -0.10,  

-0.35, 0.05, -0.40, -0.40, -0.60, 0.10,  

-0.55, 0.05, -0.35, 0.10, -0.40 

8 
0.05, 0.10, 0.10, 0.05, 0.15, 0.10, 

0.10, 0.15 

-1.00, 0.05, -0.70, -0.30, 0.15,            

-0.50, -0.60, -0.40, -0.80 

Note: * was used for specific combination of simulation conditions 
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Table A.3: Relative bias (RB) and mean squared error (MSE) when true prevalence is 20% and 

𝑁𝑥= 16 

Outcome prevalence 

𝒑𝒓𝒆𝒗𝒚𝟏
, 𝒑𝒓𝒆𝒗𝒚𝟐

 
𝝆̅𝒙 

RB (%) 

𝝆𝒚𝟏𝒚𝟐
 = 0.85 𝝆𝒚𝟏𝒚𝟐

 = 0.65 

OR AND RSSA PSSA OR AND RSSA PSSA 

18%, 15% 

0.00 9.9 47.1 7.1 7.7 23.9 59.0 0.7 47.9 

0.20 8.1 48.6 8.8 2.4 21.8 59.9 2.4 39.6 

0.50 10.9 46.9 6.4 25.2 24.6 58.9 0.2 101.5 

18%, 10% 

0.00 0.3 58.4 17.7 0.2 11.8 66.5 12.0 27.6 

0.20 1.8 59.4 19.4 7.8 9.3 67.8 14.1 34.4 

0.50 1.3 57.8 16.8 35.7 12.2 66.7 11.8 104.7 

15%, 15% 

0.00 5.0 48.7 10.7 3.8 18.2 61.5 5.3 40.8 

0.20 2.8 49.9 12.7 3.6 16.3 62.3 6.9 36.7 

0.50 5.6 48.3 10.2 26.0 19.1 61.1 4.6 104.4 

    

MSE 

𝝆𝒚𝟏𝒚𝟐
= 0.85 𝝆𝒚𝟏𝒚𝟐

 = 0.65 

OR AND RSSA PSSA OR AND RSSA PSSA 

18%, 15% 

0.00 0.04 0.89 0.02 0.05 0.23 1.39 0.00 0.97 

0.20 0.03 0.94 0.03 0.01 0.19 1.44 0.00 0.72 

0.50 0.05 0.88 0.02 1.04 0.24 1.39 0.00 4.75 

18%, 10% 

0.00 0.00 1.36 0.13 0.02 0.06 1.77 0.06 0.37 

0.20 0.00 1.41 0.15 0.04 0.04 1.84 0.08 1.26 

0.50 0.00 1.34 0.11 1.57 0.06 1.78 0.06 5.02 

15%, 15% 

0.00 0.01 0.95 0.05 0.03 0.13 1.51 0.01 0.73 

0.20 0.00 1.00 0.07 0.03 0.11 1.55 0.02 0.72 

0.50 0.01 0.93 0.04 1.28 0.15 1.50 0.01 4.87 

Note: OR= rule-based ‘OR’ method; AND= rule-based ‘AND’ method; RSSA= rule-based sensitivity-

specificity method; PSSA= probabilistic-based sensitivity-specificity method 
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Table A.4: Relative bias (RB) and mean squared error (MSE) when true prevalence is 20% and 

𝑁𝑥= 8 

Outcome prevalence 

𝒑𝒓𝒆𝒗𝒚𝟏
, 𝒑𝒓𝒆𝒗𝒚𝟐

 
𝝆̅𝒙 

RB (%) 

𝝆𝒚𝟏𝒚𝟐
 = 0.85 𝝆𝒚𝟏𝒚𝟐

 = 0.65 

OR AND RSSA PSSA OR AND RSSA PSSA 

18%, 15% 

0.00 12.8 45.5 4.6 14.9 26.3 58.4 1.2 62.7 

0.20 10.9 46.8 6.4 10.2 24.6 58.8 0.1 79.9 

0.50 11.8 46.0 5.5 37.8 24.5 58.6 0.1 81.4 

18%, 10% 

0.00 3.3 57.1 15.2 14.9 12.9 66.0 11.1 28.7 

0.20 1.4 57.8 16.8 2.1 12.1 66.3 11.7 57.1 

0.50 0.9 57.9 17.1 81.5 12.2 66.2 11.6 85.7 

15%, 15% 

0.00 7.6 47.7 8.6 9.4 20.2 60.4 3.6 48.9 

0.20 5.0 48.6 10.7 1.1 18.8 61.2 4.7 47.5 

0.50 5.3 48.4 10.5 12.6 18.8 61.1 4.8 74.1 

    

MSE 

𝝆𝒚𝟏𝒚𝟐
= 0.85 𝝆𝒚𝟏𝒚𝟐

 = 0.65 

OR AND RSSA PSSA OR AND RSSA PSSA 

18%, 15% 

0.00 0.07 0.83 0.01 0.89 0.28 1.37 0.00 3.57 

0.20 0.05 0.88 0.02 1.33 0.24 1.38 0.00 6.13 

0.50 0.06 0.85 0.01 3.19 0.24 1.37 0.00 4.76 

18%, 10% 

0.00 0.01 1.31 0.09 1.85 0.07 1.74 0.05 0.47 

0.20 0.00 1.34 0.11 0.56 0.06 1.76 0.06 3.13 

0.50 0.00 1.34 0.12 6.52 0.06 1.75 0.05 4.76 

15%, 15% 

0.00 0.02 0.91 0.03 0.53 0.16 1.46 0.01 1.89 

0.20 0.01 0.95 0.05 0.27 0.14 1.50 0.01 1.70 

0.50 0.01 0.94 0.04 2.74 0.14 1.50 0.01 4.12 

Note: OR= rule-based ‘OR’ method; AND= rule-based ‘AND’ method; RSSA= rule-based sensitivity-

specificity method; PSSA= probabilistic-based sensitivity-specificity method 
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Table A.5: Relative bias (RB) and mean squared error (MSE) when true prevalence is 10% and 

𝑁𝑥= 16 

Outcome prevalence 

𝒑𝒓𝒆𝒗𝒚𝟏
, 𝒑𝒓𝒆𝒗𝒚𝟐

 
𝝆̅𝒙 

RB (%) 

𝝆𝒚𝟏𝒚𝟐
 = 0.85 𝝆𝒚𝟏𝒚𝟐

 = 0.65 

OR AND RSSA PSSA OR AND RSSA PSSA 

8%, 7% 

0.00 11.9 55.5 8.1 12.7 30.0 67.1 1.2 104.4 

0.20 8.7 56.8 10.7 31.3 25.7 68.2 2.1 208.9 

0.50 15.2 54.0 5.3 237.1 32.0 66.2 2.9 326.2 

8%, 5% 

0.00 2.8 59.9 16.2 2.6 12.6 73.2 13.2 70.7 

0.20 0.2 61.2 18.7 18.9 11.1 74.1 14.4 244.1 

0.50 6.8 58.3 13.0 238.9 15.5 73.1 11.2 331.8 

5%, 5% 

0.00 14.9 69.4 30.9 5.0 7.4 78.9 28.4 52.7 

0.20 16.6 70.6 32.5 158.4 9.3 79.4 29.9 290.0 

0.50 11.4 69.2 28.4 299.2 3.1 77.5 25.0 351.2 

    

MSE 

𝝆𝒚𝟏𝒚𝟐
 = 0.85 𝝆𝒚𝟏𝒚𝟐

 = 0.65 

OR AND RSSA PSSA OR AND RSSA PSSA 

8%, 7% 

0.00 0.01 0.31 0.01 0.06 0.09 0.45 0.00 1.93 

0.20 0.01 0.32 0.01 0.88 0.07 0.47 0.00 5.98 

0.50 0.02 0.29 0.00 6.96 0.10 0.44 0.00 10.91 

8%, 5% 

0.00 0.00 0.36 0.03 0.01 0.02 0.54 0.02 1.37 

0.20 0.00 0.38 0.04 0.65 0.01 0.55 0.02 7.98 

0.50 0.01 0.34 0.02 6.96 0.02 0.53 0.01 11.38 

5%, 5% 

0.00 0.02 0.48 0.10 0.88 0.01 0.62 0.08 1.49 

0.20 0.03 0.50 0.11 5.32 0.01 0.63 0.09 10.56 

0.50 0.01 0.48 0.08 9.82 0.00 0.60 0.06 12.70 

Note: OR= rule-based ‘OR’ method; AND= rule-based ‘AND’ method; RSSA= rule-based sensitivity-

specificity method; PSSA= probabilistic-based sensitivity-specificity method  
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Table A.6: Relative bias (RB) and mean squared error (MSE) when true prevalence is 10% and 

𝑁𝑥= 8 

Outcome prevalence 

𝒑𝒓𝒆𝒗𝒚𝟏
, 𝒑𝒓𝒆𝒗𝒚𝟐

 
𝝆̅𝒙 

RB (%) 

𝝆𝒚𝟏𝒚𝟐
 = 0.85 𝝆𝒚𝟏𝒚𝟐

 = 0.65 

OR AND RSSA PSSA OR AND RSSA PSSA 

8%, 7% 

0.00 8.2 57.6 11.3 51.0 25.9 68.8 2.1 127.6 

0.20 7.2 57.9 12.2 111.1 25.7 68.6 2.2 266.3 

0.50 9.6 57.1 10.2 149.5 27.0 68.7 1.3 315.6 

8%, 5% 

0.00 1.7 61.5 19.8 119.4 8.9 74.9 16.3 112.8 

0.20 2.8 62.3 20.8 78.2 9.3 75.1 16.0 216.8 

0.50 0.1 60.8 18.5 209.0 10.7 74.1 14.7 231.4 

5%, 5% 

0.00 18.8 71.3 34.2 79.9 10.8 80.3 31.2 209.3 

0.20 19.0 71.6 34.4 134.4 11.1 80.1 31.4 285.3 

0.50 16.8 71.1 32.8 252.2 9.3 79.3 29.9 298.0 

    

MSE 

𝝆𝒚𝟏𝒚𝟐
 = 0.85 𝝆𝒚𝟏𝒚𝟐

 = 0.65 

OR AND RSSA PSSA OR AND RSSA PSSA 

8%, 7% 

0.00 0.01 0.33 0.01 2.54 0.07 0.47 0.00 3.37 

0.20 0.01 0.34 0.02 4.77 0.07 0.47 0.00 11.65 

0.50 0.01 0.33 0.01 6.57 0.07 0.47 0.00 12.99 

8%, 5% 

0.00 0.00 0.38 0.04 7.46 0.01 0.56 0.03 3.00 

0.20 0.00 0.39 0.04 5.53 0.01 0.56 0.03 7.06 

0.50 0.00 0.37 0.04 9.22 0.01 0.55 0.02 9.13 

5%, 5% 

0.00 0.04 0.51 0.12 5.46 0.01 0.64 0.10 10.13 

0.20 0.04 0.51 0.12 8.75 0.01 0.64 0.10 13.17 

0.50 0.03 0.51 0.11 12.27 0.01 0.63 0.09 11.37 

Note: OR= rule-based ‘OR’ method; AND= rule-based ‘AND’ method; RSSA= rule-based sensitivity-

specificity method; PSSA= probabilistic-based sensitivity-specificity method  
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APPENDIX B: Simulation Study Code 

 The R simulation program that created the simulation data and the rule-based and 

probabilistic-based models are provided below.  

**********************************************************************  

Improving Accuracy of Disease Prevalence Estimates by Combining Information from 

Administrative Health Records and Electronic Medical Records  

Programmer: Saeed Al-Azazi  

August 10, 2018  

If you have further requests, you can send an email to alazazis@myumanitoba.ca.  

********************************************************************** 

# Create an R function incorporating the simulation that and the OR, AND, RSSA and PSSA 

data-combining methods  

# Load R packages  

library(psych) 

library(copula) 

library(MASS)     

library(bayesm)   

library(writexl) 

 

thesis = function(N, Sn1, Sp1, Sn2, Sp2, n_xi, xi_corr=c(), xi_dist, xi_mean=c(), xi_betas=c()){ 

  #      where N= sample size 

  #      Sn1, Sp1= sensitivity and specificity for data source 1 (AHRs), respectively. 

  #      Sn2, Sp2= sensitivity and specificity for data source 2 (EMRs), respectively. 

  #      n_xi = number of markers  

  #      xi_corr= markers correlation matrix 

  #      xi_dist= markers correlation distribution 

  #      xi_mean= markers prevalence 

  #      xi_betas= markers beta coefficient values 
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  # Disease prevalence is dependent on markers: A logistic regression is used 

  logistic = function (beta0, beta1, beta2, beta3, beta4, beta5, beta6, beta7, beta8, beta9, beta10, 

beta11, beta12, beta13, beta14, beta15, beta16, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, 

x13, x14, x15, x16)  

    exp(beta0 + beta1*x1 + beta2*x2 + beta3*x3 + beta4*x4 + beta5*x5 + beta6*x6 + beta7*x7 + 

beta8*x8 + beta9*x9 + beta10*x10 + beta11*x11 + beta12*x12 + beta13*x13 + beta14*x14 + 

beta15*x15 + beta16*x16)/ 

    (1 + exp(beta0 + beta1*x1 + beta2*x2 + beta3*x3 + beta4*x4 + beta5*x5 + beta6*x6 + 

beta7*x7 + beta8*x8 + beta9*x9 + beta10*x10 + beta11*x11 + beta12*x12 + beta13*x13 + 

beta14*x14 + beta15*x15 + beta16*x16)) 

  beta0= xi_betas[1];    beta1= xi_betas[2] 

  beta2= xi_betas[3];    beta3= xi_betas[4] 

  beta4= xi_betas[5];    beta5= xi_betas[6] 

  beta6= xi_betas[7];    beta7= xi_betas[8] 

  beta8= xi_betas[9];    beta9= xi_betas[10] 

  beta10= xi_betas[11];  beta11= xi_betas[12] 

  beta12= xi_betas[13];  beta13= xi_betas[14]; 

  beta14= xi_betas[15];  beta15= xi_betas[16]; 

  beta16= xi_betas[17]; 

 

  # Generate correlated binary markers using Copula  

  ran<- rCopula(N, normalCopula(xi_corr, dim= n_xi, dispstr= xi_dist))     

   

  # Convert Copula's uniform variables to binary variables 

  x1<- qbinom(ran[,1],  1, prob= xi_mean[1])   

  x2<- qbinom(ran[,2],  1, prob= xi_mean[2])    

  x3<- qbinom(ran[,3],  1, prob= xi_mean[3])    

  x4<- qbinom(ran[,4],  1, prob= xi_mean[4])  

  x5<- qbinom(ran[,5],  1, prob= xi_mean[5])   

  x6<- qbinom(ran[,6],  1, prob= xi_mean[6])   

  x7<- qbinom(ran[,7],  1, prob= xi_mean[7])   

  x8<- qbinom(ran[,8],  1, prob= xi_mean[8]) 

  x9<- qbinom(ran[,9],  1, prob= xi_mean[9]) 

  x10<-qbinom(ran[,10], 1, prob= xi_mean[10]) 

  x11<-qbinom(ran[,11], 1, prob= xi_mean[11]) 

  x12<-qbinom(ran[,12], 1, prob= xi_mean[12]) 
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  x13<-qbinom(ran[,13], 1, prob= xi_mean[13]) 

  x14<-qbinom(ran[,14], 1, prob= xi_mean[14]) 

  x15<-qbinom(ran[,15], 1, prob= xi_mean[15]) 

  x16<-qbinom(ran[,16], 1, prob= xi_mean[16]) 

   

  # Fit a logistic regression: We except a prevalence estimate of 0.20 or 0.10 in the simulated 

population  

  prob= logistic(beta0, beta1, beta2, beta3, beta4, beta5, beta6, beta7, beta8, beta9, beta10, 

beta11, beta12, beta13, beta14, beta15, beta16,  

                 x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16) 

  True_D= rbinom(N, 1, prob) 

  P_True= sum(True_D)/ N; P_True  

   

  # Generate two imperfect measures of true disease status using different values of sensitivity 

(Sn) and specificity (Sp). 

  AHR= (True_D==1)* (runif(N) < Sn1) + (True_D==0)* (runif(N) < 1- Sp1) 

  EMR= (True_D==1)* (runif(N) < Sn2) + (True_D==0)* (runif(N) < 1- Sp2)   

   

  # Two-by-Two table: AHRs x EMRs 

  nn <- table(EMR, AHR)[c(2,1),c(2,1)]  

  n1<- nn[1]; n2<- nn[2]; n3<- nn[3]  

   

  # Calculate the Tetrachoric correlation   

  T_correlation<- as.numeric(tetrachoric(nn)[1]) 

  P_correlation<- as.numeric(phi(nn)) 

   

  # Calculate disease prevalence estimate 

  P_AHR = (n1 + n2)/ N 

  P_EMR = (n1 + n3)/ N 

   

 # Calculate the prevalence using OR and AND methods  

  P_OR  <-  (n1 + n2 + n3)/ N 

  P_AND <-  (n1)/ N 
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  # Calculate the prevalence using RSSA method  

  #Step1: Calculate weights using known Sn and Sp values. From published literature about 

hypertension, Sn and Sp for AHRs:(0.72, 0.95); for EMRs:(0.87, 0.90). 

  Sn1.r<- 0.72; Sp1.r<- 0.95; Sn2.r<- 0.87; Sp2.r<- 0.90 

  p1_01= (1 - Sn1.r)* Sn2.r 

  p1_10= Sn1.r * (1 - Sn2.r) 

  p0_01= Sp1.r * (1 - Sp2.r) 

  p0_10= (1 - Sp1.r) * Sp2.r 

  Discor= (n2 + n3)     

   

  #Step2: Make adjustments for the frequencies in the discordant cells 

  Weight_D.1= p1_10 * n2+ p1_01 * n3 

  Weight_D.0= p0_10 * n2+ p0_01 * n3 

  Weight_ratio_D.1= Weight_D.1/ (Weight_D.1 + Weight_D.0) 

  sum_D.11= Discor * Weight_ratio_D.1 

  P_RSSA=  (sum_D.11 + n1)/ N 

   

 # PSSA: Probabilistic-based sensitivity-specificity adjusted method  

 # First, prepare dataset for analysis 

  Dataset_f= as.matrix(cbind(AHR, EMR, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, 

x14, x15, x16))  #Note: To test 8 markers, deleted markers x9 to x16 

 

  # Ready for analysis  

  n_total= N                    # number of cases in the dataset. 

  n_col= 16 + 2               # number of variables in the dataset. 

  p_cov= 16 + 1;             # number of covariates for outcome model including the intercept. 

  q_1_cov= 16 + 1;         # number of covariates for AHRs model including the intercept. 

  q_2_cov= 16 + 1;         # number of covariates for EMRs model including the intercept. 

   

  # Extract the covariate matrix including the intercept: 

  x_1_out= cbind(rep(1,n_total), Dataset_f[,3:(p_cov-1+2)]); # For the outcome model 

  x_1_rep= x_1_out;      # For the AHRs model  

  x_2_rep= x_1_out;      # For the EMRs model  
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  # Extract the number of each AHRs/EMRs combination, 11 (Yes Yes), 01 (No Yes), 10 (Yes No), 

00 (No No). 

  n_total_00= sum(AHR==0 & EMR==0); 

  n_total_01= sum(AHR==0 & EMR==1); 

  n_total_10= sum(AHR==1 & EMR==0); 

  n_total_11= sum(AHR==1 & EMR==1); 

   

  # Extract subsets of the covariates according to each AHRs/ EMRs combination. This step is 

needed to calculate the conditional probabilities. 

  x_1_out_00= x_1_out[(AHR==0  & EMR==0),]; 

  x_1_out_01= x_1_out[(AHR==0  & EMR==1),]; 

  x_1_out_10= x_1_out[(AHR==1  & EMR==0),]; 

  x_1_out_11= x_1_out[(AHR==1  & EMR==1),]; 

   

  x_1_rep_00= x_1_rep[(AHR==0  & EMR==0),]; 

  x_1_rep_01= x_1_rep[(AHR==0  & EMR==1),]; 

  x_1_rep_10= x_1_rep[(AHR==1  & EMR==0),]; 

  x_1_rep_11= x_1_rep[(AHR==1  & EMR==1),]; 

   

  x_2_rep_00= x_2_rep[(AHR==0  & EMR==0),]; 

  x_2_rep_01= x_2_rep[(AHR==0  & EMR==1),]; 

  x_2_rep_10= x_2_rep[(AHR==1  & EMR==0),]; 

  x_2_rep_11= x_2_rep[(AHR==1  & EMR==1),]; 

 

# Set up initial values for the beta parameters. Use flat prior, which is a prior distribution that 

assigns equal likelihood on all possible values of the parameter; the prior could be set to 

uniform with some common sense boundaries.  

  beta_1_out=  2.00 * runif(p_cov);    

  beta_1_rep=  2.00 * runif(q_1_cov);  

  beta_11_rep= 2.00 * runif(q_1_cov);  

  beta_2_rep=  2.00 * runif(q_2_cov);  

  beta_22_rep= 2.00 * runif(q_2_cov);  

 

# Initialize the probabilities in the first step of the Data augmentation (DA) algorithm. 

 # Calculate posterior by updating our prior belief with the information from given data. 
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    # p_ystar_00: probability of ystar is 1 given both y1 and y2 are zero P(Y*=1|Y1=0, Y2=0, X). 

  p_zd_00= pnorm(-x_1_out_00 %*% beta_1_out) 

  p_zy1_Sn1_00= pnorm(-x_1_rep_00 %*% beta_1_rep) 

  p_zy2_Sn2_00= pnorm(-x_2_rep_00 %*% beta_2_rep) 

  p_zy1_Sp1_00= pnorm(-x_1_rep_00 %*% beta_11_rep) 

  p_zy2_Sp2_00= pnorm(-x_2_rep_00 %*% beta_22_rep) 

  p_ystar_00= p_zy1_Sn1_00 * p_zy2_Sn2_00 * (1-p_zd_00)/ (p_zy1_Sn1_00 * p_zy2_Sn2_00 

* (1-p_zd_00) + (1-p_zy1_Sp1_00) * (1-p_zy2_Sp2_00) * p_zd_00); 

   

  # p_ystar_01: probability of ystar is 1 given  y1 is zero and y2 is one (P(Y*=1|Y1=0, Y2=1, X). 

  p_zd_01= pnorm(-x_1_out_01 %*% beta_1_out) 

  p_zy1_Sn1_01= pnorm(-x_1_rep_01 %*% beta_1_rep) 

  p_zy2_Sn2_01= pnorm(-x_2_rep_01 %*% beta_2_rep) 

  p_zy1_Sp1_01= pnorm(-x_1_rep_01 %*% beta_11_rep) 

  p_zy2_Sp2_01= pnorm(-x_2_rep_01 %*% beta_22_rep) 

  p_ystar_01= p_zy1_Sn1_01 * (1-p_zy2_Sn2_01) * (1-p_zd_01)/ (p_zy1_Sn1_01 * (1-

p_zy2_Sn2_01) * (1-p_zd_01) + (1-p_zy1_Sp1_01)* p_zy2_Sp2_01 * p_zd_01); 

   

  # p_ystar_10: probability of ystar is 1 given  y1 is one and y2 is zero (P(Y*=1|Y1=1, Y2=0, X). 

  p_zd_10= pnorm(-x_1_out_10 %*% beta_1_out) 

  p_zy1_Sn1_10= pnorm(-x_1_rep_10 %*% beta_1_rep) 

  p_zy2_Sn2_10= pnorm(-x_2_rep_10 %*% beta_2_rep) 

  p_zy1_Sp1_10= pnorm(-x_1_rep_10 %*% beta_11_rep) 

  p_zy2_Sp2_10= pnorm(-x_2_rep_10 %*% beta_22_rep) 

  p_ystar_10= (1-p_zy1_Sn1_10) * p_zy2_Sn2_10 * (1-p_zd_10)/ ((1-p_zy1_Sn1_10) * 

p_zy2_Sn2_10 * (1-p_zd_10) + p_zy1_Sp1_10 * (1-p_zy2_Sp2_10) * p_zd_10); 

   

  # p_ystar_11: probability of ystar is 1 given  y1 is one and y2 is one (P(Y*=1|Y1=1, Y2=1, X). 

  p_zd_11= pnorm(-x_1_out_11 %*% beta_1_out) 

  p_zy1_Sn1_11= pnorm(-x_1_rep_11 %*% beta_1_rep) 

  p_zy2_Sn2_11= pnorm(-x_2_rep_11 %*% beta_2_rep) 

  p_zy1_Sp1_11= pnorm(-x_1_rep_11 %*% beta_11_rep) 

  p_zy2_Sp2_11= pnorm(-x_2_rep_11 %*% beta_22_rep) 

  p_ystar_11= (1-p_zy1_Sn1_11) * (1-p_zy2_Sn2_11) * (1-p_zd_11)/ ((1-p_zy1_Sn1_11) * (1- 

p_zy2_Sn2_11) * (1-p_zd_11) + p_zy1_Sp1_11 * p_zy2_Sp2_11 * p_zd_11); 
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  # Fill in y_star's using the initial guess of the parameters. 

  ystar=rep(1, n_total); 

  ystar[AHR==0 & EMR==0]= rbinom(n_total_00, size=1, p=p_ystar_00); 

  ystar[AHR==0 & EMR==1]= rbinom(n_total_01, size=1, p=p_ystar_01); 

  ystar[AHR==1 & EMR==0]= rbinom(n_total_10, size=1, p=p_ystar_10); 

  ystar[AHR==1 & EMR==1]= rbinom(n_total_11, size=1, p=p_ystar_11); 

   

  Prev_ystar<- sum(ystar)/N; Prev_ystar   

 

# Subset the covariates using the updated draws, ystar. This step is needed for the DA algorithm 

  x_1_out_1x= x_1_out[ystar==1,];  

  x_1_out_0x= x_1_out[ystar==0,]; 

  n_1x= nrow(rbind(x_1_out_1x));  

  n_0x= nrow(rbind(x_1_out_0x));  

   

  # Given ystar=1, extract covariates by AHRs 

  x_1_rep_1x_1x= x_1_rep[ystar==1 & AHR==1,];             

  x_1_rep_1x_0x= x_1_rep[ystar==1 & AHR==0,];             

  x_1_rep_1x_obs= rbind(x_1_rep_1x_1x, x_1_rep_1x_0x);    

  n_1_rep_1x_1x= nrow(rbind(x_1_rep_1x_1x));    

  n_1_rep_1x_0x= nrow(rbind(x_1_rep_1x_0x));   

  n_ystar1_y1_obs= nrow(x_1_rep_1x_obs); 

   

  # Given ystar=1, extract covariates by EMRs 

  x_2_rep_1x_1x= x_2_rep[ystar==1 & EMR==1,];             

  x_2_rep_1x_0x= x_2_rep[ystar==1 & EMR==0,];             

  x_2_rep_1x_obs= rbind(x_2_rep_1x_1x, x_2_rep_1x_0x);    

   n_2_rep_1x_1x= nrow(rbind(x_2_rep_1x_1x));    

  n_2_rep_1x_0x= nrow(rbind(x_2_rep_1x_0x));    

  n_ystar1_y2_obs= nrow(x_2_rep_1x_obs); 

   

   

  ##Set the parameters for the Gibbs chain  

  iter_no= 1000; # the number of iterations. 
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   #Save the beta parameters draws  

  out_para_matrix= matrix(0, nrow= iter_no, ncol= p_cov);  #For the outcome model (beta_O). 

  Y1_para_matrix= matrix(0, nrow= iter_no, ncol= q_1_cov); #For the AHR model (beta_Y1). 

  Y2_para_matrix= matrix(0, nrow= iter_no, ncol= q_2_cov); #For the EMR model (beta_Y2). 

   

  # Save Y_star for each iteration. 

  true_com= matrix(NA, n_total, iter_no) 

 

########################## 

##  Begin the DA algorithm  ### 

########################## 

  cat("begin the cycle", "\n"); 

  for (iter in 1:iter_no) 

  { 

    # Step 1: Draw z_O, the truncated normal latent variables for the outcome model. 

    z_star_g_1x= rtrun(mu= x_1_out_1x %*% beta_1_out, sigma= rep(1,n_1x), a= rep(0,n_1x), 

b= rep(Inf,n_1x)); 

    z_star_g_0x= rtrun(mu= x_1_out_0x %*% beta_1_out, sigma= rep(1,n_0x), a= rep(-

Inf,n_0x), b= rep(0,n_0x)); 

     z_star_g_vec= rep(NA, n_total); 

    z_star_g_vec[ystar==1]= z_star_g_1x; 

    z_star_g_vec[ystar==0]= z_star_g_0x; 

     

    # Step 2: Draw z_Y1 and z_Y2, the truncated normal latent variables for the reporting models. 

    z_1_g= c(rtrun(mu= x_1_rep_1x_1x %*% beta_1_rep, sigma= rep(1,n_1_rep_1x_1x), a= 

rep(0,n_1_rep_1x_1x), b= rep(Inf,n_1_rep_1x_1x)), 

             rtrun(mu= x_1_rep_1x_0x %*% beta_1_rep, sigma= rep(1,n_1_rep_1x_0x), a= rep(-

Inf,n_1_rep_1x_0x), b= rep(0,n_1_rep_1x_0x))); 

     

    z_2_g= c(rtrun(mu= x_2_rep_1x_1x %*% beta_2_rep, sigma= rep(1,n_2_rep_1x_1x), a= 

rep(0,n_2_rep_1x_1x), b= rep(Inf,n_2_rep_1x_1x)), 

             rtrun(mu= x_2_rep_1x_0x %*% beta_2_rep, sigma= rep(1,n_2_rep_1x_0x), a= rep(-

Inf,n_2_rep_1x_0x), b= rep(0,n_2_rep_1x_0x))); 

        # Step 3: Draw beta_O. 

    sum_beta_out_g_mean= t(x_1_out) %*% (z_star_g_vec); 

    beta_out_g_cov= solve(t(x_1_out) %*% x_1_out); 
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    beta_out_g_mean= beta_out_g_cov %*% sum_beta_out_g_mean; 

    beta_1_out=mvrnorm(n= 1, mu= beta_out_g_mean, Sigma= beta_out_g_cov); 

     

    # Step 4: Draw beta_Y1 and beta_Y2. 

    sum_beta_1_rep_mean= t(x_1_rep_1x_obs) %*% (z_1_g); 

    beta_1_rep_cov= solve(t(x_1_rep_1x_obs) %*% x_1_rep_1x_obs); 

    beta_1_rep_mean= beta_1_rep_cov %*% sum_beta_1_rep_mean; 

    beta_1_rep= mvrnorm(n= 1, mu= beta_1_rep_mean, Sigma= beta_1_rep_cov); 

     

    sum_beta_2_rep_mean= t(x_2_rep_1x_obs) %*% (z_2_g ); 

    beta_2_rep_cov= solve(t(x_2_rep_1x_obs) %*% x_2_rep_1x_obs); 

    beta_2_rep_mean= beta_2_rep_cov %*% sum_beta_2_rep_mean; 

    beta_2_rep= mvrnorm(n= 1, mu= beta_2_rep_mean, Sigma= beta_2_rep_cov); 

     

    # Save the parameter estimates. 

    out_para_matrix[iter,]= beta_1_out; 

    Y1_para_matrix[iter,]= beta_1_rep; 

    Y2_para_matrix[iter,]= beta_2_rep; 

     

    # Re-calculate the conditional probabilities. 

    # p_ystar_00: probability of ystar is 1 given both y1 and y2 are zero P(Y*=1|Y1=0, Y2=0, X). 

    p_zd_00= pnorm(-x_1_out_00 %*% beta_1_out) 

    p_zy1_Sn1_00= pnorm(-x_1_rep_00 %*% beta_1_rep) 

    p_zy2_Sn2_00= pnorm(-x_2_rep_00 %*% beta_2_rep) 

    p_zy1_Sp1_00= pnorm(-x_1_rep_00 %*% beta_11_rep) 

    p_zy2_Sp2_00= pnorm(-x_2_rep_00 %*% beta_22_rep) 

    p_ystar_00= p_zy1_Sn1_00 * p_zy2_Sn2_00 * (1-p_zd_00)/ (p_zy1_Sn1_00 * 

p_zy2_Sn2_00 * (1-p_zd_00) + (1-p_zy1_Sp1_00) * (1-p_zy2_Sp2_00) * p_zd_00); 

     

    # p_ystar_01: probability of ystar is 1 given  y1 is zero and y2 is one P(Y*=1|Y1=0, Y2=1, X). 

    p_zd_01= pnorm(-x_1_out_01 %*% beta_1_out) 

    p_zy1_Sn1_01= pnorm(-x_1_rep_01 %*% beta_1_rep) 

    p_zy2_Sn2_01= pnorm(-x_2_rep_01 %*% beta_2_rep) 

    p_zy1_Sp1_01= pnorm(-x_1_rep_01 %*% beta_11_rep) 

    p_zy2_Sp2_01= pnorm(-x_2_rep_01 %*% beta_22_rep) 
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    p_ystar_01= p_zy1_Sn1_01 * (1-p_zy2_Sn2_01) * (1-p_zd_01)/ (p_zy1_Sn1_01 * (1-

p_zy2_Sn2_01) * (1-p_zd_01) + (1-p_zy1_Sp1_01)* p_zy2_Sp2_01 * p_zd_01); 

     

 # p_ystar_10: probability of ystar is 1 given  y1 is one and y2 is zero P(Y*=1|Y1=1, Y2=0, X). 

    p_zd_10= pnorm(-x_1_out_10 %*% beta_1_out) 

    p_zy1_Sn1_10= pnorm(-x_1_rep_10 %*% beta_1_rep) 

    p_zy2_Sn2_10= pnorm(-x_2_rep_10 %*% beta_2_rep) 

    p_zy1_Sp1_10= pnorm(-x_1_rep_10 %*% beta_11_rep) 

    p_zy2_Sp2_10= pnorm(-x_2_rep_10 %*% beta_22_rep) 

    p_ystar_10= (1-p_zy1_Sn1_10) * p_zy2_Sn2_10 * (1-p_zd_10)/ ((1-p_zy1_Sn1_10) * 

p_zy2_Sn2_10 * (1-p_zd_10) + p_zy1_Sp1_10 * (1-p_zy2_Sp2_10) * p_zd_10); 

     

    # p_ystar_11: probability of ystar is 1 given  y1 is one and y2 is one P(Y*=1|Y1=1, Y2=1, X). 

    p_zd_11= pnorm(-x_1_out_11 %*% beta_1_out) 

    p_zy1_Sn1_11= pnorm(-x_1_rep_11 %*% beta_1_rep) 

    p_zy2_Sn2_11= pnorm(-x_2_rep_11 %*% beta_2_rep) 

    p_zy1_Sp1_11= pnorm(-x_1_rep_11 %*% beta_11_rep) 

    p_zy2_Sp2_11= pnorm(-x_2_rep_11 %*% beta_22_rep) 

    p_ystar_11= (1-p_zy1_Sn1_11) * (1-p_zy2_Sn2_11) * (1-p_zd_11)/ ((1-p_zy1_Sn1_11) * (1-

p_zy2_Sn2_11) * (1-p_zd_11) + p_zy1_Sp1_11 * p_zy2_Sp2_11 * p_zd_11); 

     

    # Update the draws of ystar. 

    ystar=rep(1, n_total); 

    true_m0s0= ystar[AHR==0  & EMR==0 ]= rbinom(n_total_00, size=1, p=p_ystar_00); 

    true_m0s1= ystar[AHR==0  & EMR==1 ]= rbinom(n_total_01, size=1, p=p_ystar_01); 

    true_m1s0= ystar[AHR==1  & EMR==0 ]= rbinom(n_total_10, size=1, p=p_ystar_10); 

    true_m1s1= ystar[AHR==1  & EMR==1 ]= rbinom(n_total_11, size=1, p=p_ystar_11); 

   true_com[,iter]= ystar; 

     

    #Subset the covariate matrix using the ystar draws. 

    x_1_out_1x= x_1_out[ystar==1,]; n_1x=nrow(rbind(x_1_out_1x)); 

    x_1_out_0x= x_1_out[ystar==0,]; n_0x=nrow(rbind(x_1_out_0x)); 

     

    x_1_rep_1x_1x= x_1_rep[ystar==1 & AHR==1 ,];                 

n_1_rep_1x_1x=nrow(rbind(x_1_rep_1x_1x)); 
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    x_1_rep_1x_0x= x_1_rep[ystar==1 & AHR==0 ,];           

n_1_rep_1x_0x=nrow(rbind(x_1_rep_1x_0x)); 

    x_1_rep_1x_obs=rbind(x_1_rep_1x_1x, x_1_rep_1x_0x);    

n_ystar1_y1_obs=nrow(x_1_rep_1x_obs); 

     

    x_2_rep_1x_1x= x_2_rep[ystar==1 & EMR==1 ,];            

n_2_rep_1x_1x=nrow(rbind(x_2_rep_1x_1x)); 

    x_2_rep_1x_0x= x_2_rep[ystar==1 & EMR==0 ,];            

n_2_rep_1x_0x=nrow(rbind(x_2_rep_1x_0x)); 

    x_2_rep_1x_obs=rbind(x_2_rep_1x_1x, x_2_rep_1x_0x);     

n_ystar1_y2_obs=nrow(x_2_rep_1x_obs); 

  } 

  ############ End of the Gibbs chain ############      

 

################# 

### Final PSSA ### 

 ################ 

 P_PSSA= sum(ystar)/N;  

Prevalence = cbind(P_True, P_AHR, P_EMR, T_correlation, P_correlation, P_OR, P_AND, 

P_RSSA, P_PSSA) 

   

  return(Prevalence) 

} 

 

Performance= function(N, condition=c(), P_True){ 

  # N= sample size 

  

  ### Calculate sample mean, variance and standard error of the prevalence estimates ### 

  condition= condition   

  Mean_AHR= mean(condition[,2,]); Mean_EMR= mean(condition[,3,]);  

  Mean_T_correlation= mean(condition[,4,]); Mean_P_correlation= mean(condition[,5,]);  

  Mean_OR= mean(condition[,6,]);  Mean_AND= mean(condition[,7,]); 

  Mean_RSSA= mean(condition[,8,]); Mean_PSSA= mean(condition[,9,]) 

  Variance_OR= var(condition[,6,]);   Variance_AND= var(condition[,7,]);  

  Variance_RSSA= var(condition[,8,]); Variance_PSSA= var(condition[,9,]) 
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  SE_AHR= sqrt(var(condition[,2,])/ N); SE_EMR= sqrt(var(condition[,3,])/ N);  SE_OR= 

sqrt(var(condition[,6,])/ N);  

  SE_AND= sqrt(var(condition[,7,])/ N); SE_RSSA= sqrt(var(condition[,8,])/ N); SE_PSSA= 

sqrt(var(condition[,9,])/ N) 

   

  #### Performance Measures ### 

  P_True= P_True  

  Bias_OR= abs(P_True - Mean_OR); Bias_AND= abs(P_True - Mean_AND); Bias_RSSA= 

abs(P_True - Mean_RSSA); Bias_PSSA= abs(P_True - Mean_PSSA) 

   

  Rel.Bias_OR= abs(P_True - Mean_OR)/ P_True; Rel.Bias_AND= abs(P_True - Mean_AND)/ 

P_True; Rel.Bias_RSSA= abs(P_True - Mean_RSSA)/ P_True 

  Rel.Bias_PSSA= abs(P_True - Mean_PSSA)/ P_True 

   

  MSE_OR= Variance_OR + Bias_OR^2; MSE_AND= Variance_AND + Bias_AND^2; 

MSE_RSSA= Variance_RSSA + Bias_RSSA^2; MSE_PSSA= Variance_PSSA + Bias_PSSA^2 

   

  Measures = cbind(Mean_AHR, Mean_EMR, Mean_T_correlation, Mean_P_correlation, 

                   Mean_OR, Mean_AND, Mean_RSSA, Mean_PSSA,  

                   SE_AHR, SE_EMR, SE_OR, SE_AND, SE_RSSA, SE_PSSA, 

                   Bias_OR, Bias_AND, Bias_RSSA, Bias_PSSA, 

                   Rel.Bias_OR, Rel.Bias_AND, Rel.Bias_RSSA, Rel.Bias_PSSA, 

                   MSE_OR, MSE_AND, MSE_RSSA, MSE_PSSA) 

    return(Measures) 

   

} 

 

############################ 

### Simulation parameters ###### 

############################ 

sim_no= 500 

N= 10000 

Sn1= c(0.70, 0.70, 0.72, 0.80, 0.65, 0.82, 0.68, 0.71);  

Sp1= c(0.95, 0.99, 0.96, 0.98, 0.94, 0.99, 0.97, 0.985) 

Sn2= c(0.75, 0.65, 0.55, 0.65, 0.50, 0.50, 0.55, 0.71);  

Sp2= c(0.99, 0.99, 0.95, 0.98, 0.99, 0.99, 0.95, 0.985) 
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xi_dist= c("ex","un") 

xi_corr_ex= c(0.00, 0.20, 0.50) 

n_xi= c(8,16) 

xi_mean= c(0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.50, 0.50, 0.50, 0.50, 0.30, 0.30, 0.70, 

0.70) 

#xi_mean= c(0.05, 0.10, 0.10, 0.05, 0.15, 0.10, 0.10, 0.15, 0.05, 0.15, 0.15, 0.20, 0.15, 0.20, 

0.10, 0.20) 

p10_xi_betas8=  c(-0.35, 1.10, 0.20, 0.50, 0.15, 0.05, -0.50, -1.30, -1.80, 0,0,0,0,0,0,0,0) 

p20_xi_betas8=  c(-0.35, 1.20, 0.90, 0.50, 0.15, 0.05, -0.20, -0.80, -1.30, 0,0,0,0,0,0,0,0) 

p10_xi_betas16= c(-0.35, 1.10, 0.20, 0.40, 0.15, 0.02, -0.60, -0.50, -1.80, 0.02, 0.02, 0.02, 0.02, 

0.50, 0.50, -0.50, -0.50) 

p20_xi_betas16= c(-0.35, 1.10, 0.80, 0.40, 0.15, 0.04, -0.20, -0.35, -1.45, 0.04, 0.04, 0.04, 0.04, 

0.40, 0.40, -0.35, -0.35) 

colnames<- list(c("P_True", "P_AHR", "P_EMR", "T_Corr", "P_Corr", "P_OR", "P_AND", 

"P_RSSA", "P_PSSA")) 

 

## Generate 100 seeds via a random process and save them for reproducibility 

ranseed <- round(runif(100)*1000000) 

 

# To test any of the simulation conditions replace the characters in the brackets for R function 

“thesis” with the appropriate simulation parameter or vector of parameters. For example: 

Condition 1  

set.seed(ranseed[1]) 

condition1= replicate(sim_no, thesis(N, Sn1[3], Sp1[3], Sn2[3], Sp2[3], n_xi[2], xi_corr_ex[1], 

xi_dist[1], xi_mean, p20_xi_betas16)) 

P_True1= 0.20   # Fix the true prevalence  

Measure1= Performance(N, condition1, P_True1) 

 

# Final output 1 

Final_output1= data.frame("seed no"= ranseed[1],"N"= N, Sn1[3], Sp1[3], Sn2[3], Sp2[3], 

n_xi[2], xi_corr_ex[1], xi_dist[1], P_True1, Measure1)  
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APPENDIX C: Descriptive Statistics for Case Ascertainment Markers for the PSSA 

Method 

Table C.1: Frequency and percentage of case ascertainment markers from administrative health 

records 

Condition  

Overall Males Females 18-44 years 45-64 years 65+ years 

N % N % N % N % N % N % 

CD 916 1.3 376 1.3 540 1.4 72 0.2 366 1.4 478 5.0 

CHD 2623 3.8 1553 5.2 1070 2.7 129 0.4 1109 4.2 1385 14.4 

CHF 558 0.8 248 0.8 310 0.8 29 0.1 177 0.7 352 3.7 

COPD 1287 1.9 604 2.0 683 1.7 137 0.4 557 2.1 593 6.2 

Dementia 625 0.9 259 0.9 366 0.9 206 0.6 196 0.7 223 2.3 

Depression 7098 10.3 2013 6.8 5085 13.0 3558 10.8 2827 10.8 713 7.4 

Diabetes 4176 6.1 2003 6.7 2173 5.6 701 2.1 2134 8.1 1341 13.9 

Obesity 1623 2.4 536 1.8 1087 2.8 772 2.3 710 2.7 141 1.5 

RD 916 1.3 471 1.6 445 1.1 259 0.8 428 1.6 229 2.4 

SA 1387 2.0 716 2.4 671 1.7 811 2.5 501 1.9 75 0.8 
Note: COPD= Chronic obstructive pulmonary disease; CD= Cerebrovascular disease; CHF= Congestive 

heart failure; CHD= Coronary heart disease; RD= Renal disease; SA= Substance abuse 

  

Table C.2: Frequency and percentage of case ascertainment markers identified electronic medical 

records 

Condition  

Overall Males Females 18-44 years 45-64 years 65+ years 

N % N % N % N % N % N % 

COPD 181 0.3 97 0.3 84 0.2 43 0.1 75 0.3 63 0.7 

Dementia 1130 1.6 408 1.4 722 1.8 225 0.7 282 1.1 623 6.5 

Depression 11005 16.0 3428 11.5 7577 19.4 5544 16.8 4168 15.9 1293 13.4 

Diabetes 6435 9.3 3194 10.7 3241 8.3 1491 4.5 3288 12.5 1656 17.2 

Obesity 15191 22.1 6889 23.1 8302 21.2 6171 18.7 6951 26.5 2069 21.5 
Note: COPD= Chronic obstructive pulmonary disease 
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Table C.3: Polychoric and tetrachoric correlations for case ascertainment markers  

  Region Sex 
Age 

group 
CCS Q DBA CHDA OBA COPDA CDA CHFA DPA DMA RDA SAA DBE COPDE DPE DME OBE 

Region 1.00 -0.02 0.13 0.16 0.02 0.12 0.12 -0.02 0.11 0.16 0.10 0.10 0.11 0.04 0.10 -0.05 -0.58 -0.13 0.09 0.31 

Sex 

 

1.00 0.00 0.03 -0.07 -0.06 -0.18 0.11 -0.04 0.02 -0.01 0.22 0.02 -0.08 -0.09 -0.09 -0.08 0.21 0.07 -0.04 

Age group 

  

1.00 0.34 -0.07 0.38 0.56 -0.03 0.42 0.45 0.50 -0.06 0.20 0.18 -0.13 0.31 0.22 -0.05 0.40 -0.02 

CCS 

   

1.00 -0.10 0.78 0.39 0.12 0.54 0.58 0.60 0.13 0.42 0.37 0.15 0.46 0.14 0.05 0.25 0.14 

Q 

    

1.00 -0.12 -0.08 -0.01 -0.12 -0.08 -0.13 -0.07 -0.17 -0.02 -0.11 -0.07 -0.16 -0.05 -0.13 -0.04 

DBA 

     

1.00 0.33 0.16 0.19 0.24 0.35 0.07 0.08 0.28 0.02 0.80 0.07 0.03 0.14 0.17 

CHDA 

      

1.00 0.08 0.30 0.41 0.61 0.02 0.20 0.22 0.00 0.27 0.02 -0.02 0.26 0.05 

OBA 

       

1.00 0.02 0.06 0.18 0.19 -0.01 0.04 0.05 0.22 0.02 0.16 -0.04 0.17 

COPDA 

        

1.00 0.18 0.39 0.09 0.17 0.14 0.21 0.16 0.50 0.05 0.17 0.07 

CDA 

         

1.00 0.36 0.10 0.36 0.20 0.13 0.16 -1.00 0.00 0.30 0.07 

CHFA 

          

1.00 0.06 0.29 0.33 0.08 0.25 0.19 -0.01 0.28 0.13 

DPA 

           

1.00 0.40 0.09 0.32 0.03 0.08 0.57 0.27 0.10 

DMA 

            

1.00 0.11 0.60 0.02 0.12 0.25 0.68 0.14 

RDA 

             

1.00 0.06 0.18 -0.02 0.06 0.02 0.05 

SAA 

              

1.00 -0.05 0.04 0.11 0.04 0.12 

DBE 

               

1.00 0.18 0.14 0.14 -0.05 

COPDE 

                

1.00 0.26 0.18 -0.20 

DPE 

                 

1.00 0.38 -0.28 

DME 

                  

1.00 -0.03 

OBE                                       1.00 

Note: CCS= Charlson Comorbidity Score; Q= Income quintile; DB= Diabetes; CHD= Coronary heart disease; OB= Obesity; COPD= Chronic obstructive 

pulmonary disease; CD= Cerebrovascular disease; CHF= Congestive heart failure; DP= Depression; DM= Dementia; RD= Renal disease; SA= Substance abuse; 

Subscripts A and E denote whether the marker was identified from AHRs or EMRs, respectively 
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APPENDIX D: Diagnostics plots of the Posterior Distribution of the Estimated Disease 

Prevalence for the PSSA Method 

Figure D.1: Trace plots, density plots and convergence plots of the posterior distribution of the 

estimated disease prevalence for the PSSA method, overall 
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Figure D.2: Trace plots, density plots and convergence plots of the posterior distribution of the 

estimated disease prevalence for the PSSA method, males 
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Figure D.3: Trace plots, density plots and convergence plots of the posterior distribution of the 

estimated disease prevalence for the PSSA method, females 
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Figure D.4: Trace plots, density plots and convergence plots of the posterior distribution of the 

estimated disease prevalence for the PSSA method, 18-44 age group 

 

 

 

 

 



108 

 

Figure D.5: Trace plots, density plots and convergence plots of the posterior distribution of the 

estimated disease prevalence for the PSSA method, 45-64 age group 
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Figure D.6: Trace plots, density plots and convergence plots of the posterior distribution of the 

estimated disease prevalence for the PSSA method, 65+ age group 

 

 

 

 

 


