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This paper uses the Mellin transform to establish the means, variances, skewness, and kurtosis of fuzzy numbers and applied them
to the random coeflicient autoregressive (RCA) time series models. We also give a close form expression to the moment generating
function related to fuzzy numbers. It is shown that the results of the proposed time series models are consistent with those of the
conventional time series models and that the developed concepts are straightforward and easily implemented.

1. Introduction

The use of fuzzy set theory as a methodology for modeling
and analyzing certain financial problems is of particular
interest to a number of researchers due to fuzzy set theory’s
ability to quantitatively and qualitatively model those prob-
lems which involve vagueness and imprecision. Fuzzy time
series models provide a new avenue to deal with subjectivity
observed in most financial time series models. Most of
the fuzzy financial models developed so far have, generally,
been confined to modeling parameters through some form
of defuzzification or linear type of fuzzy numbers such as
Trapezoidal Fuzzy Number (Tr.EN.) or Triangular Fuzzy
Number (T.EN.).

There are some connections between fuzzy numbers
based on convolution principle and some integral transfor-
mations such as the Mellin transform. The Mellin transform
and its inverse are related to the two-sided Laplace transform.
The Mellin transform is used often in applied sciences such
as physics, engineering, and computer science because of its
scale invariance property. In fact, this scale invariance prop-
erty is analogous to the Fourier transform’s shift invariance
property. In particular, this transform is used for the analysis
oflinear time-invariant systems. This transform is considered
as a transformation from the time-domain in which inputs
and outputs are functions of time. Thus, the Mellin transform

has significant applications in probability theory, Markov
chains, renewal theory, and time series. The objective of this
paper is to use the Mellin transform to establish the means,
variances, skewness, and kurtosis of fuzzy numbers and then
to apply to the random coeflicient autoregressive (RCA) time
series models. We also provide a close form expression to the
moment generating function related to fuzzy numbers.

We summarize the preliminaries and notations in Sec-
tion 1. The remainder of the paper is organized as follows.
Section 2 introduces the Mellin transform to obtain statistical
moments of any order. The useful Mellin transforms for
fuzzy numbers are derived in Section 3. We also define the
moment generating function of fuzzy numbers and provide
some illustrative examples. In Section 4, we discussed the
fuzzy RCA model under different innovation terms. Finally,
concluding remarks are given in Section 5.

LI Preliminaries and Notation. The purpose of this section
is to recall some concepts which will be used throughout the
rest of the paper. We quote definitions and properties of fuzzy
sets theory with relevant operations. Most of these related
definitions and properties may be found in the following two
references [1, 2]. In the sequel we will denote the family of
fuzzy numbers by . For any A € &, we use the notation
A(a) = [a,(«x), ay(«)] for a-level sets of A.



Definition 1. Fuzzy set A in X C R, the set of real numbers,
is a set of ordered pairs A = {(x, u(x) : x € X}, where u(x) is
the membership function or grade of membership, or degree
of compatibility or degree of truth of x € X which maps
x € X on the real interval [0, 1].

Definition 2. If Sup u(x) = 1, x € R, then the fuzzy set A is
called a normal fuzzy set in R.

Definition 3. The crisp set of elements that belong to the fuzzy
set A at least to the degree « is called the a-level set (or a-
cut); that is, A(a) = {x € X | p(x) > a,a € R} If the set
All) = {x € X | pu(x) > e, € R}, then A'(a) is called
strong a-level set (or strong a-cut).

Definition 4. A fuzzy set A is said to be a convex set if p(Ax, +
(1 =2A)x,) = min (u(x;), u(x,)), x,x, € XandA e [0,1].
Alternatively, a fuzzy set A is convex if its every «-level sets is
a convex set.

Definition 5. A fuzzy set A, which is both convex and normal,
is defined to be a fuzzy number on the universal set 3R.

Definition 6. The standard Gaussian fuzzy number can be
represented by A = (x : y, 0, «) with membership function
as

#A(x)=exp[—%<u)2], ey

o

where y is called the mean and o the standard deviation.
Alternatively, defining the interval of confidence at level & as
Aa) = [a,(a), ay(a)], and setting exp[—(1/2)((x — p)/0)*] =

a, we get a;(a0) = pu — o\(-2lna) and a,(x) = u +
0 (-2In«). Thus, we get the a-cut representation of the
standard gaussian fuzzy number as

A(a) = [a, (@), a, (@)]
= [y—ax/(—Zlnoc),y+0\/(—21noc)J , 2)

Y, € (0,1].

Definition 7. A Triangular Fuzzy Number (T.EN.) can be
represented completely by a triplet A = (a,,a,,a;), where
a, < a, < a; € R with membership function u(x) as

r

0, X < ap,

x—-a

—, aq, <x<a,,

4 -4

plx)=1 - 3)

M) a/szSa3)

a, — as

0, X 2 as.
L

Alternatively, defining the interval of confidence at level « as
A(a) = [a,(«x), a,(x)] and setting (x — a,)/(a, — a;) = a and
(x—a5)/(a,—a;) = a, we get a,(«) = a, +a(a, —a,) and g, («)
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= a3 + a(a, — a;). Thus, we get the parametric representation
of the TEN. [a,, a,,a;], where a, < a, < a; € X, as

A(e) = [a, (), a, ()]
=l +a(a,-a), a5 +a(a, - a)], (4)
V,a € (0,1].
Definition 8. A Trapezoidal Fuzzy Number (Tr.EN.) is repre-

sented completely by a quadruplet A = (a,, a,, a5, a,), where
a, < a, < a3 < a, € X with membership function u(x) given

by

0, x < ay,
x—a
, ap<x<ay,
B~ a
px)=141, a, <x <as, (5)
X —ay
, a3 <x<ay,
a3 — 4y
0, X = ay.

As in Definition 1, we obtain the parametric representation of
the TL.EN. A = (a;,4a,,0a5,4a,), wherea, < a, < a; < g, € X,
as

A(a) = [a) (@), a, (a)]
=la, +a(ay-a;),a,+a(a,—a,)], (6)

Va € (0,1].

In Section 2, we discuss the use of the Mellin transform to find
moments of fuzzy numbers, and nonzero weighted central
possibilistic moments.

2. Probability Density Function from
Membership Function

In order to add fuzziness to data, Kaufmann and Gupta [2]
obtained a membership function from a probability density
function by way of a simple linear transformation, which
indicates a possible conversion of a membership function into
a density function. The conversion of a membership function
into a probability density function can be made by one of
two linear transformations, which will be elaborated in the
next Section. The conversion of the membership function of
a fuzzy number p(x), into a probability density function can
be achieved by using one of the two linear transformations
presented in Sheen [3].
(a) Proportional probability density function (ppdf),

P () = hypy (%), @)
(b) Uniform probability density function (updf):

u(x) = py (2) + (b, - 1), (8)
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where /1, and h,, are the conversion constants which ensure
that the area under the continuous probability function is
equals to one. Sheen [3] shows, that for the proportional
conversion, the domain of the triangular ppdf is the same
as the converted T.EN., while its height changes from 1 to
hp = 2/(az — a,). In the case of the updf function, the height
of the triangular updf is given by h,, = +/2/(a; — a,), while
its vertexes are expressed as: a, = a, — h,(a, — ), a; = a,,
a; = a,+h,(a;—a,). For a Tr.EN., the height of the trapezoidal
ppdfis given by h,, = 2/[(a, + a;) - (a, + a,)]. Meanwhile, the
height and the vertexes, respectively, of the trapezoidal updf
are expressed as:

(@) + (@ -a) +2(a, - a, +a, - )

(ay—as +a, —a,)

h:

u

)

! ! ! !
a, =a,-h,(a,—a,),a, =ay,a; =as, a, = as + h,(a, —as).
It is found that the conversion of a fuzzy number into its
corresponding proportional distribution is computationally
straightforward.

2.1. The Mellin Transform and Ranking of Fuzzy Numbers.
The Mellin transform M, (s) of a function f(x), where x is
positive, is defined in Sheen [3] as follows:

M, (s) = LOO ¥ f()dx, 0<x<oco.  (10)

The Mellin transform has a unique one-to-one correspon-
dence; that is, f(x) < M,(s).

The function f(x) is called the inverse the Mellin trans-
formation of M, (s). Under certain conditions, inverse Mellin
transformation may be represented as an integral. The tables
of both the Mellin transforms and inverse Mellin transforms
are given by Erdelyi [4]. The Mellin transforms are virtually
two-sided Laplace transforms and can be expressed either as
exponential Fourier transforms or as combinations of Laplace
transforms. For this reason, the Mellin transforms are found
in several works on Fourier and Laplace transforms. The two
most important sources are Doetsch [5] and Titchmarsh [6].
For more application on the Mellin transform, we can refer
to Gonzalez-Gaxiola and Santiago [7] and Frontczak and
Schobel [8] for details.

The moments of a distribution represent the expected
values of the power of a random variable with a f(x)
distribution. In other words, the Mellin transform M _(s) =
E[X*7 provides an alternative method to establish a series
of moments of a distribution if f(x) is viewed as a probability
density function. Comparing the first two moments of a
distribution with the Mellin transform allows the mean,
variance, and other moments to be expressed as follows; that
is,

u=E[x] =M, (2)

o, ~ , 1)
m, =0" = Var(X) = M, 3) - (M, (2))".

Thus,

Var (x) = M, (3) - (M,(2))*,
E(x - p)’ = M, (4) - 3M, (2) M, (3) + 2(M,(2))’,
E(x - )" = M, (5) - 4M, (2) M, (4)
+6(M,(2)"M, (3) - 3(M,(2))",

E(x - w)’

(\/Var(x))3
M, (4) - 3M, (2) M, (3) +2(M,(2))’

(V.0 - (L))

Skewness (x) =

4
Kurtosis (x) = M
(Var(x))

= (Mx (5) - 4Mx (2) Mx (4)

+6(M,(2))’M, (3) - 3(M,(2))")

X <(Mx 3) - (M, (2))2)2>_ .
(12)

3. Moments Properties of
Some of Fuzzy Numbers

In this Section, on the line of Sheen [3], we discuss moment of
a T.EN fuzzy numbers and derive expression for the kurtosis
and skewness.

Theorem 9. For a T.EN., A one has the following easy to prove
results. In what follows, one will assume that p,(x) = ((x —
a)/(ay — ), py(x) = ((x — a3)/(a, — a3)) and h,, = (2/(a; -
a,)). Then, we have the following results:

2
hp: ,
a; —a,

hP
M, (s) = (s(1+s)>

<<a§a1 (1+s)- (a%”s + a}”) >
X
(al - “2)
<a§a3 (1+5) - (ay™ +ay"s) >>
+ >

(a, - a3)




+a, +
Mx(2):(al ‘;2 ‘13)’

2, 2, 2
(a1 +ay +a; —a,a, — aza, — a3a1)
Var (x) = 18 ,

Kurtosis (x) = 1—52,
Skewness (x)
~(((a ra+a)
-6 (afc% +aja, + aya; +aa; + a;a, + ‘13“;)
+24a1a3a2)

2, 2, 2
X (5 (al +a, + a3 —aa, —aza, — a3a1)

-1
><\/(2¢1%+2a§+2a§—2aza1 —2a3a2—2a3a1)) ) .

(13)

Proof. In order to find h,, the conversion constants which
ensure that the area under the continuous probability func-
tion is equal to one, we proceed as follows: set

h <J%<x_“1)dx+r3<x_“3)dx>:1
P\Joy \a, - a, a, \0y —d;

(14)
h ( (1/2) (6’2 - a3) (_“3 + al) (_az + “1) ) -1
F (‘12_“1)(“2_“3)
solving for h s We have
h, = ! -2 15
P_((1/2)33_(1/2)01)_03_“1' 15)

The Mellin transform M, (s) of the T.EN., where x is positive,
is as follows:

a _
M =hy [ 5 (220 Yax
a a, —a;
+hpj3x5_l<x_a3)dx,
a a4 — a3
_ p(Jazxsfl(X—a1>dx
a a —a,
L2
a a, —as ’
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_ hp
a (s 1+ s))
<<a§a1 (1+5s)— (aé“s + ai“) )
X
(al _az)
<a;a3 (1+5s)- (a31+$ + a;”s) ))
+ ,
(a, - a3)
- (wrsma)
\s(1+9)(ay-a)
<<a§a1 (1+s)- (aé”s + ai*s) )
X
(al ‘az)
<a§a3 (1+5) - (ay™ +ay"s) ))
+ .
(a3 —a3)

(16)

To find the variance, we proceed as follows:

2
M, (2= (2(1+2)(a3—a1)>

<< aa, (1+2) - (a§+22 + al“z) )
X

(a, - ay)

N <a§a3 (1+2)- (a31+2 + a;+22) ))
(a, - a3) ’
_ (a, +a, + a3)
=T
(17)
o= (st )
* 3(1+3)(a;—ay)
((agal (1+3)- (a§+33 + a11+3))
X

(a, - ay)

<a§a3 (1+3)- (a3”3 + a2”33) ))
+ bl

(a, - as)

2 2 2
(a2 +a4ya, + aza, +ay + aza; + a3)

= c :

thus,
Var (x) = M, (3) - (Mx(z))2

2 2 2
(az +aya, + aza, +a; +aza; + a3)
6

<a1+a2+a3>2
3 >

(18)

2, 2. 2
(al ta, ta; —aa —asa, - a3a1)
18 '
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To compute the Skewness and Kurtosis, we have

2
M, () = (4(1+4)(a3—a1))

<<a§a1 (1+4)- (a21+44 + ui”) )
X

(a, - ay)

<a§a3 (1+4)- (a31+4 + a21+44) ))
+ b

(a, - as)
_ 4,3 2 2 3 4 4
= ((al taja, +aja; +aja, — 4a, +4a, 19)
3 22 3 4)
a0, — a;a, — a,a; — a,
-1
x (10 (a, - a3)) )’
_ 5 4 23 32 4
M, (5) = ((al +@a, +aya; +a,a; +aa,
_4_23_32_4_5)
a,a; — a,a, — a;a, — a,a, — a,

x(15 (a, — a3))71) .

Thus,

E(x - )" = M, (5) - 4M, (2) M, (4)
+6(M,(2))°M, (3) - 3(M,()*
= ((a;L - 2afa2 - 2a13a3 + agl - 2a2a§ - 2a3a;
—2a1a§’ - 2(111123 + ag)
x(135)7)

22, 22, 22
(a1a3 +aja; +a3a2)
45

(20)
and the kurtosis is given by

Kurtosis (x)

_E(x-p)'
 (Var(x))®’

_ 4 3 3 4 3 3
= ( ((al —2a,a, - 2aja5 + a; — 2a,a; — 2a5a,

3 3, 4
- 2aya; — 2a,a; + az)

x(135)7")

22, 22 22
(a1a3 +aja; +a3a2)
+
45

5
2, 2, 2 2\ !
y (al +a, +a; —a,a, —aa, - a3a1)
18
12
(21)
To find the skewness, we will need
3
E(x - p)
3
= Mx (4) - 3Mx (2) Mx (3) + Z(Mx(z))
(al3 +a+ a33)
B 135
(afa3 +ala, +a\a +a,a; +asa, + a3a22)
- 90
2a
+ 1939
45
_ (-a, +2a, — a;) (-2a, + a, + a;) (a, + a, — 2a;)
270 '
(22)
Thus,
Skewness (x)
(af +a + ag)
- 135
(afa3 +ala, +aja; +a,a; +aa, + a3a§)
- 90
2a
+ 1939,
45
3 -1
o \](“f"'a;"'%z_%al_%%_%al)
18
~((a(a+ar+a)
-6 (afa3 + aﬁa2 + alag + a1a§ + a§a2 + a3a§)
+24a1a3a2)
X (5 (af + a§ + a§ —a,a; — a3, — a3a1)
-1
X\/(Zaf+ 2a3+ 2a2 —2a,a, - 2a;a,— 2a3a1)) ) .
(23)
O



Remark 10. Tt is important to note here that, for the case of a
Tr.EN., we have the following easy to prove results:

(a4+a3)i(az+a1))

s s 1+s I+s
(azal tayas—a s —a

(a,—ay)s(1+5)

M, (s) = (

5_

S
a; — a4

N

a3, — a,"* + ajsa, — ay*s
(ay—a3)s(1+s)

2 2 2 2
1/(a;+a, +aa,—a; —a,a, —a
Mx(z)zg( 3 4 4Y3 1 2Y1 2)

ag+a;—a, —a,

M, (3)

3, 3 2 2 3 2 2_ 3
_1<a3+a4+a3a4+a4a3—a1—alaz—alaz—az)
- b

6 a,+a;—a, —a

1
M, (4) = —
* 10
4 4 3 2 2 3 4
X ((a3 +a, +aa, +aja; +a,a; —a
3 22 3 4)
a,a, — a,a; —a,a, — a,
-1
x(a, +a; —a, —a,) ),
M, (5) = -
x 15

(- —adt - Pd® - P —adt -
a) —ha) —da) — a4, — 414, — 4,
5. 5 4 23 32 4
+a; +a, + aza, +aja; +aja; + a4a3)

x(a, +a; - a, _al)_l)’

Var (x)

3., 3 2 2_ 3 2 2_ 3
_l(ata,taa, taa-a —aa-aa-a
6

a+a;—a,—a

2
2, 2 2 2
(a3 +a; +a,a; —a; —aa, — az)

O | —

(ay+ay—a, - ‘11)2
(24)

From the previous results, we can easily compute the skew-
ness and kurtosis of x.

Example 11. Consider the following symmetric quadratic
fuzzy number given by

‘u(x)=1—<%>zif 0<x<2a. (25)
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Then, we have the following easy to prove results (see
Figure 1):

3

hpz—, Mx(s)=3<

2sas—1
4a 1+s)(s+2) )’

Var (X) = M, (3) - (Mx(z))z’
i (3( 23371 ))
1+3)(3+2)
_ 2
. (3( 22,21 ))
1+2)(2+2)

2

-4
=
)t (26)
Kurtosis (x) = M
(Var(x))
_ (3/35) at
(a2/5)°
= 2.1429,

Skewness (x)

- (3/4a) joza (x —a)*! (1 - ((x - a)/a)z) dx
_ (Va'T5)’

3.1. Moment Generating Function. If random variable X hasa
m.g.f, then the rth order moment of its distribution is equal
to the value of the rth order derivative of its m.g.f. for ¢ = 0.
In what follows, we will discuss the mgf of a TEN. and Tr.EN
and discuss some of theirs properties:

My (t) = E(et") = J-OO e f (x) dx

—00

2 a x—a
J etx( l>dx
az —ay Ja, a —a

2 93 —
+ J etx < X4 >dx (27)
az —a; Ja, ad —a3

2 ( —e®at + e + e®at — e )
2

as —a; t* (~a, +a,)

2 ( e® + e ayt — et — e“zta3t)

t2(ay - a5)

a; —a,
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a

FIGURE 1: Nonlinear quadratic membership function.

The rth moments can easily be computed as

E(x) = %Mx(t)

t=0

(550 @
a; —a, ) dt"
" —e®ayt + e +e®fat — e
2 (-a, + a,)

(e““ +e®ayt — e — e™at )]
t* (a, - a3)

t=0

d [ —e 'at +e® +e™at—ent
2 (-a, +a,)

e® +etayt — e —e®lat
t* (a, - as) .

(28)

The expected value is given by

E(x) = %MX ©) 1o

- lirr%)< -2 ( (—eazta;t2 +e® aya,t’
t—

at at
—e’at—tae"

+2e™ a,t — 2e™ + 26“”)

><((—a3 +a)t’ (~a, + al))_l))

+ lim (2 (e“3tta +e®'a’t
t—0 3 2

t 2 t t
— e ayast” + e agt — 2™

—2e™'ayt + Zeazt)

7
2a
-1
x ((—a3 + al)t3 (a - ‘13)) ))
B 1af+f12a1 —2a§
- \3 —as +a,
N 1 2a§ —asa, — a§
3 —a3ta

_ (a, +a, + a;)
= 3 .

(29)

We can easily define the centered moment around the mean
uis

My (t)=E (et(x_“)) = Joo e £ (x) dx
0 - (30)
= J e f (x) dx.

Thus, we have

2 o [* x—a
MS ()= ———e t”J e L )dx
az —a; a a, —a,
2 o [* xX—a
F——e ] M = )dx
a; —a, a, a, —as

_ 2 —e'a,t + et + %t — e
a3

-4 t?(~a, +a,)
2 e +e®tayt — e — e ast
a4 -a ( t*(a, - a3) ))
(31
and the variance is
Var (x)
2
= ae
2 ( - ayt+e™ +e™at—eM! )
I R Y o R L ;
2 e +er ayt—e? —e ast
a3—a1( t*(a, - a3) )

(32)



thus, we have Var(x), once we substitute for value of p:

Var (x)

((al3 - 4yaf + afaz + 6y2a1 —4dua,a,

=

+a1a§ - 3a23 + Syaf - 6/42a2)

x(ay _5‘3)71)

1 (33)
+ 3 ((3a23 - a3a§ - 8[461; + 6;,1202 +4ua,a,

2 2 2 3
—a;a, — 6y"a; + 4pa; — a3)

x(a, — “3)_1)

2 2 2
ay —aya, — a3a, + a; — a;a, + a;
18

Along similar lines we can also find the skewness and kurtosis
as well.

Remark 12. The centered moments of a Tr.EN is given by the
following formula:

a — as
My (t) = <2e_t” <J e < X4 >dx + J e“dx
a a) —a a
Loz
az as — ay

x ((ay +as) = (a, + al))_l'

4. Autoregressive Time Series Models

Theorem 13. Consider the following AR(1) Models, where
Ve = QY + & & ~ (M(2), VM,(3) — M,(2)). Under the

stationary conditions, |¢| < 1, we have the following moments
in a fuzzy sense:

E(yt) - (1 _(/))’
E(y7) - 20M; (2) + M, (3) - $M, (3)
t (1-¢)(1-¢?)

M, (3) - M2 (2)

Var (3) = 20
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E(y) = (6M ()¢’ +3¢(¢-2¢° +1) M, (2) M, (3)
+M, (4) (1-¢"—¢+¢"))

1

<(A-¢)(1-¢°)(1-¢"))

E(y))
= (49° ((6M2 )¢ + 3¢ (¢ - 26" + 1) M, ) M, (3)
+M,(4) (1-¢* -9 +¢"))
x((1-¢)(1-¢") (1-¢") ") M. @)
x((1-¢%)"

5 [ 26M?2 (2) + M, (3) — ¢M, (3)>
*(6*5 ( =) (1-¢)
M, (2)
1-¢

x((1-¢)"

M, (3)

&

+4¢ < > M, (4) + M, (5))

(35)

Proof. Consider

E(y) = E(¢yr-1 +&) = OE (1) + M, (2),
E ()’t) - ¢E (yt—l) =M, (2),

E(y)(1-¢) =M, (), (36)
E(n)= e

The variance is computed as follows:

2 20E (y,_1) E(g) + E £t2
E(yt)z (1_¢2) ( )
_26(M, (2)/(1-¢)) M, (2) + M, (3)
(1-¢%)
_2M;(2)+ M, (3) - M, (3)
B (1-¢)(1-¢)

(37)
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thus,
_[(26M (2) + M, (3) - $M. (3) )
var(n) ( -9 0-¢)
B ( M, (2) )2
(1-9¢)
M, (3)-M(2)
-
E(y})
= (3¢2E (ytzfl) E(e)

+30E (i) E(57) + E (%))

x((1-¢%))"

2
— (3¢2 <2¢Ms (2) + Ms (3) - ¢Me (3)>

(1-¢)(1-¢?)
X M, ()
)
w30 ( T2 ) 1,00+ 1,0

<((1-¢))"
= (M (2 ¢°
+3¢ (¢ —2¢7 + 1) M, (2) M, (3)
+M,(4) (1-¢*-¢+¢’))
(1-0)(1-¢") (1-¢7)"

(38)
and the fourth moment is
E(y/)
_ (4¢3E (yi) M. (2)
20M (2) + M, (3) - $M, (3) )
64> ( £ M, (3
o9 (1-9)(1-¢) ©

+4¢(1YI+(2¢))M5 @)+ M, (5))

x((1-¢)"
= (4¢° ((6M? () ¢ + 3¢ (¢ — 2¢° + 1) M, (2) M, (3)
M, @) (1-¢"-¢+¢))

9
x((1-¢)(1-¢") (1-¢) ") M. )
<((1-¢)"

(o (B )
+4¢ ( 1\145_((1) ) M, (4) + M, (5))
x((1-¢) "
(39)

The skewness and kurtosis of the process follow from expres-
sions for Var(y,), E(y;) and E(y;), respectively, and are
omitted. O

Remark 14. In Theorem 9, if we assume that the error term
can be model by a Tr.EN,, given by ¢, = [a, 24, 3a, 4a], then
we can easily establish the following results:

(40)

1- 21+s _ 31+s + 41+s
M, (s)=a’ (

2as (1 +5s)

where M, (2) = (5/2)a, M,(3) = (20/3)a*, M,(4) = (75/4)a’,
M, (5) = (826/15)a*, and M,(6) = (335/2)a’:

5 a
En-3(1%)
5 5(7¢ + 8) a*
E00 =S -y
5q

12(1-¢%)

Var (x) =

E(y)
= (25a° (6¢° + 20¢°a” — 40a°¢’ + 20¢a’
+3a - 3a¢’ — 3a¢ +3ag’) )
x(4(1-¢)(1-¢*) (1-¢%)) ",
E(5)
= (a’ (11250¢° + 3027¢°a — 27402¢°a
+5402¢"a + 7000¢°a + 6348¢°a
+3973¢a + 1652a))
x(30(1-¢)(1-¢%)

x (1-¢) (1-¢"))7,
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K(J’)
6 5 6
= (24(11250¢° + 3027¢’a - 27402¢°a
+5402¢*a + 70004’ a + 6348¢°a

+3973¢a + 1652a))
x(125(1-¢> + ¢’ - ¢)
x(1-¢)a)"
Skewness (y;)
= ((6V5V3 (¢ +1)
x (-6¢° - 204°a” + 40a°¢’
— 20pa’ - 3a + 3a¢’

+3a¢ - 3a¢3))
<(Ja-¢n0-¢)

X ((/)2 +¢+ l)a)_1>.
(41)

4.1. Random Coefficient Volatility Models. Consider the class
of random coeflicient autoregressive (RCA) models defined
by allowing random additive perturbations of the autoregres-
sive (AR) coeflicients of ordinary AR models. That is, we
assume that the process y, is given by

P
Ve — Z (¢ +b,(1) yi = €5 (42)
=1

where the parameters 0;, (i = 2,...,p), are assumed to
be known, e, and b;(t) are zero mean square integrable
independent processes, and the variances are denoted by o~
and 0. b(t), (i = 1,2,...) sare independent of ¢, and y,_; and
may be thought of as incorporating structural changes. In
order to motivate nonlinear forecasts for nonlinear models,
we consider a class of estimating functions of the form g, =
Y, b_h, asin Thavaneswaran and Heyde [9], where h, =
y, = Ely, | F/\1 = y,—= Y2 ¢:,; and b,_; is a function of
V1> Y25 - - > ¥4 and possibly the known parameters ¢,,..., $,
(i.e., We assume that the fitted model is available). If we
restrict ourselves to a class of estimating functions of the
previous form, then we can forecast the future value of
Y41 based on the observed values y,, y,,..., ¥, as ¥,(1) =
E[Y,i1 | Y Ypo15-..]. That is, whether we have an AR(p)
model or RCA(p) model, we will get the same linear predictor
of y,.,- However, for the RCA model under consideration,
we have E[y, | F,] = Y[ ¢y and Var[y,F.] =
052 + Zf’z . yf_ia,f. Thus, the conditional variance is a nonlinear
function and hence the RCA model may be viewed as a
nonlinear time series model. Nicholls and Quinn [10] studied

ISRN Applied Mathematics

linear as well as some nonlinear (proposed) forecast by fitting
a nonlinear (RCA) model for the classical lynx cycle data.
Using heuristic reasoning, they proposed a nonlinear forecast

Ppe1 = sgn(d, 9,) 7 72 +cr£2]1/ * and they showed empirically
that the forecast y,,, is a better predictor (having smaller
forecast errors when compared with the actual observations)
than the linear forecast for the lynx data. It is of interest
to note that, by defining b, = y7 - Ely; | F/|],
the optimal forecast for y,,, can be obtained as y, (1) =
[E[y? | F/ 1" = sgn(@y?)[y? + o> + 02]"/%. That is, the
estimating function method can be used to obtain a nonlinear
forecast for a nonlinear models by considering a class of
elementary martingale estimating functions generated by
nonlinear functions of the observations. Using a similar
argument, we could also obtain forecasts for various classes
of GARCH models; see Thavaneswaran and Heyde [9] for
details. The main message is that RCA models could be
used to improve the forecasting performance of stochastic
volatility models. Appadoo et al. [11] derive the kurtosis of the
correlated RCA model as well as the normal GARCH model
under the assumption that the errors are correlated. Appadoo
et al. [12] consider some volatility models with quadratic
GARCH innovations and derive the kurtosis of the process.

4.2. RCA Models. Random coefficient autoregressive time
series were introduced by Nicholls and Quinn [10] and
some of their properties have been studied recently by Tha-
vaneswaran et al. [13]. RCA models exhibiting long memory
properties have been considered in Leipus and Sugailis [14].
A sequence of random variables {y,} is called an RCA(1) time
series if it satisfies the equations

Y= (+b)y1te
where Z denotes the set of integers and
2
M (4)~ (). (T )

(i) ¢* + 0} < L.

teZ, (43)

The sequences {b,} and {g,}, respectively, are the errors in the
model.

Theorem 15. Let {y,} be an RCA(1) time series satisfying as in
conditions (i) and (ii), and let y),(k) be its covariance function.
Then, one has the following.

(a) Ey, = 0, Eyt2 = 03/(1 - (/52 - O'Z), the kth lag auto-
covariance for y, is given by y, (k) = gbkaf/(l —
0;) and the autocorrelation for y, is p, = ¢" for all
k e Z. That is, the usual AR(I) process has same
autocorrelation as the RCA(1).

(b) If {b,} and {e,} are normally distributed random vari-

ables, then the unconditional kurtosis K¥ )of the RCA
process {y,} is given by

- [1- (5 +¢)] (44)
[1-(¢* +6¢%0; +30})]

and for an AR(1) process K reduces to 3.
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(c) The autocorrelation of y? is given by P o= ((/52 + af)k
and for an AR(1) process it turns out to be p; = = ¢,

Corollary 16. Let {y,} be an RCA(1) time series of the form
v, = 0,y,_, + e, satisfying the stationarity conditions, and let
p;, denote its correlation function. Then, one has the following:

(a) when 0, = ¢+b, Ey, =0, Eyt2 = of/(l - (/52 - O‘Z), the
kth lag autocorrelation for y, is given by p, = {E(¢ +
b)Y = ¢

(b) when 6, = sgn(b,) where b, ~ N(0,0;), then P =
[1 - 2F(0)]k, where F is the cumulative distribution

function of b, (i.e) when the coefficient 0, is driven by a
binary random variable {b,} taking values —1 and +1.

(c) when 6, = (¢ + |b|") where b, ~ N(y, O'Z) then, the
autocorrelation
«f2 k
202) 1
P r(“ * ) (45)
Pk |:¢ + \/ﬁ 2 >

where I'(-) is the Gamma function.

Theorem 17. Consider the following RCA(1) Models, where

= (@ +b)y,, +& andb, ~ N(0,03), & ~ (a,(6/5)a”)
ande, ~1—-((x - a)/a)z,forO < x < 2a. Under the stationary
conditions, |¢| < 1 then one has the following moments in a
fuzzy sense:

a
(1-¢)
(7) - 2a* (2¢ +3)

Ys(1-¢)(1-¢?-0)
(2¢-¢*-1-507)a
5(1-¢)" (1-¢> - 0p)

o 20 (¢7 +5¢7 +5¢ + pop + 50, +4)

E0) = S G- g+ 390D
Skewness (y;)

E(y,) =

ar (y,) =

B a* (¢ +5¢” + 5¢ + ¢y, + 50, +4)
5(1-¢)(1-¢ - 0p) (1-¢° + 3¢0;)

<\j(2¢—¢2—1—505)a2>3 _
5(1-¢)° (1-¢2-02) ’

1

E()
= (8a" (606¢0; + 1390, + 978¢ a7,
+50 + 85¢" + 795¢°a;
+213¢°0; + 94207 ¢ + 139¢°
+126¢° + 90 — ¢° + 36¢°
+212¢"0;))
x(175(1-¢) (1-¢* - 07)
X (1 - (/)3 + 3((50;)
X (1 - 6(/)20; - qb4 - 402))_1
(46)

The kurtosis of the process is

K(;V)

2
- (8a(501-9)* (1 -¢* - o))
x (606¢0; + 1390, +978¢ 0,
+50 + 85¢* + 795¢°a; + 213¢° 0

+ 9420, ¢ + 139¢° + 1264°
+909 - ¢° + 36¢° + 212¢'c7) )

x(175(1-¢)(1-¢

_gb)
x(1-¢° +3¢%)

(
(

x (1-6¢°0; — ¢* - 40;)
(

x ((2¢- ¢ ~1-50%)a )2)_1.
(47)

5. Conclusion

The authors feel that the approach developed in this paper
may be applicable in other areas as well. There are several
applications of the Mellin transformation in statistical infer-
ence. For example, Samanta [15] used the Mellin transfor-
mation (through a modified Bessel function tabulated in
Abramowitz and Stegun [16]) to obtain the minimum vari-
ance unbiased estimation (MVUE) of a probability function.
The method is based on finding solution of a certain integral
function. The results obtained using fuzzy assumptions in this
paper are more flexible, and the methodology proposed in
this paper may also be applicable for other time series models.
The evidence in favor of the fuzzy approach supported by
the Mellin transpose highlights the advantage of the model
developed in this paper.
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