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ABSTRACT

A new method is presented for reconstructing distributions
of electrical conductivity from sets of potential measure-
ments taken over the boundaries.

The reconstruction process 1involves the solution of a
nonlinear system of eqguations generated by finite element
discretization. The method presented decouples the nonli-
near system into three linear subsystems which are then
solved simultaneously using either a point-iterative succes-
sive overrelaxation method or a combination of point-itera-
tive and pre-conditioned conjugate gradient methods. The
technigue obtains the best conductivity distribution -- in
the least-sguares sense -- from simulated or measured data.

The conductivity inversion recovery procedure is applied
to both two and three-dimensional field problems, as well as

to resistance networks, and example solutions are presented.
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Chapter I

INTRODUCTION

Most imaging methods seek to reconstruct the interior of a
region from sets of measurements taken either throughout the
region or over the boundaries of the region, Various means
of accomplishing the reconstruction have been proposed, and
a number of devices have been developed to exploit each
technique.

Chapter I briefly discusses some of the more common imag-
ing processes and attempts to highlight the main problem
areas for each. Chapter II provides background information
relating to an alternative method, Impedance Computed Tomog-
raphy (ICT). It also reviews basic ICT concepts; lists rea-
sons for preferring ICT over other methods in certain appli-
cations; describes perceived areas of useage; and surveys
relevant literature, Chapter II1I presents a new method for
reconstructing interior network resistance values from sets
of voltage measurements taken only at accessible network
nodes. Chapter IV, in a fashion that parallels the network
algorithm development, presents a novel technique for recon-
structing distributions of electrical conductivity from sets

of potential measurements taken only over the boundaries.

Results of computer simulations are discussed throughout.




Finally, in addition to discussing recovered image quali-
ty, Chapter V explores the question of excitation require-
ments and points out possible effects due to modelling er-

rors.

1.1 X-RAY IMAGING

The most common reconstruction methods are found in X-ray
tomography, where it is desired to recover the interior of a
body cross-section from sets of X-ray absorbtion measure-
ments. As in Fig, 1.1 the beam source and detector are
placed on opposite sides of the body and moved in tandem for

a prescribed number of intervals,

Figure 1.1: ZX-Ray Scanning Method.
(From Brooks and Di Chiro [3])

At each interval the beam traverses the straight line (i.e.

ray-path) between source and detector, and suffers some

measureable loss of energy due to the attenuation coeffi-




cient p(x,y) of the media. Different body organs will have
different attenuation factors due to variations 1in tissue
density and atomic number [1]. The transmitted beam inten-

sity is given by

I = Ipexp[-su(x,y)ds] (1.1)

where I, is the incident beam intensity.
The integral of the attenuation function along the ray-

path is known as the ray-projection p, and from (1.1) is

p= -QH(I/IO)- (1.2)

A complete set of ray-projections at a given angle consti-
tute a single projection. More projections are obtained by
repeating ray-projection measurements for as many angles as
necessary. In principle, an infinite number of projections
are required to reconstruct the continuous two-dimensional
attenuation function. The problem however, is to solve
(1.1) for p(x,y) given data only for a finite number of pro-
jections [2]. This is accomplished by calculating u(x,y) at
a finite number of points, and involves the application of

either iterative or analytical methods.




With iterative methods, the usual strategy is to divide
the object into an array of pixels, and apply corrections to
each cellrcoefficient such that the most recently calculated
ray-projection matches the actual measured ray-projection.
Several iterative technigues are concisely described in [3],
including:

i) The Iterative Least-Squares Technique (ILST) which
handles noisy data but often diverges due to over-
correction, This approach has also beén used for
three-dimensional reconstruction by stacked two-di-
mensional reconstructions [4];

ii) The Simultaneous Iterative Reconstruction Technique
(SIRT) which also accepts noisy data but executeé
very slowly because of the large number of mutipli-
cations required; and

iii) The Algebraic Reconstruction Technique (ART) [5]
which converges rapidly but is unable to opérate on
noisy data.

Also, as a general rule, most iterative procedures are sen-
sitive to the seguence in which projections are chosen, pre-
ferring large angles between consecutive projections.

With analytical methods the solution of (1.1) is obtained
directly using either Two-Dimensional Fourier Reconstruction
or Convolution Filtered Back-Projection [6]. The band-lim-

iting employed in these methods causes the elimination of

spatial. freguencies greater than a prespecified maximum,




thus limiting the resolution of the final image. For in-
stance, depending on how sharp the cut-off filter is, bound-
ary overshoot (the Gibbs phenomenon) may be observed. On
the other hand an aliasing effect might occur if band-limit-
ing is not used, especially near high frequency zones such
as media boundaries. Both iterative and analytic methods
employ filtering techniques as a means of suppressing either
patient motion artifact or numerically introduced artifact.
Filtering is particulary important for edge enhancement ap-
plications.

Another difficulty common to analytic methods is the in-
terpolation required in the Fourier domain. Recalling that
only one-dimensional projection data is available, it is
clear that only corresponding one-dimensional Fourier trans-
forms can be obtained. Yet, to generate an image, it is
necessafy to find the two-dimensional Fourier transform in
order to acquire the sampling points needed by the inverse
transform operation. This leads to a significant amount of
interpolation in the Fourier domain, a task which could
cause an excessive computational burden,

Whichever method 1is used, the projections must provide
enough data so that there are as many equations as there are
unknown attenuation function values. 1In other words, an ap-

propriate set of independent measurements is essential.

Mathematically, the X-ray imaging problem can be reduced




to finding the solution of the linear system of equations

Agzp (1-3)

where A is a coefficient matrix, d is a vector of unknown
cell densities, and p is a vector of line integral measure-
ments for each ray-projection [7]. 1If extra projections are
available the image becomes overdetermined and reconstruc-
tion will yield an averaged image 1in which noise and inter-
polation error has been reduced. 1If too few projections are
available the 1image becomes underdetermined and the recon-
struction is inaccurate and laden with artifact.

Although large changes in density only occur at interfac-
es between bone and soft tissue or air, X-ray tomography has
nevertheless been used to detect differences in soft tissue
density as low as 0.5%. For example, it is now possible to
distinguish between cerebrospinal fluid cavities and brain
‘tissue, or even between white and grey matter. Unfortunate-
ly however, this order of resolution 1is not possible in
every application. Often, as with lung disease, the most
useful way to employ X-ray imaging 1is to increase the X-ray
dosage and possibly over-expose certain organs. Radiation
hazard is a significant drawback to X-ray reconstruction, as
is scanner size and cost. Furthermore, ZX-ray methods are
relatively slow and thus unable to follow the dynamic activ-

ity of body organs.
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In summary, this section has presented the main concepts
of transmission tomography and has indicated several of the
method's problem areas. Much of the detail was included be-
cause of similarities present in other not so well-known im-
aging techniques. It is hoped this will assist in under-
standing the other methods, particularly Impedance Computed

Tomography.

1.2 OTHER IMAGING TECHNIQUES

A relatively recent three-dimensional 1imaging technique [8]
known as Positron Emission Tomography (PET) is based on the
determination of the distribution of gamma-emitting radionu-
clides in the human body. The method measures changes in
chemistry of injected radiopharmaceutical compounds by de-
tecting released photons during radiocactive decay. From
these changes the emitted photon source location can be de-
termined. A PET reconstruction represents the radionuclide
concentration in the body at a given time after injection,
and can be wused to investigate brain and heart metabolism,

detect cancer, or even determine myocardial infarction vol-

‘ume [9]. Again however, the scanning equipment 1is both

large and expensive and the method itself has the undesire-
able requirement of injecting a radicactive substance into
the human body.

Nuclear Magnetic Resonance (NMR} is another imaging tech-

nigue which is also similar to X-ray tomography; but instead




of X-rays NMR employs Radio Frequency (RF) radiation in the
presence of a magnetic field [10]. Broadband RF pulses ex-
cite tissue nuclei which then precess at a rate proportiocnal
to the magnetic field strength at that spatial location. By
measuring the total magnetic energy as a function of fre-
quency, the integrals of the spin density of hydrogen nuclei
can be obtained. This procedure is analogous to finding an
X-ray projection, and the inversion proceeds in a somewhat
similar manner. A significant advantage of NMR is that it
does not use ionizing radiation nor dJoes it present a known
hazard [11]. A major problem is that NMR eqguipment is very
expensive and limited mostly to research applications.
Another reconstruction method involves the use of ultra-
sonics. Typically, short bursts of ultrasonic energy are
directed through the image space and appropriate attenuation
and delay time measurements are recorded. These measure-
ments are used to generate absorbtion and velocity profiles
(projections). The inversion is performed iteratively as in
X-ray tomography, possibly with an additional allowance for
ray curvature [12]. Currently, efforts are being directed
towards substituting ultrasonic tomography for X-ray tomog-
raphy where possible, even though there is evidence which
indicates that ultrasonic energy absorbed by a 1living body
is not entirely innocuous [49,50]. Another problem is that

diaphonous objects (those with small variations in the

acoustic refraction index) cannot be imaged very well. This




is particularly true in soft tissues such as the lung where

ultrasound is highly attenuated.

Some of the other imaging methods discussed in the liter-

ature include;

a)

b)

c)

Microwave imaging by the ART algorithm, which is po-
tentially more sensitive and less hazardous than con-
ventional X-Ray techniques [13];

Cardiopulmonary imaging, which is based on measuring
the body surface field distribution resulting from
high freguency électromagnetic stimulation. There-
after, this technique incorporates a calculation of
the apparent interior resistivity distribution [14];
and

Resistive imaging, for which background information is

reviewed in the next chapter, followed by a presenta-

tion of new recovery algorithms.




Chapter II

REVIEW OF RESISTIVE IMAGING

Since neither X-ray nor ultrasonic imaging is adequate for
every application, attention is gradually shifting to meth-
ods which rely on different physical properties of the me-
dia. For example, consider imaging an electrical parameter
such as conductivity (or resistivity) from current injection
data. This technigue may be especially important in the
medical area as weak electrical currents are believed to
have no adverse effects on humans.

The remainder of this chapter provides information per-
taining to the variation of electrical parameters in dielec-
tric media; discusses nonimaging impedance-based techniques;
and reviews several existing approaches to resistive tomog-
raphy. Novel algorithms for resistive imaging are presented

in following chapters.

2.1 MEDIA PROPERTIES

The two electrical properties of interest in impedance imag-
ing are conductivity and permittivity. However, if excita-
tion frequencies are low enough -- approximately on the or-
der of 1 KkHz. -- then for most media reactive effects are

negligible [15] and the technique is referred to as resis-

...10_.




tive imaging (or its reciprocal, conductivity imaging). The
method relies heavily on the variation of resistivity magni-
tude throughout the region; slight resistivity changes would
be much more difficult to image than order of magnitude var-
iations,

Typical resistivity/conductivity values of human body
tissue reported in the literature [1l6] are:

a) Blood @ 160 ohm-cm or 6.25 millimho/cm;

b} Lung @ 2000 ohm-cm or 0.50 millimho/cm;

c) Liver @ 700 ohm-cm or 1.40 millimho/cm; and

d} Heart muscle (anisotropic) @ 250 & 550 ohm-cm or 4.0 &

1.8 millimho/cm.

These estimates were obtained using a four probe measurement
technique that eliminated the effect of contact resistance
on the measurements. However, the reliability of such data
is still questionable since much of the testing was done af-
ter death when cell membranes could no longer maintain prop-
er ionic gradients. In this situation tissue res}stivity
may change within 30 to 60 minutes [17], thus affecting the
measurements,

Observation of the above data leads to the conclusion
that conductivity ratios for various body organs are as high
as 12.5 to 1.0. This satisfies the previously discussed im-
aging criterion that resistivity wvariations be significant.
Similar sets of conductivity data have been tabulated for a

variety of soils and rocks [18] and again, the ratios vary

...11..




significantly from one region to the next. The implication
is that resistive imaging may also apply to the important
field of geophysical prospecting/subsurface exploration.

Considerable effort has been expended to study the effect
of media inhomogeneities upon electrical fields, especially
in medical applications. In one such study, three-dimen-
sional finite element models were used to evaluate proposed
techniques for recording thorax impedance during cardiovas-
cular function monitoring [19]. Interior body tissue struc-
tures such as lungs, muscle walls, and ventricles were con-
veniently modelled and tested under boundary conditions
appropriate to the particular impedance measurement techni-
qgue being investigated.

In another study [20], two-dimensional finite elément
analysis was employed to analyze the sensitivity of body
surface potentials to interior changes 1in conductivity.
Various simulations indicated that even small conductivity
changes -- such as an increase 1in lung water -- would cause
significant surface potential changes, thereby improving the
chance of detecting internal conductivity change by external
measurements,

A third study applied finite difference methods to elec-
tric field calculations [21]. Successful models were estab-
lished of intracranial fields due to brainstem dipole neural
generators, .and researchers were able to predict the effect

of local brain inhomogeneities on the fields.

_12-




Taken together, these studies demonstrate that conductiv-
ity differences within a media can be detected and observed
by external measurement procedures so long as these differ-

ences are relatively significant.

2.2 BIOPHYSICAL IMPEDANCE METHODS

The process of monitoring impedance fluctuations in the body
to determine heart and lung changes is known as impedance
plethysmography. An important development occurred in 1970
with the advent of an Impedance Cardiograph unit [22] for
use in impedance plethysmography. By injecting a constant
current through the thorax and measuring the potential dif-
ference between two electrode bands -- which were secured
around the thorax but not connected to either injection
electrode -- it was possible to obtain an estimate of the
mean thorax impedance and the rate of change of this impe-
dance during a cardiac cycle. These two parameters were
then used to assess cardiac output, 1lung volume and intra-
thoracic fluid accumulation. Using such an approach, at-
tempts have been made to explain the relationships between
impedance waveforms and biomedical events. For example,
some researchers have concluded that impedance cardiography
yields very wuseful information about the haemodynamics of
various body organs [23].

Isopotential mapping has also been employed in medical

applications. A device was constructed for electrocardio-

...13_




graphic or electroencephalographic use [24], which took an
array of voltage measurements over a body area and provided
a simultaneous display of the collected data. However, the
technology available at that time was just too slow to pro-
vide real time data collection and display capabilities.
Other researchers later provided a high speed data acquisi-
tion and display unit [25] which could be updated after each
cardiac cycle. They also utilized computer processing of
the collected data to produce isopotential maps from 2,048
self-generated locations on the chest surface.

The impedance plethysmography method may be modified to
include a set of pickup electrodes for body surface voltage
measurements, in which <case it is known as electric-field
plethysmography [26]. This method allows the examination of
surface electrode potential differences and yields informa-
tion about heart position and cardiac output with very lit-
tle interference from changes in lung conductivity.

The next major innovation, the Impedance Camera [27],
represented a sort of hybrid of the above methods, and
sought to display iscadmittance contours of the chest rather
than 1isopotentials. A regular array of eighty mutually
guarded electrodes was fixed to a patient's back, and a one
volt signal was applied across the whole chest area. The
guarding procedure was intended to effect a long and narrow
measurement volume positioned on each electrode. Current

flow through each electrode was recorded, and the corre-




sponding volume's impedance calculated and processed for
contour display. This technique is very crude however, as
the measurements do not really account for current spread
throughout inhomogeneous body organs.

Note that although any of these biophysical impedance
methods will allow for physiological interpretation of meas-

ured data, none of them can perform image reconstruction.

2.3 RESISTANCE PROJECTION METHODS

The main impediment to resistive reconstruction is the fact
that electrical currents do not travel in straight lines,
but rather they travel a path which is entirely object de-
pendent, In resistive imaging the current path can only be
determined from precise knowledge of the conductivity dis-
tribution, while conductivity reconstruction can only be ac-
complished with knowledge of the current flow paths. Alge-

braically this may be expressed as

where the <coefficient matrix A depends on the solution d.
The problem is therefore nonlinear and cannot be solved with
the same algorithms used for (1.3) since the 1left-hand side
cannot be accurately evaluated unless the current paths are

known,

..15-




An extension to the previously discussed ART algorithm
has been proposed [28] which attempts to handle such nonli-
nearities. The method is based on the solution of Laplace's
eguation -- under measured boundary conditions -- within an
iterative loop. The physical arrangement consists of an ob-
ject (inside a water tank) and a regular array of electrodes
that are secured to the tank's outer surface, A measured
projection is obtained by applying a known voltage to the
electrode array, measuring the current flow through various
electrodes, and calculating gross impedance values at each
measurement site. The object inside the tank is then rotat-
ed, thereby altering the current flow paths as well as the
measured current. The result is a set of resistance projec-
tions (or a profile) for each object angle.

To initiate the recovery process a conductivity distribu-
tion is assumed and the electric field numerically computed.
After streamlines (or current paths) are determined from the
potential field gradients, resistance projections along the
current paths are calculated for each object orientation an-
gle. Comparing calculated against measured resistance pro-
jections allows the original estimate of conductivity dis-
tribution to be corrected by a back-projection technigue.
Repetition of this procedure continually updates current
flow paths and resulting conductivity estimates., Typically,
only several iterations are required for the process to con-
verge; however, this does not mean an accurate solution has

been obtained.

_16_




Often, the mean-square reconstruction error can be as
high as 30% when compared to the "exact" solution. In some
cases convergence may not even be possible unless a mathe-
matical operation such as smoothing or underrelaxation is
performed between conductivity iterations. In other cases
the number of different projection angles needed to obtain a
reasonable image is excessive (e.g. greater than 400), thus
increasing the required computational effort.

A similar approach using impedance projections and a mod-
ified ART algorithm [29], but with many more electrodes, has
been proposed for certain moderate-resolution geophysical
applications. The main objective is to develop an impedance
camera useful for geophysical diagnostics in geological and
mineral prospecting applications. In the past this was done
with crude electrical impedance methods [30] which calculat-
ed an apparent subsurface resistivity of horizontally lay-
ered models [31]. Potential applications of the impedance
camera are said to include core sample and borehole analy-
sis, as well as general subsurface imaging.

Almost all proposed impedance computed tomography methods
are based on the resistance projection techniques just de-
scribed. Inherent tc these technigues is the important as-
sumption that current paths follow essentially straight
lines, much the same as X-ray beams. In reality, current
flow paths are highly object dependent and this assumption

is fallacious, even when guard electrodes are employed. Be-

_17_




cause of this some researchers argue that it is not possible
to perform impedance reconstruction by standard projection
methods. Instead, they point out the need for alternative
schemes and suggest an approach in which general distribu-
tions of conductivity may be reconstructed by a "modal"”
identification and measurement process [32].

The point to stress is that more information is needed
for conductivity reconstruction than could easily be ob-
tained from the usual resistance projection methods, The
next two chapters outline a new procedure which may yield

this additional information.-

2.4 NETWCRK FAULT DETECTION

Although the previous section emphasized imaging of continu-
ous conductivity distributions, the problem of imaging (or
discovering) discrete network parameters is also very impor-
tant. This is especially true in view of the growing demand
for automatic testing and fault analysis of computer sys-
tems. In either case the objective is to calculate circuit
component values from sets of node point  measurements and
determine those components which do not meet a specific tol-
erance criterion, If detection of unacceptable components
could be done automatically this would certainly alleviate a
significant amount of the cost burden associated with manual

search and detect methods.
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It is possible to employ Tellegen's theorem to establish
a relationship between current and voltage changes in an
original circuit and an adjoint circuit. Under suitable
branch constraints this method may uniquely determine compo-
nent variations from limited sets of port measurements.
However, to accomplish this it 1is very important to obtain
enough independent port measurements to solve all unknown
component values, Other techniques have been used for de-
tection of multiple faults in analog circuits [33]. Another
algorithm [34] employs graph theory and suggests necessary
and sufficient conditions for discovering particular network
components, Other techniques, more general in scope, at-
tempt to direct current in a beam-like fashion through the
resistor mesh [35] and acquire sets of profile measurements
for processing in a manner similar to X-ray computed tomog-
raphy. Because these technigues have only been partially
successful, discrete network imaging remains an unsolved
problem.

The next chapter presents a novel algorithm for determin-
ing resistive network component values from limited sets of

measurements.
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Chapter III

IMAGING RESISTANCE NETWORKS

The network imaging algorithm presented in this chapter ef-
fectively decouples the nonlinear system described by (2.1)
into three linear subsystems which are subsequently iterated
until convergence is achieved. Two of the linear subsystems
are used for determining node potentials while the third is
used for calculating branch conductances. The node poten-
tial formulation will be considered first, followed by a
presentation of the brahch conductance calculation and the

network imaging algorithm.

3.1 DETERMINING NODE POTENTIALS

Consider the resistor mesh of Fig. 3.1. Application of Kir-
choff's Current Law to an independent set of network nodes

leads to the linear system of equations

YW= (3.1)

where ¥ is the nodal admittance matrix, v is the vector of
unknown node potentials and j 1is the source vector. Here,
the node potentials result from imposition of currents at

selected boundary points.
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If voltages were imposed instead of currents, a different
set of node potentials would result, This alternative is

expressed as

Yv = 0 (3.2)

where Y is the same nodal admittance matrix, but v consists

of both known and unknown node potentials.

Figure 3.1: Resistor Network.

The problem is to solve (3.1) and (3.2) for the unknown
potentials. It is wusual to assign at least one node as a
reference point, and then to perform row eliminations and
column transfers to the right-hand side, thus eliminating
the admittance matrix singularity. Fortunately, for imaging

purposes this is not necessary.




Even though the admittance matrix 1is singular, both
systems can be solved using either a point-iterative or a
pre-conditioned conjugate gradient method. However, with
this approach the solution will only be correct to within an
arbitrary constant [36]. Later it will be shown that the
arbitrary constant is irrelevant since the imaging algorithm

ultimately requires only potential gradient information.

The Nodal Admittance Matrix

Construction of the nodal admittance matrix is a relatively
straightforward procedure. Fig. 3.1 1illustrates typical
numbering schemes for mesh nodes and mesh loops. For ease
of programming it is best to cycle through all 1loops and
perform a random accumulation of admittance matrix entries
for every node contained within each loop.

As each loop is selected -- and depending upon the loca-
tion of the 1loop in the mesh -- it is necessary to choose
from one of the four possible accumulation patterns depicted
in Fig.'s 3.2 - 3.5. After processing all loops the admit-
tance matrix has been completely assembled, and equations
(3.1) and (3.2) are easily solved for the unknown poten-

tials.
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Yo,p =01+ 0
Yp+1,P+1 09,403
Yp+Nx,P+Nx*—92+04
P+Nx gq  P+Nx+!
Yo+ Nx+l,P+Nx+1 93+,
] g3
Yp, P+t =— =0,
P9 P+l Yp,p+Nx = —02
Yp+l, P+Nx+1 " ~03

Yp+Nx, P+Nx+1+ -04

Figure 3.2: Accumulation for Top Right Corner Loop.
I=NX-1  J=NY-1 P=I+(J-1)NX

Yp,p="9%92

Yp+l, P+ 91 +93

P+Nx P+Nx+I Yp+Nx, P+Nx ~—32
Ypa+Nx+1, P+Nx+l 093
92 93 !
Yo,P+1 ™ "9
P 9 P+i

Yp,p+Nx*""02

Ypal, P+Nx+1*""93

Figure 3.3: Accumulation for Right Side Loops.
I=NX-1 Jd=1..(NY-1) P=I+(J-1)NX
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Yp'p ‘—g} +g2

Ypel,P+1 9]
P+Nx gq4  P+Nx+l Yp+Nx‘P+Nx‘—92+g4
92 Yp+Nx+!, P+Nx+1 "~ 94
P g P+l Yp,p+t = "9

Yo, penx = "92

YP+Nx,P+Nx+I‘_ ~G

Figure 3.4: Accumulation for Top Side Loops.
I=1..(NX-1) J=NY-1  P=I+(J-1)NX

Ye,p =g, +g2

P+N
* YP-|-I,P+| g
92 Yo Nx , P¥Nx 302
, . Y, -— -
P g P+l P, P+ 9

YP. P+Nx™" =G>

Figure 3.5: Accumulation for All Other Loops.
I=1,.(NX-2) J=1..(NY-2) P=I+(J-1)NX
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Node Potentials Due To An Applied Current

Using the pre-conditioned conjugate gradient method to solve
(3.1), for an impressed current input and withdrawal of one
amp, yields the node potentials of Fig. 3.6. The conductiv-

ity network employed by this calculation is also given in

the same figure.

1000 1C00 1000
1000 1000 1000 1000
1000 500C 1000
1000 5000 5000 1000
1000 5000 1000
1000 1000 1000 1000
1000 1000 1000

Conductivity Mesh

0.0348 =0,C77 =0.300 <=0C.800
0.367 0.C89 0,034 <=0.C77
0,867 0.3¢€7 0. 145 0.03u

/// Node Potentials

Figure 3.6: Node Potentials for Impressed Current,
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Node Potentials Due To An Applied Voltage

The same network, but with voltages impressed at all bounda-
ry nodes rather than current at two nodes, results in the
node potentials of Fig. 3.7. When solving a singular matrix
the solution only will be correct within an arbitrary con-
stant (we are only concerned with gradients so the constant
is not relevant). For example, in the figure below we find
the same boundary potentials as in the previous figure by

subtracting the constant 0.008 from all nodes.

1000 1000 1000
1000 1000 1000 1000
1000 500C 1000
1000 5000 S000 1000
1000 500C 1000
1000 1000 1000 1000
1000 1000 1000

0.833 0.722 0.500 C.0090
0.9u4 0,833 0.778 C. 500
1.167 0.889 0.833 .722
1.667 1. 167 0.,9uu C.833

Figure 3.7: Node Potentials for Impressed Voltage.

3.2 CALCULATING BRANCH CONDUCTANCES

Once the potentials have been obtained at all network nodes,
the branch conductivities may be determined. Consider Ohm's

law as it applies to a single-conductor branch

gv = J (3.3)
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where g is the branch conductivity, v is the branch voltage,
and j is the branch current. If a branch is considered to
extend from node i to node j then (3.3) may also be ex-

pressed as
Qij(Vi‘Vj) = iij {3.4)

where gij represents branch conductance and jij is branch

current, but A and vj are node voltages.

The Least-Squares Residual

Treating branch conductances as unknowns and considering all
excitations, x, allows the formation of a least-squares res-

idual from (3.4)

‘{(vi-vj)g..- ji.}2 (3.5)

which can be minimized by taking the partial derivative with

respect to branch conductance and equating it to zero

or

9933 by

=1 2{(Vi-Vj)Qij - jij}(vi-vj) =0 (3.6)




Conductance Equations in Point Form

Simplifying (3.6) gives

2

-y = i =V

and solving for the unknown branch conductance yields

.. 23y

s 2

(v.

1-Vj)

(3.8)

The branch currents are not known in advance and must be
determined prior to employing (3.8) in a conductance calcu-
lation, Typically, they are obtained from (3.1), 1in which

case (3.8) becomes

§ ( '_vj)gij(vi-vj)

1
v.)? ’ 3.9
) vi—vj) (3.9)

where A and vj are derived from an assumed set of network
conductance Values,§ijr under an applied boundary voltage,
while V; and Gj are based on the same network under an ap-

plied boundary current,
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Conductance Solution From Exact Potentials

If the exact potentials are known, say from measurements on
the network, but the conductance values are unknown, then it
is possible to iterate through (3.9) and improve the origi-
nal 955 estimate. The procedure 1is repeated until conver-
gence is achieved, at which time the best fit (in a least-
squares sense) conductance network will have been attained.
Fig. 3.8(a) shows an "exact"™ network from which node po-
tentials are obtained for both an applied voltage and an ap-
plied current. These computer simulated measurements were
used in (3.9) along with the initial conductivity assumption
of Fig., 3.8(b). The final result after thirty iterations

is depicted in Fig. 3.8(c).

1600 10CC 1000
1000 1000 1000 1000
1000 5000 1000
1000 5000 £5000 1000
10600 500C 1000
1000 1000 1000 1000
1000 1000 10600

(a)

1000 1000 1000 1000 1001 1C00
1000 1000 1000 1000 1000 999 1001 1000
1000 1000 1000 1000 4999 1000
106G 1000 1000 1000 1000 4996 =005 1000
1000 1000 1000 1000 4999 1000
1000 1000 1000 1000 1000 399 1001 1000
1000 1000 1000 1000 1001 1000

(b) (c)

Figure 3.8: Network Conductor Values.
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3.3 . THE NETWORK IMAGING PROCESS

When neither branch conductances nor node potentials are
known, one must resort to a hybrid algorithm employing both
of the previously discussed methods of finding node poten-
tials in conjunction with the technique for determining
branch conductances, During the imaging process it is the
boundary potential information which connects the three lin-
earized subprocesses together thus leading to successful
network recovery.

In Fig. 3.9(a) an "exact" network is modelled. Using
boundary excitations, the node potentials are determined at
all boundary nodes for each independent excitation. In
practice the boundary potentials are measured rather than
simulated by a computer program.

The solution process is initiated by providing a guess of
all network conductor values (usually all set to the same
value) and then generating the two sets of node potentials
indicated by Fig. 3.9(b) and Fig. 3.9(c). The node poten-
tials of Fig. 3.9(b) are obtained for the same current exci-
tations used in Fig. 3.9(a), while the potentials of Figq,
3.9(c) are derived from enforced boundary voltages.,

Fig. 3.9(d) shows that the next conductance estimate is
generated from a combination of: the most recent conduc-
tance estimate; the node potentials of Fig. 3.9(b) which re-
sult from applied currents; and the node potentials of Fig.

3.9(c) which are due to applied boundary voltages.
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N/
V meosured g" 45:" V"
N/
2 (b ) '\7“ Vn L, gn+l
4 A Yot Vmeasured q" 7| -
—————,
(a) (d}
g" = v"

(c)

Figure 3.9: Network Imaging Process,

3.4 NETWORK RECONSTRUCTION SIMULATIONS

A number of examples follow which illustrate both the suc-

cess this algorithm has achieved thus far, and the difficul-

ties which have yet to be overcome. 1In all cases the origi-
nal network appears on the left-hand side of the figure

while the recovered version is located on the right-hand

side. 1000 1004 1001
1000 967 1005 999
1003 4843 1004
998 5140 4850 1000 500

, ‘*\\\4 1003 4844 1C04 Iter,
000 100¢C 10001000 1000 9S7 1005 990

1000~.1000 1000 1000 1004 10
TTUTI000 500 000 o
1000 50005000 1000

« 1000 _500C™S1000 >

1000--1000 1000~_1000
1000 100C 1000 1000 100C 1000
e 1000 1000 1000 1060
- , 1000 499 1000 2000

Exact solution and four 1000 5000 5000 1000 Iter
excitation pattern used 1000 4999 1000 )
in all simulations. 1000 1000 1000 1000

1000 1000 1000

Figure 3.10: One High Conductance Patch,
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5000 387 999
5000 5064 1009 1001

4960 1031 4724
1013 956 ue64 5107

978 1035 4750
1000 1020 993 1202

1000 9g7 ¢gg
5000 1000 1000 00 ’

5000 5000 1000 1000
5000 1000 5000
1000 1600 5000 5000
1000 1000 5000
1000 1000 1000 1000 5000 999 1000

1000 1000 1000 5000 50C5 1000 1000
4998 1002 498k

1001 596 4989 5004
999 1001 4989

1000 10Ct 1000 1000
1000 999 1000

Figure 3.11: Two High Conductance Patches,

1000 598 1000
1000 1001 898 1000
998 101e <98
1000 399 1003 999
1003 4855 1C04
1000 1000 1000 1000 §88 1002 1000

1000 1000 1000 1000 1000 1004 1000
1000 1000 1000
1000 1000 1000 1000
1000 5000 1000
1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000
: 1000 1000 1000
1000 1000 1000 1000
1000 4999 1000
1000 1000 1000 1000
1060 1000 1000

Figure 3.12: A Single Resistor.
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1000 999 1000
1000 1000 994 1000
1000 1031 1000
998 997 1020 965
1017 43461 1021
1000 990 1013 6S7

1000 1000 1000 999 1025 1002

1000 1000 1000 1000
1000 1000 1000
1000 1000 1000 1000
1000%*%%%xx 1000
1000 1000 1000 1000 1000 1000 1000
1000 1C0C 1000 1000 999 398 1000
1001 1012 1001
399 999 1009 ©98
1008 86975 1010
1000 9¢5 1006 39¢°
999 1012 1001

Figure 3.13: Short Circuit Fault Detection.

998 1022 1000
1002 1005 1057 568
1023 827 1020
1017 939 883 1025
863 145 E£74
999 1075 1003 1004

1000 1000 1000 1002 926  $97

1000 1000 1000 1000
1000 1000 1000
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1000 0 1000
1000 1000 1000 1000
1000 100C 1000 999 1006 1000

1000 1002 101s 999
1007 Iuy8 1006

1005 9¢€3 966 1007
959 37 964

1000 1019 1000 1001
1000 981 S99

Figure 3,14: Open Circuit Fault Detection.
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Chapter 1V

FINITE ELEMENT RESISTIVITY INVERSION

This chapter considers the problem of reconstructing both
two and three-dimensional distributions of electrical con-
ductivity from boundary or surface potential measurements.
The reconstruction process involves the solution of a nonli-
near system of equations generated by finite element discre-
tization, and obtains the best conductivity distribution --
in a least-sguares sense -- from simulated data.

Analogous to the resistor network formulation, the method
used here decouples the nonlinear system into three linear
subsystems which are then solved simultaneously. Two of
these subsystems are employed for solving the scalar elect-
rostatic field while the other determines the conductivity
distribution. The electrostatic field solution will be pre-

sented first,

4.1 ELECTROSTATIC FIELD SOLUTION

Assuming a given conductivity distribution, the required en-

ergy functional for solving Laplace's equation is

F=[KV¢-V¢dV'2L¢de (4,1)
v
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which is valid for Dirichlet or homogeneous Neumann boundary
conditions. Using the Rayleigh-Ritz discretization proce-

dure
o = ¢Ta = a9 (4.2)
equation (4.1) becomes
F = @TfVKVg-VgTdv@ - ZQngfdv . (4.3)
Differentiating with respéct to the field unknowns yields
% = 2 vy va%dvg - 2[ afdv (a.4)
v v
which if equated to zero and rearranged becomes
LKVg-VgTch_p = qufdv (4.5)

(compare 4.5 against 3.1 and 3.2) or

S¢ = b (4.6)
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where

S:. =f K: VaieVa.dv
v o) (4.7)

and

bj =f aijfi dv . (4.8)
v

Eqguation (4.6) 1is a system of linear equations that can
be solved for the discretized field. One approach is to in-
voke a conjugate gradient procedure which accepts the S ma-
trix and returns the calculated field values. Such routines
have been developed by Nakonechny [47,48] at the University
of Manitoba, and preliminary versions have been borrowed for
use here. Another approach employs the point-iterative
methods outlined in the Appendix. The next section shows
how the point-iterative method could be used to obtain the

discretized electric field solution.

Electric Field Equations In Point Form

Expanding along row i and solving for the i'th unknown gives

a,fdv- T [[ «Va,-Va.dv]e.
6 =fvl j'j#if" SR | (2.9)
v
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For ease of progrémming the conductivity and source may also

be expressed as

(4.10)
f=off = ffa
so that {(4.9) is now
Lfoo.dv f. - X _[Zf(Voc.-Va.)a dv «, 1¢.
¢i=jf"13 ) d=i kv 2 Tk KT (4.11)

}}if (Vo Vo, )ay, dv Ky
v

As the shape functions are known, the required integrals
are precalculated into equivalent weighting factor arrays.

Thus (4.11) is simplified to

EV..f. - I [T W, . 0.
P B 1 Sl (4.12)

i
L WiiKy

_37_




If the conductivity 1is defined as constant throughout each

element then (4.12) reduces to

(4.13)

resulting in a slight loss of modelling accuracy, but a mod-
est improvement in programming effort and program execution
time.

Current injection sites are easily handled by assigning
f_1 the numerical wvalue of the impressed current density at
the i'th node. Nodes which are to be held at a fixed poten-
tial are merely skipped over by the algorithm during the

processing of (4.12) or (4.13).

Neumann Field Calculation

Imposing a current input and withdrawal of one amp on the
conductivity distribution shown on the left-hand side of
Fig. 4.1 results in the Neumann field pictured on the

right-hand side.
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Figure 4.1: Conductivity Distribution and Neumann Field.

Dirichlet Field Calculation

The same conductivity distribution, but under an enforced

boundary potential distribution results in the Dirichlet

field of Fig. 4.2,
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Figure 4.2: Conductivity Distribution and Dirichlet Field.
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4.2 CONDUCTIVITY DISTRIBUTION SOLUTION

Once the potential field has been obtained throughout the
region the conductivity distribution may be determined. De-
velopment of the spatial conductivity recovery method 1is
based on the point form of Ohm's law, and closely parallels

the branch conductance imaging technique of Chapter III,

The Least-Sguares Residual

Recall%ng that
E = - Vo (4.14)
and
(4.15)
(compare 4.15 to 3.3) a least-squares residual is formed

r o= EJ;(Kv¢-+3)'(KV¢ +J)dv (4.16)

where x refers to current excitations. Taking the inner

product

= . 'a + a' V¢ + \.-]':j)dv
r EJ;((KV¢ Vo) + «Vo KV (2.17)
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and simplifying produces

r o= Efv(KV¢)'V¢|< +2¢V¢ 3 +3-3)dv .
b4
Substituting (4.10) into (4.18) gives
r =}2(.’f(i_§TgV¢'V¢gTK +2Tad Vo +3-3)dv .
v

As in (4.4), equation (4.19) may be minimized

%E = 27 aV@-V¢d€dVK + 2% aa-V¢dV =0
K xfy ~ - - xJv © B

and simplified to

zj a¥4-VoaTdvics - }:f ad-Vodv
X Jv ~ - - XJy

which again represents a linear system.
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Conductivity Egquations In Point Form

Solving (4.21) for the conductivity at the i'th node produc-

es (compare 4.22 to 3.8)

z J*Vodv - I V9 )~ (Voo Jdv «,
.- 2 o3 veav -z g | (0, 00) (T0a)dv | )
| TRCADECRDLT

Using (4.2) the x-component of the field gradient becomes

IQ
a»
|

o0 3
a—@-d_ﬂf

_m _ (4.23)
IxX E X ¥

The y and z-components are generated in a similar manner,

thus (4.22) is now written as

Bo.m dag day, aap_ dan  dog o
'EEEL“ (‘Jx X +‘3 +‘}z az 5219¥9,] - EJ ]fl[imﬁ'ulul( ax ax 3y 8y +E’ T2 8ty 155

€ " Bum aa Bo: ch a (4.24)
“Lf“(ax ax+3y ay az az)dw’ﬂ’>I

Since the current density is not known in advance it must be
determined prior to employing (4.24) 1in a conductivity cal-
culation. Initially, a conductivity distribution is assumed

and using (4.2} the x-component of the current density can

be expanded as

- ~ o0
I T A N 2
T TR TR O e Ky TTER O T Ky (4.25)




Performing similar expansions for J_, and J, allows (4.24) to

Yy
be written as

da, dap duy dx, da, da, da, Ba 33, o -

L2, L2 - if fao(—t—RB+4L 0 )dv,‘ Ry
et E(”r[fazan( ax Y ay 3)'*31 )dwz%]KJ J.J#z imL 230 o T e w T
% 3% aa day 9o
. 3

””f z(axax o w*aziﬁ“%%’ (4.26)

which, through the use of weighting factors, simplifies to

T{EELW.. &6 1kP- T T EIW,., o¢ xi*t)
n+1 _x{j[ﬁ,m 13£m¢2¢'m J j,ifigm PIMALT . (4.27)
* § E g w112m¢2 m

Again, further simplification is possible by employing
constant valued conductivity elements. In this case (4.21)

signifies a pure diagonal form and (4.27) reduces to

i T TrIM ' (4.28)

The § represents a field derived using natural Neumann
boundaries while ¢ is derived from either total Dirichlet
boundaries or from a combinaticon of Neumann and Dirichlet

boundary conditions.
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Conductivity Solution From The Exact Field

If the exact potential fields are known, but the conductivi-

ty distribution is unknown,

then

1

t is possible to iterate

through (4.27) or (4.28) and improve the original conductiv-

ity estimate.

is achieved,

The procedure

is repeated until convergence

at which time the best fit (in a least-squares

sense) conductivity distribution will have been attained.

Fig,

4,3 shows an "exact" conductivity distribution from

which the

and Dirichlet boundary conditions.

the electric field

is obtained for

both Neumann

These computer simulated

measurements were used in (4.28) along with the initial con-

ductivity assumption which appears in the same figure.
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4.3 THE IMAGING ALGORITHM

When neither the conductivitj nor field distribution is
known, one must resort to a hybrid algorithm employing the
methods outlined in the previous sections. It is the bound-
ary information -- either measured or simulated -- which
connects the three linearized subprocesses together thus
leading to successful image recovery.

In Fig. 4.4(a) an exact conductivity distribution is mod-
elled. Using boundary excitétions in two-dimensional prob-
lems and surface excitations in three-dimensional problems,
the field distribution is determined for each independent
excitation. In practice boundary or surface potentials

would be measured rather than simulated.

ne—n+1

;=>’cn+l___

(o) {c) (d)

Figure 4.4: The Finite Element Imaging Process.
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The solution process is initiated by estimating the con-
ductivity distribution (usually homogeneocus) and generating
the two fields indicated by Fig.'s 4.4(b) and 4.4(c). The
field of Fig. 4.4(b)is obtained -- with the same current ex-
citations used 1in Fig, 4.4(a) -- wunder natural Neumann
boundary conditions. The field of Fig. 4.4(c) is determined
under Dirichlet boundary conditions. No currents are im-
pressed during this phase of the calculation.

Fig. 4.4(d) shows that the next conductivity estimate is
generated from a combination of:

i) the most recent conductivity estimate;

ii) the current density approximation (4.25) obtained

via the Neumann field of Fig. 4.4(b); and

iii) the Dirichlet field of Fig. 4.4(c).

This process is repeated until the desired accuracy is
achieved,

Fig. 4.5 presents a flowchart in which the conjugate gra-

dient method is used to obtain the electric field estimate.
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INITIALI2E

Obtain Heumann 5 Matrix
and
Preconditioned LN Matrix

I

Save the diagonal entries
of
the Neumann 5 Matrix

!

Obtain Dirichlet S Matrix
and
Preconditioned LD Matrix

.

Solve Dirichlet Fields
for all excitations

:

Retrieve Neumann S Matrix

|

Solve Neuman Fields
for all excitations

:

Update Kappa

:

Obtain updated Neumann S Matrix

:

Save the diagonal entries
of
the Neumann S Matrix

!

Obtain Pirichlet 5§ Matrix

Finished?

Figure 4.,5: 1Imaging Algorithm Flowchart.
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4.4 SIMULATION EXAMPLES

There are two methods of displaying recovered images; gray-
level (density) shading and relief plots. In the figures
that follow, density plots are presented for some of the
two-dimensional images. In several diagrams corresponding
relief diagrams are presented above the density plot for
comparison, Based on experience, representing the conduc-
tivity value as the third dimension provides important in-
formation concerning recovered image edges ana corners, In
most figures the exact solution is displayed in the left-
hand column and represents the ideal recovery.

In several two-dimensional cases, excitation patterns are
below the recovered images. The lines superimposed on the
grid structure indicate a particular input and output cur-
rent site. In a general sense, they also relate to the cur-
rent flow within the region, but by no means are they meant
to indicate "beam-like" current path behaviour. Fig., 4.13
illustrates the effect of filtering a two-dimensional step
function, a procedure which may be employed for edge discov-
ery or enhancement purposes. Excitation patterns are simi-
lar inw three-dimensional cases, except that some examples
have excitations distributed over all sides, whereas other
examples maintain top surface excitations and measurements

only.
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2-D Resistive Tomography Simulations
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Figure 4.6: A Smoothly Varying Conductivity Distribution.
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Three-Dimensional Simulations
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Figure 4.15: 3-D with Top Layer Measurements Only.
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Chapter V

DISCUSSION OF COMPUTER-SIMULATED IMAGING

A number of important qguestions are raised by the simulated
imaging results of previous chapters. This chapter address-
es some of these questions, including: quality of recovered
solutions; number of measurements needed to obtain a solu-
tion; costs associated with imaging programs; and effects of

modelling errors.

5.1 QUALITY OF RECOVERED SOLUTIONS

One important measure of success for any image reconstruc-
tion technique is the quality of the final solution. The
density and height plots previously discussed clearly pres-
ent differences between exact models and calculated solu-
tions, and therefore represent a measure of quality. An-
other quality indicator is illustrated in Fig. 5.1(a), which
displays a trace of the average difference per node between
the calculated conductivity and the exact value at each it-
eration, If the iterative process is converging to the ex-
act solution then this difference would be expected to ap-
proach zero. This was not the case however, as after only a
few iterations the recovered conductivity settled to very

slowly changing values (the drop at the tail end will be ex-

plained shortly).
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(a) Figure 5.1: Quality Indicators. (

Once the conductivity has reached this "steady state"
where only very small changes occur for each iteration, then
an examination of the difference between Neumann and Diri-
chlet fields, Fig. 5.1(b), showed that both fields were al-
most identical. Furthermore, it turned out that although
similar to each other, they were quite different from the

exact field solution. Also, if the initial conductivity es-

“timate happened to be identical to the exact solution then

the iterative process was highly stable and exhibited only a
small amount of drift,

The latter behaviour contradicts the former if the solu-
tion really is unique, and no proveable explanation has yet

been found. Perhaps the method is stuck in an optimization-
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like valley, or perhaps the gradient modelling is simply not
of a high enough order. Another possibility is that at the
low frequencies for which Laplace's equation is applicable,
interior structures only influence the field within an ex-
tremely limited spatial extent. If this were true one pos-
sible solution would be to use higher excitation frequen-
cies. At high freguencies the fields would be governed by
Helmholtz's equation and the effects of small internal
structures on the field would likely be noticeable even at
large distances.

In any case, various filters were tried in order to elim-
inate high frequency oscillations. The tail end of Fig.
5.1(a) demonstrates that limited improvement is possible if
the right filter is applied at the appropriate time,

The amount of current penetration in the region of inter-
est also influences image quality. For instance, in Fig.
(4.14) the bottom layer artifact eventually disappeared due
to the inclusion of voltage measurements and current sites
on that layer, Fig. 4.15 shows that without these lower
layer measurements, the disappearance of the artifact re-
quires more iterations. On the other hand, the second layer
recovery is quite good. Because the measurements are only
on the surface, those layers just below the surface tend to
receive most of the current while the lower layers receive
virtually no current, This would explain why the immediate
sub-surface layers compare closely to those of the exact so-

lution.
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5.2 EXCITATION REQUIREMENTS

In order to clarify the relationship between the number of
unknowns and the number of excitations, a particular finite
element model must be examined (refer to Fig. 5.2). The ex-
ample consists of an array of voxels (volume elements) meas~
uring 3 by 3 bf 3 and corresponding to a conductivity dis-
tribution. As well, a finite element node structure (4 by 4
by 4) 1is superimposed on the voxel array and is used in the
electric field computation., It is from these nodes that all

voltage measurements are taken or currents are injected.

INPUT
CURRENT
NODE
ELEMENT —}— QUTPUT
LEME CURRENT
&

3x 3x3 ELEMENTS
4x4x4 NODES

Figure 5.2: Typical Finite Element Structure.
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Number of Voltage Measurements Reguired

From the above dimensions, the total number of nodes in the
model is 64 while the total number of elements 1is 27, It
should be noted that the total number of unknowns is equal
to the number of conductivity elements (voxels). 1If medical
applications are considered, then due to physical limita-
tions the only accessible nodes -- for measurement or injec-
tion purposes -- are those on the front, back and side sur-
faces. Thus, the maximum number of accessible nodes is 48.
Based on the assumption that a reasonable solution re-
quires twice as many voltage measurements as there are un-

knowns, the number of voltage measurements needed are 54.

Satisfying the Measurement Criterion

If there are N accessible electrodes and N1 current sites,
then there are (N1-1) unique excitations and N electrodes at
which voltage measurements can be taken, The total number
of measurements is found by multiplying the number of avail-
able electrodes by the number of wunigue excitations,
N*(N1-1). For example, consider the following excitation
alternatives:

i) Let N=48 (number of accessible electrodes) and
choose N1=3 (number of current sites). Thus,
there are N1-1=2 unigue excitations and N=48 valid
voltage measurement locations per excitation, and

therefore 48*2=96 measurements in total.
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ii) Let N=12 {(number of accessible electrodes) and
choose N1l=6 (number of current sites})., Thus, there
are N1-1=5 unique excitations and N=12 valid volt-
age measurement locations per excitation, and
therefore 12*5=60 measurements in total.

The second choice may arise due to physical constraints
on electrode spacing, or economic constraints on the cost of
measurement apparatus. If the allowable number of voltage
measurement probes decreases, a suitable increase in the
number of excitations will compensate. Note: although both
schemes yield approximately the necessary number of measure-
ments, there is a significant difference in the number of
unique excitations between the two alternatives. This is a
very important point to consider as the number of excita-
tions to be solved will ultimately determine the nature of

the imaging hardware.

5.3 PROGRAM REQUIREMENTS

Storage Needs

Listed below are the computer memory allocations needed to
perform imaging on a machine with either single or multi-
processing capabilities. Multi-processing is important be-
cause the imaging process is highly parallel, and is there-
fore well suited to concurrent processing of the
computations required for each excitation, Although multi-
processing was not used in these tests, all programs were

organized and structured for this eventuality.
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The
areas:

i)

ii)

iii)

storage allocations may be partitioned into three

Common Store - This consists of data that is stored
in the main system memory and freely accessed by
any other program or processor on the system, The
3-D problem previously discussed requires about
186,000 bytes of common store.

Dirichlet Store - A multi-processing machine could
perform this calculation simultaneously for all ex-
citations, thus enhancing throughput, Such a sys-
tem would perform the calculation on local proces-
sors dedicated to each excitation. Approximately
131,040 bytes are needed to accomodate each excita-
tion. A single processor machine -- similar to
that used for the tests in this thesis =-- still
needs the same amount of store, but utilizes the
excitations one at a time.

Neumann Store - This calculation could also be per-
formed simultaneously for all excitations. The
calculation may be carried out by a local processor
using local storage only, or by a single processor
operating on each excitation one at a time. Ap-

proximately 124,488 bytes will be needed.
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Estimate of Imaging Program CPU Time

The most time-consuming section of code in the imaging al-
gorithm occurs within the electric field computations. In
particular, a multiplication is significantly more time-
consuming than any other simple arithmetic operation, and
since multiplications dominate the field computations, the
following timing estimates are based on the number of multi-
plications executed. Comparisons are included which demon-
strate the difference between a high-performance mainframe
(AMDAHL V7) and a high-performance microcomputer
(8086/8087). The mainframe computer is only capable of per-
forming sequential operations. The microcomputer is treated
as both a seqguential and a parallel machine. Note: all tim-
ings are based on the CPU cycle time for a single multipli-
cation and do not take into account various system overhead
costs. It is expected that the actual timings would be
greater than those listed by a factor between 1 and 2.

The number of multiplications for one iteration of the

imaging algorithm can be expressed as follows:
M=(2K-3)U+(1-K)+C[4U(K+1)+(1-K)]

where M is the number of multiplications; K is the matrix
bandwidth; U is the number of unknowns; and C is the number

of field solution iterations.
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The following timings assume:

C=10 K=14 U=1683 I=Number of Imaging Iterations

AMDAHL 8086/8087
1 multiply 250ns. 1%us.
I=1 2.8s. 3.5m. (Sequential)

6.5s. (Parallel)

I=3 8.3s. 10.5m. (Sequential)

19.7s. (Parallel)

I=10 27.6s. 35.0m. (Sequential)

65.0s. {Parallel)

I1=50 138.0s. 174.8m. (Sequential)
5.5m. (Parallel)

5.4 EFFECTS OF MODELLING ERRORS

Problem Geometry

Consider a small "tube” of distributed conductivity as in
Fig. 5.3

where

I(ngsz) = J(X,_‘/,Z) xS . - (5.1)
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Iin

Figure 5.3: Distributed Conductivity.

Now imagine the surface area S gradually reducing so that

the problem virtually becomes unidimensional (Fig. 5.4)

.o K(x);e

Figure 5.4: One-Dimensional Model.

where

I(x) = J(x) xS . (5.2)
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For example, if we take

s=T%5x]—gE=1o"‘m2=1cm2
Ix) = 1 m

then
I(x) _ .1 ma

Now consider such a quasi-one-dimensional region

from x=0.0 to x=2,0, and choose

and

throughout the region. Next, since

ot

]
s
m

1]

t
=
<]

-
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(5.4)

defined

(5.5)

(5.6)
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becomes

3= - 90
J = -K dx
we have
do _ -J{x) _ -1.0-_ -2.0
H%" k(x)  xt2 x+2
2
Thus the problem 1is simplified to that
5.5.
ka0 ol K=2.0
> @ ——i)
I=0lma ,.p0 x=2.0 120.lma
 d¢ T
Lle-t0 !.-08
dx 2:0.0 dx x=2.0
Figure 5.5: Simplified Problem Description.

Integrating (5.9)

o(x) =

-2fn{x +2} + ¢,
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(5.8)

(5.9)

illustrated in Fig.

(5.10)



and for convenience, taking the zero reference at x= -1.,0

and applying this as a boundary condition, yields

r,b(x)l =0 =-2n(-142) + ¢, +c, =0 .

X ==1 1

(5.11)

Therefore

d{x) = -2an{x+2) . (5.12)

Recovering the Conductivity

The point-iterative algorithm used to recover the conductiv-
ity -- given the field gradient distribution -- in one di-

mension is

dé . d
_j&idx T 9% jfg#ij&.a.(—g)zdx K,

c = i75hdx

i . (5.13
f(a gg)zdx )

i dx

To evaluate (5.13) we must solve several integrals. These
are found through application of Gaussian quadrature. Since
this requires the 1integrands to be evaluated only at Gauss

points, we may discretize the problem as in Fig. 5.6.
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Node Points

- Gouss Points
K=10 / i N 5 K=2.0

x20.0 x=0.22541 210 x= 177459 22,0
| | | | |
Frahaa -0.8987 -0.6667 -0.5298 ~0.5

| | | | |
¢=4.6 4.39! 3.794 3.334 3.218

Figure 5.6: Discretized Problem,

Linear Lagrangian Shape Functions

The simplest interpolation functions are linear, and are us-
vually defined over the standard region from x= -1.0 to
x=1.0, In a straightforward manner these shape functions
are transformed from standard to arbitrary regions. The ap-

propriate definitions pertinent to Fig. 5.6 are

~No
t
pos

(5.14)

%]
i
o
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Analytic Lagrangian Recovery for Node 1

Assuming that the values of all field gradients -- evaluated
at the Gauss points -- are available, and using the analytic
expression for the field gradient (5.9) and the current den-
sity (5.4), the recovered conductivity at node 1 may be

found from (5.13)

fa 9. 98 4y _ f (—3%)2@( K,

1 x dx ( )
K. = ) 5.15
1 L ]
dgy,
f(():l dx) dx

Substituting where appropriate, (5.15) becomes

22Xy Xy =22
j (B2 01.0) (R dx-[* B (3) (520 ex(2)
T 2 2
£oXy2 1 ZC 32
f"( 2 ) (" (5.16)
_ (48n2-2) + (8-122n2) _ .772589 - .317766 - 1 g
6-92n2 .454823

as expected when the exact field gradients are used.
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Numerical Lagrangian Recovery

To evaluate (5.15) numerically, it must be observed that
since we are using a linear interpolation scheme, the field
gradient is now approximated throughout the element by the

value of the middle Gauss point (refer to Fig. 5.6)

do _ _
Ix .6667 . (5.17)

Using this value in (5.15) rather than the analytically de-

rived value yields

[7B (- es67)ax - [ (27 (5)(6667)7dx(2)

2
2-X 2
f ALY _.6667 d
J;[( 2 ) )17dx (5.18)

66667 - .2963 _ 1 37
2697

which ought to be compared against (5.16). The error arises
due to the attempt to approximate a complicated gradient
curve with a linear function, This demonstrates the neces-
sity for either a higher-order approximation or more linear

elements within the same region.
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Chapter VI

CONCLUSIONS

This thesis has presented a new method for reconstructing
distributions of electrical conductivity from sets of poten-
tial measurements taken over the boundaries. An itera;ive
least-sguares technique -- which employed a combination of
point-iterative and pre-conditioned conjugate gradient meth-
ods -- was applied to both two and three-dimensicnal field
problems as well as to resistance networks. Several test
programs were run and example solutions were presented for
both field and network problems.

The proposed conductivity recovery procedure is shown to
be fundamentally different from the usual impedance computed
tomography (ICT) approach. impedance 1imaging has, until
now, been no more than an extension of normal X-ray projec-
tion methods. Indeed, several key ICT researchers [Lytle,
Price, Schombergl] attempted to force beam-like current flow
so that projection technigues could be accomodated in their
impedance imaging tests. Their lack of significant progress
is likely due to limitations inherent in the projection pro-
cess.

As discussed earlier, arguments have been put forward

[Bates et al] which proved that conductivity distributions
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could not be successfully recovered using the projection ap-
proach common to X-ray tomography. The algorithm suggested
here avoids such difficulties by allowing current to follow
a natural path rather than forcing beam-like behaviour. As
a consequence boundary measurement values are shown to be
influenced by the conductivity of the entire region, It is
further demonstrated how to employ these boundary measure-
ments, which are not projections, 1in such a way as to move
each iterative step in the direction of the proper solution.

The inversion scheme is shown to involve a decoupling of
the basic nonlinear system 1into three linear subsystems
which are then solved simultaneously. For inhomogenecus me-
dia problems each successive conductivity estimate involves
a least-sguares conductivity calculation based on a residual
acquired from the point form of Ohm's law; a current density
approximation obtained by first sclving Laplace's equation
under Neumann boundary conditions and then multiplying the
gradient of this field by the previous conductivity esti-
mate; and an electrostatic potential gradient approximation
obtained from a field which satisfies Laplace's equation un-
der Dirichlet boundary conditions.

For potential field calculations the Rayleigh-Ritz dis-
cretization procedure 1is applied to the -energy functional.
I1f computer memory storage is at a premium system matrix en-
tries are generated node by node and immediately applied,

thus implementing a point-iterative technigque.  However,
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since the potential field calculation is 1itself iterative,
the cost associated with generating system matrix entries
during each iteration may be prohibitive, 1f sc, then the
entire system matrix is accumulated prior to finding the
field solution, and a pre-conditioned conjugate gradient

method is used instead.
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Appendix A

THE POINT-ACCUMULATIVE, POINT-ITERATIVE METHOD
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Al INTRODUCTION

A linear system of equations -- as derived from finite ele-
ment discretization technigues -- can be solved by a point-
iterative process. Until recently, the practice has been to
solve these systems using direct sparsity methods such as
Zollenkopf bifactorization [37,38]. Most often, direct
techniques are cumbersome to implement and usually they im-
pose serious restrictions on execution time and main storage
requireﬁents. Large problems, such as those involving
three-dimensional fields, can only be solved directly by re-
sorting to intricate programming strategies [39]. The al-
gorithm presented in this Appendix however, requires minimal
programming effort and méintains all advantages (i.e. rapid
execution and reduced memory requirements) inherent in re-
laxation based methods [40].

Consider the generalized differential operator equation

H
by

Ly (A.1)

where L is self-adjoint and positive definite. The source
distribution for the field Vv is defined by f. Applying

standard discretization techniques, the linear system

Sy =b (a.2)
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is generated. In particular, application of the
point-iterative scheme to the steady state Laplacian equa-

tion

0T = (.3)

is discussed in detail.

Square-shaped two-dimensional elements and cube-shaped
three-dimensional elements have been implemented over a reg-
ular grid, and theoretical considerations for both types are

discussed.

A,2 VARIATIONAL FORMULATION

The variational principle [41,42] states that the solution
of equation (A.1l) can be obtained by minimizing the func-

tional

F=<lp,vp>-2<Ff,¥> (A.4)

where the bracketed terms denote appropriately defined inner
products. |

Through the use of Green's theorem equation (A.4) becomes

F= [ ()5 (wlav - 2 [F0 av (A.5)
0 Q
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and, as stated, is only valid for the Dirichlet

s (A.6)

and homogeneous Neumann

=>
{]
o

- Y (a.7)

boundary conditions. More general functionals are available
[43] for more complicated boundary conditions,

Discretizing ¢ by the Rayleigh-Ritz procedure

p=olyp=9"a (2.8)

and substituting (A.8) into (A.5) while enforcing

oF _
39 - 2 (A.9)
results in the linear system of (A.2) where
S = I(Vs!) -+ (vaT)dv (A.10)
Q
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and

1Y)

The integrals specified by S and b are first evaluated

numerically for a single finite element, and subseguently

accumulated on an element by element basis -- 1in a fashion
parallel to the finite difference SOR technique -- to form a
"virtual" global system matrix. In practice, the entire

global matrix 1is not stored as all accumulations are per-

formed only when required by the iteration algorithm,

A.3 MATRIX GENERATION

Using a double subscript convention, equation (A.2) may be

rewritten as
5 Tij 3 ij '3 i (A.12)

where

Siy = I(Vai) - (Vaj)dv

a (A.13)
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and

s =QJ"% - (A.14)

Modelling the media by the same finite element structure

used for the field allows p to be expressed as

ol
il
12
=
]
12l

"pEo P - (A.15)

Substituting (A.15) into (A,13), and factoring out p yields

12

- > T 2
53 _S,!Bi : * By dvp (A.16)

with the spatial vector § representing the gradient of the

scalar shape functions. An equivalent expression is
s, = [T B, v
ij g\ j P (A.17)
Q
which may also be written as
S35 ° E{Biﬂ,(akﬂ,mgmj)dv Py (a.18)
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or

17 S B (A.19)
The source terms (A.14) may be factored as
b, = B;j fy (A.20)
where
) BY5 = s{aia' dv (A.21)

It is important to observe that S* and B* are dependent only
on the choice of a and not on the media or source character-
istics.

With the finite element method, the interpolation func-
tions used in (A.18) and (A.21) need only be defined over
localized domains [44]. These functions are constructed
from an elementary basis which is defined in two parts: for

linear elements

W) L e s =y o (a.22)
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and for quadratic elements

1
>

{L3(x), L2(x), L3(x)|L? = ;-l L2 = 1-x%; L2 = Eigikl;—1 <x<1).(A.23)

The node numbering scheme displayed in Fig. A.l leads to the

scalar shape functions listed in Table A.1l.

3 4 T 8 9
y
4 5 4$6
X
1 2 b2 3

e 26 27
z 19 23 24
[ y 20 21 o i8
X 10¢ el $i12 9
6
t 2 3
o) Linear b) Quadratic

Figure A,l: Node Numbering
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TABLE A.l

Scalar Shape Functions

COORDINATE e
20 i |
LINEAR |i,j=1,2 J2(j-1}+1 Ll(x)Lj(y)
3D

LINEAR |i,j,k=1,2 [4(k-D+20j-0+ i LiILIyIL L (2)

20
Quabratic|i,j=1,3 | 3(j-1+i L?(x)sz(y}

3D
ouaoRaric| i, j,k=1,3 f9lk-0+3(j-+i [ LS5k

Any scalar set may be represented as

_al.
oy
) A.24
o = ( )
un
and the tensor as
= =
-— -
a, Gpq Usy
[ ] [ ] [ 3
hd ... -: o~ A A A ~ A
a, a +auvu +taouu
¢a a'a Jer T e ¢uu touu Ftouy
- 2 vu +auu +auu
a = |ga a aj = |: : . '+9yx-yy-yz
—— —— -l A A N A N A
a a a +a u +o0uu +auu
a o a -~ e e S U T2 U TN,
Tus Qg Qiag
[ 3 . » (A.25)
- - L
- - -
ag; Oigs Qg2




where for orthotropic media there are at most six indepen-
dent tensor components.

Once a set from Table A.1 has been specified, the local
finite element matrices, S* and B*, are calculated using nu-
merical integration. As an example, consider a particular
integral from S* for an inhomogeneous orthotropic media mod-

elled by quadratic elements

* _ *
Sijk - 526:16:101 * (A.26)
From (A.24) and (A.25)
O; = Oug
. = 0
3 e (A.27)

= A

k = %101 = g0 UyYy,

2|l

Using Table A.l1 the explicit form of shape function a;¢ with

k=3, j=3, and i=2 is

i 2001L2(x) = (1-x2) (YY) z(2%1)
dye = LILEYILEX) = (1-x?) (B4 (B2 (A.28)
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R S R

Similarly

0y, = (Ul g )

2 - +1) (a.29)
= (-x2)ysly 2zl

2
1

20

Referring to (A.13) and substituting B for the gradient

B, =Hye =y, =-2x (L ZEZN T 4 (1o02) (2P EERL 4 (1) (LD (2258

i
N BII?.G
=81,zei+82,253+83,25k =1 Baizg {A.30)
B3r26

and

By =8, =70y = (B RN (1227 + (U (2 1-02) 5 (2Ueay () o

3 2 2

B1'16
~

"81:15-i B, 63t Ba:zsk =| Baris {A.31)

B3 r16
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and therefore

0 BlrlG 0

0
o O %] By,06 | =] %20 B2, 16 (A.32)
0 0 83’16 0

% )
o
.
%

%% am ij = %20 0m Bmls

o O O

Finally, substituting (A.31) and (A.32) into the integrand
of (A.18) |

0

(a =8 o B

) =1[B ] 26,2 202,16 {A,33)

261 26 rZBZS +3

8. B .) =8

o
lﬁ(akzm mj 2082.16

0

26:2 202m ml6

reduces (A.26) to

1
1 -4
f% (x -x5-2x‘*+2x3+x2-x)dxf% (4y"-3y2-y)dyf7; (-z8+422°-22%+2%)dz = 13073
1

26:16 r101 4

i -1

(A.34)
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v
i

Note

would be required to evaluate (A.34) exactly [45].

maining S* matrix entries are

that a

sixth-order

trix stored, preferably in core.

through

a similar procedure,

Table 4.2

numerical integration

The vector

requirements for a variety of element types.

scheme

The re-

calculated and the entire ma-

B* is obtained

indicates storage

TABLE A.2

Local Matrix S* Storage Requirements,

Element Types

Homogeneous|Inhomogeneous|Homogeneous|Inhomogeneous
Isotropic Isotropic Orthotropic| Orthotropic

Linear

2D,n=4¢ (4,4,1) (4,4,4) (4,4,3) (4,4,12)
Linear

3D,n=8 (8,8,1) (8,8,8) (8,8,6) (8,8,48)
Quad.

2D,n=9 (9,9,1) (9,9,9) (9,9,3) (9,9,27)
Quad3D

n=27 (27,27,1) (27,27,27) (27,27,6) (27,27,162)

A.4 THE POINT-ITERATIVE ALGORITHM

Solving (A.12) for the i'th unknown and applying (a.19)

(A.,20) gives

b -

i

*
Sig%liey  Byyf

i3 3

*
53133 ars

Yy T

Sii

*
SiikPx
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s s S s R el e B G e )

S

which describes the field over the entire problem domain.

Although the global S* and B* matrices are exceedingly
large, they are also sparse, and therefore a great deal of
computational effort may be avoided by processing only those
terms which contribute to the final field solution. In
fact, when obtaining the solution at a particular node, only
immediately adjacent elements -- nearest neighbours -- gen-
erate contributing terms to the numerator and denominator of
(A.35). Because of this it is possible to work with reduced
local S* and B* matrices. The algorithm flowchart is illus-
trated in Fig. A.2.

Initialization consists of defining the media and source
characteristics and creating required local S§* énd B* matri-
ces dimensioned as in Table A.2. The field 1is assigned a
reasonable starting estimate which 1includes all Dirichlet
boundary conditions. Note that no restriction has been
placed upon intermixing of the various element types.

Once a node has been selected for processing, the algor-
ithm determines whether or not a Dirichlet condition needs
to be enforced. 1In a manner common to the finite difference
method, such nodes are bypassed.

Local element selection involves storing the element's
source, media, and field values into temporary vectors and

is better understood with the aid of Fig. A.3. This enables
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Figure A.2: Point-Iterative Algorithm Flowchart.
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the calculation of the numerator and denominator contribu-

tions to proceed in a straightforward manner.

Processing local -
Global =
“';" eiemena'f ’44 4’; -‘pz 2

Figure A.3:  Consruction of a Local Field Vector

Once all nearest neighbour elements have been processed,
the estimated node potential is accelerated by standard suc-
cessive overrelaxation techniques [36,46]. Iteration con-

tinues until solution has converged to the desired accuracy.
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