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ÀBSTRÀCT

À new melhod is presented for reconstructing distributions
of electrical conductivity from sets of potential measure-

menls t,aken over the boundaries.

The reconstruction process involves the solution of a

nonlinear system of equations generated by finite elemenÈ

discretization. The method presented decouples the nonli-
near system into three linear subsystems which are !hen

solved simultaneously using either a point-iterative succes-

sive overrelaxalion method or a combína!ion of point-itera-
tive and pre-conditioned conjugate gradient methods. The

technique obtains the best conducÈivity distribution -- in

the least-squares sense -- from simulated or measured data.

The conductivity inversion recovery procedure is applied

to both !rso and three-dimensional field probJ.ems, as well as

to resistance nelworks, and example solutions are presented.
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Chapter I

INTRODUCTION

Most imaging methods seek to reconstruc! the interior of a

region from sets of measurements taken either throughout the

region or over lhe boundaries of the region. Various means

of accomplishing the reconstruction have been proposed, and

a number of devices have been developed to exploit each

techn i que .

Chapter I briefly discusses some of the more common imag-

ing processes and attempts to highlight the main problem

areas for each. Chapter II provides background information
relating to an alternalive meÈhod, Impedance Computed Tomog-

raphy (tCt). It also reviews basic ICT conceptsi lists rea-
sons for preferring ICT over other methods in certain appli-
cations; describes perceived areas of useage; and surveys

relevant literature. Chapter III presents a new melhod for
reconstructing interior network resistance values from sets

of voltage measurements taken onlv at accessible network

nodes. Chapter IV, in a fashion lhaÈ parallels lhe nelwork

algorithm development, presents a novel technique for recon-

structing distributions of electrical conductivity from sets

of potenLial measurements taken 4!¿ over the boundaries.

Results of computer simulations are discussed Èhroughout.
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FinaIly, in addition to Ciscussing recovered image quali-
ty, Chapter v explores the question of excitation reguire-
menLs and points out possible effects due !o modellÍng er-
rors.

1.1 X-RÀY IMÀGING

The most common reconstruction methods are found in X-ray

lomography, where it is desired to recover the interior of a

body cross-section from sets of X-ray absorbtion measure-

ments. Às in Fig. I.1 the beam source and deÈector are

placed on opposile sides of the body and moved in tandem for
a prescribed number of intervals.

Figure 1.1: X-Ray Scanning Method.
(From Brooks and Di Chiro [3])

Àt each ínterval the beam traverses Èhe straight line (i.e.
ray-path) between source and detector, and suffers some

measureable loss of energy due to the attenuation coeffi-

- ¿-



cient U(x,y) of the media. Different body organs will have

differen! attenuation factors due to variatÍons in tissue

densíty and atomic number [1]. The transmitted beam inten-

sity is given by

I = I oexp l-.fu( x,y ) ds l (1.1)

where Io is the incident beam intensity.
The integral of the attenuation funcÈion aLong the ray-

path is known as the ray-projection p, and from (1.I) is

p = -l,n(I/Io) '
(r.2)

À complete set of ray-projeclions at a given angle consti-

tuLe a single projection. More projections are obtained by

repeating ray-projection measurements for as many angles as

necessary. In principle, an infinite number of projections

are required to reconsEruct the continuous two-dimensional

attenuation function. The problem however, is to solve

(1.1) for lr(x,y) given data only for a fínite number of pro-

jections [21. rhis ís accornplished by calculating u(x,y) at

a finite number of points, and involves the application of

either iterative or analytical methods.

3-
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i.¡ith iterative meÈhods, the usual strategy is to divide
the object into an array of pixels, and apply corrections to
each ceIl coefficient such that the most recently calculated
ray-projection matches the actual measured ray-projection.
Several iterative techniques are concisely described in [3],
i nc lud i ng:

i ) The Iterabive Least-squares Technique (ffsf) çhich

handles noisy data but often diverges due to over-

correction. This approach has also been used for
three-dimensional reconstrucÈion by stacked two-di-
mens ional reconstruct ions [¿];

ii) The Simultaneous Iterative Reconstruction Technique

(sIRT) which also accepts noisy data but executes

very slowly because of the large number of mutipli-
cat ions regui red; and

íii ) The Àlgebraic Reconstruction Technique (ARr) I5l
which converges rapidly but is unable to operate on

noisy data.

Àlso, as a general rule, mos! iterative procedures are sen-

sitive to the sequence in whích projections are chosen, pFê-

ferring large angles between consecutive projections.

With analytical methods the solution of (I.1) is obtained

directly using either Two-Dimensional Fourier Reconstruction

or Convolution Filtered Back-Projection [6]. The band-1im-

itíng employed in these methods causes the elimination of

spatial. freguencies greater than a prespecified maximum,



thus limiting the resolution of bhe final image. For in-
stance, depending on how sharp the cut-off filter is, bound-

ary overshoot (the Gibbs phenomenon) may be observed. On

the other hand an aliasing effect might occur if band-Iimit-
ing is not used, especially near high frequency zones such

as media boundaries. Both iterative and analytic met,hods

employ f iJ.tering techniques as a means of suppressing either
patient mo!ion artifact or numerically introduced aLtifact.
Filtering is particulary important for edge enhancement ap-

plications.

Ànother difficulty common lo anaJ.ytic methods is the ín-
terpolation reguired in lhe Fourier domain. Recalling thal
only one-dimensional projection data is available, it is
clear that only corresponding one-dimensional Fourier trans-
forms can be obtained. Yet, to generate an image, it is
necessary to find the two-dinensional Fourier transform in
order to acquire the sampling points needed by the inverse

transform operation. This leads to a significan! amount of
interpolation in the Fourier domain, a task which could

cause an excessive computa¡ional burden.

Whichever method is used, the projections must provide

enough data so Èhat Èhere âre as many eguations as there are

unknown attenuation functÍon values. In other words, an ap-

prbpriate set of independent measurements is essential.
Mathematically, Èhe X-ray imaging problem can be reduced

-tr-



to finding the solution of the linear system of equations

A-d=P (1.3)

where À is a coefficient matrix, d is a vector of unknown

ceII densiÈies, and p is a vector of line integral measure-

ments for each ray-projeclion IZ]. If ex!ra projections are

available the image becomes overdetermined and reconstruc-
tion will yield an averaged image in which noise and inter-
polation error has been reduced. If too few projections are

available the image becomes underdetermined and the recon-

struction is inaccurate and laden wíth artifact.
Àlthough large changes in densíty only occur at ínterfac-

es between bone and soft tissue or air, X-ray tomography has

neverÈheless been used to detec! differences in soft tissue
density as low as 0.5t. For example, Ít is now possible to
distinguish between cerebrospinal fluid cavities and braín
tissue, or even between white and grey maeter. Unforlunale-
ly however, lhis order of resolulion is not possible ín
every application. often, as with lung disease, the most

useful nay to employ X-ray imaging is to increase the X-ray

dosage and possibly over-expose certain organs. Radiatíon

hazard is a significant drawback to X-ray reconstruction, as

is scanner size and cost. Furthermore, X-ray methods are

relativeLy slow and Èhus unable to f olloer the dynamic activ-
ity of body organs.

-6-



In summary, this section has presented the nain concepts

of transnission tomography and has indicated several of the

methodrs problem areas. Much of the detail was included be-

cause of similarities present in other not so well-known im-

aging techniques. It is hoped this wilI assist in under-

standing t,he other methods, particularly Inpedance Computed

Tomography.

I.2 OTHER IMÀGING TECHNIOUES

A relatively recent three-dimensional imaging technique [8J

known as Positron Emission Tomography (ent) is based on the

determination of the distribution of gamma-emitting radionu-

clides in the human body. The method measures changes in

chemÍstry of injected radiopharmaceu!ical compounds by de-

tecting released photons during radioactive decay. From

these changes the emitted photon source location can be de-

termined. À PET reconstruction represents the radionuclide

concentråtion in the body ab a given time after injection,
and can be used to investigate brain and heart metabolism,

detect cancer, or even determine myocardial infarction vol-
ume [9]. Àgain however, the scanning equipment is bot,h

large and expensive and the method itself has the undesire-

able reguirement of injecting a radioactive substance into

the human body.

Nuclear Magnetic Resonance (N¡tn) is another imaging tech-

nique which is also similar to t-ray tomographyi bu! instead

|,".,

!,'

:,'

;,,

!.
i..
1,
i,:

t,:

:¡', ,

ì:
:



of x-rays NMR employs Radio Frequency (RF) radiation in the

presence of a magnetic field [10]. Broadband RF pulses ex-

cite tissue nuclei which then precess at a rate proportional

to the magnetic field strength at thal spatial location. By

measuríng the total magnetic energy as a function of fre-
quency, the integrals of the spin density of hydrogen nuclei

can be obtained. This procedure is analogous to finding an

X-ray projection, and the inversion proceeds in a somewhat

similar manner. À significant advantage of NMR is that it
does not use ionizing radiation nor does it present a known

hazard [11]. A major problem is that NMR equipment is very

expensive and Limited mostly to research applications.

Another reconstruction method involves the use of ultra-
sonics. TypicalIy, short bursts of ultrasonic energy are

directed through the image space and appropriate attenuation

and delay !ime measurements are recorded. These measure-

ments are used !o generate absorbtion and velocity profiles
(projections). The inversion is performed iteratively as in
X-ray tomography, possibly with an additional aIlol¡ance for

ray curvature [12]. Currently, efforts are being directed

tor¡ards substituting ultrasonic tomography for X-ray tomog-

raphy where possible, even though there is evidence which

indicates that ultrasonic energy absorbed by a living body

is not entirely innocuous [49,50] . Another problem is that

diaphonous objects (those with smaLl variations in the

acoustic refraction index) cannot be imaged very weII. This

ir.l



is particularly true in soft tissues such as the lung where

ultrasound is highly at tenuated.

Some of the other imaging methods díscussed in the liter-
ature include;

a) Microwave imaging by the ÀRT algorithm, which is po-

tenLially rnore sensitíve and less hazardous than con-

vent ional X-Ray technigues [13J;

b) Cardiopulmonary imaging, which is based on measuring

the body surface field distribution resulting from

high frequency electromagnetic stimulation. There-

after, this technique incorporates a calculation of

the apparent interior resistivíty distribution [14];
and

c) Resistive imaging, for which background information is
reviewed in the next chapterf followed by a presenta-

tion of new recovery algorithms.

-9



Chapter I i
REVIEW OF RESISTIVE IMÂGING

Since neither x-ray nor ultrasonic imaging is adequate for
every application, att,ention is gradually shifting to meth-

ods which rely on different physical properties of the me-

dia. F.or example, consider imaging an electrical parameler

such as conductivily (or resistívity) from current injection
data. This technigue may be especially important in the
medical area as weak electrical currents are believed to
have no adverse effects on humans.

The renainder of this chapter provides information per-
Èaining to the variation of electrical parameters in dielec-
tric media; discusses nonimaging impedance-based techniques;
and reviews several existing approaches to resistive tomog-

raphy. NoveL algorithms for resistive imaging are presented

in followi ng chapters.

2.L MEDIÀ PROPERTIES

The two electrical propertÍes of inÈerest in ímpedance imag-

ing are conductivity and permittivity. However, if excita-
tion frequencies are 1ow enough -- approximately on the or-
der of I kHz. -- then for most medÍa reaclive effects are
negligible [15] and the technigue is referred to as resis-

- 10 -
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tive imaging (or its reciprocal, conductivity imaging). The

method relies heavily on lhe variation of resistivity magni-

tude throughout the region; slight resistivity changes would

be much more difficult to image than order of magnitude var-

iations.
Typical resistivity/conductivity values of human body

tissue reported in the literature [16] are:

a) Blood G 160 ohm-cm or 6.25 millimho,/cm;

b) Lung G 2000 ohm-cm or 0.50 millimho,/cm;

c) Liver G 700 ohm-cm or I.40 millimho/crn; and

d) Heart muscLe (anisotropic) G 250 & 550 ohm-cm or 4.0 &

1.8 miIlimho,/cm.

These estimates were obtained using a four probe measurement

technique that eliminated the effect of contact resistance

on the meâsurements. However, the reliability of such data

is stilI questionable since much of the testing was done af-
ter death when cell membranes could no Ionger maintain prop-

er ionic gradients. In this situation tissue resistivity
may change within 30 to 60 minutes [17], thus affecting the

measurement,s.

Observation of the above data leads to the conclusíon

that conductivity ratios for various body organs are as high

as 12.5 to 1.0. This satisfies the previously discussed im-

aging criterion that resistivity variations be significan!.
Similar sets of conductivity data have been tabulated for a

variety of soils and rocks [18] and again, the ratios vary

-11 -



significantly from one region to the next. The imptication
is that resistive imaging may also apply to the important

f ield of geophysical prospecÈing,/subsurface .exploration.
Considerable effort has been expended to study the effec!

of media inhomogeneities upon electrical fields, especially
in medical applicaLions. In one such study, three-dimen-

sional finiLe element models were used to evaluate proposed

techniques for recording thorax impedance during cardiovas-

cular function ¡nonitoring [19]. Interior body tissue struc-
tures such as lungs, muscle waIIs, and ventricles were con-

veniently modelled and tested under boundary conditions

appropriate to the particular impedance measurernent techni-
que beíng investigated.

In another study [20], two-dimensional finite elemen!

analysis was employed to analyze the sensitivity of body

surface potentials to interíor changes in conductivity.
Various sirnulations indicated that even small conductivity
changes -- such as an increase in lung waler -- would cause

significant surface potenlial changes, thereby improving the

chance of detecting internal conductivity change by external

rneasurements.

À third study applied finite difference methods to elec-

tric field calculations [2f]. Successful models were estab-

lished of intracranial fields due to brainstem dipole neural

generators, and researchers eere able to predict the effec!
of local brain inhomogeneiÈies on the fields.

-t2-



Taken together, these studies demonstrate that conductiv-

ity differences within a media can be detected and observed

by external measurement procedures so long as these differ-
ences are relalively significant.

2.2 BIOPHYSICÀL IMPEDÀNCE METHODS

The process of monitoring impedance fluctuations in the body

to determine heart and lung changes is knoçn as impedance

p1e t,hysmog raphy . An important development occurred in 1970

wíth the advent of an Impedance Cardiograph unit IZZ) tor
use in impedance pte thy smography . By injecting a constant

current through the thorax and measuring the potent,ial dif-
ference between two electrode bands -- which were secured

around the thorax but not connecÈed to either injection
electrode -- it was possible Èo obtain an estimate of the

meån thorâx impedance and t,he rate of change of Èhis irnpe-

dance during a cardiac cycle. These two parameters were

then used to assess cardiac output, lung volume and inLra-
thoracic fluid accumulation. Using such an approach, at-
tempts have been made to explain t,he relationships betneen

impedance waveforms and bionedicaL events. For example,

some researchers have concluded that impedance cardiography

yieJ.ds very useful information about the haemodynamics of

var ious body organs [23J.

IsopoÈential napping has also been employed in medical

applications. À device was constructed for electrocardio-



graphic or electroencephâlographic use t24l , nhich took an

array of vollage meâsurements over a body area and provided

a simultaneous display of lhe collecLed data. However, the

technology available at that time was just loo slow to pro-

vide real !ime data collection and display capabili!ies.
Other researchers J.ater provided a high speed data acquisi-
tion and display unit [25i which could be updated after each

cardiac cycle. They also utilized computer processing of

lhe collected data to produce isopotential maps from 2,048

self-generated locations on the chest surface.

The impedance plethysmography method may be modified to
include a set of pickup electrodes for body surface voltage

measurements, ín which case it is known as electric-field
plethysmography [26J. This method aIlows the examination of

surface electrode potential differences and yields informa-

tion about heart position and cardiac output with very Iit-
!le interference from changes in lung conductivity.

The nexÈ major innovation, the Impedance Camera [27],
represented a sorl of hybrid of t,he above methods, and

sought to display isoadmittance contours of the ches! rather

than isopotentials. À regular array of eighty mutually

guarded electrodes was fixed to a patient's back, and a one

volt signal was applied across the whole chest area. The

guarding procedure was intended to effect a long and narrow

measurement volume positioned on each electrode. Current

flov through each electrode was recorded, and the corre-

-14-



sponding volumers impedance calculated and processed for

contour display. This lechnique is very brude however, as

the measurements do not reaIly account for current spread

throughout inhomogeneous body organs.

Note thaÈ although any of these biophysical impedance

methods will aIlow for physiological inÈerpretation of meas-

ured data, none of them can perform image reconsÈruction.

2,3 RESISTÀNCE PROJECT]ON METHODS

The main impediment to resistive reconstruction is the fact

thaE electrical currents do not travel in slraight lines,
but rather they travel a path which is entirely objec! de-

pendent. In resistive imaging the current path can only be

determined from precise knowledge of the conductivity dis-

tribution, r¡hiIe conductivity reconstruction can only be ac-

complished with knowledge of the current flow paths. Àlge-

braically this may be expressed as

A(d)É = P
( 2.1)

where the coefficient matrix À depends on the solution d.

The problem is therefore nonlinear and cannot be solved with

the sâme algorithrns used for (1.3) since the Ieft-hand side

cannot be accurately evaluated unless the current paths are

known.

-15-



Àn extension to the previously discussed ART algorithm

has been proposed [28] rhich attempts to handle such nonlÍ-
nearities. The method is based on the soluÈion of Laplace's

equation -- under measured boundary conditions -- within an

iterative loop. . The physical arrangemenÈ consists of an ob-

ject (inside a water tank) and a regular array of electrodes

that are secured to the tank's outer surface. À measured

projection is oblained by applyíng a known voltage to the

electrode array, measuring the current flow through various

electrodes, and calculating gross impedance values at each

measurement site. The object inside the tank is then rotat-
ed, thereby altering the current flow paths as well as the

measured current. The result is a set of resistance projec-

tions (or a profile) for each objec! angle.

To initiate the recovery process a conductivity distribu-
tion is assumed and the electric field numerically computed.

After streamlines (or current paths) are determined from the

potential field gradients, resistance projections aLong the

current paths are calculated for each objecÈ orientation an-

gIe. Comparing calculated agains! measured resislance pro-

jections alIor{s the original estimate of conductivity dis-
tribution to be corrected by a back-projection technique.

Repetition of this procedure continually updates current

flow paths and resulting conducÈivity estimates. Typically,
only several iterations are required for the process to con-

vergei however, this does not mean an accurate solution has

been obta i ned.

16-



Often, the mean-square reconstruction error can be as

high as 30å when compared to the "exact" solulion. In some

cases convergence may not even be possible unless a mathe-

malical operation such as smoothing or underrelaxation is
performed between conductivity iterations. In other cases

the number of different projection angles needed to obtain a

reasonable image is excessive (e.g. greãter than 400), thus

increasing the required computational effort.
Ä similar approach using impedance projections and a mod-

ified ÀRT algorithm [29], but with many more electrodes, has

been proposed for certainmoderate-resoLution geophysical

applications. The main objective is to develop an impedance

camera useful for geophysical diagnostics in geologicaL and

mineral prospecting applications. in the past this was done

r¡ilh crude electrical impedance methods [30j !¡hich calculat-
ed an apparent subsurface resislivity of horizontally lay-
ered models [31]. Potential applications of the impedance

camera are said to include core sample and borehole anaty-

sis, as weIl as general subsurface imaging.

Àlmost aJ.1 proposed impedance computed tomography methods

are based on the resistance projection techniques just de-

scribed. Inherent to these iechnigues is the important as-

sumption that current paths foIlow essentially siraight
Iines, nuch the same as .¡:-ray beams. In reality, current

flow paths are highly object dependent and this assumption

is fallacious, even when guard electrodes are employed. Ée-

-17-



cause of this some researchers argue that iÈ is not possible

to perform impedance reconstruclion by slandard projection

methods. Instead, they point out the need for alternative

schemes and suggest an approach in which general distribu-
tions of conductivity may be reconstructed by a nmodaln

identificaÈion and measuremenÈ process [321.

The point to stress is that more information is needed

for conductivity reconstrucÈion than could easily be ob-

tained f rorn the usual resistance projection methods. The

next two chapters outline a ner¡ procedure which may yield

thi s addit ional information.-

2.4 NETWORK FÀULT DETECTION

ÀIthough the previous section emphasízed inaging of continu-

ous conductivity distributions, lhe problem of imaging (or

discovering) discrete network paraneters is also very impor-

tant. this is especially true in view of the growing demand

for automatic testing and fault analysis of computer sys-

tems. In eilher case Ehe objective is to calculate circuíl
component values from sets of node point . fneasurements and

determine those components which do not meet a specific tol-
erance criterion. If detection of unacceptable componenls

could be done automatically this would certainly alleviate a

significant amount of the cost burden associated with manual

search and detect methods.

-18-



It is possible to employ Tellegen's theorem to esÈablish

a relationship between current and voltage changes in an

original circuit and an adjoint circuit. Under suÍtable
branch constraints this method may uniquely determine compo-

nent variations from Iimited sets of port meâsurenents.

However, to accomplish this it is very important to obtain
enough independent port measurements to solve alI unknown

component values. Other techniques have been used for de-

tectìon of multiple faults in analog circuits [33]. Another

algorithm [34] employs graph theory and suggests necessary

and sufficient conditions for discovering particular netvrork

components. Other techniques¡ more general in scope, ât-
tempt to direct current in a beam-Iike fashion through the

resistor mesh [35] and acquire sets of profile meâsurements

for processing in a manner similar t,o X-ray computed tonog-

raphy. Because these techniques have only been partially
successful , discrete netrrork imaging remains an unsolved

problem.

The next chapter presents a novel atgorithm for determin-
ing resistive network component values from limited sets of

measurements.



Chapter I I I

IMÀGING RESISTÀNCE NETWORKS

The network imaging algorilhrn presented in this chapter ef-
fectively decouples the nonlinear system described by (2.1)

into lhree Iinear subsystems which are subsequently iterated
until convergence is achieved. Two of the linear subsystems

are used for determining node potentials while the third is
used for calculating branch conductances. The node poten-

tial formulation wilI be considered first, followed by a

presentalion of the branch conductance calculation and the

network imaging algor i thm.

3.1 DETERMINING NODE POTENTIÀLS

Consider the resistor mesh of Fig. 3.1. Application of Kir-
choff's Current Law to an independent set of network nodes

leads to the linear system of equatíons

Y!=j (3.1)

where Y is the nodal admittance matrix, û is the vector of

unknown node potentials and i is the source vector. Here,

the node potentials result from imposition of currents at

selected boundary points.
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Even though the admittance matrix is singular, both

systems can be solved using either a point-íterative or a

pre-conditionedconjugate gradient method. However, !rith

lhis approach the solution wilI only be correct to within an

arbitrary constant [36]. Later it will be shown thât the

arbitrary constant is irreLevant since the imaging algorithm

ultimately requires only potential gradien! information.

The Nodal Àdmittance Matrix

Conslruclion of !he nodal admittance natrix is a relatively
straightforward procedure. Fig. 3.1 illustrâtes typical
numbering schemes for mesh nodes and mesh loops. For ease

of programming it is best to cycle through all loops and

perform a random accumulation of admittance matrix entries
for every node contained within each loop.

Às each loop is selected -- and depending upon the loca-

tion of the loop ín the mesh -- it is necessary to choose

from one of the four possible accumulation patterns depicted

in Fig,'s 3.2 - 3.5. Àfter processing aLl loops the admit-

tance matrix has been completely assembled, and equations
(3.1) and (3.2) are easily solved for the unknown poten-

tiaIs.
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Figure 3.2:

Yp,p-9r+92

Yprr,P*t*9t+93

YP+Nx, P+Nx*92+9c

YP+N¡+t,P+Nr+l-93+94

YP,P+l - -9t

YP,P+Nx* -92

YP+l, P+Nr+l- -93

YP+Nx, P+Nx+l+ -g4

for Top Right Corner Loop.
J=Ny-t p=r + (J-t )Nx

Àccumulat i on
I =NX-1

PtNr P+ Nx+ I

Yp, p -9¡+92
YP*t, P*r -9t i93

YP+Nx,P+Nx-92

YP+Nx+1, P+Nx*l -93
YP,P+|- -9 

r

YP,P*¡¡*t-92

YP+t, P+Nx+l--93

3.3: Àccunulation for RighÈ Side Loops.
r=NX-1 J=I.. (Ny-I) p=r+(J-t)Nx

03

P+l

92

Figure

-23-



:æ

..':

Figure 3.4: Accumulat ion
r=1..(Nx-l)

Yp, p -9¡ +92

YPrl,P+l*91

Yp+Nx, P+Nr -92 +94

Yp+Nx+1, p+Nx*l- 94

YP,P+I - -91

YP,P*N* -'-gz
Yp+Nr,P+Nr+l- -94

for Top Side Loops.
J=Ny-1 p=I+ (J-1)NX

P+Nx

"l- ^-

YP, P -91 +g2

YP+l, p+l *g¡

YP+Nr, p+Nx *92
YP, P*¡ * -g¡

Yp, p*lr¡r* -gz

P+l

Figure 3,5: Àccumulation for ÀIL Other Loops.
r=1.. (Nx-2) J=1.. (Ny-2) p=¡+(J-1)NX
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Node Potentials Due To Àn Àpplied Current

Using the pre-conditioned conjugate grâdient meÈhod to solve

(3.1), for an impressed current input and withdrawal of one

amp, yields the node potentials of Fig. 3.6. The conductiv-

ity network employed by this calculation is also given in

the same f igure.

1000 1000 1000
1000 1000 1000 1000

r00c 5000 1000
1000 5000 s000 1000

1000 5000 1000
1000 1000 1000 1000

1000 1000 1000

Conductivity Mesh

0.034
0.11¡5
0.3ó7
0.867

..7

-0. c?? -0.300 -0.800
0.03tr -0.022 -0.300
0.c89 0.03r¡ -0.c77
0.367 0.145 0.03r¡

Node Poten! ials

Figure 3.6: Node Potent ia 1s
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Node Potentials Ðue To Àn Àpplied voltaqe

The same neÈr,rork, but r¡ith voltages impressed at aII bounda-

ry nodes rather than current a! tr,ro nodes, results in the
node potentials of Fig. 3.7. When solving a singular matrix
the solution only wiII be correct within an arbitrary con-

stant (we are only concerned with gradients so the constant
is not relevant). For example, in the figure below we find
the same boundary potentials as in the previous figure by

subtracting the constant 0.008 from all nodes.

1000 1000
1000 1000

100 0 500 c
1000 5000

1000 500c
1000 1000

1000 1000

0.833 0.122
0.944 0. e33
1.167 0.889
1.667 1.167

1000
1000 1000

1000
5000 1000

1000
1000 1000

1000

0. 500 c.00c
0.178 0.500
0.833 A.722
0.944 C.83 3

Figure 3.7: Node PotentíaIs for Impressed VoItage.

3,2 CALCULATING BRANCH CONDUCTÀNCES

Once the potentials have been obtained at alI network

the branch conductivities may be deterrníned. Consider

Iaw as it applies to a single-conductor branch

gv=j

-26-
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where g is the branch conductivity,
and j is the branch current. If a

extend from node i to node j Èhen

pressed as

v is the branch voltage,

branch is considered to
(3.3) may also be ex-

(3.6)

Si¡(vi-vi) = ji¡ (3.4)

where g' represents branch conductance and j.. is branch

current, but v. and v, are node volt,ages.

The Least-Squares Residual

Treat,ing branch conductances as unknowns and considering all
excitations, x, allows the forma!ion of a least-squares res-

idual from (3.4)

r = I ¡i.{(v.-vr)srr- jrr}, (3.s)

which can be minimized by taking lhe partial derivative with

respect to branch conductance and equating it to zero

rÊ: l- = | 2{(vr-v.)sr, - jr,}(vr-v,) = o

-27-
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Conductance Equations in Point Form

Simplifying (3.6) gives

2

¡ (vr-vr)sr, = Ì irt (vr-vr)

and solving for the unknown branch conductance yields

! jtr(vt-vt)
0.. = -----:----------.i-;-- 

.-11 
ì (vi-vj)'

| (Vi-üi)õi¡(v1-vi)
Et¡ = --iTrr-r:)--

The branch currents are not known in advance and must be

determined prior to employing (3.8) ín a conductance calcu-
lalion. Typically, they are obtained from (3.1), in which

case (3.8) becomes

(3,7)

(3.8)

(3.9)

where Y, and vj are derived from an assumed set of network

conductance values, õ1¡ , under an applied boundary voltage,
while ii and ùi are based on the same neÈHork under an ap-

pl ied boundary current.

-28-



Conductance Solution From Exact Potentials

If the exact potentials are known, say from measurements on

the network, but the conductance values are unknown, then it
is possible to iterate through (3.9) and improve lhe origi-
nal gii estimate. The procedure is repeated until conver-

gence is achieved, a! çhich time the best fit (in a least-

sguares sense) conductance network will have been attained.

Fig. 3.8(a) shows an "exact" net\eork from which node po-

lentials are obtained for both an applied vollage and an ap-

plied current. These computer simulated measurements were

used in (3.9) along with the initial conductivity assumption

of Fig. 3.8(b). The final result after thirty iterations

ís depicted in rig. 3.8 (c ) .

1000 10cc 1000
1000 1000 1000 1000

1000 5000 1000
1000 s000 5000 1000

1000 500c 1000
1000 1000 1000 1000

1000 1000 1000

(a)

1000 1000 1000
1000 1000 1000

1000 1000 1000
1000 1000 1000

1000 1000 1000
1000 1000 I000

1000 1000 100c

(b)

1000

1000

10 00

1000 1001 1000
1000 999 1001 1000

1000 4999 1000
1000 r¡996 5005 1000

1000 q999 1000
1000 999 1001 1000

1000 1001 1000
(c)

Network Conductor Values.
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3.3 . THE NETWORK IMÀGING PROCESS

When neither branch conductances nor node potentia).s are

known, one must resort to a hybrid algorithm emp).oying both

of the previously discussed met,hods of finding node poten-

tials in conjunction with the technique for determining
branch conductances. During lhe imaging process it is the

boundary poÈential information which connects the three Iin-
earized subprocesses together thus leading to successful
network recovery.

In Fig. 3.9(a) an nexact" network ís modelled. Using

boundary excitations, the node polentÍals are determined at
all boundary nodes for each independent excitation. In
practice the boundary potentials are measured rather than

simulated by a computer program.

The solution process is ini!iated by providing a guess of
all network conductor values (usually aII set, to the same

value) and then generating Èhe tno sets of node potentials
indicaled by Fig. 3.9(b) and Fig. 3,9(c). The node poten-

tials of Fig. 3.9(b) are obtained for the same current exci-
tations used in Fig. 3.9(a), while the potentials of Fig.
3.9(c) are derived from enforced boundary voltages.

Fig. 3.9(d) shows that the next conductance estimaLe is
generated from a combination of: lhe most recent conduc-

Èance estimale; the node potentials of Fig. 3.9(b) which re-
sult from applied currenÈsi and the node potentials of Fig.
3.9(c) which are due Èo apptied boundary voltages;
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10+--ltro
1000

1000

Figure 3.9: Network imaging process.

3.4 NETWORK RECONSTRUCT]ON SIMULÀTIONS

À number of examples follow which illustrale both the suc-

cess Èhis algorithm has achieved thus far, and the difficul-
tÍes which have yet to be overcome. In all cases the origi-
nal network appears on the left-hand side of the figure
ehile the recovered version is located on the right-hand
side. 't000 10c¿¡ 1c01

1000 991 100 5 99c
1003 48rt3 1004

998 51q0 q850 1000
1003 ttSl¡t¡ 1C04

1000 9s7 1005 999't000 100¿t 1001

1000 100c 1000
1000 1000 1000 1000

100 0 q999 1000
1000 5000 5000 10001000 4999 1000
t000 .t000 1000 10001000 1000 1000

High ConducÈance Palch.
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Figure 3.10: One
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496 0 1031 4724
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978 1035 4750 Iter.
1000 1020 999 1CC2
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F i gure 3.11: Two
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Hígh Conductance Patches.
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À SÍngle Res i stor .
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Figure 3.I3: Short
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Chapter IV

FINITE ELEMENT RESISTIVITY INVERSION

This chapler considers the problem of reconstructing both

Èwo and three-dimensional dislributions of electrical con-

ductivity from boundary or surface potential measurements.

The reconstruc!ion process involves the solutíon of a nonli-
near system of equations generated by finite element discre-

tization, and obtains the best conductivity distribution --
in a least-squares sense -- from simulated data.

Ànalogous to the resistor netvrork fornulation, the method

used here decouples the nonlinear system into three linear

subsystems which are then solved simultaneously. Two of

these subsystems are employed for solving lhe scalar elect-
roslalic field while the other determines the conductivity

distribuÈion. The electrostatic field solution will be pre-

sented firsL.

4.T ELECTROSTÀTIC FIELD SOLUTION

Àssuming a given conductivity distribuÈion, the required en-

ergy functional for soLving Laplace's equaÈion is

F=/rvô.vôdu-z[uúav
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which is valÍd for Dirichlet or homogeneous Neumann boundary

conditions. Using the Rayleigh-Rilz discretization proce-

dure

o=grs=s19 (4.2)

equat ion ( 4.1) becomes

2ö1 (of ¿v- )- (4.3)

Di f f erent iat ing eith respecÈ to the field unknowns yields

r = Ar( KVo.vùÎdvó-Jv:

which if equated to

$f = z/.v*.vsrdvg - zl erav

zero and rearranged becomes

frvcr'vordvo = f ar¿vJ1t ¿ Jv'

(4.4)

(4.5)

(compare 4.5 against 3.L and 3.2) or

sg=Þ

- 35
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where

and

tr: = /" ri Vci. Vc¡dv

o, = I"aifi dv

(4,7)

(4.8)

Eduation (4.6) is a system of linear equations that can

be solved for the discretized field. One approach is to in-

voke a conjugate gradient procedure which accepts the S ma-

trix and returns the calculated field values. Such routines

have been developed by Nakonechny 147,481 at the university

of Manitoba, and preliminary versions have been borrowed for

use here. Another approach employs the point-iterative

methods outlined in the Àppendix. The next section shows

how the point-iterative method could be used to obtain the

discretized electric f ield solution.

Electric Field Equations In Point Form

Expanding along row i and solving for tbe i'th unknown gives

la.fdv- I ff rVa..Vc,dvló.
. )u' j,)li')v I l '')
Yr-" 

Ju*(Var.Vcr)dv
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For ease of programning

be expressed as

so that (4.9) is now

Qi=

the conductivity and sou rc e may also

K= grr

oTf

= K¡O

= frq
(4.r0)

(4.11)!/"oio¡dv 
r¡ -r,l=rtif(vor'vor)o* ¿v *nlo,

i/ to' 'vai)o* dv <*

Às the shape functions are known, the required integrals
are precalculated inlo equivalent weighting faclor arrays.
Thus (4.11) is simplified to

Qi= T 
utrt, -i,l*rli wtJ***lo,

(4.t2)
T
K

wiik"r
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If the conductiviLy is defined as constant lhroughout each

element then (4.12) reduces to

ôi=
x V..f.-K. I l.l.. ó.
j Il I rj,jli 1l'l

r. l'1..
I TI

(4.r3)

resulting in a slight loss o! modelling accuracy, but a mod-

est improvement in programming effort and program execution

t ime.

Current injection sites are easily handled by assigning

t. the numerical value of the impressed current density at
1

the i'th node. Nodes which are to be held at a fixed poten-

tial are nerely skipped over by the algorithm during lhe

processing of (4.12) or (4.13).

Neumann FieLd Calculation

Imposing a curren! input and withdrawal of one arnp

conductivity distribuÈion shown on the left-hand
Fí9. 4.1 results in the Neumann fietd pictured

right-hand s ide.

on the

side of

on the
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Figure 4.J.: Conductivity Distribution and Neumann Field.

Di r ichlet Field Calculation

The same conductiviLy distribution, but under an enforced

boundary potential distribution resuLts in the DÍrichlet
field of îi9,4,2.

Di stribution and
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4.2 CONDUCTIVITY DTSTRIBUTION SOLUTION

Once the potential field has been obtained throughout the

region the conductivily distribution may be determined. De-

velopment of the spatial conductivity recovery method is
based on the point form of Ohm's law, and closely parallels
the branch conduàtance imaging technique of Chapter III.

The Least-Squares Residual

Recall ing that

Ë=-v0 ( 4.14 )

and

i = "Ë = (4.rs)

(compare 4.15 bo 3.3) a Ieast-squares residual is formed

r = lft*vO +i)'(rv4 +i)av (4.16)

where x refers to current excitaÈions. Taking lhe inner

produc t

= Ìf"(t*vo.vo<) + rvq'i + i'rvô + i'i)¿v
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and simplifying produces

r = r/ (KvO'vqç +2rvg'j +i'i)dv

Substituting (4.10) into (4.18) gives

( 4.18 )

dr-
dK-

l:¡.1

. =.1 [(rrevo.vqgrr +2<roi.vo +i.i)¿v
xJv- - (4.19)

Às in (4.4), equation (4.I9) may be mini¡nized

zr;r evo.vofdv< + 2zluoJ.vgdv = 0 (4.20)

and simpli f ied to

crvô.vôürdvK= - r I ci.v4ov- x )v - (4.2r)

which again represents a I i. near system.

'-,|"
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Conductivity Eouations In Point Form

Solving (4,21) for the conductivity at the i'th node produc-

es (compare 4,22 Eo 3.8)

(4.22')

Using (4.2) the x-component of the field gradient becomes

(4.23)

The y and z-components are generated in a similar mannerl

thus (4.22) is now written as

(4,24)

Since the current density is not known in advance it must be

determined prior to employing (4.24) in a conductivity cal-
culation. initially, a conductivity distribution is assumed

and using (4.2) the x-component of the current density can

be expanded as

_ _ 
r/ori'voav -¡ .,ìrrl(orvo)'(voor)dv <,

l/ ("tve¡' (o vÖ)dv

r*=-r#= lo¡**"¡ 
lrr_r",

#=çe=e'#=t*'-

âo¿ -
3x vl "i (4.25l.



lã=

Performing similar expansions for .1, and Jz allows (4.24) to
be ïr i Èlen ås

",",,+ +.+ + *þ þta"ì.0"r*l - r,, t* f '¡,(* * -? *.ä *''"','
rrg /".it-ii rf - þ.þþro*,,,, (4.26)

which, through the use of weighting factors, simplifies to

l{l rË å 
wils.õ.0.1*1 - 

:,\*r l x !lr, *0rô* rJ+r)
(4.27)

rrrl,l "ô"0x 0- m l-rJ¿m J( m

Àgain, further simplification is possible by employing

constant valued conductivity elements. In this case (4.21)

signifies a pure diagonal form and (4.27) reduces to

-n+ I _'a
å 

wr,* oLÓ*
(4.28)

,-n+l _
I

-.1 rlttl- õ"01X,Q,m )¿m Im
tlx9,

The õ represents a

boundaries while 0

boundaries or f rom

boundary conditions.

field derived using natural Neumann

is derived from either total Dirichlet
a combinalion of Neumann and Dirichlet
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Conductivity Solution From The Exact Field

If lhe exâct potential fields are known, but the conductivi-

ty distribution is unknown, then it is possible to iterale
through (4.27) or (4.28) and improve the original conductiv-

ity estimate. The procedure is repeated unt.il convergence

is achieved, at which lime the best fit (in a least-squares

sense) conductivity distribution will have been attained.

Fig. 4.3 shows an nexactn conductivity distribution from

which the the electric field is obtained for both Neumann

and Dirichlet boundary condi!ions. These computer simulated

measurements Here used in (4.28) along with the initial con-

ducLivity assumplion which appears in the same figure. The

finaL recovery after several iterations is also depicted.
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Figure 4.3: Exact, rnitial, and Recovered Conductivity
Distribution.
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4.3 THE IMÀGING ÀLGORITHM

When neither the conductivity nor field dislribution is

known, one must resort to a hybrid algorilhn employing the

methods outlined in the previous sections. It is the bound-

ary information -- either measured or sinulated -- which

connects the three Iinearized subprocesses together thus

Ieading to successful image recovery.

In Fig.4.4(a) an exact conductivity distribution is mod-

eIled. Using boundary excitations in two-dimensional prob-

l-ems and surface excitations in three-dimensional problems,

the field distribution is dete,rmined for each independent

excitation. In practice boundary or surface potenlials

would be measured ralher than simulated.

{¡!æt

Finibe ELement Imaging Process.

f{.}'*rø

tÈ

Figure 4.4: The
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The solution process is initíaLed by estimating the con-

ductivity dístribution (usually homogeneous) and generating

the tv,o f ields indicated by Fig. 's 4.4 ( b) and 4.4 (c ) . The

field of Fig. 1.4(b)is obtained -- v,it,h lhe same current ex-

citations used .in Fig. 4.4(a) under natural Neumann

boundary condit.ions. The field of Fig.4.4(c) is determined

under Dirichlet boundary conditions. No currents are im-

pressed during this phase of the calculation.
Fig. 4.4(d) shows that the next conductivity estimate is

generated from a combination of:
i) the most recent conductivity estimate;

ii) the current density approximation (4.25) obtained

via t.he Neumann fietd of Fi9. 4.4(b); and

iii) the Dirichlet field of Fig. 4.4(c).
This process is repeated unlil the desired accuracy is
achieved.

Fig.4.5 presents a flowchart in whÍch the conjugate gra-

dient melhod is used to obtain the electric field estimate.
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4.4 SIMULÀTION EXÀMPLES

There are two methods of displayíng recovered images; gray-

leve1 (density) shading and relief plois. In the figures
that follow, densiby plots are presented for some of the

two-dimensional images. In several diagrams corresponding

relief diagrams are presented above the density plot for
cornparison. Based on experience, representing the conduc-

tivity value as the third dimension provides important in-
formation concerning recovered image edges and corners. In

most figures the exact solution is displayed in the left-
hand column and represents the ideal recovery.

In several two-dimensional cases, excitation patterns are

below the recovered images. The lines superimposed on the

grid structure indicate a particular input and output cur-

rent site. In a general senser they also relate to the cur-
rent fLow within the region, but by no means are they meant

to indicate "beam-1ike" current path behaviour. Fig. 4.13

illuslrates the effect of filtering a !wo-dimensional step

function, a procedure which may be employed for edge discov-

ery or enhancement purposes. Excitation patterns are simi-
lar in, three-dimensional cases, except that. some examples

have exciiations distributed over aI1 sides, whereas other

examples maintain top surface excitations and measurements

onIy.
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2-D Resistive TomograÞhv Simulations



n srnz¡¡x-z¡/9*o).in2 ((v-2)/7*t1)+ 1- l

: ! q\te,i,i,"1.

2SxS tl
)<,U¿Q
-- J - |i'.*, '1 =

r( (x. 1)

Recovered KaÞDâ
300 Iterarioñi

Figure 4.6: A Smoothly varying Conduclivity DistribuÈion.
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Figure 4.8: Two-Dimensional SPlit

-52-
I after I00 Iterations.



ir,tlnt$if:ili

LEE¡{T

i: ä:i H:itîÊi:t-': ã:.": *iïtii:
:. I-9 !o Erctt.tt6¡r ¡ too ¡tú¡tidr¡-
:. 3-g 19 Excrt¡ttør¡ & joo rtr¡tr.n¡-
:. i-l ?o E¡clt.tiûr. ¡ soo rt...t¡dr¡.
l. ?-D 2o E¡ctt.ttqr¡ & loo Ir.r.tlqrr.s. tO E¡Glt.ttdr Le¡ttñr-í. 20 Exctt.tlq¡ Læ.tt¡rr-

¡;-t:i1:í.;. -::

iÊi.i-Ëtl

¿.!-rt! ti+;:.
r¡.l{.{:ttij

:':.;i'i,l,i4

to¡
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(a) Exact (b) Recovered

Fiqure 4.11¡ Recovery with Linear Conductance Elements.' 6 Excitations 118 lterations

Figure 4.12: Recovery with ConsÈant Conduclance Elements.
10 Exc itat ions 15,000 Iterations



SobeI Fi ltered Step Function.
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Three-Dimensional Simulations
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Figure 4.14: 3-D ¡rith Measurements Taken on Àll Sides.
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Chapter V

DISCUSSION OF COMPUTER-SIMULATED IMÀGING

À number of important questions are raised by t.he simulated

imaging results of previous chapÈers. This chapter address-

es some of these questions, including: guality of recovered

solutions; number of measurements needed to obtain a solu-
tioni cosls associated with imaging programs; and effecLs of

model l ing errors.

5.1 OUALITY OF' RECOVERED SOLUTIONS

One important measure of success for any image reconstruc-

tion technique is Lhe quality of the final solution. The

density and height plots previously discussed clearly pres-

ent differences be!$reen exact models and calculated solu-
tions, and therefore represent a measure of quality. Àn-

other quality inCicator is illustrated in Fi9. 5.1(a), rvhich

displays â trace of the average difference per node between

the calculated conductivity and the exact value at each it-
eration. If t.he iterative process is converging to the ex-

act solulion then this difference wouLd be expected to ap-

proach zero. This was not the case however, as after only a

few iterations the recovered conducÈivity settled to very

slow1y changing values (the drop at the tail end wíII be ex-

plained shortly).
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SIEP 5:l EAU(l)=r..ãf SOBEL=5Z NOF!L1TR=5S..
FIELD COMPARISON

Èl-ñ rfñÎrd

\d./ Figure 5.1: euality Indicators.

Once !he conductivity has reached this "steady st,atefl
where only very small changes occur for each iteration, then
an examination of the difference between Neumann and Diri_
chlet fieldsr Fi9. 5.1(b), shovred that boÈh fields were al_
most identical. Furthermore, it, turned out that although
sÍmilar to each oCher, they were quiÈe different from the
exact fieLd solution. À1so, if the initial conductivity es_

timate happened to be identical to t,he exact solution then
the iterative process was highl-y stable and exhibited only a

small amount, of dríf t.
The latter behaviour contradicts the former if the solu_

tion really is unigue, and no proveable explanation has yet
been found. perhaps the method Ís stuck in an optimization_
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Iike valley, or perhaps the gradient modelling is simply not

of a high enough order. Ànother possibilify is that ât the

low frequencies for which Laplace's equation is applicable,
interior structures only influence the field within an ex-

tremely Iimited spatial extent. 7f. lhis were Èrue one pos-

sible solution would be to use higher excitat.ion frequen-

cies. Àt high frequencies the fields wouLd be governed by

Helmholtz's equaÈíon and the effects of small internal
structures on the field would likely be noticeable even at
Large di stances.

In any case, various filters were tried in order to elim-
inate high frequency oscillations. The tail end of Fi9.
5.1(a) demonstrales that limited inprovement is possible if
the right filter is applied at Lhe appropriat,e time.

The amount, of current penetra!ion in the region of inter-
est also influences image qualily. For instance, in Fig.
(4.14) the bottom layer artifact eventually disappeared due

to the incLusion of voltage measurements and current sites
on that layer. Fig. 4.15 shows that rrithout these lower

layer measurements, !he disappearance of the artifacÈ re-
quires more iterations. On the other hand, the second layer
recovery is quite good. Because the measurements are only

on the surface, those layers just beLow the surface lend to
receive most of the current while the lower layers receive

virtually no current. This would explain why the immediate

sub-surface layers compare closely to those of lhe exact so-

lut ion.
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5.2 EXCITATION REOUIREMENTS

In order to clarify the relationship between the number of

unknowns and lhe number of excitations, a particular finite
element model must be examined (refer to Fig. 5.2). The ex-

ample consisÈs of an array of voxels (volume elements) meas-

uring 3 by 3 by 3 and corresponding to a conductivity dis-
tribution. Às well, a finite element node structure (4 by 4

by 4) is superimposed on the voxel array and is used in the

electric field computation. It is from these nodes that all
voltage measurements are taken or currenÈs are injected.

NODE

ELEMENT

3x 3x3 ELEMENTS
4x4x4 NODES

Finite Element Structure.
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Number of Voltaqe Measurements Required

From lhe above dimensions, the total number of nodes in the

model is 64 while the total number of elernents is 27. I!
should be noted that the total number of unkno¡+ns is equal

to the number of conductivity elements (voxels). If medical

applications are considered, then due to physical limita-
tions the only accessible nodes -- for measurement or injec-
tion purposes -- are those on the front, back and side sur-

faces. Thus, the maximum number of accessible nodes is 48.

Based on the assumption that a reasonable solution re-

quires twice as many voltage measurements as there are un-

knowns, the number of voltage measurements needed are 54.

Sat i sfyi nq the Measurement Criterion

If Èhere are N accessible electrodes and NI current sites,
then there are (Nl-1) unigue excitations and N electrodes at

which voltage measurements can be taken. The total number

of measurements is found by multiplying the number of avail-
able electrodes by the number of unique excitations,

N*(Nl-l). For example, consider the following excitation

alternat ives:

i) Let N=48 (nunber of accessible electrodes) and

choose Nl=3 (nurnber of current sites). Thus,

there are N1-I=2 unigue excitations and N=48 valid

voltage measurement locations per excitation, and

therefore 48*2=96 measurements in total.
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Let N=12 (number of accessible electrodes) and

choose Nl=6 (number of current sites). Thus, there

are Nl-1=5 unique excitations and N=I2 valid volt-
age measurement ]ocations per excitation, and

Èherefore 12*5=60 neasurements in total.
The second choice may arise due to physical constraints

on electrode spacing¡ or economic constraints on the cost of

measurement apparatus. If the allowable number of voltage

measurement probes decreases, a suitable increase in lhe

number of excilations wilI compensate. Note: alLhough both

schemes yie).d approximately the necessary number of measure-

ments, Èhere is a signiEicant difference in the number of

unique excitations betneen the tço alternatives. This is a

very important poinl !o consider as the number of excita-
tions to be solved will ultimately determine the nature of

the imaging hardware.

5.3 PROGRAM REQUIREMENÎS

Storaqe Needs

Listed below are the computer memory allocations needed to

perform imaging on a machine with either single or multi-
processing capabilities. Multi-processing is important be-

cause the imaging process is highly parallel, and is there-

fore well suited to concurrent processing of the

compuÈations required for each excítation. Àlthough multi-
processing was not used in these tesls, all programs were

organized and structured for this eventuality.

ii)
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The storage allocations may be partitioned into three

areas !

i) Common Store - This consists of data that is stored

Ín the main system memory and freely accessed by

any olher program or processor on the system. The

3-D problem previously discussed requires about

186,000 bytes of common slore.
ii) Dirichlet store - À multi-processing machine could

perform this calculaÈion simullaneously for a1l ex-

citations, thus enhancÍng throughput. Such a sys-

tem woul.d perform the calculation on locaL proces-

sors dedicated to each excitation. Àpproximately

131,040 bytes are needed to accomodate each excita-
Èion. A single processor machine -- similar to
that, used for the tests in this thesis -- stiII
needs lhe same amount of store, but utilizes lhe

excit.ations one at a time.

iii) Neumann SÈore - This calculation could also be per-

formed simultaneously for aIl excitations. The

calculation may be carried out by a local processor

using local storage on1y, or by a single processor

operating on each excilation one at a time. Àp-

proximately !24,488 byÈes will be needed.
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Estimate of Imaqinq Proqran CpU Time

The most time-consuming section of code in the Ímaging aI-
gorithm occurs $ithin the electric field computatíons. In
particular, a multiplicalion Ís significantly nore time-
consuming than any other simple arithmetic operation, and

since nultiplications dominate lhe f iel.d computations, the
following tining es!imates are based on the number of multi-
plications executed. Comparisons are included which demon-

strate the difference between a high-performance mainframe
(À¡{DÀHL V7) and a high-performance microcomputer
(8086/8087). The mainframe computer is only capable of per-
forming seguential operations. The microcomputer is treated
as both a sequential and a parallel machine. Note: all tin-
ings are based on Èhe CpU cycle time for a single urultipli-
cation and do not lake into accounÈ various system overhead

costs. it is expected tha! the aclual timings would be

greater than those lÍsted by a factor between l and 2.

The number of multiplications for one iteration of the

irnaging algorithm can be expressed as follows:

M= ( 2K- 3 )U+ ( I-K ) +c[4U(K+1) + ( t_K) ]

where M is the number of multiplications; K is the natrix
bandwidthi U is the number of unknowns; and C is Èhe number

of field solution iterations.
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The following Èimings assumes

C=10 K=I4 U=l683 I=Number of Imaging Iterations

AÌ'{DÀHL 8086/8087

l multiply 250ns. 19us.

I=1 2.8s. 3.5m. (Sequential)

6.5s. (paraIIel)

I=3 8.3s. 10.5m. (Sequenlial)

19.7s. (ParalleL )

I =10 27,6s, 35.0rn. (Sequential)

65.0s, (Parallel)

I=50 138.0s. 174.8m. (Sequential)

5.5m. ( Pa raI Iel )

5.4 EFFECTS OF MODELLING ERRORS

Problem Geomet ry

Consider a smalI ntuben of distributed conductivity as in
Fig. 5.3

where

I(x,y,z)=¡(¡'Y,z)xS (5.1)
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Figure 5.3: Di stributed Conductivíty.

Now imagine lhe surface area S gradually reducing so

the problem virtually becomes unidimensional (Fig. 5.4)

-.oJl:J+ 
,tl

F igure 5.4: One-Dimensional Model .

I(x) = J(x) x S (s.2)



For exampLe, if we take

then

Now consider such

from x=0.0 to x=2.0,

s=I}d-.''*l=lo-qm2=t

I(x) = ,1 ru

r(x) =19=i#=r.o[A/m,l

a quasi-one-dÍmensional region

and choose

-¡.,,, - X+2rr^¡ - -Z-

cm2

and

f(x) = e.6

throughout the region. Next, since

J=rE=-<V0

-7r-

(s.3)

(5.4)

defined

(5.s)

(s.6)

(s.7)



becomes

we have

:dóJ = -K ã*
(5.8)

4E _ -J(x) 
=dx r( x)

-2.0
= T+Z ' (s.e)

Thus the problem is simplified to thaÈ illustrated in Fig.

5. 5.

K' r.o 4 K.a.o

r . oË,fi 
---l;;:-î. 

0.,,-

4l .-,.0 9al .-ooot l¡.0.o 6t lr.¿.o

Figure 5.5: Simplified Problem Description.

I ntegrating (5.9)

ô(x) = -Zsn(x +2) + cr

-1 .0*z-z-
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and

and

for convenience,

applying this as

o(x)1.._ = o
l^ - -¡

taking the zero reference

a boundary condi t ion, yields

-2n"n(-1+2)*c,*cr=0

at x= -I.0

(s.13)

( s. 11)

The re f ore

0( x) = -21.n(x+2) (s.12)

Recover inq the Conductivitv

The point-iterative algorithm used to recover the conductiv-

ity -- given the field gradient dist,ribution -- in one di-
mension is

K.
I

-.lor'* Í* o* -.',1*r/oro,(Í*)'o* 
",

f", f$l'a*

To evaluate (5.13) we must solve several integrals. These

are found through application of Gaussian quadrature. Since

this requires the integrands to be evaluated only at Gauss

pointsf ee may discretize the problem as in Fig. 5.6.
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É= ¡.0

t=O,22541

I

-o.s987

I

a.39r

irà
r=2.o-

l¿od. Poinh

r:1.0

I

- o.6657

I

3,794

K.?.o

¡¡ Lt ltot

I

-o.5298

I

3.334

I
-o.5

I

¡t.2r8

Figure 5.6: Di sc ret i zed Problem.

Linear Laqranqian Shape Functions

The simplesl interpolation functions are linear, and are us-

ually defined over the standard region from x= -1.0 lo
x=l.0. In a straightforward manner these shape functions

âre !ransformed from standard to arbitrary regions. The ap-

propriate defínitions pertinent to Fi9. 5.6 are

(5.14)

Qz

= 2-x
2

-X
2
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Àna]ytíc Lagranqian Recovery for Node I
Àssuming that the values of all field gradienls -- evaluated

at the Gauss points -- are available, and using the analytic
expression for the field gradient (5.9) and the current den-

sity (5.4), the recovered conductivity at node 1 may be

found from (5.13)

I

-/o,¡" Í* ¿* -/o,o,(å*)'a* ",

f", t$)'a*
(s.1s)

(s.16)

Substituting where appropriate, ( 5.I5 ) becomes

6-99.n2 .454823

as expected when the exact field gradients are used.

_- I,' t?t ¡ .ot r*t ¿* - I,' t?t rlt t&r ¿*rzt

lltft"çþ'a^
- (41î2-2) + (8-12e.n2) - .772589 - .317766 = 1.0
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Numerical Laqrangian Recove ry

To evaluate (5.15) numerically, it must be observed that

since we are using a Iinear interpolation scheme, the fíeld
gradient is now approximated throughout the element by the

value of the middle Gauss point (refer to Fig. 5.6)

94. =dx

Using this value in (5.15)

rived value yields

K=
I

- I i t?t t - .aaat I ¿* - 
[," t?t tlt t . aaat tt ¿*tzl

lo" tlzrt, )l-.uu67) r'zdx

.66667 - .2963 - ., 
"-,

--t.J,

.2697

.6667 (s.17)

rather than the analytically de-

( s.18 )

which ought to be cornpared against (5.16). The error arises

due to the attempt to approximate a complicated gradient

curve wilh a linear function. This demonstrates the neces-

síty for either ¿ higher-order approximation or more Iinear

elenents within the same region.

76-



ChapÈer vI

CONCLUSTONS

This thesis has presented a ner¡ method for reconstructing

distributions of electrÍca1 conductivity from sets of poten-

tial measurements taken over the boundaries. Àn iterative
least-squares technique -- which employed a combination of
point-iterative and pre-condilioned conjugate gradient meth-

ods -- was applied to both ti{o and three-dimensional field
problems as neII as to resislance net$orks. Several test
programs were run and example solutions were presented for
both field and nelwork problems.

The proposed conductivity recovery procedure is shown to

be fundamentally different from lhe usual impedance computed

tomography (ICT) approach. Impedance imaging has, until
now, been no more than an extension of normal X-ray projec-

tion methods. Indeed, several key ICT researchers [Lyt]e,
Price, Schombergl attempted to force beam-Iike currenl flow

so that projection techniques could be accomodated in their
impedance imaging tests. Their lack of significant progress

is likely due to limítaÈions inherent in the projection pro-

cess.

Às discussed earlier, arguments have been put forward

IBaLes et al] $hich proved that conductivity distributions



..:.i i

could nol be successfully recovered using the projection ap-

proach common to x-ray tomography. The algorithm suggested

here avoids such difficulties by allowing current to follow

a natural path rather than forcing beam-like behaviour. Às

a consequence boundary measurement values are shown to be

influenced by the conductivity of the entire region. It is

further demonstrated how to employ these boundary measure-

ments, which are not projections, in such a \{ay as to move

each iterative step in the direction of the proper solution.

The inversion scheme is shown to involve a decoupling of

lhe basic nonlinear system into three Iinear subsystems

which are then solved simultaneously. For inhomogeneous me-

dia problems each successive conductivity estimate involves

a Leasl-sguares conductivity calculation based on a residual

acquíred from lhe poinl form of Ohm's law; a current density

approximaÈion obtained by first solving Laplace's equation

under Neumann boundary conditíons and then multiplying the

gradient of this field by the previous conducÈivity esti-
matei and an electrostatic potential gradient approximation

obtained from a field which satisfies Laplace's equation un-

der Dirichlet boundary conditions.

For potential field calculations the Rayleigh-Ritz dis-

crelization procedure is applied to the energy functional.

If computer memory storage is at a premium system matrix en-

tries are generated node by node and immediately applied,

thus implementing a point-iterative technique. Hovever,
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since the potential field calculation is itself iterative,
the cost associated with generating syslem matrix entries

during each iteration may be prohibitive. If so, then the

entire system matrix is accumulated prior to finding the

field solu!ion, and a pre-conditioned conjugate gradient

mehhod is used instead.
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Appendix À

POINT-ÀCCTJMULÀTIVE, POINT-ITERÀT]VE METHOD



À.1 iNTRODUCTION

À linear system of equations -- as derived from finite ele-

ment discretization techniques -- can be solved by a point-

iterative process. Until recently, the practice has been to

solve these systems using direcÈ sparsity methods such as

zollenkopf bifactorization [37,38]. Most often, direct
techniques are cumbersome to implement and usually they im-

pose serious restrictions on execution time and main slorage

requirements. Large problems, such as those involving

three-dimensional fields, can only be solved directly by re-

sorting to intricate programming strategies [39]. The a1-

gorithm presented in this Àppendix however, requires minimal

programming effort and maintains alI advantages (i.e. rapid

execution and reduced menory requirements) inherent in re-

laxat ion based methods Ia0].
Consider the generalized differential operator equation

Ltþ=f (À.1)

where L is self-adjoint and positive definite. The source

distribution for the field ù is defined by f. Àpplying

standard discretization techniques, the linear system

sV=b
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is generated. In particular, application of the

poinÈ-iterative scheme to the steady state Laplacian equa-

tion

-v'(F.vv)=f (A.3)

is discussed in deta i 1.

Square-shaped two-dimensional elements and cube-shaped

three-dimensional elemen!s have been implemented over a re9-

ular grid, and theoretical considerations for both types are

di scussed.

A,2 VÀRIÀTIONÀL FORMULÀTION

The variational principle l4l- ,421 states thaÈ the solution

of equation (À.1) can be obtained by minimizing the func-

tional

F=<Lrl ,rl> 2<f ,!> (A.4)

where the bracketed terms denote appropriately defined inner

products.

Through the use of Green's theorern equation (À.4) becomes

(
(v{,) .F. (vrp)dv - 2 Jfþ dv

s¿

F=l
o
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and homogeneous Neunann

ñ.vq=s (À.7 )

boundary conditions. More general functionals are available

Ie¡] tor more complicated boundary conditions.

Discretizing V by the Rayleigh-Ritz procedure

and, as stated, is only valid for the Dirichlet

Ú1" = s(s)

,=ury=!r9

and substituting (À.8) into (À.5) $hiIe enforcing

results in lhe Iinear system of (À.2) where

(vg) 'F' (vgr)dv
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(À.9)ffi=e

s=J (À.10)



and

(À.11)

The integrals specified by s and b are first evaluated

numerically for a single finite element, and subsequently

accumulated on an elenent by element basis -- in a fashíon

parallel to the finite difference soR technique -- lo form a

nvir!ua1n global syslem matrix. In prâctice, the entire

global matrix is not stored as all accumulalions are per-

formed only when required by the iteration algorithm.

À.3 MÀTRIX GENERATION

Using a double subscript convenlion, equat,ion (À.2) may be

rewrilten as

tj S.. qr. = S.. rl . = b.r-l I rl I ¡ (À.12)

where

Stj (vor).F.(vcr)dv (A.13)

u = Jrs au
5l

=t
o
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ând

bi=

ModelIing the media by

used for the fiefd allows

(A.14)

lhe same finite element structure

i to ue expressed as

/t" ou

Subst itut ing (a.f S) into (À.13), and factoring out

(À.1s)

¡ yields

(À.16)

with the spatial vecLor ! representíng the gradient of the

scalar shape functions. Àn equivalent expression is

s..rl ð,avp
J-

( À.17 )

which may also be written as

- (-, 
-. -+sii = J Bi'9^.ßi dv p-CI

tr, = 
Jßru(c*r*ß*r)dv 

P*

= /eJrFr'
fì
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J., = 5. .- O-rl l-tk 'k
( A.19 )

The source terms (À.14 ) may be factored as

b. = ai. f .1 rl )
(A.20)

where

ó..rl (À.21)

It is importan! to observe that S* and B* are dependenl only

on t,he choice of q and not on the media or source character-

istics.
With the finite element rnethod, the interpolation func-

tions used in (À.18) and (À.21) need only be defined over

Iocalized domains t441. These functions are constructed

from an elementary basis which is defined in two parts: for
linear elements

Lt

= lo.o. av
J L7
f¿

= l+x
2t= ì -x

2
{Ll(x) , l}(x)lt}
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and for guadratic elements

1lf(x), Lå(x), L3(x)trî 
= 
¡9Ð ;Ll = t-xz; Ll= of#tf ;-t < x < I ] .(À.23)

The node nurnbering scheme displayed in Fig.4.1 leads to the

scalar shape functions listed in Table À.1.

2aâ2?

?tt

.r:J"IJt2l

L
x

sart2
ffi'v',ffi:tztzs

o) Lineo¡ b) quodrotic

Figure 4.1: Node Number i ng
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(A.24)

TÀBLE À.I
Scalar Shape Functions

Any scalar set may be represented as

and the lensor as

c-

SET
RANGE n C¡(r)

20
LINEAR i,¡ t,2 e (¡- r) + I It'l r-l tv r

gD

LINEAR r,j,h.rr2 {(k-r)+2(i-r}+ ult'tr-lrrr r- lr r r

20
¡UADRAÎIC j.t,5 3(j ll+ r-f t'tr-j rrr

5D
i,j,k.r,3 t(k-r)+ 3(j-r)+ i uft'r r-]tyt r-!r 

' 
r

(À.25)
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rrhere for orlhotropic media there are at most six indepen-

dent tensor component s.

Once a set from Table À.1 has been specified, the local

finite element matrices, S* and B*, are calculaled using nu-

merical inlegralion. Às an example, consider a particular

integral from S* for an inhomogeneous orÈhotropic media mod-

eIled by quadrat ic elements

From (Â.24) and (À.25)

"26

= dta

= dro,
(A.27 \

Using Tab1e À.1 the explicit form of shape function o25 nith

k=3, j=3, and i=2 is

5i1k = )rr,t.,tol

o,, = L!(x)Ll(y)ri(x) = (l-x'z)(ÍEÐlé!ùl

0.
].

d.
)

d. = d^-U U¿uvv

(À.26 )
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Similarly

o,, = (l1fÐ¡1118Ù¡1r-2,)

o.o = (r-x2)(#Ð, (9ùl (À.29)

Referring to (À.13) and substituting B for the gradient

ð, =È,, =vozs =-zxt$Û)tzJp-lî

=ßr.rrî rBr,rrj r9r,", ( A. 30)

Ë, = ä,, = vo,s = tfl tl(p) ( r -2, ) î - (¡q:Ù) 13J1t¡ 1 r -z' )3 - f 
o$Ðt 

f 
{#Ð) ( I -zz) Ê

+ (1-rz¡ lzl+t

' [:,i"]

I tel#Ðl¡ + ( I -x,) (Y(Y+I) ) tÇtlA

(A.31 )



and therefore

oLl,* ß*j = dzo !,* ß

Finally, substi!uting (À.31) and (À.32)

of (À.18)

ßro(o*u-ß*r) = ßr, ,r.(orou^ß*,. )

reduces (À.26 ) to

(A.32)

into the íntegrand

oro ßr,r. (À.33)

I
f_

(4yq-3y2-y)dy J f, l-r'rzr'-226+22)dz = #ß
-t

(A.34)

,.,, [l ;,, ll 
.l::,il 

[',, ;, 
,.]

= [ßr.,, ßrr,r9"r,, 

[t,,:r,r]='rr,,

I

Sî, , r. , ro r=/ | {*'
-t

tt.
-xs-zxu+zx3+x'z-x) dxJ i

-t
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Note lhat a sixth-order numerical integration scheme

would be requíred to evaluate (A.34) exactly [¿5]. The re-
maining S* matrix entries are calculated ând the entire ma-

trix stored, preferably in core. The vector B* is obtained

through a similar procedure. Table À.2 indicates storage

requirements for a variet,y of element types.

Local

TÀBLE À.2

Matrix S* Storage Requirements.

Element Type s

Homogeneous
I so! ropi c

I nhomogeneous
I sot ropi c

Homogeneous
Orthotropic

I nhomogeneous
Or t hot ropic

Linear
2D,n--4 (4,4,L) (4 ,4 ,4t (4 ,4 ,3) (4 ,4 ,12)
Linear
3D, n=8 (g,g,r) (8,8,8) (8,8,6) (8,8,48)

Quad.
2Ð,n=9 (9,9,1) (9,9,9) (9,9,3) (9,9,27)

Quad3D
n=27 (27 ,27,r1 (27,27,27) (27,27,6) (27 ,27 ,162)

A.4 THE POINT-]TERÀTIVE ÀLGORITHM

Solving (À.12) for the i't,h unknown and applying (À.I9) and

(1.20) gives

bi sr¡t!, lin,
S i.i

Bi:ri sliup*'!¡ lt*i
sI .. p.

rr-l< K
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I

1

,

t{hich describes the field over the entire problem domain.

ÀIthough the global S* and B* matrices are exceedingly

1arge, they are also sparse, and therefore a great deal of

computational effort may be avoided by processing only those

terms which contribute to lhe final field solution. In

facl, when obtaining t,he solution at a particular node, only

immediately adjacent elements -- nearesÈ neighbours -- gen-

erate conÈributing terms to the numerator and denominator of
(À.35). Because of this it is possible to work with reduced

Iocal S* and B* rnatrices. The algorithm flowchart is illus-
traled in Fig. À. 2 .

lnitialization consists of defining Lhe media and source

characteristics and creating required local S* and B* matri-
ces dimensioned as in Table À.2. The field is assigned a

reasonable starting estimate which includes a1l DirichleÈ

boundary conditions. Note that no reslriction has been

placed upon intermixing of the various element types.

Once a node has been selected for processing, Èhe algor-
ithm determines whether or not a Dirichlet condition needs

to be enforced. In a manner common !o the finite difference
method, such nodes are bypassed.

LocaI element selection involves storing the element's

source, nedia, and field values into temporary vectors and

is better understood with the aid of Fig. À.3. This enables
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Figure À.2: Point-Iterative ÀlgorÍÈhm Flowchart.



the calcuIaE ion

tions to proceed

of

in

the numerator and denominator contribu-

a straightforward manner.

f Globol Processing locol
âlemenl t 434

Solving

{ ol 2,2

Figure À.3: Consruction of a Local Field vector

once all nearest neighbour elenents have been processed,

the estimated node potential is accelerated by standard suc-

cessive overrelaxation techniques [36,46]. Iteration con-

tinues until solution has converged to the desired accuracy.

rf Locol

[*'=v.,..l
I û.'ú.,.1

I vr= vr,. 
I

L*.= 
*.,,1
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