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ABSTRACT

A method of potential flow solution for a simplified two
dimensional augmentor wing with a thick uniform jet is presented.

Also, a solution for the non-uniform jet is attempted.

In order to concentrate on the effect of the jet thickness
and velocity profiles, the augmentor wing is simplified by assuming
that the aerofoil is a flat plate and the augmentor has zero length.
Thus, the thick jet starts at (and above) the trailing edge, inclined

at an angle to the chord line.

For the uniform jet solution, the method replaces the aero-
foil by a vortex distribution and uses source and vortex distributions
at the jet origin and boundaries to represent the augmented jet. The
source strength is related to the primary jet momentum coefficient.
The problem is formulated by dividing the vortex distributions into
Tine segments of linear and logarithmic strengths. The vortex
strengths and the jet trajectory are determined by an iterative
numerical method which requires the flow to be tangential to the
aerofoil and jet boundaries, and the jet shape to be in equilibrium

under the pressure loading.

When the jet has a thickness of only 0.5% of the chord, the
solutions are in close agreement with Tinear theory and appropriate
experiments. Solutions for a range of jet thickness (up to 9% of
the chord) indicate that the 1ift coefficient and the jet trajectory

are not affected very much by the jet thickness provided that the



ii

primary jet momentum coefficient is kept constant.

The solution for the non-uniform jet is formulated by
approximating the jet by several uniform layers. Results are obtained
for the special case of two equal thickness layers. It is found
that, for a constant total primary jet momentum coefficient, a higher
1ift is developed when the lower part of the jet has a higher velocity

than the upper part.
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CHAPTER 1

INTRODUCTION

The development of high 1ift aerofoils is a step-by-step
progress. Starting as early as 1920, methods of improving the aero-b
foil geometry to produce higher 1ift were studied. It was found, then,
that the circulation around an aerofoil, which is directly proportional
to the Tift, could be improved by temporarily increasing the aerofoil
camber and/or chord by means of mechanical flaps or slats. An
example of a two dimensional aerofoil with a mechanical flap is
presented in Fig. 1. In practice, there is a Timit to the 1ift

obtained by the modification of the aerofoil geometry because of the

boundary layer separation which has an adverse effect on the circulation.

Means of controlling or retarding the flow separation were
then tested. One method was the blowing of a high-speed jet sheet
over the flap upper surface to suppress the separation. During the
test of flow separation control in 1938, Hagedorn and Ruden (1)
observed that the excess of the blown air originally used to control

flow separationla1so resulted in a higher 1ift on the aerofoil.

Unfortunately the significance of this important observation
was not recognized.until more than a decade later, when the high-speed
jet sheet was recognized as a solution to the high 1ift wings. In
1953, tests were done by Dimmock at the National Gas Turbine Establish-

ment on the two dimensional elliptic aerofoil with a jet of air




issuing from a slot near the trailing edge and at the lower surface
of the aerofoil as seen in Fig. 2. The 1ift and pitching moment
were measured by pressure plotting. The jet sheet behaved Tike an
extended mechanical flap; thus, the name of the jet flap aerofoil was

given.

The experimental results of the jet flap aerofoil by Dimmock
and the empirical theory of Stratford were reported by M. Davidson
jn Ref. 2 showing that a very high 1ift coefficient could be obtained
with the jet flap. Also another important result showed that the
propulsive thrust was nearly equal to the momentum flux of the jet

regardless of the jet deflection angle.

The first theoretical solution of a two dimensional jet
flap was presented by Spence (3) in 1956. Spence's mathematical model
of the jet-flap aerofoil consisted of a two dimensional flat plate
aerofoil with an infinitesimally thin jet sheet issuing from the
trailing edge. Ideal flow conditions were assumed, and the aerofof]
and jet boundaries were replaced by vortex sheets whose distributed
strengths were determined by satisfying the boundary conditions that
the velocities on the aerofoil and jet boundaries must be tangential.
An integro-differential equation for the vortex sheet strengths
was formed. In order to obtain a less complex integro-differential
equation, the jet sheet was assumed to be aligned with the aerofoil
chord but the local slope of the jet streamline was that of the
correct jet trajectory. Spence successfully solved this problem by

approximating the distributed vortex strengths by the logarithmic




functions, which satisfy the singularity behaviours of the velocity
field at the leading and trailing edges, together with a Fourier

series.

Spence's approximate solutions are applicable to a thin
aerofoil at small angles of attack and small initial jet deflection
angles, but the results are in good agreement with expefimenta] find-
ings even for an initial jet deflection angle of 50°. Spence's
solutions have been regarded to be very reliable, however in recent

years new methods of solutions for the jet flap were attempted.

Leamon and Plotkin (4) also used vortex sheets but allowed
the boundary conditions to be satisfied on the real singular surfaces
instead of the linearized ones. The distributed vortex strength on
the chord and the jet center Tine trajectory were approximated by
singular functions which satisfied the singular behaviour% at the
leading and trailing edges. The results deviate from the experimental
and other theoretical results by 16 percent to 20 percent except for

small jet momentum coefficients.

Sato (5) represented a circular cylinder with a jet flap
with a number of discrete vortices located on the cylinder surface and
along the jet. He then used conformal mapping to derive the flow
about an elliptic aerofoil with a jet flap. Solutions of the effects
of the jet flaps on an elliptic aerofoil section of 12.5% thickness
chord ratio were found to be comparable to experimental results.
Examples of calculations for other aerofoil sections were also

presented.




At about the same time Herold (5) also presented a two
dimensional, iterative solution for the jet flap. He also used the
discrete vortex method but the thin aerofoil approximation was applied.
His results agreed with those of Spence and experiment for Tow momentum
coefficients, but in general, no marked improvement of the solutions

by this method is noted.

Although no exact solution of the jet flap was found, efforts
to improve the high Tift system were never stopped in the laboratory.
One of the practical difficulties of the jet flapped aerofoil was the
control of the jet initial deflection angle. It was found that if the
jet was ejected over a trailing edge flap (Fig. 3) instead of from
the trailing edge, the jet would attach to the flap and Teave the |
trailing edge at the same angle as the flap angle due to the Coamda
effect. It was also recognized that this arrangement, known as the
jet augmented flap, resulted in a remarkable improvement in Tift.

The first theoretical solution for the jet augmented flap was also

presented by Spence (7) in 1958.

Almost a decade later, the jet-augmented flap arrangement
was modified by adding a shroud to improve the thrust and Tifting
effectiveness. The latter arrangement is called an augmentor wing
and is illustrated in Fig. 4. A jet issuing from a span-wise slot
at the rear portion of an aerofoil emerges into a gap formed by the
upper shroud and Tower section of the flap, which directs the flow
with a downward angle of deflection relative to the aerofoil chord.

The flap is designed to allow mixing of the jet and the secondary




induced air flow (Fig. 4) so that augmentation of momentum flux of the

primary jet is obtained.

The arrangement of the augmentor wing ;ontributes to high
1ift on two accounts: the presence of the jet induces an asymmetry
in the main stream giving rise to a pressure 1ift on the aerofoil, and
the reaction of the augmented jet momentum results in a contribution
to 1ift (as well as a contribution to thrust). The augmented reaction

1ift is clearly an advantage over the jet flap arrangement.

Past augmentor wing investigations have been mainly
laboratory experiments. In 1964, at the Fourth ICAS Conference in
Paris, Whittley (8) presented a report on research progress which
indicated the promise of the augmentor wing concept. Research work
was then continued with tests on a large scale model in the NASA Ames
40 by 80 feet wind tunnel (9), and the results have shown a significant

advantage of such a lifting system.

In 1969, Y.Y. Chan (10) contributed to the analytical solution
of the augmentor wing by simplifying the model to that of a jet-
augmented flap with the augmentor inlet suction represented by sinks
at the hinge line on upper or ]ower surfaces. He showed that the 1ift
coefficient could be improved by the augmentor wing arrangement. Later,
Woolard in Ref. 11 tried to improve Chan's solution by redefining the

sink strength.

Recently, Wilson et al (12) presented a new approach to
the analysis of the augmentor wing, in which the restrictions of thin

aerofoil and infinitesimally thin jet were avoided. The real two



dimensional aerofoil and assumed-constant-thickness jet surfaces were
used in the calculation of the potential flow field outside the jet.
The solutions also allowed for the effects of the jet entrainment

and the induced flow at the augmentor entrance by using source and sink

distributions superimposed on the vortex sheets.

This thesis presents a theoretical model of the augmentor
wing which, in the réstrictive conditions of the ideal flow, represents
a complete flow field around an augmentor wing including the jet fiow.
The object is to study the effects of the jet thickness and jet
velocity or momentum distribution on the 1ift coefficient of the two

dimensional augmentor wing.




CHAPTER II

MATHEMATICAL MODEL OF AUGMENTOR WING

I1.1 Introduction

The velocity field induced by a distributed vortex is a
very important concept in aerofoil theory as discussed, for example,
in Chapter 12 of Reference 13. The flow about a two dimensional
aerofoil can be represented by the flow resu]ting from the combination
of a uniform stream with a distributed vortex, the actual strength
distribution being determined by the shape of the aerofoil. The
method provides a convenient means to determine not only the total

1ift but also the distribution of pressure on an aerofoil.

The problem of determining the aerodynamic coefficients of
a given aerofoil profile is very difficult. However, as reported in
Ref. 13, M. Munk introduced a method of approximation, known as the
theory of thin aerofoil, which has proved to be very useful. The
method replaces an aerofoil by its mean camber line which is assumed

to deviate only slightly from the chord line.

Using the concept of vortex sheets and thin aerofoil theory,
and based on Spence's solution for the jet flapped aerofoil, Chan (10)
presented a theoretical model of the augmentor wing as shown in
Fig. 5. The real augmentor wing was approximated by a flat plate
aerofoil with a theoretical sink on the upper or Tower surfaces of

the aerofoil at the flap hinges. The sink was added to represent




the suction flow at the flap hinge. The use of a sink, as in this

case, Or a distributed sink to represent the suction or entrainment 1§
common. The strength of the sink was arbitrary, but in practice would
be empirically determined. The jet thickness was assumed infinitesimal.
The jet boundary conditions were satisfied on the linearized jet

trajectory; i.e., on the extension of the chord line.

Woolard [11] interpreted Chan's suction coefficient as being
based on the total mainstream flow into the augmentor and argqued
that it should have been based on the increase of flow (due to the
jet entrainment), on the basis that no 1ift should be produced on a
flat plate at zero angle of attack when the primary'jet momentum is

Zero.

Another mathematical model of the two dimensional augmentor
wing was presented by Wilson et al (12), based on the experimental
model of the augmentor wing tested by Wang, Wright, and Mahal*. In
Wilson's model, the aerofoil boundary was formed by connecting the
front part of the real aerofoil boundary to the shroud and the flap
chordé by two planes, which were arbitrarily taken to represent the

boundaries of the mixing zone of the primary jet and the secondary

*Jilson et al (12) incorrectly gave the reference as "Design Inte-
gration and Noise Studies for a Jet STOL Aircraft", Vol. IV, "Wind
Tunnel Test Program", The Boeing Company, Commercial Airplane Group,
Seattle, Washington, NASA CR-114286, May, 1972. Attempts to trace
this report have been unsuccessful.




induced flow. The shroud and flap thickness were treated as negligible.
The jet, whose thickness was constant and equal to the gap distance
between the flap and the shroud, issued from the trailing edge. The
aerofoil and the jet bounqaries were divided into 200 segments of
vortex and source-sink distributions. The segments were approximated
by finite straight lines. The jet was truncated when it turned to
within two degrees of the free stream. Then two end segments, having

the same length as the adjacent segments, were added onto the jet.

11.2 Idealized Model of Augmentor Wing

The flow field about an augmentor wing is very complicated.
For the practical purposes of engineering, the simplified or idealized
models of the augmentor wing, such as those presented in the previous
introduction, are often used in the analysis of the augmentor wing.
These models, however, do not represent the complete augmentor wing

aerodynamics.

In the real flow, the viscosity of air causes the develop-
ment of boundary layers on the aerofoil and flap surfaces, and the
entrainment along the jet. The boundary layers change the effective
surfaces of the aerofoil and affect the drag and 1ift on the aerofoil.
The entrainment increases the jet thickness and changes the jet
momentum downstream. Another problem which complicates the augmentor
wing aerodynamics is the mixing of the primary and induced flow inside
the augmentor. The mixing process is very difficult to understand

fully because of the turbulent nature of the flows and many parameters




which affect the mixing, such as the augmentor configuration, the initial
jet thickness, and the ratio between the initialAjét thickness and augmentor
thickness (11).
For the purposes of this analysis the fiow is assumed incompressible, |

irrotational and inviscid, so that potential flow theory. can be‘applied.
In addition, the augmentor wing configuration is systematically simplified
so that it is possible to solve the problem and to test its results at
each stage, from the simplified case to the more cnmpleX‘one.’A

The simplified two dimensional augmentor wing model consists
of a thin aerofoil with a downward deflected flap at the rear portion
of the aerofoil and a parallel éhroud just above the flap as shown in
Fig. 6(a). The augmented jet is ejected between the shroud and the
flap at the trailihg edge in the direction of the flap chord line.
Before studying the model in Fig. 6(a), a more simplified model where
the flap and shroud chords are assumed to have zero-length will be examined.
in the latter model, as shown in Fig; 6(b), the mixing of the jet and
secondary induced flow are éssumed to be cémpleted in zero length. ‘Furthermoré,
the functions of the shroud aﬁd flap in controlling the jet exit angle
and their effects in turning the free stream flow at the tfailing edge
and shroud leading edge are assumed to be rétained, Thus, the finite
thickness jet will be considered to iss@e'from the trailing edge at an

angle to the aerofoil chord.




11

The model is simplified further by assuming that the aero-
foil h&s no camber. The model is shown in Fig. S(C) and consists of
a flat plate at an angle of attack with a thick jet at the trailing
edge.

11.3 Straight Uniform Jet

In Chapter 3 of Ref. 14, the technique of replacing two
;paraTTel vortices and a uniform flow by a source distribution is
discussed. The technique is modified here to represent a jet by

source and vortex distributions.

Here the two semi-infinite, parallel vortex distributions
on two straight Tines y = g-and y =’33 as shown in Fig. 7(a), are
added to a sourcé distribution on the y axis and between the two
vortex distributions. It can be shown‘that if the source distribution
has equal stréngth to the two vortex sheets, thé resulting flow is a
straight uniform jet flow of thickness § in the region x > 0 and

between the two vortex sheets (see Appendix A).

It is assumed, in this work, that the thick curved jet in
a uniform flow can also be represented by a source distribution and

vortex sheets of unknown strength distributions as shown in'Fig. 8.

11.4 Mathematical Model of Augmentor Wing

It is desired now to use the concept of distributed vortices

to construct a hypothetical model for the augmentor wing of Fig. 6(c).
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The flat plate is replaced by a distributed vortex with unknown
strength along its Tines, and the jet is replaced by two vortex sheets
at its boundaries and a source distribution at the trailing edge

(Fig. 9). Their strengths are to be determined.

Thus, the resultant flow field is made up of the uniform
flow, and the velocities induced by the distributed vortices and
distributed sources. Because the velocity potential of the uniform
flow, vortices and sources individually satisfy the Laplace equation,
which is a Tinear equation, the potential of the resultant flow also
satisfies the Laplace equation. The main boundary conditions are
that the flow is tangential to the aerofoi]Asurface and jet boundaries,
vand is undisturbed from the uniform stream (except in the jet) far

from the aerofoil.
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CHAPTER III

FORMULATION OF THE PROBLEM

I11.1 Boundary Conditions

I11.71.1 Kinematic boundary conditions

In using vortex sheets to represent the aerofoil and the
jet, one of the physical conditions needed in determining the strength
of the vortex distribution is that there will be no flow across the

aerofoil and jet boundaries.

Generally, without knowing the type of vortex distribution,
this condition means the vortex sheets should assume strength
distributions that ihduce a velocity field such that the aerofoil and
jet boundaries are streamlines. Mathematically, the velocities
induced by the vortex sheets at any point on the boundary, when
combined with the velocities induced by the source distribution and
the uniform flow velocity should make a velocity tangential with the

boundary at that pbint, or

U sina + v,
[eo]

U, cos o + u; = tan (), (1)

where o is the angle of attack (Fig. 9) and tan (wi) is the slope

of the streamline at point "i". Also Vs and u; are vertical and
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horizontal components of the induced velocity, and U_ is the main

stream velocity far upstream.

II1.1.2 Conditions at infinity

At downstream infinity the effects of the disturbances caused
by the aerofoil and jet are negligible and the free stream velocity,

U, is assumed to approach U_.

Concerning the jet trajectory, the physical condition requires
the finite thickness jet to be aligned with the free stream at down-
stream infinity. Thus the jet velocity at infinity must be (U_+ g )
where q & is the primary jet flow rate. The jet momentum coefficient

measured at infinity is

where J_ is the augmented jet momentum flux at infinity, & and p are

the jet thickness and density respectively, and ¢ is the chord length,

taken to be unity. The primary and augmented jet dessities are assumed to be

equal and constant. In this work CJ is called the augmented jet

(oo}

momentum coefficient at infinity.




I11.1.3 Dynamic¢ Boundary Condition

The dynamic boundary condition of the jet is the requirement

for the forces acting on the jet to be in balance.

A curved, thick, two dimensional jet in a co-flowing external
field is sketched in Fig. 10. Its trajectory is determined by the

radius of curvature R of its center line.

The analysis, similar to that of Spence, Ref. 3, assumes an
inviscid, incompressible flow in the main stream and in the jet, and
the flow is everywhere irrotational except at the jet origin and at
the boundaries of the jet, where the pressure is continuous but the

velocity and density are both discontinuous.

The velocity and the pressure at the jet center line vary
along the jet; there are only two independent physical quantities that
are constant: the mass flow and the total pressure. A polar element
of the jet is shown in Fig. 10. The analysis of the jet is presented
in Appendix B where a dynamic boundary condition is obtained, and
expressed by the relation between the distributed vortex strengths

on the jet boundaries and the jet velocities and position. The

=<ie + Yfz//////liévg ) EX%) )
" o,

where R is the jet radius of curvature, and Yy and Y, are the vortex

expression is

| —

“strengths at the upper and lower jet boundaries respectively. Va is




the average jet velocity, defined as

where Vu and Vz are the jet velocities at the upper and lower jet
boundaries respectively. The average jet velocity can be used to
define the jet augmented momentum J = pVi § , which is constant along

the jet.

The augmented jet momentum coefficient is defined as

Cy = 77—, (5)

—
N

—2—0000

and assumed constant along the jet. Thus,

C,=¢C . (6)

The dynamic boundary condition, Equation (3) is rewritten in terms

of CJ as

L (Y e |, (s 2l
R Nk

In the Timiting case where the jet thickness approaches zero this
boundary condition, Equation (7), reduces to that used by Spence (3)

for the jet flap problem.

16
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It is more practical to express the dynamic boundary condition,
Equation (7), in terms of the primary jet momentum. For the present
mathematical model the primary jet is assumed to issue uniformly
across the jet thickness (8) at the trailing edge. The primary jet
momentum flux, J', is defined as the momentum flux when the main stream

velocity is zero so that
' 2 *
J'"=p g 6 . (8)
Because the jet mass flow is conserved

q=q (9)

Thus the primary jet momentum coefficient is

The augmented jet momentum is now expressed in terms of the

primary jet momentum. Using Equations (6) and (9), Equation (2) is

*It should be noted that the primary jet momentum flux, J', is
different than the power jet momentum flux. In practice, the
primary jet is often underexpanded so that it continues to
accelerate after the nozzle exit. The power jet momentum f1ux
is defined as the product of the jet mass flow and the velocity
which the jet would achieve if the gas expanded isentropically
to ambient pressure. However, J', as defined in Equation (8),
corresponds to the primary jet momentum at the exit of the zero-
length augmentor assuming incompressible flow. The relation
between J' and the power jet momentum must be determined
empirically. ’
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rewritten as

p(U, +q)% s
CJ = s (11)
1 2
? poo Uoo [
or
pU~ ¢ 20U q 8 2
Cy = f—= 409 8 (12)
2
%—pw Uic %—pw Uic %-pm Umc
Thus

- &8 4 4q8
Cp= g+

J ¢ J'

oo

Substituting Equation (13) into Equation (7) gives

C,,c
1. (Yu, s qs , J
R (U‘u—)/ Breged )

/2
1 ( 2 V9| (14)

28 + 4 ﬁ§-+ CJ.c} [

This form of the dynamic boundary condition has been produced
by using an approach similar to that used by Spence. On the face of
it, it appears attractive in that the radius of curvature is defined
in terms of the local vortex strengths,yu and Ygo which are the main
dependent variables in the mathematical problem. However, two

approximations
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vu * VJZ,
Va = > (15)
and
u +u
Uco o~ _E_Z__LQ_ (]6)

have been made which are valid within the linearizing restrictions of
Spence's jet flap theory. These abproximations are not necessary for
the numerical computation except that they reduce the computer memory
requirements. In Appendix B it is shown that the dynamic boundary

condition is

1 (Vu } V2)2 2
R= @7 - (17)
TR}

when expressed in terms of the local velocities rather than averages.
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II1.2 Geometrical Construction of the Problem

From the mathematical model of the augmentor wing, the
vortex sheets are divided into a chosen number of finite length seg-
ments, except that the last two downstream elements on the jet upper
and lower boundaries are semi-infinite. The vortex strengths on the
segments are originally unknown. The segments are approximated by
the straight lines as shown in Fig. 11(a). This approximation is
reasonable when the segment lengths are small or the radii of curva-
ture of the segments are large. The latter condition is twge in the
case of plate aerofoils of small camber and shallow jet trajectories.
Since a large number of segments taken will result in more unknown
vortex strengths to be determined, it would result in longer computing
time. Thus, for better approximation of vortex strength distribution
with less computing time the segment lengths may vary according to
the behavior of the vortex distributions. Shorter segments are used
in the regions of rapidly changing strengths (i.e., adjacent to the
leading and trailing edges where there are singularities of the vortex
distributions), and longer segments are used when the vortex strengths

do not change significantly.

There are two coordinate systems applied: the (x, y) and
(£, n) systems [Fig. 11(b)]. The (x, y) system is fixed and has its
origih, 0, at the leading edge and the x-axis is on the chord line.
The (&, n) system is temporarily attached to any vortex segment,
with its origin, 0', at the upstream end of the segment and the Z-axis

aligned with the segment.
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From the concept of different length segments described
earlier, the coordinates of the segment end points on the chord are

taken from the expression

%5
i (1 - cos ei)/z, (18)

where @i is an arbitrary angle varying from O to I with equal increments.
Thus, the leading and trailing edge positions correspond to the values
of Oi of 0 and II respectively, and shorter segments are crowded near

the leading and trailing edges as shown in Fig. 11(a).

On the lower jet boundaries, the first few segment lengths
from the trailing edge are taken similarly to those in the first half
of the chord [Fig. 11(a)]. Further downstream, the segment lengths
are increased by a constant increment until the end point of the last
segment is at five chord length away from the trailing edge, where a

semi-infinite segment aligned with the free stream is attached.

The coordinates of the segment end points on the upper jet
boundary are calculated from those on the lower jet boundary and the
jet thickness, as shown in Appendix C. The results give a similar
segment length arrangement as on the Tower jet boundary, so that there
are pairs of parallel segments on the jet two boundaries as shown in

Fig. 11(a).

Finally, the mid-points of all the finite length segments

are taken as the control points [Fig. 11(a)] where the kinematic
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boundary condition is satisfied.

For easy reference, the distributed yortex elements are numbered
starting at one at the element adjacent to the leading edge increasing
to the last finite element downstream on the jet lower boundary,
and continuing on the jet upper boundary elements from the element
nearest to the trailing edge to the last finite element downstream.

The control points are also numbered in the same manner so that they

have the same order as the elements that they are situated on

[Fig. 11(a)].

I11.3 Types of Vortex Strength Distributions

Based on the results of vortex strength distributions in the
jet flap problem Refs. 3, 15, linear distributions of vortex strengths
are assumed on all the vortex segments except those adjacent to the
leading and trailing edges and the two semi-infinite elements. At |
the leading and trailing edges where the flow makes the sudden turns
to-satisfy the kinematic boundary condition, the vortex strengths
must be infinite. These points are called the singularities. However,

the integration of the vortex strengths over the chord and the jet

trajectory, which is proportional to the 1ift, must be finite. Spence
showed in Ref. 3 that the proper singular functions are logarithmic.

For the two semi-infinite elements, constant strength vortex

distributions are assumed such that the condition at downstream

infinity is satisfied.
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I11.3.1 Linear vortex strength distributions

An example of the linearly distributed vortex strength over
a segment A1A2 is shown in Fig. 12. The vortex strength, in this
case, decreases (or increases) linearly from the strength of YA] at A]
to Ya at A2. This will be called a trapezoidal distribution of

2
vortex strength.

For the convenience of the calculations as seen later, the
trapezoidal distribution is divided into two triangular distributions:
one in which the vortex strength increases linearly from zero at A]
to YAZ at A2 and another in which the vortex strength decreases

linearly from vy, at A, to zero at A,.
A] 1 2

Furthermore, consider..:, for example, three consecutive
vortex segments as shown in Fig. 12. There are trapezoidal vortex
distributions over segments A] 09 A2A3 and A3A4, with the common
vortex strengths at A2 and A3. The vortex strengths at A]’ A2, A3,

and A4 are YA1’ Yp > Yp and Ya respectively. These trapezoidal

2 3 4
distributions are divided into the overlapped triangular distributions

with the peak vortex strengths of Ya.» Yoo Y and Yy 2S shown in
1

2 "3 4
Fig. 12.

I11.3.2 Logarithmic vortex strength distributions

The logarithmic distributions of vortex strengths over the

chord segments adjacent to the leading and trailing edges are




24

an (1 - x)

N T (0 xex) (19)

and

an (1 - x)

= Kye T3z (xyg < x< 1)

NC

respectively, where K] and KNC are the constants to be determined,
and Xo and Xyg are the coordinates of the downstream end point and
upstream end point of the chord segments adjacent to the leading and
trailing edges respectively. The logarithmic distributions of vortex
strengths over the Tower and upper jet segments nearest to the trail-

ing edge are

Yne1 = Knel 377 (1< x< xycp) (21)
and
n (x - XNZ)
W < Ky~ 377 (xyp < X< xy3) (22)

respectively, where KNC] and KN] are the constants to be determined
and XN2 is the x-coordinate of the starting point of the jet upper

boundary.

The typical logarithmic and linear vortex strength
distributions over the chord and the jet boundaries are shown in
Fig. 13. It is noted from Fig. 13 that if there are only the log-
arithmic distributions over the vortex segments adjacent to the

singularities, the number of vortex peak strengths which are originally




unknown is less than the number of control points. In order to have
an equal number of control points with the number of unknown vortex
strengths, the triangular vortex distributions are superimposed on
the logarithmic distribution as shown in Fig. 13. The added
triangular distributions have their peak-strengths at the leading and

trailing edges and at the origin of the jet upper boundary (see Fig. 13).

II1.3.3 Constant vortex strength distributions o

It is recalled from the mathematical model that if there is

no uniform flow, the thick jet issuing from the aerofoil trailing

edge can be represented by a source distribution of strength q at

the jet origin and two straight semi-infinite vortex sheets of
strength -q and q on the upper and lower jet boundaries respectively.
When the inclined uniform flow is added, the pressure difference

across the jet curves its trajectory until the jet is asymptotically
aligned with the free stream at infinity, where the pressure difference

becomes nil.

That part of the jet which sustains negligible pressure

difference is represented by semi-infinite elements aligned with the

main stream with constant vortex strength of -q and q on the upper

and lower surfaces, respectively.
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CHAPTER 1V

THE ITERATIVE METHOD OF SOLUTION

IV.1 General Principle of the Iterative Method

If the aerofoil and the jet boundaries are known, they can

be treated as the solid boundaries in the uniform flow. It is then

possible to write the integro-differential equation which specifies

the vortex strength distributions that will satisfy the kinematic

boundary condition, Eduation 1, at every control point .

In this problem, the positions of the jet boundaries are
not known initially: they must be determined by an jterative process.
A jet trajectory is assumed and the vortex strencths calculated. The
vortex strengths are then used to calculate the jet curvature by
Equation 14. Integration of the curvature gives the jet shape which
can be used as a new starting point for the next iteration. The
process is continued until there is no significant change in the jet

trajectories .

IV.2 The Set of Linear Equations for Vortex Strengths

1v.2.1 Formulae for induced velocities

a) Velocities induced by a constant strength distributed
source:

Consider a constant strength source distribution on the

n-axis fromn = 0 to n = §, as shown in Fig. 14. The velocity
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components induced at a point P in the flow field by this source

distribution are given by (see Appendix A).

and

il
I
5
Ins

, (24)

where up_. and Vp_g are the & and n components, respectively, ry and
r, are the distances from P to the upper and lower ends of the
distributed source segment, and e] and 62 are the angles measured
from n-axis to r and rs respectively. The angles e] and 62 vary

positively clockwise from 0 to 2.

In this problem, the distributed source segment is assumed
to be perpendicular to the jet boundary at the trailing edge (Fig. 9).
The jet deflection angle at the trailing edge is T, measured positively
clockwise from the x-axis. Thus, the source seagment inclines from

the y-axis by an angle T (Fig. 9). The x and y components of the

velocities induced by this inclined distributed source segment are
obtained by resolving u'P_s and v'P_S into x and y components by using

the coordinate transformation

cos |t| sin |T| u'p_e {UP-S (25)

-sin |t] cos |t| V'p_g [VP-s




where
e uP_S

velocity induced by the source distribution at point P.

and Vp_g are the x and y components, respectively, of the

Thus,

Up_g = U'p_ COS [T] + Vip o Sin Itl, (26)
and

Vp_g = -Up_ sin || + v, _ cos |T]. (27)

P-s
b) Velocities induced by the distributed vortices:

Consider a distributed vortex on the segment 0'A of the

€ axis as shown in Fig. 15. One end of the segment is chosen at the

origin, 0', just for convenience. The velocity components induced by the

distributed vortex at point P(Ep, n,) in the flow field are(Ref. 13)

p
[ Mp y (
up ., = 3 Y £, -(28)
P-y 21 (£, - E)Z + n2
P P
0
and
V._ = 57 Y 3
Py - an (£p - £)° + n5
0
where u'P_Y and v'P_Y are the £ and n components of the induced velocity

at P, and v is the vortex strength which is a function of &.

i) Velocities induced by a constant strength vortex
distribution:
When v is equal to a constant, equations (28) and (29)

become
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u; = g 30
Py 21 2 2 i
and
v (A g - ; o)
V' = — (C_; 3
P-y, = 7N } —7 7 ¥,
k o (-8 +mp
where uﬁ and vﬁ are the £ and n components of the velocity
Yk Yk

induced by a constant strength vortex distribution having the strength
of y,. The integrations of Equations (30) and (31) are given in Ref.

13 and summarized in Ref. 15, and the results are

. Tk
uP_Yk i (¢2 - ¢]) ’ (32)
and
. Yk )
A S (33)

where ¢] and ¢2 are the angles measured positively anti-clockwise from
the ¢ axis to OP and AP respectively, and r and r, are the magnitudes

of OP and AP respectively (Fig. 15).

ii) Velocities induced by a distributed vortex of linearly

increasing strength:

In the triangular vortex distribution, the linearly

increasing vortex strength has the form of




=B ¢, (34)

where Y4 is the linearly increasing vortex strength and Yps is the

vortex peak strength at A (Fig. 15).

Rewriting Equations (28) and (29) by replacing v by Yo

and using Equation (34) gives

: 1 s
u - dg L] (35)

and

| N (A3
VP_,YSL.i A 3 2 d¢ , (36)

2
o (Ep - &) +ny

where uy and v; are the £ and n components, respectively, of
P-Ygi P-Ygi

the velocity induced at P by the linearly increasing vortex strength

distribution. The integrations of Equations (35) and (36) are

performed in Appendix D, and the results are

e | [ o ]
uf’-y . T OE n 2 2
21 A EP + np J

£ 1 In R LS
-—  tan! —EEL - tan”! Efj;jjs-J} . (37)
P P A
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and
2 21172
V' - L XES- E n (gp = éZA) + np
p- 21 Ep P g2 + 2
Yoi P Tp
+ t -1 'np| : -1 lnpl N Ig | (38)
n an  —— - tan  —— .
P &p & - & A
The resultant components of u'p_ and v'p_ in the x, y coordinate
Ygi Ygi
system are ’
Up_ = Up_ cos ¥ + v, sin y (39)
PYoi Py P=Yg4
Vp_ = -y sin ¢ + v{ " cos Y (40)
P-Ygi PYgi P-Ygi

Using Equations (37) and (38), it is convenient to rewrite Equations

(39) and (40) as

(41)

n
<
-

u
P=Yy
and

Vp_ =y . H, (42)
P-yg;  'PS ]
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where Fj and Hj are functions of EA’ gp, p and v.

iii) Velocities induced by a distributed vortex of linearly

decreasing strength:

In the triangular vortex strength distribution, the

linearly decreasing vortex strength has the form of

¥
=T ety (43)

Yod £ ps

where Yod is the linearly decreasing vortex strength and Yps is the

vortex peak strength at 0 (Fig. 15).

Equation (43) shows that the Tinearly decreasing vortex

strength is the difference between the constant vortex strength Yps and
Y
the Tinearly increasing vortex strength, —25-5 . Thus the velocity

Ea
induced by the linearly decreasing vortex strength is the difference

between the velocities induced by the constant vortex strength and by
the linearly increasing vortex strength. The formulae for the latter
velocities are presented by Equations (32), (33), (37) and (38).

After substituting for vy, in Equations (32) and (33), the induced

Tos
velocities are obtained by subtracting Equation (37) from Equation (32)

and Equation (38) from Equation (33). Thus
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2 2 \1/2
_ - +
" - ZE (6. - 6 ) P£ o (EP gA) np
p 21 2 1 EA 2 2
“Yod & * Mp
3 1 Inpl 21 Ingl
I £ 1 P 1 ; P—'g , (24)
[npl P P A
and
2 . _2\1/2
r - +
P'de 21 r EA P 52 + n2
P P
RN AN ] -1 Il .
L - AL U I T
where u' and v; are the £ and n components, respectively, of
Y44 P~Y0d

the velocity induced at P by the distributed vortex of linearly

decreasing strength.

The resultant components of u'P_Y and vg in the x and

2d P-Yo4
y directions are

Up = u'p cos y + VP-Y sin ¢ , (46)

and

= —y sin g + v! cos ¥ . (47)
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Using Equations (44) and (45), it is convenient to rewrite Equations

(46) and (47) as

(48)

1
<
—

" _
P-Yo4d

and

=y M. (49)

vy T Yps T

where Lj and Mj are functions of EA’ gp, p and ¢.

iv) Velocities induced by the Togarithmic strength distributed

vortex on the chord segment adjacent to the leading edge:

In the (x, y) coordinate system where the £-axis is

coincident with the x-axis, Equations (28) and (29) become

[ ’p d (50)
u = F Y X
Ol
and
-1 XA Xp = X . (51)
v = o Y X [
P-'Y 21 (X _ X)2 + y2
xOl p P

where Up_y and Vp_, are the x and y components, respectively, of the
velocity induced at P(xp, yp) by the vortex distribution v, and'xo.
and Xy are the x coordinates of Q' and A respectively.

Using Equation (19) to substitute Y1 for vy, and noting that

the limits of integratioh for the leading edge element are
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x©,= 0 and Xos yields
X
P-y] 2l 3/2 (x, - X)Z 2 ’
0 X Xp +Yp
and
v = El * (- *’ X dx (53)
P—y] pall . X3/2 (XP _ x)2 + yg

where uP-Y and VP-Y are the x and y components, respectively, of the
1 1
velocity induced at P by the logarithmic Y7 distribution.

The integrals of Equations (52) and (53) become singular
when the integrands become infinite within the range of integration.
The treatments of the singularities and the integrations of Equations (52)

and (53) are presented in Appendix E.

v) Velocities induced by the logarithmic strength distributed

vortex on the chord segment adjacent to the trailing edge:

The induced velocities are obtained by substituting
YNG for v in Equations (50) and (51) and using Equation (20) for the
distributed strength of e Equations (50) and (51) become

“NC

5 dx , (54)

1
Kne an (1 - x) Yp

ki (xp - x)° +
Xp Yp

i 3/2
X
NG

and
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K 1 Xy = X
_ NC 2n (1 - x) P
i S 1% dx (55)
NC
where Up and Vp are the x and y components, respectively, of
“YNC “INe

the velocity induced at P by YNC distribution. The integrals of
Equations (54) and (55) are also singular. The treatments of the
singularities and the integrations of Equations (54) and (55) are

presented in Appendix F.

vi) Velocities induced by the logarithmic strength distributed

vortex on the jet Tower boundary segment nearest to the trailing edge:

The equations for the induced velocities, Equations (50)
and (51) are rewritten by changing x and y coordinates into £ and n

coordinates as

2
0! 1 [ K T dE (56)
- = 5 Y s
P= an 0 (EP - E)2+ T]|23
and
IR JQY R e (57)
Vh . T B Y .

The induced velocities are obtained by substituting YNCE
for y in Equations (56) and (57), and using Equation (21) for the
distributed strength of YNGL - Equations (56) and (57) become




2
Kyer 1Y n
. - _NCH NCt  2n (x = 1) p
Up_y T TN J 372 77 4t , (58)
NCL 0 X (gp - E) + np
and
-K . £, -
, _ M el oan (x-1) SR G g (59)
VPovyer 2 3/2 77 %
NC‘ 0 X (EP - g) + np
where uﬁ_ and vﬁ_ are the £ and n components, respectively, of
nel INel

the velocity induced at P by the YNCI distribution. The treatment of
the singularities and the integrations of Equations (58) and (59) are

presented-in Appendix G.

vii) Velocities induced by the Tlogarithmic strength distributed

vortices on the jet upper boundary segment nearest to the trailing edge:

The induced velocities are obtained by substituting

NI for vy in Equations (56) and (57) and using Equation (22) for the

distributed strength of yy;. Equations (56) and (57) become

L
C K e o xg) T
uP-YNl T2 372 ) )2 . 2 & (60)
0 (gp 3 Np
and
L
, _ -KNl YNT &n (X = XNZ) EP - g
Vpoyy, T I 372 7z 4%, (61)
Ni 0 X (gp -£) + nP
where up and vp, are the £ and n components, respectively, of
"INy “YN)

the velocity induced at P by N1 distribution. The integrations of
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Equations (60) and (61) are presented in Appendix G.

Iv.2.2 The resulting velocity components induced at a control
point by all the finite distributed vortex segments:

The velocity induced at a control point by the'jth vortex

element which is not adjacent to the singularities is the sum of the
velocities induced by the Tinearly decreasing and linearly increasing

th

vortex distributions whose peak strengths are at the j~ and (j + 1)th

division points respectively.
Thus, using Equations (41), (42), (48) and (49), the
components of the velocity induced at the control point "i" by such jth

vortex element are

Us s = Y. LJ.+yJ.+] F. (62)
and

. 2 =Y., M. + v. .
Vi3 Y MJ i 41 H (63)

th

where y. and vy. + 1 are the vortex strengths at the j~ and (j + 1)th

J J
division points, respectively.
However, the velocities induced at a control point by the
distributed vortex elements adjacent to the singularities are the sums
of the velocities induced at that point by the superimposed distributed
vortices of linear and logarithmic strengths. For instance, the
induced velocity components due to the vortex element adjacent to the

leading edge are
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Ui_] =[Yp$]1 L-l + K-I W, : (64)
and

Vil =!Yps}3 WrKZ | (65)

where W and Z are.the coeffic_iénts of K1 in Equations (52) and (53)
' réspective]y, K3 can be expressed in terms of P by satisfying the
~condition that at x =' Xo the logarithmic vortex distribution on the
first el‘lement and the linear vortex distribution on the second element

have the common strength, Yps OF

2n (1 - x) _ 1 -
N T A i [Y'PS]Z (66).
X -
X = X2 , ]
Thus

Yps )

Ky = T-%, (67)
X 3/2
2

| Substituting (67) into (64) and (65) gives

Us_q =('y Py L] + {Yps]z S-], (68)

and

V. ¢ = (69)
AR AN

where
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J— : (70)

and

T, = S ()

Similarly, the velocities induced by the other vortex elements adJacent
to the singularities are obtained.

The induced velocity components due to the NCth vortex element

are:
U o = [y Fue +fr) S, B (72)
i=NC {ps]NC] NC [,%ch | |
and |
v, =y) Hoo *ly | T,. (73)
ieNe [psNuNc [ps}NC 2

Also, the induced velocity components due to the NCItP vortex element

are

U, k = L +ly S, (74)
i-NC1 {Y s] NCT ( s] 3
PSINCT P NC2

and

v, =y M + v Ty, ' (75)

Finally, the induced velocity components due to the NtP vortex element

are




and

distributed vortex elements are the summations of the induced velocity

components due to each vortex element':. The re$u1ting velocity

. = ly
i-N1 { ps}N]

Y.)M +ly T,.
[RS'NI N {DSJNZ 4

The resulting velocity components induced by all the finite

components are obtained as

and

™M=
<

J

where Di-j and Ei—j are functions of the coordinates of the control

Ly *[Yps] N§_4’

M=z

M=

Ca.
il

y i3 [YP“S]J‘ ’

E. . [y) ,
1 1Py

- point "i" and the end points of the jth vortex element.

1v.2.3 The kinematic boundary condition rewritten as a set of

linear equations:

Far downstream, the asymptotic value of vorticity along
the jet lower boundary is vy

whilst along the upper boundary the asymptotic value is‘-yq° The jet

boundary vorticity is
Yo T

Yu ©

considered to be made up of two parts§

v

v

1

i

q

Ty

q

Bl 'Yq

and equal to the jet source strength, q,'

along the Tower boundary,

along the upper boundary,

41

(76)

(77)

(78)

(79)
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where the yq components are constant and related to the jet momentum
coefficient by Equation (8). The Yq components make no contribution
to the total Tift because of their contra-rotation. The v' and y"

components can be considered to be responsible for the jet curvature

and Tift. Further, let the 1ifting components of vorticity over the
chord and jet boundaries be denoted by Yj at the jth segment. The
induced velocity at any point can then be considered to be made up of
a component due to the 1ifting vorticity over the chord and jet, a

component due to the source at the jet origin, and a component due to

the non-Tifting vorticity of the jet. Then

N N
U, = % U. + U. .+ ou. (80)
L L 1-(yq)3 i-s
and
N N
V.= % v, .+ I v, v, . (81)
Here, ui-j is the u-velocity at i induced by the 1ifting
vorticity, v, at j;
Us o is the u-velocity at i induced by the source

distribution across the jet origin;

ui—(yq)j is the u-velocity at i induced by the non-

l1ifting vorticity, yq, at j.

It is seen that the first termsof the RHS of Equation (80) and
(81) depend on the unknown vorticity, vy, whilst the other terms are

dependent on the pre-specified jet momentum and jet shape.

UBRARES "

TR
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The kinematic boundary condition of Equation (1) can be re-

written as

Vi - U tan wi = U_cos o tan Vs - U, sina . (82)

Substitution of Equation (80) and (81) into Equation (82) leads to

N N
r Vv, . - tan wi I ou; .= Uw cos o tan wi - Uoo sin o

L]
——
<
i
[ =
1
n
o
o]
3
<
—te
~—
]
—
LI s g

V. . -
NC1 1"('Yq)J j

tan wi) . (83)

Providing the positions of all the distributed vortex and
source elements are known, and the source and yq strengths are calculated
from the jet momentum, Equation (8), the velocities induced by the
source distribution and by Yq distribution, which are presented in
the right hand side of Equation (83), are also known. Thus, all the
terms in the right hand side of Equation (83) are known from the given

initial conditions such as the angle of attack, a, and the original jet

momentum.

However, the induced velocities in the left hand side of
Equation (83) are unknown because the distributed vortex strengths are
originally not known. Instead of solving Equation (83) for the unknown
induced velocities Vioj and Ui_j it is much simpler to replace
the velocities by the expressions presented in Equations (78) and (79)
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to form a set of linear equation with the unknown vortex strengths.

This method is applied here.

The set of linear equations can be written in the matrix

form as

[A'i-j:' [YJ] = [B.i]s . (84)
where

A, . =E, . - tan wi Di—'

j oo (85)

and B, is the right hand side of Equation (83). Equation (84) is
solved by Gaussian Elimination method.

IV.3 Differential Equation for the Jet Trajectory

In the jet dynamic boundary condition, Equation (7), the ~

radius of curvature, R, can be related to the first and second

derivatives of the jet center line trajectory as

y" . | (86)
2372

1
R (1+y

Substituting Equation (86) into Equation (7) gives

y" = (I‘i+1(’_)/ E_‘J_C__. 1 - g_s__]/z (87)
(1 + y.2)3/2 U, U, 2 CJC

In each jteration, except the first iteration, using the vortex strengths

Yy and Yy obtained from the previous iteration, Equation (87) is inte-
grated over each segment length of the jet center line to give the

coordinates of the jet center line trajectory.
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The differential equation, Equation (87), is solved in

Appendix H and the result is

—

1 - 2-1/2
y = C, [1- (C]x+ QZ) ] +Cy (88)
where C1 is the right hand side of Equation (87), and C2 and C3 are
determined by
Y'ai
C, = od - Cy X . (89)
2 v 24\1/2 1 %0j ?
(1 +y557)
and
_ 1 2.1/2
C3 = Yo3 *C [n- (C] Xo3 + CZ) ] (90)

1

The subscript oj denotes the initial conditions of each jet center line

segment; e.g., for the segment nearest to the trailing edge, yloj is

the initial jet deflection slope, tan (-1).

IV.4 Discussion of Convergence

The iterative process described in Section IV.1 was tried
and it was found that this simple iterative process led to divergent
solutions. Successive iterations produced jet trajectories which were
alternately too Tow and too high by greater and greater amounts as
illustrated in Fig. 16. It was noted from Fig. 16 that the typical
input shape and the result of the subsequent iteration formed an

envelope setting upper and 1dwer Timits for the correct jet shape.
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A method of setting the upper and lower limits of the. jet tra-
Jectories closer after each iteration was developed in Ref. 15 and is
repeated in Appendix I for completeness. The method succeeded in
yielding convergence in many cases but failed when an iterated solution
crossed over the input jet trajectory. Because the method used the
position of the end point of the last finite jet center line segment
as an indication of the low or high position of the whole jet trajectory
(see Appendix I), it was unable to allow for the fact that trajectories
had crossed and therefore wrong upper and Tower boundaries could be .

e

selected for the envelope.

The reason for the cross over of the jet trajectories was
due to the choice of the initial jet Shape. It was found that Spence's
solutions for the jet-flapped aerofoil could be used to construct the
initial jet shape for the thin jet augmentor wing. Solution for the
thick jet was satisfactory if the initial shape was for slightly thinner

jet.

An alternative method of predicting the correct jet shape
after each iteration was tested. Assuming the jet center line
trajectory before an iteration is Y17, (x) and the jet center line
obtained after an iteration is Yo = ¥, (x), the predicted correct jet

shape, y, used for the next iteration was calculated from the relation

.Y=.Y]+k(y2')']), (9])

where k was a factor (less than one) which was determined arbitrarily.
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A large value of k meant the predicted jet shape was close to Yoo
One difficulty with this method wasthe determining of k for each
solution. There wasno guide 1ine for choosing k except by trial and
error. It was found that smaller values of k, down to 0.15, were

needed for an augmentor with a thicker jet (& = 0.09 c).

IV.5 Lift Coefficient and Pitching Moment Coefficient

The 1ift coefficient is given by

where CL is the 1ift coefficient and L is the total 1ift, per unit

span, on the aerofoil. The total 1ift is given by

L = LC + LJ. s

where LC is the 1ift related to the circulation on the aerofoil and

L, is the 1ift due to the vertical reaction of the primary jet momentum

J
Thus,

N .
5T, (94)
where T. is the circulation over the jet segment and NC is the number
of vortex segments on the aerofoil, and

L., =J' sin (1t +a) . - (95)

J

Substituting Equation (93) into Equation (92), and using Equations




(94) and (95) gives

NC F. JI .
¢, =2 = UJc + sin (1 + a) , (96)
J=1 0 fpooUC
or
Ne T,
cL=2_z1U—JE+cJ.sin(T+a). (97)
j= o '

The circulation, Tj, is given by

T, = Yj dx (98)

X
J

where Xj and xj + 1 are the coordinates of the upstream and downstream

th

end points, respectively, of the j~ segment.

The pitching moment coefficient about the leading edge is

given by
P, U, vX
Cy = ———— dx
"oy 1, 2.2
7 P Yo €
o, U, vx Y e, U, vx
= dx + dX (99)
1 2 2 1 2 .2
0 70, U, ¢ ¢ 7P, U, ¢
or
c
= 15_ ‘]
CM 2 I Uwcz dx + CJ. sin (1 + a) (100)
0
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because the contribution to the moment from the jet vorticity is equal

to the moment due to the jet reaction 1ift.

Equation (100) is rewritten in an approximate form as

C X ,: T

—C—tJTl +Cy0 sin (1 +a),

wheré Xctj is the distance from the leading edge to the center of the

jth vortex segment.

The computer program for the solution of the uniform jet is

presented in Appendix K.

(101)
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CHAPTER V

NON-UNIFORM JET AUGMENTOR WING

V.1 Introduction

It will be recalled that in the augmentor wing arrangement

(Fig. 4), the primary jet issuing from a nozzle mixes with the secondary

induced flow in the augmentor and the resulting flow emerges at the

trailing edge as an’augmented jet. The augmented jet momentum and

velocity distributions across the jet thickness depend on the degree
of mixing which has taken place in the augmentor. A complete mixing
was assumed previously to simplify the augmentor wing model for study-
ing . the effect of the jet thickness. In practice, the mixing is
not complete and the discharge jet velocities are not uniformly

distributed.

In this Chapter, a method of solution for the effect of the

non-uniform jet on the 1ift coefficient is presented.

V.2 Mathematical Model of the Non-Uniform Jet

The velocity distribution across the thickness of a non-
uniform jet can be approximated by step-distributions such that the

non-uniform jet is considered to be made up of the successive uniform

jets of different momentums, as shown in Fig. 18(a).
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In this work, a simple example of a non-uniform jet is
considered to be represented by two successive uniform jets sharing
a common boundary but having different momentums [Fig. 18(b)]. First,
considering a straight non-uniform jet (Fig. 19) co-flowing in a
stream of velocity U , each straight uniform jet is represented by
two semi-infinite vortex sheets and a source distribution as presented
in Chapter II.3. Let the velocities be U, + q, and U_ + q, in the
upper and lower halves of the jet respectively, then the source strengths
are q, and q, for the upper and lower halves of the jet, and the
strengths of the vortex sheets are: Yy T T Ay Yg TG s and
Y = 9, ~ 9p» where Yin is the distributed vortex strength on the common

boundary of the two assumed uniform jets (Fig. 19).

By arguments similar to those in Chapter II.4, the curved
non-uniform jet is considered to be represented by two source
distributions, q, and 9> at the trailing edge and three semi-infinite

vortex sheets of unknown strengths (Fig. 20).

V.3 Non-Uniform Jet Boundary Condition

Applying Bernoulli's equation to the free stream and the jet

flows at the jet element shown in Fig. 21 gives

pytzoVi=p +30ll, (102)
2 1
pptyoVi=p,+xols, (103)

and

1 2 1 2
PytseVs=pptz0V,, (104)




52

where P and p, are the pressures of the jet at the jet upper and
lower boundaries respectively, and Py and Py are the pressures on
the upper and lower side of the common boundary of the two uniform jets.

Similar subscripts, 1 to 4, are used for the jet velocity, V.

The assumption of irrotational flow in the jet, except on

the jet boundaries, is applied to yield

(105)

and

R, . (106)

The upper and lower uniform jetsare assumed to share a common

boundary, thuys

R, =R, . (107)

Furthermore, the Pressures are assumed to be continuous on

the jet boundaries, so that

Py =Py (108)
Py = Pg > (109)
Py =Py . (110)

These basic equations, from Equation (102) to Equation (110),
are used in Appendix J to relate the jet centerline radius of curvature

to the free stream and jet. velocities; the result is




2
1.2 (fy - Yy)™ (111)
R 8 2 2 2 2 2, °
US - Up + (B 1)V - V3)
where kV= V3/V2.

Equation (111) is the dynamic boundary condition of the non-

uniform jet.

V.4 Method of Solution for the Non-Uniform Jet

The numerical method of solution for the non-uniform jet was
similar to that used for the uniform jet. The vortex sheet on the
aerofoil and the three semi-infinite vortex sheets were divided into
finite length segments except that the last thrée segments far down-
stream are semi-infinite. A1l the vortex segments were approximated
by straight line segments, and the control points were taken at the

mid-point of each segment.

The vortex strengths were initially unknown, and assumed to
be linearly distributed everywhere except near the singularities where
the logarithmic distributions were assumed. The singularities include
those described in Chapter III.3 and an additional one at the start
of the jet middle vortex sheet. The logarithmic distribution of the
vortex strength on the segment adjacent to the latter singularity was
expressed by Equation (22) with XN2 being replaced by the x-coordinate

of the upstream end-point of the segment.

53
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The iterative method described in Chapter IV was applied to
find the solutions for the distributed vortex strengths and the jet

trajectory.

As the starting iteration for the non-uniform jet solution,
the jet trajectory for the uniform jet of the same primary jet momentum
coefficient and thickness as those of the non-uniform jet was used as
an initial jet shape.

The computer program for the solution of the non-uniform jet

is presented in Appendix L.
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CHAPTER VI

RESULTS AND DISCUSSIONS

VI.1 Thin Jet

The potential flow solutions for an augmentor wing having a

thin jet were obtained and typical results of vortex strength

distributions and jet center line trajectories are presented in Fig. 22

and Fig. 23. In this analysis, the jet thickness of .005¢ was consid-

ered to be "thin". Vortex strength distributions on the aerofoil
chord and jet boundaries are presented in Fig. 22, where the vortex
segment lengths are shown by the division marks on the x-axis. The
separate y-distributions on the upper and Tower jet boundaries, shown
in Fig. 22(a), represent the difference between the jet and external
flow velocities at the respective boundaries. It will be remembered
from the mathematical model that the difference (yu - Yz> is a measure
of the jet strength whilst the sum (yu + Yl)’ plotted in Fig. 22(b),

represents the contribution to 1ift. It is seen that Y, is very

nearly equal to -y, for x/c > 3.0 which is partial justification for
2

putting Yy T Yy for x/c > 5 in the computations.

Spence's (3) linearized, thin jet solutions are shown in

Fig. 22(b) and Fig. 23 for comparison. The resultant vortex strength

distributions and the jet center line trajectories show very good
agreementg, although Spence's method results in a slightly shallower

jet trajectory. This is because Spence assumed the vortex distribution
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to be along the x-axis. Herold (6) also found that allowing the
vorticity to be on the jet center line gave a bigger jet displacement

for low values of Cj'.

Fig. 24 presents the effects of momentum coefficient on the
1ift coefficient. Comparison with Spence's results shows that the
Tinear theory has underestimated the 1ift coefficient for the values
of CJ. lTess than 1.5 in the case of T = 55.5°, and for the values of
CJ. lTess than 3 in the case of T = 30°. The lower 1ift is consistent

with shallower jet trajectories.

Foley's (16) experimental results of the 1ift of a two
dimensional jet flap wing are shown in Fig. 25 together with the
predicted values. Foley's model had a small hinged flap (0.083c) so
that his tests represented a jet-augmented flap. This is why the
present theory underestimates the 1ift. A correction, based on
Spence's (7) results for a Jet-augmented flap, was applied to the
present results. The corrected values are now sTightly greater than

I 2w, 2/~‘f"'».-2‘?"< .";"C. g ), o

Foley's experimental results; th1§Amay be attr1buted to boundary layer

AN

effects.

The variations of 1ift coefficient with angle of attack and
Jet initial deflection angle are presented in Fig. 26 and Fig. 27
respectively. The results show a very good agreement with Spence's

solution (3) for the jet flapped aerofoil.
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VI.?2 Thick Uniform Jet

The results of the distributed vortex strengths and jet shapes
for a two dimensional augmentor wing, corresponding to different jet

thicknesses, were obtained.

Fig. 28 shows the vortex strength distributions on the
aerofoil and jet boundaries for the case where the jet thickness is
0.09¢c, the attack and jet deflection angles are 0° and 30° respectively,
and the primary jet momentum coefficient is 1.75. The results of vortex
strength distributions for the case of jet thickness of 0.005c are also
presented in Fig. 28 for comparison. It was found that increasing the
jet thickness alters the vorticity distribution over the aerofoil
slightly. For the thicker jet, the vortex strengths are greater over
the first three-quarters of the chord leading to a decreased nose-down
pitching moment. -The pitching moments are -1.818 and -1.808, and the
1ift coefficients are 3.071 and 3.147 corresponding to the jet thick-

nesses of .005¢c and .09¢ respectively.

The effect of the jet thickness on the jet trajectory is
presented in Fig. 29. There is a little change in the jet center
line shapes for the two extreme cases of 6 = .005¢c and § = .09c. If
the lower jet boundaries were drawn for the two cases, it would be
found that the lower jet boundary for & = 09c had slightly deeper

. penetration.

Fig. 30 presents the 1ift coefficients corresponding to
different jet thicknesses. It shows an insignificant increase in the

1ift coefficient over the range of § from .005¢c to .09c. An examination
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of the dynamic boundary condition offers some explanation.

The jet dynamic boundary condition as defined by Equation (7)

can be rewritten and combined with Equation (13) to give

K ECE I

+
_fuT Yy
U

0

o) —

(113)
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Equation (113) shows that for an increment in the jet thickness, the
Y, ty
coefficient of _lLTT_JQ changes Tess for smaller values of C

oo

g This
means the jet dynamic boundary condition is less affected by the change
of the jet thickness for small values 6f CJ.. Based on this argument
and the results found for CJ, = 1.75, it is reasonable to predict that,
in the practical range of CJ. (0.4 < CJ. < 1), the jet thickness has

a very little effect on the 1ift coefficient.

The fact that the vortex strength distribution on the upper
jet boundary becomes infinite at the jet start seems to indicate that
a significant 1ift might be carried by the shroud. As noticed from
Fig. 22a, the vortex strength drops so sharply over the first small
element of the jet upper boundary that its integration, which is
finite because of the nature of the singularity, is very small. There-
fore the circulation around such an element, and hence the shroud

1ift, is small.
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A solution for an aughentor wing with the jet thickness
§ = 0.09c was also obtained using the jet dynamic boundary condition
in terms of velocities near the jet edges given by Equation (17).
The results of vortex distributions which are shown in Fig. 31 are
very close to the results obtained using the approximate jet dynamic
boundary condition (expressed in terms of average velocities) Equation
(14). However, the use of the dynamic boundary condition, Equation (17),
required more computing time and memory to compute the velocities and

is not considered justified.

VI.3 Thick Non-Uniform Jet

The effects of the velocity distributions across the jet
thickness on the 1ift coefficient were studied by comparing the
solutions of the 1ift coefficient for different velocity distributions
provided that the mass flow rate and the momentum coefficient of the

primary jet are kept constant.

The mass flow rate and momentum coefficient of the primary

jet are defined as

8
m = J oqdn , (114)
0
and s )
IO Pq dn s
CJI = (1]5)
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respectively, where the n-axis coincides with the source distribution

segments and its origin is at the trailing edge.

The general non-uniformity was simplified into a jet consist-
ing of two uniform parts and, in particular of equal thicknesses.
The primary flow velocities in the upper and lower parts of the jet
are q and q, (as discussed in Chapter V.2). The integrations of

Equations (114) and (115) give

. _ 8 $
m "Pqu '2’+ QQ _Z—P, (]]6)
and
2 2
Oqu'g‘ DQQ%
€y = + , (117)
U2 1 U2
7%t 7 P
respectively.

If the mass flow and momentum coefficient are to be kept the

same as for a uniform jet so that

m=pq 6 , (118)
and
pg%s_
Cy = —;-pUOZOC (119)

then the only possible solution of Equations (116), (117), (118), and

(119) is for 9, = 9=49. To provide some basis for comparison, C,.
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was kept constant and the mass flow was allowed to take on the values

required to satisfy Equation (116).

Two different non-uniform jets (cases A and B) having the
same momentum coefficient and same mass flow can be compared for the

special condition represented by

[a,dp = [agdg s [aydy = [9, 05

q. q
i.e., HEoo U » where subscripts A and B denote cases A and
q q
21A 2B
B respectively.
. 9y
The vortex distributions solutions for two cases, |—| = 0.6
1B
q
and EEJ = 513 » are presented in Fig. (32). The vortex distribution
ol A . v

on the aerofoil and parts of the vortex dist}ibutions on the jet
contributing to the 1ift are shown. It is seen that the distributed
vortex strengths on the aerofoil for case B are greater than that for
case A, where the velocity in the Tower half of the jet is smaller than
the velocity in the upper half. The distributed vortex strengths on the
jet middle vortex sheet are small compared to the vortex strengths on

the jet boundaries.

At the initial singularity on the jet middle vortex sheet,
the vortex strengths for cases A and B approach negative and positive
infinity respectively. The reason for this behaviour may be due to the
difference in the jet trajectories in the two cases (Fig. 33). The jet

trajectories give the general flow direction. The local flow in the
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neighborhood of the jet start is discussed later. The jet center line

trajectory in case A is much shallower than in case B.

Solutions for a range pf values of gi-have been obtained and
the effect on 1ift coefficient is shown in Fig. 34. The primary jet
momentum coefficient was kept constant at 1.75. The jet thickness was
b.ogcg and the angle of attack.and Jet initial deflection angles were

0° and 30° respectively.

By comparing the pairs'ef points of the same mass flow rates

in Fig. 34, it shows that the 1ift coefficients are higher for the

9 ,

smaller values of aﬂ . This means higher 1ift is obtained when the
£ .

primary jet velocity in the lower half of the jet is greater than that

in the upper half of the jet.

q v
It should be noted that when ag is equal to 1, the non-uniform
q, q
jet becomes a uniform one. The "non-uniform jet" solution for 63 =]

. _ '3
was compared to the solutions obtained by using the uniform jet model

having the same initial conditions.

The results of the 1ift coefficient, CL* are shown in Fig. 34.

It is noted that the result of 1ift coefficient at qu/qﬁ = 1 differs by -

4 percent from the result obtained by using the uniform jet model.

Furthermore, the Yy, strength distribution was expected to

be nil éo that the results of the vortex strength distributions could

be consistent with the results obtained by using the uniform jet model.
However, this was not the case. The strengths of Yo distribution

are small, but they are not negligible.
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To try to understand these inconsistancies in the 1ift
coefficients and vortex distributions, the flow conditions in the
neighbourhood of the jet start for the uniform jet model were sought
by calculating the velocities in this region. The flow directions are
_ shown in Fig. 35(a). Also the velocities at 10 points equally spaced

across the jet start were found and presented in Fig. 35(b).

_Figs. 35(a) and 35(b) show that at the jet start, the slope
of thé velocity decreases from tan T at the trailing edge to a shallow
slope nearer the jet upper boundary. Therefore, when the non-uniform
jet model was used to represent the uniform jet flow, the middle vortex
sheet, which was assumed to have the initial deflection angle of T,
was subjected to an oncoming flow with an angle less than t. This flow
condition created the circulation around the jet middle vortex sheet,

which affected the overall circulation and so the 1ift coefficient.

However, taking into account of the small discrepancy in the
1ift coefficient (only 4%), Fig. 34 can be used to show the trend of
the effect of the velocity ratio on the Tift coefficient. There are
no other results (either experimental or theoretical) with which these

present results can be compared.
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CHAPTER VII

CONCLUSION

A method of potential flow solution for a simplified two
dimensional augmentor wing has been developed. The simplification
involved the reduction of the aerofoil to a flat plate, and the
reduction of the augmentor length to zero. This was in order to
concentrate on the effects of jet thicknesses and velocity profiles.

The method used a mathematical model of distributed vortices and
sources to represent the augmented jet, and the jet shape was calculated
by an iterative process which required special treatment to ensure

convergence.

The good agreement between the present solution for the thin
Jet and the well known linearized solution demonstrates that the method
gives good results for calculating the vortex strength distributions,
jet trajectories and 1ift coefficient curves at the Timiting case
where the jet thickness is very small. Besides, the comparison verifies

the accuracy of the linearized solution for the jet flap problem.

Solutions for a range of jet thickness indicate that the 1ift
coefficient and the jet trajectory are not affected very much by the
Jet thickness provided the primary jet momentum coefficient is kept
constant. However, there is a difficulty in applying these results in
practice because of the difference between the definitions of the
primary jet momentum used in the present model and the power jet

momentum used in practice. The relation between these momentums must
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be determined empirically.

A solution for a non-uniform jet was attempted by dividing
the jet into several uniform layers and results were obtained for the
special case of two equal thickness layers. It was found that, for
a constant primary jet momentum coefficient, a higher 1ift was developed
when the Tower part of the jet had a higher velocity than the upper
part. The method does not completely represent the flow at the start
of the jet but the results indicate the 1ift trends due to jet non-
uniformity. The drawback of the model is outweighed by the simplicity
and practicality of the method in predicting the performance of the

augmentor wing.

For future work, the effects of the flap and shroud can be
studied by incorporating the flap and shroud to the present model in
the form of flat surfaces. To take into account -% the effects of the
aerofoil camber and thickness, singularity distributions can be used
to replace the solid boundary of the aerofoil. The use of sinks or
sink distributions may be considered to represent the entrainment at
the augmentor inlet and along the jet boundaries. Regarding the non-
uniform jet model, four or five vortex sheets in the jet may be used
to represent a non-uniform jet with better approximation for the primary

jet velocity distribution.
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APPENDIX A

REPRESENTATION OF STRAIGHT UNIFORM JET

Induced Velocities by Two Semi-Infinite Vortex Distributions

Consider two semi-infinite plane parallel uniform vortex dis-

s 8

tributions of strengths y_ and -yq on two lines y = - 5 and y = 5 as

. q
shown in Fig. 7(a). The horizontal components of velocities induced

by parts of vortex sheets 1 and 2 which stretch from x = 0 to Xp and
1

Xp [Fig. 7(b)] are(Ref. 14)
2

Y
— -
Up..y 7 (%7 - 9p) (A1)
%
and
. Jq
up_-Yq - 21 (¢22 - ¢2) L] (AZ)
2

where ¢], ¢2, ¢]] and ¢22 increase anti-clockwise from 0 to 2II.

Adding (A.1) and (A.2) yields
y
+u = 5% [(6y - ¢,) - (647 - 9,,)]. (A.3)

At the 1imit when Xp and Xy 90 to infinity,
1 2
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¢” = ¢22 =1 (A.4)

and Equation (A.3) becomes

v
+ u = 4 (‘b] = ¢2) (A.S)

Y r
= .94, 1
vP_Y S AN - (A.6)
9 1
and
Y r
- _9 22
Voo = d an —EE (A7)
P yqz 21 ry
Adding (A.6) and (A.7) gives
Y r r
22 11
Vo,  * Vo o =52 (an L5 - gn ) | (A.8)
P Yq] P Yqz 21 ro r

At the limit when Xp and X, go to infinity, " is equal to roo and
1 2
(A.8) becomes

(A.9)
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Induced Velocities by a Source Distribution

Consider a two dimensional uniform source distribution of

strength q on the y axis between y = - g-and y = g-as shown in Fig. 7(b).

The two components of the induced velocity at P are

8
2 .
-9 sin 6
Up_¢ = 7 — dy (A.10)
‘3
2
and
$
q 2 cos 6
Vp.s T 71 Tr dy (R.11)
78
2

where subscript s indicates the source.

From Fig. 7(b) it can be written that

*p
tan 6 = . (A.12)

Differentiating both sides of (A.12) with respect to 6 and y gives

. v
dg - P > dy. (A.13)
cos™®  (yp - y)

Also, from Fig. i} (b), it can be written that

(A.14)




Differentiating both sides of (A.14) with respect to r and y gives

2rdr = - 2 (yP -y) dy . ~A.15)

Using (A.13) and (A.15) to change the variables in the integrals in
(A.10) and (A.11) gives, respectively,

Up_ de (A.16)

P-s 2n o r xP c0s%6
2

or
5
=_9 = .4 -

Up_o = 7 J de s (87 - 8,), (A.17)

8,

where e] and 82 are measured positively clockwise from 0 to 2T

and
(Y‘.' 6
- q cos __r .
Vpg = 7 J () ar | (A.18)
2
or
V] :-.9. r] :_dﬁ =—C1,Qn:2— (A 19
P-s 2I r 21 " : -19)
Y

Resultant Induced Velocities by Previous Two Vortex Distributions and
the Source Distribution

Assuming the vortex and source strengths per unit length

are equal or
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Y, = q . (A.20)

u. = (up tup_, ) +u (A.21)

and

) + v (A.22)

Substituting (A.5) and (A.17) into (A.21) and applying (A.20) gives
Yq
u. = o [(6g - ¢,) + (8, - 8,)]. | (A.23)

Similarly, substituting (A.9) and (A.19) into (A.22) and applying
(A.20) gives

v, =0 - (A.24)

It is desired now to observe the velocity field in some particular

regions.
At x = -= u =0
r
At x = 0+ u. =0 for |y| > §
ur=yq for [yl <§
At x = +eo u, =0 for |y| > g
u. = Yq for |y] < >

The resulting flow is a parallel flow in the region between the lines

y = g-and y = - g-and for x > 0, with constant velocity, U.= yq = q.
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APPENDIX B

ANALYSIS OF A POLAR ELEMENT OF A TWO DIMENSIONAL JET

Consider a polar element of the two dimensional jet whose

boundaries are treated as concentric circular arcs subtending an
angle dy at the centre of curvature (Fig. 10). The pressures Py and
Py at the upper and lower jet boundaries are continuous across the

boundaries.

Bernoulli's equation can be applied to the external and jet

flows to give

2 12
pu + ? p UU = P,Q + 2 poo UQ, s (B.])
and
1 _ 1.2
pu +'2"D v - pz + 2 P V}Q s (B.Z)

where Uu and U2 are main stream velocities just outside the upper and
lower boundaries; the jet velocities just inside the upper and lower

boundaries are Vu and Vz respectively. Assuming the jet and main

stream densities to be the same and constant, Equations (B.1) and

(B.2) are combined to yield

Since the jet flow is irrotational, the circulation round the jet

element is zero and hence
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Vu dsu = Vzds2 (B.4)
or
V R-%)dp=v, R+% o (B.5)
u 2 2 2 .
where R is the jet radius of curvature.
Rearranging (B.5) gives
- =4
(Vy = V) R=5 (v +V,) (B.6)
or
v -y, =3y (B.7)
u 2 R 'a '
where Va is the jet mean velocity defined as
=1
Va =5 (Vu + VQ) . (B.8)

This approximation was justified by Spence ( 3) for jets of small

deflection and will be assumed to be reasonable for the larger jet

deflection angles to be used in this analysis.

velocities are assumed to have the average
L +u,)=u
2 ‘“Cu g = Uy

Rewriting (B.3) using (B.7) and (B.8) gives

u

-U

2
L

=28
=2 RV

2
a

Similarly, the external

(B.10)
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Using (B.9), (B.10) becomes

3N

U - U = (B.11)

u L

gjor
<:l =<
8 |

The velocity discontinuities at the jet boundaries are eguivalent to

vortex sheets of strengths

Yy = Uu - Vu (B.12)
and

’Yl = V/Q, - U,Q, s (B-]B)
so that

Yyt S (Uu - Ul) - (Vu - VQ) . (B.14)

Substituting (B.7) and (B.11) into (B.14) gives

(B.15)

2
1. Wt Y’/ Yy (B.16)
R U it v

This is one form of the jet dynamic boundary condition, which expresses
R in terms of Y, and Y- Another form of the dynamic boundary condition
expressed in terms of the velocities at the jet boundaries (without

averaging them) is derived from Equations (B.3) and (B.6) as
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1.2 )&L;;Ji_ (B.17)
R ¢ Vu + Vz :
or
2
1_2 V-V
R™°s 7 72— > (B.18)
V- -V
u £
thus
(v - V,)2
1_2 u L (B.19)
R85 7 .2
u 2
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APPENDIX C

CONSTRUCTION OF THE COORDINATES OF DIVISION POINTS ON THE
JET UPPER BOUNDARY

From Fig. 11(c), assuming the coordinates of AQ, a division
point on the jet lower boundary, are known, the coordinates of Au’ a
corresponding division point on the jet upper boundary, is calculated

as follows.

The length Aqu is found from the jet thickness & and y,

half the angle formed by the two adjacent vortex segments, as

TR §

AUA,Q, '—"S_IT(—X—)— . (C])

Thus, the coordinates of Au are

X, =X, tAA cos (A) (C.2)
Au Az L
or
_ $
= XAQ + <in )‘cos (A) (C.3)
and
_ 8
yAu = yA2 .sin (X),s1n (x) (C.4)

where ) is the angle measured positively anti-clockwise from the

x-axis to AzAu'
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APPENDIX D

VELOCITIES INDUCED BY A LINEARLY INCREASING
STRENGTH DISTRIBUTED VORTEX

Considering a distributed vortex segment 0'A on the £ axis

as shown in Fig. 15, the vortex strength,y, increases linearly as

£

where Yps is the vortéx peak strength at £ = A.

The differential induced velocity, dV', at point P (EP, np)
due to a very small element of distributed vortex having a strength of

vyd¢ at &£ is

v = Yde . (D.2)
2 [(g, - £)° + no] /2 '

Resolving dV' into & and n components gives

du' = dV' sin ¢ (D.3)
or
du® = Y 7777 ng 7777
2 [gp - ©)° +n51 /2 " [(g, - £)F + n2]/
Ynp d &
= P 7 2 > (D°4)
ZH [(gp - g) + np]

and
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dv' = - dV' cos ¢ (D.5)

or

dv' = = P -2€ 2172
2 [(gp -8)° +n51/% [(g, - £)% + n3]"/

(EP - E) ng
= - 7 ? . (D.6)
2n [(gp - €)% + npl

The resultant velocities induced by the distributed vortex

segment 0'A are obtained by integrating (D.4) and (D.6) over the

segment length. From (D.4),

np !d
- &€

(Fz
u'=;% gBJ gd52 7 - <4D-8)
A 0 (gp - g) + np ’
or
2 2{1/2
gt = TP Yps n S ~ta) *mp
2 gA E2 + il
pTlp

(D.9)




Similarly, by substituting (D.1) into (D.6) and integrating, the

n- component of induced velocity is obtained as

k=
(% (gp - 8) &de
Ay (gp - 8)° +nf

<—

H

)

ro| <
w

g

or

)2 4 o2 172

&)

2 2

Y (&p -
Vo= -%5- Ep AN P %
A St mp

-1 " -1 M
+ np [%an ! lEEL - tan”! é—EéﬁzJ *—|§M
P =A

78

(D.10)

(D.17)
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APPENDIX E

TREATMENTS OF THE SINGULAR INTEGRALS IN THE
EXPRESSIONS OF u AND v

P-Y] P-Y1
Equation (52) for Up_y s
1
(X
by =l | P yP2 5 dx . (E.1)
P_Y] 2 0 X3/2 (XP - x)° + Yp

The integral is singular at x = 0.

The method used to solve this integral is to separate the
integrand into additive parts which are either analytically integrable
through the singularity or have no singularity (and hence can be solved
accurately enough by a numerical method). In this case the integrand

is rearranged so that

: X
Up <« 2 y Yy
P-Y, 4 _ an (1 - x) P 2n (1 - x) P
— T - -
. J 372 (x X)z + 2 32 W2+ 2 dx
o 0 p Yp pTYp
X
y 2 -
by [ i (E.2)
Xt Y o X
*2 * p 1+x72  gn (1 - x)|*2
= [ J dx - 2 A Vi 2 n : 172 + 172 (E-3)
0 xp + ¥Yp | - X X 0
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or -

1/2
UP_Y] X2 N 2 yp 1+, (1 - x,)
Vi 0 Xp T Yp X2 X2

The integrand in (E.4) is free from singularity at x = 0

and can be calculated fairly accurately by a numerical methodf

is
]

Equation (53) for by

X
o =l [P -x dx . (E.5)
P-y] 21 X3/2 )2 + 2 : )

0 Yp
For the values of Xp outside the range of integration; Xp < 0 and

Xp > Xos the integral is singular at x = 0.

Using the method of treatment of the singularity described

earlier, the integrand in (E.5) is rewritten as

" X
P-yy [ 2 0m (1-x) Xp-X i (1-x) X |F "
= - 3 R 3 77
;% 0 x>/ (xp = x)" +yp X/ Xp + ¥p
X
X 2
- J 4 (;/5 S (E.6)
+y X
Xp T Yp 0 :

* Integration by Gaussian Quadrature was used.
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X -
2 X 1/2 X
- J [T dx+ ot 2 | an 1* 77+ 45 X{] 2 (E.7)
+y 1 -x
0 *p T Yp 0
or
N b 2% | 1 %2 an (1 - x,)
= - + +
K. Ll 1 1 72 (E.8)
o 0 Pt Yp 2 2

For values of Xp within the range of integration, 0 < Xp < Xos and when
Yp 1s equal to zero, the integral (E.5) is singular at x = 0 and

X = Xp- Equation (E.5) is rewritten as

v X
P‘Y]=_ Z,Q,n(]..x) 1 _Qn“_x)_]_ln(]-xp)
K] 0 X3/2 Xp = X X3/2 Xp XP3/2
21

Xp = X X 3/2 Xp - X
P P xP3/2 0 P
or (E.9)
VP—Y] ) 1+ x;/z n (1 - x2)
k=" | [1 dx+3= | 72 Y 373
1 0 P 1 - x2 2
21
(1 - xp) o P . (E.10)
3/2 x2 - xP
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APPENDIX F

TREATMENTS OF THE SINGULAR INTEGRALS IN THE

EXPRESSIONS OF u AND v
P-Yye

Equation (54) for u is
P-Yne

1
) e - x) Yp
Py - 2N 372

NG

dx . (F.1)
2 2
(XP - X) + yp
The integral is singular at x = 1.

Using a method of treatment of the singular integrals similar

to that described in Appendix E, Equation (F.1) is rewritten as

u 1
P-YNC _ 2n (1 - x) Yp
R - 377 77 - (1-x)
_Z_Ng Xy X (xp = )" +yp
ii L
* 1
Yp Yp
(XP = 1) + yP (XP - ]) + yp «
NC
or
u 1
P-y
NC _ * P -
Ko [ [ ] dx + ])2 T2 (1 - Xye) &0 (1 - XNC) Xy - 1
T K e - Yp
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is

Equation (55) for vp_YNC

-Kne ] gn (1 -x) p- x)- (
— dx . F.4)
21 372 (xp - 02+ 2

Vv
P_'YNC + Yp

NG

For the values of Xp outside the range of integration

Xp < Xyc and Xp > 1, the integral is singular at x = 1.

Equation (F.4) is rewritten as

v 1
P-Yne gn (1 -x)  *p ™%
K - 3/2 2 2 - /Q/n (]'X)
NC « X (xp = X)" + yp
21 NC
Xp - 1 * Xp - 1 1
5 | dx - > 5 an (1 - x) dx (F.5)
(XP']) +‘yP (XP'-I) +‘yP X
NC
or
VP-YNC ) 1 [ * ; xP -1
Kve e (xp = 1)° + y
il XNG P P
[k] - Xy an (1 - XNC) + xNC)— 1 } . (F.6)

For values of Xp within the range of integration, Xne < Xp < 1,
and Yp = 0, the integral in Equation (F.4) is singular at x = 1 and

X=XP.
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Equation (F.4) 1is rewritten as

v 1

P'YNC - 2n (1 - x) T (0-x) I (1 - *p)

ENQ x3/2 Xp = X Xp = ] XP3/2

21 *NC

* .]
% dx - P an (1 - x ) dx - 372
P P x Xp
NC
]
dx
- x ° (F.7)
X p
NC
or

VP-YNC=-][]dx- 1 (1 = x0e) 20 (1 = xen) + %o = 1

K Xp = 1 | NC NC’ T Ne

il *NC

an (1 - x..) X, - X .
p. P NC
372 an —7—1;—;;—- . (F.8)
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APPENDIX G

TREATMENTS OF THE SINGULAR INTEGRALS IN THE

EXPRESSIONS OF ul s Vi » u and v,
Per” PYner” PN P
The expressions for uﬁ and u/ have the general form
Y g P-Yue
NCI NI
of
o n
u' =g [ tn (’3‘/5 k) Py a2, (6.1)
0 X (EP - E) + np
where k is a constant.
From the geometrical model [Fig. 11(b)]
X -k=2%&cos T ‘ ‘ (G.2)
Substituting (G.2) into (G.1) gives
L ( . A
_u' n (£ cos T) ‘P '
K J s 0372 77 % (6.3)
om  Jo (Ecos T+ k) (Ep - E)" +mp .

Using a method of treatment of the singularity similar to that

described in Appendix E, Equation (G.3) is rewritten as

2
u' an (& cos t) "ip on

_ut - £ cos T)

gﬁ" [O (£ cos T + k)3/2 (EP - ﬂgz + ﬂg

ulk * n g

P : p
dg + an (£ cos 1) d& (G.4)
K% (5 + n2) /2 (g5 + nd) [o
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or

L

u' _ *
'—K—_“ [ ] dg + k3/2
21 0

TJP -
2 1en (2 cos 1) - 1]. (G.5)
(g5 + n2) [ J

The expressions for v ~and v} . have the general form of
P=Tne: Py

377 7 d& (G.6)

.
S ¢ J an (x - k) Ep - &
0 X (€p - &)° +np

Substituting (G.2) into (G.6) gives

2
L [ an (€ cos t) tp - &

¢ . (G.7)
0 (£ cos T+ k)Y (&p - £)° + n§

v
K
21
For values of gp outside the range of integration, the
integral in Equation (G6.7) is singular at £ = 0. Equation (G.7) is

rewritten as

. £y - €
fﬁ: - J [&n (£ cos 1) 77 P )2 5 - in (£ cos 1)
21

(€ cos T + k) (€p - &) + p
£ 1* £ t
p P
d¢ - n (€ cos 1) dg (G.8)
T ng>J TE
or
2
‘ 2
_%_.= - ( [ ]32- 5 P 5377 2 [én (£ cos 1) - ] . (G.9)
Vil 0 (‘EP + np) k
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For values of gp within the range of integration, and np = 0, the
integral in Equation (G.7) is singular at £ = 0 and £ = EP' Equation

(G.7) is rewritten as

L
v o n (g cos t) 1 1 on
AR — - £ cos 1)
gﬁ' [0 [(E cos T + k)3/2 gP ¢ EP k3/2
n (&, cos T) T * %
- P 1 J dg - S an (€ cos 1) dg
(£ cos v+ k)4 5p = & g K2 |
9 L
n (gP cos T) de
(p cos T + k)?’/2 8 - & (6.10)
0

or

2n (gP cos T) &p

(gp cos T + k)




APPENDIX H
SOLUTION TO A DIFFERENTIAL EQUATION
Rewriting Equation (87) gives

2)372 ¢

(1+y

where C] is the right hand side of Equation (87) which is assumed

constant along each vortex segment.

Let

then (H.1) becomes

=C
‘—%——] s 52N

(

Both sides of (H.3) can be integrated to give

_de ., [dx i
J (1 + 92)3/2 1
—————ﬂ?—T—— =C, x+¢C, ,

where C2 is determined by letting (H.5) satisfy the initial slope of

the jet center line segment

88

(H.1)

(H.4)

(H.5)

.......
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Yo
= oJ -
, 2172 7 O %o (H.
(1T +y'%)
0J
Solving (H.5) gives
i C1 x + C2 (+
9 2172 :
[1-(C, x+¢C,)]
1 2 }
Rewriting (H.7) letting X = C1 x + C2 and substituting g%-for g gives
dy . X
dx - X?)l72 ’ (H
or
(1 -X7)
But
_dX
dx = C1 . (H
therefore substituting (H.10) into (H.9) and integrating (H.9) gives
2\1/2
1-X
y=_( C]) +C3 (H
Rewriting (H.11) in term of x gives
y=-%1—[1-(C]X+C2)Z]Vz+C3 , (H.
where C3 is determined by letting (H.12) satisfy the initial location
of the jet center Tine segment, and is given by
) 1 1 2.1/2
C3 Yoj + G, [ (C] xoj + C2) ] . (H

7)

.9)

.10)

L11)

12)

.13)
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APPENDIX I
CONVERGENCE OF ITERATIONS

The basic iterative solution consists of two steps:

Steg 1 ™
An assumed jet shape is used to evaluate the vortex strength

distribution.

Step 2

The vortex strength distribution is used to evaluate the jet

shape to be used in the next "Step 1".

Application of this technique produces divergent solutions
as illustrated in Fig. 16. An additional step (Step 3) is introduced

to produce a modified jet shape for input to Step 1.

Any pair of successive jet shapes formsan envelope within
which the true shape Ties. Because the first assumed jet shape may
cross the téueshape, it was found to be unwise to take it as-a‘boundary
to the envelope. The first envelope is therefore taken as the two jet

shapes resulting from the first two applications of Step 2.

Suppose the envelope is bounded by the curves Y15 Yo (with

2 above y2) as on Fig. 17. The next input shape is given by

_ 1

and produces the curve Yq which may lie in any of four regions. The

end points are denoted by (y4)] 0. 3. 4 25 shown on Fig. 17 and are




used in the computer programme for determining the input for the next
iteration. Also, the end points of the curves Yis Yo and y3 are denoted

by (y]), (y2) and (y3) respectively. Consider the four possibilities.

(¥g)ys (yg)y < (¥))

To produce a curve with (y4)'< (yz), the (y3) value would
have had to be above(y])because of the divergent nature of the solutions.

Therefore (y4)] cannot exist.

(Yg)ps (¥3) < (¥g)y < (¥y)

Since the iterative solutions diverge, Y3 and Yq must represent
a more restrictive envelope than Y15 Yy and this new envelope is
retained for comparison in the next iteration for which the input is

1
taken as E-(y3 + y4).

(¥g)gs (¥7) < (yg)5 < (¥5)

A similar case to (y4)2. The new envelope is Yq and Y3 and

the input for the next iteration is %—(y3 + y4).

(¥g)gs (ygly > (¥q)

In this case, (y4)4 is outside the original envelope and is
rejected. The new envelope is specified by Y1 and Y3 and the next
input is %—(y] + y3).

A similar set of arguments is used if the curve Yo lies above

curve yy.
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APPENDIX J

NON-UNTFORM JET DYNAMIC BOUNDARY CONDITION

In this Appendix, the non-uniform Jjet dynamic boundary
condition is derived from the nine equations given in Chapter V.3,
from Equations (102) to (110). For convenience, these equations are

rewritten here.

Ptz o Ul =p, + o0l (9.1)
1 .2 2

Prroely=ptze (J.2)
12 1.2

P3tzeVs=p*t50V, (J.3)

v, Ry =V, R (J.4)

V3 Ry =V, R, (J.5)

Ry = R, (J.6)

Py = Py (J.7)

Py = Py | (J.8)

P, = Py (J.9)

Substituting (J.6) into (J.5), and combining (J.4) and (J.5) give
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Yy Vs )
TR =2gr. (3.10
V4 1 V3 4
Substituting Ry =R - g-and R4 =R + g- into (J.10),
v vV
1 § 2 8
— R-%) = R+3) . (J.11)
4 2 V3 2
Rearranéing (3.11) gives
V. V, -
1 2
R - v: e 5 (0.12)
Let V3
kV= V;_ s (3.13)
(3.12) 1is rewritten as
1oAY o
R kVV] + V4 85 (J3.14)
or
2
LI U (3.15)
R~ k2V2 V2 ) :
V' 4
Rewriting (J.1) gives
] 2 2
Pp = Py =3P (U, - Uy) (J.16)
Combining (J.2) and (J.3) and using (J.9) yields
1 w2 w2y 122




Combining (J.16) and (J.17) using (J.7) and (J.8) gives

2
2 b4

2 2 2 2.2
Uy - U= Vi - Vg +V3-v

Adding and substracting ks V% to the right hand side of (J.18),
2 2 _ 2.2 2 2 2 2 ?
Uu - UQ = kV V] -V, - (kv - 1) V.l + V3 - V2

by k,V,, (J.19) becomes

Using (3.13) , substituting V Voo

3

2 2 2.2 2 2 2 2.2
Ug = Ug = ky V] =V = (ky = 1) VS + kg v -

Rearranging (J.20) gives

2 2y 4 (2 2
kg v

2 2 _ 2
17 4 (Uu

Substituting (J.21) into (J.15) gives

2
2 2 2 2 :
u - Ul) + (kv = ]) (V] = Vz)

S0+ (kg - 1) (v VE)

v

(2113

2
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(J.18)

(J.19)

(J.20)

(J.21)

(J.22)




APPENDIX K

FLOW CHART AND COMPUTER PROGRAM FOR THE
SOLUTION OF THE UNIFORM JET
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Iy
{
Nt
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INPUT
Initial conditions: o, t, Cy &, and ¢
Increments or decrements in initial conditions

|

Add increments or decrements to initial

______4CEE}———$ conditions

Calculate CJ and q

v
1st

solution
being solved ?

lY&s

Input number of vortex segments

Input exit criterion, ¢

Calculate coordinates of segment end points,
control points, and segment slopes

!

1st 1st

@ Iteration? 45 solution .

being solved ?

No
No

Calculate jet shape Compute assumed
from ¥ distributions jet shape

1

No 2nd yes N
' Iteration?
No

No

Are all Compare new jet shape (Yc) to assumed

solutions | CDY“ shape (Y
obtained? old)

Is [Yoq = Yol /1Y gl <€ 2

YES

No
ea> Use convergence scheme to compute next
input jet shape

Compute y distributions

'
ﬁ;? Compute 1ift coefficient




$J0B

aaa
[ |
[ I |
o

OOOOGOOO(')OOOGO(‘:O.(‘)OOGOOQOO(‘)OOO(‘)Oﬂﬂﬂr‘)OOOOO(‘JO

WATFIV
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TANG,TIME=120,LIBLIST,LINES=50

DIMENSION X(60),Y(60),XP(60),YP(60),SLOPE(60),
CB(60) ,A(60,60),IW1(60),I#2(60),YOLD(60) ,YMAX (60),YNIN(60)
C,G(60) ,XC(60),YC (60) ,XK (60) ,AS(60,60) ,SU1(60),SV1(60)
C,SYOL(30,30),U0IND (20)

PRINCIPAL SYMBCLS

A(I,d)

ALPHA
ALFAD
B{T)

CHORD
cJ
crJ
DALPHA
DCPJ
DDEL
DEL
DT AU
EPS
MAXIT
N

NC
NT
PHIT
Q

R1

R2

SL

SLOPE (I)
TAU
TAUD
TETA1
TETA2

u

us

USINF

COEFFICIENT MATRIX IN THE SET CF LINEAR
RQUATIONS

ANGLE OF ATTACK (RATIAN)

ANGLE OF ATTACK (DEGREE)

CCLUMN MATRIX IN THE SET OF LINEAR RQUATIONS
THIS MATRIX TS EFASED AFTER THE SOLUTION

OF THE SET OF LINEAR EQUATIONS IS FOUND,AND
THE MATRIX IS OBSED TC STORE THE SOLUTTION
CHORD LENGTH

AUGMENTED JET MOMENTUM COEFFICIENT

FRIMARY JFT MOMENTUM COEFFICIENT

INCREMENT IN ANGLE OF ATTACK

INCREMENT IN PRIMARY JET MOMENTUM COEFFICIENT
INCREMENT IN JET THICKNESS

JET THICKNESS

INCREMENT IN INITIAL JET DEFLECTION ANGLE
EXIT CRITERION

MAXIMUM NUMBER OF ITERATIONS PER SOLUTION
NUMBER OF FINITE VORTEX SEGMENTS ON THE CHORD
ANL LOWER JET BCUNDARY

NUMBER OF VORTEX SEGMENTS ON THE CHORD

TOTAL NUMBER OF FINITE VORTFX SEGMENTS

ANGLE MADE BY THE VORTEX SEGMENT AND THE X-AXIS

PRIMARY JET VELOCITY
DISTANCE FROM UPSTREAM END POINT OF VORTEX
SEGMENT TO CONTRCL POINT

DISTANCE FROM DOWNSTREAM END POINT OF VORTEX
SEGMENT TO CCNTROL POINT

FINITE VORTEX SEGMENT LENGTH

SLOPES CF THE VORTEX SEGMENTS

INITIAL JET DEFLECTICN ANGLE (RADIAN)
INITIAL JET DEFLECTICN ANGLE (DEGREE)

ANGLE MEZASURED FECM VORTEX SEGMENT TO

TEE LINE OF R1

ANGLE MEASURED FRCM VORTEX SEGMENT 70

THE LINE OF R2 _
X-COMPONENT OF VELOCITY INDUCED BY ALL THE
DISTRIBUTED VORTICES CONTRIBUTING TO LIFT
X~COMPONENT OF VELOCITY INDUCED BY SOURCE
DISTRIBUTION

X-COMPCNENT OF VELOCITY INDUCED BY
SEMI-INFINITE VOFTEX ELEMENTS




TR WN

10
11
12
13
14
15
16
17

anaaoaocacoa0a0acaanNnONNnannan

pNe]
(]
[
[

C==-

C

Cmww
C---
C==-

Lyy
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v Y-CCMECNENT OF VELOCITY INDUCED BY ALL THE
DISTRIBUTED VORTICES CONTRIBUTING TO LIFT

Vs Y-COMECNENT OF VELOCITY INDUCED BY SOURCE
DISTRIBUTION

VSINF Y-COMPONENT OF VELOCITY INDUCED BY
SEMI-INFINITE VORTEX ELEMENTS

X{T) X-COORDINATES OF FINITE VORTEX SEGMENT
END POINTS

XCONP ZETA-COORDINATES OF CONTROL POINTS

XC (D X-COORDINATES OF FINITE SEGMENT END POINTS
CN JET CENTER LINE

XLC LTFT COEFFICIENT

XLCJ JET LIFT COEFFICIENT (JET LIFT IS OBTAINED

FRCM THE INTEGRATION OF VORTEX DISTRIBUTIONS
FRCM THE TRAILING EDGE TO INFINITY)

XP (1) X-COORDINATES OF CCNTROL POINTS
Y{I) Y-COORDINATES OF FINITE VORTEX SEGMENT
END POINTS
YCONP ETA-COORDINATES OF CONTROL POINTS
YC{I) Y-COORDINATES OF FINITE SEGMENT END POINTS
CN JET CENTER LINE
YP {I) Y~COORDINATES CFP CCNTRCL POINTS
YOLD{I) Y-COCREINATES OF FINITE SEGMENT END POINTS ON

JET CENTER LINE CF THE PRECEDING ITERATION
INITIAL CONDITIONS

ALPHA=Q,

TAO=-3,14159266/6.

CPJ=1,75

DEL=0,005

CHORD=1,

INCREMENTS IN VARIABLES

IN THIS EXAMPLE, JET THICKNESS IS A VARIABLE.

THAT TS WHILE OTHER INITIAL CONDITIONS ARE KEPT

CONSTANT, SOLUTIGNS FCR DIFFERENT JET THICKNESSES
ARE CALCULATED

DALFA=0.

TAD=0,

DCPJ=0, :

BDEL=0,001

INP=0

CONTINUE

INP=INP+1

CPJ=CPJ+DCPJ

ALPHA=ALPHA+DALFA

TAU=TAU+DTAU

DEL=DEL+DDEL

AUGMENTED JET MOMENTUM COEFFICIENT AND
PRIMARY JET VELOCITY




18
19
20
21
22
23

24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44
45
46
47
48
49

50
51
52
53
54

55
96
57
58

Co=-

Co===-

(o=

Cmw-=-

21

Come= -
(ORI

99

CI=(SORT (2. *DEL/CHCRD) +SQRT (CPJ) ) **2
0=SQRT (CI*CHORD/ (2. %*DFL)) -1,
DELH=DEL /2
ALFAD=ALPHA*180.,3.14159266
TAUD=TAU*180./3.14159266
IF(INP.GT. 1) GOTO 445

INPUT CATA

EPS=0.C5
MAXIT=6
ERMAX=0, 1
NT=TOTAL ELEMENT IN THE THICK JET
NT=38
N=24
NC=10
NT1=NT+1
NT2=NT+2
NL2=N-2
NC1=NC+1
NC2=NC+2
NCL1=NC~-1
NCL2=NC-2
NTC=NT=-NC
NI=N=-NC
NJ1=NJ+1
NJL1=NJ-1
N1=N+1
N2=N+2
N3=N+3
X AND Y COORDINATES OF SEGMENT END POINTS ON THE AFROFOIL
DO 23 I=1,NC1
Y(I)=0.
ARG=3, 1415926% (I-1.) /NC
X{TI)=0.5%CHORD* (1, -COS (ARG))
CONTINUE
X(NCT) =1,
READ X AND Y CCORDINATES OF VORTEX SEGMENT END POINTS
ON THE LOWER JET BOUNDARY
READ(5,21) (X(I),T=NC2,N1)
READ(5,21) (Y(I),T=NC2,N1)
FORMAT (6F10.56)
X(¥2) =-DEL*SIN (TAU) +X (NC1)
Y(N2) =DEL*COS {TAU) +Y (§C1)
X AND Y COORDINATES OF VORTEX SEGMENT END POINTS ON UPPER
JET BCUNDARY AND JET CENTER LINF
DO 60 I=1,NJ
TSG1=ATAN2 ({Y (I1+3C) -Y (I+NC1)), (X(I+NC) -X{I+NC1})))
IF (I.RQ.NJ) GOTO 61
TSG2=ATAN2( (Y (I+NC2) -Y (I+NC1)), (X (I+NC2)-X (I+NC1)))




59
60
61
62
63
6U
65
66
67
68
69
70
71
72
713
74

75
76
77
78
79
80
81
82
33
84
85
36
87
88
89
90
91
92
93
94
95
96
97
98
39

120
101
102
103

b1

60

24
Cm=-
Comw-
Com=
445

949

450

451

452

115
Comw-

CONTINUE
IP(I.FQ.NJ) TSG2=ALPHA

THALF= (TSG1-TSG2) /2.

PSG=(TSG1+TSG2) /2,
X(I+N2)=X(I+NC1)+DEL*CCS (PSG) /SIN (THALF)
Y(I+N2)=Y (I+NC1) +DEL*SIN (PSG) /SIN (THALF)
XC(I+1)= (X (I+NC1) +X (I+N2)) /2.

YC (I+1)= (Y (I+8C 1) +Y (T+N2)) /2.

CONTINUE

YC (1) = (Y (N2) +Y (NC1)) /2

XC (1) = (X (N2) +X (NC1)) /2

DO 24 I=1,NC

XP(I) = (X (I+1) +X(I)) /2.

YP (I)= (Y (I+1)+Y(I)) /2.
SLOPE(I)=(Y(I+1)~Y(I))/(X(I+1)-X(I))
CONTINUE

STARTING ITERATICN PROCESS

CONTINUE
MAXD=1

ITR=0

ITR=ITR +1

IF (ITR.EQ.1.AND. INP, EQ. 1) GCTO 224
IF{ITR.NE.1) GOTO 115

SXN2=X (N2)

SYN2=Y (N2)

X(N2) =-DEL*SIN (TAU) +X (NC1)

Y (N2) =DEL*COS (TAU) +Y (NC1)
XC{1)= (X (N2) +X (NC1)) /2.

YC (1) = (Y(N2)+Y (NC1)) /2.

IF (DTAU.NE.0.) GOTO 451

DO 450 I=2,NJ1

XC (I) =-DDEL*SIN(TAU) /2, +XC (I)

YC (I) =DDEL*CGS (TAU) /2. +YOLT (I)
YOLD (I)=YC (1)

CONTINUE

GOTO 1C7

CONTINUE

DXTAU= (X (N2)~SXN2) /2.
DYTAU= (Y (N2)-S¥YN2) /2.

DO 852 I=2,NJ1

XC (I) =XC (I) +DXTAU

YC (I) = ((YOLD(I) +DYTAU) =YC (1)) *TAN (TAU) /TAN (TAU-DTAU)
C+YC (1)

YOLD (I)=YC (I)

CONTINUE

GOTO 107

CONTINUE

100




101

C--- JET SHAPE CALCUIATIGCN
C---
104 B(NT1) =0,
105 G{1) =TAN (TAU)
106 DO 220 I=1,8J
107 IF(I.GT.1) GDTO 221
108 AU=SAU/ (X (N3) =X (N2))
109 AL=SAL/ (X (NC2) -X (NC1))
110 GOTO 222
111 221  CONTINOE
112 IF (I.EQ.NJ) B (NC1+71)=0.,
113 AL=(B(NC+T) +B (NC1+I)) /2
114 AU=(B(N+I) +B(N1+I)) /2
115 222  CONTINUE
116 XK (T) = (AU+AL) / (CI*CHORD* (1, - (2. *DEL/ (CI*CHORD) ) *%0,5) /2. )
117 C1=G(I)/ (1. +G(I)*%2) **0,5~XK (I) *XC (I)
118 G(I+71)= (XK (I) *XC(I+1)+C1) /(1. = (XK (I) *XC (I +1)
C+C 1) #%2) %% &
119 C2=YC (I) + (1.~ (XK (I)*XC (I)+C1) %*2) x%,5 /XK ()
120 YC(I+1) == (1.- (XK(I) *XC (I+1)+C1) *¥2) %% ,5/XK (I) +C2
121 IF (INP,GT. 1) GOTC 220
122 IF(ITR.GT.2) GOTO 220
123 YOLD (T+1)=YC (1+1)
124 220  CONTINOE
125 PRINT, *JET SHAPE CALCULATED DIRECTLY FROM GAMA DISTRIBUTION®
126 PRINT 52, (YC(I),I=1,N31)
127 IF (ITR.EQ.2.AND.INP.EC.1) GCTO 107
C-—-
C-=-~ 2XIT CRITERIA
C-—-
128 DO 225 I=2,Nd1
129 DISP=ABS(YOLD (I) =YC(I))/ABS (YCLD (I))
130 IF(I.%Q.2) GOTO 226
131 IF(DD.LT.DISP) DD=DISP
132 GOTO 225
133 226  CONTINUE
134 DD=DISP
135 225  CONTINUE
136 PRINT,'JET TEVIATICN®
137 PRINT 55,DD
138 55 FORMAT (F10.3////)
139 IF{DD.LT.EPS) GOTO 227
140 IF (DD, LT, ERMAX) MAXD=2
141 IF(ITR.LE,MAXIT) GOTO 449
142 IF (MAXD,.EQ.2) GOTO 227
143 GOTO 448
C
C=-- CONVERGENCF SCHEME
C

144 449 CONTINUE




145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
1n
172
173
174
175
176
177
178
179

180
181
182
183
184
135
186
187
138
139
190

74

72

1

75

70

79

77
73

78

76

203

102

IF (YC (NJ1).GT.YOLD (NJ1)) GOTO 7C
IF(ITR.NE.3,AND.INP.EQ.1) GCTO 71
IF (ITR.NE.2.AND.INP,GT.1) GOTO 71
D0 72 I=2,NJ1

YMAX (I) =YOLD (I)

YMIN(I)=YC ()

GOTO 73

CONTINUE

IF(LL.GE.2) G0OTO 74
IF(YC(NJT) . GT.YMIN (NJ1)) GCTC 74
KR=KK+ 1

Do 75 I=2,NJ1

YC (I)= (YOLD (I) +YMIN(I)) /2.
YOLD(I) =YC (1)

GOTO 107

CONTINUE

IF (ITR, NE,3.AND.INP,EC. 1) GCTO 76
IF(ITR.NE.2.AND,INP.GT.1) GCTO 76
DO 77 I=2,NJ1

YMAX (I)=YC (I)

YMIN (I)=YOLD(I)

CONTINUE

KK=1

LL=1

DO 78 I=2,NJ1

YC (I) = (YMAX (I) +YMIN(I)) /2.

YOLD (I)=YC (1)

GOTO 107

CONTINUE

IF (KK.GE.2) GOTO 79

IF (YC(NJ1) . LT.YMAX (NJ1)) GOTO 79
LL=LL+1

DO 80 I=2,NJ1

YC (I)= (YOLD (I) +YHAX (I)) /2.
YOLD (I) =YC (I)

X AND Y COORDINATES OF FINITE VORTEX SEGMENT END POINTS
ON THE JET LOWER AND UPPER BCUNLARIES

CONTINUE
DO 202 I=1,NJ .
TSGT1=ATAN2 ((YC(I) =YC(I+1)), (XC(I)-XC(I+1)))
IF(I.EQ.NJ) GOTO 203

TSG2=ATAN2 ((YC (I+2)-YC(I+1)), (XC(I+2) -XC(I+1)))
CONTINUE

TF (T.BQ.NJ) TSG2=ALPHA

THALF= (TSG1-TSG2) /2.

PSG=(TSG1+TSG2) /2,

X(I+N2) =XC (I+1) +DELH*COS (PSG) /SIN (THALF)
Y(TI+N2)=YC (I+1) +DELH*SIN (PSG) /SIN (THALF)




191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

206
207
208
209
210
21
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

202

- 224

229

228

Cm=w=
Cm=-
Cmwm~

X(T+NC1)=2,%XC (I+1) =X (I+N2)
Y{T+NC1) =2, %YC (I+1)-Y (I+N2)
CONTINUE

CONTINUE

DO 228 I=NC1,NT

IF(I.GT.N) GOTO 229
XP(I)= (X (I+1) +X(I)) /2.

YP (I) = (Y (I+1) +Y(I)) /2.

SLOPE(T) = (Y (I+1)=Y(I)) /(X (I+1) -X(I))
GOTO 228

CONTINUE

XP (I)=(X(I+2) +X{I+1)) /2.

YP (I) = (Y (T+2) +Y(I+1)) /2.

SLOPE (I) = (Y {I+2) =Y (I+1))/ (X (I+2)~X (I+1))
CONTINUE

COEFFICIENT MATRIX

DG 1 T=1,NT
UGAMA=C,

VG AMA=O,

SYP=YP (1)

SXP=XP (T)

IK =1

DO 2 J=1,NT

IF(ITR.EQ.1) GOTO 3

IF (I.GT.NC) GOTC 3

IF(J.GT.NC) GOTO 3

A(I,J)=AS(I,J)

GOTO 2

CONTINUE

IF (J.EQ.N1) IK=1

IF (IK.EQ.2) GOTO 4

K=0

IF(J.GT.N) K=1

K1=K+1

PHI=ATAN2 ((Y(J+K1) =Y (J+K)) , (X (J+K1) =X (J+K)))
SL=SQRT ( (Y (J+K1) =Y (J+K) ) **2+ (X (J+K1) =X (J+K) ) ¥%2)
YCONP=~- (SXP~X (J+K) ) *SIN(PHI)+ (SYP-¥ (J+K)) *COS (P HI)
XCONP = (SXP-X (J+K)) *COS (PHI)+ (SYP-Y {J+K) ) *SIN (PHI)
R1=SQRT (XCONP*%2+YCCNE*%2)

R2=SQRT ( (XCCNP-SL) **2+YCCONP#%2)

DCP=1.

IF (YCCNP.LT.0.) DCP=-1,
TETA1=ATAN2 (ABS (YCCNP) ,XCCNE)

IF (TETAT.LT.0.,) TETA1=TETA1+2,%3,14159266
TETA2=ATAN2 (ABS (YCONP) , (XCCNE-SL))

IF (TETA2.LT.0,) TETA2=TETA2+2,%3.14159266
IK=2

GOTO 5

103




238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
2560
261
- 262
263
264
265
266
267
268
269
2170
271
272
273
274
275
276
271
278
279
280
281
282
283
234
285
286
287

12

10

15

14

11

104

CONTINGE

IF (J.20Q.2) GOTO 8

IF(J.EQ.NC2) GOTO 9

IF (J.EQ.N2) GOTO 9
UU=(YCONP*AIOG(82/R1)“XCCNP*DCP*(TETA1-TETA2))/SL
VV=1.+ (ABS(YCONP) * (TETA1-TETA2) +XCONP*ALOG (R2/R1)) /SL
GOTO 11

CONTINUE

IF(XP(I).LT.X{2)) GOTO 12

IEQ=1

CALL XINT(IEQ,XP,YP,X,Y,I,J,SL,APHI,VV)
VV=-VV

IEQ=2

CALL XINT(IEQ,XP,YP,X,Y,I,J,SL,APHI,UU)
GOTO 11

CONTINUE

IEQ=3

CALL XINT(IEQ,XP,YP,X,Y,I,J,SL,APHI,VV)
Vv=-vvV

yu=0,

GOTO 11

CONTINUE

XP (I) =XCONP

YP (I)=YCONP

APHI=ABS{PHI)

IF (J.®Q.NC2) GOTO 10

L=k1+1

IF{I.ZQ.N1) GOTO 14

GOTO 15

CONTINUE

L=J

IF(I.EQ.NC1) GOTO 14

CONTINUE

IEQ=7

CALL XINT(TEQ,X?,YP,X,Y,I,L,SL,APHT,VYV)
VVv=-VvV

IZQ=8

CALL XINT(IEQ,XP,YP,X,Y,I,L,SL,APHI,UU)
XP (I) =SXP

YP (I) =SYP

50T0 11

CONTINUE

IEQ=9

CALL XINT(IEQ,XP,YP,X,Y,I,I,SL,APHI,VV)
Vy=-VV

uu=0,

XP (T) =SXp

YP (I) =S¥YP

CONTINUE

U1=0U*COS(PHI)=-VV*SIN (PHI)




105

288 V1=0U*SIN(PHI) +VV*COS (PHI)

289 IF(ITR.GT.1) GOTC 18

290 IF(J.EQ.NC1.AND.I.LE.NC) SU1(I)=0U1

291 IF(J.EQ.NCT1.AND. I, LE. NC) SV1(I)=V1

292 18 CONTINUE

293 IK=1

294 GOTO 3

295 5 CONTINUE

296 IF(J.NE.NC) G0TO 19

297 IF(I.EQ.NC) GOTC 16

298 IEQ=4

299 CALL XINT(IEQ,XP,YP,X,Y,I,J,SL,APHI,VV)

300 VV=-VV

301 IEQ=5

302 CALL XINT(IEQ,XP,YP,X,Y,I,J,SL,APHI,UU)

303 GOTO 17

304 16 CONTINUE

305 TEQ=6

306 CALL XINT(IEQ,XP,YP,X,Y,I,J,SL,APHI,VY)

307 VV=-vVy

308 uu=0,

309 G0TO 17

310 19 CONTINUE

311 PST1=ATAN2 (YCONP,XCCNP)

312 IF(PSXI1.LT.C.) PSIVT=PST1+2.%3.14159266

313 PSTI2=ATAN2 (YCCNP, (XCCNP-SL))

314 IF(PSI2.LT.C.) PSIZ2=PSI2+2.%*3.141592566

315 UU=P512-PSI 1+ (XCONP*DCE* (TETA1-TETA2) -
CYCONP*ALOG (R2/R1)) /SL

316 VV=(1.-XCONP/SL) *ALOG (R2/R1) =1.-ABS (YCONP)
C*¥({TETA1-TETA2)/SL

317 17 CONTINUE

318 U2=0UU*COS (PHI) =VV*SIN (PHI)

319 V2=U0¥SIN (PHI) +VV*COS (PHI)

320 IF(J.EC.NC1.AND,I.LE,NC) U1=SU1(I)

321 IF (J.EQ.NCT.,AND,I.LE.NC) V1=SV1(I)

322 IF(J.EQ.N1) V1=0,.

323 IF(J.BQ.N1) U1=0n,

324 IP(J.EQ.1) U1=0.

325 IF(J.EQ.1) V1=0,

326 U=01+12

327 V=V1+V2 : _

328 A(I,J) =V-U*SLOPE(I) o

329 IF (J.LE.NC) GCTC 20

330 UG=PSI2-PSTI1

331 VG=ALOG (R2/R1)

332 IF(J.GT.N) VG=-VG

333 IF(J.GT.N) UG=-UG

334 UGAMA=UG*COS (PHI) -VG*SIN(PHI)+UGAMA

335 VGAMA=UG*SIN(PHI) +VG*CQS {PHI) +VGANA




336
337
338
339
340
341
342
343
344
345
3486
347
348
349
350
351
352
353
354
355

356
357
358
359
360
361
362
363
364
365
366

367

368
369
370
371
372
373
374
375
376
377
378
379

20

Co= -

Co=—w-

231

106

CONTINUE
IF(I.GT.NC) GCTO 2

IF (J.GT.NC) GOTO 2

AS (I,J) =A(I,J)

CONTINUE

RT1=((XP{I) =X (N2))*%2+ (YP(I) - (N2) ) #%2) #x,5

R2= ((XP(T) ~X(NC1)) *%24 (YP (I) =Y (NC1)) **2) %%, 5

XP (I)=(SXP=-X(NC1))*COS (TAU) +(SYP-Y (NC1) ) *SIN (TAU)
YD (I) == (SXP-X (NC1)) *SIN(TAU)+ (SYP-Y (NC1)) *COS (T AU)
T1=1.57C79-ATAN2 ((YP(I)-DEL),XP(I))

IF(T1.LT.0.) T1=2.%3,14159+7T1

T2=1,57C79-ATAN2 (YP(I),XP (1))

IF{T2.LT.0.) T2=3,14159%2+12

XP (I)=SXP

YP {I) =SYP

US=(T1-T2)*COS (TAU) +ALCG (R2/R1) *STN (- TAU)
VS==(T1-T2) *SIN(-TAU) +ALOG (F2/K1) *COS (T AU)

US=US*Q

VS=VS5%Q
B(I)=-VS+SLCPE(I)*US-(SIN(ALEHA) ~COS (ALPHA) *SLOPE(I))
C*2%3,14159

RR1=((XP(I) =X (NT2))**2+ (YP{I) -7 (NT2)) *%2) **,5

RR2= ((XP{I) =X (N1)) **2+4 (YP (I) -Y (N1)) %%2) #*_5
PPI=ATAN2((YP (I)-Y (NT2)), (XE(I)-X(NT2)))
IF(PP1.LT.0.) PP1=2.%3,1415926+PP1

PP2=ATAN2 ({YP(I) =Y (N1)), (XE(I) =X (N1)))
IF(PP2.LT.0,.,) PP2=2,%3,14159264FpP2
VSINF=(PP1-PP2)*SIN(ALPHA) +ALOG (EE1/RR2)*COS (ALPHA)
USINF=(PE1-FP2)*COS (ALPHA) -ALGG {RE 1/RR2) *SIN (ALPHA)
B(I)=B(I)-(VSINF-USINF*SLGFE (I))*Q
B(I)=B(I)-(VGAMA-UGAMA*SLCEE (I)) *Q

CONTINUE

SOLUTICN OF THE SET OF LINFAR FQUATTIONS

CALL LNEQNS(A,60,60,NT,B,I%1,I42,TER)

LIFT COEFFICIENT

XLC=0,

DO 230 I=1,NT

IF(I.EQ.1) GOTO 231

IF(I.EQ.NC) GOTD 232

IF(I.EQ.NC1) GOTO 233

IF(I.EQ.N) GOTO 236

IF(I.EQ.NT) GOTO 236

IF(I.GT.N) GOTO 234
XLC=XLC+(B(I+1)+B(I))*(X(I+1}-X(I))/2.
GOTO 230

CONTINUE
XLC=XLC+B(I)*(X(I+1)-X(I))/2.-2.*B(I+1)*X(I+1)**1.5
C*(ALOG{(1+X(I+1)**.5)/(1-X(I+1)**.5))+
CALOG(1-X(I+1))/X(I+1)**.b)/ALOG(1-X(I+1))




330

381
382

- 383

384

385
386
387
388
389
390

391
392
393
394
395
396
397
398
399

400
401
402
403
404
405
406
407
408

409
410
411
412
413
414
415
416
417

232

233

234

235

236

53
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SL1=XLC
GOTO 230

CONTINUE

SXLC=XLC
XLC=XLC+B(NC1)* (X (NC1) =X (NC)) /2.=2.%B (NC) *X (NC) *%1.5
C*(2.%AL0G(2.) ~ALOG( (14X (NC) #%,5) /
C(1-X(NC)**,5) ) -ALOG (1-X (NC) ) /X (NC) **,5) /ALOG (1-X (NC))
XLCC=XLC*2,

SLNC=XLC-SXIC

GOTO 230

CONTINUE

SXLC=XLC

XLC=XLC+B (NC1)* (X (NC2) =X (NC1)) /2. #B(NC2) *X (NC2) ¥%1, 5% (2
Cx (1~
C1/X(NC2) *%,5) *ALOG (X (NC2) *%,5-1) =2% (141 /X (NC2) **,5) *
CALOG (X (NC2) *%,5+1) +4,%AL0G (2.) ) /ALOG (X (NC2) - 1.)
SAL=XLC-SXLC

30TO 230

CONTINUE

IF (I.EQ.N1) GCTO 235
XLC=XLC+(B(I+1) +B(I)) * (X (I+2) -X (I+1)) /2.

GOTO 230

CONTINUE

SXLC=XLC
XLC=XLC4R(N1) * (X (N3) =X (N2) ) /2.4 (2. % (1. /X (N2) **, 5-
C1l, /X (N3) *%,5) *A10G (X (N3) **,5-X (N2) #%,5) -
C2u* (1. /X (N2) %% 541, /X (N3) #%,5) *ALOG (X (N3) %%, 5+
CX(N2) *¥*,5) +04,*ALOG (2, ¥X (N2) **,5) /X (N2) **, 5)
C*B (N2) *X (N3)*%1,5/AL0G (X (N3) =X (N2))

SAU=XLC-SXLC

GOTO 230

CONTINUE

J=1

IF(I.EQ.NT) J=I+1

XLC=B (I) % (X (J+1) =X (J) ) /2. +XLC

CONTINUE :

XLC=XLC*2,

XLCI=XLC-XLCC

QUTPUTS

PRINT,'NUMBER OF ITERATIONS!
PRINT 54, ITR

FORMAT (5X, I4)

PRINT, ' ANGLE OF ATTACK IN DEGREE!

PRINT 53,ALFAD

FORMAT (F10, 3)

PRINT,'INITIAL JET DEFLECTICN ANGLE IN LEGREE!
PRINT 53, TAUD

PRINT,'POWER JET MOMENTUM CCEFFICIENT?




418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
4490
441
442
443
uuy
445

446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
usy
465
466

52

420

421

401

PRINT 53,CPJ

PRINT,'TOTAL JET MCMENTUM CCEFFICIENT?

PRINT S3,CJ
PRINT,'X CENTER!
PRINT 52, (XC(I),I=1,NJ1)
PRINT,'Y CENTER!
PRINT 52, (YC(I),I=1,NJT)

PRINT,*X COORDINATES CF CCNIROL POINTS!

PRINT 52, (XP{I),I=1,NT)

PRINT,'Y COORDINATES OF CCNTKOL PCINTS!

PRINT 52, (YP(I),I=7,NT)

PRINT,'X COORDINATES CF DIVISICN POINTS?

PRINT 52,(X(I),I=1,NT2)

PRINT,*Y COORDINATES OF DIVISICN POINTS®

PRINT 52, (Y(I),I=1,NT2)
PRINT,'VORTEX DISTRIBUTICN!
PRINT 52, (B(I),I=1,NT)
FORMAT (10F10. 6)

PRINT,'LIFT COEFFICIENT®
PRINT 53,XLC

PRINT,'JET LIFT COEFFICIENT'
PRINT 53,XLCJ

GOTO 99

CONTINUE

IF (INP.LT.61) GOTO #uy
CONTINUE

STOP

END

INTEGRATION USING GAUSSIAN QUADRATURE
SUBROUTINE XINT(IZQ,XP,YP,X,Y,I,J,SL,APHI,VEL)
DIMENSICN X (60),Y(60),XP(60),YP (60)

N=24

NC=10

N2=N+2

NC2=NC+2

G=1.
IF(J.NE.NC2)G=X(N2)
IF {IEQ.GT.6) GOTO 421

IF(IEQ.LT.7.AND.IEQ.GT.3) GCTO 420

XU=X (J)
XL =X (J-1)
GOTO 401
CONTINUE
XU=X (J+1)
XL =X (J)
GOTO 401
CONTINUE
XU=SL
XL=0,
CONTINUE
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468
469
470

471
472

473
474

475
476
477
478

479
480

481
482

483
484

485
486
487

488
489

490
431

492
493
494

495
496

437

403

304

405

406

407

408

410

41
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A=,5% (Yy+XL)

BB=XU~- XL

C=,4869533%RA

T=.033335h7%(F (IEQ,XP,YP,I,J,X,APHI,A+C)
C+F(IEQ,XP,YP,1,J,X,APHI,A-C))

C=.4325317*BB

T=T+.07472567 % (F(IEQ,XP,YP,I,J,X,APHT, A+C)
C+P(IEQ,XP,YP,TI,J,X,APHI,A~C))

C=.3397048%EB

T=T+.1095Q32*(F(IEQ,XP,YP,I,J,X,APHI,A+C)
C+F(IEQ,XP,YP,I,J,X,APHI,A=C))

C=.2166977*BB

T=T+.130633ﬂ*(F(IEQ,XP,YP,I,J,X,AEHI,A+C)
C+F(IEQ,XP,YP,I,J,X,APHI, A-C))

C=.07443717%B8B

T=BB*(T+.1477621%(F (IEQ,XP,¥YP,I,J,X,APHT, A+C)

C+F (IEQ,XP,YF,1,J,X,APHI,A-C)))

GO TC (QO3,&0&,805,406,&07,“08,410,&11,412),IEQ

VEL=(T=2.%XP(I)* (ALOG {{1. +X (J+0)¥%,5) / (1. =X (T+0) %%,5)) +
CALOG (1.=X (J#0)) /X (J+0) *¥%,5) s (XP (I) *%2+YP (L) *%2) ) *
CX(J+D) *¥*1,5/AL0G (1.-X (J+0))

GOTO 409

VEL=(T=2.%YP (1) *(ALOG ((1.+X (J+0) *%.,5) / (1, -X(J+0) *%,5)) +
CALOG (1. =X (J+0)) /X (J+0) *%,5) / (XP (I) ¥*24YDP (I) %%2) ) *
CX(J+0) ¥%x1,5/0L0G (1.~-X (J+0))

G0TO 4C9

VEL=T-2.*(AIOG((1+X(J+O)**.5)/(1-X(J+O)**.5))+
CALOG(1=-X(J+0)) /X (J+0) *%,5) /XP(I)+ALOG (1-XP (I)) %

CALOG (XP (I) /(X (J+0) -XP (1)) )/XP (1) **1,5

VEL=VEL*X(J+O)**1.5/ALOG(1.-X(J*O))

GOTO 409

VEL= (T4 (XP(I)~1,)*

C{1.-X (J+0) ) *¥ALOG (1. =X (J+0) ) +X (J+0) = 1.) /{(XP(I) =1.) *%2
CH+YP (T) *%2)) *X (J+0) **1,5/AL0G {1.-X (J+0))

GOTO 409

VEL={T+YP(I)*
C((?.-X(J+0))*ALOG(1.'X(J+O))+X(J+0)'1.)/((XP(I)-T.)**Z
C+YP (I)*%2)) *X (J+0)**1,5/ALOG (1.-X (J+0))

GOTO 409 ;

VEL=T+ (1, =X (J+0) ) * (ALOG(1. =X (J*+0) ) -1.) / (XP(I) -1} +
CALOG(1.~=XP(I)) *ALOG ((XP(I)-X{J+0)) /(1-XP(I)))
C/XP(I)*%*1,5

VEL=VEL*X (J+0) ¥%1,5/AL0G (1.~X (J+0))

GOTO 409

VEL=(T+XP(I)*SL*(ALOG(SL*CCS(APHI))-1)/((XP(I)**Z*YP(I)
C*%2) *G*%1,5)) *X (J) **1,5/ALCG (X (J) -G)

GOTO 409

VEL=(T+YP(I)*SL*(AIOG(SL*CCS(APHI))—1)/{(XP(I)**2+YP(I)
CH¥k2)*G**1,5)) *X (J) **1,5/AL0G (X (J) -G)

GOTO 409




498

499
500
501
502

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518

519
520

521
522

523
524

525
526

527
528

529
530
531

412

409

10
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VEL=T+SL*(A10G (SL*COS (APHI))~-1.)/ (XP(I)*G**1,5) +
CALOG (XP (T)*COS (APHI)) *ALCG (XP(I)/(SL-XP(I))) /
C(XP(I) *COS (APHI) +G) **1,5

VEL=VEL*X (J40) **1,5/AL0G (X (J+0) -G)

CONTINUE

RETURN

END

FUNCTICN F(1EQ,XP,YP,1,J,X,2PHI,S)

DIMFNSION X(60),XP(60),YP(6C)

N=24

NC=10

N2=N+2

NC2=NC+?2

G=1,

IF(J.NE.NC2)G=X(N2)

GoTo (1,2,3,4,5,6,7,8,9),1EQ
F=ALOG(1.—S)*(XP(I)-S)/(S**1.5*((XP(I)-S)**2+YP(I)**2))
C-ALOG(1.=S) *XP (I)/{S**1,5% (XP (1) **2+YP (I) *%2))

GOTO 10

F=ALOG (1.=S) *YP (I) /(S**1.5% ((XP(I)~S) **2+YP (I)*%2))~
CALOG(1.-S)*Y9(I)/(S**1.5*(XE(I)**2+YP(I)**2))

GOTO 10

F=ALOG (1.-S)/ (S**1.5% (XP(TI)~S)) ~ALOG(1,-5)/
C(XP(I)*S**1.5)-ALOG(1.-XP(I))/(XP(I)**1.5*(XP(I)-S))
GOTO 10
F=ALOG(1.-S)*(XP(I)-S)/(S**?.S*((XP(I)-S)**2+YP(I)**2))
C-ALOG(1.—S)*(XP(I)—1.)/((XP(I)—1.)**2+YP(I)**2)

GOTO 10
F=ALOG(1.-S)*YP(I)/(S**1.5*1(XP(I)-S)**2+YP(I)**2))—
CALOG (1. -=S) *YP (I)/ {((XP(I)~1.)%*%2+4YD (I) %%Q)

GOTO 10

F=ALOG(1.-5)/ (S**1.5% (XP(I)~S)) -ALCG (1.-S)/(XP(I)=1.)~
CALOG (1. -XP({I))/(XP(I)**1,5% (XP(I)-S))

GOTO 10

F=ALOG (S*COS (APHI) )* (XE(I) -S)/
C{({S*COS (APHI) +G) **1,5% ((XP (I)=S)**2+¢YP (I) *%2))
C—ALOG(S*COS(APHI))*XP(I)/((XP(I)**2+YP(I)**2)fG**1.5)
GOTO 10

F=ALOG (S*COS(APHTI) ) *YP(I)/
C((S*COS (APHI) #G) *%1,5% ({XP (I) =S) *¥%2+YP (I) *%2))
C-ALOG(S*COS(APHI))*YP(I)/((XP(I)**2+YP(I)**2)*G**1.5)
GOTO 10

F=ALOG (S*COS (APHI) )/ ( (S*COS (APHI) +G) **1,5% (XP(I)~S))
C-ALOG(S*COS (APHI)) / (XP(I) *G*%*1,5) ~ALOG {XP (I) *COS (APHI) )/
C((XP(I) *COS (AEHI) +G) **1,5% (XP (I)-5))

CONTINUE

RETURN

END
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APPENDIX L

COMPUTER PROGRAM FOR THE SOLUTION OF
THE NON-UNIFORM JET




U W

~

11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29

30

31

32
33

$J0B

Comw -
Cow=-
Cow--

444

Com-

Cme=-
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WATFIV  TANG,TIME=120,LIBLIST,LINES=50
DIMENSION X (60),Y(60),XP(60),YP(60),SLOPE(60),
CB(60) ,4(60,60) ,I41(60),IN2(60),YOLD(60) ,YMAX(60), YHIN(60)
C,G(60) ,XC(60),YC(60),XK(60),AS(60,60) ,5U1(60),5V1(60),
CVI(60,60),UI(60,60),U02(60),V02(60),0JT1(60) ,0JT2(60),
CUJT3(60) ,UIT4 (60) ,VIT1(60),VJT2(60),VIT3(60),VIT4 (60)
REAL KEP

INITIAL CONDITICNS

ALPHA=0,
TAU=-3,14159266/6,

DEL=0,09

CPJ=1.75

RADEL THICKNESS RATIO

RADEL=0.5

DEL1 THICKNESS OF LOWER LAYER OF THE JET
DEL1=RATEL*LCEL

RAQ VELOCITY RATIO (Q-UP ,/ Q-LOW)
RAQ=0.9

CHORD=1,

INCREMENTS IN VARIABLES

DALFA=0,

DCPJ=0,

DTAU=0,

DDEL=0,

INP=0

CONTINUE

INP=TNP+1

CPJ=CPJ+DCPJ

ALPHA=ALPHA+DALFA

TAU=TAU+DTAU

DEL=DEL4DDEL

AUGMENTED JET MOMENTUM COEFFICIENT AND ERIMARY JET VELOCITY
CJ=(SQRT (2. *DEL/CHCRD) +SQRT (CPJ) ) **2
Q=SQRT (CJ*CHORD/ (2.%DEL) ) -1,

02=Q/ (RADEL+RAQ**2% (1=RADEL) ) **.5
Q1=RAQ*(Q2

DELH=DEL/2

ALFAD=ALPHA*180./3. 14159266
TAUD=TAU*180.,/3,14159266

IF (INP.GT. 1) GCTO #45

INPUT LCATA

EPS5=0,03

MAXIT=6

DF CAMPING FACTOR
DF=0,15

ERMAX=0,1




34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61

62
63
64
65
66

657
68
69
70
71
12
73
T4
75
76
77

C-_.-

23

Com= =

Com-

21

Com-

Co==

61

60
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NTT TOTAL NUMBER CF FINITE VORTFX SEGMENTS
NTT=46

NTT3=NTT+3

NTM1=NTT-1

N=22

NC=10

NJ=N-NC

NT=N+NJ

NT3=NT+3

NTU=NT+4

NT1=NT+1

NT2=NT+2

NL2=N-2

NC1=NCH+1

NC2=NC+2

NCL1=NC=-1

NCL2=NC-2

NTC=NT-NC »
NJ1=NJ+1 L
NJLI1=NJ-1 \ '
N1=N+1

N2=N+2

N3=N+3

X AND Y COORDINATES OF SEGKENT END POINTS ON THE AEROFCIL

DO 23 I=1,NC1

Y(I)=0.

ARG=3, 1415926%(I-1.) /NC

X{I)=0.5%(1,-CCS (ARG))

CONTINUE

X{NC1)=1, :

READ X AND Y COORDINATES OF VORTEX SEGMENT END POINTS

ON THE LOWER JET BCUNDARY

READ(5,21) (X(I) ,I=NC2,N1)

READ (5,21) (Y(I),I=NC2,N1)

FORMAT (6F 10, 6)

X(N2) =-DEL1*SIN (TAU) +X (NC1)

Y(N2) =DEL1*COS (TAU) +Y (NC1)

X AND Y COORDINATES OF VORTEX SEGMENT END POINTS ON THE UPPER
JET BOUNDARY AND JET CENTEF LINE i

DO 60 T=1,NJ
T5G1=ATAN2((Y(I+NC)—Y(I+NC1)),(X(I+NC)—X(I+NC1)))

IF{I.EQ.NJ) GCTC 61 ,
TSG2=ATAN2((Y(I+NC2)-Y(I+NC1)),(X(I+NC2)-X(I+NC1)))

CONTINUE

IF(I.EQ.NJ) TSG2=ALEHA

THALF= (ISG1-TSG2) /2.

PSG={TSG1+TSG2) /2.

X(I+N2) =X(I+NC1) +DEL1*COS(PSG)/SIN (THALF)
Y(I+N2)=Y(I+NC1)*DELl*SIN(PSG)/SIN(THALF)

CONTINOF




78
79
80
81
82
83
84
85
86
87
88
39

30
91
92
93
34
95
96
97
98
99
100
101
192
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

119
120
121

260

24
Cmm -
C-m=
Com= =
445

99

450

451

DO 260 I=1,NJ1
X(I+NT2)=X{I+NC)+ (X (I+N1)~-X (I+NC)) /RADEL
Y(I+NT2)=Y(I+NC)+(Y(I+N1)-Y(IfNC))/RADEL
YO (I)= (Y (I+NT2) +Y (I+XNC)) /2.
YOLD(I) =YC (1)

XC (I)= (X (I+NT2) +X (I+NC)) /2.

CONTINUE

DO 24 I=1,NC

XP{I)=(X(I+1) +X(1)) /2.

YP(I)=(Y{I+1)+Y (1)) /2.
SLOPE(I)={(Y (I+1) =Y (I)) /(X (I+1)~-X(I))
CONTINUE

STARTING ITERATICN PROCESS

CONTINUE
MAXD=1

ITR=0

ITR=TITR +1

IF (ITR.EQ. 1.AND.INP,EQ, 1) GCTO 224
IF(ITR.NE.1) GOTO 115 »
SXN2=X (§2)

SYN2=Y (N2)

X(N2) ==DEL*SIN (TAU) +X (NC1)

Y(N2) =DEL*CCS (TAU) +Y (NC1)

XC (1) = (X (N2)+X {NC1)) /2.

YC (1) = (Y(N2) +Y (NC1)) /2.
IF(DTAD.NE.0,) GOTO 451

DO 450 I=2,NJ1

XC (I)=-DDEL*SIN (TAU) /2. +XC(I)
YC (I) =DDEL*COS {TAU) /2. +YOLD (I)
YOLD (I)=YC (1)

CONTINUE

GOTO 107

CONTINOE

DXTAU= (X (N2)-SXN2) /2.
DYTAU= (Y (N2)-SYN2) /2.

DO 452 T=2,NJ1

XC(I)=XC({I) +DXTAU

YC (I)=YOLD (I) +CYTAD
YOLD (I) =YC (1)

CONTINUE

GOTO 1C7

CONTINUE

JET SHAPE CALCULATICN
DO 323 I=NC1,NTT

SVI=0.
SU1=0,
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122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

324

325

328

327

255

326

239

256
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DO 324 J=1,NTT
SVI=SVI*VI(I,J)*B(J)/(2.*3.1Q159266)
SUI=SUI+UI(I,J)*B(J)/(Z.*3.1u159266)

CONTINUE

E=0

IF(I.GT.N) K=1

IF(I.GT.NT) RK=2
PHI=ATAN2((Y(I+K+1)‘Y(I+K)),(X(I+K+1)-X(I+K)))
IF{I.GT.NC1) GOTO 325

GI=5SAL/ ((X(NC2)-X(NC1))*2.,)

GOTO 326

CONTINUE

IF{I.EQ.NT1) GOTO 255

IF (I.EQ.N1) GQTO 327

IF(I.BQ.N) GOTQ 328

IF (I.FQ.NT) GOTO 328

IF(I.EQ.NTT) GOTO 328

GI=(B(I+1)+B(I))/4.

$G0TO 326

CONTINUE

GI=B(I) /4,

GOTO 326

CONTINUE

GI=SAU/ {(X(N3)-X(N2))*2,)

GOTO 326

CONTINUE

GI=SAU3/({(X(NTU)-X(NT3))*2.)

CONTINUE

UQ1=(02-Q1) *COS (PHI) /2.

VO1=(Q2-Q01) *SIN(PHI) /2,

UQ2=Q1*COS5 (PHI) /2.

VO2=Q1*SIN (PHI) /2.

UQ3=-Q02%COS (PHI) /2.

VQ3=-Q2%SIN(PHI} /2.

IF(I.GT.N) GOTO 239
UOZ(I)=UOZ(I)+SUI-GI*CCS(PHI)-UQZ}COS(ALPHA)
VOZ(I)=V02(I)+SVI-GI*SIN(PHI)—VQ2+SIN(ALPHA)
UJTH(I)=UOZ(I)+2.*(GI*COS(PBI)+UQ2)
VJTQ(I)=V02(I)+2.*(GI*SIN(EHI)+VQ2)

GOTO 323

CONTINUE

IF(I.GT.NT) GOTO 256
UJT3(I)=002(I)+SUI—GI*COS(EHI)-UQ1+COS(ALPHA)
VJTS(I)=V02(I)+SVI—GI*SIN(FHI)-VQ1+SIN(ALPHA)
UJTZ(I)=UJT3(I)+2.*(GI*COS(PHI)+UQ1)
VJTZ(I)=VJT3(I)+2.*(GI*SIN(PHI)+VQ1)

GOTO 323

CONTINUE
UJT1(I)=UOZ(I)+SUI-GI*COS(EHI)-UQ3+COS(ALPHA)
VJT1(I)=V02(I)+SVI-GI*SIN(EHI)-YQ3+SIN(ALPHA)
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172 UO2(I)=0JT1(I)+2.* (GI*COS (EHI) +UQ3)

173 VO2(I)=VJT1(I)+2.* (GI*SIN (PHI) +VQ3)

174 323  CONTINUE

175 B{NT1)=0.

176 G{1) =TAN (TAU)

177 DO 220 I=1,NJ

178 ULS=UO2 (I+NC) #¥*24V02 (I+NC) **2

179 DUS=U02 (I+NT) **2+VC2 (I+NT) **2

180 UL=ULS**,5

181 UU=UDS*%,5

182 . VONE=(OJT1(I+NT)*%24VJIT1 (I+KT) ¥%2) %%, 5

183 VI HO= (IJT2 (I+N) **%2+4VJIT2 (I+N) #%2) ** .5

184 VTHR= (UJT3 (I+N) #%24VIT3 (I+N) #%2) #% .5

185 VFOR=(UJT4 (I+NC) ¥*24VIT4 (I +§C) *%2) %%,5

186 KEP=VTHR/VT kO

187 PRINT 280,0L,0U0,VCNE,VTWO,VIHR,VFCR

188 380  FORMAT(F10.3,5X,F10.3,5X,F1C.3,5%,F10.3,5X,F10. 3,5%,
CF10.3)

189 XK (1) =2,% (DUS-ULS+ (KEF*%2=1,) % (VON F%*2
C-VTHO**2)) / (DEL* (KEP*VONE+ VFOR) #*2)

190 C1=6(I) /(1. 4G (I) **2) *%0,5=-XK (I) *XC (I)

191 G(I+1)=(XK(I) *XC(I+1)+C1)/ (1.~ (XK (I) ¥XC (I+1)

C+C1)*%2) %%, 5
192 381  CONTINUE

193 C2=YC (I)+ (V.- (XR(I)*XC(I) +C1) **2) x%, 5/¥K(T)
194 YC(I+7) == (1.~ (XK(I)*XC (I+1)+C1) *#%2) %%,5 /XK (T) +C2
195 220  CONTINUE
196 PRINT,'JET SHAPE CALCULATED DIRECTLY FROM GAMA DISTRIBUTION!
197 PRINT 52, (YC(I),I=1,NJ1)
I :
C--- EXIT CRITERIA
C-- -
198 DO 225 I=2,NJ1
199 DISP=ABS (YOLD (I)-¥C (I))
200 IF(I.RQ.2) GOTO 226
201 IF (DD.LT.DISP) DD=DISP
202 GOTO 225
203 226  CONTINUE
204 DD=DISP
205 225 CONTINUE
206 PRINT,'JET DEVIATIGCN®
207 PRINT 55,DD
208 55 FORMAT (F10.3////)
209 IF(DD.LT.EPS) GOTO 227
210 IF (DD. LT.ERMAX) MAXD=2
211 IF(ITR.LE.MAXIT) GCTO 449
212 IF (MAXT.EQ.2) GOTO 227
213 GOTO 448
o

C-=-- CONVERCGENCE SCHEME




214
215
216
217

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

243
204
245
2646
247
248
249
250
251
252
253
254
255

449

712

C---
C---
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203

202
224
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CONTINUE
DO 72 I=2,NJ1
YC(I)=YOLD (I) +DF* (YC (I) -YOLD(I))
YOLD (I)=YC (1)

X AND Y COCRDINATES OF THE FINITE VORTEX SEGMENT END PCINTS
ON THE JET BCUNCARIES

CONTINUE

DO 202 I=1,\J

TSGI=ATAN2 ((YC(I) =YC (I+1)), (XC(I)-XC(I+1)))

IF (I.EQ.NJ) GOTO 203

TSG2=ATAN2 ((YC(T+2)=YC(T+1)), (XC(I+2) =XC(I+1)))
CONTINUE

IF(I.EQ.NJ) TSG2=ALPHA

THALF=(TSG1-TSG2) /2.

PSG=(ISG1+TSG2) /2.
X(I+NT3)=XC(I+1) +DELH*COS (FSG) /SIN (THALF)
Y(I+NT3)=YC (I+1)+DELH*SIN (ESG) /SIN (THALF)
X{I+NC1)=2.%XC (I+1)-X (I+NT3)
Y{I+NC1)=2,%YC (T+1) -Y (T+NT3)

X(I+N2) =(X(I+NT3)-X(I+NC1))*RADEL+X (I+NC1)
Y(I+N2)=(Y(I+NT3)~-Y (I+NC1))*EADEL+Y(I+NC1)
CONTINDE

CONTINOE

Kp=1

DO 228 I=NC1,NTT

IF(I.GT.N) KP=2

IF (I.GT.NT) KE=3

XP (I) = (X (I+KP) +X (I +KP~-1)) /2.

YP (I)= (Y(I+KP) +Y (I+KP-1)) /2,

SLOPE(I) = (Y (I+KP) ~Y(I+KP=1))/ (X (I+KP) ~X (T+KP-1))
CONTINUE

COEFFICIENT MATRIX

DO 1 I=1,NTT

UL 1=0,

VL1=0.

1301=0.

VJ01=0.

UGAMA=D,

VG AMA=0,

SYP=YP (I)

SXP=XP (I)

IK =1

DO 2 J=1,NTT
IF(ITR.EQ.1) GOTO 3
IF{I.GT.NC) GCTC 3
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258
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260
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262
263
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270
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272
273
274
275
276
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285
296
287
288
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290
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IF (J.GT1.NC) GOTC 3
A(I,J) =AS(I,Jd)

GOTO 2

CONTINUE

IF (J.EC.N1) IK=1

IF(J.EQ.NT1) IK=1

IF (IX.EQ.2) GCTO 4

K=0

IF(J.GT.N.AND,J,LE, NT) K=1

IF(J.GT.NT) K=2

K1=K+1

PHI=ATAN2 ((Y(J+K1) =Y (J+K)) , (X (J+K1) =X (J+K)))
SL=SQRT ((Y (J+R1) =Y (J+K)) #¥24 (X (J+K 1) =X (J+K) ) %%2)
YCONP==~ (SYP-X (J+K) ) *SIN (PHI)+ (SYP-Y (J+K)) *COS (PHI)
XCONP= (SXP=-X {J+K)) *COS (PHI) + (SYP-Y (J+K) ) *SIN (PHI)
R1=SQRT (XCONP*%2+YCCNE*%2)

R2=SQRT ( (XCCNP=SL) **2+YCONE*%2)

DCP=1,

IF (YCONP.LT.0.) DCP=-1,
TETA1=ATAN2 (ABS (YCCNP) , XCCNFE)

IF (TETAT.LT.0.) TETAT=TETA142.%3.14159266
TETA2=ATAN2 (ABS (YCCNP), (XCCKP-SL))
IF(TETA2.LT.0.) TETA2=TETA2+2.%3.14159266

IK=2

GOTO 5

CONTINUE

IF(J.20.2) GOTIO 8

IF {J.EQ.NC2) GQTC 9

IF(J.EQ.N2) GCTGC 9

IF (J.EQ.NT2) GOTO 9
UU=(YCONP*ALOG (R2/R1) ~XCONE*DCE* (TRETA1-TETA2)) /SL
VV=1,4+ (ABS (YCCNP) * (TETAT-TETA2) +XCONP*ALOG (R2/R 1)) /SL
IF(I+1.EQ.J) 0U=0,

GOTO 11

CONTINUE

TF(XP(I).LT.X(2)) GOTO 12

1EQ0=1

CALL XINT(IEQ,XP,YP,X,Y,T,J,SL,APHI,VV)

YV=-Vy

IFQ=2

CALL XINT(IEQ,XP,YP,X,Y,I,J,SL,APHI,UU)

0T0 11

CONTINUE

IEQ=3

CALL XINT(IEQ,XP,YP,X,Y,T,J,SL,APHI,VYV)

YV==-VV '

uI=0,

GOTO 11

CONTINYF

XP (I) =XCONP
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306 YP (T)=YCCNP

307 APHI=ABS (PHI)

308 IF{J.EQ.NC2) GOTO 10

309 IF(J.EQ.N2) GQGTC 250

310 L=J+2

311 IF(I.EQ.NT1) GOTO 14

312 GOTO 15

313 250 CONTINUE

314 L=J+1

315 IF(I.EC.N1) GOTGC 14

318 GOTO 15

317 10 CONTINIDE

318 L=J

319 IF(I.EQ.NC1) GOTO 14

320 15 CONTINUE

321 IEQ=7

322 CALL XINT(IEQ,XP,YP,X,Y,I,L,SL,APHI,VV)
323 VVv=-vVV

324 IEQ=8

325 CALL XINT(IEQ,XP,YP,X,Y,I,L,SL,APHI,UU)
326 XP (I) =SXP

327 YP (I) =SYP

328 GOTO 11

329 14 CONTINUE

330 IEQ=9

331 CALL XINT(IEQ,XP,YP,X,Y,I,I,SI,APHI,VV)
332 Vv=-Vy

333 uu=0.

334 XP (I) =SXP

335 YP (I) =SYP

336 1" CONTINNE

337 U1=00%COS (PHI) ~VV*SIN (PHI)

338 V1=UU*SIN(PHI)+VV*COS(PHI)

339 IF(ITR.GTI.1) GOTO 18

340 IF{J.EQ.NC1.AND.I.LE.NC) S01({I) =01

341 IF (J.EQ.NC1,.AND, I, LE, NC) SV1{I)=V1

342 18 CONTINUE

343 IK=1

344 GOTO 3

345 5 CONTINUE

346 JF{J.NE.NC) GOTO 19

347 IF (I.EQ.HC) GCTC 16

348 IEQ=4

349 CALL XINT(IEQ,XP,YP,X,Y,I,J,SL,APHI,VV)
350 VV==VV

351 IEQ=5

352 CALL XINT(IEQ,XP,YP,X,Y,I,J,SL,APHI,UU)
353 GOTO 17

354 16 CONTINUE

355 IEQ=6
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19

17

340

20

CALL XINT(IEQ,XP,YP,X,Y,I,J,SL,APHI,VV)
VV==VYVy

uu=0,

G0TO 17

CONTINUE"

PSI1=ATAN2(YCONP,XCCNP)

IF (PST1,LT.0.) PSIT=PSI1+2.%3,14159266
PSIZ=ATAN2(YCCNP,(XCGNP-SL))
IF(PSI2.LT.C.) PSI2=PSI2+2,.%*3,14159266
UU=PSI2=-PST1+ (XCCNE*DCE* (TETA1-TETA2) -
CYCONP*ALOG (R2/R1)) /SL
VV=(1.-XCONP/SL)*ALOG (R2/81) -1.~-AES(YCONP)
C*{TETA1-TETA2) /SL

IF(I.FQ.J) UU=0,

CONTINUE

UZ=UU*COS(PHI)-VV*SIN(PHI)
V2=UU0*SIN (PHI) +VV*COS (PHI)
IF(J.EQ.NC1,AND.I.LE.NC) U01=501{1)
IF(J.EC.NC1,AND.I.LE. NC) V1=SV1(I)
IF(IJ.FQ.NT1) V1=0

IF (JLEQ.NT1) 11=0

IF(JL.EQ.NT) V1=0,

IF(J.EC. N1 U1=10,

IF{J.BC.1) U1=0,

IF (J.RC. 1) V1=D,

U=0G1+02

V=V1+V2

A(I,J)=V-U%SLOPE(T)

IF{I.LE.NC) GCTC 340

VI(1,J)=V

UI(T,Jd)=U

CONTINUE

IF (J.LE.NC) GCTC 20

UG6=PSI2-PSI1

IF(I.5¢.J) U0G=D,

VG=ALOG(R2/R1)

IF(J.GT«N.AND,J,LE,NT) VG={C2~C1) %V
IF{J.GT.N,AND.J,LE,NT) UG=(C2-01) *UG
IF(J.LEZ.N) VG=Q1%xVG

IF (J.LE.N) UG=01*uG

IF{J.GT.NT) VG==Q2%VG

IF{J.GT.HNT) UG=-Q2%UG

UGAMA=UG*COS (PHI)~VGXSIN (PHI) +UGANMA
VGAMA=UG*STN (FHI) +VG*COS(PHI) +VGAMA
CONTINUE

IF(I.GT.NC) GOTC 2

ITF(J.GT.NC) GCTO 2

AS(I,J)=A(1,3)

CONTINUE
R1=((XP(I)-X(NZ))**2+(YP(I)-Y(N2))**2)**.5
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404 R2=((XP (I) =X (NC1)) *%2+ (YP(I)-Y (NC1))*%2)%%,5
405 R3=((XP(I) =X (NT3))*%24+ (YP(I)~Y (NT3))*%*2) **,5
406 XP (I)=(SXP-X(NC1))*CDS (TAU) +(SYE-Y (NC1) ) *SIN(TAU)
407 YP (I) ==~ (SXP-X (NC1)) *SIN(TAD)+ {SYP-Y (NC1)) *COS (T AU)
408 T3=1.57C79-ATAN2 ((YP(I) -DEL),XP (I))
409 IF(T3.LT.0) T3=T3+2,%3,1415$266
410 T2=1,57079-ATAN2 (YP (I),XP (1))
411 IF(12.LT.0.) T2=3,14159%2+412
412 T1=1.57C79-ATAN2 ((YP(I)-DEL1),XE(I))
413 IF(T1.LT.0) T1=2.%3,.14159266+T1
414 US1={(T1-T2)*COS (TAU) +ALOG (F2/R1) *SIN (~TAU)) %01
415 . VS1=(-(T1-TZ) *SIN(~TAU) +ALCG (R2/R1) *COS (TAU)) *0 1
416 US2=({T3-T1)*COS (TAU) +ALOG (F1/E3) *SIN (-TAU)) %02
417 VS2= (- (T3-T1) *SIN(-TAU) +ALOG (R1/R3) *COS (TAU) ) *Q2
418 US=8S1+US2
419 VS=VS1+VS?2
420 XP {I) =SXP
421 YP (I)=SYP
422 B(I) =-VS+SLOPE(I) *US~- (SIN(ALFHA) -COS (ALPHA) *SLOPE (I))
C*¥2%*3,14159
423 RR1= ({XP (I) =X (NT2))%%2+ (YP (I)-Y (NT2)) *%2) %%,5
424 RR2={(XP(I) =X (N1)) *%24 (YP (I) -Y (N1) ) #%2) %%, 5
425 RR3= ((YP(I) -X {NTT3))**2+ (YE(I) -7 (NTT3)) **%2) *%,5
426 PP1=ATAN2 ((YP (I)~Y(NI2)), (XE(I)~-X{NT2)})
427 IF (PP1.LT.0,) PP1=2,%3,1415926+FP 1
428 PP2=ATAN2 ({(YP (1) -Y (N1)), (XE(I)-X(§1)))
429 IF (PP2,LT.0.) PP2=2,%3,1415S264PP2
430 PP3=ATAN2 ((YP (I)-Y (NTT3)), (XP(I) =X {NTT3)))
431 IF(PP3,LT.0) PP3=PP3+2,%3,14159266
432 VINF2= ((PP3-PP1)*SIN(ALPHA) +ALCG(ER3/RR1) *COS (ALPHA))*Q2
433 UINF2=((PP3-PP1)*COS (ALPHA) ~ALCG (ER3/RR1) *SIN (ALPHA)) *Q2
434 VINF1=((PP1-PP2) *SIN(ALPHA) +ALOG (ER1/RR2) #COS (ALPRA)) *G 1
435 UINF1=({PP1-PP2)*CGS (ALPHA) -ALCG (FR1/RR2) *STN (ALPHA)) *Q1
436 B(I)=B(I)-VINF1-VINF2+ (UTNF14UINF2) *SLOEE (I)
437 B(I)=B(I)~VGAMA+UGAMA*SLOPE (I)
438 IF (I.LE.NC) GOTO 1
439 UO2(I) =(UGAMA+UINF1+UINF2+US)/ (2.%3.14159266)
440 VO2(I)=(VGAMA+VINFI+VINF2+VS)/(2.%3.14159266)
441 1 CONTINUE
C--- SOLUTICN OF THE SET CF LINEAR EQUATIONS
442 CALL LNEQNS{A,60,60,NTT,B,I%1,IX2,IER)
C--- LIFT COEFFICIENT
C--
443  XLC=0,
e DO 230 I=1,NTT
445 IF (I.EG.1) GOTO 231
446 IF(I.EQ.NC) GOTO 232
ny7 IF(I.EQ.NC1) GOTO 233
448 IF(I.EQ.N) GOTO 236

449 IF (I.EQ.NT) GCTC 236




450
451
452
453
454
455

456
457
458
459
460

461
462
463
464
465
466

467
468
469
470
471
472
473
474
475
476

477
478
479
430
481
482
483
484
485

231

232

233

234

235

251

252
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IF (I.EQ.NTT) GOTO 236
IF(I.GT.N) GOTO 234

XLC=XLC+ (B(I+1)+B(I)) *(X(I+1)-X(I)) /2.

GOTO 230

CONTINUE
XLC=XLC#+B(I)* (X (I+1) =X (I)) /2.-2.%3 (I+1) *X (I+1) #%1,5
CH(ALOG ((1+X (T+1)%%,5) / (1=X (I1+1) **,5)) +

CALOG (1-X (I+1) ) /X (I+1)**,5) /ALOG (1-X (I+1))

SL1=XLC

GOTO 230

CONTINUE

SXLC=X1.C
XLC=XLC+B(NC1) * (X (NC1) =X (NC)) /2.-2.%B (NC) *X(NC) **1.5
C*(2.%ALCG (2,) =ALOG ( (1+X (NC) *%, 5) /

C(1-X (NC)**,5) ) ~ALOG (1-X (NC) ) /X (NC) **.5) /ALOG (1-X {NC))
XLCC=XLC*2,

SLNC=XLC-SXIC

GOTO 230

CONTINUE

SXLC=XLC

XLC=XLC+B (NC1)* (X (NC2) =X (NC1)) /2. +B(NC2) %X (NC2) *%1,5% (2
C*x (1=

C1/X(NC2) **,5) ¥ALCG (X (NC2) ¥*,5-1) =2% (141 /X (NC2) **%,5) x
CALOG (X (NC2) **.5+1) +4,*ALOG (2.) ) /ALOG (X (NC2) - 1.)
SAL=XLC~-SYLC

GOTO 230

CONTINUE

IF (T.GT.NT) GCTC 251

IF(I.EQ.N1) GOTO 235

XLC=XLC+ (B (I+1) +B(I)) * (X (I+2) -X(I+1)) /2.

GOTO 230

CONTINUE

SXLC=XLC

XLC=XLC+B (N 1) * (X (N3) =X (N2) ) /2.4 (2.%(1./X(N2) *%, 5=
C1. /X (N3) ¥%,5) *ALOG (X (N3) ** ,5-X (N2) *%,5) -
C2.% {1, /X (N2) %*,5+1, /X (N3) %% .5) ¥ALOG (X (N3) **, 5+
CX(N2) *¥*,5) +4,%ALOG (2, *X (N2) **, 5) /X (N2) **, 5)
C*B (N2) *X (N3)**1,5/AL0G (X (N3)-X (N2))

SAU=XLC-SXLC

GOTO 230

CONTINUE

IF{I.EQ.NT1) GOTO 252

XLC=XLC+ (B (I+1)+B(I)) * (X (I+3) -X(I+2)) /2.

GOTO 230

CONTINUE

SXLC=XLC

XLC=XLC+B (NT1)* (X (NT4) X (NT3)) /2.+ (2. % (1/X (NT3) **, 5-
C1/X (NTH4)**,5) ¥ALOG (X (NT4) %%, 5=X (RT3) %%, 5) =2% (1 /X (NT3) **
C.5+1/X (NTH4) *%,5) *ALOG (X (NTU4) %% ,5+ X (NT3) %%, 5) +4*ALOG (2%
CX{NT3) *%,5) /X (NT3) **, 5) *B (NT2) *X (NT4) **1,5/




186
487
438
489
490
491
492
4493
494
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49se
497
498
499
500
501
502
503
504
505
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507
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511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531

2386

53

52

CALOG (X (NT4) =X (NT3))
SAU3=YLC-SXLC

GOTO 230

CONTINUFE

J=1

IF(I.EQ.NT) J=I+1

IF (I.RQ.NTT)J=T+2

XLC=B (T) *(X (J#+1) =X (J) ) /2. +XLC
CONTINUE

XLC=XLC*2,
XLCJ=XLC-XLCC

OUTPOTS

PRINT,'NUMBER OF ITERATICNS®
PRINT 54, ITR

FORMAT (5X, I4)

PRINT,*ANGLE OF ATTACK IN DEGREE®

PRINT 53,ALFAD

FORMAT (F10.3)

PRINT,*INITIAL JET DEFLECTICN ANGLE IN LTGREE!
PRINT 53, TAUD

PRINT,'JET THICKNESS?

PRINT 53, DEL

PRINT ,*POWERK JET MCMENTUM CCEFFICIENT?
PRINT £3,CPJ

PRINT,'TCTAL JET MCMENTUM CCEFFICIENT!
PRINT 53,CJ

PRINT,'X CENTER!

PRINT 52, (XC(I),I=1,8J1)

PRINT,'Y CENTER'

PRINT 52, (YC(I),I=1,NJ1)

PRINT, 'X COORLCINATES OF CCNTRCL POINTS!
PRINT 52, (XP({(I),I=1,NTT)

PRINT,?'Y COORDINATES CF CCNTECL PCINTS?®
PRINT 52, (YP(I),I=1,NTT)

PRINT,'X COORDINATES OF DIVISICN POINTS®
PRINT 52, (X(I),I=1,NTT3)

PRINT,'Y COORDINATES OF DIVISICN EQINTS'
PRINT 52, (Y(I),I=1,NTT3)

PRINT,' VORTEX DISTRIBUTICN?!

PRINT 52, (B(I),I=1,NTT)

FORMAT (10F10.6)

PRINT,'LIFT COEFFICIENT?

PRINT 53,XLC

PRINT,'JET LIFT COEFFICIENT®

PRINT £3,XLCJ

PRINT, 'FOWERJET VEICCITY!

PRINT 53,0

PRINT, Q1!
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532
533
534
535
536
537
538
539
540

541
542
543
544
545
546
547
548
549
550
551
552
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554
555
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557
558
559
560
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562
563
H64
565
H66
567
568
569

570
571

572
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574
575

576

227
448

420

421

401
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PRINT 53,01

PRINT, Q2!

PRINT 53, ¢2

PRINT,'VELOCITY DISTRIBURICNS'
GOTO 99

CONTINUE

CONTINUE

STOP

END

SUBROUTINE XINT(IEQ,XP,YP,X,Y,I,J,SL,APHI,VEL)
DIMENSICN X (60),Y(60),XP(60),YP (60)

N=22

N2=N+2

NC=10

NC2=NC+2

NT=N+ (N-NC)

NT2=NT+2

NT3=NT+3

G=1,

IF((J=1).EQ.N2) G=X{N2)

IF((J~2) .EQ.NT2) G=X(NT3)

IF(IEQ.GT.6) GOTC 421
IF(IEQ.LT.7.AND.IEQ.GT.3) GCTO 420

XU=X (J)

XL=X{J-1)

GOTO 401

CONTINUE

XU=X {J+1)

XL =X (J)

GOTO 401

CONTINUE

XU=SL

XL:O.

CONTINUE

A= ,5% (XU +XL)

BB=XU-XL

C=,4869533%BB
T=.03333567%(F(1EQ,XF,¥P,I,Jd,X,APHI,A+C)
C+F(IEQ,XP,YP,I,3,X,APHI,A-C))
C=,4325317*EB
T=T+.07Q72567*(F(IEQ,XP,YP,I,J,X,APHI,A+C)
C+F(IEQ,XP,YP,I,J,X,AFHI,A-C))
C=.3397048*BB
T=T+.1295432*(F{IEQ,XP,YP,I,J,X,APHI,A+C)
C+F(IEQ,XP,YP,I,J,X,APHI,A-C))
C=,2166S977%BR

T=T+.1346334% (F(IEQ,XF,YP,1,J,X,APHI, A+()
C+F (IEQ,XP,¥YP,I,Jd,X,APHI,A-C))
C=,07443717*%BB




577

578
579

580
581

582
583

584
585
586

587
588

589
5390

591
592
593

594
595

596
597

598
5949
600
601

602
603
604
605
606
607
608

403

40u

405

406

4¢7

408

410

411

412

409

126

T=BB* (T+.1477621% (F(IFQ,XP,YP,I,J,X,APHI, A+C)
C+F (IEQ,XP,YP,I,J,X,APHI,A-C)))

GOTO (4C3,404,405,4(6,407,4C8,410,411,412) ,180
VEL=(T=2.%XP (I)* (ALOG ((1.+X (J+0) *%,5) /(1. -X(J+0)**,5)) +
CALOG (1., =X(J+0)) /X (J+0) *%,5) / (XD (T) ®*%2+YP (I) #%2) ) *
CX(J+0) *%1,5/AL0G (1. ~X (J+0) )

GOTO 4C9

VEL=(T=2.#%YP (I)* (AL0G ((1. +X (J+0) **.5) / (1. =X (J+0) **.5)) +
CALOG (1. =X (J+0)) /X (J+0) *%,5) / (XP (I) **2+YP (1) %2) ) *
CX{J+0) #*1,5/AL0G (1.=-X (J+0))

GOTO 409

VFL=T=2,% (ALOG( (14X {J+0) **,5) / (1-X {J+0) %*,5)) +
CALOG (1-X(J+0) ) /X (J+0) %%.5) /XP (I) +ALOG (1-XP (I)) *

CALOG (XP (I) / {X (J+0)=XP (I)))/XP(I)**1.5

VEL=VEL*X (J+0) *%1,5/3L0G (1., -X (J+0))

GOTO 409

VEL= (T+ (XP(I)~1,) *
C{(14-X(J+0) ) *ALOG (1. -X (J+0) ) +X (J+0)~1.) / ({XP (I) -1, ) *%2
C+YP (I)*%2) ) *X (J+0) ¥%1,5/ALCG (1. =X (J+0))

GOTO 409

VEL= (T+YP{I)*
C(1.-X(J+0) ) *ALOG(1.=X (J+0) ) +X (J+0)=1.) /( (XP(I) ~1.) %2
C+YP (I) *¥#2)) #X (J+0) *%1,.5/AL0G (1. ~X (J+0) )

GOTO 409
VEL=T+(1.-X(J+0) ) * (ALOG(1.=-X (J+0))=1.) /(XP(I) -1) +
CALOG (1. -XP (I))*ALOG ((XP(I) -X{(J+0))/(1-XP(T)))
C/XP (I) *%1,5

VEL=VEL*X (J+0)*%1,5/R1L0G (1. -X (J+0))

GOTO u4C9

VEL= (T+XP (I)*SL*(ALOG (SL*CCS (APHI) ) ~1) / ((XP (I) *%2+YP (I)
CH*2) kG*%1,5)) *X (J) **%1,5/AL0G (X (J) -G)

GOTO 4C9

VEL= (T+YP(I)*SI*(ALOG (SL*CCS (APHI)) =1) / ((XP (I) #%2+4YP (1)
C**2) *G*%1,5)) X (J) **1,5/ALCG (X (J) -G)

GOTO 409

VEL=T+SL* (ALOG (SL*COS (APHI))=1.)/ {XP(I) *G**1,5) +
CALOG (XP (I) *COS (APHI) ) *ALCG (XP (I)/ (SL=XP (I)))/
C(XP (I)*COS (APHL)+G)**1,5

VEL=VEL*X(J+0) #%1,5/A106G (X (3+0) -G)

CONTINUE

RETURN

END

FUNCTION F(IEQ,XP,YP,I,J,X,AEHI,S)
DIMENSICN X{60) ,XP(60),YP{60)

N=22 '

N2=N+2

NC=10

NT=N+ {N=-NC)

NT2=NT+2
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609 NT3=NT+3

610 NC2=NC+2

611 G=1.

612 IP ((J-2).2Q0.NT2) G=X (NT3)

613 IF((J=1) .EQ.N2) G=X(N2)

614 GOTO (1,2,3,4,5,6,7,5,9),I%¢

615 1 F=ALOG (1.-S) * (XP(I)=S) /(S*¥*1.5% ((XP (L) -S) *%2+YP (I) ¥%2) )
C-ALOG (1.-5) *XP (I)/ (S**1.5% (KP (1) *%2+YP (I) *%2))

616 GOTD 10

617 2 F=ALOG (1.-S) *YP (I) / (S**1,5% ((XD (I) -S) **2+YP (I) ¥*2) ) -
CALOG (1. =S) *YP {T)/ (S** 1, 5% (XE (1) #%24YP (1) *#2))

613 GOTO 10

619 3 F=ALOG (1.-S)/ (S**1.5% (XP(I)-S)) ~ALOG(1.-S)/
C (XD (I) *S*%1.5) =ALOG (1.-XP (1)), (XP(I) **1.5% (XP(I)-5))

620 GOTO 10

621 4 F=ALOG (1. -S)* (XPB (I)~S)/ (S**1.5% ((XP (I) -S) **2+YP (I) *%2) )
C-ALOG(1.-5) *(XP(I)=1.) /((XE(I)=1.) **2+YP(I)*%2)

522 GOTO 10

623 5 F=ALOG (1.=5) *YP (I) / (S**1,5% ((XE(I) -S) **2+ YP (I) **2) ) -
CALOG (1, =S) *YP (I)/ ({XE (I)~1.) *%2+YP (I) *%2)

624 GOTO 10

525 6 F=ALOG (1.-5) / (S**1.5% (XP(I) -S)) ~ALCG (1. -S) /(XP (I) =1.) -
CALOG (1. -XP (I) )/ (XP(I) **1,5% (XP (I) -S))

h26 GOTO 10

627 7 F=ALOG (S*COS (APHI) ) * (XE(T) -S) /

C{(S*COS (APHI) +G) *%1,5% ({XP (1) ~S) **2+4YP (I) *%2))
C-ALOG (S*CCS (AEHI) ) #X D (I) / ((XP (1) **2+YD (I) *%2) $G*%1,5)
628 GOTO 10
29 8 F=ALOG (S*COS (APHI) ) *YDP(I) /
C((S*CCS (APHI) +G) **1,5% ((XP (1) -S) **2+YP (I) ¥*2))
C-ALOG (S*COS (APHI) ) *YP (L) / ( (XB(I)**2+YP (I) *%2) xG¥*1,5)
630 GOTN 10
631 9 F=ALOG (S*COS5 (APHI) )/ ( (S*COS (APHT) +G) ¥*1,5% (XP(I)-5))
C-ALOG (S*COS (APHI)) / (XP(I) *G**1,5) -ALOG (XP (I) *COS (APHI) ) /
C((XP(I)*CCS(APHI)+G) **1,5% (XE (I)~S))
632 19 CONTINUE
633 RETURN
h3L END
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131

/‘AEROFOIL

C_
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(a) Simplified mode! of augmentor wing .
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Zero-Length Shroud and Flap
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(¢) Final model of augmentor wing .

Fig. 6 . Development of an Augmentor Wing Model.
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Fig. 9. Augmentor Wing Represented by Distributed Singularities .

Fig.!O . A Polar Element of a Curved Jet .
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(@) Control points and distributed vortex segments .

(c) Construction of the coordinates of a divisien point on
the jet upper boundary.

Fig. 11. Locations of Elements and Control Points.
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Fig. 13 . Typical Logarithmic and Linear Vortex Strength
Distributions .

Fig.14. A Distributed Source Segment and Induced Velocities .
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Fig.15 . A Distributed Vortex Segment and Induced Velocities .
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Fig. 16. Sketch of Jet Shapes After Four
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Fig. 17. Specified Regions of Jet Shapes.
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(a) An Augmentor Wing with a Non-uniform Jet .
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(b) An Augmentor Wing with a Simplified Non-uniform Jet

Fig. 18. Model of the Non-Uniform Jet Augmentor Wing.
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Fig. 21. An Element of the Non-Uniform Jet.
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