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NOTATION

cross-sectional area of member

"shear area" in direction 2
dimensionless exponent

constant

bendinQ deformation component for
connection A

bending deformation component for
connection B

joint displacement vector for joint I
matrix defined by Eg. (4.18)

modulus of elasticity

flexibility matrix at B for member AB
diagonal flexibility matrix for
connection K

modulus of rigidity

matrix defined by Eq. (4.16)

rotation transformation matrix
identity matrix

moment of inertia

stiffness matrix at B for continuous

elastic member AB



vi

structure stiffness matrix

modified stiffness matrix at B

length of member

semi-rigid connection factor defined by
Montforton and Wu

applied moment at a particular connection
number of size parameters that influence
the moment-rotation relationshipé

joint force vector for all joints in the
structure

joint force vector at joint I

member load vector

numerical vaiues of connection parameters
matrix defined by Eq. (4.17)

member force vector at B for member AB
matrik defined by Eg. (4.29)

force transformation matrix from B to A
displacement transformation matrix from
B to A

cantilever deflection at B for member AB
connection distortion

member distortion

distortion vector for connection K
elastic distortion of member AB referred
to B

uniform distributed load
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= connectional rotational deformation



CHAPTER 1

INTRODUCTION

1.1 | Object of Study
The high cost éf structural steel framing connections,
and their significant contribution to structural
displacements have made the subject of framing connections a
source of interest in recent times. While the connections
constitute a small percentage of the total weight of a
structure, they have a relatively high labour content and
hence represent a substantial percentage of the total
framing cost. Connection deformation is often responsible
for a large proportion of the overall deflection of a
structure. It is generally much more significant than axial
deformation of members, which has been considered in most
structural analysis computer programs for some time, or
member shearing deformation which has often been considered.
In the conventional analysis of steel structures, beam
to column connections have normally been assumed to be
either completely flexible or completely £fixed. These
assumptions are not consistent with actual structural

behaviour, but have been used to simplify analysis. Methods

1



have = been proposed for incorporating the effects of
structural connections into the analysis procedure.
However, because of the iarge amount of calculation and time
involved, these methods remained unattractive until the
digital computer removed the burden of lengthy computations
and allowed a return to the basic principles of structural
analysis.

| To incorporate the effects of connection deformation
into a strucfural analysis computer program, it is first
necessary to have available force-deformation information
for the different types of connections in use. Secondly,
this information must be put into a form which requires a
minimum of computer storage. Finally, the connection
characteristics must be incorporated into the member
force-displacement relationships.

Based on these requirements, this study consists of
three distinct phases.

(a) The assembly of all available experimentally
obtained force-deformation information on the most commonly
used connection types. The majority of the test data
available are in the form of moment-rotation (M-¢) curves
which relate the applied moment, M, at a particular
connection to the corresponding rotational deformation, ¢ ,
which occurs at the connection.

(b) The standardization of the M- ¢ relationship for

each connection type to minimize the amount of connection



information that must be stored.

(c) The generation of a structural analysis program
which incorporaﬁes effects of connection deformation.
Because of the non-linearity of the connection
moment-rotation curvé, the program must employ an iterative

analysis procedure.

1.2 | Relationship To Previous Studies

Since 1930, thére has been considerable research aimed
at determining the behéviour of structural connections. The
original work was carried out simultaneously in Great
Britain by C. Batho and H. C. Rowan C”*and in the United

States by J.C. Rathbun.(27)

These tests were conducted to
find the relationship between the moment applied to a
connection, and the corresponding rotation between the
elastic lines of the connected members. Since this original
work, there has been extensive research on many of the
connection types in use today. This work is summarized in
Chapter 2. The availability of an increasing volume of
connection information has made it possible to include the
effects of flexible connections in the analysis of a
structural framework.

J. F. Baker (1)

and J. C. Rathbun applied slope
deflection and moment distribution methods to analyze frames
with flexible or semi-rigid connections. C. Batho and H. C.

Rowan presented a beam line method for analyzing semi-rigid

* Numbers in parentheses refer to entries in List of References.



(22)

frames. G. R. Montforton and T. S. Wu incorporated the
effects of flexible or semi-rigid connections into a
stiffness analysis program. They assumed the approximate

linear relationship of the form,
¢ =M\, (1.1n)

to adequately represent the connection moment-rotation
behaviour in a frame with semi—rigia connections. In Eq.
(1.1),

M = applied moment

A = relative rotation of elastic lines of connected
members

A is defined as a semi-rigid connection factor and
represents the inverse of the slope of the assumed straight
line portion of the moment-rotation curve shown in Fig. 1.1.
Its magnitude depends on the type of connection. Montforton
and Wu used the semi-rigid connection factor to modify the
member stiffness matrix and the member fixed-end-forces.
Their method, which depends on the approximate linear
relationship between moment and rotation, is acceptable in
the range where applied moment 1is proportional to the
relative rotation of the beam and column. However, many
connection types exhibit a non-linear behaviour even at
working loads, and the procedure would give misleading
results if applied to these connections.

In this study, the non-linear connection effects are

considered by employing an iterative procedure involving

repeated cycles of linear analysis. After each cycle, the
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flexibilities are modified and the new connection
flexibilities used to modify the member stiffness matrices
and the member fixed-end-forces for the next analysis. The
procedure continues until the rotation and moﬁent calculated
for each connection, in the linear analysis; satisfy the
equation of the non-linear moment-rotation curve for the
connection. ‘

While in general the analysis procedure is applicable
to any vtype of structure, in this study it has been

implemented only for planer frames in which only the

rotational deformation of the connection is considered.

1.3 Assﬁmptions and Limitations

The assumptions employed, and the limitations of the
analysis program developed in this study are:
(a) The effects of shear and axial load on connection
deformation are ignored.
(b) The program is limited to the analysis of planer
frames.
{(c) All members ‘are assumed to be prismatic and
straight.
(d) Only statical loading in the form of concentrated
or uniformly distributed loads can be accomodated.
(e) The program uses an "in-core" equation solver.
Hence the size of the structure that can be analyzed may be

limited by computef primary storage capacity. Appendix D



gives an indication of the size of structure that can be
analyzed for a given core capacity.
(f) Possible buckling of individual members or portions
of the structure is ignored.
| (g) The effects of strain hardening are neglected.
(h) The material in the members is linearly elastic.

(i) It is assumed that the structural deflections are
sufficiently small that they do not affect the geometry of
the structure. ) |

(i) The only cause of non-linear structural behaviour

is the non-linear force-deformation characteristies of the

connections.

1.4 Conventions Used

(20)

Matrix algebra technigues are employed throughout
this study for all structural analysis formulations. As
illustrated in Fig. 1.2, the two types of coordinate systems

used are:

(1) Global system - A single right hand coordinate
system for the whole structure. All loads, Jjoint
displacements, reactions, and joint coordinates are

expressed in the global system.
(2) Local system - Each member has associated with it a
right hand local coordinate system whose X1 axis has the

same direction as that assumed for the member, as

illustrated for member AB shown in Fig. 1.2. Member forces



and distortions are expressed in the local system;
Each member is assumed to have a direction from its A
end to its B end. The Xy axis of the local system lies along

the member axis, and has its positive direction from A to B,
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CHAPTER II

CLASSIFICATION AND BEHAVIOUR OF STRUCTURAL

CONNECTIONS

In this chapter, structural connections are classified
as to their behaviour. The moment-rotation diagram is
discussed, and practical working definitions of rigid,
semi-rigid, and simple connections are presented. The
behaviour of the most commonly used structural coﬁnections

-is discussed,

2.1 Introduction

At one time, riveting predominated as the most common
connecting medium in steel structures. Present trends,
however, are to an increased use of welding and high
strength bolting. While these terms reveal the method of
connecting, they shed little light on the behaviour of the
éonnection.

The CSA  Standard S-16 1965 (36) and the AISC
Specification of Steel Construction 1967(3ﬂ recognized three
types of connection behaviour:

(a) rigid framing

10
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required for a theoretically fl;xible connection.
Conventional rigid and simple ffaming analyéis
procedures are not unduly difficult. Howevér, as Ostrander
has pointed out, the practical problems encountered in the
manual analysis of frames.with semi-rigid connections are
" numerous. Research is continually required to determine the
degree of rigidity of each new type and size of connection.
Methods are required to extrapolate test results and to
develop simplified linearly elastic design procedures for
connections which generally act inelastically even in the
range of working loads. The recently released CSA Standard
S-16 1969(38)omits reference to semi-rigid framing as a
standard construction method, although semi~-rigid

connections may still be used under this standard.
The increasing volume of experimental connection data
coupled with computer analysis procedures now makes it
possible to consider the actual connection behaviour in the

design and .analysis of steel frames.

2.2 The Moment-Rotation Curve

The primary distortion of a connection is the
rotational deformation caused by moment. Methods have been
proposed for calculating the M~ ¢ relationship for semi-rigid
connections, but most M- ¢ curves must 'be determined
experimentally. Appendix y: contains a series of

experimentally obtained M- ¢ curves for a large number of

(25)
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(b) simple framing

(c) semi-rigid framing

An ideally rigid connection is one whose M- ¢curve is a
straight vertical line. Regardless of the moment acting on
the joint, there will be no relative rotation between £he
two elastic lines. ILikewise, an ideally simple connection
is one with a horizontal M-¢ curve. Regardless of the
relative rotation imposed on the two members, the connection
will exert no resistance. Any intermediate condition is
semi-rigid. it is easily appreciated that full rigidity and
full flexibility are extreme conditions, never actually
obtained. Practical working definitions of. rigid, simple,
and semi-rigid connections are given by Brandes and Mains
as follows:

(a) Any connection which develops beam 'restraint of
less than 20% of the fixed-end-moment, thereby permitting
80% or more of the beam rotation required for a
theoretically flexible connection, will be called a flexible
connection.

(b) Any connection which develops 90% or more of the
full fixed-end-moment, thereby permitting no more than 10%
of the beam rotation required for a ‘theoretically flexible
connection, will be called a rigid connection.

(c) The semi-rigid connection is one capable of
carrying from 20% to 90% of the full fixed-end-moment,

thereby permitting from 10% to 80% of the -~beam rotation

(3)
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connection types. The moment-rotation curve for a typical
semi-rigid connection is  illustrated in  Fig. 2.1.
Observation of this figure and curves in Appendix A reveals
that almost all connections behave inelastically. The
flexible connection types exhibit non-linear behaviour
almost from the start of loading, and the rigid connections

at a later stage.

2.3 Connection Description and Behaviour

There are maﬁy different types of connections in use'
today. There follows a description of the most commonly used

connection types and a discussion of their behaviour.

2.3.1 Double Web Angle Connections

Web framing angles, as 1illustrated in Fig. 2.2,
constitute one of the most commonly used beam connection
types. This type of connection is often termed a simple or

flexible connection since it is designed to resist only

vertical loads. Because of its fregquent use, it has been
standardized in most codes and manuals of steel
construction. Although assumed to be simple, it does

provide some moment restraint, and under normal conditions
is subjected to both shear and moment.

Moment-rotation experiments have been performed on

27)

double web angle connections by J. C. Rathbun, H. S.

Somner,(BO) and by Munse, Lewitt,. and Chesson.oﬁ) These

~
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experimehts showed that in double web angle connections,
flexibility was largely the result of bending and twisting
of the angle legs. It was found that angles of the order of
3/8 inch thickness conformed to the end slope of the beam
while offeiing little resistance. With thicker angles, an
appreciable moment resistance was developed.

Framing angles, however, are inefficient in developing
flexural résistance since most of the moment in a wide
flange or I-beam is developed by flange forces. To develop
the flange forces by web angles necessitates funneling the
forces through the beam web. This results in early local
web yielding under the stress concentrations that occur.
Thié limits the end moment developed.

Tests have also shown that the end moment developed by
a particular pair of connection angles depends on the length
of the angles, which in turn is a function of the beam
depth. Other factors which have been shown fg affect the
connection moment developed are the gaée or gages of the
connection angles,.the fastener type and size, whether the
connection is tb a column flange or to a column web, and the

physical properties of the angle material.

2.3.2 Single Web Angle Connections

Single web angle connections, illustrated in Fig. 2.3,

\

are very similar in behaviour to double web angle

connections. They offer some advantages over double web
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angle connections, in that they are more economical and
easier to erect.
: (19) . :
S. L. Lipson performed a series of tests on single
web angle connections. These tests showed that the
‘relatively small moment developed by the connections was a

function of the length and size of angle, size of fasteners,

and connection gage.

2.3.3 Header Plate Connections

Welded header plate connections, illustrated in Fig.
2.4, are similar to single and double angle framing
conhections in that they are intended to be simple beam
connections. They are designed on the basis of shear, and
like web angle connections, the moment transfer is small.

H. S. Somner conducted a series of experiments to
determine the moment-rotation characteristics of different
header plate connections. These tests showed that at low
loads, the connection behaviour was essentially elastic.
‘With increasing loads, there was considerable yielding in
the plate adjacent to the welds and bolts. The large
inelastic deformation in the header plate resulted in large
rotations at the column. With progressive yieiding of the
beam web, the header plate was pushed into the beam web with
the result that the bottom flange approached: and finally
came into contact with the column. This resulted in an

increased rotational stiffness since all subsequent rotation

1
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occurred about the the bottom £flange as a pivot. This
rotation was obtained from further deformation of the header
plates, varying from a maximum at the top of the plate to a
minimum at the bottom.

The behaviour of header plate connections depends on
the length of plate, the thickness-.of the plate, and the
connection gage. | Differences in behaviour between header
plate and web angle connections may be attributed to

differences in geometry of the two connections.

2.3.4 Top and Seat Angle Connections

1

This type of connection, which is generally regarded as
being of the semi-rigid variety, is illustrated in Fig. 2.5.
Unlike web angle and header plate connections, the top and
seat angle connection is designed to carry vertical load and
to resist a significant amount of end moment.

Research on the behaviour of top and seat angle
connections has been carried out by C. Batho and H. C.
. Rowan, R. A. Hechtman and B. G. Johnston,uj) and J. C.
Rathbun. Test results from the experiments conducted by
Hechtman and Johnston showed that the main factors
contributing to rotation were bending of the top angle and
column flange, extension of the tension fasteners, and slip
of the rivets in the top flange of the beam. . This type of
connection passed through three stages, beginning with an

initial stage with moment approximately proportional to
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rotatioﬁ, a second stage in which yielding spreads within
the connection, and a final stage characterized by
accelerated rotation resulting in either fracture or
excessive deformation.

Tests also revealed that in the case of 1light beanm
flanges, the top angle rofated as a whole and cadsed
considerable deformation of the beam flange at high moments.
The greatest deformation of the beam flanges occurred in the
connection wiéh the greatest thickness of top angle. In
addition, considerable slip dccurred in the rivets fastening
the top angle to the beam flanges. It was also observed
that a column with very heavy flanges increased the
stiffness of a top angle to column connection, as compared

with lighter weight column sizes.

2.3.5 End Plate Connections

End plate connections, illustrated in Fig. 2.6, may be
flexible, semi-rigid, or rigid, depending on the thickness
‘of the end plate, the size, number and distribution of the
bolts or rivets, and whether the end plate is welded to the
beam flanges or not. The connection between the beam and
its end plate is usually a butt weld or a double fillet
weld.

The most significant research on end plate connections
has been carried out by R. Douty,U) j. R. Ostrander, and A.

(29)

N. Sherbourne. Douty and Ostrander found that plate
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flexibility, together with bolt elongation, had an effect on
connection rotation. Tests by Ostrander showed that column
flange distortion also contributed to end rotation if no
column stiffners were provided. In the majority of cases,
column | web and beam deformation made only minor
contributions to total rotation.

The end plate connection does not stiffen the beam, but
because of the plate flexing action and bolt.elongation, ﬁay
permit a much larger amount of rotation than would a butt
weld in a welded connection. To develop the full potential
of the fasteners, rather thick plates are required. By
locating some of the fastener group outside the tension
flange, the flexure arm of the fastener group is increased,
and the bending of the end plate is reduced.

The research on end plate connections has shown that
column stiffners increase the rigidity of an end plate
connection by restraining the column web adjacent to the
beam compression flanges and by confining and restraining
the deformation of the column flanges adjacent to the beam
tension flanges. The deformation of an unstiffened column is
not confined as effectively to the immediate region of the

connection as is the deformation of a stiffened column.

2.3,.6 Welded Top Plate and Seat Connections

Welded top plate and seat connections, illustrated in

Fig. 2.7, can be designed either to develop the full moment



FIG. 2.6 END PLATE CONNECTION

FIG. 27 WELDED TOP PLATE AND SEAT
CONNECTION
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capacity of the beam, or to restrain the beam by some lesser
amount., The size of the top plate is based on the moment
that the connection must develop. The smaller the top
plate, the smaller the moment transmitted from the column
into the beam. The connection must be capable of resisting
definite moments without overstressing the welds.

In a moment connection of this type, some means must be
provided to carry the thrust of the bottom flange. This is
usually accomplished by specifying a square butt weld
between the end of the beam flange and the column, To
prevent stress concentrations in the top plate, a curved
transition from the widened end of the basic plate is often
used. The vertical beam reaction is carried by the bottom
seat, and selection of the seat is based on the vertical
reaction to be carried.

Several research programs have been carried out on
weided top plate and seat connections. J. L. Brandes and R.
M. Mains performed an extensive series of experiments on
connections that were intended to be of the semi-rigid and
flexible type. These experiments determined the behaviour
of several top plate and seat details. L. G. Johnson, J. C.
Cannon, and L. A. Spooner(l5)tested several welded top plate
and seat connections . that were designed as rigid

(26) conducted a short

connections. R. F. Pray and C. Jensen
test program to check a proposed design procedure for this

type of connection.
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2.3.7 T-Stub Connections

The T-stub connection, illustrated in Fig. 2.8, is one
of the most commonly used connections for transmitting
moments between beams and columns 1in bolted and riveted
construction. As usually designed, the T-stub connection is
sufficiently stiff to be classified as rigid. However, it is
relatively simple to control the flexibility by varying the
flexibility of the T-stub flange.

In the T-stub type of moment connection, the fasteners
in the top stub flange are 1in tension. An additional
tensioﬁ in these bolts is caused by a prying action of the
flange flexing. The greater the flexibility of either the
column flange or T-stub flange, the greater will be the
prying action on the bolts. The subsequent bolt elongation
and deflection at the centre of the T-stub flange contribute
to the rotational deformation of the connection.

The principal research on T-stub connections has been
conductéd by C. Batho and H. C. Rowan, and R. Douty.
Experimental work by Douty showed that bolt elongation and
flange flexure were the primary cause of stub deformations
on the tension side of the connection. It is thus possible
to control the rotational flexibility of the connection by
varying the thickness of the T-stub flange. Tests by Douty
also showed that high shear had negligible effect on the

overall performance of the connection.
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CHAPTER III
STANDARDIZATION OF MOMENT-ROTATION CURVES

In this chapter, the method of standardization of the
moment-rotation relationship for various connection types is
presented., The procedure is illustrated, wusing as an

example a double web angle connection.

3.1 Introduction

The constitutive relationships between moment and
rotation for wvarious connections 1is important in the
determination of the force deformation relationships for a
member with flexible connections. In order for a structural
analysis computer program to incorporate the effects of
connection deformation, +the moment~rotation relationships
for the connections used must be available. There are two
ways that these relationships can be incorporated into such
a programn.

(a) The moment-curvature information for every
connection of every type can be stored. Since for any given
type of connection, there are a number of "size parameters"

such as connection depth, angle thickness, etc., this

26
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requires the storing of the force-deformation information
for an extremely large number of connections, many of which
may be identical except for one size parameter.

(b) Since the moment-rotation characteristics for all
connections of a given type are similar, a "“standardized"
moment-curvature relationship for that connecfion type can
be derived. This standardized relationship is a function of
the size parameters for that connection type. The
moment-rotation characteristics for a particular connection
can then be generated by substituting its size parameters
into the standardized relationship.

The latter procedure has the obvious advantage over the
former, that it drastically reduces the amount of connection
information that must be stored. Using the standardization
procedure, the description of only a single moment-rotation
function for each connection type is necessary to be stored.
Consequently, the standardization procedure has been used in
this study. It makes use of experimentally obtained
moment-rotation curves for connections of a particular type
and involves isolating the effects of the various size
parameters and incorporating them into the standardized
moment-rotation function.

(30) and

The procedure was derived by H. S. Somner
applied to header plate connections. In this study, it has
been extended to the following connection types:

(a) double web angle connections
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(b) single web angle connections

(c) header plate connections

{(d) top and seat angle connections

(e} T-stub connections

(f} end plate connections without column stiffeners

{g) end plate connections with column stiffeners.

3.2 Standardization Procedure

The standardization procedure employed in this study
involves the representation of the moment-rotation curves

for all connections of a given type by a single function of

the form:
o »
6= & C, (kM) (3.1)
. 3
i=1
where
¢ = rotational deformation of connection, radians,
C = constant,
K = dimensionless factor whose value depends on the

size parameters for the particular connection considered,
M = moment applied to the connection.

The factor K is assumed to have the form,

m a,
K= 7 p, J (3.2)
j=1
where
P = numerical value of jth size parameter,
J
a = a dimensionless exponent which indicates the

|
effect of the jth size parameter on the moment-rotation

relationship,
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m = total number of size parameters which are assumed
to influence the moment-rotation relationships for the
connection types considered.

The evaluation of the exponents a in Eg. (3.2) can be
illustrated by considering aj~family .of experimentally
obtained moment-rotation curvesnfor connections which are
identical except for parameter Pj’ as illustrated in Fig.
3.1.

A pair of curves, say curves 1 and 2, is considered and
the relationship between moments M; and M, at a particular

rotation;$, is assumed to have the form:

M P, J
-M—l-= -—J—P 2 (3°3)
2 jl
where le and PBZ are the numerical values of parameter P

for connections 1 and 2 (corresponding to curves 1 and 2)
respectively. M:land M2 are the moment values, at rotation¢
, for curves 1 and 2 respectively.

Eg. (3.3) is then rewritten and solved for a.j as

follows:
ay Log (M, /M) (3.4)
log (sz/le)
Egq. (3.4) is used to calculate %j values corresponding

to several different rotations for each combination of
experimental curves, such as 1 and 2, 1 and 3, 1 and 4, 2
and 3, 2 and 4, etc. The mean of the %j values thus

obtained is used in Eq. (3.2)
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When average values have been calculated for all m
exponents aj in Eg. (3.2) they are used to obtain a series
of poinﬁs on a .standardized moment-rotation (KM vs ¢)
diagram. Finally a least squares curve fitting procedure is
used to derive the standardized moment-rotation relationship
in the form of.Eq. (3.1).

Since the moment-rotation function is an odd function,
only terms involving odd powers i in Eg. (3.1) appear in the
standardized functions. Furthermore, for the functions
derived in this study, it was assumed that sufficient
accuracy was obtained by including only three non-zero

terms.

3.3 Standardized Moment-Rotation Relationship for Double

Web Angle Connections

The standardization procedure is illustrated below for

double web angle connections.

3.3.1 Parameters Affecting Moment-Rotation Characteristics

of Double Web Angle Connections

For double web angle connections, the parameters which
most strongly affect the moment-rotation charactefistics
are:

(a) depth of connection - d (in)

(b) gage of column connection - g (in)

(c) thickness of angles - t (in) as illustrated in Fig.
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3.3.2 Calculation of Factor K

The moment-rotation curves used to calculate the values
of exponents a. for the various parameters are shown in Fig.
A.1 to Fig. A.3 in Appendix A. The necessary calculations

are shown below.

(a) Parameter 1 - Depth of Connection

The moment-rotation curves used to calculate the value
of exponent al for the depth parameter were obtained by

(18) and are illustrated in

Munse, Lewitt, and Chesson Jr.,
Fig. gA.1. Consider firstly the curves for their test 4 ahd
test 6 as reproduced in Fig. 3.3. The curves were obtained
for connections which were identical in every respect except
for the depth parameter. For convenience, the curves for
tests 4 and 6 have been labelléd curve 1 and curve 2
respectively. For a rotation value of ¢ = 2.5 x 1073
radians, the moment values obtained were

Ml (curve 1) = 300 in. kips

MZ (curve 2) = 600 in. kips

The corresponding depth parameters were

d].(curve 1) = 17.5 in.

d2 {curve 2) = 23.5 in.

Thus from example 3.2,

300
00  -.3010

- 23.5. L1271
log (3775

log

2
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Repeating the above procedure for different values of
the depth parameter and for other rotation values and
averaging the resultant exponents, a mean value of a; = -2.3

is obtained.

(b) Parameter 2 - Thickness of Web Angles

The wvalue of exponent a 5 for the angle thickness
parameter is determined by a similar procedure to that used
for the depth parameter. The moment~rotation curves used to
calculate the value of exponent a were obtained by C. Batho
(3) ana are reproduced in Fig. 3.4. For convenience they have
been labelled curve curve 2 and curve 3. These tests were
performed "~ on double web angle connections which were
identical in every respect except for the thickness of the
web angles TFor a rotation.value of 7.0 x 10_3 radians, the
following moment values were obtained.

M. (curve 1) = 188 in. kips.
M, (curve 2) = 200 in. kips.
M, (curve 3) = 212 in. kips.
The corresponding angle thickness parameters were
t, (curve 1) = 3/8 in. (6 x 3 1/2 x 3/8 angle).
t, (curve 2) = 1/2 in. (6 x 3 1/2 x 1/2 angle).
t3 (curve 3) = 5/8 in. (6 x 3 1/2 x 5/8 angle).

Again, substituting the values for curves 1 and 2 into

Eg. (3.2), 188
log Cﬂﬁﬁ

a = - 0,216

2 12
lOg ('3—8—

Similarly, using the values for curves 1 and 3,
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188
log(éif)

a2 = = - 0-235

58
108(§§

The final value of exponent a_, for web angle thickness,

2

again found by averaging the exponents calculated for

several values and several pairs of curves, is a, = -0.23.

(c) Parameter 3 ~ Connection Gage

Insufficient data are available to obtain an accurate

value of exponent a for connection gage. Therefore, the
value a3 = +1,6, obtained for header plate connections, is
used.,

The K factor for +the double web angle connection,

a and a, into Eg.

27 3

obtained by substituting exponents ajr

{3.2) is thus:
g = q2+3 (23 L6

3.3.3 Calculation of Standard Moment-Rotation Curves

The final step in the standardization procedure 1s to
obtain a standardized moment-rotation curve. For each
double web angle connection of Appendix A, a unique factor K
can be calculated. Each moment-rotation curve is multiplied
by its corresponding K value, and a mean curve is drawn
through the band of test results as illustrated in Fig. 3.5.
The leaét squares curve fitting program, which was used to

obtain equations of standardized moment-rotation curves for
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all of the connection types considered in this study, yields
the following fifth order equation for the standardized

moment-rotation curve for the double web angle connection:

4 -6 8

¢ = 3.66 (KM) 10 + 1.15 x> 1070 + 4,57 x> 10~

This equation can be used to . reproduce the
moment-rotation curves for double web angle connections
within the range of ‘test results. Appendix B lists the

standardized moment-rotation functions for each of the

connection types considered.

3.3. 4 Accuracy of Standardization Procedure

The accuracy of the standardization procedure can be
checked by comparing the moment-rotation curves generated by
the standardized equation with actual experimentally
obtained curves. Fig. 3.6 shows a typical moment-rotation
curve comparison for +two double web angle connections.
Additional comparisons have been made for other types of
connections and these are included in Appendix B.

With few exceptions, the procedure was found to produce
an accurate moment-rotation curve for a connection within
the range of test results available. Table 3-1 gives an
approximate indication of maximum percentage deviation from

experimental curves for each connection type.



TABLE 3-1 COMPARISON OF STANDARDIZED AND EXPERIMENTAL CONNECTION
MOMENT-ROTATION CURVES

Connection Type % Deviation of Standardized
Curve from Experimental Curve

Double Web Angle Connection 6 %

Single Web Angle Connection 10 %

Header Plate Connection 4 7%

Top and Seat Angle Connection 11 %

End Plate Connection Without 37
Stiffeners

Fnd Plate Connection With 6 %
Stiffeners

T-stub Connection 12 %
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CHAPTER IV

FFORCE DEFORMATION RELATIONSHIPS FOR A MEMBER

In this chapter, the force-deformation relationships
for a continuous elastic member are summarized. These
relationships are then modified to include the effects of
flexible connections. As an illustration of the procedure,
the force-deformation relationships are calculated for a

member with rigid end connections and one with pinned ends.

4.1 Introduction

The force-deformation relationships for a typical
member in a frame can be adequately represented by two sets
of quantities, the stiffness matrix referred to one end of
the member, and the fixed-end-force vector that would occur
at that end if the member were loaded along its length with
its ends rigidly fixed. Once these qguantities have been
rigidly determined, the stiffness matrix and the
fixed~end-force vector at the other end of the member can be
calculated using only statics and geometry.

The force-deformation relationships for a continuous
elastic member can be derived by considering only statics,

41
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member geometry, and the stress-strain characteristics of
the material. For a member with flexible connections, the
member distortion consists of elastic member distortion and
distortion due to connection deformation. The effect of
connection deformation can be incorporated into a structural
analysis by modifying the member stiffness matrix and

fixed-end-forces.

h,2 Force-Deformation Relationships for a Continuous

Elastic Member

Consider member AB shown in Fig. 4.1. The member is
loaded by concentrated loads PJ.and by forces lesand RBA at
ends A and B . respectively. If end A is displaced by an
amount uAB' the displacement uBA at end B is:

NL
u_ =T %W +F_ R_+57_ W% _p (4.1)
BA AB AB BB BA j=1 JB JJ J
where:

TAB = force transformation matrix from B to A

FBB = flexibility matrix at B for member AB

FJJ = flexibility matrix at J for segment AJ

NL = total number of loads PJ on member.
The matrix T AjBttranslates displacements from A to B.

It is convenient to define:

NL c
= T F P
Upga =2 T F Py (4.2)
j=1
where U = cantilever deflection at B due to loads P .

BA J
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CONTINUOUS ELASTIC MEMBER

" FIG. 4.1
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Premultiplication of Eq. (4.1) by Fégdr KBB,and substitution

of Eq. (4.2) gives:

t

Rpp = Kpp (0 gy Tap Uup ) K Upa (4.3)
where KBB = gtiffness matrix at B for member AB.

The elastic distortion of member AB referred to B is
the distortional displacement of B relative to A. It is

defined by:

E t
v = -T
BA uBA AB uAB (4.4)

Substitution of this definition into Eq. (4.3) gives the
following force deformation relationship for member AB,

referred to B:

E
R =K -K
BA 8BV BA ~ BRUBA (4.5)

The fixed-end-force at B is found by setting the member
distortion to zero in Eg. (4.5), and solving for the member

force at B. Thus:

F
R = -K U (4.6)
BA BB BA
where RBAF = fixed-end-force vector at B.
4.3 Force Deformation Relationship for Members With

Flexible Connections

To formulate the force-displacement relationships for a

member which has any number of flexible connections at
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cross—-sections K, consider member AB shown in Fig. 4.2. The
member is loaded by concentrated loads PJ applied at
cross-sections J, and by end forces RAB and RBA' While

connections would normally be wused only at the ends of
members, the method is applicable for connections located

anywhere along the member:

Assume a flexibility matrix, F for connection K, such

K,
that:

Y/ = F R (4.7)

where:

VK = distortion vector for connection K. It gives the

relative displacements at the two sides of the connection.

FK = a diagonal flexibility matrix for connection K.

The main diagonal element F IIgives the inverée slope of the
force deformation curve for the Ith force component of the
connection.

R <= force vector at connection K.

Under the action of thev applied loads, the total

distortion, V of the member and its connections, consists

BA'

of member distortion VBAM' and distortion VBAC due to the -
deformation of the connections. Compatibility requires
that:
M C ?
\Y% =V +V
BA BA BA (4.8)
Distortion v C can be expressed in terxrms of the

BA
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deformations of the connections as follows:

NC
v C=g1 tyC 4.9)
BA .o, KB K

where:
NC = number of connections
T ' = matrix which translates displacements from K to

KB

The member distortion is thus:

v M=y -y C
BA BA BA (4.10)
=v, - xT ty C
el KB K

Substituting Egq. (4.9), Eg. (4.10) becomes:

M NC t
\Y =V_=-3T F R
BA BA Kzl KB K K (4.11)

The force vector at B, defined in terms of the member

distortion and the cantilever deflection UBA' is:

M
R = \% -K
BA K BB BA BB UBA (4.12)

Substituting Eq. (4.11), Eq. (4.12) becomes:

NC
R_ =K__{(V -U )-K T tpr R
BA BB( BA BA) BBKil KB K K (4.13)

The force vector at any connection K is:

NK

R =T R +3yT P
K KB BA jil KJ J (4.14)

where NK = number of loads on segment KB of the member.

Substituting Eg. (4.14) into Eg. (4.13):



NG t NC ¢ NK
RBA = KBB (VBA ~U BA) “KBBZ__ TKB FKT KBRBA_KBBZ TKB FKZ T KJPJ
K.—l K=l J=l
. \ 4.15
For convenience define: ( )
rI‘lB
t
= T
G KB (4.16)
T‘
| " NC,B |
K o
y T P
=1 M7
NK
Q= r T .FP 4.17)
jo1 KT
NK
y T P
J=1 NC,Ji
and,
F 0 0 O O O O
1
6O F 0 O 0 0 O
2
E = (4.18)
0 0 0 O F O O
k
0O 0 0 O O O FNCJK
where:
Gt = an NC x 1 wvector whose Kth element is

translation matrix for connection K.

Q = an NC x 1 vector,

48

the

the Kth element of which gives

the statical effect at connection K, of the loads on portion
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KB of the member.

E = a diagonal matrix for which the Kth diagonal term

is the diagonal matrix FK for connection K.

Then:
— — - t —
Rpy = Kpp (VguUps) "KpCBG Ry, = KppGEQ
or:
t pwnd — -—
(I+K ,GEG IRy, = K (V. -Up ) -K  GEQ (4.19)
where here, I represents a unit matrix.
Next, define:
s = (1+k,_ cEGH T (4.20)
BB e e
Then:
RBA = SK BB(VBA)-_SK BB(UBA+GEQ) (4.21)
Eg. (4.21) gives the force-deformation relationships for a

member with any number of flexible connections located
anywhere along its length. By comparing Eqg. (4.21) with Eq.
(4,5), it can be seen that:

(a) The modified stiffness matrix for a member with

flexible connections is

Mo_
Rpg = SKgg (4.22)

(b) The fixed-end-force vector at B is

p ¥ - g M

B BB []BA+GEQ) (4.23)
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4.4 Modified Stiffness Matrix for Plane Frame Members With

Connections at Ends Only

To illustrate the effects of connection deformations,
consider a plane frame member AB with flexible connections

at its ends. The E matrix for the member is:

E=| A : (4 .24)

F o= flexibility matrix for connection A.

leo]
=
it

flexibility matrix for connection B.

The flexibility matrices F, and F , are diagonal
matrices which represent axial, shear, and moment
deformations produced by unit 1loads. = Axial and shear
effects can be considered negligible and hence the
flexibilities of the connections may be represented by the
bending flexibility component only. This component 1is
represented by the - inverse of the slope of the
moment-rotation curve and is naturally dependent on the

connection type. The E matrix can therefore be written as:

0 0 0 0 0 O

E= [0 0 C,0 0 © | (4.25)




@]
It

bending deformation component for connection A

9]
il

bending deformation component for connection B.

The Gt matrix can also be written as:

1 0 O
Typ 0 1 ©
ct = = 0 L 0 (4.26)
L 1 0 0
0 1 0
o 0 1
L —
and the product GEG ' becomes:
0 0 0 i
t 2
GEG' = 0 rn°c, IC, (4.27)
LO. LCA (CA+CB)
From Eg. (4.20)
1 0 0
5 = (I+KGEGH)™ = |0 (1+6‘ETCA) §E’zf(cA—cB)
0 -2EICa 14+2ET (2Cg~C )
L
where: E = modulus of elasticity
I = moment of inertia
(4.28)
L = length of member

Thus:




1+2EI (2Cx-C )

-6EI(C, -Cy)
SEL(C,~Cy
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0 L - . __
g = 1+4EI(CA+C B+3EICACB) 1+4EI(CA+C B+3EICACB)
L L L L
2E1IC 6EIC
ek —==A
0 _ 1, A __ L _
1+QEI(CA+CB+3EICACB) 'l+4EI(CA +CB+3EICACB)
L L L L
_ (4.29)
The modified stiffness matrix for the member can then
be generated from
M
= .22
KBB SKBB (4 )
and is
aE 0 0
L
12EI (1+EIC, +EIC, ) ~6ET (1+2EIC )
0 L2 L L T,Z L
: T+UET (C, +C,+3EIC, C ) T+UEI (C, +Cy+3EIC,C o)
- L L L
KBB
-6EI (1+2EIC,) 4ETI (1+3EIC )
0 _1? L_f __L L fl
T+4EL (C +C,+3EIC, C ) T+4EI (C, +C,+3EIC, C )
L L L L
(4.30)
4,4.1 Modified Stiffness Matrix for Member With Rigid End
Connections

For a member AB with rigid connections at ends A and B,

Cp =Cp=

degenerates to:

0 and the modified stiffness matrix in Eqg. (4.30)
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AE . 0 0
L
M — —
B - 68
Ksp ¢ 12——E3—I —6——21— C4.31)
L L
0 -6ET 4ET
S L
which is identical to the stiffness matrix KBB’ at the end
of a continuous member.
4.4,2 Modified Stiffness Matrix for Member With Pinned

Connections at A and B Ends

For a member AB with pinned connections at A and B, CA
= Cg = ®. Dividing the numerator and denominator of each
component of the modified stiffness matrix in Eg. (4.30) by

the matrix becomes:

“aT S _
i 0 0
L
y 12”'*1___ - -6EI[1+2ET]
Ky = | 0O C,  _L{C4, L]
B _1_ (2 TFIET (2+381C )
C, c, L L
-6EI-12 (EI) C4EIH12 (EID)
0 LCp LS IC A L
JAHUET (2+3EIC,) J+L4EI(2+3EIC, )
c, L L c, L L
Then setting C ,= %,
VI
L
K, =
0 0 0
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which is the B~end stiffness matrix for a member with pins

at both ends.

4.5 Fixed-End-Forces for Member With Flexible Connections

The fixed-end-forces for member AB of Fig. 4.2 can be

calculated from Eg. (4.23)

F —
Pp- = —SKppU, —SK p3GEQ (4.23)

where all terms have been previously defined.

The fixed-end-force vector at B is calculated below for
a member that is continuoqs at end B and pinned at end A,
firstly for a single concentrated lcocad at midspan, and then

for a uniformly distributed load covering whole span.

4.5.1 Fixed-End-Forces for Member With Concentrated Load

Consider a single concentrated 1load placed at the
midspan of member AB as shown in Fig. 4.3. Member AB is
continuous at end B and pinned at end A.

The modified stiffness matrix for the member can be

generated from Eq. (4.30), and is
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AE 0 0
L
12L«I(1+;E_ic A+;E%C B —GLI(HZEECA)
M o e — = =
Rpp =SKpp= 0 THHET (C,+C #3EIC Cp) . 1+4EI(CA+C B+3EICACB)
L L L L
—6% (1+2EIC ) 4ET (1+3EIC,)
0 — L L
uEI(c +C +3EICACB) 1+4EI(CA+CB+3EICACB)
L L L L
The cantilever deflection, U gar is given by
U, =T 0., =1 _°F_ P (4.34)
BA ~ “JB “JA T “JB T JJJ i
and is
1 0 0| L 0 ol o 0
2AE
Up, = 0 1 L||o L3 12 |l-p |= |=5pL3|  4.35)
2 2UF1 8EI 4BEI
o 0o 1]|o L° L]l o -pr”
- _— 8EI 2EI 8EI
] _L— s e ——
Therefore, the first term of Eq. (4.23) becomes
. . _
P-PEIC +5PEIC,
= SKppUp, = 2 UL 4L (4.36)
1+4ET (cA+cB+3ETcAc )
L L
-PL+P'E”I’CA
_8 o -
1+4E]_§(CA+CB +3E‘£CACB)

and GEQ is



56

1 001 00|fo oo o0 o0 o] o]
0 1 L 0 1 O 0 0 0 0 0 O -P
0o 0 1 0 0 1/]0 0 ca0 0 0 ~PL
2 .
0 0 0 0 0 O 0 4.37)
6 0 0 O O O 0
0 0 0 0 0 Cy 0
The product - SK BBGEQ becomes
0
_ a2
3EICAP+6[_’§.___ CACyP
T L
1+4E£(C +Cp+3 ACB)
. (4.38)
-Bic,p
1+4EI(C +C +3'TC CB)
L

Therefore, adding Eq. (4.36) and Eg. (4.38), the B end

fixed-end-forces are:
— -

P+11E1C \P+5PEIC +6 [EI-‘Z CACgP
F 2 41, 4L L
Pp = 1+‘1E_II:(CA+CB+3E£CAC R) (&.39)

~pL-3EIC
8 4

1+4ET (C 4Cp+3EICAC p)

» L L

. ——

For member AB, C = “and C = 0. Therefore



57

p
& 2 4 e é%
A | B

MEMBER AB WITH MIDSPAN LOAD

FIG. 4.3
P
4 3PL
A B |6
fsp 1P

16 16
FREE BODY DIAGRAM FOR MEMBER AB

FIG. 4.4



58

P o= 16 (4.40)

By statics

o
wn
lav}

(4.41)

lav]
>
i
-
[+)

=

Fig. 4.4 illustrates the free-body diagram for member AB

4.,5.2 Fixed-End-Forces for Member With Uniformly

Distributed Load

Consider member AB which carries a uniformly
distributed load over its entire span, as shown in Fig. 4.5.
The member has a rigid connection at end B and a and pinned
connection at end A.

The cantilever deflection at B corresponding to the

uniformly distributed load shown in Fig. 4.6 is:
L

t

= F

Uga T Toh ds
0

L S
- t
"fTCB FC ('/TCDWDdZ)dS (4.42)
0 0

unit flexibility matrix

i

where: F

v}
ii

force vector at cross section C



Then:

where:

S ' 0 0j|0 0
/TCDWDdz= 1 0j|w|dz = W, s
0 z 110 sZW2
' 2z
L1 o offi. 1 oo ]
AE
= 0 1 sj|o 1 _ 0 WZS
BA 250
0 0 0 1] 0 1_||s%w
- N ET|[ 2
A = cross sectional area
A9 = "shear area" in direction 2
G = modulus of rigidity
0
WLt
Ugp = 8EI
WoL?
6EI

Therefore, the first term of Egq. (4.23) becomes

GEQ is

0

Wo L=W 9EICpA+3W2 EICH

PR—

2

SK._ U, = 2
“88 Una 1+4ET (C, +Cp+

L

-W,LL2+ETW,C

2
2
3EIC,C p)
TTATB

G

12

1+9_Ej_(CA+C
L

2
g

x|
Hi

el
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(4.43)

(4 .44)

(4.45)
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o1oo1oocAooo-sz2

2

0 0 0 0 0 O 0

6 0 0 0 0 0 0

0 0 0 0 O Cgl 0 |

0
-W2IP Ca
] e (4.46)
-W2T? Ca
2
The product - SKjpgGEQ becomes )

0

3EIC,+3(EI)2WoCsCp
TH+UET (Cp+ Cgt3EIC,Cg)
L L

(4.47)

-EILw C
T+4ET(C +C +3EIC C )
71, A B 71, A B

Therefore, adding Eg. (4.45) and Eg. (4.47), the B end

fixed-end-forces are:



For member AB, C

By statics

Wy L+5EIW 5Cp +3EIW, Cp+3 (ET)2W,C, C
2

2 2

T+4ET (Cp+C g+3EICACg )
L L

WoLZ-EIWoC L
_12 2
T+4EL (CA+C gt 3EICACR )
I L

= o and C = 0. Therefore

61,

(4.48)

(4.49)

(4.50)

Fig. 4.6 illustrates the free-body diagram for member AB.
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CHAPTER V

LINEAR AND NON-LINEAR ANALYSIS PROCEDURES

In this chapter, the stiffness method of analysis for
linear structures is reviewed. An iterative procedure which
has been implemented in this study for the analysis of plane

frames with non-linear effects is presented.

5.1 Introduction

A linear structure 1is one in which all displacements
and internal forces are linear functions of the applied
loads. Most practical structures behave in an approximately
linear manner at working loads. The assumption of linearity
has two important advantages. In the first place, it
'greatly simplifies the actual task of analysihg a structure
under a particular loading system. In the second place, it
allows the superposition of solutions, with a consequent
saving of effort when many different loading systeﬁs have to
be considered.

The two basic linear structural analysis methods are
the flexibility (force) method and the stiffness
(displacement) method. Both methods are based on the fact
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that a structure must simultaneously satisfy the equilibrium
and compatibility conditions, while the material in the
structure satisfies known stress-strain relationships. The
difference between the two methods 1is the order of
application of the equilibrium and compatibility conditions.
The flexibility method assumes equilibrium at the outset,
but violates . compatibility. Compatibility is then
re—estabiished by writing compatibility equations.

The stiffness method assumes compatibility at the
outset, but violates equilibrium. Equilibrium is then
re-established by writing equilibrium equations. The
stiffness method is well suited for wuse of the digital
computer, While 1t generally involves more computation
than the flexibility method, the computations are much more
systematic and therefore more easily programmed. For this
reason, the stiffness method has been employed in this
study.

There are three important éauses of non-linear
behaviour in structures. The first is non-linear behaviour
of the material from which the structure is made. This
normally affects the behaviour of the structure only at
loads beyond the working range.

The second cause is wusually referred to as '"gross
deformation". In linear analyéis, it i1s necessary to assume
that the deformations of a structure are small compared to

its dimensions, so that the overall geometry of the
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structure is not significantly altered by the process of
loading it.

The Ithird cause of non-linear behaviour is essentially
a particular case of the second, but is of sufficient
practical importance to be mentioned separately. This is the
.effect which axial' forces have. on bending stiffness of
membegs in rigid-jointed frames and trusses. If the axial
force in a member is compressive, the bending stiffness is
reduced, while, if it 1is tensile, the stiffness is
increased. This effect may, in extreme cases, cause a
structure to become unstable while still remaining elastic.

For structures with flexible connections, joint
displacements at working loads are normally sufficiently
small to preclude non-linearity due té ﬁ,"large
displacements". Furthermore, the effects of axial forces on
member stiffness can generally be neglected. However, while
the members are generally linearly elastic, the connections
often behave non-linearly at working loads. Therefore, a
non-linear analysis procedure is required for flexibly
connected structures.

Non-linear analysis procedures generally involve the
linearization of structural behaviour. They employ repeated
cycles of linear analysis to arrive at a set of
diéplacements ~ and internal forces that satisfy

compatibility, equilibrium, and the force—displacemenf

relationships for the structural members and connections.
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5.2 Linear sStiffness Formulation of Structural Analysis

The stiffness analysis procedure involves the
systematié application of the following three types of
conditions to a structuré:

(a) Equilibrium - the forces exerted on a joint by all
members framing into it must exactly balance thé external
load applied to the joint,

(b) Force Displacement Relationships - these equations
relate the member end forces to the corresponding
displacements.

(c) Compatability - the displacement of the end of each
member framing into a Jjoint must be the same as the
displacement of the joint.

Consider a typical joint I in a structure as shown in

Fig. 5.1, The equilibrium equation at the joint can be

written:
nK nJ
7 R e

where:

PI = total external load on joint I

ng, = number of members whose B ends frame into joint I

n; = number of members whose A ends frame into Joint I

H = rotation transformation matrix which transforms

force and displacement vectors from local coordinate systems
to the glokal system.

T = translation matrix



JOINT |, WITH MEMBER LOADS
AND EXTERNAL JOINT LOADS

" FIG. 5.1
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RB = force acting on B end of any member K whose B end
K
frames into joint I.
RB = force acting on B end of any member J whose A end
J

frames into joint I.
The force-displacement equation for any member L which

frames into joint I is expressed by Eq. (4.21),

t F
T

u YR, T .
K ABL BL

R, = S.K .. ( -
B, LBBLUBA_L

Consider joint I which has a displacement D expressed
in the global system. The compatibility conditions at the
joint can be expressed as follows:

For any member K whose B end frames into joint I,

Upy, = Ho Do (5.2)
and
u,. = H°D (5.3)
AB K M
where:
H 5 = rotation transformation matrix which converts the

K

displacement vector from the global to the local system.

M is a generic symbol used to represent the joint at
the opposite end of any member from joint I.

Similarly, for any member J whose A end frames into

joint I,

u = H _D (5.4)
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BA J U1 (5.5)

Substituting the compatability equations and
force-displacement equations into the Joint equilibrium
equation, (4.21), and for simplicity, dropping the
subscripts, B, from the stiffness matrix and fixed-end-force

vectors:

P_= rH[SR(E"D -7%n "D )+R f (5.6)

I 1 K 1k Hg Py Ry :
nJ t t F
_JilHJTJ[SK(TJ B D -1 "D )+R "]

Eq. (5.6) can be re~written

= F I F K [ t ty &
P;=Pr,IHR *+ HTR®=23IH[SKH" "D -SKT "H D ]
I Ly K K 73377 U RETTR T K K K
J
t t t
+ IH [T SKT, H "D ~T SKH °D ] (5.7)

J=1
where:

51 is the joint force vector at joint I. It is a force
vector which includes the external load at joint I and the
negatives of the fixed-end-forces for all members framing
into joint I.

Equilibrium Egq. (5.7) relates the éxteinal load at
joint I to the displacements of at least two joints in the
structure. One such equilibrium equation is written at each

'joint in the structure. The resulting set of equations can

be expressed in the form:

P=KD (5.8)
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where:

P = wvector of joint forces for all joints in the
structure.

KS== structure stiffness matrix, which is assembled
from the member stiffness matrices transformed to the global
system as in Eq. (5.7). K relates joint forces and the
resulting joint displacements for all joints in the
structure.

D = vector of all wunknown joint displacement
componénts.

Egs. (5.8) can be solved for the joint displacements of
the structure. The resulting joint displacements can then be
substituted into the force-displacement equations, Eq.

(4.21), to determine the member end forces.

5.3 Non-Linear Structural Analysis Procedure

Non-linear structural analysis procedures are generally
iterative in nature. They generally involve linearizing the
load-displacement characteristics of the structure over
finite loading increments. Non-linear analysis methods can
be classified as "successive correction methods" and
"successive approximation methods".

The successive correction methods, of which the
Newton~-Raphson approach is the most widely used, involve
applying proportional increments of loading, and performing

a linear analysis for each loading increment. Proportional
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increments of load are applied and a linear analysis is
performed for each increment to determine the incremental
displacements and internal forces, Cunmulative joint
displacements and member end forces are calculated by
accumulating the appropriate incremental values.

Incremental analysis procedures permit the tracing of
the approximate load-displacement behaviour of the structure
over the loading range considered. However, it is usual in
most practical analysis probleﬁs to reguire only the final
structﬁral deflections and internal forces.

Furthermore, incremental analysis procedures require
the storing of both incremental and cumulative displacements
and internal forces. In addition, it is necessary to
calculate the remaining loads to be applied after each
loading increment. To avoid these disadvantages, the
following successive approximation method was developed for
this study.

Te describe the method, consider a structure whose
connections have non-linear moment-rotation characteristics.
The moment-rotation function for a +typical connection is

illustrated in Fig. 5.2, and has the form

¢ = g(M) (5.9)

where g(M) is a non-linear function of the moment acting on
the connection.

The analysis procedure 1is begun by replacing the
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non-linear moment-rotation function for the connection

considered, by a linear relationship of the form:

The moment-rotation relationships for all other
connections considered in the structure are similarly
linearized. As illustrated in Fig. 5.2 , Egq. (5.10)
describes the initial tangent to the M-¢ curve.

Corresponding to the linearized M-¢ relationships for
the connections at the ends of a given member AB, the member
force-displacement relationships can be written:

F

BAl

Ttu )+R

BA~ AB (5.11)

where:

Sl K and RgA are the modified stiffness matrix and the
1

B-end fixed-end-force vector corresponding to the assumed
connection flexibilities.

Assuming member force-displacement relationships as
given by Eg. (5.11) , a linear analysis is performed and the
member end forces are calculated. The corresponding

connection rotation is
9, = CM (5.12)

However, the rotation calculated from the correct non-linear

relationship of Egq. (5.9), is:

¢i= g(Ml) (5.13)
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A better approximation to the connection moment-rotation

function is thus seen to be

6 =cC,M (5.14)
where t
‘ 6
c, = ﬁ; (5.15)
as illustrated in Fig. 5.2.
Egq. (5.14) and similar relationships for all other

connections are then used to calculate the new member force
displacement relationships and a second linear analysis is
performed.

A new moment, M2, is found to occur at the typical
connection and the corresponding connection rotation, as

shown in Fig. 5.2, is
9, = C,M (5.16)

Again the connection rotation as calculated from the

non-linear relationship is:

q>2'= gm) (5.17)

Hence, a third linear relationship, which will lead to
better approximations to the correct moment and rotation at

the connection, is

(5.18)

©-
Il
O
w
=
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where
C 3= ¢2' M, (5.19)

The above procedure is repeated until, as illustrated
in Fig. 5.2 , the rotation at each connection, calculated
from the 1linear relationship for the current cycle, is
sufficiently close to that given by the appropriate
noh—linear relationship of the form of Eg. 5.9.

Assuning convergence of the procedure after n cycles of
iteration, the final moment and rotation at the typical
connection would thus be Mxland ¢n, as illustrated in Fig.
5.2,

The rate of convergence of the above procedure can be
increased by employing an "under correction" in each cycle,
as illustrated in Fig.5.3.

The figure illustrates the 1 th modification of the
flexibility, for a typical connection. The "under
correction" is accomplished by arbitrarily wusing only one
half of the difference between ¢& and ¢i, rather than the
total difference, when modifying the connection flexibility.

Thus the flexibility to be used in the i+list cycle is

c.. o= -9 (5.20)
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CHAPTER VI

ANALYSIS PROCESS

In this chapfer, the specification of acceptable
loading arrangements and connection types is outlined. The

major steps in the analysis procedure are described.

6.1 Definition of Problem

While the analysis procedure outlined in this study is
applicable to any type of structure, it has been implemented
in a form that is applicable to planar structures only. The
membefs of the structure can be pin connected, rigidly
connected, or Jjoined together by connections with any
desired flexibiiity characteristics.

-The structure loading may consist of any number of
concentrated joint loads, concentrated member loads, or
uniformly diétributed member loads. Because of the
non-linearity of the moment-rotation characteristics of the
connéctions, the principle of superposition cannot be used
to coﬁbine the results of one analysis with those of
another. Therefore, the structure must be analyzed
separately for each loading system. -
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For each flexible connection type used, the associated
size parameters must be specified. These size parémeters
allow the analysis program to generate the moment-rotation
relationship for the connection. The permissible connection

types and required size parameters are listed in Appendix D.

6.2  Analysis Procedure

The analysisA procedure, in general, consists of
initialization, followed by repeated cycles of the following
steps:

(a) linear analysis

(b) tests for termination

(c) modification of the connection flexibility
characteristics

For frames with only pinned and rigid connections, the
iterative procedure 1is not required, and the solution is
obtained from the first linear analysis.

The steps‘of the analysis procedure are described with
reference to the flow diagram in Appendix C. A user's

manual for the program is included as Appendix D.

6.2.1 Initialization

The initialization consists of specifying the
characteristics of the structure and then setting to zero
all loads and member end forces.

The characteristics of the structure are described by
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means of a member incidence table which establishes the
topology, a table of joint coordinates which establishes the
geometry, and a table of member cross section properties.
The member end cqnnection types must also be specified along
with any necessary size parameters.

Unless otherwise specified, the modulus of elasticity
is taken as 30,000 k.s.i. All loads are in kips and
dimensions are in’féet, except for member cross section
properties and connection parameters which are expressed in
units of inches.

If no connection type is specified, the connection 1is

assumed to be rigid.

6.2.2 Linear Analysis

The stiffness method previously discussed is used to
perform the linear analysis. The program employs an in-core
Gaussian elimination, variable band width equation solver.
Because of symmetry of the structure stiffness matrix, only
the elements above the main diagonal are stored. The
non-zero band is stored as a series of 3 x 3 submatrices.
The structure stiffness matrix 1is generated one row at a
time, and the previously generated rows are wused in
performing the elimination on the current row, before
proceeding to the generation of the next row.

Each member stiffness matrix, which incorporates the

effects of flexible connections at the ends of the member is
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regenerated each time it is used. The member
fixed-end-forces are also dependent on the connection
characteristics and must be recalculated for each linear

analysis.

6.2.3 Termination Criteria

The primary criterion for the termination of the
analysis is the éonvergence of the iterative procedure to
the suitable connection flexibility values. Convergence 1is
indicated when the rotation for each connection, as obtained
from the linear analysis, is approximately equal to the
rotation for that connection, as calculated from the
non-linear moment-rotation function. When this condition has
been achieved, each connection has undergone the appropriate
deformation corresponding to the applied end moment.

‘For frames with very flexible connections and high
loading, it 1is possible that the iterative procedure will
not converge on a value of connection flexibility. In this
event, the connection end moments obtained from the first
linear analysis exceed the maximum capacity of the
connection by a considerable amount as illustrated for a
typical connection shown in Fig. 6.1. Increasing the
connection flexibility reduces the moment carried by the
connection and redistributes the moment to other connections
and other points in the structure. The other connections,

however, have already exceeded their maximum capacity and
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hence the analysis procedure will fail to converge.
Therefore, a counter has been incorporated in the program
and the analysis 1is automatically terminated with an

appropriate message after m cycles of iteration.

6.2.4 Connection Flexibility Modification

After each analysis, the-assumed flexibility of each
conhection is modified if the connection rotation predicted
by the linear analysis differs from that predicted by the
non-linear moment-rotation curve by more thanian acceptable
amount, The flexibility modification procedure has been

described in Sec. 5.3.

6.2.5  Program Output

The program output consists of a detailed listing of
the following items:

(a) all program input (for checking purposes)

(b) final connection flexibilities

(c) joint displacements

(d) member end forces

(e) joint support reactions

(f) volumn and total weight of steel in structure

The rotation and deflections of each joint, and the
joint support reactions are expressed in the global
coordinate system, while the forces (axial, shear, and

bending moment) at both ends of the member are expressed in



the local coordinate system.
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CHAPTER VII

APPLICATIONS OF THE ANALYSIS PROCESS

7.1 Introduction

In this chapter, several examples are presented to
illustrate the analysis process. For the sake of
simplicity, only selected results are presented _and
discussed, and these are illustrated by means of deflection
and bending moment diagrams. Examples have been chosen which
best demonstrate the effects of connection deformations, and

the capabilities of the analysis program.

In all examples, 1loads and forces are expressed in
kips, and moments are in inch-kips. Linear displacement and
distortion components are expressed in inches, and

rotational displacements and distortions are expressed in

radians.

7.2 Effect of Connection Deformations on Displacements and

Internal Forces

While the connections in a structure generally
represent a small percentage of the total material weight,

they have a high labour content, and consequently, often
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represent a substantial percentage of the total framing
cost.

Furthermore, the deformations that occur in structural
steel framing connections may bé responsible for the major
propgrtion of the displacements of the structure, and may
have a very strong influence-'on the internal force
distribution.

It is highly desirable to know the effects of
connection deformations so that:

(a) connection types that would lead +to unacceptably
large déflections or undesirable internal force
distributions can be replaced by more suitable connection
types.

(b) where possible, ekpensive connection types can be
replaced by less expensive (probably more flexible) types
without adverse effects on the structural behaviour.

Several examples have been included to illustrate the
effects of connection deformation on structural behaviour.
All of the connection types used in the illustrative

examples are illustrated in Figs. 2.2 to 2.8 inclusive.

Example 1

The first example involves the analysis of a 15 storey,
3-bay frame with lateral wind loading applied at each floor
level, as illustrated in Fig. 7.1. To determine the effect

of connection deformation on the lateral deflection of the
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structure, it was first analyzed with all connections
assumed to be completely rigid. The identical frame was
subsequently analyzed with the rigid beam-column connections
replaced by the following connection types ih turn:

(a) conneétions with numerically specified flexibility
characteristics

(b) T—stﬁb connections

(c) top and seat angle connections

The connection flexibilities specified in (a)
corresponded to relatively rigid connections that would
likely be used in a tall frame of this type. The T-stub
connections consisted of two structural tees (ST 12 WF 47).
Two 5x5x3,- 14 inch angles were used for the top and seat
angle connections. The fasteners used were ’g inch diameter
H.T. bolts.

The lateral déflections for each of the four structures
are plotted in Fig. 7.2. In Table 7-1, the lateral
deflections at the 5th, 10th, and 15th floor levels are
listed and also expressed in terms of percentages of the
'corresponding deflections for the rigidly connected
structure, This example illustrates that connection
deformation contributes very substantially to overall
deformation of a structure. It can be seen from the table
vthat top and seat angle connections have contributed to an
increase of approximately 100% of that for the frame with

rigid connections.



Table 7-1

Lateral Deflection of 15 Storey Frame

CONNECTION 15th - 10th 5th
TYPE LEVEL LEVEL - LEVEL
Deflection | Z of rigid | Deflection | 4 of rigid | Deflection | ¥ of rigid
Rigid 5.058 1007 | 4.375 1007 2.757 100%
Specified 7.380 146% 6.370 146% 4,004 1467
T-Stub 8.196 162% 7.266 1667 4,817 175%
Top and Seat 9.985 1987 8.593 197% 166%

4,566
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Example 2

As a second illustration of the influence of connection
deformation, a skewed Vierendeel truss was analyzed for the
vertical loading shown in Fig. 7.3. The connections of the
vertical members to the chords were assumed to be rigid for
an initial analysis, and were replaced by each of the
following progressively more flexible connection types in
turn:

(a) T-stub connections

(5) end plate connections with no stiffeners

(c) top and seat angle connections

(d) double web angle conneétions

For the T-stub connections two ST 12 WF 47 were used.
The end plates used for connection type (b) were 16x6x% inchi
plates welded to the ends of the vertical struts and bolted
to the top and bottom chords of the truss. The top and seat
angle connections consisted of two 4xdxi - 14 inch angles
Two 34x34x3g inch angles were used for the double web angle
connections. Four lines of inch diameter H.T. bolts were
used on either side of the strut web for both the double web
angle and the end plate connections.

Fig. 7.4 1is a plot of the bottom chord deflections
obtained in the four analyses. It can be seen that there is
an increase in the deflection of the structure as the strut
connections become progressively more flexible. Table 7-2

compares the Dbottom chord deflection for the rigidly
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Tgble 7-2 Bottom Chord Deflection

CONNECTION JOINT JOINT JOINT
TYPE 1 2 3
Deflection| 7 of rigid | Deflection| % of rigid | Deflection | % of rigid

Rigid 479 1007 .682 1007 479 100%
T-Stub .813 170% 1.160 1707 .813 170%
End Plate 1.291 2497 1.833 269% 1.291 2497
Top and Seat 1.734 362% 2.454 360% 1.734 362%
Double Web 3.089 647% 4.337 635% 3.089 647%

c6
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connected structure with that obtained with each of the
other connection types. This example demonstrates again that
connection deformation accounts for a high percentage of

overall frame displacement.

Example 3

To illustrate the influence of connection flexibility
on the distribution of internal moments, and to compare the
flexibilitiesabf various commonly used connection types, an
unsymmetrical 2-bay frame was analyzed for the loading shown
in Fig. 7.5. For this example the following connection
types were used:

(a)origid connections

(b).T—stub connections

(c) top and seat angle connections

(d) header plate connections

(e) double web angle connections

(f) single web angle connections

The structural tees used for the T-stub connections
were ST 12 WF 47. For the top and seat angle connections,
2 - UxUx! angles were used. The header plates were 11,x5x3g-14
inch plates welded. to the ends of the 16 inch beams, and
9%x5x%35 inch plates welded té the ends of the 14 inch beam.
The double web angle connections employed 2 - 3%x3%x38inch
angles. 2 single 3%x3%x38angle was used for the single web

angle connections. The double web angles and single web
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Table 7-3 Comparison of Connection Flexibilities and End

Moments

CONNECTION FLEXIBILITY MOMENT % OF RIGID
TYPE MOMENT
Rigid 0 147,711 100%
T-Stub .00000275 97.727 677%
Top and Seat Angle .00001123 50.601 35%
Double Web Angle .00002878 26.584 18%
Header Plate .00003764 ‘21.599 14%
Single Web Angle .00004656 18.132 12%
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angles were 14% inches in length for the 16 inch beamnm, _and
11% inches for the 14 inch beam. Three lines of inch
diameter H.T. bolts were used for the 11% inch angles and
header plates, and four lines of bolts were used for the 14}
inch angles and plates.

Bending moment diagrams for the frame have been plotted
in Fig. 7.6 to Fig. 7.11. Examination of the frame bending
moment diagrams reveals that the connection type has a
marked effect on the distribution of internal moments.
Table 7-3 compares the flexibilities and the end moments at
joint A of the 22' member AR shown in Fig. 7.5, for the
different types of connections. The tabulated flexibilities
are the inverse slopes of the linearized M-¢ relationships
used in the final linear analysis. That is the M-¢ lines
that intersect the non-linear M-¢ curve at very nearly the
correct moment and rotation. The end moments are also

expressed as a percentage of the rigid frame end moments.

7.3 Accuracy of Successive Approximation Method

The Dbasic premise of the successive approximation
procedure developed and employed in this study, is that the
correct deflections and internal forces for a structure with
non-linear connections can be obtained from a single 1linear
analysis, provided the correct flexibility is assumed for
each connection.

To illustrate, assume that the moment-rotation curve

for a typical connection in a structure is as shown in Fig.
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7.12. Assume further that, for a given loading, the correct
moment and rotation at the connection are M; and ¢4
respectively. The appropriate connection flexibility (the
connection flexibility that would yield the correct results
for the loading considered), is thus C, the inverse slope of
line OA in the figure.

Furthermore, if flexibility C happens to be assumed for
the connection under consideration, and if appropriate
flexibilities happen to be similarly assumed for all other
connections in the structure, a single linear analysis will
yield the correct final forces and deflections for the
non-linear structure.

The successive approximation method thus involves
repeated cycles of an iterative procedure, whose purpose is
to determine appropriate flexibilities for the various
connéctions in a structure. When the appropriate
flexibilities have been determined with sufficient accuracy,
they are employed in a 1linear analysis to calculate the
correct structural displacements and forces.

Two examples were employed to illustrate the validity

of the procedure and to give an indication of its accuracy.

Example 1

The first of these examples involved the analysis of
the fixed-ended beam shown in Fig. 7.13(a), loaded by the 40
kip load shown. To permit a relatively simple check of the

results, the beam end connections were assumed to have
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rigid-perfectly plastic moment rotation characteristics, as
illustrated by the moment-rotation curves in Fig. 7.13(b).

The structure was first analyzed by hand domputation,
applying the loading in three increments. The structure
behaved 1linearly over each increment. | It was initially
treated as a fixed-end beamnm, ané the 1load required to
produce a moment of 1000 in kips at connections A,
calculated. The corresponding moment at connection B was
also calculated.

Because connection A had become perfectly plastic, the
structure was analyzed as a propped cantilever, pinned at
connection A, for the second loading increment. The loading
required to increase the total moment at connection B was
calculated, along with the rotation produced at connection
A,

Finally, because both connections had become perfectly
plastic, the structure was analyzed as a simply supported
beam, for thé remainder of the 40 kip 1load. The rotations
at Dboth connections A and B were calculated for this final
loading.

The total moments and rotations at the connection were
then obtained by summing the results for the three loading
increments. The pertinent quantities are illustrated in
Fig. 7.14,

Because the analysis program is not able to accomodate
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the idealized, rigid-perfectly ‘plastic connection
-characteristics assumed in this example, "appropriate"
connection flexibility values were calculated by dividing
the above calculated connection rotations by the
corresponding connection moments. These flexibility values
were then input, and the analysis program used to calculate
the beam end forces.

As can be seem from Table 7-4, the two analyses yielded
identical results.

The connection properties assumed in the preceeding
example are a special case of those illustrated in Fig. 7.15
(a) and (b). Hence, the incremental (successive correction)
analysis procedure, for which the structure is piecewise
linearized over finite loading increments, could be used to
verify the validity of the successive approximation
procedure for structures 'whose connections have the
characteristics illustrated.

In addition, the momeht—rotation diagram illustratéd in
Fig. 7.15(c) is a generalization of that shown in Fig.
7.15(b), where the former diagram is assumed to have an
infinite number of infinitesimal segments. Hence, the
validity of the successive approximation procedure can be
verified for a structure with continuously non-linear

connections.

Example 2

To further illustrate the successive approximation
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procedure, and compare it with a successive correction
’procedure, the frame shown in Fig. 7.16 was analyzed by both
methods. The beam to column connections for the frame were
double web angle connections, as illustrated in Fig. 7.17,
employing 34 x3%x§einch angles with 6 —?ainch(diameter H.T.
bolts per angle leg; The moment-rotatibn curve for the
connection is also shown in the figure.

For the successive correction procedure, the connection
moment~rotation curves were piecewise linearized over three
intervals, as illustrated in Fig. 7.17. The analysis
.procedure then involved applying successive loading
increments of such magnitude that each increment was
terminated when the moment at one of the connections reached
the end of one of the linear segments.

The entire load was applied dinitially, and a linear
analysis performed, A load factor was then calculated for
each connection and the minimum value retained. The 1load
factor for a given connection was assumed to be the ratio of
the load reéuired to increase the moment at the connection
to the limit of the current linear segment, to the total
applied load.

The member end forces, joint displacements and support
reactions were then multiplied by the minimum load factor
and the factored values retained. The initial loading was
then decremented by the product of the initial loading and

the minimum load factor.



Table 7-4

Results of Fixed Beam Analysis

LOADING M ) ¢
CASE d A g A B

1 22,5 K 1000 in.k 500 in.k - -

2 11,25 K - 500 in.k 37,503.8/ET -

3 6.25 K - - 34,722 .0/E1 27,777 .6/EI
TOTALS 40,00K 1000 in.k 1000 in.k 72,225.8/EI 27,777.6/EI
For EI = 72,225,800 ¢A = ,001 ¢B = ,00038
Therefore:

i1 e _ .001 _
Flexibility A end = 1000 = .000001
: i1 e _ 00038 _
Flexibility B end = 1000 = .0000038
Program analysis results:
For CA = ,000001 CB = ,0000038
MA = 1000 in.kips MB = 1000 in.kips

80T
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This reduced loading was then applied and a second
linear analysis performed. Load factors were again
calculated for all connections, and the minimum load factor
retained, New factored member end forces, etc. were again
calculated and added to the previous values, and the 1load
was again decremented usihg the minimum load factor.

The procedure was repeated until the totél loading had
been applied, and the cumulative structural quantities
retained. |

Table 7-5 shows the loading that remained to be applied

at the beginning of each of the seven loading increments
that‘ were used. The connection flexibilities, which
correspond to the inverse slope of +the segments of the
piecewise linearized moment-rotation  curve, are also
tabulated. :
, The results of each linear analysis are given in Table
7-6 along with the cumulative end moments for the three
beams in the structure. The structure was analyzed by the
computer program developed in this study and the resulting
beamn eﬁd moments obtained from the latter analysis are also
included in Table 7-6.

In general, the results obtained by the successive
correction procedure and successive approximation procedure
were in close. agreement. To complete the successive

correction procedure it was necessary to calculate all load

factors, loading increments, cumulative totals, and new’



Table 7-5 Variation of Loading and Connection Flexibility

LOADING CONNECTION FLEXIBILITY
Load Vertical Horizontal g
Load Load Member 5 Member 6 Member 7
Increment | Remaining | Remaining Total A end B end A end B end A end B end
1 1.5600 .2000 100% | .00001500 | .00001500 |.00001500 | .00001500 .00001500 | .00001500
2 1.0778 .1382 697 ‘do .00004750 do do do do
3 1.0748 .1378 68.8% do do do .00004750 do do
4 .6558 0841 42% do do do do do .00004750
5 .6065 .0778 38.8% do .00013250 do do do do
6 .6006 .0770 38.5% do do do .00013250 do do
7 .1013 .0130 6.5% do do do do do .00013250

ETT



Table 7-6 Beam End Moments

By Successive Corrections and Successive Approximations

MEMBER 5 MEMBER 6 MEMBER 7
A END B END A END B END A END B END
Analysis Results 22.7400 ~-647.0759 305.8318 ~-642,8640 314.2080 -311.8198
1 % 7.0285 -200.0000 94.5273 ~198.6981 97.1162 -96.3781
Cumulation 7.0285 -200.0000 94,5273 -198.6981 97.1162 -96.3781
Analysis Results 1.2600 -215.8079 52,4400 ~467,9158 204.6000 ~237.0840
9 7% .0035 -.6005 .1459 -1.3019 .5693 -.6596
Cumulation 7.0230 -200.6005 94.6732 -200.0000 97.6855 ~-97.0377
Analysis Results -21.8280 -227.1599 40.5360 -225.3120 37.5240 -264.0840
3 A -8.5104 -88.5662 15,8044 -87.8457 14.6300 ~102.9623
Cumulation -1.4784 -289.1667 110.4776 -287.8457 112.3155 -200.0000
Analysis Results ~-28.3440 -144.1320 9.9600 -143,8440 10.7160 -107.1840
4 % -2.1304 -10.8333 . 7486 -10.8116 .8054 -8.0562
Cumulation -3.6088 -300.0000 111.2262 -298.6573 113.2209 ~208.0562
Analysis Results ~32.2200 -56.8680 -44.6280 ~137.1840 2.2680 -104.2800
5 pA -.3154 -.5566 ~.4368 -1.3427 .0222 -1.0206
Cumulation -3.9252 ~300.5566 110.7894 -300.0000 113,2431 ~209.0768
Analysis Results ~-40.3920 -58.0920 ~-50.4720 ~57.9480 -52.,7040 -109.3800
6 A -33.5762 -48.2895 -41.9553 ~-48,1968 ~43,8107 -90.9232
Cumulation -37.5014 ~348.8461 68.8341 ~348.1698. 69.4324 ~300.0000
Analysis Results -9.3480 ~10.1880 -11.3160 ~-10.2240 -11.3400 -9.8800
7 % -9.3480 ~10.1880 -11.3160 -10.2240 -11.3400 -9.8800
Cumulation -46.8494 -359.0341 57.5181 -358.3938 58.0924 -309.8800
Iteration -45.9480 -366.5640 75.7440 -366.6479 76.9080 -310.1880

PTIT
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flexibilities by hand. Discrepancies between the two
procedures can be attributed to error in these calculations.
Additional erroxr was also introduced by the crude
approximation of the non-linear moment-rotation curve by
only three linear secants. More accurate results would have
been obtained for the successive correction analysis had

smaller intervals been used,



CHAPTER VIII

CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY

8.1 Conclusions

In this study, the experimental force-deformation
information for the most commonly used structural steel
framing connection types has been summarized. These
experimental data which are in the form of moment-rotation
curves, have been standardized +to minimize the amount of
connection information that must be stored in a structural
analysis computer program.

A procedure has been outlined for incorporating the
effects of flexible connections into a frame analysis
program. The procedure involves modifying the stiffness
matrix and the fixed-end-force vectors for any member to
account for the effects of the connections at its ends.

Because of the non-linear nature of the
force-deformation relationships for the majority of
connection types enéountered, an iterative procedure has
been developed which involves repeated modifications to the
assumed connection flexibilities until the structure
satisfies equilibrium, compatability, and non-linear

116
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connection moment-rotation relationships.

A structural analysis computer program has been
developed which is capable of analysing plane frames with
any combination of rigid connections, pinned connections,
any of seven common connection types, or connections with
any specified bending flexibility.

Several examples have been included to illustrate that
connection deformation may contribute to a significant
percentage of overall structural displacement and may also
substantially affect the internal force distribution in a
structure. The iterative procedure has been compared with a
piecewise linearization procedure for non-linear analysis.

The results agreed very closely.

8.2 Suggestions For Further Study

The objectives of further investigation should be to
supplement and extend the available connection test data,
and éo extend the capabilities of the analysis process.

Most of the available connection moment-rotation curves
have been incorporated into this study. However, much of
the information is for the now outdated riveted connections.
Additional test data for high strength bolted connections
should bhe obtained and incorporated into the analysis
program. Since much of the available connection test data
were obtained in the nineteen-thirties it would be desirable

to verify them using the more accurate testing equipment now
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available.

Because of an increased use of new structural shapes
such as hollow structural sections, it would be useful to
incorporate connedtion data for these shapes into the
analysis program. There are also several other conventional

(8, 9, 10, 11, l7’34%hat could be included in

connection types
the analysis program when there is sufficient test data. The
deformation of heam and column‘ splices, and column bases
should be included +to provide a moré complete picture of
frame displacement caused by connection deformation.

In this study, only a single connection force component
(moment) and the corresponding deformation component
(rotation) have been considered. However, +the analysis
procedure could be extended to include the effects of shear
and axial load on each connection.

At the present time, the analysis program is capable of
treating only statically loaded structures. It would be
highiy desirable to extend the analysis procedure to
dynamically loaded structures.

It would be of considerable practical value to adapt
the analysis process developed in this study to a general
structural steel floor system. The floor system could be
analyzed as a planar grid of members connected by flexible
connections, and loaded normal to the plane of the grid.

The analysis program could then be combined with a member

selection program to produce a comphter program capable of
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designing steel floor systems.
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APPENDIX A

This appendix contains moment-rotation curves for the

following connection types:

a)
.b)
c)
d)
e)
£)
g)
h)

double web angle connections

single web angle connections

header plate connections

top and seat angle connections

welded top plate connections

end plate connections with column stiffeners
end plate connections without column stiffeners

T-stub connections,

The test numbers refer to the actual experimental test

number,

The following is a summary of the pertinent

parameters for the above connection types:
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TABLE A-1 DOUBLE WEB ANGLE CONNECTIONS

Investigator [Test Beam Column Web Angle Fastener | Rows | Gage
No. Size Size - 8ize Diameter
Munse, Lewitt,| 1 |[12WF27 | 10WF49 4x33x3x81 3 3 | s}
Chesson 2 | 18WF50 | 12WF65 4x3ix3x111 3 4 | s}
3 | 21WF55 | 12WF65 4x33x3x 14l i 5 | 5%
4 | 21WF55 | 12WF65 4x31x3x 17} 3 6 | 55
5 | 2UWF68 | 12WF65 4x33x3x20% 2 7 | 5%
6 | 27WF8L | 12WF65 Ux3ix3x23} i 8 | 5}
7 | 33WF118 | 12WF65 4x33x3x26% i 9 | 5}
8 | 36WF135 | 12WF65 4x33x3x291 3 10 | 53
J. C. Rathbun| 1 |6I12.5 | 9xix10 P1, 6xUx3x21 i 1 51
2 |8I18.4 9xix1-0 P1l, 6xUx3 x6 2 2 5}
3 [8I18.4 | 1138xix1-1 PL.| 6x6x§x6 3 3 | -5-10%
b 1 12131.8 | 9xix1-4 P1. Ux35x3x9 3 3 5}
5 112I31.8 | 13x3x1-4 P1l. | 6x6x3x9 3 3 | 5-10%
6 | 18I54.7 | 9xix2 P1. Ux33x3x1-3 2 5 | 53
7 | 18I54.7 | 13x#x2 PL1. 6x 6x3 x 1-3 2 5 | 5-10%
H. S. Somner | 21 |18WF45 14WF38 35 x3x§x9 i 3 43
22 | 18WFL45 | 14WF38 35 x3x3x12 3 4| 4l
23 | 24WF76 | 14WF38 Bx3x3x1-3 3 5 | 5}
24 | 24WF76 | 1LWF38 bx3x3x1-8 3 6 | 5}

¥ 2 rows of bolts

TN



TABLE A-2 SINGLE WEB ANGLE CONNECTIONS

Investigator

Test Beam Column | Web Angle Fastener | Rows | Gage
No. Size Size Size Diameter
S. L. Lipson | BB4-1 | 21WF62 | §PLl. | 4x3}x§.-13} 3 4 236
oll 21WF62 | §Pl. | 33x5x 3.~13% g 4 1128
DU 21WF62 | 3 PLl. | 33x5x §~13%] E 4 116
AR2-1 | 21WF62 | & P1. | 4x3}1xl-7} 3 2 276
AA3-1 | 21WF62 | 2Pl. | 4x3ixl-103 3 3 216
AAL-1 | 21WF62 | §P1l. | 4x3ixi-13} ; 4 296
AAS-1 | 21WF62 | §Pl. | u4x3ixl~1g} g 5 216
AR6-1 | 21WF62 | #P1, | u4x3ixl-19} 3 6 276

9¢CT



TABLE A~-3

HEADER PLATE CONNECTIONS

Investigator | Test Beam Column Plate | Fastener | Rows | Gage
No. Size Size Size Diameter
H. S. Somner 5 18WF45 | 14WF38 | 15x6x 3 5 4
6 24WF76 | 14WF38 | 9x6 x } 4 3 4
7 24WF76 | 14WF38 | 12x6x } 3 u 4
8 2UWF76 | T4WF38 | 15x6x | 2 5 4
9 2LWF76 | 14WF38 | 18x6x i 2 6 4
10 18WFL5 | T4WF38 | 9x6x 3 2 3 4
11 T8WFU4S5 | THWF38 | 12x6 x3 3 4 4
12 2UWF76 | TUWF38 | 15x6x3 3 5 4
13 20WF76 | 14WF38 | 9x6x} 2 3 4
14 | 2UWF76 | T4WF38 | 12x6x3 H 4 4
15 | 24WF76 | 14WF38 | 15x7}x} 3 5 53
16 | 2UWF76 | T4WF38 | 18x71x3 i 6 53
17 2UWF76 | T4WF38 | 12x7Lx} 3 4 - 53
18 | 24WF76 | 14WF38 | 15x7hx} 3 5 55
19 | 24WF76 | 14WF38 | 12x7ix] 3 4 53
20 | 24WF76 | 14WF38 | 15x7ix] 3 5 53

LTT



TABLE A-4 TOP AND SEAT ANGLE CONNECTIONS
Investigator [Test Beam Column- | Top Angle Seat Fastener
No. Size Size Size Size Diameter
C. Batho, 1 12RSJ@30# | 12RST265# | 4xUx} x5 4xlx3 x5 3
H. C. Rowan 2 12RSID30# | 12RSTD65# | UxUxdx5 UxlUx$x5 3
3 | 12RSJA30# | 12RSTN65# | Uxlux1x5 Uxlx 1x 5 2
4 | 12RSJ230# | 12RSTD65# | UxUx1x5 UxUx1x5 §
5 | 12RSJa30# | 12RSTa65# | 6x6xL x5 6X6x}5 x5 B
6 | 12RSJT230# | 12RSTA65# | 6X6X3 x5 6X 6Xi x5 2
7 | 12RSID30# | 12RSTA654 | 6X6x1x5 6% 6X1x 5 2
11 | 12RSJ230# | 12RSTD65# | 6X6xi x5 6X6%5 %5 3
12 | 12RSJT230#% | 12RST265#% | 6X6x3 x5 6X6x34 x5 3
16 | 12RSJ@30% | 12RSJTA65# | 6X6x3 %5 6X6x3 x5 2
17 [ 12RSID304# | 12RSTA654 | 6X6x5 x5 6X6X3 x5 i
R. A. Hechtman, 2 12WF25 10WFL49 6X lx3 X637 6X6X1x 63 §
B. G. Johnston 9 18WFL7 12WF65 6xUxgX1'=0 | 6x6xIx 7} 3
10 18WFL47 12WF65 6xUxiX1'=0 | 6x6xIx 7} 2
11 18WFL7 14WF58 6xUx3 X 10 6X6x2x 74 i
16 12WF25 10WF49 6x Ux 3x63 6X6X1x 63 3
17 12WF25 10WF49 6x lix 3x63 6X63 %63 3
18 12WF50 10WF49 6x Ux3ixg 6%X6x1x 8 3
20 14WF34 12WF65 6xUxgx1'=0 | 6x6x§x 7} g
22 16WFL0 12WF65 6xUxgx1'=0 | 6x6x3x 71 2
23 16WF40 14WF58 6xUxgx10" 6x6x3 x 71 3
24 18WFL47 12WF65 6xUxgx1'=0'}| 6x6x]x 7} %
25 21WF59 TUWF87 6x Ux §x1=2 stiff angle }
26 2UWF74 14WF87 6xUxEx1-2 stiff angle 1}
(continued)

Web angles

High strength
bolts
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TABLE A-4 TOP AND SEAT ANGLE CONNECTIONS (continued)
Investigator |Test Beam Column Top Angle Seat Fastener]
No. Size Size Size Size Diameter]
R. A. Hecht- | 31 |24WF120 14WF87 6xUxix1-2 |[stiff angle }
man, B. G. 32 |21WF103 14WF87 6xUxix1-2 [stiff angle }
Johnston 35 |12WF25 T0WFL9 6xUxgx8)  16x6x}x81 Z
36 |18WF47 14WF58 6xUxEx11] [6x6xIx111 § —
37 |18WFL47 TUWF58 6xUx§x11L |6x6x7x111 § — [both sides of
J. C. Rathbun| 8 [121I31.8 6X1x2'=0 Pl., [6xlx§x6 6X6x3x6 3 col. web
9 {12131.8 8X1x2'-0 Pl. |6xUx3x8" [6x6x3x8 2
10 [12131.8 TUx1x2'=0 PL./6XUxix1°=2 [6x6x3x1=2 3
11 [12131.8 9x1%x2'0 Pl., |[6xU4x3x9 6X 6x 3x 9 i— web angles
12 |12131.8 Thx1x2'0 Pl. [6x4xfx1-2 |6x6x3x1'-2 3 — veb angles

one side of col. web
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TABLE A-5 WELDED TOP PLATE AND SEAT CONNECTIONS

Investigator |Test | Beam | Column [Top Plate Seat Size
No. Size Size | Size
J. L. Brandes, 2 12WF50 | 12WF65| 7x gx9" ST13WFL45.5% 6
R. M. Mains 3 | 12WF47 | 12WF65 | 6x3x8 STIWF32x9
4 | 12WF85 | 12WF65 | 75 xix12 ST15WF54x 7 }
5 12WF85 | 12WF65 | 73 %2 x12 8x8x3 =10
6 | 12WF85 | 12WF65 | 75xix12 ST15WF54x7}
7 | 12WF85 | 12WF65 | 7%} x12 ST15WF54x73
9 | 12WF85 | 12WF65 | 7ix1x12 ST15WF54x81
10 | 12WF85 | 12WF65 | 7ix1x12 8x8x1-10}
11 12WF85 | 12WF65| 663xjsx12 | P1l, Tee
12 | 18WF85 | 12WF65 | 6&3x35x12 | P1. Tee
13 | 18WF70 | 12WF65| 663 x3¢x12 | 6x3}x3 =10
T4 | 18WFL45 | 12WF65 | 663%xi6%x12 | 6x3ix3-9
15 2UWF74 | T4WF61 | 663 x3x12 Pl. Tee
16 | 12WF85 | 12WF65| 1042x3x15 | ST15WF54x7}
17 | 12WF85 | 12WF65 | 7ixIx12 ST15WF54x 73
18 18WF85 12WF65 683xgx12 Pl. Tee
3 | 10125 | 8145 103 %x5x} 101x5x} P1,
6 | 10125 | 8145 103 %x5x3 6x3ixix 53 P1,
9 | 18WFL7 | 12WF65 | 6x36x11 6x3ix5x @ L.
10 | 18WFL7 | 12WF65 | 6x5gx4 6x3lx3x 9 L.
21 18WF85 | 12WF92 | 11x3¢x 6 Pl. Tee

0€T



TABLE A-6 END PLATE CONNECTIONS WITH NO COLUMN STIFFENERS

Investigator |[Test Beam Column | End Plate
No. Size Size Size
J. R. Ostran- ( TOWF21 | 8WF28 | 63x11x}
der 3 | 10WF21 | 8WF28 | 63x11x 3
4 1 10WF21 | 8WF28 | 6ix11x1
9 | T0WF21 | 8WF28 | 63x11x 3
11 12WF27 | 8WFU4O 73x13x 3
12 12WF27 | 8WFL4O 73x13%1
13 T2WF27 | BWF40 | 7ix13%3
17 12WF27 | 8WF24 73x 13% 3
18 | 12WF27 | 8WF24 | 7ix 13x1]
19 12WF27 | 8WF24 73x 13%§
23 12wr27 ' gwr48 |'7ix 13x3
Sherbourne Al 15X5x U24#8x8x354# 7X1-65x14
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TABLE A-7 END PLATE CONNECTIONS WITH COLUMN STIFFENERS

Investigator |[Test Beam Column| End Plate |Stiffener
No. Size Size : Size
J. R. Os~- 2 TOWF21 | 8WF28 63 x11x3 3x74 x3
trander 5 10WF21 | 8WF28 63 x11x3 3x7§ x}
6 10WF21 | 8WF28 63 x11x3 3x7}% x}i
7 | 10WF21 | 8WF28 | 65 x11xi 3x7} xi
8 10WF21 | S8WF28 6% x11xl 3x74 x3
10 12WF27 | 8WF28 63 x11x2 3x7% x3
14 12WF27 | 8WFLO 73 x13x3 Ux7x 4
15 12WF27 | 8WFL40 75 x13x} Ux7x
16 12WF27 | 8WFLO 7%X13xg bx7x i
20 | 12WF27 | 8WF24 | 7% x13x3 3x78 x}
21 | 12WF27 | 8WF24 | 73 x13x} 3x7% x1
22 | 12WF27 | 8WF24 | 73 x13x§ 3x7% x1
24 12WF27 | 8WFL48 73 x13x2 Ux63 x1
A. N. Sher- A2 1 15x5xU2#8x8x354 TxT1-63x 1, | 33x7 x5,
bourne A3 15x5x42#8%8x35# 7x1-61x3 33x 7 %3
B1 15x5xU24#8x8x354 7x1-61ix1 33x 7T x5,
B2 | 15x5x4248x8x35¢ 7x1-6ix3 | 317!
L. G. Johnson, 5 10125 8145 6x1-15x3 3x8x1
J. C. Cannon, :
L. A. Spooner
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TABLE A-8

T-STUB CONNECTIONS

Investigator |[Test Beam Column T-Stub
No. Size Size Size
C. Batho, 13 12RSJ230 |12RSJ265 15145
H. C. Rowan 14 12RSJQ30 12RSJ265 15145
15 12RSJa30 |12RSJTA65 15145
A. Bannister a 10x8 B.S.[12x8 B.S. 24x7% B.S.
b 108 B.S.|12x8 B.S. 24x7% B.S.
c 10x8 B.S.[12x8 B.S. 24x7% B.S,
d 10x8 B.S.|12x8 B.S, 24x7}% B.S.
e 13x8 B.S.{12x8 B.S. 24x71 B.S.
J. C. Rathbun/| 13 12131.8 9%x1xX1'-10 Pl. | 15GQ99#x9"
14 12131.8 T4x1x1-10 Pl. | 15GQ99#x]t=2"
15 16G83 15x1x2'-3 P1. |24I105.9%x1'=3"
16 22G101 15x1%x3=-3"4 P1l.|30G240x1~3
17 22G101 15x1x3=-3"'4 P1l.|30G240x%x1-3
18 16G83 T14H167 247105.9%x1-3
R. Douty D-1 [ 14WF34 T4WF150 18WF70
D-2 |16WF40 TUWF150 T6WFL0
D-3 |[21WF62 T4WF150 21WF62
B.S. =-- British Standard Section

Web angles
Shear connections
4 bolts
6 bolts
8 bolts
10 bolts
8 bolts

2 lines of bolts
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APPENDIX B

This Appendix contains the standardization constants
and the standardized moment—rotatign equations for the
various connection types considered in this study. Figs B.1
to Fig. B.7 -are the standardized curves, and Figs. B.8 to
Fig. B.18 are comparisons of experimentally obtained
moment-rotation curves with those obtained from the

standardized equation.

B.1 Double Web Angle Connections

Standardization constant

K = a2 (7023 .16

where:

d = depth of angle

il

t angle thickness

g connection gage

Standardized moment-rotation equation

¢ = 3.66 (KM) 10‘4 + 1.15 (KM)3 10‘6 + 4,57 (KM)5 1078

B.2 Single Web Angle Connections

Standardization constant

K = g2+ ("1.81.0.15
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where:

d

depth of angle

t

angle thickness
g = connection gage

Standardized moment-rotation equation

¢ = 4.28 (RO 1072 + 1.45 (K1) 1070 + 1.51 (k) 10720
B.3 Header Plate Connections
Standardization constant
g = 716 1.6 2.3 0.5
where:
t = thickness of header plate
= connection gage
d = depth of connection
w = web thickness
Standardized moment-rotation curve
5 ~10 ~13

6 =5.1 (@) 107 + 6.2 &> 1070 + 2.4 @’ 10

B.4 ~ Top and Seat Angle Connections

Standardization constant

_ 0.5 -1.5 -l -7

K f 1

where:

2

t = angle thickness



B.5 End Plate Connectionsrs With No Column Stiffners

Standardization constant

g = g 2h b -1l

where:

d = depth of connection

t = thickness of plate

f = fastener diameter

Standardized moment-rotation curve

¢ =1.83 (1) 107 - 1.04 (@03 107 + 6.38 (0> 1

B.6  End Plate Connections With Column Stiffners

d = depth of connection

th
li

fastener diamenter
1 = angle length

Standardized moment-rotation curve

4 -4

o = 8.46 (kM) 1074 + 1.01 (D> 10

+1.24 (RO 10

Standardization constant

K = g"2+4 0.6
where:

d = depth of connection

t = thickness of plate

Standardized moment-rotation curve

3 -4

¢ =1.79 (&) 1073 + 1.76 > 10

+ 2,04 (a1)° 1

176
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B.7 T-Stub Connections

Standardization constant

-1.5 t—O.S -1.1 ,-0.7

K=4d £ 1
where:
d = depth of connection
t = thickness of T-stub flange
f = fastener diameter
1 = length of T-stub

Standardized moment-rotation curve

4 -6

¢ =2.1 (@) 107" + 6.2 @) 1070 - 7.6 (0> 10”
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STANDARDIZED MOMENT KM IN KIPS
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STANDARDIZED MOMENT KM IN KIPS

ROTATION ¢ RADIANS x 107>

STANDARDIZED MOMENT ROTATION CURVE
END PLATE CONNECTION-NO COLUMN STIFFENERS
ol
oL
Al
sl
al
3l $ = 183(KM)I0™ - 104(kM ) 107+ 6.38 (kM)° 107
> |
1 FIG. B.5
% | > 5 4 5 6

Z8T
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Read Material Properties, Number of
Members,and Number of Joints in the
Structure

Allocate Storage

|

Read Joint Coordnates, Joint Status,
and Any Specified Joint Displacements

: /
~ Do M =1 ,Number of
Members

Read Cross Sectional Properties,
Temperature and Type of Connection
at Each End For Member M

/Read the Connection Para-
meters Correspondingfothe
Connection Types

¥

Evaluate Initial Flexibilities
. For Connections at Ends
Assign oo or O Flexibilities of Member

to Connections at Ends of
Member M

Set Up Joint Incidence Table Which

Lists the Members Incident on Each
Joint




Do LDG=1,Number of
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D

Read Heading Descibing Type of Load
to be Applied fo the Structure

Loading Cases

[

=
X
( Read Joint Loads and Member Loads

-Joint T)é‘;e Member

\

/

Store

Calculate Cantilever
Deflection and Member
A End Forces and Store

O

"3

Y
= |,Number of

'<DoM

-

Members

Forces
at A End of

. Member
~0
No

Calculate Fixed—End Forces
at A and B End of Member

-~

Temperature
02

- Rotate Fixed-End-Forces to Global
System and Add to Joint Loads. Calculate
Temperature Loads and Add to Joint Loads

Yes
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Calculate Joint Displacements

¥
NMM=0
v

, Do M=1, Number of
: Members

Arq
Connections

No

Flexaible

Yes

Calculate the Total End Forces at Aand
B Ends of the Member

Y

Compare Connection Rotation Predicted
by Non-Linear M-¢ Curve With Rota -
tion Predicted by Assumed Flexibility

" Is
it Necessary
to Modify

Connection

Yes

~Flexibility
2

NMM= |
v

Modify Flexibility

y

Print i) Joint Displacements
ii) Member End Forces
iii) Support Reactions




APPENDIX D

USER'S MANUAL

Te IDENTIFICATION

SRFRAME - this program performs a linear structural
analysis of planar frames whose connectiops have any degree
of rotational flexibility. The flexibility of a connection
- may be specified in any of the following ways:

(a) connection may be rigid

(b) connection ma§ be pinned

(c) connection flexibility may be specified numerically

(d) one of eight standard orthogonal connection types
may be specified along with its size parameters

Any number of consecutive loading systems can be

considered but they cannot be superimposed.

2. DESCRIPTION OF STRUCTURE AND LOADING

The input consists of a description of the structure
and each loading system.

In describiﬁg the structure, all joints are numbered in
an arbitrary_ sequence as illustrated in Fig. D.1(a). All
members are numbered and each member is arbitrarily assigned

200
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GLOBAL COORDINATE SYSTEM
(a)

IXZ

MEMBER 3 /|

X3
MEMBER 3 LOCAL COORDINATE SYSTEM
(b) .

IDENTIFICATION OF STRUCTURE
FIG. D.I
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a direction, as illustrated by the arrows in the figure.

Two different types of coordinate systems are used:

(a) Global system - a single right handed coordinate
system applicable to the whole structure. Its origin can be
located anywhere and all loadings, joint coordinates, joint
displacements, and support reactions are expressed in the
global system.

(b) Member systém - Each member has aésociated with it
a right hand local coordinate systém whose Xl axis has the
same direction as that assumed for the member, as
illustrated for member 3 in Fig. D.1(b). The member is
assumed to have a "start" and an "end" as shown, and the
positive directions for the member end axial forces, shear
17 X2 , and X3
directions as shown. Regardless of the member orientation,

forces, and moments are the positive X

axis X2 is above or in the horizontal plane containing the
origin, and direction X3 is clockwise or counterclockwise
depending on whether Xl is directed to the right or to the
“left.

The size of structure that can be analyzed depends on
the available storage. The number of words of memory
required for data storage for a given structure is
approximately:
/

(NT)P? + 22(NJ) + 17(NM) = 2 (.1)

where:
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NJ = number of joints in structure

NM = number of members in structure

Z = total number of data quantities to be stored.

The program vemploys a one-dimensional data storage
pool, and Table D-1 lists the maximum permissible size of
storage bool corresponding to several different core

allocations for the IBM system 360/65 computer.

Table D-1 Storage Capacities

Available Maximum Z
Core Dimension
150 K 22,500
200 K 35,000
250 k 47,500
300 K 60,000
3. CONNECTION INFORMATION

The program is capable of analyzing structures which
include any of the following connection types:

(a) double web angle connections

(b) single web angle connections

(c) header plate connections

(d{ top and seat angle connections

(e) end plate connections with column stiffeners

(f) end plate connections without column stiffeners

(g) T-stub connections.

In addition, rigid and pinned connections and those

with a numerically specified flexibility can be included.
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Connection types (a) to {g) inclusive have their
flexibilities generated by the program. For each connection
in the structure, it is necessary to input one Oor more
parameters whicﬁ are used to generate the moment-rotation

information for the connection.

4, INPUT

The program input is described with reference +to the
example below. Except for descriptive heading cards, each
data card is divided into 10 column fields. Each data item
can be placed anywhere in its field and decimal points are

optional.

DATA CARDS:

(a) Program Name - SRFRAME

(b) Job Description - card to contain a job description

which is printed as a heading over output.

(c) Structure Information

Field 1 - number of joints
Field 2 - number of members
Field 3 - modulus of elasticity E (ksi).

(d) Joint Information - (one card for each joint)

"Field 1 - joint status:

~ blank = non-support joint

It

F or FIXED fixed support

H or HORIZ horizontal roller

V or Vert = vertical roller
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R or ROTATION = pin

(combinations of H, V, and R may be used).

Field 2 - joint number

Field 3 - joint X (horizontal) coordinate (ft.)
Field 4 - joint Y (vertical) coordinate (ft.).

(e) Member Information - (One card is required for each

member with any combination of rigid or pinned connections.
Two cards are required for members with any'of the standard
connection types listed above or connections with
numerically specified flexibility.)

First Card:

Field 1 - member number

Field 2 - number of joint at member "start"

Field 3 = number of joint at member "end"

Field 4, 5 - member area, A (sg. in.) and moment
-of inertia, I (in4)° If A or I is left blank, the value is
assumed to be theé same as for the preceding member; if no
values are supplied, the following are assumed: A = 5.0 sq.
in., I = 100.0 in%.

Fieid 6 - member temperature. If member
temperatures are provided, temperature displacements and
forces are incorporated into the analysis; otherwise,
temperature effects are ignored.

Field 7 - connection type at member "start"

Field 8 - connection type at member "end".

Continuation Card - An asterisk (*) in column 1 of a
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projectién of member
Fieldvu - vertical load (kips/ft.) on horizontal
projection
Field 5 - distance (ft.) to start of load
Field 6 - distance (ft.) from end of member load
to end of member.
(iii) Concentrated member load -

Field 1

P
Field 2 - member number

Field 3 - horizontal load (kips)

Field 4 - vertical load (kips)
Field 5 - distance (ft.) from member "start".
(h) Solve - card to contain the word SOLVE. This

instructs the computer to begin analysis.

5. OUTPUT
The output consists of the following:
(a) a listing of all input quantities
(b) connection flexibilities as generated
(c) joint displacements o
(d) member end forces
(e) support reactions

(£) ﬁolume and weight of steel in structure.
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FIG. D.2 DOUBLE WEB ANGLE CONNECTIONS
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FIG. D.3 SINGLE WEB ANGLE CONNECTIONS



FIG. D.4 HEADER PLATE CONNECTIONS

ﬁ
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/

P3 = fastener ¢

FIG. D.5 TOP AND SEAT ANGLE CONNECTIONS
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P
‘ —

Pl=d
R —=

~Hk—p2 =t

FIG. D.6 END PLATE CONNECTIONS
NO COLUMN STIFFENERS
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FIG. D.7 END PLATE CONNECTIONS WITH
COLUMN STIFFENERS
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10

*****************************************************************MAINOO10

MAIN PROGRAM -

MAINOQOOQO20
MAINOO30
MAINOO4O
MAINOQO50
MAINOO60

*****************************#***********************************MAIN007O

DIMENSION Z (20000

)

INTEGER*2 INP(80), LDTYP (4, 80)

COMMON E, M, DL, JRD, JWI, FN(14), INP/MN/NJ, NM, LDTYP, HDG(20),

EALPHA
JRD = 5
JWT = 6

READ JOB TITLE

MAINOOS8O
MAINOOSO
MAINO100
MAINO110
MAINO120

© MAIN0130

MAINO140

***********************READ**************************************MAINO150
READ (JRD,40,END=30) HDG

NC = NC+1

WRITE (JWT,50) HDG

WRITE (JWT,60)

MAINO160
MAINO170
MAINO180
MAINO190

o sk sk sk ok ok ok ok ok ok ok ok sk ok ok okok ok sk ok RIS A % % sk o o sk sk ok ok ok ok ok s ok sk e s ook sk ok ok sk ke sk sk sk ok sk ok kok ok kKR MA TN 02 00

READ (JRD,70) INP

CALL CNVRT (1, 1,
NJ = FN(1)

NM = FN(2)

E = FN(3)

ALPHA = ,0000065
NEE = (NM-1)/2+1
NNN = (NJ-1)/2+1
N1 1

N2 = N1+2*NJ
N3 = N2+3*NM
N4 = N3+3*NM
N5 = NU4+NNN
N6 = N5+6*NNN
N7 = N6+3*NJ

3)

MAINOZ210
MAINO220
MAINO0230
MAINOZ240
MAINO0Z250
MAINOZ260
MAINO0270
MAINOZ280
MAINO0290
MAINO300
MAINO310
MAINO0320
MAINO330
MAINO340
MAINO350

TTC
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Z(N3), zZ(NW),

Zz(N5), z(N6),

MAINO360
MAINO370
MAINO380
MAINO390
MAINOL4OO
MAINO410
MAINO420
MAINO430
MAINOL4L4O
MAINOU450
MAINO460
MAINO470

" MAINO480

Z(N7), Z(NS8

),
§2(N9), Z(N10), 2Z2(N11), z(N12), Z2(N13), Z(N14), Z(N15), Z(N16), 2Z(

N8 = N7+2*NEE
N9 = N8+NM
N10 = NO9+NM
N11 = N10+NM
N12 = .N11+NEE
N13 = N12+NEE
N14 = N13+NNN
N15 = N14+9%NJ
N16 = N15+NNN+1
N17 = N16+2*NM
N18 = N17+3*NJ
N19 = N18+NM
N20 = N19+NM
N21 = N20+NM
N22 = N21+NM
CALL PLFR(Z(N1), z(N2),
§N17), 2Z(N18), Z(N19),
DO 20 I = 1, 80
20 LDTYP(1, I) = INP(1)
GO TO 10
30 STOP
40 FORMAT (20ab4)
50 FORMAT ('1'///1X20A4)
60 FORMAT (//°'
§SIMPLE CONNECTIONS'//'
70 FORMAT (80A1)
END

Z(N20), Z(N21),

INPUT DATA'//)

SUBROUTINE PLFR

Z(N22))

ANALYSIS OF PLANE FRAME WITH RIGID

-y SEMI-RIGID , OR

ok sk sk ok ok ok sk ok sk ok s ok sk ok ok ok sk sk sk sk ok ok sk ke sk ok ok sk ok ke sk ok ok sk ok sl ok sk sk sk ok sk o ok sk ok ke sk sk ofe sk ok ok ok sl 3k ok ok ok ok K o ok

MAINO490
MAINO500
MAINO510
MAINO520
MAINOS530
MAINOS540
MAINOS550
MAINO560
MAINGS570
MAINO580
MAINO590
MAINO600
MAINO610
MAINO620
MAINO630
PLFR0O010
PLFR0020
PLFR0O030
PLFROO40

*****************************************************************PLFROOSO
SUBROUTINE PLFR(CJ, FA, FB, NMIJ, JI, JL, MI, AR, XI, TEM, MSRA,

§MSRB,

ISR’ A,

List, C,

PJ, SLPA,

SLPB, CONA, CONB,

STORE)

PLFR0060
PLFRO070

A4



REAL KBB(3, 3), KBA(3, 3), JL PLFR0080
COMMON E, M, DL, JRD, JWT, FN(14), INP/MN/NJ, NM, LDTYP, HDG(20), PLFR0090

§ALPHA/SPL/KBB, DSTIF/RT/COSA, SINA, R(3, 3), H(3, 3) PLFR0100
INTEGER*2 MI, ISR, MSRA, MSRB, LIST, NMIJ, JI, INP(80), LDTYP(4, PLFR0O110
£80) : . PLFR0120
DIMENSION CJ(2, 1), MI(2, 1), AR(1), XI(1), ISR(1), MSRA(1), MSRB(PLFR0130
€1), TEM(1), NMIJ(1), JI(6, 1), JL(3, 1), SLPA(1), SLPB(1), CONA(1)PLFRO140
&, CONB(1) : PLFRO0150
DIMENSION PJ(3, 1) PLFR0160
'DIMENSION FEFA(3), FEFB(3), PLME(3), D(3), FLBB(3, 3) PLFR0170
DIMENSION A(3, 3, 1), LIST(1), B(3, 2), BB(3, 3, 2) PLFR0180
DIMENSION C(2, 1) o PLFR0190
DIMENSION STORE (3, 3, 1) ‘ PLFR0200
DIMENSION FA(3, 1), FB(3, 1), TEMP(3, 3), TEMP1(3), TEMP11(3) PLFR0210
DIMENSION TEMP2 (3, 3), TEMP3(3) ' PLFR0220
DIMENSION D4 (6), D3(3), D1(3), D2(3) "PLFR0230
INTEGER*2 INPT(6)/' ', 'F', 'H', 'V', 'R', 'D'/ PLFRO240
INTEGER*2 INPTC(11)/' ', 'P', 'S', 'A', 'B', 'C', ‘D', 'E', 'F', 'PLFR0250
§G', 'H'/ . PLFRO260
INTEGER*2 I1U/'U'/, IP/'P'/ PLFR0270
INTEGER*2 CONT/'*'/ , PLFR0280
INTEGER INSRC(11)/'PIN ', 'SPEC', 'DWEB', 'SWEB', 'HPLT', 'T&SE', PLFR0290
- §'EPLT', 'EPLT', 'TSTB', 'TPLT', 'RIGD'/ PLFR0O300
INTEGER INSR(6)/'H v, 'v ', '"HV ', 'R 'y 'H,R ', 'V R '/ PLFR0310
INTEGER*2 ILD(5)/'s', 'O', 'L', 'V', 'E'/ PLFR0320
EQUIVALENCE (NE, NJ) : PLFR0330
DO 20 I =1, 3 : PLFRO340
DO 200 =1, 3 PLFR0350
R(I, J) = 0. PLFR0O360
H(I, J) = 0. PLFR0370
H(I, I) = 1. PLFR0380
J =0 PLFR0390
DO 90 JJ = 1, NJ " PLFRO400
J = JJ PLFRO410
sk ok sk ok sk sk ok ok sk ok ok ok ok skook skook READ A sk sk sk sk ok sk ok ok ok ok sk ok ok ok sk sk ske ok ok sk ok ok sl ok ok ok ok ok ok sk PLFROLU20

€T¢C



30
4o

50

60

70
80

90

100

NON-BLANK CHARACTER IN COL 80. CONVERT COORDINATES TO INCHES.

READ JOINT STATUS AND COORDINATES OF JOINTS.

READ (JRD,1450,END=1440) INP

LAST JOINT GIVEN

CALL CNVRT(1, 2, 8)
IF (FN(1) .NE. 0.) J = FN(1)
CJ(1, J) = FN(2)
CJ(2, J) = FN(3)
JL{1, J) = FN(4)
-JL(2, J) = FN(5)
JL(3, J) = FN(6) .
IF (FN(7) .NE. 0.) ALPHA = FN(7)
ISR(J) = 0
I =1
IF (INP(I) .EQ. INPT(1)) GO TO 80
IF (INP(I) .EQ. INPT(2) .OR. INP(I) .EQ. INPT(6)) GO TO 70
IF (INP(I) .NE. INPT(3)) GO TO 50 :
ISR(J) = ISR(J)+1
GO TO 80
IF (INP(I) .NE. INPT(4)) GO TO 60
ISR(J) = ISR(J)+2
GO TO 80 :
IF (INP(I) .NE. INPT(5)) GO TO 70
- ISR(J) = ISR(J)+4
GO TO 80
ISR(J) = 8
GO TO 90
I = I+1 :
IF (I .LE. 10) GO TO 30
CONTINUE
M=20
AQ = 5,
X0 = 100. A
LEEEEEEEEE S EE TR T READ *******************#***********
READ (JRD,1450,END=1440) INP :
M = M+1

110

PLFRO430
PLFRO440
PLFRO450
PLFRO460
PLFRO470
PLFRO480

PLFROU490

PLFR0O500
PLFR0510
PLFR0520
PLFRO530
PLFRO540
PLFRO550
PLFRO0560

. PLFR0O570

PLFRO580
PLFRO590
PLFRO60CO
PLFR0O610
PLFR0620
PLFRO0630
PLFRO64O
PLFRO650
PLFRO660
PLFRO670
PLFR0O680
PLFRO690
PLFRO700
PLFR0710
PLFRO0720
PLFRO730
PLFRO740
PLFRO750
PLFR0O760
PLFRO770

AN



120

130

140

150

160

170

180

CALL CNVRT (1, 1,

IF (FN(1). .NE.

MSRA(M). = 0

MSRB (M) = 0

TEM (M) = FN(6)

IF (FN(4) .NE. 0.) AO = FN(4)
IF (FN(5) .NE. 0.) XO = FN(5)
AR(M) = AO

XI(M) = XO

MI(1, M) = FN(2)

MI(2, M) = FN(3)

DO 220 I = 61, 70 |

IF (INP(I) .EQ. INPTC(1)) GO
IF (INP(I) .NE. INPTC(2)) GO
MSRA (M) = 1

GO TO 230

IF (INP(I) .NE. INPTC(3)) GO
MSRA (M) = 2

GO TO 230

IF (INP(I) .NE. INPTC(4)) GO
MSRA (M) = 3

GO TO 230 .

IF (INP(I) .NE. INPTC(5)) GO
MSRA (M) = 4

GO TO 230

IF (INP(I) .NE. INPTC(6)) GO
MSRA (M) = 5

GO TO 230

IF (INP(I) .NE. INPTC(7)) GO
MSRA (M) = 6

GO TO 230 .

IF (INP(I) .NE. INPTC(8)) GO
MSRA (M) = 7

GO TO 230

IF (INP(I) .NE. INPTC(9)) GO

6)

0.) M= FN(1)

TO

TO

TO

TO

TO

TO

TO

TO

TO

220
120

130

140

150

160

170

180

190

PLFR0780

PLFRO790 |

PLFR0800
PLFR0810
PLFR0820
PLFR0O830
PLFRO840
PLFR0850
PLFR0O860
PLFR0870
PLFRO880
PLFRO890
PLFR0OS00
PLFR0910
PLFR0%20

"PLFR0930

PLFROS40
PLFR0S50
PLFR0960
PLFR0970
PLFR0980
PLFR0990
PLFR1000
PLFR1010
PLFR1020
PLFR1030
PLFR1040
PLFR1050
PLFR1060
PLFR1070
PLFR1080
PLFR1090
PLFR1100
PLFR1110
PLFR1120

ST¢



190

200
210

220
230

MSRA (M) = 8

GO TO 230

IF (INP(I) .NE.
MSRA(M) = 9

GO TO 230

IF (INP(I) .EQ.
GO TO 1430
MSRA (M) = 10

GO TO 230
CONTINUE
CONTINUE

. DO 340 I = 71,

240

250

260

270

280

290

300

IF (INP(I) .EQ.
IF (INP(I) .NE.
MSRB (M) = 1

GO TO 350

IF (INP(I) .NE.
MSRB (M) = 2

GO TO 350

IF (INP(I) .NE.
MSRB (M) = 3

GO TO 350 °

IF (INP(I) .NE.
MSRB (M) = {4

GO TO 350

IF (INP(I) .NE.
MSRB(M) = 5

GO TO 350

IF (INP(I) .NE.
MSRB (M) = 6 .

GO TO 350

IF (INP(I) .NE.
MSRB (M) = 7

GO TO 350

IF (INP(I) .NE.

INPTC(10)) GO TO 200

INPTC(11)) GO TO 210

80

INPTC(1))
INPTC(2))

INPTC (3))
INPTC (4))
INPTC (5) )
INPTC (6))
INPTC (7))
INPTC (8))

INPTC(9))

GO
GO

GO

GO

GO

GO

GO

GO

GO

TO
TO

TO
TO
TO
TO
TO

TO

7O

340
240

250

260

270

280

290

300

310

PLFR1130

PLFR1140

PLFR1150
PLFR1160
PLFR1170
PLFR1180
PLFR1190
PLFR1200
PLFR1210
PLFR1220
PLFR1230
PLFR1240
PLFR1250

-PLFR1260

PLFR1270
PLFR1280
PLFR1290
PLFR1300

- PLFR1310

PLFR1320
PLFR1330
PLFR1340
PLFR1350
PLFR1360
PLFR1370
PLFR1380
PLFR1390
PLEFR1400
PLFR1410
PLFRT420
PLFR1430
PLFR1440
PLFR1450

PLFR1460 -

PLFR1470

9TZ



310

320
330
340
350

360
370

380

390
400

410

420

MSRB(M) = 8 PLFR1480
GO TO 350. | PLFR1490
IF (INP(I) .NE. INPTC(10)) GO TO 320 PLFR1500
MSRB (M) = PLFR1510
GO TO 350 PLFR1520
IF (INP(I) .EQ. INPTC(11)) GO TO 330 PLFR1530
GO TO 1430 : PLFR1540
MSRB(M) = 10 PLFR1550
GO TO 350 PLFR1560
CONTINUE ' PLFR1570
*****************************READ*********************************PLFR1 580
READ (JRD,1450,END=1440) INP PLFR1590
IF (INP(1) .EQ. CONT) GO TO 420 PLFR1600
IF (MSRA(M) .EQ. 0) GO TO 360 . PLFR1610
IF (MSRA(M) .EQ. 1) GO TO 370 PLFR1620
GO TO 1430 PLFR1630
c(1, M) = 0. PLFR1640
GO TO 380 o PLFR1650
C(1, M)y = 10.%10,%%*25 PLFR1660
GO TO 380 PLFR1670
IF (MSRB(M) .EQ. 0) GO TO 390 PLFR1680
IF (MSRB(M) .EQ. 1) GO TO 400 PLFR1690
GO TO 1430 PLFR1700
c(2, M) = 0. PLFR1710
GO TO 410 PLFR1720
C(2, M) = 10.%10.*%25 PLFR1730
.GO TO 410 ‘ PLFR1740
CONTINUE PLFR1750
IF (M .NE. NM) GO TO 110 PLFR1760
GO TO 430 ) PLFR1770
INP (1) = INPT(1) PLFR1780
CALL CNVRT (7, 1, 8) PLFR1790
KK = MSRA (M) PLFR1800 .
JJ = MSRB (M) PLFR1810
IF (JJ .EQ. 0) JJ = 11

PLFR1820

LTC



QN

- CALL GENCUR(KK, JJ, C, SLPA,~SLPB, CONA, CONB)

430

IF (KK .EQ.

0) KK = 11

IF (M .NE. NM) GO TO 100
KRR ok ok ok s ok ok ook ok sk sk sk ko ke ok okl R REDAD o o e sk sk skt ol ok ok skokok ok ok ok ok ok Rk DT,FRT 860

READ (JRD,1450,END=1440) INP

CONTINUE

WRITE (JWT,1460) NM, NJ, E, ALPHA

WRITE (JWT,1470)

IT = 1
DO 470 J

IF (ISR(J)

WRITE (JWT,1540) J, CJ(1, J), CJI(2, J)

GO TO 470

440 IF (ABS(JL(1, J))+ABS(JL(2, J))+ABS(JL(3, J))

&450

WRITE (JWT,1480) J, ¢J(1, J), C3(2, J), (JL(x, J), T =1, 3)

GO T

O 470

450 IF (ISR(J)

WRIT
GO T

E (JWT,1490) J, CJ(1, J), CJ(2, J)

O 470

460

470
480

490

500

K = ISR(J)

WRITE (JWT,1490) J, CJ(1, J), CJ(2, J), INSR(K)

CONTINUE
DO 490 J
DO 490 I
cJ(r, J)

GENERATE JQINT INCIDENCE TABLE

mnn

1, NI
.NE. 0) GO TO 440

.LT.

1
1
C

’
,.
J(

NJ
2
I,

DO 500 J = 1, NJ

NMIJ (J) =

DO 500 M
JI(M, J)
DO 510 M

J = MI(1,

i

0

1
0
1
M)

’

’

6

NM

8) GO TO 460

J)*12,

.LT. .0001) GO TO.

PLFRT1830
PLFR1840
PLFR1850

PLFR1870
PLFR1880
PLFR1890
PLFR1900
PLFR1910
PLFR1920
PLFR1930
PLFR1940
PLFR1950

- PLFR1960

PLFR1970
PLFR1980
PLFR1990

"PLFR2000
PLFR2010

PLFR2020
PLFR2030
PLFR2040
PLFR2050
PLFR2060
PLFR2070
PLFR2080
PLFR2090
PLFR2100
PLFR2110
PLFR2120
PLFR2130
PLFR2140
PLFR2150
PLFR2160
PLFR2170

8T¢



510

520 WRITE (JWT,1530).M, MI(1, M), MI(2, M), AR(M), XI(M), INSRC (K),
EINSRC (J), TEM (M)

530
540

550
560
570

580
590

NMIJ (J) = NMIJ(J)+1
K = NMIJ(J)

JI(K, J) = -M

J = MI(2, M)

NMIJ (J) = NMIJ(J)+1
K = NMIJ(J)
JI(K, J) = M
WRITE (JWT,1500)
DO 520 M = 1, NM
K = MSRA (M)

J = MSRB (M)

IF (K .EQ. 0) K
IF (J .EQ. 0) J

11
11

WRITE (JWT,1510)

DO 530 M = 1, NM

WRITE (JWT,1520) M, C(1, M), C(2, M)
LDG = 1

DO 550 J = 1, NJ
PJ(1, J) = 0.
PJ(2, J) = 0.
PJ(3, J) = 0.

DO 570 M = 1, NM
DO 560 III = 1, 3
FA(III, M) = 0.
FB(III, M) = 0.
CONTINUE

CONTINUE

IF (LDG .GT. 1) GO TO 590
DO 580 1 =1, 80

LDTYP (LDG, I) = INP(I)

DO 610 IL = 1, 80

IF (LDTYP(LDG, IL) .EQ. INPT (1)) GO TO 610

DO 600 I =1, 5

PLFR2180
PLFR2190
PLFR2200
PLFR2210
PLFR2220
PLFR2230
PLFR2240
PLFR2250
PLFR2260
PLFR2270
PLFR2280
PLFR2290
PLFR2300
PLFR2310
PLFR2320
PLFR2330
PLFR2340

'PLFR2350

PLFR2360
PLFR2370
PLFR2380
PLFR2320
PLFR2400
PLFR2410
PLFR2420
PLFR2430
PLFR2440
PLFR2450
PLFR2460
PLFR2470
PLFR2480
PLFR2490
PLFR2500
PLFR2510
PLFR2520

6T¢



600

610
620

630

640

650

J = IL+I-1

IF (LDTYP(LDG, J) .NE. ILD(I)) GO TO 620
CONTINUE

GO TO 880

CONTINUE

CONTINUE

WRITE (JWT,1550) (LDTYP(LDG, I), I = 1,
KK = 0

LL = O

ITER = O

PLFR2530
PLFR25L40
PLFR2550
PLFR2560

PLFR2570 -

PLFR2580
PLFR2590
PLFR2600
PLFR2610

‘PLFR2620

*******************************READ******************************PLFR2630

READ (JRD,1450,END=1440) INP

CALL CNVRT (1, 2, 6)

IF (FN(1) .EQ. 0.) GO TO 710

IT = FN(1)

DO 640 I =1, 10

IF (INP(I) .NE. INPT(1)) GO TO 650
CONTINUE

IF (KK .EQ. 0) WRITE (JWT,1560)

KK = KK+1

PJ(1, II) FN(2)

PJ(2, II) FN(3)

WRITE (JWT,1540) IXI, FN(2), FN(3), FN(4)
PJ(3, II) = FN({4)*12.

GO TO 630

IF (LL .EQ. 0) WRITE (JWT,1680)

LL = LL+1

IF (INP(I) .NE. IU) GO TO 660

IF (IT .NE. 0) M = II

W1 = FN(2)

W2 = FN(3)

WRITE (JWT,1690) M, INP(I), W1, W2
S = FN(4)*12,

T = FN(5)*12.

CALL ROT(CJ, MI)

i

PLFR2640
PLFR2650

‘PLFR2660

PLFR2670
PLFR2680
PLFR26590
PLFR2700
PLFR2710
PLFR2720
PLFR2730
PLFR2740
PLFR2750
PLFR2760
PLFR2770
PLFR2780
PLFR2790
PLFR2800
PLFR2810
PLFR2820
PLFR2830
PLFR28490
PLFR2850
PLFR2860
PLFR2870
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660
670

680

- FB(1, M)

WW1
Ww2
W1

W1/12.*ABS (SINA)
W2/12.*ABS (COSA) .
(R(1, 1)*WWI1+R(2, 1)*WW2)
W2 = (R(1, 2)*WW1+R(2, 2)*WW2)
AA = DL~S-T

FA(1, M)
FA(2, M)
FA(3, M)
AA = DL-T
BBB = AA*AA

CC = BBB*AA

DD = CC*AA |

EE = W2/6./E/XI (M)

FB(1, M)+(W1/2./AR(M)/E)* (BBB-S**2)

FB(2, M)+.75%EE* (DD-S**4)+EE* (T*CC~ (S**3) * (DL~S) )
EE* (CC-S**3)

mun

FA(1, M)+W1*AA
FA(2, M)+W2*AA
FA (3, M)+W2%AA* (S+AA/2.)

o

oo

FB{(2, M)
FB (3, M)
GO TO 630
IF (INP(I) .EQ. IP) GO TO 670
GO TO 1430

IF (II .NE. 0) M = II
D3 (1) FN(2)
D3(2) FN(3)
D3 (3) 0.
DA = FN(L)
DA = DA*12. .
WRITE (JWT,1690) M, INP(I), D3(1), D3(2), DA
CALL ROT(CJ, MI)
CALL TRANSP (R, TEMP)

ROTATE GLOBAL FORCE VECTPR TO MEMBER FORCE VECTOR
DO 680 III = 1, 3
PLME (III) = 0.
DO 680 KKK = 1, 3
PLME (III) = TEMP(III, KKK)*D3 (KKK)+PLME (III)
FA(1, M) FA(1, M)+PLME (1)
FA(2, M) FA(2, M)+PLME(2)

I T

o

PLFR2880
PLFR2890
PLFR2900
PLFR2910
PLFR2920
PLFR2930
PLFR2940
PLFR2950
PLFR2960

PLFR2970

PLFR2980
PLFR2990
PLFR3000
PLFR3010
PLFR3020
PLFR3030
PLFR3040
PLFR3050
PLFR3060
PLFR3070
PLFR3080
PLFR3090
PLFR3100
PLFR3110
PLFR3120
PLFR3130
PLFR3140
PLFR3150
PLFR3160
PLFR3170
PLFR3180
PLFR3190
PLFR3200
PLFR3210
PLFR3220
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690

700

710

720
730

740

750

FA(3, M) = FA(3, M)+PLME(2)*DA+PLME (3)
DO 690 III = 1, 3

DO 690 JJJg = 1, 3

FLBB(III, JJJ) = 0.

FLBB=FLEXIBILITY MATRIX

FLBB(1, 1) = DA/E/AR(M)

FLBB (2, 2) = DA**3/3,/E/XI (M)
FLBB(2, 3) = 1.5/DA*FLBB(2, 2)
FLBB(3, 2) = FLBB(2, 3)
FLBB(3, 3) = 2.*FLBB(2, 3)/DA
DO 700 I1IIr = 1, 3 :

D2 (III) = 0.
DO 700 KKK = 1, 3 '

D2 (III) = FLBB(III, KKK)*PLME (KKK)+D2(III)
CALCULATE (H TRANSPOSE) * D2(III) TO GET CANTILEVER DEFLECTION AT
END

FB(1, M) = FB(1, M)+D2(1)

FB(2, M) = FB(2, M)+D2(2)+D2(3) *DL-D2 (3) *DA

FB(3, M) = FB(3, M)+D2(3)

GO TO 630

DO 720 N = 1, NJ

JL(1, N) = PJ(1, N)

JL(2, N) = PJ(2, N)

JL(3, N) = PJ(3, N)

CONTINUE

DO 870 M = 1, NM

DO 740 III =1, 3

IF (FA(III, M) .NE. 0.) GO TO 750
CONTINUE

IF (TEM(M) .EQ. 0.) GO TO 870

GO TO 780

CALL ROT(CJ, MI)

CALL SEMPL(AR, XI, C)

D(1) 0
D(2)

(é.*E*XI(M)/DL**Z*(C(1, M) +2.*E*XI (M) *C(1, M)*C(2,

PLFR3230
PLFR3240
PLFR3250
PLFR3260
PLFR3270
PLFR3280
PLFR3290
PLFR3300

PLFR3310

PLFR3320
PLFR3330
PLFR3340
PLFR3350
PLFR3360
PLFR3370
PLFR3380
PLFR3390
PLFR3400

. PLFR3410

PLFR3420
PLFR3430
PLFR3440
PLFR3450
PLFR3460
PLFR3470
PLFR3480
PLFR3490
PLFR3500
PLFR3510
PLFR3520
PLFR3530
PLFR3540
PLFR3550
PLFR3560

M)/DL)) /PLFR3570
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760
770

780

790

800
810

820
830

840

850

EDSTIF*FA (3, M) :

D(3) = ((~2.*E*XI(M)*C(1, M)/DL)/DSTIF)*FA(3, M)
DO 760 III = 1, 3

D1(III) = 0.

DO 760 KKK = 1, 3 , . .

D1(III) = -KBB(III, KKK)*FB(KKK, M)+D1 (III)

DO 770 III = 1, 3

FEFB(III) = D1(III)-D(III)

CALCULATE FEFA FROM STATICS

FEFA(1) = -FA(1, M)-FEFB(1)
FEFA(2) = =-FA(2, M)-FEFB(2)
FEFA(3) = -FEFB(3)-FEFB(2)*DL~-FA(3, M)
FEFA(1) = FEFA(1)+ALPHA*E*AR(M)*TEM (M)
FEFB(1) = FEFB(1)+ALPHA*E*AR (M) *TEM (M)

JF = MI(1, M)
JN = MI(Zr M)
CONTINUE

PLFR3580 -

PLFR3590
PLFR3600
PLFR3610

PLFR3620 -

PLFR3630
PLFR3640
PLFR3650

PLFR3660

PLFR3670
PLFR3680
PLFR3690
PLFR3700
PLFR3710
PLFR3720
PLFR3730
PLFR3740

ADD NEGATIVES OF FIXED END FORCES TO JOINT LOADS (ROTATED TO GLOBAPLFR3750

SYSTEM) - R * FA(M), R * FB(M).

CALL MLT1(B, 1, R, 1, FEFA, 1)

IF (ISR(JF) .NE. 0) GO TO 810

DO 800 I =1, 3

JL(I, JF) = JL(I, JF)-B(I, 1)

GO TO 830

K = ISR(JF)

OMIT FIXED-END-FORCES FOR RELEASED COMPONENTS.
DO 820 I =1, 3

IF (K-2%(K/2) .NE. 0) JL(I, JF) = JL(I, JF)-B(I, 1)
K = K/2

CALL MLT1(B, 1, R, 1, FEFB, 1)

IF (ISR(JN) .NE. 0) GO TO 850

DO 840 I =1, 3

JL(I, JN) = JL(I, JN)-B(I, 1)

GO TO 870

K = ISR(JN)

PLFR3760
PLFR3770
PLFR3780
PLFR3790
PLFR3800
PLFR3810
PLFR3820
PLFR3830
PLFR3840
PLFR3850
PLFR3860
PLFR3870
PLFR38890
PLFR3890
PLFR3900
PLFR3910
PLFR3920

€ee



860
870

880

890

900
910
920

930
940

950

DO 860 I = 1, 3
IF (K-2%(K/2) .NE. 0) JL(I, JN) = JL(I, JN)=-B(I,

K = K/2
CONT INUE

GENERATION AND ELIMINATION OF JOINT EQUILIBRIUM EQUATIONS

PLFR3930
 PLFR3940
PLFR3950
PLFR3960
PLFR3970

GENERATE I TH ROW OF STIFFNESS MATRIX. AND STORE IN A TEMPORARILY PLFR3980

LIST(1) = 1
DO 1160 I = 1, NJ

NON ZERO BAND OF ROW I IN STIFFNESS IS FROM KL TO KH. KL

PLFR3990

PLFR4000

LOWEST PLFR4010

JOINT NO FOR JOINTS INCIDENT ON MEMBERS FRAMING INTO JOINT I, KH=HPLFR4020

KL =T

KH = I

IM = NMIJ(I)

DO 940 J = 1, IM
M = JI(JI I)

K =1

I

F (M) 890, 900, 900

M= -M :

K= 2 -

JF = FAR END JOINT FOR MEMBER M

JF = MI(K, M)

IF (JF-KH) 920, 920, 910

KH = JF

GO TO 940

IF (JF-KL) 930, 940, 940

KL = JF

CONTINUE

ZERO ALL A MATRICES IN NON - ZERO BAND
K = KH-KL+1

DO 950 J = 1, K

DO 950 IND = 1, 3

DO 950 IND1 = 1, 3

A(IND, IND1, J) = 0.

INSERT STIFFNESS MATRICES INTO NON ZERO BAND
DO 1000 J = 1, IM

It

PLFR4030
PLFRU4OULO
PLFR4050
PLFR4060
PLFR4070
PLFR4080
PLFR4090
PLFR4 100
PLFR4110
PLFR4120
PLFR4 130
PLFR41TLO
PLFR4 150
PLFR4160
PLFR4170
PLFR4 180
PLFR4190
PLFR4 200
PLFR4210
PLFR4 220
PLFRU4230
PLFR4240
PLFR4 250
PLFR4260
PLFR4270

vee



960

M JI(J, I)

([

K= 2 ,
IF (M .GE. 0) GO TO 960
M= -M

K = 1

JN = MI(K, M)-KL+1

JN=NEAR END JOINT FOR MEMBER M - (POSITION IN ROW RELATIVE TO KL

=1) :
K = 3-K

" JF = MI(K, M)-KL+1

970

980

JF= FAR END JOINT FOR MEMBER M RELATIVE TO KL=1

IK = MI(K, M) . ,

GENERATE R, H AND KBB MATRICES FOR MEMBER M

CALL ROT(CJ, MI)

CALL SEMPL (AR, XI, C)

TEST WHETHER A OR B END INCIDENT ON JOINT I

M= JI(J, I) '

IF (M .GE. 0) GO TO 970 :
A END - NEAR END STIFF = H*KBB*H TR, FAR END = H*KBB
CALL MLT3(KBA, 1, H, 1, KBB, 1)

TRANSPOSE H

H(3, 2) = 0.

H(2, 3) = DL

CALL MLT3(KBB, 1, KBA, 1, H, 1)

H(2, 3) = 0.

GO TO 980

B END - NEAR STIFF = KBB, FAR = KBB*H TR

TRANSPOSE H.

H(3, 2) = 0.
H(2, 3) = DL
CALL MLT3(KBA, 1, KBB, 1, H, 1)
H(2, 3) = 0.

ROTATE TO GLOBAL SYSTEM; R * KBB * R TR, R * KBA * R TR

CALL MLT3(BB, 1, R, 1, KBB, 1)
CALL MLT3(BB, 2, R, 1, KBA, 1)

PLFR4280
PLFR4290
PLFR4 300
PLFR4310
PLFR4320
PLFR4 330
PLFR4 340
PLFR4 350

.PLFR4360

PLFR4 370
PLFR4 380
PLFR4 390
PLFR4 400
PLFR4L41T0
PLFR4 420
PLFR4430
PLFR4 440
PLFR4 450
PLFRU4L60
PLFR4 470
PLFR4 U480
PLFR4 490
PLFR4 500
PLFR4S510
PLFRA4520
PLFR4530
PLFR4540
PLFR4550
PLFRU4560
PLFR4570
PLFR4580
PLFR4590
PLFR4600
PLFR4610
PLFRU4620

qec



990
1000

1010

1020
1030
1040
1050

TRANSPOSE R

T = R(1, 2)
R{1, 2) = R(2, 1)
R(2, 1) =T

CALL MLT3(XBB, 1, BB, 1, R, 1)
CALL MLT3(KBA, 1, BB, 2, R, 1)

INSERT NEAR AND FAR END STIFFNESS MATRICES

DO 990 IND = 1, 3
DO 990 IND1 = 1,
A(IND, IND1, JN)
A(IND, IND1, JF)
CONTINUE

hnw

MODIFY EQUATION IF ANY RELEASES AT JOINT I.
DIAGONAL AND MULTIPLY JOINT DISPLACEMENT BY SAME LARGE NUMBER,

IF (ISR(I) .EQ. 0) GO TO 1050

IJ = I+1-KL

IT = ISR(I)

DO 1040 R =1, 3

IF (II-2#%(II/2) .NE. 0) GO TO 1040

A(K, K, IJ) = 10.%%25
JL(K, I) = JL(K, I)*10,%*%*25
II = II/2

LINC = KH-I
FOR FIRST EQUATION, BYPASS ELIMINATION
IF (I .LE. KL) GO TO 1120

A(IND, IND1, JN)+KBB(IND, IND1)
A(IND, IND1, JF)-KBA(IND, IND1)

PERFORM ELIMINATION FOR ROW I TO ZERO BELOW MAIN DIAGONAL

KU = I-1
DO 1110 K = KL, KU

IK = PIVOTAL COLUMN RELATIVE TO KL =
IK = K+1-KL

IM = LIST(K+1)-LIST(K)

IJ = K+IM-I-LINC

IF NON ZERO BAND FOR PIVOTAL EQ ENDS TO RIGHT OF THAT FOR EQ I,

EXTEND FOR EQ I
IF (IJ .LE. 0.) GO TO 1070

1

PLFRL4630

. PLFR464UO

PLFRH4650
PLFRU660
PLFRU4ET0
PLFRU4680
PLFR4690
PLFR4700

PLFR4710

PLFR4720
PLFR4 730
PLFR4 740

INSERT LARGE NO. ON MAPLFR4750

PLFR4760
PLFR4770
PLFR4780
PLFR4790
PLFR4800
PLFR4810
PLFR4820
PLFR4830
PLFR4 8B40
PLFR4 850
PLFR4860
PLFRUBT0
PLFR4880
PLFR4890
PLFR4900
PLFR4910
PLFR4920
PLFR4930
PLFR4OLO
PLFR49S50
PLFRU4960
PLFR4970
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KK = LINC+I-KL+2 PLFRU4980

LINC = LINC+IJ _ ' PLFR4990
LL = IJ+KK-1 ' ' PLFR5000
DO 1060 L = KK, LL ©  PLFR5010
DO 1060 IND = 1, 3 - PLFR5020
DO 1060 IND1 = 1, 3 PLFR5030
1060 A(IND, IND1, L) = 0. " PLFR5040
1070 IF (IM) 1100, 1100, 1080 4 PLFR5050
1080 DO 1090 J = 1, IM _ PLFR5060
IJ = IK+J PLFR5070
KJ = LIST(K)+J~-1 PLFR5080
CALL MLT3(BB, 1, A, IK, STORE, KJ) A PLFR5090
DO 1090 IND = 1, 3 : PLFR5100
DO 1090 IND1 = 1, 3 PLFR5110
1090 A(IND, IND1, IJ) = A(IND, IND1, IJ)-BB(IND, IND1, 1) PLFR5120
1100 CONTINUE : : PLFR5130
CALL MLT1(B, 1, &, IK, JL, K) PLFR5140
‘DO 1110 J =1, 3 PLFR5150
1110 JL(J, I) = JL(J, I)-B(J, 1) ‘ PLFR5160
NORMALIZE ROW I . MULTIPLY BY INVERSE OF MAIN DIAGONAL MATRIX.=IJVPLFR5170
PIVOTAL ELEMENT RELATIVE TO KL= 1. PLFR5180
1120 IL = I+1-KL PLFR5190
LIST(I+1) = LINC+LIST(I) PLFR5200
CALL INV(A, IL) PLFR5210
IF (LINC .LE. 0) GO TO 1140 PLFR5220
IJ = IL : PLFR5230
DO 1130 J = 1, LINC PLFR5240
IJ = IJ+1 PLFR5250
IK = LIST(I)+J-1 PLFR5260
1130 CALL MLT3(STORE, IK, A, IL, A, IJ) PLFR5270
NORMALIZE LOAD VECTOR I PLFR5280
1140 CONTINUE PLFR5290
CALL MLT1(B, 2, A, IL, JL, I) PLFR5300
DO 1150 J = 1, 3 PLFR5310
1150 JL(J, I) = B(J, 2) PLFR5320

LZZ



. 1160
C

1170
1180

1200
1210

 CONTINUE

START BACK SUBSTITUTION

N2 = NJ-1

IF (N2 .LE. 0) GO TO 1290

DO 1180 K
I = NJ-K

KU = LIST(I+1)-LIST(I)

DO 1170 J

=1, KU

IK = LIST(I)+J-1

IJ = I+J

CALL MLT1(B, 1, STORE, IK, JL, IJ)

DO 1170 L
JL(L, I)
CONTINUE
NMM = 0

=1, 3
JL(L, I)-B(L, 1)

DO 1240 M = 1, NM

IF (MSRA(M) .GT. 2) GO TO 1190

IF (MSRB(M) .LT. 3) GO TO 1240

C CALCULATE TOTAL END FORCES IF FLEXIBLE CONNECTIONS
1190 CALL ROT(CJ, MI)

CALL SEMPL (AR, XI, C)

D(1) = 0.

PLFR5330
PLFR5340
PLFR5350
PLFR5360
PLFR5370
PLFR5380
PLFR5390
PLFR5400
PLFR5410
PLFR5420
PLEFR5430
PLFR5440
PLFR5450
PLFR5460
PLFR5470
PLFR5480
PLFR5490
PLFR5500
PLFR5510
PLFR5520
PLFR5530
PLFR5540

D(2) = (6.*E*XI(M)/DL**2*%(C(1, M)+2.*E*XI(M)*C(1, M)*C(2, M)/DL))/PLFR5550

EDSTIF*FA(3, M)
D(3) = ((-

2. *¥E*XI (M) *C(1, M)/DL)/DSTIF)*FA(3, M)

DO 1200 III = 1, 3

D1(III) =

0'

DO 1200 KKK = 1, 3

D1(IITI) =

~KBB(III, KKK)*FB(KKK, M)+D1(III)

DO 1210 1II =1, 3

FEFB(III)
FEFA (1)
FEFA(2)
FEFA (3)
FEFA (1)

o un

= D1(III)~D(III)

-FA(1, M)-FEFB(1)

-FA (2, M)-FEFB(2)
—~FEFB(3)~-FEFB (2) ¥DL-FA(3, M)
FEFA (1) +ALPHA*E*AR (M) *TEM (M)

PLFR5560
PLFR5570
PLFR5580
PLFR5590
PLFR5600
PLFR5610
PLFR5620
PLFR5630
PLFR5640
PLFR5650
PLFR5660
PLFR5670

8¢¢



1220

1230

1240

1250

1260

FEFB(1) = FEFB(1)+ALPHA*E*AR(M) *TEM (M)
TRANSPOSE R

T = R(2, 1)

R(2, 1) R(1, 2)

R(1, 2) T

JN = MI(2, M)

JF = MI(1, M)
TRANSPOSE H

H(3, 2) = 0.

H(2, 3) = DL

([

FA(M) = FA(M) + KBB *# (R TR * JL(JN) - H TR * R TR * JL(JF))

CALL MLT3(BB, 1, H, 1, R, 1)

CALL MLT1(B, 2, BB, 1, JL, JF)

CALL MLT1(B, 1, R, 1, JL, JN)

DO 1220 I =1, 3

KBA(I, 1) = B(I, 1)-B(I, 2)

CALL MLT1(B, 1, KBB, 1, KBA, 1)

FB(M) = FB(M) + H % KBB * (R TR ¥ ————=—em——e———
H(3, 2) = DL :
H(2, 3) = 0. .

CALL MLT1(B, 2, H, 1, B, 1)

DO 1230 I = 1, 3

FEFB(I) = FEFB(I)+B(I, 1)

FEFA(I) = FEFA(I)-B(I, 2)

KK = MSRA (M) ~2

CALL ITER1(KK, FEFA, SLPA, CONA, NMM, C)
JJ = MSRB(M)-2

CALL ITER2(JJ, FEFB, SLPB, CONB, NMM, C)
CONTINUE

ITER = ITER+1

WRITE (JWT,1250) ITER

FORMAT (///' ITERATION NO.', I8)

DO 1260 M = 1, NM

WRITE (JWT,1520) M, C(1, M), C(2, M)
CONTINUE

PLFR5680
PLFR5690
PLFR5700
PLFR5710
PLFR5720
PLFR5730
PLFR5740
PLFR5750
PLFR5760
PLFR5770
PLFR5780
PLFR5790
PLFR5800
PLFR5810
PLFR5820
PLFR5830
PLFR5840
PLFR5850
PLFR5860
PLFR5870
PLFR5880
PLFR5890
PLFR5900
PLFR5910
PLFR5920
PLFR5930

PLFR5940

PLFR5950
PLFR5960
PLFR5970
PLFR5980
PLFR5990

'PLFR6000

PLFR6010
PLFR6020
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Cc
C

c

IF (ITER .LT. 12) GO TO 1280
WRITE (JWT,1270)

PLFR6030
PLFR6040

1270 FORMAT (//' ALLOWABLE ITERATIONS EXCEEDED ANALYSIS DOES NOT CONVERPLFRGOSO

1280

1290

1300

1310

1320

6GE , USE STIFFER CONNECTIONS')
GO TO 1410
IF (NMM .GT. 0) GO TO 710
NMM=0 ITERATIONS COMPLETED
CALCULATE FINAL MEMBER END FORCES
VOL = 0. _
WRITE (JWT,1650) (LDTYP(LDG, I), I = 1, 80)
WRITE JOINT DISPLACEMENTS
WRITE (JWT,1700) HDG
WRITE (JWT,1710)
DO 1300 L = 1, NJ
WRITE (JWT,1670) L, (JL(J, L), J = 1, 3)
CALCULATE MEMBER END FORCES
WRITE (JWT,1720)
DO 1350 M = 1, NM
CALL ROT(CJ, MI)
CALL SEMPL (AR, XI, C)

D(1) = 0. ‘

D(2) = (6.*E*XI(M)/DL**2*(C(1, M)+2.*E¥*XI(M)*C(1,
EDSTIF*FA(3, M)

D(3) = ((-2.*%E*XI(M)*C(1, M)/DL)/DSTIF)*FA(3, M)
DO 1310 III = 1, 3

D1(III) = 0.

DO 1310 KKK = 1, 3

D1(III) = —KBB(III, KKK)*FB(KKK M)+D1(III)

DO 1320 III = 1, 3

FEFB(III) = D1(III)-D(III)

FEFA(1) = -FA(1, M)-FEFB(1)

FEFA(2) = -FA(2, M)-FEFB(2)

FEFA(3) = -FEFB(3)-FEFB(2)*DL-FA(3, M)
FEFA(1) = FEFA(1)+ALPHA*E*AR (M) *TEM (M)
FEFB(1) = FEFB(1)+ALPHA*E*AR (M) *TEM (M)

PLFR6060
PLFR6070
PLFR6080
PLFR6090
PLFR6100
PLFR6110
PLFR6120
PLFR6130
PLFR6140

PLFR6150 °

PLFR6160
PLFR6170
PLFR6180
PLFR6190
PLFR6200
PLFR6210
PLFR6220
PLFR6230

M)*C(2, M)/DL))/PLFR6240

PLFR6250
PLFR6260
PLFR6270

PLFR6280

PLFR6290
PLFR6300
PLFR6310
PLFR6320
PLFR6330
PLFR6340
PLFR6350
PLFR6360
PLFR6370

0€e



T = R(2, 1) ‘ PLFR6380

R(2, 1) = R(1, 2) , PLFR6390
R(1, 2) =T PLFRG6400
IF (LDG .EQ. 1) VOL = VOL+DL*AR (M) © PLFR6410
JN = MI(2, M) ~ PLFR6420
JF = MI(1, M) PLFR6430
TRANSPOSE H PLFR6440
H(3, 2) = 0. . PLFR6450
H(2, 3) = DL PLFR6460
FA(M)=FA (M) +KBB* (R TR *JL(JN)- H TR * R TR * JL(JF)) PLFR6470
CALL MLT3 (BB, 1, H, 1, R, 1) PLFR6480
CALL MLT1(B, 2, BB, 1, JL, JF) PLFR6490
CALL MLT1(B, 1, R, 1, JL, JN) PLFR6500
DO 1330 I = 1, 3 PLFR6510
1330 KBA(I, 1) = B(I, 1)-B(I, 2) PLFR6520
CALL MLT1(B, 1, KBB, 1, KBA, 1) PLFR6530
H(3, 2) = DL PLFR6540
H(2, 3) = 0. ' PLFR6550
CALL MLT1(B, 2, H, 1, B, 1) PLFR6560
DO 1340 I =1, 3 ; PLFR6570
FB(I, M) = FEFB(I)+B(I, 1) PLFR6580
1340 FA(I, M) = FEFA(I)-B(I, 2) PLFR6590
FA(3, M) = FA(3, M)/12. PLFR6600
FB(3, M) = FB(3, M)/12. PLFR6610
1350 WRITE (JWT,1730) M, (FA(I, M), I =1, 3), (FB(I, M), I =1, 3) PLFR6620
CALCULATE AND PRINT SUPPORT REACTIONS PLFR6630
WRITE (JWT,1740) _ PLFR6640
DO 1400 J = 1, NJ PLFR6650
IF (ISR(J) .EQ. 0) GO TO 1400 PLFR6660
DO 1360 IND = 1, 3 PLFR6670
1360 A(IND, 1, J) = 0. PLFR6680
IM = NMIJ(J) ' PLFR6690
DO 1390 I = 1, IM PLFR6700
M= JI(I, J) PLFR6710
IF (M .GE. 0) GO TO 1370 PLFR6720

1€c



1370

1380
1390

1400
1410

1420

1430
1440
1450
1460

1470
1480

1490
1500

M= -M

PLFR6730

REACTION + REACTION + R * FA(M) PLFR6740
CALL ROT (CJ, MI) PLFR6750
CALL MLT1(B, 1, R, 1, FA, M) PLFR6760
GO TO 1380 PLFR6770
REACTION = REACTION + R * FB(M) PLFR6780
CALL ROT(CJ, MI) PLFR6790
CALL MLT1(B, 1, R, 1, FB, M) PLFR6800
DO 1390 IND = 1, 3 . PLFR6810
A(IND, 1, J) = A(IND, 1, J)+B(IND, 1) PLFR6820
WRITE (JWT,1670) J, (A(IND, 1, J), IND = 1, 3) PLFR6830
CONTINUE PLFR6840
CONTINUE PLFR6850
LDG = LDG+1 PLFR6860
READ (JRD,1450,END=1440) (LDTYP(LDG, I), I = 1, 80) PLFR6870
DO 1420 I = 1, 80 _ PLFR6880
IF (LDTYP(LDG, I) .NE. INPT(1)) GO TO 540 PLFR6890
CONTINUE PLFR6900
WS = VOL*3.4/12000. PLFR6910
WRITE (JWT,1750) VOL, WS PLEFR6920
WRITE (JWT,1760) PLFR6930
RETURN PLFR6940
WRITE (JWT,1770) PLFR6950
CALL EXIT PLFR6960
FORMAT (80A1) PLFR6970
FORMAT (I6, ' MEMBERS', I4, ' JOINTS. MODULUS OF ELASTICITY =', PLFR6980
§F9.1, ' (KSI)'//' THERMAL EXPANSION COEFFICIENT (FOR CALC OF TEMPPLFR6990
&€ STRESS)- ', F10.7, //) PLFR7000
FORMAT (///' JOINT COORDINATES (FT)'//' JOINT X COORD YPLFR7010
& COORD RELEASES SPEC DISPL'//) PLFR7020
FORMAT (I6, 2F12.3, ' SUPPORT', 8X3F10.3) PLFR7030
FORMAT (I6, 2F12.3, ' SUPPORT', 6XAl) PLFR7040
FORMAT (//' MEMBER INFORMATION'//' MEMBER START END PLFR7050
EAREA (SQ IN) IXX (IN*%*4) CONNECTION A END CONNECTION B END PLFR7060
¢ TEMPERATURE'//) PLFR7070

cee



1510 FORMAT (//' CONNECTION INFORMATION'//' MEMBER FLEXIBILITY A ENDPLFR7080

§ FLEXIBILITY B END'//) PLFR7090
1520 FORMAT (I8, F20.8, F20.8) PLFR7100
1530 FORMAT (318, 2F1u.2, 8XA10, 9XA10, 9%, F10.1) PLFR7110
1540 FORMAT (I6, 6F12.3) PLFR7120
1550 FORMAT ('1'/80A1) PLFR7130
1560 FORMAT (///'NON-ZEROJOINTLOADS'//' JOINT PX(KIPS) PY(KIPS) MOMPLFR7140

& ENTKIPS)'//) PLFR7150
1570 FORMAT (I10) ' PLFR7160
1580 FORMAT (80A1) PLFR7170
1590 FORMAT (I6, ' MEMBERS', I4, ' JOINTS. MODULUS OF ELASTICITY =', PLFR7180

€F9.1, ' (KSI)'//' THERMAL EXPANSION COEFFICIENT (FOR CALC OF TEMPPLFR7190

& STRESS)- ', F10.7, //) PLFR7200
1600 FORMAT (///' JOINT COORDINATES (FT)'//%v JOINT X COORD YPLFR7210

& COORD RELEASES SPEC DISPL'//) PLFR7220
1610 FORMAT (I6, 2F12.3, ' SUPPORT', 8X3F10.3) PLFR7230
1620 FORMAT (I6, 2F12.3, ! SUPPORT', 6XAlU). PLFR7240
1630 FORMAT (//' MEMBER INFORMATION'//' MEMBER START END ARPLFR7250

§EA (SQ IN) IXX (IN**4) PINNED ENDS TEMPERATURE' //) PLFR7260
1640 FORMAT (318, 2F14.2, 9XAl4, F10.1) ; PLFR7270
1650 FORMAT ('1'/80A1) PLFR7280
1660 FORMAT (///' NON-ZERO JOINT LOADS'//' JOINT PX (KIPS) PY (KIPLFR7290

§PS) MOM (FT KIPS)'//) PLFR7300
1670 FORMAT (I6, 6F12.3) PLFR7310
1680 FORMAT (///' NON-ZERO MEMBER LOADS'//' MEMBER LOAD TYPE HORPLFR7320

§IZ VERTICAL DIST FROM START MEMBER'//) PLFR7330
1690 FORMAT (I5, 10XA4, 3F10.2) PLFR7340
1700 FORMAT (//1X20A4, //' RESULTS') PLFR7350
1710 FORMAT (//' JOINT DISPLACEMENTS'//' JOINT X Y PLFR7360

4 ROTATION'//) PLFR7370

1720 FORMAT (///' MEMBER END FORCES'//' MEMBER', 16X' START', 25X' ENPLFR7380
§D'//11X'AXIAL', 6X'SHEAR', 5X'MOMENT', 6X'AXIAL', 6X'SHEAR', 6X'MOPLFR7390
EMENT'//) PLFR7400

1730 FORMAT (I6, 6F11.3) PLFR7410

1740 FORMAT (////' SUPPORT REACTIONS'//' SUPPORT HORIZONTAL VERTIPLFR7420

€ee



PRONCEPNS!

€CAL  MOMENT'//) PLFR7430
1750 FORMAT (//' TOTAL VOLUMN OF MEMBERS IN FRAME'/' IS', F15.1, ' CUPLFR74L40
EBIC IN'/' WEIGHT IF FRAME IS:'/!' STEEL - ', F10.3, ' KIPS'PLFR7450
§) PLFR7460
1760 FORMAT (//' UNITS: DISTANCES = FT, ROTATIONS = RADIANS, '//!' PLFR7470
g FORCES = KIPS, MOMENTS = FT K, CROSS SECTIONAL DIMENSIONS'PLFR7480
&//" = INCHES'/'1") PLFR7490
1770 FORMAT (///'1 INPUT ERROR ON DATA CARD', I4, ',CHECK INPUT') PLFR7500
END PLFR7510
*****************************************************************SEMPOO'] 0

, SEMP0020

SUBROUTINE SEMPL SEMP0030

SEMPO040
*****************************************************************SEMPOOSO
SUBROUTINE SEMPL (AR, XI, C) SEMP0060
REAL KBB(3, 3), KBA(3, 3) _ SEMP0070
COMMON E, M, DL/SPL/KBB, DSTIF SEMP0080
DIMENSION AR(1), XI(1) SEMP0090
DIMENSION C(2, 1) SEMP0100
DSTIF = 0. ; SEMP0110
DSTIF = DSTIF+1.+4 . *E*XI(M)/DL*(C(1, M)+C(2, M)+3.*E*XI (M)/DL* (C(1SEMP0120

&, M)y*C(2, M))) ' SEMP0130
DO 10 I =1, 3 SEMP0O140
po 10 J =1, 3 SEMP0150

10 KBB(I, J) = 0. SEMP0 160
KBB(1, 1) = AR(M)*E/DL SEMP0170
KBB(2, 2) = 12,%E*XI(M)/DL**3 SEMP0180
KBB(3, 3) = U4 ,*E*XI(M)/DL SEMP0190
KBB(3, 2) = =6.*E*XI(M)/DL*%2 : SEMP0200
KBB(2, 2) = KBB(2, 2)*(1.+E*XI(M)*C(1, M)/DL+E*XI(M)*C(2, M)/DL)/ SEMP0210
EDSTIF SEMP0220
KBB(3, 3) = KBB(3, 3)*(1.+3.*E*XI(M)*C(1, M)/DL)/DSTIF SEMP0230
KBB(3, 2) = KBB(3, 2)*(1.+2.*E*XI(M)*C(1, M)/DL)/DSTIF SEMP0O240
KBB(2, 3) = KBB(3, 2) SEMP0250
RETURN SEMP0260

vee



QOO0

10

20

30

4o

50
60

END

*****************************************************************

SUBROUTINE CNVRT

SEMP0270
CVRT0010
CVRT0020
CVRTO0030
CVRT0040

*****************************************************************CVRTOOSO
SUBROUTINE CNVRT (NN, I1, I2)

INTEGER*2 INP(80), IN(5)/'0', 9%, ", 7, + 1  t_1y
COMMON E, M, DL, JRD, JWT, FN(14), INP

J = 10%I2+1

IFL = I2-I1+NN

=
i
(en]

0 TO 50

IF (INP(J)

(J)
K/10.%*L,

.NE.

.LT.

10

IN(3)) GO TO 20

IN(1) .OR. INP(J) .GT. IN(2)) GO TO 30

IJ = INP(J)/256+15

L = L+1

FK = FK+IJ*10.**L/10.

GO TO 50

IF (INP(J)

FK = -FK
GO TO 50

IF (INP(J)

K=20

GO TO 50

CONTINUE

FN(IFL) =

.NE.

+EQ.

FK*K
IFL = IFL-1
IF (NN .NE.

IN(5)) GO TO 40

IN(4)) GO TO 50

1) GO TO 70

CVRT0060
CVRT0070
CVRTO0080
CVRT0090
CVRTO0100
CVRT0110
CVRT0120
CVRT0130
CVRTO1T40
CVRTO0150
CVRT0160
CVRTO0170
CVRT0180
CVRT0190
CVRT0200
CVRTO0210
CVRTO0220
CVRTO0230
CVRTO240
CVRTQ0250
CVRTO0260
CVRTO0270
CVRT0280
CVRT0290
CVRTO0300
CVRTO0310
CVRT0320
CVRT0330
CVRTO0340

GEC



QOO0

70
80

10
20

30

4o

IF (IFL .GT. 0) GO TO 10
GO TO 80 ,

IF (IFL .GT. 6) GO TO 10
CONTINUE

RETURN

END

CVRT0350
CVRTO0360
CVRTO0370
CVRT0380
CVRT0390
CVRTO0400

ok sk ok ok ok ok ok s ok sk ok sk ks ol sk R Rk R R SRR sk R ok sk ok stk ok sk sk R kbR ok kR R R CENC0 01 0

SUBROUTINE GENCUR

GENC0020
GENC0030
GENCO0040

*****************************************************************GENCOOSO

SUBROUTINE GENCUR(KK, JJ, C, SLPA, SLPB, CONA, CONB)
COMMON E, M, DL, JRD, JWT, FN(14)

DIMENSION SLPA(1), SLPB(1), CONA(1), CONB(1)
INTEGER*2 INP (80)

DIMENSION C(2, 1)

P1 = FN(7)
P2 = FN(8)
P3 = FN(9)
P4 = FN(10)

C(1, M) = 10.*%10.%%25

GO TO 120

C(1, M) = FN(7)

GO TO 120

DOUBLE WEB ANGLE CONNECTIONS

CONA (M) = (1./P1%*2,4)*(P2**1,6)%(1./P3%%_ 23)
SLPA(M) = 3.66*CONA(M)*.0001

c(1, M) = SLPA(M)

GO TO 120

SINGLE WEB ANGLE CONNECTIONS

CONA(M) = (1./P1#*%2,4)%(1./P2%%1,.81) % (P3*%*,15)
SLPA(M) = 4,.28%CONA(M)*.001

C(1, M) = SLPA(M)

GO TO 120

Go TO (10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110), KK

GENCO0060
GENCO0070
GENCO0080
GENCO0090
GENCO0100
GENCO0110
GENCO0120
GENCO0130

. GENCO140

GENCO0150
GENCO0160
GENCO0170
GENCO0180
GENCO0190
GENC0200
GENC0210
GENC0220
GENC0230
GENCO0240
GENC0250
GENC0260
GENC0270
GENC0280
GENCO0290
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50

60

70

80

90

100

110
120

HEADER PLATE CONNECTIONS

CONA (M) =
SLPA (M) =
c(1, M) =
GO TO 120

(1./P1%%2 ,3) % (P2%*1.6) % (1./P3*%1,6)*(1./PlU*%*_5)
5.1*%CONA(M)*.00001
SLPA (M)

TOP AND SEAT ANGLE CONNECTIONS

CONA (M) =
SLPA(M) =
c(1, M) =
GO TO 120
END PLATE
CONA (M)
SLPA (M)
c(1, M)
GO TO 120
END PLATE
CONA (M) =
SLPA (M) =
c(1, M) =
GO TO 120

ol

(1./P1%% 5)* (1, /P2%*1,5)%(1,/P3*%*1.1) % (1./PlU**, 7)
8.46*CONA (M) *.0001
SLPA (M)

CONNECTIONS WITH NO STIFFNERS
(1./P1%*2 U)* (1./P2%* U)*(1,/P3%*%1,1) °
1.83*%CONA (M) *,001

SLPA (M)

CONNECTIONS WITH STIFFNERS
(1./P1**¥2 4)*(1,/P2%*,6)
1.79*%CONA (M) *.001

SLPA (M)

T- STUB CONNECTIONS

CONA (M) = (1./P1%*1,5)%(1./P2%* 5)%(1./P3%*1,1)*(1./PlU**_7)
SLPA(M) = 2.11*%*CONA(M)*.0001
c(1, M) = SLPA(M)
GO TO 120
INSERT WELDED TOP PLATE AND SEAT ANGLE CONNECTIONS HERE
CONA (M) = 1.
SLPA(M) = 1.
c(1, M) = SLPA(M)
GO TO 120
c(1, M) = 0.
CONTINUE
P5 = FN(11)
P6 = FN(12)
P7 = FN(13)

GENCO0300
GENCO0310
GENCO0320
GENCO0330
GENCO340
GENCO0350
GENCO0360
GENCO0370
GENCO0380
GENCO0390
GENCO400
GENCO410
GENCO420
GENCO0430
GENCO440
GENCO0450
GENCO0460
GENCO0470
GENCO0480
GENCO490
GENCO0500
GENC0510
GENC0520
GENCO0530
GENCO0540
GENCO0550
GENCO0560
GENCO0570
GENCO0580
GENCO0590
GENCO0600
GENCO0610
GENCO0620
GENC0630
GENCO0640

LET



130
140
150

160
170
180
190

200

210

c(2, M) =
GO TO 240
c(2, M) =
GO TO 240
CONB (M)
SLPB (M)
c(2, M)
GO TO 24
CONB (M)
SLPB (M)
C(2, M)
GO TO 24
CONB (M)
SLPB (M)
c(2, M
GO TO 24
CONB (M)
SLPB (M)
c(2, M)
GO TO 24
CONB (M)
SLPB (M)
c(2, M)
GO TO 24
CONB (M)
SLPB (M)
c(2, M)
GO TO 24
CONB (M)
SLPB (M)
c(2, M)
GO TO 240

IThhol ol ol ol lol l ol Il

P8 = FN(14)
GO TO (130, 140, 150,

10.%710.%%25
FN(11)

(1./P5*%2 4)*(P6**1,6)*(1,/P7*%,23)
3.66*CONB(M)*,0001
SLPB (M)

(1./P5%%2 4)*(1, /P6**1 81) ¥ (P7%%, 15)
4.28*CONB(M)*.001
SLPB (M)

(1./P5**2 3)*(P6**1.6)*(1./P7*%1.6)*(1./P8%*_5)
5.1*CONB (M) *.,00001
SLPB (M)

(1./P5%* 5) % (1, /P6**1,5)%(1,/P7%*1, 1)*(1 /P8¥% 7)
8.46*%CONB (M) *.0001
SLPB (M)

(1./P5%%2 L)% (1,/Pe** 4)*(1./P7*%1,.1)
1.83*CONB (M) *.001
SLPB (M)

(1./P5*%2 ,4)*(1,./P6**.6)
1.79%CONB (M) *.001
SLPB (M)

(1./P5**71.5)%(1./P6** 5)*(1,/P7*%1,1)*(1.,/P8%*_,7)
2.171*CONB (M) *.0001
SLPB (M)

INSERT WELDED TOP PLATE AND SEAT ANGLE CONNECTIONS HERE

160, 170, 180, 190, 200, 210, 220, 230), JJ

GENCO0650
GENC0660
GENCO0670
GENC0680
GENC0690
GENC0700
GENCO0710
GENCO0720
GENCO0730
GENCO740
GENCO0750
GENCO0760
GENCO0770
GENC0780
GENCO0790
GENCO0800
GENC0810
GENCO0820
GENCO0830
GENCO840
GENCO0850
GENCO0860
GENCO0870
GENCO0880
GENC0890
GENCO09500
GENC0910
GENCO0920
GENC0930
GENCO0940
GENCO0950
GENCO0960
GENC0970
GENC0980
GENC0990
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aaooaon

C

C

C

220

230
240

10

20

30

CONB (M)
SLPB (M)
c(2, M)
GO TO 24
c(2, M)

CONTINUE

RETURN
END

10
1.
SLPB (M)

hoi i

0.

GENC1000
GENC1010
GENC10290
GENC1030
GENC1040

-GENC1050

GENC1060
GENC1070

*****************************************************************ITEROO10

SUBROUTINE ITERAT

ITER0020
ITERO030
ITEROOQO40

*****************************************************************ITEROOSO

SUBROUTINE ITERAT -

COMMON E, M

DIMENSION C(2, 1)

ENTRY ITER? (KK, FEFA, SLPA, CONA, NMM, C)
DIMENSION SLPA(1), CONA(1)

DIMENSION FEFA(3)

ABFA = ABS(FEFA(3))

PHIOA = ABFA*SLPA(M)

PHI1A = 0.

Go 10 (10, 20, 30, 40, 50, 60, 70, 80), KK

DOUBLE WEB ANGLE CONNECTIONS

PHITA =

PHI1A+3.66% (CONA (M) *ABFA) *.0001+1. 15% (CONA (M) *ABFA) % %3

€.0000017+4,.57* (CONA (M) *ABFA) **5%,00000001

GO TO 90

SINGLE WEB ANGLE CONNECTIONS

PHI1A =
E.T*%0) 4 (
GO TO 90

PHITA+4.28% (CONA (M) *ABFA) *.001+(1.45% (CONA (M) *ABFA) **3) * (
1.51* (CONA (M) *ABFA) *¥*5) ¥ (, 1%%16)

HEADER PLATE CONNECTIONS

PHITA =
£€.0000000
GO TO 90

PHI1A+5.1% (CONA (M) *ABFA) *.00001+6 . 2% (CONA (M) *ABFA) *% 3%
001+2.4* (CONA (M) *ABFA) #*5%,0000000000001

ITER0OQ60
ITEROO70
ITERO08O
ITERO090
ITER0100
ITER0110
ITER0120
ITERO0130
ITEROT40
ITERO150
ITERO160
ITER0170
ITER0180
ITERO190
ITER0200
ITER0210
ITER0220
ITER0230
ITEROZ240
ITER0250
ITER0260
ITERO270
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TOP AND SEAT ANGLE CONNECTIONS
40 PHITA = PHITA+8.46%* (CONA(M)*ABFA)*.0001+1.01% (CONA (M) *ABFA) **3%*
§.0001+1.24% (CONA (M) *ABFA) **5%,00000001
GO TO 90
END PLATE CONNECTIONS WITH NO STIFFNERS :
50 PHITA = PHI1TA+1.83% (CONA(M)*ABFA)*.001-1.04%* (CONA (M) *ABFA) **3%
£§.0001+6.38* (CONA (M) *ABFA) *¥*¥5%,000001
GO TO 90
END PLATE CONNECTIONS WITH STIFFNERS
60 PHITA = PHITA+1.79% (CONA(M)*ABFA)*.001+1.76% (CONA (M) *ABFA) *% 3%
£€.0007+2.04* (CONA (M) *ABFA) *¥*5% 0001
GO TO 90
T-STUB CONNECTIONS
70 PHITA = PHITA+2.11% (CONA(M)*ABFA)*,0001+6.2% (CONA (M) *ABFA) **3%
£.000001-7.6% (CONA (M) *ABFA) **5%,000000001
GO TO 90
INSERT WELDED TOP PLATE AND SEAT ANGLE CONNECTIONS HERE
80 CONTINUE
GO TO 90
90 DELPHI = PHI1A~-PHIOA
TERPHI = DELPHI/PHITA
IF (ABS(TERPHI) .LT. .05) GO TO 190

SLPA(M) = (PHIOA+.S5*DELPHI)/ABFA
C(1, M) = SLPA(M)

NMM = 1

RETURN

ENTRY ITER2(JJ, FEFB, SLPB, CONB, NMM, C)
DIMENSION SLPB(1), CONB (1)
DIMENSION FEFB(3)
ABFB = ABS(FEFB(3))
PHIOB = ABFB*SLPB (M)
PHI1TB = 0.
Go To0 (100, 110, 120, 130, 140, 150, 160, 170), JJ
100 PHITB = PHI1B+3.66% (CONB (M) *ABFB) *.0001+1.15% (CONB (M) ¥ABFB) ** 3%
£€.000001+4.57* (CONB (M) *ABFB) **5%_,00000001

ITER0280
ITER0290
ITERO300
ITERO310
ITER0320
ITERO330
ITERO340
ITER0350
ITER0360
ITERO0370
ITER0380
ITERO390
ITERO400
ITERO410
ITERO420
ITERO430
ITERO440
ITERO450
ITEROHU60
ITERO470
ITERO480
ITERO490
ITERO500
ITERO510
ITERO520
ITERO530
ITERO540
ITER0550
ITER0560
ITERO570
ITERO580
ITER0580
ITER0600
ITER0610
ITER0620
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GO TO 180

110 PHITB = PHI1TB+4,28% (CONB(M)*ABFB)*.001+(1.45% (CONB (M) *ABFB) *%3) * (

E.1*%%9)+(1,51% (CONB (M) *ABFB) **5) ¥(,1%%16)
GO TO 180
120 PHI1B = PHI1B+5.1% (CONB(M)*ABFB)*.00001+6.2% (CONB (M) *ABFB) **3%
£.0000000001+2.4% (CONB (M) *ABFB) **5%_,0000000000001
GO TO 180
130 PHITB = PHI1B+8.46% (CONB (M) *ABFB) *,0001+1.01% (CONB (M) *ABFB) **3%
£.0001+1.24% (CONB (M) *ABFB) **5%_ 00000001
GO TO 180 '
140 PHITB = PHI1B+1.83%(CONB (M)*ABFB)*.001~-1.04% (CONB (M) *ABFB) **3%
£.0001+6.38% (CONB (M) *ABFB) ®**%5% _ 000001
GO TO 180
150 PHI1TB = PHITB+1.79% (CONB (M) *ABEB)*.001+1.76% (CONB (M) *ABFB) ** 3%
£.0001+2.04% (CONB (M) *ABFB) **5% 0001
GO TO 180 ,
160 PHI1TB = PHI1TB+2.11% (CONB (M) *ABFB)*.0001+6.2% (CONB (M) *ABFB) %% 3%
£.000001-7.6* (CONB (M) *ABFRB) **%5%_, 000000001
GO TO 180
INSERT WELDED TOP PLATE AND SEAT ANGLE CONNECTIONS HERE -
170 CONTINUE
GO TO 180
180 DELPHI = PHI1B-PHIOB
TERPHI = DELPHI/PHI1B
IF (ABS(TERPHI) .LT. .05) GO TO 190
SLPB (M) (PHIOB+.5*DELPHI) /ABFB
c(2, M) SLPB (M) :
NMM = 1
190 CONTINUE
RETURN
END

i

ITERO630
ITERO640
ITER0650
ITER0660
ITER0670
ITER0680
ITER0690
ITER0700
ITERO710
ITERO0720
ITERO730
ITERO740
ITERO750
ITERO760
ITERO770
ITERO780
ITER0790
ITERO800
ITER0810
ITER0820
ITERO830
ITERO840
ITERO850
ITER0860
ITER0870
ITERO880
ITERO890
ITER0900
ITERO910
ITER0920
ITER0930

sk o ok ook sk ok st ok ok ke sk ok ok ok ok ok Rk sk ook sk ok ok sk ok ok kR sk ok ok ok o ok ok ke s sk okok s sk sk ok sl ok kR sk ok Rk skl kK MTLT 1 001 0

SUBROUTINE MLT1

MLT10020
MLT10030
MLT10040
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*****************************************************************MLT10050

SUBROUTINE MLT1(C, NC, A, NA, B, NB)
DIMENSION A (3,
DO 20 I =1,
SUM = 0.
DO 10 K
SUM = SUM+A(I,
C(I, NC)

RETURN
END

1), C(3,

K, NA)*B(K, NB)

MLT10060
MLT10070
MLT10080
MLT10090
MLT10100
MLT10110
MLT10120
MLT10130
MLT10140

*****************************************************************MLT30010

3 ok ok sk sk ok ok sl ok ke sk sk sk ok ok sk ok sk ok ok ok sk sk sk sk ok sk ok ok ok sk sk sk sk sk ok ok ok ok sl ok sk sk sk ok sk sk sk sk ok sk ok sk sk ok sk ok ok ok ofe s ok e

SUBROUTINE MLT3(C, NC, A, NA, B, NB)
DIMENSION A(3,

DO 20 T
DO 20 J

SUM = 0.
DO 10 K
SUM = SUM+
c(r, J, NC

RETURN
END

SUBROUTINE MLT3

1), B(3, 1), C(3,

(I

NA) *B(K, J, NB)

MLT30020
MLT30030
MLT30040
MLT30050
MLT30060
MLT30070
MLT30080
MLT30090
MLT30100
MLT30110
MLT30120
MLT30130
MLT30140
MLT30150

*****************************************************************ROT 0010

SUBROUTINE ROT

ROT 0020
ROT 0030
ROT 0040

*****************************************************************ROT 0050

SUBROUTINE ROT(CJ, MI)
REAL KBB(3,
COMMON E, M, DL/RT/COSA, SINA, R(3, 3), H(3, 3)
INTEGER*2 MI

DIMENSION CJ(2,

ROT 0060
ROT 0070
ROT 0080
ROT 0090
ROT 0100
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10

20

30

10

THIS SUBROUTINE BUILDS THE ROTATION MATRIX FOR MEMBER M

ROT 0110

I = MI(1, M) ROT 0120
Jd = MI(2, M) ROT 0130
X =CcJ(1, J)-CcJ(1, I) ROT 0140
Y = CJ(2, J)-CJ(2, I) ROT 0150
DL = SQRT (X*X+Y*Y) ROT 0160
COSA = X/DL ROT 0170
SINA = Y/DL ROT 0180
R(1, 1) = cosa ROT 0190
R(2, 1) = SINA ROT 0200
X = ABS(COSA) ROT 0210
R(2, 2) = X ROT 0220
IF (X) 20, 10, 20 ROT 0230
R(1, 2) = -1. ROT 0240
IF (SINA .LT. 0.) R(1, 2) = 1. ROT 0250
COSA = 1. ROT 0260
R(3, 3) = 1. ROT 0270
GO TO 30 ROT 0280
R(1, 2) = -COSA*SINA/X . ROT 0290
R(3, 3) = COSA/X ROT 0300
H(3, 2) = DL ROT 0310
RETURN ROT 0320
END ROT 0330
*****************************************************************TRSPOO10
TRSP0020

SUBROUTINE TRANSP TRSP0030

TRSPOO4O
*****************************************************************TRSPOOS0
SUBROUTINE TRANSP (A, B) TRSP0060
THIS SUBROUTINE INSERTS A TRANSPOSE INTO B(3%3) TRSP0O070
DIMENSION A(3, 3), B(3, 3) TRSP0080
DO 10 I =1, 3 TRSP0O090Q
DO 10 J =1, 3 TRSP0O100
B(J, I) = A(I, J) TRSP0110
RETURN TRSP0120
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END ‘ TRSP0130

C *****************************************************************INV

C ‘ INV

ol ‘SUBROUTINE INV INV

o : INV

C ***********************,*****************'*************************INV

SUBROUTINE INV (A, IJ) - INV

DIMENSION A(3, 3, 1) INV

DO 50 N = 1, 3 S INV

D = A(N, N, IJ) » . INV

DO 20 J = 1, 3 S | INV

IF (D .GE. 1.E50 .AND. A(N, J, IJ) .LE. 1.E50) GO TO 10 INV

A(N, J, 1IJ) = -A(N, J, 1IJ)/D INV

GO TO 20 L INV

10 A(N, J, IJ) = 0. : INV

20 CONTINUE » INV

DO 40 I =1, 3 | INV

IF. (N .EQ. I) GO TO 40 R INV

DO 30 J =1, 3 INV

IF (N .EQ. J) GO TO 30 INV

A(I, J, 1J) = A(I, J, IJ)+A(I, N, IJ)*aA(N, J, I1J) - INV

30 CONTINUE INV

40 A(I, N, IJ) = A(I, N, IJ)/D § INV

A(N, N, 1IJ) = 1./D INV

50 CONTINUE INV

RETURN INV

END | INV
*REOF %k

0010
0020
0030
0040
0050
0060
0070
0080
0090

0100

0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
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