THE UNIVERSITY OF MANITOBA

ANALYSIS OF FRAMES WITH FLEXIBLE
 CONNECTIONS

by

M. JOHN FRYE

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CIVIL ENGINEERING

WINNIPEG, MANITOBA
OCTOBER, 1971

ACKNOWLEDGEMENTS

This investigation was supported financially by the Canadian steel Industries Construction Council. In this respect, the author gratefully acknowledges Mr. S. G. Frost, Regional Engineer, Canadian Institute of Steel Construction. His interest in the project was greatly appreciated.

The author would like to express his sincere gratitude to his adviser, Dr. G. A. Morris, under whose guidance this thesis was prepared. His assistance and criticism have been invaluable.

The financial assistance of the National Research Council of Canada is greatfully acknowledged.

Finally to Miss Carol McQuarrie who typed the thesis, the author expresses his sincere thanks.

TABLE OF CONTENTS

Acknowledgements
Notation v
Chapter Page
1 INTRODUCTION 11.1 Object of study
1.2 Relationship to Previous Studies1
1.3 Assumptions and Limitations 6
1.4 Conventions Used 7
CLASSIFICATION AND BEHAVIOUR OF 10STRUCTURAL CONNECTIONS
2.1 Introduction 10
2.2 The Moment-Rotation Curve 11
2.3 Connection Description and Be- 13haviour
2.3.1 Double Web Angle Connections 13
2.3.2 Single Web Angle Connections 15
2.3.3 Header Plate Connections 17
2.3.4 Top and Seat Angle Con- 19nections
2.3.5 End Plate Connections 20
2.3.6 Welded Top Plate and Seat 21
Connections
2.3.7 T-Stub Connections 24
3 STANDARDIZATION OF MOMENT-ROTATION CURVES 26
3.1 Introduction 26
3.2 Standardization Procedure 28
3.3 Standardization Moment-Rotation Re- 31 lationship for Double Web Angle Connection
3.3.1 Parameters Affecting Moment- 31 Rotation Characteristics of Double Web Angle Connections
3.3.2 Calculation of Factor K 32

3.3 .3	Calculation of Standard	36
	Moment-Rotation Curve	38
3.3 .4	Accuracy of Standardization Procedure	38

4 FORCE DEFORMATION RELATIONSHIPS FOR A 41 MEMBERS
4.1 Introduction 41
4.2 Force-Deformation Relationships for 42

Continuous Elastic Members
4.3 Force-Deformation Relationships for 44 Members with Flexible Connections
4.4 Modified Stiffness Matrix for Plane 50 Frame Members With Connections at Ends Only
4.4.1 Modified Stiffness Matrix for 52 Member with Rigid End Connections
4.4.2 Modified Stiffness Matrix for 53

Member with Pinned Connections at. A and B Ends
4.5 Fixed-End-Forces for Member with 54
Flexible Connections
4.5.1 Fixed-End-Forces for Member 54 With Concentrated Load
4.5.2 Fixed-End-Forces for Member
with Uniformly Distributed
Load

5 IINEAR AND NON-IINEAR ANALYSIS PROCEDURES 63
5.1 Introduction 63
5.2 Linear Stiffness Formulation of 66

Structural Analysis
5.3 Non-Linear Structural Analysis Pro- 70 cedure

6 ANALYSIS PROCESS 77
6.1 Definition of Problem 77
6.2 Analysis Procedure 78
6.2.1 Initialization 78
6.2.2 Linear Analysis 79
Chapter Page
6.2.3 Termination Criteria 80
6.2.4 Modification Cycle 82
6.2.5 Program Output 82
7 APPLICATIONS OF THE ANALYSIS PROCESS 84
7.1 Introduction 84
7.2 Effect of Connection Deformations 84on Displacements and InternalForces
7.3 - Accuracy of Successive 100 Approximation Method
8 CONCLUSIONS AND SUGGESTIONS FOR FURTHER 116 STUDY
8.1 Conclusions 116
8.2 Suggestions for Further Study 117
List of References 120
Appendix A: Experimental Moment-Rotation Curves 124
Appendix B: Standardized Moment-Rotation Curves 174
Appendix C: Flow Diagram 196
Appendix D: User's Manual 200
Appendix E: Program Listing 210

NOTATION

A	= cross-sectional area of member
A_{2}	= "shear area" in direction 2
\dot{a}_{j}	= dimensionless exponent
c_{i}	$=$ constant
$\mathrm{C}_{\text {A }}$	$=$ bending deformation component for
	connection A
$\mathrm{C}_{\text {B }}$	```= bending deformation component for connection B```
D_{I}	$=$ joint displacement vector for joint I
E	= matrix defined by Eq. (4.18)
$\overline{\mathrm{E}}$	$=$ modulus of elasticity
F_{BB}	$=$ flexibility matrix at B for member $A B$
F_{K}	```= diagonal flexibility matrix for connection K```
\bar{G}	$=$ modulus of rigidity
G^{t}	= matrix defined by Eq. (4.16)
H	$=$ rotation transformation matrix
I	= identity matrix
$\overline{\mathrm{I}}$	$=$ moment of inertia
$\mathrm{K}_{\text {BB }}$	```= stiffness matrix at B for continuous elastic member AB```

K_{S}	$=$ structure stiffness matrix
$\mathrm{K}_{\mathrm{BB}}{ }^{\text {M }}$	$=$ modified stiffness matrix at B
L	$=$ length of member
λ	$=$ semi-rigid connection factor defined by
	Montforton and Wu
M	$=$ applied moment at a particular connection
m	$=$ number of size parameters that influence
	the moment-rotation relationships
P	$=$ joint force vector for all joints in the
	structure
\bar{P}_{I}	$=$ joint force vector at joint I
P_{J}	$=$ member load vector
P_{j}	= numerical values of connection parameters
Q	= matrix defined by Eq. (4.17)
$\mathrm{R}_{\text {BA }}$	$=$ member force vector at B for member $A B$
S	= matrix defined by Eq. (4.29)
$\mathrm{T}_{\text {AB }}$	$=$ force transformation matrix from B to A
$T_{A B}{ }^{t}$	= displacement transformation matrix from
	B to A
$\mathrm{U}_{\text {BA }}$	$=$ cantilever deflection at B for member $A B$
$\mathrm{U}_{\mathrm{BA}}{ }^{\mathrm{C}}$	$=$ connection distortion
$\mathrm{V}_{\mathrm{BA}}{ }^{\mathrm{M}}$	$=$ member distortion
$\mathrm{V}_{\mathrm{K}}^{\mathrm{C}}$	$=$ distortion vector for connection K
$\mathrm{V}_{\mathrm{BA}}^{\mathrm{E}}$	$\dot{=}$ elastic distortion of member $A B$ referred
	to B
W	= uniform distributed load

vii
$\phi \quad=$ connectional rotational deformation

CHAPTER I

INTRODUCTION

1.1 Object of Study

The high cost of structural steel framing connections, and their significant contribution to structural displacements have made the subject of framing connections a source of interest in recent times. While the connections constitute a small percentage of the total weight of a structure, they have a relatively high labour content and hence represent a substantial percentage of the total framing cost. Connection deformation is often responsible for a large proportion of the overall deflection of a structure. It is generally much more significant than axial deformation of members, which has been considered in most structural analysis computer programs for some time, or member shearing deformation which has often been considered. In the conventional analysis of steel structures, beam to column connections have normally been assumed to be either completely flexible or completely fixed. These assumptions are not consistent with actual structural behaviour, but have been used to simplify analysis. Methods
have been proposed for incorporating the effects of structural connections into the analysis procedure. Hówever, because of the large amount of calculation and time involved, these methods remained unattractive until the digital computer removed the burden of lengthy computations and allowed a return to the basic principles of structural analysis.

To incorporate the effects of connection deformation into a structural analysis computer program, it is first necessary to have available force-deformation information for the different types of connections in use. Secondly, this information must be put into a form which requires a minimum of computer storage. Finally, the connection characteristics must be incorporated into the member force-displacement relationships.

Based on these requirements, this study consists of three distinct phases.
(a) The assembly of all available experimentally obtained force-deformation information on the most commonly used connection types. The majority of the test data available are in the form of moment-rotation (M- ϕ) curves which relate the applied moment, M, at a particular connection to the corresponding rotational deformation, ϕ, which occurs at the connection.
(b) The standardization of the $M-\phi$ relationship for each connection type to minimize the amount of connection
information that must be stored.
(c) The generation of a structural analysis program which incorporates effects of connection deformation. Because of the non-linearity of the connection moment-rotation curve, the program must employ an iterative analysis procedure.

1.2 Relationship To Previous Studies

Since 1930, there has been considerable research aimed at determining the behaviour of structural connections. The original work was carried out simultaneously in Great Britain by C. Batho and H. C. Rowan (3)* and in the United States by J.C. Rathbun. (27) These tests were conducted to find the relationship between the moment applied to a connection, and the corresponding rotation between the elastic lines of the connected members. Since this original work, there has been extensive research on many of the connection types in use today. This work is summarized in Chapter 2. The availability of an increasing volume of connection information has made it possible to include the effects of flexible connections in the analysis of a structural framework.
J. F. Baker ${ }^{(1)}$ and J. C. Rathbun applied slope deflection and moment distribution methods to analyze frames with flexible or semi-rigid connections. C. Batho and H. C. Rowan presented a beam line method for analyzing semi-rigid

[^0]frames. G. R. Montforton and T. S. Wu ${ }^{(22)}$ incorporated the effects of flexible or semi-rigid connections into a stiffness analysis program. They assumed the approximate linear relationship of the form,
\[

$$
\begin{equation*}
\phi=M \lambda, \tag{1.1}
\end{equation*}
$$

\]

to adequately represent the connection moment-rotation behaviour in a frame with semi-rigid connections. In Eq. (1.1),
$\mathrm{M}=$ applied moment
$\lambda=$ relative rotation of elastic lines of connected members
λ is defined as a semi-rigid connection factor and represents the inverse of the slope of the assumed straight line portion of the moment-rotation curve shown in Fig. 1.1. Its magnitude depends on the type of connection. Montforton and Wu used the semi-rigid connection factor to modify the member stiffness matrix and the member fixed-end-forces. Their method, which depends on the approximate linear relationship between moment and rotation, is acceptable in the range where applied moment is proportional to the relative rotation of the beam and column. However, many connection types exhibit a non-linear behaviour even at working loads, and the procedure would give misleading results if applied to these connections.

In this study, the non-linear connection effects are considered by employing an iterative procedure involving repeated cycles of linear analysis. After each cycle, the

MOMENT-ROTATION CURVE FOR SEMI-RIGID CONNECTIONS AFTER MONTFORTON AND WU

FIG. 1.1
flexibilities are modified and the new connection flexibilities used to modify the member stiffness matrices and the member fixed-end-forces for the next analysis. The procedure continues until the rotation and moment calculated for each connection, in the linear analysis, satisfy the equation of the non-linear moment-rotation curve for the connection.

While in general the analysis procedure is applicable to any type of structure, in this study it has been implemented only for planer frames in which only the rotational deformation of the connection is considered.

1.3 Assumptions and Limitations

The assumptions employed, and the limitations of the analysis program developed in this study are:
(a) The effects of shear and axial load on connection deformation are ignored.
(b) The program is limited to the analysis of planer frames.
(c) All members are assumed to be prismatic and straight.
(d) Only statical loading in the form of concentrated or uniformly distributed loads can be accomodated.
(e) The program uses an "in-core" equation solver. Hence the size of the structure that can be analyzed may be limited by computer primary storage capacity. Appendix D
gives an indication of the size of structure that can be analyzed for a given core capacity.
(f) Possible buckling of individual members or portions of the structure is ignored.
(g) The effects of strain hardening are neglected.
(h) The material in the members is linearly elastic.
(i) It is assumed that the structural deflections are sufficiently small that they do not affect the geometry of the structure.
(j) The only cause of non-linear structural behaviour is the non-linear force-deformation characteristics of the connections.

1.4 Conventions Used

Matrix algebra techniques ${ }^{(20)}$ are employed throughout this study for all structural, analysis formulations. As illustrated in Fig. 1.2, the two types of coordinate systems used are:
(1) Global system - A single right hand coordinate system for the whole structure. All loads, joint displacements, reactions, and joint coordinates are expressed in the global system.
(2) Local system - Each member has associated with it a right hand local coordinate system whose X_{1} axis has the same direction as that assumed for the member, as illustrated for member $A B$ shown in Fig. 1.2. Member forces
and distortions are expressed in the local system.
Each member is assumed to have a direction from its A end to its B end. The X_{1} axis of the local system lies along the member axis, and has its positive direction from A to B.

Global Coordinate System COORDINATE SYSTEMS

FIG. I. 2

CLASSIFICATION AND BEHAVIOUR OF STRUCTURAL
 CONNECTIONS

In this chapter, structural connections are classified as to their behaviour. The moment-rotation diagram is discussed, and practical working definitions of rigid, semi-rigid, and simple connections are presented. The behaviour of the most commonly used structural connections is discussed.

2.1 Introduction

At one time, riveting predominated as the most common connecting medium in steel structures. Present trends, however, are to an increased use of welding and high strength bolting. While these terms reveal the method of connecting, they shed little light on the behaviour of the connection.

The CSA Standard S-16 1965 (36) and the AISC Specification of Steel Construction 1967 (37) recognized three types of connection behaviour:
(a) rigid framing
required for a theoretically flexible connection.
Conventional rigid and simple framing analysis procedures are not unduly difficult. However, as Ostrander has pointed out, the practical problems encountered in the manual analysis of frames with semi-rigid connections are numerous. Research is continually required to determine the degree of rigidity of each new type and size of connection. Methods are required to extrapolate test results and to develop simplified Iinearly elastic design procedures for connections which generally act inelastically even in the range of working loads. The recently released CSA Standard S-16 $1969^{(38)}$ omits reference to semi-rigid framing as a standard construction method, although semi-rigid connections may still be used under this standard.

The increasing volume of experimental connection data coupled with computer analysis procedures now makes it possible to consider the actual connection behaviour in the design and analysis of steel frames.

2.2 The Moment-Rotation Curve

The primary distortion of a connection is the rotational deformation caused by moment. Methods have been proposed for calculating the $M-\phi$ relationship for semi-rigid connections, but most M - ϕ curves must be determined experimentally. Appendix A contains a series of experimentally obtained $M-\phi$ curves for a large number of
(b) simple framing
(c) semi-rigid framing

An ideally rigid connection is one whose M - ϕ curve is a straight vertical line. Regardless of the moment acting on the joint, there will be no relative rotation between the two elastic lines. Likewise, an ideally simple connection is one with a horizontal $M-\phi$ curve. Regardless of the relative rotation imposed on the two members, the connection will exert no resistance. Any intermediate condition is semi-rigid. It is easily appreciated that full rigidity and full flexibility are extreme conditions, never actually obtained. Practical working definitions of rigid, simple, and semi-rigid connections are given by Brandes and Mains as follows:
(a) Any connection which develops beam restraint of less than 20% of the fixed-end-moment, thereby permitting 80% or more of the beam rotation required for a theoretically flexible connection, will be called a flexible connection.
(b) Any connection which develops 90% or more of the full fixed-end-moment, thereby permitting no more than 10% of the beam rotation required for a theoretically flexible connection, will be called a rigid connection.
(c) The semi-rigid connection is one capable of carrying from 20% to 90% of the full fixed-end-moment, thereby permitting from 10% to 80% of the beam rotation
connection types. The moment-rotation curve for a typical semi-rigid connection is illustrated in Fig. 2.1. Observation of this figure and curves in Appendix A reveals that almost all connections behave inelastically. The flexible connection types exhibit non-linear behaviour almost from the start of loading, and the rigid connections at a later stage.

2.3 Connection Description and Behaviour

There are many different types of connections in use today. There follows a description of the most commonly used connection types and a discussion of their behaviour.

2.3.1 Double Web Angle Connections

Web framing angles, as illustrated in Fj.g. 2.2, constitute one of the most commonly used beam connection types. This type of connection is often termed a simple or flexible connection since it is designed to resist only vertical loads. Because of its frequent use, it has been standardized in most codes and manuals of steel construction. Although assumed to be simple, it does provide some moment restraint, and under normal conditions is subjected to both shear and moment.

Moment-rotation experiments have been performed on double web angle connections by J. C. Rathbun, (27) H. S. Somner, (30) and by Munse, Lewitt, and Chesson. (18) These

Rotation Between Beam and Column
TYPICAL MOMENT-ROTATION CURVE FOR SEMI-RIGID CONNECTIONS

FIG. 2.1
experiments showed that in double web angle connections, flexibility was largely the result of bending and twisting of the angle legs. It was found that angles of the order of $3 / 8$ inch thickness conformed to the end slope of the beam while offering little resistance. With thicker angles, an appreciable moment resistance was developed.

Framing angles, however, are inefficient in developing flexural resistance since most of the moment in a wide flange or I-beam is developed by flange forces. To develop the flange forces by web angles necessitates funneling the forces through the beam web. This results in early local web yielding under the stress concentrations that occur. This limits the end moment developed.

Tests have also shown that the end moment developed by a particular pair of connection angles depends on the length of the angles, which in turn is a function of the beam depth. Other factors which have been shown to affect the connection moment developed are the gage or gages of the connection angles, the fastener type and size, whether the connection is to a column flange or to a column web, and the physical properties of the angle material.

2.3.2 Single Web Angle Connections

Single web angle connections, illustrated in Fig. 2.3, are very similar in behaviour to double web angle connections. They offer some advantages over double web

FIG. 2.2 DOUBLE WEB ANGLE CONNECTION

FIG. 2.3 SINGLE WEB ANGLE CONNECTION
angle connections, in that they are more economical and easier to erect.
S. L. Lipson ${ }^{(19)}$ performed a series of tests on single web angle connections. These tests showed that the relatively small moment developed by the connections was a function of the length and size of angle, size of fasteners, and connection gage.

2.3.3 Header Plate Connections

Welded header plate connections, illustrated in Fig. 2.4, are similar to single and double angle framing connections in that they are intended to be simple beam connections. They are designed on the basis of shear, and like web angle connections, the moment transfer is small.
H. S. Somner conducted a series of experiments to determine the moment-rotation characteristics of different header plate connections. These tests showed that at low loads, the connection behaviour was essentially elastic. With increasing loads, there was considerable yielding in the plate adjacent to the welds and bolts. The large inelastic deformation in the header plate resulted in large rotations at the column. With progressive yielding of the beam web, the header plate was pushed into the beam web with the result that the bottom flange approached and finally came into contact with the column. This resulted in an increased rotational stiffness since all subsequent rotation

FIG. 2.4 HEADER PLATE CONNECTION

FIG. 2.5 TOP AND SEAT ANGLE CONNECTION
occurred about the the bottom flange as a pivot. This rotation was obtained from further deformation of the header plates, varying from a maximum at the top of the plate to a minimum at the bottom.

The behaviour of header plate connections depends on the length of plate, the thickness of the plate, and the connection gage. Differences in behaviour between header plate and web angle connections may be attributed to differences in geometry of the two connections.

2.3.4 Top and Seat Angle Connections

This type of connection, which is generally regarded as being of the semi-rigid variety, is illustrated in Fig. 2.5. Unlike web angle and header plate connections, the top and seat angle connection is designed to carry vertical load and to resist a significant amount of end moment.

Research on the behaviour of top and seat angle connections has been carried out by C. Batho and H. C. Rowan, R. A. Hechtman and B. G. Johnston, (13) and J. C. Rathbun. Test results from the experiments conducted by Hechtman and Johnston showed that the main factors contributing to rotation were bending of the top angle and column flange, extension of the tension fasteners, and slip of the rivets in the top flange of the beam. This type of connection passed through three stages, beginning with an initial stage with moment approximately proportional to
rotation, a second stage in which yielding spreads within the connection, and a final stage characterized by accelerated rotation resulting in either fracture or excessive deformation.

Tests also revealed that in the case of light beam flanges, the top angle rotated as a whole and caused considerable deformation of the beam flange at high moments. The greatest deformation of the beam flanges occurred in the connection with the greatest thickness of top angle. In addition, considerable slip occurred in the rivets fastening the top angle to the beam flanges. It was also observed that a column with very heavy flanges increased the stiffness of a top angle to column connection, as compared with lighter weight column sizes.

2.3.5 End Plate Connections

End plate connections, illustrated in Fig. 2.6, may be flexible, semi-rigid, or rigid, depending on the thickness of the end plate, the size, number and distribution of the bolts or rivets, and whether the end plate is welded to the beam flanges or not. The connection between the beam and its end plate is usually a butt weld or a double fillet weld.

The most significant research on end plate connections has been carried out by R. Douty, (7) J. R. Ostrander, and A. \mathbb{N}. Sherbourne. (29) Douty and Ostrander found that plate
flexibility, together with bolt elongation, had an effect on connection rotation. Tests by Ostrander showed that column flange distortion also contributed to end rotation if no column stiffners were provided. In the majority of cases, column web and beam deformation made only minor contributions to total rotation.

The end plate connection does not stiffen the beam, but because of the plate flexing action and bolt elongation, may permit a much larger amount of rotation than would a butt weld in a welded connection. To develop the full potential of the fasteners, rather thick plates are required. By locating some of the fastener group outside the tension flange, the flexure arm of the fastener group is increased, and the bending of the end plate is reduced.

The research on end plate connections has shown that column stiffners increase the rigidity of an end plate connection by restraining the column web adjacent to the beam compression flanges and by confining and restraining the deformation of the column flanges adjacent to the beam tension flanges. The deformation of an unstiffened column is not confined as effectively to the immediate region of the connection as is the deformation of a stiffened column.

2.3.6 Welded Top Plate and Seat Connections

Welded top plate and seat connections, illustrated in Fig. 2.7, can be designed either to develop the full moment

FIG. 2.6 END PLATE CONNECTION

FIG. 2.7 WELDED TOP PLATE AND SEAT CONNECTION
capacity of the beam, or to restrain the beam by some lesser amount. The size of the top plate is based on the moment that the connection must develop. The smaller the top plate, the smaller the moment transmitted from the column into the beam. The connection must be capable of resisting definite moments without overstressing the welds.

In a moment connection of this type, some means must be provided to carry the thrust of the bottom flange. This is usually accomplished by specifying a square butt weld between the end of the beam flange and the column. To prevent stress concentrations in the top plate, a curved transition from the widened end of the basic plate is often used. The vertical beam reaction is carried by the bottom seat, and selection of the seat is based on the vertical reaction to be carried.

Several research programs have been carried out on welded top plate and seat connections. J. L. Brandes and R. M. Mains performed an extensive series of experiments on connections that were intended to be of the semi-rigid and flexible type. These experiments determined the behaviour of several top plate and seat details. L. G. Johnson, J. C. Cannon, and L. A. Spooner ${ }^{(15)}$ tested several welded top plate and seat connections that were designed as rigid connections. R. F. Pray and C. Jensen ${ }^{(26)}$ conducted a short test program to check a proposed design procedure for this type of connection.

2.3.7 T-Stub Connections

The T-stub connection, illustrated in Fig. 2.8, is one of the most commonly used connections for transmitting moments between beams and columns in bolted and riveted construction. As usually designed, the $T-s t u b$ connection is sufficiently stiff to be classified as rigid. However, it is relatively simple to control the flexibility by varying the flexibility of the T-stub flange.

In the T -stub type of moment connection, the fasteners in the top stub flange are in tension. An additional tension in these bolts is caused by a prying action of the flange flexing. The greater the flexibility of either the column flange or T-stub flange, the greater will be the prying action on the bolts. The subsequent bolt elongation and deflection at the centre of the T-stub flange contribute to the rotational deformation of the connection.

The principal research on T-stub connections has been conducted by C. Batho and H. C. Rowan, and R. Douty. Experimental work by Douty showed that bolt elongation and flange flexure were the primary cause of stub deformations on the tension side of the connection. It is thus possible to control the rotational flexibility of the connection by varying the thickness of the T-stub flange. Tests by Douty also showed that high shear had negligible effect on the overall performance of the connection.

FIG. 2.8 T-STUB CONNECTION

CHAPTER III

STANDARDIZATION OF MOMENT-ROTATION CURVES

In this chapter, the method of standardization of the moment-rotation relationship for various connection types is presented. The procedure is illustrated, using as an example a double web angle connection.

3.1 Introduction

The constitutive relationships between moment and rotation for various connections is important in the determination of the force deformation relationships for a member with flexible connections. In order for a structural analysis computer program to incorporate the effects of connection deformation, the moment-rotation relationships for the connections used must be available. There are two ways that these relationships can be incorporated into such a program.
(a) The moment-curvature information for every connection of every type can be stored. Since for any given type of connection, there are a number of "size parameters" such as connection depth, angle thickness, etc., this
requires the storing of the force-deformation information for an extremely large number of connections, many of which may be identical except for one size parameter.
(b) Since the moment-rotation characteristics for all connections of a given type are similar, a "standardized" moment-curvature relationship for that connection type can be derived. This standardized relationship is a function of the size parameters for that connection type. The moment-rotation characteristics for a particular connection can then be generated by substituting its size parameters into the standardized relationship.

The latter procedure has the obvious advantage over the former, that it drastically reduces the amount of connection information that must be stored. Using the standardization procedure, the description of only a single moment-rotation function for each connection type is necessary to be stored. Consequently, the standardization procedure has been used in this study. It makes use of experimentally obtained moment-rotation curves for connections of a particular type and involves isolating the effects of the various size parameters and incorporating them into the standardized moment-rotation function.

The procedure was derived by H. S. Somner ${ }^{(30)}$ and applied to header plate connections. In this study, it has been extended to the following connection types:
(a) double web angle connections
(b) single web angle connections
(c) header plate connections
(d) top and seat angle connections
(e) T-stub connections
(f) end plate connections without column stiffeners
(g) end plate connections with column stiffeners.
3.2 Standardization Procedure

The standardization procedure employed in this study involves the representation of the moment-rotation curves for all connections of a given type by a single function of the form:

$$
\begin{equation*}
\phi=\sum_{i=1}^{\infty} C_{i}(\mathrm{KM})^{i} \tag{3.1}
\end{equation*}
$$

where
$\phi=$ rotational deformation of connection, radians,
$C=$ constant,
$K=$ dimensionless factor whose value depends on the size parameters for the particular connection considered, $M=$ moment applied to the connection.

The factor K is assumed to have the form,

$$
\begin{equation*}
K=\prod_{j=1}^{m} P_{j}{ }^{a_{j}} \tag{3.2}
\end{equation*}
$$

where
$P_{j}=$ numerical value of j th size parameter,
$a_{j}=a$ dimensionless exponent which indicates the effect of the jth size parameter on the moment-rotation relationship,
$m=$ total number of size parameters which are assumed to influence the moment-rotation relationships for the connection types considered.

The evaluation of the exponents a in Eq. (3.2) can be illustrated by considering a_{j} family of experimentally obtained moment-rotation curves for connections which are identical except for parameter $P_{j}{ }_{j}$ as illustrated in Fig. 3.1 .

A pair of curves, say curves 1 and 2, is considered and the relationship between moments M_{1} and M_{2} at a particular rotation, ϕ, is assumed to have the form:

$$
\begin{equation*}
\frac{M_{1}}{M_{2}}=\left(\frac{P_{j 2}}{P_{j 1}}\right)^{a_{j}} \tag{3.3}
\end{equation*}
$$

where $P_{j 1}$ and $P_{j 2}$ are the numerical values of parameter P for connections 1 and 2 (corresponding to curves 1 and 2) respectively. M_{1} and M_{2} are the moment values, at rotation ϕ - for curves 1 and 2 respectively.

Eq. (3.3) is then rewritten and solved for a_{j} as follows:

$$
\begin{equation*}
a_{j}=\frac{\log \left(M_{1} / M_{2}\right)}{\log \left(P_{j 2} / P_{j 1}\right)} \tag{3.4}
\end{equation*}
$$

Eq. (3.4) is used to calculate a_{j} values corresponding to several different rotations for each combination of experimental curves, such as 1 and 2, 1 and 3, 1 and 4, 2 and 3, 2 and 4, etc. The mean of the a_{j} values thus obtained is used in Eq. (3.2)

FAMILY OF MOMENT-ROTATION CURVES FOR CONNECTIONS WITH DIFFERENT VALUES P_{j}

FIG. 3.1

When average values have been calculated for all m exponents a_{j} in Eq. (3.2) they are used to obtain a series of points on a standardized moment-rotation (KM vs ϕ) diagram. Finally a least squares curve fitting procedure is used to derive the standardized moment-rotation relationship in the form of Eq. (3.1).

Since the moment-rotation function is an odd function, only terms involving odd powers i in Eq. (3.1) appear in the standardized functions. Furthermore, for the functions derived in this study, it was assumed that sufficient accuracy was obtained by including only three non-zero terms.
3.3 Standardized Moment-Rotation Relationship for Double Web Angle Connections

The standardization procedure is illustrated below for double web angle connections.
3.3.1 Parameters Affecting Moment-Rotation Characteristics of Double Web Angle Connections

For double web angle connections, the parameters which most strongly affect the moment-rotation characteristics are:
(a) depth of connection - d (in)
(b) gage of column connection - g (in)
(c) thickness of angles - $t(i n)$ as illustrated in Fig.

3.2.

3.3.2 Calculation of Factor K

The moment-rotation curves used to calculate the values of exponents a_{j} for the various parameters are shown in Fig. A. 1 to Fig. A. 3 in Appendix A. The necessary calculations are shown below.
(a) Parameter 1 - Depth of Connection

The moment-rotation curves used to calculate the value of exponent a_{1} for the depth parameter were obtained by Munse, Lewitt, and Chesson Jr., (18) and are illustrated in Fig. A.1. Consider firstly the curves for their test 4 and test 6 as reproduced in Fig. 3.3. The curves were obtained for connections which were identical in every respect except for the depth parameter. For convenience, the curves for tests 4 and 6 have been labelled curve 1 and curve 2 respectively. For a rotation value of $\phi=2.5 \times 10^{-3}$ radians, the moment values obtained were
$M_{1}($ curve 1$)=300$ in. kips
M_{2} (curve 2) $=600$ in. kips
The corresponding depth parameters were
d_{1} (curve 1) $=17.5 \mathrm{in}$.
d_{2} (curve 2) $=23.5 \mathrm{in}$.
Thus from example 3.2,

$$
a_{1}=\frac{\log \left(\frac{300}{600}\right)}{\log \left(\frac{23.5}{17.5}\right)}=\frac{-.3010}{.1271}=-2.36
$$

FIG. 3.2

Repeating the above procedure for different values of the depth parameter and for other rotation values and averaging the resultant exponents, a mean value of $a_{1}=-2.3$ is obtained.
(b) Parameter 2 - Thickness of Web Angles

The value of exponent a for the angle thickness parameter is determined by a similar procedure to that used for the depth parameter. The moment-rotation curves used to calculate the value of exponent a were obtained by C. Batho (3) and are reproduced in Fig. 3.4. For convenience they have been labelled curve curve 2 and curve 3. These tests were performed on double web angle connections which were identical in every respect except for the thickness of the web angles for a rotation value of 7.0×10^{-3} radians, the following moment values were obtained.

$$
\begin{aligned}
& M_{1}(\text { curve } 1)=188 \text { in. kips. } \\
& M_{2}(\text { curve } 2)=200 \text { in. kips. } \\
& \left.M_{3} \text { (curve } 3\right)=212 \text { in. kips. }
\end{aligned}
$$

The corresponding angle thickness parameters were

$$
\begin{aligned}
& \mathrm{t}_{1}(\text { curve } 1)=3 / 8 \mathrm{in} .(6 \times 31 / 2 \times 3 / 8 \text { angle }) . \\
& \mathrm{t}_{2}(\text { curve } 2)=1 / 2 \mathrm{in} .(6 \times 31 / 2 \times 1 / 2 \text { angle }) . \\
& \left.\mathrm{t}_{3} \text { (curve } 3\right)=5 / 8 \mathrm{in} .(6 \times 31 / 2 \times 5 / 8 \text { angle). }
\end{aligned}
$$

Again, substituting the values for curves 1 and 2 into Eq. (3.2),

$$
a_{2}=\frac{\log \left(\frac{188}{200}\right)}{\log \left(\frac{12}{38}\right)}=-0.216
$$

Similarly, using the values for curves 1 and 3,

MOMENT-ROTATION CURVES AFTER MUNSE
LEWITT, CHESSON JR.
FIG. 3.3

MOMENT-ROTATION CURVE AFTER BATHO
FIG. 3.4

$$
a_{2}=\frac{\log \left(\frac{188}{212}\right)}{\log \left(\frac{58}{38}\right)}=-0.235
$$

The final value of exponent a_{2} for web angle thickness, again found by averaging the exponents calculated for several values and several pairs of curves, is $a_{2}=-0.23$.
(c) Parameter 3 - Connection Gage

Insufficient data are available to obtain an accurate value of exponent a for connection gage. Therefore, the value $a_{3}=+1.5$, obtained for header plate connections, is used.

The K factor for the double web angle connection, obtained by substituting exponents a_{1}, a_{2}, and a_{3} into Eq. (3.2) is thus:

$$
K=d^{-2.3} t^{-.23} g^{1.6}
$$

3.3.3 Calculation of Standard Moment-Rotation Curves

The final step in the standardization procedure is to obtain a standardized moment-rotation curve. For each double web angle connection of Appendix A, a unique factor K can be calculated. Each moment-rotation curve is multiplied by its corresponding K value, and a mean curve is drawn through the band of test results as illustrated in Fig. 3.5. The least squares curve fitting program, which was used to obtain equations of standardized moment-rotation curves for

all of the connection types considered in this study, yields the following fifth order equation for the standardized moment-rotation curve for the double web angle connection:

$$
\phi=3.66(\mathrm{KM}) 10^{-4}+1.15(\mathrm{KM})^{3} 10^{-6}+4.57(\mathrm{KM})^{5} 10^{-8}
$$

This equation can be used to reproduce the moment-rotation curves for double web angle connections within the range of test results. Appendix B lists the standardized moment-rotation functions for each of the connection types considered.
3.3.4 Accuracy of Standardization Procedure

The accuracy of the standardization procedure can be checked by comparing the moment-rotation curves generated by the standardized equation with actual experimentally obtained curves. Fig. 3.6 shows a typical moment-rotation curve comparison for two double web angle connections. Additional comparisons have been made for other types of connections and these are included in Appendix B. With few exceptions, the procedure was found to produce an accurate moment-rotation curve for a connection within the range of test results available. Table 3-1 gives an approximate indication of maximum percentage deviation from experimental curves for each connection type.

TABLE 3-1 COMPARISON OF STANDARDIZED AND EXPERIMENTAL CONNECTION MOMENT-ROTATION CURVES

Connection Type	\% Deviation of Standardized Curve from Experimental Curve
Double Web Angle Connection	
Single Web Angle Connection	6%
Header Plate Connection	10%
Top and Seat Angle Connection End Plate Connection Without Stiffeners End Plate Connection With Stiffeners	11%
T-stub Connection	3%

CHAPTER IV

FORCE DEFORMATION RELATIONSHIPS FOR A MEMBER

In this chapter, the force-deformation relationships for a continuous elastic member are summarized. These relationships are then modified to include the effects of flexible connections. As an illustration of the procedure, the force-deformation relationships are calculated for a member with rigid end connections and one with pinned ends.

4.1 Introduction

The force-deformation relationships for a typical member in a frame can be adequately represented by two sets of quantities, the stiffness matrix referred to one end of the member, and the fixed-end-force vector that would occur at that end if the member were loaded along its length with its ends rigidly fixed. Once these quantities have been rigidly determined, the stiffness matrix and the fixed-end-force vector at the other end of the member can be calculated using only statics and geometry.

The force-deformation relationships for a continuous elastic member can be derived by considering only statics,
member geometry, and the stress-strain characteristics of the material. For a member with flexible connections, the member distortion consists of elastic member distortion and distortion due to connection deformation. The effect of connection deformation can be incorporated into a structural analysis by modifying the member stiffness matrix and fixed-end-forces.
4.2 Force-Deformation Relationshjps for a Continuous Elastic Member

Consider member $A B$ shown in Fig. 4.1. The member is loaded by concentrated loads P_{J} and by forces $R_{A B}$ and $R_{B A}$ at enās A and B. respectively. If end A is displaced by an amount $u_{A B}$, the displacement $u_{B A}$ at end B is:

$$
\begin{equation*}
u_{B A}=T_{A B} t_{A B}+F_{B B} R_{B A}+\sum_{j=1}^{N L} T_{J B} t_{J J}{ }_{J J} \tag{4.1}
\end{equation*}
$$

where:

$$
\begin{aligned}
& T_{A B}=\text { force transformation matrix from } B \text { to } A \\
& F_{B B}=\text { flexibility matrix at } B \text { for member } A B \\
& F_{J J}=\text { flexibility matrix at } J \text { for segment } A J \\
& N L=\text { total number of loads } P_{J} \text { on member. } \\
& \text { The matrix } T{ }_{A B}{ }^{t} \text { translates displacements from } A \text { to } B .
\end{aligned}
$$ It is convenient to define:

$$
\begin{equation*}
U_{B A}=\sum_{j=1}^{N L} T_{J B}{ }^{t} F_{J J} P_{J} \tag{4.2}
\end{equation*}
$$

where $U_{B A}=$ cantilever deflection at B due to loads P_{J}.

CONTINUOUS ELASTIC MEMBER

FIG. 4.1

Premultiplication of Eq. (4.1) by $\mathrm{F}_{\mathrm{BB}}{ }^{-1}=\mathrm{K}_{\mathrm{BB}^{\prime}}$ and substitution of Eq. (4.2) gives:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{BA}}=\mathrm{K}_{\mathrm{BB}}\left(\mathrm{u}_{B A}{ }^{-T} \mathrm{~T}_{A B}{ }^{\mathrm{t}} \mathrm{u}_{\mathrm{AB}}\right)-\mathrm{K}_{\mathrm{BB}} \mathrm{U}_{\mathrm{BA}} \tag{4.3}
\end{equation*}
$$

where $K_{B B}=$ stiffness matrix at B for member $A B$.
The elastic distortion of member $A B$ referred to B is the distortional displacement of B relative to A. It is defined by:

$$
\begin{equation*}
v_{B A}^{E}=u_{B A}-T_{A B}^{t} u_{A B} \tag{4.4}
\end{equation*}
$$

Substitution of this definition into Eq. (4.3) gives the following force deformation relationship for member $A B$, referred to B :

$$
\begin{equation*}
R_{B A}=K_{B B} V_{B A}^{E}-K_{B B} U_{B A} \tag{4.5}
\end{equation*}
$$

The fixed-end-force at B is found by setting the member distortion to zero in Eq. (4.5), and solving for the member force at B. Thus:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{BA}}^{\mathrm{F}}=-\mathrm{K}_{\mathrm{BB}}^{\mathrm{E}} \mathrm{BA} \tag{4.6}
\end{equation*}
$$

where $R_{B A}^{F}=$ fixed-end-force vector at B.
4.3 Force Deformation Relationship for Members With Flexible Connections

To formulate the force-displacement relationships for a member which has any number of flexible connections at
cross-sections K, consider member $A B$ shown in Fig. 4.2. The member is loaded by concentrated loads P_{J} applied at cross-sections J, and by end forces $R_{A B}$ and $R_{B A}$. While connections would normally be used only at the ends of members, the method is applicable for connections located anywhere along the member:

Assume a flexibility matrix, F_{K}, for connection K, such that:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{K}}^{\mathrm{C}}=\mathrm{F}_{\mathrm{K}}^{\mathrm{R}}{ }_{\mathrm{K}} \tag{4.7}
\end{equation*}
$$

where:
$V_{K}{ }^{C}=$ distortion vector for connection K. It gives the relative displacements at the two sides of the connection.

$$
\mathrm{F}_{\mathrm{K}}=\mathrm{a} \text { diagonal flexibility matrix for connection } \mathrm{K} \text {. }
$$ The main diagonal element F II gives the inverse slope of the force deformation curve for the Ith force component of the connection.

$R_{K}=$ force vector at connection K.
Under the action of the applied loads, the total distortion, $V_{B A}$ of the member and its connections, consists of member distortion $V_{B A}{ }^{M}$, and distortion $V_{B A}{ }^{C}$ due to the deformation of the connections. Compatibility requires that:

$$
\begin{equation*}
V_{B A}=V_{B A}^{m}+V_{B A}^{c} \tag{4.8}
\end{equation*}
$$

Distortion $V_{B A}^{C}$ can be expressed in terms of the

flexible connections at a, b, AND K

MEMBER WITH FLEXIBLE CONNECTIONS

FIG. 4.2
deformations of the connections as follows:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{BA}}^{\mathrm{C}}=\sum_{\mathrm{K}=1}^{\mathrm{NC}} \mathrm{~T}_{\mathrm{KB}}{ }^{\mathrm{t}_{\mathrm{V}}{ }_{\mathrm{K}} \mathrm{C}} \tag{4.9}
\end{equation*}
$$

where:
$N C=$ number of connections
$T_{K B}{ }^{t}=$ matrix which translates displacements from K to
B.

The member distortion is thus:

$$
\begin{align*}
V_{B A}^{M} & =V_{B A}-V_{B A}^{C} \tag{4.10}\\
& =V_{B A}-\sum_{K=1}^{\sum^{T} T}{ }^{\mathrm{TB}}{ }^{\mathrm{t}} V_{K}^{C}
\end{align*}
$$

Substituting Eq. (4.9), Eq. (4.10) becomes:

$$
\begin{equation*}
V_{B A}^{M}=V_{B A}-\sum_{K=1}^{N C} T_{K B}{ }^{\mathrm{t}} \mathrm{~F}_{\mathrm{K}} \mathrm{R}_{\mathrm{K}} \tag{4.11}
\end{equation*}
$$

The force vector at B, defined in terms of the member distortion and the cantilever deflection $U_{B A}$, is:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{BA}}=\mathrm{K}_{\mathrm{BB}} \mathrm{~V}_{B A}{ }^{M}-\mathrm{K}_{\mathrm{BB}} \mathrm{U}_{\mathrm{BA}} \tag{4.12}
\end{equation*}
$$

Substituting Eq. (4.11), Eq. (4.12) becomes:

$$
\begin{equation*}
R_{B A}=K_{B B}\left(V_{B A}-U_{B A}\right)-K_{B B} \sum_{K=1}^{N C} T_{K B}{ }^{t} F_{K} R_{K} \tag{4.13}
\end{equation*}
$$

The force vector at any connection K is:

$$
\begin{equation*}
R_{K}=T_{K B} R_{B A}+\sum_{j=1}^{N K} T{ }_{K J} P_{J} \tag{4.14}
\end{equation*}
$$

where $N K=$ number of loads on segment $K B$ of the member.
Substituting Eq. (4.14) into Eq. (4.13):

$$
\begin{equation*}
R_{B A}=K_{B B}\left(V_{B A}-U{ }_{B A}\right)-K_{B B} \sum_{K=1}^{N C} T_{K B}{ }^{t} F_{K} T_{K B} R_{B A}-K_{B B} \sum_{K=1}^{N C} T_{K B}{ }^{t}{ }_{F}{ }_{K_{J=1}^{\sum} T_{K J}}^{N K}{ }^{\mathrm{P}} \tag{4.15}
\end{equation*}
$$

For convenience define:
and,

$$
\mathrm{E}=\left[\begin{array}{lllllll}
\mathrm{F}_{1} & 0 & 0 & 0 & 0 & 0 & 0 \tag{4.18}\\
0 & \mathrm{~F}_{2} & 0 & 0 & 0 & 0 & 0 \\
& & \ddots & & & & \\
0 & 0 & 0 & 0 & \mathrm{~F}_{\mathrm{k}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \mathrm{~F}_{\mathrm{NC}}, \mathrm{NC}
\end{array}\right]
$$

where:
$G^{t}=a n$ NC $X 1$ vector whose Kth element is the translation matrix for connection K.
$Q=a n$ NC $x 1$ vector, the K th element of which gives the statical effect at connection K, of the loads on portion

KB of the member.
$E=a \operatorname{diagonal}$ matrix for which the Kth diagonal term is the diagonal matrix F_{K} for connection K.

Then:

$$
R_{B A}=K_{B B}\left(V_{B A}-U_{B A}\right)-K_{B B} G E G t_{B A}-K_{B B} G E Q
$$

or:

$$
\begin{equation*}
\left(I+\mathrm{K}_{\mathrm{BB}} \mathrm{GEG}{ }^{5}\right) \mathrm{R}_{\mathrm{BA}}=\mathrm{K}_{\mathrm{BB}}\left(\mathrm{~V}_{\mathrm{BA}}-\mathrm{U}_{\mathrm{BA}}\right)-\mathrm{K}_{\mathrm{BB}} \mathrm{GEQ} \tag{4.19}
\end{equation*}
$$

where here I represents a unit matrix.
Next, define:

$$
\begin{equation*}
S=\left(I+K_{B B} G E G^{t}\right)^{-I} \tag{4.20}
\end{equation*}
$$

Then:

$$
\begin{equation*}
R_{B A}=S K_{B B}\left(V_{B A}\right)-S K{ }_{B B}\left(U_{B A}+G E Q\right) \tag{4.21}
\end{equation*}
$$

Eq. (4.21) gives the force-deformation relationships for a member with any number of flexible connections located anywhere along its length. By comparing Eq. (4.21) with Eq. (4.5), it can be seen that:
(a) The modified stiffness matrix for a member with flexible connections is

$$
\begin{equation*}
\mathrm{K}_{\mathrm{BB}}{ }^{\mathrm{M}}=\mathrm{SK}{ }_{\mathrm{BB}} \tag{4.22}
\end{equation*}
$$

(b) The fixed-end-force vector at B is

$$
\begin{equation*}
P_{B}^{F}=-K{ }_{B B}^{M}\left(U_{B A}+G E \Omega\right) \tag{4.23}
\end{equation*}
$$

4.4 Modified Stiffness Matrix for Plane Frame Members With Connections at Ends Only

To illustrate the effects of connection deformations, consider a plane frame member $A B$ with flexible connections at its ends. The E matrix for the member is:

$$
E=\left[\begin{array}{ll}
F_{A} & 0 \tag{4.24}\\
0 & F_{B}
\end{array}\right]
$$

where:
$F_{A}=$ flexibility matrix for connection A.
$F_{B}=$ flexibility matrix for connection B.
The flexibility matrices F_{A} and F_{B} are diagonal matrices which represent axial, shear, and moment deformations produced by unit loads. Axial and shear effects can be considered negligible and hence the flexibilities of the connections may be represented by the bending flexibility component only. This component is represented by the .. inverse of the slope of the moment-rotation curve and is naturally dependent on the connection type. The E matrix can therefore be written as:

$$
E=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \tag{4.25}\\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & C_{A} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & C_{B}
\end{array}\right]
$$

where:
$C_{A}=$ bending deformation component for connection A $C_{B}=$ bending deformation component for connection B. The $\mathrm{G}^{\text {t }}$ matrix can also be written as:

$$
G^{t}=\left[\begin{array}{c}
T_{A B} \tag{4.26}\\
I
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & L & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

and the product GEG ${ }^{t}$ becomes:

$$
G E G^{t}=\left[\begin{array}{lll}
0 & 0 & 0 \tag{4.27}\\
0 & L^{2} C_{A} & L C_{A} \\
0 & L C_{A} & \left(C_{A}+C_{B}\right)
\end{array}\right]
$$

From Eq. (4.20)

$$
S=\left(I+K_{B B} G E G^{t}\right)^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \left(1+\frac{\left.6 \overline{\mathrm{E}} \mathrm{IC}_{A}\right)}{\mathrm{L}}\right. & \frac{6 \overline{\mathrm{E}}\left(\mathrm{C}_{\mathrm{A}}-C_{B}\right)}{\mathrm{L}^{2}} \\
0 & -2 \overline{\mathrm{E} \bar{I} C_{A}} & \frac{1+\frac{2 \overline{\mathrm{E}} \overline{\mathrm{I}}}{\mathrm{~L}}\left(2 \mathrm{C}_{\mathrm{B}}-C_{A}\right)}{}
\end{array}\right]
$$

$$
\text { where: } \quad \begin{align*}
\bar{E} & =\text { modulus of elasticity } \\
\bar{I} & =\text { moment of inertia } \tag{4.28}\\
& I=\text { length of member }
\end{align*}
$$

Thus:

The modified stiffness matrix for the member can then be generated from

$$
\begin{equation*}
K_{B B}^{M}=S K_{B B} \tag{4.22}
\end{equation*}
$$

and is

$$
K_{B B}^{M}=\left[\begin{array}{ccc}
\frac{A \bar{E}}{L} & 0 & 0 \tag{4.30}\\
0 & \frac{12 \overline{E I}\left(1+\frac{E I C_{A}}{L^{2}}+\frac{\overline{E I} C_{B}}{L}\right)}{1+\frac{4 \overline{E I}}{L}\left(C_{A}+C_{B}+3 \overline{E I} C_{A} C_{B}\right)} & \frac{-\frac{6 \overline{E I}}{I^{2}}\left(1+\frac{2 \overline{E I} C_{A}}{I}\right)}{1+\frac{4 E I}{L}\left(C_{A}+C_{B}+\frac{3 E I C_{A} C_{B}}{L}\right)} \\
0 & \frac{-\frac{6 \overline{E I}}{L^{2}}\left(1+\frac{2 \overline{E I} C_{A}}{L}\right)}{1+\frac{4 \overline{E I}}{L}\left(C_{A}+C_{B}+\frac{\left.3 \overline{E I} C_{A} C_{B}\right)}{L}\right.} & \frac{\frac{4 \overline{E I}}{L}\left(1+\frac{3 \overline{E I} C_{A}}{I}\right)}{1+\frac{4 E I}{L}\left(C_{A}+C_{B}+\frac{3 \overline{E I C}}{L} C_{B}\right)}
\end{array}\right]
$$

4.4.1 Modified Stiffness Matrix for Member With Rigid End

Connections

For a member $A B$ with rigid connections at ends A and B, $C_{A}=C_{B}=0$ and the modified stiffness matrix in Eq. (4.30) degenerates to:

$$
K_{B B}^{M}=\left[\begin{array}{ccc}
\frac{A \bar{E}}{L} & 0 & 0 \tag{4.31}\\
0 & \frac{12 \overline{E I}}{L^{3}} & \frac{-6 \overline{E I}}{L^{2}} \\
0 & \frac{-6 \overline{E I}}{L^{2}} & \frac{4 \overline{E I}}{\mathrm{~L}}
\end{array}\right]
$$

which is identical to the stiffness matrix $K_{B B}$, at the end of a continuous member.
4.4.2 Modified Stiffness Matrix for Member With Pinned Connections at A and B Ends

For a member $A B$ with pinned connections at A and B, C_{A}. $=C_{B}=\infty$. Dividing the numerator and denominator of each component of the modified stiffness matrix in Eq. (4.30) by $C_{A}=C_{B}$, the matrix becomes:

$$
K_{B B}^{M}=\left[\begin{array}{ccc}
\frac{A \bar{E}}{L} & 0 & 0 \\
0 & \frac{12 \overline{E I}}{L^{3}}\left[\frac{1+2 \overline{E I}}{C_{A}}\right] \\
\frac{1+4 E I}{C_{A}}\left(2+\frac{3 E I C_{A}}{L}\right) & \frac{-6 \overline{E I}}{I}\left[\frac{1+2 \overline{E I}}{C_{A}}\right] \\
\frac{1}{C_{A}} \frac{4 E I}{L}\left(2+\frac{3 E I C}{L}\right) \\
0
\end{array}\right]
$$

Then setting $C_{A}=\infty$,

$$
K_{B B}^{M}=\left[\begin{array}{ccc}
\frac{A \bar{E}}{L} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

which is the B-end stiffness matrix for a member with pins at both ends.
4.5 Fixed-End-Forces for Member With Flexible Connections The fixed-end-forces for member $A B$ of Fig. 4.2 can be calculated from Eq. (4.23)

$$
\begin{equation*}
P_{B}^{F}=-S K_{B B} U_{B A}-S K_{B B} G E Q \tag{4.23}
\end{equation*}
$$

where all terms have been previously defined.
The fixed-end-force vector at B is calculated below for a member that is continuous at end B and pinned at end A, firstly for a single concentrated load at midspan, and then for a uniformly distributed load covering whole span.
4.5.1 Fixed-End-Forces for Member With Concentrated Load Consider a single concentrated load placed at the midspan of member $A B$ as shown in Fig. 4.3. Member $A B$ is continuous at end B and pinned at end A.

The modified stiffness matrix for the member can be generated from Eq. (4.30), and is

The cantilever deflection, $U_{B A}$, is given by

$$
\begin{equation*}
\mathrm{U}_{\mathrm{BA}}=\mathrm{T}_{\mathrm{JB}}{ }^{\mathrm{t}} \mathrm{U}_{\mathrm{JA}}=\mathrm{T}_{\mathrm{JB}}{ }^{\mathrm{t}} \mathrm{~F}_{\mathrm{JJ}} \mathrm{P}_{J} \tag{4.34}
\end{equation*}
$$

and is

$$
\mathrm{U}_{\mathrm{BA}}=\left[\begin{array}{ccc}
1 & 0 & 0 \tag{4.35}\\
0 & 1 & \frac{L}{2} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\frac{L}{2 \mathrm{~A}} & 0 & 0 \\
0 & \frac{L^{3}}{24 \overline{\mathrm{EI}}} & \frac{\mathrm{I}^{2}}{8 \overline{\mathrm{EI}}} \\
0 & \frac{L^{2}}{8 \overline{\mathrm{EI}}} & \frac{\mathrm{~L}}{2 \overline{\mathrm{EI}}}
\end{array}\right]\left[\begin{array}{c}
0 \\
-\mathrm{P} \\
0 \\
\frac{-5 \mathrm{PL}^{3}}{48 \overline{\mathrm{EI}}} \\
\frac{-\mathrm{EI}}{}
\end{array}\right]
$$

Therefore, the first term of Eq. (4.23) becomes

$$
-S K_{B B} U_{B A}=\left[\begin{array}{c}
0 \tag{4.36}\\
\frac{\frac{P-P \overline{E I} C_{A}}{2}+\frac{5 P E I}{4 L} C_{B}}{1+\frac{4 \overline{E I}}{L}\left(C_{A}+C_{B}+\frac{3 \overline{E I C}}{L} C_{A} C_{B}\right)} \\
\frac{\frac{-P L}{8}+\frac{P \overline{E I} C_{A}}{4}}{1+\frac{4 \overline{E I}}{L}\left(C_{A}+C_{B}+\frac{3 \overline{E I} C_{A}}{L} C_{B}\right)}
\end{array}\right]
$$

and GEQ is

$$
\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \tag{4.37}\\
0 & 1 & L & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & C_{A} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & C_{B}
\end{array}\right]\left[\begin{array}{c}
0 \\
-P \\
-\frac{P L}{2} \\
0 \\
0
\end{array}\right]
$$

The product - $\mathrm{SK}{ }_{\mathrm{BB}} \mathrm{GEQ}^{\mathrm{GE}}$ becomes

$$
\left[\begin{array}{c}
0 \tag{4.38}\\
\frac{\frac{3 \overline{E I} C_{A} P}{I}+6\left[\frac{\overline{E I}}{I}\right]^{2}{ }^{2} C_{A} C_{B} P}{1+4 \overline{E I}\left(C_{A}+C_{B}+3 \overline{E I C_{A}} C_{B}\right)} \\
\frac{-\overline{L I} C_{A} P}{1+\frac{4 \overline{E I}}{L}\left(C_{A}+C_{B}+\frac{3 E I C_{A} C_{B}}{L}\right)}
\end{array}\right]
$$

Therefore, adding Eq. (4.36) and Eq. (4.38), the B end fixed-end-forces are:

$$
P_{B}^{F}=\left[\begin{array}{c}
0 \tag{4.39}\\
\frac{P+11 \overline{E I} C_{A} P+\frac{5 P \overline{E I} C_{B}}{4 L}+6\left[\frac{\overline{E I}}{I}\right]^{2} C_{A} C_{B} P}{1+\frac{4 \overline{E I}}{L}\left(C_{A}+C_{B}+\frac{\left.3 \overline{E I} C_{A} C_{B}\right)}{L}\right.} \\
\frac{-\frac{P L}{8}-\frac{3 \overline{E I} C_{A} P}{4}}{1+\frac{4 \overline{E I}}{L}\left(C_{A}+C_{B}+\frac{\left.3 \overline{E I} C_{A} C_{B}\right)}{I}\right.}
\end{array}\right]
$$

For member $A B, C={ }^{\infty}$ and $C=0$. Therefore

MEMBER AB WITH MIDSPAN LOAD

FIG. 4.3

FREE BODY DIAGRAM FOR MEMBER AB

FIG. 4.4

$$
P_{B}^{F}=\left[\begin{array}{c}
0 \tag{4.40}\\
\frac{11 \mathrm{P}}{16} \\
\frac{-3 P L}{16}
\end{array}\right]
$$

By statics

$$
P_{A}^{F}=\left[\begin{array}{l}
0 \tag{4.41}\\
\frac{5 P}{16} \\
0
\end{array}\right]
$$

Fig. 4. 4 illustrates the free-body diagram for member $A B$

$$
4.5 .2
$$

Fixed-End-Forces for Member With Uniformly Distributed Load

Consider member $A B$ which carries a uniformly distributed load over its entire span, as shown in Fjg. 4.5. The member has a rigid connection at end B and a and pinned connection at end A.

The cantilever deflection at B corresponding to the uniformly distributed load shown in Fig. 4.6 is:

$$
\begin{align*}
U_{B A} & =\int_{0}^{L} T_{C B}^{t} F_{C} P_{C} d s \\
& =\int_{0}^{L} T_{C B}^{t} F_{C}\left(\int_{0}^{S} T_{C D} W_{D} d z\right) d s \tag{4.42}
\end{align*}
$$

where: $F_{C}=$ unit flexibility matrix

$$
{ }^{P_{C}}=\text { force vector at cross section } C
$$

$$
\int_{0}^{S} T_{C D} W_{D} d z=\int_{0}^{S}\left[\begin{array}{lll}
1 & 0 & 0 \tag{4.43}\\
0 & 1 & 0 \\
0 & z & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
W_{z} \\
0
\end{array}\right] d z=\left[\begin{array}{c}
0 \\
W_{2} s \\
\frac{s^{2} W}{2} 2
\end{array}\right]
$$

Then:

$$
U_{B A}=\int\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & S \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
\frac{1}{A \bar{E}} & 1 & 0 \\
0 & \frac{1}{A_{2} \bar{G}} & 0 \\
0 & 0 & \frac{1}{\bar{E} \bar{I}}
\end{array}\right]\left[\begin{array}{l}
0 \\
W_{2} S \\
\frac{S^{2} W}{2} 2
\end{array}\right]
$$

where: $A=$ cross sectional area
$A_{2}=$ "shear area" in direction 2
$\overline{\mathrm{G}}=$ moduius of rigiāity

$$
\mathrm{U}_{\mathrm{BA}}=\left[\begin{array}{c}
0 \tag{4.44}\\
\frac{\mathrm{~W}_{2} \mathrm{I}^{4}}{8 \mathrm{EI}} \\
\frac{\mathrm{~W}_{2} \mathrm{I}^{3}}{6 \mathrm{EI}}
\end{array}\right]
$$

Therefore, the first term of Eq. (4.23) becomes.

GEQ is

$$
\begin{align*}
& {\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & L & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & C_{A} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & C_{B}[
\end{array}\left[\begin{array}{c}
0 \\
-W_{2} L \\
\frac{-W_{2} L^{2}}{2} \\
0 \\
0 \\
0
\end{array}\right]\right.} \\
&=\left[\begin{array}{c}
0 \\
\frac{-W 2 L^{3} C_{A}}{2} \\
\frac{-W 2 L_{2}^{2} C_{A}}{2}
\end{array}\right] \tag{4.46}
\end{align*}
$$

The product - $\mathrm{SK}_{\mathrm{BB}} \mathrm{GEQ}$ becomes

$$
\left[\begin{array}{c}
0 \tag{4.47}\\
\frac{3 E I C_{A}+3(\overline{E I})^{2} W_{2} C_{A} C_{B}}{1+4 E I}\left(C_{A}+C_{B}+\frac{\left.3 E I C_{A} C_{B}\right)}{L}\right. \\
\frac{-E I L W C}{1+\frac{4 E I}{L}\left(C_{A}+C_{B}+\frac{3 E I C_{A} C_{B}}{L}\right.}
\end{array}\right]
$$

Therefore, adding Eq. (4.45) and Eq. (4.47), the B end fixed-end-forces are:

For member $A B, C=\infty$ and $C=0$. Therefore

$$
P_{B}^{F}=\left[\begin{array}{c}
0 \tag{4.49}\\
\frac{5 W_{2} L}{8} \\
\frac{-W_{2} L^{2}}{8}
\end{array}\right]
$$

By statics

$$
P_{A}^{F}=\left[\begin{array}{c}
0 \tag{4.50}\\
\frac{3 W_{2} L}{8} \\
0
\end{array}\right]
$$

Fig. 4.6 illustrates the free-body diagram for member AB.

MEMBER AB WITH UNIFORMLY DISTRIBUTED
 LOAD

FIG. 4.5

FREE BODY DIAGRAM FOR MEMBER AB

FIG. 4.6

CHAPTER V

IINEAR AND NON-LINEAR ANALYSIS PROCEDURES

In this chapter, the stiffness method of analysis for linear structures is reviewed. An iterative procedure which has been implemented in this study for the analysis of plane frames with non-linear effects is presented.

5.1 Introduction

A linear structure is one in which all displacements and internal forces are linear functions of the applied loads. Most practical structures behave in an approximately linear manner at working loads. The assumption of linearity has two important advantages. In the first place, it greatly simplifies the actual task of analysing a structure under a particular loading system. In the second place, it allows the superposition of solutions, with a consequent saving of effort when many different loading systems have to be considered.

The two basic linear structural analysis methods are the flexibility (force) method and the stiffness (displacement) method. Both methods are based on the fact
that a structure must simultaneously satisfy the equilibrium and compatibility conditions, while the material in the structure satisfies known stress-strain relationships. The difference between the two methods is the order of application of the equilibrium and compatibility conditions. The flexibility method assumes equilibrium at the outset, but violates compatibility. Compatibility is then re-established by writing compatibility equations.

The stiffness method assumes compatibility at the outset, but violates equilibrium. Equilibrium is then re-established by writing equilibrium equations. The stiffness method is well suited for use of the digital computer. While it generally involves more computation than the flexibility method, the computations are much more systematic and therefore more easily programmed. For this reason, the stiffness method has been employed in this study.

There are three important causes of non-linear behaviour in structures. The first is non-linear behaviour of the material from which the structure is made. This normally affects the behaviour of the structure only at loads beyond the working range.

The second cause is usually referred to as "gross deformation". In linear analysis, it is necessary to assume that the deformations of a structure are small compared to its dimensions, so that the overall geometry of the
structure is not significantly altered by the process of loading it.

The third cause of non-linear behaviour is essentially a particular case of the second, but is of sufficient practical importance to be mentioned separately. This is the effect which axial forces have on bending stiffness of members in rigid-jointed frames and trusses. If the axial force in a member is compressive, the bending stiffness is reduced, while, if it is tensile, the stiffness is increased. This effect may, in extreme cases, cause a structure to become unstable while still remaining elastic.

For structures with flexible connections, joint displacements at working loads are normally sufficiently small to preclude non-linearity due to "large displacements". Furthermore, the effects of axial forces on member stiffness can generally be neglected. However, while the members are generally linearly elastic, the connections often behave non-linearly at working loads. Therefore, a non-linear analysis procedure is required for flexibly connected structures.

Non-linear analysis procedures generally involve the linearization of structural behaviour. They employ repeated cycles of linear analysis to arrive at a set of displacements and internal forces that satisfy compatibility, equilibrium, and the force-displacement relationships for the structural members and connections.

5.2 Linear Stiffness Formulation of Structural Analysis

The stiffness analysis procedure involves the systematic application of the following three types of conditions to a structure:
(a) Equilibrium - the forces exerted on a joint by all members framing into it must exactly balance the external load applied to the joint.
(b) Force Displacement Relationships - these equations relate the member end forces to the corresponding displacements.
(c) Compatability - the displacement of the end of each member framing into a joint must be the same as the displacement of the joint.

Consider a typical joint I in a structure as shown in Fig. 5.1. The equilibrium equation at the joint can be written:

$$
\begin{equation*}
P_{I}=\sum_{K=1}^{n_{K}} H_{K} R_{B_{K}}-\sum_{J=1}^{n_{J}} H_{J} T_{J} R_{B_{J}} \tag{5.1}
\end{equation*}
$$

where:

$$
\begin{aligned}
& P_{I}=\text { total external load on joint } I \\
& n_{K}=\text { number of members whose } B \text { ends frame into joint } I \\
& n_{J}=\text { number of members whose } A \text { ends frame into Joint } I \\
& H=\text { rotation transformation matrix which transforms }
\end{aligned}
$$

force and displacement vectors from local coordinate systems to the global system.

$$
T=\text { translation matrix }
$$

JOINT I, WITH MEMBER LOADS AND EXTERNAL JOINT LOADS

FIG. 5.1
$R_{B_{K}}=$ force acting on B end of any member K whose B end frames into joint I 。
$R_{B_{J}}=$ force acting on B end of any member J whose A end frames into joint I.

The force-displacement equation for any member L which Erames into joint I is expressed by Eq. (4.21),

$$
R_{B_{L}}=S_{L} K_{B B_{L}}\left(u_{B A_{L}}-T_{K}^{t} u_{A B_{L}}\right)+R_{B_{L}}{ }^{F}
$$

Consider joint I which has a displacement D expressed in the global system. The compatibility conditions at the joint can be expressed as follows:

For any member K whose B end frames into joint I,

$$
\begin{equation*}
u_{B A}=H_{K}^{t} D_{I} \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{u}_{\mathrm{AB}}=\mathrm{H}_{\mathrm{K}}^{\mathrm{t}} \mathrm{D}_{\mathrm{M}} \tag{5.3}
\end{equation*}
$$

where:
$H_{K}^{t}=$ rotation transformation matrix which converts the displacement vector from the global to the local system.
M is a generic symbol used to represent the joint at the opposite end of any member from joint I.

Similarly, for any member J whose A end frames into joint I,

$$
\begin{equation*}
u_{B A_{J}}=H_{J}^{{ }^{t}} D_{M} \tag{5.4}
\end{equation*}
$$

$$
\begin{equation*}
u_{B A_{J}}=H_{J}^{t} D_{I} \tag{5.5}
\end{equation*}
$$

Substituting the compatability equations and force-displacement equations into the joint equilibrium equation, (4.21), and for simplicity, dropping the subscripts, B, from the stiffness matrix and fixed-end-force vectors:

$$
\begin{align*}
P_{I}= & \sum_{K=1}^{n_{K}} H_{K}\left[S K\left(H_{K}{ }^{t} D_{I}-T_{K}{ }^{t} H_{K}{ }^{t} D_{M}\right)+R_{K}{ }^{F}\right] \tag{5.6}\\
& -\sum_{J=1} H_{J} T_{J}\left[S K\left(T_{J}{ }^{t} H_{J} D_{I}-H_{J}{ }^{t} D_{M}\right)+R_{J}{ }^{F}\right]
\end{align*}
$$

Eq. (5.6) can be re-written

$$
\begin{align*}
& +\sum_{J=1}^{n_{J}}{ }_{J}\left[T_{J} S K T_{J}{ }^{t}{ }_{H}{ }_{J}{ }^{t_{D}}{ }_{I} T_{J} S^{S K H}{ }_{J}{ }^{t_{M}}\right] \tag{5.7}
\end{align*}
$$

where:
$\overline{\mathrm{P}}_{\mathrm{I}}$ is the joint force vector at joint I. It is a force vector which includes the external load at joint I and the negatives of the fixed-end-forces for all members framing into joint I.

Equilibrium Eq. (5.7) relates the external load at joint I to the displacements of at least two joints in the structure. One such equilibrium equation is written at each joint in the structure. The resulting set of equations can be expressed in the form:

$$
\begin{equation*}
P=K_{s} D \tag{5.8}
\end{equation*}
$$

where:
$P=$ vector of joint forces for all joints in the structure.
$K_{s}=$ structure stiffness matrix, which is assembled from the member stiffness matrices transformed to the global system as in Eq. (5.7). K_{s} relates joint forces and the resulting joint displacements for all joints in the structure.
$D=$ vector of all unknown joint displacement components.

Eqs. (5.8) can be solved for the joint displacements of the structure. The resulting joint displacements can then be substituted into the force-displacement equations, Eq. (4.21), to determine the member end forces.

5.3 Non-Linear Structural Analysis Procedure

Non-linear structural analysis procedures are generally iterative in nature. They generally involve linearizing the load-displacement characteristics of the structure over finite loading increments. Non-linear analysis methods can be classified as "successive correction methods" and "successive approximation methods".

The successive correction methods, of which the Newton-Raphson approach is the most widely used, involve applying proportional increments of loading, and performing a linear analysis for each loading increment. proportional
increments of load are applied and a linear analysis is performed for each increment to determine the incremental displacements and internal forces. Cumulative joint displacements and member end forces are calculated by accumulating the appropriate incremental values.

Incremental analysis procedures permit the tracing of the approximate load-displacement behaviour of the structure over the loading range considered. However, it is usual in most practical analysis problems to require only the final structural deflections and internal forces.

Furthermore, incremental analysis procedures require the storing of both incremental and cumulative displacements and internal forces. In addition, it is necessary to calculate the remaining loads to be applied after each loading increment. To avoid these disadvantages, the following successive approximation method was developed for this study.

To describe the method, consider a structure whose connections have non-linear moment-rotation characteristics. The moment-rotation function for a typical connection is illustrated in Fig. 5.2, and has the form

$$
\begin{equation*}
\phi=g(M) \tag{5.9}
\end{equation*}
$$

where $g(M)$ is a non-linear function of the moment acting on the connection.

The analysis procedure is begun by replacing the

ROTATION, ϕ
MODIFICATION CYCLE

FIG. 5.2
non-linear moment-rotation function for the connection considered, by a linear relationship of the form:

$$
\begin{equation*}
\phi=C_{1} M \tag{5.10}
\end{equation*}
$$

The moment-rotation relationships for all other connections considered in the structure are similarly linearized. As illustrated in Fig. 5.2, Eq. (5.10) describes the initial tangent to the $M-\phi$ curve.

Corresponding to the linearized $M-\phi$ relationships for the connections at the ends of a given member $A B$, the member force-displacement relationships can be written:

$$
\begin{equation*}
R_{B}=S_{1} K\left(u_{B A}-T^{t} u_{A B}\right)+R_{B A_{1}}^{F} \tag{5.11}
\end{equation*}
$$

where:
$S_{1} K$ and $R_{B_{1}}^{F}$ are the modified stiffness matrix and the B-end fixed-end-force vector corresponding to the assumed connection flexibilities.

Assuming member force-displacement relationships as given by Eq. (5.11), a linear analysis is performed and the member end forces are calculated. The corresponding connection rotation is

$$
\begin{equation*}
\phi_{1}=C_{1}{ }_{1}^{M} \tag{5.12}
\end{equation*}
$$

However, the rotation calculated from the correct non-linear relationship of Eq. (5.9), is:

$$
\begin{equation*}
\phi_{1}^{\prime}=g\left(M_{1}\right) \tag{5.13}
\end{equation*}
$$

A better approximation to the connection moment-rotation function is thus seen to be

$$
\begin{equation*}
\phi=C_{2} M \tag{5.14}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{C}_{2}=\frac{\phi_{1}}{\mathrm{M}_{1}} \tag{5.15}
\end{equation*}
$$

as illustrated in Fig. 5.2.
Eq. (5.14) and similar relationships for all other connections are then used to calculate the new member force displacement relationships and a second linear analysis is performed.

A new moment, M_{2}, is found to occur at the typical connection and the corresponding connection rotation, as shown in Fig. 5.2, is

$$
\begin{equation*}
\phi_{2}=C_{2} M_{2} \tag{5.16}
\end{equation*}
$$

Again the connection rotation as calculated from the non-linear relationship is:

$$
\begin{equation*}
\phi_{2}^{\prime}=g\left(M_{2}\right) \tag{5.17}
\end{equation*}
$$

Hence, a third linear relationship, which will lead to better approximations to the correct moment and rotation at the connection, is

$$
\begin{equation*}
\phi=C_{3} M \tag{5.18}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{3}=\phi_{2}^{\prime} / M_{2} \tag{5.19}
\end{equation*}
$$

The above procedure is repeated until, as illustrated in Fig. 5.2, the rotation at each connection, calculated from the linear relationship for the current cycle, is sufficiently close to that given by the appropriate non-linear relationship of the form of Eq. 5.9.

Assuming convergence of the procedure after n cycles of iteration, the final moment and rotation at the typical connection would thus be M_{n} and ϕ_{n}, as illustrated in Fig. 5.2.

The rate of convergence of the above procedure can be increased by employing an "under correction" in each cycle, as illustrated in Fig.5.3.

The figure illustrates the i th modification of the flexibility, for a typical connection. The "under correction" is accomplished by arbitrarily using only one half of the difference between ϕ_{i}^{\prime} and ϕ_{i}, rather than the total difference, when modifying the connection flexibility.

Thus the flexibility to be used in the i+1st cycle is

$$
\begin{equation*}
C_{i+1}=\frac{\phi_{i}^{\prime}-\phi_{i}}{2 M_{i}} \tag{5.20}
\end{equation*}
$$

ROTATION, ϕ
"UNDER CORRECTION" PROCEDURE
FIG. 5.3

ANALYSIS PROCESS

In this chapter, the specification of acceptable loading arrangements and connection types is outlined. The major steps in the analysis procedure are described.

6.1 Definition of Problem

While the analysis procedure outlined in this study is applicable to any type of structure, it has been implemented in a form that is applicable to planar structures only. The members of the structure can be pin connected, rigidly connected, or joined together by connections with any desired flexibility characteristics.

The structure loading may consist of any number of concentrated joint loads, concentrated member loads, or uniformly distributed member loads. Because of the non-linearity of the moment-rotation characteristics of the connections, the principle of superposition cannot be used to combine the results of one analysis with those of another. Therefore, the structure must be analyzed separately for each loading system.

For each flexible connection type used, the associated size parameters must be specified. These size parameters allow the analysis program to generate the moment-rotation relationship for the connection. The permissible connection types and required size parameters are listed in Appendix D.

6.2. Analysis Procedure

The analysis procedure, in general, consists of initialization, followed by repeated cycles of the following steps:
(a) linear analysis
(b) tests for termination
(c) modification of the connection flexibility characteristics

For frames with only pinned and rigid connections, the iterative procedure is not required, and the solution is obtained from the first linear analysis.

The steps of the analysis procedure are described with reference to the flow diagram in Appendix C. A user's manual for the program is included as Appendix D.
6.2.1 Initialization

The initialization consists of specifying the characteristics of the structure and then setting to zero all loads and member end forces.

The characteristics of the structure are described by
means of a member incidence table which establishes the topology, a table of joint coordinates which establishes the geometry, and a table of member cross section properties. The member end connection types must also be specified along with any necessary size parameters.

Unless otherwise specified, the modulus of elasticity is taken as 30,000 k.s.i. All loads are in kips and dimensions are in feet, except for member cross section properties and connection parameters which are expressed in units of inches.

If no connection type is specified, the connection is assumed to be rigid.

6.2.2 Linear Analysis

The stiffness method previously discussed is used to perform the linear analysis. The program employs an in-core Gaussian elimination, variable band width equation solver. Because of symmetry of the structure stiffness matrix, only the elements above the main diagonal are stored. The non-zero band is stored as a series of 3 x 3 submatrices. The structure stiffness matrix is generated one row at a time, and the previously generated rows are used in performing the elimination on the current row, before proceeding to the generation of the next row.

Each member stiffness matrix, which incorporates the effects of flexible connections at the ends of the member is
regenerated each time it is used. The member fixed-end-forces are also dependent on the connection characteristics and must be recalculated for each linear analysis.

6.2.3 Termination Criteria

The primary criterion for the termination of the analysis is the convergence of the iterative procedure to the suitable connection flexibility values. Convergence is indicated when the rotation for each connection, as obtained from the linear analysis, is approximately equal to the rotation for that connection, as calculated from the non-linear moment-rotation function. When this condition has been achieved, each connection has undergone the appropriate deformation corresponding to the applied end moment.

For frames with very flexible connections and high loading, it is possible that the iterative procedure will not converge on a value of connection flexibility. In this event, the connection end moments obtained from the first linear analysis exceed the maximum capacity of the connection by a considerable amount as illustrated for a typical connection shown in Fig. 6.1. Increasing the connection flexibility reduces the moment carried by the connection and redistributes the moment to other connections and other points in the structure. The other connections, however, have already exceeded their maximum capacity and

MOMENT-ROTATION CURVE FOR NON-CONVERGING ITERATIVE PROCEDURE

FIG. 6.1
hence the analysis procedure will fail to converge. Therefore, a counter has been incorporated in the program and the analysis is automatically terminated with an appropriate message after m cycles of iteration.

6.2.4 Connection Flexibility Modification

After each analysis, the assumed flexibility of each connection is modified if the connection rotation predicted by the linear analysis differs from that predicted by the non-linear moment-rotation curve by more than an acceptable amount. The flexibility modification procedure has been described in Sec. 5.3.

6.2.5 Program Output

The program output consists of a detailed listing of the following items:
(a) all program input (for checking purposes)
(b) final connection flexibilities
(c) joint displacements
(d) member end forces
(e) joint support reactions
(f) volumn and total weight of steel in structure

The rotation and deflections of each joint, and the joint support reactions are expressed in the global coordinate system, while the forces (axial, shear, and bending moment) at both ends of the member are expressed in
the local coordinate system.

CHAPTER VII

APPLICATIONS OF THE ANALYSIS PROCESS

7.1 Introduction

In this chapter, several examples are presented to illustrate the analysis process. for the sake of simplicity, only selected results are presented and discussed, and these are illustrated by means of deflection and bending moment diagrams. Examples have been chosen which best demonstrate the effects of connection deformations, and the capabilities of the analysis program.

In all examples, loads and forces are expressed in kips, and moments are in inch-kips. Linear displacement and distortion components are expressed in inches, and rotational displacements and distortions are expressed in radians.
7.2 Effect of Connection Deformations on Displacements and Internal Forces

While the connections in a structure generally represent a small percentage of the total material weight, they have a high labour content, and consequently, often
represent a substantial percentage of the total framing cost.

Furthermore, the deformations that occur in structural steel framing connections may be responsible for the major proportion of the displacements of the structure, and may have a very strong influence on the internal force distribution.

It is highly desirable to know the effects of connection deformations so that:
(a) connection types that would lead to unacceptably large deflections or undesirable internal force distributions can be replaced by more suitable connection types.
(b) where possible, expensive connection types can be replaced by less expensive (probably more flexible) types without adverse effects on the structural behaviour.

Several examples have been included to illustrate the effects of connection deformation on structural behaviour. All of the connection types used in the illustrative examples are illustrated in Figs. 2.2 to 2.8 inclusive.

Example 1

The first example involves the analysis of a 15 storey, 3-bay frame with lateral wind loading applied at each floor level, as illustrated in Fig. 7.1. To determine the effect of connection deformation on the lateral deflection of the

EXAMPLE 1
I5 STOREY THREE BAY FRAME AND LOADING
FIG. 7.1
structure, it was first analyzed with all connections assumed to be completely rigid. The identical frame was subsequently analyzed with the rigid beam-column connections replaced by the following connection types in turn:
(a) connections with numerically specified flexibility characteristics
(b) T-stub connections
(c) top and seat angle connections

The connection flexibilities specified in (a) corresponded to relatively rigid connections that would likely be used in a tall frame of this type. The r-stub connections consisted of two structural tees (ST 12 WF 47). Two $5 \times 5 x^{3}-14$ inch angles were used for the top and seat angle connections. The fasteners used were ${ }^{7} 8$ inch diameter H.T. bolts.

The lateral deflections for each of the four structures are plotted in Fig. 7.2. In Table 7-1, the lateral deflections at the 5th, 10th, and 15 th floor levels are listed and also expressed in terms of percentages of the corresponding deflections for the rigidly connected structure. This example illustrates that connection deformation contributes very substantially to overall deformation of a structure. It can be seen from the table that top and seat angle connections have contributed to an increase of approximately 100% of that for the frame with rigid connections.

Table 7-1 Lateral Deflection of 15 Storey Frame

CONNECTION TYPE	LSth LEVEL		10th LEVEL		5 th LEVEL	
	Deflection	$\%$ of rigid	Deflection	\% of rigid	Deflection	\% of rigid
Rigid	5.058	100%	4.375	100%	2.757	100%
Specified	7.380	146%	6.370	146%	4.004	146%
T-Stub	8.196	162%	7.266	166%	4.817	175%
Top and Seat	9.985	198%	8.593	197%	4.566	166%

LATERAL DEFLECTION PLOT OF 15 STOREY FRAME
FIG. 7.2

Example 2
As a second illustration of the influence of connection deformation, a skewed Vierendeel truss was analyzed for the vertical loading shown in Fig. 7.3. The connections of the vertical members to the chords were assumed to be rigid for an initial analysis, and were replaced by each of the following progressively more flexible connection types in turn:
(a) T-stub connections
(b) end plate connections with no stiffeners
(c) top and seat angle connections
(d) double web angle connections

For the T-stub connections two ST 12 WF 47 were used. The end plates used for connection type (b) were $16 \times 6 \times \frac{1}{2}$ inch plates welded to the ends of the vertical struts and bolted to the top and bottom chords of the truss. The top and seat angle connections consisted of two $4 \times 4 \times \frac{1}{2}-14$ inch angles Two $3 \frac{1}{2} \times 3 \frac{1}{2} \times{ }^{3} 8$ inch angles were used for the double web angle connections. Four lines of inch diameter H.T. bolts were used on either side of the strut web for both the double web angle and the end plate connections.

Fig. 7.4 is a plot of the bottom chord deflections obtained in the four analyses. It can be seen that there is an increase in the deflection of the structure as the strut connections become progressively more flexible. Table 7-2 compares the bottom chord deflection for the rigidly

EXAMPLE 2 VIERENDEEL TRUSS AND LOADING

FIG. 7.3

Table 7-2 Bottom Chord Deflection

CONNECTION TYPE		JOINT			JOINT	
Rigid	Deflection	\% of rigid	Deflection	$\%$ of rigid	Deflection	$\%$ of rigid
	.479	100%	.682	100%	.479	100%
	1.291	170%	1.160	170%	.813	170%
Top and Seat	1.734	249%	1.833	269%	1.291	249%
Double Web	3.089	647%	4.337	635%	3.089	647%

FIG. 7.4
connected structure with that obtained with each of the other connection types. This example demonstrates again that connection deformation accounts for a high percentage of overall frame displacement.

Example 3
To illustrate the influence of connection flexibility on the distribution of internal moments, and to compare the flexibilities of various commonly used connection types, an unsymmetrical 2-bay frame was analyzed for the loading shown in Fig. 7.5. For this example the following connection types were used:
(a) rigid connections
(b) T-stub connections
(c) top and seat angle connections
(d) header plate connections
(e) double web angle connections
(f) single web angle connections

The structural tees used for the T-stub connections were ST 12 WF 47. For the top and seat angle connections, $2-4 \times 4 \times \frac{1}{2}$ angles were used. The header plates were $1 \frac{1}{2} \times 5 x^{3} 8^{-14}$ inch plates welded, to the ends of the 16 inch beams, and $9 \frac{1}{2} \times 5 x^{3}{ }_{8}$ inch plates welded to the ends of the 14 inch beam. The double web angle connections employed $2-3 \frac{1}{2} \times 3 \frac{1}{2} x^{3}{ }_{8}$ inch angles. A single $3 \frac{1}{2} \times 3 \frac{1}{2} x^{3}{ }_{8}$ angle was used for the single web angle connections. The double web angles and single web

EXAMPLE 3
2 STOREY 2 BAY FRAME AND LOADING
FIG. 7.5

Table 7-3 Comparison of Connection Flexibilities and End Moments

CONNECTION			
TYPE	FLEXIBILITY	MOMENT	$\%$ OF RIGID MOMENT
Rigid	0	147.711	100%
T-Stub	.00000275	97.727	67%
Top and Seat Angle	.00001123	50.601	35%
Double Web Angle	.00002878	26.584	18%
Header Plate	.00003764	21.599	18.132

BENDING MOMENT DIAGRAM FOR 2 STOREY 2 BAY FRAME RIGID CONNECTIONS

FIG. 7.6

BENDING MOMENT DIAGRAM FOR 2 STOREY 2 BAY FRAME T-STUB CONNECTIONS

FIG. 7.7

BENDING MOMENT DIAGRAM FOR 2 STOREY 2 bAY FRAME TOP AND SEAT ANGLE CONNECTIONS

BENDING MOMENT DIAGRAM FOR 2 STOREY 2 BAY frame header plate connections

FIG. 7.9

BENDING MOMENT DIAGRAM FOR 2 STOREY 2 bAY frame double web angle connections

FIG. 7.10

BENDING MOMENT DIAGRAM FOR 2 STOREY 2 bay frame single web angle connections

FIG. 7.11
angles were $14 \frac{1}{2}$ inches in length for the 16 inch beam, and $11 \frac{1}{2}$ inches for the 14 inch beam. Three lines of inch diameter H.T. bolts were used for the $1 \frac{1}{2}$ inch angles and header plates, and four lines of bolts were used for the $14 \frac{1}{2}$ inch angles and plates.

Bending moment diagrams for the frame have been plotted in Fig. 7.6 to Fig. 7.11. Examination of the frame bending moment diagrams reveals that the connection type has a marked effect on the distribution of internal moments. Table 7-3 compares the flexibilities and the end moments at joint A of the 22° member $A B$ shown in Fig. 7.5, for the different types of connections. The tabulated flexibilities are the inverse slopes of the linearized $M-\phi$ relationships used in the final linear analysis. That is the $M-\phi$ lines that intersect the non-linear $M-\phi$ curve at very nearly the correct moment and rotation. The end moments are also expressed as a percentage of the rigid frame end moments.

7.3 Accuracy of Successive Approximation Method

The basic premise of the successive approximation procedure developed and employed in this study, is that the correct deflections and internal forces for a structure with non-linear connections can be obtained from a single linear analysis, provided the correct flexibility is assumed for each connection.

To illustrate, assume that the moment-rotation curve for a typical connection in a structure is as shown in Fig.
7.12. Assume further that, for a given loading, the correct moment and rotation at the connection are M_{1} and ϕ_{1} respectively. The appropriate connection flexibility (the connection flexibility that would yield the correct results for the loading considered), is thus C, the inverse slope of line $O A$ in the figure.

Furthermore, if flexibility C happens to be assumed for the connection under consideration, and if appropriate flexibilities happen to be similarly assumed for all other connections in the structure, a single linear analysis will yield the correct final forces and deflections for the non-linear structure.

The successive approximation method thus involves repeated cycles of an iterative procedure, whose purpose is to determine appropriate flexibilities for the various connections in a structure. When the appropriate flexibilities have been determined with sufficient accuracy, they are employed in a linear analysis to calculate the correct structural displacements and forces.

Two examples were employed to illustrate the validity of the procedure and to give an indication of its accuracy.

Example 1

The first of these examples involved the analysis of the fixed-ended beam shown in Fig. 7.13(a), loaded by the 40 kip load shown. To permit a relatively simple check of the results, the beam end connections were assumed to have

Rotation, ϕ
LINEARIZATION OF CONNECTION MOMENTROTATION CURVE

FIG. 7.12
rigid-perfectly plastic moment rotation characteristics, as illustrated by the moment-rotation curves in Fig. 7.13(b).

The structure was first analyzed by hand computation, applying the loading in three increments. The structure behaved linearly over each increment. It was initially treated as a fixed-end beam, and the load required to produce a moment of 1000 in kips at connections A_{8} calculated. The corresponding moment at connection B was also calculated.

Because connection A had become perfectly plastic, the structure was analyzèd as a propped cantilever, pinned at connection A, for the second loading increment. The loading required to increase the total moment at connection B was calculated, along with the rotation produced at connection A.

Finally, because both connections had become perfectly plastic, the structure was analyzed as a simply supported beam, for the remainder of the 40 kip load. The rotations at both connections A and B were calculated for this final loading.

The total moments and rotations at the connection were then obtained by summing the results for the three loading increments. The pertinent quantities are illustrated in Fig. 7.14.

Because the analysis program is not able to accomodate

EXAMPLE I-
UNSYMETRICALLY LOADED FIXED BEAM

FIG. $7.13(a)$

MOMENT-ROTATION CURVES FOR BEAM END CONNECTIONS

FIG. 7.13(b)

LOADING CASE 1

LOADING CASE 2
$P_{3}=P-\left(P_{1}+P_{2}\right)=6.25 K$

LOADING CASE 3
TOTALS: $M_{A}=M_{B}=1000 \mathrm{in}$. kips

$$
\phi_{A}=\frac{72,225.8}{\bar{E} \bar{I}} \quad \phi_{B}=\frac{27,777.6}{\bar{E} \bar{I}}
$$

LOAD DIAGRAMS AND BENDING MOMENT DIAGRAMS FOR EXAMPLE I

FIG. 7.14
the idealized, rigid-perfectly plastic connection characteristics assumed in this example, "appropriate" connection flexibility values were calculated by dividing the above calculated connection rotations by the corresponding connection moments. These flexibility values were then input, and the analysis program used to calculate the beam end forces.

As can be seem from Table 7-4, the two analyses yielded identical results.

The connection properties assumed in the preceeding example are a special case of those illustrated in Fig. 7.15 (a) and (b). Hence, the incremental (successive correction) analysis procedure, for which the structure is piecewise linearized over finite loading increments, could be used to verify the validity of the successive approximation procedure for structures whose connections have the characteristics illustrated.

In addition, the moment-rotation diagram illustrated in Fig. 7.15(c) is a generalization of that shown in fig. 7.15(b), where the former diagram is assumed to have an infinite number of infinitesimal segments. Hence, the validity of the successive approximation procedure can be verified for a structure with continuously non-linear connections.

Example 2
To further illustrate the successive approximation
procedure, and compare it with a successive correction procedure, the frame shown in Fig. 7.16 was analyzed by both methods. The beam to column connections for the frame were double web angle connections, as illustrated in Fig. 7.17, employing $3 \frac{1}{2} \times 3 \frac{1}{2} x^{3}{ }^{3}$ inch angles with $6-^{7}{ }_{8}$ inch diameter H.T. bolts per angle leg. The moment-rotation curve for the connection is also shown in the figure.

For the successive correction procedure, the connection moment-rotation curves were piecewise linearized over three intervals, as illustrated in Fig. 7.17. The analysis procedure then involved applying successive loading increments of such magnitude that each increment was terminated when the moment at one of the connections reached the end of one of the linear segments.

The entire load was applied initially, and a linear analysis performed. A load factor was then calculated for each connection and the minimum value retained. The load factor for a given connection was assumed to be the ratio of the load required to increase the moment at the connection to the limit of the current linear segment, to the total applied load.

The member end forces, joint displacements and support reactions were then multiplied by the minimum load factor and the factored values retained. The initial loading was then decremented by the product of the initial loading and the minimum load factor.

Table 7-4 Results of Fixed Beam Analysis

LOADING CASE	P	M_{A}	M_{B}	ϕ_{A}	ϕ_{B}
1	22.5 K	1000 in. k	500 in. k	-	-
2	11.25 K	-	500 in. k	$37,503.8 / \mathrm{EI}$	-
3	6.25 K	-	-	$34,722.0 / \mathrm{EI}$	$27,777.6 / \mathrm{EI}$
TOTALS	40.00 K	1000 in. k	1000 in. k	$72,225.8 / \mathrm{EI}$	$27,777.6 / \mathrm{EI}$

For $E I=72,225,800 \quad \phi_{A}=.001 \quad \phi_{B}=.00038$
Therefore:

> Flexibility A end $=\frac{.001}{1000}=.000001$
> Flexibility B end $=\frac{.00038}{1000}=.0000038$

Program analysis results:

$$
\text { For } \begin{aligned}
C_{A} & =.000001 ; C_{B}=.0000038 \\
M_{A} & =1000 \text { in.kips } \quad M_{B}=1000 \text { in.kips }
\end{aligned}
$$

FIG. $7.15(a)$ ELASTIC PERFECTLY PLASTIC $M-\phi$ BEHAVIOUR

FIG. 7.I5(b) ELASTIC-PLASTIC WITH STRAIN HARDENING $M-\phi$ BEHAVIOUR

FIG. 7.I5 (c) CONTINUOUSLY NON-LINEAR $M-\phi$ BEHAVIOUR

FIG. 7.16

This reduced loading was then applied and a second linear analysis performed. Load factors were again calculated for all connections, and the minimum load factor retained. New factored member end forces, etc. were again calculated and added to the previous values, and the load was again decremented using the minimum load factor.

The procedure was repeated until the total loading had been applied, and the cumulative structural quantities retained.

Table 7-5 shows the loading that remained to be applied at the beginning of each of the seven loading increments that were used. The connection flexibilities, which correspond to the inverse slope of the segments of the piecewise linearized moment-rotation curve, are also tabulated.

The results of each linear analysis are given in Table 7-6 along with the cumulative end moments for the three beams in the structure. The structure was analyzed by the computer program developed in this study and the resulting beam end moments obtained from the latter analysis are also included in Table 7-6.

In general, the results obtained by the successive correction procedure and successive approximation procedure were in close. agreement. To complete the successive correction procedure it was necessary to calculate all load factors, loading increments, cumulative totals, and new

Table 7-5 Variation of Loading and Connection Flexibility

Load Increment	LOADING			CONNECTION FLEXIBILITY					
	Vertical Load	Horizontal Load	\%	Member 5		Member 6		Member 7	
	Remaining	Remaining	Total	A end	B end	A end	B end	A end	B end
1	1.5600	. 2000	100\%	. 00001500	. 00001500	. 00001500	. 00001500	. 00001500	. 00001500
2	1.0778	. 1382	69\%	do	. 00004750	do	do	. ${ }^{\text {do }}$. ${ }^{\text {do }}$
3	1.0748	. 1378	68.8\%	do	do	do	. 00004750	do	do
4	. 6558	. 0841	42\%	do	do	do	do	do	. 00004750
5	. 6065	. 0778	38.8\%	do	. 00013250	do	do	do	. do
6	. 6006	. 0770	38.5\%	do	do	do	. 00013250	do	do
7	. 1013	. 0130	6.5\%	do	do	do	. do	do	. 00013250

Table 7-6 Beam End Moments By Successive Corrections and Successive Approximations

		MEMBER 5		MEMBER 6		MEMBER 7	
		A END	B END	A END	B END	A END	B END
Analysis 1	$\begin{gathered} \text { Results } \\ \% \\ \hline \end{gathered}$	$\begin{array}{r} 22.7400 \\ 7.0285 \\ \hline \end{array}$	$\begin{array}{r} -647.0759 \\ -200.0000 \\ \hline \end{array}$	$\begin{array}{r} 305.8318 \\ 94.5273 \\ \hline \end{array}$	$\begin{aligned} & -642.8640 \\ & -198.6981 \\ & \hline \end{aligned}$	$\begin{array}{r} 314.2080 \\ 97.1162 \\ \hline \end{array}$	$\begin{array}{r} -311.8198 \\ -96.3781 \\ \hline \end{array}$
	Cumulation	7.0285	-200.0000	94.5273	-198.6981	97.1162	-96.3781
Analysis 2	$\begin{gathered} \text { Results } \\ \% \\ \hline \end{gathered}$	$\begin{array}{r} 1.2600 \\ .0035 \\ \hline \end{array}$	$\begin{array}{r} -215.8079 \\ -.6005 \\ \hline \end{array}$	$\begin{array}{r} 52.4400 \\ .1459 \\ \hline \end{array}$	$\begin{array}{r} -467.9158 \\ -1.3019 \\ \hline \end{array}$	$\begin{array}{r} 204.6000 \\ .5693 \\ \hline \end{array}$	$\begin{array}{r} -237.0840 \\ -.6596 \\ \hline \end{array}$
	Cumulation	7.0230	-200.6005	94.6732	-200.0000	97.6855	-97.0377
Analysis 3	$\begin{gathered} \text { Results } \\ \% \\ \hline \end{gathered}$	$\begin{array}{r} -21.8280 \\ -8.5104 \\ \hline \end{array}$	$\begin{array}{r} -227.1599 \\ -88.5662 \\ \hline \end{array}$	$\begin{aligned} & 40.5360 \\ & 15.8044 \\ & \hline \end{aligned}$	$\begin{array}{r} -225.3120 \\ -87.8457 \\ \hline \end{array}$	$\begin{array}{r} 37.5240 \\ 14.6300 \\ \hline \end{array}$	$\begin{aligned} & -264.0840 \\ & -102.9623 \end{aligned}$
	Cumulation	-1.4784	-289.1667	110.4776	-287.8457	112.3155	-200.0000
$\begin{gathered} \text { Analysis } \\ 4 \end{gathered}$	$\begin{gathered} \text { Results } \\ \% \\ \hline \end{gathered}$	$\begin{array}{r} -28.3440 \\ -2.1304 \end{array}$	$\begin{array}{r} -144.1320 \\ -10.8333 \end{array}$	$\begin{array}{r} 9.9600 \\ .7486 \end{array}$	$\begin{array}{r} -143.8440 \\ -10.8116 \end{array}$	$\begin{array}{r} 10.7160 \\ .8054 \end{array}$	$\begin{array}{r} -107.1840 \\ -8.0562 \end{array}$
	Cumulation	-3.6088	-300.0000	111.2262	-298.6573	113.2209	-208.0562
Analysis 5	$\begin{gathered} \text { Results } \\ \% \\ \hline \end{gathered}$	$\begin{array}{r} -32.2200 \\ -.3154 \\ \hline \end{array}$	$\begin{array}{r} -56.8680 \\ -.5566 \\ \hline \end{array}$	$\begin{array}{r} -44.6280 \\ -.4368 \\ \hline \end{array}$	$\begin{array}{r} -137.1840 \\ -1.3427 \\ \hline \end{array}$	$\begin{array}{r} 2.2680 \\ .0222 \end{array}$	$\begin{array}{r} -104.2800 \\ -1.0206 \\ \hline \end{array}$
	Cumulation	-3.9252	-300.5566	110.7894	-300.0000	113.2431	-209.0768
$\begin{gathered} \text { Analysis } \\ 6 \end{gathered}$	$\begin{gathered} \text { Results } \\ \% \end{gathered}$	$\begin{aligned} & -40.3920 \\ & -33.5762 \end{aligned}$	$\begin{aligned} & -58.0920 \\ & -48.2895 \end{aligned}$	$\begin{aligned} & -50.4720 \\ & -41.9553 \end{aligned}$	-57.9480 -48.1968	-52.7040 -43.8107	-109.3800
	Cumulation	-37.5014	-348.8461	-68.8341	- -348.1698	-43.8107	-90.9232 -300.0000
Analysis 7	$\begin{gathered} \text { Results } \\ \% \\ \hline \end{gathered}$	$\begin{aligned} & -9.3480 \\ & -9.3480 \\ & \hline \end{aligned}$	$\begin{aligned} & -10.1880 \\ & -10.1880 \end{aligned}$	-11.3160	-10.2240	-11.3400	-9.8800
	Cumulation	-46.8494	-359.0341	$\frac{-11.37 .5181}{}$	-10.2240	-11.3400	-9.8800 -309.8800
Iteration		-45.9480	-366.5640	75.7440	-366.6479	76.9080	-310. 1880

flexibilities by hand. Discrepancies between the two procedures can be attributed to error in these calculations. Additional error was also introduced by the crude approximation of the non-linear moment-rotation curve by only three linear secants. More accurate results would have been obtained for the successive correction analysis had smaller intervals been used.

CHAPTER VIII

CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY

8.1 Conclusions

In this study, the experimental force-deformation information for the most commonly used structural steel framing connection types has been summarized. These experimental data which are in the form of moment-rotation curves, have been standardized to minimize the amount of connection information that must be stored in a structural analysis computer program.

A procedure has been outlined for incorporating the effects of flexible connections into a frame analysis proǵram. The procedure involves modifying the stiffness matrix and the fixed-end-force vectors for any member to account for the effects of the connections at its ends.

Because of the non-linear nature of the force-deformation relationships for the majority of connection types encountered, an iterative procedure has been developed which involves repeated modifications to the assumed connection flexibilities until the structure satisfies equilibrium, compatability, and non-linear
connection moment-rotation relationships.
A structural analysis computer program has been developed which is capable of analysing plane frames with any combination of rigid connections, pinned connections, any of seven common connection types, or connections with any specified bending flexibility.

Several examples have been included to illustrate that connection deformation may contribute to a significant percentage of overall structural displacement and may also substantially affect the internal force distribution in a structure. The iterative procedure has been compared with a piecewise linearization procedure for non-linear analysis. The results agreed very closely.

8.2 Suggestions For Further Study

The objectives of further investigation should be to supplement and extend the available connection test data, and to extend the capabilities of the analysis process.

Most of the available connection moment-rotation curves have been incorporated into this study. However, much of the information is for the now outdated riveted connections. Additional test data for high strength bolted connections should be obtained and incorporated into the analysis program. Since much of the available connection test data were obtained in the nineteen-thirties it would be desirable to verify them using the more accurate testing equipment now
available.
Because of an increased use of new structural shapes such as hollow structural sections, it would be useful to incorporate connec̆tion data for these shapes into the analysis program. There are also several other conventional connection types $(8,9,10,11,17,34$ that could be included in the analysis program when there is sufficient test data. The deformation of beam and column splices, and column bases should be included to provide a more complete picture of frame displacement caused by connection deformation.

In this study, only a single connection force component (moment) and the corresponding deformation component (rotation) have been considered. However, the analysis procedure could be extended to include the effects of shear and axial load on each connection.

At the present time, the analysis program is capable of treating only statically loaded structures. It would be highly desirable to extend the analysis procedure to dynamically loaded structures.

It would be of considerable practical value to adapt the analysis process developed in this study to a general structural steel floor system. The floor system could be analyzed as a planar grid of members connected by flexible connections, and loaded normal to the plane of the grid. The analysis program could then be combined with a member selection program to produce a computer program capable of
designing steel floor systems.

LIST OF REFERENCES

1. Baker, J. F., "Method of Stress Analysis", First Report of the Steel Structures Research Committee, Dept. of Scientific and Industrial Research of Great Britain, P.179; Second Report, P. 200 .
2. Bannister, A., "Moment-Angle Change Relationships for Certain Connections Incorporating Friction Grip Bolts", Civil Engineering and Public Works Review, V. 61, No. 720, July, 1966.
3. Batho, C., and H. C. Rowan, "Investigation on Beam and Stanchion Connections", Second Report of the steel Structures Research Committee, H. M. Stationary Office, London, 1934.
4. Beedle, L. S. and R. Christopher, "Tests on Steel Moment Connections", Engineering Journal, Vol. 1, October, 1964.
5. Brandes, J. L. and R. M. Mains, "Report of Tests of Top Plate and Seat Building Connections", British Welding Journal, Vol. 23, N. 3, 1944.
6. Disque, R. O., "End Plate Connections", A.I.S.C. National Engineering Conference Proceedings, 1962.
7. Douty, R. T., "Strength Characteristics of High Strength Bolted Connections with Particular Application to the Plastic Design of Steel Structures", Ph.D. Thesis, Cornell University, 1964.
8. Fisher, J. W., G. C. Driscoll Jr., and F. W. Schutz Jr., "Behaviour of Welded Corner Connections", Welding Research Supplement, May, 1958.
9. Fisher, J. W. and G. C. Driscoll Jr., "Corner Connections Loaded in Tension", Supplement to Welding Journal, November, 1969.
10. Graham, J. D., A. N. Sherbourne, R. H. Khabbag, and C. D. Jensen, "Welded Interior Beam-to-Column Connections", American Institute of Steel Construction

Inc. \quad New York, 1959 .
11. Greaves, H., "Heavy Flexible Beam and Girder Connections", British Welding Journal, Vol. 29, N. 10, 1948.
12. Grover, L., "Standardized Welded Beam Connections and Special Rigid Frame Details of New Airco Laboratory", British Welding Journal, V. 27, 1948.
13. Hechtman, R. A., and B. G. Johnston, "Riveted Semi-Rigid Beam-to-Column Building Connections", American Institute of steel Construction, November, 1947。
14. Johnson, L. G. "Tests on Welded Connections Between I-Section Beams and Stanchions", British Welding Journal, January, 1959.
15. Johnson, L. Ge, Je C. Cannon, and L. A. Spooner, "High Tensile Preloaded Bolted Joints", British Welding Journal, V. 7, N. 9, September, 1960.
16. Johnston, B., and E. H. Mount, "Analysis of Building Frames with Semi-Rigid Connections", A.S.C.E. Journal, Maxch, 1941.
17. Johnston, B., and G. R. Deits, "Tests of Miscellaneous Welded Building Connections", The Welding Journal Research Supplement, July, 1956.
18. Lewitt, C. W. E. Chesson Jr., and W. H. Munse, "Restraint Characteristics of Flexible Riveted and Bolted Beam-to-Column Connections", Department of Civil Engineering, University of Illinois, Urbana, Illinois, March, 1966.
19. Lipson, S. L., "Single-Angle and Single-Plate Beam Framing Connections", Canadian Structural Engineering Conference, 1968.
20. Livesley, R. K., Matrix Metods of Structural Analysis, Pergamon Press, New York, 1964.
21. Lothers, J. E., "Elastic Restraint Equations for Semi-Rigid Connections", A.S.C.E. Journal.
22. Montforton, G. R. and T. S. Wu, "Matrix Analysis of Semi-Rigidly Connected Frames", Journal of the Structural Devision A.S.C.E. , December, 1963.
23. Morris, G. A., "Analysis of Elastic and Inelastic

Behaviour of Frameworks", Ph.D. Thesis, University of Illinois, 1967.
24. Munse, W. H., W. G. Bell and E. Chesson Jr., "Behaviour of Beam-to-Column Connections".
25. Ostrander, J. R., "An Experimental Investigation of End Plate Connections", Masters Thesis, University of Saskatchewan, 1970.
26. Pray, R. F. and C. Jensen, "Welded Top Plate Beam-to-Column Connections", The Welding Journal Research Supplement, July, 1956.
27. Rathbun J. C., "Elastic Properties of Riveted Connections", Transactions of the A.S.C.E.; V. 101. 1936.
28. Scheyer, E., "Flexible Welded Connections for Structural Steel", British Welding Journal, V. 28, N. 3. March, 1949.
29. Sherbourne, A. N., "Bolted Beam-to-Column Connections", The Structural Engineer, V. 27, 1948.
30. Somner, W. H., "Behaviour of Welded Header Plate Connections", Masters Thesis, University of Toronto, 1969.
31. Sourochnikoff, B., "Wind Stresses in Semi-Rigid Connections of Steel Framework", A.S.C.E. Journal.
32. de Stein, J. L., and J. O. McCutcheon, "Lateral Rigidity of Steel Building Frames", The Engineering Journal, October, 1956.
33. Sterling, G. H. and J. W. Fisher, "A-440 Steel Joints Connected by A-490 Bolts", Journal of the Structural Division A.S.C.E., June, 1966.
34. Toprac, A. A., "An Investigation of Corner Connections Loaded in Tension", Welding Research Supplement, November, 1961.
35. Toprac, A. A., "An Investigation of Welded Rigid Connections for Portal Frames", British Welding Journal, V. 33, 1954.
36. CSA, "Steel Structures for Buildings" S-16 1965
37. AISC, "Specification for Steel Construction" 1967
38. CSA, "Steel Structures for Buildings" s-16 1969

APPENDIX A

This appendix contains moment-rotation curves for the following connection types:
a) double web angle connections
b) single web angle connections
c) header plate connections
d) top and seat angle connections
e) welded top plate connections
f) end plate connections with column stiffeners
g) end plate connections without column stiffeners
h) T-stub connections.

The test numbers refer to the actual experimental test number. The following is a summary of the pertinent parameters for the above connection types:

TABLE A-1 DOUBLE WEB ANGLE CONNECTIONS

Investigator	$\begin{aligned} & \text { Test } \\ & \text { No. } \end{aligned}$	Beam Size	$\begin{aligned} & \text { Column } \\ & \text { Size } \end{aligned}$	$\begin{gathered} \text { Web Angle } \\ \text { Size } \end{gathered}$	Fastener Diameter	Rows	Gage
Munse, Lewitt, Chesson	1 2 3 4 5 6 7 8	12WF2718 WF 5021 WF 5521 WF 5524 WF 6827 WF 8433 WF 11836 WF 135	10WF49 12WF65 12WF65 12WF65 12WF65 12WF65 12WF65 12 WF 65		$\begin{aligned} & 3 \\ & 3 \\ & 4 \\ & 4 \\ & 4 \\ & 3 \\ & 4 \\ & 3 \\ & 4 \\ & 4 \\ & 4 \\ & 3 \\ & 4 \\ & 3 \\ & 4 \\ & 4 \\ & 4 \\ & \hline \end{aligned}$	$\begin{array}{r} 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 9 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 5 \frac{1}{2} \\ & 55_{2}^{1} \\ & 5 \frac{1}{2} \\ & 5^{\frac{1}{2}} \\ & 5 \frac{1}{2} \\ & 5_{2}^{2} \\ & 5^{\frac{1}{2}} \end{aligned}$
J. C. Rathbun	1 2 3 4 5 6 7 7	$\begin{aligned} & 6 I 12.5 \\ & 8 I 18.4 \\ & 8118.4 \\ & 12131.8 \\ & 12131.8 \\ & 18154.7 \\ & 18154.7 \\ & \hline \end{aligned}$		$6 \times 4 \times \frac{3}{3} \times 2 \frac{1}{2}$$6 \times 4 \times \frac{3}{3} \times 6$$6 \times 6 \times \frac{3}{3} \times 6$$4 \times 33^{1} \times 8 \times 9$$6 \times 6 \times \frac{3}{8} \times 9$$4 \times 32 \times 8 \times 1-3$$6 \times 6 \times{ }^{\frac{3}{3}} \times 1-3$	3443443434344	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 5 \\ & 5 \end{aligned}$	
H. S. Somner	$\begin{aligned} & 21 \\ & 22 \\ & 23 \\ & 24 \end{aligned}$	18 WF 45 18 WF 45 24 WF 76 24 WF 76	14 WF 3814 WF 3814 WF 3814 WF 38	$\begin{aligned} & 3 \times 3 \times \frac{3}{8} \times 9 \\ & 3 \frac{1}{2} \times 3 \times \frac{3}{8} \times 12 \\ & 4 \times 3 \times \frac{3_{8}^{3}}{6} \times 1-3 \\ & 4 \times 3 \times{ }_{8}^{3} \times 1-8 \end{aligned}$	34343434	3	$4 \frac{1}{2}$
						4	$4 \frac{1}{2}$
						5	$5{ }^{1}$
						,	$5 \frac{1}{2}$

* 2 rows of bolts

TABLE A－2 SINGLE WEB ANGLE CONNECTIONS

Investigator	$\begin{aligned} & \text { Test } \\ & \text { No. } \end{aligned}$	Beam Size	Column Size	$\begin{gathered} \text { Web Angle } \\ \text { Size } \end{gathered}$	Fastener Diameter	Rows	Gage
S．L．Lipson	BB4－1	21WF62	${ }_{4}^{3} \mathrm{Pl}$ 。		3333434		
	C4	21WF62	${ }_{4}^{3} \mathrm{Pl}$ 。	$3{ }^{\frac{1}{2} \times 5 \times{ }^{\frac{1}{5}}{ }^{-1}-13 \frac{1}{2}}$		4	216
	D4	21WF62	${ }_{4}^{3} \mathrm{Pl}$ 。	$3 \frac{1}{1} \times 5 \times \frac{1}{5} 6^{6}-13^{\frac{1}{2}}$		4	${ }^{116}$
	AA 2－1	21 WF 62	${ }^{3}{ }^{3} \mathrm{Pl}$ P1。	$4 \times 3{ }^{\frac{1}{2} \times \frac{1}{1}}{ }^{16} 7^{\frac{1}{2}}$		2	${ }^{19} 9$
	AA3－1	21WF62	${ }_{4}^{3} \mathrm{Pl}$ ．	$4 \times 3 \times 3 \times 4{ }^{1}$		3	196 29
	AA 4－1	21 WF 62	${ }_{3}^{3} \mathrm{Pl}$ 。	$4 \times 3{ }^{\frac{1}{2} \times \frac{1}{4}}-13{ }^{\frac{1}{2}}$		4	296
	AA5－1	21 WF 62	${ }_{3}^{3} \mathrm{Pl}$ 。	$4 \times 3 \frac{1}{2} \times \frac{1}{4}-16 \frac{1}{2}$		5	216
	AA6－1	21WF62	${ }_{4}^{3} \mathrm{P} 1$.	$4 \times 3 \frac{1}{2} \times \frac{1}{4}-19 \frac{1}{2}$		6	216

TABLE A-3 HEADER PLATE CONNECTIONS

Investigator	Test No.	Beam Size	Column Size	Plate Size	Fastener Diameter	Rows	Gage
H. S. Somner	5	18 WF 45	14WF38	$15 \times 6 \times \frac{1}{4}$		5	4
	6	24WF 76	14WF38	$9 \times 6 \times \frac{1}{4}$		3	4
	7	24WF 76	14VF38	$12 \times 6 \times \frac{1}{4}$		4	4
	8	24WF76	14WF38	$15 \times 6 \times \frac{1}{4}$		5	4
	9	24 WF 76	14WF38	$18 \times 6 \times \frac{1}{4}$		6	4
	10	18WF45	14 WF 38	$9 \times 6 \times \frac{3}{8}$		3	4
	11	18 WF 45	14 WF 38	$12 \times 6 \times{ }_{8}^{3}$		4	4
	12	24WF76	14WF38	$15 \times 6 \times{ }_{8}^{3}$		5	4
	13	24WF76	14 WF 38	$9 \times 6 \times{ }_{8}^{3}$		3	4
	14	24 WF 76	14WF 38	$12 \times 6 \times{ }_{8}^{3}$		4	4
	15	24 WF 76	14WF38	$15 \times 7 \frac{1}{2} \times \frac{8}{8}$		5	$5 \frac{1}{1}$
	16	24 WF 76	14 WF 38	$18 \times 7 \frac{1}{2} \times \frac{3}{8}$		6	$5 \frac{1}{2}$
	17	24 WF 76	14WF38	$12 \times 7 \frac{1}{2} \times \frac{1}{4}$		4	$5 \frac{1}{2}$
	18	24 WF 76	14 WF 38	$15 \times 7 \frac{1}{2} \times \frac{1}{4}$		5	$5 \frac{1}{2}$
	19	24 WF 76	14 WF 38	$12 \times 7 \frac{1}{2} \times \frac{1}{4}$		4	$5 \frac{1}{1}$
	20	24WF76	14 WF 38	$15 \times 7 \frac{1}{2} \times \frac{1}{4}$		5	$5 \frac{1}{2}$

TABLE A-4 TOP AND SEAT ANGLE CONNECTIONS

TABLE A-4 TOP AND SEAT ANGLE CONNECTIONS (continued)

TABLE A－5 WELDED TOP PLATE AND SEAT CONNECTIONS

Investigator	$\begin{aligned} & \text { Test } \\ & \text { No. } \end{aligned}$	Beam Size	$\begin{gathered} \text { Column } \\ \text { Size } \end{gathered}$	Top Plate Size	Seat Size
J．L．Brandes， R．M．Mains	2	12WF50	12WF65	$7 \times{ }^{5} \times 9$＂	ST13WF45．5×6
	3	12 WF 47	12WF65	6×5	ST9WF 32×9
	4	12 WF 85	12WF65	$7 \frac{1}{2} \times{ }_{8}^{7} \times 12$	ST15WF54×7 $\frac{1}{2}$
	5	12 WF 85	12WF65	$7 \frac{1}{2} \times{ }_{8}^{7} \times 12$	$8 \times 8 \times{ }_{8}^{7}-10$
	6	12 WF 85	12WF65	$7 \frac{1}{2} \times{ }_{8}^{7} \times 12$	ST $15 \mathrm{WF} 54 \times 7 \frac{1}{2}$
	7	12 WF 85	12WF65	$7 \frac{1}{2} \times 7 \times 12$	ST15WF54×7 ${ }^{\frac{1}{2}}$
	0	12WF85	12WF65	$7 \frac{1}{4} \times 1 \times 12$	ST15WF54×8 ${ }^{\frac{1}{2}}$
	10	12 WF 85	12WF65	$7 \frac{1}{4} \times 1 \times 12$	$8 \times 8 \times 1-10_{2}^{1}$
	11	12 WF 85	12WF65	$683 \times \frac{5}{5} \times 12$	P1．Tee
	12	18 WF 85	12WF65	$6 \varepsilon 3 \times \frac{5}{1} 5 \times 12$	Pl．Tee
	13	18 WF 70	12 WF 65	$683 \times 15 \times 12$	$6 \times 3 \frac{1}{2} \times \frac{3}{4}-10$
	14	18 WF 45	12 WF 65	$6 \varepsilon 3 \times 16 \times 12$	$6 \times 3 \frac{1}{2} \times{ }_{8}^{5}-9$
	15	24 WF 74	14WF61	6 \＆ $3 \times 3 \times 12$	P1．Tee
	16	12WF85	12WF65	$10 \frac{1}{2} \times \frac{3}{4} \times 15$	ST15WF54×7 ${ }^{\frac{1}{2}}$
	17	12 WF 85	12 WF 65	$7 \frac{1}{1} \times{ }_{8}^{7} \times 12$	ST15WF54×7 ${ }^{\frac{1}{2}}$
	18	18 WF 85	12WF65	6 E $3 \times \frac{3}{8} \times 12$	P1．Tee ${ }^{2}$
	3	10125	8145	$10 \frac{1}{2} \times 5 \times \frac{1}{2}$	$10 \frac{1}{2} \times 5 \times \frac{1}{2} \mathrm{Pl}$ 。
	6	10125	8145	$10 \frac{1}{2} \times 5 \times \frac{1}{2}$	$6 \times 3{ }_{2}^{1} \times{ }_{8}^{3} \times 5 \frac{1}{2} \mathrm{Pl}$ 。
	9	18 WF 47	12WF65	$6 \times 16 \times 11$	$6 \times 3{ }_{2}^{1} \times{ }_{8} \times 9$ L
	10	18 WF 47	12WF65	$6 \times 16 \times 4$	$6 \times 3 \frac{1}{2} \times{ }_{8}^{5} \times 9 \mathrm{~L}$ 。
	21	18 WF 85	12WF92	$11 \times 1{ }_{16}^{5} \times 6$	Pl．Tee

TABLE A-6 END PLATE CONNECTIONS WITH NO COLUMN STIFFENERS

Investigator	Test No.	Beam Size	$\begin{gathered} \text { Column } \\ \text { Size } \end{gathered}$	End Plate Size
J. R. Ostrander	1	10WF21	8WF 28	$6 \frac{1}{2}$
	3	10WF21	8WF 28	$6{ }^{\frac{1}{2} \times 11 \times \frac{3}{8}}$
	4	10WF21	8WF28	$6 \frac{1}{2} \times 11 \times \frac{8}{4}$
	9	10WF21	8WF28	$6{ }^{\frac{1}{2} \times 11 \times 3}$
	11	1 2WF 27	8WF40	$7 \frac{1}{2} \times 13 \times \frac{4}{8}$
	12	12WF27	8WF 40	$7 \frac{1}{2} \times 13 \times \frac{1}{2}$
	13	12 WF 27	8WF40	$7 \frac{1}{2} \times 13 \times \frac{2}{8}$
	17	12WF27	8WF24	$7 \frac{1}{2} \times 13 \times{ }_{8}^{8}$
	18	12 WF 27	8WF24	$71 \times 13 \times \frac{1}{2}$
	19	12 WF 27	8WF24	$7 \frac{1}{2} \times 13 \times{ }_{\text {E }}^{2}$
	23		8WF4 8	$7 \frac{1}{2} \times 13 \times \frac{5}{8}$
Sherbourne	A1	$15 \times 5 \times 42$ \# $8 \times 8 \times 35$ \#		$7 \times 1-6 \frac{1}{2} \times 1 \times 1 \frac{8}{4}$

TABLE A-7 END PLATE CONNECTIONS WITH COLUMN STIFFENERS

Investigator	$\begin{array}{r} \text { Test } \\ \text { No. } \end{array}$	Beam Size	Column Size	End Plate	Stiffener Size
J. R. Ostrander	2 5 6 7 8 10 14 15 16 20 21 22 24	10WF21 10WF21 10WF 21 10WF21 10WF21 12WF27 12 WF 27		$6 \frac{1}{2} \times 11 \times \frac{1}{2}$ $6 \frac{1}{2} \times 11 \times \frac{1}{2}$ $6 \frac{1}{2} \times 11 \times \frac{3}{3}$ $6 \frac{1}{2} \times 11 \times \frac{1}{4}$ $6_{2}^{1} \times 11 \times \frac{1}{4}$ $6{ }_{2}^{1} \times 11 \times \frac{3}{3}$ $7 \frac{1}{2} \times 13 \times \frac{3}{8}$ $7 \frac{1}{2} \times 13 \times \frac{1}{2}$ $7 \frac{1}{2} \times 13 \times \frac{5}{8}$ $7 \frac{1}{2} \times 13 \times{ }_{8}^{3}$ $7 \frac{1}{2} \times 13 \times \frac{1}{2}$ $7 \frac{1}{2} \times 13 \times \frac{5}{8}$ $7 \frac{1}{2} \times 13 \times{ }_{8}^{5}$	
A. N. Sherbourne	$\begin{aligned} & \text { A2 } \\ & \text { A3 } \\ & \text { B1 } \\ & \text { B2 } \\ & \hline \end{aligned}$	$\begin{array}{lll} 15 \times 5 \times 42 \# 8 \times 8 \times 35 \# & 7 \times 1-6 \times 1 \frac{1}{2} \times 1 \frac{1}{4} \\ 15 \times 5 \times 42 \# 8 \times 8 \times 35 \# & 7 \times 1-6 \frac{1}{2} \times 4 \\ 15 \times 5 \times 42 \# 8 \times 8 \times 35 \# & 7 \times 1-6 \frac{1}{2} \times 1 \\ 15 \times 5 \times 42 \# 8 \times 8 \times 35 \# & 7 \times 1-6 \frac{1}{2} \times 4 \end{array}$			$\begin{aligned} & 3 \frac{1}{2} \times 7 \times 5 \\ & 3 \frac{1}{2} \times 7 \times 5 \\ & 3 \frac{1}{2} \times 7 \times 5 \\ & 3 \frac{5}{5} \times 7 \times \frac{1}{2} \\ & 3 \frac{1}{2} \times 7 \\ & \hline \end{aligned}$
L. G. Johnson, J. C. Cannon, L. A. Spooner	5	10I25	8 I 45	$6 \times 1-1 \frac{2}{4} \times \frac{1}{2}$	$3 \times 8 \times \frac{1}{2}$

TABLE A-8 T-STUB CONNECTIONS

Investigator	$\begin{gathered} \text { Test } \\ \text { No. } \end{gathered}$	Beam Size	Column Size	$\begin{gathered} \text { T-Stub } \\ \text { Size } \end{gathered}$	Web angles Shear connections 4 bolts 6 bolts 8 bolts 10 bolts 8 bolts 2 lines of bolts
C. Batho,	13	12RSJ 30	12RSJ 265	15 I45	
H. C. Rowan	14	12 RSJ a 30	12RSJ 065	15145	
	15	12RSJ 330	12RSJ265	15 I45	
A. Bannister	a	10×8 B.S.	12×8 B.S.	$24 \times 7{ }_{2}^{1}$ B.S.	
	b	10×8 B.S.	12×8 B.S.	$24 \times 7 \frac{1}{2}$ B.S.	
	c	10×8 B.S.	12×8 B.S.	$24 \times 7 \frac{1}{2}$ B.S.	
	d	$10 \times 8 \mathrm{~B} . \mathrm{S}$.	12×8 B.S.	$24 \times 7 \frac{1}{2}$ B.S.	
	e	13×8 B.S.	12×8 B.S.	$24 \times 7 \frac{1}{2}$ B.S.	
J. C. Rathbun	13	12I31.8	$9 \times 1 \times 1^{1}-10 \mathrm{PI}$.	15G299\#×9"	
	14	12131.8	$14 \times 1 \times 1-10 \mathrm{Pl}$.	15Ga99\#×1. ${ }^{\prime \prime \prime}$	
	15	16G83	$15 \times 1 \times 2$ - 3 Pl.	24I105.9×1 ${ }^{\prime \prime}{ }^{\prime \prime}$	
	16	22G101	$15 \times 1 \times 3-314 \mathrm{Pl}$.	$30 \mathrm{G} 240 \times 1-3$	
	17	22G101	$15 \times 1 \times 3-3 ' 4 \mathrm{Pl}$ 。	$30 \mathrm{G} 240 \times 1-3$	
	18	16G83	14 H 167 -	$24 \mathrm{I} 105.9 \times 1-3$	
R. Douty	D-1	14WF34	14WF150	18WF70	
	D-2	16 WF 40	14WF150	16WF40	
	D-3	21WF62	14WF150	21WF62	

[^1]

APPENDIX B

This Appendix contains the standardization constants and the standardized moment-rotation equations for the various connection types considered in this study. Figs B. 1 to Fig. B. 7 are the standardized curves, and Figs. B. 8 to Fig. B. 18 are comparisons of experimentally obtained moment-rotation curves with those obtained from the standardized equation.
B. 1 Double Web Angle Connections

Standardization constant

$$
\mathrm{K}=\mathrm{d}^{-2.4} \mathrm{t}^{-0.23} \mathrm{~g} .16
$$

where:
$d=$ depth of angle
$t=$ angle thickness
$g=$ connection gage
Standardized moment-rotation equation

$$
\phi=3.66(\mathrm{KM}) 10^{-4}+1.15(\mathrm{KM})^{3} 10^{-6}+4.57(\mathrm{KM})^{5} 10^{-8}
$$

B. 2 Single Web Angle Connections

Standardization constant

$$
K=d^{-2.4} t^{-1.81} g^{0.15}
$$

where:
$\mathrm{d}=$ depth of angle
$t=$ angle thickness
$g=$ connection gage
Standardized moment-rotation equation

$$
\phi=4.28(\mathrm{KM}) 10^{-3}+1.45(\mathrm{KM}) 10^{-9}+1.51(\mathrm{KM}) 10^{-16}
$$

B. 3 Header Plate Connections

Standardization constant

$$
K=t^{-1.6} g^{1.6} g^{-2.3} w^{-0.5}
$$

where:
$t=$ thickness of header plate
$g=$ connection gage
$d=$ depth of connection
w = web thickness
Standardized moment-rotation curve

$$
\phi=5.1(\mathrm{KM}) 10^{-5}+6.2(\mathrm{KM})^{3} 10^{-10}+2.4(\mathrm{KM})^{5} 10^{-13}
$$

B. 4 Top and Seat Angle Connections

Standardization constant

$$
\mathrm{K}=\mathrm{t}^{-0.5} \mathrm{~d}^{-1.5} \mathrm{f}^{-1.1} 1^{-.7}
$$

where:
$t=$ angle thickness
$d=$ depth of connection
$\mathrm{f}=$ fastener diamenter
l = angle length
Standardized moment-rotation curve

$$
\phi=8.46(\mathrm{KM}) 10^{-4}+1.01(\mathrm{KM})^{3} 10^{-4}+1.24(\mathrm{KM})^{5} 10^{-8}
$$

B. 5 End Plate Connectionsrs With No Column Stiffners

Standardization constant

$$
\mathrm{K}=\mathrm{d}^{-2.4} \mathrm{t}^{-.4} \mathrm{f}^{-1.1}
$$

where:
$d=$ depth of connection
$t=$ thickness of plate
$f=$ fastener diameter
Standardized moment-rotation curve

$$
\phi=1.83(\mathrm{KM}) 10^{-3}-1.04(\mathrm{KM})^{3} 10^{-4}+6.38(\mathrm{KM})^{5} 10^{-6}
$$

B. 6 End Plate Connections With Column Stiffners

Standardization constant

$$
\mathrm{K}=\mathrm{d}^{-2.4} \mathrm{t}^{-0.6}
$$

where:
$d=$ depth of connection
$t=$ thickness of plate
Standardized moment-rotation curve

$$
\phi=1.79(\mathrm{KM}) 10^{-3}+1.76(\mathrm{KM})^{3} 10^{-4}+2.04(\mathrm{KM})^{5} 10^{-4}
$$

B. 7 T-Stub Connections

Standardization constant

$$
K=d^{-1.5} t^{-0.5} f^{-1.1} 1^{-0.7}
$$

where:
$d=$ depth of connection
$t=$ thickness of T-stub flange
$f=$ fastener diameter
$1=$ length of T-stub
Standardized moment-rotation curve

$$
\phi=2.1(\mathrm{KM}) 10^{-4}+6.2(\mathrm{KM})^{3} 10^{-6}-7.6(\mathrm{KM})^{5} 10^{-9}
$$

APPENDIX C

FLOW DIAGRAM

APPENDIX D

USER'S MANUAL

1. IDENTIFICATION

SRFRAME - this program performs a linear structural analysis of planar frames whose connections have any degree of rotational flexibility. The flexibility of a connection may be specified in any of the following ways:
(a) connection may be rigid
(b) connection may be pinned
(c) connection flexibility may be specified numerically
(d) one of eight standard orthogonal connection types may be specified along with its size parameters

Any number of consecutive loading systems can be considered but they cannot be superimposed.
2. DESCRIPTION OF STRUCTURE AND LOADING

The input consists of a description of the structure and each loading system.

In describing the structure, all joints are numbered in an arbitrary sequence as illustrated in Fig. D.1(a). All members are numbered and each member is arbitrarily assigned

MEMBER 3 LOCAL COORDINATE SYSTEM
(b)

IDENTIFICATION OF STRUCTURE
FIG. D.I
a direction, as illustrated by the arrows in the figure.
Two different types of coordinate systems are used:
(a) Global system - a single right handed coordinate system applicable to the whole structure. Its origin can be located anywhere and all loadings, joint coordinates, joint displacements, and support reactions are expressed in the global system.
(b) Member system - Each member has associated with it a right hand local coordinate system whose X_{1} axis has the same direction as that assumed for the member, as illustrated for member 3 in Fig. D.1(b). The member is assumed to have a "start" and an "end" as shown, and the positive directions for the member end axial forces, shear forces, and moments are the positive X_{1}, X_{2}, and X_{3} directions as shown. Regardless of the member orientation, axis X_{2} is above or in the horizontal plane containing the origin, and direction X_{3} is clockwise or counterclockwise depending on whether X_{1} is directed to the right or to the left.

The size of structure that can be analyzed depends on the available storage. The number of words of memory required for data storage for a given structure is approximately:

$$
\begin{equation*}
(\mathrm{NJ})^{2}+22(\mathrm{NJ})+17(\mathrm{NM})=\mathrm{Z} \tag{D.1}
\end{equation*}
$$

where:
$\mathrm{NJ}=$ number of joints in structure
NM = number of members in structure
$Z=$ total number of data quantities to be stored.
The program employs a one-dimensional data storage pool, and Table $D-1$ lists the maximum permissible size of storage pool corresponding to several different core allocations for the IBM system $360 / 65$ computer.

Table D-1 Storage Capacities

Available Core	Maximum Z Dimension
150 K	22,500
200 K	35,000
250 k	47,500
300 K	60,000

3. CONNECTION INFORMATION

The program is capable of analyzing structures which include any of the following connection types:
(a) double web angle connections
(b) single web angle connections
(c) header plate connections
(d) top and seat angle connections
(e) end plate connections with column stiffeners
(f) end plate connections without column stiffeners
(g) T-stub connections.

In addition, rigid and pinned connections and those with a numerically specified flexibility can be included.

Connection types (a) to (g) inclusive have their flexibilities generated by the program. For each connection in the structure, it is necessary to input one or more parameters which are used to generate the moment-rotation information for the connection.
4. INPUT

The program input is described with reference to the example below. Except for descriptive heading cards, each data card is divided into 10 column fields. Each data item can be placed anywhere in its field and decimal points are optional.

DATA CARDS:
(a) Program Name - SRFRAME
(b) Job Description - card to contain a job description which is printed as a heading over output.
(c) Structure Information

Field 1 - number of joints
Field 2 - number of members
Field 3 - modulus of elasticity E (ksi).
(d) Joint Information - (one card for each joint)

Field 1 - joint status:
blank = non-support joint
F or FIXED = fixed support
H or HORIZ = horizontal roller
V or Vert $=$ vertical roller

> R or ROTATION $=$ pin
> (combinations of H, V, and R may be used).
> Field 2 - joint number
> Field 3 - joint X (horizontal) coordinate (ft.)
> Field 4 - joint Y (vertical) coordinate (ft.).
(e) Member Information - (One card is required for each member with any combination of rigid or pinned connections. Two cards are required for members with any of the standard connection types listed above or connections with numerically specified flexibility.)

First Card:
Field 1 - member number
Field 2-number of joint at member "start"
Field 3 - number of joint at member "end"
Field 4, 5-member area, A (sq. in.) and moment of inertia, $I\left(i n^{4}\right)$. If A or I is left blank, the value is assumed to be the same as for the preceding member; if no values are supplied, the following are assumed: $A=5.0 \mathrm{sq}$. in., $I=100.0 \mathrm{in}^{4}$ 。

Field 6 - member temperature. If member temperatures are provided, temperature displacements and forces are incorporated into the analysis; otherwise, temperature effects are ignored.

Field 7 - connection type at member "start"
Field 8 - connection type at member "end".
Continuation Card - An asterisk (*) in column 1 of a
projection of member
Field 4 - vertical load (kips/ft.) on horizontal projection

Field 5 - distance (ft.) to start of load
Field 6 - distance (ft.) from end of member load to end of member.
(iii) Concentrated member load -

Field $1-\mathrm{P}$
Field 2 - member number
Field 3 - horizontal load (kips)
Field 4 - vertical load (kips)
Field 5 - distance (ft.) from member "start".
(h) Solve - card to contain the word SOLVE. This instructs the computer to begin analysis.
5. OUTPUT

The output consists of the following:
(a) a listing of all input quantities
(b) connection flexibilities as generated
(c) joint displacements
(d) member end forces
(e) support reactions
(f) volume and weight of steel in structure.

FIG. D. 2 DOUBLE WEB ANGLE CONNECTIONS

FIG. D. 3 SINGLE WEB ANGLE CONNECTIONS

FIG. D. 4 HEADER PLATE CONNECTIONS

FIG. D. 5 TOP AND SEAT ANGLE CONNECTIONS

FIG. D. 6 END PLATE CONNECTIONS NO COLUMN STIFFENERS

FIG. D. 7 END PLATE CONNECTIONS WITH COLUMN STIFFENERS

APPENDIX E

PROGRAM LISTING

MAIN0010
MAINOO20
MAINOO30
MAINOO40 MAINO 050 MAIN0060
INTEGER*2 $\operatorname{TNP}(80)$ IDTYP (4,80)

COMMON E, M, DL, JRD, JWT FN(14) TNP/MN/NJ, MM INOOSO EALPHA
JRD $=5$
$J W T=6$
READ JOB TITLE
MAIN0100
MAINO120
MAIN0130

10 READ (JRD, 40,END=30) HDG
MAIN0160
$\mathrm{NC}=\mathrm{NC}+1$
MAIN0170
WRITE (JWT,50) HDG
MAIN0180
WRITE (JWT, 60)
MAINO190
C
$* * * * * * * * * * * * * * * * *$
READ (JRD,70) INP
CALI CNVRT (1, 1, 3)
*MAIN0200
CALL CNVRT (1, 1, 3) MAINO220
$\begin{array}{lc}\mathrm{NJ}=F N(1) & \text { MAINO230 } \\ N M=F N(2) & \text { MAINO240 }\end{array}$
$N M=F N(2)$
$E=F N(3)$
MAINO240
ALPHA $=.0000065$
NEE $=(N M-1) / 2+1$
MAIN0250
MAINO270
NNN $=(N J-1) / 2+1$
MAINO280
$\mathrm{N} 1=1$
$\mathrm{N} 2=\mathrm{N} 1+2 * \mathrm{NJ}$
$\mathrm{N} 3=\mathrm{N} 2+3 * \mathrm{NM}$
MAINO290
$N 4=N 3+3 * N M$
MAINO300
N4 $=N 3+3 * N M$
$N 5=N 4+N N N$
MAIN0310
N $=N 4+N$
MAINO 330
N6 $=\mathrm{N} 5+6 *$ NNN
MAIN0340
$\mathrm{N} 7=\mathrm{N} 6+3 * \mathrm{NJ}$
MAIN0350

```
        N8 = N7+2*NEE MAIN0360
    N9 = N8+NM
    N10 = N9+NM
    N11 = N10+NM
    N12 = N11+NEE
    N13 = N12+NEE
    N14 = N13+NNN
    N15 = N14+9*NJ
    N16 = N15+NNN+1
    N17 = N16+2*NM
    N18 = N17+3*NJ
    N19 = N18+NM
    N20 = N19+NM
    N21 = N20+NM
    N22 = N21+NM
    MAIN0370
    MAIN0380
    MAINO390
    MAIN0400
    MAINO410
    MAINO420
    MAINO430
    MAINO440
    MAINO450
    MAINO460
    MAINO470
    MAIN0480
    MAINO490
    MAINO500
    , M(N8), MAIN0510
    &Z(N9),Z(N10),Z(N11),Z(N12),Z(N13),Z(N14),Z(N15),Z(N16),Z(MAIN0520
    &N17),Z(N18),Z(N19),Z(N20),Z(N21),Z(N22))
    DO 20 I = 1,80 MAINO540
    20 LDTYP(1, I) = INP(1)
    GO TO 10
    30 STOP
40 FORMAT (20A4)
    MAIN0550
    GO TO 10 I) = INP(1)
    50 FORMAT ('11///1X20A4) MAIN0580
    6 0 ~ F O R M A T ~ ( / / ' ~ A N A T Y S I S ~ O F ~ P L A N E ~ F R A M E ~ W I T H ~ R I G I D . , ~ S E M I - R T G I D ~ O R ~ M A I N 0 5 9 0 ~
    , SEMI-RIGID , OR MAIN0600
    CONNECTIONS'// INPUT DATA'//) MAIN0610
7 0 ~ F O R M A T ~ ( 8 0 A 1 ) ~ M A I N 0 6 2 0 ~
    END MAINO630
************************************************************
SUBROUTINE PLFR
LFR0010
PLFR PLFRO030
PLFRO040
*)
    SUBROUTINE PLFR(CJ, FA, FB, NMIJ, JI, JI, MI, AR, XI, TEM, MSRA, PLFR0060
    GMSRB, ISR, A, LIST, C, PJ, SIPA, SLPB, CONA, CONB, STORE) PLFR0070
```

C
C
C
C

```
    REAL KBB (3, 3), KBA(3, 3), JL
    PLFR0080
    COMMON E. M, DL, JRD, JWT, FN(14), INP/MN/NJ; NM, LDTYP, HDG(20), PLFR0090
    EALPHA/SPL/KBB, DSTIF/RT/COSA, SINA, R(3, 3), H(3, 3) PLFR0100
    INTEGER*2 MI, ISR, MSRA, MSRB, LIST, NMIJ, JI, INP(80), LDTYP(4, PLFR0110
    &80) PLFR0120
    DIMENSION CJ (2, 1), MI(2, 1), AR(1), XI(1), ISR(1), MSRA(1), MSRB(PLFR0130
    &1),TEM(1), NMIJ(1), JI(6, 1),JL(3, 1), SLPA(1), SLPB(1), CONA(1)PLFR0140
    \varepsilon, CONB (1)
    DIMENSION PJ(3, 1)
    DIMENSION A(3, 3, 1), LIST(1), B(3, 2), BB(3, 3, 2) PLFR0180
    DIMENSION C(2, 1)
    DIMENSION STORE(3, 3, 1)
    DIMENSION FA (3, 1), FB(3, 1), TEMP (3, 3), TEMP1 (3), TEMP11(3)
    DIMENSION TEMP2(3, 3), TEMP3(3)
    DIMENSION D4(6), D3(3), D1(3), D2(3)
    INTEGER*2 TNPT(6)/', 'F', 'H' 'V', 'R' 'D'/
    N, (1, R , D/
    M INPTC(11)/'', 'P', 'S', 'A', 'B', 'C', 'D', 'E', 'F', 'PLFR0250
    EG', 'H'/ PLFRO260
    INTEGER*2 IU/'U'/, IP/'P'/ PLFRO270
    INTEGER*2 CONT/'*'/ PLFR0280
    INTEGER INSRC(11)/'PIN ', 'SPEC', 'DWEB', 'SWEB', 'HPLT', 'TESE', PLFR0290
    E'EPLT', 'EPLT', 'TSTB', 'TPLT', 'RIGD'/ PLFR0300
    INTEGER INSR(6)/'H ', 'V ', 'H V ', 'R ' ', 'H,R ', 'V R '/ PLFRO310
    INTEGER*2 ILD(5)/'S', 'O', 'L', 'V', 'E'/ PLFR0320
    EQUIVALENCE (NE, NJ)
    DO 20 I = 1,3
    DO 20 J = 1, 3
    R(I,J) = 0.
10 H(I, J) = 0.
20 H(I, I) = 1.
    J = 0
    DO 90 JJ = 1, NJ
    J = JJ
```

 C NON-BLANK CHARACTER IN COL 80. CONVERT COORDINATES TO INCHES.
 C NON-BLANK CHARACTER IN COL 80. CONVERT COORDINATES TO INCHES.
 READ (JRD,1450,END=1440) INP
 CALL CNVRT (1, 2, 8)
 IF (FN(1) .NE. 0.) J = FN(1)
 CJ (1,J) = FN(2)
 CJ (2, J) = FN(3)
 JL(1,J) = FN(4)
 JL(2,J) = FN(5)
 JL(3,J) = FN(6)
 IF (FN(7) .NE. 0.) ALPHA = FN(7)
 ISR(J) = 0
 I = 1
 30 IF (INP(I) .EQ. INPT(1)) GO TO 80
 IF (INP(I) .EQ. INPT(2) .OR. INP(I) .EQ. INPT(6)) GO TO 70
 40 IF (INP(I) .NE. INPT(3)) GO TO 50
 ISR(J) = ISR(J)+1
 GO TO 80
 50 IF (INP(I) .NE. INPT (4)) GO TO 60
 ISR(J)=ISR(J)+2
 GO TO 80
 60 IF (INP (I) .NE. INPT(5)) GO TO 70
 ISR(J) = ISR(J)+4
 GO TO 80
 70 ISR(J) = 8
 GO TO 90
 80 I = I+1
 IF (I .LE. 10) GO TO }3
 90 CONTINUE
 M=0
 AO}=5
 XO=100.
 C
100 READ (JRD,1450,END=1440) INP
110 M = M+1
C
***************** READ *******************************
PLFRO430
PLFR0440 PLFR0450 PLFRO460 PLFR0470 PLFRO480 PLFR0 490 PLFR0500 PLFR0510 PLFR0520 PLFR0530 PLFR0540 PLFR0550 PLFR0560 PLFR0570 PLFR0580 PLFR0590 PLFR0600 PLFRO610 PLFRO620 PLFR0630 PLFRO640 PLFRO650 PLFR0660 PLFR0670 PLFRO680 PLFR0690 PLFRO700 PLFRO 710 PLFRO720 PLFRO 730 PLFRO740 PLFR0750 PLFR0760 PLFR0770

```

CALL CNVRT (1, 1, 6)
PLFR0780
IF (FN (1). . NE. O.) \(M=\operatorname{FN}(1)\)
PLFR0790
MSRA (M) \(=0\)
\(\operatorname{MSRB}(\mathrm{M})=0\)
\(\operatorname{TEM}(\mathrm{M})=\mathrm{FN}(6)\)
PLFR0800
PLFR0810
PLFRO 820
PLFR0 830
PLFR0 840
PLFRO850
PLFR0860
PLFR0870
PLFR0880
PLFR0890
PLFR0900
PLFR0910
PLFR0920
PLFR0930
PLFR0940
PLFR0950
PLFR0960
PLFR0970
PLFR0980
PLFR0990
PLFR1000
PLFR1010
PLFR1020
PLFR1030
PLFR1040
PLFR1050
PLFR1060
PLFR1070
PLFR1080
PLER1090 PLFR1100
PLFR1110
PLFR1 120
```

 MSRA(M) = 8
 GO TO 230
 190 IF (INP(I) .NE. INPTC(10)) GO TO 200
MSRA(M) = 9
GO TO 230
200 IF (INP(I) .EQ. INPTC(11)) GO TO 210
GO TO 1430
210 MSRA(M) = 10
GO TO 230
220 CONTINUE
230 CONTINUE
DO 340 I = 71, 80
IF (INP(I) .EQ. INPTC(1)) GO TO 340
IF (INP(I) .NE. INPTC(2)) GO TO 240
MSRB(M) = 1
GO TO 350
240 IF (INP(I) .NE. INPTC(3)) GO TO 250
MSRB(M) = 2
GO TO 350
250 IF (INP(I) .NE. INPTC(4)) GO TO 260
MSRB(M) = 3
GO TO }35
260 IF (INP(I) .NE. INPTC(5)) GO TO 270
MSRB (M) = 4
GO TO 350
270 IF (INP(I) .NE. INPTC(6)) GO TO 280
MSRB(M) = 5
GO TO 350
280 IF (INP(I) .NE. INPTC(7)) GO TO 290
MSRB(M) = 6
GO TO 350
290 IF (INP(I) .NE. INPTC(8)) GO TO 300
MSRB(M) = 7
GO TO }35
300 IF (INP(I) .NE. INPTC(9)) GO TO 310

```

PLFR1130
PLFR1140
PLFR1 150
PLFR1160
PLFR1170
PLFR1 180
PLFR1190
PLFR1200
PLFR1210
PLFR1220
PLFR1230
PLFR1 240
PLFR1 250
PLFR1 260
PLFR1270
PLFR1 280
PLFR1 290
PLER1300
PLFR1310
PLFR1320
PLFR1330
PLFR1340
PLFR1350
PLFR1360
PLFR1370
PLFR1 380
PLFR1390
PLFR1400
PLFR1410
PLFR1420
PLFR1430
PLFR1440
PLFR1450
PLFR1460
PLFR1470
```

 MSRB(M) = 8
 GO TO 350
 310 IF (INP(I) .NE. INPTC(10)) GO TO 320
 MSRB(M) = 9
 GO TO 350
 320 IF (INP(I) .EQ. INPTC(11)) GO TO 330
 330 MSRB(M)=10
 GO TO 350
 340 CONTINUE
 *****************************PRAD**********************************PLR
 350 READ (JRD,1450,END=1440) INP
350 READ (JRD,1450,END=1440) INP
IF (MSRA(M) .EQ. O) GO TO 360
IF (MSRA(M) .EQ. 1) GO TO 370
GO TO 1430
360 C(1,M)=0.
GO TO 380
370 C(1, M) = 10.*10.**25
GO TO 380
GO TO 380
380 IF (MSRB (M)
380 IF (MSRB (M) .EQ. 0) GO TO 390
GO TO 1430
390 C(2,M)=0.
GO TO 410
400 C(2,M)=10.*10.**25
GO TO 410 .
410 CONTINUE
IF (M .NE. NM) GO TO 110
GO TO 430
420 INP (1) = INPT (1)
CALL CNVRT (7, 1, 8)
KK = MSRA (M)
JJ = MSRB(M)
IF (JJ .EQ. 0) JJ = 11
80
PIFR1490
PLFR1500
PLFR1510

```
```

 GO TO 1430
    ```
```

 GO TO 1430
    ```
```

PLFR1520
PLFR1530
PLFR1550
C
PLFR1580
PLFR1590
IF (MSRA (M) .EQ. 0) GO TO 360
PLFR1600
PLFR1610
PLFR1620
PLFR1630
PLFR1640
PLFR1660
PLFR1680
PLFR1680
PLFR1690
PLFR1700
PLFR1710

```

```

GO TO 410 .
PLFR1730
PLFR1740
PIFR1750

```
```

 IF (KK .EQ. 0) KK = 11 P PLFR1830
 CALL GENCUR(KK, JJ, C, SLPA, SIPB, CONA, CONB) PLFR1840
 IF (M .NE. NM) GO TO 100
 *********************************READ**********************************PLFR1860
 READ (JRD,1450,END=1440) INP PLFR1870
 4 3 0 ~ C O N T I N U E ~
 WRITE (JWT,1460) NM, NJ, E, ALPHA
 WRITE (JWT,1470)
 II = 1
 DO 470 J = 1, NJ
 IF (ISR(J) .NE. 0) GO TO 440
 WRITE (JWT,1540) J, CJ(1, J), CJ(2, J)
 GO TO 470
 440 IF (ABS (JL(1, J)) +ABS (JL(2, J)) +ABS (JL(3,J)) .LT..0001) GOTO.
 6450
 WRITE (JWT,1480) J, CJ(1, J), CJ(2,J), (JL(I, J), I= 1, 3)
 GO TO 470
 450 IF (ISR(J) .LT. 8) GO TO 460
 WRITE (JWT,1490) J, CJ(1,J), CJ(2,J)
 GO TO 470
 460 K = ISR(J)
 WRITE (JWT,1490) J, CJ(1, J), CJ(2, J), INSR(K)
 4 7 0 ~ C O N T I N U E
 480 DO 490 J = 1, NJ
 DO 490 I = 1, 2
 490 CJ(I, J) = CJ (I, J)*12.
 C
C
generate joint incidence table
DO $500 \mathrm{~J}=1$, NJ
$\operatorname{NMIJ}(J)=0$
DO $500 \mathrm{M}=1$, 6
$500 \mathrm{JI}(\mathrm{M}, \mathrm{J})=0$
DO $510 \mathrm{M}=1$, NM
$\mathrm{J}=\mathrm{MI}(1, \mathrm{M})$

```

PLFR1870
PLFR1880
PLFR1 890
PLFR1900
PLFR1910
PLFR1920
PLFR1930
PLFR1940
PLFR1950
PLFR1960
PLFR1970
PLFR1980
PLFR1990
PLFR2000
PLFR2010
PLFR2020
PLFR2030
PLFR2040
PLFR2050
PLFR2060
PLFR2070
PLFR2080
PLFR2090
PLFR2100
PLFR2110
PLFR2120
PLFR2130
PLFR2140
PLFR2 150
PLFR2160
PLFR2170
```

 NMIJ (J) = NMIJ (J)+1 PLFR2980
 K = NMIJ(J)
 JI(K, J) = -M
 J = MI(2, M)
 NMIJ(J) = NMIJ (J) +1.
 K = NMIJ(J)
 510 JI(K,J) = M
WRITE (JWT,1500)
DO 520 M = 1,NM
K = MSRA(M)
J = MSRB (M)
IF (K .EQ. 0) K = 11
IF (J .EQ. 0) J = 11
520 WRITE (JWT, 1530).M, MI (1, M), MI(2, M), AR(M), XI (M), INSRC(K),
EINSRC(J), TEM(M)
WRITE (JWT,1510)
DO 530 M = 1, NM
530 WRITE (JWT,1520) M, C(1, M), C(2, M)
LDG = 1
540 DO 550 J = 1, NJ
PJ (1,J) = 0.
PJ(2,J) = 0.
550 PJ (3, J) = 0.
DO 570 M = 1, NM
DO 560 III = 1, 3
FA(III, M) = 0.
FB(III, M) = 0.
560 CONTINUE
570 CONTINUE
IF (LDG .GT. 1) GO TO 590
DO 580 I = 1, 80
580 LDTYP(LDG, I) = INP(I)
590 DO 610 IL = 1, 80
IF (LDTYP(LDG, IL) .EQ. INPT(1)) GO TO 610
DO 600 I = 1,5
PLFR2190
PLFR2200
PLFR2210
PLFR2220
PLFR2230
PLFR2240
PLFR2250
PLFR2250
PLFR2260
PLFR2270
PLFR2280
PLFR2290
PLFR2300
PLFR2310
PLFRR2320
PLFR2330
PLFR2340
PLFR2350
PLFR2360
PLFR2370
PLFR2380
PLEFR2390
PLFR2400
PLFR2410
PLFR2420
PLFR2430
PLFR2440
PLER2450
PLFR2460
PLFR2470
PLFR2480
PLFR2490
PLFR2500

```

```

PLFR2520

```
        J = IL+I-1 PLFR2530
    IF (LDTYP(LDG, J) .NE. ILD(I)) GO TO 620
PLFR2540
    6 0 0 ~ C O N T I N U E ~
        GO TO 880
    6 1 0 ~ C O N T I N U E ~
    6 2 0 \text { CONTINUE}
    WRITE (JWT,1550) (LDTYP(LDG, I), I = 1, 80)
    KK = 0
    LL = 0
    ITER = 0 'PLFR2620
C
630 READ (JRD,1450,END=1440) INP
PLFR2630
PLFR2640
    CALL CNVRT (1, 2, 6)
    IF (FN(1).EQ. O.) GO TO 710
    II = FN(1)
    DO 640 I = 1, 10
    IF (INP(I) .NE. INPT(1)) GO TO 650
6 4 0 ~ C O N T I N U E ~
    IF (KK .EQ. 0) WRITE (JWT,1560)
    KK = KK+1
    PJ(1, II) = FN(2)
    PJ}(2, II) = FN(3
    WRITE (JWT,1540) II, FN(2), FN(3), FN(4)
    PJ(3, II) = FN(4)*12.
    GO TO 630
650 IF (LL .EQ. O) WRITE (JNT, 1680)
    LL = LL+1
    IF (INP (I) .NE. IU) GO TO 660
    IF (II .NE. 0) M = II
    W1 = FN(2)
    W2 = FN (3)
    WRITE (JWT,1690) M, INP(I), W1, W2
    S = FN(4)*12.
    T = FN(5)*12.
    CALL ROT(CJ, MI)
PLFR2650
PLER2660
PLFR2670
PLFR2680
PLFR2690
PLFR2700
PLFR2710
PLFR2720
PLFR2730
PLFR2740
PLFR2750
PLFR2760
PLFR2770
PLFR2780
PLFR2790
PLFR2800
PLFR2810
PLFR2820
PLFR2830
PLFR2830
PLFR2840
PLFR2850
PLFR2860
PLFR2870
```

```
    WW1 = W1/12.*ABS (SINA) PLFR2880
    WW2 = W2/12.*ABS (COSA)
    PLFR2890
    W1 = (R(1, 1)*WW1 +R(2, 1)*WW2)
    W2 = (R(1, 2)*WW1 +R(2, 2)*WW2)
    AA = DL-S-T
    FA(1, M) = FA (1, M) +W1*AA
    FA(2, M) = FA(2, M) +W2*AA
    FA(3,M) = FA (3, M) +W2*AA* (S+AA/2.)
    AA = DL-T
    BBB = AA*AA
    CC = BBB*AA
    DD = CC*AA
    EE = W2/6./E/XI (M)
    FB(1,M)=FB(1,M)+(W1/2./AR(M)/E)*(BBB-S**2)
    FB(2,M) = FB(2,M)+.75*EE*(DD-S**4)+EE*(T*CC-(S**3)*(DL-S))
    FB(3, M) = EE*(CC-S**3)
    GO TO 630
    660 IF (INP(I) .EQ. IP) GO TO 670
    GO TO 1430
    670 IF (II .NE. 0) M = II
    D3(1) = FN(2)
    D3(2) = FN(3)
    D3(3) = 0.
DA = FN(4)
DA = DA*12
WRITE (JWT,1690) M, INP(I), D3(1), D3(2), DA
CALL ROT(CJ, MI)
CALL TRANSP(R, TEMP)
    ROTATE GLOBAL FORCE VECTPR TO MEMBER FORCE VECTOR
DO 680 III = 1, 3
PLME(III) = 0.
DO 680 KKK = 1, 3
680 PLME(III) = TEMP(III, KKK)*D3(KKK)+PLME(III)
FA(1, M) = FA(1, M) +PLME(1)
FA(2, M) = FA (2, M) +PLME (2)
```

```
    FA(3,M) = FA(3,M) +PLME (2)*DA+PLME (3) PLFR3230
    DO 690 III =. 1, 3
    PLFR3240
    DO 690 JJJ = 1, 3
    690 FLBB(III, JJJ) = 0.
        FLBB=FLEXIBILITY MATRIX
        PLFR3260
C
    FLBB(1, 1) = DA/E/AR(M)
    FLBB (2, 2) = DA**3/3./E/XI (M)
    FLBB}(2,3)=1.5/DA*\operatorname{FLBB}(2,2
    FLBB(3, 2) = FLBB(2, 3)
    FLBB (3, 3) = 2.*FLBB (2, 3)/DA
    DO 700 III = 1, 3
    D2(III) = 0.
    DO 700 KKK = 1, 3
    700 D2(III) = FLBB(III, KKK)*PLME (KKK)+D2(III)
C
C
CALCULATE (H TRANSPOSE) * D2(III) TO GET CANTILEVER DEFLECTION AT
    END
    FB(1,M) = FB(1, M) +D2(1)
    FB(2,M) = FB(2,M) +D2(2)+D2(3)*DL-D2(3)*DA
    FB(3,M)=FB(3,M)+D2(3)
    GO TO 630
    710 DO 720 N = 1, NJ
    JL(1, N})=\operatorname{PJ}(1,N
    JL (2,N N = PJ (2,N N
    JL(3,N) = PJ (3,N)
    720 CONTINUE
    730 DO 870 M = 1, NM
    DO 740 III = 1, 3
    IF (FA(III, M) .NE. O.) GO TO 750
    740 CONTINUE
    IF (TEM(M) .EQ. O.) GO TO 870
    GO TO 780
    750 CALL ROT(CJ, MI)
    CALL SEMPL(AR, XI, C)
    D(1) = 0. 
D(2) = (6.*E*XI (M)/DL**2*(C(1, M) +2.*E*XI (M)*C(1, M)*C(2, M)/DL))/PLFR3570
```

```
        EDSTIF*FA(3, M) PLFR3580
        D(3) = ((-2.*E*XI (M)*C(1, M)/DL)/DSTIF)*FA(3,M)
        DO 760 III = 1, 3
        D1(III) = 0.
        DO 760 KKK = 1.3
    760 D1(III) = - KBB(III, KKK)*FB(KKK, M) +D1 (III)
    DO 770 III = 1. 3
    770 FEFB(III) = D1(III)-D(III)
C
    CALCULATE FEFA FROM STATICS
        FEFA(1) = - FA (1,M)-FEFB (1)
        FEFA(2) = -FA(2, M)-FEFB (2)
    FEFA(3) = - FEFB (3)-FEFB (2)*DL-FA(3,M)
    780 FEFA(1) = FEFA(1)+ALPHA*E*AR(M)*TEM(M)
        FEFB(1) = FEFB(1)+ALPHA*E*AR (M)*TEM(M)
        JF = MI (1, M)
    JN = MI (2,M)
    7 9 0 ~ C O N T I N U E
    PLFR3590
    PLFR3600
    PLFR3610
    PLFR3620
    PLFR3630
    PIFR3640
    PLFR3650
    PLFR3660
    PLFR3670
    PIFR3680
    PLFR3690
    PLFR3700
    PLER3710
    PLFR3720
    PLFR3730
    PLFR3740
C ADD NEGATIVES OF FIXED END FORCES TO JOINT LOADS (ROTATED TO GLOBAPLFR3750
C SYSTEM) - R * FA(M), R * FB(M). PLFR3760
    CALI MLT1(B, 1, R, 1, FEFA, 1) PLFR3770
    IF (ISR(JF).NE. 0) GO TO 810. PLFR3780
    DO 800 I = 1, 3
    800 JL(I, JF) = JL(I, JF)-B(I, 1)
    GO TO 830
    810 K = ISR(JF)
C
    OMIT FIXED-END-FORCES FOR RELEASED COMPONENTS.
    DO 820 I = 1, 3
    IF (K-2*(K/2) .NE. 0) JL(I, JF) = JL(I, JF)-B(I, 1)
820 K = K/2
830 CALL MLT1(B, 1, R, 1, FEFB, 1)
    IF (ISR(JN) .NE. 0) GO TO 850
    DO 840 I = 1, 3
840 JL(I, JN) = JL(I, JN)-B(I, 1)
    GO TO 870
850 K = ISR(JN)
```

```
            DO 860 I= 1, 3 PLFR3930
            IF (K-2*(K/2).NE. 0) JL(I, JN) = JI(I, JN)-B(I, 1) PLFR3940
    860 K = K/2
    870 CONTINUE
C GENERATION AND ELIMINATION OF JOINT EQUILIBRIUM EQUATIONS
C GENERATE I TH ROW OF STIFFNESS MATRIX AND STORE IN A TEMPORARILY
    880 LIST(1) = 1 
    880 LIST(1) = 1 
    PLFR3950
    PLFR3960
PLFR3970
C NON ZERO BAND OF ROW I IN STIFFNESS IS FROM KL TO KH. KL = LOWEST PLFR4O10
C JOINT NO FOR JOINTS INCIDENT ON MEMBERS FRAMING INTO JOINT I, KH=HPLFR4020
    KL = I
    KH}=
    IM = NMIJ (I)
    DO 940 J = 1, IM
    M = JI(J,I)
    K=1
    IF (M) 89,0, 900,900
    890 M = -M
    K=2
C JF = FAR END JOINT FOR MEMBER M
    900 JF = MI (K, M)
    IF (JF-KH) 920, 920, 910
    910 KH = JF
    GO TO 940
    920 IF (JF-KL) 930, 940,940
    930 KL = JF
    940 CONTINUE
C ZERO ALL A MATRICES IN NON - ZERO BAND P PLFR4200
    K=KH-KL+1 PLFR4210
    DO 950 J = 1, K
    DO 950 IND = 1, 3
    DO 950 IND1 = 1, 3
950 A(IND, IND1,J)=0. 
```



```
    DO 1000 J = 1, IM
PLFR4030
PIFR4040
PLFR4050
PIFR4060
PLFR4070
PLER4080
PLFR4090
PLFR4100
PLFR4110
PLFR4120
PLFR4130
PLFR4140
PLER4150
PLFR4160
PIFR4170
PLFR4180
PLFR4190
PLFR4210
PLFR4220
PLFR4230
PLFR4240
PLFR4270
```

```
    M=JI(J, I)
    K = 2
    IF (M .GE. O) GO TO 960
    M = -M
    K = 1
    960 JN = MI (K, M) -KL+1
C JN=NEAR END JOINT FOR MEMBER M - (POSITION IN ROW RELATIVE TO KL
C =1
    K = 3-K
    JF = MI (K, M) -KL+1
C JF= FAR END JOINT FOR MEMBER M RELATIVE TO KL=1
    IK = MI(K, M)
C GENERATE R, H AND KBB MATRICES FOR MEMBER M
    CALL ROT(CJ, MI)
    CALL SEMPL(AR, XI, C)
C TEST WHETHER A OR B END INCIDENT ON JOINT I
    M = JI(J, I)
    IF (M .GE. O) GO TO 970
C A END - NEAR END STIFF = H*KBB*H TR, FAR END = H*KBB
    CALL MLT3(KBA, 1, H, 1, KBB, 1)
C TRANSPOSE H
    H(3, 2) = 0.
    H(2, 3) = DL
    CALL MLT3(KBB, 1, KBA, 1, H, 1)
    H}(2,3)=0
    GO TO 980
C B END - NEAR STIFF = KBB, FAR = KBB*H TR
C TRANSPOSE H.
    970 H(3, 2) = 0.
    H(2, 3) = DL
    CALL MLT3(KBA, 1, KBB, 1, H, 1)
    H(2, 3) = 0.
C ROTATE TO GLOBAL SYSTEM; R * KBB * R TR, R * KBA * R TR
980 CALL MLT3(BB, 1, R, 1, KBB, 1)
    CALL MLT3(BB, 2, R, 1, KBA, 1)
```

PLFR4 280
PLFR4 290
PLFR4 300
PLFR4310
PLFR4320.
PLFR4330
KL PLFR4340
PLFR4350
PLFR4360
PLFR4370
PLFR4 380
PLFR4390
PLFR4400
PLFR4410
PLFR4420
PLFR4430
PLFR4440
PLFR4450
PLFR4460
PLFR4 470
PLFR4480
PLFR4490
PLFR4500
PLFR4510
PLFR4520
PLFR4530
PLFR4540
PLFR4550
PLFR4560
PLFR4 570
PLFR4 580
PLFR4590
PLFR4600
PLFR4 610
PLFR4620

```
C TRANSPOSE R PLFR4630
    T = R(1, 2)
    R(1, 2)=R(2, 1)
    R(2, 1) = T
PLFR4650
    PLFR4660
    CALL MLT3(KBB, 1, BB, 1, R, 1)
    CALL MLT3(KBA, 1, BB, 2, R, 1)
C INSERT NEAR AND FAR END STIFFNESS MATRICES
    DO 990 IND = 1, 3
    DO 990 IND1 = 1, 3
    A(IND, IND1, JN) = A(IND, IND1, JN) +KBB(IND, IND1)
    990 A(IND, IND1, JF) = A(IND, IND1, JF)-KBA(IND, IND1)
1000 CONTINUE
C MODIFY EQUATION IF ANY RELEASES AT JOINT I. INSERT LARGE NO. ON MAPLFR4750
C DIAGONAL AND MULTIPIY JOINT DISPLACEMENT BY SAME LARGE NUMBER. PLFR4760
    IF (ISR(I) .EQ. O) GO TO 1050 PLFR4770
    1010 IJ = I+1-KL
        II = ISR(I)
        DO 1040 K = 1, 3
        IF (II-2*(II/2) .NE. 0) GO TO 1040
    1020 A(K, K, IJ) = 10.**25
    1030 JL(K, I) = JL(K, I)*10.**25
    1040 II = II/2
    1050 LINC = KH-I
C FOR FIRST EQUATION, BYPASS ELIMINATION
        IF (I .LE. KL) GO TO 1120
PERFORM EIIMINATION FOR ROW I IO ZERO BEIOW MAIN DIAGONAI
    PLFR4880
    KU = I-1
    DO 1110 K = KL, KU
    IK = PIVOTAL COLUMN RELATIVE TO KL = 1
    IK = K+1-KL
    IM = LIST(K+1)-LIST(K)
    IJ = K+IM-I-LINC
C IF NON IERO BAND FOR PIVOTAT EQ FNDS TO RTGHT OR THAT
C EXTEND FOR EO I
C EXIEND FOR EQ I PLFR4960
    IF (IJ .LE. O.) GO TO 1070 PLFR4970
```

```
    KK = LINC+I-KL+2 PLFR4980
    LINC = LINC+IJ
    PLFR4990
    LL = IJ+KK-1
    DO 1060 L = KK, LL
    DO 1060 IND = 1,3
    DO 1060 IND1 = 1, 3
    1060 A(IND, IND1, L) = 0.
    1070 IF (IM) 1100, 1100, 1080
    1 0 8 0 ~ D O ~ 1 0 9 0 ~ J ~ = ~ 1 , ~ I M ~
    IJ = IK+J
    KJ = LIST (K) +J-1
    CAL工 MLT3(BB, 1, A, IK, STORE, KJ)
    DO 1090 IND = 1, 3
    DO 1090 IND1 = 1, 3
    1090 A(IND, IND1, IJ) = A(IND, IND1, IJ)-BB(IND, IND1, 1)
    1100 CONTINUE
    CALI MLT1 (B, 1, A, IK, JL, K)
    DO 1110 J = 1, 3
    1110 JL(J,I) = JL(J,I) -B(J, 1)
C NORMALIZE ROW I . MULTIPLY BY INVERSE OF MAIN DIAGONAL MATRIX.=IJVPLFR5170
C PIVOTAL ELEMENT RELATIVE TO KL= 1. PLFR5180
    1120 IL = I+1-KL
    LIST(I+1)= LINC+LIST(I)
    CALL INV(A, IL)
    IF (IINC .LE. 0) GO TO 1140
    IJ = IL
    DO 1130 J = 1, LINC
    IJ = IJ+1
    IK = LIST(I)+J-1
    1130 CALL MLT3(STORE, IK, A, IL, A, IJ)
C NORMALIZE LOAD VECTOR I
    1140 CONTINUE
    CALL MLT1 (B, 2, A, IL, JL, I)
    DO 1150 J = 1, 3
    1150 JL(J,I) = B(J,2)
```

PLFR4990 PLFR5000 PLFR5010 PLFR5020 PLFR5030 PLFR5040 PLFR5050 PLFR5060 PLFR5070 PLFR5080 PLFR5090 PLFR5 100 PLFR5 110 PLFR5120 PLFR5130 PLFR5140 PLFR5 150 PLFR5160 PLFR5 180 PLFR5 190 PLFR5 200 PLFR5 210 PLFR5 220 PLFR5230 PLFR5 240 PLFR5 250 PLFR5 260 PLFR5270 PLFR5 280 PLFR5 290 PLFR5300 PLFR5310 PLFR5320

```
1160 CONTINUE PLFR5330
C START BACK SUBSTITUTION
    N2 = NJ-1
    IF (N2.LE. 0) GO TO }129
    DO 1180 K=1, N2
    I = NJ-K
    KU = LIST(I+1)-LIST(I)
    DO 1170 J = 1, KU
    IK = LIST(I)+J-1
    IJ = I+J
    CALL MLT1(B, 1, STORE, IK, JL, IJ)
    DO 1170 L = 1, 3
1170 JL(I, I) = JL(L, I) -B(I, 1)
1180 CONTINUE
    NMM = 0
    DO 1240 M = 1, NM
    IF (MSRA(M) .GT. 2) GO TO 1190
    IF (MSRB(M) .LT. 3) GO TO 1240
C CALCULATE TOTAL END FORCES IF FLEXIBLE CONNECTIONS
1190 CALL ROT(CJ, MI)
    CALI SEMPL(AR, XI, C)
    D(1) = 0. .
    D(2) = (6.*E*XI (M)/DL**2*(C(1,M)+2.*E*XI(M)*C(1, M)*C(2,M)/DL))/PLFR5550
    EDSTIF*FA(3,M)
    D(3) = ((-2.*E*XI (M)*C(1, M)/DI)/DSTIF)*FA(3,M)
    DO 1200 III = 1, 3
    D1(III) = 0.
    DO 1200 KKK=1,3
1200 D1(III) = - KBB(III, KKK)*FB(KKK, M) +D1 (III)
    DO 1210 III = 1, 3
1210 FEFB(III) = D1(III) -D(III)
    FEFA(1) = - FA (1, M)-FEFB (1)
    FEFA(2) = - FA (2, M) - FEFB (2)
    PLFR5650
    FEFA(1) = FEFA(1)+ALPHA*E*AR(M)*TEM(M)
PLFR5670
```

```
```

 FEFB(1) = FEFB(1) +ALPHA*E*AR(M)*TEM(M)
    ```
```

 FEFB(1) = FEFB(1) +ALPHA*E*AR(M)*TEM(M)
 IRANSPOSE R
 IRANSPOSE R
 T = R(2, 1)
 T = R(2, 1)
 R(2, 1) = R(1, 2)
 R(2, 1) = R(1, 2)
 R(1, 2)=T
 R(1, 2)=T
 JN = MI (2,M)
 JN = MI (2,M)
 JF = MI (1,M)
 JF = MI (1,M)
 C
C
TRANSPOSE H
TRANSPOSE H
H(3,2)=0.
H(3,2)=0.
H(2, 3) = DL
H(2, 3) = DL
C FA(M) = FA(M) + KBB * (RTR * JL(JN) - HTR * RTR * JI(JF))
C FA(M) = FA(M) + KBB * (RTR * JL(JN) - HTR * RTR * JI(JF))
CALL MLT3(BB, 1, H, 1, R, 1)
CALL MLT3(BB, 1, H, 1, R, 1)
CALL MLT1 (B, 2, BB, 1, JL, JF)
CALL MLT1 (B, 2, BB, 1, JL, JF)
CALL MLT1(B, 1, R, 1, JL, JN)
CALL MLT1(B, 1, R, 1, JL, JN)
DO 1220 I = 1, 3
DO 1220 I = 1, 3
1220 KBA(I, 1)=B(I, 1)-B(I, 2)
1220 KBA(I, 1)=B(I, 1)-B(I, 2)
CALL MLT1(B, 1, KBB, 1, KBA, 1)
CALL MLT1(B, 1, KBB, 1, KBA, 1)
C
C
FB(M) = FB(M) + H * KBB * (R TR * -----------------)
FB(M) = FB(M) + H * KBB * (R TR * -----------------)
H(3,2) = DL
H(3,2) = DL
H(2, 3) = 0.
H(2, 3) = 0.
CALL MLT1(B, 2, H, 1, B, 1)
CALL MLT1(B, 2, H, 1, B, 1)
DO 1230 I = 1, 3
DO 1230 I = 1, 3
FEFB(I) = FEFB(I)+B(I, 1)
FEFB(I) = FEFB(I)+B(I, 1)
1230 FEFA(I) = FEFA(I)-B(I, 2)
1230 FEFA(I) = FEFA(I)-B(I, 2)
KK = MSRA(M)-2
KK = MSRA(M)-2
CALL ITER1(KK, FEFA, SLPA, CONA, NMM, C)
CALL ITER1(KK, FEFA, SLPA, CONA, NMM, C)
JJ = MSRB (M)-2
JJ = MSRB (M)-2
CALL ITER2(JJ, FEFB, SLPB, CONB, NMM, C)
CALL ITER2(JJ, FEFB, SLPB, CONB, NMM, C)
1240 CONTINUE
1240 CONTINUE
ITER = ITER+1
ITER = ITER+1
WRITE (JWT, 1250) ITER
WRITE (JWT, 1250) ITER
1250 FORMAT (///' ITERATION NO.', I8)
1250 FORMAT (///' ITERATION NO.', I8)
DO 1260 M = 1, NM
DO 1260 M = 1, NM
WRITE (JWT,1520) M, C(1, M). C(2, M)
WRITE (JWT,1520) M, C(1, M). C(2, M)
1260 CONTINUE

```
1260 CONTINUE
```

```
    NRANSPOSE,R
```

```
    NRANSPOSE,R
```

PLFR5680 PLFR5690 PLFR5700 PLFR5710 PLFR5720 PLFR5730 PLFR5740 PLFR5750 PLFR5760 PLFR5770 PLFR5780 PLFR5790 PLFR5 800 PLFR5 810 PLFR5 820 PLFR5830 PLFR5840 PLFR5 850 PLFR5 860 PLFR5 870 PLFR5 880 PIFR5890 PLFR5900 PLFR5910 PLFR5920 PLFR5930 PLFR5940 PLFR5950 PLFR5960 PLFR5970 PLFR5980 PLFR5990 PLFR6000 PLFR6010 PLFR6020

```
        IF (ITER .LT. 12) GO TO 1280 PLFR6030
        WRITE (JWT,1270)
    PLFR6040
    1270 FORMAT (//' ALLOWABLE ITERATIONS EXCEEDED ANALYSIS DOES NOT CONVERPLFR6050
        &GE , USE STIFFER CONNECTIONS') PLFR6060
        GO TO 1410 PLFR6070
    1280 IF (NMM .GT. O) GO TO 710
    C NMM=O ITERATIONS COMPLETED
C CALCULATE FINAL MEMBER END FORCES
    1290 VOL = 0.
        WRITE (JWT, 1650) (IDTYP(LDG, I) I = 1, 80)
    C WRITE JOINT DISPLACEMENTS , I), I = 1, 80) Prym, PRE120
        WRTTEOM
        WRITE (JWT,1700) HDG PLFR6140
        WRITE (JWT,1710)
        DO 1300 L = 1, NJ
    1300 WRITE (JWT,1670) L, (JL(J, L), J = 1, 3)
C CALCULATE MEMBER END FORCES
    WRITE (JWT,1720)
    DO 1350 M= 1, NM
    CALL ROT(CJ, MI)
    CALL SEMPL (AR, XI, C)
    D(1) = 0. 
    PLFR6080
    1290 VOL = 0. 
    PLFR6090
    PLFR6100
    PIFR6110
    PIFR6150
    PLFR6160
    PLFR6170
    PLFR6180
    PLFR6190
    PLFR6200
    PLFR6210
    PLFR6220
    D(2) = (6.*E*XI (M)/DL**2*(C(1, M) +2.*E*XI(M)*C(1, M)*C(2, M)/DL))/PLFFR6240
    EDSTIF*FA(3, M) PLFR6250
    D(3)=((-2.*E*XI (M)*C(1,M)/DL)/DSTIF)*FA(3,M) PLFR6260
    DO 1310 III = 1,3 PLFR6270
    D1 (III) = 0. . 
    DO 1310 KKK = 1, 3
1310 D1(III) = -KBB(IIII, KKK)*FB(KKK, M) +D1 (III) PLFR6300
    DO 1320 III = 1, 3
1320 FEFB(III) = D1(III)-D(III)
FEFA(1)=-FA(1,M)-\operatorname{FEFB}(1)
    FEFA(2) = -FA(2, M) - FEFB (2)
    FEFA(3) = - FEFB (3)-FEFB (2)*DL-FA(3,M)
    FEFA(1) = FEFA(1)+ALPHA*E*AR(M)*TEM(M)
    FEFB(1) = FEFB (1)+ALPHA*E*AR (M)*TEM(M)
    PLFR6280
    PLFR6290
PLFR6310
    PLFR6320
PLFR6330
    FEFA(3) = -FEFB(3)-FEFB(2)*DI-FA(3-M) PLFR6340
    FEFA(1) = PEFA(1)+ALEB***AR(M)* PLFR6350
    PLFR6360
    PLFR6370
```

```
    T = R(2, 1) PLFR6380
    R(2, 1) = R(1, 2)
    R(1, 2) = T
    IF (LDG .EQ. 1) VOL = VOL+DL*AR(M)
    JN = MI (2, M)
    JF = MI(1, M)
    C TRANSPOSE H
    H(3, 2) = 0.
    H(2, 3) = DI
C FA(M)=FA(M)+KBB*(R TR *JL(JN)- H TR * R TR * JL(JF))
    CALL MLT3(BB, 1, H, 1, R, 1)
    CALL MLT1(B, 2, BB, 1, JL, JF)
    CALL MLT1(B, 1, R, 1, JL, JN)
    DO 1330 I = 1, 3
    1330 KBA(I, 1) = B(I, 1)-B(I, 2)
    CALL MLT1(B, 1, KBB, 1, KBA, 1)
    H(3, 2) = DL
    H}(2,3)=0
    CALL MLT1 (B, 2, H, 1, B, 1)
    DO 1340 I = 1, 3
    FB(I, M) = FEFB(I)+B(I, 1)
    1340
    FA(I,M) = FEFA(I)-B(I, 2)
    FA(3,M) = FA (3, M)/12.
    FB(3,M) = FB(3,M)/12.
    1350 WRITE (JWT,1730) M, (FA(I, M), I = 1, 3), (FB(I, M), I = 1, 3)
C
    CALCULATE AND PRINT SUPPORT REACTIONS
    WRITE (JWT,1740)
    DO 1400 J = 1, NJ
    IF (ISR(J) .EQ. 0) GO TO 1400
    DO 1360 IND = 1, 3
1360 A(IND, 1, J) = 0.
IM = NMIJ (J)
DO 1390 I = 1. IM
M = JI(I, J)
IF (M .GE. O) GO TO 1370
```

PLFR6380 PLFR6390 PLFR6400 PLFR6410 PLFR6420 PLFR6430 PLFR6440 PLFR6450 PLFR6460 PLFR6470 PLFR6480 PLFR6490 PLFR6500 PLFR6510 PLFR6520 PLFR6530 PLFR6540 PLFR6550 PLFR6560 PLFR6570 PLFR6580 PLFR6590 PLFR6600 PLFR6610 PLFR6620 PLFR6630 PLFR6640 PLFR6650 PLFR6660 PIFR6670 PLFR6680 PLFR6690 PLFR6700 PLFR6710 PLFR6720

```
C M=-M PNER6730
C REACTION + REACTION + R * FA(M) PLFR6740
    CALL ROT(CJ, MI)
    CALL MLT1(B, 1, R, 1, FA, M)
    GO TO 1380
C REACTION = REACTION + R * FB(M)
1370 CALL ROT(CJ, MI)
    CALL MLT1 (B, 1, R, 1, FB, M)
1380 DO 1390 IND = 1, 3
1390 A (IND, 1, J) = A (IND, 1, J) +B (IND, 1)
    WRITE (JWT,1670) J, (A(IND, 1, J), IND = 1, 3)
1400 CONTINUE
1410 CONTINUE
    LDG = LDG+1
    READ (JRD,1450,END=1440) (LDTYP(LDG, I), I = 1, 80)
    DO 1420 I = 1, 80
    IF (LDTYP(LDG, I) .NE. INPT(1)) GO TO 540
1420 CONTINUE
    WS = VOL*3.4/12000.
    WRITE (JWT,1750) VOL, WS
    WRITE (JWT,1760)
    RETURN
1430 WRITE (JWT,1770)
1440 CALL EXIT
1450 FORMAT (80A1)
PLFR6750
PLFR6760
    PLFR6770
    PLFR6780
    PLFR6790
    PLFR6800
    PLFR6810
1400 CONTINUE (A(IND, 1, J), IND = 1, 3)
PLFR6820
PLFR6830
PLFR6840
    PLFR6850
    PLFR6860
    PLFR6870
    PLFR6880
    PLFR6890
    PLFR6900
    PLFR6910
PLFR6920
PLFFR6920
PLFR6930
PLFR6940
1460, PLFR6970
1460 FORMAT (I6,'' MEMBERS', I4,' JOINTS. MODULUS OF ELASTICITY =', PLFR6980
    &F9.1, ' (KSI)'//' THERMAL EXPANSION COEFFICIENT (FOR CALC OF TEMPPLFR6990
    & STRESS)- ', F10.7, //)
    PLFR7000
1470 FORMAT (///' JOINT COORDINATES (FT)'//' JOINT X COORD YPLFR7010
    G COORD RELEASES SPEC DISPL'//) PLFR7020
1480 FORMAT (I6, 2F12.3,' SUPPORT', 8X3F10.3) (IG SUPPORT', 6XA4)
1490 FORMAT (I6, 2F12.3,' SUPPORT', 6XA4) PLFR7040
1500 FORMAT (//' MEMBER INFORMATION'//' MEMBER START END P PLFR7050
    GAREA (SQ IN) IXX (IN**4) CONNECTION A END CONNECTION B END PLFR7060
    & TEMPERATURE'//) PLFR7070
```

1510 FORMAT (//' CONNECTION INFORMATION'//' MEMBER FLEXIBILITY A ENDPLFR7080
\varepsilon FLEXIBILITY B END'//) PLFR7090
1520 FORMAT (I8, F20.8, F20.8) PLFR7100
1530 FORMAT (3I8, 2F14.2, 8XA10, 9XA10, 9X, F10.1) PLFR7110
1540 FORMAT (I6, 6F12.3) PLFR7120
1550 FORMAT ('1'/80A1)
1560 FORMAT (///'NON-ZEROJOINTLOADS'//' JOINT PX(KIPS) PY(KIPS) MOMPLFR7140
\& ENTKIPS)'//)
1570 FORMAT (I10)
1580 FORMAT (80A1)
1590 FORMAT (I6,' MEMBERS', I4, ' JOINTS. MODULUS OF ELASTICITY =', PLFR7180
GF9.1, (KSI)'//' THERMAL EXPANSION COEFFICIENT (FOR CALC OF TEMPPLFR7190
\& STRESS)- ', F10.7, //) PLFR7200
1600 FORMAT (///' JOINT COORDINATES (FT)'//' JOINT X COORD YPLFR7210
\varepsilon COORD RELEASES SPEC DISPL'//) PLFR7220
1610 FORMAT (I6, 2F12.3, ' SUPPORT', 8X3F10.3) PLFR7230
1620 FORMAT (I6, 2F12.3, ' SUPPORT', 6XA4). PLFR7240
1630 FORMAT (//' MEMBER INFORMATION'//' MEMBER START END ARPLFR7250
GEA (SQ IN) IXX (IN**4) PINNED ENDS TEMPERATURE'//) PLFR7260
1640 FORMAT (3I8, 2F14.2, 9XA4, F10.1) PLFR7270
1650 FORMAT ('1'/80A1) PLFR7280
1660 FORMAT (///' NON-ZERO JOINT LOADS'//' JOINT PX (KIPS) PY (KIPLFR7290
6PS) MOM(FT KIPS)'//) PLFR7300
1670 FORMAT (I6, 6F12.3) PLFR7310
1680 FORMAT (///' NON-ZERO MEMBER LOADS'//' MEMBER LOAD TYPE HORPLFR7320
EIZ VERTICAL DIST FROM START MEMBER'//) PLFR7330
1690 FORMAT (I5, 10XA4, 3F10.2) PLFR7340
1700 FORMAT (//1X20A4, //' RESULTS') PLFR7350
1710 FORMAT (//' JOINT DISPLACEMENTS'//' JOINT X X PLFR7360
E ROTATION'//) Pr, PLFR7370
1720 FORMAT (///' MEMBER END FORCES'//' MEMBER', 16X' START', 25X' ENPLFR7380
ED'//11X'AXIAL', 6X'SHEAR', 5X'MOMENT', 6X'AXIAL', 6X'SHEAR', 6X'MOPLFR7390
EMENT'//) PLFR7400
1730 FORMAT (I6, 6F11.3) PLFR7410
1740 FORMAT (////' SUPPORT REACTIONS'//' SUPPORT HORIZONTAL VERTIPLFR7420

ECAL MOMENT '//)
PLFR7430
1750 FORMAT (//' TOTAL VOLUMN OF MEMBERS IN FRAME'/' IS', F15.1, ' CUPLFR7440 EBIC IN'/' WEIGHT IF FRAME IS:'/' STEEL - ', F10.3, 'KIPS'PLFR7450 E) PLFR7460 1760 FORMAT (//' UNITS: DISTANCES = FT, ROTATIONS = RADIANS, '//' PLFR7470 E FORCES $=$ KIPS, MOMENTS $=F T K$, CROSS SECTIONAL DIMENSIONS'PLFR7480
E//' = INCHES'/'1')
PLFR7490
1770 FORMAT (///'1 INPUT ERROR ON DATA CARD', I4, ',CHECK INPUT') PLFR7500
END
PLFR7510

SUBROUTINE SEMPL

$* S E M P ~$
SEMP 01020 SEMP 0030 SEMP 0040

SUBROUTINE SEMPL (AR, XI, C)
SEMP0050
REAL $\operatorname{KBB}(3,3), \operatorname{KBA}(3,3)$
SEMP0060
COMMON E, M, DL/SPL/KBB, DSTIF
SEMP 0070
DIMENSION AR(1), XI(1)
SEMP0080
DIMENSION C(2, 1)
SEMP0090
DSTIF $=0$.
SEMP 0100
$\mathrm{DSTIF}=\mathrm{DSTIF}+1 .+4 . * \mathrm{E} * \mathrm{XI}(\mathrm{M}) / \mathrm{DL} *(\mathrm{C}(1, \mathrm{M})+\mathrm{C}(2, \mathrm{M})+3 . * \mathrm{E} * \mathrm{XI}(\mathrm{M}) / \mathrm{DL} *(\mathrm{C}(1 \mathrm{SEMP} 0120$
$\varepsilon, \mathrm{M}) * \mathrm{C}(2, \mathrm{M})$)
SEMPO 130
DO $10 \mathrm{I}=1,3$
DO $10 \mathrm{~J}=1,3$
10
$\operatorname{KBB}(I, J)=0$.
$\operatorname{KBB}(1,1)=\operatorname{AR}(\mathrm{M}) * E / D L$
SEMP0140
SEMP0150
$\operatorname{KBB}(3,3)=4 * * * \times X I(M) / D L * *$ SEMP0180
$\operatorname{KBB}(3,2)=-6 . * \mathrm{E} * \mathrm{XI}(\mathrm{M}) / \mathrm{DL} * * 2$ SEMP0190
$\operatorname{KBB}(2,2)=\operatorname{KBB}(2,2) *(1 .+\mathrm{E} * \mathrm{XI}(\mathrm{M}) * \mathrm{C}(1, \mathrm{M}) / \mathrm{DL}+\mathrm{E} * \mathrm{XI}(\mathrm{M}) * \mathrm{C}(2, \mathrm{M}) / \mathrm{DL}) / \mathrm{SEMP} 0200$

$\operatorname{EDSTIF}(3,3)=\operatorname{KBB}(3,3) *(1+3 * * E \operatorname{XI}(\mathrm{M}) * \mathrm{C}(1, \mathrm{M}) / \mathrm{DI}) / \mathrm{DSTIF}$
SEMP0220
$\operatorname{KBB}(3,3)=\operatorname{KBB}(3,3) *(1 .+3 . * E * \operatorname{XI}(M) * C(1, M) / D L) / D S T I F$
SEMP 0230
$\operatorname{KBB}(3,2)=\operatorname{KBB}(3,2) *(1 .+2 . * E * X I(M) * C(1, M) / D I) / D S T I F$
$\operatorname{KBB}(2,3)=\operatorname{KBB}(3,2)$
RETURN
SEMP 0240
SEMP 0250
SEMP0260

```
    END
                                    SEMPO270
                                    CVRT0010
                                    CVRT0020
                                    CVRT0030
                                    CVRT0040
        *********************************************************************CVRTOO50
    SUBROUTINE CNVRT(NN, I1, I2)
    INTEGER*2 INP(80), IN(5)/'0', '9`, ',', ', ', %
        CVRT0060
    CVRT0070
    COMMON E, M, DL, JRD, JWT, FN(14), INP
    CVRT0080
    J=10*I2+1
    CVRT0090
    IFL=I2-I1+NN
10 FK = 0.
    K = 1
    L=0
    DO 50 I = 1, 10
    J=J-1
    IF (INP(J) .NE. IN(3)) GO TO 20
    FK = FK/10.**L
    L}=
    GO TO 50
20 IF (INP(J) .IT. IN(1) .OR. INP(J) .GT. IN(2)) GO TO 30
    IJ = INP (J)/256+15
    L = L+1
    FK = FK+IJ*10.**I/10.
    GO TO 50
30 IF (INP (J) .NE. IN (5)) GO TO 40
    FK = -FK
    GO TO 50
40 IF (INP(J) .EQ. IN(4)) GO TO 50
    K=0
    GO TO 50
50 CONTINUE
60 FN(IFL) = FK*K
    IFL = IFL-1
    IF (NN .NE. 1) GO TO 70
CVRT0100
CVRT0110
CVRT0120
CVRT0130
CVRT0140
CVRT0150
CVRT0160
CVRT0170
CVRT0180
CVRT0190
CVRT0200
CVRT0210
CVRT0220
CVRTO230
CVRT0240
CVRT0250
CVRT0260
CVRT0270
CVRT0280
CVRT0290
CVRT0300
CVRT0310
CVRT0320
CVRT0330
CVRT0340
```

 IF (IFL .GT. O) GO TO 10 CVRT0350
 GO TO 80
 70 IF (IFL .GT. 6) GO TO }1
 80 CONTINUE CVRT0380
 RETURN CVRT0390
END CVRT0400
END CVRT0400
C
C
C
C
C
***GENCOOSO
SUBROUTINE GENCUR(KK, JJ, C, SLPA, SLPB, CONA, CONB)
COMMON E, M, DL, JRD, JWT, FN(14)
DIMENSION SLPA(1), SLPB(1), CONA(1), CONB(1)
INTEGER*2 INP(80)
DIMENSION C(2, 1)
P1 = FN(7)
P2 = FN(8)
P3=FN(9)
P4 = FN(10)
GO TO (10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110), KK
10C(1, M) = 10.*10.**25
GO TO 120
20 C(1, M) = FN(7)
GO TO 120
DOUBLE WEB ANGLE CONNECTIONS
30 CONA (M) = (1./P1**2.4)*(P2**1.6)*(1./P3**.23)
SLPA(M) = 3.66*CONA(M)*.0001
C(1,M)=SLPA(M)
GO TO 120
SINGLE WEB ANGLE CONNECTIONS
40 CONA (M) = (1./P1**2.4)*(1./P2**1.81)*(P3**.15)
SLPA(M) = 4.28*CONA (M)*.001
C(1, M) = SLPA(M)
GO TO 120
CVRT0360

SUBROUTINE GENCUR

```
GENC0010
GENC0020
GENC0030
GENCOO40
SUBROUTINE GENCUR(KK, JJ, C, SLPA, SLPB, CONA, CONB) GENCOO60
COMMON E, M, DL, JRD, JWT, FN(14)
GENC0070
SLIPA(1), SLPB(1), CONA(1), CONB(1)
GENC0080
INTEGER*2 INP (80)
GENCOO90
\(\mathrm{P} 1=\mathrm{FN}(7) \mathrm{C}\) ( 1 )
GENC0100
\(\mathrm{P} 2=\mathrm{FN}(8)\)
GENC0110
P3 \(3=F N(9)\)
GENC0120
P4 \(=\mathrm{FN}(10)\)
GENCO130
GO TO \((10,20,30,40,50,60,70,80,90,100,110), \mathrm{KK}\)
GENC0140
GENC0150
GO TO 120
GENCO 160
GENC0170
\(20 \mathrm{C}(1, \mathrm{M})=\mathrm{FN}(7)\)
GENC0180
GO TO 120
DOUBLE WEB ANGLE CONNECTIONS
GENC0190
C
30 CONA \((\mathrm{M})=(1 . / \mathrm{P} 1 * * 2.4) *(\mathrm{P} 2 * * 1.6) *(1 . / \mathrm{P} 3 * * .23)\)
GENCO200
SLPA \((M)=3.66 * C O N A(M) * .0001\)
GENCO210
\(C(1, M)=\operatorname{SLPA}(M)\)
GENC0 220
GENC0 230
C
SINGLE WEB ANGLE CONNECTIONS
GENC0240
40 CONA \((\mathrm{M})=(1 . / \mathrm{P} 1 * * 2.4) *(1 . / \mathrm{P} 2 * * 1.81) *(\mathrm{P} 3 * * .15)\)
GENCO250
GENCO 260
GENC0270
SLPA(M)
GENC0280
GENC0290

C
HEADER PLATE CONNECTIONS
GENCO 300
\(50 \operatorname{CONA}(\mathrm{M})=(1 . / \mathrm{P} 1 * * 2.3) *(\mathrm{P} 2 * * 1.6) *(1 . / \mathrm{P} 3 * * 1.6) *(1 . / \mathrm{P} 4 * * .5)\) \(\operatorname{SLPA}(M)=5.1 * \operatorname{CONA}(M) * .00001\) \(C(1, M)=\operatorname{SLPA}(M)\)
GO TO 120
C
\(60 \operatorname{CONA}(\mathrm{M})=(1 . / \mathrm{P} 1 * * .5) *(1 . / \mathrm{P} 2 * * 1.5) *(1 . / \mathrm{P} 3 * * 1.1) *(1 . / \mathrm{P} 4 * * .7)\) SLPA (M) \(=8.46 * \operatorname{CONA}(\mathrm{M}) * .0001\) \(C(1, M)=\operatorname{SLPA}(M)\)
GO TO 120
END PLATE CONNECTIONS WITH NO STIFFNERS
\(70 \operatorname{CONA}(\mathrm{M})=(1 . / \mathrm{P} 1 * * 2.4) *(1 . / \mathrm{P} 2 * * .4) *(1 . / \mathrm{P} 3 * * 1.1)\)
\(\operatorname{SLPA}(M)=1.83 * \operatorname{CONA}(M) * .001\)
\(\mathrm{C}(1, \mathrm{M})=\operatorname{SLPA}(\mathrm{M})\)
GO TO 120
C
\(80 \operatorname{CONA}(\mathrm{M})=(1 . / \mathrm{P} 1 * * 2.4) *(1 . / \mathrm{P} 2 * * .6)\)
\(\operatorname{SLPA}(M)=1.79 * \operatorname{CONA}(\mathrm{M}) * .001\)
\(\mathrm{C}(1, \mathrm{M})=\operatorname{SLPA}(\mathrm{M})\)
GO TO 120
C
\(90 \operatorname{CONA}(\mathrm{M})=(1 . / \mathrm{P} 1 * * 1.5) *(1 . / \mathrm{P} 2 * * .5) *(1 . / \mathrm{P} 3 * * 1.1) *(1 . / \mathrm{P} 4 * * .7)\)
\(\operatorname{SLPA}(M)=2.11 * \operatorname{CONA}(\mathrm{M}) * .0001\)
\(C(1, M)=\operatorname{SLPA}(M)\)
GO TO 120
C INSERT WELDED TOP PLATE AND SEAT ANGLE CONNECTIONS HERE \(100 \operatorname{CONA}(\mathrm{M})=1\).
\(\operatorname{SLPA}(M)=1\).
\(C(1, M)=\operatorname{SLPA}(M)\)
GO TO 120
\(110 \mathrm{C}(1, \mathrm{M})=0\).
120 CONTINUE
\(\mathrm{P} 5=\mathrm{FN}(11)\)
\(\mathrm{P} 6=\mathrm{FN}(12)\)
\(\mathrm{P} 7=\mathrm{FN}(13)\)

GENC0310
GENC0320
GENC0330
GENC0340
GENC0350
GENC0360
GENC0370
GENC0380
GENC0390
GENC0400
GENC0410
GENC0420
GENC0430
GENC0440
GENC0450
GENC0 460
GENC0470
GENC0480
GENC0 490
GENC0500
GENC0510
GENC0520
GENC0530
GENC0540
GENC0550
GENC0560
GENC0570
GENC0580
GENC0590
GENC0600
GENC0610
GENC0620 GENC0630 GENC0640
```

 P8 = FN(14)
 GENC0650
 GO TO (130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230), JJ GENC0660
 130 C(2, M) = 10.*10.**25
 GO TO 240
 140 C(2,M) = FN(11)
 GO TO 240
 150 CONB (M) = (1./P5**2.4)*(P6**1.6)*(1./P7**.23)
 SLPB(M) = 3.66*CONB(M)*.0001
 C(2,M) = SLPB(M)
 GO TO 240
 160 CONB (M) = (1./P5**2.4)*(1./P6**1.81)*(P7**.15)
 SLPB(M) = 4.28*CONB(M)*.001
 C(2,M) = SLPB (M)
 GO TO 240
 170 CONB (M) = (1./P5**2.3)*(P6**1.6)*(1./P7**1.6)*(1./P8**.5)
 SLPB(M) = 5.1*CONB(M)*.00001
 C(2,M) = SLPB(M)
 GO TO 240
 180 CONB (M) = (1./P5**.5)*(1./P6**1.5)*(1./P7**1.1)*(1./P8**.7)
 SLPB(M) = 8.46*CONB(M)*.0001
 C(2,M)= SLPB(M)
 GO TO 240
 190 CONB (M) = (1./P5**2.4)*(1./P6**.4)*(1./P7**1.1)
 SLPB(M) = 1.83*CONB(M)*.001
 C(2,M) = SLPB (M)
 GO TO 240
 200 CONB (M) = (1./P5**2.4)*(1./P6**.6)
 SLPB (M) = 1.79*CONB (M)*.001
 C(2, M) = SLPB (M)
 GO TO 240
 210 CONB (M) = (1./P5**1.5)*(1./P6**.5)*(1./P7**1.1)*(1./P8**.7)
 SLPB(M) = 2.11*CONB (M)*.0001
 C(2,M) = SLPB (M)
 GO TO 240
 INSERT WELDED TOP PLATE AND SEAT ANGLE CONNECTIONS HERE
    ```
    220 CONB (M) = 1.
        SLPB(M) = 1.
        C(2,M)=SLPB (M)
        GO TO 240
    230C(2,M)=0.
    240 CONTINUE
    RETURN
        ****************************************************************
                    ITER0020
                SUBROUTINE ITERAT ITEROO30
        ****************************************************************)
        SUBROUTINE ITERAT
        COMMON E; M
        DIMENSION C(2, 1)
        ENTRY ITER1 (KK, FEFA, SLPA, CONA, NMM, C)
        DIMENSION SLPA(1), CONA(1)
        DIMENSION FEFA(3)
        ABFA = ABS(FEFA(3))
        PHIOA = ABFA*SLPA(M)
        PHI1A = 0.
        GO TO (10, 20, 30, 40, 50, 60, 70, 80), KK
        DOUBLE WEB ANGLE CONNECTIONS
    10 PHI1A = PHI 1A +3.66* (CONA (M)*ABFA)*.0001+1.15* (CONA (M)*ABFA)**3*
        E.000001+4.57*(CONA (M)*ABFA)**5*.00000001
        GO TO 90
            SINGLE WEB ANGLE CONNECTIONS
        GENC1000
        GENC1010
    END GENC1070
C
C
C
C
C
C
C
    20 PHI1A = PHI1A + 4. 28*(CONA (M)*ABFA)*.001+(1.45*(CONA (M)*ABFA)**3)*(
        E.1**9)+(1.51*(CONA (M)*ABFA)**5)*(.1**16)
        GO TO 90
    HEADER PLATE CONNECTIONS
    30 PHI1A = PHI 1A+5.1*(CONA (M)*ABFA)*.00001+6.2*(CONA (M)*ABFA)**3*
        \varepsilon.0000000001+2.4*(CONA (M)*ABFA)**5*.0000000000001
        GO TO 90
ITER0270
```

C
ITER0280
40 PHI1A $=$ PHI1A $+8.46 *(C O N A(M) * A B F A) * .0001+1.01 *(C O N A(M) * A B F A) * * 3 *$ E. $0001+1.24 *(\mathrm{CONA}(\mathrm{M}) * \mathrm{ABFA}) * * 5 * .00000001$ GO TO 90
C
$0 \mathrm{PHI} 1 \mathrm{~A}=\mathrm{PHI} 1 \mathrm{~A}+1.83 *(\mathrm{CONA}(\mathrm{M}) * \mathrm{ABFA}) * .001-1.04 *(\operatorname{CONA}(\mathrm{M}) * \mathrm{ABFA}) * * 3 *$ G. $0001+6.38 *(\mathrm{CONA}(\mathrm{M}) * A B E A) * * 5 * .000001$ GO TO 90
C
$60 \mathrm{PHI} 1 \mathrm{~A}=\mathrm{PHI} 1 \mathrm{~A}+1.79 *(\mathrm{CONA}(\mathrm{M}) * \mathrm{ABFA}) * .001+1.76 *(\mathrm{CONA}(\mathrm{M}) * \mathrm{ABFA}) * * 3 *$ E.0001+2.04* (CONA (M)*ABFA) **5*. 0001 GO TO 90
T-STUB CONNECTIONS
$70 \mathrm{PHI} 1 \mathrm{~A}=\mathrm{PHI} 1 \mathrm{~A}+2.11 *(\operatorname{CONA}(\mathrm{M}) * \mathrm{ABFA}) * .0001+6.2 *(\operatorname{CONA}(\mathrm{M}) * A B F A) * * 3 *$ E.000001-7.6*(CONA (M)*ABFA)**5*.000000001

GO TO 90
C
80 CONTINUE
GO TO 90
90 DELPHI $=$ PHI $1 \mathrm{~A}-\mathrm{PHIOA}$
TERPHI $=$ DELPHI/PHI1A
IF (ABS (TERPHI) .LT. .05) GO TO 190
$S L P A(M)=(P H I O A+.5 * D E L P H I) / A B F A$
$C(1, M)=\operatorname{SLPA}(M)$
NMM $=1$
RETURN
ENTRY ITER2 (JJ, FEFB, SLPB, CONB, NMM, C)
DIMENSION SLPB(1), CONB(1)
DIMENSION FEFB (3)
$\mathrm{ABFB}=\mathrm{ABS}(\mathrm{FEFB}(3))$
PHIOB $=A B F B * S L P B(M)$
$\mathrm{PHI} 1 \mathrm{~B}=0$.
GO TO (100, 110, 120, 130, 140, 150, 160, 170) , JJ
$100 \mathrm{PHI} 1 \mathrm{~B}=\mathrm{PHI} 1 \mathrm{~B}+3.66 *(\mathrm{CONB}(\mathrm{M}) * \mathrm{ABFB}) * .0001+1.15 *(\operatorname{CONB}(\mathrm{M}) * \mathrm{ABFB}) * * 3 *$ E. $000001+4.57 *(\mathrm{CONB}(\mathrm{M}) * \mathrm{ABFB}) * * 5 * .00000001$

ITER0290
ITER0300
ITER0310
ITERO 320
ITER0330
ITERO 340
ITERO350
ITER0360
ITERO 370
ITER0380
ITERO390
ITERO400
ITER0410
ITERO 420
ITERO430
ITERO440
ITER0450
ITER0460
ITER0 470
ITERO480
ITERO490
ITERO500
ITER0510
ITER0520
ITERO530
ITERO540
ITER0550
ITER0560
ITER0570
ITER0580
ITER0590
ITER0600
ITER0610
ITER0620

```
        GO TO 180 ITER0630
    110 PHI1B = PHI 1B+4.28*(CONB (M)*ABFB)*.001+(1.45*(CONB (M)*ABFB)**3)*( ITEER0640
        &.1**9)+(1.51*(CONB (M)*ABFB)**5)*(.1**16) ITER0650
        GO TO 180 ITER0660
    120 PHI1B = PHI1B+5.1*(CONB (M)*ABFB)*.00001+6.2*(CONB(M)*ABFB)**3* ITER0670
        8.0000000001+2.4*(CONB (M)*ABFB)**5*.0000000000001 ITER0680
        GO TO 180
    ITER0680
    130 PHI1B = PHI1B+8.46*(CONB (M)*ABFB)*.0001+1.01*(CONB (M)*ABFB)**3* ITER0700
    8.0001+1.24*(CONB (M)*ABFB)**5*.00000001. ITER0710
    GO TO 180
    140 PHI1B = PHI1B+1.83*(CONB (M)*ABFB)*.001-1.04*(CONB (M)*ABFB)**3* ITER0730
        E.0001+6.38*(CONB (M)*ABFB)**5*.000001 ITER0740
        GO TO 180
    ITER0740
    150 PHI1B = PHI1B+1.79*(CONB (M)*ABEB)*.001+1.76*(CONB (M)*ABFB)**3* ITER0760
        \varepsilon.0001+2.04*(CONB (M)*ABFB)**5*.0001 ITER0770
    GO TO 180 ITER0780
    160 PHI1B = PHI1B+2.11*(CONB(M)*ABFB)*.0001+6.2*(CONB(M)*ABFB)**3* ITER0790
        E.000001-7.6*(CONB (M)*ABFB)**5*.000000001 ITER0800
        GO TO 180
    ITER0810
            INSERT WELDED TOP PLATE AND SEAT ANGLE CONNECTIONS HERE : ITER0820
    170 CONTINUE
    GO TO 180
    180 DELPHI = PHI1B-PHIOB
    TERPHI = DELPHI/PHI1B
    IF (ABS(TERPHI) .LT. .05) GO TO 190
    SLPB(M) = (PHIOB+.5*DELPHI)/ABFB
    C(2,M) = SLPB (M)
    NMM = 1
    190 CONTINUE
    RETURN
    END
        ITER0930
        **********************************************************************MT10010
        SUBROUTINE MLT1
                            MLT10020
                    MLT10030
                            MLT10040
```

MLT10060

```
        SUBROUTINE MLT1(C, NC, A, NA, B, NB)
```

 SUBROUTINE MLT1(C, NC, A, NA, B, NB)
 DIMENSION A}(3,3,1),B(3,1),C(3,1
 DIMENSION A}(3,3,1),B(3,1),C(3,1
 DO 20 I = 1, 3
 DO 20 I = 1, 3
 SUM = 0.
 SUM = 0.
 DO 10 K = 1, 3
 DO 10 K = 1, 3
 10 SUM = SUM+A(I, K, NA) *B(K,NB)
 10 SUM = SUM+A(I, K, NA) *B(K,NB)
 20C(I,NC)=SUM
 20C(I,NC)=SUM
 RETURN
 RETURN
 END
 END
 MLT10130
 MLT10130
 MIT10140
 MIT10140
 **MLT30010
 SUBROUTINE MLT3
 MLT30030
 SUBROUTINE MLT3
 SUBROUTINE MLT3(C, NC; A, NA, B, NB)
 MLT30060
DIMENSION A(3, 3, 1), B(3, 3, 1), C(3, 3, 1)
DO 20I = 1, 3
MLT30060
MLT30080
DO 20 J = 1,3
SUM = 0.
DO 10 K=1,3
10 SUM = SUM+A(I, K,NA)*B(K, J,NB)
20C(I, J,NC) = SUM
RETURN
END
MLT30150
***MTT10050
MLT10070
MLT10070
MLT10080
MLT10080
MLT10090
MLT10090
MLT10100
MLT10100
MLIO100
MLIO100
MLT10110
MLT10110
MLT10120
MLT10120
MTT30020
MLT30090
MLT30100
MLT30110
20 C(I, J,NC) = SUM N
***ROT 0010
SUBROUTINE ROT
ROT 0020
ROT 0030
ROT 0040
**ROT
SUBROUTINE ROT(CJ,MI) ROT 0060
REAL KBB (3, 3), KBA(3, 3)
ROT 0070
COMMON E, M, DL/RT/COSA, SINA, R(3, 3), H(3, 3)
INTEGER*2 MI
ROT 0080
ROT 0090
DIMENSION CJ (2, 1), MI (2, 1)
ROT 0090
ROT 0100

```
C THIS SUBROUTINE BUIIDS THE ROTATION MATRIX FOR MEMBER M ROT 0110
    I = MI (1, M)
    J = MI (2,M)
    X = CJ (1, J)-CJ (1,I)
    Y = CJ (2, J) -CJ (2; I)
    DL = SQRT (X*X+Y*Y)
    COSA = X/DL
    SINA = Y/DL
    R(1, 1) = CosA
    R(2, 1) = SINA
    X = ABS (COSA)
    R(2, 2) = X
    IF (X) 20, 10, 20
    10 R(1, 2)= -1.
    IF (SINA .LT. 0.) R(1, 2) = 1.
    COSA = 1.
    R(3,3)=1.
    GO TO 30
    20R(1, 2) = - COSA*SINA/X
    R(3, 3) = cosA/X
    30H(3, 2)= DL
    RETURN
    END
        *********************************************************************RO}033
            SUBROUTINE TRANSP
                            TRSP0010
                                TRSP0020
                                    TRSP0030
                                    TRSP0040
    SUBROUTINE TRANSP(A, B)
    THIS SUBROUTINE INSERTS A TRANSPOSE INTO B(3*3)
    DIMENSION A (3, 3), B(3, 3)
    DO 10 I = 1, 3
    DO 10 J = 1, 3
    10B(J,I)=A(I, J)
    B(J, I)
        )
```

END
TRSP 0130

```
C
C
C
C
C
C
                    SUBROUTINE INV
                                INV 0020
                                INV 0030
                                INV 0040
            ************************************************************************INV }005
        SUBROUTINE INV(A, IJ)
        DIMENSION A(3, 3, 1)
        INV 0060
        DO 50 N = 1, 3
        INV 0070
        D = A (N, N,'IJ)
        INV 0080
        DO 20 J = 1, 3
        IF (D .GE. 1.E50 .AND. A(N, J,IJ) .LE. 1.E50) GO TO 10
        A(N, J, IJ) = -A(N, J, IJ)/D
        GO TO 20
    10 A(N, J, IJ) = 0.
    20 CONTINUE
        DO 40 I = 1, 3
        IF. (N .EQ. I) GO TO 40
        DO 30 J = 1, 3
        IF (N .EQ. J) GO TO 30
        A(I, J,IJ) = A(I, J, IJ) +A(I, N, IJ)*A(N, J, IJ)
    3 0 ~ C O N T I N U E
        IJ)/D
        A(I,N,IU) = A(I,
    5 0 ~ C O N T I N U E ~
        RETURN
        END
**EOF**
```


[^0]: * Numbers in parentheses refer to entries in List of References.

[^1]: B.S. -- British Standard Section

