ReAL Tive 3D ANmMATION USING PROGRESSIVE TRANSMISSION
by

Jonathan Greenberg

A Thesis
presented to the University of Manitoba
in partial fulfillment of
requirements of the degree of
Master of Science
In
The Department of Electrical and Computer Engineering
University of Manitoba

Winnipeg, Manitoba, Canada

Thesis Advisor: W. Kinsner, Ph.D., P.Eng.

April 2000

© Jonathan Greenberg, 2000

(viii + 110 + A-11 + B-2 + C-2 + D-278) = 411 pp.

il

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4
Canada

Bibliothéque nationale
du Canada

Acquisitions et)
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4
Canada
Your file Votre référence

Our file Notre référence

The author has granted a non- L’auteur a accordé une licence non

exclusive licence allowing the exclusive permettant a la

National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou

copies of this thesis in microform, vendre des copies de cette these sous

paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’ auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette these.
thesis nor substantial extracts from it Nilathése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimes
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation. '

i+l

Canada

0-612-51718-7

THE UNIVERSITY OF MANITOBA

FACULTY OF GRADUATE STUDIES

*xkxKk

COPYRIGHT PERMISSION PAGE

Real Time 3D Animation Using Progressive Transmission

BY

Jonathan Greenberg

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University
of Manitoba in partial fulfillment of the requirements of the degree
of

Master of Science

JONATHAN GREENBERG © 2000

Permission has been granted to the Library of The University of Manitoba to lend or sell
copies of this thesis/practicum, to the National Library of Canada to microfilm this
thesis/practicum and to lend or sell copies of the film, and to Dissertations Abstracts
International to publish an abstract of this thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor extensive
extracts from it may be printed or otherwise reproduced without the author's written
permission,

Decompreszar

ABSTRACT

Three-dimensional animated sequences are commonly used in demonstration, training and
teaching applications to illustrate concepts to viewers. When accessed over the Internet, these
sequences are generally compressed using lossy video compression techniques such as MPEG,
Cinepak, H.261, or even more recent formats like Vivo, RealVideo and VDOnet. These current
techniques are undesirable for the compression of three-dimensional (3D) animated sequences
over narrow bandwidth channels. In order to keep bandwidth to a minimum, image quality, frame
rate, and frame size are usually sacrificed, producing low quality compressed output that contains
artifacts specific to the various compression techniques.

These animated sequences are generally rendered from source 3D scene descriptions,
consisting of objects composed of polygons and/or higher order surfaces. These scene
descriptions are typically very small relative to the rendered output they produce, and not
resolution dependent. Thus, perhaps the current approach of compressing the final rendered
animated sequence is not necessarily the best approach. Instead, it is proposed that a new lossless
technique, consisting of sending a compressed and stream-optimized version of the 3D scene
description rather than the rendered animation, be used for streaming 3D animation over the
Internet. Our new approach enables the progressive transmission of the non-interactive scene
description such that irrelevant information is entirely eliminated and the remaining information is
delivered to the viewer in the order in which is required. Compression and decompression
engines have been developed to demonstrate these principles. For some tested cases, the system
is able to produce output less than half the size of the equivalent compressed VRML version, and

more than 230 times smaller than the equivalent MPEG-1 animation of the same scene.

A CKNOWLEDGMENTS

I would like to thank Dr. Witold Kinsner for his aid in this thesis project and formulating
the project with Mecca Media Group through TR Labs in 1998. His insight into the various
issues surrounding this work has proven invaluable, and I appreciate his additional help in acting
as a liaison with both TR Labs and Mecca Media Group.

I must give thanks to both TR Labs and Mecca Media Group for their support during the
development of this work. Mecca Media Group provided me with a number of sample scenes
that proved helpful in the testing of this work.

I would also like to thank Patrick Oliver for his aid in reverse engineering the Bézier spline
formulation used in 3D Studio Max. This aid allowed me to bypass some of the hurdles involved
in attempting to work around some of the proprietary subsystems that exist in 3D Studio Max
which Discreet was unwilling to explain.

Lastly I would like to thank my parents, without whose aid and support I would not have

been able to complete this work. Their encouragement during this project is greatly appreciated.

TABLE OF CONTENTS

Chapter I - INTRODUCTION......cuuiiiiiiiiiiiiiie ettt sttt e sn st st e s be s st setr e s as e e s e e s nanne e s sanensesanns 1
A (o1 50715 (o) 1 T RO PP OPPPPERRR 1
Problem Definition.ccuvuiiiriireeeeieereeeirete ettt st ar e s eaare e e eaes 2
Organization Of the ThesiS.......ccccvviiiiiiiiiiiii e s 2

Chapter IT - BACKGROUND......coouivmiiiiiiiitiiiiiets ettt s et ettt e e esbe s bbb et sbe s e ebessnansnas 4
Three Dimensional RENAEIINg.......cceevveieiriiiiiiiiiiiiiiiiiircinre e 4

RAYITACIIZ. ¢euvtiivteeiieeeieeiteeite ettt st b et sr s et sabe s eabe s s tsebb s enre s ennsenneees 5
Phong Lighting Model......cccccovvervuiiiiiiiiniiiiiiiiiiiencie et 6
RAGIOSIEY . c.vveeereeeiieeniteeniteeieesee ettt st be e bbb e e bbb e an e b ere e 7
Real Time RENAETING. ...c..veirieieiiiiiiieriiiiiiiiceniiie et csirr s 8
The 3D Rendering Pipeline..........coovviiiiviiiiiniiiiiininiininiiiiiiieecriee e 11
Representation 0f 3D ObJECS....cccevvviviiiiiiiiiiiiiciiiieieer e 12
TEXLUrE MAPPINZ. .cuverrerieriririiiiiiiiiir ittt nae et a e s ar e b ens 14
Progressive TranSmiSSION.cueeverreerieiniiiieiiieniesitiire ettt ere e s ereerreerneerbeesse s 16
Wavelet TransformiS.iiiiiiiieiieeerreeiiiiiiee et sstaba e e e s e e esnnes 17
Haar BasiS.....uueeeceeeeiirniciiiieeniieeei ettt 18
Data COMIPIESSION. 1euterrurirrirerrtereeneerirerererreeeitesrireitssrrassstsssnstessanressasensaseareesrssaseens 19
Information TREOTY....covvuiiiiriiiieiiicii e 20
Dictionary Coding.......cceveereeeneerieriiiiiieic ittt et 21
LZSS COMPIESSION...cccuveierirerirereiiiiiriiiteesitesteserrnsesteessstesensreesreseseassresesssensens 23
IMAge COMPIESSION.....ccrueirriirririiiriitiiiie e e sireae e stt s e easessn et ar e teeerne s anesens 24
Vide0 COMPIESSION..ccuuviierrieriiieriiieriiteeiireeisireirteesitrreesueesssssneesnreeesnseenssaens 26
GeOMELTY COMPIESSION. .. .uvveiiiiiiiiriiirrieeerirrereeeisrtteesessrteesesessrreseeesrraessessssaas 27
The Hilbert Space Filling Curve........occoovvuiiiiiiiiiiiniiiiintrecens e 29
QUALETTIHONS. ... vvvvvvreereeeerernnreeeeeesssssensreeeeseasnnrrrartesssssssiuatsarraeeeesessesssrnnrtesssssssssasssssns 30
0 DI\ £ 15171 510) s TR OO OO OO 31
ParametriC CUIVES......uuuveieireiieeeeiteeeeeereeeeirire e sitree e sraree e s s s srarreesssrbasssseasannsessannens 33
BEZIET CUIVES....uvviviieiieeeeiieeeeeirereeiere ettt et te s s s e s rarae e s sssaas s s e saaseseesnnaees 33
TICB CUIVES...utieeeiieeeiteeeieeeieeesreeesree e satesesraeesentsesssaabesesanaesssansessbaesssabesssasnsenne 35
Existing Systems for the Transmission of 3D Anmimation..........ccceevverenireeniieinnieiiniinieenn. 37
Virtual Reality Markup Language........c..cccceveeiiinniiiiiiiiiiiinicieeceee e 37
Macromedia Flash and ShockWave..........ccoovvminniiiiiiiniiiii s 39
Progressive MEShes.......oovvivriniiiiiiiiiiiiniici e 39
MICTOSOft CHIOIME.veevieieiiiieeeeeeeeenrree ettt etet s s saba s ssaab e s rarbeees 40
WildTangent's Web DIIVET......ccuereurerreririiiiiiiiiiie i 40
Pulse Entertainment's Pulse Player........cccccocviviiiiiininiiinienneeen 41
MPEG-4 VEISION 2...vvveeerrreeeeeiiieieeeeenreeeinnirereiessessnrieesssssbnnessessosrsesssssnsessens 41
SUIMIMATY . c...eveeeiieiieciteeirieene ettt e e et e e s e s e et a e e s beeeanesesersassens 43

Chapter IIT - DESIGN....c.uiiiiiiiiiiiiiitiiiriiittcntie ettt e s sae s bn e s save e ssas e s bnesssenassnns 44
ANIMAtioN CONETEIICE. .. eeevreerireerieeeeieereeeeeireeerttresaressrr e s snar e e saa s sssaessre e e srrnessanes 44
Interactive vs. NON-INLETACIIVE.ceierrmmeeeriiiiiiieiiiiieceennre et e e sarae e esar e anns 45
Data Types and Ranges......c..cccevvurerrrrvinniicinnecinneninnencenne reeeeeenrereenee ceteeere et 46

v

DT Al SO W ATE I S TS urnterrenrerrenneeeeenseetnneseersoraseeressesssssasesssssssesssssssnnssssarensessarenncsse 48

COnSIUCHNZ ODJECES...eeevriererieiiriiieiiiiee ettt et e e s ae 49
Redefining Materials........ccooviiiiiiiiiiiiiie et 52
Streaming INfOrmMAation........ocviviiiiiiiiiiiiiinii e 56
Compressing Irrelevant and Redundant Information..........coeeeiiiinniinininnnnnnen, 59

1 F 1813071 o 2P OO OO RO P PP UPP PP 62

Chapter IV - IMPLEMENTATION.coviiiiiiiintiiiteiineste ettt ettt sbe bbbt 63
The Decompression ENGINe........couveiviiiiiiiiiiiiiiiiii st 63
Compression ENGINe......c...oociiiiiiiiiiiiiiiiiiiieie st 70

N 185111171y Z OO OOV PPIOTPPOP PSR PP PP 81
Chapter V - EXPERIMENTATION.couvtiuuierrierrereenseesseeisesaseessesssessaesssesntasstessesne s ssan s sasensssunssnssenees 82
TESE SUILC. ..vvrereeeruirreressirteeenerreee e ittt e s sssrat e s sabr e s e e sar e e s e ar e s e e e e sbeseesanbeneessesnraaaessosanes 82

TESE CASES. vvrreeeierereeeeiiireeeearreeeessettte s s s etat e et oaaas s s e s ba e s e e e bes s e e e s raasesabr et e e seant et aesennns 83

FOUT TRAPOLS. .ceeuveeeneeeeeeniieertiiiiintc sttt ettt 84

DOAE FLYDY...eioeeiiiiiiieiiiiiiiic e 85

TEAPOt CULAWAY....c.evirviriiiiiiiiiiiiiient et st ssae st 86

TOIT HICTATCHY veeeeereereiieeeiiiiiitcitte ittt 87

Plane & DOAEE.....ccovuiiriiuiiniiiiiieiiiiieiieenee s 88

SUIMINATY .01ttt eaveeeiteeeieereee ettt et e e saa s et eeab s e es s e s s e s s bb e e bt e sa e e e be e snteesanserasesate s 89

Chapter VI - RESULTS AND DISCUSSION.......cevuiiittiiiiaiiiiiiieit et 90
Experimental SUIE........coiiiiiiiiiiiiiiii e 90
Experimental RESUILS........ccovviiiiiiiiiiiii e 91
SUIMIMATYteieiveeeeeireenir ettt e s r e sta e e s bt e e s e s st s s st n 102

Chapter VII - CONCLUSIONS AND RECOMMENDATIONS.cciiiiuientrnitenreentisinsseennrenseenninrssinesnninssansenns 103
CONCIUSIONS. 11veteurerrerererrreeresrereesaasnreeeesassnreesossreesisstsssssessseessasissessassusneeaesssnsnnasssass 103
ReCOMMENAALIONS. ...eiiuverreeerieieeieeeeiereetiiriee et rre e e s b s e srr e s e s esibaseeesssnnreeesesanns 105

L@70] 1156101015 (0 £ - JRUURU OIS PPPUUT PPN PP 107

|2 (S (=110 OO OO PPPP PP TPP PP 108
Appendix A - OPCODE LISTING. ...cooveiruiiiientiiitieie ettt A-1
Appendix B - HEADER STRUCTURE.covutimiuieiieeinieiirresttasisssstessesssessieesstsstss st s snsssanssnns B-1
Appendix C - STRUCTURE CHARTS......cuiiiueiiniiiniiecitrtinee st sis s et essttesantssanssats s e e C-1
Decompressor Structure CRart...........ooiioiiiiiiiiiinee s C-1
Compressor Structure Chart..... ..ot C-2
ApPendix D = SOURCE CODE. ..ccueuirmiiiiuiniiiiiiniiit sttt esse s sttt sens st saees D-1
L0/0) 11101 (1110 SRR OO UR U P PPPP PP D-1
OPCOAES. N D-1

AY/= ¢4 O] 1 s TS OO OO PRPO PR D-4

A/ 11 O/0 <] o] o OO PSPPI D-6

PIXeIPEaN0. Nl cueveeeiiieieieieeccieeee sttt s e e D-10

v

P e PEANO.CPP e eeeeeeeeietteee ettt s D-12

RESOUICE.N...ceieiiiieiiieeeceee ettt et ne e saa s eaae e D-16
COMPIESSOT.H.eiiieriiiieeee ettt D-17
0030010 (o) o7) o OO OSUPRRRTPO D-23
DB COMIPIESSOT .. ceiuvteeurteerreireentteeree et certessreeebe st e s b e sasesaassasssassennesenbasaresns D-106
SEAATK L et D-106
SHAATK. CPP. e eevteerriterit ettt ettt sttt sra e r s st saae e D-106
RESOUICE.N...ceiiiiiiiieiee e D-107
QUALEITIONL Nl eerreee e e e e D-108
QUALETIION.CPP - e verereeeennrereeeeretreeeesmreesserstssesiaressssnsseeestssseesaasesssabassesrraaas D-109
TEXEUTE. N ettt D-116
R0 (11T N ¢ o) o SO OO OO D-117
LOgEEr. N D-119
| 04205 e o3 o OSSO OSOUR USRI D-120
L€ =1 8] £ W s TP URRSRRPPRPEROI D-121
L€ 1 8 3 Ko7 ST ORORRORRRRRROOR D-122
GetDownloadSpeed.h.....cccooriiiiiiii D-123
GetDownloadSPeed.CPP. . ccei ettt D-124
DHAlOZLOZ Nttt D-126
E D)1 (04 0~ o) T OO SRR SPPRRRPPP D-127
ANIMAtION N e D-129
ATHINALIOTLCPP v veeevvreeeemrreeerieeesieeeesireeessnessstessneeeseneeeseneessssesssesssssessssessssees D-133
AnImAatioNFIE. R ..ceiiiiiiiiie e D-168
ANIMAtIONFILE.CPP.veteeeniiret ettt e ee s s D-170
MainFrmLh. o D-222
Y =181 2 5 01 0 o) o OO OSSO D-224
DeCOMPIESSOT.Neciiiiiiiiieiiicceiceee e s D-227
DECOMPIESSOT.CPP e eerereeeeemrereeeeeertreee et ereeesestssssstasesssnesssssnnnrsssnansesennes D-228
DecompressorDOCh. oo D-232
DecompressOrDOC.CPP-cuueeerreeieciiiiiereete ettt e D-234
DecompressOrVIEW. B euiiiiiiiiiiiiniiicninecciecite e D-236
DeECOMPIESSOTVIEW.CPP . vvvveeerrrreranrrireceireessneeseiereessntesssesssnessssrssesssanssssnnss D-239

Vi

Fig 2.1
Fig2.2
Fig2.3
Fig 2.4
Fig 2.5
Fig 2.6
Fig 2.7
Fig4.1
Fig4.2
Fig4.3
Fig4.4

Fig 5.1
Fig 5.2
Fig 5.3
Fig 5.4
Fig 5.5
Fig 6.1

TABLE oF F1GURES

A classic raytracing example - a reflective sphere floating over an checkered plane....5
An example of CSG-a sphere that has had six smaller spheres subtracted fromit.....12

An example of Metaball modeling-an alien hand constructed from 23 metaballs....... 13
Bitmaps are texture mapped onto the faces 0f @ Cube........ocovvvvvniriiiiiiniinie 15
The HAAT WAVEIEL.....eeevvreeirreeerreeseetesennteeiintteesst e e s s e e sitts e snee s e sstbns s ettt basesans 18
The vertex split and edge collapse mesh OPErations..........ccccvveiiiiiiininniienneie. 28
Three iterations of the Hilbert CUIrvVe.......ccooviiiiiiiniiiiiene i 30
The behavior of the data retrieval thread.........coooovviiiiiiiiniiiiinien 65
Sample screens from the decompressor apphCALION.cccourvrmririnieisinississiseees 68
Compression engine user options dialog BOX......coveciviiiiiiirinii e 72

A comparison between using and not using smoothing groups to construct models
with separate distinct surfaces. Longer arrows show the face normals for each side of
the cube, while the shorter arrows represent the resulting vertex normal(s) for the

given vertex, represented by a blue dOt.......ccoviiiiiiiiiiiii 75
Teapot scene in 3D Studio Max R2....cccocmiiiiiiiicins 84
Dodge scene in 3D Studio Max R2......coviiieiiniiiiiccecnes 85
Teapot cutaway scene in 3D Studio Max R2......ccoviiinii 86
Tori hierarchy scene in 3D Studio Max R2......ccceceiininiiiniies 87
Plane & Dodge scene in 3D Studio Max R2.....cccoooiiiiiiniiie 88
A rendering of the 10 bits per vertex component version of the plane & automobile

scene demonstrating artifacts from incorrect alignment of sub-objects in a model.....98

Vil

LisT OF ABBREVIATIONS

3D Three Dimensional

3DS Autodesk 3D Studio

CEFF Critical Flicker Frequency

CSG Constructive Solid Geometry
D3D Direct3D

HTTP HyperText Transmission Protocol
MPEG Motion Picture Experts Group
MIpP Multum In Parvo

NTSC National Television Systems Committee
NURBS Non-Uniform Rational B-Splines
OGL Open Graphics Language

PAL Phase Alternating Lines

PSNR Peak Signal to Noise Ratio

UDP User Datagram Protocol

VRML Virtual Reality Markup Language

viii

Chapter I: Introduction

Cuarrter I
INTRODUCTION

1.1 Motivation

The primary motivation for this project concept originated in observations of recent
advancements of computer graphics in computer games. Games such as the Quake series, by id
Software, and the Descent series by Parallax Software and Outrage Software have led the current
wave of consumer directed computer and video games. These games do an excellent job of
demonstrating the potential of real time rendering engines to approximate offline-rendering
schemes like raytracing. The advent of consumer directed and inexpensive polygon acceleration
hardware in the PC market has made these types of games possible as the transformation and
rasterization load has been lifted from the host processor allowing more complex visual
environments to be constructed in real time.

In 1998, Mecca Media Group requested that Telecommunications Research (TR) Labs
assist in the compression of animation sequences used in their training material. In order to keep
file sizes small to reduce transmission time, Mecca Media would hand tune the rendered animation
sequences using image processing applications. This time consuming process would reduce color
palettes and flatten background colors, allowing the sequences to be more easily compressed
while maintaining extremely high image quality.

Shortly after the request for aid, in a conference call, Prof. Kinsner suggested the general
approach used in this thesis to Mecca Media Group and TR Labs. We developed a proposal for
the project with Mecca. It was noted that, at the time, in order to transmit synthesized video

sequences created by animation software like Kinetix’s 3D Studio Max, one had to employ

Chapter I: Introduction

standard video compression techniques, such as MPEG or Cinepak. Nonetheless, if one were to
know in advance that the content to be compressed would always be these rendered animation

sequences, why not take advantage of this knowledge and build a new technique around it?

1.2 Problem Definition

This thesis attempts to address the problem of delivering 3D animation content over
narrow bandwidth channels. Two primary techniques are currently commonly employed to
transmit synthetic 3D content: rendering out two-dimensional animation frames which are
compressed using video codecs, or instead compiling the scene description using a description
language to be interpreted by the client (for example, VRML). Neither of these two techniques
performs well over narrow channels, such as 28.8 Kbps modems, due to reasons that this thesis
addresses.

This thesis attempts to improve on these current approaches by allowing for the
progressive transmission of a scene description, enabling the viewing of sequences as they are
actively streaming over a channel and by greatly reducing the amount of data required to specify
this information. It is hypothesized that through the innovations presented in this thesis, the

problem of transmission of 3D animation sequences over narrow band channels can be solved.

1.3 Organization of the Thesis

This thesis consists of several major sections, each with its own specific purpose to aid in
explaining how the environment was constructed, the results it produced, and the conclusions

drawn therefrom. The thesis structure is as follows:

Chapter I: Introduction

Chapter 1 introduces this thesis by providing the motivation behind the thesis. In this
section the problem we attempt to solve is defined. As well it presents the structure for the body
of the thesis.

Chapter 2 compiles the background theory used to develop the concepts presented and
described in this thesis. As a variety of different topics are sewn together in this thesis, a full
understanding of the background is required to understand choices made in the design phase.

Chapter 3 describes the design process of this thesis. Building upon the information
presented in the previous chapter, it lists the choices made and the optimizations exploitable
through these decisions. By the close of the chapter, the full design of the two applications has
been specified.

This specification is required for Chapter 4, as it describes how the design was
implemented. This section describes the specifics involved in translating the design into working
compression and decompression applications, and outlines the major pitfalls encountered en route.

The implemented applications are then used to apply the suite of experiments, a series of
test case animated sequences, in Chapter 5. The sequences are described in detail, along with
simple pictures of the source animation, and include statistics as to their complexity.

Results from these experiments are presented and analyzed in Chapter 6. The specifics are
described of how experiments were conducted and comparative results were collected. Results
from experiments are compared against several comparable existing systems.

From the results in Chapter 6, conclusions are offered in Chapter 7. Following these
inferences, a series of recommendations and suggestions towards how this work might be

expanded in the future are given.

Chapter II: Background

Cuartrr II
BACKGROUND

A variety of different techniques and technologies were employed in the development of
the concepts utilized in this thesis. This chapter describes the necessary background to facilitate

the ideas presented in this thesis.

2.1 Three Dimensional Rendering

Animated sequences of real world objects are often constructed for demonstration
purposes or product visualization. In order to model these objects effectively, likenesses of them
are constructed using computer-based tools, in which the objects are reconstructed in artificial
three-space, using building blocks known as primitives. These primitives are geometric
constructs, usually consisting of triangles, but can also include geometric solids, and parametric
surfaces. These scene descriptions are resolution independent, since the scene graph locates
objects in a virtual world rather than describing the interactivity or values of individual screen
pixels. The description contents are also generally view independent as well for this same reason.

In order to render the objects in the scene, a virtual camera is placed in the scene along
with light sources, and a resultant frame is constructed using rendering techniques such as
raytracing or radiosity. While these techniques can produce photorealistic output (outputted
image quality indistinguishable from that produced through photography), they require a great
deal of time to be computed, and are not practical for use as real time rendering techniques.
Raytracing finds individual colour intensities for each screen pixel and thus, while producing more

accurate output, raytracing is very computationally expensive. —Radiosity calculates view

Chapter II: Background

Fig. 2.1 A classic raytracing example - a reflective
sphere floating over an checkered plane.

independent lighting of the objects in the scene that, while extremely effective at modeling the
interaction of indirect lighting with surfaces, is even more computationally expensive than
raytracing. Many of the current techniques that produce the most convincingly realistic images

consist of hybridized models combining aspects of both raytracing and radiosity.

2.1.1 Raytracing

The primary concept of raytracing is attempting to model the delivery of light rays to the
camera (or virtual eye) by projecting rays from the eye and determining how these rays interface
with objects in the scene. This is accomplished by tracing rays from the eye point such that each
ray passes through a point on the view plane corresponding to a pixel in the final rendered frame.
These vectors are then tracked to determine which is the first object they penetrate. The color of
the corresponding point in the view plane is then determined by the color of light reflected off the

object at the point of intersection.

Chapter II: Background

To determine the light color at the intersection point in raytracing, one first finds the
interaction of the object itself with various surrounding light sources, often through the Phong
lighting model [FDFHS87, p. 778]. If a ray cast between the point of intersection and the light
source penetrates another object, then the original intersection point is said to be in shadow. If
not, depending on the reflectivity of the object, reflection rays are spawned and cast out along the
reflection vector created between the surface normal vector, and the camera vector. If the object
is semi-transparent, the line-of-sight vector is refracted through the object and a new secondary
ray is spawned as well. Both of these new rays are then recursed to some set limit upon which
they terminate. If the originally intersected object was neither highly reflective nor refractive, then
the point in question will take on the color of its source object at that location.

Due to the recursive nature of the raytracing algorithm, raytracing is generally an
extremely slow operation. A great deal of literature has been dedicated to optimizing and
speeding up the raytracing process, however because of the exponential nature of raytracing, this
has yet to be achieved on anything less than massive multiprocessing systems using special case
scenes [Whit92, p. 10]. Since raytracing is such a slow operation, rendering is described as offline
rendering, as for animated scenes groups of frames are queued together and rendered to some
storage device in batches. These scenes cannot be viewed interactively and thus all frames must

be fully rendered before the scene can be displayed.

2.1.2 Phong Lighting Model

In order to calculate the light intensities for vertices in a variety of rendering systems
including but not limited to raytracing, the Phong lighting model is often employed. Phong’s
lighting model determines the light intensity on objects due to direct lighting. This lighting model,

6

Chapter II: Background

developed by Phong Nui-Tuong [FDFHS87, p. 729] is

m

IAzla Aka Od)\+ Z fanlmpi\[kdOd/\(NOL—m)-*—ksOsA(R_moV)n] (21)
1

where I, is the intensity of the light at the given wavelength A at some point on an object, I,; is the

ambient light at wavelength A, and k, is the ambient-reflection coefficient of the object. The
ambient portion of the equation attempts to provide a simplified model for indirect light transport
between objects in a scene. The diffuse portion of the equation attempts to model basic
reflectivity between objects in the scene. The Og; value is the diffuse color of the object being
illuminated, f,. is the attenuation rate, I,,, is the diffuse light intensity at the given frequency for
light number m, k, is the diffuse-reflection coefficient of the object’s material, N is the normal
vector to the point, and L—,,: is the light vector to the current light source, m.

The specular portion of the equation provides a highly simplified model for determining
the specular highlights (bright reflective highlights that appear on very shiny or polished surfaces)
of an object. The k, value is the specular-reflection coefficient of the material, O,; is the specular
color of the object being illuminated, R—,: is the light vector reflected at the point for the light m,

V is the vector between the point and the camera location and n is the material's specular-

reflection exponent.

2.1.3 Radiosity

Radiosity is a radically different approach in that it is based around the energy absorbing
properties of various materials. In radiosity, objects are divided into rectangular patches over
which light has a uniform intensity [CoWa93]. Unlike raytracing in which only light sources emit

light, in radiosity, all patches are considered light emitting. The radiosity of any patch is equal to

Chapter II: Background

the sum of the emitted energy and reflected energy for that patch, where the reflected energy is
the product of a reflection coefficient for the object’s material and the energy incident on that
specific patch from all other patches.

Radiosity tends to produce extremely realistic output, images that can often be mistaken
for photographs of the scenes that have been modeled. Yet for its superior image quality,
radiosity has a computational complexity a magnitude higher than raytracing. While radiosity is
even less practical than raytracing for direct real time animation, it can be used to improve the
appearance of real time 3D animation engines by precalculating the radiosity of static elements of
the scene. This technique is currently employed quite frequently in video games and architectural

walk-throughs.

2.14 Real Time Rendering

Instead of relying on raytracing or radiosity, which are very realistic, yet expensive
techniques, most current real time rendering engines make use of Gouraud shading [Hill90] in
combination with some lighting model. Gouraud shading makes use of the light intensities of
polygon vertices to shade entire faces. Finding the illumination for every pixel of every primitive
might be ideal but it is still too expensive, so instead the illumination values for each of the
primitives’ vertices are found. Light intensities of the primitives’ internal points are then linearly
interpolated. While this operates quite effectively for small polygon, large polygons shaded using
Gouraud shading often exhibit inaccurate shading, as specular highlights will be lost on these
larger surfaces, and the linear shading will not always reproduce non-linear effects (such as
attenuation) that should be present.

Light intensities are generally determined using the Phong lighting model previously

Chapter II: Background

described, or are precalculated using offline techniques such as per-polygon radiosity. While
Phong lighting is often used because it allows for dynamic lighting of scenes, it does not account
for light sources being obstructed. This can often result in visual errors such as objects that
should be in shadow instead of appearing fully lit.

Unlike raytracing which operates by traversing scan line by scan line, pixel by pixel,
through the entire frame to determine the entire image, real time rendering operates by rasterizing
each primitive into the frame buffer in the order in which it is presented. This often requires that
polygons be sorted based on distance from the viewpoint as otherwise, closer objects would end
up obscured by those which should appear further away. This technique of first sorting polygons
based on view depth is commoﬁly called the Painter’s Algorithm [Hill90] as it mimics how one oil
painting on canvas obscures previous coats of paint when one applies a new color overtop.

Another method to determine polygon visibility is to track the screen depth of rendered
polygons using a Z-buffer. When beginning a scene, the Z-buffer (a depth buffer with one entry
for every screen pixel) is initialized to the furthest possible distance from the viewing plane.
Whenever a new polygon is presented, each pixel of the polygon in question is tested against the
Z-buffer. If the new pixel's depth value is closer to the eye point than the previous Z-buffer entry,
the new pixel overwrites the existing one in the color buffer and the previous Z-buffer value is
overwritten with the new one.

Though the appearance of lighting through Gouraud shading provides a reasonable
simplification of raytracing, it should be noted that it is not nearly as accurate. Raytracing
attempts to trace rays projecting from the eye into object space and by doing so naturally takes
into account shadows, multiple levels of reflection, and refraction through surfaces. Real time
techniques do not naturally take any of these three factors into account. Shadows, reflections,

and refraction, to be accurately recreated generally require either preprocessing of scene data, or

9

Chapter II: Background

special case techniques (for example, limiting shadows to being projected onto floors, or special
case modeling information to be used in generation of silhouette boundaries. Special effects
required to produce these missing features can greatly slow down real time rendering and are
extremely limited in their ability to accurately recreate the raytraced images they attempt to
replace.

One final factor important to consider is that frame rates, or the frequency at which frames
are constructed and then rasterized, are generally not static in real time rendering systems. The
time required to draw an individual frame is determined by two primary factors: the time to
update and evaluate the geometry database and the time for all geometry to be processed through
the rendering pipeline. Fluctuations in the time required by both of these processes must be taken
into consideration.

Whereas in offline rendering systems, such as raytracing and radiosity, where rendering
time has no direct effect on the rate at which frames are displayed to a viewer, rendering time
directly determines the rate at which frames will be rendered in real time systems. Thus, scene
complexity, scene overdraw, and geometry database processing must be kept to a reasonable level
to allow the high frame rates preferred by the human visual system. Various studies have shown
[Glas95, p. 18] that the critical flicker frequency (CFF) for most humans under ideal conditions is
around 60 Hz. It should be noted that most common video formats run considerably under this
critical threshold, with MPEG1 video running at 30 Hz when using NTSC source material, and 25
Hz when using PAL source material. For synthesized sources, frame rates typically range from 6
Hz targeted for low bandwidth Internet channels to the 30 Hz of NTSC video (NTSC video runs
at 60 fields per second, where each frame requires 2 fields interlaced together, for a total of 30
frames per second). It should be noted that frame rates can be allowed to deviate from the CFF

to some degree if they are not interactive. The greater the required user response time, the more

10

Chapter II: Background

noticeable deviation from the CFF will become, and in some cases, such as military flight

simulators, an even higher CFF may be required by some users.

2.1.5 The 3D Rendering Pipeline

While at first glance rendering a single triangle from 3D space into the 2D-screen space
might appear to be a relatively trivial task it is actually quite involved. Before a primitive can be
rendered, it must first travel through the 3D pipeline.

The primitive is first transformed from its local coordinate system into world coordinates
by translating it by its world position, and rotating it to its world orientation. Once the primitive’s
new location has been determined, one checks whether or not it is inside the view volume. The
view volume (also called the view frustum) is an imaginary flat pyramid defined in space by the
camera position, the front and back clipping planes, and the field of view. If an object is entirely
outside the view volume, it is trivially rejected from the pipeline.

If a primitive has not been rejected at this point, it is checked to confirm that its normal
vector is not pointing away from the camera. If it is, then the primitive cannot be seen, and is
rejected from the pipeline. This is referred to as back face culling of the primitives. If the
primitive has not been rejected, it is then lit and rasterized.

The pipeline can be further optimized by trivially rejecting all primitives belonging to
objects that are outside the view frustum. This is performed by calculating a bounding volume for
the object and checking if the bounding volume intersects the view volume. The 3D rendering
pipeline order is not strict, and can be modified depending on the optimizations chosen and

advanced knowledge of the scene contents.

11

Chapter II: Background

2.1.6 Representation of 3D Objects

A great deal of work has been performed over the lifetime of graphical research into
determining optimal ways of describing artificial objects in artificial three-space. The oldest and
most straight forward method is the description of 3D objects using mathematical formulas such
as quadrics [FDFHB7, p. 473]. This technique has long been used due to its utility in mathematics
and compactness of the expressions. For example, to define a sphere, all that is required is the
sphere's position and its radius. The combination of quadrics with other basic geometrical
constructs such as pyramids and cubes led to the technique of constructive solid geometry (CSG).
Constructive solid geometry takes combinations of these simple geometric solids, usually referred
to as primitives, since they are the most basic building blocks of such systems, and combines them
using set operations, as illustrated in Fig. 2.2.

In recent years CSG has fallen out of vogue and instead has been superseded by modeling
surfaces with various types of parametric curves, including Bézier curves, B-splines, and non-
uniform rational B-splines (NURBS). These curves have proven to be extremely powerful and

casy to use in the modeling of curved objects. They also prove more generic than quadrics, as

Fig. 2.2 An example of CSG-a sphere that has
had six smaller spheres subtracted
from it.

12

Chapter II: Background

basic quadrics can be constructed as special cases of more general rational curves such as
NURBS. In addition artists generally find them quite powerful, allowing them to model extremely
complex objects more easily.

Though general modeling through quadrics is not as common anymore, one newer
technique has proven very effective in modeling through the use of formulaic descriptions of
objects. Implicit surface modeling, also commonly referred to as metaball modeling (see Fig. 2.3),
allows the construction of complex surfaces through the placement of point energy sources with
exponential decays. Several sources combined together form an energy field, and the surface
described by this field is plotted at points along the field where the energy level crosses below
some given threshold. Metaballs have proven quite useful in the modeling of organics as well as
the modeling of flowing and pooling behaviour of liquids and other systems that can be
approximated by field effects.

However, while all of these techniques allow for various advantages when modeling
various objects and surfaces, the most universal and widely supported geometric primitive is the
triangle. As the simplest possible three dimensional surface element, triangles require only three

vertices to be defined in space. Being the simplest element, all the previously described

Fig. 2.3 An example of Metaball modeling-an
alien hand constructed from 23
metaballs.

13

Chapter II: Background

description techniques can be tessellated into meshes of triangles. This is especially important as
evaluating the other more complex descriptions can be computationally expensive, often making
them impractical for interactive rendering speeds. Thus, while tessellation of more complex
surfaces may reduce rendering time, it does generally increase the required storage space for the

descriptions of these surface types.

2.1.7 Texture Mapping

As geometrical objects become more and more complex, filling in detail explicitly using
polygons can often be wasteful. The chief alternative approach to adding great detail while not
increasing the complexity of a mesh is by painting detail over top of the geometry, a technique
called texture mapping [FDFHS87, p. 741]. While there is a variety of complex techniques
possible, the most fundamental concept of texture mapping involves taking a bitmap and painting
this bitmap directly onto the triangular mesh, greatly reducing the number of polygons required to
define complex objects. The image painted onto the geometry is referred to as a texture map, and
can vary in resolution. Vertices in a mesh are attributed coordinates in a U-V space, which define
points mapped into the texture map. These coordinates are called texture coordinates, and by
convention, the boundaries of a texture map are generally mapped between (0,0) for the lower left
corner and (1,1) for the upper right corner.

As textures are being rendered onto 3D geometry, the original images end up appearing as
skewed versions of the originals. These skewing operations, when combined with perspective
correction can often produce distortions across the rendered texture due to linear interpolation.
This distortion is generally more noticeable than other operations combining linear interpolation

with perspective correction such as polygon shading. There are many of approaches that have

14

Chapter II: Background

Fig. 2.4 Bitmaps are texture mapped onto the faces of a
cube.

been taken to removing the distortion, but the most common approach, and the primary one
supported by current real time 3D rendering engines is to use MIP (multum in parvo - many
things in a small space) mapping. Instead of simply rendering the original texture map, the texture
map is used to construct a series of MIP maps, lower resolution versions of the original texture,
constructed by filtering the original image. By convention, these lower resolution maps usually
have dimensions corresponding to half the previous map constructed, with the first map having a
resolution equal to the original source texture. Thus, an original texture of 256 x 256 is reduced
to the series of 128 x 128, 64 x 64, ..., 2 x 2, 1 x 1 images where each reduced image is a filtered
version of the previous image.

When rendering, selection algorithms are applied on a per-pixel basis to determine which
MIP map should be used. Selection algorithms are not described here, as they are generally
abstracted from the user of a rendering engine. Once selected, the MIP map is then used for
rendering the texture. Yet, this can still produce some visual anomalies due to regions where the
selection algorithms break down and fail to select the ideal candidate MIP map. To produce

15

Chapter II: Background

better results, a technique known as trilinear filtering can be used. Trilinear filtering attempts
correct for these problems by allowing the selection algorithm to return an inexact solution as to
which MIP map corresponds to the given pixel. This solution, which lies between two known
MIP map levels, is used to interpolate between these two maps. The MIP maps are then also each
bilinearly filtered, as the U-V lookup corresponding to the pixel often does not relate to an exact

texel in the MIP maps, and these MIP maps are also of different resolutions.

2.2 Progressive Transmission

The concept of progressive transmission is a straightforward one. Rather than waiting for
an entire message to be received in its entirety before its contents are evaluated, progressive
transmission demands that the message be evaluated in pieces as it is being received over a
channel. The use of progressive transmission has several natural advantages over the simpler
technique of simply waiting till a message is received in full. Whereas the simpler method requires
one to wait until a message has fully arrived before it can be processed, progressive transmission
allows for better resource management on the client side by allowing processing to be multiplexed
with data retrieval. This assumption is generally quite plausible as in general the time required for
transmission of data is considerably greater than the time required to evaluate it.

Progressive transmission techniques also allow for client side control over the channel
through the ability to stop the transmission once enough data has arrived. Further optimizations
are possible, such as shaping the transmitted content to match dynamic channel characteristics, or
progressive detail refinement [DaKi99].

Nonetheless, while progressive transmission of a data source offers several immediate

benefits, taking full advantage of them often introduces some degree of additional overhead, as

16

Chapter II: Background

new portions of data sent to a client must be marked based on their temporal and/or spatial
importance to the client. This naturally leads us to a discussion of wavelets, prime candidates for

progressive transmission techniques due to their locality in space and time.

2.3 Wavelet Transforms

Since the introduction of the concepts of using cosine and sine waves to construct more
complicated waveforms was introduced by Joseph Fourier [OpWY83, ch. 4], the use of
superposition of simple waveforms to approximate more complex ones has been a mainstay of
signal processing. Wavelet theory attempts to replace more traditional Fourier analysis by using
simple aperiodic signals as the basis functions rather than the more traditional periodic sine wave.
The aperiodicity of the wavelet basis makes it a more practical construction tool for use with real
world signals which tend also to be aperiodic. On the other hand, a sine wave basis has long
proven impractical in describing rapid discontinuities, a factor easily demonstrated by the
appearance of Gibbs phenomena in square wave signals [OpWY83, p 186]. As an individual
component in the frequency domain will produce an infinite signal in the time domain, many
frequency components are required to reconstruct local discontinuities.

Wavelets are localized in both time and frequency, and thus are said to be compactly
supported [Glas95, 244]. By scaling and stretching the wavelet function, time domain signals can
be reconstructed. The compactness of the wavelet basis allows it to describe discontinuities in the
time domain signal using fewer coefficients than would be required by a sinusoidal basis. There is
a wide variety of wavelet bases that have been constructed to date, but for this work we limit our

study to the Haar basis.

17

Chapter II: Background

0.5 1.0 0.5 1.0 0.5 1.0

(@) (b) ()

A

| |]

(d) (e) M
Fig. 2.5 The first six functions of the Haar wavelet. (a) Yoo (b) Wio (€) W11 (d) Yoo (€) Wa1 () W22

\

v

2.3.1 Haar Basis

The Haar wavelet as shown by Fig. 2.5 is defined as [Sayo96, p. 313]

1,0Sx<—;
Woolx)= (2.2)
—1,—2-Sx<1

where the 'mother function' used to generate all sub-band functions for the Haar basis is given by

Wik (X)=Wo,0(x) (2jx_k>
1,27 k=x<2” (k+;—) (2.3)

—1,2_j(k+—;>3x<2_j(k+1)

where j is the level of the wavelet and k is the location parameter. Higher values of j indicate
narrower support bases, while different values of k determine the location of this order of wavelet

in the signal. In general for all wavelets, and specifically for the Haar basis, for any given level j,

18

Chapter II: Background

there are 2* possible valid locations [Glas95, p. 263].

The Haar wavelet can also be thought of as an averaging function. Given some initial data
set with a power of 2 size, a new set is constructed of equal length. The lower half of the set is
replaced by the mean of each pair of the original set values, while the upper half of the set is
replaced by the differences between each pair of the original set values. As the mean lies
equidistant between both original points of a pair, all information from the original set can be
easily and quickly reconstructed. Due to its extreme simplicity, the Haar wavelet is considered
the simplest and quickest of all wavelet transforms. But its extreme simplicity makes it one of the
poorest performing wavelets in terms of compact signal description. This is due to its having zero
order matching properties, causing it only to be able to concisely match functions that are
piecewise constant. For more efficient matchings of higher order curves, more complex wavelet
bases such as the Daubechies basis must be used [Glas95, p. 278].

Wavelets, such as the Haar basis and especially the previously mentioned more complex
wavelets, are often used in data compression applications due to their quality of having compact
support. This factor often causes large amounts of correlation between the coefficients of the
transformed signals due to large quantities of zero values. The natural redundancy of these large
quantities of zero coefficients enables data compression techniques to reduce the storage

requirements for the signal.

2.4 Data Compression

Data compression allows one to reduce the transmission time as well as the amount of
storage necessary to specify some given information, with a consequence of increasing processing

overhead. This section provides background on some of the basic concepts behind data

19

Chapter II: Background

compression and how they apply to this thesis work. Compression for this thesis focuses on both
the two approaches for data compression: lossless and lossy compression. Lossless compression
requires exact reconstruction of the original source signal, while lossy compression allows for
some degree of signal degradation during the compression process. Lossless compression deals
with the removal of redundant information from the signal, while lossy compression additionally

removes what is deemed unnecessary or irrelevant.

24.1 Information Theory

The idea of quantizing the amount of information a certain event represents was first
presented by Claude Shannon with the concept of self-information [Sayo96, p. 13]. Shannon
stated that given the probability P(A) of some event A taking place, it can be stated that the self

information of A is provided by

i(A)=log, (1 T=log.P(4) 2.4)

It is interesting to note that the self information of an event corresponds to an opposite level of
probability of it occurring. For example, high probability events can be seen to have low self-
information, while low probability events are deemed to contain a high degree of self information.
This can be understood conceptually be considering how humans observe and rate the importance
of events. When rare or seldom occurring events take place, they tend to be noted. Consider the
simple example of the operation of an automobile. If one experiences a safe journey to a

destination, it is rarely considering noteworthy. If one instead experiences an accident during the

20

Chapter II: Background

trip, the trip is given great importance and is generally recounted to others.
Further, given a set of independent events A; within some channel C, where S is the sample
space from which these events are taken, then it is said that the average self-information of the

channel is given by

Havg:ZP<Ai)i(Ai):_z P(A;)log P(A) (2.5)

where H,,, is said to be the Shannon zero order entropy, or level of disorder of the channel. Zero
order entropy assumes independence of the various symbols in terms of position and correlation
and only focuses on symbol frequency. Higher order entropies focus on the correlation and

dependence of the various symbols on their immediate neighbors.

24.2 Dictionary Coding

As natural language text tends to contain a very large quantity of correlation between
various words and their component parts, the fundamental concept of dictionary coding is that of
textual substitution [Sayo96, p. 98]. When a data string in the stream is encountered it is
compared against a dictionary. If the string is found in the dictionary, a code representing the
string is transmitted rather than codes for the individual characters themselves. A simple example
of this concept would be replacing the four characters “bthe’ (where b is a spacing character) with
some token every time it occurs in this thesis text. By doing so, we could significantly reduce the
number of characters required to specify the entire document. In data streams that are highly
correlated, such as plain text, textual substitution of dictionary codes generally produces very

good results.

21

Chapter II: Background

Ideally, as statistics of a data stream tend to change as the stream changes, dictionaries
must be allowed to adapt to local statistics. Most adaptive techniques owe their roots to LZ77, a
fundamental dictionary technique based on two separate approaches developed by Jacob Ziv and
Abraham Limpel in 1977 [Sayo96, p. 100]. To encode an incoming stream of data, a sliding
dictionary window is employed. The sliding dictionary is of a fixed size and contains characters
that have previously passed through the encoder, in the order they appeared. The portion of
string that has yet to be encoded is placed in a look-ahead buffer [Kins00, ch. 16].

When data is encountered in the look-ahead buffer, a search is performed into the
dictionary to determine if a portion of the string formed by the look-ahead buffer already appears
in the dictionary. Should the string begin at the tail of the dictionary, the string is allowed to
overrun into the look-ahead buffer. If the search string is found, an offset into the dictionary
where the portion of the string was found as well as the portion's length are computed. These
two values are combined with the character following the string portion in the look-ahead buffer
to form a code triple. This third element is transmitted to account for the degenerate case in
which the first character in the look-ahead buffer (and thus the first character in the search string)
cannot be found in the dictionary. Once the triple has been transmitted, the dictionary window
slides to cover the information the triple contained, and the process is repeated.

LZ77 has many natural advantages that make it an excellent candidate technique. Though
encoding of the stream is highly dependent on the efficiency of the dictionary search, decoding a
stream is extremely fast as it merely consists of a long series of table lookups. As well it requires
a minimal amount of memory to operate, as the decoder merely requires enough memory to store
the dictionary and look-ahead buffers in order to operate. Due to its many advantages, LZ77 has

spawned a large number of variations including, but not limited to PKZip, LHarc, and Atj.

24.3 LZSS Compression

22

Chapter II: Background

J. A. Storer and T. G. Szymanski introduced a variation on LZ77, often referred to as
either LZSS or the Storer technique. The primary improvement introduced by Storer and
Szymanski is the use of a cyclic dictjonary window rather than merely sliding it over the data
stream [Stor88, p. 64]. Additionally, the triple associated with 1.Z77 is no longer required due to
the introduction of a header bit.

The encoder for LZSS works as follows: The dictionary is initialized to a set of zeros.
The stream is loaded into the look-ahead buffer. A search is performed into the dictionary buffer
to find the longest possible match string to the string formed by the look-ahead buffer. Unlike
LZ77, where the search can extend into the look-ahead buffer itself, in LZSS if it is required to
search past the end of the dictionary, the search wraps back to the dictionary's beginning.

If a string is found, we compute its offset and length. These two values are transmitted
with a 1-bit header of value 0. Should it not be possible to find the string in the dictionary, the
string is set equal to the first character in the look-ahead buffer. This character is transmitted
using a 1-bit header of value 1. In either case, the string is removed from the look-ahead buffer
and added to the dictionary, wrapping back to the beginning of the dictionary should its end be
reached.

This technique has several immediate advantages over LZ77. The first and most obvious
is that rather than wasting at least a single character for each of the offset and length portions of a
triple in the degenerate case, LZSS merely wastes a single bit. Another advantage is that there is
a smaller memory footprint required by the decoder as only the memory for the dictionary is
necessary.

There are two methods proposed by Storer and Szymanski to improve the performance of

this technique. It should be noted that normally length values for a offset/length pair would range

23

Chapter II: Background

between 0 and 2*-1, where L is the number of bits used to encode the length. The upper bound of
length values that can be encoded using L bits can be improved by considering that certain length
values would never be used by the encoder. For example, trivially, length values of both 0 and 1
can be eliminated by noting that a length of zero is meaningless, and a length of 1 translates into
the non-pairing degenerate case for which length is always implied to be equal to 1. Thus the
length value range can be shifted to fall between 2 and 2%+1, allowing for improved performance
of the compressor.

The second improvement attempts to improve the encoder's search performance by
imposing a deletion heuristic on the dictionary. Should a search return a successful result, S, of
length greater than 1, the deletion heuristic searches the dictionary for the shortest possible
occurrence of a substring of S, R. Should R be found at a location other than S, it is deleted from
the dictionary, as the string § is already in the dictionary making R redundant (relative to S). This
allows the dictionary to contain a larger variety of candidate strings, potentially allowing for

greater performance through matching a larger number of dictionary strings.

244 Image Compression

While LZ77 and LZSS are general purpose lossless compression algorithms, the more one
knows about a given information source, the greater the number of specific optimizations that can
be applied. Two dimensional images have long been a major focus of data compression, due to
the large amount of data the otherwise uncompressed images require. Images are typically stored
as two-dimensional arrays referred to as bitmaps, where each location in this array - sometimes
referred to as a pixel - requires a static number of bits to describe its color or shading information.

The general case colored bitmap requires 8 bits per color component, where the color

24

Chapter II: Background

components are red, green and blue.

As images designed for human viewing generally contain large amounts of correlation and
redundancy, a wide variety of techniques have been employed in the past to reduce image storage
requirements. Though currently in use techniques are too numerous to list here, several proven
techniques include GIF, JPEG, and Portable Network Graphics (PNG, designed to replace GIF).
Image coding techniques, like all other compression techniques, fall under the two categories of
lossy techniques - which tend to attempt to remove data otherwise ignored by the human visual
system, and lossless techniques which retain all original image information.

Lossy image compression techniques often fall under the category of transform coders,
which attempt to transform the original image from image space into some form of transform
space, first possibly having gone through some form of color space conversion. Once the image
has been transformed into some other space, low frequency coefficients are often truncated, and
the remaining high frequency coefficients are retained. These coefficients are then compressed
using some lossless technique, and are stored awaiting the application of an inverse process to
restore an image visually incomparable to the original. For example, MPEG encoders attempt to
compress keyframes (which are treated as images) by dividing the image into a series of 8x8 pixel
blocks on which it then performs a discrete cosine transform. For more general case image
compression, one might choose instead to use fast Fourier transforms, or one of the various
wavelet bases.

Image compression remains an active area of research in which there is ongoing work
investigating every aspect of the compression pipeline, from color spaces and transformation
techniques to frequency selection and coding schemes. One of the techniques currently in vogue
is using wavelets as the transformation technique, as wavelets divide the image into different sub-

bands which can then be encoded separately.

25

Chapter II: Background

24.5 Video Compression

Where image compression focuses on the correlation between neighbouring regions within
an image, video compression attempts to focus on correlations between successive images.
Though video compression will be only lightly touched on, several primary points should be
made. As hinted above, video compressors operate by dividing a scene into two parts - keyframes
and rweening (a corruption of the word inbetween) frames. Keyframes, as discussed later, are
reference frames. In the case of video compression, these keyframes are used as references points
while the tweening frames describe information about changes that take place between successive
keyframes. Thus, an original video sequence running at 30 frames per second might be divided
such that there is a reference keyframe every 5 true frames, and tweening frames are used to
reconstruct the frames that would lie between these keyframes.

In general, video codecs attempt to reduce the number of required keyframes and improve
the efficiency of the tweening. The most common method of doing this is to divide the keyframes
into blocks of some set resolution, as described earlier. Tweening information is then used to
describe the transformation of these blocks required to reconstruct the equivalent true frames such
that the original is indistinguishable from the synthesized image. In general as time progresses and
more of these delta frames are applied, error in the reconstructed frames accumulates. Thus
keyframes are required periodically to reset the sequence and prevent further error.

It can be seen that, in general, tweening frames would require very little storage as
compared to the keyframes which require the specification of an entire image. The size of a
compressed video file grows linearly with the number and resolution of these keyframes.

Therefore, much effort has been made in video compression research to reduce the storage

26

-y

Chapter II: Background

required for keyframes (generally by falling back on image compression techniques), as well as to

reduce the errors that would be introduced by these delta frames.

2.4.6 Geometry Compression

Whereas video and image compression are often used to reduce the storage and
bandwidth requirements for photographed sequences, geometry compression revplves around the
reduction of storage space for models to be used in synthesizing images. A number of techniques
have been developed for compressing three dimensional geometry. The majority of these are
based around several basic methodologies. Currently in vogue are derivatives based upon the

progressive mesh work of Hugues Hoppes [Hopp96]. Progressive meshes take some original

mesh M and reduce it to some low detail mesh Af° where n progressive levels can then be

applied successively to M°, producing MM *...,M", such that after then n levels M =M".

|

< Edge Collapse

Vertex Split >

Fig. 2.6 The vertex split and edge collapse mesh operations.

27

Chapter II: Background

This progressive refinement on the original is performed by constructing a hierarchy of edge
collapsing operations which take two existing vertices connected by an edge and replace them by
a single new vertex equidistant from the two original points. The edge collapse has a
corresponding inverse operation, the vertex split (see Fig. 2.6). The vertex split takes an existing
vertex and converts it into an edge, reconnecting the original polygons, and generating new
triangles along marked previously existing edges.

Though progressive meshes have proven quite powerful, there is another more
fundamental method of compressing geometry. Groups of triangles are packaged together in
triangle strips or triangle fans. Triangle strips are structured such that each new triangle consists
of the newest vertex specified plus the previous two. Triangle fans are structured such that each
new triangle consists of the newest vertex specified plus the previous one and the original vertex
in the fan. Thus n vertices define n-2 triangles in both cases. Both of these structures share the
feature of each successive triangle sharing vertices with the previous one. By sharing vertices,
one reduces the number of specific indices required to be specified for a given number of
triangles. However, these structures have one basic limitation - the number of triangles that can
be contained in a single strip or fan is generally quite small. As well, determining an ideal set of
triangle strips or fans to construct from a triangle mesh can be an extremely time consuming
process, as one is trying to find a successive series of longest paths across an object that together
make most efficient use of its topology.

Yet, where speed of determining these structures is not of great concern, they have proven
extremely useful, and some recent technologies have even attempted to exploit properties of both
triangle strips and progressive meshes [Ross99]. Triangle strips and triangle fans remain one of
the main techniques of performing simple Jossless compression on groups of triangles. Because of

their simplicity of use, they've remained a fundamental of the real time rendering community since

28

Chapter II: Background

its inception. They also make extremely efficient use of memory and enable simple local register
based caching of vertex data on a 3D accelerator. This has made them one of the preferred
techniques for speeding up hardware rendering, as less bandwidth is required to transmit Strips
and fans, they require little effort to decode, and don't cause any misses in the graphics hardware's

vertex cache.

2.5 The Hilbert Space Filling Curve

The Hilbert curve, first proposed by David Hilbert in 1890 [PeJS92, p. 96] and which is a
subset of the more general Peano curves, defines a one dimensional curve that passes through
every point in a two dimensional space. Each time the resolution of the space to be filled is
zoomed in on by a factor of 2, the curve is iterated. The original space the curve filled is
subdivided into four new quadrants. When iterated, each linear portion of the previous curve is
replaced by an entire Hilbert curve. Thus, four original vertices used to construct the curve are
replaced by 16 vertices, and then 64 vertices, and so on, ad infinitum. As the number of iterations
grow, the curve begins to fill the given space entirely, and yet it should be noted the curve is both
open, and never crosses itself [Kins99].

This self-similarity defines the Hilbert curve as a fractal, and interestingly, the Hilbert
curve was the very first illustrated example of a fractal. This self similarity and winding behaviour
that the curve takes on in a given space provides it with some useful properties. For example, the
Hilbert curve has been demonstrated to be effective for color dithering techniques as it provides a
straight forward distribution of points while not producing unwanted connective artifacts
[PeJS92]. It has also been demonstrated that the Hilbert curve exhibits extremely powerful

clustering behaviour [MJFS99]. This clustering behaviour can be used in image compression to

29

Chapter II: Background

__ 8
................ % Luj1
vvvvvvvvvvvvv ____j}
| o
Lo bd
- =
] B L] ;
lteration 0 lteration 1 Iteration 2

Fig. 2.7 Three iterations of the Hilbert curve
further reduce entropy by clustering together pixels with a higher degree of correlation than other

linear mappings (such as a more straightforward linear traversal) demonstrate.

2.6 Quaternions

Quaternions were invented by Sir William Hamilton in 1843 as an alternate form of
expressing complex numbers [WaWa92]. Rather than describing complex numbers using two
components, one real and the other imaginary, Hamilton conceived of a system wherein imaginary

numbers consist of a real scalar component and a three component imaginary vector,

q=(s,v)=s+ v ity j+v k (2.6)

where s is the scalar part of the quaternion g, and v is a three-space vector, with v;, vy, and v, as its
respective components. This allowed him to construct complex volumes to further extend
concepts beyond the limitations of a single complex plane.

Quaternions can be used to represent Euler angles, and unlike Euler angles, quaternions

30

Chapter II: Background

do not suffer from the problem of gimbal lock. Quaternions also allow for the easy
implementation of interpolation between object orientations. Quaternion space defines a
hypersphere, and thus to interpolate between two quaternions, one finds the shortest arc between
two points on the surface of the hypersphere. This process is called spherical interpolation or
slerping [WaWa92].

To demonstrate the necessity for quaternions, it can be shown that more than three
degrees of freedom are required if one wishes to avoid the problem of gimbal lock [Heck97,
p. 15]. Common techniques of doing this include specifying an entire nine value 3x3 matrix, 16
value 4x4 matrix, or using two three-space vectors, but the minimal representation is to use only
four degrees of freedom. Quaternions only require four values to be specified and thus provide an

accurate and yet concise representation of orientation values.

2.7 3D Animation

There are two primary techniques used to animate 3D models in time: motion attributes
and keyframes. For the motion attribute technique, during each timestep, objects get assigned a
translation, rotation or scale factor. These attributes are either constants, or based on some set
formula and allow for very simple animations. While most motion attribute systems are fairly
simplistic, motion ,attributes can be used in the creation of procedural animation systems.
Procedural animation, while very powerful, is often rather complicated to both implement and
use, and thus is currently not very commonly utilized.

Keyframing, on the other hand, is a very common methodology that owes its origins to
hand-drawn cel animation techniques developed by Walt Disney studios [WaWa92, p. 345]. In

traditional keyframing, only certain ‘key’ frames, frames containing characteristic positions of the

31

Chapter II: Background

models, are actually drawn by the core animation staff. The frames in between these keyframes
are then hand-rendered by interpolating between the keyframes. This process is often referred to
as inbetweening or tweening.

In 3D animation, the process is similar. Most commercial animation packages make use of
individual frames in the same method as traditional cel animation. Thus, specific frames are used
as keyframes, where object characteristics are specified, and the characteristics of the models are
interpolated for the remaining frames.

Choosing the best method of interpolating the inbetweened frames is by no means trivial.
Linear interpolation, while perhaps the easiest technique to implement, often proves inappropriate.
Linear interpolation can often lead to very inappropriate motion, since although it does guarantee
continuous motion, it does not guarantee continuous derivatives. This can cause very abrupt
changes in motion. For example, an attempted interpolation of projectile motion with very few
keyframes would contain visual errors as the projectile passed the peak of the arc.

Instead, it is recommended that spline interpolation be used in the place of linear
interpolation for most cases. Spline interpolation using parametric curves produces naturally
curved paths, which usually allow for a more realistic reconstruction of motion. Motion
describing splines also require fewer keyframes than a series of linearly interpolated keyframes to

define rather complicated motion.

2.8 Parametric Curves

In general, parametric representations of curves and surfaces are more useful than implicit
forms. Where a parametric curve is defined as its parameter u is swept from O to 1, implicit curve

definitions of similar curves require the possible solving of nonlinear equations. Traversing an

32

Chapter II: Background

implicit curve to determine its shape is not straightforward; solving for a specific variable can
produce multiple roots or points without any roots. In general multivalued implicit functions
cannot be used to trace out their curves or surfaces.

Furthermore, parametric curve forms allow the natural progression through the curve
structure - a parametric definition of a circle allows the construction of the circle by traversing its
circumference in one direction. This facilitates the approximation of the parametric curve using
line segments, and parametric surfaces using polygons. By varying the rate at which the
parametric curve is sampled one can construct approximations of different resolutions.

Lastly, parametric definitions of curves allow for a large number of powerful variations
useful in computer graphics. Only the two specifically used in this thesis are presented below, but
a wide variety of curve and surface definitions are used consistently in computer graphics to

define surface structures and motion paths.

2.8.1 Bézier Curves

One of the more dominant parametric curve representations is the Bézier curve, named

after its originator. A set of control points Po’P1>-> Px define a Bézier curve € () of degree

n such that [WaWa92, p. 73]:

Q(u)=i p:B;,(u) 2.7)
i=0
where

B, (u)="Cu'(1—u)"™" (2.8)

Ln

n
is a Bernstein polynomial, and Ci is a binomial coefficient

33

Chapter II: Background
n!
"C=—T (2.9)
il (n—i)!
It should be noted that in computer graphics, Bézier curves used tend to be of degree n=3. The

four Bernstein polynomial basis functions for a third degree Bézier curve are:

By,=(1-u)’ (2.10)
BL3=3L£(1—H)2 2.1D)
B2,3=3u2(l——u) (2.12)
B,,=i (2.13)

Thus the full representation of a Bézier curve of the third degree (or Bézier cubic) is given by
Q(u)=po(1~u)l+3 p u(1-u)*+3 p,u*(1—u)+ p,u’ (2.14)

Sometimes it is preferable to specify Bézier curves using only two endpoints, as interior points are

unavailable. Without proof it is stated that the derivatives at the endpoints of a Bézier curve of

degree n are given by [WaWa92, p. 75]:

df§i°)==n(p1—-po) and 2.15)
o
du _n(pn pn—l) (216)

or for our cubic we have
Q'(0)=3(p,— p) (2.17)

Q'(1)=3(p;—p,) (2.18)
Substituting Eqn. 2.17 and Eqn. 2.18 into Eqn. 2.14 provides:
O (u)=(1-3u*+2u*) po+(u—2u"+u’) p," +(3u"—2u°) pyt(’ =) p,' (2.19)

which is only in terms of a curve's endpoints and their derivatives.

34

Chapter II: Background

2.8.2 TCB Curves

Local tension, continuity and bias (TCB) curves were first introduced in order to give a
high degree of control over keyframe based animation using only a few very simple parameters.
First presented by D. Kochanek and R. Bartels [WaWa92, p. 355], this variation on the simple
Hermite form uses these three new parameters to calculate the tangent vectors between two
endpoints of a curve - or rather, between the positions or orientations at two specific keyframes.
TCB splines attempt to control the curve shape through understandable parameters rather than
simply mathematically abstract numbers. This has made them desirable for artists attempting to
construct keyframed animation sequences without large amounts of confusing mathematics. All
three parameters, range between O and 1. Tension controls how sharply the curve bends,
continuity controls the rate of change in curve speed and direction, and bias controls the direction
of the curve as it passes through the given keyframe.

Given the current keyframe in a sequence k,, the incoming tangent for the keyframe is
given by

rs 1=00=0(1+b)

| 2 L (1=0(+c)1-b)

2

(Pi+1_Pi) (2-20)

and the outgoing tangent is given by

(1-1)(1=c)(1-0),

TD‘:(l—t)(l—{—c)(l—Fb) = (

! 2

(P=P;_)+

Pi+1—Pi) (2.21)
where 7 is the tension term, c is the continuity term, b is the bias term, and P, is the position in

3D space of the k, -th keyframe. These values can be calculated for any pair of keyframes, since

to determine a value between keyframes k; and k,,,, we need the position at the keyframe &,

35

Chapter II: Background

as the start point for the Hermite form, the position at the keyframe %, as the end point, the
outgoing tangent for the k, keyframe TD,, and the incoming tangent for the k,,, keyframe

N These values are plugged into the basic Hermite equation to extract position or

i+1°
orientation information for a given set of keyframes.

In order to adjust the speed at which the curves are interpolated to allow for nonuniform
spacing of keyframes, an easing parameter is introduced to adjust the keytiming. The easing

parameter of some local segment i of a curve with a global parameter U is given by:

U-t,
_ (2.22)

liy1—

The parametric continuity of the curve at U=t implies that the value of dQ/dU (Q being the

curve value) is the same regardless from which side the position P; is approached. This is shown

as

49, .,,-99
dU’u ti_dUIti u (2.23)

When expanded using the chain rule, dQ/dU is given by

dQ _dQ du__ 1 dg
AU du dU 1,,~1, du

H

(2.24)

where i is the segment of the curve over which U falls. Substituting Eqn. 2.23 into Eqn 2.24:

1_do
t,—t,_, du

1 do
- i (2.25)

luot =
i+l 4

demonstrates that there is a discontinuity in the local derivatives at the key position. The
discontinuity is given by

dolqU|t.«u t. —t.
q |z u_ i+1 i (226)

dQ/quu—ni-— L=t

Thus, in order to deal with non-uniform distributions of keyframes, the start and end tangents of a

36

Chapter II: Background

segment are multplied by [WaWa92, p. 355]

20(t... —t.

2=t and (2.27)
Liim

2(ti+1_ti) (2.28)
L™ .

respectively. This scaling factor is often referred to as easing the curve.

2.9 Existing Systems for the Transmission of 3D Animation

While the approach taken for the transmission of 3D animation in the thesis is a novel one,
this thesis is by no means the first attempt at the transmission of geometric content over the
Internet. Most current techniques revolve around the transmission of content that is meant to be
viewed interactively, with the viewer able to at least be able to control a virtual camera. None of
the current 3D techniques described below appear to stream 3D content scheduled based upon

visibility.

2.9.1 Virtual Reality Markup Language

Virtual Reality Markup Language (VRML) was originally conceived to be to 3D graphics
what HTML is to text. VRML was meant to provide a simple description language for 3D
content that would allow users to navigate virtual worlds in a similar fashion to how users browse
the World Wide Web. As VRML was somewhat ahead of its time, and the consumer hardware
required to display it was not widespread during VRML's early development, it has never really

taken off to any large extent.

37

Chapter II: Background

VRML consists of a straightforward textual description of 3D scenes, including triangle
based geometry, keyframed motion, and the ability to hyperlink to other VRML files. In general
VRML assumes a user controlled dynamic camera, and allows for user navigation through VRML
scenes.

While VRML is a relatively simple scripting language, the recently updated VRML97
(VRML 2.0), specification now allows inline Java code to be included [CaBM97]. This allows
for the possibility of VRML to describe some extremely complex and diverse animated behavior,
including the ability to respond to user input, collision detection and other such dynamic systems.
However, interactivity comes at a price, since the ability of users to navigate through scenes
requires that content must account for free manipulation of the virtual camera. Scenes in VRML
must take into consideration the ability of the viewer to walk through and view the virtual world
from any possible location or point of view.

Yet, though VRML is quite powerful in its ability to describe scenes and allow interaction
with them, it can be observed to be highly non-optimal for use over narrow bandwidth channels.
Though VRML files are generally compressed using GNU gzip to reduce their storage
requirements, the scene description is in raw text. Gzip is a compression technique based around
LZ77 that uses Huffman encoding to encode the pointer-length pairs into a tree. While providing
very efficient compression, this technique requires a great deal of overhead due to the
manipulation of the Huffman tree structures.

The final primary drawback of VRML is the requirement for it to be entirely specified
before it can be rendered. Objects that are described under VRML must be fully specified upon
creation, preventing the possibility of progressive transmission of these objects. For a VRML file
to be viewed by a user, it must first be fully downloaded, then decompressed and parsed before it

can be viewed.

38

Chapter II: Background

2.9.2 Macromedia Flash and Shockwave

Macromedia's Flash and Shockwave products are probably the most commercially
successful examples of vector based animation systems. Used as multimedia presentation tools,
Flash and Shockwave support the streaming of various types of multimedia over the Internet.
Flash focuses specifically on streaming vector based animation at very low datarates, while
Shockwave has a more general purpose approach. While both applications do an excellent job of
streaming different types of 2D animation, neither focus heavily on nor optimize their
performance for 3D content and thus are generally not appropriate solutions for animating 3D

sequences.

2.9.3 Progressive Meshes

As described earlier, progressive mesh technology was first demonstrated as a technique
to transmit polygonal meshes over the Internet. As progressive meshes allow the progressive
filling in of detail, they provide a simple and effective technique for building up interior detail of
meshes over time. To build the mesh up progressively, each 'block’ transmitted consists of an
entire detail level. The new detail level is added to the previous data via vertex splitting and thus

the mesh progressively gets more and more detailed as time progresses and more data arrives.

39

Chapter II: Background

The power of the technique has been demonstrated by its wide spread adoption as a
continuous level of detail technique and its wide use as a basis others have attempted to refine
through further research, including Hoppe's own ([Guez99], [E1IVa98], [Ross99] for just several
examples). Progressive mesh support was even included in early versions of Microsoft's DirectX

3D programming software development kit.

2.9.4 Microsoft Chrome

Microsoft's Chrome product has been shelved and remains an experiment, but its original
purpose was to provide a framework to allow for easy integration of 3D content side-by-side with
commonplace 2D content on the World Wide Web. At the time it was also to be used as a basis
for a future 3D graphical user interface planned for some future version of the Windows operating
system. Whether or not Chrome eventually gets reintroduced in a future Microsoft product

remains to be seen.

2.9.5 WildTangent's Web Driver

WildTangent's Web Driver is an interesting plugin that sits as an environment in which can
run various types of content developed using either JavaScript, Visual Basic or C++. Whereas the
other systems mentioned here are primarily directed to just the display of 3D content, or in some
cases, limited interaction with this content, Web Driver is powerful enough that it is focused on
running much more complex content. Most of the examples provided by WildTangent

demonstrate simple 3D games, and allow for fairly high degrees of interaction, supporting game

40

Chapter II: Background

controllers and dynamics engines.

While Web Driver doesn't inherently support the progressive transmission of model data, it
does support the progressive transmission of textures, and it allows for scenes to be built object
by object over time. For example, it is possible to create a simple game in which the control code,
artificial intelligence, and physics engines are all loaded first, followed by the models and their
textures. A game can be made initially playable to the user, and more detail can be filled in later,
making the game look more attractive once the essentials have arrived. Thus Web Driver can be
used to produce extremely advanced interactive web content, but does not feature many of the
basic progressive transmission technologies demonstrated by the other systems listed in this

section.

2.9.6 Pulse Entertainment Pulse Player

Pulse Entertainment's Pulse Player is a recent introduction in providing 3D animation over
the Internet. Once initial content has been received by the player, further information required for
the animation, such as object motion or speech can be streamed into the player as it becomes
necessary due to user selected actions. Pulse Player supports an extensive set of options,
including a scripting language JoeScript, definable behaviors, and skeletal animation. Pulse Player
does not appear to support progressive transmission of the models themselves, and instead seems

to merely support the active streaming of behavior scripts and audio.

2.9.7 MPEG-4 Version 2

Revised in December 1999, MPEG-4 version 2 includes the capabilities to stream 3D

geometry in addition to video and audio. As 3D information content is less predictable than video

41

Chapter II: Background

and audio content, and may require interactivity from the server (in the case of interactive virtual
worlds, for example), 3D content is transmitted through a side-stream separate from the usual
audiovisual content.

Based upon existing work for VRML [MPEG4a-d], the MPEG-4 version 2 supported
scene description language allows for a wide variety of capabilities. For example, it is possible to
integrate video and audio streams into virtual worlds in the form of either video textures (for
example, a virtual television in the virtual world) or positional audio. Also included as of version
2 of MPEG-4 is the ability to construct deformable human models derived from a standard
parameter set, to enable the use of avatars in virtual environments. Support for modeling of the
human body and its motion is the primary 3D enhancement to version 2, as great effort has been
put into the efficient compression of body gestures using discrete cosine transforms.

At this time, much of the MPEG-4 standard is in development and therefore is still not yet
public. It currently appears that the scene description format utilizes a superset of VRML,
allowing for the same primitive types and constructs. As well, the scene description system is to
support progressive scene and object construction, with an absolute limit of 1024 active objects at
any time. The MPEG-4 3D subset also appears to support some form of progressive geometry,
based on the progressive mesh work mentioned earlier. The 3D subsystems have been designed
with interactivity as a primary focus so that MPEG-4 content could be integrated into set-top
boxes or simple games. Therefore MPEG-4 has been optimized to support the up-streaming of
data back to servers in addition to allowing event triggers to be directly specified in the MPEG-4

files.

42

Chapter II: Background

2,10 Summary

Analysis of these techniques and understandings of their limitations led to the design of
this thesis and the development of the techniques described within. The combination of
understanding the limitations in current techniques as well as the realization of how these
limitations could be exploited allowed for the design of our new methodology, as described in the
section that follows.

The sections described in the background provide the necessary theoretical information to
follow why current techniques are inadequate and do not properly exploit natural tendencies in 3D
animated sequences. By understanding how previous 3D animation systems fell short, we could
improve on their performance and produce a more effective solution to streaming non-interactive

real time 3D animation over the Internet.

43

Chapter II: Design

Cuarrer 111
DEsicoN

The design of this thesis took a top-down approach. Design began by considering how it
might be able to generally improve on current video compression techniques of displaying 3D

animation over the Internet.

3.1 Animation Coherence

One of the most important factors in compressing animation or video is attempting to
properly exploit coherence between animation frames. It is generally assumed that the source
material naturally contains much coherence, but this temporal redundancy is often difficult to
utilize. Where video compression techniques require that the encoder try to artificially extrapolate
coherence between groups of pixels, compressing 3D animation from its source scene descriptions
provides us with explicit knowledge of the internal coherence. While much research has been put
into trying to segment a scene into complicated components and then tracking their motion, scene
descriptions directly state how objects are constructed and how they travel through their
environment.

The scene descriptions to be dealt with in this thesis consist of machined parts, such as
those in engines and turbines, shown in operation or cutaways. These machined parts are static
objects whose shapes do not warp and bend during animation, but instead are displayed moving
relative to one another according to their function. Thus, if a limitation is placed on the system
stating that object topologies are not allowed to change, an even greater level of coherence can be

assumed in scenes. Once an object has been fully described, it does not require future description

44

Chapter III: Design

in the sequence. Instead, only its movements through space need to be provided, allowing for a

level of coherence in the animated sequence not possible under pixel-based video codec.

3.2 Interactive vs. Non-interactive

Though it might not immediately be clear, the requirements of rendering interactive
environments are quite different from those required to render non-interactive ones. In general,
interactive environments need a great deal more information, as they must allow for user
navigation of the surroundings. These needs can be restricted to some degree, yet so long as the
user is allowed to take control of the virtual camera used in rendering the scene, every possible
permutation of how the user might choose to travel through the world must be accounted for.
Authors of the environment must consider how the world will appear from any of the various
vantage points the viewer is allowed to choose from.

In contrast, in a non-interactive environment, the viewer has no control over the camera.
While less immersive than an interactive world, non-interactive worlds generally require less
information, as the world that is viewed by the user has specifically been restricted by the world
author. Consider the simple example of a theatrical set, where the stage usually consists of only
specific portions of a room. Or consider a scene in a movie in which only a portion of the
environment, which is presumed by the viewer to extend beyond the screen boundaries, can be
seen. In interactive environments, these unseen regions would have to be accounted for, while in
a non-interactive environment, anything that the author deems out of view need not be taken into
consideration. Because of this, non-interactive environments generally do not require as much
information to be described.

Furthermore, in a non-interactive deterministic environment it is possible to predict every

45

Chapter III: Design

object that will be visible, and to evaluate what portions of them will be visible to the camera.
Foreknowledge of what in the scene will be visible, can allow the further removal of unnecessary
information and scene geometry. Information as to when parts of the scene become visible allows
for the progressive construction of the scene description, adding information into the scene as it

becomes required.

3.3 Data Types and Ranges

In order to reduce the overall size of a scene description, we must apply some form of
compression technique. Before a compression technique may be selected, efforts must be made to
reduce the size of the overall animation sequences. If one can decrease the number of bits
required to specify different values, or group like values together to exploit natural redundancy
before compression is applied, one can improve the performance of various compression
techniques, as the entropy of the source signal has been reduced. This is attempted by using some
knowledge of the limitations of current realtime 3D animation.

The first attempt to reduce the entropy of the file consists of byte-plane partitioning a
series of related floating-point values (or floats). For the purposes of this thesis, only single
precision (32 bit IEEE standard) floats are used. These floats are structured such that they are
made up of a sign bit, followed by an 8-bit exponent and then a 23-bit mantissa.

It bas been observed that objects with axial symmetry about their local origin or objects
with vertices clustered together will tend to have floating point values with the same exponents.
By packing these exponents together, one should be able to reduce the first-order entropy of the
vertex data. This can be accomplished by simply rotating the floating point structure by one bit,

and placing the sign bit at the end of the structure and byte aligning the exponent. To increase the

46

Chapter II: Design

likelihood of equal byte values, vectors are separated into their vector components (x, y and z)
and lined up with the same components from other vertices. Thus, a series of three vertices a, b
and ¢ will be broken up into a.b.c,, a,b,c, and a,b.c,, with each float’s component bytes separated
and aligned in the same manner. This should allow further compartmentalization of the unvarying
portions of a series of floating point vertices or vectors.

Another observation is that real time 3D engines only tend to be able to render on the
order of several hundred thousand polygons per second due to limitations imposed by current
consumer hardware. Because of this, artists creating models for use in such engines are usually
very limited in the number of polygons they can use for individual models as compared to non-real
time 3D engines. Such models rarely exceed 3000-4000 triangles, However many low detail
models require less than 100 triangles. Much research has been conducted in recent years
([HDDM93], [Hopp96], [EIVa98], [Guéz99]) to reduce model complexity to fall within the
restrictions imposed by real time rendering engines, while minimally affecting the appearance.
Since an approximate upper limit to the number of possible triangles is known, the storage
requirements of numeric indices and reference numbers can be reduced.

The following scheme is used for reducing the storage requirements of unsigned 16-bit
integers (often referred to as an unsigned short). When reading an unsigned short value from a
file, a first byte is read. If this byte has a value between 0 and 199 (inclusive), we simply use the
value of this byte for our unsigned short value. Thus, values between 0 and 199 only require one
byte of storage. If the value of the byte is between 200 and 255, then we apply the following

formula

F=(a—199)*200+b (3.1

47

Chapter III: Design

where f is the final unsigned integer value, a is the unsigned value of the first byte read, and b is
the unsigned value of the second byte read. This allows for a maximum value of 11455 which is
large enough to accommodate future increases in system capability, while optimizing for smaller
array sizes.

While the above technique for packing floats applies to general 3-value floats, one can
improve performance to specifically reduce the storage requirements of normal vectors. As
normal vectors are all of unit length, it can be easily observed that they describe points on a unit
circle. If one uses spherical coordinates to describe a unit normal rather than those of Euclidean
geometry, we now require merely two values to describe normal vector, as the length component
will always be fixed at a value of 1. If we encode the remaining two angular values with 12 bits
each, we can reduce the original 12 bytes required to store a normal vector down to a mere 3

bytes with a minimal reduction in resolution.

3.4 General Software Issues

Early on it was decided that as the foundation of this thesis was the compression of 3D
animated sequences, the thesis would require two separate applications - one to compress the
sequences and the other to decompress and view them. While the specifics of the compressor
were not particularly important at first, it was known that the decompressor would need to
perform two basic functions simultaneously. It would first have to be able to render the
sequences and second, decompress the incoming streams. The decompressor would have to be
able to do both simultaneously as the basic design calls for the viewing of animation sequences as
they arrive.

Due to the speed required in order to decompress a sequence and render it simultaneously,

48

Chapter III: Design

the decompression scheme would have to keep processing to a minimum and rely upon the
majority of optimization of the sequence taking place during the compression phase. Though
consumer hardware continues to improve year after year, the decompressor would have to be able
to run on at least a reasonably powerful consumer system, while not limited to only the true high
end of the consumer market. It was decided, accordingly, that the decompressor's 3D engine
would make use of one of the existing 3D application programming interfaces (APIs) and that the

decompressor would require a 3D accelerator.

3.5 Constructing Objects

From the very beginning of this work, one of the decisions that was made was that objects
should be allowed to be constructed over time, as new information about these objects becomes
necessary to the viewer. How to practically approach this problem was another matter. One
possible approach was to simply adopt progressive mesh technology. This was ruled out, as while
progressive meshes do a very good job of refining the detail of a model by adding new vertices
between existing ones during vertex split operations, they do not account for a more fundamental
problem. If objects are being animated, and one wishes to only append new polygons into the
scene as they are required, unless the viewer is zooming in on that object, new polygons will be
required at the object boundaries. Consider for example the case of an object slowly rotating in
place. As it spins, new portions of it come into view, and the new polygons representing these
portions must be added to the scene. Progressive meshes couldn't properly account for the
continuous addition of new polygon boundaries, especially at all levels of the detail hierarchy.
Thus, a new approach would have to be considered.

Another issue that required attention was that, as our decompression would take place

49

Chapter III: Design

online, while the scene was being rendered, the decompression process could not be allowed to
become overly complex. If the calculation or memory manipulation overhead for the
decompression process became excessive it would slow down the real time rendering process,
possibly to the point of making it either extremely slow or useless. Compression could be allowed
to be time expensive, as it would take place offline and would be time dependent.

Instead of trying to re-evaluate progressive meshes, a method was conceived where an
object was merely defined as an array of triples of indices into a vertex array. As these new
triangular faces would be required, new vertices would be added to the vertex array if necessary.
Unfortunately this would also negate any possibility of being able to use either triangle strips or
fans as the constant addition of new triangles to existing strips would incur overhead and thus
undermine any benefits strips might otherwise naturally provide. This overhead would result from
the need to maintain the strip and fan structure when internal portions of the structures might be
missing from the list of required faces. As well, these structures would either suffer or break
down entirely when encountering degenerate cases where very small numbers of disconnected
triangles were added to the scene during a given time slice. Overhead caused by these degenerate
cases, which were predicted to be quite common, would remove any possible advantages strips or
fans might have initially provided.

Yet it should be noted that vertex arrays can be very efficient structures. It has been
shown that smooth surfaces tend to have vertices with average Valeﬁces of 6 (attached to six
different edges) [ZSSw96]. As individual vertices are reused in an average of six triangles, the
vertex array structure naturally accounts for a large amount of redundancy that would otherwise
need to be stored as separate structures. Vertex arrays can be seen to be very concise and
efficient structures for specifying triangle information.

While triangle strips could no longer be used by the decompressor's rendering engine,

50

Chapter III: Design

OpenGL does however support the use of vertex arrays to optimize the transmission of vertex
data to rendering hardware. Thus the construction of arrays of face and vertex data by the
decompressor provides an effective methodology for accelerating rendering, while allowing for
simpler data management by the decompressor.

The array structures had been decided on for representing triangle data, but the acquisition
of this information had yet to be worked out. The problem was that to efficiently send animation
data - in other words to send this data in the order in which it is required - is no simple task. This
difficulty arose from the problematic nature of the visible surface determination problem.
Determining the order in which a scene becomes visible, and which parts of that scene actually
can be seen by a virtual viewer is not an easy task. The solution decided upon was to render the
animation sequence in the correct order, and simply check what polygons appeared and the order
in which they appeared. To accomplish this task, polygons would be tagged using colors, where
the colors would represent number references. By scanning the pixels of the resulting rendered
images for colors, these number references could be retrieved. The list of retrieved triangles
would identify which polygons could be seen in the given frame, and would be appended to a list
along with a reference to the frame number in which these polygons first appeared.

Once all of the given list of frames had been rendered, the large list of required triangles
would be sorted by the frame numbers in which they appeared. This list would now contain the
animation's polygonal data in the order in which it needed to be streamed. In order to construct
the frame list to ensure the correct enumeration of all polygons, one would have to sample the
frames at a rate double the expected playback frame rate. As well, different rendering engines do
not guarantee exact per-pixel duplication of the rendered result, due to differences in how various
engines select which pixels to render. These differences determine whether or not various types

of triangle edges will themselves be rendered when the entire triangle is being scan converted and

51

Chapter III: Design

filled in with a given color. Selection of the incorrect edges to hide could cause a small triangle
that is mainly occluded to not appear when rendered under one engine but appear under another.
To account for these anomalies, each frame is rendered with double the width and height of the
target frame resolution, so that sub-pixels of the target frame are accounted for, and possible

differences in edge selection by the rendering engines will not affect the final playback output.

3.6 Redefining Materials

3D Studio Max Release 2.0 allows two basic methods for defining the surface appearance
of a geometric shape, the use of a single solid color (referred to as an object's wire color) or a
material. Materials can vary greatly in complexity, and are meant to allow objects to take on the
surface properties of real world objects, such as metals, plastics, and organics. Materials as
defined in 3D Studio Max can be very complicated, as they allow for hierarchies of sub-materials
interacting together to produce some final surface property. While this enhances 3D Studio Max's
capabilities by allowing more accurate modeling of an artist's conception, it makes the potential
complexity of object materials too high for this same system to be practical for real time
reconstruction. As well, many of the procedural textures used to generate the sub-materials have
high computational overheads possibly making them impractical for real time reconstruction as
well.

Thus, the remaining solution for the transmission of object materials is to make use of the
post-processed material generated by 3D Studio Max for its rendering. To generate the object
material, the most straightforward manner would be to make use of the built-in rendering engine
available to 3D Studio Max to render out the complex material hierarchy to a simple planar

texture map. Two different methods of exporting the material properties would then be

52

Chapter III: Design

supported. The first would provide low detail information, and would work most appropriately
when dealing with scenes that require very little texture detail and contain small numbers of
vertices. Instead of attempting to transmit the entire texture, one would instead sample the
material values at each vertex, and transmit simple vertex colors in the place of an entire texture.
For simple textures with little detail, or images of fairly continuous color gradients, this technique
could often prove effective of at least conveying the general visual properties of an object while
requiring very little information be transmitted. For more complex textures, this technique would
break down, as detail and discontinuities in the texture would not be maintained, causing the
appearance of visual flaws in the final playback rendering.

The higher detail, and more general purpose solution to be used would be to take the
sampled texture and transmit it through the stream as a texture map. Texture maps compiled
from material hierarchies would need to be sampled at high resolutions (256 x 256), yet often a
high amount of detail in the texture would not be required. In addition, in many cases it would
have been desirable to to allow cases in which texture detail is increased over time, for example if
an object is being approached by the virtual camera. Therefore, when objects were to be scan
converted, they would also be analyzed to determine a rough approximation to the target screen
area occupied by the object. This area estimate, which could be determined by noting the two-
dimensional bounding box occupied by visible pixels belonging to the particular object, would
allow the determination of how much texture detail would be required for the playback render.

The need to be able to add texture detail as time passes naturally coincides with the
preference of real time 3D rendering engines to use MIP maps to enhance visual quality rendered
texture maps. As constructing these MIP maps by a real time engine would normally require
extra computational overhead, one can alleviate this overhead from the rendering engine by

providing these MIP maps to it directly.

53

Chapter III: Design

When being transmitted to the decompressor, one would prefer to have the texture maps
or rather, the various MIP map levels compressed to reduce storage space. This would be
extremely important as a 256 x 256 pixel texture map at 24 bit color would require 196608 bytes
to be specified. As it would be preferred to transmit the textures with as little data loss as
possible, a compression technique that effectively reduced the storage requirements while
leveraging the use of the MIP maps was required. One final requirement on a candidate algorithm
was that decompression of the images must require a minimal amount of processing overhead, as
the decompression engine would not be able to suffer the heavy processing overhead required by
standard algorithms like JPEG. A heavy processing overhead would significantly impact the
performance of the decompressor application's rendering engine, and cause noticeable drops in
frame rate.

Due to the need to transmit multi-resolution versions of the texture maps so they could be
constructed over time progressively in conjunction with the need to compress the texture data,
wavelets were selected as the best candidate set of techniques. When wavelets are applied to
image data, they naturally provide a series of multi-resolution reproductions of the original image.
As wavelets are compactly supported, coefficients tend to compress effectively using simple run
length encoders, or multipurpose lossless encoders like LZ77 and its derivatives. However,
though they do not require a great deal of processing overhead while leveraging the multi-
resolution features of MIP maps, wavelet decompression can exhibit heavy processing overhead
for more complex wavelets of high degrees. Therefore, the design would call for only the
simplest of wavelets, the Haar wavelet, to be used for the compression/decompression process at
this time. The design specified that it would be possible to allow for future inclusion of support
for other wavelet types though, as future increases in available processing power delivered by the

availability of faster and faster consumer computers would compensate for the increased

54

Chapter III: Design

overhead.

As it is necessary to encode large quantities of floating point coefficients, one would
prefer to encode related coefficients together. Typically, a simple manner is to simply treat the
entire two-dimensional array of coefficients as a simple one-dimensional array, and encode them.
While this will allow a lossless compressor to take advantage of horizontally related coefficients,
it ignores natural correlation between lines of the original coefficient array. If instead coefficients
are grouped using a Hilbert space filling curve, a greater rate of correlation should be arrived at.
This is due to the winding structure that the Hilbert curve takes - four coefficients are clustered
together in a square block, and then four of these clusters are clustered again. This clustering
structure is repeated until the final block is the resolution of the entire bitmap. This has an
advantage of placing coefficients together that are spatially proximate in the coefficient array.
Spatially proximate coefficients can usually be assumed to exhibit a greater degree of correlation
than otherwise, and thus allow greater performance from the lossless compressor. Utilizing a
Hilbert winding also naturally breaks a square two-dimensional array into quadrants, making it a
helpful and efficient structure for building up MIP maps, as each new level of coefficients can
simply assume all previous levels simply made up the new map's first quadrant. Coefficients
would be taken for each color plane, with each plane quantized and encoded separately to be
reconstructed by the decompression system later. Coefficients would be linearly quantized to 8
bits per coefficient. Though this will not provide entirely lossless compression of the texture
maps, the relatively small amount of quantization error should not greatly impact texture
reconstruction.

While the overall compressor system would determine an upper limit for required texture
detail as a result of the amount of screen area required by the models using the texture, the

compressor could further reduce the upper limit required. In some cases original source materials

55

Chapter III: Design

may have less detail than the maximum MIP map required by the bounding box. For example, if
the texture is a simple solid color, and the bounding box indicated that a 128x128 texture was
required, bandwidth would be wasted if all MIP map levels up to 128x128 were transmitted, when
only a single low level was actually required. To minimize the chances of this happening, a simple
test is performed. The texture is rendered out to the standard resolution of 256x256. Based on
the current maximum MIP map level (by default equal to the bounding box selected value or some
user maximum, whichever is less) the next texture is reconstructed to the current maximum from
the coefficients, and to one level less. Thus, if we have a current maximum of 128x128, we
reconstruct the texture at 128x128 and at 64x64. We would then take the smaller of these two
textures, and scale it up to the resolution of the higher level (doubling its resolution) using a
bilinear filter. The peak signal-to-noise ratio (PSNR) of these two images would be taken. If the
PSNR was above a given threshold, it would be known that the higher MIP map level is not
necessary and the maximum could be reduced by one level. This test would then be repeated until

it failed on the given texture.

3.7 Streaming Information

While the term streaming implies that the animation compressor would be directly
transmitting data over the Internet to a waiting decompression engine, this was never meant to be
the case. Instead, it was decided early on that animation sequences would be compressed into a
simple output file, which could then be transmitted to some client machine. Though other
protocols existed, the simple and straightforward method of allowing the information to be
streamed via HTTP, the basic protocol used for transmitting information from World Wide Web

browsers, would provide a simple general case of streaming technology. Though not necessarily

56

Chapter III: Design

the best protocol suited towards real time operation, using HTTP guarantees support by all World
Wide Web servers, requires no additional server-side modification, and provides natural
advantages such as guaranteed packet delivery and packet reordering. As well, since many
development environments have their own built in functions to accommodate streaming
information over HTTP, using HTTP would presumably reduce development time and allow
focus on the more complex issues of scene geometry.

Though basic methodologies for reduction of geometry had been determined, the specifics
of how to stream this information needed to be worked out. The fundamental problem was that
as stated previously, geometry had to be separated into chunks of information to be transmitted.
As well, the information being sent would consist of more than straightforward triangle
information, as there were texture maps to contend with, as well as defined parent child
relationships, scene viewing parameters, and motion paths for objects. Due to the variety of
information being transmitted and the need for information to be broken up to compensate for
limitations of time, a static structure to the stream would not be possible.

Instead, a command language was required. By using a command language to specify
scene information, this information could be output from the compressor in a freeform manner.
This would allow for the interleaving of the various types of information in order to break the
output using time stamps. The commands themselves would have to compact, in the form of
operational codes (opcodes) to reduce storage overhead for the instructions themselves. Thus,
each instruction would be assigned a simple short integer value to identify it. Following each
instruction would be a parameter list specific to the instruction. For example, the specification of
a parent-child relationship between two objects would always require the exact same amount of
information, as one would need to simply specify the parent and the child. Meanwhile, the

addition of a series of faces to an object, for example, would require a dynamic parameter list

57

Chapter III: Design

whose size was dependent on the number of triangles being added to the object.

Though one could potentially have any sized lists of certain geometry specific data types,
such as vertices and faces, being appended to an object, upper limits were placed on how large
these lists could be. These artificial limits, set in the compressor, were put in place to allow more
efficient operation by the decompressor as, by separating large lists of geometrical information
into smaller portions, commands could be more easily parsed, spreading out the command
processing overhead. As well, as the decompression buffer was to be small to improve cache
efficiency, it was believed that keeping commands limited to smaller blocks could speed up and
improve instruction processing.

While these commands would be necessary for describing an animation, not all information
required by the animation would need to be directly stated. Instead, unless otherwise specified,
some Information could be inferred through the command structure. For example, though each
object in a scene requires an identification code, and is referenced by object specific commands
through these same codes, the codes for each object never have to be directly specified. Instead,
when a new object is added to the scene its identification code is implied by the order in which it
was added to the scene. At the beginning of each animation being processed, a marker keeping
track of total object count is initialized. Whenever a new object is added to the scene, it is
assumed to have an identification code equal to the previous total number of objects. Hence, the
first object has an identification code of 0, the second has the identification code of 1, and so on.

Through similar assumptions, we assumed objects, unless otherwise specified, had default
scales of (1.0,1.0,1.0), were located at the world space origin, and were oriented looking down
the Z-axis. Similarly, objects were presumed not to move or change orientation unless otherwise
specified. While these examples are quite'straightforward, more complex examples of information

inferences are possible, such as the dynamic calculation of vertex normals if they weren't directly

58

Chapter II: Design

included in the data stream. These dynamic vertex normal values could be calculated by
averaging the face normals, which themselves are constructed by normalizing the cross product of
the edge vectors of any two sides of a triangle face, touching each particular vertex. While
dynamically generating normals should produce effective and accurate results it could produce
incorrect values for triangle faces making up the object borders due to the trimming of invisible

bordering faces.

3.8 Compressing Irrelevant and Redundant Information

While great effort had been made to eradicate all information not spectfically required
from the data stream to reduce its size, stream length could still be reduced further through
compression. As discussed in the background section, there is a variety of compression
techniques that could be applied depending on the type of information that was being compressed.
Compression used in this thesis was often two fold in nature - first the compression of individual
portions of relevant information through foreknowledge of valid data ranges, followed by a pass
over the entire constructed stream using a lossless compression technique.

For the first pass range based compression, the system would compress data by quantizing
a specific range using a given number of bits. For example, when transmitting quaternions it was
known that, as quaternions refer to specific positions along a hypersphere, all four of its
parameter values would range between -1.0 and 1.0. Thus, instead of transmitting an entire
floating point value for each quaternion parameter, four 16 bit values were transmitted, where
each 16 bit unsigned word represented values ranging between -1 and 1.

Similarly, when transmitting vertex coordinates for geometry, though coordinate values

could potentially be any valid floating point number, a valid range for a given object could still be

59

Chapter III: Design

determined by finding its axis aligned bounding box. Given that the bounding box for an object
would be transmitted upon the object being added to the stream (assuming that the use of 32 bit
packed floats had not been specified), its vertices could be located in 3D space by providing an
index of the range (0.0,1.0). This marker could then be encoded to different resolutions
depending on how many bits were specified by the user. It was decided that in addition to the 32
bit packed floats, three vertex encoding resolutions would be provided - 8 bits per component, 10
bits per component, and 16 bits per component. The 8 and 16 bit values were selected as they fall
on byte boundaries and therefore would be easier for a lossless compressor to correlate. The 10
bit value was selected because, as mentioned in the background, 10 bits should provide enough
resolution to encode a 3D model without significant (i.e. visible) data loss.

This general technique of range-coding floating point values was used throughout the
compressor. The rest of the specific cases used, which are numerous, are all outlined in Appendix
A, which details all the various opcodes.

Once the entire stream would be constructed, it would need to be compressed, as a second
pass. In order to compress it, a lossless compression technique that performed well but required
little processing overhead would be required. This restriction greatly limited the range of
techniques that could be used, as a technique with too high of an overhead would overwhelm the
decompression engine and slow (or possibly stall) the rendering of the animation sequence. More
complicated techniques like Huffman coding, which rely on large amounts of data manipulation,
or Arithmetic coding, which is computationally complex, would prove unsatisfactory.

Instead it was initially decided to utilize Limpel Zev Welsh (LZW) compression, as the
decompression process consists of table lookup operations in conjunction with dictionary
building. LZW is extremely computationally efficient, its only algorithmic limitations being the

need to refresh its dictionary to compensate for changing channel statistics and the memory

60

Chapter IIT: Design

overhead required to store the dictionary. Nonetheless the LZW algorithm is patented, and thus
must be licensed at cost in order to be used in an application. As paying for rights to the
technique was out of the question, its efficiency was moot, and focus shifted from LZW towards
other dictionary coding derivatives of LZ77.

After some evaluation, the Storer and Szymanski technique (LZSS) was eventually
decided upon. Though its compression performance was not as good as LZW and other more
complex techniques, LZSS had the advantage of being computationally simple if one limited the
use of heuristics. For example, if the deletion heuristic is not used, the decompression portion of
the algorithm is limited to table lookups into the sliding dictionary followed by overwriting old
dictionary information. This turns LZSS into an extremely simple algorithm from the
computational point of view, because all the overhead of searching into the dictionary to find
corresponding best string matches takes place in the compressor, when the overhead can be
afforded. If one instead uses the deletion heuristic, compression performance increases, but at
significant cost to the decompressor as it must now perform matching string lookups into the
dictionary. Unless extremely effective hashing functions are used, this can prove extremely
expensive as either linear searches into the dictionary must be performed or large structures must
be managed to keep track of dictionary ordering. For these reasons, LZSS was chosen, though

design called for it to be implemented without the use of the deletion heuristic.

3.9 Summary

The design of the applications required for the demonstration of the concepts presented in
this thesis was an involved process. It required the conception of a compressor and

‘decompressor, and how they could be flexible enough to allow for the dynamic construction of

61

Chapter III: Design

non-interactive sequences by the decompressor. We developed a method of determining how to
arrange scene elements and how to determine the order in which they needed to be arranged using
color selection.

With limitations of possible implementation and targeted hardware in mind, we decided to
utilize wavelets, specifically the Haar basis, for the compression and transmission of objects'
textures. By decomposing the original models' textures into wavelet coefficients, texture maps
could be transmitted in a multiresolution manner more desirable for the use with MIP maps, as
well as allowing these textures to be more easily compressed. The lossless compression required
by the system had to require as little processing overhead as possible, and thus the LZSS
algorithm was selected. Together all of these design considerations attempted to account for
implementation requirements and the limited processing time that would be available to the

decompressor.

62

Chapter IV: Implementation

Cuarter IV
IMPLEMENTATION

Once the design had been finalized and completed, decisions had to be made regarding
how one would go about implementing the design. Software platforms had to be selected, a
technique for compression had to be chosen, and the compressor and decompressor applications
had to be constructed. A variety of pitfalls forced several of the decisions that were made.

The software was written under Windows NT 4.0 using Microsoft Visual C++ 6.0. The
development platform was a Pentium II running at 400 MHz with 64 MB of RAM. The engines
were split such that the decompressor would operate as a stand alone application while the

compressor would be accessed as a plugin for 3D Studio Max Release 2.0.

4.1 The Decompression Engine

The decompressor application was written using the Microsoft Foundation Class (MFC)
framework. The MFC framework is a series of programming libraries that sit ontop of the
fundamental Win32 API (the core of current Microsoft Windows operating systems). By
encapsulating the original API in a structured, consistent and object oriented framework, MFC
enables programmers to simplify and accelerate the development process. As with the Win32
environment, MFC is largely an event driven system, where events fired by the operating system
trigger callback functions that retrieve and deal with these system events and messages.

While using MFC can slow down operation slightly, due to the processing overhead used
to simplify the architecture, it allows the rapid and easy development of interfaces. This was

extremely helpful for this project, as it allowed the quick construction of the application interface.

63

Chapter IV: Implementation

The MFC architecture also simplified the work needed to create a multithreaded application, as
the MFC architecture is based around a separation of data, and how this data is visualized. In the
MEFC paradigm, data and its manipulation takes place in a Document, while the data visualization
takes place in a View. A single document can possess multiple views, as one might choose a
variety of different ways in which to visualize some group of data. Under the Document/View
paradigm, the document and its views are separate entities, each running in their own threads.
The document reports to the views when they require updating, and the view provides a means
for user input into the document. As the MFC architecture is based around object orientation, all
of the Decompressor source code was written to take maximum advantage of the object oriented
programming model.

The Decompression required the ability to run multithreaded, as it had to allow for the
decompression and compilation of incoming data, while simultaneously displaying this information
to the user in the form of 3D animation. The MFC architecture naturally provided for these
requirements by placing the rendering portion of the code in the View, while placing the
streaming, decompression and database compilation code in the Document. The Document could
then indicate to its View when rendering would be allowed, and what portions of the database
could be rendered (to prevent mutual exclusion issues). The use of multithreading allowed the
issue of properly balancing the rendering process and the decompression process to be offloaded
onto the operating system.

Implementation of the Document attempted to abstract the entire file streaming process so
that it would be invisible to the View, and so that the animation database could be constructed as
time proceeded. Therefore, the Document contained a single property, an animation file. This
animation file (a C++ class CAnimationFile) was based upon an MFC library class called

CAsyncMonikerFile. The CAsyncMonikerFile class was provided by Microsoft with the

64

Chapter IV: Implementation

introduction of ActiveX, Microsoft's attempt at an Internet application model. The
CAsyncMonikerFile class allows one to treat a file existing on an HTTP server as though it was
simply a file on a local system. As this data was streamed using TCP/IP, data arrival was
guaranteed (assuming no lost or broken connections) and all packets were naturally ordered.
While TCP was not as efficient a solution as one could potentially achieve by designing a special
case UDP solution, using TCP enabled us to largely ignore the issues associated with transfer
protocols, and instead focus on the issues related to the data being streamed.

The CAsyncMonikerFile class had several additional advantages. If one used it to read a
file, one merely had to provide the class with the universal resource locator code (URL), and the
class would automatically fetch the file off the Internet. As the ActiveX subsystems of the
Windows platform operate through libraries provided with Microsoft's Internet Explorer,
CAsyncMonikerFile could take advantage of the browser's cache and retrieve the file from the
local cache if it was located therein. Furthermore, the CAsyncMonikerFile class, when used in
read mode, operated by trapping an event whenever data had arrived and was awaiting

processing. This caused the class to behave as an effective data buffer, storing multiple blocks of

i. An event is received stating that data is available for
decoding

ii. While there is data in the CAsyncMonikerFile buffer, do:

iii. Take blocks of a maximum size of 512 bytes from the buffer.

iv. If the file header has yet to be decoded:

read and evaluate the raw bytes provided to gather the
file's attributes.

V. Take the remainder of the block and perform a lossless
decompression on its contents, adding this new information to
secondary buffer AnimBuffer.

vi. Parse the contents of the AnimBuffer for command tokens.

vii. 1If we have received enough data through the file stream such
that the current connection speed should allow for continuous
streaming, let the View know that it should attempt to render
the database.

viii. If the CAsyncMonikerFile buffer is not empty, go to step iii
and repeat.

Fig. 4.1 The behavior of the data retrieval thread

65

Chapter IV: Implementation

data, to be processed when deemed convenient.

This CAsyncMonikerFile based animation file class contained an animation database (class
CAnimation). As data was received and parsed, as shown in Fig. 4.1, the animation database
would be filled in with further data describing the animation sequence to be displayed. As one
would not wish to begin animating until some set minimum of information had arrived and had
been added to the database, the Document would place the View in a standby mode. This
standby mode was indicated to the user through a simple message in the View stating that the
system was prebuffering the scene.

Determination of the minimum amount of required information of the scene was
determined using a two-fold process. The user could indicate the speed of the connection to the
Internet using the main application menu. Based on the selection, a preset handicap factor was
chosen. There were 5 handicap factors corresponding to the user selected connection rate - 28.8
kbps, 56 kbps, ISDN (64 kbps), ADSL (128 kbps) and T1 (1.5 Mbps). Handicap factors were set
equal to approximately 70% of the total potential speed of a given connection rate. For example,
for a 28.8 kbps connection, the handicap factor would have been set to 2500. Thus, for a 30
second animation sequence being downloaded over this same connection, the file would have to
be buffered except for the last 75,000 bytes. As the header contained the length of the
compressed file, the Decompressor would calculate the minimum number of bytes required such
that once that number of bytes had been retrieved, one could safely begin animating. This global
'safety’ factor would indicate that from the given point forward, assuming an average distribution
of animation data over the remaining animation frames, the decompressor would never need to
pause the playback due to lack of information.

Should this estimate prove incorrect, or should problems be encountered during the

streaming process due to network congestion, a fallback was provided. The animation stream

66

Chapter IV: Implementation

contained markers stating that it was safe to play the sequence until a given frame number. If this
marker was reached during playback, and this marker was not equal to the final frame of the
sequence, playback would pause until the next such marker had been retrieved and the 'safety
frame' had been updated to some frame number beyond the current frame.

As objects could be constructed over time, the View engine had to be able to compensate
for the dynamic state of its database. The simplest way to prevent mutual exclusion complications
was to append incoming data to the existing database - in the case of mutual exclusion
complications, one could always simply use the last known safe state of the database without
worrying about touching data that was currently in flux. Each 3D object, defined as the class
CVisualObject or a class inheriting its properties, was added to the database by first allocating the
memory required for all of the model's components. The CVisualObject class contained markers
for each of its properties defining how much of that particular data type had been appended to the
model's database entry. For example, each model has a variable named CurrentTotalVertices
that would contain the number of vertices that had already been added to the model. Every time a
block of new vertices was appended to the model, the CurrentTotalVertices value would be
updated to reflect the new vertex count. As these values would not be updated until after the
entire block had been appended, one need not worry that the rendering routines would overrun
the database, or attempt to operate on data values being actively modified. If the entire database
entry for a model was completed, a flag bcompleted would be marked, indicating that the model
could now be compiled to take advantage of extra capabilities available to the rendering engine.

The rendering engine found in the View adjusted its behavior for each model it attempted
to render. It evaluated whether or not the model had been completely specified by the database.
If a model bad yet to be completely filled in, the rendering engine operated more carefully,

rendering what had been made available in the database. If normal vectors had not been specified

67

Chapter IV: Implementation

Decompressor f = Decompressor

Progressive Real Time
3D Animation Engine

Written by J. Greenberg
in Association with TRLabs

& the U. of Manitoba ECE
Signal & Data Compression Lab

(@) (b)

Fig. 4.2 Sample screens from the decompressor application. (a) awaiting a
file to process (b) sequence playback paused

for the model, face normals were calculated on the fly based on the cross product of the face's
edge vectors (producing a flat shading effect). However once an object had been fully described,
if normal vectors had not been manually added to the model, normal vectors could be compiled
quite accurately for the model, a normally calculation intensive operation. Vertex normal vectors
were constructed by averaging the face normals for every face connected to each vertex.

The actual rendering performed by the View was performed using OpenGL version 1.1, as
specified in the thesis design. Using OpenGL allowed for the rendering of the models, complete
with the textures transmitted by the compression engine being mapped onto the proper polygons.
As OpenGL includes an advanced lighting model very similar to the general Phong model
described in the background, it was possible to reproduce lighting conditions in the original
source sequences similar to the lighting produced in 3D Studio Max. Though lighting information
was exported by the compressor, very little of the lighting portion of the project was completed

due to lack of information regarding the way the lighting parameters of 3D Studio Max were

68

Chapter IV: Implementation

meant to be used. A shortage of information as to the internal workings of 3D Studio Max in
regard to lighting as well as other factors made the implementation of the lighting portion of the
decompressor no longer a priority. Nevertheless a framework for lighting support was
implemented, and the decompressor would attempt to emulate the default two directional lights
3D Studio included in scenes that otherwise contained no lights.

When a user selected a file to decode, the decompressor connected to the given URL, and
attempted to download the file. Assuming it succeeded in linking to the file, data began streaming
over the channel. The first part of every file was always a simple header describing specific
information required to display and synchronize the sequence playback (see Appendix B for
further details). Along with information about timing was a 3 byte marker describing the target
resolution of the sequence. Once this information had been received the decompressor would
dynamically resize the application window so that the rendering window was equal in dimensions
to the target resolution. The application prevented a user from selectively resizing the window, as
the target resolution would determine the sampling resolution. If the sampling resolution was less
than double the final playback resolution, the original scene would have been under sampled and
this would result in missing polygons in the final scene.

Though it was easy to observe and visually confirm how rendering was performed in the
decompressor, checking the behaviour of the decompression processes themselves was more
difficult. To this end, diagnostic routines were added to the system to allow the tracking of the
decompression and to allow one to observe the contents and order of the various opcodes in a
given file. A logging window was available to the client that displayed a list of all previously
processed commands for the current file, and listed them in the order in which they arrived. The
diagnostic window allowed the quick determination of whether or not commands were being

processed correctly and whether or not the LZSS algorithm was operating as desired.

69

Chapter IV: Implementation

Finally, in addition to all of the basic functionality of decompressing the animation
sequence, an interface was added to allow users to control the sequence playback, consisting of
play, pause, and stop buttons, as well as a slider bar that indicates timing. When an animation
sequence began downloading, it signaled the View to begin animation playback. This signal
disabled the play button, and enabled the pause and stop buttons. As playback occured, the slider
bar was updated to indicate the current time index into the animation sequence. If the pause
button was hit, animation playback ceased, but the timing location into the sequence was retained.
Once the system was paused, the play button was enabled, and the pause and stop buttons were
disabled. If the play button was hit, playback resumed at the current timing location, as shown by
the slider bar. Should the stop button have been hit during playback, playback ceased, and the
animation sequence was reset to the opening frame. Since playback was merely based on the
current data in the animation database being built up, stopping or pausing the playback of the

sequence did not affect the streaming of the sequence.

4.2 Compression Engine

The compression engine went through several iterations before finally arriving at its
current state. The original idea for implementing the compression engine was to write it as a
utility script utilizing the MaxScript scripting language included with 3D Studio Max Release 2.0.
It was felt that MaxScript would provide us with the advantage of rapid development due to the
simplicity of the language, while only sacrificing a minor amount of runtime speed due to the
language being interpreted rather than compiled. Development began under MaxScript, but we
slowly realized that the memory and processing overhead required by the compressor simply

proved overwhelming to MaxScript. Attempting to compress any significantly complex scene

70

Chapter I'V: Implementation

with the MaxScript engine would cause 3D Studio Max to freeze up, become non-responsive and
cease to function correctly. It seemed that the color scanning used to determine polygon visibility
required increasingly larger and larger amounts of memory, as colors would be constantly
appended to an existing color list.

Thus, development had to be restarted utilizing the 3D Studio Max plug-in software
developer's kit (SDK). One advantage of 3D Studio Max's design is that the entire application is
build around a framework of plug-in functions. These plug-ins are created as dynamic link
libraries (DLLs) which are loaded at run-time by 3D Studio Max, and allow for the extension of
the application's functionality through third party additions. Almost every built in feature, from
the graphical user interface to the rendering engines themselves, can be supplemented or replaced
by user designed plug-ins.

This allows one to take advantage of the vast array of features and technologies previously
developed for 3D Studio Max, as well as native support for its content. Using an existing
application like 3D Studio Max for a base also prevented a great deal of "reinventing the wheel"
when building the compression engine, as code for much of the functionality required for the for
manipulation of data types and geometry already existed as library functions. Seeing as the
compression engine needed to take an existing sequence created in 3D Studio Max and convert it
into a streamable file, a file exporter plug-in was developed.

The exporter plugin, when actived by a user through the File menu in 3D Studio Max,
would provide a dialog box through which users could select a series of options as to how the
scene was to be compressed. Options accessible through the dialog included camera selection,
material quality, target resolution, animation subset and playback speed, how many bits should be
used to encode vertex components, enabling simple lighting, and the inclusion of normals (see

Figure 4.3).

71

Chapter IV: Implementation

Fig. 4.3 Compression engine user options dialog box

Due to difficulties in managing changes in the active camera, only a single camera could be
exported with a specific scene. Therefore, all scenes had to contain at least one camera for
export, and the camera to be used had to be selected in the available pull-down menu. This
camera's settings would be used during the visibility test to determine what ended up in the final
output. It should be noted that the compressor did not support the use of controllers for camera
attributes such as field of view or clipping planes. While field of view values set in 3D Studio
Max were retained and transmitted by the compression engine, as it was unknown how 3D Studio
Max utilizes the field of view value internally to determine the view frustum, frustum values are
not recreated correctly by the decompressor. It is currently recommended that camera attributes
and the scene's aperture width be left in their default settings to ensure correct rendering by the
decompressor.

Due to the switch from Maxscript to the native 3D Studio Max SDK, we had to start over

and considered reevaluating our approach to the problem of determining polygon visibility. Our

72

Chapter IV: Implementation

original approach called for using the built-in rendering engine of 3D Studio Max, as it was felt
that it was already highly optimized, accurate and would simplify our task of rendering the
polygons. As well, if the application were to be written in MaxScript, this would prove the most
practical approach as access to the rendering engine's functionality is built in, and the design of a
custom renderer to run under MaxScript would have proven quite slow and cumbersome.

Yet, the restrictions of MaxScript were no longer applicable, as the language had been
abandoned m favor of C/C++. Therefore we considered turning towards using OpenGL as a
rendering engine to accelerate the performance of the visibility determination. Implementation of
the new renderer began, and we constructed a system that used OpenGL to render the polygons
using colors to mark the polygons, as specified in the design. Unfortunately, it was discovered
that OpenGL does not guarantee that a color specified for a polygon face will be the color
rendered by the video hardware. On some video card drivers, colors would undergo gamma
correction, or other forms of color shift which would make our color scanning operations useless,
as they would not find the correct colors.

Consequently we abandoned the use of OpenGL for rendering the visibility determination
information, and instead, returned to our original approach of using the built-in rendering engine
included with 3D Studio Max. In order to render each frame required for visibility determination,
for every frame, all objects in the scene were sampled. From these sampled objects, a new object
was constructed duplicating all the polygonal data of the original objects except that all object
faces were colored to designate which face number they were, as well as which original object
they belonged to. Face colors were set through the 3D Studio Max vertex color material texture.
To scan for colors, this new duplicate object would be constructed for a given frame, all original
objects would be hidden and objects would be disabled, and then the frame would be rendered to

a bitmap. This bitmap would then be scanned pixel by pixel for color values, as the color values

73

Chapter IV: Implementation

would be used as lookup values to determine which faces and objects in the scene actually
appeared in the final bitmap.

It had originally been planned to develop the color scanning system using 24 bit color (the
red, green, and blue components, 8 bits each, appended together) to establish the lookup value -
the high 12 bits would refer to the object number while the lower 12 bits would refer to the face
number. These values would be added with 1 so that the color scanner could immediately ignore
any colors returned with value of 0. While at first glance, using 24 bits to define these ranges
seemed more than adequate, as 2'> (4096) appears to be a generous limitation given the
constraints of the real time rendering engine. However early testing revealed that this range could
prove inadequate in cases where the original objects being used in the scene were extremely
complex. While only small portions of these objects might appear in a scene, the object beyond
the view range of the virtual camera could still exceed the limit of 4096 triangle faces. As all of
the object's faces must be enumerated to correctly evaluate visibility, objects whose polygon count
exceeded the limit would cause problems to the system. The solution eventually selected for this
problem was to switch the 3D Studio Max rendering engine from rendering in 32 bit color, where
24 bits were used for color and the remaining 8 bits were used for an alpha channel, to rendering
in 64 bit color. As the alpha channel proved useless to the color scanner, the system now used a
48 bit range, which provided us with 24 bits for both objects and faces, and solved the problem of
inadequate ranges.

There was one remaining issue affected by the inadequate range problem for color
scanning. One shortcoming in the initial design of the model exporter was that it never accounted
for the use of smoothing groups in the definition of 3D objects. Smoothing groups are used in 3D
Studio Max to define continuous surfaces that share vertices and surface properties within a larger

model. These smoothing groups proved very important to the accurate representation of models,

74

Chapter IV: Implementation

as normal vectors for vertices are defined by the faces that share the vertex, but only those faces
within the given smoothing group. Accordingly each vertex could have multiple normal vectors,
one for each smoothing group that shares the vertex. A simple example of the need for
smoothing groups would be the case of attempting to model a cube (see Fig. 4.4). To correctly
model a cube, one requires three smoothing groups, one for each set of opposing sides. The
vertex normals of each smoothing group will be perpendicular to the particular side of the cube
that contains them. Thus, if one considers the corner vertices of the cube, each one will have
three different normal vectors corresponding to the three different smoothing groups that intersect
with it. Conversely, if we did not separate the cube into smoothing groups, each corner vertex's
normal vector would point along a diagonal away from all of the cube sides. While not
immediately apparent, the replacement of the three vertices with the single average value of the
three (which the single vertex represents) will cause obvious visual errors in how lighting effects
appear on the cube. Instead of appearing as several sides meeting at right angles to one another,

the cube will appear smoothed and thus the various sides of the cube will not appear distinct from

(a) (b)

Fig. 4.4 A comparison between using and not using smoothing groups to construct models
with separate distinct surfaces. Longer arrows show the face normals for each side
of the cube, while the shorter arrows represent the resulting vertex normal(s) for the
given vertex, represented by a blue dot. (a) incorrect lighting without smoothing
groups (b) correct lighting with smoothing groups.

75

Chapter IV: Implementation

one another.

As smoothing groups were initially overlooked in the system design, they had to be added
to the capabilities of the system after the fact. While considering several alternatives, it was
decided that any solution chosen would have to require a minimal number of changes to the
existing systems, induce a minimal information overhead to the system to specify the smoothing
groups, and require a minimal processing overhead of the decompressor. The final selection made
was to account for the smoothing groups by taking each original object and dividing it into several
new objects corresponding to each smoothing group. As 3D Studio Max allows for up to 32
smoothing groups per model, the capabilities of the color scanner had to account for 32 times
more objects. With the original 12 bit range for model enumeration, this was a problem, as the
effective upper range was reduced by 5 bits to 27, or only 128 total models, a number much too
low for practical use. The switch from the 32 bit rendering engine to the 64 bit rendering engine
for use in color scahning, as described earlier, solved this problem.

The solution of splitting the original objects by smoothing groups proved very effective, as
it required no additional support by the decompression engine. The splitting process consisted of
taking the original model as described by 3D Studio Max, and replacing it with new objects, all
belonging to a dummy parent object. This dummy parent object had no properties other than to
take on the original position and pivot of the source object, and to duplicate its motion
controllers. All the new objects that represented the source smoothing groups were child objects
of the dummy node, and duplicated its materials and their relative polygonal information. Thus,
all the smoothing groups operated as though they were components of the original object
seamlessly. As a result no new streaming instructions were created to reflect the new support for
smoothing groups, and no new functiona]ity had to be added to the decompression engine to

support smoothing groups.

76

Chapter IV: Implementation

At first glance it would seem that splitting an original object into up to 32 new objects
would induce a great deal of overhead. Yet, in most cases the overhead induced by the object
splitting was rather minimal, and in some cases, the new objects could require less storage than
the original. The reason for the additional overhead being so small is that very little duplicate
information would need to be reproduced between the various objects. The only information that
would always require duplication would be vertices shared by several smoothing groups, as each
new sub-object would require its own reference to the coordinates and possibly the colors of the
shared vertices. Face information, material information, and texture coordinates would naturally
be unique to each face regardless of the subdivision of the original object. Thus these factors
would not encumber the stream with additional information. As one would have to code the
smoothing group information in any case, and would have to do it in such a way as to minimize
decompression processing overhead, the expense of reproducing a small number of the source
object's vertices was not a great one.

Another significant improvement to the system realized through the inclusion of support
for smoothing groups was that materials should be separate and distinct from the objects that
utilize them. The original design called for each object to possibly have a texture map, and this
texture map to simply be part of that object - a design oversight. The design did not account for
more than one object in a scene having the same material. Though this flaw was not obvious at
first, it became so after the addition of support for smoothing groups, as under the original design
each portion of the subdivided source object would require its own texture map of the same
original material. This would have introduced a great deal of unnecessary redundancy. Instead, it
was decided that each material would be granted an identification tag. When objects were being
enumerated, each unique material was assigned one of these tags. Enumerated objects would

then reference a material tag, rather than the material itself. When a new object was being added

77

Chapter IV: Implementation

to the stream, that object's material tag would be checked to determine if the material had
previously been added to the stream. If it had not, a material identification number would be
assigned internally, the representative texture map would be constructed, and its lowest level
mipmap would be transmitted into the stream immediately. When other higher level mipmaps
were to be transmitted, they would be identified in the stream by the decompressor via the
compression engine's internal reference number. As these reference numbers were created by
assigning the previous total number of textures transmitted into the stream as a material identifier,
reference numbers were implied to the decompression engine simply through the order in which
the textures arrived. Accordingly, material identification codes were transmitted much in the
same manner as object identification codes were.

While material textures would be sent incrementally, ideally one would want to transmit
the fewest MIP map levels possible. Two different techniques were used attempt to reduce the
texture detail exported into the stream, in addition to the two-dimensional screen aligned
bounding box test. The simplest of the two was allowing the user to set the texture detail. The
option dialog had two sliders - a texture quality slider and a maximum MIP map slider. The
texture quality slider was used to let the user set the minimum allowable PSNR. When texture
MIP map levels were transmitted, all coefficients were included. Thus, to allow the texture to
compress more easily, low energy coefficients were zeroed out to make the textures more
compressible. The energy threshold was determined by iteratively approximating the threshold
against the texture coefficients and then comparing the resulting texture map with the original
texture. If the PSNR between the reconstructed texture and the original was above a user-set
minimum allowable PSNR the energy threshold would be incremented, whereas if it was below,
the energy threshold would be decremented. Once the energy threshold had been determined, any

coefficients in this texture whose absolute value was below the threshold would be converted to

18

Chapter IV: Implementation

zero. By the user lowering the allowable PSNR, more coefficients would be turned into Zeros,
making the texture more compressible at the cost of texture detail.

The second technique to reduce the texture detail transmitted was to apply the
reconstructed maximum needed MIP map with its next lower level, as described in the design
section of this thesis. When comparing the two reconstructed levels, PSNR was determined and
was compared against the user-set PSNR threshold. If the comparative PSNR was above the
threshold, the maximum MIP map resolution was reduced by a level and the procedure was
repeated until a failure was encountered. Both techniques were automatically applied and both
were affected by the user setting of the PSNR threshold.

In order to transmit textures, compound materials would need to be combined into a
single final texture image. This was accomplished by using the internal 3D Studio Max
production quality rendering engine and rendering the objects' material projected onto a fully lLit
square. This square was scaled to entirely fill the rendering space, such that the output from the
render would be an exact 256x256 version of the compound texture. As the texture was mapped
using basic two-dimensional mapping, some materials (for example, procedural or noise based
textures used to simulate marbling and similar structures) would not show up correctly. For such
problematic materials it was recommended that usérs use the built-in 3D Studio Max menu
command allowing them to render the material to a file, and use the resulting bitmap as the new
material.

In addition to transmitting information about how objects were meant to appear the
compression engine also had to provide the trajectories and paths of these objects. Motion
transmitted by the compression engine was transmitted using keyframing information provided
internally by 3D Studio Max to allow for accurate reconstruction by the decompression engine

during playback. Failure to accurately reproduce exact position and orientation information for

79

Chapter IV: Implementation

objects by the decompression engine was a much greater problem for this work than under other
animation systems. This was due to the polygon sampling done to determine visibility. While in
other animation systems (those evaluated in the background phase of the thesis) objects were
always fully defined such that they could be viewed from any position or orientation, though
possibly with little detail, models exported by this system could not. The information sent into the
stream was entirely view dependent, and required that the object's geometry be exactly recreated
in space. If orientation or position was incorrectly calculated, it would result in obvious visual
errors, such as portions of objects not appearing, or some objects not appearing at all.

Motion paths exported from 3D Studio Max had to be exactly reconstructed using the
keyframing parameters provided by 3D Studio. While this at first glance might appear simple, as
3D Studio seemed to provide keyframing information to interpolate values, the values provided in
the case of TCB and Bézier curves could not simply be plugged into the standard equations to
interpolate the correct curves. The values provided had to be processed by the either of the two
engines before they could be used in the equations described in the background section. Bézier
position values needed to be scaled to properly interpolate curves, as the tangent values provided
by 3D Studio Max were not the desired final values and would result in nearly straight-line paths.
The scaling factor required was to multiply the provided tangent values by the total number of
ticks (ticks were a measure of the time required per frame by 3D Studio Max; by default there are
160 ticks per frame) by the number of frames between the keyframes. Bézier tangents were
preprocessed in the compressor before being exported. The TCB curves did not include their
tangent values, and instead required that they be calculated by the decompressor upon the

keyframe having been received.

80

Chapter IV: Implementation

4.3 Summary

Implementation of this thesis required the development of two applications, a compressor
and a decompressor. After deciding that constructing the compressor using MaxScript would
prove impractical, the compressor was written as a 3D Studio Max Release 2.0 plug-in. The
decompressor was written as a standard MFC application utilizing OpenGL to perform the 3D
rendering and TCP/IP to stream remote sequences.

As is common with application development, some problems were overlooked in the
design phase and had to be compensated for in the final implementation. Smoothing groups,
which allow objects to be broken up into distinctly separate surfaces were not originally
accounted for in the design phase and had to be added to the system. In addition, a flexible
material referencing system had also been left out of the design and was created during
implementation.

Due to the lack of documentation as to the inner workings of 3D Studio Max, several
portions of the implementation, such as curve reproduction, were extremely difficult. The lack of
access to this information made the development of the lighting portion of the decompressor

impossible and thus it was never fully implemented in this thesis.

81

Chapter V: Experimentation

Cuarrer V
EXPERIMENTATION

5.1 Test Suite

One complication that arose in this thesis was that there was no preexisting test suite of
standard animation sequences to test our system against. No preexisting benchmarks existed for
the compression of 3D animation sequences. Thus, we had to construct a series of simple tests to
demonstrate the system using 3D Studio Max. Objects used in these sequences were of static
topology and varying complexity. Due to the great length of time required to compress
sequences, only a limited number of tests were conducted.

While this solved the immediate problem of the lack of a preexisting test suite, a further
issue existed. How were we to measure the performance of our animation system? As the new
animation system is meant to possibly replace the need for traditional video compression
techniques, the best solution might be to compare final file size against a standard video codec.
Nonetheless, this does not account for natural differences and inconsistencies between the two
techniques. Another approach might be to compare the size of the original 3D Studio Max file
with the compiled streamable file generated by the compression engine. Again, while providing
some insight into the relative performance of the compression system, equivalent systems are not
being compared. For most complex animation sequences, the compressed streamable output
should generally contain less data - but bitmaps accessed by Max materials are generally not
stored with the geometry, and thus must be accounted for separately.

One final obvious solution remains: to compare output produced by our compression

system to other transmittable geometry systems. Unfortunately, with the exception of VRML,

82

Chapter V: Experimentation

none of the commercial techniques for streaming animation provide free authofing tools. It is
possible to generate progressive mesh files using free tools included with the DirectX SDK
provided by Microsoft, but they do not account for animation, and merely focus on object
geometry. Thus we are limited to comparing against VRML 2.0 files. To provide a slightly more
fair comparison, file sizes are compared against a hybrid LZ77 compressed form (using GNU
Gzip) of the VRML file. While none of the comparative systems provide an exact relative
measure of the capabilities of our system, or properly equate how performance is affected by the
progressive nature of our system, they do provide a general idea of overall compression

performance.

5.2 Test Cases

When applying our compression system, each animation was compressed using the LZSS
technique. Measurements of file length were taken both before and after the LZSS technique had
been applied to demonstrate the capabilities of our LZSS implementation. Shannon's entropy of
the 0™ and 1% order were also taken of the precompressed files to demonstrate potential
compressibility and to again show the limitations of our use of LZSS.

Five basic test cases were constructed in 3D Studio Max, each demonstrating basic
capabilities of the compression engine and how it handles different scenarios. Tests were
designed to demonstrate different qualities that animated scenes might require. Included were
scenes in which different portions of models got revealed over time, scenes in which new models
were added to the visible scene over time, scenes in which models were connected through
hierarchies and inherited each others' transformations, and scenes utilizing both simple and

complex materials. The car and airplane models used were constructed by Viewpoint Labs.

83

Chapter V: Experimentation

Sludio NAX 2.

Fig. 5.1 Teapot scene in 3D Studio Max R2

5.2.1 Four Teapots

This sequence consists of four teapots flying and spinning around a static pyramid in a
rough counter clockwise circle. At the same time, a camera and its target spin around the scene in
a clockwise direction, giving the impression of greater speed. This scenario demonstrates objects
using Bézier position tracking and TCB rotation tracking, as well as the effect of solid colors
rather than materials. Each teapot contains 1024 faces and 530 vertices, while the pyramid

contains 8 faces and 6 vertices. The sequence is 200 frames long, at 30 frames per second.

84

Chapter V: Experimentation

Fig. 5.2 Dodge scene in 3D Studio Max R2

5.2.2 Dodge Flyby

This sequence displays a slow fly-around of an automobile. The car remains still in the
scene, while the camera flies around it, slowly showing off the entire car. This scenario provides a
direct demonstration of the progressive addition of scene information. Additionally, the scene
demonstrates the system's ability to handle non-bitmap based materials as all of the materials used
in constructing the car consist of simple internal materials. The automobile originally consisted of

16642 faces and 10644 vertices. The sequence is 500 frames long, at 30 frames per second.

85

Chapter V: Experimentation

Fig. 5.3 Teapot cutaway scene in 3D Studio Max R2

5.2.3 Teapot Cutaway

This sequence displays a teapot, with smaller teapot bodies inside. The initial teapot is
divided in half along its length, and opens along the seam to reveal another smaller teapot body
inside. This body is split and opened, again revealing another teapot body inside. This is split and
opened revealing a final teapot inside. The scene originally consisted of 7789 faces and 4350

vertices. The sequence is 410 frames long, running at 30 frames per second. The texture maps

used by the two materials have the resolutions of 320x200 and 320x240, where one was originally
JPEG compressed, while the other was GIF compressed.
This animation sequence demonstrates several features, including the use of texture maps,

and object cutaways. Object cutaways feature objects being opened up to further new objects

86

Chapter V: Experimentation

Fig. 5.4 Tori hierarchy scene in 3D Studio Max R2

inside, demonstrating the progressive addition of objects and information to the sequence.
Cutaways are often helpful in demonstrating the operation of machinery and are thus commonly

used to explain the operation of mechanical objects in teaching and training.

5.24 Tori Hierarchy

This sequence displays a series of tori all with a common centroid. In their center is a
teapot, and around them is a group of cones. The tori are arranged in a hierarchy, where the
outermost ring is the parent to its inner neighbor, which in turn is the parent of its inner ring. This
third ring is the parent of innermost ring. Though each of the rings has its own rotation
parameters, its absolute orientation is a function of the orientation of its parents. The teapot

remains static and is provided as a point of reference. The cones share a common mvisible parent

87

Chapter V: Experimentation

Fig. 5.5 Plane & Dodge scene in 3D Studio Max R2

node, and it is the parent rather that the cones themselves which rotate about the tori. The path
taken by the cones is a result of the revolution of this invisible parent node.

The tori hierarchy demonstrates the inheritance of transformations from one object to
another. The scene originally consisted of 5632 faces and 2842 vertices. The sequence is 100

frames long, at 30 frames per second.

5.2.5 Plane & Dodge

This sequence consists of the familiar automobile model and an airplane. The car is
parked on a gray slab. The plane flies by the car and the camera tracks the plane as it passes the

car. As the camera pans, the driver's side and underside of the Dodge never come into view. The

88

Chapter V: Experimentation

plane & automobile scene demonstrates the effectiveness of the removal of unseen polygons from
a sequence. Materials on both the car and plane are simple colored materials. The scene
originally consisted of 21631 faces and 14605 vertices. The sequence is 200 frames long, at 30

frames per second.

5.3 Summary

Due to the lack of an existing test suite, five simple scenes, displaying attributes common
to training and teaching demonstrations were constructed. These scenes contain a wide range of
qualities, including variations in material detail, and different degrees of geometric complexity.
They also demonstrate several common examples of the types of scenarios often seen in training

sequences, such as cutaways or flybys.

89

Chapter VI: Results and Discussion

Cuarter VI
REsuLTs AND DiscussioN

6.1 Experimental Suite

Results from the various experiments conducted are compiled by experiment, and
compared against the results from exporting the same scenes to the standard 3DS (originated with
3D Studio) file format, to VRML which has been compressed using GNU Gzip, and rendered by
3D Studio and compressed using MPEG-1. 3D Studio Max no longer directly uses the 3DS
format instead supporting a more flexible MAX' format. Still, the older 3DS format has been
around long enough to have become an industry standard, and now virtually every major
modeling package supports the importing or exporting of 3DS format scene descriptions.

For reference purposes, our new format is labeled as the PRT format, where PRT stands
for Progressive Real-time Transmission. Sequences are exported using the following settings -
high quality textures, a target resolution of 640x480, no normal vectors, and default lighting.
Textures were limited to a maximum resolution of 256x256, with a texture threshold setting of 30
Db. Entropy values provided are calculated based on the data sources before any form of
additional compression has been applied. In the case of PRT files, entropy calculations were
taken before the LZSS algorithm had been applied.

For comparison, VRML files were exported from 3D Studio Max using the built in
exporter plug-in with the following settings: four digits of floating point precision, indented
formatting, no normals are included, primitives are to be used, the polygon type was set to
triangle, and the transformation controller sampling rate was set to 10 Hz. It can be seen that for

comparative purposes, neither of the two transmittable 3D formats (VRML and PRT) were set to

90

Chapter VI: Results and Discussion

include normal vectors.

MPEG-1 compressed video is compressed based on frames rendered by 3D Studio Max to
a resolution of 320x240, at a frame rate of 29.97 frames per second, and at a bitrate of 1.7M bits
per second. Also provided for comparison is MPEG-1 compressed video from frames rendered to
640x480 with a bitrate of 6.8M bits per second.

Finally, limited testing was performed over a 28.8 kbps modem to confirm that the new
compression system does in fact work and allows the playback of sequences before the entire file

has been transferred. Typical connection rates tested were in the range of 28800 to 24000.

6.2 Experimental Results

From the experimental results (Tables 6.1 through 6.5) it can be seen that in all cases, for

the reasonably simple scenes being compressed, the polygonal formats clearly outperform the

Table 6.1 Comparative results on the teapot example.

Output File Vertex | File Length | Compression | Entropy | Entropy
Length | Error Rate | before Ratio 0" Order | I¥ Order
(bytes) (%) Compressio | (vs. 3DS) | (bits/Byte) | (bits/Byte)
n (bytes)

MPEG-1

(640x480) 5,795,841 NA | 185,248,768 NA 1.078 0.804

MPEG-1

(320x240) 1,445,889 NA| 46,317,568 NA 1.106 0.836

3D Studio (3DS) 91,420 0.00% NA 1:1 5.353 4,797

VRML (WRL.GZ) 41,560 0.00% 166,450 2.2:1 3.641 3.135

PRT - 8 bits per

vertex component 25,0111 0.377703% 28,884 3.66:1 6.648 5.730

PRT - 10 bits per

vertex component 27,219 0.098442% 30,525 3.36:1 6.683 5.927

PRT - 16 bits per

vertex component 28,544 0.001459% 35,277 3.20:1 6.907 5.769

PRT - 32 bits per

vertex component 42,511 0.00% 47.823 2.15:1 6.998 6.036

91

Chapter VI: Results and Discussion

Table 6.2 Comparative results on the dodge-flyby example.

Output File Vertex File Length |Compression| Entropy | Entropy
Length | Error Rate before Ratio 0" Order | I¥ Order
(bytes) (%) Compression | (vs. 3DS) |(bits/Byte) | (bits/Byte)
(bytes)

MPEG-1

(640x480) 14,401,537 NA| 461,735,936 NA 3.240 2.188

MPEG-1

(320x240) 3,608,577 NA| 115,444,736 NA 3.186 2.143

3D Studio (3DS) 368,661 0.00% NA 1:1 5.953 5.610

VRML (WRL.GZ) 149,728 0.00% 667,326 2.46:1 3.601 3.108

PRT - 8 bits per

vertex component 126,943 | 0.208319% 140,661 2.90:1 7.330 6.543

PRT - 10 bits per

vertex component 137,444 | 0.051496% 148,961 2.68:1 7.407 6.738

PRT - 16 bits per

vertex component 160,169 | 0.000821% 172,764 2.30:1 7.482 6.869

PRT - 32 bits per

vertex component 213,748 0.00% 235,218 1.72:1 7.531 6.779

video compressor. Video compressors, such as MPEG-1, perform best when large portions of a
scene remain static for long periods of time. Unfortunately, in flyby or cutaway scenarios, large
quantities of the visible scene tend to change shape as new portions of objects are revealed and
brought into view. While typically MPEG compressors do quite well, achieving a compression
rate of around 32:1 of the original rendered video frames, they still under perform all provided
examples of scene description compression. Though each of the provided examples is short in
running length, it should be noted that none of the scene description based techniques are
dependent on running time to determine final file length. Instead, video compression codecs are
subject to the scene description running time, as they attempt to compress individual keyframes as
well as inter-keyframe information. Increasing the running length requires the increasing of either
the number of keyframes, the amount of inter-keyframe information, or both. Thus it can be seen

that the size of video-compressed sequences is a direct function of their resolution (bitrate) and

92

Chapter VI: Results and Discussion

Table 6.3 Comparative results on the teapot cutaway example.
* Additional storage required for texture maps utilized by scene materials

Output File Vertex File Length |Compression| Entropy | Entropy
Length | Error Rate before Ratio 0" Order | 1% Order
(bytes) (%) Compression | (vs. 3DS) |(bits/Byte) | (bits/Byte)
(bytes)

MPEG-1
(640x480) 11,919,361 NA| 378,789,888 NA 3.466 2.789
MPEG-1
(320x%240) 2,959,361 NA| 94,706,688 NA 3.468 2.799
3D Studio (3DS) 210,465

+131,531* 0.00% NA 1:1 5.688 4.984
VRML (WRL.GZ) 84,681 370,434

+131,531* 0.00%| +131,531* 1.58:1 3.513 3.015
PRT - 8 bits per
vertex component 100,707 | 0.212224% 104,051 3.40:1 7.035 6.231
PRT - 10 bits per
vertex component 104,003 | 0.053415% 106,889 3.29:1 7.089 6.335
PRT - 16 bits per
vertex component 109,469 | 0.000782% 115,151 3.12:1 7.167 6.320
PRT - 32 bits per
vertex component 128,709 0.00% 136,991 2.66:1 7.195 6.326

length.

Though it can be seen from the various tables that at 10 bits per vertex component - the
ideal bit coding rate for vertices - we arrive af smaller files than those of compressed VRML, our
scheme does not appear to always perform a great deal better. Of the five experiments
performed, the file size using our scheme is on average 66% of the size of the equivalent
compressed VRML file.

While the PRT files are smaller, the lack of being dramatically smaller in the average case
can be explained through one chief factor, the LZSS compressor we employ does not do a very
good job compressing the signal when compared with more processor intensive techniques based

around LZ77 such as Zip, GZip, Arj, or even the LZSS technique using the deletion heuristic.

These other techniques provide much deeper search heuristics to identify redundancy, and make

93

Chapter VI: Results and Discussion

Table 6.4 Comparative results on the tori hierarchy example.

Output File Vertex File Length |Compression| Entropy | Entropy
Length | Error Rate before Ratio 0" Order | I¥ Order
(bytes) (%) Compression | (vs. 3DS) |(bits/Byte) | (bits/Byte
(bytes))
MPEG-1
(640x480) 2,914,305 NA| 93,086,208 NA 1.856 1.439
MPEG-1
(320x240) 731,137 NA| 23,275,008 NA 1.857 1.418
3D Studio (3DS) 117,091 0.00% NA 1:1 5.520 4.903
VRML (WRL.GZ) 37,370 0.00% 180,286 3.13:1 3.373 2.878
PRT - 8 bits per
vertex component 25,932 0.314385% 28,305 4.52:1 6.856 5.875
PRT - 10 bits per
vertex component 27.843| 0.082481% 30,140 4.21:1 6.999 6.059
PRT - 16 bits per
vertex component 30,463 | 0.001162% 35,478 3.84:1 7.009 5.858
PRT - 32 bits per
vertex component 44,075 0.00% 49,320 2.66:1 7.175 6.143

use of more complex structures to facilitate the further compression of the position/length pairs.
The great complexity of the data stream is primarily due to the data packing techniques used to
reduce the storage requirements of various data types. As the entropy values demonstrate, a very
large amount of natural redundancy in the information has been removed in order to shrink the
bandwidth requirements so only a limited amount of additional compression could be expected.
Yet, while entropy values are high, they still provide some room in which to further
compress the data. This is demonstrated by the O™ and 1* order entropies of the PRT files before
compression has been applied. Consider for example the tori hierarchy experiment - the average
zero order entropy value is 7.01, and the average first order entropy value is 5.98. This implies
that a compression system should be able to achieve at least around a 12% reduction in overall file
size (only accounting for the zero order redundancy). Yet, for the entire set of vertex bit coding

rates, the LZSS compressor only achieves a mere 10.2% average compression rate.

94

Chapter VI: Results and Discussion

Table 6.5 Comparative results on the Plane & Dodge example.

Output File Vertex File Length |Compression | Entropy | Entropy
Length | Error Rate before Ratio 0" Order | 1 Order
(bytes) (%) Compression | (vs. 3DS) |(bits/Byte) | (bits/Byte)
(bytes)

MPEG-1

(640x480) 5,761,025 NA| 185,248,768 NA 3.053 1.878

MPEG-1

(320x240) 1,449,985 NA| 46,317,568 NA 3.053 1.906

3D Studio (3DS) 620,206 0.00% NA 1:1 6.419 6.154

VRML (WRL.GZ) 206,924 0.00% 948,548 3.0:1 3.528 3.036

PRT - 8 bits per

vertex component 101,264 0.193178% 118,327 6.12:1 7.236 6.361

PRT - 10 bits per

vertex component 110,658 | 0.047624% 124,345 5.60:1 7.319 6.564

PRT - 16 bits per

vertex component 131,333 0.000759% 145,395 4.72:1 7.388 6.737

PRT - 32 bits per

vertex component 174,087 0.00% 198,225 3.56:1 7.476 6.616

Another simple test to determine the performance of a basic compression algorithm such
as LZSS is to examine the Shannon's entropy of the file after compression has been performed. If
the compressor has done a good job, the final entropy should be 8 bits/byte - that is to say the
file's statistics should resemble those of white noise. Instead, the average 0" order Shannon's
entropy of all the PRT files constructed was 7.89 and the average 1* order Shannon's entropy was
7.37. Though both numbers are hi;gh, they still suggest that there is some room for improvement.
In contrast, the GZip compressed VRML files have an average 0" order entropy of 7.98 and
average 1% order entropy of 7.47 - numbers that imply that a higher amount of correlation has
been removed from the VRML files. The greater performance of GZip over our LZSS
implementation can be demonstrated by compressing the PRT files (before LZSS has been

applied) using GZip. On average the Gzip compressed files are 85.7% smaller than the equivalent

LZSS compressed files. Together with the earlier example of the tori hierarchy, it is implied not

95

Chapter VI: Results and Discussion

only that the performance of the LZSS compressor is underwhelming, but that there exists room
to improve by using more effective techniques.

Still, for our purposes, greater rates of compression must be sacrificed to keep the
decompression overhead at a minimum. As VRML is entirely downloaded before it is
decompressed and parsed, it can allow for the greater decompression overhead required by GZip
as it does not impact performance and instead merely causes a minor delay before the start of
playback. In our scheme, decompression of the stream must be interleaved with the actual
processing and rendering of the scene itself. As the system was required to operate on today's
hardware and not merely under theoretical future constraints, the overhead allowed to the
decompressor was quite limited. When more processing time becomes available in the future,
through the common adoption of better consumer hardware, the compression scheme can simply
be replaced with a better performing technique.

While the compression performance of the system appears to have room for future
improvement, there are cases where our scheme clearly outperforms compressed VRML. If one
considers the case of the cutaway teapots, the compressed VRML file (with the included texture
maps) is clearly larger than our compressed sequence for every case. If one includes the
materials, the best case PRT file (at 10 bits per vertex component) is merely one third of the
combined VRML sequence. In all cases the 10 bits per vertex component case always
outperforms the equivalent compressed VRML sequences, and in all cases except the Dodge flyby
the 16 bits per vertex component sequences also had smaller final file sizes than their VRML
counterparts. Compressed VRML was clearly beaten in these cases, in spite of the relatively poor
performance of LZSS when compared to GZip.

In the case of the scene of the airplane flying by the stationary automobile, our scheme

greatly outperforms any of the other schemes. This is largely due to the large number of polygons

96

Chapter VI: Results and Discussion

culled from the scene. The final scene contains 10161 triangles versus the original 21632
triangles, and 9461 vertices versus the original 14605 vertices, a reduction in polygon count of
over 50% and a reduction in vertex count by 35%. Combined, these factors allow our final scene
description to be a mere 53.5% of the compressed VRML equivalent. This scene provides an
excellent example of how effective view dependent culling can be at removing information from
non-interactive scenes. By removing this extraneous information, the scene not only requires less
storage space but also requires less processing overhead for the decompression engine to render,
and thus can be rendered at a faster rate for smoother animation.

It should be acknowledged that view dependent culling can prove ineffective on objects
that are entirely revealed in a scene, such as the various tori in the tori hierarchy scene, and the
teapots in the teapot scene. As well, minor expansion can occasionally take place due to
smoothing groups, as previously explained, as some vertices must be reproduced when objects are
divided up. However, as the other scenes demonstrate, objects that are partially obscured through
a scene greatly benefit from those unseen faces being eliminated.

Though our new system outperforms VRML in terms of output file size, it has a minor

Table 6.6 Performance results from playback of PRT files on a Pentium II - 400
Mhz under Windows NT 4.0 with Service Pack 6 installed. Frame
rates for each scene were generated by averaging four playings of each
of the four sub-files.

Scene Name Playback Total Percentage of | Total Faces | Percentage
Average Vertices in Original in Final of Original
Frames per | Final Scene Vertices Scene Faces
Second
Teapot 134.36 2,131 99.77% 3,958 96.37%
Dodge 30.17 10,701 100.01% 13,603 81.17%
Teapot Cutaway 96.76 3,700 85.06% 5,948 76.36%
Tori Hierarchy 90.10 2,391 84.13% 4,370 77.59%
Plane & Dodge 34.42 9,461 65.78% 10,161 46.97%

97

Chapter VI: Results and Discussion

visualization artifact. In scenes exported with 8 or 10 bits per vertex component there can be
minor rendering anomalies along object seams. It should be noted that these anomalies take place
despite the average error per vertex being extremely low - our worst case example had an average
error rate below 0.4%. Though this vertex accuracy problem is not exhibited in individual
models, the lack of floating point precision in the 8 and 10 bits per vertex component scenes can
cause minor differences in vertex values between different models. These differences arise due to
vertex values being scaled to fit into a specific bit range, where the the front and tail of the range
are determined using the bounding box of the exported polygons of that object. As the bounding
boxes will be different for each individual object within a greater model, vertices in these varying
sub-objects will each have a different amount of accuracy to the original sub-object outline.
While these slight differences do not impact the appearance of a sub-object itself, they can cause

minor disturbances in the appearance of the seams between these sub-objects. These disturbances

Decompressot

Fig. 6.1 A rendering of the 10 bits per vertex component
version of the airplane & automobile scene
demonstrating artifacts from incorrect alignment
of sub-objects in a model.

98

Chapter VI: Results and Discussion

along the seams generally appear as individual pixels missing from the seam line (see Fig. 6.1).

There is a further artifact our system produces when downloading sequences. In scenes
that do not include normal vectors, normal vectors need to be interpolated. However, this
calculation can not be correctly performed until objects are fully specified. This calculation is also
performed in the same manner in VRML rendering systems. But, in our system we attempt to
render scenes before they are fully specified, and thus when normals are not included with the
scene. In such cases flat shading, the technique of using a constant face normal rather than 3
vertex normals to determine local per-face shadi‘ng, rather than Gouraud shading must be
performed on the scene until the calculations can be performed. This causes a temporary
reduction in render quality until the object is fully specified in the data stream. This problem can
be largely alleviated by dividing larger models into a series of sub-objects. As stated before, this
may cause some minor artifacting in 10 and 8 bits-per-vertex sequences.

Even if we ignore these artifacts, the rendering quality of the real time engines employed
by our system as well as those of VRML renderers is generally not as good as the rendered
images produced by the offline rendering engine used by 3D Studio Max. Whereas lighting is
performed per-vertex in the real time rendering engines, it is performed per-pixel in the 3D Studio
Max renderer. This has its greatest impact when lighting large surfaces that are not heavily
tessellated. In the per-vertex lighting systems, large surfaces with very little tessellation will
exhibit incorrect or missing specular highlights. This problem could be alleviated to a degree by
tessellating surfaces received by the decompressor to provide for finer lighting detail
Unfortunately the problem of shadows not appearing under the real time rendering engines is not
as easily dealt with - there is no current practical solution to the problem of arbitrarily oriented
objects casting shadows against one another in real time. Thus determination of shadowing

would need to be done as a preprocessing step during the compression phase of the system, and

99

Chapter VI. Results and Discussion

would thus in a best case scenario, add extra information into the compressed output.

Moreover, the offline rendered output makes use of full frame anti-aliasing. Anti-aliasing
is a technique employed in off-line rendering engines to improve visual quality by super sampling
each frame pixel. The simplest method to anti-alias a scene requires the sampling of sub-pixel
values at each of the four corners of the square frame pixel. These values are averaged to
produce the final destination pixel stored in the frame. As it requires quadrupling the rendering
fill-rate (the number of pixels that need to be drawn), full frame anti-aliasing is only now coming
into vogue in consumer real time rendering hardware with the introduction of the 3dfx VSA-100
chip. This new chip allows the automatic enabling of antialiasing for its rendering, allowing for
much more visually pleasing rendered output. It should also be noted that the addition of anti-
aliasing and its smoothing properties should generally remove the seam-line artifacts described
earlier.

Yet rendered frame quality must be sacrificed in order to keep processing loads to a
minimum, while achieving small final file sizes. Some of these higher order effects are simply not
currently practical given the state of today's 3D hardware. For example, it would be possible to
predetermine, during the compression phase, the shadowing performed by the scene lights and to
determine which objects are in shadow and how they shadow each other. These shadows could
be stored as texture maps and transmitted along with object descriptions. Unfortunately, this
would require additional storage (a shadow texture per object) and would only work for static
objects that never moved. General purpose shadowing is simply not practical as it requires too
great a processing overhead. Thus, as of yet, the determination of scene shadowing and likewise,
- scene reflection is not currently practical on consumer hardware. As stated earlier, render quality
of real time systems must be somewhat sacrificed, though in general these sacrifices are often

minimal. As our scenes are for training purposes, the lack of accurate (to offline rendering

100

Chapter VI: Results and Discussion

engines') lighting behaviour is not a critical flaw.

For the compression portion, the greatest problem with our new system is the time
required to perform the visibility testing. With the current implementation, our system requires
approximately 8-12 seconds per frame to rebuild an object database of medium complexity
(~5000-6000 triangles), perform a simple render, and scan the bitmap for polygon colors. Thus a
typical 5 second sequence requires the testing of 300 frames (we double the frame rate from 30 to
test against the CFF), or approximately 50 minutes of processing on a Pentium II-400 with 64MB
of RAM. Database construction is a memory intensive process and thus can generally run faster
on systems with more memory to work with.

As the object setup typically takes the greatest amount of time for more complex scenes
under our compression system, the system is not as heavily affected by either rendering or
scanning time. Database construction time could be reduced if the database were only
constructed once for the initial frame and the objects simply transformed afterwards. In the
meantime, the compression of a scene can take a great deal of time, as compression time becomes
relative to animation length, much as it is with more traditional video compression techniques.
But unlike traditional video compression techniques, our final output file size will not grow
significantly should an animation sequence be stretched out in time.

Instead, if equated with exporting to VRML and then performing lossless compression,
our system performs poorly when comparisons are based on time of construction. The entire
process of exporting to VRML and then applying GZip typically takes mere seconds regardless of
scene complexity.

Nevertheless our compression system has a natural advantage over VRML, since our
technique can begin animating before the entire scene has been received by the client machine. If

very low bandwidth channels, such as 28.8 kbps modems are used, this advantage is not as

101

Chapter VI: Results and Discussion

obvious, as only very small portions of the stream won't need to be cached. For example, for the
10 bit version of the Dodge experiment which is 16.7 seconds long, the first 95694 bytes of the
137444 total must be locally cached and processed before animation may begin. This may not
seem like a great deal of savings, but it means that the sequence could begin playback under our
system when less than two thirds of the equivalent GZip compressed VRML file had been

received.

6.3 Summary

Performance of our system is better than that of compressed VRML from the point of
view of required download time as well as final storage requirements. By reducing the amount of
informafion found in the scene, greater levels of compression are achieved. However, the
employed methods of reducing the amount of data required for transmission come at a cost - there
are some minor visualization artifacts present in current renderings.

It is believed that these visualization artifacts should be eliminated by future improvements
in rendering hardware. As well, the efficiency of the basic LZSS algorithm as a lossless
compression technique is questionable, and this allows room for future improvement in the

system.

102

Chapter VII: Conclusions and Recommendations

Cuaarrer VII
CoNcLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

Following the analysis of the results obtained from the experiments it is clear that the
newly introduced methodology of compressing 3D animation sequences produces smaller
resulting files than those of compressed VRML. In addition, these scenes can begin animating
earlier when downloaded over the Internet to client systems as the new system successfully breaks
the scene up temporally. The amount of the scene that must be buffered before animation begins
is scaled against the user-specified bandwidth, allowing the progressive transmission of sequences
on even very low bandwidth channels such as 28.8 kbps modems. By combining optimal scene
culling by the compressor in conjunction with the progressive construction at the decompressor, it
is possible to transmit only the absolute minimum amount of information from the original scene
database necessary in order to specify the sequence. This buildup of scene data over time allows
the informational content of the scene to be delivered in order and thus enable the rendering of
objects that have been received while new objects continue to arrive in the background.

As this work demonstrates, transmitting 3D animated sequences designed for use with
teaching and training applications, and thus containing objects of static topology, are better served
by utilizing an object oriented compression technique rather than the more traditional video
compressors. In addition to naturally smaller file sizes, transmitting geometry allows for increased
viewing resolutions and higher frame rates without additional storage costs. Yet the image
quality of such sequences is generally not as high at these same resolutions as that of offline

rendered sequences, as they have much greater time in which to perform more detailed lighting

103

Chapter VII: Conclusions and Recommendations

and post-processing effects.

Differing levels of content quality can be set in our system for the data stream by reducing
the resolution of vertex data exported, with a cost of larger file sizes for increased quality.
However reducing the precision of transmitted vertices too far can result in some unwanted
artifacts appearing along inter-object seams. As these artifacts appear when using the apparently
ideal coordinate quantization rate of 10 bits per component, we can conclude that this apparently
ideal rate only applies to smooth surfaces, and does not include multiple objects connected along
seam lines. Regardless, it is believed that a large number of these artifacts will naturally vanish
through the introduction of full-screen anti-aliasing support, which will be available in upcoming
consumer 3D hardware accelerators such as the 3dfx VSA-100, ATI Rage-6 and NVidia NV-20,
all of which are due within the next 6 months.

In addition to advancements in 3D hardware, continuing improvements in microprocessor
technology allow for the replacement of some of the techniques used in this system. As
demonstrated experimentally, the LZSS compressor utilized in this thesis performs its fundamental
purpose, but does so rather poorly when compared to other more computationally intensive
techniques. Nonetheless, the system still outperforms all tested examples of 3D animation
compression. While there remains room for improvement of some of the techniques presented in
this thesis as discussed below, this work has been demonstrated experimentally to outperform
existing systems in the compression and decompression of 3D animated sequences containing

objects with static topologies.

104

Chapter VII: Conclusions and Recommendations

7.2 Recommendations

There are several recommendations on how the work in this thesis could be furthered and
improved in future work. The first class of recommendations seek to take advantage of the
growth in processor capability since the beginning of this thesis. Consumer targetted processor
speeds are currently more than twice as powerful as they were when we began this work (as of
this writing 1 GHz AMD Athlon processors are now available), and thus there is now room for
the introduction of more complex algorithms. The first and most obvious expansion that could be
introduced is to consider more powerful lossless compression techniques over the current simple
LZSS implementation in use. Even an adaptation of the unused deletion heuristic should improve
performance.

The next recommendation in this class is to consider using more complex wavelet bases
for the compression of the texture maps. A variety of wavelet functions of intermediate
complexity have been heavily examined in the research community, such as the Daubechies and
Cioflet families. While even the lower order Daubechies and Cioflet bases are a great deal more
computationally complex than the simple Haar basis (the simplest of all wavelets), Haar is
generally a poor performer compared to other wavelet bases [ViBL95] used for image
compression.

The next class of recommendations is to expand on this thesis work by improving
performance. For example, it would be worthwhile to investigate at what exact bit rate the pixel
artifacts begin to appear. If it is due to a specific error threshold, it should be more effective to
simply have the compression engine choose the lowest bit rate that will remain above the given
threshold. In any case, it would be better to simply automatically select the best candidate bit rate

rather than allow the user to choose the bit rate, as is currently possible.

105

Chapter VII: Conclusions and Recommendations

Another more complex idea worth pursuing is to examine if it is possible to efficiently
combine progressive meshes with our existing system by compensating for the growing object
boundaries. This could allow for even better compression ratios as selective quality could be
enhanced or reduced along varying portions of objects. Thus objects far from the virtual camera
could be sent less detailed information without seriously affecting what the viewer sees.
Progressive meshes could be further enhanced by combining them together with subdivision
surfaces. Subdivision surfaces are a recent technology that allows the refinement of polygonal
meshes to synthesize additional detail [ZSSw96]. It might be practical to dedicate some of the
soon to be available additional processing capabilities towards treating the meshes as subdivision
surfaces. This could allow for smoother, more realistic looking, and finer detailed models without
requiring additional information added to the data stream. It could even allow for reduction of
the data stream in cases where it is known that the subdivision would introduce the required
detail. Thus, the integration of both progressive mesh and subdivision surface technology should
be able both to reduce greatly the needed bandwidth as well as improve rendered image quality.

One final area worth pursuing would be the integration of orthogonal illumination maps
[TCRSO00] to fake the appearance of greater polygonal detail in models with low triangle counts.
These textures are bump-mapped (bump mapping involves perturbing surface normals to provide
the illusion of greater surface-light interaction) onto existing objects to produce detail that would
normally be impossible without the addition of many orders of magnitude greater geometry detail.

Orthogonal illumination maps allow per-pixel lighting rather than the normal per-vertex
lighting allowed in real time engines. This is accomplished through a six-pass rendering scheme
which renders precalculated axis aligned normal maps (texture maps whose values represent
normals rather than colors) that have been adjusted against the given light sources onto the target

objects. Such normal maps are stored using palettized textures, which could provide for even

106

Chapter VII: Conclusions and Recommendations

greater compression rates. These special texture maps could be integrated into the existing
texture transport system, and could allow for the addition of very high detail at minimal cost, in
terms of both bandwidth and decompression overhead. The only major flaw in this scheme is that
it requires a great deal of fill rate from the 3D accelerator. Yet, just as the upcoming generation
of 3D hardware accelerators should solve the issue of anti-aliasing, it will provide the fill rate and
support necessary for hardware bump-mapping. As with subdivision surfaces and progressive
meshes, there remains a lot of room in which to experiment with additions and improvements to

the existing system.

7.3 Contributions

This thesis contributes to science and technology by:

« introducing a novel approach to geometry compression;

o demonstrating the power and legitimacy of accurate geometry culling in non-interactive
scenarios enabling 3D content to be efficiently transmitted to viewers;

» demonstrating a novel approach to the progressive transmission of triangular meshes;

« demonstrating the practicality of utilizing wavelets to reconstruct MIP map levels for
progressive transmission of texture maps; and

o providing Mecca Media Group with a superior compression scheme and a practical
alternative to using video compression to transmit animation sequences for use in teaching

and training.

107

[Auto95]
[CoWa93]
[CaBM97]

[DaKi99]

[E1Va98]

[Ever99]

[Ever00]

[FDFH87]

[Fosn96]
[Glas95]

[GHIS98]

[Guéz99]

[Heck97]

References

REFERENCES

Autodesk Technical Support, "How to calculate KXP spline derivatives"”, 1995,
http://www.autodesk.convsupport/techdocs/fax700/fax746.htm

Andrew S. Glassner, Radiosity and Realistic Image Synthesis, Cambridge,
Academic Press Inc., 1993, 381 pp.

Rikk Carey, Gavin Bell, Chris Marrin, Virtual Reality Modeling Language
(VRML97), VRML Consortium Inc., 1997, 236 pp.

Richard Danserau, Witold Kinsner, "Rényi generalized entropy analysis of images
from a progressive wavelet transmission," Proceedings of the Canadian Conference
on Electrical and Computer Engineering (CCECE99 Edmonton), May 1999.

Jihad El-Sana, Amitabh Varshney, "Topology simplification for polygonal virtual
environments," IEEE Transactions on Visualization and Computer Graphics, Vol. 4,
No. 2, 1998, pp. 133-144.

Cass Everitt, "Orthogonal illumination maps," Prepared for OpenGL.org, August
1999, http://www.opengl.org/News/Special/oim/Orth.html

Cass Everitt, High Quality Hardware Accelerated Per-Pixel Illumination, draft,
Master's thesis, Department of Computer Science, Mississippi State University,
2000, 25 pp.

James D. Foley, Andries van Dam, Steven K. Feiner, John F. Hughes, Computer
Graphics — Principles and Practice, Reading, Addison-Wesley Publishing
Company, 1987, 1174 pp.

Ron Fosner, OpenGL Programming for Windows 95 and Windows NT, Reading,
Addison-Wesley Publishing Company, 1996, 259 pp.

Andrew S. Glassner, Principles of Digital Image Synthesis, San Francisco, Morgan
Kaufmann Publishers Inc., 1995, 1206 pp.

Tran Gieng, Bernd Hamann, Kenneth Joy, Gregory Schussman, and Isaac Trotts,
"Constructing hierarchies for triangular meshes", IEEE Transactions on

Visualization and Computer Graphics, Vol. 4, No. 2, 1998, pp. 145-160.

André Guéziec, "Locally toleranced surface simplification”, IEEE Transactions on
Visualization and Computer Graphics, Vol. 5, No. 2, 1999, pp. 163-189.

Chris Hecker, “Physics part 4: The third dimension”, Game Developer Magazine,

108

[Hil190]

[HDDM93]

[Hopp96]

[Kins91]

[Kins94]

[Kins99]

[Kins00]

[MJES99]

[MPEG4a]

[MPEG4b]

[MPEG4c]

[MPEG4d]

References

June 1997, pp. 15-26.

F. S. Hill, Jr., Computer Graphics, Englewood Cliffs, Prentice-Hall Inc., 1990, 754
pp-

Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, Werner Steutzle,
"Mesh optimization", SIGGRAPH 1993 Proceedings, 1993, pp. 19-26.

Hugues Hoppe, "Progressive meshes", SIGGRAPH 1996 Proceedings, 1996, pp.
99-108.

Witold Kinsner, "Review of data compression methods including Shannon-Fao,
Huffman, arithmetic, Storer, Lempel-Ziv-Welch, fractal, neural networks, and
wavelet algorithms," Technical Report, DEL91-1, Department of Electrical &
Computer Engineering, University of Manitoba, Winnipeg, 1991, 157 pp.

Witold Kinsner, "Fractal dimensions: Morphological, entropy, spectra, and variance
classes," Technical Report, DEL94-4, Department of Electrical & Computer
Engineering, University of Manitoba, Winnipeg, 1994, 146 pp.

Witold Kinsner, Fractal & Chaos Engineering. Lecture Notes; Department of
Electrical & Computer Engineering, University of Manitoba, Winnipeg, 1999.

Witold Kinsner, Signal & Data Compression. Lecture Notes; Department of
Electrical & Computer Engineering, University of Manitoba, Winnipeg, 2000, 617

Pp.

Bongki Moon, H.V. Jagadish, Christos Faloutsos, Joel Saltz, "Analysis of the
clustering properties of the Hilbert space-filling curve", To appear in IEEE
Transactions on Knowledge and Data Engineering, submitted August 1999, 25 pp.

Requirements group, "MPEG-4 applications", International Organisation for
Standardisation - Coding of Moving Pictures and Audio Committee, March 1999,

60 pp.

Requirements group, "MPEG-4 requirements, version 13", International
Organisation for Standardisation - Coding of Moving Pictures and Audio
Committee, December 1999, 30 pp.

Systems group, "Multi-users technology"”, International Organisation for
Standardisation - Coding of Moving Pictures and Audio Committee, December
1999, 5 pp.

"Call for proposals for an MPEG-4 texual format", International Organisation for
Standardisation - Coding of Moving Pictures and Audio Committee, December
1999, 14 pp.

109

References

[OpWY83] Alan Oppenheim, Alan Willsky, Ian Young, Signals and Systems, New Jersey,

[PeJS92]

[Ross99]

[Sayo96]

[Stor88]

[TCRS00]

[ViIBL95]

[WaWa92]

[Whit92]

[WNDa97]

[ZSSw96]

- Prentice-Hall Inc., 1983, 796 pp.

Heinz-Otto Peitgen, Hartmut Jurgens, and Dietmar Saupe, Chaos and Fractals -
New Frontiers of Science, New York, Springer-Verlag, 1992, 984 pp.

Jarek Rossignac, "Edgebreaker: Connectivity compression for triangle meshes",
IEEE Transactions on Visualization and Computer Graphics, Vol. 5, No. 1, 1999,
pp. 47-61.

Khalid Sayood, Introduction to Data Compression, San Francisco, Morgan
Kaufmann Publishers Inc., 1996, 475 pp.

James A. Storer, Data Compression: Methods and Thoery, Rockville, Computer
Science Press Inc., 1988, 406 pp.

M. Tarini, P. Cignoni, C. Rocchini, and R. Scopigno, "Real time, accurate, multi-
featured rendering of bump mapped surfaces", Eurographics, Vol. 19, No. 3, 2000,

12 pp.

John D. Villasenor, Benjamin Belzer, and Judy Liao, "Wavelet filter evaluation for
image compression," IEEE Transactions on Image Processing, Vol. 2, August 1995,
pp 1053-1060.

Alan Watt, Mark Watt, Advanced Animation and Rendering Techniques — Theory
and Practice, New York, ACM Press, 1992, 455 pp.

Scott Whitman, Multiprocessor Methods for Computer Graphics Rendering, Jones
and Bartlett Publishers, 1992, 218 pp.

Mason Woo, Jackie Neider, Tom Davis. OpenGL Programming Guide: The
Official Guide to Learning OpenGL, Version 1.1, 2™ edition, Addison-Wesley
Publishing Company, 1997, 650 pp.

Denis Zorin, Peter Schroder, Wim Sweldens, "Interpolating subdivision for meshes
of arbitrary topology"”, SIGGRAPH 1996 Proceedings, 1996, 20 pp.

110

Appendix A: OpCode Listing

APPENDIX A
OrCobEg LISTING

Each OpCode is listed along with a brief explanation, the opcode's numeric equivalent and
the instruction's list of arguments. To simplify the description of the various opcodes argument
lists, arguments are listed as "type_name", where type provides a reference to the data type used
to store the value, and name gives a name reference for the specific ordered value. Types are

italicized to ease reading.

Name: OPCODE_COMPLETETOFRAME Value: 1

Arguments: Byte_FO Byte_F1 Byte F2

Comments: The 3 bytes represent the successive bytes in a 24 bit unsigned frame number. This
opcode updates the ReadyTil1Frame marker to the specified frame number.

Name: OPCODE_ADDVERTS Value: 2

Arguments: Short_Which Shorz_Total DataBlock_VertexValues

Comments: This opcode appends a list of vertices to an object. The first short value specifies
which object reference number the vertices should be appended to. This object
must already exist in the animation database. The second short value provides the
total number of vertices that are listed in the data block that follows.
The size of the data block varies due to the size of each vertex component and the
number of vertices in the list. Vertex data size is specified in the header for the
file. Total size of the data block should be equal to the number of bit per vertex
component * 3 * Total number of vertices / 8, rounded up to the nearest integer
value.

Name: OPCODE_ADDNORMS Value: 3

Arguments: Short_Which Short_Total DataBlock_NormValues

Comments: This opcode appends a list of normal vectors to an object. The first short value
specifies which object reference number the normals should be appended to. This
object must already exist in the animation database. The second short value
provides the total number of normals that are listed in the data block that follows.
The size of the data block depends on the setting of bCompressedNormals
(specified in the header). If compressed normals are being used, the datablock size
is equal to the total number of normals * 3. If uncompressed normals are being
used, the datablock size is equal to the total number of normals * 6.
Uncompressed normals range between -1.0 and 1.0, and are scaled 16 bit values.

Appendix A: OpCode Listing

Name: OPCODE_ADDFACES Value: 4

Arguments: Short_Which Short_Total DataBlock_FaceValues

Comments: This opcode appends a list of face references to an object. The first short value
specifies which object reference number the faces should be appended to. This
object must already exist in the animation database. The second short value
provides the total number of faces that are listed in the data block that follows.
The data block is a series of shorts, where the total number of shorts is equal to
the total number of faces in the list * 3.

Name: OPCODE_ADDTEXCOORDS Value: 5

Arguments: Short_Which Short_Total DataBlock_TexCoordValues

Comments: This opcode appends a list of texture coordinates references to an object. The first
short value specifies which object reference number the coordinates should be
appended to. This object must already exist in the animation database. The
second short value provides the total number of coordinates that are listed in the
data block that follows.
Each vertex coordinate is packed into a 24 bit word, with the U value occupying
the top 12 bits, and the V value occupying the bottom 12 bits. These bit values
represent numbers ranging between -8.0 and +8.0. Thus the size of the data block
is equal to the total number in the list * 3.

Name: OPCODE_ADDVERTCOLORS Value: 6

Arguments: Short_Which Short_Total DataBlock_ColorValues

Comments: This opcode appends a list of vertex colors to an object. The first short value
specifies which object reference number the coordinates should be appended to.
This object must already exist in the animation database. The second short value
provides the total number of colors that are listed in the data block that follows.
Colors are represented as 16 bit color values with the original red and blue values
divided by 8 and the green value divided by 4. The size of the data block is equal
to the number of colors in the list * 2.

Name: OPCODE_ASSIGNOBJECT_SOLIDCOLOR Value: 12

Arguments: Short Which Word_ColorValue

Comments: This opcode assigns a solid color to an entire model, instead of the model owning
a texture or possessing per-vertex coloring. The first short value specifies which
object reference number the coordinates should be appended to. This object must
already exist in the animation database. Colors are represented as 16 bit color
values with the original red and blue values divided by 8 and the green value
divided by 4.

Name: OPCODE_ADDOBIECT Value: 24

Arguments: Short_TotalVertices Short_TotalFaces <Float_ MinCoord> <Float_MaxCoord>

Comments: This opcode creates a new object in the animation database, and assigns this new
object a reference number equal to the number of previously existing models in the
database. The object is assigned total vertex and face counts based on the
arguments specified. If the bits-per-vertex value specified in the file header was

A-2

Appendix A: OpCode Listing

not 32, there follows two 3D coordinate values that define a bounding box for the
model. All new vertices added to the list, again assuming the bits-per-vertex value
was not 32, are scaled against the bounding box values.

Name: OPCODE_SETPARENTCHILD Value: 28

Arguments: Short_Child Short_Parent

Comments: This opcode defines a parent-child relationship between two existing models in the
database. This is accomplished by assigning the parent to the child node, as each
node can have a single parent, but multiple children. Both the child and parent
models must already exist in the database.

Name: OPCODE_KEYFRAME_TCBPOS Value: 32

Arguments: Short_Which Byte_TimeO Byte_Timel Byte _Time2 Byte_Time3 Float PosX
Float_PosY Float PosZ Word_Tension = Word_Continuity =~ Word_Bias
Word_Easeln Word_EaseOut

Comments: This opcode defines a TCB position keyframe for an object - in conjunction with
several other TCB keyframes an object can be meant to travel through space. The
object must already exist in the database. Time values are stored as total number
of ticks into the animation the keyframe takes place at. Keyframes times are
signed, as they are allowed to exist before the 0-frame.

Name: OPCODE_KEYFRAME_LINPOS Value: 33

Arguments: Short_Which Byte TimeO Byte_Timel Byte Time2 Byte_Time3 Float PosX
Float PosY Float_PosZ,

Comments: This opcode defines a linear position interpolation keyframe for an object - in
conjunction with another linear position interpolation keyframe an object can be
meant to travel through space. The object must already exist in the database.
Time values are stored as total number of ticks into the animation the keyframe
takes place at. Keyframes times are signed, as they are allowed to exist before the
O-frame.

Name: OPCODE_KEYFRAME BEZPOS Value: 34

Arguments: Short_Which Byte_TimeO Byte_Timel Byte_Time2 Byte_Time3 Float PosX
Float_PosY Float PosZ Float InTanX Float _InTanY Float InTanZ
Floar_OutTanX Float_OutTanY Float OutTanZ

Comments: This opcode defines a Bezier position interpolation keyframe for an object - in
conjunction with another Bezier position interpolating keyframe an object can be
meant to travel through space. The object must already exist in the database.
Time values are stored as total number of ticks into the animation the keyframe
takes place at. Keyframes times are signed, as they are allowed to exist before the
O-frame.

Name: OPCODE_KEYFRAME_TCBROT Value: 35

Arguments: Short_Which Byte_TimeO Byre_Timel Byte_Time2 Byte Time3 Float_Angle
Word_AxisX Word_AxisY Word_AxisZ Word_Tension Word_Continuity
Word_Bias Word_Easeln Word_EaseOut

A-3

Comments:

Appendix A: OpCode Listing

This opcode defines a TCB rotation keyframe for an object - in conjunction with
several other TCB keyframes an object can be meant to reorient itself over time.
The rotation performed by a TCB rotation is a relative rotation. The object must
already exist in the database. Time values are stored as total number of ticks into
the animation the keyframe takes place at. Keyframes times are signed, as they are
allowed to exist before the O-frame.

Name: OPCODE_KEYFRAME_LINROT Value: 36

Arguments:

Comments:

Short_Which Byte_TimeQ Byte_Timel Byte_Time2 Byte_Time3 Word_QuatX
Word_QuatY Word_QuatZ Word_QuatW

This opcode defines a linear rotation keyframe for an object - in conjunction with
another linear keyframes an object can be meant to reorient itself over time. The
rotation performed by a linear rotation is an absolute rotation. The object must
already exist in the database. Time values are stored as total number of ticks into
the animation the keyframe takes place at. Keyframes times are signed, as they are
allowed to exist before the O-frame.

Name: OPCODE_KEYFRAME_TCBSCL Value: 38

Arguments:

Comments:

Short_Which Byte_Time0 Byte_Timel Byte_Time2 Byte_Time3 Float ScaleX
Float_ScaleY Float_ScaleZ Word_Tension Word_Continuity Word_Bias
Word_Easeln Word_EaseOut

This opcode defines a TCB scale keyframe for an object - in conjunction with
several other TCB keyframes an object can be meant to change scale over time.
The object must already exist in the database. Time values are stored as total
number of ticks into the animation the keyframe takes place at. Keyframes times
are signed, as they are allowed to exist before the O-frame.

Name: OPCODE_KEYFRAME_LINSCL Value: 39

Arguments:

Comments:

Short_Which Byte_TimeO Byte_Timel Byte Time2 Byte_Time3 Floar ScaleX
Floatr ScaleY Float ScaleZ

This opcode defines a linear scale interpolation keyframe for an object - in
conjunction with another linear scale interpolation keyframe an object can be
meant to change scale over time. The object must already exist in the database.
Time values are stored as total number of ticks into the animation the keyframe
takes place at. Keyframes times are signed, as they are allowed to exist before the
O-frame.

Name: OPCODE_KEYFRAME_BEZSCL Value: 40

Arguments:

Comments:

Short_Which Byfte_Time0 Byte_Timel Byte_Time2 Byte_Time3 Float ScaleX
Float ScaleY Floar_ScaleZ Float_InTanX Float_InTanY Float_InTanZ
Float_OutTanX Floar_OutTanY Float_OutTanZ

This opcode defines a Bezier scale interpolation keyframe for an object - in
conjunction with another Bezier scale interpolating keyframe an object can be
meant to change scale over time. The object must already exist in the database.
Time values are stored as total number of ticks into the animation the keyframe
takes place at. Keyframes times are signed, as they are allowed to exist before the
O-frame.

A4

Appendix A: OpCode Listing

Name: OPCODE_CAMERA_KEYFRAME_TCBPOS Value: 51

Arguments: Byfe_TimeO Byte_Timel Byte_Time2 Byte Time3 Float PosX Float PosY
Float_PosZ Word_Tension Word_Continuity =~ Word_Bias Word_Easeln
Word_EaseOut

Comments: This opcode defines a TCB position keyframe for the camera - in conjunction with
several other TCB keyframes the camera can be meant to travel through space.
Time values are stored as total number of ticks into the animation the keyframe
takes place at. Keyframes times are signed, as they are allowed to exist before the

O-frame.

Name: OPCODE_CAMERA_KEYFRAME_LINPOS Value: 52

Arguments: Byte_Time0 Byte_Timel Byte_Time2 Byte_Time3 Float PosX Float PosY
Float PosZ

Comments: This opcode defines a linear position interpolation keyframe for the camera - in
conjunction with another linear position interpolation keyframe the camera can be
meant to travel through space. Time values are stored as total number of ticks into
the animation the keyframe takes place at. Keyframes times are signed, as they are
allowed to exist before the O-frame.

Name: OPCODE_CAMERA_KEYFRAME_BEZPOS Value: 53

Arguments: Byte_Time0 Byte_Timel Byte_Time2 Byte_Time3 Float PosX Float PosY
Float_PosZ Float InTanX Float InTanY Float InTanZ Float_OutTanX
Floar_OutTanY Floatr_OutTanZ

Comments: This opcode defines a Bezier position interpolation keyframe for the camera - in
conjunction with another Bezier position interpolating keyframe the camera can be
meant to travel through space. Time values are stored as total number of ticks into
the animation the keyframe takes place at. Keyframes times are signed, as they are
allowed to exist before the O-frame.

Name: OPCODE_CAMERA_KEYFRAME_TCBROT Value: 54

Arguments: Byte_Time0 Byte_Timel Byre_Time2 Byte Time3 Float Angle Word_AxisX
Word_AxisY Word_AxisZ Word_Tension =~ Word_Continuity =~ Word_Bias
Word_Easeln Word_EaseOut

Comments: This opcode defines a TCB rotation keyframe for the camera - in conjunction with
several other TCB keyframes the camera can reorient itself over time. The
rotation performed by a TCB rotation is a relative rotation. Time values are stored
as total number of ticks into the animation the keyframe takes place at. Keyframes
times are signed, as they are allowed to exist before the 0-frame.

Name: OPCODE_CAMERA_KEYFRAME_LINROT Value: 55

Arguments: Byre_Time0 Byte_Timel Byte Time2 Byte_Time3 Word_QuatX Word_QuatY
Word_QuatZ Word_QuatW

Comments: This opcode defines a linear rotation keyframe for the camera - in conjunction with
another linear keyframes the camera can reorient itself over time. The rotation
performed by a linear rotation is an absolute rotation. Time values are stored as

A-5

Appendix A: OpCode Listing

total number of ticks into the animation the keyframe takes place at. Keyframes
times are signed, as they are allowed to exist before the O-frame.

Name: OPCODE_CAMERA_KEYFRAME_TCBRLL Value: 57

Arguments: Byte_TimeO Byte_Timel Byte_Time2 Byte_Time3 Float_RollValue

Comments: This opcode defines a TCB roll keyframe for the camera around the camera's z-
axis. Time values are stored as total number of ticks into the animation the
keyframe takes place at. Keyframes times are signed, as they are allowed to exist
before the O-frame.

Name: OPCODE_CAMERA_KEYFRAME_LINRLL Value: 58

Arguments: Byre_TimeO Byte_Timel Byte_Time2 Byte_Time3 Float_RollValue

Comments: This opcode defines a linear roll keyframe for the camera around the camera's z-
axis. Time values are stored as total number of ticks into the animation the
keyframe takes place at. Keyframes times are signed, as they are allowed to exist
before the O-frame.

Name: OPCODE_CAMERA_KEYFRAME_BEZRLL Value: 59

Arguments: Byte_TimeO Byte_Timel Byte_Time2 Byte_Time3 Floar_RollValue

Comments: This opcode defines a Bezier roll keyframe for the camera around the camera's z-
axis. Time values are stored as total number of ticks into the animation the
keyframe takes place at. Keyframes times are signed, as they are allowed to exist
before the 0-frame.

Name: OPCODE_ADDCAMERA Value: 60

Arguments: Word_Field_of_View Float_NearPlane Float FarPlane

Comments: Assigns a basic camera to the sign, providing a FOV value scaled up to between
(0,3.141592), as well as a near and far plane. These values together are used to
construct the view frustum.

Name: OPCODE_ADDCAMERA_WITHLOCATION Value: 61
Arguments: Word_Field_of View Float_NearPlane Float_FarPlane Float PosX Float_PosY
Float PosZ

Comments: Assigns a basic camera to the sign, providing a FOV value scaled up to between
(0,3.141592), as well as a near and far plane. These values together are used to
construct the view frustum. The camera absolute location is provided in X,y,z
coordinates.

Name: OPCODE_SETCAMERA_ORIENTATION Value: 62

Arguments: Word_QuatX Word_QuatY Word_QuatZ Word_QuatW

Comments: Provides the existing camera with a fixed orientation. The four 16 bit values
values define a quaternion by scaling the values to the range (-1.0,1.0).

Name: OPCODE_SETCAMERA_OFFSET Value: 63
Arguments: Float Val0 Float_Vall Float Val2 Float Val3 Floar_Val4
Float Val5 Float_Val6 Float Vall Floar_Val8 Float Val9

A-6

Appendix A: OpCode Listing

Float Vall0 Floar_Valll Float Vall2
Comments: Defines a 4x3 (for rows, 3 columns) matrix which is converted into a 4x4 matrix
internally to provide an offset for the camera.

Name: OPCODE_SETOFFSET Value: 66

Arguments: Short Which Floar_Val0 Float_Vall Float Val2 Float_Val3
Float_Vald Floar_Val5 Float Val6 Floar_Vall Float_Val8
Float_Val9 Float Vall0 Floar Valll Float_Vall2

Comments: Defines a 4x3 (for rows, 3 columns) matrix which is converted into a 4x4 matrix
internally to provide an offset for specified object indicated by 'which'.

Name: OPCODE_SETPOSITION Value: 67

Arguments: Short_Which Float_PosX Float_PosY Float_PosZ

Comments: The absolute location is provided in x,y,z coordinates for the object specified by
'‘which' .

Name: OPCODE_SETORIENTATION Value: 68

Arguments: Short_Which Word_QuatX Word_QuatY Word_QuatZ Word_QuatW

Comments: Provides an existing object specified by 'which' with a fixed absolute orientation.
The four 16 bit values values define a quaternion by scaling the values to the range
(-1.0,1.0).

Name: OPCODE_SETPOSITION Value: 67

Arguments: Short_Which Float_PosX Float PosY Float_PosZ

Comments: The absolute location is provided in x,y,z coordinates for the object specified by
‘which'.

Name: OPCODE_SETSCALE Value: 69

Arguments: Short_Which Float_ScaleX Floar_ScaleY Floar_ScaleZ

Comments: The absolute scaling factor is provided as a float triple for the object specified by
‘which' .

Name: OPCODE_ADDLIGHT_OMNI Value: 70

Arguments: Word_Color

Comments: Appends a new omni-directional point source light to the scene, with the given 16b
encoded color. Colors are represented as 16 bit color values with the original red
and blue values divided by 8 and the green value divided by 4.

Name: OPCODE_ADDLIGHT_SPOT Value: 71

Arguments: Word_Color

Comments: Appends a new spotlight to the scene, with the given 16b encoded color. Colors
are represented as 16 bit color values with the original red and blue values divided
by 8 and the green value divided by 4.

Name: OPCODE_ADDLIGHT DIRECTIONAL Value: 72
Arguments: Word_Color

Appendix A: OpCode Listing

Comments: Appends a new directional to the scene, with the given 16b encoded color. Colors
are represented as 16 bit color values with the original red and blue values divided
by 8 and the green value divided by 4.

Name: OPCODE_SETLIGHT_ORIENTATION Value: 73

Arguments: Short_Which Word_QuatX Word_QuatY Word_QuatZ Word_QuatW

Comments: Provides an existing light specified by 'which' with a fixed absolute orientation.
The four 16 bit values values define a quaternion by scaling the values to the range
(-1.0,1.0).

Name: OPCODE_SETLIGHT POSITION Value: 74

Arguments: Short_Which Float PosX Float PosY Float_PosZ

Comments: The absolute location is provided in x,y,z coordinates for the light specified by
‘which' .

Name: OPCODE_SETOFESET Value: 75

Arguments: Short Which Float Val0 Float Vall Float_ Val2 Float_Val3
Float Val4 Float_Val5 Float Val6 Floar_Val7 Float Val8
Float_Val9 Float Vall0 Floar Valll Float Vall2

Comments: Defines a 4x3 (for rows, 3 columns) matrix which is converted into a 4x4 matrix
internally to provide an offset for specified light indicated by 'which'.

Name: OPCODE_LIGHT_KEYFRAME_TCBPOS Value: 76

Arguments: Short_Which Byte_TimeO Byte_Timel Byte Time2 Byte_Time3 Float PosX
Float PosY Float_ PosZ Word_Tension Word_Continuity =~ Word_Bias
Word_Easeln Word_EaseOut

Comments: This opcode defines a TCB position keyframe for a light - in conjunction with
several other TCB keyframes a light can be meant to travel through space. The
light must already exist in the database. Time values are stored as total number of
ticks into the animation the keyframe takes place at. Keyframes times are signed,
as they are allowed to exist before the O-frame.

Name: OPCODE_LIGHT_KEYFRAME_LINPOS Value: 77

Arguments: Short_Which Byte_Time0 Byte_Timel Byte_Time2 Byte_Time3 Float PosX
Float_PosY Float PosZ

Comments: This opcode defines a linear position interpolation keyframe for a light - in
conjunction with another linear position interpolation keyframe a light can be
meant to travel through space. The light must already exist in the database. Time
values are stored as total number of ticks into the animation the keyframe takes
place at. Keyframes times are signed, as they are allowed to exist before the 0-
frame.

Name: OPCODE_LIGHT_KEYFRAME BEZPOS Value: 78
Arguments: Short_Which Byfe_TimeO Byte_Timel Byte Time2 Byte_Time3 Float_PosX
Float_PosY Float_PosZ, Float_InTanX Float_InTanY Float InTanZ

A-8

Comments:

Appendix A: OpCode Listing

Float_OutTanX Float_OutTanY Float_OutTanZ

This opcode defines a Bezier position interpolation keyframe for a light - in
conjunction with another Bezier position interpolating keyframe a light can be
meant to travel through space. The light must already exist in the database. Time
values are stored as total number of ticks into the animation the keyframe takes
place at. Keyframes times are signed, as they are allowed to exist before the O-
frame.

Name: OPCODE_LIGHT_KEYFRAME_TCBROT Value: 79

Arguments:

Comments:

Short_Which Byte_Time0 Byte_Timel Byte Time2 Byte Time3 Float_Angle
Word_AxisX Word_AxisY Word_AxisZ Word_Tension Word_Continuity
Word_Bias Word_Easeln Word_EaseOut

This opcode defines a TCB rotation keyframe for a light - in conjunction with
several other TCB keyframes a light can be meant to reorient itself over time. The
rotation performed by a TCB rotation is a relative rotation. The light must already
exist in the database. Time values are stored as total number of ticks into the
animation the keyframe takes place at. Keyframes times are signed, as they are
allowed to exist before the 0-frame.

Name: OPCODE_LIGHT_KEYFRAME_LINROT Value: 81

Arguments:

Comments:

Short_Which Byte_Time0 Byte_Timel Byte_Time2 Byte_Time3 Word_QuatX
Word_QuatY Word_QuatZ Word_QuatW

This opcode defines a linear rotation keyframe for a light - in conjunction with
another linear keyframes a light can be meant to reorient itself over time. The
rotation performed by a linear rotation is an absolute rotation. The light must
already exist in the database. Time values are stored as total number of ticks into
the animation the keyframe takes place at. Keyframes times are signed, as they are
allowed to exist before the 0-frame.

Name: OPCODE_LIGHT_KEYFRAME_TCBRLL Value: 82

Arguments:
Comments:

Short_Which Byte_Time0 Byte_Timel Byte_Time2 Byte_Time3 Float_RollValue
This opcode defines a TCB roll keyframe for a light around the light's z-axis. Time
values are stored as total number of ticks into the animation the keyframe takes
place at. Keyframes times are signed, as they are allowed to exist before the 0-
frame.

Name: OPCODE_LIGHT_KEYFRAME_LINRLL Value: 83

Arguments:
Comments:

Short_Which Byte_TimeQ Byte_Timel Byte_Time2 Byte_Time3 Float_RollValue
This opcode defines a linear roll keyframe for a light around the light's z-axis.
Time values are stored as total number of ticks into the animation the keyframe
takes place at. Keyframes times are signed, as they are allowed to exist before the
O-frame.

Name: OPCODE_LIGHT_KEYFRAME_BEZRIL Value: 84

Arguments:
Comments:

Short_Which Byte_Time0 Byte_Timel Byte_Time2 Byte_Time3 Float_RollValue
This opcode defines a Bezier roll keyframe for the light around the light's z-axis.

A-9

Appendix A: OpCode Listing

Time values are stored as total number of ticks into the animation the keyframe
takes place at. Keyframes times are signed, as they are allowed to exist before the
O-frame.

Name: OPCODE_ADDTARGET_TO_CAMERA Value: 87

Arguments: Short_Which

Comments: This opcode assigns a target to the camera. This will cause the camera to always
reorient itself point at the specified object regardless of their locations.

Name: OPCODE_ADDTARGET_TO_LIGHT Value: 88

Arguments: Short_source Short_target

Comments: This opcode assigns a target to a light. This will cause the light to always reorient
itself point at the specified object regardless of their locations.

Name: OPCODE_ADDTARGET_TO_OBIJECT Value: 89

Arguments: Short_source Short_target

Comments: This opcode assigns a target to an object. This will cause the object to always
reorient itself point at the specified target regardless of their locations.

Name: OPCODE_ADDMIPMAP Value: 100

Arguments: Short_Which

Comments: This opcode indicates that the stream is changing from the presentation of opcodes
to a group of wavelet coefficients corresponding to an entire MIP map level. The
specification of a MIP map causes the application to enter MIP map processing
mode whereupon all data is assumed to belong to the current portion of the
wavelet coefficient space. It should also be noted that the initial MIP map level is
presumed to be entirely an approximation, and thus is not quantized but merely
provided directly in its original color values.

Name: OPCODE_ASSIGN_MAPTOOBJ Value: 110

Arguments: Short_object Short_texture

Comments: This opcode assigns a specific texture to a specific object. Both the texture and
object must previously exist in the database.

Name: OPCODE_ADDTEXMAPTYPE_HAAR Value: 160

Arguments: Float_Min Float_Max Byte_Shininess Word_SpecularColor

Comments: This opcode appends a new texture map object to the database. Specifically, this
texture is encoded using the Haar wavelet transform, whose coefficients are
quantized between the provided min and max values. To aid in lighting
calculations, a shininess value and a corresponding specular reflection color are
also specified.

Name: OPCODE_ENDOFFILEMARKER Value: 198
Arguments: None

A-10

Appendix A: OpCode Listing

Comments: This opcode marks the end of the file. Any information following this opcode
should be ignored.

Name: OPCODE_SETBACKGROUNDCOLOR Value: 240

Arguments: Word_ColorValue

Comments: This opcode assigns a global background color to the scene, other than the usual
default value of black. Colors are represented as 16 bit color values with the
original red and blue values divided by 8 and the green value divided by 4.

A-11

Appendix B: Header Structure

AprPENDIX B
HEADER STRUCTURE

This section describes the header structure for files constructed by the compressor and
read by the decompressor. The header structure is dynamic. Depending on switches set in the
first four bytes, the length of the header can grow to include more specific information. While the
rest of the file is always compressed using the LZSS algorithm, the header is never compressed
and transmitted as raw data, as its statistics will not match the rest of the file.

The first four bytes are initially read and decoded according to following table:

Bit Information Affect Header
Length

1..0|2 bit code representing how many bits per vertex component are used by this
file.
00 =32b, 01 = 16b, 10 = 10b, 11 =8b

Use simple shading?

Is tick rate equal to 160 Yes

Is source frame rate set to 30 frames per second Yes

Wb wl N

Use high quality materials?

Are there vertex normals in this file, or should the decompressor calculate
6 |them?

71 Are included normals compressed (only applicable if bit 6 is on)
8 ..15|Reserved for future use

16..23 | Major version

24..31 | Minor version

When the first four bytes are being decoded, if bit 4 is off, then immediately a short value is pulled
from the header and used as the tick rate. If bit 5 is off, another short value is also immediately
pulled from the file and used as the source frame rate. Depending on the settings of bits 4 and 5,
header length can fluctuate by up to four bytes.

Major and minor version numbers are treated as though they were numbers on the left and

right side of a decimal point, forming a simple fixed point number. For example, a major value of

B-1

Appendix B: Header Structure

16 and a minor value of 32 would be equivalent to 16.125. This value is compared against a
constant shared by the compressor and decompressor to confirm that versions match, as well as to
confirm that the file attempting to be parsed is of the proper file type.

Once the initial boolean values are read in, 3 bytes are read. These three bytes represent a
24 bit unsigned integer value setting the final frame number. Total time required for the animation
sequence can be determined by multiplying the final frame number by the source frame per second
number.

The next three bytes in the file contain the target resolution. Resolution is retrieved from
these bytes by taking the high 12 bits as the rendering height, and the low 12 bits as the rendering
width. Once retrieved, the decompressor will adjust its resolution to match the target values, and
center itself in the screen.

The final four bytes of the header are the length of the compressed file. As this
information is not provided by the channel, and is not naturally available to the decompressor, this
value is used to determine a threshold of retrieved data that must be overcome before playback

will begin.

Appendix C: Structure Charts

AprpPenDpix C
STRUCTURE CHARTS

C.1 Decompressor Structure Chart

Decompressor Main Menu

File Animation View

v : v

Display Current Logged
Open Remote - Play Information
HTTP link DialogLog.h
- Pause Dialoglog.cpp
Logger.h
. Stop Logger.cpp
Y
v Set Download | | ~
Speed
Prompt User for URL p

CGetUrlh
CGetUri.cpp

Open Remote file via
CAsyncMonikerFile and

retrieve data
DecompressorDoc.h la— 1\ ™

DecompressorDoc.cpp
Anim ationFile.h
AnimationFile.cpp

N
, '
Render Database

DecompressorView.h
DecompressorView.cpp

Parse File to
Database

Fetch Instructions Get Current Stable
Database and time stamp

Interpret instructions

For current time stamp,
update all object
transforms

Process Instructions
(add/update objects,
add/update textures)

Render objects with
textures
Texture.h
Texture.cpp

Anim ation Database
Animation.h
Animation.cpp

C.2 Compressor Structure Chart

Get Candidate Object List
Compressor.h
Compressor.cpp

'

v

Appendix C: Structure Charts

'

Transmit information about
Background color

,

Compressor Dialog
Scene specifications are selected

'

Divide objects by smoothing
groups, marking new artificial
objects

'

Gather information about all
objects, including vertex &
face lists, as well as texture
coordinates

‘

Build list of materials

4

Add variable fength blocks of
information, divided up by frame
groupings
(Begin block loop)

Object

- been added to scene, add it e

Visibility Determination
Loop

Construct object database
for current frame

Render current frame using
new object database

Scan rendered frame for

assigned colors, adding

found values to color fist,
referenced by frame number

Gather material bounding
information from the frame

Delste Database and discard
rendered frame

Determine
object type

Polygonal
Carnera Object Light
¥ Object

Determine which vertices
and faces of the objects
belong in the current block

.

If object has not previously

now

!

Add relevant list of vertices for
this block to output

;

Add relevant list of normals for
this block to output

!

Add relevant list of texture
coordinates for this block to output

:

Sort the constructed list of
object vertices and faces by
frame reference numbers

Y

Prepare file for output
Add header to file

s Object Add relevant
solid cjolor Yesw solid color to

this block

No

Add relevant

High Quality list of per-
Textures? No+ vertex colors
to this block

Material hadn't been previously
added, build material for this
object

Render compound material to
texturemap

Convert texturemap to wavelet
coefficients

Determine necessary maximum
texture resolution

Add texture marker to output

'

Local Loop: If a higher level
mipmap for the current texturemap
is needed for this block, add the
appropriate group of wavelet
subbands

'

Add Keyframes for this object that
take place during the block

'

Mark the current block as
completed in the output.
(End of Block loop)

;

First pass is completed
Close output file

.

Perform lossless compression
(LZSS) pass on output file

'

Delete all extra smoothing group
objects

'

Cleaup up scene and restore to
original state

L

End plug in operation

AprPEnDIX D
Source CoObE

Appendix D: Source Code

/**

Jonathan Greenberg

D.1 Compressor Source Code
D.1.1 Opcodes.h
*<
FILE: Opcodes. h
DESCRIPTION:
CREATED BY:
HISTORY: Thesis work

*> Copyright (c) 2000, All Rights Reserved.

Compiler defines to aid readability

**/

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
f#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
##define
#define
#define
#define
f#define
#define

OPCODE_COMPLETETOFRAME
OPCODE_ADDVERTS
OPCODE_ADDNORMS
OPCODE_ADDFACES
OPCODE_ADDTEXCOORDS
OPCODE_ADDVERTCOLORS

OPCODE_ASSIGNOBJECT SOLIDCOLOR

OPCODE_ADDOBJECT
OPCODE_SETPARENTCHILD

OPCODE_KEYFRAME_TCBPOS
OPCODE_KEYFRAME LINPOS
OPCODE_KEYFRAME_BEZPOS
OPCODE_KEYFRAME _TCBROT
OPCODE_KEYFRAME_LINROT
OPCODE_KEYFRAME _TCBSCL
OPCODE_KEYFRAME _LINSCL
OPCODE_KEYFRAME BEZSCL
OPCODE_KEYFRAME_TCBRLL
OPCODE_KEYFRAME_LINRLL
OPCODE_KEYFRAME_BEZRLL

OPCODE_CAMERA_KEYFRAME_TCBPOS
OPCODE_CAMERA_KEYFRAME_LINPOS
OPCODE_CAMERA KEYFRAME_BEZPOS
OPCODE_CAMERA KEYFRAME_TCBROT
OPCODE_CAMERA_KEYFRAME_LINROT
OPCODE_CAMERA_ KEYFRAME_TCBRLL
OPCODE_CAMERA KEYFRAME_LINRLL
OPCODE_CAMERA KEYFRAME BEZRLL

OPCODE_ADDCAMERA

OPCODE_ADDCAMERA WITHLOCATION
OPCODE_SETCAMERA ORIENTATION

D-1

#define
#define
#define
#define
#define
#define
#define
#define
#define
fidefine
#define
#define
#define
#define
#define
#define
#define
#define
f#idefine
#define
f#idefine
#define
#define
#define
#define
#define
#define
#define
#idefine

#define
#define
#define
#define

#define

// Note this is to allow for the future addition of
This can become useful

OPCODE_SETCAMERA_OFFSET
OPCODE_SETOFFSET
OPCODE_SETPOSITION
OPCODE_SETROTATION
OPCODE_SETSCALE
OPCODE_ADDLIGHT OMNI
OPCODE_ADDLIGHT SPOT
OPCODE_ADDLIGHT DIRECTIONAL
OPCODE_SETLIGHT ORIENTATION
OPCODE_SETLIGHT POSITION
OPCODE_SETLIGHT OFFSET
OPCODE_LIGHT KEYFRAME TCBPOS
OPCODE_LIGHT KEYFRAME LINPOS
OPCODE_LIGHT KEYFRAME BEZPOS
OPCODE_LIGHT KEYFRAME TCBROT
OPCODE_LIGHT KEYFRAME LINROT
OPCODE_LIGHT KEYFRAME BEZROT
OPCODE_LIGHT KEYFRAME TCBRLL
OPCODE_LIGHT KEYFRAME LINRLL
OPCODE_LIGHT KEYFRAME BEZRLL
OPCODE_ADDTARGET TO_ CAMERA
OPCODE_ADDTARGET TO LIGHT
OPCODE_ADDTARGET TO OBJECT
OPCODE_TARGET KEYFRAME TCBPOS
OPCODE_TARGET KEYFRAME LINPOS
OPCODE_TARGET KEYFRAME BEZPOS
OPCODE_ADDMIPMAP
OPCODE_ASSIGN MAPTOOBJ
OPCODE_ENDOFFILEMARKER

OPCODE_ENH_LIGHT KEYFRAME TCBROT

OPCODE_ENH_CAMERA KEYFRAME TCBROT 211

OPCODE_ENH KEYFRAME TCBROT
OPCODE_SETBACKGROUNDCOLOR

OPCODE_ADDTEXMAPTYPE HAAR

// more basis function types.
// as more CPU time is made available with future hardware

#define
#define

#define
#define
f##define
#define
#define

#define

MAJORVERSION
MINORVERSION

BPC_32
BPC_16
BPC_10
BPC_8
BPC_12 4

w N RO

ITEMSPERBLOCK 30

//#define VIEWSCREENREDUCT 0.707f

#define

VIEWSCREENREDUCT 0.767£

// Types of keyframe controllers

#define

CNT_TCBPOS O

D-2

71
72
73
74

76
77
78
79
80
81
82
83
84
87
88
89
90
91
92

212

240

160

63
66
67
68
69
70

75

100
110
198

2
6

Appendix D: Source Code

#define
#define
#define
#define
#define
#tdefine
#define
#define
#define
#define
#idefine

#define
#define
#define
#define

#define
#define
#tdefine
f#define

#define
#define
#define
#define

#define
#define

#define
#define
#define

#define

#define
#define
#define
#define

#define
#define
#define
#define
#define

Appendix D: Source Code

CNT_TCBROT
CNT_ LINPOS
CNT_LINROT
CNT_BEZPOS
CNT_BEZROT
CNT_TCBRLL
CNT_LINRLL
CNT_BEZRLL
CNT_TCBSCL
CNT_LINSCL
CNT BEZSCL

PO oo Jo0u,bh whpR

bt
= O

3.1415926535897932384626433832795fF
1.5707963267948966192313216916398F
57.295779513082320876798154814105f

FLOAT PI
FLOAT HALFPI
FLOAT RAD TO DEG
EPSILON 0.0001

LIGHT_AMBIENT 0

LIGHT DIRECTIONAL 1

LIGHT_POINT 2

LIGHT SPOTLIGHT 3

MAXTEXTUREPOWER 8

MAXTEXTURERES 256

MINTEXTUREPOWER 3

MINTEXTURERES 8

TEXTYPE NONE 0

TEXTYPE HAAR 1

TABLESIZE 18041

MINBITSIZE 9

MAXBITSIZE 14

COMPRESSION THRESHOLD 1.333

LZSSBITPOS 14
LZSSBITLEN 5
LZSSMAXLEN ((1 << LZSSBITLEN)+2)
LZSSWINDOW LENGTH (1 << LZSSBITPOS)

SPEED 288 0
SPEED 56k 1
SPEED_ISDN
SPEED ADSL
SPEED T1 4

// uncomment to disable datalogging - logging causes an initial

// burp

in rendering speed

//#define DO NOT LOG 1

Appendix D: Source Code

D.1.2 Vertcol.h

#include "Max.h"

#define VCOL_CLASS ID 0x0934851
statie Class_ID vcolClassID(VCOL CLASS_ID,0);

// This file includes data to rebuild the missing Vertex Color texture map
// type that SHOULD be included in the 3DSMax SDK, but somehow they forgot.
// As we need this type to do the object database reconstruction, it has been
// included here.

#define VCOL_VERSION 1
class VCol;

class VColDlg: public ParamDlg {
public:
HWND hwmedit; // window handle of the materials editor
dialog
IMtlParams *ip;
VCol *theTex; // current VCol being edited.
HWND hPanel; // Rollup pane
TimeValue curTime;
int isActive;

BOCL valid;

[/~ oo

VColDlg (EWND hwMtlEdit, IMtlParams *imp, VCol *m);

~VColDlg () ;

BOOL PanelProc (HWND hDlg, UINT message, WPARAM wParam, LPARAM
lParam) ;

void LoadDialog(BOOL draw); // stuff params into dialog

void ReloadDialog();

void UpdateMtlDisplay() { ip->MtlChanged(); }

void ActivateDlg(BOOL onOff);

void Invalidate() { valid = FALSE; InvalidateRect (hPanel,NULL,O0);
}

// methods inherited from ParamDlg:

Class_ID ClassID() {return vcolClassID; }

void SetThing(ReferenceTarget *m);

ReferenceTarget* GetThing() { return (ReferenceTarget *)theTex; }

void DeleteThis{) { delete this; }

void SetTime (TimeValue t);

}i

e ittt
// VCol: A Composite texture map
T R EEEEEEE PR EEEEE

elass VCol: public Texmap {
£friend class VColDlg;
VColDlg *paramDlg;

D-4

Appendix D: Source Code

Interval ivalid;
BOOL useUVW;

public:
vCol () ;
ParamDlg* CreateParamDlg (HWND hwMtlEdit, IMtlParams *imp);
ULONG Requirements (int subMt 1Num) { return

useUVW?MTLREQ UV:MTLREQ UV2; }

ivalid; }

float dv);

class

}i

VColCl
public
int

void *
const
SClass

Class_

const

}i

void Update(TimeValue t, Intervalg& valid);
void Reset () ;
Interval Validity(TimeValue t) { Interval v; Update(t,v); return

void NotifyChanged();

// Evaluate the color of map for the context.

AColor EvalColor (ShadeContexté& sc);

float EvalMono (ShadeContext& sc);

AColor EvalFunction (ShadeContext& sc, f£loat u, float v, float du,

// For Bump mapping, need a perturbation to apply to a normal.
// Leave it up to the Texmap to determine how to do this.
Point3 EvalNormalPerturb (ShadeContexté& sc);

Class_ID ClassID() return vcolClassID; }
SClass_ID SuperClassID() { return TEXMAP CLASS ID; }
void GetClassName (TSTR& s) { s= _T("Vertex Color"); }

void DeleteThis() { delete this; }
int NumSubs() { returm 0; }

// From ref
int NumRefs() { return 0; }

RefTargetHandle Clone (RemapDir &remap = NoRemap());
RefResult NotifyRefChanged(Interval changelnt,
RefTargetHandle hTarget,
PartID& partID, RefMessage message);

// IO

IOResult Save(ISave *isave);
IOResult Load(ILoad *iload) ;

assDesc:public ClassDesc {
IsPublic() { return 1; }
Create (BOOL loading) { return new VCol; }

TCHAR * ClassName () { return _T("Vertex Color"); }
_ID SuperClassID() { return TEXMAP CLASS_ID; }
ID ClassID() { return vcolClassID; }

TCHAR* Category() { return TEXMAP CAT COLMOD; }

static VColClassDesc vcolCD;

Appendix D: Source Code

D.1.3 Vertcol.cpp

#include “vertcol.h"
#include '"resource.h"

HINSTANCE hInstance2;

void VCol::Reset ()
useUVW = FALSE;
ivalid.SetEmpty () ;

}

void VCol::NotifyChanged () {
NotifyDependents (FOREVER, PART ALL, REFMSG_CHANGE) ;

VCol::VCol () {
paramDlg = NULL;
Reset () ;

AColor VCol::EvalColor (ShadeContexts sc) {
if (gbufID) sc.SetGBufferID(gbuflID);
Point3 p = sc.UVW(1);
return AColor(p.X,p.V,p.2,1.0f);

}

float VCol::EvalMono (ShadeContext& sc) {
return Intens (EvalColor(sc));

}

Point3 VCol::EvalNormalPerturb (ShadeContexts& sc) {
return Point3(0,0,0);

}

RefTargetHandle VCol::Clone (RemapDir &remap) {
VCol *mnew = new VCol ();
* {(MtlBase*)mnew) = *((MtlBase*)this); // copy superclass stuff
return (RefTargetHandle)mnew;

}

ParamDlg* VCol::CreateParamDlg (HWND hwMtlEdit, IMtlParams *imp) {
VCclDlg *dm = new VColDlg (hwMtlEdit, imp, this);
dm->LoadDialog (TRUE) ;
paramDlg = dm;
return dm;

}

void VCol::Update (TimeValue t, Interval& valid)
if (!ivalid.InInterval(t)) {
ivalid.SetInfinite () ;

valid &= ivalid;

}

D-6

Appendix D: Source Code

RefResult VCol::NotifyRefChanged (Intexrval changeInt, RefTargetHandle hTarget,
PartID& partID, RefMessage message) {
switch (message) {
case REFMSG_CHANGE:
ivalid.SetEmpty () ;
if (paramDlg)
paramDlg->Invalidate() ;
break;

case REFMSG GET PARAM DIM: {
GetParamDim *gpd = (GetParamDim*)partID;
return REF_STOP;

}

case REFMSG_GET PARAM NAME: {
GetParamName *gpn = (GetParamName*)partID;
return REF STOP;

}

return (REF_SUCCEED) ;

}

#define MTL HDR CHUNK 0x4000
#define USE_UVW_CHUNK 0x5000

IOResult VCol::Save(ISave *isave) {

IOResult res;

// Save common stuff

isave->BeginChunk (MTL_ HDR_ CHUNK) ;

res = MtlBase::Save(isave);

if (res!=I0 _OK) return res;

isave->EndChunk () ;

if (useUVW) {
isave->BeginChunk (USE_UVW_CHUNK) ;
isave->EndChunk () ;

}

return IO _OK;

}

IOResult VCol::Load(ILoad *iload) {
IOResult res;
while (IO OK==(res=iload->OpenChunk())) {
switch (iload->CurChunkID()) {
case MTL_HDR CHUNK:
res = MtlBase::Load(iload) ;
break;

iload->CloseChunk () ;

if (res!=I0_OK)
return res;
}

return IO OK;

}

static BOOL . CALLBACK PanelDlgProc (HWND hwndDlg, UINT msg, WPARAM wParam,

D-7

Appendix D: Source Code

LPARAM lParam) {
VColDlg *theDlg;
if (msg==WM_INITDIALOG) ({
theDlg = (VColDlg*)lParam;
theDlg->hPanel = hwndDlg;
SetWindowLong (hwndDlg, GWL_USERDATA, lParam) ;
}
else {
if ((theDlg = (VColDlg *)GetWindowLong(hwndDlg, GWL_USERDATA)) =

NULL)
return FALSE;

theDlg->isActive = 1;

int res = theDlg->PanelProc (hwndDlg,msg,wParam, l1Param) ;
theDlg->isActive = 0;

return res;

}

VColDlg: :VColD1lg (HWND hwMtlEdit, IMtlParams *imp, VCol *m) {

hwmedit = hwMtlEdit;

ip = imp;

hPanel = NULL;

theTex = m;

isActive = 0;

valid = FALSE;

hPanel = ip->AddRollupPage (
hlInstance2,
MAKEINTRESOURCE(IDD_VCOL),
PanelDlgProc,
_T("Vertex Color Parameters"),
(LPARAM) this) ;

curTime = imp->GetTime () ;

}

void VColDlg::ReloadbDialog() {
Interval valid;
theTex->Update (curTime, valid);
LoadDialog (FALSE) ;

}

void VColDlg::SetTime (TimeValue t) {

Interval valid;

if (tl=curTime) {
curTime = t;
theTex->Update (curTime, wvalid);
LoadDialog (FALSE) ;
InvalidateRect (hPanel,NULL, 0) ;
}

}

VColDlg: : ~VColDlg () ({
theTex->parambDlg = NULL;
SetWindowLong (hPanel, GWL USERDATA, NULL);

}

BOOL VColDlg: :PanelProc (HWND hwndDlg, UINT msg, WPARAM wParam, LPARAM lParam)

{

D-8

Appendix D: Source Code

int id = LOWORD (wParam) ;
int code = HIWORD (wParam) ;
switch (msg) {
case WM_INITDIALOG:

ShowWindow (GetDlgItem (hwndDlg, IDC_VC_VC),SW_HIDE) ;
ShowWindow (GetDlgItem (hwndDlg, IDC_VC_UVW) , SW_HIDE) ;
return TRUE;
}
break;

case WM_COMMAND:

break;
case WM _PAINT:
if (lvalid) {
valid = TRUE;
ReloadDialog() ;

}

break;
case WM_CLOSE: break;
case WM_DESTROY: break;
case CC_SPINNER_CHANGE:
break;
case WM_CUSTEDIT_ ENTER:
case CC_SPINNER_BUTTONUP:
theTex->NotifyChanged () ;
UpdateMt1Display () ;
break;

}

return FALSE;

}

void VColDlg: :LoadDialog(BOOL draw) {
if (theTex) ({
Interval valid;
theTex->Update (curTime,valid) ;

}
}

void VColDlg::SetThing (ReferenceTarget *m) {
assert (m->ClassID()==vcolClassID);
assert (m->SuperClassID()==TEXMAP_CLASS ID);
if (theTex) theTex->paramDlg = NULL;
theTex = (VCol *)m;
if (theTex) theTex->paramDlg = this;
LoadDialog (TRUE) ;

}

void VColDlg::ActivateDlg(BOOL onOff) {

}

D-9

Appendix D: Source Code

D.1.4 PixelPeano.h

// PixelPeano.h: interface for the CPixelPeano class.

/7

// This file defines a structure for use with traversing Hilbert
// curves of some given order.

LILILLLLL LI L7 L7 777777777777 7777777777777 7777777777777 7

#if
!defined (AFX_PIXELPEANO_H_ 1E990F53_8429_11D3_9002_O00AA00B9C442 _INCLUDED)
#define AFX PIXELPEANO_H_1E990F53_8429_11D3_9002_00AA00B9C442 INCLUDED

#if MSC_VER > 1000
#pragma once
#endif // MSC _VER > 1000

enum {
PIXEL_UP,
PIXEL LEFT,
PIXEL RIGHT,
PIXEL_ DOWN

}i

class CPixelPeano
{
public:
Resget () ;
Switch();
CPixelPeano (int scale, BOOL bMiddle) ;
BOOL Process() ;
inline Push(unsigned int iCommand,unsigned int iLevel)

{

CommandStack [iStackPointer] = iCommand;
LevelStack[iStackPointer++] = iLevel;

1

inline BOOL Empty ()

{
if (iStackPointer == 0) return TRUE;

return FALSE;

}

inline BOOL Pop (unsigned int &iCommand,unsigned int &ilevel)
if (Empty()) return FALSE;
iCommand = CommandStack[--iStackPointer] ;
iLevel = LevelStack[iStackPointer] ;
return TRUE;

}

CPixelPeano () ;
virtual ~CPixelPeano () ;

unsigned int coordx, coordy;
private:

int iStackPointer;
unsigned char CommandStack[512];

D-10

Appendix D: Source Code

unsigned char LevelStack[512];

int iSecondStackPointer;

unsigned char SecondCommandStack[512];
unsigned char SecondLevelStack[512];
BOOL bUseSecond;

BOOL _bMiddle;

int _scale;

Vi

#endif //
!defined (AFX_PIXELPEANO_H__1E990F53_8429_11D3 9002 00AA00BSC442 _INCLUDED)

D-11

Appendix D: Source Code

D.1.5 PixelPeano.cpp

// PixelPeano.cpp: implementation of the CPixelPeano class.

/7
LITILLI L7777 77 77 777 77 77777777777

#include "Max.h"
#include "PixelPeano.h"

#ifdef DEBUG

#undef THIS FILE

static char THIS FILE[]=__FILE ;
#define new DEBUG NEW

#endif

LILIILL L7777 7SS 7 7 77777777 7777777777777/

// Construction/Destruction

A N VA VA VS A I A N A I A I S I A A AN S AR A A

CPixelPeano: :CPixelPeano ()
{
coordx = coordy = 0;
iStackPointer = 0;
bUseSecond = FALSE;

}

CPixelPeano: :Reset ()
{
bUseSecond = FALSE;
if (bMiddle)
{
iStackPointer = 0;
Push (PIXEL_RIGHT, scale-1);
Push(PIXELWUP,O);
Push (PIXEL_UP,_ scale-1);
Push(PIXEL_RIGHT,O);
Push (PIXEL UP, scale-1);
coordx = 0; coordy = 1;
for (int i=0;i< scale-1;i++)
coordy*=2;

coordx = coordy = 0;
iStackPointer = 0;
Push (PIXEL_UP, scale);

CPixelPeano: :CPixelPeano (int scale, BOOL bMiddle = TRUE)
{
bUseSecond = FALSE;
if (bMiddle)
{
iStackPointer = 0;
PuSh(PIXEL_RIGHT,Scale—l);
Push (PIXEL UP,0) ;

D-12

Push (PIXEL UP,scale-1);

Push (PIXEL_RIGHT,0) ;

Push (PIXEL UP,scale-1);

coordx = 0; coordy = 1;

for (int i=0;i<scale-1;i++)
coordy*=2;

else

coordx = coordy = 0;
iStackPointer = 0;
Push(PIXEL UP,scale);

}

_scale = sgcale;
_bMiddle = bMiddle;

}

CPixelPeano::~CPixelPeano()

{
}

void swap (int &a, int &b)
int t
a = b;
b =t;

= ay

}

CPixelPeano: :Switch ()

int count;

if (bUseSecond)

{
// restoring backup
count = iSecondStackPointer;
iStackPointer = iSecondStackPointer;
for (int i=0;i<count;i++)

{

CommandStack[i] = SecondCommandStack [i] ;

LevelStack[i] = SecondLevelStack[i] ;

else

// backup current value

count = iStackPointer;
iSecondStackPointer = iStackPointer;
for (int i=0;i<count;i++)

SecondCommandStack [i] = CommandStack [1] ;

SecondLevelStack[i] = LevelStack[i];

1
1
) bUseSecond = 'bUseSecond;
}

BOOL CPixelPeano: :Process ()

D-13

Appendix D: Source Code

unsigned int level, command;

if (!Pop(command, level)) return FALSE;

if (level == 0)
{
switch (command)
{
cage PIXEL LEFT:
coordx--; break;
cage PIXEL RIGHT:
coordx++; break;
case PIXEL UP:
coordy--; break;
case PIXEL DOWN:
coordy++; break;
}

return FALSE;
}
elge if (level == 1)
{

switch (command)

{

case PIXEL LEFT:

Push (PIXEL LEFT,0) ;
Push (PIXEL_DOWN, 0) ;
Push (PIXEL RIGHT,O) ;

} break;

cagse PIXEL RIGHT:

{
Push (PIXEL RIGHT, 0) ;
Push (PIXEL UP,0) ;
Push (PIXEL LEFT,0);

} break;

case PIXEL UP:

{ Push (PIXEL UP,0) ;
Push (PIXEL RIGHT,O0) ;
Push (PIXEL DOWN,0) ;

} break;

case PIXEL_DOWN:

{
Push (PIXEL DOWN, 0) ;
Push (PIXEL_LEFT,0) ;
Push (PIXEL UP,0);

} break;

}
}
else switch (command)

{

case PIXEL LEFT:

{
Push(PIXEL_DOWN,level—l);
Push(PIXEL_LEFT,O);
Push(PIXEL_LEFT,level—l);
Push (PIXEL DOWN, 0) ;
Push(PIXEL_LEFT,level-l);
Push(PIXEL_RIGHT,O);

D-14

=

Appendix D: Source Code

Appendix D: Source Code

Push (PIXEL UP, level-1);
} break;
case PIXEL RIGHT:
{
Push(PIXEL_UP,level—l);
Push (PIXEL_RIGHT,0) ;
Push (PIXEL RIGHT, level-1);
Push(PIXEL_UP,O);
Push (PIXEL RIGHT, level-1);
PuSh(PIXEL_LEFT,O);
Push (PIXEL DOWN, level-1);
} break;
cage PIXEL UP:
{
Push (PIXEL_RIGHT, level-1);
Push (PIXEL_UP,0) ;
Push (PIXEL _UP,level-1);
PuSh(PIXEL_RIGHT,O);
Push (PIXEL_UP, level-1);
PuSh(PIXEL_DOWN,O);
Push (PIXEL_LEFT, level-1};
} break;
case PIXEL DOWN:
{
Push(PIXEL_LEFT,level—l);
Push(PIXEL_DOWN,O);
Push(PIXEL_DOWN,level—l);
Push (PIXEL_ LEFT,0);
Push (PIXEL DOWN, level-1);
push (PIXEL UP,0) ;
Push (PIXEL RIGHT, level-1);
} break;

return TRUE;

D-15

Appendix D: Source Code

D.1.6 Resource.h

// Microsoft Developer Studio generated include file.
// Used by Compressor.rc
//

#define IDS LIBDESCRIPTION 1
#define IDS_CATEGORY 2
#define IDS_CLASS NAME 3
#define IDS_PARAMS 4
#define IDS_PROGRESS MSGO 5
#define IDS_PROGRESS_MSG1l 6
#define IDS_PROGRESS_ MSG2 7
#define IDS PROGRESS_MSG3 8
#define IDS PROGRESS MSG4 9
#define IDS PROGRESS_MSG5 10
#define IDD PANEL 101
#define IDD_ COMPRESSDIALOG 102
##define IDD_ OPENGLWINDOW 103
#define IDC CLOSEBUTTON 1000
#define IDC DOSTUFF 1000
#define IDC_XRES 1003
#define IDC YRES 1004
#define IDC_RADIOLOWQ 1006
#define IDC_RADIOHIGHQ 1007
#define IDC_COMBOCAMERAS 1008
#define IDC FRAMERATE 1009
#define IDC_STARTFRAME 1013
#define IDC_ENDFRAME 1014
#define IDC_VERTNORM 1015
#define IDC_COMPNORM 1016
#define IDC RADIO16B 1018
#define IDC_RADIO10B 1019
#define IDC RADIOS8B 1021
#define IDC_RADIO32B 1022
#define IDC_DIRLIGHT 1023
#define IDC_SLIDER_THRESHOLD 1024
#define IDC_ SLIDER TEXRES 1026
#define IDD_ VCOL 1061
#define IDC VC_VC 1254
#define IDC_VC_UVW 1255
#define IDC_COLOR 1456
#define IDC EDIT 1490
#define IDC_SPIN 1496
// Next default values for new objects

/7

#ifdef APSTUDIO_INVOKED

#ifndef APSTUDIO_ READONLY SYMBOLS

#define APS NEXT RESOURCE_VALUE 105
#define APS NEXT COMMAND_ VALUE 40001
#define APS NEXT CONTROL_VALUE 1026
#define APS NEXT SYMED VALUE 101
#endif

#endif

D-16

Appendix D: Source Code

D.1.7 Compressor.h
/**
g
FILE: Compressor.h
DESCRIPTION: Template Utility
CREATED BY: Jonathan Greenberg
HISTORY: Thesis work

*> Copyright {(c) 2000, All Rights Reserved.

**/

#ifndef
f#idefine

#include
#include
#include
#include

#include

#define
#define
#define
#define
#tdefine
#define
#define
#define

__ COMPRESSOR__H
__ COMPRESSOR__H

"Max.h"
"resource.h"
"istdplug.h"
"Opcodes.h"

"iparamm.h"

COMPRESSOR CLASS ID Class_ID(0x52024799, 0x7235b712)
CURRENT DESCRIPTOR descVerl

PBLOCK_LENGTH 1

CURRENT_VERSION 1

DBGMODE 1

MAXOBJECTS 8192

DEFAULT XRES 640

DEFAULT_ YRES 480

TCHAR *GetString(int id);

extern C

extern H

lassDesc* GetCompressorDesc () ;

INSTANCE hInstance;

// externally accessible globals
int iSampleYres;
int iSampleXres;
int iFrameRate;

int iEnd
int iSta
BOOL bMa
BOOIL bVve

Frame;
rtFrame;
terialQuality;
rtexNormals;

BOOL bCompressNormals;

BOOL bUs
int iBit

//typede

eShading;
sPerVertex;

£ FCNINVWAVELET (float [], float [], unsigned int);

typedef void (* FCNINVWAVELET) (float [], float [], unsigned int);

typedef

struct TriFace {

D-17

int Vertl;

int Vert2;

int Vert3;
} _TrifFace;

typedef struct Vert {
float x;
float vy;
float z;

} _vert;

typedef struct FrameList {

FrameList *next;
int frameNum;
public:

int AddedRefNumber;

} _FrameList;

class GeoNode {

public:
INodex* curNode;
BOOL IsHelper;
BOOL IsTarget;
int ParentIdx;
BOOL IsChild;
TriFacex* TrueFaceList;
int¥* TexIndexList;
int* AddedFaceList;
int* FaceAddedOnFrame;
int~* AddedVertList;
int* VertAddedOnFrame;
int nTrueFaceCount;
int nTrueVertexCount;
int nAddedFaceCount ;
int nAddedVertCount ;
public:

BOOL bKillMe;

BOOL IsSuperObject () ;

BOOL bMaterialAssigned;

InitBoundingBox () ;

int iMinX, iMinY, iMaxX, iMaxY;

int LastR1l1KeySent;
BOOL IsAssignedTarget;
int TargetIdx;
INode* TargetNode;
int LastPosKeySent;
int LastRotKeySent;
int LastSclKeySent;
Point3 pMaxCoord;
Point3 pMinCooxrd;
int RefNumber;

int nSentFace;

int nSentVert;

int MateriallD;
GeoNode () ;
~GeoNode () ;

D-18

Appendix D: Source Code

}i

Appendix D: Source Code

clase MatNode {

public:

int RefNumber;

MatNode () ;

~MatNode () ;

Mtl* curNode;

unsigned char* pTextureMap;
float fTexmapMinval;

float fTexmapMaxVal;
float* WaveletCoeff;

int iMipNeededOnFrame [16] ;
BOOL bMipSent [16];

int ilastTexturePowerSent;
int iMaxNecessaryTexPower;

}i

typedef struct ListTriangle {
float V0O [3];
float V1[3];
float V2 [3];
unsigned char color[4];
float Zdist;

} _ListTriangle;

class Compressor : public SceneExport {
public:

FALSE) ;

LookAhead,

*Texture) ;

float fTotalError;
int iTotalvVerts;
pbOutToFile (unsigned int code,int bitlength, BOOL bFinish =

BOOL LZSS OutputFile2 (int headersize, const TCHAR *filename) ;

int iSampleRate;

void LZSS OutputCode (FILE *fo, unsigned int code, int bitlength,
int &OutputBitCount,unsigned int &OutputBitBuffer) ;

void LZSS Scan(unsigned char * Dictionary,unsigned char *

unsigned int &position,unsigned int &length) ;
BOOL LZSS OutputFile (int headersize, const TCHAR * filename) ;
unsigned int iUnCompressedCount;
unsigned int iCompressedCount;
BOOL IsMarkedForDeletion (GeoNode *node) ;
MarkNodeForDeletion (GeoNode *node);
int iSuperObjCount;
INode* SuperObjects[MAXOBJECTS] ;
BOOL BuildSubObjectList () ;
BuildMateriallList () ;
BOOL _BForce2Side;
Point3 RetrieveTexelColor (float U, float Vv, ungigned char

int iDesiredTexturePower;

float fTextureQualityThreshold;
DetermineNecessaryTexRes (MatNode* node) ;
SortMipMapAppearancelList (int frame) ;

D-19

Appendix D: Source Code

MarkObjBoundingBox (int x, int y, int ObjNum);

unsigned char WaveletQuantize (float min, float max, float coeff);
GetCoeffRange (float *coeffs, float &min, float &max);

DeltaEncode (float *coeff,int size,int dim);

void HaarInv(float al[]l, float sourcel]l, unsigned int size);

void DetermineThreshold(float *coeffs, unsigned char* map, float

targetPSNR) ;
void HaarTR(float al], float sourcel], unsigned int size);
Daub4TR (float afl, float sourcell, unsigned int size);
RetrieveOriginalMap (MatNode* node,unsigned char* map) ;
BuildWaveletCoeffs (MatNode *node) ;
AddTextureCoeffs (MatNode *node) ;
aaOutToFile (AngAxis aa);
Matrix3 GetLocalMatrix (INode *node,TimeValue t);
MarkTargets () ;
void CreateNewObject (GeoNode* node) ;
TransmitTargetKeysThisSecond (GeoNode *node, int frame, int
&LastTKeyNum) ;

BOOL bPerspView;

INode* OldCamera;

Matrix3 VptTM;

CleanUpRendering (int framenumber, int SampleRate, int Sample);

ViewExp* ViewPort;

BuildIndexList (INode** PtrList,int *IndexList,int count);

cOutToFile (unsigned char cval);

CloseOutputFile () ;

int LinVertS8earch(GeoNode *node, int VertNum) ;

quatOutToFile (Quat q) ;

MarkCompleteToFrame (int frame) ;

unsigned long BytesSoFar;

FramelList * GetFramePtrFromTime (int t);

BOOL bObjectsAddedThisFrame;

FrameList * frHead;

TransmitKeysThisSecond (GeoNode *node, int frame);

wOutToFile (int ival);

FILE* fileOut;

int InitFileForOutput (congst TCHAR * filename);

void fOutToFile (float f);

iOutToFile (int 1i);

int nLastRefNum;

int nLastMatRefNum;

void TransmitPolyBlock (GeoNode *node,int startFace, int startVert,
int FinalFrameThisBlock) ;

void BuildDataBlock (int uptoframe) ;

void SortVertListbyFrame (GeoNode *node, int lo,int hi);

void SortFacelListbyFrame (GeoNode *node, int lo,int hi);

void SortByFrame (GeoNode *node) ;

void InsertVertex(GeoNode *node, int Vert, int Frame, int loc);

int VertSearch(GeoNode *node, int VertNum) ;

void AddVertices (GeoNode *node, int Face,int Frame) ;

void InsertFace(GeoNode *node,int Face, int Frame, int loc);

int FaceSearch (GeoNode *node, int FaceNum) ;

void AddFaceToList (int ObjNum, int FaceNum, int FrameNum) ;

BOOL _BUseEnvMap;

Point3 _p30ldAmbient;

float _fOldLightLevel;

D-20

Appendix D: Source Code

Point3 _p301dTint;
Point3 _p30ldBackgrd;
void PrepareForRendering(int framenumber, int SampleRate, int

Sample) ;

void RenderCurrentFrame (int frame, Bitmap *bm, int SampleRate, int
Sample) ;

INode* ConstructObjectDatabase(int frame, int SampleRate, int
Sample) ;

void ScanRenderForFaces (Bitmap* bm, int frame);
BOOL BuildVertexFaceList () ;
int GetGeometryNodeIndex (INode *node) ;
int iCurrentCount;
BOOL nodeEnum{INode *node);
DummyCount {INode* node) ;
int iTotalNodeCount;
SortObjectList (ExpInterface *ei, Interface *gi, Compressor *exp);
Compressor () ;
~Compressor () ;
int iGeomCount;
int iMatCount;
int iCamCount;
int iLightCount;
int nSelectedCamera;
GeoNode GeometryList [MAXOBJECTS] ;
MatNode MaterialList [MAXOBJECTS] ;
INode* CameraPtrList [MAXOBJECTS] ;
int CameralIndexList [MAXOBJECTS] ;
INode* LightPtrList [MAXOBJECTS] ;
int LightIndexList [MAXOBJECTS] ;
int LightPtrIndexList [MAXOBJECTS] ;

friend BOOL CALLBACK CompressorOptionsDlgProc(HWND hblg, UINT
message, WPARAM wParam, LPARAM lParam);

int CompressScene(const TCHAR *filename, ExpInterface *ei,
Interface *gi, Compressor *exp);

int ExtCount () {return 1;}

const TCHAR *Ext (int i) {if (i==0) return _T("PRT"); else return
_T(nn>;}

const TCHAR *LongDesc () {return T ("Progressive
Real Time 3D Animation file");}

const TCHAR *ShortDesc() {return T("PRT £ile");}

const TCHAR *AuthorName () {return _T("Jonathan
Greenberg"); }

const TCHAR *CopyrightMessage () {return _T("Copyright
{c} 19%9"); }

const TCHAR *OtherMessagel () {return _T("Developed for
TRLabs and MeccaMedia"); }

const TCHAR *OtherMessage2 () {return _T(""); }

unsigned int Version() {return 11; }

void ShowAbout (HWND hWnd) ;
int DoExport (const TCHAR *name,ExpInterface *ei, Interface *i, BOOL
suppressPrompt s=FALSE) ;

2

class CompressorClassDesc:public ClassDesc {
public:

D-21

int
void *
Compressor () ; }
const TCHAR *
SClass_ID
Class_1ID
const TCHAR%*
void

}i
// Handy file class

class WorkFile {
private:

FILE *stream;
public:

*mode) { stream =

FILE *
int

result=fclose(stream); stream =

void
Close(); stream =

H

NULL;

Appendix D: Source Code

IsPublic() {return 1;}

Create (BOOL loading = FALSE) {return new
ClassName () {return GetString(IDS_CLASS NAME);}
SuperClassID() {return SCENE_EXPORT CLASS ID;}
ClassID() {return COMPRESSOR_CLASS 1ID;}

Category() {return GetString(IDS CATEGORY) ;}
ResetClassParams (BOOL fileReset);
WorkFile (const TCHAR *filename, const TCHAR

Open (filename, mode); };

~WorkFile() { Close(); };
Stream() { return stream; };
Close () { int result=0; if (stream)

NULL; return result; }

Open(const TCHAR *filename,const TCHAR *mode) {

_tfopen(filename,mode); }

#endif // _ COMPRESSOR H

D-22

Appendix D: Source Code

D.1.8 Compressor.cpp
/**
*<
FILE: Compressor. cpp
DESCRIPTION: Appwizard generated plugin
CREATED BY: Jonathan Greenberg
HISTORY: Thesis work
*> Copyright (¢) 2000, All Rights Reserved.

**/

#include "vertcol.h"
#include "Compressoxr.h"
#include "Opcodes.h"
#include '"modstack.h"
#include "mnmath.nh"
#include "stdmat.h"
#include "bmmlib.h"
#include "math.hn
#include "decomp.h"
#include "spline3d.h"
#include "PixelPeano.h"

ClassDesc* GetCompressorDesc () ;
Interface *intPtr;

#define MIN(a,b) ({a) < (b)) ? (a) {b)
#define BIGCONSTVALUE Ox7fffffff

#define WM_PAGEFLIP WM_USER+1

HINSTANCE hInstance;

int controlsInit = FALSE;
static BOOL showPrompts;
HDC hDC;

HWND hWnd;

ClassDesc* GetVColDesc() { return &vcolCD; }

VCol *NewDefaultVColTex ()
Class_ID(VCOL_CLASS_ID,0)); }

{ return (VCol*)CreateInstance(TEXMAP_CLASS_ID,

// This function is called by Windows when the DLIL is loaded. This

// function may also be called many times during time critical operations
// like rendering. Therefore developers need to be careful what they

// do inside this function. In the code below, note how after the DLL is
// loaded the first time only a few statements are executed.

BOOL WINAPI Dl11Main (HINSTANCE hinstDLL, ULONG fdwReason, LPVOID lpvReserved)

hInstance = hinstDLL;
instance handle.

// Hang on to this DLL's

D-23

Appendix D: Source Code

if (lcontrolsInit) {
controlsInit = TRUE;
InitCustomControls(hInstance); // Initialize MAX's custom
controls

}

return (TRUE);

InitCommonControls () ; // Initialize Win9s controls

}

// This function returns a string that describes the DLI and where the user
// could purchase the DLL if they don't have it.
__declspec(dllexport) const TCHAR* LibDescription ()

return GetString(IDS_LIBDESCRIPTION);

}

// This function returns the number of plug-in classes this DLL
//TODO: Must change this number when adding a new class
declspec(dllexport) int LibNumberClasses ()

{

return 1;

L

// This function returns the number of plug-in classes this DLI
__declspec(dllexport) ClassDesc* LibClassDesc (int i)

switch (i) {
case 0: return GetCompressorDesc () ;
default: return 0;

}

// This function returns a pre-defined constant indicating the version of
// the system under which it was compiled. It is used to allow the system
// to catch obsolete DLLs.

__declspec(dllexport) ULONG LibVersion ()

return VERSION_ 3DSMAX;

TCHAR *GetString(int id)

{

static TCHAR buf [256] ;

if (hInstance)
return LoadString(hInstance, id, buf, sizeof(buf)) ? buf : NULL;
return NULL;

///

static CompressorClassDesc CompressorDesc;
ClassDesc* GetCompressorDesc () {return &CompressorDesc; }

D-24

//TODO: Should implement

reset

void CompressorClassDesc

}

GeoNode: : GeoNode ()

{

}

GeoNode :

{

curNode = NULL;

FALSE;
IsHelper = FALSE;
IsTarget = FALSE;

IsChild

ParentIdx

TrueFacel.ist

-1;
= NULL;

AddedFacelist = NULL;
AddedVertList = NULL;
FaceAddedOnFrame = NULL;
VertAddedOnFrame = NULL;
TexIndexList = NULL;
nTrueFaceCount = 0;
nTrueVertexCount = 0;
nAddedFaceCount = 0;
nAddedVertCount = 0;

nSentVert = -1;

nSentFace = -1;

RefNumber = -1;

pMaxCoord.x = pMaxCoord.y = pMaxCoord.z
pMinCoord.x = pMinCoord.y = pMinCoord. z
LastPosKeySent = 0;

LastRotKeySent = 0;

LastRllKeySent = 0;

LastSclKeySent = -1;

IsAssignedTarget = FALSE;

MaterialID =

-1;

bMaterialAssigned = FALSE;
bKillMe = FALSE;

: ~GeoNode ()

if (nTrueVertexCount > 0)

{

if (VertAddedOnFrame != NULL)

delete[] VertAddedOnFrame;

if (AddedvVertList I= NULL)

}

delete[] AddedVertList;

if (nTrueFaceCount > 0)

{

delete[] TrueFaceList;
(AddedFaceList = NULL)

if

delete[] AddedFaceList;

if (FaceAddedOnFrame != NULL)

delete] FaceAddedOnFrame;

D-25

::ResetClassParams (BOOL fileReset)

-1le38f;

1le38f;

Appendix D: Source Code

this method to reset the plugin params when Max is

Appendix D: Source Code

TrueFacelist = NULL;
AddedFacelList = NULL;
AddedVertList = NULL;
FaceAddedOnFrame = NULL;
VertAddedOnFrame = NULL;

IsChild = FALSE;
IsHelper = FALSE;
ParentIdx = -1;
nTrueFaceCount = 0;
nTrueVertexCount = 0;
nAddedFaceCount = 0;
nAddedVertCount = 0;

// if (bKillMe && curNode)
/s curNode-s>Delete (0, 0) ;

curNode = NULL;

}

GeoNode: : InitBoundingBox ()

iMax¥X = iMax¥Y = -65535;
iMinX iMiny 65535;

il
[}

}

BOOL GeoNode: : IsSuperObject ()

{

Object *obj = curNode-s>EvalWorldState(0).obj;
TriObject *Tri;
if (IsHelper)
Tri = NULL;
else Tri = (TriObject*)
obj->ConvertToType (0, Class_ID(TRIOBJ CLASS ID,0));
if (Tri && Tri->mesh.numFaces > 0)
{
int i=1;
DWORD smooth = Tri->mesh.faces[0].smGroup;
while (i<Tri->mesh.numFaces)
if ((Tri->mesh.faces[i++].smGroup & smooth) == 0)
return TRUE;

// StdMat* nodeMtl= (StdMat*) curNode->GetMtl () ;
// if (!({!nodeMt]l || nodeMtl->GetWire()))
// return TRUE;

return FALSE;

MatNode: :MatNode ()

RefNumber = -1;

curNode = NULL;

ilastTexturePowerSent = -1;

WaveletCoeff = NULL;

for (int i=0;i<16;i++)

{
iMipNeededOnFrame [i] = 2147483647;
bMipSent [1] = FALSE;

D-26

Appendix D: Source Code

// max value for an unsigned 32b int
iMaxNecessaryTexPower = MAXTEXTUREPOWER;
pTextureMap = NULL;

MatNode: : ~MatNode ()

{

if (WaveletCoeff)

delete[] WaveletCoeff;
if (pTextureMap)

delete[] pTextureMap;

}

LILLLLS LSS S 7777777 777 7 7 77 7 77 77 77
/// Utility functions

float round(float f)
// rounds a positive float to the nearest integer

{

if (£ - 0.5f < floorf(f))
return (floorf(f))
else return (ceilf (f));

’

}

unsigned int ReScaleFloat (float val, float min, float max, int bitdepth)
// rescales a floating point value into the specified integer range and
// returns the scaled value

{

float difl = val - min;
float dif2 = max - min;
float perc difi / dif2;
float scale;

gwitch (bitdepth)

{

case BPC_16: scale
case BPC_12: scale 4095.0; break;
case BPC_10: scale 1023.0; break;
case BPC _8: scale = 255.0; break;

65535.0; break;

It

}

return ((unsigned int) round(perc * scale));

float ScaleUp(unsigned int val, float min, float max, int bitdepth)

float scale;
float fval = (float) wval;
switch (bitdepth)

{

65535.0f; break;
4095.0f; break;
1023.0f; break;
255.0f; break;

case BPC_16: scale
cage BPC_12: scale
case BPC_10: scale
case BPC _8: scale

I

[

}

float perc = fval / scale;
return (min + perc * (max - min));

D-27

Appendix D: Source Code

}

unsigned short Convert_1ébColor (COLORREF col)
// converts a COLORREF value to a 16 bit color value

{

unsigned char r,qg,b;

r = GetRValue (col);

g = GetGValue (col);

b = GetBvValue(col) ;

Y =1r > 3;

g =g >> 2;

b=Db > 3;

ungigned short outp = (r << 11) + (g << 5) + b;

return (outp);

}

COLORREF ConvertRGBtoColorref (Point3 col)
// converts a 3-part float color value to a 24b packed dword value

unsigned int color = 0;
unsigned char * ar = (unsigned char*)s&color;

ar[0] = (unsigned char) (col.x * 255.0f);
ar[l] = (unsigned char) (col.y * 255.0f);
ar{2] = (unsigned char) (col.z * 255.0f);

return color;

}

Point3 Transf (const Matrix3& M, const Point3& V)
// transforms vector V by the matrix M

Point3 r;

r.x = M.GetRow(0) [0]*V.x + M.GetRow(l) [0]l*V.y + M.GetRow(2)[0]*V.z =+
M.GetRow (3) [0] ;

r.y = M.GetRow(0) [1]*V.x + M.GetRow (1) [1]*V.y + M.GetRow(2)[1l]1*V.z +
M.GetRow (3) [1];

r.z = M.GetRow(0) [2]*V.x + M.GetRow(l) [2]*V.y + M.GetRow(2) [2]1*V.z +

M.GetRow (3) [2] ;
return (r);
}

BOOL CheckIdentity{const Matrix3& M)
// returns true if M is an identity Matrix.. allows for a little more leaway
// than the built in routine

float sum;
sum= M.GetRow(0) [1] + M.GetRow(0) [2] + M.GetRow(1) [0] + M.GetRow(1l) [2] +
M.GetRow(2) [0] + M.GetRow(2) [1] + M.GetRow(3) [0] + M.GetRow(3) [1]

+
M.GetRow (3) [2];
if (fabsf{sum) < 0.001f && (fabsf(M.GetRow(0)[0] - 1.0f) < 0.001f) &&
(fabsf (M.GetRow (1) [1] - 1.0f) < 0.001f) &&
(fabsf (M.GetRow (2) [2] - 1.0f) < 0.001f))

return TRUE;
else return FALSE;

}

FileDump (char *filename, unsigned char *Data, int size, int depth)

D-28

Appendix D: Source Code

// a diagnostic routine. dumps a bitmap to a file

FILE *fout;
if ((fout = fopen(filename, "wb")) == NULL)
{ fprintf (stderr, "Cannot open output file.\n");
return 0O;
1
unsigned char *D = Data;
for (int y=0;y<size;y++)
for (int x=0;X<size;X++)
for (int c=0;c<depth;c++)
fputc (* (D++) , fout) ;
fflush(fout) ;
fclose (fout) ;
return 0;

}

FileFloatDump (char *filename, float *Data, int size, int depth)
// a diagnostic routine: dumps an image of floats to a file

FILE *fout;
if ((fout = fopen(filename, "wb")) == NULL)

fprintf (stderr, "Cannot open output file.\n");
return 0;
}
float *D = Data;
for (int y=0;y<size;y++)
for (int x=0;x<size;xX++)
for (int c=0;c<depth;c++)
fputc((unsigned char)* (D++), fout) ;
fflush (fout) ;
fclose (fout) ;
return O;

}

TriCbject* GetTriObjectFromNode (INode * node, int & deletelt)
// generates a triangle object given a 3DS node. deletelT specifies
// that cleanup is needed

deletelt = FALSE;
Object *obj = node->EvalWorldState(0).obj;
if (obj->CanConvertToType (Class_ID(TRIOBJ_CLASS ID, 0)))

TriObject *tri = (TriObject *) obj->ConvertToType (0,
Class_ID(TRIOBJ CLASS ID, 0));
// Note that the TriObject should only be deleted
// if the pointer to 1t is not equal to the object
// pointer that called ConvertToType ()
if (obj != tri) deletelt = TRUE;
return tri;

else

return NULL;

D-29

}

Appendix D: Source Code

YNNI iairiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiivivesidd
Yl

/7
/17

Compressor Class (this is where the magic happens)

Compressor: : Compressor ()

{

}

iLightCount =
iCamCount = 0;
iGeomCount = 0;
iMatCount = 0;
nLastRefNum = -1;
nLastMatRefNum = -1;
BytesSoFar = 0;
iSampleRate = 2;

fTotalExroxr
iTotalVerts

for (int i=0;i<MAXOBJECTS;i++)

{

CameraPtrList [i] = NULL;

0;

0.0f;
0;

Compressor : : ~Compressor ()

{
}

void Compressor: :ShowAbout (HWND hWnd)

{
}

int

Compressor: :DoExport (const TCHAR *name, ExpInterface *ei,Interface

BOOL suppressPrompts)

}

// Set a global prompt display switch
showPrompts = suppressPrompts ? FALSE : TRUE;

int status = 0;
SortObjectlList (ei,gi, this);
status=CompressScene (name, ei, gi, this);
if (status == 0)

return 1; // Dialog cancelled
if (status > 0)

DebugPrint ("Progressive Tranmission Compressor status OKi\n");

else if (status < 0)
DebugPrint ("Error somewhere in PRT!\n");

return (status) ;

static BOOIL CALLBACK
CompressorOptionsDlgProc (HWND hDlg, UINT message, WPARAM wParam, LPARAM

D-30

*gi,

Appendix D: Source Code

lParam) {
// used to generate and retrieve the values for the main-menu dialog
static Compressor *exp;
Interval range = intPtr->GetAnimRange () ;
HWND hCombo, hSlider;
// HWND hEdit;
int i;

switch (message) {
case WM_INITDIALOG:

exp = (Compressoxr *)lParam;
CheckDlgButton(hDlg, IDC RADIOLOWQ, TRUE);
CheckDlgButton(hDlg, IDC RADIO32B, TRUE);
SetDlgltemInt (hDlg, IDC_XRES, DEFAULT_ XRES, FALSE) ;
SetDlgIltemInt (hDlg, IDC_YRES, DEFAULT_YRES, FALSE) ;
SetDlgItemInt (hDlg, IDC FRAMERATE, GetFrameRate(), FALSE);

{
SetDlgItemInt(thg, IDC_STARTFRAME,
range.Start () /GetTicksPerFrame (), FALSE);
SetDlgItemInt(thg, IDC_ENDFRAME,
range.End () /GetTicksPerFrame (), FALSE);

CheclegButton(hDlg, IDC_DIRLIGHT, TRUE) ;
/* if (!bSceneContainsNoLights)
SetDlgItemInt(thg, IDC_DIRLIGHT, BN_DISABLE, TRUE) ;
*
/
// connect camera information to combo box here.
hCombo = GetDlgItem(hDlg, IDC COMBOCAMERAS) ;
SendMessage (hCombo, CB_RESETCONTENT, 0, 0);

for (i=0;i<exp->iCamCount;i++)

{
SendMessage (hCombo, CB_ADDSTRING, 0, (LPARAM)
exp->CameraPtrList [1] ->GetName ()) ;

SendMessage (hCombo, CB_SETCURSEL, (WPARAM) 0, 0);

hSlider = GetDlgItem(hDlg, IDC_SLIDER_THRESHOLD);

SendMessage (hSlider, TBM SETTICFREQ, (WPARAM) 50, 0);

SendMessage (hSlider, TBM_ SETRANGE, (WPARAM) TRUE, (LPARAM)
MAKELONG (30,400)) ;

SendMessage (hSlider, TBM_SETPOS, (WPARAM) (BOOL) TRUE,
(LPARAM) (LONG) 300) ;

h8lider = GetDlgIltem(hDlg, IDC_SLIDER_TEXRES) ;

SendMessage (hSlider, TBM_SETRANGE, (WPARAM) TRUE, (LPARAM)
MAKELONG (MINTEXTUREPOWER , MAXTEXTUREPOWER)) ;

SendMessage (hSlider, TBM_SETPOS, (WPARAM) (BOOL:) TRUE,
(LPARAM) (LONG) MINTEXTUREPOWER+3) ;

if (exp->iCamCount == 0)
MessageBox (NULL, "The scene must contain a camera in
order to be exported.”,"Exror!",MB_OK) ;
return TRUE;

// this REALLY should be replaced by a default from
the front facing viewport

: :CenterWindow (hDlg, GetParent (hD1lg)) ;

D-31

: :SetFocus (hDlg) ;
DS5-3/4/96
return FALSE;
case WM_DESTROY:
return FALSE;
cage WM _COMMAND:

Appendix D: Source Code

// For some reason this was necessary.

switch (LOWORD (wParam)) {

case IDOK:

{

// Unload values into local statics

// THIS IS EQUIVILENT TO A DOMODAL()==IDOK

being returned

// so we grab the dialog crap HERE

IDC_RADIOLOWQ))

IDC_VERTNORM))

IDC_COMPNORM))

IDC DIRLIGHT))

IDC_RADIO10B))

IDC_RADIO16B))

IDC_XRES, &bSuccess,

FALSE) * 2;

IDC_YRES, &bSuccess, FALSE) * 2;

IDC_FRAMERATE, &bSuccess, FALSE);

IDC_STARTFRAME, &bSuccess, FALSE);

if (IsDlgButtonChecked (hDlg,

bMaterialQuality = FALSE;
elge bMaterialQuality = TRUE;

if (IsbDlgButtonChecked (hDlg,
bVertexNormals = TRUE;
else bVertexNormals = FALSE;

if (IsDlgButtonChecked (hDlg,
bCompressNormals = TRUE;
else bCompressNormals = FALSE;

if {(IsDlgButtonChecked (hDlg,
bUseShading = TRUE;
else bUseShading = FALSE;

if (IsDlgButtonChecked (hDlg,
iBitsPerVertex = BPC_8;

IDC_RADIOSB))

else if (IsDlgButtonChecked (hDlg,
iBitsPerVertex = BPC_10;
else if (IsDlgButtonChecked (hDlg,

iBitsPerVertex = BPC 16;
else iBitsPerVertex = BPC_32;

BOOL bSuccess;

iSampleXres = GetDlgItemInt (hbDlg,
if (!bSuccess) return FALSE;
iSampleYres = GetDlgItemInt (hDlg,
if (!bSuccesgs) return FALSE;
iFrameRate = GetDlgItemInt (hDlg,
if (!bSuccess) return FALSE;
iStartFrame = GetDlgItemInt (hDlg,

D-32

Appendix D: Source Code

if (!bSuccess) return FALSE;

iEndFrame = GetDlgItemInt (hDlg,
IDC_ENDFRAME, &bSuccess, FALSE) ;

if (!bSuccess) return FALSE;

::EndDialog (hDlg, 1);

hCombo = GetDlgItem(hDlg,

IDC_COMBOCAMERAS) ;
exp->nSelectedCamera = SendMessage (hCombo,

CB_GETCURSEL, 0, 0);

hslider = GetDlgItem(hDlg,

IDC_SLIDER_THRESHOLD);
exp->fTextureQualityThreshold =

SendMessage (hSlider, TBM_GETPOS, 0, 0) / 10.0f;
hSlider = GetDlgItem (hDlg,

IDC_SLIDER TEXRES) ;
int count = SendMessage (hSlider,

TBM_GETPOS, 0, 0);
exp->iDesiredTexturePower = count;

hSlider = GetDlgItem (hDlg,
IDC_SLIDER_TEXRES) ;

}

return TRUE;
case IDCANCEL:
::EndDialog (hDlg, 0);
return TRUE;
return FALSE;

}

// Dummy Ffunction for progress bar
DWORD WINAPI fn(LPVOID arg)

return (0) ;

}

int Compressor::CompressScene (const TCHAR * filename, ExpInterface * ei,
Interface * gi, Compressor * exp)

{

// This is the true, practical main function where all the magic really
happens.

// After the dialog is brought up, the system begins the exporting process,
as

// described below.

BOOL bFailed = FALSE; // did any setup tests fail?

// disable keyboard accelerators to prevent strange behaviours in Max
from happening

DisableAccelerators () ;
if (iCamCount == 0)

{

D-33

Appendix D: Source Code

MessageBox (NULL, "The scene must contain a camera in order to be
exported. ", "Exror!",MB_OK) ;
return 0;

if (showPrompts)

// Put up the options dialog to find out how they want the file
written!
int result = DialogBoxParam(hInstance,

MAKEINTRESOURCE (IDD COMPRESSDIALOG) ,
gi->GetMAXHWnd (), CompressorOptionsDlgProc, (LPARAM)exp) ;
if (result <= 0)
return 0;
}
else
{ // if they're running this via a batch process of some kind, force
these default options.
iSampleXres = DEFAULT XRES;
iSampleYres = DEFAULT YRES;
bMaterialQuality = FALSE;

}

// okay, let's check to make sure we can actually open the file
if ((fileOut = fopen(" temp", Y"wb")) == NULL)
// if ((fileOut = fopen (filename, "wb")) == NULL)

{

bFailed = TRUE;
// messagebox saying unable to write to file

elge fclose(fileOut) ;

// now that we have all the basic information we need about all the
// objects themselves

if (!bFailed && BuildSubObjectList () && BuildVertexFaceList ())
{
// build a face/vertex list for each polygonal object, using a
// dynamically created array, to conserve memory.
intPtr—>ProgressStart(GetString(IDS_PROGRESS~MSG1), TRUE, fn,
NULL) ;

// hide all the objects in the list

for (int i=0;i<iGeomCount;i++)
GeometryList [1] . curNode->Hide (TRUE) ;

for (i=0;i<iSuperObjCount;i++)
SuperObjects{i] ->Hide (TRUE) ;

DebugPrint ("Constructing Materials.\n");
// Generate the list of all materials, and which objects are
// using which materials
BuildMaterialList () ;
iSampleRate = (int) (ceilf(30.0f / (float)iFrameRate)) * 2;

// #now proceed through the frame list (loop)
for (int frame = iStartFrame;frame < iEndFrame+l;frame++)

D-34

Appendix D: Source Code

intPtr->ProgressUpdate ((int) ((float) frame/ (float) iEndFrame+*1
00.0£f));
// in the current frame:
for (int Sample=0;Sample<iSampleRate;Sample++)

{

char buffer[200];
sprintf (buffer, " [Frame #%d, Sample #%d]\n", frame, Sample) ;
DebugPrint (buffer) ;

#ifdef _DEBUG

#endif

// transmit all active lights not in the active light list

// If any lights previously active turn off in this frame,
transmit the "off" message

// Draw all current objects in the database, using the schema:

// (object number << 24 + face number) + 1.
DebugPrint ("Constructing Object.\n");

INode~* falseobj =

ConstructObjectDatabase (frame, iSampleRate, Sample) ;

// Backup old frame and environment settings
PrepareForRendering (frame, iSampleRate, Sample) ;

// Render frame using 3DSMax's renderer
Bitmap* bmap = 0;
BitmapInfo bi ("Oimage.png");
bi.SetType(BMM_TRUE_64);

// bi.SetType (BMM_TRUE 32) ;

bi.SetWidth (iSampleXres) ;
bi.SetHeight (iSampleYres) ;
bmap = TheManagexr->Create (&bi) ;
bmap->0OpenOutput (&bi) ;
bmap->SetFilter (BMM_FILTER NONE) ;
bmap—>SetDither(BMM_DITHER_NONE);

//DebugPrint ("Rendering current frame.\n");
RenderCurrentFrame (frame, bmap, iSampleRate, Sample) ;
BMM_Color 64 blacké4= {0,0,0,0};
Bitmap* readmap = 0;
readmap = TheManager->Create (&bi) ;
readmap->CopyImage (bmap, COPY_ IMAGE_RESIZE LO QUALITY,Db

lacke4) ;
bmap->Close (&bi) ;
if (falseobj) falseobj->DeleteThis();
if (bmap) bmap->DeleteThis () ;
// Read rendered frame back into a Bitmap (RGB 16/16/16)
// Scan Bitmap per-pixel.
// Compare color to global color list (Binary search into
list.

// If not found, add to this frame color list, and add to
global color list
DebugPrint ("Scanning for objects.\n");
ScanRenderForFaces (readmap, frame) ;
if (readmap) readmap->DeleteThis();

D-35

Appendix D: Source Code

// restore old frame-related environment settings
CleanUpRendering (frame, iSampleRate, Sample) ;

DebugPrint ("Frame Completed.\n");

}

intPtr->ProgressEnd () ;

intPtr->ProgressStart (GetString (IDS_PROGRESS MSG2), TRUE, fn,
NULL) ;
for (int objnumber=0;objnumber<iGeomCount ; objnumber++)
// now we resort each object's added face/vertex list based
on

// when they were added to the scene (since to speed
things, we

// originally sorted on reference number).

intPtr->ProgressUpdate { (int) ((float)cbjnumber/ (float) iGeomCo

unt+*100.0£f)) ;

SortByFrame (& (GeometryList [objnumber])) ;
intPtr->ProgressEnd () ;
intPtr—>ProgressStart(GetString(IDS_PROGRESS_MSG3), TRUE, fn,

NULL) ;

// create output file and add filetype parameters
int HeaderLength = InitFileForOutput (filename) ;

// exporting background info
Point3 BgrndColor = intPtr->GetBackGround (0, FOREVER) ;

if (fabsf (BgrndColor.x) > 0.001f || fabsf (BgrndColor.y) > 0.001f
fabsf (BgrndCeoloxr.z) > 0.001f)

iOutToFile (OPCODE_SETBACKGROUNDCOLOR) ;
wOutToFile (Convert_leébColor (ConvertRGBtoColorref (BgrndColor)

}

if (iStartFrame == iEndFrame)
iEndFrame++;
for
(frame=iStartFrame+iFrameRate; frame<iEndFrame+iFrameRate; frame+=iFrameRate)

if (frame > iEndFrame) frame = iEndFrame;
BuildDataBlock (frame) ;
}
// Transmit color list as face/vertex/obj info.
// If first time adding an object:
// Transmit object placers (3D offsets)
// Transmit object material information
// Add list of objects in this frame to active object list
// Add keyframe information for any currently active objects that
require it
intPtr->ProgressEnd () ;

D-36

Appendix D: Source Code

CloseOutputFile () ;

// okay, since we're basically done, let’'s losslessly compress
the

// whole file. As it turns out, we're using the LZSS technique.

if (1LZSS_OutputFile(HeaderLength, filename)) return FALSE;

// Everything is finished, so restore the scene to normal

// unhide all objects in the list

for (i=0;i<iGeomCount;i++)
GeometryList [1] . curNode->Hide (FALSE) ;

for (i=0;i<iSuperObjCount;i++)
SuperObjects[i] ->Hide (FALSE) ;

for (i=0;i<iGeomCount;i++)
if (IsMarkedForDeletion (&GeometryList[i]))
{
GeometryList [i] .curNode->Detach(0,1) ;
GeometryList [i] .curNode->SetMt1l (NULL) ;
GeometryList [i] . curNode->SetTMController (NULL) ;
GeometryList [i] .curNode->DeleteThis () ;

else

for (int i=0;i<iGeomCount;i++)
if (IsMarkedForDeletion (&GeometryList[i]))

{

GeometryList [i] .curNode->Detach(0,1);
GeometryList [1] . curNode->SetMt1 (NULL) ;
GeometryList [i] . curNode->SetTMController (NULL) ;
GeometryList [i] .curNode->DeleteThis () ;

}

#ifdef DEBUG

char buffer[200];

if (iTotalVerts == 0) iTotalVerts=1l;

sprintf (buffer, "Average Error Per Vertex = %f percent\n", fTotalError / (
float)iTotalVerts * 100.0f);

MessageBox (NULL,buffer, "Final Statistics",MB_OK);
#endif

// Renable keyboard accelerators in Max
EnablelAccelerators () ;
return 1;

}

Compressor: :SortObjectList (ExpInterface * ei, Interface * gi, Compressor *
exp)

// builds a list of all the current objects, and sorts them into their
// varioug categories.

intPtr = gi;

INode* Head = intPtr->GetRootNode () ;
iTotalNodeCount = 0;

D-37

/7
//

}

Appendix D: Source Code

int iNumChildren = Head->NumberOfChildren() ;

// dummy count first, just to get node count
for (int idx=0; idx<iNumChildren; idx++)
DummyCount (Head- >GetChildNode (idx}) ;

intPtr->ProgressStart (GetString (IDS_PROGRESS_MSGO), TRUE,

iCurrentCount = 0;
for (idx=0; idx<iNumChildren; idx++)
{
if (intPtr->GetCancel())
break;
nodeEnum (Head->GetChildNode (idx)) ;

}

// We're done sorting. Finish the progress bar.
intPtr->ProgressEnd () ;

BuildIndexList (CameraPtrList, CameralndexList,iCamCount) ;
BuildIndexList(LigbtPtrList,LightIndexList,iLightCount);
MarkTargets () ;

return O;

Compressor : : DummyCount (INode* node)
// a recursive function used in the enumeration of the number of nodes
// in the scene

{

}

iTotalNodeCount++;

for {int c = 0; ¢ < node->NumberOfChildren{(); c++)
DummyCount (node->GetChildNode (¢)) ;
return 0;

BOOL Compressor: :nodeEnum (INode * node)
// Enumerates all nodes in the scene, and identifies what they are
// for later use

{

Y)Y

iCurrentCount++;

fn, NULL);

intPtr->ProgressUpdate((int)((float)iCurrentCount/iTotalNodeCount*lO0.0f

ObjectState os = node->EvalWorldState(0);

if (node->IsGroupHead())

{
}

DebugPrint ("Group Begins:\n");

// The obj member of ObjectState is the actual object we will export.

if (os.obj)

{

// We look at the super class ID to determine the type of the

object.

switch (os.obj->SuperClassID())

{

case GEOMOBJECT_CLASS_ ID:

GeometryList [iGeomCount] .curNode = node;

D-38

Appendix D: Source Code

GeometryList [iGeomCount] .IsHelper = FALSE;
GeometryList [iGeomCount] .IsChild = node->IsTarget();
if (node->GetParentNode () ->IsRootNode())
{
GeometryList [iGeomCount] .IsChild = FALSE;
GeometryList [iGeomCount] . ParentIdx = -1;

}

else

{
GeometryList [iGeomCount] . ParentIdx =
GetGeometryNodeIndex (node->GetParentNode ()) ;
GeometryList [iGeomCount] .IsChild = TRUE;
#ifdef DBGMODE

DebugPrint ("Parent of node = ");
DebugPrint(node->GetParentNode()—>GetName());
DebugPrint ("; ");
#endif :
iGeomCount ++;

#ifdef DBGMODE
DebugPrint("GEOMETRY: "y
DebugPrint (node->GetName ()) ;
DebugPrint ("\n") ;
#endif
}
break;
case CAMERA CLASS_ID:
CameraPtrList [iCamCount++] = node;
#ifdef DBGMODE
DebugPrint ("CAMERA: ") ;
DebugPrint (node->GetName ()) ;
DebugPrint (*\n") ;
#endif
CameralIndexList [iCamCount-1] = iGeomCount;
GeometryList [iGeomCount] .curNode = node;
GeometryList [iGeomCount] . IsHelper = FALSE;
if (node->GetParentNode () ->IsRootNode())
{
GeometryList [1GeomCount] . IsChild = FALSE;
GeometryList [iGeomCount] . ParentIdx = -1;

}

elze

{
GeometryList [1GeomCount] . ParentIdx =
GetGeometryNodeIndex (node->GetParentNode ()) ;
GeometryList [1GeomCount] .IsChild = TRUE;
#ifdef DBGMODE
DebugPrint ("Parent of node = ");
DebugPrint (node->GetParentNode () ->GetName ()) ;
DebugPrint (*; ");
#tendif
}
iGeomCount++;
break;
case LIGHT_CLASS_ID:
LightPtrList [iLightCount++] = node;
#ifdef DBGMODE
DebugPrint ("LIGHT: ");

D-39

Appendix D: Source Code

DebugPrint (node->GetName ()) ;
DebugPrint ("\n") ;
#endif

LightIndexList [iLightCount-1] = iGeomCount;

GeometryList [iGeomCount] . curNode = node;

GeometryList [iGeomCount] . IsHelper = FALSE;

if (node->GetParentNode () ->IsRootNode())

{
GeometryList [iGeomCount] .IsChild = FALSE;
GeometrylList [iGeomCount] .ParentIdx = -1;

}

else

{ GeometryList [iGeomCount] . ParentIdx =
GetGeometryNodelIndex (node->GetParentNode ()) ;
GeometryList [iGeomCount] .IsChild = TRUE;
#ifdef DBGMODE
DebugPrint ("Parent of node = ");
DebugPrint (node->GetParentNode () ->GetName ()) ;
DebugPrint ("; ");
#endif
)
1GeomCount++;
break;
case SHAPE CLASS_ID:
#ifdef DBGMODE
DebugPrint (“SHAPER: ") ;
DebugPrint (node->GetName ()) ;
DebugPrint ("\n") ;
#endif
break;
case HELPER CLASS ID:
GeometryList [iGeomCount] .curNode = node;
GeometrylList [iGeomCount] . IsHelper = TRUE;
if (node->GetParentNode () ->IsRootNode ())
{ ,
GeometryList [iGeomCount] .IsChild = FALSE;
GeometryList [iGeomCount] .ParentIdx = -1;

}

else

{
GeometryList [iGeomCount] . ParentIdx =
GetGeometryNodeIndex (node-~>GetParentNode ()) ;
GeometryList [iGeomCount] .IsChild = TRUE;
#ifdef DBGMODE
DebugPrint ("Parent of node = ");
DebugPrint (node->GetParentNode () - >GetName ()) ;
DebugPrint ("; ");
#endif
}
iGeomCount++;
#ifdef DBGMODE
DebugPrint ("HELPER: ") ;
DebugPrint (node->GetName ()) ;
DebugPrint (*\n") ;
#endif
break;

D-40

Appendix D: Source Code

}

for (int ¢ = 0; ¢ < node->NumberOfChildren() ; CH++)
if (!nodeEnum(node->GetChildNode (c)))
return FALSE;

if (node->IsGroupHead())

DebugPrint ("Group Ends:\n");

}

return TRUE;

}

int Compressor::GetGeometryNodelIndex (INode * node)
// finds the index into the geometry array for the given node pointer.
// if its not found, a -1 is returned.

{

for (int i=0;i<iGeomCount;i++)
if (node == GeometryList[i].curNode)
break;
if (i == iGeomCount)
return -1;
else return i;

1]

}

Compressor: :BuildIndexList (INode ** PtrList, int *IndexList, int count)
// finds the location of each pointer reference in PtrList and places
// its reference number in IndexList.

{

for (int i=0;i<count;i++)

{

for (int j=0;GeometryList [j] .curNode l= PtxrList [1] &&
j<iGeomCount;j++) ;
if (GeometryList[j].curNode != PtrList[il])

DebugPrint ("Error encountered while trying to build index
list.\n");

elge
IndexList{i] = 3;

}

Compressor: :MarkTargets ()
// assigns all the target references to the various nodes

for (int i=0;i<iGeomCount;i++)

{

if (GeometryList[i].curNode->GetTarget ())

{ GeometryList [i] . TargetNode
GeometryList [i] .curNode->GetTarget () ;
for (int j=0;j<iGeomCount;j++)
if (GeometryList {j] .curNode
GeometryList [1] . TargetNode)

1]
i

D-41

Appendix D: Source Code

GeometryList [1] .TargetIdx = J;
GeometrylList [j] .IsTarget = TRUE;
break;

}

assert(j != iGeomCount) ;
else

GeometryList [i] .TargetNode = NULL;
GeometryList[i] .TargetIdx = -1;

}

Compressor: :BuildMateriallist ()
// Generates the list of materials and assigns them to our constructed
// object database

for (int 1=0;i<iGeomCount;i++)

Mtl* mnode = GeometryList[i].curNode->GetMtl ();
if (mnode)

BOOL bFound = FALSE;
for {(int j=0;j<iMatCount;j++)
if (mnode == MaterialList[j].curNode)

bFound = TRUE;
break;

}

if (!bFound)

{

GeometryList [i] .MaterialID = iMatCount;
MaterialList [iMatCount++] .curNode = mnode;

}

else GeometryList[i] .MateriallD = j;

}

int FindSmthVert (int *Vertlist,int VertCount, int VertNum)
// performs a linear search into a vertex list for a specific
// vertex number, and returns it's index into the array

{

int loc = -1;
for (int i=0;i<VertCount;i++)
if (VertList([i] == VertNum)
loc = i;
break;

}

return (loc);

}

BOOL Compressor: :BuildSubObjectList ()
// Takes each object and slices it into new objects based on smoothing groups

D-42

Appendix D: Source Code

int newCount = iGeomCount;

iSuperObjCount = 0;

int *Vertices[32];

int *Faces[32];

int *FacelD[32];

for (int x=0;x<32;x++)

{
Vertices[x] = new int [MAXOBJECTS] ;
Faces [x] = new int [MAXOBJECTS*3];
FaceID[x] = new int [MAXOBJECTS] ;

}

int FaceCount [32];
int VertCount[32];

for (int loop=0;loop<newCount;loop++)

{
if (!GeometryList [loop] . IsHelper
GeometryList [loop] . IsSuperObject ())

Object *0ob3j
GeometryList [loop] . curNode->EvalWorldState (0) .obj;

TriObject *Tri;

Tri =
obj->ConvertToType (0, Class_ID(TRIOBJ_CLASS ID,0));

if (Tri && Tri-s>mesh.numFaces > 0)

{
SuperObjects [1SuperObjCount++]
GeometryList [loop] . curNode;
// A mesh can have up to a total

&&

(TriObject*)

of 32 smoothing

groups.
// As each group is marked using a bitmask in each
face,
// we take the original object and split it intoc up
to 32
// new objects
// i1f any of these new objects don't have any
vertices
// we discard them. If they do, we append them to
the
// end of the geometry list, and make them children
// of a new dummy object. We assign the original
// material to all of these children
for (int 1=0;i<32;i++)
{ FaceCount [1] = 0;
VertCount [i] = 0;
}
for (i=0;i<Tri->mesh.numFaces;i++)
{
DWORD smooth = Tri->mesh.faces[i].smGroup;
DWORD mask = 1;
: for (int j=0;j<32 && ((smooth & (mask << j))} ==
0);j++);

int locl

D-43

Appendix D: Source Code

FindSmthvVert (Vertices[j],VertCount [j],Tri->mesh.faces[i].v[0]);
int loc2
FindSmthVert (Vertices[j],VertCount [j],Tri->mesh.faces[i].vI[1]);
int loc3
FindSmthVert (Vertices[j],VertCount [j],Tri->mesh.faces[i] .v[2]);
if (locl == -1)
{ Vertices[j] [VertCount [j]]
Tri->mesh.faces[i] .v[0];
locl = VertCount[j]++;

if (loc2 == -1)

Vertices{j] [VertCount [j1]
Tri->mesh.faces{i].v[1];
loc2 = VertCount [j]++;
!
if (loc3 == -1)
{
Vertices[j] [VertCount[j]]
Tri->mesh.faces[i].v[2];
loc3 = VertCount[jl++;

FacelID[j] [FaceCount [j]] = i;

Faces [j] [FaceCount [j]*3+0] = locl;
Faces[j] [FaceCount [§] *3+1] loc2;
Faces[j] [FaceCount [§] *3+2] loc3;
FaceCount [j] ++;

}

// first, let's create a dummy node

nothing, but placed at the

// «coordinates of the original object,

original orientation

TriObject* dummyobj = CreateNewTriObject () ;

dummyobij ->mesh. setNumVerts (0) ;
dummyobi - >mesh. setNumFaces (0) ;
INode* meshnode = 0;

containing

with the

meshnode = intPtr->CreateObjectNode (dummyobij) ;

TCHAR dummyname [255] ;

_tescpy (dummyname , GeometryList [loop] . curNode- >GetName (

)Y

_tcscat (dummyname, T(" - Dummy Parent"));

meshnode->SetName (dummyname) ;
INode* root = intPtr->GetRootNede () ;
if (root)

root->AttachChild (meshnode, 0) ;

GeometryList [loop] . curNode = meshnode;
Control* contr = NULL;

contr = (Control*) SuperObjects [iSuperObjCount -

1] ->GetTMController () ->Clone () ;

GeometrylList [loop] . curNode->SetTMController (contr) ;

if (lcontr)

{
Matrix3 tm
GetLocalMatrix (SuperObjects [iSuperObjCount-1],0) ;

GeometryList [loop] . curNode->SetNodeTM (0, tm) ;

D-44

Appendix D: Source Code

}

// reproduce any original pivot point it had

Point3 offsetPos =
SuperCbijects [iSuperObjCount-1] ->GetObjOffsetPos () ;

Quat offsetRot = SuperObjects[iSuperObjCount-
1] ->GetObjOffsetRot () ;

ScaleValue offsetScl = SuperObjects [iSuperObjCount-

1] ->GetObjOffsetScale () ;

GeometryList [loop] . curNode->SetGroupHead (TRUE) ;
GeometryList [loop] .bKillMe = TRUE;
MarkNodeForDeletion (&GeometryList [loop]) ;

// so now that we have a list of all the necessary
faces and vertices, we can
// build up our new objects
for (i=0;1<32;14+)
if (FaceCount[i] > 0)

{

TriObject* newobj = CreateNewTriObject () ;
// copy verts
newobij->mesh.setNumVerts (VertCount [i]) ;
for (int §=0;j<VertCount [i];j++)

newobj->mesh.setVert (j, Tri->mesh.ver
ts[Vertices[i] [7]1]);

// copy faces
newobj->mesh. setNumFaces (FaceCount [i]) ;
for (j=0;j<FaceCount [i];j++)
newobj->mesh.faces[j] .setVerts (Faces
[i1 [3=*37,
Faces[i] [§*3+1],Faces[i] [j*3+2

Matrix3 MI(1);
if (Tri->mesh.getNumTVerts () = 0 &&
SuperObjects [iSuperObjCount-1] ->GetMtl ())
Tri->mesh.ApplyUVWMap (MAP PLANAR,1.0
f£,1.0f,1.0£,0,0,0,0,MI);
if (Tri->mesh.getNumTVerts() > 0)
{
// copy texture verts
newobij->mesh. setNumTVerts (VertCount [
il);
newobj->mesh. setNunTVFaces (FaceCount
[i1);
for (j=0;j<FaceCount [i] &&

{

Tri->mesh.numTVerts > 0;J++)

Point3 uv;

TVFace tf =
Tri->mesh.tvFace[FaceID[i] [j]];

newobj->mesh.setTVert (Faces [1i]
[§*3 1,Tri-s>mesh.tVerts[tf.t[0]11); :
newobj->mesh.getTVert (Faces [i]
[§*3+1] ,Tri->mesh.tVerts[tf.t£[1]1]);

newobj->mesh. setTVert (Faces [i]

D-45

Appendix D: Source Code

[§*3+2],Tri->mesh.tVerts[tf.t[2]]);

newobj->mesh.tvFace[j].t[0] =
Faces[i]l [§*3 1;

newobj->mesh.tvFace[j].t[1] =
Faces[i] [j*3+11;

newobj->mesh.tvFace[j]l.t[2] =
Faces [i] [§*3+2];

else

newobj->mesh.setNumTVerts (0) ;
newobj ->mesh. setNumTVFaces (0) ;
}
newobj->mesh.buildRenderNormals () ;
for (j=0;j<newobj->mesh.numFaces;j++)
newobj->mesh.FlipNormal (§);

// now that we've duplicated all the
object's properties into

// the sub object.. we now set some
internal settings so we

// know its not a real object, but so the
subobject operates

// like an ordinary object

INode* newnode = 0;

newnode =
intPtr->CreateObjectNode (newobj) ;

newnode->8etMtl (SupexrObjects [iSuperObjCoun
£-1] ->GetMtl ()) ;

newnode->SetWireColor (SuperObjects [1SuperO
bjCount-1] ->GetWireColoxr()) ;

TCHAR dummyname [255] ;

_tescpy (dummyname, SuperObjects [1SuperObjCo
unt-1] ->GetName ()) ;

TCHAR namenum[255] ;

_stprintf (namenum, " part #%d",1i);

__tcscat (dummyname, namenum) ;

newnode->SetName (dummyname) ;

newnode - >SetGroupMember (TRUE) ;

GeometryList [iGeomCount] . curNode =
newnode;

GeometryList [1GeomCount] .bKillMe TRUE;

GeometryList [iGeomCount] .IsChild = TRUE;

GeometryList [iGeomCount] .ParentIdx = loop;

GeometryList [iGeomCount] . curNode->SetObjOf
fsetPos (offsetPos) ;

GeometryList [iGeomCount] . curNode->SetCbjOf
fsetRot (offsetRot) ;

GeometryList [iGeomCount] . curNode->SetObjOf
fsetScale (offsetScl);

MarkNodeForDeletion (&GeometryList [iGeomCou
ntl);

SuperObjects [iSuperObjCount -

D-46

Appendix D: Source Code

1] ->AttachChild (newnode, 0) ;
iGeomCount++;

!

1

for (x=0;x<32;%x++)

{
delete[] Vertices[x];
delete[] Faces([x];
delete[] FaceID[x];

}

return TRUE;

}

Compressor : :MarkNodeForDeletion (GeoNode *node)

{

TCHAR dummyname [255] ;

_tescpy (dummyname, node ->curNode-~>GetName ()) ;
_tcscat (dummyname, T ("**DELETEME! [**")) ;
node->curNode->SetName (dummyname) ;

}

BOOL Compressor::BuildVertexFaceList ()
// Takes all the valid objects in the scene and reproduces their geometric
// attributes in our local database.

{
int maxfacecount = 1, maxobjcount = 1;;
//for (int zz=0;zz< (24-FACEBITCOUNT) ; zz++)
for (int zz=0;22<24;z22++)
maxfacecount*=2;
// for (zz=0;zz<FACEBITCOUNT;zz++)
for (zz=0;zz<24;zZ++)
maxobjcount*=2;
char buffer[200];
// if (maxfacecount > 56#*200) maxfacecount = 56*200-1;
// if (maxobjcount > 56*200) maxobjcount = 56%200-1;

if (iGeomCount> maxocbjcount)

{
sprintf (buffer, "Your scene contains more objects than are allowed
in the scene.\nUse the System Information tool under the File menu for wmore
information. ", maxobjcount) ;
MessageBox (0, buffer, "Error", MB_OK);
return FALSE;

}

// Init all the data structures to hold the geometry for the various
// meshes as they are added to.
for (int i=0;i<iGeomCount;i++)

if (!GeometryList[i].IsHelper)

{
Object *0obj =
GeometryList [i] . curNode->EvalWorldState (0) .obj;
TriObject *Tri;
if (GeometryList[i].IsHelper)
Tri = NULL;

D-47

elsge

Appendix D: Source Code

Tri = (TriObject¥)

obj—>ConvertToType(O,Class_ID(TRIOBJ_CLASS_ID,0));
if (Tri)

{

TriFace [GeometryList[i].

GeometryList [i] .nTrueFaceCount = Tri->mesh.numFaces;
GeometryList [i] .nTrueVertexCount = Tri->mesh.numVerts;

int [GeometryList [i] .nTrueFaceCount] ;

int [GeometryList [i] .nTrueFaceCount] ;

int [Tri->mesh.numVerts] ;
int [Tri->mesh.numVerts] ;

int [Tri->mesh.numVerts] ;

NULL | |

GeometryList [i] .TrueFacelList = new
nTrueFaceCount] ;

GeometryList [1] .AddedFacelList = new
GeometryList [i] . FaceAddedOnFrame = new
GeometryList [i] .AddedVertList = new
GeometryList [i] . VertAddedOnFrame = new
GeometryList [i] . TexIndexList = new
if ((GeometryList[i] .nTrueFaceCount > 0 &&

GeometryList [i] .nTrueVertexCount > 0) &&
(GeometryList [i] .nTrueFaceCount ==

GeometryList [i] .nTrueVertexCount == NULL ||
GeometryList [i] . TrueFacelist == NULL ||
GeometryList [i] .AddedFacelList == NULL ||
GeometryList [1] . FaceAddedOnFrame == NULL ||
GeometryList [1] .AddedVertList == NULL ||
GeometryList [i] .VertAddedOnFrame == NULL))

MessageBox (0,
"Unable to allocate memory reguired to

compress this scene.\nClose some applications, or increase the virtual memory
available on your system.",

Tri->mesh.faces[§].vI[0];
Tri->mesh.faces[j].vI[1];

Tri->mesh.faces[j].v[2];

BIGCONSTVALUE;

BIGCONSTVALUE;

BIGCONSTVALUE;

BIGCONSTVALUE;

"Error", MB COK);
exit (1) ;

}

for (int j=O;j<GeometryList[i].nTrueFaceCount;j++)
GeometryList [i] . TrueFacelList [j] .Vertl =
GeometryList [i] . TrueFacelist []] .Vert2 =

GeometryList [i] .TrueFacelList []].Vert3 =

GeometryList [i] .AddedFaceList [j] =

GeometryList [i] . FaceAddedOnFrame []] =

}

for (j=0;j<Tri->mesh.numVerts;j++)
GeometryList [i] .AddedVertList [J] =

GeometryList [i] .VertAddedOnFrame [J] =

D-48

Appendix D: Source Code

}

if (GeometryList [i].nTrueFaceCount > maxfacecount)

{
sprintf (buffer, "One or more of the objects in
this scene contains more than %d faces.\nUse the System Information tool under
the File menu for more information.",maxfacecount);
MessageBox (0, buffer, "Error', MB OK);
return FALSE;

}

if (Tri->mesh.numTVerts == 0)

{

StdMat* nodeMtl= (StdMat*)
GeometryList [i] .curNode->GetMtl () ;
if (! (InodeMtl || nodeMtl->GetWire()))

{
sprintf (buffer, "Object \'%s\' is missing
and requires mapping coordinates to be exported.",
GeometryList [i] . curNode->GetName()) ;
MessageBox (0,buffer, "Exror", MB_OK);
return FALSE;

}

if (GeometryList [i] .TexIndexList &&
GeometryList [1i] . curNode->GetMtl())
for (int j=0;j<Tri->mesh.numFaces;j++)
{
GeometryList [i] . TexIndexList [GeometryList [
il .TrueFaceList [j] .Vertl]

Tri->mesh.tvFacel[j].t[0];
GeometryList [i] . TexIndexList [GeometryList [
il .TrueFacelList [j] .Vert2]

Tri->mesh.tvFace([j].t[1];
GeometryList [i] . TexIndexList [GeometryList |

i] .TrueFacelList [j] .Vert3]
Tri->mesh.tvFace[jl.t[2];

}
if (Tri != obj)
Tri->DeleteMe () ;

}

return TRUE;

}

INode* Compressor: :ConstructObjectDatabase (int frame, int SampleRate, int
Sample)
// takes the object database we've constructed and generates a duplicate
object

// set, except each face of each object is colored so that each face color
// identifies which object originally owned it.

{
long time = frame * GetTicksPerFrame() / SampleRate* (1+Sample) ;
TriObject* obj = CreateNewTriObject () ;

int currvertsum = 0;

D-49

Appendix D: Source Code

int currfacesum = 0;
MNMesh builder;
builder.SetFlag(MN_MESH_CVERTS, TRUE) ;

float divis
// float divis

1.0f£/65535.0f;
1.0f/255.0f;

]

for (int i=0;i<iGeomCount;i++)
if (!GeometryList[i].IsHelper)

{
Matrix3 ObjTM =
GeometryList [i] . curNode->GetObjTMAfterWSM (time) ;

Object+* tempObj =
GeometryList [i] .curNode->EvalWorldState (time) .obj;
if (tempObj->CanConvertToType (Class_ID(TRIOBJ_CLASS_ID,0)))

TriObject* tempTri = (TriObject*)
tempObj->ConvertToType (time,
Class_ID(TRIOBJ_CLASS_ID, 0));
for (int j=0;j<GeometryList [i] .nTrueFaceCount;j++)

{

__inteé4 color = (1+1) + ((__inté64)3] *
(__int64)16777216);
// ___Inté4 color = (i+1) + (j << FACEBITCOUNT) ;
unsigned char *chcolor = (ungigned char

*) &color;

Point3 vert;

vert =
Transf (ObjTM, tempTri->mesh.verts [tempTri->mesh.faces[j].v[0]]);

builder.NewVert (vert) ;

vert =
Transf (ObjTM, tempTri-s>mesh.verts [tempTri->mesh.faces[jl.vI[1]11);

builder.NewVert (vert) ;

vert =
Transf (ObjTM, tempTri->mesh.verts [tempTri->mesh.faces[j].vI[2]]);

builder.NewVert (vert) ;

VertColor c¢;

c.x = (float) (chcolor[0]+ (chcolor{l]<<8)) *
divis;

c.y = (£loat) {chcolor 2]+ (chcolor([3]<<8)) *
divis;

c.z = (float) (chcolor[4] + (chcolor[5]<<8)) *
divis;
J/ c.x = (float)chcolor (0] * divis;
// c.y = (float)chcolor([l] * divis;
// c.z = (float)chcolor([2] * divis;

builder.NewCVert (c) ;

builder.NewCVert (c) ;

builder.NewCVert (c) ;

int vv [3] =
{currvertsum,currvertsum+l,currvertsum+2};

builder .NewTri (vv,NULL,vVv) ;

currvertsum+=3;
currfacesum++;

if (tempObj != tempTri) tempTri-s>DeleteMe();

D-50

}

void

Appendix D: Source Code

}

builder.OutToTri (obj->mesh) ;

INode* meshnode = 0;

meshnode = intPtr->CreateObjectNode (obj) ;
meshnode->SetName (_ T("Temp Renderable Thing"));
meshnode->SetWireColor (RGB (255, 0,255)) ;

I

Color black(0.0,0.0,0.0);
Color white(1.0,1.0,1.0)

StdMat* VCmat = NewDefaultStdMat () ;
Color blue(0.0,0.0,1.0);

VCmat ->SetWire (FALSE) ;
VCmat->SetAmbient (black, 0) ;
VCmat->SetDiffuse (white, 0);
VCmat->SetSpecular (black, 0);

VCmat ->SetFilter (black, 0) ;
VCmat->SetShininess (0.0,0) ;

VCmat ->SetShading (1) ;
VCmat->SetShinStr (0.0,0);

VCmat ->EnableMap (ID DI, TRUE) ;

VCol *VertColor = NewDefaultVColTex () ;
VCmat ->SetSubTexmap (ID_DI, VertColor);
meshnode->SetMtl (VCmat) ;
meshnode->SetMotBlur(0) ;
meshnode->SetCastShadows (FALSE) ;
meshnode->SetShadeCVerts (0) ;
meshnode->BackCull (FALSE) ;

return (meshnode);

Compressor: :PrepareForRendering (int framenumber, int SampleRate, int

Sample)

}

long time = framenumber * GetTicksPerFrame() / SampleRate * (1l+Sample);
_P301dTint = intPtr->GetLightTint (time, FOREVER) ;
intPtr->SetLightTint (time, Color(0.0,0.0,0.0));
_foldLightLevel = intPtr->GetLightLevel (time, FOREVER) ;
intPtr->SetLightLevel (time, 0.0);

_p30ldAmbient = intPtr->GetAmbient (time, FOREVER) ;
intPtr->SetAmbient (time, Color(1.0,1.0,1.0));
_BUseEnvMap = intPtr->GetUseEnvironmentMap () ;
intPtr->SetUseEnvironmentMap (FALSE) ;

_Pp30ldBackgrd = intPtr->GetBackGround (time, FOREVER) ;
intPtr->SetBackGround (time, Color(0.0,0.0,0.0)) ;
_BForce28ide = intPtr->GetRendForce2Side();
intPtr->SetRendForce2Side (TRUE) ;

// get active viewport

ViewPort = intPtr->GetActiveViewport();
ViewPort->GetAffineTM (VptTM) ;

OldCamera = ViewPort->GetViewCamera () ;

bPerspView = ViewPort->IsPerspView() ;
ViewPort->SetViewCamera (CameraPtrList [nSelectedCameral) ;

void Compressor::RenderCurrentFrame (int frame, Bitmap *bm, int SampleRate, int

D-51

Sample)

int wval;

Appendix D: Source Code

IScanRenderer* rend = (IScanRenderer*) intPtr->GetDraftRenderer();

rend->GetForceWire () ;
rend->SetAntialias (FALSE) ;
rend->SetAutoReflect (FALSE) ;
rend->8etPixelSize (1.0f);
rend->SetAutoRefllevels (1) ;
rend->SetFilter (FALSE) ;
rend->SetShadows (FALSE) ;
intPtr->AssignCurRenderer (rend) ;

val = intPtr—>OpenCurRenderer(CameraPtrList[nSelectedCamera],NULL);

RendParams rp;

rp.fieldRender = FALSE;
rp.frameDur = 1;
rp.superBlack TRUE;
rp.rendHidden = FALSE;
rp.force2Side = TRUE;
rp.mt1lEditAA = FALSE;
rp.useEnvironAlpha = FALSE;
rp.dontAntialiasBG = TRUE;
rp.atmos = NULL;

rp.rendType = RENDTYPE NORMAL;
FrameRendParams frp;

Color White(1.0,1.0,1.0);
Color Black(0.0,0.0,0.0);
frp.ambient = White;
frp.background = Black;
frp.globallLightlLevel = White;
intPtr->SetRendShowVFEFB (TRUE) ;

il

val = intPtr->CurRendererRenderFrame (frame * GetTicksPerFrame() /

SampleRate * (Sample+l),bm);

intPtr->CloseCurRenderer () ;

}

void Compressor::ScanRenderForFaces (Bitmap* bm, int frame)

{

unsigned char *bitmapwalker = NULL;

int ObjNum, FaceNum, i;

int BMtype;

unsigned long* bPtr
bm->Storage () ->GetStoragePtr (&BMtype) ;

bitmapwalker = (unsigned char*) bpPtr;
int y;
DebugPrint ("Scanning...\n");

/* FILE #*fout;

if ((fout = fopen ("true.bmp", "wb"))

{

= (ungigned long*)

NULL)

fprintf (stderr, "Cannot open output file.\n");

// exit (3);
}

unsigned char Header[54] =

{

D-52

Appendix D: Source Code

0x42, 0x4d, 0x36, 0x84, 0x03, 0x00, 0x00, O0x00,
0x00, 0x00, 0x36, 0x00, 0x00, 0x00, 0x28, 0x00,
0x00, 0x00,

(unsigned char) (iSampleXres & 0x000000FF),
(unsigned char) ((iSampleXres & 0x0000FF00) >> 8),
0x00, 0x00,

(unsigned char) (iSampleYres & O0x000000FF),
(unsigned char) ((iSampleYres & 0x0000FF00) >> 8),
0x00, 0x00, 0x01, 0x00, 0x18, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x84, 0x03, 0x00, 0x12, 0Ox0b,
0x00, 0x00, Oxl2, 0x0b, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00

b

for (i=0;i<54;1i++)
fputc (Header [1], fout) ;
for (y=iSampleYres-1;y>=0;y~--)
for (int x=0;x<iSampleXres;x++)

{
fputc (bitmapwalker [(x+y*iSampleXres) *6+0], fout) ;
fputc (bitmapwalker [(x+y*iSampleXres)*6+2], fout) ;
fputc (bitmapwalker [(x+y*iSampleXres)*6+4], fout);
}

fflush(fout) ;
fclogse (fout) ;

for (i=0;i<iGeomCount;i++)
GeometryList [1] . InitBoundingBox () ;

__inté64 bitmask = OxO0000000000ffffff;
for (y=0;y<iSampleYres;y++)

for (int x=0;x<iSampleXres;X++)

{
__inté4 color = 0;
unsigned char* chcolor = (unsigned char*)&color;
* (chcolor) = * (bitmapwalker);
* (chcolor+l) = *{(bitmapwalker+1l) ;
* (chcolor+2) = *(bitmapwalker+2) ;
* (chcolor+3) = *(bitmapwalker+3);
* (chcolor+4) = *(bitmapwalker+4) ;
* (chcolor+5) = *(bitmapwalker+5);
if (color i= 0)
{
color--;
ObjNum = {(int) (color & bitmask) ;

FaceNum = (int) (color / 0x0000000000ffffff);
assert (ObjNum < iGeomCount) ;
AddFaceToList (ObjNum, FaceNum, frame) ;
MarkObjBoundingBox (x,y, ObjNum) ;
bitmapwalker+=6;

}

// now using the bounding box of the object, we guesstimate which sized

D-53

Appendix D: Source Code

texture we would
// need to cover the object. Once we figure this out, we mark it in

the appropriate array.
SortMipMapAppearanceList (frame) ;
}

void Compressor::AddFaceToList (int ObjNum, int FaceNum, int FrameNum)

{

// first, we begin by retrieving the object node
GeoNode *cNode = &{(GeometryList [ObjNum]) ;

// then, we binary search thru the existing faces to see

// if this one is in the database

int location = FaceSearch {cNode, FaceNum) ;

// 1if its in the database, quit

if (cNode-s>nAddedFaceCount > 0 && cNode->AddedFacelist[location] ==
FaceNum) return;

// if its not, insert sort the new entry into the database of that
specific

// node, and time stamp it with the given frame number.

IngsertFace (cNode, FaceNum, FrameNum, location) ;

AddVertices (cNode, FaceNum, FrameNum) ;

}

int Compressor::FaceSearch (GeoNode *node, int FaceNum)
// binary search for a face's index

int top = 0, bottom = node->nAddedFaceCount-1, mid;
while (top < bottom)

{

mid = (top + bottom) / 2;
if (node->AddedFacelist [mid] == FaceNum)
return mid;
else if (node->AddedFaceList[mid] > FaceNum)
bottom = mid-1;
} else top = mid+l;
if (node-s>AddedFacelist && node->AddedFacelList [top] < FaceNum)
return (top+1);
else return (top);

}

void Compressor::InsertFace (GeoNode *node, int Face, int Frame, int loc)
// inserts a face into the list

{

for (int i=node->nAddedFaceCount;i>loc;i--)

{

node->AddedFaceList {i] = node->AddedFaceList{i-1];
node->FacendddedOnFrame [1] = node->FaceAddedOnFrame[i-1];

node->AddedFaceList [loc] = Face;
node->FaceAddedOnFrame [loc] = Frame;
node->nAddedFaceCount++;

}

int Compressor::VertSearch(GeoNode *node, int VertNum)

{

D-54

Appendix D: Source Code

// binary search for a vertex's index
int top = 0, bottom = node->nAddedvVertCount-1, mid;
while (top < bottom)

mid = (top + bottom) / 2;
if (node->AddedVertList [mid] == VertNum)
return mid;
else if (node->AddedVertList [mid] > VertNum)
bottom = mid-1;
else top = mid+1;
}
if (node->AddedVertList [top] < VertNum)
return (top+l);
else return (top);

}

int Compressor::LinVertSearch (GeoNode *node, int VertNum)
{ // assumes unsorted list
int i=0;
while (i<node->nAddedVertCount)
if (node->AddedVertList [i++] == VertNum)
return (i-1);
return (i);

}

void Compressor: :InsertVertex (GeoNode *node, int Vert, int Frame, int loc)
// inserts a vertex into the list

for (int i=node->nAddedVertCount;isloc;i--)

node->AddedVertList [i] = node->AddedVertList [i-1];
node->VertAddedOnFrame [i] = node->VertAddedOnFrame [i-1] ;
1
node->AddedVertList [loc] = Vert:;
node->VertAddedOnFrame [loc] = Frame;
node->nAddedVertCount++;

}

void Compregsor: :AddVertices (GeoNode *node, int Face, int Frame)
// adds a face into the list
{
int v1,v2,v3;
vl node->TrueFaceList [Face] .Vertl;
v2 node->TrueFaceList [Face] .Vert2;
v3 = node->TrueFaceList [Face] .Vert3;
// Search AddedVerticesList. if vi is there, abort
int location = VertSearch (node,vl) ;
if (node->nAddedVertCount==0 || node->AddedVertList[location] != v1)

il

// add the vertex

InsertVertex(node, vl, Frame, location);
location = VertSearch (node,v2);
if (node->AddedVertList [location] != v2)

// add the vertex

InsertVertex (node, v2, Frame, location);
location = VertSearch(node,v3);
if (node->AddedVertList[location] != v3)

D-55

e

Appendix D: Source Code

// add the vertex
InsertVertex(node, v3, Frame, location);

}

void Compressor::SortByFrame (GeoNode *node)
{
if (node-s>nAddedFaceCount > 0)
SortFaceListbyFrame (node, 0, node->nAddedFaceCount-1) ;
if (node-s>naAddedVertCount > 0)
SortVertListbyFrame (node, 0, node->nAddedvertCount-1) ;

}

void Compressor::SortFacelistbyFrame (GeoNode *node, int lo, int hi)
{
// performs a Quicksort on the faces based on what frame
// the face was added on
int oldhi = hi, oldlo = lo, mid;
if (oldhi > oldlo)
{
mid = node->FaceAddedOnFrame [(oldlo+oldhi) >> 11;
while(lo <= hi)
{
while ((lo < oldhi) && (node->FaceAddedOnFrame[lo] < mid))
lo++;
while ((hi > oldlo) && (node-s>FaceAddedOnFrame [hi] > mid))
hi--;
if (lo <= hi)
{
int tempa, tempb;
tempa = node->FaceAddedOnFrame [lo];
tempb = node->AddedFacelist [lo];
node->FaceAddedOnFrame [10] =
node->FaceAddedOnFrame [hi] ;
node->AddedFacelist [lo] = node->AddedFaceList [hi];
node->FaceAddedOnFrame [hi] = tempa;
node->AddedFaceList [hi] = tempb;
lo++; hi--;
1
1
if (oldlo < hi) SortFacelListbyFrame (node, oldlo, hi);
if (lo < oldhi) SortFaceListbyFrame(node, lo, oldhi);

}

void Compressor::SortVertListbyFrame (GeoNode *node, int lo, int hi)
{

// performs a Quicksort on the faces based on what frame

// the vertex was added on

int oldhi = hi, oldlo = lo, mid;

if (oldhi > oldlo)

{

mid = node->VertAddedOnFrame [(o0ldlo+oldhi) >> 11;
while(lo <= hi)
{
while ((lo < oldhi) && (node->VertAddedOnFrame[lo] < mid))
lo++;
while ((hi > oldlo) && (node->VertAddedOnFrame [hi] > mid))

D-56

Appendix D: Source Code

if (lo <= hi)
{
int tempa, tempb;
tempa = node->VertAddedOnFrame [lo] ;
tempb = node->AddedVertList [lo];
node->VertAddedOnFrame [10] =
node->VertAddedOnFrame [hi] ;
node-s>aAddedVertlist [lo] = node->AddedVertList [hi];
node->VertAddedOnFrame [hil = tempa;
node->AddedvVertList [hi]l = tempb;
lo++; hi--;
}
}
if (0oldlo < hi) SortVertListbyFrame (node, oldlo, hi);
if (lo < oldhi) SortVertListbyFrame (node, lo, oldhi);

}

Compressor: :MarkObjBoundingBox (int x, int y, int ObjNum)
// is the current x/y coord outside the given bounding box? if so,
// update the box.

if (x > GeometryList [ObjNum] .iMaxX)
GeometryList [ObjNum] .iMaxX = x;
if (x < GeometryList [ObjNum] .iMinX)
GeometryList [ObjNum] .iMinX = x;
if (y > GeometryList [ObjNum] .iMaxY)
GeometryList [ObjNum] . iMaxY = y;
if (v < GeometryList [ObjNum] .iMinY)
GeometryList [ObjNum] .iMinY = y;

}

Compressor: : SortMipMapAppearanceList (int frame)

{

// Go through all the objects, and determine which mipmap scale
// their bounding box corresponds to
for (int obj=0;o0bj<iGeomCount ;obj++)

int sizex = (GeometryList[obj]l.iMaxX - GeometryList[obj].iMinX) /

int sizey (GeometryList [obj].iMax¥ - GeometryList[objl.iMinY) /

int nearest = (int)sqgrt (sizex*sizey);
int val = MINTEXTURERES;
for (int i=0;i<MAXTEXTUREPOWER-MINTEXTUREPOWER;i++)

val*=2;
if (nearest > val && GeometryList[objl .MaterialID != -1 &&
MateriallList [GeometryList [obj] .MateriallID] . iMipNeededO

nFrame{i] > frame)
Materiallist [GeometryList [obj] .MaterialID] . iMipNeededO

nFrame[i] = frame;

}
}
}

int Compressor::InitFileForOutput (const TCHAR * filename)

D-57

Appendix D: Source Code

// builds the file header, and returns its length, since the header
// isn't actually going to be compressed.

{

// if ((fileOut = fopen(filename, "wb")) == NULL)
if ((fileOut = fopen(" temp", "wb")) == NULL)
{
// error has occured
}
// We now send a simple 4 byte header which includes some settings,
// and a version number for debug purposes and extendability.
// Now let's create a simple mask to be sent as the second byte. This
specifies
// various settings available in the file type.
unsigned char boolbyte;
boolbyte = (bCompressNormals << 7) + (bVertexNormals << 6) +
(bMaterialQuality << 5) + iBitsPerVertex;
if (iFrameRate != 30)
boolbyte |= 0x10;
if (GetTicksPerFrame() != 160)
boolbyte |= 0x08;
if (iLightCount == 0 && bUseShading)
boolbyte |= 0x04;
cOutToFile (boolbyte) ;
cOutToFile (0) ; // this byte reserved for future
expandability

cOutToFile ((unsigned char)MAJORVERSION) ;
cOutToFile ((unsigned char)MINORVERSION) ;

// so a Version number of 10

refers to an

// internal version of

if (iFrameRate != 30)
iOutToFile (iFrameRate) ;
if (GetTicksPerFrame() != 160)

iOutToFile (GetTicksPerFrame ());

// If the frame rate of the source is NOT 30 frames per second, mark

// this, and transmit the framerate to aid in interpretation of
// frame markers.

// now output 3 bytes which state how long the animation is
unsigned int diff = iEndFrame - iStartFrame;

unsigned int uiTime = (unsigned int) diff;

unsigned char * bTime = (unsigned char¥*) &uiTime;
cOutToFile (bTime [0]) ;

cOutToFile (bTime [1]) ;

cOutToFile (bTime [2]) ;

// devise the target resolution, and shove it into 24b

if (iSampleXres > 8192) iSampleXres = 8192;

if (iSampleYres > 8192) iSampleYres = 8192;

unsigned int res = (iSampleXres/2) + ((iSampleYres/2) << 12);
unsigned char * bRes = (unsigned char*) &res;
cOutToFile (bReg [0]) ;

D-58

1.

0

Appendix D: Source Code

cOutToFile (bRes [1]) ;
cOutToFile (bRes [2]) ;

// reserve 4 bytes to eventually store filelength
cOutToFile(0) ;

cOutToFile(0) ;

cOutToFile (0) ;

cOutToFile(0) ;

return (BytesSoFar);

}

Compressor: :CloseOutputFile ()

{

iOutTOFile(OPCODE_ENDOFFILEMARKER);
fclose (fileOut) ;

}

void Compressor::BuildDataBlock(int uptoframe)
// Builds the data block up until and including the given frame. All object
// sections and motion information reguired is transmitted

{

for (int currobj = 0;currobj < iGeomCount;currobj++)

{

GeoNode *node = &(GeometryList[currobjl);

if (node->nAddedFaceCount > 0)

{
// first, 1if there were any polygons that needed to be
// added for this current second of animation, build them
// into the file.
int lastFaceSent
int lastVertSent

node-s>nSentFace;
node->nSentVert;

for (int count = lastFaceSent+l;count<node-s>nAddedFaceCount
&&
node->FaceAddedOnFrame [count] <=uptoframe;count++,node-
s>snSentFace++) ;
for (count = lastVertSent+1l;count<node->nAddedVertCount &&
node->VertAddedOnFrame [count] <=uptoframe;count++,node-
>nSentVert++) ;
TransmitPolyBlock (node, lastFaceSent+1, lastVertSent+1l,uptofra
me) ;
// now, if any motion paths begin during this second, add
them
// into the file
TransmitKeysThisSecond (node, uptoframe) ;
continue;
else
// move lights around here
GeoNode* Light;
static int LastTarKeySent [256],LastLightKeySent [256],start =
TRUE ;

if (start)

{

start = FALSE;
for (int loop=0;loop<256;locop++)

{

LastTarKeySent [loop] = 0;

D-59

Appendix D: Source Code

LastLightKeySent [loop] = 0;

}

for (int count = 0;count < iLightCount;count++)

Light = &(GeometryList [LightIndexList [count]]);

if (Light == node)

if (Light->RefNumber < 1
Light->curNode) - >GetUseLight ())

&& ((GenLight*)

// this 1light hasn't been added to the

scene, so0 we must add it
// but first, we must
kind of light we're dealing
// with here.
switch (((GenLight*)

{

Light->curNode) ->Type())

case OMNI_LIGHT:

figure out what

// "Omnidirectional light"” which we

treat as a

// simple Ambient light source

iOutToFile (OPCODE ADDLIGHT OMN

I);
} break;
case TSPOT LIGHT:

// "Targetted Spotlight"

cage FSPOT_LIGHT:
// Free Spotlight..

iOutToFile (OPCODE_ADDLIGHT SPO

} break;
case DIR LIGHT:

// Basic Directional Light

case TDIR_LIGHT:

// Directional light using a Target

{

iOutToFile (OPCODE_ADDLIGHT DIR

ECTIONAL) ;
} break;
}
Point3 lightColor
Light->curNode) - >GetRGBColor (0) ;

= { {(GenLight*)

wOutToFile (Convert 16bColor (ConvertRGBtoCo

lorref (lightColor))) ;

Control *PosCon, *RotCon;
PosCon

Light - >curNode->GetTMController () ->GetPositionController () ;
RotCon

Light - >curNode->GetTMController () ->GetRotationController () ;

Control *TarPosCon = NULL;
if (Light->curNode->GetTarget())

D-60

Light->curNode->GetTarget () ->

Appendix D: Source Code

TarPosCon =

GetTMController () ->GetPosition

Controller () ;
IKeyControl *poskeys = NULL, *rotkeys =
NULL, *tarposkeys = NULL;
int rcount = 0;
int pcount = 0;
int tcount = 0;
Light->RefNumber = count+l;
if (PosCon && ({GenLight*)
Light->curNode) ->Type () != TSPOT_LIGHT &&
((GenLight*)
Light->curNode) ->Type () != FSPOT_LIGH?)
poskeys =

GetKeyControlInterface (PosCon) ;

}
if
Light->curNode) ->Type () |= OMNI_LIGHT)

GetKeyControlInterface (RotCon) ;

—— e ——

pcount = poskeys->GetNumKeys () ;

(RotCon && ((GenLight*)
rotkeys =
rcount = rotkeys->GetNumKeys () ;

£ (TarPosCon)

tarposkeys =
GetKeyControlInterface (TarPosCon) ;
tcount = tarposkeys->GetNumKeys () ;
}
Matrix3 Mat =
GetLocalMatrix (Light->curNode, 0) ;
if (pcount == 0)

iOutToFile (OPCODE_SETLIGHT POSITION)

iOutToFile (Light->RefNumber) ;
Point3 Position = Mat.GetRow(3);
fOutToFile (Position.x) ;
fOoutToFile (Pogition.y) ;
foutToFile (Position.z) ;

if (rcount == 0 &&
(!Light->curNode->GetTarget () ||
Light->curNode->GetTarget () &&
tcount == 0))
// if its a free camera with no

orientation keyframes

// or a target camera whose

{

ON) ;

D-61

i0utToFile (OPCODE_SETLIGHT ORIENTATTI

ioutToFile (Light - >RefNumber) ;
Quat Rotation(Mat) ;
quatOutToFile (Rotation) ;

Appendix D: Source Code

// now determine the offset for the light
Point3 offsetPos =

Light->curNode->GetObjOffsetPos () ;
Quat offsetRot =

Light->curNode->GetObjOffsetRot () ;
ScaleValue offsetScl =

Light->curNode->GetObjCffsetScale() ;
Matrix3 OffsetTM(1),Scl(1l),Tran(l);
ApplyScaling(Scl, offsetScl);
Matrix3 Rot;
offsetRot .MakeMatrix (Rot) ;
Tran.Translate (offsetPos) ;
OffsetT™ = Scl * Rot * Tran;

if (!CheckIdentity(OCffsetTM))

{

10utToFile (OPCODE_SETLIGHT OFFSET) ;
iOutToFile (Light ~->RefNumber) ;
for (int 11=0;11<4;11++)

for (int 12=0;12<3;12++)
fOutToFile (OffsetTM.GetR
w(ll) [12]);

}

if (((GenLight*) Light->curNode)->GetUseLight (})

{
TransmitKeysThisSecond (Light,uptoframe) ;
/* if (Light->curNode->GetTarget ())
TransmitTargetKeysThisSecond (Light, u

ptoframe,
LastTarKeySent [Light - >RefNumbe
r]):*/ }
break;
// move cameras around here
GeoNode* Camera =
& (GeometryList [CameralndexList [nSelectedCamerall) ;
if (Camera == node)
static int LastTargetKeySent = 0,
LastCameraKeySent = 0;
if (Camera->RefNumber != 1)
Control *PosCon, *RotCon;
PosCon =
Camera->curNode->GetTMController () ->GetPositionController () ;
RotCon =

Camera->curNode->GetTMController () ->GetRotationController () ;
IKeyControl *poskeys = NULL;
int rcount = 0;
int pcount = 0;

D-62

Appendix D: Source Code

IKeyControl *rotkeys = NULL;
Camera->RefNumber = 1;
if (PosCon)

poskeys = GetKeyControlInterface (PosCon) ;
pcount = poskeys->GetNumKeys () ;

if (RotCon)

rotkeys = GetKeyControlInterface (RotCon) ;
rcount = rotkeys->GetNumKeys({) ;

}

// grab controller info for the target

Control *TarPosCon = NULL;

if (Camera->curNode->GetTarget ()})
TarPosCon = Camera-s>curNode->GetTarget () ->

GetTMController () ->GetPositionContro

liex ();
IKeyControl *tarposkeys = NULL;

int tcount = O;
if (TarPosCon)

{

GetKeyControlInterface (TarPosCon) ;

}

// When the camera has been added, we give it a

tarposkeys =

tcount = tarposkeys->GetNumKeys () ;

reference

// number of 'l' to indicate this. So, if the
reference id

// is not '1', we know we have to tell the
scene to add the camera

if (pcount == 0)

iOutToFile (OPCODE_ADDCAMERA_WITHLOCATION) ;

else iOutToFile (OPCODE_ADDCAMERA) ;

CameraObject* obj = (CameraObject*)
Camera->curNode->GetObjectRef () ;

float CameraFov=obj->GetFOV(0) ;

float
nearPlane=obj->GetEnvRange (0, ENV_NEAR_RANGE) ;

float farPlane
=obj->GetEnvRange (0, ENV_FAR RANGE) ;

// transmit FOV
wOutToFile (ReScaleFloat (CameraFov, 0.0f, FLOAT PT,
BPC_16)) ;
// transmit near plane
foutToFile (nearPlane) ;
// transmit far plane
foutToFile (farPlane) ;
Matrix3 Mat = GetlLocalMatrix (Camera->curNode, 0) ;
if (pcount == 0)
{
Point3 Position = Mat.GetRow(3);
foutToFile (Position.x) ;
fOutToFile (Position.y);
foutToFile (Position.z) ;

D-63

Appendix D: Source Code

if (rcount == 0 &&
(!1Camera->curNode->GetTarget () ||

(Camera->curNode->GetTarget () && tcount

0)))

// 1f its a free <camera with no

orientation keyframes
// or a target camera whose

iOutToFile(OPCODE_SETCAMERA;ORIENTATION);
Quat Rotation (Mat) ;
gquatOutToFile (Rotation) ;

}

// now determine the offset for the camera

Point3 offsetPosg =
Camera->curNode->GetObjOoffsetPos () ;
Quat offsetRot =

Camera->curNode->GetObjOoffsetRot () ;
ScaleValue offsetScl =

Camera-~->curNode->GetObjOffsetScale () ;
Matrix3 OffsetTM (1) ;
OffsetTM.PreTranslate (offsetPos) ;
PreRotateMatrix (OffsetTM, offsetRot);
ApplyScaling (OffsetT™, offsetScl);
if (!CheckIdentity (OffsetTM))
{
iOutToFile(OPCODE_SETCAMERA_OFFSET);
for {(int 11=0;11<4;11++)
for (int 12=0;12<3;12++)
fOoutToFile (OffsetTM.GetRow (11)

[121});
}
}
TransmitKeysThisSecond (Camera, uptoframe) ;
// if (Camera->curNode->GetTarget ())
// TransmitTargetKeysThisSecond (Camera, uptoframe, La

stTargetKeySent, LastCameraKeySent) ;

// well, its not a light or a camera, but it might be an

// object that we need because its a parent to one of

// our chosen displayed objects.

else if (node->RefNumber > -1)
TransmitKeysThisSecond (node, uptoframe) ;

}
}
MarkCompleteToFrame (uptoframe) ;

}

void Compressor: :TransmitPolyBlock (GeoNode *node, int startFace, int
startVert, int FinalFrameThisBlock)
// transmits all polygon-type data for the given frame set

bObjectsAddedThisFrame = FALSE;

Control *PosCon, *RotCon;

D-64

Appendix D: Source Code

PosCon = node-scurNode->GetTMController () ->GetPositionController () ;
RotCon = node-scurNode->GetTMController () ->GetRotationController () ;
IKeyControl *poskeys = NULL;
IKeyControl *rotkeys = NULL;
int rcount = 0;
int pcount = 0;
if (PosCon)
{ poskeys = GetKeyControlInterface (PosCon) ;

if (poskeys)

pcount = poskeys->GetNumKeys () ;

}

if (RotCon)

{

rotkeys = GetKeyControlInterface (RotCon);
if (rotkeys)
rcount = rotkeys->GetNumKeys();

}

Object* tempObj;

// if (rcount == 0 && pcount == 0)
tempObj = node->curNode->EvalWorldState (0).obJ;
V4 else tempObj = node->curNode->GetObjectRef ()->Eval(0).obj;
tempObj = node->curNode->GetObjectRef () ->Eval (0) .obj;
TriObject* tempTri = (TriObject*) tempObj->ConvertToType (0,
Class_ID(TRIOBJ_CLASS_ID, 0));
BOOL bObjectSentThisFrame = FALSE;
if (tempTri)
if (ltempTri->mesh.normalsBuilt)
tempTri->mesh.buildNormals () ;
}
if (node->RefNumber < 0)
{
// if the object hasn't been referenced in the output stream
before,
// create a new reference number for it, and feed its init info
into

// the stream
CreateNewObject (node) ;
bObjectsAddedThisFrame = TRUE;
bObjectSentThisFrame = TRUE;

}

// now transmit the face and vert info in blocks

// first, let's transmit the list of vertices for this second
// in blocks of 30 or fewer.
for (int curr = startVert ; curr<node->nSentVert+1l; curr+=ITEMSPERBLOCK)

{

int VertsThisBlock;

// send the opcode for adding vertices
iOutToFile (OPCODE_ADDVERTS) ;

i0utToFile (node->RefNumber) ;

D-65

Appendix D: Source Code

if (node->nSentVert+l - curr < ITEMSPERBLOCK)
VertsThisBlock = node-s>nSentVert - curr + 1;

elge

{

VertsThisBlock = ITEMSPERBLOCK;

iOutToFile (VertsThisBlock) ;
switch (iBitsPerVertex)

{

case BPC 32:

{

// *** Note that for 32b, actual full coordinates are
// sent, not rescaled coordinates.

// first we build a giant block of bytes and create a
// virtual float array that points at the same memory
// space. Note that we rotate the floats by one bit,
// so that the sign bit becomes part of the mantisa
// rather than part of the exponent (which are more
// likely to be similar).

unsigned char ByteBlock [ITEMSPERBLOCK * 3 * 4] ;

float * SameArray (float*) ByteBlock;

for (int i=curxr, j=0;i<curr+VertsThisBlock;i++,j++)

{

unsigned int RotateMe;
SameArray [j*3] =

tempTri->mesh.verts [node->AddedVertList [1]].x;

memcpy (&RotateMe, &SameArray [j*3 1,4);
RotateMe = _rotr(RotateMe,1);
memcpy (&SameArray[j*3 1, &RotateMe, 4) ;

SameArray [§*3+1] =

tempTri->mesh.verts [node->AddedvVertList [1]].y;

memcpy {&RotateMe, &SameArray [§*3+1],4) ;
RotateMe = _rotr(RotateMe,1);
memcpy (&SameArray [j*3+1] , &RotateMe, 4) ;

SameArray[j*3+2] =

tempTri->mesh.verts[node->AddedvVertList[i]].z;

the bytes

together

ByteBlock[12*i+75];

memcpy (&RotateMe, &SameArray [j*3+2],4) ;
RotateMe = _rotr (RotateMe,1};
memcpy (&SameArray [j*3+2], &RotateMe, 4) ;
// now that the array is full, let's start packing

// together so that the Ilike ordered bytes are

unsigned char SecondByteBlock [ITEMSPERBLOCK * 3 * 4];
for (J=0;3<12;j++)
for (i = 0;i<VertsThisBlock;i++)

SecondByteBlock [j*VertsThisBlock+i] =

for (j=0;j<VertsThisBlock*3*4;j++)
cOutToFile (SecondByteBlock[j]) ;

D-66

and Z's

Appendix D: Source Code

break;
case BPC_lé6:
{ // all X's are sent together, followed by all Y's,

for (int i=curr;i<curr+VertsThisBlock;i++)
wOutToFile (ReScaleFloat (
tempTri-s>mesh.verts [node->AddedVertList [i]

node->pMinCoord.x, node->pMaxCoord.x,BPC_16

for (i=curr;i<curr+VertsThisBlock;i++)
wOutToFile (ReScaleFloat (
tempTri->mesh.verts [node->AddedVertList [1i]

node->pMinCoord.y, node->pMaxCoord.y,BPC_16

for (i=curr;i<curr+VertsThisBlock;i++)
wOutToFile (ReScaleFloat (
tempTri->mesh.verts[node->AddedVertList [i]

node->pMinCoord. z, node->pMaxCoord. z, BPC_16

}

break;
case BPC_10:

{

for (int i=curr;i<curr+VertsThisBlock;i++)
pbOutToFile (ReScaleFloat (
tempTri->mesh.verts[node->AddedVertList [i]

node->pMinCoord.x, node->pMaxCoord.x,BPC_10

10, FALSE) ;
for (i=curr;i<curr+VertsThisBlock; i++)
pbOutToFile (ReScaleFloat (
tempTri->mesh.verts [node->AddedvVertList [i]

node->pMinCoord.y, node->pMaxCoord.y,BPC_10

10, FALSE) ;
for (i=curr;i<curr+VertsThisBlock;i++)
pbOutToFile (ReScaleFloat (
tempTri->mesh.verts [node->AddedvVertList [i]

node->pMinCoord. z, node->pMaxCoord. z,BPC_10

10, i==curr+VertsThisBlock-1) ;

}

break;
case BPC 8:
{ // all X's are sent together, followed by all Y's, and

for (int i=curr;i<curr+VertsThisBlock;i++)
cOutToFile (ReScaleFloat (
tempTri->mesh.verts [node->AddedVertList [i]

node->pMinCoord.x, node->pMaxCoord.x, BPC_8)

D-67

Appendix D: Source Code

for (i=curr;i<curr+VertsThisBlock;i++)
cOutToFile (ReScaleFloat (
tempTri->mesh.verts [node->AddedVertList [i]

node->pMinCoord. y, node->pMaxCoord.y,BPC_8)

for (i=curr;i<curr+VertsThisBlock;i++)
cOutToFile (ReScaleFloat (
tempTri->mesh.verts [node->AddedVertList [i]

node->pMinCoord. z, node ->pMaxCoord. z, BPC_8)

} break;

// Calculate the Error factor in the vertices
if (iBitsPerVertex i= BPC_32)
for (int i=curr;i<curr+VertsThisBlock;i++)
{
float OrigX, Orig¥, OrigZ, NewX, NewY, NewZ;
OrigX = tempTri->mesh.verts|[node->AddedVertList[il].x;
OrigY = tempTri->mesh.verts[node->AddedVertList{il].y;

OrigZ = tempTri->mesh.verts[node->AddedVertList[i]].z;
NewX =

ScaleUp (ReScaleFloat (OrigX, node->pMinCoord. x, node->pMaxCoord.x,

iBitsPerVertex) ,node->pMinCoord.x, node->pMaxCoor
d.x, iBitsPerVertex) ;

NewY =
ScaleUp (ReScaleFloat (Orig¥, node->pMinCoord.y, node->pMaxCoord.y,

iBitsPerVertex) ,node->pMinCoord.y, node->pMaxCoor
d.y,iBitsPerVertex) ;

NewZ =
ScaleUp (ReScaleFloat (OrigZ, node->pMinCoord. z, node->pMaxCoord. z,

iBitgPerVertex) ,node->pMinCoord. z, node->pMaxCoor
d.z,iBitsPerVertex) ;

float Dist = sqrtf((OrigX-NewX)* (OrigX-NewX) +
(OrigY¥-NewY) * (Orig¥-NewY) + (OrigZ-NewZ)* (OrigZ-
NewZ));
float Base = sggrtf(OrigX*OrigX + OrigY¥*OrigY¥ +
OrigZ*0rigZ) ;
if (fabsf (Base) > 0.00001)
fTotalError += Dist/Base;
iTotalVerts++;

}

else iTotalVerts+=VertsThisBlock;

// Deal with Normals
if (bVertexNormals)

{
iOutToFile(OPCODE_ADDNORMS);
iOutToFile (node->RefNumber) ;
iOutToFile (VertsThisBlock) ;
if (bCompressNormals)

for (int i=curr;i<curr+VertsThisBlock;i++)

{

Point3 Norm =

D-68

Appendix D: Source Code

Normalize(tempTri—>mesh.getNormal(node—>AddedVertList[i]));

* Norm.y) / Norm.z);

float theta, psi;
if (fabs (Norm.x) < 0.00005)

theta = FLOAT_ HALFPI;
else theta = atanf (Noxrm.y/Norm.x) ;
if (fabs (Norm.z) < 0.00005)

psi = FLOAT HALFPI;

else psi = atanf (sqrtf(Norm.x * Norm.x + Norm.y
unsigned int compound = 0;

unsigned int value;
unsigned char * fval =
compound =

(unsigned char*) &value;
ReScaleFloat (theta, -

FLOAT_HALFPI,FLOAT_HALFPI,BPC_12);

FLOAT HALFPI,

else

for

dedVertlList [i])) .x,

for

dedVertList [i])) .V,

for

dedVertList[i])) .z,

}
}

// now let's transmit
for (curr =

{

the faces,
startFace;curr<node->nSentFace+l; curr+=ITEMSPERBLOCK)

value = (compound << 12) | ReScaleFloat (psi, -
FLOAT_HALFPI,BPC_IZ);

cOutToFile (fval[0]);

cOutToFile (fval[l]);

cOutToFile (fval[2]);

(int i=curr;i<curr+VertsThisBlock;i++)

wOutToFile (ReScaleFloat {
Normalize (tempTri->mesh.getNormal (node->Ad

-1.0f,1.0£,BPC_16)) ;

(i=curr;i<curr+VertsThisBlock;i++)

wOutToFile (ReScaleFloat (
Normalize (tempTri->mesh.getNormal (node->Ad

-1.0f,1.0f,BPC_16)) ;
(i=curr;i<curr+VertsThisBlock;i++)
wOutToFile (ReScaleFloat (
Normalize (tempTri->mesh.getNormal (node->Ad

-1.0f,1.0£,BPC_16));

in blocks of 30 or fewer

int FacesThisBlock;

// send the opcode for adding vertices

iOutToFile (OPCODE ADDFACES) ;

iOutToFile (node->RefNumber) ;

if (node-s>nSentFace+l - curr < ITEMSPERBLOCK)
FacesThisBRlock = node->nSentFace - curr + 1;

else FacesThisBlock = ITEMSPERBLOCK;

ioutToFile {FacesThisBlock) ;

for (int i=curr;i<curr+FacesThisBlock;i++)

{

int location;

D-69

Appendix D: Source Code

// Note that a linear search, though slow and inefficient,
is

// required here due to our having already sorted the Verts

// based on frame added. Thus the verts are no longer in
order

// and we therefore cannot do a binary search. Yet, it was

// more critical to have the speedup in the initial search,

// so thus we use 1t there rather than here.

location =
LinVertSearch (node, node->TrueFacelList [node->AddedFacelList [1]] .Vexrtl) ;
if (node->AddedVertlList{location] !=
node->TrueFacelList [node->AddedFaceList [i]] .Vertl)
DebugPrint ("Error in data stream... Vertices didn't
match!i\n") ;
iOutToFile (location) ;
location =
LinVertSearch (node, node->TrueFacelList [node->AddedFaceList [1]] .Vert2) ;
if (node->AddedVertList [location] !=
node-~>TrueFacelList [node->AddedFacelList [1]] .Vert2)
DebugPrint ("Exrror in dJdata stream... Vertices didn't
match!i\n") ;
iOutToFile{location) ;
location =
LinVertSearch (node, node->TrueFaceList [node->AddedFaceList [1]] .Vert3) ;
if (node->AddedVertlList [location] !=
node->TrueFaceList [node->AddedFacelList [i]] .Vert3)
DebugPrint ("Error in data stream... Vertices didn't
match!\n") ;
iQutToFile (location) ;

}

// now transmit any needed texture information

if (bMaterialQuality && node->MateriallID != -1)

{
// high quality materials - use texture exporter
// begin by transmitting U/V texture coordinates for
// each sent vertex by using 12 bits per part (24b for
// the U/V set per vertex.

// now let's tramsmit the U/V coordinates, in blocks of 30 or
fewer

for (curr = startVert ; curr<node-s>nSentVert+1l; curr+=ITEMSPERBLOCK)
{

int VertsThisBlock;

// send the opcode for adding vertices

iQutToFile (OPCODE_ADDTEXCOORDS) ;

iOutToFile (node->RefNumber) ;

if (node->nSentVert+l - curr < ITEMSPERBLOCK)

VertsThisBlock = node->nSentVert - curr + 1;

else VertsThisBlock = ITEMSPERBLOCK;

i0utToFile (VertsThisBlock) ;

for (int i=curr;i<curr+VertsThisBlock;i++)

{
float texU =
tempTri—>mesh.tVerts[node—>TexIndexList{node—>AddedVertList[i]]].x;

D-70

Appendix D: Source Code

float texvV =
-tempTri->mesh.tVerts [node->TexIndexList [node->AddedVertList[i]]].y;

ungigned int texcoord =
ReScaleFloat (texU, -8.0f,8.0f,BPC_12) << 12;

texcoord |= ReScaleFloat (texV,-8.0f,8.0f,BPC_12);

unsigned char *tc = (unsigned char*) &texcoord;

cOutToFile (tc[0]) ;

cOutToFile (tc[1l) ;

cOutToFile(tc[2]) ;

}

if (Materiallist [node->MateriallD] .iLastTexturePowerSent == -1)
// texture hasn't been sent at all yet, so we need to build the
// base texture first

{

BuildWaveletCoeffs (& (MateriallList [node->MaterialID]));
Materiallist [node->MateriallD] . iLastTexturePowerSent

It

MINTEXTUREPOWER;
// 1f highres textures are being used, we must sample to
determine
// what texture resolutions are actually required
MateriallList [node->MaterialID] .iMaxNecessaryTexPower =
iDesiredTexturePower;
DetermineNecessaryTexRes (& (Materiallist [node->MateriallID])) ;

// let's finally delta encode the whole group, following a

hilbert

// curve pattern to traverse the texture. Note that the
8x8

// approximation is left alone and not delta encoded to
provide

// for quick and simple reconstruction on the other end.
J* for (int
1=MAXTEXTUREPOWER, j=MAXTEXTURERES ; 1 >MINTEXTUREPOWER ;1 --, 7 /=2)
DeltaEncode (MaterialList [node->MateriallID] . WaveletCoef
£,1,7);
FileFloatDump ("_de",MaterialList [node->MateriallD].WaveletCo
eff, MAXTEXTURERES, 3) ; */

GetCoeffRange (Materiallist [node->MaterialID] .WaveletCoeff,
MaterialList [node->MateriallID] .£fTexmapMinval,
MaterialList [node->MateriallD] . fTexmapMaxVal) ;

// transmit the shininess characteristics

float shine0 =
((StdMat*)Materiallist [node->MaterialID] .curNode) ->GetShininess (0) ;
float shinel =

((stdMat*)Materiallist [node->MaterialID] .curNode) ->GetShinStr{(0) ;

float shine = shineO*shinel;

Color spec =
{(stdMat*)Materiallist [node->MateriallID] .curNode) ->GetSpecular (0) ;

iOutToFile (OPCODE_ADDTEXMAPTYPE HAAR) ;

foutToFile (Materiallist [node->MateriallD] . fTexmapMinvVal) ;
fOoutToFile (MateriallList [node->MateriallD] .fTexmapMaxVal) ;
cOutToFile (ReScaleFloat (shine, 0.0£,1.0£f,BPC 8));
wOutToFile (Convert 16bColor (ConvertRGBtoColorref (spec)));

D-71

Appendix D: Source Code

if (MaterialList [node->MaterialID] .RefNumber == -1)
MaterialList [node->MateriallD] .RefNumber =
++nLastMatRefNum;
}
while (Materiallist [node->MaterialID] .iMipNeededOnFrame [
MateriallList [node->MateriallD] .iLastTexturePowerSent-
MINTEXTUREPOWER] <=
FinalFrameThisBlock &&
MaterialList [node->MateriallID] .iLastTexturePowerSent <=
Materiallist [node->MateriallD] .iMaxNecessaryTexPower &&
IMateriallList [node->MaterialID] .bMipSent [
Materiallist [node->MateriallD] .iLastTexturePowerSent-
MINTEXTUREPOWER])
AddTextureCoeffs (& (Materiallist [node->MateriallD])) ;
if (lnode->bMaterialAssigned)
{
iOutToFile(OPCODE_ASSIGN_MAPTOOBJ);
i0utToFile (node->RefNumber) ;
ioutToFile (Materiallist [node->MaterialID] .RefNumber) ;
node->bMaterialAssigned = TRUE;

else
{
// low guality materials - use color exporter
StdMat* nodeMtl= (StdMat*) node->curNode->GetMtl () ;
if (!nodeMtl || nodeMtl->GetWire())
if (bObjectSentThisFrame)
// if the object is using a wirecolor, just assign
the whole
// object that wirecolor.
COLORREF objColor = node-s>curNode->GetWireColor () ;
iOutToFile(OPCODE_ASSIGNOBJECT_SOLIDCOLOR);
iOutToFile {node->RefNumber) ;
wOutToFile (Convert 16bColor (objColox)) ;
}
}
else
{
// Otherwise, we need to sample colors at each vertex
// of the object, and export these.
// The technique we shall use will be to create a
supertexture
// for the object, and sample texel values from the texture
corresponding

// to the provided texture coordinates
if (!MaterialList [node->MaterialID] .pTextureMap)
{
Materiallist [node->MaterialID] .pTextureMap = new
unsigned char [MAXTEXTURERES*MAXTEXTURERES*3] ;
RetrieveOriginalMap (& (Materiallist [node->MateriallD]),
MaterialList [node->MateriallID] .pTextureMap) ;

for (curzr =

D-72

Appendix D: Source Code

startVert;curr<node—>nSentVert+l;curr+=ITEMSPERBLOCK)
{
int VertsThisBlock;
// send the opcode for adding vertices
iOutToFile(OPCODE_ADDVERTCOLORS);
iOutToFile (node->RefNumber) ;
if (node-s»>nSentVert - curr < ITEMSPERBLOCK)
VertsThisBlock = node->nSentVert - curr + 1;

else VertsThisBlock = ITEMSPERBLOCK;
iOutToFile (VertsThisBlock) ;
for (int i=curr;i<curr+VertsThisBlock;i++)

{

float texU =
tempTri—>mesh.tVerts[node—>TexIndexList[node->AddedVertList[i]]].x;
float texvV =

tempTri—>mesh.tVerts[node—>TexIndexList[node—>AddedVertList[i]]].y;
Point3 vertcolor = RetrieveTexelColor (texU, texV,
MaterialList [node->MaterialID] .pTextureMap
) / 255.0f;
wOutToFile (Convert_lébColor (ConvertRGBtoColorref
(vertcolor)));

}

Compressor: :aaOutToFile (AngAxis aa)
// writes out an angle/axis value

{

// WOutToFile(ReSCaleFloat(aa.angle,—FLOAI_HALFPI,FLOAI;HALFPI,BPQ_16));
fOutToFile (aa.angle) ;
wOutToFile (ReScaleFloat (aa.axis.x,-1.0£,1.0f,BPC 16));
wOutToFile (ReScaleFloat (aa.axis.y,-1.0f,1.0£f,BPC_16)) ;
wOutToFile (ReScaleFloat (aa.axis.z,-1.0£f,1.0f,BPC_16))

7

}

Compressor: :cOutToFile (unsigned char cval)
// writes out a single character

{

fpute(cval, £fileOut) ;
BytesSoFar++;

}

Compressor: :10utToFile (int ival)
// writes out a custom short - uses one byte for values below 200, two
// for values of 200 or greater

{

assert (ival<11400) ;
if (ival<200)

cOutToFile ((unsgigned char)ival);
else

{
int ifl1 = ival / 200;
int if2 = ival % 200;
cOutToFile ((unsigned char)ifl+199);
cOutToFile ((unsigned char)if2);

D-73

Appendix D

}

void Compressor::fOutToFile (£loat fval)
// writes a raw float out to to the file
{
unsigned char * fakearr = (unsigned char *) &fval;
cOutToFile (fakearr[0]) ;
cOutToFile {fakearr[1i]);
cOutToFile (fakearr(2]) ;
cOutToFile (fakearr[3]);

Compressor: :wOutToFile (int ival)

{/ writes out a 16 bit word
unsigned short wval = (unsigned short) ival;
unsigned char * bval = (unsigned char*) &(wval);
cOutToFile (bval[0]);
cOutToFile (bvalill) ;

}

Compressor: :quatOutToFile (Quat q)

// writes out a 4 float quaternion, range compressing the values

{/ so that only 8 bytes are reguired
// instead of sending the quaternion as a full 4 floats,
// we first normalize the Quat, reducing all 4 components
// to the -1 to 1 range. We then scale these values to
// fit within a given integer range.
g.Normalize () ;
wOutToFile (ReScaleFloat {(g.x,-1.0f,1.0£,BPC 16));
wOutToFile (ReScaleFloat (qg.y,-1.0£,1.0f,BPC_16)) ;
wOutToFile (ReScaleFloat {(gq.z,-1.0f,1.0£,BPC 16));
wOutToFile (ReScaleFloat (g.w,-1.0f,1.0£,BPC 16));

}

: Source Code

Compressor: :pbOutToFile (unsigned int code, int bitlength, BOOL bFinish)

// Outputs bit codes one byte at a time.

gtatic int OutputBitCount = 0;
static unsigned int OutputBitBuffer = 0;

OutputBitBuffer | = (unsigned long) code << (32~
OutputBitCount} ;
OutputBitCount += bitlength;
while (OutputBitCount >= 8)
{
cOutToFile (OQutputBitBuffer >> 24);
OutputBitBuffer <<= 8;
OutputBitCount -= 8;
iCompressedCount++;

}

if (bFinish && OutputBitCount > 0)

{

cOutToFile (OutputBitBuffer >> 24);
OutputBitBuffer <<= 8;

D-74

bitlength-

OutputBitCount -= 8;

Appendix D: Source Code

}

iCompressedCount++;

OutputBitCount =

0;

OutputBitBuffer = 0;

FrameList * Compressor::GetFramePtrFromTime (int t)

{

for (FramelList* curr

curr-s>next) ;

}

return curr;

= frHead;curr && curr-s>frameNum != ¢t;curr =

Compressor: : TransmitKeysThisSecond (GeoNode *node, int frame)
// The name pretty much speaks for what this does

{

Control *PosCon;

PosCon = node->curNode-

IKeyControl *poskeys =
Control *RotCon;

RotCon = node->curNode-

IKeyControl *rotkeys =
Control *SclCon;

SclCon = node->curNode-

IKeyControl *sclkeys =
Control *R11Con;

R11Con = node->curNode-

IKeyControl *rllkeys =
int pcount = 0, rcount

if (PosCon)
poskeys
if (RotCon)
rotkeys
if (SclCon)
sclkeys
if (R11lCon)
rllkeys

>GetTMController () ->GetPositionController () ;
NULL;

>G@GetTMController () ->GetRotationController() ;
NULL;

>GetTMController () ->GetScaleController();
NULL;

sGetTMController () ->GetRollController () ;
NULL;
= 0, scount = 0, lcount = 0;

GetKeyControlInterface (PosCon) ;
GetKeyControlInterface (RotCon) ;
GetKeyControlInterface (SclCon) ;

GetKeyControlInterface (R11Con) ;

// TCB stands for Tension Continuity and Bias

ITCBPoint3Key tcbPosKey;
IBezPoint3Key bezPosKey;
ILinPoint3Key linPosKey;
ITCBRotKey tcbRotKey;
IBezQuatKey bezRotKey;
ILinRotKey linRotKey;
ITCBScaleKey tcbScaleKey;
IBezScaleKey bezScaleKey;
ILinScaleKey linScaleKey;
ITCBFloatKey tcbFloatKey;
IBezFloatKey bezFloatKey;
ILinFloatKey linFloatKey;
// IKey *newkey;
Point3 pvalue;

D-75

Appendix D: Source Code

// now, what we do is we go thru all the keys, and let's say we have n

keys
// that fall within the given time. We add these N keys to the object,
along
// with the N+1'th key as well, so we have a final point to interpolate
to.
// so basically the scheme is to always send the keys that reach to the
end
// of the current time sequence PLUS the next key as well. As keys are
sent,
// mark them as such.
// note, it may be possible to use a built in hidden array called
// 'keys' as part of the controller, to access them. Consider this.
// its easier than jumping thru them.
BOOL bIsLight = FALSE;
int iLightNum = -1;
for (int count=0;count<iLightCount ;count++)
if ((GeometryList [LightIndexList [count]]) .curNode ==
node->curNode)
{
bIsLight = TRUE;
iLightNum = count;
break;
// process the position controll for the object
if (poskeys)
int numposkeys = poskeys->GetNumKeys () ;
int LastXeyToSend;
for (int j = node->LastPosKeySent; j < numposkeys &&
PosCon->GetKeyTime () <
(frame+GetFrameRate ()) *GetTicksPerFrame () ; Jj++);
if (j < numposkeys) Jj++;
LastKeyToSend = Jj;
BOOL bPosKnown = PosCon->ClassID() ==
Class_ID(TCBINTERP_POSITION CLASS_ID, 0);
bPosKnown |= PosCon->ClassID() ==
Class_ID(LININTERP POSITION_CLASS_ID, 0);
bPosKnown | = PosCon->ClassID() ==
ClaSS_ID(HYBRIDINTERP__POSITION_CLASS_ID, 0);
BOOL b2 = PosCon->ClassID() ==
Class_ID(POSITIONNOISE_CONTROL_CLASS_ID,0);
BOOL b3 = PosCon->ClassID() ==
Class_ID(EXPR_POS_CONTROL_CLASS_ID,0) ;
BOOL b4 = PosCon->ClassID() == Class_ID(PATH_CONTROL_CLASS__ID,0);
if (bPosKnown)
for (int i = node->LastPosKeySent; i < LastKeyToSend; i++)
{
int fTime = PosCon->GetKeyTime(i) - (iStartFrame -
intPtr->GetAnimRange () .Start ()) *

D-76

Appendix D: Source Code

GetTicksPerFrame () ;
// if we're scrolling thru keyframes that take place
before the start of
// the used animation seguence
if ((£Time < 0 && i < numposkeys-1 &&
PosCon->GetKeyTime (i+1) -
(iStartFrame - intPtr->GetAnimRange().Start()) *
GetTicksPerFrame() < 0) ||
// if the keyframes extend on past our segment of
concern, ignor them as well
(£Time > 0 && i > 0 &&
(PosCon->GetKeyTime (i-1) /GetTicksPerFrame () -
intPtr->GetAnimRange () . Start () >
iEndFrame) &&
(PosCon->GetKeyTime (i) /GetTicksPerFrame () -

intPtr->GetAnimRange () .Start () >
iEndFrame)))
continue;
unsigned char * bTime = (unsigned char*) &fTime;
if (PosCon->ClasgsID() ==

Class_ID(TCBINTERP POSITION_CLASS_ID, 0))
{
if (bIsLight)
{
iOutToFile(OPCODE_LIGHT_KEYFRAMEmTCBPOS);
iOutToFile (node->RefNumber) ;
}
else if (node->curNode
CameraPtrlist [nSelectedCameral)

iOutToFile (OPCODE CAMERA KEYFRAME TCBPOS) ;
else
{
iOutToFile(OPCODE_KEYFRAME_TCBPOS);
i0utToFile (node->RefNumber) ;
}
poskeys->GetKey (i, &tcbPosKey);
// transmit a 32b time identifier
cOutToFile (bTime [0]) ;
cOutToFile (bTime [1]) ;
cOutToFile (bTime [2]) ;
cOutToFile (bTime [3]) ;
// transmit the position
fOutToFile (tcbPosKey.val.x);
fOutToFile (tcbPosKey.val.y) ;
fOutToFile (tcbPosKey.val.z) ;
// now transmit the tension, continuity, and
bias settings but
// first rescale them from the -1 to 1 range so
they fit in
// 16b each
wOutToFile (ReScaleFloat (tcbPosKey.tens, -
1.0£,1.0£,BPC_16)) ;
wOutToFile (ReScaleFloat (tcbPosKey.cont, -
1.0f,1.0£f,BPC_16));
wOutToFile (ReScaleFloat (tcbPosKey.bias, -
1.0f,1.0£,BPC_16));
wOutToFile (ReScaleFloat (tcbPosKey.easeln, -
l.Of,l.Of,BPC_16));

D-77

Appendix D: Source Code

wOutToFile (ReScaleFloat (tcbPosKey.easeOut, -
1.0f,1.0f,BPC_16));

else if (PosCon->ClassID() =
Class_ID(LININTERP POSITION_CLASS_ID, 0))

{
poskeys->GetKey (i, &linPosKey);
// &linPosKey = newkey;
if (bIsLight)

il

iOutToFile(OPCODE_LIGHT_KEYFRAME_LINPOS);
i0utToFile (node->RefNumber) ;
elaze if {node->curNode
CameraPtrlList [nSelectedCameral)

iOutToFile (OPCODE_CAMERA KEYFRAME_LINPOS) ;

else

{ .
lOutToFile(OPCODE_KEYFRAME”LINPOS);
ioutToFile (node->RefNumber) ;

}

// transmit a 32b time identifier
cOutToFile (bTime [0]) ;
cOutToFile (bTime[1]) ;
cOutToFile (bTime [2]) ;
cOutToFile (bTime [3]) ;
// transmit the position
fOutToFile (linPosKey.val.x) ;
fOutToFile (linPosKey.val.y);
fOutToFile (linPosKey.val.z) ;

}

else if (PosCon->ClassID()

ClaSS_ID(HYBRIDINTERP_POSITION_CLASS_ID, 0))

poskeys->GetKey (1, &bezPosKey) ;
int cTime,pTime,nTime;
cTime = PosCon->GetKeyTime(i);

if (i==0)
pTime = cTime;

else pTime = PosCon->GetKeyTime(i-1);

if (i==poskeys->GetNumKeys ()-1)
nTime = cTime;

else nTime = PosCon->GetKeyTime (i+1) ;

float pScaleFactor -float (cTime - pTime) ;
float nScaleFactor = float (nTime - c¢Time) ;

if (bIsLight)

{
iOutToFile(OPCODE_LIGHT_KEYFRAME_BEZPOS);
ioutToFile (node->RefNumber) ;

else if (node->curNode ==

CameraPtrList [nSelectedCameral)

D-78

else

the position

Appendix D: Source Code

iOutToFile (OPCODE CAMERA KEYFRAME BEZPOS) ;
else

iOutToFile(OPCODE_KEYFRAME_BEZPOS);
ioutToFile (node->RefNumber) ;
}
// transmit a 32b time identifier
cOutToFile (bTime [0]) ;
cOutToFile (bTime [1]) ;
cOutToFile (bTime [2]) ;
cOutToFile (bTime [3]) ;
// transmit the position
fOutToFile (bezPosKey.val.x) ;
foutToFile (bezPosKey.val.y) ;
foutToFile (bezPosKey.val.z) ;
// transmit the tangent vectors
fOutToFile (bezPosKey.intan.x * pScaleFactor);
fOutToFile (bezPosKey.intan.y * pScaleFactor);
fOutToFile (bezPosKey.intan.z * pScaleFactor);
fOutToFile (bezPosKey.outtan.x * nScaleFactor) ;
fOutToFile (bezPosKey.outtan.y * nScaleFactor);
fOutToFile (bezPosKey.outtan.z * nScaleFactor);

}

node->LastPosKeySent = LastKeyToSend;

// for non-standard position controllers, we Instead sample
// at 15 times in the last second

int currstart = (frame-1) * GetFrameRate();
int currend = frame * GetFrameRate () ;
int inc = GetFrameRate() / 15;
Matrix3 previousTM ;
if (node->LastPosKeySent > 0)
previousTM =

node->curNode->GetNodeTM (node->LastPosKeySent) ;

nextTM.GetTrans ()

for (int time=currstart;time<currend;time+=inc)

{

Matrix3 tm node->curNode->GetNodeTM (time) ;

Point3 pos tm.GetTrans () ;

Matrix3 nextTM = node->curNode->CGetNodeTM (time+inc) ;
unsigned char * bTime = (unsigned char*) &time;

if (! (previousTM.GetTrans ()
== pos))

pos &&

iQutToFile (OPCODE_KEYFRAME_LINPOS) ;
iOutToFile (node->RefNumber) ;

// transmit a 32b time identifier
cOutToFile (bTime [0]) ;

cOutToFile (bTime [1]) ;

cOutToFile (bTime [2]) ;

cOutToFile (bTime [3]) ;

// transmit the position
foutToFile (pos.x) ;

D-79

Appendix D: Source Code

foutToFile (pos.vy) ;
foutToFile (pos.z) ;

}

node->LastPosKeySent = currend;

}

// process the rotation controll for the object
if (rotkeys)

{
int numrotkeys = rotkeys->GetNumKeys () ;
int LastKeyToSend;
for (int j = node->LastRotKeySent; j < numrotkeys &&
RotCon->GetKeyTime (j) <
(frame+GetFrameRate ()) *GetTicksPerFrame () ; Jj++);

if (j < numrotkeys) J++;
LastKeyToSend = j;

BOOL bRotKnown = RotCon->ClassID () ==
Class ID(TCBINTERP ROTATION CLASS_ID, 0) ||
RotCon->ClassID() == Class_ID(LININTERP ROTATION_ CLASS_ID,
o) ||
RotCon->ClassID() ==

Class_ID(HYBRIDINTERP ROTATION CLASS ID, 0);

if (bRotKnown)

{

for (int i = node->LastRotKeySent; i < LastXeyToSend; i++)

{

int £Time = RotCon->GetKeyTime(i) - (iStartFrame -
intPtr->GetAnimRange () .Start()) *
GetTicksPerFrame () ;
ungigned char * bTime = (unsigned char*) &fTime;
if (RotCon->ClassID() ==

Class_ID(TCBINTERP_ROTATION_CLASS ID, 0))

{

rotkeys->GetKey (i, &tcbRotKey);

if (bIsLight)

{

iOutToFile(OPCODE_LIGHT_KEYFRAME_TCBROT);
ioutToFile (node->RefNumber) ;

}

else if (node->curNode
CameraPtrList [nSelectedCameral)

iOutTOFile(OPCODE_CAMERA*KEYFRAME_TCBROT);
else
!
iOutToFile(OPCODE_KEYFRAME_TCBROT);
ioutToFile (node->RefNumber) ;
}
// transmit a 32b time identifier
cOutToFile (bTime [0]) ;
cOutToFile (bTime [1]) ;
cOutToFile (bTime [2]) ;

D-80

Appendix D: Source Code

cOutToFile (bTime [3]) ;

// transmit the rotation

aaOutToFile (tcbRotKey.val) ;

wOutToFile (ReScaleFloat (tcbRotKey.tens, -
1.0£,1.0f,BPC_16));

wOutToFile (ReScaleFloat (tcbRotKey.cont, -
1.0f,1.0f,BPC_16));

wOutToFile (ReScaleFloat (tcbRotKey.bias, -
1.0£f,1.0£,BPC_16));

wOutToFile (ReScaleFloat (tcbRotKey.easeln, -
1.0f,1.0f,BPC_16));

wOutToFile (ReScaleFloat (tcbRotKey.easeOut, -
1.0f,1.0f,BPC 16));

}

else

// 1f we're scrolling thru keyframes that take place
before the start of
// the used animation sequence
if (fTime < 0 && 1 < numrotkeys-1 &&
RotCon->GetKeyTime (i+1) -
(iStartFrame -
intPtr->GetAnimRange () .Start ()) * GetTicksPerFrame() < 0)
continue;

rotkeys->GetKey (i, &linRotKey);

if (bIsLight)

{
iOutToFile(OPCODE_LIGHT_KEYFRAME_LINROT);
iOutToFile (node->RefNumber) ;

}

else if (node->curNode

CameraPtrList [nSelectedCameral) :

Il
I

iOutToFile(OPCODE_CAMERA_KEYFRAME_LINROT);
else
{
iOutToFile(OPCODE_KEYFRAME_LINROT);
iOutToFile (node->RefNumber) ;
}
// transmit a 32b time identifier
cOutToFile (bTime [0]) ;
cOutToFile (bTime[1]) ;
cOutToFile (bTime [2]) ;
cOutToFile (bTime [3]) ;
// transmit the rotation
Matrix3 Transform(l) ;
for (int count=0;count<i+l;count++)
{
rotkeys->GetKey (count, &linRotKey);
Quat g(linRotKey.val);
Quat gi (Inverse(q));
Matrix3 rot;
gi.MakeMatrix (rot) ;
Matrix3 Result = rot * Transform;
Quat gr (Result);
Transform = Result;

}

Quat gout (Transform) ;

D-81

Appendix D: Source Code

quatOutToFile (gout) ;
node-s>LastRotKeySent = LastKeyToSend;

}

// process the roll controller for the object, if it has one
if (rlikeys)

{

int numrllkeys = rllkeys->GetNumKeys();

int LastKeyToSend;
for (int j = node->LastRllKeySent; Jj < numrllkeys &&
R1lCon->GetKeyTime (j) <
(frame+GetFrameRate ()) *GetTicksPerFrame () ; j++);
if (j < numrllkeys) j++;
LastKeyToSend = j;

for (int i = node-s>LastR11KeySent; i < LastKeyToSend; i++)

{

// int fTime = R1lCon->GetKeyTime(i);
int fTime = RllCon->GetKeyTime (i) - (iStartFrame -
intPtr->GetAnimRange () .Start()) *
GetTicksPerFrame () ;

// if we're scrolling thru keyframes that take place before
the start of

// the used animation sequence

if (fTime < 0 && i < numrllkeys-1 && R1lCon->GetKeyTime (i+1)

(iStartFrame - intPtr->GetAnimRange () .Start ()) *
GetTicksPerFrame () < 0)
continue;
unsigned char * bTime = (unsigned char*) &fTime;
if (RllCon->ClassID() == Class ID(TCBINTERP_FLOAT CLASS_ID,

rllkeys->GetKey (i, &tcbFloatKey);

if (bIsLight)

{
iOutToFile (OPCODE_LIGHT_KEYFRAME_TCBRLL) ;
iOutToFile (node->RefNumber) ;

}

else if (node->curNode

CameraPtrlList [nSelectedCameral)
iOutToFile (OPCODE_CAMERA_KEYFRAME_TCBRLL) ;

1]
n

else
{
iOutToFile(OPCODE_KEYFRAME_TCBRLL) ;
i0OutToFile (node->RefNumber) ;
}
// transmit a 32b time identifier
cOutToFile (bTime[0]) ;
cOutToFile (bTime[1]) ;
cOutToFile (bTime[2]) ;
cOutToFile (bTime [3]) ;
// transmit the roll

D-82

Appendix D: Source Code

fOutToFile (tcbFloatKey.val) ;

}

else if (R11Con->ClassID{()
ClaSS_ID(LININTERP_FLOAT_CLASS_ID, 0))

{

rllkeys->GetKey (i, &linFloatKey);
if (bIsLight)

{

iOutToFile(OPCODE_LIGHT_KEYFRAME_LINRLL);
iOutToFile (node->RefNumber) ;

}

else if (node->curNode

CameraPtrList [nSelectedCamera])
iOutToFile(OPCODE_CAMERA_KEYFRAME_LINRLL);

else

{
iOutToFile(OPCODE_KEYFRAME_LINRLL);
1i0utToFile (node->RefNumber) ;

}

// transmit a 32b time identifier

cOutToFile (bTime [0]) ;

cOutToFile (bTime [1]) ;

cOutToFile (bTime [2]) ;

cOutToFile (bTime [3]1) ;

// transmit the roll

fOutToFile(linFloatKey.val);

}

else if (RllCon->ClassID()
ClaSS~ID(HYBRIDINTERP_FLOAT_CLASS_ID, 0))

{

Ii
It

rllkeys->GetKey (i, &bezFloatKey) ;
if (bIsLight)

{

iOutTOFile(OPCODE_LIGHT_KEYFRAME_BEZRLL);
iQutToFile (node->RefNumber) ;

}

elge if (node->curNode

CameraPtrlList [nSelectedCameral)
iOutToFile(OPCODE~CAMERA_KEYFRAME_BEZRLL);

else

{

iOutToFile(OPCODE_KEYFRAME_BEZRLL);
iOutToFile (node->RefNumber) ;

}

// transmit a 32b time identifier

cOutToFile (bTime [0]) ;

cOutToFile (bTime [1]) ;

cOutToFile (bTime [2]) ;

cOutToFile (bTime [3]) ;

// transmit the roll

foutToFile (bezFloatKey.val) ;

}

node->LastR11KeySent = LastKeyToSend;

}

// 1if the object has a target, we assign it now, making sure
// to add a scene reference for the object, if one didn't previously

D-83

Appendix D: Source Code

// exist. Of course, the target isn't necessary if it
// never actually moves
Control *TarPosCon = NULL;
if (node->curNode->GetTarget ())
TarPosCon = node-s>curNode->GetTarget () ->
GetTMController () ->GetPositionController () ;
IKeyControl *tarposkeys = NULL;
int tcount = 0;
if (TarPosCon)
{ tarposkeys = GetKeyControlInterface (TarPosCon) ;
tcount = tarposkeys->GetNumKeys () ;

INode* ParentNode = NULL;
if (node->curNode->GetTarget ())

ParentNode = node->curNode->GetTarget () ->GetParentNode () ;
while (tcount == 0 && ParentNode)

{
if (ParentNode->GetTMController () &&
ParentNode->GetTMController () ->
GetPositionController())
{

tarposkeys = GetKeyControlInterface (ParentNode->
GetTMController () ->GetPositionController());
tcount = tarposkeys->GetNumKeys () ;

ParentNode = ParentNode->GetParentNode () ;

if (node-scurNode->GetTarget () && tcount > 0)

{

if (lnode->IsAssignedTarget)
{
node->IsAssignedTarget = TRUE;
if (GeometryList [node->TargetIdx].RefNumber == -1)
CreateNewObject (& (GeometryList [node->TargetIdx]));
if (bIsLight)
{
ioutToFile (OPCODE_ADDTARGET__TO_LIGHT) ;
iOutToFile (node->RefNumber) ;
}
elge if (node->curNode == CameraPtrList [nSelectedCameral)
iOutToFile (OPCODE_ADDTARGET_TO_CAMERA) ;
else
{ | .
iOutToFile (OPCODE_ADDTARGET_TO__OBJECT) ;
iOutToFile (node->RefNumber) ;

iOutToFile (GeometryList [node->TargetIdx] .RefNumber) ;

}

// since the object might not actually be visible (it could just
be a

// point in space) we must make sure to process its keys
preemptively.

// if the object would normally get processed anyway, it gets its
keys

// processed early now.

D-84

Appendix D: Source Code

TransmitKeysThisSecond (& (GeometryList [node->TargetIdx]), frame) ;

}

Compressor: :MarkCompleteToFrame (int frame)

{
// mark that everything to this given frame
// is known to be fine.
iOutToFile(OPCODE_COMPLETETOFRAME);

unsigned int uiTime = (unsigned int) frame - (iStartFrame
intPtr->GetAnimRange () .Start ()) ;
unsigned char * bTime = (unsigned char*) &uiTime;

int a = intPtr->GetAnimRange () .Start();
cOutToFile (bTime [0]) ;
coutToFile (bTime [1]) ;
cOutToFile (bTime [2]) ;

}

Compressor: :CleanUpRendering (int framenumber, int SampleRate, int Sample)

{

long time = framenumber * GetTicksPerFrame() / SampleRate * (l+Sample);

intPtr->SetLightTint (time, p301dTint) ;
intPtr->SetLightLevel (time, fOldLightLevel) ;
intPtr->SetAmbient (time, p30ldAmbient);
intPtr->SetUseEnvironmentMap (_BUseEnvMap) ;
intPtr->SetBackGround (time, p30ldBackgrd) ;
intPtr->SetRendForce2Side (_BForce2Side) ;

if (OldCamera)
ViewPort->SetViewCamera (OldCamera) ;
else
ViewPort->SetAffineTM (VptTM) ;
ViewPort->SetViewUser (bPerspView) ;

intPtr->ReleaseViewport (ViewPort) ;

}

Compressor: : TransmitTargetKeysThisSecond (GeoNode *node, int frame,
&LastPKeyNum)
{
Control *TarPosCon, *TarRolCon;
TarPosCon
node->curNode->GetTarget () ->GetTMController () ->GetPositionController () ;
TarRolCon
node->curNode->GetTarget () ->GetTMController () ->GetRollController () ;
IKeyControl *tarposkeys = NULL;
IKeyControl *tarrolkeys = NULL;
int trcount = 0, tpcount = 0;

if (TarPosCon)

tarposkeys = GetKeyControlInterface (TarPosCon) ;
if (TarRolCon)

tarrolkeys = GetKeyControlInterface (TarRolCon) ;
ITCBPoint3Key tcbPosKey;
IBezPoint3Key bezPosKey;
ILinPoint3Key linPosKey;

D-85

int

Appendix D: Source Code

ITCBFloatKey tcbFloatKey;
IRezFloatKey bezFloatKey;
ILinFloatKey linFloatKey;
Point3 pvalue;

BOOL bIsLight = FALSE;

int iLightNum = -1;
for (int count=0;count<ilLightCount;count++)
if ((GeometryList [LightIndexList [count]]) .curNode ==

node->curNode)

bIsLight = TRUE;
iLightNum = count;
break;

}

BOOL bIsCamera = FALSE;
if (&(Geometrylist [CameraIndexList [nSelectedCamerall) == node)
bIsCamera = TRUE;

// now, what we do is we go thru all the keys, and let's say we have n

keys
// that fall within the given time. We add these N keys to the object,
along
// with the N+1'th key as well, so we have a final point to interpolate
to.
// so basically the scheme is to always send the keys that reach to the
end
// of the current time sequence PLUS the next key as well. As keys are
sent,
// mark them as such.
// note, it may be possible to use a built in hidden array called
// 'keys' as part of the controller, to access them. Consider this.
// its easier than jumping thru them.
if (tarposkeys)
{
int numtarposkeys = 0;
if (tarposkeys)
numtarposkeys = tarposkeys->GetNumKeys () ;
int LastKeyToSend;
for (int j = LastPKeyNum; j < numtarposkeys &&
TarPosCon->GetXeyTime () <
(frame+GetFrameRate ()) *GetTicksPerFrame () ; j++);

if (j < numtarposkeys) j++;
LastKeyToSend = j;

for (int i = LastPKeyNum; i < LastKeyToSend; i++)

{

int ftime = TarPosCon->GetKeyTime (i) ;

unsigned int uiTime = (unsigned int) ftime;
unsigned char * bTime = (unsigned char*) &uiTime;
if (TarPosCon->ClassID() ==

Class_ID(TCBINTERP_POSITION_CLASS ID, 0))

D-86

settings but

fit in

.0f,1.
L0f,1.
.O0f, 1.
.0f, 1.

.0f,1.

0f,BPC_16));
0f,BPC_16)) ;
0f,BPC _16));
0f,BPC_16));

0f,BPC_16));

}

else

Appendix D: Source Code

if (bIsLight)

{
iOutToFile(OPCODE_TARGET_KEYFRAME_TCBPOS);
iOutToFile (node->RefNumber+1) ;

}

else if (bIsCamera)

{

iOutToFile(OPCODE_TARGET_KEYFRAME_TCBPOS);
iQutToFile (0) ;

else
// its an object, not one of those

tarposkeys->GetKey (i, &tcbPosKey) ;
// transmit a 32b time identifier
cOutToFile (bTime [0]) ;

cOutToFile (bTime [1]) ;

cOutToFile (bTime [2]) ;

cOutToFile (bTime [3]) ;

// transmit the position
foutToFile (tcbPosKey.val.x) ;
fOoutToFile (tcbPosKey.val.y) ;
foutToFile (tcbPosKey.val.z) ;

// now transmit the tension, continuity, and bias

// first rescale them from the -1 to 1 range so they

// 16b each
wOutToFile (ReScaleFloat (tcbPosKey. tens, -

wOutToFile (ReScaleFloat (tcbPosKey.cont, -
wOutToFile (ReScaleFloat (tcbPosKey.bias, -
wOutToFile (ReScaleFloat (tcbPosKey.easeln, -

wOutToFile (ReScaleFloat (tcbPosKey.easeOut, -

1t
1]

if (TarPosCon->ClassID{()

Class_ ID(LININTERP POSITION_CLASS_ID, 0))

//

{

tarposkeys->GetKey (i, &linPosKey) ;

&linPosKey = newkey;

if (bIsLight)

{
1OutToF11e(OPCODE TARGET KEYFRAME LINPOS),
iOutToFile (node- >RefNumber+l),

}

else if (bIsCamera)

{ iOutToFile (OPCODE_TARGET KEYFRAME LINPOS)
i0OutToFile (0) ;

}

else

{

D-87

}

else

Appendix D: Source Code

// its an object, not one of those
}
// transmit a 32b time identifier
cOutToFile (bTime[0]) ;
cOutToFile (bTime [1]);
cOutToFile (bTime[2]) ;
cOutToFile (bTime [3]) ;
// transmit the position
fOutToFile (linPosKey.val.x) ;
fOoutToFile (linPosKey.val.y) ;
fOoutToFile (linPosKey.val.z) ;

if (TarPosCon->ClassID()

]
It

Class_ID(HYBRIDINTERP_POSITION CLASS ID, 0))

//

{

tarposkeys->GetKey (i, &bezPosKey);
int cTime,pTime,nTime;
c¢Time = TarPosCon->GetKeyTime (i) ;

if (i==0)
pTime = cTime;

else pTime = TarPosCon->GetKeyTime (i-1);

if (i==tarposkeys->GetNumKeys () -1)
nTime = cTime;

else nTime = TarPosCon->GetKeyTime (i+l) ;

float pScaleFactor = -float(cTime - pTime) ;
float nScaleFactor = float (nTime - cTime);
&bezPosKey = newkey;
if (bIsLight)

{

iOutToFile(OPCODE_TARGET_KEYFRAME_BEZPOS);
ioutToFile (node->RefNumber+1l) ;

}

else if (blsCamera)

{
iOutToFile(OPCODEwTARGET_KEYFRAME_BEZPOS);
iOutToFile (0) ;

// its an object, not one of those
}
// transmit a 32b time identifier
cOutToFile (bTime [0]) ;
cOutToFile (bTime [1]) ;
cOutToFile (bTime [2]) ;
cOutToFile (bTime [3]) ;
// transmit the position
fOoutToFile (bezPosKey.val.x) ;
foutToFile (bezPosKey.val.y) ;
fOutToFile (bezPosKey.val.z) ;
// transmit the tangent vectors
fOutToFile (bezPosKey.intan.x * pScaleFactor);
fOutToFile (bezPosKey.intan.y * pScaleFactor);

D-88

Appendix D: Source Code

fOutToFile (bezPosKey.intan.z * pScaleFactor);

fOutToFile (bezPosKey.outtan.x * nScaleFactor);
fOutToFile (bezPosKey.outtan.y * nScaleFactor);
fOutToFile (bezPosKey.outtan.z * nScaleFactor);

}

LastPKeyNum = LastKeyToSend;

}

void Compressor::CreateNewObject (GeoNode *node)
{
Object* tempObj;
tempObj = node->curNode->GetObjectRef () ->Eval(0) .obj;
TriObject* tempTri = (TriObject*) tempObj->ConvertToType (0,
Class_ID(TRIOBJ_CLASS_ID, 0));
BOOL bObjectSentThisFrame = FALSE;
Control *PosCon, *RotCon, *SclCon;
PosCon node-s>curNode->Get TMController () ->GetPositionController () ;
RotCon node-s>curNode->GetTMController () ->GetRotationController () ;
SclCon = node-scurNode->GetTMController () ->GetScaleControllex () ;
IXeyControl *poskeys = NULL;
IKeyControl *rotkeys = NULL;
IKeyControl *sclkeys NULL;
int rcount = 0;
int pcount 0;
int scount 0;
if (PosCon)

{

I

poskeys = GetKeyControlInterface (PosCon);
if (poskeys)
pcount = poskeys->GetNumKeys () ;

}

if (RotCon)
{
rotkeys = GetKeyControlInterface(RotCon) ;
if (rotkeys)
rcount = rotkeys->GetNumKeys () ;

}

if (SclCon)

sclkeys = GetKeyControllInterface(SclCon);
if (sclkeys)
scount = sclkeys->GetNumKeys () ;

}

node->RefNumber = ++nLastRefNum;

10utToFile (OPCODE___ADDOBJECT) ;

iOutToFile (node->nAddedVertCount) ;

i0OutToFile (node->nAddedFaceCount) ;

if (iBitsPerVertex != BPC_32)

{
// we must now find a bounding box for all the vertices in
// this node. Note the bounding box is specified using the
// added coordinates rather than the true object's bounding box
// to enable maximal gquantizing detail based on what is actually
// exported in the scene. While the bounding box can end up
// anywhere, the origin is ALWAYS the pivot point.

D-89

}

Appendix D: Source Code

for (int i=0;i<node->nAddedVertCount;i++)

{

float tempx
float tempy
float tempz

if
if
if
if
if
if

}

(tempx
(tempx
(tempy
(tempy
(tempz
(tempz

<

>
<
>
<
>

= tempTri->mesh
= tempTri->mesh
= tempTri->mesh

node->pMinCoord.
node - >pMaxCoord.
node->pMinCoord.
node->pMaxCoord.

node->pMinCoord
node->pMaxCoord

.verts [node->AddedVertList [i]] .x;
.verts [node->AddedVertList [i]] .y;
.verts [node->AddedVertList [i]] .z;

X) node->pMinCoord.x = tempx;
x) node->pMaxCoord.x = tempXx;
v) node->pMinCoord.y = tempy;
y) node->pMaxCoord.y = tempy;
.z) node->pMinCoord.z = tempz;
.z) node->pMaxCoord.z = tempz;

// transmit coordinates for the bounding box
fOoutToFile (node->pMinCoord.x) ;
foutToFile (node->pMinCoord.y) ;
fOutToFile (node->pMinCoord. z) ;
fOutToFile (node->pMaxCoord.x) ;
foutToFile (node->pMaxCoord.y) ;
fOutToFile (node->pMaxCoord. z) ;

// if the object has no rotation keyframes, yet the object's rotation

// is not its default position,

we force an orientation here

Matrix3 tm = GetLocalMatrix{node-s>curNode, 0) ;
(rcount == 0)

if

{

}

Quat Rot (tm) ;
if (fabs(Rot.x) > 0.005f || fabs(Rot.y) > 0.005f ||
fabs(Rot.z) > 0.005f || fabs(Rot.w - 1.0f) > 0.005f)

{

// process parents

// ignor parents for now...
iOutToFile (OPCODE_SETROTATION) ;
iOutToFile (node->RefNumber) ;
Quat iRot (Inverse (Rot)) ;
quatOutToFile (iRot) ;

// OR

// if the object has no position keyframe, yet the object's position

// 1s not its default position,

if

}

if

(pcount == 0)

// ignor parents for now...
Point3 Pos = tm.GetTrans();
if (fabs(Pos.x) > 0.005f || fabs(Pos.y) > 0.005f ||

fabs (Pos. z)

{

> 0.005f)

we force a position here

iOutToFile(OPCODE_SETPOSITION);
iOutToFile (node->RefNumber) ;
fOoutToFile (Pos.x) ;
foutToFile (Pos.y) ;
fOutToFile (Posg.2) ;

}

(scount ==

)

D-90

Appendix D: Source Code

// ignor parents for now...

AffineParts aff;

decomp_affine (tm, &aff) ;

// only transmit the scale if its not (1.0,1.0,1.0)

if (fabs(aff.k.x - 1.0f) > 0.005f || fabs(aff.k.y - 1.0f) > 0.005f

fabs(aff.k.z - 1.0f) > 0.005f)

iOutTOFile(OPCODE_SETSCALE);
ioutToFile (node->RefNumber) ;
foutTorile(aff.k.x);
foutToFile(aff.k.y);
foutToFile(aff.k.z);

}
}
// now de