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It may be a weed instead of a fish that,

after all my labour, I may at last pull up.

Michael Faraday
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ABSTRACT

This dissertation presents the results of an investigation of
the origin and characteristics of ultrasonic volume backscatter in the
1 to 5 MHz frequency range from fish muscle tissue as a function of the

tissue composition and condition. Scattering by the tissue structural

components is analyzed with particular emphasis on scattering by rough

interfaces and thin membranes. - A fairly detailed physical optics treatment
for scattering by a rough surface of low reflectance is presented in this
connection. In the context of this work the problem of in situ diagnostic
pulse backscatter measurements for soft animal tissues is examined both
theoretically and experimentally. Various aspects, including the effects
of absorption, pulse bandwidth and scatterer response, are discussed and
analyzed. The problem of calibration, the derivation of a backscatter
coefficient and the use of broadband beam near-field measurements are
also examined. |

The tissue measurements are restricted principally to the lateral
myomere of lake whitefish (Coregonus clupeaformis), a fatty species, and
pickerel (Stizostedion vitreum), a lean species. However, additional
measurements on model media of air and oil bubble suspensions, tissue
structural components and bovine muscle are included for comparison.

It is found that the backscatter from whitefish muscle
(transverse incidence with respect to the muscle fibers) in the frequency
range of 2.3 to 4.8 MHz generally varies as A_2'4, where A is the wave-

1

length, compared to A - for pickerel and A~2'4 for a sample of bovine



iii
skeletal muscle. The results are interpreted with the aid of theoretical
calculations based on a first order statistical scattering model of the
fish tissue, histological observations and measurements of the model media.

1.5 dependence for pickerel appears to be due primarily to scattering

The A~
by the muscle fibers and the myosepta.

It is shown that, if the tissues are free of gas bubbles,
lipid inclusions are usually the dominant scatterers in whitefish; for
total 1lipid contents up to 6%, a roughly linear relationship between the
backscatter intensity and the lipid content is observed. However, it is
also shown that, as a result of decompression, gas bubbles are almost
invariably present in whitefish, in which case these tend to be the
predominant scatterers.

In addition to the system modelling of the composite tissue
scattering process and the ultrasonic characterization of fish tissue,
the results are of significance towards the development of practical
ultrasonic inspection and/or quality control techniques in the fishing
industry, as well as other segments of the food processing industry.

The results may also be valuable for the development of ultrasonic diag-

nostic techniques in the biomedical field.
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CHAPTER 1

INTRODUCTION

The need for better methods of objective evaluation and inspection
of quélity in the processing and marketing of fish is widely recognized
[Stevenson § Kellogg, Ltd. (1970)]. Although much progress has been made
in identifying and isolating the factors affecting quality [FAO (1964),
(1969)], adequate means of grading and inspection are still lacking in
many important areas, particularly where rapid, non-destructive testing
applicable in situ is a key consideration. One such area is that of
inspection for parasites. The‘occurrence of these intramuscular parasites
in many economically important species (e.g. whitefish and cod) constitutes
a grave problem in the industry [McIvor (1965); Stevenson & Kellogg, Ltd.
(1970); FAO (1969)]. Work on the detection of these parasites by means
of ultrasound [Freese (1969)], particularly Triaenophorus crassus in
whitefish, showed that a pulse-echo technique was feasible but was hampered
by tissue scattering. Preliminary work on the ultrasonic properties of
tissue [Freese‘and Makow (1968.a.b)] suggested that ultrasonic techniques
might also be exploited for quality control and inspection purposes in
other areas, for example, to distinguish fresh and frozen-thawed tissue
and to determine the fat content of round fish.

For the develbpment of such methods and optimization of the
parasite detection process, a knowledge of the tissue backscatter charac-
teristics under all possible conditions is required. Although considerable

experimental data on the ultrasonic propagation parameters for biological



media is available [El'piner (1964); Dunn et al. (1969)], including
fish tissue [Haslett (1962); Freese and Makow (1968.b); Matsui and
Shibata (1971)], it was found that quantitative data on the scattering
properties of fish, as well as of soft animal tissues generally, is
presently lacking. In respect to human tissue, for example, Hill (1972),
in a recent paper given at the Workshop Conference on the Interaction
of Ultrasound and Biological Tissues, observed
n_...very little indeed is known in quantitative terms about
the backscattering properties of human tissues, and virtually
nothing about their frequency dependence.™

Until recently [Aldridge and Tattersall (1971); Szilard and
Scruton (1973)], there has been little apparent effort made in exploiting
ultrasonic diffuse scattering for industrial, non-destructive testing
applications. Although ultrasound is widely used, with few exceptions
the methods rely on specular pulse reflection, absorption and velocity.
Similarly in the biomedical field, where ultrasound is widely used for
visualization purposes, few attempts have been made to investigate and
measure scattering by different biological tissues in a quantitative sense
until recently [Senapati et al. (1972); Waag and Lerner (1973)], although
its potential for characterizing the structure of tissues has certainly
been recognized [e.g. Wild and Reid (1953); Reld and Sikov (1972)].

The lack of progress in the development of scattering methods
is not hard to explain. In the case of many industrial applications,
where the sample to be tested is readily accessible and has a well-defined
geometry, absorption and velocity can generally be determined more easily
and accurately than the scattering properties. In addition, the

development of satisfactory diagnostic scattering procedures in both the



industrial and biomedical sectors has generally been deterred by obstacles
such as lack of accuracy, ambiguities in the results, high reverberation

levels due to intervening interfaces (as, for example, in echoencepha-

lography), the presence of moderate to high attenuation in the tissues and
theoretical and experimental difficulties due to the complex nature of
the scattering media.

To obtain a proper perspective of these obstacles and to furnish
a realistic model for the development of fish inspection techniques and
hardware, a detailed analysis of the tissue backscatter problem is necessary.

In this dissertation we present the results of an investigation
of volume backscatter from fish tissues in the 1 to 5 MHz range, and we
consider the problem of pulse backscattering by soft tissues for in situ
applications. The origin and characteristics of the backscatter are
examined theoretically and experimentally, and are correlated with the
overall composition and condition of the tissues. Although the measurements
are restricted principally to the lateral myomere of lake whitefish

""""" (Coregonus clupeaformis) and pickerel, also known as walleye (Stizostedion
vitreum), some measurements on model media and bovine muscle are included
for purposes of comparison.

The theoretical work falls broadly into two categories. The
first is concerned with the analysis of the different scatterers found in
fish tissues, and also to some extent in other animal tissues. The
objective may be summed up as an attempt to estimate the magnitude and
wavelength dependence of the backscatter by the various tissue inhomo-

geneities. In spite of the fact that we have specifically referred to



volume scattering, a signifiéant portion of the scattering in both
mammalian and fish tissues may be from thin membranes and organ inter-
faces intersecting the insonified Qolume. In the case of fish muscle,

""" a regular series of involuted thin membranes bind the muscle segments
that give fish muscle its distinctive chevron-shaped appearance. These
membranes or tissue sheets are usually far from smooth at millimeter
wavelengths and may have characteristic impedances significantly different
from those of the surrounding tissues. Scattering from rough surfaces
and thin membranes is thus given major emphasis and a fairly comprehensive
first order treatment is presented.

The other part of the theoretical work is concerned with the

analysis of thé actual measurement problem. . A phenomenological view
of the stochastic scattering process due to Faure (1964), Ol'shevskii (1967)
and Middleton (1967), (1972) is adopted and a model of the tissue
scattering process is derived. The resultant model greatly facilitates
the analysis of the scattering process by illustrating in a straight-
forward manner the influence of the various scattering medium parameters

and those of the measurement setup. It is thus valuable in the design

and optimization of new diagnostic systems. Various aspects of the

scattering process, including the statistical properties, the effects of
absorption, the signal pulse characteristics and measurements in the
transition region between the near and far fields, are analyzed and

compared with the results of experiments.,



1.1 Background and Approach

Of the two fundamental roles of scattering mentioned in the
introduction, the inverse scattering problem represents by far the more
difficult problem. As in the case of the forward (iﬁput—output)
problem,1 two basic techniques are commonly employed in the solution of
the inverse problem. The first of these attempts to directly invert
the problem, while the second approach employs a comparison method
and might therefore be more properly termed pseudo-inverse. Frequently
these two methods are combined. We shall employ the latter method
which in its essential features is similar to regression analysis.
Unfortunately, as in the case of regression analysis, or to use the
analogy of a black box from circuit theory, two boxes may be equivalent
at particular frequencies but the contents are not necessarily identical.
This lack of uniqueness underlines the fact that, although in principle
scattering measurements can reveal a great deal about the structure of
a medium, in practice additiomal information derived from other sources

is required if the analysis of the scattering is to yield useful results.

1.1.1 Scattering Techniques

In applications where anisotropy and geometry are not a
problem, some of the bistatic scattering techniques used in optical and
microwave studies [Van De Hulst (1957); Kerker (1969) ; Wheelon (1959);
Beckmann and Spizzichino (1963)] may be employed to advantage. Thus,

Senapati et al. (1972) examined rough surface scattering as a function

1Rigorous solution of the relevant statistical wave or diffusion equation
versus Monte Carlo methods.



of frequency and angle from frog muscle and liver tissues. However,
in general bistatic measurements are difficult to perform in the case
of scattering from tissue volumes or embedded surfaces because of inter-
ference by strong reflections from the outer surface. For inspection
applications of deep-lying tissues in situ only monostatic volume
scattering measurements can normally be considered. This entails some
loss of information but it should be remembered that due to the absence
of polarization effects, bistatic acoustic compressional wave scattering
measurements yield comparatively less information than do analogous
electromagnetic and optical measurements [Van De Hulst (1957)].
Nonetheless, it is clear that this aggravates the problem of measurement
ambiguities further. Depending on the nature of the application and of
the ambiguities, be it number, size and shape distribution and/or
composition of the scatterers, the backscatter measurements may have to
be supplemented by additional information regarding the medium.

" In some cases it may be possible to obtain this information
by other ultrasonic measurements, for example, absorption and velocity,
but just as often this proves impractical and some other means have

to be found.

1.1.2 Scattering by Random Media

Two principal lines of attack towards the solution of random
scattering problems are evident. The first of these is via the wave
equation for inhomogeneous media or the equivalent integral equation.

The inhomogeneous wave equation has the form

@ ¢ k@ = q® (1.1.1)



where W(;) is the velocity potential and q(?) represents the sources.
In regions of variable compressibility and/or density which constitute
the inhomogeneites (bulk scatterers) in the medium, q(?) will differ
from zero giving rise to scattering of the incident waves.

Foreign bodies which scatter the sound (surface scatterers)

are usually more easily treated in terms of an integral equation

o
equivalent to (1.1.1). For an incident plane wave Wi(¥) = eJkr_Jwt,
one obtains [Morse and Ingard (1968)]
- - > - -
y(r) = Wi(r) + Z JJ] G(r[ro) x(ro) W(ro) dvo
j A
J
.+
)], [y, B ey 20w,
778 % o}
(1.1.2)

where G(?]?O) is the Green's function, X(?O) is the strength of the local
inhomogeneity, W(?O) is the local velocity potential and Ko is the local
surface normal.

Several approximation techniques (ibid.) have been developed
for evaluating either (1.1.1) or (1.1.2). Among the best known is the
Born approx1mat10n technique obtained by substituting v (r ) for v(r )
in (1.1.2) and then iterating to obtain the n-tuply scattered waves (n > 1).

The first order Born approximation will be valid only to the
extent to which interaction of the scatterers including 'self-interaction’
via the scattered field may be neglected. This implies that the scattered
field be much smaller than Wi(;).

The statistical properties of the scattering may be found by

solving (1.1.1) or (1.1.2) for specified space-time statistics of the
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scattering inhomogeneities. However, evaluation beyond the first Born
approximation is generally difficult, even in those few cases where
simple analytical statistical parameter distributions such as the
Gaussian distribution may be applicable. We shall use the Born approxi~
mation to evaluate scattering by a rough sheet in Chapter 2.

The alternate approach assumes that the scattering results
from equivalent discrete scatterers (in effect point-scatterers or
scattering centers) located randomly throughout the volume (or on the
surface) of the insonified medium. The scattering centers are essentially
mathematical fictions but take on a certain physical reality when the
impedance discontinuities are sufficiently sharply defined. Thus, air
bubbles with dimensions less than the ultrasqnic wavelength are rather
well approximated by discrete scatterers. Larger scatterers may sometimes
be represented by an aggregate of scattering centers physically
identifiable as the specular flare points, diffracting edges and points
of the scattering obstacle. The point-scatterer approach is thus
conceptually closest to the geometrical theory of diffraction of
Keller (1953).

The stochastic nature of the scatterers may be taken into
account by direct averaging over the scatterer statistical parameters
or by an equivalent very general procedure of averaging over the random
configurations of the scatterers consistent with the statistical
information ayailable. This method of statistical averaging was intro-
duced by Foldy (1945) to treat nth—order multiple scattering from

random scatterers. When used in conjunction with the wave equation



approach, this technique leads to the stochastic forms of the wave
emmﬂon(LlJ]aMlu.LZLl

The point-scatterer theory has been greatly developed in the
field of underwater acoustics within recent years by Faure (1964),
0l'shevskii (1967) and Middleton (1967). The latter authof, in particular,
has applied this method to some very complex reverberation problems
[Middleton (1972)].

What makes the point-scatterer approach so attractive is the
ease with which various characteristics of the medium and the measurement
system can be introduced. Thus, even if the impulse responses of the
point-scatterers are not initially specified making it impossible to
calculate the actual backscatter level, the scatterer model can still
be used to analyze the influence of the measurement system and medium
parameters on the statistical parameters that characterize the resultant
scattering. With the impulse response specified, the point-scatterer

theory becomes a convenient vehicle for implementing the analysis of the

pseudo-inverse scattering problem. We shall make use of the point-

scatterer theory in both of these contexts.

1.2 Résumé
A brief review of the structure and composition of skeletal

muscle tissue outlining the similarities and differences of mammalian

lDetails of this procedure and conditions for the validity of the method,
including an examination of the fundamental problem of nth-order random
multiple scattering--the lack of completeness, may be found in a paper by
Waterman and Truell (1961); see also various papers by Twersky (1962, 1963).
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and fish muscle is given at the beginning of Chapter 2. The chapter,
however, is devoted mainly to a theoretical analysis of the scattering
cross-sections of the various fish tissue inhomogeneities, although
some experimental data is introduced to delimit and simplify the analysis.
A major part of the chaﬁter deals with scattering by rough surfaces and
thin membranes. Scattering by rough interfaces of low reflectivity
(normalized characteristic admittance near unity) is analyzed using a
slightly modified form of the physical optics solution due to Beckmann
and Spizzichino (1963). The results are then applied to a heuristic
treatment of scattering by a roqgh thin sheet and generalized for
narrow-beamwidth and short pulse incidence. At the end of the chapter
é working definition for the pulse backscatter coefficient is given
which serves as the principal basis for reporting of the experimental
scattering results.

A composite model of the tissue volume backscatter process
based on the Middléton-Ol'shevskii point-scatterer theory is developed
in Chapter 3. Elementary statistical and signal processing concepts
are reviewed and expressions for the first and second moments are
derived, togeﬁher with suitable first order corrections for the effects
of absorption and finite bandwidth.

The significance of the pulse bandwidth in terms of the
transmitter-receiver bandwidth, the effects of absorption, and the
resultant modifications in the scattering and near-field distributions
are examined in some detail. The latter is illustrated by a number of
comparisons of experimental near-field and transition region pulse

measurements with theoretical CW and wideband data. The use of these



measurements in the case of in situ measurements is then considered
from a practical standpoint and various advantages and disadvantages
of such measurements are outlined.

Chapter 4 describes the experimental methods and instrumentation
used in the measurements. Important data is given on the beam and pulse
parameters, the reference calibrations and the various transducer and
instrument characteristics. The determination‘of the near- and far-field
equivalent insonified volumes is discussea and the results are compared
with theory. Also described in this chapter are the different techniques
employed to measure ultrasonic absorption and velocity and the methods
used to détermine the various other tissue properties of interest.

In Chapter 5 the results of backscatter measurements are
presented. The first section of the chapter is devoted to an investi-
gation of the backscatter from a model medium of gelatin containing air
bubbles for the purpose of verifying the basic experimental approach and
the calibration of the setup. The results are compared with first order
scattering theory. The volume backscatter as a function of frequency
from the lateral muscles of whitefish and pickerel is then analyzed and
interpreted in terms of the characteristics of the known inhomogeneities
considered in Chapter 2. Further evidence in the form of experimental
measurements on model media of gelatin and oil bubbles and measurements
from excised pinbones and myosepta is given and compared with the results
of theoretical calculations.

The dependence of backscattering on the tissue composition,
the measurement conditions and the nature of the fish is investigated.

Other aspects examined are the problem of gas bubbles in the tissues



and the stability of the resultant backscatter. Lastly, some results
of backscatter méasurements on other species of fish and mammalian
(bovine) muscle are presented to round out the experimental investigation.

Chapter 6 summarizes the principal findings and conclusions.
A’ﬂumber of potential applications and possible extensions of the work
are outlined.

The appendices, with the exception of Appendix C, contain
material strictly of a review nature on reverberation process statistics
and statistical functions. Appendix C contains a detailed treatment of"
the scattering of rectangular- and cosine-shaped pulses from a rough

surface for the case of a Gaussian beam.

1.3 Mathematical Conventions:

At the outset there always seems to arise the question as to
which units and sign conventions to adopt. Unless the conventions are
clearly stated, the results can be very confusing because of the
mixture of standard mathematical, electrical and mechanical symbols and
quantities commonly employed in the field of acoustics. Throughout
this thesis we will employ the following conventions and definitions:

(a) The pressure of an outward travelling wave is given by

g

S
p(r,t) = :r_‘lejck'r‘“’ﬂ (1.3.1)

. -jw . -
where the time dependence e JUT Will often be suppressed.

(b) The positive frequency phasor is negative and thus opposite
to accepted engineering usage. As a result, the mechanical reactances

have signs opposite to the analogous electrical reactances.



(c) Analytic or quasi-analytic signals will be expressed in the

form V(t) = Vo(t)eﬂjwct; If the Fourier transform pairs are defined by
the equations

Fls(t)] =J s(t)ed¥t 4t

(2]

1]

S(w)

Pl = %}-J Sw)e 7Yt du (1.3.2)

s(t)

the transform of the analytic signal s(t) = so(t)e_jwct becoﬁes

Fis(t)] = So(w - wc) (1.3.3)
The transform of §he derivative is given by

Pls(t)] = -juS (@ - w) (1.3.4)

where the dot indicates differentiation with respect to time.

Alternatively, (1.3.4) may be expressed in the invexrse form as

t

Flaus@] = -jegs(e) + s (meTv (1.3.5)
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CHAPTER 2

SCATTERING FROM FISH TISSUE INHOMOGENEITIES

In order to be able to extract the maximum amount of useful
information from scattering data, it is important that one knows as
much as possible about the nature of the scatterers and the medium.

We will examine in this chapter the composition and structure of fish
muscle tissue and consider in some detail scattering by the different
tissue inhomogeneities. In the case of the latter, we will concentrate
on obtaining basic estimates of the backscatter magnitudes from the
scatterers, that is to say, free of any encumbrances resulting from
absorption by the tissues, non-ideal incident field characteristics

and various limitations and constraints associated with the experimental
setup. These latter aspects will be considered in Chapters 3 and 4.
With the exception of scattering from certain membranes (myosepta)
occurring in fish muscle, the analysis of the scatterers is

relatively straightforward.

Unlike most of the other tissue scatterers, the myosepta
extend over the entire width of the incident ultrasonic beam and thus
require a more rigorous analysis. By treating the myosepta as rough
thin sheets, comparatively simple heuristic expressions for their
CW reflectivities are derived in Section 2.3. Using Fourier transform

methods these expressions are then generalized in Section 2.4 for finite
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Gaussian beam and short pulse incidence. The discrete impulse scatterer
interpretation of the resultant pulse backscatter ekpressions leads to
a natural definition of the scattering strength in terms of the incident
pulse energy that is compatible with the use of short pulses. The
backscatter strength so defined is used as the principal basis of
reporting the experimental results.

We begin our analysis of fish tissue volume scattering with a.

brief review of the nature of fish myomere.

2.1 The Structure and Composition of Fish Musclel

The great majority of North American freshwater fishes can be
classified as either soft-rayed or spiny-rayed types. The two species
considered in this thesis are examples of these two types. Whitefish
(Coregonus clupeaformis) is a herring-like, soft-rayed species while
pickerel (Stizostedion vitreum vitreum) is representative of the spiny-
rayed type. Although there are obvious external and internal differences,

o fundamentally the anatomies of both types are the same. The most
significant difference from our point of view lies in their composition,
specifically the faﬁ content described in Section 2.1.3. The effects of

this on the volume scattering of ultrasound prove to be highly significant.

1Much of the descriptive material in this section was taken from Vol. IIA
by Harder in Handbuch der Binnenfischerel Mitteleuropas, edited by
Demoll, Maier and Wundsch (1964), and Fish as Food, Vol. I, edited by
Borgstrom (1961). Specific data for whitefish and pickerel, except for
the data on lipid composition by Awad (1967), were obtained from measure-
ments performed by the author. '
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2.1.1 Arrangement of the Myomere

Perhaps the most striking feature of fish skeletal muscle is
the segmentation of the muscles into layers, Fig. 2.1. The chevron-like
involution of the muscle layers or myomere, Fig. 2.2, gives layers a cone-
shaped appearance in three dimension. A cross-section of the body of a
whitefish (Coregonus clupeaformis) in the region between the dorsal fin
and the head is shown in Fig. 2.3. The distinctive patterns of the myomere
in a cross-section of fish (patterns vary in different parts of the body)
are characteristic of a species. Identical patterns may be found in other
species, particularly members of the same family. The individual myomere
are bounded by thin membranes called myosepta. The thickness of the
myomere and myosepta varies depending on the species of fish, location
within the body and age of the fish. The location of a series of fine
bones (pinbones) in the epaxial muscles shown in Fig. 2.3 should be noted.

The actual skeletal muscle consists of thread-like fibers or
muscle cells typically 75 to 200 um in diameter. (When only a single cell
nucleus is present one speaks of a muscle cell in contrast to the muscle
fiber or myofiber which has many nuclei.) Except in the belly region of

the body, these cells run parallel to the body axis. The length of an

individual fiber is thus greater than the thickness of the myomere segment.
The myofibers are held in a matrix of collagenous components and elastin
fibril called myocommata; the connective tissue coalesces to form the

myosepta, described in detail in Section 5.Z.

2.1.2 Comparison of Mammalian and Fish Myomere

The differences between fish myomere and mammalian myomere are

apparent in the aggregation of the myofibers. In mammalian muscle,
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Fig. 2.2 View of individual

myotomes in salmon

[reproduced from Greene
(1913) ]

Fig. 2.3 Whitefish cross-
section showing position

of pinbones

Fig. 2.4 Whitefish myoseptum
section showing presence of
air bubbles;

magnification 25x
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myofibers are joined together by connective tissue cells to form bundles,
which in turn form still bigger bundles making up a given muscle. Thus,
the aggregate muscle fibers in mammalian myomere are longer than in the
case of fish. In mammalian myomere, the connective tissue corresponding
to the myocdmmata is called the endomysium. The connective tissue
surrounding a primary bpndle, which consists of perhaps 40 fibers, is
referred to as the perimysium. The primary bundles which may be combined
into secondary and tertiary bundles are surrounded by a thick sheath of
connective tissue, the epimysium. The mammalian myomere contain a
proportionately greater amount of connective tissue (stroma). As a
result, one might expect that mammalian myomere at mm wavelengths would
appear less homogeneous than fish myomere assuming that corresponding
tissue c@mponents have similar acoustic impedances.

For comparison the breakdown of the various protein fractions

in beef and fish muscle is roughly as follows [Dyer and Dingle (1961)]:

Actin
Myofibrillar Proteins Myosin
(65 - 75%) Actomyosin
Tropomyosin
Fish Cytoplasmic Proteins
Proteins (20 - 30%)

Stroma Proteins
(2 - 3% in bony fishes - Osteichthyes)
(8 - 11% in cartilage fishes - Chondrichthyes)

Myofibrillar Proteins

(50 - 55%)
Mammalian
(Beef) Cytoplasmic Proteins
Proteins (30 - 35%)

Connective Tissue (Stroma) Proteins
(10 - 20%)
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2.1.3 v Fat Content and Distribution

The amount of fat in the tissues varies greatly depending on the
species, the particular tissues and sites considered, available nutrients,
whether the fish migrates for spawning, seasonal and other environmental
parameters [Jacquot (1961)]. Im genefal, the soft-rayed species exhibit
a higher fat content than most spiny-rayed fish. It should be cautioned,
however, that the range of fat content in the soft-rayed species can and
does vary from negligible fat, i.e. <0.5%, to a rather remarkable 60% in
siscowets (Cristivomer namaycush siscowet), a sub-species of lake trout;
variations of 15% within the same species are not uncommon. Some typical

values for whitefish and pickerel are given in Table 2.1.

TABLE 2.1

COMPOSITION OF FISH MUSCLE

(a)
Fish Water Protein Lipid Carbohydrates
and Ash

% % % %
Whitefish (Fat >5.0%)(b) 75.5 15.7 7.6Cd)
Whitefish (Med. 1.5-5.0%) 77.7 17.9 3.3 1.2
Whitefish (Lean <1.5%) 81.1 16.6 1.1
Pickerel (<0.7%) 81.0 16.8 0.6
Fat Fish(®) 68.6 20 10 1.4
Medium Fat Fish 77 .2 19 ' 2.5 1.3
Lean Fish 81.8 16.4 0.5 . 1.3

(a) Glycogen may range up to 0.85%
(b) Average values observed in our experiments, see Sec. 4.6
(¢) Jacquot (1961)

(d) Two samples only (six replicates)
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Awad (1967) found that in fresh whitefish myomere containing
3.8% lipid, 21% was in the form of phospholipid, 73% was triglycerides
and the remainder was &n the form of free fatty acids (4.6%) and
cholesterol (1.4%). Most of the phospholipid would normally be located
intracellularly in the form of liposomes in the fibers. Depending on
species, migration period, etc., a small proportion of the other lipids
may also be found intracellularly dispersed [Greene (1913)]. In lean
and medium-fat fish the liposomes are seldom more than 2 um in diameter.

OQur interest will be centered on the great trunk or lateral
muscle of the fish, Fig. 2.1. The trunk muscle contains two distinct
types of muscle, a superficial thinner portion of red muscle and a larger
deeper mass of white muscle separated by connective tissue containing
much adipose tissue. Tﬁe thin red muscle layer, which normally contains
a very great amount of fat in fatty species, is visible in the whitefish
cross-section shown in Fig. 2.3. The white muscle making up the bulk of
the lateral muscle is normally not nearly as fat; values of 2 - 6% are
typical of the white muscle in whitefish, although values in excess of 10%

are occasionally encountered. Greene (1913), in describing the storage

of fat in the muscular tissue of King salmon (Oncorhynchus tschawytscha),

a soft-rayed species like whitefish, stated:

The fats of the pink (lateral) muscle are distributed in the
connective tissue between the muscle fibers--i.e. they are
intermuscular. The pink muscle carries a relatively large
amount of connective tissue which supports the muscle fibers

and the blood vessels, and this connective tissue has a high
percentage of adipose tissue. In it are found enormous numbers
of fat droplets, which vary within a wide range of size. The
smallest droplets are often not more than 1 or 2 um in diameter,
but there are numerous fat globules of this region that are as
much as 100 pym in diameter.
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The above salmon myomere described by Greene contained 10.5% lipid.
Qur own observations suggest that a similar description is applicable
to the whitefish lateral muscle, although on the average the diameters

of the droplets are smaller reflecting the lower fat content.

2.2 Scattering Cross-sections of Tissue Inhomogeneities

Although the muscle cells will not give rise to large discrete
echoes {scatfering from them may contribute significantly to the total
absorption, Pauly and Schwan (1971)], there are several other larger
inhomogeneities that on occasion may give rise to observable echoes. In
estimatiﬁg the relative importance of each of these, we have to examine.
their structures and ultrasonic properties in more detail.

The objective of this and the next section is to derive
theoretical estimates of the relative and absolute scattering strengths
of the different tissue inhomogeneities likely to be found in myomere.
The emphasis will be on whitefish muscle.

Initiaily, we shall employ the backscatter cross-section (BCS)

defined as [Crispin and Siegel (1968)]

o 2

S
0.
i

Limit 2
g = 4rr
T >

(2.2.1)

where T is the distance from the point of observation to the origin of

a coordinate system centered at the scattering body, ]@i] is the velocity
potential (or pressure) magnitude of the incident monochromatic {cw)
plane wave, and |®s| is the magnitude of the scattered wave velocity
potential (pressure). This definition will be extended in Section 2.4

to cover the case of an incident pulse.
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2.2.1 Pinbone Backscatter Cross-section

A series of fine bones known as pinbones are found in.the
epaxial muscles of many species. In pickerel or walleye these bdnes lie
almost in the median plane of the fish and they can generally be avoided.
On the other hand, in whitefish the pinbones project upwards and outwards
making it difficult to avoid interception by the ultrasonic beam. The
bones will thus give rise to a small amount of backscatter that may be

significant at lower frequencies.

Long Wavelength BCS Approximation

At longer wavelengths the pinbones can be represented as
segments of thin truncated cylinders with their effective lengths
determined by the incident beamwidth, pulse length and incidence‘angle.
The pinbone curvature over this length may be neglected and the
geometrical cross-section may be approximated by a circular area of
radius a = va'b' , where a' and b' are the major and minor dimensions
of the area, respectively. With these approximations introduced, an
acoustic BCS may be simply derived by analogy with Chu's formula for

the thin conducting wire [Crispin and Maffett (1968)], i.e.

o = 'rrLZ(kla)4 sin66

1
2
(qa- 1) pz - pl
X 5 +
. L . i
2qa+ (kla 51nel] [zn(ZYkla 51nel) jn/2] by * 0
. 2

51n(k1L cosel)

X s L > A (2.2.2)

le cosel
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2 . 2

where - _ 2% sin e1
9 7 .2

plcl sin 62

64 is the angle between the bone and the direction of incidence, a 1is
the equivalent radius, y = 1.781 is the Euler constant, k = 2w/A,

o is the demsity, c is the velocity and pc2 is the reciprocal of the
compressibility. The subscripts 1 and 2 denote the medium and bone

parameters, respectively. For Pyo pzcg = 0, (2.2.2) becomes identical

to Chu's formula with the incident E-field directed along the wire.

Short Wavelength BCS Approximation

At short wavelengths the physical optics solution for the
finite elliptic cylinder is useful. The solution for the elliptic
cylinder [Crispin and Siegel (1968)] is

ka2b2L2 sind lR[Z sin(kL cos6) 2
o = 2 . 2.3/2 ’
[(a cos¢)” + (b sing)™] kL cos®

kb >> 1 R azb (2.2.3)
where 2a and 2b are the respective major and minor axes, ¢ is the
azimuthal angle and the other parameters are as before. Eq. (2.2.3) is
not applicable if the curvature of the pinbones is such that the
relative phase shift over the effective length L at normal incidence
exceeds 1/4. This requirement may be expressed in terms of the radius
of curvature (R ) as L < /ﬁ:f .

Since the Bones are not completely rigid but are essentially
~opaque, (2.2.3) is multiplied by a factor lRlz, the square of the
(absolute) reflection coefficient given by
sind - B

R = m (2.2.4)

where 8 is the normalized admittance plcl/p2C2'
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2.2.2 Gas Bubble and Liquid Inc¢lusion Cross-sections

Depending oﬁ the species, condition and handling of a fish,
varioué other types of bounded scattering inhomogeneities (and combinétions
of them) may be present; they include gas bubbles, oil globules and tissue

fluid inclusions.

Long Wavelength BCS Approximations

Treating these inhomogeneities as small spherical scatterers,
a formula for the backscatter cross-section may be derived from a series
development of the exact solution for the nom-rigid sphere. The
resultant formula differs slightly from the one based on the Rayleigh
approximation [Rayleigh (1896)]. The first order approximation of the

solution 1s

2
p.Cc. - p.C
o, = -AK@)’ B
3p202 N (kla) (1 + Jkla)
Py, = B ikyr
o2 L ose |1 - & ; koa << 1
jk,T k.r 1
20, * Py 1 1
klr >> 1

(2.2.5)

where A is the incident wave amplitude, @S is the scattered wave velocity
potential, a is the sphere radius, 6 is the scattered wave direction with
respect to the positive z-axis and the media parameters are as before

in (2.2.2).



26

Using (2.2.5) and (2.2.1) the BCS (& = 0) for the sphere becomes

2
p.C..-p.C

g = 4waz(k a)4 z2 2 11

1 3 c2 cz(k a)2(1 + jk.a)

e IR R B A b
p - P 2
+ 2 1 ; ka <1
20y * Py (2.2.6)

In the case of an air bubble plci >> pzci. If, moreover,

2 2 2 .
pl§1 (ka)™ >> 3@2c2, (2.2.6) reduces to
. 2
g = Ana 5 ; ka << 1
1 + (ka) (2.2.7)

Values of (2.2.7) together with the exact CW values for a
pressure release (Dirichlet) sphere taken from Hickling's (1962) paper
are piotted in Fig. 2.5. In comparison with the rigid sphere the
resonance region contains very little ripple thus indicating strong
attenuation of the creeping waves--a well-known fact.

The simpler Rayleigh BCS formula which neglects the factor
plCi 1+ jkla) (kla)z in (2.2.6) may be employed for fluid (water)
inclusions (ka << 1). For lipid globules, however, depending on the
value of ka, the full ekpression (2.2.6) must generally be used as
P s P1%y- The computed BCS values for lipid bubbles are shown in
Fig. 2.5 and are seen to be several orders of magnitude smaller than

for air bubbles of comparable size.
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Resonant Gas Bubbles

For the denominator of the first (monopole) term in (2.2.5)‘
to tend to zefo requires that (ka)z = SQZCE/plci or, alternatively,
Wy = ;2,[;;_}2 which is known as the gas bubble resonance condition.
The scattered wave causes damping of the resonance as is indicated by
(2.2.5). In practice there are also viscosity and other losses.

For this reason, it is normally necessary to replace the jka term in
the denominator of (2.2.5) by a more general damping factor, —jé(m).
The scattered wave potential (2.2.5) may be rewritten in the useful
form [Morse and Feshbach (1953), Chapter 11]

jkr

o, = ;‘A r’ ] (2.2.8)
(w/w)™ =1 - 76 (w) T

The BCS corresponding to (2.2.8) is given by

4wa2
g = = > (2.2.9)
[1 - (wo/w) 17 + 87 (w)

which at resonance takes on the maximum value of o = kz/w if the only
loss is due to radiation, i.e. § = ka.

For Very small bubbles the resonance condition must be
modified to take the effects of surface tension into account. The

excess pressure due to surface tension is given by P = 2T/a, where

ST

T is the surface tension. The resonance condition for an air bubble

in the fish tissue is modified to

(2.2.10)

1 {SYPOT}%
p
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where vy is the ratio of the specific heats of the gas, PO is the
atmospheric pressure and T = 1 + (ZT/aPO) is a function of the bubble
radius. The effective surface tension in the tissue may differ
somewhat from the value in water which is 73 dynes/cm.

A general formula which also incorporates thermal conductivity
correction is given by Dunn and Fry (1961). They give the corresponding

total cross-section defined later in (5.1.4) as

3yP
bCl 20 + prl
QB = a
2 T (2 382 L b2
{4“ [ ca’ ” (2.2.11)

where b = bt + br + bV is the total loss factor with

bt = thermal dissipation parameter--generally negligible
p w2 TP, C
o . 1 171
b = radiation damping parameter = =
T " 4ﬂCl AZ
. .. 3
bV = viscous dissipation parameter = n/ma
27 1
g—1+—apo(l—-3_h-) ‘
e=[1+d (1 +d], withd-= §£%~:—l)
1 sa
WP, %
s._.f____:e]
L 2K
K = thermal conductivity
h=vy/e; 1 <h <y
Cp = heat capacity at constant pressure
T = surface tension
n = viscosity of the tissue medium

Comparing the dissipation parameters br and bV for small bubble

radii in a moderately viscous fluid, we note that the viscous loss will
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become dominant as the frequency is decreased. Edq. (2.2.11) is valid
for ka << 1, but is not valid for ka > 1 due to the appearance of
higher order radiation modes. Solving (2.2.10) yields a resonant bubble
radius of 3.2 ﬂm at 1.1 Mz (p = 1.05 gm/cm3 and ka = 1.4 x 10—2].
Assumingkviscosities in the range of 10 - 102 poise for the tissue and
0.5 poise for the lipid, the viscous damping at 1.1 MHz would be much
too large to give rise tb any appreciable resonance scattering from
bubbles suspended in these media. For a resonant gas bubble suspended
in a larger fluid (water) bubble, e.g. in thawed fish, n is 0(10_2).
Using (2.2.9) and (2.2.11) with 4n/(p1ma2) « 0.06 and taking the combined
damping constant as § = 0.1, the BCS of the resonant gas bubble (Gres)
is 2 x 10“2x2/n or 1.3 x 10_2 mmz. The additional viscous damping thus

reduces T es by a factor of 50 from the maximum value (n = 0).
2% bandwidth
w

The resonance Q (= ) for § = 0.1 is approximately 10,

which at 1.1 MHz is equivalent tooa bandwidth of 110 KHz. Since the
bandwidth of the incident 1.1 MHz pulse is 290 KHz, it should be possible
to detect the presence of resonance scattering by the resultant narrowing
of the scattered pulse spectrum.

The stability of bubbles of this size is somewhat problematical.
Even if the tissues of the fish are saturated with gas, the bubbles would
probably shrink fairly quickly by gas diffusion across the bubble wall
due to their excess pressure. However, unlike the situation in pure
water, the bubbles are surrounded by a more cémplex medium, and as a result
some of the bubbles, e.g. those lying next to myosepta, might have longer

life spans. The nature of the bubble skin and that of the surrounding

medium will, of course, affect the resonance frequency.
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Short Wavelength BCS Approximations

| It is mozre diffiéult to establish the exact shapes of the large
bubbles in situ. Although it may be an artefact, there appears to be
a tendency for the air bubbles in fresh fish to form on and within the
myosepta. As a result the majority of these bubbles appear ellipsoidal
in shape with one axis much smaller than the other two (Fig. 2.4).
Since in most cases the other two axes are equal or nearly equal, the
bubbles can be approximated by oblate spheroids. In the case of the
intermuscular lipid globules, however, the fiber connective tissue
constraints may force the larger droplets to assume prolate spheroidal
rather than oblate spheroidal shapes.

Physical optics cross-sections have been derived for the
various quadric surfaces. However, in general, we will require the
average BCS (<<0>>)1 as the scatterers are randomly oriented, with the
possible exception of the air bubbles. Although <o> is often simpler
in form than the original as@ect dependent BCS, obtaining a rigorous
average can be a formidable task. On the other hand, the average of the
frequency independent geometrical cross-section (which constitutes the
leading term of the physical optics solution when expressed in terms of
an asymptotic power series) can be readily obtained with the help of
the following theorem: The average geometrical cross-section of a large

impenetrable, convex body with Tandom orientation is one fourth of its

surface area. A simple proof of this well-known theorem is given by

Van De Hulst (1957).

1See definition in (2.2.15)
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Ideally, for the geometrical BCS to provide a reasonably
accurate measure of the actual BCS, the ratio D/x (largest dimension
of the body in wavelengths) should be at least three and preferably
much greater. Nonetheless, if creeping waves are not dominant, the
average geometrical BCS <:Gé>» will often yield a fairly accurate
estimate of the actual average value for D/ as low as 0.3. The
reason for this is that the higher order terms in the expression for
the physical optics cross-section will be largely averaged out as a
result of averaging over the aspect angle and the size distribution
of the scatterers in the medium [Van De Hulst (1957), Chapter 11; also
Kerker (1969), Chapter 7]. This averaging occurs in addition to the
inherent averaging in the specular pulse return stemming from the
finite pulse bandwidth.

The geometrical BCS of an ellipsoid defined by the equation
[5%2 + [ZJZ + [%Jz = 1 is [Crispin and Siegel (1968) ]

ﬂazbzc2 _
& [azsin26c052¢ + bzsinzesin2¢ + 02c0526]2 (2.2.12)

where 0 and ¢ are the coordinate angles in the standard spherical
coordinate system and a > b > c¢. The oblate spheroid is defined by
setting a = b, while for the prolate spheroid it 1is desirable to
redefine the major axis as c (to maintain the z-axis as the symmetry
axis) and set a = b < c.

Using the relation <o > = 1/4 S, where S is the surface

o

area of the convex scatterer, we obtain for the oblate spheroid
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L -1
~ 2 sin e
o> = 12 [“a + mac _—é——_J (2.2.13)

where e = (a2 - cz)%/a. [With the major axis redefined as the c-axis
(2.2.13) is also applicable to the prolate spheroid.] For e = 0,
(2.2.13) reduces to the BCS of the sphere. For e = 1, the case of a
disc of radius a, (2.2.13) cannot be expected to hold as the theorem
is inapplicable. Nevertheless, (2.2.13) does yield the correct cross-
section in the limit as A = 0.

The BCS of the perfectly reflecting disc is given by

2
2J, (u)
g = ﬂaz(ka)z cos § [ 1 }

u (2.2.14)

where u = 2ka sindé and & is the angle of incidence with respect to the

disc normal.

The average cross-section <ag> is defined as

1
<> 7 oI Jﬂc(m aa (2.2.15)

where © is the solid angle. Evaluating the integral to obtain <:og;>

for the disc, we find

' a2 [ 23, (4ka) }
o o e 1l - ———————
<i é> 2 dka

the effect of the c0526 factor in (2.2.14) being negligible for large ka.

(2.2.16)

In the limit as ka + «, (2.2.16) becomes identical to (2.2.13) since ¢ = 0.
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2.3 Scattering from the Myosepta

The aim of this section will be to derive an estimate of the
nature and magnitude of the backscatter from the myosepta. The thickness
of the membranes being quite small, we will employ the Born approximation
to obtain a first order approximation of the solution by superposing
the fields from the two sides of the membrane. For this purpose we will
utilize a physical optics solution for a rough surface of non-uniform
admittance that we will derive based in part on the formulation of the
rough surface problem by Beckmann and Spizzichino (1963). We will begin
our analysis by considering geometrical reflection from a smooth
transparent thin sheet. This will provide us with a basis for superposing

the physical optics solutions.

2.3.1 Specular Reflection by a Transparent Smooth Thin Sheet

A schematic representation of reflection and transmission by
a transparent smooth thin sheet is sketched in Fig. 2.6. An incident
plane wave of unit amplitude will give rise to a reflected wave (R),
a transmitted wave (Tl) and various higher order reflected and transmitted

waves which may be simply expressed as

To= oa-r) R, n=1, 2,5 (2.3.1)

For [R[ << 1, we have from (2.3.1)

T - 0™t Rt (2.3.2)

-
Assuming a plane wave of pressure pl(r) = Poe is incident at an

angle Si with respect to the z-axis (Fig. 2.6) on an infinite plane
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Fig. 2.6 Reflections from a thin transparent sheet.

L
an

& 7

Fig. 2.7 Coordinate system for écattering from a rough thin sheet.
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surface of admittance 80 = plcl/pzcz, the reflection coefficient R

becomes

cos§_ - B cosd
T 0 C

R =
coscSi + Bo coscSt (2.3.3)
or alternatively
2 . 2 o
. cos<3.l - Bo [1 - (cz/cl) sin Si]
- 2 . 2. %
coséi + BO<[1 - (cz/cl) sin Gi] (2.3.4)

where Gt is the transmission angle as shown in Fig. 2.6 and where we will
assume that (cl/cz) > Isindi[. Eq. (2.3.4) is the acoustic analogue of
the well-known Fresnel relations of electromagnetic theory.

For a plane sheet of average thickness & the reflection
coefficient Rl from the upper surface z = 0 is given by (2.3.3).
Similarly the refléction coefficient at the lower plane z = =& 1s
given by

B cos§, - coséd,
0 C 1

R2 =

Bo cos&t + cos<5i (2.3.5)

If we consider only the incident plane wave and the two first order

reflected waves (Fig. 2.6), the field at the upper surface becomes

p = P (1+R +R, eI 202 (2.3.6)

1

In essence this is equivalent to the Born approximation which is hence
used indirectly. The phase ¢ of the reflected wave from the lower

surface relative to the incident wave is given by
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jo j20c252,

j2k22 cosé (2.3.7)

Digressing for a moment we see that

. j2a,8 _ ., [l-m] . jans
R2 Rl + R2 e = -j2 [1+m (51na22) e ’ (2.3.8)
B cosé
o] t
where m = ————
cos§.
i
Summing the higher order reflections (transmission factors = 1)
joank _ J2apk j4aol - 1
e [1 -e + e - E‘EBEE@;i (2.3.9)

When the higher order terms are included the reflection coefficient for

a plane (fluid) layer of thickness # becomes

. .| 1-m .
R2 = —J{l+m} tana, 2 (2.3.10.a)
and form =1 - &g, le| << 1
R = -jhketana,f (2.3.10.b)

% 2

The exact solution of the layer boundary value problem [Brekhovskikh (1960) ]

is
. coséi - Bo COScSt
cos<3i + BO cosét + j2 cota22 (2.3.11)
We obtain for m =1 - g, Ie[ << 1 and ayd < /4
R = -j4etana,f

2 2
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which is the previous result in (2.3.10.a). We note that under these
conditions the layer behaves like a short-circuited transmission line.
' : . . : 2

For the scattered intensity where we are interested in IR|“,

we obtain either from (2.3.11) or from the first order result (2.3.8)

|2' = % sin‘a le] << 1 (2.3.12)

R ,

L

Our simple model would thus seem to provide a satisfactory approximation

for le| << 1, (ay2) < m/4 and (cq/e,) > lsinéil.

2.3.2 Kirchoff Solution for a Rough Surface of Non-uniform Admittance

The Kirchoff solution for a plane wave incident on a perfectly
reflecting rough surface is derived in detail by Beckmann and Spizzichino
(1963). Proceeding from Beckmann's initial formulation of the problem
we will generalize the analysis to include the case of finite non-uniform
surface admittance.

We represent the myosepta membranes as a thin plane sheet of
average normalized admittance @ = plcl/z2 where Z, is the specific
acoustic impedance of the myosepta. The sheet is rough on both sides and
is oriented with respect to the coordinate system in the manner shown
in Fig. 2.7. The actual reflecting surfaces S1 and 82 are described by
the functions z = gICX,y) and z = gz(x,y)—z, where gl and g, are random
variables with zero means. Initially we comsider scattering only by the
top surface, i.e. we let & - -«.

Referring to Fig. 2.7, let us assume a monochromatic spherical

wave given by

py(f,0) = P_p(e) (2.3.13)
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is incident on the surface; PO denotes the amplitude, y(6) is a
far-field beam function and T, is the distance from the source to a

. 1 . > . .
point Q on S.” The scattered field ps(r,w) at a point P may be obtained

by evaluating the Helmholtz integral [Baker and Copson (1950)] over the

'y

surface S given for e 7Y time dependence by
> ) 3G
p,(F,w) = - [? 5%- -p 55—1 ds (2.3.14)
S 0 0

> . . .
where p = p(ro,w) is the pressure at point Q on the surface, Ho is the
local normal on S pointing in the positive direction and G = Gw(?l?o)

is the Green's function

- > ejkr
6,Glz) = 7% (2.3.15)

where T is the distance of the observation point P from the point Q.

Assuming that [?il and |7| >> |7 the Fraunhofer or far-field

olmax’

approximations may be introduced

jkr; A
- N e’ "1o  jkj° Ty
Pi(ri’w) B Pow(e) Tio © ? Tio 77 %o (2.3.16)
and
jkrgy  _i7 .
G C%[? ) o= e JkS To s T >>7T (2.3.17)
w o} 4ﬂrso S0 o]

where T, and v, are the respective distances of the source and
. . . .. o> 1
observation point from the origin; ki, ks are the wave vectors of the

incident and scattered waves, respectively, and [Kil = ]§S| = 21/\.

1 L
Beckmann (ibid.) assumes homogeneous plane wave incidence.
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Next it is assumed that the values of p and ap/ano at any
point on the surface may be represented by the field that would be
present on the tangent plane at that point, provided the local radius
of curvature is not too small in comparison with the wavelength.

This key assumption is usually referred to as the physical optics

approximation. The boundary conditions may then be expressed as

ply = (1 +R) py (2.3.18)

>

op _ i _ _ >,
E o= p; (1 -R)K;" g (2.3.19)

where R is the reflection coefficient.

Substituting (2.3.16-19) into (2.3.14) one obtains

P ejk(ri0+rso)

> >
> . . 0 - > > - T
P (,0) = ] p(E) R - ) a e’ o ds
4 r. T
io"so S
(2.3.20)
> > > -> - . . -
where T, T X2 + yoay + g(xo,yo) a, and a is the unit vector along Ty
- o > . .
u = ki - ks is the recoil vector with components
v “x» = k (51n6i cos¢i - 51nsscos¢s)
py = k (51n5i 51nq>i - 51n6551n¢s)
= - . 2.3.21
M, | k (cosél + cosés) (2.3.21)

and hence

22 2 2 _ .2 .2 .2 . : i
k™y® = ot uy = k" [sin Gi + sin 65 2 smé-i 51n65cos(¢g¢i)]

(2.3.22)

and

i s (2.3.23)
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. > . .

The decreasing value of W(ro) away from the origin will assure
convergence of the integral by effectively limiting the insonified
surface area. In the limit of homogeneous plane wave incidence

e . -1 .
[W(r ) =1 with (P_r. ) remaining constant as r. > w], apart from the
) 0 io io
use of slightly different symbols, (2.3.20) becomes identical to

Eq. (18a), Sec. 3.1, Beckmann and Spizzichino (1963).

Partly to sidestep the difficulties introduced by assuming

B plane wave incidence, Beckmann normalizes his solution with respect
to the specularly reflected wave from a perfectly reflecting smooth
plane of the same dimensions, for the same angle of incidence and
distance. He defines th¢ resultant quantity as the scattering coefficient p.
Analogously, we will define an acoustic scattering coefficient T as
Ps(g,w)
' = 2>

Py ‘ (2.3.24)

where P.. is the specularly reflected wave from the equivalent perfectly

smooth pressure release plane.

Except for the case of a smooth surface and/or perfect
reflectance, the integral (2.3.20) is difficult to evaluate in most
cases because of the dependence of R on Gi. However, if R can be
rendered effectively constant, e.g. by ensemble averaging, the integration
may be performed. Provided certain conditions are met (Chapters 4.4
and 5.4, ibid.) such a procedure is justified, and the resultant ensemble

averaged coefficient can then be expressed as

<r> = <R> LI> . (2.3.25)
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and the intensity scattering coefficient <(FP*>>f as
<> o KRR¥> <TT*> (2.3.26)

where <R> = R(di), <RR*> = [R(Gi)iz and the subscript f denotes the
finite non-zero admittance of the surface. A more rigorous treatment
leading to essentially the same results is given in a paper by Kuo (1964).

The angle of incidence Gi should be near normal if (2.3.25) and
(2.3.26) are to be valid fpr Bo ~ 0(1). In the case of the myosepta
this condition is not met; hence, fluctuations in admittance either
intrinsically or due to variations in the local angle of incidence may
affect the character of the scattering. We will generalize our analysis
to take this into gccount.

The problem of scattering by a surface‘of non-uniform impedance
was treated theoretically by Heaps (1956), while the problém of admittance
variations due to the local angle of incidence was considered by
Parkins (1967). Parkins' evaluation, however, is restricted to the
case of u§<i£2)> >> 1. A number of essentially exact solutions have
also been obtained for certain specialized surface geometries,

e.g. Twersky (1§50, 1951).

Although intrinsic admittance fluctuations are not likely
to be encountered in the case of the myosepta, for the sake of generality
we will initially assume that, in addition to roughness, the surface
has a finite, non-zero, non-uniform admittance B. We will assume that

the following conditions apply to the intrinsic variations in B:
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i) B does not vary significantly over a distance less than
a wavelength1
ii) |a8] << [coss, + B].
Subject to these comstraints the tangent plane approximation and the
boundary conditions on Ps given by (2.3.18) and (2.3.19) may be retained.
Assuming that w(;g) is slowly varying compared to the phase,

we may move it outside the integral of (2.3.20), i.e.

>
p_(T,0) =P “ (RS - ) 1 &P Togs (2.3.27)
s s Jg 0
where
P (s, 0. ,0) & (FioTTso)
0 i’7i
1% =
s 4xr. T
T™io"s0 (2.3.28)
The normal Ko is given by
2 (e - B
o Ve -g oz o) %x = Vo) Fy
0 IV(z - g)] [+ EVNRE Z]L
kb 3, (2.53.29)
and hence
KO ds = n' dA (2.3.30)
where n' = v(z - &) and dA = dxodyo.

It will be convenient to express R in terms of the parameter m;

from (2.3.4) we have

(2.3.31)

1We will show that, if the correlation distance of the admittance
fluctuations is much smaller than the wavelength, the resultant
Rayleigh scattering will be negligible in comparison to the overall

tissue volume scattering.
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where '

_ 2 2 2. %
mo, = 8(sec Gil (C2/Cl) tan 6i2) (2.3.32)

Ri’ m, and 61 are given the subscript % to emphasize their local
dependence. Setting mg, = W + Amiz, we obtain after some manipulations

of (2.3.31) and neglecting second order quantities

2
© en . 2Ami2 . (Amiz)
iL i 2 2
(1 +m) (1 +m)
=R - (1+R) Mg Am, << (1 + m.) (2.3.33)
=R i’ ’ ig my o
1 - m,
where Ri =T By one of those fortunate coincidences, (2.3.32)
i ' ‘

turns out to have a relatively simple derivative--namely with

B=B_+ AB = BQ - (Bo/pz Do, + BO/C2 ACZ)

2 .
Ap c B Ac c B -sing.
pn = em 2 [ae ) Zoan®s, | 2o [1-[E] ] 2 i s
1 1 Py 1 {c m. 1 c2 c mi cOos di 179

(2.3.34)

For convenience we will assume that c2 is constant so that the intrinsic
variation in 8 is due solely to fluctuations of P With this simplifi-

cation. {(2.3.34) reduces to

2 -y =
cho Py’ kix
Am. . = AB. + Y Y (2.3.35)
12 1 2
m. cos §. (-k. )
i i iz
2
> - > > > > c2)
where n! =n' - a_, k. =k, - (k..a);q =1~ |=— and
Xy zZ 1Xy i iz z c C1J

ag; = 4B, m;/B,. Substituting (2.3.29), (2.3.30), (2.3.33) and (2.3.35)

into (2.3.27) we get
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p G = p D@ w + IV Ew + pI P E
where

(1) > ) > > > j?.;o
AR ps (I‘,CU) = JPS (Riu—\)) ‘nt e dA
A

p I @0 = -juar)’ | (88 e, Ldrg oo g
Pg itxy’ xy
: (1+R, 282 b } s
p I ) = -3, e | T AN T S B
2k m. Ccos 6. Xy ixyz Xy Xy
1 1 A
(2.3.36)
thp. =3 - ua; v dr {11 be similarly defined. p ™ (¥
wi “xy = U= WA vxy an roxy wi e similarly defined. p_ (r,w)

includes the specularly reflected wave and essentially corresponds to
Beckmann's solution subject to the approximation of <R> by Ri'
. (11) > . .
The first term of P (r,w) represents scattering resulting
primarily from intrinsic admittance variationms, although the roughness
factor eJuZE does appear in the integrand. If we were to set & =

the first term becomes virtually identical to the result obtained by‘

Heaps (1956) for the Fraunhofer approximation (Eq. 22 in his paper) ;

the two coincide in the backscatter direction.

(11

Unlike Heaps' solution, the first term of P )(;,w) is not
reciprocal in Gi and 65. Although only the complete solution as
represented by (2.3.27) is required to be reciprocal, there would appear
to be the same difficulty in that (2.3.27) is reciprocal only to the
extent that Ri is symmetrical or constant. This shortcoming is a
consequence of the tangent plane approximation. However, in the case

of the myosepta where both BO and c2/c1 are near unity, Ri will be
relatively small and roughly constant over a significant range of Si.

In practice, therefore, differences in the results for GS # Gi will

be quite small.
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I1) ~ . .
The second term of pg )(r,w) represents an interaction

correction resulting from the intrinsic fluctuations in g and the

(III)

- . .
S (r,w) arises from the fluctuations

roughness. The third component p

of the admittance due to variations in the local angle of incidence.

Coherent Scattering

We will assume that £ and the surface autocorrelation functions
- . . 2 .
C(é) are Gaussian. If & has a variance h” and <g> = 0, the first and
second order characteristic functions are given by [Parzen (1960),

Beckmann and Spizzichino (1963)]

. : 22
- Juzt _ Ty
P = (M) = e (2.3.37)
and
EG - = (IvGE)y DAEI-C@T (5538
sz’ UZ - - € . ) s
where
2,2
=2 _ -d”/T
c(@) = n7° {gE,) = e 3 (2.3.39)
> . . . _
and d = |d| is the distance between any two points (X i, ¥ 15 X, o yoz)

on the surface.

The assumption of Gaussian surface-height distribution and
autocorrelation is obviously suspect in many instances. The main
justification for its use is that the resultant mathematical convenience
and simplicity more than offset the loss of accuracy in the results
since in most cases an exact analytical expression for the correlation

function is unavailable. Of course, if the approximation 1s to posSsess
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any physical validity the surface must be free of any hidden periodicities
that might affect the scattered field, while the Gaussian distribution
should be at least representative of the surface distribution within a
unit variance of the origin.

An inherent advantage of using a Gaussian correlation function
is that the surface-slope probability distribution P(§') is also Gaussian,

i.e. [Beckmann and Spizzichino (1963), Appendix D]

2 .2
, T &N~ T
p{gr} = 3 exp {f &

2h/T an* (2.3.40)
Since &, BE/BXO and BE/ByO are uncorrelated (& beihg a stationary random

process), ensemble averaging these stochastic variables and the random

variable ABi in (2.3.36) yields

GGy = PGy + GIPEW) « Y Ew)

S

1}

g

- 1} ~»
(p ) + <ps( ) F ) (2.3.41)
where substituting (2.3.37) and denoting 3£/3a by g& with o = xoor Yo

' . - >
iy =3 (P b [y S

i

322 >3
= ju_ R e 2t op H eIHxy Toxy ga (2.3.42)
A

and
5 :
82 p (M%)

m. k cosSG.
1 1

(pPEwm) = -3 ma Gy’

> >
|2 12 ‘ jux *Toxy
x [k, mo <€X > + kiyuy<€y >] e’ XY dA
A
(2.3.43)
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. . . >
For an isotropic Gaussian surface, <p§l)(r,w)> reduces to

2. 2
Luzh (—> -

2 2,2 -
j 1+R.)"P g h7e K. *w.) L >
(1) ,=> \ _ ch( i’ "s o ixy "xy J txy * Tox
<PS (r,w)> = ) 7, 5 e’ FXy Y dA
my Ly €05 8y iz A

The integrals in (2.3.42-43) representing the well-known Fraunhofer
scattering pattern will have an increasingly narrow peak centered at
65 = 61 as the area of the surface is increased. <pr(?,w)> thus
corresponds to the specularly reflected wave. Hence, denoting the
scattering coefficient for an equivalent perfectly reflecting smooth

plane by I, we have the 'zero' order result

2,2

0D\ JuzE o -hush .
<T £ >- Ri <e > T, = Ri e T, (Ggu551an surface)

ith (2.3.44)

_FO = 51nc(uXL) SlﬂC(uyL)

which is similar to (2.3.25). <p§l)(%,w)> also contributes to the
coherent wave. However, since My = [0,0] in the specular direction;
<p£l)(;,w)> will be relatively small in all dirgctions. Combining
the coherent contributions, we obtain the following fi:st order

approximation of <I‘>f

2 2 2 2 \
<r> = |, - ” By (kg g <€; )+ kiyuyA<€y > ) (1+R) <ejuz5> ‘.

L ¢ m. k2 cos46.
i i
(2.3.45)
and for the Gaussian surface
2 > 2 2
q 8- k. _n_.h7 (1+R.)
<> .= |R. o+ c o 1Xy "Xy i _%ughz

- .
. * m. k? T2 2 cosza. ¢ o (2.3.46)
i iz g i
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The Scattered Field Intensity

The average intensity <<Ig> for monochromatic plane waves may
be defined as <<Is>> = %<<psps*:>/plcl where pg is the complex conjugate

of p- Suppressing the constant l/z(plcl}-1 and using (2.3.36)

(pp?) -

II I

11 |
MMy T (a0 (2.3.47)
=T n,m=I

n#m

o~

In order to evaluate (2.3.47) we require the auto-covariance function for
the stochastic variable ABi. We will assume a normal function--namely

2,2
2 "4 /Ts
1

<Asi(§ol) Asi(?ol+ D) =« (2.3.48)

where ei = <AB§> is the variance, <A6i> = 0. The evaluation of
(2.3.47) is then relatively straightforward for the stationary processes
we have postulated.

The procedure we adopted to evaluate (2.3.36) was somewhat
different from the one used by Beckmann (integration by parts, loc. cit.)
in that we relied on a knowledge of the first moment of the slope |
distribution. However, by first integrating by parts before ensemble
averaging, it would appear that explicit knowledge of the slope moments
is not required for the evaluation of <p§1)(?,w)> . This is correct
to first order, since for constant R the slopes do not affect the
coherent component in the specular direction (uxy = 0,0). For the
diffuse scatter which is of concern mostly in directions other than the
specular direction, the Slope effects are still not very significant
if pihz << 1 and R.l >> 0, but they become an essential factor when

Ri »~ 0. We then find that if we are to avoid obtaining non-physical
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results the slope effects cannot be treated in the manner that neglects

the so-called edge effects.

To make the matter a little clearer, we will

obtain the specular scattering <:pr)> by means of partial integration and

ensemble averaging but without neglecting the edge effects.

conditions we should obtain the identical result to (2.3.42).

pM F) =5 R, P H

Integrating by parts yields for an area A = 4L

p M F ) =

JRip.s {“z J
J

DA S A
B L

L

-L

L .

Zuz [sinu L)
y
L

M y )

TN

[u,

A

2

L

_ ' - 1 JH Tq
Eiby Eyuy] e dA

2
i 2y
eI o dx dy -

0’0o M,

L
eJUzg eJUXXQ dx +

=-L
0

Under these

We had

(2.3.49)

(2.3.50)

Since the process is stationary and uniform, the expectation values along

any line located on the surface must be the same.

averaging and completing the integrations results in

(P Ew) =

which is identical to (2.3.42).

2 2
T =Cky)
. m
Z
2,2
= jou e el

Z

2

(51ncuXL)(31ncuyL) 4L Rips

Therefore, ensenble

2.2
1
} e M 417 (sincy L sincy L) RPg

(2.3.51)

What is interesting is that the edge

effect contribution appears to cancel the net slope-term contribution

since we could have obtained the above result without

ensemble averaging of the slopes simply by neglecting

bution in (2.3.49) in the first place.

By neglecting

resorting to
the slope contri-

the line integrals

in (2.3.49) the resultant solution will contain the extra contribution

2

2
(ky)”™ = u_ + u

X

2
Y
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The first and last integrals of (2.3.50) may be combined;

Beckmann defines for this purpose the geometric factor L given by

1 > . >
- M H
L = % cos@i ™ (2.3.52)

The error in the diffusely scattered field intensity due to neglect of

the edge effect is therefore proportional to

GomE 2 2 2
——t - M S (2k COSSiL) -,

2

Clearly the error will be small in most applications for all angles not
near grazing incidence, and will be zero in the specular direction.
However, since the correction term piIII)(;,w) depends'expressly on the
slopes, it becomes essential that this dependence be carefully
approximated when Ri * 0 and ABi = 0.

Although fundamentally it makes no difference which technique
is used to evaluate (2.3.36) and (2.3.47), it would appear to be easiest
to employ direct ensemble averaging of the slopes. To save on notation
we will let q = [l—(cz/cl)2][Bi/mg[l/coszdi]and we will also use the
parameter g defined as (ibid.)

g = “i h® = [Kh(coss, + cosas)]z (2.3.53)

/g is the generalized Rayleigh criterion of the surface roughness. Its

physical meaning is clear when it is compared to (2.3.7).

Ensemble averaging (2.3.47), we find that interaction terms of

the form

d

. . e =
1 JUZ(E "Es) JHxyGox
(e g; MVatsaTisl ) IHayTCoxy qaan,
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(where r,s = 1,2, v # s, and 1 = 0 or 2) do not contribute real power for

symmetrical probability distributions of ¢ and g£'. Renumbering the terms

of (2.3.47) from one to eight, we obtain for the average scattered field
intensity <IS(¥,M)>

<Is(;,w)>

<I§n)(?,w)> (2.3.54)

8 ~100

=1

where

() = Irgp1? IJ[{ <ej“2(E}'€2)> e?%¢ an da,

S is

jdq
e dAldA2

() sl spos (D) oo

(1)

%[(1+Ri)2PS|Z{J{J <(AB (08,0, [u <€1x€2x juz(a1-£2)>

2 /4 jng(81-82) ALK
- <g1ygéy eI Hz >1 &% dada,

2 222
SN I(lJ’Ri) Psl My juz(g1-82)
<IS ) - 4% coszéi <[klxg1£%< 1y€1y52y] o )

jog
e dAldA2

i

2 2 2
q [(1+R.) % ]
6 2 2.2 2 2
<I£ )> = QLTS N T 3 g2x
4Kk™ cos’§. y i yoLy

L

+

2 1 1 1 1
(kiyux ¥ kix“y) E1x52xgly£2y ¥ k1y ix x“y€1x€2y

2 2,2 jug (B1-82) Jod
+ kiy“yg 1y 2y] e > e dA dA
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2 2
} w d[R, (1+R )] [P_]

.(7) .
<Is > J <( ix xg1x£2x ¥ 1y ygly‘EZy)cOsu (‘C’l €2)>

k cosS§.
i

idg
e dAldA2

rgalr o Ip [

(™)

2
k. 1 1] -
 como, <C ixPxEx T 1yuyay )COSUZ(EI EZ)>

idg '
e dAldA2

By using the following relation derived by interchanging the

order of differentiation and ensemble averagingl

. _ 2
—Juz(il—éz) _ w2 |9 C 3C  oC -g(1-0)
(Bl Elg Y =h T e o e (2.3.55)

where i,j = 1,2, and «,8 = X,y, we obtain

j 2 2 yr 2(aq-0,) 2,2
1 og1 jug(g1-82)\ _ 2h” _-d /Ty ~g(1-C) _ 1 72 -d°/T
(Elaf2g © ) e el Loy ee 8
& £
2 2,2 PP
. 2h e—d /TE e—g(l—C) (2.3.56)
T
g
The contribution of the second term will be small in comparison to the .

2 2
first term [when e d"/T £ is large, (al az) /T2 is small and vice versa].

For g << 1, we approximate eg by 1 + gC. The evaluation of
the resultant integrals can then be further expedited if it is assumed
that the surface area diameters are much greater than the largest

correlation distance for any of the stochastic variables. For a circular

lThis is permissible since the postulated Gaussian process is stationary,
see Parkins (1967).
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2 . . .
area A = na” we obtain with the help of the Fourier-Bessel transform

relation
_a
2,2 . 2 .2
1/27A jJJJ e_md /T ej¢d dAldA2 = J Jo(kYu) e ™ /T udu
A o) «
(Limit)
a > o 2
- (T?/2m) o (KYT) /4m (2.3.57)
and (2.3.56)
' 2
(N . * 2 2 2.2 -g-(ikyT
a7y = (o (p,) + IRP " ma ngu, T, e g- (v Te)
(2.3.58.a)
and

e 2 (i 2
<1§2)> . [RiPSIZ ral2ukPyn? [1 + g o (VT 78 CakrTe)

(2.3.58.b)
Except for pi replacing (2k cosdi)2 L-2 = (§~ﬁ/uz)2, <I§l)> is identical
to Beckmann's result.

Similarly, after substituting (2.3.48) into (2.3.54) we obtain

13

2 2
L

22 2, 2 2 -g
%](1+Ri) PSI e (ma)” u) e [TB

(157

(2.3.59.a)
and

")

R

2 2
2.2 2 2 2 . 2,2 2 -(kyTg) 2 - (kYT
](1+Ri) PS] e; (1a)" (ky)” 2h /TE [TB e + gl e % ]

(2.3.59.b)
2 2 -2 . (2) (4) . .
where FC = TB + Tg . As in the case of <Is > s <Isv > which is

proportional to the slope variance may be neglected. We note that the

leading terms vary as A% for (kyTB) << 1.

For I§5) we obtain

>

&, k. ) 1 2
<I(5)> = %1(1+R.)2P lz(ﬂa)ZZng ——35X——%§X-[l + e-CékYTE} ]ec® CakyTg )
S . 1 S (k )
1z (2.3.60)

2
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which vanishes as h2 + 0. Had we used the partial integration and the

approximation discussed earlier, we would have obtained

> > 2
. * 2
(5) . 2. 42 ( ixy Mx ) 2 .22 2 - (LkyT -
<Is > H o %](1+Ri) Ps| ——"Ei*—g%—- q (ra)” [a Fo + ng e Caky g) ] e g
iz

which would seem to be incorrect since the leading term does not vanish
as h - 0.
. (6) . . .

The evaluation of <IS > is more involved and requires the
fourth order moments. Alternatively, one can derive additional relations
of the type (2.3.55-56). However, as <I§6)> has a maximum possible
magnitude of 4 <p§l)(¥,w)> 2 [see (2.3.43-44)], its contribution will be
negligible for g << 1.

. . . . (7 (8)

Finally, combining the interaction terms <IS > and <Is >
we get for g << 1

X, W)
L (7 8 2 2 2 2 -
I I
iz

2.2

2 2
x [a"T Té(l+g) e'(l/zkYTi) + l/zTé g e’(kYTa). /8]

(2.3.61)

H

where TO 2(kya)'l Jl(kya). Since ny = [0,0] in the specular direction,
the first term will be small everywhere, and as a result the second term
is likely to be more significant. We note that both <I§5)> and
(7 (8) o -2 .

( <Is > + <IS > ) exhibit a A dependence for kYTg << 1 similar to
<I(3)> and <I(4)> . This seems to be characteristic of surface

s S
admittance variations in the long wavelength approximation.

This completes the evaluation of (2.3.54) for g<<1l. As g

becomes larger it will be necessary to retain an increasing number of
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higher order terms, while for g >> 1, the integrals of (2.3.54) may be
evaluated asymptotically.
Beckmann- (loc, cit.) evaluates the integral

J Jo(kYu) e_g(lfc) udu
0

by taking [e-g(l—C)] as the fast varying function with the stationary
point at u = 0 and |C"(0)]| = 2/T2 where C'"(0) is the second derivative
of C(u) evaluated at the origin. This results in an intensity scattering

coefficient <rr*> £ corresponding to <I§l)> given by

2.2.2
2 2 -kK°Y'T /4g
* ~ *

(rr*) ¢ = RRIGLY/A) [(Tp/g)e ] (2.3.62)
where now the expression in the square brackets of (2.3.62) becomes the
slope distribution (2.3.40) in the geometric optics limit, i.e.
P21 /ag

_s2 /24"

P(s) = (1/2m’)e = Gl/am (t/ge

where AZ = h2|C"(O)], and 52 = (Mi+p§)/ui . [A more general proof for
arbitrary slope distributions was given recently by Barrick (1968)].

Thus, with |u2| replacing (2k cossi)L, we have for g >> 1

2
<I(1)> « (ﬂa)zuszg”l -(erTe) "/4g (2.3.63)

The remaining integrals may be evaluated in the same manner.

A number of comparisons of Beckmann's theory with experimentél
backscatter data from surfaces with known approximate Gaussian surface-
height distributions and Gaussian correlation functions has revealed
significant discrepancies under certain conditions. The nature of these

discrepancies and shortcomings of the theory have been extensively
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discussed in the literature and various modifications and improvements
have been suggested, e.g. Clay and Medwin (1964); Horton et a1.1(1967);
Fung and Leovaris (1969); and Melton and Horton (1970).

. Fung and Leovaris (1969), noting that (2.3.62) only fitted
data from surfaces with gentle slopes, observed that Backmann's asymptotic
evaluation had neglected the effect of the weighting factor u in the
integrand. By expanding C(u) about the correct stationary point Uy and

setting
Cluy) + ') fu, = 1 , g >> 1 (2.3.64)

where the prime indicates the derivative, and using the equation

< ‘ 2
J 3, (kvu) e ™/T pau = 5 I 572 (2.3.65)
) m” [1+(kyT/m) "]
they obtained
2 [e0]
. . 27l -gC'(u,)u
<1P*> @ JJO(kyu)e 0’ udu
o]
- 2ql? gt'(u)
- TA 2 2.3/2
(g0 () + en)?1%3
vvvvvv 5 2
- ZXL cosze . B — (2.3.66)
2k [cos'8 + B sin"6]

where B = [ZkhZC'(uo)]-z. As u, 0, Eq. (2.3.66) + (2.3.62). As Fung
and Leovaris point out in their paper, this result has the advantage of
incorporating the true correlation function and appears to yield signi-
ficantly better agreement at both low and high grazing angles. At the
same time it may explain why workers had obtained consistently better
agreement with the Kirchoff theory using an empirical exponential corre-

lation for surfaces that were Gaussian with Gaussian correlation functions.
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We shall now limit our discussion to the problem at hand and
set AB, = 0 as intrinsic admittance variations do not appear to be
significant in the case of the myosepta. This eliminates <I§3)> and

<I§4)> leaving in most cases <I§l)> as the dominant term for g << 1

and Ri # 0.

2.3.3 First Order Scattering from a Rough Thin Sheet

The orientation of the rough sheet with respect to the coordinate
system was given in Fig. 2.7. We will assume that reflection coefficients
of the upper and lower surfaces are both small, i.e. [Ril < 0.3, and that
the sheet's averagé thickness & is a fraction of a wavelength. On the
basis of (2.3.8), the layer scattering coefficient may then be approximated

to first order by

. j2004
Ff layer Pfl + sz e (2.3.67)

We will represent the scattering coefficient for a particular member of

the ensemble of surfaces under consideration as

re = <I>p+ BT , (2.3.68)

wheré Arf is the fluctuating part having a zero mean.

We can obtain a very good insight into the layer scattering
characteristics simply by considering the degree of correlation of the
scattered waves from the upper and lower surfaces expressed in terms of
the scattering coefficients. The advantage is that we need not specify
the actual surface probability distributions.

Using (2.3.68) and (2.3.67) the ensemble averaged intensity

scattering coefficient becomes



59

. * = , % *
KI5 aver = I <I> 5 <I> 0 <I> Fo7 AT £ ATy > + AT H ATy

A -j2ap48
+ (<T> 4 <r—> £yt AT AT > ) €

b (TS 2 <> gy <A AT > @002 (2.3.69)

where we neglect the interaction of the lower surface roughness with the
upper surface roughness on the specular power since it is a second order
effect. Otherwise (2.3.69) is qpite general and includes the case of a
lossy layer (uz = aé - jag), different roughnesses of the two sides and
different reflection coefficients.

In the case of the myosepta, al/g will be negligible. For the

2
simplest case of Al = xz (within the layer), Ril = -Riz, and symmetrical
probability distributions of &, and gz with g; = 85, and Tgl = ng
we have
<I>g = ~<I> ¢y (2.3.70)
* = *
<AI‘f-lAI‘fj> <AFfjAI‘fi> (2.3.71)

where i,j = 1,2 and
<ArfiAPfj> =T <A1—|fiMﬂ%i>:‘/2 <AFfjAPfj> g s 1 4] (2.3.72)

T is the cross-correlation coefficient of the ensemble of surface

reflectivities for the upper and lower surfaces of the layer. Substituting

(2.3.70-72) into (2.3.69), (2.3.69) becomes
LI e = sina,t (KI> <I> 3+ <ATATE>)
+ 2(1-7)(1-2 sinzoczsl) <AI‘fAT*f> (2.3.73)

where in view of (2.3.71) we have dropped the subscripfs 1 and 2.
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The principal result we observe is that the specular term

4 sin2a2£<:r;>f<:r>>§ is unaffected by the values of T; only the diffuse

scattering is affected. Before considering the effect of different

values of T on <<AFAF€>1ayer, however, we will examine how T is related
to the actual statistical parameters of the surfaces.

The individual terms of (2.3.69) are evaluated as in the
previous section, i.e. <Ff1F§1> and <szr§2> are_integrated over
S1 and S2, respectively. For the interaction terms the integrations are
performed over both S1 and S2; we will illustrate this for the special
case of identical Gaussian surface statistics for S1 and S2.

Referring to (2.3.36), (2.3.54) and (2.3.58.a) we have

< I pI* = -|R |2|P {2 ejﬁ'%o1 dA ejﬁ'—fo2 dA
Ps1Ps2 i st Mz1Mz2 1 2
Al

and with M, = My T M,
2 2 | ju (51 Ez) ju d
* = - Z - *
<AFf1APf2> IRi| U < e > e’ "Xy dAldA2

“Va a2
- <Ffl> <Tf2>*

(Although it is a convenient way of analyzing the problem, it is not
essential to split Ie into steady and fluctuating parts.) We define the

cross-correlation at d = 0 by

2L ) 2\ L .
(8185) g0 = (107 CE5) * Koo

where IKCC] S 1. Since the statistical parameters of the two surfaces
including the autocorrelation functions (2.3.48) are the same,

we have
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> > =+ _ 2
<€1(roxy) EZCroxy ¥ O)> = b K C)

Retaining only the first two terms of the series for egKCCCCu) e ngC

a .
. B 2 2 2 -g(1-K..C(u) 2 *
<AFflAI‘f2> = -2n(ma”) R, [Tu) | e c J (kywyudu + [R, [* <> <>
o
Comparing the above result with (2.3.72) shows that for KCC 2 0, ch = T.

"For -1sKCC < 0 the above result appears to be approximate in that we are

considering only the first order term m = 1 of the diffuse scatter. The

KgC

coefficients of the higher order terms of the e series alternate
. 2
between cosz(azl) for m odd, and sin (azz) for m even.
Three interesting cases, illustrated in Fig. 2.8, correspond

to T = +1, 0 and -1. If the two surfaces are perfectly positively

correlated, i.e. gl(;QXy) = gz(?oxy), then

<lr|2>f layer 4 Sinz(o‘z’w_ [ (T flz ¥ <IA1"lzf> 1w, 1=1
(2.3.74)
vvvvvvv This result is the same as would have been obtained by multiplying thé
scattered field intensity from the single surface S1 by the effective.

reflection coefficient of the membrane (2.3.11). If the two surfaces

are entirely uncorrelated, then

2 .2
<]TI > f layer = 4 sin (azﬁ) |<:T:>f12 + 2 <]AT[§:> s, T =20
(2.3.75)

Finally, for the case of perfect negative correlation gl(?o ) = —gz(?oxy),

Xy

we have from (2.3.58.a)
2 . 2 2 2 2
(Ir] >f layer = 4 sin (0,8 [ <T> " + 4 cos™(a,0) (]Ar[f> , 7= -1

(2.3.76)



62

T -
T=0

c) —— ——— T-=-

) gy T =-1

d) e——— WHITEFISH
R . MYOSEPTUM

Fig. 2.8 Examples of thin rough layer cross-sections
{a) surfaces correlated, T = 1
(b) surfaces uncorrelated, T = 0
(c) surfaces negatively correlated, T = -1

(d) composite surface myoseptum model.

~ SOURCE

V><

Fig. 2.9 Geometry of a pulsed beam incident on a planar surface.
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s

The diffuse scattering term m = 1 in (2.3.58.a) vanishes in those directions
where

a L = 2mL/A (cosSi + cos&s) = L(4n + U7 , n=20,1,2.,.

2
This does not mean, however, that there is no scattering, only that the
scattering is greatly reduced in these directions.

Comparing (2.3.74-76), the specular terms are seen to be unchanged
while the diffuse scattering terms have different coefficients. For thin
layers (azz << ©/2), the diffusely scattered intensity is increased by a
factor of (2 sinzazz)‘l as T decreases from +1 to 0.

Interestingly, for T = 0 the angular pattern of the diffusely
scattered intensity, apart from a factor of two, is indistinguishable from
that of a single surface with the same surface characteristics. If the
lower surface of the layer were to be plane, the equivalence of the diffuse
scattering would be complete. This finding is confirmed by recent experi-
mental results obtained by Leovaris and Fung (1973) working with thin
layers of the type above.

The case of T = -1 is perhaps a little unrealistic in practice.
However, if higher order terms of the series for ngC can be neglected

and cosoc2

the uncorrelated layer and this would seem to be in accord with the

% = 1, the diffusely scattered power will be doubled compared to

physical picture of the surface in Fig. 2.8(c).

Based on our histological examinations, the whitefish myosepta.
membranes in situ appear to have a sandwich structure of the type shown
in Fig. 2.8(d). The outer layers consist primarily of adipose tissue

while the inner layer is composed mostly of much tougher connective tissue.



64

The extension of (2.3.67) and (2.3.69) to additional layer
interfaces is clear. The only difference is that the scattered waves
(subject to the Born approximation) from a particular interface must now
be delayed by the total delay incurred in passing through the various
layers. [The problem of n planar 1éyers is considered in many texts,

e.g. Schoch (1950); Brekhovskikh (1960) .]

Effects of Curvature

In the region that is insonified the myosepta have only a
slight curvature over the beam diameter, see Figs. 2.2 and 4.2.
(The beams were actually incident at a somewhat lower level than is
indicated in Fig. 4.2.) It can be shown that for the specular (coherent)
scattering coefficient the effects of this curvature may be approximated
by multiplying <T'> by a divergence factor derived from geometrical
optics considerations, see Chapter 11 of Beckmann and Spizzichino (1963).

In comparison to the effects of curvature on the coherent
scattering, its effects on the diffuse scatter are much less significant.
Qualitatively, we can see that the two main effects are a very slight
reduction in the effective correlation length (thereby broadening the
angular distribution of the scattering) and a small increase in the range
of the angle of incidence. Since the beamwidths used in the measurements
are relatively small compared to the curvature, it would appear that the
effects of curvature on the backscatter from an individual myoseptum can
be neglected, and only the change in the average angle of incidence for

the myosepta lying at different tissue depths need be taken into account.
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2.4 Effects of Beamwidth and Pulses on Rough Surface Scattering

The effect of beamwidth was touched on in the previous section.
In essence, if the beam does not vary appreciably over a distance equal
to several times the correlation lengths of the various stochastic
processes, the beam function may be moved outside the Helmholtz integral,
see (2.3.20). Hence, under these conditions the effects on <> and
<1T|2> are negligible and the beam only limits the extent of the surface
insonified all of which lies in the first Fresnel zone as is implied by
the far-field approximation.

With the exception of a few measurements at 7 Miz, the beam-
widths used in the measurements are considerably greater than the Tg's

of the myosepta.

2.4.,1 Review of the Effect of Narrow Beamwidth

The effect of a narrow Gaussian beamwidth was considered by
Horton and Muir (1967) using Eckart's theory (1953) for the case of low-.
frequency scattering. The same approach may be employed to illustrate
the effect of beamwidth in Beckmann's theory.
We will assume that the incident beam amplitude variation on
the surface 1s given by
7oy

T
- . 2
w(ro) = exp|- _§9§Z§_.[1 - 51n26i cos (¢—¢i)] (2.4.1)

r. ©
io e
where the equivalent beamwidth 1s defined as Zrioee and T, is the
distance of the source from the origin. Using Horton and Muir's approach,

it is convenient to rotate the coordinate system into azimuthal alignment

with the incident beam and rewrite (2.4.1) as
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(2.4.2)

RJONN
m46<N

\P(XOQ’O;LU) = eXP -

®
o’

where a = rioee/cosés:.L and b = rioee' Substituting (2.4.2) into (2.3.20)

we can show that

MZaZ 2b2
(1) ¢z . Jk(rjo*rse) X Yy g
(2.4.3)
where P, = Po/4wriorso. Comparing (2.4.3) with the homogeneous plane

wave result (2.3.42), the factor exp [—(%pxa)z - (%pyb)z] is seen to take
the place of the Fraunhofer pattern coefficient I,- Hence, it follows

that

22 2.2
AR g
<1—|>fb - Ri exp - = é‘

The derivation of the scattered field intensity is slightly
more complex. Expressing the surface height correlation function in

rectangular coordinates as

2 2y 4
Clg,n) = exp [-% {27 * 37} } (2.4.4)
T,
we can show that for g << 1
u2m2 u2n2
(1) . /oD (DN ¥ 2 2 D S A
<Is > fb <Ps >'fb <ps > " lRi| L; gfu, gmm exp 5 5
(2.4.5)
where A = wab, I, = |P, [2 and n? = a %+ T2, a7l b2+ T2, The
io io X y

second (diffuse scattering) term, apart from the factor e_g, is the
exact equivalent of Eq. 51 in Horton and Muir's paper (loc. cit.).
Similarly, for g >> 1 we obtain
W
UX‘ v

2 2 2.2
1 2 2
<1§ )> o * IRy |T I Augmev exp [- — - g } (2.4.6)
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-2 : .
where w ~ =a + gT.~ , v =b + gTy . The subscripts fb denote the
finite beamwidth.

In summary,we note that the implicit factor of one-half in

(2.4.5-6) represents the effect of the beam amplitude taper. Otherwise,

when we set Ti = Ti = 41° and assume a_z,b_z << %T—z,

become the same as the homogeneous plane wave results.

(2.4.5) and (2.4.6)

2.4.2 Effect of Pulses

The effect of using a pulsed beam on the reflectivity can be
more easily appreciated by referring to Fig. 2.9. The effective
insonified area for the CW beam is given by

2,

Acw = “—zzgﬁzj_ (2.4.7)

For a pulse-s(t), 2AT in duration, the maximum return will originate
from this equivalent area provided(Zrioee tang§, < cAT. For smaller

grazing angles the area reduces to

Ap c = b(cAT) gosec&i (2.4.8)

where b is the range element width which on the average equals 4/3 LEPCI
The effective insonified area at any given moment is thus variable.
Assuming that cAT is sufficiently long so that pulse transient effects on
<TIT*> may be neglected, the instantaneous coefficient <IT*> will
still vary depending on the ratios of b2/4T§ and (cAT cosecéi)z/Ti.
Fortunately, in the case of the myosepta both the average instantaneous
effective beamwidth and the spatial pulse duration will be considerably

greater than the correlation lengths. Hence, except in the region of
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the nearest and farthest intercept points when strong transient conditions
prevail, the backscatter return will be approximately

<P§;)(¥,w)> = ju

; 2,2 2, 2
R.P. ejk(ri0+rso){ S (w) o~y /bTex"/a +g/2)
z iio

A
T2
x e xy Toxy da (2.4.9)

where by the definition (1.3.2),S(w) = (po/rio)'1 Flp; (F,©)] and

-—)-
pi(r,t) = Po/r.

io s(t) is the incident wave.

Assuming a narrowband pulse of the form

o1 od (actrombe) .
s(t) = s () eI WetroTde [Tyl € AT
= 0 , [t o] > 2T (2.4.10)

with the retarded time given by tro =T - (rio+rso)/c, we obtain after

multiplication of (2.4.9) by e 190 and integrating,

-F(S8.,8 JR.P. A ' 2.2 .
<ps(¥’t)> - ( 1 s) 110 ) e—Ylw -jwteg do
c
- (2.4.11)
22 et wp? e
where YW= et St s P(éi,és) = (cosai + cosss) and ¢ = w/k

is the velocity. Using (1.3.4) and the convolution theorem we find

R.P. AfCro™2T

ju_ R.P.
- _ zc 1 1o _ . . _
(psG0)) = ———— [s (t o) * 3/ug 5, (E -]
. . 2y1 i
t_ +AT
. T0

2 2 . .
e—u /4Yl—jwc(tro—u)+3¢c du (2.4.12)

where u =y [ . Unless the rise time is comparable to the inverse
zc A k=wc/c :

carrier frequency (i.e. the pulse is no longer narrowband but 1is

broadband) the second term of (2.4.12) may be neglected. For convenience

we will usually advance the phase of the incident pulse carrier by /2,
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i.e. we set ¢C = /2. Eq. (2.4.12) is evaluated for cosine and

rectangular (incident) pulses in Appendix C.

Scattered Pulse Energy

To obtain the scattered pulse energy we make use of the

Wiener-Khintchine theorem. The ensemble averaged autocorrelation

function <E(T)> of ps(g,t) may be expressed’as

<E(Tr)> = %}'J “i <PS(¥,M)PS(%,w3*> e—ijr dw

The scattered pulse energy is then obtained by setting T

. . -1
multiplying <E(trol)>by (2pc)

Assuming the surface correlation functions,

(2.4.13)

= 0 and

elevations and

beamwidth are Gaussian as before, we obtain the following result

corresponding to <I§1)>

Ir, %]

2 joo
| R, |°|P, 2,2 2,2
<E(l)(Tr)> = ——3——2—391- J ]J ab o725 /am /o) erfc[
00 A

__._} erfe [/_2_;)

% e_g[l_C(C,n)]UzlS(w)lz ej(uxC+Uyn) dCdﬂ e'JwTr dw

(2.4.14)
where troZ = trol T T
X —u2
erfc(x) =1 - erf(x) =1 - 2/7 e du
‘o
and C(z,n) is defined by (2.4.4).
For g << 1 we may show (Appendix C)
2 2 o
1284) 1 il P, | 2 .22 .
<E(l)(r )> 2 = {(gab) J W &TAYIY ls(w)lz e™IVTT dy
m - OO
g, (nab) (wmm) 4 -2vis’ 2 -3
_£§}~_ﬂ___.J eI (g2 o TIuTr dQ}

(2.4.15)
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where You® = Cawa)® + Cap)” + Bg” L Yoo = Canad® o+ Ca ) v o
2 -2, 2 2 2
and g = gw =¢ h™ (coss, + cosés) W
. For g >> 1 we may show that
2 2 2 )
F(5.,8 ) IR, |7|P. ]| 2 .
1 ? 2 -2 -
<E( )(Tr)> = rS > - 2 (ﬂzb) Wy e 1O IS(w)IZ e IOt du

C

- OO

; , , (2.4.16) .
where Y _ = (%UXW) + (%uyv) .

In the case of the myosepta, a >> TX and b >> Ty’ so that to a

1

. . 2 2 2.2 2.2 2.2
very good approximation pxw = uXTx/g and pyV pyTy/g . As a result,
YO and (wvwz) are to all intents independent of wavelength and may be

moved outside the integral of (2.4.16), yielding for gé >> 1

2 (rT_T ) ® .
<E(l)(rr3> = Fcai’ss)leilzlpioiz e 2Y4 (rab) .;_ijz- %E' IS(w)lz o INTT gy
(e} -0 i

(2.4.17)

By the autocorrelation theorem we then have the following equivalent forms

2
(1) -2Y5 2.-1
<E (Tr)> = EOwTXTY e (goc ) Tef KO(TT) cosw T,

}

o]

—ZYZ 2,-1 *
0
E,nT, T, @ (g,c) " coswr | s (s (wr, ) du, g, >> 1

-0

©(2.4.18)
‘2

2 2 .
where E_ = F(8,,8 ) IRiI lpio (nab) and X_(r.) is the pulse envelope

correlation coefficient defined as (see Appendix B)

(o]

K (x) = 1T, SZ(u) s (ure ) du C(2.4.19)

-0

The integrals of (2.4.15) may be evaluated with the aid of the

convolution theorem
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: 22 )
32._ wZn e—2Y ] ]S((,O) ]2 e'J Wy dw
T
-0 Tr-ZAT , ,
T 2n .
= ef e /8% (—l)n azn [K (t_-u)cosw (r_-u)] du
ZY/Z_? 5t o r C r
~T_+20T T

(2.4.20)

If we now assume that the incident pulse is narrowband, i.e. the pulse

bandwidth BW << . we may write w = 0, + and ignore all terms of the

“a
order of wd/wc or higher. From (2.4.20) it can be seen that this is

equivalent to neglecting the derivatives of KO(Tr - u). Hence,

E k" wabT 2 2
<E(l)(r )> » 0c _of e /872 K (7 _=-u) cosw (t_-u) du
T s o 'r cor
1 -7 _+2AT
T

2 TI'—ZAT

Eokcgcﬂmnlef -uZ/SY%

+ e K (r_-u) cosw _(tr_~u) du ,
2 /7% o' ¢
2 —Tr+2AT

g, << 1 (2.4.21)
Finally, if 2Y§chW << 1, the exponentials in (2.4.15) may be

expanded about the carrier frequency W, yielding

22 2 2

-(1) « | k2 21w -2Yuc
<E (T)> = Eokc [wab e + g mm e ] TefKo(Tr) COSw T,

(2.4.22)

This confirms, as might be expected from the form of (2.4.10), that for
a sufficiently narrowband incident pulse the zero-order approximation
of the scattered pulse covariance may be obtained simply by multiplying
the CW intensity expressions by the incident pulse shape covariance

[T K (t.) coswCTr]. Of course, this approximation is far better for

ef o
. . - (1)
g, >> 1 than for the case of g, << 1 since in the former case <IS >
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is essentially independent of wavelength while for g, << 1,

(1) * . -4 o
( <IS > - <pr> <pr> ) varies as A . Thus, unless the pulse is
narrowband and/or the angle of incidence di is near zero, for Rayleigh

scattering it will generally be necessary to employ either (2.4.15) or
zw
1

distortion is considered in general in connection with the effects of

(2.4.21) depending on 2Y CBW S 1. The resultant average pulse
absorption in Chapter 3, while the particular cases of cosine and
rectangular pulse distortion are examined in Appendix C.

Anélogously to the backscatter cross-section (2.2.1), we may
now define a backscatter strength in terms of the ratio of the scattered
pulse energy to the incident pulse energy. When using short pulses
such a definition is in some ways more appropriate, and corresponds
directly to the elementary signal description‘of the scattering process

which is employed in Chapter 3.

2.4.53 Definition of the Backscatter Coefficient

Strictly speaking, the scattering cross-section of a scatterer
is not defined when the incident wave has a significant bandwidth.
However, the attractions of characterizing the scattering by a single
paramefer are considerable. Thus, on the basis of the results of the

preceeding subsection we define the backscatter strength o, as

ct

t
2
J }Us(t)lz dt
2 /11

s R Jtmt

[s_(©)]7 at (2.4.23)
t

where At is the reference (incident)pulse length, and
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where sr(t) is the instantaneous reference pulse, Us(t) is the back-
scattered signal and t2 - tl = Tz is the duration of the backscattered
signal.1 The time averaged backscatter coefficient (Q) is then obtained
by normalizing o with respect to the effective insonified volume
Vz = V(Tl). The reference pulse may be obtained using a frequency
invariant scatterer or a suitable approximation thereof, see Section 4.2.
Unless Us(t) and Sr(t) are the actual propagating plane waves--
¢ig_ they are not necessarily so restricted--the backscatter strength defined
by (2.4.23) and the BCS defined by (2.2.1) are entirely different.
Unlike the BCS which for a given frequency and orientation is an invariant
of the scatterer, o will normally depend on the transmitter and receiver
characteristics through sr(t) and Us(t) and, of course, on the incident
pulse bandwidth. O is thus a less universal parametér than the BCS.
The reason for adopting such a broad definition is that in practice the
measured scattering willlbe dependent upon the nature of the source and
receiver. However, it should be noted that if the scatterers are
frequency invariant over the bandwidth of the incident pulse, the back-
scatter strength as defined will be independent of the source-receiver
characteristics provided the phase and amplitude variations of tﬁe
incident beam over the spatial coherence limits of the scatterer
axre negligible.
It has been the practice in underwater acoustics to define,

in analogy to the BCS definition, a backscatter coefficient in terms of

1Since the signal envelope squared is proportional to the signal

magnitude squared, s_(t) and U (t) in (2.4.23) may be replaced by their
- T s

corresponding envelopes Er(t) and Es(t).
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the ratio of the far-field scattered power per unit volume to the incident
power [Ol'shevskii (1967)]. By extending this definition to a band of
frequencies and including the effects of the source and receiver, an
average backscatter coefficient (averaged over the band of frequencies)
may be defined if the spectral characteristics of the source and receiver
are known, e.g. Mohammed (1967). By means of the Parseval theorem it can
be shown that the backscatter coefficient defined in this manner and our
definition (2.4.23) are equivalent.

Parseval's theorem requires that

0 =] 0

z(e)]% at = 6(e)|? ag = 2| o) |? as (2.4.24)
- -0 0

where G(f) is the Fourier transform of E(t). By setting E(t) = 0 outside
the interval Tz we may extend the limits of the integral to += and -,
The equivalent expression to (2.4.23) in the frequency domain is obtained

by applying the Parseval theorem to the numerator and denominator of

. (2.4.23). This is permissible since (2.4.23) is defined as the ratio of

separately measurable energies. Thus we have

J |6 (6)]° as
Limit 2 0
g = 4R
s R=>o o )
J lGr(f)l- df (2.4.25)
[¢]

The close connection of (2.4.25) to the backscatter cross-section as
conventionally defined in (2.2.1) is evident. For CW incidence

6 ()] » 1F() |2 H(E) |21(£)6 (), where I1(£) is the incident intemsity,
H(f) is the scatterer transfer function, F(f) is the equivalent receiver-
source transfer function and §(f) is the delta-function. Hence |F(f)[2

cancels and (2.4.25) reduces to the conventional BCS definition.
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With @ = o /V,, where o  is defined by (2.4.23) or (2.4.25),
we are now in a position to estimate the contribution of the myosepta to

the tissue volume backscatter.
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CHAPTER 3

FIRST ORDER APPROXIMATION OF PULSE SCATTERING

IN A RANDOM ABSORBING MEDIUM

In the case of in situ measurements, it is in practice difficult
to approximate the rather idealized conditions postulated in the previous
chapter. Thus, in the case of tissues, absorption, anisotropy, complex
geometries and the effect of non-ideal incident fields must be taken into
account. To this must be added considerations of pulse shape and bandwidth,
various experimental and instrumental limitations and, of course, the

. statistical properties of the scatterers and the medium. For the analysis
of such an array of parameters, the point-scatterer theory developed and
refined by Ol'shevskii (1966) and Middleton (1951, 1966, 1972) is probably
the best approach, at least if the problem is to remain at all tractable.

In the first three sections we will review the essential
features of the Middleton-01'shevskii theory for the case of static
reverberation and proceed to adapt the theory to the problem at hand.

. Apart from the derivation of some simple first order corrections for the
effects of absorption and finite bandwidth, the adaptation is straight-
forward. In subsequent sections we will consider in greater detail the
effects of absorption on the pulses and the measurement accuracy, the
relationship of the received signal to the actual ultrasonic puise, and

the subject of near-field pulse backscatter measurements.
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3.1 Introductory Remarks

The key assumptions made in the Middleton-Ol'shevskii statistical
model of volume reverberation are:
a) the scattering inhomogeneities may be represented by
equivalent point-scatterers;
b) in any sufficiently small portion of the insonified
volume the point-scatterers are randomly, uniformly and
independently distributed, thus defining the reverberation
process as a Poisson process (Appendix A).
Further it is assumed that:
¢) the scatterers reradiate independently;
d) multiple scattering is negligible.
‘ Under these conditions the resultant reverberation process may be repre-

sented as the superposition of M random events given by

M
> =
X(e) = ) U (6,7 ,q) (3.1.1)
m=1 ,

> > . . ‘ . .
where-Um(t,rm,qm) is the elementary signal or event associated with the

.

h . > . .
m" point-scatterer, q_ denotes the other stochastic properties of the

point-scatterer and M is a random variable with the Poisson probability
distribution given by (A.1.5).

Clearly, scattering by the myosepta would appear to violate
condition a) and most likely also b). For this reason it will be
necessary to exclude it initially and treat scattering by the myosepta

separately as a component process of the overall composite process.
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Phenomenological Model of Tissue Volume Sc¢attering

In addition to the basic restrictions on the scatterers given

in the previous section, we will assume the following conditions:

1)

2)

3)

4)

5)

6)

7)

8)

9)

the tissue is anisotropic in only two dimensions with the
symbols ([|) and (_L) denoting the directions parallel and
perpendicular to the muscle fibers, respectively. The

tissue is characterized by velocities c s €, , absorptions
2L P

2
all, Q_Lf and density Pyi

the tissue scatterers are static over the pulse repetition .
interval;

monostatic operation;

the tissues are oriented with the muscle fibers perpendi-
cular to the beam axis;

the incident beam is sufficiently narrow so that the beam
may be considered perpendiéularly incident;

far-field conditions prevail;

the pulse bandwidth and spatial distances are such that

the effects of velocity dispersion are completely
negligible in comparison to the effects of absorption;

the transducer is located in a non-dissipative medium

of impedance plc1 (water) adjoining the tissues;

the velocities < and c, are nearly equal (cl/c2 < 1.05),
hence refraction of the incident beam at the water-

tissue interface is negligible,

With the possible exception of 5), none of these conditions

should prove too unrealistic oxr impractical. To meet 5), however,
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the far-field condition 6) may be overly restrictive for in situ
measurements (Sections 3.3 an& 3.6).

The geometry of the experimental set-up is depicted in Fig. 3.1.
The distance along the transducer axis to the surface of the fish is Ty
The interval (tz—tl) over which the backscatter is to be analyzed is
delayed by (to—tl) in order to avoid reflections from the surface. If the
scales are removed from the fish, the two-way ultrasonic transmission loss
at the interface is negligible. However, for the sake of generality, we
will assume a two-way transmission coefficient TC = (1 - lRlzlz) where RlZ
is the reflectivity of the surface.

The elemental signal Um received from the mth scatterer located

=
at a distancelrml= Tt csz from the origin may be expressed as

T ejZk(ro+c2Tm)
c

R

> > —ZOL(w)CZTm )
Um(w; rm: qm) [e (Dm(w, ea: ¢a)

N2
4ﬂ(ro+c2tm)

x ¥ (0,8,4) s(w)] (3.2.1)

where S(w) = driving signal1

¥(w,6,¢) = equivalent beam transfer function (see Section 3.4)

@m(w,ea,¢a) = far-field scattering pattern of the point-scatterer
where ea = eo—e, ¢a = ¢O—¢ and 6,50, are the equivalent random orientation
angles»of the scatterer

a(w) = absorption of the medium (transverse direction)

T local fixed time with respect to the shifted coordinate system

centered at the interface (t = 0).

1The relationship of the ultrasonic pulse to the applied electrical
signal and the actual received pulse is examined in detail in Section 3.4.
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When the absorption cannot be neglected, the Fourier transform should be
replaced by the Laplace transform, Middleton (1972), Pt. III. However,
as it was assumed that the medium is absorptive but non-dispersive,

we may retain the Fourier transform formalism if we define the absorption

coefficient o as o = o(|w|) where o is positive real. Thus the received

signal pulse in the time domain becomes by (1.4.2)

T ®
> > Cc 2
Um(t’rm’qm) = g;zzfjf chw’ea’¢a)w (w,0,9)S(w)e
m /- :

_2(1( lwl)CZTm—jwtm dw

T2 0 (3.2.2)

where t = t—ZrO/cl—ZTm is the retarded time.

The determination of Um(t,¥ﬁ,am) is greatly simplified if
Wz(w,e,¢) can be moved outside the integral. Assuming a small increase
in error can be tolerated, we will factor Wz(w,e,¢) from under the
integral in (3.2.2) and replace it by the two-way beam pattern Wz(mc,6,¢)
averaged as a function of frequency over the bandwidth of S(w) and
referred to the center frequency. Essentially, Wz(wc,6,¢) is the beam
pattern measured in the experiments when using pulses.

It will be useful to expand the scatterer function @(m,ea,¢a)
about the center frequency wC/ZW. A similar representation for a(lwl)
would be desirable but is not possible because we are taking the absolute

value of w. However, if o varies only slightly over the bandwidth 8

of the pulse So(wd), i.e.

o0
ol BCZ Toax S 1 s w >0
o |

2

lThis assumption, although a good approximation, is in fact non-physical
for in a real (causal) physical system the absorption and dispersion
are Hilbert transforms of each other; see, for example, MacDonald and
Brachman (1956).
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then for all T, over the bandwidth B, we may put to a good approximation

~2a(fw|)eyTy -20.(Jwc|)epT , 9a
e = | We 2'm - o Foaan .2,
e 1 -2 Bw'[ lwdcsz (3.2.3)
c
where wg =W T W, and kd = wd/c = k - kC as before, and wy takes on both

positive and negative values. However, the spectra of the signal pulse
So(ua will generally taper off faster than w~1 so that no convergence
problems will be encountered. In fish myomere the absorption in the

range 1 - 10 MHz is roughly linear [Freese and Makow (1968b)] and we may

therefore replace (Ba/aw[lw l) by ac/lwci. Substituting (3.2.3) into
c

1 e ()"
(3.2.2) we obtain the first order result valid for 5'§§—ﬁ'[EJ i << 1
c

Tc ®(kc’9a’¢a) 2

> . 2 o m2a(fugDeaTn -ty ree 0T
Um(t,rm,qm) 5 ¥ (wc,em,¢m) e me - ¢ I(tm,rm,qm)
47y
(3.2.4)
where
> > 1 [ °[ (100} g 30 | ~jagt
I [ ——. {-— — — - i d*m
(tm,rm,qm) 57 J \:1 + 153 }k Cz} [1 2 5= wdczrm} s, (uge dugy
© C

Eq. (3.2.4) is rather interesting. For example, it shows that

the distorting effect of a scatterer having a rising frequency response
""""" may in fact be partially offset by the absorption of the medium. For a
constant cross-section (3®/8kc = 0), o= ®(6a,¢é) is dependent only on the
scatterer orientation. If the absorption is zero, (3.2.4) reduces to the
simplest possiblé result where the backscattered pulse is a time-delayed,
amplitude-scaled copy of the incident pulse. |

Approximating the transmitted pulse s(t) by a narrowband pulse

of the form

s

so(t) e_ijL R |t] < ar

s(t)

= 0 , lt| > aT
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where 2AT is the pulse length, and employing the transform relation

FIs (0] = -juS Gup)
-we obtain )
I(tm) - So(tm) " JBmSo(tm) (3.2.5)
_ 1 30 1 S0,
where Bm = [® BkJ S 2 E CZTm
kc 2 We

Thus to first order, the backscattered pulse in an absorbing medium

consists of a copy of the incident pulse plus a quadrature component

proportional to the pulse envelope derivative. This means that the

backscattered pulse exhibits phase modulation with the amplitude of the

quadrature component depending on the location of the point-scatterer

in the tissue. The nature of the pulse distortion will be examined

further by means of exact solutions for specific examples in Section 3.5.
The next step consists of obtaining the moments of (3.1.1).

In principle one can obtain all the moments of the scattered field by

direct ensemble averaging but the amount of algebra required for moments

higher than the second moment becomes prohibitive. The higher moments
.

may be more easily'obtained via the characteristic function derived in
Appendix A.

Inserting (3.2.4) and (3.2.5) into (A.1.10), the first moment.

becomes

T ————— : .
CICH I ﬁ J (@) v w,,8,4) LE) <®(kc,a,?)I(tr,?,a)>a‘e—Jthr av.

%
% (3.2.6)

where e‘za(lwc!)czT

L(r) = — s [?[ =71+t ,
|t
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It ,7,9 ) + 3B s (t
= + +
(t7,q) s (e + 3B s (t) )
> 150 1 G
B(I‘,Q) = ['— J - 2 C,T >
Pl 2w 2
2ro
'tr = 'tl - ——(ET - 2T y
- . .
n(r) = point-scatterer density .

The ensemble average <¢(kc;§;a)f(tr;§;a)> contains three terms

(o FDICED) = (ol ED) s (6 + 370, () 5,8
. ’ C

Q
. C > .
R ra s (o ED )s ()

Depending on the circumstance, one or both of the latter terms may not

be needed.
The second moment from (A.1.11) is given by
2 :
Tc > 2 2 2 5 2
(XX ) = =S, [{nE) B 0,917 L@ (o1t II(,)),
: (47) v q
%
e %l gy + (x(e))) (X(t,) (3.2.7)

Eq. (3.2.6) and (3.2.7) now express the moments in terms of
the scatterer response, the point-scatterer density, the transducer
beam functions, the absorption and velocity of the tissue, the interface

transmission coefficient and the incident signal.
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3.3 Backscatter Statistical Properties

The Zero;order absorption is common to the individual processes
and varies only slightly over the pulse length. Therefore, it may be
factored (see Section 3.3.5) and the resultant process compensated if
the absorption coefficient is known. Assuming this 1is the case, we will
then have Wz(wc,9,¢)L(¥) exp {} T%;T-CZT}' It will be convenient to
replace these functions by a more general gain function Gz(wc,;) which

is independent of absorption.

3.3.1 Mean and Variance of the Backscatter

Substituting Gz(wc,¥) and effecting a change of variable

dv = %c, dA dtr (3.3.1)

2
where tr =t - (2ro/cl + 27T), and since I(tr,a) of (3.2.6) is non-zero
only in the interval (tr—AT,tr+AT), the mean for the partially compen~-

sated process Za(t) may be written as

AT
-T ¢
+ - 2 2. > ->. .
(z,(t)) = "“g?_'J_Aq'<n(t‘tT)> JA(tr) 6" (u,,0,0,t-t ) <®(kc,q)ICtr,q)>g

x e Wty gp dt_ (3.3.2)

The variance and covariance may be obtained similarly.
We now define the effective beam cross-section in the insonified

volume V'Q as

1 ey - 62 (0_,6,6,t) dA

JA(E)

= 0 e Wz(w 8,9 t)L(;) exp |2 TE—T-C T rzsine dode
) c) b > wc 2
-

° (3.3.3)
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In order to avoid non-physical results, the retarded time tr

may be modified by redefining the pulse interval for s(t) as

s(t) = s (t_-AT) ¢~ I0c (tx-4T) |t_-AT| S AT
T o° T T

= 0 , |t_-AT| > AT
. r

In an arbitrary interval (trlLrZ)’ scatterers outside (trltrz)
provide contributions to the process near the ends of the interval.
This problem is avoided by shifting the reference origin by AT as above,
but in order not to lose symmetry in the limits we define a new variable
t! = t -AT.
T T

If <n(t)> A(l)(t) and —>— c¢.,T vary only negligibly over the

? W, 2

instantaneous effective scattering volume, i.e. <n(t-tr)> ] <11(t)> s

etc., the mean (3.3.2) becomes

AT :
_1/2(: T - .
A\ s __2¢C (1) 5 4 -jwcty
<Za(u)> = i <n§t)> A (t) <@(kc,q)>ajJ_ATSOd(té) e dt;
(3.3.4)
1 = 1 ‘D G ?
where sod(tr) 'So(tr) + jB so(tr)
Mo <a<1> 1 dou
B = |——— (—) =— = 2¢c, = T
{<©> akc C2 2 dw lw l :‘
c
21‘0 21‘0
and 2T = (t -t! = —==-AT) = t - — - AT
T ¢ ¢y

With B = 0, (3.3.4) reduces to the standard form which for volume back-
scatter in the far field is independent of the distance, see

Middleton (1967), Pt. 1.
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The phase angle wcté = wc(t—2/cl—2T—AT) referred to the
reception point is randomized due to the random distribution of the
point scatterers. In the general case the carrier may undergo a further
phase shift ¢m as a result of the scattering. These two (spatial and
temporal) phase shifts are additive and uniformly distributed over the
common interval 0 to 2w [Beckmann and Spizzichino (1963), Ch. 7]. For
a quasi-harmonic signal such as s(t;) =S (t')e -Jucty <Z (t)> will
be equal to zero as will all of the odd-order moments if the process is
strictly stationary (see Section 3.3.5).

The variance of the process Za(t) may be obtained from (3.2.7).

The real part is given by

il

Var. [Re Z_(6)] = 5[<Z ()25(6)> - <Z (00> <Z3(1)>]

2 AT
2 =2 () 23 (1) (o, ,q)>+ <.e,§d(1;1;)>+ at!
(4 ) q
AT
(3.3.5)
where \
2
2 . _ , 4w 30 1 2.,
<sod(tr)>q = st [<o>j <[akc) > 2 5o(ty)
q q 2
2
3 2 2, .42 81 30 1 N .
¥ 4{3 w: J 2 so(tr)L T <ox {<[® 51?:}> 5—2- So(tr) So(tr)
q q
- 2¢, <®> S (L') s (t )T - 2~< —T——T-T s (t' }
and

2wy = J 6 (w_,8,6,t)°
- AGE)
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For symmetrical signals the terms containing so(t')éo(t') will drop out

simplifying the equation to

TZ
c

> AT
c, 2) {<:0(kc,q)>a J
A t —_—
2 (n(e)) £ (0) =

Var.[Re Z (t)] = -4
a (4m

2
sT(t') dt!
AT O F T

v 2 a > 2
1 <[3(P ) > < >9 [ o } 2 2
C% akc a- ™ wc 2

AT

oo O 2 1
BT J-M e o) 350

Eq. (3.3.6) contains only second order correction terms. It will be
shown in Section 3.5 that for moderate absorptions and sufficiently
short delay and measurement intervals these correction terms may be
ignored. Eq. (3.3.6) then reduces to the classical result for the

instantaneous (diffusely) scattered power

AT

2
oz [re 2_(9] = % 2 <n©)> 1@ (1) <ol D [ s2(e) de
(4m) 4 7 -AT
(3.3.6.a)
Integrating (3.3.6.a) over the interval Tz = tz—tl yields the total
diffusely scattered energy from the equivalent insonified volume Véz).
The latter equivalent volume is given by
2
v o J 1P ) az (3.3.7)

5

where Aﬁz) (z) is the normalized effective beam cross-section defined in

(3.3.5) and z = 4c,t. The effective insonified volume Vél) may be defined

2

in the same manner for the coherent scattering.
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It should be noted that in the far field‘A(Z)(t) varies as r—z
in contrast to [A(U(t)]2 for the deterministic component which is

. 1
independent of r.

3.3.2 Probability Distribution of the Backscatter

The key role in determining the character of the backscatter

is played by the process density parameter sp which may be defined as
sp = <N> Tog (3.3.8)

where <N> is the aVerage number of elementary scattered signals received
[= <n(t)> A(l)(t) 1 and Tog is the equivalent signal duratiom. The
latter may be conveniently defined in terms of either the signal amplitude

or the signal energy integral. With

1

T, . ;_ si(t) dt (3.3.9)

«0

i

T I s, () dt (3.3.10)

and the envelope so(t) normalized to unity, it may be easily shown

[01'shevskii (1967)] that these definitions are related by

2

Ter = bog Ter

2
= Aef/B (3f3.11)

where Ao is the equivalent width of the pulse power spectrum and B is

the equivalent width of the amplitude spectrum (Appendix B).

| . .
Despite our initial assumption of random scattexers, the existence of a

very small deterministic component in the total scattered power
<Za(t)Z;(t)> “is not ruled out, see Middleton (1967), Pt. 1.
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At low densities [0(< 10)] there will be finite gaps of zero
amplitude in the reverberation envelope resulting in a §-function at the
origin of the corresponding amplitude probability density distribution
function [Middleton (1960), Ch. 11]. As sp + o  the probability of zero
amplitude will decrease to zero and the distribution of the backscatter
will tend toward a Gaussian probability distribution as required by the
central limit theorem [Parzen (1960); Middleton (1960)]. For intermediate
densities, a number of series representations have been derived such as
the Gram-Charlier series, see Marcum (1948); 01l 'shevskii (1967).

In order for the process Z(t) to tend towards a Gaussian
process, one of the conditions to be fulfilled is that none of the
elementary signals predominates over the others to the extent of yielding

a significant contribution to the sum process. In general, it is

preferable to treat these echoes separately. The probability distribution

of the sum process W[V(t)] can then be obtained via the characteristic

functions of the separate independent component processes.

3.3.3 Envelope Statistics

So far we have only considered the full signal. Due to the
nature of the processing chosen, namely, full-wave rectification of the
signal, the phase is eliminated and only the envelope of the received

signals will be available.l

1Strict1y speaking this is not correct. If we assume the original signal
is bandlimited to some arbitrary upper frequency, the rectified signal's
derivatives being discontinuous, it will contain frequencies to infinity
and thus in principle the phase can be recovered within an integer
multiple of .
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Expressing the backscatter signal as an approximately analytic

signal [Rice (1945)]

....... X(t) = E(e) o) [UctO)] (5.3.12)
2 2 s -1 Xsin

Re X(t) = [Xcos + Xsin} cos{éct + tan [X }} (3.3.13)
cos

where Xcos = EF(t)coso(t), XSin = g(t)sine(t) and E(t),o(t) are the
envelope and phase of the signal X(t), respectively. Conventionally,
the components Xcos and Xsin are demodulated using quadrature detection.
In contrast to E(t) they may bear little or no resemblance to the
original signal. However, the choice of E(t) complicates the evaluation
of the probability distribution. The reason for this is that the
rectification process is non-linear. It can be shown (ibid.) that when
X(t) is Gaussian with zero mean, the envelope is described by the

Rayleigh distribution given by

2
W(E) = —EE- exp[ . E 5 } (3.3.14)
g 2g¢
X X

2, . . .
where o, 1S the variance of the Gaussian process. The corresponding
distribution of the envelope intensity I = EZ will be exponential

(Xz distribution with parameters n = 2 and cx)

W(I) = —Z%S' exp [— -Z%y] (3.3.15)

2
where <I> = <E’2> =20, .
Important parameters of the Rayleigh distribution that we will

require are:
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mean amplitude <E>= Vu/2 og (3.3.16.a)
. 2 2
mean intensity <E > = Zox (3.3.16.b)
. . . 2 2 2
fluctuation variance g = L4 - ﬂ)cx = 0.436X (3.3.16.¢)
2 215
- s K@% e
coefficient of variation = - = = 0.52 3.3.16.4d
v o) ) § )

The envelope distributions of a number of known composite
processes have been derived. The Rice distribution for the sum of a
normal process and a constant (sinusoidal) signal is perhaps best known
and is applicable when the scattering process contains a coherent
(deterministic) component.

The envelope distribution in this case is given by (ibid.)

B, (Ei . bi) B,

W(El) = 5 eXp |- Io 5 (3.3.17)
20 o

X x X

Q

where E1 is the envelope of the composite process

V(t) = X(t) b, e Juct

bO is the constant signal amplitude and IO(_) is the zero-order modified
Bessel function of the first kind.

The determination of the envelope distribution for arbitrary
distributions of the reverberation is a much more difficult undertaking,
particularly if the process density S, is low [Mullen and Middleton (1958)].

The correlation coefficients and power spectra of the back-
scatter and of the backscatter envelope fluctuations are briefly reviewed

in Appendix B.
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3.3.4 Composite Scattering Process

The total scatter process will be represented as the sum of
four independent Poisson processes plus a non-Poisson essentially deter-

ministic process Y(t).

V(t) = Xi(t) + Y(t) (3.3.18)

1

Il I~

i

where each of the Xi(t) has the form
M
X, (t) = ) U (t,7 a0
m=1

In particular, if we assign the processes as follows:

Xl(t) - scattering from lipid globules (Rayleigh region)

Xz(t) - scattering from lipid globules (geometric optics region)

Xz(t) - scattering from air bubbles

X4(t) - scattering from other tissue components (background
scattering from myosepta, muscle fibers, myocommata,
i.e. connective and adipose tissues not constituting
part of the myosepta, and blood vessels)

Y(t) - 'leakage' of surface interface and midline reverberation .

and possibly scattering from pinbones.
One or two of the component processes will be dominant in most cases.
To the extent that Y(t) can be neglected and X4(t) approximates a Poisson
process, the composite process will be Poisson. Accordingly, a single
process density could be defined if so desired; details may be found in

the papers by Middleton (1967), Pt. 1, and Faure (1964).
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The moments in which we will be primarily interested are

given by

4

(vivyy = .21 (X, (&) = (Y (2)) | (3.3.19)
l=

2 3 2 2

(V) = '21 CSHOI IS HO) (3.3.20)
i=

var. ] = (F@) - (vw)’ (3.5.21)

If, in addition to being independent, the component process averages
are zero, the composite process covariance reduces to the sum of the

individual process covariances, i.e.

i
<V(t1)V(t2)> - izl (X (X (£)) + (Y, (£)Y(e)) (3.3.22)

1 3.3.5 Averaging and Stationarization

The methods of sampling and averaging the data are to a large
extent determined by the nature of the stochastic process, the parameter
or distribution being measured and the intended application. However,
in most cases some form of time averaging is sought in addition to
ensemble averaging in order to reduce the number of sample runs required.
The most stringent condition for the time averaging and ensemble
averaging operations to be completely interchangeable, subject only to

the constraint of independent samples, is that the stochastic process

be strictly stationary--a process being defined as strictly stationary
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if its statistical properties remain invariant under a shift of the time
axis [Ol'shevskii (1967)]. Depending on the previously mentioned factors,
the statistical properties may need to be determined at every point of
the random medium or an average measure over a given reglon may suffiée.
While in the former case the process should be ideally strictly
stationary (for time averaging), the requirements in the latter case

are much less stringent. Thus, in the present study we will generally
limit the investigation to obtaining estimates of the backscatter
statistics averaged over a specified tissue depth interval. However,
before this can be done the process data must normally be free of any
dominant deterministic trends.

If a particular process X(t) can be expressed in the form
X(e) = £(t) Z(t) s t = 2r/cC (3.3.23)

where £(t) is a deterministic function and Z(t) is a stationary stochastic
process, the process may be stationarized by multiplying X(t) by [f(t)]-l.
In general, the resultant process will not be stationary in the strict
sense; however, depending on the statistic, it may now be possible to
utilize time averaging over some finite interval. The scattering

process was compensated for zero-order absorption in the above manner

but could not be stationarized because of the possible presence of

. . 1
components having different range dependences.

lA number of ways, other than using ensemble averaging exclusively, have
been employed to circumvent this problem. Simplest and most common
perhaps is to neglect differences in range dependence over the
measurement interval by using a sufficiently great distance between the
source and insonified volume. Another method 1s to range gate the
composite process into shorter segments and, assuming that the component
processes do not overlap in the selected intervals, use varying
compensation in the different segments.
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It was recognized that essentially range independent and
stationary conditions could be realized over short intervals in the
transducer near field, particularly in the region centered on the axis
about ai/x from the transducer. The field structure in this region is
rather similar to that of a focussed transducer and for this reason is
exploited in many diagnostic applications. It turns out, as will be
shown in Section 3.6, that the response from both coherént and diffuse
scatterers in this fegion is almost constant. Since the beam cross-
section and therefore the number of insonified scatterers is also
nearly constant, the process after compensation for absorption (neglecting
differential absorption over the pulse BW) will be approximately
stationary if the scatterer distribution is homogeneous. Actual experi-
ments with unbounded model random media showed this to be the case,
the backscatter level remaining essentially constant in the near field.

A combination of time averaging and ensemble averaging was
employed. For each specimen the experimental moment averages and the

coefficient of variation Yv were calculated according to the following

formats:
1 s
(FW ) = 77 1 F,[V(t)] dt (3.3.24)
9 i=1Jo 1
and
2 — 2. %
M [ E - @B,
1 1
Yy VY= L3 (3.3.25)
0w ow i=1 T,

where M is the number of aggregate members and the bars denote time

averaging over the interval Tz.
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Independence of the ensemble aggregate members was assured by
displacing the transducer laterally at least one beam diameter from one
backscatter record to the next. This also had the effect of randomizing
the coherent echoes from the pinbones (in whitefish) and the myosepta.
In general, however, the inclination of the myosepta with respect to the
incident beam axis was sufficient for scattering from adjacent myosepta

to overlap within a given backscatter record.

3.4 Relationship of the Received Pulse to the Ultrasonic Pulse

The received pulse differs significantly from the actual
transmitted acoustic pulse. Representing the electrical driving pulse
s(t) by its Fourier transform S(w) and neglecting any interaction

effects, the received pulse Srec(w) may be represented as

5o () = [ @H ()] [ @H ()]

. -
« D (0,3,%,0D_(0, 7,8 % H (0, F,K %) -]1;-2— SEER®
(3.4.1)
where Het(w) - transmitter electrical network transfer function
Her(w) - receiver electrical network transfer function
Htt(w) - transducer aperture transfer function (transmitting)
Htr(w) - transducer aperture transfer function (receiving)
Dt(w,¥) - beam diffraction pattern transfer function (transmitting)
Dr(w,?) - beam diffraction pattern transfer function (receiving)
i-ejﬁ‘; - propagatidn path transfer function

T
- .
Hs(w,r,ii,?s) - scatterer transfer function



98

. > ‘
In general, the propagation vector k is complex. Dr and Dt

are integral operators transforming the respective aperture transfer

functions. When employing the same transducer to transmit and receive,

the radiator and receiver transfer functions are given by

, Zr(w)
tt(w) = (3.4.2.a)
Zl(w) + Zr(w)
H (w) = £ ) (3.4.2.b)
tr

2,(w) + Z,)

where Zl(w) and ZZCw) are the electro-mechanical impedances of the
transducer element and Zr(w) is the mechanical radiation impedance of
the acoustic medium into which the transducer is radiating. It is
customary to normalize the radiation impedance with respect to the
characteristic impedance of the medium so that for kaT > 5 the
normalized radiation impedance is eséentially unity. In general, the
impedances characterizing the transducer will be approximately the same
whether transmitting or receiving so that we may put Zl(w) = Zz(w) and
thereby assure reciprocity at the transducer inputs since Dt(w,;) = Dr(m,?).
The matching electrical networks are not necessarily the same
for transmitting and receiving although in our case they were. Hence,
if only monostatic far-field operation is considered, the transducer
aperture and beam diffraction pattern transfer functions may be
combined into equivalent beam transfer functions Wt(w) = Wr(m) as in

Section 3.2, With these simplifications, (3.4.1) becomes

s () = K (0,k; ,K,) w2 () Hi(w) 27T 5 (w) (3.4.3)

£
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and for a non-dissipative medium, by (1.3.2)

5. () = %J ) H o,k R V) B s o020 g,

) (3.4.4)
where K is a scale factor. If the scatterer is relatively frequency
insensitive in the frequency region where Wz(w) and HZ(m) are of
significant amplitude [or alternately, HS oscillates about some mean
value much more rapidly than Wz(w) Hi(m)], Hs(w,fi,—fi) may be equated
to a constant and moved outside the integral.

Finally, if S(w) = 1 corresponding to the spectrum of a
§-function impulse at time t = 0, then it is clear from (3.4.3) that
the magnitude spectrum of the received pulse Srec(w) is proportional to
the power spectrum of the actual ultrasonic pulse.

From the forms of the received pulse and the input pulse, the
network response and therefore the acoustic puise can be evaluated,
although in practice this may have to be done numerically. Referring
to Table 4.1, the -6 dB bandwidth of the magnitude spectrum lsrec(w)]
of the received 3.5 MHz pulse is 1.3 MHz. This indicates that the
3 dB bandwidth of the ultrasonic pulse is about 1.3 MHz. The percentage
bandwidth ( = 100%/Q) of the ultrasonic pulse is therefore 36%.
However, as the same transducer is being used to transmit and receive,

the received pulse 3 dB bandwidth is more appropriate and will be

employed here.

3.5 Effect of Absorption on the Pulses

In Section 3.2 a first order correction for the absorption by

the medium was obtained by suitably redefining the absorption coefficient
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so as to permit the use of Fourier transforms. This same technique may
be used to obtain 'exact! solutions. Comparing (3.2.2) and (2.4.11) or
(C.1.1), the forms of the integrals are seen to be similar. Thus with
appropriate changes in the interpretation of the parameters, (2.4.11)
can also represent a pulse propagating in a non-dispersive square-law
medium. To illustrate this for a rectangular video pulse, we set

o= v and [<R> ]AC]LW ab k ] = 1. Then, letting u  + 0, (C.1.5)
reduces to

) 1 t - AT 1 tr + AT
s (tr) = = erf —E;———~J - j-erf e (3.5.1)
r 2o | 2

which is identical to the solution obtained by Gorshkov (1957) for a
rectangular video pulse propagating in a square-law absorbing medium.
With.the above changes (C.1.3) and (C.1.5) represent the general
solutions for a cosine and a rectangular RF pulse propagating in a
square-law medium, respectively.

Using the same stratagem Gorshkov also derived the solution
for a rectangular video pulse propagating inba linear absorbing medium.
For a linear absorbing medium we require transforms of exponential
integralé of the type

J e—Ylwl S(w) e ¥ g

where Y = ZuczT. By the methods employed in Section 2.4, the solution

may be readily obtained becoming for the rectangular video pulse of

width 2AT

t_ -~ AT Tt + AT
s (t) = l—tan_ILQE————J - l-tan—l[——r-———--——} (3.5.2)
i T T Y T v
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However, the RF pulse expressions are somewhat more complicated than in
the case of the square-law medium. For the unit amplitude cosine pulse

of width 2AT we obtain

s (t) = Re [Flu) + %F(w)) + 4F(w))] | (3.5.3)

T
where
. Sjuwtpg u=t - AT
Flu) = 25— [¢79 B (~yu-juu) - B, (yw-juw)] ¥o
..... 27 1 1
u=t + AT
TO
and W =W T W, Wy T W g and w, = /AT El(z) is the complex

exponential integral defined as [Abramowitz and Stegun (1965) ]

i oA
El(z) = ] —— dA (larg z| < =)

As before, the solution for the rectangular pulse is simply F(wc)
which reduces to (3.5.2) as w, > 0.

In contrast to the incident pulses, the scattered pulseé
appear increasingly smeared out as (aczT) increases. The greatest
distortion of the pulse will occur near tr = *AT/2. This is to be
expected since the lower and higher sideband frequencies are associated
with the portions of the pulse varying most rapidly. The pulse
distortion is proportional to the pulse bandwidth. At the center of
the pulse s(tr), the frequency is approximately equal to mc/Zw and the
total attenuation is represented by exp (—ZQCCZT). This can be seen

more clearly by considering the derivative (C.1.6) or the envelope

derivative factor B éo(tr) in (3.2.5). For the cosine pulse and %%—-= 0,
c

B s (t ) becomes
o- T
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. O .
B So(tr) - 2 -1—03;—[- CZT SO(LI‘)

w
o .
= - T t e
o, TEET-(CZ ) sinw T (3.5.4)
where a = o |9—- , w =7/ATand t_ =1t - 2r /c, - 27T.
c W, o] T o' 1

Effects of Differential Absorption on the Measurements

At 5.0 Miz the absorption in fatty whitefish is about 3 dB/cm

or o/f = 6.9 x 10_8cm_1. Thus, for a sample thickness of 1.17 cm the

return {(two-way) loss is 7 dB at W For a bandwidth of 1.2 MHz,

|B = 9.7 x 10_2 or less than 10% distortion. The normalized signal

maxl
return sr(tr) from an impulse scatterer in the absorbing medium after

compensation at the center frequency may be expressed as
s (t.) = A(t) e_jdctr} =% [(1 + cos¢_) - jB sing_] (3.5.5)
T T : T T U

wotr. The effect of the absorbing medium can then be seen

where ¢r

by integrating the modulus squared of (3.5.5) from -m to m, or

AT
J IA(tr)[Z dt = (374 8%/4) AT (3.5.6)
-AT

Eq. (3.5.6) shows that to first order the apparent pulse intensity at
. . 2

the integrator output is too large by e = B“/3. TFor the example we

gave above, the maximum relative error in the measured pulse energy is

3

< 3.3 x 10" It should be noted that this error is inversely propor-

tional to the pulse width squared since
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l Q
¢

5 > (3.5.7)

AT

=

1.2 1
5P - [

]

}2 (czT)2
C

Finally, if the backscatter is integrated over an interval

= L
L ZCZTg
o 2 2 L o L 2
- . 1 c 1 1 2 1 c
e = ”1‘2“[?‘) [ZT‘J p| ¥ 9 = T{——f AT] (3.5.8)
c c
0

the average error for L = 1.17 cm is reduced to E& = 2.7 x 10_4.

It is slightly more difficult to compute the error for the
pulse magnitude. Expanding the integrand corresponding to (3.5.6) for

. 2
| << 1, the correction becomes e, ~ B“/2 or 50% greater than e

B M

max I’

The average error will be ey * 7 €1
In view of the magnitude of the other sources of error, see
Chapter 4, we may thus neglect the effects of the differential absorption

in the analysis of our experimental data.

3.6 Near-field Backscatter Measurements

It was indicated that by performing the backscatter measurements
in the radiating near field at a distance a%/A from the transducer a
number of practical advantages could be gained. Before discussing these
advantages it will be useful to briefly describe the beam structure and

point out the major differences between wideband and CW beams.

3.6.1 Ultrasonic Beam Characteristics

The most drastic changes in switching from CW to pulsed

operation are observed in the near-field structure and to a lesser extent
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in the side-lobe structure of the far field. The sharp nulls and extreme
amplitude fluctuations characteristic of the CW near field are greatly
smoothed with increasing bandwidth.

The well-known approximate solution for the circular aperture

due to Lommel (1885) yields an axial intensity of the form

b .2 2.2 g2
o man Sinzgy
I(z) = |— —_ (3.6.1)
£ zZ\ Ly
with
2m {1 1) .2
y = 7\1 [F + ;J ar (3.6.2)

where f' is the point source distance (positive or negative) to the

aperture and a., is the aperture radius. The nulls occur at integer

T
multiples of m, i.e. 4%y = mn. For a plane wave, £' is equal to « and

my = 2ﬂ(aé/k)/z is the path difference of the rays from the rim and

center of the aperture to the axial point z. Many writers therefore

normalize the path lengths with respect to ai/x, i.e. s = zx/aé.
Papadakis and Fowler (1971) investigated the effects of
increasing the bandwidth on the beam structure. In their paper they
present the results of numerical computations based on the CW solution
for the circular aperture using empirically determined Fourier
coefficients. Theit results show that the near-field structure is
free of sharp nulls if the bandwidth is wide enough and this is also
confirmed by our measurements, see Fig. 3.2(a).
Adopting the convention of referring to the diffraction maxima
and minima on the acoustic axis as Y§+) and‘Yé—), respectively, with

Y§+) the maximum at s = 1.0, the axial intensity variation in Fig. 3.2(b)
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g . + - . .
indicates a pressure ratio Yé ): Yf ) of approximately 1.9 in contrast to

a ratio of » predicted for the CW case. (The ordinates and contours in
Figs. 3.2 to 3.4 are normalized two-way received signal peak amplitudes.)

Along the axis in the interval s = 0.9 to 1.1, in what we will call the

(+)

transition region, the YO

maximum appears almost level and slightly

broader than the CW beam. The beam profile at the Y§+) maximum for the

2.25 MHz transducer is shown in Fig. 3.3(a). For radial distances 1less

than % s the measured and theoretical CW values are in close agreement.

At larger off-axis distances, however, side-lobe fluctuations in the

wideband beam are virtually absent.

3.6.2 Near-field Measurement Considerations

Although the use of transition region measurements has inherent
disadvantages, it‘has some important practical advantages for in situ
determinations of tissue backscatter. Using a conventional far-field
criterion of 4aé/A, for a 2 cm diameter aperture the minimum range at

5 MHz is 120 cm. The -3 dB beam diameter at this distance is 2 cm which

is far too large for in situ measurements. Placing the specimen in the

transition region, on the other hand, provides a narrow beam and, in view

of the beam structure [see Fig. 3.2(a)], will yield approximate

stationarity of the diffuse scattering.l Thirdly, the absorption loss

1An alternative is to use a focussed beam. It can be shown [Lommel (1885);
Cf. Born and Wolf (1964)] that the field distribution in the plane of

the geometrical focus is the same as in the far field, see Fig. 3.3(b).
The important thing to remember, however, is that plane-wave conditions
are only realized if the scatterer is located entirely within the main
lobe of the beam and vice versa. Another aspect of the use of focussed
transducers is the application of variable focussing as a sensing tool
[Ishimaru (1969)]. It is clear from our discussion in Section 2.4 that

a finely focussed beam could be used to determine the surface relief
spatial correlation interval.



107

WO 6T = SNO0F ‘WO G/6°0 =B ZHN 0'L = ow f{xsonpsuerl possndol (q)

2

WO G0 = ' ‘ZHW ¢£°Z = F {IoOonpsuell possnooun (B) :SUOTIDSS-SSOID Weoq xmzuozp pazITRWICON ¢°¢ ‘814
W SNIavy (9) W SNIgvyY (o)
e 2 | 0O |- 2- &- o 8 9 # ¢ 0 ¢- b- 9- 8- Ok
o¥olc sy T T ) 1 00O T T ) T T 7 ] I T 1
o 0]

AHO3IHL M3ee

80 (%S¢ =2"5ma)
g3UNSYIN
INVId
¥004 IHL NI (A o

WV3g Q3sSNd04

ol Wv38 d3SSnd04NN




108

in a water column of 120 cm is about 14 dB at 5 Miz. Utilizing the
transition region, the transducer-target separation is decreased by a
factor of four and the absorption is reduced 11 dB thereby improving
the signal to noise ratio by 23 dB--an important advantage considering
the low level of the backscatter signals.

The disadvantages of this approach are the sacrifice of the
relatively simple far-field conditions and the lack of validity of
some of the theoretical results based on the Fraunhofer approximation.
However, this can be rather misleading. It is not difficult to show
[see Melton and Horton (1970)] that under normal conditionms, short of
zero beamwidth incidence, the transducer will be in the Fresmel field
of the surface when it extends across the entire beam; this is sometimes
overlooked. For a point source the criterion for validity of the

Fraunhofer assumption may be expressed approximately as (ibid.)
sin ~6 < A8 (3.6.3)

where eo is the half-angle beamwidth of the source. Restating this
condition for a surface located in the transition region, i.e. with
T " ai/k and sineo o aT/4ri0, we see that the criterion is met for
a point receiver on the axis but not over the finite aﬁerture of the
actual transducer. If we utilize the Fraunhofer far-field expressions
we should therefore expect some significant errors in the case of
coherent scattering from structures extending across the beam.

The error incurred may be estimated by comparing the measured

and theoretically predicted reflection from a reflector situated in the

near field of the transducer. The average received CW signal has been
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Fig. 3.4 Near-field pattern
2 cm from aperture at 2.3 MHz,
a = 0.95 cm:
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Fig. 3.5 Average normalized pressure amplitude over the
receiving transducer aperture as a function of transducer

. . . 2
separation in units of a,/A.
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- computed for the equivalent problem of two identical pistons by
Seki et al. (1956) and more recently by Khimunin (1972). The theoretical
values show that the reflection is essentially independent of kaT

(within 0.3%) for ka., > 50 and s > 1.0 (reflector at s > 0.5) and this

T
is also approximately confirmed by experiments. The theoretical and
experimental values of the received signal amplitude (proportional to
the average pressure amplitude over the receiving aperture) are plotted
in Fig. 3.5. The experimental values were obtained using the pulses
described in Chapter 4; the diameters of the transducer crystals and
the reflector were 19 mm and 50 mm, respectively. The latter therefore
did not.intercept the entire beam at the farthest position (s = 3.9).
Nonetheless, the experimental results (compensated for the absorption
by the water column) are in substantial agreement with the theoretical

(1)
e

CW values. Using the radius r of the effective beam cross-section
A(I)(s) given in Table 4.3 as the radius of the equivalent disc, the
discrepancy between the theoretical cross-section (2.2.14) and the
measured value was on the average -4.6 dB.

It should be noted that the graph in Fig. 3.5 exhibits a point
of inflection at s = 2.0 (reflector at s = 1) and a response that is
practically constant over the range from s = 1.3 to s = 2.8, Hence,
for the coherent planar scatterer extending normally across the beanm,
the response will also be approximately constant as in the case of the
random point-scatterers. |

In many applications it is desirable to perform the measurements

with the transducer either close to or in contact with the medium. An

exact evaluation of the resultant near-field problem is out of the question.
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However, by treating the incident field as a pseudo-random distribution,
the problem can be treated in an approximate manner. Such an approach
has been used by the author [Freese (1973)] and others, and is justified
by the fact that the equivalent point-scatterers are randomly distributed
with respect to the incident field. It follows from an application of
the principle of conservation of beam intensity that in the absence of
coherent components, the backscatter level for s < 1.0 will remain

nearly constant.

3.6.3 Pulse Distortion in the Beam

When using short pulses some distortion of the pulses is
unavoidable even in the far field. This is due to the pulse bandwidth
and the dependence of the beam on wavelength. As was indicated earlier,
factoring the beam function Y(w,8,¢) from under the integral, e.g. in
(3.2.2), implieé a constant beam pattern over the bandwidth of the
incident signal S(w). For this to be the case, the percent change in
the signal envelope must be only a small fraction of the time required
for this change to propagate across the transducer aperture. In other
words, we require that At = ZaT/c be much smaller than the pulse rise

time ATr’ where a,., is the aperture radius and ¢ is the velocity.

T

Making use of the bandwidth rise time relationship for an RF pulse

ATr ~ 0,7/BW, this condition may be expressed as

0.35¢c

ar

BW <<

For an aperture 2 cm in diameter, the bandwidth would have to be less

than 50 KHz. In contrast, the ultrasonic pulses used in the experiments
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have bandwidths considerably in excess of 50 KHz (Table 4.1). The effect
of this is a smoothing of the beam pattern in the near field as was shown
and also a certain amount of distortion at the beam periphery and in the
near field. However, provided the pulse duration is at least several
cycles in length (> 4) at the center frequency and there are no large
coherent scatterers at the beam periphery,‘the error resulting from this
distortion will normally be quite small when performing measurements
either in the far field or in the transition region. The reason for this
is that the maximum contribution to the scattering will be from an

annular region centered at an angle 6 ~ sin-1(1.4/kaT) off axis, while

14

. . . e . . -1

the distortion does not become significant until € sin (ﬂ/kaT) at

s = 1.0. Another factor tending to reduce the effects of distortion is
the intrinsic averaging of the process. This becomes important in the

case of near-field measurements of diffuse scattering at ranges less

than s = 0.75.
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CHAPTER 4

EXPERIMENTAL METHODS

In this chapter the principal methods and means employed for
the experimental measurements are described. The instrumentation and
techniques used for the measurement of ultrasonic backscatter, velocity
and absorption are discussed in the first four sections. These sections
also contain important calibration data, including the equivalent volumes,
the beam and pulse characteristics and various transducer and instrument
parameters that are required for the measurements reported in Chapter 5.
The last two sectionsAdescribe the chemical and histological methods
that were used to determine the composition and physical properties of

the different media investigated.

4.1 Backscatter Measurements

This section provides details of the operating characteristics,
calibration and accuracy of the electronic instrumentation developed
for the backscatter measurements. Certain data on the characteristics
of the pulses employed in the experiments, including an examination of
the pulse distortion due to shortcomings in the frequency response of

the instrumentation, is also given.
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4.1.1 Instrumentation: Backscattér Analyzer Operation

A block diagram of an analyzer which was designed for
processing of the backscatter signals is shown in Fig. 4.1. In essence,
the analyzer is a high-frequency version of the familiar echo integrator
employed in studies of fish abundance estimation and underwater sound
scattering. It has, however, a number of additional features not
normally found in sonar equipment of this type.

An early version of the analyzer was described by DeGroot
(M.S., 1970). For this reason, since the instrument is not of primary
interest here, the circuit details will not be discussed except in a
few instances where subsequent modifications significantly altered the
instrument characteristics.

When operating monostatically, a single transducer acts as
both transmitter and receiver. Different pulse carrier frequencies
(1 - 10 MHz) may be selected by changing transducers and switching in
‘appropriate matching networks (Fig. 4.1). The matching networks greatly
improve the S/N by both matching and bandlimiting the input and by

further shaping the RF pulse to approximate a cosine pulse of the form

jt]

s(t) =% (1 + cos %%ﬂ cos (w T * $) |t} < aT

=0 lt] > AT | (4.1.1)

Aftef pre-amplification of the RF signal, the signal is passed through
a time varied gain (TVG) amplifier.

The main function of the TVG is to compensate the backscatter
for attenuation rather than l/r2 spreading. This is required to approxi-

mately stationarize the backscatter as was discussed in Chapter 3.
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The TVG amplifier consists of a voltage controlled wideband
IC amplifier; the gain varies exponentially with applied control voltage.
The TVG amplifier is triggered either by the transmitted pulse when
operating in the contact mode or the first echo return from the surface
of the tissue when using the immersion mode as illustrated in Fig. 4.2.
Multiple and false triggering, e.g. on air bubbles in the water delay
path, are prevented by a lock-out circuit.

Following stationarization, the signal is gated. The depth and
widfh of the gate are variable but typical values used for most of the
measurements are 7.5 usec and 15 usec, corresponding to 5.8 mm and 11.6 mm,
respectively. The initial depth interval of about 6 mm is normally
sufficient to prevent the front surface echoes from contaminating the
backscatter from the myomere. By using a sufficiently narrow gate width,
the envelope amplitude as a function of time (depth) may be obtained.

After full-wave rectification, the gated signal is filtered to
remove the higher order sidebands which arise as a result of the recti-
fication process. This is necessary to insure a uniform response at each
processing stage over the range of input frequencies (1 - 10 Miz) and to
prevent the slope detector circuit from responding to the higher band
signals (centered about even multiples of the carrier frequency).

The averager integrates the signal V(t) over the gate interval

T, forming the average

i

1{v(t)] K! V(u) e du

(4.1.2)
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Fig. 4.2 Immersion operation

Fig. 4.3 Test facility
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where K is a constant and RC is the time constant of the integrator.
The result is displayed on a panel meter (Fig. 4.3) or on a DVM.
The signal V(t) is determined according to the processing mode
selected:
i) the integral of the envelope is obtained by selecting V(t) = E(t);
ii) applying E(t) to both the X and Y inputs of the IC multiplier
yields E(t)z, see Fig. 4.4;
iii) delaying the Y input by Tt usec by means of an external delay line
permits the point by point measurement of the autocovariance
function of the envelope

t-T

I[E(t) E(t-1)] = K ) E() E(u+t) du (4.1.3)
o v

The integrator is preceded by a variable threshold (discriminator)
and clamping operational amplifier. The purpose of the clamp is to
restore the DC signal.

The variable threshold has several functions. The cumulant
distribution of the envelope (or envelope squared) of a member aggregate
may be obtained by varying the threshold which is calibrated to read
directly the equivalent signal amplitude. The density distribution may
then be easily obtained from the cumulant distribution. The threshold is
also used to insure that the signal amplitudes do not exceed the dynamic
range of the instrument.

The instrument becomes a combined pulse height analyzer and
counting rate meter (CRM) when the constant amplitude output from the

comparator is applied by way of a one shot to the averager. This mode is
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also used to check the gate triggering when the immersion mode is
employed and an oscilloscope is not availlable.

The repetition frequency may be varied but normally a fixed
frequency of 1 KHz was selected. The frequency is verified by switching
the analyzer to the CAL. position.

The principal signal waveforms may be accessed for monitoring
the operation of the analyzer and further processing, e.g. spectrum

analysis of the gated backscatter.

4.1.2. Analyzer Calibration

The attenuators in the instrument were calibrated against a
precision reference attenuator to an accuracy of 0.2 dB. The gain of
the analyzer electronic circuitry was checked by the insertion of a
3-cycle boxcar RF burst (usually 2.25 MHz) at the analyzer transducer
input. Overall calibraﬁion of the backscatter analyzer was verified
prior to each series of backscatter measurements by determining the

pulse return from a stainless steel ball-bearing reference target placed

(+)

N maximum of the transducer. The short term stability of the

at the Y
analyzer under normal daytime operating conditions using the immersion

mode was better than +0.2 dB/hr.

Multiplier Response

The multiplier response was measured over a 20 dB range of the
input signal for frequencies between 60 KHz and 1.5 MHz. The exponent
(squaring mode) decreased from the correct value of 2.0 at 0.5 MHz to
1.96 at 0.9 MHz. Otherwise, the response was essentially constant over

a 20 dB dynamic range of the input signals. A table of correction factors
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for the different signal pulses was established experimentally (Table 4.1)
by means of point by point numerical evaluation. The maximum exror in the

multiplier response at the shortest pulse lengths employed is about 8%.

TABLE 4.1

PULSE CHARACTERISTICS AND MULTIPLIER RESPONSE

Carrier RF Video Pulse Approximate Multiplier
Frequency Pulse Width 3 dB Bandwidth Filtered Correction
(FWHM) Video Pulse Constant
3 dB Bandwidth (Experimental)
MHz usec Mz MHz
x0.,58 x0.58
1.09 2.06 0.17 0.17 1.06
2.25 1.10 0.32 0.32 ‘ 1.00
3.45 0.80 0.44 0.44 1.00
4.80 0.54 : 0.65 0.58 1.04

7.00 0.37 0.95 0.70 1.08

The integral of the ideal cosine pulse amplitude (4.1.1) is
given by I(E) = KAOAT where AO is the peak envelope amplitude and 2AT is-
the pulse width. The integral corresponding to the pulse energy is thus
I(Ez) = 3/4 KAiAT. The performance of the instrument and the deviation
of the actual pulse from the postulated pulse were compared at the
different frequencies; the results are given in Table 4.2. The experi-
mental and calculated values are in generally good agreement.

The measured values of KAT correspond to the filtered video

pulse full width half maximum (FWHM) times the constant K; the filtered
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pulse bandwidths were given in Table 4.1. The measurement accuracy of
the 3.5 - 7.0 Miz values is about #5%. Bearing this in mind, a value of
KAT less than the measured value indicates a narrower pulse than the
ideal cosine shape and vice versa. Thus, the 7.0 Miz result indicates
significant stretching of the pulse (with about 10% overshoot) by the
filter nefwork and consequently a considerable divergence of the actual
pulse from the cosine pulse (4.1.1). The fact that the measured value
of Ai at 7.0 MHz does not show any significant fall-off is likely due

to overshoot.

TVG Amplifier Response

The response of the IC amplifier was true exponential as a
function of applied bias voltage to within #4% over a 20 dB dynamic
range at 3.0 Miz. To improve the S/N of this stage only 13.5 dB of
this range was utilized, thus limiting the TVG to a maximum of 8 dB/cm
for a 7.5 usec gate delay and 15 usec gate width. The linearity of the
ramp voltage (generated by an op-amp integrator) in the range of interest
was approximately *2% (0 - 6 dB/cm ramp) yielding a minimum TVG accuracy
of about *6%. The linearity of the ramp, and thus the performance of the
TVG amplifier, could certainly be improved further. The problem,
of course, is to determine the magnitude of the TVG, since even with
a TVG of 4 dB/cm a 50% error is possible if the absorption is unknown.
The effect of this is shown in Fig..4.5. Since the absorption increases
with frequency, the maximum possible error in & rises exponentially with
frequency, and as a result the measurement accuracy deteriorates rapidly

at high frequencies.
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Fig. 4.4 Typical 2.3 MHz back-
scattered signal from whitefish

muscle

i) RF signal; sweep = 2 Msec/div
ii) Gated envelope; TVG 3 dB/cm

iii) Square of envelope; y = 2x2

Fig. 4.5(a) Effect of TVG

on the signal envelope

TVG; 0 - 2.25 - 4.5 dB/cm
Center freq. = 3.45 MHz

Sweep = 2 usec/div

— 6.0
. 4.0
Fig. 4.5(b) Effect of TVG error on
2.0
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O-RELATIVE ERROR dB



124

Rectifier Response

The offset in the rectifier stage was significantly improved
by employing Schottky Hot Carrier diodes. The remaining offset error was
further compensated by a counter offset of 2.5% {(full scale) in the
integrator in the linear operating mode and‘l.Z% in the squaring mode.
Except at low éignal levels below about 0.1 V of the 0 to 1.1 V dynamic
range, the linearity of the rectifier was better than *3% over the range

of input frequencies.

Measurement Accuracy

The standard errors of the I(Ez) calibration values used to
normalize the backscattered pulse energy (backscatter strength) and the
standard errors of individual determinations of the backscatter strength
o, are tabulated in Table 4.2. The error in o in this case does not
include possible errors in the TVG magnitude nor possible errors
associated with the expérimental subject medium, e.g. interference from
surface reverberation. These afe considered separately.

The standard errors of the magnitude measurements I(E) were
slightly lower than in the case of the I(Ez) measurements. At 2.3 Miz
and 4.8 Miz the standard errors of the normalized backscatter magnitudes

were 8.2% and 8.4%, respectively.

4.2 Reference Target Calibration

The problem of realizing a suitable target of known cross-
section for the purpose of short pulse calibration is considered in

this section.
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The backscatter cross-section of a rigid sphere as a function
of incident wavelength is known to fluctuate appreciably for 2wa < 20)
[Rayleigh (1896); Stenzel (1938)]. Moreover, it has been shown
[Hickling (1962)] that for an elastic solid sphere the fluctuations
can be even more extreme, nor are they, in general, attenuated with
increasing frequency. Aside from simple weight considerations, this is
the chief reason why a Dirichlet type target is normally employed in
sonar calibration. The absence of oscillations in the cross-section of
the Dirichlet or 'pressure release' sphere, Fig. 2.5, beyond about ka =5
is explained by the fact that the circumferential or creeping waves are
more rapidly attenuated than in the case of the rigid sphere. However,
if the bandwidth of the incident pulse is sufficiently wide, then as
Hickling's results show, these variations are smoothed out and the
specular pulse return may be used for calibration purposes; only a small
correction is necessary to compensate for the finite impedance of the
sphere. The specular return, it should be noted, is not contaminated by
any creeping wave contribution. Rheinstein (1968) investigated the
composition of the backscattered pulses from a sphere by means of Fourier
analysis of their time domain components. He showed that the specular
cross-section of the sphere varies smoothly as a function of ka. Thus,
for values of ka < 40 this should be borne in mind.

The reason for preferring a rigid sphere for calibration is
the availability, low cost and high precision of stainless steel ball
bearings. In contrast, an accurate and reproducible Dirichlet spherical
target with a small cross-section is difficult to realize at high

frequencies. One would be more or less forced to use a planar reflector
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which has the disadvantages of being aspect dependent and causing pulse
distortion because of the gain dependence on wavelength.

The minimum reference sphere diameter employed was ka = 14.6
at 1.1 MHz. The corresponding effective echoing area diameter (VZax/T)
of 1.66 mm was still small in comparison to the beam diameter of 9.5 mm
at the Y§+) diffraction focus (see Table 4.3).

The effect of halving and doubling the diameters of the ball
bearings was investigated at the various wavelengths employed. The
measured changes were generally within 0.5 dB of the predicted

change of 6 dB.

4.3 Transducer Parameters

Experimental values of the beam parameters of the various
transducers employed in the experiments, specifically the carrier
frequencies, the actual Y§+) distances, the beamwidths and the equivalent
insonified volumes are given in this section. These values are compared
to theoretical results (some of which were referred to earlier in
Section 3.6) and published experimental CW data for both near- and far-
field coﬁditions.

The 1.1, 2.3, 3.5 and 5.0 MHz transducers were nominally 3/4 in.
diameter immersion style supplied without tuning coils by Aerotech
Laboratories. The transducer crystals were lead metaniobate composition
ceramics and were sealed with flat epoxy matching layers. The Q's of
the received pulses (Table 4.1) varied between 3.2 and 4.3.

Using a 1/8 in.ball bearing target, the near-field patterns

of the transducers were mapped to determine the degree of field symmetry.
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‘The near-field pattern at a distance of 20 mm from the 2.3 MHz transducer
is shown in Fig. 3.4.

The axial magnitudes were similarly obtained (Figs. 3.2 and 3.3)
and the measured positions of the Y£+) maxima were compared with the
calculated values z = aZ/AC. The results are given in Table 4.3 and agree
more closely than might be expected in view of the pulse bandwidths and
uncertainties in the effective crystal diameters. Some measurements at
7.0 MHz were made using a focussed transducer. The transducer, having a
nominal diameter of 20 mm (the plated electrode diameter of an identical
transducer measured 19.5 mm), exhibited a maximum at 19 cm from the
aperture. In comparison, the Y§+) maximum of a similar but unfocussed
transducer would have.been at 44.3 cm from the aperture.

The average -6 dB beamwidth at the Y§+) maxima of the 3.5 MHz

and 4.8 Mz transducers as measured by the above method was 5.45 mm

which égrees well with the CW theoretical predictions that the -3 dB

(+)

o]

beamwidth at the Y maximum is approximately one quarter the
transducer diameter [Zemanek (1971)]. The 1.1 MHz beamwidth was 6.4 mm
or 1.18 times wider than the mean value above. An increase in beamwidth,
however, is also indicated as a/X takes on values < 10 (ibid.); at 1.1 MHz
a/x = 6.9.

In order to compare measurements in the far field with
measurements made in the transition region, s = 1.0, the beam charac-
teristics were also determined at s = zA/a2 = 3.9. Values of the -6 dB

beamwidths are given in Table 4.4. CW theory (ibid.) predicts a

beamwidth equal to the piston (crystal) diameter at s = 3.89.
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The measured values are seen to be only slightly greater on the average
than the nominal 19 mm crystal diameters.

To determine the effect of the ball bearing diameter, the
measurements at 3.5 Mz and 4.8 MHz were repeated using balls 1/16 in.
in diameter. The smaller targets increased the resolution of the side;
lobes but had negligible effect on the resultant beamwidths. The
equivalent volumes at s = 1.0 were generally 5 to 10% greater. However,
as the possibility of errors due to interference effects is increased,
particularly at 3.5 MHz, it was decided to average the two sets of
measurements (Table 4.3). The measurements at 1.1 MHz were obtained
with 1/4 in. and 1/8 in. ball bearing térgets.

The equivalent volumes Vél) and Véz) were calculated from

(2)

. and the corres-

the beam pattern profiles. Values of Vél) and V

ponding equivalent beam radii are given in Tables 4.3 and 4.4.

To a good approximation, the equivalent radius, réé), at s = 1.0

may be taken as one half of the -6 dB (two-way) beamwidth, for
_________ <réé)/(—6 dB beamwidth) ), , = 0.525.

A comparison of the axial intensity ratios [I(s=1.0)/1(s=3.9)]

""" and the corresponding volume ratios is useful. Values are given in

Table 4.4. The intensity ratio values are subject to considerable error

due to uncertainty in the absorption over the acoustical path. Nonetheless,

with the exception of the 4.8 MHz value, the ratios are close to the

theoretical CW value of 6.35 [Papadakis and Fowler (1970)]. Comparing the

various values for the 4.8 Miz transducer in Tables 4.3 and 4.4 suggests

that Vél)(s=3.9) may be too large by 0.5 cmS.
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The volume and intensity ratios for the focussed transducer
are roughly three times greater than for the planar apertures. From fhe
diffraction formulae for the circular aperture [Lommel (1885)], it may
be shown that the ratio of the axial beam intensities and the focus
at the Y§+) maximum of a focussed and an unfocussed aperture of the same

diameter and source strength is given by

I (£) 2 4

£ T_a
1@/ 457 A (4.3.1)

where f is the focal distance and a is the aperture radius. Using the
argument of conservation of beam energy and taking into account the

0.0125 cm difference in the transducer radii, the equivalent beam area
cross-section ratio (and thé equivalent volume Tatio) is 13.4. The

measured value (Table 4.3) is 9.2. Integration of the patterns [2J1(u)/u]2
and [ZJl(u)/u]4 yields a value for the ratio [Vél)/V§2)] of approximately 2.0
compared to an experimental value of 2.3.

The main problems associated with the use of the focussed
transducer are that the equivalent beamwidth at the focus may be too small
and that the beam pattern differs from that of a planar aperture.

As was shown in Chapter 2, the effect of the finite beamwidth
on the reflectivity for beamwidths less than the correlation distance
of the scattering surface (volume) is essentially the same as that of the
correlation distance. Therefore, under these conditions the beamwidth,
like the pulse length, becomes one of the parameters determining the

backscatter strength per unit volume, &. However, even if the beamwidth
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exceeds the correlation distance, the field distribution at the focal

plane of the focussed transducer is given to a first approximation by

the Fraunhofer pattern and thus differs significantly from the distri-
bution in the Y£+) plane of the unfocussed transducers. As a result,

the 9 values are still not exactly comparable. The change in distribution
may be inferred from the results given in Tables 4.3 and 4.4. Thus,

at s = 1.0, <v§1)/v£2) Y 30, while at s = 3.9, <V§1)/V£2)>S=3.9z2.1;
this indicates a significant change in the beam patterns. The latter,

it should be noted, is in agreement with the theoretical value (%2.0)

based on the Fraunhofer pattern.

Having discussed the backscatter measurement system charac-
teristics and its calibration, we now turn in the next few sections to
briefly describe the principal methods used to determine the velocity
and absorption, and various chemical and histological properties of

the tissues employed in the experiments.

4.4 Velocity and Absorption Measurements

Several different techniques were used to determine the ultra-
sonic velocity and absorption of the various media investigated. Generally,
the methods were of the substitution type, involving distilled water as

the reference medium.

4.4.1 Velocity Determinations

By measuring the change in time delay of an echo from a suitable
reflector, first without the sample and then with the sample in place

between the transducer and reflector, the velocity in the sample may be
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obtained from the relation

R St (4.4.1)
v, vy 25
where vy - sample Velocity
vy - velocity in water
S - sample thickness
t2 - t1 - delay time difference

The velocity of pure water, obtained from published data
[Konenenko and Yakovlev (1969)] and checked by direct measurement, served
as the reference. The thicknesses of the tissue samples were gauged
ultrasonically and verified by means of caliper measurements.

The maximum error for a single measurement of velocity using
samples at least 1.5 cm thick is about 1%. The relative accuracies of
the velocity determinations obtained by means of a least squéres fit of
four or five different sample thicknesses (from the same fish) are

estimated at 0.3%.

4.4.2 Absorption Measurements

The methods employed in earlier measurements of velocity and
absorption in whitefish were described by Freese and Makow (1968.b).
For frequencies up to 3 MHz a buffer rod technique was employed while at
higher frequencies a contact reflector method was used. Diffraction
and matching corrections were obtained by substituting distilled water as.

the absorbing medium. The samples were compressed by 5 to 10% in the
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measurement cavity which may have caused some twisting in orientation

and separation of the tissues. This in turn may have given rise to large
errors in measurements parallel to the muscle fibers. For this reason

it was decided to use ultrasonic gauging and a non-contact, reflector
method of the substitution type for subsequent velocity and absorption
measurements on muscles.

Using a narrow beam with the sample placed at the Y§+)
diffraction focus, the thickness of the sample can be gauged ultra-
sonically to within 5% with negligible loss of accuracy in the final
result. In this way compression of the samples can be entirely avoided.
[0f course, the use of a narrow beam reduces the inherent averaging over
the sample and increases thé sensitivity to tissue inhomogeneities,
hence resulting in a greater variation in the individual measured values.
However, provided the beam was not less than about 5 mm in width (3 dB),
this did not present a problem.]

The maximum error in single transverse and parallel absorption
measurements (3.5 to 5.0 MHz) for a sample are estimated at 19% and 40%,
respectively. ~ A minimum sample thickness of 1.5 cm and an anisotropy
ratio of 1:4 are assumed. The much larger error in absorption
measurements parallel to the fiber direction is the result of the effect
of alignment error.

In the case of the gelatin model media (Section 5.1), the
experimental values of absorption were obtained from observations of the
reverberation (backscatter) decay rates, suitably corrected for beam
divergence. The reason for using this method was to avoid disturbing

what was essentially a fluid medium. Employing a minimum path length

2
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of 4.5 cm, the probable error at the lowest bubble concentration measured
was estimated at $0.069 cm * or £0.6 dB/cm.

For the measurements of the absorption in water, echoes from a
flat, polished quartz reflector and a ball bearing were compared over
path lengths ranging from 59 to 230 cm. Applying appropriate diffraction
corrections [Seki et al. (1956); Khimunin (1972); Gitis and Khimunin (1968) 1],
a value of ocw/f2 = 2.9 x 1O~4cm_11\/1Hz_2 was obtained which is in fair

agreement with the published CW values.

4.4.3 Pulse Absorption Spectroscopy

The method basically consists of performing a powexr spectrum
analysis of extremely wideband pulses before and after passage through
the absorbing medium. Subtracting the resultant spectra then yields the
absorption spectrum of the medium.

The method was implemented by using a highly damped, focussed,
lithium sulphate, 3/4 in. diameter, immersion style transducer (made by
Krautkrimer) to generate a nearly single ;ycle 12 Mz center frequency
pulse. Hence, the RF pulse spectrum was more than 20 Miz in width.

The transducer was focussed on a 1/8 in. stainless steel ball reflector
at a distance of 12 cm (geometrical focus) in distilled water. The
reflected pulses (first without the sample, i.e. in distilled water, and
then with the sample interposed) were amplified by a wideband, low noise,
isolating pre-amplifier and gated with a non-additive gate (contained in
the model UTA-2 ultrasonic transducer analyzer manufactured by Aerotech
Laboratories, see Fig. 4.2). The power spectra of the gated pulses were

measured on an HP model 8553B-8552B spectrum analyzer and were recorded
{
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on either polaroid film or graphically using an XY recorder. The results
were generally reproducible to within #0.5 dB.

The above technique is similar to the method of power spectrum
analysis referred to earlier for the backscatter (see Chapter 3 and
Appendix B). The main difference lies in the fact that in the case of
the absorption technique single pulses from a known target are analyzed,
while in the case of the tissue backscatter a train of pulses is analyzed
(and compared to the original incident pulse). Generally, the backscatter
power spectrum must be averaged to eliminate the effects of interference

due to the backscatter fine structure.

4.5 Histological Examinations

Cubes of tissue 5 to 7 mm in size were frozen with a blast of

CO., or alternatively, they were frozen on a piece of aluminum foil

90
dropped into isopentane held at -40°C (still lower temperatures tended to
shatter the samples; moreover, this would also have required much better
freeze-drying facilities). The samples were then freeze-dried at a
temperature of -40°C and a vacuum of 2 microns (mercury). After freeze-
drying for a period of 5 to 10 hours at -4OOC, the sample's temperature
was allowed to gradually rise to room temperature over a period of about
12 hours. The dried samples were trimmed and embedded in paraffin.
Sections 8 to 24 um thick were cut from the sample blocks. The sections
were examined under low to medium magnification with a polarizing
microscope and an interference contrast microscope. (Staining was avoided

as this gives rise to additional distortion of the samples.) Larger

samples for the purpose of measuring air bubble densities and other
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inhomogeneities were cut by hand with a sharp scalpel and were examined

under a low power stereo-microscope.

4.6 Chemical Analysis

The chemical analyses performed were for total fat, moisture

and protein content of the white muscle tissues.

4.6.1 Extraction of Lipids from Muscle

The method of Bligh and Dyer (1959) was used to determine the
total lipid content of a white muscle sample. In this method a
chloroform—methanol—water mixture is employed to extract the lipids from
the muscle. A correction based on moisture content is made in the final
determination. In general, a better than 95% extraction of the total

lipid is possible with this method.

4.6.2 Moisture Content

The moisture contents of the samples were determined by drying
the samples under vacuum. The accuracy of the determinations was

about 0.2%.

4.,6.3 Determination of Total Protein Content

Total protein contents of the fish muscle samples were obtained
by the standard micro-Kjeldahl nitrogen determination method corrected.
for non-protein nitrogen, the total protein being obtained by multiplying
the nitrogen content by the factor 6.25. Duplicate extractions were made
for each muscle sample; the samples were normally taken from the epaxial

region near the head.
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CHAPTER 5

EXPERIMENTAL RESULTS

To acquaint the reader with the nature of the écattering
problem and to delineate the mixed body presented by the fish myomere,

a number of experimental results and observations relating to the
individual scatterers were introduced in Chapter 2. The backscatter
cross-sections of the different inhomogeneities encountered were derived
and discussed in some detail. In this chapter the emphasis will be on
the overall volume scattering process, although some results of.
scattering measurements from the individual scatterers will alsb be
given and compared with theory.

Using the experimental techniques described in Chapter 4, the
volume backscatter from myomere are measured as a function of composition
and condition. The experimental values are compared with histological
data and measurements on model media of oil and air bubble suspensions.
They are then interpreted with the aid of theoretical calculations based
on a first order statistical scattering process model of the myomere.
The significance of the results towards certain potential applications
is briefly discussed.

Initially, to test the validity of the approach and verify
the calibrations, the backscatter from gelatin suspensions of air
bubbles (Section 5.1) and also oil bubbles (Section 5.2) are measured

and compared with theoretical predictions.
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5.1 Backscattering from Air Bubbles in a4 Fluid Medium

The model media were prepared in the following manner. Air
bubbles were introduced and evenly dispersed in partially jelled gelatin
consisting of two parts gelatin in nine ?arts of water (by weight).

The mixture was then refrigerated for forty-eight hours after which
additional air bubbles were introduced with a few millilitres of cold
water added to improve the dispersal of the bubbles. This was repeated
until no further absorption occurred. Samples of different air bubble

concentrations were prepared.

5.1.1 Media Statistical Parameters

Determinations of the bubble diameter distributions were made
for three of the media (G3, G4 and G5). The majority of the bubbles in

all of the samples were spherical in shape. Interestingly, however,

' the surfaces of the bubbles, particularly the larger ones, were not-

| .

smooth; rather they had a slightly corrugated appearance with a rough-
ness estimated from photographs of the order of 1 to 10 um. The
diameter distribution for the G3 sample having the second largest
concentration is shown in Fig. 5.1. The distribution of the G4 medium
was qualitatively similar to that of the G3 medium. On the other hand,
the bubbles of the G5 medium were more uniform in size and this is
apparent from the bubble statistical parameters.

The statistical parameters of the media are summarized in
Table 5.1. The concentration VC refers to the fractional volume occupied

by the bubbles and is given by

Vo= <> %"l<a3> : (5.1.1)

Lo c
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e - . L4 3
where <n>> is the average number of bubbles per unit volume and gﬂ-<a >

is the average volume per bubble.

TABLE 5.1

BUBBLE STATISTICAL PARAMETERS

Sample <n> <La> <a2> VC
bubbles/cm3 mm mm2 % 103

G3 330 + 80 0.20 0.056 26

G4 42 = 6 0.16 0.041 2

G5 550 £ 150% 0.19 0.043 27

* Small sample

Both the backscatter and the absorption are proportional to
the scatterer density n to first order. The absorption should thus
furnish an additional measure of the scatterer density. Since the
absorption is also required for stationarization of the backscatter, the

absorptions were determined simultaneously with the backscatter.

5.1.2 Absorption of the Gelatin Media

Assuming that the various absorption components are additive,
the absorption constant of the bubbly medium o oy, mey be expressed
o

approximately as

(5.1.2)
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where o, - water absorption
ag - gelatin absorption
o T attenuation due to absorption, viscous drag and

scattering by the air bubbles.
o is given in terms of the average extinction or total cross-section

<:Qe)> of the bubbles by [Foldy (1945)]

- n Q
% ° _<__?2_§_9_>._ (5.1.3)

where < n>> is the average number of scatterers per unit volume. With
the help of the extinction theorem [Stratton (1941); Foldy (1945);

Waterman and Truell (1961)]

47
Q o

o Im AS(O)

= Q +Q : (5.1.4)

a s
where AS(O) is the forward scattered wave amplitude, Qa is the absorption
cross-section and QS is the total scattering cross-section., The latter

is defined in terms of the bistatic scattering cross-section (obi) as

To2m
- L 1 ' 1 1
Q = I J J Ops (61501) do' dg (5.1.5)
o’0
where 98' = o, - 8. ' = oo = s and the integral is evaluated with the

incidence angles ei,¢i fixed.

Neglecting absorption by the air bubbles, i.e. Q_ = 0, and
assuming that the bubbles will behave essentially as Dirichlet scatterers,
which implies that the effects of the partial wave resonances may be
neglected, we obtain using (2.2.4) and the short wavelength asymptotic

solution for the sphere [Morse and Ingard (1968)]
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2 3p c2
Q = _ Ama s, for (ka)z >> 2 2 , ka=s1 (5.1.6.a)
s 1+ (ka)z p c2
171
2
= 2y a s ka > 1 (5.1.6.Db)

Eq. (5.1.6.b) differs only by the well-known factor of two from the
geometric BCS.l

The absorption component ag of the gelatin was obtained using
the pulse spectroscopic technique (Section 4.3.3) and a clear gelatin
sample. Over the range 1 to 10 MHz, the absorption pef wavelength was
linear, measuring 5 x lO—ScmnlMHznl at 20°C. The water absorption
component a  was determined by the comparison method described in
Section 4.4.2. The value of ocw/f2 obtained was 2.9 x 10_4cm—1MHz—2. The
determinations of amgb were made from measurements of the backscatter
decay rate and also the spectroscopic method. For the decay rate measure-
ments, a two-way path length of 5.35 cm was employed. In each case the
slopes of the resultant logarithmic graphs after correction for beam
divergence were constant over the first 4.6 cm.

Experimental and theoretical values of absorption computed

using (5.1.6) and (5.1.2) are given in Table 5.2 for the G3 and G5 samples.

ThlS problem has received much attention in the past. Basically the
problem is that, as the distance separating the scatterers and the
receiver is reduced, it becomes increasingly difficult in practice to
distinguish the forward scattered field from the incident primary field.
However, for ka >> 1, the forward scattered field accounts for half of
the scattered power and as it acts in concert with the primary field, it
must be taken into con51derat10n The net result is that, if the forward
scattered component is intercepted by the receiver, the extlnctlon Cross-
section scattering component will be ef fectively only half as great.

In our case § = (A/4<a>) >> (A/4a ), where 6 is the forward-scatter
beamwidth and aq is the transducer radlus and therefore Q is given

by (5.1.6).
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On the average the decay rate measurement values of o, are slightly less
. 1 . . .

than 30% of the theoretical values.” The reason for this discrepancy is

not clear. Waterman and Truell (1961) derive the following criterion

for the validity of (5.1.3)

<n>Q
k

<< 1 (5.1.7)

Substituting the appropriate values from Tables 5.1 and 5.2, we obtain-
for the worst case a)/m = 0.036 which is certainly substantially less

than unity. Nonetheless, although it would not seem to be in accord

with theory, the most likely causes for the discrepancy would appear to
be the breakdown of (5.1.3) due to the onset of significant secondary
scattering, i.e. higher order multiple scattering, coupled perhaps with
the interception of some of the multiple scattered but initially forward
scattered intensity (so that for ka > 1, we have QS < 2na2, see footnote
on previous page). Unfortunately, in spite of the fact that scattering
and absorption by air bubbles has been extensively studied [e.g. Fox et al.
(1955); Kol'tsova and Mikhailov (1969)], absorption data for bubbles

in the range of ka = 1 to 5 and VC near 3% appears to be lacking so

that we were unable to compare our results with previous work. Finally,
we note that if O includes a component o, proportional to frequency as is

indicated by the measurements, the high-frequency asymptotic values of

1An experimental error, probably in the spectroscopic attenuation
measurements, is indicated at the lower frequencies by the difference
in the values of a obtained by the two methods (Table 5.2). This
error may have beefi®laused by some degree of pulse overlap due to
reverberation from the air bubbles in the spectroscopic determination.
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(ab - av) for G3 and G5 become Q.16 and 0.2, respectively. These values
correspond to total scattering cross-sections approiimately equal to the

geometric cross-sections.

5.1.3 Backscatter Results

The backscatter measurements on samples G3, G4 and G5 were
performed with the samples placed in the transition region. For the
purpose of ascertaining the effects on the measurements of the transition
region positioning, the measurements for G4 were then repeated with the
sample placed at s = 3.9 in what is essentially the far field. The
measured values for G3, having the highest concentration, were averaged
over two measurements each, while G4 and G5 were averaged over three
measurements each. In all cases a 15 usec gatewidth was employed to

sample the backscatter while the experimental decay rate values of the

()

Py at

absorptions were employed for the TVG. Using the values of V
s =1.0 and s = 3.9 given in Tables 4.3 and 4.4, the experimental values
of < Q> were then calculated according to the definition given in
Section 2.4.

For the theoretical BCS values we again assume Dirichlet

scattering. The cross-section for a spherical bubble can then be

approximated as

2
2 3p.c
g = _4ma s (ka)z >> 2.2 and ka £ 1
1+ (ka)2 c2
P19
2
= fa ' s ka > 1 (5.1.8)

At ka = 1 the value of 0/(ﬁa2) lies roughly midway of the discontinuity

in (5.1.8) as may be seen from Fig. 2.5. The scatterer distribution thus
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effectively averages over the discontinuity. Moreover, except at 1.1 MHz
where ka =.1 for a = 0.2 mm, relatively few scatterers with ka < 1 are
found at the higher frequencies as may be inferred from Fig. 5.1 and
Table 5.1,

The theoretical and experimental values of‘<:Q:> are plotted in
Fig. 5.2. Despite the relatively large probable.errors in & and the
inherent statistical fluctuations, the experimental and theoretical results
are in comparatively good agreement over the range from 1.1 to 3.5 MHz.
Only the 4.8 MHz results show any appreciable discrepancy. Whether this
error, on the average 2 dB, is due to calibration and TVG setting errors

or to changes in the scattering is not certain. However, the results for

the gelatin-oil media (Fig. 5.10) suggest that the increase is real. The

decreases in the values of <92 between 1.1 and 3.5 Miz are approximately

by the predicted amount and the experimental and theoretical results

agree on the average within 1 dB over this range. Although the theoretical
and experimental results differ increasingly with increasing concentration,
the increase is within the range of experimental error. In contrast to

the absorption results, the relatively good agreement would seem to
indicate that the first order scattering model, by taking into account

multiple scattering effects by way of the effective absorption constant,1

still predicts the backscatter adequately for VC nearly 3%.

1Strictly speaking, the model is then no longer a first order model.
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Fig. 5.2 Backscatter coefficients for air bubble media.
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Except at 4.8 MHz, the results of the determinations on the
G4 sample in the transition and in the far field are seen to be in good
agreement. The 4.8 MHz far-field value appears to follow the trend of

the measurements for the other two samples.

5.1.4 Coefficient of Variation and Probability Distribution

of the Backscatter

The coefficient of variation YV is defined by (3.3.16.d); in
the limit of the Rayleigh distribution its value becomes 0.5227. The
experimental values of Yv as a function of frequency are shown in Table 5.3.

TABLE 5.3

COEFFICIENT OF VARIATION Yv OF BACKSCATTER ENVELOPES

Freq. G3 G4 G4 G5
Mz s = 1.0 s = 1.0 s = 3.9 s = 1.0
1.1 .55 .60 .50 ‘ .55
2.3 .62 .64 .52 .65
3.5 .60 ’ .70 .58 .62
4.8 .59 .86 | - .73

The critical parameter determining the rate at which the actual distri-
bution approaches the Rayleigh distribution is the process density
defined by (3.3.8) as the number of insonified scatterers times the
pulse duration. In the case of the G4 medium, the YV'S at s = 1.0 are

greater on the average than the corresponding G3 and G5 values.
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Similarly the G4 values at 5 = 1.0 are greater than at s = 3.9. This
is to be expected since the insonified volumes, and therefore the number
of scatterers, differ by a factor nine. As a function of frequency,
Y, is also seen to increase and this is attributable to the shorter
pulse lengths with increasing frequency (Table 4.1). The results are
thus in good agreement with the theoretical predictions.

The probability P{ } that the normalized envelope magnitude

(E/Erms) will exceed the level b may be expressed as
. bE
TmS
P{(E/Erms) >b} = 1 - JO g(E) dFE (5.1.9)

where E}ms = <E2:>%, and g(&) is the probability density distribution
of the envelope.

Some examples of the envelope probabilities plotted on Rayleigh
distribution graph paper are shown in Fig. 5.3(a-c). The points for
G4 at s = 3.9 and G5 at s = 1.0 follow a straight line quite closely,
while the points for G4 at s = 1.0 show significantly greater scatter
with the lower levels having a greater probability than the higher levels.
This is characteristic of low density impulse type processes where the
probability of zero signal amplitude is often finite in contrast to the
Rayleigh distribution which has zero density at zero envelope amplitude
[Middleton (1960), Chapter 11]. This also accounts for the fact that
the Yv's in Table 5.3 are generally greater than 0.52. If a deterministic
component were present in the backscatter either when ensemble averaging
or time averaging in the presence of a dominant echo (see Chapter 3),

YV would be less than 0.52 but it would tend towards this limit as

( <E>2/ <E2> ) approaéhes ZETO.
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Finally, in Fig. 5.3(d) an example of the relative probability
density distribution of the intensity J = E2 is given. The points closely
approximate a straight line corresponding to an exponential distribution

as implied by the Rayleigh distribution of the envelope in Fig. 5.3(c).

5.2 Backscattering from Fish Tissues

Measurements were performed on approximately 150 fresh white-
fish and 35 pickerel (Stizostedion vitreum vitreum). The whitefish were
obtained dressed (guts removed) and the pickerel in round form through
the agency of the Freshwater Fish Marketing Corporation which operates
across central and northern Canada. The pickerel were from two to three
days old while the whitefish varied in age from two to five days and up
to a maximum of ten to twelve days on rare occasions. Thus, in most
cases the fish had passed through the rigor stage priqr to the measure-
ments. Whitefish were obtained throughout the summer and winter fishing
seasons from about thirty lakes in all. Although Lake Winnipeg, which
produces a particularly fatty fish and is one of the principal producers
of whitefish, was underrepresented, the sample otherwise represents a
good cross-section. This is important as whitefish is a highly variable
species [Scott and Crossman (1973)]. The pickerel were obtained mostly
from the Lake of the Woods area in north-western Ontario.

Prior to performing the measurements, the whitefish were
scaled in the epaxial region and clamped as shown in Fig. 4.2. In the
case of pickerel, the skin was entirely removed because of the difficulty

of scaling pickerel without bruising the flesh. The reason for this was
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to reduce the transmission losses and the reverberation which would

otherwise result.1

5.2.1 Fresh Whitefish and Pickerel Lateral Myomere Backscatter

The whitefish were grouped according to the total lipid content
as shown in Table 2.1. The pickerel were much leaner and formed only
one group. Fixed TVG's were employed for all of the measurements in this
_____ section. The TVG values were obtained from absorption data for whitefish
published earlier [Freese and Makow (1968.b)] and from absorption
measurements using the non-contact reflector substitution mefhod described
in Section 4.4.2. The values of TVG employed, equal to two times the
attenuation,'are listed in Table 5.4.
The measurements were performed with the sample volume placed
in the transition region. For the 1.1 MHz measurements a smaller window
(8 to 13 usec) and a greater delay (15 usec compared to 7.5 usec for the
other measurements) were employed. This was done in order to gate out
radial mode transducer echoes and surface reverberation which tend to
become significant at this frequency because of the normally low
backscatter level and the greater pulse length.
In addition to the average backscatter coefficient Q> we
will introduce an average envelope backscatter coefficient <TE> which

will be defined as

1The two-way transmission loss across the scales on the average was

3.0 * 1.5 dB at 4.4 Miz for medium-sized (two pound) whitefish and

4.5 * 1.7 dB at 4.8 Miz for medium-sized pickerel. The average losses
decreased with frequency but the standard deviation increased. The
transmission lo$ses across the scales varied with the size of the fish,
the measurement position, the condition of the fish (e.g. if drying of
the scales had occurred) and the origin.
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<E>
(rg) = 1 (5.2.1)
L B s @] ar? |
)O

2) . . . . . .
where A( ) is defined as the effective beam cross-section of the insonified

(2)

volume Vz s

see (3.3.5), and Sr(t) is the reference pulse of width At.
<PE>> may be compared to < > which was defined in Section 2.4 and can
be expressed as

1 (2 jAt lsr(t)IZ 4t

O

<e>

(5.2.2)

The choice of (5.2.1) is made for ease of comparison but is to
. ' 2 .
some extent arbitrary as can be seen from (3.2.7). If E” contains
contributions from coherent scatterers, the coherent component will be

proportional to_[A(l)]2 rather than_ACz).

TABLE 5.4

TIME VARIED GAIN (TVG) VALUES

Freq. Whiﬁefish Whitefish Pickerel Beef Muscle Tissue
Fat Lean - Med.-fat
Mz (x2) dB/cm (x2) dB/cm (x2) dB/cm (x2) dB/cm
1.1 1.3 1.3 0.65 1.65
2.3 3.0 2.6 1.5 3.5
3.5 4.5 4.0 2.3 5.3
6.0 5.4 2.8 7.5

8.0 7.6 -- --
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The experimental values of <Q> and <TE> as a function of
frequency are plotted in Fig. 5.4 and 5.5, respectively. The much lower
values of < Q> and <FE> of pickerel compared to whitefish are evident.
On the average they are 9 dB lower than the corresponding values for the
medium-fat whitefish. The greater irregularity of the pickerel values
is due to statistical sampling fluctuations. The pickerel measurement
values, with the exception of the 4.8 MHz value, are based on 5 specimens
each, 15 specimens in all. The 4.8 Miz value is based on 1l specimens.
In the case of the medium-fat and lean groups of whitefish, the 1.1 and
3.5 MHz results are based on the average of 20 specimens each, averaged
over three independent measureﬁents. The 2.3 and 4.8 MHz values are
based on 7 and 15 specimens, respectively, while the values for thé fat
group are based on 3 specimens. Due to problems encountered with the
transducer, the 7.0 Mz values are based on 2 specimens. For reasons to
be explained, the data for specimens exhibiting values of O greater than
three times the corresponding average values were excluded. Subject to
this qualification, the vertical bars in Figs. 5.4 and 5.5 represent the
lower and upper bound standard deviations (s.d.) of the lean and fatty
whitefish groups. The s.d.'s of the pickerel values are indicated by
arrowheads. The logarithmic s.d.'s as a function of frequency are
essentially constant for the whitefish groups.

The possible error in the values of < Q> increases with
frequency and decreases with the number of samples averaged. Since for
small TVG errors the corresponding error in the value of log<<@> is
almost proportional, see Fig. 4.5, ensemble averaging will average out

the errors in § due to the random TVG error. In the case of whitefish,
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the remaining possible systematic TVG error is approkimately *0.5 dB/cm
at 4.8 MHz and Q.3 dB/cm at 2.3 MHz with corresponding residual errors’
in <> of 0.55 dB and Q.33 dB. The only way the residual error in the
TVG can be reduced further is by performing simultaneous absorption
measurements for each specimen as was done for the gelatin media. However,
the above residual errors are of the same order as the maximum standard
error in < 8> (0.3 dB at 4.8 MHz excluding systematic TVG error), and
each of these errors is much smaller than the intrinsic s.d. in <@ >
of approximately 5 dB for a given group of whitefish, see Fig. 5.4.

The values of < Q> can be fairly accurately approximated in the
2.3 to 4.8 MHz range by <> = <iQO>>(f/fo)x. For the lean and medium-
fat whitefish the slope of log<Q > ﬁeasures 2.3, i.e. the average wave-
length dependence is given by‘A‘Z'S. The 7.0 MHz values were obtained
using a focussed transducer and are rather semnsitive to TVG error. The
result is therefore significant only insofar as it shows there to be no
precipitous change in 510pe between 4.8 and 7.0 MHz. The slopes of all
three groups are smaller in the 1.1 to 2.3 MHz range. This is attributable
to gas bubble scattering and, to a lesser extent, to scattering from
pinbones and the midline structures of the fish. The average dependence
for pickerel over the range from 1.1 to 4.8 MHz is found to belk_l'zs.

Asvin the case of < 9>, the slope error increases with frequency.
However, the residual TVG error is partly cancelled when calculating
the slopes. The standard errors of the slope values for the lean and
medium-fat whitefish groups are #0.28 between 3.5 and 4.8 Mz and 10;23

between 2.3 and 3.5 MHz. The average value over the 1.1 to 4.8 Miz

range is *0.26.
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Except in the case of pickerel and fat whitefish, the slopes
of the log <FE> graphs (Fig. 5.5) are within 0.5% of one-half the
slope values of the corresponding log<f > graphs. The slope for
pickerel averages 0.52, i.e. slightly less than one-half. Comparing ’
Fig. 5.4 and Fig. 5.5, the cause is seen to be the 3.5 Miz <FE> value
which is smaller than the 2.3 Milz <PE> value in contrast to the
corresponding < &> values. This indicates a lack of statistical sample
homogeneity. If the samples were statistically homogeneous, the slope
of log <PE> would be one-half the slope of log<q>. The inhomogeneity
is due to the fact that the 2.3 Miz and 3.5 Miz measurements were made
on two different lots (or populations) of fish containing too few
specimens. ‘The lower relative value of <TE7> at 3.5 MHz implies a
larger value of <YV> . We find that <YV> at 3.5 MHz equals 0.7
compared to 0.58 at 2.3 MHz which indicates that the 3.5 MHz backscatter
contained a few large relatively distinct echoes,

In the case of the fat whitefish group, the slope of log <TE>
over the range 2.3 to 4.8 Miz measures 1.35 which is significantly less
than one-half the corresponding log<{Q>> slope. Here again the problem
is one of sample statistical inhomogeneity but in this case caused by
one specimen becoming dominant at high fréquencies.

Although the graphs are useful for signal processing design,
e.g. for parasite detection, they fall short in that they do not indicate
the relative probability of the values. For this the probability
distribution of the @ values is required. (The s.d. bars in Figs. 5.4
and 5.5 mark the s.d.'s of the lean and fatty groups; they are not the

s.d. of the combined three groups.)
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In order to avoid confusion, we will denote the ensemble and
time averaged values for a given specimen by the subscript m, and define
the average of the given population, e.g. <>, by using no subscript.

The relative fréquency distribution of <:Q:>m at 3.5 Mz is
shown in Fig. 5.6. Except at 1.1 MHz, similar distributions are observed
at the other frequencies. The scatter in the values of <:Q:>m is
extremely large. Although the two highest values (7.6 and 9.1 mmz/cmg)
are missing from the figure, unlike in Figs. 5.4 and 5.5 no values have
been excluded in'éalculating <Q>. Based on 60 specimens, the average
backscatter coefficient <> = 1.27 mmz/cm3 and the median value
(<:Qj>m)50 = 0.92 mmz/cms. The two largest values therefore significantly
weight the average, which is why we excluded them earlier. The median
value is given because for detection systems it is of greater significance
than the average value. Excluding the two highest values results in
average and median values of 1.03 and 0.86 mmz/cms, respectively, while
the s.d, of <> is reduced to 0.75 from 1.52 mmz/cms. The above results
show that the probability of occurrence of whitefish exhibiting very
large <:Q:>m may be slightly greater than was thought earlier [Freese (1973)],
although perhaps still only 3 to 4% of the total. |

Summarizing, the graphs of Figs. 5.4 and 5.5 show the average
backscatter levels (excluding anomalous values) and their dependence on
frequency (wavelength). The average dependence of the composite back-
scatter is clearly not_k_4 in the 1 to 7 MHz range. The graphs point to
a dependence on the fat content and also confirm to some extent the
preseﬁce of gas bubbles in the whitefish tissues. The average backscatter

coefficient at 3.5 MHz is about 1.3 mmz/cm3 and, if we exclude the
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. 2 . .
anomalously high values, 1.0 mm /cms. Values at other frequencies in the
range from 2 to 5 MHz may be approximately calculated using a value of

2.3 for the logarithmic slope.

5.2.2 Effect of Gas Bubbles

The existence of gas bubbles in the flesh of virtually all of
the whitefish specimens (but in few of the pickerel) was confirmed
experimentally. An example of moderately high saturation of the flesh is
shown in Fig. 2.4 (the scale in this photograph is 9:1). The effect of
the gas bubbles is brought to the fore vividly in Fig. 5.7 in which the
<iQ:>m values at 1.1 and 3.5 MHz are plotted as a function of the percent
total lipid (weight). Although the dependence on lipid content is evident
from the fact that only three or four points fall below the diagonals
drawn in the figures, the presence of air bubbles is primarily responsible
for the very large scatter of the values. [Fig. 5.6 showed the frequency"
~distribution of the <:Q:>m values plotted in Fig. 5.7(b).]

Microscopic examination of the tissues of post rigor whitefish
showed a wide distribution of bubble diameters, with the average diameter
Iranging between 160 and 440 um. Interestingly, the average diameters of
the bubbles showed little increase with increasing concentration. However,
as the examination sites were mainly in the regions lying next to the
myosepta, we cannot be certain that the measured distributions are entirely
repreéentative. In many specimens the bubbles showed a tendency to
form clusters.,

Numerical values of the backscatter cross-sections at short and

long wavelengths for bubbles of different shapes are tabulated in Table 5.5
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TABLE 5.5

APPROXIMATE BACKSCATTER CROSS-SECTIONS OF GAS BUBBLES

164

Shape Monostatic Radius £ ka (e)+ o <:g
BCS (a) é>
pm MHz mm
Resonant ) 4
Sphere &=ka A /m 3.2 1.1 0.014 0.62 1.9%10
5= 0.1 4ma? /s 3.2 1.1 0.014 0 0.013  4.0x10°
Sphere
k >> k 4ra 100 1.1 0.446 0 0.11 3.3
res kD)
100 2.3 0.933 0 0.07
Ta 100 3.5 1.4 0 0.03 1.0
200 4.8 3.9 0 0.13 1.0
Oblate 4 2
Spheroid mTa /c
(end on,08=0) 200 4.8 3.9 0.6 0.2 1.6
' 0.87 0.5 4.0
(Disc) ra’ (ka) 2 1.00 1.9 15.2
(6=0)
Oblate
Spheroid <0og> 0.6  0.12 1.0
Eq. (2.2.13) 0.87 0.10 1.0
1.00 0.06 1.0
Truncated
Cylinder Eq. (2.2.2) © 50 1.1 0.223 0.09 L 0.89 L
=900
L > A (62909 100 1.1 0.446 0.17 12 0.83 L
kaL? 100 4.8 1.95 1.95 L 9.75 L
(6=909)

+Eccentricity
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for some representative diameters. For purposes of comparison, the BCS
gains are also included. It is apparent that in the case of the spherical
bubbles with diameters in the range from 150 to 400‘pm, the backscatter
Jevel will decrease by several decibels as the frequency is increased.

A decrease of this order provides a good indicator of the presence of air
bubbles, as well as a rough measure of their average diametef, as was seen
for the gelatin media in Section 5.1. However, attempts to estimate
directly the contribution of the bubbles to { were unsuccessful as the
following example illustrates. In the case of specimen #408 with a lipid
content of 2.6%, the mean equivalent diameter of the bubbles was 380 um
with a s.d. of 140 um; a sample of myoseptum surface taken from #408 is
shown in Fig. 2.4. The bubble density was estimated roughly at 250/cm3.
Calculating Q as in Section 5.1, a value of 28 mmz/cm3 is obtained which
is about ten times greater than the observed value of 2.66 mmz/cm3 (the
maximum error due to TVG error is 2 dB). Whether the disagreement was
caused by poor s&atistics due to using too small a sample, unrepresentative
sampling, or departure from sphericity of the bubbles is not clear.
However, in all of the cases examined the measured values of @ were at
least qualitatively proportional to the relative number of bubbles
estimated, making due allowance for the lipid content.

Using the results of microscopic examinations together with the
data from Fig. 5.7, the measurements were grouped according to the lipid
content and the estimated gas bubble concentrations: low (L) - less than
15 bubbles/cm3; moderate to moderately high (M) - 15 to 150 bubbles/cms;
high (H) - more than 150 bubbles/cms.' The Tesultant values plotted as a

function of frequency and the corresponding slopes are shown in Fig. 5.8(a-c).
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In the case of the lean and medium fat specimens containing few bubbles
[Fig. 5.8(a)], the two groups were combined for the purpose of determining
the slope.

Comparing Fig. 5.8(a) with Fig. 5.4, the slopes of the lean and
medium fat group show only slight changes in the 2.3 to 4.8 MHz range,
although the < Q> values are, of course, much lower. Thus, the slope of
the lean group plotted in Fig. 5.8(b) shows a slight decrease from 2.30
to 2.11 over the 1.1 to 4.8 MHz range. In contrast, the medium fat group
shows a slight increase from 2.30 to 2.53, while the fat group shows a
substantial decline from 3.14 to 2.42 attesting to the effect of the one
fat and highly saturated specimen [marked VH in Fig. 5.8(c)] referred to
in the previous section.

In the 1.1 to 2.3 Miz range only the medium fat group of the
three groups supposedly containing few bubbles shows a distinct change in
slope. This would still seem to be primarily due to residual gas bubbles,
although, as pointed out earlier, scattering from pinbones and interference
from surface scattering could be factors. We note that as the gas bubble
cbncentrations increase, the slopes in the 1.1 to 2.3 MHz range generally
decrease, see Fig. 5.8(c), indicating an increasingly larger contribution
by the gas bubbles to the overall scattering process. The apparent
increase in slopé in the range from 2.3 to 4.8 MHz at very high concen-
trations is an artifact stemming from the use of fixed TVG's (due to the
gas bubble scattering losses, the absorption no longer varies aslxul).
However, this is not where the problem lies.

If we subtract the responses for similar lipid contents to obtain

the response of the gas bubble process, we obtain in the case of medium
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bubble concentrations an. average slope of 2.1 % Q.5 in the 2.3 to 4.8 MHz
range, which is nearly the same as for the basic tissue scattering pfocess.
This is most unfortunate for it implies that we cannot obtain a correction
for the gas bubble contribution to the scattering process (in order to
determine the lipid) by simply measuring the backscatter at two frequencies
such as 1.1 MHz and 3.5 MHz or frequencies close to these.

Comparing the frequency responses in Fig. 5.8(a-c) with the
responses for a single spherical bubble in Table 5.5 and for multiple
bubbles (to first order) in Fig. 5.2, as well as the indicated quantitative
disagreement, suggests that at these concentrations our first order
composite process description which approximates the bubbles in the tissues
as a cloud of spherical scatterers is invalid.

Referring to Table 5.5, none of the scatterers exhibits a A-Z
response with the exception of the disc. However, if there is a greater
tendency for the bubbles to form at the sites of the myosepta, the
resultant coherent scattering (Sections 2.3 and 2.4) would cause a decrease
in the backscatter with increasing frequency as fhe beam is not perpen-
dicularly incident. It is clear from Table 5.5 that at shorter wavelengths
a slight eccentricity of the bubbles can result in a significant increase.

in @ if the axes of rotation are aligned along the incident beam axis.l

“ilie BCS values for the oblate spheroid in Table 5.5 are only approximate
since the ka value is actually too small even for the more complex physical
optics solution [Crispin and Maffet, Chapter 4 of Crispin and Siegel (1968) ]
which should be used in evaluating end-on scattering (6 = 00). However,

for multiple scatterers, the effect of averaging over a distribution of

ka values significantly reduces the contribution of higher order terms of
the form sin(2kc)/(kc) as has been pointed out in Chapter 2. For the exact
solution in terms of spheroidal functions see Chapter 22 of Skudrzyk (1971).
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Although this would appear unlikely, the possibility of the gas bubbles
assuming prolate shapes as a result of the constraining influence of the
muscle fibers cannot be ruled out. However, in the limiting case of a
thin rod, the maximum wavelength dependence for Dirichlet conditions is
only of the order of A_l for long wavelengths and ) at short wavelengths.
Thus, the disagreement does not seem to be caused by the bubbles not

being spherical.

Stability of Gas Bubble Backscatter

In general, it was observed that in fish containing moderate
to high bubble concentrations the backscatter was unstable if the fish

were still in rigor immediately prior to the measurements being taken.

In the case of those specimens exhibiting extremely high backscatter levels
of up to 20 mmz/cms at 1.1 MHz, the largest change tended to occur at
this frequency. As much as a five-fold decrease was observed over a
period of twenty-four hours. This behaviour is consistent with the
explanation offered in Chapter 2 that in some cases the tissues become
supersaturated as a result of decompression when the fish is brought to
the surface and a very broad bubble spectrum is formed. Afterwards, since
the excess pressure of the smaller bubbles is greater, the larger bubbles
will tend to grow at the expense of the smaller bubbles either by
coalescing with them or by gas diffusion. The smallest bubbles of the
order of a few microns would thus tend to disappear. The fact that rigor
mortis is gfadually resolved probably accelerates this process.

The backscatter coefficient for a group of four whitefish
(common origin) still in rigor at the time of measurements is shown in

i

Fig. 5.9(a). The abrupt decrease in Q by nearly 7 dB in the range from
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1.1 to 2.3 MHz may indicate resonance Scatfering. Similarly, specimen
#491, which was from a different lake, initially had an.<:S2:ﬂn value of
2.8 mmz/cm3 at 1.1 MHz. The value had decreased to 0.57 mmz/cm3 by the
following day when rigor had essentially disappeared. This would seem

to indicate that the resonant gas bubbles, if there are any, are largely
eliminated by the time rigor mortis is resolved. Once this initial
equilibrium has been reached, the backscatter tends to remain stable over
a period of a week or more of chilled storage. Changes in the chill
temperature appear to have little effect, with changes from 0.5°C to 20°C

seldom increasing the backscatter by more than 1.5 dB.

5.2.3 Backscattering by Lipid Inclusions

‘The dependence of the backscatter on lipid content was already
pointed out in the last section and is quite apparent in Fig. 5.4, 5.5,
5.7, 5.8 and 5.9(b-c). The percent total lipid refers to the total lipid
content of the white muscle as determined by the Bligh and Dyer (1959)
method described in Section 4.6.17 To determine the lipid, the tissues

bbbbb in the epaxial region located just in front of the dorsal fin were excised

after the ultrasonic measurements and any superficial adipose tissue was
removed before homogenization of the flesh. Usually at least two repli-
cates were performed. Significant variations in fat content and ﬁoisture
were observed when samples were taken from other parts of the body,
particularly the tail region. Although the differences in the replicates
on the average were less than 10% of their mean values for low and
medium-fat fish, the error in the case of the fatty fish could range as

hich as 20% in a few instances due to differences in preparing of
g prep g

the samples.
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‘Based on Fig. 5.7, the dependence of the backscatter intensity
on the lipid content appears to be approximately linear for lipid contents
up to at least 4%. If we assume that the diagonals in Fig. 5.7(b) mark
the lower limit of the backscatter variation in whitefish, we obtain a
value of 0.20 mmz/cms/% lipid at 3.5 MHz. Although it may have been a
mere coincidence, it 1is interesting to note that even in whitefish specimens
conﬁaining large concentrations of gas bubbles the backscatter still shows
a high correlation to the lipid content, see Figs. 5.9(b-c).
In view of the above dependence of @ on the lipid content, it
is clear that in the absence of gas bubbles lipid inclusions will usually
be the dominant scatterers in whitefish at frequencies above 2.3 Miz.
The average background contribution from other scatterers and intracellular
liposomes appears to be less than 0.15 mmz/cm3 at 3.5 MHz, see Fig. 5.7(b).
If we consider fat whitefish muscle with a total lipid content
of 5.9% by weight, 1.2% might be found in the myosepta adipose tissue,
4.0% in the intramuscular-intercellular comnective and adipose tissue and
the remainder (consisting predominantly of phospholipids) intracellularly.
Taking the average equivalent diameter of the globules in excess of 20 um
(which contain perhaps two-thirds of the total intercellular lipid) as
40 um, the average BCS of the oil globules (Fig. 2.5) becomes
6 x 10-4(wa2) = 7.5 % 10_7 mm2 at 3.5 Miz. This is based on values of
p = 0.91 gm/cm3 and ¢ = 1465 m/sec for the lipid [Gouw and Vlugter (1967) 1.
The number of scatterers n obtained from VC via (5.1.l)>comes to
1.15 x 106 bubbles/cms. The resultant backscatter coefficient equals
0.86 mmz/cmz. The contribution of the remainder of the small oil globules

(< 20 um in diameter) is hardly significant and increases @ to 0.9 mmz/cms.
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We have assumed here simple Rayleigh (A*4) scattering from
randomly distributed globules. However, the latter is‘decidedly not the
case. Experimentally it is observed, particularly in fat fish, that the
globules are arranged more like beads on a string due to the constraining
forces of the adjacent muscle fibers. Such an arrangement was also noted
by Greene (1913) when sectioning salmon lateral muscle. However,
considering that we have broadside incidence (transverse to the fibers),
the maximum possible effect this could have is a dependence somewhere
between A"> and A~ for diameters of ka << 1, and a possible At dependence
for ka 2 1. It should be noted that the latter is consistent with

scattering by the cells themselves in terms of the background observed in

-1.25
).

pickerel (A
The possible scattering contribution by some of the larger oil
bubbles presents more of a problem both in terms of their range of
diameters and their actual number. It is primarily the presence of these
larger globules that accounts for the dependence of @ on A being less than
A—4 in the case of fat fish. This is illustrated rather well by the
results of backscatter measurements performed on suspensions of oil
{p = 0.916 gm/cmz, v = 1465 m/sec) in gelatin.
Media of different oil concentrations were prepared from gelatin
with care being taken to exclude all air bubbles. The measurements
results ére shown in Fig. 5.10. In the case of the LG3 medium, the average
bubble diameter was approximately 25 um with few bubbles exceeding 50 um.
As a result the scattering is almost strictly Rayleigh with the scattering

varying in the 2.3 to 4.8 MHz range as_A_S'S. The difference from an

exact‘x_4 dependence is attributable to the presence of a few larger
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Fig. 5.10 Backscatter coefficients for oil bubble gelatin suspensions

Estimated average bubble diameters: LG2 - 200 uym; LG3 - 25 um.
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bubbles and experimental errvor due to the‘fact thgt all the backscatter
levels were near the sensitivity limits of the analyzer. The 1.1 MHz
measurement particularly was subject to considerable experimental error
at this level because of interference from the 'main bang' reverberationm.
In contrast to the LG3 medium, the average oil bubble diameter of the

LG2 medium was estimated at nearly 200 um. Moreover, the distribution
of the bubble diameters was quite wide, varying from 50 um to as much

as 400 uym. We find that the backscatter varies only as A-O’63 in the

2.3 to 4.8 Mlz range, increasing to A_l'l at 1.1 MHz. The LG2 backscatter
level is also comparable to the level exhibited by fat whitefish free of
gas bubbles.

Returning to the calculation of the lipid backscatter, the
approximate geometric BCS of an individual globule is obtained by multiplying
the BCS of the perfectly reflecting scatterer by the square of the Fresnel
reflection coefficient (2.2.4) at normal incidence. Furthermore, if
|R2[ << 1 and the refractive index (cl/cz) ® 1, the average backscattered
power will be roughly doubled since the rear-axial specular reflection
will be only slightly smaller in amplitude than the front-axial specular

reflection. Using the above values of p R = 0,10 at normal incidence

222
so that the backscattered power from a lipid globule at short wavelengths
is about 17 to 18 dB lower than from an air bubble of the same size
(Table 5.5). |

Based on observations of thick sections from specimen #435
containing 5.9% lipid, the average equivalent diameter of the large

globules (> 75 um) was estimated to have been at most 200 um (some of the

largest cells measured 150 x 300 pmz) with perhaps 100 to 300 of these
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large globules per cms. Assuming 200 globules/cm3 and a total geometrical
contribution Qgeom of 0.3 mm2 (equal to the measured value of 1.32 mm2
less the total Rayleigh contribution of 0.9 mm2 and the background of

0.1 mmz) yields an equivalent V of approximately .002. This

c{geom)
indicates that these large globules contain less than 5% of the nearly 6%
total lipid present in the tissues.

Using these values and utilizing the gelatin-oil media results,
we Tow compﬁte Q at intermediate frequencies. Assuming that Qgeom decreases
by 35% (LG2 in Fig. 5.10), the calculated value of Q at 2.3 MHz becomes
10.43 mmz/cm3 compared to a measured value of 0.45 mmz/cmB. Similarly,

-L-3 dependence)

assuming that Qgeom declines fo 0.05 mmz/cm3 at 1.1 Mz (X
and the background (varying as A-1.25 using pickerel as the model) declines
to 0.025 mmz/cms, the calculated value becomes .085 mmz/cm3 compared to a
measured value of .082 mmz/cms. Although the model is obviously crude,

the globules having a very wide roughly exponential distribution, the model

does predict the values of Q at the lower frequencies rather well.

5.2.4 Backscattering from Pinbones

The position of the pinbones in whitefish may be seen in Fig. 2.3.
Roughly speaking, the bones project at an angle of 45° in the cross-
sectional plane, backwards at about 30° with respect to the median plane
and at approximately 25° in the vertical plane. In practice, the incidence
angle with respect to the pinbones will be in the neighborhood of 72°
(beam incident about 1 cm above the median plane perpendicular to the body
surface, see Fig. 4.2). The cross-section area of the bones is roughly

halfway between rectangular and elliptical in shape. Towards the outer
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. . . 2
ends the pinbones grow finer, tapering from an average of 0.38 x 0.5 mm

to about 0.2 x 0.35 mmz. Assuming that the pinbone specific acoustic
impedance resembles that of scales [Freese and Makow (1968.b)], one

obtains using (2.2.2) and (2.2.3) the results shown in Table 5.6.

TABLE 5.6

. PINBONE BACKSCATTER CROSS-SECTIONS

f A ka el Leff 02

MHz min Radians Degrees mm mm

1.1 1.41 0.60 90 5.1 1.6
79 7.7 x 1072
72 2.5 x 1072
59 6.2 x 107°

3.5 0.45 2,51 90 4.7 1.8
85 7.1 x 1072
72 3.2 x 107
61 8.0 x 1074

a = 0,18 mm ’ c, = 1.87 x 10i cm/sec

b= 0.10 mm c, = 1.55 x 107 cm/sec

b, = 1.41 g/cm R_ = 50 mm

Py = 1.055 g/cm3 o = n/4

The calculated values show that the backscatter for an angle of
incidence near 72° is nearly an order of magnitude greater at 1.1 Miz
than at 3.5 MHz. Moreover, comparing these values with the BCS values
for gas bubbles of the sizes most frequently encountered (75 to 300 um)

in Table 5.5, we see that the gas bubble BCS values are of the order of
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10 dB greater than the pinbone BCS at 1.1 Miz. Experimental measﬁrements
on excised pinbones at 3.5 and 5.0 MHz for broadside incidence yielded an
average value of 1.1 mm2 which is in good agreement with the calculated
value. Thus, apart from an occasional large echo from a pinbone that is
near normal incidence, scattering from pinbones in comparison to other

sources will be negligible above 2.3 MHz and this is confirmed experimentally.

5.2.5 Backscattering by the Myosepta

Except in very lean fish and possibly in large fish (> 2 Kgm),
it is clear from the earlier results that backscattering by the myosepta,
although they constitute a very distinctive feature of the myomere, is
not a major factor. Nonetheless, it is of interest to estimate their
contribution to the total background to see whether we can explain the
differences in the wavelength dependence observed for pickerel and
whitefish. Before calculating the backscatter we will describe the myosepta

in somewhat greater detail and analyze their surface characteristics.

Physical Structure of the Myosepta

The myosepta separating the individual myomere are composed
chiefly of connective tissue, which in fat fish are often crowded with
adipose tissue. In whitefish the myosepta are clad with a very thin
opaque membrane as shown schematically in Fig. 2.8(d) giving the myosepta
a milky appearance (Fig. 2.4). Near the body surface they are often
thicker due to agglomerations of lipid cells as can be seen in the white-
fish cross-section shown in Fig. 2.3. Viewed edge-on £he myoseptum in

whitefish resembles a curved rough layer of large and small scale roughness.
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The pickerel myosepta are translucent and considerably smootﬁer in
appearance than the whitefish myosepta. They are two to three times as
thick and are very much tougher than the relatively fragile whitefish
myosepta. Sections of whitefish and pickerel muscle cut at approximately
right angles to the myosepta are shown in Figs. 5.12 and 5.13.

The specific admittance of the myosepta connective tissue is
probably constant. The density of whitefish myosepta samples consistently
averaged ébout 1.07 + 0.005 gm/cms. The velocity is estimated at
{1.58 £ 0.02) x 105 cm/sec yielding a normalized specific admittance
of 0.964 % 0.013,

The principal surface parameters of whitefish and pickerel
myosepta were determined from enlargements of lean sample sections. For
the 1.s. roughness the sections were sampled at intervals of 150 um over
3 to 5.7 mm lengths of the myosepta, while for the s.s. roughness a
sampling interval of 74 um was used. In determining the l.s. roughness
a value of unity was assumed for the cross-correlation coefficient ch
(see Section 2.3.3), although perhaps 0.9 is a more realistic value.

The correlation functions of the roughnesses C(d) were
determined for myosepta cross-sections lying parallel to a vertical line
in the median plane of the body of the fish. The correlation functions
in the case of the 1.s. roughness-approximated a Gaussian distribution
rather well near the origin, see Fig. 5.11. For values of d > ng
(1.s. correlation constant) it was difficult to evaluate C(d) due to the
distortion and curvature of the samples. However, there did not appear

to be any periodicity.
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Fig. 5.13 Edge-on view
of myosepta in a large
pickerel (1.8 Kg).




181

The correlation lengths and the r.m.s. roughnesses for whitefish
are given in Table 5.7. Some correlation of the magnitudes of the hy, hS
and % values was apparent. The s.s. roughness correlation distance is
very much smaller than the shortest wavelength utilized and hence will not
give rise to coherent scattering. Any contribution by the s.s. roughness
to the diffuse backscatter will be insignificant in comparison to the
diffuse scatter fesulting from the 1.s. roughness if the cross-correlation
constant for the two sides of the layer is slightly less than unity as

is indicated.

TABLE 5.7

STATISTICAL PARAMETERS OF WHITEFISH MYOSEPTA

Parameter ’ Average Normalized(l) Comments
Dimension Value at 3.5 Mz
i (x A
Thickness (zo) 50 0.11 ranges between
20 - 130 um
Large Scale
Roughness
r.m.s. elev. (h ) 50 + 25 0.11 £ 0.055 values given are
v % for lean-medium
Correlation whitefish weighing
Distance (Tg%) 630 = 230 1.4 £ 0.5 0.5 - 1.0 Kgm
Small Scale
Roughness
r.m.s. elev. (h) ~7 0.016 radius of curvature
S ' of myosepta in
Correlation . insonified region
Distance (TES) <80 <0.18 2 -4 cm

(1) A= 450 um
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The 1.s. roughness of the pickerel is similar to the 1.s.
roughness of whitefish given in Table 5.7, while the s.s. roughness appears
to be still smaller. No adipose tissue was noted within the myosepta of
any of the pickerel samples examined.

Finally, it should be mentioned that in pickerel weighing about
1 Kgm the myotome thickness ranges from 5 to 6 mm (fiber length is
6 to 9 mm) compared to 3 to 4 mm in whitefish of the same weight.
Therefore, pickerel mﬁscle contains 35 to 50% less myosepta area than

whitefish muscle.

Comparison of Backscattering by the Myosepta as a Function

of the Angle of Incidence

Considering the surface roughness parameters in Tablé 5.7, we
observe that at 3.5 MHz the value of ng/k is only 1.4, Ideally we
should have Tg >> A for the Kirchoff approximation to be valid. However,
comparisons of the Kirchoff values for a variety of pefiodic rough
surfaces with the more accurate values obtained using the Rayleigh method1
suggest that in many cases the Kirchoff method still yields an acceptable
estimate of <I'> for Tp/A approaching unity; Tp is the surface perio-
dicity and has a role similar to the surface correlation distance TE.
[Beckmann and Spizzichino (1963) give a number of comparisons in theilr
monograph.] Although the above is encouraging, because we are essentially

exceeding the limits of validity of the physical optics theory, we should

not expect the theory to yield more than a qualitative estimate.

1The Rayleigh method is basically the inverse of the Kirchoff procedure
but is also applicable when edges are present on the surface (see
Chapter 4, loc. cit.). °
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Values of the pulse intensity scattering coefficient <Trf%n =
<FP*>fbp layer’ where the subscripts £, b and p denote the finite reflec-
tivity, beamwidth and pulse, respectively, were computed for different
membrane thicknesses. For the lower range of surface roughness, hz = 25 um,
the maximum value (normal incidence) of the Rayleigh parameter (2.3.53)
at 3.5 MHz is 0.4866. Therefore, we employ (2.4.22) together with (2.3.73).
In the case of the specular component, we used either (2.3.11) or (2.3.12)
for the layer reflectivity depending on the layer thickness. To effect
the change to the exact expression for the layer reflectivity, we replace
4[Rilzsin2a2£ by the square of the absolute value of Rg given by (2.3.11).

[We note that for a,% = nm % 7/2, where n = 1,2..., R, = R.. In contrast,

2 L

. the value based on (2.3.12) would be in error by +6 dB.] Values of

[ <PF*> £bp 1ayer(ka)2c0526i] for the upper range of surface roughness
were calculated at 4.8 MHz, where g = 8.52, di = 0, In this case we use
(2.4.18) and (2.3.73). A further modification was the substitution of the
asymptotic evaluation (2.3.66) due to Fung and Leovaris (1969) in place
of Beckmann's evaluation (2.3.62) for g >> 1.

The admittance of the myoseptum membranes was determined by
excising a number of membranes and comparing the specular reflection at
normal incidence with the specular pulse from a rigid planar reflector.

In calculating the theoretical values of <FF*> care was taken to

fbp layer

employ the appropriate equivalent radii. For the coherent component,

i,e. for the beam pattern [%JI(X)JZ and the gain (ka)z, réé) applies, see
X
Table 4.3. As discussed in Section 3.6, the gain is then reduced by

(2)
e

3.9 dB measured at 3.5 MHz. For the diffuse component, r q is applicable

for the equivalent insonified area.
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The calculated values of [<:FP*;%k2azco$26i] for different
membrane thicknesses are plotted in Fig. 5.14(a), while the backscatter
strengths at 3.45 Miz are plotted in Fig. 5.14(b). A number of experi-
mental values are also shown in Fig. 5.14(b). Considering the degree of
approximation introduced to the problem, the experimental and theoretical
angular dependences of the backscatter are in surprisingly good agreement,
at least for angles up to 10°. Moreover, the values appear to be roughly
in quantitative agreement as well. The different membrane thicknesses
are seen to have very little effect on the diffuse backscatter, the back-
scattering being essentially all diffuse for ai > 3%, However, at 3.5 MHz
the diffuse backscatter for angles of Gi z 40° and g = .286 is clearly
negligible.

The situation is quite different at 4.8 MHz for g = 8.52.
Although the backscatter strengths at 4.8 MHz (given by <PF*Z¥ka)2wa2coszdi,

where ﬂaz = 22.9 mmz) and at 3.45 MHz are approximately'equal in magnitude

at &, = 15°

; , unlike for the latter, the decrease of the 4.8 MHz backscatter

with angle is much more gradual. Some ripple is also introduced into
the angular response as the membrane thickness becomes greater. However,
even for this roughness (h2 = 75 um), thé backscatter strength at
8, = 40° is still only 2 x 1073 mm®. The fact that the membrane thickness
has little effect on the magnitude of the diffuse scatter in part explains
the lower backscatter level of pickerel compared to whitefish.

Assuming that in the case of whitefish the insonified volume
will be intercepted on the average by three myosepta, the total contri-
bution by the myosepta to the tissue scattering process at 4.8 MHz would

be at most of the order of .02 mmz/cm3 or approximately 20% of the

observed background.
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5.2.6 Effect of Other Tissue and Measurement Parameters on the

Myomere Backscatter

Comparisons of the backscatter coefficient for whitefish with
the total protein content usually showed a very slight negative correlation,
which can probably be ascribed to the slightly negative correlation of |
the lipid and protein content (Table 2.1). |

In contrast to the relatively low correlation with protein,.the
correlation of Q with the moisture content was actually higher than for
the lipid content. For homogeneous groups of whitefish, the correlation
coefficient of Q versus percentage total lipid was typically of the order
of 0.80 at a level of significance of 0.5% or better, while for & versus
percentage moisture it would range as high as 0.95. The dependence, of
course, is spurious since the moisture and lipid content are highly
negatively correlated (Table 2.1). Typically the correlgtion of 1lipid
with moisture observed for whitefish was in the range of -0.8 to -0.9 at
a level of significance of 0.1% or better.

The higher correlation of @ with moisture than with the lipid
content would seem to be mainly attributable to the significantly greater
overall accuracy of the moisture determinations.

In this connection it should be pointed out that the correlation
of the lipid content with <FEC>2 [see (5.2.1)] was usually also somewhat
higher than for <Q>. The reason for this would seem to be the smaller
relative contribution of the occasional large interfering echoes from
other scatterers fo <I}?> compared to < Q>. For practical applications,
e.g. determining the lipi@ content using backscatter, it is therefore

preferable to time average (integrate) the gated stationarized backscatter
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envelope before squaring. From the point of view of the circuit designer
this has obvious advantages in that it requires only a fraction of the
multiplier bandwidth that is needed for squaring the signal envelope.

The effects on the backscatter of various other factors
including temperature at the time of measurement, storage time on ice,
pre-rigor or post rigor condition, mechanical damage of the tissues
(bruising) and the effect of probe positioning were briefly investigated.
The first three factors were considered in Section 5.2 in connection with
the stability of the gas bubble backscatter. The temperature and storage
time in the post rigor stage were of secondary importance. Similarly the
effect of mechanical damage on the backscatter in post mortem fish unless
quite severe, that is resulting in major lesions or open gashes of the
flesh, was also a relatively minor factor.

The effect of the probe positioning on the backscatter appears
to be significant. For low backscatter levels the backscatter from the
upper epaxial region seems to be slightly greater than from the lower
epaxial region, Fig. 5.15. On the other hand the backscatter from the
lower epaxial region along the lateral muscle roughly between the nape
and a position halfway between the dorsal and anal fin did not differ
significantly on the average.

Seasonal variations although not specifically investigated
presumably would be mirrored in the nutritional state of the fish
{(usually poorer, i.e. lower lipid content, at the end of winter or at
spawning time) and also by movements of the fish from warmer to cooler
water so that the probability of fish with higher gas bubble

concentrations in the tissues is likely to be greater in the summer.
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This concludes our consideration of backscattering by fish
myomere. In the next section we very briefly consider the results of
some preliminary backscatter measurements on two samples of bovine

myomere.

5.3 Backscattering by a Sample of Bovine Skeletal Muscle

The beef samples (sirloin) were obtained from a local butcher.
As a result little was known about the samples other than that the meat
was fresh and graded A 2. The meat was well-marbled with fat and
relatively free of any thick tendinous connective tissue sheaths. The
absorption was similar to the absorption values obtained previously by
Freese and Makow (1968.b) for beef muscle, see Table 5.4.

The values of the backscatter coefficient based on averages of
two independent measurements per sample are plotted in Fig. 5.16. The
low values of & at 3.5 MHz relative to the values at the other
frequencies are probably the result of a measurement error. Assuming
this to be the case, the average dependence on wavelength over the range
from 1.1 to 4.8 MHz is found to be_k—2'4, rising from‘)\—2 in the 1.1 -
2.3 MHz range to A in the 2.3 - 4.8 MHz range. The experimental
accuracy of the wavelength dependence is approximately #0.5. Although
the present backscatter results give at best only a qualitative
indication of the backscatter coefficient, the average value of Q appears
to be significantly greater than for fish myomere free of gas bubbles
which would seem to be in accord with the histological picture of the

bovine myomere.
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CHAPTER 6
CONCLUSIONS

The results of this investigation would appear to confirm the
validity of the measurement technique for the determination of volume
scattering by tissues, subject to the qualification that there are no
large coherent scatterers, i.e. large with respect to the beam diameter,
dominating the scattering. The significant scatterers in the fish
myomere were isolated and their contribution to the overall scattering
process, as well as their dependence on wavelength, was determined.

The results also demonstrate the value of the Middleton-0Ol'shevskii
phenomenological approach for analyzing complex scattering situations

such as the muscle tissue scattering process.

6.1 Summaxry

The comparison of the backscatter measurements on the gelatin
model media with first order theory yielded substantial quantitative
agreement in the 1.1 to 3.5 MHz frequency range, provided that the
experimentélly determined absorption values for the media were employed.
The experiment represents a test of the validity of the first order
scattering theory, thé statistical model, the scattering coefficient
definition (2.4.23), the stationarization (3.3.5), the backscatter
characteristics of the suspended gas bubbles, the equivalent insonified
volume determinations, the reference cross-section calibration and the

instrument calibration. Implicit is the restriction on the pulse
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bandwidth, which should not exceed the limits set as determined by the
absorption of the medium and the maximum path length used for the back-
scatter measurements (Section 3.5).

The decrease in <> in the 1.1 to 2.3 MHz range (Fig. 5.2)
and the quantitative agreement indicate that, as far as thé backscatter
is concerned, the gas bubbles behave approximately as spherical Dirichlet
scatterers for 0.7 < ka < 4. On the other hand, the experimental
absorption coefficient at high volume concentrations was significantly
lower than the calculated value based on first order theory. The values
differed on the average by more than 3:1. The disagreement was greatest
at 1.1 Miz where, theoretically, the total cross-section of the bubbles
is also greatest. This suggests a breakdown of the single scattering
assumption and needs to be further investigated.

The far-field and near-field measurements in the transition
region were in agreement (Fig. 5.2), with the exception of one value at
4.8 MHz. However, this value was in agreement with the trend established
by the other transition-field measurements.

It was found that the dependence of the backscatter from the
myomere (transverse incidence) in the frequency range of 2.3 to 4.8 MHz
can be approximately described by a power law of the form @ = QOCAO/A)X,
where A is the wavelength. In the case of whitefish, Q generally varies
as A 3 compared to roughly A—l's for pickerel and A_2'4 for a sample of
bovine muscle. The X_l's dependence in pickerel is due primarily to
scattering by the muscle fibers and the myosepta.

The scattering measurements on whitefish reveal a strong

dependence of the backscatter on the total lipid content and, if the
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tissues are free of gas bubbles, lipid inclusions are likely to be the
dominant scatterers. However, it is also shown that, as a result of
decompression, gas bubbles are almost invariably present in whitefish,

in which case these tend to be the predominant scatterers. The fact that
gas bubbles were much more common in whitefish than in pickerel is
probably explained by the preference of whitefish for deeper, colder
water with the attendant increase in pressure.

The average backscatter coefficient @ of whitefish myomere free
of gas bubbles and containing 3% total lipid is approximately 0.5 mmz/cm3
at 3.5 MHz. For total lipid contents of up to 6%, a roughly linear
relationship between the backscatter intensity and the lipid content is
observed, with Q varying at a rate of roughly 0.2 mmz/cms/% lipid.

The dependence of @ on moisture, which actually shows a slightly
higher correlation, is thought to be spurious since the moisture and lipid
content tend to be highly negatively correlated (Table 2.1). The higher
correlation is probably mainly attributable to the greater overall
accuracy of the moisture determinations.

Only a very slight correlation of backscatter and protein content
was evident in fhe case of whitefish.

The residual backscattering or background level in the case of
whitefish free of gas bubbles and having negligible lipid content (< 1%)
appears to be of the order of 0.1 mmz/cm3 at 3.5 MHz (Fig. 5.7). The
greater number of myosepta and scattering by pinbones at the lowest
frequencies would appear to account for the slightly higher background
in whitefish compared to pickerel (Fig. 5.4). Under normal circumstances,
however, scattering by the myosepta in whitefish does not appear to be a

significant factor (Fig. 5.14).
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It was found that the backscatter level does not differ
significantly with position along the lateral muscle in the region of
the dorsal fin. However, for low backscatter levels, the backscatter
~from the upper epaxial region may be slightly greater than from the
lower epaxial region (Fig. 5.15).

The major obstacle encountered in determining lipid content
from the backscatter is the ?resence of gas bubbles in the tissues as a
result of decompression. In over two thirds of the whitefish specimens
measured the gas bubbles were the dominant scatterers. The significance
of this, for example, in the measurement of the absorption in fish
tissues, does not appear to have been fully appreciated in the past.

The effect of the bubbles increases the backscatter level an average of
3 to 4 dB at 3.5 MHz. Taking scattering by the gas bubbles into account,
the average backscatter level in whitefish is thus 10 to 11 dB higher
than in pickerel (Figs. 5.4 and 5.5).

In general, it was found that the wavelength dependence of the
scattering by the gas bubbles in the myomere was not compatible with
first order scattering by a cloud of spherical bubbles. In selected
whitefish free of gas bubbles the dependence on wavelength did not differ
significantly (increasing on the average to A"2'4) from whitefish
containing moderate concentrations of gas bubbles (Fig. 5.8). This
appears to rule out a simple differential measurement technique using
two frequencies for determining the lipid content for whitefish.

On a few occasions anomalously high backscatter was observed.
These fish were invariably very fresh and still in rigor. The back-

scatter in these cases was unstable, with the level decreasing over a
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period of one day by 3 dB or more at 1.1 Miz (less at higher frequencies).
This may be attributed to a shift in the mean diameter of the bubble
spectrum as a result of the absorption and aggregation of the smaller
bubbles. Once this initial period had passed the backscatter tended to

remaln at a stable level.

6.2 Suggestions for Further Work

The investigation of the backscatter properties could be
extended to other types of tissues. Volume backscatter by human tissues,
both healthy and diseased (e.g. tumors, oedema), is of obvious interest.
However, there are also a number of potential applications involving
livestock such as cattle, swine and poultry.

Backscatter properties from other commercially important fatty
 fish species likely to be reasonably free of gas bubbles could be
determined,with a view towards implementation of non-destructive lipid
content measurement for which there is presently a need. The most
likely candidate in both of these regards appears to be inshore caught
salmon. Other commercially important species worth examining are
herring and sardines.

The iack of experimental scattering and extinction data at high
scatterer concentrations reported in the open literature is most apparent.
It is suggested that multiple scattering and secondary interaction be
systematically studied using media whose first order scattering
characteristics are well understood. The most useful dependent parameter
is probably the extinction cross-section. Suspensions of gas bubbles of
increasing concentrations with bubble diameters in the‘range 0.1 < ka < 0.7

might be suitable for this purpose.
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The theoretical results reported in this thesis for a surface
of finite reflectivity should be checked experimentally. Two aspects
to be considered are the use of <R> or Ri as defined in the text and
the validity of (2.3.45) and (2.3.54), more specifically (2.3.58),
(2.3.60) and (2.3.61) for monostatic scattering. A surface interface
having a small Brewster angle and no critical angle, i.e. 1 < cl/c2 < 02/01,
would be the preferred choice for the latter. Unfortunately, such a
system is physically difficult to realize as there should be no mode
conversion at the interface, nor should the second medium be lossy. A
rough surface of soft rubber in a meditm of alcohol might be satisfactory,

although the resultant Brewster angle (660) is hardly smaill.
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APPENDIX A

POINT-SCATTERER MODEL STATISTICAL FRAMEWORK

The equivalent point-scatterers are assumed to be randomly and
independently distributed in the insonified tissue volume. Specifically,
it is assumed that in any sufficiently small subdivision AV2 of the
volume VZ the following conditions prevail:

(i) the scatterers are statistically independent or if P{Ni}
is the probability of N.l scatterers in a volume element
v, in AVQ then P{Ni’ Nj} = P{Ni}P{Nj} where dVi and de
are non-overlapping regions;

(11) if dVi is sufficiently small
P{N. > 1} << P{1.} or P{0.1}
S i i

or the ?robability of finding more than one scatterer
in dVi is negligible compared to the probability of
finding one (or none);
(iii) the probability of finding one point-scatterer in the
volume element dVi is P{li} = nidVi where n. is the volume
density of scatterers (N per unit volume) and n; is
entirely non-random.
These conditions suffice to specify the Poisson distribution

of the scatterers in the volume element sz given by [Parzen (1960)]
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(nlAVQ)N
P{N} = ——i exp(—nzAVQ) (A.1.1)

N

An elemental volume has been specified because, in general, n is not

constant throughout the bounded volume Vl. "Rather, n, may be a function

2
of position in Vz. Criteria for minimum volumes are derived by
01'shevskii (1967).

If an independent elementary event U(t, ?, a) is associated

with each point, a resultant process X(t) may be defined as the super-

position of M independent random events

- >

M
X(¢) = ) U (t, T, q) (A.1.2)
’ m

where ?m is the spatial coordinate of the mth point and am denotes its
other associated stochastic properties.

The moments of X(t) may be obtained directly from the
hierarchy of probability density distributions Wn of the process or,
alternatively, via the characteristic function. One may thus write

for a process dependent function E(X)

CNOINE W (t, @) E[X(E, t)] da (A.1.3)

- 0O

> ., . . 1 . .
where a is the configuration vector. This direct method has perhaps

the advantage of providing more direct physical insight into the

1 . > > - - . .
The notation ¢, r, where q refers to the random properties of the
scatterer and ¥ to its random spatial coordinates, are often combined
into a single configuration vector. The integration is performed

over the configuration space.
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averaging process but in order to evaluate (A.1.3) the probability
density distribution Wl(t, 4) must be determined. However, the moments
can also be determined by differentiation of the characteristic
function which is normally considerably simpler than integration of the
probability density.

The derivation of the nth order characteristic function
Fn(jzlsz) is given by Middleton (1960, 1967). For the Poisson

distribution,Fn(jglsz) turns out to be

n
FGElov) = explnV (<exp ] g=1 g, UGt - €@ D> > - 1)
(A.1.4)
where j = V-1 , the < > indicate ensemble averaging over a, T of the
scatterers in the volume element AV2 and m indicates the mth scatterer.
It should be remembered that ;ﬁ and t will be dependent
through the relation t = ZIﬁnl/c when operating monostatically;
Fn(jg]sz) is defined for a time t = t' at which the process is jointly
considered. The key to deriving Fn explicitly is that, although the

N - -
U (t re i eneral not
é m( 0’ U rm) a in g ral no

component states of the process X
independent, each component state XW (a member of the set tN) is the
result of exactly N random variables over the identical configuration
space. Ensemble averaging of the XW must therefore yield the same
result as averaging the underlying random variables (on which the Xw
are dependent) according to the theorem on the transformation of
probabilities [Parzen (1960)]. The important difference is that by

our earlier assumption the N events are now independent. The condition
of statistical independence of the events results in considerable

simplification.
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In (A.1.1) we indicated that the point-scatterer density n,
might be a function of the coordinates of sz. Integrating with respect
to sz +» dV over the volume VQ, (A.1.3) may be generalized to the

non-homogeneous Poisson process where now

N
\
[J % nz(v) va VZ '
P{N} = B e exp [;J nz(v) dv} (A.1.5)

I

It is clear that with n_ constant throughout the volume VQ we require

2
also a constant volume cross~section as a function of t = 2r/c if the

process is to be homogeneous. Subject to certain restrictions this
can be arranged in the experiments.
Making use of the fact that

FLGEIVY = I F (GE[aV)) (A.1.6)

(the AVQ are non-overlapping and independent), one obtains -

> - n
F (JE|V)) = exp { n (¥) <exp j |}

Vz p=1

gp U[(tm~tp),q,r]} - 1:>a dv
(A.1.7)

which for a constant scatterer density n2 reduces to (A.l.4) with AVQ

replaced by VZ' Note that n refers to the order, while n2 denotes the

scatterer density.

Following Middleton (1960), the Lth order moment of X is given
by

(L)' b 0 R,
u = (-3) F_(j€|av,) (A.1.8)
Myl mij my My n 2

1 n | 9E " 3E %L .. BE =6

n
wheye [ = ?
i=

1.
. KN

N
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Because of the form of (A.1.4) it is advantageous to employ

the semi-invariants or cumulants of the process. The cumulant function

(L)

Kq(jglAVZ) = in Fn(jglAVQ). The semi-invariants A are given by

A () = -p* o
m,m,...m ml Tﬂz m,l
12 n 851 9E, ---ain‘

[K_GGE[AV )T, |
n o ) (A.1.9)

The semi-invariants may be expressed in terms of the moments or, more
conveniently, in terms of the central moments, defined in the case of
the one-dimensional distribution Wl(X) as the moment about the mean of

the distribution. The first moment <X(tl)> becomes

5F
. _ .y _.m _ > VRN AN
(X(e))) = -3 A JV ng () (ULCey-t),0,5]) 7 dv (A.1.10)

2

since Fl(jgllvz)ig =d = 1. Similarly the second moment may be obtained
1 .

82F
n

<X(tl) X(t2)> = (-) 5-51-—5‘52—

£,,8,=0

n, () Ut -t 3, DU(E,-t ,8,5) dv + (X)) (X(ty)

v
% (A.1.11)

The integral of (A.1.11) is referred to as the covariance of the process.

By setting tl = t2 the total (coherent and incoherent) intensity is obtained.
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APPENDIX B

CORRELATION COEFFICIENTS AND POWER SPECTRA

Instantaneous Process

The correlation coefficient K(tl,tz) furnishes an important
and convenient tool for ascertaining broad stationarity of the rever-
beration process and also investigating, for example, the effects of
near-field operation and scatterer coherence. For finite signal pulses

wt I

s(t) = so(t)e 3% , a non-dispersive medium, and impulse (§-function)
scatterers, the correlation coefficient Kx(Tr) of the instantaneous

process X(t) becomes

2 T—IT ,/2
_ cosw T, T T, T,
KX(Tr) = so(u - E—J so(u + §~9 du (B.1.1)
ef 0 .
where T, = t, - tl and Tef is defined by (3.3.9). For so(t) real,

Kx(Tr) is real and symmetrical about TS 0. If Ko(Tr) is the envelope

of the correlation coefficient Kx(Tr)’ it follows from (B.1.1) that
= T B.1.2
KX(Tr) KO(Tr) cosw T (B.1.2)
As an example, for the cosine pulse

e - T} T

2T

i}

s(t)

b

02 [’n(t—T)}e—jwc(t—T)

= 0 , lt-T]>T (B.1.3)
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and one obtains using (B.1.1) and (B.1.2)

o Il ey g el
Ko(Tr) = §T*_'{[T__ 5 1 + %c08 — * o—sin —p
ef :
A
- 4= sin — . el ser (B.1.4)
The correlation coefficient if the medium is dispersive is much

more complex and in contrast to (B.1.1) is time dependent. Expressing

the zero and first order terms of the variance [Re Z(t)] defined by

- (3.3.5) as
S —juct o ‘ |

G, (t)2 &7t izi a; (t) s ; (t) | ~ (B.1.5)

~ where
T.c, )

G (t,) = % <n(t)> A7 (1) <o

v T ! S
and

Il P~10

1.gi(t) soi(t) = also(t)‘+ azso(t) + as(t) so(t)

i
and employing the definition [see_(A.l.llj]
_ {zr(t) 2(trr)y - (2x(e) (2(ey*n))
(e 2e))) - (2r(e) (2(t)))

Kz(tl’Tr)

(B.1.6)

the term <Z*(tl) Z(ti+rr)> of (B.1f6) has the form
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<Z*(tl)Z(tl+Tr)> = Gv(tl)coswcrr {

i ~1

i lj <a;(tl)ai(tl+Tr)Soi(tl)soi(tl+Tr)>a de

3
+ .Z.J <a;(t1)aj(tl+~fr)soi(‘cl)soj(tl+Tr)>+ dt} (B.1.7)
i#] 3

Referring to (3.3.4) and (3.3.5), a; = 1 and only aq is time dependent.

Envelope Fluctuations

Subject to the assumptions of Gaussian quasi-harmonic rever-
beration stationary in an interval much greater than the correlation
interval Top? it may be shown [0l'shevskii (1967)] that the correlation

coefficient KE(Tr) of the reverberation envelope fluctuations is

approximately equal to the square of the correlation coefficient
envelope Ko(rr). Retaining only the first two terms of the series

derived for KE(TT), Ol'shevskii gives the following expression

R

2, A
Kg () 0.91 K (v.) + 0.058 X (7)) +

1

2 A4
0.91 Ko(Tr) + 0,09 Ko(Tr) (B.1.8)

which indicates that KE(TI) falls off somewhat more rapidly than Ki(Tr).
The reverberation statistical power spectrum for a
non-stationary process may be defined via a Wiener-Khintchine-like

relationship

2 -
Gx {_w Kx(tl’ tl+L ) e

"

wr(w,t )

6, () Is(u,e) | A (B.1.9)
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2 . . . .
where o = Gv(tl)Tef is the process variance; Gv(tl) is defined as before.

If there is any 'DC power', i.e. <Z(t)> # 0, it must be added to the
spectrum at the origin w = 0 as a é-function scaled préportionally to
[<z(t)>].

For the real signal, i.e. Re s(t), the signal pulse amplitude

spectrum is separated into two parts

S(U),tl) 1/2 [S(w)tl) + S*(w,tl):i

real

4 (S (w-w_sty) + S (wre ,t)] (B.1.10)

and the real power spectrum is hence

= ]SO(w—wC,tl)lz s (w—wc) 20 (B.1.11)

2
lS('*)’tl)real[

while for the complex signal the power spectrum is simply [SOCw—wc,tl)lz.

The power spectrum of the reverberation may similarly be rewritten as

2 jwgtr
Wor(wd’tl) Ox J_ Ko(tl’tl+Tr) © dTr

6,(t) IS, l® . wy = wmw (B.1.12)

For the real signal we multiply Wor(wd’tl) by the factor one-half, or

alternately, we restrict w, to positive frequencies only.

d
The envelope fluctuation spectrum WEf(w) may be expressed as-
the auto-convolution of the power spectrum of the envelope of the

reverberation correlation coefficient Ko(Tr)' If the second term
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of (B.1.8) is neglected

L2 2 JwTy
Wgelw, t) = g J_m Ko (b 7 @7 7 dry (B.1.13)

2 2
Woelw, €)= ——— |8,y t) [T I8 (wmv, €))7 dv
ef J o (B.1.14)
The fact that KE(Tr) falls off slightly faster than chTr) implies
that the actual spectrum of the envelope fluctuations is slightly

wider then WEf(w, tl)'
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APPENDIX C

SCATTERING OF RECTANGULAR- AND COSINE-SHAPED PULSES

FROM A ROUGH SURFACE

For quasi-narrowband Gaussian beam incidence, the expression

derived in Section 2.4.2 for the ensemble averaged scattered pulse was

P83, 8 R Py A (7 Vel - jut
ju S(w) e 1 JOT0 44 (C.1.1)

<Ps(¥’t)> =

For the cosine pulse given by (B.1.3) with AT = T, we define w, = /AT,

w. =w +w and w, = w_ - w_. Hence, using the transform relation
2 c 0 1 c 0
* 2 2 2,,.2
1 -y 0" - jwt 1 ~-t7 /4y
e e dw = T e (C.1.2)
we obtain

i

<p5(r,t)> Jan, Ry Py oA

2w e [ (tpomdT t_ AT i

x {e cV1-IWclro eI‘f[-—T\?—————- + jwc"{l} - erf{—-z-—y-———— * ijYl)

L 1 1 N

2.2 . [t AT oot |
~woYT=jwst TO . 10 .

+ Le 271 2%ro erf[______.+ Jjw, Y ] - erf[—————— + Jw,Y )

] 2v, 2'1 2Yq 2'1 |

2.2 . Tt AT t o *AT 7
—wyY1-jwqt TO . : 0 .

v ke 1 1 ro erf[————*—-+ jw,Y J - erf[———~——'+ Jw.y J

(C.1.3)
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In contrast to the incident pulse, the averaged scattered pulse
appears smeared out and exhibits no discontinuities in its derivatives
unless Y, = 0 [i.e., g = 0 (smooth surface) and ﬁgy = [0,0] or the
incident beam is homogeneous]. A still clearer picture of the distorting

effect may be obtained by considering the simple rectangular pulse

defined by

o o lwetyg <
s (t) e | [t ol = T

= 0 ’ [t | > 4T (C.1.4)
Since we may write cosz[g%Tq = (1 + cos nt/AT), the amplitude for the

rectangular pulse is contained in the first square brackets of the

cosine pulse solution (C.1.3), i.e.

2.2
. T = ik ~wc¥]
<ps(r’t)> JzuchipioA ©
% lerf EEQ:EE.+ jw Y, | - erf EEQ:&E.+ Jw Y o Juctro
2Y1 c'l 2y1 c 1

< (C.1.5)
where erf(x) = %ﬁ J e™™ du .

The derivative of (C.1.5) is referred to in Chapter 3; it is

given by
9 N UZCRiPiOA —tio - AT2 troAT
v <}ps(r,t)> = ——————eXp | —5—— sinh i jwcAT
TO Y /r 4y 2Y
1 1 1
. - . - -*
°xp [—chLro] - J% <ps(r’°)> (C.1.6)

As can be seen, the coherently scattered pulse becomes increasingly

smeared out near the edges as Yl increases. Although this behaviour
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only applies to the ensemble averaged pulse, the effect is exactly the

same as if the pulses had passed through a square-law absorbing medium.

Scattered Pulse Energy or Process Intensity

The ensemble averaged autocorrelation function <E(T)> is
given by

(Be)) - J (ol p, G+ D) at

=]

or, using the Wiener-Khintchine theorem, by

(E(z)) = %;—J (p.F0) p (Frw)) ¢ qu (C.1.7)

where p:(?,w) = F[ps(;,t)]-

Employing rectangular coordinates with X, = X * g, and Yo =¥t s
<E(Tr)> becomes for the Gaussian beam defined by (2.4.4) and for a
stationary surface (in the broad sense)

2 2
E © : T o2x 2x.¢ 2y 2y.m
on 1 1 1 1 2 2
<E(Tr)> —-—-J dw JI eXp |~ —= -~ = 5t dxldyl kK™ [S(w) |
o A

2T a a b b

1

X

2 2] . :
JJ exp |- % _ D_z__ e‘g[l'C(Cm)] eJUXC+JUyn d?;dn (C.l.S)
Ay a® b7]

2

F(s;8 07 IR, %P,

where E |
o1 io

X If the rough surface is sufficiently

large so that the beam amplitude is small near the edges, the limits of
the integral over A1 may be extended to #« yielding
E ® ® 2 2
. _ _on | mab o n (z; n ~g[1-C(z,m)]
<E(Tr)> = E;—-[_;E—-{J ooexp az b2 erfckzizj erfc[/ng e

« eI HxETIYN gray kzlscw) 12 du (C.1.9)
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where
* o2
2 ~u
erfe{x) = 1 -=—1te du
/1 /o
For the Gaussian surface considered in Chapter 2, (C.1.9) may
be evaluated asymptotically for the case of g >> 1 and a > Tx’ b > Ty.
Under these conditions the coefficient exp [-g/2 (gz/Ti + nz/Ti)]
diminishes rapidly away from the origin so that we may set
erfc(g)erfc(n) = 1. Similarly for g << 1, (C.1.9) may be evaluated in
the same manner pfovided a >> TX and b >> Ty. However, if TX and T
are of the same order as a and b or greater, it will be necessary to
evaluate the integrals term by term. Normally, however, a and b will
be substantially greater than the correlation lengths. We shall

evaluate (C.1.9) for this latter case and g << 1.

Setting erfc(z)erfc(n) = 1, we have for a pulse of duration 2AT

2 T =2AT
E k" qabT T 2
<E(T )> = oc eof ke /8Y2 K (t_=-u) cosw {(t_-u) du
T 2y /I o-'r cor
1" -7 _+2AT
T
2 v =2AT
EokcgcﬁmnTef T —u2/8Y2
+ J e 2 KO(Tr—u) coswC(Tr-u) du ,
2Y2 Zm —Tr+2AT
g, << 1 (C.1.10)

For the rectangular pulse defined by (C.1.4) the autocovariance function

is easily derived

iIA

Tog Ko W) 20T - |u] |lul = 2aT

= 0 |u] > 2aT (C.1.11)

Substituting (C.1.11) into (C.1.10) and setting T, = 0, the pulse

energy becomes
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_ ZkiEOATwab 2AT _uz/gyz
(B) = _______J e L'(1 - u/2aT) cos(w,u) du
Yl/2_TT
2k%g B ATmm (20T _ 2 o002
+ S e ¥ /872 (1 - u/2AT) cos(wcu) du s
YZ/ZF o

go << 1 (C.1.12)

The integrals of (C.1.12) may be expressed in series form as

2m
20T 2,2 o H, (3Yw_ ) (AT/Y)
J e /4Y (1 - u /2AT) coswcudu = 2AT Z Zm <
5 m=0 2(m + 1)

w (-1)P+q(2wCAT)2p(AT/Y)2q+l

p=0 q=0 (2p+2q+1) (p*+q+1) la [2p

i

Y

(C.1.13)
The Hzm(jX) are Hermite polynomials of complex argument.
The form of the complete solution is not all that illuminating
for, although necessarily ATmC >> 1, AT/V/2m may be larger or smaller
than unity. For simplicity let us assume ¢. = 0, then by our previous

. 2 . . .
assumption (a >> Tx) Y, in the backscatter direction reduces to

2 Ti sin26i g
Y = .._.__.-..—-—————--f-_cl N 1) = §.
2 C2 2 S 1
and hence for 6i >> 0
AT cAT -
§;- = i;j;ﬁ};;;l , I siné, >> Y2 h coss,

In other words AT/Y2 > V2 signifies that the spatial pulse length along

the surface plane exceeds /7 times the correlation length. This condition
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is less restrictive than the condition 2Y2wC BW << 1 which must be met
if (2.4.22) is to be valid. Normally the criterion AT/Y2 > Y2 will
apply for the myosepta and accordingly we may extend the limit 24T in

(C.1.12) to «. For the rectangular pulse this results in

2 2
- 2 -2Y2wc
<E(O)> s =5. ° kc g, mmmn EO 2AT e
s i ,
=7 2 2
q)S { /’2— .Y2 eZYzwc
X A1 - [1 - 2D(V2 Y, w )]} g <<1
2c ’ C
AT Ym
(C.1.14)
where
X
-X2 t2
D(x) = x e e dt
o

is Dawson's integral which is tabulated [ASM55, ed. by Abramowitz and
Stegun (1964)]. Clearly as AT increases, the average intensity
<E(0)> /(2AT) approaches the CW result (2.4.5).

For the cosine pulse of duration 24T, see (B.1.3), Tef = 3/4AT

and
. _ AT |ul ﬂ[u| 3 . w]u]
TefKO(Tr) = 5—'{[1 - iﬁTJ [1 + %cos —ZT—J * gy sin s
lu| < 2o ,  Ju] > 24T (C.1.15)

The first part of (C.1.15) is simply the rectangular pulse component for

which the solution has been obtained above, and the remaining components

may be evaluated by letting 0, = m/AT and setting W= 0 - mo.and

w, =W+ W as for the pulse amplitude (C.1.3) and then using the

trigonometric identities. For the 'exact' solution in terms of Hermite

polynomials we require the additional relation

2m+1
20T 2,2 © 4 (
- Y
eV /4 sin(wu) du = -j24T Z Zme L

Jo ‘ m=0 2(m+1)

JYw) (AT/Y)
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If AT/Y2 > V2 a result comparable to'(C.l.l4} may be obtained for the

cosine pulse, 1.e.

R

2
(E0)) 6 5, kg, mn E AT

¢ =T 2 2
s 2vhE 2 Y, e?"2% 3
X {9_. 1 - [1 - 2D(V2 Y,00]
2 \ AT V7 <)
2 2 2v5w?
S-2Y20T ¢ V2 Y, e 271 3
v o 1 - [1 - 2D(V2 Tu,)]
\ AT V7 )
2 2 27502
AT /E'YZ e 2 \
vz 1 - [1 - 2D(V2 V0]
i AT Y )

, 3 D(/Z vy0) D(VZ ¥ 0 }

g/ | V2 Y, CRPCH (C.1.16)



