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ABSTRACT

The extension of short data records, based on information from long term data records, is a
common procedure used in the planning and operation of many water resources systems.
Alternative methods for extending the available streamflow data record at locations where the
period of recorded data is considered too short are presented. Various deficiencies in existing
regression-based parametric techniques related to the assumption of normally distributed and
random residuals are identfied. An alternate nonparametric approach which is not subject to
the above assumptions is presented. The nonparametric method unlizes the relationship
between the index and base record to identfy similar flow patterns that can be used to
generate streamflow data.

The extension techniques were evaluated, and the results of the evaluation were verified, using
monthly streamflow data from gauging stanons in Manitoba and Ontario. The techniques are
evaluated based on their relative performance in reproducing statistical features of the historic
data. The parametric and nonparametric methods displayed comparable performance. The
residual series of the parametric models did not follow the normal distribution, even though a
data transformation was performed. Residual series from both techniques displayed
autocorrelation, indicating the inability of the models in taking into account ume varying
relatonships in the data. Model performance generally increased with common period of
record. The nonparametric methods tended to improve as the available data increased.

Recommendations are made as to the preferred approach under varying data availability
conditions. The nonparametric techniques are recommended as a viable alternative in cases
where the residual series obtained from the parametric models are not normally distributed.
Using a nonparametric model as an alternative to a parametric models may involve a trade-off
in terms of statistical performance under certain conditions. A procedure for implementng

the record extension techniques is presented.
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Chapter I

INTRODUCTION

1.1 BACKGROUND

Many types of water resources projects are dependent on the principles and data of hydrology
(Meinzer, 1942). Examples include reservoir design, irriganon and water supply systems.
Additionally, there is a growing concern for anthropogenic effects on the environment and
water quality with ever-increasing demands for water and conflicting water uses. Reliable
streamflow records are required to determine the environmental impacts, on receiving water
bodies for licensing proposed wastewater treatment facilines. Water is an extremely valuable

resource.

Water resources systems undergo systematic analysis for optumizaton studies and decision
support for development activiies. Hydrologic time series are currently used in practice to
simulate the outcome of hydropower production scheduling, systems operating policies,
wastewater treatment plants and water rights agreements, for example. Estumatng the
frequency and duration of domestc, industrial and agricultural water supply shortfalls, as well
as dependable reservoir yield for hydropower generanon during peak demand are other
examples of uses for streamflow records. The latter examples are commonly used to determine

a project’s economic feasibility and environmental impacts.

Optimal planning and management decisions require reliable data. Raman et al.(1995) state
that in developing countries, the expansion of hydrologic data often accompanies or lags
development and planning rather than preceding it. Raman et al.(1985) also state that reliable
results can be obtained from a systems study when data are available for a minimum of 35
years. Locally, Manitoba Hydro has used streamflow data reconstruction techniques to




generate flows for the Nelson River basin (Report No.: TM. No.93-3). Here, available
data are ranked as good or poor in terms of availability of observed natural flows.

Many streamflow recording gauges have operated for only a short ume where long-term
records are desired. Records available for many streams are too short to contain a suffictent
range of hydrological conditions. Additionally, users of streamflow databases containing many
streamflow records may desire the database be consistent in terms of record length. Jackson
(1975) notes that hydrologic record lengths, in general, tend to be very short, and typically span
25 to 50 years. One difficulty with short streamflow records lies in the large variances resulung
from small sample estimates of population parameters. This difficulty is compounded with
unreliable or missing portions of data. Providing missing data is the justfication for syntherc
hydrology.

Streamflow record extension techniques are used to synthesize portions of a record where a
longer period of record is desired. Two broad categories of streamflow generation models are
referred to as deterministic and stochastic models. Deterministic models are based on physical
characteristics of the drainage basin and the hydrologic concepts translatng histonical
meteorological inputs, such as rainfall, into basin outflow. Stochastic models are staustical in
nature. However, Clarke(1973) makes a distinction between stochastic and statistical models
to emphasize the time-dependence of the hydrological vanables related by the model. The
difference berween a deterministic and stochastic model is clearer in that a deterministic
model’s parameters are free from random vanation and are not associated with a probability
distribution.

Models within the stochastic group include parametric models such as linear regression, for
example, which transpose information from longer records to shorter records by exploitng the
interstation correlation between the short and the long record station. Parametric methods,
however, involve estimating various statistical parameters (such as sample mean, vaniance and
cross correlation) of the short and long record stations, which are subsequently used for the

extensions.




Some assumptions related to parametric methods are the observatons are independent
across time, the residuals are normally distributed with zero mean, and are independent.
Concurrent observations of the base record and the short record are assumed to have a
bivariate normal probability distribution and exhibit stationarity and serial independence.
Another assumption inherent in the parametric techniques is the validity of the estimated
regression parameters after an appropnate data transformation.

12 OBJECTIVES

The objective of the study is to review the parametric models based on linear regression and
develop a variation to existing nonparametric methods of streamflow record extension.
Models are developed to carry out the extension techniques. The capability of the models are
evaluated by a statistical performance comparison in generating flows.

Nonparametric streamflow record extension is presented as an alternarive type of record
synthesis technique. The nonparametric method recognizes flow patterns in the historical
streamflow record. The flow patterns are utlized to generate synthetic flows based upon the
relationship between a longer flow record and a (presumably) shorter flow record undergoing
extension. Nonparametric record extension techniques do not require assumptions with
regard to the probability distribution of the data or sample-estimated parameters.

Pattern recognition seeks to categorize input data, such as a streamflow record, into
idenufiable classes by extracting significant features, then associate that parucular feature with
one or more features from the past (memory). Examples of applications of pattem
recognition are such automated systems as character recognition, weather forecasting, voice
type-wrniting, medical diagnosis, data classification, target identificaton, and fingerprnt
identfication (Tou, 1967). In each of these examples an abstract partern is used as a basis for
recognition, based upon the extraction of a set of recognized features associated with the

subject.



Hydrologic phenomena measured in daily, weekly, or monthly intervals may be

considered to occur in well-defined groups (Panu and Unny, 1978). Variation in hydrologjcal
data is influenced by environmental factors such as weather patterns which either cause it or
affect it in some way. An example of this is the periodic nature of monthly streamflow data
sequences which vary according to season, due to factors including spring snowmelt or

precipitation, for example.

1.3 SCOPE OF WORK

The scope of the study will involve presenting the theoretical background and applying both
parametric and nonparametric models for evaluation based on pre-selected adequacy measures
on selected streamflow records from Manitoba and Ontario. The models are evaluated based
on their ability to reproduce various features of historical monthly streamflow records. A
method of implementing the most appropriate model to generate streamflows, based on a

given set of data conditions, is presented.

Chapter 2 presents a review of selected literature on streamflow record extension techniques.
Chapter 3 describes the current parametric record extension methods found in the literature
and the theory and formulanon of the nonparametric methods. Chapter 4 presents an
evaluation and application of the parametric and nonparametric methods formulated in
Chapter 3, as well as a discussion of the results. Chapter 5 summarizes the methodology
analysis and results, and provides a recommendation for selection of the appropriate extension
model, based upon the study findings. Future work on streamflow record extension
techniques is recommended.




Chapter 2

LITERATURE REVIEW

There are many variations in the methods of transferring data from one location to another
with stochastic models. Some variations utlize physical basin parameters to help improve the
reliability of the estimates of synthetic streamflows. Hirsch (1979) utlized drainage area ranos,
regional basin characteristics, and cross-correlation of flow records. Faucher (1994) unlized
physiographic and climatic data as independent variables to develop regional flow duration
curves and proration on drainage area and mean annual runoff to generate synthetic flows at
an ungauged location. Parret and Cartier (1990) also used basin characterisuc and climatic
variables to estimate average monthly flows in Western Montana.

Simonovic (1995) developed three mathematical models for data interpolation, extrapolation
and transfer to ungauged sites within the Red-Assiniboine and Interlake districts of Manitoba.
Various physical parameters were incorporated into the models to enhance monthly
streamflow synthesis. The data was transformed by logarithms, then replaced by their
empirical probabilities, and finally standardized according to the inverse functions of the
normal distributions. Including physical parameters improved the extension models, in terms
of reducing the standard error of estimate. The most beneficial parameters were snowmel,
elevaton, precipitation and elevation, however, different parameters provided better results

when used in different regions.

Hirsch (1982) presented four extension methods (described in detail in Chapter 3), and
evaluated them to determine their suitability in terms of reproducing historical sample stanistcs
and comparing the bias and error in estimating sample stanstics. In Hirsch’s work, the
parameters of the regression extension method are modified to maintain the sample mean and
variance, rather than to minimize squared errors, for the case where the two streamflows are

similar in distribution shape, serial correlation and seasonality. Alley and Bumns (1983) unlized




Hirsch’s maintenance of variance extension (MOVE) techniques using different stations

as the base station to predict different flows for the same short (index) record. A decision rule
was presented to determine whether to use only flow values from the same month or
sequential flow values in the parametric methods. Vogel and Stedinger (1985) recommended
improved, equal or lower-variance unbiased estimators of the mean and variance of the flows
of the short record due to the small sample sizes often encountered in record extension

practices.

Parret and Carter (1990) estimated mean monthly discharge based on multple regression of
basin characteristics, climate vartables, channel width and a maintenance of variance extension
technique developed by Hirsch (1982). The evaluations of the techniques were based on
standard error of estimate. The standard errors were reduced by calculating weighted average
estimates from all three extension methods. Parret and Cartier (1990) state that “regression
equations based on basin characteristics are generally not applicable to streams thar receive
their water from springs or that lose substantal flows because of permeable streambeds or
other localized geologic features”. This is assumed to not be a significant factor for the
streamflows unlized in this study.

Beauchamp et al. (1989) compared regression and time-series methods for synthesizing daily
streamflow records. Significant autocorrelation of error terms occurred with the regression
method, but did not affect the estimated flows. The time series model was able to adequately
model the autocorrelation existing in the data thus eliminating autocorrelation of errors. Vogel
and Kroll (1991) evaluated the maintenance of variance extension techniques for low-flow and

flood frequency analysis.

According to Vogel and Stedinger (1985), the relationship between the flows at the two sites is
independent of the month in which the flows occurred, and the MOVE procedures are
intended for situations where the two streamflow records do not differ substanually in terms
of distribution shape, serial correlation, or seasonality. If the relatonship between flows at the
two sites exhibits seasonal differences, one could develop different models for flows occurring
in different months within distinct seasons.




The regression technique cannot be expected to provide a record with the appropriate
variability (Hirsch, 1982; Alley and Burns, 1983). A regression technique which incorporates an
independent random noise component cannot be expected to provide records with the
appropriate distribution shape or serial correlation (Hirsch, 1982). Furthermore there is no
single unique record obtained from a regression model which incorporates added noise.
Maintenance of variance procedures have been shown to reduce bias in the estimated mean
and variance (Hirsch, 1982; Alley and Burns, 1983; Raman et al., 1995).

Pattern recognition involves identifying features in an object and relating similar features of
one object to other objects, in order to determine their similarity. Pattern recogninion concepts
are used in a vaniety of applicaions, and are not necessanly restricted to the classical
applications described in Chapter 1. Biquan et al. (1986} used pattern recognition techniques
to predict the occurrence of large earthquakes based on intermediate earthquake actvity and
sunspot occurrences. This analysis determined that occurrences of large earthquakes does not
correlate well with sunspot activity, but are related to acceleraton or deceleration of the
rotation of the earth. Henley and Hand (1996) utilized “nearest neighbor” techniques for
assessing consumer credit risk in determining creditworthiness of consumer loan applicants.
The nearest neighbor method classified the applicants into good or bad risk groups. The
Euclidean distance metric was utilized in the decision function for classification.

Karlsson and Yakowitz (1987) unlized nearest neighbor methods for nonparametric rainfall-
runoff forecasting. Karlsson and Yakowitz state that the nearest neighbor method has
powerful theoretical properties, but at the same tme is disarming in its simpliaty and
intuitiveness. They concluded that the nearest neighbor method is well suited to large-sample
tme series problems, and the method is applicable to virtually any decision problem..

Andrews (1972) presents mathematical techniques used in pattern recognition. Andrews states
that the criterion for selecting appropriate dimensions or features of the dara is one of
maintaining those features which have the largest variance across the sample means of the
classes, and presents techniques for ranking data in order to group patterns with similar
features.




Cooper and Clarke (1980) state that parametric flood frequency estimation methods, as
well as parametric streamflow record extension techniques make assumptions about the joint
probability distribution of the flow records used. In flood frequency estimaton, serial
correlanion in the streamflows used provides a complication in that the maximum likelthood
estimates of the parameters must be adjusted in some way.

Kavvas and Delleur (1975) state the yearly rotation of the earth around the sun causes a yearly
periodicity in the monthly hydrologic time series, which is manifested in the autocorrelanon
functon with a 12 month period. Nonseasonal differencing and seasonal differencing are
presented as means of removing the periodic component of the tme series. Nonseasonal
differencing is defined as taking the numerical differences of the first-lag flow values. Seasonal
differencing takes the differences between flows separated by 12 months. Their evaluation
was based on examination of the autocorrelation function. Their results on 15 watersheds in
Indiana showed that both seasonal and nonseasonal differencing reduce the penodicity in the
data.

Panu and et al. (1978) present a procedure for extracting information in hydrologic ume series,
based on pattern recognition prinaples. In this case, feature vectors are synthesized based on
an assumed normal distribution of the elements of an associated reference vector of a
parucular pattern class. This procedure was used to generate flows for the South
Saskatchewan River with good results. Panu and Unny (1980) extended the previous work of
1978 for small and medium sized catchment areas, namely for the Fraser and Black Rivers.
The feature predicion model reproduced various statistics of the historic record adequately.

Yakowitz (1987) utlized nearest neighbor methods for runoff prediction in the Bird Creek
Ohio watershed. In his study, the feature vector was arbitrarily composed of three sequental
daily flows and two rainfall observations. The nearness of the feature vectors was calculated
using a weighted Euclidean distance (Euclidean distance is described in Chapter 3). The
evaluation was based on comparing the sum of squared errors. The ‘best’ number of nearest
neighbors was searched for in the range of 3 to 6 only. The results of the nearest neighbor
model were compared to a deterministic model and a second-order auto regressive moving
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average model (ARMA). The nearest neighbor and ARMA models produced comparable
sum of squared error, while the physically based deterministic model performed less
satisfactorily.

Tou and Gonzalez (1974) provide a comprehensive background to the basic concepts of
pattern recognition, including feature vectors, and pattern space. Tou and Gonzalez suggest
unilizing distance functions which measure the separation of feature vectors in pattern space.
Andrews (1972) states that every human being is a pattern recognition expert, but few people
can accurately describe the processes they use to classify or discern patterns. Tou (1967) states
that a set of features suitable for pattern recognition reflect certain propertes of the pattern
class, and provides methods of associating statistical features of a particular pattern class, called
kernels, which are determined from the observed data.



Chapter 3

PARAMETRIC AND NONPARAMETRIC STREAMFLOW RECORD EXTENSION
‘ TECHNIQUES

3.1 INTRODUCTION TO PARAMETRIC RECORD EXTENSION

While most records are available up to the present, the starting year of many records are
different, resulting in different lengths of available common record period. In this study, the
extension procedures are developed to address a need to obtain streamflow records which are
consistent in terms of their common period of record. The extension methods can be used for
either forecasting, for example, where the index record staton was discontinued, or back-
castung where the index and base station records do not begin in the same year, but may both
have available record to the present. The parametric extension methods presented below
assume there is a short record station, referred to as the index station, which is to be extended
back in ume using a longer record, referred to as the base station, for which data collection
began ar an earlier date than the index staton.

The parametric extension methods transfer information from the base station to the index
staton by exploiting the mnter-station correlation between the base and index station. Normally
the records from the base and index station come either from within the same drainage basin
or from nearby drainage basins having similar topography and geology, which result in
significant cross correlation of streamflow characteristics.

There are deficiencies in using a single base station, as stated by Alley and Burns (1983). These
include the potential to use other potentally important base stations to fill-in a poruon of
missing records in different ume periods. The parametric methods described herein do not
remove trend from the data, if it exists, to be modeled separately from residuals, then
combined at the end to form the completed series. If a linear trend is not properly modeled,

it can produce autocorrelation in error terms. Autocorrelation in error terms has been defined
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to be a departure from the model assumptions. Additionally, autocorrelation in error

terms can occur if an independent variable has been left out of the analysis. In the case of
streamflow record extension, the information left out is oftentimes the time varying effects,
such as weather patterns that affect the relationship between the streamflow records of two
gauges. These effects usually cannot be incorporated because they are often unknown or are
not quantifiable. In this case Neter et al. (1989) propose a correlation transformation of the
independent and dependent variables, or a first-differencing transformaton of the data. Neter
et al. (1989) note that the first-differencing procedure can overcorrect, resulting in negative

autocorrelation in error terms.

A statistical procedure which is insensitive to departures from the assumptions which underlie
it is called robust. There are departures from the regression assumptions which will be
discussed in the formulation of the procedures. The regression model assumes that the error
terms are normally distributed and have constant variance, and therefore the dependent
vaniable has the same constant variance, regardless of the level of the independent vanable.
The regression model also assumes the error terms are uncorrelated such that the outcome in a
partcular trial is independent of the outcome of other trials, ie. the observatons are
independent.

The extension and common periods of record are defined as follows. The log-transformed
base station flows are denoted x;, where i is a time index corresponding to months of record.
The log-transformed index station flows are thus denoted y. The extension period is defined
as N, years, and the common period of record is defined as N, years. The observed and

extension period events for the two flow sequences are represented in Table 3.1.
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Table 3.1 Definition of Extension and Common Record Periods

Record Extension Period Common Period
Base Stadon, X Xy - o Xnjt N1y« - XNISN2
Index Station, y; Vireer s Tt Ypere - oY NN2
|
32 PARAMETRIC METHODS

Parametric streamflow record extension techniques, as presented by Hirsch (1979; 1982), Alley
and Burns (1983), Vogel and Stedinger (1985), and Grygier and Stedinger (1989), are based
upon an equation of the following form

yiza+ f-x 31
where

¥, = synthesized log-streamflows at time 1,

o and B = regression parameters,

x, = log of base station flow.

Equation 3.1 can be described as a simple linear regression model. The model is said o be
simple in that there is only a single independent variable. The model is linear in the regression
parameters because none of the parameters appear as a nonlinear functon, such as an
exponent. The model is linear in the independent variable because x; appears in the first
power. Equation 3.1 could also be correctly referred to as a first order-model.

Assumptions related to parametric extension are that the time series are stationary and serially
independent. Time series x; and y; are also assumed to have a bivarate normal distmbution,
with parameters W, W, ©,, 0, and p, where p, and o, represent the population mean and
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variance for series x, and i, and o’ represent the population mean and variance for y,

and the product moment correlation coefficient is p.

The streamflows are first log-transformed to remove the skewness from the data. Alley and
Burns (1983), Beauchamp et al. (1989), and Vogel and Kroll (1991), also unlized log-
transformed flows for the parametric regression models. The parametric techniques are
conducted upon the log-transformed data to generate synthetic streamflows. The synthesized
streamflows §, are reverse-transformed to achieve the flow value in m’/s. If the estimated flow
value, 7, exceeds or falls short of the historical value, y, we define the error term amoun, e, by

&=Yi— V%

It will be shown that the error terms, e, are assumed to have constant variance, ¢, thus y; are
assumed to have the same variance regardless of the level of x. The error terms are also
assumed to be uncorrelated, so that one value of x, has no effect on the error term for any
other value of i. Thus, if the error terms are uncorrelated, so are the responses y, (Le. y, 1s

assumed to be a random vanable).

There are departures from the model assumptions when equaton 3.1 is used to extend
streamflow data. An attempt is made to overcome these departures by taking log-transforms
of y. The success of this transformation is a factor upon which the appropnateness and

ultimately the acceptance or rejection of the parametric models will be based in Chapter 4.

Five parametric extension models are presented below. Regression, (REG), regression plus
independent noise (RPN), and three maintenance of vanadon extension techniques,
(MOVE.1, MOVE.2, and MOVE.3). All five parametric models utlize the form of equation
3.1, with the differences in the way in which the parameters o and B are developed. REG,
RPN, MOVE.1 and MOVE.2 were given by Hirsch (1982), and compared to one another
based on a 2000 trial Monte Carlo simulation. REG, MOVE.1, and MOVE.2 were uulized by
Alley and Burns (1983), in simulating monthly streamflows with or without separate monthly

13




relationships. MOVE.3 was introduced by Vogel and Stedinger (1985) as an

improvement to small sample estimates of the mean and variance of the streamflow series.

A single regression model developed using the data from all concurrent flow periods is
referred to as the noncyclic approach. Separate regression equations developed for each
month or season is referred to as the cyclic approach. The noncyclic approach assumes that
the variability in flows is random rather than partly cyclic and partly random (Alley and Burns,
1983). However, more parameters are required for the cydlic approach (by a factor of 12).
Alley and Burns (1983) present a methodology for selecting which approach to use. Both
approaches are evaluated in this study.

Parret and Cartier (1990) provide the following two considerations when attempting to fit a
regression line to time series flows.

1. If the relationship between the concurrent high flows for the base and index records are
different, a single straight line may not be appropniate.

2. If differences exist between the timing of runoff at the base and index records, a plot of
concurrent discharges will resemble a loop, which is also not modeled well by a single
regression line.

Utlization of log-transformed streamflow records which are similar in terms of geographic
location and which exhibit a high cross correlation is hoped to minimize the deviation from a
single straight line fit Thus, the models are developed in a similar manner to that found in the

literature, using a single regression line.

3.2.1 Linear Regression (REG)

The margjnal distributions of f(x,y) are assumed to be univariate normal and with conditional
distribution defined as f(y|x) = f(x;y) / f(x) (Viessman et al., 1977). The subscript i denoung
time have been omimed within pordons of this section for convenience of discussion.
Viessman et al. (1977) also state the conditional distribution of y, given x, has the form
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S(y|x)=K'exp{M'} 3.2

where
1

K= [1\/272'0‘},1/1 -—sz 3.3

and
2
M={-| |- p T x-p1) 34
) | R N '
The distributon is normal with mean
-

o= s+ p(x-u) 35
and variance

cl=oc.(1-p) 3.6
where

.’ = the error variance.

Equation 3.2 expresses the probability distribution of a value of y for any given x. Equation 3.5
is a linear equarion that expresses the linear dependence between y and x. The mean, or
expected value of y can be calculated using equation 3.5 for fixed values of x. The fraction of
the variance in the data which is explained by the regression line is obtained by rearranging
equation 3.6 as follows

<. 37
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From equation 3.5, the slope of the regression line is

p<r. 38

p 4

The parameters &« and B in equation 3.1 are found by fitting the regression line described by
equation 3.1 to the data such that the squared error is minimized. Re-introducing the time
subscript, 1, the squared error criterion, Q is given by the squared deviation of y, from its
expected value

Q=Z(}’i_a_ﬂ'xr)z- 3.9

Point estimators of o and B are those values a and b, respectively, which minimize Q for a
given set of sample observations (x,;y) (Neter et al., 1989). The point estumarors a and b may
be found by partially differentiating Q with respect to a and B. Taking partial derivauves,

using a and b to denote the respective values of o and B, and setung to zero, we get

0

5q = 2L bima-bx)=0 5100
i=_2 x,(y‘_a_b.x,)zo 3.10b
5/3 z: Vi i

a= Zyi _ bzxi and 3.11

3.12a
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or, from equation 3.8,

b=r-+, 3.12b

where
r = the product moment correlation coefficient estimated from the data,
S, = the sample standard deviation of the y series,
S, = the sample standard deviation of the x series,
n = sample size.

The above parameters are calculated as follows

Z x;, —X)*
S, ={+t—— 3.13a
n-—1

S =yt— 3.13b

3.13¢

and

Xx=- 3.13d
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Z,Vi

)7= i . 3133
n

The REG equation is found by substituting parameters a, b and r into equaton 3.1

()

y. = —=L(x, - 3.14

yl m(y2)+rs(x2)(xl m(x2 ))
where the sample statistics are defined in Table 3.2. The nomenclature in Table 3.2 follows
that of Hirsch (1982), and Alley and Burns (1983), except that the extension penod, N, and
common period, N, are reversed as explained previously. No numerical subscript is used with
those estimates based on the entire record period, N, + N,

If the probability distribution of y is not normally distributed around a mean value for a given
level of x, then the probability distribution of B is not normally distributed. Then inferences
regarding the mean value of B become less valid, because B is a linear functon of the
observations of y, and a linear combination of normally distributed vanables is itself normally
distributed.

The regression model relates the means of the probability distribution of y; for a given x; to the
level of x; (Neter et al., 1989). Hirsch (1982) states that m(y) is an unbiased estimate of 1, and
shows that S%(y) is a downward-biased estimate of 6,’ for p < 1. Stated another way, REG, by

design, has the property of estimating the mean quite well, but provides a record with a lower
variability than that which would be normally associated with streamflow records. One
property of equaton 3.14 is for r = 0, REG would provide a zero vaniance extended senes.
Alley and Burns (1983) state “the usual intent of record extension is to produce a time series

that possesses statistical properties like those of an actual record for the station”.
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Table 3.2 Definition of Sample Statistics

Staustic Definition
Sample Mean of
m(x,) X+ XNy
m(x,) Xnpet - - ENLN
m(x) Xpy. - XNIENLe D + KNI
mfyy) Yoo - Yo
mfy) Vi - o Y NiY N1 - YN

Sample Variance of

S(x,) Xype - Xy

§* (x) Xnita 1 - XN
§*® Xp - Xnn Xt + KNI
$* &) Yo - YN

s ) Vo - o VNLYNLs 13- - -sYN1eN2

3.2.2 Linear Regression Plus Independent Noise (RPN)

A normally distributed random noise component, e;, with zero mean and unit variance is added
to the REG model as follows

5 =m(yz)+r%(x,. — (e, )+ =150 )-e, 3.15

where
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2 _ Nl(Nz"4XNz"1)

= 3.16
Y (YA () (YAEY

The estimates y, are a weighted combination of the historical x; series and an unrelated random
noise component. The parameter o is a constant used to make the expected sample variance
of y. equal to its population value, which is the purpose of the noise component in equation
3.15 (Vogel and Stedinger, 1985).

Due to the random noise component which is presumably unique, there will be no single
unique record obtained by using this method. The latter property may make the RPN method
undesirable for use in management decisions regarding reservoir design and operation. An
advantage with RPN, however, is that it provides unbiased estimates of mean and vanance of
the historical record (Hirsch, 1982). RPN has also proved useful for preserving interstauon
correlation between the index and base record (Alley and Burns, 1983).

3.2.3 Maintenance of Variance Extension Type 1 - MOVE.1

The importance of accurately estimating hydrologic extremes, as well as reducing bias from
variance estimates served as one purpose to develop the maintenance of varniance extension
(MOVE) procedures. The MOVE procedures are appropriate to use when the index and base
record do not differ substanually in distribution shape, serial correlaton or seasonality (Vogel
and Stedinger, 1985). However, where the cross correlation is relatively high, it is reasonable
to assume that the serial correlation and seasonality do not differ substanually. A departure
from this assumption would result in a reduction in the cross correlation berween the index

and base records.

The four sample estimates used in MOVE.1 are the sample means and variances of the x and y
series estimated from the common record period, N, ,,... N, +N,. For MOVE.1, a and b are
chosen such that the sample mean and variance of the estimates equal the sample mean and
variance of the index station during the common period of record. Hirsch (1982) states the
above is accomplished by finding a and b such that the following two equalities are sausfied
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Z}’i = Z)-':
Z(}’i -m(}’z ))2 = Z()—’x ‘m()’z ))2 ,

to which a solution is given as

y,=m +S(y2) x, —m(x
yi=m(y,) S(xz)( f ( 2)) 3.17

Parret and Cartier (1990) state that the MOVE.1 technique minimizes the areas of the right
triangles formed by the honzontal and vertical deviations from the regression line, and that

MOVE.1 provides an unbiased estimate of low flows.

A tme series y, generated by MOVE.1 using equation 3.17 fori = 1,. .., N; + N, would
reproduce the historical sample moments m(y,} and S*(y,) (Vogel and Stedinger, 1985).
MOVE.1 has been found in practice to over-esumate the variance (Hirsch, 1982). Although
MOVE.1 results in preservation of the index-record sample esumates of mean and vaniance,
the estimated variance for short records may be unreliable (Alley and Burns, 1983). However,
the estimates of mean and vanance are asymptotically unbiased as the common record peniod

approaches infinity (Alley and Burns, 1983).

3.2.4 Maintenance of Variance Extension Type 2 - MOVE.2

In MOVE.2, p, and o, are set to the unbiased estimates developed originally by Matalas and
Jacobs (1964), as reported by Hirsch (1982), Alley and Burns (1983), Vogel and Stedinger
(1985), and Grygjer et al. (1989). In contrast to MOVE.1, the sample estimates of mean and
variance for x are based on the entire record, i.e. m(x) and S*(x) are used in place of m(x,) and
S*(x). The sample estimates of mean and variance of y are based on the historical y record,
and more information from the base station record. The above estimates also make use of the
correlation between the base and index station record to improve the estimate of the index

record’s mean and variance (Gryger et al., 1989).

21




The MOVE.2 equation is
S(r)

¥, =m(y) *“s‘(x_)("" —m(x))

where

7;1(}’)- NZ ,S(yz)

TR A S(xz)(m(x,)—m(xz))

S'(y)=m{(Nz -1)S*(y,)

2 Sz(yz)

+(N, =17 ==2282 (x) + (N, - e’ (1-r*)S*(y;)

§%(x,)

+ N1N2 lsz(yz)
r 2
(N, +N,) S(x;)

(m(x, )—m(x, ))2 } .

If MOVE.2 were used to generate an entire sequence ¥, for 1 = 1,...N, + N,, unbiased
esumates of the mean and vanance of the complete extended record would be reproduced.
Alley and Burns (1983) state that improvement in the estimate of variance using MOVE.2 is
achieved when the correlation coefficient exceeds about 0.65.

3.2.5 Maintenance of Variance Extension Type 3 - MOVE.3

In MOVE.3, p, and 6’ are set to the conditional means and variances for the y; series over the
period of record for which the extension ¥, is to be developed (Stedinger and Vogel, 1985;
Grygier et al,, 1989). The conditional mean and variance may be interpreted as the sample size
weighted difference between the augmented mean and variance estimators and the mean and

variance of the short record y; series (Grygier et al., 1989).

The MOVE.3 equation is
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j;f =a’+b(x,. —m(xl))' 3.21
The MOVE.3 estimates of a’ and b are obtained from

a'= (’Nl +Nz)’;'y =N,m(y,)
Nl

3.22

b =((N, + N, —1)82(») = (N, ~1)S*(3,) = N, (m(y,) — (1))

-N, (a' - "’i(}’))2 I(Nl - l)S2 (x, )]-l . 3.23

Grygier et al. (1989) found little difference bertween MOVE.2 and MOVE.3 when esumating
u, and o, from a sample of 30-50 years of available record. Vogel and Stedinger (1985) state
that MOVE.2 and MOVE.3 are “nearly indistinguishable” in the mean squared error (MSE) of

the estimators of the mean and variance of the completed extended record.

3.3 THE CORRELATION COEFFICIENT

The correlation coefficient plays a significant role in the parametric record extension
procedures. However, the existence of a high correlation coefficient does not establish a
causal relationship between two time series. A correlation arises through a concurrent
variation in time of the two tme series. Thus, causation cannot be deduced by co-vanauon.
Yule (1926) addressed the fact that quite high correlation may be obtained berween time series
to which no physical explanation can be made. Thus in the present work, the candidate
streamflows used for applying the record extension methods will not only require a high
correlation value, but will also be required to be relatively near in terms of locaton, such that
the basin characteristics affecting the runoff would not be drastically dissimilar.

Kendall and Stewart (1961) defined a statistical reladonship arising from the existence of a
joint distribution between a pair of random variables. The statistical relationship is the basis of

23




the parametric methods developed in Section 3.2. A functional relationship arises when

the level of one vanable is a deterministic function of one or more other vanables.

If the base station lies either upstream or downstream from the index staton, there is likely to
be a high degree of correlation between the records. The functional relationship between the
index and base record becomes apparent in that the index record flows would be directly
caused by the base record flows if the index record is downstream of the base record.

However the occurrence of this situation does not invalidate the parametric models since no
assumptions are made of the independence of the two time series being used in the analysis.
In fact, as was shown in Section 3.2.1, the methodology on which the parametric methods are
based, relies upon the strength of the conditional distribution between y and x.

One problem associated with utlizing the correlation coefficient as a determination of
interdependence is that the coefficient is a measure of linear independence, and as such,
cannot distinguish interdependence for more complex forms of interdependence. Thus, if x
and y are independent, p=0, but the converse does not necessarily apply. Therefore, in a strict
sense, p is recommended by Kendall and Stuart (1961) as an indicator of interdependence
rather than a measure of independence, unless we are faced with normal or near normal
variation between x and y.

It is useful at this point to make a distinction between the coefficient of determinadon, r, and
the coefficient of correlation, r. Mathematically the interrelation 1is expressed as

r= i'\/r_l . 3.24

The degree of linear association between x and y is measured by r* as the ratio of the variance
of the fitted line to the overall variance. Stated another way, r* is a measure of the effect of x

in reducing the variation iny. The range of * is

0<ri<i. 3.25
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-1<r<l1. 3.26

The nonparametric methods introduced in Section 3.4 do not unlize the correlation coefficient
in generating streamflow data, although a significant correlation between the index and base
records is a good indication that the streamflows exhibit similar patterns (or time variaton

charactenstics).

3.4 INTRODUCTION TO NONPARAMETRIC RECORD EXTENSION

The nonparametric method of streamflow record extension utilizes pattern recognition
concepts in order to identfy flow patterns or analogues within the data. This information is
used to develop synthetic flow sequences. As is the case with parametric extension methods,
the interstation correlation between two streams is exploited, but in a different way. There is
no requirement to use the sample esumate of p in the calculation of flow sequences, rather the
existence of a significant p between the base and index station is used to indicate similar

charactenistucs of the flow records.

The parametric methods described previously utlize data samples to estimate population
parameters such as mean, variance, correlation, and parameters a and b. Additionally, there are
certain assumptons regarding the necessity for normally distnibuted variables. The pattern
recognition principles used herein do not rely on the data following the form of any parent
distribution. No parameters are required from the samples to estimate population statistics.
However, one premuse is that the relatonship between the occurrences of flow patterns is
distinct, and that those combinations of flow patterns which occur at the same tme (season,
for instance) will tend to repeat themselves. Thus the co-variation existing between the base
and index records is relied upon such that the relanonship between the parterns which occur in
the base and index record are relatively consistent throughout the duration of the records.
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A pattern is defined by Tou and Gonzalez (1974) as the description of an object. An
object could be a group of data on hydrologic phenomena observed at regular ime intervals,
such as a series of flows within a streamflow record. The concept of patterns within
hydrologic phenomena is not new. Panu et al. (1978) state that sequences of hydrologic data
occur in well defined groups which possess the collective properties of the data forming them.
Evidence of recurring patterns in hydrologic data is provided locally with the high flows which
occur in the Red River each spring. A hydrologic pattern is a collection of propertes
describing the groups formed within the data.

The act of pattern recognition can be viewed as two major types: the recognition of concrete
tems and the recognition of abstract items, as outlined by Tou and Gonzalez (1974).
Examples of the first type include recognizing pictures, music, and the objects around us, also
referred to as sensory recognition. Examples of recognizing abstract items include recognizing
an old argument or solution t a problem, also termed conceptual recognition. The present
work involves utilizing pattern recognition concepts assodiated with the sensory recogniton

applicaton.

The process of sensory recognition involves identification and classification of patterns in the
data presented. Tou and Gonzalez define pattern recognition as “categorization of input data
mto identifiable classes via the extraction of significant features or attributes of the data”.
Before the procedure is formalized, some terminology is presented.

A dassical pattern recognition problem, such as optical character recogniton or fingerprint
analysis, presents three basic problems. The first is the sensing problem, where the input data
measured from the objects are represented in some fashion. This problem does not present a
difficulty in dealing with streamflows, since a graph of streamflows which would be analyzed is
obtained in a table of discrete values corresponding to equal time intervals in the first place.

In pattern recognition (PR) terms as defined above, the objects in question correspond to
portons of a given flow record. A group of flows, or section of the flow record
corresponding to n measurements of the flow sequence is an object, (where n is less than the
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number of measurements in the flow record). Thus there may be many objects within an
entire record. A pattern vector is a description of an object through a set of observed

measurements. A pattern vector of n measurements are arranged in the form of a vector:
X =[x, %0, |- 327

Where x, denotes the measured values, and X denotes the pattern vector. The pattern vector
X thus contains all the measured information about the object. If the values x, were flow, for
instance, the pattern vector would represent a quantitative description of the underlying
hydrologic processes resulting in a basin’s runoff during a partcular period of ume. A
hydrologic time wave form (HTW) is defined as a plot of the flow values versus time.

When pattern vector measurements are in the form of real numbers, it is appropnate to
consider the pattern vector as a point in n-dimensional Euclidean space (Tou and Gonzalez,
1974). A set of patterns which belong to the same class correspond to a collection of points

scattered within some region of the measurement space. Consider two partern classes, , and

®, each containing two measurements, x, and x,, as shown in Figure 3.1.
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Figure 3.1 Two Hypothetical Pattern Classes

Each pattern class forms separate sets because the measurements of x, and x, are such that

they do not fall in close vicinity in the measurement space.

The second problem lies in extracting characteristic features from the pattern vectors. The
collective properties of an object are represented by features of the data contained within the
object. It is desirable to utlize features from the data which represent the phenomenon and
which can be preserved in the generated record. The contents of the feature vector may be
either the flow values themselves, or other attributes identifying changes in flow, for example.
This results in the formation of an m-dimensional feature space, where m < n, referred to as a

feature vector

f=1/,, forrful - 3.28

The third problem involves determining the decision procedure to determine the “closeness”
of a given feature to another. This is 2 modification from the classical PR sense, since the
decision procedures are normally developed for the purpose of identifying and classifying an
unknown object. However, it will be explained in the following sections that the concepts are
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modified somewhat to provide a solution to a specific problem. In the present study, the

objects within the flow record will be classified based on examination of the HTW. The
grouping of the feature vectors will involve determining those feature vectors within a same
pattern class which are “near” to each other in the pattern space described above, referred to

as “nearest neighbors”.

The determination of nearest neighbors is accomplished through a variety of clustering
techniques. Flow patterns from the base record during the extension period are compared
with a number of nearest neighbors during the common record period to determine points in
time (time indexes) where similar flow patterns occurred. This information is combined with
the observation that the co-variation between two correlated streams is, by definition, relatively
consistent throughout the record. Flow patterns are extracted from the index record
corresponding to the identified time indexes, and used to generate synthetic flows during the

extension period where the base station flow patterns were compared.

The following sections provide the theory and formulation of the nonparametric extension
procedure for a general case. The clustering techniques for determining nearest neighbors are
also described in detail. A methodology for determining the appropriate number of nearest
neighbors is dealt with in the applications section, since it is not central to the theory.

3.5 NONPARAMETRIC EXTENSION METHOD

3.5.1 Flow Record Segmentation

The first step in formulating the nonparametric model is the segmentation of the base and
index flow records into pattern classes. For a given record, let there be N years, or segments,
of data, corresponding to N*12 monthly flow values. Following the nomenclarure used by
Panu et al. (1978), each segment, &, 1 = 1,.. N, is divided into K sections, or seasons. Thus
we have &, ={E*}ork = 1,... K. The season, k, is constant for all years of a particular record.

In Chapter 4 a methodology is given for determining the segmentation of the streamflow
series into seasons. The method of segmenting the flow record essentially utlizes a user-input
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classification of the known records, combined with a quantitative decision function to aid
1n the definition of the seasons.

In a classical PR problem, the pattern inputs are not known a prior, and so the classificaton
must be determined from the separation in model space analogous to that shown in Figure 3.1.
Then the “distance” (Section 3.5.3) between the feature vector and a (possibly arbitrary)
reference vector is calculated and subsequentdy imput into a decision function which
determines the class membership of the feature vector. Thus, one may question the use of the
classification, since the pattern classes are pre-defined. In the present study, classification is
done with a different motivation. The feature vectors in a given class (season) are compared
to all other feature vectors in the historical record of the same class, then ranked according to
their similanty, in terms of a calculated distance metric which quantifies their separation in
model space.

The next step is obtaining the pattern vector, X, from the flow measurements contained withi
gk, for each season k, such that

xt =[x x k5t 3.29
where j is the number of flow measurements, q(t), within a given season, and t is the ume
interval. For example, let there be a given monthly flow record which has two seasons, namely
a dry season and a wet season, and the wet season lasts from June to October. In this
example, let us also define the wet season ask = 1, and thedry seasonask = 2. Fork =1, j =
{1,...,5},and fork = 2,j = {1,... ,7}. Note that the given values of j used in this example do
not correspond with the month’s sequence of occurrence from the beginning of the calendar
year ie. Jan # 1, Feb # 2, etc. Thus, x;* = q(t) for the discrete time intervals given.

3.5.2 Feature Discrimination

The objective of feature selection is to obtain discriminatory properties of the pattern. This

process can be very complicated in many PR problems, since the most important features are
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not easily measurable, or their measurement is inhibited by the costs of obtaining the data.

One example of the former problem occurs in recognition of handwritten features, where the
most important discriminatory features are the sequence, direction, and arrangement of
strokes, as well as the interrelationship between them (Tou and Gonzalez, 1974). An example
of the latter problem occurs in oil prospecting where geographical regions are classified as
either containing or lacking a quantity of oil sufficient to warrant exploration. The drilling of a
great number of wells would provide the most significant features to correctly classify the
region, but at a prohibiuve cost. Thus in many cases exploration engineers must use

information which conveys features of the data which convey less information.

A second objective of feature selection is to reduce the dimensionality of the pattern space for
a simpler discriminatory analysis. In many cases, the given stimulus undergoes significant
“pre-processing” through a highly complex series of nonlinear operations (Andrews, 1974).
An example would be to convert the handwnitten features mentioned above into an n-
dimensional measurement vector through the use of a scanning device, then reducing the
dimensionality of the pattern space through various transformations. It is a requirement that
the attributes be in a form which can be utilized by digjtal computers, since the mathemarical
techniques described here would be difficult for a human to duplicate in a reasonable amount
of ume.

In utllizing streamflow records, we are fortunate that the streamflow measurements themselves

are effectively a pre-processed form of data which are suitable for input to a computer

program.

The feature vectors are defined by

AR 0 X el 3.30
where

f* = a feature vector,
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f* = a feature vector element,

i = year index,

] = measurement index (month),
k = class index (season).

The notation f* and f()* are used interchangeably for convenience of presentation within

certain equations.

One selection of the feature vector is the actual flow values within the pattern vector such that
x{ == qf 331

where
q(t) = measured flow at time t [m’/s].

The feature vectors defined by 3.31 contain measurements of the flow patterns representing

the underlying hydrologic process.

A second type of feature vector element is defined by

£ = {q@) - q(-1)} 3.32
where

£ = a feature vector element,

q(t) = measured flow at time t [m’/s),

q(t-1) = measured flow at time t-1 [m*/s].
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The second feature vector type is arrived at by a process known as first-differencing. First

differencing is utilized to distinguish the feature of increasing or decreasing flow in any two
adjacent time periods, ie. the slope of the hydrograph. These first-difference feature vectors
are used in ranking the associated nearest neighbors, but not the actual flow synthesis. In this
way the specific feature is utilized in feature discrimination, but a reverse-transformation is not

required.
A third type of feature vector element may contain a transformation on the flows, such as
standardizatnon

f:‘jk -m(j)
@)

= 3.33

where
f ¥ = standardized feature vector element,
f* = a feature vector element,
m(j) = sample mean of feature vector elements j,
S() = sample standard deviation of feature vector elements j .

The standardizaton twansformation is used in the nonparametric model to determine the
effects of removing the scale difference in the parterns features being compared. Subtracting
the mean flow removes the scale difference between the flows in the wansformed ume seres.
Dividing each flow by the standard deviation of the respective month yields a constant
variance throughout the time series (Kavvas and Delleur, 1975). Standardizing is done on data

which have not undergone any other transformation.
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3.5.3 Clustering and Feature Ordering

Feature extraction is performed on both the base and index records to obtain a set of feature
vectors for each record. The feature vectors are ranked according to their similarity. The
technique is nonparametric in that the data is not described in terms of sample statstics
representing moments of a presumed underlying distribution, and also in that the feature
vector similarity is determined in terms of the ordered sequenual ranks of a calculated distance
metric, described below.

A “nearest neighbor” is defined as a feature vector, fy, which has a small distance in relation to
f., within the measurement space. The prinapal purpose of determining nearest neighbors is
quantfying the “closeness” of one feature vector to another, within a given pattern class. This
is also known as clustering of data in PR terms. Burn (1993) and Tou and Gonzalez (1974),
define “closeness” in terms of the Euclidean distance between the two arbitrary feature

vectors, fx and fy as follows

DE,._J =[£* -fy‘“ Euclidean Operator 3.34
and
D“M,‘t = \/Z:.(ijt - fyl,")' Euclidean Distance 3.35
=
where

DEfx_fyk = Euclidean distance between the feature vectors,
fx and f; = any two m - dimensional vectors,
j = element number,j=1,...,m.

m = the number of elements contained in the feature vectors for a partern
class,

34



k = pattern class, or season, for 1,... X seasons.

A variation of equation 3.35 is to define the distance in terms of the absolute values of the
distance between the elements of the feature vector. This is known as the “Manhartan”, or

“City Block” distance, because of the analogy to the distance one point would be from another
point if their separation were defined in terms of x and y coordinates on a city block grid

Dm..z,k =Z

j=1

xj Y,

f‘-f ,"I. Manhattan Distance 3.36

A second vanation results from a variation in a distance measure proposed by Anderberg
(1973), where the Manhattan distance is divided by a measure of the gross magnitude of the
two data points, referred to as the Lance and Williams measure, D, . The equation for D,y 1s

given as

m (' -F"
x Y ; .
Dmu"k = Z jk Ik L.W. Distance 3.37
=g, -,

However, equation 3.37 Is not appropriate to use with negative values since substantial
cancellatons may occur in the denominator and possibly give negative distances. A
modification was considered to 3.37 which would sull take into account the magnitude of the

data points in the form of an interaction term

m fx -k —f ,k
Dy, f=d 21 Modified L.W. Distance ~ 3.38
tx.fy y f ,k fy k
X J j

Equation 3.38 gives more penalty to higher flow differences than equation 3.36. We would
expect in advance that there are nearly as many negative first-difference feature vectors as
positive, since each rising hydrograph limb is accompanied by a falling limb. Thus equation
3.37 is not appropriate to use since many negative values are likely to arise in the first-
difference feature vectors.
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Equation 3.38 provides a benefit in that if one flow is substantially smaller, the product in

the denominator will decrease, and the calculated distance will increase. However, a
disadvantage associated with equation 3.38 is as follows. The interaction denominator term in
equation 3.38 would increase D, g+ when both flows are very small, and decrease D,y y, when
the flows are large. Equation 3.38 essentially calculates a greater distance for flow patterns
exhibiting extreme flow events, which may tend to reduce the number of feature vectors of
high flow periods being chosen as nearest nmeighbors. However, the chance of these
occurrences depend partly on the accuracy of the classification scheme, as well as the nature of
the relationship between the present and past flow patterns, which are not known before hand.
Equation 3.38 was included in the analysis for interest since it cannot be determined in
advance if the above characteristics are fatal to the method.

The nearest neighbors are selected on the basis of the ranked order (smallest to largest) of the
distances calculated between each feature vector of the base staton record dunng the
extension period, i, and each other feature vector during the common period, p. Thus,
D:*(,p) is calculated between every @) for i = 1, ...,N,, and every other f,*(p) during the
common period for p = N, ,,... N, +N,, for each season, k. This is repeated for each distance
metric from equations 3.35, 3.36, and 3.38.

We can define a sequential rank matrix which contains the index of the year of extension
record being generated and the year of the r nearest neighbor corresponding to increasing
distances, D:*(1,p), with rank, r, as follows

R'(,r)=p, 3.39
where
R“(i,r) = a matrix of year indexes, r, sorted in increasing order of D¢*(Lp),

r = rank of the nearest neighbor, r =1 corresponds to the lowest D¢*(ip), and
r = 2 corresponding to the next highest etc,, forallr = 1,...N,,
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i = a year during the index period to be extended, i = 1,... N,

P, = a year during the common record period, corresponding to the r* rank as

defined above, for all p = N,,,... .N; +N,.

The values of R*(i,r) are fllustrated in Table 3.3, for a hypothetical example.

Table 3.3 Ilustration of Sequential Rank Matrix

Yeari Yearp, Distance, Rank, r Rank Matnx Value,
D¢“G.p) R*(r)
1943 1975 201 1 1975
1943 1990 250 2 1990
1943 1987 398 3 1987

The first column in Table 3.3 shows the year which is being generated. The distance between
a feature vector from 1943 has been calculated between the corresponding feature vectors of
every other year in the common record period. The second column lists the year (from the
common period) which corresponds to the r* lowest calculated distance metric, D:*(i,p),
shown in column three. Column four lists the rank, r, of the distance metric from smallest to
largest. The first three nearest neighbors are shown, out of a possible number, N,
corresponding to the number of years in the common period. Column five contains the values
of the rank vector, R*(L,r), which contains the value of p,.

Feature vectors of the index record corresponding to the first n nearest neighbors are
identified as f,(p), r = 1,...n, for each season k = 1,... K. Each element of the synthetic
feature vector is calculated as the average of the corresponding n nearest feature vector

elements as follows

D=3 £ R @) 340
r=]
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where
sfv (i) = synthetic feature vector for year i, element j, season k,
n = number of nearest neighbors selected to include in the synthesis,
r = rank of the nearest neighbor feature vectors used in the synthesis,
£*() = feature vector element of the index record during the common period,
R*(,r) = rank matrix which gives the year of the r* nearest neighbor.

The synthetic feature vectors are reverse transformed, if required, to obtain individual flow
values. Standardized flow values of each element of the synthetic feature vector is reverse
transformed as follows

5o, ) = (s - S mj) 3.41
where

sfv*(i) = reverse-transformed synthetic feature vector element,

sfv' (1) = wansformed synthetic feature vector element,

1 = year of extension period under synthesis, 1 = 1,... N,

j = element number, j = 1,... m,

k = patern class, k = 1,... K,

S()) = sample standard deviation of feature vector elements j of index record,

m()) = sample mean of feature vector elements j of index record.
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There are no other reverse-transformations required. First difference feature vectors are
used only for the nearest neighbor dedsion analysis. The actual nearest neighbors are taken
from the untransformed feature vectors, thus no reverse-transformation is required for this

case.

The complete synthetic feature vector for class k is comprised of the set of synthetic feature

vector elements generated for each element j,
sfv,! ={sf ()} j=1,..m. 3.42

The synthetic feature vectors are now constructed into a sequental flow sequence, then
appended to the beginning of the index record to obtain the extended streamflow record.

The nonparametric streamflow record extension is also applied to generating separate monthly
flow series. For this simple case, the method is run 12 separate umes for a given record
extension process, once for each month in the year. The dimensionality of the feature vectors
is reduced to j = 1, and neither first differencing, nor deseasonalization transformatons are
made.

When the nonparametric model is used to generate 12 separate flow sequences (one for each
month), each feature vector element simply contains the average monthly flow value occurring

at thar umestep.

Considering equation 3.40, there are other possibilides for the method of generating the
synthetic flow other than the average of the elements of the nearest neighbors.  Such
adjustments include applying weight to nearest neighbors which occur closer in time to the
extension period, as suggested by Burn (1993), or applying weights to individual feature vector
elements depending on how close they are to the other elements occurring in the same pattern
class. 'This may prove especially useful in the case where first-differencing is used to
accentuate the importance of different characteristics of the data, such as rising or falling limbs
of the hydrograph, or low flow periods, for example. These modifications are appropriate to
use when information concerning the streamflow records being utilized is known in advance,
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ie. where one has a specific reasoning to introduce a bias in determining nearest
neighbors. No such prior information is known about the records used in the analysis, and so
no such modifications are made to the clustering algorithm.
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Chapter 4

MODEL EVALUATION AND APPLICATION

4.1 METHODOLOGY

Many trials of the streamflow record extension procedures presented herein are carried out on
various long-length index records in order to evaluate their capability of reproducing important
statistical characteristics in the extended record. The first portion of the index record,
although known, is assumed “unknown” on a temporary basis. The record extension
procedures are carried out to extend the index record during the “unknown” extension period.
Important charactenistics of the historical record and generated record during the extension
period are compared, for each model evaluated. Various tests on the generated data and
model adequacy measures are also used to compare and evaluate the extension techniques.

There are certain data availability conditons which occur depending upon the lengths of the
base and index records, and their cross-correlanon. Extension periods vary depending on the
difference in length of the index and base record. The evaluation is carmned out for various
combinations of extension period, common period and cross correlation to determine the
relative model performance for each case. A tial is defined herein as a record extension
conducted for a single N,, N, combination. Thus there is a finite number of trials associared
with each run. Table 4.1 llustrates the combinations of extension period, N,, and common
period, N,, used to evaluate the extension techniques.

Common periods less than the extension period were not used, since not enough informaton
would be included in the common record to provide a reliable synthenic flow in that case. A
similar reasoning is used in flood frequency analysis as it is not desirable to estimate, say, a 50
year event from a record less than 50 years long. A five year increment was arbitrarily chosen
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as long enough that different characteristics of the extension methods are realized, but
short enough to include ranges where differences in model adequacy may occur.

Table 4.1 Record Periods Used in Evaluation

Extension Period, N,, (Years) Common Period, N, (Years)
5 5, 10, 15, ..., to available data
10 10, 15, 20, . . ., to available data
15 15, 20, 25. . ., to available data
20 20, 25, 30, ..., to available data

The number of trials for each N, decreases as N, increases, and there are many wials

conducted for each run.

Different correlation between the base and index record are used to examine the effect of
cross correlation on the merits of an extension technique. Candidate sets of base and index
record are grouped according to the level of cross correlation exhibited. The first group
includes base and index records with correlation greater than 0.666, and the second group have
correlation less than that value. Although there are tests based on sample size which can be
used to determine if correlation is statistically significant, the selection of a correlation of 0.666
to divide the analysis is arbitrary, since the sample sizes encountered in this study varied
greatly.

The broad correlation categories are due to the nature of the data being used in the analysis.
The actual streamflow records provide tme series which exhibit a range of correlanon.
Synthetic data having specific statistcal features could be used to run a Monte Carlo
experiment, but the purpose of the research was defined as examining the techniques using
actual data. Since generating a synthetic record using a low correlanon is not likely to yield
reliable results, no further division for correlation below 0.666 was used.
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The streamflow record extension techniques are evaluated based on a list of criteria

described below. The evaluation crteria include such considerations as checking for
parametric model assumptions, capability of reproducing important statistical charactenstics
(Section 4.2.2) of the historical data, and other metrics which provide a quanutative way of
determining which model performed better over all the wtals conducted, taking all the
adequacy measures into account. Other evaluation metrics are used to compare the

capabilities of the model separately for each of the adequacy measures.

The stations used in the analysis are introduced, and general stanstical propertes of the
streamflow records are discussed. Subsequently the development of the computer models
used to carry out the evaluations is presented. Next, the evaluation is carried out conforming
to the methodology outlined above. The model evaluation stage leads to the development of a
deasion rule which can be used to select an appropriate extension model based on given input
data conditons, (Le. extension period, common period, and correlation).

Two candidate sets of base and index records from the available data are excluded from the
development/evaluation phase. These same records are used in application phase to provide a
fair companison of the computer models because the data are not used in the model
development. The results of the application are compared to the expected behavior based
upon the development/evaluation phase. The application phase also provides an opportunity
to examine behavior of the techniques separately from the group of data on which their
development is based.

4.2 EVALUATION CRITERIA

Evaluation of the synthetic records generated by the above methodology is comprised of three
components. The first component is testing of the residual series to determine normality and
serial correlaton of residuals. One assumption associated with the development of the
parametric streamflow models is the residual series must be random, and the joint probability
distribution must approximate a bivariate normal distributdon. Therefore, the parametric
models are subject to tests on the normality of the residual series. If the residual seres is
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found to be normally distributed, the parent series used in the regression are likely
normally distributed as well. The nonparametric models are not subject to the test on
normality of residuals because the formulation of the model makes no assumption regarding
the underlying distribution of the time series. Both the parametric and nonparametric
methods are tested for serial correlation of residuals as a measure of model adequacy.

The second evaluation criterion involves determining the ability of the methods to reproduce
various statistical properties of the historical flows, as well as the cross correlation berween the
generated and historic flows, and mean percentage error. The adequacy measures listed in
Section 4.2.2 are compared to target historical values during the extension period, rather than
the entire y series so that the results of the comparison do not depend on the length of the
extension or common period, since they are evaluated separately for each combination of

extension and common period.

Direct comparison of the statistical measures, such as means and varances, for instance, would
be cumbersome for the large amount of trials conducted in this study. Furthermore, the target
value (Le. the mean, vaniance, etc. of the historical record) changes depending on the record
being “extended”. The deviation of a calculated adequacy statistic from a respective target
value, as a fraction of the target value, is calculated to remove the magnitude of the adequacy
measure between comparisons, in order that the results may be compared directly. The general
approach is to determine how often a particular model had better capability than all the other
models in terms of the adequacy measures listed in Section 4.2.2.

The third evaluation criterion takes into account each model’s combined ability in reproducing
all of the statistical adequacy measures, in terms of a calculated objective function value. The
objective function value depends upon the individual model’s capability relanive to the best and
worst of the remaining models over all the statstical adequacy measures utlized. The
objective function measure relates each model’s adequacy in terms of the percentage of trals
for which the model was “better” overall in reproducing the statistical measures.




4.2.1 Normality and Serial Correlation of Error Terms

The skewness and kurtosis of the residual series generated by the parametric methods are
calculated to test for normality of errors. Departures from the normality assumption causes
increased variance and bias in the parameter estimates, resulting in less reliability of the values
generated by the regression model (Neter et al., 1989).

The skewness coefficient of a sample x; of size n elements (Burn, 1993), is calculated by

1 ’
;Z(xi -#x)
g = =1 - 4.1

136 )]

g, = skewness coefficient,
n = sample size,
x; = log transformed flow value,

H, = mean of log transformed flows.

The skewness coefficient is normally distributed with zero expected mean and vaniance, 6,” =
6/n, that is, g, ~ N(O, o,,°). The expected value of g;, E{g,} = 0. The null hypothesis and
alternate hypothesis are:

Ho:g, =0 42a

Ha: g, = 0. 4.2b
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As the skewness can be positive or negative, we conduct a two sided test with 95%
confidence limits, or 5% level of significance, . We accept Ho if

-z(1-a/2* o, < g, < +z(1-a/2)* o, 43
where
z(1-a/2) = the area under the standard normal curve.

The kurtosis coefficient of a sample x; of size n elements (Burn, 1993), is calculated by
1 ‘
=2 (x - u,)

N im

" B

i=l
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where
g, = kurtosis coefficient,
n = sample size,
x, = log transformed flow value,

i, = mean of log transformed flows.

The distribution of g, is N(3, 24/n), where o, = 24/n. The null hypothesis and alternate
hypothesis are:

Ho:g, =3 4.5a

Ha:g,#3. 4.5b

As above, the decision rule with 95% confidence limits, is accept Ho if

46




3-z(1-a/2* o, <5 <3 +2(1-w/2)* G, 46

The serial correlation coefficient, r,, of the adjacent error terms is calculated to test for
autocorrelation of residuals. Autocorrelation in the residual series may indicate that one or
more independent variables which have tme-ordered effects on the independent vanable is
omitted from the model. In the case of time series, the missing information is likely the ume
dependent nature of the flows between the two gauges (Beauchamp et al., 1989), or seasonality
effects (Neter et al, 1989). Models displaying autocorrelation of residuals explain a large
percentage of the variation in the data, but do not account for the autocorrelarion thar exists
among the original observations, which would be addressed by a tme-series type of model

(Beauchamp et al., 1989).
A test on the lag 1 serial correlation on the null hypothesis

Ho(r,) = 0 47a
is suggested by Dahmen and Hall (1990). The alternate hypothesis is

Ha(r,)) # 0. 4.7b

The critical region, U, at the 5% level of significance is defined by Dahmen and Hall (1990),
and Anderson (1942), as

{-1,-1-1.96(n-2)*)/(n-1)} U {(-1+1.96(n-2)**)/(n-1)}. 4.8

The log-transformed time series were tested for trend in the monthly series in a manner similar
to skewness and kurtosis above, at the 95% confidence limit. The slope of the regression line
describing average monthly flow versus time was tested to determine if the null hypothesis
(that +he slope = 0) could not be rejected with 95% confidence. No flow files were found to
exhibit a trend by this method of analysis. Note however, that the latter only tests for linear
trend, and is not useful in identifying trends which are not linear. A test which would account
for nonlinear trend is found in the Spearman Rank Correlation Coefficient test. However, this
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test is also unreliable if half of the time series displays an opposite trend to the other half,
(ie. if the trend is increasing in the first half, and decreasing in the second half).

42,2 Statistical Model Adequacy Measures

The following model adequacy measures are calculated for each trial conducted. The values
from the generated series are compared to the historical or target values, for each trial
conducted:

a) cross-correlation between the generated and historical flows during the extension
period. The target value is 1.0, which would correspond to a perfect correlation
between the synthetic and historical flows. The sample product moment correlaton

coefficdent between two time senes x; and y; is

1 n 1 n n
;inyi - n—zzxizyi

r.o= i=] i=l =l 4.9

7 1< 1<
1 2,2 |1 1,2
\/nzxf Hx nZJ’i Hy

=] i=]

where
r,, = cross-correlation berween x; and y, time series,
x, = generated flow series [m’/s],
y; = historic flow series [m*/s],
n = number of data for which x, and y, have flows
W, = sample mean of x, series,
M, = sample mean of y; series.

Noting that equation 4.9 is equivalent to equation 3.13;
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b) lag 1 serial correlation of the generated flows, r,. The target is the historical serial
correlation of y series during extension period. The equation for serial correlation
(Burn, 1993), is as follows

n-l n-1 n-1

1 |
— 2. 5%~ (T:')'{in Zx""

n-1%3 : isl =l —; 4.10
1 n-1 ) 1 n-1 1 22 s 1 [n—l )
X —— =YX .
\E—lg‘ ) \/1 SR OO

¢) varance of the generated flows. The target is the historical vanance of y series during

n=

extension period;

d) mean of the generated flows. The target is the historical mean flow of y series during
extension period;

e) flow duration curve value showing the percentage of time a particular flow is equaled
or exceeded (Faucher, 1994). The target is the historical flow duration curve value of y
series during extension period. The flow duration curve is developed by ranking the
monthly flow values and sorting, and assigning empirtcal probabilities according to the
Weibull formula (Burn, 1993)

m
p; = - 4.11
n+l

where
p; = probability of exceedence for data point 1,
m; = the rank for data point L.

A flow duration curve value corresponding to 0.8 probability of exceedence was
selected to compare the ability of the models in reproducing low flows.
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The flow duration curve for God’s River Below Allen Rapids is shown in Figure
4.1 as an illustrative example.

FLOW DURATION CURVE
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Probability of Exceedancs

Figure 4.1 Flow Duraton Curve for God’s River Below Allen Rapids

mean percentage error, MPE, (Raman et al, 1995). This adequacy measure indicates
the average percentage difference between the generated and historic flows. The target
is 0. The formula for MPE is

MPE =[li£&1‘)]-1oo; 4.12
L Yi

sum of squared deviations between the generated and historical values, also called sum
of squared error, SSE. The target is 0. The formula for SSE 1s

SSE=Y (3, -5,) - 413

i=l
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Recall that the varance of each y;, is assumed to be the same as each error term, e.

SSE recognizes that each y, comes from different probability distributions with
different means, depending on the level of x. Thus the appropriate estimate of
squared error for the regression model is the deviation of an observation y; from its
own estimated mean, j,. SSE is used extensively in analysis of variance approach to

regression analysis (Neter et al., 1989).

The deviation of a statistical adequacy measure from the target value, expressed as a fraction of
the target value, is calculated for every mial, ¢, as

v, (1) —tar,(¢)
tar(r)

f,(0) = 4.14

where

f;()= the fractional deviation of a calculated statistic from the target value for
tmal t,

1 = model index,

J = adequacy measure index,

t = mal index,

v; = value of the calculated statistic from the generated data,
tar, = target value for adequacy measure j, defined previously.

There are N, trials conducted for each combination of extension and common period. The
average fractional deviation is calculated for adequacy measure, j, as follows

fi =7V1T:Z',ﬁj(t) 4.15
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where

f; = average fractional deviation of calculated adequacy measure j, for model i,
from the target value over all trials,

N, = the total number of tnals,
f;(t) = fractional deviation as before,
t = tnal index.

The fractional deviation indicator is used to quanufy the differences between model adequacy,
as well as the expected amount of deviaton which would occur for a given model This
measure determines how well a particular model may be expected to reproduce a certain
statistic based on all the mials conducted.

4.2.3 Objective Function Model Adequacy Measure

A value which determines each model’s overall deviation from the (historical) target values
throughout all the adequacy measures in comparison to the “best” and “worst” model is
calculated for each trial. The “best” model for a particular adequacy measure is that model
which has the minimum deviation from it’s target value. The “worst” model for a particular
adequacy measure is that which has the maximum deviation from the respective target value.
The objective for any model is to attain the minimum value of the above metric. This value is
referred to herein as the objective value, (OB]) for a particular model. Omitting the trial index,
the formula for obtaining OBJ for any particular tnal is

OBJ, = iw ; [Ifli”:"—_-%} 4.16

=
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OB]J; = objective value for model i,

1 = extension model index,

] = adequacy measure index,

f; = deviation of adequacy measure j from target value for model i,

£>= = smallest deviation of adequacy measure j from respective target value,
™ = largest deviation of adequacy measure j from respective target value,

w, = weight for adequacy measure .

Note that w;, = 1 for all adequacy measures, ), in this study, to indicate that a weight can be
applied to a particular measure to increase its “importance” in calculation of the objective
functon. As an example, consider model i = 1 which exhibits variance (measure j) very close
to the target (historical) value, for a particular tnal. The calculated deviation of adequacy
measure j from the target value, f,,, would be small. Consider model i = 2 which exhibits a
larger deviation of adequacy measure j, f,, from the same target. Applying w, > 101to f, wil
increase the value of | OBJ, - OB], | over what it would be if w; = 1.0, thus increasing the
chance that model i = 1 will have the lowest overall objective funcuon.

QOver all the trials conducted, the fraction of trials in which a particular model obtains the
lowest value of OBJ; shall be referred to as OB]J;. As a hypothetical example, consider model i,
which obtains the minimum value of OBJ,, for any arbitrary combination of N,, N,, and r, , 6
umes out of a total of 15 extension trials conducted. Let Ny, represent the number of
trials model i obtains the minimum objective function value; in this case, Nopjmn) = 6. Now,
OB]; is calculated as

6

. Nogj
OBJ, = 22— — = 04. 4.17
N 15

]
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In the above example, model i achieved the minimum objective function for 40 percent
of the trials conducted.

The percentage of time a particular model has the lowest value of OB], for each combination
of N, N, and cross correlation, r,, is used to determine which model is most appropriate for

different N;, N,, r,, combinations.

4.3 DATA COMPILATION

Unregulated (natural) monthly streamflow data from Manitoba and Ontario gauging stations
obtained from Water Survey of Canada, a division of Environment Canada is used in this
study. Missing data was not infilled to ensure each model’s relative success in reproducing
statistics is not dependent on the data infilling method.

Long records were generally selected for model evaluation so the same record extension could
be made with as many common periods from the same record as possible. The location of the
regions containing the Manitoba gauging staton used in this study are shown in Figure 4.2,
The location of the regions containing the Ontario gauging station used in this study are
shown in Figure 4.3.

4.3.1 Gauging Stations Used in Study

Table 4.2 and Table 4.3 list the individual flow records used in this study for Manitoba and
Ontario gauging statons, respectively.
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Figure 4.2 Major Watershed Divisions in Manitoba
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Figure 4.3 Major Watershed Divisions in Ontario
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Table 4.2 Manitoba Unregulated Streamflow Data

. . Begin | End |Total| Drainage
No. | S i N. anag
o tation ID Stauon Name Year | Year |Years ()

1 04AC005 |GODS RIVER BELOW ALLEN RAPIDS 1933 1994 62 25,900
2 04AC007 |ISLAND LAKE RIVER NEAR ISLAND LAKE 1933 1994 62 14,000
3 05LE006 |SWAN RIVER NEAR MINITONAS 1961 1995 35 4,230

4 05LHO005 |WATERHEN RIVER NEAR WATERHEN 1953 1995 43 55,000
5 05MDO005 |SHELL RIVER NEAR INGLIS 1957 1995 39 2,000

6 | 0SMFO18 munm SASKATCHEWAN RIVER NEAR 1956 | 1995 | 40 | 3910
7 050D001 |ROSEAU RIVER NEAR DOMINION CITY 1949 1995 47 5,260

8 050E001 |RAT RIVER NEAR OTTERBURNE 1912 1995 84 1,340

9 050OE004 |RAT RIVER NEAR SUNDOWN 1960 1995 36 398

10 O05PHO03 |WHITEMOUTH RIVER NEAR WHITEMOUTH 1957 1995 39 3,750

MANIGOTAGAN RIVER NEAR
11 05RA001 MANIGOTAGAN 1960 1995 36 1,830
12 05RD008 |PIGEON RIVER AT OQUTLET OFROUND LAKE| 1958 1995 38 Unknown
13 | OSRE0O1 %L‘ AR RIVER AT OUTLET OF WEAVER 1968 | 1995 | 28 | 6850
14 05SA002 |BROKENHEAD RIVER NEAR BEAUSEJOUR 1958 1995 38 1,610
15 05SD003 |FISHER RIVER NEAR DALLAS 1961 1995 35 1,720
Table 4.3 Ontario Unregulated Streamflow Data
] . Begin | End | Total | Drainage
No. | Stauon ID. Station Name Year | Year | Years|Area (k)

16 05PB014 |TURTLE RIVER NEAR MINE CENTRE 1921 1995 75 4,870

17 05QA002 |ENGLISH RIVER AT UMFREVILLE 1922 1995 74 6,230

18 | 05QEO009 LAKES TURGEON RIVER AT OUTLET OF SALVESEN| 1505 | 1995 | 31 | 1330

19 02AA001 |PIGEON RIVER AT MIDDLE FALLS 1924 1995 72 1,550

20 02AB008 |NEEBING RIVER NEAR THUNDER BAY 1954 1995 42 187

21 | 02EA005 ?fﬁH MAGNETAWAN RIVER NEARBURK'S | 194 | 1995 | g0 321

NORTH MAGNETAWAN RIVER ABOVE

22 02EA0Q10 PICKEREL LAKE 1968 1995 28 149

23 02EC002 |BLACK RIVER NEAR WASHAGO 1916 1995 80 1,520

24 02FB007 |SYDENHAM RIVER NEAR OWEN SOUND 1949 1995 47 181

25 02FC001 |SAUGEEN RIVER NEAR PORT ELGIN 1915 1995 81 3,960

26 02FC002 |SAUGEEN RIVER NEAR WALKERTON 1915 1995 81 2,150

27 02GA010 |NITH RIVER NEAR CANNING 1948 1995 48 1,03C

28 02GG002 |SYDENHAM RIVER NEAR ALVINSTON 1949 1995 47 730

29 02HLO04 |SKOOTAMATTA RIVER NEAR ACTINOLITE 1956 1995 40 712

30 02LB007 |SOUTH NATION RIVER AT SPENCERVILLE 1949 1995 47 246
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Table 4.2 and Table 4.3 show there are generally longer records of data available from
Ontario gauging stations. Ontario data generally has less gaps than the Manitoba data. The
Ontario data is included to supplement the Manitoba data.

The years of record where flows were collected only during the summer months, usually in an
early portion of the record, were discarded so the amount of data used in the parametric and
nonparametric methods would be as equal as possible. In the nonparametric model, a feature
vector cannot be obtained for a season which does not contain all the monthly data available
for calculating all the feature vector elements. Missing data for the parametric models does not
have the effect of excluding other data which falls within the same season. Tables 4.2 and 4.3
list the years of data actually used in the study, not the total number of years of data which may
contain only partially completed records.

4.3.2 Base and Index Stations Used for Evaluation and Verification

The combinations of base and index record stations used for the evaluation of the streamflow
record extension techniques are shown in Table 4.4 and Table 4.5. Table 4.4 shows the base
and index records used to evaluate the techniques under the condition of r,, >0.666. Table
4.5 shows the base and index records used to evaluate the techniques under the conditon of
r,, < 0666. The total number of mials conducted using a given base and index record is
referred to as a “run” of trials. A single trial is conducted for a given combination of extension
and common period. There are several trials associated with each run because the extension
period and common period varied a number of umes for each combination of base and index
record used. Certain base and index records are omitted from the evaluation phase, in order to
be used as independent data for verification. The number of trials associated with each “run”,
as well as which runs were selected for the verification exercises are also shown in Table 4.4
and Table 4.5.
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Table 4.4 Base and Index Records Used for Evaluation and Verification, r,, > 0.666

No. | Base Station | Index Station Iy Comment
Ni=5 yrs not used due to missing flows.

1 04AC005 04AC007 0.731 | Used for verification phase.
| 21 wials,

2 | 050E001 050D001 | 0.852 | 20 trials.

3 | o0sMDoos 0SMFO18 | 0.788 | 12 trials.

4 | o0sMFoO18 0SLE006 | 0.685 | 12 trials.

5 | 050E001 0SOE004 | 0.908 | 12 trials.

6 | 050E001 0SPHO03 | 0.836 | 12 trials.

7 05PHO003 05OE004 | 0.896 | 12 trials.

8 05PEI003 05RA001 | 0749 | 12 trials.

9 | osPBO14 | 05QA002 | 0.868 Eosfi:l‘s” vesification phase.

10 | 02AA001 02AB008 | 0.827 | 16 trials.

11 | 02EA005 02EC002 | 0.887 | 48 trials.

12 | 02EA005 02FC002 | 0718 | 48 trials.

13 | 02EA005 0ZHLO004 | 0768 | 16 trials.

14 | 02EC002 02FC001 | 0.843 1:18‘;?3{5’_5 nor used due to missing flows.

15 | 02EC002 02FC002 | 0.875 | 48 trials.

16 | 02EC002 02GAO10 | 0740 | 20 trials.

17 | 02RC001 02FC002 | 0.984 | 48 trials.

18 | 02RC002 02GA010 | 0901 | 20 trials.

19 | o02rC002 02GGO02 | 0.695 | 20 trials.

20 | 02FC002 0ZHLOO4 | 0.884 | 16 trials.

21 | 02GA010 02GGO02 | 0.828 | 20 triaks.

2 | 02GA010 02HILO04 | 0.805 | 16 trials.

23 | 02LBo07 02HIOO04 | 0.864 | 16 trials.
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Table 4.5 Base and Index Records Used for Evaluation and Verification, r,, < 0.666

No. | BaseStauon | Index Station Ixy Comment

1 0SLLHOO05 - 05SLEQC6 0.391 12 tnals.

2 050D001 05LEOQ06 0.555 12 trials.

3 05LHO005 05MDQ05 0.391 12 tnials.

4 050D001 05MDQ05 0.553 12 tnals.

5 050EQ01 05SD003 0.555 12 mals.

6 05RDQ08 05REQ01 0.620 | 6 trials.

7 02EAQ05 02AA001 0.548 | 40 trials.

8 02AA001 02EA0Q10 0.478 | 6 trials.
10 02EC002 02AA001 0.405 | 40 tnals.

11 02EAQ05 02FB007 0.632 | 20 tnals.
12 02EAQ05 02FC001 0.664 | 48 mials.

13 02EAQQ5 02GA010 0.507 | 20 trials.
14 02EAQ05 02GG002 0.336 | 20 trials.
15 02ECO002 02GG002 0.560 | 20 tnials.

16 02GG002 02HL004 0.610 16 trials.

Ni=5 yrs, N2=5 yrs trial not used due
17 05SA002 05RA001 0.642 | to missing flows. Used for vernfication phase.
11 tnals. !
18 | 05QA002 05QE009 | 0.626 ;J:jlsf“ verfication phase. i
44 MODEL DEVELOPMENT

This section describes the development of the streamflow record extension models used to
carry out the experimental trials described above. The evaluation of the computer models 1s
based on the results of the trials. Streamflow record extension may be done using one
relationship for all concurrent monthly flows or 12 separate relationships for flows from each
month. The concurrent monthly flow method is referred to as the non-cyclic approach.
Using 12 separate relationships for monthly flows is referred to as the cyclic approach. A

trade-off exists between greater sample size for estmating statistical parameters versus the
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ability to preserve real month-to-month differences which may exist in the base station to
index station relationship (Alley and Burns, 1983). However, no differences exist in the
comparison of the flow sequences resulting from either the cyclic or non-cyclic approaches.
Both the cyclic and non-cydic approaches are investigated for each of the parametric and
nonparametric extension methods.

The parametric and nonparametric models handle missing flow values. No synthetc flows are
generated in time periods corresponding to missing data in the base station record. In the case
of the parametric models and cyclic nonparametric model, a single missing flow value in the
historical base record results in only one missing flow value in the generated series. For the
non-cyclic nonparametric extension models, a missing flow within a particular season results in
an incomplete feature vector of pattern attributes for that season. Incomplete feature vectors
are not associated with any near neighbors, since a distance calculated with an incomplete
feature vector would not be consistent with distances calculated between complete feature
vectors. Thus, for the non-cyclic nonparametric models, the season of flows in the synthetic

record corresponding to the incomplete season in the base record is not generated.

4.4.1 Definition of Record Extension Models

The nonparametric method is divided into 3 main types depending on the definition of the
feature vector. Recall that the feature vectors were determined based on either standardized
flows, raw flow values, or first differencing of monthly flows. Nonparametric Type 1 ulizes
standardized flows for feature vector elements. Nonparametric Type 2 utlizes the historical
monthly streamflow data for the feature vector elements. Nonparametric Type 3 ualizes first

differences of consecutive flows for feature vector elements.

There are 3 further sub-divisions of each type of nonparametric model corresponding to the
manner in which the nearest neighbors are determined. Sub-types A, B, and C correspond to
nonparametric models which utlize Euclidean, Manhattan, and Modified Lance-Wiliams
nearest neighbor distances, respectively. The streamflow record extension models are listed in
Table 4.6. There are 10 parametric and 10 nonparametric models. The models are numbered
and abbreviated for ease of reference within the discussions. Model numbers 1 to 14 use the

61




Table 4.6 Models for Streamflow Record Extension

Model Descnption
1.REG Simple linear regression
2.RPN Linear regression plus independent noise
3. MV1 Maintenance of variance extension Type 1
4.MV2 Maintenance of variance extension Type 2
5.MV3 Maintenance of variance extension Type 3
6.NP1A | Nonparametric Type 1A~ standardized flows, Euclidean distances
7.NP1B | Nonparametric Type 1B - standardized flows, Manhattan distances
8. NP1C | Nonparametric Type 1C - standardized flows, Mod. Lance/Williams distances
9.NP2A | Nonparametric Type 2A - monthly flows, Euclidean distances
10. NP2B | Nonparametric Type 2B - monthly flows, Manhartan distances
11.NP2C | Nonparametric Type 2C - monthly flows, Mod. Lance/Williams distances
12.NP3A | Nonparametric Type 3A - first differencing, Euclidean distances
13.NP3B | Nonparametric Type 3B - first differencing, Manhattan distances
14. NP3C | Nonparametric Type 3C - first differencing, mod. Lance/Williams distances
15. REGM | Simple linear regression - cyclic approach
16. RPNM | Regression plus independent noise - cyclic approach
17.MVIM | Maintenance of variance extension Type 1 - cyclic approach
18. MV2M | Maintenance of variance extension Type 2 ~ cyclic approach
19. MV3M | Maintenance of variance extension Type 3 ~ cyclic approach
20.NPM | Nonparametric - monthly flows, cyclic approach
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non-cyclic approach and models 15 to 20 use the cydic approach. The abbreviations for
models 15 to 20 in Table 4.4 end with an “M” to signify they utilize 12 separate monthly
relationships (cydlic approach).

4.4.2 Definition of Seasons

The pattern recognition process involves segmenting the flow record into pattern classes to
obtain feature vectors by the various methods described in Chapter 3. The feature vectors are
clustered into nearest neighbors, which are subsequently used to generate synthetic flows. The
methodology for partitioning the streamflow data into pattern classes is described in this

secuon.

Hydrologic data corresponding to monthly measurements occur in well-defined groups (Panu
et al., 1978). Monthly flow sequences within a year are divided into pattern classes, or groups,
corresponding to seasons. This allows different portions of the flow record for a particular
year to be associated with a separate set of nearest neighbors, ensuring that the selection of
nearest neighbors is not biased towards the patterns defined by any other season with the same
year or other years. Nearest neighbors associated with a feature vector obtained from the flows
during a given season are independent of the nearest neighbors chosen for all other fearure

VECTOrs.

Panu et al. (1978) recommend the division of seasons based upon an examination of the ume
series of flows. The year is divided into seasons based upon an examination of the mean
monthly hydrograph and systemancally determining which segmentation best represents the
historical pattern. The method presented herein is flexible and provides an opportunity for the
hydrologist to utilize particular knowledge of the record’s drainage basin or other factors. In
the case of the present study, an intimate knowledge of the circumstances related to the
particular flow records is not available. The dlassification is based upon both review of the
monthly hydrographs as well as a quantitative decision function which relates the ability of the
nonparametric technique to find similar patterns in the historic record using the chosen

division of seasons.
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The procedure for the division of seasons begins by determining the number of seasons

to divide the year into. The average monthly hydrographs are shown in Appendix A. Panu et
al. (1978) divided the flow year into two seasons corresponding to 6 month sections beginning
in November and May, respectively, for the South Saskatchewan River. The group of monthly
flows generally higher than average is known as the wet season, and the remaining lower flows
are known as the dry season. An examination of the average monthly hydrographs show that
a division of two seasons is also appropriate for the streamflows used in the present study, but
the beginning and lengths of the seasons of different flow records vary from record to record.

An iniual first guess of the months corresponding to the beginning and end of the dry and wet
seasons is made. Note that the end of the dry season is equivalent to the beginning of the wet
season, and the end of the wet season is the beginning of the dry season. The beginning and
end of a particular season need not necessarily fall within the same year. The flow record is
defined as both the index and base station. The extension period is defined as the first third of
the historic record. The nonparametric model is utilized to generate synthetic flows for the
extension period, using the initial guess of seasons using the same flow record as the base and
index station. The resulung SSE from the inital guess of seasons is recorded. The duration of
the wet season is then varied by a small amount (normally one month). The nonparametric
model is used again to generate the same sequence of flows, but this ume with the new
seasons. The SSE from the subsequent run is again recorded. This process is repeated with
different plausible season lengths. The division of seasons which minimized SSE indicates
increased nonparametric model performance, in terms of increased ability of the
nonparametric models to recognize the flow patterns. Therefore, the division of seasons which
minimized SSE was used to segment the flow record into pattern classes.

The extension period is taken as one third of the total record to strike a balance between the
amount of common record available to recognize similar feature vectors, and the confidence
placed on the results of the extension. The chosen extension period is a factor in the level of
SSE. The length of common period affects the probability of a similar pattern being utilized as
a nearest neighbor, which directly impacts which seasonal division becomes the optimum, and
ultimately the overall model performance.




The flow records were classified into their respective seasons at an early stage of the

model development when the nearest neighbor optimization procedure was not yet developed.
As such the division of seasons was based on feature vectors using only standardized feature
vector elements and 3 nearest neighbors. The nonparametric model performance has likely not
been impaired by thé division of seasons using only 3 nearest neighbors and standardized
feature vector elements because the method generally resulted in seasons consistent with that
determined by visual examination of the mean monthly hydrographs. However, an area for
future work lies in refining the methodology for segmentation of the yearly flows into seasons.
Note that the above methodology is not a replacement for judgement in determining the
seasons based on examining the average monthly hydrograph and utlizing knowledge of
individual circumstances. Rather, this is a tool for confirming a preliminary selection or to aid
in the selection where the discimination is unclear from visual examination of the hydrograph.

Table 4.7 shows the seasonal flow record segmentation of the records used in this study. Only
the months corresponding to the start and end of the wet season for each year are shown,
since the beginning and end of the dry season is implied.

4.4.3 Optimum Number of Nearest Neighbors

For each tmal conducted, the number of nearest neighbors, n, is increased from 1 to the
maximurn allowable with the given data (limited by the number of years of common record),
and the SSE is denoted SSE(n). The optimum number of nearest neighbors, n,, is thar n
which corresponds to the minimum SSE, ie. SSE(n = n,,). Each nonparametric model
determines n,, for every trail conducted, since the optimum number of nearest neighbors is
not necessarily equal for all nonparametric models. The results are used to recommend the
appropriate number of nearest neighbors to use for a given N;, N,, r,, combination.

The average number of nearest neighbors utlized by each type of nonparametric model for
various combinations of extension period and common period were calculated based on all the
evaluation trials conducted. The standard deviation of the optimum number of nearest
neighbors selected by the nonparametric models was also calculated. The results for r,, >
0.666 are shown in Tables B-1 to B4, and the results for r,, <0.666 are shown in Tables B-5
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to B-8, for all values of N,. Tables B-1 to B-8 show that the optimum number of nearest
neighbors chosen by the nonparametric models, in general, does not vary appreciably as the
extension period increased. Additionally, the vanability of the number of nearest neighbors
selected increases as N, increased, but also did not vary appreciably with the extension period.
The variation of n,, is greater for r,, < 0.666 than for r,, >0.666.

Tables 4.8 and 4.9 show the number of nearest neighbors utilized by each model averaged over
all extension periods. Recall the extension period varied from 5 to 20 years, in 5 year
increments. For r,, > 0.666, the average number of nearest neighbors increases from a
minimum of 2 for a 5 year common period to a maximum of 21 corresponding to a 75 year
common period. For r,, < 0.666, the average number of nearest neighbors increases from a
minimum of 3 for a 5 year common period to a maximum of 48 corresponding to a 75 year
common period. In general, the number of nearest neighbors chosen by the nonparametric
models is less with higher cross correlation between the base and index staton. Additonally,
the spread between the number of nearest neighbors chosen by the nonparametric models is
shown to be quite narrow for a common period less than 40 years, while the number of
neighbors chosen by the models diverges quite rapidly at common periods greater than
approximately 40 years.
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Table 4.7 Division of Seasons

No. | Station ID. [Station Name Start of Wet | End of Wet
Season Season
1 04AC005 {GODS RIVER BELOW ALLEN RAPIDS June November
2 04AC007 [ISLAND LAKE RIVER NEAR ISLAND LAKE June November
3 05LE006 |SWAN RIVER NEAR MINITONAS April May
4 05LH005 |WATERHEN RIVER NEAR WATERHEN May December
5 05MD005 |SHELL RIVER NEAR INGLIS April July
6 05MF018 |LITTLE SASKATCHEWAN RIVER NEAR RIVERS April July
7 050D001 [{ROSEAU RIVER NEAR DOMINION CITY April July
8 050E001 |RAT RIVER NEAR OTTERBURNE April May
9 050E004 |RAT RIVER NEAR SUNDOWN April May
10 | O05PHO003 |WHITEMOUTH RIVER NEAR WHITEMOUTH April June
11 | O05RA001 |MANIGOTAGAN RIVER NEAR MANIGOTAGAN May July
12 | O05RD008 |[PIGEON RIVER AT OUTLET OF ROUND LAKE June September
13 | O0SRE001 |POPLARRIVER AT OUTLET OF WEAVER LAKE May July
14 | 055A002 |BROKENHEAD RIVER NEAR BEAUSEJOUR April June
15 | 05SD003 (FISHER RIVER NEAR DALLAS April May
16 | 05PB014 |TURTLE RIVER NEAR MINE CENTRE May July
17 | 05QA002 |ENGLISH RIVER AT UMFREVILLE May July
18 | 05QE009 |STURGEON RIVER AT OUTLET OF SALVESEN May July
LAKE
19 | 02AA001 |PIGEON RIVER AT MIDDLE FALLS April June
20 | 02AB008 |NEEBING RIVER NEAR THUNDER BAY April June
21 02EA005 |NORTHMAGNETAWAN RIVER NEAR BURK'S April May
FALLS
22 | 02EA010 |INORTHMAGNETAWAN RIVER ABOVE PICKEREL April May
LAKE
23 | 02EC002 (BLACK RIVER NEAR WASHAGO March May
24 02FB007 |ISYDENHAM RIVER NEAR OWEN SOUND March Apnl
25 02FC001 [SAUGEEN RIVER NEAR PORT ELGIN March April
26 | 02FC002 |SAUGEEN RIVER NEAR WALKERTON March May
27 | 02GA010 |NITHRIVER NEAR CANNING March April
28 | 02GGOQ2 ({SYDENHAM RIVER NEAR ALVINSTON March Apal
29 02HL004 |SKOOTAMATTA RIVER NEAR ACTINOLITE March May
30 | 02LB007 |SOUTH NATION RIVER AT SPENCERVILLE March April
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Table 4.8 Average Number of Nearest Neighbors for Nonparametric Models,

Iy > 0.666
MODEL Common Perniod, Years
5110115120} 25 |1 301354045 |50 | 55|60 ]65|70 |75

NPIA |33} 4 5 6 7 7 9 10 9 12 | 12| 14 | 12 | 12
NPIB [3]3] 4] 5 6 7 8 8 11 )11 121 12|15} 16 | 14
NPIC |35 5 5 5 6 6 6 7 7 8 8 9 9 8
NP2A |34 ]| 4 5 6 7 8 9 10| 1112121512 | 13
NP2B {3 4| 4 5 6 6 7 9 10|10 ( 11 | 11 [ 12| 13 | 11
NP2C |34 4 5 6 7 7 9 10111 |12 12| 14|17 22
NP3A 3|45 6 6 7 7 8 10 | 10 9 11 | 11 ] 13} 11
NP3B |3]5]| 5 6 7 8 8 1001211} 11| 12|13 ]| 16 | 10
NP3C |35 5 5 6 6 7 8 9 7 9 9 10| 10 ] 10
NPM |23} 4 5 6 7 8 7 9 9 11 | 12 | 14 | 16 | 14
Mean [29(40{44(52 |60 |68 |73 (839896 (10.7|11.1{127]13.4]125

Rounded| 3 | 4 | 4 5 6 7 7 8 10| 10 1 11 | 11 | 13 | 13 | 13
Stdev. |0.3]0.8/05(04 |05 (06|07 |12 |13 |16 |15 1421 (28| 3.8

The number of nearest neighbors used by the nonparametric models averaged over all trials
and for all extension periods for r,, > 0.666 and r,, < 0.666 are shown in Figure 4.4 and Figure
4.5, respectively. Figure 4.4 and Figure 4.5 show that the number of nearest neighbors, n,,
used by all models is relatively uniform until the common period reaches approximately 40
years. In Figure 4.4, n,,, varies from an average of 58 to 17 percent of N, for r,, > 0666. In
Figure 4.5, n,, varies from an average of 72 to 37 percent of N, for r,, <0666. Thus the
number of nearest neighbors utilized is greater for small r,. Also the rate at which the nearest
neighbors increases with N, is greater for r,, < 0.666.
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Table 4.9 Average Number of Nearest Neighbors for Nonparametric Models,

ry <0.666
MODEL Common Period, Years
51101151 201 25|30 |35 | 40| 45|50 | 55|60 |65|70]| 75
NPIA |46 9} 10|13 ] 16 |20 | 24 | 32 |36 | 38| 35| 35| 35| 36
NPIB |46 8| 10|12 {15 |18 | 25| 31 135 | 38 | 35 | 38 | 39 | 48
NPIC |47 |10 11} 13 | 15|19 |20 25|21 |23 ;19 |24 {21 | 10
NP2A |36 9| 10| 12|16 | 20| 25130 |36 (36| 36| 36|41 | 45
NP2B |3 (7|9 | 11|13 |16 20| 27 | 3113435136 | 34|37} 40
NP2C (3179 | 12|12 15|19 | 24| 29 |36 |32 | 33| 36 | 34 | 41
NP3A |4]6| 8| 10| 12|14 |16 (19 | 19 |25 (23 | 25|29 | 24 | 13
NP3B |4i6| 8110 12| 14|17 | 21| 26|31 |27 |29 |30 ]| 24| 12
NP3C [ 48|11 | 13 |15}17 |17 |16 |21 | 23 |23 | 27 | 25 9 9
NPM (36| 8| 10} 12| 15|18 | 21| 27 |34 {28 |24 |20 (20| 20
Mean [3.6{6.5{8.9{10.7|12.6)|15.3|18.4|22.2127.1|31.1/30.3|29.9|30.7|28.4|27.4
Rounded| 4 {7 | 9 | 11 | 13 | 15 | 18 | 22 | 27 (31 |30 { 30 | 31 | 28 | 27
Stdev [0.5|0.7/10]1.1110|09 |14 |34 (44|59]|63|60]|6.1]103|160
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4.5 EVALUATION OF EXTENSION TECHNIQUES

In accordance with Section 3.2, log transforms of the data are used in the parametric models to
help correct the skewness in the distribution of error terms, unequal error variances and non-
linearity of regression functon. This type of transformation was used by Hirsch (1982), Alley
and Burns (1983), Beauchamp et al. (1989), and Parrett and Carter (1990). From the log
transformation of the data, it follows that the sample mean of the extended record of the
logarithms is an unbiased estimate of the mean of the loganthms, but the sample mean of the
extended record of flows is not an unbiased estimate of the mean of the flows. Hirsch (1982)
states that the above observation is not detrimental to the techniques, because the parametric
techniques reproduce cumulative distribution funcdons (CDF’s) which are close
approximations to the historical CDF’s, particularly in the tails. A log transformarion has less
effect on the tails of the distributions.
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4.5.1 Number of Trials Evaluated

A breakdown of the number of trials conducted for the combinations of extension period, N,,
and common period, N,, for r,, > 0.666 and r,, < 0.666 are given in Table 4.10 and Table 4.11,
respectively.

For r,, > 0.666, there are a total of 492 tmals, of which 61 trials are used for model

verification. In the case of r,, < 0.666, there are a total of 296 trials, of which 20 are used for
model verificaton. There are comparatively fewer mials involving common periods greater

than 30 to 40 years, due to a general lack of data records exhibiting very long flow records.

Furthermore, as the extension period increases, the number of trials with longer common

period decreases because the minimum common period is equal to the extension period.

Table 4.10 Number of Evaluation Trials, r,, > 0.666

N, N, =5years | N,=10years | N, =15years | N, = 20years | Total
Years Tnals
5 21 0 0 0 21
10 21 21 0 0 42
15 21 21 21 0 63
20 21 21 21 15 78
25 21 21 15 10 67
30 21 15 10 5 51
35 15 10 5 5 35
40 10 5 5 5 25
45 5 5 5 5 20
50 5 5 5 5 20
55 5 5 5 5 20
60 5 5 5 5 20
65 5 5 5 0 15
70 5 5 0 0 10
75 5 0 0 0 5
Total 186 144 102 60 492
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Table 4.11 Number of Evaluation Trials, r,, <0.666

N, N,=5years | N, = 10years | N, = 15years | N, = 20years | Total
Years Trials
5 15 0 0 0 15
10 15 15 0 0 30
15 15 15 13 0 43
20 15 13 13 8 49
25 13 13 8 7 41
30 13 8 7 3 31
35 8 7 3 3 21
40 7 3 3 3 16
45 3 3 3 3 12
50 3 3 3 3 12
55 3 3 3 1 10
60 3 3 i 1 8
65 3 1 1 0 5
70 1 1 0 0 2
75 1 0 0 C 1
Total 118 88 58 32 296

There are fewer trials overall for r, < 0.666 in comparison to r,;, >0.666, because the selecuon
of candidate base and index records required that the two streams chosen be within a
reasonable proximity of each other. In the case of r,, > 0.666, this condition is easily met.
However, in the case of r,, < 0.666, there are many instances where a moderate cross
correlation between two flow records can be realized, but the gauge locations are separated by
greater than 4 or 5 watersheds. Generally, the cross correlation was found to decrease quite
rapidly when the associated watersheds were separated by greater than 2 or 3 subcatchments.
The number of candidate streamflow records displaying a low r,, <0.666 while simultaneouslty
remaining within 4 subcatchment proximity was low. However, no strict decision rule was
used to select the candidate base and extension records in terms of physical proximity, but the
candidate records generally were required to be within 2 or 3 subcatchment proximuty.
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4.5.2 Tests for Skewness, Kurtosis, and Serial Correlation of Residuals

The skewness and kurtosis of residuals was tested on the log-transformed synthetic ime series
generated by the parametric models to determine if the parent series were normally distributed.
The tests are conducted on the synthetic series before reverse ransformation to determine if
the log-transformed parent time series used in the parametric models conform to the model
assumptions. The serial correlation test is done on the reverse transformed synthetic flow
values. If the parent series are normally distributed, the residuals generated from the extension
will be normally distributed.

Autocorrelation of residuals is an indicator of model inadequacy which may arise due to the
model not accounting for time varying factors. The terms autocorrelation and serial
correlation are used interchangeably. In linear regression, autocorrelation of residuals increases
the uncertainty associated with the estimated parameters, the mean square error may
underestimate the varance of the error terms, and the confidence intervals and tests on the
model parameters are no longer strictly applicable (Neter et al., 1989). However, the esumated
parameters a and b (Equations 3.11 and 3.12) are sull unbiased estimators, but there is
increased uncertainty in their estimation (Booy, 1992). Table 4.12 and Table 4.13 show the
average skewness, kurtosis and serial correlaton of residuals obtained for all the tnals
conducted for the parametric and nonparametric models, for r,, > 0.666 and r,, < Q666,
respectively. The 95% confidence limits are shown in the columns entitled +95%.
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Table 4.12 Average Test Parameters on Residual Series, r,, > 0.666

MODEL| 95% | SKEW | +95% | 95% | KURT | +95% | -95% | SER | +95%
REG | 048 | 007 | 048 | 204 | 366 | 396 | 021 | 022 | 0.8
o 0.12 07 | 012 | 025 | 197 | 025 | 006 | 014 | 005
RPN | 048 | 002 | 048 | 204 | 345 | 396 | 021 | 016 | 0.8
o 012 | 055 | 012 | 025 | 166 | 025 | 006 | 013 | 0.05
MVI | 048 | 013 | 048 | 204 | 391 | 396 | 021 | 013 | 0.8
p 012 | 082 | 012 | 025 | 285 | 025 | 006 | 015 | 005
MV2 | 048 | 012 | 048 | 204 | 3.86 | 396 | -021 | 0.13 | 0.8
o 012 | 077 | 012 | 025 | 254 | 025 | 006 | 015 | 005
MV3 | 048 | 012 | 048 | 204 | 38 | 396 | -021 | 012 | 0.8
p 012 | 075 | 012 | 025 | 235 | 025 | 006 | 013 | 005
NPIA 021 | 011 | 0.18
o 006 | 015 | 005
NP1B 021 | 010 | 0.18
o 006 | 015 | 005
NPIC 021 | 011 | 0.18
o 006 | 015 | 005
NP2A 021 | 011 | 018
o 006 | 015 | 005
NP2B 021 | 011 | 0.8
o 006 | 014 | 005
NP2C 021 | 011 | 018
o 006 | 015 | 005
NP3A 2021 | 022 | 018
o 006 | 016 | 005
NP3B 2021 | 021 | o018
o 006 | 016 | 005
NP3C 021 | 020 | 0.18
o 006 | 016 | 005
REGM | 048 | 011 | 048 | 204 | 403 | 396 | -021 | 014 | 018
o 012 | 064 | 012 | 025 | 156 | 025 | 006 | 013 | 005
RPNM | 048 | 005 | 048 | 204 | 375 | 396 | 021 | 011 | 0.8
o 012 | 053 | 012 | 025 | 138 | 025 | 006 | 013 | 005
MVIM | -048 | 025 | 048 | 2.04 | 444 | 396 | 021 | 011 | 0.18
o 012 | 081 | 012 | 025 | 341 | 025 | 006 | 012 | 005
MVIM | -048 | 0.13 | 048 | 204 | 395 | 396 | -021 | 012 | 0.18
p 012 | 055 | 012 | 025 | 124 | 025 | 006 | 012 | 005
MV3M | 048 | 008 | 048 | 204 | 3.8 | 396 | 021 | 012 | 0.18
p 012 | 048 | 012 | 025 | 135 | 025 | 006 | 012 | 005
NPM 021 | 014 | 0.18
o 006 | 014 | 005
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The nonparametric models are not subject to skewness and kurtosis tests, as explained
previously. Thus skewness and kurtosis values are not reported for the nonparametric models.

The values given in Table 4.12 and Table 4.13 are average values obtained from a large number
of trials. The standard error of prediction are shown in italics below the average value. The
skewness, kurtosis and serial correlation, abbreviated SKEW, KURT, and SER, respectively,
are located in between the associated average 95% confidence limits, for all the trials
conducted. The confidence intervals depend upon the level of significance of the test as well
as the sample size. The level of significance is constant for all the trials, but the sample size
varies quite a bit. Strictly speaking, the confidence limits shown have no specific meaning in
association with the averaged test statistics because of different sample sizes used in obtaining
both the test stanstics and the confidence limits. However, one may note that the standard
error assodated with the confidence limits is quite small, indicating the confidence limits did
not vary to a great extent over the range of sample sizes encountered. Thus the average
confidence limits, with the associated standard error, provide a general indication as to the
range of confidence limits encountered during all the trials. Similarly, the average test staustic
values, along with the associated standard deviation, provides a general indication as to the
range of skewness, kurtosis and serial correlation of residuals encountered over all the trials
conducted.

Referring to Table 4.12 and Table 4.13, the test staustics displayed large vanance. This
indicates that the values of the test statistics obtained from the trials were dispersed greatly
about the mean value. The standard deviation of the skewness is as much as 5 times as great as
the mean value, but the mean value over all the trals falls within the average 95% confidence
limits. Thus, even though the average test statistic falls within the confidence limits, one
would expect a large portion of the trials to “fail” the test, ie. the null hypothesis that the
skewness of the residuals is zero would be rejected, supporting the conclusion that the
residuals are not normally distributed. Similarly, the standard deviation of the kurtosis of
residual series varied between approximately 30 and 80 percent, and that of the serial
correlation between 40 and 120 percent of the average.
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Table 4.13 Average Test Parameters on Residual Series, r,, < 0.666

MODEL| -95% | SKEW | +95% | -95% | KURT | +95% | 95% | SER | +95%

REG | 048 | 027 | 048 | 203 | 326 | 397 | -021 | 035 | 0.9
o 012 | 062 | 012 | 024 | 216 | 024 | 005 | 015 | 004
RPN | -048 | 014 | 048 | 203 | 322 | 397 | 021 | 028 | 0.9
p 012 | 048 | 012 | 024 1.8 024 | 005 | 015 | 004
MV1 | 048 | 035 | 048 | 203 | 3.69 | 397 | 021 | 021 | 019
p= 012 | 076 | 012 | 024 | 299 | 024 | 005 | 016 | 004
MV2 | 048 | 0.3 048 | 203 | 353 | 397 | -021 | 021 | 0.19
p 012 | 064 | 012 | 024 | 235 | 024 | 005 | 016 | 004
MV3 | -048 | 029 | 048 | 203 | 353 | 397 | 021 | 021 | 019
o 012 | 063 | 012 | 024 | 236 | 024 | 005 | 016 | 004
NP1A 021 | 021 | 019
p 005 | 016 | 004
NP1B 021 | 021 | 019
p 005 | 016 | 004
NP1C 021 | 022 | 0.9
o 005 | 017 | 004
NP2A 021 | 020 | 0.9
p 005 | 016 | 004
NP2B 021 | 021 | 019
po 005 | 016 | 004
NP2C 021 | 021 | 019
p 005 | 017 | 004
NP3A 021 | 022 | 019
o 005 | 016 | 004
NP3B 021 | 022 | 019
p 005 | 016 | 004
NP3C 021 | 023 | 0.9
o 005 | 017 | 004
REGM | -048 | 014 | 048 | 203 | 3.8 | 397 | 021 | 021 | 0.9
pot 0.12 0.6 012 | 024 | 228 | 024 | 005 | 015 | 004
RPNM | -048 | 009 | 048 | 203 | 362 | 397 | -021 | 015 | 0.19
o 012 | 0356 | 012 | 024 | 192 | 024 | 005 | 015 | 004
MVIM | 048 | 027 | 048 | 203 | 418 | 397 | -021 | 0.18 | 0.9
o 012 | 061 | 012 | 024 | 169 | 024 | 005 | 017 | 004
MV2M | 048 | 021 | 048 | 203 | 412 | 397 | -021 | 018 | 0.19
po 012 | 0359 | 012 | 024 | 177 | 024 | 005 | 016 | 004
MV3M | 048 | 018 | 048 | 203 | 408 | 397 | -021 | 019 | 019
p 012 | 063 | 012 | 024 | 199 | 024 | 005 | 015 | 004
NPM 2021 | 025 | 0.19
p 005 | 015 | 004
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The average skewness of residuals increased, for all models, when r,, decreased. The
average kurtosis of residuals decreased when r,, decreased for all models except MVZM and
MV3M. In all cases, the average serial correlation of the residual series increased with
decreased cross correlation between the base and index records.

Generally, the average serial correlation obtained over all trials fell within the average 95%
confidence limits, except for NP3A, with was marginally outside the confidence limits.
However, given the high standard deviation of the serial correlation of errors, we would again
expect a large percentage of tnals to “fail” the test, supporting the conclusion that the models
may not explain time-ordered effects, such as potential trends in the time series, or ume
varying relationships between the base and index record.

Histograms are frequently used in statistical analysis to graphically summarize the nature of the
data. Histograms of the skewness, kurtosis and serial correlanon were constructed in order to
visually examine the empirical frequency distributions of the parameter values. The procedure
for obtaining the histograms follows. The data is grouped into class intervals of 0.1 width (no
units). The choice of class interval is determined somewhat arbitrarily, involving judgement to
balance computational complexity and the desire to provide an adequate picture of the
distribution. Small samples may also affect the size of class interval. The class frequency is
determined as the number of data occurring within a parucular class interval. The proporton
of the set of observations in each class is obtained by dividing each class frequency by the total

number of observanons.

From Table 4.12, REGM has fairly high average skewness and kurtosis at 0.11, and 4.03,
respectuvely. The standard deviatons of the skewness and kurtosis are 0.64 and 1.56,
respectively, indicating a large spread about the mean value. The skewness histogram for
REGM is shown in Figure 4.6. The kurtosis histogram for REGM is shown in Figure 4.7.
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Figure 4.7 Histogram of Kurtosis of REGM Residual Series, r,, >0.666
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Figure 4.6 shows the distribution of skewness slightly skewed to the left, favoring higher
values of skewness and a large vanability. A skewness of 0.45 has the highest relative
frequency of 0.096. Thus, the skewness histogram is shifted to the night of the expected value
under normality. The area within the bars represents the probability of the skewness
occurring, ie. P(g,). Roughly half the area on Figure 4.6 falls to the left and right of the
“average confidence limits” described previously, therefore one would esumate approximately
50 percent of the trials involving REGM would fail the skewness test. Figure 4.7 shows the
distribution of kurtosis is also skewed to the left, with a split into two peak frequencies
centered around approximately 3.2 and 4.3. A large vanability of kurtosis is also displayed.
The left peak of the histogram occurs at 3.2 kurtosis with a relative frequency of 0.083. The
right histogram peak occurs at 4.3 kurtosis also with a relative frequency of 0.083. Given the
occurrence of the right peak outside the “average confidence limits” for this staustic, one
would expect nearly half of the trials for REGM to fail the kurtosis test.

Figure 4.8 shows the histogram of serial correlation of the residual series, r,, for REG, which
obtained an average r, = 0.22. The standard deviation of r, was 0.14, indicating high variability.

Figure 4.8 shows the distribution of serial correlation has a slight posiuve skewness, centered
around r, = 0.25 with a corresponding relative frequency of 0.317. The five bars on the night
side of the histogram fall outside the average confidence limits, leading one to expect a high
percentage of trials will result in rejection of the null hypothesis that the residual series is not
senally correlated.
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REG SERIAL CORRELATION HISTOGRAM, r,, >0.666
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Figure 4.8 Histogram of Serial Correlation of REG Residual Series, r,, >0.666

From Table 4.13, MV1 has high skewness, MV1M has high kurtosis and NPM has high r,, at
0.35, 4.18, and 0.25, respectively. The standard deviations of the skewness, kurtosis and r, are
0.76, 1.6% and 0.15, respectively, indicating large vanability. The histogram of skewness of the
residual series for MV1 is shown in Figure 4.9. Similarly, the corresponding kurtosis and serial
correlation histograms are shown in Figure 4.10 and Figure 4.11 for MVIM and NPM,

The histogram in Figure 4.9 is slightly skewed to the right and shows a large vanability. A
skewness of 0.25 has the peak relative frequency of 0.122. Roughly one third of the histogram
area falls outside the average confidence limits for skewness +0.48, listed in Table 4.13.
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MV1 SKE WNESS HISTOGRAM, r,, <0.666
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Figure 4.9 Histogram of Serial Correlation of MV1 Residual Series, r,, <0.666

The kurtosis histogram in Figure 4.10 is skewed to the night (negauve skew). The peak
frequency is 0.071 at a kurtosis of 3.15 and the variability is again large. Again, a significant
portion of the histogram lies outside the average 95% confidence limits, indicating a large
portion of the residuals series would fail the skewness test. This would lead to the conclusion
that the error terms are not normally distributed.

Figure 4.11 shows the serial correlation of the residual series is very slightly skewed to the right
(positive skewness), but nearly symmetrical, centered around r, = 0.25, with a corresponding
relative frequency of 0.27. This histogram is shifted far to the nght of zero seral correlation
leading to suspicion that a significant portion of the results display autocorrelated residuals.
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Figure 4.10 Histogram of Kurtosis of MVIM Residual Series, r,, <0.666

Table 4.14 and Table 4.15 list the fraction of trials for which a particular model “fails” the
error diagnosuc tests, as described above. Again the nonparametric models are not subject to
tests of skewness and kurtosis of residuals because the formulation of the nonparamemric
models includes no assumptions on the underlying distribution of the data.

A fairly high fraction of the tests conducted resulted in skewness, kurtosts and autocorrelaton
in the residual series. A fraction times an event occurred out the total number of trials may be
interpreted as the percentage of time an event occurred, and is referenced as such
interchangeably in the discussion. Between 18 and 54 percent of all the trials resulted in
significant residual skewness. Between 16 and 44 percent of trials displayed kurtosis in the
residual sertes that is significantly different from 3. Autocorrelation of residuals was found in
the residual series of between 24 and 86 percent of the trials conducted.
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NPM SERIAL CORRELATION HISTOGRAM, r,, >0.666
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Figure 4.11 Histogram of Serial Correlation of NPM Residual Series, r,, <0.666

For r,, > 0.666, the average fraction of trials failing the autocorrelation test was 34% for the
parametric models and 41% for the nonparametric models. For r,, < 0666, the average
fraction of trials failing the autocorrelation test was 56% for the parametric models and 62%
for the nonparametric models. As the cross correlation between the base and index record
decreases, the autocorrelation in the residual series increases, indicatng an overall reducton in
model performance. Based on the above, we would expect, on average, the residual sertes of
the parametric models to display less serial correlation than the nonparametric models.
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Table 4.14 Fraction of Trials “Failing” Error Tests, r,, > 0.666

MODEL SKEW KURT SER
REG 0.54 0.21 0.63
RPN 0.27 0.16 0.41
MV1 0.43 0.25 0.31
MV2 0.42 0.26 0.31
MV3 0.45 0.28 0.30
NP1A 0.34
NP1B 0.31
NPIC 0.34
NP2A 0.32
NP2B 0.33
NP2C C.32
NP3A 0.61
NP3B 0.58
NP3C 0.59

REGM 0.49 0.42 0.40
RPNM 0.33 0.28 0.30
MVIM 0.44 0.44 0.25
MV2M 0.39 0.41 0.26
MV3M 0.25 0.38 0.24
NPM 0.44

The fraction of skewness test failures decreased in relation to decreased r,,. One would
reasonably expect that the fraction of failures would increase with skewness. However, the
standard deviation of the skewnesses obtained generally was greater for r,, >0.666 than forr,,
< 0.666, resulting in more trials falling outside the confidence limits.

In the case of the kurtosis tests, both the average kurtosis values and the standard deviauons
decreased with the smaller r,, value. Accordingly, a general decrease in fraction of kurtosis test
failures was realized. All of the parametric models, except REG, RPN and MV1M displayed a

reduction in the fraction of trials failing the kurtosis test with decreased r,..
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Table 4.15 Fraction of Trials “Failing” Error Tests, r,, < 0.666

MODEL SKEW KURT SER
REG 0.44 0.31 0.86
RPN 0.18 0.22 0.74
MV1 0.37 0.22 0.51
MV2 0.37 0.21 0.51
MV3 Q.35 0.19 0.50
NPiA 0.58
NP1B 0.58
NP1C 0.65
NP2A 0.59
NP2B 0.58
NP2C 0.60
NP3A 0.65
NP3B 0.64
NP3C 0.65

REGM 0.25 0.17 0.61
RPNM 0.23 0.17 0.46
MVIM 043 0.44 0.42
MV2M 0.36 0.39 0.46
MV3M 0.27 0.36 0.52
NPM 0.67

The fraction of seral correlaton test failures increased substandally for r,, < 0666 in
comparison to r,, > 0.666, but the standard deviations of the serial correlation values obtained
did not differ substannally. There is no appreciable difference in either the average senal
correlation or percent failure between the parametric and nonparametric models. However,
REG and NP3A failed the serial correlation test approximately 20% more than the other
models.

The regression parameter, b, is a linear function of the observations x; and y,, and a linear
combination of normally distnbuted variables is itself normally distributed. Inferences
regarding the variance of b are thus drawn from estimating the mean squared error, MSE,
from the sample, rather than the true variance. The difficulty with variables thar are not
normally distributed is that MSE may underestimate the variance of b. The consequence is
that MSE is no longer an unbiased estimator of the variance of b, and indeed may actually
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underestimate the uncertainty in b, resulting in more confidence being placed on the
regression model parameters than is warranted. However, the results obtained usually remain
reasonably valid unless the deviation from normality is quite pronounced (Booy, 1992).

Correlation in error terms also increases the uncertainty in b, due to the conditions of addiuve
property of variances of terms as described above. The latter rule cannot be applied if y, are
correlated. In the case of autocorrelated error terms, the regression parameters a and b are sull
unbiased, but no longer have minimum varance, ie. there is greater uncertainty in their
estimation. Persistence in autocorrelated error terms may lead to regression parameters which
are quite different from the true parameters when ordinary least squares regression is used
(Neter et al., 1989). Therefore, in least squares regression, greater precision in the regression
coeffidents may be indicated than is actually the case in the presence of autocorrelated error
terms.

In the present study, we are not so much concerned with the slope of the regression line in
drawing inferences on the functional response of a random varnable to the level of an
independent (and not necessarily random) vanable. Rather, we are interested in the
relationship between two random variables, and the use of the conditional distribunon in
making inferences regarding one variable given the level of another variable.

If the parent variables in the regression are not random, utilizing a bivaniate normal surface to
describe the joint probability distribution is not strictly valid. The conditional disuributions
used to make inferences regarding one variable given the level of another variable, is also not
strictly valid when fiting a distribution to a set of data which may not strictly follow the
assumed distribution. Thus, if the conditional distribution of x; is biased, then the results of y,
obtained will be biased in relation to the bias of x..

Autocorrelation of residuals does not cause the parametric models to violate any of the model
assumptions, but indicates model inadequacy. The error diagnostic tests do not give any
information on the consequences in terms of generated flows. The calculation of the model
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adequacy statistics are used to aid in determining if the biases introduced from departures
from model assumptions deteriorate the model adequacy.

4.5.3 Statistical Adequacy Measures

The average fractional deviation from the various target statistical values, and the associated
standard deviatons, for r,, >0.666 and r,, < 0.666 are presented separately for each adequacy
measure in Appendix C, and referenced below. For the tables referenced in the following
paragraphs, there are several common periods for each extension period. Each table shows the
average fractional deviation from the associated target value calculated based on all the tals
conducted for a given extension period and all associated common periods. Note that the
Tables in Appendix C show the models which achieved the minimum deviation from the
target value, expressed as a fraction of the target value, and averaged over all the trials

conducted.

4.5.3.1 Cross Correlation Between Generated and Historical Flows

The first adequacy measure presented is the cross correlation berween the generated and
historical flows, r,,.. The goal is to obtain a generated record which has a cross correlaton of
1.0 with the historical flows. All models achieved a cross correlation less than 1.0.

The model associated with the smallest average fractional deviation from the target value, may
be expected to generate flow sequences having the highest degree of similanity with the
historical flows. Tables C-1a to C-1d and Tables C-2a to C-2d show the models achieving the
smallest average fractional deviation from the target, and the associated standard deviation of
the results, for r,, > 0.666 and r,, < 0.666, respectively. In some cases more than one model
obtained the same minimum average fractional deviation, in which case both are reported.

4.5.3.2 Serial Correlation of Generated Flows

Tables C-3a to C-3d and Tables C4a to C-4d show the models achieving the minimum
average deviation from the historic serial correlaon. The models’ objective is to generate a
synthetic sequence of flows which displays the same serial correlation as the historic flows
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during the extension period, ie. the target value. The models showing the minimum
average deviation from the target value more adequately reproduce the senal correlaton
statistic over all mals conducted.

4.5.3.3 Variance of Generated Flows
Tables C-5a to C-5d and Tables C-6a to C-6d show the models achieving the minimum

average deviation from the historic variance. The models’ objective is to generate a synthetic
sequence of flows which displays the same variance as the historic flows during the extension
period, ie. the target value. The models showing the minimum average deviation from the
target value more adequately reproduce the vanance over all trials conducted.

4.5.3.4 Mean of Generated Flows
Tables C-7a to C-7d and Tables C-8a to C-8d show the models achieving the minimum

average deviation from the historic mean flows. The models’ objective is to generate a
synthetic sequence of flows which displays the same mean flow as the historic flows during the
extension petiod, ie. the target value. The models showing the minimum average deviation
from the target value more adequately reproduces the mean flows over all trials conducted.

4.5.3.5 Generated Low Flows

Tables C-9a to C-9d and Tables C-10a to C-10d show the models achieving the minmum
average deviation from the historic low flows. The models’ objective is to generate a synthetc
sequence of flows which displays the same low flow as the historic flows during the extension
period, ie. the target value. The models showing the minimum average deviation from the
target value more adequately reproduces the low flows over all trials conducted.

4.5.3.6 Mean Percentage Error of Generated Flows

Tables C-11a to C-11d and Tables C-12a to C-12d show the models achieving the minimum
average mean percentage error. The models’ objective is to generate a synthetic sequence of
flows which displays zero mean percentage error, ie. the target value. The models showing the
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minimum mean percentage error more adequately reproduces individual flow values over
all trials conducted.

4.5.4 Objective Function Adequacy Measure

The objectve function provides a measure of how accurately a particular model reproduces all
the adequacy measures in relation to the performance of the other models. Recall that an
objective function value, OBYJ,, is calculated for each model, i, for each trial conducted. The
goal is to achieve the minimum OBJ; for each trial conducted. The number of umes a
particular model achieves the minimum OBJ; out of all the tnals conducted indicates the
relative adequacy of a given model in comparison to the other models over the range of
extension period, common period and cross correlation between the index and base records
presented.

The minimum objective function values for each model were determined. The values in the
tables referenced in the following paragraphs represent the fraction of trals for which a
particular model minimized the objective function calculation, thus taking into account the
relative adequacy for all measures combined. Thus, the minimum objective function adequacy
measure is not separately calculated for each stanstical adequacy measure.

The models associated with the largest fracdon of minimum objective functons may be
expected to provide generated flow sequences which reproduce the adequacy measures in a
general sense, taking all adequacy measures into account. Tables C-13a to C-13d and Tables
C-14a to C-14d show the models achieving the largest fraction of trials in which OBJ, was
smallest, for r,, > 0.666 and r,, < 0.666, respectively. In some cases more than one model

obtains the maximum percent-best objective function value, which is determined as a we.
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4.6 DISCUSSION OF EVALUATION RESULTS

4.6.1 Statistical Adequacy Measures

The ability of the extension models to reproduce statistical characteristics of the historical
flows 1s discussed in terms of a comparison of the “best” models, separately for each adequacy
measure. The model adequacy in reproducing the staristical adequacy measures are presented

in terms of the fractional deviation from the target value, f, , averaged over all the evaluation

wials conduced, as described in Section 4.2.2. Note f,; was not calculated for SSE, since the

fractional deviation from zero is indeterminate, and a direct comparison of SSE between the
large number of evaluation trials would not be useful.

The fractional deviations of cross correlation between the generated and historical flows can
be directly converted into average correlation values obtained, because the target value is 1.0.
Similarly, the MPE is averaged over all the trials conducted, and represents an average value of
the percentage errors obtained for the streamflow extension trials conducted. However, the
serial correlation, variance, mean and low flow measures, are expressed in fractional deviatons
because the target value is not the same for all trials.

4.6.1.1 Cross Correlation Between Generated and Historical Flows

r,,> 0.666 - Tables Cl(a to d)

The average correlation between the generated and historical flows for the best models varied
between 0.84 and 0.92 as N, increased from 5 to 75 years. No significant variaton in cross
correlation was observed for different extension periods. The standard deviation of the cross
correlation values remained relatively consistent, varying between approximately 35 to 50
percent of the mean value. The cyclic models generally achieved the highest cross correlation
between generated and target flows. For extension periods of 5 and 10 years, REGM and
MV2M performed quite well for N, < 45 years, while REGM and noncyclic nonparametric
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models performed better for N, > 45 years. For extension periods of 15 and 20 years,
REGM and NPM achieved the best results.

r,, < 0.666 - Tables C-2(a to d)

The average correlation between the generated and histonical flows varied between 0.74 for
and 0.89 as N, increased from 5 to 75 years. The standard deviation of the cross correlation
again remained consistently lower than for r,, > 0.666, varying between approximately 20 to 40
percent of the mean value. Both the cyclic and non-cyclic nonparametric models achieved the
highest cross correlation between generated and target flows. Notably, there was only one
instance where REG performed better than the nonparametric models, on average, namely for
N, = 5 years and N, = 70 years. However, for this case, the nonparametric models achieved
cross correlation with the historical record only marginally less than REG. There was very
little difference in performance between the cydlic and non-cydic nonparametric model
performance, which is evident by the list of nonparametric models achieving the same average
cross correlation with the historical record in Tables C-2(a to d). However, the noncydlic
nonparametric models performed best overall.

4.6.1.2 Serial Correlation of Generated Flows

r,, > 0.666 - Tables C-3(a to d)

The average serial correlation varied between -5 and 2 percent of the target value. The models
more adequately reproducing the serial correlation of the historic flows varied with different
extension periods. The percent deviations did not necessarily decrease with increasing
common period for extension periods less than 10 years. However, for extension periods
greater than 10 years, greater common periods generally resulted in increased model

performance for both parametric and nonparametric models.

For N, = 5 years, the cyclic parametric models performed best, especially MV3M. There was
no appreciable difference in model performance with changes in either N, or N,. For N, = 10
years, the non-cyclic parametric models also performed well. For N, = 15 years, the best
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models varied with common period, beginning with REGM for common periods less

than 50 years, then NP3A and NP3B up to N, = 60 years, then MV2 and MV3 for a 65 year
common period. For N, = 20 years, however, various non-cydic nonparametric models
performed best, achieving between 0 and 2 percent deviation from the target value on average.

Generally, the parametric models tended to underesumate the serial correlanon while the
nonparametric models tended to overestmate the serial correlation, however, the

nonparametric models performed better as the common period increased.
r,, < 0.666 - Tables C-4(a to d)

In most cases the cydic parametric models performed best, with the mean deviation varying
from -6 to 8 percent. Decreasing r,, marginally decreases the parametric model performance
and seriously decreases the nonparametric model performance, for this adequacy stanstic. The
parametric and nonparametric models tended to underestimate and overestimate the serial
correlation, respectively. The models generally performed better as N, increased. REG and
RPNM did quite well in comparison to the other models.

4.6.1.3 Variance of Generated Flows

£, > 0.666 - Tables C-5(a to d)

On average, the best techniques in this adequacy measure produced variances generally within
-22 to 9 percent of the historical senes. The extension models generally did not reproduce
variance well when the extension and common periods were within 5 years. The ability to
reproduce variance increased with longer common periods. However, the parametric models
tended to improve more than the nonparametric models as common period increased. The
maintenance of variance (MOVE) techniques tended to overesumate the varnance. The
nonparametric techniques, REG and RPN tended to underestimate the variance.

For N, = 5 years, NP1C, MV1M and MV2M generally performed the best, yielding vaniances
within 5 percent of the target. For N, = 10 years, REGM and NPI1C performed best,
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averaging between 1 and 3 percent deviation in estimated variance. For N, = 15 years,

the best models were REGM and RPNM with up to 9 percent deviation in estimated variance.
No models was consistently the best for N, = 20 years. However, RPNM did obtain the
lowest average percent deviations. Notably for N, between 40 and 50 years, the standard
deviation of variance was only 2 percent from the target value for RPNM, indicating that
RPNM consistently reproduced vanance.

r,, < 0.666 - Tables C-6(a to d)

For this case, the best models reproduced variance between —22 and 9 percent on average,
generally decreasing in overall performance with decreased cross correlation between the base
and index record. Similarly, poor performance was generally displayed when the extension and
common periods were within 10 years, with the excepton of a few models. Notably, the
noncyclic nonparametric methods seemed to do quite well, for N, = 10 years, but not for any
other extension period investigated. Again, the MOVE techniques overestimated variance and
the nonparametric, REG and RPN techniques underestimated variance.

For N, = 5 years, MV2 and MV3 performed best, averaging between 1 and 12 percent
deviation on average, up to N, = 35 years. For N, greater than 45 years, REGM performed
best with 3 to 6 percent deviation on average. For N, greater than 70 years, MV3M was best,
with 2 to 4 average percent deviation from the historical target value. For N, = 10 years,
various non-cyclic nonparametric models generally performed best, achieving percent
deviations between 0 and 5 percent on average, although this value may vary by between 20 to
60 percent, as indicated by the standard deviation column in Table C-6b. For N, = 15 years
the noncyclic parametric models, in particular MV1 and MV3 generally performed best with
the variance between 0 and 11 percent of the target, on average. For N, = 20 years, MV3
performed best overall, achieving between 1 and 4 percent deviation, except for N, berween
35 and 50 years, where REGM performed better, also showing deviatons in variance between
1 and 4 percent on average.
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4.6.1.4 Mean of Generated Flows

r,, > 0.666 - Tables C-7(a to d)

Overall, all extension techniques displayed generally acceptable ability in reproducing mean
flows. Notably, REG consistently underestimated the mean flow, and the MOVE techniques
generally overestimated the means. The remaining models obtained mean flows both higher

and lower than the historical means.

The best models displayed mean flows which were within -1 to 2 percent, on average. The
standard deviation of the mean flows varied up to 29 percent different from the target values.
However, the standard deviations of the mean flows did not exceed 19 percent difference of
the target values for common periods greater than 20 years. Both increase in extension and

common period tended to decrease the deviation from target mean flows.

For N, = 5 years, REGM and NPM performed best. For N, = 10 years, a large vanety of
models performed well. For N, = 15 years, NPM generally performed the best. The non-
cyclic nonparametric models generally outperformed the other models for N, = 20 years.

I, < 0.666 - Tables C-8(a to d)

Again, the best models reproduced the mean flows quite well, between -2 and 7 percent on
average. However, the models’ overall performance decreased with smaller r,,. This is partdy
indicated by the increase in standard deviaton of the difference in means from the target
values, which increased to a maximum of 41 percent. REG, RPN, REGM and RPNM tended
to underestimate the mean flow, while the remaining models tended to overestimate the mean
flow, with the exception of the nonparametric models for common periods greater than

approximately 70 years.

The standard deviation of the mean flows varied from 1 to 49 percent difference from the
target values. As a comparison to r,, > 0.666, the standard deviations of the mean flows was
less than or equal to 31 percent difference from the target values for common periods greater
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than 20 years, but this value decreased to 13 percent for N, greater 35 years. There is no
appreciable change in model performance with changes in either N, or N,.

For N, = 5 years, REGM performed best up to N, = 30 years, followed by NPM up to N, =
65 years, then NP1A, NP1B and NP2B for N, = 70 to 75 years. For N, = 10 years, MV3
performed best to approximately N, = 25 years, followed by REGM and RPNM to N, = 60
years, and MP3A and MP3B for N, = 65 to 70 years. For N, = 15 years, a large variety of
extension models performed best for different combinations of N, and N,, with MV3 and
RPNM displaying the best performance. For N, = 20 years, REGM performed best up to N,
= 45 years, followed by NP1C, NP1B and NP2B for N, = 50 to 60 years.

4.6.1.5 Generated Low Flows

r,,> 0.666 - Tables C-9(a to d)

Recall that the low flow analyzed is thar flow which is expected to be equaled or exceeded 80
percent of the tme. The cyclic parametric models more adequately reproduced the historical
low flows than the other extension models. On average, the best extension techniques
produced low flows -1 and 31 percent of the historical sertes. The ability of the models in
reproducing low flows generally increased with both longer extension and common periods.
Most extension models tended to overestimate the low flows, with the exception of the cyclic
parametric models where N, is greater than or equal to 10 years, and N, is approximately
between 30 and 50 years.

For N, = 5 years, MVIM and MV3M performed best for N, up to 45 years, achieving an
average percent deviation from low flows within approximately 11 to 32 percent of the
historical value. RPNM generally performed best for N, greater than 45 years, achieving
between 1 and 5 average percent deviaton from historical low flows. For N, = 10 years,
MV IM performed best, achieving between 1 and 17 average percent deviation from historical
low flows up to 35 years common period. This was followed by MV1 and MV2 for N, = 40
years, and MV1M and MV2M for N, greater than 55 years, all achieving less than or equal to 1
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percent average deviation from target low flows. For N, = 15 and N, = 20 years, the
cyclic MOVE techniques generally performed best, achieving between 0 and 9 average percent
deviation from historical low flows. The variation in the above results was quite high.
Therefore, even though the average results showed good agreement, there were many
instances where the deviation from the target value was quite pronounced.

r,, < 0.666 - Tables C-10(a to d)

Generally, the extension models’ ability to reproduce low flows decreased slightly with smaller
cross correlaon between the base and index records. However, the best models actually
obtained smaller deviations from target values in comparison to r,, >0666. On average, the
best extension techniques produced low flow frequencies between -3 and 17 percent of the
historical series. Again, the overall ability of the models to reproduce low flows tended to
increase with both extension and common period, but not necessarily with the best models.
Generally, the extension techniques overestimated low flows with the exception of the cyclic
MOVE techniques for common periods greater than approximately 40 years.

For N, = 5 years, MVIM performed best up to N, = 35 years, achieving between 0 and 17
percent deviation from the target low flows. For a common period of 40 years, MV2M
performed best with 13 percent deviation from target low flows. For N, greater than or equal
to 45 years, MV3, MV3M, RPNM and NPM performed best with percent deviations between
0 and 15 percent from the target low flows. For N, = 10 years to N, = 20 years, MVIM,
MV2M and MV3M generally performed best, achieving between O and 11 percent deviaton

from target low flows.

4.6.1.6 Mean Percentage Error of Generated Flows

Recall the mean percentage error, MPE, is the numerical mean of the percentage difference
between individual generated and historical flow values, over the tume series generared. The
average MPE is the sum of the MPE’s calculated over all trials conducted, divided by the
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number of trials conducted. Therefore, the average MPE indicates the central tendency
or the expected value of MPE for the sample of experimental trials conducted.

MPE is not necessarily correspondingly positive or negative with the percent difference in
mean flow. This may occur in the case where 2 model overestimates the low flows, but
underestimates the high flows because the underestimated high flows may have more impact

on the calculation of the mean than the low flows.

An example of the above is presented in Table 4.16 and Figure 4.12. Table 4.16 contains the
historical and REG-generated flows for index staton 050D001 Roseau River Near Dominion
City and base station 05SOE001 Rat River Near Otterburne for the period from 1949 to 1950.
The cross correlation coefficient was 0.852, and the extension and common periods were both

equal to 5 years.

In Table 4.16, the mean flow generated by REG is smaller than the historical flows for
050D001, which results in (5.48-5.97)%100/5.48 = - 8.9 percent deviaton from the target
mean (for this sample), as defined in Section 4.2.2. However, the MPE (for this sample) in
Table 4.16 1s 41%. Extending the above example to a complete series of flows (ie. muluple
years) shows that the MPE may be positive when the percent deviation from the historical

mean flow is negative.
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FLOW {cms)

Table 4.16 Example Comparison of Mean Flow to MPE

REG 050D001 REG -050D001
Year 3 3 x 100

(m’/s) (m’/s) 050D001
1949.00 0.74 0.50 48
1949.08 0.63 0.44 43
1949.17 0.58 0.41 43
1949.25 18.58 28.00 -34
1949.33 12.99 23.40 -45
1949.42 4.88 6.68 -27
1949.50 0.86 2.06 -58
1949.58 5.21 3.75 39
1949.67 1.15 0.52 119
1949.75 10.63 3.52 202
1949.83 11.50 6.05 90
1949.92 2.41 1.65 46
1950.00 1.11 0.66 68
Average 5.48 5.97 41

HYDROGRAPH FOR 050D001 ROSEAU RIVER NEAR DOMINION CITY

1949 - 1950

1949.0 1949.1

1949.2 1949.3

1949.5
TIME (yr3)

1949.4

1949.6

1949.8
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——e— 0500001 —@—REG -.....- Mean of 0500001=5.97 — - — —Mean of REG=5.48
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Figure 4.12 Hydrograph of 0SOE001 and REG Flows for 1949 to 1950
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r,,> 0.666 - Tables C-11(a to d)

The average MPE of generated flows from the best models varied from 1 to 110 percent of
historical flows, likely due to over-predicting low flows. The standard deviation of MPE vaned
from 3 vo 149 percent, and decreased with greater N,, indicating the high vanability in results
over the tnals conducted, but an increase in model adequacy as more information is made
available to the extension models. The MPE generally decreased as N, and N, increased, but
the minimum average MPE did not necessarily occur at the highest value of N,.

The minimum average MPE generally occurred for common periods of 45 years, 40 years, 35
years, and 30 years, for extension periods of 5 years, 10 years, 15 years, and 20 years,
respectively. Note that each combination of total record period (N, + N,) where the
minimum average MPE generally occurs is equal to 50 years.

This phenomenon may have occurred strictly due to chance. However, increased common
period and similar flow conditions in the extension and common period provide more
information to the extension models for generating synthetic flows, and aids in model
performance. Since the beginning of record for the stations used in the trials are not the same,
this phenomenon may possibly be attributed to a time period corresponding to the occurrence
of similar meteorological or physical factors affecting runoff.

For N, = 5 years, NP3B generally performed best for N, between 30 and 60 years, achieving
between 10 and 85 MPE on average, followed by RPINM for N, between 60 and 75 years,
achieving between 12 and 14 MPE. For N, = 10 years, MV 1M performed best upto N, = 30
years, achieving between 29 and 65 average MPE, followed by REGM for N, greater than or
equal to 35 years, achieving between 10 and 13 MPE on average. For N, = 15 years, various
cyclic parametric models performed best for N, less than 35 years, followed by NP3B which
achieved between 1 and 8 average MPE. Notably, the standard deviation of the MPE is
relatively low, only between 3 and 7 percent, indicating good model performance in this case.
For N, = 20 years, REGM generally performed best achieving between 11 and 29 average
MPE, except for NP3B for N, between 30 and 35 years achieving between 8 and 11 MPE.
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The results varied greatly throughout the trials. The standard deviation of MPE varied by
up to 192 percent for N, = 5 years and N, = 10 years, decreasing to a minimum of 3 percent
standard deviation for N, = 15 years and N, = 65 years.

r,, < 0.666 - Tables C-12(a to d)

The average MPE of the best models varied from 11 to 125 percent of historical flows. MPE
generally decreased as common period, N,, increased. Again, the minimum average MPE did
not necessarily occur at the highest value of N,. However, there was no indicaton of a
particular period of record which improved model performance consistenty, which is
reasonable since smaller cross correlation indicates the runoff response is dissimilar for the
base and index record.

For N, = 5 years, various models performed best for N, up to 35 years, achieving 83 to 102
MPE on average, followed by REGM for N, greater than or equal to 35 years, achieving
between 15 and 27 average MPE. For N, = 10 years, MVIM and MV3M performed best,
achieving between 100 and 109 average MPE, followed by REGM and RPNM for N, greater
than or equal to 25 years, achieving between 16 and 110 MPE, on average. For N, = 15 years,
MV3M performed best up to N, = 20 years, achieving between 118 and 125 percent average
MPE, followed by REGM, achieving 34 to 11 average MPE as N, increased from 25 to 65
years, respectively. For N, = 20 years, REGM performed best, achieving between 25 and 14
average MPE as N, increased from 20 to 60 years.

4.6.2 Objective Function Adequacy Measure

Recall OB]J; represents the fraction of trials in which model i obtains the minimum value of
OB]J, for a given combination of N;, N,, and r,. The model achieving the maximum OB],
more adequately reproduced the historical statistics, on average, over all the stadistical adequacy

measures presented previously.

r, > 0.666 - Tables C-13(a to d)
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In general, REGM performed best up to approximately N, = 40 years, achieving
between 20 and 40 percent OB]J;. For common periods greater than 40 years, the cyclic and
non-cyclic nonparametric models performed comparatively well. However, for N, = 20 years,
REGM achieved between 40 and 100 percent OB]; for all N,, except NPM which achieved 40
percent OB]J; for N, = 30 years.

r, < 0.666 - Tables C-14(a to d)

REGM performed best for nearly all combinations of N, and N,, achieving between 13 and
100 percent OB];. Notably, the nonparametric techniques only performed well for N; = 5
years, with N, = 5, 55, 60, and 65 years, achieving between 13 and 67 percent OBJ,. MV3M
performed well at values of N, ranging from 70 to 75 years, for N; = 5, 15, and 20 years, in
each case achieving 100 percent OBJ;.

4.7 VERIFICATION TRIALS

The verification analysis was conducted for four separate sets of index and base records in
order to form the basis for the conclusions and recommendations with regard to which of the
models are most appropriate for a given combination of N;, N, andr, . Two sets of base and
index records were used for each of r,, > 0.666 and r,, <0.666. The base and index records
used for verification were not utilized in the evaluation, (te. calibration) phase of the analysis
presented in Section 4.6. The verification records were selected based upon providing a
reasonable number of trals involving a wide range of extension and common periods.

The number of nearest neighbors used by the nonparametric methods for the verification trials
are those developed in the evaluation phase, in Table 4.8 and Table 4.9, so that the model
verification results are done with data separate from the evaluation results.

Descriptions of the verification trial sets are given in the following paragraphs. The fractional
deviation from the various target statistical values, for each verification set are presented
separately for each adequacy measure in Appendix D, and referenced below. The statistical
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adequacy measure results discussed in the following sections present the models achieving
the minimum fractional deviation from the target values, f;, as described in Section 4.2.2.

The model(s) achieving the smallest fractional deviation from the target value, f;, are reported
in a similar manner to the same in Section 4.6. In the verification phase there is no standard
deviation associated with the calculated statisucs, since the minimum deviation is associated
with only a single trial. SSE; is reported for the verification trials, but not as a fraction of the
target (zero). Rather SSE, is compared directly for the four verificaton trials.

Recall that in some instances, more than one model may achieve similar results. Therefore the
tables in Appendix D may show more than one model achieving the minimum f{; for a given
N, N,, and r,, combination. I a particular model achieved minimum f; but faled either error
diagnostic tests, an alternate model which did not fail the error diagnostic tests is reported.
The alternate model selected is the model which had either equivalent or second lowest f; for
that particular trial, which also did not fail the error diagnostics. Note that the alternate models

are not necessarily nonparametric models.

4.7.1 Verification Trials, r,, > 0.666 - Set 1

The base station used for the first set of verification trials is 04AC005 Gods River Below Allen
Rapids, drainage area approximately 25,900 km’. The corresponding index station is 04ACQ07
Island Lake River Near Island Lake, drainage area approximately 14,000 km’. The Gods River
and Island Lake River gauging stations were discontinued in 1994. The distance between the
gauging stations on Gods River and Island Lake River is approximately 100 km. The relarive
locations are shown in Figure 4.2. The cross correlation, r,, = 0.731. The total record period
for both streams is 62 years, beginning in 1933. The wet season for Gods and Island Lake
Rivers were defined in Section 4.4.2 as the months between June and November, inclusive.
The corresponding dry season is defined as December to May.

Trials corresponding to N, = 5 years for this verification set were not successful due to
missing flows in the base and index records. For the relatively small sample size of 5 years,
missing data in the cydlic techniques produces some indeterminate results in the calculation of
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some parameters for the parametric models. However, this is not considered a major
drawback since there are very few situations where extension of a streamflow record would be
attempted when the extension and common periods are equal. For N; = 10 years, the
common period varied from N, = 10 to 50 years, corresponding to 9 trials. For N, = 15
years, the common peériod varied from N, = 15 to 45 years, for 7 trials. For N, = 20 years, N,
varied from 20 to 40 years, for an additional 5 trials. A total of 21 trials were conducted for
this verification set.

The error diagnostics on the residual series are shown in Table 4.17. As in Section 4.5.2, these
statistics are averaged over all the trials conducted for this verification set, (ie. for all
combinations of N, and N,, so the same considerations in terms of their interpretation apply
in this case. Table 4.18 shows the fracton of trals in which the models fail the error

diagnostic tests as described in Section 4.2.1.

Tables D-1(a to ¢) show the statistical adequacy measure results for cross correlaton between
the generated and historic flows. The latter for senal correlation, variance, mean flow, low
flow, MPE, and SSE are shown in Tables D-2(a to c), Tables D-3(a to ¢), Tables D-4(a to c),
Tables D-5(a to c), Tables D-6(a to c), and Tables D-7(a to c), respectively.

4.7.2 Vertfication Trials, r,, > 0.666 - Set 2

The base station used for the second set of verification wials is 05PB014 Turte River Near
Mine Centre, drainage area approximately 4,870 km’. The corresponding index station is
05QA002 English River at Umfreville, drainage area approximately 6,230 km’. The gauging
statons on the Turtle and English Rivers are separated by approximately 150 km. The relatve
locations are shown in Figure 4.3. The cross correlation, r,, = 0.868. The total record period
for 05PB014 is 75 years, commencing in 1921. The total record period for 05QAQ02 is 74
years, commencing in 1922. The wet season for the Turtle and English Rivers were defined in
Section 4.4.2 as the months between May and July, inclusive. The corresponding dry season is
defined as August to April. Both gauging stations are currently operational.
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For N, = 5 years, the common period varied from 5 to 65 years, for 13 trials. For N, =

10 years, the common period varied from N, = 10 to 60 years, corresponding to 11 trials. For
N, = 15 years, the common period varied from N, = 15 to 55 years, for 9 trials. For N, = 20
years, N, varied from 20 to 50 years, for an additional 7 wals. A total of 40 trials were
conducted for this verification set.

The error diagnostics on the residual series are shown in Table 4.19. Table 4.20 shows the
fraction of trials in which the models fail the error diagnostic tests. The staustical adequacy
measure results for cross correlation, serial correlation, variance, mean flow, low flow, MPE,
and SSE, are shown in Tables D-8(a to d), Tables D-9(a to d), Tables D-10(a to d), Tables D-
11(a to d), Tables D-12(a to d), Tables D-13(a to d), and Tables D-14(a to d), respectively.

4.7.3 Verification Trials, r,, < 0.666 - Set 3

The base station used for the third set of verification trials is 05SA002 Brokenhead River Near
Beausejour, drainage area approximately 1,610 km’. The corresponding index staton is
OSRAQ01 Manigotagan River Near Manigotagan, drainage area approximately 1,830 km’. The
gauging stations on the Brokenhead and Manigotagan Rivers are separated by approximately
120 km. The relative locations are shown in Figure 4.2. The cross correlauon, r,, = 0642. The
total record period for 05SA0Q2 is 38 years, commencing in 1958. The total record period for
OSRAQ01 is 36 years, commencing in 1960. The wet season for the Brokenhead River occurred
between April and June, inclusive, with a corresponding dry season between July and March.
The wet season for the Manigotagan River occurred between May and July, inclusive, with a
corresponding dry season between August and Aprl. Both gauging stations are currently
operational.

Similar to verification set 1, results for N, = 5 years and N, = 5 years could not be obtained
due to missing data in portions of the early record. However, results were obtained for N,
from 10 to 30 years for 5 trials. For N, = 10 years, the common period varied from 10 to 25
years, for 4 trials. For N, = 15 years, the common period varied from N, = 15 to 20 years, for
2 trials. The lengths of the record precluded amy trials involving extension periods greater than
15 years. A total of 11 trials were conducted for this verification set.
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The error diagnostics on the residual series are shown in Table 4.21. Table 4.22 shows the
fraction of trials in which the models fail the error diagnostic tests. The statistical adequacy
measure results for cross correlation, serial correlaton, variance, mean flow, low flow, MPE,
and SSE, are shown in Tables D-15(a to c), Tables D-16(a to c), Tables D-17(a to c), Tables
D-18(a to c), Tables D-19(a to c), Tables D-20(a to c), and Tables D-21(a to c), respectvely.

4.7.4 Verification Trials, r,, < 0.666 ~ Set 4

The base station used for the fourth set of verificaton trials is 05QA002 English River at
Umfreville, drainage area approximately 6,230 km’. The corresponding index station is
05QEO009 Sturgeon River at Outlet of Salvensen Lake, drainage area approximately 1,530 km’.
The gauging stations on the English and Sturgeon Rivers are separated by approximately 220
km. The relative locations are shown in Figure 4.3. The cross correlaton, r,, = 0.626. The
total record period for 05QA002 is 74 years, commencing in 1922. The total record period for
05QEQ09 is 31 years, commencing in 1965. The wet and dry seasons for the English River was
defined previously. The wet season for the Sturgeon River occurred between May and July,
inclusive, with a corresponding dry season between August and April. Both gauging statons
are currently operational.

For N, = 5 years, the common period varied from 5 to 25 years, for 5 tals. For N, = 10
years, the common period varied from N, = 10 to 20 years, corresponding to 3 trials. For N,
= 15 years, the only common period available due to the length of the index station was 15
years. A total of 9 trials were conducted for this verification set.

The error diagnostics on the residual series are shown in Table 4.23. Table 4.24 shows the
fraction of trials in which the models fail the error diagnostic tests. The statistical adequacy
measure results for cross correlation, serial correlation, variance, mean flow, low flow, MPE,
and SSE are shown in Tables D-22(a to c), Tables D-23(a to c), Tables D-24(a to c), Tables D-
25(a to ¢), Tables D-26(a to c), Tables D-27(a to c), and Tables D-28(a to c), respectively.
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Table 4.17 Error Diagnostics on Residual Series, Verification Set 1, r,, > 0.666

MODEL | -95% | SKEW | +95% | 95% | KURT | +95% | -95% | SER | +95%

REG | -041 | 037 | 041 | 218 | 3.55 | 382 | 017 | 064 | 016
s 004 | 004 | 004 | 009 | 021 | 009 | 002 | 003 | 002
RPN | 041 | 029 | 041 | 218 | 325 | 382 | 017 | 055 | 0.16
o 004 | 004 | 004 | 009 | 016 | 009 | 002 | 0.02 | o002
MVI | -041 | 054 | 041 | 218 | 308 | 3.82 | 0.17 | 065 | 016
o 004 | 007 | 004 | 009 | 012 | 009 | 002 | 004 | 002
MV2 | 041 | 054 | 041 | 218 | 304 | 38 | -0.17 | 065 | 016
o 004 | 007 | 004 | 009 | 013 | 009 | 002 | 003 | 002
MV3 | 041 | 054 | 041 | 218 | 291 | 3.8 | 0.7 | 066 | 0.16
po 004 | 006 | 004 | 009 | 019 | 009 | 002 | 003 | 002
NPI1A 017 | 062 | 0.16
o 002 | 006 | 002
NP1B 017 | 061 | 0.16
p 002 | 007 | 002
NP1C 017 | 064 | 0.16
o 002 | 006 | 002
NP2A 017 | 062 | 0.16
o 002 | 006 | 002
NP2B 017 | 061 | 0.16
o 002 | 007 | 002
NP2C 2017 | 063 | 0.16
o 002 | 006 | 002
NP3A 017 | 071 | 0.6
o 002 | 007 | 002
NP3B 017 | 071 | 0.16
o 002 | 006 | 002
NP3C 017 | 074 | 0.16
= 002 | 004 | 002
REGM | 041 | 021 | 041 | 218 | 528 | 382 | 017 | 06 | 0.6
o 004 | 020 | 004 | 009 | 063 | 009 | 002 | 007 | 002
RPNM | -041 | 022 | 041 | 218 | 435 | 382 | 017 | 043 | 016
o 004 | 021 | 004 | 009 | 048 | 009 | 002 | 009 | 002
MVIM | -041 | 053 | 041 | 218 | 535 | 382 | -017 | 063 | 0.6
o 004 | 020 | 004 | 009 | 058 | 009 | 002 | 005 | 002
MVZIM | 041 | 053 | 041 | 2.18 | 526 | 382 | -0.17 | 064 | 0.16
o 004 | 020 | 004 | 009 | 070 | 009 | 002 | 005 | 0.02
MV3M | -041 | 058 | 041 | 218 | 499 | 382 | 017 | 067 | 016
o 004 | 016 | 004 | 009 | 068 | 009 | 002 | 003 | 002
NPM 017 | 056 | 0.16
o 002 | 01 0.02
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Table 4.18 Fraction of Error Test Failures, Verification Set 1, r,, > 0.666

MODEL SKEW KURT SER
REG 0.24 0.00 1.00
RPN 0.00 0.00 1.00
MV1 1.00 0.00 1.00
MV2 1.00 0.00 1.00
MV3 1.00 0.00 1.00

NP1A 1.00
NP1B 1.00
NP1C 1.00
NP2A 1.00
NP2B 1.00
NP2C 1.00
NP3A 1.00
NP3B 1.00
NP3C 1.00
REGM 0.24 0.95 1.00
RPNM 0.05 0.86 1.00
MVIM 0.62 0.95 1.00
MV2M 0.57 0.95 1.00
MV3M 0.76 0.90 1.00
NPM 1.00
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Table 4.19 Error Diagnostics on Residual Series, Verification Set 2, r,, > 0.666

MODEL | -95% | SKEW | +95% | 95% | KURT | +95% | 95% | SER | +95%
REG | -046 | -051 | 046 | 208 | 363 | 392 | 020 | 047 | 0.18
p 012 | 024 | 012 | 024 | 052 | 024 | 006 | 006 | 004
RPN | 046 | 017 | 046 | 208 | 324 | 392 | 020 | 037 | 0.8
p 012 | 012 | 012 | 024 | 033 | 024 | 006 | 009 | 004
MV1 | 046 | -058 | 046 | 2.08 | 379 | 392 | 020 | 046 | 0.18
p 012 | 021 | 012 | 024 | 04 | 024 | 006 | 006 | 004
MV2 | 046 | 058 | 046 | 208 | 379 | 392 | 020 | 046 | 0.18
o 012 | 021 | 012 | 024 | 043 | 024 | 006 | 006 | 004
MV3 | 046 | 058 | 046 | 208 | 375 | 392 | 020 | 047 | 0.18
o 0.12 0.2 012 | 024 | 039 | 024 | 006 | 006 | 0.04
NP1A 2020 | 058 | 0.8
o 0.06 | 007 | 004
NP1B 2020 | 058 | 0.8
p 0.06 | 006 | 0.04
NPIC 0.20 | 058 | 0.8
p 0.06 | 012 | 0.04
NP2A 020 | 057 | 0.18
o 0.06 | 008 | 0.04
NP2B 020 | 057 | 0.8
o 0.06 | 008 | 0.04
NP2C 2020 | 052 | 0.18
o 0.06 | 008 | 0.04
NP3A 020 | 067 | 0.18
p 0.06 | 004 | 0.04
NP3B 020 | 065 | 0.8
p 0.06 | 005 | 0.04
NP3C 020 | 064 | 0.18
o 0.06 | 004 | 004
REGM | 046 | 021 | 046 | 208 | 307 | 392 | 020 | 054 | 0.8
p 012 | 027 | 0I2 | 024 | 073 | 024 | 006 | 008 | 004
RPNM | -046 | 019 | 046 | 208 | 3.07 | 392 | 020 | 033 | 0.18
o 012 | 022 | 012 | 024 | 058 | 024 | 006 | 009 | 004
MVIM | 046 | 034 | 046 | 208 | 288 | 392 | 020 | 054 | 0.18
p 012 | 015 | 012 | 024 | 054 | 024 | 006 | 007 | 004
MVZM | 046 | 027 | 046 | 208 | 295 | 392 | -0.20 | 055 | 0.18
o 012 | 022 | 012 | 024 | 067 | 024 | 006 | 008 | 004
MV3M | -0.46 | 025 | 046 | 2.08 | 296 | 392 | -020 | 057 | 0.18
o 012 | 019 | 012 | 024 | 069 | 024 | 006 | 007 | 004
NPM 020 | 054 | 0.8
p 006 | 007 | 004

108




Table 4.20 Fraction of Error Test Failures, Verification Set 2, r,, > 0.666

MODEL SKEW KURT SER
REG 0.5 0.38 1
RPN. 0 0 1
MV1 0.73 0.5 1
MV2 0.73 0.47 1
MV3 0.73 0.38 1

NPI1A 1
NP1B 1
NPIC 1
NP2A 1
NP2B 1
NP2C 1
NP3A 1
NP3B 1
NP3C 1
REGM 0.17 0.17 1
RPNM 0.08 0.15 0.98
MVIM 0.43 0.15 1
MV2M 0.43 0.17 1
MV3M 0.3 0.17 1
NPM 1
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Table 4.22 Fraction of Error Test Failures, Verification Set 3, r,, < 0.666

MODEL SKEW KURT SER
REG 1 0.55 1
RPN 1 0.55 1
MV1 1 0.55 0.18
MV2 1 0.55 Q.55
MV3 1 0.55 0.64
NP1A 1
NP1B 1
NP1C 1
NP2A 1
NP2B 1
NP2C 1
NP3A 1
NP3B 1
NP3C 1

REGM 1 0.55 1
RPNM 1 0.64 1
MVIM 0.91 0.55 1
MV2M 1 0.55 1
MV3M 1 0.64 1
NPM 1
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Table 4.23 Error Diagnostics on Residual Series, Verification Set 4, r, < 0.666

MODEL | -95% | SKEW | +95% | -95% | KURT | +95% | -95% | SER | +%5%
REG | 053 | 035 0.53 194 3.89 406 | -023 | 0.46 0.2
o 0.11 033 011 0.22 0.49 0.22 0.05 0.04 0.04
RPN | -053 | 0.1 0.53 1.94 3.04 406 | 023 | 0.32 0.2
o 011 | o015 0.11 0.22 0.49 0.22 0.05 0.14 0.04
MV1 | 053 | 027 | 0.53 1.94 3.53 406 | 023 | 050 0.2
o 011 0.24 011 0.22 1.12 0.22 0.05 0.02 0.04
MV2 | -053 | 024 | 053 1.94 3.57 406 | 023 | 049 0.2
o 0.11 0.24 0.11 0.22 1.12 0.22 0.05 0.02 0.04
MV3 | 053 | 023 | 0.53 1.94 357 406 | -023 | 048 02
o 0.11 027 | 011 0.22 1.08 0.22 0.05 0.02 0.04
NP1A 023 | 035 0.2
o 0.05 0.19 | 004
NP1B 023 | 036 02
o 0.05 0.18 0.04
NPiC 0.23 | 034 02
o 0.05 0.19 0.04
NP2A 023 | 035 0.2
p 0.05 0.19 0.04
NP2B -0.23 0.35 0.2
o 0.05 0.20 0.04
NP2C 023 | 034 0.2
o 0.05 0.19 0.04
NP3A 023 | 038 0.2
o 0.05 0.16 0.04
NP3B 023 | 037 0.2
o 0.05 0.18 0.04
NP3C 0.23 | 033 0.2
o 0.05 0.21 0.04
REGM | -053 | 0.16 | 053 | 1.94 | 3.89 | 406 | -023 [ 0.39 0.2
o 0.11 0.53 0.11 0.22 0.45 022 | 005 0.06 | 004
RPNM | -053 | 008 | 053 | 1.94 | 368 | 406 | -0.23 | 032 0.2
o 011 0.48 0.11 0.22 0.35 0.22 0.05 0.07 0.04
MVIM | -053 | -026 | 053 | 194 | 389 | 406 | -0.23 | 045 0.2
o 0.11 0.39 0.11 0.22 149 | 022 0.05 0.14 0.04
MVIM | -053 | -018 | 053 | 194 | 354 | 406 | -023 | 051 0.2
o 0.11 0.32 0.11 0.22 0.83 0.22 0.05 0.10 0.04
MV3M | -053 | -002 | 053 | 1.94 | 3.37 | 406 | -0.23 | 046 0.2
o 0.11 0.25 0.11 0.22 039 | 022 0.05 0.09 | 004
NPM -0.23 0.37 0.2
o 0.05 0.15 0.04
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Table 4.24 Fraction of Error Test Failures, Verification Set 4, r,, <0.666

MODEL SKEW KURT SER
REG 0.33 0.33 1
RPN 0 0 0.56
MV1 0.44 0.44 1
MV2. 0.44 0.44 1
MV3 0.44 0.44 1

NP1A 0.56
NP1B 0.56
NP1C 0.44
NP2A 0.56
NP2B 0.56
NP2C 0.56
NP3A 0.67
NP3B 0.67
NP3C 0.44
REGM 0.44 0.33 1

RPNM 0.33 0.11 1

MVIM 0.22 0.44 0.89
MV2M 0.22 0.33 1

MV3M 0 0.11 1

NPM 0.78

4.8 DISCUSSION OF VERIFICATION TRIALS

Model adequacy in terms of the statistical adequacy measures is discussed and compared to the
evaluation results in the following paragraphs.

4.8.1 Optimum Number of Nearest Neighbors

The verification trials are performed using the number of nearest neighbors selected from the
evaluation trials in order to provide a fair comparison with all the other methods.

4.8.2 Diagnostics on Residual Series

The results of the verification trials show that the skewness, kurtosis and serial correlation of
the residual series cannot be expected to mirror the average values from the evaluation trials,
but does confirm the high variability in the results for the evaluation trials, as indicated by the
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large variance of the error diagnostic statistics shown in Tables 4.18 and 4.24. A detailed
comparison of the results from the verification trials and evaluation tnals is given below.

r,, > 0.666 - Verification Set 1 and Set 2

Table 4.17 and Table 4.19 show the average skewness coefficient of the residual series for
verification sets 1 and 2, respectively, are higher than for the evaluaton tials in Table 4.13.
The fraction of skewness test failures for verification sets 1 and 2 were higher than the
evaluation trials. With the exception of RPN and RPNM, the parametric models failed
between 24 and 100 percent of the skewness tests for the verfication trials. However, the null
hypothesis that the skewness was not different from zero was accepted for all RPN residual
series, with 95% confidence in verfication sets 1 and 2.

The noncydlic parametric models failed no kurtosis tests on the residuals seres for set 1,
however, the cyclic parametric models failed between 86 and 95 percent of the kurtosis tests,
between 40 and 50 percent higher than the evaluation trials. In contrast to verification set 1,
the noncydic parametric models failed a greater portion of kurtosis tests, and the cyclic
parametric models failed a smaller portion of kurtosis tests than the evaluation trials. This may
be due to the nature of the streamflow files used in the extension. The variability of the
kurtosis coefficients obtained was much lower for sets 1 and 2, than for the evaluaton trials.

Therefore, a residual series from a parametric model may pass the skewness test and fail the
kurtosis test or vice verse. The only model which passed both skewness and kurtosis tests in
verification sets 1 and 2 was RPN.

The average seral correlation of residuals was significantly higher for all models. The
variability of the r, was less for the verification trials than the evaluation mials. Accordingly,
nearly all trials conducted for verification sets 1 and 2 produced residual series which displayed
high serial correlation. Essentially 100 percent of all trials and all models failed the serial

correlation test in verification sets 1 and 2.
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The error diagnostic analysis on the verificaon tals for r,, > 0666 show that the
noncyclic parametric models may be expected to fail over 50 percent of the skewness tests, less
than 50 percent of the kurtosis tests, and also a large portion of the serial correlation tests.
Less variability in the kurtosis coefficients was obtained in the verificaton trials than the
evaluation trials. However, the fraction of test failures between set 1 and set 2 was quite
different. The cyclic parametric models would be expected to fail up to approximately 50
percent of the skewness tests, and again, the expected kurtosis results are uncertain. Two
exceptions to the above are RPN and RPNM, which would be expected to fail a significantly
smaller portion of the tests for normality of error terms. All models were found to fail the
serial correlation tests on the residual series, indicating general model inadequacy in taking into
account the time dependent vaniation between the index and base record flows.

r,, < 0.666 ~ Verification Set 3 and Set 4

Table 4.21 shows large negative skewness of the residual series obtained for set 3, in contrast
to the positive skewness coeffidents obtained for the evaluaton trials shown in Table 4.13.
Notably Table 4.22 shows a very significant fraction (between 91 and 100 percent) of the trals
failed the residual skewness coefficient test, in companison to between 20 and 45 percent
failure for the evaluation trials.

Table 4.23 shows a combination of negative and positive skewness coeffictents for set 4.
From Table 4.24 with the exception of RPN and MV3M, the parametric models failed
between 22 and 44 percent of the skewness tests. RPN and MV3M failed none. The
variability of the skewness coefficients was less for sets 3 and 4 than the evaluation wials.

While the percentage of models failing the kurtosis tests for set 3 in Table 4.25 was much
higher, at 55 to 64 percent of the verification trials conducted, that for set 4 in Table 4.28 was
approximately equivalent to the calibration trials, at 11 to 44 percent. Note again the excepuon
of RPN which failed no kurtosis tests, but only in verification set 4.

Owerall, the average r, obtained in sets 3 and 4 were slightly higher than the evaluation trials.
In set 3, nearly all models failed between 55 and 100 percent of the serial correlation tests,
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except MV 1 which failed only 18 percent. In set 4, however, the parametric models failed
between 56 and 100 percent of the tests, while the noncyclic nonparametric performance was
better, failing between 44 and 78 percent of the tests. The latter indicates that for smaller
values of cross correlation between the base and index record, noncyclic parametric models
may produce a residual series with lower serial correlanon.

The error diagnostic analysis on the verification trials for r,, <0.666 show that the noncyclic
parametric models may be again expected to fail over 50 percent of the skewness tests,
approximately 50 percent of the kurtosis tests, and nearly all serial correlation tests. Again, less
variability in the kurtosis coefficients was obtained. The cyclic parametric models would be
expected to fail over 50 percent of the skewness tests, and marginally less than 50 percent of
the kurtosis tests. RPN passed the skewness and kurtosis tests in set 4, and MV3M passed the
skewness tests in set 4. Again, nearly all models were found to fail the senal correlation tests
on the residual series, indicating general model inadequacy in taking into account the ume
dependent variation between the index and base record flows.

4.8.3 Statistical Adequacy Measures

4.8.3.1 Cross Correlation Between Generated and Historical Flows
1, > 0.666 - Verification Set 1 - Tables D-1(a to c) and Set 2 - Tables D-8(a to d)

The range of cross correlation between the generated and historical flows for the best models
in set 1 varied between 0.86 and 0.94. The cross correlanon does not vary appreciably with
extension period, but tends to increase as N, increases. The model performance is generally
consistent with the evaluation results. However, the models which performed best for the
verification trials were not necessarily the same models which performed best, on the average
of the evaluation trials.

Verification sets 1 and 2 provide many instances where the noncyclic nonparametric models
are suggested as alternatives to the cyclic parametric models. In Tables D-1a to D-1c, for N,
=10, 15, and 20 years, respectively, noncyclic nonparametric models either performed best or
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were proposed as alternates to cyclic parametric models and performed within 7
percentage points. In Tables D-8a to D-8¢, for N, = 5, 10, and 15 years, respectively, the
cycic parametric models performed best. However, for N, =20 years, noncydlic
nonparametric models were suggested as alternates to the parametric models, as shown in
Table D-8d.

r,, < 0.666 - Verification Set 3 - Tables D-15(a to c) and Set 4 - Tables D-22(a to c)

The range of cross correlation for sets 3 and 4 varied from 0.75 to 0.89. The model
performance was marginally better than the evaluation trials for set 3, and equivalent for set 4.
Again, the cross correlation did not vary appreciably with extension period, but did not always
decrease as N, increased. The noncydlic nonparametric models seemed to perform well, or
nearly as well as the parametric models. Nonparametric models suggested as alternauves to
parametric models which failed error diagnostics performed within 7 percentage points, as
shown in Tables D-15a, D-15-c. However, in many instances the nonparametric models
achieved the best cross correlation, as shown in Tables D-15b, and D-22(a to ¢).

4.8.3.2 Serial Correlation of Generated Flows
r,, > 0.666 - Verification Set 1 - Tables D-2(a to c) and Set 2 - Tables D-9(a to d)

The best models deviated between -6 and 3 percent of the historical target value. The
verification results generally agree with the evaluation results.

Overall, the noncyclic nonparametric techniques performed best up to N, = 20 years, after
which the cyclic MOVE techniques performed better. Nonparametric models suggested as
alternatives to parametric models which failed error diagnostics performed within 5 percentage
points.

f,, < 0.666 - Verification Set 3 - Tables D-16(a to c) and Set 4 - Tables D-23(a to c)

The deviation from target serial correlation varied between -3 and 1 percent, showing
marginally better performance than the evaluation trials which varied up to 8 percent. For
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these trials, the nonparametric methods generally performed best, or were suggested as
alternates within one or two percentage points of the rejected model. Model performance in
this regard increased as N, increased. Nonparametric models suggested as alternatives to
parametric models which failed error diagnostics performed within 1 percentage point.

4.8.3.3 Variance of Generated Flows
I, > 0.666 - Verification Set 1 - Tables D-3(a to c) and Set 2 - Tables D-10(a to d)

The best models achieved between -19 and 8 percent of the target variance, again, roughly
corresponding to the range of results from the evaluation trials. In Tables D-3a to D-3c, the
nonparametric models are suggested as alternates, achieving within 10 percentage points
deviation. For N, =5 and 10 in Tables D-10a to D-10b, NP2A and NP3C perform well, and
are suggested as alternates for N; =15 and 20 in Tables D-10c and D-10d. Model performance
again increased as more common period was available. Nonparametric models suggested as
alternatives to parametric models which failed error diagnostics generally performed within 21

percentage points.
r,, < 0.666 - Verification Set 3 - Tables D-16(a to c) and Set 4 - Tables D-24(a to c)

The best models achieved between -74 to 6 percent of the target vanance, displaying much
worse performance than the evaluation trials. However, the results are comparable because of
the high variability in results which was shown in the evaluation tnials. The cyclic parametric
models performed best in set 3 for N, =10 to 15 years, in Tables D-24b and D-24c.
Nonparametric models suggested as alternatives to parametric models which faled error
diagnostics generally performed within 73 percentage points. The above indicates generally
poor model performance with small r,.

4.8.3.4 Mean of Generated Flows
r,, > 0.666 - Verification Set 1 - Tables D-4(a to c) and Set 2 - Tables D-11(a to d)
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Mean flow was reproduced quite well, with the best models achieving between -3 and 9
percent deviation of the historical target. These results roughly agree with the evaluation trials.
For N, =5 to 15 years, the noncydic nonparametric models performed best, in some cases,
being suggested as alternates to parametric models. No change in model performance was
noted with changes in either N, or N,.

Nonparametric models suggested as alternatives to parametric models which failed error
diagnostics generally performed within 1 percentage point.

r,, < 0.666 - Verification Set 3 - Tables D-17(a to c) and Set 4 - Tables D-25(a to c)

The models achieved between -24 to 5 percent deviation from the historical mean flow,
shghtly underestimating mean flow in comparison to the evaluation trials. NP2C generally
performed well. Noncyclic nonparametric models suggested as alternates were within 4

percentage points.

4.8.3.5 Generated Low Flows

1, > 0.666 - Verification Set 1 - Tables D-5(a to c) and Set 2 - Tables D-12(a to d)

The models achieved between -3 and 34 percent deviation from the historical low flow, (which
1s expected to be equaled or exceeded 80 percent of the time). This is approximately equal to
the results from the evaluation trials. Generally the parametric models reproduced the low flow
best for shorter common periods, and the noncyclic parametric models performed better for
longer common periods. Where nonparametric models were suggested as alternates, they fell
within 14 percentage points of the corresponding parametric model which failed the error

diagnostics.
r,, < 0.666 - Verification Set 3 - Tables D-18(a to c) and Set 4 - Tables D-26(a to c)
For set 3, the models performed quite poorly, with between -1 and 174 percent deviauon from

the historical low flow, but for set 4, the results were much worse than the evaluation tnals at
between -3 and 17 percent deviaion. For N, =5 years, in Table D-26a, the cyclic
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nonparametric models performed well. For N, =10 years, RPN performed best,
reproducing low flows equivalent to the historical target. For N, =15 years, NP3B performed
best. Alternate nonparametric models did not reproduce low flows quite as well, varying up to
158 percentage points different than the parametric counterpart.

4.8.3.6 Mean Percentage Error of Generated Flows

r,, > 0.666 — Verification Set 1 - Tables D-6(a to c) and Set 2 - Tables D-13(a to d)

The models achieved between -2.1 and 28.4 MPE, indicating far better performance than the
evaluation trials. MPE did not necessarily increase or decrease with N, or N, in the
venfication trials. In contrast, MPE had consistently decreased with both N, and N, in the
evaluation tnials, as shown in Tables C-11a to C-11d.

Where nonparametric models were suggested as alternates, they fell within 3 percentage points
of the corresponding parametric model which failed the error diagnostics.

r,, < 0.666 - Verification Set 3 - Tables D-19(a to c) and Set 4 - Tables D-28(a to c)

In this case, the models achieved extremely high MPE varying between -1.2 and 362 percent.
Note, however that the varability of the results was shown to be quite high for the evaluation
trials as well (Tables C-12a to C-12d). The verification trials seem to confirm this. Again, in
contrast to the evaluation trials, MPE showed no tendency to decrease with either N, or N..
The MPE was highest when the extension and common periods were similar.

4.8.3.7 SSE of Generated Flows
r,, > 0.666 ~ Verification Set 1 - Tables D-7(a to c) and Set 2 - Tables D-14(a to d)

For N, =5 years, REGM generally obtained minimum SSE for set 2. For N, = 10 years,
NP1A obtained minimum SSE for set 1 and REG and REGM obtained minimum SSE for set
2. For N, =15 years, NP3A performed best, for set 1 and REGM and NPM for set 2. For N,
=20 years, REGM performed best for N, up to 25 years, then NP2B for N, =30 to 40 years,
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for set 1. For N, =20 REGM again generally performed best. Generally, SSE decreased

as common period increased. It is obvious that SSE increases as extension period increases.

Where nonparametric models were suggested as alternates, they produced SSE which ranged
up to 40 percent higher than the parametric models which failed the error diagnostics.

r,, < 0.666 - Verification Set 3 - Tables D-21(a to c) and Set 4 - Tables D-28(a to c)

For sets 3 and 4, NP2C either achieved minimum SSE, or provided alternate minimum SSE
for many cases of N, and N,. This indicates that for small r, , the noncyclic nonparametric
models generate flows with a small variance in error terms, indicating good model
performance. Again, SSE generally decreased with increasing N,

Where nonparametric models were suggested as alternates, they produced SSE up to 63
percent higher than the parametric model which failed the error diagnostics.

4.9 SUMMARY OF EVALUATION AND VERIFICATION RESULTS

Table 4.25 summarizes and compares the results of the evaluation and verification trials for r,,
> 0.666. Table 4.26 summarizes and compares the results of the evaluation and verificanon
trials for r,, < 0.666. The results of serial correlation, variance, mean flow, and low flow, are
expressed in terms of fractional deviaton from the target historical value, as was done
previously. The fraction deviations shown for the evaluaton trials were averaged over all

evaluation trials, ( f; ), while the values from the verification results apply to a single trial, (f,).

SSE was not reported for evaluation trials because comparison of such a large number of SSE
values was not deemed useful.

Comparison of Table 4.25 and Table 4.26 shows that the performance of the models decreases
substanually when r,, decreases. However, similar behavior such as increased model
performance with increased available common period holds true. The verification results
generally confirm the range of the best model performance one may expect to encounter, as
previously found with the evaluation results, in the context of the streamflow stations used in
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the present study. Note, however, that the high variability in the results which may be
obtained was also verified. As such, the values in Table 4.31 and Table 4.32 represent an
approximate range of performance one may expect in using the extension models, however
the results for some of the adequacy measures are associated with a high degree of vanability.

The evaluation trials showed that inputting the number of nearest neighbors which the
nonparametrics used in the verification tnals, rather than allowing the nonparametric methods
to optimize for the number nearest neighbors decreases the nonparametric model
performance margnally.

The models performing best in the verification trials are not necessarily the same models
which perform best in the evaluation trals. The verification results show there are alternative
nonparametric models that perform comparably to the parametric models which failed the
error diagnostc tests. In many cases, the alternate models are nonparametric. There are also
marny cases where the nonparametric models performed best.

In the case where only one statistical measure is used to determine the best model, it would be
straightforward to compare a table of SSE values, then choose the model which yielded the
minimum SSE. However, in many cases, other statistical features are of interest, which is the
purpose of presenting the many adequacy statistics in this study. Section 4.10 provides a
methodology and recommendation for selecting the best model taking into account all the
adequacy measures which were described in Section 4.8.
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Table 4.25 Summary of Evaluation and Verification Results, r,, > 0.666

Adequacy
Measure

Range of j-"q

Range of f;
from
Verification
Trials

Comment

Correlation

0.84 - 0.92

0.86 - 0.94

Better model performance as N; increased.

Cyclic parametric models performed well

Alternate nonparametric models within 6
tage points of parametric.

Serial
Correlation

-0.05-0.02

-0.06 - 0.03

Model performance does not vary with N or
N:. Noncyclic nonparametric and cyclic
MOVE procedures performed well.
Alternate nonparametric models within 5

percentage points of parametric.

Vanance

-0.22 - 0.09

-0.19 - 0.08

Better model performance as N2 increased.
High variability in evaluation results.

Cyclic MOVE models performed well.
Nonparametric models performed better as N2
increased. Alternate nonparametric models
within 15 percentage points of parametric.

Mean Flow

-0.01 - 0.02

-0.03 - 0.09

Model performance did not change with N,

or Nz Low varability in results. REG, RPN

and noncyclic nonparametric m

performed well. Alternate nonparametric

models within 1 percentage point of
arametric.

Low Flow

-0.01 -0.31

-0.03 - 0.34

High vaniability in results. Results better as N
increased for evaluation trials, but increased
and decreased in verification trials.

Ahernate nonparametric models within 14
‘percentage points of parametric.

MPE

-0.9 - 110.1

-2.1-284

High vanability in results. Alternate
nonparametric models within 3 percentage
points of parametric.

SSE

n/a

NP1A, REG, and REGM performed well.
SSE decreased as N increased. Alternate
nonparametric models up to 40% higher SSE.
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Table 4.26 Summary of Evaluation and Verification Results, r,, <0.666

Adequacy

Measure

Range of fy

from
Evaluation
Trals

Range of f;
from
Verification
Trials

Comment

Cross
Correlation

0.74 - 0.89

0.75 - 0.89

Better model performance as N; increased.
Noncyclic nonparametric models performed
well. Alternate nonparametric models within 7
percentage points of parametric.

Senal
Correlanon

-0.06 - 0.08

-0.03 - 0.01

Model performance does not vary with N or
N:. High variability in results. Noncyclic
nonparametric procedures performed well as
N increased. Alternate nonparametric models
within 1 percentage point of parametric.

Vanance

-0.05 - 0.13

-0.74 - 0.06

Better model performance as N; increased.
High variability in results.

Cyclic MOVE models performed well. No
change in model performance with either N,
or N,. Alternate nonparametric models did not
perform well.

Mean Flow

-0.02 - 0.07

-0.24 - 0.05

Model performance did not change with N
or N. High variability in results. MOVE, and
noncyclic nonparametric models performed
well. Alternate nonparametric models within
11 percentage points of parametric.

Low Flow

-0.03 - 0.17

-001-1.70

High vanability in results. Results better as N2
increased for evaluation trials, but increased
and decreased in verification mals.

Models over-predict low flows. Alternate
nonparametric models within 158 percentage i
points of parametric.

11.7 - 125.06

-1.2 - 362.

High variability in results, as above. Highest

MPE when N; and N; are similar. Alternate

nonparametric models within 267 percent of
parametric

SSE

n/a

NP2C and REGM performed well. SSE
decreased as N increased. Alternate
nonparametric models up to 63% higher SSE. |
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4.10 RECOMMENDED MODELS

Section 4.8 provides a detailed account of the best model performance separately for each
statistical adequacy measure. The purpose of this section is to determine which model
achieved the minimum total deviation from the target statistical adequacy measures, in relation
to the performance of the best and worst models, while at the same ume not failing the error
diagnostics tests for nonnormality of residuals. The recommended models in a given case of
extension period, N;, common period, N,, and r,, are those models achieving the minimum
value of OBYJ; in the verification trials. In this section the minimum value of OB]; is referred to
as min(OB])) for discussion purposes.

The following procedure was used to arrive at the recommendations. The models which
obtained min(OB]J), and at the same time did not fail the error diagnostic tests for skewness
and kurtosis, is determined. Again, the number of nearest neighbors used by the
nonparametric models follows those determined by the evaluaton trials. The results from the
verification trials showed that nearly all models failed the serial correlation test on residuals,
indicating all models were generally inadequate in taking into account the ume varying
relationship between the base and index record. Since the performance of all models in that
regard are equivalently poor, the models were not censored due to seral correlaton of
residuals in the verification trals.

For the verification trials conducted, the same model did not obtain min{OBJ) in both sets of
verification trials. It is reasonable that two sets of verification sets (for each case of r, ) would
suggest different models, because the data used in each verification set is different. The
characteristics of one technique may lend itself as the most appropriate depending on different
features of the data. For instance, in the case of the nonparametric techniques, if the flows
tend to rise or fall sharply on the hydrograph, the first difference feature vectors may provide
an edge, or if the scale differences between monthly flows interferes with the pattern
recognition, the standardized feature vectors may be more useful. The investigation into these
types of questions is suggested for further research. The purpose of the present study was to
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develop the alternate techniques and evaluate them in comparison to the currentdy
available parametric techniques.

The addition of OBJ; from two trials equates to the cumulative deviation from all the adequacy
statistics from both sets of trals. In this way, both verification trials may be utilized to
determine the overall best model. Calculating the objective function value using both
verification trials essentially amounts to adding up all the deviations from the adequacy
statistics twice for each model (once for each verification set). Note, however, that the value
of OBJ; cannot be compared to the value of OB]J; from another trial to determine the best
model, only the additive property is relevant. One could not, for instance say that model i
performed better in trial p, than in trial q, because OBJ;(p) < OBJi(q).

Thus, the OBJ, values for both verification sets were added together to provide a cumulative
indication of the model adequacy taking into account all the adequacy measures for both
verification trials. The recommended model is the model which achived the minimum value
of the sum of objective functions from the respective evaluation trials. Recall that verification
sets 1 and 2 apply to r,, > 0.666, and verification sets 3 and 4 apply to r,, <0666. If we let
OBJ(s) = the value of OBJ; obtained for model i in verification set s, the recommended model
for r,, > 0.666 is the model which achieved min[OBJ;(1)+ OBJ;(2)]. The recommended model
for r,, < 0.666 is the model which achieved min[OBJ;(3)+ OBJ;(4)].

A shortcoming of the RPN and RPNM techniques is that there is no single unique record
obtained from these techniques, rather a whole sequence of different records may be obtained
because of the random error component. Since the purpose of streamflow record extension is
to establish a consistent database of flow records, this approach is not recommended.
Therefore, RPN and RPNM are rejected when they happen to achieve minimum OB];, i the
verification trials, in favor of the next best model which does not fail the error diagnostics

explained previously.
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4.10.1r, > 0.666

The models achieving the minimum objective function value combined for verification sets 1
and 2, min[OBJ;(1)+ OB];(2)], for each combination of N, and N, for r,, >0.666 are shown in
Table 4.27. The models shown in Table 4.27 are recommended to use for streamflow record
extension for the resﬁecﬁve extension period, common period, and cross correlation between
the base and index record greater than 0.666. Note that verification set 1 unfortunately did not
include N, =5 years due to missing data. All recommended nonparametric models, except
NPIC for N, = 5 years, replaced other parametric models which achieved lower OB]J,, but
failed the error diagnosucs.

Figure 4.13 shows the histonic, NP1C, and REG generated monthly flows for English River at
Umfreville. The extension and common periods are 5 and 10 years, respectively. NP1C is the
recommended model, and REG is plotted for comparison. Neither NP1C nor REG tended
to consistently underestmate or overestmate. NPIC and REG underestimate and
overestimate high flows in the same years. Note the beginning and end months of the
generated record are missing for the noncyclic nonparametric models because the dry season
extends into the previous year, thus a feature vector could not be determined for that year.

The gaps in the hydrographs correspond to missing data.

In Figure 4.13, the peak and low flows seem to correspond fairly well. Neither model
reproduced the dry year in 1924, where the peak flow reached onmly 53 m’/s. NPIC
reproduced the peak flow in 1925 quite well.

An interestng feature of the nonparametric models is seen for the period between
approximately September and February 1924 in Figure 4.13. NP1C generated a small rise in
the flow during this period. Note during the beginning of 1923 and 1925, a similar nise in the
flow occurs, but in other years it does not. What has occurred in this case is the flow patterns
on which the nonparametric model based its generated flows (nearest neighbors) had a similar
pattern during this period. Recall that the nearest neighbors are selected based on “distances”
in the pattern space calculated between feature vectors for the base record during the
extension and common periods. If the base record did not contain information regarding the
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flow conditions at the index record site which either caused or prohibited this pattern of

flow from occurring, then the nonparametric method would select inappropriate nearest
neighbors for that time period. Fortunately, the wet seasons and dry seasons do not ualize the
same nearest neighbors, so the nonparametric method can “recover” quickly within the same

flow year.

Figure 4.14 shows the historic, NP1C and REGM generated flows for English River Near
Umfreville. The extension period is 15 years. The common period is 25 years. NP1C replaced
REGM, which had a lower OBJ;, but whose residuals were not normally distributed. The
longer common period enhances model performance. The timing of the peak and low flows
tend to correspond better with longer common period. Notably, a very high flow in 1927 was
reproduced well by REGM.

Figure 4.15 shows the historic, NP1C and REGM generated flows for Island Lake River Near
Island Lake. The extension period is 15 years and the common period is 25 years. NP1C was
recommended, replacing REGM. NP1C modeled the peak and low flows quite well. Both
models had some difficulty corresponding to the peaks between 1942 and 1944.

Table 4.27 Recommended Extension Models, r,, > 0.666

N, N, =5 Years N, =10 Years N, = 15 Years N, = 20 Years
5 MViM - - -

10 NPIC REGM - -

15 REGM NP1B NPM -

20 REGM NPM NP3B NP2A
25 REGM NP1A NP1C* NP2A
30 REGM NP2B NP1C NP1C
35 REGM NP2B NP3B NP2B
40 REGM NPi1C NPM NPM
45 REGM NP1C NP1C NP2B
50 REGM NPM REGM NP2B*
55 REGM REG REGM -

60 REGM REGM - -

65 REGM - - -

* Recommended over random noise model.
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Figure 4.13 Generated and Historical Flows for English River at Umfreville
N, = 5 Years, N, = 10 Years, r,, > 0.666
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Figure 4.14 Generated and Historical Flows for English River at Umfreville
N, = 15 Years, N, = 25 Years, r,, > 0.666
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Figure 4.15 Generated and Historical Flows for Island Lake River at Island Lake
N, = 15 Years, N, = 25 Years, r,, > 0.666

4.102r,, < 0.666

The models achieving the minimum objective function value combined for verification sets 3
and 4, min[OB];(3)+ OB]J,(4)], for each combination of N, and N, for r,, <0.666 are shown in
Table 4.28. The models shown in Table 4.28 are recommended to use for streamflow record
extension for the respective extension period, common period, and cross correlation between
the base and index record less than 0.666.

A point should be made at this point regarding the feasibility of using a set of base and index
records where r,, < 0.666. The analysis of the behavior of the various models for the case of r,,
< 0.666 was done more for investigative purposes rather than to make the statement about
performing extensions using stations where the cross correlation is low. In fact, it is not the
opinion of the author that performing an extenston based upon low cross correlation provides
any benefit other than the hydrologist will get a longer record out of the exercise. When r,_, is
small, there may be no physical basis upon which the extension can be based, and factors
affecting the runoff are different. The factors affecting runoff include subbasin geometry,

130



such as drainage area, shape, slope and topography; geologic variables such as soil type,
porosity, sediment characteristics and groundwater regime, for example. In the case of small

r,, then, it is unlikely that a useful extension can be made with the parametric or
nonparametric techniques, and an alternate form of record generation, such as using
determininstic models, could be investigated. Even though r,, can be tested to be statstically
significant, there is no guarantee that there is a physical basis of high correlation. Such
correlation may occur by chance. In the present study r,, could not be generalized as to
whether it is statistically significant or not, due to the large varaton in sample sizes
encountered in the data sets.

Figure 4.16 shows the historic, MV3M and NP2C generated flows for the Manigotagan River
Near Manigotagan, verification set 3. The extension and common periods are 10 and 20 years,
respectively. NP2C is the recommended model, as an alternare to MV3M, which failed the
error diagnostics. In Figure 4.16, some of the peaks correspond well, but generally not for
moderate flows. Both models provide variable flows during dry periods, when clearly the
historical flows are quite uniform during this period. Note the extremely high flow in 1966
produced by MV3M, showing the high variability that this model is capable of producing. The
general poor model performance is a reasonable occurrence in light of the low r,, and
supports the assertion that relying on record extensions for low r,, is not a preferred
alternative. Even though some of the rising limbs are modeled well, the general shape of the
hydrographs near the peaks, falling limbs and low flows are not reproduced well.

Figure 4.17 shows the historic, MV3M and NP2C generated flows for the Sturgeon River at
Outet of Salvensen Lake, verification set 4. The extension and common periods are 10 and
20 years, respectively. The peaks and valleys do not correspond well. This means the timing
of the high and low flows in the generated model are different from the historic model. The
models do not perform well in this case. This provides a visual confirmation of the evaluation
and verification results which showed the cross correlation between the generated and historic
flows, and the performance in reproducing the serial correlation of the historic flows was
much less for r,, < 0.666.
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Table 4.28 Recommended Extension Models, r,, < 0.666

N, | N, =5Years N, =10 Years N, = 15 Years
5 MV1 - -
10 NP1C NP1B -
15 NP3C NP2C NPM
20 { NPM NP2C NPM
25 NP2C NP3C -
30 NP2C - -
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Figure 4.16 Generated and Historical Flows for Manigotagan River Near Manigotagan
N, = 10 Years, N, = 20 Years, r,, < 0.666
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Figure 4.17 Generated and Historical Flows for Sturgeon River at Outlet of Salvensen Lake
N, = 10 Years, N, = 20 Years, r,, < 0.666

4.10.3 Recommended Procedure to Determine Appropriate Model and Perform Record
Extension
Based on the results of the verification data, the recommended extension model and general

procedure for carrying out streamflow record extension for a given combination of extension
period, N, common period, N,, and cross correlation between the base and index record, r,,,

1s summarized as follows.

Step 1 Select base and index streamflow stations with coinciding measurements. Determine
the required extension period and product moment cross correlaton by either
equation 3.13¢ or 4.9. The common period used for selecung the model shall be the

closest multiple of 5 years.

Step 2 Ifr,, > 0.666, determine the recommended extension model from Table 4.27.

If r,, < 0.666, determine the recommended extension model from Table 4.28.
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Step 3

Step 4

Step 5

Step 6

Step7

Step 8

If the selected model is parametric, ransform the monthly streamflows either
with logarithms, or another power transformation of choice, then perform the
extension using the method as outlined in Section 3.2. Go to Step 8.

If the selected model is noncyclic nonparametric, examine the monthly mean
hydrograph, to classify the data into wet and dry seasons. If the classification is not

visually apparent, perform the noncyclic nonparametric extension on 2 portion of the
record, approximately 1/3 the length of the total record to determine the proper

classification.

Classify the flow data into feature vectors, utilizing the appropriate transformation in
accordance with Section 3.5.2.

If r,, > 0.666, determine the appropriate number of nearest neighbors, n,,, from Table
4.8.

If r,, < 0.666, determine the appropriate number of nearest neighbors, n,, from Table
4.9.

Rank the flow years within the same partern class in accordance with Section 3.5.3.
Choose the first n,, feature vectors as the nearest neighbors to utilize for flow

generanon.
Generate the synthetic feature vectors in accordance with equation 3.40.

Reverse transform the data, if required to obtain the generated flow values.

Guidance as to the range of statistical performance which may be expected from a particular
model can be obtained from Table 4.25 and Table 4.26 for r,, > 0666 and r,, < 0.666,
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Chapter 5

- SUMMARY AND RECOMMENDATIONS

5.1 SUMMARY OF RESULTS

This study compared the performance of existing parametric streamflow record extension
techniques and nonparametric method of streamflow record extension which was developed
as a variation of exisung nonparametric techniques. The nonparametric method utilizes the
relationship between the index and base record to identify similar flow patterns that are used
to generate streamflow data. The record extension techniques were evaluated based on a
statistical comparison of the generated flows to the historic flows. Both cydlic and noncyclic
forms of the techniques were examined. The performance of the techniques were examined
for different cross correlation between the index and base station, r,, >0.666, and r,, < Q666,
as well as for different combinations of extension period and available common period. The
evaluation also consisted of examining the number of nearest neighbors used by the
nonparametric techniques, and testing the validity of some theoretical assumptons made in
applying the parametric techniques.

A set of evaluation data incorporating 21 sets of base and index streams for r,, > Q666 and 16
sets of base and index streams for r,, < 0.666 from Manitoba and Ontario were used to
examine the statistical properties of the techniques. The data was log-transformed prior to use
in the parametric models to remove skewness. The extension techniques were then carried out
on four separate sets of base and index streams (2 for each r, ) for the verificaton of the
results. The verification trials form the basis of the conclusions regarding which models are

most appropriate.

The analysis was conducted on streamflow records of long length such that a portion of the
record is temporarily assumed as “missing”, then the extension is carried out in order to
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generate the “missing” historical flows. The generated flows are compared to the
historical flows. The results of the verification trials generally confirmed the findings of the
evaluation trials, and are summarized below.

Although the data were log-transformed, in many cases the parametric models displayed
residual series which were not normally distributed, indicating that the parametric models did
not follow the assumption of normality of error terms, upon which parametric class of models
is based. The results also showed that both the parametric and nonparametric models yielded
residual series which were serally correlated. This indicates that the vanables used in the
parametric models were not random, another contradiction to the parametric model
assumptions, and that all the models generally did not adequately take into account ume
varying relationship between the base and index records. Where the residual series from a
parametric model failed the tests for normality of residuals, an alternate model is proposed,
which did not fail the tests for normality of residuals. The alternate model is not necessarily,
but often was, a nonparametric model. In many cases, the nonparametric models either
performed best or provided a relatively close alternative to a parametric model which did not
conform to the model assumptons.

The optimum number of nearest neighbors used by the nonparametric models, n,,, did not
vary appreciably with extension period, but did vary with common period, r,,, and the type of
nonparametric model used. The spread between the number of nearest neighbors used by
different nonparametric models was quite narrow for a common period less than 40 years, but
diverges rapidly for common periods greater than 40 years. The optimum number of nearest
neighbors increased with common period. The ratio of n,, to common period decreased as
common period increased, ie. the rate of increase in n,, did not vary consistently with the
number of years in the common period. Utlizing the recommended number of nearest
neighbors decreases the performance of the nonparametric techniques, in comparison to the
case where the nonparametric models utilizes the optimum number of nearest neighbors
determined from extending portions of a long-length record.
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In general, all the extension models generated flows which displayed fairly high cross
correlation with the historic flows. The cross correlation increased as the record length
increased, and decreased as r,, decreased.

The serial correlation . of the historic flows was reproduced best by noncyclic nonparametric
and cydic MOVE procedures. The serial correlation of the generated flows tended to be
shghtly smaller than the historic flows, and model performance neither increased nor
decreased with extension or common period. The ability to reproduce serial correlation did not

seem to be affected by vanation in r,..

The cydlic parametric and noncyclic nonparametric models also reproduced variance better
than the other models, however, the variance tended to be shightly over-esumated. The
nonparametric models tended to perform better as common period increased. A decreaseinr,,
resulted in underestimation of variance.

All models reproduced mean flow quite well. REG, RPN, and the noncyclic nonparametric
models reproduced the mean flow the best overall. The nonparametric model performance
increased with common period. The generated mean flows tended to be lower than the
historical means when r,, decreased.

There was a high vanability in the models’ capability to reproduce low flows. The noncyclic
nonparametric techniques, and cyclic and noncyclic parametric MOVE techniques performed
best. All models tended to overestimate the low flows. Model performance for this parameter
increased as the common period increased, and decreased quite dramarically as r,, decreased.

The noncyclic nonparametric, REG, and cyclic MOVE techniques provided the lowest MPE
overall. Again, the results of mean percentage error, MPE, were quite variable, and
performance seriously decreased as r,, decreased.

REGM and noncyclic nonparametric models displayed the lowest sum of squared deviations
from the historic flows, SSE. Performance in terms of SSE increased significantly as available
common period increased, and decreased withr, .

137



5.2 RECOMMENDATIONS

The nonparametric techniques are recommended as a viable alternative in the cases where the
parametric models displayed nonnormal residual series. The residuals of the flows generated by
the parametric models were not normally distributed in many cases, showing that the
parametric models do not follow the theoretical assumptions upon which they are based.
However, the use of the nonparametric models as alternanives to the parametric models may

involve a trade-off in terms of statistical performance in some cases.

The model which obtained the minimum objective function value, which also did not fail the
test for normality of error terms is recommended as the best overall model to use in a given
case of N, , N, , and r,. The recommended procedure for generating streamflow records is
given in Secton 4.10.3.

Great care must be taken when considering record extensions based on low cross correlaton
between the base and index record. There are likely factors which make record extension
infeasible in such a case. If the extension or common period falls outside the range shown in
Table 4.27 or Table 4.28, one may utilize the model recommended for the next closest value of
extension or common period, or choose from the table the model which occurs most often

out of all common periods.

In any case, judgement must be utlized in selecting the appropnate model in relation to many
factors, including the statistical performance of the model. The initial evaluation should
include examining features of the dara being utilized relative to the features of the data on
which these recommendations are based, since the best models based on the results from this
study may not necessarily be the best models in every case. If the available common period is
long enough, an inmal trial extension could be performed on a portion of the index record
currently known, then the performance of the models evaluated on that basis. The results from
the initial evaluation should be factored into the final model selection.

The cyclic nonparametric model, as presented, is relatively simplistc in comparison to the
noncyclic nonparametric models, in that only a single monthly flow is included in the feature
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vector. Expanding and refining the NPM model is suggested as future work. One
consideration is including adjacent months as part of the feature vector.

Other refinements to consider for the nonparametric models, in general, include:

- including phyﬁml data such as precipitation or snowmelt, for example, in the feature

vectors,

- applying weight to nearest neighbors closer in tume to the extension period to

determine the effect on feature vector selection,

- applying weights to adequacy measures in the objective function calculanon to
determine the effect on model selection,

- determine the optimum season lengths determined for each model separately, rather
than using the results from one model,

determine the effect of data infilling on model performance.

The question as to the overall effect of the parametric models not following the theorencal
assumptions of normally distributed residuals is framed in terms of a theoretical standpotnt in
this study. The nonparametric models are proposed as an alternative to models which have
problems following the theoretical assumptions upon which they are based. The effect of
nonnormal residuals on the generated flows is also a suggested topic of further research. The
results may provide some insight as to the seriousness of the failure of the parametric models

to meet model assumptions.

As well, the applicability of the models should be investigated for streamflow records outside
the study area, and the analysis would benefit if updated as new data become available.
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APPENDIX A

HYDROGRAPHS
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Mean Monthly Hydrograph
Gods River Below Allen Rapids
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Mean Monthly Hydrograph

Swan River Near Minitonas
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Mean Monthly Hydrograph

Rat River Near Sundown
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Mean Monthly Hydrograph
Whitemouth River Near Whitemouth
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Flow (m*/s)

Mean Monthily Hydrograph
Manigotagan River Near Manigotagan
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Mean Monthly Hydrograph
Fisher River Near Dallas
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Mean Monthly Hydrograph
Turle River Near Mine Centre
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Mean Monthly Hydrograph
English River at Umfreville
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Mean Monthly Hydrograph
Sturgeon River at Outlet of Salvensen Lake
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Mean Monthiy Hydrograph
Pigeon River at Middle Falls
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Mean Monthly Hydrograph
Neebing River Near Thunder Bay
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North Magnetawan River Near Burk's Falls
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Mean Monthly Hydrograph

Black River Near Washago
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Mean Monthiy Hydrograph
Saugeen River Near Port Elgin
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Saugeen River Near Walkerton
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Mean Monthly Hydrograph

Nith River Near Canning
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Flow (m'/s)

Mean Monthiy Hydrograph
Skootamatta River Near Actinolite
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APPENDIX B

NUMBER OF NEAREST NEIGHBORS USED

BY NONPARAMETRIC TECHNIQUES
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Table B-1 Avg. No. of Nearest Neighbors Used by Nonparametric Techniques Averaged
Over All Trials, and Rounded to Nearest Integer. Standard Deviation of Nearest Neighbors
Used Shown Below Average Value, N, =5 Years, N; =5 to 75 Years, r,, > 0.666

Ni=| 5

N2=; 5 [ 10} 15]20}25 )30 35 | 40| 45 | 50 | 55 ) 60 | 65 | 70 | 75

NP1A| 3 3 4 5 6 6 7 9 13 11 13 | 14 16 10 12

STDV:{1.18|1.73|2.01]2.38|3.82|3.86 | 5.98 | 6.36 | 10.36| 8.86 | 991 |11.19|13.75|13.4514.82

NPIB| 3 4 4 4 6 7 7 8 13 15 15119 | 20 | 20 | 14

STDV:[1.07 | 1.7712.35]| 2.62{4.02]4.91 | 5.84 | 7.07 |11.58|12.79[13.65|14.93|16.53 | 16.69 | 19.33

NPIC| 3 4 5 6 4 5 6 6 7 6 7 8 6 9 8

STDV:{1.67 | 3.41|4.35|5.86 | 2.58 | 596 | 8.19 | 4.06 | 3.78 | 1.34 | 2.19 | 1.1 | 2.19 | 847 | 2.55

NP2A| 3 4 4 5 6 6 7 9 15 15 16 | 15 19 12 13

STDV:[1.32(1.86[1.96]|2.96(3.89 (431|629 | 8.74 | 11.34|12.76| 14.46 | 14.13|17.57 | 16.48 | 17.34

NP2B| 3 3 4 5 5 5 7 9 12 } 13 14 | 12 14 12 11

STDV:[0.96[1.49{1.78|2.42(3.26|433| 6 |7.66|7.35|7.89|9.14 |1597|16.81|13.75| 16.47

NP2C| 3 3 4 4 5 7 7 9 14 | 14 16 | 17 | 20 | 20 | 22

STDV:|{1.282.03(2.63|3.22{3.83{ 47 | 506 | 7.7 | 11.1 | 13.2 | 15.29]|15.55(19.49|17.64| 18.27

NP3A| 3 4 6 7 7 6 8 8 15 18 10 | 12 13 15 11

STDV:| 1.34 | 2.46|4.15{5.96 [ 6.63 | 6.06 | 6.54 | 9.58 | 15.04| 16.6 | 9.96 |12.03]12.08]12.95 | 4.87

NP3B| 3 5 6 6 7 8 10 | 10 18 | 20 15 | 17 18 20 10

STDV:| 1.41[2.46 |4.37 | 4.52 | 6.63 [ 5.75 | 8.11 | 10.52|14.01|16.74| 11.7 |13.32(14.52|13.93 | 4.66

NP3C| 3 5 6 5 6 7 6 8 14 5 11 | 14 13 9 10

STDV:|1.44 298 |3.88]4.69 (562|674} 458 | 5.82 | 6.69 | 2.05 | 11.08| 7.83 | 9.18 | 4.06 | 4.47

NPM | 2 4 5 6 6 6 7 6 8 7 9 8 11 15 14

STDV:{136| 1.5 |2.11]3.17|2.62| 3.6 | 301 | 357 | 54 | 55 | 493 {3.96 | 5.54 | 455 | 4.51
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Table B-2 Avg. No. of Nearest Neighbors Used by Nonparametric Techniques
Averaged Over All Trials, and Rounded to Nearest Integer. Standard Deviation of Nearest
Neighbors Used Shown Below Average Value, N, =10 Years, N; = 10 to 70 Years, r,, > 0.666

Nil=| 10

N2=| 10| 15 | 20| 25 | 30 | 35 | 40 | 45 | 50 55 60 | 65 70

NPIA| 3 5 |5 7 8 7 | 10 ] 11 9 16 17 17 14

STDV:| 1.4 [2.19|2.59}|4.37 | 497 [4.65|6.06|7.14 | 7.54 [10.37| 10.8 [10.49} 12

NPiB| 3 5 4 6 7 7 110§ 13| 12 12 14 15 13

STDV:[1.45|2.25(2.16 {4.61|3.42|4.69|6.07|7.64| 735 | 8.41 | 879 | 945 | 12.03

NPIC] 5 5 4 6 6 6 6 6 6 9 12 11 8

STDV:|3.15]|4.39(2.31|4.36}459|3.51|2.05|1.82} 2.17 | 5.13 | 532 | 7.54 | 5.76
NP2A | 4 4 4 6 7 9 {11} 13 ] 12 16 15 18 12

STDV:|1.63|189{2.04| 3.7 | 45 |572|7.19|893|10.63| 9.2 |12.12|11.55| 4.53

NP2B | 4 5 4 6 8 8 (11| 12| 12 13 16 14 15

STDV:[2.08|23111.831433|4.81| 46 {6.69|7.27|7.23 | 9.47 | 9.26 | 11.22|13.25

NP2C| 4 5 5 7 8 7 (1210 11 14 13 12 14

STDV:| 197|296 {2.86|5.76 577 (298| 74 | 5.1 | 798 | 8.53 | 493 | 5.59 | 3.83

NP3A| 4 6 5 6 8 6 8 9 6 11 11 10 10

STDV:}2.78|4.1314.11|3.3814.78|3.03(485|607| 23 | 409 | 5.18 | 3.74 | 3.96

NP3B| 5 5 6 6 8 7 | 1211 ] 10 12 14 12 11

STDV:1296|3.814.92| 3.5 | 4.11]4.43|3.294.87| 6.57 | 4.16 | 691 | 567 | 3.11

NP3C| 4 6 6 6 6 5 9 8 7 7 6 8 10

STDV:| 2.1 |3.87{4.88|5.31| 5.3 [3.37|522;6.46| 3.05 | 3.78 | 3.65 | 3.94 | 3.05

NPM | 3 4 5 6 8 8 8§ | 10| 10 12 16 17 17

STDV:!1.62|254(2.11|3.36|3.73| 47 |192|3.83| 2.17 { 2.7 | 3.83 | 472 | 5.07
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Table B-3 Avg. No. of Nearest Neighbors Used by Nonparametric Techniques
Averaged Over All Trials, and Rounded to Nearest Integer. Standard Deviation of Nearest
Neighbors Used Shown Below Average Value, N; = 15 Years, N; = 15 to 65 Years, r,, > 0.666

Ni= | 15
N2= | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 55 60 | 65
NPIA | 4 | 5 6 6 7 7 8 10 11 9 9
STDV: | 1.35]3.28 | 2.69 225|394 |439|3.56}602| 704 | 249 | 4.34
NP1B | 4 5 6 6 7 8 10 | 11 12 9 9
STDV: | 162 (269|241 |343|557 (713|738 77 | 9.11 |3.35]| 3.63
NPIC | 4 4 5 6 6 8 8 10 11 8 8
STDV: | 374 | 2.15| 155|249 |358| 2.7 | 1.34 | 458 | 487 | 277 | 2.7
NP2A | 4 5 7 6 6 7 6 8 8 8 8
STDV: | 147 (276|283 | 333|371 (406|173 277 | 377 | 3.96 | 4.34
NP2B | 4 6 7 6 6 8 7 8 11 6 2
STDV: | 219(3.1213.09|3.06( 55 | 7.6 | 259|646 11.03)3.91 | 3.03
NP2C | 4 5 6 6 11 9 7 10 9 9 10
STDV: | 1.63]1.86|191]226|205{438[3.32]|7.09]| 367 | 3.9 | 507
NP3A | 5 5 6 6 8 8 8 8 9 10 9
STDV: 222|198 (261 | 35 |418 (377 {4.15] 5.1 | 631 | 6.48 | 4.21
NP3B | 5 5 7 9 8 10 | 11 8 11 11 8
STDV: | 191|276 |251|462|385|336| 46 [492| 54 |593| 3.7
NP3C | 5 6 6 6 8 8 8 8 9 9 8
STDV: | 3.19 | 4.16 ( 3.42 | 3.41 | 3.29 | 3.58 | 434 | 5.18 | 5.31 | 6.2 | 4.1
NPM | 4 6 6 5 8 7 8 10 11 12 12
STDV: | 194 | 2.04 | 1.98 | 291 | 251|279 | 3.65| 497 | 3.74 | 3.87 | 3.91
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Table B-4 Avg. No. of Nearest Neighbors Used by Nonparametric Techniques Averaged
Over All Trials, and Rounded to Nearest Integer. Standard Deviation of Nearest Neighbors
Used Shown Below Average Value, N, = 20 Years, N; = 20 to 60 Years, r,, > 0.666

Ni= [ 20
N2= | 20| 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60

NPIA | 6 6 7 7 9 9 8 8 9
STDV: {374 | 1.64 | 41 {404 (526| 4 |268|207 | 27
NPIB | 6 6 8 9 9 9 7 7 7

STDV: | 247 | 24 378 5.1 | 6.02| 6.8 | 205|239 | 245
NPIC | 5 5 6 6 7 8 7 6 6
STDV: | 428 | 163|251 |1.67 | 1.3 | 292|217 |2.35|0.84
NP2A | 5 5 7 8 7 7 8 7 11
STDV: | 1.9 | 2.41{3.27 |3.21|2.28 | 2.83 | 349 | 3.13 | 4.44
NP2B | 6 5 7 8 7 6 6 7 9
STDV: | 276|276 |394 | 638 | 1.823.05| 2.88 | 2.41 | 3.29
NP2C | 6 6 7 6 7 8 8 8 8
STDV: [ 4.15] 25 [295{2.39 (288 3.03| 3.7 | 3.42 | 2.83
NP3A | 5 6 8 6 6 8 9 7 9
STDV: | 2.09 | 253 | 4.62 |3.91|295| 483|522 349 | 3.36
NP3B | 6 6 7 7 8 7 7 7 8
STDV:| 14 | 22 | 41 [ 541|536 |5.13 | 6.16 | 4.69 | 3.85
NP3C | 5 6 7 9 7 7 8 7 7
STDV:|1.85|279|3.03 358|261 187 |5.63|3.24|3.36
NPM 5 6 8 7 7 10 | 10 | 12 | 11
STDV: | 199327 (351|283 |3.13{378| 39 | 464 | 63
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Table B-S Avg. No. of Nearest Neighbors Used by Nonparametric Techniques
Averaged Over All Trials, and Rounded to Nearest Integer. Standard Deviation of Nearest
Neighbors Used Shown Below Average Value, N; =5 Years, N, =5 to 75 Years, r,, < 0.666

Ni=| 5

N2=| 5 |10} 15]20|25] 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 |70]|75
NPIA| 4 6 8- |11 |14 ] 16 [ 19 | 22 | 40 | 41 | 45 | 40 | 43 |39 36
STDV:| 1.55]|3.23[5.01|7.14|8.05[10.38|12.9815.51| 8.39 {15.31| 6.43 | 9.87 | 10.44

NPiB| 4 6 8 |10 14| 15 | 16 | 24 | 36 | 44 | 45 | 46 | 48 |45| 48
STDV:|1.45]3.22(4.73/6.89 | 8.18[10.33|11.05|14.21]14.15]| 9.54 | 529 | 4.16 | 2

NPIC| 4 6 | 10} 11|14 ) 16 [ 23 | 18 | 30 | 32 | 26 | 23 | 30 [24|10
STDV:| 1.56|3.81]5.69{7.77[9.33|10.11|12.16{15.16|21.22{21.39| 15.53| 15.1 |18.15

NP2A | 3 6 9 |11 |13 ]| 16 | 18 | 23 | 40 | 45 | 44 | 45 | 43 (42|45
STDV:| 1.64| 3.27 | 4.8116.55|8.15| 10.8 [13.74|16.59| 8.39 | 8.39 | 557 | 7.23 | 6.24

NP2B| 3 7 9 |12 16| 16 [ 19 | 23 | 36 | 40 | 41 | 47 | 41 [36]40
STDV:| 1.44]2.97|4.63|6.56 |7.07 | 10.12|12.47|13.53| 14.15]|15.89{12.29| 5.77 | 8.14

NP2C|{ 3 6 | 10|13 ) 14| 16 [ 20 | 20 | 39 | 48 | 35 [ 39 | 44 (45|41
STDV:|1.58]3.29}4.61| 6.4 |9.14|11.06/12.58|13.45|10.97| 4.04 | 346 | 4.62 | 3.79

NP3A | 4 6 9 112 |11 ) 14 | 16 | 20 | 19 | 42 | 29 | 38 | 41 |37|13
STDV:[1.47|3.34|5.4316.95|8.71| 9.88 | 6.85 [12.09 9.85 | 13.58( 1.53 | 5.69 | 6.43

NP3B| 4 6 9 |11 {1217 | 20 | 22 | 29 | 45 | 30 | 40 | 36 |36 12
STDV:{1.41(3.48|5.01|7.01{888|11.62| 10 |12.09{15.52| 8.39 | 11.5 | 4.73 |21.66

NP3C| 4 7 11|14 )17 ] 19 | 20 17 | 27 | 22 {29 | 33 | 35 |9 |9
STDV:|1.37}3.0714.76 | 6.47 | 8.83 | 11.15]10.35|11.07 | 7.64 | 17.16|18.93|19.47 | 22.37

NPM | 3 5 8 | 9 |12 16 | 16 [ 15 | 25 | 37 | 18 18 | 22 119120
STDV:| 1.2 |12.96(3.59}5.88|5.82| 7.89 | 9.02 | 12.0819.08|23.09|16.74|19.73 | 20.4

166




Table B-6 Avg. No. of Nearest Neighbors Used by Nonparametric Techniques
Averaged Over All Trials, and Rounded to Nearest Integer. Standard Deviation of Nearest
Neighbors Used Shown Below Average Value, N; = 10 Years, N; = 10 to 70 Years, r,, < 0.666

Ni= | 10
N2= | 10 | 15 | 20 [ 25 | 30 35 40 45 50 55 60 65|70
NP1A | 6 9 10 | 14 | 16 18 30 35 42 43 41 33|31
STDV: | 236 (424|638 | 7.6 | 9981245 | 13.43 | 15.89 | 13.58 | 12.7 | 9.81
NPIB | 7 9 11 | 13 | 14 17 33 37 40 42 41 | 32133
STDV: | 282 (488 |5.87|8.09| 9.7 | 1237 | 11.85| 13 | 15.89 | 13.28 | 10.39
NPIC | 9 10 | 13 | 15| 17 18 34 29 23 30 24 | 23118
STDV: [ 1.76 | 531 | 6.63 | 8.37 | 9.38 | 1292 3 19.16 | 2098 | 16.17 | 14
NP2A | 6 9 10 | 13 | 16 19 34 38 43 42 43 | 36|39
STDV: | 253|398 624 |7.17 [ 963 | 1279 | 9.29 | 9.87 | 1044 [ 9.71 | 9.87
NP2B | 7 9 11 | 12 | 16 19 32 37 41 41 43 | 33|38
STDV: | 289438622719} 91 {1185) 13 |[12.42]| 1473 | 12.1 | 9.81
NP2C | 7 101 12 ] 14 | 16 16 26 30 42 37 37 12622
STDV: | 244|449 (733|869 |998| 1143 | 12.66 | 13.65 | 1443 | 12.01 | 11.37
NP3A | 6 9 11 | 12 | 15 17 22 23 20 22 21 | 11|11
STDV: [ 347 | 43 | 6.03 674 |836|1247 | 1626 | 19.86 | 26 | 14.18 | 18.82
NP3B | 6 9 11 | 13 | 11 14 22 35 40 33 31 (2712
STDV: | 338|442 |7.28 | 669|842 7.7 | 1595/ 15.89 | 16.46 | 10.41 | 12.17
NP3C | 8 10 | 14 | 16 | 19 16 17 22 25 21 32 919
STDV:| 24 |528 | 7.1 | 8.15|6.56 | 10.11 } 12.22 | 20.6 | 22.74 | 18.25 | 20.07
NPM 7 9 11 | 14 | 14 16 25 29 36 34 36 | 19120
STDV: 223 | 44 |521|653|862] 9.75 | 16.09 | 17.16 | 23.67 | 17.79 | 16.82
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Table B-7 Avg. No. of Nearest Neighbors Used by Nonparametric Techniques
Averaged Over All Trials, and Rounded to Nearest Integer. Standard Deviation of Nearest
Neighbors Used Shown Below Average Value, N; = 15 Years, N, = 15 to 65 Years, r,, < 0.666

Ni= | 15
N2= | 15 20| 25 | 30 | 35 | 40 | 45 | 50 | 55 |60]65
NPIA | 8 | 10 | 11 | 12 | 24 | 28 | 32 | 36 | 35 |24]15
STDV: | 3.5 | 448 | 675 | 6.58 | 11 | 13.05 | 14.19 | 15.63 | 11.85
NPIB | 8 | 9 | 11 | 13 | 22 | 27 | 30 | 33 | 36 |12|13
STDV: | 3.8 | 481 (523|632 551 | 608 | 9.54 | 9.54 | 11.59
NPIC | 10 | 10 | 12 | 11 | 16 | 19 | 21 | 15 | 18 | 6 | 7
STDV: | 467 | 6.24 | 898 | 11.3 | 14.18 | 16.65 | 17.78 | 8.02 | 9.54
NP2A | 7 | 8 | 12 | 15| 23 | 26 | 26 | 33 | 31 |13]15
STDV: | 349 | 4.62 | 545 | 8.61 | 11.14 | 13.05 | 18.04 | 16.52 | 16.82
NP2B | 8 | 10 | 12 | 12 | 22 | 29 | 27 | 32 | 33 |10]11
STDV: | 3.32 | 5.27 | 553 | 82 | 7.09 | 12.12 | 10.02 | 11.37 | 11.59
NP2C | 8 | 11 | 9 | 11| 18 | 27 | 26 | 27 | 28 |18]21
STDV: | 4.38 | 6.93 | 3.52 | 3.76 | 436 | 12.22 | 4.73 | 557 | 9.29
NP3A | 7 | 8 | 11 | 13| 12 | 20 | 16 | 18 | 21 | 8 |11
STDV: | 4.11 | 331 | 3.78 | 8.85 | 6.51 | 6.24 | 9.07 | 10.69 | 11.68
NP3B | 7 | 8 | 9 | 11 | 17 | 19 | 20 | 22 | 24 |10]14
STDV: | 421 | 472 | 404 | 5.12 | 473 | 529 | 6.11 | 9.07 | 7
NP3C | 11 | 12 | 14 | 12 | 16 | 16 | 17 | 22 | 24 |11]12
STDV: | 462 | 5.89 | 566 | 6.18 | 9.07 | 13.45 | 15.13 | 14 | 1537
NPM | 7 | 11 | 11 | 13| 22 | 25 | 27 | 33 | 34 |15|17
STDV: | 3.16 | 4.13 | 6.42 | 8.58 | 13.58 | 16.09 | 19.67 | 18.08 | 17.79
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Table B-8 Avg. No. of Nearest Neighbors Used by Nonparametric Techniques
Averaged Over All Trials, and Rounded to Nearest Integer. Standard Deviation of Nearest
Neighbors Used Shown Below Average Value, N, = 20 Years, N, = 20 to 60 Years, r,, < 0.666

Ni= | 20
N2= | 20 | 25 | 30 35 40 45 50 |55]60
NP1A-| 10 | 10 | 22 26 19 22 27 19|12
STDV: | 421 4.86 | 9.85 | 11.53 | 10.69 | 11.59 | 11.59
NPIB | 9 11 | 20 24 20 21 21 [ 9|9
STDV: | 4.14 (538 | 551 | 7.02 | 9.61 | 12.29 | 15.87
NPIC | 10 | 11 | 15 13 13 18 16 (10| 7
STDV: | 7.12]755]|9.07 | 1044 | 755 | 9.64 | 8.62
NP2A | 9 10 | 19 23 19 15 24 11210
STDV: | 271]5.15|9.64 | 11.59 | 18.01 | 9.29 | 20.88
NP2B | 10 | 12 | 21 25 27 23 23 | 9]10
STDV: | 426 | 5.68 | 6.11 | 8.74 | 11.93 | 17.24 | 20.79
NP2C | 8 10 | 13 23 25 19 27 11514
STDV: | 3.07 | 4.81 | 3.51 | 11.59 | 14.53 | 9.07 | 19.86
NP3A | 11 | 12 | 16 18 15 16 18 |10} 10
STDV: | 3.64 | 7.07 | 3.06 | 1493 | 9.64 | 13.89 | 15.59
NP3B | 9 11 | 14 18 17 19 19 |10 11
STDV: | 405 6 |3.06| 643 | 551 | 7.37 | 10.07
NP3C | 11} 11 }{ 15 15 15 18 23 {1011
STDV: | 496 | 5.19 | 6.08 | 10.82 | 13.08 | 14.15 | 13.32
NPM | 9 1 | 19 23 24 28 30 {16 14
STDV: 233|697 | 11 |13.05]17.04 | 15.01 | 17.16
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APPENDIX C

EVALUATION RESULTS
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Table C-1a Minimum Deviation from Target Cross Correlation,
as a Fraction of Target Value, N, = § years, r,, > 0.666

Common Period Models Average Standard
(Years) Deviaton Deviaton
5 MV2 -0.16 0.10

MV3 -0.16 0.10

10 REGM -0.11 0.07
15 REGM -0.10 0.07
20 REGM -0.10 0.07
MV2M -0.10 0.06

25 REGM -0.10 0.06
MVIM -0.10 0.05

MV2M -0.10 0.05

30 REGM -0.10 0.06
MV2M -0.10 0.05

35 REGM -0.09 0.05
MV2M -0.09 0.05

40 REGM -0.10 0.05
45 NP1B -0.08 0.03
NP2B -0.08 0.03

REGM -0.08 0.05

NPM -0.08 0.04

50 REGM -0.08 0.05
NPM -0.08 0.05

55 REGM -0.08 0.05
NPM -0.08 0.05

60 REGM -0.08 0.05
NPM -0.08 0.04

65 NPM -0.08 0.04
70 NP1B -0.08 0.03
REGM -0.08 0.05

NPM -0.08 0.04

75 NP1B -0.08 0.03
REGM -0.08 0.05

NPM -0.08 0.04
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Table C-1b Minimum Deviation from Target Cross Correlation,
as a Fraction of Target Value, N, = 10 years, r,, > 0.666

Common Period Models Average Standard
~ (Years) Deviation Deviation

10 MV2M -0.14 Q.07
NPM -0.14 0.07

15 REGM -0.13 0.06
NPM -0.13 0.07

20 MV2M -0.13 0.07
NPM -0.13 0.06

25 NPM -0.12 0.07
30 REGM -0.10 0.05
35 REGM -0.11 0.05
40 REGM -0.08 0.04
NPM -0.08 0.04

45 REGM -0.08 0.04
NPM -0.08 0.04

50 REGM -0.08 0.04
NPM -0.08 0.04

55 REGM -0.08 0.04
NPM -0.08 0.04

60 REGM -0.08 0.04
NPM -0.08 0.04

65 NP1A -0.08 0.03
NP2A -0.08 0.03

REGM -0.08 0.04

NPM -0.08 0.04

70 NP1A -0.08 0.03
NP1B -0.08 0.03

NP2B -0.08 0.03

REGM -0.08 0.04

NPM -0.08 0.04
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Table C-1¢c Minimum Deviation from Target Cross Correlation,
as a Fraction of Target Value, N, = 15 years, r,, > 0.666

Common Peniod Models Average Standard
(Years) Deviation Deviation
15 . MV2M -0.14 0.07

MViM -0.14 0.07

NPM -0.14 0.05

20 REGM -0.13 0.06
NPM -0.13 0.06

25 REGM -0.11 0.04
30 REGM -0.11 0.05
35 NPM -0.08 0.04
40 NPM -0.08 0.04
45 NPM -0.08 0.04
50 NPM -0.08 0.04
55 NPM -0.08 0.04
60 NPM -0.08 0.04
65 NPM -0.08 0.04

Table C-1d Minimum Deviation from Target Cross Correlation,
as a Fraction of Target Value, N, = 20 years, r,, > 0.666

Common Period Models Average Standard
(Years) Deviation Deviation
20 REGM -0.11 0.04
25 REGM -0.11 0.05
30 REGM -0.08 0.05

NPM -0.08 0.04
35 REGM -0.08 0.05
NPM -0.08 0.04
40 REGM -0.08 0.05
NPM -0.08 0.04
45 REGM -0.08 0.05
NPM -0.08 0.04
50 REGM -0.08 0.05
NPM -0.08 0.04
55 REGM -0.08 0.05
NPM -0.08 0.04
60 REGM -0.08 0.05
NPM -0.08 0.04
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Table C-2a Minimum Deviation from Target Cross Correlation,
as a Fraction of Target Value, N, =5 years, r,, <0.666

Common Period Models Average Standard
(Years) Deviation Deviation

5 . NP1A -0.26 0.11
NP1B -0.26 0.11
NP2B -0.26 0.11

10 NP1A -0.26 0.11
NP1B -0.26 0.12
NP1C -0.26 0.12
NP2A -0.26 0.11
NP2B -0.26 0.11
NP2C -0.26 0.12
NP3B -0.26 0.10
NPM -0.26 0.11

15 NP3A -0.24 0.12
NP3B -0.24 0.12

20 NP3B -0.23 0.09

25 NP1A -0.22 0.08
NP2A -0.22 0.08

30 NP2A -0.22 0.08

35 NP1A -0.20 Q.05
NP2A -0.20 0.05
NPM -0.20 0.06

40 NP2A -0.20 0.05
NPM -0.20 0.06

45 NP3A -0.17 0.03

50 NP3C -0.17 0.03

55 NP3C -0.17 0.03

60 NP3C -0.17 0.03

65 NP3C -0.17 0.03
NPM -0.17 0.05

70 REGM -0.11 {n/a, one trial)

75 REGM -0.11 (n/3a, one trial)
NPM -0.11 (n/a, one trial)
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Table C-2b Minimum Deviation from Target Cross Correlation,
as a Fraction of Target Value, N, =10 years, r,, < 0.666

Common Period Models Average Standard
(Years) Deviation Deviation
10 NP2A -0.25 0.08
NPM -0.25 0.08
15 NP1B -0.24 0.07
NP3A -0.24 0.08
20 NP1A -0.24 0.06
NP1B -0.24 0.06
NP2A -0.24 0.06
NP2B -0.24 0.06
NP3A -0.24 0.07
NP3B -0.24 0.07
NPM -0.24 0.07
25 NPi1B -0.23 0.07
30 NPM -0.21 0.05
35 NPM -0.21 0.05
40 NPM -0.18 0.05
45 NP3C -0.18 0.04
NPM -0.18 0.05
50 NP3C -0.18 0.04
NPM -0.18 0.05
55 NP1A -0.18 0.05
NPi1B -0.18 0.05
NP2B -0.18 0.05
NP3B -0.18 0.05
NP3C -0.18 0.04
NPM -0.18 0.05
60 NP1A -0.18 0.05
NP1B -0.18 0.05
NP3B -0.18 0.05
NP3C -0.18 0.04
NPM -0.18 0.05
65 NPM -0.11 (n/a, one trial)
70 NPM -0.11 (n/a, one tnal)
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Table C-2¢ Minimum Deviation from Target Cross Correlation,
as a Fraction of Target Value, N; = 15 years, r,, < 0.666

Common Perniod Models Average Standard
(Years) Deviation Deviation
15 NP2B -0.23 0.06
NP3A -0.23 0.06
NP3B -0.23 0.07
20 NP3B -0.22 0.06
25 NPM -0.20 0.05
30 NPM -0.20 0.05
35 NPM -0.16 0.03
40 NPM -0.16 0.03
45 NP3A -0.16 0.01
NP3B -0.16 0.01
NP3C -0.16 0.02
NPM -0.16 0.03
50 NP1A -0.16 0.02
NP1B -0.16 0.02
NP2C -0.16 0.01
NP3A -0.16 0.01
NP3B -0.16 0.01
NP3C -0.16 0.02
NPM -0.16 0.03
55 NP1A -0.16 0.02
NP3A -0.16 0.02
NP3B -0.16 0.01
NP3C -0.16 0.02
NPM -0.16 0.03
60 NPM -0.13 (n/a, one tral)
65 NPM -0.13 (n/a, one tnal)
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Table C-2d Minimum Deviation from Target Cross Correlation,
as a Fraction of Target Value, N, = 20 years, r, < 0.666

Common Period Models Average Standard
(Years) Deviaton Deviation

20 NPM -0.20 0.06

25 NPM -0.20 0.05

30 NPM -0.15 0.01

35 NPM -0.15 0.02

40 NP1A -0.15 0.01
NP1B -0.15 0.01
NP3C -0.15 0.03
NPM -0.15 0.01

45 NP1A -0.15 0.01
NP1B -0.15 0.01
NP3A -0.15 0.01
NP3B -0.15 0.01
NP3C -0.15 0.03
NPM -0.15 0.01

50 NP1A -0.15 0.01
NPiB -0.15 0.01
NP2C -0.15 0.01
NP3A -0.15 0.01
NP3C -0.15 0.02
NPM -0.15 0.01

55 NPM -0.13 (n/a, one tral)

60 NPM -0.13 (n/a, one trial)
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Table C-3a Minimum Deviation from Target Serial Correlation,
as a Fraction of Target Value, N, =5 years, r,, > 0.666

Common Period Models Average Standard
(Years) Deviation Deviation
5 MV2 0.00 0.36

MV3 0.00 0.37

REGM 0.00 0.45

10 MV1 0.00 0.33
15 MV1 0.01 0.33
MV2 0.01 0.34

MV3 0.01 0.35

20 MV3M 0.00 0.25
25 MV3M 0.01 0.25
30 MV3M 0.01 0.27
35 MVIM -0.01 0.25
MV2M 0.01 0.23

40 MV1 -0.03 0.26
MV2 -0.03 0.26

MV2M -0.03 0.24

45 MV3M 0.00 0.11
50 MV3M 0.00 0.11
55 MV3M 0.01 0.11
60 MV3M 0.00 0.12
65 MV3M 0.00 0.12
70 MV3M 0.00 0.11
75 MV3M 0.01 0.11
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Table C-3b Minimum Deviation from Target Serial Correlation,
as a Fraction of Target Value, N; =10 years, r,, > 0.666

Common Period Models Average Standard
(Years) Deviation Deviation
10 MV2 -0.05 0.27

MV3 -0.05 0.27

15 REGM 0.00 0.19
20 REGM 0.00 0.29
25 MV1 -0.02 0.27
MV2 -0.02 0.27

REGM 0.02 0.22

30 REG 0.02 0.25
35 REG 0.01 0.20
40 MV1 0.01 0.18
MV2 0.01 0.18

MV3 0.01 0.18

RPNM -0.01 0.08

45 MV1 0.01 0.19
MV2 0.01 0.19

MV3 0.01 0.19

50 MV1 0.01 0.20
MV2 0.01 0.20

MV3 0.01 0.19

55 MV2 0.01 0.20
60 MV1 0.02 0.20
MV2 0.02 0.20

MV3 0.02 0.20

65 MV1 0.02 0.20
MV2 0.02 0.20

MV3 0.02 0.20

70 MV1 0.02 0.21
MV2 0.02 0.20

MV3 0.02 0.20
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Table C-3c Minimum Deviation from Target Serial Correlation,
as a Fraction of Target Value, N, = 15 years, r,, > 0.666

Common Period Models Average Standard
(Years) Deviation Deviation
15 REGM -0.02 0.25
20 REGM -0.01 0.17
25 REGM -0.01 0.13
30 REG 0.00 0.21
35 NP3C -0.01 0.12
40 RPNM 0.00 0.05
45 RPNM 0.00 0.10
50 NP3B 0.00 0.14
55 NP3A 0.00 0.11
60 NP3B 0.00 0.12
65 MV2 -0.01 0.20

MV3 -0.01 0.20

Table C-3d Minimum Deviation from Target Serial Correlation,
as a Fraction of Target Value, N; =20 years, r,, > 0.666

Common Period Models Average Standard
(Years) Deviation Deviation
20 NP3C -0.01 0.13
25 REG -0.01 0.23
30 NP3B 0.01 0.22

RPNM -0.01 0.03

35 NP3A 0.00 0.15
NP3B 0.00 0.19

40 NP1C 0.01 0.16
NP3B 0.01 0.17

45 NP1C 0.02 0.11
50 NP1C 0.00 0.14
55 NP1C 0.00 0.15
60 MV2 -0.02 0.21
MV3 -0.02 0.20

NP1C -0.02 0.16
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Table C-4a Minimuom Deviation from Target Serial Correlation,
as a Fraction of Target Value, N1 =5 years, rxy < 0.666

Common Period Models Average Standard
(Years) Deviation Deviation
5 NP2A 0.08 0.42
10 NP1A 0.03 0.44
15 MV2M 0.00 0.37
20 MV2M 0.00 0.36
25 MV2M 0.01 0.33

MV3M -0.01 0.32

30 MV3M -0.01 0.33
35 MV3M -0.03 0.33
40 RPNM -0.03 0.16
45 REG -0.03 0.10
50 RPNM 0.00 0.12
55 RPNM -0.01 0.15
60 RPNM -0.02 0.15
65 REG -0.02 0.10
RPNM -0.02 0.15

70 MVIM 0.03 0.00
75 REG 0.05 0.00
MV1 -0.05 0.00

MV2 -0.05 0.00

MVIM 0.05 0.00

Table C-4b Minimum Deviation from Target Serial Correlation,
as a Fraction of Target Value, N; = 10 years, r,, < 0.666

Common Penod Models Average Standard
(Years) Deviation Deviation
10 MV2M -0.03 0.21
15 MV2M -0.02 0.25
20 REGM 0.05 0.28

MV2M -0.05 0.24
25 MV2M -0.02 0.24
30 RPNM 0.04 0.20
35 RPNM -0.03 0.09
40 REG 0.07 0.18
45 RPNM 0.03 0.16
50 REGM 0.04 0.12
55 REGM 0.02 0.12
60 REGM 0.04 0.11
65 REG 0.00 0.00
70 REG 0.00 0.00
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Table C-4c Minimum Deviation from Target Serial Correlation,
as a Fraction of Target Value, N; =15 years, r,y < 0.666

Common Period Models Average Standard
(Years) Deviation Deviation
15 MV3M 0.00 0.26
20 MVIM 0.00 0.32

MV2M 0.00 0.26
25 REG -0.03 0.26

RPNM 0.03 0.13
30 RPNM 0.02 0.09
35 RPNM 0.02 0.07
40 RPNM 0.04 0.06
45 REGM 0.09 0.09
50 RPNM -0.02 0.08
55 RPNM -0.01 0.08
60 REG 0.00 0.00
65 REG 0.00 0.00

Table C-4d Minimum Deviation from Target Serial Correlation,
as a Fraction of Target Value, N, = 20 years, r,, < 0.666

Common Period Models Average Standard
(Years) Deviation Dewviation
20 REG -0.06 0.21
25 RPNM -0.03 0.14
30 REG 0.05 0.17
35 REGM 0.02 0.16
40 REGM 0.00 0.17
45 REGM -0.02 0.17
50 REGM 0.00 0.17
55 REG -0.02 0.00
60 REG -0.02 0.00
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Table C-5a Minimum Deviation from Target Variance,
as a Fraction of Target Value, N, =S5 years, r,, > 0.666

Common Period Models Average Standard
(Years) Deviation Deviation

5 NP3C -0.22 0.44
10 REGM 0.02 0.63
RPNM -0.02 0.53

15 RPNM 0.02 0.38
20 NP3C -0.05 0.55
25 NP1C 0.01 0.56
30 NP1C 0.00 0.55
35 REGM -0.02 0.67
40 MV1 -0.01 0.49
MV3 -0.01 0.32

45 RPNM 0.00 0.08
50 NP1C 0.01 0.14
55 NP1C 0.01 0.15
60 NP1C -0.01 0.10
65 NP1C 0.03 0.16
MVIM 0.03 0.05

MV2M 0.03 0.05

70 MVIM 0.00 0.06
MV2M 0.00 0.06

75 MVIM 0.00 0.05
MVZM 0.00 0.06
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Table C-5b Minimum Deviation from Target Variance,
as a Fraction of Target Value, N, = 10 years, ry, > 0.666

Common Period Models Average Standard
(Years) Deviation Deviation
10 NP3C -0.03 0.42
15 REGM 0.03 0.45

RPNM 0.03 0.40
20 NP1C -0.03 0.25
25 REGM 0.03 0.56
30 REGM 0.03 0.53
35 RPN -0.05 0.42
40 REGM 0.02 0.10
45 REGM 0.03 0.09
50 REGM 0.02 0.08
55 NP1C 0.00 0.19
60 REGM 0.00 0.08
65 NP1C -0.02 0.19

NP3C -0.02 0.18
70 NP1C 0.01 0.19

Table C-5¢ Minimum Deviation from Target Variance,
as a Fraction of Target Value, N, = 15 years, r,, > 0.666

Common Period Models Average Standard
(Years) Dewviation Devianon
15 REGM 0.03 0.58
20 REGM -0.02 0.70
25 REGM 0.01 0.60
30 REGM 0.09 0.73
35 RPNM -0.02 0.09
40 REGM -0.05 0.10

RPNM 0.05 0.06
45 REGM -0.06 0.09

RPNM 0.06 0.06
50 MV3 0.06 0.48
55 MV3 0.04 0.48
60 RPNM 0.01 0.07
65 RPNM 0.00 0.08
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Table C-5d Minimum Deviation from Target Variance,
as a Fraction of Target Value, N, =20 years, r,, > 0.666

Common Period Models Average Standard
(Years) Deviation Deviatuon
20 REGM 0.02 0.67
25 MV3 0.09 0.37
30 NP1C -0.05 0.12
35 NP1C -0.06 0.09
40 RPNM 0.05 0.04
45 RPNM 0.00 0.02
50 RPNM 0.00 0.02
55 MV3 0.04 0.51

RPNM -0.04 0.04
60 MV3 0.03 0.52

Table C-6a Minimum Deviation from Target Variance,
as a Fraction of Target Value, N, =5 years, r,, < 0.666

Common Period Models Average Standard
(Years) Deviation Deviation

5 MV2 0.01 0.75

10 NP1C -0.03 0.95

15 MV2 0.01 0.72

NP1C -0.01 0.83

20 RPNM -0.01 0.76

25 MV3 0.05 0.67

NP3C -0.05 0.80

30 MV1 -0.03 0.63

MV3 -0.03 0.62

35 MV3 0.12 0.37

40 RPNM -0.05 0.57

45 REGM -0.03 0.39

50 REGM 0.09 0.50

55 REGM 0.07 0.46

60 REGM 0.08 0.47

65 REGM 0.06 0.44
70 MV3IM 0.04 (n/a, one tal)
75 MV3M 0.02 (n/a, one tral)
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Table C-6b Minimum Deviation from Target Variance,
as a Fraction of Target Value, N, = 10 years, r,, < 0.666

Common Period Models Average Deviarion Standard
(Years) Deviaton
10 NP2A 0.00 0.60
' NP2B 0.00 0.60
15 MV3 -0.01 0.61
NP1B -0.01 0.54
20 NP1B 0.00 0.49
25 NP1B 0.00 0.48
NP1C 0.00 0.43
NP3C 0.00 0.42
30 RPNM -0.10 0.33
35 MV3 0.13 0.34
40 NP3A 0.05 0.39
45 NP2A 0.01 0.36
NP2B 0.01 0.36
NP3B 0.01 0.35
50 NP2A 0.00 0.34
NP3A 0.00 0.24
55 NP2B -0.01 0.27
NP3C 0.01 0.22
60 NP3C -0.01 0.20
65 MV1 -0.01 (n/a, one tnal)
70 MV1 -0.01 (n/a, one tnal

Table C-6c Minimum Deviation from Target Variance,
as a Fraction of Target Value, N, = 15 years, ry, < 0.666

Common Penod Models Average Deviation Standard
(Years) Deviaton
15 MV1 -0.01 0.64
20 RPNM 0.05 0.56
25 MV2 0.07 0.30
30 MVi 0.04 0.33
MV2 0.04 0.31
35 MV3 0.00 0.23
40 REGM -0.10 0.19
45 MV3 0.11 0.30
50 MV3 0.05 0.26
55 MV3 0.02 0.24
60 MV1 0.00 (n/a, one tnal)
65 MV1 0.00 (n/a, one trial)
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Table C-6d Minimum Deviation from Target Variance,
as a Fraction of Target Value, N, =20 years, r,, < 0.666

Common Period Models Average Standard
(Years) Devianon Deviation
20 MV2 0.00 0.26
25 MV3 -0.01 0.28
30 MV3 0.01 0.21
35 REGM 0.02 0.26
40 REGM -0.01 0.22
45 REGM -0.02 0.20
50 MV3 0.04 0.21
REGM -0.04 0.20
55 MV3 -0.02 (n/a, one tnal)
60 MV2 0.03 (n/a, one tnal)
MV3 -0.03 (n/a, one trial)

Table C-7a Minimum Deviation from Target Mean Flow,
as a Fraction of Target Value, N, =5 years, r,, > 0.666

Common Period Models Average Standard
(Years) Deviation Deviation
5 NPM 0.00 0.22
10 NPM 0.02 0.21
15 REGM 0.01 0.10
20 RPN 0.01 0.18

REGM -0.01 0.11

NPM 0.01 0.19

25 REGM 0.00 0.11
30 REGM -0.01 0.11
35 REGM 0.02 0.07
NPM 0.02 0.05

40 NPM 0.00 0.06
45 NP2A 0.00 0.06
NP2B 0.00 0.05

REGM 0.00 0.04

50 RPNM 0.00 0.04
55 REGM 0.00 0.04
60 RPNM 0.00 0.04
65 RPNM 0.00 0.04
70 RPNM 0.00 0.05
75 NP1B 0.01 0.06
NP3A -0.01 0.04

REGM 0.01 0.04

RPNM -0.01 0.05

187




Table C-7b Minimum Deviation from Target Mean Flow,
as a Fraction of Target Value, N, = 10 years, r,, > 0.666

Common Period Models Average Standard
(Years) Deviation Deviation
10 NPM 0.01 0.19
15 NP1B -0.01 0.26

NP3A 0.01 0.29
NP3B -0.01 0.29
20 NP3B 0.00 0.28
25 MV2 0.00 0.17
MV3 0.00 0.18
NPM 0.00 0.12
30 REGM -0.01 0.08
35 MV1 0.00 0.11
40 NP2A 0.00 0.05
NP2B 0.00 0.05
45 NPiB 0.00 0.05
50 RPN 0.00 0.03
55 RPN 0.01 0.03
NP3A -0.01 0.06
60 RPN 0.01 0.03
NP3A 0.01 0.06
65 NP3A 0.00 0.05
70 RPN 0.01 0.03
NP3A 0.01 0.05
NP3B -0.01 0.07
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Table C-7c Minimum Deviation from Target Mean Flow,
as a Fraction of Target Value, N; = 15 years, r,, > 0.666

Common Period Models Average Standard
(Years) Deviation Deviation
15 MV3 0.00 0.17
20 RPNM 0.00 0.17
25 RPNM 0.00 C.12

NPM 0.00 0.07
30 MV1 0.01 0.08
NPM -0.01 0.08
35 NPM -0.01 0.04
40 NPM 0.00 0.04
45 NPM 0.00 0.04
50 NP3C 0.00 0.07
NPM 0.00 0.03
55 NP1C 0.00 0.03
NP3C 0.00 0.07
NPM 0.00 0.04
60 NP3C 0.00 0.07
NPM 0.00 0.04
65 NPM 0.00 0.03
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Table C-7d Minimum Deviation from Target Mean Flow,
as a Fraction of Target Value, N; = 20 years, r,, > 0.666

Common Period Models Average Standard
(Years) Deviation Dewviation
20 RPNM 0.00 0.10
25 MV1 0.00 0.11

NP1A 0.00 0.07
REGM 0.00 0.12
30 NPM 0.00 0.03
35 NP1A 0.00 0.05
REGM 0.00 0.04
40 NP1C 0.00 0.04
NP2A 0.00 0.03
45 NP1B 0.00 0.04
NP2A 0.00 0.05
NP2B 0.00 0.04
REGM 0.00 0.04
50 NP1B 0.00 0.04
NP2A 0.00 0.05
NP2B 0.00 0.04
REGM 0.00 0.04
55 NP2A 0.00 0.04
NP2B Q.00 0.04
60 NP2A 0.00 0.04
NP2B 0.00 0.04
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Table C-8a Minimum Deviation from Target Mean Flow,
as a Fraction of Target Value, N; =5 years, r,, < 0.666

Common Period Models Average Standard
(Years) Deviation Deviation
5 NPM 0.00 0.32
10 MV1 0.05 0.39

MV3 0.05 0.36
15 REGM 0.02 0.28
20 REGM -0.01 0.23
25 REGM 0.02 0.23
30 REGM 0.00 0.21
35 NPM -0.02 0.07
40 NP2B 0.00 0.05

NP3A 0.00 0.07
45 NPM 0.01 0.03
50 NPM 0.00 0.01
55 NPM 0.01 0.04
60 NPM 0.02 0.03
65 NPM -0.01 0.01
70 NP1A 0.00 0.00

NP2B 0.00 0.00
75 NP1A 0.00 0.00

NP1B 0.00 0.00
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Table C-8b Minimum Deviation from Target Mean Flow,
as a Fraction of Target Value, N, = 10 years, r,, < 0.666

Common Period Models Average Standard
(Years) Deviation Deviation
10 MV3 0.07 0.41
15 MV3 0.04 0.32
20 MV3 0.06 0.31
25 MV3 0.03 0.27
RPNM 0.03 0.22
30 RPNM -0.01 0.11
35 NP3A 0.00 0.10
NP3B 0.00 0.11
40 REGM 0.02 0.05
RPNM 0.02 0.03
45 REGM 0.03 0.04
50 REGM 0.02 0.03
55 REGM 0.03 0.03
60 REGM 0.03 0.03
65 NP3A -0.01 (n/a, one trial)
NP3B -0.01 (n/a, one tral)
70 NP3A 0.00 (n/a, one trial)

Table C-8c Minimum Deviation from Target Mean Flow,
as a Fraction of Target Value, N, = 1S years, r,, < 0.666

Common Period Models Average Standard
(Years) Dewviaton Deviation
15 MV3 0.03 0.25
REGM 0.03 0.20
20 MV3 0.00 0.24
25 NPM 0.02 0.08
30 MV1 0.00 0.08
NPM 0.00 0.06
35 NP3A 0.00 0.13
40 NP1C 0.03 0.08
45 RPNM -0.01 0.02
50 NP3A 0.02 0.10
RPNM 0.02 0.03
55 RPNM 0.02 0.03
60 MV3 0.00 (n/a, one trial)
NP1C 0.00 (n/a, one trial)
65 MV3 0.00 (n/a, one trial)
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Table C-8d Minimum Deviation from Target Mean Flow,
as a Fraction of Target Value, N, =20 years, r,, < 0.666

Common Period Models Average Standard
(Years) Deviaton Deviation
20 MV1 0.00 0.08
25 RPNM 0.00 0.08
30 REGM -0.03 0.03
35 REGM -0.02 0.02
40 REGM -0.03 0.01
45 REGM -0.02 0.01
50 NP1C 0.03 0.04
REGM -0.03 0.01
RPNM 0.03 0.03
55 NP1B 0.00 (n/a, one tral)
NP2B 0.00 (n/a, one tnal)
NPM 0.00 (n/a, one trial)
60 NP2B 0.00 (n/a, one trial)
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Table C-9a Minimum Deviation from Target Low Flow,
as a Fraction of Target Value, N; =5 years, r,, > 0.666

Common Penod Models Average Standard
(Years) Deviation Deviaton
5 MV3M 0.18 0.55
10 MVIM 0.30 0.81
15 RPNM 0.28 0.63
20 MVIM 0.29 0.61
25 MV3M 0.32 0.57
30 MV3M 0.31 0.52
35 RPNM 0.11 0.15
40 MVIM 0.07 0.14

MV2M 0.07 0.16
45 MV3M 0.02 0.06
50 RPNM 0.02 0.07
55 RPNM 0.01 0.07
60 RPNM 0.04 0.09
MVIM 0.04 0.06
65 RPNM 0.04 0.10
MVIM 0.04 0.07
MV2M 0.04 0.07
70 RPNM 0.05 0.11
75 RPNM 0.05 0.10
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Table C-9b Minimum Deviation from Target Low Flow,
as a Fraction of Target Value, N; = 10 years, r,, > 0.666

Common Period Models Average Standard
(Years) Deviation Deviation
10 MVIM 0.17 0.39
15 MVIM 0.14 0.31
20 MVIM 0.13 0.30
25 MVIM 0.11 0.34
30 MVIM 0.10 0.32
35 MVIM 0.01 0.23

MV3M 0.01 0.17

40 MV1 0.00 0.13
MV2 0.00 0.13

45 NP3A 0.00 0.07
RPNM 0.00 0.16

50 MV3M 0.00 0.18
55 MVIM 0.00 0.23
60 MVIM 0.00 0.23
MV2M 0.00 0.23

65 MVIM 0.01 0.24
MV2M 0.01 0.24

MV3M 0.01 0.15

70 MVIM 0.00 0.23
MV2M 0.00 0.23
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Table C-9¢ Minimum Deviation from Target Low Flow,
as a Fraction of Target Value, N; =15 years, r;, > 0.666

Common Period Models Average Standard
(Years) Deviation Deviaton
15 MVIM 0.08 0.25
20 MVIM 0.06 0.27
25 MVIM 0.06 0.29
30 MV3M 0.04 0.29
35 MV2 0.00 0.15
40 MV3 0.01 0.16

NP3A -0.01 0.11
NP3B 0.01 0.08
MVIM -0.01 0.24
45 MV3 0.01 0.17
NP3B 0.01 0.07
50 REGM 0.00 0.21
MV2M 0.00 0.26
55 MVIM 0.00 0.28
60 MV3M 0.00 0.20
65 MV3M 0.00 0.20

Table C-9d Minimum Deviation from Target Low Flow,
as a Fraction of Target Value, N, = 20 years, r,, > 0.666

Common Peniod Models Average Standard
(Years) Deviation Deviaton
20 MVIM 0.03 0.35
25 MV3M 0.08 0.29
30 REGM 0.01 0.14

MVIM -0.01 0.21
MV2M -0.01 0.19
35 MV2M 0.00 0.22
40 MVIM 0.00 0.24
MV2M 0.00 0.23
45 MV3M 0.01 0.20
50 MV3M 0.01 0.20
55 MVIM 0.04 0.27
MV3M 0.04 0.19
60 MVIM 0.04 0.27
MV2M 0.04 Q.25
MV3M 0.04 0.18
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Table C-10a Minimum Deviation from Target Low Flow,
as a Fraction of Target Value, N, =S5 years, r,, < 0.666

Common Period Models Average Standard
(Years) Deviation Deviation
5 MVIM 0.00 0.51
10 MV3 -0.02 0.40
15 MV3 0.08 0.47
20 MVIM 0.05 0.33
25 MVIM 0.11 0.42
30 MVIM 0.11 0.39
35 MVIM 0.17 0.16
MVZM 0.17 0.15
MV3M 0.17 0.17
40 MV2M 0.13 0.14
45 MV3 0.01 0.13
50 MV3M 0.00 0.05
55 MV3M 0.01 0.03
60 MV3 0.00 Q.16
65 MV3 0.00 0.16
70 RPNM 0.15 (n/a, one trial
NPM 0.15 n/a, one trn
75 RPNM 0.13 (n/a, one tnal)
NPM 0.13 | (n/a, one tral)
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Table C-10b Minimum Deviation from Target Low Flow,
as a Fraction of Target Value, N, =10 years, r,, < 0.666

Common Perniod Models Average Standard
(Years) Deviation Deviation
10 MVIM 0.06 0.57
15 MVIM 0.01 0.48
20 MVIM 0.11 0.53
25 MVIM 0.09 0.48
30 MV2M 0.18 0.31
35 MV3M 0.09 0.12
40 MVIM 0.00 0.15
MV2M 0.00 0.13
45 RPNM 0.03 0.02
MV3M -0.03 0.07
50 MV3M -0.02 0.07
55 MVIM 0.01 0.06
60 MV3M 0.01 0.06
65 MViM 0.06 (n/a, one tral)
70 MVIM 0.04 (n/a, one tnal)

Table C-10c Minimum Deviation from Target Low Flow,
as a Fraction of Target Value, N, =15 years, r., <0.666

Common Penod Models Average Standard
(Years) Deviation Deviation
15 MVIM 0.07 0.37
20 MVIM 0.06 0.31
25 MVIM 0.12 0.17
30 MVIM 0.10 0.15
35 MV3M 0.00 0.08
40 MV1 -0.03 0.16
MV2M -0.03 0.10
45 MV3M -0.02 0.04
50 MV3M 0.00 0.03
55 MV3M 0.00 0.03
60 MV2M -0.01 (n/a, one trial)
MV3IM 0.01 (n/a, one trial)
65 MV3M -0.01 (c/a, one tal)
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Table C-10d Minimum Deviation from Target Low Flow,
as a Fraction of Target Value, N, =20 years, r,, < 0.666

Common Period Models Average Standard
(Years) Deviation Deviation
20 MVIM 0.1 0.20
25 MVIM 0.14 0.20
30 MV3M 0.05 0.11
35 MV3 0.00 0.08
MVIM 0.00 0.16
MV3M 0.00 0.06
40 MV3 0.00 0.07
MV2M 0.00 Q.13
45 MVIM 0.00 C.13
50 MV2M 0.01 0.10
55 MV3M 0.02 (n/a, one tral)
60 MVIM 0.02 (n/a, one tmal)

Table C-11a Average Mean Percentage Error,
N, =5 years, r,, > 0.666

Common Period Models MPE Standard
(Years) Deviation
5 MV3 100.5 149.2
10 MV3 110.1 192.3
15 RPNM 95.4 1629
20 NP1B 75.5 117.3
25 NP3A 919 153.0
30 NP3A 73.5 119.7
35 NP3B 33.8 28.2
40 NP3B 20.0 12.6
45 NP3B 10.5 7.1
50 NP3B 12.0 8.2
55 NP3A 10.4 4.1
60 NP3B 12.6 7.2
65 RPNM 13.5 49
70 RPNM 13.7 5.2
75 RPNM 13.6 5.1
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Table C-11b Average Mean Percentage Error,
N, = 10 years, r,, > 0.666

Common Period Models MPE Standard
(Years) Deviation
10 MVIM 65.3 102.4
15 MVIM 62.2 95.0
20 MVIM 62.2 90.0
25 MVIM 60.2 85.2
30 MVIM 29.2 23.2
35 REGM 15.2 15.5
40 REGM 10.0 5.2
45 REGM 11.2 6.0
50 REGM 10.9 5.8
35 REGM 12.0 6.7
60 REGM 12.4 6.9
65 REGM 13.2 7.1
70 REGM 13.1 7.1

Table C-11¢c Average Mean Percentage Error,
N, = 15 years, r,, > 0.666

Common Period Models MPE Standard
(Years) Deviation
15 MV3M 53.2 71.7
20 MVIM 51.2 68.4
25 MVIM 29.2 28.0
30 REGM 17.4 29.0
35 NP3B 0.9 3.6
40 NP3B 4.0 4.1
45 NP3B 4.8 5.1
50 NP3B 49 3.4
55 NP3B 7.7 4.5
60 REGM 10.1 7.1
65 NP3B 8.4 3.5
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Table C-11d Average Mean Percentage Error,

N, = 20 years, r,, > 0.666

Common Period Models MPE Standard
(Years) Deviation
20 REGM 28.9 25.9
25 REGM 21.4 33.7
30 NP3B 8.3 75
35 NP3B 10.7 7.6
40 REGM 11.0 7.5
45 REGM 12.3 8.6
50 REGM 12.7 8.9
55 REGM 13.7 9.1
60 REGM 13.6 8.9

Table C-12a Average Mean Percentage Error,
N, =5 years, r,, < 0.666

Common Period Models MPE Standard
(Years) Deviation
5 REG 83.37 123.39
10 REG 86.68 132.47
15 NP3B 95.08 126.53
20 NP3B 87.6 121.4
25 MVIM 108.15 175.01
30 NP2A 102.1 123.14
35 RPNM 31.85 25.97
40 REGM 27.49 16.35
45 REGM 15.03 2.47
50 REGM 15.83 2.28
55 REGM 15.37 1.99
60 REGM 17.29 2.48
65 REGM 17.58 19
70 REGM 18.27 (n/a, one trial)
75 REGM 18.06 n/a, one tral)
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Table C-12b Average Mean Percentage Error,

N, =10 years, r,, < 0.666

Common Period Models MPE Standard
(Years) Deviation

10 MVIM 108.79 155.13
15 MV3M 100.15 136.51
20 MV3M 113.44 132.29
25 RPNM 110.39 142.88
30 REGM 36.07 34.11
35 REGM 24.6 13.38
40 RPNM 17.02 3.77
45 REGM 18.38 3.9
50 REGM 18 3.75
55 REGM 19.89 3.98
60 REGM 19.98 3.96
65 REGM 16.43 (n/a, one trial)
70 REGM 16.28 (n/a, one tri

Table C-12c Average Mean Percentage Error,
N; =15 years, r,, < 0.666

Common Period Models MPE Standard
(Years) Deviaton
15 MV3M 117.82 132.25
20 MV3M 125.06 142.36
25 REGM 34.12 24.97
30 REGM 26.1 14.81
35 REGM 15.97 776
40 REGM 15.89 5.8
45 REGM 15.93 6.13
50 REGM 18.07 6.53
55 REGM 18 6.54
60 REGM 11.34 (n/a, one tral)
65 REGM 11.17 (n/a, one tnal)
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Table C-12d Average Mean Percentage Error,

N; = 20 years, r,, < 0.666

Common Period Models MPE Standard
(Years) Dewiation
20 REGM 34.9 21.63
25 REGM 28.3 17.38
30 REGM 20.37 8.67
35 REGM 19.46 6.02
40 REGM 19.57 6.54
45 REGM 21.85 6.99
50 REGM 21.75 7.02
55 REGM 14.65 (n/a, one tnal)
60 REGM 14.39 (n/a, one trial)

203




Table C-13a Occurrence of Minimum Objective Function Value,
as a Fraction of Total Trials, N, =5 years, r,, > 0.666

Common Period Models Occurrence of
(Years) Minimum
Objecuve
Function Value

5 MV3M 0.19
10 REGM 0.19
15 REGM 0.33
20 REGM 0.19
25 MVIM 0.19
30 RPNM 0.24
35 REGM 0.40
40 REGM 0.40
45 NP1C 0.20
NP3A 0.20

REGM 0.20

MV3M 0.20

NPM 0.20

50 NPi1C 0.20
NP3A 0.20

REGM 0.20

RPNM 0.20

NPM 0.20

55 NP1C 0.40
60 NP1C 0.20
NP3B 0.20

RPNM 0.20

MV3IM 0.20

NPM 0.20

65 NPI1C 0.20
NP3B 0.20

REGM 0.20

RPNM 0.20

NPM 0.20

70 REGM 0.40
75 NP1B 0.20
REGM 0.20

RPNM 0.20

MVIM 0.20

MV3M 0.20
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Table C-13b Occurrence of Minimum Objective Function Value,
as a Fraction of Total Trials, N, = 10 years, r,, > 0.666

Common Period Models Occurrence of
Objecuve
Function Value

10 REGM 0.24
15 REGM 0.24
MV2M 0.24

NPM 0.24

20 REGM 0.29
MV2M 0.29

25 REGM 0.29
30 REGM 0.33
35 REGM 0.30
NPM 0.30

40 REGM 0.40
45 NPM 0.40
50 NPM 0.40
55 NPM 0.40
60 NP2A 0.40
NPM 0.40

65 REGM 0.40
70 NP1C 0.40
REGM 0.40
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Table C-13¢c Occurrence of Minimum Objective Function Value,
as a Fraction of Total Trials, N; = 15 years, r,, > 0.666

Common Period Models Occurrence of
Objecuve
Function Value

15 REGM 0.24
20 REGM 0.29
25 REGM 0.47
30 REGM 0.30
MV3M 0.30

35 NP2A 0.40
REGM 0.40

40 NP2A 0.40
RPNM 0.40

45 REGM 0.40
RPNM 0.40

50 NP1A 0.20
NP2B 0.20

REGM 0.20

RPNM 0.20

NPM 0.20

55 REGM 0.40
NPM 0.40

60 RPNM 0.40
NPM 0.40

65 RPNM 0.40
NPM 0.40
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Table C-13d Occurrence of Minimum Objective Function Value,
as a Fraction of Total Trials, N, = 20 years, r,, > 0.666

Common Period Models Occurrence of
Objective

Function Value
20 REGM 0.53
25 REGM 0.50
30 REGM 0.40
NPM 0.40
35 REGM 0.60
40 REGM 0.60
45 REGM 1.00
50 REGM 0.80
55 REGM 0.40
60 REGM 0.40
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Table C-14a Occurrence of Minimum Objective Function Value,
as a Fraction of Total Trials, N, =5 years, r,, < 0.666

Common Penod Models Occurrence of
(Years) Minimum
Objective
Funcuon Value

5 NP2B 0.13
NP3A 0.13

REGM 0.13

MV2M 0.13

MV3M 0.13

10 REGM 0.33
15 REGM 0.40
20 REGM 0.40
25 REGM 0.54
30 REGM 0.1
35 REGM 0.25
MVM 0.25

40 MV2M 0.29
45 REGM 0.67
50 REGM 0.67
55 NPM 0.67
60 NPM 0.67
65 NPM 0.67
70 MV3M 1.00
75 MV3M 1.00
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Table C-14b Occurrence of Minimum Objective Function Value,
as a Fraction of Total Trials, N, = 10 years, r,, < 0.666

Common Period Models Occurrence of
Objective

Function Value
10 REGM 0.40
15 REGM 0.40
20 REGM 0.31
25 REGM 0.46
30 REGM 0.38
MV3IM 0.38
35 REGM 0.57
40 RPNM 0.67
45 REGM 1.00
50 REGM 1.00
55 REGM 1.00
60 REGM 1.00
65 REGM 1.00
70 REGM 1.00

Table C-14c Occurrence of Minimum Objective Function Value,
as a Fraction of Total Trials, N, = 15 years, r,, < 0.666

Common Period Models Occurrence of
Objective

Functon Value
15 REGM 0.46
20 REGM 0.46
25 REGM 0.50
30 RPNM 0.43
35 REGM 0.67
40 REGM 0.67
45 REGM Q.67
50 RPNM 0.67
55 REGM 0.67
60 MV3M 1.00
65 MVM 1.00
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Table C-14d Occurrence of Minimum Objective Function Value,
as a Fraction of Total Trials, N, = 20 years, r,, < 0.666

Common Period Models Occurrence of
Objecuve

Function Value
20 MV2M 0.63
25 MV2M 0.43
30 REGM 1.00
35 REGM 0.67
40 REGM 0.67
45 REGM 1.00
50 REGM 0.67
55 MV3iM 1.00
60 MV3M 1.00
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APPENDIX D

VERIFICATION RESULTS
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Table D-1a Minimum Deviation from Target Cross Correlation,
as a Fraction of Target Value, Set 1, N, = 10 years, r,, > 0.666

N, | Models | f, |Alemate] §,
10 | MVIM | -0.14
MV2M | -0.14
MV3M -0.14
15 MVIM -0.11 NP2C -0.13
MV2M -0.11
MV3M | 0.1
20 NP3A -0.09
NP3B -0.09
MV2M | -0.09
MV3M | 0.09
25 | NP3A | 008
MVIM | -0.08
MVZM | -0.08
MV3M | 0.8

30 NP3A -0.08
35 MVIM -0.08 NP1A | -0.09
MV2M -0.08
MV3M -0.08
40 REGM -0.08 NP1A | -0.09
MVIM -0.08 NP1B -0.09
MV2M -0.08 NP2A | -0.09

NP3A | -0.09
45 NP3A -0.08
REGM -0.08
MVIM -0.08
MV2M -0.08
MV3M -0.08

50 REGM -0.08 NP1A | -0.09
MVIM -0.08 NP1B -0.09
MV2M -0.08 NPIC | -0.09
MV3M -0.08 NP2A | -0.09
NP2B -0.09
NP3A | -0.09
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Table D-1b Minimum Deviation from Target Cross Correlation,
as a Fraction of Target Value, Set 1, N1 =15 years, r,, > 0.666

N, Models f. Alternate f.
15 MVIM -0.09 NP3A -0.11
MV2M -0.09 NP3B -0.11

MV3M -0.09
20 MVIM | -0.08 NP3A -0.10
MV2M | -0.08

25 REGM | -0.09 NP1A -0.11
MVIM -0.09 NP1B -0.11
MV2M -0.09 NP2B -0.11
NP3A -0.11
30 REGM | -0.09 NP1A -0.11
MVIM -0.09 NP1B -0.11
MV2M -0.09 NP1C -0.11
MV3M -0.09 NP2B -0.11
NP2C -0.11
NP3A -0.11
35 REGM | -0.08 NP3A -0.09
40 REGM | -0.08 NP3A -0.09
45 REGM | -0.08 NP1A -0.10
NP1B -0.10
NP3A -0.10
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Table D-1¢ Minimum Deviation from Target Cross Correlation,
as a Fraction of Target Value, Set 1, N; = 20 years, ry, > 0.666

N, Models f; Alternate £;

20 MV2M -0.10 NP1A -0.16
MV3M -0.10 NP1B -0.16
NP2A -0.16
NPM -0.16
25 MVIM -0.10 NP1A -0.15
MV2M -0.10 NPi1B -0.15
MV3M -0.10 NP2A -0.15
30 MVIM -0.10 NP1A -0.14
MVZM -0.10 NP2A -0.14

MV3M -0.10

35 MVIM -0.10 NP1A -0.14
MV2M -0.10
MV3M -0.10

40 MVIM -0.10 NP1B -0.14
MvVaM -0.10
MV3M -0.10
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Table D-2a Minimum Deviation from Target Serial Correlation,
as a Fraction of Target Value, Set 1, N, = 10 years, r,, > 0.666

N, Models f; Alternate f;
10 RPNM 0.01

15 RPNM 0.02 NPM 0.02
NPM 0.02
20 RPNM -0.02 NPM 0.03
25 NP3C 0.01
30 RPNM 0.00 NP3B 0.03

NPM 0.03
35 NP3B 0.03
NP3C 0.03
RPNM | -0.03
40 NP3B 0.03
NP3C 0.03

45 NP3B 0.02
50 NP3B 0.01
NP3C 0.01

Table D-2b Minimum Deviation from Target Serial Correlation,
as a Fraction of Target Value, Set 1, N; = 15 years, r,, > 0.666

N, Models f;
15 NP3C -0.01
REGM 0.01

NPM -0.01

20 NP1A 0.00
NP2A 0.00

REGM 0.00

25 NP1B 0.00
NP3B 0.00

30 NP1C 0.01
NP3A 0.01

NP3B -0.01

NP3C -0.01

REGM | 0.01

NPM 0.01

35 NP1C 0.00
40 NP3A 0.00
45 NP2C 0.00
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Table D-2¢ Minimum Deviation from Target Serial Correlation,
as a Fraction of Target Value, Set 1, N, = 20 years, r,, > 0.666

N, Models £ Alternate f.

20 MVIM 0.00 NP1A -0.05
) MV2M 0.00 NP2A -0.05
MVIM 0.00
25 MVIM -0.01 NP1A -0.05
MV2M -0.01 NP2A -0.05
MVIM -0.01
30 MVIM -0.01 NP1A -0.05
MV2M -0.01 NP2A -0.05
MV3M -0.01 NP2B -0.05
35 MVIM 0.00 NP1A -0.05

MV2M 0.00
MV3M 0.00
40 MVIM 0.00 NPM -0.05
MV2M 0.00
MV3M 0.00
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Table D-3a Minimum Deviation from Target Variance,

as a Fraction of Target Value, Set 1, N, = 10 years, r,, > 0.666

N, Models £, Alternate f;

10 NP2C -0.0

15 NP3C 0.08

20 REGM 0.02 NP2C -0.11

25 REGM -0.01 NP2C 0.05
NP3A 0.05

30 REGM 0.00 NP2C 0.02

35 NP2C 0.00

40 MV2 0.00 NP3A -0.04

45 MV2 -0.02 NP3A -0.07

50 RPNM 0.03 NP3A -0.06

Table D-3b Minimum Deviation from Target Variance,
as a Fraction of Target Value, Set 1, N, = 15 years, r,, > 0.666

N, | Models | f, [Altemnate]
15 | RPNM | -002 | NPIC | 0.6
20 NP1C -0.01

25 NP1C 0.00

30 MVIM 0.00 NP3C -0.03
35 | MVZM | 000 | NP3C | -0.04
40 MV3 0.01 NP3C -0.06
45 MV3 0.00 NP1C -0.04

Table D-3¢ Minimum Deviation from Target Variance,
as a Fraction of Target Value, Set 1, N; = 20 years, r., > 0.666

N, | Models | f, |Alemae]
20 MV3 0.03 NP1C -0.15
25 MV3 0.01 NP1C -0.15
30 MV3 -0.02 NP1C -0.20
35 MV2 0.02 NP1C -0.19
40 MV2 0.01 NP1C -0.17
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Table D-4a Minimum Deviation from Target Mean Flow,
as a Fraction of Target Value, Set 1, N, = 10 years, r,, > 0.666

Table D-4b Minimum Deviation from Target Mean Flow,
as a Fraction of Target Value, Set 1, N, = 15 years, r,, > 0.666

N, | Models | £,
10 REG 0.04
15 REG 0.04
20 REG 0.04
25 REG 0.05
30 REG 0.06
35 REG 0.08
40 REG 0.09
45 REG 0.09
50 REG 0.09

N, Models £, Alternate| f
15 MV1 0.00 RPN -0.01
20 RPN 0.00
25 REG 0.01
30 REG 0.02
35 REG 0.04
40 REG 0.03
45 REG 0.03
RPN 0.03

Table D-4¢ Minimum Deviation from Target Mean Flow,
as a Fraction of Target Value, Set 1, N, = 20 years, r,, > 0.666

N, Models f; |Alternate| f;

20 RPN 0.00

25 RPN 0.01

30 REG 0.03 RPN 0.03
RPN 0.03

35 RPN 0.02

40 RPN 0.01
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Table D-5a Minimum Deviation from Target Low Flow,
as a Fraction of Target Value, Set 1, N, = 10 years, r,, > 0.666

N, Models £ Alternate f.
10 MV2M -0.01

MV3M 0.01
15 MV2M 0.07 NP3A 0.21
NP3B 0.21

20 NP1C 0.07
25 NP1IC 0.09
30 NP1C 0.13
35 NP1C 0.12
40 RPNM 0.17 NP1A 0.22
NP3A 0.22
NP3B 0.22

45 NP1C 0.19
50 MV3M 0.19 NP1C 0.21

Table D-S5b Minimum Deviation from Target Low Flow,
as a Fraction of Target Value, Set 1, N, = 15 years, r,, > 0.666

N, Models f; Alternate f.
15 NP1C 0.05

20 NP1C 0.06
25 NP1C 0.08
30 MV3M 0.10 NP3B 0.13
35 MV3M 0.13 NP3B 0.14
40 NP3B 0.14

MV3M 0.14
45 NP1C 0.13
MV3M 0.13
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Table D-5¢ Minimum Deviation from Target Low Flow,
as a Fraction of Target Value, Set 1, N, = 20 years, r,, > 0.666

N, | Models | f, |Ahemate] I,
20 MVi | 010 | NPM | 0.19
25 MV1 0.15 | NP3A | 0.17
MV2 | 0.15
MV3 | 0.15
30 MV3 | 0.8 | NP3A | 0.20
MVIM | 0.18
MV2M | 0.18
MV3M | 0.18
35 MVi | 019 | NP3A | 0.19
MV2 | 0.19
MV3 0.19
NP3A | 0.19
MVZM | 0.19
40 MV3 | 017 | NP3A | 0.18
MV3M | 0.17
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Table D-6a Minimum Mean Percentage Error,
Set 1, N, = 10 years, r,, > 0.666

N, Models | MPE | Alternate| MPE
10 NP3A 9.73
15 MV1 14.69 NP3A 15.85
20 NP3B 11.71
25 NP1A 15.02
30 NP1A 17.03
35 NP3B 15.88
40 NPI1A 17.54
45 NP1A 17.85
50 NP3B 16.21

Table D-6b Minimum Mean Percentage Error,
Set 1, N, = 15 years, r,, > 0.666

N, Models MPE |Alternate; MPE
15 NP3A 12.38
20 MV2M 15.87 | NP3A | 1744
25 MV2M 17.63 NP3B 18.89
30 NP3B 17.50
35 NP3B 17.55
40 NP3B 18.57
45 NP3A 17.04

Table D-6¢c Minimum Mean Percentage Error,
Set 1, N, = 20 years, r,, > 0.666

N, Models | MPE | Alternate] MPE
20 MVIM | 1530 | NP3A | 17.21
25 NP3B 14.50
30 NP3B 14.43
35 NP3A 13.91
40 NP3A 11.40
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Table D-7a Minimum SSE,
Set 1, N, = 10 years, r,, > 0.666

N, | Models | SSE
10 | NP3A |76677.10
15 | NP1A | 58816.00
20 | NP3A | 39194.90
25 | NP3A | 42069.20
30 | NPIA | 43339.40
35 | NPIA | 44486.30
20 | NP1A | 42767.10
45 | NP1A | 42401.00
50 | NP1A | 40991.00
Table D-7b Minimum SSE,

Set 1, N, = 15 years, ry, > 0.666

N, Models SSE Alternate| SSE

15 NP3A | 50849.00

20 REGM | 52116.70 | NP3A |54544.10
25 REGM | 57308.30 | NP1A |62303.50
30 NP3B | 58328.30

35 NP3B | 52867.80

40 NP3A | 52716.80

45 NP3A | 50498.40

Table D-7¢ Minimum SSE,
Set 1, N, = 20 years, ry, > 0.666

N, Models SSE |Alternate| SSE

20 REGM (104230.70f NP1A {142921.30
25 REGM }110241.90| NP1A ([137105.00
30 REGM {109644.90| NP1A |[130071.90
35 REGM |108094.70;{ NP1A |128832.70
40 REGM |103617.90] NP1B |129985.60
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Table D-8a Minimum Deviation from Target Cross Correlation,
as a Fraction of Target Value, Set 2, N; =5 years, r,, > 0.666

5 REGM | -0.12

MVIM | -0.12
MVM | -0.12
MV3M | -0.12
10 MVIM | -0.11
MV2M | -0.11

15 REGM | -0.11
20 REGM | -0.12
25 REGM | -0.12
30 REGM | -0.12
35 REGM | -0.12
40 REGM | -0.12
MV3M | -0.12
45 REGM | -0.11
50 REGM | -0.11
55 REGM | -0.12

MVIM | -0.12
MV2M | -0.12
MV3M | -0.12

NPM -0.12

60 REGM | -0.12
MVIM | -0.12

MV2M | -0.12

MV3M | -0.12

NPM -0.12

65 REGM | -0.11
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Table D-8b Minimum Deviation from Target Cross Correlation,
as a Fraction of Target Value, Set 2, N, = 10 years, r,, > 0.666

N, Models £ Alternate £
10 MVIM | -0.06
15 REGM | -0.07

RPNM | -0.07
MVIM | -0.07
MV2M | -0.07
MV3M | -0.07
20 REGM | -0.07
MVIM | -0.07
MV2M | -0.07
MV3M | -0.07
25 REGM | -0.07
MV2M | -0.07
MV3M | -0.07
30 REGM | -0.07
MVIM | -0.07
MV2M | -0.07
MV3M | -0.07

35 MV3M | -0.06 | REGM | -0.07
40 MV2M | -006 | REGM | -0.07
MV3M | -0.06
45 MV3M | -0.06 | REGM | -0.07
50 MV3M | -0.06 | REGM | -0.07
55 MV3M | -0.06 | REGM | -0.07
60 REGM | -0.06
MVIM | -0.06
MV2M | -0.06
MV3M | -0.06

224




Table D-8c Minimum Deviation from Target Cross Correlation,
as a Fraction of Target Value, Set 2, N, = 15 years, r,, > 0.666

N, Models f. Alternate £
15 REGM | -0.11 NFM -0.1
RPNM | -0.11
NPM -0.11
20 REGM | -0.10 NPM -0.11
25 REGM | -0.10
30 NPM -0.09
35 NPM -0.09
40 NPM -0.08
45 NPM -0.08
50 NPM -0.08
55 REGM | -0.08
NPM -0.08

Table D-8d Minimum Deviation from Target Cross Correlation,
as a Fraction of Target Value, Set 2, N, = 20 years, ry, > 0.666

N, Models f. Alternate £
20 MVIM | -0.08 RPN -0.15
25 MVIM | -0.08 NP2A -0.14
MV2M | -0.08
MV3M | -0.08
30 MV2M | -0.07 RPN -0.14
MV3M | -0.07 NP2A -0.14
NP2B -0.14
NP2C -0.14
35 MV2M | -0.07 RPN -0.14
MV3M | -0.07 NP2A -0.14
NP2B -0.14
NP2C -0.14
40 MV3M | 007 | MVIM | -0.08
45 REGM | -0.07 NP2B -0.12
MV2M | -0.07
MV3M | -0.07
50 MV3M | -0.06 | RPNM | -0.08
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Table D-9a Minimum Deviation from Target Serial Correlation,
as a Fraction of Target Value, Set 2, N; =5 years, r,, > 0.666

N, | Models | _F,
5 NPIA 0.02
NP1B 0.02
10 NP3B -0.05
15 | NP3B | -0.01
20 NP1C -0.04
25 NP1C -0.06
30 NP1C -0.03
35 NP1C -0.04
40 NP1C -0.04
45 NP1C -0.05
NP3B -0.05
50 NP3C -0.06
55 NP3B -0.05
60 NP1C -0.05
NP3A -0.05
NP3B -0.05
65 NP1C -0.03

Table D-9b Minimum Deviation from Target Serial Correlation,
as a Fraction of Target Value, Set 2, N; = 10 years, r,, > 0.666

N, | Models | ¥,

10 REG -0.02
15 REG -0.01
20 REG 0.00
25 REG 0.00
30 REG 0.00
35 REG 0.00
40 REG 0.00
NP1C 0.00
45 REG 0.00
50 REG 0.00
55 REG 0.00
60 REG 0.00
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Table D-9¢ Minimum Deviation from Target Serial Correlation,
as a Fraction of Target Value, Set 2, N, = 15 years, r,, > 0.666

N, | Models | f, [Altemare] ¥
15 | NPiC | -0.02
REGM | 002
20 | NP3C | -001
25 | NPIC | 0.0
30 NP3C -0.02
REGM 0.02
NPM -0.02
35 NP2B -0.01
NP2C 0.01
NPC | 001
RPNM 0.01
NPM -0.01
40 | NPC | 0.00
NP3C | 000
NPM | 0.00
45 MV2M 0.00 NPM 0.00
NPM | 0.00
50 NP2B 0.00
NPIC | 0.00
55 NP2A 0.00
RPNM | 000
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Table D-9d Minimum Deviation from Target Serial Correlation,
as a Fraction of Target Value, Set 2, N, = 20 years, r,, > 0.666

N, Models £ Akernate f.

20 REGM 0.00 NP3C -0.01
MVIM 0.00
25 NP3C 0.00
30 NP2A -0.01

RPNM 0.01
MVIM 0.01
35 RPNM | -0.01 NP2B -0.02
NP2C 0.02
NPM -0.02
40 NP1B -0.01
NP2B -0.01
RPNM | -0.01
MV2M | -001
45 NP1B 0.00
NP2A 0.00
MV2M 0.00
50 MVIM 0.00 NP1A 0.01
NP1B 0.01

NP3B -0.01
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Table D-10a Minimam Deviation from Target Variance,
as a Fraction of Target Value, Set 2, N, = § years, r,, > 0.666

N, Models £ Ahernate| f,
5 MV3 002 | MV3M | -0.02

MV3M | -0.02
10 RPN -0.05
NP1C -0.05

15 NP3B 0.01
20 NP1A 0.00
NP1B 0.00
NP2B 0.00
25 NP3B 0.01
30 NP2A -0.03
35 NP2A 0.00
40 NP2A 0.00
NP3B 0.00
45 NP3A 0.00
50 NP1B -0.02

NP2A -0.02
NP3A -0.02
55 NP2A -0.01
NPM -0.01
60 NP1A 0.01
NP3A -0.01
RPNM 0.01
NPM 0.01

65 NPM 0.01
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Table D-10b Minimum Deviation from Target Variance,
as a Fraction of Target Value, Set 2, N, = 10 years, r,, > 0.666

N, | Models | §,

10 | NPC | -0.12
15 REG | -0.08
20 RPN | 001

NP3C -0.01
25 RPN 0.02
NP3C -0.02

30 RPN 0.01
35 REGM | 0.00
40 RPN 0.01
45 RPN 0.01
RPNM | 0.01
50 RPN 0.00
55 RPN -0.02

NP1C -0.02
60 RPN -0.03
REGM | -0.03

Table D-10¢c Minimum Deviation from Target Variance,
as a Fraction of Target Value, Set 2, N, = 15 years, r,, > 0.666

N, | Models f. |Alternate| f;

15 MV2 0.00 NP3C -0.06
20 MV1 0.02 NP3C 0.04
25 NP3C -0.04
30 MV2 -0.02 NP3C 0.07
35 MV1 0.01 NP3C 0.11
40 NP3C -0.03
45 NP3C -0.01
50 MV1 0.01 RPNM | -0.03
55 MV1 0.02 NP3C -0.08

MV2M 002 | MV3M | 0.08
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Table D-10d Minimum Deviation from Target Variance,
as a Fraction of Target Value, Set 2, N, = 20 years, r,, > 0.666

N, Models f. |Alerate f.

20 MV2M 0.00 NP3C -0.0

25 MV2M -0.03 NP3C -0.07
30 NP3C -0.01
35 RPNM -0.03 NP3C -0.11
40 MV1 -0.02 NP3C -0.09
45 RPNM 0.00 NP3C -0.17
50 MV1 -0.05 RPNM -0.18
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Table D-11a Minimum Deviation from Target Mean Flow,
as a Fraction of Target Value, Set 2, N, =5 years, r., > 0.666

N, Models f; | Alternate £
5 NP2C 0.00
10 MV3 -0.03 MV3M | -0.03
MV3M | -0.03 NPM -0.03
NPM -0.03
15 NP3C 0.01
20 NP3C 0.02
25 MV3M | -0.02
30 MV3 0.01 NPM -0.01
NPM -0.01
35 NPM 0.00
40 MV3 0.01 RPN -0.02

MV3M | 0.02
NPM 0.02
45 RPN -0.01
NP1B -0.01
NP2B -0.01
REGM | -0.01
50 RPN -0.02
MV3 0.02
NP1A -0.02
NP1B -0.02
NP2B -0.02
REGM | -0.02
NPM 0.02
55 MV3 0.00 NPM 0.00
NPM 0.00
60 MV3 0.00 MV3M 0.01
NPM -0.01

65 NPM 0.00
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Table D-11b Minimum Deviation from Target Mean Flow,
as a Fraction of Target Value, Set 2, N, = 10 years, r,, > 0.666

N, | Models |
10 REG 0.02

NP3C 0.02
15 REG -0.01
RPN 0.01
20 REG 0.00
NPM 0.00

25 NP2B 0.00
30 NP3A 0.00
NP3B 0.00
35 REG 0.02
40 REG 0.05
RPNM 0.05
45 REG 0.03
50 REG 0.02
55 REG 0.01
60 REG 0.02
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Table D-11¢ Minimum Deviation from Target Mean Flow,
as a Fraction of Target Value, Set 2, N, = 15 years, r,, > 0.666

N, Models f. |Alternate| f;

15 MV3 0.00 MV3M | -0.01
20 RPN 0.00
RPNM [ 0.00
25 REGM | 0.00
30 RPN 0.00

MV1 0.00
MVIM | 0.00
MV2M | 0.00

35 REGM | 0.00
40 RPN 0.00
MVIM 0.00
45 MV2 0.00 NP3A 0.00
NP3A 0.00 NP3B 0.00

NP3B 0.00
50 NP2A 0.00
RPNM | 0.00

55 MV1 0.00 NPM 0.00
MV2 0.00
MV2M | 0.00
NPM 0.00

Table D-11d Minimum Deviation from Target Mean Flow,
as a Fraction of Target Value, Set 2, N, = 20 years, ry, > 0.666

N, | Models | £, |Alernare] ¥,
20 REG 0.01 RPN 0.03
25 REG -0.01 RPN 0.01
RPN | 001
30 REG 0.02 RPN 0.04
35 REG 0.00 RPN 0.02
40 RPN 0.00
45 MV1 0.00 RPN -0.01
50 | RPN | 0.00
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Table D-12a Minimum Deviation from Target Low Flow,
as a Fraction of Target Value, Set 2, N, =5 years, r,, > 0.666

N, Models £ Alternate f;
5 RPN -0.02
10 REG -0.01 NP2B -0.01
NP2B -0.01 NP3A -0.01
NP3A -0.01 | REGM | -0.01
REGM | -0.01
15 RPN 0.00
20 REG -0.01 NP3C -0.01
NP3C -0.01 NPM 0.01

NPM 0.01
25 REGM | 0.01
MVIM | -0.01

30 MV1 001 | MV3M | -0.01
MV2 -0.01
MV3M | -0.01

35 MV1 0.00 MV3M 0.00
MV2 0.00
MV3M | 0.00

40 MV1 0.00 MV3M 0.01
MV2 0.00

45 MV2 0.00 MV3M 0.03
50 MV1 -0.02 | MV3M | 0.02

MV2 -0.02
MV3 -0.02
MV3M 0.02

55 MV2M | 0.00
60 MV2M 0.00
65 MV1 -0.01 | MV3M 0.01
MV3M 0.01
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Table D-12b Minimum Deviation from Target Low Flow,
as a Fraction of Target Value, Set 2, N, = 10 years, r,, > 0.666

N, Models £ Alternate| f;
10 NP2B | 0.0

REGM | -0.02
MVIM | -0.02
MV2M | -0.02
15 NP3A 0.00
REGM | 0.00

20 MV3M 0.00
25 MV1 0.00
30 MV1 0.00

MV2 0.00
35 MV1 0.00
MV2 0.00
40 MV1 0.01
MV2 0.01

45 MV3 -0.01
50 MV3 -0.03

MV2M 0.03
55 MVIM 0.02 MV3 -0.03
MV2M 0.02

60 MV3 0.00
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Table D-12¢ Minimum Deviation from Target Low Flow,
as a Fraction of Target Value, Set 2, N, = 15 years, r,, > 0.666

N, Models f. Alemnate f;

15 MVIM 0.00 NP1C -0.01
MVM | 0.00
20 NP1C -0.01
25 RPNM 0.06
30 MV3M 0.08 NP1C 0.11
RPINM 0.11
35 MVIM 0.10 NP1C 0.11
40 MV2M 0.05 NP1C 0.11
RPNM 0.11
45 MVIM 0.02 NPI1C 0.04
MV2M 0.02
50 MVIM 0.03 NP1C 0.07
55 MVIM 0.06 MV3M 0.08

Table D-12d Minimum Deviation from Target Low Flow,
as a Fraction of Target Value, Set 2, N, = 20 years, r,, > 0.666

N, Models f.  {Alternate f.
20 MV1 0.11 RPN 0.34
25 MV1 0.09 RPN 0.29
30 MV1 0.08 RPN 0.28
35 MV1 0.02 RPN 0.22
40 MV2 0.02 MVIM 0.06
45 MV2 0.00 RPN 0.15

50 MV1 -0.01 RPN 0.18
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Table D-13a Minimum Mean Percentage Error,
Set 2, N, = § years, r,, > 0.666

N, | Models | MPE
5 | NP3A | 21
10 | NP3A | -11
15 RPN | 3.0
20 | NPM | o1
25 | NP2A | 00
30 | REGM | 07
35 | MV2M | -0.3
40 | NP3B | 08
45 | MVIM | 03
50 | RPNM | 04
55 | REGM | 0.1
60 | REGM | 0.2
65 | RPNM | -05

Table D-13b Minimum Mean Percentage Error,
Set 2, N; = 10 years, r,, > 0.666

N, Models | MPE | Alternate| MPE
10 NP2A -1.4

15 NP1A 2.4

20 NP1C -1.6

25 NPIC 0.7

30 NP1C 7.0

35 MVIM 10.7 MV1 12.3
40 MVIM 11.5 RPNM 13.2
45 MVIM 9.9 MV1 11.3
50 MVIM 8.2 MV1 9.7

35 MVIM 7.3 MV1 8.7

60 MVIM 9.2 MV1 10.8

238




Table D-13c Minimum Mean Percentage Error,
Set 2, N, = 15 years, ry, > 0.666

N, | Models | MPE | Akemnate] MPE

15 MVIM 0.9 NP2B 2.1

20 NP1C -0.7

25 NPIC 3.4

30 MVIM 5.8 NP1C 6.7

35 MVIM 6.8 REGM 10.2

40 MVIM 4.8 REGM 8.4

45 MVIM 3.1 REGM 6.3

50 MVIM 2.4 REGM 59

55 MVIM 4.7 NP1C 7.9

Table D-13d Minimum Mean Percentage Error,
Set 2, N, = 20 years, ry, > 0.666

N, Models | MPE | Alternate| MPE

20 MVIM | 203 RPN 28.4

25 MVIM 16.6 RPN 24.9

30 MVIM 17.4 RPN 26.1

35 MVIM 12.9 RPN 22.2

40 MVIM 9.0

45 MVIM 7.6 RPN 17.1

50 MVIM 10.5 RPNM 17.6
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Table D-14a Minimum SSE,
Set 2, N, =5 years, r,, > 0.666

N, Models | SSE

5 MVIM 1| 1983.4

10 NPIC | 8365.0

15 REGM 1| 201.5

20 REGM 1| 7249

25 REGM 1| 689.6

30 REGM 1| 249.0

35 REGM 1| 229.2

40 REGM | 9694.1

45 REGM [ 9320.8

50 REGM [ 9533.3

55 NPM | 9780.5

60 REGM | 9703.3

65 REGM | 9363.6

Table D-14b Minimum SSE,
Set 2, N, = 10 years, r,, > 0.666

N, | Models | SSE

10 REG | 29141.0

15 REG | 26063.8

20 REG | 26096.4

25 REG | 26600.3

30 REG | 267914

35 REGM | 25037.1

40 REGM | 26457.2

45 REGM | 25985.0

50 REG | 26253.2

55 REGM | 23763.9

60 REGM | 21540.7
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Table D-14¢ Minimum SSE,

Set 2, N, = 15 years, r,, > 0.666

N, Models | SSE | Alernate| SSE
15 REGM | 58581.0 | REG | 68575.3
20 REGM | 56487.6 | RPNM | 62411.1
25 REGM | 53534.4
30 REGM | 51825.7 | NPM | 61052.1
35 REGM | 52154.1
40 NPM | 51980.0
45 NPM | 531374
50 REGM | 515729
55 REGM | 46956.8
Table D-14d Minimum SSE,
Set 2, N, = 20 years, r,, > 0.666
N, Models SSE | Alternate| SSE
20 MV1 88330.2 | NP2B |109731.3
25 MV2M | 741707 | NP2A |[103933.0
30 REGM | 75377.0 | NP2B |105861.7
35 REGM | 74748.8 | NP2B |[103218.7
40 REGM | 74503.8 | NP2B | 94353.5
45 REGM | 70478.7 | NP2B | 86072.0
50 MV3M | 66157.4 | RPNM | 73784.6
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Table D-15a Minimum Deviation from Target Cross Correlation,
as a Fraction of Target Value, Set 3, N; =5 years, r,, < 0.666

N, Models f. |Alternate f.

10 REGM | -0.11 NP1B -0.18
NPM -0.18
15 REGM | -0.15 NP2B -0.17
MV3M | -0.15 NPM -0.17
20 MV2M | -0.13 NP2A -0.17
NP2C -0.17
25 MV2M | -0.13 NP2C -0.15
30 MV2M | -0.13 NP2A -0.15
NP2C -0.15

Table D-15b Minimum Deviation from Target Cross Correlation,
as a Fraction of Target Value, Set 3, N, = 10 years, r,, < 0.666

N, Models £
10 NP2C -0.18
NP3C -0.18
15 NP2C -0.16
20 NP2C -0.16
25 NP2A | -0.15

NP2C -0.15

Table D-15¢ Minimum Deviation from Target Cross Correlation,
as a Fraction of Target Value, Set 3, N; = 15 years, r,, < 0.666

N, Models f; Alternate f.

]
15 REGM | -0.15 NP2A -0.17

MV2M | -0.15
20 REGM | -0.15 NP2A -0.17
MV2M | -0.15
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Table D-16a Minimum Deviation from Target Serial Correlation,
as a Fraction of Target Value, Set 3, N, =5 years, r,, < 0.666

N, Models f. |Alernate| f
10 NP3C 0.01

15 MV3M 0.04 MVIM 0.05
20 MV2M 0.05 NP2C 0.11
25 MVM 0.07 NP2C 0.11
NP3C C.11
NPM 0.11
30 MV2M 0.09 NP2C 0.11

Table D-16b Minimum Deviation from Target Serial Correlation,
as a Fraction of Target Value, Set 3, N, = 10 years, r,, < 0.666

N, Models £ Alternate £
10 MVIM | 0.00 NP3C 0.03
NPM 0.03
15 MVIM | -0.01 NPM 0.07
20 REGM 0.00 NPM 0.07

25 REGM | -0.02 NP2C 0.05

Table D-16c Minimum Deviation from Target Serial Correlation,
as a Fraction of Target Value, Set 3, N, = 15 years, r,, < 0.666

N, Models f. Alternate f.

et 1§

1
15 REGM | -0.02 NPM 0.13
20 MVIM | -0.01 NPM 0.10
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Table D-17a Minimum Deviation from Target Variance,
as a Fraction of Target Value, Set 3, N, =5 years, r,, <0.666

N, Models f;  |Alernate f;
10 NP2C -0.42
15 MVIM | -0.38
20 MV2M | -0.42 NP2C -0.52
25 MV2M | -0.38 NP2C -0.52

30 MV2M | -0.38 NP2C -0.61

Table D-17b Minimum Deviation from Target Variance,
as a Fraction of Target Value, Set 3, N; = 10 years, r,, <0.666

N, | Models f.  |Alernate f;

10 MVIM 0.02 NP2C -0.18
MV3M 0.02
15 MV3M | -0.08 NP2C -0.39
20 MV3M | -0.02 NP2C -0.50
25 MV3M | -0.02 NP2C -0.50

Table D-17¢ Minimum Deviation from Target Variance,
as a Fraction of Target Value, Set 3, N, = 15 years, r,, < 0.666

N, Models t Alternate f.

2 ij oy
5 [ MV3M | 000 | NPC | 073
0 TMV3M | 000 | NPM | -074
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Table D-18a Minimum Deviation from Target Mean Flow,
as a Fraction of Target Value, Set 3, N, =5 years, r,, <0.666

N, | Models | f,

10 | NP3C | -001
15 | NP2C | 002
20 | NP2C | -0.05
25 | NPXC | -0.05
30 | NP2C | -0.05

Table D-18b Minimum Deviation from Target Mean Flow,
as a Fraction of Target Value, Set 3, N, = 10 years, r,, < 0.666

N, Models f. Alternate f.
i0 NP3C 0.03

MVIM 0.03
15 NP2C 0.01
20 NP2C -0.03
25 MVIM -0.03 NP2C 0.04

Table D-18¢ Minimum Deviation from Target Mean Flow,
as a Fraction of Target Value, Set 3, N, = 15 years, r,, <0.666

N, | Models | _§,
15 MV3iM -0.03 NP2C -0.14
20 MV3iM 0.00 NP2C -0.09
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Table D-19a Minimum Deviation from Target Low Flow,
as a Fraction of Target Value, Set 3, N, = § years, r,, < 0.666

N, Models £ Alternate £

10 MVIM 0.1 NPM 1.74
15 MV1 0.49 MVIM 0.56
20 MV1 0.64 NP1B 1.21
25 MV1 0.51 NP3B 1.26
30 MV1 0.51 NP3B 1.19

Table D-19b Minimum Deviation from Target Low Flow,
as a Fraction of Target Value, Set 3, N, = 10 years, r,, < 0.666

N, Models f,  |Alernate| f;
10 MV3M 0.50 NP3A 0.74
NP3B 0.74
15 MV3M 0.65 NP3B 0.72
20 MV3IM 0.52 NP3B 0.68

25 MV3M 0.54 NP3B 0.78

Table D-19¢c Minimum Deviation from Target Low Flow,
as a Fraction of Target Value, Set 3, N, = 15 years, r,, < 0.666

N, Models f. Alternate f.
15 MV3 0.07 NP3B 0.21
20 MV3 0.10 NP3B 0.24
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Table D-20a Minimum Mean Percentage Error,
Set 3, N, =5 years, r,, <0.666

N, Models | MPE |Ahlernate| MPE
10 MVIM 95.9 NPM 362.4
15 MVIM | 139.6

20 MVIM | 1594 | NPiB 3147
25 MVIM | 1397 NPM 290.7
30 MVIM | 1420 NPM 2919

Table D-20b Minimum Mean Percentage Error,

Set 3, N; = 10 years, r,, <0.666

N, Models | MPE | Ahernate| MPE
10 MV3M 82.5 NPM 142.8
15 MVIM 89.4 NP1B 144.3
20 MVIM | 775 NP3B 137.4
25 MV3 82.9 NP3B 147.9

Table D-20c Minimum Mean Percentage Error,

Set 3, N, = 15 years, r,, <0.666

N, Models | MPE | Alternate{ MPE
15 MV3M 59.5 NP3B 87.1
20 MV3 64.5 NP3B 96.6
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Table D-21a Minimum SSE,
Set 3, N, =5 years, r,, <0.666

N, Models SSE |Alternate| SSE
10 MV3M | 26126 | NP3C 34399
15 MV3M | 3042.0 | NP2C 3104.8
20 MV2M | 26348 | NP2C 3264.4
25 MV2M | 25009 | NP2C 2988.5
30 MV2M | 2557.2 | NP2C 3256.0
Table D-21b Minimum SSE,
Set 3, N, = 10 years, r,, < 0.666
N> Models SSE
10 NP2C 4387.6
15 NP2C 4219.2
20 NP2C 4508.9
25 NP2C 4300.4
Table D-21¢ Minimum SSE,
Set 3, N, = 15 years, r,, <0.666
N, Models SSE |Alternate| SSE
15 REGM | 6945.8 | NP2C | 10930.8
20 REGM | 6881.0 | NP2A | 11203.7
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Table D-22a Minimum Deviation from Target Cross Correlation,
as a Fraction of Target Value, Set 4, N, =5 years, r,, < 0.666

N, Models £
5 NPIC | -0.22

NP3C -0.22
10 NP1C -0.20
NP3C -0.20
15 NP1C -0.18
NP3B -0.18
NP3C -0.18

20 NP3B -0.15
25 NP3B -0.17
NP3C -0.17

Table D-22b Minimum Deviation from Target Cross Correlation,
as a Fraction of Target Value, Set 4, N, = 10 years, r,, < 0.666

N, Models f;

10 NPI1A | -0.25
NP2A -0.25
NP3B -0.25
15 NP3B -0.23
20 NP3B -0.24

Table D-22¢ Minimum Deviation from Target Cross Correlation,
as a Fraction of Target Value, Set 4, N, = 15 years, r,;, < 0.666

N, | Models | &,
15 NP2C -0.24
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Table D-23a Minimum Deviation from Target Serial Correlation,
as a Fraction of Target Value, Set 4, N, =5 years, r,, < 0.666

N, | Models | f, |Ahemare] §,
5 | MVZM | 005 | MV3M | 0.05
10 | RANM | 0.00
15 NP2B 0.00

MVIM 0.00
20 NP1B 0.01
NP2B 0.01

25 NP2C -0.01

Table D-23b Minimum Deviation from Target Serial Correlation,
as a Fraction of Target Value, Set 4, N, = 10 years, r,, < 0.666

N, | Models | f,
10 NP1B 0.02
MV3M -0.02
15 NP2C 0.00
20 NP2C 0.00

Table D-23¢c Minimum Deviation from Target Serial Correlation,
as a Fraction of Target Value, Set 4, N, = 15 years, r,, < 0.666

N, | Models | f_
15 | RPNM | 0.0
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Table D-24a Minimum Deviation from Target Variance,
as a Fraction of Target Value, Set 4, N, = § years, r,, <0.666

N, | Models | ¥,
5 NP1A -0.06
NP1B | -0.06
10 NP2B -0.04
15 | NPC | -0.11
20 RPNM 0.06
25 NP2C -0.18

Table D-24b Minimum Deviation from Target Variance,
as a Fraction of Target Value, Set 4, N; = 10 years, r,, < 0.666

N, | Models | f, |Akemare] 1§,
10 RPNM 0.02
15 MV3M 0.03
20 MV2 0.01 MV3M -0.14

Table D-24¢ Minimum Deviation from Target Variance,
as a Fraction of Target Value, Set 4, N, = 15 years, r,, < 0.666

N, Models £ Alternate £
15 MVIM | -0.17 | RPNM | -0.60
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Table D-25a Minimum Deviation from Target Mean Flow,
as a Fraction of Target Value, Set 4, N, =5 years, r,, < 0.666

N, Models f.  |Alternate f.

5 REG -0.04 RPN 0.05
10 REG 0.04
15 NP1B 0.00
NP2A 0.00
20 NP2A 0.00
25 MV3 0.00
NP2C 0.00

Table D-25b Minimum Deviation from Target Mean Flow,
as a Fraction of Target Value, Set 4, N, = 10 years, r,, <0.666

N, | Models f.  |Alternate f.
10 MV3M 0.00
15 MV1 0.05 MV3M -0.15

MV2 -0.05
MV2M -0.05
20 MV1 -0.01 | MVIM -0.15

Table D-25¢ Minimum Deviation from Target Mean Flow,
as a Fraction of Target Value, Set 4, N, = 15 years, r,, < 0.666

N, Models f. Alternate f.
15 MVIM -0.13 NP2C -0.24
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Table D-26a Minimum Deviation from Target Low Flow,
as a Fraction of Target Value, Set 4, N, =5 years, r,, <0.666

N, | Models | L. |Akernate] L,
5 MV2 0.0

10 | RPNM | 0.04
15 NP1B 0.00
20 NP1A -0.01

NP2A 0.01
RPNM | -0.01

25 REG 0.00 NP2A 0.00
NP2A 0.00

Table D-26b Minimum Deviation from Target Low Flow,
as a Fraction of Target Value, Set 4, N; = 10 years, r., <0.666

N, Models f. Alternate f.

10 MV2 0.00 RPNM 0.01
15 REG 0.00 RPN -0.01
MV2M | 0.00
20 REGM | 0.01 RPN -0.03

Table D-26c Minimum Deviation from Target Low Flow,
as a Fraction of Target Value, Set 4, N, = 15 years, r,, <0.666

N, Models £
15 NP3B 0.00
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Table D-27a Minimum Mean Percentage Error,
Set 4, N, =5 years, r,, <0.666

N, Models | MPE
5 MV1 219
10 REG 14.6
15 NPIC 0.7
20 NPM 0.7
25 MV3 -0.1

Table D-27b Minimum Mean Percentage Error,

Set 4, N, = 10 years, r,, < 0.666

N, Models | MPE |Alternate{ MPE
10 REGM -1.2 RPNM 5.9

15 RPN -1.4

20 MV3 1.1 RPN -2.2

Table D-27c¢ Minimum Mean Percentage Error,
Set 4, N, = 15 years, ryy, <0.666

Models

MPE

Alternate

MPE

MV1

0.1

NP1C

0.5
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Table D-28a Minimum SSE,

Set 4, N, =5 years, r,, <0.666
N, Models SSE
5 NP3C [ 2636.5
10 NP1C 1969.2
15 NP3C 1630.4
20 NP3C 1472.0
25 NP3C 1615.8
Table D-28b Minimum SSE,
Set 4, N, = 10 years, r,, < 0.666
N, | Models | SSE
10 NPIB 8739.5
15 NP1B 8207.5
20 NP2C | 8458.0
Table D-28c Minimum SSE,
Set 4, N, = 15 years, r,, < 0.666
N, | Models | SSE
15 NP2C | 11829.0
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IMAGE EVALUATION
TEST TARGET (QA-3)
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