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The extension of short data records, based on idonnation bom long term data records, is a 

common procedure used in the planning and operation of many water resources systems. 

M e  methods for extendmg the a d 1 e  d o w  &ta record at locations where the 

perioci of recordeci data is considerd too short are presented. Various defiaencies in exking 

regrrssion-based pararneuic tediniques rrlared to the assumption of no* disûibuted and 

random re s idd  are identifiecl. An alternate nonpanmRRc approach which is not subject to 

the above assumprions is presented. The nonpammeuic methoci utilizes the relationship 

becween the index and base record to idendy similar flow patterns that can be used to 

The extension techniques were duated,  and the results of the evaluation were verified, + 
mont& d o w  data from gaUg;ng stations in Manitoba and Ontario. The techniques are 

w a l d  based on their r e k e  performance in reproducing statiShcal features of the historic 

data The panmeaic and nonparametic methods disphyed comparable performance. The 

residual series of the parametric models did not follow the noxmal distribution, even though a 

data transformation was performed Residual series fiom both tediniques displa/ed 

autocordation, i n d i c a ~ g  the inabilry of the modeh in taking into account thne varying 

relatioflships in the data Model perfomiance generally increased with common p e r d  of 

record. The nonparametric methods tended ro improve as the avaikble data increased 

Recornmcndatiom are made as to the prefemd approach under varying data availability 

conditions. The nonparametric rechniqyes are recommended as a viable alternative in cases 

where the residual series obtained h m  the parametric models are not nad dismbuted. 

Ushg a nonpanmeaic model as an altemative to a paameaic models may involve a mde-off 

in terms of srvisacal performance under certain condieions. A procedure for irnplementing 

the record arrension techniques is presented. 
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C h a p t e r  I 

1.1 BACKGROUND 

Many types of water resources projeas are dependent on the principles and dua of hydrology 

(Mc.in;rer, 1942). Examples indude reservoir design, irrigation and water nipply systexns. 

Additionally, there is a growing concern for anthropogenic effecu on the environment and 

m e r  quaity amh m e r - i n k g  demands for water and coQi&g water uses. Reliable 

streamnow records are required to derennine the environmental impacts, on receiving water 

bodies for licensing proposed wastewater ueatment facilities. Water is an extremely vaiuable 

Water resources systems undergo @c + for optimktion studies and decision 

support for Qvelopment activiaes. ydrologic ME series are m e d y  used in practice to 

sirnulate the ourcome of hydropower production scheduling, systems operathg poliaes, 

wastewater treatment plants and water nghts agreements, for example. Esemaring the 

kequenq and d e o n  of domestic, i n d d  and agicultural water supply shordall, as well 

as dependable resemoir yield for hydropower generation during peak demand are other 

examples of uses for meamflow records. The latter examples are commody used to determine 

a projecr's economic f e a s i b i .  and environmental impacts. 

Opcimal planning and management decisions requLe reliable data Raman et a1.(1995) aate 

rhar in developing counmes, the expansion of hydrologie data ohen accornpa.uks or lags 

development and plannuig rather rhan pr&g h Raman et d.(1985) also state that reliable 

d t s  can be obtained h m  a systems snidy when data are avahble for a minimum of 35 

years. Lmdy, Manitoba y.Qo has used d o w  data recoristniction techniques to 



generate flows for the Nelson River bvin No.: TM No.93-3). Here, amilable 

data am ranked as good or poor in terms of availabikyof observecl n a d  flaws. 

Mvry stmmflrn recorâing gauges have operated for ody a short &ne where longtemi 

records are desid. Records a d a b l e  for ~ Y F J  streams are too short to contain a sufficient 

q e  of hydm1Og;cal conditions. Addition+, users of d o w  databases containhg rmny 

Streamnow records rnay desire the database be consistent in terms of record length. Jackson 

(1975) notes that hydroIogic record l-, in general, tend to be very short, and typidy span 

25 to M years. One difficulty with short streamfIuw records lies in the large variances resulthg 

from small sample esthates of population parameters. This diffîculty is compounded with 

unrrliable or m L M g  pornon~ of dam Providing mLring data is the justification for synthetic 

SuearQm record extension techniques are used to symhesize portions of a record where a 

longer period of record is desired. Two broad categories of streamflow g e n e o n  models are 

referred to as detennliistic and aochascic modeis. D e t e r d c  moQIs are based on physïcal 

characteristics of the drainage basin and the hydrologie concepts rranskang bistoncal 

meteorological inputs, nidi as rainfai, into basin outflow. Stochastic models are statistid in 

nature. Hawever, Clarke(1973) makes a distinction between stochastic and StatiStical models 

to emphasize the rime-dependence of the kydrological variables related by the model. The 

difference b e e n  a deterministic and stochastic mode1 is clearer in that a deterministic 

model's panmeters are free from random variation and are not assoaated with a probability 

M& wirhin the stochastic group indude parameuic mociels such as linear regression, for 

example, which transpose information from longer records to shorter records by exploithg the 

interstation correkrion berween the short and the long record station. Parametric methodr, 

however, învohre estbathg various statiStid parameters (such as sample mean, variance and 

aoss correlation) of the short and long mord stations, which are subseqyently used for the 

extensions. 



Some vsumptî011~ related to pametric methods are the obsewations are independent 

a m s  time, the residds are normdy distri- arirh zero mean, and are dependent. 

Concurrent observations of the base record and the short record are assumeci to have a 

biwiPe normal probability dimibution and exhibit stationarity and s d  independence. 

Another assumption 'inherent in the parametnc tedinigues is the validity of the estimved 

Rgremon parameters d e r  an appropriate data ansfomiaron 

12 OBJECTIVES 

The objective of the study is to review the ppramenic models based on linear regression and 

develop a variation to exking nononpanmRnc methods of streadow record extension. 

Modeh are developed to urry out the extension tecbniqtxes. The capabiliry of the models are 

e v a l d  by a StatiStical performance cornparison in generating flows. 

Nonparametric saeamflow record extension is presented as an alternative type of record 

synttiesis tediniqye. The nonparametric method recognizes flow patrems in the histond 

d o w  record. The £lm patterns are ucilized to generate synthetic flows based upon the 

relationship between a longer flow record and a (presumabiy) shorter flow record undergoing 

extension. N o n p d c  record artension tediniques do not require assumptions with 

regard to the probability distribution of the àara or sample-estimated parameters. 

Pattern recognition seeks to categorize input data, such as a s t r d o w  record, into 

identifiable dases by amaCeng significant features, then assopate that particular feature with 

one or more features fiom the p s t  (memo'y). Examples of applications of pattern 

recognition are such automad systems as chamcter recognition, weather forecasting, voice 

type-- medical +O&, data dasufication, target identification, and fingerprint 

identification (Tou, 1967). In each of these examples an abmact pattern is used as a basis for 

recognition, based upon the Bmaction of a set of recognized features assoaated with the 

subjeh 



ydrologic phenornena measured in daily, w*, or monddy i n t d  may be 

consi- to occur in wddefined groups (Panu and Unny, 1978). Variation in hyh log id  

data is iduenced by emknmental factors such as weatfier patterns which d e r  cause it or 

affect it in some wy. An example of dis is the periodic nature of monthly s t r d o w  data 

seqyences which vuy accordmg to season, due to factors induding spring m o d t  or 

precipirtation, for example. 

The =ope of the midy dl involve presenting the theoretid background and applymg both 

paramdc and nonparaxnetric models for evaluation based on pre-selected adequacy measures 

on selected streamnow records kom Manitoba and Ontario. The models are waluated based 

on their ab* to reproduce various feanires of historical monthly s t r e d o w  records. A 

mechoci of implementing the moa appropriate model to generate s t r d o w s ,  b d  on a 

*en set of data conditions, is presented 

Chapter 2 presents a review of selected literature on sueamflow record extension techniques. 

Chapter 3 describes the current parametric record mension methods found in the Literature 

and the theory and formubon of the nonparametric methods. Chapter 4 presents an 

evduation and application of the parametric and nonparam&c me&& formulated in 

*ter 3, as well as a discussion of the d t s .  Chapter 5 mmmaks the methodolo~y 

adysu and d u ,  and provides 

model, bared upon the stuciy 

techniques is reco~nmendd 

a recommendation 

hdings. Future 

for selection of the appropriate extension 

work on streamflow record extension 



C h a p t e r  2 

Thexz are many variations in the methods of transfenhg data fiom one location to another 

with stochastic model. Some variations utilize pkysid bvin parameten to help improve the 

reliabiliity of the estimates of synthetic screamfows. Hkch ((1979) utilized drainage area ratios, 

regiod basin characteristics, and aosstorrelation of flow records. Faucher (1994) urilized 

physographic and dimatic data as independent variables to dweiop regional flow d d o n  

m e s  and promion on drainage area and mean annual runoff to generate synthetic flows at 

an uagauged location. Parret and Cartier (1990) &O used basin characteristic and climatic 

variables IO estimate average montMy fluws in Wesrem Montana 

Simonovic (1995) datelopeci t h  mathematical models for data interpolation, extrapolation 

and transfer to ungauged sites within the Red-Assiniboine and kiterlake disnias of Manitoba 

Various phyncal parameters were incorporated into the models to enhance mont& 

meamflow synthesis. The dara was nansfomied by loganthms, then replaced by th& 

anpirical probabilities, and f;nallv standardized according to the inverse functions of the 

normal distributions. I n d u d q  phyncal paramaen i"proved the extension models, in terms 

of reducing the standard error of estimate. The moa benefiaal parameters were s n o d t ,  

elwhon, precipitation and elevation, howwer, different pararneters provided beaer results 

when used in different regions. 

HLsch (1982) presented four extension methods (dexribed in detail in Chapter 3), and 

w a l d  them to determine th& suitab* in terms of reproducing hinorical sarnple a d c s  

and comparing the bias and error in estbathg sample adcs. In Huxh's work, the 

-ers of the regression extension method are modifieci to maintain the sample mean and 

variance, rather than to m;nim;Tp squared mrs,  for the case where the rwo streadows are 

similar in distnbrdion shape, serial correlation and seaso-. AUey and Burns (1983) udLed 



Hirsch's maintenance of variance extension (MOVE) techniques using different st&ons 

as the base station to predia different flows for the same short (iidex) record. A deMon d e  

was presented to detennine whether to use ody flow values fiom the same month or 

~e~uential flow d u e s  in the pvamaric mettiods. Vogel and Stedinger (1985) recornmended 

improved, equal or loiver-variance unbiased estimators of the mean and variance of the flows 
of the short record due to the small  simple sizes often encountered in record extension 

Parret and W e r  (1990) estimateci mean mon* dixharge based on multiple regression of 

basin characteristics, dimate variables, chamel width and a maintenance of variance exremion 

technique developed by Hîrsch (1982). The waluations of the techniques were based on 

standard m r  of estimare. The srandard errors were Rduced by dculating weighted average 

estimates from all three extension methods. Parret and W e r  (1990) state thar 'regression 

eqmions based on basin characteristics are gen+ not applicable to s i r e m  thar receive 

their water from springs or tha* lose substantial flows because of permeable strearnbeds or 

other locahd geologic featuresW. This is assumeci to not be a ugnificant factor for the 

s t r d o w s  udized in this sntdy. 

Beauchamp et al. (1989) compared regression and the-series methods for synthesizing da* 

s~eafnamv records. Si&cant autocorrelation of error temis occurred wich the regession 

method, but did not affect the estimatecl flows. The time series mode1 was able to adequately 

model the aurocorrelation existîng in the data thus eliminlnnp awocorrehion of errors. Vogel 

and &OU (1991) evaluated the maintenance of variance extension techniques for low-flow and 

flood keqyency an+. 

According to Vogel and Stedmger (1985), the relanonship between the flows ar the rwo sires is 

independent of the mon& in which the flows occurred, and the MOVE procedures are 
inwided for situations where the nvo ~neamflow records do not differ substantiaiy in terms 

of distribution shape, serial corzelation, or seasonality. If the relationship b e e n  flows at the 

two sites d b i t s  seasonal differences, one could develop cii£ferent models for flows occUmng 

in different mon& wittiin distinct seasons. 



The regrasion technique cannot be q e a e d  to provide a record d the appropriate 

variability Qitsch, 1982; Ailey and Burns, 1983). A regression technique which incorporates an 

independent random noise component cuinot be expected to provide records wirh the 

appropriate distriburion shape or serd correlation QILwh, 1982). Furtherxmre there is no 

single unique record obtained h m  a regression mode1 which incorporates added noise. 

Maintenance of variance procedures have been shown to d u c e  bias in the esthareci mean 

and variance (Hkh, 1982; Alley and Burns, 1983; Raman a al, 1995). 

Pauem recognition invohrrs idenafying features in an object and relaring simikr features of 

one object to 0 t h  objects, in order to detemrine th& similarity. Pattern recognition concepts 

are used in a Mnay of applications, and are not necessady resrricted to the classical 

applications describecl in Chapter 1. Biquan et al. (1986) used p e m  recognition techniques 

to predict the occurrence of large earthcpkes based on intermediate earthqyake achvity and 

sunspot o c m c e s .  This and+ detennined that occurrences of large earthqukes does not 

correiare well with nuispot activity, but are related to accelerarion or deceleration of the 

rotation of the earrh. Henley and Hand (1996) utilLed "nearest neighbor" techniques for 

iissessing consumer credit Nk in detemiining creditworthiness of consumer loan applicants. 

The nearest neighbor method classifieci the applicants into good or bad risk groups. The 

Eudidean distance menic was utilized in the deasion function for classification. 

Karlsson and Yakowin (1987) utilïzed nearest neighbor methods for nonparametic rainfall- 

ninoff forecasting. Karlsson and YakOFPie state that the nearest neighbor method has 

powerful theoretical properties, but at the same Bme is disarming in Rs sirnplicity and 

intuitiveness. They concluded that the nearest neighbor method is well suited to large-sample 

rime series problems, and the method L applicable to WI-UIUY any decision problem. 

Andrews (1972) presents d e m a t i d  techniques uced in pattern recognition. Andrews aates 

that the aiterion for selecting appropriate dimensions or features of the data is one of 

maintainhg those f e a m  which have the largest variance across the sample means of the 

classes, and presents techniques for rankhg data in order to group pattemi with similar 



Cooper and Ckdie (1980) state rhat parametric flood frequency escimarion methods, as 
well as parametric d o w  record extension techniques make wumptions about the joint 

probability distribution of the flow records used. In flood frequency estimation, serial 

correlation in the d m  used pmvides a complication in that the maximum k & o d  

estimates of the p-eters mus be adjusrd in some way. 

Kawas and Delleur (1975) state the yeady rotation of the eanh around the sun cauxs a yearty 

periodicity in the monthIy tr/dro10gic series, which is manifested in the autocorrelation 

function with a 12 month period. Nonseasonal differencing and seasonal differencing are 

presented as meam of removing the pexiodic component of the t h e  series. Nonseasonal 

differencing is definecl as taking the numerical differences of the first-lag flow values. Seasonal 

differencing takes the differences berween flows separated by 12 months. Th& evaluation 

was based on #on of the autocoITelation funmon. Th& results on 15 watersheds in 

Indiana showed that both seasonal and nonsevonal differencing reduce the pex-iodiâty in the 

dam 

Panu and et al. (1978) present a procedure for extra* information in hydrologie t h e  series, 

bas4 on pattern recognition princip1es. In this case, feature vectors are s y n t h d  based on 

an assumed normal distribution of the elernents of an associated reference vector of a 

parcicular pattern dass. This procedure was used to generate flows for the South 

Sackatchewan River wirh good results. Panu and Unny (1980) extendeci the prwious work of 

1978 for srnd and medium sized catchment areas, namely for the Fraser and Black Rivers. 

The feanw prediction model reproduced various statistics of the historic record adequately. 

Yakowie (1987) utilized nearest neighbor methods for runoff prediction in the Bird Creek 

Ohio watmhed. In his SU+, the feature vector was arbiaar;iy composed of h e e  sequential 

da2y flows and two rainfd observations. The nearness of the feature vectors was calculated 

&g a weighted Eudidean distance (Eudidean disrance is desuibed in Chapter 3). The 

waluation was based on comparing the sum of squareci mon. The %est' number of nearest 

neighbon was searched for in the range of 3 to 6 O*. The results of the nearest neighbor 

model were compared to a determinircc model and a second-order auto regressive moving 



average model (ARMA). The nearrsr neighbor and ARMA models produced comparable 

sum of squved m r ,  while the p l + d y  bved d e t e d c  mode1 performed les 

satisfactody. 

Tou and G o d e z  (1974) provide a comprehemke background to the basic concepts of 

pattern recognition, induding feanire vectors, and pattern space. Tou and G o d e z  suggest 

u t .  distance functions which measure the separation of f e a m  vecton in pattern space. 

Andrews (1972) m e s  thar every human being is a pattern recognition qat, but few people 

can accurately describe the processes they use to classrfy or disceni panems. Tou (1967) states 

that a set of features suitable for pattern recognition reflect certain prope.rties of the pattern 

class, and provides methods of assocLi+ statisncal features of a parti& pattern &, called 

km&, whidi are determineci from the observeci data. 



PARAMEmC AND NONPARAMETRIC STREAMFLOW RECORD EXTENSION 
TECHNIQUES 

3.1 INTRODUCTION TO PARAMEmC RECORD EX'I'ENSION 

Whïle most records are available up to the present, the h e g  year of rnauy records are 

different, resullting in different lengths of avaiIab1e common record period. In this study, the 

extension procedures are developed to address a need to obtain streumdow records which are 

consistent in terms of th& common p e r d  of record. The extension rnethods can be used for 

either forecas&g, for srample, where the index record station was discontinueci, or back- 

casting where the index and base station records do not b e p  in the same year, but may both 

have ava;lahIe record to the presem. The parametric extension methods presented below 

asnime there is a short record station, referred to as the index station, which is to be exrended 

back in t h e  using a longer record, referred to as the base station, for which ciara collection 

began at an e d e r  date than the index station. 

The parametric artension mechods nansfer information from the base station to the index 

station by arploiting the inter-station correlation b e e n  the base and index station. Nomialh/ 

the records £rom the base and index station corne e i k  fiom within the sarne drainage basin 

or from nearby drainage basins having simiiar topography and geology, which r d t  in 

sigriificanr cross cornelarion of streamflow characteristics. 

Thae are deficiencies in uUng a single base station, as stated by Alley and Burns (1983). These 

indude the potend m use other potendy important base stations to fill-in a pomon of 

misshg records in different Mie periodsods The pvamenic mechods describeci herein do not 

remove trend from the data, if it arisu, to be modeled separa* from res idd,  then 

comb'ined at the end ro form the cornpleted series. If a linear trend is not properfy m~deled, 

it can produce autocordation in error terms. Autocorrelation in error terms has been dehed 



to be a depamire h m  the mode1 ;1SSUmpfions. Additio*, autocorrelation in error 

remis can occur if an independent variable has been Ieft out of the analysk. Io the case of 

strearilflow record extension, the information left out is oftentimes the time vvying effecrs, 

such as weather pattems thp affect the relationship between the streamflow records of rwo 

gauges. These effecti usu* cannot be incorporateci because they are often unknown or are 

not quantifiab1e. in chis case Neter a al. (1989) propose a comelation transformation of the 

independent and dependent variabIes, or a first-differencing transformation of the data. Neter 

et aL (1989) note that the fim-differene procedure can overcomct, resulting in negatbe 

autoco~~elation in error terms. 

A Statistical procedure which is insensicive to depamires kom the asnimptions which underlie 

L is d e d  robust There are depamirrs h m  the regression assumpions which will be 

dixussed in the formulation of the pmcedutes. The regression model assumes that the enor 

tenm are norrnalIy disnibutecl and have constant variance, and therefore the dependent 

variable has the sarne c o m t  variance, regardles of the lwel of the independent variable. 

The regession model &O assumes the error terrns are uncorrelared such that the outcome in a 

parti& nial is independent of the outcome of other trials, ie. the obswations are 

independent. 

The extension and common periods of record are dehed  as follows. The log-transford 

base station flows are denoted 5, where i is a tirne index correspondmg to months of record 

The log-aaosformed index station flows are thus denoted )i. The extension period is dehed 

as N, years, and the common e o d  of record is defined as N, years. The observeci and 

extension period events for the two flow sequences are represented in Table 3.1. 



Table 3.1 Ddiaition of Extension and Common Record Periods 

3.2 PARAMETRIC METHODS 

Parambc sueadow record extension techniques, as presented by Hindi (1979; 1982). Alley 

and Burns (1983), Vogel and Stedinger (1985), and Grygier and Stedinger (1989), are based 

upon an equation of the following fozm 

a and p - regression parameters, 

x, = log of base station flow. 

Equation 3.1 can be desuibed as a simple linear regression modeL The model is said to be 

simple in that there is ody a single independent variable. The model is hear in the regression 

parameters because none of the parameters appear as a nonlinear funmon, nrch as an 

exponent. The model is linear in the independent variable because q appears in the finr 

power. Eq-on 3.1 could &O be correcdy referred to as a first order-model 

Assumptior~~ r e h e d  to paramettic extension are that the time series are stationary and seriaiy 

independent. T i  series x, and yi are ais0 assumed to have a bivariate normal distribu8oq 

with puamners q, a,, and p, where A and a i  represent the population mean and 



variance for series q and 4 and a: represent the popdanon mean and variance for y,, 

and the pduct moment conektion coefficient is p. 

The d m  are fim l o g - d o r d  to remove the & m e s s  from the data. Aney and 

Bunis (1983), Beauchamp et al. (1989), and Vogel and Kr01 (1991), &O utilized log- 

transformed flows for the parametric regression models. The parametric techniques are 

conductecl upon the log-uaasfonned data to generate synthetic streadows. The syntbesized 

strezmflows fi are reverse-uansformed to  acbieve the flow value in m3/s. If the estïmated flow 

d u e ,  8, exceeds or falls short of the historical d u e ,  y, ,we define the error term amount, ei, by 

It d be shown that the error temrs, e,, are assumed to have constant variance, d, thus y, are 

assumeci to have the same Mtiance regardles of the level of x,. The error temis are ais0 

assumeci to be uncorrelated, so chat one vaiue of x, has no effect on the error term for any 

0 t h  vaiue of i. Thus, if the error temir are uncorrelated, so are the responses y, (ie. y, is 

assumeci to be a random variable). 

There are departures fiom the model assu~~lptions whm equation 3.1 is used to extend 

streamflow &ta An attempt k made to overcome these departures by taking log-transfomis 

of y,. The success of rhis transformation is a factor upon which the appropnateness and 

ultimately the accepmce or rejection of the parameuic models will be based in Chapter 4. 

Five p a d c  extension models are presented below. Regrwion, (REG), regression plus 

independent noise 0, and three maintenance of variarion extension techniques, 

(MOVE.1, MOVE.2, and MOVE.3). AU five pa&c models ridize the form of equation 

3.1, with the ciifferences in the way in wbch the pxame~ers a and P are developed. REG, 

RPN, MOVE.1 and MOVE.2 were *en by HLxh (1982), and compared to one another 

based on a 2000 t d  Monte Carlo simulation. REG, MOVE.1, and MOVE.2 were utilized by 

A k y  and Burns (1983), in sudamg mon* streadows with or without separate monddy 



relatiomhips. MOVE.3 was introduced by Vogel and Stechger (1985) as an 

impmvemeat to s m a l l  svnple estimates of the mean and variance of the d o w  series. 

A sngle reg-on mode1 developed ushg the data fiom d concurrent flow periods is 

r e f d  to as the noncydic approd .  Separate regression equations developed for each 

month or season is referred to as the cydic approach. The noncydic approach assumes that 

the variab* in flows is nndom rather thui pady cydic and par* randorn (Mey and Burns, 

1983). However, more parameters are reqyred for the cydic approach (by a factor of 12). 

AUey and Burns (1983) present a methodology for selecting which approach to use. Both 

appmaches are evduated in this study. 

Pyret and Cartier (1990) pmvide the following two considerations when attemptïng to fit a 

&on line to t h e  series flows. 

1. If the relationslip between the concurrent hi& flows for the base and index records are 

different, a single straight line may not be appropriate. 

2. If differences exkt between the timing of runoff at the base and index records, a plot of 

concurrent dLcharges will resembIe a loop, which is also not modded wd by a s d e  

regression line. 

Unlization of log-transformeci d m  records wfU& are si& in t ~ n s  of geographic 

Iocarion and which &bit a high cross correlarion is hop& to minLnize the deviarion fiom a 

single straight h e  fit Thus, the mod& are developed in a similar manner to that found in the 

heranm, uMg a Mgle regression h e .  

32.1 Linear Regression (REG) 

The marguial distriburioris of f(qy) are assumeci to be univariate normal and with conditional 

distribution Qhed as &lx) - f(x,y) / f(x) (Viessman et al., 1977). The subsmpt i denoting 

Bme have been omitted anthLi pomons of rhis section for convenience of discussion. 

Vressman et al (1977) also state the conditionai disaibuzion of y, ghen x, has the form 



The disaibution is normal with mean 

and variance 

a: = the error variance. 

Equarion 3.2 expresses the probabiliry dimibution of a value of y for any gven x. E w o n  3.5 

is a linear e q k o n  that -es the hear dependence between y and x. The mean, or 

expected value of y un be caldated using e~uation 3.5 for hed values of x. The hction of 

the variance in the data which is explainecl by the regrasion line is obtained by rearranging 

equarion 3.6 as f o h ~ ~ s  



From equltion 3.5, the dope of the regression line is 

The paramaers a and p in equation 3.1 are found by fi* the regression luie desuibed by 
. .  * 

equarion 3.1 ro the data sudi that the squared error is minimized Re-induchg the tirne 

subsaipt, i, the squared error criterion, Q is given by the squared deviation of y, from its 

apected value 

Point estimators of a and p are those values a and b, respeceVeky, wbich minimize Q for a 

given set of sample obmations (%,y3 (Neter et al., 1989). The point esthmors a and b may 

be found by partdy differentkbg Q with respect to a and P. Takq pamal derivatives, 

using a and b to denote the respective values of a and P, and s d g  to zero, we get 

It can be shown th= the simultaneous solution of eqdons 3.1ûa and 3. lob yieids 

CY; b C x ,  
Q=--- and 



or, h m  w o n  3.8, 

r - the product moment correlation coeffiaent estimated kom the data, 

S, = the sample standard deviation of the y series, 

S, - the sample standard dwiation of the x series, 

n = sample size. 

The above parameten are calculad as follows 

and 

S I = , /  n - 1  



The REG w o n  is found by substhning parameters a, b and r into equation 3.1 

d e r e  the sample StatiShcs are defined in Table 3.2. The nomenclature in Table 3.2 follows 

that of Hirsch (1982), and Mey and Burns (1983), arcept that the extension period, N,, and 

cornmon period, N, are reverseci as arplained previody. No numerical subscript is used with 

hose estimates based on the enrire record period, N, + N, 

If the probability distribution of y is not nonna& disuibuted aromd a mean value for a given 

level of x, then the probabiliry dimibution of P is not normally distributeci Then inferences 

RgarQg the mean d u e  of P becorne less valid, because P is a linear funaion of the 

obsemations of y, and a linear combination of nomaUy distributeci variables is itsdf normalIy 

distribusd 

The regression mode1 relates the means of the probability dimibution of y, for a given q to the 

level of 5 (Neter et aL, 1989). Hi& (1982) states thar m(y) is an unbiased estimate of %, and 

shows that S'(y) is a downward-biased estimate of for p c 1. Stated anotha way, REG, by 

design, has the properry of esrLaating the mean quire well, but provides a record wkh a lower 

variability than thar which would be nor- assoaated with streamflow records. One 

propeq of equation 3.14 is for r = û, REG would provide a zero variance extendeci series. 

Anq. and Bunis (1983) nate "the usual intent of record extension is to produce a time series 

thar possesses statistical propetses k e  those of an a d  record for the statiod"' 



322 Linear Regression Plus Independent Noise (RPN) 

A nomialh/ disnibuted random noise component, e,, wich zero mean and unit variance is added 

to the REG mode1 as follows 



The estimates y, are a weighted combination of the historicd x, M e s  and an unrelatecl nndom 

noise component. The parameter a is a constant used to make the expected sample variance 

of y, equal to its population value, which is the purpose of the noise component in equation 

3.15 (Vogel and Stedinger, 1985). 

Due to the random noise component which is presumably unique, there will be no single 

unique record obtained by using this metfid The latter pro- may make the RPN method 

undesirable for use in management decisions regarding resewoir design and operation. An 

advantage wah RPN, however, is that f provides unbiased estimates of mean and variance of 

the histoncal record @Grs& 1982). RPN has &O proved useful for preseMng interstation 

correlation becween the index and base record (Mey and Burns, 1983). 

32.3 Maintenance of Variance Extension Type 1 - MOW2.1 

The importance of accurateiy emmating hydrologie emremes, as well as reduchg bias kom 

variance estimates served as one purpose to develop the maintenance of variance extension 

WOVE) procedures. The MOVE procedu~es are appropriate to use when the index and base 

record do not differ substanriay. in distribution shape, serial comelauon or sevonality (Vogel 

and Stedinger, 1985). H o m e r s  where the cross correlation is relatively high, it is reasonable 

to assume chat the serial correlation and seasonaliity do not differ substantdy. A deparne 

fiom this assumption would result in a reduaion in the cross condation between the index 

and base records. 

The four sample estimates used in MOVE.1 are the sample means and variances of the x and y 

series emmated kom the common record period, . N, + N,. For MOVE. 1, a and b are 

chosen nich that the sample rnean and variance of the estimates equal the sample mean and 

variance of the index sution during the cornmon period of record. HLxh (1982) States the 

above is accomplished by hdmg a and b such that the following two eqyhries are satisfied 



to which a solution is gben as 

Parret and 6mer (1990) state that the MOVE.1 technique minimizes the areas of the nght 

triangles formed by the horizontal and vertical deviations from the regression he, and that 

MOVE.1 provides an unbiased estbute of low flows. 

A t h e  series y, generated by MOVE.1 usirxg quarion 3.17 for i = 1, . . . , N, + N, wadd 

teproduce the hinorical sample moments mfyJ and S2(yJ (VogeI and Stedinger, 1985). 

MOVE.1 has b e n  found in practice to o v e r d t e  the variance (HÜsch, 1982). Although 

MOVE. 1 results in preservation of the index-record sample estimafes of mean and variance, 

the esUrnateci variance for &on records may be meliable (AUqr and Bums, 1983). However, 

the estimates of mean and variance are asymptoti.aiy unbiased as the common record period 

appmaches d h y  (Mey and B m ,  1983). 

32.4 Maintenance of Vaxiance Extension Type 2 - MOVE.2 

In MOVE.2, p, and 0: are set to the unbiased estimates developed origjnally by Matalas and 

Jacobs (1964), as reported by Huxh (1982), Ailey and Burns (1983), Vogel and Stedinger 

(1985), and Gry%ier et ai. (1989). In con- to MQW. 1, the sample estimates of mean and 

variance for x are based on the e d r e  record, i.e. m(x) and S2(x) are used in place of m(xJ and 

S2(xJ. The sarnple estimates of mean and variance of y are based on the historical y record, 

and more idonnation from the base station record The above estimates also make use of the 

correlation between the base and index station record to improve the estimate of the index 

record's mean and variance (Geer et al., 1989). 



Wh- 

If MOVE.2 were used to generate an entire sequence fi, for i = 1 . .  N, + Nz7 unbiased 

estLnares of the mean and variance of the complete exrended record would be reproduced. 

Mey and Bums (1983) state thar improvement in the esthate of variance using MOVE.2 is 

achieved when the colfelation coeffiaent exceeds about 0.65. 

32.5 Maintaiance of Variance Extension Type 3 - MOVE.3 

In MOVE.3, p, and c$ are set to the conditional meam and variances for the y, series over the 

period of record for which the d o n  f i  is to be dweloped (Stedinger and Vogel, 1985; 

Gxygier et aL, 1989). The conditional mean and variance may be interpreted as the sample size 

waghted difference becween the augmented mean and variance d o r s  and the mean and 

variance of the short record y, series (Gxygier et al., 1989). 

The MOVE.3 equation is 



The MOVE.3 estimates of a' and b are obtained from 

Gq@er et al. (1989) found Me ciifference between MOVE2 and MOVE.3 d e n  estimaùng 

and q fiom a sample of 30-50 yean of a d a b l e  record. Vogel and Steduiger (1985) srare 

that MOVE.2 and MOVE.3 are " n e  indltindable" in the mean squareci emor @ISE) of 

the &tors of the mean and variance of the complaed extendecl record 

3.3 THE CORRELATION COEFFICIENT 

The correlation coeffiaent phys a ngnificant role in the paramettic record extension 

procedures. However, the existence of a high correlation coefficient does not establish a 

causal relâtionsbip between two thne series. A correiation arises through a conment 

variarion in t h e  of the two tirne series. Thus, carnation cannot be deduced by CO-variation. 

Yule (1926) addressed the fact thar quite high correlation may be obtained between thne series 

ro which no plqcàical srplanarion a n  be made. Thus in the present work, the candidate 

streamfiows ued for applying the record extension methods will not ody reqyire a high 

comelation value, but will also be required to be relatively near in terms of location, such that 

the basin characteristics affecting the runoff would not be drasticzUy dissimilar. 

Kendall and Stewan (1961) dehed a &cal relationship ui.iing £rom the existence of a 

joint distribution between a pair of =dom variables. The statkical relationsbip is the basis of 



the pammtric methods developed in Section 3.2. A furiaional relationsbip arises when 

the lwd of one variable is a detenainistic function of one or more other variables. 

If the base station lies either upseevn or downstream h m  the index station, there is likely to 

be a hi& degree of c o d t i o n  baween the records. The functional relationship between the 

inch and base record becornes apparent in that the index record flm wodd be dire& 

caused by the base record flows if the index record is do- of the base record 

However the occurrence of diis situation does not invalidate the parameÛic models since no 

assumpti0~1~ are made of the independence of the two time series king used in the amlysis. 

In fact, as was shown in Section 3 2 1 ,  the method010gy on which the parametic methocis are 

based, relies upon the smength of the conditiod distribution h e e n  y and x. 

One problern assoaated with uriliang the correlation coefficient as a deterniinauon of 

interdependence is that the coefficient is a measure of linear independence, and as such, 

cannot interdependence for more complex forms of interdependence. Thus, if x 

and y are independent, p-O, but the converse does not n e c e s s a  appiy. Therefore, in a strict 

sense, p is reconunenckd by Kendall and Stuart (1961) as an indicator of interdependence 

d e r  dian a meanue of independence, unless we are faced wit& normal or near normal 

variation bemeen x and y. 

Ir is useful at this point to d e  a disunaion between the coeffiaent of determina8on, i, and 
the coeffiaenr of correlation, r. Mathematidy the interrelation is expressed as 

The degree of linear association bmeen x and y is rneasured by 9 as the ratio of the variance 

of the fitted 1Lie to the o v e d  variance. Stated another way, ? is a meanire of the effect of x 

in reducing the variation in y. The range of Z is 



The rangeof ris 

The nonperameaic methods iatroduced in Section 3.4 do not utilize the correlation coeffiaent 

in generatiug d o w  data, although a sigrdicatlt correlation between the index and base 

records is a good indication that the sueamflows exhibit si& pattems (or tirne variation 

charaaer;stics). 

3.4 INTRODUCTION TO NONPARAMETRIC RECORD EXTENSION 

The nonparametric method of strearnflow record extension urilizes pattern recognition 

concepts in order to idenafy flow patterns or analogues wRhin the data This information is 

used to dwelop synthetic flow sequences. As is the case with parametric extension methods, 

the interstation correlation between rwo meams is qloited, but in a different way. T k r e  is 

no requKexnenr to use the sample esrimare of p in the dculation of flow sequences, ather die 

existence of a signifiant p between the base and index station is used to indicate similar 

characteristics of the flow records. 

The parametric methods describeci previoudy urilize data samples to esrimate population 

pvamaers such as mean, variance, correlation, and parameters a and b. Additiody, there are 

cerul i  assumptions regarding the necessity for normaIly distritruted variables. The pattern 

recognition princip1es used herein do not reiy on the data following the f o m  of any parent 

distribution. No parameters are required fiom the samples to estimate population sta8srics. 

However, one premise is that the relationship b e e n  the occunences of flow p a m  is 

distinct, and that those combinations of flow patterns which occur at the same ùme (season, 

for instance) will tend to repeat themselves. Thus the CO-variation eMsang between the base 

and index records is relied upon such rbar the relatîonship between the patterns *ch oc= in 

the base and index record are relatively consistent throughout the durarion of the records. 



A panem is defined by Tou and G o d e z  (1974) as the description of an object. An 

objecr could be a group of data on hydrologie phenomena observed at regula. time intervals, 

such as a series of flows within a d o w  record. The concept of patterns within 

hydrologie phenornena L not new. Panu et aL (1978) srare that sequences of hydmlogic data 

occur in wdl defined Wups which possess the collective properties of the data forming them 

Evidence of recUmng pattans in hydrologie data is provided 1oCayrwkh the high flows &ch 

occur in the Red River each spfing. A hydrologie pattern is a collection of properries 

describing the groups formed within the data 

The act of pawn recognition can be viewed as ~o majSor types: the recognition of concrete 

items and the recognition of abonacc items, as outlined by Tou and Go& (1974). 

Examples of the first type hclude recogniiing pictures, music, and the objecrs a r m d  us, also 

referred co as sensory recognition. Examples of recophbg abstract items indude recogniPng 

an old argument or solution to a problem, &O termed conceptual recogni8on The present 

work involves u d b g  patteni recogniaon concepts associated with the sensory recognition 

application 

The process of sensory recognition involves identification and dassifi&on of pattems in the 

data presented. Tou and G o d e z  d e h e  partem recognition as "categorization of input data 

into identifiable dwes via the Bmaccion of s igdcmt  features or attributes of the data". 

Before the procedure k formalized, some terrninology kà presented. 

A classicd pattern recognition problem, such as optical character recognition or h g e r p ~ t  

analyas, presents three basic problems. The h s t  is the sensing problem, where rhe i n p  data 

measured from the objects are represented in some fashion This problem does not present a 

difficulty in deallig with SVeamnows, since a graph of sneamflows which would be anahped is 

obtained in a table of discrae values correspondmg to equal time intenrals in the fim place. 

In patrem recognition (FR) terms as defmed above, the objects in question correspond to 

pomons of a given flow record A group of flows, or section of the flow record 

corresponding to n measwements of the flow sequence is an object, (where n is les  than the 



number of meammmnts in the flow record). Thus there may be mauy objects within an 

entire record A pattern veetor is a description of an object through a set of observeci 

measwements. A pattern vecror of n mea~urernefzts are uranged in the form of a vector: 

Where a, denotes the measured values, and x denotes the pmem vector. The pattern vector 

x thus con& all the m d  information about the object. If the values wae flow, for 

instance, the pattern vector wodd represent a quantitative description of the un&& 

hydro1logc processes resulting in a basin's rurioff duhg a particular period of time. A 

hydrologie tirne wave form Y defined as a plot of the flow values vernis t h e .  

When pattern vmor measurements are in the form of real numben, it is appropriate to 

consider the pattem vemr as a point in n-dimensional Eudidean space pou and G o d e z ,  

1974). A set of patterns which belong ro the same dass correspond to a collection of points 

scatterd within some region of the meaSUTement space. Gnsider two pattern dasses, o, and 

O* each containing two measurements, x, and x, as show in Figure 3.1. 
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Figure 3.1 Two Hypothetical Pattern Ciasses 

Eadi pattern dass fomis separate sets because the measurernents of x, and x2 are such that 

they do not fall in close vicinity in the rneasuremmt space. 

The second problem lies in extracMg characteristic f m e s  from the pattern vectors. The 

collective properties of an object are represented by features of the data contained widun the 

obiect Ir is desirable to ucilize feames from the data whidi represent die phenomenon and 

whidi c m  be preserved in the genenred record The contents of the feature vector rnay be 

Uther the flow values themselves, or other attributes idenafylng changes in flow, for euample. 

This results in the fomiation of an m-dimensional feame space, where m I n, referred to as a 

kanue vector 

The third ~roblern involves detemiining the detision procedure to detennine the "doseness" 
A 

of a gmm featuse to another. This is a modification from the dassical PR sense, since the 

decision ~roceduns are normally developed for the purpose of iden- and dassifytng an 
L 

unknown objen However, it d be explained in the follo.JPing sections thar the concepts are 



d e d  somewhat to provide a solution to a speafic problem ki the present midy, the 

objects within the flow record Win be das&ed b a d  on examliarion of the HTW. The 

grouping of the feanue vectors will involve determinhg those feature vectors within a same 

pastem dass which are "near" to each other in the pattem space dexribed above, referred to 

u =neuest nelghbors". 

The detemiinaiion of neuest neighbors is accomplished through a var i~y  of d u s t e  

techniques. Flow patterns from the base record during the extension period are compared 

wbh a number of nearest mighbom during the cornmon record period to detemiine points in 

time (time indexes) where sirnilx flow parterns occurrd This information is combined wirh 

the obsennrion rhat the CO-variation between two co&ed streams is, by defiaition, relatively 

consistent throughout the record Flow patterns are extracteci korn the index record 

correspondmg to the identifid &ne indexes, and used to generate synthetic flows during the 

extension period where the base station flow patterns were compared. 

The following semions provide the t h e q  and formulation of the nonparametric extension 

p d u r e  for a general case- The dustering techniques for detenninitlg nearest neighbon are 

&O describeci in detaiL A methodology for daexminkg the appropriate number of nearest 

neighbors is dealt with in the applications section, since it is not centfa ro die theory. 

3.5 NONPARAM.ETRIC EXTENSION METHOD 

35.1 Flow Record Segmentation 

The fmt sep  in fornulaMg the nonparametic rnodel is the segmentation of the base and 

index flow records into pattern dasses. For a given record, let there be N 7, or segments, 

of dam,, corresponding to WIZ mont* flow values. FolloMng the nomendanire used by 

Panu et ai. (1978), each segment, c, i = 1, . . .,N, is divideci into K sections, or seasons. Thus 

we have & = {gF}for k = 1,. . . ,K. The season, k, is constant for all yean of a p a r t i c h  record 

In Chapter 4 a methodology is *en for determining the segmentation of the streadow 

series iuto seasons. The method of segmenthg the flow record essentdy udizes a user-input 



clasdication of the kncnvn records, cornbineci wîth a quantitative decision function to aid 

in the d e f i o n  of the seasons. 

Ln a classical PR problem, the pattern inpiiu are not known a priori, and so the dassificacion 

mmt be deterrnined h m  the sepvation in model space analogous to chu shown in Figure 3.1. 

Then the 'distancew (Section 3.5.3) b e e n  the f e a m  vector and a (possibly arbinary) 

reference vector is cdculated and subseqyentty input hto a decision funaion which 

determines the dus membership of the feature veaor. Thus, one my question the use of the 

clasdication, since the pattem &es are pre-dehed. In the present study, classification is 

done with a different motivation. The feature vectors in a +en clas (season) are compareci 

to d other feature vectors in the tiistorical record of the same da, then ranked according to 

th& -, in terms of a calculaxed distance menic which quant& their separation in 

model space. 

The n m  sep is obtaining the pattern vector, X, from the flow measurements contained wirhin 

5; for each season k, nich that 

where j k the number of flow measurernents, q(r), withh a @en season, and t is the time 

interval. For example, let there be a @en mont& flow record which has mvo seasons, namely 

a dry season and a wet season, and the wet season lasts from June to October. In dis 

exampl~lerusLo&finerhewecsevonask= I,andthed1yseasonask=2. ForkP  1, j =  

(1, ... ,5}, and for k - 2, j = (1, ... ,7}. Note thatthe givendues of j used in this example do 

not correspond with the month's sequence of occurrence from the b e p m q  of the calendar 

year i.e Jan # 1, Feb t 2, etc Thus, xik = q(t) for the discrae rime intemals given. 

3.52 Fpilture Discrimination 
. . .  

The objective of feature selection is to obtain discnminatory properties of the pattern. T h  

process can be very complicated in rnany PR problems, since the mosc important features are 



not eady mprrniiable, or th& measurement is inhibiteci by the costs of obtauiing the data 

One example of the fornier problem occurs in recognition of handwritren features, where the 
. * .  

most important discnnnn;itoly f e a m  are the sequence, direction, and anangement of 

mokes, as well as the interrelationship between them (T'ou and Godez ,  1974). An example 

of the latter probleni occurs in oil prospecting where geographical regions are dassifîed as 

eitfier containing or lacking a quane  of oil suffiaient ro wvnnr explorarion. The driUïng of a 

great nuaabef of wells would pmvide the most ugnificant features to correctly dassify the 

region, but at a prohibitive cost. Thus in many cases explonrion enguieers musc w 

infonmion which conveys f e a m  of the data which convqr less informarion 

A second objective of feature selemon is to d u c e  the h e o n a l h y  of the pattem space for 
. . .  

a Smpler discnminatory adysis. IQ many cases, the given stimulus undergoes signifiant 

"pre-processingm through a higb3r complex series of nodinea. operarions (Andrews, 1974). 

An example would be to convert the hanctwntten features mentioned above into an n- 

dimensional measurement vector through the use of a s&g device, then reducing the 

ri;men.c;onality of the pattern space through vaxious transformations. Ir is a requirement thax 

the attributes be in a 

techniques described 

of the .  

form &ch can be utilized by digrral cornputen, since the mathematical 

here would be ciifficuit for a human to duplicate in a reasonabie arnounr 

In uriliang strpamflow records, we are fortunate that the Strearnflow meaSuTements themsehies 

are effectnely a pre-processed form of data which are suitable for input to a cornputer 

Program. 

The feature vectors are defined by 

fi" - a feature vector, 



j - mevluement index (month), 

k - dw index (season). 

The notation f! and f(iJk are used interchangeably for convenience of presentation wirhli 

certain eqdons. 

One seleaion of the feature vector is the a d  flow d u e s  within the pattern vector such th 

q(t) = rnea~u~ed flow at time t [m3/s]. 

The feature vecton defined by 3.31 contain measurements of the flow patterns representbg 

the un- hydro1ogic process. 

d e r  e 

&: = a feanire vector elernenr, 

q(t) - measwed flow at rime t [m3/s J, 

q(t-1) - measured flow at rime t-i [m3/s]. 
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The semnd feature vector type is aniveci at by a pmcess known as £irst-differencing. First 

differencing is utilid to dis&& the feanve of increasing or decreasing flow in any cwo 

adjacent &ne periods, ie. the dope of the hydrograph. These first-difference feature vectors 

are used in ranking the associateci nearest neighbors, but not the accual flow synthesis. In this 

way the spedc feame is utilized in feature disaiminhon, but a rwene-traflsfonnation is not 

i.sllirea 

A third cype of feature vector dement may contain a transformation on the flows, such as 

standardization 

f ',: = standardid feature vector element, 

f: - a feature vector element, 

m(j) = sample mean of feature vector dernenu j, 

S c )  = saxnple standard devkion of feature vector elements j . 

The standardization uansformation is used in the nonpanmetric mode1 to determine the 

effects of removing the scale dikence in the patterns f e a m  k i n g  compared. Subuacting 

the mean flow removes the sale difference between the flmvs in the transformecl time series. 

Dividing each flow by the standard deviarion of the respective month yields a constant 

variance throughout the tirne series (Kawas and Delleur, 1975). StandardiPng is done on data 

which have not undergone any other transformation. 



Feanve aaraccion is perfomvd on both the base and index records to o h  a set of feature 

vectors for each record. The f e a m  vectors are ranked according to their simhrity. The 

technique is nonparameaic in rbat the data is not describeci in ternis of sample statistics 

representiug moments of a presumed un- distribution, and also in t h  the fearure 

vector si- is determineci in terms of the ordered sequend r& of a calculated distance 

mWc, described belm. 

A 'nearest ne&born is defined as a feawe vector, fy, which has a small distance in relation to 

f ,  within the measwement space. The principal purpose of detexmining nearest neighbon is 

quannfymg the "doseness" of one feature vector to another, within a given pattern dass. This 

is also k n m  as dustering of &ta in PR tams Burn (1993) and Tou and Go& (1974), 

define "dosenessn in terms of the Euclidean distance b e e n  the two arbinary feame 

vectors, f, and fy as follows 

Euclidean Operator 3.34 

and 

Eudidean Distance 

D * , ~ ~  - Euclidean distance between the feature vectors, 

f, and fy = any two m - dimemiod vectors, 

m - the number of elements contained in the feature vectors for a pattern 

h, 
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k - pattetn dus, or season, for 1, ... JC seasons. 

A varhion of equation 3.35 is to define the distance in tnmr of the absolute values of the 

disunce krween the elemmts of the feanire vector. This is known as the nilanharrao", or 

'Cq Block" distance, because of the analogy to the distance one point would be from another 

poiut if th& separation were dehed in terxns of x and y coordinates on a aty block grid 

Manhattan Distance 3.36 

(1973), where the Manhanan distance is divideci by a 

rwo d m  points, referred to as the Lance and Wihrns 

given as 

minire of the gros magnitude of the 

meanirr, D,. The equation for D, is 

LW. Distance 

However, equhon 3.37 is not appropriate to use wifh negative values since s u b n a n d  

cancellarions may occur in the denominvor and possibly give negative distances. A 

modification was considered to 3.37 which would d l  take into account the magnitude of the 

dam points in the form of an interaction t m  

k  I f x j  -fJ 

DMLW..* =C k 
Modifieci L.W. Distance 3.38 

,=[ IfXj . f Y j k 1  
Equarion 3.38 *es more penaity to higher flow differences than equation 3.36. We would 

expect in advance that there are neady as mauy negative kdifference feature vecton as 

positive, since each Ning hydrograph iîmb is accompanied by a falling limb. Thus equation 

3.37 is not appropriate to use since many negaaVe values are likeiy to arise in the first- 

difference feature vectors. 

3 5 



Equation 338 provides a bene& in that if one £lm is substantdy d e r ,  the pmduct in 

the denominaror d demase, and the Ca& distance wJl increase. Howwer, a 

dkadvantage associateci with equaxion 3.38 is as follows. The interaction denominator renn in 

@on 3.38 would iuuease DmW when both flows are V~IY srnall, and decrease Dm,, when 

the flows are large. Equation 3.38 essendly calculates a greater ciinance for flow p e m s  

exhibithg amerne flow events, wbich may tend to reduce the number of feature veaon of 

high flow periods &mg chosen as nearest nexghbon. Hawever, the chance of these 

occurrences depend p d y  on the accuracy of the classification scheme, as  well as the nature of 

the dationship h e e n  the present and past flow patterns, which are not known before hand 

Equation 3.38 was induded in the an+ for interest since it cannot be determineci in 

advance if the above characteristics are fatal to the Lnethod 

The nearest neighbors are selected on the basis of the ranked order (smallest to larges) of the 

distances cal& h e m  each f e a w  vector of the base station record during the 

extension period, i, and each other feature veaor during the common period, p. Thus, 

D&i,p) is cdculated between e v q  f;@ for i = 1, ... ,NI, and every other fXk@ during the 

common pexiod for p = N,,,, ... N, +ND for each season, k. This is repeated for each distance 

meaic from equations 3.35,3.36, and 3.38. 

We can define a seqyend rank manix which contains the index of the year of extension 

record behg generated and the year of the P neares neighbor conesponding to increasing 

dkances, D$(~,P), with rank, r, as follows 

Rk(i,r) = a ma& of year indexes, r, sorted in increasing order of D<(ip), 

r = r d  of the ne- naghbor, r - 1 co~esponds to the lowest D<(i,p), and 

r = 2 corresponding to the next highest etc., for d r = 1, . . .,N2, 



i - ayear during the index period to be artended, i - 1, ... ,NI, 

p, - a year during the common record period, corresponding to the fb Rok as 

defined above, for all p - N ,,,... .,Pi, +Np 

The values of Rk(ji,r) are dustrated in Table 3.3, for a hypothetid example. 

Table 3.3 Ilhistration of Sequential Rank Matrix 

The first column in Table 3.3 shows the year whidi is b+ generated. The distance between 

a feamre vector kom 1943 has been d&ed b e e n  the cozrespondbg feanire vectors of 

wexy other year in the common record periad. The second columu lisrs the year (kom the 

common period) which corresponds to the P lowest calculated disrance rneaic, Dsk($), 

shown in column three. Col- four lists the rank, r, of the h c e  metric f?om d e s r  to 

hgest. The f i r s  three nearesr ne&bors are show% out of a possible number, N,, 

co~espondmg to the number of years in the commm period. Colurnn five contains the values 

of the ank vector, Rk(ii), which con& the value of p,. 

Year i 

1943 

1943 

1943 

Feature vectors of the index record correspondhg to the fmt n nearest neighbors are 

idendid as f&J, r - 1, ... n, for each season k - 1, ... ,K. Each element of the synthetic 

feature vector is calcdated as the average of the corresponduig n nearest feature vector 

el~lents as follows 

Yearp, 

1975 

1990 

1987 

Distance, 
DCC~P) 

201 

350 

398 

Ra& r 

1 

2 

3 

RankMatrkValue, 
RkCy) 

1975 

1990 

1987 



sk#J - synthetic f e n i r e  vector for year i, dement j, season k, 

n - number of nearest ntighbors selected to indude in the synthesis, 

r - rank of the neamst neighbor fa- vectors used in the synthesis, 

fk( ) - feature vector element of the index record during the common perd ,  

Rk&.r) - rank maaM which gives the year of the P nearest neighbor. 

The synthetic fent re  veccors are reverse uansformed, if requed, to obtain individual flow 
dues. Standardized flow values of each element of the syntheric feature vmor is reverse 

transformecl as follows 

sf l jk  (i) = (sfv;' (i) - S( j))+ m( j )  

where 

sfv#) = reverse-nansfomed synthetic feature vector dement, 

SM:@ = transformecl synthetic feame vector element, 

i - year of artension period under synthesis, i = 1,. .. ,NI, 

j = elexnent number, j - 1,. .. fi 

k = pattern dass, k = 1,- ,K, 

SQ = sample standard deviation of feanire vector elemenu j of index record, 

m@ - sarnple mean of feature vector elements j of index record 



There are no other reverse-transformations requVed First ciifference feature vectors are 

ured ody for the nearest neighbor d-on adym. The a d  nearest neighbon are tacai 

h m  the unmformed feature vectors, thus no reverse-transformation is r e q d  for this 

case. 

The complete synthetic feature vector for dass k is comprised of the set of synthetic feature 

vector elements generated for each element j, 

The synthetic featute vectors are now consrn id  into a sequend flow sequence, dien 

appended to the beguirimg of the index record to obtain the extendeci meadow record 

The nonparametric streaxdow record extension is also applied to generating separate monddy 

flow series. For this simple case, the d o d  is run 12 separate times for a given record 

extension process, once for earh month in the year. The dimensionaliry of the feature vectors 

is reduced to j = 1, and neither first differenckg, nor deseasonalization transformations are 

made. 

When the nonparamettic mode1 is used to generate 12 separare flow sequences (one for eadi 

month), each feanue vector element simply conrains the average monddy flow d u e  occurring 

at diar timestep. 

Considering equaxion 3.40, there are other possibilities for the method of generving the 

syntheric flow other rhan the average of the elernents of the nearest neighbon. Su& 

a d j j t s  indude applyiag weight to nearest neighbors which occur doser in r ime to the 

extension period, as suggested by Bum (1993), or applying weighu to individual feature vector 

elements dependmg on how close thqr are to the other elements occuning in the same pattern 

dass. This may prove esp@ useful in the case where first-differencing is used to 

accenruate the importance of different characteristics of the data, such as Ning or fallLig limbs 

of the hydrognph, or low flow periods, for example. These modificatiom are appropriate to 

use when infozmation conceming the streadow records being utilized is known in advance, 
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ie where one has a specific reasorhg ta introduce a bias in deterrnining nearesr 

neighbors. No such prior information is k u m  about the records used in the an* and so 

no such modifications are made to the clusterhg algoticbm 



C h a p t e r  4 

MODEL EVALUATION AND APPLICATION 

Maay mals of the streamflow record extension procedures presented herein are carried out on 

various long-length index records in order to evaluate their capability of reproducing important 

statistid diaractdcs in the extendeci record. The fkst pomon of the index record, 

although known, is iissrunad 'unlmown" on a tempomy &S. The record extension 

procedures are &ed out to extend the index record during the 'unknown" extension period. 

Important characteristics of the hinorical record and generated record during the extension 

period are cornpareci, for 4 model evaluated. Various tests on the generated data and 

model adequacy mevures are &O used to compare and d u a t e  the exremion techniques. 

There are certain data availabiliiry conditions which OCN depending upon the lengths of the 

base and index records, and their crosscorrelation. Extension perds Vary depending on the 

difference in length of the index and base record The wduation is carrieci out for various 

combinaaons of extension period, common period and cross correlation to determine the 

relative model performance for each casee A aial is dehed herein as a record extension 

conducted for a single N,, N, combination. Thus there is a finire number of trials assoaated 

with each run. Table 4.1 îllu~trafes the combinations of extension period, N,, and comrnon 

perd,  ND iwd to waluate the extension techniques. 

Common periods les  than the extension period were not used, since not enough information 

would be induQd in the common record to provide a reluble synthetic flow in rhat case. A 

s;mi.lar reasoning is iwd in flood bequency analym as it is not desirable to estimate, say, a 50 

year event hom a record less than 50 years 10%. A he year inmement was arbiaarity chosen 



as long enough thît different characteristics of the artension methods are rrallcd, but 

short enough to indude ranges where ciifferences in model a d a p q  may occur. 

Table 4.1 Record Periods Used in Evalnation 

The number of niaL for each N, decreases as N, increases, and there are many tnais 

1 

~xtensiob Period, N,, (Y-) 

5 

10 

15 

20 

conducted for each run. 

Gmmon Period, N, (Years) 

5, IO, 15, . . . , to available data 

10, 15,20, . . . , to avaikble data 

15,20,25. . . , to available data 

20,25,30, . . . , to avhble data 

Different correlation between the base and index record are used to &e the effect of 

cross correlation on the merits of an extension technique. Candidate sets of base and index 

record are grouped according to the lwel of cross correlation ahibired The f k t  group 

indudes base and index records with correlation pater than 0.666, and the second group have 

correlation les  than that value. Although there are tests based on sample size which can be 

used to determine if correlation is statishdy sigtuficaflt, the selecrion of a correlation of 0.666 

to divide the adysis is arbwly, since the sample sizes encountered in this & varied 

IFtk. 

The broad correlation categories are due to the nature of the data k g  used in the ana+. 

The actual streamflaw records provide ttne series which exhibit a range of correlation. 

Synttietic dara h a .  spedc statistical features could be used to nui a Monte Carlo 

experiment, kt the purpose of the research was debed as examining the techniques using 

a c d  data Since genenriag a synttietic record using a low correlation is not Edy to yield 

diable results, no further diwion for correlation below 0.666 was u s d  



The d m  record extension techniques are wduated based on a list of aiteria 

described below. The evaluation aiteria indude such considerations as checking for 

p d c  m d  assumptiom, capabzty of repr0dwi.q important statistid chmeristics 

(Section 42.2) of the hlrorical data, and other metria which provide a quantitative way of 

det- which model perfonned better over al l  the aias conduaed, raking all the 

ade9u"cy measum into accounr Other waluarion m& are used to compare! the 

capabilities of the model separateiy for each of the adequacy measures. 

The siafions used in the an+ are introduced, and general statistical properties of the 

Stfeamnow records are diswsed. Subsequenrty the development of the computer models 

used to cmy out the evaluatiom is presenteci Next, the waluation is carried out confomiing 

to the methodolog outltied above The model evaiuarion stage leads to the development of a 

decision d e  which can be used to select an appropriate extension model based on @en input 

data conditions, (Le. extension perîod, common period, and correlation). 

Two candidate sets of base and index records £rom the adab le  data are excluded from the 

development/evduation phase. These same records are used in application phase to provide a 

fair cornparison of the computer models because the data are not used in the mode1 

development The results of the application are compared to the expected behavior based 

upon the deveiopment/evduation phase. The application phase dso provides an opportunity 

to aramine behavior of the techniques separately from the group of data on which th& 

development is b a s d  

4.2 EVALUATION CRITERLA 

Evaluation of the synthetic records generated by the above methodology is compriseci of three 

components. The £Ùst component is tesMg of the residd series to determine normality and 

serial correlaPion of residuals. One assumption associated with the development of the 

paramenic streardow models is the residual series m m  be random, and the joint probabilay 

disnibution musr approxirnare a bivariate n o d  distribution. Therefore, the parametxic 

models are subject to tests on the nor- of the residual series. If the residual series is 



found to be normiy. distrihecf, the parent series used in the Rgression are Wrely 

n o r d  distributeci as w d  The nonpvvneaic rnodels are not subject to the test on 

no+ of residuals because the formulation of the model makes no assumption regvding 

the und* disaibution of the Mie series. Both the pYamemc and nonparametxic 

methods are tested for serial co&on of residuals as a meantre of model adequacy. 

The second dua t ion  aiterion involves detumining the ability of the methods to reproduce 

various statistical proparies of the historical flows, as wd as the cross correlation h e e n  the 

generated and k o r i c  flows, and mean percentage error. The adequacy measures h e d  in 

Section 4.2.2 are compared to target historiai values during the extension period, rather than 

the entire y series so that the resuits of the cornparison do not depend on the lengrh of the 

exremion or common period, since they are evaluated separately for each combimion of 

extaision and common pexiod 

Direct cornparison of the statistical meanires, such as meuis and variances, for instance, would 

be cumbenome for the large amount of trials conducted in this study. Fuxthermore, the target 

value 6.e. the mean, variance, etc. of the hinorical record) changes depending on the record 

king "extended". The deviation of a calcuiated adequacy -&tic £rom a respective target 

value, as a fraction of the target value, is calculatecl to rernove the magnitude of the adequacy 

meanve between comparisons, in order thu the resuits m;n/ be compared directly. The general 

approach is to detexmine h m  o h  a particular model had better capability than all the other 

models in terms of the adeqyacy masures listed in Section 4.2.2. 

The third Wauation criterion d e s  into account each model's combined abrlity in repmducing 

all of the StatiStical adequacy measures, in terms of a calcuiated obje&e function value. The 

objective function value depends upon the individual model's capab* reiaWe to the best and 

worst of the remaining models over all the statistical adequacy measures urilized. The 

objective hc t i on  measure relates each model's adequacy in temis of the percentage of ni& 

for f i c h  the model was "bercer" o v e d  in repmducing the mtistical measures. 



42.1 Normahy and S d  cordation of Errer Terms 

The skewness and h o s i s  of the residd series generated by the WC mahods are 

dculated to test for normality of erron. Depami~s h m  the nomiality assumption causes 

i n d  variance and biu in the panm~er esrimws, fesultiug in less &ab* of the values 

generated by the Rgresgon mode1 (Neter et al., 1989). 

The skewness coeffiaent of a sample x, of size n elements (BURI, 1993), is calculateci by 

n - sample s i i  

3 = log transformed flm value, 

= mean of log ansformed flows. 

The skewness coefficient is n o m d y  distributed with zero arpecred mean and variance, c i  = 

6/n, that is, g, ' N(0, 0,,3. The apected value of g,, E{gJ = O. The n d  hypo&esis and 

alremare hypothesis are: 



As the skewness can be positive or negative, we conduct a two sided test wRh 95% 

confidence limits, or 5% lwei of sigdca~lce, a. We accept Ho if 

- z(la/2)* a,, I g, I +z(la/2)* a,, 

where 

z(la/2) - the area under the standard n o d  curve. 

The kurtosis coeffiaent of a sample x, of size n elements (Burn, 1993), is calcuiated by 

a - h o s i s  coefficient, 

n = sampk size, 

q = log ûansformed flow value, 

K, - mean of log nansformed flows. 

The distribution of g2 is N(3, 24/n), where mgf = 24/n. The n d  hypothesis and altemate 

hypothesis are 

As above, the decision d e  with 95% confidence limiu, is accept H o  if 
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ï h e  s d  correlarion coefficient, r ,  of the adjacent ermr tenns is calculated to test for 

autocorrelarion of residuals. Autocorrelation in the residd ces may indicate that one or 

more independent wiables which have time-ordered effects on the independent variable is 

ommed h m  the model In the case of tirne series, the misgng information is likely the t h e  

dependent nature of the flows b e e n  the two gauges (Beauchamp et al., 1989), or seasonality 

effects (Neter et al., 1989). Models displaying autocorrelation of res idd explain a large 

percemage of the variation in the data, but do not accoum for the autoco~~ehtion that exists 

among the onglial observations, which wodd be addressed by a rime-seriez s.pe of mode1 

(Beaudiunp et id, 1989). 

A test on the kg 1 s d  correlation on the null hypothesis 

is suggested by Dahmen and Hall (1990). The altemate hypothesis is 

The airical region, U, at the 5% level of sigdcance is defined by Dahmen and Hall (1990), 

and Anderson (1942), as 

The log-transfoxmed tirne series were resteci for trend in the mon* series in a rnanner Omilar 

to skewness and kurtosis above, at the 95% coddence LVnR The slope of the regsession ILie 

desaibing average monthly flow versus time was tested to determine if the null hypothesis 

(fhp 'he slope = O) could not be rejected wkh 95% confidence. No flow files were found to 

d b i t  a nend by rhis rnethod of adysk. Note however, that the latter ody tests for linear 

uend, and L not usefd in identifying trends which are not linear. A test which would account 

for nonhear trend L found in the Speamun Rank Correlation G d i a e n t  test. However, this 



tesr is Jso unreliable if half of the time series ciispiys an opposite trend to the other half, 

(k. if the nend is increasing in the fim half, and decreasing in the second h a .  

4 2 2  Statisticaî Mode1 Adequacy M m e s  

The fo l lmiq modelodeladequrv mevures are calculated for each nial conducted. The values 

from the genemted series are CO@ to the hinoncal or target values, for eadi mal 

conduaed: 

a) crosscorreLxion becween the g e n d  and horical flows during the extension 

period. The target value is 1.0, which would correspond ro a perfect correlation 

h e e n  the synthetic and k o r i c a l  flows. The sample product moment correlation 

coefficient h e e n  rwo time series x, and y, is 

r, = crosssomelarion bAween x, and y, time series, 

q = generated flow series [m3/sI, 

n = number of data for which x, and y, have flows 

CL, = sample mean of q s e k ,  

= sample mean of y, series. 



b) lag 1 s d  codation of the generated flows, r,. The target is the historid serial 

codation of y series during &on perd .  The equation for s d  correlation 

@um, 1993), is as fo~ows 

c) variance of the generated flows. The target is the historical variance of y senes during 

extension period; 

d) man  of the generated flows. The t q e t  is the historid mean flow of y series during 

extension period; 

e) flow duration m e  value showing the percentage of tirne a pQmcular flow is e d e d  

or exceeded (Faucher, 1994). The target is the histoncal flow duration m e  value of y 

series during extension pied The flow duration m e  is developed by rankuig the 

monthly flow values and sorthg and assi- ernpLical probabilities according to the 

Weibull fornida @um, 1993) 

p, = probability of excedence for data point i, 

XII, - the rank for data point i 

A flow duration m e  value correspondhg to 0.8 probability of exceedence was 

selected to compare the ab* of the m& in reproducing low flows. 



The flow &on c m  for God's River Below Alkn Rapids k shown in Figure 

4.1 as an ~~ example. 

Figure 4.1 Flow D u d o n  C w e  for Gd's River Below Anen Rapids 

f )  mean percentage m r ,  MPE, (Raman et al., 1995). This adequacy meanire indicares 

the average percenrage clifference between the generated and hisroric flows. The target 

is O- The formula for MPE is 

g) sum of squared deviations between the generated and hisroncal values, aho called nim 

of squared error, SSE. The target is O. The formula for SSE is 



Recail that the variance of each yi is assumed to be the same as each m r  term, e,. 

SSE recognizes that each y, cornes h m  different probabilty distributions with 

diffeteflt means, depending on the level of q. Thus the appropriate estimate of 

squared m r  for the regression mode1 is the deviarion of an observation y, fiom irs 

own estimateci mean, j$ SSE is used extensively in an+ of variance approach to 

regpsion a d j &  (Neter et al., 1989). 

The deviarion of a Statistid adequacy measure h m  the target value, expressed as a hacrion of 

the target value, is dculated for everytrial, t, as 

v, ( t )  - tar, ( t )  
= 

far, ( t ) 

fi(+ the hctional deviation of a calculated statiscic h m  the target value for 

dt, 

v, = value of rhe calculatecl statistic from the generated data, 

tar, = target value for adequacy measure j, defined previousiy. 

There are N, trials conducted for each combination of extension and common period. The 

average fractional M o n  is calculated for adequacy measure, j, as follows 



xj - average W o n a l  deviation of dculated adequacy measure j, for modd i, 

h m  the target value! over d t d s ,  

Nt - the toul number of uials, 

&,(t) - fractiod deviation as before, 

The fiactional deviaxion indicaror is used to cpanafy the differences b e e n  model adequacy, 

as wd as the expected amount of deviation which would occur for a +en rnodei. This 

meanire determines how w d  a parti& model may be expected to reproduce a certain 

statistic based on all the trials conduad 

4 2 3  Objective Function Mode1 Adequacy Measure 

A value which determines each model's o v d  deviation hoxn the @ustonca) target values 

throughout dl the adequacy measures in cornparison to the "best" and 'worst" model is 

cal& for each d. The 'ben" modd for a particular adequacy measure is that model 

which has the minimum deviation kom it's target value. The "wcxst" model for a parricular 

adequacy meanire is that which has the maximum devianon fiom the respe&ve target value. 

The objective for any model is to a& the minimum value of the above rnetric This vdue is 

referred to herein as the objective value, (OBJ) for a parti& modeL Ornircing the d index, 

the formula for ob* OBJ for any parcicular d is 



OBJ, = objective d u e  for modd i, 

i - extension model index, 

fi - deviation of adeqyacy meanire j fiom target value for mode1 i, 

hb" - d e s t  deviation of adequacy meamre j from respective target value, 

4"" - largest devkion of adequacy measure j kom respective target value, 

w, - weight for adequacy mevure j. 

Note that wj - 1 for all ade~uacy memues, j, in t h  study, to indicate that a weight can be 

applied to a particular meanire to iacrease its "importance" in dculation of the objective 

funkon As au example, consider model i = 1 which exhibits variance (measure j) very dose 

to the target (historicaI) vdue, for a parti& trial. The calculateci deviation of adequacy 

mevure j barn the t q e t  value, f,, would be smalL Consider modei i - 2 which &bits a 

larger deviation of adequcy meanire j, f2,, from the same q e t .  Applying wi > 1.0 to f,, wiil 

increase the d u e  of 1 OBJ, - OBJ, 1 over what it would be if w, = 1.0, thus increasing the 

chance that mode1 i - 1 will have the lowest overall objective funmon. 

Over all the mals conducted, the fraction of aiaL in &ch a parcicular model obrains the 

lowest d u e  of OBJi shall be referred to as OBJiB. As a hypothetical example, consider modei i, 

&ch obtains the mintnum value of OBJiy for any arbitraxy combination of N,, N2, ad r,, 6 

Bmes out of a total of 15 extension trials conducted. Let rep ment the number of 

mals model i obtains the minimum objective function value; li rhis case, N,J(-l = 6. NOW, 

OBJi' is calculated as 



In the above ezrample, model i achieved the minimum objective fuaction for 40 percent 

of the trials conducted 

The percentage of time a parti& model has the lowest value of OBJ, for each combination 

of N,, N, and cross condation, r, is wd to determine whîch model is most appropriate for 

different N,, ND r, combinarions. 

4.3 DATA COMPIIATION 

Unregulated (na+ monddy strearQow data fiom W o b a  and Ontario gauging stations 

obtuned h m  WW S w e y  of Canada, a &on of Envkonmpllt Canada is used in this 

snidy. Missing dam was not infillecl to ensure each model's relative success in reproduckg 

statistics is not dependent on the data ~nfilling m R h d  

Long records were gen* selected for model dua t ion  so the sarne record extension could 

be made wirh as many common p.riods from the same record as possible. The location of the 

regions containing the Manitoba gauging srarion used in this study are shown in Figure 4.2. 

The location of the regions containing the Ontario gauging station rwd in this stucty are 

shown in Figure 4.3. 

43.1 Gauging Stations Used in Study 

Table 4.2 and Table 4.3 1Lc the individual flow records used in thL midy for Manitoba and 

Ontario gauging stations, respeaively. 





Orttario 
LIkes and RN- 

Figure 4.3 Major Watershed DMsions in Ontario 



Table 4 2  Manitoba Umeguiated StrcMnow Data 

No. 1 Sution ID. 

1 No. 1 Station ID. 

Station Name 
Begin End I Yur l Y= 

GODS RlVER BELOW ALLEN RAPIDS 1933 1994 
ISLAND LAKE RIVER NEAR ISLAND LAKE 1933 1994 

SWAN R N E R N E A R ~ O N A S  1961 1995 

WATERHEN EUVER NEAR WATERHEN 1953 1995 

RAT RIVER NEAR OTEEtBURNE ( 1912 1995 
RAT RlVER NEAR SUNDOWN 1960 1995 
PUH'EMOUTH RIVER NEARWHIEMOUTH 1957 1995 

MANIGOTAGANIUVERNEAR 
MANIGOTAGAN 

1960 1995 

PIGEON RIVER AT OUTLET OF ROUND LAKE] 1958 1 1995 
POPLAR RIVER AT OUTLET OF WEAVER 
LAKE 1 1968 1 1995 

Table 4 3  Ontario Unregnlated Streamflow Data 

Station Name 
/ Begin / End / T d  / Drainage 1 

Year Year Yean k2) 

OUTLET OF SALVESENI 1965 1 1995 1 31 1 1,530 1 LAKE 
PIGEON FUVER AT MIDDLE FALLS 1 1924 1 1995 1 72 ( 1,550 
NEEBING FUVER NEAR THUNDER BAY 1 1954 1 1995 1 42 1 187 1 
'NoRmMAGNETAwANIUVERNEARBURK'S 1 1916 1 1995 1 80 1 321 1 
FALLS 
NORTH MAGNETAWAN RlVER ABOVE 
PICKEREL LAKE 

1968 1995 28 149 

BLACK RIVER NEAR WASHAGO 1916 1995 80 1,520 
SYDENHAMRrVERNEAROWENSOUND 1949 1995 47 18 1 

, SAUGEEN RIVER NEAR PORT ELGIN 1915 1995 81 3,960 

 SAUGEE EN RNER NEAR WALKERTON 1915 1995 81 2,150 

lmI3RIVERNEAR-G 1948 1995 48 1,030 
S Y D ~ R n m w E A R A L v I N S T O N  1949 1995 47 730 

SKOOTAMA1TARIVERNEARACTINOLITE 1956 1995 40 712 
SOUTH NATION RIVER AT SPENCERVILLE 1949 1995 47 246 



Table 42  md Table 4.3 show there are genedly longer records of data available Lom 

OnMo ga+ stations. Ontario data generaiiy has less gaps than the Manitoba data The 

Ontario data is ind& to supplement the Manitoba data 

The yevs of record where flows were collecd ody duriog the m e r  months, Uniaqr in an 

+ ponion of the record, were discvdgi so the amount of data used in the parametric and 

nonparamettic methods would be as q u a 1  as possible. In the nonpvameaic mo* a feanire 

vector cannot be obtained for a season which does not conmin all the monddy data available 

for cal- all the feature vector elements. Missng chta for the parameaic models does not 

have the effect of errcluding other data which falls wihh the same season. Tables 4.2 and 4.3 

lis the yean of data d y  used in the snihy, not the total number of years of data which may 

contain o d y  pvmaYr completed records. 

4 3 2  Base and Index Stations Used for Evaluation and Vdcation 

The combinations of base and index record stations used for the evalkon of the streadow 

record extension techniques are shown in Table 4.4 and Table 4.5. Table 4.4 shows the base 

and index records used to evduate the techniques under the condition of r, > 0.666. Table 

4.5 shows the base and index records used to evaluate the techniqyes under the condition of 

r, c 0.666. The total number of trials conducted using a given base and index record L 

referred to as a "run" of ni&. A d e  nia is conducted for a givm combination of extension 

and cornmon p e r i d  There are several niaL associafed with each run because the extension 

period and cornmon period Mned a number of Mies for each combination of base and index 

record used Oirain base and index records are omitted fiom the evaluation phase, in order to 

be used as independent data for vdcafion. The number of nias associated wkh eadi "runn, 

as well as which runs were selected for the verification exetcises are also shown in Table 4.4 

and Table 4.5. 



Table 4.4 Base and Index Records Used for Evaluation and Verifkation, r,, > 0.666 

No. BasestaMn hde9Starion r, 
Nt-5 yn n a  used due to mirsing flm. 

1 MAC005 04ACûû7 0.73 1 Used for verifkation phase. 
21 uials. 

9 05PEûl4 05QA002 0.868 
Used for verifiation phW. 

maL 

15 1 02Ec002 1 OîFCûO2 1 0.875 1 48 trials. 1 

13 

14 

16 1 02ECOO2 1 02GA010 1 0.740 1 20 trials. 1 

02EA005 

02EC002 

18 

19 

OZHUX)4 

02FCû01 

02FcoO2 

02I%002 

0.768 1 16 trials. 

0.843 

02GA010 

02-2 

Nt-5 yrs not used due to mirsing flows. 
4g aiaL. 

0.901 

0.695 

20 trials. 

20 t d s .  



Table 4.5 Base and Index Records Used for Evaluation and Verfication, r, < 0.666 

1 17 1 05SAOû2 1 05RA001 1 0.642 1 to missing £lm. Used for verification phase. 

No. 

1 

4.4 MODEL DEVELOPMENT 

Base Station 

05LH05 . 

18 

This section des&bes the development of the sueamflow record extension models used to 

cany out the experimental triais described above. The evaluation of the cornputer models is 

based on the results of the mals. Snearnfluw record extension may be done using one 

rrlarionship for all concurrent monthly flaws or 12 separate relationships for flows from each 

month. The concun-ent mont& flow method is referred to as the non+c approach. 

Using 12 separate relatiomhips for mont& flows is referred to as the cydic approach. A 

trade-off atisrs between greater sample size for statistical parameters versus the 

Indexstation 

05LEûO6 

05QAûO2 

r, 
0.391 

05QE009 

Comment 

12 &. 

0.626 

- - - - 

Used guUls. for veri£i&on phase. 



ab* to presem real month-to-month differences which may eaist in the base d o n  to 

index station relationship (Ailey and Burns, 1983). Havever, no differences exkt in the 

cornpison of the flow se-ces resulting £rom eitfier the cyciic or noncydic approaçhes. 

Both the cydic and noncydic appmaches are kmstigd for each of the pvameaic and 
nonpvlmenic d o n  rnethods. 

The p d c  and nonparameoic models handle missing flow vdues. No syothetic flows are 

generated in time periods correspondmg to missing data in the base station record In the case 

of the p a d c  models and cyclic nonparamettic model, a ungle missing flow value in the 

historial base record d t s  in ody one missing flow value in the generated series. For the 

noncydic nonpanmRnc extension m&, a missing flow withli a parti& season results in 

an incomplae feature vecror of pattern a m i b  for that season. Incomplete feature vectors 

are not associateci with any near neighbon, since a h c e  calculatecl wkh an incomplete 

feanire vector wodd not be consistent wich distances calculated h e e n  complete feature 

vectors. Thus, for the noncydic nonparametic rnodels, the season of flows in the syntbetic 

record comesponding to the incomplete season in the base record is not generated. 

4.4.1 Definition of Record Extension Models 

The nonparametric method is dMded into 3 main types depending on the definition of the 

feature vector. R e d  that the feature vectors were determined based on either standardized 

flows, law flow vdues, or fkt differrncing of monthly flows. Nonpafametric Type 1 ucilizes 

standardid flows for feantre vector elements. Nonparameaic Type 2 utilizes the hktoricd 

mont& d m  data for the feature veccor elexnenu. Nonparametric Type 3 urilizes f irs 

clifferences of consecutive flows for feature vector elements. 

There are 3 Mer subdivisions of eadi type of nonpamnetric model correspondmg to the 

manner in which the nearest neighbors are determiLled. Subtypes A, B, and C correspond to 

n o n e c  models which utilLe Euclidean, Manhattan, and Modified Lance-Wibms 

nearest neighbor distances, respectkely. The streamflmv record extension models are lisred in 

Table 4.6. There are 10 panmeaic and IO n o n p d c  model. The models are nurnbered 

and abbreviated for ease of reference within the dixussions. Model numbers 1 to 14 use the 

6 1 



Table 4.6 Models for S t r e d o w  Record Extension 

I I Description 

1 2. RPN 1 Linear mgression plus independent noise 

1 3. MV1 ( Maintenance of variance extension Type 1 

1 4. MV2 1 Maintenance of variance extension Type 2 

1 5. MV3 1 Maintenance of variance exremion Type 3 

1 6. N P ~ A  1 Nonparametric Type îA- standardized flows, Eudidean distances 

1 7. G 1 B 1 N o n b e t r i c  Type IB - standardized flows, Manhattan distances 

1 8. NPîC 1 Nonparamettic Type IC - standardized flaws, Mod. L a n c e / W i i  distances 1 
1 9. NP2A 1 Nonparamettic Type 2A - mon* nom, Eudidean distances 

1 10. NPZB 1 Nonparametric Type 2B - mont& flows, Manhattan distances 

1 11. NP2C ( Nonparametric Type 2C - mon* flows, M d  LancerPQilliams distances 

1 12. NP3A 1 Nonparametric Type 3A - finr differenchg, Eudidean distances 

1 13. NP3B 1 Nonparametric Type 3B - first differencing, Manha- disrances 

1 14. NP3C ( Nonparametric Type 3C - £ira clifferen&% mod LanceNfiams distances ( 
-- 1 15. REGMI Simple linear regression - cydic appmach 

1 16. RPNM 1 Regression plus independent noise - cydic approach 

1 17. MVLM 1 Maintenance of variance extension Type 1 - cyclic approach 

1 18. MVZM 1 Maintenance of variance extension Type 2 - cydic approach 

1 19. MV3M 1 Maintenance of variance extension Type 3 - M c  approach 

1 20. NPM 1 Nonparametric - monthly flows, cyclic approach 



noncydc approadi and models 15 to 20 use the cydic appmach. The abbrevkions for 

n d e I s  15 to 20 in Table 4.4 end wkh an "M" to ugrilfy they utilire 12 separare rnonthly 

relationships (cydc approach). 

4-42 Definition of Séasons 

The pvtem recognition process involves segmenthg the flow record hto pattern dasses to 

obttin feature vectors by the various methodr describecl in Ch;ipter 3. The feature vectors are 

duscered into nearest neighbors, *ch are subsequendy used to generate synthetic £lm. The 

rnethodoIogy for panitioning the streandcnv data h o  pattern classes is d d b e d  in rhL 

HydmIogic data corrrsponding to mont& measurements occur in wddefined groups (Panu 

et aL, 1978). Mont& flow sequences withli a year are divided into panan classes, or groups, 

co~~esponding to seasons. This dows different pomons of the flow record for a parti& 

yeu to be associared with a separate set of nearesr netghbors, enniring that the selemon of 

n e a m  neighbors is not biased towvds the patterns definecl by any other season wirh the same 

year or other years. Nearest neighbors associated wnh a feawe vector obtained from the flows 

during a gÏven season are independent of the nearest neighbors chosen for all  other feature 

Panu et id. (1978) recomrnend the division of seasons based upon an examination of the tirne 

series of flows. The year k divided h o  seasons based upon an exarnination of rhe mean 

mont& hydrograph and systernafidy determining f i c h  sepenration best represents the 

historid pattern. The mettiod presented herein is flexible and provides an opportuniry for the 

hydrologist to urilize paxticular kndedge of the record's drainage basin or other factors. In 

the case of the present midy, an i n d e  knowledge of the circumstances relared to the 

parti& flow records is not available. The darsification is based upon both rev iw of die 

monddy i q d m p p k  as well as a quantitative decision funaion which relates the ab* of the 

nonpanmeflc technip to find si& patterns in the historic record usïng the chosen 

division of seasons. 



The procedure for the division of seasons b e p  by determiring the number of seasons 

to dMde the year into. The a v q e  monthly hphgmphs are shown in Appendix A Panu et 

al. (1978) divided the flow year into two seasons corresponding to 6 month secrions b e g h q  

in November and May, respectively, for the South Saskatchewan River. The group of montMy 

flows gen* higha-than average is known as the w e ~  season, and the remaining lower flows 

are k n m  as the dry season. An examkmîon of the average montMy trydrographs show that 

a division of ~o seasons is also appropriate for the s t r e a d h s  used in the present study, but 

the beginning and lengths of the seasons of different flow records Vary h m  record to record. 

An iMial firsc mess of the mondu corresponding to the beginning and end of the dry and wet 

seasons is made. Note that the end of the dry season is equnralent to the beguinuig of the wet 

season, and the end of the wet season is the beghhg  of the chy season. The beginning and 

end of a particular season need not necessady fall within the same year. The flow record is 

definecl as both the index and base station The extension period is defined as the fint third of 

the historie record The nonparametric rnodel is udized to generate synthetic flows for the 

extension period, using the i& guess of seasons using the same flow record as the base and 

index station. The d t i n g  SSE fiom the initia guess of seasons is recorded. The duration of 

the wet semon is chen varied by a small amount (nomdy one month). The nonparamenic 

model is used agaLi to generate the same sequence of flows, but this t h e  with the new 

seasons. The SSE £rom the subsequent nin is again recorded. This process is repeated wSb 

different plausible season lengths. The division of seasons which min;m;7ed SSE indicates 

increased nonparametric model performance, in temis of inaeased abiity of the 

nonparametic models to recognLe the flow patterns. Therefore, the division of seasons which 
. .  . 

nurumcd SSE was used to segment the flow record h o  paxrem classes. 

The d o n  period is taken as one rhird of the total record to snike a balance between the 

amount of common record available to recognize simikr feature vectors, and the confidence 

pked on the results of the e k o n  The chosen arcension period is a factor in the level of 

SSE. The le@ of common p i o d  affects the probabihty of a nmilar pattern being unl;;led as 

a nevest neighbor, which dkcdy impacts which seasonal divison becornes the optimum, and 

dtimady the overd model performance. 



The Bow records were d a d e d  into th& respective sevons at an eady stage of the 

model development d e n  the nearest neigtibor optimizacion procedure was not yet developed- 

As such the =on of seasons wu based on f e n i r e  vectors using oniy nandardized feature 

vector eleme~lts and 3 neamst neighbors. The nonpar"netric model performance has likety not 

been impaLed by the division of seasons using ody 3 nearest neighbors and standardized 

feature vector elements because the method gen+ d t e d  in seasons consistent with that 

determineci by visual d o n  of the mean monthiy hydrognphs. However, an ara for 

funire work fies in refhmg the mahodology for segmentation of the y& flows into seasons. 

Note thu the ?bow methodoIogy is not a replacement for judgement in detemiining the 

seasons based on exambkg the average monthky hydropph and urilrnng kndedge of 

indiviM circumstances. Rather, rhL is a tw l  for confirming a prrliminvy selection or to aid 
. - .  

in the selection where the discnmuiatiorx is undear from visual examination of the hydrograph. 

Table 4.7 shows the seasonal flow record segmentation of the records used in this study. Ody 

the months corre~p~nding to the start and end of the wet season for each year are shown, 

since the beginnuig and end of the dry season is @lied. 

4.43 Optimum Number of Nearest Ncighbors 

For each trial conducted, the number of nearest neighbon, n, is increased from 1 to the 

maximum dowable w8h the given &ta @nid by the number of years of common record), 

and the SSE is denoted SSE(n). The optimum numba of nearest ne&bors, n,, is thax n 

&ch corresponds to the minhum SSE, ie. SSE(n - q,J. Each nonpatametric model 

deremines n, for wery trail conducted, &ce the optimum number of neasest neighbors is 

not nec+ equal for all nonparamettic models. The results are used to recommend the 

appropriate nurnber of nearest neighbors ro use for a +en N,, N ,  r, combination. 

The average number of nearest neighbon u&zed by each type of nonparametric model for 

various comb' ions  of extension period and common perîod were calculatecl based on al1 the 

evhttion trials conducted. The standard deviation of the optimum nlunbeT of neares 

n+bon selected by the nonpPnmcflc models was also cal& The results for r, > 
0.666 are shown in Tables B-1 to B4,  and the renilu for r, < a666 are shown in Tables B-5 
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to B-8, for all values of N,. Tables B- 1 to B-8 show that the optimum nurnber of nearest 

ne&bors chosen by the nonparametric models, in genai, dws not v q  appreciably as the 

extension period i n d  AddÏtionaiiy, die variability of the number of nearest neighbors 

selected i n ~ e a ~ e s  as N, in& but also did not wy appreciabk with the extension period 

The variation of n, is greater for r, < 0.666 t h  for r, >Q666. 

Tables 4.8 and 4.9 show the number of ne- neighbors utilized by each mode1 averaged over 

111 artension perîods. R d  the extension period varied from 5 to 20 years, in 5 year 

increments. For r, > 0.666, the average number of n e a m  neighbon increases from a 

minimum of 2 for a 5 year common period to a mm;mitm of 21 corresponding to a 75 year 

common period For r, < 0.666, the average number of neuest neighbors inaeases £rom a 

minimum of 3 for a 5 year common period to a r n a x h m  of 48 correspondhg to a 75 year 

common period. In general, the number of nearest neighbors chosen by the nonparametric 

models is l e s  with higher cross correlarion between the base and index stauon. Addmonidy, 

the spread b e e n  the nurnber of nearesr neighbors chosen by the nonparametric models is 

shown to be quite narrow for a common period less rhan 40 years, while the number of 

neighbors chosen by the models diverges quite rapidly at common periods greater rhan 

approxhxmely 40 years. 



Table 4.7 Division of Seasons 

No. Staion ID. End of Wet 
Sevon 

StWon Name 

GODS RIVER BELOW ALLEN RAPIDS 
ISLANDLAKERIVERNEAR1SLANDLAK.E 
S W A N R l v E R ~ M i N r r O N A S  
WATERHEN RNER NEAR WATERHEN 
SHEU RIVERNEAR INGLIS 
LITTLE SASKATCHEWAN RIVER NEAR RIVERS 

St;m of Wet 
Season 

,NORTH MAGNETAWAN RIVER ABOVE PICKEREL 
LAKE 

l u e  

b e  

APd 
May 
+ i l  
+ri1 

- - 

November 
Novernber 

May 
Decemba 

J U b  

bb 

Md 

J* 
MW 
May 
June 

J* 
Septernber 

Juty 
h e  

May 
Jufy 
J* 
Ju3. 

June 

June 

May 
'3 

ROSEAU RIVER NEAR DOMINION CriY 
RAT RIVER NEAR -URNE 
RAT-NEAR SUNDOWN 
W H r r E M o m ~ N E A R ~ O H  
MAMGOTAGAN EUVER NEAR MANIGOTAGAN 
PIGEON RIVER AT OUTLET OF ROUND LAKE 
POPLAR RIVER AT OUTLET OF WEAVER LAKE 
BROKENHEAD RNER NEAR BEAUSEJOUR 
FISHER RIVER NEAR DALLAS 
TURTLE RIVERNEARMINE CENTRE 
ENGLISH RIVEEt AT UMFREVIILLE 
 GEO ON RIVER AT OUTLFT OF SALVESEN 
LAKE 
PIGEON RIVER AT MIDDLE FALLS 
'NEEBING N I E R  NEARTHUNDER BAY 
NORTH MAGNET'AWAN RïVER NEAR BURK'S 
FAUS 

Mnl  ! 

+ni 
&d 
ha  
Apa 
M y  
June 

M y  
APd 
b d  
May 
May 
May 

APd 
4 r i l  
Apd 

APd 
b d  
May 
b d  
April 

BLACK RNER NEAR WASHAGO Mardi 
SYDENHAMXUVERNEAROWENSOUM) 
SAUGEEN RIVER NEAR PORT ELGIN 
SAUGEEN RIVER NEAR WALKERTON 
MTHRTVERNEARCANNING 
SYDENHAM RNER NEAR ALVINSTON 

March 
March 
Mudi 
March 
Mardi 

SKOOTAMATTA RIVER NEAR ACI?NOLITE 
SOUTH NATION RIVER AT SPENCERVILLE 

March 
March 

May 



Table 4.8 Average Number of Nearest Neighbors for Nonparametric Models, 

r, > 0.666 

The number of nearest neighbors used by the nonparametric models averaged over al1 uiais 

and for alI extension Pei;& for r, > 0.666 and r, < 0.666 are shown in Figure 4.4 and Figure 

4.5, respectively. Figure 4.4 and Figure 4.5 show that the number of nearest neighbon, %t, 

used by all models is relatively d o m  und the common period d e s  approximately 40 

yean. In F i  4.4, n,.+ varies h m  an average of 58 to 17 percent of N, for r, > 0666. In 
Figure 4.5, n, varies from an average of 72 to 37 percent of NZ for r, < 0.666. Thus the 

number of nearest nughbors utilized is greater for small r,. Also the rate at which the nearest 

neighbors increases with N, D greater for r, < 0.666. 



Table 4.9 Average Number of Nearest Neighbors for Nonparamehic Models, 

NPlC 4 - 7 - 1 0  11 13 5 20 25 21 23 19 24 21 10 
NP2A 3 6 9 10 12 16 20 25 30 36 36 36 36 41 45 
NP2B 3 7 9 1 1  13 16 20 27 31 34 35 36 34 37 40 
m 2 C  3 7 9 12 12 15 19 24 29 36 32 33 36 34 41 
NP3A 4 6 8 10 12 14 16 19 19 25 23 25 29 24 13 
NP3B 4 6 8 10 12 14 17 21 26 3 1  27 29 30 24 12 
NP3C 4 8 11 13 15 17 17 16 21 23 23 27 25 9 - 9 
NPM 3 6 8 10 12 15 18 21 27 34 28 24 20 20 20 
Mean 3.6 6.5 8.9 10.7 12.6 15.3 18.4 22.2 27.1 31.1 30.3 29.9 30.7 28.4 27.4 

Rounded 4 7 9 11 13 15 18 22 27 31 30 30 31 28 27 
I Stdev 10.510.71 1.01 1.1 I 1.0 I 0.9 I 1.4 13.4 14.4 15.9 16.3 [ 6.0 16.1 110.31 16.01 

Figure 4.4 Average Optimum Number of Nearest Neighbors, noF, r, >Oh66 



Figure 4.5 Average Optimum Number of Nearesr Neighbors, n, r, <Oh66 

4 5  NALUATION OF EXTENSION TECHNIQUES 

In accordance with Section 3.2, log nansforms of the data are used in the parametrk models to 

help comect the skewness in the disnibution of enor terms, unequal error variances and non- 

lin* of regression function. Tb rype of transformation was used by Hirxh (1982), AUey 

and Burns (1983), Beauchamp et aL (1989), and Parrett and Gmer (1990). From the log 

donnar ion  of the data, it follows that the sample mean of the extended record of the 

logarihns is an unbiased estimate of the mean of the logarithms, but the sample mean of the 

extended record of flows is not an unblasecl esemate of the mean of the flows. HPxh (1982) 

states that the above obsemation is not detrimenta 10 the techniques, because the parame& 

f e c h n i v  reproduce cumuhe distribution functions (CDF's) which are dose 

approximations to the historical CDF's, partidady in the rails. A log transformarion has less 

effect on the raik of the di&biltions. 



4 5.1 Number of Trials Evduated 

A breakdown of the number of mals conducteci for the c o m b ~ o n s  of extension 
and common period, N, for r, > 0.666 and r, < 0.666 are given in Table 4.10 and 

RspeccBr4r- 

For r, > 0.666, there are a total of 492 trials, of whkh 61 trials are used for mode1 

vdcation In the case of r, < 0.666, there are a total of 296 aials, of which 20 are used for 

model verification. There are cornparatively fewer d involvlig common periods greater 

dian 30 to 40 years, due to a general lack of dara records exhibitkg very long flow records. 

Furthennore, as the extension period increases, the number of maL with longer common 

period decreases because the minimum common period L equal to the extension period. 

Table 4.10 Number of Evaiuation Trials, r, > 0.666 

Total 
Trias 

21 
42 
63 
78 
67 
51 
35 
25 
20 
20 
20 
20 
15 
10 
5 

492 

Nl = 15 yean 

O 
O 
21 
21 
15 
10 
5 
5 
5 
5 
5 
5 
5 
O 
O 

102 

Nl = 10 yean 

O 
21 
21 
21 
21 
15 
10 
5 
5 
5 
5 
5 
5 
5 
O 

144 

Y 
Years 
5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 

Total 

NI = 20 years 

O 
O 
O 
15 
10 
5 
5 
5 
5 
5 
5 
5 
O 
O 
O 
60 

NI - 5 years 

21 
21 
21 
21 
21 
21 
15 
10 
5 
5 
5 
5 
5 
5 
5 

186 



Table 4.11 Nrrmber of Evaluation Trials, r,, < 0.666 

1 N2 1 NI-5yeus ) NI- lOyears 1 NI- 15yeus 1 NI-ZOyears [ Tod 
Years 
5 

There are fewer nials o v d  for r, < 0.666 in compatLon to r, >O.&%, because the selecrion 

of candidate base and inQx records required that the two streams chosen be within a 

reasonable pro* of each other. In the case of r, > 0.666, dJs condition is e a d y  met. 

However, in the case of r, < 0.666, there are many instances where a moderate cross 

correlation between two flow records can be rralled, but the gauge locations are separated by 

greater dian 4 or 5 watersheds. Genedy, the cross correlation was found to decrease quite 

rapidly when the associared watersheds were separated by greater than 2 or 3 subatchmenu. 

The number of candihe streamflow records displaymg a low r, ~0 .666 wMe simultaneously 

re&nÏng within 4 subcatchment proximky was low. Howwer, no mict decision rule was 

used to select the candidate base and extension records in remis of plyical proximity, but the 

candidate records genedy were reS;red to be be 2 or 3 subcathent proMmRy. 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 - 
60 
65 
70 
75 

Total 

15 
15 
15 
15 
13 
13 
8 
7 
3 
3 
3 
3 
3 
1 
1 
118 

O 
15 
15 
13 
13 
8 
7 
3 
3 
3 
3 
3 
1 
1 
O 
88 

O 
O 
13 
13 
8 
7 
3 
3 
3 
3 
3 
1 
1 
O 
O 
58 

O 
Trias 
15 

O 
O 
8 
7 
3 
3 
3 
3 
3 
1 
1 
O 
O 
O 
32 

30 
43 
49 
41 
31 
21 
16 
12 
12 
10 
8 
5 
2 
1 

296 



4 5 2  Tests for Skewness, Kurt;osis, and S e d  Condation of Residuals 

The skewness and kurtosis of residds was tested on the log-transformeci synthetic rime series 

& e n d  by the puuneûic m& to determine if the parent series were nomilny distributecl. 

The tests are conducteci on the synthetic series before reverse transformation to determine if 

the log-transformed parent time series used in the pvameaic models conform to the modei 

assumptiom. The sexial cordation test t done on the reverse d o r m e d  synthetic flow 

values. If the parent series are nomially clistributed, the residuals generated fiorn the extension 

d be nomdy disaibuteci 

A u r o c o d o n  of residuals is an indicator of model inadequacy which may arise due to the 

model not accounting for rime varying factors. The terms autocomlation and serial 

correlation are used intedangeably. III linear regraion, autocorrelation of residuals increases 

the uncertaizlty associatecl with the estimatecl parameters, the mean square error may 

underrstimare the variance of the error temis, and the confidence i n t d  and tests on the 

model parameters are no longer snicdy applicable (Neter et al., 1989). Howevery die estimateci 

parameters a and b (Equarions 3.1 1 and 3.12) are still unbLsed esthton, but there is 

incfea~ed unc&ty in th& esrimation ( B q ,  1992). Table 4.12 and Table 4.13 show the 
average skewness, kurtosis and serial conelarion of residuals obtained for al l  the t d  

c o n d u d  for the parametlic and nonparamenic modelsy for r, > 0.666 and r, < Q666, 

respectively. The confidence limits are shovm in the columns entirted *%Oh. 



Table 4.12 Average Test Parameters on Residuai Series, r, > 0.666 



The nonparametric modeL are not subject to skewness and kurrosk tests, as qlained 

p r e v i ~ d y ~  Thus skewness and kurtosis values are not reported for the nonpamxmic modeis. 

The values given in Table 4.12 and Table 4.13 are average values O btained from a large number 

of &ls. The standad erros of prediction are shown in italics below the average value. The 

&mess, kurrosis and serial correlation, abbreviated SKEW, KURT, and SER, respecUwiy, 

are located in b e e n  the associateci average 95% confidence limits, for all the mals 

c o n d d  The coddence intervas depend upon the lwel of sipficance of the test as well 

as the ~arnp1e sLe. The level of sign&cance is constant for all the &, but the sarnple size 

varies quite a bit Stricdy spealsng, the confidence limits shown have no spedc meaning in 

association wÏth the averaged test Statistics k u s e  of different sample s k  used in obtaining 

bth the test Statistics and the confidence limia. However, one may note thax the standard 

enor usoaated wish the coddence limBs is quite small, indicating the confidence LMN did 

not vary to a gmat errtent over the range of sample sizes encountered. Thus the average 

confidence Ilnits, with the associated standard error, provide a general indicaion as ro the 

range of confidence limia encountered during all the tri&. Sirmlarfy, the average test sraristic 

values, dong with the associatecl standard ckviation, provides a general indication as to the 

range of skewness, h o s i s  and serial correlation of residuais encountered over all the aias 

c o r l d u d  

Referring to Table 4.12 and Table 4.13, the test statistics displved large variance. This 

indiaes that the values of the tes statistics obtaiDed from the trials were dispersed gready 

about the mean value. The standard dwiarion of the skewness is as mu& as 5 times as great as 

the mean value, but the mean value over ail the mals falls within the average 95% confidence 

limits. Thus, wen though the average test statistic falL within the confidence limits, one 

would expect a large pmion of the rrials ro 'fail" rhe test, ie. the null hypothesis that the 

skewness of the residds is zero would be rejected, supporthg the condusion that the 

residuas are not nomdy  dihbuted. SunhAy, the standard deviarion of the kurtosis of 

residual series varied between approximately 30 and 80 percent, and diat of the seriai 

cordation between 40 and 120 percent of the average. 



Table 4.13 Average Test Parameters on Residaal Series, r, < 0.666 

MODEL- -95% SKFoo +95% -95% KURT +95% 
REG -0.48 027 0.48 2.03 326 3.97 
6: 0.12 O. 62 0.12 O. 24 2.16 O. 24 

1 RPN 1 -0.48 / 0.14 1 0.48 1 2.03 1 3.22 1 3.97 

Cr 

REGM -0.48 0.14 0.48 2.03 3.83 3.97 
a O. 12 O. 6 O. 12 O. 24 2.28 O. 24 

RPNM -0.48 0.09 0.48 1 2.03 3.62 3.97 

i -95% SER +95% 
-0.21 0.35 O. 19 
O. 05 O. 15 0. 04 

, -0.21 028 0.19 
O. 05 0.15 O. 04 
-0.21 0.21 o. 19 
O. 05 0.16 0.04 
-0.21 0.2 1 0.19 
0.03 O. 16 O. 04 
-0.21 0.21 o. 19 



nie nerage skewness of residuas increased, for all m&, d e n  r, deaeasd The 

average h o s i s  of teSiduais decreased d e n  r, decreased for all models except MVZM and 

MV3U In all cases, the average serial correIation of the residual series increased with 

decreased cross correlation between the base and index records. 

Genedy, the average serial correlation obtained over all trials fell within the average 95% 

confidence Iimbs, excep for NP3& Mth was mugrn?yr outside the confidence Ilnirs. 

Howwer, gken the bigh standard deviation of the seriai correlation of errors, we would again 

expeçc a large percentage of trials to "fail" the test, nipporclig the condusion that the m& 

may not e x p h  tixne-ordd effecy such as potend trends in the he series, or time 

varying relationships between the base and index record 

Ehtograms are frequendy wd in StatiStical an* to graphically nimmarle the nature of the 

data H k v  of the skewness, kurtosis and seriai comelation were consmicred in order to 

vÛuay. aramine the empirid fkquency distributions of the parameter values. The procedure 

for obtaiaing the kograms follows. The dam is grouped into dass i n t d  of 0.1 width (no 

LI*). The choie of dass interval is determineci somewhat arbitmdy, involvlig judgernenr to 

balance cornpurational complexity and the desire to provide an adequate picnire of the 

distribution Small sarnples may &O affect the size of dass intend The dass fieqyncy is 

determinecl as the number of data occming wichin a particular dau intend. The proportion 

of the set of observations in each dass is obtained by dividing each dass frequency by the total 

number of observations. 

From Table 4.12, REGM bas fairly high average & m e s s  and kurtosis at 0.11, and 4.03, 

respectively. The standard deviarions of the s k m e s s  and kuxtosis are 0.64 and 1.56, 

RspecWely, indidiaring a large spread about the mean value. The & m e s s  histogram for 

REGM is shown in Figure 4.6. The kurtosis histogram for REGM is shown in Figure 4.7. 



Figure 4.6 Histogram of Skewness of REGM Residual Series, r, 20.666 

2 O." +-1 

Figure 4.7 Histograrn of Kurtosk of REGM Residd Series, r, >Oh66 



Figure 4.6 shows the disuibution of skewness slightly skewed to the lefi, faxorhg higher 

values of skewness and a large variab*. A Aewness of 0.45 has the highest relative 

hquency of 0.096. Thus, the &mess  histogram is sbifted to the nght of the expected value 

under normaliry. The area witùin the bars represents the probability of the skewness 

occurring, ie. P(gJ. R O M  half the area on Figure 4.6 f& to the left and right of the 

'average confidence limits" describeci previo+, therefore one would estimale approrrLnately 

50 percent of the &ls involvhg REGM would fail the skewness test. Figure 4.7 shows the 

dkdmion of kurtosis is also skewed to the lefi, wbh a split into two peak fiequenues 

centered around appmKimately 3.2 and 4.3. A large d h t y  of kunosis is &O disp1ayed 

The lefr peak of the histogram occurs at 3.2 kurtosis with a relative hequency of 0.083. The 

nghr h i s t o p  peak ofcurs at 4.3 kurtosis &O wah a relvive frequency of 0.083. Given the 

occurrence of the nght peak outside the "average confidence limits" for this stanstic, one 

wodd expect neady half of the trials for REGM to f d  the h o s i s  test. 

Figure 4.8 shows the histoyam of serial cordation of the residd series, r,, for REG, which 

obtained an average r, - O Z .  The standard deviarion of r, was O. 14, indicating h& variablliry. 

Figure 4.8 shows the distribution of s d  correlation has a slight positive skewness, centered 

around r, = 025 wirh a correspondhg relative kqueency of 0.317. The five ban on the right 

side of the histogram fall oinside the average confidence Ilnirs, leading one to expect a hi& 

percenfage of aias will result in rejection of the null hypothesis char the residual series is not 



Figure 4.8 Histogram of Serial Grrelation of REG Residd Series, r, >0.666 

From Table 4.13, MV1 has high skewness, M V M  has high kurtosis and NPM has high r,, at 

0.35.4.18, and 0.25, respe&ely. The standard deviatiom of the skewness, kutosis and r, are 

0.76, 1.69 and 0.15, respectively, kdicating large variability. The histogram of skewness of the 

residd series for MV1 is shown in Figure 4.9. S d a d y ,  the corresponding h o s i s  and serial 

correlation histograms are shown in Figure 4.10 and Figure 4.11 for MVlM and NPM, 

=pecW+- 

The histogram in Figure 4.9 k slighdy skewed to the nght and shows a large variab*. A 

skewness of 0.25 has the peak relative freqyency of 0.122. Rou& one t k d  of the histogram 

area klls outside the average confidence iimirs for skewness M.48, listed in Table 4.13. 



Figure 4.9 H i s t o p  of Serial Correlation of MVl Residd Series, r, c0.666 

The kurtosis histogram in Figure 4.10 is skewed to the right (negarive Srew). The peak 

frequency is 0.071 at a laurosis of 3.15 and the variability is again large. Again, a sigdcant 

portion of the hktogram lies outside the average 95% confidence limits, i n d i k g  a large 

portion of rhe reùdual series would fail the skewness test. This would lead to the condunon 

rhar the m r  terms are not nor.mally distributed. 

Figure 4.11 shows the serial correlation of the residual series is very slighdy skewed to the nght 

(positive skewness), but nearly Symmenical, centered around r, = 0.25, with a corresponding 

n h i v e  kecpency of 0.27. This hktogram is shifted far to the nght of zero serial correlation 

leading to suspiaon that a &cant portion of the results display autocorrelated residuals. 



Figure 4.10 Histogram of Kurtosis of MVlM Residual Series, r, C0.666 

Table 4.14 and Table 4.15 lin the fraction of mat for which a particular modd "failsn the 

error diagnostic tests, as describecl above. Again the nonpoameaic modeis are not subject to 

tests of skewness and kurtosis of residuals because the formulaeon of the nonpararnemc 

models indudes no assumptions on the und* distribution of the data 

A h d y  hi& fiaction of the tests conduaed resulted in skewness, kuxtosis and autocorrelanon 
in the residual series. A fraction thes  an evem o c d  out the total nurnber of triais may be 

interpreted as the percentage of time an ment O C C W ~ ,  and L referenced as such 

interchangeably in the dixussion. Between 18 and 54 percent of al l  the trials resulted in 

significant residd skewness. Between 16 and 44 percent of nials displayed kurtosis in the 

residual series thax is sq&cantty different h m  3. Autocorrelation of residuals was found in 

the residd series of between 24 and 86 percent of the maL conducteci 



Figure 4.11 Histogram of Serial C o d o n  of NPM Residual Series, r, < 0.666 

For r, > 0.666, the average fiaction of aials failing the autocomekon test was 34% for the 

p d c  models and 41% for the nonparamecric model. For r, < 0.666, the average 

fiaction of mals f a h g  the autocorrelation test was 56% for the parameaic models and 62% 

for the nonpametric models. As the cross correlation between the base and index record 

decreases, the autoco~~elation in the residual series increws, indicaMg an overall reduction in 

mode1 performance. Based on the above, we would arpecr, on average, the residd series of 

the parametic modet to display less serial correlation than the nonparametnc models. 



Table 4.14 Fraction of Trials "FaiIing" Error Tests, r, > 0.666 

The fraction of skewness test failures decreased in relation to decreased r,. One would 

reasonably expect that the fraction of failures would increase with skewness. However, the 

srandard M o n  of the skewnesses obtained genedywas grmer for r, > 0.666 than for r, 

KURT 
0.2 1 
0.16 
0.25 
0.26 
0.28 

0.42 

MODEL 
REG 
RPN 
MV1 
MV2' 
MV3 
NP1A 
NPlB 
NPlC 
NP2A 
NP2B 
NP2c 
NP3A 
NP3B 
NP3C 
REGM 

SER 
0.63 
0.4 1 
0.3 1 
0.3 1 
0.30 
0.34 
0.3 1 
0.34 
0.32 
0.33 
0.32 
0.6 1 
0.58 
0.59 
0.40 

< 0.666, resulriog in more trials faUing ourside the confidence limifs. 

SKEW 
0.54 
0.27 
0.43 
0.42 
0.45 

0.49 

1 

In the case of the kurtosis tests, both the average kurtosis values and the standard deviations 

RPNM 
MvlM 
MV2M 
MV3M 
NPM 

decreased with the Smaller r, value. Accordin&, a general decrease in kacrion of kurtosis test 

0.33 
0.44 
0.39 
0.25 

0.28 I 0.30 

failures was realized All of the parametric models, except REG, RPN and MVlM dispayed a 

0.44 
0.4 1 
0.38 

reduction in the fraction of trials failing the kurtosis test with decreased r,. 

0.25 
0.26 
0.24 
0.44 



Table 4.15 Fraction of Triais 'Failing* Error Tests, r, < 0.666 

The fi-action of serial co~elarion test fadures inaûased nibstannalty for r, < 0.666 in 

cornparison ro r, > 0.666, but the standard deviations of the serial correlation values obtalied 

did not differ substantdy. There is no appreciable difference in either the average serial 

correlation or percent failure berween the paameaic and nonpararnetric models. However, 

REG and NP3A fded the serial correlation test approrrimately 20% more than the odier 

models. 

The regression parameter, b, is a linear function of the observations x, and y,, and a linear 

combination of nomialty disnibuted vaiables is iuelf nomially dismbuted. Inferences 

Rgarduig the variance of b are thus daMi from e s h a h g  the mean squareci error, MSE, 

from the sample, rather than the m e  variance. The diffidty with variables rhat are not 

nomdy dLmbuted is that MSE may underestimate the variance of b. The consequence is 

that MSE is no longer an unbiased e d o r  of the variance of b, and indeed may acniayr 



underestimate the uncertainty in b, d t i n g  in more confidence bang placed on the 

+on mode1 parameters than is warrantd Howwer, the results obtained mua& remain 

reasonably valid unless the deviarion fiom normality is quite pmnmced ( B q ,  1992). 

Grrelation in error terms also increases the uncertainty in b, due to the conditions of additive 

property of variances of terms as described above. The latter d e  m o t  be applied if y, are 

correlared In the case of aiuocorrelated error terms, the regression parameters a and b are d 

unbiased, but no longer have minimum variance, ie. rhere is greater uncertainty in th& 

&on. Perskence in autocorrelated error terms may lead to regession pammters which 

are quite different from the m e  parameters when ordiaary least squares regrwion is used 

(Neter et al., 1989). Therefore, in least squares regression, greater precision in the regression 

coeffiaents may be indicâted than is actually the case in the presence of autoconelad error 

terms. 

In the present study, we are not so much concerneci wirh the dope of the regression h e  in 

dawing inferences on the funaional response of a andom variable to the level of an 

independent (and not necessarily random) variable. M e r ,  we are interested in the 

relationship between two mdom variables, and the use of the conditional disnibution in 

ma& inferences regarding one variable @en the level of anocher variable. 

If the parent variables in the regrasion are not random, u thng  a bivariare normal d a c e  to 

describe the joint pmbability distribution is not strictly valid The conditiod distributions 

used to make inferences regardlig one vaciable @en the level of another variable, is also not 

strictly valid when finhg a distribution to a set of data which may not stridy follow the 

assumed distribution. Thus, if the conditional diSmbution of 5 is biased, then the results of y, 

O btained d be biased in relation to the biu of x,. 

Ai~tocorrelation of r e s idd  does not caiw the pararneaic models to violate any of the model 

assumptions, b a  indicates m d  inadequacy. The error +ostic tesu do not give any 

information on the cofl~equences in t m  of generaced flows. The dculation of the model 



adequacy StatiStics are used to aid in detemiininp if the biases introduced fiom deparnues 

from model unimptions deteriorate the model adequuy. 

45.3 Statûeical Adequacy Measures 

The average fractional deviation h m  the various target statistical values, and the associated 

staridad deviauons, for r, > 0.666 and r, < 0.666 are presented separatdy for each adequacy 

mcasure in Appeadix C, and referenced belm. For the tables referenced in the following 

paragraphs, there are several common periob for each extension p e r d -  Each table shows the 

average f k i o n a l  deviation from the associateci target value calculad based on al l  the niaL 

conducted for a +en extension period and ail associated common periods. Note that the 

Tables in AppendM C show the models which adiieved the minimum deviation from the 

target value, expressed as a fraction of the target vaIue, and averaged over al1 the aiaL 

conducteci. 

45.3.1 G o s s  Correlation Between Generated and Historlcd Flows 

The firn adecpacy meanue presented is the cross correlation h e e n  the generated and 

hisrorical flows, r,. The goal is to obtain a generated record &ch has a cross correlation of 

1.0 with the historica flaws. AU mo& achieved a aoss cor~elation l e s  ttian 1.0. 
.I 

The mode1 assoàated with the smallest average fractional devianon Erom the target value, may 

be expetteci to generate flow sequences h g  the highest degree of s d a i t y  with the 

historical flms. Tables G l a  to C-ld and Tables C-2a to C-2d show the modek achievïng the 

s d e s t  average fiactional deviation from the target, and the associated standard deviarion of 

the resufts, for r, > 0.666 and r, < 0.666, respeceV+. In some cases more dian one model 

obrained the same minimum average M o n a l  deviation, in which case both are reported. 

Tables C-3a ro G3d and Tables -a to C-4d show the models achieving the minimum 

average deviaDon from the hlronc serial cordation. ï k e  models' obje&ve is to generate a 

synthetic sequence of flows whidi displays the same serial correlation as the historic flows 

87 



during the extension period, ie. the target value. The m& s h h g  the minimum 

average deviarion h m  the target value more adequately reproduce the serial correlation 

statistic over all maS conducteci. 

4.5.33 Variance of Genefated Fiows 

Tables G5a to G5d and Tables G 6 a  to G6d show the m o d l  achievlig the minimum 

average deviation fiom the hkoric &ce. The models' objective is to genente a synthetic 

seQuence of flows which displays the same variance as the historic flows during the extension 

period, ie the tvga value. The models showing the minimum average deviation from the 

<uget Mhie more adequately repT0dUc.e the variance over alt niaL conductd 

Tables C-7a to C-7d and Tables C-8a to G8d show the models achi&g the minimum 

average deviation from the historic mean flows. The models' objecWe is to generate a 

synthetic SeQuence of flows which displqs the same mean flow as the historic flows duriag the 

extension period, ie. the target value. The models showing the minimum average deviation 

from the m g e t  value more adequat* repduces the mean flows over ail nias conduccd 

4.5.3.5 Generated Low Flows 

Tables C-9z to C9d and Tables C-iOa to Giûd show the models achieving the minimum 

average Qviarion from the historic low flows. The models' objective is to generate a synthetic 

sequence of flows &ch disphys the same low flow as the historic flows during the emension 

period, ie. the target value The models showing the minimum average deviation kom the 

=et value more adeqyately reproduces the low flows over all aials conducd 

453.6 Mean Percentage Errm of Generated Flows 

Tables G l l a  to C-lld and Tables G12a to C-12d show the mmodels achieving the minimum 

average mean percentage error. The model' objective is to generate a synthetic sequuice of 

flows which dispiay. 2no mean percentage error, ie. the target value. The models showing the 



minimum mean percentage error more vdequvdy repfochlces individual flow values over 

al1 aias c o n d d  

45.4 Objective Funaion Adeqyacy Measure 

The objective function provides a measure of how accurately a parti& model reproduces alI 

the adaquacy measuns in relation to the performance of the other models. R d  that an 

objective funmon value, OBJi, is dculated for each model, i, for each trial conduad The 

goal is to acfüeve the min;miim OBJi for each trial conductecl The number of times a 

parti& model achiwes the minimum OBJ, out of all the aias conduccd indicates the 

dative adequacy of a @en model in cornparison to the other models over the range of 

mension + ~ d ,  common +cd and cross correlaaon between the index and base records 

pfesented. 

The minimum objective function values for each model were determineci. The values in the 

tables referenced in the follawing pangraphs represent the fraction of trials for which a 
m . .  

parti& model mrnimi7ed the objective fuaction cakculation, thus raking into account the 

relative ad- for all measures combineci. Thus, the minimum objective huiction adecpacy 

measure is not sep& Caculated for each StatiStical adequacy measure. 

The models associateci wnh the largest fraccion of minimum objective functions may be 

expected to provide generafed flow sequmces which reproduce the adequacy rneasures in a 

general sense, takq all adequacy meanirrs imo accounr Tables C-13a to C-I3d and Tables 

G14a to C-14d show the modeh a&+ the kgest fraction of maL in which OBJ, was 

srnalest, for r, > 0.666 and r, < 0.666, respectiv*. In sorne cases more than one model 

obraios the maximum percent-besc objective hinaion value, which is determinecl as a tie. 



4.6 DISCUSSION OF EVALUATION RlESULTS 

The ab* of the extension modeL to reproduce statistid characteristics of the historid 

flows is diswsed in ternis of a cornparison of the 'best" m&, separately for e?di adequacy 

meas~re The mode1 a d e q u q  Li reproducing the statisùcal adequacy masures are presented 

in terms of the fiadonal devktion from the target value, f,. , averaged over all the evaluation 

mals conduced, as describecl in Section 4.2.2. Note xj aras not calculateci for SSE, since the 

fractional deviation h m  zero is indeterminate, and a direct compatison of SSE between the 

large number of duat ion  trials would not be usefÙI. 

The fractional deviations of cross cordation between the generated and bistorical flows can 

be dm+ c o n v d  into average correlation d u e s  obtained, because the target value is 1.0. 

Similady, the MPE is averaged over all the maL conduaed, and represents an average value of 

the percemage errors obtained for the d o w  extension tri& conduad Howwer, the 

serial corndaion, variance, mean and lm flow measures, are expresseci in fractional deviations 

beause the target d u e  is not the same for al1 &. 

4.6. t -1 Cross Cordation Between Generated and Historicd FIows 

r, > 0.666 - Tables Cl(a to d) 

The average correlanon berneen the generated and historical flows for the best models varied 

berneen 0.84 and 0.92 as N, increased fiom 5 to 75 years. No signifiant variation in cross 

correlation was observeci for different extension perds .  The standard deviation of the cross 

co~~elation values remained relatively consistent, varying b e e n  approximately 35 to 50 

percent of the mean value The cydic models g e n d y  achieved the highea cross correlation 

between generated and target flows. For extension periods of 5 and 10 yean, REGM and 

MVîM p e r f o d  quire well for N, < 45 years, d e  REGM and noncydic nonparametric 



mod& performed better for N, > 45 years. For extension periodr of 15 and 20 years, 

REGM and NPM achieved the best d t s .  

r, < 0-666 - Tables C-2(a to d) 

The average correlation between the genuared and hisroncal flaws varieci between 0.74 for 

and 0.89 as N, increased fiom 5 to 75 yean. The standard deviation of the cross correlation 

again remaineci consistently lower than for r, > 0.666, varyhg b e e n  approxinmely 20 to 40 

percent of the mean due.  Both the cydic and noncydic nonparametric models achieved the 

highest cross correlation between generated and target fluws. Notably? there was ody one 

instance where REG p e d o d  better than the nonparamdc models, on average, namdy for 

N, - 5 yean and N, - 70 years. Hmever? for this case, the nonpanmeaic models achieved 

cross cordation with the historid record ody marginaih/ less than REG. There was very 

little difference in performance between the cydic and non-cydic nonpanmeflc model 

performance, which is aTident by the list of nonparameaic models the same average 

cross correlation with the hinorical record in Tables G2(a to 6). However? the noncydic 

nonpararnetric modek performed best o v e d  

4-6-12 Serial Cordation of Generated Flows 

r, > 0.666 - Tables C 4 a  to d) 

The average serial correlation varied between -5 and 2 percent of the target value. The models 

more adequately reproducing the serial correlation of the historie flows varieci with different 

artension periods. The percent deviations did not n e c e s s a  deaease with increasing 

common pMod for extension periods less rhan 10 yean. Howwer, for extension periods 

greater rhvl 10 years, greater common periods geneniiy d t e d  in increased model 

performance for both p d c  and nonparametric m&. 

For NI = 5 years, the cydic parametric m& perforrned best, espea* MV3M. There was 

no appreaîble difference in model performance with changes in either NI or N,. For N, = IO 

years, the noncydic parameaic models &O performed well. For N, = 15 years, the best 
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models varieci wah common pexiod, beghmg widi REGM for common periob les 

than 50 years, then NP3A and NP3B up to N, 60 yeus, then MV2 and MV3 for a 65 year 

cornmon period For N, - 20 years, huwever, m i o u  noncydic nonparameaic models 

performed best, achieving between O and 2 percent deviarion h m  the t q e t  value on avenge. 

Genedy, the parametric models tended to underestimate the serial correlation d e  the 

nonparamenic models tended to overestimve the serial coneiaaon, huwever, the 

nonpaameûic modeis p e r f o d  better as the cornmon period increased. 

r, < 0.666 - Tables C 4 a  to d) 

In most cases the cydic p d c  models performed bat, with the mean deviation varylig 

from -6 to 8 percent, Decreasing r, margiudy decreases the parameÛc model performance 

and serioudy decreases the nonparame& mode1 perfonnuice, for this adequq  StatiStic The 

parametic and nonparametric models tended to u n u e  and overestimate the serial 

correlation, respectiv4,. The models generdy performed b e r  as N2 increased. REG and 

RPNM did quite wd in cornparison to the O& md&. 

46-13 Variance of Generated Flows 

r, > 0.666 - Tables C-5(a to d) 

On average, the best tethni- in this adequary mevure produced variances gen+ withli 

-22 to 9 percent of the historical series. The extension models gen+ did not reproduce 

variance w d  d e n  the extension and common periods were within 5 years. The ability to 

reproduce variance increased with longer common p M d .  Hmever, the paramenic modek 

tended to improve more than the n o n p d c  models as common p e r d  increased. The 

r n a i n m c e  of variance @MIOVE) techniques tended to overestimare the variance. The 

nonparametric techniques, REG and RPN tended to underestimate the variance. 

For N, = 5 years, NPlC, MVlM and MV2M g e n d y  perforrned the best, yielduig variances 

wghin 5 percent of the target. For N, - 10 yeafs, REGM and NPlC pexformed best, 



averaging between 1 and 3 percent &on in utimated variance. For NI - 15 years, 

the best na& were REGM and RPNM aiith up to 9 percent deviation in estimated Mziance. 

No models wu consistendy die best for N, - 20 years. Havever, RPNM did ob& the 

lowest average percent deviariom. Notabiy for N, between 40 and 50 years, the standard 

deviation of variancece was ody 2 percent kom the target vahe for RPNM, indicathg that 

RPNM consistentiy reproduced variance. 

r, < 0.666 - Tables C-6(a to d) 

For this case, the best models reproduced variance berween -22 and 9 percent on average, 

generally decreaUng in overall &ofmance wirh decreased aoss comelation between the base 

and index record. Similady, poor pedormatlce was gen* displapd when the extension and 

common perïods were within 10 years, wirb the exception of a few model. Norably, the 

noncydic nonparametzic mahods seemed to do qude well, for N, - 10 yean, but n a  for any 

other extension perd  investigad Again, the MOVE tediniques overestimated variance and 

the nonparametric, REG and RPN techfllqyes underestimateci variance. 

For N, = 5 years, MV2 and MV3 performed best, averaging h e e n  1 and 12 percent 

deviation on average, up to N, - 35 years. For N, greater than 45 y-, REGM performed 

best d 3 to 6 percent ddevianon on average. For N, parer than 70 y-, MV3M was best, 

wah 2 to 4 average percent devianon from the hisroncal target value. For N, = 10 yean, 

various noncydic nonparametlic models gen+ performed bat, achieving percent 

deviations k e e n  O and 5 percent on average, dthough this value may vary by between 20 to 

60 percent, as i n d i a d  by the standard devianon column in Table G6b. For N, = 15 years 

the noncydic parametnc m&, in parti& MVI and MV3 gen+ performed best with 

the variance berween O and 11 percent of the target, on average. For NI - 20 y-, MV3 

p e r f o d  best overall, achiekg b e e n  1 and 4 percerit d&on, except for N, berween 

35 and 50 years, where REGM performed better, a b  showhg deviations in variance between 

1 and 4 percent on average. 



r, > 0.666 - Tables C7(a to d) 

Ovenll, all extension, techniq~~ dtplayed gen* acceptable ability in reproducing mean 

flows Notably, REG consistendy undereshueci the mean flow, and the MOVE techniques 

generaiiy overeshated the means. The remaining models obtained mean flows both higher 

and lower than the histoncal means. 

The best models displayed mean flows which were within -1 to 2 percent, on average. The 

standard deviation of the mean 0ows varied up to 29 percent different from the target values. 

However, the standard deviations of the ~ a n  flm did not exceed 19 percent difference of 

the t q e t  values for common periods pater  than 20 years. Both inaease in extension and 

common p e r d  tended to decrease the deviation from t q e t  mean flows. 

For N, - 5 years, REGM and NPM performed bes. For N, - 10 years, a large variay of 

models performed wd. For N, - 15 yean, NPM generally performed the kt. The non- 

cydic nonpararnetric models genedy outperfonned the other models for - = 20 years. 

r, c 0.666 - Tables G8(a to d) 

Agam, the best models reproduced the mean flows quite well, berneen -2 and 7 percent on 

average. However, the models' o v d  performance decreased with d e r  r,. This is pardy 

indiatecl by the increase in standard deviation of the difference in means from the target 

dues, whkh increased to a m&um of 41 percent. REG, RPN, REGM and RPNM tended 

to u n d e r d  the mean flow, d e  the remaliing models tended to overestimate the mean 

fiow, with the exception of the nonparametrîc models for comrnon periods greater chan 

approximady 70 yean. 

The standard deviation of the mean flows varied from 1 to 49 percent difference £rom the 

target values. As a cornparison to r, > 0.666, the standard deviations of the mean flows was 

less than or equal to 31 percent difference from the target values for comrnon p e n d  greater 



than 20 yeaq but this value dearved to 13 percent for N2 greater 35 yeus. There is no 

appreciable change in mode1 performance wirh changes in either N, or N,. 

For N, - 5 years, REGM performed best up to N, - 30 years, fo11med by NPM up to NI = 

65 years, then NPlA, NPlB and NP2B for N, - 70 to 75 years. For N, - 10 yean, MV3 

perfonned best to approKimately N2 - 25 years, followed by REGM and RPNM to N, = 60 

yeats, and MP3A and MP3B for N, - 65 to 70 y e ~  For N, - 15 years, a large variety of 

extension models performed best for different combinarions of N, and Nz, aridi MV3 and 

RPNM displayhg the best performance. For N, - 20 yean, REGM perfomed best up to N2 

- 45 y-, followed by MX, W1B and NP2B for N2 - Xi to 60 years. 

4.6.1.5 Generated Low Flows 

r, > 0.666 - Tables C-9(a to d) 

Recall that the low tlow anah/zed is that flow which is expected to be ecpaled or exceeded 80 

percent of the hee. The cydic parametric models more adequately reproduced the historical 

low flows than the other extension models. On average, the ben extension techniqyes 

produced l m  flows -1 and 31 percent of the historical series. The ability of the modeL in 

reprodu~g low flows gen+ increased wirh both longer extension and common periods. 

Most extension models tended to over&e the low flows, with the exception of the cyclic 

paramenic mod& where N, is greater than or equal to 10 years, and N, is approximately 

benneen 30 and 50 y-. 

For N, = 5 years, MViM and MV3M performed ben for N2 up to 45 years, achieving an 

average percent d&on from low flaws within approMmately 11 to 32 percent of the 

hinorical value. RPNM gen+ performed best for N, greater than 45 yean, achieving 

between 1 and 5 average percent deviation from historical low flows. For N, = 10 years, 

MVM performed best, achieving benueen 1 and 17 average percent deviation from historical 

low flows up to 35 years common pexid This was followed by MVI and MV2 for N2 = 40 

yean, and MVlM and MVZM for N2 pater  than 55 yeus, all achieving less than or eqUa to 1 



percent average devialion h m  target Iow flows. For N, - 15 and N, - 20 years, the 

#c MOVE techniques geneniiy p e d o d  ben, achieving between O and 9 average percent 

deviarion h m  hkorical lm flows. The variation in the above results wu quite high. 

Therefore, even though the nerage results shawed good agreement, there wae many 

instances where the devialion h m  the m g e t  d u e  was quite pronounceci 

r, < 0.666 - Tables C-lO(a to d) 

Genedly, the extension models' ab@ to reproduce low flows decreased slighdy with s d e r  

cross correlation b e e n  the base and index records. Howwer, the ben models acniaUy 

obtained d e r  deviaàons fiom target d u e s  in comp-n to r, > 0.666. On average, the 

best extension techniques producecl low flow k p e n a e s  between -3 and 17 percent of the 

historical series. Agam, the overall ab* of the modeis to reproduce low flows tended to 

increase with borh extension and common period, but not necessa+ wirh the best models. 

Genedly, the extension techniques overestimated low flows with the exception of the cydic 

MOVE rechniques for common p e d s  geater thui approximately 40 years. 

For N, - 5 years, MVlM performed best up to N, - 35 years, a&+ b e e n  O and 17 

percent deviation fiom the target low flows. For a common period of 40 years, MV2M 

perfonned besr with 13 percent deviation from target low flows. For N, greater than or equal 

to 45 yean, MV3, W 3 M ,  RPNM and NPM performed best wirh percent deviations h e e n  

O and 15 percent fiom the target low nom. For N, = 10 yean to N, = 20 yean, MVM, 

MVZM and MV3M generaRy perfoxmed best, achieving between O and 11 percent deviation 

frorn rarger low flows. 

R e d  the mean percentage m r ,  MPE, is the numerical mean of the percenqe difference 

h e e n  individual genefated and historid flow values, over the thne series genemd The 

average MPE is the nun of the MPE's calculated over all trials conducted, dMded by the 



number of aiaL conducted Therefore, the average MPE indicates the central tendency 

or the errpected value of MPE for the 4 e  of experimental trials conducted. 

ME'E is not necessarily correspondingty positive or negative d the percent difference in 

mean flow. This may occur in the case where a mode1 overeStiLaates the low flows, but 

underestimates the hi& flows because the underemmated flows have more impacr 

on the dculation of the mean than the low flows. 

An example of the above L presented in Table 4.16 and Figure 4.12. Table 4.16 contains the 

hktoncaf and REGgenerated flows for index station O50DOOl Roseau River Near Dominion 

City and base &on 050E001 Rat River Near Onerburne for the period hom 1949 to 1950. 

The cross correlarion ccxdfiaent was 0.852, and the extension and cornmon periods were both 

equal to 5 years. 

In Table 4.16, the mean flow genemed by REG is smder than the hinorical flows for 

050W01, &ch results in (5.48-5.97)*100/5.48 - - 8.9 percent deviation from the target 

mean (for this sample), as dehed in Section 4.2.2. However, the MPE (for this sample) in 

Table 4.16 is 4196 Extendhg the above example to a complete series of flows (je. multiple 

years) shows that the MPE may be positive when the percent deviaeon from the hkorid 

mean flow is negathe. 



Table 4.16 Example Cornparison of Mean Row to MPE 

Year 

1949.00 
1949.08 
1949.17 
1949.25 
1949.33 
1949.42 
1949.50 
1949.58 
1949.67 
1949.75 
1949.83 

Figure 4.12 H-ph of 050E001 and REG Flows for 1949 to 1950 

- 

1949.92 
1950.00 
Average 

REG 
(m3/s) 
0.74 
0.63 
0.58 
18.58 
12.99 
4.88 
0.86 
5.2 1 
1.15 

10.63 
1 1-50 
2.4 1 
1.11 
5.48 

050D001 
(m3/s) 
0.50 
0.44 
0.4 1 
28.00 
23.40 
6.68 
2.06 
3.75 
0.52 
3.52 
6.05 

REG - 050D00 1 100 
05ODOO1 

48 
43 
43 
-34 
-45 
-27 
-58 
39 
119 
202 
90 

1.65 
0.66 
5.97 

46 
68 
41 



r, > 0.666 - Tables C-lt(a to d) 

The avemge MPE of generated flows fiom the best modek varieci from 1 to 110 percent of 

historical flows, b d y  due to over-predicting lm flows. The standard deviation of MPE varied 

from 3 to 149 percent, and decreased wSh greater N,, i n d i k g  the high wiabilay in results 

over the niaL conducted, buc an increase in model adeqyacy as more information is made 

adab le  to the extension models. The MPE g e n d y  decreased as N, and N, inaeased, but 

the minimum average MPE did not necessady occur at the highest value of N2. 

The minkum average MPE genedy occurred for cornmon periods of 45 years, 40 yean, 35 

and 30 yeus, for extension periods of 5 years, 10 years, 15 years, and 20 years, 

mpeccivdy. Note that each combination of total record period (NI + NJ where the 
minimum average MPE generally occurs is equal to 50 years. 

This phenomenon may have occurred stricrly due to chance. However, Licreased common 

period and similar flow conditions in the extension and common p e r d  provide more 

information to the atension modeis for generating synthetic flows, and ai& in mode1 

performance. Since the b e g m q  of record for the d o n s  used in the niaL are not the same, 

rhis phenomenon rnay possibty be amibuted to a rime period corresponding to the occurrence 

of similar metmrologid or physicai factors affecting runoff. 

For NI - 5 y-, W3B gen& performed best for N2 between 30 and 60 years, achieving 

b e e n  10 and 85 MPE on average, followed by RPNM for N2 between 60 and 75 years, 

achiwing between 12 and 14 MPE. For N, = 10 years, MViM performed best up to = 30 

year~, achimkg h e e n  29 and 65 average MPE, follmved by REGM for N, greater tha. or 

e q d  to 35 years, achieving h e e n  10 and 13 MPE on average. For N, - 15 years, various 

cydic p d c  models perfonned b a t  for N2 less than 35 years, fobwed by NP3B which 

achieved between 1 and 8 average MPE. Notably, the standard deviation of the MPE is 

relatively low, only h e e n  3 and 7 percent, indicating good mode1 performance in this case. 

For N, = 20 years, REGM generaUy performed best achieving h e e n  11 and 29 average 

MPE, except for NP3B for N, between 30 and 35 years achievhg h e e n  8 and 11 MPE. 



The results vaxied gmdy throughout the trials. The standard deviaton of MPE VLUied by 

up to 192 percent for N, - 5 yeus and N2 - 10 yeus, d d g  to a minimum of 3 percent 

standard devMon for NI - 15 years and N2 - 65 yevs 

r, < 0.666 - Tables C-U(a to d) 

The average MPE of the best modek vard kom 11 to 125 percent of histond flows. MPE 

genedy decreased as cornmon p&d, N2, increased. Again, the minimum average MPE did 

not necessady occur n the hghest d u e  of N2. However, there was no indication of a 

put;& period of record which improved mode1 perfomiance conslrendy, which is 

reasonable since s d e r  cross correlation indicares the runoff response is dissimilar for the 

base and index record. 

For NI - 5 years, various models performed b a t  for N, up to 35 yean, a c h i k g  83 to 102 

MPE on average, foUowed by REGM for N, greater than or eq+d to 35 years, achieving 

h e e n  15 and 27 average MPE. For N, - 10 years, MViM and MV3M perforrned best, 

achieving between 100 and 109 average MPE, followed by REGM and RPNM for N, greater 

than or equal to 25 years, &&g between 16 and 110 MPE, on average. For NI - 15 y=, 

MV3M performed best up to N, = 20 years, achiewig b e e n  118 and 125 percent average 

MPE, foUowed by REGM, achieving 34 to 11 average MPE as N, inaeased from 25 to 65 

years, respecrively. For NI = 20 years, REGM performed best, achieving between 25 and 14 

average MPE as N2 increased hom 20 to 60 years. 

4.62 Objective Function Adequacy Masure 

Recall OBJjD represents the M o n  of aLls in *ch model i obrains the minimum value of 

OBJi, for a &en comblil8on of NI, N,, and r, The model achieving the maMnnun OBJ,' 

more adequately repmduced the hkorical StatiStics, on average, over ail the statistical adequacy 

measures presented previoudy. 

r, > 0.666 - Tables GU(a to d) 



In gened, REGM p e r f o d  best up to approximady N, - 40 y-, achieving 

h e e n  20 and 40 percent OBJie. For cornmon periods greater thui 40 years, the cydic and 

noncydic nonporameaic mo& performed comparativeky well. Huwwer, for N, - îû years, 

REGM achieved between 40 and 100 percent OBJ,' for a l l  N,, except NPM which achiwed 40 

percent 0BJig for N, - 30 yevr 

r, < 0.666 - Tables C-14(a to d) 

REGM perforrned best for neady all  combinations of N, and N,, achieving between 13 and 

100 percent OBJ,'. Notably, the nonparamcflc tecivu~ues ordy performed wd for N, = 5 

yem, wirh N, - 5, 55,60, and 65 years, ichieving between 13 and 67 percent OBJ,'. W 3 M  

puformed wd at values of N, ranging fiom 70 to 75 years, for N, - 5, 15, and 20 yean, in 

each case achieving 100 percent OBJiD. 

The vdcation + was conducteci for four separae sets of index and base records in 

order to form the basis for the conclusions and recomrnendations wirh regard to which of the 

models are most appropriate for a @en combinarion of NI, & and r,. Two sets of base and 

index records were used for euh of r, > 0.666 and r, <Q666. The base and index records 

used for verifidon were not dized in the waluation, @. calibration) phase of the analyu 

presented in Section 4.6. The vdcation records were selected based upon providing a 

reasonable number of eiaL invohnog a wide range of extension and common periods. 

n e  number of nearesr nughbors used by the nonpanmeaic methods for the vedication trials 

are those developed in the evaluation phase, in Table 4.8 and Table 4.9, so that the model 

ve&zuion results are done aidi data sepanre kom the evaluation results. 

Descriptions of the v d d o n  t r d  sets are given in the following pangaphs. The fractionai 

deviation from the various target StatiStid values, for each verification set are presented 

separately for each adequacy measure in Appendk D, and referenced below. The sratLBcal 



measure resulU dixltssed in the follmhg sections present the madels a&+ 

the minimum fiactional deviation h m  the target values, ti, as describec! in Section 4.2.2. 

The model(s) achieving the d e s r  fractional M o n  h m  the target value, fi,, a~ reported 

in a simJar manner to the same in Section 4.6. In the verification phase there is no standard 

devîation associatecl with the dculated StatiStics, since the mliinnun deviation is associated 

with ody a single trial. SSE, is reported for the verification aias, but not as a fiaction of the 

taqet (zero). Rather SSE, t compareci dire+ for the four verification miah. 

Recall that in some instances, more than one model may acbieve nmilai d u .  Therefore the 

tables in Appendix D show more than one model a&eving the minimum ti for a given 

N,, ND and r, combination. If a partich modd achieved ninîmum fi but failed either -or 

diagnostic tests, an altemate model which did not fd the mor diagnostic tests is reportecl 

The dfetaate model selected is the model which had either equivdent or second lowest fii for 

that parti& txial, f i c h  also did not fail the error diagnostics. Note that the altemate models 

are not necessarily nonpammtric model. 

4.7.1 Verifkation Triais, r, > 0.666 - Set 1 

The base station used for the fïrst set of verdication tri& is MAC005 Gods River Below Allen 

Rapids, drainage area approMmately 25,900 km2. The corresponding index station is 04AC007 

Island Lake River Near Island Lake, chmage area apprortimately 14,000 km2. The Gods River 

and Island Lake River gauging stations were disconrinueci in 1994. The b c e  between the 

gauging stations on Gods River and Island Lake River is approx;mately 100 ~IIL The relative 

locations are shown in Figure 4.2. The cross correlation, r, = 0.73 1. The total record period 

for both streams is 62 yean, b e p i q  in 1933. The wet season for Gods and Island Lake 

RZvers were defineci in Section 4.4.2 as the rnonths between June and November, inclusive. 

The correspondmg diy sevon is defined as December to May. 

TriaL correspondhg to N, = 5 years for this verification set were not successful due to 

missing f lms in the base and index records. For the relatbely small sampIe size of 5 years, 

mking data in the cydic techniques produces some indetefINnate r d t s  in the calculacion of 



some parameters for the paramsic models. Hawwer, dis is not considered a major 

dnwbedr since the are vety few situations where extension of a streamûm record woufd be 

actunptgi d e n  the extemion and common periods are e q d  For N, = 10 y-, the 

common pMod varieci h m  N, - 10 to 50 years, correspondiag to 9 trial. For N, - 15 
yeus, the common p e r d  Mned from N, - 15 to 45 years? for 7 A. For N, - 20 years, N, 

wied from 20 to 40 yean, for an additional 5 nials. A total of 21 aiaL were conducteci for 

this verificanon set. 

The m r  diagnostics on the residd series ue shown in Table 4.17. As in Section 4.5.2, these 

Statistics are averaged over all the trials conductecl for this verifidon set, Ge. for ail 

combinations of N, and N ,  so the same considerations in terms of th& interpretation apply 

in this case. Table 4.18 shows the h a i o n  of trias in *ch the models fail the e m r  

dqpostic tests as described in S d o n  4.2.1. 

Tables D-l(a to c) show the StatiStical adequacy meanire results for cross correlation berween 

the generated and k o n c  flows. The latter for serial correlation, variance, mean flow, Iow 

flow, MPE, and SSE are shown in Tables D-2(a to c), Tables D-3(a to c), Tables D4(a to c), 

Tables D-5(a to c), Tables D-6(a to c), and Tables D-7(a to c), respectively. 

4.72 Vaification Trials, r, > 0.666 - Set 2 

The base stacion used for the second set of verificarion trias is 05PB014 T d e  River Near 

Mine Centre, drarriage area appmXiMately 4,870 km2. The comesponding in& starion is 

05QAûû2 En@ River at U M e ,  drainage area approximately 6,230 km2. The gauging 

stations on the Turtie and English Rivers are separateci by approximately 150 km. The relative 

locations are shown in Figure 4.3. The cross correlation., r, - 0.868. The total record period 

for 05PB014 is 75 years, commp_ncing in 1921. The total record period for 05QA002 is 74 

years, commencing in 1922. The wet season for the T d e  and En&& &ers were defined in 

Section 4.4.2 as the months between May and Juty, indusive. The correspondhg dry season is 

dehed as August to April Bo& gauging stations are currently operational. 



For N, - 5 years, the common period varied h m  5 to 65 years, for 13 trials. For N, = 

10 yeus, the common period varied h m  N, - 10 to 60 years, correspondhg to 1 1 &. For 

N, - 15 yean, the common p&od Vatied fiom N, - 15 to 55 years, for 9 triaIs. For N, - 20 

years, N, Mned h m  20 to 50 years, for an additional 7 trials. A tord of 40 trials were 

coaducted for this vexï6cation set 

The m r  diagnostics on the residual series are shown in Table 4.19. Table 4.20 shows the 

fiaction of ai?ls in which the models fail the error diagnostic tests. The staEseical adequacy 

measure resuits for cross correlation, s d  cordation, variance, mean flow, low flow, MPE, 

and SSE, are shown in Tables D-8(a to d), Tables D-9(a to cl), Tables D-lO(a to cf), Tables D- 

il(a to 4, Tables D-12(a to cl), Tables D-13(a to cl), and Tables D-14(a to 4, respeCely. 

4.73 Verifkation T d s ,  r, < 0.666 - Set 3 

The base station used for the third set of vdcation uials is 05SA002 Brokenhead River Near 

Beausejour, drainage area approxmady 1,610 km2. The comesponding index station is 

05RA001 Maqotagan River Near Mamgotagan, dninage area approrrimatdy 1,830 km2. The 

gauging stations on the Brokienhead and Manigotagan Rivers are separated by approximately 

120 km The relvnre locations are shown in Figure 4.2. The cross correlation, r, = 0.642. ï h e  

t o d  remrd p&od for OSA002 is 38 years, commencing in 1958. The rotd record p e r d  for 

05RA001 is 36 years, commencing in 1960. The wet season for the Brokenhead River occurred 

bnween April and June, inclusive, wirh a correspondmg dry season between July and Mardi. 

The wec season for the Manigotagan River occurred between May and July, indusive, with a 

correspondmg dry season between A- and April. Both gauging stations are currendy 

0pearionaL 

Si& to vdcation set 1, & for N, - 5 years and N, = 5 yean could not be obtained 

due to mishg  data in portions of the eady record. Hmever, results were obtained for Nr 

from 10 to 30 years for 5 trials. For NI - 10 years, the cornmon period varied bom 10 to 25 

years, for 4 trials. For NI - 15 years, the common period vatied from N, - 15 to 20 yean, for 

2 niais. The lengths of the record p d u d e d  any trials invohing extension periods greater than 

15 years. A total of 11 d s  were conducted for thL verification set. 
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The error diagnostics on the residual series ate shown in Table 4.21. Table 4 . Z  shows the 

fraction of triais in wbich the models fd the error diagnostic rem. The statistical adequacy 

measure results for cross correiation, serd correlation, variance, mean fIow, low flow, MPE, 

and SSE, are shown in Tables D-15(a to c), Tables D-16(a to c), Tables D-17(a to c), Tables 

D-18(a to c), Tables D-19(a to c), Tables D-20(a to c), and Tables D-2l(a to c), respecWely. 

4.7.4 V&cation Trials, r, < 0.666 - Set 4 

The base station used for the fourth set of verification trials is 05QA002 En@ River at 

Umfrevile, drainage ara  approxknady 6,230 km? The correspondhg index station is 

05QE009 Snirgeon River at Outlet of Sdvensen Lake, dninage area approh te ly  1,530 km2. 

The gauging stations on the English and Snugeon Rivers are separated by approrrimately 220 

km The relative locations ue shown in Figure 4.3. The cross correlation, r, = 0.626. The 

total record period for 05QA002 is 74 years, commencing in 1922. The total record period for 

05QEûû9 is 3 1 years, commencing in 1965. The wet and dry seasons for the En@ River was 

defined previody. The wet season for the Sturgeon River occurred between May and Jdy, 

inclusive, with a corresponding dry season between August and ApriL Both gauglig stations 

are currendy operational. 

For N, = 5 years, the common p e r d  varied hom 5 to 25 years, for 5 niais. For N, = 10 

p r s ,  the common period varied kom N, - 10 to 20 years, corresponding ro 3 trials. For N, 

- 15 years, the only common period avaikble due to the length of the index station was 15 

yeats. A total of 9 maL were conducted for this verifidon set. 

The error diagnostics on the residual series are shown in Table 4.23. Table 4.24 shows the 

fnccion of trials in which the models fail the error diagnostic tests. The sranstical adequacy 

mcvure d t s  for cross correlation, s d  correlation, variance, mean flow, low flow, MPE, 

and SSE are shown in Tables D-22(a to c), Tables D-23(a to c), Tables D-24(a to c), Tables D- 

25(a to c), Tables D-26(a ta c), Tables D-27(a to c), and Tables D-28(a to c), respectkely. 



Table 4.17 Error Diagnostics on Residaai Series, Verifkation Set 1, r, > 0.666 



Table 4.18 Fraction of Error Test Failtires, Verificatioa Set 1, r, > 0.666 

SER 
1 .O0 
1.00 
1 .O0 
1.00 
1.00 
1 .O0 
1 .OO 
1.00 
1 -00 
1 .O0 

C 

NP2c 
NP3A 
M'3B 
M'3c 
REGM 
RPNM 
MVlM 
WUll 

HURT 
0.00 
0.00 
0.00 
0.00 
0.00 

MODEL 
REG 
RPN 
M v l  
MV2- 

SKEW 
0.24 
0.00 
1.00 
1.00 

0.24 
0.05 
0.62 
0.57 

M V 3  
NP1A 
NP1B 
NPlC 
NP2A 
NP2B 

0.95 
0.86 
0.95 
0.95 

1.00 

T 

1 .O0 
1.00 
1 .O0 
1.00 
1.00 
1 .O0 
1 .O0 
1.00 



Table 4.19 Error Diagnostics on Residuai Series, Verification Set 2, r,, > 0.666 



Table 4.20 Fraction of Error Test Failures, Verification Set 2, r, > 0.666 





Table 4.22 Fraction of Error Test Faiiures, Verification Set 3, r, c 0.666 



Table 4.23 Error Diagnostics on Residual Series, Verification Set 4, r, < 0.666 



Table 4.24 Fraction of Error Test Fdures, Verification Set 4, r,, c 0.666 

4.8 DISCUSSION OF VERIFICATION TRIAU 

Mode1 adequacy in ternis of the statistid adequacy measures is discussed and comparecl to the 

evaluation r d t s  in the following paragraphs. 

4.8.1 Optimum Number of Nearest Neighbors 

The verifkation trials are performed using the number of nearest neighbon selected kom the 

evaluation mals in order to provide a fair cornparison wirh all the other methods. 

4.82 Diagnostics on Residual Series 

The results of the verification trials show rhat the skewmss, kurrosis and serial correlation of 

the residual Senes m o t  be expected to mLror the average values from the waluation trials, 

but does c o h  the h@ variabiLty in the results for the evaluation aias, as indicated by the 



Iarge variance of the ermr diagnostic StatiStics shown in Tables 4.18 and 4.24. A detailed 

cornpuison of the resulu h m  the vexification aiaL and eduation trials is given beluw. 

r, > 0.666 - Veriiîcaticm Set 1 and Sb 2 

Table 4.17 and Table 4.19 show the average skewnw coeffiaenr of the residual series for 

vdcation sets 1 and 2, respectively, are higher than for the d u a h o n  trials in Table 4.13. 

The hction of skewness test failures for vdcation sets 1 and 2 were higher than the 

waluation trials. Wbh the exception of RPN and RPNM, the pararneuic models failed 

between 24 and 100 percent of the skewness tests for the verification d. However, the null 

hypothesis rhar the skewaess wu not different from zero was accepted for all RPN residual 

series, with 95% confidence in verification sets 1 and 2. 

The noncyclic parametric models failed no kurtosis tests on the residuais series for set 1, 

however, the cydic parametric modek faded between 86 and 95 percent of the kurtosis tests, 

between 40 and 50 percent higher than the duation trials. In contrast to verification set 1, 

the noncydic parametric mod& failed a greater portion of kurtosis tests, and the cydic 

parametric models failed a smaller pomon of kurtosis tests than the evduation mals. This may 

be due to the nanirr of the h e m  £iles used in the extension. The variab;ia>. of the 

kurtosis coefficients obtained was much lower for sets 1 and 2, rhan for the evduation nials. 

Therefore, a residual series from a parametric model may pas the & m e s s  test and fail the 

kurtosis test or vice verse. The onty mcdel which passed both skewness and kurrosis tests in 

verification sets 1 and 2 was RPN. 

The average serial c o d o n  of residuals was significandy higher for all models. The 

variab* of the r, was Iess for the verification trials rhan the evaluation d. Accordin&, 

neady dl flals condmed for verification sets 1 and 2 produced residual series which displ@ 

high serial codaxioa. Essen@ 100 percent of d trials and al1 models faSed the serial 

correlation test in v d d o n  sets 1 and 2. 



The em>r +ostic adys is  on the verificarion trials for r, > 0.666 show that the 

noncydic parametnc rn& may be eqected to fail over 50 percent of the skewness tew, les  

than 50 percent of the kurtosis tests, and also a large pmion of the serial correlation tests. 

Less variabdhy in the kurt& coefficients was obtained in the verification trials than the 

evduation aias. Hcmt.ever, the fraction of test fadures b e e n  set 1 and set 2 was quite 

differe~lt. The cyclic ~Vamemc models w d d  be expected to fd up to a p p r o k e l y  50 

percent of the skewness tests, and again, the expected kurtosis results are uncertain. Two 

exceptions to the above are RPN and RPNM, &ch would be expeaed to fail a sigruficandy 

s d e r  portion of the tests for n o d t y  of error terms. M rnodels were found to fd the 

serial correlation tests on die residual series, indicating general model ùiadequacy in t h  into 

account the rime dependent variation berween the index and base record Oows. 

r, < 0.666 - Vcnâcation Seî 3 and Seî 4 

Table 4.21 shows large negarive skewness of the residual series obtained for set 3, in contrast 

to the positive skewness coefficients obtained for the wduation trials shown in Table 4.13. 

Notabiy Table 4.22 shows a very sigeifi.cant fiaction -een 9 1 and 100 percent) of the trials 

faed the residd skewness coefficient test, in compa<ison to h e e n  20 and 45 percent 

failure for the evduarion trials. 

Table 4.23 shows a combination of negarive and positive skewness coefficients for set 4. 

From Table 4.24 widi the exception of RPN and MV3M, the parametric rnodels failed 

between 22 and 44 percent of the & m e s s  tests. RPN and MV3M failed none. The 

variabiiny of the skewness coeffiaents was les  for sets 3 and 4 than the evduation nias. 

While the percentage of models failing the kurtosis tests for set 3 in Table 4.25 was much 

higher, at 55 to 64 percent of the vdcation mals conducted, that for set 4 in Table 4.28 was 

approxkdy eqU;.alent to the calibration trials, a~ 11 to 44 percent. Note again the exception 

of RPN which failed no hosis tests, but ody in vdCaaon set 4. 

Overall, the average r, obtained in sets 3 and 4 were slightiy h&er than the evduation ttials. 

In set 3, neady all models failed between 55 and 100 percent of the serial correlation tests, 



except Wl which failed ody 18 percent. In set 4, howwer, the parametric models fVled 
between 56 and 100 percent of the tests, wMe the noncydc nonparametric performance was 

better, failïng between 44 and 78 percent of the tests. The latter indiaes thar for d e r  

dues  of aoss cordation h e m  the base and index record, noncydic paramenic models 

may produce a residd series wbh lower s e d  condation. 

The error diagnostic amlysis on the vdcation d s  for r, <Oh66 show rhat the noncydic 

parametic models may be again expected to fail over 50 percent of the skewness tests, 

appmximady 50 percent of the kurtosis tests, and neady d s e d  co~elation tests. Agam, kss 
variab* in the kurtosis coef5aents was obtaind The cydic panmRtic m& would be 

expected to fail over 50 percent of the & m e s s  tests, and m q i d y  less than 50 percent of 

the kurtosis tests. RPN passed the skew~less and kurtosis tests in set 4, and MV3M passed the 

skmess  tests in sa 4. Again, nearfy all modeh were found to fail the s&d correlation tests 

on the residual &es, indicating p e r d  model inadequacy in taking into account the time 

dependent Mliation beween the index and base record flaws. 

4.8.3.1 Cross Correlation Between Generated and HistoRd Flows 

r, > 0.666 - Vdcation Sa 1 - Tables D-l(a to c) and Set 2 - Tables D-8(a to d) 

The range of cross correlation b e e n  the generated and hkorical flows for the best models 

in set 1 varied b e e n  0.86 and 0.94. The aoss correlation does not Vary appreciably witb 

extension period, but tends to increase as N2 inaeases. The model pedonmnce is gen+ 

consistent with the evduation results. However9 the models which performed best for the 

v d h o n  rmL were not necessady the same m& which performed besr, on the average 

of the evaluation trials. 

Vedcation sets 1 and 2 provide many instances where the noncydic nonparamehic models 

are suggested as altematives to the cydic parametric models. In Tables D-la to D-lc, for N, 

-10,15, and 20 y, respectively, noncycIic n o n p d c  models either perfoxmed k or 



were proposed as altemates to cydic puameaic models and pedomed wnhin 7 

percentage points. In Tables D-Sa to D-8ç for NI - 5, 10, and 15 years, respectively, the 

cydic pPnmemc models performed best. Howwer, for N, -20 yean, noncydic 

n o n M c  modek were suggested as altemates to the parametric modeh, as shown in 

Table D-8d 

r, < 0.666 - Vcrificatioa Scî 3 - Tables P E ( a  to c) and Set 4 - Tables D-22(a to c) 

The range of cross cordation for sets 3 and 4 varied from 0.75 to 0.89. The model 

performance was margidly better than the evduation txials for set 3, and equballent for set 4. 

Again, the cross correlarion did not vary appreciably wirh saension period, but did not always 

demase as N, increased. The noncydic nonparametic mod& seemed to perform wel, or 

neariy as well as the panmeÛic models. Nonparameuic models mggesred as alternatives to 

M c  m& which failed error diagnostics pedormed wirhli 7 percentage points, as 

shown in Tables D-15% D-15-c. However, in many instances the nonparame!tric mod& 

achiwed the best cross correlation, as shown in Tables D-15b, and D-U(a to c). 

r, > 0.666 - Verification Set 1 - Tables D-2(a to c) and Set 2 - Tables D-9(a to d) 

The best m& deviateci between -6 and 3 percent of the historical target value. The 

verification resuits generally agree wÏth the waluation d t s .  

Overall, the noncydic nonpanmaric techiques performed best up to N = 20 y, afeer 

which the c /dc  MOVE technicpes performed better. Nonparameuic models suggested as 

alternatives to parametric mod& which failed error diagnostics performed within 5 percemage 

points. 

r .  < 0.666 - V a i f i d o n  Set 3 - Tables D-16(a to c) and Seî 4 - Tables D-23(ô to c) 

The deviation from tvga serial correlation varied between -3 and 1 percent, showing 

better pedonnance than the evaluation trials which vaxied up to 8 percent. For 



these trials, the nonparameaic methods genenUy perfonrd best, or were suggested as 

altemates wichin one or two percentage points of the rejected modeL Model performance in 

th regard i n d  as N, increased. Nonpanmeaic models suggested as altematives ro 

m& which failed m r  dugeostics p e d o d  within 1 percentage po in~  

4.8.3.3 Variance of Generated Fiows 

r, > 0.666 - Vaificatim Set 1 - Tables D-3(a to c) and Set 2 - Tables D-lqa to d) 

The best models achiwed between -19 and 8 percent of the target variance, again, mughS 

corresponding to the range of results £rom the evaluation trials. In Tables D-3a to D-3c, the 

nonpanmmic models are suggested as altefnates, achieving within IO percentage points 

deviarion. For N, -5 and 10 in Tables D-1ûa to D-lob, NP2A and NP3C perfoxm well, and 

are suggested as alternates for N,  - 15 and 20 in Tables D-lOc and D-IOd. Model performance 

again increased as more comrnon period was avaiiable. Nonparametric models suggested as 

altematives to panmeaic models which fded m r  diagnostics gen* p e r f o d  wirhli 21 

percentage points. 

r, < 0.666 - Verification Seî 3 - Tables D-16(a to c) and Sa 4 - Tables D-24(a to c) 

'Ihe best models achieved bnween -74 to 6 percent of the target variance, displaykg much 

wone performance than the evaluation d. However, the results are comparable because of 

the high variability in results which was shown in the evaluation triais. The cydic parametric 

models performed best in set 3 for N, -10 to 15 years, in Tables D-24b and D-24c. 

Nonparametric models suggested as dtematkes to paramettic modeL which failed mor  

diagnostics generdy perfoxmed within 73 percentage points. The above indicares generally 

p r  model performance wich small r, 

4.8.3.4 Mean of Generated Flows 

r, > 0.666 - Verifidon Sct 1 - Tables D4(a to c) and Set 2 - Tables D-1 l(a to d) 



Mean £lm wu repmduced quite well, with the best models achieving h e e n  -3 and 9 

percent Qviaeon of the histoncal target. These r d t s  ro+ agree with the evaluation trials. 

For N, -5 to 15 yeus, the noncydic nonpvameaic models performed ben, in some cases, 

behg suggested as altemates to p0nmemc model. No change in modd performance was 

noted wirh changes iri either N, or N,. 

NonpanmRric models suggested as dteniatives to pvameaic models whidi failed error 

diagnostics gen+ p e d o d  wirhin 1 percentage point 

r, < 0.666 - Vdcation Set 3 - Tables D-17(a to c) and Set 4 - Tables D-25(a to c) 

The models achiwed h e m  -24 to S percent deviation fiom the histoncal mean flow, 

underescimacing mean flow in cornparison ro the waluation trials. NPX generaUy 

p e r f o d  weL Noncydic nonparametric models suggesred as altemates were wRhin 4 

percentage points. 

4.835 Generated Low Fiows 

r, > 0.666 - V&cation Set 1 - Tables D-5(a to c) and Sa 2 - Tables D-12(a to d) 

The achieved h e e n  -3 and 34 percent deviarion h m  the historical low flow, (which 
is expected to be equaled or exceeded 80 percenr of the tirne). This is approximately equal to 

the results fiom the evaluation trials. Geaerally the parametic models reproduced the Iow flow 

ben for shorter common periods, and the noncydic parametfic models performed better for 

longer common periods. Where nonparametric models were suggested as alternates, hqr fell 

within 14 percentage points of the corresponding parametric mode1 which failed the mor 

dlagtlosacr 

r, < 0.666 - Verificatim Sa 3 - Tables D-l8(a to c) and Sa 4 - Tables D-26(a to c) 

For set 3, the models pedormed quite poorly, with between -1 and 174 percent deviarion fiom 

the hiaorical lm flow, tnxt for set 4, the results were mudi wone than the evduation mals ar 

h e e n  -3 and 17 percent deviuion. For N, -5 years, in Table D-26% the cydic 



non#c models pedormed weU. For N, -10 years, RPN performed ben, 

repduchg  low flows equrvalent to the historid target. For N, - 15 yeus, NP3B pedormed 

kst Alremve nonpanmeaic models did not reproduce lm flm q+te as well, varying up to 

158 percentage points different than the paramenic counterparr 

4.83.6 Meau Pacmtage Emor of Gaierated Fiows 

r, > 0.646 - Vedication Sa 1 - Tables D-6(a to c) and Set 2 - Tables D-I3(a to d) 

The mo& achieved h e m  -2.1 and 28.4 MPE, indiCat;ng far better perfofmatlce than the 

duation trials. MPE did not necessaniy inaease or demease with N, or N, in the 

verification mals. In contrast, MPE had consistendy deaeased wirh bodi N, and N, in the 

evaluation trials, as shown in Tables C-1 la  to Gl ld 

Where nonparametric models were suggested as dtemates, they fell within 3 percentage points 

of the componding pammetric model which failed the error diagnostics. 

r, < 0.666 - VaaGcatim Seî 3 - Tables D-19(a to c) and Set 4 - Tables D-28(a to c) 

In this case, the models achieved e x t r e d y  kugh MPE var& between -12 and 362 percent. 

Note, however rhat the variabiliy of the rentlu was shown to be quice high for the evaluation 

aias as well CT;ibles C-12a to C-124. The vdcation aials seem to c o n h  rhis. Agam, in 

contras to the wduation wL, MPE showed no tendency to decrease with d e r  N, or N2. 

The MPE was tilghest when the extension and common periods were umilar. 

4.8.3.7 SSE of Generated Flows 

rq > 0.666 - Vdcation Seî 1 - Tables D-7(a to c) and S a  2 - Tables D-14(a to d) 

For N, -5 yean, REGM gen+ obtained minimum SSE for set 2. For N, = 10 years, 

NPlA obtained m;nimuni SSE for set 1 and REG and REGM obtained xninimum SSE for set 

2. For N, - 15 years, NP3A performed best, for set 1 and REGM and NPM for set 2. For N, 

-20 yean, REGM performed besc for N, up to 25 years, then NPZB for & -30 to 40 yean, 



for set 1. For N, -20 REGM again generriiy perfonned best. Genedy, SSE decreased 

Y common e o d  incizased. It is obvious that SSE incraxs as excension period increases. 

Where nonpammtric models were suggested as alternates, they produced SSE which ranged 

up to 40 percent higher than the parameuic models which failed the m r  dqpostics. 

r, < 0.666 - Vdcation Seî 3 - Tables D-21(a to c) and Sa 4 - Tables D-28(a to c) 

For sets 3 and 4, NPX: either adiiwd rnbimm SSE, or pmvided h t e  minLrnun SSE 

for many cases of N, and N,. This indicates that for smd r,, the noncydic nonparaxnenic 

models generate £lm with a sm?U variance in error terms, indicating good model 

performance. Again, SSE generidy decreased widi increasing N,. 

Where n o n p d c  models were suggested as altemates, they produced SSE up ro 63 

percent higher than the p d c  model which fded the error diagnostics. 

4.9 SUMMARY OF EVALUATION AND VERIFICATION RESULTS 

Table 4.25 summarizes and compares the results of the evaiuation and verification triais for r, 

> 0.666. Table 4.26 summuks and compares the results of the evaluation and vdcation 

trials for r, < 0.666. The results of s e r i a  corielacion, variance, rnean flow, and low flow, are 

expresseci in temis of fractional dmkion korn the target historical value, as was done 

prwiody. The hction deviations shown for the waiuation trials were avenged over all 

evaluation niais, (x j  ), while the values korn the verification results apply to a single nial, (fJ. 

SSE was not reported for evaluation d s  because comparison of such a large number of SSE 

values was not deemed useful. 

CompaRson of Table 4.25 and Table 4.26 shows that the perfonriance of the models decreases 

substandy d e n  r, decreases. However, similar behavior such as inaeased model 

performance with increased available common period holb mie. The verification r d t s  

genenlly confinn the range of the best model @ormance one may expect to encouter, as 

previousiy found wich the evduation d t s ,  in the context of the streadow stations used in 



the present study. Note, however, tbu the high wiabilicy in the results which may be 

obtained was as0 v d e d .  As such, the d u e s  in Table 4.31 and Table 4.32 represent an 

approxhate range of performance one my expecî in using the extension models, however 

the d t s  for some of the adequacy meanirrs are assoPPed with a hi& degree of variability. 

The d d o n  trials showed rhP inputting the number of nearest neighbors which the 

nonparamWcs used in the verifidon aials, rather than aiawing the nonparametric methods 

to o p t b k  for the number nearest neighbors decreases the nonparametric model 

The models perfomiing best in the verification triais are not n e c e s s e  the same models 

wbich perform k in the wduation txials. The verification results show there are alternative 

nonparametric models that perfom comparably to the parameaic models which faild the 
enor diagnostic tests. In m;irry cases, the altemate models are nonparametricc There are &O 

mam/ cases where the nonpvlmemc models perfonned best. 

In the case where oniy one Statistical meanue is used to d e t h e  the best model, k would be 

saaightfomard to compare a table of SSE vaiues, then choose the model which yielded the 

minlrnim SSE. However, in many cases, other Statistical feanues are of interest, which is the 

purpose of presenting the mauy adequacy statima in this scudy. Section 4.10 provides a 

dodology and recommendaaon for selecting the best model talcmg into account all the 

adequuy meanires which were describeci in Section 4.8. 



Table 4.25 Sommary of Evduation and Verifxation Results, r, > 0.666 

Variance 

Law Flow 

SSE 

V e d k i o n  
Trials 

Comment 

k e r  model performance as NÎ increased 
Cyclic param&c models perfomed wd 

F t a g e  points of puunetic. 
M d  performance does not v u y d  Ni or 
Nt. ~oncydic nonparametric and cydic 
MOVE procedures p e r f o d  w d  

percuitage poinrs of pararnd. 
Bemr model dormance as N2 iricreased. 
High variabil&& duation results. 
Cvclic MOVE models perforrned welL 

arihin 15 percentage of parameuic. 
Mode1 performance did not change d N 1 

or Na Low variabikry in renihs. REG, RPN 
and noncyclic n o n p d c  m& 

m& arirhin 1 percentage point of 
partimetic. 
Hi& variability in results. Results berter as N2 
inclreased for tkduation trials, bur inneased 
and decreased in verificauon triais. 
Alremare nonparamenic m& w d m  14 
percentage points of panme& 
Hi& vatiabiliry in results. Akemate 

points ot pararnemc. 
NPLA, REG, and REGM perfonned well. 
SSE decreased as Nt increased. Alternate 
nonparameuic models up to 40% higher SSE. 



Table 4.26 Siimmary of Evdoation and Verification Results, r, < 0.666 

Variance 

Low Flow 

MPE 

SSE 

Range of 
from 

EvalUation 
Trials 

from 
V d d o n  
Trials 

Comment 

Better modei performance as N2 inaeased 

wirhin 1 percentage point of parameuic. 
M e r  model performance as N2 increased. 
Higbd;L;yuireniltri. 
Cyclic MOVE models perfomed well. No 

or N;. Ahmate nonparametic models did not 
perforrn weL 
Mode1 performance did not change wirh NI 
or N2. iGeh vaxiability in rends. MOVE, and 

in-d for duar ion  uias? but increased 
and decreased in verification trials. 

points ot paramenic. h 

Hgh variab* in rendu, as above. Highesc \ 
ME when NI and NZ are simikr. Altemate 
nonpammnic models wBhLi 267 percent of 1 
parameuic 
W C  and RE- perfomed well. SSE 
decreased as N2 increased. Aheniate 
nonparametric models up ro 63% W e r  SSE. I 



4.10 RECOMMENDED MODELS 

Section 4.8 pmvides a detaiied account of the best mode1 performance separat* for each 

statistical ad- meanire The purpose of rhis section is to determine which model 

achieved the m;n;miim rota deviaxion h m  the target statistical atkpacy meanues, in relation 

to the performance of the best and worst models, whik at the same t h e  not failmg the error 

dtagnosrics tests for nomormalicy of residuals. The recommended models in a given case of 

extension period, N,, cornmon N, and r, are those modeIs achieving the minimum 

d u e  of OBJ, in the verifiation tds .  In this section the minimum d u e  of OBJi is referred to 

as min(0BJJ for discussion puposes. 

The foIlowing procedure was used to arrive at the recornmendations. The models which 

obtained min(OBJJ, and at the same t h e  did not fail the error diagnostic tests for skewness 

and kurtosis, is determineci. Again, the number of nearest neighbors used by the 

nonparametrîc mod& follows those determineci by the wduation trials. The resuits from the 

veri£ication niais showed that neady all models failed the serial cornelarion test on residuals, 

indiaMg all madek were genedy inadequve in taking into account the time varying 

relationship b e e n  the base and index record. Since the performance of all models in that 

regard are equR.alendy poor, the models were not censored due to serial corrdation of 

residuals in the vedication trials. 

For the vdcat ion trials conducted, the same mode1 did not ob& rnin(OBJ3 in both sets of 

verification trials. It is rasonable that two sets of vdcation sets (for each case of r,) would 

suggest different models, because the data used in each verification set is different. The 

characteristics of one technique may lend itseif as the most appropriate depending on different 

features of the data. For instance, in the case of the nonparametric techniques, if the flows 

tend to rise or kll sharply on the hydropph, the hst difference feature vecton may ~rovide 

an edge, or if the s d e  ciifferences baween montMy flows interferes with the par~em 

recognition, the standardized feature vectors may be more usefut The investigation imo these 

types of ~uestiom is suggested for M e r  r d .  The purpose of the present stuciy was to 



develop the alteflfate techniques and e v k  t h e -  in cornparison to the currendy 

&le pvvneaic techniqiies. 

The addition of OBJi h m  two trials -es to the cumulatme deviation h m  all  the adequacy 

statistics from both sets of d. In this way, both verification triais m;ry be urilized to 

detemiine the overail best modeL Calculanng the objective function value Uung both 
vdcat ion  aias essentidy unounts to adduig up al the deviations fiom the adecpcy 

Statistics k c e  for each model (once for each vdcat ion  set). Note, however, that the value 

of OBJi cannot be compared to the d u e  of OBI, h m  another aial to detemine the best 

model, O* the additive pmperty is relevant. One could not, for instance sa/ th model i 

performed better in trial p, than in nial q, because OB Ji@) < OBJ,(q). 

Thus, the 031; dues  for both verdication sets were added together to provide a cumulative 

indi&on of the mode1 adequacy &mg into account all the adequacy meanires for both 

v&cation aias. The recomrnended model is the model which achived the minimum value 

of the sum of objective funccions from the respective d U a a o n  trials. R e d  that verification 

sets 1 and 2 apply to r, > 0.666, and vdca t ion  sets 3 and 4 appky to r, < 0.666. If we let 

OBJi(s) = the value of OBJi obtained for model i in verificahon set s, the recommended model 

for r, > 0.666 is the model which achiwed m;nCOBJ,(l)+ 0BJi(2)]. The recommended model 

for rv < 0.666 is the model whidi achieved &OBJi(3) + 0BJi(4)E 

A shortco+ of the RPN and RPNM tediniques is that there is no single unique record 

obtained h m  these techniques, railier a whole sequence of different records rnay be ob&ed 

because of the random m r  component. Since the purpose of streamflow record extension is 

to establish a consistent database of flow records, this approach is not recommended. 

Therefore, RPN and RPNM are rejected when they happen to adieve minimum OBJ,, m the 

verification A, in favor of the next best model which does not fail the error diagnostics 



The m& achieving the niinirmun objective function value cornbineci for vdcation sets 1 

and 2, *OBJi(l)+ 0BJi(2)J, for each combination of N, and N, for r, > 0.666 are shown in 

Table 4.27. The modeis s h m  in Table 4.27 are recommended to use for Streamnow record 

extension for the RspecWe extension period, common period, and cross correlation between 

the base and index record F e r  than 0.666. Note that vdcation set 1 unfominar$y did not 

indude NI -5 years due to missing ciam AU recornmended nonparameaic models, except 

NPlC for N, - 5 years, replaceci other parametric models which achieved lower OBJ,, but 

failed the ermr diagnostics. 

Figure 4.13 shows the historie, N'PIC, and REG generated monthly flows for English River at 

U M e .  The extension and cornmon periods are 5 and IO years, respectnrety. NPIC is the 

recommended model, and REG is plotteci for cornpuison. Neither NPlC nor REG tended 

to consltentiy underestimate or overeStimate. NPlC and REG underestimate and 

o v b e  high flows in the same years. Note the b e p n q  and end momhs of the 

generated record are mishg for the noncydic nonparametric mod& because the dry season 

exteads into the previous year, thus a feature vector couid not be determineci for that year. 

The gaps in the hydrographs comespond to missing daa. 

In Figure 4.13, the peak and low flows seem to correspond fairiy well Neither m d  

reproduced the dry year in 1924, where the peak flow 

reproduced the peak flow in 1925 quite well. 

An interesring feature of the nonppuamet~ic models is seen for the period between 

approximateiy September and Febniary 1924 in Figure 4.13. NPlC generated a s m d  rise in 

the flow dunng this period. Note during the begmhg of 19î3 and 1925, a similar rise in the 

flow occurs, but in other years ir does not. What has occurred in this case is the flow pattems 

on which the nonparamenic mode1 based its generated flows (nearest neighbors) had a umilar 

pattern during this period. R e d  th the nearest neighbors are selecred based on "distances" 

in rhe pvrem space calculatecl between feanire vecton for the base record during the 

artension and common peiods. If the base record did not contain idonnation regardmg the 



flow conditions at the index record site ophich d e r  caused or prohibired this pattern of 

fluw from occumn%, then the nonpptameûic method would select inappropriate neares 

neighbors for ùip time p e d  Fo-, the wet seasons and dry seasons do not utSize the 

same nearest neighbon, so the nonppnmepic metbod an "recover" qyickly arithin the same 

flow year. 

Figure 4.14 shows the historie, NPlC and REGM generated flows for English River Near 

U&e. The extension period is 15 years. The common p e r d  is 25 yean. NPlC replaced 

R E M ,  *ch had a lower OBJia, but d o s e  residds were not nomiayr dkributed The 

longer common period &ces model performance The timing of the pe& and low flows 

tend to correspond better wbh longer common period Notably, a vexy h& flow in 1927 was 

reproduced well by REGM 

Figure 4.15 shows the hlroric, NPlC and REGM generated flows for Island Lake River Near 

Island Lake The extension period is 15 years and the cornmon p e r d  is 25 years. NPiC was 

recommended, r e p k g  REGU NPiC modeled the peak and low flows quite well. Bo& 

m& had some difficulty correspondmg to the peaks between 1942 and 1944. 

Table 4.27 Recommended Extension Models, r,, > 0.666 

1 15 1 
1 

REGM 1 NPlB NPM - 1 

N, = 20 Years 
- 
- 

1 35 1 
1 

REGM 1 NP2B 1 NP3B 1 NP2B 1 

N, - 15 Yean 
- 
- 

NI = 10 Yean 
- 

REGM 

N, 
5 
10 
- - - - 

N,-5Yean 
MV3M 
NPlC 

NI)M 
NPlA 
NP2B 

20 
25 
30 
- - 

40 
45 
50 
55 
60 
65 

REGM 
REGM 
REGM 

NP3B 
NPlC* 
NP1C 

* Recommended over random noise model. 

NP2A 
NP2A 
NDiC 

I 

NPM 
NPlC 
REGM 
REGM 

- 
- 

REGM 
REGM 
REGM 
REGM 
REGM 
REGM 

I 

NPM 
NP2B 
N P B *  

- 
- 

NPIC ï 

NPlC 
NPM 
REG 

REGM 
- 
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Figure 4.13 Generated and &orid Flows for Enghsh River at U m f r d e  
N, - 5 Yean, N, - 10 Years, r, > 0.666 

Figure 4.14 Generved and Hisrorid Flows for En@ River at Udeville 
N, = 15 Years, N, - 25 Y-, r, > 0.666 



Figure 4.15 Generared and Historical Flaws for Island Lake River at Island Lake 
NI - 15 Years, N, - 25 Years, r, > 0.666 

The models achi&g the minimum objective funcrion value combineci for vedication sets 3 

and 4, &OBJi(3)+ 0BJi(4)1, for eadi combination of N, and N, for r, C0.666 are shown in 

Table 428. The models shown in Table 4.28 are recofnmended to use for mearnflow record 

extension for the respective extension period, common period, and aoss co~elatïon between 

the base and index record les than 0.666. 

A point should be made at this point regadmg the feasibw of using a set of base and index 

records where r, c 0.666. The anaJysk of the behavior of the v ~ o u s  models for the case of r, 

< 0.666 was done more for investigatke purposes rather than to make the scatement about 

pedorming excenUons Ugng stations where the aoss correlation is lm. In fact, it is not the 

opinion of the author thar performing an &on b d  upon low cross correlation provides 

a q  benefit other dian die hydrologist will get a longer record out of the exercise. When r, is 

small, there may be no physcal bais upon which the extension can be base4 and factors 

affectkg the runoff are different The factors affecthg runoff inclde nibbasin geometxy, 



such as drauiage area, shape, dope and topograpb geologic variables such as soi1 type, 

pro*, sediment characteristics and groundwPa regime, for example. ki the case of 4 

r, then, it is unlik$y that a useful extension can be made widi the paramectic or 

nonparamettic techniques, and an altemate form of record genemion, nrch as using 

detennininshc modeh, couid be investipted. Even though r, can be testeci to be statisticaiiy 

sigdcaflt, there is no guarantee rhat there is a physcal basis of h& correlaaon Su& 

co&on may occur by chance. In the present snidy r, could not be genefalized as to 

& d e r  it is statisti* sipificant or not, due to the large variation in sample sizes 

encomtered in the data sets. 

Figure 4.16 shows the historie, MV3M and NPX generated flows for the Manigotagan River 

Near Manigotagan, verification set 3. The extension and common periods are 10 and 20 years, 

respecWely. .NPX k the recommended rnodel, as an alternate to MV3M, which failed the 

m r  diagnostics. In Figure 4.1 6, some of the peaks co-nd w$l but generaUy not for 

moderate flows. Bo& models provide variable flows during dry pe.riods, when dearly the 

hinoncal flows are quke uniform during th puid  Note the extremdy high flow in 1966 

produced by W3M, showing the high vaxiability chat this model is capable of producing. The 

general poor model performance is a reasonable occurrence in light of the low r,, and 

supports the assertion rhaa relying on record extensions for low r, is not a preferred 

alternative. Even &ou& some of the rising limbs are modeled well, the general shape of the 

hydrographs near the peaks, falling limbs and lm flows are not reproduced w d  

Figure 4.17 shows the hktoric, MSUM and NP2C generated flows for the S q e o n  River at 

Outlet of Salvensen Lake, verificaeon set 4. The excemion and cornmon p e r d s  are 10 and 

20 years, m e l y .  The peaks and d e y s  do not correspond welL This means the h e g  

of the high and low flows in the generated model are different h m  the k o n c  mode1 The 

models do not perform well in t h  case. This provides a v b d  confumation of the evaluation 

and verification results which shmed the cross correlation betwam the generated and hisroric 

flows, and the p e r f o ~ c e  in reproducing the serial correlation of the k o n c  flows was 

mch less for r, < 0.666. 



Table 4.28 Recommended Extension Models, r, < 0.666 

Figure 4.16 Generated and HLroricd Flows for Manigo- Rner Near Maaigotagan 
NI - 10 Years, N, - 20 Yean, r, < 0.666 

N, - 15 Years 
- 

NI - 10 Yevs 
- N, 

5 
NI-5Years 

w1 



Figure 4.17 G e n d  and H k o d  Flows for Sturgeon River at Outlet of Salvensen Lake 
NI = 10 Yean, N, = 20 Years, r, < 0.666 

4.103 Recommended Procedure to Determine Appropriate Mode1 and Pafomi Record 

Extension 

Based on the results of the verdication data, the recoramended extension model and general 

procedure for caqing out sûeamflow record extension for a gken combiaauon of extension 

period, N,, common period, N,, and a o s s  correlation between the base and index record, r ,  

is summarized as foUows. 

Step 1 

Step 2 

Select base and index strcrimfIow stations with coinadmg meaSuTements. Determine 

the requirrd extension pexiod and product moment cross correlation by either 

equation 3 . 1 3 ~  or 4.9. The cornmon period used for selecting the model shd  be the 

closest mdtip1e of S yean. 

If r, > 0.666, determine the recommended mension model £rom Table 4.27. 

If r, < 0.666, determine the recommended extension model fiom Table 4.28. 
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Step 3 If the selected mode1 is parametnç d o m  the mon* streaniflms either 

d loguithms, or another power ansformation of choice, then perfomi the 

extension using the method as outlined in Section 3.2. Go to Step 8. 

If the selected mode1 is noncydic nonpammtric, d e  the mon* mean 

trydrognph, to dasslfy the data into wet and dty seasons. If the classification L not 

visually apparent, perform the noncydic nonparamenic extension on a pomon of the 

1/3 the of the totai record the 

classification 

Step 4 Classlfy the flow data into feature vectors, u & q  the appropriare transformation in 

accordance with Section 3.5.2. 

Step 5 If r, > 0.666, detemine the appropriate number of nearest neighbors, nw, fiom Table 

4.8. 

If r, < 0.666, detelmine the appropriate number of nearest neighbon, %, from Table 

4.9. 

Step 6 Rank the flow years within the same pattern dass in accordance wirh Section 3.5.3. 

Choose the fim n, feature vectors as the nearest neighbon to utilize for flow 
generation 

Step 7 Generate the synthetic feature vectors in accordauce d equation 3.40. 

Step 8 Reverse rransfomi the data, if required to obtain the generad flow values. 

Guidance as to the range of statistical performance which may be expected from a parti& 

m d  can be obtained from Table 425 and Table 4.26 for r, > 0.666 and r, c U.666, 

respeh4.- 



C h a p t e r  I 

SUMMARY AND RECOMMENDATIONS 

5.1 SUMMARY OF RESULTS 

This mdy compared the performance of existing patametric s t r d o w  record extension 

techniques and nonparameuic rnethod of d o w  mord artension which was developed 

as a variation of &g nonparametric techniques. The nonpafametric method utilizes the 

relationship between the index and base record to idenafy similr flow patterns that are used 

to generate d o w  dam The record extension tediniques were evaluated based on a 

statistical cornparLon of the generated flows to the hinoric flows. Both cydic and noncydtc 

forms of the techniques were ewamined The performance of the techniques were &ed 

for different cross correlation between the index and base station, r, > 0.666, and r, < 0666, 

as w d  as for different combLiatio11~ of extension period and available cornmon period. The 

evaluation &O consisted of examhhg the number of nearest neghbors used by the 

nonpararnmic techniques, and testing the vdidey of some theoretical assumptions made in 

applymg the parametnc techniques. 

A set of evaluation data incorponring 21 sets of base and index strearns for r, > 0666 and 16 

sers of base and index srreams for r, < 0.666 £rom Manitoba and Oncvio were used to 

aramine the statistical properries of the techniques. The data was log-transfod prior to use 

in the parametric m& to remove & m e s s .  The extension techniques were then carried out 

on four sepaate sets of base and index meams (2 for each r,) for the verification of the 

d t s .  The verification trials form the basis of the condusions regardmg which models are 

most appropriare. 

The a n a l p i  was conducteci on s t r d o w  records of long le+ such that a portion of the 

record is temporar;ty assumed as "miskg", then the extension is d e d  out in order to 



generate the 'missing" bistoncal flows. The generated flows are compared to the 

historid flows. The d t s  of the verification ÛLL generaüy confirmed the fin+ of the 

whution trials, and are stummhd below. 

Atthough the data were log-transfo& in many cases the paamenic models dlplayed 
residua Senes which were not nomiilly disaibirted, i n d i c a ~ g  thar the parametric models did 

not f o h  the assumption of nomiality of error terms, upon which parameuic dass of models 

is based. ï h e  resa.de, also showed t&at both the p d c  and nonparametric models yielded 
residual sexies which were sen@ correIated. This indiates that the variables used in the 

parafnetric modeL were not random, anorher contradiction to the paratnetric modei 

assumptiom, and that all the models genedy did not adequately take into account tirne 

vaxying relationship between the base and index records. Where the residual sexies from a 

parametric modei fdd the tests for normaliry of residiuls, an altemate model is proposed, 

which did not fail the tests for normalay of residuils. The altemate model is not necessanly, 

but o h  was, a nonparametric model. In mmy cases, the nonparametric modeis either 

perfomxd best or provideci a relatively dose alternative to a parametric model which did not 

confom to the model asumpions. 

The optimum number of nearest neighbon used by the nonparametric models, no,, did not 

vaxy appreciably with extension p e r d ,  but did Vary with comrnon period, r,, and the type of 

nonparammic model used. The spread between the number of nearest neighbors used by 

different nonparamenic models was quite narrow for a cornmon period less than 40 years, but 

diverges rapidly for common periods greater than 40 years. The optimum nurnber of nearest 

neighbors inaeased with common per id  The ratio of n, to common period decreased as 

common period increased, ie. the rate of increase in n, did not Vary consistendy with the 

number of years in the cornmon perid  Uriliring the recommended number of nearest 

neighbors decreases the performance of the nonparametxic techniques, in cornparison to the 

case whae the nonpanmeaic rnodels LII&S the optimum number of neares neighbors 

chemined kom extending portions of a long-length record. 



In gened, all the excension models g e n d  flm which displayed faidy high cross 

correlation with die historic flows. The cross correlation inmeci as the record lengrh 

inmead, and deaeased as r, decreased. 

The suial correlation.of the hisronc flows was reproduced best by n o n q d c  nonpanmetic 

and cydic MOVE procedures. The seriai correlation of the generated flows tended to be 

slighdy d e r  than the histonc flw, and model performance neither inaeased nor 

deataxd with extension or comrnon period. The ab* to reproduce s e d  correlation did not 

seem to be affected by variation in r, 

The cydic parametric and noncydic nonparametxic models also reproduced variance better 

rhui the other m&, h o w e r ,  the variance tended to be slightiy over-estimated The 

nonparametric models tended to pexform better as common period inaeased. A deaease in r, 

resulted in underestimation of variance. 

An models repduced mean flow quite wd. REG, NW, and the noncydic nonparametric 

models reproduced the mean flow the best o v d  The nonparametric model performance 

i n d  with common p e n d  The generated mean flows tended to be lower chan the 

histoncal means when r, decreased. 

There was a high variilbility in the model' upability to reproduce low fiows The noncydic 

nonparameuic techniqyes, and cydic and nonqdc  parametnc MOVE techniques performed 

best Al1 modeis tended to merestimate the low flows. Mode1 perfomiance for this parameter 

inaeased as the common period increased, and decreased quite dramatiCayr as r, decreased. 

The noncydic nonparametic, REG, and cydic MOVE techniques provided the lowest MPE 

overall. Agam, the results of mean percentage error, MPE, were quite variable, and 

performance serio* decreased as r, d e c r d  

REGM and noncydic n o n M c  models dispiayed the lowest nim of squared deviations 

hom the heoric flaws, SSE. Performance in terms of SSE increased slgrilficantly as available 

common period increased, and decreasedwirh r, 



The nonparvneaic techniques are recornmended as a viable alternative in the cases where the 

peramcPic models displyed nomormal residd series. The resimuL of the flows generated by 

the parvnWc models were not nonnally distributeci in many cases, showing that the 

pvVneaic models do not follow the theoretical aYUIIlptions upon which they are baseci. 

Howeve., the w of the nonpPnmeaic mod& as alternatives to the parametric maciels may 

involve a aade-off in terms of StaOStid performance in some cases. 

ï h e  model which obtained the m;nimirn~ objective function due ,  which also did not fail the 

test for normaLry of error remis is recommended as the best overail model to use in a gben 

case of N, , N, , and r, The recommended procedure for generathg d m  records is 

*en in section 4.10.3. 

Grieat c u e  mus be taken d e n  considenng remrd extensions based on l m  cross correlation 

b e e n  the base and index record There are likely factors which d e  record d o n  

infeasible in nidi a case. If the extenson or common period falls outside the range shown in 

Table 4.27 or Table 4.28, one rnay iitilize the model recommended for the next closest d u e  of 

extension or common period, or &se kom the table the model which occun most often 

out of al1 coxnmon periods. 

In any case, judgement musr be utilized in selecting the appropriate model in relation to many 

factors, induding the h e c a l  performance of the rnodeL The inirial evaluation should 

indude e x i u h h g  features of the dam bemg urilized relative to the features of the data on 

&ch rhese recornmendations are based, since the best models based on the r d t s  from this 

midy may not necessady be the best models in wery case. If the available common period is 

long enough, an initial aL1 extension could be performed on a portion of the index record 

m d y  known, then the performance of the models evduated on that basic. The rrsulu from 

the hi&d evaluation should be factored into the final m d  selection. 

The cydic nonparametric mod4 as presented, is rehbtiv$y simplLtic in cornparison to the 

nonqdc nonparameaic m&, in that ody a Mgle monthly flow is indudeci in the feature 



vector. Expanding and reficling the NPM m d  is suggested as future work One 

consideration is induding adjacent months as part of the feature vector. 

M e r  rehements to consider for the nonparametric modek, in gened, indude: 

- induding phyacal data such as precipitation or s n d t ,  for mample, in the feature 

vectors, 

applying w+t to nearest neighbors doser in k e  to the egtension period to 

detemine the effect on feature veaor selection, 

applymg wei+ts to adequacy measures in the objective function calculath to 

determine the effm on modd seidon, 

deteraaifle the optimum season lengths determineci for each model separately, d e r  

than uskg the d t s  from one model, 

determine the effect of data infilluig on model performance. 

The quesrion as to rhe overall effea of the panmetcic models not following the theoretical 

assumptions of normaJly distributecl residuah is framed in r e m  of a theoretical standpoint in 

this study. The nonpanmeaic m& are proposed as an alternative to models which have 

problems following the theoretical assumptions upon f i c h  they are baseci. The effect of 

nomormal residuals on the generated flm is &O a niggested topic of funher research. The 

results may provide some insight as to the serious~less of the failure of die parametric models 

to meet modeI assumptiom. 

As weIl, the applicabilky of the models should be investigated for streamflow records outside 

the midy area, and the anaysis would benefit if updated as new data becorne available. 



REFERENCES 

Aky, W., and Burns, A, 1983. Mixed-station extension of monthty m d o w  records., 

]aimudqf@d~w& E M ,  109(10), pp. 1272-1283. 

Anderson, R, 1942. Distribution of the s d  correlation coefficient, A d  4- 
S e ,  v.13, pp. 1-13. 

Bardsiey, W., 1989. Usiog histokd 6xa in nonpmmetric flood estimation-, ]d gf 
&&&p, V. 108, pp. 249-255. 

Beauchamp, J., et al., 1989. Cornparison of regression and tirne-series methods for ~ynthesizing 

missing ~ a d o w  recorb., W~nr RenxmeF BuUem2,25(5), pp. 96 1-975. 

Biquan, W., ex al., 1986. The appliaaon of pattern recognition to the predikon of the 

occurrence rime of large earthquakes., I d  Gq6wm a2 Ramgmm, No.8, pp- 

543-545. 

Booy, Ç 1992. Gxaso Notes œz S u  M a  ol Hjddcgy, U&* of Manitoba 

Burn, Dy 1993.6rasP Noteson Topio zh &&nigy, University of Manitoba 

Clarke, R, 1973. A review of some mathematical models used in hydrology, with observations 

on rheir calibration and use., Jarmal ~~, v. 19, pp. 1-20. 

R, 1980. Bivariate gamma disnibutions for extending annual s a e d o w  records bom 

precip~orx Some large sampie results., W & R e n i r m s M ,  16(5), pp. 863-870. 



Cooper, D., and CLrke, R, 1980. Distribution-free methods for esamasing flood and 

d m  errceedence probabilities by correlafion., W& Reaaro hm&,  16(6), pp. 1 121- 

Dahmen, E., and Hall, M., 1990. Sarea>g tfhybdpf b., International Institute for Land 

Redvaation and hprovexnent 0 Publication No. 49, Wageningen, The NetheriandS. 

Delleur, J., and H a m ,  M, 1975. Remod of pexiodicities by differencing and mon* mean 

subtraction., Jd v.26, pp. 336-353. 

Diskin, UH, 1970. Definition and uses of the linear +on model, W-RBMDB ResemnS, 
6(6), pp. 1668-1673. 

Faucher, C, 1994. yrdrologic design rnethodology for s d - s c d e  hydro, Cmurdum W ~ W  

R e a m ~ ~  Asmahin l+mdqs, 4 p  h n u a l  Conference, Winnipeg, Manitoba, pp. 439455. 

Fiering, m., 1967. St?wqîhvs)nthear, Hamard Univ* Press, Cambridge Mass. 

Gray, D., 1973. hbdhk on Ose p m q h  qfb$&y, Wver I n f o d o n  Center, Inc., Syosset, 

N.Y. 

Grygier, J., and Stedhger, J., 1989. A generalized maintenance of variance extension procedure 

for emending comelated series. W~RenxmesRePa2>oS, 25(3), pp. 345-349. 

Henley, W., and Han4 D., 1996. A k-nearest neighbor dassifier for wessing collsumer credit 

A, 7hp S e ,  45(1), pp. 77-95. 

HLxh, & 1979. An wduation of some record reconstruction recbniqws., W h -  h # r m  

I&ZW&, 15(6), pp. 1781-1790. 

HVsch, R, 1982 A cornparison of four record extension techniques., W e  Renrcics W, 

18(4), pp. 1081-1088. 



Jadwn, B., 1975. The use of d m  mod& in plamkg., W& Reaxmer R d ,  
1 l(l), pp. 54-63. 

Karlsson, M., and Yakowia, S., 1987. Nearest-neighbor rnethods for nonparamemc rainfd- 

runoff fomxsthg., W&Rearws&zwd, 230,  pp. 1300-1308. 

Kawas, M., and Ddeur, J., 1975. Remod of païodia8es by ciifferenkg and montMy mean 

subtraction., J d c f h S r l i c d q p , ,  v.26, pp. 335-353. 

Kendall, MG., and Stuart, A, 1969. % ariumai dmy v.1, 3d d, Hafner, New 

York 

MIass, A, A al, 1962. k g a  4- la am^ m, Harvard UniversOy Press, Cambridge, 

MasS. 

Manitoba Hydro, 1993. ASme II mamal SOWT&V m m m t i m  1912 - 1967, Report No.: 

TM No.93-3. Generation PLPaing Division, Wdpeg, Mm,koba 

Maralas, MC, 1967. Mathematical assessment of synthetic ùydrology, W&Reso3#113~ -ch, 

3(4), pp. 937-945. 

Mebnq O., 1942 *, Dover Publications Inc., New York. 

Neter, J., et al, 1989. A@loraoqmsbmm& 2*l ed., Richard D. kwin hc., Boston, MA. 

W., and Pesaot, C., 1978. Adas qf Cm&, Fkheries and Environment 

G r d a .  

Panu, U., a al, 1978. A feanire prediction m d  in synthetic hyckoIo&y based on concepts of 

pattem recognition., W k t d h a î m ~ ,  14(2), pp. 335-344. 

Panu, U., and Unny, T., 1980. Extension and application of feature prediction mode1 for 

synthesis of hyddogic riecords., WeReararPs&~~&, 16(1), pp. 77-96. 



Parret, C, and Cartier, K., 1990. Methods for e s t k u h g  mont& d m  

characterisacs at ungaged sires in westem Montana, US. Geologid S w q r  Water-Supply 

Paper 2365. 

Pear~e, A, 1990. Streamfbw generation proces: an au& view., W& ReaaceF R e s a d ,  

26(12), pp. 3037-3047. 

P h m u ,  W., 1978. Flow generation by catchment models of different complariry - a 
cornparison of performance., j" ~~, v.38, pp. 59-70. 

Raman, H., et ai., 1995. Mo& for extending streamflow data: a case study., 5iiinm 

Jd 40(3), pp. 381-393. 

Sikonia, 1992. Mass-conseMng method of characteristics for streamflow modehg U.S. 

Geologid Sumey Wm-Supph/ Paper 2369. 

Sirnonivic, S., 1995. Synthesizing misshg meadow records on several Manitoba sueams 

using multiple nodnear standardized correlation and+., RjtMgd Scaerrer Jd, a@), pp. 

183-203. 

Srikanthan, R, 1978. Sequential generatioa of monrhly strdows., Jd a m ,  vv.38, 

pp. 71-80. 

Tou, J., 1968. Feanue e d o n  in pattern recognition., P m  lZtqpwz, v. 1, pp. 3- 1 1. 

Tou, J., and G o d e z ,  R, 1983. P m  mq+v prmcqder., Addison-Wesley, Reading, 

Massachusetts. 

Valdes, J., et al., 1980. Chooshg among hydrologie regression models 2. Extensions to the 

standard model, WeR8ams ReaMos, 16(3), pp. 507-5 16. 

. . 
Vogel, R, and Stedinger, J., 1985. Minumun wiance sueafnflmv record q e n t a t i o n  

procedures., W&RePamerReaÛoS, 21(5), pp. 715-723. 



Vogel, R, and Kr04 C, 1991. The value of d o w  record augmentation procedures 

in lm-flow and flood-flow kquency aaalyss., J a m U l l q f ~ ,  v.125, pp. 259-276. 

W;ttanabe, S. (Editor), 1969. Medm&es 4' mxgnhkn., Academic Press Inc., New York 

YakOwitZ, S., 1987. Nearest-neighbor merhods for rime series +., Jd tf Tm Sm& 

A@, VOL 8, No. 2, pp. 235-247. 

Yau, S., and Chang, S. 1975. A direct method for duster a d p s . ,  P m  -, v. 7, pp. 

2 15-224. 





Mean Monthiy Hydrograph 
Goch Rhrer Below Allen Rapids 

IUN w 
Mmth 

FEB MAR APR MAY SEP OCT NOV DEC 

Mean Monthiy Hydrograph 
Island Lake River Near Island Lake 

JAN FEB 
- 

MAR APR MAY 
- 

AUG SEP NOV DEC 

Mmth 
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Mean Monthly Hydrograph 
Rateau River Near Dominion City 

O 1 I I 

JAN FEB MAR APR MAY 

Mean Monthly Hydrograph 
Rat River Near Otterburne 

JAN FEB MAR APR 
c 

AUG SEP OCT NOV DEC 



Mean Monthly Hydqraph 
Rat River Near Sundown 

JAN FEB MAR APR MAY Jvr AUG SEP OCT NOV DEC 

Month 

0 050E004 

Mean Monthly Hydrograph 
Whitemouth River Near Whitemouth 

O 

JAN FEB MAR MAY Jvr AUG SEP ûCX NOV DEC 
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Mean Monthly Hydrograph 
Popîar River at Outlet of Weaver Lake 
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NUMBER OF NEAREST NEIGHBORS USED 

BY NONPARAMETRIC TECHNIQUES 



Table El Avg. No. of Neauest Neighbors Used by Nonparametric Techniques Avernged 
Over AU Trials, and Ronnded to Nearest Integer. Standard Deviation of Nearest Neighbors 

Used Shown Betow Average Valne, NI = 5 Years, N2 = 5 to 75 Years, rw > 0.666 



Table B-2 Avg. No. of Nearest Neighbors Used by Nonparametric Techniques 
Averaged Over Ali Trials, and Roanded to Nearest Integer. Standard Deviation of Nearest 
Neighbors Used Shown Below Average Value, NI = 10 Years, Nz = 10 to 70 Years, r, > 0.666 

STDV: 1.45 2.25 2.16 4.61 3.42 4.69 6.07 
NPlC 5 4 6 

1 

STDV: 2.1 3.87 4.88 5.31 5.3 3.37 5.22 
N P M 3 4 5 6 8 8 8  

1 1 I I l I I 

STDV: ( 1.62 ( 2.54 ( 2.11 1 3.36 1 3.73 1 4.7 ( 1.92 



Table B-3 Avg. No. of N e r u e s t  Neighbors Used by NonparameMc Techniques 
Averaged Over AU Triais, and Rounded to Nearest Integer. Standard Deviation of Nearest 
Neighbors Used Shown Betow Average VPlne, N, = 15 Years, Nt = 15 to 65 Years, r,, > 0.666 

STDV: 1.62 2.69 2.41 1 
STDV: 2.19 3.12 3.09 
NP2C 4 5 6 
STDV: 1.63 1.86 1.91 

STDV: 2.22 1.98 2.61 
NP3B 5 5 7 
STDV: 1.91 2.76 2.51 
NP3C 5 6 6 
STDV: 1 3.19 1 4.16 1 3.42 
NPM 4 6 6 

STDV: 1-94 2.04 1.98 



Table B-4 Avg. No. of Nesirest Neighbors Used by Nonparametric Techniques Averaged 
Over AU Triais, and Rounded to Nearest Integer. Standard Deviation of Nearest Neighbors 

Used Shown Below Average Value, NI = 20 Years, Nt = 20 to 60 Years, r, > 0.666 

1 = 20 
N2== 20 25 30 35 40 
NPlA 6 6 7 7 9 
STDV: 3.74 1.64 4.1 4.W 5.26 
NPlB 6 6 8 9 9 
STDV: 2.47 2.4 3.78 5.1 6.02 

1 STDV: 1 4.28 1 1.63 1 2.51 1 1.67 1 1.3 

1 
STDV: 4.15 2.5 2-95 2.39 

NPM 5 6 8 7  
STDV: 1.99 3.27 3.51 2.83 



Table B 5  Avg. No. of Nearest Neighbors Used by Nonparametrie Techniques 
Avemged Over Ali Triais, and Ronnded to Nearest Integer. Standard Deviation of Nearest 
Neighbors Used Shom Beiow Average Vaiue, NI = 5 Years, N2 = 5 to 75 Years, r, < 0.666 
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Table B-6 Avg. No. of Nearest Neighbors Used by Nonparamettic Techniques 
Averaged Over AU Triais, and Ronnded to Nearest Integer. Standard Deviation of Nearest 
Neighbors Used Shown Below Average Valne, Nt = 10 Years, Ni = 10 to 70 Years, r,, < 0.666 
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Table 5 7  Avg. No. of Nearest Neighbors Used by Nonparametric Techniques 
Averaged Over AU Trials, and Ronnded to Nearest Integer. Standard Deviation of Nearest 

Neighbors Used Shown Below Average Vaine, NI = 15 Years NI = 15 to 65 Years, r, c 0.666 



Table 68 Avg. No. of Nearest Neighbon Used by Nonparametrie Techniques 
Averaged Over AN Triais, and Roonded to W e s t  Integer. Standard Deviation of Nearest 
Neighbors Used Shown Below Average Vdoe, NI = 20 Years, N2 = 20 to 60 Years, r, < 0.666 



EVALUATION RESULTS 



Table C-la Mlnimnm Deviation from Target Cross Correlation, 
as a Fraction of Target Value, NI = 5 years, r, > 0.666 

Cornmon P&od 

5 

10 
15 

Average 
Deviation 

-0.16 
-0.16 
-0.11 
-0.10 

Models 

MV2 
MV3 

REGM 
REGM - - 

20 

25 

30 

35 
L 

40 
45 

Standard 
DaTiation 

0.10 
O. 10 
0.07 
0.07 

-0.10 
-0.10 
-O, 10 
-0.10 
-0.10 
-0.10 
-0.10 
-0.09 
-0.09 

- 
1 

REGM 
W 2 M  
REGM 
MVlM 
MNZM 
REGM 
MN2M 
REGM 
MV2M 

NP2B 
REGM 

0.07 
0.06 
0.06 
0.05 
0.05 
0.06 
0.05 
0.05 
0.05 

L 1 

50 

- - -  

I 

0.05 
0.03 

1 

-0.08 
-0.08 

L 

75 

REGM 
N P l B  

0.03 
0.05 

NPM 
REGM 
NPM 

-0.10 
-0.08 

NPlB 1 -0.08 
REGM -0.08 
NPM 1 -0.08 

-0.08 
-0.08 
-0.08 

55 

60 

65 
70 

0.03 
0.05 
0.04 

. - -  

0.04 
0.05 
0.05 

-0.08 
-0.08 
-0.08 
-0.08 
-0.08 
-0.08 
-0.08 
-0.08 

REGM 
NPM 
REGM 
NPM 
NPM 
NPIB 
REGM 
NPM 

0.05 
0.05 
0.05 
0.04 
0.04 
0.03 
0.05 
0.04 i 



Table C-lb Minimum Deviation from Target Cross Correlation, 
er a Fraction of Target Vaioe, NI = 10 yenrs, r, > 0.666 

~&mmonPeriodI Modeh 1 Average 1 Standard 1 

- - 

15 

50 

1 1 1 60 1 REGM -0.08 0.04 

I 

F 
- - - -  

REGM 
NPM 

0.07 
0.06 
0.07 

NPM 
REGM 
NPM 

- - 

-0.08 1 0.04 
-0.08 0.04 

- - 

65 

" 

-0.14 
-0.13 
-0.13 

i I 

55 

0.04 
0.03 
0.03 
0.04 
0.04 

I 

1 

REGM 
NPM 

N13M 
NPlA 
NP2A 
REGM 
NPM 

-0.08 
-0.08 

-0.08 
-0.08 
-0.08 
-0.08 
-0.08 

70 

0.04 
0.04 

-0.08 
-0.08 
-0.08 
-0.08 
-0.08 

NPLA 
NPlB 
NP2B 

REGM 
NPM 

0.03 
0.03 
0.03 
0.04 
0.04 



Table C-lc Minimum Deviation from Target Cross Correlation, 
as a Fraction of Target Vaiae, NI = 15 years, r,, > 0.666 

Cornmon Period 
Ci=) 
15 . 

1 25 1 REGM -0.11 1 0.04 1 
20 

M& 

MV2M 
MV3M 
NPM 

REGM 
NPM 

Table C-ld Minimum Deviation from Target Cross Correlation, 
as a Fraction of Target Value, NI = 20 years, r,, > 0.666 

Average 
Deviation 
-0.14 
-0.14 
-0.14 

1 

50 
55 
60 

Standard 
Deviation 
0.07 
0.07 
0.05 

I 

-0.11 
-0.08 
-0.08 

30 
35 
40 

-0.13 
-0.13 

0.05 
0.04 
0.04 

REGM 
NPM 
NPM 

1 

NPM 1 -0.08 
NPM -0.08 
NPM I -0.08 

Vm)  
20 
25 
30 

35 

0.06 
0.06 

0.04 
0.04 
0.04 

REGM 
REGM 
REGM 

0.05 
0.04 
0.05 
0.04 
0.05 
0.04 
0.05 

40 

45 

50 

55 
1 

60 

Deviation 
-0.1 1 
-0.1 1 
-0.08 

t 

REGM 
NPM 

REGM 
NPM 

REGM 
NPM 

REGM 

Deviation 
0.04 
0.05 
0.05 

1 

-0.08 
-0.08 
-0.08 
-0.08 
-0.08 
-0.08 
-0.08 

0.04 
0.05 
0.04 

, 

0.04 
0.05 

NPM 
REGM 

NPM 
REGM 
NPM 

-0.08 
-0.08 

-0.08 
-0.08 
-0.08 



Table C-2a Mlnimum Deviation €rom Target Cross Correlation, 
as a Fraction of Target Value, NI = 5 years, r, < 0.666 

Standard 
Deviation 

Common Period 
rYears1 

5 .  

10 

M& 

NPlA 
NP1B 
NP2B 

I 15 

20 
25 

30 

A~enge 
Deviation 

- 

NPlA 
NPlB 
NPlC 

70 REGM -0.2 1 (da, one trial) 
75 REGM -0.11 

-0.26 
-0.26 
-0.26 

NP3A 
NP3B 
NP3B 
NPlA 
NP2A 
NP2.A 

35 

O. 11 
0-11 
0-11 

-0.26 
-0.26 
-0.26 

-0.20 
-0.20 
-0.20 

NPlA 
NP2A 

40 

45 
50 
55 

0.11 
0.12 
0.12 

-0.24 
-0.24 
-0.23 
-0.22 
-0.22 
-0.22 

0.05 
0.05 
0.06 1 NPM 

NP2A 
NPM 
NP3A 
NP3C 
NP3C 

-0.20 
-0.20 
-0.17 
-0.17 
-0.17 

0.1 1 
0.11 
O. 12 
O. IO 

NP2A 1 -0.26 

O. 12 
O. 12 
0.09 
0.08 
0.08 
0.08 

0.05 
0.06 
0.03 
0.03 
0.03 

NP2B 
NP2C 
NP3B 

-0.26 
-0.26 
-0.26 



Table C-2b Minimum Deviation from Target Cross Correlation, 
as a Fraction of Target Vaiue, NI = 10 years, r, < 0.666 



Table C-2c Minimum Deviation from Target Cross Correlation, 
as a Fraction of Ta- Value, Nt = 15 years, r, < 0.666 



Table C-2d Minimum Deviation from Target Cross Correlation, 
as a Fraction of Target Vaine, NI = 20 years, r, c 0.666 

1 

Standard 
Deviaxion 
0.06 
0.05 
0.01 
0.02 
0.0 1 
0.0 1 
0.03 

Cornmon Period 

20 
25 
30 
35 
40 

45 
i 1 NPM I -0.15 I 0.01 I 

50 

Md& 

NPM 
NPM 
NPM 
NPM 
NP1A 
NPlB 
NP3C 
- - 

NPLA 
NPlB 
NP3A 

55 
60 

A~erage 
Devianon 
-0.20 
-0.20 
-0.15 
-0.15 
-0.15 
-0.15 
-0.15 

- - -  

NP3C 
NPM 
NPLA 
NPlB 
NP2C 
NP3A 
NP3C 

J 

- .- 

NPM 
NPM 

-0.15 
-0.15 
-0.15 

NP3B f -0.15 
-0.15 
-0.15 
-0.15 
-0.15 
-0.15 
-0.15 
-0.15 

0.01 
0.01 
0.0 1 
0.0 1 

4 

0.03 
0.01 
0.0 1 
0.01 
0.0 1 
0.0 1 
0.02 

-0.13 
-0.13 

4 

( d a ,  one td) 
(da, one triai) 



Table C-3a Minimum Deviation from Target Seriaï Correlation, 
as a Fraction of T u g a  Vaine, NI = 5 years, r, > 0.666 



Table C-3b Minimum Devïation t'rom Target Seriai Correlation, 
as a Fraction of Target Vilue, Nt = 10 years, r, > 0.666 



Table C-3c Miilimum Deviation from Target Serial Correlation, 
as a Fraction of Target Value, NI = 15 years, r, > 0.666 

Table C-3d Minimum Deviation from Tnrget Serial Correlation, 
as a Fraction of Target Vaine, NI = 20 years, r, > 0.666 

Models 1 Average 1 Standard 



Table C-4u Minimum Deviation from Tnrget Serial Correlation, 
as a Fraction of Target Vaiue, N1= 5 years, rxy < 0.666 

Table C-4b Minimum Deviation from Target Serial Correlatio n, 
as a Fraction of Target Value, NI = 10 years, r, c 0.666 



Table C-4c Minimum Deviation from Target Serial Correlation, 
as a Fraction of Target Vaiue, NI = 15 years, r, < 0.666 

Average Standard 1 Deviation 1 Dcviaoon 

- -  -- 

25 REG -0.03 0.26 
RPNM 0.03 0.13 

30 RPNM 0.02 0.09 
35 RPNM 0.02 0.07 
40 RPNM 0.04 0.06 
45 REGM 0.09 0.09 
50 RPNM -0.02 0.08 
55 RPNM -0.01 0.08 
60 REG 0.00 0.00 
65 REG 0,00 0.00 

Table C-4d Minimum Deviation from Target Serial Correlation, 
as a Fraction of Target Value, NI = 20 years, r,, c 0.666 

55 1 REG 1 -0.02 1 0.00 

Standard 
Deviation 

0.2 1 
0.14 
O. 17 
0.16 
0.17 
O. 17 

Common Period 

20 
25 
30 
35 
40 
45 

I I 

50 

Models 

REG 
RPNM 
REG 

REGM 
REGM 
REGM 

Average 
Deviation 
-0.06 
-0.03 
0.05 
0.02 
0.00 
-0.02 

-0.02 1 0.00 60 

REGM 

REG 

0.00 O. 17 



Table C-5a Minimum Deviation from Target Variance, 
as a Fraction of Tnrget Vaine, NI = 5 years, r, > 0.666 

Models 1 Average Standard 



Table C-5b Minimum Deviation from Target Variance, 
as a Fraction of Targd Vnlue, NI = 10 years, r, > 0.666 

Table C-Sc Minimum Deviation from Target Variance? 
as a Fraction of Target Vaiue, NI = 15 years, r, > 0.666 

Standard 
Deviation 

0.42 
0.45 
0.40 
0.25 
0.56 
0.53 
0.42 
0.10 
0.09 
0.08 
0.19 
0.08 
O. 19 
0.18 
0.19 

AT 
Dewatron 

-0.03 
0.03 
0.03 
-0.03 
0.03 
0.03 
-0.05 
0.02 
0.03 
0.02 
0.00 
0.00 
-0.02 
-0.02 
0.01 

Cornmon Period 
(Years) 
10 
15 

20 
25 
30 
35 
40 
45 
50 
55 
60 
65 

70 

ModeIs 

NP3C 
REGM 
RPNM 
NPlC 
REGM 
REGM 
RPN 
EGM 
REGM 
REGM 
NPlC 
REGM 
NPlC 
NP3C 
NPlC 

Standard 
Deviation 

Average 
DaTiation 

Common P&od Models 

15 REGM 0.03 0.58 
20 REGM -0.02 0.70 

30 
35 
40 

45 

50 
55 

65 

REGM 
RPNM 
REGM 
RPNM 
REGM 
RPbM 
MV3 
MY3 

RPNM 
RPNM 

0.09 
-0.02 
-0.05 
0.05 
-0.06 
0.06 
0.06 
0.04 
ip------ 0.0 1 

0.00 

0.73 
0.09 
0.10 
0.06 
0.09 
0.06 
0.48 
0.48 
0.07 
0.08 



Table C-5d Minimum Deviation from Target Variance, 
as a Fraction of Target Value, NI = 20 years, r, > 0.666 

Table C-6a Minimum Deviation from Target Variance, 
as a Fraction of Target Vdae, NI = 5 years, r., < 0.666 

Standard 
Deviation 

0.67 
0.37 
0.12 
0.09 
0.04 
0.02 
0.02 
0.5 1 
0.04 
0.52 

Average 
Deviation 
0.02 
0.09 
-0.05 
-0.06 
0.05 
0.00 
0.00 
0.04 
-0.04 
0.03 

Cornmon P d  

20 
25 
30 
35 
40 
45 
50 
55 

60 

Models 

REGM 
MV3 
NPiC 
NP1C 
RPNM 
RPNM 
RPNM 
MV3 

RPNM 
MV3 

Standard 
Deviation 

0.75 
0.95 
0.72 
0.83 
0.76 
0.67 
0.80 
0.63 
0.62 
0.37 
0.57 
0.39 
0.50 
0.46 
0.47 
0.44 

( d a ,  one trial) 
( d a ,  one trial) 

Average 
Deviarion 

0.0 1 
-0.03 
0.01 
-0.01 
-0.01 
0.05 
-0.05 
-0.03 
-0.03 
O. 12 
-0.05 
-0.03 
0.09 
0.07 
0.08 
0.06 
0.04 
0.02 

Common P e r d  

5 
10 
15 

20 
25 

30 

35 
40 
45 
50 
55 
60 
65 
70 
75 

Models 

MV2 
NPlC 
MV2 
NPlC 
RPNM 
MV3 
NP3C 
MV1 
MV3 
W3 

RPNM 
REGM 
REGM 
REGM 
REGM 
R E M  
MV3M 
MV3M 



Table C-6b Minimum Deviation from Target Variance, 
as a Fraction of Target Vaine, NI = 10 years, r, c 0.666 

Table C4c Minimum Deviation from Target Variance, 
as a Fraction of Target Value, Ni = 15 years, r, < 0.666 



Table C-dd Minimum Deviation from Target Variance, 
as a Fraction of Target VaIne, NI = 20 years, r, c 0.666 

Table C-7a Minimum Deviation from Target Mean Flow, 
as a Fraction of Target Value, N, = 5 yem, r., > 0.666 

Deviation Deviaion 
20 
25 ' 

30 
35 
40 
45 
50 

55 
60 

MV2 
MV3 
MV3 

REGM 
REGM 
REGM 
MV3 

REGM 
MV3 
MV2 
MV3 

0.00 
-0.01 
0.0 1 
0.02 
-0.01 
-0.02 
0.04 
-0.04 
-0.02 
0.03 
-0.03 

026 
0.28 
0.21 
0.26 
0.22 
0.20 
0.21 1 

0.20 
( d a ,  one tnal) 
( a /a ,oned)  
(da, one@ 



Table C-7b Minimum Deviation from Target Mena Flow, 
as a Fraction of Target Value, N, = 10 yeirs, r, > 0.666 



Table C-7c Minimum Deviation from Target Mean Flow, 
as a Fraction of Target Vdue, NI = 15 years, r, > 0.666 

Standard 
Deviation 
0.17 
0.17 
O, 12 
0.07 
0.08 
0.08 
0.04 
0.04 
0.04 
0.07 
0.03 
0.03 
0.07 
0.04 
0.07 
0.04 
0.03 

Average 
D d o n  
0.00 
O. 00 
O. 00 
0.00 
0.01 
-0.01 
-0.0 1 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

Common Period 

15 
20 
25 

30 

35 
40 
45 
50 

55 

60 

65 

Models 

MV3 
RPNM 
RPNM 
NPM 
MV1 
NFM 
NPM 
Nl?M 
Nl?M 
NP3C 
NPM 
NP1C 
NP3C 
NPM 
NP3c 
NPM 
NPM 



Table C-7d Minimum Deviation from Target Mean Fiow, 
as a Fraction of Target Vaine, NI = 20 years, r, > 0.666 



Table C-8a Minimum Deviation from Target Meaa Flow, 
as a Fraction of Target Vaiue, Nt = 5 yean, r, c 0.666 

(y-) 
5 
10 

15 

NPM 
MV1 
M V 3  

REGM 

Deviation 
0.00 
0.05 
0.05 
0.02 

20 
25 
30 
35 
40 

45 
50 
55 
60 
65 
70 

75 

Deviation 
0.32 
0.39 
0.36 
0.28 

-0.01 
0.02 
0.00 
-0.02 
0.00 
0.00 
0.0 1 
0.00 
0.0 1 
0.02 
-0.01 
0.00 
0.00 
0.00 
0.00 

REGM 
REGM 
REGM 
NPM 
NP2B 
NP3A 
NPM 
NPM 
NPM 
Nl?M 
NPM 
NPlA 
NP2B 
NPlA 
NPlB 

0.23 
0.23 
0.2 1 
0.07 
0.05 
0.07 
0.03 
0.0 1 - 
0.04 
0.03 
0.01 
0.00 
0.00 
0.00 
0-00 - 



Table C-8b Minimum Deviation from Target Mean Flow, 

Table C-8c Minimum Deviation from Target Mean Flow, 
as a Fraction of Target Value, Ni = 15 years, rXy < 0.666 

r, < 0.666 
Standard 
Deviation 

0.4 1 
0.32 
0.3 1 
0.27 
0.22 
O. 11 
O. 10 
O. 11 
0.05 
0.03 
0.04 
0.03 
0.03 
0.03 

(da, one mal) 
(da., one nia) , 

(da, one trial) 

Ni = 10 years, 

A~enge 
Deviation 

0.07 
0.04 
0.06 
0.03 
0.03 
-0.01 
0.00 
0.00 
0.02 
0.02 
0.03 
0.02 
0.03 
0.03 
-0.01 
-0.01 
0.00 

as a Fraction of Target Value, 

Standard 
Deviation 

0.25 
0.20 
0.24 
0.08 
0.08 
0.06 
O. 13 
0.08 
0.02 
O. 10 

Cornmon Period 

10 
15 . 
20 
25 

Average 
Dwiation 

0.03 
0.03 
0.00 
0.02 
0.00 
0.00 
0.00 
0.03 
-0.01 
0.02 

Common Period 

15 

20 
25 
30 

35 
40 
45 
50 

M& 

MV3 
MV3 
MV3 
MV3 

Md& 

MV3 
REGM 
MV3 
NPM 
MV1 
NPM 
NP3A 
NP1C 
RPNM 
NP3A 

55 
60 

65 

30 
35 

40 

45 
50 
55 
60 
65 

- 
70 

RPNM 
RPNM 
MV3 
NPlC 
MV3 

0.02 
0.02 
0.00 
0.00 
0.00 

RPNM 
RPNM 
NP3A 
NP3B 
REGM 
RPNM 
REGM 
KEGM 
REGM 
REGM 
NP3A 
NP3B 
NP3A 

0.03 
0.03 

(n/a, one uid) 
(da ,  one mal) 
(da, onetriai) 



Table C-8d Minimum Deviation from Target Mean Flow, 
as a Fraction of Target Value, NI = 20 years, r, < 0.666 

Gommon Period 

20 
25 
30 
35 
40 
45 

M d &  

MV1 
RPNM 
REGM 
REGM 
REGM 
REGM 

55 

60 

-0.03 
0.03 
0.00 
0.00 
0.00 
0.00 

1 

REGM 
RPW 
NPlB 
NP2B 
NPM 
NP2B 

A~enge 
Deviation 

0.00 
0.00 
-0.03 
-0.02 
-0.03 
-0.02 

I 

0.0 1 
0.03 

( d a ,  one d) 
(da, one mal) 
(da, one d) 
( d a ,  one aial) 

Standard 
Deviation 
0.08 
0.08 
0.03 
0.02 
0.0 1 
0.0 1 



Table C-9a Mintmnm Deviation from Target Low Flow, 
as a Fraction of Target Value, NI = 5 years, r, > 0.666 

Common Period 

5 
10 
15 
20 

L 

35 
40 

45 
50 
55 
60 

Madels 

MV3M 
MVlM 
RPNM 
MVlM 

65 

RPNM 
MvlM 
MVZM 
MV3M 
RPNM 
RPNM 
RPNM 

70 
75 

A~enge 
Deviation 

0.1 8 
0.30 
0.28 
0.29 

MVlM 
RPNM 

Standard 
Deviation 

0.55 
0.8 1 
0.63 
0.6 1 

0.11 
0.07 
0.07 
0.02 
0.02 
0.0 1 
0.04 

RPNM 
RPNM 

O. 15 
0.14 
0.16 
0.06 
0.07 
0.07 
0.09 

0.04 
0.04 

0.05 1 0.1 1 
0.05 0.10 

0.06 
O. 10 



Table C-9b Minimum Deviation from Target Low Flow, 
as a Fraction of Target Vaiue, NI = 10 years, r, > 0.666 

1 Cornmon Period 1 Average Standard I 



Table C-9c Minimam Deviation from Target Low Flow, 
as a Fraction of Target Vaine, NI = IS years, r, > 0.666 

Common Period 

15 
20 
25 
30 

45 

Table C-9d Minimum Deviation from Target Low Flow, 
as a Fraction of Target Value, NI = 20 years, r,, > 0.666 

A i l p e  
Devi ation 
0.08 
0.06 
0.06 
0.04 

M& 

MVlM 
MVlM 
MVlM 
MV3M 

. - 

50 

~eviation Deviation 
20 MVlM 0.03 0.35 

Standard 
Deviation 
0.25 
0.27 
0.29 
0.29 

0.08 
0.24 
0.17 

NP3B 
MVlM 
MV3 

0.0 1 
-0.01 
0.01 

0.07 
0.2 1 

- -  - 1 

-- 

30 

NP3B 
REGM 

1 

35 
40 

0.0 1 
0.00 

- -  - - 

REGM 
MVlM 

- - 
50 
55 

60 

-. - . - . - 

MV2M 
MVm 
MVlM 
MV2M 

t 

- 

MV3M 
MVlM 
MV3M 
MVlM 
MV2M 

0.0 1 
-0.0 1 
-0.01 
0.00 
0.00 
0.00 

0.14 
0.2 1 
O. 19 
0.22 
0.24 
0.23 

I 

0.01 0.20 f 

0.04 
0.04 
0.04 
0.04 

0.27 
0.19 
0.27 
0.25 



Table C40a Minimum Deviation from Target Low Flow, 
as a Fraction of T q e t  Vaine, NI = 5 yem,  r, < 0.666 

1 Gmmon Period 1 Models 1 Average 1 Standard 
(Years) 

5 
10 
15 
20 
25 
30 
35 

40 
45 
50 
55 
60 
65 
70 

75 

MVlM 
MV3 
MV3 

MVlM 
MVlM 
MVlM 
MVlM 
MV2M 
MV3M 
MV2M 
MV3 

MV3M 
MV3M 
M v 3  
MV3 

WNhd 
NPM 

RPNM 
NPM 

Deviation 
0.00 
-0.02 
0.08 
0.05 
0.11 
O. 11 
0.17 
0.17 
O. 17 
O. 13 
0.0 1 
0.00 
0.01 
0.00 
0.00 
O. 15 
0.15 
O. 13 

i O. 13 

Deviation 
0.5 1 
0.40 
0.47 
0.33 
0.42 
0.39 
O. 16 
0.15 
0.17 
O. 14 
O. 13 
0.05 
0.03 
O. 16 
0.16 

(da, one mai) 
( d a . ,  one triai) 
(da, one trial) 

, (da, one trial) 



Table C-lob Minimum Deviation from Target Low Flow, 
as a Fraction of Target Value, Nt = 10 years, r, < 0.666 

Table C-IOc Minimum Deviation from Target Low Flow, 
as a Fraction of Target Value, NI = 15 years, r, < 0.666 

Standard 
Deviation 
0.57 l 

0.48 
0.53 
0.48 
0.3 1 
O. 12 
O. 15 
0.13 
0.02 
0.07 
0.07 
0.06 
0.06 

(./a, one uial) 
( d a ,  one trial) 

Average 
Deviation 
0.06 
0.0 1 
0.11 
0.09 
0.18 
0.09 
0.00 
0.00 
0.03 
-0.03 
-0.02 
0.01 
0.01 
0.06 
0.04 

Cornmon P e r d  

10 
15 
20 
25 
30 
35 
40 

45 

50 
55 
60 
65 
70 

Md& 

MVlM 
MVlM 
MVlM 
MVlM 
MV2M 
MV3M 
MVlM 
MV2M 
RPNM 
MV3M 
MV3M 
MV3M 
MV3M 
MVlM 
MVlM 

Standard 
Deviation 
0.37 
0.3 1 
O. 17 
O. 15 
0.08 
O. 16 
0.10 
0.04 
0.03 
0.03 

( d a ,  one ma) 
(nia, one nia) 
( d a ,  one tria 

Cornmon Period 
(Years) 
15 
20 
25 
30 
35 
40 

45 
50 
55 
60 

65 

M& 

MVlM 
MVlM 
MVlM 
MVlM 
MV3M 
MVl 

MV2M 
MV3M 
MV3M 
MV3M 
MV2M 
MV3M 
MV3M 

Average 
Deviation 
0.07 
0.06 
O. 12 
O. 10 
0.00 
-0.03 
-0.03 
-0.02 
0.00 
0.00 
-0.01 
0.0 1 
-0.01 



Table C-lOd Minimum Deviation from Target Low Flow, 
as a Fraction of Target Vaiue, NI = 20 years, r, c 0.666 

Table C-1 la  Average Mean Percentage Error, 
NI = 5 years, r., > 0.666 



Table C-1 lb  Average Mean Percenage Error, 
Ni = 10 years, r, > 0.666 

Table C-1 l c  Average Mean Percentage Error, 
NI = 15 years, r, > 0.666 

Standard - . .  ( Cornmon Period ( Models 

15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 

MPE 

MV3M 
MV3M 
MVlM 
REGM 
NP3B 
NP3B 
NP3B 
NP3B 
NP3B 
REGM 
NP3B 

53.2 
51.2 
29.2 
17.4 
0.9 
4.0 
4.8 
4.9 
7.7 
10.1 
8.4 

DaTianon 
71.7 
68.4 
28.0 
29.0 
3.6 
4.1 
5.1 
3.4 
4.5 
7.1 
3.5 



Table C-1 Id Average Mean Percentage Error, 
NI = 20 years, r, > 0.666 

1 Common Period 1 Models 1 MPE 

Table C-l2a Average Mean Percentage Error, 
Ni = 5 yenrs, r, < 0.666 

Standard 

20 
25 
30 
35 
40 
45 
50 
55 
60 

1 Cornmon Period 1 M& 1 MPE 1 Standard 

i 
REGM 
REGM 
NP3B 
NP3B 
REGM 
REGM 
REGM 
REGM 
REGM 

28.9 
21.4 
8.3 
10.7 
11.0 
12.3 
12.7 
13.7 

D d o n  
25.9 
33.7 
7.5 
7.6 
7.5 
8.6 
8.9 
9.1 

13.6 I 8.9 



Table C-12b Average Mean Percentage Error, 
Ni = 10 y-, r, < 0.666 

Table C-12c Average Mean Percentage Error, 
NI = 15 years, r, c 0.666 

Standard Gmmon Period 1 Models MPE 



Table C42d Average Mean Percentage Error, 
NI = 20 years, r, < 0.666 



Table C-13a Occurrence of Minimum Objective Fnnction Value, 
as a Fraction of Total Trials, NI = 5 years, r, > 0.666 

I 
- 

1 
- -  - - -  

1 

10 REGM 1 0.19 1 
1 REGM 1 

Occurrence of 

Objective 
Function Value 

Common Period 
Cr-) 

Models 

O. 19 
O. 19 

20 
25 - - 

I 1 

REGM 
MVUi 

40 
45 

0.24 
0.40 

30 
35 

- - - -  
1 

RPNM 
REGM 
REGM 
NPIC 
NP3A 
REGM 
MV3M 

- - - - -  

REGM 
RPNM 

I 
1 

- - - -  I 
- - 

REGM 1 0.20 1 

0.40 
0.20 
0.20 
0.20 
0.20 

0.20 
0.20 

- - 

NP3B 
RPNM 

70 
75 

0.20 
0.20 

RPNM 
NPM 

REGM 

RPNM 
MVlM 
MV3M 

I 

0.20 
0.20 
0.40 - - -  . 

NPlB 
REGM 

0.20 
0.20 
0.20 

J 

0.20 
0.20 



Table C-13b Occurrence of Minimum Objective Function Value, 
as a Fraction of Total Triais, NI = 10 years, r, > 0.666 

1 20 1 REGM 1 0.29 

Common~eriod 
Cr-) 

10 
15 

30 1 REGM 1 0.33 1 

Models 

R E M  
REGM 

25 

Occurrence of 

Objective 
F-on Value 

0.24 
0.24 

- 

MV2M 
REGM 

35 

0.29 
0.29 

40 1 REGM 
45 NPM 

1 

I 
1 

1 REGM 0.40 1 

- 

REGM 
NPM 

0.40 
0.40 

65 

0.30 
0.30 

- - 

NPM 
REGM 

0.40 
0.40 



Table C-13c Occurrence of Minimum Objective Fonction Vahe, 
as a Fraction of Total Triais, NI = 15 years, r, > 0.666 

Occurrence of 

Mininnrm Objective 
Function Vahe 

Cornmon Period 
. Cr=) 

45 

50 

M d &  

55 

60 

REGM 
RPNM 
NPlA 
NP2B 

0.40 
0.40 
0.20 
0.20 - .- -- 

REGM 
RPNM 
NPM 

REGM 
NPM 
R.mJm4 

4 

0.40 
0.40 

1 - -- 

0.20 
0.20 
0.20 
0.40 
0.40 
0.40 

65 RPNM 
NPM 



Table C-13d Occurrence of Minimum Objective Fonction Vaine, 
as a Fraction of Totai Trials, ,Ni = 20 years, rq > 0.666 



Tabie C-14a Occurrence of Minimum Objective Function Vaine, 
as a Fraction of Total Trials, Ni = 5 years, r, < 0.666 

Occurrence of 
M i n h  
Objective 

Fundon Value 

I I REGM 1 O. 13 1 
I 

- 
1 

1 10 REGM 0.33 1 
1 15 1 REGM 1 0.40 1 

20 
35 
30 

L 

35 

REGM 
REGM 
REGM 

0.40 
0.54 
0.3 1 - -  - - -  

1 

0.29 
0.67 

40 1 MV2M 

50 
55 
60 

REGM 
MV3M 

45 

0.25 
0.25 

REGM 
REGM 
NPM 
NPM 

0.67 
0.67 
0.67 



Table C44b Occurrence of Minimum Objective Fonction Value, 
as a Fraction of Totai Trials, NI = 10 years, r, < 0.666 

Objective 
Fmction Value 

10 
15 
20 

1 

25 REGM 0.46 
30 REGM 0.38 

Table C-14c Occurrence of Minimam Objective Function Value, 
as a Fraction of Total Trials, NI = 15 years, r, < 0.666 

REGM 
REGM 
REGM 

35 
40 
45 
50 
55 
60 
65 
70 

I 

15 REGM 
20 REGM 

0.40 
0-40 
0.3 1 

r- - 25 I REGM 

REGM 
RPNM 
REGM 

REGM 
REGM 
REGM 
REGM 

40 REGM 

0.57 
0.67 
1.00 

1 

1 .O0 
1 .O0 
1 .O0 
1 .O0 

45 1 REGM 

REGM 1 1 .O0 

r 

50 RPNM 
55 REGM 

Occurrence of 
Minimum 
Objective 

Fmction Value 



Table C-14d Occurrence of Minimum Objective Fnncüon Vaiue, 
as a Fraction of Total Trials, NI = 20 years, r, < 0.666 

1 

1 35 1 REGM 1 0.67 1 

Occurrence of 
Minimum 
Objective 

Function Value 
0.63 

Common P d  
CI-) 

20 

Models 

MV2M 
1 

0.43 
1.00 

- - 
I 

- - 

I 

1 50 REGM 0.67 1 

25 
30 
- - 

40 
45 

MV2M 
REGM 
--  - 

REGM 
REGM 

0.67 
1.00 



APPENDIX D 



Table 1)-la Minimum Deviation from Target Cross Correlation, 
as a Fraction of Target Vaine, Set 1, NI = 10 yem,  r, > 0.666 

I 10 I MVlM I -0.14 1 I 

25 NP3A -0.08 
MVlM -0.08 

- -  - -  

-0.11 
-0.11 

15 MVlM 
MV2M 

1 

40 

NP2C 

35 

45 

-0.13 

-0.09 -0.08 
-0.08 

MVIM 
MV2M - - 

MV3M 
REGM 
MVlM 

50 

NPlA 

4 

i 

MVlM 
W2ld 

-0.08 
-0.08 
-0.08 

NP3A 
REGM 

- -  - 

MV3M 
REGM 

-0.08 
-0.08 

-0.08 
-0.08 

NPIA 
NPlB 

-0.08 
-0.08 

-0.09 
-0.09 

NP1B 
NPlC 

NPlA 
-0.09 
-0.09 

1 

-0.09 



Table D-lb Minimum Deviation from Target Cross Correlation, 
as a Fraction of Target Vdoe, Set 1, Nt= 15 years, r, > 0.666 

I - .L 1 -  1 1 I 1 

15 1 MVlM 1 -0.09 1 NP3A 1 -0.11 1 - - 

20 

MV2M 
MV3M 
MVlM 

1 

l 
30 

-0.08 
-0.09 
-0.09 

25 

35 
40 
45 

-0.09 
-0.09 
-0.08 

MV2M 
REGM 
MVlM 

REGM 
MVlM 
MN2M 

NPIA 
NPIB 

REGM 
REGM 
REGM 

NP3B 

NP3A 

1 

-0.11 
-0.11 

-0.09 
-0.09 
-0.09 

-0.11 

-0.10 

-0.08 
-0.08 
-0.08 

NPIA 
NPlB 
NPlC 

1 

-0.11 
-0.11 
-0.11 

NP3A 
NP3A 
NP3A 
NPlA 

-0.11 
-0.09 
-0.09 
-0.10 



Table D-lc Minimum Deviation from Target Cross Correlation, 
as a Fraction of Target Vnliie, Set 1, NI = 20 years, r, > 0.666 



Table D-2a Minimum Deviation from Target Seriai Correlation, 
as a Fraction of Target Value, Set 1, Ni = 10 years, r, > 0.666 

1 

15 RPNM 0.02 NPM 0.02 
NPM 0.02 

Table D-2b Minimum Deviation from Target Serial Correlation, 
as a Fraction of Target Vaine, Set 1, NI = 15 years, r, > 0.666 

20 

REGM 
m 
N P l A  
NP2A 
REGM 

0.01 
-0.01 
0.00 
0.00 
0.00 



Table D-2c Minimum Deviation from Target Serial Correlation, 
ns a Fraction of Target Vaine, Set 1, NI = 20 years, r, > 0.666 

1 

25 MVlM 
MVZM 

-0.01 
-0.01 

NPlA 
NP2A 

-0.05 
-0.05 



Table D-3a Minimum Deviation from Target Variance, 
as a Fraction of Target Vdue, Set 1, NI = 10 years, r, > 0.666 

Table D-3b Minimum Deviation from Target Variance, 
as a Fraction of Target Value, Set 1, Nt = 15 years, r, > 0.666 

15 
20 
25 

1 2 0 -  1 NPlC I -0.01 I 

NP= 
REGM 
REGM 

1 I 1 

1 45 1 M V 3  1 0.00 1 NPlC 1 -0.04 1 

25 
30 
35 
40 

Table D-3c Minimnm Deviation from Target Variance, 
as a Fraction of Target Value, Set 1, NI = 20 years, r, > 0.666 

0.08 
0.02 
-0.01 

I 1 1 I 1 40 1 MV2 1 0.01 1 NPlC 1 -0.17 1 

NPlC 
MVlM 
MV2M 
MV3 

NP2C 
NP2C 

-0.11 
0.05 

0.00 
0.00 
0.00 
0.01 

NP3C 
NP3C 
NP3C 

-0.03 
-0.04 
-0.06 



Table M a  Minimum Deviation from Target Mean Flow, 
as P Fraction of Target Vaiue, Set 1, NI = 10 years, r, > 0.666 

REG 0.06 
REG 0.08 

50 REG 0.09 

Table D-4b Minimum Deviation from Target Mean Flow, 
as a Fraction of Target Vaiue, Set 1, NI = 15 years, r, > 0.666 

Table M c  Minimum Deviation from Target Mean Flow, 
as a Fraction of Target Vahe, Set 1, Nt = 20 years, r, > 0.666 

f,, 
-0.0 1 

Altemate 
RPN 

f,, 
0.00 

N2 
15 

Models 
MVI 



Table D-5s Mlnimnm Deviation from Target Low Flow, 
as a Fraction of Target Value, Set 1, NI = 10 years, r, > 0.666 

Table D-Sb Minimum Deviation from Target Low Flow, 
as a Fraction of Target Value, Set 1, NI = 15 years, r,, > 0.666 

fi, - fii 1 Alternate 
0.05 i 

Nz 
15 

M d  
NPlc 



Table D-Sc Minimum Deviation from Target Low Flow, 
as a Fraction of Target Vaiue, Set 1, NI = 20 years, r,, > 0.666 

fii 
O. 19 

Alternate 
NPM 

N2 
20 

Models 
MV1 

fii 
0.10 



Table M a  Minimum Mean Percentage Error, 
Set 1, NI = 10 years, r, > 0.666 

N2 M& MPE Altemate MPE 
10 NP3A 9.73 

Table D-6b Minimum Mean Percentage Error, 
Set 1, Ni = 15 years, r, > 0.666 

Table M c  Minimum Mean Percentage Error, 
Set 1, NI = 20 years, r, > 0.666 



Table D-7a Minimum SSE, 
Set 1, N, = 10 yean, r, > 0.666 

Table D-7b Minimam SSE, 
Set 1, Nt = 15 years, r, > 0.666 

SSE 
76677.10 
58816.00 

, % 
10 
15 
20 
25 
30 
35 
40 
45 

Alternate 1 SSE 

Models 
NP3A 
NPlA 

Table D-7c Minimum SSE, 
Set 1, N, = 20 years, r, > 0.666 

NP3A 
NP3A 
NPlA 
NPiA 
NPiA 
NPIA 

39194.90 
42069.20 
43339.40 
44486.30 
42767.10 
42401.00 

SSE 
142921.30 
137105.00 

30 
35 

Alternate 
NPlA 
NPlA 

SSE 
104230.70 
1 10241.90 

N, 
20 
25 

I I 

Models 
REGM 
REGM 
REGM 
REGM 

NPLA 
NPLA 

109644.90 
108094.70 

130071,90 
128832.70 



Table D-8a Minimum Deviation from Target Cross Correlation, 
as a Fraction of Target Vaiue, Set 2, NI = 5 yean, r, > 0.666 



Table D-8b Minimum Deviation from Target Cross Correlation, 
as a Fraction of Target Value, Set 2, NI = 10 years, r, > 0.666 

Alternate r: 1 M d  1 fi; 1 1 ti 1 MVlM -0.06 
REGM -0.07 
RPNM -0.07 

1 
- -  

1 1 1 

20 1 REGM 1 -0.07 1 1 1 
MVlM 
MVZM 
MV3M 

-0.07 
-0.07 
-0.07 

25 

MV3M -0.07 
35 MV3M -0.06 REGM -0.07 

- -  

REGM 1 -0.07 
MV2M 1 -0.07 

30 
MV3M 
REGM 
MVlM 

I 

45 1 MV3M 
50 1 MV3M 

-0.07 
-0.07 
-0.07 

- .  

55 
60 

-0.06 
-0.06 

REGM 
REGM 

I 

-0.07 
-0.07 

REGM MV3M 
REGM 

-0.07 -0.06 
-0.06 



Table D-Sc Minimum Deviation from Target Cross Correlation, 
as a Fraction of Target Vdue, Set 2, NI = 15 yean, r, > 0.666 

fi 
-0.11 

20 
25 

Alcernate 
NPM 

-- 

30 
35 
40 
45 
50 

Table D-8d Minimum Deviation from Target Cross Correlation, 
as a Fraction of Target Value, Set 2, NI = 20 years, r, > 0.666 

fii 
-0.11 

NZ 
15 

NF'M 
REGM 
REGM 

55 

Models 
REGM 

- -  - 

NPM 
NPM 
NPM 
N'PM 
NPM 

-0.09 
-0.09 
-0.08 
-0.08 
-0.08 

REGM 
NPM 

-0.11 
-0.11 
-0.10 
-0.10 

-0.08 
-0.08 

45 

NPM 

Alternate 
RPN 

NP2A 

fii 
-0.08 
-0.08 
-0.08 
-0.08 

, NZ 
20 
25 

fii 
-0.15 
-0.14 

M& 
MVlM 
MVlM 
MVUli 
MV3M 

REGM 
MV2M 

-0.12 
I 

-0.07 
-0.07 

NP2B 



Table D-9a Minimum Deviation from Target Serial Correlation, 
as a Fraction of TPget Vaine, Set 2, NI = 5 y-, r, > 0.666 

Table D-9b Minimum Deviation from Target Serial Correlation, 
as a Fraction of Target Value, Set 2, Ni = 10 years, r, > 0.666 

- - 

15 
20 
25 
30 
35 

NP3B 
NPlC 
NPlC 
NPlC 
NPlC 

1 1 1 60 1 REG 1 0.00 1 

-0.01 
-0.04 
-0.06 
-0.03 
-0.04 

fii 
-0.02 

N2 
10 

50 
55 

Models 
REG 

REG 
REG 

0.00 
0.00 



Table D-9c Minimum Deviation from Target Serial Correlation, 
as a Fraction of Target Vaiue, Set 2, NI = 15 years, r, > 0.666 



Table D-9d Minimum Deviaion from Target Serial Correlation, 
as a Fraction of Target Vaioe, Set 2, Nt = 20 yenrs, r, > 0.666 

- 

I 1 I 1 45 1 NPlB 1 0.00 1 1 

40 

fii 
-0.01 

- - 

1 1 1 1 

1 1 1 NPlB 1 0.01 1 

Alternve 
NP3C 

t 

fi 
0.00 

N2 

20 

NPlB 
NP2B 
RPNM 

1 

1 NPM 

Mockls 
REGM 

-0.01 
-0.01 
-0.01 

0.00 
0.00 
0.00 50 

MV2M 
MVlM NPIA 

I 

0.01 



Table D-lOa Minimum Deviatioa from Target Variance, 
as a Fraction of T q e t  Vaine, Set 2, NI = 5 years, r, > 0.666 



Table D-lob Minimum Deviation from Target Variance, 
as a Fraction of Target Vaiue, Set 2, Nt = 10 years, r., > 0.666 

20 RPN 0.0 1 -- 

25 

30 
35 
40 

Table b l o c  Minimum Deviation from Target Variance, 
as P Fraction of Target Value, Set 2, NI = 15 years, r, > 0.6 

L 
45 

50 
55 

60 

NP3C 
RPN 

NP3C 
RPN 

REGM 
RPN 

-0.01 
0.02 
-0.02 
0.01 
0.00 
0.0 1 

RPN 
RPNM 
RPN 
RPN 
NPIC 
RPN 

REGM 

fl 

0.01 
0.01 
0.00 
-0.02 
-0.02 
-0.03 
-0.03 



Table D-lOd Minimum Deviation from Target Variance, 
as a Fraction of Target Value, Set 2, Ni = 20 years, r, > 0.666 

I I 1 

1 50 1 MV1 1 -0.05 1 RPNM [ -0.18 1 

35 
40 
45 

- - 

RPNM 
MVl 

RPNM 

-0.03 
-0.02 

NP3C 
NP3C 

-0.11 
-0.09 

0.00 1 NP3C -0.17 



Table D-lla Minimum Deviation from Target Mean Flow, 
as a Fraction of Target Vaine, Set 2, NI = 5 years, r, > 0.666 

fii 

-0.03 - - 

1 -  I 1 I 

1 REGM 1 -0.01 1 1 1 

Alternate 

MV3M 

45 

fi 
0.00 
-0.03 

_ Nt 
5 
10 

MV3M 
NPM 

Models 
NP2C 
MV3 

RPN 
NPlB 

50 

-0.0 1 
-0.01 

I NP2B 

-0.03 
1 

-0.01 

1 

-0.03 
-0.03 

RPN 
MV3 
NPlA 

NPM 

-0.02 
0.02 
-0.02 



Table D-1 l b  Minimum Deviation from Target Mean Flow, 
as a Fraction of Target Vaiue, Set 2, NI = 10 years, r, > 0.666 

N* 
10 

Models 1 fii 
REG 1 0.02 

15 

20 

NP3C 
REG 

55 
60 

0.02 ' 
-0.0 1 

RPN 
REG 

REG 1 0.01 
REG 1 0.02 

1 

0.01 
0.00 



Table D-llc Minimum Deviation fkom Target Mean Flow, 
as a Fraction of Target Vaiue, Set 2, NI = 15 years, r, > 0.666 

20 

REGM 
RPN 0.00 

25 
30 

Table D-1 Id Minimum Deviation from Target Mean Flow, 
as a Fraction of Target Vnlue, Set 2, NI = 20 years, r, > 0.666 

RPN 
RPNM 

0.00 
0.00 

REGM 
RPN 
MV1 

1 

0.00 
0.00 
0.00 

fii 
0.03 

Altemate 
RPN 

N2 
20 

Models 
REG 

fi; 
0.01 



Table D-12a Minimum Deviation from Target Low Flow, 
as a Fraction of Target Vahe, Set 2, NI = 5 years, r, > 0.666 

REGM 
15 
20 

25 

- -  - - 

RPN 
REG 
NP3C 
NPM 

REGM 

0.00 
-0.01 
-0.01 
0.0 1 
0.01 

NP3C 
NPM 

-0.01 
0.01 



Table D42b Minimum Deviation from Target Low Flow, 
as a Fraction of Target Vaiue, Set 2, NI = 10 years, r, > 0.666 



Table D-12c Minimum Deviation from Target Low Flow, 
as a Fraction of Target Vaine, Set 2, NI = 15 years, r, > 0.666 

Table D-12d Minimum Deviation from Target Low Flow, 
as a Fraction of Target Value, Set 2, NI = 20 years, r,, > 0.666 

, 
0.07 
0.08 

50 
55 

0.03 
0.06 

MVlM 
MVlM 

NP1C 
MV3M 



Table D43a Minimum Mean Percentage Error, 
Set 2, Ni = 5 yerirs, r, > 0.666 

N2 
5 

Table D-13b Minimum Mean Percentage Error, 

30 
35 

Set 2, N1 = 10 years, r, > 0.666 

Models 
NP3A 

N, 1 Md& 1 MPE 1 Alternate 1 MPE 1 

MPE 
-2.1 

REGM 
MVZM 

0.7 
-0.3 

20 
25 

M C  ( -1.6 
NPlC 1 0.7 - .. - 1 1 

30 
35 

7.0 
10.7 

NPlC 
MVlM MV1 12.3 



Table D-13c Minimum Mean Percentage Error, 
Set 2, NI = 15 yesrs, r, > 0.666 

1 N, IModelsI MPE MkermteI MPE 1 

WlM 3.1 REGM 
50 MVlM 2.4 REGM 5.9 

L I 
- .  

25 
30 

I 
- - 

I 

55 1 MVlM 1 4.7 1 NDlC 1 7.9 1 

I 

I I 

15 
20 

Table D-13d Minimum Mean Percentage Error, 

MViM 
NPlC 
NPlC 
MViM 

Set 2, NI = 20 years, r, > 0.666 

2.1 0.9 
-0.7 

NP2B 

3.4 
5.8 NPIC 

MPE 
28.4 
24.9 

N2 
20 
25 

l 

6.7 

Models 
MViM 
WlM 

MPE 
20.3 
16.6 

Alternate 
RPN 
RPN 



Table D-14a Minimum SSE, 
Set 2, Ni = 5 years, r, > 0.666 

Table D-14b Minimum SSE, 
Set 2, NI = 10 years, r, > 0.666 



Table D-14c Minimum SSE, 
Set 2, Nt = 15 years, r, > 0.666 

REGM 
REGM 

30 REGM 

SSE 
58% 1.0 
56487.6 
53534.4 

Table D-14d Minimum SSE, 
Set 2, Nl = 20 years, r, > 0.666 

REGM 

SSE 



Table D-Ka Minimum Deviation from Target Cross Correlation, 
as a Fraction of Target Value, Set 3, NI = 5 years, r, < 0.666 

Table D45b Minimum Deviation from Target Cross Correlation, 
as a Fraction oCTarget Value, Set 3, Ni = 10 years, r,, < 0.666 

Table D-1% Minimum Deviation from Target Cross Correlation, 
as a Fraction of Target Value, Set 3, N1 = 15 years, r,, < 0.666 

Alternate 1 fii 
NPlB 1 -0.18 

1 N, 1 Models 1 fi; 1 Altemate 1 fi; 1 

f i  
-0.11 

N2 
10 

I I I 1 

20 1 REGM 1 -0.15 1 NP2A 1 -0.17 1 

M d s  
REGM 



Table D-16a Minimam Deviation from Target Serial Correlation, 
as a Fraction of Target Vdue, Set 3, NI = 5 years, r, < 0.666 

Table D-16b Minimum Deviation from Target Serial Correlation, 
as a Fraction of Target Vaiue, Set 3, NI = 10 years, r., < 0.666 

REGM NPM 

Y 
10 

Table D-16c Minimum Deviation from Target Serial Correlation, 
as a Fraction of Target Value, Set 3, NI = 15 years, r, < 0.666 

Models 
MVlM 

fii 
0.00 

fii 
O. 13 
o. 10 

N, 
15 
20 

Alternate 
NP3C 

fii 
0.03 

Ahrnate 
NPM 
NPM 

Models 
REGM 
MVlM 

ci 
-0.02 
-0.01 



Table D-17a Minlmam Deviation from Target Variance, 
as a Fraction of Target Vdne, Set 3, NI = 5 years, r, < 0.666 

Table D-17b Minimum Deviation from Target Variance, 
as a Fraction of Target Vaine, Set 3, Nt = 10 years, r, < 0.666 

Table D-17c Minimum Deviation from Target Variance, 
as a Fraction of Target Value, Set 3, NI = 15 years, r, c 0.666 



Table D48a Minimum Deviation from Target Mean Fiow, 
as a Fraction of Target Vaine, Set 3, NI = 5 years, r, < 0.666 

Table D-18b Minimum Deviation from Target Mean Fiow, 
as a Fraction of Target Value, Set 3, NI = 10 years, r,, < 0.666 

Table D-18c Minimum Deviation from Target Mean Flow, 
as a Fraction of Target Vdue, Set 3, NI = 15 years, r, C 0.666 



Table D49a Minimum Deviation from Target Low Flow, 
as a Fraction of Target Value, Set 3, NI = 5 years, r, < 0.666 

Table D-19b Minimum Deviation from Target Low Flow, 
as a Fraction of Target Value, Set 3, NI = 10 years, r., c 0.666 

Table D-19c Minimum Deviation from Target Low Flow, 
as a Fraction of Target Value, Set 3, NI = 15 years, r, < 0.666 



Table D-20a Minimum Mean Percentage Error, 
Set 3, NI = 5 years, r, < 0.666 

1 

1 30 1 MVlM 1 142.0 1 NPM 1 291.9 1 

NI 
10 

Table D-20b Minimum Mean Percentage Error, 
Set 3, Nt = 10 years, r, < 0.666 

Table D-ZOc Minimum Meaa Percentage Error, 
Set 3, NI = 15 years, r, < 0.666 

MPE 
362.4 

Models 
MVlM 

MPE IAlternate 
95.9 1 NPM 

N2 
10 

Alternate 
NPM 

MPE 
142.8 

Models 
MV3M 

MPE 
82.5 



Table D-21a Minimum SSE, 
Set 3, NI = 5 years, r, < 0.666 

Table D-21b Minimum SSE, 
Set 3, NI = 10 Yeats, r, < 0.666 

Table D-21c Minimum SSE, 
Set 3, NI = 15 years, r, < 0.666 

SSE 
10930.8 
11203.7 

Altemate 
NP2C 
NP2A 

SSE 
6945.8 
6881.0 

N, 
15 
20 

Models 
REGM 
REGM 



Table D-22a Minimum Deviation from Target Cross Correlation, 
as a Fraction of Tirget Vaiue, Set 4, NI = 5 years, r, < 0.666 

Table D-22b Minimum Deviation from Target Cross Correlation, 
as a Fraction of Target Value, Set 4, N1 = 10 years, r,, < 0.666 

Table D-22c Minimum Deviation from Target Cross Correlation, 
as a Fraction of Target Value, Set 4, NI = 15 yenrs, r, < 0.666 



Table D-23a Minimum Deviation from Target Serial Correlation, 
as a Fraction of Target Vdue, Set 4, NI = 5 years, r, < 0.666 

01 
MVlM 0.00 
NPlB 

Table D-23b Minimum Deviation from Target Serial Correlation, 
as a Fraction of Target Value, Set 4, N, = 10 yenrs, r, < 0.666 

Table D-23c Minimum Deviation from Target Serial Correlation, 
os a Fraction of Target Vaiae, Set 4, NI = 15 years, r, < 0.666 



Table B24a Minimum Deviation from Target Variance, 
as a Fraction of Target Vaiue, Set 4, NI = 5 years, rXy c 0.666 

Table ID-24b Minimum Deviation from Target Variance, 
as a Fraction of Target Vdue, Set 4, NI = 10 years, r, < 0.666 

Table D-24c Minimum Deviation from Target Variance, 
as a Fraction of Target Value, Set 4, NI = 15 years, r, c 0.666 

fi, Altemate fii 
0.02 

, N2 ' 

10 
Models 
RPNM 

Alternate 
RPNM 

fi  
-0.17 

N2 
15 

fii 
-0.60 

M& 
MVlM 



Table D-25a Minimum Deviation from Target Mean Flow, 
as a Fraction of T q e t  Value, Set 4, NI = 5 years, r, < 0.666 

Table D-25b Minimum Deviation from Target Mean Flow, 
as a Fraction of Target Vaiue, Set 4, NI = IO years, r, < 0.666 

f, 
0.05 

Table D-25c Minimum Deviation from Target Mean Flow, 
as a Fraction of Target Value, Set 4, N, = 15 years, r,, < 0.666 

b& 
5 

0.04 
0.00 

- 
10 

. 15 

f; 
-0.04 

Models 
REG 
REG 
NPlB 

Alternate 
RPN 



Table D-26a Minimum Deviation from Target Low FIow, 
as a Fraction of T q e t  Value, Set 4, NI = 5 years, r, < 0.666 

Table D-26b Minimum Deviation from Target Low Flow, 
as a Fraction of Target Value, Set 4, N, = 10 years, r, < 0.666 

25 

I 
- - - - - - - II r I I I  

10 1 MV2 1 0.00 1 RPNM 1 0.01 ] 
I 15 REG I 0.00 I EU'N I -0.01 / 

- - 
1 

Table D-26c Minimum Deviation from Target Low Flow, 
as a Fraction of Target Value, Set 4, NI = 15 years, r, < 0.666 

NP2A 
RPNM 
REG 
NP2A 

0.00 
-0.01 
0.00 
0.00 

1 I 

0.00 
0.01 20 

Mvm 
REGM RPN -0.03 



Table D-27a Minimum Mean Percentage Error, 
Set 4, Ni = 5 y-, r, < 0.666 

Table D-27b Minimum Mean Percen tage Error, 
Set 4, NI = 10 years, r, < 0.666 

MPE 
21.9 
14.6 
0.7 
0.7 
-0.1 

N2 

5 
10 
15 
20 
25 

Models 
MVI 
REG 
NPlC 
NPM 
MV3 

Table D-27c Minimum Mean Percentage Error, 
Set 4, NI = 15 years, r, <: 0.666 

MPE 
5.9 

Altemate 
RPNN 

1 
-- -- - 

MPE 
-1.2 

I 

-1.4 
1.1 

15 
20 

N2 
IO 

RPN 
h N 3  

MPE 
0.5 

M d &  
REGM 

RPN 

Alternate 
NPlC 

N2 
15 

-2.2 A 

M d  
MV1 

MPE 
O. 1 



Table D-28a MInimnm SSE, 
Set 4, N, = 5 y-, r, < 0.666 

1 N, 1 Models 1 SSE 1 

Table D-28b Minimum SSE, 
Set 4, Nt = 10 years, r, < 0.666 

N, 1 Models 1 SSE 1 

Table D-28c Minimum SSE, 
Set 4, Nt = 15 years, r, < 0.666 

- 
N2 
15 

Models 
NP2C 

SSE 
11829.0 
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