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Abstract

This report proposes several techniques to improve the accuracy and the stability of electromagnetic
transient simulations of transmission lines. An improved transmission line model (mesh domain
model) is proposed to simulate transients in underground cable systems accurately considering
frequency dependent effects. One advantage of this approach is that the resulting transformation
matrix between phase and mesh domain is frequency independent. The mesh currents and voltages in
co-axial cables are naturally decoupled at high frequencies hence the propagation function shows
relatively smooth behaviour. Compared with basic phase domain methods, the rational function
approximation and transportation delay estimation are relatively easier in mesh domain method. Two
approaches are introduced to enhance the accuracy at low frequencies for HVDC overhead lines and
underground cables by modifying the form of the fitted function. In the first approach, a suitable low
frequency pole is added to the existing fitted function. The pole is carefully selected such that the
resulting function gives correct dc value and the other high frequency response is changed
insignificantly. In the second approach (Modified Functional Form method), the functional form of
the fitted function is reformulated so that the modified function gives theoretical dc values at zero
Hertz. A robust passivity enforcement algorithm is proposed to impose passivity on a non-passive
transmission line model. The proposed, two-step method can be applied to detailed phase domain
models, such as the Universal Line Model. This enforcement algorithm first uses a modified
functional form method to remove large passivity violations, which are usually present at low -
frequencies. Then a constrained least squares method is employed to perturb diagonal elements of the
propagation matrix or characteristic admittance eliminating any small passivity violations. The time

domain simulations were validated using Numerical Inverse Laplace Transform method.
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Chapter 1

Introduction

The mathematical analysis of the electrical behaviour of transmission lines was originally introduced
by James Clark Maxwell, Lord Kelvin and Oliver Heaviside. In 1855 Lord Kelvin formulated a
diffusion model of current in a submarine cable. In 1885 Heaviside described the analysis of

propagation in cables and the modern form of telegrapher’s equations [29].

The term transmission line (TL) refers to overhead transmission lines and underground cables in text
to follow. In most power system textbooks, the transmission line (TL) parameters are calculated
assuming very low frequency conditions i.e. the current is uniform across the cylindrical conductor
neglecting skin effect. These constant line parameter models are valid only for analysis at and in the
vicinity of fundamental frequency (e.g. Load flow studies) [45]. It is very important to consider the
frequency dependent nature of TL (e.g. skin effect and proximity effect) for the accurate analysis of

harmonics and electromagnetic transients [48].

In the first stage, TL equations are formulated in frequency domain. There are no direct time domain
equations available in theory except for simplified structures. Time domain simulations are of great
interest in practice. This is because this is the only general way to handle nonlinear elements such as
thyristors in converter stations, nonlinear inrush currents of transformers and sudden changes in the

network such as operation of circuit breakers and faults.

The goal of this thesis is to develop an accurate, stable and improved time domain TL model to

simulate electromagnetic transients from frequencies ranging from zero Hz to 1 MHz.



The frequency domain TL equations are expressed in terms of two parameters namely characteristic
admittance function Yc(s) and propagation function A(s) (5= jw). These parameters are
frequency dependent and in case of multi-conductor TLs, they become square matrices. In general,
the frequency domain expressions for the TL parameters are complicated and are not in a form readily
simulated in the time domain. In order to have a time-domain implementation, the line’s
characteristic admittance function Yc (s) is first approximated (curve-fitted) by rational transfer
functions. The same is done for the propagation function A(s) , except that the fitting now includes a
transportation lag in addition to the transfer function. Once expressed in rational function form, the
model becomes implementable in the time domain [29], and can be used to investigate transients on

transmission lines with arbitrary (including non-linear) terminations.

For multi-conductor underground cables and unsymmetrical overhead transmission lines, the
frequency response of the propagation function A(s) shows oscillatory behavior, when plotted as a
function of frequency. This irregular behaviour causes difficulty in low order rational function

approximation and extracting optimum time delay [44], [57].

A new time domain TL model called Mesh Domain Model is proposed in this thesis to get over this
difficulty. In this model, the original phase domain parameters are converted into mesh domain by a
linear constant transformation. In contrast to the phase parameters, the mesh domain parameters
exhibit less oscillatory frequency response. As a result, delay extraction and the rational function
approximation for the propagation function A(s) formulated in mesh domain are much easier. This
mesh domain model is represented by a current source and real shunt admittance at each end of the
TL and hence can be readily implemented in electromagnetic transient (EMT) programs. The

examples including underground cable systems are shown to exhibit the validity of the proposed



algorithm. The time domain results are compared with an analytical solution obtained via numerical

inverse Laplace transform.

Although TL models accurately represent electromagnetic transients from frequencies ranging from a
fraction of a Hz to 1 MHz, it has been difficult to get a good fit in the close neighborhood of 0 Hz
(dc). For HVDC lines and cables, it is very important to accurately reproduce the response in the
close vicinity of 0 Hz, as that is the nominal frequency on the line. Forcibly attempting to fit the line
characteristic at these extremely low frequencies requires a high order for the rational function and

sometimes leads to inaccurate fitting.

This thesis introduces two novel procedures for improvements in the accuracy of time domain
simulation models for overhead lines and underground cables at very low frequencies. In these two
methods, a suitable modification is introduced to the functional form of the rational function
approximated in the curve fitting procedure for the phase-domain model, such that the model is
accurate at dc frequency. The above proposed methods are also compared against a third less accurate
method which simply adds a series dc resistor to correct the dc response. The proposed approaches
are validated by comparing the time domain simulations with analytically obtained responses for
simple linear terminations. The practical use of the developed procedures is demonstrated using the
example of a Voltage Sourced Converter based High Voltage Dc Transmission (HVDC) System that

uses underground cables.

This thesis proposes an improved algorithm to enforce passivity on the time-domain simulation
model for a multi-conductor cable or overhead line. The physical transmission line, by necessity must
always be passive, i.e., regardless of it terminations, the line itself cannot generate active power at any
frequency. However one of the major problems of the above modeling method is that the

3



straightforward implementation of curve fitting cannot guarantee a passive time domain model of a
transmission line. Depending on its terminating connections, a non-passive transmission line model

may lead to incorrect, unstable simulations.

In this passivity enforcement algorithm, the model first employs one of the two low frequency
correction methods used to obtain accurate response at 0 Hz (dc), thereby also reducing the likelihood
of passivity violations. The frequency sweep method is then used to identify any remaining passivity
violating regions of the model’s frequency response. These small passivity violations are then
removed using a linear constrained least squares algorithm to perturb the diagonal elements of

propagation matrix or characteristic admittance.

The passivity enforcement algorithm is applied to the Universal Line Model (ULM), a widely used
robust phase domain formulation implemented in many commercial electromagnetic transient
simulation programs. Two examples, of multi-conductor underground cable systems, one for ac and

the other for HVDC transmission are presented to demonstrate the proposed approach.

1.1 Overview of the report

Chapter 2 summarizes the transmission line theory and modelling methods found in literature. The
first part of the chapter gives an introduction to the basic TL modelling techniques and later, different
modeling techniques are discussed in detail (e.g. modal domain, direct phase domain and combined
phase & modal domain methods etc.). In addition, some multi-conductor transmission line models

such as the Universal Line Model (ULM) are discussed.



The proposed new Mesh Domain Method to simulate multi-conductor coaxial cable systems is
described in Chapter 3. Simulation results involving underground cable examples are presented to
validate the model. The curve-fitted functions obtained from proposed model are compared with that
from a direct phase domain model to emphasize its efficiency and accuracy. Time domain simulation
results from the proposed model are also compared with the analytical solution obtained via

numerical inverse Laplace transform.

Chapter 4 discusses the inaccuracy of time domain simulations at low frequencies, which is a crucial
problem in simulating HVDC underground cable systems and overhead lines. Two novel procedures
are introduced to guarantee the exact dc response for transmission lines. Time domain simulations
involving HVDC underground cable systems are compared with the solution from numerical inverse
Laplace transform to verify the accuracy at very low frequencies including zero Hertz and high

frequencies (up to 1 MHz).

Chapter 5 begins with a brief introduction to the concept of passivity and then discusses the definition
of passivity in context to the multi-conductor transmission lines. The error between the fitted
functions and the actual functions are shown and how it related to the passivity problem is discussed
using suitable examples. A two-stage robust algorithm to enforce passivity on multi-conductor
transmission line models is introduced in this chapter. Time domain simulations involving
underground cable examples are compared with the solution obtained from numerical inverse Laplace

transform to verify the validity of the algorithm.



Chapter 2
Review of Multi-Conductor Transmission Line Modelling

The objective of this chapter is to explain the basic theory for transmission line modelling and
different models for multi-conductor transmission lines found in literature. The chapter begins with a
discussion on single-conductor transmission line modelling and then extends it to the multi-conductor
case. The fundamental concepts on multi-conductor modelling methods such as Modal domain
modelling, Phase domain modelling are explained and later in the chapter, various phase domain
models found in literature are discussed such as thev Universal Line Model. Finally the time domain

solution obtained directly via frequency response is explained.

2.1 Single conductor transmission line model

The following section describes how to model single conductor overhead line, which gives good
insight into the basics of transmission line and cable modelling, before considering the more

complicated multi-conductor case.

I [+Al
—
vV V+AV

Figure 2.1: Small section of the transmission line



The above schematic shows a differentially small section of length Ax of a homogeneous
transmission line (or underground cable) of total length /. Let Z be the impedance and ¥ be the
shunt admittance per unit length of the transmission line respectively. From Kirchoff's current and

voltage laws:

AV =—(Z&x)I (2.1a)

Al =-(YAx)V (2.1b)

Here AV and Al are the frequency domain phasors of the incremental voltage and current across
the section. The alternating current tends to travel near the surface of a conductor as its frequency
increases (skin effect). In deriving Z , the skin effect of the conductor and the soil is considered and
hence the series impedance Z (a)) is frequency dependent. The shunt admittance Y (a)) is also a
function of frequency and accounts for the capacitance between the transmission line and its image to
the earth. In (2.2a) and (2.2b) R(a)) , L(a)) , G and C denote unit length series resistance, series
inductance, shunt conductance and shunt capacitance respectively. The expressions for these

parameters can be found in [1], [6], [7], [3].

Z(0)=R(w)+ joL(w) | (22a)

Y(w)=G+ joC (2.2b)



A note on frequency dependency nature of shunt conductance (G) and capacitance (C )

Some models, use frequency dependent values for the sth:onductance and ;;;citance. For
overhead lines, the approximation of assuming capacitance is very accurate [27], and can be
calculated from the line geometry. The shunt conductance value also depends on other factors such as
ageing, type of insulators, environmental parameters e.g. humidity, temperature and pollution etc.

This shunt conductance value is very small, since the electrical conductivity of air is extremely small

(typical value, 3e-11 S) [68], [55], and is sometimes entirely omitted in many models.

For underground cables, the capacitance value is much higher than the overhead lines, since the
distance between conductor and return path is small. The permittivity value of insulators is assumed
to be a constant in emtp-type programs such as EMTP and PSCAD/EMTDC, resulting in a constant
capacitance (see equation B.10 in Appendix B) [27]. However, in case of pipe-type cables the
frequency dependent nature of permittivity may be significant, requiring the consideration of

frequency dependent capacitance. Such cables have not been considered in this thesis.

The conductance G value of the insulators can be derived from the frequency dependent loss angle
(tan(6)) and the capacitance C of the insulators (G =tan(5).»C ) [27]. Since the conductance value
is very small (G << wC), the effect of conductance on electromagnetic transient simulations is very
small in practical cases. Hence it is reasonable to assume a constant conductance. This is the
common practice in many emtp-type programs and has been shown to be sufficiently accur‘ate [27].

The equations used for determining all parameters are presented in Appendix B.

The Maxwell equations are the set of four fundamental equations used to describe the dynamics of the

electromagnetic (EM) waves. Transmission line equations (also called telegrapher’s equations) can be



derived from Maxwell's equations (and also using basic circuit theory as in 2.1) [29]. The general

form of the telegrapher's equations in the frequency domain are given by,

—%V(x,a)) = Z(w)I(x,w) (23a)

—5‘3;1(;5, w) = Y(0)V (x,0) (2.3b)

For simplicity, Z (a)), Y (a)), I (x,a)) and V(x,a)) are represented as Z, Y, I and V in the
following text. The equations (2.4a) and (2.4b) show the solution to the above equations (2.3a) and

(2.3b) obtained form elementary partial differential equation theory [5],

[=\/'2]-_e~JZ_fof_\/—ze~/Z_}7xVb (243)
VA VA

V=e Ty, 4oy, (2.4b)

Where, ¥V, and V, are arbitrary phasors constants, which can be evaluated by applying boundary

conditions at the sending-end and receiving-end of the TL. At the sending-end of the line (i.e. at x =

0),

Ve=V,+V, (2.52)

Y Y 2.5b



Similarly at the receiving-end, x =/ (length of the transmission line)

v, =V, + ey, (2.6a)

m

Im =—\/'§e_JZ_],_IVf+\/-'§eﬂIV; (26b)

Note that in the above expressions, subscripts “4” and “m” denote sending-end and receiving-end.
The current direction is to the transmission line at both end of the line (see figure 2.9). Frequency
domain TL equations are usually expressed in terms of the characteristic admittance function Y, (a))
and propagation function A(a)) (2.7a and 2.7b respectively), which are also functions of per unit

length parameters Z (a)) and ¥ (a))

_ |¥(@) (2.72)
Oz
A(@)= V) (2.7b)

After eliminating the unknowns (¥, and V,) from equations (2.5a), (2.5b), (2.6a), (2.6b), the

relationship between sending-end and receiving-end variables can be expressed as,

I,=YV,-A(YV,+1,) (2.82)
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1,=YV,-A(YV,+1,) (2.8b)

Here, V, and V, are the conductor voltages to ground (ground/earth is considered as reference for
the voltage) and I, and I, are conductor currents. The terms A(YCVm +1,) and A(YV, +1,)
represent the contribution from the remote-end of the transmission line. Electromagnetic transient
(EMT) programs require a time domain form of (2.8a) and (2.8b). In equations (2.8a) and (2.8b), each
product of two frequency domain functions becomes convolution between the corresponding time

domain functions. For example (2.9) is the time domain form of (2.8a):

i (1) = 2. (£) v, (1) = a(2) * (3. (1) #v,, (1) +1, (1)) (29)

Note that lower case letters represent time domain impulse response function of corresponding
uppercase letter frequency domain (FD) function (e.g. Y, (t ) is the inverse Laplace transform of
the Y, (S) in equation 2.8a) . The symbol "*' denotes convolution. The straightforward numerical
integration of the convolution is not computationally efficient. The mathematical technique called
recursive convolution is a numerically efficient technique to evaluate the convolution. For the
recursive convolution, either one of the two functions should be expressed as a sum of exponentials.

To explain, consider the following convolution,

5 (t)=2.()*v.(¢) (2.10)

The admittance impulse response term , (l‘ ) can be approximated as a summation of exponentials in
the following way. Since the characteristics admittance function is originally formulated in the

frequency domain (FD), numerical inverse Fourier transform methods such as IFFT are used to get

11



it’s corresponding discrete time domain function. The time domain function y, (t) is then
approximated by a summation of exponentials as shown in (2.11) using a suitable curve fitting

technique.
()= Y e (211)
=1

A more convenient approach that avoids the step of obtaining the time domain form of y, (l‘ ) is to
approximate the FD function Yc(a)) using a least square based curve fitting technique in the
following form (called pole residue form as shown in equation (2.12) with (s= ja))) in the
frequency domain directly. The direct frequency domain fitting has several advantages over time
domain fitting. If the fitted function closely matches the actual function over a range of frequencies,
then the corresponding steady state time domain simulation is highly accurate over that particular
frequency range. Also the unknown coefficients (¢;, g; and Y in equation (2.12)) can be efficiently
evaluated using a robust curve fitting technique based on linear least squares called Vector Fitting

[43], [41] (for more details, see Appendix D).

Y (s)=3 -1y, (2.12)

o0
=1 § 4,

Figure (2.2) shows the typical plot of the fitted function and the actual function for Y;(a)) as a

function of frequency.
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Figure 2.2: Actual and fitted frequency responses of Yc

The time domain form of (2.12) is,
y.(t)= En:c,.e"" +Y,6(¢) (2.13 )
i=l

With y, (l‘) in above formulation, the convolution (2.10) can be written in discrete recursive form as

(271, [20],

5,(t) = av, (¢)+ By, (t—At) +ys,(t— Ar) (2.14)
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Where, Af is the simulation time step selected. It is interesting to note that value of the convolution
is expressed as a combination of the voltage at the current time step, voltage at the previous time step
and the previous value of the convolution. For further details, the derivation of constants can be found

in appendix E.

Equation (2.15) represents the other convolution term in (2.9).

s,(t)=a(r)*f(t) (2.15)

where,

£ (0)= (1) *v, (6)+1, (1)

The same procedure (used to evaluate y, (t)*vk (t) in (2.10)) can be utilized to evaluate the
convolution. However the exponential term (e_“y(w)z(w)l in equation (2.7b)) prohibits direct curve

fitting of A(a)) using low order rational functions.

Physically A(a)) is the factor, which defines the attenuation and the phase shift of forward travelling
wave coming from the remote end of the transmission line after some delay. The reason for the delay
is due to the relativistic speed limit. The signal cannot travel faster than the speed of light. Therefore
the propagation function A(a)) contains a true delay (transportation lag). This time delay in time
domain means a phase shift in frequency domain. The propagation function A(a)) can be
represented with the delay explicitly separated as shown in equation (2.16) leaving a simpler function
4, (a)) , which is readily fittable by a rational transfer function. This process is referred to as

“unwinding”.

A(w)=4,,(w)e’" (2.16 )

14



The delay (t) can be physically depicted as the time required for the travelling waves to travel to the
other end of the transmission line. Time delay is frequency dependent. However time domain models
require constant delay, which can be calculated in several ways. Further details can be found in

Appendix C.

Once the delay is removed, the 4, (a)) shows less oscillatory phase behaviour as shown in figure
(2.3). It now becomes easy to fit with low order rational functions. The fitted and the actual functions
are shown in figure (2.4). It appears that there is a significant phase fitting error after 10* Hz.
However, the magnitude is entirely zero at these large frequencies and so the phase error is

inconsequential. The final form of the propagation function is,

M.
A(s) =Y e (2.17)
=1 $—a;

where, § = jo .
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Figure 2.3: Propagation function after and before unwinding

— Actual
+  Fitted

05r

10° 10°

o Y

Figure 2.4: Actual and fitted frequency responses of A,y
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After applying recursive technique, the convolution in (2.15) becomes,

s,(t)=a f(t-7)+ B f(t-At—1)+¥'s, (- ) (2.18 )

It is evident that all the terms in (2.18) are history terms (i.e. only involve values from the past).
Finally, the formula for the current (2.9) can be expressed as a summation of present and past values

as follows.

AGESAES AN (2.19)
where,

Vg =&
g & (1) = By (£ = Dt)+ys,(t - At)—s5,(2)

Equation (2.19) represents a real current source and a real admittance for the sending-end in the time
domain. Similar representation can be obtained for the receiving-end, so that the model can be

represented by the equivalent circuit in figure 2.5.

Ik im

v | (D (D | [y

Ihist.k Ihist.m

Figure 2.5: Time domain equivalent circuit
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This model is in the standard form used in the admittance matrix based network solutions [27] and

hence is easily incorporated into the EMT algorithm.

2.2 Multi-conductor Transmission lines and Cables

Modelling of multi-conductor transmission lines (MTL) is more complicated than the single
conductor case. Various approaches have been developed for the multi-conductor case, The
equations (2.8a) and (2.8b) are valid for this case, but Y, (a)) and A(a)) are square (nxn) matrices

and I and V are n-dimensional vectors for the n-conductor system.

This electromagnetic coupling phenomenon in MTL causes irregular behaviour in the elements of
propagation matrix A(a)) , both in magnitude and angle in their frequency response, shown for a

typical cable in Fig 2.6.
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Figure 2.6: Magnitude plots of elements of a column of A matrix for 6 conductor case
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As a consequence, there can be difficulties in time delay extraction and low order rational function

approximation, which are essential components in time domain modelling.

2.3 Modal Domain Methods

The problems described above, relating to coupled frequency domain equations (2.8a) and (2.8b) can
be avoided by decoupling them using modal theory [41], [22], [7] ,[26]. The coupled frequency
domain equations (sometimes called direct phase equations) can be decoupled using transformation

matrices. Consider the following system of equation.

Y=Gx (220 )

where, G is a square matrix and Y and X are output and input vectors respectively. For simplicity,
consider a two dimensional case. Equation (2.20) can be written in matrix vector form as shown in

equation (2.21),
[Jﬁ]= 8, gl,zJ{le (221)
Y2 821 &2 |L%,

The above coupled equation can be decoupled by separating eigenvalues and eigenvectors of matrix

G as shown in equation (2.22) and (2.23).

[y{”}[g”’u 0 }[x{”] (222)
hox 0 gmz,z x,”
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Y =GMx (223 )

where,

G" = EGE™
YM =Ey
XM =E'X

E and g'",.),. are the matrix of the right eigenvectors and i® eigénvalue of matrix G respectively.
Equations (2.8a) and (2.8b) can be converted into modal domain as described in Appendix A.
Application of modal theory to the transmission lines was first introduced by L.M. Wedephol and
later becomes an essential tool in TL modelling [28], [22], [7], [26]. Once the equations are
transformed in to the modal domain, the frequency response of each modal element (such as elements
of modal A) is smooth and well behaved. The extraction of the transportation delay as well as the low
order rational function approximation of the modal function is much easier. The modal domain

formulae are tabulated in Appendix A.

In general the transformation matrix from direct phase domain to modal domain is frequency
dependent and complex. However for most overhead transmission lines (e.g. horizontally
symmetrical overhead lines) or simple cable systems this transformation matrix is almost constant and
also the imaginary part of the transformation matrix is negligible compared with the real part. For
such cases, the transformation matrices can be considered to be real and constant with little error in

the time domain solution.

20



The assumption of the real constant transformation matrices leads to efficient time domain
modelling, since only 4n convolution are required in each time step for an n-conductor transmission
line. As transformation matrices typically converge to a real constant value as the frequency tends to
infinity, it is customary to obtain the above real-constant transformation by evaluating the true
transformation at the highest frequency point to be considered (usually 1 MHz). For certain
geometries E can be determined from physical arguments. For example, for horizontal ideally

transposed transmission lines, the Clark transformation can be used.

The paper [21] describes a method to simulate transmission line transients in the time domain using

constant transformation matrices.

The constant transformation matrix assumption is not valid for highly asymmetrical overhead line
configurations and for most underground cable systems. In such cases, assumption of constant
transformation matrix causes significant errors in time domain simulations. The frequency
dependency effects of transformation matrices must be accurately taken into account. The paper [37]
describes a modal domain transmission line model considering frequency dependent transformation

matrices.

Modal domain models with frequency dependent line parameters have several drawbacks. Due to the
additional convolutions involved between modal matrices and transformation matrices, the model is
numerically inefficient and less accurate compared with direct phase domain methods. It was
observed that some elements of transformation matrices can not be satisfactorily approximated using

rational functions.
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An essential part in modal domain models is the computation of modal elements (eigenvalues). If the
eigenvalues are calculated using normal eigenvalue/eigenvector algorithms such as power method or
QR method [30], the eigenvalue plots vs. frequency are not smooth as shown in figure (2.7) due to the
phenomena called “eigenvalue switching”. The mathematical methods for eigenvalue calculations are
well known [30] and not elaborated in this thesis. If such algorithms are used, then the eigenvalues
calculated at the current frequency are not always corresponding to the eigenvalues at the previous
frequency. The eigenvalue A, move along a smooth locus, as frequency is measured up to point 1
and that appears to jump to point 2 and smoothly to point 3 and jump to 4. This sudden jump is also

seen in the locus of eigenvalue A .
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Figure 2.7: Shows the phenomena of eigenvalue switching
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Alternatively, one could argue that in the jump region @, eigenvalue A, should have continued
along the trajectory of A, to produce a smooth locus. As the naming of eigenvalues is arbitrary, this
makes no differences to the mathematical behaviour in the frequency domain. However the jump
makes curve fitting of A, and A, very difficult. Hence in order to facilitate good curve fitting a
method must be produced (such as the Newton Raphson method [33] or a nonlinear optimization
method [46]) that allows identification of eigenvalues so that their loci are smooth. Figure (2.8)
shows the magnitude of eigenvalues vs. frequency, if Newton Raphson based method [33] is used to

calculate eigenvalues and eigenvectors for the six conductor cable configuration.
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Figure 2.8: Magnitude plots of normalized eigenvalues of YZ matrix, if NR method is used
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2.4 Direct Phase Domain Models

2.4.1 Basic Concept of Phase Domain Models

Direct phase domain models have been developed in order to overcome difficulties associated with
frequency dependent transformation matrices. The TL equations remain coupled, but the problem of
frequency dependent transformation matrices does not arise. For Direct Phase Domain models, the
general derivation is briefly described as follows. For an n-phase transmission line having length /,

the FD expressions are (equations (2.8a) and (2.8b) restated below),

Im = )/;Vm -A(Y::V;c +Ik) ( 2.24 )
I, =YV, -4AXV,+1,) (2.25)
where [36],

Y, = J(¥z)'r (226 )

- - (227)
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Figure 2.9: Voltages and currents at sending-end and receiving-end of a TL

Suffices “k” and “m” denote sending-end and receiving-end respectively. ¥, (a)) is the characteristic
admittance matrix. A(a)) is the propagation matrix. V and I are voltage and current vectors. Y (a))
and Z (a)) are shunt admittance and series impedance square matrices per unit length respectively.

The frequency dependent term @ is removed for simplicity in equations (2.24) to (2.31).

The matrices ¥, (a)) and A(a)) are computed first by finding the eigenvalues and eigenvectors of

P (aJ) =Y (a)) xZ (0)) matrix. Let , (a)) be the i" eigenvalue of matrix P (a)) .

A4 = ETE™ (228 )

Where, E,(a)) is the matrix whose columns are the eigenvectors of matrix P (a)) F(a)) is a

diagonal matrix, whose elements are defined as,

r,=e’ | (229 )

Similarly, the matrix Y, (a)) is,
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Y, = EYEY (230)

[4

where, ‘P(a)) is a diagonal matrix whose elements are defined as,

1 (2.31)

The ultimate objective of modelling is to find an equivalent circuit in time domain as described in
section 2.1. The same procedure can be applied, but there are exceptions. The first stage is the rational
function approximation of A(a)) and Y, (a)) in frequency domain (as discussed in section 2.1). For
n-conductor transmission line, these are square matrices and each entry of those matrices is

approximated by low order rational functions.

Since Y, (a)) in phase domain is a symmetric (nxn) matrix, only (n + nx(n-1)/2) elements are to be
fitted. As Y, (a)) is the admittance seen by the sending-end for an infinite line, diagonal elements of
Y (a)) are of minimum phase type. The off-diagonal elements are multiplied by -1 before rational
function approximation, so that they too become minimum phase functions, whose angles lie in the
first or fourth quadrant. The minimum phase property of Yc(a)) allows entries of Yc(a)) to be
approximated only using real poles and zeros with a reasonable accuracy (Any physical admittance
(or impedance) can be synthesized to an electrical network consisting of only passive elements such

as capacitors, inductors and resistors. The transfer function of such networks contains only real poles

and zeros) [36].
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The propagation matrix is an un-symmetrical square (nxn) matrix. Using the approach described in
section 2.1, all the elements must first be unwound as in (2.16) and the entries of unwound matrix

A4, (a)) are curve-fitted by low order rational functions.

It is observed that the elements of 4,, (a)) are close to minimum phase (but in some cases,
considerably deviate from minimum phase) and can be approximated using low order rational
functions [44]. Complex poles and residues are required -in curve-fitting to obtain a reasonable

accuracy.

In modal domain methods described in section 2.3, transportation delay can be successfully calculated
using Bode’s gain-phase formula. Modal domain elements (modal form of A(a)) ) are smooth
functions of frequency (less oscillatory behavior). There is a unique delay associated with each mode,
because each mode has its own modal velocity. But delay extraction is very difficult in the phase
domain elements, due to the oscillatory nature in the entries of A(a)) , when plotted as a function of
frequency. Usually an optimization technique is implemented to calculate the optimum delay, which

results in a low order rational function approximation (see Appendix C for further details).

At the end of first stage, the elements of matrices 4, (a)) and Yc(a)) are expressed as rational
functions in the forms shown in (2.12) and (2.7) respectively. In time domain, these functions are
summation of exponentials. Using the same techniques like application of recursive convolution
described in section 2.1, the frequency domain equations (2.24) and (2.25) are converted into time

domain equations.

lm(t) = yeqvm(t) +ihist_m(t-At’t_At_T’t—T) (232 )
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@) =y () +iyy (A E—At-7,1-7) (233)

where y,, is a real constant matrix and history current terms (i, , and i, , ) are evaluated using
past information as discussed in section (2.1). The equations reveal a time domain equivalent circuit
having a shunt admittance and history current source as shown in figure (2.5). This formulation can

be readily implemented in electromagnetic transient programs.

2.4.2 Phase Domain Models in literature

Recently direct phase domain models are of greater interest than modal domain models, because
phase models avoid problems with frequency dependent transformation matrices. Various phase

domain models have been developed in the past few decades.

2.4.2.1 Direct phase domain model

A direct phase domain model for overhead transmission lines can be found in [36]. The term direct
means this model does not involve curve-fitting of modal elements or transformation matrices, but
only phase elements. In this model, the transportation delay in (2.16) is extracted based on speed of
light, however this is successful only for simple overhead transmission line configurations. There may
be difficulties in low order rational function approximation for more complicated configurations, if
the delay is simply calculated based on speed of light. For such cases, the optimum delay (which
gives minimum least square error of curve-fitting for a given entry) is significantly different from the

delay calculated on speed of light. The curve-fitting method used for the model is the modified
28



magnitude fitting in which only magnitude of 4, , (a)) is considered for fitting. This fitting method

is based on the assumption that 4,, (a)) is a minimum phase function.

2.4.2.2 Autoregressive moving-average (ARMA) model

Some models incorporate transportation delay 7 directly into fitting process[32]. In phase domain
ARMA model [32], the rational function approximation of Yc(a)) and 4, (a)) is done in the z

(Z =eSAI

) domain rather than in s (s = j®) domain. One important advantage of this method is that
there is no need to calculate the delay explicitly, as the delay terms are represented in the z domain

formulation.

The ™™ in s domain can be approximated by,

ST

1 ==

e or ~ 2
ST

1+ST 1+___

This approximation is not sufficiently accurate to represent the exponential term in TL applications.

But the delay © can be accurately represented in z domain as shown below.
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At and 7 are the time step selected and the transportation delay respectively. The n™ order rational

function in z domain is used to curve-fit 4,, (a)) or Y, (0)) as shown below.

a,+az"' +..az" (2.34)
1+bz" +...b,z”"

Y(z) = G(z) X (2)

G(z) =

The unknown coefficients (a,’s and b,’s in (2.34)) are evaluated by a least squares fitting method.

The corresponding time domain form of (2.34) is shown below.

y(k) = aox(k)-l-a,x(k—l)+...a,,x(k-n)-bly(k—1)+...+b,,y(k-n) (235)

This model can be implemented into electromagnetic transient (EMT) programs. Note that as the
coefficients a; and b; are identified from the discrete model (Z domain), their values are time step

dependent and must be reevaluated if the simulation is run with a different time step Az.

So far, the each entry of the propagation matrix A(a)) is attributed to a single delay. Alternative
approach is to treat each entry of A(a)) with multiple delays (modal delays) instead of single delay.
It is meaningful, because each entry can be expressed as a linear combination of modal elements of
A(a)) at any frequency [7]. Hence entries of A(a)) compose of delays in each mode (modal
delays). The accuracy of curve-fitting with multiple delay approach is greater than single delay
method and multiple delay technique shows clear advantage, when dealing with cable configurations

having widely different modal delays.
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2.4.2.3 Universal Line Model (ULM)

An example for the phase domain model, which uses multiple-delay approach, is the Universal Line
Model (ULM) [44]. In this model, modal delays are first calculated and then modes of 4,, (a)) are

curve-fitted using a robust least square technique called Vector Fitting [43]. The functional form of

k™ mode is,

N
AmOde(s)__ E{C Cok STk (236 )
k m=15"%,

Co» T, are the order of approximation, m™ pole and m™ residue and the delay

mk > “m,

where N,, a
corresponding to k™ mode respectively. It is assumed that each 4; ; (a)) can be approximated by a

rational function in the form shown in (2.37) with modal delays and poles, used to curve-fit modes.

n( N, ¢ - 2.37
4,(5)=> ¥ —mk (237)
k=1 m:ls—amk

where n is the number of modes. Idempotent theory gives a good insight into the mathematical
background of this model [5]. According to idempotent theory, matrix A(a)) can be stated as a

linear combination of its eigenvalues or modal elements at any frequency as in (2.38).

A= "T,4™ (238)
k=1
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where Tk(a)) is a frequency dependent matrix derived from corresponding eigenvectors. By

substituting 4, from (2.36),

R - (2.39)

It is observed that the entries of the matrix 7}(((0) show smooth behavior for practical TL
configurations, when plotted as a function of frequency. This justifies the assumption that the
frequency dependency behavior of T, (a)) can be flexibly accounted by choosing suitable residues
(selecting new set of residues instead of ¢,, ’s in (2.39)) and A(a)) now becomes a form similar to

2.37).

According to the formulation (2.37), there is no unique time delay for each element of A(a)) matrix
but a superposition of modal delays in time domain. This significantly improves the accuracy of the
fitted propagation functions particularly for TL configuration with widely different modal time
delays. Another plus point is that since all elements have same set of poles, there is a computational

saving in calculating the convolution terms (2.15), leading to a numerically efficient model.

The ULM is accurate, robust and numerically efficient model. This model requires a robust

eigenvalue tracking algorithm like NR method to eliminate eigenvalue switching.

There are several problems common to many time domain models. One issue is that although these

models simulate the frequency range from a few Hertz to about several kilohertz, it has been difficult
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to get a good fit around zero Hz (dc); a significant error in modelling HVDC underground cables and
overhead TLs. Two novel procedures are introduced to improve the accuracy of time domain
simulation at very low frequencies (see Chapter 4). Another shortcoming is that these time domain
models cannot be guaranteed to be always passive, which may result in unstable Time Domain
simulation. An algorithm is proposed to enforce passivity on the time-domain simulation model (see

Chapter 5).

2.5 Method for validity determination of time domain implementation

In this thesis, many approaches to time domain simulations are discussed and new ones are
introduced. It is important to check the validity of these approaches. However, unless for simplified
approaches, the direct theoretical solution is not available. Instead, a numerical method to obtain the

time domain solution from frequency domain solution is used to validate the transient simulation.

For linear networks, the relationship between an applied voltage or current excitation (input) and the
desired output can be represented by a frequency domain transfer function. The applied input can be
transformed with a Laplace Transform into its frequency components. The Laplace Transform of the
response is then obtained directly in the frequency domain by multiplying the above transfer function
by the (frequency domain) input. The time domain solution can now be obtained by inverse Laplace
transform of this frequency domain solution. Although such an approach is only applicable for linear
networks and thus has little use in general-purpose simulation that usually includes non-linearities; it
is nevertheless an independent means to validate the time domain solutions of transmission lines

obtained by numerical integration of differential equations.
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Consider a case where, the TL is connected to a load admittance (Y,,) at the receiving-end and
sending-end is connected to a current source (I) parallel with an admittance (Yy). The frequency

domain equations at both ends can be written as shown in equation (2.40) and (2.41).

I, =1, +1V, (2.40 )

L, =-L7, (241 )

The frequency domain solution of the sending-end current can be calculated by combing equations

(2.40) and (2.41) with (2.8a) and (2.8b).

Ik=Is—I/k(H1+H2IIk_HZK)_I(I+H2)[S (242)

where, | is the identity matrix.

Hy =Y.+,

H,=A(Y,-Y,)(¥,+Y,)" 4

The time domain solution for the sending-end current is obtained using numerical inverse Laplace
transform of equation (2.42). A detailed discussion on Inverse Laplace Transform can be found in

Appendix F.
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2.6 Chapter Summary

This chapter described the basic theory of transmission line modelling and summarized the modelling
methods found in literature. At the beginning, the derivation of frequency domain transmission line
equations using telegrapher’s equations was briefly presented. The concepts of TL modelling for the
single- conductor case were then described in detail. This gives a good understanding in to the basics
of transmission line modelling, before explaining the more complicated multi-conductor case in
section (2.2). Multi-conductor models fall into two major categories namely modal domain methods
and phase domain methods. Finally the use of frequency domain methods to obtain time domain

responses was briefly described. This method is useful to validate the transmission line models.
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Chapter 3
Modelling of Co-axial Cables in the Mesh Domain

3.1 Introduction

A new method is developed in this thesis to simulate time-domain transients in underground cables
accurately considering frequency dependent effects. The idea of mesh domain modelling arose from a

relaxed chat over coffee with Prof. L.M. Wedephol to which the author is greatly indebted.

Rather than convert the equations using eigenvector matrices to true modal form, the proposed mesh
method uses mesh voltages and currents. The advantage of the approach is that the resulting
transformation matrix between phase and mesh domains is frequency independent. The conventional
phase domain formulation, which uses conductor and sheath voltages and currents, can be
numerically challenging due to the superposition of independent traveling waves arising from the
coupling of modes. This results in oscillatory behaviour in the frequency response of elements of A,
which makes delay extraction and low order rational function approximation difficult and numerically
inefficient. As will be shown, in the proposed mesh domain formulation, the mesh currents and
voltages in co-axial cables are naturally decoupled at high frequencies due to the shielding effects of

the conductors, suggesting the possibility that the above oscillatory behaviour may be avoidable.

3.2 Development of the Mesh Domain Model

The mesh —domain equations are developed for the co-axial cable geometry shown in Fig 3.1.
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Figure 3.1: Phase voltages and currents in a coaxial cable system

3.2.1 Basic Mesh-Domain Equations

Series impedance (Z) and shunt admittance (Y) matrices are the basic building blocks of any TL

model. The approach of section 2.1 is also valid for underground cables, and the resulting

relationships between phase voltage and current phasors for a cable are as given below in (3.1a) and

(3.1b),
ddzp =-7I, (3.1a)
%z_wp (3.1b)

where, V, is the vector of phase voltage (conductor to ground ) phasors, I, is the vector of phase

current (current through each phase or conductor) phasors through each conductor and x is the
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distance along the line. The dimension of the current (or voltage) vector is nx1 for an n-conductor

system. Z and Y are square nxn matrices.

In this new approach, the currents and voltages of a cable are defined in mesh domain as shown in
figure 3.2. Instead of selecting inner conductor to ground, sheath to ground, armour to ground
voltages, the new set of voltages are chosen as voltage between inner conductor and sheath, sheath
and armour, and armour and ground. Similarly the currents are selected from conductor to conductor,
instead of conductor to ground.

Plastic sheath
Armour:

Bedding
Metallic Sheath —_///7* /
Paper Insufation—~+ "%/
Innier Conductor :

Figure 3.2: Mesh voltages and currents in a cable

The series impedance and shunt admittance matrices are formulated in the mesh domain, which
causes separation of modes as the frequency increases. This results in smooth frequency responses of
entries of matrix A. The transformation matrix from phase to mesh domain is real and constant as it is

based directly on Kirchoff’s current law.
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—Lesh —Zmesh]mesh ( 323 )
-d]—me:h— = —Ymesthesh ( 32 b )
dx

3.2.2 Shunt admittance and series impedance matrices in mesh domain

The self and mutual impedances and admittances between the cable conductors can be represented
using the per unit length equivalent circuit shown in Fig. 3.3. Here, Z; is the self impedance of j"

loop. And Z; is the mutual impedance between i and j® loops.

Z,; = impedances of internal conductor (Zconauctor) + insulator between first sheath and (33)

conductor (Zisutator) + inner first sheath (Zinner sheath)-

Z i = mutual impedance of i™ sheath (Zsheath_mutual) (3.4)

Z;; = sum of impedances of outer (i-l)th sheath (Zoyter sheath) + (i-l)th insulator (Zisutator) (3.5)

+ inner i" sheath (Zinner _sheath)-

Z,, = sum of impedances of outer (n-l)th sheath (Zouer sheam) + the (n-l)th insulator (3.6)

(Zinsutator) + self earth return .

Yii = shunt admittance between two adjacent conductor layers.
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Figure 3.3: Equivalent circuits for unit length admittance and impedance

The traditional phase domain series impedance and shunt admittance matrices per unit length can be
written in terms of the above mesh-domain impedances and admittances. With the meshes selected

from phase to ground, the impedance and admittance matrices can be constructed as follows.

(1) The series impedance matrix per unit length (Z ) can be defined as,
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k" diagonal element, Z(k.k) (3.7)

n-1

= izii - 22 Zmi
i=k i=k

Off diagonal term, Z(p,q) (3.8)
=Z Zii - Zmp
i=p
= Zq,p
Zy+.Z,,-AZ,, +"Zm(n—1)) Zop +olpy = Zyy —~AZ, 5 +Z,5) . Z, _Zm(n—l)
5 Loy ¥y =Ly ~ A2, p +2Z,3)  Zypt+.Z, ~AZ , +"Zm(n—l)) . zZ., "Zm(n—l)
Zon~ Zm(n—l)
L Zon~ Zm(n—l) Zon— Zm(n—l) Zn~ Zm(n—l) -
(3.9)

(2) Shunt admittance matrix (Y ) per unit length

o =L : 0 (3.10)
- | =¥, Y. +7Y . 0
7= 8! 11 2
: . "an—mn—l)
0 0 —Y(n—l)(n-l) Y;m + YEn—l)(n—])
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These matrices are formulated in the phase domain choosing the conductor currents 1-g, 2-g, 3-g...n-g
as the variables. Phase currents and phase voltages (conductor to ground) have significantly mutual
coupling within the frequency range from 0 Hz to 1 MHz. This results in oscillatory behavior in
propagation and characteristic admittance functions, when plotted as a function of frequency. Due to
this undesirable oscillatory behavior, the delay extraction is very difficult for the elements of
propagation matrix. Furthermore a higher order fit is usually required for the rational function
approximation due to the oscillatory nature of elements of propagation matrix both in magnitude and

phase. This leads to an inefficient model.

This difficulty can be significantly reduced by choosing different formulation for Y and Z matrices.

The new current meshes or meshes are selected as 1-2, 2-3, 3-4..., and (n-1)-n. The Y and Z

matrices formulated in this new mesh domain are,

Zy ~Zn - 0 (3.11)
- |—Z Z 0
7= ml 22
. . ~Zn(me)
O 0 —Zm(m—l) me
0 . 0 (3.12)
5|0 B 0
0
0 0 0 7

nn

The mutual impedances tend to zero as frequency increases. This can be easily proved from the
formula for mutual impedance (B.6) in appendix B. Thus the Z matrix formulated in the new mesh

domain becomes increasingly diagonal at high frequencies. Since Y is already a diagonal matrix, the
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currents (as well as voltages) defined in the new mesh domain become decoupled at high frequencies.
In other words the system supports almost independent traveling waves. This is a good approximation

to a pure modal domain system at very high frequencies.

Both magnitude and phase of elements of propagation matrix (A) are relatively smooth functions of
frequency compared with that of direct phase domain formulation (phase to ground). This is a
significant advantage for rational function approximation of the propagation function. A low order fit
can be found and this leads to an efficient model. This is particularly true for the elements of

characteristic admittance matrix as well.

Since the frequency responses of the diagonal elements of A matrix are relatively smooth, it is easy to
extract the time delay. The delay is usually evaluated using Bode’s gain phase formula (Appendix C)
as described in section (2.1) at the highest frequency point of interest (corresponding to the fastest
traveling wave). This delay extraction is relatively easy in new mesh domain rather than in phase
domain due to smooth behaviour of propagation function at high frequencies. There are still some
difficulties in delay extraction for off-diagonal elements for some cable systems (e.g. cable systems
with widely different modal time delays, some complicated cable systems). An alternative

optimization method was developed to calculate time delay (see Appendix C for details).
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3.2.3 Transformation Matrices

In order to use the potentially powerful features of the mesh domain method demonstrated earlier, it is
necessary to transform voltages and currents in phase domain to new mesh domain and vice versa.

The voltage transformation matrix can be derived as follows.

V;g = Vlz + Vz3 +V3.4 +-"V(n-1)n
Vig =V + Vo + . Wy

(3.13 )

...........................

Note that suffix ‘g’, ‘phase’,’mesh’ denote ground, traditional phase domain and the new proposed

mesh domain respectively.

Vphase =K v I7mesh ( 3.14 )

The voltage transformation matrix Ky is defined as,

111 .1 (3.15)
011 .1
K,={0 01 .1
. 1
00 00 1
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Similarly the current transformation matrix can be derived by considering phase to mesh

transformation for currents.

Ly =1y | (3.16 )
12g =-I,+ 1,

Liwng = ~Lnaynn + Lipryn

‘[phase = Kllmesh ( 317 )

0 (3.18 )
11 0 0
K=l0 -11 0
. 0
0 0 0 -1 1]

Another advantage of mesh method is that current and voltage transformation matrices are real and

constant avoiding the difficulties with frequency dependent transformation matrices.

It can be easily shown that,
-
KV_—_(K/) (3.19)
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The relationship between characteristic admittance matrix in mesh Y, ., and in phase domain

Y

is derived as follows,

¢,phase
‘[mesh = Y::,mesthesh ( 320 )
By substituting (3.14) and (3.17) in (3.20), we get
T
Yc,phase = KIYc,meshKI ( 3.21 )

In a similar manner, the transformation for the propagation matrix from mesh to phase can be derived

asin (3.23),

Imesh (x) = Ameshlmesh (x = 0) ( 322 )

By substituting (3.17) in (3.22), we get

Aphase = K]AmeshKVT ( 323 )

Table 3.1 shows a summary of conversions from mesh to phase and vise versa.
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Phase domain to mesh Mesh domain to phase

—x7T =
V;nesh - KI Vphase Vphase =K VVmesh
T —
I mesh KV I phase I phase KI I mesh
. T _ T
Zmesh - Kl thaseKl thase - KVZmeshKV
Y. =K7Y ,..K Y s = K Y K,
mesh — *™ ¥ phase® ™V phase 1+ mesh™>1
_ T - T
Amesh =K, 14 AphaseKl Aphase - Kl AmeshKV
Y . =K"Y K Y =KY K
c,mesh V. “e,phase”™V c,phase — “>1%"c,mesh™>1

Table 3.1: Conversion table

3.3 Equivalent Circuit in Time Domain

The frequency domain transmission line equations written in terms of new mesh domain variables

are,
I m mesh = K,meshKn,mesh - A‘mesh (Y;',meshl/;c,mesh + I k,me:h) ( 3243)
I k,mesh = Y;:,meshV;f,mesh - ‘4‘mesh (}Ic,mesh 1'/m,mesh + 1 m,mesh) ( 3 24b)

As discussed in section 2.1, the above frequency domain expressions are then to be converted in to
time domain equivalent circuit in order to implement in electromagnetic transient programs such as

PSCAD/EMTDC. However, the time domain circuit must be ultimately expressed in phase domain,
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since phase currents and phase voltages are easily dealt with terminal conditions. If equation (3.24a)

is multiplied by current transformation matrix K, ,

K [ = KIY K -IKVI/m,mesh - KI Amesh (},t:,nzeshl/;c,mesh + ]k,mesh) ( 3 ,25 )

1+ m,mesh ¢, mesh* >V

Then by substituting (3.17), equation (3.25) becomes,

Im,phase = KIY;,meshI/m,mesh - KI Amesh ()jc,mesth,mesh + Ik,mesh) ( 3 26 )

Define F, as,

F;c = Amesh (Y;,meshr/k,mesh + Ik,mesh) ( 327 )

Then equation (3.26) becomes,

Im,phase = Klyvc,meshl'/m,mesh - KIF;C ( 328 )

The time domain form of (3.28) is,

im,phaxe (t) = Klyc,mesh (t) * vm,mesh (t) - Klf;c (t) ( 329 )

Where, the term "*" denotes convolution and,
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f(t) = amesh (t) * (yc,mesh (t) * vk,mesh (t) + ik,mesh (t)) ( 330 )

The lower case variables are the corresponding time domain form of the upper case variables. The
above convolutions can be efficiently evaluated by recursive convolution method described in section

(2.1) and the equation (3.29) now becomes,

im,phase (t) = .i}eq_mvm,mesh (t) + ihist_m (t) ( 331 )

With mesh to phase conversion as in (3.14), equation (3.31) can be written as,

im,phase (t) = yeqvm,phase (t) + ihisl_m (t) ( 332 )

Where, V., , = Voy nK /", Similarly for the other end of the transmission line,

Z.k,phase (t) = yeqvk,phase (t) + ihist_k (t) ( 333 )

Equations (3.32) and (3.33) suggest a time domain equivalent circuit, which can be realized in

popular electromagnetic transient programs,
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Figure 3.4: Time domain equivalent circuit

3.4 Mesh Domain Modelling for Multi-cable Systems

The procedure for modelling multi-cable configurations in mesh domain is same as that described in
the preceding section 3.3 for single cable system. However the transformation matrices derived for
single-cable case are different from that for multi-cable case. This section briefly describes the

derivation of transformation matrices taking a simple example involving a cable configuration similar

to a cable system shown in Figure 3.6.

For simplicity, it is assumed that each cable of the two-conductor system has an inner conductor and a
sheath. Figure 3.5 shows the per unit length impedance equivalent circuit. Z,,is the earth mutual

impedance (frequency dependent) between two cables. By considering mesh voltages and phase

voltages, the following relationships can be built.
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V;g :Kz'*'Vzn
Vg =Van
Vig =Vau + V0,
Vie=Van

The voltage transformation matrix K, becomes,

O O k=
O = OO
_— O O

Similar relationship can be built for the currents in mesh and phase domain,

I =1,
L=1,-1,
I, =1,
I,=1,—-1

The current transformation matrix becomes,

1 0 0 0
1100

K, =
00 1 0
0 0 -1 1

51

(3.34)

(3.35)

(336 )

(3.37)



1 3
) 1 )

%ﬁ e Z11-Zm %3 " Z33-Zm2

zm1 Zm2

2 ___.| }_% 4 ____| ‘.___
F A

%5 I2n , 'Zme %3 lin "Zme

me
L T
Cable 1 Cable 2

impedance Equivalent Circuit

Figure 3.5: Equivalent circuit for unit length impedance

The impedance matrix in mesh domain can be written in terms of self-impedance of each cable and

earth mutual impedance as follows.

Zl,ll Zl,z1 0 0 (3.38)
Zz,ll Zz,z1 0 Z,
0 0 ZU2 Zl,22
0 Z,. Z,' Z,;

me

- =l

N
It
3

where, Z,., jk is the (z', j)’h element of the impedance matrix for the k™ cable (k = 1,2) derived as
described in section 3.2.2. Z,, is the earth mutual impedance between two cables. Since only the
outermost conductor of each cable is coupled to the other, Z (2,4) =7 (4,2) =7, and all other

mutual entries are zero (Z~(1,3) = 2(1,4) = 2(2,3) =0 etc.).

52



Since there is no coupling in the admittance equivalent circuit, the admittance matrix in mesh domain

becomes,
¥, 0 0 0 (339 )
7 0 %, 0 0
0 0 Y’ 0
0 0 0 L)
where, K jk is the (i, j)m element of the admittance matrix for the k™ cable (k = 1,2) derived as

described in section 3.2.2. This section briefly described the derivation of mesh domain impedance
and admittance matrices for two-cable configuration. The derivation can be generalized for higher

number of cable systems.

3.4.1 Rational Function Approximation of Yc and A

Once mesh domain Z and ¥ matrices are computed (as discussed in section 3.4), mesh A and mesh
Yc are then calculated using equations (2.26) and (2.27). The next step is the rational function
approximation (curve-fitting) of entries of the characteristic admittance (Yc) and propagation (A)

matrices.

Time delay estimation and curve-fitting of A

The model developed in the thesis assumes multiple-delay form for the propagation function (similar
to the ULM) as shown in (3.40), (see section 2.4.2.3 for further details). The modal delays (T,.) in
equation (3.40) are estimated using Bode’s gain-phase formula from modes of mesh A matrix (see
appendix C for delay estimation using Bode’s formula). The modes are the eigenvalues of A matrix
calculated as described in section 2.3.
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N c’ N, c’
A ()me ™y —Hpe Yy (340)
n1=1 §— anl n2=l §= 61)12

Identification of poles (an, )and residues (c,',i ) in (3.40)

The developed model exploits a feature in the Vector Fitting algorithm, in which two or more
functions can be simultaneously curve-fitted using a common set of poles [40], [43], [41]. Each
column of the mesh propagation matrix is approximated with a common set of poles using the
modified Vector fitting algorithm [67] (i.e. the unknown residues and poles in (3.40) are calculated by
curve-fitting each column of the propagation matrix and the entries in a column share same set of

poles); hence the numerical efficiency of the model is improved.

This model can be also used in situations where the phase domain Universal Line Model (ULM) [44]
does not always give satisfactory results. Earlier researchers observed that there were difficulties in
curve-fitting the modes in ULM for some cable systems [67]. Since this model does not involve
curve-fitting of modes of propagation matrix and the mesh domain formulation is based on actual
mesh currents and voltages, entries of mesh propagation matrix can be satisfactorily approximated

using rational functions.

3.5 Application Example

In order to explain the advantages of the proposed mesh domain method, an example underground
cable system is considered. Figure 3.6 shows a three-cable system (each has an inner conductor and

sheath) with data shown in Table 3.2. The typical plots of entries of the propagation matrix
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formulated in traditional phase domain are shown in Figure 3.7, clearly indicating the oscillatory

behavior of phase domain elements, when plotted as a function of frequency.

Ground Resistivity. 100.0 [ohm*m] / 7 S ////
Relative Ground Permeability. 1.0 / // / %~ // /
Earth Return Formula: Numerical Integration /4 o, ,/ /,
- o T > T 7 7 e

N
1Conductor
Insutator 1 insulator 1
Sheath Sheath
Insulator 2 insulatar 2

;

AT [M] e rrmmeemaeney

Figure 3.6: Three cable system
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Resistivity of the inner conductor [](Qm) 1.68¢-8
Resistivity of the outer conductor (m) 2.2e-7

Relative permittivity of inner and outer insulators ~ 4.1/3.2

Earth resistivity (Qm) 100

Length of the cable system (km) 30

Table 3.2: Cable data
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Figure 3.7: First column of the phase propagation matrix

If the propagation matrix is formulated in the mesh domain, the frequency domain responses of
elements of mesh propagation matrix (see Figure 3.8) show smooth behaviour in contrast to that of

the phase domain functions. The fitted first column of mesh domain propagation matrix is shown in
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Figure 3.9 as a function of frequency. Also shown in the graphs are the theoretical (actual) curves (the
solid lines in the same figure) indicating that the fitting is accurate. In comparison with phase domain
elements, mesh domain elements are smooth and hence easy to curve-fit using low order rational
functions. Table 3.3 compares the order of rational function for mesh domain with phase domain
formulation. For the propagation function, order of the transfer function is reduced noticeably by

30%, if mesh formulation is used and hence leads to a numerically efficient model.

— A(1,1)
0.9 ‘ —— AR 1|
AB1)
| o AG) |
0-7’_‘ sneus@uunn A(5,1) |
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05) i
0.4} .
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10°

Figure 3.8: First column of the mesh propagation matrix
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Order of phase Yc
Order of mesh Yc
Order of phase A
Order of mesh A

10
10
43
33

Table 3.3: Order comparison (per element)
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Figure 3.9: Actual and fitted mesh propagation functions (first column)
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Time domain simulations are conducted to validate the proposed mesh domain model. A short circuit
test is conducted for the same cable system. The inner conductor of cable 1 is energized with 1V step,
while all other conductors are connected to the ground. Figure 3.10 shows the sending-end current
waveform (solid conductor) through inner conductor of cable 1 and the theoretical solution (dotted
line) obtained via numerical inverse Laplace transform method. The current waveform from mesh
domain model is in a close agreement with theoretical solution, indicating that simulation results from

mesh domain model are accurate.

0-5 T T T T T T T T T
0.45 FD solution 7
— — — Simulation output g
0.4 |
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0 | | | | | | | L |
0O 0001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Figure 3.10: Sending-end current
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Another simulation is conducted for the same cable system. A 1V step is applied to the inner
conductor of cable 1 and all other terminations are kept open. Figure 3.11 shows the induced voltage
(solid line) at the sending-end of the inner conductor of cable 2. Also shown in the graph (dotted line)
is the theoretical solution. This confirms that the induced voltage is in a close agreement with

theoretical results.
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— — — Simulation output 1
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Figure 3.11: Induced voltage in the inner conductor of the cable 2
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3.6 Chapter Summary

This chapter proposed a new mesh-domain method to simulate time-domain transients in
underground cables accurately considering frequency dependent effects. One advantage of this
approach is that the resulting transformation matrix between phase and mesh domains is frequency
independent. The mesh currents and voltages in co-axial cables are naturally decoupled at high
frequencies hence the propagation function shows relatively smooth behaviour. The rational function
approximation in mesh domain is relatively easier than in basic phase domain methods. This model

can be used in situations, where Universal Line Model does not give satisfactory results [67].
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Chapter 4
Improving the asymptotic fitting of TL and cable models

4.1 Introduction

This chapter introduces improvements to the low frequency fitting of the propagation and
characteristic admittance functions [66]. These developments are driven by the need for accurate dc
fitting for simulating High voltage direct current (HVDC) transients. HVDC transmission of power
over long distances is seeing increasing application with HVDC lines and cables being installed all
over the world. Simulation models for such systems are required to be accurate over a very wide
frequency range from zero Hertz, which is the nominal frequency on the line to several tens of

kilohertz for thyristor switching and other transients.

As discussed in Chapter 2, the use of modern phase dofnain modelling techniques coupled with
transfer function estimation using Vector Fitting has greatly improved the accuracy of time-domain
models for overhead transmission lines and cables [43]. However, although these time-domain
models simulate the frequency range from a few Hertz to about several kilohertz, it has been difficult
to get a good fit in the close neighborhood of 0 Hz (dc). For HVDC lines and cables, it is very
important to accurately reproduce the response in the close vicinity of 0 Hz, as that is the nominal
frequency on the line. Later in this chapter, it is shown that forcibly attempting to fit the line
characteristic at these extremely low frequencies requires a high order for the rational function and

sometimes leads to inaccurate fitting.
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An efficient new approach is proposed in this thesis based on linearization and constrained least
squares that achieves a highly accurate fitting over the full frequency range, with zero error at dc
frequency. A modification is introduced to the functional form of the rational function approximated
in the curve fitting procedure, such that the entries of the characteristic admittance and propagation
matrices can be fitted with more accuracy without having to substantially increase the number of
poles. Two possible variants of the functional form were attempted. In the first approach, the
admittance and propagation transfer functions are reformulated so that the dc response is factored out

as an additive constant which can be directly selected.

In the second approach, the transfer function is first fitted over the entire frequency range, which
typically results in some fitting error at zero Hz. A low frequency first order pole is then added to the
resultant fitted function in order to realize the exact response at dc, without significantly affecting the
remainder of the frequency response. One of the issues with earlier models was that although the
Vector Fitting procedure always had negative real parts in it poles, it sometimes violated conditions
for passivity [62]; and hence the simulations could  go unstable with certain types of line
terminations. Later in the discussion, it is shown that the proposed approaches are less likely to result

in passivity violations.

The above proposed methods are also compared with a simplified alternative approach which merely
adds a corrective series resistance into each conductor to get the correct dc line resistance. However,
this approach is shown to have poorer accuracy compared with the above approaches. Time domain
simulations of various transients on HVDC underground cables are presented to verify the validity of
the proposed methods. Finally the practical application of the developed modeling technique to a
large non-linear network is demonstrated through the example of a Voltage Sourced Converter (VSC)
based HVDC transmission system using underground cables.
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4.2 Asymptotic behavior of transmission line parameters

This section presents the asymptotic behavior of transmission lines. As discussed in Chapter 2, the
general TL equations, so called Telegrapher's equations are expressed in terms of series impedance
and shunt admittance matrices (see equations (2.3a) and (2.3b) in Chapter 2). The series impedance of
the overhead transmission lines consists of sum of basic impedances such as internal impedance of
the conductor, ground return impedance etc [43], [15], [1]. In the case of underground cables, the
components of the series impedance are internal impedance of inner conductor, sheath mutual, inner
and outer sheath impedances etc. (see Appendix B for further details). The basic impedances of cables
and transmission lines are functions of frequency, several other parameters and also depend on the

geometry of the transmission line.

4.2.1 Overhead Transmission Lines

To demonstrate the asymptotic behavior of characteristics for overhead transmission lines, consider a
single conductor transmission line. For overhead lines, the approximation formulae for conductor

internal impedance, aerial and ground return impedance are given by [43], [15], [1],

Zin[erna[ (a)) = pc COth 0777r -+ 0.35825pc ( 41 )
27rd, d, r
_Jop, (D 42
Zaerial&ground (C()) = ;m(TJ ( )
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where,

p, = resistivity of the conductor (Q2m)
d, = complex depth of penetration for the conductor

= | L
jop
1 = permeability of air (H/m)
= radius of the conductor (m)
D'=2(y+d,)
. = complex depth of penetration for the ground

- / Py
jop

p, = resistivity of ground (Qm)

y = height of the conductor from ground (m)

The complex depth of penetration of the conductor d, can be regarded as the (complex) thickness of
an annular tube of the same outer radius as the conductor, to which the current in the conductor is
effectively confined. The complex depth of penetration for the ground can be visualized as an

effective increase in the height of the conductor by the complex quantity dg as shown in figure 4.1

[20], [24].
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|
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height ! Actual height

4" penstration

Figure 4.1: Actual height and the effective height of a conductor in the transmission line.

As the frequency tends to zero, the complex depth of penetration of the conductor, d_ becomes large.
Thus the current density is equal throughout the cross section of the conductor, resulting in its internal
impedance attaining a value equal to its dc resistance. The aerial and ground return impedance tends
to zero. At very high frequencies, the internal impedance equals to skin effect impedance, which is
equivalent to the impedance of an annulus with radius and thickness equal to r and d, respectively
[20], [24]. The typical plots of conductor internal impedance and aerial & ground return impedances

are shown in figures (4.2) and (4.3) respectively for single conductor case.
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Figure 4.3 : Aerial & ground return impedance
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For simplicity, a single conductor case is explained. The series impedance of the conductor is,

z (a)) = Zinlemal (CU) + Zaeria[&ground (CO) ( 43 )

The typical plot of the series impedance as a function of frequency is shown in figure 4.3.

1.4 T T

1.2+

0.8}

0.6r

0.4r

0.21

Figure 4.4 : Series impedance function

The shunt admittance ¥’ (a)) per unit length in Telegrapher's Equation (2.3b) can be written as,

7(0)=g+ /228 (44)
()

7
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where,

D=2y
" g = conductance per unit length (conductance of air)

Zintemal Zaerial&ground
Low frequencies 0. .
rr’
High frequencies 0. o " ( D )
27rd, 2z r

Table 4.1: Zipternal and Zaeriaiggromnd at very low and very high frequency

At zero frequency, the ground return impedance tends to zero and the VA (C!) = 0) and ¥ (GJ = 0)

functions have the following form,

Z(0=0)=R, Y(o=0)=g (4.5)

where, g is the conductance per unit length and R is the resistance per unit length. The propagation
A(CO) and characteristic admittance Yc (CO) functions are accordingly calculated as described in
Chapter 2. At very high frequencies, £ (60) and ¥ (a)) have the approximate forms j@L and
joC , where L and C are constants. Hence Yc (CO) approaches a constant and A(CO) matrix
tends to zero. The typical plots of YC (CO) and Yc (60) functions are shown in figure (4.5) and (4.6)

respectively.
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Figure 4.6: Typical plot of characteristic admittance function,Yc¢
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4.2.2 Underground Cables

At very low frequencies, the conductor internal impedance approaches the dc resistance of the
conductor (as calculated considering conductor cross sectional area, length and electrical resistance) .
The sheath outer, mutual and inner impedances also approach to the sheath dc resistance and earth
return impedance tends to zero. At very high frequencies, the internal, sheath inner, sheath outer and
earth return impedances equal to the skin effect impedances. However the mutual impedance tends to
zero. These impedances are shown in figures (4.7) and (4.8). As for the case of overhead transmission
lines, Y« C(a)) approaches a constant and A(CO) matrix tends to zero at very high frequencies. The

asymptotic behaviors of Ye (CO) and A (0)) are similar to the case of overhead lines.

x 10
9 ] T T T T
8r ]
n| - Zintemal /)
Z sheath mutual /;
o — — - Zinner sheath /i
--------- Z outer sheath /.

5 / i

/’," +
4r /.'ll :A

7
3 /"Il & 7
a
4
2 / . +++ -
,/") ++++
1t /,/++ ++++ i
e =S '/;;++++++
T

o ! B AR f‘ . m
10° 10’ 10° 10° 10" 10° 10°

Figure 4.7: Typical plots of sheath and conductor impedances
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Zearth

10 10 10° 10°

Figure 4.8: Typical plot of earth return impedance

Zintemal Zinner_sheath Zshea(h_mutual Zouter_sheath
p P I%
At Zero Hz Le, — R Ea
o o B oD )
High P, s 0 P,
frequencies 2zr 27, 27,

Table 4.2: Impedances at low and high frequencies

where,
p, = resistivity of the inner conductor (Q2m)

m, = reciprocal of complex depth of penetration for inner conductor

- /jawc
Pe
M, = permeability of the conductor (H/m)

r = radius of the conductor (m)
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p, = resistivity of the sheath (QQm)

m_ = reciprocal of complex depth of penetration for sheath

_ /jwus
Ps
4, = permeability of the sheath (H/m)

r, = inner radius of sheath(m)

1

r,,= outer radius of sheath(m)

The full expressions for cable impedances are stated in appendix B.

4.3 Issues with fitting of the transfer matrices at low frequency

It can be shown that at very low frequencies (derived from (2.7a) and (2.7b) in chapter 2),

Ve(s—0) ~ |25 (46)
Rdc
A (s—>0) ~ 1-\/sCR,I (4.7 )

where,

C = capacitance per unit length (F/m)
R, = dcresistance of the line per unit length (€/m)
[ =length of the line

s = jw
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The square root term in equations (4.6) and (4.7) is difficult to approximate by a low order rational
function. Consider the simple three single-core coaxial cable configuration shown in figure 4.9, with
data as in table 4.3. The frequency response of a typical entry A(1,1) of its propagation matrix A is
shown in figure 4.10., which also shows a plot of a rational function approximation obtained by
fitting over the frequency range [1 Hz, 1 MHz]. Note that the fitting at frequencies lower than the
lower bound f,;;= 1 Hz is poor. Table 4.4 shows the order of the fitted transfer function (maintaining
the same fitting error), with different lower bounds f;,. For the propagation function, decrease in the
lower bound form 1 Hz to le-3 Hz results an increase in the order by 6 for each element of the
propagation matrix (i.e. 54 additional poles in the 3 x 3 sizéd matrix). This clearly indicates that the

required order of the fitted function rises rapidly as the lower fitting frequency is reduced.

In order to observe the impact of using a lower fitting bound, simulations are carried out on the cable
system in figure 4.9 with the sending-end of the first conductor energized by a step voltage and with
all other terminations being grounded. Figure 4.11 shows time domain simulation response curves for
the sending-end current obtained with different lower bounds for curve fitting. The template for
comparison, also included in the figure, is an analytical solution obtained by a direct frequency
domain (FD) solution attained by numerically inverting the Laplace Transform of the accurate

transfer function (see Chapter 2 for details).

If the lower bound used in the fitting is not sufficiently small, as time progresses, the time domain
simulation diverges from the analytical solution and results in an incorrect dc response, as seen from
the plots of in figure 4.11 after a period of about 0.5 s. The response with a lower bound of 1 Hz,
which is often selected by simulation tool users when studying dc systems, has 33 % steady state

error. Reducing the lower bound to 0.001 Hz, reduces the error to 3.3%, but achieves this with a
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significant increase in the fitting order (see table 4.4) as discussed earlier. Note that poor fitting at

very low frequencies is a major source of error when modelling dc lines.

Vi i

3m

m

Figure 4.9: Simple Cable System: 3 single-core coaxial cables.

Radius of solid conductor (m) 0.00127
Outer radius of insulation (m) 0.00228
Dc resistance (€2/ km) 0.034
Relative permittivity of the insulation 2.85
Earth resistivity (2-m) 100
Length (km) 50

Table 4.3: Cable data
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0 8 L. | essesssses F.‘Ittw |
— Accurate
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Figure 4.10: Magnitude of A(1,1) after Vector Fitting over [1Hz, 1 MHz]

fnin finax for A Order for A(1,1) Order for Yc(1,1)

(Hz) (Hz)

le-3 le6 22 20

le-1 le6 20 18
1 1e6 16 16
10 le6 16 16

Table 4.4: Order of rational function approximation
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Figure 4.11: Sending-end current of the first conductor under short circuit conditions with
different lower bounds considered for fitting

4.4 Methods for dc correction for the Universal Line Model

This section first presents a simplified approach sometimes used in the modelling of HVDC lines that
uses compensating series dc resistances to correct for the dc error. It then introduces two novel
improved approaches for enhancing the dc and low frequency, without significantly increasing the
order of fitting. The proposed methods are described with Universal Line Model (ULM) (a popular
phase domain model currently implemented in PSCAD/EMTDC and details can be found in chapter

2). However these methods are general and can be applied to any phase domain model.
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4.4.1 Dc correction by adding series resistance in each phase

The simplest method for correcting the error at dc frequency is to add a suitable series resistance in
each conductor. The value of this series resistance is equal to the correct dc resistance minus the value
obtained from the fitted function. Note that it is possible that this correction may at times give a
negative value for the added resistance. For example, consider the cable system as shown in Figure
4.9 in which compensating negative series dc resistances (-0.45 ohms and -0.47 ohms) must be added
to outer conductors (“A” and “C” in figure 4.9) and inner conductor (“B”) respectively. Figure 4.12
shows the current for conductor “A", with the sending-end phase “A” energized using a 1V step
voltage. All other terminations are grounded. Three traces are shown, the first showing the current
that would result with no correction to the model, the second showing the current after modifying the
model with the compensating resistances and the third showing the theoretical response obtained by
Frequency Domain analysis using numerical inverse Laplace transformation. With the resistance
added, the sending-end current attains the theoretical steady state value roughly after 3 seconds.
Although this method of correction does compensate for the dc response, it can introduce errors at
other frequencies. This can be seen from the traces in figure 4.13, which is a close-up view of the first
50 ms of figure 4.12. On this time-scale, the compensated solution deviates significantly from the

theoretical solution, whereas the uncompensated one does not.
A more serious problem with this method is that the addition of the (sometimes) negative resistance

could in many instances result in a non-passive formulation and lead to unstable simulations. Hence,

this method is not recommended.

78



0.4

0.35

0.3

0.25

02

0.15

0.1

0.05

o
o

Figure 4.13: Sending-end current for conductor “A” with Series Resistance Compensation
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4.4.2 Dc Correction by Adding a Pole and Residue

This section discusses a new approach introduced in the thesis. The known characteristic (an element

of admittance or propagation matrix) is first fitted with a rational polynomial f Juted (s) as in the

conventional phase domain method. A real pole a, € (0,27 f, k), k <1with a suitable residue c, is

added to it, so that the modified function gives the exact dc value at zero frequency. This modification
increases the order of the rational function by only one and does not affect the high frequency
asymptote. Also, as the cutoff frequency of the additional term is smaller than the lower fitting bound,

this correction is achieved with a very small error to the fitted part.

fmod (S) — S +fﬁtted (S) ( 4.8 )

s+a,

0.998 4
Pole at 210.05

Pde at 2r0.5

0.99r Without coirection » 7
0.988] A
0.986} —_— Actual k.
----- Without correction
oss4r e Pdea’(2n05 B
0.9t *  Pdeat 270.06 i
o.% L 1 ool X L el L L [ IR ] 3 1 RN S
10° 102 10" 100 10’

Figure 4.14: Magnitude of A(1,1) after and before addition of pole and residue
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This method is different from just adding a dc resistance to the phase as it introduces a correction in
each element of Yc and A matrices.The choice of a, (or k in above paragraph) is selected by another

optimization process that minimizes the error between the actual frequency response and that of

[l (s) As seen in the frequency response of one of the propagation matrix elements A(1,1) in

figure 4.14, the selection of the pole at either of the frequencies 27 x0.05 /s or 27 x0.51t/s ,
gives the accurate response at frequencies approaching dc, but the pole at 27 x0.5 r/s gives the
closest fit over the entire low frequency range. Note that without any correction, the frequency
response curves of figure 4.14 indicate the presence of a steady state error. Figure 4.15 shows the
corresponding time domain simulations for the line current with 1V applied to sending end conductor

“A”, and all other terminations short circuited. The steady state error is clearly visible.

When no correction is applied, this error is unacceptably large ~0.2 A (33.2 %), whereas when the
correction is applied, there is no error in the steady state response. The pole frequency must be
carefully selected. If it is too small, then the time required to reach steady state becomes large as seen

in figure 4.15 for 27 x0.05 r/s . This is also seen from figure 4.14, where the frequency curves for
27 x0.05 1/s begins to deviate from the analytical result at 10~ Hz. If the pole frequency is too
large, it begins to interfere with the original fitted result £/ (s ) as indicated by (4.8). In the above
case, the original function was fitted with a lower frequency bound of 1 Hz so the pole must be at a
frequency less than 1 Hz. Selecting a frequency of 0.5 Hz (27 x0.5 1/s ) gives a more accurate

response that more closely matches the analytical result as seen in figure 4.15. There is some error in

the initial 2 s, with the maximum error of 0.13 A occurring at about 1 s.

The proposed method of adding a pole is carried out after the Vector Fitting approach described in

chapter 2. The Vector Fitting is used to fit the frequency response characteristic with a relatively large

value of f

. of say, 1 Hz. As seen in table 4.4, this can be achieved with a much reduced number of
poles (6 less for A(1,1), 4 less for Yc(1,1)) than a fit to a lower frequency of say 107 Hz. Hence the
order of the modified fitted function f™* (s) is just increased by one (due to the added pole). Hence

the corresponding time domain model has a much reduced number of poles and is thus numerically

more efficient. In addition, it guarantees the exact value for the dc component and is less likely to
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show passivity violations in comparison with the method described in subsection 4.4.1 above where

negative (non-passive) resistances may be required.

0-8 T T Ly T T T T T
. Poeat 2705
0.7F i R
FD solution
BB e §
e R Without correction |
y Pole at 27:0.05 /
QAL X oo et s s B e AR SN S :
0.3 =
= FD solution
gBl - M e | Pdle at 270.05 |
---------- Pde a 2’":0-5
i Without Correction
0.1 i
o | | 1 1 | | L L L

Figure 4.15: Sending-end current of first conductor with different poles selected (pole-residue
method)

4.4.3 Dc correction by Modified Functional Form method

This section describes a new approach to attain an accurate dc response of any phase domain multi-
conductor TL model. The functional form of the fitted functions A(S) and Yc(s) for the ULM can

be found in equations (2.37) and (2.12) in chapter 2. These functions are written in an equivalent
mathematical form (4.9) and (4.10), it is readily seen that putting s =0 results in a single term which

is the response at dc (i.e. the term d,

¢ theortical

). By selecting this term to be precisely the known (exact)

dc value, a perfect fit at dc is guaranteed. (The detailed discussion on the actual implementation of

this method for ULM is described in Appendix H).

kAl N, C se 57

A e (S) Z c 1 e Z -t dah:,lheoriticale_srl ( 49 )

m=1 S—aq ny=1 St a

n

82



de,theortical

o ,
Yc,.’j"“’d (s) = En’ +d (4.10)

A minor drawback is that although the dc error is eliminated, the resultant propagation function at
very large frequency deviates marginally from zero, which is contrary to that fact that propagation

function approaches to zero as frequency tends to infinity (equation (2.7b) tends to zero as s — joo).
To correct this small error, the terms ¢, 's in equation (4.9) are slightly perturbed using another least

squares fitting to taper the high frequency response to zero without altering the correct dc value. The

procedure is briefly described in Appendix G.

As seen from the frequency response plots of (typically) the three elements of the first column of
propagation matrix A(s) in figure (4.16), this approach results in a very good fit over the entire

frequency range, without any increase in the order of the fitted function. The corresponding sending-
end current waveform with phase “A” energized to 1 V and all other terminations short circuited is
shown in figure (4.17). The simulation covers a period of 10 s and, in contrast with the uncorrected
formulation, the result from this method closely conforms to the theoretical response obtained by

frequency domain calculations.

Figure (4.18) shows the time domain responses (simulated and theoretical) for a different set of cable
terminations, in which the receiving-ends of all conductors are open-circuited while phases “B” and
“C” are grounded at the sending-end. A 1 V step is applied to the sending end of phase “A”. The
figure shows phase “B” receiving end voltage over a shorter duration (50 ms). The close agreement
with the theoretical response attests to the fact that accurate reproduction of higher frequency

phenomena has not been compromised by the dc correction.

For the cable system shown in figure 4.9, the proposed change in functional form results in a perfect
dc fit of the actual frequency response characteristic. The orders of the fitted transfer functions for
typical parameters, say A(1,1) and Yc(1,1) are both 16. This is the same number as that required for a

fitting with a lower frequency of 1 Hz (see table 4.4), which has been shown to give a poor dc
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response. This is a significant advantage of the functional form approach. As reported in section 4.3,

trying to achieve a good dc response by reducing the lower fitting frequency to say 10~ Hz adds
several additional poles to the matrices (e.g. 6 to A(1,1) and 4 to Yc(1,1)) and yet, unlike this

approach, did not give the correct response at exactly 0 Hz.
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Figure 4.16: Actual and fitted magnitudes of A(1,1), A(2,1) and A(3,1) with Functional Form
method
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Figure 4.17: Sending-end current of first conductor with and without correction
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Figure 4.18: Induced voltage on middle conductor “B” under open circuit conditions, if the
conductor “A” is energized with step voltage
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One of the difficulties in a conventional Vector-Fitting approach is that it is difficult to guarantee that
the curve-fitted model is always passive. A non-passive formulation for the transmission line or cable
can sometimes lead to an unstable simulation. An unanticipated advantage of this method is that the
Modified Functional Form method minimizes the likelihood of passivity violations. The effect of
Modified Functional Form method on passivity is discussed in detail in chapter 5 and hence is not

repeated here.

4.5 Application Example- Voltage Sourced HVDC with Underground Cables

As an example for the use of the method in a typical application, voltage sourced converter (VSC)
based medium voltage DC transmission system example shown in figure 4.19 [71] is considered. The
converter consists of six pulse VSC rated at 110 kV, 75 MW transmitting power to the receiving-end
through the 100 km underground cable system shown in figure 4.20. This case also demonstrates the
need for good time domain models - here the cable connects into a highly non-linear system (the
HVDC converter and the ac network reflected through it) and so frequency domain solutions are not

possible.

, I < G G | T 5 I
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Figure 4.19: VSC Transmission System
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Figure 4.20: Cable System: Two coaxial cable system

Radius of inner solid conductor (m) 0.0104
Dc resistance (€/ km) 0.0830
Outer radius of first insulation (m) 0.016
Relative permittivity of first insulation 4.1
Outer radius of sheath (m) 0.0205
Relative permittivity of second insulation 2.3
Outer radius of second insulator (m) 0.0215

Table 4.5: Data for the cable

Figure 4.21 compares the dc line current through the underground cable with and without correction
between 0 to 0.5 seconds indicating that the functional form method does not alter the high frequency
response of the original curve fitted model. Figure 4.22 shows the voltage difference between the two
ends of the cable system for a much longer duration (50 s). With the functional form method, the
steady-state voltage drop and the dc current observed are 4.1 kV and 0.495 kA respectively. This is in
exact agreement with the theoretical dc resistance of 8.3 Q2 (note: 4.1 kV/0.494 kA =8.3 Q).

87



or —a —_— -
— With correction [1 Hz]
— —  Without correction [1 Hz]
_0'5 L 1 L 1 1 I I I I
0.05 0.1 0.15 0.2 025 03 03 04 045 05
Figure 4.21: Dc line current of the converter
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Figure 4.22: Voltage difference between the converter and inverter

88



Without any correction, the voltage difference is 1.45 kV for the line current of 0.52 kA, which
implies an incorrect dc resistance of 2.84 Q. The above simulations demonstrate that the proposed dc
correction method yields a model that is applicable over the full frequency range of interest and is
thus useful for studying the steady-state and low frequency dynamics as well as the high frequency

transient and harmonic behavior of the dc link.

4.6 Chapter Summary

The traditional approach to modelling cables and transmission lines in the time domain using fitted
admittance and propagation characteristics can result in significant errors at frequencies approaching
dc. Although some improvements can be made by reducing the lower bound of the fitting frequency
to make the dc fitting more accurate, this usually results in an increase in the order of the fitted
transfer functions. Alternative approaches which modify the form of the implemented transfer
function, either by adding a low frequency pole or by reformulation in a form that permits direct
specification of the dc values, were shown to result in accurate simulations over the entire frequency
range from dc to higher frequencies. These two methods were shown to be more accurate and
potentially more stable in comparison with a simplified treatment of adding a corrective series
resistance in each phase. In particular, the second of these two methods is especially easy to
implement and is recommended for the modelling of HVDC transmission systems in which faithful

reproduction of the very low frequency behavior is just as important as high frequency behavior.
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Chapter 5
Robust Passivity Enforcement Scheme for Multi-Conductor

Transmission Lines and Cables

5.1 Introduction

Passivity of an electrical system is an important aspect in determining its stability. The physical
meaning of passivity with regard to electrical circuits is that passive networks always absorb real
power and thus the total energy delivered to the network is positive [13], [4]. Figure 5.1 shows a
single-port passive electrical network and v(t) and i(t) are the input voltage and current to the network

respectively..

i(t)

v(t) T Passive
Network

Figure 5.1: Passive Electrical Network

The total energy delivered to the network is,

T

&= [v(r)i(e)t (5.1)

0
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For any given voltage v(t), passive circuit requires that the total energy delivered must be non-

negative. i.e.

E>0 ,VT>0 (52)

Using Parseval’s theorem [4], the equation (5.1) can be expressed in frequency domain as in (5.3)

£=5 (@)l

=§lﬁ-zv(cg)y(w)r/(m)dw
=;1Z—T[Re(-1;(c:)—))lV(a))’ do
; (53)

where, Y (a)) is the admittance of the electrical network and the condition for passivity is that
real (Y (a))) is positive real for all @ [4]. For multi-conductor systems with symmetric admittance

matrix, the corresponding condition becomesV A :A is an eigenvalue of Re(Y (a))), A>0. An
equivalent condition [50] used later in this section 5.2, that also applies to non-symmetric matrices is

that V A : A is an eigenvalue of H(w)=Y (®)+Y (@) ,A>0 forall .

The passivity related to transmission line (TL) models based on method of characteristics is an
ongoing research topic. The physical transmission line, by necessity must always be passive, i.e.,
regardless of its terminations, the line itself cannot generate active power at any frequency. However
one of the major problems of the TL models based on method of characteristics is that the curve-fitted
resultant model of the (passive) transmission line cannot be guaranteed to be always passive.
Depending on its terminating connections, a non-passive transmission line model may lead to

incorrect, unstable simulations.
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To compensate for this error, it is necessary to modify the parameters of the curve-fitted transmission
line model with a passivity correction algorithm. In general, passivity correction algorithms based on
nonlinear optimization can be computationally expensive [56]. Alternatively, algorithms can be
formulated as a linear constrained least square problem [47], [62], [54], [63], [52]. However the

above methods can only be successfully applied, if the passivity violations are very small.

The development of a passivity enforcement method for delay based multi-conductor transmission
line models is an ongoing research topic and recent advancements can be found in [60], [63], [65].
The above methods assume that the passivity violations are small and are applicable to modal-domain
transmission line formulations (i.e. those that use constant transformation matrices for converting
between the phase and modal domains). These models are often adequate for vertically symmetrical
overhead transmission lines, where the assumption of constancy of the transformation matrix is fairly
accurate, but they are not so effective for asymmetrical overhead transmission line configurations and

arbitrary cable arrangements, where these matrices show a high amount of frequency dependence.

Although time-domain models simulate the frequency range from a few Hertz to about several
hundreds of kilohertz, the curve fitting algorithms are usually unable to obtain a good asymptotic fit
at very low frequency. An observed problem with this poor fitting at low frequencies is the presence
of large passivity violations. The measure of the degree of passivity violation is discussed in detail
later in section 5.2 and is the degree of negative excursions in the frequency response plot of the
eigenvalues of a certain Hermitian matrix which is derived from the admittance and propagation

matrices of the cable system.

As discussed in Chapter 4, an alternate formulation of the curve-fitting problem, referred to as the
Modified Functional Form method, guarantees an asymptotic fit of the frequency domain
characteristic of the transmission line as the frequency approaches zero, while maintaining a good fit
over the entire frequency spectrum. As will be shown later in this chapter, an additional benefit of
this approach, is that the accurate fitting at low frequency reduces the constraints on the curve-fitting
problem and results in formulations which are passive or have only small passivity violations. This
favorable property is exploited in designing a robust algorithm for passivity enforcement. As the
above reformulation reduces the severity of the passivity violations, the reformulated problem

becomes amenable to solution using perturbation methods.
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Based on the above observation, a new algorithm is proposed to ensure passivity in the transmission
line model. Unlike earlier approaches [60], [63], [65] the proposed method is not restricted to
constant transformation matrix based models, but can be applied to any phase domain model. This
method first reformulates the form of the transmission line’s admittances and propagation functions to
be fitted using the Modified Functional Form. With this approach, passivity violations are less likely
and when present, they are minor. Next, any (small) remaining passivity violations are removed
using a least-squares fitting to introduce corrective perturbations to the elements of the characteristic

admittance and propagation matrices.

This approach is demonstrated with examples of underground dc and ac cable systems, and validated

by comparison with frequency domain solutions.

5.2 Passivity criteria for multi-conductor transmission lines

Treating the finite length transmission line as a multi-port electrical network, passivity is guaranteed,

if and only if its transfer admittance Y (S) is positive real for every value of frequency @ (with

s = ja ) [59]. The transfer admittance Y (s), relating sending and receiving-end voltages to the
currents, is shown below in (5.4a) for the TL representation in figure (2.9). Using (5.4a), (2.8a) and

(2.8b), ¥ (s) is readily obtained as a function of 4 and Yc as shown in (5.4b).

[Ik:|=i;[Vk:| (5.4a)
Im Vm

s _[a-ay' oy q-2y' 201, (5.4b)
I-£) 24, T-2) U+,

93



Note that ¥, 4 and Yc are functions of frequency, s = jw and for simplicity, “s” term is removed in

(5.4a) and (5.4b). The necessary and sufficient conditions for the transfer admittance matrix ¥ (S)

to be positive real (and hence, for the transmission line model to be passive) are [60],

(a) Y(s) is analytic Vs :Re(s)>0 (55)
(b) ¥(s)=Y(s)
(c) H(s) = f(s) +()7(s)‘ )T (Hermitian Matrix)

is positive definite

As complex, poles and residues always appear in conjugate pairs, the first two conditions stated above

are automatically fulfilled [59]. The satisfaction of the third condition requires all eigenvalues of the

matrix H (s) with s = jw, to be positive at every frequency @ .

As an example, consider the 100 km twin HVDC cable depicted in figure 5.2 with data as shown in

Table 5.1. The system has four conductors (core and sheath for each cable), and hence has 4x4

dimensioned shunt admittance Y (s) and series impedance Z (S) matrices.

A

04m

Figure 5.2: Cable System: Two coaxial cable system
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Radius of inner solid conductor (m) 0.0104

Dc resistance (€2/ km) 0.0830
Outer radius of first insulation (m) 0.016
Relative permittivity of first insulation 4.1
Outer radius of sheath (m) 0.0205
Relative permittivity of second insulation 2.3
Outer radius of second insulation (m) 0.0215

Table 5.1: Cable data

The matrices Yc (s) , A(s) and the 8 x 8 dimensioned ¥ (s) & H (s) are accordingly calculated

using equations (2.26), (2.27), (5.4) and (5.5¢) respectively. Figure 5.3 shows the plot of the 8

eigenvalues of H (S) as functions of frequency. As all eigenvalues are positive at every frequency,

the passivity condition is satisfied. This confirms that the frequency domain formulation is passive for
the actual cable system in Figure (5.2). It should be from the physical reasoning (i.e. the cable should

not be able to produce energy).
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Figure 5.3: Eigenvalues of H (s)
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Figure 5.4: Magnitude of A(1,1) after Vector Fitting over [1Hz, 1 MHz]

As discussed in Chapter 2, the time domain modelling requires a rational function approximation
(curve fitting) of matrices Yc(s) and A(s) . The frequency response of a typical entry A(1,1) of its

propagation matrix A is shown in figure 5.4, which also shows a plot of a rational function
approximation of the form (2.37) obtained by fitting over the frequency range [1 Hz, 1 MHz]. Note
that the fitting at frequencies lower than the lower bound f;,= 10° Hz is poor. In most power system
transient studies, applied frequencies are in the range of 50-60 Hz. Switching transients typically
excite frequencies up to a few kHz. Hence fitting accurately in a region say 1 Hz to 100 kHz would
seem adequate. However poor fitting lower than 1 Hz may be a problem for HVDC system transients
as the base frequency values are incorrect. More importantly it would lead to passivity violations and

this is a problem ever for ac system transients.

Figure (5.5) presents the plots of two typical eigenvalues of the Hermitian matrix (s) , computed
based on fitted matrices (i.e. fitted Yc(s) and fitted A(s) ). Also shown in the graphs are the actual
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(theoretical) eigenvalues for comparison. The eigenvalues based on fitted matrices deviate
significantly from theoretical values, due to the poor fitting below the minimum bound of 1 Hz.
Although the first eigenvalue as calculated from fitted matrices (Figure 5.5a) still remains positive

over the full frequency range shown; the plot of the second eigenvalue from the fitted matrices

(Figure 5.5b) is significantly negative with a value of about -1 at approximately 3 x 10> Hz. This
negative eigenvalue indicates that there is a large passivity violation in the fitted model as a result of
the error caused by the rational function approximations (curve fitting) of the entries of A(s) and

Yc(s).
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Figure 5.5: Eigenvalue of H (s)

By consideration of several example cases of different underground cable arrangements, it is
observed that the poor curve fitting at lower frequencies (1 Hz or smaller) often results in large
passivity violations (negative eigenvalues of large magnitude). Negative eigenvalues at higher
frequencies are usually rare and if present, are of relatively small magnitude. Passivity correction can
be introduced for these small passivity violations more easily by using perturbation methods as
described in section 5.6.
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5.3 Identification of passivity violated regions

The accurate identification of the passivity violated regions is a crucial requirement for any passivity
enforcement scheme. Some earlier work [54], [51] has reported analytical approaches based on state
variable formulation and Hamiltonian matrices to determine the passivity violating regions. However
these approaches are strictly restricted to linear systems without transportation lag and thus are not
directly applicable to transmission lines or cables. More recent work [59], [60] has extended such
analysis to transmission lines (detailed discussion can be found in Appendix I). However theses
techniques require significant computational effort and frequency sampling as for the frequency

sweep method discussed in section 5.3.2.

Alternatively, the frequency sweep method is used to identify passivity violations, in which passivity

is verified by carefully evaluating all eigenvalues of H(s) by stepping through the entire frequency

range.

5.3.1 State variable approach

This section is prepared based on passivity identification method for a single conductor line found in

the reference [31]. In state variable technique, first the fitted rational functions of transmission lines

parameters (A(s) and Yc(s)) are expressed in state variable form. As an example, matrix Yc(s) in

(2.12) can be expressed in the state variable form as in (5.6).

X(l‘)=Ax(t)+Bu(t) (5.6 )
y(1)=Cx(t)+ Du(r)

The diagonal square matrix A (dimension N) contains poles of the transfer function as diagonal

elements and the row vector C (dimension N) contains residues. B is a column vector of ones
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(dimension N) and the scalar D is the constant term (¥ in (2.12)). N is the order of the function.

Hence the transmission line equations ((2.8a) and (2.8b)) can be expressed in the state variable form

as in (5.7).

K>'c(z‘)=2x(t)+Px(t—27)+l§v(t) (5.7 )
z'(t) = C’x(t)+Qx(t-—r)+Qx(t—27)

In the above expression, unknown matrices K, /~1, P, B, C’, Q and Qare derived in terms of
matrices in state variable formulation for Yc(s) and A(s). x,7,v,i are a vector containing state

variables, time delay, vectors of voltages and currents at both terminals of TL respectively. Equation
(5.7) is an Abstract Delay Differential Equation (ADDE). The passivity criteria for the ADDE can be
derived based on the fulfillment of the third condition for passivity in (5.5) and the following

Theorem states,
Theorem 1

The dynamic system stated in (5.7) is passive if and only if there do not exist any purely imaginary

values for “s” that satisfy the following problem.
sK&(s)=H(s)&(s) (58)

The unknown matrices (K,H (s)) in (5.8) are derived from the matrices in state variable equation

(5.7). A straightforward solution to (5.8) is not available in literature. However it can be solved

indirectly by first discretizing in frequency domain and using the reformulated form shown in (5.9),

where s, = j27z f,,k =1: N . N is the number of frequency samples.

o(s)RE(s) = H(s:)¢ (5:) (59)
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Equation (5.9) has the form same as generalized eigenvalue formula and can be solved using standard

techniques. J(sk),f(sk) are the generalized eigenvalues (generally complex number) and

eigenvector of matrix H (s, ) .The equation (5.9) is solved for N frequency samples.
% q

In each frequency sample, the generalized eigenvalues of H (sk) are computed using a standard

technique and possible existence of pure imaginary eigenvalues are checked. It can be readily seen

that pure imaginary eigenvalues (if they exist), satisfy the equation (5.8) at s, (= j2r fk) It can be

also shown that H (s) is a function of ¢’*" and ¢’ , The matrix H () and hence the eigenvalues
of H (s) are periodic with periods,| == | (i.e. The eigenvalue solution at frequency s, 1s
T

identical to the solution ats, + s, ).The pure imaginary eigenvalues of the equation (5.9) are inspected

(if exist, satisfy (5.8)), taking N number of frequency samples for the range s € (O,so), So=J21fy -

In practice, it may not be able to identify exact location of the eigenvalues with zero real part, since

finite number of frequency points are considered for computation. The strategy used in [59] is that the

eigenvalues with diminishing real values are checked for each frequency between zero and 2z CIf
T

such eigenvlaue at frequency f; = gﬁ is found then, equation (2.14) is linearized over f; and using
™

an iterative technique, a close approximation for the frequency f, at which eigenvalue becomes

purely imaginary is found.

In conclusion, the state variable approach to find passivity violations for transmission line models is
to solve the equation stated in (5.8). Since the equation (5.8) can not be solved directly, an indirect
method is employed, where frequency sampling is required and solution is obtained by solving via

generalized eigenvalue problem.

Compared with the frequency sweep method (discussed in the next section), the above method has an

advantage that the frequency region (where passivity is checked) is limited to a finite frequency
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fome =—- For 30-km single-conductor overhead line the maximum frequency is

27

= T3 a8 = 6.2864 Hz .
30e’ /3e

fmax

The above method can only be applied in situations where the transmission line can be modeled in the
modal domain with constant transformation matrices for converting between mode and phase
quantities. However, such methods are not easily applicable to more detailed transmission line and
cable models which consider frequency dependency of transformation matrices or directly model the

transmission line in the phase domain as in the case for the Universal Line Model (ULM).

One purported advantage of this method is that it gives a formula for the frequency boundaries at
which passivity violations occur. This is considered superior to other approach (discussed in next
section) that uses frequency sampling and checks for passivity violations. However in reality, the
above formula also requires a numerical solution as the straightforward analytical solution is not
available. Usually this numerical method requires searching through the frequency range to see
whether there are pure imaginary values for “s” that satisfy the equation (5.8). Hence it is
theoretically possible for this method also to miss the passivity violations on account of having large
frequency step. So one might as well use the frequency scan method described below, which also

have the same drawback.

5.3.2 Frequency sweep method

This section describes the traditional method (Frequency sweep method) [47] used to identify

passivity violations. In this method, the passivity is verified by carefully evaluating all eigenvalues of
H (s) by stepping through the entire frequency range (0 Hz to a very large frequency, say, 10 MHz)

in small steps. One possible drawback of this method is that a negative eigenvalue may be missed due
to the coarseness of the frequency step used or may lie beyond the maximum searched frequency.
However, noting that eigenvalues are smooth functions of frequency, this drawback has been
addressed by conducting a careful inspection of the eigenvalue plot up to a frequency well in excess

of the simulation bandwidth. Any suspicious frequency range (where an eigenvalue approaches very
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low values) is flagged for a more refined search and subsequently scanned by conducting a localized

frequency sweep with a much smaller frequency step.

5.4 Proposed Passivity Enforcement Scheme

If the fitted formulation shows passivity violation, its parameters can be perturbed so as to ensure
positive eigenvalues for H(s). A nonlinear optimization algorithm can be used, which penalizes
negative eigenvalue excursions, however such an algorithm can be numerically inefficient and
susceptible to non-convergence. Alternatively a computationally efficient linear constrained least
squares algorithm can be used to perturb the fitted parameters to achieve passivity. However, such
perturbation methods are only meaningful when the passivity violation is small. For large violations,
the perturbed parameters only provide a compromise solution in which the accuracy of the frequency

response fitting has to be sacrificed in order to achieve passivity.

The relatively large magnitude negative eigenvalues in figure 5.5 prohibit the use of such perturbation
methods. This problem can be overcome by using the Modified Functional Form method described
in Chapter 4 to obtain accurate low frequency response. The new form can guarantee asymptotically
exact fitting at very low frequency, a region which is often seen to be problematic for passivity
enforcement when modeling many cable configurations. The improvement in fitting at very low
frequencies has an additional bonus- it is seen to result in significantly smaller violations (i.e. it gives

negative eigenvalues of small magnitudes ); and in many instances, no passivity violations at all .

In light of the discussion in the previous paragraph, a two-step passivity enforcement procedure is
proposed. In the first step, the system matrix elements are fitted using the more accurate modified
form of the fitting function, removing any large passivity violations. The second step tweaks the fitted

parameters using perturbation methods to remove any remaining small passivity violations.
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5.5 Eliminating large passivity violations using the Modified Functional Form

method

As discussed in Chapter 4, a modification is introduced to the to the curve fitting procedure in which
the admittance and propagation transfer functions (equations (2.26) and (2.27) in Chapter 2) are
reformulated so that the dc response is factored out as an additive constant that can be directly

selected. The modified equations are restated in (5.10) and (5.11), it is readily seen that the Modified

Functional Form method gives exact value (d de.theoritical ) &t Z€TO hertz, hence guaranteeing correct dc

response in time domain. The details of the Modified Functional Form method were explained in

Chapter 4.

Moc se” M se”
mod ~ n ny —smy 5 . 1 0
Ai,j (S) ~ Z + Z t...t ddc,lheorilicale ( )
ny=l § - a"l =1 8- anz
M
mod _ CmS 5 11
Yci J (S) - Z + ddc,lheorlical ( . )

m=l S — am

Also, as mentioned in the preceding section, another benefit of this modified functional form is that, it
eliminates the large passivity violations typically present at low frequencies. As an example, consider
the same cable configuration shown in figure 5.2. Figure 5.6 shows frequency response plots of the
first (typical) eigenvalue of the Hermitian matrix for the two different fitting approaches (the original
uncompensated formulation, and with the Modified Functional Form method); superimposed on the
theoretical frequency response (obtained from the original matrices without fitting). The eigenvalue

plot corresponding to the uncompensated method is in poor agreement with the theoretical value,
particularly at frequencies below 107" Hz, and is in fact the attainment of negative values indicate
passivity violation. Conversely, the eigenvalue is uniformly positive with the use of the proposed

modified functional form. Figure 5.7 shows the full set of eigenvalues of H(s) when the modified

functional form method is applied. Every eigenvalue is always positive, thereby establishing
passivity. Note that compared with figure 5.3, some very small eigenvalues in figure 5.7 show slight

deviation in the frequency range [1-100 Hz] due to small error introduced by curve-fitting. However
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this does not affect the accuracy of the time domain simulation (the accuracy of fitted functions is
verified within the frequency range [f,;,, 1 MHz] nor the passivity of the model (since all eigenvalues

are positive)

In this case, no further passivity enforcement procedure is necessary as using the modified functional
form of (5.10) and (5.11) eliminated the passivity violation. However for other cases, a small amount
of passivity violations at higher frequencies may still be present and if so, it is removed using the

procedure described in the following subsection.
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Figure 5.6: First eigenvalue of H (s)
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Figure 5.7: Eigenvalues of H (s) with Modified Functional Form method

Note that rational fitting was implemented in order to construct a time-domain model for the cable
system. To validate the time-domain model, a simulation study is conducted by energizing the cable
configuration in figure 5.8 with a unit step to one conductor. Simulations are conducted on models
obtained by using the conventional fitting approach, as well as the proposed modified fitting
approach. For comparison, a theoretical plot calculated using a numerical inverse Laplace transform
of the frequency domain formulation is also included. The plot of sending-end current shown in
figure 5.9 indicates that the formulation without correction is non-passive and in this case causes the
simulation to be unstable. On the other hand the time-domain simulation using the proposed method

accurately tracks the theoretical solution.
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Figure 5.9: Short circuit current at sending-end
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5.5.1 Selection of shunt conductance value

In many transmission line models, the shunt conductance per unit length is unknown and often
assumed to be zero. The conductance value selected can sometimes affect the performance of the
passivity algorithm adversely. The appropriate value of the shunt conductance can be selected by
experimentally until a satisfactory match between theoretical and fitted values (in the manner of

figure 5.5) is attained to reduce likelihood of passivity violations. However for a large number of

cable systems, it is experienced is that a shunt conductance of 3 %10~ S/m (still an extremely small
value, which distorts the response at higher frequency only insignificantly), is adequate to obtain a

non-passive formulation.

Although the above discussion shows that proposed modified functional form method is likely to
result in a passive fitting, it does not guarantee passivity. However, as the fitting at very low
frequencies is improved due to the guarantee of an exact fit at 0 Hz, passivity violations with this
method are rare and if present, usually small. In such cases, the following section describes the

procedure used to eliminate these small passivity violations.

5.6 Elimination of small passivity violations using perturbation method

The small negative eigenvalues at high frequencies are forced to be positive by slightly perturbing the
residues corresponding to the elements of either characteristic admittance matrix (Yc) or the
propagation matrix A(s) without significantly compromising the accuracy of the fitted function.
Perturbing only the diagonal elements of such matrices is sufficient for moving the small negative
eigenvalues into the positive range.

In principle, all the elements of the matrix should be perturbed. However, as any remaining passivity
violations are small, perturbing only the diagonal elements of such matrices is sufficient for moving
the small negative eigenvalues into the positive range. This greatly reduces the computational burden
of the Constrained Least Square Fitting Procedure. As an example, for a three-conductor system, the
number of variables required for diagonal perturbation is 3N (as opposed to 9N, with all element

perturbation), where N is the order of the function. The dimensions of coefficient matrices in
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equations (5.12)-(5.17), (5.20), (5.21) are significantly reduced. The perturbation of diagonal

elements leads to fast evolution of CLS method.

5.6.1 Implementation using perturbation of propagation matrix, A(s)

The following paragraphs describe the passivity enforcement method based on perturbation of the
diagonal entries of the propagation function A(s).

The first step is to linearize equation (5.10) to construct a relationship between increments in the

diagonal elements of A(s), for any given frequency f, (S = j2rw fk) and increments of residues,

k4

C

n

S.

A(f,) = K (f)AC (5.12)

In (5.12), AC is a vector (dimension (N -M ) )containing residue increments corresponding to

the diagonal elements of the matrix A( fk) and AA( fk) is a vector (dimension M ) containing

modes

increments of diagonal entries of A( fk) The integer N = Z N, is the order of each of the

i=1
elements of A( 5 ) , that is, the highest order of the Laplace variable s in the denominator, as seen in
equation (5.10); and M is the total number of conductors in the line. The complex matrix K,(f;)
of dimension (M x(N -M )) is the matrix of linearized coefficients, with its entries as derived in
Appendix J. For simplicity, the term f, is dropped in equations to follow. Using equations (5.4b) and

(5.5¢), a linearized relationship relating increments of Y (f,) and H(f,)to AA(f,) can also

be obtained as:

AY = K,A4 (5.13)
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AH=K3K2AA=K3A}; (5.14 )

where, K, and K, are matrices with dimensions (4M x M ) and (4M 2x4M 2) respectively.

The vectors AY and AH are generated by stacking the columns of the incremental matrices

Y ( fk) and H ( fk) respectively. A linearized relationship can also be derived between the

eigenvalue increments A4 of the matrix H( f,), and the matrix H (f,) itself as shown in 5.15,

(further details can be found in Appendix J)
A/1=K4AH (5.15 )
Finally by combining equations (5.12), (5.13), (5.14) and (5.15), we get,

Where, A is a vector of dimension 2M and M, is a matrix of dimension (2M xN-M ).
Equation 5.16 depicts the relationship between increments in eigenvalues of Hermitian matrix

H ( fk) to residues of the propagation function for a single frequency f, .

Equation (5.16) is now rewritten for N sample frequency points (f, ,k=1...N) used in the

rational function approximation of 4 ( fr ) , and stacked into a single equation of the form (5.17).

AT = MAC (517 )
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Here, A is a (2M ‘Ns) dimensioned vector containing eigenvalue increments (A/I)
corresponding to Ns frequency samples and M isa (2M -NsxN-M ) matrix derived by stacking

Ns values of M, . Ns is the number of frequency samples.

In selecting the Ns sample frequency points, the density of sampling is chosen to be higher in the
neighborhood of the passivity violated regions. Also some frequency samples outside the fitting range

are added to make sure that this procedure does not produce new passivity violations in those regions.

For passivity guaranteed formulation, all the eigenvalues of Hermitian matrix H ( fo) must be

positive at all frequencies.

AT +I"'>0 (5.18)

Also this perturbation should alter the accuracy of the original fitted function, only minimally over

the entire frequency range. For a small maximum tolerance & ,

min ”A(ja))ﬁned _ A(ja))actual

<g,w>0 (5.19)

Equations (5.18) and (5.19) represent a linear constrained least square problem and can be solved

using standard techniques [47]. Since the relationship between the eigenvalues of H ( fo) and the

residues (cn, 'S) of the propagation matrix is non-linear, some iteration may be required.

5.6.2 Implementation using perturbation of admittance matrix, Yc(s)

An alternative approach to perturbing the propagation matrix, discussed earlier, is to perturb elements
of the admittance matrix Yc(s). This results in equations (5.20) and (5.21) below, which are obtained

by following a similar procedure used to obtain (5.12) and (5.13) earlier on,
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AYe = K,AC (520)

AY=K’2AYC ( 5.21)

121 and IZZ are obtained analogously to K, and K, in the previous sub-section. Analogous to

(5.19) the minimizing function now becomes

min“Yc( joY" —Ye(jo) ™| <,0>0 (522)

5.6.3 Comment on the usage of Method 1 (perturbation of A(s) ) and Method 2

(perturbation of Yc(s))

Both methods have been successfully tested for several cable examples and found to produce almost

identical waveforms as confirmed by the example in the following section. As seen from equation

(5.4b), Y (s) from which H (s) is derived, is a linear function of Yc (s) , but is a complicated

non-linear function of A(S). Hence the derivation of the coefficient matrix in equation (5.21) in

method 2 is significantly easier, compared with (5.13) in method 1. Both methods result in a passive

model for a finite length transmission line, as they both ensure that H (S) has real positive

eigenvalues. However, in some emtp-type programs (such as PSCAD/EMTDC), there is a provision

to set the line-lengtﬁ as infinite. In this situation, the program uses the same model parameters as the

finite length line, but sets receiving-end quantities V), and I, to zero as there are no reflections

from the receiving end. Hence equation (2.8a) reduces [, =YcV, and hence requires a passive

Yc(s). Method 2 uses perturbation of Yc(s) to achieve passivity in the finite length model.
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However, there is a small risk that this could potentially make Yc (s) non-passive. Hence, when the

program allows the possibility for setting the line length to infinity, method 1 is advisable, even

though it requires more computational effort.

5.7 Simulation example

The time domain simulations involving a multi-conductor cable system (example from reference

[17]) shown in figure 5.10 are carried out to verify the validity of the proposed passivity enforcement
method. Figure 5.11 shows the eigenvalues of H (S) for the original formulation. The original

formulation is characterized by relatively large negative eigenvalues at low frequencies prohibiting

the use of passivity enforcement scheme based on linearization approach. With the Modified

Functional Form method and assuming a conductance of 3x107° siemens/m, the large negative
eigenvalues are completely removed (see figure 5.12). However as seen in the solid curve in figure

5.13, which is an enlarged view of the circled region of figure 5.12, one eigenvalue is still slightly

negative (with a minimum value 2x107 at 9 Hz) in the frequency range [7, 11] Hz. Such small
negative eigenvalues can be forced into the positive range by the perturbation method. This corrected
eigenvalue is plotted as the dotted curve in figure 5.13, clearly showing that the negative eigenvalue
plot (solid line) is now moved into the positive region. Note that because the change made is very
small, the response at other frequencies is largely unaffected, as demonstrated next, by comparing the

resultant time domain waveform with a theoretical response.

A short circuit test is carried out for the same cable system to validate the passivity enforcement
scheme. The inner solid conductor of Cable A is energized with a 1V voltage step. All other
conductors are connected to ground. With passivity enforcement, the sending-end current is in a
close agreement with the inverse Laplace solution as depicted in figure 5.14. However the original
formulation results in an unstable simulation (see figure 5.15). Table 5.3 shows CPU time comparison

and rms error before and after perturbation for methods 1 and 2.
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Figure 5.10: Cable System: Three coaxial cable system

Radius of inner solid conductor (m) 0.0127
Dc resistance (€ km) 0.034
Outer radius of first insulation (m) 0.0228
Relative permittivity of first insulation 2.85
Outer radius of sheath (m) 0.0254
Relative permittivity of second insulation ~ 0.436
Outer radius of second insulation (m) 0.02795

Table 5.2: Cable data
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Figure 5.11: Eigenvalues of H(s) for the original formulation
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Figure 5.12: Eigenvalues of H () with Modified Functional Form method
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Figure 5.14: Sending-end current under short circuit conditions
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Figure 5.15: Sending-end current under short circuit conditions

Perturbation of Perturbation of
A(s) Ye(s)
Construct time domain model 13.84 8
Generate matrices for CLS method 15.66 10.24 S
Execute CLS algorithm 2.358 1.15S
Rms error before CLS 0.0938 0.0029
Rms error after CLS 0.1019 0.0071

Table 5.3: CPU time comparison and rms error before and after perturbation
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5.8 Passivity enforcement using state variable approach

It is possible to apply eigenvalue perturbation to the state variable approach described in section
5.3.1.This is done by finding a suitable residue perturbations of characteristic admittance matrix such
that the solution to equation (5.8) does not have any pure imaginary values for “s”. This approach is
not described any further as the author did not use the state variable approach. For further details, the

reader is referred to [65].

5.9 Chapter summary

In this chapter, it is demonstrated that time domain simulation methods for modeling transmission
lines and cables, which are based on fitted transfer functions for admittance and propagation
characteristics, can sometimes result in non-passive formulations. Such formulations have a potential

hazard. For some passive terminations, they can lead to unstable simulations.

A new robust passivity enforcement algorithm is proposed to impose passivity on a non-passive
transmission line model. The proposed, two-step method can be applied to detailed phase domain
models, such as the Universal Line Model [44], which considers the frequency dependency of
transformation matrices. This enforcement algorithm first uses a modified functional form method to
remove large passivity violations, which are usually present at low frequencies. Then a constrained
least squares method is employed to perturb diagonal elements of the propagation matrix (method 1)

or characteristic admittance (method 2) eliminating any small passivity violations.

The accuracy of a time-domain simulation program, using either method, has been thoroughly
validated by direct comparison with a numerical inverse-Laplace transform, applied to a frequency
domain model with linearly terminating networks. An advantage of method 2 (perturbation of
characteristic admittance matrix), compared with method 1 (perturbation of propagation matrix) is

that the derivation is less complicated. However, for cases where length of the transmission line
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model can be set to infinity, method 1 is recommended, as method 2 has a small risk of introducing

non-passivity into the perturbed characteristic admittance matrix.
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Chapter 6

Conclusions and Recommendations

In this Chapter, a summary of the contributions in this thesis is presented and some directions for
future work are proposed. In the course of this thesis, several techniques were proposed to improve
the accuracy and stability of electromagnetic transient simulations in overhead transmission lines and

underground cable systems.

The thesis began by describing the basic theory of single-conductor transmission line modelling and
then extended to multi-conductor modelling methods found in literature such as modal domain
methods, phase domain methods etc. Modal domain methods employ transformation matrices to
decouple transmission line matrices (e.g. Yc(s) and A(s)) in to modes. Some modal domain models
assume constant transformation matrices. This assumption is not valid for highly asymmetrical
overhead line configurations and for many underground cable systems leading to significant errors in
time domain simulations. Modal domain models based on frequency dependent transformation
matrices are numerically less efficient, since these models require additional convolutions involved
between modal matrices and transformation matrices. Also there are difficulties in approximating
some entries of transformation matrices using rational functions. Phase domain models have been
developed to overcome the above problems. The downsides in direct (basic) phase domain modelling
are difficulties in approximating rational functions and extracting transportation delays for some
entries of phase domain matrices (e.g. phase A(s)). Finally the use of frequency domain methods to
obtain time domain responses was briefly described (Numerical Inverse Laplace Transform method).
This method is traditionally used to validate time domain simulations for transmission line models.

Based on the above observations the thesis made the following contributions.
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6.1 Contributions towards improvements in accuracy and stability of

transmission lines

6.1.1 New cable model for accurate simulation of coaxial underground cables

The third chapter proposed a new cable modelling method called mesh-domain method to simulate
time-domain transients in underground cables accurately considering frequency dependent effects.
The original phase domain transmission lines equations are converted into mesh equations using
suitable transformation matrices. A noticeable advantage of this approach is that the resulting
transformation matrix between phase and mesh domains is frequency independent. No additional
convolutions are required as for the case of frequency dependent transformation matrices. These
convolutions add complexity in TL modelling and the resulting model may be computationally
expensive. Another benefit of mesh domain modeling is that mesh currents and voltages in co-axial
cables are naturally decoupled at high frequencies hence the propagation function shows relatively
smooth behaviour. Hence the rational function approximation and transportation delay estimation are
relatively easier than in basic phase domain methods. Finally the mesh domain model was validated
by comparing time domain simulation results with numerical inverse Laplace transform method for

several cable examples.

6.1.2 Improvement in accuracy of TL models at low frequencies

The fourth chapter introduced several techniques to increase accuracy at very low frequencies for
existing TL models. The traditional TL modelling techniques using fitted admittance and propagation
characteristics can result in significant errors at frequencies approaching dc. This is a crucial problem
in modelling HVDC overhead lines and underground cable systems.

Methods traditionally used to address this problem include reducing the lower bound for fitting range
or adding dc resistances to each phase. These approaches were shown to have serious drawbacks. In
that they either required a significant increase in the fitting order or caused simulation errors at larger

frequencies. Also there was no guarantee of passivity.
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Two alternative approaches were introduced in this thesis to obtain accurate dc response by
modifying the form of the fitted function. In the first approach, a suitable low frequency pole is added
to the existing fitted function. The pole is carefully selected such that the resulting function gives
correct de value (at zero Hertz) and the other high frequency response is changed only insignificantly.
In the second approach (Modified Functional Form method), the functional form of the fitted function
is reformulated so that the modified function gives theoretical dc values at zero Hertz. The accuracy
of time domain simulations are confirmed using numerical inverse Laplace transform over the entire
frequency range from dc to higher frequencies. One important benefit of the Modified Functional
Form method is that the resulting TL model is more likely to be passive; ensuring stable time domain
simulations. The modified functional form method is recommended for the modelling of HVDC
transmission systems in which correct reproduction of the very low frequency behavior is just as

important as high frequency behavior.

In the early stages of implementing correction algorithms to obtain accurate response at low
frequencies, one of the major difficulties encountered was that TL model sometimes gave unstable
time domain simulations. This problem was later identified as, a result of non-passive formulation of

TL models.

6.1.3 Passivity enforcement scheme for multi-conductor transmission line models

The fifth Chapter demonstrated that the conventional approach to modelling cables and transmission
lines in the time domain using fitted admittance and propagation characteristics can result in non-
passive TL mode. The non-passive model may lead to unstable time domain simulations depending

on the terminal conditions.

The existence of negative eigenvalues of a certain matrix (H(s) derived form fitted parameters such as
A(s) and Yc(s)) indicates passivity violations of a TL model. A traditionally used method called
frequency sweep method was used to identify passivity violations in a TL model. There are few
drawbacks related to the frequency sweep method such as possible missing negative eigenvalues

between frequency samples and also beyond the maximum frequency used for frequency sweep
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method. This problem can be overcome by allocating more frequency samples where eigenvalues
approaches zero and by selecting a maximum frequency (e.g. 10 MHz) with the hope that negative
eigenvalues are not present beyond that frequency. Once the passivity violations of a TL model are

identified the next step is to enforce passivity.

A two-step robust passivity enforcement scheme for multi-conductor transmission line was presented
to ensure passive TL model. Unlike traditional passivity correction algorithms, the proposed method
can be applied to detailed phase domain models, which consider frequency dependency of

transformation matrices.

In the first stage of the enforcement algorithm, the Modified Functional Form method with suitable
conductance is used. As discussed earlier, this method not only improves accuracy at low frequencies
but also removes large passivity violations usually present at these low frequencies. The value of the

conductance can be selected by some experimentation; however, for most cable configurations it was

observed that the conductance value of 3x10™ S/m eliminates large passivity violations. Then
constrained least squares method was employed to perturb diagonal elements of the propagation
matrix or characteristic admittance to remove any remaining small passivity violations. As before the
resultant model was validated for accuracy by comparing the simulated TD response with the

numerical inverse Laplace transform method.
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6.2 Directions for future research

6.2.1 Identifying exact locations of passivity violations without frequency sampling

An alternative method based on state variable approach can be used to identify passivity violations for
delay free systems. In this method, the exact locations of passivity violations are analytically
calculated and hence this technique does not require frequency sampling as for frequency sweep
method. An extension of this method to delay based systems such as transmission line models can be
found in recent literature work. The above methods can be used to check passivity for more simplified
cable models (e.g. modal domain models which uses constant transformation matrices to convert
phase to modal quantities), but share the drawback of frequency sweep method such as requirement
of frequency sampling. Future research may need to enhance the above passivity identification
method to identify exact locations of passivity violations (which is a critical requirement for a
successful passivity enforcement scheme as discussed in the next paragraph) for detailed TL models

such as ULM without frequency sampling.

6.2.2 Passivity enforcement scheme for detailed models based on state variable

approach

The alternative passivity identification method based on state variable approach has been extended
recently to enforce passivity for multi-conductor transmission line models. However such methods
are limited to modal TL models which use constant transformation matrices to convert phase to modal
quantities and also need significant computational effort and frequency sampling as for the frequency

sweep method.
Future research work may require to further enhance the above alternative passivity enforcement

scheme to ensure global passivity without frequency sampling for detailed cable models such as

Universal Line Model (ULM).
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Appendix A

Modal Domain Equations

This section summarizes the modal domain equations for transmission lines [5], [69]. Consider n-

conductor transmission line having length /.

(A AASSLLLILLLL AL AL LSS IS SIS PSS,

Figure A.1: Voltages and currents at sending-end and receiving-end of a TL

As discussed in Chapter 2, the frequency domain equations for the transmission line are,

L, =YV, -AXV, +1,) (A1)

Ik = chI/lc - A(Y;Vm + Im) (A.Z)

Suffixes ‘m’ and ‘k’ denote receiving-end and sending-end respectively. The transformation from
modal to phase involves transformation matrices [5], [69]. The current (E,) and voltage (E,,)

transformation matrices are,

phase = Ll iodal (A.3)
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phase = EVVmodal (A4)

It can be shown that
-1
E, = (EVT) (A.5)

The useful transformations between modal and phase are summarized in the following table.

Modal to phase Phase to modal
I, =EIL" I"=E,/I,
I, =EI" I"=E,/I,
V,=EJV" v"=E'V,
Ve=EV" v =E'V,
A=EA"E, A" =E," AE,
Y = E1chE1T Y= EVTYCEV

Note that the superscript letter ‘m’ denotes modal. With above conversions, the transmission line

equations (A.1) and (A.2) in modal domain can be written as,

Imm = I}L"Mme . ADI(KMV;{M + Ikm)

(A.6)

Ikm o });MV;CM _ AM(});Mme + ImM)

(A.7)
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Appendix B

Cable Impedances and Admittances

This purpose of this appendix is to summarize the impedance formulae used in cable parameter
calculations. The impedances of underground cables are basically functions of first and second kind
modified Bessel functions. Alternatively accurate, robust and numerically efficient approximation
formulae developed by Prof. Wedephol [17] are widely used in transmission line parameter

calculations.
(1) Internal impedance of solid conductor

The skin effect impedance Z,_,, .., (a)) of the inner solid conductor is expressed as a division of two

first kind modified Bessel functions.

Z

conductor

(0)= mpl,(mr) (B.1)
27rl (mr)

where,
p = resistivity of the conductor (2m)
m = reciprocal of complex depth of penetration
jou
P
p = permeability of the conductor (H/m)

r = radius of the conductor (m)

In the standard notation, I, (Z ) represents the first kind modified Bessel function with order “n” and

argument “Z”. Similarly, in the text to follow, K, (Z ) denotes the second kind modified Bessel
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function with order “n” and argument “Z”. The approximation formula for conductor internal

impedance (Q/ m) is given by [17],

z (a)) _pm coth(0.777mr) N 0.35625 P (B.2)
2zr wr
(2) Impedance due to the time varying magnetic field in the i" insulation layer [17],
_ Jou, Fint (B.3)
Z w)=—"log,|
insulator ( ) 27[ ge ( }'; J

where, for the i insulation layer

I = magnetic permeability (H/m).

T inner radius (m) .

ri+; = outer radius (m).
(3) Inner sheath internal impedance
The surface impedance of the inner sheath is a function of first and second kind modified Bessel

functions. It is the impedance related to the voltage difference on the inner surface of the sheath per

unit current return through the inner conductor.

Zinner_sheath (CU) = _2_5'31—5[10 (mr,)Kl (mri+l) + KO (mr,)ll (I’}’l}‘;.+1 ):I (B4)
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where, for the i cylindrical sheath

D= I (mn,)K (mn)—1,(mr)K (mr,;)
p = resistivity of the sheath (Q.m)
r, = inner radius (m)

r,,= outer radius (m)

The approximate formula developed for inner sheath impedance [17] is,

pm P
7 o)=L coth(ma)-—FL ®2)
inner _sheath ( ) 27["- ( ) 27[}'; (}’; + ri+1)

I

where, A=r,, —r,

(4) Sheath mutual impedance

This impedance is equal to the voltage drop outer surface of the sheath per unit current returning
through the inner conductor or vice versa. The exact Bessel function solution and the approximate

formula for the sheath mutual impedance are [17],

Zshealh_mulual (CU) = 5-7;}:8':’-5 (B 6)

i+l

__pm
Zsheath__mutual (CU) - n(r—+r—)_ COSCCh(mA) (B7)
i T+l

(5) Outer sheath impedance
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This is given as the voltage drop along the outer surface of the sheath as the current returns through

the outer conductor. The Bessel function solution and the approximate formula are given by,

Z outer _sheath (a’) = 2£mD [Io (mrm )Kl (mri ) +K, (mri+1)11 (mr; ):I (B.3)

i+l

M coth(mA)y+——2 (B.9)
2mt,, (5 5.,)

Zouter_sheath (w)= p

i+l
(6) The admittance per unit length between two conducting layers,

Y (@)= G +—T52L_ (B.10)

7

where, for the i insulation layer,
G; = conductivity (S)
g = permittivity (F/m)
ri+; = outer radius (m)

r; = inner radius (m)

(7) Mutual earth return impedance
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The analytical formulae for self and mutual earth impedances for buried cables were first derived by

Pollaczek [25], [2]. The mutual earth return impedance between cables i and k is [27],

om? ®B.11)
Zearlhhmutual (CO) = ZL_—[KO (md) - KO (mD) + )

® exp(—-(y, +y, Ve’ +m2)

exp(jax)da
= x| + Vo +m’ (Jex)
where,
x = horizontal distance between cable i and k (m)
¥y, = burried depths of cable i and k respectively (m)
d = direct distance between cables i and k (m)
=y +(3-)
D  =distance between cable i and image of cable k (m)

=X +(i+ )

resistivity of earth (Q.m)

p =
p4 = permeability of earth (H /m)
m  =reciprocal of complex depth of penitration
_ |iop
yo,

The direct evaluation of formula (B.11) requires computation of Bessel functions using standard
methods and the integral term using a numerical technique [42], [S8]. A corresponding approximate

formula for mutual earth return impedance developed by Wedepohl and Wilcox is [17],
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ou ymd 2mlL .
Zearth_mmual (w) = .]2_7[{_ loge (T) +0.5- T:| (B 12)

where,

y = Euler's constant

= Yt
d =direct distance between cables i and k (m)

Another useful approximate formula developed by Saad, Caba and Ciroax is [35],

23-()'1+}’k)m:| (B12)

m2
Zearlh_mulual (0)) = —%—[KO (md) + 4 + m2x2

where,

x = horizontal distance between cable i and k (m)

The self earth return impedance can be easily derived by substituting y , =y, and

xX=r (out‘er radius of cable) in the above mutual impedance formulae.
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Appendix C

Time Delay Calculation

As discussed in Chapter 2, rational function approximation of characteristic admittance and
propagation function is an essential step in the time domain (TD) modelling. The propagation
function (or entries of matrix A) can not be directly approximated with low order rational functions.
Instead, time delay is extracted from the propagation function A(a)) before approximation (curve-
fitting), so that the rest of the function (after extraction, Auw(co) ) can be fitted with low order
rational functions. Hence the accurate delay estimation for entries of A is a critical step in TD
modelling.

Physically time delay is the time required for travelling waves to reach the other end of the
transmission line. In general, time delay is frequency dependent. But it is required to consider a single
delay (or series of modal delays in some cable models) in order to develop a time domain equivalent
circuit. In theory, time delay in time domain means phase shift in frequency domain. Phase shift in

frequency domain can be written as,

Auw(a))e—jm = A(a)) (C.)

Equivalent form in time domain,

a,(t-7)=alt) (C2)

In the above equations, lower case letters represent corresponding time domain form of upper case

frequency domain functions.
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There are several ways to extract delays from the propagation function.
(1) Based on the velocity of light

Time delay (r) can be evaluated based on velocity of light (c =3¢ m/ s). For a transmission line
with length (Z ) , the propagation delay (time delay) is simply computed as 7 =//c.This method is

only successful for simple overhead lines configurations.

For underground cable systems, the travelling waves propagate with different velocities which are
significantly different from velocity of light [17]. The propagation delay heavily depends on the
values of permittivity and permeability of the insulations, hence significantly deviates from speed of
light. In general, this method to calculate time delay (based on the speed of light) is not successful for

underground cables.
(2) Based on Bode’s Gain Phase relationship

A more accurate approach for time delay can be estimated using Bode’s Gain Phase formula. For
minimum phase functions, phase angle is uniquely defined by magnitude of the function. From the
magnitude data, the phase angle of a minimum phase function can be determined by using the Bode’s
Gain Phase formula. It is assumed that unwound propagation function Auw (60) is a minimum phase

function.

4, (0)=A(w)e" (C3)
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let A(w)= (@)l
then
24, ()= £4(w)+ Loz
ZA,, (a)) ( ) + Lot
£4,,(0)- £b(w)
w

7=

The Bode’s formula is shown in equation (C.5). The equation (C.5) is evaluated at some higher
frequency 2, beyond which the magnitude of the function becomes very small [57]. The first term
gives a good approximation to the angle of the minimum phase function A4 ;. (a)) . If the second term

is considered, a more accurate value for the angle can be computed. The integral is numerically

(C.4)

evaluated typically taking frequency points limiting the integration from 0.1Q to 10Q Hz [57].

)= % 40nlAGo)
L4, (Jo) = 2 (@) A(u)
where,
AG) = 1 ‘].{[ d(In|A(jo)| _ d(In]A( ja))[) }ln(cothm)du
e d(u) d(u) » B
u=InZ
Q

The propagation delay (time delay) can finally computed as,
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Ly = 2D (C.6)

where, Q is the highest frequency point of interest.

It is experienced that delay estimation using Bode’s formula is successful, if the magnitude response
of the function is smooth (no oscillatory behaviour). For example, this method can be used to
calculate delay for a modal propagation function, which has a smooth magnitude response, when
plotted as a function of frequency. However, as discussed in Chapter 2, for underground cable
systems and unsymmetrical overhead transmission lines, the magnitude response for elements of
matrix A(a)) shows oscillatory behaviour. In such cases, the delay evaluated using Bode’s formula is

not satisfactory.

From idempotent theory, it is reasonable to assume that entries of A(a)) consist of series of modal
delays instead of a single delay for multi-conductor systems [69], [44]. This may explain the
difficulty in finding a single delay for entries of A(a)) for some cable configurations using Bode’s

formula.

(3) Optimization method

Alternatively an optimization method is developed to calculate the optimum delay for the propagation
function. Contrast to the earlier method, there is no assumption of minimum phase functions and this

technique can be applied for entries of 4 (a)) and also for modal 4 (a))

In this single dimensioned optimization problem (the only variable is the time delay (‘l’)) , the time

delay re[rmin,rmax], which gives the minimum rms error between the fitted rational function
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A7 () and the actual function 4,,, (@) is found. 4,, () is calculated as in (C.3) . The order of
the fitted function is kept constant (typical values for the order: 20 or 30). The minimum bound
(rmin) is the delay calculated based on speed of light as discussed in section 2. The upper bound is
T . =Nt ,where N isselected by the user.

A simple approach is to use golden section search method to find the optimum delay. However these

optimization techniques show several drawbacks such as significant increase in computational effort,

possibility of convergence to a local minimum.
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Appendix D

Rational function approximation using Vector Fitting

The Vector Fitting is a robust technique to approximate a frequency domain function using a rational
function [43]. Rational function is a division of two polynomial functions with orders "»n" and "m"

as in (D.1).

aytastas’...as (D.1)
by +bs+b,s’....b,s"

S ()

where, a,,b, are coefficients for upper and lower polynomials respectively and s = j®. This can be

alternatively written as pole residue form as in (D.2).

N
f($)Y St d +sh (D.2)
n=t §$ =4,

The frequency domain function to be approximated is f(s) .The unknowns terms yet to be found are
a,c,,d and h. This is a non linear problem, since denominator contains unknown poles. The
Vector Fitting method solves the problem as a linear problem in two stages [43], [40], [41]. Assume

the function O'(S) f(s) has the following form.

Stage 1
Noe

o()f(s)=Y —2—+d+sh (D.32)
n=1 $ — 4,
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N

o(s) =Y~ +1 (D.3b)

n=1 8- an

Substituting O'(S) in (D.3b) to (D.3a),

(i o +1)f(s)=i o yd+sh

n=1 § — 4, n=l 9 T Yy

Lef(s) b ¢ o o (D.4)
gs—an ;s—an d=sh f(S)

Assume that starting poles a,'s are known. Now equation (D.4) becomes an over-determined

equation in the form Ax = B . where, “x” is the solution vector containing unknowns and,

S,-a,  Sy-a,
50 ==/ (%)

0
x= [cl..cn c.c

A(so,:)=[f(s) AS) - -1 —S0i|
B(

d

n

For N, frequency samples, the matrix 4 has a dimension (N s X(ZN + 2)) and B is a vector with

dimension N I

Stage 2

Once the unknown vector “x” is calculated, the next step is to compute the new set of poles

(c_ln's) for f (S) by calculating zeros of o(s). This can be done by evaluating eigenvalues of

(4-bc") 401, [41].
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where,

A = diagonal matrix whose diagonal elements are starting poles

b = column vector of ones

¢ = column vector containing residues of o’ (s)

The next step is to calculate the residues (En in D.S)for f (s) , using the new poles of f (s) . This

can be also formulated as a least square problem in the form Ax =B

F&)=Y ' d+sh (D-5)

n

The unknowns in (D.5) are En,d and /. The matrix 4 and the vectors B & x are,

1 1
A(so,:)=L = SO} D.6)
(

Finally, the rational function approximation for the f (s) is,

N

f(s)m Y =t d+sh (D7)

n=1 n
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Appendix E

Recursive Convolution

One of the typical problems in time domain modelling is to evaluate the time domain convolution.

The recursive convolution is a numerically efficient technique used to compute convolutions. In

theory, the product of two frequency domain functions (P(s) & Q(s)) becomes convolution in time

domain.
F(s)=P(s)Q(s) (E.1)
S@®=p(t)xq(t) (E.2)

Note that, lower case letters represent time domain form of corresponding upper case frequency
domain functions and "X" denotes convolution. Assume one of the frequency domain functions in

(E.1) can be written in the pole residue form as in (E.3), so that in time domain, this function can be

expressed as a summation of exponentials (see (E.4)).

_Nge” (E.3)
P(s) ; a
p() = Zn:cie“’('_’) (E.4)

i=]

The convolution can be written in the integral form,

140



f(= qu(r —u)e”“duy (E.5)

With discrete time domain with time step Af, above integration can be written as,

T+At ©
f(H)= I q(t —u)e” ™ du + J. gt —u)e“ du (E.6)
T T+AL
T+A1

= [ q@-we " du+e"™ f(1-Ar)

T

Then discrete form of f(¢) is shown in (E.7) in terms of past values of f(¢) and g(f), and the

present value of g(¢).
fO=kqt—1)+kg(t—At—1)+k, f(t—Ar) (E.7)

The constants k;, &, k3 in (E.7) are derived based on the assumption that g(¢)has a linear variation

between t-1-At and t-t and the constants are,

_ alt
k1=—£(1+1 ¢ j (E.9)
a alAt
_ ait
k2=£(e‘m’+1 ¢ )
a alAt
k3 =eaAt
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Stability of the Recursive Convolution

The BIBO stability of any discrete recursive formula can be predicted using Z transform [29]. As for
any transfer function, the poles of the denominator should be within unit circle for stability. Lets

assume the delay is approximately an integer multiple of time step (as required for discrete

simulations). i.e 7= NAf and N is a integer (N > 0) . After applying Z transform to (E.7),
F(2)=kz"Q(z)+ kzz_(N“)Q(z) +k,z ' F(2) (E.10)
Then (E.10) becomes,

F(z) 2" (zk+k,) (E.11)
o(2) z—k

The stability is guaranteed, if k&, lies inside a unit circle in the complex plane. For recursive

convolution, k; = e and for stable poles (a < O) , ky <1 and the simulation is stable (BIBO).
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Appendix F

Numerical Inverse Laplace Transform

This section is based on references [43], [15], [69] and the discussion with L.M. Wedepohl in
preparing this section is greatly appreciated. In many engineering applications, one of the common
problems is to find the time domain function from a known frequency domain functions and vice
versa. A widely used technique is the Fourier transform method. The Fourier integral and inverse

Fourier integral are defined as,

H(w)= o]h(t)e'f”"dt (F.1)

h(r)= 51; O].H(a))ef“”da) (F2)

where, h(t), H (a)),a)= 27 f are the time domain function, corresponding frequency domain
function and the angular frequency respectively. One drawback in (F.1) is that if h(t) is an unstable
function of time and then H (a)) does not exist. This difficulty can be avoided by multiplying

h (t) by an exponential function as shown below.

h(t)=h(t)e™ (F3.)
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The proper selection of constant "¢" ensures that always #, (t) tends to zero as time tends to infinity,
hence (F.1) gives meaningful result. This guarantee that A, (t) is a stable function of time even if

h(z‘) is unstable. Substituting %, (t) in (F.2) to (F.1),

H,(0)= [A(t)e e d (F4)

—c0

The new transform is called the Laplace transform and mathematically it is same as the Fourier

transform with complex frequency s = ¢ + jo . The Laplace transform and inverse Laplace transform

formulae are,

H(s) = [A()ear F.5)
W)=5= [H(s)e"ds F.6)
] c—

It may not be always possible to obtain the analytical solution directly using Laplace transform
method. As an example, H (s) in (F.5) may be calculated in discrete form at given frequency
samples. In such cases, numerical methods are used to evaluate the inverse Laplace integration and

hence to find h(t) . Numerical techniques are subjected to two types of errors namely truncation error

and step length error.
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(a) Truncation error

In discrete sampling, the upper limit for integration in (F.6) is limited to some maximum value
@ = instead of infinity. This introduces a significant error and causes oscillations on time domain

2
solution h(t) (called Gibb’s oscillations). The frequency of the oscillations is given by f = —ﬂ.

Q

The Laplace transform is restated below with upper frequency @ = €2 for integration.

—ct +Q

€ 2[H(c+ja))ej“”dco (F.7)

27

hn(t)z

This undesirable effect can be effectively removed by Lanczos filter. The averaging of (F.7) only for

the integral over period 27 f, gives,

Z
el O Q [+Q . o , (FS)
h,(1)= v by _[[{_}[H(c+]a))e’ 'da)}dt
)
e—ct +Q
— . jot
h(¢)= . _£0H(c+]a))e’ dw

where, the Lanczos filter O'(a)) defined as

sin(’—@) (A1)
_\Q)

Tw

Q

o(w)=
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The convolution between the time domain form of O'(co) and h(l‘) reveals a non-causal function
and hence 7, (t) becomes non-causal too. This drawback However O'(a)) in (F.9) is non-causal and

modified Lanczos filter G'(a)) overcomes this drawback by multiplying O'(a)) with an exponential

term, hence becomes causal.

sin(”_gj o (F.10)
! — Q
o'(w) e e
Q
(b) Step Length error

In evaluating the integral in (F.6) numerically, the frequency domain function H (a)) is sampled at
constant finite frequency steps @, = 27 f,and then integral is approximated as a finite series. Thus

time domain solution h(t) is valid only between [0, T'] s, and T is called the time of validity
(T - .2_75] ‘
@,

The selection of the constant term “c” for complex frequency s = ¢ + j®

The effect on sampling can be represented by a function G(a)) and now equation (A.6) becomes,

h(e) =5, JG(@) H(e+jo)edo (F.11)
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where,

G(w)= i g™t (F.12)

r=2%
@y

s=c+jo

To demonstrate the error due to sampling, it is assumed,

The corresponding correct time domain function is, h(t)=e"“ .However, consider the product

H'(c+ jo)=G(w)H(c+ jo) in (F.11). In time domain,

H(t)=g(t)xh(t) (F.13)

where,

8()=Y.8(1-n7)

n=1
h(t)=e™

x = time domain convolution

Then (F.13) now becomes,
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() == (F.14)

1 - e—L‘T

Compared with actual time domain function h(t) with the function h'(t) affected by sampling,

the error introduced by sampling is An increase in the constant "c¢" reduces Gibbs aliasing

_ e—cT *

errors, but increases the magnitude of the Gibbs oscillations. Prof. L.M. Wedepohl has proposed the

following compromised value for "c".

_log, N, (F.15)
T

(4

The selection of the time step

The time step in time domain (l‘o) and the frequency domain ( fo) are unrelated. However the rise

time of the Gibbs oscillations impose a constrain to a minimum useful time step and is

Example

To demonstrate the numerical inverse Laplace transform method (NILT), the following frequency

domain function is selected. The frequency domain response is shown in figure (F.1).

H(s) =§ (F.16)
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0-2 M T T

10 10

Figure F.1: H(s) as a function of frequency

The corresponding time domain function /' (t) is the unit step function (theoretical solution),

K (t)=u(t) (F.17)

The numerical evaluation of the integral in (F.6) requires the sampling of the frequency domain

function H (S) at regular frequency steps f,. In this example, the frequency step ( fo) and the
number of samples (N f)are selected as 1 Hz and 1000 respectively. The maximum frequency

(Q) considered for the integration is 1000x1=1 kHz.
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1 1
The time of validity (T) for the time domain simulation is — = 1 =1 s. The compromised value for
0

log, N,

the constant term is ¢ = =6.9078. Figure F.2 shows the time domain function obtained via

NILT for a period of [0, 1] s. A noticeable observation is the oscillations in the vicinity of the end of
the time period. Figure F.3 displays the expanded plot for the circled section in figure F.2. It can be
1

1
readily seen that the period of the oscillations is 0.01 s, which is exactly equal to -f— = 1000 =0.01

s. Earlier discussion revels that these are Gibb’s oscillations with period s. (The time step used

max

in the simulation is — to observe the Gibbs oscillations clearly, since minimum useful time step

(T) is equal to the period of the Gibbs oscillations,)

1.4}

1.21

0.8+

0.6+

0.4+

0.2r

Figure F.2: Plot of time domain function h(t) for [0,1] s
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1.015

1.01F

1.0056

1

0.995

0.99}

0.985

0.88

07265 0.727 0.7275 0728 07285 0.729 07295 073 07305

Figure F.3: Expanded section of figure F.2

In order to minimize these undesirable oscillations, the modified Lanczos filter is implemented.
Figure F.4 show the time domain simulation with the filter, indicating that the oscillations are

significantly reduced. The time domain function is in a close agreement with the theoretical solution.
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0.61 .
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0.2r

Figure F.4: Plot of time domain function h(t) with filter

Time domain simulations with different constant terms (“c” in F.15) are carried out to see the effect

of “c” on simulation. Figure F.5 displays the expanded section of the tail portion of the time domain

simulation (e.g. between [0.9, 1.0] s), where Gibbs oscillations are clearly seen. Note that the constant
N

log, N log, 1—5
<~ J —6.9078. With c = — = 4.6052, the magnitude of the

term used in the NILT is ¢ =

Gibbs oscillations are reduced compared with F.5 (see figure F.6) . However a noticeable error

log. N, x10
08 X 92103, the

between theoretical and simulation result can be observed. With ¢ =

Gibbs oscillations are magnified as in figure F.7. This confirms that the magnitude of the Gibbs
oscillations is amplified with large values of c. However the error due to sampled data decreases with
increased values of “c” (as seen from equation F.14). For example, the corresponding aliasing errors

are 1%, 0.1%, 0.01% for ¢ =4.6052, 6.9078, 9.2103 respectively.

log, N
Hence this confirms that the value of the constant term ¢ = % =6.9078 gives a compromise

between aliasing error and magnitude of Gibbs Oscillations.
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Figure F.5: Plot of time domain function h(t) with ¢ = 6.9078

1.25 T T T T T T T T T

e s Theoritical | 7
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0.8 4

0.75 1 1 1 L I i1 1 I
09 091 082 083 094 09 096 097 088 099 1

Figure F.6: Plot of time domain function h(t) with ¢ = 4.6052
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Figure F.7: Plot of time domain function h(t) with ¢ = 9.2103
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Appendix G
Constrained Least Squares Method

This appendix describes the constrained least squares method used to eliminate the small error at high
frequencies for a two-conductor case. The equation (G.1) shows the actual functional form used for
the propagation function. In comparison to (4.9) in Chapter 4, the only difference is the additional

constant terms (d,'s ), that offer better accuracy. In general, for Q distinctive delays there can be Q-1

such additional terms.

Moclse™ Mo ol sem No " se e
Y R ) P e Forek =2 (G.1)
»J
=l $— an, n=l S a"z ng=1 s= a,,Q

+d, ~h 4 d, (e"'"2 —g ) +d, (e"“’ —e™ )...dQ_, (e"”Q - )

e theoritical e

The unknown coefficients (¢ ’s and d,'s) are calculated first (see Appendix H for details), using

n

Vector Fitting method. The terms d,'s and d,

{

eoniicas 7€ T2 Although 4, *"(s) gives the exact
dc value at s =0, at very high frequencies the function may slightly deviate form zero-which is
contrary to the physical laws for propagation functions. At very high frequencies (as s — jo ) (G.1)

becomes,

N N. No
4; jﬁ'" (s=joo)me™™ ZC,’," +e7" 2 Cpy ot e’ z c:,'Q G2)

=1 ny=l ng=1

+d, Mt d (e'srz —e )+ d, (e'”3 —eg ) —dy, (e'"Q —e™ ) #0

e, theoritical e

This error can be eliminated by perturbing some parameters (¢, ’s and d,'s) of (G.1) without

significantly affecting the fitting error. The perturbation of the fitted function in (G.1) is,
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5 (o +ach)s i (c +Ach )s o (cn +Ach )s (G.3)

A ™) memD +e™m Yy +ote Y
n=1 S -a"l m=1 S a"z ng=1 §— anQ
57 =T, ~5T, ~5T -1,
+ddc,1heoriticale : +(dI+Ad1)(e P-e l)+(d2+Ad2)(e S—e l)+..

+ (dQ_1 +Ad,, )(e_”‘? —e )

To fulfill high frequency requirement (i.e A (s=jo)—>0), the following conditions ( (G.4a) ...

(G.4c)) should be met.
N Q-1
Z(C',',l + Ac"; ) - Z (dl + Adl ) + ddc,lheorilical = 0 (G4a)
m=l i=1
i(c;’; +Ac;lzlz)+(d1 +Ad1) =0 (G.4b)
S G4
2(02’9 +Ac, ) +(dg_s +Ady,)=0 (G.4c)
nQ_

In general, for Q-distinctive modes, there are Q numbers of equality constraints. Only real parts of

c, 's are required to perturb and the dc response of the perturbed function remains undisturbed

(=d

dc theoritical

). The unknown coefficients (Ac) ’s and Ad,'s) in equation (G.3) are calculated by

n

solving the Equality Constrained Least Square problem. The fitting error in (G.3) is minimized

subjected to the equality constraints ((G.4a)... (G.4c)) to eliminate the high frequency error.
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Minimize the least square error,

” Ai’jactual (s)— ( Ai’jmod (s) )“2 @5)

Subjected to the equality constraints ((G.4a)......(G.4c)). Matlab function (Isqlin) is used to solve the

constraint least square problem. The detail matrix formulation is described next for an entry of the

propagation matrix 4, (s) .

In matrix form, the problem is formulated as minimize the least square error ”/]x - E“ subjected to

the equality constrain Cx — D =0. The first row of the matrix 4 is,

7] —-85i7)

—h
se 5€

A(s,) = .
(Sl’) S -4 §i—a4 S~ dy

Similar expressions can be written for other frequency samples. For N, number of frequency

samples, matrix A has a dimension (N X (N +0- l)) . N is the total number of poles (or resides)

0 -
in the transfer function N = ZN .. Bisa N ; dimensioned vector. The first element is,

i=l

B(s,)= [Ai,j ()™ =4, (s )ﬁm} (G7)

The real matrix C has a dimension (Qx (N +0- l)) .
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Ma "o Ve Viga (G8)
- 1V, W V. V.
C= 21 22 20 Va4

VQ 1 VQ 2 : VQ,Q VQ O+l

V=1 1 . 1]

V=00 0 . 0] (i=1,0 j=10 i*J)
VI,Q+1=[—_1 -1 . _1]

Viga=[l 0 . 0]

Vign=[l 1 .. 0]

(G.9)

Voou=[0 0 .. 1]

The Q dimensioned vector D has the form,

- 01
—Z c;; + Z di - ddc,lheoritical ( G 1 O )
i=]

=1
Ny
"
—Z c”z - dl

ny=1

T
il

No
"
-2 Crp =g

ny=l

The unknown coefficient vector (solution vector, x ) contains the increments in residues (Aclf"s) and

constant terms (Adi 's).
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x=[:Acl” Ac, .. Acy Ad, Ad, . AdQ_,] (G.11)

The above matrices are generated assuming that poles (and hence residues) are purely real. Care must
be taken in dealing with complex conjugate pairs. The number of unknown variables in the x vector)
reduces in the present of complex conjugate pairs. To explain this, consider the following complex

conjugate pair,

rolaralset (amai)e (G12)
s—(a+a,j)  s—(a-a))

It is assumed that the first two poles belonging to the first mode are complex.(G.13) shows the

corresponding entry of A matrix and although there are two terms in the function in (G.12), only
one entry is constructed. Because, only the real part of the residue is required to perturb the function

in order to attain correct high frequency response. (If the poles in (G.12) are real (two distinctive

poles), then there are two corresponding entries for A (s1 ,1) )-

A(s,1)=| —2——— 2 (G.13)
S—(al+a2]) S_(al_a:z])
The first entry of the vector x is Ac,. (x = [Ac1 ............ ]) In matrix D ,the first element of the i

vector should be 2.

Vi =[2] (G.14)
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Appendix H
Modified Functional Form method in ULM

A detailed description of the actual implementation of the modified functional form method is
described in this section. As discussed in Chapter 2, the Universal Line Model assumes a common set
of poles in approximating rational functions for characteristic admittance Yc (S) and propagation
A(s) functions. For example, the trace of the characteristic admittance matrix is first curve-fitted to
identify the common set of poles. With this common set of poles, the residues for the entries of matrix

are then calculated.

In the Modified Functional Form method, the procedure for the identification of the common set of
poles either for Yc(s) or A(s) remains unaltered. Next pace is to calculate residues with this
common set of poles. The function should depict the correct zero frequency response (i.e. function

value at zero Hertz equals to the exact theoretical value by Modified Functional Form as in (H.1)).

Y Jun - & Cms d (H 1 )
Ci, J (S ) - Z + dc,theortical )

m=l S =y,

Since the poles are known, the unknown coefficients in the equation (H.1) are ¢, 's . The error

between the fitted function and the actual function is minimized in the least squares sense.

min“Yc’_’j ( S)aciual _ Yci,j (S) Sitted( fun)

(H2)
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In matrix form, this can be formulated as a linear least square problem as follows.

min "Ax -

4]

(H3)

The matrix A has a dimension (N XM ) , where N, is the number of frequency samples. B is a

N, dimensioned vector. The M-dimensioned vector x contains the c,,'s in (H.1).

. d! 2! (H4)
s,—a, 8 -—a, s, —ay,
§, Sy S,
A= 276 557G S~
Sy, Sy, Sn,
Sy, ~@ Sy~ Sy, =y
B actual
YC,- o (sl) - ddc,theoritical ( H.S )
actual
Yci N (SZ) - ddc,!hearitica[
B=
actual
Yci of (SN f ) - ddc,theoritical
x=[cl ) CM] (H.6)
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The actual formula for the propagation function is slightly different from (4.9) in Chapter 4. It has

additional constant terms for better degree of freedom.

5T} NZ cnzse—:‘l'z

Ai’jfun (S) ~ i C,,,Se 4 Z

=l S — anl ny=1 S§— anz

+..td,

57y
c,lheorilicale
+d, (e“”2 —e™ )+ d, (e"“’ —e™ )+

0-1 (e_srg _e_ﬂl)

(H.6)

Where, Q is the number of different delays terms (delay groups). In general for O number of delay

groups, there are additional O —1 numbers of constant terms (di 's). Note that the additional terms

do not change the value of the function at zero Hertz. The matrices are,

i Sif iyl ~SiTg
sle 5,€ sle
§— 4 §—4a, $;—ay (e_d"lfz — e-sm ) (6‘3173 _ e‘SITI )
—8;7} —8,T} it 17]
5,€ 5,€ 5,€ —85yTy ~8$,7) ~S)T3 —-57
~ . e —e e —e
A=| 529 S, d §;—ay
—Sy T —Sy T =Sy ,T: —Sy T,
_strl —SN/‘Z'l —stTQ (e Nypt2 —e Ny l) (e Np®3 —e Ny |)
Sy € S, e Sy €
N N N
S I S/
SNf—al SN/ ——az SN,_aN
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(e

(e'SZTQ —e )

=S T, =5y /Ty

(H.7)




actual -5
( ) dc Jtheoritical e
( )actual -57)

de,theoritical

A actual 3 d ~sw,m
i,J Y I dc,theorilicale

x=[c1 c, . ¢y d d, . do]

(L8 )

(H9 )

Finally, the equations in the Modified Functional Form ( (H.1) and (H.6) ) can be transformed in to a

traditional pole residue form, so that recursive convolution technique (as described in Chapter 2) can

be readily used to evaluate the time domain convolution. As an example (H.1) can be converted as,

Sfun & C 7
Ye, (s)=z 2 +d

m=l § —a,

where,

=da.c

m m-m

Z C + de theortical

m=l

In a similar approach, (H.6) can be written as,
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N =

N A -
€ +chze

STy

+otde ™ +de .

Ai,jﬁm ()~ Zl

=l S—a

where,
¢, =¢,a,
c"z = nyom

d=
Ny
@=@+Zg
n2=
Ng
%=%+Z%
ngp=

n

Q N,
ddc,theoritical - Z di + Z c”\
i=]

ny=1 N _anz

=1

C?Qe‘“Q (H.12)

(H.13)

The equation (H.12) has a minor drawback. It is contrary to the fact that as frequency approaches

infinity, the propagation function tends to zero (i.e. 5’1 =0, 32 =0...... c?Q =0 ). This drawback is

overcome by an Equality Constrained Least Square Method (ECLS method discussed in Chapter 4).
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Appendix |

Passivity idehtification using state variable approach

The State variable approach is an alternative method to identify the passivity violations of a given
system. This is a purely algebraic method and contrast to the traditional frequency sweep method, this

method identifies the exact locations of passivity violations analytically.

(A) State variable approach to identify exact passivity violations in

electrical networks

(A.1) The state variable formulation of transfer functions

As an example, assume that the admittance of a single-port electrical network is given by the

following rational function.

G(s)=i % 14 | (L1)

k=15 —0a;

where, the terms ¢,,a,,d,N,s are k" residue, k™ pole, order of the transfer function, constant term
and the complex frequency (s = ja)). The state space form of (I.1) can be written with state variable

vector x(z‘) as [31],

x(¢) = Ax(¢)+ Bu(r) (12)
y(1)=Cx(t)+ Du(t)

where,
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al 0 . 0 (13 )

0 a, 0
A=

0 0 0

0 0 . ay
B=[1 1 . 1]
C=[e ¢ . ¢
D=d

() =[x0) %@ . @]

The transfer function of the system is,
G(s)=C(sI—A)'1B+D (14)

(A.2) passivity criteria for the admittance G(s)

The next phase is to determine the passivity criteria for G(s). It is assumed that the complex poles
(and residues) are always in conjugate form and G(s) does not have poles in the right-half s-plane

so that the first two conditions for passivity are met (see (5.5) in Chapter 5 for the definition of
passivity). The Vector fitting algorithm ensures that the poles are in the right-half-s-plane. An
analytical solution can be found to fulfill the third condition for passivity (all eigenvalues of
Hermitian matrix ( = real(G(s) ) are positive at every frequency) , which leads to the following

theorem, hence states the passivity criteria for (1.4) [61].

Theorem 1

The state space system is passive if the following Hamiltonian matrix (M) has no pure imaginary

eigenvalues [61].
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y A4-B(D+D")'c  -B(D+D') B (L5)

-1

c'(p+D7)'C  -4A"+C"(D+D") B

The presence of imaginary eigenvalues indicates that the system is not passive, the next pace is to
identify the exact locations of the passivity violations (the frequencies at which the eigenvalues of
Hermitian matrix ( = real(G(s)) ) cross the frequency axis, f; and f, as shown in figure I.1. The

following theorem helps to identify those locations [61].

3
Eigenvalues of H

F,r:aquenc
f /f 2 e

Figure I.1: An eigenvalue of Hermitian matrix (H) crossing frequency axis

Theorem 2

The real part of the symmetric admittance matrix G(jw,) is singular, if j@, is an eigenvalue of the

corresponding Hamiltonian matrix M, provided D+ D' is a positive definite matrix.

The above theorem can be generalized to unsymmetrical admittance matrices. In that case, real part of

the symmetric admittance matrix in second theorem is replaced with Hermitian matrix
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([G( Jja,)+G(— ja)o)]/ 2).The second theorem states that the imaginary eigenvalues

(say j2r f,, j27 f,) of M (Hamiltonian matrix) corresponding to the frequency at which eigenvalues

of H ( Hermitian matrix ( = real(G(s)) ) ) cross the frequency axis at frequencies f; and f, . Hence
using this method, the exact location of passivity violations can be identified (i.e. f; and f;, in figure

L1).

(A.3) Example

Let’s assume that the admittance of a single-port network is given by,

G(s)=S+k1 ,s=j2nf and k,k,eR (16)
s+k,

The first objective is to construct a state space model of the transfer function. The G(s) can be
written in pole residue form,
k -k,

G(s)= ;+k
2

+1 (L7)

Let Y (S) is the response for the arbitrary input U (s) .

_Y(s) K-k (18)
S=T6) ver

The new state variable X (S) is defined as,
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U
-4
or

sX (s)=-k,X (s)+U(s)
The equation (I.7) can be rearranged with state variable X (S) ,

Y(s)=(k~k)X(s)+U(s) (1.10)
The time domain equivalents of (1.9) and (1.10) (hence the state space representation) are,

x(t)=—kyx(t)+u(t) (L11)
y(t)= (k= k) x(2) +u(r)

In the next step, the passivity of the system (I.11) is investigated as discussed in section (b) by

checking the eigenvalues of the Hamiltonian matrix / defined in (L5).

[ ~0.5(k,~k,) —0.5 (1.12)
0.5(k~k)  k+0.5(k-k)

The eigenvalues of H are calculated by finding the solution of the equation,

/12—4k1k2=0 (L.13)
then
A =22k k,

Note that the eigenvalues are purely imaginary and independent of frequency. If both %k and k, are

positive (or both negative) the eigenvalues are real and according to section (b), the electrical network
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is passive. If one of k, or k,are negative and other one is positive then the eigenvalues are

imaginary and the electrical network is non-passive.
Case 1

Consider the transfer function,

Gggziiz (114)

The eigenvalues of the H matrix are,
Ah=44 (L15)

The real eigenvalues indicate a passive system .The real part of the admittance function G(jw,) in

(1.14) remains positive throughout the frequency range as in Figure(L.1). Hence confirm that the

electrical system defined in (I.14) is passive.
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Figure I.1: Real part of the admittance function G(jw,)

Case 2

Consider the transfer function,

G(s)=212 (L16)
S a—

The eigenvalues of the H matrix are,

A =13.8730j (L17)

The pure imaginary eigenvalues indicate a non-passive system. The next step is to identify the exact
locations of passivity violations in the frequency axis. As discussed in section (A.b), the locations

where real part of the admittance function crosses the frequency axis are given by,
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3.8730
27

=+0.6164 Hz (L18)

fy=t

The real part of the admittance function G(jw) in (I.14) crosses the frequency axis at f, Hzasin
Figure (I.2) and Figure (1.3) (an enlarged view of circled section of Figure (1.2)). The real (G( ja))) is
being negative below f < f, and hence confirm that the electrical system defined in (1.16) is non-

passive.

Figure 1.2: Real part of the admittance function G(jw,)
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Figure 1.3: Real part of the admittance function G(jw,)

(B) State variable approach to identify exact passivity violations in

transmission lines

A similar passivity identification method in section (1) can be used to verify the passivity of the
transmission line model treating as an electrical network. However since the transmission line model
contains transportation delays, a straightforward application of the above method is not feasible.
The identification of exact passivity violations using state variable approach for delay based
transmission lines (TL) is an ongoing research topic. Recent advances can be found in [61], [59]. This
section briefly explains the approach used in the paper [61] using a simple example, a single

conductor transmission line model.

(B.1) Passivity criteria for transmission line models.
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As discussed in detail in Chapter 5 (section 5.2), passivity of a transmission line model is guaranteed,

if and only if the eigenvalues of Hermitian matrix H(s) defined in (1.5) are all positive at any
frequency @ (with s = jw ). The Hermitian matrix is related to the transfer admittance ¥(s) of a

transmission line. The transfer admittance Y(s), relating sending and receiving-end voltages to the

currents, is shown below in (1.6) in terms of A and Yec.

H(s)=Y"(s")+7(s) (L5)
§o| T+, I-£) (24, (L6)
-4 24y, (-4 I+,

The matrices Y(s), 4 and Yc are functions of frequency and for simplicity, “s” term is removed in

(L6).

In this method, above passivity a criterion is restated in a simplified form: The passivity of a

T T
transmission line is guaranteed, if and only if both [Y1 (s)+Y](s") } and [Yz (s)+1, (s*) J have

real positive eigenvalues for any frequency. The functions ¥ (s) and Y] (S) are defined as,

Y (s)=(1+ 4 (1- ), (L7)

%, (s)=(1-A)7"(1+ A7, (18)

The proof is given below.

Define the matrix @ (s) as,
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o) Y (s)+ % (s") 0 (19)

S)=
0 % (s)+ 5 (s)

It can be easily shown that the Hermitian matrix H (s) is related to CD(S) in (1.9) using a constant

transformation matrix J .

H(s)=J"®(s)J (L10)

where,

Jz[l 1] (L11)
11

Therefore, the eigenvalues of H(s) (/I{H (s)})in (I1.10) are the set of eigenvalues of both

[Y1 (s)+x" (s* )] and [Y; (s)+57 (s*)} matrices as in (1.12).

AMe(s)} = 2{H(s)} (L12)
=2{E () + 7 (57U A {B(s)+ 27 ()}

In the traditional approach, the passivity is ensured by checking all positive eigenvalues of Hermitian

matrix H(s) for any frequency. However in this definition, the passivity is guaranteed by checking all
positive eigenvalues of simplified matrices [K (s) +Y" (S*)] and [Yz (s) +Y7 (s*):l for any

frequency.

We may now explain the similar method discussed in section (A) to detect passivity violations for

transmission line models. In section (A), the network admittance G(S) is first expressed in state
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variable form and the passivity is verified by checking the presence of pure imaginary eigenvalues of

Hamiltonian matrix, derived by coefficients of state variable formulation of G(s) .

Analogously, for the case of transmission line models, two matrices I (S) and )’2(S) are first

expressed in state variable form and passivity is verified by checking the presence of pure imaginary

generalized eigenvalues of certain matrix derived from coefficients of state variable formulation of

4 (s) and ¥, (s)

(B.2) State variable representation of Y, () and ¥, (s)

In this section, the state variable representation of I (s) is described. To ease the derivation, the sub

matrices of 1] (S) , namely IT, (S) 11, (s) and I, (s) are defined as follows.

IT, (s)=(1+4) (L13)
IT,(s)=(1-4) (L14)
I, (s)=1, (L15)

Then the matrix ¥, (s) is,

Y (s)=T1," ()11, (s)I1,(s) (116)

It is assumed that A and Yc functions are expressed as rational functions with orders N and M as

stated in (I.17) and (1.18).
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V()= —%—+d (L17)
k=1 S— 4,
Mce™”

A(s)= ) —— (L18)
kZ=1S—ak

By substituting A(s) in (I.18) to 11, (s) in (I.13), function II (s) can be converted in to the state
variable form as in (I.19) [31]. The unknown matrices (KI,AI,BI,CI,DI) are derived from the

coefficients of A(s) in (I.18) and x, (t) is the state variable vector. The state variable representation

for such systems is straightforward and hence not repeated here. The more information can be found

in reference [31] .

K\x, (t) = 4 (t)+ By, (t) (L19)
b2 (t) =C)x, (z‘ - r) + D, (t)

A similar set of equations can be derived for the function IT, (s) and has the same form in (1.19).
The state variable formulation for II, (s) can be constructed after substituting Y (s) in (I.17) to

(1.15) as shown in (1.20) with state variable vector x, (t)

K, (1) = 4%, (1) + B,u, (1) (120)
Vs (t) =C,x, (t) +D,u, (t)

Then the functions, 11, (S) can be written as,

I, (s) = Ce™ (sK, — 4,)" B,+D, (1.21)
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The function IT, (s) has the same form in (1.21). The function II, (s) is,

IL,(s)=C,(sK, - 4,)" B, +D, (122)

(B.3)Derivation of formula to identify passivity violations

Let’s assume that the transmission line model has passivity violations. As discussed in section (a),

passivity violations are identified as presence of negative eigenvalues in set of eigenvalues of both
|:Y1 (s)+¥" (s*):| and l:Yz (s)+5" (S*)] matrices. The objective is to identify the locations of
passivity violations, where eigenvalue crosses the frequency axis (e.g. f; and f| in Figure L1, at

frequency f =f, or f=f,, the eigenvalue become zero and hence the corresponding matrix

becomes singular). Let’s assume that there exists such frequency f = f, for the matrix

[K (s) + YIT (s' )} . Since the matrix is singular, there exists a vector 77, which satisfy,

(% (50)+ ¥ (') [n =0, 5,= j27 1, (123)

If (1.23) is written in terms of IT, (S) ,
-1 T * T * T #\1 .
[Hn(so) IT, () T (5) + 11, (so )Hz (So )Hl (SO ) }7=0’ 8 = J2m f, (1.24)

By pre-multiplying IT, (so) and substituting qo(s) =I1," (so")_1 n

[Hz (SO)H3 (So)an (SO*)—FHI (So)HaT (So*)nzT (so*)nzT (So* )](0 =0, s,=/27f, (124)
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Substituting 11, (S) in (I121), IL, (s) in (I.22) and similar expression for II, (s) and some

mathematical manipulation yields the following form.

K& = H, (so)éjl (1.25)

Hence, the solution (so ) for the equation (I.25) is the frequency in which the eigenvalue of the matrix
[:Y1 (s) + YIT (s*)] crosses the frequency axis. If such an frequency is found that means the eigenvalue

So

becomes negative crossing the frequency axis at f, = o
Jj2r

A similar expression can be derived for the matrix |:Y2 (s)+5" (s* ):| .

K, = H, (so)gz (126 )

Hence, the transmission line model is passive if and only if there does not exist any purely imaginary

values for “s” that satisfy the following set of equations.
sK.& = H,(s)&, (127)
sK2§2 =H, (s)f2 (128 )

(B.4) Solution to equations (I.27) and (1.28)

The procedure to solve (1.27) is same as for (1.28), hence only the solution method to (I.27) is

described below. It can be shown that H, (s) is a periodic function of frequency s(= ja)) and hence

179



the solution to (1.27) is periodic (i.e. if s = jew, is a solution to (L.27) and then s = jw, + j 37—1—7—[- is
T

also a solution. where, n is an integer (n = O,il,iZ...)) .

The equation (1.27) is solved by sampling in frequency domain and then solving via generalized

eigenvalue problem (GEP) as stated in the form in (1.29). O'(S),fl are generalized eigenvalues and

eigenvectors. Due to the periodic nature of the solution, GEP is solved for N number of frequency
samples in the frequency range s e ( jo, ]12—7—5) . In each frequency, the generalized eigenvalues of
T

H, (s) are calculated and check the presence of any eigenvalue/values with zero real part (pure

imaginary eigenvalues). The pure imaginary eigenvalues (if exist) satisfy the equation (1.27) [59].
o(s)K.& =H (s)& (129)

In practice, it may not be able to identify exact location of the eigenvalues with zero real part, since

finite number of frequency points are considered for computation. The strategy used in [59] is that the

. o gss s e 2
eigenvalues with diminishing real values are checked for each frequency between zero and A 1
T

such eigenvlaue at frequency fj = —is found for some integer # then, equation (1.29) is linearized
H

over f, and using an iterative technique, a close approximation for the frequency f, at which

eigenvalue becomes purely imaginary is found.
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Appendix J

Matrix formulation in passivity enforcement

This section describes the derivation of matrices used in the linearization method to eliminate small
passivity violations for Chapter 5. First consider the derivation of coefficient matrix K, (f,)
(equation (5.12) in Chapter 5), which gives the relationship between increments of some parameters

of the fitted propagation matrix to the matrix itself. The functional form of the fitted function for

propagation function can be found in (5.10) in Chapter 5. However, in actual implementation, a

slightly modified version is used as in (J.1) with additional constant terms (a',. 's) for better accuracy.

Note that at zero Hz, 4, *"(s=0) gives theoretical solution ( d A"”—"’“’"”“”) .

Mo se” Mc se™ .
Ai’jfun(s) ~ Z " _I_Z ny +""+dAdc_1heormca1e—sr, (J]. )

"l_l S—a 1 S—a

= m 2= m

+d, (e""2 —g™ )+a’2 (e‘"3 —e )+

by, (0 =)

where, Q is the number of different delays terms (delay groups). In general, for Q number of
delay groups, there are additional O —1 numbers of constant terms (d,. 's) .Only residues (cn,_ 'S) and
constant terms (di 's) are slightly changed so that the perturbation does not alter correct dc response

de theoriti . . . T
(dA e _t eormcal) . The increment in the function IS,

N, —57) N. -3
M, )= 3 A S (12)
1,
J m=l S — an| =1 A a”z

+Ad, (7 -7 )+ Ad, (€7~ ) +..

+Ad, (e'”Q - e'"‘)
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At some frequency point s, (= Jj2r fk) ,this can be written in matrix form as,

A, (f) =K (f,)AC,, (0.3)

The coefficient matrix 1%, (fy) is,

=57 =57

= s.e 5,e
=| 2k k
Kl(sk)— — — —
s, —a, S, —a, S, —ay

L)
s.e

(e-skrz _e—skr,) (e—sk13 _e—skrl) (e‘skfg —e 5 ):I

J.4)

where, s, =j2nf,, AC“.=[AC1 Ac, ... Ac, Ad, Ad, .. AdQ_,:IT and

Q
N = ZN . -Since only the diagonal elements of propagation matrix are subjected to change, the total
i=1
increment of the matrix in vector form (i.e. stacking diagonal entries of matrix into a single
vector A4”(f,)) is,

AL (f,) = K ((f)AC” (J.5)
where,
A (F)=[84,(1) My, () - My, ()] (1.6)

AC=[AG, 4G, . 4C,, T

K () 0 0 0
0 K(£) 0 0
0 0 0

0 0 0 &()

K, (fk)=
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M is the total number of conductors (i.e. dimension of the square matrix A). The next step is to find
a linear relationship between increments in transfer admittance Y'( £, ) to increments in A4(f,) . The

transfer admittance ¥ ( fo) is restated here (equation (5.4b) in Chapter 5).

Y{(I—AZ)"(HA% (-4 (24), ] a7)
-4V 24, I-£' T+ 4T,

Define sub-matrices for ¥ (f,) as follows,

Lo=(-A)'I+ 4T, | (1.8)

L= (-4 (241, 1.9)
The perturbation of (J.8) is,

(I-(4+84))(F, +A%,) = +(4+A1))Y, (3.10)

2

Note that in matrix form, the expansion of (A+A;1) A2+(A/~1)A+A(A;1)+(A;1)2.

Neglecting higher order terms, (J.10) can be written as,

—<h

AR, =(1-42)"{(Ad) 47, + A(Ad)Y +(A4) 4T, + 4(Ad) J (3.11)

Also (J.11) can be rearranged by staking entries of Afu and A4 into vectors,

AY,’ =GAL (1.12)
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where, AY,,” is a vector containing the entries of the matrix Afn (i.e. by stacking the columns of

Af’u ). A4’ is a vector containing the diagonal entries of the matrix A4 . G, is a complex matrix.
The Kronecker matrix product is a useful tool in deriving (J.12). Same procedure is followed to

derive the increments for the other sub-matrix ()712) and finally the following relationship is derived.

AY, = K,A4, J.13)

= . . 2 e . .
where, AY, is a vector (dimension (2M ) )containing increments of the matrix ¥ and the K, isa

complex coefficient matrix.

The third step is to develop a relationship between increments of the Hamiltonian matrix to the
increments of the transfer admittance (equation (5.5b) in Chapter 5 ). The formula is restated as,

H=V+Y7" (J.14)
The perturbation of (J.14) gives,

H+AH = (7 +AF)+(F +AF)" (3.15)

AH =AY + AV

It is required to convert (J.15) into a vector form, so that later it can be combined into other

equations. To explain the conversion, it is assumed AY is a two-dimensioned square matrix as in
(J.16).

Af={y1:+yliij. y3:+y321::| (J.16)
Vo v ] Yy +Y4J
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Suffixes 7 and j denote real and imaginary parts. The increment in AH from (J.15) is,

r

2y

AH =[ AR AE SN —yz"j} (1.17)
2D M B O R O 2y,

r

AH and AY isthen converted into vector form as in (J1.18),

AH’ = G,AY" (J.18)
where,
AH' =[AH,/ AHUi AH, AHz,li AH, AHin AH,) AH2’2i] (1.19)
AY = [Aylr NN Ay Ay Ny Ay Ay4i]
2 00 00 0 0 O
000 O0O0O0OO0OTO
001 01000
000 1 0 -100
G, =
001 01 0 00
000 -101 00
000 0 0 0 20
000 0 0 0 0 0]

Similarly, this procedure can be extended for any dimension of Y. Finally the derivation of equation
(5.15) in Chapter 5 is considered. The relationship between the eigenvalue 14 ( fk) to corresponding

right eigenvalue £, ( fk) (column vector) of a matrix H ( fk) is given by,

(H-AI)E, =0 (J7.20)
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where, I is the identity matrix. For simplicity, the term f, is dropped in writing (J.20). The
perturbation of (J.20) gives,

(H-AI)AE, +(AH - AAI)E, =0 3.21)

By pre-multiplying (J.20) with corresponding left (row) eigenvector £, , the first term disappears
and (J.21) becomes,

E,(AH -AAI)E, =0 (7.22)
i.e.
Ag = BAHE, (1.23)
ELER

Note that E, E, is a scalar. By considering all eigenvalues of the matrix H ( fk) , the equation

(J.23) can be rearranged as,

AV = KAHY (1.24)

where, AH” and AA” are vectors containing columns of AH and eigenvalues of H ( fk) K

is a coefficient matrix.
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