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This report proposes several techniques to improve the accuracy and the stability of electromagnetic

transient simulations of transmission lines. An improved transmission line model (mesh domain

model) is proposed to simulate transients in underground cable systems accurately considering

frequency dependent effects. One advantage of this approach is that the resulting transformation

matrix between phase and mesh domain is frequency independent. The mesh currents and voltages in

co-axial cables are naturally decoupled at high frequencies hence the propagation function shows

relatively smooth behaviour. Compared with basic phase domain methods, the rational function

approximation and transportation delay estimation are relatively easier in mesh domain method' Two

approaches are introduced to enhance the accuracy at low frequencies for FIVDC overhead lines and

underground cables by modiffing the form of the fitted function. In the first approach, a suitable low

frequency pole is added to the existing fitted function. The pole is carefully selected such that the

resulting function gives correct dc value and the other high frequency response is changed

insignificantly. In the second approach (Modified Functional Form method), the functional form of

the fitted function is reformulated so that the modified function gives theoretical dc values at zero

Hertz. A robust passivity enforcement algorithm is proposed to impose passivity on a non-passive

transmission line model. The proposed, two-step method can be applied to detailed phase domain

models, such as the Universal Line Model. This enforcement algorithm first uses a modified

functional form method to remove large passivity violations, which are usually present at low

frequencies. Then a constrained least squares method is employed to perturb diagonal elements of the

propagation matrix or characteristic admittance eliminating any small passivity violations' The time

domain simulations were validated using Numerical Inverse Laplace Transform method.
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The mathematical analysis of the electrical behaviour of transmission lines was originally introduced

by James Clark Maxwell, Lord Kelvin and Oliver Heaviside. In 1855 Lord Kelvin formulated a

diffusion model of current in a submarine cable. In 1885 Heaviside described the analysis of

propagation in cables and the modern form of telegrapher's equations [29].

Chapter I

The term transmission line (TL) refers to overhead transmission lines and underground cables in text

to follow. In most power system textbooks, the transmission line (TL) parameters are calculated

assuming very low frequency conditions i.e. the curent is uniform across the cylindrical conductor

neglecting skin effect. These constant line parameter models are valid only for analysis at and in the

vicinity of fundamental frequency (e.g.Load flow studies) [45]. It is very importantto considerthe

frequency dependent nature of TL (e.g. skin effect and proximity effect) for the accurate analysis of

harmonics and electromagnetic transients [48].

lntroduction

In the first stage, TL equations are formulated in frequency domain. There are no direct time domain

equations available in theory except for simplified structures. Time domain simulations are of great

interest in practice. This is because this is the only general way to handle nonlinear elements such as

thyristors in converter stations, nonlinear inrush currents of transformers and sudden changes in the

network such as operation of circuit breakers and faults.

The goal of this thesis is to develop an accurate, stable and improved time domain TL model to

simulate electromagnetic transients from frequencies ranging from zero Hz to 1 MHz.



The frequency domain TL equations are expressed in terms of two parameters namely characteristic

admittance function fc(s) and propagation function ,¿(t) (s= ja). These parameters are

frequency dependent and in case of multi-conductor TLs, they become square matrices. ln general,

the frequency domain expressions for the TL parameters are complicated and are not in a form readily

simulated in the time domain. ln order to have a time-domain implementation, the line's

characteristic admittance function fc(s) is first approximated (curve-fitted) by rational transfer

functions. The same is done for the propagation function A(t) , except that the frtting now includes a

transportation lag in addition to the transfer function. Once expressed in rational function form, the

model becomes implementable in the time domain 129f, and can be used to investigate transients on

transmission lines with arbitrary (including non-linear) terminations.

For multi-conductor underground cables and unsymmetrical overhead transmission lines, the

frequency response of the propagation function ,4 (s) shows oscillatory behavior, when plotted as a

function of frequency. This irregular behaviour causes difficulty in low order rational function

approximation and extracting optimum time delay 1441,1571.

A new time domain TL model called Mesh Domain Model is proposed in this thesis to get over this

diffrculty. In this model, the original phase domain parameters are converted into mesh domain by a

linear constant transformation. In contrast to the phase parameters, the mesh domain parameters

exhibit less oscillatory frequency response. As a result, delay extraction and the rational function

approximation for the propagation function l(s) formulated in mesh domain are much easier. This

mesh domain model is represented by a current source and real shunt admittance at each end of the

TL and hence can be readily implemented in electromagnetic transient (EMT) programs. The

examples including underground cable systems are shown to exhibit the validity of the proposed



algorithm. The time domain results are compared with an analytical solution obtained via numerical

inverse Laplace transform.

Although TL models accurately represent electromagnetic transients from frequencies ranging from a

fraction of aHz to I MHz, it has been difficult to get a good fit in the close neighborhood of 0 Hz

(dc). For tryDC lines and cables, it is very important to accurately reproduce the response in the

close vicinity of 0 Hz, as that is the nominal frequency on the line. Forcibly attempting to fit the line

characteristic at these extremely low frequencies requires a high order for the rational function and

sometimes leads to inaccurate fitting.

This thesis introduces two novel procedures for improvements in the accuracy of time domain

simulation models for overhead lines and underground cables at very low frequencies. ln these two

methods, a suitable modification is introduced to the functional form of the rational function

approximated in the curve fitting procedure for the phase-domain model, such that the model is

accurate at dc frequency. The above proposed methods are also compared against a third less accurate

method which simply adds a series dc resistor to correct the dc response. The proposed approaches

are validated by comparing the time domain simulations with analytically obtained responses for

simple linear terminations. The practical use of the developed procedures is demonstrated using the

example of a Voltage Sourced Converter based High Voltage Dc Transmission (I{VDC) System that

uses underground cables.

This thesis proposes an improved algorithm to enforce passivity on the time-domain simulation

model for a multi-conductor cable or overhead line. The physical transmission line, by necessþ must

always be passive, i.e., regardless of it terminations, the line itself cannot generate active power at any

frequency. However one of the major problems of the above modeling method is that the

J



straightforward implementation of curve fitting cannot guarantee a passive time domain model of a

transmission line. Depending on its terminating connections, a non-passive transmission line model

may lead to incorrect, unstable simulations.

In this passivity enforcement algorithm, the model first employs one of the two low frequency

correction methods used to obtain accurate response at0}{z (dc), thereby also reducing the likelihood

of passivity violations. The frequency sweep method is then used to identifo any remaining passivity

violating regions of the model's frequency response. These small passivity violations are then

removed using a linear constrained least squares algorithm to perturb the diagonal elements of

propagation matrix or characteristic admittance.

The passivity enforcement algorithm is applied to the Universal Line Model (ULM), a widely used

robust phase domain formulation implemented in many commercial electromagnetic transient

simulation programs. Two examples, of multi-conductor underground cable systems, one for ac and

the other for FIVDC transmission are presented to demonstrate the proposed approach.

1.1 Overview of the report

Chapter 2 summarizes the transmission line theory and modelling methods found in literature. The

first part of the chapter gives an introduction to the basic TL modelling techniques and later, different

modeling techniques are discussed in detail (e.g. modal domain, direct phase domain and combined

phase & modal domain methods etc.). In addition, some multi-conductor transmission line models

such as the Universal Line Model (ULM) are discussed.



The proposed new Mesh Domain Method to simulate multi-conductor coaxial cable systems is

described in chapter 3. simulation results involving underground cable examples are presented to

validate the model' The curve-fitted functions obtained from proposed model are compared with that

f¡om a direct phase domain model to emphasize its efficiency and accuracy. Time domain simulation

results from the proposed model are also compared with the analytical solution obtained via
numerical inverse Laplace transform.

chapter 4 discusses the inaccuracy of time domain simulations at low frequencies, which is a crucial

problem in simulating lrvDC underground cable systems and overhead lines. Two novel procedures

are introduced to guarantee the exact dc response for transmission lines. Time domain simulations

involving IrvDC underground cable systems are compared with the solution from numerical inverse

Laplace transform to verify the accuracy at very low frequencies including zero Hertz and high

frequencies (up to l MHz).

chapter 5 begins with a brief introduction to the concept of passivity and then discusses the definition

of passivity in context to the multi-conductor transmission lines. The error between the fitted
functions and the actual functions are shown and how it related to the passivity problem is discussed

using suitable examples. A two-stage robust algorithm to enforce passivity on multi-conductor

transmission line models is introduced in this chapter. Time domain simulations involving
underground cable examples are compared with the solution obtained from numerical inverse Laplace

transform to veriff the validity of the algorithm.



Review of Multi-conductor Transmission Line Modelling

The objective of this chapter is to explain the basic theory for transmission line modelling and

different models for multi-conductor transmission lines found in literature. The chapter begins with a

discussion on single-conductor transmission line modelling and then extends it to the multi-conductor

case. The fundamental concepts on multi-conductor modelling methods such as Modal domain

modelling, Phase domain modelling are explained and later in the chapter, various phase domain

models found in literature are discussed such as the Universal Line Model. Finally the time domain

solution obtained directly via frequency response is explained.

Chapter 2

2.1 Single conductor transmission line model

The following section describes how to

insight into the basics of transmission

complicated multi-conductor case.

model single conductor overhead line, which gives good

line and cable modelling, before considering the more

Figure 2.1: Small section of the transmission line



The above schematic shows a differentially small section of length Lx of a homogeneous

transmission line (or underground cable) of total length L Let Z be the impedance and Y be the

shunt admittance per unit length of the transmission line respectively. From Kirchoffs current and

voltage laws:

LV =-(ZLx)r

N =-(YLr)V

Here LV and N are the frequency domain phasors of the incremental voltage and current across

the section. The alternating current tends to travel near the surface of a conductor as its frequency

increases (skin effect). ln deriving Z , the skin effect ofthe conductor and the soil is considered and

hence the series imped ance Z (ø) is frequency dependent. The shunt admitt¿nce y (r) is also a

function of frequency and accounts for the capacitance between the transmission line and its image to

the earth. In (2.2a) and (2.2b) n(r), L(r), G and C denote unit length series resistance, series

inductance, shunt conductance and shunt capacitance respectively. The expressions for these

parameters can be found in [], [6], [7], [3].

z(r)= R(r)+ jaL(ø)

Y(r)=G+ iatC

(2.1a)

(2.tb)

(2.2a)

(2.2b)



A note on frequenc)¡ dependenc)¡ nature of shunt conductance (G) and capaciønce (C)

Some models, use frequency dependent values for the shunt conductance and capacitance. For

overhead lines, the approximation of assuming capacitance is very accurate 1271, and can be

calculated from the line geometry. The shunt conductance value also depends on other factors such as

ageing, type of insulators, environmental parameters e.g. humidity, temperature and pollution etc.

This shunt conductance value is very small, since the electrical conductivity of air is extremely small

(typical value, 3e-11 S) [68], [55], and is sometimes entirely omitted in many models.

For underground cables, the capacitance value is much higher than the overhead lines, since the

distance between conductor and return path is small. The permittivity value of insulators is assumed

to be a constant in emtp-type programs such as EMTP and PSCADiEMTDC, resulting in a constant

capacitance (see equation 8.10 in Appendix B) 1271. However, in case of pipe-type cables the

frequency dependent nature of permittivity may be significant, requiring the consideration of

frequency dependent capacitance. Such cables have not been considered in this thesis.

The conductance G value of the insulators can be derived from the frequency dependent loss angle

(tan(a)) and the capacitance C of the insulators (G =tari'(6).a,c) l2Tl.Since the conductance value

is very small (G << oC), the effect of conductance on electromagnetic transient simulations is very

small in practical cases. Hence it is reasonable to assume a constant conductance. This is the

common practice in many emtp-type programs and has been shown to be sufficiently accurat e 1271.

The equations used for determining all parameters are presented in Appendix B.

The Maxwell equations are the set of four fundamental equations used to describe the dynamics of the

electromagnetic (EM) waves. Transmission line equations (also called telegrapher's equations) can be



derived from Maxwell's equations (and also using basic circuit theory as in 2.1) [29]. The general

form of the telegrapher's equations in the frequency domain are given by,

-frrr{*,r)= z(aùI(x,a)

-! t@,r) = Y(a)v(x,at)

For simplicity, Z(a), Y(r), I(x,at) and V(x,at) are rep.esented as Z,Y,I and V in the

following text. The equations Q.aa) and (2.4b) show the solution to the above equations (2.3a) and

(2.3b) obtained form elementary partial differential equation theory [5],

, = Frn*'rrr-ff"Ø't u

v =e-Ø'vf +"ø'vo

Where, V, and Vu are arbitrary phasors constants, which can be evaluated by applying boundary

conditions at the sending-end and receiving-end of the TL. At the sending-end of the line (i.e. at x:
0),

Vo =V, +Vu

(2.3a)

(2.3b)

'r=[L/,[?,

(2.4a)

(2.4b)

(2.sa)

(2.sb)



Similarly at the receiving-end, x: / (length of the transmission line)

Vn, =,-Ø'V, *,ø'l',

,,, = - 
Er-JzY 

tv,r * $r*'r,

Note that in the above expressions, subscripts "ll' and "m" denofe sending-end and receiving-end.

The curent direction is to the transmission line at both end of the line (see figure 2.9). Frequency

domain TL equations are usually expressed in terms of the characteristic admittance function Y"(r)

and propagation function ¿(r) (2.7a and 2.7b respectively), which are also functions of per unit

length parameters Z(r) and Y(a).

Y,(r)=

¿(r) = ,-J-r(')z{')t

(2.6a)

After eliminating the unknowns (2, and Vu) from equations (2.5a), (2.5b), (2.6a), (2.6b), the

relationship befween sending-end and receiving-end variables can be expressed as,

(2.6b)

Io=Y"Vo-,1(1f^+t,,)

(2.7a)

(2.7b)

10

(2.8a)



Io,=Y,v^-'a(ltto+to)

Here, Vo and V^are the conductor voltages to ground (ground/earth is considered as reference for

the voltage) and Io and l,,are conductor currents. The terms A(Y"V^+I,) and ,1,(f"fo+to)

represent the contribution from the remote-end of the transmission line. Electromagnetic transient

(EMT) programs require a time domain form of (2.8a) and (2.8b). ln equations (2.8a) and (2.8b), each

product of two frequency domain functions becomes convolution between the corresponding time

domain functions. For example (2.9) is the time domain form of (2.8a):

i o (t) = y, (t) *, o (t) - a (t) * (t 
" 
(t) * v 

^ 
(t) + ¡, (,))

Note that lower case letters represent time domain impulse response function of corresponding

uppercase letter frequency domain (FD) function (e.g. n(t)is the inverse Laplace transform of

ttre{(s) in equation 2.8a) . The symbol 'x' denotes convolution. The straightforward numerical

integration of the convolution is not computationally efücient. The mathematical technique called

recursive convolution is a numerically efficient technique to evaluate the convolution. For the

recursive convolution, either one of the two functions should be expressed as a sum of exponentials.

To explain, consider the following convolution,

( 2.8b )

r, (t): y,(t)*voQ)

The admittance impulse response term y,(r) can be approximated as a summation of exponentials in

the following way. Since the characteristics admittance function is originally formulated in the

frequency domain (FD), numerical inverse Fourier transform methods such as IFFT are used to get

l1

(2.e )

( 2.10 )



it's corresponding discrete time domain function. The

approximated by a summation of exponentials as shown

technique.

y"(t)=fr,r""
r=l

A more convenient approach that avoids the step of obtaining the time domain form of h(t)isto
approximate the FD function Y,(r) using a least square based curve fitting technique in the

following form (called pole residue form as shown in equation (2.12) with (s = ¡at)) in the

frequency domain directly. The direct frequency domain fitting has several advantages over time

domain fitting. If the fitted function closely matches the actual function over a range of frequencies,

then the corresponding steady state time domain simulation is highly accurate over that particular

frequency range. Also the unknown coeffrcients (c,, a, and I. in equation (2.12)) can be efficiently

evaluated using a robust curve fitting technique based on linear least squares called Vector Fitting

1431,l4ll (for more details, see Appendix D).

time domain function y"(t) is then

in (2.11) using a suitable curve fitting

r"(,)=ä*,.*

Figure (2.2) shows the fypical plot of the fitted function

function offrequency.

(2.t1 )

and the actual function for \(rtt)us u

(2.12 )

l2
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The time domain form of (2.12) is,

Figure 2.2: AcfuaI and fitted frequency responses of Yc

y"(t) =t",r'" +\6 (t)
i=l

With ¿ (r) in above formulation, the convolution (2.10) can be written in discrete recursive form as

1271,1201,

È-Ptsts+tstsi+_l{ i_F,f.#l+i f iË-r+r

r, (/) = avo(t)+ pvoQ -Àr)+ vs,(t - nt)

(2.13 )

t3

(2.14 )



Where, Af is the simulation time step selected. It is interesting to note that value of the convolution

is expressed as a combination of the voltage at the current time step, voltage at the previous time step

and the previous value of the convolution. For further details, the derivation of constants can be found

in appendix E.

Equation (2.I5) represents the other convolution term in (2.9).

r, (/) = a(t)* f (t)
where,

f (,) = (y 
" 
(r) *, 

^ 
(t) + i 

^ 
(t))

The same procedure (used to evaluate y"(t)*vo(t) in (2.10)) can be utilized to evaluate the

convolution. However the exponential term ç"-$-r@Y{')r in equation (2.7b)) prohibits direct curve

fitting of A(a) using low order rational functions.

Physically ¿(r) is the factor, which defines the attenuation and the phase shift of forward travelling

wave coming from the remote end of the transmission line after some delay. The reason for the delay

is due to the relativistic speed limit. The signal cannot travel faster than the speed of light. Therefore

the propagation function l(r) contains a true delay (transportation lag). This time delay in time

domain means a phase shift in frequency domain. The propagation function l(r) can be

represented with the delay explicitly separated as shown in equation (2.16) leaving a simpler function

¿,.(r), which is readily fittable by a rational transfer function. This process is referred to as

"unwinding".

¿(r):4*(at)e-i"

(z.ts )

T4

(2.16 )



The delay (r) can be physically depicted as the time required for the travelling \¡/aves to travelto the

other end of the transmission line. Time delay is frequency dependent. However time domain models

require constant delay, which can be calculated in several ways. Further details can be found in

Appendix C.

Once the delay is removed, the .\*(ø) shows less oscillatory phase behaviour as shown in figure

(2.3).It now becomes easy to fit with low order rational functions. The fitted and the actual functions

are shown in figure (2.4). It appears that there is a signifrcant phase fitting error after rc4 Hz.

However, the magnitude is entirely zero at these large frequencies and so the phase error is

inconsequential. The final form of the propagation function is,

r("):*--"

where, s = ja.

(2.17 )
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After applying recursive technique, the convolution in (2.15) becomes,

", 
(r) = a' f (t -') * þ' f (t - Lt - r) + y' sr(t - tt)

It is evident that all the terms in (2.18) are history terms (i.e. only involve values from the past).

Finally, the formula for the cunent (2.9) can be expressed as a summation of present and past values

as follows.

i o (t) = hoh (t) + i 0,,, _o (t)
where,

!"q=d

i0,,,_o(t)= þvt (t - tt)+ys,(t -Âr)-s, (r)

Equation (2.19) represents a real current source and a

domain. Similar representation can be obtained for

represented by the equivalent circuit in figure 2.5.

( 2.18 )

real admittance for the sending-end in the time

the receiving-end, so that the model can be

(2.1e )

I i,¡rt-L

Figure 2.5:Time domain equivalent circuit
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This model is in the standard form used in the admittance matrix based network solutions [27] and
hence is easily incorporated into the EMT algorithm.

2.2 Multi'conductor Transmission rines and cabres

Modelling of multi-conductor transmission lines (MTL) is more complicated than the single
conductor case' various approaches have been developed for the multi-conductor case. The
equations (2'8a) and (2'8b) are valid forthis case, but \(r) and A(at) are square (nxn) matrices
and I and v are n-dimensional vectors for the n-conductor system.

This electromagnetic coupling phenomenon in MTL causes inegurar behaviour in the elements of
propagation matrix ¿('), both in magnitude and angle in their frequency response, shown for a
typical cable in Fig2.6.
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Figure 2'6: Magnitude plots of elements of a column of A matrix for 6 conductor case
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As a consequence, there can be difficulties in time delay extraction and low order rational function

approximation, which are essential components in time domain modelling.

2.3 Modal Domain Methods

The problems described above, relating to coupled frequency domain equations (Z.Ba) and,(2.gb) can

be avoided by decoupling them using modal theory l4ll, [22], Ul ,[26]. The coupled frequency

domain equations (sometimes called direct phase equations) can be decoupled using transformation

matrices. Consider the following system of equation.

Y=GX
(2.20 )

where, G is a square matrix and y and X

consider a two dimensional case. Equation

equation (2.21),

[;]=[;l 
r;,:.)l:,]

The above coupled equation can be decoupled by separating eigenvalues and eigenvectors ofmatrix

G as shown in equation (2.22) and (2.23).

are output and input vectors respectively. For simplicity,

(2.20) can be written in matrix vector form as shown in

lî,',1: ["0'' r:,,11:,',f

(2.21 )

t9

(2.22 )



YM =GMXM

where,

GM = EGE-I

YM = E-tY

XM = E-rX

E and g'',,, are the matrix of the right eigenvectors and ith eigenvalue of matrix G respectively.

Equations (2.8a) and (2.8b) can be converted into modal domain as described in Appendix A.

Application of modal theory to the transmission lines was first introduced by L.M. Wedephol and

later becomes an essential tool in TL modelling L281, 1221, [7], 126]. Once the equations are

transformed in to the modal domain, the frequency response of each modal element (such as elements

of modal A) is smooth and well behaved. The extraction of the transportation delay as well as the low

order rational function approximation of the modal function is much easier. The modal domain

formulae are tabulated in Appendix A.

In general the transformation matrix from direct phase domain to modal domain is frequency

dependent and complex. However for most overhead transmission lines (e.g. horizontally

symmetrical overhead lines) or simple cable systems this transformation matrix is almost constant and

also the imaginary part of the transformation matrix is negligible compared with the real part. For

such cases, the transformation matrices can be considered to be real and constant with little error in

the time domain solution.

(2.23 )
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The assumption of the real constant transformation matrices leads to efficient time domain

modelling, since only 4n convolution are required in each time step for an n-conductor transmission

line. As transformation matrices typically converge to a real constant value as the frequency tends to

infinity, it is customary to obtain the above real-constant transformation by evaluating the true

transformation at the highest frequency point to be considered (usually I MHz). For certain

geometries E can be determined from physical arguments. For example, for horizontal ideally

transposed transmission lines, the Clark transformation can be used.

The paper [21] describes a method to simulate transmission line transients in the time domain using

constant transformation matrices.

The constant transformation matrix assumption is not valid for highly asymmetrical overhead line

configurations and for most underground cable systems. ln such cases, assumption of constant

transformation matrix causes significant errors in time domain simulations. The frequency

dependency effects of transformation matrices must be accurately taken into account. The paper [37]

describes a modal domain transmission line model considering frequency dependent transformation

matrices.

Modal domain models with frequency dependent line parameters have several drawbacks. Due to the

additional convolutions involved between modal matrices and transformation matrices, the model is

numerically inefficient and less accurate compared with direct phase domain methods. It was

observed that some elements of transformation matrices can not be satisfactorily approximated using

rational functions.
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2.4 Direct Phase Domain Models

2.4.1 Basic Concept of Phase Domain Models

Direct phase domain models have been developed in order to overcome diffrculties associated with

frequency dependent transformation matrices. The TL equations remain coupled, but the problem of

frequency dependent transformation matrices does not arise. For Direct Phase Domain models, the

general derivation is briefly described as follows. For an n-phase transmission line having length I

the FD expressions are (equations (2.8a) and (2.8b) restated below),

1,, =Y"V^- A(Y"V.+ Io)

Io =Y"Vo- A(Y,V^+ I^)

where [36],

(rz)"v

A = s-Jrzt

(2.24 )

(2.2s )

(2.26 )
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lr. ¡,n

Figure Z.9:YoItages and currents at sending-end and receiving-end of a TL

Suffices "k" and "m" denote sending-end and receiving-end respectively. Y"(r) is the characteristic

admittance matrix. ¿(r) is the propagation matrix. V and I are voltage and curent vectors. y (r)

and Z (ot) are shunt admittance and series impedance square matrices per unit length respectively.

The frequency dependent term a is removed for simplicity in equations (2.24) to (2.31).

The matrices Y"(ot) and A(ø) are computed first by finding the eigenvalues and eigenvectors of

p(r)=Y(r)xZ(at) matrix. Let y,(ø) ue the iil'eigenvalue of matrixP(al) '

A = EtlE,^

Where, E,(r) is the matrix whose columns

diagonal matrix, whose elements are defined as,

1,,¡ = e-Jlt

Similarly, the matrix Y"(ø) is,

are the eigenvectors of matrixP(ø). f (ar) is a

(2.28 )
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Y" = ETYEIY

where, V (r) is a diagonal matrix whose elements are defined as,

Y,,, =

The ultimate objective of modelling is to find an equivalent circuit in time domain as described in

section 2.1. The same procedure can be applied, but there are exceptions. The first stage is the rational

function approximation of A(a) and Y"(ar) in frequency domain (as discussed in section 2.1). For

n-conductor transmission line, these are square matrices and each entry of those matrices is

approximated by low order rational functions.

Since { (ø) in phase domain is a symmetric (nxn) matrix, only (n + nx(n-l)/Z) elements are to be

fitted. As y"(r) is the admittance seen by the sending-end for an infinite line, diagonal elements of

Y,(r) are of minimum phase type. The off-diagonal elements are multiplied by -l before rational

function approximation, so that they too become minimum phase functions, whose angles lie in the

f,trst or fourth quadrant. The minimum phase properly of Y"(at) allows entries of { (ø) to te

approximated only using real poles and zeros with a reasonable accuracy (Any physical admittance

(or impedance) can be synthesized to an electrical network consisting of only passive elements such

as capacitors, inductors and resistors. The transfer function of such networks contains only real poles

and zeros) [36].

(2.30 )

(2.31 )
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The propagation matrix is an un-symmetrical square (nxn) matrix. Using the approach described in

section 2.7, all the elements must first be unwound as in (2.16) and the entries of unwound matrix

¿,*(r) are curve-fitted by low order rational functions.

It is observed that the elements of A,*(a) are close to minimum phase (but in some cases,

considerably deviate from minimum phase) and can be approximated using low order rational

functions [44]. Complex poles and residues are required in curve-fitting to obtain a reasonable

accuracy.

In modal domain methods described in section 2.3, transportation delay can be successfully calculated

using Bode's gain-phase formula. Modal domain elements (modal form of l(r)) are smooth

functions of frequency (less oscillatory behavior). There is a unique delay associated with each mode,

because each mode has its own modal velocity. But delay extraction is very difficult in the phase

domain elements, due to the oscillatory nature in the entrie s of A(ø) , when plotted as a function of

frequency. Usually an optimization technique is implemented to calculate the optimum delay, which

results in a low order rational function approximation (see Appendix C for further details).

At the end of first stage, the elements of matrices A,*(at) and Y"(ot) are expressed as rational

functions in the forms shown in (2.12) and (2.7) respectively. In time domain, these functions are

summation of exponentials. Using the same techniques like application of recursive convolution

described in section 2.1, the frequency domain equations (2.24) and (2.25) are converted into time

domain equations.

i,(t) = y,qv,(t) +ih¡,, ,,(t - Lt,t - Lt -r,t -r)
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ioQ) = !"nvo(t) +íhut_k(t - Lt,t - Lt -r,t -r)

where !,n is a real constant matrix and history current terms (1r,.,_ * ãfd it,",_^) are evaluated using

past information as discussed in section (2.1). The equations reveal a time domain equivalent circuit

having a shunt admittance and history current source as shown in figure (2.5). This formulation can

be readily implemented in electromagnetic transient programs.

2.4.2Phase Domain Models in literature

Recently direct phase domain models are of greater interest than modal domain models, because

phase models avoid problems with frequency dependent transformation matrices. Various phase

domain models have been developed in the past few decades.

2.4.2.1Direct phase domain model

A direct phase domain model for overhead transmission lines can be found in [36]. The term direct

means this model does not involve curve-fitting of modal elements or transformation matrices, but

only phase elements. In this model, the transportation delay in (2.16) is extracted based on speed of

light, however this is successful only for simple overhead transmission line conf,rgurations. There may

be difficulties in low order rational function approximation for more complicated configurations, if

the delay is simply calculated based on speed of light. For such cases, the optimum delay (which

gives minimum least square error of curve-fitting for a given entry) is significantly different from the

delay calculated on speed of light. The curve-fitting method used for the model is the modified
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magnitude fitting in which only magnitude of ,q,*(r) is considered for fitting. This fitting method

is based on the assumption thaf A,*(ø) is a minimum phase function.

2.4.2.2Autoregressive moving-average (ARMA) model

Some models incorporate transportation delay z directly into fitting process[32]. In phase domain

ARMA model [32], the rational function approximation of { (ø) and ¿*(r) is done in the z

(z = e'^') domain rather than in s ( s = jal domain One important advantage of this method is that

there is no need to calculate the delay explicitly, as the delay terms are represented in the z domain

formulation.

The e-" in s domain can be approximated by,

-sr Iex
1+ se

,STl-- )Ol x-
.STl+-)

This approximation is not sufficiently accurate to represent the exponential term in TL applications.

But the delay t can be accurately represented in z domain as shown below.

-Jr -n
c Na

Where,

t
ft - 

-Lt
and z = e"L'
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A/ and t arc the time step selected and

function in z domain is used to curve-fit

G( z\ _ ao + arz-_t + ....anz-'

I+brz-' +....bnz-'

Y(z) = G(z) X(z)

The unknown coefücients (4,'s and b,'s in (2.34)) are evaluated by a least squares fitting method.

The coresponding time domain form of (2.34) is shown below.

the transportation delay respectively. The nth order rational

¿,*(r) or Y"(a) as shown below.

y (k) = arx (k) + a,x (k - r) + ...a,x (k - n) - b,y (k - 1) + ... + b,y (t' - 
")

This model can be implemented into electromagnetic transient (EMT) programs. Note that as the

coefficients a¡ and b¡ are identified from the discrete model (Z domain), their values are time step

dependent and must be reevaluated if the simulation is run with a different time step Àl .

So far, the each entry of the propagation matrix ¿(r) is attributed to a single delay. Alternative

approach is to heat each entry of A(at) with multiple delays (modal delays) instead of single delay.

It is meaningful, because each entry can be expressed as a linear combination of modal elements of

l(r) at any frequency [7]. Hence entries of ¿(r) compose of delays in each mode (modal

delays). The accuracy of curve-fitting with multiple delay approach is greater than single delay

method and multiple delay technique shows clear advantage, when dealing with cable configurations

having widely different modal delays.
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2.4.2.3 Universal Line Model (ULM)

An example for the phase domain model, which uses multiple-delay approach, is the Universal Line

Model (ULM) t441. In this model, modal delays are first calculated and then modes of A,*(ot) are

curve-fitted using a robust least square technique called Vector Fitting [43]. The functional form of

kth mode is,

¡/.
A,,^od'(") = f Juk-"-tto* m=ls-amk

where No, a,o, c,k, Tk are the order of approximation, mth pole and mth residue and the delay

corresponding to kú mode respectively. It is assumed that each A,,,(ø) can be approximated by a

rational function in the form shown in (2.37) with modal delays and poles, used to curve-fit modes.

A,,(,)=äl_Y'*"r)

where n is the number of modes. Idempotent theory gives a good insight into the mathematical

background of this model [5]. According to idempotent theory, matrix l(r) can be stated as a

linear combination of its eigenvalues or modal elements at any frequency as in (2.3 8).

A =>TkAk^od"
k=l

(2.36 )

(2.37 )

3l

(2.38 )



where To@) is a frequency dependent matrix derived

substituting Ao^oo" from (2.36),

o=ä,r(¡,**J

It is observed that the entries of the matrix To@) show smooth behavior for practical TL

configurations, when plotted as a function of frequency. This justifies the assumption that the

frequency dependency behavior of To(at) can be flexibly accounted by choosing suitable residues

(selecting new set of residues instead of c.o's in (2.39)) and A(ø) now becomes a form similar to

(2.37).

from corresponding eigenvectors. By

According to the formulation (2.37), there is no unique time delay for each element of A(ot) matrix

but a superposition of modal delays in time domain. This significantly improves the accuracy of the

fitted propagation functions particularly for TL configuration with widely different modal time

delays. Another plus point is that since all elements have same set of poles, there is a computational

saving in calculating the convolution terms (2.15),leading to a numerically efficient model.

The ULM is accurate, robust and numerically efficient model. This model requires a robust

eigenvalue tracking algorithm like NR method to eliminate eigenvalue switching.

(2.3e )

There are several problems common to many time domain models. One issue is that although these

models simulate the frequency range from a few Hertz to about several kilohertz, it has been difücult
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to get a good fit around zeroHz (dc); a significant error in modelling fryDC underground cables and

overhead TLs. Two novel procedures are introduced to improve the accuracy of time domain

simulation at very low frequencies (see Chapter 4). Another shortcoming is that these time domain

models cannot be guaranteed to be always passive, which may result in unstable Time Domain

simulation. An algorithm is proposed to enforce passivity on the time-domain simulation model (see

Chapter 5).

2.5 Method for val¡d¡ty determination of time domain implementat¡on

In this thesis, many approaches to time domain simulations are discussed and new ones are

introduced. It is important to check the validity of these approaches. However, unless for simplified

approaches, the direct theoretical solution is not available. lnstead, a numerical method to obtain the

time domain solution from frequency domain solution is used to validate the transient simulation.

For linear networks, the relationship between an applied voltage or current excitation (input) and the

desired output can be represented by a frequency domain transfer function. The applied input can be

transformed with a Laplace Transform into its frequency components. The Laplace Transform of the

response is then obtained directly in the frequency domain by multiplying the above transfer function

by the (frequency domain) input. The time domain solution can no\¡/ be obtained by inverse Laplace

transform of this frequency domain solution. Although such an approach is only applicable for linear

networks and thus has little use in general-purpose simulation that usually includes non-linearities; it

is nevertheless an independent means to validate the time domain solutions of transmission lines

obtained by numerical integration of differential equations.
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Consider a case where, the TL is connected to a load admittance (Y*) at the receiving-end and

sending-end is connected to a current source (I.) parallel with an admittance (Yù. The frequency

domain equations at both ends can be written as shown in equation (2.40) and (2.41).

I, = Io+YkVk

I, = -YrV,

The frequency domain solution of the sending-end current can be calculated by combing equations

(2.40) and (2.41) with (2.8a) and (2.8b).

I o = I, - Yo(H, + HzYk - HrY")-' (t + nr) t,

where, I is the identity matrix.

Hr=Y"+Yo

H, = A(Y" - Y.)(Y" + Y^)-t A

The time domain solution for the sending-end current is obtained using numerical inverse Laplace

transform of equation (2.42). A detailed discussion on lnverse Laplace Transform can be found in

Appendix F.

(2.40 )

(2.41 )

(2.42 )
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2.6 Ghapter Summary

This chapter described the basic theory of transmission line modelling and summarized the modelling

methods found in literature. At the beginning, the derivation of frequency domain transmission line

equations using telegrapher's equations was briefly presented. The concepts of TL modelling for the

single- conductor case were then described in detail. This gives a good understanding in to the basics

of transmission line modelling, before explaining the more complicated multi-conductor case in

section (2.2). Multi-conductor models fall into two major categories namely modal domain methods

and phase domain methods. Finally the use of frequency domain methods to obtain time domain

responses was briefly described. This method is useful to validate the transmission line models.
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Chapter 3

Modelling of Go-axial Cables in the Mesh Domain

3.1 Introduction

A new method is developed in this thesis to simulate time-domain transients in underground cables

accurately considering frequency dependent effects. The idea of mesh domain modelling arose from a

relaxed chat over coffee with Prof. L.M. Wedephol to which the author is greatly indebted.

Rather than convert the equations using eigenvector matrices to true modal form, the proposed mesh

method uses mesh voltages and currents. The advantage of the approach is that the resulting

transformation matrix between phase and mesh domains is frequency independent. The conventional

phase domain formulation, which uses conductor and sheath voltages and currents, can be

numerically challenging due to the superposition of independent traveling waves arising from the

coupling of modes. This results in oscillatory behaviour in the frequency response of elements of A,

which makes delay extraction and low order rational function approximation difficult and numerically

inefficient. As will be shown, in the proposed mesh domain formulation, the mesh currents and

voltages in co-axial cables are naturally decoupled at high frequencies due to the shielding effects of

the conductors, suggesting the possibility that the above oscillatory behaviour may be avoidable.

3.2 Development of the Mesh Domain Model

The mesh lomain equations are developed for the co-axial cable geometry shown in Fig 3.1.
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3.2.1 Basic Mesh-Domain Equations

Figure 3.1: Phase voltages and currents in a coaxial cable system

Series impedance (Z) and shunt admittance (Y) matrices are the basic building blocks of any TL

model. The approach of section 2.1 is also valid for underground cables, and the resulting

relationships between phase voltage and current phasors for a cable are as given below in (3.la) and

(3. lb),

dvo 
=

dx
-zIo

tu

dI_
-+=-W,
dx

where, Vo is the vector of phase voltage (conductor to ground ) phasors,

current (current through each phase or conductor) phasors through each
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Io is the vector of phase

conductor and x is the



distance along the line. The dimension of the current (or voltage) vector is nx1 for an n-conductor

system. Z andY are square nxn matrices.

In this ne\¡/ approach, the currents and voltages of a cable are defined in mesh domain as shown in

figure 3.2. Instead of selecting inner conductor to ground, sheath to ground, arrnour to ground

voltages, the new set ofvoltages are chosen as voltage between inner conductor and sheath, sheath

and armour, and armour and ground. Similarly the currents are selected from conductor to conductor,

instead ofconductor to ground.

Plastic sheath

MétãlliÐ sheath
Paper lnru
ln¡'rer Cond

Arrnûur
Beddin

The series impedance and shunt admittance matrices are formulated in the mesh domain, which

causes separation of modes as the frequency increases. This results in smooth frequency responses of

entries of matrix A. The transformation matrix from phase to mesh domain is real and constant as it is

based directly on Kirchoff s current law.
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Figure 3.2: Mesh voltages and currents in a cable
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3.2.2 shunt admittance and ser¡es impedance matr¡ces in mesh domain

The self and mutual impedances and admittances between the cable conductors can be represented

using the per unit length equivalent circuit shown in Fig. 3.3. Here, Z¡isthe self impedance ofjú

loop. And Z¡ is the mutual impedance between ith and jü loops.

211 : impedances of internal conductor (Z"on6u.¡or) * insulator between first sheath and

conductor (Z¡n.urutor) * inner first sheath (Zinner sh.utn).

Zr¡ : mutual impedance of ith sheath (Zsheath_mutual)

(3.2a )

Z¡¡ : suffi of impedances of outer (i-1)ù sheath (Zour.,_,r,"ut¡) + (i-l)th insulator (Zinruruto,)

* inner iù sheath (Z;nner .r,"utn).

(3.2b)

Znn : sum of impedances of outer (n- 1)tn sheath (Zouter_s¡eath) + the (n- 1)th insulator

(Zinruluto,) + self earth return '

Yii = shunt admittance befween two adjacent conductor layers.
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n-1

þ
n

2

Zm(n-1)

lmpedance Equivalent Circuit

Figure 3.3: Equivalent circuits for unit length admittance and impedance

The traditional phase domain series impedance and shunt admittance matrices per unit length can be

written in terms of the above mesh-domain impedances and admittances. With the meshes selected

from phase to ground, the impedance and admittance matrices can be constructed as follows.

n-1
Å

lc
l=
I

n

(1) The series impedance matrix per unit lengrh (Z) """be 
defined as,

Admittance Equivalent Circuit
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kúdiagonal element, Z(U,,U)

n n-l

=22,,-222,,,
¡=k i=k

Off diagonal term, Z(p,q) ( 3.S )
_+-
-LL¡¡- Lrp

i=p

= Zo,o

Zr, + ..2 * - 2(Z ø + ..2 r4¡1_t1)

Z, + ..2 * - Zñ - 2(Z m, + Z 16)

7 _7'nn 'm(¡rl)

2=

(2) Shunt admittance matrix (i)e* unit length

Zo +,2* - Zñ -2(Zn + Z r¡j)

Zo + ..2 * - 2(Z 
^2 

+ ..2 
^çna¡)

7_7unn 'nt(.rr-l)

(3.7 )

Y_

_Y,,

VtVtll ' t22

0 -Yg'1ywl)

7 _7"nn "m(n-l)

ol
0l

-vl'1n-t¡1n-t¡ |

Y* +Yr-rr-, )

7_7'nn 'm(n-[)

7 _7unn "m(n-l)

7 _7
nn mvFL)

z*

(3.e )
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These matrices are formulated in the phase domain choosing the conductor currents l-9,2-9,3-g...n-g

as the variables. Phase currents and phase voltages (conductor to ground) have significantly mutual

coupling within the frequency range from 0 Hz to I MHz. This results in oscillatory behavior in

propagation and characteristic admittance functions, when plotted as a function of frequency. Due to

this undesirable oscillatory behavior, the delay extraction is very difficult for the elements of

propagation matrix. Furthermore a higher order fit is usually required for the rational function

approximation due to the oscillatory nature of elements of propagation matrix both in magnitude and

phase. This leads to an inefficient model.

This difficulty can be significantly reduced by choosing different formulation for i and 2 maîices.

The new current meshes or meshes are selected as l-2, 2-3, 3-4 .. . , and (n- 1)-n. The t und Z

matrices formulated in this new mesh domain are,

f 2,,

z =l-t^
I

Io

_7Lml

2,,

0 -Z m(n-t)

lv,,
- loY=l

lo

:l
-rrr-rrl

2,,,, l

0

Yr.,.

00

0

0

0

Y,,

The mutual impedances tend to zero as frequency increases. This can be easily proved from the

formula for mutual impedance (8.6) in appendix B. Thus tn" 2 matrix formulated in the new mesh

domain becomes increasingly diagonal at high frequencies. Since i is already a diagonal matrix, the
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cunents (as well as voltages) defined in the new mesh domain become decoupled at high frequencies.

ln other words the system supports almost independent traveling waves. This is a good approximation

to a pure modal domain system at very high frequencies.

Both magnitude and phase of elements of propagation matrix (A) are relatively smooth functions of

frequency compared with that of direct phase domain formulation (phase to ground). This is a

significant advantage for rational function approximation of the propagation function. A low order fit

can be found and this leads to an efficient model. This is particularly true for the elements of

characteristic admittance matrix as well.

Since the frequency responses of the diagonal elements of A matrix are relatively smooth, it is easy to

extract the time delay. The delay is usually evaluated using Bode's gain phase formula (Appendix C)

as described in section (2.1) at the highest frequency point of interest (corresponding to the fastest

traveling wave). This delay extraction is relatively easy in new mesh domain rather than in phase

domain due to smooth behaviour of propagation function at high frequencies. There are still some

difficulties in delay extraction for off-diagonal elements for some cable systems (e.9. cable systems

with widely different modal time delays, some complicated cable systems). An alternative

optimization method was developed to calculate time delay (see Appendix C for details).
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3.2.3 Transformation Matrices

In order to use the potentially powerful features of the mesh domain method demonstrated earlier, it is

necessary to transform voltages and currents in phase domain to new mesh domain and vice versa.

The voltage transformation matrix can be derived as follows.

4, = 4, + VB + l/ro * ...V6-r¡n

Vr, = Vr, + 4o + ...V1n-r¡,

Vn, =Vçn_r¡,

Note that suffix 'g', 'phase','mesh' denote ground, traditional phase domain and the new proposed

mesh domain respectively.

Vphor" = KvVn rrn

The voltage transformation matrix Ky is defined as,

111 1

011 1

001 1

1

00001

Kv=

( 3.13 )

(3.t4 )
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Similarly the current transformation matrix

transformation for currents.

Ir, = \r.
I'.=-Irr+1"^

f --f tf
'(n-t)s - t(n-Z)(n-t)' t(n-t)n

f phor, = K tI ,rrn

can be derived

The current transformation matrix Kr is defined as,

by considering phase to mesh

1

-1
0

0

Kt:

0

1

-1

0

00
00
10

0

0-1 1

Another advantage of mesh method is that current and voltage transformation matrices are real and

constant avoiding the diffrculties with frequency dependent transformation matrices.

( 3.16 )

It can be easily shown that,

Xn =(X,'')-'

(3.17 )

( 3.18 )
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The relationship between characteristic admittance matrix

Y",pho,,is derived as follows,

I r""h = Y",rr"rhV^"rh

By substituting (3.14) and (3.17) in (3.20), we get

Y",phor" = K IY",or""hK IT

In a similar manner, the transformation for the propagation matrix from mesh to phase can be derived

as in (3.23),

in mesh Y",uoand in phase domain

1,",0(x) = Ar^nI,^n(x = 0)

By substituting (3.17) in (3.22), we get

Aphoru = K IA^uhKvr

(3.20 )

Table 3.1 shows a summary of conversions from mesh to phase and vise versa.

(3.2t )

(3.22 )
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Phase domain to mesh Mesh domain to phase

V^uh= KrTVonon Vphorr= KvVrun

f r,"rh = KrT I onor" I pho"" = Ktlrun

Z^"rh= K,TZonor"Kt Zphor"= KvZruhKvT

Yr""h = Kr'Yor^rK, Yphor" = KrY*rhKrT

 r,rrh = Kr'Aoror"K, Aph^" = KIA.uhKvT

Y",rrrh = Kr'1,oror"K, Y",phor" = KtY",.uhKIT

3.3 Equivalent Circuit in Time Domain

The frequency domain transmission line equations written in terms of new mesh domain variables

are,

Table 3.1: Conversion table

I r,r^h = Yr,r"rhV o,,onrn - 4run(Y",r rrhVk,^rrh * I tr,^^n)

I k,^rrh = Y",r^hV k,r^h - A-^o(Y",r^oV r,,^urh * I r,r^n)

As discussed in section 2.7, the above frequency domain expressions are then to be converted in to

time domain equivalent circuit in order to implement in electromagnetic transient programs such as

PSCADÆMTDC. However, the time domain circuit must be ultimately expressed in phase domain,
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since phase currents and phase voltages are easily dealt with terminal conditions. If equation Q.zaa)

is multiplied by current transformation matrix K, ,

KtI 
^,^un 

= K,Y",r^rKr-t KvV,n,r,urt - KrA*rh(Y",o,rrhVk,^rrh r I t ,^^n)

Then by substituting (3.17), equation (3.25) becomes,

I 
n,, ph^" = K rY 

",, 
u nV r,,r, 

"rh 
- K I A^un(Y 

",rnrnV 
t,n,""h * I k,rr"rh)

Define Fo as,

Fo = 4^r*(Y",murhVk,^",h * It ,^un)

Then equati on (3 .26) becomes,

I r,phor, = K lY",^"rlrVr,,rrrh - K t Fk

(3.2s )

The time domain form of (3.28) is,

i 
^, 

pho," (t) : K, y,.^,,,, (r ) 
* v m,me,h (t) - x t ¡o Q)

(3.26 )

Where, the term "x " denotes convolution and,

(3.27 )

(3.28 )
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f (r) = o,",0 (t) * (! 
",^,,, 

(r) * u o,^*o(r ) + ;0,,"", (r ) )

The lower case variables are the corresponding time domain form of the upper case variables. The

above convolutions can be efficiently evaluated by recursive convolution method described in section

(2.i) and the equation (3.29) now becomes,

i^.pho,"(t) = i"n _^v,,,,,0(r) + ihßt _,(t)

with mesh to phase conversion as in (3.14), equation (3 .3 1 ) can be written as,

i,,,pho,"(t) = Yrv,,or"*(t) + iou, -,(t)

Where, !"q _, = i"n _,K,' . Similarly for the other end of the transmission line,

io,ro,*(t) = /"qvk.pho,u(t) + ir,,, _oQ)

( 3.30 )

Equations (3.32) and (3.33) suggest a time domain equivalent circuit, which can be realized in

popular electromagnetic transient programs,

( 3.31 )

(3.32 )

( 3.33 )
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3.4 Mesh Domain Modelling for Multi-cable Systems

Figure 3.4: Time domain equivalent circuit

The procedure for modelling multi-cable configurations in mesh domain is same as that described in

the preceding section 3.3 for single cable system. However the transformation matrices derived for

single-cable case are different from that for multi-cable case. This section briefly describes the

derivation of transformation matrices taking a simple example involving a cable conf,rguration similar

to a cable system shown in Figure 3.6.

lr'i"t-..n

For simplicity, it is assumed that each cable of the two-conductor system has an inner conductor and a

sheath. Figure 3.5 shows the per unit length impedance equivalent circuit. Z^"is the earth mutual

impedance (frequency dependent) between two cables. By considering mesh voltages and phase

voltages, the following relationships can be built.
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4r:4r*vrn
vr, =vr,
Vr, =Vro+Vo,

vo, =von

The voltage hansformation matrix Ç becomes,

iåur=lo

lo

10
10
01
00

:l

ll

Similar relationship can be built for the currents in mesh and phase domain,

I,= In
I,= Irn- I,
I, = Iro

Io:Ion-Irn

(3.34 )

The current transformation matrix becomes,

10001
-1 1 0 0l
0 0 1 0l
o o -1 1l

( 3.3s )

(3.36 )
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1

t̂"li

l"
2

I
lä
ln

The impedance matrix in mesh domain can be written in terms of self-impedance of each cable and

earth mutual impedance as follows.

Figure 3.5: Equivalent circuit for unit length impedance

lmpedance Equivalent Circuit

I z,.i

2 =12"."

L:

Zr,r.' o o

zr,r' o z*"

o Zr.r' 2,,,r'

Z,u Zr.,r' Zr,r'

where, 2,,,k istne (1,¡)'h element of the impedance matrix for the kú cable (k:1,2) derived as

described in section 3.2.2. Z^" is the earth mutual impedance between two cables. Since only the

outermost conductor of each cable is coupled to the other, 2(2,4)=Z(q,Z)=2," and all other

mutual entries are zero ç2 (t,l) = 2 (t,q) = Z (Z,l) = 0 etc.).

( 3.38 )
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Since there is no coupling in the admittance equivalent circuit, the admittance matrix in mesh domain

becomes,

Yr,i

0

0

0

Y_

0

Yr,rt

0

0

0

0

Yr,r'

0

where, Y,,,k is tne (t,¡)'t' element of the admittance matrix for the kth cable (k: 1,2) derived as

described in section 3.2.2. This section briefly described the derivation of mesh domain impedance

and admittance matrices for two-cable configuration. The derivation can be generalized for higher

number of cable systems.

0

0

0

Yr.,r'

3.4.1 Rational Funct¡on Approximation of Yc and A

Once mesh domain B and i matrices are computed (as discussed in section 3.4), mesh A and mesh

Yc are then calculated using equations (2.26) and (2.27). The next step is the rational function

approximation (curve-fitting) of entries of the characteristic admittance (Yc) and propagation (A)

matrices.

Time delay estimation and curve-fitting of A

( 3.3e )

The model developed in the thesis assumes multiple-delay form for the propagation function (similar

to the ULM) as shown in (3.40), (see section 2.4.2.3 for further details). The modal delays (2,)in

equation (3.40) are estimated using Bode's gain-phase formula from modes of mesh A matrix (see

appendix C for delay estimation using Bode's formula). The modes are the eigenvalues of A matrix

calculated as described in section 2.3.
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A,, 
¡ 
(r) = r.n*,+ e- ", i"+.

Identification of poles (a,, ) and residues (c;, ) 
in (¡ .+oi

The developed model exploits a feature in the Vector Fitting algorithm, in which two or more

functions can be simultaneously curve-fitted using a common set of poles [40], [43], [41]. Each

column of the mesh propagation matrix is approximated with a common set of poles using the

modified Vector fitting algorithm [67] (i.e. the unknown residues and poles in (3.40) are calculated by

curve-fitting each column of the propagation matrix and the entries in a column share same set of

poles); hence the numerical efficiency of the model is improved.

This model can be also used in situations where the phase domain Universal Line Model (ULM) [44]

does not always give satisfactory results. Earlier researchers observed that there were difficulties in

curve-fitting the modes in ULM for some cable systems [67]. Since this model does not involve

curve-fitting of modes of propagation matrix and the mesh domain formulation is based on actual

mesh currents and voltages, entries of mesh propagation matrix can be satisfactorily approximated

using rational functions.

(3.40 )

3.5 Application Example

In order to explain the advantages of the proposed mesh domain method, an example underground

cable system is considered. Figure 3.6 shows a three-cable system (each has an inner conductor and

sheath) with data shown in Table 3.2. The typical plots of entries of the propagation matrix
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formulated in traditional phase domain are shown in Figure 3.7, clearly indicating the oscillatory

behavior of phase domain elements, when plotted as a function of frequency.

Ceble # 1

Relat¡ve Ground Permeablllty: 1.0
Earth Relurn Formula: Numerlcal

--)
0 t'îl

Ground Resist¡vity: 100.0 fohm*ml

CablÊ # 2

--\
0.2(nl

,m

Figure 3.6: Three cable system

iiiii
0.022tmlk--.-) i i i

.03s5[m]{----------) i I

.044 lml k------------) i

.0a75 fml f -- ------ ----'-)
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3.6 Ghapter Summary

This chapter proposed a ne\¡/ mesh-domain method to simulate time-domain transients in

underground cables accurately considering frequency dependent effects. One advantage of this

approach is that the resulting transformation matrix between phase and mesh domains is frequency

independent. The mesh currents and voltages in co-axial cables are naturally decoupled at high

frequencies hence the propagation function shows relatively smooth behaviour. The rational function

approximation in mesh domain is relatively easier than in basic phase domain methods- This model

can be used in situations, where Universal Line Model does not give satisfactory results [67]'
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lmproving the asymptotic fitting of TL and cable models

4.1 lntroduction

This chapter introduces improvements to the low frequency fitting of the propagation and

characteristic admittance functions [66]. These developments are driven by the need for accurate dc

fitting for simulating High voltage direct curuent (FIVDC) transients. fryDC transmission of power

over long distances is seeing increasing application with FIVDC lines and cables being installed all

over the world. Simulation models for such systems are required to be accurate over a very wide

frequency range from zero Hertz, which is the nominal frequency on the line to several tens of

kilohertz for thyristor switching and other transients.

Chapter 4

As discussed in Chapter 2, the use of modern phase domain modelling techniques coupled with

transfer function estimation using Vector Fitting has greatly improved the accuracy of time-domain

models for overhead transmission lines and cables [43]. However, although these time-domain

models simulate the frequency range from a few Hertz to about several kilohertz, it has been difficult

to get a good fit in the close neighborhood of 0 Hz (dc). For HVDC lines and cables, it is very

important to accurately reproduce the response in the close vicinity of 0 Hz, as that is the nominal

frequency on the line. Later in this chapter, it is shown that forcibly attempting to fit the line

characteristic at these extremely low frequencies requires a high order for the rational function and

sometimes leads to inaccurate fitting.
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An efficient new approach is proposed in this thesis based on linearization and conshained least

squares that achieves a highly accurate fitting over the full frequency range, with zero error at dc

frequency. A modification is introduced to the functional form of the rational function approximated

in the curve fitting procedure, such that the entries of the characteristic admittance and propagation

matrices can be fitted with more accuracy without having to substantially increase the number of

poles. Two possible variants of the functional form were attempted. In the first approach, the

admittance and propagation transfer functions are reformulated so that the dc response is factored out

as an additive constant which can be directly selected.

In the second approach, the transfer function is first fitted over the entire frequency range, which

typically results in some fitting error at zeroHz. A low frequency first order pole is then added to the

resultant fifted function in order to realize the exact response at dc, without significantly affecting the

remainder of the frequency response. One of the issues with earlier models was that although the

Vector Fitting procedure always had negative real parts in it poles, it sometimes violated conditions

for passivity 162l; and hence the simulations could go unstable with certain types of line

terminations. Later in the discussion, it is shown that the proposed approaches are less likely to result

in passivity violations.

The above proposed methods are also compared with a simplified altemative approach which merely

adds a corrective series resistance into each conductor to get the correct dc line resistance. However,

this approach is shown to have poorer accuracy compared with the above approaches. Time domain

simulations of various transients on FIVDC underground cables are presented to veriff the validity of

the proposed methods. Finally the practical application of the developed modeling technique to a

large non-linear network is demonstrated through the example of a Voltage Sourced Converter (VSC)

based HVDC transmission system using underground cables.
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4.2 Asymptotic behavior of transmission line parameters

This section presents the asymptotic behavior of transmission lines. As discussed in Chapter 2, the

general TL equations, so called Telegrapher's equations are expressed in terms of series impedance

and shunt admittance matrices (see equations (2.3a) and (2.3b) in Chapter 2). The series impedance of

the overhead transmission lines consists of sum of basic impedances such as internal impedance of

the conductor, ground return impedance etc [43], [15], U]. In the case of underground cables, the

components of the series impedance are internal impedance of inner conductor, sheath mutual, inner

and outer sheath impedances etc. (see Appendix B for further details). The basic impedances of cables

and transmission lines are functions of frequency, several other parameters and also depend on the

geometry of the transmission line.

4.2.1 Overhead Transm¡ss¡on Lines

To demonstrate the asymptotic behavior of characteristics for overhead transmission lines, consider a

single conductor transmission line. For overhead lines, the approximation formulae for conductor

internal impedance, aerial and ground return impedance are given by 1431, [15], [1],

Z ¡,,,,, o t (r) = -f s- c oth("#). 9t#*

z 
a e r i a t &. gr ou n d (r) = # ^(+)
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where,

p" : resistivity of the conductor (Om)

d. = complex depth of penetration for the conductor

E- 
{þ*

p: permeability of air (FVm)

r: radius of the conductor (m)

D':2(v+dr)

d, = complex depth of penetration for the ground

fp": 12

! jtp
4 : resistivity of ground (Am)

y = height of the conductor from ground (-)

The complex depth of penetration of the conductor d, can be regarded as the (complex) thickness of

an annular tube of the same outer radius as the conductor, to which the current in the conductor is

effectively confined. The complex depth of penetration for the ground can be visualized as an

effective increase in the height of the conductor by the complex quantity d* as shown in figure 4.1

1201,1241.
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Figure 4.1: Actual height and the effective height of a conductor in the transmission line.

As the frequency tends to zero, the complex depth of penetration of the conductor, d. becomes large.

Thus the current density is equal throughout the cross section ofthe conductor, resulting in its internal

impedance attaining a value equal to its dc resistance. The aerial and ground return impedance tends

to zero. At very high frequencies, the internal impedance equals to skin effect impedance, which is

equivalent to the impedance of an annulus with radius and thickness equal to r and d respectively

1201, L241. The typical plots of conductor internal impedance and aerial & ground return impedances

are shown in figures (4.2) and(4.3) respectively for single conductor case.

I

I---r
f
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Figure 4.2: Conductor internal impedance
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Figure 4.3 : Aerial & ground return impedance
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For simplicity, a single conductor case is explained. The series impedance of the conductor is,

Z (r) = Z i,,"-or (ø) + Z 
"u,,", 

*c-,na (@)

The typical plot of the series impedance as a function of frequency is shown in figure 4.3.

1.4

1.2

1

o.8

o.6

o.4

x 10'

(4.3 )

The shunt admittance V (r) per unit length in Telegrapher's Equation (2.3b) can be written as,

o=
10-

Y(r)= s+ iH
'[;)

Figure 4.4 : Series impedance function

10' 1oo rd
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where,

D =2y
g = conductance per unit length (conductance of air)

Low frequencies

High frequencies

Atzerofrequency,thegroundreturnimpedancetendstozeroand the Z(o=0) and Y(al-0)

functions have the following form,

Table 4.1: Zint" 
^r 

aîd Zu",i^1ss,oùnd at very low and very high frequency

Zit" ul

P"
7T12

P,
2rrd,

Z(a = 0)= Rr"

Zaerial&grotnd

0

avn( 2\
2n \, )

where, g is the conductance per unit length and Ro" is the resistance per unit length. The propagation

l(r)and characteristic admittance Yc(a) functions are accordingly calculated as described in

Chapter 2. Atvery high frequencies, Z(ø) una y(r) have the approximate forms jo)L and

jaC ,where L and C are constants. Hence Yc(a) approaches a constant ana A(at) mafix

tends to zero. The typical plots of Yc(a) ana Yc(at) tunctions are shown in figure (a.5) and (4.6)

respectively.

Y(a=0)=g (4.s )
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Figure 4.5: Typical plot of propagation function,A
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Figure 4.6:Typical plot of characteristic admittance function,Yc
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4.2.2 Underground Gables

At very low frequencies, the conductor internal impedance approaches the dc resistance of the

conductor (as calculated considering conductor cross sectional area, length and electrical resistance) .

The sheath outer, mutual and inner impedances also approach to the sheath dc resistance and earth

return impedance tends to zero. At very high frequencies, the internal, sheath inner, sheath outer and

earth return impedances equal to the skin effect impedances. However the mutual impedance tends to

zero. These impedances are shown in figures (4.7) and (a.8). As for the case of overhead transmission

1iy¡es, Yc(o) approaches a constant ana A(at) matrix tends to zero atvery high frequencies. The

asymptotic behaviors of Yc(at) ana A(a) are similar to the case of overhead lines.

x 1o3

Figure 4.7:Typical plots of sheath and conductor impedances
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Figure 4.8: Typical plot of earth return impedance

AtZeroHz

High

frequencies

Zint" ul

P"
2

7Tr

P"ffi"
2nr

Table 4.2: Impedances at low and high frequencies

where,

pc : resistivity of the inner conductor (C)m)

mc : reciprocal of complex depth of penetration for inner conductor

W-t,,
pc =permeabitity of the conductor (W*)
r : radius of the conductor (m)

Zínner-sheath

P,
n(r,'rt - 1')

P,ffi,
2trr,

Zsheath-mutual

P,
tt(r,*,,' - r,t)

0

Zouter-sheath

p"

r(r,*r2 - r,2)

P"ffi,
27rr,*,
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ps : resistivity of the sheath (ç¿m)

m" : reciprocal of complex depth of penetration for sheath

Ertt.
{r"

¡-l : perïneability of the sheath (W*)

I : inner radius of sheath(m)

r,*,: outer radius of sheath(m)

The full expressions for cable impedances are stated in appendix B.

4.3 lssues with fitting of the transfer matrices at low frequency

It can be shown that at very low frequencies (derived from (2.7a) and (2.7b) in chapter 2),

Ic(s -+ 0) =

I (s+ O) * t-'f sC4"t

sC

Ro"

where,

C : capacitance per unit lengfh (F/m)

Ru" = dc resistance of the line per unit length (e¿/m)

I : lengfh of the line

J'=jø
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The square root term in equations (4.6) and (a.7) is difficult to approximate by a low order rational

function. Consider the simple three single-core coaxial cable configuration shown in figure 4.9, with

data as in table 4.3 . The frequency response of a typical entry A( I , 1 ) of its propagation matrix A is

shown in figure 4.10., which also shows a plot of a rational function approximation obtained by

fitting over the frequency range [1 Hz, I l:|dHy'. Note that the fitting at frequencies lower than the

lower bound f,in: I Hz is poor. Table 4.4 shows the order of the fitted transfer function (maintaining

the same fitting error), with different lower bounds f.¡n. For the propagation function, decrease in the

lower bound form I Hz to le-3 Hz results an increase in the order by 6 for each element of the

propagation matrix (i.e. 54 additional poles in the 3 x 3 sized matrix). This clearly indicates that the

required order of the fitted function rises rapidly as the lower fìtting frequency is reduced.

In order to observe the impact of using a lower fitting bound, simulations are caried out on the cable

system in figure 4.9 with the sending-end of the first conductor energized by a step voltage and with

all other terminations being grounded. Figure 4.11 shows time domain simulation response curves for

the sending-end curent obtained with different lower bounds for curve fitting. The template for

comparison, also included in the figure, is an analytical solution obtained by a direct frequency

domain (FD) solution attained by numerically inverting the Laplace Transform of the accurate

transfer function (see Chapter 2 for details).

If the lower bound used in the fitting is not sufficiently small, as time progresses, the time domain

simulation diverges from the analytical solution and results in an incorrect dc response, as seen from

the plots of in figure 4.ll after a period of about 0.5 s. The response with a lower bound of I Hz,

which is often selected by simulation tool users when studying dc systems, has 33 %o steady state

error. Reducing the lower bound to 0.001 Hz, reduces the error fo 3.3%0, but achieves this with a
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significant increase in the fitting order (see table 4.4) as discussed earlier. Note that poor fitting at

very low frequencies is a major source of error when modelling dc lines.

Figure 4.9: Simple Cable System: 3 single-core coaxial cables.

Radius of solid conductor (m)

Outer radius of insulation (m)

Dc resistance (O/ km)

Relative permittivity of the insulation

Earth resistivity (O-m)

Length (km)

Table 4.3: Cable data

0.00127

0.00228

0.034

2.85

100

50
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4.4.1Dc correction by adding series resistance in each phase

The simplest method for correcting the error at dc frequency is to add a suitable series resistance in

each conductor. The value of this series resistance is equal to the correct dc resistance minus the value

obtained from the fitted function. Note that it is possible that this correction may at times give a

negative value for the added resistance. For example, consider the cable system as shown in Figure

4.9 in which compensating negative series dc resistances (-0.45 ohms and -0.47 ohms) must be added

to outer conductors ("4" and "C" in figure 4.9) and inner conductor ("8") respectively. Figure 4.12

shows the current for conductor "4", with the sending-end phase "4" energized using a lV step

voltage. All other terminations are grounded. Three traces are shown, the first showing the curent

that would result with no correction to the model, the second showing the current after modi$ing the

model with the compensating resistances and the third showing the theoretical response obtained by

Frequency Domain analysis using numerical inverse Laplace transformation. With the resistance

added, the sending-end curent attains the theoretical steady state value roughly after 3 seconds.

Although this method of correction does compensate for the dc response, it can introduce errors at

other frequencies. This can be seen from the traces in figure 4.13, which is a close-up view of the first

50 ms of f,rgure 4.72. On this time-scale, the compensated solution deviates significantly from the

theoretical solution, whereas the uncompensated one does not.

A more serious problem with this method is that the addition of the (sometimes) negative resistance

could in many instances result in a non-passive formulation and lead to unstable simulations. Hence,

this method is not recommended.
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4.4.2Dc Gorrection by Adding a Pole and Residue

This section discusses a new approach introduced in the thesis. The known characteristic (an element

of admittance or propagation matrix) is first fitted with a rational polynomial f n"'u (t) as in the

conventional phase domain method. A real pole ao e (0,2n ¡^,"k),k .1 with a suitable residue c6 is

added to it, so that the modified function gives the exact dc value at zero frequency. This modification

increases the order of the rational function by only one and does not affect the high frequency

asymptote. Also, as the cutoff frequency of the additional term is smaller than the lower frtting bound,

this correction is achieved with a very small error to the fitted part.

Figure 4.I4:Magnitude of A(1,1) after and before addition of pole and residue

(4.8 )

Pdeal2nO.S

- 

Actual

Wtturt conecticn
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This method is different from just adding a dc resistance to the phase as it introduces a conection in

each element of Yc and A matrices.The choice of ao (or k in above paragraph) is selected by another

optimization process that minimizes the error between the actual frequency response and that of

/'"0(r). As seen in the frequency response of one of the propagation matrix elements A(1,1) in

figure 4.74, the selection of the pole at either of the frequencies 2n x0.05 r/s or 2rx0.5 rls ,

gives the accurate response at frequencies approaching dc, butthe pole at 2r x0.5 r/s gives the

closest fit over the entire low frequency range. Note that without any correction, the frequency

response curves of figure 4.14 indicate the presence of a steady state error. Figure 4.15 shows the

corresponding time domain simulations for the line cument with lV applied to sending end conductor

"4", and all other terminations short circuited. The steady state error is clearly visible.

When no correction is applied, this eror is unacceptably large -0.2 A(33.2%), whereas when the

correction is applied, there is no error in the steady state response. The pole frequency must be

carefully selected. If it is too small, then the time required to reach steady state becomes large as seen

in figure 4.15 for Ztrx0.05 r/s . This is also seen from figure 4.l4,where the frequency curves for

2nx0.05 r/s begins to deviate from the analytical result at l0-2lFr2.If the pole frequency is too

large, itbegins to interfere with the original fitted result .f '""u (t) as indicated by (a.8). In the above

case, the original function was fitted with a lower frequency bound of 7 Hz so the pole must be at a

frequency less than 1 Hz. Selecting a frequency of 0.5 Hz(2n x0.5 r/s ) gives a more accurate

response that more closely matches the analytical result as seen in figure 4.15. There is some error in

the initial 2 s, with the maximum eror of 0. 13 A occurring at about i s.

The proposed method of adding a pole is caried out after the Vector Fitting approach described in

chapter 2.The Vector Fitting is used to fit the frequency response characteristic with a relatively large

value of f,n of say, 1 Hz. As seen in table 4.4, this can be achieved with a much reduced number of

poles (6 less for A(1,1), 4 less for Yc(1,1)) than a fit to a lower frequency of say l0-3 Hz. Hence the

order of the modified fitted function -f*od (s) is just increased by one (due to the added pole). Hence

the corresponding time domain model has a much reduced number of poles and is thus numerically

more efficient. In addition, it guarantees the exact value for the dc component and is less likely to
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A minor drawback is that although the dc error is eliminated, the resultant propagation function at

very large frequency deviates marginally from zero, which is contrary to that fact that propagation

firnction approaches to zero as frequency tends to infinity (equation (2.7b) tends to zero as s -+ jco ) .

To corect this small error, the terms c,, 's in equation (4.9) are slightly perturbed using another least

squares fitting to taper the high frequency response to zero without altering the correct dc value. The

procedure is briefly described in Appendix G.

As seen from the frequency response plots of (typically) the three elements of the first column of

propagation matrix l(s) in figure (4.16), this approach results in a very good fit over the entire

frequency range, without any increase in the order of the fitted function. The conesponding sending-

end current waveform with phase "A" energized to 1 V and all other terminations short circuited is

shown in figure Ø.f7). The simulation covers a period of l0 s and, in contrast with the uncorrected

formulation, the result from this method closely conforms to the theoretical response obtained by

frequency domain calculations.

Figure (4.18) shows the time domain responses (simulated and theoretical) for a different set of cable

terminations, in which the receiving-ends of all conductors are open-circuited while phases "8" and

"C" are grounded at the sending-end. A I V step is applied to the sending end of phase "4". The

figure shows phase "B" receiving end voltage over a shorter duration (50 ms). The close agreement

with the theoretical response attests to the fact that accurate reproduction of higher frequency

phenomena has not been compromised by the dc correction.

For the cable system shown in figure 4.9 , the proposed change in functional form results in a perfect

dc fit of the actual frequency response characteristic. The orders of the fitted transfer functions for

typical parameters, say A(1,1) and Yc(1,1) are both 16. This is the same number as that required for a

fitting with a lower frequency of 1 Hz (see table 4.4), which has been shown to give a poor dc
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One of the difficulties in a conventional Vector-Fitting approach is that it is difficult to guarantee that

the curve-f,rtted model is always passive. A non-passive formulation for the transmission line or cable

can sometimes lead to an unstable simulation. An unanticipated advantage of this method is that the

Modified Functional Form method minimizes the likelihood of passivity violations' The effect of

Modified Functional Form method on passivity is discussed in detail in chapter 5 and hence is not

repeated here.

4.5 Application Exampte- Voltage Sourced HVDC with Underground Cables

As an example for the use of the method in a typical application, voltage sourced converter (VSC)

based medium voltage DC transmission system example shown in figure 4.L9lTll is considered. The

converter consists of six pulse VSC rated at 110 kV, 75 MW transmitting power to the receiving-end

through the 100 km underground cable system shown in figure 4.20. This case also demonstrates the

need for good time domain models - here the cable connects into a highly non-linear system (the

fryDC converter and the ac network reflected through it) and so frequency domain solutions are not

possible.

Figure 4.19: VSC Transmission System
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Figure 4.20: Cable System: Two coaxial cable system

Radius of inner solid conductor (m)

Dc resistance (O/ km)
Outer radius of first insulation (m)

Relative permittivity of first insulation

Outer radius of sheath (m)

Figure 4.21 compares the dc line current through the underground cable with and without correction

between 0 to 0.5 seconds indicating that the functional form method does not alter the high frequency

response of the original curve fitted model. Figure 4.22 shows the voltage difference between the two

ends of the cable system for a much longer duration (50 s). With the functional form method, the

steady-state voltage drop and the dc current observed are 4.1kV and 0.495 kA respectively. This is in

exact agreement with the theoretical dc resistance of 8.3 O (note: 4.1kV/0.494 kA :8.3 O).

Relative permittivity of second insulation

Outer radius of second insulator (m)

Table 4.5: Data for the cable

0.0104

0.0830

0.016

4.1

0.0205

2.3

0.0215
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Without any conection, the voltage difference is 1.45 kV for the line current of 0.52 kA, which

implies an incorrect dc resistance of 2.84 O. The above simulations demonstrate that the proposed dc

co*ection method yields a model that is applicable over the full frequency range of interest and is

thus useful for studying the steady-state and low frequency dynamics as well as the high frequency

transient and harmonic behavior of the dc link.

4.6 Ghapter Summary

The traditional approach to modelling cables and transmission lines in the time domain using fitted

admittance and propagation characteristics can result in significant errors at frequencies approaching

dc. Although some improvements can be made by reducing the lower bound of the frtting frequency

to make the dc fitting more accurate, this usually results in an increase in the order of the fitted

transfer functions. Alternative approaches which modiff the form of the implemented transfer

function, either by adding a low frequency pole or by reformulation in a form that permits direct

specification of the dc values, were shown to result in accurate simulations over the entire frequency

range from dc to higher frequencies. These two methods were shown to be more accurate and

potentially more stable in comparison with a simplified treatment of adding a corrective series

resistance in each phase. In particular, the second of these two methods is especially easy to

implement and is recommended for the modelling of IIVDC transmission systems in which faithful

reproduction of the very low frequency behavior is just as important as high frequency behavior'
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Robust Passivity Enforcement Scheme for Multi-Conductor

Transmission Lines and Cables

5.1 lntroduction

Passivity of an electrical system is an important aspect in determining its stability. The physical

meaning of passivity with regard to electrical circuits is that passive networks always absorb real

power and thus the total energy delivered to the network is positive [13], [4]. Figure 5.1 shows a

single-port passive electrical network and v(t) and i(t) are the input voltage and current to the network

respectively..

Ghapter 5

v(r) 
1

The total energy delivered to the network is

T

4 = þ(,)t(t)dt

Figure 5.1: Passive Electrical Network

Passive

Network
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For any given voltage v(t), passive circuit requires that the total energy delivered must be non-

negative. i.e.

Ë>0 ,vz>0

Using Parseval's theorem [4], the equation (5.1) can be expressed in frequency domain as in (5.3)

.ót-
6 =; )rt (at)t (atþot

r@

= ; Jv (at)r (at)tt (atþat

=*þ'{na )ft@)laat

where, f (r) is the admittance of the electrical network and the condition for passivity is that

real(Y(ø)) is positive real for all at l4l. For multi-conductor systems with symmetric admittance

matrix, the corresponding condition becomes V )": )" is an eigenvalue of me( (a)), ), > 0 . An

equivalent condition [50] used later in this section 5.2,that also applies to non-symmetric matrices is

that V )":)"is aneigenvalue of U(r)=y(a)+Y(a)" ,).>0 forall a.

The passivity related to transmission line (TL) models based on method of characteristics is an

ongoing research topic. The physical transmission line, by necessity must always be passive, i.e.,

regardless of its terminations, the line itself cannot generate active power at any frequency. However

one of the maj or problems of the TL models based on method of characteristics is that the curve-fìtted

resultant model of the (passive) transmission line cannot be guaranteed to be always passive.

Depending on its terminating connections, a non-passive transmission line model may lead to

incorrect, unstable simulations.

9l

(s.2 )

(5.3 )



To compensate for this error, it is necessary to modiff the parameters of the curve-fitted transmission

line model with a passivity correction algorithm. In general, passivity correction algorithms based on

nonlinear optimization can be computationally expensive [56]. Alternatively, algorithms can be

formulated as a linear constrained least square problem 1471, 1621, 1541, 1631, [52]. However the

above methods can only be successfully applied, if the passivity violations are very small.

The development of a passivity enforcement method for delay based multi-conductor transmission

line models is an ongoing research topic and recent advancements can be found in [60], [63], [65].

The above methods assume that the passivity violations are small and are applicable to modal-domain

transmission line formulations (i.e. those that use constant transformation matrices for converting

between the phase and modal domains). These models are often adequate for vertically symmetrical

overhead transmission lines, where the assumption of constancy of the transformation matrix is fairly

accurate, but they are not so effective for asymmetrical overhead transmission line configurations and

arbitrary cable arrangements, where these matrices show a high amount of frequency dependence.

Although time-domain models simulate the frequency range from a few Hertz to about several

hundreds of kilohertz, the curve fitting algorithms are usually unable to obtain a good asymptotic fit

at very low frequency. An observed problem with this poor fitting at low frequencies is the presence

of large passivity violations. The measure of the degree of passivity violation is discussed in detail

later in section 5.2 and is the degree of negative excursions in the frequency response plot of the

eigenvalues of a certain Hermitian matrix which is derived from the admittance and propagation

matrices of the cable system.

As discussed in Chapter 4, an alternate formulation of the curve-fitting problem, referred to as the

Modified Functional Form method, guarantees an asymptotic fit of the frequency domain

characteristic of the transmission line as the frequency approaches zero, while maintaining a good fit

over the entire frequency spectrum. As will be shown later in this chapter, an additional benefit of

this approach, is that the accurate fitting at low frequency reduces the constraints on the curve-fitting

problem and results in formulations which are passive or have only small passivity violations. This

favorable properly is exploited in designing a robust algorithm for passivity enforcement. As the

above reformulation reduces the severity of the passivity violations, the reformulated problem

becomes amenable to solution using perturbation methods.
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Based on the above observation, a new algorithm is proposed to ensure passivity in the transmission

Iine model. Unlike earlier approaches [60], [63], [65] the proposed method is not restricted to

constant transformation matrix based models, but can be applied to any phase domain model. This

method first reformulates the form of the transmission line's admittances and propagation functions to

be fitted using the Modified Functional Form. With this approach, passivity violations are less likely

and when present, they are minor. Next, any (small) remaining passivity violations are removed

using a least-squares fitting to introduce corrective perturbations to the elements of the characteristic

admittance and propagation matrices.

This approach is demonstrated with examples of underground dc and ac cable systems, and validated

by comparison with frequency domain solutions.

5.2 Passivity criteria for multi-conductor transmission lines

Treating the finite length transmission line as a multi-port electrical network, passivity is guaranteed,

if and only if its transfer admittance Í(s) is positive real for every value of frequency ar (with

s = jo ) t591. The transfer admittance Í("), relating sending and receiving-end voltages to the

currents, is shown below in (5.4a) for the TL representation in figure (2.9). Using (5.4a), (2.8a) and

(2.8b), Í(s) is readily obtained as a function of A a¡d I'c as shown in (5.ab).

[Í]= 
olr;.1

i :l(r - A')'(I + A\Y" (I - A')'(-24Y" f' 
L t¡- A2)1(-zA)y, (I - A\-t(I +,a'¡r")
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Note that Í , A and Yc are functions of frequency, s = ja and for simplicity, "s" term is removed in

(5.4a) and (5.4b). The necessary and sufficient conditions for the transfer admittance matrix Í(s)

to be positive real (and hence, for the transmission line model to be passive) are [60],

(a) i(s) is analytic Vs:Re(sþO

(¿) it"i = Í(").

(c) ø(s)= i(')*(r1"¡-)' (Hermitian Matrrx)

is positive definite

As complex, poles and residues always appear in conjugate pairs, the first two conditions stated above

are automatically fulfilled [59]. The satisfaction of the third condition requires all eigenvalues of the

matrix ø (t) with s = jØ , to be positive at every frequency ar '

As an example, consider the 100 km tr¡¡in HVDC cable depicted in figure 5.2 with data as shown in

Table 5.1. The system has four conductors (core and sheath for each cable), and hence has 4x4

dimensioned shunt admittance I(s) and series impedance Z(s) matrices.

(s.5 )

Figure 5.2: Cable System: Two coaxial cable svstem
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Radius of inner solid conductor (m) 0.0104

Dc resistance (O/ km) 0.0830

Outer radius of first insulation (m) 0.016

Relative permittivity of first insulation 4.I
Outer radius of sheath (m) 0.0205

Relative permittivity of second insulation 2.3

Outer radius of second insulation (m) 0.0215

Table 5.1: Cable data

The matrices fc(s) ,A(t) and the 8 x 8 dimensioned Í(s) A f¡(t) are accordingly calculated

using equations (2.26), (2.27), (5.4) and (5.5c) respectively. Figure 5.3 shows the plot of the 8

eigenvalues of H(s) as functions of frequency. As all eigenvalues are positive at every frequency,

the passivity condition is satisfied. This confirms that the frequency domain formulation is passive for

the actual cable system in Figure (5.2). It should be from the physical reasoning (i.e. the cable should

not be able to produce energy).

1ot

1oo

lo'

10-

roo

10'

10-

Figure 5.3: Eigenvalues of ø(t)
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5.3 ldentification of passivity violated regions

The accurate identification of the passivity violated regions is a crucial requirement for any passivity

enforcement scheme. Some earlier work [54], [51] has reported analytical approaches based on state

variable formulation and Hamiltonian matrices to determine the passivity violating regions. However

these approaches are strictly restricted to linear systems without transportation lag and thus are not

directly applicable to transmission lines or cables. More recent work [59], [60] has extended such

analysis to transmission lines (detailed discussion can be found in Appendix I). However theses

techniques require significant computational effort and frequency sampling as for the frequency

sweep method discussed in section 5.3.2.

Alternatively, the frequency sweep method is used to identiff passivity violations, in which passivity

is verified by carefully evaluating all eigenvalues of ø(s) by stepping through the entire frequency

range.

5.3.1 State var¡able approach

This section is prepared based on passivity identif,rcation method for a single conductor line found in

the reference [31]. In state variable technique, first the fïtted rational functions of transmission lines

parameters t,n(") and Ic(s) ) are expressed in state variable form. As an example, matrix fc(s) in

QJÐ can be expressed in the state variable form as in (5.6).

*(r)= Ax(t)+ Bu(t)

Y(t)= cx(t)+ Du(t)

The diagonal square matrix A (dimension N) contains poles of the transfer function as diagonal

elements and the row vector C (dimension N) contains residues. B is a column vector of ones
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(dimension N) and the scalar D is the constant term (I-in (2.12)). N is the order of the function.

Hence the transmission line equations ((2.8a) and (2.8b)) can be expressed in the state variable form

as in (5.7).

x*(,) = ,tx(t)+ Px(t -2t)+ av(t)

i(t) = cx(t)+ gx(t - r)+ gx(t -zr)

In the above expression, unknown matrices K,Á,P,B,C,0 and Qare derived in terms of

matrices in state variable formulation for Yc(s) and A(s). x,r,v,i are a vector containing state

variables, time delay, vectors of voltages and currents at both terminals of TL respectively. Equation

(5.7) is an Abstract Delay Differential Equation (ADDE). The passivity criteria for the ADDE can be

derived based on the fulfillment of the third condition for passivity in (5.5) and the following

Theorem states,

Theorem I

The dynamic system stated in (5.7) is passive if and only if there do not exist any purely imaginary

values for "s" that satisff the following problem.

srf (s) = ø (s)6 (s)

The unknown matrices (f,ø(s)) in (5.8) are derived from the matrices in state variable equation

(5.7). A straightforward solution to (5.S) is not available in literature. However it can be solved

indirectly by first discretizing in frequency domain and using the reformulated form shown in (5.9),

where so = j2nfo,k =l: N . i/is the number of frequency samples.

(s.7 )

o (s, )16 (so ) = ä("0 ) E (",)

(s.8 )
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Equation (5.9) has the form same as generalized eigenvalue formula and can be solved using standard

techniques. o(so),((so) are the generalized eigenvalues (generally complex number) and

eigenvector of matrix // ("0 ) .The equation (5.9) is solved for N frequency samples'

In each frequency sample, the generalized eigenvalues of H(tr) are computed using a standard

technique and possible existence of pure imaginary eigenvalues are checked. It can be readily seen

that pure imaginary eigenvalues (if they exist), satisfi the equation (5 . S) at s o (= jLn f o) . It can be

also shown that ä (s) is a function of ei" and ei'z' . The mahix ã (s) and hence the eigenvalues

' ?L\ (i.e. The eigenvalue solution at frequency so isof H(s) are periodic with period"ol= , ,
identical to the solution atso * so ).The pure imaginary eigenvalues of the equation (5.9) are inspected

(if exist, satisff (5.8)), taking N number of frequency samples for the range^s e (0,s0), so = j2tf* '

ln practice, it may not be able to identifu exact location of the eigenvalues with zero real part, since

finite number of frequency points are considered for computation. The strategy used in [59] is that the

eigenvalues with diminishing real values are checked for each frequency between zero and ? ' tî

such eigenvlaue at frequency 

^ 
=Tis found then, equati on (2.14) is linearized over fr and using

TN

an iterative technique, a close approximation for the frequencY fo at which eigenvalue becomes

purely imaginary is found.

In conclusion, the state variable approach to find passivity violations for transmission line models is

to solve the equation stated in (5.8). Since the equation (5.8) can not be solved directly, an indirect

method is employed, where frequency sampling is required and solution is obtained by solving via

generalized eigenvalue problem.

Compared with the frequency sweep method (discussed

advantage that the frequency region (where passivity

100

ln

1S

the next section), the above method has an

checked) is limited to a finite frequency
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For 30-km single-conductor overhead line the maximum frequency is

The above method can only be applied in situations where the transmission line can be modeled in the

modal domain with constant transformation matrices for converting between mode and phase

quantities. However, such methods are not easily applicable to more detailed transmission line and

cable models which consider frequency dependency of transformation matrices or directly model the

transmission line in the phase domain as in the case for the Universal Line Model (ULM).

One purported advantage of this method is that it gives a formula for the frequency boundaries at

which passivity violations occur. This is considered superior to other approach (discussed in next

section) that uses frequency sampling and checks for passivity violations. However in reality, the

above formula also requires a numerical solution as the straightforward analytical solution is not

available. Usually this numerical method requires searching through the frequency range to see

whether there are pure imaginary values for "s" that satisff the equation (5.8). Hence it is

theoretically possible for this method also to miss the passivity violations on account of having large

frequency step. So one might as well use the frequency scan method described below, which also

have the same drawback.

5.3.2 Frequency sweep method

This section describes the traditional method (Frequency sweep method) [47] used to identify

passivity violations. ln this method, the passivity is verified by carefully evaluating all eigenvalues of

//(s) by stepping through the entire frequency range (0 Hzto a very large frequency, say, 10 MHz)

in small steps. One possible drawback of this method is that a negative eigenvalue may be missed due

to the coarseness of the frequency step used or may lie beyond the maximum searched frequency.

However, noting that eigenvalues are smooth functions of frequency, this drawback has been

addressed by conducting a careful inspection ofthe eigenvalue plot up to a frequency well in excess

of the simulation bandwidth. Any suspicious frequency range (where an eigenvalue approaches very
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low values) is flagged for a more refined search and subsequently scanned by conducting a localized

frequency sweep with a much smaller frequency step.

5.4 Proposed Passivity Enforcement Scheme

If the f,rtted formulation shows passivity violation, its parameters can be perturbed so as to ensure

positive eigenvalues for H(s). A nonlinear optimization algorithm can be used, which penalizes

negative eigenvalue excursions, however such an algorithm can be numerically inefficient and

susceptible to non-convergence. Alternatively a computationally efficient linear constrained least

squares algorithm can be used to perturb the fitted parameters to achieve passivity. However, such

perturbation methods are only meaningful when the passivity violation is small. For large violations,

the perturbed parameters only provide a compromise solution in which the accuracy of the frequency

response fitting has to be sacrificed in order to achieve passivity.

The relatively large magnitude negative eigenvalues in figure 5.5 prohibit the use of such perturbation

methods. This problem can be overcome by using the Modified Functional Form method described

in Chapter 4 to obtain accurate low frequency response. The new form can guarantee asymptotically

exact fitting at very low frequency, a region which is often seen to be problematic for passivity

enforcement when modeling many cable conf,rgurations. The improvement in f,rtting at very low

frequencies has an additional bonus- it is seen to result in significantly smaller violations (i.e. it gives

negative eigenvalues of small magnitudes ); and in many instances, no passivity violations at all .

In light of the discussion in the previous paragraph, a two-step passivity enforcement procedure is

proposed. In the first step, the system matrix elements are fitted using the more accurate modified

form of the fitting function, removing any large passivity violations. The second step tweaks the fitted

parameters using perlurbation methods to remove any remaining small passivity violations.
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5.5 Eliminating large passivity violations using the Modified Functional Form

method

As discussed in Chapter 4, a modification is introduced to the to the curve fitting procedure in which

the admittance and propagation transfer functions (equations (2.26) and (2.27) in Chapter 2) are

reformulated so that the dc response is factored out as an additive constant that can be directly

selected. The modified equations are restated in (5.10) and (5.11), it is readily seen that the Modified

Functional Form method gives exact value (ddc,theor¡t¡cat) atzero hertz, hence guaranteeing correct dc

response in time domain. The details of the Modified Functional Form method were explained in

Chapter 4.

M

Y",,,^oo (")= I3 td,t",th"o,t¡,ot
m=l S - (1,

Also, as mentioned in the preceding section, another benefit of this modified functional form is that, it

eliminates the large passivity violations typically present at low frequencies. As an example, consider

the same cable configuration shown in figure 5.2. Figure 5.6 shows frequency response plots of the

first (typical) eigenvalue of the Hermitian matrix for the two different fitting approaches (the original

uncompensated formulation, and with the Modified Functional Form method); superimposed on the

theoretical frequency response (obtained from the original matrices without fitting). The eigenvalue

plot corresponding to the uncompensated method is in poor agreement with the theoretical value,

particularly at frequencies below 10-r Hz, and is in fact the attainment of negative values indicate

passivity violation. Conversely, the eigenvalue is uniformly positive with the use of the proposed

modified functional form. Figure 5.7 shows the full set of eigenvalues of H(s) when the modified

functional form method is applied. Every eigenvalue is always positive, thereby establishing

passivity. Note that compared with figure 5.3, some very small eigenvalues in figure 5.7 show slight

deviation in the frequency range [1-100 Hz] due to small error introduced by curve-fitting. However
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Figure 5.7: Eigenvalues of ø(r) with Modified Functional Form method

Note that rational fitting was implemented in order to construct a time-domain model for the cable

system. To validate the time-domain model, a simulation study is conducted by energizing the cable

configuration in figure 5.8 with a unit step to one conductor. Simulations are conducted on models

obtained by using the conventional fitting approach, as well as the proposed modified fitting

approach. For comparison, a theoretical plot calculated using a numerical inverse Laplace transform

of the frequency domain formulation is also included. The plot of sending-end current shown in

figure 5.9 indicates that the formulation without correction is non-passive and in this case causes the

simulation to be unstable. On the other hand the time-domain simulation using the proposed method

accurately tracks the theoretical solution.
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5.5.1 Selection of shunt conductance value

ln many transmission line models, the shunt conductance per unit length is unknown and often

assumed to be zero. The conductance value selected can sometimes affect the performance of the

passivity algorithm adversely. The appropriate value of the shunt conductance can be selected by

experimentally until a satisfactory match between theoretical and fitted values (in the manner of

figure 5.5) is attained to reduce likelihood of passivity violations. However for a large number of

cable systems, it is experienced is that a shunt conductance of 3x10-e S/m (still an extremely small

value, which distorts the response at higher frequency only insignificantly), is adequate to obtain a

non-passive formulation.

Although the above discussion shows that proposed modified functional form method is likely to

result in a passive fitting, it does not guarantee passivity. However, as the fitting at very low

frequencies is improved due to the guarantee of an exact fit at 0 Hz, passivity violations with this

method are rare and if present, usually small. In such cases, the following section describes the

procedure used to eliminate these small passivity violations.

5.6 Elimination of small pass¡v¡ty violations us¡ng perturbation method

The small negative eigenvalues at high frequencies are forced to be positive by slightly perturbing the

residues corresponding to the elements of either characteristic admittance matrix (Yc) or the

propagation matrix A(s) without significantly compromising the accuracy of the fitted function.

Perturbing only the diagonal elements of such matrices is suff,rcient for moving the small negative

eigenvalues into the positive range.

In principle, all the elements of the matrix should be perturbed. However, as any remaining passivity

violations are small, perturbing only the diagonal elements of such matrices is sufficient for moving

the small negative eigenvalues into the positive range. This greatly reduces the computational burden

of the Constrained Least Square Fitting Procedure. As an example, for a three-conductor system, the

number of variables required for diagonal perturbation is 3N (as opposed to 9N, with all element

perturbation), where N is the order of the function. The dimensions of coefficient matrices in
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equations (5.12)-(5.17), (5.20), (5.21) are significantly reduced. The perturbation of diagonal

elements leads to fast evolution of CLS method.

5.6.1 tmplementation us¡ng perturbat¡on of propagat¡on matrix, A(s)

The following paragraphs describe the passivity enforcement method based on perlurbation of the

diagonal entries of the propagation function A(s).

The first step is to linearize equation (5.10) to construct a relationship between increments in the

diagonal elements of A(s), for any given frequ ency fu (s = j2tr fo) and increments of residues,

c's.
nl

M(Í) = K,(f)LC

In (5.12), AC is a vector (dimension (N.M) )containing residue increments corresponding to

the diagonal elements of the matrix A(fo) u"d M(fr) is avector (dimension M) containing

incremenrs of diagonal entries of A(fo) . The integer t = l't, is the order of each of the
¡=l

elements of A(ft), that is, the highest order of the Laplace variable s in the denominator, as seen in

equation (5.10); and M is thetotal number of conductors in the line. The complexmatrix Kr("fo)

of dimensio" (M r(¡/.ø)) is the matrix of linearized coefficients, with its entries as derived in

Appendix J. For simplicity, the term fo is dropped in equations to follow. Using equations (5.4b) and

(5.5c), a linearized relationship relating increments of i(fo) and U (fo)to M(fr) can also

be obtained as:

LÍ = KzM

(s.t2 )
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LH = K3KyLA= K3LY

where, K, and K, arematrices with dimensions (Or'xM) and (Or'x4Mz) respectively.

The vectors Ài and A,H are generated by stacking the columns of the incremental matrices

i (fr) ""d H (fo) respectively. A linearized relationship can also be derived between the

eigenvalue increments À2 of the matri * H (fr), and the matrix H (fr) itself as shown in 5. 15,

(further details can be found in Appendix J)

L)" = KqLH

Finally by combining equations (5.12), (5.13), (5.14) and (5.15), we get,

AJ" = MzLC

Where, L)" isavectorof dimension 2M and M2 isamatrixof dimension (ZlrtxN'M).

Equation 5.16 depicts the relationship between increments in eigenvalues of Hermitian matrix

H (fr) to residues of the propagation function for a single frequency f .

Equation (5.16) is now rewritten for N sample frequency points (fo,k:l...N) used in the

rational function approximationof A(fr), and stacked into a single equation of the form (5.17).

( s.14 )

Af = MÂC

( s.15 )

( s.16 )
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Here, 
^f 

is a (ZU .ws) dimensioned vector containing eigenvalue increments (nl)

corresponding to Ns frequency samples and ú is a (2M.Ns x N 'M) matrixderived by stacking

iy's values of Mr. l/s isthenumberoffrequencysamples.

ln selecting the -ð/s sample frequency points, the density of sampling is chosen to be higher in the

neighborhood of the passivity violated regions. Also some frequency samples outside the fitting range

are added to make sure that this procedure does not produce new passivity violations in those regions.

For passivity guaranteed formulation, all the eigenvalues of Hermitian matrix H (ft) must be

positive at all frequencies.

Af+f > 0

Also this perturbation should alter the accuracy of the original fitted

the entire frequency range. For a small maximum tolerance á ,

^i"lleQr)"", - 
A(ia)"""' ll. ",r t o

Equations (5.18) and (5.19) represent a linear constrained least square problem and can be solved

using standard techniques [47]. Since the relationship between the eigenvalues of H(ft) and the

residues (",, 'r) of the propagation matrix is non-linear, some iteration may be required.

5.6.2 lmplementation using perturbation of admittance matrix, Xc(s)

( s.18 )

function, only minimally over

An alternative approach to perturbing the propagation matrix, discussed earlier, is to perturb elements

of the admittance matrix Yc(s). This results in equations (5.20) and (5.21) below, which are obtained

by following a similar procedure used to obtain (5.12) and (5.13) earlier on,
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LYc = KèC

LY = KzLYc

R, and k, ur"obtained analogously to K, arnd K2 in the previous sub-section. Analogous to

(5.19) the minimizing function now becomes

*inllr"(r,)'u"o -Y,(¡ø)"''"'ll. ",r t o

5.6.3 Gomment on the usage of Method I (perturbation of ,a(s) ) and Method 2

(perturbation of fc(s) )

Both methods have been successfully tested for several cable examples and found to produce almost

identical waveforms as confirmed by the example in the following section. As seen from equation

(5.4b), Í(s) f.o- which ø(r) is derived, is a linear tunction of fc(s), but is a complicated

non-linear function of ,e(r).Hence the derivation of the coeffîcient matrix in equation (5.21) in

method 2 is significantly easier, compared with (5.13) in method 1. Both methods result in a passive

model for a finite length transmission line, as they both ensure that ø(t) has real positive

eigenvalues. However, in some emtp-type programs (such as PSCADÆMTDC), there is a provision

to set the line-length as infinite. In this situation, the program uses the same model parameters as the

{inite length line, but sets receiving-end quantities V,, and I ^ 
to zero as there are no reflections

fromthereceivingend.Henceequation(2.8a)reduceslo=fç|/oandhencerequiresapassive

fc(s). Method 2 uses perturbation of fc(s) to achieve passivity in the finite length model.
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However, there is a small risk that this could potentially make Íc (s) non-passive. Hence, when the

program allows the possibility for setting the line length to infinity, method 1 is advisable, even

though it requires more computational effort.

5.7 Simulation example

The time domain simulations involving a multiconductor cable system (example from reference

[17]) shown in figure 5.10 are carried out to veriff the validity of the proposed passivity enforcement

method. Figure 5.11 shows the eigenvalues of ø(t) for the original formulation. The original

formulation is characterized by relatively large negative eigenvalues at low frequencies prohibiting

the use of passivity enforcement scheme based on linearization approach. With the Modified

Functional Form method and assuming a conductance of 3x10-esiemens/m, the large negative

eigenvalues are completely removed (see figure 5.12). However as seen in the solid curve in figure

5.13, which is an enlarged view of the circled region of figure 5.i2, one eigenvalue is still slightly

negative (with a minimum value 2xl0-s at 9 lFrz) in the frequency range [7, 11] Hz. Such small

negative eigenvalues can be forced into the positive range by the perturbation method. This corrected

eigenvalue is plotted as the dotted curve in figure 5.13, clearly showing that the negative eigenvalue

plot (solid line) is now moved into the positive region. Note that because the change made is very

small, the response at other frequencies is largely unaffected, as demonstrated next, by comparing the

resultant time domain waveform with a theoretical response.

A short circuit test is carried out for the same cable system to validate the passivity enforcement

scheme. The inner solid conductor of Cable A is energized with a iV voltage step. All other

conductors are connected to ground. With passivity enforcement, the sending-end current is in a

close agreement with the inverse Laplace solution as depicted in f,rgure 5.14. However the original

formulation results in an unstable simulation (see figure 5.15). Table 5.3 shows CPU time comparison

and rms error before and after perturbation for methods I and2.
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Figure 5.10: Cable System: Three coaxial cable system

Radius of inner solid conductor (m)

Dc resistance (O/ km)
Outer radius of first insulation (m)

Relative permittivity of first insulation
Outer radius of sheath (m)
Relative permittivity of second insulation
Outer radius of second insulation (m)

Table 5.2: Cable data

0.0t27

0.034
0.0228
2.85

0.0254
0.436
0.02795
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Figure 5.11: Eigenvalues of ø(t)
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for the original formulation

Figure 5.72:Eigenvalues of ø(t) with Modified Functional Form method
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5.8 Passivity enforcement using state variable approach

It is possible to apply eigenvalue perturbation to the state variable approach described in section

5.3.l.This is done by finding a suitable residue perturbations of characteristic admittance matrix such

that the solution to equation (5.8) does not have any pure imaginary values for "s". This approach is

not described any further as the author did not use the state variable approach. For further details, the

reader is referred to [65].

5.9 Ghapter summary

In this chapter, it is demonstrated that time domain simulation methods for modeling transmission

lines and cables, which are based on fitted transfer functions for admittance and propagation

characteristics, can sometimes result in non-passive formulations. Such formulations have a potential

hazard. For some passive terminations, they can lead to unstable simulations.

A new robust passivity enforcement algorithm is proposed to impose passivity on a non-passive

transmission line model. The proposed, two-step method can be applied to detailed phase domain

models, such as the Universal Line Model [44], which considers the frequency dependency of

transformation matrices. This enforcement algorithm first uses a modified functional form method to

remove large passivity violations, which are usually present at low frequencies. Then a constrained

least squares method is employed to perturb diagonal elements of the propagation matrix (method 1)

or characteristic admittance (method 2) eliminating any small passivity violations.

The accuracy of a time-domain simulation program, using either method, has been thoroughly

validated by direct comparison with a numerical inverse-Laplace transform, applied to a frequency

domain model with linearly terminating networks. An advantage of method 2 (perturbation of

characteristic admittance matrix), compared with method I (perturbation of propagation matrix) is

that the derivation is less complicated. However, for cases where length of the transmission line
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model can be set to infinity, method 1 is recommended, as method 2 has a small risk of introducing

non-passivity into the perturbed characteristic admittance matrix.
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In this Chapter, a summary of the contributions in this thesis is presented and some directions for

future work are proposed. In the course of this thesis, several techniques were proposed to improve

the accuracy and stability of electromagnetic transient simulations in overhead transmission lines and

underground cable systems.

The thesis began by describing the basic theory of single-conductor transmission line modelling and

then extended to multi-conductor modelling methods found in literature such as modal domain

methods, phase domain methods etc. Modal domain methods employ transformation matrices to

decouple transmission line matrices (e.g. Yc(s) and A(s)) in to modes. Some modal domain models

assume constant transformation matrices. This assumption is not valid for highly asymmetrical

overhead line conf,rgurations and for many underground cable systems leading to significant errors in

time domain simulations. Modal domain models based on frequency dependent transformation

matrices are numerically less efficient, since these models require additional convolutions involved

between modal matrices and transformation matrices. Also there are difficulties in approximating

some entries of transformation matrices using rational functions. Phase domain models have been

developed to overcome the above problems. The downsides in direct (basic) phase domain modelling

are difficulties in approximating rational functions and extracting transportation delays for some

entries of phase domain matrices (e.g. phase A(s)). Finally the use of frequency domain methods to

obtain time domain responses was briefly described (Numerical Inverse Laplace Transform method).

This method is traditionally used to validate time domain simulations for transmission line models.

Based on the above observations the thesis made the following contributions.

Conclusions and Recommendations

Chapter 6
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6.1 Contributions towards improvements in accuracy and stability of

transmission lines

6.1.1 New cable model for accurate simulation of coaxial underground cables

The third chapter proposed a new cable modelling method called mesh-domain method to simulate

time-domain transients in underground cables accurately considering frequency dependent effects.

The original phase domain transmission lines equations are convefied into mesh equations using

suitable transformation matrices. A noticeable advantage of this approach is that the resulting

transformation matrix between phase and mesh domains is frequency independent. No additional

convolutions are required as for the case of frequency dependent transformation matrices. These

convolutions add complexity in TL modelling and the resulting model may be computationally

expensive. Another benefit of mesh domain modeling is that mesh currents and voltages in co-axial

cables are naturally decoupled at high frequencies hence the propagation function shows relatively

smooth behaviour. Hence the rational function approximation and transportation delay estimation are

relatively easier than in basic phase domain methods. Finally the mesh domain model was validated

by comparing time domain simulation results with numerical inverse Laplace transform method for

several cable examples.

6.1.2 lmprovement in accuracy of TL models at low frequencies

The fourth chapter introduced several techniques to increase accuracy at very low frequencies for

existing TL models. The traditional TL modelling techniques using fitted admittance and propagation

characteristics can result in significant errors at frequencies approaching dc. This is a crucial problem

in modelling HVDC overhead lines and underground cable systems.

Methods traditionally used to address this problem include reducing the lower bound for fitting range

or adding dc resistances to each phase. These approaches were shown to have serious drawbacks. In

that they either required a significant increase in the fitting order or caused simulation errors at larger

frequencies. Also there was no guarantee of passivity.
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Two alternative approaches were introduced in this thesis to obtain accurate dc response by

modiffing the form of the fitted function. ln the first approach, a suitable low frequency pole is added

to the existing fitted function. The pole is carefully selected such that the resulting function gives

correct dc value (at zero Hertz) and the other high frequency response is changed only insignificantly.

In the second approach (Modified Functional Form method), the functional form of the fitted function

is reformulated so that the modified function gives theoretical dc values at zero Hertz. The accuracy

of time domain simulations are confirmed using numerical inverse Laplace transform over the entire

frequency range from dc to higher frequencies. One important benefit of the Modified Functional

Form method is that the resulting TL model is more likely to be passive; ensuring stable time domain

simulations. The modified functional form method is recommended for the modelling of HVDC

transmission systems in which correct reproduction of the very low frequency behavior is just as

important as high frequency behavior.

ln the early stages of implementing correction algorithms to obtain accurate response at low

frequencies, one of the major difficulties encountered was that TL model sometimes gave unstable

time domain simulations. This problem was later identified as, a result of non-passive formulation of

TL models.

6.1.3 Passivity enforcement scheme for multi-conductor transmission line models

The fifth Chapter demonstrated that the conventional approach to modelling cables and transmission

lines in the time domain using fitted admittance and propagation characteristics can result in non-

passive TL mode. The non-passive model may lead to unstable time domain simulations depending

on the terminal conditions.

The existence of negative eigenvalues of a certain matrix (H(s) derived form fitted parameters such as

A(s) and Yc(s)) indicates passivity violations of a TL model. A traditionally used method called

frequency s\¡/eep method was used to identifu passivity violations in a TL model. There are few

drawbacks related to the frequency sweep method such as possible missing negative eigenvalues

between frequency samples and also beyond the maximum frequency used for frequency sweep
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method. This problem can be overcome by allocating more frequency samples where eigenvalues

approaches zero and by selecting a maximum frequency (e.g. 10 MHz) with the hope that negative

eigenvalues are not present beyond that frequency. Once the passivity violations of a TL model are

identified the next step is to enforce passivity.

A two-step robust passivity enforcement scheme for multi-conductor transmission line was presented

to ensure passive TL model. Unlike traditional passivity correction algorithms, the proposed method

can be applied to detailed phase domain models, which consider frequency dependency of

transformation matrices.

In the first stage of the enforcement algorithm, the Modified Functional Form method with suitable

conductance is used. As discussed earlier, this method not only improves accuracy at low frequencies

but also removes large passivity violations usually present at these low frequencies. The value of the

conductance can be selected by some experimentation; however, for most cable configurations it was

observed that the conductance value of 3x10-e S/m eliminates large passivity violations. Then

constrained least squares method was employed to perturb diagonal elements of the propagation

matrix or characteristic admittance to remove any remaining small passivity violations. As before the

resultant model was validated for accuracy by comparing the simulated TD response with the

numerical inverse Laplace transform method.
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6.2 Directions for future research

6.2.1 ldentifying exact locations of passivity violations without frequency sampling

An alternative method based on state variable approach can be used to identifu passivity violations for

delay free systems. In this method, the exact locations of passivity violations are analytically

calculated and hence this technique does not require frequency sampling as for frequency sweep

method. An extension of this method to delay based systems such as transmission line models can be

found in recent literature work. The above methods can be used to check passivity for more simplified

cable models (e.g. modal domain models which uses constant transformation matrices to convert

phase to modal quantities), but share the drawback of frequency sweep method such as requirement

of frequency sampling. Future research may need to enhance the above passivity identification

method to identifr exact locations of passivity violations (which is a critical requirement for a

successful passivity enforcement scheme as discussed in the next paragraph) for detailed TL models

such as ULM without frequency sampling.

6.2.2 Passivity enforcement scheme for detailed models based on state var¡able

approach

The alternative passivity identification method based on state variable approach has been extended

recently to enforce passivity for multi-conductor transmission line models. However such methods

are limited to modal TL models which use constant transformation matrices to convert phase to modal

quantities and also need signif,rcant computational effort and frequency sampling as for the frequency

sweep method.

Future research work may require to further enhance the above alternative passivity enforcement

scheme to ensure global passivity without frequency sampling for detailed cable models such as

Universal Line Model (ULM).
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This section summarizes the modal domain equations for transmission lines [5], [69]. Consider n-

conductor transmission line having length /.

Appendix A

Modal Domain Equations

Figure 4.1: Voltages and currents at sending-end and receiving-end of a TL

As discussed in Chapter 2, the frequency domain equations for the transmission line are,

lr. lt

I.=Y"V.-A(Y,V:+Io)

Io =Y,Vo- A(Y"V,+ 1,,)

Suffixes 'm' and 'k' denote receiving-end and sending-end

modal to phase involves transformation matrices [5], [69].

transformation matrices are,

f phor" = EtI^o¿a

respectively. The transformation from

The current (,E,) and voltage (¿',,)

(A.1)

(4.2)
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Vph^, = ErV^odot

It can be shown that

n, =(E/)-'

The useful transformations between modal and phase are summarized in the following table.

Modal to phase

It = EtIt'
I^= E,I^''

V, = ErV,,^

Vt, = EvVt'

A= E,A,8,,
Y" = E,Y"^ E,'

(A.4)

Note that the superscript letter 'm' denotes modal. With above conversions, the transmission line

equations (4.1) and (4.2) in modal domain can be written as,

Phase to modal

Io' = Er'Io

I r' = Er' r,,,

Vr' = E,'V^

Vo' = E,'Vo

A, = EVT AEI

Y"^ = Er'\En

I rn' = Y"'Vo,' - A^ (Y"'Vk'' * Io")

(A.5)

I o'' = Y"^Vo' - A^ (Y"'Vr' + I.')
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This purpose of this appendix is to summarize the impedance formulae used in cable parameter

calculations. The impedances of underground cables are basically functions of first and second kind

modified Bessel functions. Alternatively accurate, robust and numerically effTcient approximation

formulae developed by Prof. Wedephol ll7l are widely used in transmission line parameter

calculations.

Gable lmpedances and Admittances

Appendix B

(1) Internal impedance of solid conductor

The skin effect imped ance Z,o,ou,r,(t) of the inner solid conductor is expressed as a division of two

first kind modified Bessel functions.

Zcondu"to,(,)=#ffi

where,

p : resistivity of the conductor (Om)

m: reciprocal of complex depth of penetration

Ert'-l p

p=permeability of the conductor (W-)
r : radius of the conductor (m)

In the standard notation , I ^(Z) 
represents the first kind modified

argument "2". Similarly, in the text to follow, K,(Z) denotes
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Bessel function with order "n" and

the second kind modified Bessel



function with order "n" and argument "2". The

impedance (atm) is given by 1171,

z,odu,to, (r) : Pm cotÏ!l:-T 7 mr) *
¿Er

(2) Impedance due to the time varying magnetic field in the ith insulation layer [l7],

z n,uto,n,(r)=ffbg"tl)

approximation formula for

0.3565p

where, for the iü insulation layer

tri : magnetic permeability (rvm).

ri : inner radius (m) .

ri+l : outer radius (m).

7Tr'

conductor internal

(3) Inner sheath internal impedance

The surface impedance of the inner sheath is a function of first and second kind modified Bessel

functions. It is the impedance related to the voltage difference on the inner surface of the sheath per

unit current return through the inner conductor.

(8.2)

zi,n", _,h"oth(r) = ffilrr(mr,) 
x,(*r,*,)+ Ko(mr,) Ir(*r,.,)]

(8.3)
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where, for the ith cylindrical sheath

D - Ir(mr,*r)Kr(mr,) - Ir(mr,)Kr(mr,*r)

p: resistivity of the sheath(A.m)

4 : inner radiur (*)
4*,: outer radius (m)

The approximate formula developed for inner sheath impedance [17] is,

2i,,", ,h"oth@)= lm coth(m|)-- ¿E4

where, L. = r,*,, - r,

(4) Sheath mutual impedance

This impedance is equal to the voltage drop outer surface of the sheath per unit curent returning

through the inner conductor or vice versa. The exact Bessel function solution and the approximate

formula for the sheath mutual impedance are ll7l,

Znr,(r, + r,*r)

Z sheath 
-nutuat 

(') =

Zshearr, mutuar @):-# -cosech(mÄ)' ft(l +rr+r )

2ttr,r,*rD

(8.5)

(5) Outer sheath impedance
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This is given as the voltage drop along the outer surface ofthe sheath as the current returns through

the outer conductor. The Bessel function solution and the approximate formula are given by,

z ou t e r _s he a t h (r) = ffilr, 
(m r, *r) K, (mr,) + K o (m r, *r) I, (*r,)l

Zouter-sheath @): 
fficoth(ma)+ ñfu

(6) The admittance per unit length between two conducting layers,

Y,(')=c,*JE+L'/i\*t -"''t"t"h)

where, for the ith insulation layer,

G¡ : conductivity (S)

€¡ : permittivity (F/m)

f¡a¡ : out€f radius (m)

ri : inner radius (m)

(8.8)

(7) Mutual earth return impedance

(B.e)

(8.10)
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The analytical formulae for self and mutual

Pollaczek 1251,l2l. The mutual earth return

Zearth-nutuat(') =

J
*p(-(¡ * y,)J" *,rf 

)

pm'
2n

l"l*

earth impedances for buried cables were first derived by

impedance between cables i and k is 1271,

where,

d'+m'

Ko(mD) +

Q_ùo_l

x = horizontal distance between cable i and k (m)

!¡,lr = åurried depths of cable i and k respectively (m)

d : direct distance between cables i and k (m)

D

:J*' *(y,- y)'
= distance between cable i and image of cable k (m)

p

p

m

:J*' *(y,* y)'
: resistivity of earth (O.*)

= permeability of eartn(n tm)
: reciprocal of complex depth of penitration

jøp
p

(B.11)

The direct evaluation of formula (B.ll) requíres computation of Bessel functions using standard

methods and the integral term using a numerical technique 1421, 1581. A corresponding approximate

formula for mutual earth return impedance developed by Wedepohl and Wilcox is [7],
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z ea,h _ nw,uar (,) = #l- ^ 
t "(ry). o t - ryf

where,

/ = Euler's constant

L : y u-ty,

d : direct distance between cables i and k (m)

Another useful approximate formula developed by Saad, Caba and Ciroax is [35],

z 
e a, h 

- 
mu t u a ! (r) = #l-, (m d) + T#)

where,

x = horizontal distance between cable i and k (m)

The self earth return impedance can be easily derived by substituting y u= !¡ and

x = r (outer radius of cabte) in the above mutual impedance formulae.

(8.12)

(8.r2)
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As discussed in Chapter 2, rational function approximation of characteristic admittance and

propagation function is an essential step in the time domain (TD) modelling. The propagation

function (or entries of matrix A) can not be directly approximated with low order rational functions.

Instead, time delay is extracted from the propagation function A(ø)Aefore approximation (curve-

fTtting), so that the rest of the function (after extraction,A,,n(r) I can be fitted with low order

rational functions. Hence the accurate delay estimation for entries of A is a critical step in TD

modelling.

Physically time delay is the time required for travelling waves to reach the other end of the

transmission line. ln general, time delay is frequency dependent. But it is required to consider a single

delay (or series of modal delays in some cable models) in order to develop a time domain equivalent

circuit. ln theory, time delay in time domain means phase shift in frequency domain. Phase shift in

frequency domain can be written as,

Time Delay Galculation

Appendix G

A,,*(at)e-i'" = ¿(a)

Equivalent form in time domain,

e*(t -r)= a(t)

In the above equations, lower case

frequency domain functions.

letters represent coruesponding time domain form of upper case

(c.1)
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There are several ways to extract delays from the propagation function.

(1) Based on the velocity of light

Time delay (r) can be evaluated based on velocity of light (c =3e-s ml s). For a transmission line

with length (/) , ttre propagation delay (time delay) is simply computed as r = I I c .This method is

only successful for simple overhead lines configurations.

For underground cable systems, the havelling waves propagate with different velocities which are

significantly different from velocity of light [17]. The propagation delay heavily depends on the

values of permittivity and permeability of the insulations, hence significantly deviates from speed of

light. In general, this method to calculate time delay (based on the speed of light) is not successful for

underground cables.

(2) Based on Bode's Gain Phase relationship

A more accurate approach for time delay can be estimated using Bode's Gain Phase formula. For

minimum phase functions, phase angle is uniquely defrned by magnitude of the function. From the

magnitude data, the phase angle of a minimum phase function can be determined by using the Bode's

Gain Phase formula. It is assumed that unwound propagation function A,,r(r) is a minimum phase

function.

¿^,(r)-- A(at)ei"

133

(c.3)



tet A(rl - 
"a(at)+b(a)i

then

4^,(r)= z¿(r)+ tar
4^,(r)= zb(at)+ tan

- _ 4^,(r)- zb(at)
Ct)

The Bode's formula is shown in equation (C.5). The equation (C.5) is evaluated at some higher

frequency O, beyond which the magnitude of the function becomes very small [57]. The firstterm

gives a good approximation to the angle of the minimum phase function ¿^ (r). If the second term

is considered, a more accurate value for the angle can be computed. The integral is numerically

evaluated typically taking frequency points limiting the integration from 0.lQ to l0O Hz [57].

where,

L(u)=L\Í
z_:L\

-ú)u-ln-
O

(c.4)

a@l.eQa¡l

The propagation delay (time delay) can finally computed as,

d(u)

dçtnl,eQ@l

d(u) )1.,Ìu'n*'4,*

(c.s)
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CI

where, O is the highest frequency point of interest.

It is experienced that delay estimation using Bode's formula is successful, if the magnitude response

of the function is smooth (no oscillatory behaviour). For example, this method can be used to

calculate delay for a modal propagation function, which has a smooth magnitude response, when

plotted as a function of frequency. However, as discussed in Chapter 2, for underground cable

systems and unsymmetrical overhead transmission lines, the magnitude response for elements of

matrix l(r) shows oscillatory behaviour. In such cases, the delay evaluated using Bode's formula is

not satisfactory.

From idempotent theory, it is reasonable to assume that entries of A(at) consist of series of modal

delays instead of a single delay for multi-conductor systems [69], [44]. This may explain the

diffìculty in finding a single delay for entries of A(at) for some cable configurations using Bode's

formula.

(3) Optimization method

(c.6)

Alternatively an optimization method is developed to calculate the optimum delay for the propagation

function. Contrast to the earlier method, there is no assumption of minimum phase functions and this

technique can be applied for entries of A(a) and also for modal l(r)

In this single dimensioned optimization problem (the only variable is the time delay (r)) , the time

delay r efl^rn,T^ol, which gives the minimum rlns erîor between the fitted rational function
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Af""o (r)and the actual function{, (ar) is found. +(r) is calculated as in (C.3) . The order of

the fitted function is kept constant (typical values for the order: 20 or 30). The minimum bound

(r,r) is the delay calculated based on speed of light as discussed in section 2.The upper bound is

T^o = NZ,¡n , where N is selected by the user.

A simple approach is to use golden section search method to find the optimum delay. However these

optimization techniques show several drawbacks such as significant increase in computational effort,

possibility of convergence to a local minimum.
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Rational function approximation using Vector Fitting

The Vector Fitting is a robust technique to approximate a frequency domain function using a rational

function [43]. Rational function is a division of two polynomial functions with orders " n" aftd " m"

as in (D.1).

f(s)=

Appendix D

',
a(\ + aÅ + arst ......e,s'

bo + brs + brsz ......b,s'

where, a,,b, are coefficients for upper and lower polynomials respectively and s = j@. This can be

alternatively written as pole residue form as in (D.2).

f(s)=i, o *d+sh
Ãs-a^

The frequency domain function to be approximated is /(s) .The unknowns terms yet to be found are

a,,cn,d and h. This is a non linear problem, since denominator contains unknown poles. The

Vector Fitting method solves the problem as a linear problem in two stages [43], [40], [41]. Assume

the function o(s)/(s) has the following form.

Stage I

o(s)/(s):î, " +d+sh
fis-an

(D.1)

(D.2)
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N

o(s)=L "' +1
f;s-a,

Substituting o(s) in (D.3b) to (D.3a),

1f-::-+1)/(s)=Ë " +d +sh'?ot-o, -'" u' 
Åt-o,

S ã,/(r) _S ", _ d _ sh= _,f (r)
k t-o, ?-tt-o,

Assume that starting poles ar'.l are known. Now equation (D.4) becomes an over-determined

equation in the form Ax = B. where, "x" is the solution vector containing unknowns and,

r(so,:) - [ ¡r"l ... . f(s)
Lso -4r so-an

B(so,:) = -"f ("0)

* =l;r..¿, ct..c, d

(D.3b)

For .ly', frequency samples, the matrix A hasa dimension (t, * (ZN +2)) ana B is avector with

dimension .ly'r.

Stage 2

-1
so-at

hl

-1
so-0,

Once the unknown vector "x" is calculated, the next step is to compute the new set of poles

(4'r)for/(s) by calculating zeros of ø(s). This can be done by evaluating eigenvalues of

(,a-ør' ) t+ol, [+r].
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where,

A: diagonal matrix whose diagonal elements are starting poles

b = columnvectorofones

c : column vector containing residues of o'' (s)

The next step is to calculate the residues (i, nA.S)to, /(r), using the new poles of /(s) . ffris

can be also formulated as a least square problem in the form Ax = B .

=N^
f(s\=I "' +d+sh

7rs-a,

=
The unknowns in (D.5) are c,,d

l(so,:)=[#

B(so,:) = .f (s")

,=lã T, d

1
.'...-------=-

so-ãn

-t

hl
I

and h. The matrix A andthevectors B &, xare,

Finally, the rational function approximation for the / (s) is,

,,1

=Àt

ffs)^yI "' +d+sh
a'=1 

S -d'

(D.s)

(D.6)
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One of the typical problems in time domain modelling is to evaluate the time domain convolution.

The recursive convolution is a numerically efficient technique used to compute convolutions. In

theory, the product of two frequency domain functions (p(t) ¿ ø(t))becomes convolution in time

domain.

Recursive Convolution

Appendix E

F(s) = r(s)p(s)

f (t)= p(t)xq(t)

Note that, lower case letters represent time domain form of corresponding upper case frequency

domain functions and "x " denotes convolution. Assume one of the frequency domain functions in

(E.1) can be written in the pole residue form as in (E.3), so that in time domain, this function can be

expressed as a summation of exponentials (see (E.4)).

P(,)=ä#

p(t) =1, to'''-"
¡=l

The convolution can be written in the integral form,

(8.1)

(8.2)

(8.3)
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f (t) =-¡n{, -u)r"(u-")d,

With discrete time domain with time step A/, above integration can be written as,

Í+4, @

-f(t)= I nçr-u)eo(u-')du*,Jo,nrr-u)eo("-')du (E'6)

r+Al

= I n<, -u)eo("-')ilu * r"{u) fQ - Lt)

Then discrete form of f (t) is shown in (8.7)

present value of q(/) .

"f 
(t) = k,q(t - r) + krq(t - Lt - r) + krf (t - Lt)

The constants kr kz, kj in (8.7) are derived based on the assumption that

between t-r-At and t-t and the constants are

t, = -9( t* 
t -"'o'I

' a[ aAr)

k^=9( u"o'*t-t""I'ø[ aLt)
L _ ^a\ttu3-v

(E.5)

in terms of past values of f (t) and q(t), and the

q(t)has a linear variation

(E.7)
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Stabilitv of the Recursive Convolution

The BIBO stability of any discrete recursive formula can be predicted usingZ transform [29]. As for

any transfer function, the poles of the denominator should be within unit circle for stability. Lets

assume the delay is approximately an integer multiple of time step (as required for discrete

simulations) . i.e t =.À/A/ and i/ is a integer (¡¿ t O) . After applying Z transform to (E.7),

F(z) = krz-* e(z) + krz-(N*t)gQ) + krz-t F (z)

Then (E.10) becomes,

F(z) z-N (zkr+kr)

QQ)

The stability is guaranteed, if 4lies inside a unit circle in the complex plane. For recursive

convolution, k3 = eo^' andfor stable poles (ø .0) , k, < 1 and the simulation is stable (BIBO).

z-k,

(E.10)

(E.11)
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This section is based on references [43], [15], [69] and the discussion with L.M. 'ù/edepohl in

preparing this section is greatly appreciated. ln many engineering applications, one of the common

problems is to find the time domain function from a known frequency domain functions and vice

versa. A widely used technique is the Fourier transform method. The Fourier integral and inverse

Fourier integral are defined as,

Numerical lnverse Laplace Transform

Appendix F

H(r)= In1t¡,

l*-h(,)=; Ir@)ei''da

-td dt

where, h(t), U(a),r=2trf are the time domain function, corresponding frequency domain

function and the angular frequency respectively. One drawback in (F.1) is that if h(t) is an unstable

function of time and then n (r) does not exist. This difficulty can be avoided by multiplying

h(t)Ay an exponential function as shown below.

t,(t) = h(t)e-''

(F.l )

(F.2)
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The proper selection of constant "c" ensures that always å, (f ) tends to zero as time tends to infinity,

hence (F.1) gives meaningful result. This guarantee that haQ)is a stable function of time even if

h(t) isunstable. Substituting Iaþ)in(F.2) to (F.l),

H,(r) = [ n(t) e-G+ta)t ¿,

The new transform is called the Laplace transform and mathematically it is same as the Fourier

transform with complex frequency.s = c+ ja.The Laplace transform and inverse Laplace transform

formulae are,

ø(r) = !n(t)e-"dt
0

h(,)=*" 
".j_urs)e"ds

It may not be always possible to obtain the analytical solution directly using Laplace transform

method. As an example, ø(r) in (F.5) may be calculated in discrete form at given frequency

samples. In such cases, numerical methods are used to evaluate the inverse Laplace integration and

hence to find h(t). Numerical techniques are subjected to two types of errors namely truncation error

and step length error.

(F.4 )

(F.s)

(F.6)
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(a) Truncation error

ln discrete sampling, the upper limit for integration in (F.6) is limited to some maximum value

a) = Ç) instead of infinity. This introduces a significant error and causes oscillations on time domain

solution h(t) @alledGibb's oscillations). The frequency of the oscillations is given by f" =T

The Laplace transform is restated below with upper frequency at = Ç2 for integration.

-ct +Ç)

t'*(t) = î [r rc + i a) ei''| dú)

This undesirable effect can be effectively removed by Lanczos filter. The averaging of (F.7) only for

the integral over period 2n fo gives,

t, (t) = ;lx 
¿{_l "," 

+ i a) e,',' d,}-]

t 
" 

(t) = *-i t, (c + i ro) ei'' d at
¿7T _:a

where, the Lanczos filter o (ø) defined as

. ( na¡\
sml _l

o(,)=-+y
CI

(F.7)

(F.8)

145

(4.1 )



The convolution between the time domain form of o(r) and h(t) reveals a non-causal function

and hence h"(t) becomes non-causal too. This drawback However o(at) in (F.9) is non-causal and

modified Lanczos filter o'(ø) overcomes this drawback by multiplying o(r) with an exponential

term, hence becomes causal.

o'(a)=

. ( trr¿\
"n[ r, Jr-#

7TA

e)

(b) Step Length error

ln evaluating the integral in (F.6) numerically, the frequency domain function n (r) is sampled at

constant finite frequency steps a4=2rfoand then integral is approximated as a finite series. Thus

time domain solution h(t)rs valid only between [0, Z] s, and Z is called the time of validity

(, =4\
\ ,o)

The selection of the constant term "c" for complex frequency s : c * jor

The effect on sampling can be represented by a function G(ot) and now equation (4.6) becomes,

(.F.10)

h(,) = #.Io @ H (c + ¡ ø) ei'' d ø
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where,

@

c(r) = | e-i"ú
n=4

1-
f-

cùo

s=cija

To demonstrate the error due to sampling, it is assumed,

H (r)=

The corresponding correct time

H' (c + iat) : G (at) H (c + i at)

c+ jat

h'(t)= g(t)xh(t)

where,

domain function is, h(t) = e-'t .However, consider the product

in (F.l l). In time domain,

s(t)=Ia(t -"r)
n=l

h(t) = s-"

x = time domain convolution

Then (F.13) now becomes,

(F.12 )

(F.13)
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h'(t\=-:------=\ '/ 7-e-t'

Compared with actual time domain function ft(r) with the function fr'(r) affected by sampling,

the enor introduced by sampling i, , +. An increase in the constant "c" reduces Gibbs aliasing
r-e

errors, but increases the magnitude of the Gibbs oscillations. Prof. L.M. V/edepohl has proposed the

following compromised value for "c".

log, N ,þ-
T

The selection of the time step

The time step in time domain (fo ) and the frequency domain (fr) are unrelated. However the rise

time of the Gibbs oscillations impose a constrain to a minimum useful time step and is

211
-_1¿ -¿o,.in - f) -

J ma,r

(F.14)

Example

To demonstrate the numerical inverse Laplace transform method (Ntr-T), the following frequency

domain function is selected. The frequency domain response is shown in figure (F.1).

H(s)= 1
,s

(F.15)
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o.2

0.15

o.1

0.6

The conesponding time domain function h' (t) isthe unit step function (theoretical solution),

Figure F.1: H(s) as a function of frequency

h'(t):u(t)

The numerical evaluation of the integral in (F.6) requires the sampling of the frequency domain

function ø(r) at regular frequency stepsfr. In this example, the frequency step (Á) un¿ ttt"

number of samples (lfr)*" selected as 1 Hz and 1000 respectively. The maximum frequency

(Q) considered for the integration is 1000 xI =I kHz '
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The time of validity (f )for the time domain simulation i. I = 1 = t ,. The compromised value for
f, 1

the constant term is , =log:! t = 6.9078. Figure F.2 shows the time domain function obtained via
T

NILT for a period of [0, l] s. A noticeable observation is the oscillations in the vicinity of the end of

the time period. Figure F.3 displays the expanded plot for the circled section in figure F.2.It can be

readily seen that the period of the oscillations is 0.01 s, which is exactly equal to + =-J- = g.g1

J* * 1000

s. Earlier discussion revels that these are Gibb's oscillations with period + t. (The time step used
J^*

in the simulation i, I to observe the Gibbs oscillations clearly, since minimum useful time step
10

(r) is equal to the period of the Gibbs oscillations,)

2

1.8

1.6

1.4

1.2

1

o.8

o

Figure

o.1

F.2: Plot of time domain function h(t) for [0,1] s

o.7
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In order to minimize these undesirable oscillations, the modified Lanczos filter is implemented.

Figure F.4 show the time domain simulation with the filter, indicating that the oscillations are

significantly reduced. The time domain function is in a close agreement with the theoretical solution'

Figure F.3: Expanded section of figure F.2
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I

Time domain simulations with different constant terms ("c" in F.l5) are carried out to see the effect

of "c" on simulation. Figure F.5 displays the expanded section of the tail portion of the time domain

simulation (e.g. befween [0.9, 1.0] s), where Gibbs oscillations are clearly seen. Note that the constant

N-

rerm used in the NILT is c = V+ = 6.907g. with 
" 
='otJÅ = 4.6052, the magnirude oftheTT

Gibbs oscillations are reduced compared vvith F.5 (see figure F.6) . However a noticeable error

between theoretical and simulation result can be observed. With c- 
log"t/tx10 

=9.2103, the
T

Gibbs oscillations are magnified as in figure F.7. This conf,rrms that the magnitude of the Gibbs

oscillations is amplified with large values of c. However the eror due to sampled data decreases with

increased values of "c" (as seen from equation F.14). For example, the corresponding aliasing errors

are l0/o, 0 .lo/o, 0 .Ùlyo for c = 4.6052, 6.907 8, 9 .2103 respectively.

Hence this confirms that the value of the constant term c ='ot:* t : 6.g07g gives a compromise
7

between aliasing error and magnitude of Gibbs Oscillations.
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Figure F.5: Plot of time domain function h(t) with c:6.9078

o.gt o.g2 0.s o.94 0.95 0.s O.S7 0.S O.99 1

Fisure F.6: Plot of time domain function hft) with c:4.6052

o.91 0.æ. o.s o.94. o.95 0.96 0.s7 0.S O.æ 1
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Figure F.7: Plot of time domain function h(t) with c:9.2103
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This appendix describes the constrained least squares method used to eliminate the small error at high

frequencies for a two-conductor case. The equation (G.1) shows the actual functional form used for

the propagation function. In comparison to (a.9) in Chapter 4, the only difference is the additional

constant terms ( d,' t ), that offer better accuracy. In general, for Q distinctive delays there can be Q- 1

such additional terms.

Constrained Least Squares Method

Appendix G

I d¿",th"o,¡t¡"ot€ 'n + dr(e-", - 
"-"'' )* 

or("-*' - e-",)...dg-r(e-"a - e-'n)

The unknown coefficients (cj's and d,'s) are calculated first (see Appendix H for details), using

Vector Fitting method. The terms d,'s and ddc,theoriticat are real. Although A,,.,n''(t) gives the exact

dc value at ^r = 0, at very high frequencies the function may slightly deviate form zero-which is

contrary to the physical laws for propagation functions. At very high frequencies (as s + jco ) (G.1)

becomes,

N, N, No

A,.,''"(, = jæ) x 
"-'nÐ"i,+ 

e-"'lci,+ '...+ e-"nlcin
tl=l nz=l ne=l

This error can be eliminated by perturbing some parameters (c'i, '" and d,'s) of (G.1) without

significantly affecting the fitting error. The perturbation of the fitted function in (G.1) is,

+ d,t",rt,"o,iti"ote'n + dr("- ", - "-"'' ) 
* d r("- 

*' - e- ",) - d nr(e- "n - e- 
*') + 0

(G.1)
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A,,,^oo (r) * e-,,,1 
("; * ¡"i )" + e-,,,y('i', i n:?",) t 

+ ... + e-nn yþ';r : o!:r) t
nt=t t-ant ?" t-clnz 7n=, s-ana

* ddc,theor¡t¡ca,e-n' +(a,+ ur)(e-n, - r-*,)*(a,+ ur)(e-"ts - r-'",)*..

*(dn-r+ dde-t)(t-"n - r-"'' )

To fulfill high frequency requirement (i.e A,.,^oo(t=7'oo)-+g), the following conditions ( (G.aa)...

(G.4c) ) should be met.

Nr Q-l

Zþ:,+ L,ci,)-Z@,+ Ld,)* dd",th"o,¡t¡,ot =o
nl=l i=l

i(n;, + Lëi,) * (a,+ Âd, ) = e
nz=1

äþ . 
+ Lcin)*@n-,+ a^dn-,) = o

(G.3)

In general, for Q-distinctive modes, there are Q numbers of equality constraints. Only real parts of

cl's are required to perturb and the dc response of the perturbed function remains undisturbed

(=da"¡n"o,iri,or). ffr. unknown coefficients (A,ci's and\d,'s) in equation (G.3) are calculated by

solving the Equality Constrained Least Square problem. The fitting enor in (G.3) is minimized

subjected to the equality constraints ((G.4a)... (G.ac)) to eliminate the high frequency error.

t56

(G.aa)

(c.4b)

(G.4c)



Minimize the least square effor,

11A,,,""'"' 
(')- ( 4,r'"t {tl )ll'

Subjected to the equality constraints ((G.4a)......(G.ac)). Matlab function (lsqlin) is used to solve the

constraint least square problem. The detail matrix formulation is described next for an entry of the

propagation matrix A,,,(t) .

In matrix form, the problem is formulated as minimi ze theleast square "oo,ll,l*- 
ãll subjected to

the equality constrain ðx - i, =0 . The f,rrst row of the matri* Å. ,",

7(s,,:) = ['''-t'' 'r'e-rrrr

Lsr -ar st-Qz

Similar expressions can be written for other frequency samples. For .ðy', number of frequency

samples, matrix Á huta dimension (t, * (W * 8-1)) . ¡/ is the total number of poles (or resides)

in the transfer function * =f *,. ¡ i. a .ð/, dimensioned vector. The first element is,
t=l

y+ (e-""' -e-"'n) (e-'i" -e-"")
Jl - s¡r'

(G.s)

ã(s, ) = 
1o,,, 

(rr)"'''ot - A¡,j(",)"']

The real marrix õ hur a dimension (9"(¡v +0-I)) .

. (e-r,n-, *)]

(G.6)
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C_

4,,
V,,,

vn,,

4,, denotes { dimensioned vectors. ({

4.0

vr,n

vr., vn,s

4,n"1
vr,nu 

I

'n'.r)

V,,, =ll 1

V,,¡ =10 0

4,s.t=l-l
Vr,su =lI

vr,o*, =U

vn,nu=lo

.. 1l

.. 0l (t =1,9 i =l,Q ¡ + i)
-1 .. -11

0..01
1..01

0..11

is the order of the jú mode).

The Q dimensioned vector .Õ hur the form,

(G.8 )

Nr 8-l
-Z¿:,*Zd,
\=1 i=l

Nz

-2"i"
nz=l

No

-E"In
nQ=l

þ-

_,1w dc,theor¡l¡cal

-dl

(G.e )

The unknown coefficient vector (solution vector, r ) contains the increments in residues (Áci's) and

constant terms (Â{ 's).
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*=ltci Lri .. Lc'* Ld, Ld, .. ndo-r)

The above matrices are generated assuming that poles (and hence residues) are purely real. Care must

be taken in dealing with complex conjugate pairs. The number of unknown variables in the x vector)

reduces in the present of complex conjugate pairs. To explain this, consider the following complex

conjugate pair,

,f(s) = 
(q +-cri) se *-' 

*(c, -.cri) se-' 
-\r \-' s-(a,+ qrj) s-(a,-arj)

It is assumed that the first two poles belonging to the first mode are complex.(G.13) shows the

corresponding entry of Å. matrix and although there are two terms in the function in (G.12), only

one entry is constructed. Because, only the real part ofthe residue is required to perturb the function

in order to attain corect high frequency response. (If the poles in (G.12) are real (two distinctive

poles), then there are two coresponding entries for 7 (s,,1) ).

71r,,r¡ = 
[

( G.l1 )

-.tr, -tr,se'se'
l-

"-(o, 
+azi) "-(o, -ari)

The first entry of the vector x is Ac, . (" = [Â",............]) .In matrix ñ ,the first element of the Vr,,

vector should be 2.

4.t=12"""'l

(G.12)

(G.13)
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A detailed description of the actual implementation of the modified functional form method is

described in this section. As discussed in Chapter 2, the Universal Line Model assumes a common set

of poles in approximating rational functions for characteristic admittance fc(s)and propagation

l(s) functions. For example, the trace of the characteristic admittance matrix is first curve-fitted to

identiff the common set of poles. With this common set of poles, the residues for the entries of matrix

are then calculated.

Modified Functional Form method in ULM

Appendix H

In the Modified Functional Form method, the procedure for the identif,rcation of the common set of

poles either for fc(s) or ,a(s) remains unaltered. Next pace is to calculate residues with this

common set of poles. The function should depict the correct zero frequency response (i.e. function

value at zeroHerfz equals to the exact theoretical value by Modified Functional Form as in (H.1)).

Yc,,¡tu (') = Ð,;h 
* d d",,h,o,,¡,ot

Since the poles are known, the unknown coefficients in the

between the fitted function and the actual function is minimized

*in 
llr",,, 

(r)""'o' - Yc ¡,¡ (t)'*' u*'ll

equation (H.l) are c,',s. The error

in the least squares sense.

(H.l )
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In matrix form, this can be formulated as a linear least square problem as follows.

^i'll2' - rll

The matrix À hu" a dimension (tr" M),where N, is the number of frequency samples. B is a

l/, dimensioned vector. The M-dimensioned vector x contains the c^'s in (H.1).

.tl .91 ,sl

st- Qt st- dz st- au

sz s2 ,s2

sz- Qt sz- az sz- du

tr, tr, tr,
sr, - a, sr, - d, s*, - Q,

Ã=

Yc,,, (s r)'"t"' - d <tc,theor¡t¡cat

Yc,,, (s r)'"'"' - d dc,theoriticat

, , OrrU),

Yr,,,ltrr) -ddc,theor¡t¡car

B_

(H.3 )

* =1", c2 . crl

(H.4 )

(H.5 )
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The actual formula for the propagation function is slightly different from (4.9) in Chapter 4. It has

additional constant terms for better degree of freedom.

A,,,'" (,) - 
äT;.þ"T;+.... 

+ d dc,,he.r¡,¡ca!ê,

+ d, (e *' - r-'"')+ d, (e-*'- 
"-"'' )*...

+ d,-r (e-"ø - e-*')

Where, Q is the number of different delays terms (delay groups). In general for Q number of delay

groups, there are additional p - I numbers of constant terms (d, 's) . Note that the additional terms

do not change the value of the function at zero Hertz. The matrices are,

Stg-sl¡l

st- at

sz€ ''
sr- a,

-Jv,fr
s,, e

*,=

l-

-s, r,sr€ "
st-%

-s.f,sz€ ''
sr- %

5,, E

s,, -e

(H.6)

-f ¡^

st€ '"
st- %
Sre-"2î8

sz- au

-su ,tos., e

,r, -,,

(e-',', - e-',") (e-N"' - e-"',)

(e-',', -r-",",) ("-", -u-""')

(e-',r, -e-'*!',) (r-""r"' -"-',t",)

(e-r'n -e-rr)

(e-nø -r-',,,)

( n-"r'n - e-""r'' \t,
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A',,(")o"'"'

A,,,(rr)'"'"'

/ \ aclual

A,.rltrr)

B_

- d dr,th"or¡t¡rol€-tt'l

- dd",rh"or¡ti"ol€ "t

' -sN ,Tl

- dd",tlrrorni"ot€ '

* =lr, c2 cN dt d2 dnf

Finally, the equations in the Modified Functional Form ( (H.1) and (H.6) ) can be hansformed in to a

traditional pole residue form, so that recursive convolution technique (as described in Chapter 2) can

be readily used to evaluate the time domain convolution. As an example (H.1) can be converted as,

Yr,,r'u'G)=ih.ã

where,

(H.8 )

õr, = a,c,
M

ã =Z"r* dd",th"ort¡"ot

m=l

In a similar approach, (H.6) can be written as,

(H.e )

(H.10 )
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where,

C,,

õ
n2

= cnrdr,

= crr0n,

ãl = dd",theor¡t¡cal

N2

ãr= dr*Lt,,
nz=l

QNt

-la,+Z',,
i=l \=l

Na

ãn = dn*Zt,n
'o=l

The equation (H.12) has a minor drawback. It is contrary to the fact that as frequency approaches

infinity, the propagation function tends to zero (i.e. ãr=0,ãr=0......ão=0 ). This drawback is

overcome by an Equality Constrained Least Square Method (ECLS method discussed in Chapter 4).

(H.12 )

(H.13 )
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Appendix I

Passivity identification using state variable approach

The State variable approach is an alternative method to identiff the passivity violations of a given

system. This is a purely algebraic method and contrast to the traditional frequency sweep method, this

method identifies the exact locations of passivity violations analytically.

@ State vøriable approøch to identify exøct pøssívíty violations in

electricøl networks

(4.1) The state variable formulation of transfer functions

As an example, assume that the admittance of a single-port electrical network is given by the

following rational fu nction.

G(s)=f, "o *o
Ãs-at

where, the terms co,aord,N r,s are- ktl' residue, kth pole, order of the transfer function,

and the complex frequency (t = jr). The state space form of (I.1) can be written with

vector x(r)as [31],

*(¿)= ex(t)+ Bu(t)

y(t)= cx(t)+ Du(t)

where,

( r.1 )

constant term

state variable
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fo, o

lo a^A=l ¿

l0 0
I

L0 0

B=[1 I
C =ft, cz

D=d

x(r)= [', (t)

.0

.0

.0

.aN

1l

""]

The transfer function of the system is,

G(s)= C(sI-'t)-'A+O

*,(t) *,(,)f'

(A,.2) passivitv criteria for the admittance G(s)

The next phase is to determine the passivity criteria for G(s). It is assumed that the complex poles

(and residues) are always in conjugate form and G(s) does not have poles in the right-half s-plane

so that the first two conditions for passivity are met (see (5.5) in Chapter 5 for the definition of

passivity). The Vector fitting algorithm ensures that the poles are in the right-halÊs-plane. An

analytical solution can be found to fulfill the third condition for passivity (all eigenvalues of

Hermitian matrix ( : real(G(s) ) are positive at every frequency) , which leads to the following

theorem, hence states the passivity criteria for (I.a) [61].

Theorem l

(r.3 )

The state space system is passive if the following Hamiltonian matrix (M) has no pure imaginary

eigenvalues [61].

(r.4)
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| ¿- a(p* o')-'cM=l \

| ,' (o * p')-' c

The presence of imaginary eigenvalues indicates that the system is not passive, the next pace is to

identiff the exact locations of the passivity violations (the frequencies at which the eigenvalues of

Hermitian matrix (: real(G(s)) ) cross the frequency axis, f1 and f2 as shown in figure I.l. The

following theorem helps to identifu those locations [61].

-B(D* pr)-' Br l
-Ar +c'(o* o')-' n')

(r.5 )

Figure I.1: An eigenvalue of Hermitian matrix (H) crossing frequency axis

Theorem 2

The real part of the symmetric admittance matrix G(ja) is singular, if jao is an eigenvalue of the

corresponding Hamiltonian matrix M, provided D + D' is a positive definite matrix.

The above theorem can be generalized to unsymmetrical admittance matrices. In that case, real part of

the symmetric admittance matrix in second theorem is replaced with Hermitian matrix

167
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(lcç¡a4¡ +G(- jrtt)]l2).The second theorem states that the imaginary eigenvalues

(say j2n f, j2o.fr) of M (Hamiltonian matrix) corresponding to the frequency at which eigenvalues

of H ( Hermitian matrix (: real(G(s)) ) ) cross the frequency axis at frequencies f1 and f2 . Hence

using this method, the exact location of passivity violations can be identified (i.e. fr and fz in figure

r.l).

(A.3) Example

Let's assume that the admittance of a single-port network is given by,

G(r) = !: ry' ,s = j\nf and k,k, eß\ '/ s+k2

The first objective is to construct a state space model of the transfer function. fhe G(s) can be

written in pole residue form,

Glsl= k'-k'*7
\ '/ s+kz

Let f (s) is the response for the arbitrary input U(s) .

G(s)=
r(")_k,-k,,,
tO s+h-'

The new state variable X (s) is defined as,

(r.6)

(r.7 )
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xlsl=gO\ '/ s+kz

or

sX(s) =-tcrX(s)+t/(s)

The equation (I.7) can be reamanged with state variable X(t),

r(s) = (k, - k,) x (s) + u (s)

The time domain equivalents of (I.9) and (I.10) (hence the state space representation) are,

*(,)= -k,x(t)+u(t) ( I.11 )

t(t) = (tc,- tc,)x(t)+u(t)

In the next step, the passivity ofthe system (I.1 1) is investigated as discussed in section (b) bV

checking the eigenvalues of the Hamiltonian matrix 11 defined in (I.5).

_ _l-0,-os(kt-k,) -o.s l" -L 
0.5(fr, -kr)' kr+o.s(k,-:4)

( r.e)

The eigenvalues of H are calculated by finding the solution of the equation,

12 - krkr=o
then

),=xzJkJ,

( r.10 )

Note that the eigenvalues are purely imaginary and independent of frequency. If both k rand k, are

positive (or both negative) the eigenvalues are real and according to section (b), the electrical network
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is passive. Ifone of kror krarenegative and other one is positive then the eigenvalues are

imaginary and the elechical network is non-passive.

Case I

Consider the transfer function,

o-:,-1
Gl.ç) =' ' "\ '/ .ç+8

The eigenvalues of the H matrix are,

\ =!4

The real eigenvalues indicate a passive system .The real part of the admittance function G(jotr) in

(I.14) remains positive throughout the frequency range as in Figure(L1). Hence confirm that the

electrical system defined in (I.1a) is passive.

( r.14 )

( r.ls )
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Case 2

Figure L1: Real part of the admittance function G(ia¡)

Consider the transfer function,

Glr)= "+5\ '/ s-3

The eigenvalues of the H matrix are,

\ = t 3.8730j

The pure imaginary eigenvalues indicate a non-passive system. The next step is to identi$r the exact

locations of passivity violations in the frequency axis. As discussed in section (A.b), the locations

where real part of the admittance function crosses the frequency axis are given by,
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f,=t#=+0.6t64 Hz

The real part of the admittance function G(jø) in (I.la) crosses the frequency axis at fr Hz as in

Figure (I.2) and Figure (I.3) (an enlarged view of circled section of Figure (I.2)). The reat(Gç¡a))is

being negative below f < fo and hence confirm that the electrical system defined in (I.16) is non-

passive.

( I.18 )

-1

-1.5

Figure L2: Real part of the admittance function G(iao)
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Figure I.3: Real part of the admittance function G(jao)

(B) State varíable approoch to identìfy exøct pussivity violations in

transmission lines

0.614 0.616 0.618

A similar passivity identification method in section (1) can be used to veriff the passivity of the

transmission line model treating as an electrical network. However since the transmission line model

contains transportation delays, a straightforward application of the above method is not feasible.

The identification of exact passivity violations using state variable approach for delay based

transmission lines (TL) is an ongoing research topic. Recent advances can be found in [61], [59]. This

section briefly explains the approach used in the paper [61] using a simple example, a single

conductor transmission line model.

(B.t) Passivitv criteria .

o.æ.
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As discussed in detail in Chapter 5 (section 5.2), passivity of a transmission line model is guaranteed,

if and only if the eigenvalues of Hermitian matrix I1(s) defined in (I.5) are all positive at any

frequency ø(with s = j@). The Hermitian matrix is related to the transfer admittance Í1s¡ of u

transmission line. The transfer admittance Í(s), relating sending and receiving-end voltages to the

currents, is shown below in (L6) in terms of A and Yc.

ø(") = Í'("-)+ Í(s)

r =l(r - 
A')'(r + A\Y" (r - A')'(-24Y" 

1^ 
L t¡ - A2¡4|-zt¡r" e - A\-t (r + .a'¡r" )

The matrices I(s) , A and Yc are functions of frequency and for simplicity, "s" term is removed in

(r.6).

In this method, above passivity a criterion is restated in a simplihed form: The passivity of a

transmission line is guaranteed, if and only if both 
[4(r)*{(r.)'] 

unalrr(")*rr(".)'] rruu"

real positive eigenvalues for any frequency. The functionr 4(t) and Yr(s) are defined as,

I (") = (r +,E)-'(r - A)y"

r,(")=(1-l)-'0 +A)Y"

The proof is given below.

Define the matrix (Þ (s) as,

(Ls)

(r.6)

174

(r.7 )

(r.8)



o(") =[rt'lï'('.) 
rt,lå,(".)]

It can be easily shown that the Hermitian matrix

transformation matrix,,/ .

H(r)= -r-'o(s)-r

where,

l-r,=L_, ll

Therefore, the eigenvalues of H(s) (¿{f/(")})in (L10) are

[f (")*4'(".)] analr,þ)+Y,' (s")] matrices as in (I.12).

ø(s)is related to O(s)

2{@(,)}= z{ø(s)}

= 
^{\ 

(') * 4'(".)} , t'{r,(')+r,' (s

(r.e)

in (I.9) using a constant

In the traditional approach, the passivity is ensured by checking all positive eigenvalues of Hermitian

matrix H(s) for any frequency. However in this definition, the passivity is guaranteed by checking all

positive eigenvalues of simplified matrices [f (")*4'(".)] and [rr(")*rr'("-)] for any

frequency.

( r.10 )

We may now explain the similar method discussed in section (A) to detect passivity violations for

transmission line models. In section (A), the network admittance G(s) is first expressed in state
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variable form and the passivity is verified by checking the presence of pure imaginary eigenvalues of

Hamiltonian matrix, derived by coefficients of state variable formulation of G(s).

Analogously, for the case of transmission line models, two matrices I{ (s) ana f, (s) are first

expressed in state variable form and passivity is verified by checking the presence of pure imaginary

generalized eigenvalues of certain matrix derived from coefficients of state variable formulation of

{(s) and ¿(').

(8.2) State variable representation of { (s) an¿ f, (s)

In this section, the state variable representation of I{ (s) is described. To ease the derivation, the sub

matrices of { (s), namely n, (t) , lI, (t) and lI, (s) a.e defined as follows.

Il,(r) =Q+,e)

n,(") =Q-,q)

lI, (t)= Y"

Then the matrix I! (s) is,

4 (') = n,-'(s)n, (s)n, (s)

It is assumed that A and Yc functions are expressed as rational functions with orders N and M as

stated in (I.17) and (I.18).
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I,.(s)=f, "o *n- 
-¡1 S-Oo

A(s)=i-,4
Ãs-a*

Bysubstituting l(s) in(I.18)to lI,(s) in(t.13),function n,(r) canbeconvertedintothestate

variable form as in (I.19) [31]. The unknown matrices (K,A,B,C,Dr) are derived from the

coeffîcients of l(s) in (I.1S) and x, (f ) is tne state variable vector. The state variable representation

for such systems is straightforward and hence not repeated here. The more information can be found

in reference [31] .

K,*, (t) = Atxt þ) + B,u, (t)

y, (t) = C,x, (t - t) + D,u, (t)

A similar set of equations can be derived forthe function IIr(") and has the same form in (L19).

The state variable formulation for llr(s) can be constructed after substituting {(s) in (I.17) to

(L15) as shown in (I.20) with state variable vector xr(t).

(r.r7 )

Krir(t) = 4xr(t)+ Brur(t)

yr(t) = Crxr(t)+ Drur(t)

( r.18 )

Then the functions, lI, (") can be written as,

III, (") = Cte-"' ("f, - A,)-t B,+ D,

( r.1e )
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The function n, (r) has the same form in (I.21). The function il, (s) is,

n, (") = Cr(sKr- ,4")" Br+ D,

(8.3) Derivation of formula to identi& passivity violations

Let's assume that the transmission line model has passivity violations. As discussed in section (a),

passivity violations are identified as presence of negative eigenvalues in set of eigenvalues of both

[f (")*4'(".)] ana lrr(s)+Yr'(s.)] rut.ices. The objective is to identiff the locations of

passivity violations, where eigenvalue crosses the frequency axis (e.g. "f, and f, in Figure I.l, at

frequency f = f, or f = f* the eigenvalue become zero and hence the corresponding matrix

becomes singular). Let's assume that there exists such frequency f = f, for the matrix

[f (") * 4t ("- )] . Since the matrix is singular, there exists a vector 17 , whichsatisff,

[r(",)*{'("0

If (L23) is written in terms of il, (s),

.)], =0, so = i2"fo

[t, (",)-' n, (so)r, (so) + r,

(r.22)

By pre-multiplying n, ("0) and substituting p(s) - [,t (ro.)-tO

[n, (",)u, (so)n,'(so

'' ("0.)tr'(ro.)t,'(*-)-']o = 0, so = ¡2nfs

-)*n, ("0)n,'("0-)tr'(ro.)tr'(*.)]t = 0, so : ¡2rfo e.z4)

(r.23 )

178

(r.24)



Substituting lI, (") in Q.2l), n, (r) in 9.22) and similar expression

mathematical manipulation yields the following form.

"0K,6, 
= Hr(so)6,

Hence, the solution (so ) for the equation (L25) is the frequency in which the eigenvalue of the matrix

[f (") * 4t (". )] crosses the frequency axis. If such an frequency is found that means the eigenvalue

becomes negative crossing the frequency axis at fo =+
J ¿77

A similar expression can be derived for the matrix [f, (") * frt (r- )] .

so:<r€r= Hr(so)6, U.26 )

Hence, the transmission line model is passive if and only if there does not exist any purely imaginary

values for "s" that satisff the following set of equations.

for lI, (s) and some

sK,6, = Hr(t)€,

tkr€r= ur(s)6,

(r.zs )

(8.4) Solution to equations (L27) and (L28)

The procedure to solve (I.27) is same as for (I.28), hence only the solution method to (I.27) is

described below. It can be shown that Hr(s) is a periodic function of frequency s(= ¡ro) and hence

(r.27 )
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the solution to (1.27) is periodic (i.e. if s = jao is a solution to (1.27) and then

also a solution. where, n is an integer (n=0,+1,t2...)) .

The equation (I.27) is solved by sampling in frequency domain and then solving via generalized

eigenvalue problem (GEP) as stated in the form in(L29). o(s),6, are generalized eigenvalues and

eigenvectors. Due to the periodic nature of the solution, GEP is solved for N number of frequency

samples in the frequency range ,.( ¡0,¡41 . In each frequency, the generalized eigenvalues ofl" r)
ø, (t) are calculated and check the presence of any eigenvalue/values with zero real part (pure

imaginary eigenvalues). The pure imaginary eigenvalues (if exist) satisfu the equation (1.27) 1591.

o(s)rc,6, = n,(s)6,

In practice, it may not be able to identiff exact location of the eigenvalues with zero real part, since

finite number of frequency points are considered for computation. The strategy used in [59] is that the

eigenvalues with diminishing real values are checked for each frequency between zero and, ?L . rt
T

such eigenvlaue at frequency f; =?Zis found for some integer n then,equation (L29) is linearized
TN

over fo' and using an iterative technique, a close approximation for the frequency fo at which

eigenvalue becomes purely imaginary is found.

. .2nn
s = JØo+ 1- ls

T

(r.2e )
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This section describes the derivation of matrices used in the linearization method to eliminate small

passivity violations for Chapter 5. First consider the derivation of coeff,rcient matrix Kr(fo)

(equation (5.12) in Chapter 5), which gives the relationship between increments of some parameters

of the fitted propagation matrix to the matrix itself. The functional form of the fitted function for

propagation function can be found in (5.10) in Chapter 5. However, in actual implementation, a

slightly modified version is used as in (J.1) with additional constant terms (d,'s)for better accuracy.

Matrix formulation in pass¡v¡ty enforcement

Appendix J

Note that at zero Hz , Ai,jtu' (s = 0) gives theoretical solutio n(d no" 
-''*'"'*') .

,.,'" {,) " äH 
.äT;+ .... +,t udc 

-'|heori'licø!,-s"

+ d,(e '-"-*')+dr(e-*' -"--')*...

+ dg-r(e-"n - e-*')

where, Q is the number of different delays terms (delay groups). ln general, for Q number of

delay groups, there are addition al g -l numbers of constant terms (d,'s) .Only residues (c, 's) unO

constant terms (d, 's) are slightly changed so that the perturbation does not alter correct dc response

(clndc-theoriric" ) . rfte increment in the function is,

M, /" (,) = L++.ä^:'t_î:' .
+ Ad, (e-*' - r-",) + dd, (e'*' - "-"', ) 

*...

+ Lds-r(e-"e -e-*') 
l8l

( J.l )

(r.2)



At some frequency point so G jZofo),this can be written in matrix form as,

M,,¡(f) = K,(f)A,C,.,

The coefficient matrix K,("t) i.,

l- -.,,.r,

&(+) =l# tt'"^- soe-"trQ 
(e-,r", -r-,0,,) (r-,n, -r-"0,,)

ls¡-at st -az s*-dy

where, so = i2n fo, LC,,¡ = [Ar, Lc, Lr, Ld, Ld, ndn.]' and

a
il = I¡¿, .Since only the diagonal elements of propagation matrix are subjected to change, the total

t=l

increment of the matrix in vector form (i.e. stacking diagonal entries of matrix into a single

vectorMu( f)) is,

M" (f) = K'(.f)LC'

where,

M'(fò =lM,,r(fo)

A,c'=[oq,, LCr,,

I k,(¡r)

K,(il=l :
lo

(r.3 )

Mr,r(f)

" nCrrl'

00
x,(f) 0

0 ...

0 0K

Mr,r(f)f'

0l

:l
,(fr))

(J.s )
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M is the total number of conductors (i.e. dimension of the square matrix A). The next step is to find
a linear relationship between increments in transfer admittance f Ur) to increments in M(fo) . The

transfer admittance f Ur) is restated here (equation (5.4b) in Chapter 5).

f =l 
(I - A')'(I + A2)y, (I - A')'(-24y" f- 

L fl - Az)a(-zA)Y" (r - A\1(r + A\Y")

Define sub-matrice t to, i (fo) as follows,

\,,=(I-A')'(I+Az¡y"

4,r=(r-Az)1(-zA)y"

The perturbation of (J.8) is,

g - (A * Ë4)' )(y,,, * 
^4,, 

) = (1 + (t * na)' )r"

Note that in matrix form, the expansion of (l+te)'=A2+(*)U+,n(tA)+(*)'
Neglecting higher order terms, (J.10) can be written as,

Li,,,

(1.7 )

= (r - o')' {Øf\ Ay" + t(na)r + (ú) nU,, * A(^A)y,.,\

Also (J.l l) can be rearanged by staking entries of A{,, and M into vectors,

LYr,J = GtM"

183

(r.8 )

(r.e )

(J.10 )

(r.1 1 )

(J.12)



where, A{,," is a vector containing the entries of the matrix l{,, 1i.e. by stacking the columns of

Ai,, ). M" is a vector containing the diagonal entries of the matrix ú. G, is a complex matrix.

The Kronecker matrix product is a useful tool in deriving (J.12). Same procedure is followed to

derive the increments for the other sub-matrix (1,, ) *O finally the following relationship is derived.

L\= K2M

where, À{ is a vector (dimension (ZU)' )containing increments of the matrix i andthe K, is a

complex coefficient matrix.

The third step is to develop a relationship between increments of the Hamiltonian matrix to the
increments of the transfer admittance (equation (5.5b) in Chapter 5 ). The formula is restated as,

H =i +i.r

The perlurbation of (J.14) gives,

H+LH =(i*nÍ)+ (i+ti)"
AH=Li+Li'r

It is required to convert (J.15) into a vector form, so that

equations. To explain the conversion, it is assumed Âi is a
(J.1 6).

(J.13 )

Ai=[v[ +vli vr'+vr'if
l!r' + !r'-i y4' + y4'i )

(J.14 )

later it can be combined into other

two-dimensioned square matrix as in

(J.15 )

184

(J.16 )



Suffixes r and j denote real and imaginary parts. The increment in LH from (J.15) is,

AH =l ,r,' vs' * lz
lyr'-yr'+yr'i-yr'i

A,H and Âl is then converted into vector form as in (J.18),

LHU = G?LY'

where,

'+yr' j-yr' j1
2yq' l

AHU =[^H,¡

ti" =l\y
' LHL| LH2.t',

Lyl Lyr' Ay/

0 0000
0 0000
I 0100
010-1 0

10100
0-l 010
00002
00000

20
00
00
00
00
00
00
00

Gz=

LHr.,r' AHL:-' AH\z' LHz,?' La2/f

Ly3' Lhi Lyo' nyo'l

(J.17 )

0

0

0

0

0

0

0

0

Similarly, this procedure can be extended for any dimension of I Finally the derivation of equation
(5.15) in Chapter 5 is considered. The relationship between the eigenvalue )"(fo) to corresponding

right eigenvalue En(-4.) ("olu'nn vector) of a matrix H (fr) is given by,

(r.1 8 )

(n-t"t)zo=o

(J.1e )
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where,I is the identity matrix. For simplicity, the term fo
perlurbation of (J.20) gives,

(n - n) trn+ (^// - atr) Eo: o

By pre-multiplying (J.20) with corresponding left (row) eigenvector Eo, the first term disappears

and (J.21) becomes,

Er(M - L).1)En=o

t.e.

^,) 
_ ELLHER

Ll/l, 
- 

-

ErEn

is dropped in writing (J.20). The

Note that ErEn is a scalar. By considering all eigenvalues of the matrix H (fr), the equation

(J.23) can be rearanged as,

AJ.v = KLHV

where, LHv and L),v arevectors containing columns of
is a coefficient matrix.

(1.2r )

(J.22)

(1.23)

L,H andeigenvalues of H (fo) . K

(J.24)
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