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Abstract

A test case is a set of input data and expected output, designed to verify whether

the system under test satisfies all requirements and works correctly. An effective

test case reveals a fault when the actual output differs from the expected output

(i.e., the test case fails). The effectiveness of test cases is estimated using quality

metrics, such as code coverage, size, and historical fault detection. Prior studies have

shown that previously failing test cases are highly likely to fail again in the next

releases; therefore, they are ranked higher. However, in practice, a failing test case

may not be exactly the same as a previously failed test case, but quite similar. In this

thesis, I have defined a metric that estimates test case quality using its similarity to

the previously failing test cases. Moreover, I have evaluated the effectiveness of the

proposed test quality metric through detailed empirical study.
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Chapter 1

Introduction

Software testing is a crucial task in the software development process that ensures

software quality. The goal of testing is to verify the software under development

against the client’s requirements and identify its faults. Generally, numerous test

cases can be designed and executed to verify the software. Among these huge sets

of test cases, only a few effective tests can detect faults (mismatches between actual

and expected output). We call a test case effective if it can detect a fault. Since it

is impossible to verify a real-world software with all possible test cases, we need to

identify effective test cases.

The ultimate effectiveness measure of a test case is its actual fault-detection power

that indicates how many real faults the test case can detect. Unfortunately, this

measure is not always practical because one needs to know about the effectiveness of

test cases before execution (e.g., in the context of test case prioritization).

Test case prioritization is an important element in software quality assurance in

practice. It is even more crucial in modern software development processes, where
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Figure 1.1: Number of tests submitted at Google over time [Mehta]

continuous integration is widely followed. Continuous integration suggests the de-

velopers to frequently merge their codes with the main code repository. Codes are

frequently changed due to either adding new functionality or to fix the bugs. A study

shows that in Google, more than 20 code changes occur in every minute [Yoo et al.,

2011]. Each change typically requires (re)testing the software. This will typically lead

to huge test suites. For instance in the previous example from Google, the frequent

changes has led to 1.5 million test executions per day at Google, in 2014. Figure 1.1

shows the growth of tests submitted at Google over time [Mehta].

On the other hand, most of the time, software companies have limited resources

(e.g., personnel, budget, and time) for testing and they can not retest the entire test

suite after every change. To solve this problem, test case prioritization is used, which

assigns ranks to the test cases and the tests are executed according to the order of

their ranks, until the testing budget is ran out. Test cases are prioritized in a way that
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they detect the potential faults earlier. Therefore, it is very important to rank the

effective tests higher so that the faults can be detected by executing only the higher

ranked tests. As the ultimate effectiveness metric (i.e., actual fault detection rate)

can be measured only after test execution, it can not be used in the context of test

case prioritization, which assigns ranks to the test cases before execution. Therefore,

we need other test quality metrics to estimate the effectiveness of the tests cases.

Code coverage is a widely used quality metric that measures how much of the code

(e.g., number of lines, blocks, conditions etc.) from the program is exercised during

the tests execution. As faulty code needs to be executed to reveal its fault, covering

(executing) more code increases the probability of covering the faulty code, as well.

However, covering the faulty code may not always result in detecting its faults [Pezzè

and Young, 2008]. Faults are only revealed when the faulty code is executed with

special input values, which actually causes the tests to fail. Therefore, code coverage

does not guarantee detecting faults and is simply a heuristic that estimates the test

case quality.

Detecting previous faults is another important factor used to estimate the tests

case quality. In the context of regression testing, test cases can be prioritized based

on the previous faults (history-based test prioritization) [Ammann and Offutt, 2008].

The rationale behind it is that if a test detects a fault in the past, it is probably

touching a part of the code that used to be faulty. On the other hand, defect prediction

studies have shown that if a file/method used to be faulty, it is highly likely to be

faulty again, specially if it is being changed [D’Ambros et al., 2010; Zimmermann

et al., 2007]. So the test case that touches those faulty places might detect new faults,
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as well. The type of quality metric that quantifies this concept is called history-based

quality metric, in this thesis.

The typical history-based quality metric basically goes through the history of the

software and identifies test cases from the current release that used to fail in any of the

previous releases [D’Ambros et al., 2010; Zimmermann et al., 2007]. Those previously

failed test cases are ranked higher and considered “important”, in a sense that it may

also reveal a fault in the current release. The problem with this approach is that in

many situations (e.g., when a new test is added or when an old test is slightly modified

to catch an undetected fault) the test case of the current release that detects a fault

is not exactly the same as any of the previously failing test cases. However, it is quite

similar to one (or more) old failing test case(s), in terms of the sequence of methods

being called (these similar test cases are verifying different aspects of a risky scenario

with minor differences).

In this thesis, I have defined a set of test case quality metrics that assign historical

faultiness values to the test cases, when they are similar to the failing tests from

previous releases. Each metric defines similarity using a different similarity/distance

function, but they all are applied on the test cases’ execution traces. I look at an

execution trace as a sequence of method calls from the program source code, when

the test case is executed. I have conducted a series of empirical studies (using five

open source java software systems) to compare the effectiveness of these metrics in

the context of identifying the first fault (i.e., first failing test case) of a system.

I have found that the similarity-based quality metrics are more effective in iden-

tifying the first failing test cases compared to the traditional history-based quality
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metric. Moreover, the results also show that the similarity-based quality metrics are

also better than other test quality metrics, e.g., coverage, test size and change related

metrics in prioritizing fault-revealing tests. I have also found that combining the

similarity-based metrics with the existing metrics in a prediction model may result

in a better test quality metric when enough historical data are available.

The rest of this thesis is organized as follows. Chapter 2 mentions background and

some existing traditional test quality metrics. I have explored some related works in

chapter 3. The motivation and problem description of this thesis, and my proposed

similarity-based test case quality metrics have been explained in chapter 4. In chapter

5, I have described detailed empirical study and its results. Finally, I have concluded

in chapter 6 by summarizing the contribution of my thesis and future works.



Chapter 2

Background

The primary goal of using test case quality metrics is to evaluate the tests and find

the scope of improvement required in the test cases. In the applications like test case

prioritization and generation, different test case quality metrics are extensively used.

The primary quality measure of a test case is its ability to detect software faults, i.e.,

whether the test fails on the program. Sometimes the severity of the revealed faults

might be a crucial factor and therefore the tests that detect more severe faults be

considered as higher quality.

As the ultimate goal of testing is detecting faults, any measure that directly quan-

tifies the fault detection power is a perfect metric, in terms of effectiveness [Rothermel

et al., 1999]. However, the actual fault detection metric can be calculated only if we

know beforehand how many faults are in the source code. Then we execute the tests

on the code and check how many of those faults are detected by each test. Unfor-

tunately, this is not practical, since firstly, we do not know the number of faults

beforehand and secondly, we often need to measure the quality of the test cases be-

6
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fore executing them (e.g., in the context of test prioritization). Therefore, several

heuristics are used to define test quality metrics with the hope that they have high

correlations with real fault detection power of the test cases. A well-known set of

such metrics are test adequacy criteria.

Test adequacy criteria are usually used for evaluating test cases/suites. It is also

considered as a guiding mechanism in automatic test generation tools for generating

high quality tests. Test adequacy criterion is a predicate that defines which prop-

erties of a program must be exercised, if the test is to be considered adequate with

respect to the criterion [Goodenough and Gerhart, 1975]. Two main types of test

adequacy criteria are coverage-based test adequacy criteria and fault-based test ade-

quacy criteria [P, 2008; Pezzè and Young, 2008]. Besides the test adequacy criteria,

other measures having high correlation to the fault detection are also considered as

test quality metrics such as previous fault detection, size, complexity, code churn, etc.

[Zimmermann et al., 2007]. In the rest of this chapter, I explain the test adequacy

criteria and the other quality metrics.

2.1 Coverage-based Test Adequacy Criteria

Coverage is a commonly used test adequacy criteria that indicates how much of

the program is executed when the test case runs. A test case reveals a fault when it

executes a segment from the program that causes a failure. Most existing automated

test generation tools [Fraser and Arcuri, 2014; Sen and Agha, 2006] try to generate

test cases that cover/execute 100% (or as close as possible to that) of the source

code. Therefore, high coverage has always been an indicator of good quality because
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executing (covering) more segments by a test case also increase the probability of

detecting faults. Coverage based test adequacy criteria is further grouped into control-

flow coverage and data-flow coverage.

2.1.1 Control-flow Coverage

Coverage-based tools use control flow analysis to measure the adequacy of test

cases. The basic idea is to examine the execution of test cases in terms of their

coverage of all possible execution paths in the flow-graph model of the program [Zhu

et al., 1997]. Adequacy criteria based on control-flow could be categorized into number

of coverage levels. Some of the major categories are as follows:

Procedure/Method Coverage:

The key question here is “has each function (or method) in the program been

called?”. For each test case, the method coverage refers to the number of methods

called from the test case divided by the total number of methods in the program [P,

2008].

Statement Coverage:

A finer-grained criterion compared to method coverage is the statement coverage,

which is the number of executed statements, by the test cases, divided by the total

number of statements in the program/class under test. Statement coverage is still a

weak coverage criterion [Zhu et al., 1997] and yet the most used one in practice [P,

2008; Pezzè and Young, 2008].
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Branch Coverage:

The branch coverage examines all branches (both the true and false cases) of the

program. The branch coverage for each test is calculated by dividing the number

of executed branches by the total number of branches. Branch coverage is stronger

criteria than the statement coverage and it actually subsumes the statement coverage

[Zhu et al., 1997].

Path Coverage:

Execution of all branches does not mean that all the combinations of control

transfers have been checked. The requirement of checking all combinations of branches

is usually called path coverage [Zhu et al., 1997]. The path coverage of a test case is

the fraction of paths of the program executed by the test [Pezzè and Young, 2008].

Condition Coverage:

The basic condition coverage of a test case is the fraction of total number of truth

values assumed by the basic conditions of program during execution of the test case

[Pezzè and Young, 2008]. Condition coverage can be extended to multiple condition

coverage that includes both the basic condition and branch adequacy criteria. It

requires checking each possible evaluation of the compound conditions, i.e., considers

each sub-conditions [Zhu et al., 1997].
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2.1.2 Data-Flow Code Coverage

Another coverage-based test adequacy criterion is data-flow coverage, which de-

pends on the flow of data through the program. Data-flow coverage criterion focuses

on the values associated with variables and how these associations can affect the ex-

ecution of the program [Zhu et al., 1997]. This analysis emphasizes the occurrences

of variables within the program and each variable occurrence is classified as either a

definition occurrence (def) or a use occurrence (use). A definition occurrence of a

variable is where a value is assigned to the variable. A use occurrence of a variable

is where the value of the variable is referred. There are several types of data flow

coverage criteria. The most well-known data-flow coverage criterion is DU-pair cov-

erage, where the goal is covering all pairs of definitions and uses per variable [Pezzè

and Young, 2008].

2.2 Fault-based Test Adequacy Criteria

Fault-based adequacy criteria take another approach than code coverage and mea-

sure the quality of the tests by their ability to detect known faults, as an estimate for

their ability for detecting unknown faults [Jia and Harman, 2011]. The known faults

are either real faults or artificial faults (mutants). The real faults are the actual faults

which are intentionally seeded into the code, for the sake of evaluation. On the other

hand, a mutant is a variant of the original program, automatically created by making

a small syntactic change (e.g., a condition, a statement, a variable) in the original

program [Pezzè and Young, 2008].
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In mutation testing, tests are executed on all of the mutant programs and a mutant

is killed if it fails on the test case. The effectiveness of the test case is measured by

the number of killed mutants by the test case. More killed mutants by a test case

infers that the test is also more effective in finding real faults in the program.

2.3 Other Quality Metrics

Besides the test adequacy criteria (code coverage and fault-based measures), there

are some other quality metrics that have high correlation to fault detection ability

of the test cases, such as historical fault detection, size of the test, complexity, code

churn, etc. [D’Ambros et al., 2010]. Most of these metrics are originated from the

defect prediction domain and/or regression testing.

Regression testing is the process of re-testing the software that has been modified

due to either fault fixes or adding new features [Ammann and Offutt, 2008]. Re-

gression testing ensures that anything that was working before is still working and is

not regressed due to the modification, unless the regression is indeed the goal of the

modification. For instance, during unit testing, every time a unit, such as a class,

is modified by adding new methods, regression testing should ensure that the un-

modified methods also work as required. As regression testing requires re-testing the

existing elements, test case selection, minimization and prioritization are very crucial

factors, for saving the testing resources such as the number of testers required, time,

budget etc.

Commonly used quality metrics to evaluate tests in the regression testing are

code coverage (i.e., coverage-based test adequacy criteria as described in section 2.1),
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historical fault detection and code coverage of the changed parts of the program.

Some of these other quality metrics are defined below.

2.3.1 Historical Fault Detection

Historical fault detection metrics assign higher priority to test cases of the current

release that failed historically, i.e., on any previous release [D’Ambros et al., 2010;

Zimmermann et al., 2007; Kim et al., 2007]. The reason is that studies have shown

that the tests with higher historical fault detection rate are more likely to fail in the

current version as well. Therefore, in my thesis, I consider this historical fault based

metric as traditional metric that counts previous failing occurrences of a test case.

2.3.2 Code Coverage of the Changed Parts

Since in regression testing the source code is modified from the previous version,

metrics that measure the coverage of the changed parts of the code are very important

[D’Ambros et al., 2010], because even if the total coverage of the test suite is not high,

we still expect a high coverage in the changed part to assure proper regression testing.

This metric prioritizes the test cases that execute any change part of the code directly

or indirectly.

2.3.3 Size of Tests

Finally, the size of the test cases is also a commonly used test quality metric,

where the large size indicates a more effective test. Generally, size of a test case refers

to the LOC (Line of Codes) in the test method. However, sometimes the number of
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assertions in a test case is considered a better size measure, since it directly measures

the amount of verifications applied by the test cases. This is to mention that size of

test cases is not the same as its coverage [Pezzè and Young, 2008]. For example, test

t1 can cover a method with one assertion and test t2 do the same but try it with 5

more assertions. In this case, test t2 has higher chances to detect faults than t1.



Chapter 3

Related Work

Test case/suite quality has been studied in different domains such as test case

prioritization, test case generation, fault prediction etc. A number of quality metrics

have been proposed so far in order to evaluate test case quality from these per-

spectives. In the rest of this chapter, I mention some of the related works in three

categories.

3.1 Test Case Effectiveness Metrics

In [Xie and Memon, 2006], the authors mentioned the characteristics for develop-

ing a “good” test case/suite that significantly affect the fault-detection effectiveness

of a test suite. Their specific concentration is the test case effectiveness in GUI test-

ing, which considers test cases as sequences of GUI input events that a user might

perform on a GUI. They found that the tests with more diversity and higher event

coverage are better in detecting faults from the GUI.

14
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In another study, Arcuri evaluated the effect of test case sequence length in testing

programs with higher internal states [Arcuri, 2010]. The author showed that the

longer test case sequence tend to lead to a higher level of coverage and hence are

more effective in detecting faults.

Nagappan et al. [2007] proposed a set of 9 metrics to evaluate Junit tests in terms

of early estimation of software defects. The metrics were divided into two groups: test

quantification metrics, and complexity and Object-Orientation (OO) metrics. Test

quantification metrics evaluated the tests by the amount of the tests (e.g., number

of assertions or LOC) written in order to check the program source code thoroughly.

Besides, the complexity and OO metrics such as Weighted methods per class (WMC),

Number of children (NOC), Depth of inheritance tree of a class (DIT) etc. were

chosen from a widely used Chidamber-Kemerer (CK) OO metric suite [Chidamber

and Kemerer, 1994]. Nagappan et al. examined the relative ratio of the tests to the

source code with the complexity and OO metrics.

In this thesis, I have examined some of these common metrics such as coverage

and test length.

3.2 Fault Prediction Metrics

Fault prediction is a widely studied area in software testing research. A number

of metrics and approaches are used in predicting faults in source code. In a large

survey, Radjenović et al. [2013] categorized the bug prediction metrics based on size,

complexity, OO metrics and process metrics. Process metrics are usually extracted

from the combination of source code and repository. Some of the process metrics are
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number of revisions, bug fixes, refactoring, code, delta, code churn (i.e., sum of added

and deleted lines of code over all revisions) etc. According to the survey, process

metrics were found most successful in predicting post-release defects compared to the

traditional source code metrics (e.g., LOC and complexity metrics) and OO metrics

(e.g., CK metrics [Chidamber and Kemerer, 1994]).

Nagappan and Ball also found the code churn metrics successful in fault prediction

[Nagappan and Ball, 2005]. However, they showed that the relative code churn metric

was much better than the absolute code churn metric. In relative code churn metric,

churn measures are normalized values of the various measures obtained during the

churn process.

Shihab et al. studied the impact of change-metrics in terms of risk management

of a software [Shihab et al., 2012]. A change is considered risky when they might

result in some faults in the future. The authors found that the number of lines and

chunks of code added by the change, the developer experience, the number of bug

reports linked to a change and the faultiness of the files being changed are the best

indicators of change risk.

Moser also mentioned the number of bug fixes as one of the powerful fault-predictor

process metrics [Moser et al., 2008]. He showed that the previous bug-fixing activities

are likely to introduce new faults in the later releases. Similar to this, Zimmermann

et al. [2007] also showed that the number of past bug fixes extracted from the repos-

itory is also correlated with the number of future fixes.

Most of the fault prediction studies are applied on the source code files. However,

I have used two main findings from these studies. 1) The previously faulty source
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code are likely to have faults again in the new release. This is the main motivation

behind the historical fault detection metrics that I have explored in this thesis. 2)

Changing a source code increases its chance to fail. Therefore, the test case that

covers (executes) more changed part of the source code is better. So, in this study,

I have considered the number of changed methods covered by a test as one of the

existing test case quality metrics and I call this metric “Changed Method Coverage”.

3.3 Historical Data Used in Metrics

A number of researchers proposed to use historical fault detection as a quality

metric, in the context of regression test case selection, prioritization and minimization

that makes the regression testing cost-efficient in terms of budget, time and number

of testers. Kim and Porter [2002] proposed to prioritize tests based on historical

test execution that also improves the overall regression testing. They considered the

number of previous faults exposed by a test as the key prioritizing factor

Some history-based metrics used a partial and more recent history based on time-

window whereas other metrics used the full historical data. For example, in the

context of regression testing under continuous integration, Elbaum et al. proposed a

regression testing technique that use time windows to track how recently test suites

have been executed and revealed failures, to select and prioritize tests [Elbaum et al.,

2014]. They used the readily available test execution data from the recent history

data to determine higher priority tests for execution.

On the other hand, Park et al. considered the test case execution costs and the

severity of detected faults to prioritize tests in regression testing [Park et al., 2008].
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However, instead of specific time frame, the total history of the test execution was

used to determine the historical value of the test case. The assumption was that

the costs of the test cases execution and the fault severity of detected faults can

significantly change from one release and therefore, the complete history can further

improve test case prioritization. Huang et al. also used historical record of test cases

execution cost and severity of detected faults [Huang et al., 2012], however, they

applied a search-based approach, i.e., genetic algorithm to generate prioritized test

execution order in the current release.

Khalilian et al. [2012] proposed a prioritizing equation with variable coefficients

gained according to the available historical test case data performance. Their history-

based technique improved the overall test prioritization compared to the approach

used by Kim and Porter.

All these traditional historical fault detection measures prioritize the test cases

that detect faults in previous releases. However, these traditional approaches have

some shortcomings. In the traditional historical fault-based quality metrics, a test

case from the current release would be considered as effective if the exact same test

also failed in the previous release [D’Ambros et al., 2010; Zimmermann et al., 2007].

In this thesis, I argue (and empirically show) that there might be several failing

test cases, in the current release, that are not exactly the same as those old fault

revealing test cases, but they are quite similar to them. Therefore, I have addressed

this issue by proposing a test quality metric that would prioritize the test cases that

are similar to the previous fault revealing tests, while considering the history of the

software.



Chapter 4

Methodology

In this chapter, at first, I describe the problem that is targeted in this thesis

by using a motivational example, where the traditional history-based metric fails to

rank the tests properly. Then I give an overview of my proposed similarity-based

quality metric that ranks the tests of a current version based on their similarity to

the previously failing tests.

4.1 Motivation and Problem Description

Test case quality metrics are used in different applications; most commonly in

evaluating existing test suites that try to make sure enough testing has been done.

An automatic test case generation tool also uses quality metrics to evaluate test case

effectiveness in order to produce high quality tests. In addition, quality metrics are

used in prioritizing test cases, when the resource (e.g., time, number of software

testers) is limited. A test case prioritization technique ranks the test cases based

19



20 Chapter 4: Methodology

on the quality metrics so that the more effective (higher quality) tests are being

executed first and detect the software faults faster, within the limited testing budget.

Test case prioritization is very important in practice for software companies, specially

when continuous integration and rapid release demands fast development paces.

In continuous integration development environments, new or changed code are

frequently integrated with the mainline codebase. Continuous integration processes

require extensive testing to be performed prior to code submission. To make this

process cost-effective, regression testing techniques must operate effectively within

continuous integration development [Elbaum et al., 2014]. Recently, Elbaum et al.

has shown that in the continuous integration process, test selection and prioritization

techniques can be performed, cost-effectively, in the absence of coverage data by using

readily available test suite execution history [Elbaum et al., 2014]. Test execution

history provides the information regarding a test, i.e., whether it passed or failed

(detected a fault, previously). In addition, the historical fault detection measure is

also a guiding factor to detect faults in the current version [D’Ambros et al., 2010;

Zimmermann et al., 2007; Kim et al., 2007; Anderson et al., 2014].

In the traditional history-based quality metrics, a test case from the current release

would be considered as effective if the exact same test also failed in the previous

releases [D’Ambros et al., 2010; Zimmermann et al., 2007]. Now assume a test case,

such as testLang747 (a test case from the latest version of project Commons Lang,

a software system used for my study, explained in section 5.2) in Fig. 4.1, that is

just added to the current test suite and actually fails (detects a fault). This test case

is not effective according to the traditional history-based quality metric, since it did
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@Test 
public void testLang747() { 

assertEquals(Integer.valueOf(0x8000), NumberUtils.createNumber(”0x8000”)); 
assertEquals(new BigInteger(”8000000000000000”, 16), 
NumberUtils.createNumber(”0x8000000000000000”)); 
.... 
assertEquals(new BigInteger(”FFFFFFFFFFFFFFFF”, 16), 
NumberUtils.createNumber(”0xFFFFFFFFFFFFFFFF”)); 
assertEquals(Long.valueOf(0x80000000000000L), 
NumberUtils.createNumber(”0x00080000000000000”)); 
assertEquals(Long.valueOf(0x800000000000000L), 
NumberUtils.createNumber(”0x0800000000000000”)); 
... 
assertEquals(Long.valueOf(0x7FFFFFFFFFFFFFFFL), 
NumberUtils.createNumber(”0x07FFFFFFFFFFFFFFF”)); 
assertEquals(new BigInteger(”8000000000000000”, 16), 
NumberUtils.createNumber(”0x00008000000000000000”)); 
assertEquals(new BigInteger(”FFFFFFFFFFFFFFFF”, 16), 
NumberUtils.createNumber(”0x0FFFFFFFFFFFFFFFF”)); 

} 

Figure 4.1: A failing test case in the Commons Lang project’s latest version 

 

 @Test 
public void testStringCreateNumberEnsureNoPrecisionLoss() { 

String shouldBeFloat = ”1.23”; 
String shouldBeDouble = ”3.40282354e+38”; 
String shouldBeBigDecimal = ”1.797693134862315759e+308”; 
... .. . . 
assertTrue(NumberUtils.createNumber(shouldBeFloat) instanceof Float); 
..... . .. 
assertTrue(NumberUtils.createNumber(shouldBeDouble) instanceof Double); 
assertTrue(NumberUtils.createNumber(shouldBeBigDecimal) instanceof BigDecimal); 

} 

Figure 4.2: A failing test case in the previous versions of the Commons Lang project

that is similar to the test case in Fig. 4.1

not exist in the previous releases, to fail. However, there are some test cases in the

past that are quite similar to this test case and they failed, e.g., the test case in Fig.

4.2. Therefore, it would be nice to have a history-based quality measure for test cases

that do not only look at exact occurrences of the test case in the past, but look at its

similar cases, as well. The key question here is “how do we identify such similar test

cases?”.
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@Test 
public void testCase_a() { 
   assertTrue(m1(8)); 
} 

 boolean b=false; 
 
 public boolean m1(int v){ 
      return m3(m2(v)); 
 } 
 
 public boolean m2(int n){ 
    if(n<10) 
       b=true; 
    return b; 
 } 
 
 public boolean m3(boolean x){ 
    return (x || b); 
 } 

@Test 
public void testCase_b() { 
   assertFalse(m1(12)); 
} 

testCase_a: <m1,m2,m3> 

testCase_b: <m1,m2,m3> 

(a)testCase_a 

(b)testCase_b (c)Source code 

Figure 4.3: Example of test cases and their corresponding method calls

Usually, along with the historical fault detection information, execution traces can

also be collected from the history. In general, an execution trace of a test case is the

sequence of method calls from the program source. For example, when a Junit test

“testCase a” in Fig. 4.3a is executed, it calls method m1 from the program source

code in Fig. 4.3c and its execution trace would be testCase a< m1,m2,m3 > in

terms of method invocation sequence. Now, assume another Junit test “testCase b”

in Fig. 4.3b. This test seems different from the test in Fig. 4.3a, since both its

name and assert statement differ from “testCase a”. However, the execution trace

of “testCase b” is testCase b< m1,m2,m3 >, which is very similar (in this scenario

same) to the execution trace of “testCase a”, in terms of the method call sequence.

To quantify the similarity between a new/modified test case and a failing test

case from history, test cases can be represented by their sequences of method calls as

described in the previous example (Fig. 4.3). The sequence of method calls could be
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testLang747() 

NumberUtils.createNumber(java.lang.String) 

StringUtils.isBlank(java.lang.CharSequence) 

NumberUtils.createInteger(java.lang.String) 

. . . . . 
StringUtils.isBlank(java.lang.CharSequence) 

NumberUtils.isAllZeros(java.lang.String) 

. . . . . . 

.. . . . .  
StringUtils.isBlank(java.lang.CharSequence) 

NumberUtils.createInteger(java.lang.String) 

(a) Test case trace of Fig. 4.1

  
testStringCreateNumberEnsureNoPrecisionLoss() 

math.NumberUtils.createNumber(java.lang.String) 

StringUtils.isBlank(java.lang.CharSequence) 

NumberUtils.isAllZeros(java.lang.String) 

NumberUtils.createFloat(java.lang.String) 

. . . . . . 

. . . . . . 

NumberUtils.createNumber(java.lang.String) 

StringUtils.isBlank(java.lang.CharSequence) 

NumberUtils.isAllZeros(java.lang.String) 

NumberUtils.createFloat(java.lang.String) 

(b) Test case trace of Fig. 4.2

Figure 4.4: Example of execution traces for Fig. 4.1 and Fig. 4.2

extracted from their execution traces. For instance, the sequences for the two test

cases of Fig. 4.1 and Fig. 4.2 are shown in Fig. 4.4a and Fig. 4.4b. As it can be seen,

NumberUtils.createNumber(java.lang.String), StringUtils.isBlank(java.lang.CharSequence)

and NumberUtils.isAllZeros(java.lang.String) methods are the same in the two test

case traces, which makes the two test cases similar.

This example, and other cases like this, which show the failing test case trace in

the current release is very similar to the failing test case traces from previous releases,

are the motivations behind this thesis, where I have proposed a quality metric using

test case similarity to the historical failing test cases.

4.2 High-level Overview of the Proposed Approach

My proposed similarity-based metric considers a test as effective, if it is similar to

any of the failed test cases from the previous versions. The similarity between test

cases is defined based on their sequences of method calls, extracted from execution



24 Chapter 4: Methodology

traces. Therefore, first, execution traces containing the sequence of method calls need

to be retrieved for all previously failed test cases. Then, the sequences of method calls

(i.e., execution traces) are also collected for all modified or newly added tests in the

current version. Finally, a similarity function is used to determine the similarity

between the execution traces of the modified/new tests in the current version and the

previously failed tests. Hence, the input of the similarity function is the execution

traces of both the current releases’ modified/new tests and the previously failed tests.

The similarity function, at the end, returns a value indicating how similar is a test

case to the previously failed test cases.

There are several similarity functions that can be used to identify similarity be-

tween two inputs/sequences. The main difference between these functions is whether

they account for the order of the method calls in the sequence or not (i.e., they take

it as a Set or a Sequence). In my thesis, I use the following similarity functions to

implement the similarity-based test quality metric.

4.2.1 Set-based Similarity Functions

In this subsection, I explain two set-based similarity functions that I have used in

this thesis.

Basic Counting (BC):

This measure is a very basic function, which does not account for the method

call orders nor for their position in the sequence. The function simply looks at the

past failing sequences of unique method calls and counts the overlap with the unique
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method calls of the test case under study. The total similarity value of a test case

is the sum of all these occurrences, which indicates how many unique method calls

from the current test case also appeared in the previous failing tests traces. However,

instead of using the actual summation value, a normalized value between 0 and 1 is

used. The normalization has been performed by diving the total summation value

by the total number of unique method calls from the history. The higher normalized

value of a test case means the test has also higher similarity with the previous failing

tests.

Hamming Distance (HD)

Hamming Distance is a widely used distance functions used in the literature,

which is a basic edit-distance. The edit-distance between two sequences is defined

as the minimum number of edit operations (insertions, deletions, and substitutions)

needed to transform the first sequence into the second [Dong and Pei, 2007; Gusfield,

1997]. Hamming is only applicable on identical length inputs and is equal to the

number of substitutions required in one input to become the second one [Dong and

Pei, 2007]. If all inputs are originally of identical length, the function can be used

as a sequence-aware measure. However, in most of the applications, test inputs have

different lengths. Therefore, to force them to have an identical length, a binary vector

is made per input that indicates which elements from the set of all possible elements

of the encoding exist in the input. As a result, the function does not preserve the

original order of elements in the input anymore and it becomes a sequence ignorant

(or set-based) similarity function [Hemmati and Briand, 2010; Hemmati et al., 2013].
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In my study, the total hamming distance of a modified/new test, e.g., T1 in

the current release, has been calculated by summing up all hamming distances, be-

tween T1 and each of the failing tests from the previous releases. For example,

assume, two previous failed test traces are T3 < A(), B(), B(), C(), B(), D() > and

T2 < A(), E(), D(), B(), A() >, and the modified/new test trace in the current re-

lease is T1 < F (), A(), C(),M(), N(), X(), A() >. Therefore, the total hamming dis-

tance of T1 would be the summation of hamming distances between T1 and T3 (i.e.,

Hamm(T1, T3)), and hamming distances between T1 and T2 (i.e., Hamm(T1, T2)).

To calculate the hamming distance between T1 and T2 (Hamm(T1, T2)), first,

all unique method calls from T1 and T2 form a set of all possible elements, i.e.,

V < A(), E(), D(), B(), F (), C(),M(), N(), X() >. Now, both the T1 and T2 are

encoded as binary vector of identical length, where a bit is true only if the encoded

test case contains the corresponding element from V . So, the test T1 is encoded as

< 1, 0, 0, 0, 1, 1, 1, 1, 1 > and T2 is encoded as < 1, 1, 1, 1, 0, 0, 0, 0, 0 >, with respect

to the set of all possible elements V .

Then Hamm(T1, T2) has been measured by applying XOR operation between

their binary encoded representations and then normalized between 0 and 1 by dividing

the sum of XOR values by the length of V . Therefore, the normalized Hamm(T1,

T2) is < 0, 1, 1, 1, 1, 1, 1, 1, 1 >= 8/9. Similarly, the normalized hamming distance

between T1 and T3 (Hamm(T1, T3)) has also been calculated.

Finally, all of these normalized hamming distances have been summed up and

normalized between 0 and 1 again by dividing the summation value by the total

number of failed test cases from previous versions. The low hamming distance value of
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a test case means the test has high similarity with the previous failing tests. So, I have

converted this distance to similarity by subtracting the total normalized hamming

distance value from 1.

Improved Basic Counting (IBC)

I propose an Improved Basic Counting (IBC) similarity function that combines

the Basic Counting (BC) and Hamming Distance (HD) similarity functions. IBC is

a weighted version of BC and HD, where BC values are used as the default simi-

larity value of IBC and therefore, it is called the improved BC. However, if the BC

similarities are very low (i.e., less than a threshold) then the IBC will use the HD

similarity value (when it is higher than the threshold). For example, the similarity

value of a test case TCx using BC and HD is 0.4 and 0.6 respectively. Now assume

the threshold similarity value for IBC is 0.5. So the IBC value of TCx would be 0.6

in this case. Thus HD will be used as IBC similarity value only when the BC is lower

but HD is higher than the threshold value. Otherwise BC will be used as the default

IBC similarity value.

4.2.2 Sequence-based Similarity Functions

In this thesis, I have used the following sequence-based similarity function for the

proposed similarity-based metric.
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Figure 4.5: An overview of the proposed similarity-based test case quality measure,

using historical failure data.

Edit Distance (ED)

The general edit distance function is a sequence-aware function, where the order

and position of method calls in the traces would matter. One of the most well-

known algorithms implementing edit-distance which is not limited to identical length

sequences is Levenshtein [Dong and Pei, 2007] where each mismatch (substitutions)

or gap (insertion/deletion) increases the distance by one unit. To change distances

into similarities, we need to reward each match and penalize each mismatch and gap.

The relative scores assigned to matches, mismatches, and gaps can be different. A

basic setting for the function would be implemented in a way where matches are

rewarded by one point and mismatch and gap are treated the same by giving no

reward [Hemmati and Briand, 2010; Hemmati et al., 2013]. In my study, I have used

this basic setting for the implementation.
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4.3 Similarity-based Quality Measure

The proposed similarity-based quality metric measures tests case quality by their

similarity values, which are calculated using different approaches mentioned in the

previous sections. The test cases are ranked in descending order based on the sim-

ilarity value. The lower rank value of a test indicates that the test case should be

executed earlier than the other tests and is more effective in identifying the first fault

of a system. The overall process of similarity based quality measure using BC simi-

larity function is shown in Fig. 4.5 where the previous failed tests are TCb and TCz,

and the modified/added tests in the current release are TCx and TCy. The higher

rank of TCx indicates that it should be executed earlier than TCy to detect the faults

earlier.
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Evaluation

In this chapter, I explain detailed empirical study and evaluate the results of my

experiments. I evaluate the proposed quality metrics in the context of tests case

prioritization that is one of the application domains of such quality metrics.

5.1 Research Questions

In this thesis, I seek answer to the following research questions:

RQ1: Can a similarity-based test case quality metric improve the traditional histor-

ical fault detection metric, in terms of identifying fault revealing test cases?

RQ2: Which similarity function works best for the similarity-based test quality met-

ric?

RQ3: Can the best similarity-based test quality metric improve other existing quality

metrics, such as code coverage, test size and change-related metrics?

30
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Table 5.1: Projects under study

Projects
#Faults

(#Versions)
#Test Cases

Median number of
Test cases per version

JFreeChart 26 2,205 1,751
Closure Compiler 133 7,927 7,066
Commons Math 106 3,602 1,976
Commons Lang 27 2,245 1,757

Joda Time 65 4,130 3,748

RQ4: How well can we predict the first failing test when combining the similarity

based metrics with the traditional metrics?

RQ5: Overall, can the best prediction-based quality metric improve the best indi-

vidual quality metric?

5.2 Subjects Under Study

In my experiment, I have used five different Java projects from the defects4j

database [defects4j]. The database provides 357 faults and 20,109 Junit tests from five

different open-source Java projects as mentioned in Table 5.1. All the faults are real,

reproducible and have been isolated in different versions [Just et al., 2014]. There is

a faulty version and a fixed version of the program source code, for each fault. The

faulty source code is modified in the fixed version to remove the fault. The test cases

are the same in both of the faulty and the fixed versions. However, there is at least

one test case (a Junit test method) in each version that fails on the faulty version but

passes on the fixed version.

It is worth mentioning that I am not focusing on specific types of faults like mem-

ory issues, recursions, concurrency or timing issues in my thesis. Instead, I propose a
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generic approach (that is mainly built upon existing risk-based approaches) for typi-

cal faults in typical deterministic systems, regardless of their application domain. My

case studies using defects4j database [defects4j], however, only focus on a small subset

of open source java libraries. Indeed, generalizing the results requires replications on

different systems, which is not within the scope of my thesis.

5.3 Data Collection

As my proposed similarity functions require test case traces containing method

call sequences, I need to use a tool for trace generation. I have used Daikon [Ernst

et al., 2007] tool to produce the execution traces from three projects (Commons Lang,

Joda Time and JFreeChart). Daikon is a tool to dynamically detect likely program

invariants and it allows to detect properties in C, C++, C#, Eiffel, F#, Java, Perl,

and Visual Basic programs [Ernst et al., 2007]. The daikon front end (instrumenters)

for Java, named Chicory, executes the target Java programs and creates the .dtrace

file that contains the program execution flow along with the variable values in each

program point. The method sequence calls have been extracted from the .dtrace file.

However, for the other two projects (Commons Math and Closure Compiler), I

could not use daikon for trace collection, as the tests from these projects generated

very large .dtrace files (more than 5 GB for each test case). So, instead of using daikon,

I have used AspectJ [Eclipse-AspectJ] to produce the trace of method sequence calls

directly. Although the trace extraction process is different, the format of the extracted

method sequence calls is same.
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I could have used AspectJ for all of the projects, however, I actually started

working with Daikon initially. When I faced problem with the large Daikon trace files

for two of the projects, I started using AspectJ. As the extracted method sequence

format is exactly the same for both the Daikon ad AspectJ, I did not repeat the

extraction process using AspectJ for other three projects for which I used Daikon.

I have collected the method sequences for all modified tests in the current release

and also all the failed tests traces from the previous releases. Finally, I have measured

the tests quality in each version based on their ranks provided by different approaches

for the evaluation.

Moreover, I have also extracted some basic quality measures, such as, Size of

Testcase (ST), Method Coverage (MC) and Changed Method Coverage (CMC) from

the projects for the evaluation. The ST is the number of uncommented statements

in a test method that has been derived from the Java Abstract Syntax Tree (AST)

parser using Eclipse JDT API [Eclipse-JDT]. The MC of a test case is the number

of unique methods called during the test execution. I have calculated this measure

from the execution traces produced by daikon and AspectJ. The CMC of a test case

is the number of unique method calls that are called by the test case and have been

changed since the previous version. At first, I have identified the list of source code

method names in the current version that have been changed from the immediate

previous version. Then I have measured how many of these changed source code

methods appear in the execution trace of each modified/new test cases in the current

version. The final CMC value of a test case has been normalized between 0 and 1 by

dividing the total number of changed methods by the total number of unique method



34 Chapter 5: Evaluation

calls from the test execution trace.

I have implemented the similarity functions using Java and I have used the sta-

tistical computing tool, R [R-Project] for my evaluation purposes. R is a language

and environment that provides a wide variety of statistical computing technique. An-

other reason behind using R is that it is a free software and a number of libraries are

available for statistical computation.

5.4 Experiment Design

Experiment Design for RQ1 (Can a similarity-based test case quality met-

ric improve the traditional historical fault detection metric, in terms of

identifying fault revealing test cases?): To answer RQ1, I have compared the

test cases ranks using the proposed similarity-based metric using Hamming Distance

(HD) function with the traditional history-based metric (TM).

Experiment Design for RQ2 (Which similarity function works best for the

similarity-based test quality metric?): To answer RQ2, I have compared HD,

Basic Counting (BC), and Edit Distance (ED) functions by analyzing the ranks of

test cases provided by the similarity-based metrics using these functions.

I have also proposed an Improved Basic Counting (IBC) metric. There are two

improvements in the IBC compared to the BC. In the improved BC, at first, the nor-

malized BC and HD values have been rounded by two decimal places. This helps to

avoid ranking differences where the similarities are very close. The second improve-

ment is to combine the BC and HD. To do that for cases where BC values are lower
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than 0.5, I have first looked at HD values if they are higher than 0.5. In that case,

I have ranked them using HD, otherwise ranked them using BC. This helps to get

the most out of both BC and HD. IBC similarity function has been actually designed

based on the initial performance of BC and HD. Although I use both the BC and HD

to design IBC, I give more weight to the BC, as BC was found slightly better than

the HD in identifying the first faults.

Experiment Design for RQ3 (Can the best similarity-based test quality

metric improve other existing quality metrics, such as code coverage, test

size and change-related metrics?): To answer RQ3, I have compared the Size

of Testcase (ST), Method Coverage (MC) and Changed Method Coverage (CMC)

metrics against the proposed similarity-based metric.

Experiment Design for RQ4 (How well can we predict the first failing test

when combining the similarity based metrics with the traditional met-

rics?): RQ4 compares the ranks of test cases using two prediction models, 1) the

traditional model and 2) my proposed model. In the traditional model, all the tradi-

tional metrics such as ST, MC, CMC and TM have been used to build a regression

model, where the metrics are used as independent variables. On the other hand, the

proposed model uses all the similarity-based metrics using HD, BC, ED and IBC

functions, along with all the traditional metrics.

To predict the ranks of the test cases in the current version of a project, the

regression models had been trained using different quality measures from all the

previous versions. For example, to rank the tests in a latest version (e.g., version
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10) of a project, the model had been trained using all quality measure values from

version 1 to 9. The test cases data of the current version have been used as the test

set of the model, where ranks of the tests have been predicted using the model. It

is worth mentioning that a test case can either pass or fail in the actual execution.

Therefore, the dependent variable of the regression model is binary (pass or fail),

which makes the model as a logistic regression model. I have used the “glm” function

in R [GLM] to build the logistic regression model. The “glm” function builds the

logistic regression model using a set of predictor variables and the model is used to

predict a binary outcome (i.e., pass or fail). Then, I have used “predict” function

[Predict] in the R tool to get the response probability value (i.e., probability of a test

being passed/failed, in my case) of the observations from the test set.

Experiment Design for RQ5 (Overall, can the best prediction-based quality

metric improve the best individual quality metric?): To answer RQ5, I have

compared the ranks of the test cases using the best individual quality metric with the

ranks of the test cases using the best prediction model.

5.5 Evaluation Metric

The defects4j dataset mentions which test case actually fails in the current version

[defects4j]. So, I have compared the first failing test case’s rank, provided by different

approaches for each version (note that there is only one fault per version, but there

might be more than one test that detect it). In other words, I have compared the

percentage of the test cases that need to be executed in order to catch the first fault
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in each version, separately. I have done this by dividing the rank of the first failing

test by the total number of modified/new tests in each version. In defects4j dataset,

most of the versions contain only one failing test case (i.e., one failure only). So to

detect the failure, even one failing test is enough. Therefore, I have used the rank of

the first failing test to compare different prioritization approaches.

In case of ties in the similarity values, I have ranked the tied test cases randomly, by

applying the rank function in R with a parameter ties.method=“random” [R:Ranks].

To deal with this randomness, I have calculated the rank 30 times for each version of

the projects. Running an experiment 30 times is a common practice to deal with the

randomness in different fields of sciences [Arcuri and Briand, 2011]. Therefore, I have

obtained one normalized rank value between 0 and 1 that represents the percentage of

tests required to execute in order to identify the first fault. Since I have calculated the

rank 30 times for each version, I have considered the median of these 30 values as the

rank of first failing test for each version. Finally, I have combined these median ranks

from all the versions of a project and represented them using a boxplot distribution

where the lower median line indicates better ranking for the project. A boxplot is a

convenient way to represent the distribution of data through quartiles. It shows five

number summary: minimum, first quartile, median, third quartile, and maximum.

Fig. 5.1 shows a simple boxplot that represents uniformly distributed data between

0 and 1.

Whenever I compare two distributions of the results and say one outperforms the

other, I have first conducted a non-parametric statistical significance test (U-test)

[Mann and Whitney, 1947] to make sure the differences are not due to the randomness
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Figure 5.1: A simple boxplot

of the algorithms. I have reported the p-values from the U-test to represent the

statistical significance. It is considered when p-value is less than 0.05, the results are

statistically significant and are not due to randomness [Mann and Whitney, 1947].

Sometimes, the difference between the performance of two algorithms are statisti-

cally significant (using U-test and p-value), however, the difference might be so small

that it has no practical value. Therefore, it is crucial to assess the magnitude of the

differences as well [Arcuri and Briand, 2011]. Effect size measures are used to ana-

lyze such a property [Arcuri and Briand, 2011; Goulden, 2006]. In my study, I have

used a non-parametric effect size measure, called Vargha and Delaneys Â12 statis-

tics [Arcuri and Briand, 2011; Goulden, 2006; Vargha and Delaney, 2000]. Given a

performance measure M , the Â12 statistics measures the probability that running

algorithm X yields higher M values than running another algorithm Y . When the

two algorithms are equivalent, then Â12 is 0.5. Therefore, while comparing algorithm

X and Y , Â12 = 0.7 represents that we would obtain higher results 70% of the time
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Table 5.2: Number of studied version

Projects
#Studied
Versions

#Versions
(# new/modified

tests >=5)

#Versions
(TM works)

Commons Lang 60 41 20
JFreeChart 24 16 2

Commons Math 43 36 12
Joda Time 25 16 0

Closure Compiler 95 85 0

with algorithm X compared to the algorithm Y [Arcuri and Briand, 2011].

In my context, the given performance measure M is the percentage of the tests

need to be executed (i.e., normalized rank of the first failing test) in order to catch

the first fault in a version. Therefore, we get an Â12 value for each version of the

project while comparing two prioritization approaches. So, in our case, Â12 = 0.8

indicates that algorithm X ranks the first failing test lower than algorithm Y 80% of

the time. In other words, algorithm X can detect the fault faster than algorithm Y

80% of time. I have used this Â12 measure to evaluate all of my results.

It is worth mentioning that I have considered only the versions with at least 5

modified/new test cases for the evaluation. Actually, fewer than 5 modified/new

test cases in a version is too small to run the prioritization. So, we assume that in

the versions having fewer than 5 modified/new test cases, executing all test cases is

not costly and hence the prioritization is not actually beneficial. The details of my

number of studied versions is mentioned in table 5.2.
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Table 5.3: Comparison of the first failing test’s rank using TM and HD

Projects Measure HD TM

JFreeChart
Mean Rank 0.5385 0.6154

Std. Deviation 0.1087 0.5439

Commons Lang
Mean Rank 0.4205 0.4645

Std. Deviation 0.2421 0.3151

Commons Math
Mean Rank 0.4753 0.5283

Std. Deviation 0.1739 0.3512

5.6 Results and Discussion

In the rest of this section, I answer the research questions by comparing both the

ranks of the first failing test cases and the Â12 measure. I also make sure that the

differences of the results are statistically significant.

5.6.1 Experimental Results for RQ1

RQ1: Can a similarity-based test case quality metric improve the

traditional historical fault detection metric, in terms of identifying

fault revealing test cases?

To answer RQ1, I have compared the first failing test’s rank assigned by my

proposed similarity-based metric (in this case, by using the Hamming Distance (HD)

function) and the traditional historical fault-based metric. The traditional metric

ranks the previous failing tests higher in the current release. Therefore, the traditional

approach works only when the set of all modified/new tests in the current release

contains at least one test that failed in any of the earlier versions.

Table 5.2 shows the number of versions where the traditional metric (TM) works.

As can be seen from the table, TM works only in 2, 12 and 20 versions, respectively
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from the JFreeChart, Commons Math and Commons Lang projects. Moreover, TM

does not work in any of the versions from the Closure Compiler and Joda Time

projects. The large number of versions where the traditional approach is not working

at all, is indeed the main motivation behind this thesis to propose an improved

historical fault-based metric. Since the traditional metric can not rank the tests

in many versions, it is already falling behind the proposed metric, but to be fair, I

have also compared the results for only the working versions.

For these versions of the projects, I have compared the rank of the first failing

test using the traditional metric against the similarity-based metric (in this case, by

using HD as the similarity function). Table 5.3 compares the average rank of the first

failing tests of the working versions from project JFreeChart, Commons Lang and

Commons Math. It can be observed that the average rank using HD is lower and has

lower variance than TM. The lower average rank of the first failing test suggests that

if the tests are executed based on the ranks provided by the HD, the fault would be

detected faster than using the TM-based rank.

I have also used the Â12 measure to compare these two metrics. Fig. 5.2 shows the

boxplots of the Â12 measures distribution for the versions of three projects where the

traditional metric works. The higher than 0.5 median lines in the boxplots represent

that in general ranks provided by the similarity-based metric using HD similarity

function is better than the ranks using TM, even for cases where the traditional

metric is working (note that the differences are also statistically significant with p-

values<0.05).
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Figure 5.2: The boxplots of the effect size measures for finding the first fault using

HD and TM, when comparing 30 runs of each versions of each project.

5.6.2 Experimental Results for RQ2

RQ2: Which similarity function works best for the similarity-based

test quality metric?

To answer RQ2, I have compared the Basic Counting (BC), Hamming Distance

(HD), Edit Distance (ED) and Improved BC (IBC) similarity functions. I have looked

at the ranks of the first failing tests provided by the proposed metric using these

similarity functions. Moreover, I have checked the Â12 measure distributions for this

evaluation.

The boxplots in Fig. 5.3 shows the distribution of the first failing tests ranks

for all the versions of five projects using different similarity functions such as ED,
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Figure 5.3: The boxplots of the average first failing test’s rank using HD, ED, BC and

IBC for all versions of each project.

HD, BC and IBC. It is seen that the median rank of the first failing test using the

sequence-based similarity function (i.e., ED) is always higher than the other set-based

similarity functions (i.e., HD, BC and IBC) for all the projects. As the lower rank

of the first failing test represents earlier fault detection, the lower median line of a

boxplot represents better ranking. Therefore, on average, ED is falling behind the

other similarity functions in all projects. Similarly, on average, the ranks using BC
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Figure 5.4: The boxplots of the effect size measures for finding the first fault using

BC, HD, ED, and IBC, when comparing 30 runs of each versions of each project.

and IBC is better than the use of HD. However, while comparing the BC and IBC,

the performance looks pretty similar for all the projects except the Joda Time (Fig.

5.3b) where IBC is better than BC.

Besides comparing the distribution of the first failing test cases ranks of a project

using different approaches, I have also measured their magnitude of differences by

using Â12 measures. Note that I calculate the ranks 30 times using an approach and

I obtain one Â12 measure value for each version while comparing two approaches in

a project. Fig. 5.4 shows boxplots of the Â12 measures distribution using different
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approach for each project, where there are at least 5 new/modified test cases in a

version.

Fig. 5.4(a) compares HD and ED, and Fig. 5.4(b) compares BC and ED. It can

be observed that the similarity-based ranking using HD provides significantly bet-

ter result than the use of ED in Joda Time, Commons Lang and Commons Math

projects, as the median lines for these box plots are closer to 1.0. However, for the

remaining two projects, the improvements are not enough significant (p-values are

still lower than 0.05 but the median effect size is around 50%). On the other hand,

BC is much better than the ED for all of the projects. Therefore, the results shown

in Fig. 5.4(a) and Fig. 5.4(b) suggests that it is better to use the BC as a similarity

function compared to the ED. The results also represent that the sequence-aware sim-

ilarity function (ED) is falling behind the sequence-ignorant (or set based) similarity

function (BC) in test case prioritization. This result is actually inline with the recent

studies [Hemmati et al., 2013] in the context of test case selection/prioritization. One

plausible explanation is that the sequence-aware matching is too restrictive, which

ignores potential weak similarities

Next, I have compared the similarity function BC with HD and the results are

shown in Fig. 5.4(c). Here it can be seen that BC performs significantly better than

the HD in JFreeChart and Closure Compiler project. However, the performance of

BC and HD is quite similar for the Commons Lang and Commons Math projects,

where neither of these functions outperforms the another (again p-values are low but

the median effect size is around 50%). On the other hand, HD performs better than

the BC for the Joda Time project. This result actually motivated me to propose the
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improved similarity function, IBC (defined in the section 5.4, which uses both the

BC and HD values. However, I give more weight to the BC values than HD values to

calculate the IBC, as the BC ranks are slightly better than the HD ones in identifying

the first fault in the current version.

Fig. 5.4(d) shows the comparison between IBC and BC. As can be seen from the

figure, IBC improves BC in the Joda Time project (p-values<0.05 and the distribution

of effect sizes leaning more toward higher than 50%) and is as good as BC in the others.

Therefore, IBC appears to outperform the other metrics based on the results of my

studied projects.

5.6.3 Experimental Results for RQ3

RQ3: Can the best similarity-based test quality metric improve

other existing quality metrics, such as code coverage, test size and

change-related metrics?

To evaluate RQ3, I have compared the ranks using the best similarity function

(in this case IBC, based on RQ2 results) with the other traditional measures, e.g.,

Traditional Metric (TM), Method Coverage (MC), Size of Testcase (ST) and Changed

Method Coverage (CMC). These other traditional metrics have been explained in

chapter 2 and Section 5.3. To evaluate the results of RQ3, I have also used the

distribution of the first failing test case rank for all versions of a project. Moreover,

I have used the Â12 measure distribution in a boxplot to compare two metrics and

again I have considered the versions having at least 5 new/modified test cases for all

projects.
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Figure 5.5: The boxplots of the average first failing test’s rank using TM, CMC, MC,

ST, and IBC for all versions of each project.

Fig. 5.5 shows the distribution of the first failing tests ranks using different tra-

ditional metrics and IBC. Note that TM does not work in any version of the Closure

Compiler and Joda Time project (as mentioned in section 5.6.1 and Table 5.2). In

addition, in the JFreeChart project, TM works only for 2 versions. Therefore, I have

excluded these 3 projects while comparing their performance using TM with the other

metrics. It can be observed that the median line for IBC is lower than the other met-
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Figure 5.6: The boxplots of the effect size measures for finding the first fault using

IBC, CMC, ST, MC and TM when comparing 30 runs of each versions of each

project.

rics in almost all the projects. The only exception appears in the Commons Lang

project (Fig. 5.5c) where the median line of IBC is slightly higher than the ST.

The performance of the best similarity metric (IBC) against CMC, ST, MC and

TM (applicable in 2 projects) using Â12 is shown in Fig. 5.6. In general, IBC ranks the

failing test lower than any of these metrics in more than 80% of the cases for three

projects (JFreeChart, Commons Math and Closure Compiler). Also in Commons

Lang project, IBC is significantly better than the MC, in 80% of the cases. However,
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the differences are not very significant (median effect size around 55-60% with p-

values <0.05) when comparing IBC with ST or CMC in Commons Lang and Joda

Time projects. Nonetheless, there is only one case that IBC falls behind and that is in

JodaTime when comparing IBC and MC, where the median effect size is around 40%.

The results also show that neither of these traditional metrics completely outperforms

others for all the projects. However, the proposed IBC is much more consistent in all

the projects.

5.6.4 Experimental Results for RQ4

RQ4: How well can we predict the first failing test when combining

the similarity based metrics with the traditional metrics?

To answer RQ4, I have compared the ranking using predicted ranks from two

different logistic regression models. In the regression model using traditional metrics,

I have considered all the traditional metrics (e.g., TM, ST, MC and CMC) as the

predictors (i.e., independent variables) and in the proposed regression model, I append

the list of traditional predictors by adding the similarity-based metrics (e.g., ED, HD,

BC and IBC).

However, there might be several variables in the model that are highly correlated

with each other. In addition, all the variables might not be statistically significant for

the prediction model. To deal with these problems, I have removed highly correlated

variables (i.e., any variables with correlation higher than 0.5) as suggested by Shihab

et al. [2011]. I have performed this removal in an iterative manner, until all the factors

left in the model has a Variance Inflation Factor (VIF) below 2.5, as recommended
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Figure 5.7: The boxplots of the average rank of the first failing test rank using two

prediction models for all versions of each project (Traditional Model: uses all

traditional metrics - Proposed Model: uses all traditional and similarity-based

metrics).

by previous works [Shihab et al., 2011; Cataldo et al., 2009]. The VIF quantifies

the severity of multicolinearity in an ordinary regression analysis where lower VIF

(=1) represents the variables used in the regression analysis are not correlated with

each other [Cataldo et al., 2009]. Thus, the prediction model is built with the least

number of uncorrelated factors. In addition, I have also measured the p-value of
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Figure 5.8: The boxplots of the effect size measures for finding the first fault using

the two prediction models, when comparing 30 runs of each versions of each project.

the independent variables for statistical significance and ensured that it is less than

0.05. Note that the remaining number of uncorrelated factors in the model might be

different for different versions of a project.

Fig. 5.7 compares the distribution of the predicted ranks of the first failing tests

for all versions of the projects using two models — the traditional and the proposed

logistic regression model. Again, I have used the median rank from 30 different runs

for each version of the projects. It can be seen that on average, the predicted ranks

of the first failing tests from the proposed regression model are always lower than the

ranks from the traditional regression model in four projects (JFreeChart, Joda Time,
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Figure 5.9: The boxplots of the average rank of first failing test using my proposed

prediction model and IBC for all versions of each project.

Commons Lang and Commons Math). However, the ranks provided by these two

models look similar (the median line is at 0.5) for the Closure Compiler project. The

same behavior is also observed in Fig. 5.8 that compares the Â12 measure distribution

of the first failing tests ranks from the two regression models.
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5.6.5 Experimental Results for RQ5

RQ5: Overall, can the best prediction-based quality metric improve

the best individual quality metric?

RQ5 compares the predicted ranks from the proposed logistic regression model (as

it is better than the traditional model, based on RQ4) with the ranks using the best-

similarity metric that is IBC (based on RQ2 and RQ3). Fig. 5.9 shows distribution

of the first failing test’s rank using prediction model and IBC for all versions of the

projects. Besides, the Â12 measure distribution comparing these two approaches is

also shown in Fig. 5.10.

It is observed that IBC performs better than the predicted ranks for the JFreechart

and Joda Time project, as the median line is below 0.5 in Fig. 5.10 and also it is lower

than the prediction model-based ranks in Fig. 5.9. However, the opposite behavior

is observed for the other 3 projects, Commons Lang, Commons Math and Closure

Compiler, where the model-based ranks are better than the ranks using IBC. One

plausible reason would be the higher amount of historical data has been used to train

the regression model for these 3 projects, which provides better ranks than the use

of individual IBC. Note that Commons Lang, Commons Math and Closure Compiler

projects have data from more versions (41, 36 and 85 versions respectively, mentioned

in Table 5.2) compared to the JFreeChart and Joda Time projects (16 versions each).

Therefore, the results suggest to use ranks from the prediction model when the model

could be trained using enough data, and to use IBC otherwise.
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Figure 5.10: The boxplots of the effect size measures for finding the first fault using

my proposed prediction model and IBC, when comparing 30 runs of each versions of

each project.

5.7 Threats to Validity

In terms of conclusion validity, I have conducted solid experiments to ensure that

the results are statistically significant and the magnitude of differences are significant,

as well (effect size).

In terms of internal validity [Feldt and Magazinius, 2010], I have used existing

libraries and tools as much as possible (e.g., Daikon [Ernst et al., 2007], AspectJ

[Eclipse-AspectJ]). However, one potential threat would be the impact of “method

name change” in the new releases, when the body of the method does not change.
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In such cases, my method sequence-based similarity function is weak. In general, if

one observes significant cases of “method name change” in the history, a finer grain

representation of test cases (e.g., sequences of covered statements) is recommended.

However, in my case studies, I did not experience any case where only method name

changes (the total “method name change” statistics is 4 versions out of 227 ver-

sions=1.7%).

In terms of construct validity [Feldt and Magazinius, 2010], I have used a pretty

well-known evaluation metric, which is the rank of first test that catches the fault. The

other alternative would be APFD (Average Percentage of Faults Detected) [Rothermel

et al., 1999], which is commonly used for test prioritization evaluation. However, in

my study, each version contains only one fault. So, using APFD would be ambiguous.

In terms of external validity [Feldt and Magazinius, 2010], I have conducted the

empirical study based on five real-world open source java libraries from defects4j

database with several versions and faults. However, generalizing the results to differ-

ent types of systems may still require further experiments.

5.8 Summary

In this chapter, I have explained a detailed empirical study and evaluated the

experimental results based on my research questions. I have used several versions

of five different java projects from defects4j database [defects4j] for my case study.

The rank of the first failing test case for each version has been used for evaluating

different quality metrics. Each experiment has been performed 30 times to deal with

the randomness and the median rank of these 30 runs has been reported.
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In addition to reporting the boxplot distribution of median ranks of first failing

test cases from several versions, I have also reported the effect size (Â12 measure)

while comparing two approaches. I have also ensured the results are statistically

significant (p-value is less than 0.05) and p-values are reported accordingly.

The experimental results show that on average, the use of similarity-based test

case quality metric using historical failure data can identify the first fault earlier

than using the existing quality metrics (the only exception is in the Commons Lang

project, where the existing metric ST was found better). I have also compared dif-

ferent similarity functions and found that the Improved Basic Counting (IBC) metric

outperforms the other similarity functions (e.g., ED, HD, BC) in identifying the first

fault. Therefore, I propose to use the IBC similarity function to implement the simi-

larity metric. Moreover, the predicted ranks provided by the logistic regression model

using combined set of metrics have been compared against the ranks using the best

individual similarity-based metric. The results suggest that it is better to use the

combined set of metrics in the prediction model when a larger training data from

previous versions is available for a project.
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Conclusion

In the applications such as test case prioritization, generation, selection etc., test

case quality metrics are extensively used. Previous failing information of a test case

is one of the existing quality metrics. This metric provides higher ranking to the test

cases that failed in any of the previous releases. Higher rank of a test case suggests

that the test case has higher probability to detect more faults in the current release,

as well. However, in practice, the fault revealing test in the current release may not be

exactly the same as the previous failed tests, instead, they might be similar, specially

when new tests are added to the existing test suite or old tests are modified.

Therefore, I have proposed a similarity-based test quality metric that uses histor-

ical failure data. I have conducted a large empirical study (227 versions from five

real-world java projects with real faults) that shows the proposed similarity-based

metric is more effective in identifying the first fault of a system compared to the

other traditional coverage and change-related metrics. I have also showed that com-

bining this metric with existing metrics in a prediction model can result in a better

57
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test quality metric.

6.1 Future Work

One potential future work is improving the studied similarity functions by ab-

stracting the method sequence calls into a state model. To define the similarity, I

have considered only the method name sequences from the previous execution traces

that do not include specific data values. In the future, the method sequence calls

from the execution traces could be merged into the state model based on the data

values.

Another future direction is assessing the proposed similarity-based quality metric

in terms of test case generation. Automated test case generation tools generate test

cases based on different criteria such as branch coverage, statement coverage, muta-

tion score etc [Fraser and Arcuri, 2011]. The proposed similarity-based metric could

be used as an additional criterion for the automated test case generation tool, where

the tool can generate tests with high coverage that are also similar to the previously

failing tests.
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