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OTRERAR s s e

ABSTRACT

The physical optics approximation is utilized to
improve the convergence of the humerical solution using the
moment method. As a result, the range of the application of
the moment method is extended to objects of 1large to very
large electrical dimensions. The advantage of this method
over the convéntional moment method 1s verified by its
application to large conducting eircular cylindrical
reflectors and accurate solutions in relatively 1less
computer time are obtained. The effects of variously shaped
dielectric loadings on the radiation characteristics of
cylindfical reflectors are also investigated and parameters
most important for the overall behavior of such reflectors
are determined.Finally,the effects of surface deformations on
the radiation patterns of some commonly used reflectors Aare
studied vand is shéwn that by a proper choice of the
parameters involved, directive beams of desired shape can be

'obtained.
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CHAPTER ONE

INTRODUCTION

The underlying differential equations, describing the
scattering and diffraction phenomena, ha&e long been fully
understood. The greatest difficulty in the solution of many
problems of electromagnetic theory is usually not the analy-
tical reduction of the original vectoriai problem to a set of
scalar wave equations, but rather obtaining the solution of
.such reduced» equations. The method of separation of
variables serves quite well for fhe study of some simple
electromégnetic wave problems, The wave equatiép
V?Q'f kéw = 0 is separable only in eleven coordinate
'“sysfems. But a wuseful solution, in thé presence‘ of an
object, can only be found if thé object’surface coincides
with one of the coordinate surfaces. This 1is a. necessity,
since the solution is unique if it satisfies the boundary
conditions, -and it can be applied if the abqve condition 1is
" satisfied. However, even if the boundary surfaces coincide
with one of the coordinate éurfaces, the solution obtained
using the separation of vaiables, may not be practically
useful., This is due to the fact that the eigen functions of
some of these coordinate systems cannot readily be computed

or the resulting series are slowly convergent., Therefore,



exact analytical solution of electromagnetic 5oundary value
problems are restricted to a small group of objects with
simple geometrical shapes. For this reason, attempts have
been made to develop approximate solutions, which could
provide wuseful solutions for variety ofthe problems, under
certain conditions. Examples are the 1low and the high
frequency approximations, variationalAmethods as well as the
geometrical theory of " diffraction. However, one of the
drawbackS of these methods is that, their application +to
each new scattering problem requires a great deal of thought
and ingenuity to estimate their accuracy of the solution and
to include all necessary rays or effects. In addition all
these methods tend to be»less accurate in the dintermediate
frequency range, where the dimensiogs of the objects are of
the same order of the frequency Waveléngth.

on fhe other hand, numerical methods may also be used

to study +the electromagnetic scattering problems Dby an

application of the boundary conditions in a finite set of

boundary points. These methods have received increasing
attention in recent years due to the availability of the

digital computers. They are, however, most useful in the low

and intermediate frequency ranges, for which the required

computing time is not excessive. In application of these
methods to the scattering problems, usually the original
differential or thevintegfal equations are transformed !into

a set of simultaneous eguations. A solution for the problen



is then obtained by the solution of these resulting linear
equations.

Two distinct approaches have been' employed to
obtain a set of linear equations for the scattering
problens, One 1is ©based on the modal expansion of the
scattered field in terms of a complete set of certain modal

functions with unknown coefficients, These unknown

coefficients are +then found by a truncation of the modal

series and the application of the boundary conditions in a
finite number of boundary points and solving the resulting
simultaneous equations; Alternatively, the scattered field
may also be found in terms of an integral equation of
certain unknown quantities, whiéh depending'én the object,
may be the induced charge and current densities on conductor
or the polarization 'gurrents in a dielectric region. A
solution for such an integral eguation is usuglly obtained
by an expansion of the wunknown guantities in terms of a
series of selected functions with unknown coefficients or a
direct numerical evaluation of the integral equations;

The 1integral equation method was first used by Mel
and Van Bladef for determination of the fields scattered by
perfectly conducting rectangular cylinders. The unknown
guantity of +the integrand was the induced current on the
cylinder, which was expanded in a set of discontinuous step
functions and the ©boundary conditions were enforced af N

different points on the contour C of +the scatterer. The



integral equation was then approximated by a weighted sum of
N sampled values of +the current distribution and the
resulting set of N linear eguations were to give the
required unknown current, In a later paper by Andreasen%a
more refined form of +this method was wused with better
approximations for the current distributioﬁ and the
numerical integration(parabolic approximation) to determine
the scéttered field of a set of conducting cylinders of
arbitrary cross sections.

Following these papers, the application of this
method has -  been extended to various two and
three-dimensional antenna and Scattering problems., The
publications in this area are numerous, but may Dbe
summarized asy; scattering from bodies of revolution®

3

. . . . . 4
scattering from ecylinders with arbitrary surface impedance .

scattering by a dielectric cylinder of arbitrary cross
. . . .. . 538 .
section wusing a volume integral formulation s Straight and
. . . . . .. 728
circular wires with arbitrary excitation ana loading ,
scattering from conducting loops and solution of circular
9 . . . 10
loop antennas”™ and the conical-equiangular spiral antennas .
The results of these and numerous other works in

s : . 11,1
this area are used by Harrington’

2to present a unified
approach for solving field problems using ~': digital
computers. More recently Mittra et al have surmmarized all
these numerical methods in their booklsand have provided

useful discussions on their advantages and limitations. The




method is also considered Dby Wallenberé“, vhere he has
described it in terms of the concept of generalized network
parameters.

In application of these methods to scattering
bodies with sharp edges, difficulties arise wihen certain
field components '‘become infinite and an accurate evaluation
of these components require their careful treatnents. One

15,1617
way, which has been used by Shafai is to relate these
singularities at the sharp edges to the geometry of the
scatterer wusing a transformation method. The resulting

integral then has a new unknown function, which is regular

and readily obtainable. In anrother approsch, utilized by

18
Abdelmessih and Sinclair , the exact behavior of the fields
19
at the edges was described by the Meixner - edge conditions

and 1its contribution was included in solving the integral
equation. However, the simplést approach 1s to ignore the
contribution of the edge currents by vlacing the sampling
points near but not on the edge itself; This approach has
been applied to the problem of séatteriné by a perfectly
conducting rectangl;o ahd has shown that for step éizes less
than A/10 , the r2sulting error in the computed induced
current, due to a mesh size, will not exceed two per cent.

Of prime importance to the wuser of the moment
method 1s how to solve the integral equation easily,
accurately and rapidly. A limitation of .thisl method, whén

used to analyze scattering problems, is that the scattering



body cannot be longer than a few wavelengths, since large
bodies result in large matrices which reqguire exceésive
computer storage and running time. In addition, aside from
the excesgive computatioﬁ time, the accumulation of error,
while inverting large matrices, greatly impaires the
accuracy of the solution thus obtained. The best one can do

~

then, 1is to seek for a way to improve the rate of the
convergence of this method. In a paper by Kinzefl, a
sectioning method is suggested for treating the
two-dimensional scattering problems which involve large
bodies. In this method, the scatterer is divided into a
number of small sections where a section might typically be
of the order of one wavelength long. Each section is <+hen
divideéd into more subsections. The next step 1s to compute
the current distritution on three adjacent sections, wusing
the method of moment, and ignoring the contribution of the
current distribution over the remsining sections. The
calculated approximate current distributionsare stored for
only +the middle section$, The oprocedure is continued for
.determining the current distribution over the entire contour
of the scatterer. This technique(.essentially asSumes' that

the current on cne section is significantly affected only by

i

the currents in the adjoining sections, which is only a good
approximation if the secticns are not too small.
One of the drawbacks of +this method is 1in

conpletely neglecting the contribution from the edge current



distribution, which 1is quite significant, on the other
sections. Moreover, +the computational tinme séved by this
method becomes significant only when the number of sections
is much larger +than rine,. Therefore, to extend the
application of the method of momenit to objects with large
cross sectional dimensions, relative to the wavelength, a
further modification of the method i1s reguired which ‘does
not suffer from the dr;wbacks, given for the sectioning
method.
| _For problems of conducting objects, the physical

optics approximation usually provides an approximate value
for the induced currents. This would suggest the use of the
concept of "a priori knowledge of the solution" for
improving the rate of the convergence of the moment methoa.
In a recent paperzz,Athis techﬁique has been applied to the
case of two-dimensional scattering frpm a perfectly
conducting strip illuminated normallj by a plane Wave; This
method is essentially =2 combination of the physical optics
approximation and the point matching +technique. On the
illuminated side of +the conducting surface, the physical

optics current has a value,

3 &1

= 2n x H.
o 1

Thus, assuming the total current in the form of,



~ ~ ~
Jd =d +J
po d

the(%ois readily known from the incident field of the
source and {i is the only unknown current to be determined.
However, the difference current Q1is due to the surface
discontinuities and +the shadow region and is localized to
the edges of the scatterer, Thus, as the scatterer size
increases, the contribugion of the difference current
decreases, but due to its localized nature can always be
determined by choosing enough matching points near the edges.
In chapter three of this thesis, the above method

is applied to the problem of two-dimensional scattering from
circular cylindrical reflectors in the opresence of an
electric line source. The improvement in the rate of the
convergence is demonstrated for a medium size reflector and
finally the method 1is applied for treating large reflectors

which are not solvable by a direct moment method.

Ordinarily, the ultimate goal in the antenna design

and studies 1is to seek a way of controlihg'the radiation
characteristics of the antenna, in a predetermined ‘manner,
This task 1is usually achieved Dy introduction of some
passive elements in the path of rays, for phase correction.
For example, reflectors, dielectric materials @ or metal
plates are Quite suitable for this purpose, since they
perform the same basic function, that is,a modification of

the phase.



So far, a number of theoretical and experimental
investigations have been carried out to study +the possible
control of antenna characteristics by dielectrically loading
the conventional antennas and reflectors. Among these works
are; the dielectric loadedaxial slot antennas on a circular
cylinder, which is solved analytically within certain
~simplifying assumptions, for investigation of the external

. 23
slot admittance , investigations on the optimum dielectric

24 '
thickness for maximum power radiation , experimental studies

of the variously shaped dielectric inserts on the radiation

25,26,27
patterns of loaded horns and corner reflectors , the

effects of the symmetrical loading of a horn aperture with
E-plane dielectric slabs for obtaining high aperture

28 N
efficiencies ., radiation by dielectric-loaded spherical,

29’

circular cylindrical antennas, wedges and corner reflectors.

and resonance effects due to aielectric loading in
: 30,31

cylindrical and spherical slots .,

Due to the scarcity of quantitative theoretical
data on- the effects of various parameters 1involved in
scattering from dielectrically loaded cylindrical
reflectoré, chapter four of this work is oriented to study
numerically the generai scattering prbperties of this class

of reflectors. The advantages of the numerical method are

based on the fact +that the approximate solution tends to

converge to the exact solution as the number of matching

points increases and has the flexiBility of treating



problems of arbitrary cross sections and two-dimensional
source disfributions.

Another method of controling the radiation
characteristics of the antennas, as stated Dbefore, 1is by
changing +the geometrical structure of the antenna system.
Reflectors and metal plates are quite suitable for this
purpose, and 1f done judiciously, it is possible to shape
the radiation pattern of the radiating element in a desired
fashion.

So far,( most of the information available for
conventional reflectors, hés been obtained through the use of
ray theory, which 1is only applicable if the <characteristic
dimensioﬁ of the reflector is much greater +than the
wavelength. However, for dimensions éf the order of the
wavélengfh, this approach most likely is not able to yield
results With‘acceptable accuracy. The purpose of the fifth
chapter is to investigate the radiation characteristics of =a
few commonly wused types of reflectors of moderate cross
section sizes, by means of numerical technique; It also
studies the possibilities of ©beam shaping by surface
deformations, and improvingthe radiation characteristics ‘of
these types bf reflectors in a desired manner,

In summary, +this +thesis considers the numerical
investigation of +the scattering properties of <circular
cylindrical reflectors. The integral equation approéch has

been adopted and +the problem is solved by the method of

10.



moment., In chapter two, the problem is rigorously formulated
in the form of a set of integral equatibns. The general form
of the equations are then reduced to the forms describing
the two-dimensional <case. Particular attention is paid to
the case of transverse'magnetic(TM)scattering which is the
general topic of this study. Chapter three deals with the
numerical processing of the ihtegral equaﬁions. The
advantages and limitations of +the method of moment are
described and .the concept of using "a priori knowledge of
the solution™ is applied for extending the range of
appliéability Qf the numerical technique to large reflectors
without_excessive storage and computer running time. Chapter
feur is 1intended +to 1investigate +the general scattering
properties of dielectrically loaded cylindrical reflectors.
Since all the effecfs cannot be observed in one geometry, a
number of selected geometries are investigated. One of the
aims of this’ chapter'lis the determination of the most
effective parameters for investigation of overall radiation
characteristics of such loaded reflectors. A knowledge of
the effects of thelparameters, would in fact, be of great
help to the designer to obtain a predetermined radiation
pattern. Chapter five is intended to show the possibilities
of beam shaping by deforming the reflecting surfaces of the
conventional reflectors. Certain geometries are selected and
.ﬁhe radiation patterns are compared against each other. The

computed results are discussed in chapter six.

11.



CHAPTER TWO
INTEGRAL EQUATION FORMULATION OF SCATTERING PROBLEMS
2,1 Introduction

From the point of view of classical theory,any
precise treatment of electromagnetic scattering and
diffraction rhenomena, generally involves the complete
solution of a boundary value problem. However, there are few
cases in which this rigorous approach is productive. The
best one can do then, is to find an approximate solution to
the original prbblem.

In recent years, due to the high speed and large
storage capacity of digital computers,considerable interest
has been shown in the use of numerical solution +techniques
to the evaluation of scattering and radiation problems. The
scattering properties of complex bodies can be computed with
very high accuracy through the épplicatiOn of numerical
techniques. However,the differential equation formulation is
not efficient for this purpose. Of the many approaches
available,considering the adaptability of the. formulation
for computer use,the 1integral equation representation has
proven to be +the most efficient form for the computer
solution. | |

It is the purpose of this chapter to reduce the

12.



13.

original vectorial boundary value problems associated with
the electromagnetic scattering ©phenomena,to a set of
integral equations,most suitabale for numerical solution

using a digital computer.



2.2- Integral representation of the EM fields.

Consider the vregion V,illustrated in figure 2.1,

bounded by the surfaces Sland S.
2

Fig. ( 2.1 ) The general representation.

It is assumed that constlitutive parameters of region V
differ from those of the medium in the surrounding space.
Vectors ﬁland ﬁzare the unit vectors normal to the bounding

sufaces,directed out of the region V.

1k,



Considering the =~ time harmonic

case,in a

linear,isotropic and homogeneous region,the field gquantities

must obey Maxwell's equations,

VxH= jwe B+ 7
VxE®E = jou § - K
V+eE-=op/e
V¢« H = mfu
where,
E electric field intensity.
H magnetic field intensity.
J electric current density.
K magnetic current density.
0 electric charge density.
m magnetic charge density.
e permittivity of the medium.
u permeagbility of the medium.

complemented by the relationships defining the

of charge, given by,

(2.1)

(2.2)

(2.3)

(2.4)

conservation

(2.5)

(2.6)

15.



where an exp(jw t) time dependence is assumed and suppresed'

throughout for convinience. A simple Vvector manipulation of

the equations 2.1 and 2.2 leads to,

2
x Y xE -k B =~ J - v xK
v 5 Jou (2.7)
v v i 2 5 K v J
x X - = -~ ¥ + X
H-x H Jwe B + 3 (2.8)
. Where,
k = wveu
' (2.9)
ﬁsing the vector Green's theoremn,
’I
(K « VxV xB -3¢V xV x X) dv =
o
i
(B x VK- XK xV x B)e 71 ds
] (2.10)
S
which is the result of the vector identity,
V +(KE x 9V xB)=V¥xX-Vx3B-K-+«VxVx3E
(2.11)

and application of the divergence theorem,it is possible to

transform the vector wave equations 2.7 .and 2.8 into a set

16.



32 13
of 1integral equations. The equation 2.10 is valid for any

two arbitrary continuous vector functions of position with
continuous first and second derivatives within the region V
and on the bounding surface S. The approach adopted is +to
assume & and VY& for K and B respectively. Here & is a unit

vector of arbitrary orientation and ¥ & is the Green's

function representing +the magnetic vVector potential of a

point current source in a homogenous space and is given by,

¥ = exp(-JrlF-F1])/|F-F"] (2.12)

17,

with T and ?'representing the positional vectors of the observa-

tion-and source Points respectively. The discontinuity of the

field on the boundary surfaces marking the abrupt change of
the constitutive parameters of two different media and - the
singularity of ( ¥ ) at 7=7 restrict the usefulness of the
equation 2.10. However the latter difficulty cén be avoided
by making explicit use of the vector differential equation

for the Green's function given by,

2 ' A
V x ¥ x (V¥&8) - kx (¥Y8) - V¢ Ve (¥8) = hud( r-r')a

(2.13)

where ( §) represents the Dirac's Delta function.



18.

In order to Overcome the problem of the
discontinuous nature of the field on the boundary surfaces,
we surround the observation point P,by a small sphere S, of

b

radius r and consider the portion V of V which is bounded by
o r
the surfaces S ,S ,S and 'S ,figure 2.2.
1 2 3 4 '

Fig. 2.2 Notation for Green's theorem
Substituting E and ¥ & for A and B respectively in 2.11

leads to,

f{(w-a)-xﬂx V'x B - B o V!x U'x (yY+3)} av' =
Vr |
zij { B x VU'x (Ye8) - (ye8) x V'x F) }ea' ds!

51

(2.1L4)



where primes are used t0 indicate vector operations in

source coordinates and ﬁis are the normal unit vectors to

the bounding surfaces of like subscript, directed out of the

region Vr and can take on the representations ﬁ,ﬁéﬁ,and ﬁﬁ
32 1 3

After extensive vector manipulations and making use of the

equations 2.1,2.3 and 2.7, the equation 2.1k reduces to,

I{qu3W+KXV"P-(D/E)V"P}dV'=

Ve

zijs_{ Jun(f'x )Y - (8" B)V¥} as (2.15)
1

~ .
In the 1limit, when (rﬂr—rp approaches zero, the contribution
o)

of the first term of the surface integral over the surface S

L

goes to gero, since Sudecreases as r2and (y) varies as 1/r
o
The contribution of the second term over surfaces..S and S is

13 b 3
shown to be ,

I =~ 8(F) {br-29q} (2.16)

wvhere ( Q) represents the absolute value of the solid angle
subtended Dy . a surface 1like S at ¥, in the limit as r

vanishes. The value of ( @ ) depends on the location of the

Observation point P and is given by,

19.



2717 on the bounding surface
Q = - (2.17)

0] anywhere within V

Application of +the <foregoing argument to 2.15
results in an integral equation re?resenting the electric
field at any point within region V in terms-of +the sources
existing in v and the fields on the bounding

surfaces,namely,
B(F)= -(1/bm) [ (Juu I¥ + K x V'Y - p/e V'Y) av!
v

_(T/4T) f { Gou(A'x F)V - (B'x B)x V'Y

S+8
12

(2.18)
where,

7 = 1/{1 - Q/hm}

and keeping in mind that an infinitesimal region surrounding
point P is to be excluded.

By &a similar argument or using the duality of
Maxwell's equations,one arrives at an expression for
magnetic field at any point within V given by,

H(F)= ~(T/4m)[ (<jwe Y + 3 x V'Y + n/u V1Y) av

v
#(r/hm) [ { jue(f'x B)¥ + (A'x H)x V'

5

+ (Ate B)V'Y } gs! (2.19)




For a source free region, the equations 2.18 and

2.19 reduce to,

B(F) = -(2/bm) [ { Jup(A'x MY - (A'x B)x vy
.%f%z

- (A's E)V'Y } as' (2.20)

]

H(F) = (7/hm) f [ jwe(f'x B)Y + (A'x H)x 7'y

S5+5
12

F(RTe B)V'Y ) as (2.21)

which represent the effect of sources located outside the
region V, Considering'the analogy of the integrands of the
volume and surface integrals in 2.18 and 2.19, one can
represent the effect of sources existing Ogtside volume V by
surface distribution of charges and currents on the bounding

surface S, namely,

s (2.22)

1
2
X
R
"
=

s (2.23)

s : (2.24)

p(are B) =m_ (2.25)

where subscript s denctes surface distributiog.
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For an unbounded region ( when S2 in figure 2.1

recedes to infinity ) and assuming the sources in V being
confined to a region of finite extent, the radiation
condition requires that +the contribution of the surface
integral over S be independent of the bounded sources, that
2
is,
BF) = T B (F) - (v/bm) [ {jon T ¥ + K x 'y
* v
~(p/€)V ¥} av' - (7/hm) [ {juu TV + R x V'Y
S s s
_ 1
-(p /e)V'¥} as! (2.26)
s
B(F) = T # (F) + (2/hm) [ {-jwe B ¢ + 3 x vy
i
v
+m/u) vy avt + (2/m) [ {-jee K.Y o+ T x VY
1 .
+(mg/u)V'¥} as' (2.27)

where use has been made of the equations 2.22 to 2.25 and E,

i

f are the fields due to the sources ( if any ) lying out of
i

the surface S.
1
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2.3 - Two dimensional scattering problems.

In this section we shall .consider two-dimensional
sources and scatterers,that is,sourcesand scatterers which
are invariant along a particular axis, For —convenience,we
take this axis as the z-coordinate and assume the incident
field to be propagating in a direction normal to the =z axis.
In this case,all the field quantitie; are also invariant

along the axis. Considering figure 2.3,( ¥ ) may be

represented as,
v = exp{ -jk - |BP-DP' + (Z‘Z')E'}/IE =B+ (k| (2.28)

where ( Pp) and ( P') represent the transverse positional

vectors of the observation and source points respectively.

incident
< — field

Figure 2.3 Geometry of two~dimensicnal scattering.
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substituting 2.28 in 2.26 and 2.27 leads to,

E(z,0) = T B(z,p)-(T/km) f { Jou I + K x v
. z, s
- (p/e)9'} [¥ az' as' ~(2/hm) [ { jun T+ B x v

C

- (p/e)V! }!f dz' ds' (2.29)

B(z,6) = T H(2,8) + (T/km) f { ~joe B + J x yr
S

(2]
+ (m/w)V'} [voazt ast +(r/bm) [ { -jep B + 3 x v
-0 ¢
o0

+ | dz! 1
(m/n)v }£f z' ds (2.30)
where s 1is the +transverse plane, ¢ is the cross sectional
contour of S and <‘1) is the transverse del operator in
source coordinates. Since .only the variation of fields in

the ( x-y ) pPlane needs to be considered,we set z in the

equations 2.28 to 2.30 egqual to zero. To simplify the above
3y

equations, we take advantage of the known integral y

o0

2
G = Jw dz' = (7w/3) gjklﬁ—ﬁ'l)

-0

(2.31)

2
where Hois the zero-order Hankel function of +the second

kind. Substituting 2.31 in 2.29 and 2.30 results in,

E(5)=TEE(T/hﬂ)f(jqu+KxV%—§V%)G ds' - (T/hﬂ)f(jqus+stV%

& [ r 5 o N c
—.Esvt)G de (2.32)
ﬁ(5)=Tﬁ{(T/hﬂ)j(-jweK+3XV%+§V%)G ds' + (T/hﬂ)J(—jweﬁs+3sXV%
m.S s c
+— V')G de!

u t

(2.33)

2L,



It should be noted that the above set of integral eduétions
do not represent the only solution for the two—dimensionél
scattering problems. They &are however,the most usefuvl forms
commonly used for the numerical solution of the scattering

problems involving arbitrarily shaped cylinders.

25.




2.4~ TM wave scattering.

In the case of two dimensional scattering
problems,the transverse electric (TE) and the +transverse
magnetic (T™M) fields, may be decoupled and treated
separately. However in this section attentiOn will Dbe
devoted to (TM) scattering from perfectly conducting
cylinders.

Consider a time harmonic ©plane wave (source at
infinity) normaily incident on a metallic infinite cylinder

of cross secticnal contour c¢ (figure 2.4).

ot

Figure 2.4 The cross sectional gecmetry of scattering

by a metallic cylinder,.

For (TM) fields, assume the incident field is z-polarigzed,

and has the electric field along the z direction .only. For
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an unbounded,linear,homogenecus,isotropic and source free

region, the equations 2.32 and 2.33 reduce to,

z 1

B(F) = £(p) = 7 B, (B) - (men/W)[ I_(B")
[

. Hj(klﬁ—ﬁ'l) dc! (2.3L)
R(B) = B(F) = T B () + (Tk/kj) { 3 (8")

~ o~

’Hi(kIﬁ—g'!){ sin{f', (F=p")} "

~

+ cos{ P',(P-0")} o'} ac!

(2.35)
wvhere use has been made of,
A Xel ~
vie = 8851 + L, 9Gpr - Ty m2(k|pF-5']|)
167 560 T gt 5g0t 7 ok HA(k[B-p]
* { sin(P',5-5')8%"' - cos(p',p-p")p" (2.36)
= | .
n v u/e (2.37)

The boundary conditions on the surface of the scatterer

requires that,

on ¢ (2.38)



hence,
~ ﬁ') 2 ~ l) do?
Ball) = (kn/h) {i‘z(p #, (ko= (2.39)
3 (8 ) = 2]u (5 )]+ (k/2J)f 7,(F") E <k|5 1)
sz ¢ (4
- cos(fi',p~p') dc' (2.10)

where the subscript ¢ indicates that the field point is on
the contour c,.
Either of the above equations can be used to solve for the
incduced surface current %. However, fdr scatterers with
sharp discontinuities, care must be used in evaluating 2.40,
due to the geometrical factor in the _integrand.

If the soﬁrce of impressed field is a g-directed

line source of strength I and located at ( § ), the

S
equations 2.32 and 2.33 lead to,
B(5) = ~(Tkn/¥) T(B) u (k]F-B])-(msn/W)[ o (5")
Zp : g ") s v Sz

2 ~ o~ '
. Ho(klp—p [) de (2.41)

B(B) = {rk T(F ) /MRS (x|B-B,]){ sin(5',5-5")p"

+eos(B,B-B) b (TR/Ug) | T (B2 (x|B-5"[){ sin(F",

B-B')P' + cos(B',p-F')8"'} de! (2.42)
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On the boundary c, we have,

P 2 s = g 2 = T '
- T(B) H (x]B-3' ) {ngm ) (k]850 ae
) (2.43)
1, (6 ) = - (k/ej)_[: 7,081 B (x|g-5"])
~ I N
+ cos(f',p-p') de' -(k/23) I(F) H (x|p-p])
: ¢ S 1 c s
(2.4)k)

where I(p) emphasizes that the current filament is located
S

at ( B.).
Once the current distribution is determined, other

paranmeters of interest, such as the radiation field and +he

v

5cattering- cross section can ©be computed by the required -

integrations.
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CHAPTER THREE

ON THE NUMERICAL SOLUTION OF INTEGRAL EQUATION.
3.1- Introduction.

In ﬁhe last chapter,the problem of two-dimensional
scattering was rigorously formulated in the form of a set of
integral equations. These equations however are of little
use unless they can be reduced to approximate forms which
can either ©be evaluated analytically or can be computed
numerically with the aid of a digital computer. The choice
between these two approaches largely depends on the
characteristic dimensions of the scatterer.

For scatterers_of arbitrary shape,whose dimensions
are either very émall. or vVery large with respect.to the
wavelength,the classical RaYleigh scattering theory and the
physical opntiecs approximafions will yield fairly accurate

results. In the intermediate range,the numerical procedure

known as the method of moment (appendix A) has proven to be

the most efficient approximate method for obtaining results

of acceptable accuracy. The result of the application of -

this approach to scattering problems is essentially' a
transformation of the original integral equation into a set
of N linear equations in N unknowns. A linear combination of
the N wunknowns forms an approximation to the original

unknown quantity appearing in +the associated integral
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equation,

The above procedure may be cast into a matrix

equation of the form,

(A )(T) = (g) (3.1)

vhere (A) is the coefficient matrix, (f) is the unknown
quantity and (g) is the known quantity of the matrix
equation. The matrix equation 3.1 may be solved numerically,

however, in methods  wusing factorization or inversion,the

required computer time for solving 3.1 is approximately
13

given bx

T « aNZ?+ pN? (3.2)

where a and Db are pProportionality factors, N is the number
of unknowns (matching points) and aN2and bNgaccount for +the
calculation of the coefficient matrix and the solution of

3.1 respectively.

The accuracy of the solution largely depends on the

number of sampling points N and the approximate methods used
for evaluation of the elements of the matrix (AY, Since the

determination of (A) requires approximate evaluation of sub

integrals over N intervals or areas (depending on the
configuration of the scatterer), a better accuracy would

require more accurate aprroximation techniques. This in turn




results 1in a higher value for the proportionality'factor a
appearing in 3.2, In view of the relation 3.2,it seems
advantageous to keep N as low as possible and use more
accurate techniques for evaluating (A), which in fact,
Within certain limits, yields the sanme accuracy with a less
computation time. However, there is a lower limit for N ,
beyond which +the accuracv of the solution would greatly be
impaired, Andreasenz, by a reasoning similar +to Shannon's
communication theorem, has shown that for a smooth portion
of the scatterer, the distance between two adjacent sampling
points must not exceed A/L, Furthermore, for regions close
to the sharp edges, additional sampling points must be
introduced.

" From the above argument and in view of the relation
3.2,the limitation of the method of moment for analyzing
scattering_ problems which involve large scétterers can be
realized. When the characteristic gimensiOn of the scatterer
is more than a few wavelengths, solution via factorization
or inversion can no longer be seriously considered. Aside
from the excessive computer running time,the aécumulation of
error, while inverting large matrices, greatly impairé the
accuracy of the solution thus obtained. For the case of
Scatterers of moderate size further difficulties may also
arise from the complexity of the geometry and an accurate
solution becomes too complicated and costly to obtain. Here

the application of the higher order approximate methods for
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expanding the unknown gquantity and better numerical
techniques for evaluating the coefficlent matrix becomes too
complex and costly to be useful. On the other hand, simple
approximation techniques result in slowly converging
solutions for large values of N. As it will be shown later,
wvhen dealing with conducting objects for which the standing
wave effects are more pronounced than non-metallic ones, a
true convergent solution may not Be obtained even for
segment sizes of the order of (0.1)). The situation becomes
worse When there exsists regions with large curvatures on
the structure.

In order to overcome :these problems,in a recent
paper (Tewzs has employed the concept of using a priori

knowledge of the solution, to improve the convergence of the

moment soclution. He has applied this method, for the case of

two~-dimensional =~ scattering from a perfectly conducting
strip, illuminated by a plane wave, This method 1is
essentially a combination of the physical optics

approximation and point ﬁatching technique.

The idea is that known approximation such as the
physical optics current may be subtracted from the unknown
total current. The resulting integral-equation then must Dbe
solved for the difference current distribution dehich then
becomes the unknown quantity of the integrél equation thus
obtained. Yaturally, One expects " that the residual

difference current converges more rapidly, since the
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Physical optics approximation for fairly large objects gives
acceptable result for induced current distribution over the
smooth portions of the scatterer.

Once the difference current is determined by
numerical techniques,the total distribution can be obtained

by summing the two currents,

I =343 (3.3)

The usefulness of this method becomes more significant when
the dimension of the scattering object is too large to ©be
handled by direct moment method. For +this kxind of
scatterers, the difference current may be set to zero in the
regions where the Physical . optics approximation is
sufficiently accurate. This will redﬁce the size of the
matrix equation to be solved aﬁd it would become feasiblevto
obtain a réasonably accurate solution +to the associated
integral equation.

It is the purpose of this chapter to extend the
application of an "a priori knowledge",to the problem of
(TM) scattering from‘large conduecting ecircular cwvlindrical
reflectors which cannot. therwise be handled by a direct

moment method.
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3.2~ Modified moment method formulation.

In the last chapter it was shown that a solution of
the electromagnetic fields in the presence of an infinitly
long conducting cylinder of arbitrary cross section,
illuminated normally byaz-polarized incident‘field parallel

to the axis of the cylinder can be obtained by,

=
P}
©
~
1l

B(5) = T (F) - (men/W)[ 3(F) B (x[F-57]) aer
¢ (3.%4)

=~ 72 =~
5) =T & (F) + (Tx/k)) {:r (5) B (x]5-5"])
{ sin{B',(P-F")} p' + cos{ B',(F=F')} &'} de’

(3.5)

For brevity and elarity of the approach, we

consider the geometrv of figure 3.1.

Figure 3.1 (Cross sectional view of the problen.
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Where the cross section of the cylinder is a cicular arec

arbitrary radius a, measured from  the origin of the

coordinate system, C is the contour of the cvlinder and ( a)

is the angle subtended by C.

On the boundary of the cylinder,one may write,

=34

3(6) = & x K(F) = 2

1

x B(B) - (x/23) [ 3B
c

~

2
« H (k]p-5"|) cos(A',5-p') ac’
L SR (3.6)

Recalling the well known physical optics approximation,

r2 A x ®H.(p) illuminated region

I (3) =< | | (3.7)

0 shaded region

and comparing it with the equation 3.6, one comes +to the

conclusion +that physical optics approximation results from

completely neglecting mutual interaction effects on the

illuminated portion of the object. Furthermore, this

approximation assumes that in the shadow region, the mnutual

interaction term completely cancels the incident field. Tor

a large scatterer of smooth curved contour, the contribution

from the integral term over the central portion of (C, vhere

it is free of discontinuities, may be neglected without



incurring a significant error in the solution. Nevertheless,
the inability of the ©physical optics approximation to
represent the current distribution over the régions with
sharp discontinuities and shadow boundaries can be a source
of significant error.

To overcome this difficulty, we may assume the
correct distribution over the contour ¢ to be the sum of the
physical obtics term and a difference current, which is
unknown and accounts for any discrepancies of the physical
optics approximation from +the +true current distribution.

This can be formallv represented by,

(e) = 3 (B) + I (b) (3.8)
po

According to the geometry of the problem considered
ﬁere(figure 3.1) and the direction of the polarization of
the incident field, +the induced current and the electric
field will be z-directed and the total field at any point on

the transverse plane is given by,

B(F) = 5(8) - Gen/b) [ {7 (B + 7 (B

2
- ¥ (x|p-p" de!
A lp p']) de (3.9)
where;
~ _ A [4 ‘
T (P) = 28 x K(B)] (3.10)

po
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and it 1s understood that J's and E's are gz-~directed and
subscript z is dropped for convenlence.
Applying the boundary condition on C and

rearranging 3.9 leads to,

~ ~ 2 ~ o~
B(3) - (xn/%) [ (5') H (x]B-p"]) ac
1c¢ ¢ Po ] ¢

= (en/k) [ 3 (B') B (x]B-51]) ac (3.11)
c ¢ ° ¢

Now, the unknown quantity of the integral equation is Jd and
the equaticon 3.11 can be solved by standard moment method
procedure given in appendix A, As it is seen from 3.11, Jd
accounts for only a part of the total induced cgrrent on the
surface éf the scatterer, Therefore error resulting from the
nﬁmerical Processing of the associated matrix egquation only
affects a part of the total induced current.

The integral appearing on the left hand side of
3.11 also needs to he evaluated numericélly. Even though the
computational error,to some extend, is compensated for by J.d
in the process of determining the difference current {( in
view of sel® correcting scheme of the equation 3.11),
nevertheless, more accurate evaluation of this integral will
result in a faster converging solution.

Considering excitation by a z-directed line scurce

of strength {I=1),located at (BS),We have,




355) = —(kn/k) Hi(klﬁ-gl) (3.12)

«;O(Sc) = 2] x mB(P)[= (ki/2) H§<k|§-6!>{a-pscos<¢-¢s>}

/1 /;2+%2~ 2a% cos(¢—%)} (3.13)

v

where (bs) is the radial distance from the origin to +the

source point and (¢) and (¢ ) are the polar angles of (P)
S

ani (55) respectively. Substituting tae equations 3.12 and

3.13 into 3.11 leads to,

~-2 ~ 2 ~ 2 ~ e~
- Ho(klo—ol) - (jka/Z)f H {k|0'-0]) B (x]p-D'1)
(o 2 1 S [ [«

{ a -b‘008(¢'—¢)}/{/22+02- 2 ap cos{¢'-¢)} dd!'
s s s S

2 o~
= e[ 1 (B B (x]5-5"]) ap’
o

o

(3.14)

vhere a use has been made of,

de = a 4o
(3.15)




The equation 3.14 can be solved for g with the aid
-of  the method of moment. Application of this method to 3.1k
will reduce the integral equation to the approximate matrix

equation,
(A)(r) = (g) ‘ (3.16)
where,

(3.17)

Choosing the ©pulse and Dirac's delta functions as
the expansion and the testing functions respectively, we

find that,

2 .
AC H (x]p - 7)) m # n
n o m n
%n = _ (3.18)
Ac { 1 - (2j/7) Ln (kAC v/ke) } m = n
n n
z = -E (k|p - pl)—(a‘ka/e)f B (k|5 -p1) B (x]F -3'])
m o m s 1 S o m
o

o[ a-pscos(¢1—¢)}/{/'a2+p2_ 2ap cos(Q'—¢)) do!'
S S S S

(3.19)
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La.

where ( Bm) is the position vector of the mid-point of the

interval AC , (e) is the Neper constant given by,

2,718282 (3.20)

¢
it

and,

1.781072

2
1

(3.21)

Since the scatterer is symmetric about the x-axis,

a symnmetrical choice of matching points about this axis
. . . . 2

yields a symmetric coefficient matrix (A). It is shown". that
by expanding the unknown induced current into a sum of odd
and even functions of (¢), it is always possible to reduce
the original matrix equation into two independent sets of
linear equations in (N/2)unknowns,( no natter what the
exciting field is. This would save a substantial amount of
computer time, since. the. time reguired to soive N linear
equations is proportional to N? However for +the ©problen
considered There, due to the symretric behavior of current
distributién about the x-axis, further simplification occurs,
since it is only necessary to solve one set‘ of linear
equations in N/2 unknowns.

To clarify, we consider +the equation .16. This
equation represents N linear equaticns in §¥ unknowns given
by,

1Y)

r A 7 = g m= 1,293¢ees.N
mn n m

(3.22)




Since,
= f
%1 “N+1-n
and,
A = A
mn nm

the equation 3.22 can be reduced to,

y (3.25)
N/2 .

Y (A +A ) f =g m= 1,2,3:.....0/2

n=1 mn nm n =

therefore it is only needed to solve the above set of linear
equations and determine the total current distribution over
the scatterer by using the equation 3.22.

As it was stated ©before, for a fast convergent
solutior the 1integral term of 3.19 should be evaluated as
accurate as possible. RBecause Of the singularity of Hankel
function at (5'=5m), the main contribution to the intesgral

term of 3.19 is expected to be due to the part of the

Lo,

contour € in the <vieinity of +the observation pointlﬁm

where the integrand varies most rapidly. Therefore the
integrand must be adequately sampled in this region. For
this reason, in all .the computations—- of +this chapter,
integration of the ©physical optics term over the singular
region has %been performed wusing fortyth-order Csussian
guadrature tc pro#ide a 'dense samplirg in the immediate

vicinity of (Pp ). The evaluation of the integral over the



~est of the contour ‘¢ has been performed wusing the same
integration method but of order ten. This provides tapering
to a lighter sampling &s One moves avay from the singular
region &and will avoid unnecssary computation time for
regions where their contribution to the integral is not
significant.

Determination of each element (gm) of 3.19 requires
evaluation of an integral over the entire contour C of the
scatterer. However,for the special case when the ~driving
element is located at the origin of the coordinate system
and (O = T), substantial saving in computation time can be
achieved through the use of a combination of analytical and
numerical techniques. This approach differs from those of

strictly numerical or analytical techniques. To clarify +the

problem, recall the equation 3.1k,

2. _ N T e
Ho(klo-gl) - (Jka/E)! Hl(klo'—%l) Ho(klg—p'l)

-la -0 cos(¢'-%)|/!/éz+%2- 2a%_cos(¢'-%)}d¢'

~ 2 ~ o~
a J ] " k | s6-npt 1
£ g(P") B ( le-p ) ao (3.26)

Setting,

L3,




leads to,

3m/2

2, - 2 2 e
- B _(kp) - (ika/2) Hl(ka)f B (k|p-p']) d¢'
e ¢

3m/2 ” T/ 2
- a f 15") ¥ (k|3-6') ag’ (3.27)
o c
m/ 2

The integral on the left hand side may be written as,

3m/2
2
T = f %{ 2kal sin(o-¢')/2]|} ao¢' (3.28)

m/2

A change o7 variable in the form of,

(6=¢')/2 = ¥ ' ‘ (3.29)

reduces the equation 3.28 to,

o) i

2. L T/ 2

2 , 2 .
I =2 H (2ka sin®) dyp + 2 H (2ka sinv) 4y
] [

0
m/2
[ ) '
-2 J B (2ka siny) dy (3.30)
31 ¢
Lo
The second term on the right hand side of the above equation
, 35
is a known integral given by,
T m/2
2 2
f H (2ka sin¥) Ay = f H (2ka siny) 4y
. o o
m/2 0

= (n/2) i(ka) {1-3 a(ka)} . (3.31)




45,

Where % and Yoare Bessel and Neumannfunctions of zero order,

respectively. Substitution of 3.31 into 3.30 results in,

o/2 T
2 2
I = af HO(Zka siny) 4y - ej Ho(aka siny) ay
m/2 T-¢/2

+ m{,(ka){l -3 Ya(ka)} : (3.32)

For interpreting each term of 3.32, we consider

figure 3.2.

Antenna

Figure 3.2 Selection of the imaginary arc.

where C is the actual contour of the object, AL is the
location of the matching point and,
AC = AC
B A

is an imaginary circular arc of the same radius as C,added




to the actual contour for utilizing the known integral given
earlier. The first term of 3.32 accounts for the
contribution from (AC,) to the integral (I). The third term
represents the contribution from +he rest of the contour
plus the contribution from the imaginary arc (ACg). Finally
the second term is added to cancel the contribution due to
(Acg) .

| From the foregoing argument it 1is clear that
instead of numerical integration over the entire contour ¢,
it 1is only sufficient to perform two numerical integrations
over ( ACh) and (ACp). As the matching point A moves toward
the centre of the scatterer, (AC,) and (ACy. ) dincrease and
reguire more computaion time. HOWevér, since (ACA+ACB) never
exceeds C, the amount o¢f :computer running time for
determining the elements of'(gm) would always be 1less than

the case of mumerical intsgration over the entire contour.




3.3- Radiation field.

Having obtained the induced surface current, it is
next desired to compute the radiation field. This can be
done by wutilizing +the formulas given in the last section.
For instance, in the case of excitation by a 1line source,

the total field in the transverse plane is given by,

~ 2 ~ o~ R 2 I\J' ~
E(p) = - (kn/%) ® (x]6-5]) - (szna/8)J Hl(klp -%l)
o

°H2(k]5—5'|){ a -p cos(¢'-0)}{ a?+p?- 2ap
o S ) S S s

-1/2 ~ 2 ~ o~
© cos(6'-0)} a0’ - (kna/k) [ g (5') B (x]B-B']) e’
S - o
o .
(3.33)

Letting (f ) approaches infinity, this leads to a relation

for the field given by,

E(p) = - (kn/%)Y (23i/7kp) exp(—jkp){exp(jkps COS(¢>-d35))

k p>co

0 2 Fl ~ | 1 .
+ (jka/2) f Hl(klp —g'){ a-p cos (¢ —%)}

o

/ /v{ a2+%2— 2ka%cos(¢'-¢)} exp(jka cos(¢=-0d') 4¢°'
) S

+ a |T(F') expl(ika cos(d=-4')) a¢' }
d

a (3.34)
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where a use has been made of the large argument asymptotic

. 36
expansion formula for the Hankel function

2
B (z) v/ (2/12) exp(-j(z -~ nw/2 -/ )) (3.35)
n

In view of the approximation used for determining

J ,the last integral term of 3.34 can be approximated to,
d

N
'nzl anCnexp(jka cos(¢~¢£)) =

J 3(8") exp( jxa cos(o-9")) ac (3.36)
c 4

The first integral term of 3.35 must be evaluated by
numnerical methods. However, for‘the special caser(ps=0), the
equation 3.33 can be reduced to a form which. reguires no
integration. This approéch utilizes the -"addition theorem"

3y
of the Bessel functions represented by,

- > 2
H2(x|5-0"]) = Z & J(kp') H (kp) cos n(¢=0") p > p!'
°© n=1n 7 " :
oo (3.37)
2 ~ o~ 2
B (x!lp=-p']) = £ € J(kp) H (kp') cos n(d¢-¢') p < p'
o ’ nn n
n=1
(3.38)

where (en) is Neumamnfactor given by,

j

o]
il

o

Bm

L8.

§




k9.

Hence,

E(P) = = (kn/4)V (25/7kp) exp( -Jkp){ 1 + (jka/2)

k p>o

2 - 3m/2
. Hl(ka)Z %{éka) exp( jpm/2) f cos p(d-9"') d¢’
p=1 m/2
N
% i -0t
+ X ﬂ1A%1 exp( jka cos(¢ ¢n) } (3.39)
n=1
But,
% P even
3n/2
f cos p(o-¢') d¢' =<m P =0
T/ 2
t2/p) sin(d-m/2) p odd

therefore;

E(D) = -{xn/4)V (2j/mkp) exp(-jkp) { 1 + (ika/2)
kp+oo

o]

5 (xa){ m3(ke) + BIT J(ka) sin (on/2) sin p(¢-7/2)
p odd

N
/p } + i=lan Cnexp(aka COS(¢-¢£) } (3.h41)




The infinite series appearing in 3.41 is a fast
converging series due to the presence of the factor (1/p)
and the Dproperty of the Bessel functions whiech reduce
rapidly for orders larger than the argument. Therefore, it
is possible to truncate the dinfinite =series after a few
terms without incurring a significant amount of error in the
solution. According to. the definition of +the radiation

pattern, the equation 3.4%1 immediately gives,

' 2 2
R(¢) = !EI/IE‘I¢=O (3.42)
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3.4- Numerical results.

A computer program based on the earlier sections
was written to evaluate the physical optics integral, the
difference current distribution and the radiation field for
the antenna geometry shown in figure 3.1. As an indication
of the validity of the computer program, the radiation field
of a conducting circular cylinder in the presence of a 1line
source was calculated and compared against the results
obtained for the same problem, using the exact solution in
terms of the harmonic serie;? The result is shown in figure
3.3. Excellent agreement between +the analytical .and the
nunerical solutions is evident. For 0.12A sampling interval,
the accuracy over a wide range (0<¢< 150) is apprdximately
about 0.2 dB. However, for (¢> 150) the deviation from the
analytical yalue increases .and approaches fo its. maximum
value 0.6 dB at (¢;180),the centre of the shadow region.

The dependence of the numerical solution accuracy
on the structure segmentation is shown by varying the
sampling interval AC. As it can be seen in figure 3.3,
increasing AC results in lower accuracy. Eowever, even for

AC=0.25X , the error does not exceed 1.4 4B.

In order to show the improvement in the convergence
of the moment method solution +through- the wuse of the
physical optics approximation, the radiation pattern of a

cylindrical reflector of radius (ka=10) and (o=7), in the
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presence of a line source located at the origin of the
coordinate system was computed by the "direct" and the
"modified" moment methods. Figures 3.4 and 3.5 show the rate
of the convergence of the radiation pattern for different
values of the sampling interval for the +two cases
respectively. It is evident from figure 3.4 that, even for
AC=0.05) , the direct moment method does not yield a
convergent solution. However, in the caée of the modified
moment method, a convergent solution can be achieved for
step sizes not less than (0.17A) which in +turn results in
less computer running time. Moreover,for both cases, when
sampling interval is increased beyond 0.25A, the accuracy of
the solution decreases rapidly.

In figures 3.6 and 3.7 the total normalized current
distribution for both cases has been studied. As expected,
in %both figures, the singﬁlar behavior of the current
disribution 1is localiZed to the edges of the reflector. This
is due to the surface discontinuity (. edges ). Even though
3.6 and 3.7 show the same rate of convergence for various
number of the segments on the reflector, the nature of the
points on the two curves are quite different in these two
figures. The points shown in figure 3.6 represents discrete
pulses of current (line sources) distributed uniformly on
the surface of the reflector. Therefore, betweeﬁ each two
adjacent points, there 1is a sharp discontinuity of the

current. However, in figure 3.7 each point represeants a
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small fraction of the total current at that point and they
are superimposed as ripples on a current distribution
(physical optics term) of a continuous nature.,

Figures 3.8 and 3.9 depict the radiation patterns
for +the same geometrvy but the source 1is slightly off the
centre of the reflector and are computed by the two
different methods. Again, the advantage of the modified
moment method in obtaining a fast converging solution is
evident.

| In order to investigate the effects of the source
separation from the reflector, the radiation patterns for
moderate source separations are ‘computed by +the modified
monrment method and are presented in figure 3.10.As expected,
when the source moves away from the object,the variations of
the pattern with polar axis (¢ )° increases with antenna
separationsf Fowever, - as the numberrl of ripples
increases,their size decreases,tending . gradually to the
total pattern of a uniform plane wave normally incident on
the scatterer, a result that can be viewed as a check. on the
validity of the solution thus obtained.

The significant amount of increase in the rate of
the convergence of the solution offered by the modified
moment method, can be utilized to treat scattering problems
involving -Objects with large cross sectional
dimensions.relative to the wvavelength. Assuming +the +total

current in the form,

J =3 + 7 (3.43)
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gpis readily krnown from the incident field of the source and
the difference current is the only unknown to be determined.
Howvever, Jd is due to the surface discontinuities and is
localized to the edges of +the reflector. Thus, as the
reflector size 1increases, the contribution of ( Jg )
decreases, but due to its localized nature, {1can always be
determined by choosing enough segments near the edges.

To study the case of large reflectors, the above
argument has been applied to large reflectors and the
results are given 1in figures 3.11 to 3.18. The difference
current is now computed near the edges and its behavior is
shown in these figures for ‘two cases of (ka=50)  and
(ka=2100). The residual current distribution has a
significant value only "near the reflector edges.l The

computed values are proved to be in good agreement and are

shown for the following cases,

a~ Tixed sampiing length (SL), but different segment sigze AC
(figures 3.11 and 3.12).

and,

b- fixed A C, ©dbut different values of SL (figures 3.13 and
3.14). The radiation patterns are also computed for these
cases and are shown in figures 3.15 to 3.18. Their agreement
is excellent except near the centre of the éhaddw region.
This discrepancy could be due to the location and magnitude

of the edge currents,wvhich are different for different .step




sizes.

The application of the method to reflectors of
different shapes and excitations is trivial,but in general
numerical integrations are required to find the contribution

of the physical optics currents.
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CHAPTER FOUR

SCATTERING BY DIELECTRIC LOADED CYLINDRICAL REFLECTORS

4,1~ Introduction

The éroblem of scattering and diffraction by
dielectric loaded antennas is one, which so far has received
insufficient attention. Among few research works reported. in
this area is that of dielectric 1oad§§ circular cylindrical
axial slot antennas (Knop et al). Here thé problem is
attacked analytically within certain simplifying assumptions
and the work is carried out to find an integral relation for
the external admittance of the slot and have shown its
behavio; for various +thickness of a dielectric cdating.
Following this work,(El Moazzen,Shafaiéu have found an
optimum value for the thickness in order to havé »maximum
- power transfer through the slot. Using variously shaped

25,26,27 :

dielectric inserts, (Hamid et al) have shown experimentally
that ©beneficial éffécts on beam width and directivity can
occur for horn}and_cornfr reflectors. In a recent paper by
(Tsandoulas,Fitzgerald )i the effects of the symmetrically
loading of a horn aperture with E-~plane dielectric slabs 1is
e#amined and is shown that.high aperture efficiencies may be
obtained easily,through the use of dielectric qoating.

Dué t§ .thé scarcity of quantitative theoretical

data on the effects of various parameters involved in

scattering from dielectrically loaded cylindrical

T2.




reflectors, the present chapter 1is . oriented to study
numerically the general scattering properties of these
reflectors. The avpprosach adopted here is TDbased on the
integral equation for the field of a harmonic source in the
presence of a dielectric cylinder of arbitrary cross section
shape, backed by a conducting cylindrical reflector.
Following(5),the dielectric cylinder is divided into
cells, which are small enough, so that the electric field
intensity is nearly uniform in each cell. The surface ofnthe
conducting cylinder is also divided into small segments and
then emploving the standared moment method technique, the
integral‘equation is enforced at the centre of each cell and
segment, with the condition that the total field must equal
the sum of the incident and scattered fields within the
dielectric,and the tangential component of the electric

field must vanish on +the - surface of +the conductor. The

result is a‘system'of N linear equations in N unknowns where

¥ stands for +the total number-of cells and segments. The
system of equations can be solved for the unknowns with the
aid of a digital computer.

The advantages of +this +technique 1is in its
flexibility to treat problems of arbitrary -—cross sections
and arbitrary two dimensional sources (line source, any
array of line sources or a plane wave source). Moreover the
accuracy of +the solution can be increased to the desired

degree, by increasing the number of divisions on the

73.




Th,

scatterer,

In the following section +the ©problem will be

formulated in a form suitable for computer use.




5.

h.2- Formulation of the problen.

Consider a harmonic wave in free space incident on
& dielectric cylinder Ybacked by a conducting surface of

arbitrary cross section as suggested in figure 4.1.

AY Conductor
C
eo’“o
Incident

II SO rield
Dielectric cylinder

> X
Figure b4.1 Crosé sectional view of the scatterers.

vhere S and C are +the cross  .sections.. of +the . dielectric -

cylinder and the reflector. For the Present problem it is

assumed that the incident electrie field ﬁ is z-directed and

the source and the scatterer do not vary along the z;axis.

It 1is also assumed that the the dielectric cvlinder has the
same permeability as free-space ( U?Uo) and its permittivity

( € ) is a real constant. However, it is to be mentioned

that 1in the general approach suggested by(;bthe method can
also be applied to inhomogenous and dissipative dielectrics

( € complex and a function of X,V).




Let E represent the +total field set up by the
source in the presence of the dielectric and the conducting
cylinders. If we ©represent +the region occupied by the
dielectric by I,and the remaining region by II, we will

have,

VxE =~ juuH

in region IT
VvV x B = jweOE
Vx E = - jwuoﬁ

in region I
VxH = jwue E = ngpE + ju(e-g,)E

(4.1)

T6.

Considering the modification made in .the last of. these:. .

equations, We note that all fields. can now. be. assumed: as
exsisting in free space with a dependent current
(polarizaﬁion current) confined to the region occupied by

the dielectric S,given by,

J = - ju(le-e B
P ° (4.2)

and the induced surface current on C given by,

® (L.3)
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In +the light of above argument and with the aid of
2.32, we can formulate our problem in the form of,

E(Pp) = T E(B) - (T/hm) Jwu J(B') G de' + (Tk2/kLy)
S

1

*| (e -1) E(B') G as"' . (L.})

S

. where it is understood that all the field components of the

above equation are z-directed and,

€p = €/€, | (4.5)
G = (n/3) BE2(x|P-B"]) . (4.6)

and prime denotes to the. coordinate of the source point.

Substituting 4.5 into 4.3 results in, ..

B(5) = T E(F) - (tkn/)[ 3(5") B (x|B-B'|) aer
1 C (o]

2 - .
- (JTE?/4) (e-1) j E(F') B (x|p-3'|) as' (k.7)
(o]
S

The above equation is valid for both regions I and II. Since

the factor T is equal to one for all points of space except
the bouﬁdary C on which it takes the value two,and because -

on the boundary C, electric field must vanish, we mayv drop
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out- the factor T, leaving,

2
5(8) = B(B)+ (xn/b) [ 3(8') ®_(x|3-3']) ac’
o
c
212 ~ 2 ~ o~
+(gx2 /%) (e-1) [B(5') B (x|5-5"]) ac’
[o]
S
(4.8)
Now, let us divide the cross section S and C into cells and
segments sufficientlv small so that the electric field
intensity and the surface current denéity are essentially
constant over the respective divisions. Now supnose that the
total number of cells is M and the total number of segments
on C is eaual to N. The only boundary condition +to Dbe

satisfied is,
E(P) = 0 on C (4.9)

Therefore, enforcing the equation 4.7 at the center of each

cell and segment on S and C respectively results in,

U+ M
~
E =% A, f + I B. E i i i
épj) 5nin 51 ( matching points in § )
n=1+1 .
m=7
(4.10)
where, from 3.18 we have,
- 2 . |
(kn/4) Ac H(k]|p, -p |) i #nm
n o j n
A, = < (ho11)

| (kn/k) Ac{1-(25/m) Ly(xAc,y /hke)} J=n




and B is given by,

m
M 2
B =¢€ + (jk2/4%) (e - 1) &% Ho(kI/TS |) as?
Jm Jm , r m=1 J
cell m
(

0 J #F m
e =J (h.12)
Jm

1 J =m

3

and J takes the values from one to M+N,

A closed form solution for the integral appearing
in equation k.11, excépt for a circular region, is not
available, However, if the cells are sufficiently
small, little error is incurred in annroximating the cells
with circular cells of +the same cross section area.

Therefore,

It

5 A
(jx2/4) f Hf(klﬁj-ﬁmn ds' = (j/2){mk amﬁl(kam) - 231}

cell m
if j=m
. 2 ~ ~
= ( jmka_/2) J(ka ) H (klpj- pml)
1 o .
if J7m
(4.13)

where a 1is the radius of the equivalent circular cell which
m

has the same cross section area as the cell n. Substituting

L,12 into k.12 leads to,




(

L+ (g=1) (3/2) (vka_-H (K8)-2]) j=m
5 - J (h.144)

2
(j k;ﬂ/2) (e,-1) Jgkam) Ho(klﬁj— 1) 5 #m

~

(h.lhB)

By the abhove formulation, the boundarv condition is
implemented in the coefficient B_m. Yhen the matching point
is on f!y the index J is greater tian M and Bjm is given Dby
h,1LB, Once the svstem of linear equations in ﬁ+N unknowns is
set up and solved for the unknowns, the scattered field and
the total radiation field and other pgrameters of interest
can be computed easily from the information about the field
and currenf distribution in the dielectric region and on the

conducting cylinder respecti?ely. For instance, the

radiation field is given by,

E(p,9) = E(p,¢) - (kn/k)/(25/mkp) exp(-jkp) R(o)
3
kp+oo ]

80.

= Ei+ Es ’ » (h.lS)'

- Where,

U+N
R(¢) = I fa Cpexplikp cos(¢-¢)}+ (2w/n)(€;1)

n=M+1

M
« I E ngfkam) exp{jkpmcos(¢_¢£ } (4.16)
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and the echo width , in the case of an incident Plane wave,is
34 :

given by,

W(o) = limit 2mp [E(p,0)|%/] E(p,9)]|2%2= (xn?/4)| R(¢)|2/| E|?
kp>oo s i i

In this section, the problem of scattering Dby
dielectric 1loaded conducting cylindrical reflectors was
analyzed and formulated in a manner suitable for the
computer use. The purpose of the following section will be
the application of this method to <certain geometries in

order to study their general scattering properties.
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4.3~ Numerical results.

A  computer program, based on the section 4.2 was
developed to solve the integral eduation 4.7. The resulting

computer program has the flexibility to solve the general

scattering problem for virtually any cross section of a
dielectric cylinder 1in the ©presence or absence of a

conducting cylinder of any cross section. The validity of

the generalized program was verified in. various ways. First,

numerical solution was obtained for the specific case of a
circular dielectric cylindrical shell, for which an exact
result is available and is shown in figure L,2, Figure 4.3

shows the exact solution and the result obtained by (5)for the
same problem, Excellent-agreement between numerical and the
exact solution 1is evident. Figure L.4 illustrates the
plane-wave scattering pattern of a semicircular cylindrical
shell. ©No exact solution is available for comparison with
the result shown in figure L.4. However as a base for

comparison, the result obtained for the same problem by (5)

is illustrated in figure L4.5. For the case when a conducting

cylinder is placed in the vicinity of the dielectric cylinder,
since no exact or numerical solution was available, validity

of the program was verified by interchanging the direction of

incidence and the observation for several test cases. According
to the'reciprdcity theorem, the observed scattered field must

be the same in both cases. Several cases were examined and
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were found to be so within the range of the computationsal

errors.
Considering the geometry shown in figure 4.6, the
barameters involved in the overall radiation characteristics

of a dielectric loadedcylindrical reflector are as follows.

'y
4
/ b
€ &« —> X
Conductor _Jz% a
A\
1] Tp
Figure 4.6, Notations for the parameters affecting the

radiation pattern.

b radius of curvature of the conducting surface.
a radius ‘of curvature_ of the inner surface of the

dielectric cylinder.

o the angle of the reflector.

TD physical thickness of the dielectric layer.
'I‘€ electrical thickness of the dielectric layer.
r

where €. is the relative permittivity of the dielectric
material,
In order to study the effects of +the above

parametefs on the performance of the loaded reflector, the

radiation pattern for such a reflector in the presence of a
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line source was computed for several test cases and the

results are shown in figures L.7 to 4.1L. For purposes of
presentation,it has ©been found convenient to arrange the
results of this series of computations 1in a particular

order. Figures 4.7 and 4.8 are intended to show the effects

of variation of the curvature of the conducting cylinder and
the physical thickness on the radiation pattern; The other

1

rarameters are held constant at a reasonable value. From

these figures it is believed that the variation of b has no

significantl effect on the geﬁeral éhape of the radiation
pattern. The physical aspects of the problem would lea@ one
tq' éxpéct that as the physical thickness of the dielectric
layer increases, the variations in the curvature of the
metallic cylinder would be less noticeable in the radiation
patterns, since most of the energy %ill be reflected before
touching the surface of the conductor, and is found to be so
by comparing figures 4.7 and 4.8, Moreover, as the physical
thickness decreases, the curvature of the conducting
cylinder increses and confines the energy to smaller region,

This is beleived to be the reason why the energy - level in

front direction increases continuously as b decreases in
figure 4,7. However in figure 4.8, +the front direction

energy level is fairly constant, a result that can be

attributed to the discussion given earlier +that the
dielectric layer is thick enough for ©blocking +the energy

from seeing +the ~variations in b. Figures 4.9 to 4,11 show
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the effects of variations of the curvature of the

illuminated surface., As expected, the general shape of the
radiation pattern is more sensitive to this parameter than
b, since part of the total energy 1is reflected from +this

surface. Otherwise there seems to be no logical way of

interpreting the results obtained, Figures L4.12 to k.1l
illustrate +the effects of variations of the electrical

thickness of the dielectric layer. These figures show most

clearly +the strong effect of this bParameter on the radition

pattern. A plausible physical explanation is that +the wave

penetrating the dielectric layer under goes certain phase
shift>béfore emerging again from the illuminated sidé. This
phase shift depends on the electrical thickness of the layer
and the radii of the curvature of the illuminated surface.
"Therefore the wave could be phased in such a manner to cause
the iobes of the radiation pattern (of an unloaded
reflector) to be shifted and altered in magnitude or even
generate new lobes. By comparing the radiation patterns of
the loaded and unloaded reflector in figures 4.12 %o b1k,

it is ©believed that by proper choice of the electrical

thickness of the dielectric layer, it is possible to reduce
the beam width of +the main lobe and increase the front

direction energy level of the reflector.

So far, in the results presented in this section, a
uniform dielectric thickness was assumed. In order to study

the effects of non-uniform distribution of dielechric
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coating, and introducing a smﬁll agir gap between the

dielectric and the conducting surface, the radiation pattern
for several test cases was computed. To restrict the figures
to a reasonable number,a few cases are shown in figures L.15

to k.19, In general, it was observed that non-uniform

distribution of coating Dbroadened +the beam width and
increased the back radiation. This was ©probably due +to
introduction of new edges which caused diffraction of the

wave incident upon them. However, in few cases, it was

observed that introducing small air gap Dbetween the

dielect%ic'layer and the wall of the‘reflector(figures .16
to L4.19) would result in narrowing the main lobe at the
expense of increasing the back radiation.

| So far,it has been shown that the most effective
parameters on the overall performance of a loaded
cylindrical reflector are +the electrical length and the
curvature of the illuminated surface., Even though it seems

that there 1is no systematic way to determine the optimum

~value for these parameters, nevertheless, it is possible to

generate enough results to be able to decide on an optinmum

design with the aid of the available modern computing

facilities.
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CHAPTER FIVE

EFFECTS OF SURFACE DEFORMATION OF CONVENTIONAL REFLECTORS

5.1- Introduction.

Reflectors are widely used to modify the radiation
pattern of a radliating element in a suitable manner. There

are several types of focusing reflector antennas commonly

used in microwave frequency range for particular purposes,
However, among the most economical and versatile type of
reflectors, corner, c¢ylindrical and parabolic reflectérs

are of special interest. Generally, a corner reflector is used

as an active antenna and is most practical where apertures of

one or two wavelengths are.of convenient size .4When it is
convenient to build antennsas with,apertureé of many -wavelengthg,~ --
parabolic -reflectors can be used to provide highly directional _ .
antennas. Because of their large wavelength size, such éntennas
can be designed using the approximate solution borrowed from

the ray theory to ohtain highly directive beams, large gain,

precision direction finding and high degree of resolution of
‘complex targets in the case of radar application .

The exploration of a wide angular region with such

sharp beams requires an involved scanning operation. This
problem can be overéome by broadening the radiation pattern
in one direction. The <cylidrical reflectors are guite

suitable for this purpose since they produce fan beams, that

is, a field pattern which is wide in one plane and narrow in
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‘the other.

In order to obtain a predetermined fan beam,radiatign,
which has been used extensively in radar antenna design, the
conventional cylindrical reflectors are shaped in such a way
to produce the desired pattern in the broad beam plane ;

So far, most of the information available for thié type
of reflectors haé been obtained through the use of ray theor&
which is only applicable if the characteristic dimension of
the reflectof is much greater than the wavelength. However,for
dimensions of the order of the wavelength, this approach most
likely is not able to yield results With acceptable accuracy.

The purpose of this chapter is to investigate the
radiation characteristics of a few commonly used types of
reflectors of moderate cross sections by means of numerical
techniques developed iﬁ the earlier chapter. It also studiés

the possibilities of bean shaping by surface deformations

g

and improving the radiation characteristics 6f these types
of reflectorslin a desired fashion.

In the following section, first the radiation pattern
of three types of commonly used reflectors ( corner,parabolic
and circular cylindrical reflectors) will be coﬁpared, for a
line source excitation. The second step would be the investi-
gation of the effects of surface deformation on theée focusing
elements and finally the Best results for each case (if any)

will be compared against each other.
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5.,2- Numerical results.

Results of this series of computations are the
radiation 'patterns Presented in figures 5.1 to 5.7. It has
been assumed that +the reflectors are infinite along the
z direction. This assumption will transform the problem into
a two—dimensionel one., Generally when the axial length of a
reflector 1is more than a few wavelengths,this assumption
leads to results of acceptable accurracy.

Figures 5.1 to 5.3 show the radiation patterns of
three types of reflectors mentioned before. The geometry of
the.structures are shown in these figures. As a Dbase for
comparison, the apertures of the reflectors are kept constant
and equal for all the reflectors. The area of the.reflecting
surfaces 1is also kept equal to each other as close as possible.
Figure 5.1 shows the effects of the source separation distance
from the reflecting surface on the radiation pattern of a cir< .
cular cylindrical reflector:AFor this particular geometry it -
was found that setting ( ks=1:5 ) resultsrin‘a less back rad=
iation without a significant decrease -in the front direction
energy level. Figure 5.2 illustrates the dependence of the
focal number ( F ) of a perabolic reflector. Here the foecal

37
number is,

F_ = f/D ' : ‘ (5.1)

where f 1is +the focal length of the parabolic reflector, as

shown in the figure, and D is the diameter of the aperture.




For a 1line source located at the focus of the
reflector, the amplitude distribution of field over the
aperture becomes more tapered to the edges of the aperture
as Fn decreasZZ’;;ich means reduction in edge illumination,
This may be desired in order to reduce the minor-lobe.levels
and back radiated energy, but at the expense of lower
radiation levei in the front direction as it is evident from
figure 5.2. By decfeasing f, since D is kept constant, Fp
decreases. As a result of tapering .aperture illumination,
the ©back scattered energy becomes smaller but the level of
the energy drops rapidly. —

Figure 5.3 is intended to show the effects of the

variation of the source separation on the radiation pattern

of a corner reflector. This figure shows that by decreasing

the antenna.separatioﬁmfrom the apex.of the corner.reflector .

beyond a -certain limit, the:back radiation -incregsess:: This -

is expected, since by decreasing the source .separation,.. the..

effective .aperture of a corner reflector decreases -; Furth-

ermore, if,

ks >kf/2 (5.2)
where 2 is the 1ength' of +the reflector, +the main 1lobe
becomes broader, As expected the optimum value for the

-37
antenna separation is,

ks = k&/2 (5.3)
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In order to compare the three types of reflectors
studied in this section, the best case from each figure was
chosen and is shown in figure 5.L. The basis of this selec-
tion.was mainly a compromise between narrowver beam width,less
diffracted energy and more radiation‘level in the front
direction. As it can be seen, from the above points of view,
the circular cylindrical reflector shows the best result
among the three types of reflectors with moderate cross sec-
tional diﬁension.

In order to suppress the diffraction around the
edges of the reflecting surfaces, it was decided to
investigate the effects of introducing flares of plane
metallic sheets at the edges. To study the probable effecis
of this body deformation on the radiation pattern of the
reflector antennas, several cases Wére tested and results
- are presented in figures 5.5 to 5.7. The geometry . of the
antenna:wstfueture-—for each: ;- case:~-is -also - given -'in the ' =
corresponding -figure. The :results. :.are.: quite - satisfactory;"
since in all cases, the introduction of the flares result
in narrower beaﬁ width and less edge diffraction. A plausible
physical interpretation is that the eﬁergy diffracted by the
edges will be reflected back to the front direction by the
conducting plates. The new edges introduced by these plates
are too far from the source to diffract a significant amount
of energy. The optimum value for the angle (B) between the
plates and the x~- axis is found to be 45 dgrees for both types

of reflectors. Figure 5.7 compares the best result obtained
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for each case. It shows that the bark scattered energy is less
for the modified circular cylindrical reflector and the energy

~

level in the front direction is much greater than that of +the

pParabolic type.
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CHAPTER SIX

CONCLUSIONS

In this thesis, the géneral scattering problem of a
perfectly conducting or a dielectric ‘loaded reflector was
described by an integral equation of the induced surface and
polarization currents. The problem 1is +then solved by an
.application of the moment method. The principal limitations
of moment method in application to large conducting objects
were pointed out and were overcome by utilizing the physical
optics approximation. The total current distribution was
assumed to ©Dbe the sum of +the physical optics and‘ a
difference current, which accounted for the contribution of
the discontinuities and the difference of the true and the
physical optics currents. It was shown that using this
‘method s reasonably accurate—solution couid be obtained with

step sizes as Alarge ‘as "0.1TA.  This was a significant
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improvment over the conventional moment method, where a step

size of 0.05A was required.

The method wés then applied to study the radiation
characteristics of large reflectors, ka=50 and 100. The
difference current was shown to be localized tb the edges of
the reflectors and could be determined by sampling a
fractional portion of the reflector contour near each edge.
This in’fact reduced the large reflectbr surface to small

regions near each edge and, consegquently, could provide a

numerical solution for reflectors of any size.




The effects of variously shaped dielectric loadings
on the radiation patterns of cylindrical reflector were also
investigated. It was found that the electrical thickness and
the dielectric surface curvature were the most important
parameters for the overall ©behavior of +these antenna
systems. By a proper choice of these parameters, it was
possible to reduce the ©beamwidth and, as alresult, to
increase the directivity of the reflectors.

Finally, the effects of surface deformations of
conventional cylindrical and parabolic reflectors were
investigated by introducing conducting sheets at their
edges. These conducting sheets generally improved the
directivity of the reflectors, and gave an optimum
directivity for a 45 degree angle between the sheets and the

symmetrical axis of the reflectors.
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APPENDIX A
a~ The Method of Moment

The basic idea of the method of moment is to reduce
an operator equation to a matrix equation and then solve the
matrix equation by known techniques.

12

Following Harrington , let us consider an integral

equation of the inhomogeneous type,
Lif) = g | (1 4)
where, L is an integral operator, f is the unknown function

-tokbe determined and g is the known function. Let f be

~expanded in a series of linearly independent functions,

f =-§anfn (2 4)
where, an's(h=l,2,...)are . in general complex constant
coefficients and fn's are >expansion functions(basis

functions). Equation (2 A) holds if it dis an infinite
summation and ‘fn's form a complete set of linearly
independent functions. For an approximate solution, however,
the summation is usually truncated at n=N, where the lower

limit of N depends on the desired degree of accuracy of the

solution. Furthermore, the set of fn should ©be chosen in
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such a way that +to approximate f reasonably well in the
prescribed region, Substituting (2 A)into (1 A) and using

the linearity of L results in,

I oo L(f) =g (3 8)

Now we define an inner.producf <f,g> to satisfy,

<f’g> :(g,f)
<af + bg,h> = a<f,h> + b<g,h> (4 4a)
>0 if £ =0
. _
<f ,f>
= 0 if £ =0

where, a and bAare~séalars»and ® denotes complex conjugate.-
For'different-problems,_ diffefent' suitable innér -product
definitions-may. be chosen, but subject to (4 A). Now, define: ...
a set of 1linearly independent testing functions, -Wn's

(n=1,2,...N). Taking the inner product of (3 A) with each W,

leads to,

Lo, < W,Lif)> = <i ,g> m=1,2,..N (5 A)
n

In matrix form,(5 Almay be cast in the form of,




(2 ) (o) =(g) (6 A)
mn n m

If the matrix( an)is not singular,then,

-1
(ay = (2, (ay (7 &)

-1

where,(,lmn) 1s the inverse of ( Qm . After solving (7 A) for

o

0 's, then the unknown quantity f may be approximated by,
n

f (& a)

H
24
[ B e e

’b— Approximation tecnniqﬁes for the expansion and weighting
functions. |

In -order to solve the inhomogeneous integral
equation (1 A), the first task -is to choose -an appropriate
set for the expansion functions. . InZ.fact, there are an
infinite number of sets that may be used for = this purpose.
However, dtermination of the proper set depends on the
desired degree of acéuracy of the solution and'the ease of
evaluation of the matrix elements and the computing cost
factor. It should also be chosen in such a way. that to give
an accuracy consistent with the accuracy of the integration
technigues used for evaluating sub integrals related to the
cocefficient matrix.

Several useful expansion functions with their
3
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) 1u
degree of agccurac are gilven in namel ulse, triangle
g g b ] H L]

first order Taylor series and piecewise parabolic functions.

Pulse function is the least and parabolic function is the

most accurate ones in these series of expansion functions.
For +the case of weighting funétions, agaln we may
use an infinite number of sets. However, & complicated form
of weighting function results 1in evaluating complex
integrals for detérmining the elements of +the coefficient
.matrixf The simplest way is to use a set of Dirac's delta
functions. In terms of the point matching technique, this is
equivalant to enforce the integral equation at N discrete
points on the cqntoﬁr of the integration. Throughout this
thesis, the computations are’carried out by a first order

approximation, that is, the pulse and delta functions are

l22.

used for the expansion and .the. .weighting functions, . .

respectively. .

c- Pulse and Dirac's delta functions.
The simplest form of expansion functions is the puls

function illustrated in figure A.

P(C), P(c-C__.)
//—P(C-Cn)
)
v
. L , ©
Cn-l”cn Cn+l

Figure A Pulse function

e
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A linear combination of pulse functions results in a step

approximation to f, which is depicted in figure B.

-

i) 1 1

Y
Q

Cn-—l Cn Cn+1

Figure B Step approximation

Therefore,

: < ¢ < (Cc +Cc)/2
1 (Cﬁcn—l)/g . C (n+1 n)
0 elsewhere (9 A)
For the case of weighting function, we choose a set

of Dirac's delta functions located at the center of each

interval on C, as it is illustrated in figure C.

Figure C Delta functions



According to the definition of +the Dirac's delta

function, we have,

Gn(p-pn)= 0 when 0 ¥ o, (10 A)
j( 6n(5-5n) de = 1 when p= 0,
C

For use in this work, a suitable inner product is

defined as,

< Wp ,P > = f Wy P de (11 4)

Now, if the —contour C of the integration is divided into a
total of N intervais, the sampled density of the unknown in

the center of the nth interval is,

I on Acn - (13 &)

C elsewhere
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where,
= - 14
A G (C4q ¢ ) ( A)
€. Determination of the coefficient matrix.
In order to determine +the elements of +the

Coefficient matrix, we take the specific example of an

integral equation in the form of,

B (B = ) [ a(p) B x]B- B aer (15 a)
C |
where,
g = L (P)
1
£ = J(B) (16 &)

al
]

2
/) [ m 1B - B D) ae

From the equations 5,9,10 and 11 we have,

2

% = < W ,Llf,) > = um/u)f B (k| _P ) acr
mn m o}
c

(27 &)

~

where %n and %1 are the positional vectors of the mid-points

of Aqn and Agl, respectively. The crudest approximation for
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evaluating the integral appearing in (17 A) is to assume
that the intervalA C is sufflclently small to neglect the
n 12

variation of the integrand over .ACn , for the case when m#n

Therefore,

% = {(en/bk) Ac Ho(klp—p 1) m # n (18 A)

mn n

For diagonal elements (m=n), the Hankel function has a
singularity on the nth interval. The Hankel function cannot
be integrated directly. However, if the intervél lengths are
small enough, then the argument is small and the Hankel

function can be approximated by ,

2 . :
] B (k]P0 =1 -@2/mML( ykbC /2)

where Y is given by,
y= 1.78107¢2
~An application of (19 A) to (17 A) results in,

fan = (EWB)AG {1 -(j2/mb (v kA C_/he)}

Using the equations 2,7,18 and 20, the approximate current




distribution over the contour C can be obtained with the aid
of a digital computer. Once the current distribution is:
found, other parameters of the engineering interest can De

computed by simple integrations.
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