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Abstract

We consider a class of optimization problems in which the aim is to find some

optimizing probability distributions. One particular example is optimal de-

sign. We first review the optimal design theory, and determine the optimality

conditions using directional derivatives. We then construct optimal designs

for various polynomial regression models by finding the analytic solutions and

by using a class of algorithms. We consider a practical problem, namely a

radiation-dosage example, and discuss important aspects of optimal design

throughout this example.

We also construct optimal designs for various polynomial regression mod-

els with more than one design variable. We consider another practical prob-

lem, namely a vocabulary-growth study. We then construct D-optimal and

c-optimal designs for various models with and without the interaction term

and the second order terms in design variables. We also develop strategies for

constructing designs by using the properties of the directional derivatives.
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Chapter 1

Introduction

An experiment is a process or study that results in the collection and analysis

of data. An experiment can be designed to answer a variety of questions

of interest. The results of experiments are not known in advance. Usually,

statistical experiments are conducted in situations in which researchers can

manipulate the conditions of the experiment and can control the factors that

are irrelevant to the research objectives.

Experimental design is the process of planning a study to meet specified

objectives. Planning an experiment properly is important in order to ensure

that the right type of data, sufficient sample size and power are available to

answer the research questions of interest as clearly and efficiently as possible. A

researcher’s goal is to increase the efficiency of a properly designed experiment.

In regression experiments the inputs are often numerical and the values

or levels of inputs must be chosen before running an experiment and observing
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a measurement on some variables of interest. There will be a set of or several

combinations of the inputs allowed. We must decide how many observations

to take at each combination of inputs.

1.1 Stages of designing experiments

It is important and necessary for the researchers involved in the experiment

to have a clear idea of exactly what to be studied, how the data are to be

collected and how these data are to be analyzed. Usually, the experimental

problems can be solved in six stages.

a. Formulation of the problem. In scientific research, many problems are ex-

pressed as a relationship between some explanatory variables X and the

response variable Y. Therefore, the first purpose is to identify the correct

set of variables in the study.

b. Choice of the research design. Choice of research design involves considera-

tion of structuring the research, the sample sizes and the data collection.

At this stage it is important to distinguish between qualitative versus

quantitative variables, random versus fixed variables and a crossed or

nested relation among variables and to select the number of measure-

ments, time points and subjects within groups.

c. Choice of statistical model. A statistical model must be chosen before the
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data are collected. The model is usually a formalization of relationships

between variables in the form of mathematical equations. A statistical

model describes how the change of explanatory variables will affect the

response variables. In design context, when considering the factors that

may influence the response variable, the experimenter should classify

these factors as either potential design factors or nuisance factors.

d. Data Collection and performing the experiment. In this stage, all data

are collected depending on the research design and the design variables.

When running the experiment it is important to monitor the process

carefully to ensure that everything is being done according to the pro-

posed plans.

e. Analysis of data. In this stage, based on the chosen model, statistical meth-

ods are employed to analyze the data so that the results are objective

rather than judgemental in nature. Sometimes the graphical methods

play an important role in data analysis.

f. Conclusions. After the data have been properly analyzed the experimenter

must carefully infer the practical conclusions about the results and rec-

ommend the course of actions. Sometimes the experimenter should per-

form some follow-up runs and confirmation testing to validate the con-

clusions.
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1.2 The necessity and function of optimal design

Usually, an experiment can become more efficient by two directions. One is

by working on finding best statistical model to fit the data. Another one is

by looking for the most efficient method to collect the data. Some questions

naturally arise in mind. How do you collect data to answer your research

questions? What should your design be? Can we find an efficient design with

a small or moderate sample size? These kinds of questions will be the most of

the problems optimal design deal with.

Optimal design theory offers a possible way of finding an optimal or a

highly efficient design using all current information. Once the objectives of the

study are clearly mentioned, we can find some optimization methods that will

generate the optimal design. Useful texts in optimal design theory are Atkin-

son et al. (2007), Atkinson and Donev (1992), Fedorov (1972), Pukelsheim

(1993), Silvey (1980), Berger and Wong (2009).

In any regression model, the objective is good estimation of the param-

eters of the regression model. There are a variety of criteria defining good

estimation. We choose a design to optimize a chosen criterion.

We start by considering the problem of selecting an experimental design

to furnish information on models of the type:

y ∼ p(y|x, θ, σ) (1.1)

4



where y is the response variable. In a particular experimental condition, y is

considered as a sum of a real-valued response function evaluated at x, and a

random error. The vector x = (x1, x2, . . . , xm)T consists of the design variables.

These can be chosen by the experimenter, their values being restricted to a

space X , i.e. x ∈ X ⊆ Rm. Thus X is the set of experimental conditions,

and is called the design space. Typically this space is continuous but can be

discrete. The vector θ = (θ1, θ2, . . . , θk)
T is a k-dimensional vector of unknown

parameters. The true value of θ is known to belong to a set Θ ∈ Rk. σ is

a nuisance parameter. This is also fixed and unknown but is not of primary

interest. p(.) is a probability model.

The experimenter can freely choose the experimental conditions from

the given experimental domain X . In most applications, X is taken to be

compact. That is, the design space is closed and bounded. For each x ∈ X , an

experiment can be performed whose outcome is a random variable y = y(x),

where var(y(x)) = σ2. We generally suppose that σ does not depend on the

experimental condition x. In linear regression design the model is linear in

the unknown parameters θ but not necessarily linear in x. So in linear models

y(x) has an expected value of the explicit form

E(y|x, θ, σ) = fT (x)θ (1.2)

where f(x) = (f1(x), f2(x), . . . , fk(x))T is a vector of k real-valued functions

defined on X . The regression functions f1, f2, . . . , fk are known to the exper-

imenter. In order to obtain an observation on y, a value for x must first be
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selected from X . It is assumed that x can be set to any chosen value in X .

Given this control over the selection of x, a natural question to consider is at

what values of x should observations, say n, on y be taken in order to obtain

a ‘best’ inference or as reliable an inference as possible for all or some or a

function of the parameters θ.

Such a ‘best’ selection of x values and/or allocation of the n observations

to the elements of X is termed an optimal regression design.

The mode of inference must first be decided upon. For the moment let us

suppose that it is point estimation. It will be seen that the solution proposed

for this case will hold good for other modes of inference too. It is desired then

to choose n values (x1, x2, . . . , xn) to yield ‘best’ point estimates θ̂ of some

or all of the parameters θ. Suppose by some method of point estimation the

estimator θ̂ of θ is obtained. Let θ̂ be unbiased for θ. Typically the components

θ̂j will be correlated. The k×k matrix D(θ̂) = E([θ̂−θ][θ̂−θ]T ), the dispersion

matrix (or the variance-covariance matrix) of θ̂ about θ, contains information

about the accuracy of θ̂ not only in its diagonal elements, which of course

measure the mean squared deviation of θ̂j from θj, but also in its off-diagonal

cross product deviation terms. Generally speaking the ‘smaller’ is D(θ̂) the

better is the accuracy of θ̂.

Suppose the model (1.2) is true. Let yi denote the observation obtained

6



at xi so that

E(yi) = vTi θ, vi = (f1(xi), f2(xi), . . . , fk(xi))
T , i = 1, 2, . . . , n. (1.3)

Note that typically there will be several equalities between the xi’s, more

than one observation being taken at the same x value. Suppose also that

y1, y2, . . . , yn are independent random variables with equal variance σ2. The

yi’s then satisfy the standard linear model:

E(Y ) = Xθ, D(Y ) = σ2In (1.4)

where Y = (y1, y2, . . . , yn), X is the n × k matrix whose (i, j)th element is

fj(xi), In is the n×n identity matrix and D(Y ) denotes the dispersion matrix

of Y . Least squares estimators are a conventional choice for this model having

the optimality of being best linear unbiased estimators (BLUE). They are

solutions of

(XTX) θ̂ = XTY. (1.5)

The k × k matrix (XTX) is the information matrix for θ. The larger (XTX),

the greater is the information in the experiment. If all the parameters θ are of

interest, then the selection of x must at least ensure that the matrix (XTX)

is non-singular, in which case the unique solution for (1.5) is given by:

θ̂ = (XTX)−1XTY (1.6)

with

E(θ̂) = θ, D(θ̂) = σ2(XTX)−1.

7



The predicted value of the response at x is

Ŷ (x) = f1(x)θ̂1 + f2(x)θ̂2 + . . . + fk(x)θ̂k, = fT (x)θ̂.

Clearly the dispersion matrix of θ̂ does not depend on θ and only depends

proportionally on the parameter σ2. We have to select {x1, x2, . . . , xn} to

make the matrix D(θ̂) as small as possible, namely a {x1, x2, . . . , xn} which

makes the matrix (XTX) large in some sense.

1.3 Discretizing the Design Space

The linear model in (1.2) can be written as:

E(y|v, θ, σ) = vT θ (1.7)

where

v = (f1(x), f2(x), . . . , fk(x))T , v ∈ V ,

V = {v ∈ Rk : v = (f1(x), f2(x), . . . , fk(x))T , x ∈ X}.

Clearly choosing a vector x in the design space X is equivalent to choosing

a k-vector v in the closed bounded k-dimensional space V = f(X ), where f

is the vector valued function (f1, f2, . . . , fk)
T . That is, V is the image under

f of X . So, V is an induced design space. Suppose that the design space V

consists of J distinct vectors v1, v2, . . . , vJ . In order to obtain an observation

on y, a value for v must first be chosen from the J elements of V to be the
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point at which to take this observation. Note that, originally the design space

X is continuous, however, after discretization, we can deal with the induced

design space V . The design problem can now be expressed more precisely. At

which of the points vj should observations be taken and, if n observations in

total are allowed, how many observations should be taken at these points in

order to obtain ‘best’ least squares estimators of θ?

Given n observations, we must decide how many of these, say nj, to take

at vj,
J∑
j=1

nj = n. Given these choices the matrix (XTX) can be expressed in

the form:

XTX = M(n), n = (n1, n2, . . . , nJ)T (1.8)

where

M(n) =
J∑
j=1

njvjv
T
j

= V NV T

and V = [v1, v2, . . . , vJ ], N = diag(n1, n2, . . . , nJ).

1.3.1 Exact versus approximate design

We now want to choose n to make the matrix M(n) big in some sense. Given

that the nj’s must be integer this is an integer programming problem and in

the design context is described as an exact design problem. Typically integer
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programming problems are difficult or at least laborious to solve even without

additional constraints, mainly because the theory of calculus cannot be used

to define the existence of or to identify optimal solutions. Furthermore, a

solution would have to be worked out separately for different values of n. By

the nature of the problem then, no formula for an optimal exact design could

be devised that would express it as a function of n. Nevertheless one could not

avoid having to solve such a problem if, for given n, one chose to seek optimal

nj’s directly. However,

M(n) = nM(p) (1.9)

where

M(p) =
J∑
j=1

pj vj v
T
j (1.10)

= V PV T (1.11)

and P = diag(p1, p2, . . . , pJ); pj=
nj

n
and so is the proportion of observations

taken at vj, so that pj ≥ 0,
J∑
j=1

pj = 1; and p = (p1, p2, . . . , pJ) represents the

resultant distribution on V .

Thus our problem becomes that of choosing p to makeM(p) large subject

to pj=
nj

n
. Relaxing the latter to pj ≥ 0 and

J∑
j=1

pj = 1 yields an approximate

design problem.

This is a simpler or more flexible problem to solve and yet one that is not
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much visibly different from the original. Naturally an approximate solution

that would be preferred to the original exact design problem would be np∗,

rounded to a ‘nearest’ exact design. Hopefully this would be a near fully

optimum exact design. Note that we can view p as defining a probability

distribution on V to yield

M(p) = Ep[v v
T ] (1.12)

where P (v = vj) = pj.

Thus we can think of a design as defined by a set of weights or proba-

bilities pj, pj being assigned to vj ∈ V . Such a design may put weight pj = 0.

1.3.2 Design Measure

We have referred to p above both as the vector (p1, p2, . . . , pJ) and as a

probability distribution on V . Of course this induces a distribution on the

original design space X . A full statement of this is

p =

{
x1 x2 . . . xJ
p1 p2 . . . pJ

}
(1.13)

where the first line gives the locations of the design points with pj the associ-

ated design weights,
J∑
j=1

pj = 1 and 0 ≤ pj ≤ 1 for all j.
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Support of a Design Measure

The support of the design measure p in the design space V is defined to

be those vertices vj with nonzero weighting under p. It is denoted by:

Supp(p) = {vj ∈ V : pj > 0, j = 1, 2, . . . , J}

Often there will be an optimal design, say p∗ such that Supp(p∗) is a strict

subset of V .

Standardised Variance of the Predicted Response

The standardised variance of the predicted response on y at x for the

design (1.13) is given by

d(x, p) = fT (x)M−1(p) f(x), (1.14)

where M(p) is the information matrix.

1.3.3 The Information Matrix M(p)

Note that, from the definition of the information matrix M(p) as given in

(1.9), it can be written as

M(p) =
J∑
j=1

pj vj v
T
j

= V PV T
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The information matrix M(p) is symmetric and nonnegative definite. The

symmetry of this matrix follows from its definition above. The nonnegativeness

of the appropriate quadratic form is easy to verify.

xTM(p)x = xTEp[v v
T ]x

= Ep[x
Tv vTx]

= Ep[(x
Tv)2] ≥ 0.

The information matrix is widely used in optimal experimental design.

Recall that the inverse of the variance-matrix (dispersion matrix) is actually

the information matrix. Because of this reciprocity property of estimator-

variance and information, minimizing the variance corresponds to maximizing

the information. In the following section, we will see that many of the design

criteria are functions of the above information matrix M(p).

1.4 Criteria in Optimal Design

It may be possible to obtain a best inference for all or some of the unknown

parameters θ by making the matrix M(p) large in some sense. So we consider

various ways in which to make the matrix M(p) large, namely by maximizing

some real valued function φ(p) = ψ{M(p)}. Note that the function φ is called

the criterion function, and in turn, the criterion defined by the function φ is

usually called φ-optimality. A design maximizing φ(p) is called a φ-optimal
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design.

We consider both the cases when interest is in inference about all of

the parameters or a sub-set of the parameters θ of a regression model. We

first assume that the information matrix M(p) is non-singular and hence pos-

itive definite. Now we consider different design criteria of interest and their

properties.

D-optimality: The most important and popular design criterion in applica-

tions is that of D-optimality, in which the criterion function is given by

φD(p) = ψD{M(p)} = log det{M(p)} = − log det{M−1(p)}.

Various motivations for D-optimality exist. A D-optimal design minimizes

the volume of the conventional ellipsoidal confidence region for the parame-

ters of the linear model. Other motivations for D-optimality lie in hypothesis

testing under a normal linear model. This is the most extensively studied of

all design criteria; see Kiefer (1959), Fedorov (1972), Silvey (1980), Atkinson

and Donev (1992), Pukelsheim (1993) and Wynn (1972). Mandal and Torsney

(2000) construct D-optimal designs in a variety of examples using a class of

multiplicative algorithms [Torsney (1977)].

The criterion is an increasing function over the set of positive definite

symmetric matrices. That is, for M1, M2 ∈ M, ψD(M1 + M2) ≥ φD(M1),

where M is the set of all positive definite symmetric matrices. The criterion

is a concave function on M. [Note that a function f is concave on a convex

14



set S if for any x, y ∈ S, and for any α, 0 < α < 1, f [(1 − α)x + αy] ≥

(1− α)f(x) + αf(y).]

A-optimality: A-optimality is defined by the following criterion function:

φA(p) = ψA{M(p)} = −Trace{M−1(p)}.

Thus an A-optimum design minimizes the sum of the variances of the parame-

ter estimates or their average variance, but does not take correlations between

the estimates into account.

The criterion is an increasing function over the set of positive definite

symmetric matrices. Unlike D-optimality, linear transformations may not

leave the A-optimum design unchanged.

G-optimality: G-optimality is defined by the criterion function:

φG(p) = ψG{M(p)} = −Max
v∈V

vTM−1(p) v.

This criterion seeks to minimize the maximum value of vTM−1(p) v which is

proportional to the variance of vT θ̂. Kiefer and Wolfowitz (1960) prove the

equivalence of this criterion and the D-optimal criterion.

The criterion function is an increasing function over the set of positive

definite symmetric matrices. ψG is concave on M, and is invariant under a

non-singular linear transformation of V .

E-optimality: In E-optimality the variance of the least well-estimated con-

trast aT θ is minimized subject to the constraint aTa = 1. Thus the E in the

name of this criterion stands for extreme. This optimality criterion is defined
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by the criterion function:

φE(p) = ψE{M(p)} = −λmax[M−1(p)] = −λ−1max

where λmax[M−1(p)] denotes the largest eigenvalue of M−1(p) [Kiefer (1974)].

The criterion is an increasing function over the set of positive definite

symmetric matrices. If λmax is unique then ψE has unique partial derivatives

corresponding to positive weights. Otherwise φE is not differentiable.

Sometimes interest is only in some of the unknown parameters or some

combinations of the parameters. Suppose we are interested in s linear combi-

nations which are elements of Aθ, where A is an s × k matrix of rank s ≤ k.

In particular, when A = [Is : O] where Is is the s × s identity matrix and O

is the s× (k − s) zero matrix, we are interested only in estimating the first s

parameters. If M(p) is non-singular, the variance matrix of the least squares

estimator of Aθ is proportional to AM−1(p)AT . So a good design will be one

which makes the matrix AM−1(p)AT as small as possible. Specific criteria

which have been proposed include the following.

DA-optimality: The criterion function for this optimality is defined by

φDA
(p) = ψDA

{M(p)} = − log det{AM−1(p)AT}.

To emphasize the dependence of the design on the matrix of coefficients A,

Sibson (1974) called this criterion DA-optimality.

The cirterion is an increasing function over the set of positive definite

symmetric matrices. ψDA
is concave and has unique partial derivatives corre-
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sponding to positive weights.

Ds-optimality: This optimality is an important special case ofDA-optimality.

Note that if A = [Is : O] and we partition the matrix M(p) as follows:

M(p) =

[
M s× s

11 M s× k−s
12

MT
12 Mk−s× k−s

22

]

then the matrix (AM−1(p)AT )−1 can be expressed as (M11−M12M
−1
22 M

T
12). So

maximizing φDA
in this particular case is equivalent to maximizing φDs(p) =

log det{M11−M12M
−1
22 M

T
12}, which is known as the Ds-optimal criterion; see

Karlin and Studden (1966) and Atwood (1969). The properties of this criterion

are similar to those of DA-optimality.

There is a vast statistical literature on optimal design criteria. The above

is a list of the most common design criteria. A detailed list of different criteria

can be found in Atkinson et al. (2007), Pukelsheim (1993), Fedorov (1972) and

Silvey (1980). The alphabetical nomenclature for different design criteria was

introduced by Kiefer (1959).
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Chapter 2

Optimality Conditions

2.1 Introduction

Recall that when we discussed different optimality criteria, we expressed each

of the criterion functions as a function of p [that is, φ(p)] or as a function of

the information matrix M(p) [that is, ψ{M(p)}]. Note that we focussed on an

approximate design rather than an exact design. Recall that if we have only

one design variable (x), an approximate design is written as

p =

{
x1 x2 . . . xJ
p1 p2 . . . pJ

}
(2.1)

where the first line gives the locations of the design points (on the design space

X ) with pj, the associated design weights. Also note that as pj’s are the design

weights, pj’s must satisfy the following constraints: pj ≥ 0, and
J∑
j=1

pj = 1.

Thus, in any of the above optimality criteria, we optimize a criterion function,
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say φ(p), subject to the constraints pj ≥ 0, and
J∑
j=1

pj = 1.

Our goal is to find an optimal design according to a criterion function.

That is, we wish to choose the proportion pj of observations, taken at xj to

ensure good estimation of θ by optimizing some criterion. Recall that we can

view p as a probability distribution on the induced design space V , where V

consists of the vertices v1, v2, . . . , vJ . This also induces a probability distri-

bution on the original design space X . Thus we consider the above general

problem and wish to find an optimizing distribution (say, p∗). There are a

variety of problems in statistics, which demand the calculation of such proba-

bility distributions. Optimal regression design is a particular example. Other

examples include parameter estimation and stratified sampling.

In order to find an optimal design or an optimizing distribution, we

first need to determine conditions for optimality for the above optimization

problem. The emphasis is on a differential calculus approach. An important

tool is the directional derivative Fφ{p, q} (will be defined in Section 2.3) of

a criterion function φ(p) at p in the direction of q. This plays an important

simplifying role in the calculus of optimization.

Before we determine the optimality conditions, we need to consider a

class of optimization problems.
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2.2 Class of Optimization Problems

Problem (P1)

Maximize a criterion φ(p) over P ≡
{
p = (p1, p2, . . . , pJ) : pj ≥ 0,

J∑
j=1

pj = 1
}
.

The equality constraint
∑
pj = 1 renders the problem a constrained opti-

mization problem, the full constraint region being a closed bounded convex

set.

Problem (P2)

Maximize ψ(x) over the convex hull (of the points G(v1), . . . , G(vJ))

CH{G(V)} =
{
x = x(p) =

J∑
j=1

pj G(vj) : p = (p1, p2, . . . , pJ) ∈ P
}

where G(.) is a given one to one function and V = {v1, . . . , vJ} is a known set

of vector (or matrix) vertices of fixed dimension.

Note that we could alternatively state that x(p) = Ep[G(v)], where G(v)

is a random variable assuming the value G(vj) with probability pj.

That is, solve Problem (P1) for

φ(p) = ψ{Ep[G(v)]}, x = Ep[G(v)] =
J∑
j=1

pjG(vj). (2.2)

Clearly an example of Problem (P1) or Problem (P2) is a general optimal

linear regression design problem. Note that, as with our design problem, a
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generalization of Problem (P2) would be to seek a probability measure defined

on the induced design space V to maximize a function φ(p).

Now we consider optimality conditions for the above optimization prob-

lems. Note that there are two approaches which we could adopt in solving the

problems. We could seek out an optimizing p∗ directly or first determine an x∗

maximizing ψ(x) over CH{G(V)} and then find a p∗ such that x(p∗) = x∗. The

former approach, which is the main we will consider, would require conditions

explicitly defining an optimizing p∗.

We define optimality conditions in terms of point to point directional

derivatives. There are two derivatives of interest. We define these in terms of

a function φ(p).

2.3 Directional Derivatives

Directional Derivatives: Fφ{p, q}

Making use of differential calculus, we exploit the directional derivative of

Whittle (1973). The directional derivative Fφ{p, q} of a criterion function

φ(.) at p in the direction of q is defined as

Fφ{p, q} = lim
ε↓0

φ{(1− ε)p+ εq} − φ(p)

ε
. (2.3)

It is a derivative which can exist even if φ(.) is not differentiable.
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Gâteaux Derivative: Gφ{p,m}

Another directional derivative of a criterion function φ(.) is defined by the

following

Gφ{p,m} = lim
ε↓0

φ{p+ εm} − φ(p)

ε
. (2.4)

Gφ{p,m} is called Gâteaux derivative of φ(.) at p in the direction of m.

Looking at the above two kinds of directional derivatives, it is clear that

Fφ{p, q} = Gφ{p,m} (2.5)

where m = q − p, while Gφ{p,m} = Fφ{p, p+m}.

It is interesting to note that Gφ{p, ej} = ∂+φ
∂pj

, the right hand partial

derivative of φ(.) with respect to the jth component of p, ej being the jth unit

vector.

Kiefer (1974) used the concept of Gâteaux derivative in his design theory

though he did not call it a directional derivative. Certainly it does not benefit

from concavity of φ(.). However, we will see that this representation of Fφ{p, q}

in terms of G{p,m} is useful for studying their properties and for deriving the

partial derivatives of a criterion function.

Now we discuss some properties of the above directional derivatives.

1. If p, q ∈ S, where S is a convex set, then so does {(1−ε)p+εq}, which is
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clearly an advantage if one wishes Fφ{p, q} only for p, q ∈ S. In contrast,

Gφ(p, q) does not particularly benefit from such convexity.

2. Fφ{p, q} ≥ φ(q) - φ(p) if φ(.) is concave. This can be shown by using the

definition of a concave function.

3. Fφ{p, p} = 0, a desirable property since no change is effected in φ(.) if

one does not move from p. In contrast, Gφ{p, p} = Fφ{p, 2p} 6= 0.

We have not so far made any assumptions about differentiability of the

criterion function φ. When the criterion function φ is differentiable, it plays

an important simplifying role in the optimization of φ. Now we proceed to

redefine the concept in terms of Fφ{p, q}. Consider the form of the directional

derivative of a linear function L(p) = aTp+ b. Clearly,

FL{p, q} = lim
ε↓0

[L{p+ ε(q − p)} − L(p)]/ε

= lim
ε↓0

[aT [p+ ε(q − p)]− aTp]/ε

= aT (q − p)

= L(q)− L(p).

Similarly,

GL{p, q} = aT q

= L(q)− b,
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and the vector of partial derivatives of L is ∂L
∂p

= a.

Thus for φ(.) to be differentiable at p it must be that

Fφ{p, q} = (q − p)T ∂φ
∂p

= (q − p)Td for all q

=
J∑
i=1

(qi − pi)di, di = ∂φ/∂pi, i = 1, . . . , J, d =
∂φ

∂p

or

Gφ{p, q} = qT
∂φ

∂p
= qTd for all q.

It is worth mentioning that the condition on Gφ{p, q} is a familiar defi-

nition of differentiability.

Note that, in particular, when p ∈ P of Problem (P1),

Fφ{p, ej} = dj −
J∑
i=1

pi di (2.6)

where ej is the jth unit vector in RJ . Let us denote Fφ{p, ej} by the simple

notation Fj. We call Fj the vertex directional derivative of φ(.) at p. We deter-

mine the optimality conditions using this simplified form of vertex directional

derivative Fj.
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2.4 Vertex Direction Optimality Theorem

Recall that in Problem (P1) our problem is to maximize a criterion function

φ(p) subject to pj ≥ 0, j = 1, 2, . . . , J ,
∑
pj = 1. If φ(p) is differentiable at

an optimizing distribution p∗, then the first-order conditions for φ(p∗) to be a

local maximum of φ(p) in the feasible region of the problem are

F ∗j = Fφ{p∗, ej}
{

= 0 for p∗j > 0
≤ 0 for p∗j = 0. (2.7)

If φ(p) is concave on its feasible region, then the first-order stationarity

condition (2.7) is both necessary and sufficient for optimality, a result known

as the general equivalence theorem in optimal design [Kiefer (1974)].

Other authors also derived or considered the theorem in general optimal

design problem or in a more general setting than the design problem. See,

for example, Whittle (1973). Some authors too have derived the theorem but

using Lagrangian theory. See, for example, Sibson (1974) and Silvey and Tit-

terington (1974). The general equivalence theorem plays an important role in

constructing optimal designs, specifying a finite set of optimality conditions.

It should be easy to check whether or not these are satisfied by a solution

obtained by numerical techniques. Differentiability though is an essential re-

quirement.

Next, we will consider construction of optimal designs and check that

the optimal design satisfies the above general equivalence theorem.
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Chapter 3

Construction of Optimal Designs
for Polynomial Regression in One
Variable

3.1 Introduction

As we discussed in Chapter 1, there are two ways of constructing an optimizing

probability distribution. In optimal design context, one is by means of an

exact design which finds the exact integer values of the numbers of trials

(observations) (nj’s) at different design points or at the vertices of the induced

design space. The other one is by means of an approximate design, which finds

the corresponding proportions (pj’s) of observations so that pj ≥ 0,
∑
pj = 1;

and p = (p1, p2, . . . , pJ) represents the resultant distribution on the induced

design space V . We focus on the latter approach as this is a simpler or more

flexible problem to solve and yet one that is not much visibly different from
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the original.

We first construct such approximate optimal designs by maximizing the

D-optimal criterion subject to the basic constraints on the design weights.

As mentioned before, this optimality criterion seeks to maximize the criterion

function:

φD(p) = ψD{M(p)} = log det{M(p)} = −log det{M−1(p)}. (3.1)

Because of this reciprocity property of the covariance matrix and the informa-

tion matrix, maximizing the determinant of the information matrix is equiv-

alent to minimizing the determinant of the covariance matrix. That is, in D-

optimality, the generalized variance of the parameter estimates is minimized.

There are various motivations for D-optimality. These extend beyond

the idea of point estimation and joint inference of the parameters θ. There

is an interesting statistical interpretation of D-optimal design. If we assume

normality of the errors in the linear model, then the general form of the joint

confidence region for the vector of unknown parameters θ ∈ Θ is described by

an ellipsoid of the form:

{θ : (θ − θ̂)T M(p) (θ − θ̂) ≤ c}, for some critical value c (3.2)

where θ̂ is the least squares estimate or the maximum likelihood estimate of θ.

The D-optimal criterion chooses M(p) to make the volume of the above ellip-

soid as small as possible because it is the case that this volume is proportional
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to [det{M(p)}]− 1
2 . The value of [log det{M(p)}] is finite if and only if M(p)

is non-singular, i.e. when all the unknown parameters are estimable. This

optimality criterion can be expressed in terms of the eigenvalues of the infor-

mation matrixM(p). Let the eigenvalues ofM(p) be λ1, λ2, . . . , λk. Then, the

eigenvalues of M−1(p) are 1/λ1, 1/λ2, . . . , 1/λk. These eigenvalues of M−1(p)

are proportional to the squares of the lengths of the axes of the confidence el-

lipsoid. Thus, the D-optimal design minimizes the product of the eigenvalues

of M−1(p), that is,
∏k

i=1 1/λi.

This is the most important and popular design criterion in applica-

tions, and is most extensively studied of all design criteria. The references

include Kiefer (1959), Fedorov (1972), Silvey (1980), Berger and Wong (2009),

Atkinson and Donev (1992), Atkinson et al. (2007), Shah and Sinha (1989),

Pukelsheim (1993), Mandal and Torsney (2006), Mandal et al. (2005), and

Torsney (1983, 1988).

The D-optimality criterion [φD(p)] has several useful properties. First,

note that, the D-optimality criterion is a concave function of the positive

definite symmetric matrices.

The criterion function φD is differentiable whenever it is finite, and the

first partial derivatives are given by

∂φD
∂pj

= vTj M
−1(p) vj. (3.3)
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In many situations, we need to compare a certain design to theD-optimal

design. Suppose that we have a design p for a given model of k parameters.

Suppose the D-optimal design is p∗. Then, the relative efficiency of the design

p with respect to the D-optimal design p∗ is given by:

Deff =

{
detM(p)

detM(p∗)

}1/k

. (3.4)

We call this as D-efficiency of the design p. Taking the kth root of the above

ratio of the determinants gives us an efficiency measure that is proportional

to design size, irrespective of the dimension of the model.

Recall that we discussed a class of optimization problems in Chapter 2

and we referred Problem (P1) as our general problem. We also determined

the optimality conditions using the directional derivatives and the general

equivalence theorem. Now we will construct optimal designs satisfying the

first-order conditions as discussed before. An analytic solution of the problem

of constructing optimal designs is possible only in simple cases.

We first consider some polynomial regression problems for which explicit

solutions can be obtained.
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3.2 Constructing Designs in Polynomial Regres-

sion: Analytic Approach

In polynomial regression in one variable of order k − 1, the model is given by

E(y|x) = θ0 + θ1x+ θ2x
2 + . . .+ θk−1x

k−1 = vTx θ (3.5)

where vx = (1, x, x2, . . . , xk−1)T , x ∈ [−1, 1] and θ = (θ0, θ1, . . . , θk−1)
T .

Also, vx ∈ V = {vx : vx = (1, x, x2, . . . , xk−1)T , −1 ≤ x ≤ 1}, the induced

design space.

Here we have a standardized continuous design space. We construct

D-optimal designs using the Legendre polynomial of Fedorov (1972). We con-

struct the discrete D-optimal designs which is unique, having a minimal sup-

port of k points which are the k roots of the polynomials

(1− x2)P ′k−1(x)

where Pk(x) is the kth Legendre polynomial

Pk(x) =
N∑
n=0

[
(−1)n (2k − 2n)!xk−2n

2k n! (k − n)! (k − 2n)!

]
(3.6)

where

N =

{
k/2 if k is even
(k − 1)/2 if k is odd.

Note that, in a minimal support design, since Supp(p∗) contains k points

the D-optimal design on it assigns weight (1/k) to each of these.
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We start with an example of simple linear regression model to demon-

strate the method. Then, we will apply the method to quadratic and cubic

model also. In the simple linear regression k = 2 in model (3.5). The model is

E(y|x) = θ0 + θ1x

Simplifying the Legendre polynomial of (3.6), we obtain

(1− x2)P ′1(x) = (1− x2). (3.7)

Hence, the support points of p∗ are given by

x = ±1. (3.8)

So, we obtain the D-optimal design for the simple linear model as:

p∗ =

{
−1 1
0.5 0.5

}
.

Similarly, we can derive for the quadratic and cubic regression model.

For the quadratic model, we take k = 3 in model (3.5) (on page 30). The

model is

E(y|x) = θ0 + θ1x+ θ2x
2.

Therefor, the equation (3.6) simplifies to

(1− x2)P ′2(x) = 3x(1− x2). (3.9)
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Hence, the support points of p∗ are given by

x = ±1, 0. (3.10)

Thus, we obtain the D-optimal design for the quadratic regression model as:

p∗ =

{
−1 0 1
1/3 1/3 1/3

}
.

For the cubic model, we take k = 4 in (3.5). The model is given by

E(y|x) = θ0 + θ1x+ θ2x
2 + θ3x

3.

So, the Legendre polynomial simplifies to

(1− x2)P ′3(x) =
(15x2−3) (1−x2)

2 . (3.11)

Hence, the support points of p∗ are given by

x = ±1, ±1/
√

5 ≈ ±0.45. (3.12)

So, we obtain the D-optimal design for the cubic regression model as:

p∗ =

{
−1 −0.45 0.45 1
0.25 0.25 0.25 0.25

}
.

It will be of interest to compare numerically constructed designs with

the above analytic solutions. We can do this comparison after we consider

some algorithms for constructing optimal designs.

32



3.3 A Radiation Dosage Example

We consider a practical problem of Berger and Wong (2009), in which a ra-

diologist is interested in studying the linear effect of radiation dosage (X) on

tumour shrinkage (Y ). A simple linear regression model is considered for the

relationship between these two variables. The mathematical equation of the

simple linear regression is yi = θ0 + θ1xi + εi, where θ0 is the intercept param-

eter, θ1 is the slope parameter and εi are the random errors with zero mean

and constant variance σ2. We assume that the observations are independent.

The tumour shrinkage for the ith patient is yi for the radiation dose xi. The

dosage levels are given by 1 to 8 and the total number of patients (n) in the

experiment is 16. Table 3.1 shows 8 dosage levels and the number of patients

(ni) assigned to each of levels. The summation of all ni should equal to n. We

wish to obtain an optimal design in this problem, that is, we wish to obtain

the optimal dose levels and the corresponding number of patients.

Table 3.1: A radiation dosage design.

Dosage levels
1 2 3 4 5 6 7 8
n1 n2 n3 n4 n5 n6 n7 n8

The design issue for this experiment is that we only have small sample

of n = 16 patients. This means that we need to decide the number of patients

assigned to each or some of the dosage levels so that the experiment becomes
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more efficient. An optimal design is first determined by the choice of design

points. In this example, we have 8 different design points, say, d1, d2, . . . ,

d8. Many designs could be considered with respect to different numbers of

patients at each of the design points. For example, a simple design could be

that each of the design points receives equal number of patients, that is, a

balanced design. However, we need to find out an optimal design among all

the designs.

It will be convenient if we first standardize the design space. First note

that the design points d1, d2, . . . , d8 have a lower and upper limit, that is,

dmin ≤ dj ≤ dmax. Naturally the design points have to be selected within these

two limits. The set of all design points is called the design space. We usually

use a linear transformation to convert all design points to a standard region,

such as between -1 and 1. Let the new transformed variable (design variable)

be x. This can be done by the following linear transformation of the original

design points dmin ≤ dj ≤ dmax to xmin ≤ xj ≤ xmax.

xj =
dj − d̃
dmax − d̃

, where d̃ =
dmin + dmax

2
. (3.13)

Now, applying the above transformation, we obtain the design points xj’s as:

-1, -0.7143, -0.4286, -0.1429, 0.1429, 0.4286, 0.7143, 1.

Note that it is possible to convert the design points by some other trans-

formations. However, some characteristics of the design may change after the

transformation. Naturally then the optimal design may be different from the
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original design. However, in case of D-optimality, the design is invariant under

such transformation. We prove this in the following theorem.

Theorem 3.3. The D-optimal criterion is invariant under a non-singular

linear transformation of the design space.

Proof. We know that the D-optimal criterion function is given by φD(p) =

log det{M(p)}, where M(p) is the information matrix.

Let the design points in the original design be d1, d2, . . . , dJ , and the

corresponding vertices be v1, v2, . . . , vJ . Thus, the information matrix can be

written as M(p) = V PV T [see (1.11) on page 10].

Let V = [v1, v2, . . . , vJ ] andW = [ω1, ω2, . . . , ωJ ] be the induced design

spaces corresponding to the design points dj’s and xj’s respectively. That is,

V = [v1, v2, . . . , vJ ] is transformed to W = [ω1, ω2, . . . , ωJ ] under the linear

transformation ωj = Avj, where A is a k×k non-singular matrix, and k is the

number of parameters in the regression model.

Then a design assigning weight pj to ωj has information matrix given by

Mω(p) = WPWT

= AV PV TAT .

Now, the D-optimal criterion for the transformed variable can be written as
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φD{Mω(p)} = log det{Mω(p)}

= log det{AV PV TAT}

= log [ det{V PV T} × det{A}2 ]

= log det{M(p)} + log det{A}2

= φD{M(p)} + constant.

Thus, maximizing φD{Mω(p)} is equivalent to maximizing φD{M(p)}. Hence

the theorem.

3.3.1 Estimation of parameters and optimal design

In this section, we determine the optimal design to estimate the parameters

θ0 and θ1. We discuss the role of optimal design to estimate the parameters

as efficiently as possible. It is well known that the least squares estimators θ̂0

and θ̂1 can be found by the following two mathematical equations:

θ̂0 = ȳ − θ̂1x̄ and θ̂1 =
cov(x, y)

var(x)
=
SSxy
SSx

, (3.14)

where the sum of squares between x and y is SSxy =
∑

(xi − x̄)(yi − ȳ) and

the sum of squares of x is SSx =
∑

(xi − x̄)2. Moreover, the least squares

estimators θ̂0 and θ̂1 is unbiased, which means E(θ̂0) = θ0 and E(θ̂1) = θ1.

The variances of the two estimators θ̂0 and θ̂1 are

var(θ̂0) = σ2

(
1

n
+

x̄2

SSx

)
and var(θ̂1) =

σ2

SSx
=

σ2

n var(x)
. (3.15)
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Usually, The estimators will be more efficient as the variances of the

estimators get smaller. In particular, we are interested in minimizing the

variance of the estimate of the slope parameter θ1. Now, we try to make a

connection between this variance and the D-optimal criterion. For the above

model, the covariance matrix of θ̂ can be obtained as:

cov(θ̂) =
σ2

nSSx

[ ∑
x2i −

∑
xi

−
∑
xi n

]
. (3.16)

The determinant of this covariance matrix can be simplified as

det cov(θ̂) =
σ4

nSSx
. (3.17)

As we mentioned before, because of the reciprocity property, maximizing

the determinant of the information matrix is equivalent to minimizing the

determinant of the covariance matrix. In other words, in D-optimality we

can minimize the determinant of the covariance matrix. In this example, we

consider the above determinant [det cov(θ̂)] as our D-criterion.

Now, looking at the expressions of (3.15) and (3.17) we observe that the

variance var(θ̂1) or the D-optimal criterion decreses when the variance of the

error terms σ2 decreases and/or the variation SSx increases and/or the sample

size n increases.

From the above statement, a simple way to increase the efficiency of the

estimator or the D-optimal criterion is to increase the sample size n. This is

usually done in practice. However, this will lead to additional costs of collecting
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the data. Another way is to reduce the measurement error by having more

precise measurement of the variables to reduce σ2. This will lead to additional

costs too.

Based on the total control of the sampling and selection process, we have

yet another way to improve efficiency of the estimators without additional

cost. We can increase SSx by selecting the values of the independent variable

to make the estimator be more efficient. This is one of the roles of optimal

design by selecting the optimal values of the independent variable.

In Table 3.2 (on page 39), we have four different designs of the radiation-

dosage example for studying the effect of radiation dosage on the reduction of

tumours in breast cancer patients. In this table, Design 1 is the original design

and the 16 patients are randomly assigned to the 8 different dosage levels. In

Design 2, each dosage level is assigned to two patients. In Design 3, more

patients are assigned to smaller and larger dosages. Design 4 assigns patients

only at the extreme dosage levels. For each of these designs we calculate SSx,

var(θ̂1) and the D-optimal criterion. We see that Design 4 has the highest

SSx (196) among all the four designs. Also Design 4 has the smallest var(θ̂1)

(0.0051 σ2) and smallest D-optimal criterion (3.1875 10−4 σ4) among these

four designs. Thus, Design 4 is the optimal design among these four designs.

This design consists of two distinct design points (dosage levels) and assigns

n/2 (50%) patients to each of these two dosage levels. Thus, this optimal
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Table 3.2: Four designs assigning to eight different radiation dosage levels.

Design points dj Design 1 Design 2 Design 3 Design 4
1 2 2 3 8
2 1 2 2 0
3 2 2 2 0
4 3 2 1 0
5 4 2 1 0
6 1 2 2 0
7 1 2 2 0
8 2 2 3 8
n 16 16 16 16
SSx 70 84 108 196
var(θ̂1) 0.0143 0.0119 0.0093 0.0051(σ2)
D-criterion 8.9375 10−4 7.4375 10−4 5.8125 10−4 3.1875 10−4 (σ4)

design can be written as

p∗ =

{
1 8

0.5 0.5

}
. (3.18)

In terms of the transformed variable x, this optimal design can be written as

p∗ =

{
−1 1
0.5 0.5

}
. (3.19)

At this point, a natural question arises that if we consider some other

designs in this problem, is Design 4 still optimal? The answer is ‘yes’. Note

that optimality of the design depends on the class of designs under considera-

tion. We will show that (later in this chapter) the Design 4 is optimal among

all designs on the given design space for estimating the slope parameter as well

as in terms of D-optimality. A quick check would be to calculate the vertex

39



directional derivatives at the two design points and see whether they satisfy

the first-order conditions [as given in (2.7) on page 25].

F ∗j = Fφ{p∗, ej}
{

= 0 for p∗j > 0
≤ 0 for p∗j = 0.

To do this, we first calculate the partial derivatives

d1 =
∂φD
∂p1

= vT1 M
−1(p) v1 = 2, d2 =

∂φD
∂p2

= vT2 M
−1(p) v2 = 2.

Then we calculate the directional derivatives

F1 = d1 −
∑

pi di = 0, F2 = d2 −
∑

pi di = 0.

We see that the directional derivatives at the two points are zero. This indi-

cates that Design 4 is optimal.

Typically, the optimal support must in a sense be computed, as a pre-

lude to determining the optimal weights and this is essentially done by some

algorithms. Hence we consider the following class of algorithms, indexed by

a function which satisfies certain conditions and depends on one or more free

parameters.

3.4 A Class of Algorithms

Problems (P1) and (P2) (see Chapter 2) have a distinctive set of constraints,

namely the variables p1, p2, . . . , pJ must be nonnegative and sum to 1. An
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iteration which neatly submits to these and has some suitable properties is

the following multiplicative algorithm:

p
(r+1)
j =

p
(r)
j f(x

(r)
j )∑J

i=1 p
(r)
i f(x

(r)
i )

(3.20)

where x(r)j = d
(r)
j ,

d
(r)
j =

∂φ

∂pj

∣∣∣∣
p=p(r)

(partial derivatives at rth iteration, i.e., at p = p(r)),

and the function f(x) satisfies the following conditions:

(i) f(x) is positive;

(ii) f(x) is strictly increasing in x.

The function f(x) may depend on a free positive parameter δ.

3.4.1 Properties of the Algorithms

Under the conditions imposed on f(x), iterations under (3.20) possess the

following properties.

(a) p(r) is always feasible. We find the optimal solution in the feasible region.

(b) Under the above iteration supp(p(r+1)) ⊆ supp(p(r)), but some weights

can converge to zero.
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(c) An iterate p(r) is a fixed point of the iteration if the derivatives ∂φ/∂p(r)j

corresponding to nonzero p(r)j are all equal.

This type of iteration was first proposed by Torsney (1977), taking

f(d) = dδ, with δ > 0. Subsequent empirical studies include Silvey et al.

(1978), which is a study of the choice of δ when f(d) = dδ, δ > 0; Torsney

(1988), which mainly considered f(d) = eδd in a variety of applications, for

which one criterion φ(p) could have negative derivatives; Mandal et al. (2005)

and Torsney and Mandal (2001) consider constrained optimal design problems.

Other iterations for problems like (P2) have been proposed in the litera-

ture. Vertex direction algorithms which perturb one pj and change the others

proportionately were proposed by Fedorov (1972) and Wynn (1972). These

are useful when many of the pj are zero at the optimum as happens in regres-

sion design problems. Certainly some modification would be needed if there

are many zero optimal weights. Mandal and Torsney (2006) explore one such

modification based on a clustering approach. This is related to the fact that

the support points of a discretized design space can be viewed as consisting of

some clusters of points. These clusters begin to emerge in early iterations of

algorithm (3.20). At this point the current set of weights are transformed to

weights within clusters and total cluster weights. Optimal values of these are

then sought using a modified version of the algorithm. They explore this idea

through several regression models and enjoy improved convergence.
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3.5 Constructing Designs in Polynomial Regres-

sion: Algorithmic Approach

Polynomial regression models in one design variable was given in (3.5) and

discussed in Section 3.2. In that section we constructed D-optimal designs by

some analytic approach. In this section, we construct those designs using the

class of multiplicative algorithms. We also propose some useful strategies for

better convergence of the algorithms.

Recall that Problem (P1) provides some constrained optimization prob-

lems having the single linear equality constraint
∑
pj = 1 as well as pj ≥ 0,

j = 1, 2, . . . , J , the full constraint region being a closed bounded convex set.

Therefore we have an example of problem (P1) with

• φD(p) = log det{M(p)}

• M(p) =
J∑
j=1

pjvjv
T
j .

It is also an example of Problem (P2) where

(i) G(v) = v vT ;

(ii) v ∈ V ⊆ Rk, V is the induced design space;

(iii) x [= x(p) = M(p)] is a symmetric k × k matrix and
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(iv) ψ(x) = log{det(x)} [= φ(p)].

We now propose some important strategies for constructing the optimal

designs and for better convergence of the algorithms (3.20). Convergence of

the algorithm (3.20) could be slow if we do not choose the function f(.) and

its arguments in an objective way. Motivated by this fact, we now attempt to

improve convergence by considering some choices of f(.) for which we replace

dj by Fj. Some of the choices of f(.) may not be good because D-optimal

derivatives are positive and centred on k. For example, note that the choice of

f(d) = Φ(δd) (the normal c.d.f) may not be good because the dj’s are positive

and ‘centred’ on k. Also, Φ(δd) may change slowly at k whereas it changes

more quickly at zero. However, f(d) = dδ proved to be a natural choice for

particular values of δ; in particular δ = 1 for D-optimality and δ = 1/2 for c-

optimality yield monotonic iterations. Thus, we need to be careful in choosing

the values of δ as well. Now, in algorithm (3.20), we replace dj by Fj and

prove the following important result.

Theorem 3.5. Under the conditions imposed on f(.), we always have

Fφ{p(r), p(r+1)} ≥ 0, where Fφ{p(r), p(r+1)} is the directional derivative of φ(.)

at the current iteration p(r) in the direction of the next iteration p(r+1).

Proof. The inequality property can be seen by letting a random variable F take
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the value Fj, the vertex directional derivatives with probability pj (pj = p
(r)
j ).

Fφ{p(r), p(r+1)} =
[
p(r+1) − p(r)

]T
d =

J∑
i=1

[
p
(r+1)
i − p(r)i

]
di

=
J∑
i=1

[
p
(r+1)
i − p(r)i

]
(di − d̄) =

J∑
i=1

[
p
(r+1)
i − p(r)i

]
Fi

=

J∑
i=1

pi f(Fi, δ) Fi

J∑
i=1

pi f(Fi, δ)

−
J∑
i=1

pi Fi

=

[ J∑
i=1

pi f(Fi, δ) Fi

]
−
[ J∑
i=1

pi Fi

] [ J∑
i=1

pi f(Fi, δ)
]

J∑
i=1

pi f(Fi, δ)

=
Cov

[
F, f(F, δ)

]
E
[
f(F, δ)

] .

Now, we know that the function f(F, δ) is increasing in F . So the co-

variance between F and f(F, δ) is positive. We also know that the function

f(F, δ) is positive. Hence the theorem.

Note that any criterion has both positive and negative vertex directional

derivatives. So the function f(F, δ) needs to be defined for positive and nega-

tive values of F . From equation (2.6), we have that Fj = dj −
∑
pjdj. Thus,∑

pjFj = 0. Also, recall that first order conditions for a local maximum p∗
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are

Fj

{
= 0 for p∗j > 0
≤ 0 for p∗j = 0.

The above suggests that a suitable function is one that is centred at zero and

changes reasonably quickly around F = 0. It should also be desirable to treat

positive and negative Fj’s symmetrically, at least when all p∗j ’s are positive.

Based on the above, we now construct the optimal design for various

polynomial regression models in one design variable.

3.5.1 Simple linear regression

We revisit the simple linear regression model of the radiation-dosage example

of Section 3.3. The model again is given by

E(y|x) = θ0 + θ1x. (3.21)

We consider the standardized design interval as−1 ≤ x ≤ 1. We first discretize

the design space to be in some form of uniform grid on the continuous design

space. In particular, we approximate the design interval by a grid of points

equally spaced at intervals of 0.1.

We first take the argument x as the partial derivative of the crite-

rion function and consider five choices of f(x), such as f(d) = dδ, f(d) =

exp(δd), f(d) = ln (e+ δd), f(d) = exp (δd) / [1 + exp (δd)], the logistic c.d.f.

and f(d) = Φ(δd), the normal c.d.f. We consider appropriate choices of the
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parameter δ in each case and run the algorithm (3.20) until the first-order

conditions are satisfied. In Tables 3.3 we report the number of iterations

needed to achieve max
1≤j≤J

{Fj} ≤ 10−n, for n = 1, 2, 3, 4, 5, where Fj are

the directional derivatives. We started with the equal initial weights, that is,

1/J, j = 1, 2, . . . , J . The results were obtained by using the software R

version 2.15.0 . Under each choice of f(x), the best choices of δ are given in

bold font. The best choices δ correspond to the least number of iterations.

Among the choices of f(d) we considered, the two choices f(d) = dδ and

f(d) = exp (δd) come out to be better than the others. For example, with

f(d) = dδ, δ = 2.0, the number of iterations need to achieve n = 5 is 50. Look

the contrast for choosing the value of δ. For example, with f(d) = ln (e+ δd),

δ = 0.1, the number of iterations need to achieve n = 5 is 1545, whereas for δ

= 2.0, the number of iterations need to achieve n = 5 is 312. We see similar

things happen for other choices as well.

Now we attempt to improve the convergence of the algorithm by objec-

tively choosing the function f(x) and its argument. Improving the convergence

is always better to save the time and costs of the experiment. As we proposed

before, we replace the partial derivatives dj by the directional derivatives Fj for

some suitable choices of f(x). One of the reasons for this replacement is that∑
pjFj = 0. That is, when we replace dj by Fj, we should choose the function

f(x) in such a way that the function is centred at zero and changes reasonably
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Table 3.3: Number of iterations needed to achieve the first-order conditions,
with x = d (Simple linear regression)
f(d) = dδ

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 95 283 508 738 968
0.2 48 142 255 370 485
0.8 13 36 65 93 122
0.9 12 33 58 83 109
1.0 11 29 52 75 98
1.1 10 27 47 68 89
1.2 9 25 44 63 82
1.7 7 18 31 45 58
1.8 7 17 29 42 55
1.9 6 16 28 40 52
2.0 6 15 27 38 50

f(d) = exp (δd)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 47 138 254 375 496
0.2 24 69 128 188 248
0.3 16 47 85 126 166
0.7 7 20 37 54 72
0.8 7 18 33 48 63
0.9 6 16 29 42 56
1.0 5 15 26 38 50
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f(d) = [exp (δd)] / [1 + exp (δd)]

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 103 307 565 831 1099
0.2 59 174 318 466 615
0.5 37 106 191 278 365
0.6 36 104 185 268 352
0.7 36 105 186 268 351
0.8 38 108 191 276 360
1.0 43 123 215 308 402
1.1 47 134 233 333 434
1.7 94 266 454 642 830
1.8 107 304 518 731 945
1.9 123 349 593 836 1079
2.0 142 402 681 960 1238

f(d) = ln (e+ δd)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 145 431 794 1168 1545
0.2 83 246 451 663 875
0.8 38 112 202 294 387
0.9 37 107 194 282 371
1.0 36 104 187 273 358
1.1 35 101 182 265 348
1.2 34 99 178 259 340
1.7 32 93 167 242 318
1.8 32 92 165 240 315
1.9 32 92 164 239 313
2.0 31 91 164 238 312
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quickly about F = 0. With this change, the algorithm (3.20) becomes

p
(r+1)
j =

p
(r)
j f(F

(r)
j )∑J

i=1 p
(r)
i f(F

(r)
i )

(3.22)

where F (r)
j are the vertex directional derivatives at p(r)j .

We consider two choices of the function f(x) with the potential to satisfy

these requirements. The choices are f(F ) = Φ(δF ) and f(F ) = exp (δF )
1+exp (δF )

.

The results are reported in Table 3.4. Comparing Table 3.3 and Table 3.4, we

see that we improve the convergence quite a lot. For example, with f(d) =

[exp (δd)] / [1 + exp (δd)], for δ = 0.7 and n = 5, the number of iterations

needed is 351 (see Table 3.3), whereas using the directional derivatives, for δ

= 2.0 and n = 5, the number of iterations needed is only 50 (see Table 3.4).

We even get better improvement for the other choice. With f(F ) = Φ(F ), for

δ = 2.0 and n = 5, the number of iterations needed is only 31.

The solutions converged to the optimal design

p∗ =

{
−1 1
0.5 0.5

}
,

which is exactly the same as we obtained using the analytic approach in Section

3.2 as well as the radiation dosage example in Section 3.3.

Now we confirm this D-optimal design by plotting the standardized vari-

ance of the predicted response on y at x (d(x, p∗)) versus the the design vari-

able x. This is given in Figure 3.1. We see the variance function attains the
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maximum at 2, the number of parameters in the SLR model.

Table 3.4: Number of iterations needed to achieve the first-order conditions,
with x = F (simple linear regression)
f(F ) = exp (δF )/[1 + exp (δF )]

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 93 276 508 748 989
0.2 47 139 255 375 494
0.8 13 37 65 94 124
0.9 12 33 58 84 110
1.0 11 30 53 76 99
1.1 10 28 48 69 90
1.7 8 19 32 45 58
1.8 8 18 30 43 55
1.9 7 17 29 41 52
2.0 7 17 28 39 50

f(F ) = Φ(δF )

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 59 174 319 469 620
0.2 30 88 160 235 310
0.8 9 24 42 60 77
0.9 9 22 37 53 69
1.0 8 20 34 48 62
1.1 8 19 31 44 56
1.7 6 13 21 29 37
1.8 6 13 20 27 35
1.9 6 12 19 26 33
2.0 6 12 18 25 31
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Figure 3.1: The standardized variance of the predicted response on y at x
(d(x, p∗)) for the SLR model.
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3.5.2 Quadratic regression model

We take k = 3 in (3.5) and consider the quadratic regression model as given

by

E(y|x) = θ0 + θ1x+ θ3x
2, (3.23)

with the design interval −1 ≤ x ≤ 1. Similar to the previous model, here

also we first discretize the design interval by a grid of points equally spaced

at intervals of 0.1 between -1 and 1. We first take the argument x as the

partial derivative of the criterion function and consider five choices of f(x)

as considered in the previous section. We consider appropriate choices of the

parameter δ in each case again and run the algorithm (3.20) until the first-order

conditions are satisfied.

We start with the equal initial weights, that is, 1/J, j = 1, 2, . . . , J . In

Tables 3.5 we report the number of iterations needed to achieve max
1≤j≤J

{Fj} ≤

10−n, for n = 1, 2, 3, 4, 5. Among the choices of f(d) we considered, the two

choices f(d) = dδ and f(d) = exp (δd) come out to be better. For example,

with f(d) = dδ, δ = 1.9, the number of iterations need to achieve n = 5 is

320. Here again note the contrast for choosing the value of δ. For example,

with f(d) = exp (δd)/[1 + exp (δd)], δ = 2.0, the number of iterations need to

achieve n = 5 is 39722, whereas for δ = 0.4, the number of iterations need to

achieve n = 5 is 2181. We can see similar results for other choices of f(d) as

well.
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Table 3.5: Number of iterations needed to satisfy the required directional
derivatives with x = d (Quadratic model)
f(d) = Φ(δd)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 82 691 1600 2443 3279
0.2 55 466 1076 1641 2202
0.3 50 439 1010 1538 2063
0.4 54 490 1125 1711 2293
0.5 64 621 1421 2158 2890
0.8 150 2369 5385 8150 10893
0.9 273 4516 10254 15503 20708

f(d) = exp (δd)
1+exp (δd)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 119 1001 2320 3543 4757
0.2 71 602 1394 2127 2855
0.3 58 493 1139 1738 2331
0.4 54 463 1067 1626 2181
0.5 54 471 1083 1649 2211
0.6 56 505 1160 1766 2367
0.9 77 760 1739 2642 3537
1.0 88 908 2076 3152 4220
1.1 101 1101 2513 3815 5106
1.8 320 5288 12035 18225 24366
1.9 405 6745 15348 23238 31063
2.0 514 8630 19634 29719 39722
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f(d) = exp (δd)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 51 426 988 1509 2026
0.2 26 213 494 755 1013
0.3 18 142 330 503 676
0.4 13 107 247 378 507
0.5 11 85 198 302 405

f(d) = dδ

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 145 1285 2962 4515 6055
0.2 73 643 1482 2258 3028
0.7 22 184 424 646 866
0.8 19 161 371 565 758
0.9 17 144 330 502 674
1.0 16 129 297 452 606
1.1 14 118 270 411 551
1.2 13 108 248 377 505
1.6 10 81 186 283 379
1.7 9 76 175 266 357
1.8 7 72 165 252 337
1.9 9 69 157 239 320

f(d) = ln(e+ δd)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 168 1420 3292 5027 6750
0.2 100 849 1965 3000 4027
0.7 54 463 1069 1631 2188
0.8 52 447 1032 1574 2111
0.9 51 436 1005 1532 2055
1.0 50 427 985 1502 2014
1.1 49 421 970 1479 1984
1.2 48 416 959 1462 1961
1.7 47 406 935 1424 1910
1.8 47 405 933 1422 1907
1.9 47 405 933 1421 1906
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In the quadratic model, we also replace dj by Fj to reduce the number of

iterations, that is, to obtain the better convergence of the algorithm. We again

focus on the two choices f(F ) = Φ(δF ) and f(F ) = exp(δF )
1+exp(δF )

. The results

are reported in Table 3.6. We now compare Table 3.5 and Table 3.6 and see

that we improve the convergence compared to choosing the partial derivatives.

For example, with f(d) = [exp (δd)] / [1 + exp (δd)], for δ = 0.4 and n = 5,

the number of iterations needed is 2181 (see Table 3.5), whereas using the

directional derivatives, for δ = 1.3 and n = 5, the number of iterations needed

is 311 (see Table 3.6). Similar things happen in the results for f(F ) = Φ(δF ).

The solutions converged to the optimal design

p∗ =

{
−1 0 1
1/3 1/3 1/3

}
,

the same solution as we obtained using the analytic approach in Section 3.2.

We also confirm this D-optimality and plot the standardized variance of

the predicted response versus the the design variable x. This is given in Figure

3.2. We see the variance function attains the maximum at 3, the number of

parameters in this model.
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Table 3.6: Number of iterations needed to satisfy the required directional
derivatives with x = F (Quadratic model)
f(F ) = exp(δF )

1+exp(δF )

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 101 852 1975 3016 4049
0.2 51 427 988 1508 2024
0.3 34 285 659 1005 1349
0.4 26 214 494 754 1011
0.5 21 172 396 603 809
0.6 17 144 330 503 674
0.7 15 123 283 431 577
0.8 13 108 248 377 505
0.9 12 96 220 335 449
1.0 11 87 199 302 404
1.1 10 79 181 274 367
1.2 9 73 166 251 337
1.3 9 67 153 232 311

f(F ) = Φ(δF )

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 64 534 1238 1890 2537
0.2 32 268 619 945 1268
0.3 22 179 413 630 845
0.4 16 135 310 472 633
0.5 13 108 248 378 506
0.6 11 91 207 315 422
0.7 10 78 178 270 361
0.8 9 69 156 236 316
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Figure 3.2: The standardized variance of the predicted response on y at x
(d(x, p∗)) for the quadratic model.

−1.0 −0.5 0.0 0.5 1.0

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

x

d(
x,

 p
*)

58



3.5.3 Cubic regression model

The cubic model is given by

E(y|x) = θ0 + θ1x+ θ3x
2 + θ4x

3, (3.24)

by taking k = 4 in the polynomial regression model (3.5). We consider the

design interval to be −1 ≤ x ≤ 1. Similar to the previous models, we first

discretize the design space to be in some form of uniform grid on the continuous

design space. However, for this model, we change the increment of x from 0.1

to 0.01 for more accuracy.

We first take the argument x as the partial derivative of the criterion

function and consider five choices of f(x) as considered in the previous models.

We consider appropriate choices of the parameter δ in each case again and run

the algorithm (3.20) until the first-order conditions are satisfied. We start with

the equal initial weights, and in Table 3.7 we report the number of iterations

needed to achieve the first-order conditions for the choice of the argument as

the partial derivatives. Here again we improve the convergence by replacing

dj by Fj. In Table 3.8 we report the corresponding iteration results.

Now if we look at the results of the above two tables, it is clear that

the convergence is improved a great deal by replacing the argument with the

directional derivatives. For example, with f(d) = Φ(δd), for δ = 0.2 and n

= 5, the number of iterations needed is 94543, whereas using the directional

derivatives, for δ = 0.62 and n = 5, the number of iterations needed is only
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14051. We find similar results if we look at the results for other choices as

well.

Interestingly we notice that the support points are viewed as consisting

of clusters of points. For this particular model, there are two clusters centred

on the two middle points, namely around -0.44, -0.45 and 0.44, 0.45. There

are two peaks at the ends -1 and 1. This is given by the following design:

p =

{
−1.00 −0.45 −0.44 0.44 0.45 1.00
0.25 0.224186 0.025816 0.025816 0.224186 0.25

}
.

This suggests that the solution for the continuous design space is a 4-point

design, with the 4 support points contained within the clusters, and each point

having the total design weight of its cluster.

We then take the convex combination of the relevant cluster members

(convex weights being proportional to design weights). For example, taking

the convex combination of the first cluster, we get the support point

(−0.45)(0.224186) + (−0.44)(0.025816)

0.224186 + 0.025816
≈ −0.45

with the corresponding weight 0.25. Similarly we obtain the other support

point 0.45 with the weight 0.25.

Thus, we obtain the optimal design

p∗ =

{
−1.00 −0.45 0.45 1.00
0.25 0.25 0.25 0.25

}
.

We again confirm thisD-optimality and plot the standardized variance of

the predicted response versus the the design variable x. This is given in Figure
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3.3. We see the variance function attains the maximum at 4, the number of

parameters in this model.

Figure 3.3: The standardized variance of the predicted response on y at x
(d(x, p∗)) for the cubic model.
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Table 3.7: Number of iterations needed to satisfy the required directional
derivatives with x = d (Cubic model)
f(d) = dδ

δ n = 1 n = 2 n = 3 n = 4 n = 5
1.9 19 104 961 5148 14632
1.92 23 103 951 5095 14480
1.96 37 87 932 4991 14185
1.98 65 165 923 4941 14041
1.99 115 317 533 4916 13971
2.0 9777 112715

f(d) = exp (δd)
1+exp (δd)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.2 80 785 7353 39428 112085
0.3 73 702 6568 35208 100084
0.4 79 726 6790 36391 103439

f(d) = exp(δd)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.2 26 243 2279 12222 34747
0.3 17 162 1519 8148 23165
0.31 17 157 1470 7885 22417
0.35 14 138 1302 6983 19855
0.36 14 134 1265 6789 19303
0.37 13 130 1230 6605 18781

f(d) = Φ(δd)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 89 866 8112 43507 123687
0.2 70 663 6204 33259 94543
0.3 86 741 6932 37146 105581

f(d) = ln(e+ δd)

δ n = 1 n = 2 n = 3 n = 4 n = 5
1.4 62 614 5741 30776 87482
1.5 62 614 5741 30773 87473
1.6 62 614 5746 30798 87546
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Table 3.8: Number of iterations needed to satisfy the required directional
derivatives with x = F (Cubic model)
f(F ) = Φ(δF )

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.6 14 103 954 5109 14519
0.61 14 101 939 5026 14281
0.62 14 95 924 4945 14051

f(F ) = exp (δF )
1+exp (δF )

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.7 17 140 1304 6987 19858
0.8 16 123 1142 6114 17377
0.9 14 109 1015 5435 15446
1.0 14 79 3305 98785

f(F ) = exp(δF )

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.3 17 162 1519 8148 23165
0.35 14 138 1302 6983 19855
0.36 14 134 1265 6789 19303
0.37 13 130 1230 6605 18781
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Chapter 4

Construction of Optimal Designs
for Polynomial Regression in Two
Variables

4.1 Introduction

So far we have considered regression models in one design variable, namely,

the simple linear regression, the quadratic regression and the cubic regression

models. However, in many regression models we need to deal with more than

one design variables such as multiple linear regression or polynomial regression

in two or more variables.

In optimal design context, values or levels of inputs (the design variables)

must be chosen before running an experiment and observing a measurement

on some variable (the response variable) of interest. There will be a set of

or several combinations of the inputs allowed. We must decide how many
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observations to take at each combination of inputs. So, there are two important

questions for the design of these kind of models.

The first question relates to the number of levels for each of the indepen-

dent variables, that is, the design variables. Now the question is, how many

combinations of levels of the variables should we choose and how do we choose

the combinations of levels to have an efficient design.

Naturally the second question is, how many units should be assigned to

the combinations of levels of the variables and how do we choose the number

of units to have an efficient design.

We answer these two questions by considering several regression models

in two variables in this chapter. We first introduce the models.

4.1.1 Polynomial regression in m variables

The second-order polynomial in m design variables is

E(Y |x) = θo +
m∑
j=1

θjxj +
m−1∑
j=1

m∑
k=j+1

θjkxjxk +
m∑
j=1

θjjx
2
j , (4.1)

where Y is the response variable and x are design variables. From the model

we see that this is a (m+ 1)(m+ 2)/2 parameter model.

We consider m = 2 and take the standardized case of the design space

to be the cube, −1 ≤ xi ≤ 1, i = 1, 2. We consider some combinations of this
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model and construct the optimal design later this chapter.

4.1.2 Multiple linear regression

If we do not consider the interaction and the second-order terms in the above

model, we obtain the multiple linear regression model. The multiple linear re-

gression model with the response variable Y , and the (k-1) predictor variables

x1, x2, . . . , xk−1 is given by

E(Y |x1, . . . , xk−1) = θ0 + θ1x1 + θ2x2 + . . .+ θk−1xk−1. (4.2)

The total number of parameters in the above model is k. The parameter θ0

is the intercept and the remaining (k− 1) parameters θi’s (i = 1, 2, . . . , k− 1)

are the coefficient of the (k − 1) independent variables.

In this chapter, we construct D and c-optimal designs for the above two

types of models. We start with a practical example.

4.2 A Vocabulary-growth Study

We consider a practical problem of Berger and Wong (2009), which is taken

from educational research. The response variable (Y ) is the rate of increase

in vocabulary growth among pupils. The goal of this research is to study how

vocabulary growth is related to the school grade (x1) of the pupil as well as to

the income class (x2) of the pupil’s parents. The pupils from the 8th, 9th, 10th
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and 11th school grades are sampled in this study. The pupils from each grade

are then divided into three groups depending on the family income levels. We

code the three family income levels as 1, 2 and 3 with 1 being the lowest level

and 3 being the highest level. Thus, it gives a total of 12 different groups of

pupils. Then, the growth in vocabulary of these pupils can be described using

a multiple linear regression model with two predictors (x1, x2), as given by

E(Y |x1, x2) = θ0 + θ1x1 + θ2x2. (4.3)

Although there is an intercept term θ0, we are often interested in making

inference for the two parameters θ1 and θ2, that is, on the effect of school grade

and income category on vocabulary growth. So we are interested in studying

the variance-covariance matrix of these two parameter estimates θ̂ = (θ̂1, θ̂2),

which is given by

Cov(θ̂) =

[
var(θ̂1) cov(θ̂1, θ̂2)

cov(θ̂1, θ̂2) var(θ̂2)

]
. (4.4)

After some simplification on these four elements, the matrix can be written as

Cov(θ̂) =
σ2

n

[
1

(1−r212)var(x1)
− cov(x1,x2)

(1−r212)var(x1)var(x2)

− cov(x2,x1)

(1−r212)var(x1)var(x2)
1

(1−r212)var(x2)

]
, (4.5)

where σ2 is the error variance, n is the total number of observations, var(x1)

and var(x2) are the variances of x1 and x2, cov(x1, x2) is their covariance, and

r12 is the correlation between the two variables x1 and x2.

Looking at the expressions of the elements of the above variance-covariance

matrix, we observe that the efficiency of the estimators θ1 and θ2 increases
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when one or more of the following conditions hold, namely, the variance of the

error terms σ2 decreases; the sample size n increases; the var(x1) and var(x2)

increase; and the squared correlation r212 decreases.

We will see that the above conditions are satisfied when we maximize

the D-optimal criterion for this study. In D-optimality, we maximize the

determinant of the information matrix M(p), or its logarithm logdetM(p).

So, we seek to maximize the criterion function:

φD(p) = ψD{M(p)} = logdet{M(p)} = −logdet{M−1(p)}. (4.6)

In Table 4.1 (on page 69) we list the four designs for the vocabulary-

growth study, namely, Design 1, Design 2, Design 3 and Design 4. This table

also gives the twelve design points and the combinations of the levels of x1 and

x2. As described above, we calculate the variances of the predictor variables

x1 and x2, the correlation r12 between x1 and x2, variances of the parameter

estimates θ̂1 and θ̂2 and the D-optimal criterion.

We see that, among the four designs considered, Design 4 has the lowest

variances var(θ̂1), var(θ̂2), the largest variances var(x1), var(x2), the lowest

correlation r12, and the largest D-optimal criterion φD(p). Therefore, the

Design 4 is the optimal design for the vocabulary-growth study.

Now we study the above model along with other models with a more

general set-up in the following sections.
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Table 4.1: Vocabulary-growth study: The 4 designs and the combinations of
the levels of x1 and x2.

Design 1 Design 2 Design 3 Design 4
Design points X1 X2 X1 X2 X1 X2 X1 X2

d1 8 1 8 1 8 1 8 1
d2 8 2 8 2 8 1 8 1
d3 8 3 8 3 8 3 8 1
d4 9 1 8 1 8 1 8 3
d5 9 2 8 2 8 2 8 3
d6 9 3 8 3 8 3 8 3
d7 10 1 11 1 11 1 11 1
d8 10 2 11 2 11 2 11 1
d9 10 3 11 3 11 3 11 1
d10 11 1 11 1 11 1 11 3
d11 11 2 11 2 11 3 11 3
d12 11 3 11 3 11 3 11 3
var(xl) 1.250 0.667 2.250 0.667 2.250 0.833 2.250 1.000
r12 0.000 0.000 0.183 0.000
var(θ̂l) 0.067 0.125 0.037 0.125 0.038 0.103 0.037 0.083
φD(p) -0.1823 0.4055 0.5947 0.8109
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4.3 Construction of D-optimal designs in two

variable models

4.3.1 Two variable model without interaction and second

order terms

We first revisit the multiple linear regression model of the previous section.

The model is

E(Y |x1, x2) = θ0 + θ1x1 + θ2x2

= vTx θ (4.7)

where vx = (1, x1, x2)
T , −1 ≤ xi ≤ 1, i = 1, 2,

vx ∈ V = {vx : vx = (1, x1, x2)
T , −1 ≤ xi ≤ 1, i = 1, 2}, the induced design

space.

Unlike the models considered in Chapter 3, as we have more than one

design variable, we consider the discretized design space consisting of all pairs

(x1, x2) arising when the values for each xi, i = 1, 2 are those between -1 and

+1 taken at steps of 0.1. That is, the space consists of (21)2 = 441 pairs of

(x1, x2).

Thus, we are considering designs of the type:

p =


x1 1 x1 2 . . . x1 441
x2 1 x2 2 . . . x2 441
p1 p2 . . . p441

 .
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Here also we make use of the Problems (P1) and (P2) that have a dis-

tinctive set of constraints as we had before. Thus, in order to construct the

optimal design, we use the algorithms (3.20). However, note that we now have

two design variables, and we need to use the vertices vx as given in model

(4.7). Then accordingly we need to calculate the information matrix, the de-

sign criteria, the partial and directional derivatives.

We consider the use of the functions f(d) = exp(δd), f(d) = exp(δd)
1+exp(δd)

and f(d) = Φ(δd). Results are reported in Table 4.2. We record the number

of iterations needed to achieve max
1≤j≤J

{Fj} ≤ 10−n, for n = 1, 2, 3, 4, 5. The

initial design is p(0)j = 1/J , j = 1, 2, . . . , J with J = 441 as we approximated

the design space consisting of 441 pairs of (x1, x2). Iteration counts show that

convergence is slow especially for the choice f(d) = exp(δd)
1+exp(δd)

. For example,

for δ = 2.0, the number of iterations needed to achieve the above condition at

n = 5 is 10260. On the other hand, the choice f(d) = exp(δd) is not bad as

we see the number of iterations to satisfy the first-order conditions.

We also attempt to improve the convergence of the algorithm by objec-

tively choosing the argument in the function f(x). In particular, we replace

the partial derivatives dj by the corresponding directional derivatives Fj. The

results are reported in Table 4.3. Looking at the results we see that we im-

prove the convergence of the algorithm. For example, with f(d) = Φ(δd), for

δ = 0.3 and n = 5, the number of iterations needed is 548, whereas using the
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directional derivatives, for δ = 1.7 and n = 5, the number of iterations needed

is only 42. We get better improvement for the other choices as well.

The design converged to the optimal solution

p∗ =


−1 1 −1 1
−1 −1 1 1

0.25 0.25 0.25 0.25

 . (4.8)

where the first two rows are the values of x1, x2 respectively while the third

row gives the corresponding weights.

Finally we confirm this D-optimal design by plotting the variance func-

tion versus the two design variables. This is given in Figure 4.1. We see the

variance function attains the maximum at 3, the number of parameters in the

model. In Figure 4.2 we also plot the optimal weights against the support

points as given in (4.8).

4.3.2 Two variable model with interaction

Now we consider the two-variable model and add the interaction between the

two variables x1 and x2. Note that interaction is the failure of levels of one

variable (factor) to behave consistently across the levels of the another variable.

In such a case we need to consider the model with the interaction term. The

model is given by

E(Y |x1, x2) = θ0 + θ1x1 + θ2x2 + θ3x1x2

= vTx θ (4.9)
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Table 4.2: Number of iteration times needed to achieve max{Fj} ≤ 10−n.

f(dj) =
exp(δdj)

1+exp(δdj)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 165 408 686 969 1252
0.3 87 208 343 480 617
0.4 85 199 324 451 578
0.5 89 205 332 459 587
0.9 158 346 543 741 938
1.0 192 417 651 884 1117
1.5 588 1235 1878 2515 3152
2.0 2032 4177 6225 8244 10260

f(dj) = exp(δdj)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 69 172 291 411 532
0.5 15 35 59 83 107
0.9 8 20 33 46 60
1.0 8 18 30 42 54

f(dj) = Φ(δdj)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 116 284 475 669 864
0.2 83 197 324 453 583
0.3 83 191 309 429 548
0.4 98 220 350 480 611
0.5 132 286 448 609 771
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Table 4.3: Number of iteration times needed to achieve max{Fj} ≤ 10−n.

f(Fj) =
exp(δFj)

1+exp(δFj)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 140 347 584 824 1065
0.5 32 74 121 168 216
0.9 20 44 70 95 121
1.0 19 40 63 86 110
1.5 15 29 44 59 74
2.0 12 23 34 45 56
2.6 11 19 28 36 44
2.7 11 19 27 35 43
2.8 10 18 26 34

f(Fj) = exp(δFj)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 69 172 291 411 532
0.5 15 35 59 83 107
0.9 8 20 33 46 60
1.0 8 18 30 42 54

f(Fj) = Φ(δFj)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 89 220 367 518 668
0.5 22 49 78 107 136
0.9 15 30 45 61 77
1.0 14 27 41 56 70
1.5 11 20 29 38 47
1.6 11 19 28 36 45
1.7 10 19 27 34 42
1.8 10 18 25 33
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Figure 4.1: The standardized variance of the predicted response on y at x
(d(x, p∗)) for model (4.7).
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where vx = (1, x1, x2, x1x2)
T , −1 ≤ xi ≤ 1, i = 1, 2,

vx ∈ V = {vx : vx = (1, x1, x2, x1x2)
T , −1 ≤ xi ≤ 1, i = 1, 2}, the induced

design space.

As we did before, we consider the discretized design space consisting of

all pairs (x1, x2) arising when the values for each xi, i = 1, 2 are those between
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Figure 4.2: D-optimal design (p∗) for model (4.7).
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-1 and +1 taken at steps of 0.1. That is, the space consists of (21)2 = 441

pairs of (x1, x2). We consider similar choices of the functions f(d) and the free

positive parameter δ like before, make use of the algorithm (3.20).

The results are given in Table 4.4. We see that convergence is slow

especially for the choices f(d) = exp(δd)
1+exp(δd)

and f(d) = Φ(δd), whereas the

choice f(d) = exp(δd). We again try to improve the convergence by considering

the argument x as the directional derivatives of the criterion function. The

results are given in Table 4.5. From the results we see that the convergence is

quite improved and we obtain the optimal design by 46 or 47 iterations for all

of the choices of f(F ). The optimal support points with corresponding design

weights for this model are obtained as

p∗ =


−1 1 −1 1
−1 −1 1 1

0.25 0.25 0.25 0.25

 . (4.10)

We also confirm this D-optimal design by plotting the standardized vari-

ance of the predicted response on y at x (d(x, p∗)) versus the two design vari-

ables. This is given in Figure 4.3. Note the difference from the plot in Figure

4.1. As we have 4 parameters in our model, the variance function attains the

maximum at 4. In Figure 4.4 we also plot the optimal weights against the

support points as given in (4.10).
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Table 4.4: Number of iteration times needed to achieve max{Fj} ≤ 10−n.

f(dj) =
exp(δdj)

1+exp(δdj)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 114 250 398 547 696
0.2 80 169 263 358 453
0.3 77 156 239 322 406
0.4 84 165 249 334 419
0.5 99 190 283 376 470
0.9 266 485 699 913 1126
1.0 357 645 925 1204 1482

f(dj) = exp(δdj)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 43 97 157 217 278
0.4 11 24 39 54 70
0.5 9 19 31 43 55
0.6 7 16 26 36 46

f(dj) = Φ(δdj)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 85 183 288 393 499
0.2 74 149 227 306 385
0.3 91 174 259 344 428
0.4 137 251 365 478 591
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Table 4.5: Iteration results by considering the argument x as the directional
derivatives
f(Fj) =

exp(δFj)

1+exp(δFj)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 91 200 319 439 559
0.5 24 46 69 92 115
0.9 16 28 40 53 65
1.0 15 26 37 48 59
1.2 13 22 32 41 50
1.3 13 21 29 38 46
1.4 12 20 28 35

f(Fj) = exp(δFj)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 43 97 157 217 278
0.4 11 24 39 54 70
0.5 9 19 31 43 55
0.6 7 16 26 36 46

f(Fj) = Φ(δFj)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 59 128 202 277 352
0.5 17 31 45 59 73
0.7 14 24 33 43 53
0.8 13 21 30 38 47
0.9 12 19 27 34
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Figure 4.3: The standardized variance of the predicted response on y at x
(d(x, p∗)) for model (4.9).
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Figure 4.4: D-optimal design (p∗) for model (4.9).
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4.3.3 The second-order model in two variables with in-

teraction and second order terms

We now consider the full model taking into consideration of the interaction

term as well as the second-order terms in the two design variables x1 and x2.

We consider m = 2 in model (4.1) and take the standardized version of the

design space to be the cube, −1 ≤ xi ≤ 1, i = 1, 2.

Thus the model is, with a revised parameterization,

E(Y |x1, x2) = θ0 + θ1x1 + θ2x2 + θ3x1x2 + θ4x
2
1 + θ5x

2
2

= vTx θ (4.11)

where vx = (1, x1, x2, x1x2, x
2
1, x

2
2)
T , −1 ≤ xi ≤ 1, i = 1, 2.

vx ∈ V = {vx : vx = (1, x1, x2, x1x2, x
2
1, x

2
2)
T , −1 ≤ xi ≤ 1, i = 1, 2}, the

induced design space.

We report the results in Table 4.6. We see that convergence is slow

especially for the choices f(d) = exp(δd)
1+exp(δd)

and f(d) = Φ(δd). We again try

to improve the convergence by considering the argument x as the directional

derivatives of the criterion function. The results are given in Table 4.7. From

the results we see that the convergence is quite improved by considering the

directional derivatives.

The optimal design converged to the 9 support points (4 at corners, 4 at
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mid-sides and 1 at the centre) along with the optimal weights as given by

p∗ =


−1 0 1 −1 0 1 −1 0 1
−1 −1 −1 0 0 0 1 1 1

0.146 0.08 0.146 0.08 0.096 0.08 0.146 0.08 0.146

 (4.12)

We confirm this D-optimal design by plotting the standardized variance

of the predicted response on y at x (d(x, p∗)) versus the two design variables.

This is given in Figure 4.5. Note the difference of this variance plot. As we

have 6 parameters in our model, the variance function attains the maximum

at 6. In Figure 4.6 we also plot the optimal weights against the support points

as given in (4.12).

4.4 Construction of c-optimal designs in two vari-

able models

We start by explaining the theories of c-optimal design. As c-optimality is a

special case of linear optimality, it better to introduce this optimality first.

Linear Optimality

Let L be a k×k matrix of coefficients. The maximization of the criterion

function

φL(p) = ψL{M(p)} = − tr{M−1(p)L} (4.13)

leads to a linear, or L-optimum design. It is linear in the elements of the

covariance matrix M−1(p).
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Table 4.6: Number of iteration times needed to achieve max{Fj} ≤ 10−n.

f(dj) =
exp(δdj)

1+exp(δdj)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 278 1543 2806 4029 5247
0.2 212 1185 2150 3083 4014
0.3 229 1292 2340 3353 4362
0.5 400 2326 4200 6008 7808

f(dj) = exp(δdj)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 99 546 994 1428 1860
0.2 50 273 497 714 930
0.3 33 182 331 476 620

f(dj) = Φ(δdj)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.09 223 1244 2261 3245 4225
0.1 214 1193 2167 3109 4048
0.2 221 1254 2269 3251 4229
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Table 4.7: Continuing to Table 4.6 after considering the directional derivatives
f(Fj) =

exp(δFj)

1+exp(δFj)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 197 1093 1989 2855 3719
0.5 40 221 400 572 744
0.6 34 185 334 477 620
0.7 30 159 287 410 532
0.8 27 141

f(Fj) = exp(δFj)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 99 546 994 1428 1860
0.2 50 273 497 714 930
0.3 33 182 331 476 620

f(Fj) = Φ(δFj)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 124 686 1247 1789 2330
0.2 62 344 624 895 1165
0.3 42 231 417 597 777
0.4 32 174 314 448 583
0.5 27 141 252
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Figure 4.5: The standardized variance of the predicted response on y at x
(d(x, p∗)) for two variables with interaction terms and second order terms.
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Figure 4.6: D-optimal design (p∗) for the model with two variables with inter-
action terms and second order terms.
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If L is of rank s ≤ k it can be expressed in the form L = ATA where A is

a s× k matrix of rank s. Then the criterion function (4.13) can be expressed

as

φL(p) = −tr{M−1(p)L} = −tr{M−1(p)ATA} = −tr{AM−1(p)AT}. (4.14)

This form stresses the relationship with the DA-optimum design, where

the determinant, rather than the trace, of {−AM−1(p)AT} is maximized.

An alternative name for this design criterion would therefore be AA-

optimality, with A-optimal recovered when L = I, the identity matrix.

The partial derivatives of φL are given by

∂φL
∂pj

= vTjM
−1(p)ATAM−1(p)vj. (4.15)

c-optimality:

This is an important special case of the above linear optimality. Note

that the case A = cT , where c is a k×1 vector, corresponds to another standard

criterion known in the literature as the c-optimality criterion [Elfving (1952)].

This criterion seeks to maximize the criterion function:

φc(p) = − cTM−1(p)c. (4.16)

In other words, this criterion seeks to minimize cTM−1(p)c. Thus, as

we can see, in c-optimality, our interest is in estimating the linear parametric

function cT θ with minimum variance.
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Using the partial derivatives (4.15) of linear optimality, we obtain the

the partial derivatives of φc as given by

∂φc
∂pj

= [cTM−1(p) vj]
2. (4.17)

We only consider two cases of the second-order model in two variables,

which are the model with interaction terms only and the full model with the

second order terms.

First of all, we give the two variables model with interaction terms only.

The model is

E(Y |x1, x2) = θ0 + θ1x1 + θ2x2 + θ3x1x2, (4.18)

where x1 and x2 can taken values from −1 to 1 at steps of 0.1. We use similar

δ values before, and work with three choices of f(d), which are f(d) = exp(δd),

f(d) = exp(δd)
1+exp(δd)

and f(d) = Φ(δd), in constructing the c-optimal design. In

this case, note that we use the partial derivatives of φc calculated by equation

(4.17).

First, we are interested in constructing the c-optimal design with respect

to the interaction term x1x2. Thus, we take the c-vector as c = (0 0 0 1) in

this model. Table 4.8 (using both the partial and directional derivatives)

shows the number of iteration times needed to achieve max{Fj} ≤ 10−n. The

optimal support points with the corresponding design weights for this model
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are obtained as

p∗ =


−1 1 −1 1
−1 −1 1 1
0.25 0.25 0.25 0.25

 . (4.19)

Next, we consider the full model, which includes interaction terms as

well as the second order terms.

E(Y |x1, x2) = θ0 + θ1x1 + θ2x2 + θ3x1x2 + θ4x
2
1 + θ5x

2
2

Here again we are interested in constructing the c-optimal design with

respect to the interaction term x1x2 only. Thus, here we take the c-vector

as c = (0 0 0 1 0 0) in this model. Table 4.9 (using both the partial and

directional derivatives) shows the number of iteration times needed to achieve

max{Fj} ≤ 10−n for n = 1, 2, 3, 4, 5.

We obtain the optimal support points with corresponding design weights

as given by

p∗ =


−1 1 −1 1
−1 −1 1 1

0.25 0.25 0.25 0.25

 . (4.20)
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Table 4.8: Number of iteration times needed to achieve max{Fj} ≤ 10−n.

f(dj) =
exp(δdj)

1+exp(δdj)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 103 302 547 800 1054
0.5 41 93 154 216 279
0.9 42 81 124 168 212
1.0 44 82 123 165 207
1.1 46 83 124 164 205
1.2 49 86 125 165 205
1.3 52 89 128 168 207
1.5 60 98 137 176 216

f(dj) = exp(δdj)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 32 123 239 359 480
0.5 2 2 10 34 58
0.9 2 2 2 2 9
1.0 2 2 2 2 3

f(dj) = Φ(δdj)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 73 202 360 523 687
0.5 40 80 124 170 215
0.6 43 80 120 162 203
0.7 47 82 121 160 199
0.8 52 87 125 163 200
0.9 59 95 132 169 206
1.0 69 105 142 180 217
1.5 172 225 272 318 364
2.0 582 682 758 833 907

91



f(Fj) =
exp(δFj)

1+exp(δFj)

δ n = 1 n = 2 n = 3 n = 4 n = 5
1.0 15 35 58 81 104
1.5 12 25 40 55 70
2.0 10 20 31 42 53
2.1 10 19 30 40 51
2.2 10 19 29 39 49
2.3 10 18 28 37 47
2.77 9 16 24 31 40
2.78 9 16 24 31 39
2.79 9 16 24 31

f(Fj) = exp(δFj)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 32 123 239 359 480
0.5 2 2 10 34 58
0.9 2 2 2 2 9
1.0 2 2 2 2 3

f(Fj) = Φ(δFj)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 63 182 328 478 628
0.5 17 42 71 100 129
0.9 12 26 41 57 73
1.0 11 24 38 52 66
1.2 10 21 32 44 55
1.3 10 20 30 41 51
1.6 9 17 25 34 42
1.7 9 16 24 32 40
1.71 9 16 24 32 40
1.72 9 16 24 32 40
1.73 9 16 24 31
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Table 4.9: Number of iteration times needed to achieve max{Fj} ≤ 10−n.

f(dj) =
exp(δdj)

1+exp(δdj)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.8 41 81 127 173 219
0.9 42 81 124 168 212
1.0 44 82 123 165 207
1.1 46 83 124 164 205
1.2 49 86 125 165 205
1.3 52 89 128 168 207

f(dj) = exp(δdj)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 32 123 239 359 480
0.5 2 2 10 34 58
0.8 2 2 2 2 17
0.9 2 2 2 2 9
1.0 2 2 2 2 3

f(dj) = Φ(δdj)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 73 202 360 523 687
0.3 41 94 156 220 283
0.5 40 80 124 170 215
0.6 43 80 120 162 203
0.7 47 82 121 160 199
0.8 52 87 125 163 200
0.9 59 95 132 169 206
1.0 69 105 142 180 217
1.1 80 119 157 195 233
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Table 4.10: Continuing to Table 4.9
f(Fj) =

exp(δFj)

1+exp(δFj)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 95 284 517 757 998
0.2 52 147 263 383 503
0.9 16 38 63 89 115
1.1 14 32 53 74 95
1.5 12 25 40 55 70
2.7 9 16 24 32 40
2.8 9 16 24 31 39
2.81 9 16 23 31

f(Fj) = exp(δFj)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 32 123 239 359 480
0.5 2 2 10 34 58
0.8 2 2 2 2 17
0.9 2 2 2 2 9
1.0 2 2 2 2 3

f(Fj) = Φ(δFj)

δ n = 1 n = 2 n = 3 n = 4 n = 5
0.1 63 182 328 478 628
0.2 35 95 167 242 317
0.5 17 42 71 100 129
1.0 11 24 38 52 66
1.5 9 18 27 36 45
1.6 9 17 25 34 42
1.7 9 16 24 32 40
1.71 9 16 24 32 40
1.72 9 16 24 32 40
1.73 9 16 24 31
1.8 9 16 23 30
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Chapter 5

Conclusion

In this thesis we have considered constructing optimal designs for various poly-

nomial regression models. The goal was to have a best inference for all or some

of the unknown parameters in a regression model by making the information

matrix M(p) large in some sense. So we considered various ways in which to

make the matrixM(p) large, namely by maximizing some real valued function

φ(p) = ψ{M(p)}.

We started with a basic introduction of optimal design theory in Chapter

1. The designing experiments divided into six stages. The optimal design

would affect the second stage which is the choice of the research design and help

experimenters setting up an optimal design to reduce the experimental cost.

We discussed how we discretize a continuous design space and how we obtain

an optimal design in two ways, namely an exact design and an approximate

design. We discussed different concepts of optimal design theory, such as
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a design measure, the information matrix and variance function. Moreover,

we discussed different criteria in optimal design by maximizing a real valued

function of the information matrix.

We consider a class of optimization problems and determine optimality

conditions of these problems in Chapter 2. Problem (P1) and Problem(P2) are

general optimal linear regression design problems. The emphasis was on a dif-

ferential calculus approach. An important tool was the directional derivative

of a criterion function. We have seen that this plays an important simplifying

role in the calculus of optimization. By the vertex directional optimality theo-

rem, we determined the support points along with the corresponding optimal

weights by calculating the vertex directional derivatives.

We constructed optimal designs for various polynomial regression models

in one variable in Chapter 3. We approached this by analizing D-optimality.

We first constructed such designs analytically by using the Legendre polynomi-

als. We constructed the discrete D-optimal designs which are unique, having a

minimal support of k points which are the k roots of the polynomials. Then we

considered a practical problem - A Radiation Dosage Example. We discussed

several important aspects of optimal design throughout this example. We

then constructed optimal designs for various models in one variable, namely,

the simple linear regression model, the quadratic regression model and the

cubic regression model. We did this by using a class of algorithms indexed by

a function f(.) which satisfies certain conditions. Our optimization problems
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have a distinctive set of constraints, namely the variables p1, p2, . . . , pJ must

be nonnegative and sum to 1. The above class of algorithms neatly submit

to these constraints and have some suitable properties. Using the properties

of the directional derivatives and by choosing suitable functions f(.) and its

arguments, we investigated techniques for improving the convergence of the

algorithms.

However, in many regression models we needed to deal with more than

one design variable such as multiple linear regression or polynomial regression

in two or more variables. We constructed such optimal designs in Chapter

4. We start with a practical problem - A Vocabulary-growth Study. We used

multiple linear regression model in two design variables for this problem as

well as discussed some important issues for constructing optimal designs. We

then constructed D-optimal designs for various polynomial regression models

in two variables. The models were divided into three groups, namely the model

without interaction and second order terms, the model with interaction terms

only, and the model with interaction and second order terms. Sometimes we

need to focus on a particular parameter in a model. This motivated us to

construct c-optimal designs for some of the models. We constructed such c-

optimal designs for the interaction term in two models in two design variables.

It seems reasonable to say that we have identified some good strategies

for constructing optimal designs for various regression models. The next step

would be to solve some optimization problems especially if we have some addi-
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tional constraints. For future research, we would like to solve some estimation

problems using our optimal design techniques. We would like to work on one

practical problem by computing the cell probabilities under an independence

model in a two-way classification table of two attributes when the data can be

viewed as incomplete, that is, some of the cell frequencies are missing. When

there is no missing data maximum likelihood estimates of the cell probabili-

ties can be obtained explicitly. But, certainly numerical techniques are needed

to compute the maximum likelihood estimates when there are missing cell

frequencies. In that case some of the terms in the likelihood may be linear

functions of several probabilities. We would like to work on this problem.
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