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Abstract

This thesis consists of two novel contributions to the computation of first passage

time distribution for Brownian motion. First, we extend the known formula for

boundary crossing probabilities for Brownian motion to the discontinuous piecewise

linear boundary. Second, we derive explicit formula for the first passage time densi-

ty of Brownian motion crossing piecewise linear boundary. Further, we demonstrate

how to approximate the boundary crossing probabilities and density for general non-

linear boundaries. Moreover, we use Monte Carlo simulation method and develop

algorithms for the numerical computation. This method allows one to assess the

accuracy of the numerical approximation. Our approach can be further extended

to compute two-sided boundary crossing probabilities.
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Chapter 1

Introduction

First passage time distributions for diffusion processes are also known as bound-

ary crossing distributions, first hitting time or first exit time distributions. These

distributions play an important role and have wide applications in many scientific

disciplines ranging from environmental science, engineering, biology to finance. In

environmental science, the first passage time is the main focus in many environ-

mental processes such as the tidal communities life cycle, plant productivity, and

outbreaks of waterborne diseases [3]. In engineering, first passage time distributions

have applications in quality control and equipment failure analysis where the first

passage time describes the life time until a quality measure first reaches a thresh-

old [14]. In medicine and biology, the first passage time can be used to describe

the length of stay in hospital [11] or the onset time of a cancer [8]. In mathe-

matical finance, first passage time problems arise in barrier options pricing models

[10, 13, 15, 18].

Depending on the real problems, sometimes the first passage time densities are

concerned, while some other times the boundary crossing probabilities are desired.
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However, the numerical computation of the first passage time distributions is chal-

lenging because explicit formulas exist in only a few special instances. Below, we

introduce some concepts and notations that are central in this thesis.

1.1 Definitions and Notations of First Passage

Time Distribution

Definition 1.1.1 (First Passage Time). Let X = {Xs, s ≥ 0, X0 = x0} be a diffu-

sion process defined on a probability space (Ω,A , P ) and X has either the real space

R or a subinterval of R as its state space. Let c(s), s ≥ 0 be a real function with

x0 < c(0). The first passage time τc is defined as

τc = min{s ≥ 0 : Xs ≥ c(s)}.

Definition 1.1.2 (Boundary Crossing Probability). Let X, c(s) and τc be defined

as in Definition 1.1.1. For any fixed t > 0, the probability P (τc ≤ t) is called the

boundary crossing probability (BCP) on [0, t]. And it is given by

P (τc ≤ t) = P (Xs ≥ c(s), for some s ∈ [0, t])

= 1− P (Xs < c(s),∀s ∈ [0, t]) .

For notational convenience, throughout this thesis we will denote the boundary

non-crossing probability (BNCP) P (τc > t) for any t > 0 as

PX(t; c) = P (Xs < c(s), ∀s ∈ [0, t]).
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Therefore, the first passage time density (FPD) at t ≥ 0, is the ”rate of decrease”

in time of PX(t; c).

Definition 1.1.3 (First Passage Time Density). Let X, c(s), τc and PX(t; c) be

defined as above, the first passage time density (FPD) at t > 0 is given by

gX(t; c) = −∂PX(t; c)

∂t
. (1.1)

1.2 The Computational Challenge

Given the practical importance of the first passage time distributions, the numer-

ical computation of these distributions is a difficult task. In the literature, many

researchers have been trying to find either analytical or numerical solutions. Some

other researchers develop simulation methods to find approximation solutions. How-

ever, the closed-form solutions for the first passage time distributions are unknown

for general diffusion processes. An exception is Brownian motion and some special

boundaries, for which the distribution of the first passage time can be obtained

by a combination of Girsanov’s theorem and the reflection principle ([16 2.6A]).

Based on the Laplace transform for certain distributions [21], the image methods

for the FPD have been used in [5, 7, 20, 27, 30]. These methods give exact results

of both BNCP and FPD for Brownian motion and some special boundaries, e.g.,

the square-root boundary [27]. On the other hand, these methods strongly depend

on the type of boundaries, because the accuracy of these methods depends on the

accuracy of the approximation of the boundary. Moreover, for general diffusion

processes the analytical forms of the Laplace transforms are quite difficult to obtain

and sometimes even impossible.
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Monte Carlo path simulation methods have been studied to compute the first

passage time densities for general diffusion processes. The simplest scheme is called

Euler scheme, in which first the process is discretized at predetermined grid time

points ih, i = 0, 1, · · · where h is the step size, and then the sample paths are

simulated and the number of crossing is counted. Further methods based on this

were developed by Durbin [4] and Siegmund [28]. The problem with the simulation

methods is that they require complicated algorithms and heavy computation and it

is difficult to assess the approximation accuracies. Some other researchers consider

the Monte Carlo simulation using Brownian bridge to approximate the BCP [23, 25]

or FPD [12]. The Brownian bridge simulation method improves the efficiency of

computation. But the analytical forms are not given and therefore the bound of the

approximation can not be accessed, especially for the FPD.

In this thesis, we propose a new method to compute the BCP and FPD for Brow-

nian motion, which can deal with general boundaries and is as fast as the Brownian

bride simulation method. Firstly, we derive a new formula for the BCP for Brownian

motion and piecewise linear boundaries that can be discontinuous. By combining

this formula with the Fokker-Planck equation, we obtain a new explicit expression

for the FPD of Brownian motion with discontinuous piecewise linear boundaries.

Computation of these explicit formulas can be done using Monte Carlo simulation

method, which is easy to implement and the accuracy of the approximation can

be assessed and controlled. Moreover, for general boundaries we approximate the

BNCP and FDP using approximating piecewise linear boundaries. Our methods

can be further extended to compute two-sided boundary crossing probabilities, and

can be applied to other diffusion processes such as Ornstein-Uhlenbeck processes,
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growth processes, geometric Brownian motion and even these processes combined

with jump diffusions.

1.3 Thesis Organization

The structure of the thesis is as follows. In Chapter 2, we derive the explicit for-

mulas of the BCP and FPD for Brownian motion and piecewise linear boundaries

and propose a method to approximate the BNCP and FPD for general boundaries.

In Chapter 3, we present Monte Carlo estimation algorithms and some examples

with numerical results. Chapter 4 is concerned with the BNCP and FPD for d-

iffusion processes which can be expressed as functionals of a standard Brownian

motion. Chapter 5 is the summary. The MatLab programming codes are given in

the Appendix.
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Chapter 2

First Passage Time Distribution of

Brownian Motion

In this chapter, we study the BNCP and FPD of the standard Brownian motion.

We focus on three types of one-sided boundaries: linear boundary, piecewise linear

boundary and general nonlinear boundary.

Wang and Poetzelberger [31] used a direct method to derive an explicit formula

for the non-crossing probability for continuous piecewise linear boundaries. Using

that formula they obtained approximation for general continuous boundaries. Fol-

lowing this method, we derive more general results of BNCP for piecewise linear

boundaries which can be discontinuous. Based on these results, explicit formulas of

FPD for piecewise linear boundaries are obtained. Further we use these results to

approximate the BNCP and FPD for general (nonlinear) boundaries.

2.1 Introduction to Brownian Motion

In 1827, the Scottish botanist Robert Brown observed that a pollen particle sus-

pended in liquid undergoes a strange erratic motion caused by bombardment by
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molecules of the liquid. Other scientists verified the strange phenomenon following

Brown’s initial report.

Figure 2.1: Example of sample paths of Brownian motion.

In 1905, using a probabilistic model, Albert Einstein provided an explanation

of the Brownian motion [6]. Einstein’s famous papers in 1905 have been reprinted

numerous times (see a revision [29]). Later, Norbert Wiener constructed the fol-

lowing mathematical model for Brownian motion in the 1930s. For this reason the

Brownian motion is also called Wiener process.

Definition 2.1.1 (Brownian motion, BM). A one-dimensional standard Brownian

motion is a stochastic process W = {Ws, s > 0} with following properties:

(1) W0 = 0, with probability 1.

(2) The function s→ Ws is continuous in s with probability 1.

(3) The increment Ws+t −Ws follows Gaussian distribution N(0, t).

7



Figure 2.2: Graphs of five sample paths of Brownian motion.

(4) The process Ws has independent increments.

A Brownian motion with initial value W0 = x is obtained by adding x to a

standard Brownian motion. The term independent increments means that for every

sequence of nonnegative real numbers 0 ≤ t1 ≤ s1 ≤ t2 ≤ s2 ≤ · · · ≤ tn ≤ sn <∞,

the random variables

Ws1 −Wt1 ,Ws2 −Wt2 , · · · ,Wsn −Wtn

are jointly independent.

The following lemma about BM will be frequently used in this thesis.

Lemma 2.1.2. Let t > 0 be a finite time, and define the new process in s ≥ 0 by

Ŵs = Wt+s −Wt.

Then Ŵ = {Ŵs, s > 0} is a Brownian motion starting at 0 and independent of t.

8



This lemma is usually proved as a direct corollary of the strong Markovian

property of Brownian motion [1, Section 37]. Here we present a proof by using the

definition of Brownian motion.

Proof. We prove that Ŵ satisfies the four properties in Definition 2.1.1.

(1) Ŵ0 = Wt+0 −Wt = Wt −Wt = 0.

(2) Since t + s → Wt+s is continuous in t + s with probability 1 and t → Wt is

continuous in t with probability 1, Wt+s−Wt is continuous at s with probability 1,

i.e., s→ Ŵs is continuous in s with probability 1.

(3) For any u, v > 0, Ŵv+u− Ŵu = (Wv+u+t−Wt)− (Wu+t−Wt) = Wv+u+t−Wu+t

follows the Gaussian distribution N(0, v) .

(4) For any nonnegative real numbers 0 ≤ t1 ≤ s1 ≤ t2 ≤ s2 ≤ · · · ≤ tn ≤ sn < ∞

the increment random variables

{Ŵs1 − Ŵt1 , Ŵs2 − Ŵt2 , · · · , Ŵsn − Ŵtn}

={(Ws1+t −Wt)− (Wt1+t −Wt), (Ws2+t −Wt)− (Wt2+t −Wt),

· · · , (Wsn+t −Wt)− (Wtn+t −Wt)}

={Ws1+t −Wt1+t,Ws2+t −Wt2+t, · · · ,Wsn+t −Wtn+t}

are jointly independent.

Definition 2.1.3 (Transition probability function). For a diffusion process X =

{Xs, s ≥ 0}, the transition probability function from the point y at time s to the

point x at time t > s is defined as

p(x, t|y, s)dx , P (Xt ∈ dx|Xs = y).

9



The evolution of a diffusion process is governed by its transition probability

function. Following directly from the properties (3) and (4) in Definition 2.1.1 we

can obtain the transition probability function of Brownian motion which is called

the Gauss kernel or sometimes the heat kernel.

Lemma 2.1.4 (Gauss kernel). The transition probability function of Brownian mo-

tion from point y at time s to point x at time t > s is

p(x, t|y, s) =
1√

2π(t− s)
exp

[
− (y − x)2

2(t− s)
]
.

It is well-known that the Gauss kernel satisfies the heat equation

∂p

∂t
=

1

2

∂2p

∂x2
. (2.1)

For the detailed probabilistic connections between Brownian motion and the heat

equation, see [19]. In fact, this equation is a special case of the Fokker-Planck

equation for duffussion processes [9]. The Fokker-Planck equation, also known as

Kolmogorov forward equation, is satisfied under different boundary conditions, such

as natural boundary conditions ( upper boundary +∞ and lower boundary −∞ ),

reflecting boundary conditions or absorbing boundary conditions. Specifically in

this thesis, the heat equation (2.1) holds under absorbing boundary conditions.

Daniels [5] provided the following useful results concerning the FPD of Brownian

motion.

Lemma 2.1.5. Let p∗(x, t) be the transition probability function of Brownian motion

at point x and time t from point 0 at time 0, while not crossing the boudanry c(s)

10



before time t. Then p∗(x, t) satisfies the Fokker-Planck equation and the boundary

condition p∗(c(t), t) = 0. Further, the BNCP is given by

PW (t; c) =

∫ c(t)

−∞
p∗(x, t)dx, (2.2)

and the first passage time density is given by

gW (t; c) = −1

2

∂p∗(x, t)

∂x

∣∣∣∣
x↑c(t)

. (2.3)

Proof. We adopt the proof of Daniels [5] using the Fokker-Planck equation. By

definition, we have

∂PW (t; c)

∂t
=

∂

∂t

∫ c(t)

−∞
p∗(x, t)dx

= p∗(c(t), t)
d

dt
c(t) +

∫ c(t)

−∞

∂p∗(x, t)

∂t
dx

=
1

2

∫ c(t)

−∞

∂2p∗(x, t)

∂x2
dx

=
1

2

∂p∗(x, t)

∂x

∣∣∣∣
x↑c(t)

,

where the third equality holds because p∗(c(t), t) = 0 and p∗(x, t) satisfies the heat

equation (2.1). Therefore we have

gW (t; c) = −∂PW (t; c)

∂t
= −1

2

∂p∗(x, t)

∂x

∣∣∣∣
x↑c(t)

.

In the rest of this chapter, we derive the BNCP and FPD for Brownian motion

and various boundaries.
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2.2 Linear Boundary

We start by considering the linear boundary c(s) = as + b where s ≥ 0 and b > 0.

Firstly, we introduce the well-known result of Siegmund [28] for the BNCP.

Lemma 2.2.1. For the linear boundary c(s) = as + b, s ≥ 0, b > 0 and any fixed

t, the conditional probability of Brownian motion W not crossing the boundary c(s)

is given by

P (Ws < as+ b, 0 ≤ s < t|Wt = z)

=1{z<at+b}

{
1− exp

[
− 2b(at+ b− z)

t

]}
.

(2.4)

where 1{·} is the indicator function.

Using the above formula, Wang and Poetzelberger [31] obtained the following

result.

Corollary 2.2.2. The BNCP PW (t; c) of Brownian motion for linear boundary

c(s) = as+ b, where s ≥ 0 and b > 0, is

PW (t; c) = Φ
(at+ b√

t

)
− exp(−2ab)Φ

(at− b√
t

)
. (2.5)

Proof.

PW (t; c) =P (Ws < as+ b, 0 ≤ s ≤ t)

=

∫ +∞

−∞
P (Ws ≤ as+ b, 0 ≤ s < t|Wt = z)dPt(z)

=

∫ at+b

−∞

{
1− exp

[
− 2b(at+ b− z)

t

]}
dPt(z)

12



=Φ
(at+ b√

t

)
− exp

(
− 2ab

)
Φ
(at− b√

t

)
,

where

dPt(z)

dz
=

1√
2πt

exp
(
− z2

2t

)
is the probability density of Wt and Φ(·) is the standard normal distribution func-

tion.

Corollary 2.2.3. The FPD gW (t; c) for Brownian motion and linear boundary

c(s) = as+ b, s ≥ 0 is given by

gW (t; c) =
b

2
√

2πt
3
2

exp
[
− (at+ b)2

2t

]
. (2.6)

Proof. By equation (1.1) and equation (2.5),

gW (t; c) =− d

dt
PW (t; c)

=− d

dt

[
Φ
(at+ b√

t

)
− exp(−2ab)Φ

(at− b√
t

)]
=

b

2
√

2πt
3
2

exp
[
− (at+ b)2

2t

]
.

The above well-known results for the BNCP and FPD and linear boundaries can

be found in some textbooks on stochastic processes (e.g. [9, Chapter 4]).
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2.3 Piecewise Linear Boundary

Now we consider piecewise linear boundaries that are linear on each of the finite

subintervals of [0, t].

Let c(s) be a piecewise linear boundary on [0, t] with nodes (ti)
n
i=1, where 0 =

t0 < t1 < · · · < tn−1 < tn = t, n > 1 , i.e., c(s) is linear on each interval (tj−1, tj).

Further, c(s) is continuous at time 0 and time t with c(0) > 0.

Figure 2.3: A piecewise linear boundary.

Denote c+
j = lim

∆t→0+
c(tj + ∆t) , c−j = lim

∆t→0+
c(tj − ∆t), j = 1, 2, · · · , n − 1 and

c+
0 = c(0), c−n = c(t). Let βj = min{c+

j , c
−
j }, j = 1, 2, · · · , n−1, β0 = c(0), βn = c(t).

Note that the boundary can be discontinuous at node tj.

14



2.3.1 Boundary Non-Crossing Probability

In this subsection, we give a closed-form formula for the BNCP and piecewise linear

boundaries, which is the first main result of this thesis.

Theorem 2.3.1. The BNCP PW (t; c) for the piecewise linear boundary c(s) is given

by

PW (t; c) =

∫
(−∞,βn)

n∏
i=1

{
1− exp

[
−

2(c+
i−1 − xi−1)(c−i − xi)

ti − ti−1

]}
f(x)dx, (2.7)

where x = (x1, x2, · · · , xn),

f(x) =
n∏
i=1

1√
2π(ti − ti−1)

exp
[
− (xi − xi−1)2

2(ti − ti−1)

]
,

and the region of integration is (−∞, βn) = (−∞, β1)×(−∞, β2)×· · ·×(−∞, βn).

We prove the result using the method of Wang and Poetzelberger [31].

Proof. By Definition 2.1.1 of Brownian motion and the result of Lemma 2.1.2, we

have

PW (t; c) =P (Ws < c(s), 0 ≤ s ≤ t)

=

∫ +∞

−∞
1{x1<c−1 }

P (Ws < c(s), t1 6= s ≤ t|Wt1 = x1)dPt1(x1)

=

∫ +∞

−∞
1{x1<c−1 }

P (Ws < c(s), 0 ≤ s < t1|Wt1 = x1)

× 1{x1<c+1 }P (Ws < c(s), t1 < s ≤ t|Wt1 = x1)dPt1(x1)

=

∫ +∞

−∞
1{x1<min(c−1 ,c

+
1 )=β1}P (Ws < c(s), 0 ≤ s < t1|Wt1 = x1)

15



× P (Ws < c(s), t1 < s ≤ t|Wt1 = x1)dPt1(x1)

=

∫ β1

−∞
P (Ws < c(s), 0 ≤ s < t1|Wt1 = x1)

× P (Ws < c(s), t1 < s ≤ t|Wt1 = x1)dPt1(x1),

where by equation (2.4) the first factor in the last integral is

P (Ws < c(s), 0 ≤ s < t1|Wt1 = x1) = 1− exp
[
− 2c+

0 (c−1 − x1)

t1

]
.

Further, the second factor in the last integral is

P (Ws < c(s), t1 < s ≤ t|Wt1 = x1)

=P (Ws < c(s+ t1)− x1, s ≤ t− t1)

=

∫ +∞

−∞
1{x2<(c−2 −x1)}

{
1− exp

[
− 2(c+

1 − x1)(c−2 − x1 − x2)

t2 − t1
]}
1{x2<(c+2 −x1)}

P (Ws < c(s+ t1)− x1, t2 − t1 < s ≤ t− t1|Wt2−t1 = x2)dPt2−t1(x2)

=

∫ +∞

−∞
1{x2<c−2 }

{
1− exp

[
− 2(c+

1 − x1)(c−2 − x2)

t2 − t1
]}
1{x2<c+2 }

P (Ws < c(s+ t1)− x1, t2 − t1 < s ≤ t− t1|Wt2−t1 = x2 − x1)dPt2−t1(x2 − x1)

=

∫ +∞

−∞
1{x2<min(c−2 ,c

+
2 )=β2}

{
1− exp

[
− 2(c+

1 − x1)(c−2 − x2)

t2 − t1
]}

P (Ws < c(s+ t2)− x2, s ≤ t− t2)dPt2−t1(x2 − x1)

=

∫ β2

−∞

{
1− exp

[
− 2(c+

1 − x1)(c−2 − x2)

t2 − t1
]}

P (Ws < c(s+ t2)− x2, s ≤ t− t2)dPt2−t1(x2 − x1).
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Apply the same calculation to P (Ws < c(s + t2) − x2, s ≤ t − t2) and repeat the

steps until we get

P (Ws < c(s+ tn−1)− xn−1, s ≤ t− tn−1)

=

∫ βn

−∞

{
1− exp

[
−

2(c+
n−1 − xn−1)(c−n − xn)

t− tn−1

]}
dPt−tn−1(xn − xn−1).

The result follows by combining all the above steps.

In the following, we give another proof of this theorem.

A second proof. Define the events

Ai = {Ws < c(s), ti−1 < s < ti|Wti−1
= xi−1,Wti = xi}, i = 1, 2, · · · , n.

Figure 2.4: A sample path that does not cross the boundary before t.
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By the property of BM, {Ai} are independent of each other. Therefore

P (Ws < c(s), 0 ≤ s < t, s 6= tj|Wt1 = x1,Wt2 = x2, . . . ,Wtn = xn)

=P (A1 ∩ A2 ∩ · · · ∩ An) =
n∏
i=1

P (Ai),

where

P (Ai) = 1{xi−1<c
+
i−1
}1{xi<c−i }

{
1− exp

[
−

2(c+
i−1 − xi−1)(c−i − xi)

ti − ti−1

]}
.

Since f(x) is the joint density function of Wt1 ,Wt2 , · · · ,Wtn , we have

P (Ws < c(s), 0 ≤ s ≤ t)

=

∫
P (Ws < c(s), 0 ≤ s < t, s 6= tj|Wt1 = x1,Wt2 = x2, . . . ,Wtn = xn)f(x)dx

=

∫ n∏
i=1

P (Ai)f(x)dx

=

∫ n∏
i=1

1{xi<βi}

{
1− exp

[
−

2(c+
i−1 − xi−1)(c−i − xi)

ti − ti−1

]}
f(x)dx

=

∫
(−∞,βn)

n∏
i=1

{
1− exp

[
−

2(c+
i−1 − xi−1)(c−i − xi)

ti − ti−1

]}
f(x)dx.

Now let us consider a special case where the piecewise linear boundary is con-

tinuous. In this case βj = c+
j = c−j = c(tj) for every j. Further, let cj = c(tj). Then

Theorem 2.3.1 implies the following result given by Wang and Poetzelberger [31].
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Corollary 2.3.2. The BNCP PW (t; c) for continuous piecewise linear boundary c(s)

is given by

PW (t; c) =

∫
(−∞,cn)

n∏
i=1

{
1− exp

[
− 2(ci−1 − xi−1)(ci − xi)

ti − ti−1

]}
f(x)dx,

where

f(x) =
n∏
i=1

1√
2π(ti − ti−1)

exp
[
− (xi − xi−1)2

2(ti − ti−1)

]
and the region of integration is (−∞, cn) = (−∞, c1)× (−∞, c2)× · · ·× (−∞, cn).

2.3.2 First Passage Time Density

In this subsection, we present the second main result in this thesis.

Theorem 2.3.3. Let c(s) be the piecewise linear boundary defined on the partition

0 = t0 < t1 < · · · < tn−1 < tn. For any 1 < m ≤ n and tm−1 < t < tm, the FPD is

given by

gW (t; c) =

∫
(−∞,βm−1)

m−1∏
i=1

{
1− exp

[
−

2(c+
i−1 − xi−1)(c−i − xi)

ti − ti−1

]}

×
c+
m−1 − xm−1√

2π(t− tm−1)
3
2

exp
[
− (c(t)− xm−1)2

2(t− tm−1)

]
f(x)dx,

(2.8)

where x = (x1, x2, · · · , xm−1).

Proof. By expanding the inner integral of (2.7), we have

PW (t; c)
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=

∫ c(t)

−∞

∫
(−∞,βm−1)

m−1∏
i=1

{
1− exp

[
−

2(c+
i−1 − xi−1)(c−i − xi)

ti − ti−1

]}
f(x)

×
{

1− exp
[
−

2(c+
m−1 − xm−1)(c(t)− x)

t− tm−1

]}exp[− (x−xm−1)2

2(t−tm−1)
]√

2π(t− tm−1)
dxdx

=

∫ c(t)

−∞
p∗(x, t)dx,

where

p∗(x, t) =

∫
(−∞,βm−1)

m−1∏
i=1

{
1− exp

[
−

2(c+
i−1 − xi−1)(c−i − xi)

ti − ti−1

]}
f(x)

×
{

1− exp
[
−

2(c+
m−1 − xm−1)(c(t)− x)

t− tm−1

]}exp[− (x−xm−1)2

2(t−tm−1)
]√

2π(t− tm−1)
dx

satisfies conditions given in Lemma 2.1.5.

Denote the part that depends on x and t by

γ(x, t) =

{
1− exp

[
−

2(c+
m−1 − xm−1)(c(t)− x)

t− tm−1

]}exp[− (x−xm−1)2

2(t−tm−1)
]√

2π(t− tm−1)
.

Then,

∂γ(x, t)

∂x

=− x− xm−1

t− tm−1

{
1− exp

[
−

2(c+
m−1 − xm−1)(c(t)− x)

t− tm−1

]}exp[− (x−xm−1)2

2(t−tm−1)
]√

2π(t− tm−1)

−
exp[− (x−xm−1)2

2(t−tm−1)
]√

2π(t− tm−1)
exp

[
−

2(c+
m−1 − xm−1)(c(t)− x)

t− tm−1

]2(c+
m−1 − xm−1)

t− tm−1

.
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Since

1− exp
[
−

2(c+
m−1 − xm−1)(c(t)− x)

t− tm−1

]∣∣∣∣
x↑c(t)

= 0

and ∣∣∣∣x− xm−1

t− tm−1

exp[− (x−xm−1)2

2(t−tm−1)
]√

2π(t− tm−1)

∣∣∣∣∣∣∣∣
x↑c(t)

is bounded, we have

∂γ(x, t)

∂x

∣∣
x↑c(t) = −

2(c+
m−1 − xm−1)

√
2π(t− tm−1)

3
2

exp
[
− (c(t)− xm−1)2

2(t− tm−1)

]
.

Therefore by Lemma 2.1.5, we have

gW (t; c) = −1

2

∂p∗(x, t)

∂x

∣∣∣∣
x↑c(t)

=

∫
(−∞,βm−1)

m−1∏
i=1

{
1− exp

[
−

2(c+
i−1 − xi−1)(c−i − xi)

ti − ti−1

]}

×
[
− 1

2

∂γ(x, t)

∂x

∣∣∣∣
x↑c(t)

]
f(x)dx

=

∫
(−∞,βm−1)

m−1∏
i=1

{
1− exp

[
−

2(c+
i−1 − xi−1)(c−i − xi)

ti − ti−1

]}

×
c+
m−1 − xm−1√

2π(t− tm−1)
3
2

exp
[
− (c(t)− xm−1)2

2(t− tm−1)

]
f(x)dx.

From equation (2.8) we can see a very interesting property of the FPD.
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Corollary 2.3.4. Suppose two piecewise linear boundaries h(s) and l(s) with the

same nodes 0 = t0 < t1 < · · · < tm < tm+1 < · · · such that h(s) ≥ l(s), ∀0 ≤ s ≤ t

and h(s) > l(s) for s in at least on subinterval [ti−1, ti] 1 ≤ i ≤ m, and h(t) = l(t),

t ∈ (tm, tm+1). Let gW (t;h) and gW (t; l) be the FPD for h(s) and l(s) at time t

respectively. Then gW (t;h) > gW (t; l).

Figure 2.5: gW (t;h) > gW (t; l).

Proof. It is easy to see that g(t; ·) in equation (2.8) is an increasing function of c+
j

and c−j , i = 1, 2, · · · ,m.

The above corollary is interesting and somewhat surprising. While it is easy to

understand that the boundary non-crossing probability is greater for higher bound-

ary, it does not necessarily imply greater density. The following example helps us

to understand this point.
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Figure 2.6: Graph for Example 2.3.6.

.

Example 2.3.5. Let h(s) = a, 0 ≤ s ≤ T1 and h(s) = c, s > T1; l(s) = b, 0 ≤ s ≤ T1

and l(s) = c, s > T1, where a > b > c > 0. Then for any t > T1,

P (Ws < h(s), 0 ≤ s ≤ t)

=

∫ c

−∞
P (Ws < a, 0 ≤ t ≤ T1|WT1 = x)P (Ws < c− x, 0 < s ≤ t− T1)dx.

Therefore,

gW (t;h) = − ∂

∂t
P (Ws < h(s), 0 ≤ s ≤ t))

=−
∫ c

−∞
P (Ws < a, 0 ≤ s ≤ T1|WT1 = x)

∂

∂t
P (Ws < c− x, 0 < s ≤ t− T1)dx.

Similarly we have for t > T1,

gW (t; l) = − ∂

∂t
P (Ws < l(s), 0 ≤ s ≤ t))

=−
∫ c

−∞
P (Ws < b, 0 ≤ s ≤ T1|WT1 = x)

∂

∂t
P (Ws < c− x, 0 < s ≤ t− T1)dx.
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For any x < c,

P (Ws < b, 0 ≤ t ≤ T1|WT1 = x) < P (Ws < a, 0 ≤ s ≤ T1|WT1 = x).

It follows that gW (t; l) < gW (t;h).

Now we give an experimental explanation. Take Brown’s example in his 1827

report of N yellow pollen particles under a microscope. The displacement of each

particle along a fixed axis can be regarded as a standard Brownian motion. Let

0 < T1 < T be fixed. If a particle does not reach h(s) = h before T1, then it is

said to be in class 1. If a particle does not reach l(s) = b before T1, then it belongs

to class 2. If, after T1, a particle reaches c in a small interval (t − 1
2
∆t, t + 1

2
∆t),

then it is said to be in class A. Then it is clear that the number N1 of particles in

both class 1 and A is greater than or equal to the number N2 of particles in both

class 2 and A, so that N1/N ≥ N2/N . For sufficiently large N and small ∆t, N1/N

and N2/N can be regarded as the FPD values under upper and lower boundaries

respectively.

Similar to the BNCP, the FPD result can be simplified for continuous piecewise

linear boundary where βj = c+
j = c−j = c(tj) = cj.

Corollary 2.3.6. If c(s) is continuous piecewise linear boundary, then the first

passage time density gW (t; c) on tm−1 < t < tm is given by

gW (t; c) =

∫
(−∞,cm−1)

m−1∏
i=1

{
1− exp

[
− 2(ci−1 − xi−1)(ci − xi)

ti − ti−1

]}

× cm−1 − xm−1√
2π(t− tm−1)

3
2

exp
[
− (c(t)− xm−1)2

2(t− tm−1)

]
f(x)dx,

(2.9)
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where x = (x1, x2, · · · , xm−1) and the region of integration is (−∞, cm−1) =

(−∞, c1)× (−∞, c2)× · · · × (−∞, cm−1).

Sometimes researchers are interested in the conditional BNCP given that the

process ends at a particular point. This conditional probability is also useful in the

computation of BNCP for general boundaries as shown later.

Theorem 2.3.7. Let c(s) be a piecewise linear boundary on [0, t] with nodes (ti)
n
i=1,

where 0 = t0 < t1 < · · · < tn−1 < tn = t, n > 1. Given Wt = x, the conditional

BNCP is

PW (t; c|Wt = x)

=P (Ws < c(s), 0 ≤ s < t|Wt = x)

=1{x<c(t)}

∫
(−∞,β(n−1)×1)

n−1∏
i=1

(
1− exp(−

2(c+
i−1 − xi−1)(c−i − xi)

ti − ti−1

)

)

×
(

1− exp(−
2(c+

n−1 − xn−1)(c(t)− x)

T − tn−1

)

)

×
√
t√

t− tn−1

exp(−
tx2
n−1 − 2xxn−1 + tn−1x

2

2t(t− tn−1)
)f(x)dx,

(2.10)

where x = (x1, x2, · · · , xn−1).

Proof. To simplify notation, we denote the transition probability function of BM at

point x and time t > 0 from point 0 at time 0 as

p(x, t) = p(x, t|0, 0) =
1√
2πt

exp(−x
2

2t
).
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Then by the definition of conditional probability,

P (τc ≥ t|Wt = x) =
p∗(x, t)

p(x, t)
, (2.11)

where in the proof of Theorem 2.3.1 we have obtained

p∗(x, t) =

∫
(−∞,βn−1)

n−1∏
i=1

{
1− exp

[
−

2(c+
i−1 − xi−1)(c−i − xi)

ti − ti−1

]}
f(x)

×
{

1− exp
[
−

2(c+
n−1 − xn−1)(c(t)− x)

t− tn−1

]}exp[− (x−xn−1)2

2(t−tn−1)
]√

2π(t− tn−1)
dx.

2.4 General Boundary

In previous sections we have derived explicit formulas of the BNCP and FPD for

piecewise linear boundaries. In this section we use these formulas to obtain approx-

imations for the BNCP and FPD for general boundaries.

Firstly, we consider concave boundaries as shown in Figure 2.7.
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Figure 2.7: A concave boundary.

Lemma 2.4.1 (BNCP of a concave boundary). Let boundary c(s) be a concave

differentiable function on [0, t] and time interval [0, t] is partitioned into n = 2k

equal-length subintervals (k > 1) with nodes 0 = t0 < t1 < · · · < t2k−1 < t2k = t.

Denote by ck(s) the polygonal function connecting points cj = c(tj), j = 0, 1, · · · , 2k.

Then P (t; c) = limk→∞ P (t; ck).

Proof. Define events Ak = {Ws < ck(s), 0 < s ≤ t} and A = {Ws < c(s), 0 <

s ≤ t}. Since c(s) is concave on [0, t], we have ck+1(s) ≥ ck(s), ∀s ∈ [0, t], and

hence Ak ⊂ Ak+1. Further, by definition ck(s) converge to c(s) uniformly on [0, t].

Therefore,
⋃∞
k=1 Ak = A. By the continuity property of the probability measure,

P (A) = limk→∞ P (Ak), i.e.,

P (Ws < c(s), 0 ≤ s ≤ t) = lim
k→∞

P (Ws < ck(s), 0 ≤ s ≤ t).
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Now we continue to consider the FPD at t.

Lemma 2.4.2. Let c(s) be continuously differentiable and concave on (0,+∞).

For a fixed t > 0, partition [0, t] into 2k (k ≥ 1) equal-length intervals with nodes

0 = t0 < t1 < · · · < t2k−1 < t2k = t. Let ck(s) be the polygonal function taking

points cj = c(tj), j = 0, 1, · · · , 2k as vertices on 0 < s ≤ t, and be continuously

differentiable at t. Then limk→∞ gW (t; ck) exists.

Figure 2.8: Piecewise linear boundaries ck(s) for a concave boundary c(s).

Proof. Since c(s) is concave, we have ck+1(s) > ck(s), 0 < s < t except for some

nodes where ck+1(tj) = ck(tj). Therefore by Corollary 2.3.4, we have gW (t; ck+1) >

gW (t; ck).

Further, we can always find a boundary b(s) (the green boundary in Figure 2.6)

such that b(s) > ck(s), 0 < s < t and b(t) = ck(t) for all k. Then by Corollary 2.3.4
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we have gW (t; ck) < gW (t; b), i.e., gW (t; ck) are uniformly bounded.

Since gW (t; ck) are bounded and monotone increasing, limk→∞ gW (t; ck) exists.

Note that the piecewise linear boundaries ck(s) approximate the differentiable

concave c(s) from below. Similarly, we can construct a sequence of piecewise linear

boundaries that approximate c(s) from above. Let hk(s) be the piecewise linear

function consisting of the tangent lines at (tj, cj) ( the green boundaries in Figure

2.7). Then hk(s) converge uniformly to c(s). Since c(s) is concave, hk(s) ≥ c(s), ∀k

and hk+1(s) ≤ hk(s). Therefore similar to the BNCP and FPD for ck(s), it follows

that P (t; c) = limk→∞ P (t;hk) and limk→∞ gW (t;hk) exists.

Figure 2.9: Upper and lower boundary of a concave boundary.

For the BNCP for general boundaries, Wang and Poetzelberger [31] provided

the following result
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Lemma 2.4.3. If c∗n(s)→ c(s) as n→∞ uniformly on [0, t], then,

P (Ws < c(s), 0 < s < t) = lim
n→∞

P (Ws < c∗n(s), 0 < s < t)).

It is easy to see that the case of convex boundaries can be dealt with similarly.

Moreover, the partition of interval [0, t] does not have to be equally spaced. In

general, we can always separate the boundary into convex and concave parts and

use the above method to define the upper and lower boundaries respectively.
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Chapter 3

Computational Algorithms and

Numerical Examples

In this Chapter, we develop numerical algorithms to compute the BNCP and FPD

by Monte Carlo method. One advantage of this approach is that the accuracy

of approximation can be assessed through the standard procedures of Monte Carlo

simulation, especially when the boundary is piecewise linear. In addition, numerical

examples are provided to illustrate the simulation method.

3.1 Boundary Non-Crossing Probability

For piecewise linear boundaries, equation (2.7) in Theorem 2.3.1 can be expressed

as

PW (t; c) = E[v(Wt1 ,Wt2 , · · · ,Wtn)], (3.1)

where v(·) is given by

v(x1, x2, · · · , xn) =
n∏
i=1

1{xi<βi}

{
1− exp

[
−

2(c+
i−1 − xi−1)(c−i − xi)

ti − ti−1

]}
. (3.2)
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Hence PW (t; c) can be estimated by Ĵ =
∑N

j=1 v(xj)/N , where xj = (xj1, x
j
2, · · · , xjn),

j = 1, 2, · · · , N , are random samples drawn from the joint distribution ofWt1 ,Wt2 , · · · ,Wtn .

By the law of large numbers, the estimator
∑N

j=1 v(xj)/N converges in probability

to PW (t; c) as N →∞.

Note that the increments are jointly independent and Wti −Wti−1
follows the

Gaussian distributionN(0, ti−ti−1). We firstly generate i.i.d sample u = (u1, u2, · · · , un)

from the standard Normal distribution N(0, 1). Then we can obtain a sample

x = (x1, x2, · · · , xn) of (Wt1 ,Wt2 , · · · ,Wtn) by transformation x = MD1/2u, where

D1/2 = diag(
√
t1 − t0,

√
t2 − t1, · · · ,

√
tn − tn−1) and

M =


1 0 · · · 0

1 1
...

...
. . .

...
1 · · · · · · 1

 ,

i.e., xi = u1

√
t1 − t0 + u2

√
t2 − t1 + · · ·+ ui

√
ti − ti−1, i = 1, 2, · · · , n.

The computational algorithm to calculate the BNCP is as following.

(1) Generate an i.i.d sample u = (u1, u2, · · · , un) from the standard Normal distri-

bution N(0, 1).

(2) Compute x = (x1, x2, · · · , xn) by x = MD1/2u.

(3) Calculate the values of (c+
1 , c

+
2 , · · · , c+

n ), (c−1 , c
−
2 , · · · , c−n ) and (β1, β2, · · · , βn)

where βi = min{c+
i , c

−
i } for the boundary.

(4) Calculate v(x) by equation (3.2).

(5) Repeat steps (1)-(4)N times and then calculate the estimate Ĵ(t; c) =
∑
v(x)/N .

The BNCP is then estimated by Ĵ(t; c) and the standard error of this estimator is
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given by

S(t; c) =

√∑
[v(x)− Ĵ ]

N(N − 1)
.

The standard error due to the Monte Carlo simulation can be reduced by increasing

the size N of Monte Carlo samples.

When the boundary c(s) is nonlinear, its BNCP can be approximated by the

BNCP of a sequence of piecewise linear boundaries. In the following we give some

numerical examples. First of all we are to select a piecewise linear boundary cn(s)

to estimate the nonlinear boundary c(s).

Example 3.1.1 (BNCP for Daniels’ boundary). First we consider the Daniels’

boundary, which is defined as

c(s) =
1

2
− s log

(
1

4
+

1

4

√
1 + 8 exp(−1

s
)

)
, s ≥ 0.

Since the ”exact” BNCP and FPD for this boundary are known, it is used in many

papers to test the computational algorithms. With t = 1, our result is 0.520206 ±

0.001086 with 64 partitions and simulation sample size N = 200000, while the exact

BNCP PW (t; c) = 0.520251. We run the computation on a 64-bit Windows 7 system

workstation with a 3.60GHz CPU (Intel Core i7-3820) and 16GB DDR3 RAM and

the computing time is 0.993175 seconds.

Example 3.1.2. Now we calculate the BNCP for some nonlinear boundaries, which

have been calculated before by Loader and Deely [22] and Wang and Poetzelberger

[31]. The numerical results are shown in Table 3.1 with sample size N = 200000 in

each simulation.
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Table 3.1: BNCP for some nonlinear boundaries. Standard errors are in parentheses.

c(s) n = 4 n = 8 n = 16 n = 32 n = 64
√

1 + s 0.804894 0.804740 0.802533 0.804751 0.804485
(0.000799) (0.000826) (0.000849) (0.000858) (0.000867)

0.5
√

1 + s 0.450516 0.450433 0.452872 0.449928 0.450653
(0.000971) (0.001019) (0.001050) (0.001068) (0.001081)

exp(−s) 0.439668 0.437573 0.436956 0.438864 0.439186
(0.001047 ) (0.001019) (0.001065) (0.001079) (0.001088)

s2 + 1 0.856445 0.852497 0.851839 0.853728 0.852372
(0.000689) (0.000728 ) (0.000748) (0.000759) (0.000771)

1 + s− s2 0.964160 0.963216 0.963632 0.962944 0.962920
(0.000345) (0.000387) (0.000372) (0.000399) (0.000405)

From these results we see that when the size of partitions n increases, the preci-

sion of the approximation becomes significantly better (while the computation time

also increases significantly). We also find that the standard errors do not change

significantly across n.

3.2 First Passage Time Density

Next we show how to calculate the FPD for piecewise linear boundaries. Similar to

BNCP, equation (2.8) in Theorem 2.3.3 can be expressed as

gW (t; c) = E[q(Wt1 ,Wt2 , · · · ,Wtm−1)], (3.3)

where q(·) is given by,

q(x1.x2, · · · , xm−1) = v(x1.x2, · · · , xm−1)
c+
m−1 − xm−1√

2π(t− tm−1)
3
2

exp[−(c(t)− xm−1)2

2(t− tm−1)
].

(3.4)

34



The algorithm of calculating the FPD is also similar to that for BNCP.

(1) Generate an i.i.d sample u = (u1, u2, · · · , um−1) from the standard Normal

distribution N(0, 1).

(2) Compute x = (x1, x2, · · · , xm−1) by x = MD1/2u, where

D1/2 = diag(
√
t1 − t0,

√
t2 − t1, · · · ,

√
tm−1 − tm−2).

(3) Calculate (c+
1 , c

+
2 , · · · , c+

m−1), (c−1 , c
−
2 , · · · , c−m−1) and (β1, β2, · · · , βm−1) for the

boundary.

(4) Calculate q(x) by equation (3.4).

(5) Repeat steps (1)-(4) N times and calculate Ĵ(t; c) =
∑
q(x)/N . The density is

then estimated by Ĵ(t; c) and the standard error of this estimator is given by

S(t; c) =

√∑
[q(x)− Ĵ ]

N(N − 1)
.

As for BNCP, we use the FPD formula for polygonal boundaries to estimate the

FPD for general nonlinear boundaries.

Example 3.2.1 (FPD for square-root boundaries). Square-root boundaries have

been used by many authors in the literature because the ”exact” FPD for these

boundaries are known. We also calculate the FPD for such boundaries and the re-

sults are shown in Table 3.2 and 3.3 with sample size N = 200000 in each simulation.

The ”exact” values of FPD are from Daniels’ paper [5]. These results show that our

method for FDP provides good estimates. The calculated FPD with n = 64 and

exact values in Table 3.2 are plotted in Figure 3.1. They are not distinguishable

because the values are very close.
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Table 3.2: The FPD for boundary c(s) =
√

1 + s, where the values under Exact are
from Daniels’ paper.

t Exact n = 16 n = 32 n = 64 n = 128

0.2 0.2234 0.2227 0.2223 0.2230 0.2229
0.3 0.2810 0.2803 0.2799 0.2794 0.2806
0.4 0.2772 0.2772 0.2771 0.2762 0.2782
0.5 0.2559 0.2558 0.2555 0.2552 0.2561
0.6 0.2311 0.2308 0.2315 0.2318 0.2316
0.7 0.2081 0.2076 0.2070 0.2082 0.2076
0.8 0.1871 0.1867 0.1869 0.1864 0.1868
0.9 0.1685 0.1686 0.1683 0.1688 0.1690
1.0 0.1529 0.1532 0.1532 0.1524 0.1539
1.2 0.1278 0.1276 0.1277 0.1280 0.1279
1.4 0.1089 0.1089 0.1091 0.1091 0.1091
1.6 0.0946 0.0941 0.0947 0.0942 0.0944
1.8 0.0827 0.0824 0.0827 0.0827 0.0822
2.0 0.0732 0.0732 0.0732 0.0731 0.0732
2.5 0.0564 0.0564 0.0565 0.0565 0.0562
3.0 0.0455 0.0453 0.0454 0.0455 0.0452
3.5 0.0376 0.0377 0.0377 0.0375 0.0379
4.0 0.0320 0.0320 0.0320 0.0321 0.0319
4.5 0.0277 0.0277 0.0278 0.0277 0.0278
5.0 0.0243 0.0243 0.0243 0.0244 0.0244
5.5 0.0216 0.0216 0.0217 0.0216 0.0216
6.0 0.0195 0.0194 0.0194 0.0195 0.0194
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Figure 3.1: The calculated FPD for boundary c(s) =
√

1 + s, with n = 64.
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Table 3.3: The FPD for boundary c(s) = 0.5
√

1 + s, where the values under Exact
are from Daniels’ paper.

t Exact n = 16 n = 32 n = 64 n = 128

0.05 1.2871 1.2926 1.2926 1.2890 1.2854
0.1 1.5976 1.5954 1.5954 1.5971 1.5972
0.15 1.3181 1.3173 1.3185 1.3201 1.3187
0.2 1.0570 1.0561 1.0548 1.0603 1.0568
0.25 0.8592 0.8576 0.8585 0.8556 0.8588
0.3 0.7085 0.7107 0.7087 0.7104 0.7100
0.35 0.5978 0.5996 0.5987 0.5997 0.5988
0.4 0.5137 0.5151 0.5141 0.5133 0.5140
0.45 0.4461 0.4452 0.4458 0.4465 0.4463
0.5 0.3924 0.3929 0.3929 0.3918 0.3921
0.6 0.3122 0.3120 0.3116 0.3123 0.3118
0.7 0.2568 0.2563 0.2559 0.2563 0.2563
0.8 0.2152 0.2151 0.2153 0.2140 0.2153
0.9 0.1837 0.1842 0.1843 0.1837 0.1838
1.0 0.1598 0.1597 0.1599 0.1593 0.1599
1.2 0.1253 0.1252 0.1252 0.1247 0.1252
1.4 0.1012 0.1017 0.1015 0.1023 0.1019
1.6 0.0848 0.0846 0.0844 0.0846 0.0847
1.8 0.0720 0.0719 0.0719 0.0721 0.0721
2.0 0.0621 0.0621 0.0623 0.0621 0.0622
2.2 0.0545 0.0546 0.0547 0.0542 0.0544
2.4 0.0485 0.0483 0.0484 0.0483 0.0484

When the partitions of the intervals become finer, the computation time in-

creases significantly. From the above results we see that when t is greater than a

sufficiently large value, the FPD at t is close to 0 and not significantly affected by

the size of partitions n. For t at which the FPD is not close to 0, the precision of

the approximation becomes significantly better as n increases.

38



Figure 3.2: The FPD for boundary c(s) = 0.5
√

1 + s, with n = 64.

The calculated FPD and exact values with n = 64 in Table 3.3 are plotted in

Figure 3.2. They are not distinguishable because the values are very close.
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Example 3.2.2 (FPD for nonlinear boundaries). Now we calculate the FPD for

some nonlinear boundaries c(s) = 1 + s2, c(s) = 1 + s− s2 and c(s) = exp(−s). The

results are shown in Table 3.4, Table 3.5 and Table 3.6 respectively. The Monte

Carlo simulation sample size N = 200000.

Figure 3.3: The FPD for boundary c(s) = 1 + s2, with n = 64.

Table 3.4: The FPD for boundary c(s) = 1 + s2, with n = 64.

t 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
FPD 0.0008 0.0763 0.2067 0.2941 0.3148 0.3102 0.2902 0.2583

0.45 0.5 0.55 0.60 0.65 0.70 0.75 0.80
0.2231 0.1932 0.1663 0.1400 0.1133 0.0956 0.0788 0.0633

0.85 0.9 0.95 1.0 1.1 1.2 1.3 1.4
0.0507 0.0409 0.0328 0.0255 0.0254 0.0149 0.0086 0.0049
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Figure 3.4: The FPD for boundary c(s) = 1 + s− s2, with n = 64.

Table 3.5: The FPD for boundary c(s) = 1 + s− s2, with n = 64.

t 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
FPD 0.0002 0.0317 0.1012 0.1547 0.1968 0.2267 0.2492 0.2613

0.45 0.5 0.55 0.60 0.65 0.70 0.75 0.80
0.2742 0.2821 0.2928 0.3024 0.3151 0.3271 0.3409 0.3580

0.85 0.9 0.95 1.0 1.1 1.2 1.3 1.4
0.3761 0.3894 0.4097 0.4269 0.4699 0.5046 0.5472 0.5795

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2
0.5989 0.6110 0.6062 0.5850 0.5456 0.4891 0.4244 0.3526

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
0.2784 0.2115 0.1489 0.1020 0.0649 0.0386 0.0223 0.0111

3.1 3.2 3.3 3.4 3.5
0.0056 0.0024 0.0010 0.0004 0.0002
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Figure 3.5: The FPD for boundary c(s) = exp(−s), with n = 64.

Table 3.6: The FPD for boundary c(s) = exp(−s), with n = 64.

t 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
FPD 0.0045 0.2074 0.5931 0.8312 0.9206 0.9334 0.9084 0.8632

0.45 0.5 0.55 0.60 0.65 0.70 0.75 0.80
0.7917 0.7289 0.6668 0.6098 0.5529 0.5055 0.4673 0.4283

0.85 0.9 0.95 1.0 1.1 1.2 1.3 1.4
0.3904 0.3597 0.3298 0.3063 0.2637 0.2304 0.1994 0.1743

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2
0.0596 0.0571 0.0525 0.0483 0.0462 0.0434 0.0870 0.0759

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
0.0702 0.0655 0.0596 0.0571 0.0525 0.0483 0.0462 0.0434

3.1 3.2 3.3 3.4 3.5
0.0406 0.0385 0.0361 0.0344 0.0324
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Finally, we note that the estimation error for both BNCP and FPD has two

parts. One part is due to the approximation of the nonlinear boundary through

piecewise linear boundaries. Another part is due to the approximation of Monte

Carlo simulation. To reduce the standard error of Monte Carlo simulation we can

increase the size of the Monte Carlo samples. The other approximation error can

be reduced by increasing the size of partitions. However, more partitions will need

more computation time. Since our method does not rely on equal-spaced partition,

the computational cost can be reduced by considering the curvature of the boundary.
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Chapter 4

Other Diffusion Processes

Many diffusion processes can be expressed as functionals of a standard Brownian

motion, such as geometric Brownian motion with time dependent drift, Ornstein-

Uhlenbeck processes and growth processes. In this chapter we obtain the boundary

crossing probabilities and first passage time densities for such processes by applying

the transformation method.

Since the transformation method for probability distribution and density is well-

known, we simply present the results without detailed derivation. Instead, we refer

to Wang and Poetzelberger [32].

For the simplicity of notation, in the following we denote the probability of a

process X = {Xt, t ≥ 0} not crossing boundaries a(t), b(t) on time interval [0, T ] by

PX(T ; a, b) = P (a(t) < Xt < b(t), 0 < t ≤ T ),

and the first passage time density gX(T ; a, b). When a(t) = −∞, PX(T ; a, b) and

gX(T ; a, b) will be simplified to PX(T ; b) and gX(T ; b) respectively.
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4.1 Brownian Motion with Time Dependent Drift

Suppose W = {Wt, t ≥ 0} is a standard Brownian motion, then the Brownian

motion with time dependent drift is defined as

Xt = σWt + µ(t)t. (4.1)

Corollary 4.1.1. Let X be given by equation (4.1). Then for boundaries a(t) and

b(t) with a(0) < X0 < b(0), we have the following two conclusions.

(1) The BNCP for X and boundaries a(t) and b(t) is given by

PX(T ; a, b) = PW (T ;
a(t)− µ(t)t

σ
,
b(t)− µ(t)t

σ
).

(2) The FPD is given by

gX(T ; a, b) = gW (T ;
a(t)− µ(t)t

σ
,
b(t)− µ(t)t

σ
).

4.2 Geometric Brownian Motion

As a generalization of the classical Black-Scholes model [2] to the time-dependent

interest rate process, a popular stochastic model in mathematical finance is defined

by

dXt = r(t)Xtdt+ σXtdWt, X0 = x0, (4.2)

where r(t) : [0,+∞) 7→ R+. Then under a risk-neutral probability measure, X is a

geometric Brownian motion and

Xt = X0 exp
[
R(t)− σ2t

2
+ σW̃t

]
, (4.3)
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where R(t) =
∫ t

0
r(u)du and W̃ is a standard Brownian motion under the same

risk-neutral probability measure.

Corollary 4.2.1. Let X = {Xt, t ≥ 0} be a geometric Brownian motion given by

equation (4.3). For boundaries a(t) and b(t) with a(0) < X0 < b(0), define c(t) and

d(t) as

c(t) =
1

σ

[
log

(
a(t)

x0

)
+
σ2t

2
−R(t)

]
, 0 ≤ t ≤ T,

d(t) =
1

σ

[
log

(
b(t)

x0

)
+
σ2t

2
−R(t)

]
, 0 ≤ t ≤ T.

Then we have the following two conclusions.

(1) The BNCP for X and a(t) and b(t) is given by PX(T ; a, b) = PW̃ (T ; c, d).

(2) The FPD for X is given by gX(T ; a, b) = gW̃ (T ; c, d).

4.3 Ornstein-Uhlenbeck Process

Ornstein-Uhlenbeck (O-U) process is known as Vasicek model for the short -term

interest rate process in mathematical finance. It is defined in state space R and

satisfies the stochastic differential equation

dXt = κ(α−Xt)dt+ σdWt, X0 = x0, (4.4)

where κ, σ ∈ R+ and α ∈ R+ are constants.

Corollary 4.3.1. Let X = {Xt, t ≥ 0} be an O-U process given by equation (4.4).

Then for boundaries a(t) and b(t) with a(0) < X0 < b(0), define c(s) and d(s) as

c(s) = α− x0 + [a(t(s))− α]

(
1 +

2κs

σ2

)1/2

,
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d(s) = α− x0 + [b(t(s))− α]

(
1 +

2κs

σ2

)1/2

,

where

t(s) =
1

2κ
log

(
1 +

2κs

σ2

)
, s ≥ 0.

Then we have the following two conclusions.

(1) The BNCP for X and a(t) and b(t) is given by PX(T ; a, b) = PW (S; c, d),

where S = σ2(exp(2κT )− 1)/2κ.

(2) The FPD for X is given by gX(T ; a, b) = σ2 exp(2κT )gW (S; c, d).

Example 4.3.2. Now we consider an example of O-U process X crossing constant

boundaries a(t) = −∞ and b(t) = h > 0. In this case c(s) = −∞ and

d(s) = α− x0 + (h− α)

(
1 +

2κs

σ2

) 1
2

.

In particular, set α = x0, σ2 = 2κ = 1 and h = x0 +1. Then we have d(s) =
√

1 + s

for 0 ≤ s ≤ S = eT − 1. Therefore PX(T ;h) = PW (S;
√

1 + s) and gX(T ;h) =

exp(T )gW (S;
√

1 + s). Note that the case of BM crossing square-root boundary

√
1 + s has been calculated in Chapter 3.

4.4 Growth Process

Growth process is an important stochastic model in population genetics [26]. It

satisfies

dXt = (αXt − βXt logXt)dt+ σXtdWt, X0 = x0 (4.5)

on state space R+, where α, β and σ are positive constants.
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Corollary 4.4.1. Let X = {Xt, t ≥ 0} be a growth process. For boundaries a(t)

and b(t) with a(0) < X0 < b(0), define c(s) and d(s) as

c(s) =

√
1 + 2βs

σ

[
log a(t(s)) +

σ2 − 2α

2β

]
− 1

σ

[
log x0 +

σ2 − 2α

2β

]
,

d(s) =

√
1 + 2βs

σ

[
log b(t(s)) +

σ2 − 2α

2β

]
− 1

σ

[
log x0 +

σ2 − 2α

2β

]
,

Then we have the following two conclusions.

(1) The BNCP for X and a(t) and b(t) is given by PX(T ; a, b) = PW (S; c, d),

where S = (exp(2βT )− 1)/2β.

(2) The FPD for X is given by gX(T ; a, b) = exp(2βT )gW (S; c, d).

Example 4.4.2. Now we consider an example of growth process X crossing con-

stant boundaries a(t) = 0 and b(t) = h > 0. In this case c(s) = −∞ and

d(s) =
1 + 2βs

σ

(
log h+

σ2 − 2α

2β

)
− 1

σ

(
log x0 +

σ2 − 2α

2β

)
.

In particular if we take σ2 = 2α, β = 0.5, x0 = 1 and h = eσ, we will obtain

d(s) =
√

1 + s and S = eT−1. Then PX(T ; 0, h) = PW (S;
√

1 + s) and gX(T ; 0, h) =

exp(T )gW (S;
√

1 + s).
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Chapter 5

Summary

In this thesis we have studied boundary crossing probabilities and first passage time

densities for Brownian motion and various types of boundaries.

The main objects are to find explicit formula for the first passage time distribu-

tions and to develop algorithms to numerically calculate the distributions. We first

extended the known boundary crossing probabilities formula for continuous piece-

wise linear boundaries to discontinuous piecewise linear boundaries. This explicit

formula can be used to approximate the boundary crossing probabilities for general

nonlinear boundaries. Using this approach, the approximation error can be assessed

or even controlled before the real computation starts. As a by product, we have

also derived the formula for the boundary crossing probabilities for the Brownian

bridge.

Furthermore, an explicit formula for the first passage time densities is derived

for piecewise linear boundaries. The approach to compute the first passage time

densities is similar with the approach for the boundary crossing probabilities.

Although the results in this thesis are given for one-sided boundaries, most of
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them can be extended to two-sided boundaries. This approach can be applied to a

class of diffusion processes which can be expressed as piecewise monotone function-

als of Brownian motion, including geometric Brownian motion, O-U processes and

growth processes.
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Appendix

We include the MatLab functions that are used to calculate numerical examples in

this thesis.

A1: Function for the BCP for BM and linear piecewise

boundaries

function [EBCPDC SDBCPDC]=BcpLP3(BoundValS,RunTimes)

% file name BcpLP3

% This function is to canculate the BCP of stardard BM

% Boudary is LINEAR PIECEWISE Boundary

% Version 2012-11-16

% Define Parameters

% BoundVal =[Break Points; Boundary Right Limit at Points; ...

% Boundary Left Limit at Points].

% Break Points : beginning with 0 and ending with EndPoint.

% BoundVal has to be 3*(n+1) matrix.

% RunTimes: Repeat times.

[sizen,sizem]=size(BoundValS);

sizem=sizem-1;
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if sizem==1

T=BoundValS(1,2);

a=(BoundValS(3,2)-BoundValS(3,1))/BoundValS(1,2);

b=BoundValS(3,1);

EBCPDC=normcdf((a*T+b)/sqrt(T))-exp(-2*a*b)*normcdf((a*T-b)/sqrt(T));

SDBCPDC=0;

else

dt=diff(BoundValS(1,:));% dt is each length of pieces of Boundary.

DTI=diag(1./dt);

SDT=diag(sqrt(dt));

giterm=RunTimes;

nullgm=((1:giterm)*0)’;

% VALBegin is the right-limit of each boundary piece at points.

VALSBegin=(nullgm+1)*BoundValS(2,:);

% VALEnd is the Left-limit of each boundary piece at the end points.

VALSEnd=(nullgm+1)*BoundValS(3,:);

ii=1:giterm;

gi=nullgm;

x=randn(giterm,sizem)*SDT;

sumx=cumsum(x’)’;

BBegin=VALSBegin-[nullgm sumx];

BEnd=VALSEnd-[nullgm sumx];

Bmin=min(BBegin,BEnd);

Bm=min(Bmin’)’;

ip=ii(Bm>0);

52



Q=-2*BBegin(ip,1:sizem).*BEnd(ip,2:(sizem+1))*DTI;

ExpQ=exp(Q);

gv=1-ExpQ;

gp=prod(gv’)’;

gi(ip,1)=gp;

EBCPDC=mean(gi);

SDBCPDC=sqrt(var(gi)/RunTimes);

end

A2: Function for the BCP for BM and nonlinear boundaries

function [EBCP SDBCP]=BcpC(mybou,EndPoint,DivParts,RunTimes)

% File name BcpC

% This function is to canculate the BCP of stardard BM

% Boudary is General Continuous Boundary

% Version 2012-11-16

% Define Parameters

% EndPoint: Process on [0,EndPoint]

% DivParts: How many partations we divide the boundary.

% RunTimes: Repeat times.

% In this funtion: mybou is a self-difined function to get the boundary.

% Use function handle.

% Example: boundary f(t)=exp(-t)

tau=EndPoint;

ts=linspace(0,tau,DivParts+1);

lengthm=length(ts);
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Val=mybou(ts);

% Example: Val=exp(-ts);

[EBCP SDBCP]=BcpLP3([ts;Val;Val],RunTimes);

A3: Function for the BCP for BM and nonlinear boundaries

This m file is to canculate the BCP for BM and boundary c(t) = exp(−t) for

example. With T = 1 we divide [0, T ] into 32 parts. The Monte carlo simulation

sample size is 200000.

% Parameters values used

EndPoint=1;

DivParts=32;

RunTimes=200000;

% Change the Parameters values to apply for other cases.

tau=EndPoint;

ts=linspace(0,tau,DivParts+1);

lengthm=length(ts);

Val=exp(-ts);

[EBCP SDBCP]=BcpLP3([ts;Val;Val],RunTimes);

A4: Function for the BCP for O-U process and linear piece-

wise boundaries

function [EBCPOU SDBCPOU]=OuBcpLP(BoundValS,OUP,RunTimes)

% Filename: OuBcpLP
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% This function is to canculate the BCP of a Ornstein-Uhlenbeck Process

% Boudary is LINEAR PIECEWISE Boundary

% Version 2012-11-16

% Define Parameters

% OUP: the parameter vector of the OU process

% The parameters of the OU process is kappa, alpha, sigma, x0

% OUP=[kappa,alpha,sigma,x0];

% BoundValS =[Break Points; Boundary Right Limit at Points);...

% Boundary Left Limit at Points].

% BoundValS has to be 3*(n+1) matrix.

% RunTimes: Repeat times.

[sizen,sizem]=size(BoundValS);

kappa=OUP(1);

alpha=OUP(2);

sigma=OUP(3);

x0=OUP(4);

NewBoundVal=ones(sizen,sizem);

NewBoundVal(1,:)=0.5*sigma^2*(exp(2*kappa*BoundValS(1,:))-1)/kappa;

NewBoundVal(2,:)=alpha-x0+exp(kappa*BoundValS(1,:)).*(BoundValS(2,:)-alpha);

NewBoundVal(3,:)=alpha-x0+exp(kappa*BoundValS(1,:)).*(BoundValS(3,:)-alpha);

[EBCPOU SDBCPOU]=BcpLP3(NewBoundVal,RunTimes);
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A5: Function for the BCP for O-U process and nonlinear

boundaries

function [EBCP SDBCP]=OuBcpC(mybou,EndPoint,DivParts,OUP,RunTimes)

% Filename: OuBcpC

% This function is to canculate the BCP of Ornstein-Uhlenbeck Process

% Boudary is General Continuous Boundary

% Version 2012-11-20

% Define Parameters

% OUP: the parameter vector of the OU process

% The parameters of the OU process is kappa, alpha, sigma, x0

% OUP=[kappa,alpha,sigma,x0];

% EndPoint: Process on [0,EndPoint]

% DivParts: How many partations we divide the boundary.

% RunTimes: Repeat times.

% In this funtion: mybou is a self-difined function to get the boundary.

% Example: boundary f(t)=exp(-t)

tau=EndPoint;

ts=linspace(0,tau,DivParts+1);

lengthm=length(ts);

Val=mybou(ts);

% Example: Val=exp(-ts);

[EBCP SDBCP]=OuBcpLP([ts;Val;Val],OUP,RunTimes);
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A6: Function for the BCP for geometric Brownian motion

and linear piecewise boundaries

function [EBCPOU SDBCPOU]=GBcpLP(BoundValS,GP,RunTimes)

% File name: GBcpLP

% This function is to canculate the BCP of a Geoetric Brownian Motion

% Boudary is LINEAR PIECEWISE Boundary

% Version 2012-11-20

% Define Parameters

% GP: the parameter vector of the Geoetric Brownian Motion

% The parameters of the GP process is mu, sigma, y0

% GP=[mu, sigma, y0];

% BoundValS =[Break Points; Boundary Right Limit at Points); ...

% Boundary Left Limit at Points].

% BoundValS has to be 3*(n+1) matrix.

% RunTimes: Repeat times.

[sizen,sizem]=size(BoundValS);

mu=GP(1);

sigma=GP(2);

y0=GP(3);

NewBoundVal=ones(sizen,sizem);

NewBoundVal(1,:)=BoundValS(1,:);

NewBoundVal(2,:)=(log(BoundValS(2,:))-log(y0)-(u-0.5*sigma^2))/sigma;

NewBoundVal(3,:)=(log(BoundValS(3,:))-log(y0)-(u-0.5*sigma^2))/sigma;

[EBCPOU SDBCPOU]=BcpLP3(NewBoundVal,RunTimes);
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A7: Function for the BCP for geometric Brownian motion

and nonlinear boundaries

function [EBCPOU SDBCPOU]=GBcpC(mybou,EndPoint,DivParts,GP,RunTimes)

% File name: GBcpC

% This function is to canculate the BCP of a Geoetric Brownian Motion

% Boudary is General Continuous Boundary

% Version 2012-11-20

% Define Parameters

% GP: the parameter vector of the OU process

% The parameters of the OU process is kappa, alpha, sigma, x0

% GP=[kappa,alpha,sigma,x0];

% EndPoint: Process on [0,EndPoint]

% DivParts: How many partations we divide the boundary.

% RunTimes: Repeat times.

% In this funtion: mybou is a self-difined function to get the boundary.

% Example: boundary f(t)=exp(-t)

tau=EndPoint;

ts=linspace(0,tau,DivParts+1);

lengthm=lenth(ts)

Val=mybou(ts);

% Example: Val=exp(-ts);

[EBCP SDBCP]=GBcpLP([ts;Val;Val],GP,RunTimes);
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A8: Function for the FPD for BM and linear piecewise

boundaries

function EBCDL=fcdLPf(BoundVals,RunTimes)

% File name: fcdLPf

% This function is to canculate the First Crossing-time Density of stardard BM

% Boudary is LINEAR PIECEWISE Boundary

% Version 2014-01-16

% This is the final version

% Define Parameters

% BoundVal =[Break Points; Boundary Values].

% BoundVal has to be 2*(n+1) matrix.

% RunTimes: Repeat times.

% ss is a parameter defined inside.

ss=2000;

[sizen,sizem]=size(BoundVals);

sizem=sizem-1;

giterm=RunTimes;

nullgm=((1:giterm)*0)’;

dt=diff(BoundVals(1,:));

% dt is each length of pieces of Boundary.

DT=diag(dt);

DTI=diag(1./dt(1:sizem-1));

SDT=diag(sqrt(dt(1:sizem-1)));

dB=diff(BoundVals(2,:));

Beta=(nullgm+1)*BoundVals(2,1:sizem);

59



Rg=[];

for i=1:1:ss

x=randn(giterm,sizem-1)*SDT;

sumx=cumsum(x’)’;

ii=1:giterm;

gi=nullgm;

B=Beta-[nullgm sumx];

Bm=min(B’)’;

ip=ii(Bm>0);

Q=-2*B(ip,1:sizem-1).*B(ip,2:sizem)*DTI;

ExpQ=exp(Q);

gv=1-ExpQ(:,1:sizem-1);

gp1=prod(gv’)’;

gp2=1/sqrt(2*pi*dt(sizem)^3)*(BoundVals(2,sizem)-sumx(ip, ...

sizem-1)).*exp(-0.5*(BoundVals(2,sizem+1)-sumx(ip,sizem-1)).^2/dt(sizem));

gp=gp1.*gp2;

gi(ip,1)=gp;

Mgi=mean(gi);

Rg=[Rg Mgi];

end

EBCDL=mean(Rg);
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A8: Function for the BCP for BM with jumps and linear

piecewise boundaries where the jump process follows a Pois-

son process

Note that the boundary is defined in function mybou and the jump hights in defined

in function myjphm.

function [EZYBCP SDBCP]=BcpLJ(LBP,lambda,EndPoint,RunTimes,myjphm)

% Filename: BcpLJ

% This function is to canculate BCP of BM with jumps.

% Boudary is LINEAR Boundary

% Version 2012-11-16

% Define Parameters

% lambda: Possion Process prameter

% EndPoint: Process on [0,EndPoint]

% RunTimes: Repeat times.

% LBP: Linear Boundary Parameters;

% LBP=[slope intercept];

% I write one functions (m file) to support this function

% function myjph. To get jump hights.

% Example: Use Double EXP distribution here.

Pprijump=[];

for iim=1:1:RunTimes

m=poissrnd(lambda*EndPoint); % use m as the numbers of Jumps.

% Determine the time when jumps happen.

tau=EndPoint; % Use tau to replace EndPoint
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ts1=unifrnd(0,tau,[1,m]);

ts1=sort(ts1);

% Deal with boudary. Partition.

ts2=[0 1];

ts3=union(ts1,ts2);

% NOTICE: There can be the same values in ts1 and ts2; so get union.

ts=sort(ts3);

le=length(ts);

% Get Orignal Boundary

oldbi=LBP(1)*ts+LBP(2); % Example: f(t)=1.5t-0.5;

if m==0

Pri=BcpLP3([ts;oldbi;oldbi],1);

else

% Get the hights of Jumps.

jh=myjphm(m);

% jh are the hights of every jump.

bi1b=oldbi-sum((repmat(ts,m,1)>=repmat(ts1’,1,le)).*repmat(jh’,1,le));

%bi1b: after jump: beginning

bi2e=oldbi-sum((repmat(ts,m,1)>repmat(ts1’,1,le)).*repmat(jh’,1,le));

%bi2e: before jump: ending

Pri=BcpLP3([ts;bi1b;bi2e],1);

end

Pprijump=[Pprijump Pri];

end

EZYBCP=mean(Pprijump);
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SDBCP=sqrt(var(Pprijump)/RunTimes);

A8: Function for the BCP for BM with jumps and nonlinear

boundaries where the jump process follows a Poisson process

function [EZYBCP SDBCP]=BcpCJ(mybou,lambda,EndPoint,RunTimes,DivParts,myjphm)

% This function is to canculate BCP of BM with jumps.

% File name:BcpCJ

% Boudary is General Continuous Boundary

% Version 2012-11-16

% Define Parameters

% lambda: Possion Process prameter

% EndPoint: Process on [0,EndPoint]

% RunTimes: Repeat times.

% DivParts: How many partations we divide the boundary.

% I write two functions (m file) to support this function

% Use function handle.

% function 1 mybou: To get Boundary.

% Example: f(t)=sqrt(t+1);

% function 2 myjphm: To get jump hights.

% Example: Use Double EXP distribution here.

Pprijump=[];

for iim=1:1:RunTimes

m=poissrnd(lambda*EndPoint);% use m as the numbers of Jumps.

if m==0

63



ts=linspace(0,EndPoint,DivParts+1);

oldbi=mybou(ts);

Pri=BcpLP3([ts;oldbi;oldbi],1);

else

% Determine the time when jumps happen.

tau=EndPoint; % Use tau to replace T

ts1=unifrnd(0,tau,[1,m]);

ts1=sort(ts1);

% Deal with boudary. Partition.

ts2=linspace(0,tau,DivParts+1);

ts3=union(ts1,ts2);

% NOTICE: There can be the same numbers in ts1 and ts2, use union here.

ts=sort(ts3);

le=length(ts);

% Bouldary.

oldbi=mybou(ts); % Example:oldbi=sqrt(ts+1);

% Get the hights of Jumps.

jh=myjphm(m); % jh are the hights of every jump.

% Example: Double EXP distribution.

% jh=randdexp(0.5,0.02,0.03,1,m)/0.2;

% I write a function ’randdexp’ to get a random double exp number

% Get Boundary including jumps.

bi1b=oldbi-sum((repmat(ts,m,1)>=repmat(ts1’,1,le)).*repmat(jh’,1,le));

%bi1b: after jump: beginning

bi2e=oldbi-sum((repmat(ts,m,1)>repmat(ts1’,1,le)).*repmat(jh’,1,le));

64



%bi2e: before jump: ending

Pri=BcpLP3([ts;bi1b;bi2e],1);

end

Pprijump=[Pprijump Pri];

end

EZYBCP=mean(Pprijump);

SDBCP=sqrt(var(Pprijump)/RunTimes);
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