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Abstract

In this thesis, large-eddy simulation has been performed to investigate a heated plane

channel flow subjected to streamwise system rotations. A variety of rotation num-

bers ranging from Roτ = 0 to 15 have been tested in conjunction with two fixed

low Reynolds numbers Reτ = 150 and 300. The fundamental characteristics of the

resolved velocity and temperature fields in terms of their mean and root-mean-square

(RMS) values are investigated. Advanced physical features in terms of the transport

of turbulent stresses, turbulent kinetic energy (TKE), heat fluxes and forward and

backward scatter of local kinetic energy (KE) fluxes between the resolved and subgrid

scales are also studied. Numerical simulations were performed using the conventional

dynamic model (DM) and an advanced dynamic nonlinear model (DNM) for closure

of the filter momentum equation, and an advanced dynamic full linear tensor thermal

diffusivity model (DFLTDM) for closure of the filtered thermal energy equation.
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Chapter 1

Introduction

1.1 Turbulence: Basic Concepts and Research

Turbulence is a physical phenomenon that occurs frequently in nature. It could appear

in almost all flow media at an arbitrary speed ranging from almost stagnant fluids

such as the clear-air turbulence (CAT) at high altitudes of the atmosphere to air

flows in wind-tunnels at hypersonic and supersonic speeds. Turbulence phenomena

can take place in inner flows in pipes, precipitators, gas scrubbers, heat exchangers,

internal combustion engines and gas turbines, etc.; or in external flows over the

surface of a moving object such as cars, airplanes, ships and submarines, soccer,

tennis and golf balls. Although turbulence is rather a familiar terminology, a unique

and unambiguous definition precisely that describes all characteristics of turbulence

is still lacking. We can state that turbulence denotes a state of fluid in which all

properties (velocity, pressure, density, etc.) fluctuate continuously in an irregular,

chaotic, non-repeating and unpredictable manner [1].

Turbulence has been the subject of study for several centuries. However, it still

remains an important unsolved problem of classical physics due to its complexity.

In 1510, Leonardo da Vinci accomplished a drawing of the flow structures behind a

blunt obstacle and wrote the following notes [2]: “Observation the motion of the water

surface, which resembles that of hair, that has two motions: one due to the weight of

the shaft, the other to the shape of the curls; thus, water has eddying motions, one
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part of which is due to the principal current, the other to the random and reverse

motion.” This observation is regarded as a precursor to Reynolds’ decomposition

of velocity, pressure and other variable into mean and fluctuation parts. In 1822,

Claude L. M. H. Navier and George G. Stokes derived mathematical equations (so-

called the Navier-Stokes (N-S) equations) that govern both laminar and turbulent

flow motions. Although the equations for describing the turbulence were established,

it was still impossible to obtain analytical or theoretical solutions related to turbulent

flows because the N-S equations are highly nonlinear and non-integrable. In 1883,

Osborne Reynolds [3] conducted a ground-breaking experiment that initiated the

modern concept and scientific research of turbulence. In his experimental study, an

important non-dimensional parameter was introduced to characterize the flow, the

so-called Reynolds number, defined as Re = UL/ν, where U and L are characteristic

velocity and length scales of the flow, and ν is the kinematic viscosity of the fluid.

In Reynolds’s pipe-flow experiment, if Re was less than about 2,300, the flow was

laminar, however, if the value of Re exceeded this threshold, transition to turbulence

could occur.

During the last centuries, many leading researchers conducted research on tur-

bulent flow phenomena using a variety of different approaches. The understanding

of the scaling laws in various flow regimes is attributed to the research on statis-

tical theories of turbulence. Experimental studies have played very important part

in the understanding of the structure of turbulence, especially in identification of

the coherent eddies responsible for the most prominent energy production. The ad-

vancement in the measurement technology has also facilitated experimental study of

turbulence. Now, it is possible to obtain single-point measurements of velocity and ve-

locity gradient components using laser-doppler velocimetry (LDV) and multiple wire

anemometers, and velocity distributions in a plane using particle-image or particle-

tracking velocimetry (PIV or PTV). Over the last 40 years, due to the advancement

in the high-performance supercomputer technology and development in numerical

algorithms such as direct and large-eddy simulation methods, data that could not

be measured previously such as multi-point correlations, unobtrusive measurements

2



of the velocity, velocity gradients, pressure, passive scalars, etc. can now obtained

using these advanced numerical tools. Owing to the excellent temporal and spatial

accuracy of the direct numerical simulation (DNS) method, the databases obtained

from it have been extensively used for model validation and development. However,

current computational capacity is still woefully insufficient in comparison with the

needs for simulating complex engineering turbulent flows. [2]

1.2 Characteristic Scales of Turbulence

Owing to the fact that a precise definition of turbulence is still lacking, physical

concepts supported by similarity arguments and dimensional analysis have been ex-

tensively used to characterize the turbulence and its properties in various flows.

In 1922, Richardson [4] introduced the seminal idea of “energy cascade” to de-

scribe the scales of turbulence. Kolmogorov [5] advanced this theory in 1941. Accord-

ing to the theory of Richardson and Kolmogorov, turbulence can be decomposed into

eddies of different sizes. Turbulence and turbulence interactions are characterized by

different temporal and spatial scales. Turbulence generation and its transport occur

at large eddies, while the viscous dissipation is associated with the smallest scales

(namely, the Kolmogorov scale). In a shear layer or in an enclosure, generation of

turbulence occurs due to the mean flow deformation and its interaction with most

energetic eddies (energy containing eddies). Large eddies grow until the layer or the

entire flow domain is filled, thus the length of the largest scale is typically related

to the characteristic flow dimension. Through the process of their generation, large

eddies extract energy from the mean motion. The large eddies are unstable and break

up, transferring their energy to somewhat smaller eddies. The small eddies undergo

a similar break-up process, and transfer their energy to smaller and smaller eddies.

Eventually, this energy will be dissipated by viscosity. There is an intermediate scale

between large energetic scale and Kolmogorov scale, so-called Taylor microscale.

The dissipation rate of turbulent kinetic energy (TKE) is defined by ǫ. The time
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TABLE 1.1: Turbulence scales

Eddy size Length scale Time scale Velocity scale Reynolds No.

Large energetic eddies l = k3/2

ǫ
τ = k

ǫ
k

1

2 Ret =
k
1
2 l
ν

Small eddies λ =
√

10ν k
ǫ

ϑ = (ν
ǫ
)
1

2 k
1

2 Reλ = k
1
2 λ
ν

Dissipative eddies η = (ν
3

ǫ
)
1

4 ϑ = (ν
ǫ
)
1

2 (νǫ)
1

4 Rek = 1

and length scales of the energy containing eddies can be defined as a function of TKE

k and its dissipation rate ǫ, i.e. f(k, ǫ). Calculated according to the dimensional

analysis, the time and length scales for energy containing eddies are τ = k
ǫ
and

l = k3/2

ǫ
, respectively. In the finest eddy structure (at the Kolmogorov scale), TKE

converts to thermal energy through molecular dissipation. Thus, scales characteristic

of the finest eddy structures are determined by two quantities, namely, ν and ǫ.

Dimensional analysis yields the following time and length scales: ϑ = (ν
ǫ
)1/2 and

η = (ν
3

ǫ
)
1

4 . The length scale of the Taylor microscale can be defined with respect to all

three characteristic parameters, k, ν and ǫ, which is λ =
√

10ν k
ǫ
. The characteristic

time, length and velcoity scales and the corresponding Reynolds numbers for different

eddies are summarized in the Table 1.1. The relevant relationships between various

scales follow:
l
λ
=

Re
1
2
t√
10

= Reλ
10

,

λ
ϑ
=

√
10Re

1

4

t = 10
1

4Re
1

2

λ ,

l
η
= Re

3

4

t =
Re

3
2

λ

10
3
4

,

τ
ϑ
= Re

1

2

t =
√
10Reλ .

(1.1)

1.3 Numerical Simulation of Turbulence

Although Navier-Stokes equations are believed to be capable of describing turbulent

motions with very high degree of accuracy, there are infinite numbers of solution real-

izations that all satisfy the equations. There is no prospect of the existence of a simple
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analytic theroy. One of the hopes to solve the equations is to use the ever-increasing

power of digital computers to achieve the objective of calculating the relevant prop-

erties of turbulent flows. [2] Direct numerical simulation (DNS), Reynolds averaged

Navier-Stokes (RANS) approach and large-eddy simulation (LES) represent the three

major methods in the field of numerical simulation of turbulent flows. In DNS, all

turbulent motions are fully resolved including the finest Kolmogorov time and length

scales. Although DNS provides the most accurate simulation results, the compu-

tational expenses associated with this method are very demanding. The computer

requirements increase rapidly with the Reynolds number such that the applicability

of the approach is still limited to flows of low or moderate Reynolds numbers, es-

pecially in the context of a complex domain. The RANS approach deals with the

ensemble-averaged equations, only the largest energy-containing eddy motions are

resolved at the large integral scales. Because the small and intermediate turbulent

motions are not resolved in a RANS approach, their effects are modelled, leading to

the special area of research so-called turbulence modelling. In a RANS approach,

turbulence modelling plays a critically important role in numerical simulations, and

the obtained numerical results are often sensitive to the specific turbulence modelling

in use. Owing to the heavy empiricism involved in RANS models, they are short

of the capacity of providing any accurate information about the turbulence spectral

dynamics, and thus, a RANS approach does not have necessary temporal and spa-

tial resolutions that are crucial for studying the physics of turbulence at small and

intermediate scales.

The method of LES makes a compromise between DNS and RANS. In a RANS

approach, turbulent motions at almost all scales (that are smaller than the integral

scales) are modelled. In contrast, in LES, the large-scale eddy motions are resolved

temporally and spatially. However, small-eddy motions at and below the subgrid

scales are modelled. The large and small scale eddy motions are distinguished el-

egantly by a filtering process in a LES approach. Similar to the DNS, LES also

provides a three-dimensional, time-dependent solution to the filtered governing equa-

tions. However, in LES, turbulent fields are resolved at and above a characteristic
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cut-off filter size, which is typically much larger than the Kolmogorov scales required

in a DNS approach. In view of this, given the same computational resources, LES

can deal with much higher Reynolds numbers and much more complex geometries

than DNS.

1.4 Subgrid-Scale Models in LES

The LES represents a time-accurate numerical approach for improved predictions of

complex turbulent flows. In LES, a flow is decomposed into large- and small-scale

motions through a filter. The large-scale motions are typically energy containing and

tend to be anisotropic. They dominate the transport processes of momentum, mass

and thermal energy, and are directly computed in a LES approach. In contrast, the

small-scale (or, subgrid-scale) motions tend to be more isotropic and less energetic,

which usually need to be modelled.

As a consequence of the filtering process, two new terms appear in the system of

governing equations for LES of thermal flows; namely, the subgrid-scale (SGS) stress

tensor and SGS heat flux (HF) vector. In order to close the governing equations,

both the SGS stress tensor and HF vector need to be modelled in a convential LES

approach.

1.4.1 Dynamic Modelling for SGS Stresses

The first SGS stress model was proposed by Smagorinsky in 1963, now commonly

referred to as the Smagorinsky model (SM) [6]. In this model, a model coefficient

which is treated as a constant is introduced to correlate the SGS stress tensor τij with

the resolved strain rate tensor S̄ij (defined as S̄ij
def
= (∂ūi/∂xj + ∂ūj/∂xi)/2). Lilly [7]

observed that the Smagorinsky model coefficient remains as a universal constant in

homogeneous and isotropic turbulence, which is approximately 0.17. Unfortunately,

it was soon discovered that this value needs to be modified to approximately 0.065

in the central core of a channel flow and reduced even further in regions close to a
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solid surface. Furthermore, the Smagorinsky coefficient is found to be a function of

Reynolds number and other non-dimensional parameters instead of a constant [8, 9].

In 1991, Germano et al. [10] proposed the dynamic model (DM), which is re-

garded as a groundbreaking advancement in SGS stress modeling. Without utilizing

any pre-determined empirical model coefficients and wall damping functions, the DM

dynamically calibrates both the model coefficient and the near-wall SGS length-scale

based on the updated resolved flow field. There are several different optimization prin-

ciples to obtain the dynamic coefficient of the DM, among which the most popular

one is the least squares method proposed by Lilly [7]. The DM has a few draw-

backs related to the overly simplistic constitutive relation embedded in its modelling

approach.

To overcome the difficulties related to the DM, Wang and Bergstrom [11] pro-

posed an advanced dynamic nonlinear subgrid-scale stress model (DNM). The DNM is

based on an explicit nonlinear quadratic tensorial polynomial constitutive relation of

Speziale [12], which includes the conventional DM as its first-order approximation as

well as two higher-order tensorial constituent components for nonlinear anisotropic

representation of the SGS stress tensor. As a result, it can exhibit local stability

without the need for plane-averaging, and reflect the physical mechanisms of both

forward and backward scatter of SGS KE between the filtered and subgrid scale mo-

tions [11, 13, 14]. In comparison with the DM, the DNM overcomes several major

drawbacks of the DM and admits more degrees of freedom for geometrical represen-

tation of the SGS stress tensor.

1.4.2 Dynamic Modelling for SGS Heat Fluxes

Shortly after the proposal of the dynamic SGS stress model by Germano et al. [10],

the dynamic procedure was introduced to the development of SGS HF modelling

for LES of turbulent scalar transport processes by Moin et al. [15]. They proposed a

dynamic eddy thermal diffusivity model (DEDM) for representing the SGS HF vector.

The DEDM based on a linear constitutive relationship between the SGS HF vectors
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and the resolved temperature gradient. Analogous to the Fourier’s law for molecular

heat conduction, this relationship assumes that the SGS HF vector is instantaneously

proportional to and aligned with the negative of the resolved temperature gradient,

i.e. hj ∝ −∂θ̄/xj. However, due to its overly simplified constitutive relation, this

model cannot always correctly reflect the local geometrial properties of the SGS HF

vector [16, 17]. In spite of these deficiencies, the DEDM is still the most popular

in literature and has been successfully applied to the prediction of many thermal

convective flows [18–20].

Since the pioneering work of Moin et al. [15], the dynamic SGS HF modelling

has progressed from models of the eddy thermal diffusivity type to those based on a

tensor thermal diffusivity (or more briefly, tensor diffusivity, represented by Dij) in

order to further improve the physical and geometrical representation of the SGS HF

vector. The explicit algebraic dynamic SGS HF modelling approach is represented

by two types: featuring symmetrical and non-symmetrical tensor diffusivities [9, 21].

For the symmetrical tensor diffusivity approach, the tensor diffusivity can be typi-

cally constructed as a tensor function of a readily available real symmetric tensor,

e.g. the SGS stress tensor τij or the resolved strain rate tensor S̄ij . In the conventinal

model of Moin et al. [15], the eddy thermal diffusivity αsgs is a scalar , which can be

regarded as a symmetrical tensor of zeroth-order by using the Kronecker delta (viz.,

Dij = αsgsδij). As an improvement, a dynamic homogenous linear tensor diffusivity

model (DHLTDM) for representing the SGS heat flux was proposed by Peng and

Davidson [22] in their study of a buoyancy-driven turbulent flow. In their approach,

the tensor diffusivity is constructed as a homogenous linear function of the resolved

strain rate tensor S̄ij. Wang et al. [9, 21] systematically developed the algebraic dy-

namic SGS HF modelling approaches based on the strain rate tensor S̄ij and SGS

stress tensor τij in their research, three variants of the constitutive formulas based

on the homogeneous linear tensor function, full linear tensor function and quadratic

tensor function of the constituent tensor (S̄ij and τij) have been thoroughly investi-

gated. In their study, a dynamic full linear tensor diffusivity model (DFLTDM) was

proposed by Wang et al. [9]. It is reported that this model has a relative simple con-
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stitutive relation while exhibiting excellent predictive performance. In view of this,

in this research, the DFLTDM is chosed to model the SGS HF vector.

1.5 Motivation

Numerical simulation of heated rotating turbulent flows is an interesting topic in

computational fluid dynamics (CFD) with many important engineering applications

such as gas turbines, rotating heat exchangers, and centrifugal pumps and fans. The

prediction and analysis of the effects of rotation on a thermal flow field is crucial

in designing high-performance rotating devices involving heat transfer. Due to the

system rotation, two additional body forces, i.e. the centrifugal and Corilois forces

are generated. The mean flow and turbulence level in a rotating channel are influ-

enced significantly by the Coriolis and centrifugal forces associated with the system

rotation. In response to the Coriolis and centrifugal forces, large secondary flows are

induced, which then dramatically alter the turbulent flow structures and the process

of heat and mass transfer. As a consequence, the physical mechanisms underlying

the transport of momentum and mass in rotating flows are subjected to further dy-

namical complexities, which impose additional challenges on the predictive accuracy

of turbulence models.

In engineering applications, a rotary machine typically rotates in the designed

direction with specific flow paths. An arbitrary directional rotation vector can be

decomposed into componential rotation vectors in three orthogonal directions. The

simplest flow in this category is a fully-developed turbulent flow in a rotating plane

channel, where the rotating axis is parallel to one of the three axial directions: the

streamwise, wall-normal, and spanwise directions.

Among the studies of turbulent channel flows subjected to these three types of

system rotations, the spanwise rotating turbulent channel flows have been studied

extensively through experiments [23, 24] and numerical simulations [14, 25–37]. It is

reported that as the rotation number increases, turbulence is gradually enhanced on
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the pressure side and reduced on the suction side, further resulting in asymmetric

distributions in the mean flow and Reynolds stresses [14, 23–37]. At the same time,

large-scale roll cells come forth as a result of the Taylor-Görtler (T-G) instability

[14, 23, 25, 35]. These large-scale roll cells dominate the secondary flow pattern in a

channel, and shift towards the pressure side. The number of the pairs of such cells

tends to increase as the rotation number increases [35]. At high rotation numbers,

turbulence on the suction side reduces significantly, and the roll cells become much

smaller and eventually disappear due to thickening of the relaminarized region on

the suction side [36, 37]. For a heated turbulent channel flow subjected to spanwise

rotations, the Nusselt number also increases on the pressure side and decreases on the

suction side [38]. The effects of rotation on the thermal diffusive sublayer near the

pressure and suction sides are consistent with those characteristic of the momentum

viscous sublayer. This phenomenon is typically referred to as the ‘Ekman layer effect’,

and is caused by the balance between the Coriolis force, mean pressure gradient and

turbulent drag in a layer of flow subjected to a system rotation. Owing to the existence

of the Coriolis force, large T-G vortices are induced in the core region of the channel,

which shift both the mean temperature and mean velocity profiles to the pressure

side. Consequently, both the momentum viscous sublayer and the thermal diffusive

sublayer become thinner on the pressure side and become thicker on the suction

side [14]. Furthermore, in the recent work of Xun et al. [39], it was found that the

appearance of the T-G vortices causes quasi-periodicity in the spanwise distribution

of the drag coefficient and Nusselt number.

A turbulent channel flow subjected to wall-normal system rotations can be re-

garded as a prototype of a three dimensional boundary layer. However, this type of

rotating channel flow has been rarely investigated, and even if studied, the focus is

on very small rotation rates. Elsamni and Kasagi [36, 38] and Wu and Kasagi [40]

studied the effects of arbitrary direction system rotations on a turbulent channel flow.

In their study, it is observed that in the context of a wall-normal rotating flow, the

velocity field is very sensitive to the rotation rate imposed upon the flow. Li et al. [41]

also studied the effects of wall-normal rotation on a turbulent channel flow driven by a
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constant pressure gradient. They also reported that the channel flow is very sensitive

to the wall-normal rotation. A slight rotation in the wall-normal direction can in-

duce a strong secondary motion in the spanwise direction and reduce the streamwise

mean velocity substantially. As a result, all six Reynolds stress components become

nonzero, which further redirect the mean shear distribution and reform the turbulent

structures. The interaction between the vorticity induced coherent structures and the

background vorticity in the context of wall-normal rotating flow can significantly alter

the near-wall turbulence behavior. Furthermore, it is confirmed in the study of Li et

al. [41] that flow structures are more sensitive to the Coriolis force effect induced by

the wall-normal rotation. Mehdizadeh [42] investigated wall-normal rotating channel

flows over a wide range of rotation rates using the DNS approach. He reported that

as the rotation rate increases, relaminarization effects appear, and finally at very high

rotation rates, the flow reaches a fully laminar steady state.

Turbulent heat, mass and fluid flows subjected to streamwise system rotations

have been intensively investigated only recently in comparison with the extensively

studied spanwise turbulent channel flows. Turbulent channel flow subjected to heat-

ing and streamwise rotation is one of the important benchmark test cases for exam-

ining the predictive accuracy of the turbulent models in the context of non-inertial

coordinate system. Analysis of this type of flow based on the Lie-group theory and

DNS [40,43] has shown that a secondary flow perpendicular to the mean flow direction

is usually generated, whose strength strongly depends upon the streamwise rotating

speed. The existence of this secondary flow in the spanwise direction has been recently

confirmed by the PIV measurements of Recktenwald et al. [44]. EI-Samni et al. [45]

and Weller and Oberlack [46] analyzed the structures of turbulent flows subjected to

streamwise rotation using the method of DNS. Recktenwald et al. [47] further inves-

tigated the influence of streamwise rotation on a turbulent channel flow based on an

analysis of both DNS and PIV data.

The method of LES is effective in resolving the evolution of a thermal-fluid field at

scales that are equal to or larger than a certain filter size. In a conventional implicit-

filtering LES approach, use of SGS stress and HF models is necessary for the closure of
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governing equations. This is in sharp contrast to the monotonically integrated large-

eddy simulation (MILES) approach used by Alkishriwi et al. [48], who conducted

numerical investigation of streamwise rotating channel flows based on MILES. In

MILES, the effects of SGS physics on the resolved scales are not represented by any

explicit SGS models, instead, they are elegantly incorporated in the functional re-

construction of the convective fluxes using locally monotonic methods [49]. Although

the conventional implicit-filtering approach has been the most popular in community,

there are serious debates on whether the MILES or the conventional implicit-filtering

LES is a more effective approach for numerical simulations. In this research, we

use exclusively the conventional implicit-filtering LES approach to conduct numerical

simulations. As a result, SGS stress and heat flux models are needed for closure of

the filtered momentum and thermal energy equations, respectively.

In the literature related to the conventional implicit-filtering LES, dynamic SGS

stress models have been utilized for numerical simulation of rotating channel flows.

Oberlack et al. [43] investigated the effect of the Coriolis force on the mean and

turbulent flow structures using the dynamic SGS stress model (DM) of Germano et

al. [10] and Lilly [7], and successfully reproduced most of the DNS results at the

filtered scale. Piomelli and Liu [28] proposed a localized dynamic Smagorinsky type

SGS stress model which computed the model coefficient using a backward extrapo-

lation scheme. Lamballais et al. [37] developed a spectral-dynamic SGS stress model

based on the eddy-damped quasi-normal Markovian statistical theory. Pallares and

Davidson [18] and Pallares et al. [50] utilized the one-equation dynamic SGS model

of Kim and Menon [51] in their numerical study of turbulent flow and heat transfer

in rotating square ducts. Different from the previous approaches, in this research,

two innovative dynamic explicit algebraic SGS stress and HF models will be used

for improved LES of turbulent thermal flows subjected to streamwise rotations. The

novel dynamic SGS modelling approaches adopted by this research are to be briefly

introduced in next subsection.
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1.6 Objectives of the Thesis

This research includes three major objectives:

i) The first objective of this thesis is to study the flow structure of a heated plane

channel subjected to streamwise system rotations. In order to examine the effect of

centrifugal and Coriolis forces associate with the system rotation on the coupled ther-

mal flow fields, the first- and second-order statistics of the velocity and temperature

fields characteristic of heated rotating channel flows at different rotation numbers are

thoroughly analyzed. This includes the analysis of the mean resolved velocity, mean

resolved temperature and the associated second-order statistics such as the fluctu-

ations of the resolved velocity and temperature, TKE, turbulent stresses and heat

fluxes.

ii) To date, the advanced DNM of Wang and Bergstrom [11] for modelling the SGS

stress tensor and the DFLTDM of Wang et al. [9] for modelling the SGS HF vector,

have only been tested using a few canonical test cases such as Couette and Poiseuille

flows, mixed natural and forced convection flows in horizontal and vertical chan-

nels [9, 21], and physiological pulsatile transition-to-turbulent flows in vessels with

idealized arterial stenosis [52]. Xun et al. [14] thoroughly examined the performance

of these advanced modelling approaches in the context of a heated rotating channel

flow subjected to spanwise rotations. Because both the centrifugal force and the two

Coriolis force components are sensitive to the direction of system rotations [53,54], the

flow physics in the streamwise and spanwise rotating channel flows are significantly

different (the secondary flow is dominated by T-G vortices in a spanwise rotating flow,

however, by four opposite stratification layers in a streamwise rotating flow). In view

of this, in this research, this reseasrch aims at examining the predictive performance

of these two advanced SGS stress and HF models (viz., the DNM and DFLTDM, re-

spectively) in the context of a heated channel flow subjected to streamwise rotations.

iii) In this thesis, a variety of rotation numbers ranging from Roτ = 0 to 15 have

been tested in conjunction with two fixed low Reynolds numbers Reτ = 150 and 300.

13



The final objective of this work is to investigate the influence of Reynolds number

on streamwise system rotating channel flows, and further examine the performance

of these two advanced models (DNM and DFLTDM) in response to changes in the

Reynolds number.

1.7 Outline of the Thesis

The thesis is organized as follows. The methodology of LES is introduced in chapter

2, which covers the filtering operation for LES, the algorithm for solving the filtered

governing equations, and SGS stress and HF models to be used for closure of the

filtered momentum and scalar transport equations.

In chapter 3, the effects of the streamwise rotation on the thermal-fluid fields

at different Reynolds numbers are investigated based on five different rotation num-

bers, varying from a non-rotating case (Roτ = 0) to a relatively strong rotation case

(Roτ = 15.0). In order to validate the algorithm and several innovative SGS mod-

elling approaches adopted in this research, numerical results obtained from the LES

are compared against the reported DNS data. Furthermore, in order to examine the

performance of the two dynamic SGS stress models (i.e., the DM and DNM), a de-

tailed comparative study is performed. The fundamental flow physics of the turbulent

flow under system rotations at two different Reynolds numbers are systematically an-

alyzed, including the mean and RMS values of the resolved velocity and temperature

fields.

In chapter 4, a further study of the LES approach and the associated modelling

effects are conducted by thoroughly analyzing some advanced physical features in

terms of the transport of turbulent stresses, TKE and heat fluxes, and forward and

backward scatter of local KE fluxes between the resolved and subgrid scales. The

rotation effects on these advanced physical features are also examined by comparing

the numerical results obtained at different rotation numbers.

In chapter 5, a summary of the major conclusions of this thesis and a discussion
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of the directions for possible future explorations are presented.
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Chapter 2

LES Algorithm and Test Case

2.1 Filtering Operation

2.1.1 Basic Concepts

As introduced in previous chapter, LES is based on the notion that turbulent flows

contain a wide range of length and time scales. Usually, a filtering operation is used to

separate large and small scales in LES. A filtered variable, which indicates a resolved

(or, large-scale) variable, is denoted using an overbar, defined as

f̄(x) =

∫

D

f(x′)G(x, x′)dx′ , (2.1)

where D represents the domain and G(x, y) is the filter function. The filter function

determines the size of the small scales. There are three most commonly used filter

functions, including: the sharp spectral (Fourier cutoff) filter,

Ĝ(k) =





1 if k ≤ π∆̄

0 otherwise

, (2.2)

the Gaussian filter,

G(x) =

√
6

π∆̄2
exp(−6x2

∆̄2
) , (2.3)

and the box (top hat) filter,
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G(x) =





1/∆̄ if |x| ≤ ∆̄/2

0 otherwise

, (2.4)

where a caret ˆ(· ) denotes the Fourier transform of a variable, k represents the

wavenumber in the Fourier space, and ∆̄ denotes the filter width.

Pope [55] pointed out that the sharp spectral filter annihilates all Fourier modes

of wavenumber |k| greater than the cutoff wavenumber kc = π/∆̄ (which is evident

in Eq. (2.2). However, it has no effect on lower wavenumber modes. Furthermore,

although it is “sharp” in the wavenumber space, the sharp spectral filter is non-local

in the physical space. The property of the box filter is just opposite to that of the

sharp spectral filter. Among the three filters discussed above, the Gaussian filter is

reasonably compact both in the physical and in the wavenumber spaces.

2.1.2 Discrete Filtering Process

In a dynamic SGS modelling approach, the test-grid level filtering process requires an

explicit discrete filter. Throughout this thesis, the discrete Gaussian filters introduced

by Sagaut and Grohens [56] are used to perform the filtering process at the test-grid

level.

In Sagaut and Grohens [56], two methods were proposed to construct a three-

dimensional (3-D) filtering convolution based on a one-dimensional (1-D) discrete

filter. One is the linear combination method, and the other is the so-called product

method. The discrete convolution constructed using the linear combination method

has the following form:

f̃(I, J,K) =
1

3

N∑

l=−N

al [f(I + l, J,K) + f(I, J + l, K) + f(I, J,K + l)] , (2.5)

while that constructed using the product method has the following form:

f̃(I, J,K) =
N∑

l=−N

N∑

m=−N

N∑

n=−N

alaman [f(I + l, J +m,K + n)] , (2.6)

17



where N = 1 for a three-point stencil (2nd-order accuracy) and N = 2 for a five-point

stencil (4th-order accuracy), and al, am and an represent the filter coefficients for the

1-D discrete filter.

It is apparently that the cost of the product method is about two orders higher

than that of the linear combination method. In LES, the linear combination method

is more often used for building a discrete filter. In this study, without an otherwise

specification, a 2nd-order discrete Gaussian filter is applied to the boundary field,

while a 4th-order discrete Gaussian filter is used to deal with the internal field. The

1-D discrete forms for the 2nd- and 4th-order Gaussian filters given by Sagaut and

Grohens [56] are, respectively,

f̃(I) =
1

24
ǫ2 [f(I + 1) + f(I − 1)] +

1

12
(12− ǫ2)f(I) , (2.7)

and

f̃(I) =
ǫ4 − 4ǫ2

1152
[f(I + 2) + f(I − 2)] +

16ǫ2 − ǫ4

288
[f(I + 1) + f(I − 1)]

+
ǫ4 − 20ǫ2 + 192

192
f(I) , (2.8)

where ǫ = ˜̄∆/∆̄ is the ratio between the cutoff sizes of the test-grid and grid filters.

Following the conventional approach [10], it is set to ǫ = 2. With the choice of ǫ = 2,

the discrete filtering scheme of 2nd-order accuracy (Eq. (2.7)) becomes identical to

that of 4th-order accuracy (Eq. (2.8)).

2.2 Filtered Governing Equations

In LES, the filtered continuity, momentum and thermal energy equations take the

following form for an incompressible flow in a domain subjected to a system rotation

[57]:
∂ūi

∂xi
= 0 , (2.9)
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∂ūi

∂t
+
∂(ūiūj)

∂xj

= −1

ρ

∂p̄

∂xi

+ν
∂2ūj

∂xj∂xj

− ∂τij
∂xj

+2εijkΩkūj − (ΩiΩkxk−ΩkΩkxi) , (2.10)

∂θ̄

∂t
+

∂

∂xj
(ūj θ̄) = α

∂2θ̄

∂xj∂xj
− ∂hj

∂xj
, (2.11)

where ūi is the filtered velocity, p̄ is the filtered pressure, Ωi represents a constant

positive angular velocity component of the system rotation in the xi coordinate di-

rection, xi is the coordinate in space. In this thesis, x1, x2, and x3 are used to denote

the streamwise, wall-normal and spanwise coordinates, respectively (see Fig. 2.2). θ̄

represents the filtered temperature, and α is the molecular thermal diffusivity. εijk is

the Levi-Civita symbol, which is defined by:

ǫijk =





1, for ijk = 123, 231, 312

−1, for ijk = 321, 132, 213

0, otherwise

. (2.12)

The last two terms on the right hand side (RHS) of Eq. (2.10) represent the Coriolis

and centrifugal force terms, respectively. The centrifugal forces can be expressed as

a potential field, and in the context of incompressible flow, can be absorbed into the

pressure term by introducing the concept of effective pressure

p̄eff = p̄+
1

2
ρ(ΩkΩixkxi − ΩkΩkxixi) . (2.13)

Under a streamwise system rotation, the filtered momentum equation can then be

expressed as

∂ūi

∂t
+
∂(ūiūj)

∂xj
= −1

ρ

∂p̄

∂xi
+ν

∂2ūi

∂xj∂xj
− ∂τij

∂xj
+2ε1ijΩūj . (2.14)

In order to keep notations succinct in the discussion, p̄eff is simply represented using

p̄ in the remainder of this thesis.

There are two terms appeared in the above system of governing equation as a
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consequece of the filtering process, namely, the SGS stress tensor and SGS HF vector,

which are defined as

τij
def
= uiuj − ūiūj , (2.15)

and

hj
def
= ujθ − ūj θ̄ , (2.16)

respectively. In order to close the above system of governing equations, both the SGS

stress tensor and HF vector need to be modelled.

2.3 SGS Stress Models

In this thesis, two SGS stress models are used for the closure of the filtered mo-

mentum equations: namely, the conventional dynamic Smagorinsky model (DM) of

Lilly [7] and the novel dynamic nonlinear SGS stress model (DNM) of Wang and

Bergstrom [11]. The following section briefly describes the formulations of these two

dynamic linear and nonlinear models.

2.3.1 SGS Stress Model 1 (DM)

The conventional DM proposed by Lilly [7] has been widely used in the LES com-

munity due to its simplicity and robustness. The constitutive relation for the DM is

based on a linear tensorial function of the resolved strain rate tensor S̄ij, i.e.

τ ∗ij = τij −
τkk
3
δij = −2CS∆̄

2|S̄|S̄ij , (2.17)

where ∆̄ is the grid level filter size, S̄ij
def
= (∂ūi/∂xj + ∂ūj/∂xi)/2 is the resolved

strain rate tensor, |S̄| = (2S̄ijS̄ji)
1/2 is the norm of the resolved strain rate tensor,

δij is the Kronecker delta, and an asterisk represents a trace-free tensor, i.e., (·)∗ij =
(·)ij − (·)kkδij/3. Contrary to inputting a priori model coefficient CS in the SM, the

optimal model coefficient CS can be obtained using the updated flow field dynamically.

In the dynamic SGS modelling process proposed by Germano et al. [10], a second
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coarser test-grid level filtering process was introduced. After the second test-grid level

filter (denoted by a tilde (̃· )) was applied to the filtered governing equations, a new

SGS stress tensor at the test-grid level appears, which is defined as

Tij
def
= ũiuj − ˜̄ui ˜̄uj . (2.18)

The constitutive relation for the SGS stress tensor at the test-grid level is analogous

to the constitutive relation for the SGS stress tensor at the grid level (i.e., Eq. (2.17)),

which can be modelled as

T ∗
ij = −2CS

˜̄∆2| ˜̄S| ˜̄Sij . (2.19)

Here, ˜̄∆ denotes the filter size of the test-grid filter. Following the suggestion of

Germano et al. [10], the ratio of the width of the test-grid filter to that of the grid filter

is typically set to 2. The Germano identity [10] is defined based on the subtraction

of the test-grid filtered τij from Tij , i.e.

Lij = Tij − τ̃ij = ˜̄uiūj − ˜̄ui ˜̄uj . (2.20)

Substituting Eqs. (2.17) and (2.19) into Eq. (2.20), the following equation is obtained

Lij −
1

3
Lkk = −αijCS + β̃ijCS , (2.21)

where

αij
def
= 2 ˜̄∆2| ˜̄S| ˜̄Sij , (2.22)

and

βij
def
= 2∆̄2|S̄|S̄ij , (2.23)

are the test-grid and grid level base stress tensors, respectively. Note that Lij can

be numerically calculated and thus the coefficient CS is the only unknown variable

in Eq. (2.21). However, there are five independent equations available to determine a

single coefficient CS, implying that Eq. (2.21) is over-determined. Therefore, we can

only approximately satisfy the Germano identity Eq. (2.20) through optimization.

The error is

eij = L∗
ij + αijCS − β̃ijCS , (2.24)
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where L∗
ij is the trace free form of Lij , i.e. L∗

ij = Lij − 1
3
Lkk. By assuming that the

coefficient CS is spatially invariant within the test-grid filter, CS can be extracted

from the test-grid filtering operation. Eq. (2.24) then becomes

eij = L∗
ij + CSMij , (2.25)

where

Mij
def
= αij − β̃ij , (2.26)

is a differential tensor. The least squares method can then be used to minimize the

error of the Germano identity to obtain an optimal value for CS:

∂E

∂CS
=

∂(eijeij)

∂CS
= 0 . (2.27)

For an incompressible flow, S̄ii = 0, and therefore, the trace of Lij vanishes (i.e.,

Lij = L∗
ij). Solving Eq. (2.27), the expression for the model coefficient CS is obtained:

CS = −MijLij

MijMij

. (2.28)

The derivation of other dynamic SGS stress models (e.g. the DNM) and SGS HF

models (e.g. the DEDM and DFLTDM) with more than one coefficient could also be

performed by following the same principle of the dynamic procedure demonstrated

here.

Over the past 20 years, the DM has been successfully applied to prediction of

many turbulent flows [10,15,28,58,59]. However, the DM uses the Smagorinsky con-

stitutive relation in its constitutive relation, which results in a few drawbacks. For

example, it can lead to an unrealistic SGS dissipation effect if the model coefficient

is restricted to be positive; on the other hand, a potential numerical instability arises

due to the excessive backscatter of the SGS if the model coefficient is allowed to be

negative. Furthermore, the DM can be potentially ill-conditioned because the model

coefficient is not bounded and admits a possible singularity when the denominator

of the formulation (MijMij) becomes very small [11]. Finally, this model requires

the principal axes of the SGS stress tensor to be aligned with those of the resolved
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strain rate tensor, which leads to insufficient representation of the SGS stress compo-

nents [13]. In order to avoid numerical instability due to either excessive backscatter

or potential singular situation of the modelling formulation, a plane averaging tech-

nique is often adopted for the DM (when a homogeneous plane exists) [10,15,28,59].

For this approach, the above equation for determining the dynamic coefficient CS is

revised to

CS = − 〈MijLij〉
〈MijMij〉

. (2.29)

where 〈· 〉 represents a quantity averaged both in time and over the homogeneous

(x1, x3)-plane. However, there are two disadvantages related to the plane averaging

scheme: firstly, it is difficult to apply a plane averaging scheme in flows that do not

possess directions of statistical homogeneity; secondly, the plane averaging scheme

will smear the local characteristics of the model.

2.3.2 SGS Stress Model 2 (DNM)

The dynamic nonlinear model (DNM) proposed by Wang and Bergstrom [11] over-

comes some of the major drawbacks of the DM. The constitutive relationship for the

DNM is based on an explicit nonlinear quadratic tensorial polynomial constitutive

relation originally proposed by Speziale [12] for modeling of the Reynolds stress ten-

sor in a RANS approach. Within the context of LES approach, the SGS stress tensor

can be modelled by analogy using the following function:

τ ∗ij = −CSβij − CWγij − CNηij , (2.30)

where the base tensor functions are defined as γij
def
= 4∆̄2(S̄ikΩ̄kj + S̄jkΩ̄ki) and ηij

def
=

4∆̄2(S̄ikS̄kj − S̄mnS̄nmδij/3). Here, Ω̄ij
def
= (∂ūi/∂xj − ∂ūj/∂xi)/2 is the resolved

rotation rate tensor. As introduced in [11], the least squares method can be used to

obtain the values of the three dynamic model coefficients CS, CW and CN , viz.
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MijMij MijWij MijNij

WijMij WijWij WijNij

NijMij NijWij NijNij



·




CS

CW

CN



= −




L∗
ijMij

L∗
ijWij

L∗
ijNij




, (2.31)

where Wij
def
= λij − γ̃ij and Nij

def
= ζij − η̃ij are differential tensors, with λij

def
=

4 ˜̄∆2( ˜̄Sik
˜̄Ωkj +

˜̄Sjk
˜̄Ωki) and ζij

def
= 4 ˜̄∆2( ˜̄Sik

˜̄Skj − ˜̄Smn
˜̄Snmδij/3).

The constitutive relation of Eq. (2.30) includes three tensorial constituent base

components, i.e. βij , γij and ηij . The first term βij is the well-known Smagorinsky

component which primarily relates to the SGS dissipation and forward scatter of TKE

from the resolved to SGS motions; the second term γij does not make any contribu-

tion to the TKE transfer between the resolved and subgrid scales, but it significantly

improves the correlation between the exact τij extracted from a DNS database and

that predicted by the nonlinear model; and the third term ηij contributes significantly

to the backscatter of TKE from the subgrid to the resolved scales [11]. The three fea-

tures mentioned above, namely, an adequate SGS dissipation level, a high correlation

coefficient between the model and exact SGS stresses in a priori LES test, and a re-

alistic representation of the TKE backscatter, are among the most important criteria

for developing a high-fidelity SGS stress model. The constitutive relation of Eq. (2.30)

offers an effective representation for modelling these three important physical features

separately using three independent tensorial terms. Further investigation and appli-

cation of the DNM can be found in Wang et al. [9, 21] on turbulent channel flows

with and without heat transfer, in Xun et al. [14] for Poiseuille type plane channel

flows with and without spanwise system rotations, in Wang et al. [13] on the study of

the geometrical properties of the SGS stress tensor, in Wang et al. [60] on the study

of the topological features of wall-bounded turbulent flows and recently, in Molla et

al. [52] on a physiological pulsatile transition-to-turbulent flow in an idealized blood

vessel with stenosis.
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2.4 SGS Heat Flux Models

In this thesis, two dynamic SGS HF models are used: namely, the dynamic eddy

diffusivity model (DEDM) of Moin et al. [15] and the dynamic full linear tensor

diffusivity model (DFLTDM) of Wang et al. [61].

2.4.1 SGS Heat Flux Model 1 (DEDM)

The SGS heat flux in the DEDM proposed by Moin et al. [15] is expressed as

hj = −CθP ∆̄
2|S̄| ∂θ̄

∂xj
, (2.32)

where αsgs = CθP ∆̄
2|S̄| is the scalar eddy diffusivity embodied in Eq. (2.32). By using

the Kronecker delta, it can be further written in a general tensor diffusivity form as

DE
jk = αsgsδjk = CθP ∆̄

2|S̄|δjk . (2.33)

With this notion, Eq. (2.32) can be simplified to hj = −DE
jk

∂θ̄
∂xk

. Define bPj
def
=

∆̄2|S̄| ∂θ̄
∂xj

and aPj
def
= ˜̄∆2| ˜̄S| ∂ ˜̄θ

∂xj
as the grid level and test-grid level base vector func-

tions. The SGS HF vector at the grid level represented by Eq. (2.32) can then be

expressed as hj = −CθP b
P
j . Similarly, the SGS HF vector at the test-grid level

(Hj
def
= ũjθ − ˜̄uj

˜̄θ) can be modelled as Hj = −CθPa
P
j . The grid and test-grid level

SGS HF vectors satisfy the vector identity :

Lj = Hj − h̃j . (2.34)

where Lj
def
= ˜̄uj θ̄ − ˜̄uj

˜̄θ is a resolved heat flux vector directly computable in the

simulation. By substituting the grid and test-grid level SGS HF models into the vector

identity and assuming that h̃j = −C̃θP bPj ≈ −CθP b̃
P
j , a residual vector that accounts

for the difference between the left-hand-side (LHS) and right-hand-side (RHS) of the
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vector identity emerges:

Ej = Lj + CθP (a
P
j − b̃Pj ) = Lj + CθPPj , (2.35)

where Pj
def
= aPj − b̃Pj is a differential vector. The model coefficient CθP can be obtained

by minimizing the norm of the residual vector (i.e., E def
= EjEj) using the least squares

method, as:

CθP = −LjPj

PjPj
. (2.36)

2.4.2 SGS Heat Flux Model 2 (DFLTDM)

In the DFLTDM proposed by Wang et al. [61], the SGS heat flux is modelled as

hj = −DL
jk

∂θ̄

∂xk
= −CθP ∆̄

2|S̄| ∂θ̄
∂xj

− CθG∆̄
2S̄jk

∂θ̄

∂xk
, (2.37)

where the tensor diffusivity is a full linear function of S̄ij , i.e.

DL
jk = CθP ∆̄

2|S̄|δjk + CθG∆̄
2S̄jk . (2.38)

The first term on the RHS of Eqs. (2.37) and (2.38) corresponds to the classical DEDM

of Moin et al. [15], which is a function of S̄ij of the zeroth-order, and the second term

corresponds to the DHLTDM of Peng and Davidson [22], which is a homogeneous

linear function of S̄ij of the first-order. Therefore, the constitutive relation of the

DFLTDM is based on a linear combination of these two conventional models.

For the DFLTDM, the grid and test-grid level SGS HF vectors can be expressed as

hj = −CθP b
P
j −CθGb

G
j andHj = −CθPa

P
j −CθGa

G
j , respectively. Here, b

G
j

def
= ∆̄2S̄jk

∂θ̄
∂xk

,

aGj
def
= ˜̄∆2 ˜̄Sjk

∂ ˜̄θ
∂xk

are two base vector functions in analogy to the definitions of bPj and

aPj , respectively. Following a similar approach to derive the dynamic coefficient for

the DEDM, the two dynamic model coefficients CθP and CθG for the DFLTDM can
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be obtained using the least squares method [9]:




PjPj PjGj

GjPj GjGj


 ·




CθP

CθG


 = −




LjPj

LjGj


 , (2.39)

where Pj and Gj
def
= aGj − b̃Gj are differential vectors. We will primarily use the

DFLTDM for closure of the thermal energy equation throughout this paper. However,

on some special occasions (when we study the budget of the wall-normal heat fluxes),

the DEDM of Moin et al. [15] will also be used in order to compare the predictive

performance of these two SGS HF models.

2.5 Numerical Algorithm

In this thesis, the fractional time-step technique commonly used for performing DNS

and LES proposed by Kim and Moin [62] is used to develop the flow solver. The

filtered Navier-Stokes equations are solved using two steps: first, an estimated velocity

field is obtained by solving the governing equation without updating the pressure

field; and then a Poisson equation for pressure correction derived from the filtered

continuity equation is solved and the estimated velocity field is further corrected to

satisfy mass conservation. The filtered Navier-Stokes equation (2.10) can be written

as
∂ūi

∂t
= −1

ρ

∂p̄

∂xi

−Hi + ν
∂2ūi

∂xj∂xj

+ Fi , (2.40)

where Hi and Fi are the nonlinear and the Coriolis force terms, which are expressed

as

Hi =
∂

∂xj
(ūiūj) +

∂τij
∂xj

, (2.41)

and

Fi = 2ǫij1Ωūj , (2.42)

respectively. The velocity field after a time step ∆t is updated based on apply-

ing a typical time advancement method which uses a second-order Adams-Bashforth
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scheme for the nonlinear terms, a Crank-Nicolson scheme for the viscous stress terms,

and an explicit scheme for the Coriolis force term

ū
(∗)
i − ū

(n)
i

∆t
= −1

2

[
3H(n)

i −H(n−1)
i

]
+

ν

2

[
∂2ū

(∗)
i

∂xj∂xj
+

∂2ū
(n)
i

∂xj∂xj

]
+ F (n)

i , (2.43)

and

ū
(n+1)
i = ū

(∗)
i − ∆t

ρ

∂p̄(n+1)

∂xi

, (2.44)

where superscript (n) indicates the current time step and superscript (*) indicates an

intermediate step between the current and next time steps (denoted using superscript

(n+ 1)).

In order to solve Eqs. (2.43) and (2.44), the 3-D governing equation is discretized

using a finite volume (FV) method based on a co-llocated grid system. In a co-llocated

grid system, the information on both the velocity and the pressure field is stored at

cell centers, and the velocities at the interfaces of a control volume are approximated

by an interpolation of the neighboring nodal velocities stored at the cell centers. A

second-order central difference scheme was applied for the spatial discretization of

the Eq. (2.43) as it represents a good compromise between accuracy, simplicity and

efficiency [8]. Then p̄(n+1) is obtained by updating the old pressure p̄(n) with an

additional correcting pressure p̄′ as

p̄(n+1) = p̄(n) + p̄′ . (2.45)

The unknown p̄′ is derived from the filtered continuity equation (2.9) to satisfy mass

conservation. By applying the FV method based on the collocated grid system, the

continuity equation can be discretized as shown in Fig. 2.1, viz.

∫ f

b

∫ n

s

∫ e

w

(
∂ū1

∂x1
+

∂ū2

∂x2
+

∂ū3

∂x3

)
dx1dx2dx3 = 0 . (2.46)

By integrating the above equation, we obtain:
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FIGURE 2.1: A two-dimensional sketch of a typical control volume for a co-llocated grid
system.

(ūe − ūw)A1 + (ūn − ūs)A2 + (ūf − ūb)A3 = 0 . (2.47)

where subscripts ‘e’, ‘w’, ‘n’, ‘s’, ‘f’ and ‘b’ represent ‘east’, ‘west’, ‘north’, ‘south’,

‘front’ and ‘back’ faces of the control volume, respectively, and A1 = ∆x2·∆x3,

A2 = ∆x1·∆x3 and A3 = ∆x1·∆x2 are the cross-sectional areas of the control volume

perpendicular to the w-e, s-n and b-f directions, respectively. The face velocities in

Eq. (2.47) are approximated by interpolation of neighboring node velocities. For

example, the velocity at the east face is calculated as:

ūe =
ū(n+1)

P
+ ū(n+1)

E

2
, (2.48)

where the uppercase subscripts denote the neighboring nodes as shown in Fig. 2.1.

By substituting the Eq. (2.44) into the above equation, the nonlinear momentum

interpolation scheme (originally proposed by Rhie and Chow [63]) for the face velocity

is implemented, and we obtain:

ūe =
1

2

{[
ū(∗)

P
− ∆t

ρ

∂p̄(n+1)

∂x

∣∣∣∣
P

]
+

[
ū(∗)

E
− ∆t

ρ

∂p̄(n+1)

∂x

∣∣∣∣
E

]}

=
ū(∗)

P
+ ū(∗)

E

2
− ∆t

2ρ

[
∂p̄(n+1)

∂x

∣∣∣∣
P

+
∂p̄(n+1)

∂x

∣∣∣∣
E

]

≈
ū(∗)

P
+ ū(∗)

E

2
− ∆t

ρ

∂p̄(n+1)

∂x

∣∣∣∣
e

.

(2.49)
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Let
∂p̄(n+1)

∂x

∣∣∣∣
e

=
p̄(n+1)
E

− p̄(n+1)
P

∆x
PE

, (2.50)

where ∆x
PE

= x
E
− x

P
. Using Eq. (2.50) and (2.45), Eq. (2.49) can be written as:

ūe =
ū(∗)

P
+ ū(∗)

E

2
− ∆t

ρ

[
p̄(n+1)
E

− p̄(n+1)
P

∆x
PE

]

=
ū(∗)

P
+ ū(∗)

E

2
− ∆t

ρ

[
(p̄(n)

E
+ p̄′

E
)(p̄(n)

P
+ p̄′

P
)

∆x
PE

]

=
ū(∗)

P
+ ū(∗)

E

2
− ∆t

ρ

[
p̄(n)
E

− p̄(n)
P

∆x
PE

]
− ∆t

ρ

[
p̄′
E
− p̄′

P

∆x
PE

]
.

(2.51)

Let

ū∗
e =

ū∗
P
+ ū∗

E

2
− ∆t

ρ

[
p̄(n)
E

− p̄(n)
P

∆x
PE

]
. (2.52)

Eq. (2.52) becomes:

ūe = ū∗
e −

∆t

ρ

[
p̄′
E
− p̄′

P

∆x
PE

]
. (2.53)

Substituting Eq. (2.53) into Eq. (2.47), the following discrete equation for the cor-

recting pressure is obtained:

a
P
p̄′
P
=

∑
a

NP
p̄′
NP

+ b , (2.54)

where subscript ‘NP’ represents the neighboring nodes; and ‘a’ and ‘b’ denote the

coefficients and source term, respectively, all of which are:

a
E
=

A1∆t

∆x
PE

, a
W

=
A1∆t

∆x
WP

, a
S
=

A2∆t

∆x
PS

,

a
N
=

A2∆t

∆x
NP

, a
F
=

A3∆t

∆x
PF

, a
B
=

A3∆t

∆x
BP

,

b = −ρ
[
A1(ū

∗
e − ū∗

w) + A2(ū
∗
n − ū∗

s) + A3(ū
∗
f − ū∗

b)
]
,

a
P
=

∑
a

NP
.

(2.55)

Note that in the above scheme, there are two steps for calculating the face velocity:

first, the neighboring velocities and the pressure gradient −∂p̄(n)/∂xi at the interface

(see Eq. (2.52)) are used to estimate the face velocity, and then by using the pressure
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FIGURE 2.2: Computational domain for a heated streamwise rotating channel flow.
The two Coriolis forces are: −2Ωū2 and 2Ωū3.

correction (see Eq. (2.53)), it is corrected to satisfy mass conservation. Instead of de-

riving a pressure Poisson equation for solving p̄(n+1), this approach leads to a pressure

correction Poisson equation (2.54) for solving p̄′. The convergence creterion for solv-

ing the p̄′ equation is |r(n)/r(n−1)| < 0.01, where r(n) = (
∑

a
NP

p̄′
NP

+ b− a
P
p̄′
P
)(n). A

multigrid method based on a special control scheme introduced by Yin [64] is adopted

in this research to effectively solve this equation. A fourth-order Runge-Kutta method

was used to advance the temperature field over a single time step in order to solve

the filtered thermal energy equation (2.11).

2.6 Test Case and Computational Domain

The computational domain of the heated rotating plane channel and coordinate sys-

tem used in the numerical simulation is shown in Figure 2.2. The system of the plane

channel rotates with a constant positive angular velocity Ω, parallel to the x1 direc-

tion. Two Reynolds numbers are used to characterize the flow respectively, which

are Reτ
def
= uτδ/ν = 150 and 300. Here, uτ

def
=

√
τw/ρ represents the wall friction

velocity and ν is the kinematic viscosity of the fluid. The Prandtl number of the fluid

is set to Pr = 0.71. In order to examine the effects of rotation on the fluid flow, a

wide range of rotation numbers (Roτ
def
= 2Ωδ/uτ) ranging 0 to 15 are tested. The

dimensions of the computational domain are L1 × L2 × L3 = 5πδ × 2δ × 2πδ in the
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streamwise (x1), wall-normal (x2) and spanwise (x3) directions, respectively. A grid

system with 48× 32× 48 control volumes is used to discretize the computational do-

main for Reτ = 150, and a finer grid system with 64×64×64 control volumes is used

for Reτ = 300. The grid is uniform in the streamwise and spanwise directions, and

stretched in the wall-normal direction using a hyperbolic-tangent function in order to

provide a greater resolution in the near-wall region.

2.7 Boundary Conditions

In this research, non-slip and impermeable boundary conditions are imposed on the

velocity components at the walls. Periodic boundary conditions are employed in the

streamwise and spanwise directions since the flow and temperature fields are assumed

to be statistically homogeneous in both these directions. The temperature field has

been non-dimensionalized by the temperature difference (i.e., ∆θ = θwh − θwc, see

Fig. 2.2) between the two plates. The initial temperature field is assumed to be

linearly distributed in the wall-normal direction between the two walls. The initial

velocity profile is assumed to be parabolic characteristic of a Poiseuille type laminar

flow. The maximum Courant-Friedrichs-Lewy (CFL) number used in the simulations

is limited to 0.35. Statistics of various flow variables are calculated based on 60,000

time steps after both the fluid and thermal fields have become turbulent and fully-

developed.

In presentation of the results, a superscript ‘+’ denotes the quantities non-

dimensionalized using the friction velocity uτ
def
=

√
τw/ρ and friction temperature

θτ
def
= qw/(ρcP uτ). Here, qw represents the wall heat flux and c

P
is the specific heat at

constant pressure.
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Chapter 3

Statistics of the Turbulent Thermal Flow

Fields

In this chapter, the characteristics of the resolved velocity and temperature fields in

terms of their mean values and fluctuations are thoroughly analyzed. In order to

validate the numerical approach, the LES results obtained from the simulations are

compared with the reported DNS data. For the test cases of Reτ = 150, the DNS data

of El-Samni and Kasagi [65] (designated as EK-2000) for a heated rotating channel

flow (Roτ = 15.0) are compared with the LES results under the same operating con-

ditions, and two sets of DNS data on non-rotating channel flows (Roτ = 0) obtained

by Kuroda et al. [66] (designated as KKN-1995) and Iwamoto et al. [67] (designated

as ISK-2002) are also used in our comparative study. For the test cases of Reτ = 300,

the LES results for a heated rotating channel flow (Roτ = 2.5) are compared with

the DNS data of Wu and Kasagi [53] (designed as WK-2004), and the results of the

non-rotating case (Roτ = 0) are compared with the DNS data of Iwamoto et al. [68]

(designated as ISK-2004).

3.1 Resolved Mean Velocity and Temperature

Figures 3.1, 3.2 and 3.3 show the profiles of the mean resolved streamwise velocity

〈ū1〉, spanwise velocity 〈ū3〉 and temperature 〈θ̄〉 in the wall-normal direction across

the channel, respectively. The LES results are validated with the DNS data at the two
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FIGURE 3.1: Profiles of the resolved mean streamwise velocity for Roτ = 0 and 15.0
at Reτ = 150, Roτ = 0 and 2.5 at Reτ = 300 (predicted in conjunction with the
DFLTDM).
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FIGURE 3.2: Profiles of the resolved mean spanwise velocity for Roτ = 0 and 15.0
at Reτ = 150, Roτ = 0 and 2.5 at Reτ = 300 (predicted in conjunction with the
DFLTDM).

Reynolds numbers for Reτ = 150 and 300. As shown in these figures, the performance

of the DNM and DM is similar when both SGS stress models are tested in conjunction

with the same SGS HF model DFLTDM. As shown in Fig. 3.1, the LES result of

the mean resolved streamwise velocity is in excellent agreement with the DNS data.

However, as shown in Figs. 3.2(a) and (b), the mean resolved spanwise velocity in the
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FIGURE 3.3: Profiles of the resolved mean temperature for Roτ = 0 and 15.0 at
Reτ = 150, Roτ = 2.5 at Reτ = 300 (predicted in conjunction with the DFLTDM).

near wall region at Reτ = 150 and near the central plane at Reτ = 300 are slightly

overpredicted by LES. In Fig. 3.3, at the rotating case, LES slightly underpredicts

the resolved mean temperature.

In the spanwise direction, as evident in Fig. 3.2, in response to the Coriolis and

centrifugal forces intrinsic to a rotating flow, a complex secondary flow pattern is

formed. The profile of the mean resolved spanwise velocity is skew-symmetric about

the central plane (x2/δ = 1) of the domain, and four distinct layers of opposite motion

are observed between the two planes. This interesting pattern in the mean resolved

velocity profile 〈ū3〉 is characteristic of a streamwise rotating channel flow, which is

consistent with the observation of El-Samni and Kasagi [65] and Wu and Kasagi [53]

based on their DNS study.

The effects of the system rotation at two different Reynolds numbers on the

resolved mean streamwise and spanwise velocities and temperature are examined by

comparing numerical results obtained at a variety of rotation numbers. Figure 3.4

displays the influence of system rotation on the resolved mean streamwise velocity

〈ū1〉. As shown in Fig. 3.4(a), at Reτ = 150, the magnitude of streamwise velocity

decreases monotonically as the rotation number increases, which corresponds to the

trend of a decreasing streamwise mass flow rate. However, in Fig. 3.4(b), no obvious
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FIGURE 3.4: Profiles of the resolved mean streamwise velocity at various rotation
numbers (predicted using the DNM and DFLTDM).
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FIGURE 3.5: Profiles of the resolved mean spanwise velocity at various rotation
numbers (predicted using the DNM and DFLTDM).

discrepancies are observed at relative low rotation numbers until Roτ reaches to 10

at Reτ = 300. This phenomenon indicates that the reduction of mass flow rate in the

streamwise direction due to the streamwise system rotation becomes less sensitive at

a higher Reynolds number.

The large spanwise skew-symmetric secondary flow previously observed in Fig. 3.2

is further examined in Fig. 3.5 based on tests of a number of rotation numbers. As
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FIGURE 3.6: Profiles of the resolved mean temperature at various rotation numbers
(predicted using the DNM and DFLTDM).

shown in Fig. 3.5, in response to the Coriolis force, a complex secondary flow pattern is

formed in the spanwise direction. As shown in both Figs. 3.5(a) and (b), there are four

peaks in the mean resolved spanwise velocity profile (corresponding to the four distinct

layers of opposite motion), two in the near-wall regions and two close to the central

plane (x2/δ = 1) of the domain. As shown in Fig. 3.5(a), at Reτ = 150, the absolute

value of the velocity gradient of the secondary flow increases monotonically as the

rotation number increases. However, at Reτ = 300, only the peak magnitude in the

near-wall region increases monotonically as the rotation number increases; whereas,

the peak magnitude near the central plane increases with the rotation number only

if the rotation number is smaller than Roτ = 7.5. Once the Roτ is large than 7.5, the

rotation effect on the magnitude of 〈ū3〉 reverses near the central plane. The physical
mechanism underlying this interesting dynamical feature for Reτ = 300 is due to

fact that the formation of these four distinct layers of secondary flow motion depends

upon not only the Coriolis force but also the centrifugal force. The magnitude of

the local centrifugal force relates to both the rotation number and the distance from

the local position to the rotation axis. Furthermore, the spanwise component of the

centrifugal force has the same direction of the secondary flow in near-wall region,

but the opposite direction with the secondary flow near the central plane. For this
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reason, as the rotation number increases, the secondary flow near the wall is enhanced,

whereas the secondary flow near the central line is damped.

In Fig. 3.6, in comparison with the non-rotating case, the gradient of the temper-

ature profile for the rotating case increases slightly across the channel at Reτ = 150,

however, no obvious variation is observed at Reτ = 300. This indicates that the

system rotation in the streamwise direction does not have a significant impact on the

resolved mean temperature distribution in the wall-normal direction, especially at a

higher Reynolds number.

Figures 3.7 and 3.8 display the profiles of the mean resolved streamwise velocity

and temperature using wall coordinates, respectively. The results of Reτ = 150 for

Roτ = 0.0 and Roτ = 15.0, and those of Reτ = 300 for Roτ = 0 and Roτ = 2.5 are

compared against reported relevent DNS data in these figures. For the mean resolved

streamwise velocity and temperature profiles, both the DNM and DM yield results

that are consistent with the DNS data. It is shown in Figs. 3.7 and 3.8 that at non-

rotating case, the profiles are in agreement with the classical log laws of the wall for

a smooth zero-pressure-gradient (ZPG) boundary layer, i.e. 〈ū1〉+ = 2.5ln(x+
2 ) + 5.5

and 〈θ̄〉+ = 2.195ln(x+
2 ) + 13.2Pr − 5.66 for x+

2 > 30. It needs to be indicated that

at Reτ = 150, the DNM and DM give similar prediction results (for Roτ = 15.0)

for the mean temperature. However, at Reτ = 300, in comparison with the results

obtained based on the DNM (for Roτ = 2.5), the DM slightly overpredicts the mean

temperature in Fig. 3.8(b). The fact that the difference in model predictions is the

minimum in Fig. 3.3(b) but enlarged in Fig. 3.8(b) is related to the different methods

of non-dimensionalization adopted. The wall coordinates used in Fig. 3.8(b) has an

advantage in demonstrating the predictive accuracy of the model in terms of the wall

friction temperature and velocity, especially at a higher Reynolds number.

The resolved mean streamwise velocity and temperature profiles based on the

wall coordinates at various rotation numbers (ranging from Roτ = 0 to 15) are com-

pared in Figs. 3.9 and 3.10, respectively. As discussed previously, in response to

the streamwise system rotation, organized large secondary flows appear in the cross-
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FIGURE 3.7: Profiles of the resolved mean streamwise velocity for Roτ = 0 and
15.0 at Reτ = 150, Roτ = 0 and 2.5 at Reτ = 300, displayed using wall coordinates
(predicted in conjunction with the DFLTDM).
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FIGURE 3.8: Profiles of the resolved mean temperature for Roτ = 0 and 15.0 at
Reτ = 150, Roτ = 2.5 at Reτ = 300, displayed using wall coordinates (predicted in
conjunction with the DFLTDM).

stream direction and four distinct layers of opposite motion are formed in the (x2,

x3)-plane. However, the flow is the least sensitive to the imposed system rotation

in the streamwise direction especially at a higher Reynolds number (Reτ = 300).

For this reason, the mean streamwise velocity profiles shown in Fig. 3.9(b) do not

deviate obviously from the classical log law. In contrast, as shown in Fig. 3.10(b),
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FIGURE 3.9: Profiles of the resolved mean streamwise velocity at various rotation
numbers, displayed using wall coordinates (predicted using the DNM and DFLTDM).
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FIGURE 3.10: Profiles of the resolved mean temperature at various rotation numbers,
displayed using wall coordinates (predicted using the DNM and DFLTDM).

the predicted mean temperature profiles for the rotating cases all deviate from the

familiar log law (for a passive scalar in a ZPG wall shear layer). This physical feature

of the mean temperature distribution is expected, as the transport of temperature

(or, thermal energy) between two walls is dominated by convection and diffusion not

only in the streamwise directly but also in the spanwise and wall-normal directions.

Therefore, although the mean streamwise velocity profiles approximately follow the

classical log law of velocity, the mean temperature profile deviate from the log law of
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scalar (owing to, e.g. the special secondary flow pattern in the (x2, x3)-plane). Also

as demostrated previously, the flow is very sensitive to the imposed system rotation

at Reτ = 150. It is shown in Fig. 3.9(a) that the profiles of the resolved mean stream-

wise velocity shift downwards nonotonically and deviate obviously from the classical

log law as the rotation number increases. This trend is preserved in the profile of the

mean temperature profile shown in Fig. 3.10(a).

3.2 Resolved Velocity and Temperature Fluctua-

tions

In order to further investigate the performance of different LES models under the same

test condition, it is popular to directly compare the values of turbulent intensities

obtained from LES with DNS approach. An instantaneous filtered quantity φ̄ can be

decomposed into a time- and plane-averaged component and a residual component as

φ̄ = 〈φ̄〉+ φ̄′′ . (3.1)

Then the predicted resolved velocity and temperature fluctuations (or RMS values)

can be defined as

ū+
i,rms

def
=

〈(
ūi − 〈ūi〉

ua
τ

)2
〉1/2

=
〈ū′′2

i 〉1/2
ua
τ

, (3.2)

for i = 1, 2 and 3, and

θ̄+rms
def
=

〈(
θ̄ − 〈θ̄〉

θaτ

)2
〉1/2

=
〈θ̄′′2〉1/2

θaτ
, (3.3)

respectively, where ua
τ = (uτh + uτc)/2 and θaτ = (θτh + θτc)/2 are the averaged wall

friction velocity and temperature over both the hot and cold walls.

Figure 3.11 compares the predicted resolved velocity fluctuations in the stream-
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FIGURE 3.11: Resolved velocity fluctuations (predicted in conjunction with the
DFLTDM).
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FIGURE 3.12: Resolved temperature fluctuations for Roτ = 15.0 at Reτ = 150,
Roτ = 2.5 at Reτ = 300 (predicted in conjunction with the DFLTDM).

wise, wall-normal and spanwise direction with the available DNS data for two Reynolds

numbers. The predicted temperature fluctuation is displayed in Fig. 3.12. As shown

in Fig. 3.11, the basic trends of each RMS profile at Reτ = 150 and 300 are cap-

tured by LES approach in comparison with the DNS data. However, differences are

observed. For instance, at Reτ = 150, the LES approach tends to overpredict the

streamwise and spanwise RMS velocities (ū+
1,rms and ū+

3,rms) in the central plane of

the channel and wall-normal RMS (ū+
2,rms) in the near-wall region. At Reτ = 300,
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it tends to slightly underpredict the wall-normal RMS velocity (ū+
2,rms) in the entire

flow region and overpredict the streamwise RMS velocity (ū+
1,rms) in the near-wall

region. As indicated by Winckelmans et al. [69], these differences are expected. This

is because in the conventional implicit-filtering LES approach used in the research,

numerical simulations are conducted based on a trace-free SGS stress model. Owing

to the isotropic property of the three normal components of the SGS stress tensor,

they are absorbed into the pressure term. Hence, information on the trace of the

SGS stress tensor in the conventional implicit LES approach is not explicitly pro-

vided unless an additional SGS k-equation is solved (which however demands further

SGS modelling). In Fig. 3.12(a), in comparison with the DNS data at Roτ = 15 and

Reτ = 150, the LES approach only slightly overpredicts the temperature fluctuation

in the near-wall region. For Roτ = 2.5 and Reτ = 300, as shown in Fig. 3.12(b),

LES overpredicts the temperature fluctuation in the near-wall region and slightly

underpredictes it in the core flow region in comparison with the DNS data.

In order to compare the influence of different SGS stress models (i.e., the DM

and DNM) on the prediction of the scalar field, all numerical simulations in Figs. 3.11

and 3.12 were performed based on the same SGS HF model DFLTDM. As discussed

before, for the prediction of the first momentum of the resolved velocity and temper-

ature, the DNM and DM gave similar satisfactory results at two different Reynolds

numbers. While for the prediction of the second momentum statistics, slight differ-

ences exist between different SGS stress models, especially in terms of the prediction

of the streamwise RMS velocity ū1,rms and the temperature fluctuation θ̄rms. The

statistics obtained using the DNM are in better conformance with the DNS data

than those obtained using the conventional DM.

Figure 3.13 shows the profile of the resolved temperature intensity at various

rotation numbers. It is observed that at the non-rotating case, three peaks appear

across the channel. After the rotation is imposed upon the system, the peak near the

central plane reduces dramatically in comparison with the other two peaks near the

wall. By comparing Figs. 3.13 (a) and (b), it is found that in response to the system
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FIGURE 3.13: Resolved temperature fluctuations at different rotation numbers (pre-
dicted using the DNM and DFLTDM).

rotation, the change of RMS temperature profile is more obvious at a lower Reynolds

number.

3.3 Visualization of the Flow Field

In this section, the contours of the wall-normal velocity field and the streamwise vor-

ticity field are visualized in order to further understand the structures of the heated

rotating channel flows. To demonstrate, the thermal flow field for Reτ = 300 and

Roτ = 15 is used. In Fig. 3.14, the instantaneous iso-surface of the wall-normal veloc-

ity field for Reτ = 300 and Roτ = 15 is visualized. Streamwise elongated vortical flow

structures are prevalent in the channel. In the near-wall region, existence of streaks

is evident. Figure 3.15 shows the instantaneous streamwise vorticity field in the (x1,

x3)-plane in the near-wall region (at x2/δ = 1.8). From the figure, it is observed that

driven by the mean streamwise pressure gradient and Coriolis forces, the flow shows

fine turbulent structures even in the near-wall region. Local vortical structures rotat-

ing in both clockwise and counter-clockwise (with respect to the streamwise direction)

coexist in the plane.
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FIGURE 3.14: Iso-surface of the wall-normal velocity field for Reτ = 300 and Roτ =
15.

FIGURE 3.15: Contour of the streamwise vorticity field in the (x1, x3)-plane (x2/δ =
1.8, near the wall) for Reτ = 300 and Roτ = 15.
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Chapter 4

Rotation Effects on Transport of

Turbulent Quantities

In the previous chapter, fundamental features of the resolved velocity and temperature

fields have been systematically analyzed in terms of their mean and RMS values.

In this chapter, some advanced physical features will be thoroughly investigated to

include the transport of turbulent stresses, TKE and heat fluxes, and forward and

backward scatter of local KE fluxes between the resolved and subgrid scales.

4.1 Transport of Resolved Turbulent Stresses and

TKE

4.1.1 Rotation Effect on the Resolved Turbulent Stresses

In the previous analysis, it has been demonstrated that the level of the first- and

second-order statistics of the resolved velocity and temperature fields are drastically

changed in the flow under the streamwise system rotation. According to Xun et

al. [14], the effects of the Coriolis forces on the resolved turbulent stresses and TKE

can be further studied using their transport equations. As revealed in the experimen-

tal study of Johnston et al. [23] and DNS study of Kristoffersen and Andersson [35],

the production terms in the transport equations of the resolved turbulent stresses
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TABLE 4.1: Production terms due to the mean turbu-
lent shear (Pij) and rotation (Gij) stresses for a fully-
developed rotating plane channel flow.

ij Pij Gij

11 −2〈ū′′
1ū

′′
2〉(d〈ū1〉/dx2) 0

22 0 4Ω〈ū′′
2ū

′′
3〉

33 −2〈ū′′
2ū

′′
3〉(d〈ū3〉/dx2) −4Ω〈ū′′

2ū
′′
3〉

12 −〈ū′′2
2 〉(d〈ū1〉/dx2) 2Ω〈ū′′

1ū
′′
3〉

13 −〈ū′′
1ū

′′
2〉(d〈ū3〉/dx2)− 〈ū′′

2ū
′′
3〉(d〈ū1〉/dx2) −2Ω〈ū′′

1ū
′′
2〉

23 −〈ū′′2
2 〉(d〈ū3〉/dx2) 2Ω(〈ū′′2

3 〉 − 〈ū′′2
2 〉)

have a significant influence on the absolute value and transport of the resolved turbu-

lent shear stresses (i.e., 〈ū′′
i ū

′′
j 〉) and TKE (i.e., 1/2〈ū′′

i ū
′′
i 〉). As shown in Appendix A,

there are two production terms related to the resolved turbulent shear and rotation

stresses in the transport equations for the resolved turbulent stresses. The production

term due to the resolved turbulent shear stresses is

Pij = −〈ū′′
i ū

′′
2〉
∂〈ūj〉
∂x2

− 〈ū′′
j ū

′′
2〉
∂〈ūi〉
∂x2

, (4.1)

and the production term due to the rotation stresses is determined as

Gij = 2Ω(εik1〈ū′′
kū

′′
j 〉+ εjk1〈ū′′

kū
′′
i 〉) . (4.2)

From Eq. (4.1), it is understood that the value of Pij is directly influenced by the

resolved turbulent shear stresses and indirectly by the system rotation if the local

wall-normal gradient of the mean velocity is nonzero. To facilitate the interpretation

of the results in Figs. 4.1 − 4.6, Eqs. (4.1) and (4.2) are written in component forms

in Table 4.1.

As shown in Fig. 4.1, in the central core of the channel, the value of the resolved

streamwise turbulence intensity ū+
1,rms increases as the rotation number Roτ increases.
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FIGURE 4.1: Resolved streamwise velocity fluctuations at various rotation numbers
(predicted using the DNM and DFLTDM).
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FIGURE 4.2: Resolved wall-normal velocity fluctuations at various rotation numbers
(predicted using the DNM and DFLTDM).

However, the profiles of ū+
1,rms peak and collapse in the near-wall region. The physical

mechanism underlying this near-wall behaviour can be explained as follows. From

Table 4.1, the production term for 〈ū′′
1ū

′′
1〉 is determined as P11 = −2〈ū′′

1ū
′′
2〉(d〈ū1〉/dx2)

(G11 ≡ 0). From Figs. 3.4 and 4.4, it is understood that the sign of d〈ū1〉/dx2 and

that of 〈ū′′
1ū

′′
2〉 are strictly opposite to each other across the channel, due to the fact

that the profiles of 〈ū1〉 and 〈ū′′
1ū

′′
2〉 are symmetrical and skew-symmetrical about

x2/δ = 1 in the wall-normal direction, respectively. Furthermore, the magnitudes of
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FIGURE 4.3: Resolved spanwise velocity fluctuations at various rotation numbers
(predicted using the DNM and DFLTDM).
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FIGURE 4.4: Resolved Reynolds shear stress 〈ū′′
1ū

′′
2〉+ at various rotation numbers

(predicted using the DNM and DFLTDM).

both 〈ū′′
1ū

′′
2〉 and d〈ū1〉/dx2 peaks in the near wall region. For these reasons, P11 > 0

holds across the channel and ū+
1,rms necessarily peaks in the near-wall region.

In the central region of the channel, the direct effects of system rotation are

expected to increase 〈ū′′2
2 〉 (or ū+

2,rms ) because the total production rate is positive,

i.e. P22 + G22 = G22 > 0. From Table 4.1, it is understood that G22 = 4Ω〈ū′′
2ū

′′
3〉

and 〈ū′′
2ū

′′
3〉 > 0 holds across channel in the wall-normal direction (see Fig. 4.5). As

shown in Fig. 4.2, the value of ū+
2,rms indeed increases monotonically with the rotation
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FIGURE 4.5: Resolved Reynolds shear stress 〈ū′′
2ū

′′
3〉+ at various rotation numbers

(predicted using the DNM and DFLTDM).
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FIGURE 4.6: Resolved Reynolds shear stress 〈ū′′
1ū

′′
3〉+ at various rotation numbers

(predicted using the DNM and DFLTDM).

number in the central core of the channel in response to the total production rate:

P22 +G22 = G22.

Figure 4.3 shows that the value of ū+
3,rms increases with the rotation number,

especially in the central core of the channel. The physical mechanism underlying this

pattern is complicated, because it relates to the four layers of opposite stratifications

of the secondary flow in the cross-stream plane (indicated by the involvement of 〈ū3〉
in the formula for P33 in Table 4.1).
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Near the top wall (x2/δ = 2), P12 > 0 (because d〈ū1〉/dx2 < 0, see Fig. 3.4)

and G12 > 0 (because 〈ū′′
1ū

′′
3〉 > 0 and Ω > 0). Furthermore, from Figs. 3.4 and 4.2,

it is understood that the magnitudes of d〈ū1〉/dx2 and 〈ū′′2
2 〉 are the largest in the

near-wall region, which necessarily result in a peak value in P12 in the region near

the top wall. From Fig. 4.6, it is observed that the magnitude of 〈ū′′
1ū

′′
3〉 peaks in the

near-wall region and this will result in a peak in G12 (because G12 ∝ 〈ū′′
1ū

′′
3〉 and Ω).

As a consequence, in the region near the top wall, the value of P12 + G12 is positive

and enhanced by the positive peak values of P12 and G12, which then further results

in a positive peak value in the magnitude of the turbulent shear stress component

〈ū′′
1ū

′′
2〉. Because (P12 + G12) ∝ G12 ∝ Ω, it is also anticipated that the magnitude

of 〈ū′′
1ū

′′
2〉 increases with the rotation number Roτ . The above theoretical analysis of

the behavior of 〈ū′′
1ū

′′
2〉 in the region near the top wall agrees well with the numerical

predictions shown in Fig. 4.4. Because the profile of 〈ū′′
1ū

′′
2〉 is symmetrical about the

central wall-normal plane x2/δ = 1, similar analysis can be conducted to understand

its behavior in the region near the bottom wall (x2/δ = 0).

All these trends can be observed at two Reynolds numbers. By comparing the

figure for Reτ = 150 with that for Reτ = 300, it is found that the variation tendencies

are more strongly expressed at the lower Reynolds number flow while the flow at the

higher Reynolds number is less sensitive to the imposed system rotation. This is

because at a given rotation number, the higher the Reynolds number, the larger the

turbulent shear stresses (in comparison with the rotation stresses and Coriolis forces).

In other words, at a given rotation number, the flow pattern becomes more towards

Poiseuille type as the Reynolds number increases.

4.1.2 Rotation Effect on the Resolved TKE

The resolved TKE is defined as

〈q2〉 = 1

2
(〈ū′′2

1 〉+ 〈ū′′2
2 〉+ 〈ū′′2

3 〉) . (4.3)
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The production term for the resolved TKE can be obtained by taking one half

of the summation resultant of the corresponding elements in the first three rows of

Table 4.1, i.e.

〈Pq2〉+ 〈Gq2〉 = −〈ū′′
1ū

′′
2〉
d〈ū1〉
dx2

− 〈ū′′
2ū

′′
3〉
d〈ū3〉
dx2

+ 0 , (4.4)

where

〈Pq2〉 =
1

2
(〈P11〉+ 〈P22〉+ 〈P33〉) , (4.5)

and

〈Gq2〉 =
1

2
(〈G11〉+ 〈G22〉+ 〈G33〉) . (4.6)

Equation (4.4) clearly shows that the production of the resolved TKE 〈q2〉 is not

explicitly dependent upon Ω but rather the resolved turbulent shear stresses (〈ū′′
1ū

′′
2〉

and 〈ū′′
2ū

′′
3〉) and mean viscous shear stresses (indicated by d〈ū1〉/dx2 and d〈ū3〉/dx2,

based on Newton’s law for shear flows). However, as shown in Table 4.1 and Figs. 3.4

and 3.5, all these resolved quantities are influenced by the system rotation Ω. Because

〈P22 ≡ 0〉, 〈Pq2〉 is one half of (〈P11〉 + 〈P33〉), which is the sum of the production

terms for 〈ū′′2
1 〉 and 〈ū′′2

3 〉. Therefore, it is anticipated that the resolved TKE 〈q2〉
will also exhibits a behavior that is similar to that of the combination of the resolved

streamwise and spanwise turbulent normal stresses 〈ū′′2
1 〉 and 〈ū′′2

3 〉. Furthermore,

because the magnitude of 〈ū′′2
1 〉 is much larger than that of 〈ū′′2

3 〉 (which is evident by

comparing Figs. 4.1 and 4.3), it is inferred that the profile of TKE 〈q2〉 is dominated

by 〈ū′′2
1 〉, and so, it tends to exhibit a similar pattern to that of 〈ū′′2

1 〉. The profiles of
TKE at various rotation numbers obtained from numerical simulations are displayed

in Fig. 4.7, which verifies the above analysis. Figure 4.7 clearly shows that the value

of 〈q2〉 peaks in the near-wall region, and increases monotonically as Roτ increases

in the central core of the domain. Indeed, there exists a great similarity between the

profile of 〈q2〉 shown in Fig. 4.7 and that of 〈ū′′2
1 〉1/2 shown in Fig. 4.1. By comparing

Figs. 4.7(a) and (b), it is observed that the peak maginitude of the TKE in the near-

wall region is much larger at Reτ = 300 which in consistent with the fact that flow is

more turbulent at the higher Reynolds number.
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FIGURE 4.7: Resolved turbulent kinetic energy at various rotation numbers (non-
dimensionalized by τaw/ρ, predicted using the DNM and DFLTDM).

4.2 Budgets of Shear Stresses and Heat Fluxes

In order to study the predictive performance of the LES approach in terms of the

momentum balance and energy balance, the budget of the shear stresses and that of

the heat fluxes across the channel need to be examined.

4.2.1 Budget of Shear Stresses

On assuming that the flow is statistically stationary and homogeneous in the (x1, x3)-

plane, the equation that expresses the balance between the time- and plane-averaged

viscous, turbulent and SGS shear stresses at an arbitrary wall-normal location x2 can

be derived from the filtered streamwise momentum equation, viz.

ν
∂〈ū1〉
∂x2

− 〈ū′′
1ū

′′
2〉 − 〈τ12〉 =

1

ρ

∂〈p̄〉
∂x1

x2 +
τwh

ρ
. (4.7)

The three terms on the LHS of Eq. (4.7) represent the resolved viscous shear stress,

resolved turbulent shear stress, and SGS shear stress, respectively. The two terms

on the RHS of the equation correspond to the resolved integrated shear force due

to the mean pressure gradient, and the resolved viscous shear stress at the hot wall
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FIGURE 4.8: Budget of shear stresses for Roτ = 15.0 at Reτ = 150 (non-
dimensionalized using τaw/ρ, predicted in conjunction with the DFLTDM). Location
of the vertical line along which the instantaneous SGS shear stress component is
obtained: x1/L1 ≈ 0.5 and x3/L3 ≈ 0.5.
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FIGURE 4.9: Budget of shear stresses for Roτ = 2.5 at Reτ = 300 (non-
dimensionalized using τaw/ρ, predicted in conjunction with the DFLTDM). Location
of the vertical line along which the instantaneous SGS shear stress component is
obtained: x1/L1 ≈ 0.5 and x3/L3 ≈ 0.5.

(τwh = ρν ∂〈ū1〉
∂x2

|x2=0), respectively.

Figures 4.8 and 4.9 show the shear stress budget predicted using the DNM and

DM for Reτ = 150 and 300, respectively. All quantities presented in these figures
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FIGURE 4.10: Predicted Reynolds shear stress forRoτ = 0 and 15 atReτ = 150 (non-
dimensionalized using τaw/ρ, predicted in conjunction with the DFLTDM). Location
of the vertical line along which the instantaneous SGS shear stress component is
obtained: x1/L1 ≈ 0.5 and x3/L3 ≈ 0.5.
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FIGURE 4.11: Predicted Reynolds shear stress at Roτ = 0 and 2.5 for Reτ = 300
(non-dimensionalized using τaw/ρ, predicted in conjunction with the DFLTDM). Lo-
cation of the vertical line along which the instantaneous SGS shear stress component
is obtained: x1/L1 ≈ 0.5 and x3/L3 ≈ 0.5.

are non-dimensionalized using the viscous shear stress term averaged over the hot

and cold walls (i.e., τaw/ρ or (ua
τ )

2). It can be clearly seen from the figures that the

total shear stress calculated from the LHS of Eq. (4.7) agrees very well with that

calculated from the RHS of Eq. (4.7), implying that shear stress balance as expressed
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by Eq. (4.7) has been successfully reproduced by the numerical simulations based

on the DNM and DM (and, this is in spite of the fact that two assumptions have

been made in the derivation of this shear stress balance equation). As expected,

the resolved viscous shear stress dominates in the viscous sublayer while the resolved

turbulent shear stress dominates in the fully turbulent layer away from the solid wall.

In general, the magnitude of 〈−τ12〉 is smaller than those of the other shear stress

components. However, as shown in Figs. 4.8 and 4.9, the instantaneous value of the

SGS shear stress −τ12 (shown using the dashed line) can be significant (even larger

than the peak value of the resolved turbulence shear stress −〈ū′′
1ū

′′
2〉) at a specific

location (e.g., at points along the vertical line determined by the intersection of the

two planes at x1/L1 = 0.5 and x3/L3=0.5).

The time- and plane-averaged deviatoric part of the ‘true’ (or exact) Reynolds

stresses (denoted using −〈u′e
i u

′e
j 〉) obtained from a DNS approach can be estimated

from LES using the resolved turbulent and SGS stresses [69, 70], i.e. −〈u′e
i u

′e
j 〉 =

−〈ū′′
i ū

′′
j 〉 − 〈τij〉. Figures 4.10 and 4.11 compare the Reynolds shear stresses (i.e.,

−〈ū′′
1ū

′′
2〉+−〈τ12〉+) predicted using two SGS stress models with the estimated DNS re-

sults (i.e., −〈u′e
1 u

′e
2 〉+). Quantities presented in these figures are non-dimensionalized

using the averaged friction velocity ua
τ over the hot and cold walls. By compar-

ing Figs. 4.10(a) and (b), Figs. 4.11(a) and (b), it is observed that the total shear

stresses obtained using the DNM and DM both confirm well with the DNS data

both at Reτ = 150 and 300. At Reτ = 150, the mean SGS shear stress compo-

nent 〈τ12〉 contributes a maximum of 8.74 % and 8.08% to the total Reynolds shear

stress −〈ū′′
1ū

′′
2〉 − 〈τ12〉 for simulation based on the DNM and DM, respectively. At

Reτ = 300, it contributes a maximum of 8.43 % and 3.45%, respectively. This clearly

indicates that the contribution from the SGS stress to the total Reynolds shear stress

in the current LES cannot be neglected. Of course, the instantaneous contribution

of the SGS shear stresses to the instantaneous Reynolds shear stresses can be much

larger, which have been shown previously in Figs. 4.8 and 4.9.
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4.2.2 Budget of Heat Fluxes

Following a similar procedure used to derive Eq. (4.7) for the budget of the mean

shear stresses, a budget equation for the time- and plane-averaged wall-normal heat

fluxes at an arbitrary wall normal location x2 can be obtained from the filtered energy

equation (cf. Eq. (2.11)), viz.

−α
∂〈θ̄〉
∂x2

+ 〈ū′′
2θ̄

′′〉+ 〈h2〉 =
qwh

ρc
P

, (4.8)

where qwh
def
= −λ∂〈θ̄〉

∂x2
|x2=0 is the resolved molecular heat flux at the hot wall, and

λ is the thermal conductivity. The three terms on the LHS of Eq. (4.8) correspond

to the resolved molecular heat flux, resolved turbulent heat flux and SGS heat flux,

respectively.

All heat fluxes shown in Figs. 4.12 and 4.13 are non-dimensionalized using the

molecular heat flux at the hot wall (viz., using qwh/ρcP = uτhθτh). As shown in the

figures, the total heat flux given by the RHS of Eq. (4.8) becomes unity after the

normalization. In general, the total heat flux calculated from the LHS of Eq. (4.8)

agrees with the theoretical value of 1.0. The heat transfer to or from the boundary-

layer takes place by molecular conduction through the wall. Consequently, in the

vicinity of the wall, the heat flux is entirely due to the resolved molecular heat flux.

In the core region, the resolved turbulent heat flux dominates, accounting for the

major contribution to the heat transfer in the wall-normal direction. As evident in

Figs. 4.12 and 4.13, all these important physical features are well reproduced by LES.

Subfigures (a) and (b) of Figs. 4.12 and 4.13 compare the budget profiles for

the SGS heat flux predicted using the DFLTDM model in conjunction with the two

different SGS stress models (i.e., the DNM and DM). It is observed that the perfor-

mance of the DFLTDM is similar in the context of two different SGS stress models.

In LES of turbulent transport of a scalar, both the SGS stress model and the SGS

scalar-flux model are important to the prediction of the filtered scalar field, because

the filtered transport equations for the scalar and velocity fields are coupled. From
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FIGURE 4.12: Budget of heat fluxes in the wall-normal direction for Roτ = 15.0 at
Reτ = 150 (non-dimensionalized using qwh/ρcP ). Location of the vertical line along
which the instantaneous SGS wall-normal HF component is obtained: x1/L1 ≈ 0.5
and x3/L3 ≈ 0.5.

Eq. (2.11), it is understood that at the subgrid scales, the SGS scalar-flux model has

a more direct impact on the predicted filtered SGS scalar flux. To demonstrate, we

compared the mean wall-normal heat flux budget predicted by the two different SGS

HF models (i.e., the DFLTDM and DEDM) in conjunction with the same SGS stress

model DNM. The results are displayed in Figs. 4.12(c) and 4.13(c). By comparing

Figs. 4.12(a) and (c), and Fig. 4.13(a) and (c), it is seen that these two SGS HF

models can result in significant differences in the prediction of the resolved turbulent

and SGS wall-normal heat fluxes, even though the predictions of the total wall-normal
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FIGURE 4.13: Budget of heat fluxes in the wall-normal direction for Roτ = 2.5 at
Reτ = 300 (non-dimensionalized using qwh/ρcP ). Location of the vertical line along
which the instantaneous SGS wall-normal HF component is obtained: x1/L1 ≈ 0.5
and x3/L3 ≈ 0.5.

heat flux are virtually identical (both approaching the theoretical value 1.0).

Similar to the Reynolds shear stresses, the time- and plane-averaged value of

the ‘true’ (or exact) turbulent heat flux (denoted by 〈u′e
j θ

′e〉) obtained from a DNS

approach can be estimated by LES using the resolved turbulent and SGS heat fluxes,

i.e. 〈u′e
j θ

′e〉 = 〈ū′′
j θ̄

′′〉 + 〈hj〉. Figures 4.14 and 4.15 show the total streamwise, wall-

normal and spanwise turbulent heat fluxes (i.e. 〈ū′′
1θ̄

′′〉++ 〈h1〉+, 〈ū′′
2θ̄

′′〉++ 〈h2〉+

and 〈ū′′
3θ̄

′′〉++ 〈h3〉+) across the channel in comparison with the reported DNS data
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FIGURE 4.14: Total turbulent heat fluxes at Roτ = 15.0 for Reτ = 150 (predicted
in conjunction with the DFLTDM).

at Reτ = 150 and 300, respectively. Quantities presented in these figures are non-

dimensionalized using the averaged friction velocity ua
τ and friction temperature θaτ

over the hot and cold walls. In general, the LES predictions of the wall-normal

turbulent heat flux are in good agreement with the DNS data, but the turbulent heat

fluxes are overpredicted by LES in the streamwise and spanwise directions. As shown

in Figs. 4.14(a) and 4.15(a), in conjunction with the DFLTDM for modelling the SGS

HF, the DNM gives a slightly better performance than the DM. This indicates that

it is beneficial to use a good SGS stress model for a more accurate calculation of the

filtered flow field in a thermal-fluid coupled system, as this will subsequently improve
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FIGURE 4.15: Total turbulent heat fluxes at Roτ = 2.5 for Reτ = 300 (predicted in
conjunction with the DFLTDM).

the prediction of the transport of the scalar (thermal energy).

Figures 4.16, 4.17 and 4.18 compare the profiles of the turbulent heat fluxes at

different rotation numbers in streamwise, wall-normal and spanwise direction, respec-

tively. At Reτ = 150, it is shown in Fig. 4.16(a) that the streamwise turbulent heat

flux (〈ū′′
1θ̄

′′〉++ 〈h1〉+) decreases as the rotation number increases, and the location of

the peak value shifts toward the wall. The other two turbulent heat fluxes in span-

wise and wall-normal direction (〈ū′′
2θ̄

′′〉++ 〈h2〉+ and 〈ū′′
3θ̄

′′〉++ 〈h3〉+), as shown in

Figs. 4.17(a) and 4.18(a), increase with rotation numbers. By comparing subfigures
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FIGURE 4.16: Total turbulent heat fluxes at various rotation number in streamwise
direction (predicted in conjunction with the DFLTDM).
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FIGURE 4.17: Total turbulent heat fluxes at various rotation number in wall-normal
direction (predicted in conjunction with the DFLTDM).

(a) and (b) of Figs. 4.16, 4.17 and 4.18, it is observed that as the Reynolds number

increases from Reτ = 150 to 300, the turbulent heat flux levels in streamwise and

wall-normal direction (〈ū′′
1θ̄

′′〉++〈h1〉+ and 〈ū′′
2θ̄

′′〉++〈h2〉+) are quite stable. However,
the level of the heat flux in spanwise directoin (〈ū′′

3θ̄
′′〉++ 〈h3〉+) increases noticeably.

Furthermore, it is found that the heat fluxes are more sensitive to the system rotation

at the lower Reynolds number.
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FIGURE 4.18: Total turbulent heat fluxes at various rotation number in spanwise
direction (predicted in conjunction with the DFLTDM).

4.3 Transfer of Local KE between the Resolved

and Subgrid Scale Motions

In the energy cascade of a turbulent flow, TKE is generated in the inertial subrange at

the large scales of eddy motion and then transferred to and dissipated at the viscous

scales. In LES, the viscous dissipative scales are not resolved. One of the most im-

portant functions of the SGS stress model is to ‘drain’ energy from the resolved scales

to the unresolved scales, mimicking the actual energy dissipation. The transport of

the resolved TKE is described by Eq. (A.12).

The SGS dissipation rate is defined as

Pr = −τ ∗ij S̄ij . (4.9)

The SGS dissipation rate Pr represents local KE transferred between the resolved

and unresolved (subgrid) scales through an inertial and inviscid process. The instan-

taneous value of Pr can be either positive or negative, representing a local forward

or backward transfer of KE between the resolved and subgrid scales, respectively. It

represents the rate of KE production and functions as a source of KE for the residual
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SGS motions and a sink of KE for the large resolved-scale motions (see, Eq. (A.12)).

Figures 4.19 and 4.20 show the time- and plane-averaged profile of Pr across the chan-

nel predicted using the DNM and DM, respectively. In both figures, the results are

non-dimensionalized using (ua
τ )

4/ν. The forward scatter (i.e., 〈P+
r 〉) and backward

scatter (i.e., 〈P−
r 〉) of the local KE have been separated, and these two quantities

must verify: 〈Pr〉=〈P+
r 〉+〈P−

r 〉.

Substituting the constitutive relations for the DNM (represented by Eq. (2.30))

and DM (represented by Eq. (2.17)) into Eq. (4.9), then the equations for evaluating

the SGS dissipation rate in the specific context of DNM and DM become

Pr = CSβijS̄ij + CWγijS̄ij + CNηijS̄ij , (4.10)

and

Pr = 2CS∆̄
2|S̄|S̄ijS̄ij = CS∆̄

2|S̄|3 , (4.11)

respectively.

As can be seen from Eq. (4.10), when the DNM is used, there are two factors

determining the direction of the local KE flux between the resolved and subgrid scales

of motions: one is the sign of the coefficients (i.e., CS, CW and CN), and the other is

the relative geometric orientation between the filtered strain rate tensor S̄ij and the

constituent tensors βij , γij and ηij [11,71]. In terms of physics, backscatter should not

be simply viewed as a result of a negative SGS viscosity, but rather the non-alignment

between the principal axes of −τij and those of S̄ij (i.e., the geometrical relationship

between these two tensors [11,13]). As shown in Fig. 4.19, when the DNM is used for

modelling the SGS stress tensor, the value of Pr can be either positive and negative,

implying that the physics associated with both forward and backward scatter of local

KE between the resolved and unresolved (SGS) scales are captured.

It is well-known that the conventional DM of Lilly [7] is based on the overly

simplistic linear Boussinesq assumption which requires that the principal axes of the

negative SGS stress tensor −τij be strictly aligned with those of the resolved strain
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FIGURE 4.19: Time- and plane-averaged SGS KE dissipation rates (non-
dimensionalized using (ua

τ )
4/ν, predicted using DNM in conjunction with the

DFLTDM). Forward scatter: 〈P+
r 〉; backward scatter: 〈P−

r 〉; total SGS KE dissi-
pation rate 〈Pr〉.
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FIGURE 4.20: Time- and plane-averaged SGS KE dissipation rates (non-
dimensionalized using (ua

τ )
4/ν, predicted using DM in conjunction with the

DFLTDM). Forward scatter: 〈P+
r 〉; backward scatter: 〈P−

r 〉; total SGS KE dissi-
pation rate 〈Pr〉.

rate tensor S̄ij. In consequence, for the DM, the sign of Pr is determined entirely by

the sign of model coefficient CS. This is evident in Eq. (4.11)(since the value of |S̄|3

is always positive). This further implies that the KE transfer can only correspond

to one of the following three scenarios: forward scatter if Cs > 0, backward scatter

if Cs < 0, or no transport if Cs = 0. As shown in Fig. 4.20, no net backscatter is
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observed over the period of time for which the flow statistics have been obtained,

indicating that the DM has failed in reflecting the physics of local KE transfer from

the unresolved to resolved scales in the context of the rotating flow tested.

By comparing Figs. 4.19(a) and (b), it is found that the peak values of both

forward scatter and back scatter at Reτ = 300 are larger than those at Reτ = 150,

and the locations of peaks are much closer to the wall. This is consistent with the fact

that in a higher Reynolds number flow, the turbulence level is much higher and the

boundary-layer where the viscous dissipation effect dominates becomes much thinner.

Furthermore, by comparing the profiles of the non-rotating case and rotating case,

it is found that the absolute magnitudes of both forward and backward scatter are

slight lower for the rotating case, and the flow at a lower Reynolds number are more

sensitive to the imposed system rotation.
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Chapter 5

Conclusions and Reommendations for

Future Work

5.1 Major Conclusions

Two advanced SGS modelling approaches (namely, the DNM [11] for modelling the

SGS stress tensor and the DFLTDM [9] for modelling the SGS heat flux vector)

have been used to perform LES of a fully-developed heated channel flow subjected

to streamwise system rotations. In order to conduct a comprehensive comparative

study, two conventional SGS models were also tested in the simulations, including the

DM of Lilly [72] for modelling the SGS stress tensor and the DEDM of Moin et al. [15]

for modelling the SGS HF vector. This research focuses on examining the rotation

effects on the turbulent flow field at different Reynolds numbers. To this purpose,

the channel flow is charactrized by two Reynolds numbers Reτ = 150 and 300, and a

wide range of rotation numbers varying from Roτ = 0 to 15 were tested for these two

Reynolds numbers. The obtained LES results, in terms of the first- and second-order

moments of statistics, have been thoroughly compared with the reported DNS data.

In response to the system rotation in the streamwise direction, two centrifugal

forces and two Coriolis forces appear in the spanwise and wall-normal directions.

The existence of the centrifugal and Coriolis forces makes the body-fixed coordinate

system necessarily non-inertial and hence induces large secondary flow structures

in the cross-stream (x2, x3)-planes. These large secondary flows in turn drastically
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alter the velocity field. The mean resolved spanwise velocity profile becomes skew-

symmetric about the central wall-normal plane of the domain (x2/δ = 1), and four

distinct layers of opposite motion co-exist between the two planes. The magnitude

of the velocity of the secondary flow increases monotonically as the rotation number

increases in the near-wall region.

This research also highlights a detailed analysis of the impact of streamwise sys-

tem rotations on the transport of resolved turbulent stresses (i.e., 〈ū′′
i ū

′′
j 〉) and TKE

(i.e., 〈q2〉). The transport of 〈ū′′
i ū

′′
j 〉 and 〈q2〉 are influenced jointly by two production

terms, Pij and Gij, related to the turbulent shear and rotation stresses, respectively.

The production of the resolved TKE is not explicitly dependent upon the rotational

angular speed Ω, but rather, upon the resolved turbulent shear stresses and mean vis-

cous shear stresses. As the rotation number increases, the mean resolved TKE (as well

as all three mean resolved RMS velocities ū+
1,rms, ū

+
2,rms and ū+

3,rms) increases in the

central core of the channel. In addition, by comparing the results of Reτ = 150 and

300, it can be concluded that the flow is less sensitive to the imposed system rotation

at a higer Reynolds number. This is because at a given rotation number, the higher

the Reynolds number, the larger the turbulent shear stresses (in comparison with the

rotation stresses and Coriolis forces). In other words, at a given rotation number, the

flow pattern becomes more towards Poiseuille type as the Reynolds number increases.

In order to study the predictive performance of the LES approach in terms of

the momentum balance, the budget of the shear stresses across the channel has been

examined. Numerical simulations based on the DNM and DM both have successfullly

reproduced the shear stresses balance. Although the magnitude of the SGS shear

stress component 〈τij〉 is small compared to the other shear stress components, its

instantaneous value τij can be very large and its contribution to the total Reynolds

shear stress cannot be neglected. The DFLTDM model for SGS scalar heat flux

in conjunction with two different SGS stress models (i.e., the DNM and DM) are

used to predict the balance of heat fluxes. Numerical simulations show that different

SGS HF models can result in significant differences in the prediction of the resolved

turbulent and SGS wall-normal heat fluxes, even though the predictions of the total
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wall-normal heat flux are virtually identical. In conjunction with the DFLTDM for

modelling the SGS HF, the DNM gives a slightly better performance than the DM

in terms of the prediction of the streamwise turbulent heat flux. This indicates that

it is beneficial to use a good SGS stress model for a more accurate calculation of the

filtered flow field in a thermal-fluid coupled system, as this will subsequently improve

the prediction of the transport of the scalar (thermal energy). As the Reynolds

number increases from Reτ = 150 to 300, the turbulent heat flux levels in streamwise

and wall-normal direction (〈ū′′
1θ̄

′′〉++ 〈h1〉+ and 〈ū′′
2θ̄

′′〉++ 〈h2〉+) are quite stable.

However, the level of the heat flux in spanwise directoin (〈ū′′
3θ̄

′′〉++ 〈h3〉+) increases
noticeably. Furthermore, it is found that the heat fluxes are more sensitive to the

system rotation at a lower Reynolds number.

In terms of physics, forward and backward scatter of kinetic energy between the

resolved and subgrid scales should not be simply viewed as a result of a negative SGS

viscosity, but rather the non-alignment between the principal axes of −τij and those

of S̄ij . As a result of the simplicity in its constitutive relation (based as such on the

linear Boussinesq assumption), the DM failed in reproducing the physical mechanism

of backscatter. In contrast to the performance of the conventional DM of Lilly [7],

the DNM is advantageous in reflecting the physical mechanism of both forward and

backward scatter of kinetic energy between the resolved and subgrid scales. This

salient property of the DNM is a result of the nonlinear constitutive relation adopted

in its modeling formula, which allows for multiple degrees of freedom to determine

the geometrical relation between the SGS stress tensor and the resolved strain and

rotation rate tensors.

5.2 Future Work

Although the results of simulation and physical analysis are encouraging, in order to

obtain a more comprehensive understanding of the coupled velocity and temperature

fields and the predictive performance of the current LES approach, this research needs
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to be extended. In future studies, it would be required to include a comparative study

of the current and other SGS models, and combination of a greater range of Reynolds

numbers and rotation numbers. The present study provides a detailed analysis of the

flow physics in a heated plane channel subjected to streamwise rotation. Turbulent

flows in channels of different types of cross-sectional geometries (e.g., square and

triangular ducts) subjected to arbitrary directional (e.g. streamwise and wall-normal)

rotations also need to be thoroughly investigated in the future.

70



References

[1] J. O. Hinze, Turbulence. New York: McGraw-Hill, 1975.

[2] U. Piomelli, Large-Eddy and Direct Simulation of Turbulent Flows, Lecture Notes

for CFD2001. Kitchener, Ontario, May 27-29 2001. The 9th Annual Conference

of the CFD Society of Canada.

[3] O. Reynolds, “An experimental investigation of the circumstances which deter-

mine whether the motion of water shall be direct or sinuous, and of the law

of resistance in parallel channels,” Philos. Trans. R. Soc. Lond. A, vol. 174,

pp. 935–982, 1883.

[4] L. F. Richardson, “Weather prediction by numerical process,” in Cambridge

University Press, (Cambridge), 1922.

[5] A. N. Kolmogorov, “The local structure of turbulence in incompressible viscous

fluid for very large reynolds numbers,” in Proc. USSR Academy of Sciences,

(Russian), pp. 299–303, 1941.

[6] J. Smagorinsky, “General circulation experiments with the primitive equations,

I. the basic experiment,” Mon. Weath. Rev., vol. 91, pp. 99–165, 1963.

[7] D. K. Lilly, “A proposed modification of the Germano subgrid-scale closure

method,” Phys. Fluids A, vol. 4, pp. 633–635, 1992.

71
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Appendix A

Transport Equations for Resolved
Turbulent Stresses

In this appendix, the general transport equations for the resolved turbulent stresses

and TKE in the context of LES of a turbulent flow subjected to a streamwise system

rotation are derived. The mathematical approach follows the previous work of Xun

et al. [14], who studied plane channel flows subjected to spanwise system rotations.

The set of transport equations presented here hold also for a non-rotating flow, which

can be obtained simply by dropping the terms related to the Coriolis forces.

Based on the Reynolds decomposition, an instantaneous filtered quantity can be

expressed as:

φ̄ =
[
φ̄
]
+ φ̄′′ , (A.1)

where operator [·] represents ensemble-averaging and φ̄′′ represents the residual com-

ponent, with
[
φ̄′′] ≡ 0. For the filtered velocity ūi, the following relationships hold:

ūiūj = [ūi] [ūj] + [ūi] ū
′′
j + [ūj] ū

′′
i + ū′′

i ū
′′
j , (A.2)

[ūiūj] = [ūi] [ūj] +
[
ū′′
i ū

′′
j

]
. (A.3)

By ensemble-averaging the filtered momentum equation (2.14), we obtain

∂ [ūi]

∂t
+

∂

∂xj
([ūiūj]) = −1

ρ

∂ [p̄]

∂xi
+ ν

∂2 [ūi]

∂xj∂xj
− ∂ [τij ]

∂xj
+ 2ε1ijΩ [ūj] . (A.4)

Substituting Eqs. (A.2) and (A.3) into Eqs. (2.14) and (A.4), respectively, and then
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subtracting the resulting equations we get:

∂ū′′
i

∂t
+ [ūj]

∂ū′′
i

∂xj

=−ū′′
j

∂ [ūi]

∂xj

− ∂

∂xj

(ū′′
i ū

′′
j −

[
ū′′
i ū

′′
j

]
)

−1

ρ

∂p̄′′

∂xi

+ ν
∂2ū′′

i

∂xj∂xj

−∂(τij − [τij ])

∂xj
+ 2ε1ijΩū

′′
j . (A.5)

Now multiply both sides of Eq. (A.5) by ū′′
k to give:

ū′′
k

∂ū′′
i

∂t
+ ū′′

k [ūj]
∂ū′′

i

∂xj
= −ū′′

kū
′′
j

∂ [ūi]

∂xj
− ū′′

k

∂

∂xj
(ū′′

i ū
′′
j −

[
ū′′
i ū

′′
j

]
)

−1

ρ
ū′′
k

∂p̄′′

∂xi
+ νū′′

k

∂2ū′′
i

∂xj∂xj

−ū′′
k

∂(τij − [τij])

∂xj

+ 2ε1ijΩū
′′
j ū

′′
k . (A.6)

Interchanging the indices i and k in Eq. (A.6) results in:

ū′′
i

∂ū′′
k

∂t
+ ū′′

i [ūj]
∂ū′′

k

∂xj
= −ū′′

i ū
′′
j

∂ [ūk]

∂xj
− ū′′

i

∂

∂xj
(ū′′

kū
′′
j −

[
ū′′
kū

′′
j

]
)

−1

ρ
ū′′
i

∂p̄′′

∂xk
+ νū′′

i

∂2ū′′
k

∂xj∂xj

−ū′′
i

∂(τkj − [τkj])

∂xj
+ 2ε1kjΩū

′′
j ū

′′
i . (A.7)

Adding Eqs. (A.6) and (A.7) gives:

∂(ū′′
i ū

′′
k)

∂t
+ [ūj]

∂(ū′′
i ū

′′
k)

∂xj

= −ū′′
i ū

′′
j

∂ [ūk]

∂xj

− ū′′
kū

′′
j

∂ [ūi]

∂xj

+ū′′
i

∂(τkj − [τkj])

∂xj
+ ū′′

k

∂(τij − [τij ])

∂xj

− ∂

∂xj
(ū′′

i ū
′′
j ū

′′
k) + ū′′

k

∂

∂xj

[
ū′′
i ū

′′
j

]
) + ū′′

i

∂

∂xj

[
ū′′
kū

′′
j

]

−1

ρ
(ū′′

i

∂p̄′′

∂xk
+ ū′′

k

∂p̄′′

∂xi
) + ν(ū′′

i

∂2ū′′
k

∂xj∂xj
+ ū′′

k

∂2ū′′
i

∂xj∂xj
)

+2ε1ijΩū
′′
j ū

′′
k + 2ε1kjΩū

′′
j ū

′′
i . (A.8)

Applying the ensemble-averaging operation to Eq. (A.8), the following transport equa-
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tion for the resolved turbulent stress is obtained:

∂ [ū′′
i ū

′′
k]

∂t
+ [ūj]

∂ [ū′′
i ū

′′
k]

∂xj︸ ︷︷ ︸
I

= −
[
ū′′
i ū

′′
j

] ∂ [ūk]

∂xj

−
[
ū′′
kū

′′
j

] ∂ [ūi]

∂xj︸ ︷︷ ︸
II

−
([

τij
∂ū′′

k

∂xj

]
+

[
τkj

∂ū′′
i

∂xj

])

︸ ︷︷ ︸
III

+
∂

∂xj
([ū′′

i τkj] + [ū′′
kτij])

︸ ︷︷ ︸
IV

− ∂

∂xj

[
ū′′
i ū

′′
j ū

′′
k

]

︸ ︷︷ ︸
V

− 1

ρ

([
ū′′
i

∂p̄′′

∂xk

]
+

[
ū′′
k

∂p̄′′

∂xi

])

︸ ︷︷ ︸
VI

+ ν

([
ū′′
i

∂2ū′′
k

∂xj∂xj

]
+

[
ū′′
k

∂2ū′′
i

∂xj∂xj

])

︸ ︷︷ ︸
VII

+ 2Ω
(
ε1ij

[
ū′′
j ū

′′
k

]
+ ε1kj

[
ū′′
j ū

′′
i

])
︸ ︷︷ ︸

VIII

. (A.9)

The role of each of term in this equation can be identified as follows:

(I) represents the local rate of change and advection by the mean flow of the resolved

turbulent shear stress;

(II) represents the production term due to the action of the resolved turbulent stresses

on the gradient of the mean velocity, and describes the interaction between the mean

and turbulent parts of the flow;

(III) represents the production term due to the action of the SGS stresses on the

gradient of the residual velocity, and is associated with the interaction between the

SGS stress and velocity fluctuations;

(IV) is the SGS diffusion term;

(V) is the triple correlation for the fluctuating flow field related to turbulent advection;

(VI) is the velocity-pressure-gradient tensor;

(VII) is the viscous diffusion and dissipation term;

(VIII) represents the production term due to rotation effects.

Equation (A.9) represents the general transport equation for the resolved tur-

bulent shear stress [ū′′
i ū

′′
k]. For a plane channel flow, statistics based on time- and

plane-averaged quantities (denoted using 〈·〉) are of more interest to the researcher,
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because the flow can be further assumed to be: (1) statistically stationary, and (2)

homogeneous in the (x1, x3)-plane. For LES of a channel flow, an instantaneous fil-

tered quantity can be decomposed into a time- and plane-averaged component and a

residual component (i.e., φ̄ = 〈φ̄〉+ φ̄′′). The procedure to derive the transport equa-

tion for the turbulent stress 〈ū′′
i ū

′′
k〉 is identical to the procedure used in the derivation

of [ū′′
i ū

′′
k]. However, with these two additional assumptions for a fully-developed plane

channel flow, the transport equation for 〈ū′′
i ū

′′
k〉 can be further simplified to give:

D 〈ū′′
i ū

′′
k〉

Dt
= 0 = −〈ū′′

i ū
′′
2〉

∂ 〈ūk〉
∂x2

− 〈ū′′
kū

′′
2〉

∂ 〈ūi〉
∂x2

−
(〈

τij
∂ū′′

k

∂xj

〉
+

〈
τkj

∂ū′′
i

∂xj

〉)
+

∂

∂x2

(〈ū′′
i τk2〉+ 〈ū′′

kτi2〉)

− ∂

∂x2

〈ū′′
i ū

′′
2ū

′′
k〉 −

1

ρ

(〈
ū′′
i

∂p̄′′

∂xk

〉
+

〈
ū′′
k

∂p̄′′

∂xi

〉)

+ν

(〈
ū′′
i

∂2ū′′
k

∂xj∂xj

〉
+

〈
ū′′
k

∂2ū′′
i

∂xj∂xj

〉)

+2Ω
(
ε1ij

〈
ū′′
j ū

′′
k

〉
+ ε1kj

〈
ū′′
j ū

′′
i

〉)
, (A.10)

where D(·)/Dt
def
= ∂(·)/∂t + 〈ūj〉 · ∂(·)/∂xj is the material derivative. In particular,

the transport equation for 〈ū′′
1ū

′′
2〉 can be derived from Eq. (A.10) as

D 〈ū′′
1ū

′′
2〉

Dt
= 0 = −

〈
ū′′2
2

〉 ∂ 〈ū1〉
∂x2

−
(〈

τ1j
∂ū′′

2

∂xj

〉
+

〈
τ2j

∂ū′′
1

∂xj

〉)
+

∂

∂x2

(〈ū′′
1τ22〉+ 〈ū′′

2τ12〉)

− ∂

∂x2

〈
ū′′
1ū

′′2
2

〉
− 1

ρ

(〈
ū′′
1

∂p̄′′

∂x2

〉
+

〈
ū′′
2

∂p̄′′

∂x1

〉)

+ν

(〈
ū′′
1

∂2ū′′
2

∂xj∂xj

〉
+

〈
ū′′
2

∂2ū′′
1

∂xj∂xj

〉)

+2Ω (〈ū′′
1ū

′′
3〉) . (A.11)

Similarly, the transport equation for the resolved turbulent normal stress 〈ū′′
kū

′′
k〉 (no
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summation implied here) can be shown to take the following form:

D 〈ū′′
kū

′′
k〉

Dt
= 0 = −2 〈ū′′

kū
′′
2〉

∂ 〈ūk〉
∂x2

−2

〈
τkj

∂ū′′
k

∂xj

〉
+ 2

∂ 〈ū′′
kτk2〉
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ū′′
2ū
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