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Algebraic reconstruction techniques require about half the number of projections as that of Fourier backprojection methods,
which makes these methods safer in terms of required radiation dose. Algebraic reconstruction technique (ART) and its variant
OS-SART (ordered subset simultaneous ART) are techniques that provide faster convergence with comparatively good image
quality. However, the prohibitively long processing time of these techniques prevents their adoption in commercial CT machines.
Parallel computing is one solution to this problem. With the advent of heterogeneous multicore architectures that exploit data
parallel applications, medical imaging algorithms such as OS-SART can be studied to produce increased performance. In this
paper, we map OS-SART on cell broadband engine (Cell BE). We effectively use the architectural features of Cell BE to provide an
efficient mapping. The Cell BE consists of one powerPC processor element (PPE) and eight SIMD coprocessors known as synergetic
processor elements (SPEs). The limited memory storage on each of the SPEs makes the mapping challenging. Therefore, we present
optimization techniques to efficiently map the algorithm on the Cell BE for improved performance over CPU version. We compare
the performance of our proposed algorithm on Cell BE to that of Sun Fire ×4600, a shared memory machine. The Cell BE is five
times faster than AMD Opteron dual-core processor. The speedup of the algorithm on Cell BE increases with the increase in the
number of SPEs. We also experiment with various parameters, such as number of subsets, number of processing elements, and
number of DMA transfers between main memory and local memory, that impact the performance of the algorithm.

1. Introduction

Medical imaging such as X-ray computed tomography has
revolutionized medicine in the past few decades. The use
of X-ray computed tomography has increased rapidly since
1970 when Radon’s technique for reconstructing images
from a set of projections was first introduced in the medical
field. In 2007, it was estimated that more than 62 million
scans per year were obtained in United States and about 4
million for children [1]. The number of scanners has also
increased in many countries due to the ease of using these
machines. The commonly used analytic technique in CT
scanners to produce diagnostic evaluation of an organ or the
region of interest is Fourier back projection (FBP). This tech-
nique requires a large number of projections measured
uniformly over 180◦ to 360◦ [2], inducing a large amount of
radiation into the body to produce quality images. Therefore,
there has been a lot of interest in developing algorithms
that minimize the radiation dose without impairing image

quality. One such class of algorithms [2, 3] that has been
studied are iterative or algebraic algorithms.

Theoretically, iterative methods require about half of the
number of projections as that of FBP method [4], which
makes these methods safer in terms of required radiation
dose. Compared to FBP method, iterative methods have
the added advantage of producing reconstructions of better
quality when data is incomplete, dynamic, or noisy. These
methods solve a linear system of equations and pass through
many iterations of computation to reconstruct the image.
Each equation corresponds to a ray. A projection angle
comprises many such rays within the same angle. For the
purpose of illustration, we assume Q projection angles and
M rays in total.

There are basically four steps in the iterative reconstruc-
tion algorithm: (i) forward projection, (ii) error correction,
(iii) back projection, and (iv) image update. The algorithm
terminates when the convergence criterion is satisfied. There
are several iterative algorithms in the literature. These
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algorithms all follow the four steps mentioned above but
differ as to when the image updates are performed. The
number of updates determines the quality of the image and
also gives an upper bound on the total computation time [5].
We believe that we can make use of the tremendous amount
of raw computational power available on Cell BE to provide
faster performance and convergence of iterative algorithms.
We assume in this paper that an iteration comprises steps (i)
to (iii) followed by an image update.

Historically, the algebraic reconstruction technique
(ART), a ray-based method, proposed by Gordon et al. [6],
is the first representative iterative algorithm. ART iterates
through the three steps (one iteration) for each ray, and
then updates the image at the end of step three. Note
that an image update is done for each ray which is highly
time consuming. Also, this is very sequential in nature.
Simultaneous iterative reconstruction technique (SIRT) [7]
improves upon ART and iterates through steps (i) to (iii)
for all the rays before performing an image update. This
method requires many iterations for accurate results and,
therefore, has a slower convergence rate. Simultaneous
algebraic reconstruction technique (SART) [8] combines the
good properties of ART and SIRT. The algorithm works
on projections. SART passes through steps (i) to (iii) for
rays within one projection, followed by an image update.
This is done iteratively for each of the Q projections. Note
that since the image is updated after computing the rays
of each of the Q projections, the convergence rate is faster
and the number of iterations compared to SIRT is reduced.
Both SART and SIRT produce better-quality images than
ART. However, they are computationally intensive. The
convergence rate of simultaneous methods can be further
accelerated through ordered-subsets (OS) technique [1, 9].
Ordered subsets method partitions the projection data into
disjoint subsets and processes the subsets sequentially. For
ART, each ray corresponds to one subset. Therefore, for
M rays, there are M subsets. In the case of SIRT, all rays
(M) correspond to one subset only. A subset in SART may
correspond to all the rays in one projection angle or combine
several projections of different angles into one subset. This
is called OS-SART [10]. Due to the fast convergence rate
of SART, in this paper, we consider parallelization of SART
using the ordered-subsets (OS) technique. Though OS-SART
can reduce the reconstruction time with respect to the
convergence rate and produce images with high quality, it is
still prohibitively time consuming due to its computation-
intensive nature, especially for large images with high-res-
olution requirements.

One approach to increase the performance of the OS-
SART algorithm is to parallelize the algorithm on modern
heterogeneous multicore systems which aim to reduce the
gap between the application required performance and the
delivered performance [11]. The cell broadband engine
(Cell BE) [12] is one such architecture. This architecture
supports coarse-grained data parallel applications. In OS-
SART each of the subset performs the same algorithm (same
instructions) supporting data parallelism.

In this paper, we use a domain-decomposition method,
which subdivides the problem into disjoint subsets. In OS-
SART, each subset has to be computed iteratively. Therefore,
the projection angles are further subdivided and assigned
to the synergetic processor elements (SPE). Each SPE can
compute independently and concurrently without any com-
munication, reducing communication overhead. Due to the
limited local store on each of the SPEs, we incorporate
optimization techniques in OS-SART.

The paper is organized as follows. Section 2 lists a se-
lection of related work. Section 3 gives a brief introduction to
iterative reconstruction techniques and OS-SART algorithm.
Section 4 analyzes the properties and complexities of OS-
SART and introduces the rotation-based projector and
back-projector used in OS-SART algorithm for this paper.
Section 5 lists the highlights of Cell processor, with the Cell-
based OS-SART algorithm followed in Section 6. Experiment
results are given in Section 7, followed by discussions in
Section 8. Section 9 will conclude this paper.

2. Related Work

Compared to parallel computing research on analytic tech-
niques, research on iterative techniques is few. Laurent et
al. [13] parallelized the block-ART and SIRT methods for
3D cone beam tomography. The authors developed a fine-
grained parallel implementation, which introduced more
frequent communications and degraded the performance
of their algorithm. Backfrieder et al. [14] used web-based
technique to parallelize maximum-likelihood expectation-
maximization (ML-EM) iterative reconstruction on sym-
metric multiprocessor clusters. A java-applet enabled web-
interface was used to submit projection data and recon-
struction tasks to the cluster. Li et al. [15] parallelized
four representative iterative algorithms: EM, SART and their
ordered subsets (OS) versions for cone beam geometry on a
Linux PC cluster. They used micro-forward-back-projection
technique to improve the parallelization at the ray level
during forward projection.

Gordon [16] parallelized 2D ART using a linear processor
array. The author investigated both sequential ART and
parallel ART algorithm on different phantom data with or
without noise introduced for different number of projec-
tion views. Kole and Beekman [17] parallelized ordered
subset convex algorithm on a shared memory platform
and achieved almost linear speedup. Melvin et al. [18]
parallelized ART on a shared memory machine and observed
that the speedup of ART on shared memory architectures was
limited due to the frequent image update of the ray-based
ART algorithm. The parallel algorithm incurred commu-
nication and synchronization overheads and degraded the
performance. Subsequent to this work, Xu and Thulasiraman
[19] considered the parallelization of OS-SART on shared
memory homogeneous multicore architecture. The OS-
SART algorithm produces higher granularity for paralleliza-
tion to reduce the above-mentioned communication and
synchronization latencies. The algorithm was experimented
on a CPU-based shared memory machine which provides
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only few dozen nodes. Due to synchronization and com-
munication overheads of shared memory machines, the
authors were unable to produce improved performance
gain. In this work, the algorithm takes advantage of Cell
BE’s architecture: the SPEs (coprocessors) compute fine
grained independent tasks, while the PPE performs the
tedious tasks of gathering and distributing data. We overlap
computation and communication through mechanisms such
as direct memory access available on the Cell BE to tolerate
synchronization and communication overheads.

Mueller and Yagel investigated SART [20], SIRT, and OS-
SIRT on an older heterogeneous multicore GPU hardware.
They found that the special architecture and programming
model of GPU adds extra constraints on the real-time per-
formance of ordered subset algorithms. Xu et al. [21] recently
implemented OS-SIRT and SART on the GPU architecture
and claimed that SART or its subsequent OS-SART is not a
suitable algorithm for implementation on GPU and does not
provide increased performance gain though the convergence
rate is faster than SIRT.

In this paper, we show that OS-SART algorithm is suit-
able for parallelization on the Cell BE and compare the re-
sults to our earlier work on homogeneous multicore archi-
tecture [19].

3. Iterative Reconstruction Techniques and
OS-SART Algorithm

In this section, we start with an illustration of the iterative
reconstruction technique. In Figure 1, f (x, y) is an unknown
image of an object and pi is a ray of one projection at an angle
θ. Many such projection data may be acquired via scanners.
In this paper, we assume that 1D detector array is used to
acquire projection data by impinging parallel beams onto a
2D object. The object is superimposed on a square grid of
N = n2 cells, assuming each cell is made up of homogeneous
material having a constant attenuation coefficient value f j
in the jth cell [2]. A ray is a strip of width τ in x-y plane
as shown in Figure 1. In most cases, the ray width τ is
approximately equal to the cell width. A line integral along
a particular strip is called raysum, which corresponds to
the measured projection data in the direction of that ray. A
projection (or view or projection view) is defined as all rays
projecting to the object at the same angle.

Let pi be the raysum measured for ray i as shown in
Figure 1. Assume that all raysums are represented using
one-dimensional array. The reconstruction problem can be
formulated to solve a system of linear equations as follows:

N∑

j=1

wij f j = pi, i = 1, 2, . . . ,M, (1)

where M is the total number of rays. wij is the weighting
factor that represents the contribution of jth cell along the
ith ray. The weighting factor can be calculated as (i) the
fractional area of the jth cell intercepted by the ith ray or
(ii) the intersection length of the ith ray by jth cell when
the ray width τ is small enough to be considered as a single
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Figure 1: Illustration of iterative methods.

line. In this paper, we use the latter (Siddon’s method) and
will be explained in the next section. Note that for different
rays, wij ’s have different values for the same jth image cell.
The left side of each equation in (1) is used as the forward
projection operator for the specific ray i. In Figure 1, most of
wij ’s are zero since only a small number of cells contribute
to any given raysum. For example, there are only ten nonzero
wij ’s for projection pi if we consider using the fractional areas
as the contributions.

All the rays in one projection corresponds to one subset
in SART. In OS-SART, a subset may consist of many such
projections. Figure 2 shows a flow chart for OS-SART. The
algorithm iterates over many ordered subsets sequentially
before checking the convergence criterion. The image cells
are updated with

f r,l+1
j = f r,l

j + λ·
∑

i∈OSl

[(
pi −

∑N
k=1 wik f

r,l
k

)
/
∑N

k=1 wik

]
·wij

∑

i∈OSl

wij
,

j = 1, 2, . . . N ,
(2)

where pi is the raysum of ray i, wij is the weighting factor, r is
the iteration index, and l is the subset index. λ is a relaxation
parameter used to reduce noise. Let, corresponding subset
index (CIS), CIS = {1, 2, . . . ,Q} correspond to indices of Q
projections for the total of M rays. CIS is partitioned into T
nonempty disjoint subsets OSl, 0 ≤ l < T .

Recall that each subset is computed iteratively. The
computation of the pixel values for a subset, l + 1 requires
that the subset l has already been computed and the
image has been updated. Using this updated image, (2) is

computed. As you can see, f r,l+1
j depends on the weighting

factors wij and the pixel values computed for the subset l,

f r,l
j . Therefore, although there is synchronization between
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Figure 2: Framework of OS-SART reconstruction technique.

subsets, there is no synchronization within a subset. We
exploit this parallelism on Cell BE.

The image estimate for each angle can be stored in
main memory. The correction ((pi−

∑N
k=1 wik f

r,l
k )/

∑N
k=1 wik)

and back projection (
∑

i∈OSl
[(pi −

∑N
k=1 wik f

r,l
k )/

∑N
k=1 wik] ·

wij/
∑

i∈OSl
wij) for the subset is a cumulative result of

correction and back projection of different angles in the

subset of the current iteration. Therefore, these can be
done in parallel also. The only step that requires sequential
computation in (2) is the image update. This step requires
the cumulative result of the correction and back projection
contributions from all angles in the subset.

The calculation of weighting factors are not only com-
putationally intensive, they are also memory bound. In the
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next section, we use a technique that saves on memory and
computation for efficient computation on Cell BE.

4. Optimization Techniques on Cell BE

The sequential OS-SART algorithm is presented in Figure 2.
The forward projection and back projection steps are the
most time-consuming parts of the algorithm. The compu-
tation complexity of each step is: O(I × T × Q/T × n2) =
O(I × Q × n2), where I is the total number of iterations. Let
Q = n. Then, the computation complexity of the algorithm
is O(n3), making OS-SART computationally intensive. The
OS-SART algorithm is also memory bound. The memory
requirement for the forward projection step includes the
space required for storing the weighting factors matrix (wij)
for one subset and the entire image. The space for the matrix
and the image are O(M/T × n2) and O(n2), respectively.
Since M normally has the same magnitude as N = n2 [2],
the memory complexity of OS-SART is O(n4), making this
algorithm memory intensive.

Typically, the detector array is rotated around an image,
and the matrix is computed for all rays within a projection
angle. For Q projections, there will exist Q such matrices.
In general, the matrix wij is quite large. On the Cell BE,
we are limited by the amount of memory available on each
of the SPEs. Although, we could store the values in main
memory, transferring data from main memory to local stores
in SPE a few chunks at a time, it will degrade the performance
of the algorithm due to intensive communication overhead.
Therefore, in this paper, we use a rotation-based algorithm
[22, 23] that is less sensitive to memory. In this method,
the image is rotated around the detector array (instead of
the detector array being rotated around the image) at a base
angle θ. The values of wij are calculated for this angle and
stored as reference. Let us call this wbase

i j . This is a one-time
computation. To calculate the projection values at an angle
θi, the forward projection starts by rotating the object at
angle θi using bilinear interpolation method. The method
then computes the forward projection data by summing
over all nonzero pixels along each ray in the rotated image.
That is, the pixel values are calculated using the reference
matrix, wbase

i j and the rotated image. The back projection
starts with the traditional back projection process, followed
by rotating the object back with −θi. Note that the main
memory only stores one base weighting factor matrix which
is significantly less than storing Q weighting factor matrices
as in nonrotation-based methods.

As mentioned in the previous section, there are two
ways of calculating the weighting factors. In this paper, we
use Siddon’s method [24], since it reduces the computing
complexity from O(N3) of the general ray tracing method
to O(3N).

5. Cell Broadband Engine

The Cell BE processor is a chip multiprocessor (CMP) with
nine processor elements, one PPE and eight SPEs, operating
on a modified shared memory model [25]. Other important

architectural features include a memory controller, an I/O
controller, and an on-chip coherent bus EIB (element
interconnect bus) which connects all elements on the single
chip. The SPU (synergistic processing unit) in an SPE
is a RISC-style processing unit with an instruction set
and a microarchitecture. The PPE is the typical CPU, 64-
bit PowerPC architecture which provides operating system
support. The eight SPEs are purposely designed for high per-
formance data-streaming and data-intensive computation
via large number of wide uniform registers (128-entry 128-
bit registers). One of the drawback of the Cell BE is the small
amount of private local store (256 KB) available on each of
the SPEs.

The most important difference between the PPE and
SPEs is the way they access the main memory. PPE accesses
the main memory directly with load and store instructions
that move data between the main memory and a private
register file, just like conventional processors access main
memory. On the other hand, SPEs cannot access the main
memory directly. They have to issue direct memory access
(DMA) commands to move data and instructions between
the main memory and their own local store. However,
DMA transfers can be done without interrupting the SIMD
operations on SPEs if the operands of SIMD operations
are available in the local store. This 3-level organization of
storage (register file, local store, and main memory), with
asynchronous DMA transfers between local store and main
memory, is a radical difference from conventional architec-
tures and programming models [25] which complicates the
programming effort by requiring explicit orchestration of
data movements.

6. Cell-Based OS-SART Algorithm

There are four important routines in our proposed rotation-
based OS-SART algorithm: forward projection, rotating
the image, back projection, and creating reference matrix
wbase
i j . By using a profiling tool, gprof, we determined the

percentage of execution time spent on these routines. This
was done to determine which routines require more effort in
parallelization. Figure 3 shows the results for these routines
for varying image sizes, with 20 subsets for 1 and 20
iterations. For both iterations, we notice that the rotation of
the image is the most time consuming part. For 20 iterations,
the forward projection, back projection, and rotation are
also time consuming. The creation of the reference matrix is
negligible. Therefore, from this figure we can see that forward
projection, back projection, and rotation require efficient
parallelization.

On the Cell BE, the creation of the reference matrix is
computed by the PPE and stored in main memory. This is
a one-time computation. The PPE controls the algorithm. It
also assigns the projection angles to each of the SPEs. Given
Q projection angles and T subsets, Q/T projection angles are
assigned to each subset. The angles within the subset, OSl, are
further divided. For P SPEs, each SPE is assigned Q/(T ∗ P)
projection angles. This process is repeated for each subset.
The PPE schedules the angles to the SPEs. At the end of the
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Figure 3: Profile results of OS-SART.

calculation of SPEs on a subset, the PPE performs the image
update and assigns angles from the next subset, OSl+1, to each
SPE.

Each of the SPEs performs the following computations
for their assigned angles θj . First, it rotates the image at
an angle θj . Then, it computes the forward projection by
accessing the reference weighting factor matrix and the image
from main memory via asynchronous DMA transfers. Due
to the limited local store in each of the SPEs, the matrix and
image are accessed in chunks. Transferring data from main
memory to local store is called DMAin [25]. Depending on
the size of the image, this process may take several rounds.
In the next step, the SPEs perform the error correction at
the end of the forward projection computation. After error
correction step, the SPE performs the back projection. The
SPE sends the data back to main memory in chunks, called
DMAout [25]. This is again due to the limited memory
on each SPE. Finally, the SPE rotates the image back to its
original position and stores this in main memory. The above
process is done by an SPE for each of its assigned angles.

In our paper, we balance the load on each of the SPEs by
assigning the same number of projection angles.

Algorithms 1 and 2 show the pseudocode of the PPE and
SPE algorithms discussed above.

7. Evaluation and Results

We have tested our proposed algorithm on two architectures:
Cell BE and Sun Fire x4600. The Cell BE [26] is PowerXCell 8i
processor in IBM QS22 Blade. It runs at 3.2 GHz with 16 GB
of shared memory. The compiler is IBM xlc for both PPU
and SPU. The Sun Fire x4600 is a distributed shared memory
machine with eight AMD dual-core Opteron processors
(16 cores in total) running at 1 GHz with 1 M cache per core
and 4 GB memory per processor. OpenMP [27] is used for
this environment.

The projection data is obtained from CTSim simulator
3.0.3 [28]. CTSim simulates the process of transmitting X-
rays through phantom objects. In this work, we focus on 2D
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Require: PPE creates threads to carry out the time-consuming parts on SPEs and setup related environments
(1) while (r < R) do
(2) for l = 0 to T do
(3) send messages to all SPEs to start a new subset l;
(4) wait for all SPEs to complete the forward projection, corrections, and backprojection step;
(5) accumulate error corrections for each pixel;
(6) update images;
(7) end for
(8) end while

Algorithm 1: Parallel OS-SART on PPE.

Require: receive related environment variables from PPE, p is the total number of SPEs used, Q is the total number of projections,
T is the total number of subsets,
(1) nuO f Chunks = n/rowsPerDMA {n is the one dimension size of the image, rowsPerDMA is the number of rows of the image
for each DMA transfer.}
(2) while (r < R) do
(3) for l = 0 to T do
(4) wait for and receive messages from PPE to start new subset l;
(5) {go through forward projection, correction, backprojection step for assigned projections in the subset l}
(6) for j = 0 to Q/(T × p) do
(7) {forward projection}
(8) locate the projection index q for the current SPE and j;
(9) rotate the current image clockwise by the corresponding angle for projection q;
(10) for k = 0 to nuO f Chunks do
(11) DMAin related data from the main memory, including the base weighting factors matrix, the current image;
(12) calculate and accumulate the raysums for the forward projection step in SIMD way;
(13) end for
(14) {corrections}
(15) calculate and accumulate the raysum corrections;
(16) {bacprojection}
(17) fork = 0 to nuO f Chunks do
(18) DMAin related data, including the weighting factors;
(19) calculate and accumulate backprojection for each pixel in SIMD way;
(20) DMAout the backprojection data;
(21) end for
(22) rotate the image counter clockwise by the corresponding angles for the projectin q;
(23) end for
(24) end for
(25) end while

Algorithm 2: Parallel OS-SART on SPE.

images to test the feasibility of our proposed parallel OS-
SART algorithm. We use the Shepp-Logan phantom image
of size 256× 256, and 360 projections over 360 degrees. The
choice of a relaxation factor has an impact on the number of
iterations and reconstruction quality. The relaxation factor is
usually chosen within the interval (0.0, 1.0] [5]. Mueller et al.
note that a smaller λ provides a less noisy reconstruction but
may increase the number of iterations for convergence. The
authors through their experiments conclude that λ within
the interval [0.02, 0.5] produces better reconstruction images
with less number of iterations. Therefore, in this paper, we
experiment with λ = 0.2.

Figure 4 shows the sequential computation time
with varying number of subsets for both the Cell processor
(1 SPE) and the AMD Opteron dual-core processor (1 core).

The figure shows that the number of ordered subsets impacts
the processing time for both the Cell and the Opteron
processor. In both cases, execution time increases with
increasing subsets. This can be easily explained as follows. As
the number of subset increases, the number of image update
also increases. Since the image update is done by the PPE
and has to be done sequentially, the sequential portion of the
algorithm, therefore, limits the performance on the entire
algorithm confirming Amdhal’s law. As can be seen from
the speed up curve, for one subset, the algorithm running
on one SPE is over 5 times faster than on one core of the
AMD Opteron processor. For 360 subsets, the Cell BE is
2.7 times faster than AMD Opteron processor. Note that
for larger subsets, the number of DMA transfers between
the local store and main memory increases on the Cell BE,
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increasing execution time. However, compared to AMD
Opteron processor, the Cell BE still performs better.

Figure 5 shows the computation time and speedup for
different number of SPEs and AMD cores. We set the
number of subsets T = 20, the total number of projections,
Q = 360, the total number of processors P = 8, to
reconstruct the image for I = 10 iterations. Each subset
is assigned 360/20 = 18 projection angles. Among the
360 projection angles, we can randomly select 18 angles
for each of the subsets. However, in our algorithm, we
follow the equation mentioned in Section 3. That is, the
ordered subset OSl is created by grouping the projections
(PRq, 0 ≤ q < 360) whose indices q satisfy q mod T =
l. Therefore, for the 360 projections, OS0 will consist of
projections 0, 20, 40, . . . , 340. OS1 will consist of projections
1, 21, 41, . . . , 341. The algorithm starts with OS0. The 18
projection angles from OS0 are then subdivided and assigned
to SPEs. Therefore, in Figure 5, for 8 SPEs, 360/(20 ∗ 8)
projection angles are assigned to each SPE which performs
forward projection, back projection, error correction, and
rotation on their locally assigned data.

Since the Cell BE consists of 8 SPEs (processing elements
or cores), our comparison on AMD Opteron is also for max-
imum of 8 cores. Figure 5 shows that the speedup on Cell BE
is better than AMD Opteron processor when the number of
processing elements used is less than 4. However, the speedup
drops for Cell BE when more SPEs are used due to increased
number of DMA transfers. This is due to the limited amount
of local store available on each of the SPEs. As more SPEs
are added, the number of DMA transfer increases since
only a small amount of data can be DMAed in or DMAed
out from main memory to local store and vice versa. This
adds to memory latency and communication overhead. It
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was observed that the communication portion (including
the DMA transfers and synchronization overhead) increased
from 62% for one SPE to 86% for eight SPEs. The AMD
HyperTransport technology attributes to the better speedup
when more AMD cores are involved.

Figure 6 shows the computation and communication
times of the proposed algorithm for different DMA transfer
sizes. We experimented with 1, 4, 8, or 16 image rows for
each DMA transfer from main memory to the local stores
and vice versa. As the figure indicates, the DMA transfers
significantly add to communication cost dominating the
total execution time of OS-SART on Cell BE. The commu-
nication/computation ratio is significant for larger SPEs.

Figure 7 investigates the scalability of our algorithm for
varying problem size and image size. As the number of
SPE increases for a given problem size, the execution time
decreases. The speedup of the algorithm for any image size on
8 SPEs is approximately 2.8, and the speedup increases as the
number of SPE increases. Therefore, current implementation
of the OS-SART with rotation-based algorithm is scalable
with increasing problem and machine sizes.

Finally, Figure 8 illustrates the reconstructed images
(256 × 256) obtained at different iterations. The number of
subsets is 20. The image quality increases for more number
of iterations. This result shows the accuracy of the algorithm.

8. Discussion

High-performance computing is moving towards exascale
computing. Heterogeneous parallel machines with acceler-
ators such as graphical processing units (GPUs) have dem-
onstrated their capabilities beyond graphics rendering or
general purpose computing and are proved to be well suited
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for data intensive applications. However, the communication
bottleneck for data transfer between the GPU and CPU
has led to the design of the AMDs accelerated processing
unit (APU), which combines CPU and GPU on a single
chip. This new architecture poses new challenges. First,
algorithms have to be redesigned to take advantage of this
architecture. In addition, the programming models differ
between vendors lacking the portability of algorithms across
various heterogeneous platforms. With the future of general
purpose computing moving towards APUs, it is important
to understand the behaviour of these architectures on high
performance computing applications.

As a stepping stone to understand the applications that
can be studied on APUs, we have designed, developed,
and implemented the OS-SART computed tomography
algorithm on on-chip accelerator, the Cell BE. Cell BE has
features similar to the APU. Therefore, we strongly believe
that the algorithm design would remain intact without any
modifications. That is the major impact of our algorithm
design. Our algorithm carefully takes into consideration the
different components of the Cell BE, the PPE (or CPU), and
SPE (SIMD processors) and subdivides the tasks accordingly.
Fine-grained data intensive tasks are offloaded to SPEs,
while tedious tasks of data distribution and gathering are
performed by the PPE. On an APU, the PPE tasks can be
computed by the CPU and SPE tasks by the GPUs.

Porting of the algorithms from Cell BE to AMD APU is
not straight forward due to the different programming par-
adigm. However, recently, OpenCL has been regarded as the
standard programming model for heterogeneous platforms.
The parallel code used in the paper can be rewritten in
OpenCL providing easy portability onto the APUs.

One of the drawback of Cell BE is its limited memory
storage on SPEs. The APU rectifies this with its large GPU
memory size. The many cores available on the GPU will
allow increased number of iterations for more accuracy for
the same data size used in this paper without degrading the
performance. We will also have the ability to experiment with
larger data sizes.

Finally, in commercial CT machines, the Fourier back
projection method is the algorithm of choice. This is partly
due to the tremendous amount of computational power
(required by iterative techniques) only obtained through su-
percomputers, making them unusable or unaffordable due
to very high computational cost. However, with powerful
general purpose computers in the market, it should be easy
to develop iterative algorithms for use in real time to help
medical practitioners with real time diagnosis.

9. Conclusions and Future Work

In this paper, we efficiently mapped the OS-SART algorithm
using the architectural features of the Cell BE. One of the
main drawback of the Cell BE is the limited memory storage
on each of the SPEs. To circumvent this problem, we used
rotation-based algorithm that incorporates a technique to
calculate the projection angles using less memory. Though
this was efficient, it also added to the number of transfers
required to DMAin and DMAout the data from main
memory to local store on SPE, which was a bottleneck as
the number of SPEs increased. However, in comparison to
a shared memory machine, the proposed algorithm on Cell
BE performed much better.

The results showed that the number of ordered subsets
impacts the sequential processing time on one SPE. However,
Cell-based OS-SART on one SPE was five times faster than
OS-SART on AMD Opteron core for one subset and one
iteration. As the number of subsets increased with number
of iterations, the speedup also increased. In the future, we
will modify the algorithm using double buffering to overlap
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Figure 8: Reconstructed images at different iterations for 20 subsets.

DMA transfers with computations in order to alleviate the
impact of DMA transfers.
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