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Abstract

The efficient and reliable communication of data from multiple sources to a single receiver

plays an important role in emerging applications such as wireless sensor networks. The

correlation among observations picked-up by spatially distributed sensors in such a network

can be exploited to enhance the efficiency and reliability of communication. In particular,

information theory shows that optimal communication of information from correlated sources

requires distributed joint source-channel (DJSC) coding.

This dissertation develops new approaches to designing DJSC codes based on low density

parity check (LDPC) codes. The existence of low complexity code optimization algorithms

and decoding algorithms make these codes ideal for joint optimization and decoding of multi-

ple codes operating on correlated sources. The well known EXIT analysis-based LDPC code

optimization method for channel coding in single-user point-to-point systems is extended to

the optimization of two-user LDPC codes for DJSC coding in multi-access channels (MACs)

with correlated users.

Considering an orthogonal MAC with two correlated binary sources, an asymptotically

optimal DJSC code construction capable of achieving any rate-pair in the theoretically-

achievable two-user rate-region is presented. A practical approach to realizing this scheme

using irregular LDPC codes is then developed. Experimental results are presented which

demonstrate that the proposed codes can approach theoretical bounds when the codeword

length is increased. For short codeword length and high inter-source correlation, these DJSC

codes are shown to significantly outperform separate source and channel codes.

Next, the DJSC code design for the transmission of a pair of correlated binary sources

over a Gaussian MAC (GMAC) is investigated. The separate source and channel coding is

known to be sub-optimal in this case. For the optimization of a pair of irregular LDPC codes,



the EXIT analysis for message passing in a joint factor-graph decoder is analyzed, and an

approach to modeling the probability density functions of messages associated with graph

nodes which represent the inter-source dependence is proposed. Simulation results show that,

for sufficiently large codeword lengths and high inter-source correlation, the proposed DJSC

codes for GMAC can achieve rates higher than the theoretical upper bound for separate

source and channel coding.
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Chapter 1

Introduction

Digital communication has revolutionized voice, data and video communications in the past

few decades. A key advantage of digital communication over analog communication is the

possibility of using source coding for data compression and channel coding for channel er-

ror correction. The use of near optimal source and channel codes allows the realization of

digital communication systems whose performance can approach the fundamental limits pre-

dicted in information theory [5]. This dissertation is concerned with new source and channel

code designs for wireless sensor networks which can be used to acquire and communicate

information from correlated sources.

1.1 Point to Point Communication

A fundamental model of a digital communication system is shown in Fig. 1.1 for com-

munication between a single information source and a single destination. As shown, the

transmitter consists of a source coding module, a channel coding module, and a modulator.

The modulated signal is transmitted through a physical channel. The most common single-

user channel models include binary symmetric channel (BSC), the additive white Gaussian

noise (AWGN) channel, Rayleigh fading channel [6]. The channel output signals are then
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Information
Source X
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Digital Channel

Figure 1.1: A basic model of a digital communication system.

demodulated and decoded to recover the information. We now briefly describe the function

of each module.

Source coding (or signal compression) refers to the process of representing an information

source in digital form, most commonly as a sequence of binary symbols. The main objective

of source coding is to find the most efficient digital representation in terms of utilization of

communication resources such as storage, channel bandwidth, etc, by elimination any redun-

dancies in the signals generated by the information source. Such a representation is usually

referred to as a code (and hence the term source coding). When the information source is

discrete, the source coding process can be one-to-one in that original information can be ex-

actly recovered from the codewords. The idea of lossless source coding was first presented by

Shannon in his landmark paper in 1948 [1]. He associated with each discrete source, a mea-

sure referred to as the entropy, which is the minimum rate at which a discrete source can be

described by a coded representation. When the information source is analog, source coding

is preceded by sampling (mapping of an analog signal to discrete-time real values) followed

by quantization (representing those sampled real numbers by binary codewords). For analog

signals, source coding introduces some distortion and hence termed as lossy source coding.
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The objective of lossy source coding is to find the most efficient representation for the source

which minimizes the average distortion between the original signal and the coded version

(in terms of a distortion measure such as the mean squared error). For a given source and

a distortion measure, the rate-distortion function [7], describes the minimum rate at which

the source can be digitally represented at a given level of distortion. For some early work

on source coding, see for example [8], [9] and references therein. Recent developments in the

field of lossy source coding are summarized in [10]. This dissertation is concerned with the

communication of digital sources and hence lossless source coding. The method developed

here can however be applied to analog sources after analog-to-digital conversion of the analog

signals.

The goal of channel coding (or error correction coding) is to introduce a controlled amount

of structured redundancy into a sequence of binary digits (bits) transmitted over a noisy

channel, so that any errors that occur in the channel can be detected and corrected at

the receiver. The pioneering work on channel coding was also done by Shannon in [1],

where the theoretical limit of the amount of the minimum amount of redundancy required

to achieve near error-free communication over a channel was defined in terms of a quantity

called the channel capacity. The channel capacity is the highest rate at which the reliable

communication of information over the channel is possible. The higher the capacity of a

channel, the lesser the redundancy that has to be added to the transmitted bit-stream and

vice versa. One of the pioneering practical approaches to channel coding was developed by

Hamming [11] in 1950. A recent review of progress in channel coding can be found in [12]

and [13].

In general, it is not necessary to have two separate codes for source coding and channel

coding. The separation of source coding and channel coding is merely a decomposition

used for the purposes of easy analysis and code design. In theory, one could use a single

code to perform both source and channel coding. A single code which maps a sequence of

3



symbols or samples from an information source to a sequence of channel input codewords, is

referred to as a joint source-channel (JSC) code. However, an important question is whether

the concatenation of an optimal source code and an optimal channel code can also be an

optimal JSC code. In [1], Shannon proved that for point-to-point communication (as shown

in Fig 1.1) of a discrete memoryless source by lossless coding, the individually optimal source

and channel codes are also jointly optimal if the channel is discrete and memoryless and if the

encoding and decoding can be performed on infinitely long sequences of symbols. That is to

say that, separate source and channel codes can be asymptotically optimal for point-to-point

communication. Under these conditions, reliable communication is possible at the lowest

possible bit rate only if the entropy of the source is less than the capacity of the channel.

This concept is elegant and attractive since it allows us to design the optimal source coding

module independent of the optimal channel coding module. It also gives us the freedom to

use the same channel code for many different applications that uses the same communication

channel (only the source coding module needs to be changed). However, it is easy to see

that in practice separately designed source and channel codes cannot be optimal as it is

impractical to design codes which operate on infinitely long bit sequences. Therefore, in

practical communication systems where one is essentially restricted to finite length codes,

the use of JSC codes may lead to significant performance improvements. This problem is

referred to as JSC coding (JSCC). JSCC has been studied extensively in the literature and

various practical techniques have also been proposed, see [14–17]. However, much of this

work has been focused on point-to-point communication.

1.2 Multiuser Communication

We now focus on an important class of systems in which multiple sources, commonly re-

ferred to as users, communicate with multiple destinations (or sinks), possibly over a com-

munication network. The motivation for the research carried out in this dissertation comes

4



from a particular multi-user communication system referred to as a wireless sensor network

(WSN) [18,19]. In a WSN many spatially distributed sensor nodes transmit their respective

observations to a central processor (i.e. a single destination). Due to the fact that sen-

sors observe a physical process at different points in space, the observations picked up by

different sensors are highly correlated. In such a situation the communication efficiency can

be increased if the sensors collaborate during the coding process. However, the sensors in a

WSN are typically required to be simple devices with very limited battery power and hence

cannot have the complex communication functionalities required to communicate with each

other. In such a situation an alternative approach to efficient data compression is distributed

source coding (DSC).

Distributed source coding is a source coding method by which two or more physically sepa-

rated but statistically correlated information sources are separately encoded (or compressed)

and jointly decoded (or decompressed) at a central location. The pioneering theoretical work

on DSC was done by Slepian and Wolf [20] in which they considered the communication of

multiple correlated discrete sources to a single decoder. For correlated analog sources, a

similar work was done by Wyner in [21,22]. A connection between channel coding and DSC

was identified by Wyner in [23] where he showed the possibility of using linear channel codes

to practically implement the proposition made by Slepian and Wolf. A detailed review of

recent work, including numerous applications of DSC, can be found in [24]. With the ad-

vancements in channel coding, many practical techniques for DSC were developed later, and

it was found that good channel codes can also be used to design good distributed source

codes. DSC is thus considered to be one of the enabling technologies in WSN’s. A review of

recent work on DSC for WSN’s can be found in [24,25].

Just like the case of single user communication, the channel coding problem in the case of

multiple sources and/or multiple sinks has been a topic of considerable interest in information

theory literature [23, 26, 27]. The problem of communicating of many sources to a single

5
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Figure 1.2: A multi-user communication system which uses a MAC.

destination leads us to the study of the multiple access channel (MAC) [5], in which many

sources share a common channel to transmit their information to a single destination. A

simple multi-user communication system model which uses a MAC is shown in Fig.1.2.

Examples for MAC include satellite communication with many independent ground stations,

a cellular network where many cell phones communicate with a base station, and WSNs. It

turns out that the separation of source and channel coding in general does not lead to optimal

codes in a MAC scenario even if the codeword lengths are allowed to be infinite [5]. In other

words, using an optimal distributed source code followed by an optimal channel code with a

MAC is in general, suboptimal (there are some special cases where separation does hold, see

for example [28], [29]). A very simple toy example is given in [30] to emphasize this point.

Based on the above observations, it is natural to seek distributed joint source channel

(DJSC) coding schemes to achieve optimal performance in a MAC scenario. The focus of

this dissertation mainly is to investigate the practically important cases in which DJSC

coding for a MAC can strictly yield better performance compared to separately designed

source and channel codes, and then to develop practical approaches to design DJSC codes

which can approach these performance improvements. The improvement may be in terms

of higher bit rates at a given channel noise level, higher level of reliability at a given rate,

or a reduction in the computational complexity of the encoding and decoding algorithms

6



at a given rate and channel noise level as compared to a commonly used separation-based

designs. One of the challenges in this problem is to design a single JSC code which can

simultaneously exploit the correlation among multiple sources for both data compression

and channel error correction. While various theoretical aspects of this problem have been

studied in previous work (see e.g. [28–31]), practical design of DJSC coding schemes is an

area where much work remains to be done. Some previous work on channel code-based JSC

code design for single user communications can be found in [17] and channel code design

for multiple user communications has been considered in [4]. JSC code designs can be very

promising especially in WSN’s where the data sensed by different sensor nodes is highly

correlated and much can be achieved if this correlation is exploited by a DJSC code for both

data compression and channel error correction. Combining ideas from DSC and JSC coding

is pivotal in developing efficient DJSC coding schemes.

When developing DJSC coding schemes for a multi-user system with a large number of

sources (such as a WSN), an important issue to be considered is the computational complex-

ity of the encoding and decoding algorithms. Linear graph based codes [32] with iterative

decoding algorithms describe a class of codes which promises low encoding and decoding com-

plexity while maintaining an excellent level of performance. They have been efficiently used

for both source coding and channel coding in single user communication systems [17,33–35].

Linear graph based codes accompanied with iterative decoding algorithms therefore are nat-

ural and promising candidates for the implementation of DJSC coding system over a MAC.

1.3 Contributions and Outline of this Dissertation

Chapter 2 presents the background on the problem of source and channel separation in

coding and lays the foundation for subsequent new developments carried out in this disser-

tation. The source-channel separation considered in information-theoretic terms for single

user and multiuser communication. Special emphasis is given to the multiuser case where
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the separation does not hold in general.

In Chapter 3, DJSC coding problem is discussed in detail. Specifically, the focus is

place on practical channel coding approaches which have been used to implement DJSC

coding schemes developed in this dissertation. The relationship between DJSC coding and

conventional channel coding is discussed and it is shown how good channel codes can be

used to implement efficient DJSC coding schemes as well.

In Chapter 4, a new approach to DJSC coding of two binary sources over independent

(orthogonal) channels is proposed, and algorithms for code design and decoding are developed

[36–38]. It is shown that the proposed codes construction is asymptotically optimal in that

any rate-pair in the achievable rate region for this problem can be realized, if sufficiently

long codes are used. The proposed code construction implicitly rely on time-sharing of the

two codes to achieve any given set of rates in the achievable rate region. The practical

approach to implementing the proposed code construction based on systematic irregular

LDPC codes is then developed. This approach involves the design of a pair of LDPC codes

with unequal error protection (UEP) properties. The two codes are jointly decoded by the

belief propagation algorithm applied to their joint factor-graph. We rely on low-complexity

EXIT analysis commonly used for single user LDPC code to jointly optimize two LDPC

codes. However, it is shown that the Gaussian approximation of the density functions of

the messages commonly used in EXIT analysis of single-user LDPC code design does not

necessarily apply to the joint design of two LDPC codes for correlated sources. It is however

established the messages associated with graph nodes representing the dependence between

the two sources can be well modeled by Gaussian mixture models. An extensive set of design

examples and simulation results are presented to demonstrate the performance advantages

of the proposed DJSC codes over separate source and channel coding, as well as other DJSC

code designs reported in the literature. Although, theoretically the separation of source and

channel coding is optimal for communicating correlated sources over independent channels,
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the experimental results presented here show that for short to moderate codeword lengths

(on the order of few hundreds to few thousand bits ), the proposed DJSC codes outperform

a setup comprising of a DSC code for both sources followed by independent channel coding

of the channel inputs.

In Chapter 5, a new approach to code design for the transmission of two correlated

binary sources over a Gaussian MAC (GMAC) is developed. This problem is inherently more

difficult to solve as compared to that considered in chapter 4 as the transmissions from the

two sources interfere with each other in the channel. As already discussed, in this particular

case, the source-channel separation is known to be even theoretically sub-optimal. The

approach developed here involves the optimization of two irregular LDPC codes with identical

rates, which are decoded using a joint factor-graph that accounts for inter-source dependence.

In contrast to codes considered in Chapter 4, the DJSC codes developed in this chapter uses

the a priori known inter-source correlation entirely to correct the errors due to noise and

mutual interference in the channel (no source coding is therefore achieved). However, in this

case, the same performance that can be achieved with independent sources (or when inter-

source correlation is ignored as done in conventional source-channel separation-based coding)

can be achieved at a lower transmission rate (or improved performance at the same rate).

While we use low-complexity EXIT analysis as in Chapter 4 for joint code optimization,

it is shown that the messages associated with the nodes in the decoder factor graph that

represent the inter-source dependence have a highly skewed probability density function,

making the expressions used with EXIT analysis of single-user LDPC codes inapplicable

to this case. In order to address this problem, an alternative approach is introduced in

which messages associated with nodes representing the inter-source dependence are fitted

with Gaussian densities by Monte-Carlo based estimation of the modes of the empirical

distributions. The experimental results are presented which demonstrate that the proposed

DJSC code designs can outperform conventional separate source and channel codes when
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communication correlated sources over a GMAC.

Finally, in Chapter 6, conclusions are summarized and possible future directions of re-

search are identified.
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Chapter 2

Source-Channel Separation: A

Theoretical Perspective

In this chapter, the theoretical optimality of source and channel coding in both single user

and multi-user communication is investigated. The theoretical bounds for the achievable

rates in source coding and in channel coding are considered and their significance is discussed.

These theoretical bounds provide a benchmark for the performance of practical DJSC coding

methods which are to be introduced in subsequent chapters.

2.1 Single User Communication Systems

Consider communicating a single source represented by a random variable X to a single

destination over a noisy channel.

2.1.1 Lossless Source Coding Theorem [1]:

Theorem 1. The rate R (in bits per symbol) required to represent the discrete random

variable X ∈ X is given by

R ≥ H(X), (2.1)
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where, the entropy of the discrete random variable X is defined as

H(X) =
∑
x

p(x) log2

1

p(x)
, (2.2)

p(x) = Pr[X = x] for x ∈ {1, . . . , |X |}.

The entropy is measured in bits (if natural logarithm is used in the definition of H, the

units are nats). The above relation gives a universal lower bound for lossless compression of

a discrete source.

Unlike a discrete source, the digital representation of a continuous source is always lossy,

since the exact representation of an arbitrary real number requires infinite bits. Therefore,

the minimum achievable rate R in compression of a continuous source is given by its rate-

distortion function [1]. In this case, the minimum rate R required to represent the source with

an average distortion D is given by the rate-distortion function R(D). Note that lossless

compression is a special case of lossy compression in which D = 0. In this dissertation,

sources considered are discrete unless explicitly mentioned.

2.1.2 Channel Coding Theorem [1]:

Coming back to the channel coding problem, consider a communication channel whose input

and output are given by random variables X and Y respectively. Suppose a sequence of k

source symbols are mapped to a sequence of n channel symbols. We say that asymptotically

error-free or reliable communication is possible at rate R = k/n if the probability of decoder

error can be made to approach zero in the limit k, n→∞.

Theorem 2. The transmission rate R (in information bits per transmission) at which asymp-

totically error-free communication is possible is upper bounded by [1]

R ≤ C, (2.3)
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where C is the channel capacity given by maxp(x) I(X;Y ) and

I(X;Y ) =
∑
x

∑
y

p(x, y) log2

p(x, y)

p(x)p(y)
(2.4)

is the mutual information (in bits) between X and Y .

2.1.3 Source-Channel Separation principle [1]:

Speaking in information theoretic terms, the meeting point for the branches of source coding

and channel coding is the joint source channel coding theorem [5].

Theorem 3. Asymptotically error-free communication of a source with entropy H over a

channel with capacity C is possible if H < C. Conversely if H > C, asymptotically error-free

communication is not possible.

An immediate consequence of this theorem is that if H < C then reliable communication

can be achieved by separate source coding and channel coding. Therefore, the above theorem

is also termed as the separation theorem or separation principle. This optimality holds if both

source and channel are ergodic and memoryless and infinite length codewords are allowed.

Another way of putting this is to say that H < C is a necessary and sufficient condition

for the separation principle to hold. If however, H < C is a sufficient condition but not a

necessary condition then in which case the separation principle does not hold.

An informal proof of the joint source channel coding theorem is as follows. Assume that

we want to transmit n symbols per transmission from a source with entropy H through a

channel with capacity C. The amount of information we have is nH symbols, and hence by

using ideal source coding, we can compress the source to nH symbols. Since the capacity

of the channel is C, by using an ideal channel coding we can transmit nH bits using nC

transmissions. It now follows that a rate of n source symbols per transmission is possible

only if H ≤ C.
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In the above example, the source coder is assumed to achieve the bound (2.1) and the

channel coder is assumed to achieve the bound (2.3). However this ideal situation cannot be

realized in practical scenarios since theoretically source coding and channel coding bounds

can be achieved only in the limit of infinite codeword lengths (or at least, for very large code-

word lengths) [5]. What if we need to communicate a symbol sequence of finite length (which

cannot even be considered as very large)? This issue along with issues like complexity (how

costly is the encoding/decoding process if the sequence length is very long) and the encod-

ing/decoding delay (how much waiting time is allowed before the actual encoding/decoding

process starts) are important due to the ever-increasing demand for high data rates and low

latency constraints associated with real-time applications such as video streaming. So under

these conditions, a joint source-channel code (i.e. a code which directly maps the source

symbols to channel input symbols) is likely to outperform a combination of separate source

and channel codes.

Before we proceed, it is worth noting that the separation theorem has also been considered

without the conditions of stationarity and ergodicity, see [39].

2.1.4 Joint Source and Channel Coding

Shannon hinted in his work [1] about exploiting source redundancy for channel error cor-

rection. A simple example given in [1] is the English language which has a redundancy of

approximately 50%. As a results, a typical telegraph message can be compressed to about

half its size by using lossless source coding. This is in practice not done since redundancy

helps to combat any noise (in the form of erasure or scrambling of letters) at the receiver.

This redundancy allows the correction of any errors as words can be understood from the

context even when some letters are missing. Joint source-channel (JSC) coding follows this

idea. In ideal JSC coding, a single code which simultaneously achieves both data compres-

sion and channel coding is constructed by taking into account both source statistics and
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channel statistics. That is, source messages are directly mapped to codewords which can be

transmitted over a noisy channel. On the other hand, a more practical approach is to use

source redundancy to facilitate the channel error correction at the decoder. This approach

is a subset of JSC coding and is usually referred to as joint source-channel decoding [14].

Several other work exist where the source redundancy (partial or full) is exploited at the

channel decoder to improve the error resilience, see for example, [40]. From the source cod-

ing perspective, JSC coding is treated as a combination of arithmetic decoding and MAP

decoding in [41]. Several universal algorithms (i.e. algorithms which are good for a class of

sources) for joint source channel decoding are presented in [42]. Analysis and optimization

of JSC codes based on sparse graphs appear in [43] (irregular LDPC codes) and [16] (Raptor

codes). Similar practical JSCC schemes using sparse graph-based codes can be found in [44]

and references therein. Some of the applications in which ideas of JSC coding has been

considered are as follows:

1. In GSM second generation cellular wireless system, the data compressor leaves some

residual redundancy prior to channel encoding, which can be exploited by channel

encoder and/or decoder [42].

2. The decoding time of the Fountain codes (a class of codes known to perform very well

for erasure channels) depends upon the erasure rate. By exploiting the redundancy in

the source, decoding time can be improved. This has applications in data communica-

tion over the Internet where erasures due to network packet losses are usual [42].

3. The use of maximum a posteriori probability (MAP) decoder in place of maximum

likelihood (ML) is more appropriate if the source is not uniformly distributed, i.e., the

source has some redundancy. This is typical in decoding based on message passing

algorithms [35].
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To complete the picture, we also note that there is an overhead involved in making the

source statistics available to the decoder. Also, the decoder complexity usually increases

when correlation or memory in the source are exploited in JSCC [42].

2.2 Multiple User Communication Systems

In this section, we consider the problem of reliably communicating two or more sources

(possibly dependent) to a single destination.

Distributed source coding

Given the recent interest in WSNs, an important extension of the source coding problem

is compressing multiple correlated sources in a distributed fashion [45, 46]. In this case,

each source has to be compressed by a separate encoder. Ideally, the redundancy within

each source as well as the correlation between the sources should be exploited for efficient

compression. It appears that for optimal performance, all sources must be encoded jointly.

The joint encoding of all the sources not only requires encoders to collaborate employing

some form of inter-source communication, but is in general computationally very complex

and impractical when the number of sources is large. The joint coding is also impractical

when the sources are not co-located. Parallel to the aforementioned single user lossless source

coding theorem by Shannon [1], perhaps the most basic result for discrete correlated sources

was proven by Slepian and Wolf in their landmark paper [47] in 1973. This theorem shows

that joint encoding is not required for optimal communication, provided all the sources can

be decoded by a joint decoder.

Theorem 4 (Slepian and Wolf [47]). The achievable rate region for the distributed source
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Figure 2.1: Achievable rate region for distributed source coding of two sources X1 and X2.

coding of two sources (X1, X2) drawn i.i.d from p(x1, x2) is given by

R1 ≥ H(X1 | X2),

R2 ≥ H(X2 | X1),

R1 +R2 ≥ H(X1, X2), (2.5)

where H(Xi|Xj) =
∑

xj

∑
xi
p(xi, xj) log2

1
p(xj |xi) for i, j = 1, 2 is the conditional entropy of

the random variable Xi given the information of random variable Xj.

This is the 2-user equivalent of the Shannon’s source coding theorem given by (2.1). The

achievable rate-region given by Slepian-Wolf theorem is graphically shown in Fig. 2.1. The

above theorem can be easily extended to more than two sources. The dimensionality of the

achievable region is then the number of sources involved. The Slepian-Wolf theorem defines

a lower bound to the source coding rates for multiple sources. Here it is important to note

that if the sources are compressed up to the given limits, the outputs of the source encoders

are independent. Also interesting is the fact that if the source outputs (or the encoder inputs)

are independent, then H(X1|X2) = H(X1) and H(X2|X1) = H(X2) and we get the result

in (2.1).
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Channel coding

The most basic result on the achievable rates in channel coding for multi-users channels (e.g.,

MAC) has been given by Cover [5]. Before the theorem is stated, it is appropriate to give a

formal definition for a MAC. The following definition is due to Cover [5]:

Definition 1 (Multiple access channel). An m-user multiple access channel is completely

characterized by finite or countably infinite input alphabets X1, X2, · · · , Xm, output al-

phabet Y and a probability transition matrix p(y|x1, x2, ..., xm).

The following theorem gives the achievable channel coding rates for two users [5]:

Theorem 5 (Capacity for a 2-user MAC). The capacity of a MAC (X1×X2, p(y|x1, x2),Y )

is the closure of the convex hull of all (R1, R2) satisfying

R1 ≤ I(X1;Y | X2),

R2 ≤ I(X2;Y | X1),

R1 +R2 ≤ I(X1, X2;Y ) (2.6)

for some product distribution p(x1)p(x2) on X1 ×X2.

The achievable rate region is shown in Fig. 2.2 for the special case of Y = X1 +X2.

It is important to note that the channel capacity given by the above theorem is de-

fined with respect to the product distribution p(x1)p(x2) as opposed to the joint distribution

p(x1, x2). In other words, this gives the MAC capacity that can achieved if the sources are

independent.

Source-channel separation

We next attempt to answer the following question: does the separation principle hold for

MAC as it does in the single user case ? In other words, when communicating correlated
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Figure 2.2: MAC Capacity region for two sources X1 and X2.

sources over a MAC, can we first apply DSC to the sources and then apply independent

channel coding to the output of each source coder ? A step towards the answer is to pose

this question differently as follows: referring back to Theorem 5, is it possible to increase the

upper bounds given on the right hand side of the inequalities by using a joint distribution ?

(a negative answer would mean that DSC modules can be optimized independently from the

MAC channel coding modules). First, note that the set of all possible distributions p(x1, x2)

is a superset of the set of all possible product distributions p(x1)p(x2). Secondly, the rate

bound of X1 depends upon the X2, since we have I(X1;Y |X2) on the right hand side of

the first inequality and vice versa. Now it is easy to see that the maximum rate achieved

by a joint distribution may be greater than that achieved by a product distribution. In the

language of information theory, we say that the separation principle does not hold in the

case of MACs even if coding of infinite length sequences are allowed.

The above described situation is highlighted in Fig. 2.3. Fig. 2.3 (a) shows the case of

separate source and channel coding which we refer to as non-collaborative separate multiple

access (NSMA) [29], while Fig. 2.3 (b) shows the case of joint source-channel coding which

we refer to as non-collaborative joint multiple access (NJMA). The term ’non-collaborative’

is used because the encoders of the two sources do not communicate with each other. So on

the basis of the above analysis, it can be argued that the system shown in Fig. 2.3 (b) can
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achieve lower rates than that shown in Fig. 2.3 (a).

2.2.1 Some Specific Cases Where Separation Holds for MAC

Despite the fact that a separation based system may be outperformed by a system with

joint source-channel coding, it is noteworthy that the separation principle is very attractive

both theoretically and for practical purposes in that it allows easier design of both source

coding and channel coding modules and also allows the use of the same channel code for

different types of sources. Therefore it is important to identify the conditions under which the

separation principle holds for a MAC. Stated in another way, the source-channel separation

holds for a MAC when the rates achieved by an NSMA system are equal to those achieved

by an NJMA system. This also serves as a sufficient condition for the separation principle to

hold [29]. Ray et al. [29] considered the communication of two discrete sources over a MAC

with additive noise and a MAC with erasures, and showed that if the inputs and the output

belong to the same finite set and the erasures/additive noise are independent of the inputs,

then the separation principle holds. Gündüz et al. [28] showed that the separation principle
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holds if the receiver has access to side-information about the sources and the two sources are

independent conditioned on the receiver side-information. For continuous Gaussian sources,

Xiao et al. [48] showed that if the MAC is orthogonal, i.e., if the communication links are non-

interfering, then separate source and channel coding can outperform uncoded transmission.

Here it should be emphasized that an uncoded system is a special form of joint source channel

coding since the source outputs are directly transmitted over the channel.

2.2.2 Some Specific Cases Where Separation Does Not Hold for MAC

It is shown in [29] that for discrete sources, if the output and the inputs belong to different

alphabets or if they belong to the same alphabet but the additive noise or erasures depend

upon the inputs, then separation principle does not hold. In a similar manner, for continuous

Gaussian sources, Gastpar [45] showed that if the communication links in the MAC are non-

orthogonal (i.e., there is interference), then an uncoded transmission can outperform separate

source and channel coding.

2.3 Practical Coding Schemes for Multiple Access

Coding for a MAC is challenging because of the presence of both noise and interference

in the channel, and due to the requirement of decoding all the sources using only a single

channel output. Different authors have considered various forms of MACs to devise schemes

for reliable communication. Palanki [49] in his PhD thesis considered the case of a binary

adder MAC (defined by Y = X1 + X2 and X1 = X2 = {0, 1},Y = {0, 1, 2}) and devised a

method known as graph splitting to split a single low density parity check (LDPC) code into

two constituent codes for encoding each user’s bit sequence. However, the method works

well only when the channel is noise-free. For a two-user noiseless binary adder channel, the

authors in [50] investigated convolutional encoding of each user and the ML decoding of both

users on a joint trellis.
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A scheme referred to as collaborative coding multiple access (CCMA) is discussed in [51],

where a real adder MAC with Gaussian noise and an arbitrary number of users is considered.

The design of uniquely decodable codes is discussed, and hard-decision ML decoding is

used at the receiver. The additive Gaussian MAC in which the bit stream coming from

each source is modulated using a suitable modulation scheme such as phase shift keying

(PSK) is discussed in [52] where the authors use iterative decoding methods for interference

cancellation.

It is noteworthy to mention that aforementioned work on MACs considers only the chan-

nel coding problem and assumes independent sources. As was discussed before, exploiting

the correlation between the sources in coding can lead to improved performance with MACs.

In Chapters 4 and 5 of this dissertation, two new approaches to practical design of DJSC

codes are developed, which effectively exploit the correlation among multiple sources for

reliable and efficient communication over two-user MACs.
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Chapter 3

Distributed Joint Source-Channel

Coding

In DJSC coding sequences of symbols from two or more correlated sources are mapped to the

inputs of a MAC such that all sources can be reliably decoded at the channel output. The

encoders of a DJSC code do not communicate with each other. However, the source-channel

mappings of the encoders takes into account the inter-source dependence and the redundancy

within each source to generate optimal channel input codewords. Before embarking upon

the topic further and discussing the existing work, it is beneficial to present in some detail

the practical schemes employed for distributed source coding (DSC). since DSC coding can

be considered as a special case of DJSC coding. It will be shown that certain types of DSC

code constructions naturally extends to DJSC code constructions. Based on these ideas, two

new approaches to the design of DJSC codes are then developed in Chapters 4 and 5.
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3.1 Distributed Source Coding

3.1.1 Asymmetric DSC

The proof of the Slepian-Wolf (SW) theorem is non-constructive, in that it does not provide

a practical code construction method. The main idea behind the proof is graph coloring

or binning [5]. Consider encoding a sequence of symbols of the source X2 given that X1 is

transmitted error-free, so that it is available at the decoder as side-information for decoding

X2. This referred to as completely asymmetric DSC. A distributed source code for X2 is

now constructed as follows. All X2-sequences which are jointly typical [5] with a given X1-

sequence are put into one bin, where there is a different bin for a each typical X1-sequence.

Since X1 is assumed to be transmitted in a lossless manner to the decoder (at the rate of

H(X1)), the randomness remaining in X2 will be H(X1, X2)−H(X1) = H(X2|X1), which is

the minimum rate at which X2 can be transmitted. However, code construction by binning

of typical sequences is not practical as the concept of typicality applies only to infinitely

long sequences. In order to practically realize SW codes, two main approaches have been

proposed in the literature. Both these approaches rely on techniques from channel coding (a

relationship first noticed in 1974 by Wyner [23]). The essence of this dependence on channel

coding is that, if two sources are dependent, then one source can be considered as the output

of a virtual communication channel whose input is the other source. Both approaches will

now be briefly explained. The two approaches are illustrated in Fig. 3.1.

Syndrome Approach

An (n, k) binary channel code maps k information bits to n channel code bits. An (n, k)

binary linear channel code C is completely specified by its k × n generator matrix G or by

its (n− k)× n parity check matrix H, i.e., all codewords in C are known if either G or H

is known [53]. If v is an arbitrary n-bit sequence, then the n − k bit sequence s = Hv is
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Figure 3.1: Practical schemes for DSC: (a) Syndrome Approach and (b) Parity Approach.
H is the parity check matrix, while x2p represents the n − k parity bits generated by the
systematic channel code with a k bit input x2. x̂2 is the decoded sequence for source X2.

known as the syndrome of v (so named since it enables us to find the error pattern present

in the received sequence). Corresponding to each syndrome, is a set of unique 2k, n-bit

sequences referred to as a coset of the code C . Note that the cosets of an (n, k) channel code

C constitute a binning scheme for n-bit sequences and can be used as a distributed source

code. Consider encoding an n-bit sequence x2 (representing source X2) using a channel code

C , given that the n-bit sequence x1 (representing source X1) is available as side-information

at the decoder. The syndrome approach for DSC [54–56] then compresses x2 by transmitting

the (n−k)-bit syndrome s2 of the coset to which the sequence belongs to. The channel output

is decoded by simply choosing that bit sequence in the coset of s2 which is closest (or has

the lowest Hamming distance dH) to side-information x1. Clearly, the compression ratio for

source X2 achieved through this method is n−k
n

. It can be shown that [23], if the channel

code C achieves the capacity of the virtual channel between X1 and X2, then this method

achieves the minimum transmission rates given by the SW theorem.
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Parity Approach

Consider encoding X2 , given that X1 is available as side-information at the decoder. Given

a systematic channel code C for the virtual channel between X1 and X2, the parity-bit

approach transmits for X2 only the parity bits (represented by x2p) obtained by encoding a

k bit sequence x2 using C . The decoder then determines x2 by decoding the k bit sequence

x1 using the received parity bits. Since encoding with a systematic (n, k) channel code

generates n− k parity bits, the compression ratio in this case is n−k
k

.

The parity approach is more robust against channel noise compared to the syndrome

approach. With the syndrome approach a wrong syndrome can be received due to channel

noise in which case the decoding error can be arbitrarily large, since the wrong bin is then

used for decoding of the side-information. In contrast, with the parity approach, each bit has

some functional relationship with other bits (through the parity check equations) which can

be still utilized in the decoder even if some parity bits are received incorrectly. For further

discussion on these two approaches, the reader is referred to [2, 57–59].

3.1.2 Non-Asymmetric DSC

The syndrome and parity approaches explained thus far consider the so called asymmet-

ric DSC they correspond to the corner points with co-ordinates (H(X2), H(X1|X2)) and

(H(X1), H(X2|X1)) in Fig. 2.1. Note however that the methods described in Fig. 3.1 can

be used to achieve any point on the boundary of the SW region by time-sharing of two

codes corresponding to the corner points. For example, the middle point on the boundary

of the SW rate-region (equal rates for both sources), can be achieved by sending X1 at the

rate H(X1) for half of the time and X2 at rate H(X2) for the remaining half. Achieving

any point on the boundary of the SW rate-region other than the corner points is termed as

non-asymmetric DSC while achieving the middle point on the boundary is called symmetric

DSC. Non-asymmetric DSC using the parity approach is discussed in [60] where it is shown
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that any point between the corner points can be achieved by transmitting some information

bits along with a fraction of parity bits. For DSC using the syndrome approach, the reader

is referred to [31,61].

3.2 Practical Schemes for DJSC Coding

In general, much less work on DJSC coding has been reported in the literature compared

to DSC, and particularly SW coding. The previous work related to DJSC coding problem

can be broadly divided into two categories, (i) those which use inter-source dependence to

achieve both compression and channel error control [2,3,33,62–64], and (ii) those which use

the inter-source-dependence only for channel error control [65–67]. Almost all work in the

first category are based on the parity-bit approach to SW coding. In the case of asymmetric

SW coding (i.e., the compression of one source treating another correlated source as decoder

side-information), an encoder based on the parity-bit method transmits only the parity bits

obtained by encoding the source using a systematic channel code for the virtual correlation

channel between the source and the decoder side-information. Compared to the syndrome-

approach, the parity-bit approach can be readily extended to account for channel noise,

by increasing the number of transmitted parity bits beyond the minimum number required

to achieve the SW limit. In [2] parity bits of a turbo code are used to realize a DJSC

code for transmitting a binary source over a binary symmetric channel (BSC) with decoder

side information. In [33], the design of DJSC codes for the asymmetric problem using a

systematic IRA code is investigated. In this case, noise in the channel between the encoder

and the decoder is accounted for by designing an IRA code with different channel conditions

for systematic bits and parity bits. Although, the optimized IRA codes in [33] appear to

outperform turbo-codes in [2], they still require long codewords (e.g., 105 bits) to achieve

good performance. In a closely related work [64], a DJSC code design for robust video

transmission over a packet-erasure channel is presented. A previous work on DJSC coding for
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Figure 3.2: Basic input/output relationship for (a) Orthogonal MAC, and (b) GMAC.

the non-asymmetric problem (i.e., both sources are compressed) is presented in [62,63], where

a turbo code obtained by serial concatenation of two convolutional codes is used for each

source to achieve both compression and channel error correction over additive white Gaussian

noise (AWGN) channels. An iterative message passing decoder is then used to decode both

sources simultaneously. Other related work, including an approach to DJSC coding over a

Gaussian multiple-access channel (MAC) using concatenated low density generator matrix

(LDGM) codes, can be found in [3].

3.3 Source-Channel Separation For MACs

In Chapters 4 and 5, we will discuss DJSC coding for two-user orthogonal MAC and the

two-user GMAC respectively. In the following, we discuss the optimality of the separation

of source and channel coding for these channels from an information theoretic perspective.
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3.3.1 Two-User Orthogonal MAC

A two-user orthogonal MAC is defined by two separate independent channels (see Fig.

3.2(a)). Since the the two channels are independent, the right hand side in (2.6) becomes,

I(X1;Y | X2) = I(X1;Y ),

I(X2;Y | X1) = I(X2;Y ),

I(X1, X2;Y ) = I(X1;Y ) + I(X2;Y ). (3.1)

The maximum rates that can be achieved over this channel is given by (2.6). From (3.1), it

is easy to see that the maximum rates are achieved by the product distribution p(x1)p(x2)

at the inputs of the channel, thus confirming that separation principle holds for a two-user

orthogonal MAC. A formal proof can be found in [68].

3.3.2 Two-User GMAC

For a two-user GMAC, the output Y depends on both X1 and X2 (see Fig. 3.2(b)) . The

dependence between X1 and X2 is modeled by the parameter α = Pr(X1 6= X2). Channel

output Y also depends on additive channel noise which has mean 0 and variance σ2. We

first note that since the channel output Y depends on both X1 and X2, I(X1, X2;Y ) 6=

I(X1;Y ) + I(X2;Y ), which means that in order to find the maximum rates as in (2.6), the

maximization has to be done over the joint distribution p(x1, x2). Also note that if α = 0.5,

X1 and X2 are independent. On the other hand when α ∈ [0, 0.5), X1 and X2 are dependent

(dependence increasing with the decreasing α). Also note that the maximum rate for any

distribution p(x1, x2) cannot be greater than I(X1, X2;Y ), although it is not known whether

this maximum can be achieved for dependent sources or not. In general, the capacity of a

GMAC with correlated source is not known.Therefore, we use the maximum of I(X1, X2;Y )

as an upper bound to the capacity in this case.
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Figure 3.3: I(X1, X2;Y ) as a function of inter-source correlation parameter α for different
values of GMAC noise variance σ2.

Fig. 3.3 shows I(X1, X2;Y ) as function of the correlation parameter α for different values

of the channel noise variance σ2. We see that in each case, the maximum of I(X1, X2;Y ) does

not occur at α = 0.5 which suggests that the maximum sum-rate that can be achieved when

X1 and X2 are dependent can be higher than the sum-rate that can be achieved when they

are independent. We will see in Chapter 5 that this is indeed the case and by making use

of source correlation in the code design and in decoding, we can in fact beat the theoretical

rate bound for independent sources.
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Chapter 4

Code Design for Orthogonal Multiple

Access Channels

Distributed source coding (DSC) [24] is considered as one of the enabling technologies for

wireless sensor networks (WSNs) in which a set of distributed sensors pick-up correlated

information and communicate their readings to a central decoder. The basis for lossless DSC

is the Slepian-Wolf (SW) theorem [47] which shows that the rates achievable with the joint

lossless encoding of two discrete sources can also be achieved with separate encoding, if joint

decoding can be used. After the initial work in [31], a considerable progress has been made

in the practical SW code design using cosets and syndromes of linear channel codes, see [69]

and references therein. However, such SW codes in practice suffer from two shortcomings: (i)

very long codes (> 105 bits [70]) are required to achieve acceptable performance, and (ii) they

can be extremely sensitive to channel noise [71]. Therefore, syndrome-based SW codes are

unlikely to be effective when low delay/encoding-complexity is required and communication

takes place over noisy channels, such as in WSNs. Even though the source-channel separation

is asymptotically (in codeword length) optimal for SW coding over independent channels [68],

joint source-channel (JSC) coding can outperform separate source and channel (SSC) coding,

when constraints are imposed on the codeword length. This provides the motivation to find

31



constructive methods for designing distributed JSC (DJSC) codes which are good for finite

codeword lengths.

This chapter presents an approach to designing distributed joint source channel (DJSC)

codes with arbitrary rates for communication of a pair of correlated binary sources over

noisy channels. The proposed framework is a generalization of the aforementioned parity-bit

SW coding approach. While our goal is to design DJSC codes which perform well for short

codeword lengths, the design procedure is based on a code construction which is shown to be

asymptotically optimal, i.e., any rate pair in the achievable rate region for the two sources

and respective communication channels can be reached. The practical implementation of the

proposed codes involves the design of channel codes with a specific unequal error protection

(UEP) property which is required to exploit the statistical dependence between the two

sources for simultaneous (distributed) compression and channel error correction. To this end

we develop a low-complexity linear programming algorithm based on extrinsic information

transfer (EXIT) chart analysis [72] for optimizing the degree profiles of a pair of irregular

LDPC codes which are jointly decoded by the belief propagation (BP) algorithm. As specific

examples of communication channels, we consider both binary-symmetric channel (BSC) and

additive white Gaussian noise (AWGN) channel with binary phase shift keying (PSK) inputs

(Bi-AWGN channel). Previously, LDPC code design for UEP has been considered in, for

example, [73, 74], and irregular LDPC codes which apply UEP for information and parity

bits in the context of DSC has been considered in [60]. However, these code designs only

assign a higher priority to information bits compared to the parity bits, and the channel

capacity is not explicitly taken into account. In contrast, the UEP code design procedure we

propose takes the capacity of the channels through which the various bits are transmitted into

account, and therefore is better suited for constructing DJSC codes with a short codeword

length.

We present experimental results which confirm that the LDPC codes designed by the
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proposed procedure exhibit the desired UEP property which is key to realizing good DJSC

codes. It has been observed that the code optimization procedure consistently produced

codes which are better than the best codes found by searching through the possible LDPC

degree profiles (as, for example, done in [60, 74]). In order to characterize the rate-loss

due to finite and short codeword lengths, we have investigated the rates achievable with

practically designed DJSC codes with codeword lengths, particularly in the range of 1000-

5000 bits, over both BSCs and Bi-AWGN channels. Importantly, simulation results confirm

that, when the constraints are placed on coding block length (or equivalently, the delay

and complexity) DJSC codes designed by the proposed method considerably outperform the

alternative SSC coding in which SW coding is used for distributed compression and separate

channel coding is used for channel error correction. Our simulation results also show that

the DJSC codes constructed from LDPC codes with optimized degree profiles outperform

the turbo coding schemes of [2] (for BSCs) and [3] (for AWGN channels). While our code

design procedure does not take into account the non-uniform distribution of source bits, we

demonstrate through simulations that joint decoding of the two sources allows us to exploit

the redundancy within each source in the form of non-uniform bit probabilities to further

offset the performance loss due to short codeword lengths.

4.1 An Approach to Optimal DJSC Code Construction

Let X1 and X2 be two dependent and uniformly distributed binary sources, i.e., H(X1) =

H(X2) = 1 bit. In this case, the dependence between X1 and X2 can be modeled by a “vir-

tual” BSC with cross-over probability p = Pr(X1 6= X2), where H(X1|X2) = H(X2|X1) =

H(p). In DJSC coding, each source is encoded by a separate JSC encoder and transmit-

ted to a decoder which jointly decodes both sources. We assume that the encoders for X1

and X2 transmit their outputs over independent channels with capacities C1 and C2 bits

respectively. Let the rates of the two encoders be RX1 and RX2 channel-uses/source-symbol.
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Figure 4.1: Achievable rate-region for DJSC coding of binary sources X1 and X2. The rates
RX1 and RX2 are in channel-uses/source-symbol.

It is known that source-channel separation is asymptotically optimal for our problem [68].

Hence, by combining Slepian-Wolf and Shannon’s theorems we can obtain the achievable

rate region for DJSC coding [63]. Suppose Xi is first encoded by a source code of rate Rs,i

bits/source-symbol and then by a channel code whose rate is such that the overall joint

source-channel coding rate is RXi channel-uses/source-symbol, i = 1, 2. From SW theorem,

we have Rs,1 ≥ H(X1|X2), Rs,2 ≥ H(X2|X1) and Rs,1 +Rs,2 ≥ H(X1, X2), and from channel
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coding theorem we have
Rs,i
RXi
≤ Ci, i = 1, 2. Then, it follows that

RX1 ≥
H(X1|X2)

C1

, (4.1)

RX2 ≥
H(X2|X1)

C2

, (4.2)

C1RX1 + C2RX2 ≥ H(X1, X2). (4.3)

This region is illustrated in Fig. 4.1.

We will now present a DJSC code construction, which can approach any rate-pair in

the achievable rate-region shown in Fig. 4.1. Consider encoding of k-bit sequences X1 =

(X
(1)
1 , . . . , X

(k)
1 ) and X2 = (X

(1)
2 , . . . , X

(k)
2 ) from X1 and X2. Suppose that the encoder for

X1 transmits the first t bits (X
(1)
1 , . . . , X

(t)
1 ), while the encoder for X2 transmits the last k−t

bits (X
(t+1)
2 , . . . , X

(k)
2 ), where 0 ≤ t ≤ k. Let the rate-parameter a = t/k, where 0 ≤ a ≤ 1.

We will next establish that, if an appropriate number of parity bits generated by encoding X1

and X2 using a pair of systematic channel codes are transmitted for the respective sources,

then all bits of X1 and X2 can be decoded asymptotically error-free. Furthermore, we will

prove that by varying a between 0 and 1, this encoding scheme can approach any rate-pair

in the achievable rate-region (4.1)-(4.3).

Let the encoder for X1 transmit m1 parity bits (in addition to source bits) obtained by

encoding X1 using a rate r1 systematic channel code and let the encoder for X2 transmit m2

parity bits obtained by encoding X2 using a rate r2 systematic channel code, where ri = k/ni

and ni = k + mi is the codeword length, i = 1, 2. For a given value of a, the JSC coding

rates are given by RX1 = (ak + m1)/k and RX2 = ((1 − a)k + m2)/k (channel-uses/bit).

This encoding scheme is illustrated in Fig. 4.2. We refer to those bits which are explicitly

transmitted by a given source as type 1 bits and those which are assumed to be transmitted

to the other source over the virtual correlation channel as type 2 bits. Note that each source

can transmit its type 1 bits reliably to the decoder provided that its channel code contains

35



Figure 4.2: The proposed DJSC code structure: codes for source X1 (top) and X2 (bottom).
By varying a between 0 and 1, any rate-pair in the achievable rate-region can be realized.

a sufficient number of parity bits to correct errors in the communication channel. Then,

both sources can be decoded asymptotically error-free at the receiver, if each code also has

a sufficient number of parity bits to “implicitly” send type 2 bits reliably to the other source

over the virtual correlation channel whose capacity is Cv = 1 −H(p). To see this, consider

the systematic code used for Xi as being composed of two sub-codes, one for type 1 bits

and the other for type 2 bits, such that mi = m′i + m′′i , where m′i and m′′i respectively are

the number parity bits in the sub-codes of Xi, i = 1, 2. Then, the codes in Fig. 4.2 can be

viewed as follows. A fraction a of time, the encoder for X1 transmits type 1 source bits and

the parity bits for type 1 source bits, while the encoder for X2 only transmits the parity bits

for type 2 source bits. The rest [a fraction (1 − a)] of the time, the roles of the encoders

for X1 and X2 are reversed. Clearly, after decoding type 1 bits of one source, type 2 bits of

the other source can be decoded. Note that this scheme is equivalent to time-sharing of two

corner points as in [47, Table I, Theorem g] where the subcodes for each source consist of an
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entropy code and an SW code.

Next we determine the minimum number of parity bits m′1 and m′′1 required for coding

X1 at a given value of a. Since the codes are systematic, without loss of generality, consider

a single (n1, k) code with m1 = m′1 + m′′1 parity bits for X1, used on the equivalent channel

formed by the parallel combination of the virtual channel and the communication channel.

Out of n1 = k + m1 code bits, (ak + m1) bits pass through the communication channel,

while (1 − a)k bits pass through the virtual channel. Therefore, we can reliably send a

maximum of (ak + m1)C1 + (1 − a)kCv bits of information in n1 channel uses, or I1 =

ar1C1 + (1 − a)r1Cv + (1 − r1)C1 bits/channel-use. According to the Shannon’s channel

coding theorem we require the code-rate r1 ≤ I1 and therefore it follows that

r1 ≤
C1

1 + (1− a)(C1 − Cv)
, (4.4)

m1 ≥
[1− C1 + (1− a)(C1 − Cv)]k

C1

. (4.5)

Similarly, by replacing (1− a) and C1 by a and C2 respectively, it can be shown that for X2,

r2 ≤
C2

1 + a(C2 − Cv)
, (4.6)

m2 ≥
[1− C2 + a(C2 − Cv)]k

C2

. (4.7)

In this work, we consider channels with binary inputs, such as BSC and Bi-AWGN channel,

for which C1, C2 ≤ 1 (while the capacity of the Bi-AWGN channel cannot be expressed in

closed-form, it can be evaluated numerically, see [32, pp. 194], [75] for details). From (4.5)

and (4.6), we obtain the corresponding lower bounds on achievable JSC coding rates for
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0 ≤ a ≤ 1 as

RX1 ≥
1− (1− a)Cv

C1

, (4.8)

RX2 ≥
1− aCv
C2

. (4.9)

Since H(X1|X2) = H(X2|X1) = 1 − Cv and H(X1) = H(X2) = 1, for a = 0 we have

RX1 ≥ H(X1|X2)
C1

and RX2 ≥ H(X2)
C2

while for a = 1 we have RX1 ≥ H(X1)
C1

and RX2 ≥ H(X2|X1)
C2

.

Therefore, with a = 0 and a = 1, the two corner points A and B of the rate-region in Fig.

4.1 can be achieved with the coding scheme in Fig. 4.2. Furthermore, for 0 ≤ a ≤ 1, (4.8)

and (4.9) imply

C1RX1 + C2RX2 ≥ 2− Cv. (4.10)

Since H(X1, X2) = 2 − Cv, (4.10) coincides with the sum-rate bound (4.3), i.e., any point

on the line AB in Fig. 4.1 can be achieved by our coding scheme for 0 ≤ a ≤ 1. Therefore,

the proposed DJSC code construction is asymptotically optimal. It should be noted that,

when C1 = C2 = 1 (i.e., channels are noiseless), the above DJSC code reduces to SW codes

considered in [60,76].

Separately decodable codes- An alternative coding scheme is to use a channel code for

each source which contains enough parity bits to reliably send type-2 source bits over the

concatenated channel formed by the virtual channel and the communication channel. In

this case, each source can be designed separately and decoded by an independent decoder

which receives channel outputs for both sources. The rate bounds for this scheme can be

obtained by replacing Cv in (4.5) to (4.10) by the appropriate concatenated channel capacity,

either C ′v (Cv and C2) or C ′′v (Cv and C1). Clearly, this coding scheme is sub-optimal since

C ′v, C
′′
v ≤ Cv, and the performance gap compared to jointly designed and decoded codes will

be significant for q >> p.
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4.2 Practical Code Design Procedure

The implementation of the optimal DJSC coding scheme in Fig. 4.2 requires a pair of channel

codes with a particular UEP property. More specifically, we note that, out of nj = k + mj

codeword bits of the source Xj, j = 1, 2, a fraction αj (type-1 bits) is transmitted through a

channel with capacity Cj, where

αj =
k

njCj
[1− ωjCv] , (4.11)

with ω1 = (1 − a) and ω2 = a. The remaining ᾱj = 1 − αj fraction of bits (type 2 bits) is

assumed to be transmitted through the virtual correlation channel with capacity Cv. Our

objective is to design for each source, a UEP code such that the level of protection provided

to each bit is commensurate with the capacity of the channel that the bit passes through.

In this section, we propose an approach based on irregular LDPC codes to achieve this

objective. In an irregular LDPC code, the number of edges incident on variable nodes which

represent the bits of a codeword in the bipartite graph of the code are chosen according to

some distribution [32]. In general, the code bits which correspond to nodes with a higher

degree (the number of connected edges) receive more protection (has a lower decoding error

probability) compared to those with a lower degree [74]. In this section, we follow this idea

to develop a procedure for jointly designing a pair of LDPC codes. In principle, approaching

the rate-bounds (4.1)-(4.3) using the DJSC code shown in Fig. 4.2 requires optimal joint

decoding of the codewords transmitted for both sources. When a separate LDPC code is used

for encoding each source, a close approximation to the maximum likelihood joint decoder

can be implemented by using the BP algorithm for iterative message passing between the

bipartite graphs of the two LDPC codes. Previously, joint decoding of two LDPC codes in

the context of syndrome-based WZ coding has been considered in [77,78]. The factor-graph

of the joint decoder used in our approach is shown in Fig. 4.3, where the two-sub-graphs on
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Figure 4.3: Factor graph of the joint decoder. X
(1)
1 , . . . , X

(k)
1 and X

(1)
2 , . . . , X

(k)
2 (see Fig. 4.2)

are the systematic information bits of the sources X1 and X2 respectively. Z
(1)
j , . . . , Z

(mj)
j ,

j = 1, 2 are the parity bits.

either side represent parity-check matrix H1 and H2 used for encoding two sources X1 and X2

respectively. The factor nodes in this graph represent either parity check constraints of each

LDPC code (parity-check nodes) or the joint probability Pr(X1, X2) of the corresponding

information bits of X1 and X2, which we refer to as correlation-check nodes. Bit-shuffling

operation in Fig. 4.3 is described at the end of this section.

In general, a length n irregular LDPC code with parity-check matrix H can be com-

pletely specified by the parameters (n, λ(x), ρ(x)), where λ(x) =
∑dvmax

i=1 λix
i−1 and ρ(x) =∑dcmax

i=1 ρix
i−1 are the edge-perspective degree polynomials of variable nodes and check nodes
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respectively, and λi (resp. ρi) is equal to the fraction of edges connected to variable (resp.

check) nodes of degree i, satisfying the constraints
∑

i λi = 1 and
∑

i ρi = 1 [32]. It is

known that a concentrated degree polynomial of the form ρ(x) = ρxs−1 + (1− ρ)xs for some

s ≥ 2 and 0 < ρ ≤ 1 is sufficient for achieving near optimal performance [79, Theorem 2]. A

well known simple method for constructing near-capacity irregular LDPC codes for a given

channel parameter (cross-over probability q for a BSC or noise variance σ2 for a BiAWGN

channel) and some fixed ρ(x), is to determine the coefficients λi which maximize the rate

of the code under BP decoding, subject to Gaussian approximation (GA) for the messages

passed in the decoder [79]. The code design in this case is a linear-programming problem of

the form [32, Ch. 4]: maximizeλi
∑

i≥2 λi/i, subject to constraints 1)
∑

i λi = 1, (0 < λi ≤ 1)

(normalization constraint), 2) λ2 < K/
∑

j(j− 1)ρj (stability condition), where the constant

K depends on the channel parameter, and 3) a linear inequality to ensure the convergence

of the BP algorithm [79, Sec. III] (decoder convergence constraint).

UEP code structure- In order to achieve the aforementioned UEP property, we define each

parity check matrix Hj using two separate degree polynomials λ
(1)
j (x) and λ

(2)
j (x) respectively

for type 1 and type 2 variable nodes, where j = 1, 2. Thus, the code for sourceXj is completely

specified by (nj, λ
(1)
j (x), λ

(2)
j (x), ρj(x)), where

λ
(k)
j (x) =

dvmax,j∑
i=2

λ
(k)
j,i x

i−1, (4.12)

and dvmax,j is the maximum allowable degree of variable nodes and 0 < λ
(k)
j,i < 1, k = 1, 2 is

the fraction (or density) of edges connected to a type k variable node of degree i, i.e.,

dvmax,j∑
i=2

(
λ
(1)
j,i + λ

(2)
j,i

)
= 1, (4.13)

for j = 1, 2. Let Ne,j be the total number of edges in the bipartite graph of Hj. Then, the

number of type 1 variable nodes is Ne,j

∑dvmax,j
i=1 λ

(1)
j,i /i, the number of type 2 variable nodes
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is Ne,j

∑dvmax,j
i=1 λ

(2)
j,i /i, and the number of check nodes is Ne,j

∑dcmax
i=1 ρi/i. It follows that the

average variable node degree is

d̄v,j =
1∑

i

λ
(1)
j,i

i
+
∑

i

λ
(2)
j,i

i

and the average check node degree is d̄c,j = 1/
∑dcmax

i=1 (ρi/i). Therefore, the design rate of

the code Hj is given by [32, (3.19)]

Rdes,j = 1− d̄v,j/d̄c,j. (4.14)

From (4.5), (4.6), (4.8), and (4.9) it follows that the JSC rates RX1 and RX2 are proportional

to 1/r1 and 1/r2 respectively. Therefore in order to design a code-pair which can achieve

the sum rate bound given in (4.10), we equivalently maximize Rdes,1 +Rdes,2. That is, for a

given s and ρ, we find the degree distributions λ
(1)
j (x) and λ

(2)
j (x), j = 1, 2, which maximize

the objective function

J =
2∑
j=1

dvmax,j∑
i=2

(
λ
(1)
j,i

i
+
λ
(2)
j,i

i

)
, (4.15)

subject to appropriate constraints. We now derive the constraints required, in addition to

the normalization constraint (4.13).

Stability condition- In LDPC code design, a constraint is required to enforce the decoder

stability condition determined by the channel model [32, 79]. While the condition used

in [32, 79] is exact for density evolution, it is also a good approximation for EXIT chart-

based design when concentrated check-node polynomials are used [79, pp. 664]. In our UEP

code design this constraint is different for type 1 and type 2 bits. From [32], it follows that

for type 2 bits, which pass through a virtual BSC of cross-over probability p, the stability

constraint is

λ
(2)
2 <

ᾱ

2
√
p(1− p)∑dcmax

i=2 (i− 1)ρi
. (4.16)

42



For type 1 bits, this condition depends on the physical communication channels. If the

channels are BSCs with error probability q, then we require

λ
(1)
2 <

α

2
√
q(1− q)∑dcmax

i=2 (i− 1)ρi
, (4.17)

whereas if the channels are Bi-AWGN channels with input ±1 and noise variance σ2, then

we require

λ
(1)
2 <

αe
1
σ2∑dcmax

i=2 (i− 1)ρi
. (4.18)

UEP constraint- Different to an LDPC code in which all bits pass through the same

channel, an additional constraint is needed in our UEP codes due to the fact that a fraction

of variable nodes must be type 1 and the rest type 2. To this end, consider the node-

perspective degree polynomial of the type 1 variable nodes in the graph of Hj (j = 1, 2),

Λ
(1)
j (x) =

∑dvmax,j
i=2 Λ

(1)
j,i x

i, where Λ
(1)
j,i is the number of degree i variable nodes of type 1. It

is easy to verify that Λ
(1)
j (1) =

∑dvmax,j
i=2 Λ

(1)
j,i = αjnj. Similarly, let Λ

(2)
j (x) =

∑dvmax,j
i=2 Λ

(2)
j,i x

i

be the node-perspective degree polynomial for type 2 variable nodes, where Λ
(2)
j (1) = ᾱjnj.

It follows that λ
(1)
j (x) and Λ

(1)
j (x) are related by

λ
(1)
j (x) =

d
dx

Λ
(1)
j (x)[

d
dx

Λ
(1)
j (x) + Λ

(2)
j (x)

]
x=1

. (4.19)

A similar relationship exists between λ
(2)
j (x) and Λ

(2)
j (x). Since λ

(1)
j,i is the ratio of the number

of edges connected to degree i variable nodes of type 1 to the total number of edges in graph

of Hj,

λ
(1)
j,i =

iΛ
(1)
j,i∑dvmax,j

i=2 iΛ
(1)
j,i + iΛ

(2)
j,i
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and hence ∫ 1

0

λ
(k)
j (z)dz =

Λ
(k)
j (1)

d
dx

(
Λ

(1)
j (x) + Λ

(2)
j (x)

)
|x=1

, k = 1, 2. (4.20)

It therefore follows that ∫ 1

0
λ
(1)
j (z)dz

Λ
(1)
j (1)

=

∫ 1

0
λ
(2)
j (z)dz

Λ
(2)
j (1)

, (4.21)

which leads to the following constraint relating λ
(1)
j (x) and λ

(2)
j (x) :

1

αj

dvmax,j∑
i=2

λ
(1)
j,i

i
=

1

ᾱj

dvmax,j∑
i=2

λ
(2)
j,i

i
, (4.22)

where j = 1, 2.

Joint decoder convergence constraint- Let IAC,j ∈ (0, 1] be the average extrinsic (a prior)

information in incoming messages to parity-check nodes of Hj. Also, let IEV,j(IAC,j) be the

average extrinsic information in outgoing messages from variable nodes. Then, for conver-

gence of the sum-product algorithm on the joint decoder graph, we require the two con-

straints [72]

IEV,j(IAC,j) > IAC,j, j = 1, 2. (4.23)

Note however that these two constraints are not independent. In deriving these constraints

specifically for our joint decoder graph, we need to first differentiate between type 1 and

type 2 nodes of each code. A given variable node in the decoder graph receives information

from the channel output, a set of parity check nodes, and exactly one correlation-check node

(see Fig. 4.3). Further note that, the channel information received by type 1 variables from

the channel is I
(1)
ch,j = Cj. However, since the type 2 bits are not explicitly transmitted,

I
(2)
ch,j = 0. Let IEC,j(IAC,j) be the average extrinsic information passed from parity-check

nodes to variable nodes in Hj, and ICC,j be the extrinsic information in messages passed

from correlation-check nodes to variable nodes of Hj. Then, the output extrinsic information
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from a degree i+ 1 variable node of type k in the graph of Hj is given by

I i,kEV,j = J
(
J−1(I

(k)
ch,j) + (i− 1)J−1(IEC,j) + J−1(ICC,j)

)
(4.24)

for k = 1, 2, where J−1(I
(k)
ch,j), (i− 1)J−1(IEC,j), and J−1(ICC,j) are respectively the average

means of the pdfs of incoming messages from the channel, other (i− 1) parity-check nodes,

and the correlation-check node, and J(·) is the mutual information function given by [72, (15)]

(both J(·) and J−1(·) can be computed using the approximation given in [75]). The average

output extrinsic information from a variable node of Hj is thus

IEV,j =
2∑

k=1

dvmax,j∑
i=2

λ
(k)
j,i I

i,k
EV,j. (4.25)

We note that for messages passed between parity-check nodes and variable nodes of either

LDPC code, the usual Gaussian approximation [79] can be applied. Therefore, IEC,j in (4.24)

can be computed using the duality approximation [80], [32, pp. 236]

IEC,j ≈ 1−
s∑

j=s−1

ρjJ
(
(j − 1)J−1(1− IAC,j)

)
. (4.26)

However, we will show that the pdf of an outgoing message of a correlation-check node is not

well approximated by a Gaussian. Therefore, computing ICC,j requires a different approach

as presented below.

As usual let the messages passed between nodes in the factor-graph be in the form of

log-likelihood ratios (LLRs). Consider a correlation check-node which receives the message

l
(2)
in from a variable node in X2 and computes the outgoing message l

(1)
out to be passed to a

variable node in X1. Let β
(1)
im = Pr(X1 = i|X2 = m) and β

(2)
im = Pr(X2 = i|X1 = m), where
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i,m ∈ {0, 1}, so that the likelihood-ratio computed in the correlation-check node is

Pr(X1 = 1)

Pr(X1 = 0)
=
β
(1)
10 Pr(X2 = 0) + (1− β(1)

01 )Pr(X2 = 1)

(1− β(1)
10 )Pr(X2 = 0) + β

(1)
01 Pr(X2 = 1)

.

Now, by replacing the ratio of prior probabilities by incoming LLR l
(2)
in from variable node

X2, we obtain the outgoing message of the correlation-check node as

l
(1)
out = ln

[
1 +B1 exp(l

(2)
in )

B2 +B3 exp(l
(2)
in )

]
, (4.27)

where B1 =
(1−β(1)

01 )

β
(1)
10

, B2 =
(1−β(1)

10 )

β
(1)
10

, and B3 =
β
(1)
01

β
(1)
10

. As usual, assume that the Gaussian

approximation holds for l
(2)
in which is passed from a variable node to a correlation-check node,

i.e., l
(2)
in is Gaussian with mean µ and variance 2µ [79]. The corresponding density of l

(1)
out

estimated via Monte-Carlo simulations shows that it is uni-modal (approximately Gaussian)

for small |µ| and bi-modal for large |µ|. A closer look at (4.27) shows that for small |µ|, l(1)out
is distributed around ln

(
1+B1

B2+B3

)
. On the other hand, for sufficiently large |µ|, l(1)out will be

distributed either around ln(B1/B3) (exponentials in numerator and denominator dominate)

or ln(1/B2) (exponentials are insignificant), giving rise to a bi-modal distribution. Typical

histograms are shown in Fig. 4.4 for various values of µ at p = 0.1. Therefore, we use a two-

component Gaussian mixture approximation for outgoing messages from correlation-check

nodes. The extrinsic information in outgoing messages from correlation-check node l
(1)
out can

therefore be given by ICC,1(IACC,2) = c1J(µ1) + c2J(µ2), where µ1 and µ2 are the modes of

the Gaussian mixture, and c1 and c2 are the weights and IACC,2 is the extrinsic information

received in l
(2)
in . These values can be estimated via Monte-Carlo-simulation, given the mean

µ = J−1(IACC,2) of l
(2)
in . For the messages passed from correlation-check nodes to variable

nodes of X2, ICC,2(IACC,1) can also be computed in a similar manner.

The objective function given in (4.15) as well as the constraints (4.13), (4.16)-(4.18),

(4.22), and (4.23) are linear in the unknown coefficients {λ(1)j,i , λ(2)j,i , 2 ≤ i ≤ dvmax, j = 1, 2}.
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Figure 4.4: Pdf estimates of input messages (top) and output messages (bottom) of the
correlation-check nodes for p = 0.1.

Therefore, it is straightforward to find the optimum solution using a linear program to

design both LDPC codes simultaneously. Note that sparse parity-check matrices H1 and

H2 obtained through this design procedure does not necessarily correspond to systematic

generator matrices. As usual, systematic codes can be obtained by the Gaussian elimination

method. However, as such codes have dense parity-check matrices (making BP decoding

impractical), a bit-shuffling operation is used in the joint decoder (Fig. 4.3) to rearrange the

systematic code-bits so that the codewords correspond to sparse matrices H1 and H2.

4.3 Simulation Results

We present simulation results to demonstrate the performance achievable with jointly de-

signed UEP-DJSC codes as proposed in this chapter. As DJSC coding is expected to signifi-

cantly outperform separate source and channel coding for relatively short codeword lengths,

we focus on encoding source sequences of length in the range of 1000− 5000 bits. The prac-
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Table 4.1: Degree profiles for UEP-LDPC codes generated by the design algorithm for dif-
ferent correlation parameter values p, BSCs with q = 10p, and the rate parameter a = 0.2.

p
0.002 0.004 0.006 0.008 0.01

ρ(x) 0.3x9 + 0.7x10 0.3x9 + 0.7x10 0.3x9 + 0.7x10 0.3x9 + 0.7x10 0.3x9 + 0.7x10

λ
(1)
1 (x) 0.099x+ 0.135x2 0.074x+ 0.23x2 0.076x+ 0.217x2 0.113x+ 0.168x2+ 0.165x+ 0.089x2+

+0.016x5 +0.148x7 0.065x19 + 0.153x20 0.0514x39 + 0.241x40

λ
(2)
1 (x) 0.325x+ 0.441x2 0.217x+ 0.110x2 0.185x+ 0.10x2 0.091x+ 0.131x2+ 0.058x+ 0.137x2

+0.263x5 +0.22x6 + 0.058x7 0.262x7 + 0.019x8 +0.084x7 + 0.102x8

+0.073x27

λ
(1)
2 (x) 0.201x+ 0.424x2 0.162x+ 0.286x2+ 0.153x+ 0.207x2+ 0.149x+ 0.141x2+ 0.141x+ 0.165x2+

+0.130x4 + 0.094x5 0.036x7 + 0.247x8 0.213x7 + 0.04x23+ 0.130x4 + 0.484x49 0.6031x49

+0.132x19 + 0.011x20 0.069x24 + 0.212x49

λ
(2)
2 (x) 0.076x+ 0.075x6 0.041x+ 0.085x7 0.02x+ 0.004x2+ 0.012x+ 0.033x4+ 0.013x+ 0.019x2+

0.083x7 0.019x5 + 0.031x49 0.06x49

R1 0.788 0.733 0.707 0.653 0.608
R2 0.744 0.653 0.577 0.508 0.433
r1 0.950 0.906 0.862 0.817 0.776
r2 0.880 0.790 0.712 0.641 0.576

Pe (Type 1 bits) 9.92× 10−5 9.95× 10−5 1.03× 10−4 9.94× 10−5 9.95× 10−5

Pe (Type 2 bits) 1.04× 10−4 9.92× 10−5 9.91× 10−5 1.05× 10−4 9.97× 10−5

tical code design procedure can be summarized as follows. Suppose we need to design a pair

of length n (bits) DJSC code with rates (RX1 , RX2) channel-uses/source-symbol, specified

by a particular value of the rate-parameter a. Given the value of a, the source-correlation

parameter p, and the channel noise level (probability q for BSC or noise variance σ2 for

Bi-AWGN channel), the optimization procedure presented in Sec. 4.2 is used to determine

the degree polynomials λ
(k)
j (x), j, k = 1, 2 together with the rates of the codes R1 and R2 re-

spectively. In choosing ρ(x), we have used dcmax = 20 (usually, a high dcmax tend to degrade

the performance of an LDPC code [81]) and ρ ∈ [0.3, 0.7] (we have observed that the choice

of the values of ρ is not critical to the performance of the code). Given λ
(1)
j (x) and λ

(2)
j (x),

a (n− kj) × n parity-check matrix Hj for the code for the source Xi is generated by using

a random inter-leaver of length n, where kj = nRj, j = 1, 2. Gaussian elimination is used to

convert a parity-check matrix into systematic form, from which the generator matrix of the

code is obtained. With a decoding error probability threshold Pd of the order of 10−4−10−5,

the joint decoder typically converged in less than 100 iterations.

In order to demonstrate the UEP properties of the DJSC codes, we present in Table

4.1 several examples of optimized degree profiles for UEP-LDPC codes for rate-parameter
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Table 4.2: Comparison of DJSC and DSC+C codes in terms of codeword lengths (in bits)
required to achieve a decoding error probability of 10−5 for different values of the correlation
parameter p, over BSCs with error rate q = 0.01.

p RX1 = RX2 DJSC-JD DJSC-SD DSC+C
(channel-uses/bit)

0.0001 0.78 5000 6910 12770
1.05 3020 4380 8210

0.001 0.79 5000 6830 12740
1.05 3130 4530 8420

0.1 1.05 5000 6370 12750

a = 0.2 and BSCs. In obtaining these results, we have let the channel error probabilities

of BSCs q = 10p so that the capacities of channels through which two types of bits pass

through are significantly different. In this table, the code-rates R1 and R2 of the final design

[calculated by plugging the final values of λ
(1)
j (x) and λ

(2)
j (x), j = 1, 2 into (4.14)], and

the upper-bounds r1 and r2 given by (4.5) and (4.6) respectively are also shown. The last

two rows of Table 4.1 shows the error probabilities of type 1 and type 2 bits in each code

design, which confirms the UEP property, i.e. both types of bits have nearly the same error

probability, despite the fact the type 1 bits pass through a channel whose error rate is 10

times higher.

Next, we investigate the performance of DJSC code designs, by comparing them against

the achievable JSC rate-bounds given by (4.8)-(4.10). We have shown that the rate-bound

can be approached by increasing the rates r1 and r2 [given by (4.5) and (4.6)] of the con-

stituent channel codes. However, with finite-length LDPC codes, maintaining a given level

of decoding error probability at higher code-rates also requires an accompanying increase

in block length. Therefore, it is of interest to compare the rates achievable with practical

DJSC codes having a given block length n and a decoding error probability. Figs. 4.5 and

4.6 show the JSC rate-pairs achieved by jointly-decodable DJSC (DJSC-JD) code designs

for inter-source correlation parameter values p = 0.002 (high correlation) and p = 0.1 (low

correlation) over BSCs and Bi-AWGN channels respectively, at a decoding error probability
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Figure 4.5: JSC rate-pairs (channel-uses/source-bit) achieved by proposed joint code de-
sign/optimization (DJSC-JD) compared with separate code design/optimization (DJSC-SD)
and tandem DSC/channel coding (DSC+C coding) at different codeword lengths, over BSCs
with q = 0.01 (C1 = C2 = 0.919 bits). p is the source-correlation parameter. Except when
(a = 0.2, p = 0.002) the codeword lengths are n = 1000 bits (furthest from the bound),
n = 2000 bits, and n = 5000 bits (closest to the bound) for all three coding schemes. For
(a = 0.2, p = 0.002), the rate-pairs achieved for DJSC-JD and DJSC-SD are also shown for
n = 106 bits.
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Figure 4.6: JSC rate-pairs (channel-uses/source-bit) achieved by proposed joint code de-
sign/optimization (DJSC-JD) compared with separate code design/optimization (DJSC-SD)
and tandem DSC/channel coding (DSC+C coding) at different codeword lengths (in bits),
over Bi-AWGN channels with a CSNR of 6 dB (C1 = C2 = 0.9128 bits/channel-use). p is
the source-correlation parameter. Except when (a = 0.2, p = 0.002) the codeword lengths
are n = 1000 bits (furthest from the bound), n = 2000 bits, and n = 5000 bits (closest to
the bound) for all three coding schemes. For (a = 0.2, p = 0.002), the rate-pairs achieved
for DJSC-JD and DJSC-SD are also shown for n = 106 bits.
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of 10−4. These plots also show the performance of separately-decodable DJSC (DJSC-SD)

codes (see Sec. 4.1) which have been designed by assuming a separate BP decoder for each

UEP-LDPC code, i.e., correlation-check nodes of the factor-graph in Fig. 4.3 are ignored

and therefore J−1(ICC,j) = 0 and Ich,2 = C ′′v , where C ′′v is the capacity of the concatenation of

C2 and Cv, used in (4.24). A joint-decoder has however been used in subsequent performance

evaluation. These results confirm that DJSC-JD codes indeed outperform DJSC-SD codes

when the virtual channel capacity becomes significantly higher than the communication

channel capacities (p << q), as predicted in Sec. 4.1. In order to demonstrate the benefit of

JSC coding, these figures also present the rate-pairs achieved by a separate source-channel

coding scheme (DSC+C), in which SW codes are used for DSC and separately designed

LDPC channel codes are used for channel error protection such that the overall block length

(encoding delay) is the same as in DJSC codes. Note that our DJSC code design procedure

generates SW codes for q = 0 (C1 = C2 = 1) and pure channel codes for p = 0.5. Hence, the

SW code used in the DSC+C code have been obtained by using the same design algorithm

for the given value of p and q = 0, while the channel codes are designed for the given value

of q and p = 0.5. The number of parity bits in each channel code is determined such that

transmitted codeword length is the same as in DJSC coding. The results in Figs. 4.5 and

4.6 show that the proposed DJSC codes approach the theoretical lower-bound faster (as

the block length is increased) than the separate DSC and channel coding. In other words,

at low encoding delays, DJSC codes outperform separate source-channel codes. Further-

more, Table 4.2 compares the block-length n required to achieve an error probability of 10−5

using DJSC-JD, DJSC-SD, and DSC+C codes at different levels of source correlation, over

BSCs with a given noise level. These results not only show the advantage of DJSC codes over

DSC+C codes for short block-lengths, but also clearly show that DJSC-JD codes outperform

DJSC-SD codes for p << q.

In order to further strengthen the claim that the proposed approach to joint optimization
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Figure 4.7: Performance comparison of DJSC coded systems with separate source-channel
coded (DSC+C) systems with identical JSC coding rates RX1 = RX2 (a = 0.5) at a fixed
coding block-length of n = 2000 bits. The communication channels are BSCs with cross-over
probability q = 0.02 and the codes have been designed for p = 0.06 (H(p) = 0.327 bits).
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correlation p = 0.05 and decoding error probability of 10−5).
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of the degree-distributions produce very good UEP- LDPC codes, we compare in Fig. 4.7

the decoding error probability of DJSC-JD, DJSC-SD, and DSC+C codes at a fixed code-

word length of n = 2000 bits as a function of inter-source correlation expressed in terms of

H(p). On the other hand, Fig. 4.8 compares JSC coding rates achieved at different channel

noise-levels q for a given level of inter-source correlation, a decoding error probability 10−5

and a codeword length n = 2000. The theoretical lower bounds shown in Fig. 4.8 have

been obtained from (4.8) [or (4.9)] by using the appropriate values for Cv. Notice that at

sufficiently high q, DJSC-JD codes achieve JSC rates lower than the theoretical lower-bound

for DJSC-SD codes.

To our knowledge, other results on DJSC coding directly comparable to ours appear

sparsely in the literature, apart from the turbo coding approaches in [2] and [3], and the

IRA codes in [33]. We compare in Fig. 4.9, the performance of our UEP-LDPC codes

with the results reported in [2, Fig. 8] for the case of transmission over BSCs with error

probability 0.03 (capacity C = 0.8) at RX1 = 0.5, RX2 = 1 (corresponds to a = 0). In

this case, the theoretical limit for error free transmission is H(X1|X2) ≤ RX1C = 0.4. We

decrease the correlation parameter p and design codes until the desired decoding performance

is reached. It can be seen that, despite much shorter codeword length, the proposed DJSC

codes designed with the UEP property are noticeably better than the turbo codes in [2, Fig.

8]. The codes in [2] are about 0.12 bits away from the theoretical bound with codeword

lengths of the order of 105 bits, while the proposed DJSC codes based on codeword-lengths

of only 5000 bits come within 0.064 bits at 10−7 error probability. Fig. 4.10 compares the

performance of UEP-LDPC codes with turbo codes presented in [3] for Bi-AWGN channels.

Note that the error floor of turbo codes due to interleaving does not occur with UEP-LDPC

coding. In [33], a DJSC code design method based on IRA codes is presented for completely

asymmetric rates, which corresponds to two special cases in our method i.e., a = 0 or a = 1.

According to the results reported in [33] length 105 IRA codes achieved a decoding error
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Figure 4.9: Performance comparison of DJSC codes based on UEP-LDPC codes with n =
5000 and those based on turbo codes from [2, Fig. 8] with n = 105, over BSCs.

probability of 10−6 for binary sources with correlation parameter p = 0.066 [H(p) = 0.351

bits]. We found that jointly designed UEP-LDPC codes for a = 0 (or a = 1) achieved the

same performance for p = 0.069 [H(p) = 0.362 bits] for n = 105. Furthermore, for the rates

RX1 = 2 and RX2 = 1, IRA codes for p = 0.3 (low source correlation) over BiAWGN channels

shown in [33, Table I] come within 0.77 dB of the theoretical bound, whereas UEP-LDPC

codes come within 0.75 dB. However, as mentioned above, the IRA code design in [33] applies

only to corner points.

So far we have considered DJSC coding of uniform binary sources. The proposed DJSC

codes are not necessarily optimal for non-uniform sources. As a result, when used with non-
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Figure 4.10: Comparison of UEP-LDPC codes and Turbo codes in [3, Figs. 5 and 6] over
Bi-AWGN channels. The UEP-LDPC codes for p =0.01, 0.025, 0.05, 0.1, and p = 0.2 have
rates RX1 = RX2 (a = 0.5) 0.54, 0.58, 0.64, 0.73, and 0.86 respectively, and have been
designed for channel SNR (in dB) of -2.7, -2.48, -2.2, -17, and -0.9 respectively. n = 105 in
all cases.
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uniform sources, these codes will lead to a residual redundancy in the transmitted bit streams,

particularly when the codeword length is short (previous work suggests that with very long

codewords, SW codes are less sensitive to marginal source distribution [82]). However, such

redundancies can be effectively exploited in the joint decoder to improve the performance

of short codes, by using the correct prior probabilities in (4.27). In Fig. 4.11, we consider

sources with the correlation parameter p = 0.01 and non-uniform marginal probabilities,

over BSCs. Note that, for a given value of Pr(X1 = 1) [or equivalently H(X1)], the value of

Pr(X2 = 1) is determined by the virtual channel relationship between X1 and X2. Fig. 4.11

compares the decoding error probability of the decoder which has the exact prior information

(EPI) with that of the decoder which simply assumes uniform prior information (UPI). The

codes have been designed for p = 0.01 and BSCs with q = 0.03. It can be seen that, as

the source redundancies increase [i.e., H(X1) < 1], the joint decoding based on exact prior

information can yield a substantial improvement in decoding error probability. Furthermore,

Fig. 4.11 also shows the decoding error probability of the EPI decoder used with the same

codes, but at a twice the channel error rate (q = 0.06), i.e., the codes are not matched to

the channels. Interestingly, the EPI decoding over the mismatched channel still outperforms

the UPI decoding with no channels match, except when the sources are nearly uniform.

4.4 Conclusion

An approach to designing a distributed joint source-channel code for a pair of correlated

binary sources transmitted over independent noisy channels at arbitrary rates has been pre-

sented in this chapter. In this approach linear programming is used to find the optimal

degree polynomials of a pair of irregular LDPC codes which can achieve both distributed

compression and channel coding simultaneously via UEP of bits. As evidenced by the exper-

imental results, these codes outperform separate source-channel codes as well as previously

reported turbo code designs, when coding block length is relatively short (1000 ∼ 5000 bits).

58



Figure 4.11: Performance of DJSC codes for sources-pair p = 0.03 and non-uniform marginal
probabilities, as a function of H(X1). The codes have been designed to achieve a nominal
decoding error probability of 10−4 over BSCs with q = 0.03 (codeword length n = 2000).
The two curves for q = 0.06 show the error probabilities of the same codes decoded over
BSCs with twice the error rate q = 0.06 using the EPI decoder.
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On the other hand, these codes have been shown to approach the achievable rate bound as

the block length is increased. DJSC code designs over a non-orthogonal MAC is the focus

of the next chapter.
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Chapter 5

Code Design for Gaussian MAC

It was established in Section 3.3 that when two dependent information sources are to be

communicated over a Gaussian MAC (GMAC), DJSC coding may be used to achieve higher

transmission rates than when the sources are independent. In this chapter, a new approach

to designing a DJSC code for the transmission of two correlated sources over a binary-input

GMAC is developed.

In general, work on the design of codes for GMAC appear sparsely in the literature.

Previously, the code design for independent source and a noiseless MAC is considered in [49]

where the authors use a graph splitting method for code design. The method exploits the

similarity between the MAC and the binary erasure channel, and applies code design methods

the already developed for erasure channels to the MAC. However, [49] also shows that the

method does not work in the presence of additive noise, since the similarity with the erasure

channel can no more be established. A code design procedure for independent sources is

presented in [4] where the authors aim to optimize a pair of LDPC codes for BP decoding

on a joint graph using EXIT analysis based on the standard Gaussian approximation [34].

However, this work does not naturally extend to correlated sources since the method used to

calculate the mutual information in the EXIT analysis applies only to independent sources.

This analysis is based on the assumption that one source sends a codeword in which all bits
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Figure 5.1: Model of the system under consideration. The modulator maps the set {0, 1} to
{+1,−1}.

are 1’s while the other sends a codeword in which half the bits are 1’s and other half -1’s.

For arbitrary source statistics, this assumption does not hold. In [3], the authors propose

the use of LDGM codes over a GMAC in order to preserve the inter source correlation at the

channel input. The ’low density’ in the generator matrix of the codes helps to preserve the

correlation between the parity bits. However, LDGM codes typically suffer from the problem

of high error floor. Moreover, no method is presented for the design of the generator matrix

of the code.

5.1 System Model and Problem Formulation

A block diagram of the system under consideration is shown in Fig. 5.1. The two binary

sources U1 and U2 are encoded by channel encoders of rates R1 and R2 respectively to

generate the channel inputs X1 and X2 respectively, where Xi ∈ {+1,−1} for i = 1, 2 and
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the channel output be Y ∈ R is given by

Y = X1 +X2 +W, (5.1)

and W ∼ N (0, σ2) is channel noise. Let Pr(X1 = (−1)i, X2 = (−1)j) = pij for i, j ∈ 0, 1.

Then, the pdf of Y is given by

p(y) = p00q00(y) + (p01 + p10)(q01(y) + q10(y)) + p11q11(y), (5.2)

where qij(y) is the conditional pdf of the output

qij(y) = p(y|x1 = (−1)i, x2 = (−1)j)

= N ((−1)i + (−1)j, σ2)

As in the previous chapter, the dependence between the two sources is modeled by a virtual

BSC with correlation parameter α = Pr(X1 6= X2). Note that p00 = p11 = (1 − α)/2 and

p01 = p10 = α/2.

Recall that, with independent sources the maximum achievable sum rate is the joint

mutual information I(X1, X2, Y ) [5]. In the case of dependent sources, it is not known if this

is an achievable upper bound. However, this still provides an upper bound for comparison.

For a given value of α, the joint mutual information I(X1, X2;Y ) for the our MAC coding

problem is given by

I(X1, X2;Y |α) =
∑
X1,X2

∫
y

p(x1, x2, y) log2

p(x1, x2, y)

p(x1, x2)p(y)
dy (5.3)

=
∑
X1,X2

p(x1, x2)

∫
y

p(y|x1, x2) log2

p(y|x1, x2)
p(y)

dy

=
∑
i,j

pij

∫
y

qij(y) log2

qij(y)

p(y)
.

63



The mutual information can be calculated numerically as done in Section 3.3.

Let each source be encoded by a systematic channel codes of length n bits. The rates of

the codes for X1 and X2 can be given by R1 = k1/n and R2 = k2/n, where k1 and k2 are the

number of encoded information bits. The discussion in Section 3.3 suggests that for a given

σ2, the maximum sum rate (R1 + R2) can be achieved if the bit streams X1 and X2 at the

inputs of the GMAC exhibit a specific joint distribution as determined by the value of the

correlation parameter α. Consider using a systematic channel code for each source. Then,

designing an optimal DJSC for a given GMAC requires finding a pair of channel codes such

that those two codes map the source bit stream with joint pmf Pr(U1, U2) to a coded bit

streams exhibit the optimal channel input distribution Pr(X1, X2). While there appears to

be no tractable procedure for achieving such a design, the main idea pursued here is to design

a systematic channel code for each source so that the correlation between information bits are

preserved at the channel inputs, i.e., the two sources are essentially transmitted directly over

the GMAC, so that P (X1, X2) = P (U1, U2) for information bits (the dependence between

the parity bits of the two sources cannot be controlled). The two channel codes are then

decoded by a joint decoder which exploits the joint probability Pr(U1, U2). This approach

essentially exploits inter source correlation to correct channel errors caused by noise and

mutual interference in the GMAC. In particular, if the two sources are independent, then

each channel code require a sufficient number of parity bits to correct the errors due to noise

and mutual interference between independent bit streams. However, when the two sources

are dependent, the correlation between the information bits of the two codewords provide an

additional joint decoding gain and hence the number of parity bits required is reduced, or

equivalently, in practical channel codes a lower decoding error probability can be achieved

for the same number of parity bits.

Note however that the aforementioned joint code construction can only be applied when

k1 = k2, that is the rates of the two codes must be the same, i.e., R1 = R2. Furthermore,
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block codes based on sparse graphs such as IRA codes, LDPC codes, are usually completely

specified by their edge degree distribution, and the actual number of information and parity

bits play no part in the design process. For this reason, previous work [3, 4, 49] consider

only symmetric rates, R1 = R2. The code design proposed in this paper also applies only to

symmetric rates.

The DJSC code approach presented in this paper uses system irregular LDPC codes to

encode both sources. This code construction is different to the one proposed for orthogonal

channels in the Chapter 4 in several aspects. First, no UEP codes are used. The design

of UEP codes in Chapter 4 requires tractable expressions for the capacity of the channels

through which different bits of a UEP codes are transmitted. However, no known expression

exists for the capacity MACs with correlated sources. Another key difference is the modeling

of the pdf of the outgoing messages from the nodes representing joint probabilities P (X1, X2)

in the joint factor graph used for EXIT analysis. In this Chapter, it is demonstrated that,

in the case of the GMAC, the outgoing messages are not well approximated by a Gaussian-

mixture model

The LDPC code for Xk, k = 1, 2 is defined by parameters (n, λ(k)(x), ρ(k)(x)) where n is

the code length and λ(k)(x) (ρ(k)(x)) represents the edge-wise degree polynomial associated

with the variable (party-check) nodes [35]. Specifically, we have

λ(k)(x) =
dvmax∑
i=2

λ
(k)
i xi−1,

where λ
(k)
i is the probability that an edge chosen in a uniformly random manner is connected

to a variable node of degree i (a degree of a node is defined as the number of edges connected

to it.) dvmax is maximum degree of variable nodes. The edge-wise degree polynomial for the
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parity-check nodes is similarly defined as

ρ(k)(x) =
dcmax∑
i=2

ρ
(k)
i xi−1,

where dcmax is the maximum parity-check node degree of the code. The parameters dcmax

and dvmax are typically chosen in a manner that the sparsity of the corresponding factor

graph is maintained (i.e., the edges in the factor graph grow linearly with the codeword

length [35]).

5.2 Decoder Factor Graph

Consider MAP decoding of the bits of each channel code, based on the observed channel

output sequence. Let x1 = (x
1)
1 , . . . , x

(n)
1 ) and x2 = (x

1)
2 , . . . , x

(n)
2 ) be the transmitted channel

codes for sources X1 and X2 respectively, and y be the corresponding channel output. The

bit-wise MAP decision rule for the ith bit of X1 is given by

x̂1
(i) = arg max

x
(i)
1 ∈{±1}

p(x
(i)
1 |y)I{x1 ∈ C1}, (5.4)

where (x̂
(1)
1 , . . . , x̂

(n)
1 ) is the decoded output for X1, C1(C2) denotes the code (or codebook)

used for encoding X1(X2) and I{ . } denotes the indicator function defined by

I{condition} =


1 condition = true,

0 condition = false.

(5.5)
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The indicator function is used to include the constraints imposed by the parity check equa-

tions. By using the law of total probability, we thus get

x̂1
(i) = arg max

x
(i)
1 ∈{±1}

∑
x1\{x(i)i }

∑
x2

p(x1, x2|y)I{x1 ∈ C1}I{x2 ∈ C2}, (5.6)

where the indicator function is again used to show the relationship of x2 with its code C2.

Using the Bayes’ rule, we have

p(x
(j)
1 , x

(j)
2 |y) =

p(y|x(j)1 , x
(j)
2 )p(x

(j)
1 , x

(j)
2 )

p(y)

=
p(y|x(j)1 , x

(j)
2 )p(x

(j)
1 |x(j)2 )p(x

(j)
2 )

p(y)
.

Since p(y) is a common factor, and sources X1 and X2 are uniformly distributed, (5.6) is

equivalent to

x̂1
(i) = arg max

x
(i)
1 ∈{±1}

∑
x1\{x(i)1 }

∑
x2

( n∏
j=1

p(y(j)|x(j)1 , x
(j)
2 )p(x

(j)
1 |x(j)2 )

)
I{x1 ∈ C1}I{x2 ∈ C2}, (5.7)

where the product follows from the fact that the channel is memoryless (the jthsymbol of y

only depends on the jth bits of x1 and x2). The MAP decoding rule for bits of X2 can be

derived in a similar way and is given by

x̂2
(i) = arg max

x
(i)
2 ∈{±1}

∑
x2\{x(i)2 }

∑
x1

( n∏
j=1

p(y(j)|x(j)1 , x
(j)
2 )p(x

(j)
2 |x(j)1 )

)
I{x1 ∈ C1}I{x2 ∈ C2}. (5.8)

From (5.7), we see that there are three main factors taking part in the MAP decision

rule.

1. φ(x
(j)
1 , x

(j)
2 , y) = p(y|x(j)1 , x

(j)
2 )p(x

(j)
1 |x(j)2 ),

2. I{x1 ∈ C1}, and
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Figure 5.2: Joint decoding graph for the two LDPC codes. Nodes labeled Y represent the
channel output.

3. I{x2 ∈ C2}.

The corresponding factor graph is shown in Fig. 5.2. As usual, the factors I{x1 ∈ C1}

and I{x2 ∈ C2} are represented by factor nodes in the graphs of the respective parity-check

matrices H1 and H2. The nodes representing the factors p(y|x(j)1 , x
(j)
2 ) × p(x

(j)
1 |x(j)2 ) are

referred to as state-check nodes.

The LDPC code design algorithm presented below does not ensure a systematic parity

check matrix. We thus have to perform Gaussian elimination to convert the parity-check

matrix into a systematic form. This results in a dense matrix which makes BP decoding

very complex. Hence we perform bit shuffling on the coded bits in the decoder so that the

sparse form of the matrix (originally designed) can be used for decoding.

5.3 Joint Decoder

The joint decoding of the two codes is carried out by using the BP algorithm on the factor

graph shown in Fig. 5.2. The BP algorithm is an iterative message passing algorithm. In

a given iteration, each node computes an outgoing messages to be passed along all edges

connected to that node as function of incoming messages on all other edges. We next
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calculate the message maps associated with different types of nodes in the graph, i.e., how

an outgoing message is computed based on incoming messages. A message passed along an

edge is in the LLR form. If an edge is connected to the variable node representing x
(j)
1 , then

the message passed along that edge is given by

log
Pr(x

(j)
1 = +1|v)

Pr(x
(j)
1 = −1|v)

, (5.9)

where v represents all the information about x
(j)
1 available from all edges except the edge

along which the message is passed. A message along the jth edge of a node is denoted

by m
(k)
node→node,j where node is v, p or s representing variable, parity check or state check

nodes respectively, and k ∈ {1, 2} represents the source variable node attached to the edge.

Note that each edge is attached to a variable node of exactly one source (see Fig. 5.2).

For all outgoing message updates, the incoming messages on different edges are assumed to

be independent [34]. The computation of outgoing messages in variable, parity-check, and

state-check nodes are presented below.

5.3.1 Variable Nodes

An outgoing message from a variable node is an estimate of the pmf of the corresponding

code bit based on all the incoming messages (which are independent estimates of the code

bit’s pmf). Due to this independence, the output pmf will be the product of all incoming

pmf’s. In LLR terms, the output message will be the sum of all incoming messages. The

message from a variable node of source k with degree dv (the number of edges emanating

from it) to a parity check node of the same source on its jth edge is thus given by

m
(k)
v→p,j =

dv−1∑
i=1
i 6=j

m
(k)
p→v,i +m(k)

s→v, (5.10)
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for k ∈ {1, 2}. Note that there is no edge index in m
(k)
s→v or m

(k)
v→s since there is exactly one

edge connecting a variable node to a state check node (see Fig. 5.2). The message from a

variable node to a state check node is similarly given by

m(k)
v→s =

dv−1∑
i=1

m
(k)
p→v,i. (5.11)

5.3.2 Parity Check Nodes

The parity check nodes represent the parity check equations defined by the binary block

code (i.e. the modulo 2 sum of all the bits connected to a check node must be 0.) The

outgoing message update can be calculated by observing the duality between a repetition

code (a code which forms a codeword by repeating the information bit a specific number of

times) and a single parity check code (a code with only one parity check node connected to

all variable nodes). Using the Fourier transform relationship that exists between (p, q) and

(p+ q, p− q) where p = Pr(x = +1|v) and q = Pr(x = −1|v), it can be shown [83] that the

outgoing message from a parity check node of degree dc on its jth edge can be given by

m(k)
p→v = 2tanh−1

 dc∏
i=1
i 6=j

tanh
m

(k)
v→p,i

2

 (5.12)

for k ∈ {1, 2}. An alternate detailed derivation which is not based on Fourier transforms is

also shown in [32].

5.3.3 State-Check Nodes

The messages passed between variable nodes and a state check node is shown in Fig. 5.3.

We see that an outgoing message from a state check node m
(1)
s→v is a function of m

(2)
v→s and

y. Making use of the distribution p(y) given in (5.2) and the joint pmf pij, it can be shown
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that

m(1)
s→v = log

q00β
(1)
00 e

m
(2)
v→s + q01β

(1)
01

q10β
(1)
10 e

m
(2)
v→s + q11β

(1)
11

, (5.13)

where β
(1)
ij = Pr(X1 = (−1)i|X2 = (−1)j). Similarly, we have,

m(2)
s→v = log

q00β
(2)
00 e

m
(1)
v→s + q10β

(2)
10

q01β
(1)
10 e

m
(1)
v→s + q11β

(2)
11

, (5.14)

where β
(2)
ij = Pr(X2 = (−1)j|X1 = (−1)i). The detailed derivation is given in Appendix

6.2. Note that the parity bits of each source are independent due to the dense nature of the

generator matrices in LDPC codes. Therefore β
(1)
ij and β

(2)
ij for a state check node which is

connected to the parity bits of two sources are calculated accordingly.

5.4 EXIT Analysis For Two-user Code Design

In this section, we develop the EXIT analysis for joint design of LDPC codes two dependent

users (sources), by exploiting the decoder structure and the message maps defined in Sec. 5.3.

The EXIT analysis based code design procedure tracks the evolution of mutual information

between a message (i.e. LLRs) passed along an edge and the code-bit represented by the

variable node attached to that edge, during decoding iterations of the BP algorithm. For

successful decoding of the code being optimized, we need this mutual information to increase

after each iteration. We therefore need to calculate how this mutual information evolves as

a function of the number of decoding iterations.
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The computation of mutual information requires that the incoming and outgoing LLRs

of a node be Gaussian random variables with variance equal to twice the mean [34]. The in-

formation updates through variable nodes and parity check nodes is well known [35]. Specif-

ically, the information update through a variable nodes stems from the message update

through that variable node and the central limit theorem. An outgoing message from a node

has the mean equal to the sum of incoming means and the outgoing message is Gaussian

given a reasonably high node degree. The information update for a parity-check node relies

on a deterministic relationship with the variable nodes connected to it, as defined by the

parity check equations. The information update for a parity-check node can therefore be

calculated by simply using the duality relationship that its has with a variable node [75]. The

aforementioned Gaussian assumption is exact for communication of a single binary source

through a Bi-AWGN channel. For other types of channels, the assumption is approximate

but is known to yield good results due to the universality of LDPC codes (i.e. code designed

for one type of channel can perform well on a channel of different type) [84]. It should also

be noted that analytical computation of aforementioned mutual information is possible if

the pdf of the outgoing LLRs from the nodes can be modeled as Gaussian mixtures [34].

Since H1 and H2 correspond to two LDPC codes, the mutual information for outgoing

messages from variable and parity check nodes in the joint factor-graph of the two LDPC

codes can be computed in a similar manner to single-user LDPC codes. These are summa-

rized in Sec. 5.4.1 and 5.4.2 for completeness. In the next section, a new approach is proposed

for information updates through state-check nodes in two-user case. As no duality relation

exists between state-check nodes and variable nodes, the aforementioned deterministic ap-

proach cannot be used to compute the mean and variance of output LLRs. This is because,

the messages through the state-check nodes depend on the source statistics and not on the

code structure, which makes it difficult to extend the standard EXIT analysis-based LDPC

code design procedure as in [35] to jointly optimize LDPC codes for GMAC. We therefore
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develop a different method to approximate the outgoing message from the state-check node

in Sec 5.5.

Before we proceed, let us define the following notation to simplify the presentation. The

average extrinsic (a prior) information passed along an edge of a node with degree deg is

defined as I
(k)
node→node,deg, where k ∈ {1, 2} represents the source and node can be v, p or s

representing variable, parity check or state check nodes respectively (for state check nodes,

the subscript deg is not required since the degree is always 2). The average information is

represented in the same way, with the subscript for the degree removed. The relationship

between the mean µ of the message density and the extrinsic information I is given by

I = J(µ), (5.15)

where the function J(·) is given in [72]. While J(·) and J−1(·) cannot be calculated in

close-form, approximations can be used as in [75].

5.4.1 Variable Node Information Update

Let the mean of a message be denoted by µ
(k)
node→node,deg. Since the mean of the sum of

independent random variables is the sum of their means, by (5.10), the mean of an outgoing

message on an edge from a degree j variable node to a parity check node can be given by

µ
(k)
v→p,j = (j − 2)µ(k)

p→v + µ(k)
s→v, (5.16)

for k ∈ {1, 2}. Making use of the function J(·) given by (5.15) in (5.16), we get for the

average information update,

I
(k)
v→p,j = J

(
(j − 2)J−1

(
I(k)p→v

)
+ J−1

(
I(k)s→v

))
. (5.17)
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By averaging over the variable node degree distribution λ(k)(x), we find the average mutual

information from a variable node to a parity check node (given by I
(k)
v→p) as

I(k)v→p =
dvmax∑
j=2

λ
(k)
j I

(k)
v→p,j (5.18)

=
dvmax∑
j=2

λ
(k)
j J

(
(j − 2)J−1

(
I(k)p→v

)
+ J−1

(
I(k)s→v

))
.

Similarly, from (5.11), the average information transferred from a variable node to a state

check node is given by

I(k)v→s =
dvmax∑
j=2

λjJ
(

(j − 1)J−1(I
(k)
p→v,i)

)
. (5.19)

5.4.2 Parity Check Node Information Update

From (5.12), we see that the mean of the outgoing message of a degree dc check-node is given

by

E
{

tanh
m

(k)
p→v

2

}
=

dc∏
i=1
i 6=j

E
{

tanh
m

(k)
v→p,i

2

}
, (5.20)

where the expectation is taken with respect to the density of m
(k)
p→v. While computing the

expectation of the above equation is not analytically feasible, two different approximations

have been used in the literature. First is based on finding an approximation for the expecta-

tion (5.20) (e.g., in [79]), while the other is based on the duality approximation [80], [32, pp.

236]. In our experiments, we have observed that the codes designed through both approaches

are similar in terms of their degree distributions and BER performance. We use the latter

approach as given the message updates for the parity check nodes , we can simply exploit the

duality between a parity check node and a variable node by taking the Fourier transform.

In the case of extrinsic information, we note that the EXIT function i of a code C is related
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to the EXIT function i⊥ of its dual code C⊥ by [32, pp. 236],

i⊥ = 1− i. (5.21)

In other words, for the information update over a parity check node with degree j, we first

compute the dual parameter 1− I, then the corresponding mean by computing J−1(1− I).

Since the means at a variable (the dual of the parity-check code) add, multiply the result

by j − 1. Finally, bring the resulting mean back to mutual information by applying J()̇ and

compute the dual parameter by using 5.21. Therefore, for a degree j parity check node, we

get

I
(k)
p→v,j = 1− J

(
(j − 1)J−1

(
1− I(k)v→p

))
. (5.22)

By averaging over the check-node degree distribution, we get the average information as

I(k)p→v =
dcmax∑
j=2

ρ
(k)
j I

(k)
p→v,j (5.23)

= 1−
dcmax∑
j=2

ρ
(k)
j J

(
(j − 1)J−1

(
1− I(k)v→p

))
.

5.5 Information Update In State-Check Nodes

Recall that, EXIT analysis requires that outgoing messages of nodes be approximately Gaus-

sian with mean µ and variance 2µ [34]. However, as discussed earlier, the mean µs→v of the

outgoing messages of a state-check node cannot be computed analytically as in the case of

variable and parity-check nodes. In the following we propose an effective (leads to good

two-user code designs) and computationally efficient method to approximate the density

of outgoing messages from state-check nodes by a Gaussian and to estimate its mean and

variance.

Consider a message m
(2)
v→s passed from a variable node of X2 to a state-check node s
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as shown in Fig. 5.3 (calculation for message from X1 to X2 is similar). Since m
(2)
v→s is

an outgoing message from a variable node it is Gaussian distributed with mean µv→s and

variance 2µv→s. Hence, we can estimate the density of the outgoing message m
(1)
s→v from

the state-check node using Monte-Carlo simulations. These density functions are shown in

Fig. 5.4 for several values of the inter-source correlation parameter α and µs→v. It can be

seen that these densities are skewed and the Gaussian approximation is not straight forward.

Note also that, these densities in general can be considered bimodal for any values of α and

µ.
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5.5.1 Gaussian Approximation of Outgoing Messages

The problem of approximating an arbitrary distribution through a Gaussian has been well

studied. The most widely used approaches are the transformation-based methods, see [85–

87]. The interested reader is referred to [86] for a discussion about a family of transformations

along with their merits and demerits. These methods are essentially parametric where the

parameter estimation is usually done through methods such as ML or Bayesian inference.

They also require performing the inverse transform operation once the required processing

is done on the Gaussian density.

For our problem, both parameter estimation and inverse operation can make the code

optimization algorithm intractable. Since our optimization algorithm is based upon mutual

information transfer, we need an approximation which can model the output distribution

well enough, does not entail any extra overhead for the algorithm, and leads to the maxi-

mum mutual information for the outgoing message for a given input mean. Based on these

considerations we focus on the following approaches to compute the mean µ of a Gaussian

pdf N (µ, 2µ) of the outgoing messages from a state-check node.

• Mean-matched Gaussian approximation - The mean is estimated from observations.

• Mode-matched Gaussian approximation- The mode m of the pdf is estimated from

observations and we set µ = m. The fitting of a Gaussian distribution at the mode of

an arbitrary distribution is a well known method in the literature known as the Laplace

approximation [88]. The only difference here is that we use the variance as twice the

mean as required by EXIT analysis.

• Two-component Gaussian mixture approximation- The density is approximated by fit-

ting a two component Gaussian mixture a1N (µ1, σ
2
1) + a2N (µ2, σ

2
2). For simplicity,

µ1, µ2, σ
2
1, σ

2
2, a1, and a2 are estimated from the frequency of occurrence in observa-

tions.
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The rationale for using these approximations can be seen from Fig. 5.4. Note that for

some values of α, µv→s and σ2, the output density displays two dominant modes (although

not as pronounced as in the case of orthogonal channels shown in Fig. 4.4). For some values,

the output density does resembles a Gaussian, for which the output mean and mode are

equal, while for some values, the density is unimodal and does not resemble a Gaussian.

In order to compare the performance of these approaches on the basis of mutual infor-

mation, we compute the output mutual information I
(1)
s→v = I(m

(1)
s→v;x

(i)
1 ) as a function of

input mutual information I
(2)
v→s = I(m

(1)
v→s;x

(2)
2 ) in Fig. 5.3. Fig. 5.5 and Fig. 5.6 show

this comparison for two cases selected from Fig. 5.4. In Fig. 5.5 we compare the mean-

matched and mode-matched approximations for a case where the output density is unimodal

and using a mixture based method does not make sense here. In Fig. 5.6, we select a case

where the output histogram does show a bimodal density and hence we include a case of

a two-component Gaussian mixture approximation. In both cases we see that the highest

output mutual information is achieved by fitting a Gaussian on the actual mode of the out-

put density. The mode-matched method was found to yield the maximum output mutual

information for various other values of α, µ
(2)
v→s and σ2 as well. Therefore, the mode-matched

Gaussian approximation has been adopted for code design in this chapter. As will be shown

(see Fig. 5.10), the joint codes designed by using this approximation also yield the lowest

decoding bit-error probability, compared to the other two approaches.

5.5.2 Computation of Mutual Information

In this section, we propose a method to compute the mutual information for state-check

nodes during EXIT analysis, using the mode-matched Gaussian approximation. The first

step in this procedure is to compute the mean values of the outgoing messages of each state-

check node. To this end consider the outgoing message from a state-check node to a variable

node, as shown in Fig. 5.3).
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Figure 5.5: Mutual information update through the state check node for µ
(2)
v→s = 1.8 and α

= 0.01. Note in the corresponding histogram in Fig. 5.4 the unimodal (and non-Gaussian)
nature of the output density.

1. Given the mean value of the (Gaussian) outgoing message m
(2)
v→s of the variable nodes

x
(2)
i (representing the ith bit of source X2), generate a sufficiently large number of N

samples of m
(2)
v→s from N (µ

(2)
v→s, 2µ

(2)
v→s).

2. Generate N sample of the channel output yi (representing the ith symbol of channel

output Y ) using the pdf given in (5.2).

3. Use the message update given by (5.13) to compute the corresponding N samples of

the outgoing message m
(1)
s→v from the state-check node, and estimate the mode m of

the pdf of m
(1)
s→v. Set µ

(1)
s→v = m.
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Figure 5.6: Mutual information update through the state check node for µ
(2)
v→s = 3.24 and α

= 0.01. Note in the corresponding histogram in Fig. 5.4 the bimodal nature of the output
density.

Since µ
(1)
s→v computed above is some function ψ of µ

(2)
v→s and the channel noise variance σ2,

we can write

µ(1)
s→v = ψ(µ(2)

v→s, σ
2). (5.24)

From (5.15) it follows that the mutual information update is given by

I(1)s→v = J
(
ψ(J−1(I(2)v→s), σ

2)
)
. (5.25)
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By plugging (5.25) into (5.18) we then obtain the overall mutual information update at the

lth iteration of the EXIT analysis as

I(1)v→p(l) =
dvmax∑
j=2

λ
(1)
j J
(

(j − 2)J−1
(
I(1)p→v(l)

)
+ ψ(J−1(I(2)v→s(l)), σ

2)
)
. (5.26)

The overall mutual information update for I
(2)
v→p(l) can be obtained by interchanging the

superscripts (1) and (2) in (5.26).

5.6 Code Optimization Algorithm

In this section, we summarize the two-user code optimization algorithm, which is an extension

of the single-user LDPC code optimization procedure in [34] to the joint factor-graph with

state-check nodes. The joint design of two LDPC codes for DJSC coding involves finding the

degree distributions λ(k)(x) for k ∈ {1, 2} which maximize the code rate R, or equivalently

(for fixed ρ(1)(x) and ρ(2)(x)) maximize,

∑
i

λ
(1)
i

i
+
λ
(2)
i

i
. (5.27)

As used for orthogonal channels, we use a concentrated degree polynomial of the form ρ(x) =

ρxs−2 +(1−ρ)xs for some s ≥ 2 and 0 < ρ ≤ 1 (which is sufficient for achieving near optimal

performance [79, Theorem 2]). The objective function given in (5.27) is maximized subject

to the following set of constraints.

1. Probability constraint

Since the coefficients of the polynomials λ(x) represent the probabilities, we should
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have for k ∈ {1, 2},

dvmax∑
i=2

(
λ
(k)
i

)
= 1, (5.28)

λ
(k)
i ∈ [0, 1]. (5.29)

2. Information constraint

The extrinsic information has to be non-decreasing for each iteration, so we need

I(k)v→p(l + 1) > I(k)v→p(l), ∀l ∈ {1, 2, ...,∞}, k ∈ {1, 2}. (5.30)

where I
(1)
v→p(l) is given in (5.26).

3. Stability constraint

It is known that the stability condition for the MAC under consideration is the same

as that of two single user binary channels with Gaussian noise [32]. Thus, we have for

k ∈ {1, 2},

λ
(k)
2 < exp

1

2σ2
/
dcmax∑
j=2

(j − 1)ρ
(k)
j . (5.31)

The objective function (5.27) and the constraints (5.29) to (5.31) are all linear in the

code parameters λ
(k)
i . Therefore, we can use a linear program to find the optimized code.

5.7 Simulation Results

In this section, we present simulation results obtained by designing DJSC codes for a GMAC

using the code design method developed in this chapter. These results show that the pro-

posed approach yield DJSC codes which can outperform traditional single-user codes as well

previously proposed DJSC codes for GMAC.
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Table 5.1: Degree profiles for joint LDPC codes generated by the design algorithm, for
different values of channel noise variance σ2. Inter-source correlation parameter α = 0.1.

σ2

0.3 0.4 0.5 0.6

ρ(x) x9 x8 x7 x6

λ1(x) = λ2(x) 0.284x+ 0.3124x2 0.3012x+ 0.3321x2 0.3111x+ 0.3544x2 0.4411x+ 0.4235x2

+0.0222x4 + 0.1344x7 +0.0982x3 + 0.1322x10 +0.1655x3 + 0.0786x11 0.0233x17 + 0.0321x17

+0.0977x8 + 0.1277x19 +0.1363x99 +0.0321x16 + 0.0583x99 +0.0682x99

+0.08x99

R 0.5614 0.5226 0.4857 0.4528
1
2
I(X1, X2;Y |α = 0.5) 0.5014 0.4731 0.4393 0.4113

1
2
I(X1, X2;Y |α = 0.1) 0.6328 0.6017 0.5744 0.5509

Given the inter-source correlation parameter α and the channel noise variance σ2, the

goal the DJSC code design is to find two LDPC codes whose rate R is maximized. For

a given pair of (α, σ2) and ρs for some fixed s, the proposed code design algorithm yields

coefficients of the polynomials λ1, λ2 which also implicitly define the actual rates of the two

LDPC codes. In general, the maximum sum-rate achievable over GMAC for two dependent

sources is not known. However, as discussed in Sec. 3.3 when the source are independent

(α = 0.5) the maximum sum-rate achievable by any code design is I(X1, X2, Y ). Table 5.1

presents the degree profiles and the rate R of the DJSC code designs for a pair of source

with α = 0.1 at different channel noise levels. The table also shows the maximum code

rate achievable (channel capacity) with independent sources I(X1, X2, Y |α = 0.5) as well

as the actual value of the joint mutual information I(X1, X2;Y |α = 0.1) as given by (5.3).

These results show that DJSC codes design can actually achieve code rates higher than the

channel capacity for independent sources. This clearly shows the advantage of JSC coding

of dependent sources over a GMAC.

In order to further demonstrate this, we next compare there different coding schemes as

follows.

1. Scheme 1: Regardless of the actual inter-source correlation α, we simply assume that

the two sources are independent (α = 0.5) in code design as well as in decoding.

Essentially, these code at best can only achieve a channel capacity of I(X1, X2;Y |α =
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Figure 5.7: Achievable channel coding rates (in bits per channel use) achieved by Scheme
2 (αdesign = 0.5, αdecode = αactual) and Scheme 3(αdesign = αactual, αdecode = αactual) at Pe
of 10−6. σ2 = 1. The points correspond to α = 0.5 (lowest rate points), 0.4, 0.3, 0.2 and
0.1(highest rate points).

0.5). We denote the scheme by (αdesign = 0.5, αdecode = 0.5).

2. Scheme 2: We assume independent sources for code design, but use the actual value

of α in the decoder. We denote the scheme by (αdesign = 0.5, αdecode = αactual).

3. Scheme 3: We use the actual value of α for both code design and in decoding. We

denote the scheme by (αdesign = αactual, αdecode = αactual).

Fig. 5.7 shows the achievable channel coding rates (measured in bits per channel use) for

Schemes 2 and 3 for different values of correlation parameter α for σ2 = 1 at a decoding

error probability of 10−6. As the correlation increases, the both schemes can achieve higher
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Figure 5.8: Comparison of different coding schemes for independent with correlated sources,
codeword length = 106 bits.

rates. However note that for α = 0.2 and 0.1, Scheme 3 can actually achieve rates which

are higher than the theoretical upper bound for independent sources, which demonstrates

the advantage of optimizing the two codes for the joint distribution of the two dependent

sources.

Fig. 5.8 shows the bit error rate (BER) of the three schemes described above as a

function of the correlation parameter α. As expected, we see that the codes optimized for

the joint distribution of the sources yields the best performance. It can also be seen that, the

codes designed for independent sources can achieve a significant performance improvement

if the actual value of joint source probabilities are used for joint decoding. Note that with

(αdesign = 0.5, αdecode = 0.5) and (αdesign = 0.5, αdecode = αactual), the same pair of codes have

been used for all values of α. We see that as correlation increases (i.e., α decreases), the
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improvement achieved by incorporating the joint source statistics for code optimization and

for joint decoding becomes more pronounced.

In Fig. 5.9), the probability of decoding error of the three schemes described above are

as a function of codeword length n. At a given value of σ2 , the JSC rates (channel uses

per source bit) are kept the same for all three schemes. We see that, with the increase in

block length, while the BER decreases for all three schemes but Scheme 3 yields the best

performance.
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Figure 5.10: BER performance of codes designed through the three methods described in
Fig. 5.6 as a function of codeword length. σ2 = 5 and α = 0.01

Recall that Fig. 5.5 and Fig. 5.6 indicate that codes designed by using the mode-matched

approximation for the state-check node information update gives the maximum output mu-

tual information as compared to the mean-matched or mixture-based approximations. In

Fig. 5.10 we compare the BER performance for codes designed using these approximations.

Here, the correlation parameter α and the channel noise variance σ2 are kept the same as

in Fig. 5.6 (for which the outgoing message density displays a bimodal behavior). We see

that in terms of BER, the mode-matched approximations yields the best code designs. For

example at BER of 10−6, block length required for codes based on mode-matched approxi-

mation is approximately 1.7× 104 bits, while with mean-matched approximation, we need a

block length of approximately 3.8× 104 bits.

In Fig. 5.11, we compare the JSC rates in channel uses/source bit, achieved by the
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Figure 5.11: JSC rates (channel uses per source bit) as a function of the correlation parameter
for σ2 = 0.5. The theoretical limit for communication of independent sources over the same
GMAC is also shown.

proposed DJSC codes as a function of the correlation parameter α at a decoding error

probability of 10−6. The rate upper-bound given by (5.3) for independent sources over the

same channel is also shown. Note that for α ≤ 0.36, the JSC rates achieved by the DJSC

codes, even beat the theoretical limit for the independent sources.

While the proposed DJSC codes are clearly aimed at coding of dependent sources, the

same approach can also be used to design JSC codes for communicating independent sources

over a GMAC by simply setting α = 0.5. Previously, in [4], the authors proposed a joint code

design method for communication of independent sources over a GMAC. Fig. 5.12 compares

JSC code for two independent sources designed with approach presented in this chapter with

the code designs in [4, Fig. 3], which shows that codes designed with the proposed approach

90



Figure 5.12: BER comparison of the proposed DJSC coding scheme with the joint channel
coding scheme for independent sources, reported in [4, Fig. 3]. The rate R is measured in
bits per channel use.

outperforms those in [4]. The main difference is due to the better approximation of outgoing

message pdf of state-check nodes as discussed in Sec 5.5. In particular we observe a coding

gain of approximately 0.2 dB at a decoding error probability of 10−3 for all coding rates

considered here.

Next we compare performance of the DJSC codes proposed in this dissertation against

those reported in [3] where the authors present a different DJSC code design method based

on the use of LDGM codes. The use of LDGM codes has the advantage that the correlation

among the sources is roughly preserved in both information bits and the parity bits in

transmitted codewords, where as with systematic LDPC codes the parity bits transmitted

for two sources are not strongly dependent, as the sparse parity check matrices leads to
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Figure 5.13: Comparison of the proposed coding scheme with previously reported scheme
based on LDGM codes (Fig. 8 in [3]). (α = 0.1)

dense generator matrices. However, LDGM codes have an inherent disadvantage that they

typically show high error floors [32]. To get around this problem, the authors in [3] have used

serial, parallel and hybrid concatenation of LDGM codes which removes the error floor but

increases the encoding complexity due to the use of two or more codes and an interleaver.

This problem is not present in the proposed LDPC codes. In Fig. 5.13 we compare the BER

of DJSC codes based on LDPC codes with those reported in [3, Fig. 8]. The SNR Gap (dB)

in this figure gives the gap between the SNR of the actual channel for which the code is

designed and the SNR which represents the theoretical limit for independent sources for the

same channel.
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5.8 Conclusions

Motivated by the fact that for communicating dependent sources over a GMAC, DJSC coding

can be used to achieve rates higher than those that can be achieved with separate source and

channel coding. In this chapter, a new approach to designing a DJSC code with symmetric

rates for a pair of correlated binary sources transmitted over a GMAC has been presented. In

the proposed approach, linear programming is used to find the optimal degree polynomials of

a pair of irregular LDPC codes. For codes designs for dependent sources and GMAC, a new

method is identified for modeling the outgoing message densities of state-check nodes in the

joint decoder factor-graph. Experimental results show that codes designed with the proposed

approximation leads to codes which can outperform other known codes. The experimental

results show that incorporating joint distribution of the sources in the code optimization

algorithm yields improved performance as compared to a design which assumes independent

sources . It has been demonstrated that for sufficiently long codeword lengths DJSC codes

for dependent sources and GMAC can achieve rates higher than the theoretical rate upper

bound for independent sources.
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Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusions

In this dissertation, the problem of designing DJSC codes for correlated sources over multi-

user communication systems was investigated. The main contributions can be summarized

as follows:

• A new approach to designing DJSC codes for a pair of correlated binary sources trans-

mitted over an orthogonal MAC has been developed. Although the source-channel

separation principle holds for this case, for short to moderate codeword lengths (on the

order of few thousand bits), new DJSC codes were shown to significantly outperform

separate source and channel coding. The proposed design approach is an extension

of the well known EXIT analysis-based LDPC code optimization for single-user com-

munication to multi-user communication of correlated sources. It was shown that the

proposed DJSC codes can approach the theoretical rate bounds when the codeword

length is increased.These codes have also been shown to outperform the other DJSC

codes previously reported in the literature.

• It is known that the source-channel separation principle does not hold for GMAC,
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and for optimal performance DJSC coding is required This problem has not been well

addressed in previous work. In order to address this issue a new approach to designing

DJSC codes for transmission of two correlated binary sources over a GMAC has been

developed. The proposed approach generalizes the EXIT analysis-based single-user

LDPC code designs to coding of two correlated sources over a GMAC. To this end,

a new method has been proposed for modeling the density functions of the messages

passed in BP decoding of two LDPC codes using a single factor graph. Simulation

results show that new DJSC code designs can achieve rates higher than the theoretical

upper bound of separate source and channel coding for sufficiently large codeword

lengths. To our knowledge the only other work that considers DJSC codes design for

GMAC is [4]. The simulation results presented here indicated that the proposed LDPC

code designs can outperform LDGM codes in [3].

6.2 Possible Future Work

• An interesting avenue of future work is the extension of the proposed DJSC code design

approaches to more than two sources. For orthogonal MAC, this involves designing

good codes for several sources with the property that multiple UEP levels are pro-

vided for different bits within a codeword as determined by the pairwise correlation

between the sources. For a GMAC, the message density modeling for EXIT analysis

becomes more involved and it may require a different approximation method than that

considered in Chapter 5.

• In this dissertation it has been assumed that sources and the channel are stationary.

Another important extension include designing adaptive DJSC codes which are robust

against variations in source correlation as well as the channel noise level. This requires

estimating the inter-source correlation during the decoding process. This may require

introducing a two stage decoder in which the first stage estimates the inter-source
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correlation and the second stage produces (soft) estimates which are fed back to the

first stage. Similar methodology is applied in [89] for correlation estimation for the

asymmetric case.

• In this dissertation it has been assumed that the sources have uniform distributions. In

this case, the redundancy is due to the dependence between the sources and no redun-

dancy exist within each source. In future work the code design for non-uniform sources

can be can also be considered. In this case, the redundancy within each source can be

exploited to further improve the efficiency/reliability of communication. For a single

non-uniform source, the JSC code design has been considered in [90] which may be

extended to the multi-user case as well. However, the extension is not straightforward

in the sense that, codes designed are not necessarily systematic and the preservation

of the inter-source correlation over the channel appears non-trivial.
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Appendix A

Derivation of (5.13) and (5.14)

Since all the messages passed along the edges are in LLR form, we have the message passed

from a state check node to a variable node of X1 as,

m(1)
s→v = log

p(x1 = +1|y)

p(x1 = −1|y)
. (A.1)

The numerator in the logarithm can be expanded as

p(x1 = +1|y) =
p(x1 = +1, y)

p(y)
(A.2)

=
p(y, x1 = +1, x2 = +1) + p(y, x1 = +1, x2 = −1)

p(y)
(A.3)

=
p(y|x1 = +1, x2 = +1)p00 + p(y|x1 = +1, x2 = −1)p01

p(y)
(A.4)

=
q00p00 + q01p01

p(y)
. (A.5)
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Similarly, we can expand the denominator as

p(x1 = +1|y) =
p(x1 = −1, y)

p(y)
(A.6)

=
p(y, x1 = −1, x2 = +1) + p(y, x1 = −1, x2 = −1)

p(y)
(A.7)

=
p(y|x1 = −1, x2 = +1)p00 + p(y|x1 = −1, x2 = −1)p01

p(y)
(A.8)

=
q10p10 + q11p11

p(y)
. (A.9)

Now we write,

p00 = Pr(X1 = +1, X2 = +1) (A.10)

= Pr(X2 = +1)Pr(X1 = +1|X2 = +1)

= Pr(X2 = +1)β
(1)
00 .

Similarly,

p01 = Pr(X2 = −1)β
(1)
01 , (A.11)

p10 = Pr(X2 = +1)β
(1)
10 ,

p11 = Pr(X2 = −1)β
(1)
11 .

Plugging (A.11) and (A.12) into (A.5) and (A.9), dividing by Pr(X2 = −1), and using

m
(2)
s→v = log Pr(X2=+1)

Pr(X2=−1) , we get (5.13).The message update for m
(2)
s→v can be calculated in a

similar fashion.
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