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ABSTRACT

In the present dissertation, two important problems in
the field of industrial engineering, viz: a lot size inventory
control problem, and an equipment replacement problem, have Dbeen
analyzed and formulated. A structural similarity between the two
formulations presented in the present dissertation has also been
identified. We further propose a fuzzy logic approach to deal with
the inventory control problem when the data i1s imprecise. In
addition, we suggest a simplified three steps computational
algorithm for the equipment replacement problem.

Chapter 1 introduces the two problems, followed by the
literature survey in Chapter 2. Chapter 3 is devoted to the lot
sizing inventory problem, with variable demand rate, both under
crisp and under fuzzy environments. Chapter 4 deals with the
equipment replacement problem for which we give a three steps
computational method based on dynamic programming, followed by a
0-1 linear programming model for the problem. It is shown in
Chapter 5 that equipment replacement and inventory control problems
considered in the present dissertation have a common mathematical
structure. Finally, conclusions, contributions and recommendations
for further research on the afore-mentioned problems are presented

in Chapter 6.
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CHAPTER 1.

DESCRIPTION AND INTRODUCTION OF THE PROBLEMS

The subject of the present research is to investigate and
model two important problems in the field of industrial
engineering: a lot size inventory control problem (addressed by
Wagner and Whitin, 1958) and an equipment replacement problem
(addressed by Winston 1991, Waddell 1983, Gupta and Hira 1987). A
structural similarity between the two problems has been identified.

In the present chapter, we give an introduction to these

problems.

1.1. Basic Inventory Concepts:

1.1.1. Inventory: Inventory can Dbe defined as an idle
resource that has economic value. Inventory may also be defined as
the stock of goods held to satisfy some eventual demand. The items
constituting inventory may be raw materials, purchased or
manufactured items, assembled or partially assembled parts orx
finished products. Inventory is built up when the rate of receipts
exceeds the rate of disbursements and is depleted when the reverse

is true (Ritzman and Krazewski, 1990).

1.1.2. Types of Inventory: In most texts (Silver and
Peterson 1985, Ritzman and Krazewski 1990), inventory 1is
classified, as given below, by purpose (or function) of the

product.



Functional Classification : Based on the function or purpose of the

inventory, five types of the inventory have been identified.

1. Cycle Inventory : When the production or ordering is done in
batches instead of one unit at a time, the resulting inventory is
called the cycle inventory. Order lot size(Q) varies directly with
the time between orders as does cycle inventory. Hence, cycle
inventory 1s that portion of the total inventory that wvaries
directly with lot size. Mathematically,

Cycle Inventory = Q\2 , where Q is the 1lot size.

The advantages of and reasons for large cycle inventories
include economies of scale (because of large setup costs), better
customer service, less frequent setups, reduced transportation and
purchasing costs (quantity discounts) and to satisfy some
technology restrictions (e.g. fixed size of a processing tank in
chemical processing, etc.). Cycle inventory is also sometimes

called lot sizing inventory or working stock.

2. Safety Stock Inventory: Safety stock 1s the amount of inventory

kept on hand to provide a cushion against the uncertainty in
demand, lead time, and supply. |

It reduces some customer service problems and the hidden costs
of unavailable parts or lost sales. Safety stocks are not needed
when the future rate of demand, the lead time and reliability of
the vendor are known with certainty. Safety stock is also sometimes

called buffer or fluctuation stock.



3. Anticipation Inventories: Anticipation inventory consists of

stock accumulated in advance of an expected peak 1in sales. It is
used to cope with uneven rates of demand or supply. For example,
peak seasonal demand of air conditioners or lawn mowers occurs only
in summer. Such expected peaks in demand may lead the manufacturer
to stockpile the items during periods of low demand so that output
levels do not have to be increased when the demand is at its peak,
because varying output rates and work-force size are normally
costly. Anticipation inventories may also occur because of
unevenness on the supply side. For example, strawberries ripen
during certain months in a year but they are processed into jam
which has rather stable demand throughout the year. Anticipation
inventories may be accumulated in anticipation of labor strikes,
war times, etc. Anticipation inventory is sometimes referred as

seasonal or stablisation stock.

4. Pipeline (Transit or Work-In-Process) Inventorv: Pipeline
inventory is the inventory in transit, i.e. moving from one point
to another point within the production facility or within a
distribution system. For example, parts move from supplier to the
plant, from one work station to the other, from a plant to the
warehouse, and from warehouse to the retailer or customer. Pipeline

inventory 1s measured as the average demand during the lead time,

i.e. Pipeline inventory = D;= d.L , where D; 1s the average demand

during lead time, d 1is average demand per period and L 1is the

number of periods in the lead time between two points.



5. Decoupling stock : Decoupling stock 1s the stock accumulated
between different echelons (stages) of a multi-echelon system to
reduce the requirements for complete synchronization between
different operations and to permit the independent decision making

at different echelons.

1.1.3. Production and Inventory Control: The American
Production and Inventory Control Society (APICS) defines these

terms as follows (Wallace, 1984):

Inventory Control: The activities and techniques of maintaining
the stock of items at desired levels, whether they be raw

materials, work—-in-process or finished products.

Production Control: The function of directing or regulating the
movement of goods through the entire manufacturing cycle from
the requisition of raw materials to the delivery of finished

products.

In the manufacturing environment, these two terms are
frequently intermixed. To some extent, this is justifiable in the
production context because the release of a production order will
reduce raw materials, increase WIP inventory, and eventually
increase finished products. Conversely, a decision to increase the
inventory level of items will require a release of a production

order.



1.1.3.1. Objectives of Production and Inventory Control:

To discuss the objectives of Production and Inventory Control,
we first, briefly discuss some major objectives of manufacturing
firms. As given in Plossl (1985), three major objectives of
manufacturing firms are:

1. Maximum customer service.
2. Minimum inventory investment.
3. Efficient (low cost) plant operation.

These three objectives are basically in conflict. Maximum
level of customer service can be achieved only if inventory levels
are very high and the plant is kept flexible by changing
production levels and production schedules to meet the customers'
changing demands. This is not in agreement with the second and
third objectives. Efficient plant operation is normally considered
possible if production levels are seldom changed, no overtime is
incurred and machines ‘are run for long periods once they are setup.
This means efficient plant operation results in large inventory and
inflexible customer service which is in disagreement with the first
and second objectives. Now, the objective of low inventory can be
obtained at the cost of poor customer service and if the plant
reacts rapidly to changes in customers' requirements and
interruptions in production which violates the first and third
objectives. Since, working towards one of these objectives can be
done with the exclusion of the others, the inventory control
problem really becomes a challenging problem.

The primary objective of inventory control is to reconcile or

make consistent these conflicting objectives in a modern company.



1.1.3.2. Economic Importance of Inventory Control:

As reported in Silver and Peterson (1985), Statistics Canada
figures say that total inventories owned by Canadian manufacturers
are in the neighbourhood of $ 30 billion. Business inventories in
the United States exceed $ 500 billion of which half is 1in
manufacturing (Smith, 1989). On the average, 34% of the current
assets and 90% of the working capital of a typical company in the
United States are invested in inventories. Actual figures for
different firms will of course depend on the firm and the type of
industry.

Inventories play a major role in the profitability of a firm.
Since as quoted above, they constitute a large portion of the
assets of a company, inventory control naturally becomes an
important function of every firm that produces goods and services.
If a good inventory control system can prove to be a key to the
success of some companies, a poor inventory control system can be
the cause of failure of several others.

There are many views expressed about inventories. Some people
say that inventories are the graveyard of American business, but at
the same time, the very survival of a company may depend on the
inventory. Inventory can act like a double-edged sword. If there is
too much inventory, then the firm is not performing optimally and
is putting itself in a great risk of obsolescence. On the other
hand, if huge reductions in inventory are made without improving
manufacturing processes to decrease the lead times, the firm can

loose 1its customers and damage its reputation.



Inventory is also viewed as a necessary evil. Although, it helps to
maintain customer service, improves the utilization of resources
and reduces set-up costs, each dollar tied up in inventory 1is
unavailable for investments elsewhere (e.g. new products, capacity
increases or new technological developments). Therefore, finding an
optimal inventory control policy is of paramount importance and

crucial for a firm.

1.1.4. Classification of Inventory Models:

There are different ways of classifying the inventory models.
Some of the attributes useful in distinguishing between various
inventory models are given in this section (Cohen 1988, Silver

1981) .

1. Number of Items:

a) Single Item - This type of model recognizes one product at
a time. If the demand rate changes from period to period,
then the problem becomes that of a dynamic lot sizing
problem.

b) Multi Item - This type of model considers a number of
products simultaneously. These products must have at least
one interrelating or binding factor such as a budget or

capacity constraint or a common set up.

2.S8Stocking Points:
a) Single Echelon Models - Only one stocking location 1is

considered.



b) Multi Echelon Models - More than one interrelated stocking

locations are considered.

3.Frequency of Review:
This is the frequency of assessment of the current stock
position of the system and implementation of the ordering
decision.
a) Periodic - Placement of orders is done at discrete points
in time, with a given periodicity.

b) Continuous - Order placement can occur at any time.

4.Q0rder Quantity:
a) Fixed - Order quantity is fixed to the same amount each
time.

b) Variable - Order quantity can be variable.

S.Planning Horizon:

a) Finite - Demands are recognised over a limited number of
periods.
b) Infinite - Demands are recognised over an unlimited number

of periods.

6.Demand:
a) Deterministic - Demands are known with certainty over the
planning horizon.
i) Static - Demand rate is constant over every period.

ii) Dynamic - Demand rate i1s not necessarily constant.



b) Stochastic (Probabilistic) - Demand is unknown, and must be
estimated. The demand probability distribution may be known

or unknown.

.Lead Time:

a) Zero - No time elapses between placement and receipt of
orders.

b) Non-Zero - Significant time elapses between the placement

and receipt of orders. This time may be constant or random.

.Capacity:
a) Capacitated - There are capacity restrictions on the amount
produced or ordered.

b) Uncapacitated - Capacity is assumed to be unlimited.

.Unsatisfied Demand:

a) Not allowed - In this case, all demand is met and no
shortages (no Dbacklogging) are allowed.

b) Allowed - Demand not satisfied in a particular period may be
retained and satisfied in a future period (backlogging),
partially retained and partially lost or completely lost (no

backlogging).
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1.1.5. Lot 8Size Inventory Problem:

Two Dbasic questions to be answered in most of the inventory
situations are when to order (the reorder point) and how much to
order (the lot size). When the demand rate is constant over time,
the associated problem of planning is rather simple because the use
of the classical Economic Order Quantity (E0OQ) model gives us
optimal results. But when the demand rate varies over time i.e. not
necessarily constant from one period to another, the associated
problem of planning 1is a bit more challenging and is said to be
dynamic in nature, as discussed in the preceeding section. The
problem considered for this study is uncapacitated single-item lot
sizing problem with dynamic demaﬁd. This problem was first
addressed by Wagner and Whitin (1958) under the assumption of
deterministic demand. The uncapacitated assumption can be Jjustified
to some extent 1in an MRP (Material Requirement Planning)
environment on the condition that a good master production schedule
exists which takes these capacity restrictions into consideration.
This master schedule is aimed at smoothing the production load and
can make use of fine tuning devices such as adjusting the lead
time, subcontracting, overtime, alternative routings etc. However,
in certain situations it may be difficult to ignore the capacity
restrictions in actual lot size decisions since this would lead to
an infeasible master schedule and subsequently to more frequent
replanning. Further, we would add that inventory problems are
ubiquitous and complex in nature, so no particular model can

represent all the inventory situations.
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1.1.5.1. Relevant Costs in the Problem:

There could be many types of relevant costs considered in the
problem e.g. the ordering cost, the holding or carrying cost and
the total manufacturing cost. There could be other relevant costs
depending on the situation. Since, we meet the total demand over
the planning horizon and neither do we discuss the case of quantity
discounts, so the total manufacturing cost becomes irrelevant to
our problem, and we ignore it. Further, we do not discuss the back
order case in this study, so we omit the back order or stock out
costs as well. Another type of cost which is frequently ignored in
the literature is the cost of data acquisition for the model,
computational costs and implementation costs including adverse
effects of the new model. Such costs are referred to as System
Control Costs (Silver, 1981). We are also ignoring this cost since
this study deals with the theoretical, not empirical developments

of the problem.

1. Holding Cost: It is the cost of keeping items on hand.
Holding cost may include taxes, storage, insurance and shrinkage
(e.g. pilferage, obsolescence and spoilage) costs. Holding cost
increases with the size of the inventory. If r is the dollar amount
required to carry one dollar as inventory for one period, and v be
the unit cost of the item, then the cost to hold one unit for one

period is, h = v.r.
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2. Ordering Cost: This type of cost is incurred each time a
production or purchase order 1s placed. This cost increases with
the number of orders but is independent of the size of the order.
It may include transportation cost, paper work, telephone calls,
accounting costs, computer time for record keeping or other
receiving costs. In the production context, this type of cost is
called set up cost which can include tooling and fixtures, rent on
the equipment or if the company owns the equipment, there is a cost
of lost opportunity to rent the equipment to some other company
during the periods when there is no production. Also, since every
production system takes some time before it gets to its full
working momentum, the cost associated with that time may be
included in the set up cost.

As we can see, there 1s a cost trade off between the ordering
cost and the carrying cost. As the ordering cost increases, the

holding cost decreases and vice-versa.

1.1.5.2. Discussion on Solution Approaches:

Wagner and Whitin (1958), suggested a dynamic programming
algorithm to deal with the uncapacitated inventory control problem.
Though the approach gives optimal results, the complex nature of
dynamic programming and the so-called curse of dimensionality
makes it difficult to understand by the practitioner and makes the
approach practically useless. As reported in Bahl et. al. (1987),

an industrial survey conducted by the American Production and
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Inventory Control Society found no respondents using the Wagner and
Whitin algorithm. There are numerous heuristic methods available in
the literature which will be discussed in the literature survey in
the next chapter. These heuristics are easy to use but not
necessarily optimal. The other efficient approach which immediately
comes to mind is linear programming. However, in certain practical
situations such as for dedicated production lines, group technology
and FMS, it is impossible to ignore set up costs or set up times.
Each time a set up is done a cost is incurred. This suggests an
integer programming approach with some binary variables
representing the set ups. We develop two such 0-1 linear
programming models in the third chapter. The main underlying
assumption in most of the models is that '"demand 1is
deterministically known". But demand is always forecasted and most
of the times the forecasts do not turn out to be precisely correct.
Precision always demands parameters and structures of a system to
be definitely known. In this context Schwartz's quotation
(Schwartz,1962) seems appropriate, "An argument which 1is only
convincing if it is precise loses all its force if the assumptions
on which it is based are slightly changed, while an argument which
is convincing but imprecise may well be stable under small
perturbations of its underlying axioms."™ Those methods which are
based on the precise knowledge of data have little practical
applications. Furthermore, in practice most of the companies are

limited by budget restrictions. Setting targets (or goals) on
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cost figures is a very common practice in the industrial and
business world, and in some situations these restrictions have some
elasticity. This suggests the possibility of applying fuzzy logic
to some industrial problems.

In some cases, the decision maker might not really want to
actually maximize or minimize the objective function, but rather
may want to reach some "aspiration level” which might not be even
crispiy defiﬁed. In real world problems, this can happen because
sometimes it is simply not possible to obtain the precise data, or
the cost associated with obtaining the precise data is too high.
This imprecision in data arises because of the complex nature of
the real world problems. So the problem becomes that of modelling
with imprecise data. We will analyse our problem in Chapter 3 by
means of a fuzzy logic approach when some sort of ambiguity in
available budget and demands is involved. Zadeh's (1973) principle
of incompatibility states that, "In general, complexity and
precision bear an inverse relation to one another in the sense
that, as the complexity of a problem increases, the possibility of
analyzing it in precise terms diminishes. Thus 'fuzzy thinking' may
not be deplorable after all, if it makes possible the solution of
problems which are too much complex for precise analysis". Fuzzy
set theory is a tool which gives reasonable analysis of complex
systems without making the process of analysis too complex. In the

following lines, we give a brief introduction to fuzzy set theory.
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Fuzzy Set Theory:

The theory of fuzzy sets is basically a theory of graded
concepts. A central concept of fuzzy set theory 1is that it is
permissible for an element to belong partly to a fuzzy set.

Let X be a space of points or objects, with a generic element

of X denoted by x. Thus, X = {x}.

Fuzzy Set: Let x € X. A fuzzy set A in X is characterized by a

membership function (M.F.) K, (x) which associates with each point

in X, a real number in the interval [0,1], with the value of U, (x)
at x representing the "grade of membership" of x in A. Thus, the
nearer the wvalue of B, (x) is to 1, the higher the grade of
belongingness of x in A.

In conventional (crisp) set theory, K, (x) takes only two

values 1 or 0 depending on whether the element belongs or does not
belong to the set A.
Therefore, formally speaking, if X = {x} 1s a collection of

objects denoted generically by x, then a fuzzy set A in X is a set

of ordered pairs, A = {(x, M,(x)) / x € X }, where K, (x) maps X

to the membership space [0,1].
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1.2. Maintenance and Replacement Problems:

Problem situations, concerned with controlling the condition
of equipment are termed as maintenance and replacement problems.
Models for these problems can be stochastic or deterministic
depending upon whether some sort of uncertainty 1is or is not
involved with the timing and/or consequence of the action

(Jardine, 1978) .

1.2.1. Different Problem Areas:
As shown in the following figure, the replacement and
maintenance problems can lie in any the following four broad areas

(Jardine, 1878) :

Deterministic Stochastic
Replacement Inspection Overhaul Organizational
and repair structure

Figure 1.1- Replacement Problem Areas.

1. Replacement: Replacement means to achieve the "as new"
condition for the equipment concerned. This i1s based on the
assumption that if a second hand equipment is purchased, it
should be considered "as new". Further problems in this area

can be Group Replacement, Preventive Replacement etc. Group
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replacement problems are those problems in which items are
replaced as a group rather than one item at a time because of
economies of scale (e.g. quantity discounts 1if items are
purchased from a common supplier). Sometimes failure of one
component shuts down the whole production process and it
creates the opportunity to replace other parts at the same
time to avoid frequent shut downs, this type of replacement
situation is called preventive replacement. We will discuss

the replacement problem further in the next section.

. Inspection: The primary function of inspection is to determine

the condition of the equipment and the major decisions

associlated are:

a) Thoroughness of inspection.

b) Indicators to be used to describe the equipment's age and
condition (bearing wear, product quality etc.).

c) The timing of inspection.

Overhaul and Repair: Overhaul is a restorative maintenance

action taken before the equipment has reached a defined failed
state, whereas repair is made after the equipment has reached
the failed state. Neither action returns the equipment to "as
new" state. "Failed state”™ does not necessarily mean the
"broken~down" state, 1t may be the state in which items
produced are outside the specified tolerance limit or there

are risks involved with the continued use of equipment. The
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major decisions associated 1n this area are

a) The interval between overhauls.

b) Degree to which the equipment should be overhauled or
repaired, or how close the "as new" condition should be

achieved.

4. Qrganizational Structure: Some major decisions involved in

this area are

a) Determination of what maintenance facilities should be
there inside the organisation (e.g. workshops, stores ,
maintenance staff etc.).

b) How these facilities should be used, taking into account
the possible use of outside resources such as contractors.
Normally, maintenance work can be performed by the company
crew or outside contractor, in the company's workshop or in
the contractor's workshop.

Another problem in this area is the determination of crew
size with the crew costs and downtime costs identifying the
possible trade off. With increases in crew size, cost
associated with the <crew increases but the down time
decreases. These type of problems are normally solved by

simulation techniques.

1.2.2. Different Categories of Replacement Problem:
According to Ray (1971), replacement problems normally fall into
the following categories depending upon the life pattern of the

equipment and its selection.
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1. Replacement of items which fail suddenly.

2. Like-for-like replacement.

3. Military aircraft type replacement.

4, Replacement of items which deteriorate and become obsolete

with time.

. Items which fail suddenly : This type of replacement is quite
common in the area of electronic components and it has led to
the development of an area of study called reliability
engineering. Another example of items falling into this

category are light bulbs.

. Like-for—-like replacement : Replacement in which an item 1is
replaced by an identical item. This type of replacement is
considered to be practically nonexistent. Its main use 1is a
philosophical one; that of an assumed approach in illustrative
problems. However, there exist some industrial situations
where this type of replacement may be found, e.g. in
case of fairly standard machines, a machine tool is replaced
by an identical tool. This category is essentially a subset of

fourth category.

. Military aircraft type replacement: In this type of
replacement the decision maker is faced with the problems of
analysis related to factors other than system which is in

service. The problem is that of instant obsolescence, however
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the equipment may be functionally downgraded rather than
replaced in the literal sense (e.g. it may be used for tasks
of lower priority). The wvalue of that equipment for the main
line service 1s lost. This category may overlap a little bit
with other categories. For example, 1if an enemy develops a
superior model, the equipment loses its value for main line
service. In the business world, electronic computers can be an

appropriate example.

with time: In this type of replacement, the equipment wears

out gradually and becomes obsolete because of cumulative use
and new technological developments and starts functioning with
decreasing efficiency. Maintenance and operating costs
escalate with time and resale values decline. At some stage it
becomes necessafy to replace the equipment with a new one.
Items'like industrial vehicles, fork 1lifts or some other
industrial machinery can lie in this category. In this type of

replacement, the state-of-the-art of the equipment is dynamic.

1.2.3. Replacement of Deteriorating Items:

To narrow down the topic of our research, in the present

dissertation we shall limit our interest to that category of items

which deteriorate and become obsolete with time and usage. In the

present thesis, we consider the basic replacement problem as

deterministic, rather than stochastic in nature. The deterministic
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problem is addressed in the past by Wagner (1969), Jardine (1978),
Gupta and Hira (1987) and Winston (1991). The deterministic
assumption is Jjustified in this problem because the increasing
probability of breakdowns is reflected by maintenance and operating
costs that increase with the time.

In real life all equipment eventually wears out with time due
to deterioration and usage, causing it to function with decreasing
efficiency. For example, with the passage of time, a milling
machine's operating cost and downtime increases and a
transportation vehicle such as a car or industrial truck requires
increasingly more repair and maintenance. With ever rising repair
and maintenance costs, a stage may come when these costs become so
high that it 1is more economical to replace the used piece of
equipment by a new one. A natural question then arises about the
optimal time of its replacement. If these costs decrease or remain
constant with time, the best policy, perhaps, then is never to
replace the item. However, in real situations such a condition 1is
hardly met. Technological developments may also force the user to
consider the replacement because better designed machinery may
result in improved product quality, better efficiency and reduced

maintenance and operating costs.

1.2.3.1. Relevant Costs in the Problem:
Generally, those costs which depend upon the choice or age of
the equipment are included in the replacements models. Other costs

or parameters that effect the cash flows are also normally included
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in the replacement decisions. Maintenance and operating costs,
purchasing costs depend on the choice and age of the equipment, so
they become relevant to the problem. Resale values (salvage values)
also become a relevant parameter in our problem because besides
being dependent on the choice or age, resale values also effect

the cash flows.

1.2.3.2. Possible Mathematical Approaches:

Dynamic programming has been suggested, by many researchers,
as an approach to modelling and solving the ‘equipment replacement
problems' (Bellman 1955, Bellman and Dreyfus 1962, Wagner 1969,
Stapleton et. al. 1972, Chand and Sethi 1982, Hopp and Nair 1991,
Winston 1991 etc.). However, feelings that "high computational
burdens due to the so called 'curse of dimensionality' of dynamic
programming and the near impossibility of explaining it to the
practitioner” or statements like "the complexity of the dynamic
programming procedure inhibits its understanding by the layman who,
in general, does not possess a high degree of expertise, insight
and ‘'art', acts as an obstacle to its adoption in practice"”
discourages the users from the use of dynamic programming approach
to solve equipment replacement problem (Fordyce and Webster,1984).
Recently, the high computational burden argument has diminished
somewhat due the developments in computer technology but the other
arguments still persist to a large extent. Based on Fordyce and
Webster's approach to inventory control, we will give a simple and

straight forward dynamic programming algorithm to solve the
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equipment replacement problem in Chapter 4. In addition, we will
also analyse the afore-mentioned problem by means of a pure 0-1

model.

1.2.4. Importance of the Replacement Problem:

Like the inventory control problem, the importance of the
replacement problem can also not be underrated. A poor replacement
policy can cause unnecéssary costs, the continued use of old
equipment can cause hazards, industrial accidents or personal
injuries. On the other hand, a good replacement policy can be a
positive profit contributing factor and help to insure worker
safety. An extensive survey conducted by Hsu (1989) clearly
indicates that firms have started realizing the importance of
equipment replacement and are paying increasing attention to
replacement policies. Approximately 89% of the firms surveyed have
definite equipment replacement policies. This represents a sizable
Aimprovement over his previous survey (Hsu, 1974) which showed that
only 52% of the firms surveyed with definite policies regarding -
equipment replacement. Capital-intensive firms with more expensive
and specilalized equipment were found to show more concern over

equipment replacement than labour-intensive firms (Hsu,1988).
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CHAPTER 2.

LITERATURE SURVEY

This chapter provides a survey of literature dealing with
inventory control and replacement problems. The purpose of this
chapter is to identify the state-of-the—art achieved in the areas
mentioned in Chapter 1. However, we will focus our attention on

that part of the literature which is relevant to our problems.

2.1. Review of Literature on the Inventory Problem:

Much literature exists on the inventory problems. Some major
sources of this literature include the APICS publications (such as
Production and Inventory Management Journal, Journal of Operation
Management, Conference Proceedings), Operations Research Quarterly,
Management Science, Naval Research Logistics, International Journal
of Production Research (IJPR), European Journal of Operation
Research (EJOR) etc. In the following sections, we will review
techniques dealing with single item uncapacitated lot sizing.
Expository accounts of some of these techniques are provided in
Plossol (1985), Silver and Peterson (1985), Zoller and Robrade
(1988), Nydick and Weiss (1989), Hax (1978). Perhaps the first
reported work on inventory control was Harris by (1915). Then in
1934, Wilson (1934) gave a statistical approach to find order
points. These publications found little practical recognition for
at least the following 3-4 decades. This may be due to the fact

that the 1930's and 1940's were periods of great depression for the
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industrial and business world. The question before many companies
was that of survival, not optimization. During World War 1II,
different companies were mainly concerned about meeting the
war—-time needs and a backlog for c¢ivilian demands started
appearing. This pent-up demand for civilian goods provided a market
for every item that could be produced. Once the postwar backlog was
satisfied, firms started thinking in terms of optimization, because
the problem became that of over-production. Inventory control
models received their real boost from operation research techniques
developed during World War II. However, the actual bibliography on
these models started appearing after 1958 with the well known paper
by Wagner and Whitin (1958). Triggered by Wagner and Whitin's work,
a number of papers appeared in different research journals. Some
of them tried to improve on the Wagner-Whitin algorithm, others
gave some heuristics which were basically off-shoots of
Wagner—Whitin algorithm with the emphasis on making computation
scheme more easy, though may not be optimal. Zoller and Robrade
(1988) suggested a convenient classification scheme for the
existing literature by categorizing it into following three
categories:

1. Optimizing techniques.

2. Stop rules (heuristics) and

3. Heuristic algorithms.

Using their classification scheme, we discuss the literature

as follows:



2.

26

1.1. Optimizing Techniques:
2.1.1.1. The EOQ Formula:

The classic EOQ formula was first derived by Ford Harris
(1915). This is widely known as the Wilson formula because it was
Wilson who popularized this formula in practice. The basic

formula for economic order lot sizing i1s as follows:

where
A = fixed cost for the replenishment of an order.
D = demand rate of the item. (normally annual usage rate)
v = unit variable cost.
r = cost of one dollar of item tied up in inventory for a unit
time.
Note that D and r should have same unit time basis (i.e.if
annual demand is considered then r must be considered for one

year, not one month).

2.1.1.2. The Wagner-Whitin Algorithm:

When the demand rate is constant from period to period, then
the classical EOQ formula performs in an optimal fashion but,
when demand rate varies from period to period, the results from
the EOQ formula can be misleading. The only optimal technique
which performs optimally in this situation was given by Wagner
and Whitin (1958) in their well-known paper. They used dynamic

programming to solve this problem, perhaps forced by the
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recursive nature of the computations. Their work was based on
some important theorems established in their paper. These

theorems were themselves based on the assumption that initial

inventory is zero (I,=0). Before giving their algorithm, we shall

briefly state these theorems. Most heuristics given by subsequent
researchers are also based on these theorems about the structure

of an optimal policy.

Theorem 1: There always exists an optimal policy such that

I, X = O fort =1,2,....,N,

where I__, is the inventory entering period t, X. is the amount

t
produced in period t and N is the length of planning horizon.
This means that replenishment can be made only when the
inventory level becomes zero, i.e. having positive inventory

and producing at the same time never leads to optimality.

Theorem 2: There exists an optimal policy such that for all t

Xt=0 or

k
Xt=2dj
j=t
for some k, t £ k £ N.

where X_ is the amount produced in period t and djis the demand

in period Jj. This means that for any given period production
is either zero or is the sum of subsequent demands for some

number of periods in the future. The dynamic programming
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approach requires ©N(N+1)/2 cases to be analyzed.

Theorem 3: There exists an optimal policy such that if demand

d,” in period t* is satisfied by some amount X,”" produced in

period t**, £* %< t*, then d., t= £* %+ 1,...... ’ £ - 1, is also

satisfied by X/ **.

Theorem 4: Given that I=0 for period t, it is optimal to

consider periods 1 through t-1 by themselves.

Planning Horizon Theorem: The planning horizon theorem states
in part that if it is optimal to incur a setup cost in

period t* when periods 1 through t* are considered by

themselves, then we may let X.® > 0 in the N period model

without foregoing optimality. By theorems 1 and 4 it follows
further that we adopt an optimal program for periods 1 through

t*-1 considered separately.

The Algorithm: According to Wagner whitin (1958), the algorithm

at period t*, t*=l,2,...., N, may be generally stated as:

1. Consider the policies of ordering at period £, £** =

* * % *

1,2,..., t* and filling demands dt, t= t~~, £+ 1,.., t~,
by this order.
2. Determine the total cost of these t  different policies

by adding the ordering and holding costs associated with
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placing an order at period t**, and the cost of acting

optimally for periods 1 through t**-1 considered

 separately. The latter cost 1is computed previously in
computations for periods t = 1,2,...., t -1.

3. From these t~ alternatives, select the minimum cost

policy for periods 1 through t* considered independently.

4., Proceed to period t*+1 (or stop if £¥=N) .

There are however, some potential drawbacks of this method.
For example, the computational effort is very great and the complex
nature of the algorithm inhibits its understanding by the
practitioner (Silver,1985). In the case of rolling horizons, some
heuristics outperform the Wagner-Whitin algorithm.

Wagner (1960) further expanded his approach to take into
account time-varying manufacturing costs. Eppen et. al.(1969) and
Zabel (1964) made extensions to the planning horizon theorem.
Zangwill (1969) took backordering costs into consideration and
gave a network representation of the problem. Elmaghraby and Baawle
- (1972) provided an alternative approach to the backorder case Dby
considering batch sizes greater than one, both with and without set
up costs. Blackburn and Kunreuther (1974) also consider the
backlogging case. Chang (1977) tackles this problem with different
demand or production characteristics. Bhaskaran and Sethi (1981)
studied the dynamic lot~size model with stochastic demand. Lavis
(1981) ailows the quantity discount feature in his model.

Fordyce and Webster (1984) further enriched the literature on
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this problem by presenting the Wagner-Whitin algorithm in a simple
and straight forward computational style in tabular form. Fordyce
and Webster continued their investigation and the variations of
their approach are presented in Fordyce and Webster (1985), where
they considered the case of changing manufacturing costs and
quantity discounts. Naidu and Singh (1986) gave an algorithm based
on incremental cost approach to determine the optimal production
policy which they further extended for multi-item case. Jacobs and
Khumawala (1987) presented a simple graphic branch and bound
optimal procedure which is computationally equivalent to Wagner and

Whitin algorithm (1958).

2.1.2. Stop Rules:

Stop rules (Zoller and Robrade,1988) increase the cycle length
and stop as soon as some transformation of the controllable cost
is reached. Controllable cost C(t), is normally the sum of ordering

and holdiné costs as follows:
t
Ct)=A+ H. )Y, (h-1).dy
h=1
where d, is the demand quantity in period h, H is the holding cost

per unit per period and other symbols have the usual meaning.

2.1.2.1. Least Unit Cost Rule (LUC):
This is probably the earliest heuristic, the exact origin of

which hasn't been traced out. Gorham (1968) compares the LUC and
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least total cost (LTC) methods and comes up with the conclusion
that the LUC method is erratic. Although it performs well on one
set of data, i1t fairs poorly on another set of data. LUC
(Wemmerlov, 1981) divides the total cost by the demand quantities

to find the cost per unit U(t) as follows:

C(t)
t

>, dy
h=1

U(t) =

and stops as soon as U(t+l) 2 U(t).

2.1.2.2, Part Period Rule:

The Part period rule was developed for IBM's software
packages because it is simple to program. It was introduced by
DeMatteilis (1968) and Mendoza (1968) and is basically the same as
the Least Total Cost (LTC) rule (Gorham,1968). The Dbasic
criterion in these rules is that requirements for the successive
periods can be added to the same lot so long as the cumulative

carrying cost does not exceed the ordering cost, i.e.

H.
h

(h-1).dp<A

t
=1

and stops stops as soon as

t+1
H.Y (h-1.dy>A
h=1



32

2.1.2.3. The Silver and Meal Rule (SMR):

This 1s perhaps the most famous heuristic method (Silver and
Meal,1973). Silver-Meal Rule is identical to Least Unit Cost rule
except that the total cost is divided by the number of periods
included in the lot instead of by the sum of demand quantities.
It computes the cost per period P(t) as follows:

P(t)=C(t)/t, and stops as soon as

P(t+1) > p(t).

2.1.2.4. Groff's Rule:

Groff (1979) introduces a policy under which the demand for
a period is added to the lot if the marginal savings in ordering
cost are greater than the marginal increase in carrying cost.

In mathematical terms,

Marginal savings in ordering cost (A/t)-(A/t+1l) = A/ (t. (t+1))

Marginal increase in holding cost (1/2) .H.dg 41
Groff's rule adds the demand for a period to the lot if

A/(t.(t+l)) > (1/2).H.dy4; and stops as soon as

(1/2) \H.dppq 2 A/ (t. (t+1))

2.1.2.5. Incremental Order Quantity (IOQ):
Boe and Yilmax (1983), Freeland and Cooley (1982) suggested

that cycle 1length should be increased so long as incremental

carrying costs H.t.di4q does not exceed A and it stops as soon as

H.t.dgyq 2 A
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2.1.2.6. Period Order Quantity(POQ):

Period Order Quantity is an EOQ based technique. If there
are considerable variations in the demand pattern, then the
results from simple the EOQ formula can be misleading. Better
results can be obtained by adopting a slightly different approach
(Brown,1977). The EOQ is calculated from the classical square
root formula (EOQ formula), then this EOQ quantity is divided by
the average demand during one period to obtain the number of
periods whose requirements are to be covered by the lot size

(rounded to the nearest positive integer).

Tpop = EOQ/ (Average demand during one period)

If D is the average demand for one period, then

avg
[2.A.D
_ [_2A
Troe v.r.Davg

Thus in POQ method,the time between orders remains fixed,

but the lot size changes.

2.1.3. Heuristic Algorithms:

| In the previous section, we discussed some rules which were
basically single pass stop rules. The stop rules terminate when
some transformation of controllable cost 1is reached, while the
algorithms further look ahead or back and compare different

alternatives to improve the overall decision.
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2.1.3.1. I1I0Q Algorithm:

Trux (1972) proposes to use the I0OQ rule to find a safe
maximum and then examines if the corresponding lot can be split
into two lots. Gaither (1983) determines two subsequent lengths
and examines if shifting a demand from first lot to second lot is
more profitable or not. In fact, Gaither (1983) is an improved
version of his previous algorithm Gaither (1981), after the

comments from silver (1983) and Wemmerlov (1983).

2.1.3.2. Part Period Algorithm:

To improve the performance of PPR many attempts have been
made. DeMatteils (1968) suggests that the cycle length determined
by the PPR should be subjected to a look ahead or look back to
determine if the periods of large demand exist. Blackburn and
Millen (1980) propose that cycle length determined by PPR could
be increased if a closer balance of ordering and carrying costs
can be maintained. Karni (1981) proposes that pairs of lots
should be combined into a single order through an iterative

procedure with a maximum gain in terms of net cost reduction.

2.1.3.3. Silver-Meal Algorithm:

Silver and Meal (1973) made an observation that cost per
period is not necessarily convex and may hence have many local
minima, however, SMR identifies only the first minima. Blackburn
and Millen (1980) suggest that the absolute minima should be
found by exhaustive enumeration of C(t) over the entire planning

horizon.
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2.1.3.4. Other Approaches:

In addition to the approaches discussed above, there are
numerous other ones. For example, Bahl and Zionts (1986),
formulated the problem as a "fixed charge” problem and made
lot-sizing decisions by comparing the minimum savings of having a
set up in each period to the maximum savings of having an order
in that period. Another technique sometimes used in practice is
lot-for-lot (LFL) technique. In LFL, orders are placed in the
period in which positive demand exists. While this method
minimizes the carrying cost, ordering cost is maximized. If the
natural cycle and the range for demand value is small (i.e., <
30) then the LFL is optimal.

Detailed description of these heuristic techniques can be
found in Plossl (1985), Silver and Peterson (1985), Zoller and
Robrade (1988), Nydick and Weiss (1989). The relative performance
of different heuristic methods 1is compared in Karni (1986),
Nydick and Weiss (1989), Zoller and Robrade (1988). Robrade and
Zoller (1988) provides an extensive comparative study of
different methodologies implemented in commercial software
packages. Haddock and Hubicki (1989) conduct a survey on
different techniques based on their practical use in industry.
Bahl et. al. (1987) give a five point criteria (based on
computational effort, Generalizaton, Optimality, Simplicity and
Testing) to evaluate the performance of a technique.

This completes our review of the various techniques used in

the lot-sizing problem.
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2.2. Review of Literature on the Equipment Replacement

Problem:

There 1s no dearth of published papers dealing with
replacement and maintenance models. Extensive surveys of these
models are provided by Pierskalla and Valker (1976) and Sherif and
Smith (1981). The Pierskalla and Valker (1976) survey covers the
literature from 1965 to 1976. Sherif and Smith (1981) survey
focuses on work since 1976. Work up to 1965 is thoroughly surveyed
by McCall (1965). Grant (1950) solved the replacement problem under
a set of assumptions such as: no new more efficient equipment
available before replacement, the value of money does not change
over the useful life of the equipment, and operating costs do not
decrease. One of the first significant works on the problem was by
Terborgh (1949). Subsequently, Bellman (1955) applied the dynamic
programming technique to the replacement problem. Other interesting
literature on this topic is by Dean (1951a, 1951b), Churchman et.
al. (1957), Wagner (1975), Jardine (1970, 1971, 1978), etc.
D'aversa and Shapiro (1978) provide a dynamic programming model for
the problem and employ linear programming and enumeration to obtain
optimal policies and to test the sensitivity of these optimal
policies to various factors. Eilon et.al.(1966) studied the optimum
replacement policy of fork lift trucks using two models, the first
related to the minimum average cost per truck per year, the second
using the discounted cash flow approach. The issue of the effect of
technological improvement on the economic life of equipment has

also been discussed by different researchers.
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For example, Terborgh (1949) model computes the past rate of
obsolescence and projects it into the future assuming a constant
rate of technological improvement. Subsequent work on this topic is
presented in Bellman and Dreyfus (1962), Stapleton et. al. (1972),
Chand and Sethi (1982). Stapleton et. al. (1972) contrast the
generality of the dynamic programming approach to the problem of
optimal asset life determination with the traditional and highly
restricted "equal life" solution, and examine the possiblé effects
of different forms of technical change on costs. Chand and Sethi
(1982) develop forward algorithm and planning horizon procedures
assuming that technological environment is improving over time and
that the machine—in-use can be replaced by several different kinds
of available machines. Hopp and Nair (1991) also model the problem
in an environment of technological change assuming that the costs
associated with the presently available technology and future
technologies are known, but that the appearance times of future
technologies are uncertain. Hopp and Nair claim that their approach
requires minimum possible amount of forecasted data.

Most of the above mentioned literature is stochastic in
nature. We will not discuss these models any further because our
deterministic replacement problem 1is fundamentally different. The
deterministic problem was addressed in the past by Wagner (1969),
Gupta and Hira (1987) and Winston (1991). The evidence of practical
use of such deterministic models can be found in Waddell (1983)
where 1t 1s reported that Phillips Petroleum company's fleet
managers actually used such a model in making replacement decisions
for individual highway tractors and to formulate policies for

replacing passanger cars and light trucks.
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CHAPTER 3.

A LOT SIZING INVENTORY PROBLEM WITH VARIABLE DEMAND
RATE UNDER BOTH CRISP AND FUZZY ENVIRONMENTS

The problem of lot sizing in inventory considers when an
order should be placed for a particular product (the reorder point)
and how much of it should be replenished in a particular period
(lot size) such that the total cost (replenishment cost plus
inventory carrying cost) over the planning horizon is minimized
while the demand for each period is also satisfied. In the present
chapter, we consider single-item uncapacitated lot sizing inventory
problem with wvariable demand rate, both under crisp and fuzzy
environments, for a planning horizon of N periods. This problem was
first addressed, under crisp environment, by Wagner and Whitin
(1958) wusing dynamid programming. Under crisp environments, we
first formulate such a problem as pure 0-1 problem with all the
variables restricted to wvalues of zero or one. Then we formulate
such a problem as a linear programming problem with exactly N
variables restricted to zero-one. Under fuzzy environments such a
problem is formulated as a maxmin linear program, once again, with
exactly N variables restricted to zero-one. Numerical examples for

all the cases are presented.
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3.1. Formulation under Crisp Environments:

3.1.1. Assumptions: For the models under crisp environments,
we make the following basic assumptions similar to the ones given
in Silver and Peterson (1985).

1. The rate of demand varies from one period to the next and is
assumed known.

2. The demand pattern terminates at the end of planning horizon
or ending inventory must be prespecified.

3. The replenishments are constrained to arrive at the beginings
of periods and the entire order quantity is delivered at the
same time.

4. The cost factors do not change appreciably with time, except

that the ordering (set wup) cost for period 1 1is A,
i=1,2,...,N.

5. The replenishment lead-time is known with certainty so that
delivery can be timed to occur right at the beginning of a
period.

6. The unit variable cost does not depend on the replenishment
guantity i.e. no quantity discounts are permitted.

7. The product is treated entirely independently of other
products, i.e. benefits from Jjoint replenishment do not exist
or are ignored.

8. Carrying cost is only applicable to inventory that is carried
over from one period to the next.

Objective: Minimize the total cost over the entire planning

horizon of N periods.
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3.1.2. Pure 0-1 Formulation:

Now, we give a pure 0-1 formulation for the problem. This
formulation will be used again in Chapter 5 to establish a
structural similarity between inventory control and equipment

replacement problems.

Notation : For this formulation, we base our variable definition on
Theorem 1 and Theorem 2 discussed in Chapter 2 (Wagner and Whitin
1958) .

Let,

L { 1  if demand of jth period is satisfied from the amount produced in ith period, i <j
XiT10 otherwise

_ 1  if the replenishment is made in period i
Yi = { 0 otherwise

v = unit variable cost in $ per unit.
r = carrying cost in $ per $ per period.
N = length of planning horizon, i.e. the number of periods in the

planning horizon.

A, = ordering cost per replenishment in dollars for period i, i =
1, 2, 3,...., N,

dj = deterministically (crisply) known demand for
period 3, 3= 1, 2,....,N.

M = any large number 2 N.
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Then we have the following model

(CH

(1)

(ii)

(1ii)

(iv)

Minimize v.r

M=

1

j=i

N N
2 (j-i) dJ . Xjj + z Ai.yi
i=1

1
—

subject to
i
Yoxj=1, j=12,...... , N (1)
i=1
N
Yx < My, i=12,...,N @)
j=i
xij=0,1 ,j=1,2,...,N, and i<j 3
y; = 0,1 i=1,2,...,N, 4)

The objective function expression in the above model
minimizes the sum of carrying and ordering costs.
Constraints (1) along with constraint (3) ensures that
demand of a period is met from the amount replenished in
either the same period or from only one of the previous
periods, which in turn implies that during a particular
period either replenishment (set up) cost is incurred or
carrying costs 1is incurred, but both are never incurred
simultaneously.

Constraints (2) 1in conjunction with constraint (4) and
objective function ensure that whenever some amount is
replenished in a period, an replenishment or ordering cost
is incurred.

It may be noted that because of the special coefficient
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structure of this formulation, xﬁ's will take values 0 or

1, even if they are not restricted to be 0 or 1.

3.1.2.1. Numerical Example: We 1llustrate the above
formulation through the following numerical example solved on a
personal computer using 0SBT (Chang and Sullivan, 1991).

Suppose we have the following data.

N=6, A, = $54 for i =1, 2, ...., N, v = $20 per unit,

1

"
i

$ 0.02 per $ per month, v . r= 50.4 /unit/month,

Table — 3.1. Showing demand per period

Period 1 2 3 4 5 1)

Demand (d;) 10 62 12 130 154 129

We select
M=10 > N = 6

We now have the following linear programming model with all xﬁ's

and y,'s restricted as zero-one variables.

Minimize 24.8 X, + 5.6 X5 + 156 Xy, 246.4 X5 * 258 Xy +
4.8 X, * 104 Xog * 184.4 X,5 + 206.4 Xye + 52 Kyg T
123.2 %55 + 154.8 x4+ 61.6 %, + 103.2 x,,+ 51.6 x5, +

54 y. + 54 y, + 54 y. + 54y, + 54 y. + 54y
1 2 3 4 5 6

subject to
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X, =1

XKy, ¥ 0%X,, = 1

Xp3 % X f X33 = 1

Xy ¥oXp ¥ x5, + %, = 1

X5 1 Xyt Xgg Xt Xgg = 1

Kjg v Xy vt Xyt X+ Xt x, 0= 1

+ X +X16

Kyg + Xpy * Xy, + X0+ X, - 10y, < O

22 23 24 25
X33 t Xy t Kyg t X4 10y; = 0
Xgg * Xys t Ky — 10 Y, S 0

Xge = 10 yo = O
X;y = 0, 1 i, 3 =1,2,. ; 6, and 1 £ j
Yy, = 0, 1 i =1, 2, ' 6,

3.1.2.2. Results: Solving the above problem on a personal
computer using oss™ (Chang and Sullivan, 1991), we obtain the

following results given in Table - 3.2.

Table — 3.2. Optimal solution to (Cl), pure 0-1 formulation

Variable Value Variable Value Variable Value
X4 1 b I 1 Y, 1
%12 1 Xss5 1 Yy 1
X3 1 Ko 1 Vs 1

All other decision variables are equal to 0.

Minimized objective function = 248




44

Interpretation of Results:
Interpretation of results of problem Cl is simple e.g.

X, =1, x, =1, x,; =1, %,=0, x5 =0, %, =0, y, =1; x,, =0, x,5; =0 ,

%,, =0, x,5 =0, %,, =0, y, =0 and x5, =0, x,, =0, x,. =0, x5, =0, y, =0

means requirements of the first three periods are satisfied from
the amount produced in the first period, and no amount is produced

in the second and third periods. Therefore the total amount

produced in the first period = d, + d, + d; = 84. Similarly, x,, =1,

X5 =0 4, %, =0, y, =1, implies the demand of the fourth period

should be satisfied from the amount replenished (produced) in the

fourth period. Hence the amount produced in the fourth period = d,

=130. Finally, x5=1, %, =1, y; =1 and x

56 =0, y, =0, suggests that

55 66

the demands of the fifth and sixth period should be met from the
amount produced in the fifth period and no amount should be

produced in the sixth period. Hence the amount produced in the
fifth period = d; + d, = 283 units. The optimal policy stemming from
this interpretation is tabulated below:

Table — 3.3. Showing optimal policy

Period---> 1 2 3 4 5 6 Total

Replenishment-->| 84 --- --- 1 130 | 283 --- 497

Total minimized replenishment plus carrying cost = $248
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3.1.3. Formulation with N Variables Restricted as 0-1:
Now, we give a formulation of the problem with exactly N
(Length of planning horizon) variables restricted as 0-1. This

formulation resembles a transportation type problem.

Notation:
X,, = Quantity replenished in period i and used in period Jj, i.e.

13

the quantity carried for (j-i) periods.

_ 1  if the replenishment is made in period 1
Y= { 0 otherwise

v = unit variable cost in $ per unit.
r = carrying cost in $ per $ per period.
N = length of planning horizon, i.e. the number of periods in

the planning horizon.

A, = ordering cost per replenishment in dollars for

i
period i, i =1, 2, 3,...., N.

dj= deterministically (crisply) known demand for
period 3, 3= 1, 2,....,N

M, = cumulative demand from period i to period N,
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Then we have the following model

M=z

N N
(C2) Minimize ~ v.r 3, > G- x5 + 2 Ai.Vi
i=1 j=i i=1
subject to
j
Yoxi=d, j=12,...... ,N (3)
i=1
N
Yoxij £ Miy;, i=12,...,N ©)
j=i
xijZO i,j=1,2,...,N, and i<] ¢
y; = 0,1 i=1,2,...,N, ¢))
(1) The objective function expression in the above model

minimizes sum of replenishment and carrying costs.

(11) Constraints (5) are the demand constraints which ensures
that demand in a particular period is met.

(iii) Constraints (6) are the supply constraints, which under
certain situations may act as capacity constraints. This
constraint set along with constraints (8) and objective
function further ensures that whenever some amount 1is

replenished in a particular period, a replenishment cost is

incurred.
It is easy to see that (C2) 1is a linear program in which
exactly N variables, vy;, 1 =1, 2,....,N are restricted to be

zero—one and, therefore, can be easily solved by using available

software.
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Remarks:
(1) . The model (C2) will still be a correct formulation if in the

constraints

N
Exij £ M vy, i=1,2,...,N
j=i

each M., i=1,2,...,N is be replaced by M, where

M = A large number 2 M, = d;+ d,+ ————=-~ + dy
(ii) . ‘The advantage of the formulation (C2) is that by multiplying

its objective function by an appropriate multiple we can,

trivially, transform it such that all the coefficient in it become

integers. Since,the coefficients of all xij's in the constraints

are already unity, therefore, if the demands dj's also be discrete

(e.g. see Wagner and Whitin, 1958), the formulation will always

yield an integer solution without restricting the variables xu's

as integers.

3.1.3.1. Numerical Example: We i1llustrate the formulation
through the following numerical example that we solved on a
personal computer using osB* (Chang and Sullivan, 1991).

Suppose we have the following:

N =6, A, = $54 for i=1, 2, ...., N, v = 820 per unit,

1
r =% 0.02 per $ per month, v . r= 50.4 /unit/month, and

demand 1s shown in the following table 3.4.
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Table - 3.4,

Showing demand per period

Period 1 2 3
Demand(di) 10 62 12
M. 497 487 425

1

5
154

283

6
129

129

We select

M = 600 > M = 497

and prepare the following Table - 3.5 for convenience.

Table-3.5. x.j=the amount produced in period i and consumed in period j, i<3

1

To period

1 2 3 4 5 6 Supply (M)

1 X1y X120 X3 X14 15 X16 497

2 P %23 %24 Xs5 X6 487
From 3 X33 X34 %35 %36 425
Period 4 X44 X45 X46 413

5 Xsg Xse 283

6 Xs6 129
Demand 10 62 12 130 154 129
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We now have the following linear programming model with y,'s

restricted as zero—-one variables.

Minimize 0.4 Xy, * 0.8 x + l.2x14 + 1.6 x5 * 2.0 x,, *

0.4x,, + 0.8 x,, + 1.2 %, + 1.6 %, + 0.4 x5, + 0.8
Xqg t 1.2 %x,,+ 0.4 x,, + 0.8 x,.,+ 0.4 x5, + 54 y, +
54 y, + 54 y; + 54 y, + 54 y; + 54 yq
subject to

X, =10

Xy, T X, = 62

Xyg t Xyy + Ry, = 12

Xy v Xy Xy tox, = 130

Xj5 ¥ X5 T o Xgg Xy x5 = 154

Xig T Xpe b Xyt Xy v Xge v X = 129

Xy, F X, x4+ x, +x.+x,-600y = 0

Xypp ¥ Xy t Xy F Xyt %0 - 600y, S 0

Kyg t Xy + Rgg + X0 — 600 y; = O

Xgg T %45 + X, - 600y, £ O

Kgg T Xge — 600 y, = O

Xee — 600 vy, < O

x., 2 0 i,3=1,2,....,6, and i £ 7

1]

y, = 0, 1 i =1, 2,....,6,

3.1.3.2. Results: Solving the above problem on PC using osst
(Chang and Sullivan, 1991), we obtain the following results given

in Table - 3.6.
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Table—-3.6. Solution to (C2), the problem with N variables restricted 0-1.

Variable Value Variable Value Variable Value
%, 10 X, 130 Y, 1
X, 62 b 154 ' 1
X5 12 b 129 Vs 1

All other decision variables are equal to 0.

Minimum value of the objective function = 248

Interpretation of the results:

Since x,,+x t—---+x,, where, i=1,2,...,N indicates the

i,i+1 N

quantity replenished in period i and X;y represents the quantity

replenished in period i but used in period 3, therefore, from above

we have that the quantity x,, +x,, +x,, +x,, +x,.

tx,. =84 should be
replenished in period 1 out of which 12 units be used in period 1,
62 units in period 2 and 12 units be used in period 3. Similarly,
number of units that should be replenished and used in period 4 =
130, number of units replenished in period 5 = 283, out of which

154 units are used in period 5, and 129 units in period 6. Minimum

value of the cost is $248.
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3.2. Inventory Control under Fuzzy Environments:

In above variable demand inventory problems, the management
is forced to provide precise data. However, in practice, management
always wants some sort of an elasticity or "leeway". Since the
variable demand is forecasted, it is rarely known exactly as the
forecasts do not always turn to be crisply correct. This implies
that there 1is always an element of fuzziness in demand.
Furthermore, it is a common practice that management specifies a
budget limit and asks the production planner to stay 'considerably
below' the budget limit. It is this 'considerably below' condition
that creates the element of fuzziness in the problem. Under fuzzy
environments, when the demand is not a crisp number but 1is fuzzy,
and/or the budget allocated is also not a precise number, the above
methods may not work very well to yield an optimal solution. The
linear programming formulation for crisp demand (with zero-one
variables in it) considered in the present paper, also cannot
handle such cases. Therefore, to model such a problem we take
advantage of fuzzy set theory (Zadeh 1965, Bellman and Zadeh 1970,
Zimmermann, 1988), and by using the idea of symmetric fuzzy linear
programming (where both constraints and objective function are
fuzzy in nature) we obtain a maxmin linear program with N
variables in it restricted as zero-one variables. This is done by
creating fuzzy regions around the forecasted demand by using the
idea of tolerance as provided by Zimmermann (1988). This
formulation 1is quite simple to follow and always provides a

solution to the problem.
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Before formulating the problem under a fuzzy environment, we
introduce a few concepts of fuzzy set theory that we shall use.
For details the reader may refer to Zadeh (1965), Zimmermann

(1976, 1988), and Bellman and Zadeh (1970).

3.2.1. Fuzzy Set Theory:

Theory of fuzzy sets is basically a theory of graded concepts.
A central concept of fuzzy set theory is that it is permissible for
an element to belong partly to a fuzzy set.

Let X be a space of points or objects, with a generic element

of X denoted by x. Thus, X = {x}.

3.2.1.1. Fuzzy Set: Let x € X. A fuzzy set A in X 1is

characterized by a membership function (M.F.) H,(x) which

associates with each point in X, a real number in the interval

[0,1], with the value of [,(x) at x representing the "grade of

membership"” of x in A. Thus, the nearer the value of W,(x) 1is to

1, the higher the grade of belongingness of x in A,

In conventional (crisp) set theory, u, (x) takes only two

values 1 or 0 depending on whether the element belongs or does not
belong to the set A.
Therefore, formally speaking, if X = {x} is a collection of

objects denoted generically by x, then a fuzzy set A in X is a set

of ordered pairs, A = {(x, Ha(x)) / x € X }, where H,(x) maps X to

the membership space [0,1].
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We shall base our analysis on the following propositions of

fuzzy sets (Zadeh 1965, Zimmermann 1988).

3.2.1.2. Union of Fuzzy Sets: The union of two fuzzy sets A

and B with respective M.F.'s KL, (x) and Hy(x) 1is a fuzzy set C

whose M.F. 1s W (%) = Max [ U, (x), Hg(x)], x € X.

3.2.1.3. Intersection of Fuzzy Sets: The intersection of two

fuzzy sets A and B with respective M.F.'s },(x) and Hy(x) is a

fuzzy set C whose M.F. is WU (x) = Min [ H,(x), Ha(x)], x € X.

3.2.2. Assumptions: For the model under fuzzy environments, we
make the following Dbasic assumptions, similar to Silver and
Peterson (1985) with assumption 1 modified as below:

1. The demand rate varies from period to period and is known only

imprecisel

2. The demand pattern terminates at the end of planning horizon
or ending inventory must be prespecified.

3. The replenishments are constrained to arrive at the beginings
of periods and the entire order quantity is delivered at the
same time.

4, The cost factors do not change appreciably with time, except

that the ordering (set wup) cost for period i is Ay,

i=1,2,...,N.
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5. The replenishment lead-time is known with certainty so that
delivery can be timed to occur right at the beginning of a
period.

6. The unit variable cost does not depend on the replenishment
quantity i.e. no quantity discounts are permitted.

7. The product 1s treated entirely independently of other
products, i.e. benefits from joint replenishment do not exist
or are ignored.

8. Carrying cost is only applicable to inventory that is carried
over from one period to the next.

Objective: The total cost over the entire planning horizon of N

periods must stay substantially below a given limit.

3.2.3. Formulation under Fuzzy Environments:

We use the following notation and symbols to model the problem
in fuzzy environments.
Notation

Following Zimmermann (1988), let

Bop = Dbudget limit specified by the management.

Pop= tolerance interval which defines the cost to be

considerably below the budget.

Mop = membership function (M.F.) for the fuzzy objective
function.
By, = M.F. for lower side of the fuzzy region of fuzzy

constraint corresponding to period j.
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Hyy = M.F. for the upper side of the fuzzy region of the fuzzy

constraint corresponding to period j.

Pj= tolerance interval for the demand data corresponding to

period 7.
All other symbols and variables have the same meaning as in (C2).

We rewrite the constraints

J
> xij=4dj,j=12..,N
i=1

of (C2) in fuzzy environment as follows.
J
Z xij £dj, j=1,2,...,N withyy as the corresponding M.F. ,
i=1

and

v

dj, j=1,2,...,N withyy as the corresponding M.F.

i
Eaxﬁ
i=1

Then under the fuzzy environments, our linear programming problem

(C2) becomes the following problem (F).

(F) Find x..'s, i,3 =1, 2,.

1]

.. N, 1 £ ] that satisfy

The Fuzzy Constraints:
(1) . For the objective we have

N N N
V.I’ZE G-) X + ZAi-Yi % Bor, 157

1:1 _]=l 1=1

with H,. as the corresponding M.F.
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(ii). For the fuzzy demand constraints, we have

i
2 xij $dj, j=1,2,...,N withy as the corresponding M.F. ,
i=1
and
i
Z xjj 2 dj, j=1,2,...,N with yy as the corresponding M.F.
i=1
The Crisp Constraints
N
Exlj S Ml Yi, 1=1,2’ ,N
J=
Xy 4 2 0 i,3 =1, 2,..., N, and 1 £ j
y;, = 0,1 i=1, 2, , N,
where,
(1) M; in this case is given by

M;=d, + P, + d;,, + P

. + ...+ dy+P, 1=1,2, ...., N

i+1

(1i1) M is a large number =2 M, , and

(1i1) "§"(";") has the linguistic interpretation "smaller than
or equal to with a certain degree lying between 0 and 1"

("greater than or equal to with certain degree lying

between 0 and 1" denotes the fuzzified version of "<"
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In view of Zimmermann (1988), we now define the M.F.'s for the

fuzzy objective function and the fuzzy constraints as follows:

For objective function the M.F. is

1 if VYZZO-DXMZA;}& < Bor - Por
i=1 i= I
Hor = =1 =1

0 if erEQ i) xj + ZA,yI > Bor

i=l j=i

and

."_Mz

N N
Z - xg+ Z Aiy; — (Bor - Pop)
= ]=1

Por

N N
when Bop-Por < v.r ZZ -1) xj5+ E‘Aly1 Borp, 15
i=1 j=i i=1

For demand constraints the M.F.'s are

j
1 i Yxi=d, j=1,2..,N
WL = -

j
0 if inj<dj—Pj, j=1,2,...,N

and
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j
1 if Yx=6, j=1,2,..,N
i=1

Hu = .
J
0 if Y xj>d+P, j=1,2,..,N
i=1
and
j
Xjj = d;
Wy =1- =t j=1,2,...,N.
] Pj
j
when  d; < Y x5 < d; + P, i=1,2,...,N
i=1

In the above, P, and Pj's are subjectively chosen constants of

admissible violations of the objective function and the constraints

respectively (Zimmermann, 1988).

Let, Hy(x) be the M.F. of the fuzzy set "decision" of (F). Since,

for i= 1,2,...,N, B, and My are the membership functions of

fuzzy constraints, therefore, the decision space in the fuzzy
environment 1s the intersection of fuzzy sets corresponding to the

fuzzy objective function and the fuzzy constraints. Hence,

H-D(X) = Min|( “‘OFI HlL/ HZL/ N HNLI er }'1‘20/ .. 'I}'LNU]

Assuming that the management is interested not in a fuzzy set but
in a crisp "optimal solution”, then on the lines of Zimmermann

(1988), we obtain
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max Wy (x) = Minl[ Moo, Mopr Wopreer Hype Hoge Hogr oo byl

subject to

Hop 2 Hp(x)
Ky 2 By (x) i=1, 2,..., N
Higy 2 Hy(x) i=1, 2,..., N
N
inj < Mi Yi, i=1,2,....,N
j=i
xijZO i,3 =1, 2,...,N, and i £ 7
y; =0, 1 i=1, 2,...,N,

Writing A for KW,(x) and using the expressions for the membership

functions Wy, M, and W, for i=1, 2,...,N, respectively, we have

the following equivalent crisp problem:
(E) Maximize A

subject to

N N N
v.rz G-Dxy+ ZAi.yi+Pop.7\, < Bor

1=1 j=i i=1

h]
Yxi-PA 2 d-P, j=12,...,N
i=1 :

i
ZXij + Pj.?\,

i=1

IA
o
+
;.F.U
LY
I
s
»
2.

N
Y x £ My, i=12,...,N
J=i
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It is easy to see that (E) 1is a linear program in which exactly

N wvariables, vy;, i =1, 2,....,N are restricted to be zero-one.

Also we know (Zimmermann, 1988) that the optimal solution to the
problem (E) provides a solution to the problem (F). The problem (E)

can be solved by using available software.

3.2.3.1. Numerical Example:

Let us assume that, for the objective function

B,y = $300 , P, = $70,

and for the demand constraints P, =2, P, =4, P,= 2, P, = 5,

P,=6, P = 4.

the rest of the data is same as in the numerical example under the
crisp environment. This simply means that the objective function
should be substantially below $300 with a tolerance of $70, and
the demand is fuzzy with tolerance for the first period being 2,
and so on.

Under the given conditions and choosing M = 600, our

equivalent model is

Maximize A
subject to

0.4 X, + 0.8 X, + 1.2 %, + 1.6 x5 + 2.0 X ¥ 0.4

X,y + 0.8 Xy, + 1.2 x + 1.6 x + 0.4 Xy 0.8 x +

25 26 35

1.2 x50+ 0.4 x5+ 0.8 x,0+ 0.4 x50 + 54 y, + 54y, +

54 y, + 54 y, + 54 y, + 54 y.+ 70 A < 300
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2 A £ 12

b
+

v

X, t %95 — 4 A 58

Xpy t R,y + X, — 2 A 2 10
Xy * X,y F x33+27\, < 14
X, + X. 4+ x..+ =%, -5 = 125

+ 5 A < 135

14 24 34 44

Xig T Xyg t O Xgg t X, t Xgg — 6 A = 148
<

Xig T Xpg v Ry oKX, t XKgg t 6 A < 160

-4 A 2 125
+ 4 A < 133

+ X + x + X

X33 t Xy T X35 + X5 - 600 y; S0

Xgg T %45 + X4 - 600y, = O

Xee + Xge — 600 yg = O

Xge — 600 y, = 0

Xy 2 0 i, 3=1, 2,...,6, and 1 < 7
y; = 0,1 i =1, 2, , 6,

3.2.3.2. Results: Solving the above problem on a personal
computer using osBt (Chang and Sullivan, 1991), we obtain the

following results given in Table -3.7.
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Table-3.7. Optimal solution to (E), the equivalent problem.

Variable Value Variable Value Variable Value
%, 9.5187 X, 128.7967 vy, 1

X, 61.0374 X5 152.5561 vy, 1

X5 11.5187 Xg¢ 128.0374 vy, 1

A = 0.7593 Cost = $246.8449

All other decision variables are equal to 0.

Interpretation of Results:

Since Ry PRy gt R gy where, 1 = 1,2,...,N indicates

the quantity replenished in period i and X;y represents the quantity

replenished in period i but used in period j, therefore, from above

we have that the quantity x,, + x,, + x,. + x., + ..+ % _= 82.0748

11 12 13 14 15 16
should be replenished in period 1, out of which 9.5187 units are
used in period 1, 61.0374 units in period 2, and 11.5187 units
should be used in period 3. Similarly, units that should be
replenished and used in period 4 = 128.7967, the number of units
replenished in period 5 = 280.5935, out of which 152.5561 will be
used in period 5, and 128.0374 units in period 6. The
corresponding value of the cost is $246.8449. A = 0.7593 indicates

the degree of membership of this solution to belong to fuzzy set

which corresponds to "Optimal decisions in non-fuzzy environments"”.
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CHAPTER 4.

EQUIPMENT REPLACEMENT PROBLEM

In real 1life all 4industrial and military equipment
eventually wears out with time and usage. As a result it starts
functioning with decreasing efficiency while its operating cost and
repair and maintenance costs escalate dramatically. A time will
eventually come when these costs become so high that it becomes
more economical to replace the used piece of equipment by a new
one. A natural question then arises about the optimal time of its
replacement. If these costs decrease or remailn constant with time,
the best policy perhaps then is never to replace the item. However,
in real situations such a condition is hardly met. In addition
technological developments may also force the user to consider a
replacement because better designed machinery may result in
improved pfoduct quality, Dbetter efficiency as well as reduced
maintenance and operating costs. Generally, all costs that depend
upon the choice or age of the equipment must be taken into account
while analyzing the decision of its replacement. In this chapter, we
first define the basic equipment replacement problem. Then we
propose a simple method (based on dynamic programming) for solving
an equipment replacement problem. The algorithm also yields
alternative optimal solutions, i1f any. Then, we give a pure 0-1
linear programming formulation for solving the equipment

replacement problem. Numerical examples are provided in each case.
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The Basic Equipment Replacement Problem:

Let some equipment E be purchased by an industry at time i,

where,

i=290,1, 2,....,n-1 and n be the length of the planning

horizon. Let the origin of the year i be at the time i~1, as shown

in the following Figure 4.1.

Let

(1)

(11)

(iid)

(iv)

year 1 year 2 year 3 year 4 year n

l I I I l

Time 0 Time 1 Time 2 Time 3 Time 4 Time n-1 Time n

Figure 4.1.- Planning Horizon Figure.

P, be its acquisition cost of E, m; be its maintenance cost

during the year j and let Ly be 1ts resale value at time 7,

where 33 =1, 2,..., n, (3 > 1i).

m be the maximum allowable age of E and that the first
opportunity for its replacement exists not before one year
after its purchase. This implies that E may be kept for p =
1,2,....,0r m years, where m £ n, and after p ( = 1,2,...,0r
m) years of use E may be traded in for a new one.

The resale value of E after time n be zero, 1.e. the

equipment has no resale value after the planning horizon.

For 1 = 0, 1, 2,..., n-1; the net cost Ci; at time j =
i+l,...,min (i+m,n) is given by
Cyy = acquisition cost P, - resale value ryy; * maintenance

cost from time i to time j
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That 1is,

(1)

j
cij =Py -+ D, mi
k=i+1

i=0,1,2,...,n-1
{j i+1,i+2,..., min (i+m, n)

Objective: Given that some new equipment must be purchased at time

0

(at present),we want to find an optimal replacement policy that

will minimize its overall cost involved over the time horizon of

length n.

4.

2. Assumptions:

We made the following assumptions in our model.

We assume that acquisition (purchasing) costs, maintenance and
operating costs, and resale values of the equipment under
consideration are all deterministically known.

We assume that at the time of replacement there 1is only one
type of equipment available. There 1s no loss of generality in
making this assumption even if a variety of new equipment is
available. We also assume that the age (not the cumulative use)
is used to determine the present state of the equipment.

It 1s also assumed that there exists a good second-hand market
for used equipment, such that the equipment will have a resale
value that may, however, be affected by weather, time, release
and/or place of release of new models of the equipment.

The structure of the present model is based on the assumption
of low initial maintenance and operating costs that increase
with age of the equipment while the resale value declines.

Due to obsolescence or other reasons (e.g. legal obligations,

union contracts, etc.), the equipment age is not allowed to
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exceed some specified maximum limit. However, in order to make
the model more general, this assumption can be relaxed by
giving very high costs and zero resale values for those
years which lie beyond this limit.

6. We assume that the planning horizon is finite and that the
first opportunity for the equipment replacement appears one

vear after its purchase.

4.3. Dynamic Programming Formulation:

Following Winston (1991), if

(1) some new equipment be purchased at time i,
(ii) g,(i) be the minimum net cost incurred from time i (= 0, 1,
2,..., n-1) until time n,then, a dynamic problem formulation

of the above problem is given by the following recurrence
equation,
g,(1) = min {c;y + g(3)} (1=0,1,2,...,n-1) (2)

J

where, Cyj is as given by (1),3j must satisfy the inequalities i+l <

3 £ min (i+m, n).

4.3.1. Three Steps Computational Method:

In 1984, Fordyce and Webster (1984) presented the Wagner-Whitin
Algorithm (1958) for an inventory control problem with variable
demand in a simple and straight forward computational style. In
this section we apply the Fordyce and Webster (1984) approach to

solve an equipment replacement problem (Winston 1991). The method



67

yields an optimal solution and also identifies alternative optimal
solutions, if any.

Along the lines of Fordyce and Webster (1984), we now give a
simple and straightforward three steps computational method to
solve the equipment replacement problem. The method will be
explained through the progressive development of two tables, called
the initial tableau and the optimal tableau, and three steps. Since
a piece of equipment acquired in any year cannot be used in a
prior year and it has a maximum allowable age, therefore, we use
only the truncated upper right triangular portion of the tableau
The numbers in the row at the top of each tableau correspond to the
states and the numbers at the left of initial tableau correspond to
the stages (of the equipment) in a typical dynamic programming
problem. The initial tableau contains the initial net costs only,
obtained as explained in Step 1 below and the optimal tableau is
obtained from the initial tableau as explained in Step 2. Step 3 is
for identifying the optimal solution from the optimal tableau. The
method also recognizes the alternative optima, if any.

The three steps of our algorithm are as follows:

STEP 1. Obtaining Initial Tableau :

Obtain the initial net costs Cyj associated with each state and

stage of the equipment by using the formula (1) and prepare the
following initial tableau in the form of a truncated upper
triangular matrix having n rows (Row 0 to Row (n-1)) and n columns

(Column 1 to Column n).
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Table — 4.1. Initial tableau for simplified algorithm.

Time — 1 2 3 c...m m+1 m+2 ....n-1 n
Row O Cor Coz Co3 « cov-- Com _ _ _ _
Row 1 ~  Cip Cyp3 - Cin C1,mn - - -
Row 2 - T Cy Com C2,me1 Cy,me2 - -
Row (n-m) - - - e e e e e e e e e - -

Row [n-(m=1)]
Row [n=(m—-2)]

Row (n-2) - - - - - - c

Row (n-1)

i
1
|
!
|
|
|
Q

Remark 1: It 1is important to point out here that if each
acquisition cost be independent of the time of acquisition and each
of the maintenance costs and salvage values be solely the function
of age only then we need to calculate only the first row in the
initial tableau. The other rows can be obtained by simply
duplicating the first row, shifting to the right by one column each
time we move towards the bottom of the table ignoring the entries

that lie outside the tableau.
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STEP 2., Obtaining the Optimal Tableau:
1. Obtain Row 0 of the optimal tableau by duplicating Row 0 of

the initial tableau.
Fach subsequent row is obtained as follows.
2. To obtain Row 1 of the optimal tableau

(a) Examine Column 1 of the optimal tableau and in this column

identify the element with the smallest value v,

(b) Obtain Row 1 of the optimal tableau by adding v, to each

element of Row 1 of the initial tableau.
3. To obtain Row 2 of the optimal tableau

(a) Examine Column 2 of the optimal tableau and in this column

identify the element with the smallest value v,

(b) Obtain Row 2 of the optimal tableau by adding v, to each

element of Row 2 of the initial tableau.

In general therefore, we compute Row k, where k = 1, 2,...,n-1;

of the optimal tableau as follows:

(a) Examine Column k of the optimal tableau and in this column

identify the element with the smallest value v,

(b) Obtain Row k, where k = 1,2,..., n-1, of the optimal

tableau by adding v, to each element of Row k of the

initial tableau.
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STEP 3, IJdentifving the Optimal Solution:

1. (1) Examine the Column n of the optimal tableau and identify

*

the minimum value element v in it. Then,

v,* = g,(0) 1is the minimum net cost incurred from time O

until time n, i.e. during the planning horizon.

(ii) Suppose the position of v *is in Row s, s < n, of the

optimal tableau.
Then time s is the trade in time immediately before time n.
2. (1) Examine the Column s of the optimal tableau and identify

the minimum value element v . in it. Then, v.,”= g, (0) is

the minimum net cost incurred from time 0 until time s < n

*

(1i) Suppose the position of v, is in Row g, g < s of the

optimal tableau.

Then time g is the trade in time immediately before time s

Stopping Rule:

We continue in the same manner until, in the optimal tableau, we

identify a minimum value element Vé*,(say), in Column p, (p < Q),

* *

such that Row 0 is the row in which Vs lies and v, = gp(O). Once

the minimum value element lies in Row 0, the overall optimal policy
has been achieved and the process terminates.
The optimal policy is to trade in at time 0, time p,....,time

g, time s and the time n (which is the end of the planning horizon)

*

with the overall net optimal cost v
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Alterpative Optimal Solutions:
In Step 3-1(ii), existence of vn*(and/or v;in Step 3-2(ii), and so

on) in more than one row, implies that the problem has alternative
optimal solutions. To obtain an optimal solution we choose any of
the rows arbitrarily.

A computer code written in "Think Pascal" for this algorithm

is provided in the appendix-B.

4.3.1.1. Numerical Example:
To illustrate our model, we use the example published in
Winston(1991) from where we have n = 5, m =3 and the values of all

other parameters known deterministically as follows:

P,=P,=P,=P, =P, = $1000 My, = My, = My; = My, = Mg = $60
Ty = Ly, = L3 = Iy, = I, = $800 My, = My = My, = My = $80
Loy = L3 = Ly = Iyg = 5600 Moy = Myy = My = 3120

r.. = r,, = r,. = $500

STEP 1, Initial Tableau:

The entries in each cell are given below

Cop = Cy; = Cpy = Cqy = C,5 = 1000 = 800 + 60 = $260
Cgp = Cy3 = C,, = Cyg = 1000 - 600 + 60 + 80 = $540
Co3 = Cy4 = Cp5 = 1000 = 500 + 60 + 80 + 120 = $760

Note that in this case Remark 1 applies and, therefore, 1in the
initial tableau we calculate the first row only. Other rows are

obtained by duplicating the first row.
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Thus we have

Table—4.2. Initial tableau for numerical example.

Time — 1 2 3 4 5
\J
Row O 260 540 760 - -
Row 1 - 260 540 760 -
Row 2 - - 260 540 760
Row 3 - - - 260 5490
Row 4 - - - - 260
STEP 2. Optimal Tableau:

1. Obtain Row 0 of the optimal tableau by duplicating Row 0 of
the initial tableau.
Each subsequent row is obtained as follows.

2. To obtain Row 1 of the optimal tableau:

(a) In Column 1 of the optimal tableau the smallest value v, =

260.

(b) Obtain Row 1 of the optimal tableau by adding v, = 260 to

each element of Row 1 of the initial tableau.

3. To obtain Row 2 of the optimal tableau

(a) In Column 2 of the optimal tableau the smallest value v, =

520.

(b) Obtain Row 2 of the optimal tableau by adding v, = 520 to

each element of Row 2 of the initial tableau.
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To obtain Row 3 of the optimal tableau

(a) In Column 3 of the optimal tableau the smallest value v, =

760.

(b) Obtain Row 3 of the optimal tableau by adding v, = 760 to

each element of Row 3 of the initial tableau.

To obtain Row 4 of the optimal tableau

(a) In Column 4 of the optimal tableau the smallest value v, =

1,020.

(b) Obtain Row 4 of the optimal tableau by adding v,= 1,020 to

each element of Row 4 of the initial tableau.

Completed optimal tableau is as follows.

Table — 4.3. Optimal tableau for numerical example.

Time — 1 2 3 4 5

l
Row O 260 540 760 - -
Row 1 - 520 800 1020 -
Row 2 - - 780 1060 1280
Row 3 - - - 1020 1300

Row 4 - - - - 1280
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STEP 3.Identifying the optimal solution:

1. (i) In Column 5 of the optimal tableau v, = 1,280 = g4(0)
which is the minimum net cost incurred from time 0 until
time 5,the planning horizon.

(ii) The position of v.,* 1is in Row 2 and Row 4. This indicates

that there exist alternative optimal solutions. To obtain
an optimal solution we choose any of the rows arbitrarily.
In this case let us choose Row 4.

Then time 4 is the trade in time immediately before time 5.

2. (1) In Column 4 of the optimal tableau v,” = 1,020 = g,(0) .Then,
4 4

v,” = g,(0) is the minimum net cost incurred from time O
until time 4.

(ii) The position of v,” is in Row 1 and Row 3. This again
indicates that there exist alternative optima. To obtain

an optimal solution we choose any of the rows arbitrarily.

In this case let us choose Row 3.

*

3. (i) In Column 3 of the optimal tableau v, = 760 = g,(0) Then,

v;'= g5 (0) is the minimum net cost incurred from time O

until time 3.

*

(1i) The position of v, is in Row 0, therefore, the overall

optimal policy has Dbeen determined and the procedure

terminates.
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The optimal policy is to trade in at time O, time 3, time 4 and

time 5 (the end of the planning horizon) with the overall net

optimal cost vg* = 1280 = g.(0).

Alternative optimal policies with the overall net optimal cost v,°

= 1280 = g,(0), are to trade in at

(i) time 0, time 1, time 2 and time 5 (the end of the planning
horizon) .

(ii) time 0, time 1, time 4 and time 5 (the end of the planning
horizon) .

4.4. The 0-1 Linear Programming Approach:

In this section, we formulate the deterministic equipment
replacement problem (normally solved through the use of dynamic
programming) as a 0-1 lirnear programming problem. The advantage
of such a formulation is that it does not require a high degree of
expertise, insight and 'art', (i.e.: rather easily understood by
practitioners), does not suffer from the so called 'curse of
dimensionality' (Budnick et. al., 1988) - a shortcoming of dynamic
programming, and can always vyield a global optimal solution to

fairly large sized problems using available software.
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4.4.1. The 0-1 Linear Programming Model:
Let,

_ { 1 if equipment purchased at time i is used until time j (j > 1)
X710 otherwise

yi = { 1  if new equipment is purchased at time i
=
0

otherwise
Since ryy is the resale value of E at time 3, for 1 =0, 1, 2,
...... , n - 1 and j = i+l,....,k, with k = min (i+m, n), and the

first opportunity for the equipment replacement exists not before

one year after its purchase, therefore oo = 0.

Hence, the 0-1 linear programming model of the problem is

n-l k n-1
Minimize Z = Y, ¥, {my+ (tij1-r)}xi+ X Piyi , k=min (i+m,n)
i=0 j=i+1 i=0
subject to
k .
. i=0,1,2,----- ,n-1
2% < (-1 Lo i Gemon) M
Fitl
i1
Xl_] = 17 J = 1’ """ ,m (2)
i=0
j-1
Y xj=1, j=m#l---n 3)
i=j-m
i=0,1,----- ,n-2
§ = i1 oeen k-1
Xij 2 Xijil, R O @
k = min (i+m,n)
and
x,.=0,1V i=0,1,2,...,n-1; j=i+41,2,...,k with k=min(i+m,n) (5)

ij

y, = 0,1V i=0,1,2,....,n-1 (6)
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In the above 0-1 linear programming model it is interesting to note

that:

(1) the total number of variables (XU‘S and y;'s ) 1s always
equal to (1/2)(2n + m)(m + 1) - m?, which in turn is also
equal to the total number of constraints given by (1) - (4)

(for proof see appendix-A).

(ii) Constraints (1) along with binary constraints (5) and (6)
ensure that the equipment is replaced not later than after
the maximum allowable age of m years, and constraints (2),
(3) along with binary constraints (5) ensure that during a
particular year only one equipment is in use.

(iii) The function of constraints (4) 1in conjunction with
constraints (5) 1is to ensure that equipment traded in at a
particular time j is not available for use after time Jj and

that the process stops after time n.

4.4.1.1. Numerical Example:
To illustrate our model, we use the example published in Winston
(1991) in which we have n = 5, m =3 and the values of all other

parameters are known deterministically as follows.

p, =P, =P, =P, =P

0 1 9 i = $1000 m =My, = My, = M, = 560

01 = Myp = My 34 4

r = I = I = I

o1 12 L, = $800 m.,=m.=1m,,6 = m,,.= $30

02 13 24 35

Lo = F13 = Ly, = Iy = 5600 My, = My, = M

To3 = Tyg = Iys = $500
Substituting these values in our model, we have the following

formulation:
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Minimize 2z = -740x, + 280x,, + 220x,, - 740x,, + 280x,, + 220x,, -

01 3

740x23-+ 28Ox24-+ 22Ox25 - 740x%5, + 280x5, — 740x,q +

1000y, + 1000y, + 1000y, + 1000y, + 1000y,

subiject to

X

IN
w
L
o

01 02 03

X

[
NS
IN
w
]
—

12

23

34

45

01

02

03

14

25

v
kel

01

v
bt

%12

> >
Xyz3 = X5 = X

X3y 2 X35

x;y = 0,1 Vi=0,1,2,3,4; j = i+l, 2,...,k with k = (i+3,5)

y; =0,1V i=0,1,2,...,4

In the above formulation we see that

(1/2) (10 + 3)(3 + 1) - 32 = 17

Total number of variables

Number of constraints obtained

using (1) - (4)
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Solving the above problem yields the following optimal solution as

given in the Table-4.4 below.

Table—4.4 Optimal results of 0-1 model for equipment replacement problem.

Variable Value Variable Value Variable Value
Xo1 1 b O 1 Yo 1
Koz 0 Xy 1 Y, 1
Xo3 0 X,s 1 Y, 1
X, 1 Xq, 0 Y5 0]
X3 0 X35 0 Y, 0
X1, 0 %45 0 - -

Minimum value of the objective function z = 1280

Interpretation of Results:
Yo =1, %4y = 1, %5, = 0, %55 = 0, y;, = 1 imply that the equipment

E purchased at time 0 is used until time 1 and is traded in (a

new one is purchased) at time 1.
v, = 1, %, =1, x,54=20, x,, =0, vy, = 1 imply that the equipment

E purchased at time 1 is used until time 2 and is traded in (a

new one 1is purchased) at time 2.

=0, X.c = 0, x,. =

v, =1, x5 =1, x,, =1, %, =1, ¥y, = 0 and x,, 35 15

0, v, = 0 imply that the equipment E purchased at time 2 is used
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until time 5 (is not traded in at time 3 and time 4) and is sold
at time 5 (since n = 5).
Thus the optimal decision is to purchase at time 0 and to trade in
at times 1, 2 and 5. However, since the time horizon n = 5,

therefore, the equipment is best sold at time 5.
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CHAPTER 5.

STRUCTURAL SIMILARITY BETWEEN THE REPLACEMENT
PROBLEM AND THE LOT SIZE INVENTORY PROBLEM

In this chapter, we show that the equipment replacement problem
discussed in Chapter 4 can be considered as a special type of lot

size inventory problem, similar to the one considered in Chapter 3.

5.1. The Lot Size Inventory Problem and the Replacement

Problem:

5.1.1. The Lot Size Inventory Problem:
In Chapter 3, under certain assumptions 1-8, (page 39),
and notation (page 40), we formulated the following lot size
_inventory problem, in which the objective is to minimize the total

cost over the entire planning horizon of N periods, as the

following pure 0-1 linear programming problem.

N N N
(Cy) Minimize 2 z v.r () dj. x5 + 2 Ay; (1)
i=1 j=i i=1
subject to
J
Yoxij=1, j=12,...... ,N @)
i=1

IA
o
-
[
-
»
Z

N
> X 3)
j=i
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x.. = 0,1 L,j=1,2,...,N, and i<j “@

y; = 0,1 i=12,...,N, &)

where,

_ (1 ifdemand of period j is satistied from the amount replenished in the beginning of period 1,1 < j
- { 0 otherwise

_ 1 if the replenishment is made in the beginning of period i
- { 0 otherwise

Yi
v = unilt variable (manufacturing or purchase) cost
r = carrying cost, the cost in dollars of carrying one dollar
of inventory for one period
N = length of planning horizon, i.e. the number of periods in

the planning horizon.

A, = cost of a replenishment in the beginning of period i (i =

1, 2,..., N).

d. = rate of demand in period 3 (j =1, 2,..., N).

M = any number 2 N

5.1.2. The Replacement Problem:
Similarly, in Chapter 4, under certain assumptions (page

65) and notation (page 76), we formulated the following replacement

problem:

n-1 k n-1
(R1) Minimize z = ZO 2 {my+@ij1-n)} x5+ X Piyi, k=min(@+m,n)  (6)
i=0 jmi+1 i=0
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subject to
i <(k"i) i=0,1,2, “““““ 7n"1 (7)
e Kij = Vi k = min (i+m, n)
j=i+1
j-1
2 Xij=1, j=1, """ , M (8)
i:
j-1
Y xj=1, j=m+l,—n 9)
i=j-m
i=0,1, - , =2
j =1+1, --———- , k-1
Xij 2 Xij+l» ] (10)
k = min (i+m, n)
and
x,;=0,1 V i=0,1,2,...,n-1; j=i+1,2,...,k with k=min (i+m,n) (11)
y; = 0,1V i=0,1,2,....,n-1 (12)

For the above replacement problem (R;), we have the following.

1. Some equipment E is purchased by an industry at time i, 1 = 0,

1, 2,....,n-1, n 1is the length of the planning horizon,

and the origin of the period 1 is at the time i-1, as shown in

the following Figure 5.1.

period 1 period 2 period 3 period 4l period n

Time 0 Time 1 Time 2 Time 3 Time 4 Time n-1 Time n

Figure 5.1.-Planning Horizon Figure.

2. P, is its acquisition cost of E at the beginning of period i,
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m; is its maintenance cost during the period j and let Iy is

its resale value at time j, jJ =1, 2,..., n, {(J > 1i).

m 1is the maximum allowable age of E and that the first
opportunity for its replacement exists not before one period
after its purchase. (This implies that E may be kept for p =
1, 2,..,0r m periods, where m < n, and after p (= 1,2,...,0r
m) periods of use E may be traded in for a new one.

The resale value of E after time n 1is zero, 1i.e. the

equipment has no resale value after the planning horizon.

For i = 0, 1, 2,..., n-1; the net cost c;y at time 3§ =
i+l,...,min (i+m,n) is given by
Ciy = acquisition cost P, - resale value ryy maintenance

cost from time i to time .

That 1is,

{i=0,1,2,...,n-1

j
ci = P - 15+ m; .. . .
ij i z ik j=i+1,i+2,..., min (i+m, n)

k=i+1
Given that some new equipment must be purchased at time 0 (at
present),we want to find an optimal replacement policy that
will minimize its overall cost involved over the time horizon

of length n.

{ 1  if equipment purchased at time i is used until time j (j > i)
Xy = .
4 0  otherwise

_ { 1  if new equipment is purchased at time i
YiT10  otherwise
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5.1.3. Structural Similarity:

In (C;), setting c;y EV.T (3 - 1) dj

, and in (Ry),

setting P, = A, , and M > N > k - 1i,

(C,) and (R,) respectively

Ciy = m, + (ri,j_1 - rij),
we obtain the following two models 5
N N N
(Cy) Minimize 2 Z CijXyj + 2 Ay;
i=1 j=i i=1
subject to
j
Yoxij=1, j=12,...... N
i=1
N
Yoxij £ My, i=12...,N
j=i
xij=0’1 i,j=1,2,...,N, and i<j
y, = 0,1 i=1,2...,N,
L. n-1 k n-1
(R2) Minimize z = 3, Y, cjjXij+ 2 Aiyi ,» k=min (i+m, n)
i=0 j=i+1 i=0
subject to

k .
Cente [120,1,2, -0, 0]
2 %5 SMYE = min im0

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

since
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Xij 2 Xij+l » (22)
k = min (i+m, n)

and

x,,= 0,1V i=0,1,2,...,0-1; 3=i+1,2,...,k with k=min(i+m,n) (23)

y; = 0,1 Y i=0,1,2,..., n=1 (24)
Comparing (C,) and (R,), we see that the replacement problem

represented by (R;) can be considered as a special type of the lot

size inventory problem, except that it has an additional
constraints given by (22) which only indicate that the demand of

period j+1 can be satisfied from a lot in period i (i £ j) , only

if the demand for period j i1s satisfied from the same lot.
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CHAPTER 6.

CONCLUSIONS, CONTRIBUTIONS AND RECOMMENDATIONS

In the present chapter, we state the conclusions and
contributions of this dissertation. Then we discuss the scope of
this work under JIT environment. Finally, we give some
recommendations for further research on the problems considered in

this dissertation.

6.1. Conclusions and Contributions:

In the present dissertation, two important problems in the
field of industrial engineering viz: a lot size inventory control
problem (addressed by Wagner and Whitin, 1958) and an equipment
replacement problem (addressed by Winston 1991, Waddell 1983, Gupta
and Hira 1987), have been revisited. A structural similarity
between the two formulations presented in the present dissertation

has also been identified. Furthermore, we propose a fuzzy logic

approach to deal with the inventory control problem when the data
is i1mprecise. In addition, we suggest a simplified three step
computational algorithm for the equipment problem.

The inventory problem with variable demand rate under both
crisp and fuzzy environments with a planning horizon of N periods,
is considered in Chapter 3. Under crisp environments, we formulate
the problem as a linear programming problem with exactly N
variables restricted to zero-one values. However, one underlying

assumption 1in the above model, and most of the models in the
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literature 1is that the demand is deterministically known. But
demand is always forecasted and forecasts rarely-if-ever-turn out
to be crisply correct. So the models based on the precise knowledge
of demand have little practical applications. We deal with such a
problem through the fuzzy logic approach. Under fuzzy environments
such a problem is formulated as a maxmin linear program, with
exactly N wvariables restricted to zero-one values. Numerical
examples are presented for both cases.

Chapter 4 deals with the equipment replacement problem. We
formulate a deterministic equipment replacement problem (which is
normally solved through the use of dynamic programming) as a 0-1
linear programming problem in which the number of variables is
always equal to the number of constraints. The advantage of such a
formulation is that it does not require a high degree of expertise,
insight and tart”', (i.e. rather easily understood by
practitioﬁers), does not suffer from the so called 'curse of
dimensionality' (a shortcoming of dynamic programming) and can
always yield a global optimal solution to fairly large sized
problems using available software. A numerical example is solved on
a personal computer and interpretation of the results is provided.
In addition to that, we have proposed, along the lines of Fordyce
and Webster (1985), a simple method for solving an equipment
replacement problem. The algorithm explicitly identifies alternate
optimal solutions, 1if any,‘as well.

It is shown in Chapter 5 that equipment replacement and
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inventory control problems considered in the present dissertation
have a common hathematical structure. That 1s, the eguipment
replacement problem 1s basically a special type of lot size
inventory problem with a constant demand rate of 1 and an
additional set of linear constraints peculiar to the replacement

problem.

6.2. Scope of this Work under JIT Environment:

The present work is more suitable to MRP type systems. With the
increasing number of manufacturers moving towards JIT practices, a
discussion on the scope of this research under JIT environment 1is
needed. The main objective of JIT systems is to eliminate wastage
of time, material and cost with the goal of zero inventory (lot
size 1ideally equal to 1). Wastage refers to those costs (e.g.
inventory costs, setup costs, rework and scrap) which do not add
value to the product. In the past, American manufacturers
considered setup costs to be unavoidable; but engineering ingenuity
can be applied to reduce setup times and costs by designing special
jigs and fixtures, simplified dies and machine controls that can
switch in little or no time (Hannah,1987). Decreased setup costs
result in more frequent set—-ups and reduced lot size which in turn
reduces holding cost as well. One method of reducing setups could
be Group Technology (G.T.). Grouping similar parts results in fewer
major set-ups. Even if setup occurs, it is less costly.

A JIT system requires the flow of materials as and when needed,
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and in exact quantities. But there has to be an advance planning to
ensure that material is available when needed. For this purpose a
master production schedule in MRP could be moved from monthly or
yearly consumption to some hours of usage in a JIT environment.

Although JIT strives for smallest possible lot sizes but there
may be valid reasons for acquiring huge inventories of some items.
For example, a crop which is harvested only once or twice a year.
Other examples could be infrequent and small quantity demand of an
item where the cost of delivery of such small quantities would be
prohibited (Jordan,1988). For the parts at the entry and exit
points of a G.T. cell, standard MRP information is still needed.
Final assembly lots can be reduced to 1, but there is still need
for a master production schedule; and hence JIT doesn't eliminate
the need for a good inventory planning.

Furthermore, constant and effective equipment maintenance and
minimal machine breakdown is an important factor in the successful
implementation of a JIT system. Therefore, the equipment
replacement problem also appears to have potential applications

under JIT environment.

6.3. Recommendations for Further Research:

It is believed that a number of extensions are possible to
the inventory control and equipment replacement problems. The
deterministic and fuzzy models for the inventory control problem,
presented in Chapter 3 can be modified to accommodate joint order

replenishments in the inventory problem, to take care of capacity
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restrictions, etc. The joint order model could then be extended
even further to incorporate quantity discounts.

It is expected that our 0-1 linear programming approach for
the equipment replacement problem should open avenues for its
successfully addressing more complicated equipment replacement
problems such as group replacement problems. It is believed that
the three step method given in Chapter 4 to solve the replacement
problem will have many potential applications. It may also be of
interest to identify an underlying structure in a set of problems
that are currently solved through the use of dynamic programming
but could be solved by using the simpler approach, (i) described in
the present dissertation for solving a replacement problem, and
(ii) described in Fordyce and Webster (1985) for solving the
Wagner-Whitin problem (1958) in inventory control. It is highly
likely that the above tabular algorithm approach, along with fuzzy
dynamic programming will help towards the development of some fuzzy
~algorithms which, in turn, should become useful in solving the real
world problems.

Most of the formulations in this dissertation are assumed to
work under non-stochastic conditions. It may be of interest to
know, how they work under stochastic conditions.

Though, the present work suits more to determine lot size for a
MRP type system, but after initial planning, it could be made
applicable to a JIT type environment through some order splitting

techniques i.e. obtaining small quantities more frequently.
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APPENDIX A.

The constraints (1) - (4) (page 76) of Chapter 4 can be written
easily by using the following Table A .

Table A.
Time ~ 1 2 3 ....m m-+1 m+2 n-1 n R.H.S
l
ROW O Xol X02 XO3 ..... XOm . - . myo
Row 1 Xyg Xi3 ... X1m X{m+l - ) my,
Row 2 Xg3 - wXom Xomi1 Xomes o . i my,

Row (n-m) MYynm
Row (n-(m-1)) (M-1)Y; (m1)
Row (n-(m-2)) (M-2)¥y, (m.2)

Row (n-2) X201 Xn2n 2yn-2

Row (n-1) Xn1n 1Yot

1 1 1 1 1 1
““““ From Table - A, we can now obtain the constraints (2) - (5) as
follows:

(1) Constraints (1) are n in number and are obtained from row O

through row (n-1), obtaining first constraint from row 0 by



102

adding the variables and writing it 1less than egqual to

R.H.S., which is my,. Similarly nth constraint is x,, S

1,1,

(ii) Constraint (2) - (3) are n in number and are obtained from
the columns by staring with column 1 and equating the
sum of the variables in each column equal to 1 respectively.

(iii) Constraints (4) are (1/2)(2n - m) (m - 1) in number and

are obtained by starting by first row which is row 0. Thus

from row 0 we have (m-1 ) constraints xg; 2 %oy 2 xmaz e 2
XOm.
From row 1 we have (m-1 ) constraints X1, 2 X3 2 Xy, 2
>
= X1, mel

Similarly we have rest of the constraints from other rows up

to the row (n-1).

Thus the total number of constraints from the Table A = 2n +
(1/2) (2n - m) (m - 1) = (1/2) (2n +m) (m + 1) - m?

Total number of variables are calculated from the Table - A as
follows:

Number of variables in row 0 to row (n - m) = m (n-m +1)

Number of wvariables in row {(n - (m + 1)) to row (n - 1) = (m -
1) + (m—-2) + .... + 2 + 1= (1/2) (m - 1) m

Number of y,'s = n

Therefore, total number of variables = m (n-m + 1) + (1/2) (m -

1) m+n= (1/2) (2n + m) (m + 1) - m?
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{*** THIS PROGRAM IS CODED IN THINK PASCAL AND IT ***%}
{**x*%x%x%% SOLVES EQUIPMENT REPLACEMENT PROBLEM ****XXXxXx}
{FAxFxFRFXXASSUMPTION : MAINTENANCE COSTS AND SALVAGE VALUES***%*%}
(*kkKkKkkkkk*kk****DEPEND SOLELY ON THE AGEX****kkkkkkkk kX X kXX X X % % }

{'k************************************************************}

PROGRAM DYNAMIC REPLACEMENT (INPUT, OUTPUT) ;

{******************************‘k*********************‘k**‘k*****}

{***VARTABLES AND VARIABLE TYPE DECLARATION FOLLOWS** %%k %)
{*************************************************************}
TYPE
ONE D_INT = ARRAY[0..99] OF INTEGER;
ONE D = ARRAY([1..100] OF REAL;
ONE D LESS = array[0..100] OF REAL;
TWO D = ARRAY[0..49, 1..100] OF REAL;
VAR
A: REAL;
MAX, AGEMAX: INTEGER;
OPTIMAL: ONE D_LESS;
SALVAGE, MANTNCE: ONE_D;
TIME: ONE_D_INT;
COST: TWO D;
CHARACTER: CHAR;

{**'k*k*‘k****'k**************************************************}

{********************** PART A *******************************}

{***THIS PROCEDURE READS IN MAINTENANCE COSTS AND SALVAGE**x%**}
{***VALUES AND LOADS THEM TO TWO ONE-DIMENSIONAL ARRAYS***%x %}
{*************************************************************}
PROCEDURE LOAD M S (VAR M, S: ONE_D; AGEMAX: INTEGER);
VAR
INDEX: INTEGER;
BEGIN
WRITELN;
WRITELN ('DATA ENTRY FOR MAINTENANCE COSTS FOLLOWS : ');
WRITELN;
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FOR INDEX := 1 TO AGEMAX DO
BEGIN
WRITE ('ENTER MAINTENANCE COST DURING PERIOD', INDEX
3, 'OF OPERATION: ');

READLN (M[INDEX]) ;
END; ({FOR}

WRITELN;
WRITELN (*DATA ENTRY FOR SALVAGE VALUES FOLLOWS : '");
WRITELN;
FOR INDEX := 1 TO AGEMAX DO
BEGIN
WRITE ('ENTER SALVAGE VALUE OF', INDEX:3, '"PERIOD OLD

EQUIPMENT: ');
READLN (S [INDEX]) ;
END; {FOR}
END; {LOAD M S}
{*************************************************************}

{'k************************ PART B ***************************~k}

{***x%**x*THIS PROCEDURE COMPUTES THE NET COSTS ANDX*** %% x%x%x}
{***x*****AND LOADS THEM TO A TWO DIMENSIONAL ARRAYX**% %% % x%x}
{*‘k**********************'k‘k‘k'k***************************’k*****}
PROCEDURE LOAD COST (VAR C: TWO D; M, S: ONE_D; MAX, AGEMAX:
INTEGER) ;
VAR
ROW, COL: INTEGER;
MAINT: REAL;

BEGIN
FOR ROW := 0 TO MAX - 1 DO
BEGIN
MAINT := O
FOR COL := ROW + 1 TO ROW + AGEMAX DO
BEGIN
IF COL <= MAX THEN

BEGIN
MAINT := MAINT + M[COL - ROW];
C[ROW, COL}:= A + MAINT - S[COL - ROW];
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END; { IF-THEN}
END; {FOR}
END; {FOR}
END; {LOAD COST}

{************************************’k*********************}

{********************** PART C ****************************}

{***THIS PROCEDURE IS THE KEY PROCEDURE. IT PERFORMS THE***}

{***CALCULATIONS OF DYNAMIC PROGRAMMING ALGORITHM AND** %%}

{***STORES THE FINAL RESULTS IN ARRAYS OPTIMAL AND TIMEX***}

{*******‘k*****‘k***‘k****************************************}

PROCEDURE PROCESS (VAR OPTIMAL:ONE D_LESS; VAR TIME:ONE_D_INT;
C: TWO_D;MAX,AGEMAX: INTEGER);

VAR
ROW, COL: INTEGER;
TEMP: REAL;
BEGIN
OPTIMAL [MAX] := 0;
FOR ROW := MAX — 1 DOWNTO 0 DO
BEGIN
OPTIMAL[ROW] := C[ROW, ROW + 1] + OPTIMAL[ROW + 1];
TIME [ROW] := ROW + 1;
FOR COL := ROW + 2 to ROW + AGEMAX DO
BEGIN
IF COL <= MAX THEN
BEGIN
TEMP := C[ROW, COL] + OPTIMAL[COL];
IF TEMP < OPTIMAL[ROW] THEN
BEGIN
OPTIMAL [ROW] := TEMP;
TIME [ROW] := COL;

END; {IF-THEN}
END; {IF-THEN}
END; {FOR}
END; {FOR}
END; {PROCESS}
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{*‘k**********************************‘k*********************}

{********************** PART D ****************************}

{*********THIS PROCEDURE DISPLAYS THE FINAL RESULTS***x*x*x)

{***************************************************‘k******}

PROCEDURE RESULTS (OPTIMAL: ONE_D LESS; TIME: ONE_D_INT;
MAX: INTEGER) ;

VAR
HOLD: INTEGER;

BEGIN
WRITELN;
WRITELN ('THE RESULTS ARE AS FOLLOWS: ');
WRITELN;

WRITELN ('THE OPTIMAL POLICY IS TO TRADE IN AT THE FOLLOWING

TIMES: ');
HOLD := 0;
WHILE HOLD < MAX DO
BEGIN
WRITELN ('TIME ', HOLD : 2);
HOLD := TIME[HOLD];
END; ({WHILE}
WRITELN('TIME ', MAX : 2);
WRITELN;
WRITELN ('THE MINIMIZED COST FOR THE ABOVE POLICY IS $
OPTIMAL[O0] : 12 : 2);
END; {RESULTS}

{'k*****************************************************‘k***}
{******************** MAIN LINE ***************************}

{**************************‘k***’k*******************‘k*******}

BEGIN {MAIN LINE}
CHARACTER := 'Y'; .
WHILE (CHARACTER = 'Y') OR (CHARACTER = 'y') DO
BEGIN

WRITELN ('WELCOME TO EQUIPMENT REPLACEMENT PROBLEM

WRITELN;

Py
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WRITELN ('THIS SOFTWARE USES DYNAMIC PROGRAMMING TO
SOLVE EQUIPMENT REPLACEMENT PROBLEM');
WRITELN ('IF OPTIMAL COST IS =2 10000000000, THEN IT
MAY BE ROUNDED OFF.'");
WRITELN;
WRITELN ('DATA ENTRY FOLLOWS:');
WRITELN;
WRITE (' ENTER THE LENGTH OF THE PLANNING
HORIZON (<100 ): ");
READLN (MAX) ;
WRITE (' ENTER THE MAXIMUM LIMIT ON THE AGE OF THE
EQUIPMENT (<100 ): ")
READLN (AGEMAX) ;
WRITE ('ENTER ACQUISITION COST OF THE NEW EQUIPMENT:');
READLN (A) ;
LOAD M S (MANTNCE, SALVAGE, AGEMAX);
LOAD COST(COST, MANTNCE, SALVAGE, MAX, AGEMAX);
PROCESS (OPTIMAL, TIME, COST, MAX, AGEMAX):;
RESULTS (OPTIMAL, TIME, MAX);
WRITELN ('END OF PROCESSING');
WRITELN ('THANKS FOR USING THE EQUIPMENT REPLACEMENT
PROBLEM !');
WRITELN;
WRITELN('FOR A HARD COPY OF THE RESULTS, PRESS
CLOVE-SHIFT-4 KEYS TOGETHER') ;
WRITE ('WANT TO SOLVE ANOTHER PROBLEM (Y/N) 2 ');
READLN (CHARACTER) ;
END; {WHILE}
END. {MAIN LINE}



