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ABSTRACT

In the present dissertation, two important problems in

t.he field of índustríal engineering, víz: a lot size inventory

nnni. rnl nrnl.r'ì am anrl ãñ anrri nmanl- ron'l anaman1- nrnl.rl a- ln="¿ haanUvtIL!v! ¡/!VU¿ç¡ttt OIIU AII E\luryrtlç¡IL !çI/Iqçç¿tlçrlu y!vv¿v¡llt IIAvC lJççrl

anal-yzed and formul-ated. A structural similarity between the two

formulations presented in the present dissertation has also been

ídentified. Vüe further propose a fuzzy logic approach to deal with

t.he inventory control problem when the data is imprecise. In

addition, \¡re suggest a simplifíed three steps computatíonal-

=I¡nrif hñ €nr {- l-ra aa,,.lnnanl- ronì =aomon1- ñfobl-em.erru uyqry¡rrvl¡u !e}J!qvç¡trç¡¡u y

Chapter 1 introduces the two problems, followed by the

literature survey in Chapter 2. Chapter 3 is devoted to the lot

sizing inventory problem, with variable demand rate, both under

¡-i an =nrt rrnÄor îttqctt onVironmentS. Chanf er 4 cleals with theç¡¡v¿!vrrrrlç¡¡Lo. vrrql/uç! z suq

equipment replacement problem for which we give a three steps

computational- method based on dynamic programming, followed by a

0- 1 linear programming model- f or t he probl-em . It í s shown in

Chapter 5 that equipment replacement and inventory control probJ-ems

considered in the present dissertation have a common mathematical

structure. FinaIIy, conclusions, contríbutíons and reconmendations

for further research on the afore-mentioned problems are presented

in Chapter 6.
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CEåPTER 1.

DESCRIPTION A¡ID INTRODT'CTTON OF TEE PROBI,EMS

The subject of the present research is to investigate and

model two important problems in the field of industrial

engineering: a l-ot size inventory control problem (addressed by

Wagner and Whitin, 1958) and an equipment replacement problem

(addressed by Winston !99L, Waddell 1983, Gupta and Hira 1987). A

structural simil-arity between the two problems has been identified.

In the present chapterr wê give an introduction to t.hese

problems.

1.1. Basic Inventory Concepts:

1.1.1. Inventory: Inventory can be defined as an idle

resource that has economic val-ue. Inventorv mav also be defined as

the stock of goods held to satisfy some eventual demand. The items

!.: !,-!: -_ i nvenf orw mâ\/ l-ra r,âw r^e ^_r ^ r ^ --Uf ChaSed OfUUJ,iÞL¿LLlL-LrI9 ¿rrvur¡Lv!1, rrroy !ç !qw lttd.LEIlO'!ù, Pl

manufactured itemsr âssembled or partially assembl-ed parts or

finished products. Inventory is built up when the rate of receipt.s

exceeds the rate of disbursements and is depleted when the reverse

is true (Ritzman and Krazewski,l-990) .

L.L.2. Types of Inventory: fn most texts (SiIver and

Peterson 1-985, Ritzman and Krazewski 1990), inventory is

cl-assifiedr âs given below, by purpose (or function) of the

nrarìrr¡l-v!vuuve.
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Funct íonal Cl-assif ication : Based on the function or purpose of the

inventory, five types of the inventory have been identified

1 CvCl e l¡ypnl-nrrr . hlhon |- he nrnrìlrr-f io^ ^r nrrìari na iS dOne in@

batches instead of one unit at a time, the resulting inventory is

cal-led the cycle Ínventory. Order lot size(Q) varies dírectly with

t.he time between orders as does cycle inventory. Hence, cycle

inventory is that portíon of the total inventory that varies

directly with l-ot size. MathematicalJ-y,

Cycle Inwentory = A\2 r where a is the lot size.

The advantages of and reasons for large cycle inventoríes

include economies of scale (because of large setup costs), better

customer service, Iess frequent setups, reduced transportation and

purchasing costs (quantity discounts) and to satisfy some

technology restríctions (e.9. fixed size of a processing tank in

chemical- processing, êtc. ) . CycJ-e inventory is al-so sometimes

cal-l-ed l-ot sizing inventory or working stock.

2. Safety Stock Inventory: Safety stock is the amount of inventory

kept on hand to provide a cushion against. the uncertainty in

demand, lead time, and supply.

It reduces some customer service

of unavailable parts or l-ost. sal-es.

when the future rate of demand, the

the vendor are known with certaintv.

cal-led buffer or fluctuation stock.

problems and the hidden costs

Safety stocks are not needed

Iead time and reliabilitv of

Safetv stock is also sometimes
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3. Antícipation Inventories: Anticipation inventory consists of

stock accumulated in advance of an expected peak in sales. It is

used to cope with uneven rates of demand or supply. For example,

peak seasonaf demand of air conditioners or lawn mowers occurs only

in summer. Such expected peaks in demand may lead the manufacturer

to stockpile the items during periods of l-ow demand so that output

l-evels do not have to be increased when the demand is at its peak,

because varying output rates and work-force size are normally

eOSt 1v - Anti¡'l n=+- i nn i n-'a¡j- 6rì cs mâ\/ af SO OCCUf beCaUSe Ofvv9urJ.

unevenness on the supply side. For example, strawberries ripen

during certain months in a year but they are processed into jam

which has rather stable demand throughout the year. Anticipation

inventories may be accumulated in anticipatj-on of l-abor strikes,

war t.imes/ etc. Anticipation inventory is sometimes referred as

seasonal or stablisat.ion stock.

A Pipeline (Transit or Work-In-Process) lnventorv: Prñêtrnê

'i nr¡cnJ-nrrz ie .l-hc inr¡onfnrr¡ 'i n 1-rans'i f - i e mnr¡'i nrr from ônê noìnflrrvv¡¡gvÀJ ¿u L¡¡ç ¿r¡vvr¡uv! gls¡¡s¿u/ t/v¡¿¡e

to another point within the productíon facility or wíthin a

distribution system. For example, parts move from supplier to t.he

plant, from one work station to the other, from a pJ-ant to the

warehouse, and from warehouse to the retaíler or customer. Pipeline

inventory is measured as the average demand during the lead time,

'i a Þina'lina ìnrzan1-^r\z: n - .t T r.rlraraI.ç. rl}/gMrç rllVçI¡LV!y - UT.- U.! t Wlrglg l-\ .i - r 1- a â r'^ Fâ õô rlamr n rlLJ1. -LÞ Lllç O.VCl.qYç UErttqIrv

during l-ead time, d is average demand per period and L is the

number of periods in the lead time between two points.
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5. Decorrpfing stock : Decoupling stock is the stock accumulated

between different echelons (stages) of a mul-ti-echelon system to

reduce the requirements for complete synchronization between

different operations and to permit the independent decision making

at different echelons.

1.1.3. Production and Inventory ControJ.: The American

Production and Inventory Control Societv (APICS) defines these

terms as follows (Wallace, l9B4) :

fnventory Control: The activities and techniques of maintaining

the stock of items at desired leveIs, whether they be raw

materials, work-in-process or finished products.

Production Control: The function of dírecting or regulatíng the

movement of goods through the entire manufacturing cycle from

the requisition of raw materials to the delivery of fínished

nrndrrr.J- q
vrvvsvev.

fn the manufacturinq environment, these two terms are

frequently intermixed. To some extent, this is justífiabl-e in the

production context because the release of a production order wiII

reduce raw materials, increase WIP inventory, and eventually

increase finished products. Conversely, a decision to increase the

inventory l-evel of items wil-l- require a release of a production

order.
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1.1.3.1. Objectives of Production and Inventory Control:

To discuss the objectives of Product.ion and Inventory ControJ-,

vre first' briefly discuss some major objectives of manufacLuring

f irms. As given in Pl-ossl- (1985) / three ma jor ob jectives of

manufacturing firms are:

l-. Maximum customer service.

2. Minimum inventorv investment.

3. Efficient (low cost) plant operation.

These three objectives are basically in conflict. Maximum

level of customer service can be achieved only if inventory levels

are very high and the plant is kept flexibl-e by changing

production leveIs and production schedules to meet the customers t

changing demands. This is not in agreement with the second and

third objectives. Efficient plant operation is normally considered

possible if production l-evels are sefdom changed, no overtime is

incurred and machines are run for long periods once they are setup.

This means efficient pJ-ant operation resul-ts in large inventory and

infl-exibl-e customer service which is in disaqreement with the first

and second objectives. Now, the objective of low inventory can be

obtained at the cost of poor customer service and if the plant
ra=¡+. o râ^i "ll v to r:hanoe.s i n r:usf ômers t rê.rrli rements andvquuvrrrgro !çYq!-

interruptions in production whích viol-ates the first and third

objectives. Since, working towards one of these objectives can be

done with the exclusion of the others, the inventory control

probÌem really becomes a challenging problem.

The nri marv ohier-f i r¡c nf i nr¡ont- nrr¡ ^CntrOI íS tO feCOnCiIe OfJ""

make consistent these confl-icting objectives in a modern company.
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1.1.3.2. Economic Importance of Inventory Control:

As reported in Silver and Peterson (1985), Statistics Canada

figures say that totaÌ inventories owned by Canadian manufacturers

are in the neiqhbourhood of $ 30 billion. Business inventories in

the United States exceed $ 500 billion of which half is in

manufacturing (Smitfr, l-989) . On the average, 34% of the current

assets and 90? of the working capital of a typical- company in the

United States are invested in j-nventories. Actual- f íqures for

different firms will of course depend on the firm and the type of

industry.

fnventories play a major rol-e in the profitability of a firm.

Sinr-e âs crllofarì aharza 1-her¡ r.nns.l-i.l-ll.l-e a Iaroe nortíOn Of the\-1uv uvv svv v ç /

assets of a company, inventory control- naturally becomes an

important function of every firm that produces goods and services.

If a good inventory control system can prove to be a key to the

success of some companíes, a poor inventory control system can be

the cause of failure of several others.

There are many views expressed about inventories. Some people

say that inventories are the graveyard of American busíness, but at

the same time, the very survíval of a company may depend on the

inventory. Inventory can act like a double-edged sword. If there is

too much inventory, then the firm is not performing optímally and

is nrrfi-incr itsc'l f in â .rreat rj-Sk Of ObSOleSCence. On the OtherYr!

hand, if huge reductions in inventory are made without improving

manufacturíng processes to decrease the lead times, the firm can

loose its customers and damase its reputation.
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rnventory ís al-so vj-ewed as a necessary evil. Arthough, it herps to

maintain customer service, improves the utiÌization of resources

and reduces set-up costs, each doIlar tied up in inventory is

unavailable for investments elsewhere (e.g. new products, capacity

increases or new technological- devel-opments) . Therefore, finding an

optimaJ- inventory control policy is of paramount importance and

crucial- for a firm.

1.1.4. Classification of Inventory Models:

There are different ways of classifying the inventory models.

Some of the attributes useful in distinguishing between various

inventory models are given in this section (Cohen 1988, Sil-ver

198r_) .

l-. Number of Items:

a) Single Item This type of

a time. If the demand rate

then the problem becomes

model recognizes one product at

changes from period to period,

that of a dynamic l-ot s iz ing

probJ-em.

b) MuIti Item This tvpe of model considers a number of

products simul-taneously. These products must have at l-east

one interrel-ating or binding factor such as a budget or

capacity constraint or a coflìmon set up.

Stocking Points:

a) SingJ-e Echel-on Model-s Only one

considered.

st ock ing locat íon



I

b) Multi Echel-on Models - More than one interrelated stocking

l-ocations are considered.

? Fra¡rronr.r¡ r'rf Rar¡i or.r.

This is the freguencv of assessment of the current stock

position of the system and impÌementation of the ordering

decision.

a) Periodic Pfacement of orders is done at discrete points

in l. ima r.riftr a nirzan narinrli¡ifr¡¿¡¡ UII(Lç f wL U¡I q Y!vçr¡ yç!!VU!U!Ly .

b) Continuous - Order placement can occur at any time.

A C\r'ior (.lrranJ- i- . -,*-- -*-..-*ry:
a) Fixed Order quantity is fixed to the same amount each

l-ìma

hl Vari al'rl e - ôrcìer orranf ì f w r:an lre wari abIe.vt

\ plânnlnñ H^rt7^n.J.@'

a) Finite Demands are recognísed over a limited number of

periods.

b) Infinite Demands are recognised over an unl-imited number

of periods.

6 . Demand:

a) Determínistic Demands are known with certaj-nty over the

planning horizon.

i) Static - Demand rate is constanl over every period.

ii) Dynamic - Demand rate is not necessaril-y constant.



b) Stochastic (Probabil-istic) Demand is unknown, and must be

estimated. The demand probability distribution may be known

or unknown.

I l.ãañ 'l'r ñê .
'.@.

a) Zero No time elapses belween placement and receipt of

. orders.

b) Non-Zero Significant time elapses between the placement

and receipt of orders. This time may be constant or random.

Q l-¡nani l- .r.v. y$+¿$!Á-!-L.

a) Capacitated - There are capacity restrictions on the amount

produced or ordered.

b) Uncapacitated - Capacity is assumed to be unlimit.ed.

Q Tlnqa1- i qf i arl Tlamanrl .
r'.@.

a) Not al-l-owed f n this case, all demand is met and no

shortages (no backlogging) are allowed.

b) All-owed - Demand not satisfied in a particular period may be

retained and satisfied in a future period (backJ-ogging),

partially retained and partiaJ-Iy l-ost or completely l-ost (no

backloggitg) .
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1.1.5. Lot Size Inventory Problem:

Two basic questions to be answered in most of the inventory

situations are when to order (the reorder point) and how much to

order (the lot size) . When the demand rate is constant over time,

the associated problem of pJ-anning is rather simple because the use

of the classical Economic Order Quantity (EOQ) model gives us

optímal results. But when the demand rate varies over time i.e. not

necessarily constant from one period to another, the associated

nrnhl am nf n'l-*anning is a bit more challenging and is said to be

dynamic in naturer âs discussed in t.he preceeding section. The

problem considered for this study is uncapacitated single-item lot

sizing problem with dynamic demand. This probJ-em was first

addressed by Wagner and Whitin (1958) under the assumption of

determinístic demand. The uncapacitated assumption can be justified

to some extent in an MRP (Materj-al- Requirement Plannitg)

environment on the condition that a good master production schedule

exists which takes these capacitv restrictions into consideration.

This master schedul-e is aimed at smoothinq the production load and

can make use of fine tuning devices such as adjustíng the lead

t.ime, subcontracting, overtime, alternative routings etc. However,

in certain sítuations it may be difficult to ignore the capacity

restrictions in actual l-ot size decisions since this would lead to

an infeasible master schedul-e and subsequently to more frequent

replanning. Furtherr w€ would add that inventory problems are

ubiquitous and complex in naturer so no particular model- can

rênre.qenJ- a'l 'l the ì nvenf orv situations.
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1.1.5.1. RelevanÈ Costs in tbe Problem:

There could be many types of relevant cosLs considered in the

problem e.g. the ordering cost, t.he holding or carrying cost and

the total manufacturing cost. There could be other relevant costs

depending on the situation. Sincer wê meet the total demand over

the planning horizon and neither do we discuss the case of quantity

discounts' so the total manufacturing cost becomes irrelevant to

our problem, and we ignore it. Furtherr wê do not discuss the back

order case in this study, so vre omit the back order or stock out

costs as wel-I. Another type of cost which is frequently ignored in

the l-iterature is the cost of data acquisition for the modeI,

computational- costs and implementation costs including adverse

effects of the new modeÌ. Such costs are referred to as System

Control Costs (Sifver, 1981) . We are al-so ignoring this cost sínce

this study deals with the theoretical-, not empirical developments

of the problem.

1. Holding Cost: It is the cost of keeping items on hand.

Holding cost may include taxes, storage, insurance and shrinkage

(e.9. pilferage, obsolescence and spoilage) costs. Holding cost

increases with the size of the inventorv. If r is the dol-Iar amount

required to carry one dollar as inventory for one period, and v be

the unit cost of the item, then the cost to hold one unit for one

periodisrb=v.r.
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2. Ordering Cost: This type of cosL is incurred each time a

nrnrìrrr-t i on Õr nrrrr-hase orrìer i s nl ar:erì ThiS COSI increases wíth

the number of orders but is independent. of the size of the order.

Tl- mâ\r in¡lrrrla l-r=ncnarl-a{-ìnn ¡nc{. ñãñôr r^rnrÞ J-olanhnna ¡al I c...*j -^^---*e transportation cost, paper work, te Ie.-..-..- vsrre /

accountingi costs, computer time for record keeping or other

receiving costs. In the production context, this type of cost is

called set up cost which can incl-ude tooling and fixtures, rent on

f lra a¡rr jnmanÈ nr j f t- hê ^^mÐany OWnS the eqUipment, thefe iS a COSI

of l-ost opportunity to rent the equipment to some other company

during the periods when there is no production. AIso, since every

production system takes some time before it gets to its full

working momentum, the cost associated with that time may be

incl-uded in the set up cost.

As vre can see, there is a cost trade off between the ordering

cost and the carryJ-ng cost. As the ordering cost increases, the

holding cost decreases and vice-versa.

1.1.5.2. Discussion on Solution Approacbes:

wagner and whitin (1958), suggested a dynamic programming

algorithm to deal with the uncapacitated inventory control- problem.

Though the approach gíves optimal- results, the complex nature of

dynamic programming and the so-cal-Ied curse of dimensionalit.y

makes it difficult to understand by the practitioner and makes the

approach practically useless. As reported in Bahl et. aI. (1987),

an índustrial- survev conducted by the American Production and
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Inventory Control Society found no respondents using the Wagner and

Whitín algorithm. There are numerous heuristic methods available in

the literature which wil-Ì be discussed in the Iiterature survey in

the next chapter. These heuristics are easy to use but not

necessarily optimal. The other efficient approach which immediately

comes to mind is linear programming. However, in certain practical

situations such as for dedicated production lines, gfroup technology

and FMS, it is impossible to ignore set up costs or set up times.

Each time a set up is done a cost is incurred. This suggests an

integer programming approach with some binary variables

representing the set ups. We develop two such 0-l- Iinear

programming model-s in the third chapter. The main underlying

assumption in most of the models is that "demand is

determinístically known". But demand is always forecasted and most

of the times the forecasts do not turn out to be precisely correct.

Precision always demands parameters and structures of a system to

be definitely known. In this context Schwartz's quotation

(Schwart 2,1,962) seems appropriate, "An argument whích is onJ-y

convincing if it is precise loses all- its force if the assumptions

on which it is based are sJ-ightly changed, while an arqument which

is convincing but imprecise may well be stable under small-

perturbations of its underlying axioms. " Those methods which are

based on the precise knowledge of data have l-ittle practical

appfications. Furthermore, in practice most of the companies are

Iimited by budget restrictions. Setting targets (or goals) on
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<..ôsf f iorres i s a verv cômmrìn nrar-l- i r-q in the induStrial andvvou !¿YuÀv9 ¿u

business world, and ín some situations these restrictions have some

elasticity. Thís suggests the possibility of applying fuzzy J-ogic

to some industrial problems.

fn some cases, the decision maker might not really want to

actually maximize or minimíze the objective function, but rather

may want to reach some "aspiration level" which might not be even

crisply defined. In real world problems, this can happen because

sometimes it is simply not possible to obtain the precj-se data, or

the cost associated wíth obtaining the precise data is too high.

This imprecision in data arises because of the complex nature of

the real worl-d probJ-ems. So the problem becomes that of modelling

with imprecise data. We wiII analyse our problem in Chapter 3 by

means of a fuzzy logic approach when some sort of ambiguity in

available budget and demands is invol-ved. Zadeh's (l-973) principle

af inr.r.rmrraf ihi I i.l- r¡ qJ- âJ- êô r1^^r Itrñ arênêral - (-ôtr-1^--:!.. ^-.r
---!rf 

¿Ly ùuqLçõ LLICtL I LLL Yçrrsrqrt uvrttlJrtiã,tLy O.fl(l

precision bear an inverse relation to one another in the sense

thatr ês the complexity of a problem increases, the possibility of

analyzing it in precise terms diminishes . Thus 'fuzzy thinking' may

not be deplorable after all, if it makes possibl-e the sofution of

problems which are too much complex for precise analysis". Euzzy

set theory is a tool which gives reasonable analysís of complex

systems without making the process of analysis too complex. In the

following l-inesr we give a brief introduction to fuzzy set theory.
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Fuzzv Set Theorv:

The theory of fuzzy sets is basically a theory of graded

concepts. A central concept of fuzzy set theory is that it ís

permissible for an element to bel-ong partl-y to a fuzzy set.

Let X be a space of points or objects, with a generic element

of X denoted by x. Thus, X : {x}.

Fuzzy Set: Let x e X. A fuzzy set A ín X is characterized by a

membership function (M.F.) p^(x) which associates with each point

in Xt a real number in the interval [0,1], with the value of pÀ(x)

at x representing the "grade of membership" of x in A. Thus, the

nearer the value

belongingness of x

P¡(x) is to I, the higher the grade of

fn conventional (crisp) set theory, Þ¡ (x) takes only two

val-ues i- or 0 depending on whether the element belongs or does not

be.Long to the set À.

of

Therefore, formally speaking, Lf

objects denoted generical-Iy by xt then

to

{x} is a coll-ection

fuzzy set A in X is a

nf

d

of ordered pairs, A: {(x, Po(x) ) / x € X }, where [ro(x) maps X

the membership space [0,1].
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t.2. Maíntenance and Replacement ProbJ-ems:

Problem situations, concerned with controlling the condition

of equipment are termed as maj-ntenance and repJ-acement problems.

ModeIs for these probfems can be stochastic or deterministic

depending upon whether some sort of uncertainty is or is not

involved with the timing and/or consequence of the action

( Jardine I I9'7 B) .

t.2.L. Different Problem Areas:

As shown in the following figure, the replacement and

maintenance problems can l-ie in any the following four broad areas

(Jardine,L97B) :

Deterministic Stochastic

Replacement Inspection Overhaul Organizational-
end rcnai r Structurev¡/st!

Fiq'ure 1- . 1- Replacement Problem Areas.

Ren'l â r.êmen1- : Renl acemenl- means tO achieve the "aS new"@

condition for the equipment concerned. This is based on the

assumption that if a second hand equipment is purchased, ít

should be considered "as new". Further prob.l-ems in this area

can be Group Replacement, Preventive Replacement etc. Group
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replacement problems are those probJ-ems ín which items are

repJ-aced as a group rather than one ítem at a time because of

economies of scafe (e.9. quantity discounts if items are

purchased from a common supplier) . Sometimes failure of one

component shuts down the whole production process and it

creat.es the opportunity to replace other parts at the same

time to avoid frequent shut downs, this type of replacement

situation is called preventive replacement. We wil-l- discuss

1- he renlar:emeni- nrnlrlem frrrther in the next sectj-on.

Tnsner:f i on : The nri ma rw frnr-t'i nn nf ì nsnection iS to determine.@

f ha r.nndi J- i nn nf l-ha oarr i ñmênl- ând 1- fro m: inr rlo¡i c i nnqv! u¡¡9 vYqry¡rrv¡ru qr¡u u¡¡v ¡rrqJv! uçv!u!vr¡o

associated are:

a) Thoroughness of inspection.

b) Indicators to be used to describe the equipment's age and

condition (bearing wear, product qual-ity etc. ) .

^\ ml.^ +.1 *.1 ^- ^ç .i^^*^^+.i ^-\-l rrrc LJrrrJ-r19 (J! J-tIòrJg\-L-L(Jl1 .

Overhaul and Repair: Overhauf is a restorative maintenance

action taken before the esuipment has reached a defined failed

state, whereas repair is made after the equipment has reached

the faíled state. Neither action returns the equipment to "as

new" state. "FaiIed state" does not necessaril-y mean the

"broken-down" state, it may be the st.ate in which items

produced are outside the specified tol-erance limit or there

are risks involved with the continued use of equipment. The
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major decisions associated in this

a) The interval between overhauls.v,

b) Degree to which the equipment

rôñã j -ad OT hOW CIOSe the ttas
! vl/s¿! vst

achieved.

should be overhaul-ed

new" condit ion shoul-d

or

be

C)roa ni z.al i ona I St ructure : Some ma-ìor decisions involved 1n

this area are :

a) Determination of what maintenance facilities should be

there inside the organisation (e.9. workshops' stores '
maint.enance staf f etc. ) .

b) How these facíIities should be used, taking into account

the possibl-e use of outside resources such as contractors.

NormaIly, maintenance work can be performed by the company

crew or outside contractor, in the company's workshop or in

the contractor's workshop.

Another problem in this area is the determination of cre\^I

size with the crew costs and downtime costs identifying the

possible trade off. With increases in crevl size' cost

associated with the crew increases but the down time

decreases. These type of problems are normally solved by

simul-ation technigues .

t.2.2. Different Categories of Replacement Problem:

According to Ray (L971), replacement problems normally faII into

the following categories depending upon the life pattern of the

equipment and Íts sel-ection.
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1 . Replacement of items which fail suddenly.

2 . Like-for-l-ike replacement.

? M'i'lil-:rrr airnr¡f.l- .l-r¡ne ren'l ar-êmêñj-J. r'rlMqrl' q!!v!s!u uJì/v

4. Replacement of items which deteriorate and become obsofete

with time.

Tf ¡na '.'Ì..i ^l- €rì 'l qrrrl^anl r¡ . Thi e l-\rñê nf ranl:r.êmênf i e Crll i t- e. ¿¡¡rÐ Ly¡/ç v! !gI/¡quçrllçrrL fo vurue

common in the area of electronic components and it has led to

the development of an area of study caIled reliabiJ-ity

engíneering. Another example of items faIIíng into this

category are light bul-bs.

T,i ke-for-'l i ke renl accmenf ' Ren'l ar.emcnl- in which an item is

replaced by an identical item. This type of replacement is

considered to be practicatly nonexistent. fts main use is a

philosophical- one; that of an assumed approach ín il-Iustrative

problems. However, there exist some industrial situations

where this type of repl-acement may be found, e .g. in

case of fairly standard machínes, a machine tool is replaced

by an identical- tool. This category is essentialJ-y a subset of

fourth category.

M'i Iil-arr¡ a'i r¡raff 1-r¡ne rcn'l .ar.êmcnj- ' Tn l-his fr¡nc of

replacement the decision maker is faced with the problems of

analysis rel-ated to factors other than system which is in

service. The problem is that of instant obsolescence, however
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the equipment may be functionally downgraded rather than

replaced in the literal sense (e.9. it may be used for tasks

of lower priority) . The value of that equipment. for the main

l-ine service is lost. This category may overlap a IittIe bit

with other categories. For example, if an enemy develops a

superj-or mode.l-, the equipment l-oses its val-ue for main l-ine

service. In the business wor1d, electronic computers can be an

appropriate example.

Ranl:¡omonf nf ifomc ¡^rhinh do1-orinr¡1-a anrl Ìra¡nma nhanlaÈo

with time: In this type of replacement, the equipment wears

out gradually and becomes obsolete because of cumufative use

and ne\"¡ technological developments and starts functioning with

decreasing efficiency. Maintenance and operating costs

ês.râ'l ai- e wì th time and resale values decline. At Some Staqe itrru uv¡rrç

becomes necessary to replace the equipment with a new one.

Items like industrial vehicles, fork Iift.s or some other

industrial machinery can lie in this category. In this type of
ran'l =¡aman+- ¡.he state-of-the-art of the ecnrinmenl- i s rìvnami e.rrv¡¡e t u¡¡v vyurl/¡ttç¡¡u ¿o ul, f lu¡rr¿v .

L.2.3. Replacement of Deteriorating ltems:

To narrow down the topic of our research, in the present

dissertation we shal-l limit our interest to that cateqory of items

which deteriorate and become obsofete with time and usase. In the

present thesis, I^Ie consider the basic repJ-acement problem as

deterministic, rather than stochast.ic in nature. The determinist.ic
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problem is addressed in the past by Wagner (1969), Jardine (1978),

Gupta and Hira (l-987) and Winston (1991). The deterministic

assumption is justified in this problem because the increasing

probability of breakdowns is reflected by maintenance and operating

costs that increase with the time.

fn real lífe all equipment eventually v¡ears out with time due

to deterioration and usage, causing it to function with decreasing

efficiency. For example, with the passage of time, a milling

machj-ne's operat.ing cost and downtime increases and a

transportation vehicle such as a car or industrial truck requires

increasingty more repair and maintenance. With ever rising repair

and maintenance costs, a stage may come when these costs become so

high that it is more economical to replace the used piece of

equipment by a nevl one. A natural question then arises about the

optimal time of its replacement. If t.hese costs decrease or remain

constant with time, the best policy, perhaps, then is never to

repJ-ace the item. However, in real situations such a condition is

hardly met. Technological developments may al-so force the user to

consider the repÌacement because better designed machinery may

result in improved product quality, better efficiency and reduced

maintenance and operatinq costs.

t.2.3.1. Relevant Costs in the Problem:

Generally, those costs which depend upon the choice or age of

the equipment are included in the replacements models. Other costs

^r ñâramal-arc that effeCt the CaSh fIOwS are al-SO nOrmallv inel¡clecìu¡¡9 vqu¡¡ ! rvYr q¡Jv rrv!¡rrq¿¿J !f ¡vr qvçg
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in the replacement decisions. Maintenance and operating cosLs,

purchasíng costs depend on the choice and age of the equipment, so

they become relevant to the problem. Resale values (saJ-vage values)

also become a relevant parameter in our problem because besides

being dependent on the choice or â9€, resale val-ues also effect

the cash f l-ows.

I .2 .3 .2 . Possible Mathematical A,pproaches :

Dynamic programming has been suggested, by many researchers,

as an approach to modelling and solving the 'equipment replacement

probJ-ems ' (Bellman l- 955, B€Ilman and Dreyf us 7962, Wagner 1969 ,

Stapleton et. aI. L9'72, Chand and Sethi 1,982, Hopp and Nair 199L,

Winston l-99f etc.). However, feelings that "high computational

burdens due to the so called'curse of dÍmensional-itv'of dvnamic

programmíng and the near impossibility of explaining it to the

practitioner" or statements like "the complexity of the dynamic

prograÍìming procedure inhibits its understanding by the layman who,

'í n aana ra I rl*oes not possess a high degree of expertise, insight

and rart ' , acts as an obstacl-e to its adoption in pract ice "

discourages the users from the use of dynamic programming approach

to sol-ve equipment replacement problem (Fordyce and Webster,19B4).

Recently, the high computational burden argument has diminished

somewhat due the developments in computer technology but the other

arguments stil-l- persist to a large extent. Based on Fordyce and

Webster's approach to inventory controJ-, we wil-l give a simple and

straight forward dynamic programming algorithm to solve the



23

equipment repl-acement problem in Chapter 4. In additionr w€ will

also anal-yse the afore-mentioned problem by means of a pure 0-1

model- .

1.2.4. Importance of Èhe ReplacemenÈ Problem:

Like the ínventory control problem, the importance of the

replacement problem can also not be underrated. A poor replacement

policy can cause unnecessary costs, the continued use of oId

equipment can cause hazards, industrial accidents or personal

injuries. On the other hand, a good replacement policy can be a

posítive profit contributingr factor and help to insure worker

safety. An extensive survey conducted by Hsu (1989) clearly

indicates that firms have st.arted reafizinq the importance of

equipment replacement and are paying increasing attention to

replacement policies. Approximately B9% of the firms surveyed have

definite equipment. replacement policies. This represents a sizable

improvement over his prevj-ous survey (Hsu, I9'14 ) which showed that

only 522 of the firms surveyed with definite policies regarding

equipment replacement. Capital--intensive firms with more expensive

and specialized equipment were found to show more concern over

equipment replacement than labour-intensive firms (Hsu, l-9BB) .
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Cg.APTER 2

LITER.ATI'RE SUR\TEY

This chapter provides a survey of Iiterature deaJ-ing with

inventory control and replacement problems. The purpose of this

chapter is to identify the state-of-the-art achieved in the areas

mentioned in Chapter 1. However, w€ will focus our attention on

ihãi. oart of t-he literature which is relevant to our probJ-ems.

2.t. Review of Literature on the Inventory Problem:

Much literature exists on the inventory problems. Some major

sources of this literature include the APICS publications (such as

Production and Inventory Management JournaI, Journal- of Operat.ion

Management, Conference Proceedings), Operations Research Quarterly,

Managiement Science, Naval Research Logístics, Internatíonal- Journal

of Production Research (IJPR), European Journal of Operation

Research (EJOR) etc. In the following sectj-ons, wê will review

1-a¡hn.inrroc ¡16-l ìn^ '.'ìf la .:'i nrr'ìc if cm 'ìtn¡ân:r.if eiCrl lOf SiZinO-Lç;1,¡trrryUçO vE:Ct-L-LflV WILl.I, ò!lrY!ç ILç¡lr u¡¡vqpqe¿uquçu rvu er¿¡r¡Y.

Exposítory accounts of some of these t.echniques are provided in

Plossol (1985), Sil-ver and Peterson (1985), Zoller and Robrade

(1988), Nydick and Weiss (1989), Hax (l-978). Perhaps the first

reported work on inventory control- was Harris by (1915). Then in

1,934, Wilson (I934) gave a statistical approach to find order

points. These publications found IittJ-e practical- recognition for

at least the fotlowing 3-4 decades. This may be due to the fact

that. the 1930's and l-940's were periods of great depression for the
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industrial- and business world. The question before many companies

bras that of survival, not optimizatíon. During World War II,

different companies were mainly concerned about meetíng the

war-time needs and a backloq for civilían demands started

appearing. This pent-up demand for civil-ian goods provided a market

for every item that could be produced. Once the postwar backlog was

satisfied, firms started thinking in terms of optimization, because

the problem became that of over-production. Inventory control

model-s receíved their real- boost from operation research technigues

developed during World War II. However, the actuaf bibliography on

these models started appearing after 1958 with the weII known paper

by Wagner and Whitin (1958). Triggered by Wagner and Whitin's work,

a nrrmlrar nf nrapers appeared in dífferent research journals. Some

of them tried to improve on the Wagner-Whitin algorithm, others

gave some heuristics which were bas icaJ-J-y of f -shoots of

Wagner-Whitin algorithm with the emphasis on making computation

scheme more easy, though may not be optimal. ZoIIer and Robrade

(1988) suggested a convenient cl-assification scheme for the

existing Iiterature by categorizing it. into following three

cateqories:

1. Optimizing techniques.

2. Stop rul-es (heuristics) and

3. Heuristic algorithms.

Using their classification scheme,

as fol-l-ows:

we discus s the l-iterature
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. 1. 1. Optiroizing TecbniqueE:

2 .L.1 . 1 . The EOQ Formula:

The cl-assic EOQ formula was first de

(191-5) . This is wide]-y known as the Wilson

Wilson who popularized this formula in

formula for economi-c order lot sizinq is as

ri verì lrw Fnrd Harris

formufa because it was

nrar:f i ce - The basic

fol-lows:

where

A : fixed cost for the replenishment of an order.

D : demand rate of the item. (normally annual- usage rate)

v : unit variabl-e cost .

r cost of one doll-ar of item tied up in inventory for a unit

time.

Note that D and T should have same unit time basis (i.e.if

annual- demand is considered then r must be considered for one

year/ not one month).

2.L.L.2. The lÍagner-9Íhitin Algorithrn:

Vrlhen the demand rate is constant from period to period, then

the classical EOQ formula performs in an optimat fashion but,

when demand rate varies from period to period, t.he results from

the EOQ formula can be misleading. The only optimal technique

whích performs optimally in this situation was given by Wagner

and Vühitin (1958) in their well-known paper. They used dynamic

programming to solve this problem, pêrhaps forced by the

2.^.D
v.r
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recursive nature of the computations. Their work \¡ras based on

some important theorems established in their paper. These

theorems were themselves based on the assumption that initial

inventory is zero (Io:0) . Before giving their alg'orithm, we shalt

briefly state these t.heorems. Most heuristics given by subsequent

researchers are also based on these theorems about the structure

of an optimal- policy.

Theorem l-: There always exists an optimal policy such that

f._, X.: 0 for t Ir2, , N,

whora T iq flro inrran.|-arrr anJ-arina na-'lnrl I Y 'iq l-lwJ.Icrc ,t_1 tö LrrE rrrvtr:¡l\-rJ!y çrtLç!rtry yç!rU(l Ut 
^t 

J-¡i LlÌe amount

produced in period t and N is the tength of planning horizon.

This means that. repl-enishment can be made onlv when the

inventory l-evel- becomes zero, i. e . having positive inventory

and producing at the same time never l-eads to optimality.

Theorem 2: There exists an optimal policy such that for al-I t

Xt:O or
k

x,=)o¡
j=t

forsomek,t<k<N.

where X. is

i n nari nrl

is either

number of

the amount produced in period t and d. ís the demand

-i Th i e mêârìq rlrr.l- f ^- ai rzon nori nj nrnrlrr¡1- i nnJ. rr¡¿e ¡!!vq¡¡o LIIO,L !lrl ctlfy Yf Vgl¡ IJEIIU\¡ I/!VUU\-LI\Jtl

zero or is the sum of subseguent demands for some

periods ín the future. The dynamic programming
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approach requires N(N+1) /2 cases to be analyzed.

Theorem 3: There exists an optimal policy such that if demand

d * 'i n neri ocl t* is*t

narinrl i-**- t**< t*,I/çlrvs v f L

satisfied by X.*".

Theorem 4: Given..Á...¡.4rv

consider periods 1

satisfied by some amount

!L^- I ! -** ' 
Itñôñ d r: rLIICLI Ut, L- L r L,

Y * * nrnrlrr r.pri in,'t l/! vuuvvv

*
L - !, -LÞ O,ròU

it is optimal tothat I:0 for

l-hrarralr l--1 Ïrr¡

na-i nÄ l-el

themselves

Planning Horizon Theorem: The planning horizon theorem states

in narf 1-hat if it iS ontima-I to innrrr : qotrrn COS| inr¡¡ yq! u u¿rsu vyu¿¡rls¿

.r(r,xperiod t " when periods 1 through t are considered by

l.hpmsc'l r¡es- l-hen r^rê mâw let X * > 0 in l-hc N neri Od modelLl¡ç¡llÐgI vçùrr LIIçI¡ wç rllsJ !uL ,tt ' v

without foregoing optimality. By theorems 1 and 4 it follows

further that v,re adopt an optimat program for periods l through

t*-1 considered separately.

The Algorithm: According to Wagner whitin (1958) / the

at period t*, t*:],2,...., N, may be general-Iy stated

1. Consider the policies of ordering at period t

L,2, ..., t* and filling demand.s dt, t: t**, t**+

by this order.

2. Determine the total cost of these

by adding the ordering and holding

r'l anrì thm

)k* **

-*Lr. -, c I

.*r ^ ì rrêrênr nnl i ni oqu u¿!!v!v¡¡u

costs associated with
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placing an order at períod t^*, and the cost of actrng

optimally for periods 1 through t* *-l- considered

separately. The latter cost Ís computed previously in

computations for periods t : L,2,...., t*-l-.

From these t* alternatives, sêIect the minÍmum cost

policy for periods 1 through t* considered independently.

Proceed to period t*+1 (or stop if t*:tl) .

There are however, some potential drawbacks of this method.

For example, the computational effort is very great and the complex

nature of the algorithm inhibits its understanding by the

practitioner (Síl-ver,19B5) . In the case of rolling horizons, some

heuristics outperform the Wagner-Whitin al-gorithm.

Wagner (l-960) further expanded his approach to take into

account time-varying manufacturing costs. Eppen et. al. (1969) and

ZabeI (1-964) made extensions to the planning horizon theorem.

Zangwill (1969) took backorderíng costs into consideration and

gave a network representation of the problem. Elmaghraby and Baawl-e

(1,912) provided an alternative approach to the backorder case by

considering batch sizes greater than one, both with and without set

up costs. Bl-ackburn and Kunreuther (L97 4 ) also consider the

backlogging case. Chang (1-977 ) tackl-es this problem with dífferent

demand or production characteristics. Bhaskaran and Sethi (1981-)

studied the dynamic lot-size model with stochastic demand. Lavis

( 1981-) alIows the quantity discount feature in his modeL

Fordyce and Webster (1984) further enriched the l-iterature on
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this problem by presenting the Wagner-Whitin algorithm in a simple

and straight forward computational style in tabular form. Fordyce

and Webster continued their i-nvestiqation and the variations of

their approach are presented in Fordyce and Webster (l-985), where

they considered the case of changing manufacturinq costs and

quantíty discounts. Naidu and Singh (1986) gave an algorithm based

on incremental- cost approach to determine the optimal production

policy which they further extended for multi-item case. Jacobs and

Khumawafa (1987) presented a simple graphic branch and bound

optimal procedure which is computationally equivalent to vüagner and

whirin algorithm (1958) .

2.L.2. Stop Ru1es:

Stop rules (Zoller and Robrade, l-98B) increase the cycle length

and stop as soon as some transformation of the controllabl-e cost

is reached. Controllable cost C(t), is normal-Iy the sum of ordering

and holding costs as foll-ows:

t
C(t¡=A+ H.) fn-l).dr

h=l

where dh is the demand quantity in period h, H is the hoJ-ding cost

per unit per period and other symbols have the usual meaning.

2.L.2.L. Least Unit Cost Rule (LUC) :

This is probably the earl-iest heuristic, the exact origín of

which hasnrt been traced out. Gorham (f968) compares the LUC and
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least total cost (LTC) methods and comes up with the conclusion

that the LUC method is erratíc. Althouqh it perf orms wel-l- on one

set of data, it fairs poorly on another set of data. LUC

(Wemmerl-ov,l-981) divides the total cost by the demand quantities

to find the cost per unit U(t) as follows:

u(r)=+
I¿o
h=1

and stops as soon as u(t+1) > u(t)

2.L.2.2. Part Period Rule:

The Part period rule was devel-oped for IBM's software

packages because it is simple to program. It was introduced by

DeMatteis (1968) and Mendoza (1968) and ís basicall-y the same as

the Least Total Cost (LTC) rule (Gorham,196B) . The basic

criterion ín these rules is that requirements for the successive

periods can be added to the same lot so long as the cumul-ative

carryíng cost does not exceed the orderingr cost, i.e.

H. - 1).dn s A

and stops stops as soon as :

t+1

H.I (h-t).dh>A
h=l

t

Irn
h=1
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2.L.2.3. The Silver and MeaI Rule (SMR) :

This is perhaps the most famous heuristic method (Sil-ver and

MeaItL973). Silver-Meal RuIe is identical to Least Unit Cost rule

except that the total- cost is divided by the number of periods

included in t,he lot ínstead of bv the sum of demand suantities.

It computes the cost per period P (t) as follows:

P (t):C (t) /L, and stops as soon as

P (t+1) > p (t) .

2 .L.2.4. Grof f 's Ru].e:

Groff (1,979) introduces a policy under which the demand for

a period ís added to the lot if the marginal savings in ordering

cost are greater than the marginal- increase in carrying cost.

fn mathematical- terms,

Marqinal savings ín ordering cost : (A/t)-(A/t+1,) : A/ (t. (t+1))

Marginal increase in hol-ding cost : (I/2).H.dt+1

Groff's rul-e adds the demand for a period to the lot if

A/ (t. (t+r) )

(r/2) .H.dt+r > A/ (r. (r+1) )

2 .L.2.5 . Incremental Order Quantity (IOQ) :

Boe and Yilmax (1983), Freel-and and Cooley (I9BZ) suggested

that cycle length should be increased so long as incremental

carrying costs H.t.dt+t does not exceed A and it stops as soon as

H.t.dt+t > A
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2.L.2.6. Feriod Order Quantity (POQ) :

Period Order Quantity is an EOQ based technique. If there

are considerable variations in the demand pattern¡ then the

resul-ts from simple the EOQ formula can be misleading. Better

resufts can be obtained by adopting a slightJ-y different approach

(Brown t1-917) . The EOQ is cal-culated from the classical square

root formul-a (EOQ formula), then this EOQ quantity is divided by

the average demand during one period to obtain the number of

periods whose requirements are to be covered by the lot size

(rounded to the nearest positive integer) .

Tpoo : EOQ/ (Average demand during one period)

If D.rro is the average demand for one period, then

EOQ_-

troO=ffi
Thus in POQ method, the time between orders remains fixed,

but the lot size chanqes.

2 . L .3 . Ileurist,ic Algorithms :

In the previous section, we discussed some rul-es which were

basically single pass stop rules. The stop rul-es terminate when

some transformation of control-IabIe cost is reached, while the

algorithms further look ahead or back and compare different

alternatives to improve the overal-f decision.
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2.L.3.1. IOQ Algorithm:

Trux (L97 2 ) proposes to use the IOQ rul-e to f ind a saf e

maximum and then examines if the corresponding lot can be split

into two lots. Gaither (1983) determines two subsequent lengths

and examines if shiftinq a demand from first lot to second tot Ís

more profitable or not. In fact, Gaither (1983) is an improved

version of his previous algorithm Gaither (1981), after the

comments from silver (l-983) and Wemmerl_ov (l_983).

2.1.3.2. Part Period A,Igorithm:

To improve the performance of PPR many attempts have been

made. DeMatteis (1968) suggests that the cycle length determined

by the PPR should be subjected to a look ahead or look back to

determine if the periods of large demand exist. Blackburn and.

Mil-l-en (l-980) propose that cycle length determined by PPR could

be increased if a closer bal-ance of ordering and carrying costs

can be maíntained. Karni (1981) proposes that pairs of lot.s

should be combined into a single order through an iterative

procedure wíth a maximum gain in terms of net. cost reduction.

2.L.3.3. Silver-Meal AJ-gorithm:

Silver and MeaI (1973) made an

period is not necessarily convex and

minima, however, SMR identifies only

and MiLlen ( l- 980 ) sugrgest that the

found by exhaustj-ve enumeration of C(

horizon.

observation that cost per

may hence have many local

the f irst minima. Bl-ackburn

absol-ute minima should be

t) over the entire p.J-anning
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2 .L .3. 4 . Other Approaches :

In addition to the approaches discussed above, there are

numerous other ones. For example, BahI and Zionts (1986),

formul-ated the problem as a "fixed charge" problem and made

Iot-s izing decisions by comparing the minimum savings of having a

set up in each period to the maximum savings of having an order

in that period. Another technique sometimes used in practice is

lot-for-l-ot (LFL) technique. In LFL, orders are placed in the

period in which positive demand exists. WhiIe this method

minimizes the carrying cost, ordering cost is maximized. If the

natura1cycIeandt'herangefordemandvaIueissmal1(i.e.,<

30) then the LFL is optimal.

Detailed description of these heuristic techniques can be

found in Plossl (1985), SiIver and Peterson (1985), ZoIIer and

Robrade (l-988), Nydick and Weiss (1989) . The relative performance

of different heuristic methods is compared in Karni (1986),

Nydick and Weiss (l-989) , Zoller and Robrade (l-9BB) . Robrade and

ZoIler (1988) provides an extensive comparative study of

different methodologies ímplemented in commercia.l- software

packages. Haddock and Hubicki ( 1989) conduct a survey on

different techniques based on their pract.ical use in índustry.

Bahl et . aI . ( 1 987 ) give a fíve point criteria (based on

computationaL effort, Generalizaton, Optimality, Simplicity and

Testing) to evaluate the performance of a techníque.

This compJ-etes our review of the various techniques used in

the l-ot-sízing probJ-em.
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2.2. Review of

Prob].em:

Literature

There ís no dearth of published papers dealíng with

replacement and maintenance models. Extensive surveys of these

model-s are provided by Pierskalla and Valker (1916) and Sherif and

Smith (l-9Bl-). The Píerskalla and VaIker (L976) survey covers the

l-iterature f rom 1-965 to L916. Sherif and Smith ( 1981) survey

focuses on work since 1,916. Work up to 1965 is thoroughly surveyed

by McCalI (1965) . Grant (1950) solved the replacement problem under

a set of assumptíons such as: no new more efficj-ent equipment

avail-able before repÌacement, the value of money does not change

over the useful Ìife of the equipment, and operating costs do not

decrease. One of the first significant works on the problem was by

Terborgh (I949) . Subsequently, BeIIman (1-955) applied the dynamic

progranìming technique to the replacement problem. Other interesting

Iiterature on this topic is by Dean (L951a, 1951b), Churchman et.

al-. (1957), Wagner (1975), Jardine (1-970, ]-97]., 1918), etc.

Draversa and Shapiro (1978) provide a dynamíc programming model for

the probl-em and employ linear progranìming and enumeration to obtain

optimal policies and to test the sensitivity of these optimal

policies to various factors. Eilon et.al-. (1966) studied the optimum

replacement policy of fork l-ift trucks using two models, the first

related to the minimum average cost per truck per year, the second

using the discounted cash flow approach. The issue of the effect of

technologíca1 improvement on the economic life of equipment has

also been discussed bv different researchers.

on Èhe Equipment ReplacemenÈ



37

For example, Terborgh (I949) model computes the past rate of

obsol-escence and proiects it into the future assuming a constant

rate of technological improvement. Subsequent work on this topic is

presented in Bellman and Dreyfus (L962), Stapleton et. al. (I912),

Chand and Sethi ( 1982 ) . Stapleton et . al- . (I912 ) contrast t.he

õênêr¡'ìif-r¡ nf f?ra rlr¡nami¡ ' nnrna¡h 1-^ l.ha nrnl.rlom nf_ progranml_ng êÞr*

optimal asset life determination with the traditional and highty

restricted "equaJ- Iife" solutj-on, and examine the possible effects

of different forms of t.echnical chanqe on costs. Chand and Sethi

(L982) develop forward algorithm and planning horizon procedures

assuming that technological environment is improving over time and

that the machíne-in-use can be replaced by several different kinds

of available machines.Hopp and Nair (1991) also model- the problem

in an envíronment of technol-oqical- change assuming that the costs

associated with the presently avail-abIe technotogy and future

technologies are known, but that the appearance times of future
!^^L*^r^-'r^^ -ì.re uncertain. Hopp and Nair claim that their approachLçUr.rrrL,r-L1.,,9 J-E Þ c

requíres minimum possible amount of forecasted data.

Most of the above mentioned Iiterature is stochastic in

nature. We wiLl- not discuss these models any further because our

deterministic replacement probl-em is fundamentally different. The

deterministic problem was addressed in the past by Wagner (1969),

Gupta and Hira (1987) and Vüinston (l-991) . The evidence of practical

use of such deterministic model-s can be found in Waddell- (1983)

where it is reported that Phillips Petroleum company's fleet

managfers actually used such a model in making replacement decísíons

for individual highway tractors and to formul-ate policies for
replacing passanger cars and light trucks.
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CE.APTER 3

A LOT SIZING II{T\TENTORY PROBLE}I !{ITg VARI.âBLE DE$IAIiTD

RATE T'IIDER BOTE CRISP A}ID EVZZY ENVIRONMENTS

The problem of lot sizing in inventory considers when an

order should be pJ-aced for a particular product (the reorder point)

and how much of it shoul-d be replenished in a particular period

(lot size) such that the total cost (replenishment cost plus

j nvenf orv earrw.i ncr r-ôsi- I nr¡er .t- hc nl an-.i -- L^-.i -nn is minimizedrrrvurruv!j vs!!y¿¡¡Y 9VDU/, Vvçl U¡lç yrq¡¡¡¡¿¡lY ¡¡v!r¿v¡¡

whil-e the demand for each period is also satisfied. In the present

chapter, we consider single-item uncapacitated lot sizing inventory

problem with variable demand rate, both under crisp and fuzzy

environments, for a planning horizon of N periods. This problem was

first addressed, under crisp environment, by Wagner and Whitín

(l-958) using dynamic programming. Under crisp environmentsr w€

first formulate such a problem as pure 0-1 problem with all- the

variabl-es restricted to val-ues of zero or one. Then we formulate

such a problem as a l-inear programming probJ-em with exactly N

variabl-es restrícted to zero-one. Under fuzzv environments such a

problem is formulated as a maxmin linear prog:ram, once agaín, with

exactfy N variables restricted to zero-one. Numerical- examples for

all the cases are presented.
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3.1. Formulation under Crisp Environnents:

3.1 .1 . .å'ssr:mptions: For the modef s under crisp environments,

!,re make the following basic assumptions similar to the ones given

in Sil-ver and Peterson (1-985).

1. The rate of demand varies from one period to the next and is

assumed known.

2. The demand pattern terminates at the end of planning horizon
nr an¡li næ i nWenf ÕrW mlrSf ì.ra nracnani €igd.¿¡¡vvrruv!J ¡trqou vç y!çùyçvrt

? .¡ha ranranighments are constrained to arrive at the l¡eoìninosq!v vv¡¡ou¿qrl¡çg uv q!!!vv qL u¡lç vçYr1¡!¿¡Yù

of periods and the entire order quantity is delivered at the

same time.

4. The cost factors do not change appreciably with time/ except

that the orderj-ng (set up) cost for period i is Ai,

L:1-r2r...rN.

5. The replenishment lead-time is known with certainty so that

delivery can be timed to occur right at the beginning of a

period.

6. The unit varíabIe cost does not. depend on the replenishment

rrlrani- ì.l-r¡ i o nal arrrân.l- il-r¡ rlic¡nrrnl- q ârê nêrmi1-1-ê.1¡¿v yus¡¡9¿uJ u!ouvurrLo qtv yç!¡rt!Çuç9.

1. The product is treated entirely independently of other

products, i.e. benefits from joint replenishment do not exist

or are ignored.

B. Carrying cost is only applicabte to inventory that is carried

over from one period to the next.

rlh-ianf' i rra' t'rinimize the t.ota1 cost over the ent-i re nl anninrrxx-/æ.¡¡¿¿¡¿¡l(¿avu¡¡99vuq¿vv9çvvç!u¡¡gg¡¡La!çy!q¡¿rrrrlu

hori- zon of N periods .
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3.L.2. Pure 0-1 Formulation:

Now, vJe gíve a pure 0-1 formulation for the problem. This

formui-ation will- be used again in Chapter 5 to establish a

structura.l- similarity between inventory control- and equipment

replacement probJ-ems .

Notation : For this formulation, we base our variable definition on

Theorem l- and Theorem 2 discussed in Chapter 2 (Vtagner and Whitin

19sB).

Let,

( I if demand of jth period is satisfied from the amount produced in ith period, i < j*ü=t0 
otherwise

¡ I if the replenishment is made in period i
Yi= to otherwise

v : unit variable cost in $ per unit.

r : carrying cost in $ per $ per period.

\J : I eno1- h of *r ^--.i *- l^^-i zôn - .i ê 1- hc nrrmì.ror nf not:iOdS in thell - rç¡¡Yu¡¡ v! P!q¡¡rr!rly ¡¿U!J¿UI¡t !. ç. Ul¡ç flu¡tus! v! .t/çf

planníng horizon.

Ai : ordering cost per replenishment in dollars for period i, i :

Lt 2t 3r...., N.

d., : deterministically (crisply) known demand for
J

period j, j: I, 2, ....,N.

M : ânv laroe number ) N.s..j
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ml-^-
J- 1rg1t yJg have the followinq model-

(c1) Minimize v.r ti-Ð d:

subject

= I, j = 1,2,......, N

=0, 1

i= 1,2,. . .., N

xr.¡ i,j=1,2,..., N, and i<j

Yi=0,1 i =1,2,...,N,

(i)

(ii)

(iii)

NNII,
i=l j=i

N
-LS
"L

Ai.Yi

to
j

r
L x¡j
i=l

Nr
L xij
j=i

(1)

(2)

(3)

(4)

The objective function expression in the above model-

minimizes the sum of carrying and ordering costs.

Constraints (1) along with constraint (3) ensures that

demand of a period is met from the amount replenished in

either the same period or from only one of the prevj-ous

periods, which in turn implies that during a particular
period either replenishment (set up) cost ís incurred or

carrying costs is incurred, but both are never incurred

simul-taneously.

Constraints (2) in conjunction with constraint (4) and

objective functj-on ensure that whenever some amount is
renl en i she j i n a nari nrì âñ ranl an i qhmon]- ôr nrrìcri ncr COSIu v! v!uç! r¡¡Y

is incurred.

rf mât' Þra nni-96l that. because of the snecial coefficientu¡¡v u-t1'( iv)
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structure of this formulation, *ij'" will take values 0 or

Lt even if they are not restricted to be 0 or 1.

3. 1 . 2.L. Numerical Example: We illustrate the above

formulation through the folJ-owing numerical- exampJ-e solved on a

personal computer using QSe+ (Chang and Sul-l-ivan, 1991) .

Suppose we have the followíng data.

;^N : 6, A¡- : $54 for i - Lt 2, ....t N, v - ç20 per unit,

r: $ 0.02 per $ per month, v . r: $0.4 /unit/month,

Table - 3.1. Showing demand per period

Period 1,23456

Demand ( d, ) 10 62 12 l- 3 0 15 4 1'29

We sel-ect
M-10

We now have the fol.ì-owing linear programming model- with aII *i j's
ancl v.ts restricted as zero-one variables.

Minimize 24.8 xtz + 9.6 Xr: + l-56 X1s + 246.4 xrs + 258 xre +

4.8 xzt + 104 xzq + 784.4 xzs + 206.4 xze + 52 x3q +

L23.2 x:s + 154.8 x:6* 6I.6 xqs + 103.2 xse* 5l-.6 xse *

54y1+ 54y2 + 54y3+ 54ya + 54y5+ 54y5

errhìa¡l- fn9uvJvv9 9v



43

x1'-1 1

xtz + xzz 1

xt¡ + xz¡ + x:: 1

xtq + xzq + X3q + xqq : 1

x-- + x^- + x^- + x.- + x-- 1
IJ ¿J Jf, ¿IJ JJ

xt6 + xze * *:e * xq6 + xse * xeø : 1

xr1 * *rz + xr¡ * *rq * *rs * *,.u - 10 y1

*z2 l *2s + xzq * *zs * *ze - 10 y2

x¡3 * *rn + x:s + x:e - 10 y3

x44 * *qs * *ee - 10 ya

x-- + x-- l-0 v-
JJ Jb

x.. - 10 v.Þþ

*ij : 0, I í,) 7,2,....,6, and i < j

Yi 0, 1 i : Lt 2,....,6,

3.1.2.2. ReSUltS: SOlvina l- ha :l.rnrza prOblem On a personal

computer using QSB+ (Chang and Sul-Iivan, Iggl-) | we obtain the

frrllnwìnrr reslllfs oiven in Table - 3.2.

Tabl-e - 3.2. Optimal sol-ution t.o (C1), pure 0-1 formufation

Variabl-e Value Variable Value Variable Value

x..
aa

L"12

L-- 13

I

1

1

l¿

x--JJ

1¿
Jb

1

1_

1

1

1

1

\t

A1l- other decision variabl-es are equal to 0.

Mínimized obiective funct Lon : 248
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of resul-ts of problem C1 is s j-mple e. gInterpretation

xtt :L, xtz :I , X13 :1 , xr' :0, xts :0, x16 :0, yt :!; xzz :0 , xz¡ :0 |

xzq :0, xzs :0, xz6 :0, y2 :0 and x33 :0, x3q :0, x:s :0, x36 :0, y3 :0

means reguirements of the first three periods are satisfied from

the amount produced in the first period, and no amount is produced

in the second and third periods. Therefore the total amount

produced in the first period : d1 * d, + dr: 84. Simj-J-arly, xqq:L,

xqs -0 , x46:0, ya:I, implies the demand of the fourth period

should be satisfied from the amount replenished (produced) in the

fourth period. Hence the amount produced in the fourth period : d¿

:130. Finally, xss:l, Xs6 :L, y5 :1 and xr, :0, y6:0, suggests that

the demands of the fifth and sixth period should be met from the

amnrrnt- nrnrt,rngd in the f i fth neri orì and nO amoUnt ShOUId bee -Èr'- ¡/v ! lvv

produced in the sixth period. Hence the amount produced in the

fifth period: ds * dr:283 units. The optimal- policy stemmj-ng from

this interpretation is tabul-ated below:

Table - 3 .3 . Showing optimal poJ-icy

53 Total

49?84 130 ?83

Total- minimized replenishment plus carrying cost ç248
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3.1.3. Formulation witb N Varíables Restricted as 0-1:

Now, we gíve a formulation of the problem wit.h exactly N

(Length of planning horizon) variables restricted as 0-1. This

formulat.ion resembles a transportation tvpe probfem.

\Inl- ¡f i nn .
.I.l..æ.

Xi; Quantity replenished in period i and used in period ), i. e .

fr-^ -"--titv r:arri ecl fnr li-i) neri ods.UllE 9UA1Iuref vq!!¿çs !v! \ J Ll yçlri

( | if the replenishment is made in period i
Yi= to otherwise

v : unit variable cost in $ per unit.
r : carrying cost in $ per $ per period.

N - length of planning horizon, i.e. the number of periods in
l-ha n'ì¡nnìna hnriznnu¡¡ç }Jrq¡¡¡¡r¡¡y ¡¡v! ¿¿v¡¡ ,

A. - orderino nnsi- nêr renfenishment in dOIIarS fOr..'iv¡9v5¿¿¡Yvvg9l7vl-v.ÈJ

period i, i : Lt 2, 3,...., N.

d¡ : deterministically (crisply) known demand for

period j, j: !, 2, .. ..rN

Mt : cumufative demand from period i to period N,
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Then

(c2)

we have the fol-l-owinq model

Minimize

subject to

v.r x¡+

- ,1.
- *Jt j = L,2' ....,N

i = I,2,

NN
IL t¡-il

N

I et.v'
i=1

j
r
L x¡j
i=1

N
\l

L xij
j=i

(s)

(6)

*rj

v.Jl

<j1,2,

)

> 0 i,j

=0, 1 i-

..,N

.,N, and i

,N,

(7)

(8)

(a) The objective function expression in the above model

minimizes sum of replenishment and carryíng costs.

Constraints (5) are the demand constraints which ensures

that demand in a particular period is met.

(ii)

li i i ) Constraints (6) are thc s]lnnlw ^^-^!*^.:-!^ whiCh Under\ v, Ll¡ç Ðuyyly u9llòL!O,-LrrLùt

certain situations may act as capacity constraints. This

constraint set aJ-ong with constraints (B) and objective

functi-on further ensures that whenever some amount is

repJ-enished in a particular period, a repJ-enishment cost is

incurred.

T+ i e êâe\r l- n qêê l- he1-vsvJ (c2) is a linear program in whích

exactJ-y N variables, yi,

zero-one and, therefore, can

software.

L, 2, . . .. r N are restricted to be

ho o:qi I r¡ qnlr¡aj trrz rrqi nrr ã-rã i I =È.'l auç çqofrr/ Ðurvçs yy uo¡¡¡y o'vo'lfal/rE
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Remarks:

(i) . The model (C2) wil-l- still be

const raint s

a correct formulation if in the

Ns
.¿-, xíj
j=i

eachMiri:L,2,

Mi yi, i=1,2,....,N

NT i e l'ra ron'l a¡-arì hrr M whare
t.' Lll

M : Ä larrya nlrmhar ) M
-"1 ^ 

J. 
^ 

-r --------L ^*1, u2, , *N

(ii) . .The advantage of the formulatíon (C2) is that by multiplying

its objective function by an appropriate multiple we can,

+-j.-'i -'r r" *-ansform it such that all the coeff icient in it becomeLrrvJ-o.J--Lyt L!c

in1-anorc Qin¡a +-lra ¡aaff iCientS Of aII X..tS in the COnStraintS¿¿¡uvY t u¡¡v

are already unity, therefore, if the demands dj'" also be discrete

(e.g. see Wagner and Whitin, 1-958) , the formulation wil-Ì always

yield an integer sol-ution without restricting the variables xr.r's

as integers

3.1.3.1. Numerical Example: We

through the following numerical

personal computer using QSB+ (Chang

Suppose we have the following:

N:6, A, $54forí:L,2,'_t

r : $ 0.02 per $ per month, v

demand is shown in the folJ-owing

illustrate the formul-ation

examnl e I ha1. r^¡e sol_ved on a

and SuIlívan, 1991) .

, N, v : ç20 per unit,

r : $0.4 /unit/month, and

table 3.4 .
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Table - 3.4. Showing demand per period

PeriodL23456
Demand (dr) l-0 62 12 l-30 154 1"29

Mi 497 481 425 413 283 L29

We sel-ect

M : 600

and prepare the foll-owing Table 3.5 for convenience.

Table-3.5. xrr:the amount produced in period i and consumed in period j, i<j

rTa nari n¡l

r23456 Suppl-v (M. )

1 *1:. xtz xr3 xrq xrs xr6 4g7

' 
*r, xz3 x2q xzs xze 481

From 3 *r, x3q x35 x36 425

Period 4 *nn xqs xq6 413

xss xs6 283

xe ø I29

Demand 10 62 L2 130 154 L29
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We no\¡r have the following l-inear progf ramming model- with yi' s

restricted as zero-one variabl-es.

Minimize0.4 xtz + 0.8 xr3 + !.2xrn + I.6 xrs + 2.0 xrø +

0.4xr, + 0.8 xzq + 1.2 xzs + 1-.6 xz6 + 0.4 x:q + 0.8

x:s + I.2 x:e t 0.4 xqs + 0.8 xao* 0.4 xse + 54 y1 +

54 v^ + 54 v- + 54 v. + 54 v- + 54 v-
qrrl:ionf 1- nvsvJvve

xrt :10

xrz + x2z: 62

xts + xzr + x:: 12

xrq + xzq + x3q + xq4 : 130

x--+ x^-+ x^-+ x.-+ x-- : 154
15 ¿J JJ 9J JJ

x.- + x^- + x-- + x.- + x-- + x-- I29rb ¿6 Jb qb Jb bb

xtt r *r, * *r. * *rn * *r. + xte - 600 y1

xzz * xzz * *rn * *zs + xze - 600 y2

x3: * *r, * *rs + x:ø - 600 y3

x,, + x._ + x"- - 600 v. S 0ryq qJ cb

x-- + x-- - 600 v-J5 Jb

x.. - 600 v.oo

X*;

Yi 0, 1 í r,2,....,6,

3.1. 3.2. Results: Solving the above problem on PC using QSB-r

(Chang and Sullivan, 1991), we obtain the following resufts given

in Tabl-e - 3. 6.
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Table-3 . 6. Sol-ution to (c2, , the problem with N variables restricted 0-L

Variable Value Variabl-e Value

Y'-1 t

':a"12

'-1 3

J-U

o¿

L2

Variabl-e

¡¿
JJ

Jb

1?n

1Ê,A

L¿J

1

1

1

rl

J4

AII- other decision variabl-es are equal to 0.

Minimum value of the obiective funct.ion : 248

Tnteroretation of tì.e results:

Since xii*xi,.+1+----+x.N where, í:L,2, . . . rN indicates the

quantity replenished in period i and x¡-i represents the quantity

replenished in period i but used in period ), therefore, from above

\^¡e have that the quantity xtr *xrz *xr: **rq *x* fxr, :84 should be

replenished in period 1 out of which 1,2 units be used in period 1,

62 units in period 2 and 12 units be used in period 3. Similarly,
number of units that should be replenished and used in period 4 -
l-30, number of units replenished in period 5 - 283, out of which

154 units are used in period 5, and 129 unit.s in period 6. Minimum

val-ue of the cost is 5248.
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3 .2. fnwentory ControJ. under Fuzzy Enwironments:

In above variable demand inventory problems, the management

is forced to provide precise data. However, in practice, management

always wants some sort of an elasticity or "leeway". Since the

variable demand is forecasted, it is rareJ-y known exactly as the

forecasts do not always turn to be crisply correct. This implies

that there is alwavs an element of fuzziness in demand.

Furthermore, it is a common practice that managfement specifies a

budget Iimit and asks the production planner to st.ay 'considerably

bel-ow'the budqet Iimit. It is this 'considerabl-v below'condition

that creates the element of fuzziness in the probJ-em. Under fuzzy

environments, when the demand is not a crisp number but is fuzzy,

and/or the budget all-ocated is also not a precise number, the above

methods may not work very wel-l- to yield an optimal sofution. The

Iinear programming formulation for crisp demand (with zero-one

variables in it) considered in the present paper, also cannot

handl-e such cases. Therefore, to model- such a problem v/e take

advantage of fuzzy set theory (Zadeh 1965, B€l-lman and Zadeh 1910,

Zimmermann, 19BB), and by using the idea of symmetric fuzzy linear

programming (where both constraints and objective function are

fuzzy in nature) we obtain a maxmin linear prosram with N

variables in it restricted as zero-one variables. This is done by

creating fuzzy regions around the forecasted demand by using the

idea of tolerance as provided by Zimmermann ( 1 9BB ) . This

formuLation is quite simple to follow and always provides a

sol-ution to the problem.
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Before formulating the problem

introduce a few concePts of fuzzy

For details the reader mav refer

(L916, 19BB), and Bellman and Zadeh

llncìer a fttz.z.v cnr¡i rnnmcnl- - weq¡¡sç! q LVLLJ lru¡¡u t

sef t- heorw that vJe shalI use.

to Zadeh (1965) ' Zimmermann

/'l q?n \\Lrtvr.

ìã

a

of

3 .2.L. îuzzy Set, Tbeory:

Theory of fuzzy sets is basically a theory of graded concepts.

central concept of fuzzy set theory is that it is permissible for

element to belong partly to a fuzzy set.

Let X be a space of points or objects, with a generic element

X denoted by x. Thus, X: ixi.

3.2.L.L Euzzy Set: Let X€ A fuzzy set A in X is

membership function (M. F. )characterized by a

associates with each

!t¡ (x) which

the interval^^.: -r ..: - v 1 real_ nUmber inIJVlllL lll 
^f 

Ç

[0,1], with the value of F.o (x) at x representing the "grade of

membershíp" of x in A. Thus, the nearer the val-ue of po(x) is to

1-, t.he higher the grade of belongingness of x in A

In conventional- (crisp) set theory, Po (x) t.akes only two

values l- or 0 depending on whether the element bel-ongs or does not

be]onq to the set A.

Therefore, formalJ-y speaking, if

objects denoted generical-ly by x, then

: {x} is a coI.l-ection

ftlz.z.w sel- A in X is a

of

òEL

X

a

of orderedpairs, A: {(x, Fo(x)) / x€ X L where l-lo(x) mapsxt.o

the membership space [0,1] .
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We shall base our analysis on the following propositions of

fuzzy sets (Zadeh 1965, Zimmermann l-98B) .

3.2.1.2. Union of Euzzy Sets: The uníon of two luzzy sets A

and B with respective M. F . 's F¡ (x) and lts (x) is a fuzzy set C

whose M.F. is F.(x) : Max I Fo(x) , P"(x) J, x € X.

3.2.1.3. Intersection of Fuzzy Sets: The intersection of two

fuzzy sets A and B with respective M.F. 's lt¿ (x) and !t" (x) is a

fuzzy set C whose M.F. ís F.(x) : Min I pA(x) , F"(x) J, x € X.

3.2.2. Assumptions: For the model- under fuzzy environments, we

make the following basic assumptions, similar to Silver and

PeLerson (L985) wit.h assumption l modified as below:

1. The demand rate varies from oeríod to period and is known onÌy

imprecisely.

2. The demand pattern terminates at the end of planning horizon

or endi-ng inventory must be prespecified.

3. The replenishments are constrained to arrive at the begínings

of periods and the entire order quantity is delivered at the

same time.

4. The cost factors do not change appreciabJ-y with time, except

that the ordering (set up) cost for period i is Ai,

.:_1 ô rfJ--L¡L 7...¡I\.
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5. The replenishment lead-time is known with certainty so that

delivery can be timed to occur right at the beginning of a

nari nrìvv! lvs.

6. The unít. variabl-e cost does not depend on the replenishment

quantity i.e. no quant.ity discounts are permitted.

1. The product is treated entirely independently of other

products, i.e. benefits from joint repJ-eníshment do not exist

or are ignored.

8- Carrvino eost is onlv annlin:l-rlo 1-n inwenj-orv that iS Carriedsl/l/¿¡vsv¡v ¡¿¿vv¿¡ev!J

over from one period to t.he next.

Objective: The tot.al- cost over the entire planning horizon of N

periods must stay substantial-J-y below a given limit.

3.2.3. FormuLation under Euzzy EnvironmenÈs:

We use the following notation and symbols to model t.he problem

i n frtz.z.w enr-zì ¡g¡¡¡entS .

ÌrÏr¡l- :i- i r¡nry

Fol-l-owing Zimmermann (1988), l-et

R : l'lrrrlcrcf Iimit qnêrìif iorl hr¡ l-ho m:n:comon.l-
-oFggl/vv¿!

p r- n'l orance interval which def ines the cost to be-oF

considerably below the budget.

Fon : membership function (M.F. ) f or the fuzzy ob jective

function.

Pi, = M. F . f or l-ower s íde of the fuzzy region of f uzzy' )u

constraint corresponding to period j.
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Fiu: M.F. for the upper side of the fuzzy region of the fuzzy

constraint corresponding to period J.

P. : tolerance interval for the demand data corresponding to
)

na-i nrl +J.

AII- other symbols and variables have the same meaníng as in (C2) .

V,le rewrite the constraints
:

\-
à *U = dj, j = 1,2,..., N
t=l

of (C2) in fuzzy environment as fol-l-ows.

sL,txij ( dj, j = 1,2,...,N withp¡¡asthecorrespondingM.F.'
i=l

and
jŝ
L,xij 

t dj, j = 1,2,...,N with¡rjuasthecorrespondingM.F.
i=1

Then under the fuzzy environments¿ our Iinear programmingr problem

(C2) becomes the following problem (F) .

(F) Find x,.'s, i,f L, 2,...., N, i < j that satisfy i

The Fuzzv Constraints:

(i) . For the objectíve we have

NNN
v.r>I(-il*¡ + Ie'.y': BoF, i<j

i=l j=i i=l

with Fo, as the corresponding M.F.
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/i i\ I'nr J-ha fttzztt rlam¡nrì ¿-nnoÈ-=in{- r^--'^LULLY UçltlalrU \-l\JI1ùL-IO,!I1Lùt Wç j.Id,Vg;

^.,{oflu

J

à *t¡ Í d¡, j = 1, 2,. . ., N withp¡¡asthecorrespondingM.F.,
i=1

j

I *u ì dj, j = 1,2,...,N withp¡uastheconespondingM.F.

The Criso Constraints:

NI *,¡
j=i

*ij ir) I, 2, ..., N, and i < j

Yi 0r1 i - 7, 2,..., N,

r^rlr a ra

/i \ M in t- h.is case is given by--1

M:rl+Þ+.ì+Þ++rì+Þ.i:1)\T..i *i+1 ,i+1 , -Nr ....f

(ii) M is a large number

(iii) "<r' ( 'r>" ) has the linguistic interpretatíon "smalIer than
al

or equal to with a certain degree lying between 0 and l-"

( "greater than or equal to with certain degree lying

between 0 and 1" denotes the fuzzif ied version of tt<rr

( il>r' 
)
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fn view of Zimmermann (1988), we now define the M.F.'s for the

fuzzy objective function and the fuzzy constraints as follows:

For objective function the M.F. is

^-latru
NN N

u.t)Iü-i)x¡¡+ Iet.vt -(Bor - Pop)

Fo¡ = 1- i= I j=i i=l
Pop

NN N
when Bor-Por<v.r>I Ci-ii*,¡*IAi.yiSBoF, i< j

i=1 j=i i=l

For demand constraints the M.F.'s are

Fo¡= 

{

þ'[jr.= 

{

and

NN N1 if v.r> I A-i)x¡+ I at.vt
i=l j=i i=l

NN No if u.'II C -i)x¡¡+ I e'.y'
i=l j=i i=l

Js1 if L*¡s = dj, j=1,2,...,N

Jsl0 if L*i:.dj-Pj, j=1,2,...,N
i=1

+
L xij- aj

Itjl = t + fu;- , i=1,2,...,N.

t-when d¡
i=l
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if xtj = dj j=1,2,...,N
Fju =

x¡ > d¡+P¡, j=1,2,..',N

and

xij - dj

P¡u =1-
Pj

j=1,2,...,N.

when d¡ d¡ + P¡, j=1,2,....,N

In the above, Po, and Pi'" are subjectively chosen constants of

and the constraintsadmissible viol-ations of the ob-iective function

respectively (Zimmermann, 19BB) .

Let, [r" (x) be the M. F . of the fuzzy set "decísion" of (F) . Since,

for i: I,2n...rN, lri, and Fiu are the membership functions of

j

:,
i=1

j

T
i=1

rt0

J
!-

i=1

j

À*i¡ I

fttzqtt 
^^na1-r:ì 

nf ê l-l.rara€.--JrIlLS, LIIererore,

environment is the intersection

luzzy objective function and the

the decision space in the fuzzy

of fuzzy sets corresponding to the

f ttzz \/ n^nqf rei nJ- q IJanrraa¡vrrvv t

Ito (x) MinI FoE, !trl, V2¡,,..., þul, Pru, þzu,...rl.tçuJ

Assuming that the management is

in a crisp "optímal- solution",
( 19BB ) , vre obtain

ínterested not in a

then on the l-ines

€ttz ztt eôf hrr1-

of Zimmermann
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max po(x) : MinI ftor, þt", 92y,..., l.!¡Û., Fru, þ2u,...,þ[ru]

subject to
fro,'

Pil

N 
ftru

I *,:
j=i

X..2 0 í, j I, 2,...,N, and i < j

Y1 0, 1 i: L, 2,'..,N,

writing l, for !r¡ (x) and using the expressions for the membership

functions For, l,[i¡ and l"l1¡ for i : It 2, ...,N, respectively, v¿e have

the foll-owíng equivalent crisp problem:

(E) Maximize l"

crrl'ria¡1- l-n

NNN
u.rIICi i)x¡+ In'.y' +Ps¡.î.
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TL I ^ ! ^r L r-t eclÞy L(J see that (r,, 'i s a lineer nr^õrâm in whir.h ow:r.'l- lr¡ylvYlq¡tr vr¡qvu¿_I

variables, yi, i - It 2,....,N are restricted to be zero-one

Al-so we know (Zimmermann, 19BB) that the optimal- solution to the

probl-em (E) provides a sol-ution to the problem (F). The problem (E)

can be solved by using available software.

3.2.3.1. Numerical Example:

Let us assume that, for the objective function

Bon $300 , Po. $70,

and for the demand constraints

Ps: 6, Po: 4.

Pr : 2, Pz: 4, P3 : 2t P4: 5,

the rest of the data is same as in the numerical exampi-e under the

crisp environment. This simpJ-y means that the objective function

shoul-d be substantiatly below $300 with a tol-erance of $70, and

the demand ís fuzzy with tolerance for the first period being 2,

and so on.

Under the given

eor: i va I enf mociel is

condit ions and choosing M 600, ôtì r

Maximize À

qrrl'r -i a¡f l- n

0.4 xt2 + 0.8 xt3 +

x2z + o'B x2q + 1"'2

I.2 x:e * 0.4 xqs +

54 y3+ 54ya + 54

L.2 xrq

Y+l"25

0.8 xqe *

Y5 + 54

+ 1.6 xrs +

6 *r, + 0.4

0.4 xse *

Yø * 70 À

¿.v

Y+

qA \/

?rìô

Y+
lo

0.8

+54

ñÀ

Jf,
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xrr -2 À

xrr+2ì\

xrz + xz2 47,"

xrz + xzz + 4ì,"

x1:+ xzl + x::-27\

Xr: + xzs + x:: + 2L

xrq + xzq + x:q + xsq 5I

xr¿ + xza + x:q + xqq + 5 À

xLs+ xzs + x:s+ xqs + x5s- 6?,"

xrs + x2s + x:s + xss + xss + 6l"

xrø* xze * x¡e * xse * xsø* x6e -4ì,"
xle + xze + x¡e * Xae + xsø* x66+ 4L

xrr * *tz * *r¡ * *:-a + x1s * *re - 600 y1

*zz * *z= * *rn * *rs * *ru ' 600 y2

x33 + x:q * *¡s * *:e - 600 y3

x44 * *qs * xq6 - 600 ya

x-- + x-- - 600 v-:5 f,b

x-- 600 v -bb

*ij

Yi 0, 1- i : It 2,...,6,

3.2.3.2. Results: Solving the above problem on a personal

computer using QSB+ (Chang and SuIIívan, IggI) , we obtain the

followinq resufts qiven in Table -3.7 .
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Tabl-e-3 .7 Optimal- solution to (E), the equivalent problem.

Variabl-e Value Variabl-e

x^^

:a
5J

:b

VaIue

r28.1967

152.5561

1-28 .031 4

Varíabi-e

t¿--1 1

L--r2

AJ

9.5187

6r .031 4

11_.5187

1

1

1

V"
-f

v^

?' : 0.7593 Cost

Al-f other decísion
ç246 .8449

variables are equal- to 0

Interpretation of Results:

Since xii**i,,+1+----+x,N where, i Ir2, , N indícates

l- he crrrani- il. rz rcnl an'i sharì 'i n ncri nd i :nrì x. rêllrêqoni. q f lra arranf .i f r¡!vyf v¡¡¿u¡¡vv rrr yç!¿vs ! q¡lv 
^i i -çI/!UOç¡¡UO Ltrç yuqrrLrLy

ren'l en'i sherl 'i n ncri nrl i hrrf lrserì 'i n neri nrl -i l- harafnra f rnm rl.rnrza¿vu ¿ vuu u9çs r¡I uç!M Jl UrIç!E!U!E., !!V¡rr qVVVç

we have that t.he quantity xr, * xrz * *r: * *rq * *rs * xr6: B2.OTAB

shoul-d be repJ-enished ín period 1-, out of which 9.5187 units are

used in period rt 6r.0314 units in period 2, and 11.5187 uníts

shoul-d be used in period 3. similarry, units that shourd be

repJ-enished and used in period 4 : r28.1961 , the number of units
replenished in period 5:280.5935, out of which 152.5561 wilt be

used in period 5, and r28.037 4 units in period 6. The

correspondíng val-ue of the cost is $246.8449. I:0.7593 indicates
tho rloaraa nf moml.rarqhin nf thiS SOlUtinn fn tralnna to ft.tz.z.w sête¡¡ry v! L¡¡ro ùvruL¿vll LU IJE_L(rlrg

which corresponds to "Optimal decisions in non-f:uzzv environmentsr'.
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CE.APTER 4 .

EQUTPMENT REPI,ACEMENT PROBI,EM

In real life all industrial- and military equipment

eventual-J-y wears out with tj-me and usaqe. As a result it starts

functioning with decreasing efficiency whil-e its operating cost and

repair and maintenance costs escal-ate dramatically. A time will

eventualJ-y come when these costs become so high that it becomes

more economical- to replace the used piece of equipment by a new

one. A natural question then arises about the optimal- time of its

replacement. If these costs decrease or remain constant with time,

the best policy perhaps then is never to replace the item. However,

in real- situatíons such a condition ís hardl-v met. In addition

technol-ogical developments may also force the user to consider a

replacement because better designed machinery may resu.l-t in

improved product quality, better efficiency as well as reduced

maintenance and operating costs. GeneraJ-ly, al-1 costs that depend

upon the choice or age of the equipment must be taken into account

whil-e analyzíng the decision of its replacement. fn this chapterrwe

first define the basic equipment repracement probl-em. Then we

propose a simple method (based on dynamic programming) for solving
ân errtr i nmpnl- ron'l ¡..êmêñl- nrnl'll em Thc ¡ I crnri J-hm :'l qa rri al rlc!uyrqvv¡rre¡¡L y!vvrç¡rr. rrrç qryv!!u¡rtrt qrJv JrçrgÐ

al-ternative optimal solutions, íf any. Thenr w€ give a pure 0-1

l-inear programming f ormul-at ion f or solving the equípment

replacement problem. Numerical examples are provided in each case.
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4 .l . The Basic Equipment RepJ-acement Problem:

Let some equipment E be purchased by an industry at time i,

where, i:0, L, 2r..,.rÐ-1 and n be the length of the planning

horizon. Let the origin of the year i be at the time i-1, as shown

in the fol]owj-ng Figure 4.I.

¡ Yearl I 
year2 

¡ Year3 | 
ye*4 

l------l Y"" 
I

Time 0 Time I Time 2 Time 3 Time 4 Time n-l Time n

Figure 4.1-.- Planning Horizon Figure.

!çL

/ j \ Þ .}.ro .itc â-õrri c.i1- .inn ¡nqf nf ç. m l^^ .ira 
--ì^.\r/ ti rJc J-Lo quyu!ÐrLrvrr uuÞL ur Lt ,,,ij Ðe lE'S malntenanCe COSt

rlrrrìnn l-ho \7êâr i :nrì lat- r l.ra i1-q raq:'la r¡rlrra aÈ l-ima -ivu!¿IIY u¡lç Jçql J qlrU !gU aii Uç ILe vs!ug OL Llltlç Jt

where j: I, 2,..., î, (j > i).
(ii) m be the maximum aIl-owable ase of E and that the first

opportunity for its replacement exists not before one year

after its purchase. This impJ-ies that E may be kept for p

Ir2,....ror m years, where ¡¡ ( n, and after p ( : !,2,...,or
m) veârs of u.se E mav be traded in for a new one.

(iii) The resal-e value of E after time n be zero, i. e. the

equipment has no resale value after the planning horizon.

(iv) For i - 0, I, 2,..., n-1; the net cost ciì at time j :

í+L, ...,min (i+mrn) is given by

I^'!ri/'ìn r.nql- Þ feSale Va]Uc r + main.LenanCe.ij cluLiu_LÞ_LLJ.(Jrl uuùL ti reöd.re vd.J_uc ,ij T lucrl-llr

cost from time í to time i
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J-IICIL IÞ I

cij =Pi-

Okrieeti we: Givenæ

0 (at present) ,w€

will minimize its
I onnl-h ñ

n-1(í=
tj=rù

Js+ L mik
k=i+l

0, 1,2,...,
í+l,i+2, min (i+m, n)

(1)

that, some new equipment must be purchased at time

want to find an optimal replacement policy that

overall cost involved over the time horizon of

4.2 . Assumptions:

Vüe made the followins assumptions ín our model-.

We assume that acquisition (purchasing) costs, maintenance and

operating costs, and resale values of the equipment under

consideration are all- deterministicallv known.

We assume that at the time of repfacement there is only one

type of equipment avail-abl-e. There is no l-oss of general-ity in

makíng this assumption even if a variety of new equj-pment is

available. We also assume that the age (not the cumul-ative use)

is used to determine the present state of the equipment.

It is afso assumed that there exists a qood second-hand market

fnr rrscrì arrrri nmeni- - srrr-h i- haf f he corri nment will have a feSaIev\.1u¿¡/¡l|v¡¡U'

val-ue that mêy, however, be affected by weather, time, reJ-ease

and/or pl-ace of rel-ease of new model-s of the equipment.

The structure of the present model is based on the assumption

of l-ow initial maintenance and operating costs that increase

with age of the equipment whil-e the resal-e value declines.

Due to obsolescence or other reasons (e.9. Iegal obligations,

unj-on contracts, etc.), the equipment age is not allowed to

5
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exceed some specified maximum l-imit. However, ín order to make

the model more general, this assumption can be rel-axed by

giving very high costs and zero resale values for those

years which J-ie beyond thís lirnit .

We assume that. the planning horizon is finite and that the

first opportunity for the equipment replacement appears one

\/êãr af1-orit-c nrrr¡haqa¿ev ì,

4.3. Dynamíc Programming Formulation:

FoIl-owing Winston (1991), if
(i)

(ii)

some new equipment be purchased at time i,

gn(i) be the minimum net cost íncurred from time i (:0, 1-,

2t..., n-1) until- time nrthen, a dynamic problem formulation

of the above problem is given by the following recurrence

aarr =.|- ì nnv\,lug u !v¡¡ 
'

gn(i) min {ci¡ + g(j)} (i:0,I,2,
)

¡.rlrara ^ i c aS giVen by (1) , j, "ii

j < min (i+m, n) .

(2)

must satisfv the inequal-ities i+1

4.3.1. Tbree Steps Computational Method:

In L984, Fordyce and Webster (1984) presented the Wagner-Whitín

AJ-gorithm (1958) for an inventory control problem with variable

demand in a simple and straight forward computational style. In

this section we apply the Fordyce and Webster (1984) approach to

sol-ve an equipment replacement problem (Winston 1991) . The method
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yields an optimal solution and also identifies alternative optimal

^^1,.È.i^-^ .i€sor-utr-ons t LL any.

Along the lines of Fordyce and Webster (1984), we now qive a

simple and straíghtforward three steps computational method to

sol-ve the equipment replacement problem. The method wíIl be

explained through the progressive deveJ-opment of two tables, called

the initial tableau and the optimal tableau, and three steps. Since

a piece of equipment acquired in any year cannot be used in a

prior year and it has a maximum all-owable ãgê, therefore, r^/e use

onJ-y the truncated upper right trianguJ-ar portion of the tableau

The numbers in the row at the t.op of each tableau correspond to the

states and the numbers at t.he Ieft of initial tableau correspond to

the stages (of the equipment.) in a typical dynamic programming

problem. The initial tabl-eau contains the initial net costs only,

obtained as explained in Step 1 below and the optimal tabl-eau ís

obtained from the initiar tabl-eau as explained in step 2. step 3 is

for identifying the optimal- solution from the optímat tabl-eau. The

method al-so recognizes the alternative optima, if any.

The three steps of our algorithm are as follows:

STEP 1. Obtaíning Initial Tableau :

Obtain the initial net costs c.. associated with each state and

stage of the equipment by using the formula (1) and prepare the

following initial tabl-eau in the form of a truncated upper

triangular matrix having n rows (Row 0 to Row (n-1) ) and n corumns

(Col-umn 1 to Col-umn n) .
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Tabl-e 4 .1-. Initial tableau for simplified algorithm.

Row 0 cor coz co: .....c0*

Row 1 - ctz ct: c1* c1, m+1

Row 2 czz c2. c2,^*L c2,^*2

Row (n-m)

Row In- (m-]- ) l
Row In-(m-2) ]

Row (n-2)

Row (n-l)

a! (\
-n-? n-1 - n-? n

(\
-ñ-l ñ

Remark 1: It is important to point out here that íf each

acquisition cost be independent of the time of acquÍsition and each

of the maintenance costs and salvage values be soleJ-y the function

of age only then we need to calculate only the first row ín the

initial- tableau. The other rol¡¡s can be obtained by simply

duplicating the first row, shifting to the right by one column each

time v¿e move towards the bottom of the tabl-e iqnorinq the entries

that lie outside the tableau.
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STEP 2. Obtaining the Optimal Tableau:

1. Obtaín Row O of the optimal tableau by duplicating Row 0 of

the initial tableau.
Fr¡Ìr crrhcanrrorll fOW iS Obtained aS fOIIOWS.e svevYsvr

2. To obtain Row 1 of the optímal- tableau :

(a) Examine Column 1 of the optimal tableau and in this column

identify the element with the smal-l-est value vL

(b) Obtain Row 1 of the optimal tableau by adding v1 to each

element. of Row 1 of the initial tableau.

3. To obtain Row 2 of the optimal tableau :

(a) Examine Cofumn 2 of the optimal tableau and in this column

identify the element with the smallest value v2

(b) Obtain Row 2 of the optimal tabl-eau by adding y2 to each

el-ement of Row 2 of the initial tableau.

In general therefore, we compute Row k, where k !, 2t... rn-1;

of the optimal tableau as follows:

(a) Examine Co1umn k of the optimal tableau and in this column

identify the e.l-ement with the smal-l-est value vk

(b) Obtain Row k, where k : L,2, , ., D-1, of the optimal

tabl-eau by adding vL to each el-ement of Row k of the

initíal- tableau.
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ernçÞ ? Trìon1- -ifrzin.r 'i-hê ôni- imal Solrrf ìôn'

l-. (i) Examine the Column n of the optímal- tableau and identify

the minimum val-ue efement v-* in it. Then'

" * - ^ /n\ 'is the minimum net cost incurred from time 0tn Yn\v' !i

until time n, i.e. during the planning horizon.

(ii) Suppose the position of v^* is in Row s, s < n' of the

optimal tableau.

Then time s is the trade in time immediatelv before time n.

2. (i) Examine the Column s of the optimal tableau and identify

the minimum value element r"* in it. Then, t"*: gr(0)

the minimum net cost incurred from time 0 until- time s

(ii) Suppose the position of !ò frl Row q, ñ<qnf
'1,

Iò

<n

r1-^

optimal tabl-eau.

Then time q is the trade in time immediately before time s

Stoppinq Rul-e:

We continue in the same manner rrnl-i I in t-Ìra nnf ima'l i- al-lloarr I¡Iêq¡¡UI¿t I¡¡ U¡¡ç vl/u¿¡ltq¿ usv¿vse,

irlan|ifr¡aminimumvaIuee1ementV^*,(SaY),inCo]-umnP,(p<- -p t '--

such that Row 0 is the row in which v^* Iies and v^
YY

* : õ /fì\ ôn¡aYp \ v /

ontimaì nolir:vthe minimum value el-ement lies in Ro\^¡ 0, the overall

has been achieved and the process terminates.

The optimal- policy is to trade ín at time 0, time P, ...,time

Ç.t time s and the time n (which is the end of the planning horizon)

with the overal-I net optimal- cost v.
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Al-ternative Ootimal Solutions :

In Step 3-1- (ii), existence of vn* (and/or v"*in Step 3-2 (ii) , and so

on) in more than one row, implies that the problem has alternative

optimal sofutions. To obtain an optimal solution \^¡e choose any of

the rows arbitraril-v.

A computer code written in "Think Pascal" for this algorithm

is provided in the appendix-B.

4. 3. 1. 1. Numerical Example:

To il-Iustrate our modeI, we use t.he example pubJ-ished in

Winston(L991) from where vre have n 5, m:3 and the val-ues of all

other parameters known deterministical-Ìy as follows:

Po: Pr:P2: P:: Ps: $1000 ft01 : ß12: fr23: ffi:q: mnr: $60

roL: Tj.2: T23: r:s: rqs: $800 fl02: Rl3: Rza: ß35: $80

Toz: r13 : rzq : r:s : $600 fro: : R'4 : il25 : çL20

ro: : rla : rzs: $500

STEP 1. Initial- Tableau:

The entries in each cel-l- are siven below :

cor: cre : czz: c:q : c4s : 1000 800 + 60 : $260

coz: c1.3: c24: c:s: l-000 600 + 60 + B0: $540

co3 : c14 : c2s : 1000 500 + 60 + B0 + 1,20 : $760

Note that Ín this case Remark 1 app]-ies and, therefore, in the

inítiaI tableau we calculate the first ro\^r only. Other rows are

obtained by duplicating the first row.
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Thus we have

Tabl-e-4 . 2 . Initial tableau f or numerical- example.

'1 1_me - I

Row 0 260 540 1 60

J

Rowl-

Row2-

Row3-

Row4-

260 54 0 '7 60

260 540 1 60

260 540

260

STEP 2. Ootimal Tableau:

1. Obtain Row 0 of the optimal tableau by duplicating Row 0 of

the initial tableau.

Each subsequent row is obtained as follows.

2. To obtain Row 1 of the optimal tabfeau:

(a) In Col-umn 1 of the optimal tableau the smallest val-ue vl

260.

(b) Obtain Row 1 of the optimal- tableau by adding vr 260 to

each el-ement of Row 1- of the initial tabl-eau.

3. To obtain Row 2 of the optimal tabl-eau :

(a) In Column 2 of the optimal tableau the smallest value v"

520.

(b) Obt.ain Row 2 of the optimal tableau by adding v1 520 to
¿

each element of Row 2 of the initial- tabl-eau.
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To obtain Row 3 of the optimal tableau :

(a) fn Column 3 of the optimal tableau the smalfest value v3

760.

(b) Obtain Row 3 of the optimal tabl-eau by adding v. 160 to

each el-ement of Row 3 of t.he initial tableau.

To obtain Row 4 of the optimal tableau :

(a) fn Column 4 of the optimal tableau the smalfest val-ue v4

1,020 .

(b) Obtain Ro\"t 4 of the optimal- tableau by adding v4: L,020 to

each element of Row 4 of t.he initial tableau.

Completed optimal- tabl-eau is as follows.

Tabl-e - 4 .3. Optimal- tableau for numerical- example.

Time -> L 2

Row 0 260 540 7 60

J

Rowl-

KOr"¡ ¿ -

Row3-

Row[-

520 800 L020

780 1060 l2B0

t020 1300

L2B0
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qrPtrÞ ? Tdan.i- ìfrzinn {-ha ^ñf imâI enlìri- iôn.

1. (i) In Column 5 of the optimal tableau t.*: I,280: gr(0)

which is the minimum net cost incurred from time 0 until

tíme 5rthe planning horizon.

(ii¡ The position of v.* is in Row 2 and Row 4. This indicates

t.hat there exist alternative optimal solutions. To obtain

an optimal solution we choose any of the ro\,rs arbitrarily.

In this case let us choose Row 4.

Then tíme 4 is the trade in time immediatelv before time 5.

2. (i) In Column 4 of the opt.imal tableau vn* : I,020 : ga(0).Then,

rn* : 94 (0) ís the minimum net cost incurred from time 0

untíI ti-me 4.

(ii) The posit.ion of rn* is in Row 1 and Row 3. This again

indicates that there exist alternative optima. To obtain

an optimal solution we choose any of the ror^rs arbitrarily.

f n this case l-et us choose Row 3.

3. (i) In Column 3 of the optimal tableau v:-:760: g3(0) Then,

-. * - /.\) ís the mínimum net cost íncurred from time 0"3 Y3 \v,

until time 3.

(ii) The position of V-,* is in Row 0, therefore, the overall

optimal policy has been determined and the procedure

termínates.
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The oof imal nol'i cv 'i s f o trade in at time

time 5 (the end of the pJ-anning horizon)

O- .l-ime i- tìme 4 andvf

with the overall net

optimal cost v.* : 1280 : gq(O)

Àll-orn:l- ir¡o nni- imel nnlir.ie^n!uç!rrqu!vv vuL-fItLOI ¡/Vr!UICÞ with the overall ñ^{- nnÈ i m='l ^aq1- r¡ t
IrEL \JIJLrrrro,r \-L./Þr- vq

I2B0 : gs (0) , are to trade in at

(i) time 0, time L, time 2 and time 5

horizon) .

/f-ha onrl nf
\ e¿¡v

l-ha nlannina

f r r I time 0, time 1-, time 4 and tíme 5

horizon) .

(the end of the planning

4.4. Tbe 0-1 Linear Programming Approach:

In this sectionr w€ formulate the deterministic equipment

replacement probl-em (normaIIy solved through the use of dynamic

programmíng) as a 0-l- Iinear programming problem. The advantage

of such a formulatíon is that it does not require a high deqree of

expertíse, insight and 'art', (i.e.: rather easily understood by

¡¡raet i 1- i oner^s\ rlnac nnf SUf f er f rOm the SO CaIIed tCUrSe Ofu¿ç¿v¡¡v4u/ t

dimensionatity' (Budnick et. âI., 1988) - a shortcoming of dynamic

programming, and can alr¡rays yieJ-d a gJ-obaI opt.imal solution to

fairly large sized problems using available software.
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4 .4 .t. Tb,e 0-1 Linear Programming Model:
!gt-t

if equipment purchased at time i is used until time j C > i)
otherwise

if new equipment is purchased at time i
otherwise

Since r;i is the resafe value of E at time ), for i:0, I,2,

......r n 1 and j : i+1r. ...,k, wíth k : min (i+m, n)r and the

first opportunity for the equipment replacement exists not before

ône veAr after it.s nrlrr:hase, therefore r :0¿gv¡r'"00

Hence, the 0-1 l-inear prograÍìming model- of the probl-em is

n-l k n-l
Minimize z = L I {mij + (rij-r - rij)}xij + I Pi.yi, k=min (i+m,n)

i=0 j=i+l i=0

subject to

x¡ < (k-i)yi,

xrj = 1, j = 1,-----,m

xij=1, j=m+l,-----,n

xij > Xi i¿t .

i = 0,1,-----,n-2
j = i+1,-----,k-1

k = min (i+m,n)

and

rl : 0,l- V i:0r 1,2, ... ro-1 ; j:L+I,2, 1q\

.u={ot

tt= { ot

(i)f i= 0,1 ,2,-----,n-I
tk=min(i+m,n)

k

T
þi+l

(2)

(3)

(4)

yi : 0,I V i:Or1,2,....rn-1

l' i.'ìr.h L-ñìn/.i+m n\.lÀ wILII 
^-11M1 \f rlltrrr,l

(6)
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Iinear progranìming modeJ- it is interesting to noteIn the above 0-l-

t.hat:

li\ l-hc i-o1-al nUmber Of r¡:rìal.rloq /*.tS and Y,tS ) iS aIWayS\J/ \..ii - Jl-

equal to (I/2) (2n + m) (m + 1) rfi2, whích ín turn is also

equal to the total- number of constraints given by (1) (4)

(for proof see appendíx-A) .

(ii) Constraints (1) along with binary constraints (5) and (6)

ènsure that the equipment is repJ-aced not later than after

the maximum allowable age of m years, and constraints (2) ,

(3) along with binary constraints (5) ensure that during a

na ri- i ¡rr'l a r vea r on I v onp ccnli nmenj- i-s in uSg .J vst

(iii) The function of constraints ( 4 ) in conjunction with

constraints (5) is to ensure that equipment traded in at a

particular time j is not avail-ab1e for use after time j and

that the process stops after time n.

4. 4.1.1. Numerica]. Ex:mple:

To itl-ustrate our model-¡ w€ use the exampJ-e published in V{inston

(1991) in which we have n:5, m -3 and the values of al-l- other

parameters are known determinísticall-v as follows.
Po : PL : P2: P3 : Pq : $1000

ror.: Er2: 823: r34: f45: $Boo

To2: [13: rZq: r35: $600

ro3 : Tr4 : T25: $500

m:m:m:^"01 "'12 "'23

"'o2 "'13 "'24

¡rro3 - ¿3

ffi34:mnr:$60

mr, : $80

: $120

Substituting these values in our modeI,

formul-ation:

we have the f ol-Iowinq
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Mínímize z: -740x0, + 280xo, + 220xo= 140xr, + 280xr, + 220xrn

740xrrt 291xrn+ 220xrr- 140xrn + 280xr. 140xnr*

1000y0 + 1000y, + 1000y, + 1000y, + 1000yn

qrrkriar.i- l-n

xo1 * xe2* xo3

xr2* xr3* xtq

x23* x24* xzs

x34 * X3s

xqs

1

^01 - r

v¿v:1"02 '-r2

Xo3 * X13 * xzz -- 1

x14* x24* X34:1

x^- + x^- + x.-: 1
¿J JJ qJ

*0,. ) xo2

*tz2 *r: à xrq

*zt2 *zq2 xzs

X¡¿ à X¡s

*ij:0r1 Vi: 0ttt2,3,4ì j: i+1, 2,...rk with k: (í+3r5)

Yi:0,1v i - 0,!,2,...,4

In the above formul-ation we see that

Total- number of variabl-es: (I/2) (10 + 3) (3 + 1) 32 : I1

= Number of constraints obtained

using (1) (4)
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Solving the above problem yields the following optimal solution as

given in the Tabl-e-4.4 below.

Tabl-e-4 .4 optimal results of 0-1 model for equipment replacement problem.

Variable Val-ue Variable Value Variabl-e Val-ue

Xo1

xoz

x^^

xtz

Xt3

X,,

L
¿J

x",

x^-¿a

ta--a^

JJ

qf,

1

0

0

1

1

1

1

0

ô

v.

\tr4

1

1

1

r\

0

Mínimum value of the obiective function L¿óU

Interpretation of ResuLts:

Yo : 1-t xot : 1-t xo2 :

E purchased at time

new one is purchased)

Y1 :Ltxtz:ltxt¡:

E purchased at time

ne\^¡ one is purchased)

Y2: I, xzz 1 .. 1L¡ n24 Ll

imply that the

0, xo: : 0, y1 : 1 impJ-y t.hat the equipment

0 is used until time 1 and is traded in (a

^È !.i -^ 
'1

o.L Lrlttç f .

^ '- ^ -- : i imnlw 1.hai- l-he ecnrinmentu ¡ ^14 v ¡ I2 r rrrryrJ u¡¡qL urrç çYur}/¡t(ç¡

1 is used until time 2 and is traded in (a

at time 2.

x2s : I, y: : 0 and xrn : 0, xss : 0,
JJ

0, Ya: 0 equipment E purchased at time 2 is
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until time 5 (is not traded in at time 3 and time 4) and is sold

at time 5 (since n : 5) .

Thus the optímal decision is to purchase at time 0 and to trade in

at times 1-, 2 and 5. However, since the time horizon n 5,

therefore, the equipment is best sold at time 5.
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STRI CTI'RAÍ, SIMIL.ARITY

PROBI,EM Ã}ID TEE LOT

Cg.APTTR 5.

BETWEEN TEE REPI,ACEMENT

SIZE INVENTORY PROBLEM

In this chapter, we

discussed in Chapter 4

size inventory probÌem,

show that. the equipment replacement problem

can be considered as a special type of lot

similar to the one considered in Chapter 3.

5.1. The Lot Size

Problem:

Inventory Problem and the RepJ.acement

5.1.1. The Lot Size Inventory Problem:

Tn Chapter 3, under certain assumptions 1-8, (page 39),

and notation (page 40) , we formulated the following Iot size

i nr¡cnl- nrr¡ nrnl.r'l em - ì n wh i r-h j- he nl^rier-i- i we is to minimíze the totalfrr v urruv! I yL vv!v¡rrt

cost over the entire planning horizon of N periods, âs the

followíng pure 0-f linear proqrafiìming problem.

(Cr) Minimize

subject to

v. r (j-i) d¡. xij +

_,|
- ¡t j = t,2, (2)

NN
>T
i= I j=i

(1)
N

\-I) A;v;
;-1

j

I *'¡
i=l

N

I *t¡
j=i

,N

i= 1,2,. . . ., N (3)
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Xii =0, 1 i,j=1,2,...,N, andi<j (4)

Yi = 0, 1 i =\,2,. ,N, (5)

where,

( 1 if demand of period j is satisfied from the amount replenished in the beginning of period i, i < jxij=to 
otherwise

¡ 1 if the replenishment is made in the beginning of period i
Yi= to otherwise

v unít variabl-e (manufacturing or purchase) cost

r carrvìno ..ñer fha -^St in dOlIarS of r:arrvino Õne dOllari r¡rY

of inventorv for one period

N length of planning horizon, i.e. the number of períods ín
.l- tra nl :nn i na hnri znnu¿¡u }/rsr¡¡¡r¡rY ¡fvr r¿vrr .

Aì : cost of a repJ-enishment in the beginning of period i (í

1-, 2r... r N)

^ r¡r-o ^r demand in period j ( j Lt 2,..., N).*j

M : any number ) N

5.L.2. The Replacement Problem:

Si-miJ-arIy, in Chapter 4, under certain assumpLions (page

65) and notation (page '76), hie formulated the fol-l-owing replacement

problem:

n-l k n-l(Rr) Minimize z=>
i=0 j=i+l i=0
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(t-i)yi, {
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i = 0, 1, 2, -----, n-l
k = min (i+m, n)

k

j=i+t

j-i

I *,j=1,
i=0
j-1

I ¡ij=
i=j-m

(1)

x,j 2 xij+t ,

0r 1 V i:Or 1,2, ... rn-1 ; 1:i+I,2,

\/ n 1 V i:ô 1 t n-1
Ji vf L vtLtêt....f ¿L

(8)

(e)

(10)

.,k with k:min(i+mrn) (11)

(:-2)

l,

j = 1, -----, m

j = m+1, -----, n

{

i = 0, l, -----, n-2
j = i+1, -----, k-1

k = min (i+m, n)

and

r-l

For the above replacement problem (Rr), v/e have the foJ-lowing.

1. Some equipment E is purchased by an industry at time i, i:0,

It 2, ...,D-I, n is the length of the pJ-anning horízon,

and the origin of the period i is at the time í-1, as shown in

the fol-Iowins Fisure 5.1.

, 
periodl 

, Period2 , 
period3 

, Period4r______r p"tiodn 
r

Time 0 Time I Time 2 Time 3 Time 4 Time n-l Time n

Figure 5 . 1. - Planning Horizon Fígure.

2. Pi ís its acquisition cost of E at fha ì.aainnìna nf no.ind i
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*tj is its maintenance cost during the period j and let tij is

its resale val-ue at time ), j : It 2, ..., î, ( j

3. m is the maximum alIowabIe ase of E and that the first

opportunity for its replacement exists not before one period

after its purchase. (This impJ-ies that E may be kept for p

Lt 2r..,or m periods, where m ( n, and after p (: I,2,...,or

m) periods of use E may be traded in for a new one.

4. The resale val-ue of E after time n is zero, i. e. the

equipment has no resale value after the planning horizon.

5. For i : 0, !, 2,..., n-1; the net cost ci+ at time j :

i+1/ . . . ,min (i+m, n) is given by

.i. : ân.nrisii-ion r:osj- P. reSal_e Val_Ue r. + mainj--enance"ij 'i -ij

cost from time i to time j.

J.i,rc¡.L rÞ r

( | if equipment purchased at time i is used until time j (i > i)
*'.i =10 otherwise

I I if new equipment is purchased at time i
tt=to orherwise

i fi=0, I,2,...,tr-1
-D.s-u - r1- fi¡* L mit I

k=i+l I j =i + 1, i+2, "', min (i+m,n)

6. Given that some new equipment must be purchased at time 0 (at

rìrêqênJ-l --^ ----! !^ €'i--l anÈim='l ranl:r-amani- n¡'lì¡r' {-l-r=+y!vev¡¡u I t W9 WO.LIL- LIJ I-LII\¡ C1II (JPLfltlc,r !sI/rauçrllslll- IJU-L-Lçy L-IIé,U

wil-l- minimize its overal-I cost involved over the ti-me horizon

of length n.
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5. 1. 3. Structural SimilaritY:

In (C1) , setting cij = v.r ( j i) dj , and in (Rr) ' since

cij= *rj* (tr,j-,. rii) , settingPi=Ai, andM>N>k- i-,

we obtain the following two modefs (Cz) and (Rz) respectively

(13)

subject to
j

I*ü = 1, j=1,2,......,N (14)

NI *'¡
;-iJ-¡

NN N

(Cù Minimize I I .u *,¡ + I nt yt
i=l j=i i=l

xij=0, I i,j=1,2,...,N, andicj

Yi = 0, 1 i =1,2,..-,N,

(16)

(17)

n-l k n-l(Rz) Minimize,=2
i=0 j=i+l i=0

subject to

(1e)

(20)

(21)



xij > xi¡+l 
'
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= 0, 1, ---'-, n'2
= i+1, -----, k-1

= min (i+m, n){i
^-lÕt1u

Ãii - v1

J1 - wr

i:0, L,2,

i:0,I,2,
rV
rV

ñ- | . -:1 + | /
| .' 1 ,

n-l

(22)

. ., k with k:min (i+m, n) (23)

(24)

Comparing (C2 ) and (R, ) , v/e see that the replacement probJ-em

renresen1.ecl b.' tÞ \ nan }.o Cgnsidered aS a SpeCial type Of the fOt!çy!çoç¡ruçs vJ \¡\1/

size inventory probJ-em, except that it has an addítíonaI

c.nns'i- ra i nt- s oi ven bv (22\ wh i ¿-h on I r¡ i ndj-Cate that the demand ofçv¡¡ou!q¿rruo Y!vç¡r vf \LLI

periodj+1canbeSatiSfiedfroma}otinperiodí(i<

if t.he demand for perj-od j is satisf ied f rom the same lot.
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CE.APTER 6 .

coNcr,ttsroNs, coNTRrBItTroNs AIID REcoMMElqDATroNs

fn the present chapter, we state the conclusj-ons and

contributions of this dissertatíon. Then we discuss the scope of

this work under JIT environment. FinalIy, we give some

recoÍrmendations for further research on the problems considered in

this dissertation.

6.1. Conclusions and Contributions:
In t.he present dissertation, two important problems in the

field of industrial- engineering vLz: a lot size inventory control

problem (addressed by Wagner and Whítin, 1958) and an equipment

replacement probJ-em (addressed by V'Iinston 1991, lüaddell 1-983, Gupta

and Hira L981), have been revisited. A structural similarit.y

between the two formulat.ions presented in the present dissertation

has al-so been ídentifíed. Furthermorer w€ propose a fuzzy Iogíc

approach to deal with the inventory control problem when the data

is imprecise. In addition, vre suggest a simplified three step

computational algorithm for the equipment problem.

The inventorv probl-em wit.h variable demand rate under both

crisp and fuzzy environments with a pJ-anníng horizon of N periods,

is considered in Chapter 3. Under crisp environments¡ w€ formul-ate

the problem as a linear programming problem with exactly N

varíables restricted to zero-one val-ues. However, one underlying

assumption in the above modeI, and most of the model-s in the
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literature is that the demand is determinist.ícaJ-Iy known. But

demand is always forecasted and forecasts rarely-if-ever-turn out

to be crisply correct. So the model-s based on the precise knowJ-edge

of demand have little practical applícations. We deal- with such a

problem through the fuzzy logic approach. Under fuzzy environments

such a problem is formulated as a maxmin Iinear program' with

exactly N variables restricted to zero-one values. Numericaf

examples are presented for both cases.

Chapter 4 deals with the equipment replacement problem. We

formulate a deterministic equipment replacement problem (which is

normalJ-y solved through the use of dynamic programming) as a 0-1

linear programming problem in which the number of variables is

al-ways equal to the number of constraints. The advantage of such a

formulation is that it does not require a high degree of expertise,

insight and 'art', (i.e. Tather easily understood by

nrar:ti.t-ioners\ dna< nnl- suffer from the so calledtcurse ofLv, f

dimensionality' (a shortcoming of dynamic programming) and can

aJ-ways yield a globaI optimal solution to fairly large sized

problems using avaj-Iabl-e software. A numerical example is solved on

a personal computer and interpretatíon of the results is provided.

In addition to thatr w€ have proposed, along the lines of Fordyce

and Webster (1985), a simple method for solving an equipment

replacement problem. The algorithm explicitly identifies alternate

optimal solutions, if any, as well.

It is shown in Chapter 5 that equipment replacement and
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inventory control probJ-ems considered in the present dissertation

have a common mathematical- structure. That is, the equipment

replacement problem is basically a speciaJ- type of lot síze

inventory problern with a constant demand rate of 1 and an

additíona1 set of l-inear constraints peculiar to the replacement

n rnl'r I om

6.2. Scope of this Y{ork under ,tIT Environment:

The present work is more suitable to MRP type systems. With the

increasing number of manufacturers moving towards JfT practices, a

discussion on the scope of this research under JIT environment is

needed. The main objective of JIT systems is to eliminate wastage

of time, material and cost with the goaJ- of zero inventory (Iot

size ideally equaJ- to 1). Wastage refers to those costs (e.9.

ì nrranf nrr¡ -^q'---Ls, setup costs, rework and scrap) which do not add

value to the product . In the past, American manufacturers

considered setup costs to be unavoidable; but engineering ingenuity

can be applied to reduce setup times and costs by designing special

jigs and fixtures, simplified dies and machine control-s that can

switch in littIe or no time (HannahtL9BT). Decreased setup costs

resul-t in more frequent set-ups and reduced l-ot síze which in turn

reduces holding cost as well-. One method of reducing setups could

be Group TechnoJ-ogy (G.T.) . Grouping simil-ar parts results in fewer

major set-ups. Even if setup occurs, it is less costl-y.

A JIT system requires the flow of materials as and when needed,
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and in exact quantities. But there has to be an advance planning to

ensure that material is available when needed. For this purpose a

maol- ar nrnrrrr^tion schedule in MRP could be moved from monthly orLtto.ùLg! y!vsuv

yearÌy consumptj-on to some hours of usage in a JIT environment.

Although JIT strives for smallest possible lot sizes but there

may be val-id. reasons for acquiring huge inventories of some items.

For example, a crop which is harvested only once or twice a year.

Other examples coutd be infrequent and small quantity demand of an

item where the cost of delívery of such smal-I quantitíes would be

prohibíted (Jordan,19BB) . For the parts at the entry and exit

points of a G.T. ce1I, standard MRP information is still- needed.

Final- assemblv lots can be reduced to It but there is still need

for a master productíon schedule,' and hence JIT doesn't eliminate

the need for a good ínventory planning.

Furthermore, constant and effective equipment maintenance and

minimal machine breakdown is an important factor in the successful-

'i mnl emenl- af i on of a JIT system. Therefore, the equipment!¡rrv +

replacement problem also appears to have potential appfications

under JIT environment.

6.3 Recomnendations for Further Research:

It ís believed that a number of extensions are possible to

t.he inventory control and equipment replacement problems. The

deterministic and fuzzy models for the ínventory control problem,

nrcsent- cd i n t-heni- cr 3 r:an be modif ied to accommodate joint order
¡/!çov¡¡uev v¡rsl/ev&

repfenishments in the inventory problem, to take care of capacity
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rêqf r'ì r.t- ì nns - ef.e - The -i oi nt order model could then be extendedJv-'

even further to incorporate quantity dÍscounts.

It is expected that our 0-l- linear programming approach for

t.he equipment replacement problem should open avenues for its

successfully addressing more complicated equipment replacement

nralr'l amq qrr¿-h as group replacement problems. It is believed that

the three step method given in Chapter 4 to solve the replacement

problem wil-I have many potential applications. ft may also be of

int.erest to identify an underlying structure in a set of probJ-ems

that are currently solved through the use of dynamic programming

but could be solved by using the simpler approach, (i) described in

the present dissertation for solving a replacement problem' and

(ií) described in Fordyce and Webster (1985) for solving the

Vrlagner-Whitin problem ( 1958) in inventory control. It is hig'hly

likely that the above tabul-ar algorithm approach, along with fuzzy

dynamíc prograÍìming will help towards the development of some fuzzy

algorithms which, in turn, should become useful in solving the real

worl-d problems.

Most of the formulations in this dissertation are assumed

work under non-stochastic conditions. It may be of Ínterest

know, how they work under stochastic conditions.

Though, the present work suits more to determine lot size for a

MRP type system, but after ínitial- planning, it could be made

appJ-icable to a JIT type environment through some order splitting

techniques i.e. obtaining small quant.ities more frequentJ-y.

to

to
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APPENDD( A.

The constraints (1) (4) (page 76) of Chapter 4 can be written
easily by using the fol-Iowing Table A

Table A.

Time -å I 2 3 ....m m+1 m+2 n-l n R.H.S

Row 0 xol xoz xo3 ......x0*

Row 1

Row 2

Row (n-m)

Row (n-(m-1))

Row (n-(m-2))

Row (n-2)

Row (n-1)

xtz xt¡ "' xl. xr,m+l

xz3 ' '"" xz* Xz,m+l xz,m+z

my0

myr

my 2

ffiYr,-*

(m-1)yrr-(--l)

(m-2)y,r-(rn-zl

xn-2,n-1 xn-2,n 2Y n-z

xn-l,n 1 Yr,-].

From Tab1e A, we can now obtain the constraints (2) - (5) as

fol-1ows:

(i) Constraints (1) are n in number and are obtained from row 0

through row (n-L), obtaining first. constraint from ror^/ 0 by
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adding the variables and writing it Iess t.han equal to

R.H.S., which is myo. Simílarly nth constraint is xn-1,n S

1Yn-r.

(ii) Constraint (2) (3) are n in number and are obtained from

the col-umns by sLaring with cofumn 1 and equating the

sum of the variables Ín each column equal to 1 respectÍvely.

(iii) Constraints (4) are (I/2) (2n m) (m 1) in number and

are obtained by starting by f irst rol^¡ which is ro\¡r 0. Thus

fromrow0wehave(m-1)constraintSXot2*o,2*o,'....>

xo*.

From rovr l- we have (m-1 ) constraÍnts xrz

à xr **t

Similarly vre have rest of the constraints from other rows up

to the ro$¡ (n-1) .

Thus the total- number of constraints from the Table A:2n +

(L/2) (2n - m) (m - 1-) : (1,/2) (2n + m) (m + 1) - m2

Total number of variables are calculated from the Table A as

fol-l-ows:

Number of variables in row 0 to row (n - m) : m (n-m +1)

Number of variables in roI^I (n (m + 1) ) to row (n 1) (m -
t_)+(m-2) + +2 +1: (L/2) (m-l-)m

Number of yi's : n

Therefore, total number of variable m (n-m + l-) + (L/2) (m -
l-)m*n: (L/2) (2n +m) (m+l-) -m2
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APPENDIX B.

{*** TEIS PROGRJAIT{ TS CODED IN TSTNK P]ISC.ä,I. A}¡D IT ****}

{*****tt soLvEs EQUIPMENT REPLACEMENT PROBLEM ********}

{ ********ASSUI,PTION :MAINTENANCE COSTS AND SALVAGE VALUES****** }

{ ***************DEPEND SOLELY ON THE AGE*******)k* ****** )k***** * }

{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * J< * * * J< 7t )k )k * }

pRoGRAlt DYNAMIC_REPLACEMENT (rNpUT, OUTpUT) ;

{ * ** * ** ****** *** * ** *** ** * ****** ***** * ** )k* * * ** * ** * * * **** *** * * * * }

{ ***VAIìIABLES AND VARIABLE TypE DECLARATTON FOLLOWS**********r< }

{ ************************************************************ * }

TYPE

ONE_D_INT : ARRAYIO..

ONE D : ARRäYI1..1001

ONE_D_LESS : array[0.
TVüO_D : ARR|IY[0..49,

vÀR

A: REAL;

MAX, AGEMAX: INTEGER;

OPTIMAL: ONE_D_LESS;

SALVAGE, MANTNCE : ONE_D;

TIME: ONE_D_INT;

COST: TWO_D;

CHARACTER: CHAR;

{ *******************************************)k***************** }

{ ****************** **** PART A ****** ****** ****************** * }

{***THIS PROCEDURE READS IN MA]NTENANCE COSTS AND SALVAGE*X***}

{***VALUES AND LOADS THEM TO TWO ONE_DTMENSIONAL ARRAYS*******}

{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * J< * * * * * * * * )k )k * * * * * * 
}

PROCEDURE LOAD M S (VAR M, S: ONE D; AGEMAX: INTEGER);

VAR

rNDEX: INTEGER;

BEGIN

VüRITELN;

WRTTELN(TDATA ENTRY FOR MAINTENANCE COSTS FOLLOVüS z ');
VTRITELN;

99] OF INTEGER;

OF REAL,.

.1001 oF REAL;

1..1_001 oF REAL;
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FOR INDEX ': 1 TO AGEMAX DO

BEGIN

WRITE('ENTER MATNTENANCE COST DURTNG PERIOD', TNDEX :

3, 'OF OPERATION: ') ;

READLN (M I TNDEX] ) ;

END; {FOR}

WR]TELN;

WRITELN('DATA ENTRY FOR SALVAGE VALUES FOLLOWS : ');
WRITELN;

FOR INDEX ': 1 TO AGEMÂX DO

BEGIN

WRTTE ('ENTER SALVAGE VALUE OF', INDEX:3,'PERIOD OLD

EQUIPMENT: ') ;

READLN (S IINDEX] ) ;
END; {FOR}

END; TLOAD_M_SÌ

i *** * ** **** ** ****** ****** * * * ** * ****** * ***** *** * * * **** * * * * * * * * * )

{?k************************ PART B ****************************}

{ *********THIS PROCEDURE CO},IPUTES THE NET COSTS AND****)kt(***** }

{*********AND LOADS THEM TO A TWO DIMENSIONAL ARRAY***********}
{ * ** *** ****** ****** ****** ****** * * * * * * * ** * * * *** *** * * ** * * )k*** * * * }

PROCEDTTRE LOAD COST (VAR C: TWO D; M, S: ONE D,'MAX, AGEMAX:

INTEGER) ;

VAR

ROW, COL: INTEGER;

MAÏNT: REAL;

BEGIN

FOR ROW :: 0 TO MAX - 1 DO

BEGIN

MAINT :: O

FOR COL := ROVü * 1 TO ROW + AGEMAX DO

BEGIN

Il' COL (: MAX THEN

BEGIN

MAINT :: MAINT + M ICOL - ROW] ,'

CIROW, COL]:: A + MAINT - SICOL - ROWI ;
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END; {IF-THEN}
E![D,. {FOR}

END; {FOR}

END,. {LOAD_COST}

{ * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * }

{ ****** ************ **** pAlìT c ****** ********************** }

{***THTS PROCEDURE IS THE KEY PROCEDURE. IT PERFORMS THE***}
{ ***CALCULATIONS OF DYNAMTC PROGR.A,MMING ALGORITHM AND****** }

{***STORES THE FTNAL RESULTS IN ARRÀYS OPTIMAL AND TIME****i
{ ********************************************************** }

PROCEDURE PROCESS (VAR OPTIMAL:ONE_D_LESS; Ven tru¡:ONE D rNT;
C : TWO_D;MAX, AGEMAX : INTEGER) ;

vÃR

ROW, COL: TNTEGER;

TEMP: REAL,.

BEGIN

OPTrMÀL IMAXI ': 0;
FOR ROVü :: MAX - 1 DOWNTO 0 DO

BEGIN

OPTIMAL [ROW] :: C [ROV[, ROW + 1] + OPTIMAL [ROV[ + 1] ;
TIME [ROWI :: ROW * t;
FOR COL :: ROIV + 2 to ROW + AGEMAX DO

BEGIN

IF COL <: MAX TEEN

BEGIN

TEMP :: C[ROW, COL] + OPTIMAL[COL];

IE' TEMP < OPTTMAL [ROW] THEN

BEGTN

OPTIMÃ,L IROW] :: TEMP;

TII4E tROWI :: COL;

END; { IF-THEN}

END; {IF-THEN}
END; {FOR}

END; {FOR}

END; {PROCESS}
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{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )k )k * * * * * * * * * * * * * * * * * * * }

{ ****** ****** ********** PART D ************ ****** *)kJ<******* }

{*********THIS PROCEDURE D]SPLAYS THE FINAL RESULTS********}

{ ********************************************************** }

PROCEDURE RESULTS (OPTIMAL: ONE-D-LESS; TIME: ONE-D-INT;

MAX: INTEGER);

\TAR

HOLD: INTEGER;

BEGIN

WRITELN;

VùRTTELN ( I THE RESULTS ARE AS FOLLOWS: ' ) i
WRÏTELN;

WRITELN('THE OPTIMAL POLICY TS TO TRADE IN AT THE FOLLOVüING

TII{ES: ' ) ;
HOLD :: 0;
PÍIIILE HOLD < MAX DO

BEGIN

WRITELN('TI¡,1E', HOLD : 2) ;
HOLD :: TIME IHOLD ] ;

END; {I,üHILE }

WRITELN( 'TIME', MAX : 2) ;
WRITELN;

WRITELN('THE MINIMIZED COST FOR THE ABOVE POLICY IS 9 
"OPTIMAL[0] :1-2 :2);

END; {RESULTS}

{ *************************)k******************************** }

{ ******************** MAIN LINE ***** ** **** ****** ********** }

{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * i( )k i

BEGIN {MA,IN LINE }

CHARACTER ': 'Y';
WI¡ILE (CHARACTER : 'Y' ) OR (CHARACTER : 'y' ) DO

BEGIN

WRTTELN('|WELCOME TO EQUIPMENT REPLACEMENT PROBLEM !');
WRTTELN;
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WRTTELN('THIS SOFTWARE USES DYNAMTC PROGRAMMTNG TO

SOLVE EQUIP¡4ENT REPLACEI,IENT PROBLEM' ) ;
WRTTELN('rF OPTTMAL COST rS > l_0000000000, THEN rT

MAY BE ROUNDED OFF.I);
WRTTELN;

WRITELN('DATA ENTRY FOLLOWS:' ) ;
WRÏTELN;

WRTTE ( I ENTER THE LENGTH OF THE PLANNTNG

HORIZON (<100 ) : ') ;

READLN (MAX) ;

V'IRITE ( I ENTER THE MAX]MUM L]MIT ON THE AGE OF THE

EQUIPMENT (<100 ) : ') ;

READLN (AGEMÂX) ;

WRITE('ENTER ACQUISITION COST OF THE NEW EQUIPMENT:');
READLN (A) ;
LOAD_M_S (MANTNCE, SALVAGE, AGEMAX) ;

LOAD-COST (COST, MANTNCE, SALVAGE, MAX, AGEMAX) ;

PROCESS (OPTTMAL, TIME, COST, MAX, AGEMAX) ;

RESULTS (OPTIMAL, TIME, MAX) ;

VìIRITELN ( 'END OF PROCESS f NG ' ) ;

WR]TELN(ITHANKS FOR USING THE EQUIPMENT REPLACEMENT

PROBLEM ! ') ;

WRITELN;

WRTTELN('FOR A HARD COPY OF THE RESULTS/ PRESS

CLOVE-SHIFT-4 KEYS TOGETHER') ;

WRITE(IWANT TO SOLVE ANOTHER PROBLEM (Y/N) ? ');
READLN (CHARACTER) ;

END; {VùHILE }

E¡ÍD. {MAIN LTNE }


