
Real Time Digital Control System

for Power System Analog Simulator

by

G Henry Yogendran

A thesis

presented to the Univeni ty of Manitoba

in partial fulfilment of the

requirement for the degree of

Master of Science

in the Department of Electrical and Cornputer Engineering

University of Manitoba

Winnipeg, Manitoba

(c) August 2000

National Library 1+1 of Canada
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

395 Wellington Street 395. rue Wellington.
OttawaON K 1 A M OnawaON K I A W
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, dismbute or sell
copies of this thesis in microfonn,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantid extracts fkom it
may be printed or otherwise
reproduced without the author7s
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la fome de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

THE UNIVERSITY OF MAMTOBA

FACULTY OF GRADUATE STUDIES
+**te

COPYRIGHT PERMISSION PAGE

Real Time Digital Control System for Power System Andqg Simuhtor

G Henry Yogendrrn

A Thesis/Pncticum subrnittd to the Facalty of Gnduate Studics of The University

of Manitoba in partid fuifiUment of the reqakements of the degrce

of

Mrster of Science

G HENRY YOGENDRAN O 2000

Permission has been granted to the Libnry of The University of Manitoba to lend or seil
copies of this thesis/practicum, to the National Libnry of Canrd. to microfilm this
thesidpracticum and to lend or seil copies of the film, and to Dissertations Abstracts
International to publish an rbstract of this thesis/pncticum.

The author reserves other publication rights, and neither this thesis/pricticum nor
extensive extracts from it may be printed or otherwise reproduced without the author's
written permission.

ACKNOWLEDGEMENTS

First, the author wishes to convey inaumerable gratitude to Professor Ani. Gole for

his guidance, counsel and his encouragement toward the completion of this thesis and the

Masters progrâm at the University of Manitoba,

The author would also like to thank Manitoba HVDC Research Centre for provid-

ing the opportunity to work on such an interesting thesis project and for providing finan-

ciaI and technical support during the course of this work.

My sincere thanks goes to the friendly technical staff at the Power Tower and at

the Electrical Engineering department, for their technical suppon and advice.

ABSTRACT

With increasing system complexity, engineers use different tools to save money

and time during the design and development cycle. Simulation is one of the important tool

engineers use very often. These simulation tools are becorning more powerful because of

the faster computers available today.

This thesis presents a design of a Real Time Control System (RTCS) simulation

concepts using famous Power System simulation tool PSCAD and the off the shelf Digital

Signal Processing @SP) board with the Analog simulator at the University of Manitoba.

This RTCS simulation concept is validated for known HVDC system nenivorks in

real time. The benefit of the design is to achieve simple design of a real time controls with

available hardware and software such as PSCAD and DSP boards.

Table of Contents
1 Introduction .. 1

1.1 Benefits of Simulation ... 4

1.2 Digitai Simulation ... 5

1.3 Analog Simulation ... 6

2 Simulation Concepts .. 8

.. 2.1 Analog and Digital Simulation 8

2.2 Digital Processors .. 10

2.3 PSCAD and EMTDC .. 11

2.4 Real T h e Digital Simulators (RTDS) ... 13

2.5 Real Time Analog Simulators ... 14

2.6 Limitation of Analog and Digital Simulators .. 16

2.7 Proposed Real T h e Control System (RTCS) ... 16

3 Methodology and bnplementation .. 18

3.1 Drafi Components for RTCS ... 22

3.2 DSDYN Compilation .. 24

3 -3 Real Time Graphical User Interface .. 26

.. 3.3.1 The Graphical Control Panel 26

... 3 -4 Hardware Arrangement 31

3 -5 Phase Locked Loop .. 34

3.6 Current Controller ... 36

3.7 RTCS Components .. 38

3.8 Hardware Interfacing ... 41

.. 3 -9 Real-Time Implementation 41

4.0 Testing and Real T h e Simulation .. 42

4.1 Validation of Interface between PSCAD and RTCS .. 50

5 Conclusion ... 59

5.1 Recommendation for the Future Work ... 61

Reference ... 62

Appendix A: Translator Program file ... 64

Appendix B: RTCS component files for PLL and Firing Block 73

iii

List of Figures

Figure 1.1 Simulation Task Flow .. 2

Figure 2.1 PSCAD Drafi Canvas ... 12

Figure 2.2 PSCAD Runtime User Interface .. 12

Figure 3.1 RTCS Task Flow Diagram ... 19

.. Figure 3 -2 PSCAD Drafi Environment 20

Figure 3.3 PSCAD Drafi with RTCS Network and Components 21

.. Figure 3 -4 RTCS Component Definition File 23

Figure 3.5 DSDYN Compilation 24

Figure 3.6 DSDYN Compiler Flow Chart .. 25

Figure 3.7 RTCS Real Time GUI 27

Figure 3.8 Microsoft Foundation Class Hierachy .. 28

Figure 3.10 RTCS Hardware Arrangement ... 32

Figure 3.1 1 DSP Intempt Routine Flow Chart .. 33

Figure 3.1 2 Phase Lock Loop Control Schematics 34

Figure 3.13 Current Controller Control Schematics .. 37

Figure 3.14 RTCS PLL DraA Component .. 38

Figure 3.15 RTCS Firing Draft Component 39

Figure 3.16 Firing Timing Diagram 40

Figure 4.1 PC based runtime ... 43

Figure 4.2 Input voltage and firing pulse ... 45

Figure 4.3 input voltage and narrow firing pulse ... 46

Figure 4.4 input voltage and six firing pulse .. 47

Figure 4.5 Tested hardware arrangement ... 48

Figure 4.6 One phase voltage and the DC output ... 49

Figure 4.7 Tested RTCS block diagram .. 52

Figure 4.8 PSCAD draft for a tested network .. 53

Figure 4.9 Runtime GUI for a tested network .. 54

Figure 4.10 Test for alpha limitation ... 55

Figure 4.1 1 Tested RTCS block diagram 56

Figure 4.12 PSCAD ciraft for the tested network ... 57

List of Tables

Table 3.1 Parameters and functions used in the GUI .. 28

Table 3.2 Explanations of the GUI parameters .. 30

CHAPTER ONE

INTRODUCTION

The terni "simulation" is used rather broadly today to cover several concepts in the

computing world. This chapter deals specifically with "real-tirne" simulation. The term

"real-time", as it relates to simulation, requires that the computer program execution of a

modelled dynamic process must occur in the real-world time. It represents or simulates a

real, dynamic phenornenon as it occurs. A real-time simulation in electrical power system

is usually charactenzed by a control panel, interface hardware, cornputers, and an

observer, ail of which are linked together in a closed ioop system.

Simulation is the technique by which a physical system c m be represented mathe-

matically by a computer prograrn for the solution of a problem. This technique of problem

solving is used when it is not feasible due to time, cost, or safety to conduct specific tests

using the actual physical system, such as a high voltage power system. A mathematical

model is developed for the physical system using knowledge of the physical laws describ-

ing the problem. This model is then programmed on the computer to generate the probiem

solution. The digital computer program represents a discrete approximation of the real

world system (which is usually continuous). Within the overall task of simulation, there

are three primary sub-fields: model design, model execution and model analysis.

Figure 1.1

Models can take many forrns including declarative, functional, constraint, spatial

or multimodal. The next task, once a model has been developed, is to execute the model

on a computer. We need to create a computer program which steps through time while

updating the state and event variables in Our mathematical model. There are many ways to

"step through tirne" , for instance, leap through time using event scheduling or we can

employ small time increments using time slicing. We can also euecute/simulate the pro-

gram on a massively parallel computer. This is called parallel and distributed simulation.

For many large-scale models, this is the only feasible way of getting answers back in a

reasonable amount of tirne.

When the control inputs to the system can be predetermined and are programma-

ble, batch processing of the simulation prograrn is possible. For batch processing, the

computer prograrn will be subrnitted to the computer and it runs as fast as the computer

will allow. In this type of processing the running-time of the computer program (as it is

ruming) is not related to the real world time.

In the event that the control inputs that are necessary for the testing procedure are

dynamic in nature or cannot be predetermined, such as fault response in a power system,

the term simulation takes on a new dimension known as real-time simulation. This new

dimension calls for strict correspondence between the computer mnning-time (as it is run-

ning) and the real world tirne. inputs and outputs to the hardware devices must be syn-

chronized to a real-time clock and cannot be time-scaled as in the batch computing

environment. A typical power system real time simulation involves a real-time computer

program, an observer and appropriate interfaces that are al1 synchronized and running in

real world time.

Simulation studies have historically been used as a tool in manufactunng opera-

tions to determine the effect of proposed changes before making commitrnents to capital

expenditure or changes in operational policy.

1.1 Benefits of Simulation

There are many advantages of using simulation in lieu of other methods of

research. For example, expensive prototypes need not be built and possibly destroyed dur-

ing tests. A real systems with humans aboard need not be used for unknown experimental

results thus jeopardizing life and expensive equipment. With simulation it is easy to

extend the testing beyond the normal safety thresholds. Simulation permits rapid change

fiom one set of conditions to another in a controlled environment, thus greatly extending

the versatility of an experimental setup. Real-time simulation allows a more realistic rep-

resentation of the physical system being studied and permits both quantitative and qualita-

tive evaluation. In addition, users can be trained for various operational concepts without

using expensive electrical systems, although most simulators are used for research and

development purposes rather than for training.

In simulation, several alternative revisions may be proposed and there is uncer-

tainty as to how each will behave operationally. System changes are invariably costly in

terms of tirne, money and lost production while system revisions are incorporated. Thus it

is fiequently necessary to simulate the entire system in its original configuration and with

each proposed alternative revision.

Engineers can create every conceivable scenario of contingencies and re-enact

them to find solutions before they can actually occur in real life. Engineers can test equip-

ment they plan on acquiring and rnake sure beforehand that it will meet their real needs.

Furthemore, Simulation is the process of designing a model of a real system and

conducting experiments with this model for the purpose of understanding the behaviour of

the system and evaluating various strategies for the operation of the system. Simulation

has proven to be a cost-effective analysis tool which assists engineers and managers make

decisions quicker and reliably. There are a lot of benefits of applying simulation technol-

ogy for productivity improvement initiatives, some of these benefits includes: avoiding

costly mistalces, esthating crucial parameters, experirnenting on model rather than actual

system.

1.2 Digital Simulation

Modem real-time digital simulators for power systems can have al1 the flexibility

needed to carry out simulation of complex systems. Its graphical interface, coupled with

the powerful latest generation of processors, means the user can design, modiQ and con-

trol the simulation of an electric power system in real time using a simple mouse, thus

adding to the amazing possibilities digital simulation offers. There are new real-time dig-

ital simulaton using the latest processor and programming language technology. They fea-

ture, graphical interface enables the user to graphically define a power system network

with al1 its parameters. It also offers maximum flexibility, allowing the user to change the

parameters or establish a new List of signals for observation, through the simple manipula-

tion of the rnouse, while a simulation is ninning.

1.3 Analog Simulation

Although the new digital technology is attractive in many ways, analog models

still offer some important advantages in power systems, especially for environments

where the user needs the, robustness and credibility on its simulation, including highly

non-linear components such as arresters and thyristor valves. Also, for some users, it is

very important to have a real feel of the simulated network through real voltage while

other users already have an analog simulator and wish to expand their facilities with a sim-

ilar technology. The hybrid technology represents a gradua1 evolution and is still the most

reliable and accurate simulation method.

Currently, transient stability is investigated either by large discrete analog simula-

tors that emulate the exact behaviour of the real network, or by numerical calculations that

simulate the network behaviour using strong computers. The discrete analog simulators

are actually a scale-down mode1 of the real network, where the elements/components of

the simulator are of the exact nature as the corresponding elements in the real network, for

example generators, transfomiers, lines, cables, etc. Analog and digital simulators have

their respective advantages and disadvantages. The main advantage of the analog simula-

tors is their shorter computation tirne. On the other hand numencal simulators are easier to

handle. Both of thern however are very expensive and curnbersome.

This thesis will show simple implementation of a Real Tirne Control System using

a digital signal processor, for a power system analog simulator.

CHAPTER TW0

SIMULATION CONCEPTS

Simulation is an important tool that allows the engineer to investigate sys-

tem behaviour pnor to reai-world implementation. Simulation can be divided into

two main categories: as off-line simulation and real-time simulation. In software

based simuiation, engineers can observe s ystem behaviour wi th parameter

changes. In real-tirne simulation, the system behaviour is achieved in real time.

This method is important Say, for testing real equipment. Real time simulation can

be digitally based using very fast cornputers or it can be analog based where phys-

ical electronic components are used.

2.1 Analog and Digital Simulation

As discussed above design, analysis and planning studies of modem power

systems are performed by using simulation techniques. These techniques fa11 into

two main classes:

1. Off-Line computer programs.

2. Real-Time simulation

Real-time simulation for electrical networks can be divided into two

groups such as analog simulation and real-time digital simulation. In analog simu-

lation, the system can be scaled down to small system which consist of smaller

scaled down identical components and scaled down parameters such as voltage,

current etc. Setting up the scaled down analog simulation takes more time and

effort because real hardware must be arrangeci for each case. On the other hand,

real tirne digital simulation is faster to set up as it can be carrieci out using a con-

vent ional computer interface.

Ln real-time digital simulation, data are presented to the system from exter-

na1 environment, in synchronism with the external phenornena. in non-real time

software based simulation, the software obtains the next input data only when it is

ready to do so. Many real time systems rely upon interrupt service routines to

notiQ the main proçessing software that input data are available. There is no

notion of a "righî time" and a "bad time" to service intenvpts in a non real-tirne

systems. However, in the real time system, the intempt service routine can run at

any time, and it must share data stmctures, like input buffers, with the main sofi-

ware.

Effective communications require suppon fiom both hardware, like inte-

gral VO, and software driver routines. In real-time digital simulation large arnounts

of data must be shifted between data acquisition, data display, and processor

boards. Furthemore, the architecture of digital signal processing systems must be

sufficiently flexible to adapt to different configurations, which means the user can

reuse both hardware and software, thus reducing development cost and time.

2.2 Digital Processors

Special purpose Digital Signal Processors (DSPs) are more powerfùl for

simulation purposes when compared with conventional computer CPUs since they

are tailor made to handle signal processing applications. Typically digital signal

processors manipulate continuous data flow in real-tirne. They perform a single

task with minimal latency and with limited memory and peripheral devices. Digital

signal processors tend to be specialized devices whereas conventional processors

tend to be generalized.

The requirements for digital signal processing are:

Real-rime (deterministic) operation: The greates t c ha1 lenge in DSP processing has

been to develop systems that can handle al1 of these requirements with flexibility

and precision in real tirne.

Compufutionalpower: In power systems, high speed computation is also required,

because, although the sampling rate is lower than for other DSP applications, the

algorithms are typically complex.

Fast I/O: The key requirement for VO is that there shouid be wide VO bandwidth.

Wide i/0 bandwidth mainly refers to the communication of the processors with the

external world.

EMTDC is a popular non-real time simulation engine for power system

studies based on detailed mathematical models and numerical techniques for time

domain simulation. This computer program works off line and the computation

time of an event turns out to be orders of magnitude longer than the actual event

time. The EMTDC engine is invoked from a graphical user interface called

PSCAD. PSCAD aliows the user to make schematic drawings of the power net-

work using one of its module called DRAFT (Fig 2.1). Parameter entry is achieved

using user-friendly pop-up menus. Afier schematic compilation, the Fortran simu-

lation code is produced when the user clicks the COMPILE button on the DRAFT

module. This Fortran code also facilitate some output file structure to view the

simulation result in the plotting environment. For the simulation, the produced

Fortran code is imported to another module called RUNTIME (Figure. 2.2).

Figure 2.1

Figure 2.2

The Fortran code is M e r compiled into an executable program. The user

controls the simulation and observes waveforms using the RUNTIME module.

This allows the user to make changes to some system parameters during the run, in

much the same manner as an operator at a system control console. Afier the simu-

lation ends, output results can also be saved for later investigation.

Because of its non real-time nature, PSCADIEMTDC is not the appropriate

tool for testing real control or protection devices. This simulator is chiefly used to

study the behaviour of different network and control topology.

2.4 Real Time Digital Simulators (RTDS):

The PSCAD/RTDS, originally designed at the Manitoba HVDC Research

Centre, is a real time digital simulator to study the behaviour of power system

devices in a real time environment.

At the hardware level, the multiprocessor control system is made up of var-

ious plug-in boards optionally arranged in a rack for HVDC and power system

applications. Each processor board has i t 's own digital signal processor, data mem-

ory and output ports. The output ports interfâce the processor to extemal systems

and signals with nonnalized output levels. The output signal has to be amplified to

levels necessary for testing the real system component which is under test.

As for the software part, the programming of control or generation of sig-

nals. including al1 control parameter setting, is camed out in the PSCAD DRAFT

module, which contains the graphical RTDS component library. The library con-

sists of components such as control blocks, arithrnetic blocks, logic and switch

blocks and output ports. The schematic produced in the draft environment is then

down-loaded in the RTDS memory as an executable digital signal processing pro-

gram. During run-time, the output signals fiom RTDS can be fed to any real com-

ponent under test through amplifiers and the system behaviour can be monitored

using real instruments

2.5 Real Time Analog Simulators

Some investigators prefer to retain a direct correspondence of voltage, cur-

rent and other derived variables between an actual Power system and its sïmulator.

Analog simulators are favoured because, not only do they retain the system iden-

tity, the current and voltage variables of the real system are scaled down in the ana-

log simulators.

Real time analog simulators are best descnbed as hybrid simulators

because these simulators generally contain a range of models such as, reduced

scaled down physical models, equivalent circuit models including operational-

amplifier based analog diflerential equation solvers. Modelling of power system

on analog simulators is accomplished after comecting a complex arrangement of

electncal components. The analog simulator at the University of Manitoba Power

System Laboratory was developed to study HVDC systems behaviour under dif-

ferent conditions. It is a scaled down version of a large HVDC systems and con-

sists of real components as well as variable power source and monitoring devices.

This simulator can be used to study limited amount of HVDC topology using

scaled down parameters.

implementing different HVDC control algorithms for a study can be quite

a challenging task as it requires the construction of the actual control circuit. This

simulator is useful to study o d y conventional HVDC operations.

2.6 Limitation of Analog and Digital Simulators

As HVDC control systerns improve, the performance benefit of the above

discussed simulators are challenged in the following ways:

1. PSCADEMTDC is only good for non-real time simulation and

theoretical studies.

2. Analog simulators allow limited number of HVDC topology

and any changes to controls take tirne and effort.

3. RTDS simulators are expensive for simple simulation.

2.7 Proposed Real Time Control System (RTCS):

This thesis will show a simple implementation of Real Time Digital Con-

trol (RTCS) system environment for HVDC simulation. In this approach, the main

power network is still modelled on the analog simulator, but the controls are digit-

ally simulated in the manner of the RTDS.

* Control schematics are developed in the PSCAD draft environment.

* A Run-time controller is developed for a personal computer.

* Digital signal processing system can take input fiom external devices and send

computed output signals to the other extemal devices in the analog simulator.

It is expected that due to the improved technique for implementing the con-

trots, various difierent control strategies cm be studied in a short time. The net-

work topology is however still constnicted in analog hardware. It is felt that this is

an inexpensive method to improve the capability of the analog simulator without

having to purchase the prohibitively expensive RTDS platfoxm.

CHAPTER THREE

METHODOLOGY AND IMPLEMENTATION

This chapter describes the flow of Real Time Control System (RTCS) and

how the hardware and the software for the RTCS were designed. The RTCS is

descnbed first, and the later sections explain hardware and software involved in

the design.

The problems discussed here are:

1. Description of the RTCS

2. PC based Graphical User Interface (GUI) for RTCS.

3. Interface between RTCS and real tirne analog simulation.

The RTCS uses the PSCAD/DRAFT, Texas C60 based DSP board and the analog

simulator in the Electrical engineering department for graphical schematic capture,

digital signal processing and analog simulation respectively.

Schematic Entry G
f

DRAFT file

PSCAD
Compiler

DSP
Compiler

DSP C-file

binary file (

l

1

1

Compiler
, 'krnER PC Front-End
I

a GUI
FTP

UNïX Work Station a , Personal Cornputer

Figure 3.1

The actual RTCS implementation is shown in Figure 3.1. The PSCADI

DRAFT front-end is used to enter and compile the schematics. The compiled sche-

matic is translated into DSP C-code and an information file which consists of

ranges and settings of variables. Both files are then downloaded to the personal

cornputer where the DSP board resides and interfaced to the analog simulator. The

DSP C-code is compiled in the PC environment and executed in the DSP boards

using a GUI which runs under the Windows 3.1. operating system.

PSCAD/DRAFT is a very powerful graphical user front-end for the

EMTDC simulation program. It permits the user to make schematic drawings of

the control circuit. Components for the schematic can be copied fiom the vendor-

supplied component library, or composed fiom basic elements. Each component

has a definition file defining its graphical appearance, input and output ports and

underlying FORTRAN simulation code. The circuit developed in DRAFT is com-

piled using the compiler attached to the DRAFT module. The compilation process

results in a list of errors if any, and if none; produce the files necessary for mn-

time. One of the files produced for the run-time module is called the DSDYN file

and contains FORTARN code for the mn-time simulation. Rather than design a

newer graphical front-end for the RTCS control layout, we chose to use PSCAD/

DRAFT, as it is a tool which is gaining increased popularity.

Figure 3.2

Using PSCADIDRAFT features a comprehensive component library has

been developed for the real time simulation. In these components definition file,

FORTRAN code was replaced by DSP C code to implement the control system on

the DSP board in real-time. Figure 3 -3 shows one of the schematics of the PSCAD

DRAFT module and its component library, in which real-time control system is

simulated.

Figure 3.3

3.1 Draft Components for RTCS:

To use the PSCAD/DRAFT environment for the RTCS, components must

be developed that generate C code for the DSP board. PSCAD/DRAFT compo-

nents are defhed using definition files containhg the information required to dis-

play an icon representing the cornponent and include the component in the circuit

simulation. PSCAD/DRAFT is designed to generate FORTRAN code. The tech-

nique developed by me insert DSP code in this "FORTRAN" file. The FORTRAN

file is then pst-processed to strip off any remaining FORTRAN statements retain-

ing only the pure DSP code for downloading to the DSP board.

Additional information in the designed PSCAD/DRAFT block contains the

drawing of the component as it would appear on DRAFT palette as well as an

information file indicating the settings and limits of variables that are required to

be changed on runtime.

RTCS components also used al1 the features in the PSCAD component def-

inition file except that the FORTRAN section was replaced by DSP C code with

appropnate input and output parameters defined in the NODES section. The actual

definition file for the RTCS component file is illustrated in the following Figure

3 -4.

Define the graphical apperence of
the component.

1

NODES:
Define compooent's input and output
ports and input and output parameter

FORTRAN:
DSP simulation code written in C
using input and output parameters
fot this component. 1

Figure 3.4

These parameters used in each RTCS components are defined and initial-

ized in the FORTRAN section. Draft compiler uses the parameters defined in the

NODES to interconnect the whole network and produce one syntactically un-

arranged programme file for simulation.

3.2 DSDYN Compilation

(DSDYN file 1

Figure 3.5

The DSDYN file produced from the DRAFT compiler is translated to pure

DSP C-code using a translator. First, this translator removes al1 FORTRAN com-

rnents and other lines from the DSDYN file. Secondly, it converts some necessary

FORTRAN lines into C-code syntax. Finally, it rearranges parameter definitions,

declarations and produces DSP C-code for the schematic in the DRAFT canvas. In

addition an information file is produced which contains the information required

by the Run-time Control panel, such as the initial settings for the set-pot sliders

and, initial gains, etc. Flowchart of the translator which produce DSP C-code from

DSDYN file is shown in the following Figure 3.6.

Read DSDYN file into

slider information
into the info-file

into C-style variabl
declaration

Remove unnessary
Fortran keywords

Add other C-heade
and make the final
DSP C-file

Figure 3.6

3.3 Real-Time Graphical User Interface

As mentioned earlier, the graphical schematic entry for generating DSP C-

code and generating necessary files are done on Unix work station. The DSP C-

code and the information files are sent to the PC where the DSP board and the

other hardware were arranged.

3.3.1 The Graphical Runtime Control Panel

Once the developed mode1 is down-loaded to the DSP board, a Run-time

Graphical User Interface is used to communicate with the control system when it is

running. Using this interfixe, changes of control settings can be made on-line. This

panel automatically displays sliders and their parameters which were placed in

PSCAD drafi canvas in the initial drawing. During initiakation, it reads the slider

information file and place sliders and their parameters such as maximum, rnini-

mum, and initial values in the main GUI dialog boxes as shown in Figure 3.7. The

user can also slide the appropriate slider within its specified range and pass its new

parameter value to the DSP board during real-time. Whenever the user change a

slider's position in the GUI dialogue, the GUI recalculate the parameter's value

and passes al1 parameters to the DSP as an array without halting the DSP execu-

tion.

w - - - - - - - > . . . - - - - i 1-2

Figure 3.7

The above GUI is designed to control two independent DSP board based

firing circuits. The two DSP board based firing circuits are identical in structure

and in characteristics of operation. Each one has six output lines for 6-pulse firing

circuits and three input lines to measure 3-phase AC line voltage.

The GUI is designed for the Microsoft Window 3.1 platform. Microsoft

Visual Ct+ and Microsoft Foundation Classes W C) were used in the GUI devel-

opment. Additional classes CDlgToolBar, CDlgStatusBar, CModelessDialog, and

CModelessMain, which are written by Microsofi Product Support Service, were

also used in the development. GUI class hierarchy is shown in following figure

3.8. Each rectangle represents a class and the arrow between classes represents the

association between them.

CDlgStatusBar CModelessDialog CDlgToolBar

1 CMainDlg -
Figure 3.8

in the class hierarchy diagram shown in Figure 3.8. the CMainDlg class is

derived from classes MFC and CModeleesMain. This class assigns parameters and

functions to communicate with DSP boards. The parameters and functions are

shown in following Table 3.1.

I loacista t A I loadstat-B 1

I OnClic kedS tartAO I OnC lickedS tartB() I
1 OnClic kedReloadAO 1 OnClickedReloadB() 1

Table 3.1

Parameters in the class CMainDlg can be divided into two groups. The first

group is used for user input and the second group for the initialization between

GUI and the DSP boards. An explanation of the parameters is shown in Table 3.2.

alpha-start-A[l], alpha-start-B[l] 1 Firing start position in degree for both terminals

alpha-stop-A[1], alpha-stop-B[1] 1 Firing stop position in degree for both terminals

- -

stan-vec-loc-A, start-vec-loc-B 1 Holds the 24 bit address to put start parameters

-- -- - -

start-A [6] , start-B [6]

stop-A[6], stop-B [6]

loadstatA, loadstat-B

- -- -

Firing start position converted into radian

Firing stop position converted into radian

DSP program load flag

Table 3.2

stop-vec-1-A, stop-vec-1-B

Functions Create(), DoDataExchangeO, OnUpda teTime() and OnClose()

in the class CMainDlg are used for the data exchange between user input (GUI)

and the CMainDlg class. Other ten hc t ions are activated by clicking buttons in

the GUI environment. OnClic kedInitA() and OnClic kedInitB() loads the executa-

ble COFF Object file into DSP board's memory and set al1 six output pins (six fir-

ing pulses) to zero state. Furthemore, these two fùnctions will display error

messages for unsuccessful loading of the object file into the memory, otherwise

disable the assigned button in the GUI. OnClickedStartA() and OnClickedStartB()

will start the DSP program in the assigned DSP board or OnClickedStartBoth()

will start both DSP board simultaneousl y.

Holds the 24 bit address to put stop parameters

3.4 Hardware Arrangement

A TMSC30 based DSP board is used to generate six firing pulse in real

time and a nine channel Analog to Digital (AD) converter card is used to read data

fiom three-phase line voltage and DC line current. The A/D converter card and the

DSP board were connected through a special parallel expansion (DSPLiNK) port

in the DSP card. Al1 the conununication between PC and the DSP board is done

via the PCs VO space in the ISA bus. To avoid the VO port conflict between other

standard boards in the PC, 290 hex and 390 hex base address locations are used by

the two DSP boards respectively. The whole system is controlled by PC based

fiont-end software. Figure 3.10 shows the block diagram for the this system. The

three-phase line is isolated by using step-down transfomers to get zero to five

volts input to the A/D converters. The A43 converter is triggered fiom the DSP

board fiom it's timer-0 intermpt puIse line.

Eolaeon
CUcUlt

*

Am C30 based .
DSP board

v, ,

(3,
5

Figure 3.10

Six pins in the DSP senal port such as CLKXO, FSXO, DXO, CLKXl,

FSX 1 and DX1 are assigned as finng output pins. These pins are comected to each

valve in the 6-pulse Converterhverter assembled in the analog simulator. To

avoid data loss from the A/D converter, the DSP's intempt routine and the exter-

na1 AlD converter are tnggered by same TIMERO penpheral module in the

TMS320C30. The main program always waits until it gets an interrupt pulse fiom

TIMERO to activate the intemipt routine and the A/D converter. Al1 the main proç-

esses such as the Phase Lock Loop (PLL), ramp generation and finng decisions are

camed out in the interrupt routine and its flowchart is s h o w in Figure 3.1 1

Read data Va, Vb and Vc
fiom A/D converter

PLL

Continue ramp generation

Toggle fixing ports depend
on user inputs from PC GUI

Figure 3.1 1

3.5 Phase Locked Loop

A Phase Locked Loop (PLL) was employed to follow the system voltage to

determine the precise phase of the source. The phase locked loop looks at the line

to neutral voltage of the bus and produces six ramps which are then compared to

the required firing angle of a particular valve. When the ramps exceeds the values

of the fixing order, a firing pulse will be given for the particular thyristor gate. This

pulse wiH be continuous throughout the duration that the valve is required to turn

on to ensure that no premature extinction takes place, although the ideal thyristor

does not require a continuous pulse once it is already on. The employed phase

locked loop control circuit is shown in Figure 3.12.

OSC

Figure 3.1 2

This phase lock loop is of the " Traltsvekror " type, Le.; it uses sequence

transformation to obtaia the phase di fference between the positive sequence (phase

a) component of the three phase voltage and the VCO output. One advantage of

this type of grid control circuit is its superior irnmunity to disturbances and har-

monic distortion on the AC synchronising voltage [I l .

The three phase voltage derived from the A/D converter are Va, Vb and Vc.

Using a 3-phase to 2-phase transformation the direct and quadrature axes voltage,

Valpha and Vk, respectively, are derived according to the following equationsl 11.

An Error signal is generated according to the equation and is acted upon by

a PI controller with proportional gain K1 and integral gain K2.

Error = Valpho cos@ + Vbera - sin ((O) - (3 .3)

It can be shown that this error is sincp, where cp is the phase angle between

the positive sequence component of the ac voltage and the VCO output. The nom-

inal fkequency of the Sawtooth Generator is controlled by a reference voltage Uref.

The output of the Sawtooth Generator, which is limited between O and 2.n, gener-

ates the timing Sawtooth waveform and it's utilised to derive the firing pulses.

The sawtooth output trom the Sawtooth Generator is used to generate

another five similar sawtooth waves 60° apart h m each other. These six wave-

forms and the user inputs fiom the PC based GUI are used to activate the six dif-

ferent firing pulses through the output pins in the seriai port. Each pulse's starting

position and the duration are determined fiom the six set of user input parameters.

On the other hand, the user c m input one set of parameter, to generate six firing

puises with equal duration and 60° apart fiom each other.

3.6 Current Controller

In rectifier current control mode, the converter's firing angle a is controlled

with a feedback control system. The DC voitage of the converter increases or

decreases according to equation 3.4. The DC voltage variation with firing angle a

is used as a mechanism to adjust the DC current to it's set-point IEf. For example,

if the DC current exceeds IRf, then IEmr become greater than zero, and the finng

angle will be increased. According to equation 3.4, Vd decreases in an attempt to

decrease the value of Id.

The firing angle a is constrained to lie betuween lirnits a,;, and a,,. No

M e r control on a is possible once the smallest possible angle amin or maximum

possible angle %, is reached.

Figure 3.13

The user inputs the parameters such as a upper lirnit (a,), a lower limit

(ami,) and pulse duration using the ruil-time GUI.

3.7 RTCS Components

As mentioned earlier, al1 RTCS components were developed using DRAFT

component features.

PLL Block:

One of the components developed to demonstrate this thesis was a phase

tocked Iwp (PLL). It takes the three phase input voltage and calculates the (theta)

precise phase of the input source based on the PLL discussed in section 3.5. This

phase locked loop produces a theta ramp reference to one reference to the positive

sequence of the ac bus voltage (phase a). Its PSCAD graphical appearance is

shown in Figure 3.14.

Figure 3.14

Firing Pulse Generatioo Block:

Another major cornponents developed is the finng block. This is a DSP-

board specûic component and takes phase angle (theta), firing angle (alpha) and

firing duration as inputs and outputs six firing pulses based on these inputs. Out-

puts from this block cannot be used in the Draft canvas. Its only output is through

the DSP-board serial output-port and is the ac-1 finng pulse sequence to the thy-

tristors. Its PSCAD appearance is shown in Figure 3.15.

Alpha

Alpha

Figure 3.15

Combination of PLL and F i ~ g blocks produce six firing pulses to tum ON

a particular valve. When the ramps from PLL exceeds the value of the alpha order,

the fixing pulse will be given to the valve. This pulse will continue throughout the

duration specified to the firing block. This will ensure that no premature extinction

takes place.

Duration Time

Figure 3.16

Other Components:

Similarly several other control components were developed. These include:

an integrator, a multiplier. an adder and measurement blocks to interface to the

real world.

The integrator block was modelled by converting the Laplace Transform of

the transfer function (Y(s) = (l/s).X(s)) to a suitable difference equation using Eul-

ers approximation i.e.

The measurement blocks for voltage and cunent interface the A/D convert-

ers with the digital control mode1 running on the DSP board.

3.8 Hardware Interfacing

The analog simulator is connected to the DSP board via nine channel A/D

converter and DSP-board serial port. Three phase line voltage from the analog

simulator pass through isolation transfomen to the AID converter. The rectifier

DC current in the analog simulator is passed through a current transducer and con-

verted into voltage reference. The converted DC current's voltage reference is also

comected to one of the charnels in the A/D converter. Six output pins in the DSP

serial port are comected to each of the valves in the 6-pulse Converter/lnverter

assembled in the analog simulator.

3.9 Real-Time Implementation.

The DSP C-Code file and the slider information file which were extracted

fiom DSDYN file are transferred to the personal cornputer where the DSP cards

and other hardware resides. The DSP C-code file is again compiled using the com-

piler designated for the DSP board which resides in the PC. Finally, the binary out-

put file fiom the DSP compiler and the slider information files are used by the run-

time graphical user interface to run the actual system in real time. After activation,

the graphical user interface (GUI) in the PC reads the slider information file and it

automatically places sliders in the GUI canvas. The number of sliders and their

settings wili be the same as in the PSCAD drafi canvas and these settings are

passed through the slider information file.

CHAPTER FOUR

TESTING AND REAL TIME SIMULATION

In the previous chapters, it has been described how the hardware and the

software were developed and has been shown that this hardware was designed to

interface with the existing HVDC analog simulator and PSCAD computer simula-

tion tool. In this chapter, results are presented for the control system which was

tested independently and also together with the analog simulator. Furthemore, the

PSCAD and RTCS interface were also tested. These tests are listed below:

1 .Venfication of interface between PC based GUI, two DSP boards and A/D con-

verter boards.

2.Testing the real-time functionality of the PLL and the firing pulse generation.

3 .Verification of the smallest possible firing pulse.

4.Generating al1 six firing pulses fiom one DSP board.

5 .Testhg the interface between the DSP-System and the analog simulator.

6.Verificatio1-1 of the RTCS as an entire system a) Testing PSCAD with RTCS b)

PSCAD and RTCS combination tested using a simple feed-back loop network.

Test 1 : Interface Verification

First the interface between the front-end Graphical User interface (GUI),

two C30 based DSP boards and two A/D converter boards was tested. The inter-

face appears as shown in Figure 4.1 . The DSP program is loaded b y clic king "INI-

TIALIZE A" or ''WITIALIZE B" buttons in the GUI environment. If these DSP

programs successfully load into the designated DSP boards, the NTILIZE button

will be greyed and error message won't appear in the GUI environment. Different

panel screens appear for various phases of tests.

Puise 1 Pulse 3 Wse 5 M e 1 Pulse 3 Pulse 5

stop Point 171 1 %phint ILI II.1
hise 4 Pulse 6 Rlse 2 hkie 4 h k e 6 hlse 2

Stwi Point

Stop Point I'.] FI FI SbpPoill

Alpha StM p. 1

The above GUI can cornrnunicate with individual DSP boards and the user

can set the firing angle starting and ending points. The user c m also test an indi-

vidual pulse or set of six pulses. START and STOP buttons start and stop the DSP

prograrns in the designated DSP boards. Change buttons are active afier starting

the program execution and when pressed will change the parameters in the DSP

program, according to the values on the sliders.

Test 2: Real-Time Functionaiity

After successftl initialization, parameters were entered in GUI to check the

functionality of the Phase Lock Loop and firing pulses which originated from the

serial port in the DSP-board. The firing angle a was entered and the system was

started by clicking the "START" buttons. In this testing, one line-line voltage Vac

and one firing pulse was observed on the Tektronix TDS 420A digital oscilloscope

and the data were recorded and shown in Figure 4.2. The Iine fiequency was 60Hz,

the entered a was 15 degree with a pulse width of 30 degree.

Figure 4.2

The above Figure 4.2 shows the obtained result as we expect. This test result ven-

fies the real-time functionality of the PLL and the firing pulse generator which

were ruming on the DSP board.

and the pulse duration to 1 degree. The following Figure 4.3 shows he-l ine volt-

age Vac and the firing pulse with duration one degree. Firing duration below one

degree couldn't

used.

be achieved during this test, due to the 4 4 . 4 ~ ~ (22.5KHz) time step

Narrow Firing Pulse

Possible firing duration was tested by entering firing angle a to 15 degree

Figure 4.3

Test 4: Generating a set of finng pulse

Al1 six pulse lines was tested for various firing angle and pulse duration.

Figure 4.4 shows one phase voltage Va measured before the A/D convener and al1

six pulse lines which were observed on the Tektronix TDS420A digital oscillo-

scope.

Figure 4.4

This test result shows that the DSP board can handle the necessary pulse

generation process in real-time for a user given firing angle.

Test 5: DSP and the Analog Simulator Interface

The entire system was comected with the analog simulator to check the

hnctionality of the firing circuit with the 6-pulse rectifier operation. The structure

of the tested 6-pulse rectifier is shown in Figure 4.5. The firing pulses fiom the

DSP board are routed through an optocoupler to the thyristor cards where they are

amplified individually and sent to the thyrister gates. The optocoupler is used for

electrical isolation between the DSP system and the power system model. Output

DC voltage fkom the rectifier was recorded for different finng angles a.

Figure 4.5

The line-neutral voltage after the transformer was adjusted to about 60

volts. The firing angle a and its duration was loaded to zero degree and 120 degree

respectively from the PC's GUI. Figure 4.6 shows the line- neutral voltage and the

DC voltage fiom the rectifier.

- 1 0 0 1 , , ; ; , ; I ; I ; , , ,
-5 O 5 10 15 20 25 3 0 35 40 45

Time (xl oD3)

Figure 4.6

The real time output fiom the analog rectifier matches the theoretical result

of a six pulse rectifier output. This result also demonstrates that the interfacing

between PC based GUI and DSP board with the analog simulator works well and

the run time GUI,

working correctly

DSP programs and the hardware

for a simple case.

interface for this thesis were

4.1 Validation of Interface between PSCAD and RTCS:

In the previous chapter, it has been shown that the system was designed to

interface the PSCAD drafi to the real world control system RTCS. In this section,

several test cases will be presented to validate the practical usability of this system.

The basic steps involved in the intet$iace between PSCAD/DRAFT and the RTCS

are as follows.

1. Draw a schematic diagram of the HVDC system fiom the specially designed

component library and compile using PSCAD/DRAFT compiler to generate the

DSDYN fite. The schernatic diagram can also contain sliders to change parameters

during real-time simulation. This slider parameter ntme, initial value, minimum

value and maximum value can be initialized in the PSCAD/DRAFT.

2. The generated DSDYN file passed through another compiler/translator to gener-

ate real DSP C-code and the information file about the sliders in the DRAFT. The

information file used in the RTCS front end and contain the slider parameter

names, minimum, maximum and initial values which are displaced in the real-time

control dialog. The above two steps are done in the Unix environment and finally,

the DSP C-code file and the silider information files are transferred to the PC via a

file transfer program.

3. The transferred DSP C-code again is compiled in the DOS environment using a

compiler designated for the DSP board and produces an executable binary file. The

above DSP executable file and the slider information file are transferred to the

directory where the window based run-time executable file resides.

4. Final real-tirne simulation is done by executing a window based dialog environ-

ment. The real-time simulation process in the dialog is as follows.

*A) Sliders which are placed in the P S C A D / D W T canvas will be placed

in the nin-time dialog environment by clicking the button Load-Info. In this proc-

ess, the fiont program reads the information file and places al1 the sliders and its

parameters which were initialized in the PSCADDRAFT.

OB) B y clicking the Initialize button, the executable DSP binary file is

loaded in the DSP board where the real time execution takes place.

*C) Buttons "START" and "STOP" are designated to start and stop the real-

time simulation. During the simulation, parameters can be changed by clicking

arrows at the end of the sliders. Changed parameter values appear in small win-

dows near the appropriate slider.

Test 6s: Testing PSCAD and RTCS interface

The first test was carried out to check the PSCAD and RTCS interface. This

test verified the working of the PSCAD components and compiler as well as the

real tirne control system. The block diagram of this system is shown in Figure 4.7.

A simple schematic diagram of the control system was drawn in the PSCAD/

DRAFT to generate finng puIse with a range of firing angle a. Figure 4.8 shows

the control schematic diagram for the tested system in the PSCAD/DRAFT envi-

ronment. Since current feedback is not useci, we manually enter the current error.

This ramps the integrator output to a b i t .

DSP Board

\ I

0- 7 l A l I
1

Analog Simulator I
-c-

.-I

Figure 4.7

C -

'.

I 1
l User Input -

Phase
Look
LWP

1

Six Firing Pulse
Generator

1 I

Limiter Integrator
1 I

Current Error w - I)

In this test the system is initialised witb a given a upper limit (a,,), a

lower Lmit (%in) and pulse duration. The current error can be fed by sliding the

slider in the nui-tirne GUI. Whenever the system receives positive current error,

the firing pulse (a) should move towards the upper limit (a,,,,), and for the nega-

tive current error should move towards the Iower limit For zero current

error, the pulse should stay in its current position, ie the firing angle should be con-

stant.

Figure 4.8

As explained earlier, the DRAFT circuit passed through the PSCAD com-

piler to produce the DSDYN file. This DSDYN file is passed through the second

cornpiler/translator and produce DSP C-code and the slider information file. Gen-

erated, DSP C-code also compiled by a DSP compiler without any errors. This

ensures that the designed PSCAD components and the second compiler made the

proper C-code which is used to run in the DSP board.

Next, we used the windows based run time environment to execute the

DSP code in real time. The run time environment automatically load the sliders in

the GUI window. The resulting run time panel is shown in Figure 4.9 with the

..................................... ~ R s a i r V : - : . : : . ' IJ:.:::T:i -:-:::'::.'..:.. es
. .

......-.. -.-. . .i:: . 2-.... - . .

Figure 4.9

The system was starteci and one line voltage, one pulse were observed on

the oscilloscope. The current error was changed between a positive and a negative

value. During this change, the observed fixing pulse moved toward a upped

and a lower Iirnit as expected. The above step ensure the proper interfixing

between run t h e environment and the DSP board. The oscilloscope output

obtained for or?e instance and its shown in Figure 4. IO.

limit

was

Figure 4.10

Test 6b: Testing PSCAD and RTDS using simple FWDC network

In this test, a feedback loop was tested using the PSCAD and RTCS inter-

face in the HVDC analog simulator. A schematic diagram was drawn in the

PSCADIDRAFT with a curent feedback control loop for the HVDC rectifier. A

slider placed in the DRAFT to Vary the current reference in the rectifier output (DC

current). The whole schematic and the PSCADDRAFT are shown in the follow-

ing Figures 4.1 1. and 4.12 This exercise tested the system in its most complete

Phase 1 4 Six Fixing Pulse
Look - Generator

DSP Board t
Integrator Limiter

L - - , - , , - 7
I Run-Time GUI i

1 I
Current IteferenFek

Figure 4.1 1

in this network, the real time control monitors the output current from the

rectifier. The difference between the rectifier output current and the user input is

used to adjust the firing angle of the rectifier automatically. The proportional inte-

grator-block ramps the firing slowly for current variation. The limiter-bloçk limits

the firing angle between user set upper and lower lirnits.

Figure 4.12

The hardware circuit was wired in the HVDC analog simulator according

to the block diagram in Figure 4.1 1. As in test 1, the process !tom PSCADlDRAFT

to execution of real-time environment were followed.

The m-time GUI placed al1 six original sliders in its window during ini-

tialisation. Each parameter in the real-time DSP program was changed using G U

sliders and the system behaviour was obsewed. During this test, changing the cur-

rent reference within its limit in the GUI, gradually changed the real cument output

from the rectifier. This indicates that the whole control system in the DSP board

worked correctly in real-tirne.

CHAPTER FIVE

CONCLUSIONS

This thesis has shown that a real time control system for power system sim-

ulation study can be developed using off-the sheif components such as a Digital

Signal Processing Board with the addition of the popular PSCAD tool. In this

environment most of the control systems for HVDC topology can be implemented

through real tirne simulation. Furthemore, parameters involved in the HVDC con-

trol system can also be varied within their lirnits, during real time simulation.

Features in the PSCAD allow us to develop a component library with DSP

C-code and parameter initialization. They also allow us to create a C prograrnming

language based executable DSP-code and other information files necessary for the

real time simulation. Users also can create their own component blocks to add in

the component Iibrary.

Today DSPs are very powerful and allow extremely fast number crunching.

This permits easy implementation of fully digital controllen. The use of the off-the

shelf simple DSP boards proved their capability to handle complex aigorithm in

real tirne, which are involved in the HVDC control system.

The following is a brief summary of the RTCS:

.The popular GUI of the PSCAD has been exploited to make a pro-

grammable Real T h e Control System (RTCS).

.A off-the shelf Digital Signal Processing Board was used to impie-

ment the design.

*Typical blocks required for a power electronic system were identi-

fied and implemented.

.A translater program required to convert DSDYN file fiom the

PSCAD to DSP C-code was developed.

*PC based GUI developed to run the RTCS in real-time.

5.1 Recommendations for Future Work

in order to utilize the concept developed in this thesis, the following rec-

ommendations need to be adapted.

.A) A multiprocessing DSP board can be used to increase real-time

processing power. It will facilitate the user with more simulation power for com-

plicated, prucessor intensive control systems. Even if the multi-DSP board is

found to be uneconornical at the present tirne, dramatically lowenng semiconduc-

tor costs and progress in technology could make it viable soon.

OB) VME or VXI bus based PC and the multi-DSP boards combination can

be used to increase data bandwidth between graphical user environment in the PC

and the real time signal processing. The designer can increase the capability of the

GUI: to view some necessary HVDC signals in real time. Furthemore, VME or

VXI based Analog to Digital converter cards also can be used and are readily

available.

OC) Freely available operating systems such as Linux can be used for

PSC AD/DRAFT and nui-time environment. These operating systems allow the

developer to have more control over the Kemal, since their source code is also

fieely available and can be modified to maximize the performance.

References

[Il A M Gole, V K Sood and L Mootoosarny, "Validation and Analysis of a Grid Control

System Using d-q-z Transformation for Static Compensator Systems" Canadian Confer-

ence on Electrical and Cornputer Engineering, September 1989, pp 745-748.

[2] Third-Generation TMS320 User's Guide, Texas Instrument Incorporated.

[3] A M Gole, "HVDC Transmission Course 24.799" Notes, University of Manitoba 1995

[4] EMTDC User Manual - Manitoba HVDC Research Centre, Winnipeg, Manitoba

[SI J D Ainsworth, "The Phase Locked Oscillator - A New Control System for Controlled

Static Converten", IEEE Tram on PAS-87, No.3 March 1968, pp 859-864.

[6] Gunnar Asplund, Lennart Carlsson and Alf Persson "New concepts in HVDC" ABB

Power Systems AB (Sweden)

[7] John Reeve, John A Baron and G A Hanley "A Technical assessrnent of artificial com-

mutation of HVDC converters with series capacitors" iEEE Transactions on power appa-

ratus and systems, Vol. pas-87, No 10, October 1968.

[8] Samuel P Harbison and Guy L Steele Jr, C Reference Manua!, Prentice Hall, Engle-

wood Cliffs, New Jersey.

[9] Microsoft Visual C++ Development system for windows, Class Library Refence,

Microso fi Corporation.

[l O] Microsoft Visual C++ Deveiopment system for windows, Class Library Refence, Vis-

ual work bench users guide, lMicrosofl Corporation.

Appendix A

/*This program tranlate the DSDYN file into a compilable DSP program to nin in the DSP board. */
/********t***********+.**8.**88*****8*********8***8*****8*8***8********8*8****8*8*8****8*/

stmct entry { char *lexptr;);
/* Keywords used in the DSDYN file */
stmct entry keywords[l= ("SUBROUTINE". "INCLUDE, "COMMON", "REAL", "DATA, "INTE-
GER", "VARI', "END". ''RE-);
stnict entry keysa = ("DD, "W. "MM") ;

/*This function read the file in to a charecter b d e r /

int read-file(FILE * i d e , char *buffer)
{
char temp, *tenipl;
int flag;
inti=O;
temp 1 = buffer;
while(! feof(idî1e))
i
temp = getc(infi1e);
if(! feoflidile))

remp 1 [il = temp;
i++:
I

1
r e m i;
1

/*This function concatinat a string into a designated buffer. * /
j**/

void copy-str(char *buffer, char *str, int last)
f
for(int i = O: i < strlen(str); i++)

buffer[last+i] = str[i];
)

1

/*This function extract Slider information from the DSDYN file and write it into a separate file. */
/**/
void slider-ido(char buffer-m, int *size, char buffer-info, int *size_info)
{
int t;
char str_buffe< 1 51;

if ((bufferin[(*size)]) = '=')

i
(*size)++;
do
i
if(buffer-in[(*size)] != O")

buffer_info[(*size-info)] = buffer-in[(* size)] ;
(*size-iafo)++;

(*size)++;
if (buffer-in[(*size)] = 'h')
break;

) while (buffer-in[(*size)] != ' ') ;
buEer,info[(*sizeeùifo)] = ' ' ;
(*size-info)++;

1
else

t
(*size)++;
1

) while (bufferin[(*size)] ! = 'b');
buffer-info[(*size_info)J = 'h';
(*sizejnfo)++;
return;
1

/*This fiinction remove cooments fiom the file and r e m new file size /
/****t******8*8*****.*88+**8*888*88**8*88*8888*88**8888*8**8*8888*8*8*8*888**88********/

int comrnent(char *buffer-iri, int size, char *bufTer-out, F L E *fiIe-ido)
f
char *temp 1, * temp2;
temp 1 = buffer-in;
temp2 = buffer-out;
int j = O, t. new-size = 0, temp;
char str_bufferll5];
char buffer-info[10241;
int size-info = 0;
for(int i =O: i <= size;i++)
I
t = buffer-in[i];
if (t = '\n' II t = '\t' II t - ' ')
bu fferout [new-size] = t;
ncw-sizetc;
1

else if (!isalnurn(t))
f
buffer-out[new-size] = t:
new-s ize++:

else if (isalnum(t))

int a = 0:
while (isalnum(t))
i
str-bufferfa] = t;
a++;
i++;
t = buffer-ïn[iJ;
1

1--;

str_buffer[a] = '\Ov;
temp = new-size;
if(strcmp(str_buffer, "C") = 0)
{
slider-info(buffer-in, &i, buffer-info, &size-info);
1

else
{
copy-str(buffer-out, str-buffer, new-size);
new-size = new-size + strlen(str-buffer);

/*This funcrion Iookup for keywords and renm irs size */
!**/
in t lookup(char s0.stnic t enay *keywords. int length)

int temp-rem = 0;
for(int p = O; p < length; p*)

if(strcmp(keywordslp].Iexptr, s) = 0)

/*This iünction copy a whole line from on buffer to another buffer. * /
/**/
int copy-1 ines(char buffer-in, int *size-in, char buffer-out, int size-out. int key-flag)
t
int t. flag;
char str_buffea256];

a++;
j++;
t = buffer-inlj]:
1
str-buffer[aJ = '\O.;

flag = lookup(str-buffer, keys.3);
if (flag - key-flag)
{
if (key-flag = 0)
j = j - strien(str-buffer);
do
{

buffer-out[size-out] = buffer-hu];
size-out*;
j++:
) while (buffer-klj- 1] != %');
j-;
;

eise
{
do
{
if 6 >= (*site-in))
r e m size-out;

j++:
} while (buffer-inu] != '\II');

/*This h c t i o n extract C code from one file to another */
/**/
}

kt c-code(char *buffer-in, char *bufTerout, int size)
{
/*char *temp 1, *temp2;
temp 1 = buffer-in;
temp2 = buffer-out;*/
int new-size = 0;
int t. temp. flag, real-flag = 0, newline-size = 0;
char st~bufferf2561;

for(int i =O; i <= size;i++)
{
t = buffer-in[i];
if (t = k' II t = '\t' II t = ' ')
{
buffer-out[new-size] = t;
ncw-six++;
if (t = 'b')

{
if(isdigit(buffer-inLi- 1 1) != 0)
{
buffer-out[new-size - 11 = ';';
bu ffer-out[new-sue] = '\n ' ;
new-size++;
1

newline-size = new-sire;
1

else if (!isalnum(t))

I
buffer-out [new-size] = t;
new-size++;
1

else if (isalnum(t))
t
int a = 0:
w hile (isalnum(t))

t
str_buffer[a] = t;
a++:
i++;
t = buffer-in[i] :
1

1-;

su-buffer[a] = '\O*;
temp = new-size;
/*printflbW!d \n", new-size);*/
flag = lookup(str-buffer,keywords,9);
iqflag = 4)
real-flag*;

if(flag > 0)
{

if((flag = 4) && (real-flag > 2))

copy-stxfbufferout, "DD float", new-size);
new-size = new-size + strlen("DD float"):
do
i
i++;
buffer-out [new-size] = bu ffer-in [il;
new-size++;

> while @fier-in[i] != Yu');
new-size-;
copy-str(bufferout, " ;W. new-size):
new-size = new-size + strlen(" ;hW);
newline-size = new-size;

1
else if ((flag = 7) && (buffer-h[i+ 11 = '('))

{
copy-str(bufferout, scbuffer, new-size);
new-size = new-size + sûien(srr-buffer);

new-size-;
copy-str(buffer-out, ";\XI", new-size);
new-size = new-size + strlen(Yn'3;
newiine-sue = new-size:

1
1

else if (flag = 0)
{
copy-str(buffer-out, str-buffer, new-sue);
new-size = new-size + strlen(str-buffer);
newline-size = new-size;
1

/*printf("%d in", new-size);*/

1
}

new-s ize--:
bufTer-out[new-size] = '\n';
r e m new-size;
...

/* 1-->main, 2->xx.c */
int main-code(char *bufferÏnl, char *buffer-in2, char *buffer-out, int sirel, int size2)
{
int new-size = 0;
int t, t 1, ternp, flag, flag 1, newline-size = 0;
char sa-bufferf2561;

for(int i =O; i <= sizeI;i++)
{
t = buffer-in 1 [il;
if (t = 'h' II t = '\t' II t = ' ')

buflerout [new-size] = t;
netv-size++;
1

else if (! isalnum(t))

buffer-out[new-size] = t;
new-sizett:
}

e k if (isalnum(t))

int a = 0:
while (isalnum(t))

str-bufferla] = t;
a++;
l++:

t = buffer-in 1 [il;
1

1--;

su-bufferra] = '\O,:
temp = new-size;
flag = lookup(str-buffer, keys,3);

switch(flag)
{
case 1 :

f
new-size = copy-lines(buffer-in2, &size2, bufTer-out, new-size, 1);
break;
1

case 2:
{
new-size = copy-lines(bufferin2, &size2, bufferout, new-sue, 0);
break;
1

case 3 :

new-s ize = cop y-lines(bufferin2, &size2, buffer-out, newv-s ize. 3);
break;

case O:
{
top y-s tr(buffer-out, s~bu f f e r , new-s ize);
new-size = new-sire + strlen(str_buffer):
new line-size = new-size;
break:

1
1

}

FILE *infile. *outfile, *mainfile, *infofile;
char in_buffer[8 1921, *temp;
char in-buffer 1 [8 1921, in_buffer2[8 1921;

ïnt file-size, file-size2. final-size;
char str_system[l5], str-outfilef 151, strjnfiie[151. str-info!iIe[lS];

scanf("?!s", str-system);
strcpy(str-infile, s tr-system);
strcat(str-infile, ".dsd.f 7;
strcpy(str-outfile, str-system);
strcat(str_outfile, ".cW);
strcpy(strtfmfofile, str-system);
strcat(str-iufofile, ".id'?;
prhtf("%s %s %s \n",str-infile, str-outfile, str-idofile);
infile = fopen(strjnfile,"r");
outfile = fopen(str-outfile,"w'3;
mainfile = fopen("main.c", "r");
infofile = fopen(str_infofile, 'W3;

file-size = read-file(infile. in-buffer);
file-size2 = read-file(mainfile, inbuffer2);
fclose(infi1e);
fclose(mainfile);

file-size = comment(in-buffer, file-site, inbuffer 1, infofile); /*bufFer -> buffer 1 *!
printf('*!d hW, file-size);
file-size = c-code(in-buffer 1, in-buffer, file-size); Pbuffer 1 -> bdfer */
pnntf("%d \n", file-size);
finabize = main-code(in-bufTer2, in-buffer, in-buffer 1, file-size2. file-size); /*buffer ->buffer 1 */
for(int i=O; i <final-six; i++)

f
putc(in-buffer 1 [i],outfile);
1

fcIose(infofi1e);
fclose(outfile);
return O:
1

Appendix B.1

PARAMETERS:
GRAPHZCS:

Box(-48,48,48,48)
Line(-64, -32, -48, -32) how-R(-48, -32) FText(-42, -32,"VaW)
Linet -64, 0 , 4 8 , 0) A~ow-R(-48~ 0) FText(-42, O,"Vbl*)
Line(-64, 32 ,48 , 32) f ~row-R(-48,32) FText(-42, 32,"Vc")
Line(48,0,64,0) FText(36,0, "Theta")
FText(-5, O, "PLL")

NODES:
Va -2 - 1 INPUT REAL
Vb -2 O INPUT REAL
Vc-2 1 INPUT REAL
theta 2 O OUTPUT REAL

FORTRAN: DSD
C
C Phase Lock Loop

DD float Vac, Vba, Vcb. Valpha, Vbeta, Prev-Theta, Pres-Theta. delta-t;
DD fl oat Prev-Err, Pres-Err, Prev-Err-s;
DD float Pres-Err-s, Prev-VCO-input, Prcs-VCO-input:
DD float K1, K2, Uref, delta-üref;
/**8**8***p~18**8************f*/

Vac = $Va;
Vba = SVb;
Vcb = WC;
Valpha = 0.33333*(2.0*Vac - Vba - Vcb);
Vbeta = 0.5773Se(Vba - Vcb);
Pres-Err = Valpha cos(Prev-Theta) + Vbe ta*sin(Prev-ïheta);
Pres-Err-s = (Prev-En + Pres-Em)*OS*deIta-t + Prev-Ecs:
Pres-VCO-input = K 1 * P m - E r ~ s + K2*PreseErr + Uref + delta-Uref;
Pres-ïheta = Pres-VCO-input*delta_t86.283 18 + Prev-neta:
if (Pres-Theta > 6.283 18)

Pres-Theta = Pres-Theta - 6.283 18;
Prev-Err = Pres-Erq
Prev-Err-s = Pres-EKS;
Prev-VCO-input = Pres-VCO-input;
Prev-ïheta = Pres-ïheta;
Stheta = Pres-Theta;

/**** ****endof pl18*L**L888*****L**8***/

MM Prev-Err = 0.0;
MM Prev-Err-s = 0.0;
MM Prev-VCO-input = 0.0;
MM Prev-Theta = 0.0;
MM K 1 = 20.0;
MM K2 = 10.0;
MM Uref = 60.0;
MM d e l t u r e f = 0.0;
C

Appendix B.2
PARAMETERS:
GRAPHICS:

BOX(-64,-96,64, 96)
Lhe(-96, -32, -64, -32) Arrow-R(-64, -32) FText(-50, -32,"ThetaW)
Line(-96, 32, -64, 32) Arrow-R(-64,32) FText(-34, 32,"Alpha (RAD)")
Lhe(0, 128,0,96) Arrow-U(0, 96) FText(O,90, "Durauon (DEG)")
FText(-5, O, "Firing")
Line(48, -45, 64, -45) Arrow-R(64, -45)
Line(48, -27,64, -27) Arrow-R(64, -27)
Lin@ 48, -9,64. -9) k0w-R(64, -9)
Lim(48,9,64,9) Arrow-R(64,9)
Line(48,27,64,27) Arrow-R(64,27)
Line(48.45,64,45) Arrow_R(64,45)

NODES:
theta -3 - 1 iNPüï REAL
alpha -3 1 INPUT REAL
duration 0 4 INPUT REAL

FORTRAN: DSD
C Ramp generator and firing
C
DD float Ramp[6], star& stop;
/**********firingb~ock*****&********+****~****88/

Ramp[Oj = $Theta;
fora = 1; j<=5; j++)

{
RampljJ = Ramplj- l] - 1.047 19755; /* PU3 */
if (Ramplj J < 0.0)
Ramplj] = Ramplj] + 6.283 i 853;
1

srart = $alpha;
stop = start + Sduration*(3.14 159/! 80.0);
/* pulse 1 at CLKXO */
if ((Ramp[O] > start) & (Ramp[O] < stop))

up-CLKXO;
else

dn-CLKXO;
l* pulse 2 at FSXO */
if ((R=p[11 ' star0 & m m p [11 < stop))

up-FSXO;
else

dn-FSXO;
/* pulse 3 at DXO */
if ((Ramp[2] > start) & (Ramp[2] < stop))

up-DXO;
else

dn-DXO;
l* pulse 4 at DX 1 *!
if ((Ramp[3] > start) & (RampPJ < stop))

up-DX 1 ;
else

dn-DX 1;
l* pulse 5 at FSX 1 */

