
Independent Activity and Local Opportunity for
Dynamic Robot Team Management in Dangerous

Domains

by

Seth Fiawoo

A thesis submitted to

The Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements

of the degree of

Master of Science

Department of Computer Science

The University of Manitoba

Winnipeg, Manitoba, Canada

July 2019

c© Copyright 2019 by Seth Fiawoo

Thesis advisor Author

John E. Anderson Seth Fiawoo

Independent Activity and Local Opportunity for Dynamic

Robot Team Management in Dangerous Domains

Abstract

Dangerous domains are a challenge for teams of heterogeneous robots, since robot

losses may involve the loss of particular skills that might be rare in the domain.

Previous research has resulted in a framework that allows teams to rebalance and

recruit from the environment. However, there is currently no consideration of

situations where agents may at times provide more useful work globally by not joining

a team, or situations where it might be discovered that types of work might be

associated with a given locality. My thesis extends this framework to give agents

the ability to refuse to join teams and work for times on their own, by considering

current satisfaction in the use of their skills, the likely rarity of their skills, and the

distribution of places those skills are used in the environment. I examine this work

in a simulated Urban Search and Rescue domain. My results show that in scenarios

where a robot’s special skills are rare and tasks requiring those skills are only available

at a few fixed locations in the environment, a robot is more useful if it suspends its

team commitment to make itself available to all teams.

ii

Contents

Abstract . ii
Table of Contents . v
List of Figures . vi
List of Tables . viii
Acknowledgments . ix
Dedication . x

1 Introduction 1
1.1 Chapter Overview . 1
1.2 Introduction . 1
1.3 Motivation . 4
1.4 Terminology . 6
1.5 Research Questions . 9
1.6 Solution Approach . 9
1.7 Thesis Organisation . 11

2 Related Work 13
2.1 Dynamic Team Management and Formation 14
2.2 Robot Assessment and Evaluation . 17
2.3 Recruitment in Multi-Robot Systems 19
2.4 Existing Framework . 21

2.4.1 Gunn Framework . 22
2.4.1.1 Attributes, Tasks, and Roles 22
2.4.1.2 Team Management and Maintenance 24
2.4.1.3 Task Management 27
2.4.1.4 Schemas . 32

2.4.2 Active Recruitment Controller (ARC) Framework 32
2.4.2.1 Recruitment Spectrum 32
2.4.2.2 Recruitment Strategies 34
2.4.2.3 Marker Manager . 37

2.5 Conclusion . 37

iii

iv Contents

3 Methodology 38
3.1 Chapter Overview . 38
3.2 My Framework . 38

3.2.1 Robot Satisfaction . 40
3.2.1.1 Tracking individual satisfaction 41
3.2.1.2 Tracking team members’ satisfaction 45

3.2.2 Rare Skills in the Environment 47
3.2.2.1 Unique skill . 50

3.2.3 Robots’ Sense of Locality . 50
3.2.3.1 Task locale . 51

3.3 Conclusion . 52

4 Implementation 53
4.1 Introduction . 53
4.2 USAR Domain . 53
4.3 The Simulated Environment . 54

4.3.1 Environment Objects . 55
4.4 Robot Types . 57

4.4.1 MinBots . 58
4.4.2 MidBots . 60
4.4.3 MaxBots . 60
4.4.4 DebrisBots . 61
4.4.5 FireBots . 61
4.4.6 Stairbot . 62

4.5 Attributes, Tasks, and Roles . 63
4.5.1 Attributes . 63

4.5.1.1 Physical Attributes 63
4.5.1.2 Computational Attributes 64
4.5.1.3 Sensory Attributes 64

4.5.2 Task Types . 65
4.5.2.1 Gunn Framework Tasks 65
4.5.2.2 ARC Framework Tasks 67
4.5.2.3 My Framework . 68

4.5.3 Role Types . 70
4.5.3.1 Team Leader . 72
4.5.3.2 Coordinator/Explorer 72
4.5.3.3 Explorer . 73
4.5.3.4 Debris Remover . 73
4.5.3.5 Fire Extinguisher . 74
4.5.3.6 Stair Lifter . 74

4.5.4 Ideal Team . 74
4.6 Autonomous Control . 76

Contents v

4.6.1 Perceptual Schemas . 76
4.6.2 Motor Schemas . 78

4.7 Framework-Specific Modules . 79
4.8 Mission-Specific Modules . 80

4.8.1 Satisfaction Manager . 81
4.8.1.1 Satisfaction Expression 81

4.8.2 Tracking Robot Satisfaction 83
4.8.2.1 Tracking Members 85
4.8.2.2 Tracking Location Satisfaction 86
4.8.2.3 Identifying Skill Rarity 86

4.9 Preliminary Experiment . 87
4.10 Conclusion . 89

5 Testing and Evaluation 90
5.1 Introduction . 90
5.2 Review of Research Questions . 91
5.3 Evaluation Metrics . 91
5.4 Environment Generation . 93
5.5 Environment Set-up . 95

5.5.1 Independent Variables . 96
5.6 Additional Experiment . 97
5.7 Main Experiment Results . 97

5.7.1 Victims Successfully Confirmed to Leaders 99
5.7.2 Area Coverage . 103

5.8 Additional Experiment Results . 107
5.8.1 StairBots Results . 107
5.8.2 FireBots Results . 110

5.9 Analysis . 112
5.10 Conclusion . 114

6 Conclusion 115
6.1 Chapter Overview . 115
6.2 Answers to Research Questions . 115
6.3 Contributions . 117
6.4 Future work . 118

6.4.1 Future Implementation Suggestions 118
6.4.2 Suggestions for Future Research 119

6.5 Conclusion . 122

A Experimental Environments 123

Bibliography 133

List of Figures

2.1 A sample ideal team definition with three robot types. Adapted from
[Gunn, 2011] . 26

2.2 The process a team leader goes through to find a suitable robot for a
task. Adapted from [Nagy, 2016] . 30

2.3 The recruitment spectrum. Adapted from [Nagy, 2016] 33
2.4 A missing role check and a role-recruited task generated as a result of

the role check. Adapted from Nagy [2016] 36

3.1 An overview of my framework . 39
3.2 The decision-making process of a robot involving its current satisfaction 42
3.3 A leader determining whether a member is useful or not 46
3.4 A robot checking if it has a rare skill, and taking the requisite actions 49

4.1 Sample of a randomly generated world in my framework 56
4.2 Objects within an environment as used in my research 58
4.3 The different robot types used in my framework 59
4.4 An ideal robot team as used in my implementation. 75
4.5 Results from the preliminary experiments to determine what

satisfaction value to use as the base 88

5.1 Percentage of victims identified using passive recruitment, with and
without replacement robots . 100

5.2 Percentage of victims identified using concurrent recruitment, with and
without replacement robots . 101

5.3 Percentage of victims identified using active recruitment, with and
without replacement robots . 102

5.4 Percentage of area coverage using passive recruitment, with and
without replacement robots . 104

5.5 Percentage of area coverage using concurrent recruitment, with and
without replacement robots . 105

vi

List of Figures vii

5.6 Percentage of area coverage using active recruitment, with and without
replacement robots . 106

5.7 Number of stair lifts successfully completed when satisfaction tracking
was turned on for all configurations without the use of replacement
robots . 108

5.8 Number of stair lifts successfully completed with satisfaction tracking
turned on for all configurations when replacement robots were used . 109

5.9 Number of fires successfully extinguished when satisfaction tracking
was turned on for all configurations without the use of replacement
robots . 111

5.10 Number of fires successfully extinguished with satisfaction tracking
turned on for all configurations when replacement robots were used . 112

A.1 Experimental environment 1 . 124
A.2 Experimental environment 2 . 125
A.3 Experimental environment 2 . 126
A.4 Experimental environment with multiple storeys 127

List of Tables

2.1 Recruitment strategies employed in fulfilling role or task requirements.
Adapted from Nagy [2016] . 35

4.1 Physical properties and attributes of robots used 64
4.2 Capabilities of robots used . 65
4.3 Physical properties and attributes of robots used 66
4.4 The possible robot-role combinations with their suitablities 71

5.1 Robot types and the different configurations of failure probability. . . 98

viii

Acknowledgments

First and foremost, I would like to thank God for seeing me through this chapter;

it wasn’t without its challenges, but, His sustenance pulled me through. Next, I

would like to thank my advisor, Dr. John Anderson. Words cannot express how

appreciative I am for your level of patience, guidance, support, and insight. Even

during your recovery, when others would have taken a break, you were constantly

available, using your superior reviewing skills to help me finalise a thesis I am very

proud of. I am really grateful to have been your student. God bless you! A big

thanks also to my committee members for taking time of their schedules to review

this thesis and provide useful insights.

Finally, I would like to thank family and friends for all their support and

encouragement during this process of obtaining my MSc.

ix

This thesis is dedicated to God, family, and friends who never questioned

my ability to successfully complete this journey. Thank you for all the

love, patience, kindness, support and encouragement.

x

Chapter 1

Introduction

1.1 Chapter Overview

This chapter gives some background information on my research as well as

introducing concepts and terminology that are used throughout my thesis. Next,

I present my motivation for conducting this research and the questions my research

will answer. Finally, I give an overview of my solution approach and an outline of the

rest of my thesis.

1.2 Introduction

In the wake of a disaster, Urban Search and Rescue (USAR) teams arrive on the

scene to rescue victims that may be injured or trapped in damaged urban structures.

Such an environment is very dangerous to human rescuers (e.g. fire, further structural

collapse) [Murphy, 2000]. To minimise the risk to human life, one avenue of research

1

2 Chapter 1: Introduction

involves substituting teams of robots in place of humans, and having those robots

search and map the existing structure and search for victims [Arkin and Berkey,

1997]. This is a strong challenge to artificial intelligence (AI) and robotic technology,

in that the environment is unpredictable, changes dynamically, and is equally as

dangerous to robots as humans [Kemp et al., 2007; Anderson and Papanikolopoulos,

2008]. This danger makes the use of heterogeneous teams important: the likelihood

of losing any one robot is high, and cost can be better balanced with risk by having

fewer more elaborate units and additional cheaper, simpler robots that can be more

easily risked [Parker and Tang, 2006; Gage et al., 2004; Guerrero and Oliver, 2012].

The unpredictable nature of the domain also demands a broad skill set that is difficult

to expect from any single robot [Kiener and von Stryk, 2007].

The nature of this domain presents an extreme challenge to the management of

a team [Parker and Kannan, 2006; Rogers III et al., 2013]. As robots are damaged

or destroyed, teams must adapt, and must also be able to integrate new members

over time (e.g. encountering a robot lost from another team, or joining with robots

that are released specifically as replacement units) [Gunn and Anderson, 2015]. The

domain itself also adds technological challenges: communication can be sporadic and

unreliable, and teams must do the best they can under conditions where information

(e.g. assignment of a task, a notification of a new team member) may not be

received by all members. Previous work in our lab [Gunn and Anderson, 2013] has

resulted in a framework for collaboration that supports dynamic teamwork under the

assumption that robots will be lost or destroyed, possibly found or replaced, and

that roles on a team (including leadership) must sometimes be reassigned to best

Chapter 1: Introduction 3

suit current membership. The framework operates in a distributed fashion, with

local encounters driving both task discovery and membership changes on and among

teams (discovering new agents, realizing agents are lost, encountering teams and

balancing membership with them) [Gunn and Anderson, 2015]. Task assignment (i.e.

domain work) proceeds dynamically as the mixture of robots on a team changes [Gunn

and Anderson, 2013]. All this is done under conditions of limited communication

reliability. More recently, we have moved to more active forms of recruitment in

teams, recognizing that a reliance on simply encountering others will not be enough for

situations where agents with a specific skill or ability are desperately needed. We have

added support for a range of active recruitment strategies. These strategies involve

varying degrees of effort, from sending recruitment messages while doing useful work

to an active physical search for an agent with a specific ability [Nagy and Anderson,

2016]. They also vary in commitment: task-based recruitment borrows a robot to do

one specific task, while role-based recruitment involves switching teams to take on a

particular role [Nagy and Anderson, 2016]. In all the work thus far, there has been

the assumption that members are always available to be on some team, and that it

always makes sense for a lone agent to join a team when asked. There are a number

of important situations in which this is not the case, however (beyond settings that

do not apply here, such as when team members cannot trust one another [van de

Vijsel and Anderson, 2004]).

4 Chapter 1: Introduction

1.3 Motivation

In a situation where some skills are rare, multiple teams may be competing for

the same few agents, and teams moving a significant distance away from one another

cannot easily have members be temporarily recruited or otherwise shared with other

teams, possibly leading to lower global performance. From an individual’s standpoint,

a skill might be crucial but needed infrequently, meaning joining a team would lead

to the robot spending much time moving with a team and using its rare skill only

infrequently. An example of this in USAR is an agent equipped for fire-fighting:

fires may need to be put out for a team to move through a given area, but may

be encountered only sporadically. Such a robot could still be of use to a team for

other activities, but a possibly rare skill would still be underutilized. Permanently

travelling with such an agent is also not necessarily in the best interests of the team,

since work must be devoted to coordination at all times even when the skill is not

required.

While fires may be unpredictable, other activities may be spatially constrained. If

a robot can lift others up a flight of stairs, for example, the utility of travelling with

a team depends on the frequency with which climbable areas are encountered, just

as the fire-fighting example above. Beyond this, however, there may be only one or

two fixed places to climb over rubble and stairs, in which case it would be better to

remain near those locations rather than travelling with a team. Conversely, once time

has passed with little work (e.g. teams have moved on to other floors), remaining in

that location would be less productive.

Balancing the possibility of being on a team with independent activity in both the

Chapter 1: Introduction 5

above situations requires a sense of self-motivation beyond simply having a shared

goal: it involves knowing one’s particular skills are being put to good use. The latter

of the two examples above also involves looking at the locations where skills are being

used to possibly better leverage them in cases where those skills are not plentiful. The

purpose of my thesis research is to extend our framework to support these types of

activities, and to study these phenomena in the USAR domain.

The framework as it existed before my own work supports a robot being able to

switch into an open role on a team for which it is more suited, and provides a range

of effort indicating how much energy a robot should spend in trying to recruit other

robots for tasks it cannot perform. The extended framework supports a spectrum

of possibilities for team-based activity, from always joining a team and moving with

it [Gunn and Anderson, 2015], to being temporarily recruited [Nagy and Anderson,

2016], to deciding to operate independently where that is advantageous and shift to

other points on this spectrum when circumstances change. The best point in this

spectrum for any agent to be on depends on the range of skills in the environment

and their rarity, which in turn depends on the milieu of agents currently in the

environment and the changes in this population over time.

For example, if there is an influx of stair-climbing robots, individuals with this

skill should recognise this over time and become more willing to stay with a team

even if the work being done does not utilise this skill, and gravitate again to working

at particular locations if this skill once again becomes rare. The intended outcome

is a better use of robots both off and on teams, and a stronger global outcome while

still relying on local decisions made over time.

6 Chapter 1: Introduction

1.4 Terminology

In this section, I describe some technical terms that I use throughout my thesis.

• Task—A task as used within my work, refers to a basic unit of useful work that

can be performed by a single robot [Gunn and Anderson, 2015]. Some examples

of tasks are extinguishing a fire, clearing debris, identifying a victim. [Krieger

et al., 2000; Kiener and von Stryk, 2007]

• Role—For the purposes of my research, a role is defined as a position in a team

a robot can fill and is described by the types of tasks a robot filling that position

can perform [Gunn and Anderson, 2015]. An example is a fire-fighting role. A

robot occupying this role should be able to put out fires, navigate uneven terrain

and through debris and note potential victims as the robot moves [Nagy, 2016].

• Unique skill—There are certain tasks within the environment which are only

capable of being fulfilled by one particular type of robot. Any skill used while

performing such a task makes the skill a unique one. For instance, only a

DebrisBot may be able to remove debris and in that case, this makes the skill

associated with clearing debris unique.

• Satisfaction—Within the context of my work, satisfaction is a measure of how

much utility a robot derives from performing tasks within the environment. A

robot gets satisfaction when it is able to complete tasks (whether discovered

or assigned). Completing different tasks gives a robot a different satisfaction

value. For instance, a robot performing a task that requires the use of a unique

skill will gain more satisfaction from completing that task than completing a

Chapter 1: Introduction 7

task which does not make use of a unique skill. I track two kinds of satisfaction

in my work: 1) a robot tracking its own satisfaction, and 2) a leader tracking its

team members’ satisfaction by counting the number of task assignment requests

members have accepted.

• Rare skill—A dangerous domain such as a USAR environment constantly

evolves over time and this can cause robots to break down. At some point,

there might be certain tasks discovered where there are not enough robots to

perform newly discovered tasks. I define a rare skill as one where there is an

excessive number of requests compared to the number of robots readily available

to satisfy those requests.

• Team—A team as used within my work, refers to a group of robots that have

a varying range of abilities, that have incomplete knowledge of the team’s

membership and its collective abilities, and have a common goal. Every team

has a leader responsible for coordinating members and assigning tasks to them.

A robot on its own (lost robots and replacements) is considered to be a team

of one, with that robot being the leader. All robot teams in my work have

a common overarching goal and thus do not compete with other teams in the

domain while working towards this goal [Krieger and Billeter, 2000; Pitonakova

et al., 2014]. Team members in my work are not selfish [Dutta and Sen, 2003]

and are always expected to accept tasks assigned to them (provided their task

queue is not full). However, when a team member has a rare skill, it will reject

task requests that will not make use of that rare skill so it can potentially

serve other teams and reduce a bottleneck. While this raises issues of a robot

8 Chapter 1: Introduction

being selfish, a robot cannot refuse tasks because harm might come to it while

performing that task. Though it might be useful for robots within a dangerous

domain to measure the risk associated with tasks before accepting them, that

is beyond the scope of my thesis.

• Recruitment—Recruitment is the process of requesting that a task be

performed, either by a specific robot or whichever is available, and is in itself a

task [Gage et al., 2004]. Every recruitment request employs a different strategy

ranging from chance encounters (passive) to broadcasting messages (concurrent)

to performing a physical search (active), with the aim of finding an agent more

suitable to take on a newly discovered task the recruiter cannot perform [Nagy

and Anderson, 2016]. The above-mentioned range indicates how much effort a

robot puts into finding a better suited robot for a newly discovered task. The

points within this range defined here are referred to as recruitment strategies in

my research. Robots in my framework are able to reject recruitment requests

when the skill being requested is a rare one. Recruitment allows a team to

acquire new skills temporarily (task-based) or permanently (role-based), in

order to perform work that previously could not be completed by the team.

• Willingness— Depending on what a robot’s satisfaction value is at any time,

a robot may accept or reject recruitment requests. I define a robot’s tendency

to accept or refuse a recruitment request with consideration of its current

satisfaction as the robot’s willingness. In my work, there are three levels to a

robot’s willingness - willing, somewhat willing, and not willing. A robot is said

to be willing if its satisfaction is so low that it believes it has to be aggressive

Chapter 1: Introduction 9

(leaving its current team) about increasing its satisfaction. A somewhat willing

robot has moderate satisfaction and is open to accepting recruitment requests.

A robot is not willing to accept recruitment requests if it realises it has a

currently rare skill.

1.5 Research Questions

In this section, I present the research questions I will be answering using the

approach I describe in Section 1.6

1. To what degree does tracking robot satisfaction affect the total teams’

performance with respect to the overall mission in a USAR domain?

2. For specialised tasks that require the use of a robot’s unique skill, is

it more useful to have robots expending effort to stay with a team

or should these efforts be redirected towards areas where its special

skills may be needed?

1.6 Solution Approach

My work builds on prior research done in our lab where teams of heterogeneous

robots were able to dynamically balance their team membership by role switching and

exchanging members based on physical encounters between teams [Gunn, 2011], and

having robots put in varying levels of effort to search for better suited robots to fulfil

some discovered task for which they themselves will not perform adequately [Nagy,

2016]. However, in all of this work, there was no consideration of whether a robot

10 Chapter 1: Introduction

was useful within the context of contributing to the teams’ overall goals. The focus

was mainly on identifying what was lacking within an individual team, and trying to

supply the missing robot skill.

My work focuses on a robot being able to track its utility within a team and

use this knowledge acquired over time to determine whether it is better off staying

on its current team, to be more or less willing to be recruited by another team, or

ultimately leave its current team to become independent. In a similar vein, team

leaders are also able to track how well a member is performing within the team and

make an appropriate decision - keeping a member on a team or letting them go. A

robot will also be able to identify when there is a shortage of its skill within the

environment (whether its skill is in high demand). With access to such information,

a robot can make more informed decisions (that is, making itself available to all teams

if there is a global shortage of a skill it possesses, or staying with its team if none of its

skills are in high demand). When a robot realises it is not being productive enough, it

could be that the part of the environment being currently explored does not make use

of its skill set and thus its satisfaction would diminish over time. What if the robot

had visited a previous location where it had been useful? It makes sense that in trying

to increase its satisfaction, it will go back to places where its skill was utilised the

most (or to new areas that bear similarity to places where it was previously satisfied),

with the aim of improving its satisfaction (there’s probably more work to be done

there, or places like that, and that work will bring satisfaction to the robot). Having

a high utility at that location, a robot will be motivated to limit its activity to that

location. Being at that location over a period, if the robot’s satisfaction reduces, then

Chapter 1: Introduction 11

naturally the robot will explore other avenues to improve its satisfaction. This could

involve being more open to accepting recruitment requests or going to a location with

a likely higher satisfaction.

My thesis extends an existing framework for dynamic team management to

account for situations where agents may be more useful operating independently of a

team, either because rare skills would be infrequently utilized moving with individual

teams, or where skills are most useful in particular locations in the domain. The

framework allows agents to be as independent as the evolving situation (including

the current mix of tasks and robot types) demands, and increase global effectiveness.

1.7 Thesis Organisation

The remainder of my thesis is outlined as follows:

• Chapter 2: Related Work–Reviews existing literature related to my work

with regard to team management, robot assessment and evaluation, and robot

recruitment.

• Chapter 3: Methodology–In this section, I describe satisfaction, skill rarity

and locality as it relates to my work. I also give an overview of my robot and

team design.

• Chapter 4: Implementation–Provides a detailed description of components

(robots, skills, and tasks) I implemented to enable me to evaluate my framework.

• Chapter 5: Testing and Evaluation– Describes experiments I used to

12 Chapter 1: Introduction

evaluate my framework and discusses the results I obtained from running these

experiments.

• Chapter 6: Conclusion–uses results from the preceding chapter to answer

the research questions posed in Section 1.5 within the context of my thesis. I

also discuss possible directions for future work.

Chapter 2

Related Work

The primary focus of my thesis is to develop and evaluate a framework that allows

robots to estimate how useful they are within a team setting (i.e. contribution towards

the overall team’s goals) in a rapidly evolving domain such as USAR. A robot would

use this information in conjunction with knowing the commonality of its skills in the

environment and whether there is a region within the environment that is likely to

require the use of any rare skill.

In this chapter, I introduce related background work and describe concepts from

these works that are similar and also indicate how they differ from my work. I

group the related works by similar concepts used. The first category is dynamic team

management and formation. In this group, robots work in teams and dynamically

adjust team membership when specific events occur in the environment [Gunn and

Anderson, 2015; Dasgupta and Cheng, 2016; De Rango et al., 2018; Krieger et al.,

2000].Robot assessment and evaluation deals with works that involve robots keeping

track of information regarding how they are performing within the environment and

13

14 Chapter 2: Related Work

taking the requisite actions to improve performance [Gage et al., 2004; Simonin and

Ferber, 2000; Guzzi et al., 2018]. The final group deals with recruitment in multi-robot

systems where robots will ask for assistance from other robots to complete some

discovered task [Nagy, 2016; De Rango et al., 2018; Krieger et al., 2000].

2.1 Dynamic Team Management and Formation

One of the concepts pivotal to my work is team formation and maintenance. This

is a really broad area of study and a huge variety of approaches and strategies have

been used to form and maintain teams in order to accomplish goals. In this section I

discuss previous works where team membership changes over time or based on some

event occurring. That is, a robot may leave a team or a team may accept new

members according to defined membership rules (for instance a robot not heard from

after some time may be considered to have left the team [Gunn and Anderson, 2015])

or an event occurring, such as encountering an obstacle [Dasgupta and Cheng, 2016].

Kiener and von Stryk [2007] presented a framework for task allocation in teams

of heterogeneous robots. They demonstrated their approach with a team comprising

a wheeled Pioneer robot and a humanoid robot. The team’s objective was to follow a

ball down a hallway and kick it into a goal. The two robots maintained knowledge of

their unique abilities and by using these at the right time, they were able to complete

the task when neither of them could have done it on their own. Although this is similar

to my research, there are significant differences. My work involves a higher number

of tasks with varying priorities at different locations, and therefore task allocation

decisions are not immediately obvious, unlike the above-mentioned work where the

Chapter 2: Related Work 15

task was well-defined at the beginning of the team’s mission and there was an obvious

mapping as to which agent should do what.

Coviello and Franceschetti [2012] presented an algorithm for team formation with

agents in one of two classes: leaders and followers. A leader recruits team members

within its locality given a predefined constraint (the number of followers a leader

can recruit). In forming a team, a leader sends requests to followers within its

communication range and a follower can accept or reject a request. If a follower

receives multiple team requests, the follower selects a team at random to join. Unlike

my work, this does not involve making any rational decisions based on skill balance,

task diversity, and agent population. It is also much less sophisticated than my

framework in terms of the limited roles an agent can take on within a team.

Dasgupta and Cheng [2016] provided a framework for dynamically dividing up

a team of robots into smaller sub-teams to navigate around arbitrarily-shaped ob-

stacles. The concept of weighted voting games (every agent is assigned a weight

and the group of agents whose total weight exceeds a given threshold, dictates the

course of action [Elkind et al., 2007]) was applied. Once an obstacle was encountered,

the robots divided themselves into smaller groups in such a way that each sub-team

could navigate around the obstacle. Once all sub-teams were clear of the obstacle,

they merged back into a larger team. The concept of maintaining formation around

obstacles is well-explored (e.g. [Balch and Arkin, 1998; Fredslund and Mataric, 2002]).

However, the approach presented by Dasgupta and Cheng [2016] results in fewer

sub-teams and faster decision-making. With regard to allowing robots to leave their

existing teams and form new ones, my work is similar to the aforementioned work.

16 Chapter 2: Related Work

However, in my framework the team management strategies I employ are for acquiring

skills to complete specific tasks and not for satisfying physical constraints from the

spatial context. Also, my framework operates in a much richer domain in terms of

potential tasks, and a domain that is dangerous to robots.

Gunn and Anderson [2015] implemented the original framework upon which my

work is based. In their approach, robots were responsible for identifying human

victims and performing team maintenance duties as the need arose. Robot loss was

a significant risk due to challenging conditions (debris and communication failures)

in the environment. To mitigate the effect of these losses, Gunn and Anderson [2015]

introduced replacement robots and used role switches – agents could change their

roles to cover gaps in skills on a team, even if they were not perfectly suited to these

new roles. They also relied on encounters between teams (single agents are considered

to be a team of one) where members could be exchanged (including a single agent

merging with a larger team) so that post-encounter, teams had a more effective set

of skills. This approach was later referred to as passive recruitment in Nagy [2016] to

distinguish it from other types of agent recruitment. Robot recruitment in Gunn and

Anderson’s [2015] approach was entirely passive: only robots or teams encountered

by chance could influence role changes, and these changes would be permanent until

another role change was deemed necessary. The framework developed by Gunn and

Anderson [2015] provides some core components which I use in my work and these

are described in more detail in Section 2.4.1.

My work extends the original framework by considering when there is global

shortage of a particular skill within the environment and affords robots the option

Chapter 2: Related Work 17

of rejecting team membership requests to make themselves available to accept task

requests from all teams within the domain.

2.2 Robot Assessment and Evaluation

Gage et al. [2004] introduced an approach that uses an affective model for team

recruitment. In their approach, robots broadcast requests for help and other robots

receiving these requests either respond (or not) in part on the basis of a shame value.

This shame value is calculated based on a robot’s suitability to perform the requested

task. Robots that do not respond to requests have their shame value increase over

time while those responding to requests have their shame value reset to zero. The

shame value thus motivates robots that ignore requests to be more likely to respond

positively to subsequent requests. It also makes the best-suited robots respond first,

and the less-suited ones respond later (as shame increases). My work does not use

shame as a motivator, but instead takes a different approach by tracking an agent’s

satisfaction at the current use of its particular skill set. It also takes a broader view

than Gage et al. [2004] by considering this not just as a response to individual tasks

but for broader choices on team membership or independence – staying on a team or

leaving it.

Simonin and Ferber [2000] proposed a satisfaction and altruism model that

incorporates cooperative behaviours between multiple agents. The focus of their

research was the resolution of spatial conflicts that arose from having multiple

agents in the environment. To resolve conflicts, Simonin and Ferber [2000] used a

satisfaction signal to determine an agent that was involved in a conflict course of

18 Chapter 2: Related Work

action. In their model, an agent took actions to try to maximise its satisfaction

based on either the agent’s self-interest or the collective interests of agents. To

help them achieve this, they divided agent satisfaction into three components:

personal satisfaction, empathy satisfaction (average satisfaction of agents nearby),

and interactive satisfaction (satisfaction obtained from interacting with other agents).

An agent only broadcasts its interactive satisfaction within a bounded distance from

itself, so other agents would know whether the broadcasting agent needed help or if

it were being obstructive to the broadcasting agent. Each agent in their work has its

own tasks, but agents could also cooperate to complete tasks. My work also models

satisfaction, but as a balance between skills being used while on a team versus the

opportunities that exist elsewhere, as opposed to whether one is hindering another

agent. My work is also non-competitive in that there is a common goal in USAR, with

agents having different immediate tasks but a global goal that all agents contribute

toward. Moreover, encountering other agents in my framework is an important part

of building and maintaining teams and a natural occurrence in the world, as opposed

to something to be strictly avoided.

Guzzi et al. [2018] presented a framework that models human emotion in

multi-robot systems. They used a navigation task to show how coordination in

multi-robot systems could improve by stacking artificial emotions on top of an

existing navigation framework. An agent in their work has an internal state which

is characterised by: 1) a set of abilities, 2) a personality, and 3) an energy level

which is time dependent. An agent’s current internal state determines its active

emotional state which in turn determines what action a robot would take, referred to

Chapter 2: Related Work 19

as its behaviour. In order to avoid oscillations in the emotional state of a robot, an

agent keeps its active emotion until the activation for that emotion falls below a low

threshold or another emotion’s level rises above a high threshold; the thresholds are

dynamically determined.

2.3 Recruitment in Multi-Robot Systems

De Rango et al. [2018] implemented a protocol in wireless sensor networks to

coordinate a swarm-based robot team for discovering and disarming mines. In their

work, the swarm continually explores an unknown environment while actively looking

for mines. In their work, disarming a mine is too complex a task for a single robot

to execute, and so there is the need to request help from others. There are no

pre-set teams in their experiments and teams are only formed temporarily upon the

discovery of a mine, with the constraint being how many robots from the swarm are

needed to disarm the mine. Once a robot discovers a mine, it begins recruiting other

robots by leaving a trail to the found mine. The actual disarmament of the found

mine begins when there are enough team members to carry out the task. Krieger

et al. [2000] performs similarly, but allows robots to recruit others to follow them to

known locations where food is available. In both of these works, teams are formed

temporarily based on certain events – the discovery of a mine and the discovery of a

known food location, respectively. In forming temporary teams, each robot acts as a

leader when an event occurs. There are significant differences between these works

and my own, however. First, these operate in homogeneous domains and do not have

to consider particular abilities or skills. Secondly, robots can only accept recruitment

20 Chapter 2: Related Work

requests in the above cited works, whereas my framework provides mechanisms that

allow for a robot to reject a recruitment request.

Nagy and Anderson [2016] extended the original framework developed in [Gunn

and Anderson, 2015] and added two types of recruitment mechanisms: role-based

recruitment allowed a member to join a new team to fill an ongoing role, while

task-based recruitment let a new member join only for the purposes of performing

a single task. The latter allows an agent to essentially be borrowed temporarily

from another team. Nagy and Anderson [2016] also introduced two levels of activity

for performing recruitment: concurrent recruitment and active recruitment. In

concurrent recruitment, a robot would continue performing its tasks while it broadcast

messages at an interval requesting help with a task it could not perform because its

task queue was full or it did not meet the task’s minimum suitability requirement.

During active recruitment, a robot that had been assigned a task it was not capable

of performing would physically search for a robot that could perform the task. This is

a much higher level of commitment that pauses active work on other tasks in favour

of recruitment. In Nagy and Anderson [2016], there is no consideration of the rarity

of any skill in the environment or the locality of any task, and there is no reason

for an agent to reject recruitment requests other than being too busy. My work

extends the existing framework by considering whether any of a robot’s particular

skills is currently rare. If any are, it stops accepting recruitment requests, with the

sole purpose of satisfying tasks related to the use of its rare skill(s). Also, in addition

to tracking if a robot’s skill is rare, robots in my framework also track locations

that would likely have tasks requiring the use of its rare skill(s). A robot will make

Chapter 2: Related Work 21

a decision as to whether to stay and fulfil requests with respect to that particular

location or continue with its team. Robots thus have a say in whether they are

recruited or not. The framework developed by Nagy and Anderson [2016] forms a

core part of my work and is described more extensively in Section 2.4.2.

2.4 Existing Framework

My work rests upon the same core framework used in Gunn [2011] and Nagy

[2016], and so several mechanisms and concepts from this need to be described here.

Tasks are units of useful work that can be performed by a single robot, and the act

of deciding to allocate a task to an agent, or consider one’s own ability to take a task

on, involves a suitability expression matching a robot’s view of its own abilities to

that task. Each robot has a queue of pending tasks it has committed to carrying out.

Roles are positions in a team a robot can fill and are defined by the types of tasks

a robot filling that position needs to be able to perform. In assigning tasks, agents

are searched for by roles first. If no one filling that role is available to take on the

task, then a much broader search can be done using known abilities. A robot can

change its role within a team if there exists a role on the team for which it is better

suited and which it currently does not occupy; this is referred to as role switching

[Gunn and Anderson, 2013]. Recruitment strategies refer to the type and amount of

effort a robot will put into finding a well-suited robot for a discovered task. My work

will use three existing recruitment strategies – passive recruitment from [Gunn and

Anderson, 2013] and concurrent and active recruitment from [Nagy, 2016], as well as

two recruitment levels: task- and role-based recruitment from [Nagy and Anderson,

22 Chapter 2: Related Work

2016].

2.4.1 Gunn Framework

This section overviews the core parts of the original Gunn framework [Gunn and

Anderson, 2015] that are central to my work.

2.4.1.1 Attributes, Tasks, and Roles

All robots within the framework are described using a set of characteristics and

capabilities referred to as attributes, and these define the abilities a robot should have

to be able to carry out a specific task. Using attributes, a robot is not only able to

determine to what degree a task lies within its own capabilities, but equally provide

an estimation of the capabilities of other robots and their match to the task. An

example of an attribute is a robot having a debris remover.

Tasks are units of useful work that can be performed by a single robot. Although

all robots contribute towards a larger goal which comprises completing different tasks,

all the individual tasks in my framework require a single robot to complete and do not

require the pulling together of resources from multiple robots [Krieger et al., 2000;

Kiener and von Stryk, 2007]. This means that complex tasks are broken into simpler

pieces that are ultimately carried out by different robots.

To enable robots to keep track of assigned tasks, every robot maintains a task

queue – a priority queue of tasks a robot has either discovered or has been assigned,

ordered by importance.

Every task within the framework uses a minimum requirements expression and a

Chapter 2: Related Work 23

suitability expression to deal with the potential limitations of robot skills. A minimum

requirements expression specifies the minimum set of attributes a robot should possess

to successfully carry out that specific task. For example, a robot discovering an

extinguish-fire task but not being in possession of a fire extinguisher cannot put

out the fire, therefore it will leave that task to someone more capable. After a

robot meets the minimum requirement for a task, the next step is to estimate how

successful the robot would likely be if it attempted to perform the task. This is

where suitability expressions are useful. A suitability expression assigns weights to

the various attributes specified by a task’s minimum requirements and evaluates to

a numeric value. This provides an effective way for deciding the most suitable robot

for a particular task from a group of robots. The greater a robot’s suitability value,

the more well-suited that robot is for the task. Intuitively, robots not meeting the

minimum requirements for a task have a suitability of zero. Even though we can

determine how capable a robot would be if it attempts to perform a task by using

suitability expressions, the framework provides roles as a shortcut to simplify the task

allocation process (this is described further in Section 2.4.1.3).

Roles are positions within a team a robot can fill and are described by a collection

of tasks that a robot occupying that role is normally expected to perform. When

a robot occupies a role, it is assumed that robot can perform all the tasks that

role encompasses. However due to the changing nature of the environment, as

well as the potential for damage, a robot could occupy a role for which it is not

currently adequately equipped. This could be caused by a team having skill deficits

or communication problems, or a robot that was properly equipped when the task was

24 Chapter 2: Related Work

assigned could since have become damaged. Even though roles serve as a shortcut in

allocating tasks, it is also possible for a robot occupying a certain role to be assigned

tasks not associated with the current role it occupies. This can happen when there

is literally no one else, for example. Every task within a role has a weight associated

with it that describes the importance of that task within the context of the role being

occupied. For a robot to be considered suitable for a role, it must meet the minimum

suitability requirements of all tasks contained in that role. To keep robots active even

when they run out of work, all roles have an associated default idle task to which a

robot reverts when its task queue is empty.

2.4.1.2 Team Management and Maintenance

To give a robot a sense of its current team membership, every robot regularly

broadcasts its location to the other members of its team, so they are aware of it.

This helps to keep knowledge of team structure among robots more up to date than

would otherwise be possible. If a robot is not heard from after a certain period,

it is considered to be no longer part of the team (i.e. at least temporarily lost).

For a domain where wireless communication is unreliable, there is a likelihood some

broadcast messages would not be received by all team members. This can potentially

let robots incorrectly assume members have been lost or are damaged. Rebalancing

roles within a team because of such a scenario can lead to robots occupying suboptimal

roles or to the redundant assignment of roles within the team unknowingly. However,

as better information becomes available such a situation will be rectified.

An ever-changing domain such as USAR poses a tremendous amount of risk

Chapter 2: Related Work 25

to robots operating within the environment. Teams could lose members not only

because of communication challenges, but due to the fact that the terrain itself poses

a threat to robots – resulting in damage or an inability to move (becoming stuck). In

such scenarios it becomes necessary to send replacement robots into the environment

occasionally so existing teams can fill roles which were rendered vacant.

For a team to know what roles are lacking, it is important to define what makes

up an ideal team [Nagy, 2016]. The purpose of an ideal team definition is to serve

as a yardstick for teams to help determine how best to restructure or integrate new

potential members into the existing team’s structure. An ideal team usually has an

overall balance of skills to enable it to function well in a given environment. In this

framework, an ideal team is defined at the beginning of a mission and is specified by

a human; it would be interesting to have robots refine their own ideal teams based on

what tasks are most likely encountered and what losses are likely to occur, but that

is beyond the scope of my research. Due to the dangers associated with the USAR

domain, a team would typically not perfectly match the ideal team requirements

except at the onset of a mission. Formally, an ideal team is represented as a list of

desired roles, the minimum and maximum number of robots to occupy these roles

and the relative importance of the roles within the context of the overall team. A

sample ideal team definition is shown in Figure 2.1, depicting a single leader role, one

or two robots that can verify victims, and several small explorer robots.

Teams are able to know what roles are lacking by performing occasional role switch

checks [Gunn and Anderson, 2015], where team members evaluate their current role

against their knowledge of the current team’s structure. When determining if a robot

26 Chapter 2: Related Work

Team Leader

Explorer/Victim
Scanner

Explorer

Role Name: Positions: Desired Number:

Min: Max:

1

1 2

1 2 3 4

5 6 7 8

1 1

1 2

3 8

Figure 2.1: A sample ideal team definition with three robot types. Adapted from
[Gunn, 2011]

should switch to any role, the robot creates a list of underfilled roles, ranking them

by their role score value, which is the sum of the robot’s suitability for that role and

the role’s importance (recall that every role has an importance value describing the

significance of the role to the ideal team definition). If there is a role with a higher

role score than that of the role the robot currently occupies, it switches to that role

and notifies its team members, otherwise it sticks to its current role. Role switching

allows for team rebalancing to ensure that team members occupy roles to which they

are most suited. However, it does not help in scenarios where a team has lost a

significant number of members and has to recoup its losses. To reacquire skills lost

by a team, the original framework relies upon random encounters with other teams

(including stray single robots lost from other teams or released individually after the

Chapter 2: Related Work 27

start of the operation) [Gunn, 2011].

The original framework [Gunn, 2011] provides a mechanism whereby two teams

use the opportunity upon encountering one another to rebalance team membership

and recoup lost skills. This is referred to as passive recruitment in the subsequent

framework. A team encounter starts with two robots observing one another and

exchanging information regarding their current individual teams’ structures. The

more computationally-capable of the two robots is selected to perform a team merge

and redistribution process provided it is well-suited to carry out the process. If

suitable, the more computationally-capable robot then determines how robots on

the two teams should be distributed such that each team is as close as possible to

the ideal team definition. There are two possible outcomes from this distribution

process: 1) two teams both being closer to meeting the ideal team definition or

2) one team formed by integrating members of both teams (this covers the case of

encountering single-robot teams). Once a suitable distribution has been determined,

the more computationally-capable robot communicates this to the other robot. Both

the robots are then responsible for instructing their teammates to change roles or

teams as appropriate.

2.4.1.3 Task Management

All robots in the framework are responsible for identifying and completing tasks to

the extent their attributes will allow (Section 2.4.1.1). Tasks (discovered or assigned)

are executed in order of task priority to ensure that the most important tasks are

performed first.

28 Chapter 2: Related Work

A robot’s task queue contains a list of tasks that are yet to be completed by that

robot, ordered according to task priority and time when the task was added to the

queue. Therefore, tasks which have the highest priority and have been in the task

queue the longest are selected for execution first. When a robot completes a task,

it removes that task from the queue and selects the current oldest, highest-priority

task for execution. A robot inserts tasks into its task queue by either discovering

a task on its own, or being assigned a task by its team leader. Using a priority

queue to store pending tasks ensures that the most important tasks are completed

first. However, it is possible that while executing a task, a robot might become aware

of another task having a higher priority. The Gunn framework addresses such an

occurrence by using task pre-emption, where a newly inserted task takes precedence

over a currently-executing one if it has a higher priority. Robots query their task

queues occasionally, to make sure no new higher-priority tasks have been inserted

while in the middle of completing a task. In the event that a more important task is

discovered, the robot will immediately stop work on the currently-executing task and

begin execution of the newly-discovered higher-priority task.

When a robot comes across a new task, it first evaluates its suitability for that

task. If it meets the minimum requirements for that task, the robot will insert the

task into its queue as long as its task queue is not full. If the robot does not insert

the newly-discovered task either because it is not suitable or it has a full task queue,

the robot will attempt to inform the leader of the discovered task. In the Gunn

framework, only team leaders are able to assign tasks, hence it is necessary to inform

the team leader so the task can be assigned to a suitable robot (Nagy [2016] extends

Chapter 2: Related Work 29

this by allowing non-leaders to assign tasks through task-level recruitment – refer to

Section 2.4.2.2).

Robots that cannot add discovered tasks to their queue (because they are not

suitable enough or do not have any room for additional tasks) transmit these tasks

to the leader for appropriate delegation. Upon successful receipt of the message, the

team leader must assign these tasks to one of its team members. There are two ways

by which a leader attempts to assign tasks to members [Gunn, 2011]. The team

leader first tries using role heuristics to assign tasks in order to minimise the level of

effort and communication required (role-based task assignment). If the process fails,

a more extensive search (exhaustive task assignment) is done to find a suitable robot.

A team leader’s task allocation process is illustrated in Figure 2.2

Role-based task assignments incorporate the use of roles to reduce how much

effort a team leader puts into assigning tasks. Leaders use their knowledge of roles

associated with a task in conjunction with the robots currently filling those roles

to help identify likely candidates to assign the task to [Gunn, 2011] (recall from

Section 2.4.1.1 that roles are defined by a list of task types). Before assigning a

task, a team leader creates a list of known team members occupying an appropriate

role and sends them each a message simultaneously, requesting they complete the

specified task. Upon receiving this request, a robot will take into consideration the

task type and its current workload. Once a robot determines that the task is within

its capabilities and it has room in its workload, the robot responds to the leader

indicating its suitability and the cost (calculated in terms of a robot’s distance to

the task location). Otherwise, a robot sends a rejection response indicating that it

30 Chapter 2: Related Work

Use knowledge of
team mate roles to

assign a task

Responses
received?

Broadcast task
request to team

members

Responses
received?

No; fall back to
exhaustive assignment

Assignment
successful?

Yes; assign to most
suitable robot

No

Role-based task
assignment

Exhaustive task
assignment

Assignment
successful?

Assign to most
suitable robot

Remove task from
task queue

Yes

Yes

Re-queue task for
retry later

No

Figure 2.2: The process a team leader goes through to find a suitable robot for a
task. Adapted from [Nagy, 2016]

Chapter 2: Related Work 31

cannot execute the task if its task queue is full or it is not suitable enough.

The leader has a time frame within which it expects responses to the task

completion request from team members, and responses received outside of this window

are ignored. Responses received within the window are processed and the robot which

indicated the highest suitability for the task is sent a confirmation message. In cases

where multiple robots indicate the highest suitability, the robot indicating the least

task cost is sent the confirmation message. The robot that receives the confirmation

message adds the task to its queue and sends an acknowledgement back to the leader

indicating it accepted the task. When a leader receives this acknowledgement, it

considers the task successfully assigned and deletes the task from its queue. In

the event that a leader does not receive any responses meeting the minimum task

suitability within the time frame (this covers rejection responses, no responses at all,

or a mix of both), it switches to exhaustive task assignment.

Exhaustive task assignment is computationally expensive and communication

intensive, thus it is only used when role-based task assignment fails. A team leader

using exhaustive task assignment broadcasts a wireless message that can be received

by any team member. Just as in the role-based task assignment, team members

respond with their suitabilities and cost, and the leader assigns the task to the

responding robot with the highest suitability. If, by using this strategy, a leader

does not find a suitable robot to assign the task, the leader reinserts the task into its

queue for reassignment at a later time.

32 Chapter 2: Related Work

2.4.1.4 Schemas

The use of schemas is a very popular approach within the autonomous

mobile robotics field [Arkin, 1987], and the Gunn framework [Gunn, 2011] used

a schema-based approach to interpret raw data gathered from the environment by

robots to determine what set of actions robots had to take. The Gunn framework

uses perceptual schemas to perceive the environment and passes the data collected

to the motor schemas which determine what sequences of action a robot will take.

Using motor schemas, robots are able to exhibit complex behaviours by combining

different motion vectors. In a scenario where an obstacle is in between a robot and a

goal location, the robot will generate a repulsive vector away from the obstacle and an

attractive vector towards the goal upon receiving data from the perceptual schema.

The summation of these two vectors results in a vector that guides the robot around

the obstacle and towards the goal. I implement additional schemas to the ones that

already existed in the framework, and these are described in Section 4.6.

2.4.2 Active Recruitment Controller (ARC) Framework

The ARC framework [Nagy, 2016] extended the Gunn framework by introducing

mechanisms by which robot teams could be aggressive about bringing in new skills

to the team either permanently (role-level) or temporarily (task-level).

2.4.2.1 Recruitment Spectrum

The recruitment spectrum characterizes the different strategies by the amount of

effort a robot will use when trying to recruit others. The ARC framework discretised

Chapter 2: Related Work 33

the range of effort robots can commit to their recruitment tasks. These strategies

range from passive – where a robot will only attempt recruitment upon chance

encounters with other robots within the environment [Gunn and Anderson, 2013], to

concurrent in which a robot will simultaneously attempt to recruit while performing

another task, and finally to active where a robot will halt any currently-executing task

solely to work on recruitment [Nagy, 2016]. The recruitment spectrum depicting the

varied amount of effort robots use when performing recruitment is shown in Figure

2.3.

Passive/No
Recruitment
(no searching)

Active
Recruitment

(physically
searching for help)

Concurrent
Recruitment

(calling for help, e.g.
wireless broadcast)

Figure 2.3: The recruitment spectrum. Adapted from [Nagy, 2016]

Passive recruitment has already been described in Section 2.4.1.2.

For concurrent recruitment, the aim is to increase the likelihood of a robot coming

across other useful robots within the domain while still maintaining its focus on doing

useful work. Robots employing this strategy continue normal execution of their tasks,

with the only difference being that they send out occasional broadcasts to find and

recruit other robots if they are available.

In order to maximise the likelihood of encountering useful robots in the

environment, a robot places more emphasis on searching rather than completing any

34 Chapter 2: Related Work

pending tasks it might have. A robot in this state uses the active recruitment strategy.

Unlike the previous two states on the spectrum, active recruitment is a task itself and

thus can be assigned from one robot to another. Robots in the framework can only

execute a single task at a time, hence a robot performing an active recruitment cannot

execute any additional task. The aggressive nature of this strategy significantly

increases the chances of encountering a useful robot (but limits other useful work

while doing so). Once an active recruitment task is created, it is inserted into the

robot’s task queue in order of the task’s priority. The priority of a recruitment task is

determined by the type of recruitment (role-level or task-level). Role-level recruitment

tasks have the highest priority, thus when such a task is inserted into a robot’s task

queue, the robot halts any currently executing task to perform the just inserted active

recruitment task. For task-level recruitment tasks, the priority depends on that of

the task being recruited for.

2.4.2.2 Recruitment Strategies

There are different ranges of effort a robot will employ when attempting to

recruit, and there are two levels of recruitment which indicate whether the skills being

acquired via recruitment will be temporary or permanent. Task-level recruitment is a

shallow kind of recruitment and involves searching for a robot with some desired skills

and requesting that it execute some specific task. The other, which is role-level, is a

more exhaustive search in which a team leader requests that a robot locate another

robot to occupy a role in the team that the leader has determined to be under filled.

A robot using any of these two levels of recruitment can apply any range of effort

Chapter 2: Related Work 35

defined on the recruitment spectrum (Section 2.4.2.1) when fulfilling a recruitment

request. An outline showing these strategies and how they are used is shown in Table

2.1

Table 2.1: Recruitment strategies employed in fulfilling role or task requirements.
Adapted from Nagy [2016]

Passive Concurrent Active

Task-level

Role-level

wait for robot to join team
by chance

while performing regular
work, look for a robot to

complete a task

halt regular work and
search for a robot to

complete a task

wait for robot to join team
by chance

while performing regular
work, look for a robot to

fill a role

halt regular work and
search for a robot to fill a

role

Task-level recruitment allows a robot to enlist the help of other robots to complete

a task for which it is not well suited. A robot’s search for suitable robots is not

restricted to communication within its current team, implying that a recruiting robot

can assign a task to a robot outside of its current team. This process does not

require sanctioning from the recruiting robot’s team leader and therefore all robot

types can perform a task-level recruitment. This process is similar to the regular task

assignment process discussed in Section 2.4.1.3.

Role-level recruitment enables a skill (set of skills) that are deemed essential for

the successful operation of a team to be acquired on a permanent basis. The concept

of an ideal team (Section 2.4.1.2) has a significant bearing here since it helps in

identifying roles in a team, which by the definition of an ideal team should be present

but have no robots satisfying those roles. As part of its team-management duties, a

team leader does occasional missing role checks to determine which roles, if any, are

36 Chapter 2: Related Work

absent based on its current knowledge of the team structure. Though team leaders

might have an imperfect knowledge of the team structure, it is assumed they will

have the most complete of the team and are thus the obvious choice for performing

missing role checks. Once a missing role check is completed, a leader selects the most

important underfilled role from the missing role list and assigns a team member with

a role-level recruitment task. That team member becomes responsible for finding

another robot to fill that missing role on the team. The process is illustrated in

Figure 2.4

Team Leader
(importance 80)

Explorer/Victim
Scanner

(importance 40)

Explorer
(importance 10)

?

? ?

? ? ? ?

Missing Role Check

Missing role
with the
highest

importance

role-level recruitment duty
assigned to robot for role

Figure 2.4: A missing role check and a role-recruited task generated as a result of the
role check. Adapted from Nagy [2016]

Chapter 2: Related Work 37

2.4.2.3 Marker Manager

The ARC framework [Nagy, 2016] introduced the use of markers to help robots

know which victims had already been seen, to prevent redundant victim confirmation

tasks being generated for victims that other robots had already come across. When

a robot comes across a potential victim, it drops a marker by that victim so other

robots know that victim is in the process of being or has already been confirmed (the

framework has no way of differentiating actual real victims from false victims after

they have been confirmed, and future work could look into ways by which robots can

know when a victim has been confirmed). The marker manager is responsible for

handling this process of robots dropping markers near victims and also responsible

for robots without any markers requesting for some from others.

2.5 Conclusion

In this chapter, I have discussed works related to mine and also described modules

from the existing framework which are central to my implementation. Having

introduced all the major components that I have reused from the existing framework

and are pivotal to my work, I will now describe the concepts I have added in Chapter

3.

Chapter 3

Methodology

3.1 Chapter Overview

This section discusses my design concepts and the approach I took to answering

my research questions.

In order to understand the work I have performed, an introduction to the core

concepts of the initial framework and developments to it that precede my own are

provided in Section 2.4.

3.2 My Framework

There are a number of factors that could be considered when trying to improve the

performance of teams in dangerous domains, and my work considers how three such

factors – satisfaction, skill rarity, and task locale – can be leveraged to improve the

performance of the existing framework. By focusing on these factors, I can determine

38

Chapter 3: Methodology 39

when it is advantageous for an agent to be willing to switch from its current team to

another team or become completely independent of any team and be responsible for

its own tasks. An overview of my framework is shown in Figure 3.1

Track agent s

own work and

locations

Calculate

satisfaction

Search for

suitable roles

in team

Continue with

team

Count skill

requests

Determine

skill rarity

Check if my

skill is rare

Recruitment

strategy

Role switch

Task queue

My Methodology Existing Framework

Become

independent

Figure 3.1: An overview of my framework

The goal of my thesis is to develop and investigate how a robot can provide an

estimation of its utility with respect to the team’s overall goals and come up with

strategies that can be used to improve a robot’s productivity within its current team.

To enable me do this, I have introduced a means by which a robot can provide an

estimation of how useful it is within a team. I refer to this in my work as robot

satisfaction and I provide more details in the following section.

40 Chapter 3: Methodology

3.2.1 Robot Satisfaction

For a robot to judge whether it would be of greater use on a different team or

working independently, or is more productive in its current situation, it must have a

means of judging whether its skills would be more useful under each scenario [Arkin,

1995]. Similarly, a team leader must also consider the utility of an individual when

deciding if further work should be devoted to coordinating a given robot as part of a

team. This section introduces the concept of robot satisfaction, a metric for evaluating

and comparing this utility.

In any team setting, team members are required to make some meaningful

contribution towards achieving the team’s goals. A limitation of the Gunn and ARC

frameworks is that they do not provide any effective mechanism by which a robot

can measure its usefulness to a team by way of its contribution towards the team’s

collective goal. The framework as it existed before ensures that a robot is always

executing some task by using idle tasks – default tasks robots fall back on when they

have no discovered or assigned tasks available. The issue with this is that idle tasks

as defined in the framework hardly make use of a robot’s unique skills. It is also

assumed in the previous framework that all team members would be useful in their

respective teams. However, this might not be the case, as a team member could be

stuck performing its idle task because the area currently being explored by its team

has no tasks requiring the use of its special skills.

My work approaches satisfaction from two perspectives, 1) the individual’s own

satisfaction, and 2) the team leader’s satisfaction with any team member. I use a

satisfaction expression to represent how satisfied an agent is with its contribution

Chapter 3: Methodology 41

towards its team’s goals, and how satisfied a team leader is with the members on its

team.

3.2.1.1 Tracking individual satisfaction

Calculating an agent’s satisfaction involves weighting tasks completed over time

(where heavier weight is given to those using rare skills). It also involves looking

at the task queue to consider future satisfaction that will be provided by known

upcoming tasks. Finally, a robot also considers the number of requests from others

to use its skills that had to be rejected in order to continue with its current team.

A robot would reject an incoming request from outsiders in favour of staying on its

current team if the incoming task request does not require the robot to use its rare

skills and its current satisfaction value is above the threshold. Each agent keeps track

of its satisfaction and depending on its current satisfaction value, it will take the

appropriate course of action. To enable me to prescribe how much effort a robot

should put into increasing its satisfaction value, I have introduced the concept of

willingness, which helps a robot determine how aggressive it should be with regard

to improving its current satisfaction value. I have discretised the amount of effort a

robot will expend trying to improve its satisfaction value into three willingness states

–not willing, somewhat willing, and willing.

A robot would also set its willingness to this state when one of the following

scenarios occur: 1) one of the robot’s skills has become a rare one in the environment

(Section 3.2.2), 2) the robot’s current satisfaction value is above base satisfaction

(a range of values I determined through initial experimentation. Details of this

42 Chapter 3: Methodology

not willing
Which willingness

state is the robot

in?

Start

Stop

accepting

recruitment

Continue with

team

End

somewhat willing

Query robot’s

individual

satisfaction

Accept and

switch teams

willing

Perform role

switch check

Is there a more

suitable role on

team?

yes

Switch into

more suitable

role

Received a role

recruitment

request?

no

Leave current

team and

become

independent

no

Accept task

recruitment

requests

Send message to

leader,

indicating to

leave team

yes

Figure 3.2: The decision-making process of a robot involving its current satisfaction

Chapter 3: Methodology 43

experiment are presented in Section 4.9). When a robot has its state set to not

willing because of the former, it makes itself available for recruitment by all teams

within the environment involving its rare skill(s), by accepting task-based requests

involving the use of those skill(s). On the other hand, a robot in the not willing

state, because it has a high satisfaction value, will continue with its team because it

is actively contributing towards its current team’s goals and does not need to actively

improve its satisfaction.

When a robot is in the somewhat willing state, its current satisfaction value

hovers around the base satisfaction. In this state, a robot expends a moderate

amount of effort into improving its current satisfaction by either accepting task-level

recruitments or performing occasional role switch checks (Section 2.4.1.2) to find a

better role if one exists.

For a robot to be in the willing state, it means its current satisfaction value falls

below the base satisfaction. This most likely means the robot had not been using its

unique skill(s) for most of the period within which its satisfaction was calculated. In

this state, a robot will do more outside its current team by taking a more aggressive

approach to increase its satisfaction – this includes accepting role-based recruitment

[Nagy and Anderson, 2016] from other teams, or permanently moving to other teams

of its own initiative, or leaving all teams to work independently. If an agent in the

willing state receives a role-level recruitment request, it will accept the request with

the aim of improving its satisfaction value – i.e., lack of current satisfaction will allow

it to be recruited to another team permanently or go off on its own (become a team

of one). For the latter, a robot sends a message to the leader that it is relinquishing

44 Chapter 3: Methodology

its team membership. The team leader, upon receiving this message, uses its own

evaluation of the robot (described in Section 3.2.1.2) to determine whether it should

let go of that robot. If the leader determines the robot is not useful enough in terms of

its contribution, it terminates the robot’s membership and updates its knowledge of

the team’s current membership accordingly. Then, it sends a message back indicating

that the robot is no longer part of the team. Upon receiving this message, the robot

then wanders off in hopes of being recruited by another team. If the leader deems the

member useful, it sends a message to the member telling it to set its willingness flag

to somewhat willing. This is done to try to prevent an industrious member (from the

leader’s perspective) from leaving because it deems itself not useful enough. In the

event that, due to communication challenges, a leader does not receive a member’s

message requesting to leave the team, the member still wanders off but only after 15

seconds have elapsed since it sent the message. The team leader, not hearing from this

robot after some time, will consider the robot lost and update the team membership

appropriately.

A robot updates its satisfaction value every 30 seconds within my implementation

but consideration of current satisfaction in an agent is triggered by one of two events:

being idle for a period of time, or receiving a recruitment request from a team other

than its own. The latter will cover the situation where an agent is fully occupied but

is not using skills that are currently rare. If an agent receives a recruitment request

and its satisfaction value is below the threshold, it will accept the request with the

aim of improving its satisfaction value – i.e., lack of current satisfaction will allow

it to be recruited to another team permanently, or go off on its own. If the agent’s

Chapter 3: Methodology 45

current satisfaction hovers around the base satisfaction, it will perform a role switch

check to find out if there is a role it is better suited for available on the team. If one

exists, it switches into that role otherwise it becomes more receptive of task-based

recruitments from outside its team. In the case where the agent’s satisfaction value is

above the threshold, it will continue performing its tasks with its current team since

it will be satisfied with the work it is doing. This process is illustrated in Figure 3.2.

From the opposite perspective, a continually idle agent might also risk being dropped

from its team because the work involved in coordinating it is greater than would be

achieved by temporarily recruiting an agent for a specific task when needed (Section

3.2.1.2).

3.2.1.2 Tracking team members’ satisfaction

In addition to team members tracking their individual satisfaction, team leaders

also monitor to some extent the amount of work their team members have successfully

completed within a specified time period. In a team setting, a team member being

satisfied with its output on a team does not necessarily translate into a team leader

being content with the amount of work the team member is performing. If a team

member repeatedly rejects task assignments from its leader, the leader would deem

that robot not useful enough and would eventually let go of that robot since the cost of

coordinating that team member outweighs the benefits that robot brings to the team

(from the leader’s perspective). Once a role becomes vacant, it allows for the team to

recruit a new member by performing missing role checks (discussed in Section 2.4.2.2)

with the hope of recruiting a more industrious or capable replacement. A leader tracks

46 Chapter 3: Methodology

Is member’s task rate
acceptance above

threshold?

Start

End

no

Check
member’s

satisfaction

Request for
member’s
individual
satisfaction

Which willingness
state is the robot

in?

Send message to
member

revoking its
membership

yes

not willing

somewhat willing

w
il

li
ng

Figure 3.3: A leader determining whether a member is useful or not

Chapter 3: Methodology 47

its team members’ usefulness to the team by counting the number of completed tasks

reported by its team members. By doing this, a leader is also able to recognise when

robots which have become separated and are no longer within communication range of

the team. If the leader’s evaluation of any member falls below a particular value, the

leader sends a message to that robot requesting its current willingness state. After

receiving a response from the robot, the leader makes a final decision. If a robot

responds with a message that it is in the somewhat willing state, the leader sends

another message telling the robot to set its willingness state to willing. This would

allow the robot to eventually leave the team, making room for the team to recruit a

more capable robot to fill the soon-to-be vacant role. In scenarios where the robot

responds with a willing or not willing state, the leader takes no further action. A

flowchart illustrating this process is shown in Figure 3.3.

3.2.2 Rare Skills in the Environment

During a rescue mission, some skills may become rare as a result of agents getting

damaged or lost, with fewer replacements with that skill available. Whether a skill is

common or rare can affect the value of an agent to a team significantly.

Since any robot’s picture of the environment and the other robots in it is imperfect,

any measure of the availability of those with a particular skill will also be inaccurate.

I estimate this by tracking the number of recruitment requests an agent receives that

require a particular skill. In addition to the number of individual requests received,

the number of teams requesting this skill is also tracked (one team might need an

agent’s skill just because of its current situation, but multiple teams requesting would

48 Chapter 3: Methodology

indicate a more global shortage). Once an agent recognizes that it has a currently

rare skill, it will be more likely to respond positively to recruitment mechanisms

involving that skill - either temporarily leaving a team often enough that it may lose

touch, cease being a member and work independently, or leave a team explicitly to

join another team (role-based recruitment [Nagy and Anderson, 2016]). This will be

coupled with the satisfaction mechanism described above: being dissatisfied with the

use of one’s skills and at the same time knowing those skills are rare should increase

the likelihood of leaving a team. In my work, I focus on specialised skills (ones which

only one type of robot has) within the environment. Although common skills could

also become rare in the event that a majority of robots having that common skill get

damaged, leaving just a few robots to fulfil tasks requiring that skill, my work does

not investigate the latter phenomenon. Within my framework, a robot determines

it has a rare skill if more than one team is requesting it to perform a task involving

that skill and the tasks are not located within the same task locale (task locales are

described in Section 3.2.3.1). If a robot realises it has a rare skill, it sets its willingness

flag to not willing and will reject any task requests that do not involve the use of its

currently rare skill including requests coming from its own team. This allows for a

robot to make itself available to all teams for the length of period during which it

deems it has a rare skill. Once the skill is no longer rare, it attempts to find and

rejoin its team. If it is unable to find its team after some time, it wanders off on

its own with the aim of recruiting other robots along the way or being recruited by

another team. This process is shown in Figure 3.4

Chapter 3: Methodology 49

Is special
skill rare?

Start

Work
independently

End

yes

Accept and
perform the task

yes

Does task require
use of special skill?

Is special skill still
rare?

yes

Find and re-join
team

no

Found my
team?

no

Join new team

no

no

yes

Figure 3.4: A robot checking if it has a rare skill, and taking the requisite actions

50 Chapter 3: Methodology

3.2.2.1 Unique skill

Some tasks in the environment require special skills in order to complete. Such

tasks can only be performed by a specific type of robot because of their specialised

nature. Any skill required to complete such a task is referred to as a unique skill in

my framework. As an example, an extinguish-fire task requires that a robot have a

fire extinguisher and only a fire bot has this particular attribute, making the skill

associated with extinguishing a fire a unique one. For a robot to identify if its unique

skill might be rare, it counts the number of requests it receives from different robots

that want to utilise its unique skill. There is the possibility that different robots

might discover the same task requiring a unique skill and this does not count as two

separate requests. To be able to tell when different task requests might be referring

to the same task, I use a task locale (described further in Section 3.2.3.1), which helps

identify requests coming from the same region.

3.2.3 Robots’ Sense of Locality

A robot needs some sense of where the work it is performing takes place

(localisation), to know if moving about with a team is likely to produce greater

satisfaction than performing tasks locally.

To achieve this, agents not only keep track of what tasks they perform but also

where they perform these tasks. If an agent has specialised skills beyond general

exploration, and currently has a low satisfaction level, it has the ability to accept

recruitment requests involving that location in order to raise satisfaction. This

allows location-based activity to use the same satisfaction mechanism employed to

Chapter 3: Methodology 51

consider independence vs. team membership. If an agent stays long enough at a

given location it will eventually be lost from its original team (when the team moves

on), and its satisfaction can continue to be maintained by performing local tasks (i.e.,

operating independently). If the skill used for these tasks becomes less rare, or if fewer

opportunities are available (e.g. a stair-climbing robot is at a staircase but teams have

moved on and no one is making use of them), it will eventually lose satisfaction and

be more receptive of other types of requests, or begin wandering through being idle.

It will thus move to a different part of the environment that may be more fruitful, or

rejoin some team, or gather new individuals and form a larger team as time goes on.

Similarly, if its skill becomes less tied to a given location (e.g. a staircase collapses so

there is no new stair-climbing work), it will influence the robot away from its current

position and toward other team-based activities.

3.2.3.1 Task locale

In my framework, robots divide the environment as they explore into small grids

(3m×3m) and keep track of their activity within each region. I refer to these regions

as task locales in my research. Within a task locale, a robot tracks the work it

successfully completed in that region and its location satisfaction — the cumulative

sum of a robot’s individual satisfaction gained from completing work in a task locale.

The purpose of doing this is to provide a robot with a list of options should it need to

be aggressive about increasing its satisfaction or when it is let go by its team. Task

locales are sorted in order of their location satisfaction, with the region producing

the highest satisfaction being first. When a robot wants to increase its satisfaction,

52 Chapter 3: Methodology

the robot will revisit areas where it has previously done useful work to check whether

new tasks have become available (because of the dynamic nature of the environment)

or it left some work undone because of its commitment of staying with its team. For

a robot not to get caught in a cycle of continually revisiting already explored regions,

a task locale is visited only once via its own effort (this does not include instances

where a robot revisits a locale accidentally through random exploration), and only

the top three regions for location satisfaction are visited. This allows for robots to

wander off to unexplored regions after some time.

3.3 Conclusion

I have described my methodology in this chapter alongside portions of the existing

framework that I used to enable me to implement my own. The next chapter gives a

detailed description of my implementation as well as that of existing components my

work relies upon.

Chapter 4

Implementation

4.1 Introduction

In order to evaluate my framework, it requires an embodied implementation in

a domain in which experimentation can take place. The purpose of this chapter

is to describe important elements of that implementation. Since my research is an

extension of existing work [Gunn, 2011; Nagy, 2016], it is necessary to briefly describe

components from the previously mentioned frameworks because they serve as the

starting point for my implementation.

4.2 USAR Domain

Urban Search and Rescue involves the location and extraction of human casualties

trapped within a collapsed structure and as my work focuses on the USAR domain

it is necessary to introduce some concepts that are central to this domain and what

53

54 Chapter 4: Implementation

the mission within such an environment is. Since such environments are at risk of

further collapse and damage (placing victims and rescuers in more danger), locating

and rescuing casualties are time-sensitive missions.

All robots in my framework work towards achieving two main goals within a

simulated USAR environment. These are 1) find as many human casualties as

possible, and 2) explore as much of the environment as they can. In a real world

scenario, information garnered by robots will be relayed to a human rescue team to

be used as a guide to extract casualties promptly.

Although it would have been interesting to do my implementations on physical

robots in the real world, the focus of this research is to develop a multi-robot

framework that encompasses various concepts revolving around team management

and coordination, hence the reason for using a simulated world. Also, it requires a

great amount of effort and cost to build robots and create a realistic USAR setting,

along with the potential danger to experimenter(s) from this setting. Finally, the

amount of time that would be needed to run the number of experiments I performed

would be well over a year, not including downtime due to damage and destruction of

robots. The aforementioned reasons are why I implemented my work in a simulated

environment (similar to [Gunn, 2011; Nagy, 2016]).

4.3 The Simulated Environment

I implemented and tested my framework using the Stage API [Vaughan, 2008]

which is a well-established multi-robot simulator used to implement the existing

portions of this framework. Using a simulated environment like Stage to evaluate

Chapter 4: Implementation 55

my work is advantageous because all experiments can be repeated, and they can be

run faster than in real-time [Vaughan, 2008]. In addition, using simulation allows me

to focus on the core part of my research rather than the many issues that could arise

from keeping a large team of heterogeneous physical robots operating consistently

across many experimental trials.

The Stage API provides interfaces for creating virtual environments, as well as

robots and other objects that can interact in these environments. The behaviours and

interactions between these objects are implemented using a programming interface

that Stage provides. Figure 4.1 shows an example of a randomly-generated USAR

environment, with Figure 4.2 showing a closer view that highlights important objects

used in my work.

Similar to the work from which mine extends [Gunn, 2011; Nagy, 2016], every

experimental run starts with two robot teams entering the environment through

openings that represent doorways.

4.3.1 Environment Objects

• Fire: Red objects depicted in Figure 4.2 represent occurrences of fire within

the environment and can only be put out by robots with fire-extinguishing

equipment

• Stairway: In my framework, I implement a multi-storey structure, and

stairways are the medium by which robots can move from one level to another.

Robots without stair climbing capabilities that want to use a stairway have to

request to be carried by a robot which is able to traverse stairs.

56 Chapter 4: Implementation

Figure 4.1: Sample of a randomly generated world in my framework

• Removable debris: Light grey objects as shown in Figure 4.2 represent

low-lying debris. Robots with a tracked drive system are able to traverse

such objects whereas robots with wheeled drives are forced to navigate their

Chapter 4: Implementation 57

way around because they might get stuck trying to go through. Robots with

debris-removal equipment are able to clear such debris so robots with wheeled

drive can go through. Also, they are able to help robots that get stuck.

• Fixed obstacle: Tall dark grey objects represent debris and serve as obstacles

and thus are not passable by any robot within the environment. A robot that

encounters this type of obstacle must navigate around it.

• Victim: Objects representing victims are randomly placed within the

environment. These objects represent human casualties that are in need of help.

There are two type of victim objects - ones that represent real victims and the

other represents false victims. The false victims are debris configuration that

resemble real victims; enhanced sensors are required to be able to distinguish a

false victim from real victim.

• Marker: This is an object that a robot carries and drops near a detected

potential victim if it does not detect any markers close to the victim. Each

robot carries a maximum of two markers and can request a marker from another

robot if its marker supply runs out.

4.4 Robot Types

This section describes the six robot types used in my implementation. The

MaxBot, MidBot, and Minbot were developed in [Gunn, 2011] and are used in my

work. [Nagy, 2016] added the DebrisBot to his framework and I use this robot type in

58 Chapter 4: Implementation

short debris
 obstacle

stairway

tall debris
 obstacle

 victim
marker

false victim

fire

real victim

Figure 4.2: Objects within an environment as used in my research

my implementation as well. I have added two additional robot types to my framework,

the FireBot and the StairBot. Figure 4.3 shows the different robot types used in my

framework.

4.4.1 MinBots

The MinBot is a very small highly expendable robot with very basic victim-sensing

abilities and can be used for potential victim discovery and exploration. It has a

limited array of sonar sensors which it uses to avoid obstacles and update its map of

the environment. MinBots do not have robot detection sensors, thereby limiting the

level of interaction they can have with other robots [Gunn, 2011].

Chapter 4: Implementation 59

StairBot

FireBot

DebrisBot

MaxBot

MidBot
MinBot

Figure 4.3: The different robot types used in my framework

Because of their limited computational and memory capabilities, MinBots are not

able to assign tasks, combine shared environment maps, detect frontiers, generate

frontier exploration tasks, or perform path-finding algorithms. Their inability to

perform these tasks makes them inadequate to fill any leadership roles. MinBots

are not allowed to assign tasks within the framework but they are able to perform

recruitment. Although a MinBot is allowed to execute recruitment tasks, the absence

of a planner or a shared team map means it cannot give other robots path information

when recruiting them for tasks. This increases the chances of a robot recruited by

a MinBot getting stuck or lost because of the lack of path information that would

60 Chapter 4: Implementation

guide the recruited robot around any obstacles on its path.

4.4.2 MidBots

MidBots are much larger robots compared to MinBots and have improved

computational power and memory, thus making them capable of occupying leadership

positions assuming no better suited robots are available [Gunn, 2011].

This robot has advanced victim-sensing abilities and can correctly distinguish real

humans from false victims at close distances (4.0m). In addition, MidBots can detect

frontiers, generate frontier tasks, maintain a combined team environment map, and

perform task assignment. The MidBot, however, lacks path-planning abilities and

tasks assigned by the MidBot would not include path information. This means that

assigned robots could get stuck while navigating to their assigned task locations.

4.4.3 MaxBots

MaxBots have large memory capacities and high computational capabilities (the

ability to detect frontiers, maintain shared team maps, and assign tasks) making them

adequately suitable for leadership roles. Despite these abilities, a MaxBot has basic

victim sensing abilities and must rely on a Midbot to help it correctly distinguish real

from false victims. The MaxBot is also equipped with a tracked drive system that

enables it to traverse low-lying debris [Gunn, 2011].

Chapter 4: Implementation 61

4.4.4 DebrisBots

The DebrisBot is a robot equipped with debris-removing equipment used to break

down and remove low-lying debris. DebrisBots have two sonar arrays to allow them

to differentiate between removable low-lying debris and much taller obstacles that

cannot be cleared.The DebrisBot has basic victim sensing capabilities to allow it to

distinguish between low-lying debris and potential victims. DebrisBots also have a

robot detector so as not to mistake robots for low-lying debris [Nagy, 2016].

The DebrisBot is a very specialised robot for performing debris-removal tasks and

is unsuitable for leadership roles. It cannot detect frontiers, does not maintain a

shared environment map, and lacks path planning and task-assignment capabilities.

4.4.5 FireBots

I implemented the FireBot, a highly-specialised robot whose main purpose is to

extinguish any fire it encounters in the environment. FireBots are equipped with

fire extinguishers which blast a chemical mix onto any fire nearby, eventually putting

it out (the simulation does not deal with different types of fires that would require

different extinguishing methods). The FireBot attempts to extinguish fires when

it is performing the extinguish fire task. To simulate the extinguishing of a fire, I

implemented additional components within Stage to simulate the effect activating

the extinguisher has on the fire until it is eventually extinguished (A FireBot spends

a maximum 6 seconds trying to put out a fire). For FireBots not to be damaged

while attempting to put out fires, I set the range of the fire-extinguishing equipment

to 4.0m.

62 Chapter 4: Implementation

FireBots are equipped with fire-sensing capabilities (I used Stage’s fiducial sensor

model to represent a fire sensor) and have a tracked drive system to enable them to

traverse through low-lying debris. They also have a sonar array placed 20cm from its

base that they use to detect tall obstacles. To reduce the possibility of driving over

victims (and furthering injuring them) or running over smaller robots, FireBots are

equipped with both basic victim sensing and robot detection capabilities.

This robot is poorly suited for leadership as it lacks planning abilities, does

not maintain shared map knowledge, cannot detect frontiers, and does not have

task-assignment capabilities.

4.4.6 Stairbot

The StairBot is a very specialised robot whose main task is to transport robots

between different floor levels in a multilevel environment. It is equipped with a

teleporter which enables it to carry a single robot along, up or down a level using a

stairway. To simulate the movement between multiple levels in the environment, I

implemented extra facilities within the Stage simulator. All stairways have a transit

time (which simulates how long it takes a robot moving from one level to appear on

another level) of 4 seconds. StairBots activate their stair-climbing ability only if there

is a pending request from a robot to be stair lifted and the StairBot along with the

requesting robot are within 30cm of a stairway. This is done to prevent StairBots

from ascending or descending stairways any time they are within the vicinity of one.

I use Stage’s fiducial sensor to create a stairway detector which I use to abstract

the identification of stairways in the environment. Similar to the FireBot, the StairBot

Chapter 4: Implementation 63

has a tracked drive system and is equipped with both a robot detector and a basic

victim detector.

The lack of planning abilities, inability to detect frontiers, lack of task-assignment

capabilities, and inability to maintain a shared team map of the environment makes

it a poor candidate of choice to occupy a leadership role.

4.5 Attributes, Tasks, and Roles

4.5.1 Attributes

As mentioned in Section 2.4.1.1, each robot within the framework is described

using a set of characteristics and capabilities known as attributes, that allow robots

to estimate their own abilities as well as that of others. These attributes are divided

into three main categories: physical, computational and sensory attributes.

4.5.1.1 Physical Attributes

Physical attributes define properties of the robots that are useful for determining

features such as speed, size, how they navigate through the environment, as well as

any special equipment they possess. Table 4.1 below shows these attributes and their

values for every robot type in my framework. I have added the fire extinguisher and

teleporter to the previous framework [Gunn, 2011; Nagy, 2016] to enable robots to

know whether they can put out fires or stair-lift other robots.

64 Chapter 4: Implementation

Table 4.1: Physical properties and attributes of robots used

MinBot MidBot MaxBot DebrisBot FireBot StairBot

locomotion wheeled wheeled tracked tracked tracked tracked

length×width(cm) 10 × 10 20 × 20 44 × 38 40 × 50 45 × 35 40 × 40

expendability 1.0 0.25 0.05 0.1 0.1 0.1

debris remover no no no yes no no

fire extinguisher no no no no yes no

teleporter no no no no no yes

marker count 2 2 2 2 2 2

4.5.1.2 Computational Attributes

Computational attributes are heuristic definitions of all the possible capabilities

of robots and are defined within a robot’s control software. They give an indication of

whether a particular robot is equipped with the necessary computational and memory

resources before it attempts to execute a task.

4.5.1.3 Sensory Attributes

Sensory attributes specify what type of sensors robots are equipped with. Table

4.3 shows the different robot types and the sensors they are equipped with.

Chapter 4: Implementation 65

Table 4.2: Capabilities of robots used

MinBot MidBot MaxBot DebrisBot FireBot StairBot

victim tracker yes yes yes yes yes yes

frontier finder no yes yes no no no

maintain team map no yes yes no no no

assign tasks no yes yes no no no

planner no no yes no no no

4.5.2 Task Types

4.5.2.1 Gunn Framework Tasks

The tasks described in this section are those which were developed in the original

framework [Gunn, 2011] and are used directly in my own implementation.

• Explore: This is the lowest priority task within the framework and involves

robots randomly exploring the environment. All robots perform this task in

their idle state, except for the DebrisBot.

• Explore Frontier : A robot performing this task moves to a specified location,

explores the area briefly, and reports any findings to its team leader. Only

robots with a frontier finding capability can generate this type of task.

• Find Team: This task is used by replacement robots when they are initially

66 Chapter 4: Implementation

Table 4.3: Physical properties and attributes of robots used

MinBot MidBot MaxBot DebrisBot FireBot StairBot

victim sensor basic advanced none basic basic basic

robot sensor no yes yes yes yes yes

fire detector none basic basic basic advanced basic

stairway detector yes yes yes yes yes yes

sonar sensor 5 10 3 14 8 12

sonar range 4m 6m 2m 6m 6m 6m

laser rangefinder none none yes none none none

victim marker

detector

yes yes yes yes yes yes

released into the environment. Robots executing this task will travel inwards

along the bearing it was introduced into the environment for a total of five

minutes, or until another team is encountered which it can join (or possibly

form a new team with another robot).

• Find Victim: This task is used to determine a robot’s suitability for tracking

victims and it is not explicitly placed on the task queue.

Chapter 4: Implementation 67

• Confirm Victim: Robots with advanced victim detection sensors use this task

to move to a specified location where there is a potential victim and confirm

whether it is an actual victim.

• Manage Team: This task is used to represent the requisite capabilities needed

for a robot to be able to manage a team (e.g. make task assignments)

• Encounter : This task serves as a guide for the team merge and redistribution

process when two teams encounter each other within the environment.

4.5.2.2 ARC Framework Tasks

The tasks defined here were implemented in the previous framework [Nagy, 2016]

and are used directly in my work.

• Begin Role Recruitment : This task is used to initialise the role-recruitment

process when active recruitment is turned on.

• Find Robot : This task is used to locate other robots when active recruitment is

enabled. A robot performing this task will perform a random walk to increase

its chances of finding a useful robot.

• Unguided Debris Removal : This is the idle task for the DebrisBot and it involves

preforming a random walk, and removing any low-lying debris within its field

of view.

• Guided Debris Removal : This task involves a DebrisBot moving to a specified

location (presumably one where another robot may be stuck) and attempting

to remove debris.

68 Chapter 4: Implementation

• Donate Marker : This task guides the marker donation process in the case where

one robot has agreed to donate a victim marker to another robot.

• Wait For Marker : This is a task that guides the actions of a robot that has

requested a marker and is awaiting a donation from another robot. If after some

period, the requesting robot does not receive a marker from the donating robot,

the requesting robot gives up the task with the hope of getting a marker from

another robot.

4.5.2.3 My Framework

I developed several specialised task descriptions to deal with the challenges I faced

during my implementation, and these tasks are overviewed in this section.

Extinguish Fire The extinguish fire task is a very specialised task: only robots

equipped with fire extinguishing equipment (Table 4.1) can perform it. In my

implementation only the FireBot can execute this task. This task involves a FireBot

moving to a specific location and attempting to put out any fire at that location.

This task relies on the detect fire perceptual schema to keep track of actual fires

and remove fires when they are extinguished. Also locations which were incorrectly

reported to have fires are discarded.

When a robot gets to a location where a fire is located, it pauses any active

motor schemas and attempts to put out the fire by discharging the extinguisher at

it. FireBots in my framework are given a maximum of three attempts (each attempt

lasts for 2 seconds in my work) to put out a fire, so they do not spend so much time

trying to put out a single fire. If a robot uses up its three attempts and the fire

Chapter 4: Implementation 69

is still visible, the robot marks this as a failed attempt and abandons that task. A

FireBot also abandons the task if it spends more than 30 seconds while attempting

to move to the fire location. After the FireBot abandons the task, it gets the next

active task from its task queue to perform. If the fire is extinguished before the three

attempts are up, the robot marks that task as successfully completed and moves on

to performing the next task in its queue.

Manage Stairway This specialised task can only be executed by a robot with a

teleporter, hence only StairBots are able to perform this task. In this task, a StairBot

limits its movement close to a stairway and never goes beyond some maximum radius,

which I define as 2m in my implementation. This task is generated by a StairBot

whose team membership comprises one robot (i.e. the StairBot itself) when it comes

within detection range of a stairway and its satisfaction value is below the satisfaction

threshold (Section 4.8.2). As long as the robot’s satisfaction value is above the

satisfaction threshold (Section 4.8.2), the robot will camp at this location and perform

stair lift tasks. When the Stairbot’s satisfaction drops because it has not performed

any stair lift tasks for some time, the robot deletes this task and goes on to perform

the next task on its queue. This new task should enable the robot to move to other

regions in the environment (e.g. to ultimately find a new staircase elsewhere where

it can do the work for which it is purposed).

Stair lift A robot within the environment that encounters a stairway and does not

have a teleporter can request to be moved onto another floor. The robot pauses all

its active motor schemas once this request is made. Such a request generates a stair

70 Chapter 4: Implementation

lift task which contains location information and this is embedded in the message

request. Since StairBots are the only robot types in my implementation that have

teleporters, only they can respond to such a request.

If a stair lift task becomes a StairBot’s active task, the StairBot will attempt

to move to the location from which the request came by using the move to location

schema (Section 4.6.2). When the robot gets within detection range of the stairway

or the requesting robot, it activates the move to robot schema (Section 4.6.2) so it

can physically meet with the requesting robot. Once the StairBot meets with the

requesting robot, it activates its teleporter and carries the robot up or down a level

depending on the robot request. A robot requesting a stair lift waits for 30 seconds and

if it does not physically come into contact with the responding StairBot, it resumes

its motor schemas and goes on to perform the tasks on its task queue. On the other

hand, a StairBot that takes more than 30 seconds to physically meet the requesting

robot, abandons that task and deletes it from its task queue. It then selects a new

task to execute from its task queue.

4.5.3 Role Types

In this section I describe all roles that are used in my work. The following roles

already exist in the previous framework: team leader, coordinator/explorer, explorer,

and debris remover. As part of my implementation, I have added two more roles –

fire extinguisher, and stair lifter. Recall from Section 2.4.1.1 that roles are used as a

heuristic to streamline the task-assignment process. Suitability values are calculated

for every robot-role combination using the attributes of the different robot types

Chapter 4: Implementation 71

2.4.1.1. These values are used to determine how well a robot occupying a role satisfies

the task requirements of that role [Gunn, 2011]. Table 4.4 shows all the possible

robot-role suitability combinations. As indicated by [Gunn, 2011], the importance of

these suitability values are seen when used relatively to one another and not in the

actual numeric suitability values themselves. All tasks making up a role are assigned

hand-tuned weights which indicate how important a task is to that role. For example,

a Debris Remover role places a high emphasis on the guided debris removal task, thus

robots with a debris remover (DebrisBots) will have a higher suitability value for the

Debris Remover role. There are scenarios where a robot fails to meet any minimum

suitability requirements and thus scores a suitability of zero.

Table 4.4: The possible robot-role combinations with their suitablities

MinBot MidBot MaxBot DebrisBot FireBot StairBot

Leader 11 83 106 26 26 23

Coordinator/

Explorer

24 136 52 32 32 27

Explorer 124 56 52 52 52 17

Debris Remover 0 10 10 110 10 10

Fire Extinguisher 5 15 15 15 115 15

Stair Lifter 5 15 15 15 15 105

72 Chapter 4: Implementation

4.5.3.1 Team Leader

The team leader is responsible for guiding and coordinating the efforts of all robots

on its team. This typically involves assigning tasks, maintaining a combined shared

map of the environment that its team has explored, and detecting and assigning

frontiers to be explored by team members. Of all the robots in my work, the MaxBot

is best-suited for this role. This is because it possesses frontier-finding software which

helps to efficiently target areas to be explored rather than targeting random locations.

The MaxBot also has a planning module which enables it to build paths to locations

of interest (one where a potential victim possibly is), to help guide robots to these

locations. In addition to the previously mentioned capabilities, the MaxBot has the

ability to assign tasks, and this is a necessary capability when it comes to managing

a team.

The MidBot is somewhat suited for the leadership role as it possesses much of

the same computational abilities as the MaxBot with the planning module excluded.

This means a robot assigned a task by a MidBot is more likely to get stuck or lost

while navigating to the task location. The MinBot, DebrisBot, FireBot, and StairBot

lack the basic capability for this and are thus are very unsuited for this role.

4.5.3.2 Coordinator/Explorer

Robots in this role are primarily responsible for performing victim verification

tasks, exploration tasks, and also guiding the team redistribution and merging process

in the event that two teams encounter one another. The MidBot is the only robot

equipped with advanced victim-detection capabilities and is therefore the best-suited

Chapter 4: Implementation 73

for this role.

The MinBot, MaxBot, DebrisBot, FireBot, and StairBot are poorly suited for this

role as they only have basic victim-tracking capabilities. The MaxBot is equipped

to handle the team distribution process while the FireBot and StairBot are not

adequately equipped to handle the team distribution process. However, they have

a robot detector which will help them perform team redistribution if necessary.

4.5.3.3 Explorer

Robots occupying this role are mainly expected to perform exploration tasks

as directed by a team leader, usually with the aim of finding potential victims in

unexplored areas. Exploration tasks could be potentially dangerous, resulting in a

robot becoming damaged or lost, and thus the MinBot is an ideal fit for this role.

This is because it is highly expendable (i.e., it is cheap and easily replaceable).

The other robot types have the necessary capabilities required by this role but

because they are better suited to fill more advanced or specialised roles, they have

lower suitability values for this role.

4.5.3.4 Debris Remover

This role involves clearing low-lying debris from the environment and robots filling

this role are required to have debris removal equipment. This requirement makes the

DebrisBot the only robot well-suited for this role.

Since none of the other robots possess a debris remover, they are totally unsuited

to occupy such a role.

74 Chapter 4: Implementation

4.5.3.5 Fire Extinguisher

Robots in this role are expected to detect and put out detected fires within

the environment. Specifically, robots in this role are expected to perform the

extinguish fire and should possess fire-detection and fire-extinguishing abilities. In

my implementation, the FireBot is the best suited robot type for this role as it has

advanced fire-detection capabilities and fire-extinguishing equipment.

The MaxBot, MidBot, DebrisBot, and StairBot are poorly suited for this role

because of the lack of fire-extinguishing equipment, but they do have a basic

fire-sensor. The MinBot lacks both fire-detection and fire-extinguishing capabilities

and is thus utterly unsuited for this role.

4.5.3.6 Stair Lifter

This is a very specialised role that involves a robot equipped with teleporting

capabilities transporting another robot from one level of the environment to another.

For a robot to be able to carry out this task, it should possess a stairway-detector

and a teleporter. This makes the StairBot the best-suited robot type for this role in

the framework.

All the other robots in my implementation possess stairway-detection capabilities

but lack that of teleporting and are thus poorly suited for this role.

4.5.4 Ideal Team

As mentioned previously in Section 2.4.1.2, the ideal team is used as a guide to

help determine how best to restructure or integrate new potential team members,

Chapter 4: Implementation 75

and it describes the desired number of each robot role within a team. In my work,

an ideal team comprises 1 team leader, 1-2 coordinators/verifiers, 3-10 explorers (as

defined in Gunn [2011]), and 1-2 debris removers [Nagy, 2016]. For the new roles I

have added, I specify that a team should have 1-2 fire extinguishers and 1 stair lifter.

The ideal team definition is shown in Figure 4.4.

1 Team Leader

1 Stair Lifter

1-2 Coordinators/
Verifiers

1-2 Fire Extinguishers

1-2 Debris Removers

3-10 Explorers

Figure 4.4: An ideal robot team as used in my implementation.

The number of robots filling the first three roles were based on values obtained

via experimentation in Gunn [2011]. For the debris remover role, I used the same

76 Chapter 4: Implementation

number of robots specified for the role as defined in Nagy [2016]. I chose to specify

a minimum of 1 and a maximum of 2 fire extinguishers in my ideal team definition

to allow for stray FireBots to be integrated into the team. I specified just 1 stair

lifter in my ideal team definition because I only have a maximum of two levels in my

experimental environment and two stairways connecting them, thus 1 StairBot on a

team would be able to fulfil any stair-lifting requests. Any stray StairBots that cannot

be integrated into a team because that role is already occupied would be available

to be used by all teams within the environment. In other environments, a greater

number of StairBots would be more suitable.

4.6 Autonomous Control

Here, I briefly describe the low-level control mechanisms for robots used in my

implementation. All but the detect fire and detect stairways schemas were already

implemented in the existing framework [Gunn, 2011; Nagy, 2016].

4.6.1 Perceptual Schemas

These are used to process sensory inputs from the robots so a robot can have a

meaningful representation of the environment.

• Localization: This schema tracks a robot’s position and orientation. All

members of the same team use the same coordinate system which is centred

at the teams initial position in the environment. Different teams have their

own translation vectors so that location information can be exchanged between

Chapter 4: Implementation 77

teams. This schema also determines if a robot is stuck on some debris and

generates a guided debris removal task if the robot is still stuck after 5 seconds.

• Process Range Data: This schema is used to get information about nearby

obstacles by processing data from rangefinding sensors.

• Detect Debris : This schema uses the localization schema to determine if a robot

is stuck and then logs that there is an obstacle at that location. This information

helps a robot avoid that obstacle again in the future.

• Detect Obstacles : This schema uses information from the process range data,

detect debris, and detect robots perceptual schemas to generate a list of obstacles

encountered in the environment.

• Detect Robots : This schema uses the robot detector sensor to build a list of

currently observed robots.

• Detect Victims : This schema uses input from the victim detector sensor to build

a list of currently observed victims.

• Detect Lost : This schema tracks how far a robot travels while attempting to

move to some location. Once the robot travels five times the required distance

without reaching its destination, the robot deletes the current task from its

queue. In the case when the task is a confirm victim task, rather than deleting,

the robot re-queues the task to attempt at a later time.

• Detect Markers : This schema uses input from the marker detector sensor to

build a list of currently observed victim markers in the environment.

78 Chapter 4: Implementation

• Detect Fire: I implemented this schema to build a list of currently observed

fires using input from the fire detector sensor.

• Detect Stairways : I implemented this schema to build a list of currently observed

stairways using input from the stairway detector sensor.

4.6.2 Motor Schemas

Motor schemas are used to determine what sequences of action a robot will take

based on current information from its perceptual schema.

• Avoid Obstacles : This schema generates a repulsive force intended to make a

robot steer clear of any detected obstacles.

• Move To Location: This schema enables a robot to move to a specified location

in the environment. If path information is available, then the robot uses it,

otherwise it uses a reactive approach to get to its destination.

• Turn In Place: This schema generates an action vector that instructs a robot

to rotate in a clockwise direction without moving forward or backward.

• Random: This schema helps prevent a robot from getting stuck by generating a

small random magnitude motion vector that points the robot in a new direction.

• Recover Stuck : This schema uses the localization perceptual schema to recognise

when a robot is stuck. In such a scenario, an action vector commanding the

robot to back up and attempt to free itself is generated.

Chapter 4: Implementation 79

• Seek Debris : This schema uses information from the detect obstacles perceptual

schema to generate an action vector that attracts a robot towards short obstacles

while repelling it away from tall obstacles (non-removable debris) or objects that

are not debris (e.g. victims).

• Move To Robot : This schema generates a motion vector that guides one robot

towards another robot using information from the detect robots schema ensuring

that the two robots physically meet.

4.7 Framework-Specific Modules

This section describes the functional modules that are used to support my

implementation. Except for the location and rare skill manager, all of these modules

are already implemented in the existing framework [Gunn, 2011; Nagy, 2016].

• Encounter Manager : The encounter manager module handles the team merge

and redistribution process when two robots encounter one another in the

domain.

• Knowledge Manager : The knowledge manager tracks any information that

is known to the robot. This includes but is not limited to the robot’s own

attributes, attributes of other known robots, as well as its current team

structure.

• Communication Manager : This module is responsible for processing all wireless

messages that a robot receives from others.

80 Chapter 4: Implementation

• Role Manager : The role manager is responsible for managing all role- and

team-related processes. This involves performing role switch checks and

handling role-level recruitments.

• Task Manager : This module handles all a robot’s tasks as well as information

about these tasks. It also manages the task queue and all communications and

processes pertaining to task assignment.

• Location and Rare Skill Manager : This module manages information (tasks and

task satisfaction) regarding a task locale as well as information about whether

a robot has a rare skill. When a robot is looking to increase its satisfaction

and as a result it leaves its team, this manager provides a list of the top three

locales for the robot to visit with the aim of increasing its satisfaction. This

manager also alerts a robot to the possibility of the robot having a rare skill in

the environment.

4.8 Mission-Specific Modules

This section describes the modules that provide the required logic to help robots

achieve high level goals in the USAR domain.

• Environment Mapper : This module is responsible for maintaining a shared team

map of the environment by integrating results obtained from exploration.

• Frontier Finder : This module is used to generate explore frontier tasks by

examining a robot’s map of the environment. To determine areas to explore,

an occupancy grid-based approach is used.

Chapter 4: Implementation 81

• Victim Tracker : The victim tracker module maintains and updates a robot’s

list of currently known victims as well as their statuses (potential or actual).

• Planner : This is used to calculate paths to locations of interest (e.g., victims)

that assigned robots could use so as not to get stuck or lost in their attempt to

move to the goal.

• Marker Manager : This module is responsible for handling the marker release

process when victims are detected in the environment.

4.8.1 Satisfaction Manager

I implemented the satisfaction manager to handle the tracking of a robot’s

satisfaction and use this information to determine a robot’s course of action.

4.8.1.1 Satisfaction Expression

Recall from Section 1.4 that I define satisfaction as an estimation of a robot’s

usefulness on its team. In order to formulate a satisfaction expression, I make two

general assumptions, and they are: 1) a robot gains more satisfaction from working

on a task for which it is well-suited, and 2) the longer a robot spends performing a

task, the more its satisfaction is likely to reduce.

To formulate the satisfaction expression, I first estimated the satisfaction a robot

derives from completing a single task (Equation 4.1) by using how long it took the

robot to successfully complete that task and the robot’s suitability for that task.

TS =
Stask

∆t
(4.1)

82 Chapter 4: Implementation

TS refers to the satisfaction a robot gets from completing a specified task, Stask is the

suitability of the completed task, and ∆t represents the time duration for the task

(i.e. when the robot started executing the task and when it successfully completed

it). I also define a robot’s task rejection rate as the likelihood that a robot would

reject a task if it is requested to perform one. This is shown in Equation 4.2.

TR(ti) =

ti∑
n=ti−1

Treject(n)

ti∑
n=ti−1

Trequest(n)

(4.2)

TR represents the task rejection rate (i.e. a ratio between the number of rejected

task requests and the total number of task requests received), Treject is a task request

that a robot rejected, and Trequest is a request to complete a task.

I then used Equations 4.1 and 4.2 to define a robot’s own satisfaction at any time

t, as shown in Equation 4.3

RS(ti) =

(
ti∑

n=ti−1

TS(n) + TSfuture

)
∗ TR(ti)

ti − ti−1

(4.3)

Here, RS(ti) is the robot’s overall satisfaction at a particular instance of time; TS

is the task completed satisfaction as defined by Equation 4.1; TSfuture refers to how

much satisfaction a robot could derive upon completing some task in its task queue.

In principle, I use Equation 4.1 to estimate the satisfaction of a task in the task queue

that is not currently being performed. Since this task has not yet been performed,

a robot estimates how long it would take to complete the task by using how long

it would take it to get to that task location based on its current speed (I assume a

straight path with no obstacles) and how long it will ideally take to complete the

Chapter 4: Implementation 83

task. For example, consider a DebrisBot having a guided debris removal task as a

future task on its task queue. In the framework, a DebrisBot has a maximum of 5

seconds to remove a piece of debris once it gets to the debris location. The estimated

time it will take a DebrisBot to complete this task, assuming it will take it about 10

seconds to get to the task location based on its current speed is thus 15 seconds. TR

is the robot’s rejection rate defined in Equation 4.2.

4.8.2 Tracking Robot Satisfaction

In my implementation all robots calculate their satisfaction every 30 seconds using

the satisfaction expression defined in Equation 4.3. As mentioned in Section 3.2.1.1,

I have provided discretised states which indicate how aggressively the robot should

be attempting to rectify its lack of satisfaction. In my implementation I create a

willingness flag which can hold three possible values: SM STAY which refers to the

not willing state, SM WILLING refers to the somewhat willing state, and finally

SM LEAVE which refers to the willing state.

Every 30 seconds a robot in my framework will calculate its current satisfaction on

its team and based on this value the robot will set its willingness flag accordingly. To

know what value to set the willingness flag, a robot compares its current satisfaction

value to the satisfaction threshold. The satisfaction threshold I used in my work

was obtained from initial experimentation by hand tuning values. In preliminary

experiments (I describe this in Section 4.9), I realised that using a value of 140

resulted consistently in the highest number of actual victims being successfully

identified; thus I settled on this value. Future work could explore the option of using

84 Chapter 4: Implementation

learning techniques to have each robot determine their own satisfaction thresholds,

since what one robot may see as satisfactory might not necessarily be satisfactory to

another. If a robot’s current satisfaction falls between 110 and 170, the robot sets it

willingness flag to SM WILLING. A robot’s satisfaction falling below 110 would set

its willingness flag to SM LEAVE and a value above 170 sets the willingness flag to

SM STAY.

If a robot’s willingness flag is SM STAY, the robot is satisfied with the work it

is doing and it will not take any active measures to improve its current satisfaction.

In such a scenario, the robot will likely not be receptive of task requests coming

from outside its team (this is not the case when the robot’s skill has become rare, as

will be discussed in Section 4.8.2.3). In the case where the willingness flag is set to

SM WILLING, a robot will perform a role switch check to see if there is an open role

which suits it better than the one it currently occupies. If there is, it switches into that

role. Also, a robot in this state will be more receptive of task-based recruitments (but

not role-based recruitment) with the aim of increasing its current satisfaction value.

Finally, a robot with its willingness flag set to SM LEAVE, will be more receptive

of role-based recruitments which would essentially let it switch teams. A robot that

remains in this state and does not receive any role-based recruitments for 15 seconds

sends a message to its team leader indicating that it wants to leave the team and

the leader upon receiving this message employs the mechanism described in Section

4.8.2.1 to determine whether it should let go of that member or not.

Chapter 4: Implementation 85

4.8.2.1 Tracking Members

In addition to a robot being able to track its own satisfaction, a leader also keeps

tabs on what its team members do. A leader tracks its team members’ productivity

using Equation 4.4.

LS(rj, ti) =

t∑
n=ti−1

Taccept(rj, n)

t∑
n=ti−1

Trequest(rj, n)

(4.4)

LS is the team leader’s satisfaction with a member at a particular time. Here, rj

is the robot whose satisfaction is being calculated by the leader and ti refers to the

time period at which a leader tracks a member’s satisfaction, Taccept refers to a task

that was successfully assigned to a member, and Trequest is a task a member has been

requested to complete.

In my work, if a robot’s acceptance rate of work from its team leader’s perspective

falls below 0.5, the leader sends that particular robot a message requesting its current

willingness state. A robot receiving such a message will then check its willingness flag

and send a response back to the leader. If the leader receives a message indicating that

the member’s willingness flag is set to SM STAY, it means the member is currently

satisfied with its work on the team and the leader does not take any further action.

If the response a leader receives has the member’s flag set to SM WILLING, the

leader follows up with another message telling the member to set its willingness

flag to SM LEAVE, thus allowing the robot to be more accepting of role-based task

recruitments or eventually leave the team with the aim of improving its satisfaction.

If the leader receives a message indicating the member’s willingness flag is set to

86 Chapter 4: Implementation

SM LEAVE, the leader does not take any action since the member is already poised

to take a more aggressive approach to increase its satisfaction on its own. A team

leader calculates its team members’ satisfaction every 60 seconds in my framework.

4.8.2.2 Tracking Location Satisfaction

In my implementation, I divided the environment into 3 × 3 grids which I refer

to as task locales (See Section 3.2.3.1). A robot tracks all tasks it has performed

within a task locale as well as the satisfaction it has gained from completing these

tasks. Location satisfaction is calculated as a running sum of the satisfaction a

robot gets upon completing a task (same as Equation 4.1) within a particular

region. The location and rare skill manager stores this information and also logs

all tasks completed within this region. Task locales are sorted in order of decreasing

satisfaction. When a robot is let go by its team leader because its work was not

satisfactory enough, the location and rare skill manager provides a list of the regions

with the top three satisfaction values. A robot revisits these task locales with the aim

of finding new work (which has since become available or it was not able to perform

because of its commitment to staying with its team). Since robots could get stuck in

a cycle of revisiting task locales, in my implementation robots are allowed to actively

(i.e. through their own effort and not random exploration) revisit task locales only

once.

4.8.2.3 Identifying Skill Rarity

To help me track how rare a skill is at some particular time, a robot tracks how

many unique skill (See Section 3.2.2.1) requests it received over time from different

Chapter 4: Implementation 87

robots and the teams those robots are currently on. In my implementation, receiving

a request from more than one team indicates that there is a shortage of that particular

skill within the environment. When a robot realises that a skill it possesses has become

rare, the robot sets its willingness flag to SM STAY. If a robot has its willingness flag

set to SM STAY and it has a rare skill, the robot stops accepting all recruitment

requests (even those from its own team) except for those that request the use of its

rare skill. When that skill is no longer rare, the robot will attempt to find its team.

If it is unsuccessful, it joins another team or continues working independently.

4.9 Preliminary Experiment

To give me an idea of what value to use as the threshold for satisfaction such

that it would lead to the highest performance, I conducted an initial experiment to

investigate the performance of my framework when the satisfaction value threshold

is set to different values. I used the percentage of victims successfully confirmed as

the metric because the ultimate goal of any rescue mission is to save as many human

casualties as possible.

I experimented with ten different base satisfaction values range from 40 to 220

using a step size of 20. In this preliminary experiment, I used a communication

success rate of 60%. For the other experimental configurations, I used all recruitment

approaches (active, concurrent, and passive), the three possible probabilities of

robot failure (major, minimal, and no failures), and whether replacement robots

were available or not. I used identical sets of 20 random seeds for each

experimental configuration, ultimately resulting in 3600 different trials which were

88 Chapter 4: Implementation

run approximately 36 at a time using Amazon Web Services [Amazon Web Services,

Inc., 2019]. I averaged out all the results from trials that had the same satisfaction

threshold. The graph shown in Figure 4.5 is a plot of the percentage of victims

successfully identified using each of the ten base satisfaction values.

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180 200 220 240

Pe
rc

en
t

vi
ct

im
s c

on
fir

m
ed

Satisfaction values

Percentage of Victims Confirmed at Different Base Satisfaction Values

Figure 4.5: Results from the preliminary experiments to determine what satisfaction
value to use as the base

The highest performance was achieved when the threshold for satisfaction was

around 140. I used a range from 110 to 170 as the base satisfaction values in my

implementation. In my framework, I use the values around the base satisfaction to

indicate a robot is in the somewhat willing state. Any satisfaction values above the

base satisfaction means the robot is in the not willing state and values below the

Chapter 4: Implementation 89

threshold indicate the robot is in the willing state.

4.10 Conclusion

This chapter has described my implementation within a USAR domain that would

allow me to evaluate my framework. In the next chapter, I describe the experiments

I used in evaluating my work.

Chapter 5

Testing and Evaluation

5.1 Introduction

To evaluate the effectiveness of my solution approach, I compared it to the previous

versions of the framework [Gunn, 2011; Nagy, 2016] developed in our lab. Experiments

were conducted in a manner similar to these earlier works, using a simulated USAR

domain. I evaluated my implementation by considering factors such as wireless

communication reliability, the recruitment strategy used, and the probability that a

robot could experience failures (whether temporary or permanent) during a mission.

In the following sections, I restate the research questions my work aims to

answer and then describe the metrics used to evaluate my work. I then describe

my experimental design, present the results from my experiments, and discuss my

findings.

90

Chapter 5: Testing and Evaluation 91

5.2 Review of Research Questions

Recall my research questions from Section 1.5.

1. To what degree does tracking robot satisfaction affect the total teams’

performance with respect to the overall mission in a USAR domain?

2. For specialised tasks that require the use of a robot’s unique skill, is

it more useful to have robots expending effort to stay with a team

or should these efforts be redirected towards areas where its special

skills may be needed?

To answer my first research question, I conducted a set of experiments with

satisfaction tracking (Section 4.8.1) turned on while varying parameters affecting

communication reliability and robot failures for the three different recruitment

approaches in the existing framework. For the second question, I introduced an extra

floor level in my test environment and conducted experiments under varying levels

of communication reliability, different recruitment approaches, use of replacement

robots.

5.3 Evaluation Metrics

To evaluate the performance of my implementation, I track four metrics during

every experimental trial. They are percentage of real victims successfully confirmed,

and known to any leader, percentage of area coverage as seen by any leader, number

of extinguished fires, and number of successful stair lifts

92 Chapter 5: Testing and Evaluation

In my implementation, I keep track of the number of victims correctly classified by

each robot. A correctly classified victim is one that has been confirmed as an actual

victim as opposed to a false victim (Section 4.5.2.1). To know how many victims

were correctly classified, I use the number of positively confirmed victims reported to

a team leader, because team leaders are expected to have the most complete picture of

all work done by the team’s members. Relying only on information from team leaders

connotes that if a leader becomes damaged close to the end of an experimental run,

the information it had would be lost assuming there was not enough time for another

robot to take on the leadership role. I do not discard the information garnered by this

robot and still gather statistical information from this damaged robot. This is the

same approach that was used in the existing framework [Gunn, 2011; Nagy, 2016].

I track how much of the environment has been explored by merging map

exploration data from all team leaders. I do this by finding the union of all area

coverage reported by team all leaders. This is the same metric used in the existing

framework ([Gunn, 2011; Nagy, 2016]). For a number of reasons, this metric is fairly

conservative. Coverage data gathered by replacement robots are not used until they

become part of a larger team; also, information acquired by individual robots may

not be communicated to a team leader successfully before an experimental run ends.

To track the number of fires extinguished, I get the total number of fires

extinguished by all FireBots within the environment. I examine how the value of

this metric changes as environmental conditions (communication success rates, robot

failures, etc.) change.

Successful stair lifts are tracked by counting the total number of times StairBots

Chapter 5: Testing and Evaluation 93

are able to carry other robots to a different level of the environment. This metric

is important as stair lifts require coordination between two robots, and the success

of this operation is dependent on the current environmental conditions. Also, since

stairways are permanent fixtures in the environment, tracking this metric gives insight

as to whether having robots stationed at such locations is more beneficial than having

robots committed to moving with their teams.

5.4 Environment Generation

I used a tool developed by Wegner [2003] and modified by Gunn [2011] and Nagy

[2016] to generate my world files. I made additional modifications to this tool to

include fire objects, FireBots and StairBots. Aside from that, the environmental

parameters used in generating a world were identical to those used in Nagy [2016].

All environments measure 60m × 60m, with about 15% of the environment covered

by fire, debris and obstacles.

Ten negative and twenty positive victims are randomly placed in the environment

to satisfy the following constraints: victims are at least 0.8m from a wall, and victims

do not overlap each other. This approach is identical to that used by Gunn [2011]

and Nagy [2016].

Robot team placement was done in a similar manner to what was done in the

existing framework [Gunn, 2011; Nagy, 2016]. Two separate robot teams start out

from openings on opposite ends of the environment, with one team at each opening.

In configurations where replacement robots are used, they are released from equally

spaced positions along the inner perimeter of the environment.

94 Chapter 5: Testing and Evaluation

Before selecting my candidate environments to use for my experimental runs,

I first generated 50 world files, after which I went through and hand-picked three

environments which I was extremely confident satisfied my selection criteria. The

criteria I used were the same as those used by Gunn [2011] and Nagy [2016] and are

listed below:

• Any environments that had a great amount of removable debris and fire blocking

the entrance used by initially deployed teams were discarded because it would

require a lot of effort and time clearing these debris and extinguishing these

fires. This would ultimately contribute to lowering the team performance since

a majority of the time could be spent in trying to clear the entrance. However,

environments that had very limited quantities of removable debris and fire

were considered because DebrisBots and FireBots could clear the debris and

extinguish the fire immediately after the mission started.

• Environments that had large obstacles blocking the entry paths of replacement

robots were discarded to reduce wasted effort while the robot attempted to

circumnavigate these obstacles.

• Any environments that had regions of highly clustered debris or obstacles were

discarded since these were supposed to be reasonably distributed across the

environment.

• I discarded any environments that had areas containing highly clustered victim

populations to avoid any bias during victim confirmation and ensure that

roughly the same amount of effort was required when locating and confirming

Chapter 5: Testing and Evaluation 95

victims in the environment.

The three world files I finally selected for my main experiment are shown in

Appendix A.

5.5 Environment Set-up

Using the three environments selected, I designed a factorial experiment to

evaluate the effectiveness of my implementation. I had to generate a world file

(Stage’s representation of an environment) for every experimental configuration

because limitations of the Stage simulator required that experimental parameters

(communication, success rate, probability of robot failure, etc.) be placed in world

files.

Stage guarantees repeatability by using random seeds that are included in a world

file. Thus, running any particular world file multiple times will generate the same set

of results every time when given the same seed. This was a very useful feature when

I had to rerun some experiments for observation purposes. Similar to the approach

used by Nagy [2016], I used identical sets of 50 random seeds for each experimental

configuration. This resulted in 50 world files for every combination of independent

variables I considered. Using the same set of random seeds is to ensure that differences

in team performances across different experimental runs would not be attributed to

random numbers that inadvertently favoured some trials. All the trials were run on

a c5.9xlarge Amazon EC2 instance [Amazon Web Services, Inc., 2019] which had 36

cores and 72GB of RAM using Amazon Web Services, with about 36 world files being

run concurrently.

96 Chapter 5: Testing and Evaluation

5.5.1 Independent Variables

All the independent variables except the satisfaction configuration variable used

in my experiments are taken from Nagy [2016] to enable comparison with that work.

The independent variables used in my experiments are described below:

Communication Reliablity : This is the probability that any wireless message

sent will successfully be delivered to its intended recipients. Similar to previous

frameworks [Gunn, 2011; Nagy, 2016], I use communication success rates of

100%, 60%, and 20%.

Recruitment Configuration : This defines what recruitment mode was used in the

experiment. The different recruitment modes available are active, concurrent,

and passive recruitment.

Replacement Robots : This controls whether replacement robots are used during

a trial or not. When replacement robots are used, there are an additional

10 MinBots, 2 MidBots, 1 MaxBot, 1 DebrisBot, and 1 FireBot available as

replacements. Replacement robots are released into the environment after

five minutes of simulation have elapsed. Except for the FireBot, this setup

is identical to that used in Nagy [2016].

Robot Failure This variable controls the likelihood that a certain robot type will

experience some failure –temporary or permanent– during trials. Probability of

failure is specified for each robot type used in my implementation and these are

shown in Table 5.1. There are three different configuration failure levels used

in my experiments: no failures, minimal failures, and major failures. These are

Chapter 5: Testing and Evaluation 97

the same levels used in Nagy [2016].

Satisfaction Configuration : This variable controls whether satisfaction tracking

is turned on or off.

5.6 Additional Experiment

I conducted another experiment where I used a world containing two levels

(shown in Appendix A) representing two storeys in the environment. This additional

experiment was done particularly to study the effect of having robots with special

skills becoming independent of all team commitment when their skill became rare. For

a skill to be rare, it means there are not enough robots to satisfy the current demand

of tasks requiring that particular skill. For the configuration where replacement

robots were used, I substituted four replacement MinBots with two FireBots and two

StairBots. Aside from this modification, all other parameters were the same as those

used in the main experimental set-up. With no replacement robots used, there were

two FireBots and StairBots each in the environment, and when replacement robots

were used that number increased to five each. I did not run any trials with satisfaction

tracking turned off, because robots are able to determine when a particular skill they

have may be rare only when satisfaction tracking is turned on.

5.7 Main Experiment Results

This section provides an overview of the results obtained from running the

experiments described in Section 5.5. Similar to Nagy [2016], my set-up was

98 Chapter 5: Testing and Evaluation

level model
prob. permanent

failure
prob. temporary

failure
avg. % total

time failed

none MinBot 0.000 0.000 0.000%

MidBot 0.000 0.000 0.000%

MaxBot 0.000 0.000 0.000%

DebrisBot 0.000 0.000 0.000%

FireBot 0.000 0.000 0.000%

minimal MinBot 0.000 0.008 14.9%

MidBot 0.000 0.006 11.9%

MaxBot 0.000 0.004 9.0%

DebrisBot 0.000 0.008 14.9%

FireBot 0.000 0.008 14.9%

moderate MinBot 0.002 0.014 25.1%

MidBot 0.002 0.012 20.9%

MaxBot 0.002 0.010 18.5%

DebrisBot 0.002 0.014 25.1%

FireBot 0.002 0.014 25.1%

Table 5.1: Robot types and the different configurations of failure probability.

Chapter 5: Testing and Evaluation 99

such that statistics were garnered at the end of every trial run using the metrics

described in Section 5.3. The results presented here show the impact that tracking

robot satisfaction has on the different recruitment modes, as well as the impact of

communication and robot failures, and the effect of using replacement robots. I use

the configuration in which satisfaction tracking is turned off as the baseline to which

I compare my implementation (when satisfaction tracking is used).

5.7.1 Victims Successfully Confirmed to Leaders

Figures 5.1 to 5.3 show the percentage of victims identified to team leaders

using different recruitment modes with varying communication success rates, with

satisfaction tracking turned on or off, with varying probabilities of robot failure, and

with replacement or no replacement robots.

My implementation made significant performance gains against the baseline when

using a passive mode of recruitment for configurations that had a communication

success rate greater than 20% (Figure 5.1). Using a passive recruitment approach,

teams are only able to recruit new members onto their team through chance

encounters. Implying that, unless a member got lost, it basically remained on

the same team until its team encountered a different team, triggering the merging

and redistribution of skills between the two teams. By allowing robots to leave or

switch teams when they realised they were not being productive, an opportunity

was provided for these robots to explore other areas of the environment rather than

expending energy remaining with their respective teams. When the communication

success rate was at 100%, replacements robots were used and using a passive approach

100 Chapter 5: Testing and Evaluation

0

10

20

30

40

50

60

70

80

90

100

20% 60% 100% 20% 60% 100%

no replacements replacements

P
er
ce
n
t
V
ic
ti
m
s
C
on
fi
rm
ed

Communication Success Rates, Replacement Robots

Percentage of Victims Confirmed
Using Passive Recruitment

no failures

no failures with satisfaction

minimal failures

minimal failureswith satisfaction

major failures

major failureswith satisfaction

Figure 5.1: Percentage of victims identified using passive recruitment, with and
without replacement robots

to recruitment, my framework performed almost similarly to the configuration that

had the highest overall performance – active recruitment mode (Figure 5.3), with

replacement robots and a communication success rate of 100%.

For all recruitment modes, and whether replacements were used or not (even

though my implementation did not perform as well as or better than the baseline

for most of the configurations), there were significant decreases in the performance

gap when communication success rates increased above 20%. For example, when

active recruitment was used with no replacements and for all failure configurations,

the baseline performed about 11% better than my framework. However, when the

Chapter 5: Testing and Evaluation 101

0

10

20

30

40

50

60

70

80

90

100

20% 60% 100% 20% 60% 100%

no replacements replacements

P
er

ce
n

t
V

ic
ti

m
s

C
on

fi
rm

ed

Communication Success Rates, Replacement Robots

Percentage of Victims Confirmed
Using Concurrent Recruitment

no failures

no failures with satisfaction

minimal failures

minimal failureswith satisfaction

major failures

major failureswith satisfaction

Figure 5.2: Percentage of victims identified using concurrent recruitment, with and
without replacement robots

communication success rate increased to 100% for the same configuration, the baseline

performed about 4% better than when satisfaction tracking was turned on.

For configurations that used a communication success rate of 60%, my framework’s

performance was significantly below the baseline when there were no replacements

available. However, with the introduction of replacement robots, performance

of my framework improved and the baseline performed only slightly better than

mine. In configurations where communication success rates were at 100% and

replacements robots were used in both active and concurrent modes of recruitment,

my implementation performed similarly to that of the baseline. With satisfaction

102 Chapter 5: Testing and Evaluation

tracking turned on, there was a slight improvement over the baseline when concurrent

recruitment was used with no replacement robots at a communication success rate of

100% (as shown in Figure 5.2).

0

10

20

30

40

50

60

70

80

90

100

20% 60% 100% 20% 60% 100%

no replacements with replacements

P
er
ce
n
t
V
ic
ti
m
s
C
on
fi
rm
ed

Communication Success Rates, Replacement Robots

Percentage of Victims Confirmed
Using Active Recruitment

no failures

no failures with satisfaction

minimal failures

minimal failureswith satisfaction

major failures

major failureswith satisfaction

Figure 5.3: Percentage of victims identified using active recruitment, with and without
replacement robots

My system performed poorly when compared to the baseline where communication

success rates fell to 20% in all three recruitment strategies, as seen in Figures 5.1

to 5.3, whether replacement robots were used or not. This is just an indication that

my implementation requires some minimum communication success rate before any

reasonable performance is seen. I attribute this poor performance to the fact that

when team leaders track their members satisfaction, they only rely on how many task

Chapter 5: Testing and Evaluation 103

assignments the members have accepted within a certain time frame to determine

whether a particular member is useful or not to the team. Upon further investigation,

I realised that leaders were almost never satisfied with their team members in the

poorest communication category because they hardly ever heard back from them

due to lost messages. This resulted in leaders letting go of team members often

enough that it resulted in a complete breakdown of teams. Also, because of the

poor communication reliability, it is likely that team members let go of by leaders do

not receive the message from the leader terminating their membership and continue

transmitting updates to the (former) leader.

5.7.2 Area Coverage

For the passive recruitment approach, which relies upon chance team encounters,

my system (when satisfaction is used) performed slightly better than the baseline,

with performance increasing as communication success rates increased (Figure 5.4).

My approach provides avenues that allow a robot to actively wander off away from

its team in search of greater satisfaction when its current satisfaction value falls

below the threshold. This increases the robot’s chances of exploring new areas in the

environment and any information gathered while it was independent is passed along

to a team leader when that robot is recruited to join a team.

For the active recruitment mode (Figure 5.6), except for communication success

rates of 20%, the performance of the baseline and my implementation were similar

for all configurations excluding when communication success rates were at 60% and

no replacements were used. One possible reason for this is that using 30 minutes as

104 Chapter 5: Testing and Evaluation

0

10

20

30

40

50

60

70

80

90

100

20% 60% 100% 20% 60% 100%

no replacements replacements

Pe
rc

en
t A

re
a

C
ov

er
ed

Communication Success Rates, Replacement Robots

Percentage of Area Coverage
Using Passive Recruitment

no failures

no failures with satisfaction

minimal failures

minimal failures with satisfaction

major failures

major failures with satisfaction

Figure 5.4: Percentage of area coverage using passive recruitment, with and without
replacement robots

the simulation time is not sufficient for isolated robots that can not manage a team

map to find a team they could join in order to transmit their exploration data to that

team’s leader.

When replacement robots were available, there were significant improvements in

robot teams’ performance. For the same communication success rates and whether

replacements were used or not, active recruitment (Figure 5.6) performed better

compared to other strategies followed by concurrent then passive. However for a

100% communication success rate and use of replacement robots, performances of

concurrent and passive recruitment were almost identical.

Chapter 5: Testing and Evaluation 105

0

10

20

30

40

50

60

70

80

90

100

20% 60% 100% 20% 60% 100%

no replacements replacements

Pe
rc

en
t A

re
a

C
ov

er
ed

Communication Success Rates, Replacement Robots

Percentage of Area Coverage
Using Concurrent Recruitment

no failures

no failures with satisfaction

minimal failures

minimal failures with satisfaction

major failures

major failures with satisfaction

Figure 5.5: Percentage of area coverage using concurrent recruitment, with and
without replacement robots

When no replacements were used, with communication rates of 60% and 100%,

passive recruitment (see Figure 5.4) performed better than concurrent recruitment

(Figure 5.5). This is likely due to the duplication of effort that occurs, as robots that

are not leaders are able to recruit other members via task- or role-level recruitment

(Section 2.4.2.2) without a leader’s intervention. Since such members do not have a

wider perspective of outstanding work, tasks can be redundantly assigned to multiple

robots, resulting in wasted effort. This same phenomenon was observed and reported

by Nagy [2016]. On the other hand, passive recruitment approaches rely on a

single leader to make any decisions regarding task assignments and hence there is

106 Chapter 5: Testing and Evaluation

0

10

20

30

40

50

60

70

80

90

100

20% 60% 100% 20% 60% 100%

no replacements with replacements

Pe
rc

en
t A

re
a

C
ov

er
ed

Communication Success Rates, Replacement Robots

Percentage of Area Coverage
Using Active Recruitment

no failures

no failures with satisfaction

minimal failures

minimal failures with satisfaction

major failures

major failures with satisfaction

Figure 5.6: Percentage of area coverage using active recruitment, with and without
replacement robots

a lesser chance of tasks being redundantly assigned. However, there is then greater

vulnerability in losing a single leader

Similar to my results from Section 5.7.1, my system did not perform well when

communication success rates were extremely low, as compared to the baseline using

the same configurations. When communication success rates fall to 20%, not only does

it become more difficult to communicate exploration results to a team leader, but also

to manage a team (team rebalancing, receiving or accepting task assignments, etc.).

A possible reason for this is that a leader relies on acceptance of task assignments by

members to deem a member useful to the team. Due to the high rate of message

Chapter 5: Testing and Evaluation 107

delivery failure, it is likely that a leader that does not receive acknowledgement

messages of a team member accepting a task, would determine that member is not

being useful enough, and would withdraw that robot’s membership; this would likely

lead to many single-member teams. Since not all robot types are able to merge team

maps (Section 4.4), using my conservative approach of merging maps of only leaders

with the capability of maintaining a team map, a lot of information is lost. When

communication success rates were above 20%, my system performed consistently

better than when they were at 20% or less. A reason for this is because more messages

relating to team management were successfully delivered, and as such, teams were

better maintained.

5.8 Additional Experiment Results

As mentioned in Section 5.6, I performed additional experiments to help me

investigate whether robots tracking their satisfaction were more inclined to stay at

locations that would require the use of their specialised skills rather than continuing

to travel with a team. These additional experiments involved monitoring how many

stair lift requests StairBots successfully completed (shown in Figures 5.7 and 5.8) and

how many fires were extinguished by FireBots (shown in Figures 5.9 and 5.10).

5.8.1 StairBots Results

When replacement robots were used (see Figure 5.8), the number of successful

stair lifts was significantly reduced when compared to configurations that used no

replacement robots (Figure 5.7). A possible reason for this dip in performance is that

108 Chapter 5: Testing and Evaluation

having replacement robots reduces the likelihood of skills becoming rare during the

trials. Even though having more StairBots available should possibly have resulted in

more stair lifts being performed, it is likely that StairBots were not stationed close

enough to stairways and had to travel some distance to fulfil these requests. Since

my implementation gives approximately 30 seconds for StairBots to execute stair lift

requests, it is possible that a number of requests were abandoned because StairBots

could not reach their destinations before the allotted time elapsed.

0

5

10

15

20

25

20% 60% 100% 20% 60% 100% 20% 60% 100%

major minimal none

N
um

be
r

of
 S

ta
ir

Li
ft

s

Communication Success Rates,
Probability of Robot Failure

Stair Lifts
No Replacements

active

concurrent

passive

Figure 5.7: Number of stair lifts successfully completed when satisfaction tracking
was turned on for all configurations without the use of replacement robots

Active recruitment strategies had the poorest performance compared to using

passive or concurrent recruitment for the same configurations of probability of robot

Chapter 5: Testing and Evaluation 109

failure, communication success rate, and replacement robots (see Figures 5.7 and 5.8).

This is likely because when using active recruitment, StairBots might perform physical

searches that take them away from where stairways are located. Also, a StairBot

navigating to a stairway in response to a stair lift request may be recruited along

the way for more important tasks (for instance, finding a robot to confirm an actual

victim). Even in the event it is not recruited, travelling some distance in a USAR

domain increases the possibility of any robot becoming stuck on an obstacle.

0

5

10

15

20

25

20% 60% 100% 20% 60% 100% 20% 60% 100%

major minimal none

N
um

be
r

of
 S

ta
ir

Li
ft

s

Communication Success Rates,
Probability of Robot Failure

Stair Lifts
With Replacements

active

concurrent

passive

Figure 5.8: Number of stair lifts successfully completed with satisfaction tracking
turned on for all configurations when replacement robots were used

Configurations that had a moderate amount of robot failures performed the worst

when compared to the other robot failure probability configurations (refer to Figures

110 Chapter 5: Testing and Evaluation

5.7 and 5.8). One reason I think this is so is that with minimal robot failures, at

certain times during the experimental runs, there were fewer StairBots (compared

to when there were no robot failures) available to respond to stair lift requests, but

not quite to the extent that it resulted in the stair lifting ability becoming rare. In

configurations where there was a high probability of robot failure, there were slightly

higher number of stair lift requests fulfilled when compared to configurations where

there were no robot failures. This is likely because having major robot failures could

result in a skill being rare for most of a trial. Such a situation would result in

StairBots being stationed at stairways till they were unsatisfied with their output at

that location. Since a StairBot performing stair lifts results in it using its unique

skill, it will be greatly rewarded with a very high satisfaction, which translates to a

longer time spent at that location. This increases the probability of a StairBot being

always stationed at a stairway and thus being able to respond to a majority of stair

lift requests.

5.8.2 FireBots Results

Unlike the results seen in Section 5.8.1, configurations which had major robot

failures performed the worst when dealing with FireBots, compared to the other

configurations of robot failure probability. This is likely because fires are scattered

throughout the environment and are not restricted to specific locations in the

environment, so more robot failures translates to fewer opportunities to find fires

and ultimately results in fewer fires being extinguished.

For the different recruitment configurations (Figures 5.9 and 5.10), the active

Chapter 5: Testing and Evaluation 111

recruitment mode resulted in the most fires being extinguished. A possible reason for

this is that when using active modes of recruitment, robots perform a physical search

for a robot to recruit. This increases the opportunity for FireBots to encounter fires

and attempt to extinguish them.

0

5

10

15

20

25

30

20% 60% 100% 20% 60% 100% 20% 60% 100%

major minimal none

N
um

be
r

of
 F

ir
es

 E
x�

n
gu

is
h

e
d

Communication Success Rates,
Probability of Robot Failure

Fires Ex�nguished
No Replacements

active

concurrent

passive

Figure 5.9: Number of fires successfully extinguished when satisfaction tracking was
turned on for all configurations without the use of replacement robots

In configurations when replacement robots were used (Figure 5.10), FireBots

extinguished more fires compared to the same configurations when no replacement

robots were used (Figure 5.9). Having more FireBots in the environment increases the

likelihood of these FireBots finding fires and extinguishing them, thus the increased

performance when replacement robots are used over when replacements are not used.

112 Chapter 5: Testing and Evaluation

0

10

20

30

40

50

60

20% 60% 100% 20% 60% 100% 20% 60% 100%

major minimal none

N
um

be
r

of
 F

ir
es

 E
x�

n
gu

is
h

e
d

Communication Success Rates,
Probability of Robot Failure

Fires Ex�nguished
With Replacements

active

concurrent

passive

Figure 5.10: Number of fires successfully extinguished with satisfaction tracking
turned on for all configurations when replacement robots were used

5.9 Analysis

From the results, it is seen that as communication rates increase, the performance

of my system increases significantly. When there is a very high message delivery failure

rate my system performed poorly and could lead to complete team breakdown. I

attributed this to the fact that team leaders might have let go of certain team members

who had not actually become aware their team membership had been withdrawn. One

suggestion to improve the performance would be to also use task assignments that

were rejected in determining whether team members are useful or not. This can be

Chapter 5: Testing and Evaluation 113

made possible by using learning techniques to find what weights should be assigned

to parameters being used to estimate the satisfaction value. These weights would be

based on the current environmental conditions.

The reason I think when using active recruitment, the baseline generally

outperformed my system for the overall team mission is that by actively searching

for robots to recruit for a task, it increases a robot’s chances of exploring new areas

of the environment. Though my approach sometimes results in a robot leaving its

team, this only happens when a team leader is not satisfied with that robot’s work

or the robot is itself not happy with the contribution it is making towards the team’s

goals. This might not happen quite as often as active recruitment requests. Also,

in my implementation robots are able to reject recruitment requests if the robot is

considered to be useful to the team. In the previous framework [Nagy, 2016], the only

time robots rejected recruitment requests was when their task queues were full.

For scenarios where a robot’s skill was required at a permanent location within

the environment (in this case a stairway), using an active approach to recruitment

produced the worst results. I think this is so because if a robot happened to accept

a recruitment request due to the fact that its satisfaction value was low, the robot

would likely be pulled away from this location that required the use of its unique

skill. Until a time when its satisfaction fell below the threshold or its unique skill

had become rare, the robot would not be committed to satisfying tasks involving

its special skill. This was seen in the case of the additional experiments conducted

using the StairBots. For configurations when replacement robots were used, having

no robot failures and having major robot failures performed almost similarly and

114 Chapter 5: Testing and Evaluation

both performed better than when there was a moderate amount of failures. This

indicated that in environments that are unforgiving, it would be as beneficial having

robots track their satisfaction as introducing replacement robots. With no failures

and use of replacement robots, there is a low likelihood of a robot’s skill becoming rare,

because there will be enough robots available to satisfy any requests. When the need

for a robot’s skill was not restricted to a specific location and scattered all over the

environment, performance was highest when replacement robots were used with an

active recruitment mode, indicating that for tasks that occur all over the environment,

tracking satisfaction did not provide any added benefits. For specialised tasks that

require robots being stationed somewhat permanently at a certain location in the

environment, robots that will be expected to perform such tasks should not have an

active mode of recruitment enabled. The framework as it currently exists does not

support using multiple recruitment strategies in a single trial and future work could

add such a functionality.

5.10 Conclusion

In this chapter, I have presented and discussed the performance of my

methodology. I discussed the metrics I used to evaluate my framework as well as

discussed my results and finally pointed out the strength and weaknesses of my

approach.

Chapter 6

Conclusion

6.1 Chapter Overview

In this chapter, I begin with a review of my research questions and summarise how

the results I described in Chapter 5 answer them. I present the main contributions

of my thesis in Section 6.3, and follow this with a discussion of directions for future

work in Section 6.4.

6.2 Answers to Research Questions

In this section, I review my research questions which I first posed in Section 1.5,

and discuss how the results I obtained from my experiments answer these questions.

1. To what degree does tracking robot satisfaction affect the total teams’

performance with respect to the overall mission in a USAR domain?

From my results, significant performance gains are seen when satisfaction

115

116 Chapter 6: Conclusion

tracking is used alongside passive recruitment approaches as opposed to when

it is not used. By tracking satisfaction, robots can leave teams or be let go

by leaders with the aim of improving their satisfaction. Passive recruitment

approaches do not provide such opportunities outside of encountering other

teams or team members wandering far off from their teams and becoming lost.

Hence, robots spend a significant amount of effort trying to stay with their

teams. No significant improvements are seen though when satisfaction tracking

is used in conjunction with concurrent or active recruitment strategies. This is

because these approaches already provide adequate opportunities for robots to

leave their respective teams via role- or task-level recruitment (Section 2.4.2.2),

reducing the need for consideration of satisfaction. With communication

success rates at 20%, using satisfaction tracking resulted in a complete

breakdown of teams, in turn leading to low performance. This illustrates

that my implementation needs a certain minimum message transmission success

(somewhere between 20% and 60%) in order to perform reasonably. A future

experiment could examine what a minimal communication success rate would

be more precisely.

2. For specialised tasks that require the use of a robot’s unique skill, is

it more useful to have robots expending effort to stay with a team

or should these efforts be redirected towards areas where its special

skills may be needed?

As conditions in the environment deteriorate (such that robots become more

easily damaged, leading to a possible high demand of certain skills), allowing

Chapter 6: Conclusion 117

robots to avail themselves to be used by all teams proved very useful when

the skills these robots possessed were required at certain fixed locations in the

environment. For tasks that were scattered over the environment, there was no

significant gain in terms of how many tasks a robot used its specialised skill

to perform. This is thus greatly dependent on the nature of the environment.

Had the test environment been a larger number of storeys, we likely would

have seen a stronger advantage to independent StairBots, for example. Many

public buildings are organised around one or more central stairwells, making this

applicable to the real world. Once again, a future experiment could examine

the effect of the number of teams and the number of levels in a larger structure.

6.3 Contributions

This section summarises the key contributions made by my research. These are:

1. A methodology by which robots are able to estimate how useful they are to

their teams and take appropriate action when they determine that they are not

being useful on their current teams.

2. A methodology by which robots are able to identify when specialised skills they

possess may be rare and allow them to suspend or re-rank team commitments

during that period.

3. An implementation of my methodology that shows the potential benefits of my

framework in a simulated multilevel USAR domain.

118 Chapter 6: Conclusion

4. A framework which can be further improved upon by others for future research,

including other areas of team-based USAR.

6.4 Future work

The evaluation of my framework revealed some areas where improvements could

be made to further contribute to this field.

6.4.1 Future Implementation Suggestions

First of all, it would be insightful to have my work implemented on real robots.

My work in simulation made a number of simplifications to facilitate my research,

but implementation on physical robots in the real world would require more elaborate

(and expensive) solutions for these. This would raise additional operational challenges

that were not seen during simulation pertaining to localisation, errors in sensor data,

debris removal, etc.

Another improvement that can be made is in the area of simulation realism. In

my implementation, robots are able to perform somewhat complex computations in

a single simulation time step, as all robot types use the processing power of the

computer implementing the simulation. I believe the simulation could be made more

realistic by imposing memory and computational restrictions on the different robot

types. This would mean optimising and adjusting algorithms for the different robot

types based on their memory and processing power.

An area that could also be improved upon is that of robot perception. To facilitate

work on my research, I used Stage’s in-built fiducial sensors to help easily identify

Chapter 6: Conclusion 119

certain objects (fire, stairways, etc.) within the environment. This is not as trivial a

task for robots in the real world, especially under disaster conditions. Implementing

my system on physical robots would require that such abstracted perceptors be

replaced with an appropriate implementation of robot perception. For example the

advanced fire detectors would need a minimum of three sensory inputs (heat, smoke,

and vision) to be able to actually confirm the presence of a fire.

The Stage simulator as it currently exists does not offer a lot of object dynamics

and also does not provide a rich level of object interactions such as pushing or carrying

objects. Another shortfall of the Stage simulator is that as a 2.5D simulator it does

not offer in-built support for multilevel environments, and to be able to simulate

multi-storeys in my work, I had to use two world files side-by-side. Porting my work

to a simulator such as Gazebo [Koenig and Howard, 2004] which offers more complex

physics could be used to evaluate my work more rigorously.

6.4.2 Suggestions for Future Research

The results of my experiments in Section 5.9 raised some questions with regards

to robots being able to estimate their utility on a team and also being able to identify

when there was a global shortage of a robot’s special skills. In this section, I discuss

directions for future research as revealed by my work.

In my implementation, there is no granularity in terms of robot failure. That is,

a robot is either functional or not. The binary nature of representing robots in this

regard indicates that a robot can be of no use when damaged. This however, may

not be so in the real world, as robots could have certain individual components fail

120 Chapter 6: Conclusion

yet remain useful in other ways. For example, a FireBot that has its extinguisher

damaged could end up performing tasks which are only associated with MinBots.

Even though a robot identifies as a certain robot type and would be assumed to be

able to carry out a certain task based on its type, extensions could be made to my

work such that a robot before accepting a job would check to see if it possesses the

functional components needed to be able to carry out that task.

The ability for robots to determine a risk factor associated with performing a

certain job would also be a very useful addition to my methodology. Since some

robot types are very specialised in my work, having these robots perform tasks that

could potentially damage them would impact perfomance assuming these robots get

damaged executing a task (especially in scenarios where special skills they possess

may be rare). Though the use of replacement robots curtails this to some extent,

I think it would be interesting to have the satisfaction expression consider the risk

factor associated with performing a task as well as how rare that robot’s skill is within

the environment. Given that this is a time-constrained emergency situation, there is

also the question of balancing these types of computations with actively getting work

done in the environment.

In my implementation, I assume that all robots’ satisfaction values are on the

same scale. However, this might not be the case, as robots’ suitabilities vary and I

use a robot’s suitability for a task in my satisfaction expression (Section 4.8.1.1). I

therefore think it would be useful to have robots use learning techniques to come up

with their own scale for determining whether they are satisfied with the work they

are doing.

Chapter 6: Conclusion 121

Ideal teams in my work are defined at the onset of the mission by the researcher and

stay the same over the course of a trial. Generally all robot teams in the framework

are always looking to have their membership be as close to the ideal team definition

as possible. However, as the environment changes, maintaining the same ideal team

definition might not be useful enough. That is, the concept of an ideal team may

change over time. Having teams refine the ideal team definition over the duration of

the mission based on what tasks are most likely encountered and what losses are likely

to occur might prove useful. It would be a challenge focusing on the as-yet-unexplored

parts of the environment, rather than tailoring an ideal team for work that is already

done and which may not be seen again.

A limitation of my work is that robots are not able to select their own

individual configurations based on information they gather from the environment.

Whatever configuration is used applies to all robots during the trial (for instance

if active recruitment is turned on, all robots in that trial run would employ active

recruitment approaches). However, from my results, certain configurations used with

certain robot types resulted in poor performance or did not significantly improve

performance. For example, from Section 5.8.1, StairBots under passive recruitment

approaches performed significantly better than under active recruitment approaches

when satisfaction tracking was turned on, indicating that StairBots should mostly

use passive recruitment strategies (or possibly operate independently). Learning

techniques could be used here to help robots identify what configuration to use

depending on the current conditions of the environment. Future research could

explore the possibility of having robots set their own configurations during a mission

122 Chapter 6: Conclusion

and examine the effect this has on overall team performance.

6.5 Conclusion

This research has shown some benefits associated with having robots estimate

their utility within a team setting and taking appropriate actions to increase their

contributions when they realise they are not useful enough. Also, my research

demonstrated the utility of having members put all team commitments on hold when

they determine there is a possibility that certain special skills they possess are in

high demand globally and make themselves available to be used by all teams within

the environment. Even though my contributions are significant, my research has

uncovered avenues of future work which I think would enhance my work further.

Appendix A

Experimental Environments

Figures A.1 to A.3 shown below are the environments within which I conducted

my main experiments (Section 5.5).

Figure A.4 shows the multi-storey environment I used in conducting my additional

experiments described in Section 5.6

123

124 Appendix A: Experimental Environments

Figure A.1: Experimental environment 1

Appendix A: Experimental Environments 125

Figure A.2: Experimental environment 2

126 Appendix A: Experimental Environments

Figure A.3: Experimental environment 2

Appendix A: Experimental Environments 127

Figure A.4: Experimental environment with multiple storeys

Bibliography

Amazon Web Services, Inc. Amazon EC2 Instance Types - amazon web services,

2019. URL https://aws.amazon.com/ec2/instance-types/.

M. Anderson and N. Papanikolopoulos. Implicit cooperation strategies for multi-robot

search of unknown areas. Journal of Intelligent and Robotic Systems, 53(4):381–397,

2008. ISSN 0921-0296. doi: 10.1007/s10846-008-9242-5. URL http://dx.doi.

org/10.1007/s10846-008-9242-5.

R. Arkin. Motor schema based navigation for a mobile robot: An approach to

programming by behavior. In Proceedings. 1987 IEEE International Conference

on Robotics and Automation, volume 4, pages 264–271, March 1987. doi: 10.1109/

ROBOT.1987.1088037.

R. Arkin. Reactive robotic systems. In The handbook of brain theory and neural

networks, pages 793–796. MIT press, Cambridge MA, 1995.

R. Arkin and G. Berkey. Robot Colonies. Springer US, 1997. ISBN 978-1-4757-6451-2.

T. Balch and R. C. Arkin. Behavior-based formation control for multirobot teams.

IEEE Transactions on Robotics and Automation, 14(6):926–939, 1998.

128

https://aws.amazon.com/ec2/instance-types/
http://dx.doi.org/10.1007/s10846-008-9242-5
http://dx.doi.org/10.1007/s10846-008-9242-5

Bibliography 129

L. Coviello and M. Franceschetti. Distributed team formation in multi-agent systems:

Stability and approximation. In Proceedings of the 51st IEEE Conference on

Decision and Control (CDC 2012), pages 2755–2760, Maui, HI, December 2012.

doi: 10.1109/CDC.2012.6426198.

P. Dasgupta and K. Cheng. Dynamic multi-robot team reconfiguration using weighted

voting games. Journal of Experimental & Theoretical Artificial Intelligence, 28(4):

607–628, 2016. doi: 10.1080/0952813X.2015.1020575. URL https://doi.org/10.

1080/0952813X.2015.1020575.

F. De Rango, N. Palmieri, X.-S. Yang, and S. Marano. Swarm robotics in wireless

distributed protocol design for coordinating robots involved in cooperative tasks.

Soft Computing, 22(13):4251–4266, Jul 2018. ISSN 1433-7479. doi: 10.1007/s00500-

017-2819-9. URL https://doi.org/10.1007/s00500-017-2819-9.

P. S. Dutta and S. Sen. Forming stable partnerships. Cognitive Systems Research, 4

(3):211–221, 2003.

E. Elkind, L. A. Goldberg, P. Goldberg, and M. Wooldridge. Computational

complexity of weighted threshold games. In Proceedings of the 22nd National

Conference on Artificial Intelligence (AAAI 2007), volume 22, page 718. Menlo

Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2007.

J. Fredslund and M. J. Mataric. A general algorithm for robot formations using

local sensing and minimal communication. IEEE Transactions on Robotics and

Automation, 18(5):837–846, 2002.

https://doi.org/10.1080/0952813X.2015.1020575
https://doi.org/10.1080/0952813X.2015.1020575
https://doi.org/10.1007/s00500-017-2819-9

130 Bibliography

A. Gage, R. Murphy, K. Valavanis, and M. Long. Affective task allocation for

distributed multi-robot teams. Technical Report CRASAR-TR2004-26, Center for

Robot Assisted Search and Rescue, University of South Florida, 2004.

J. Guerrero and G. Oliver. Multi-robot coalition formation in real-time

scenarios. Robotics and Autonomous Systems, 60(10):1295 – 1307, 2012. ISSN

0921-8890. doi: http://dx.doi.org/10.1016/j.robot.2012.06.004. URL http://www.

sciencedirect.com/science/article/pii/S0921889012000942.

T. Gunn. Dynamic heterogeneous team formation for robotic urban search and

rescue. Master’s thesis, Department of Computer Science, University of Manitoba,

Winnipeg, Canada, December 2011.

T. Gunn and J. Anderson. Effective task allocation for evolving multi-robot

teams in dangerous environments. In Proceedings of the 2013 IEEE/WIC/ACM

International Conference on Intelligent Agent Technologies (IAT-2013), pages

231–238, Atlanta, GA, November 2013. doi: 10.1109/WI-IAT.2013.114.

T. Gunn and J. Anderson. Dynamic heterogeneous team formation for robotic urban

search and rescue. Journal of Computer and System Sciences, 81(3):553–567, 2015.

ISSN 0022-0000. doi: http://dx.doi.org/10.1016/j.jcss.2014.11.009. URL http:

//www.sciencedirect.com/science/article/pii/S0022000014001500.

J. Guzzi, A. Giusti, L. M. Gambardella, and G. A. Di Caro. A model of artificial

emotions for behavior-modulation and implicit coordination in multi-robot systems.

In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO

’18, pages 21–28, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-5618-3.

http://www.sciencedirect.com/science/article/pii/S0921889012000942
http://www.sciencedirect.com/science/article/pii/S0921889012000942
http://www.sciencedirect.com/science/article/pii/S0022000014001500
http://www.sciencedirect.com/science/article/pii/S0022000014001500

Bibliography 131

doi: 10.1145/3205455.3205650. URL http://doi.acm.org.uml.idm.oclc.org/

10.1145/3205455.3205650.

C. C. Kemp, A. Edsinger, and E. Torres-Jara. Challenges for robot manipulation in

human environments [grand challenges of robotics]. Robotics Automation Magazine,

IEEE, 14(1):20–29, March 2007. ISSN 1070-9932. doi: 10.1109/MRA.2007.339604.

J. Kiener and O. von Stryk. Cooperation of heterogeneous, autonomous robots: A

case study of humanoid and wheeled robots. In Proceedings of the 2007 IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2007 (IROS)., pages

959–964, San Diego, CA, October 2007. doi: 10.1109/IROS.2007.4399291.

N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-source

multi-robot simulator. In 2004 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS) (IEEE Cat. No.04CH37566), volume 3, pages

2149–2154 vol.3, Sep. 2004. doi: 10.1109/IROS.2004.1389727.

M. J. Krieger and J.-B. Billeter. The call of duty: Self-organised task allocation in a

population of up to twelve mobile robots. Robotics and Autonomous Systems, 30

(1):65–84, 2000.

M. J. B. Krieger, J.-B. Billeter, and L. Keller. Ant-like task allocation and recruitment

in cooperative robots. Nature, 406(6799):992–995, 2000.

R. R. Murphy. Marsupial and shape-shifting robots for urban search and rescue.

Intelligent Systems and their Applications, IEEE, 15(2):14–19, Mar 2000. ISSN

1094-7167. doi: 10.1109/5254.850822.

http://doi.acm.org.uml.idm.oclc.org/10.1145/3205455.3205650
http://doi.acm.org.uml.idm.oclc.org/10.1145/3205455.3205650

132 Bibliography

G. Nagy. Active recruitment in dynamic teams of heterogeneous robots. Master’s

thesis, Department of Computer Science, University of Manitoba, Winnipeg,

Canada, October 2016.

G. Nagy and J. Anderson. Active recruitment mechanisms for heterogeneous robot

teams in dangerous environments. In Proceedings of the 29th Canadian AI

Conference, 2016.

L. E. Parker and B. Kannan. Adaptive causal models for fault diagnosis and

recovery in multi-robot teams. In Proceedings of the 2006 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 2703–2710, Beijing,

China, October 2006. doi: 10.1109/IROS.2006.281993.

L. E. Parker and F. Tang. Building multirobot coalitions through automated task

solution synthesis. Proceedings of the IEEE, special issue on Multi-Robot Systems,

94(7):1289–1305, July 2006. ISSN 0018-9219. doi: 10.1109/JPROC.2006.876933.

L. Pitonakova, R. Crowder, and S. Bullock. Understanding the role of recruitment in

collective robot foraging. 2014. URL http://eprints.soton.ac.uk/364829/.

J. G. Rogers III, C. Nieto-Granda, and H. I. Christensen. Coordination strategies

for multi-robot exploration and mapping. In Experimental Robotics, volume 88

of Springer Tracts in Advanced Robotics, pages 231–243. Springer International

Publishing, 2013. ISBN 978-3-319-00064-0. doi: 10.1007/978-3-319-00065-7 17.

URL http://dx.doi.org/10.1007/978-3-319-00065-7_17.

O. Simonin and J. Ferber. Modeling self satisfaction and altruism to handle

http://eprints.soton.ac.uk/364829/
http://dx.doi.org/10.1007/978-3-319-00065-7_17

Bibliography 133

action selection and reactive cooperation. In Proceedings of the 6th International

Conference On the Simulation Of Adaptive Behavior (SAB 2000), pages 314–323,

Cambridge, MA, 2000.

M. van de Vijsel and J. Anderson. Coalition formation in multi-agent systems under

real-world conditions. In Proceedings of the AAAI-04 Workshop on Forming and

Maintaining Coalitions and Teams in Adaptive Multiagent Systems, San Jose, CA,

July 2004.

R. Vaughan. Massively multi-robot simulation in stage. Swarm Intelligence, 2(2):

189–208, 2008. ISSN 1935-3820. doi: 10.1007/s11721-008-0014-4. URL http:

//dx.doi.org/10.1007/s11721-008-0014-4.

R. Wegner. Balancing robotic teleoperation and autonomy in a complex and dynamic

environment. Master’s thesis, Department of Computer Science, University of

Manitoba, July 2003.

http://dx.doi.org/10.1007/s11721-008-0014-4
http://dx.doi.org/10.1007/s11721-008-0014-4

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Dedication
	Introduction
	Chapter Overview
	Introduction
	Motivation
	Terminology
	Research Questions
	Solution Approach
	Thesis Organisation

	Related Work
	Dynamic Team Management and Formation
	Robot Assessment and Evaluation
	Recruitment in Multi-Robot Systems
	Existing Framework
	Gunn Framework
	Attributes, Tasks, and Roles
	Team Management and Maintenance
	Task Management
	Schemas

	Active Recruitment Controller (ARC) Framework
	Recruitment Spectrum
	Recruitment Strategies
	Marker Manager

	Conclusion

	Methodology
	Chapter Overview
	My Framework
	Robot Satisfaction
	Tracking individual satisfaction
	Tracking team members' satisfaction

	Rare Skills in the Environment
	Unique skill

	Robots' Sense of Locality
	Task locale

	Conclusion

	Implementation
	Introduction
	USAR Domain
	The Simulated Environment
	Environment Objects

	Robot Types
	MinBots
	MidBots
	MaxBots
	DebrisBots
	FireBots
	Stairbot

	Attributes, Tasks, and Roles
	Attributes
	Physical Attributes
	Computational Attributes
	Sensory Attributes

	Task Types
	Gunn Framework Tasks
	ARC Framework Tasks
	My Framework

	Role Types
	Team Leader
	Coordinator/Explorer
	Explorer
	Debris Remover
	Fire Extinguisher
	Stair Lifter

	Ideal Team

	Autonomous Control
	Perceptual Schemas
	Motor Schemas

	Framework-Specific Modules
	Mission-Specific Modules
	Satisfaction Manager
	Satisfaction Expression

	Tracking Robot Satisfaction
	Tracking Members
	Tracking Location Satisfaction
	Identifying Skill Rarity

	Preliminary Experiment
	Conclusion

	Testing and Evaluation
	Introduction
	Review of Research Questions
	Evaluation Metrics
	Environment Generation
	Environment Set-up
	Independent Variables

	Additional Experiment
	Main Experiment Results
	Victims Successfully Confirmed to Leaders
	Area Coverage

	Additional Experiment Results
	StairBots Results
	FireBots Results

	Analysis
	Conclusion

	Conclusion
	Chapter Overview
	Answers to Research Questions
	Contributions
	Future work
	Future Implementation Suggestions
	Suggestions for Future Research

	Conclusion

	Experimental Environments
	Bibliography

