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Abstract

An efficient numerical method is presented for the solution of the integral equation

satisfied by the current density induced in axisymmetric solid conductors immersed in

given magnetic fields. The associated matrix equation is formulated by applying the

method of moments with the unknown current density expanded in a Fourier series in

the azimuthal angle, its coefficients being vector functions whose components along

the meridian and azimuth directions only depend on the meridian coordinate.

Illustrative numerical results are generated for conducting prolate and oblate

spheroids in the presence of axially directed uniform fields, for prolate and oblate

spheroids and spheres in the presence of arbitrarily directed uniform fields and, also,

in fields produced by current-carrying turns. The generated numerical results are

compared with available analytical results to investigate their accuracy. The effi-

ciency of using pulse basis functions and impulse basis functions is also investigated.
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Chapter 1

Introduction

1.1 Overview and Objective

Many engineering applications such as induction heating, levitation, eddy-current

breaking, electromagnetic shielding, nondestructive testing, require the analysis of the

currents induced in a solid conductor in the presence of a quasistationary magnetic

field. In quasistationary regime, the displacement current is negligible compared to

the conduction current and the field quantities satisfy the Helmholtz equation inside

the conductor. An accurate study requires the determination of the field quantities

both inside and outside the conductor.

An exact analytical solution of the quasistationary electromagnetic fields in the

presence of conducting bodies is only possible in just a few cases. In [1], such a

solution is presented for a sphere in the presence of a coaxial current-carrying turn.

The exact solution for the magnetic field has been presented in [2] for conducting

spheroids in the presence of coaxial current-carrying turns using the method of sepa-

ration of variables. Magnetic dipole moments have been calculated for a conducting

and permeable spheroid with uniform axial excitations in [3], and in [4] for transverse



excitations.

By employing approximate boundary conditions, various systems containing given

induced conductors can be analyzed using only the fields outside them. The most

widely used approximate boundary condition is the standard impedance boundary

condition (SIBC), which can be applied when the penetration depths of the fields are

relatively small compared to the dimensions of the object. The SIBC states that the

ratio between the tangential components of the electric and magnetic field intensities

at the conductor boundary is equal to the intrinsic impedance of the medium in which

the fields penetrate. At higher frequencies, the induced currents in the conductor can

be assumed to be confined to their surface and, then, the perfect electric conductor

(PEC) boundary condition can be applied with sufficient accuracy. The tangential

electric field on the surface of the conductor is assumed to be zero in the PEC model.

The accuracy of the PEC model and the SIBC model has been studied in [5] and it

has been found that, for spherical conductors the power losses and forces calculated

using the SIBC model introduce a maximum percentage error of less than 1% with

respect to the exact solution when the skin depths are less than 1/10 of the radius,

while the PEC model requires the skin depths to be less than 1/35 to have the same

accuracy. In [6], a similar study has been performed for conducting spheroids. The

validity of the PEC model has been analyzed in [7] for spheroids with various axial

ratios by comparing the computed results with experimental data.

An exact analytical solution is possible for certain axisymmetric systems, when

both the object and the inducing field are axisymmetric. When either the shape

of the object or the outside field is arbitrary, an analytical solution is, in general,

not possibie. For a numerical solution, an integral equation representation of the



boundary value problem is usually more advantageous than the partial differential

equation representation. The errors at various observation points may partially cancel

each other in the summation process when employing integral equations whereas, in

general, they may propagate along successive steps when using partial differential

equations. The most frequently used method to obtain an integral equation from the

partial differential equation is to use an associated Green's function, obtained from a

standard boundary value problem [8].

Two frequently used numerical techniques are the finite element method and the

method of moments. The finite element method is more versatile and powerful, being

applicable to more complex problems, while the method of moments is conceptually

more simple and easy to implement numerically. The method of moments is widely

used [9], [10] to solve a variety of electromagnetic problems such as radiation, scatter-

ing, analysis of antenna beam patterns, microstrips, quasistationary electromagnetic

problems, etc. The procedure of applying the method of moments involves the con-

version (discretization) of the integral equation using a set of basis and weighting

functions, and the solution of a matrix equation.

In this thesis, we calculate quasistationary magnetic fields in the presence of bodies

of revolution using the perfect conductor model. In the general case of arbitrarily

shaped conductors, the entire conductor surface has to be discretized, which requires

a large number of computations to be performed. In order to reduce substantially the

amount of computation required, we exploit the axisymmetry of the geometry of the

conducting body, even when the inducing fields are not axis¡.'rnmetric with respect to

the body axis of revolution. Namely, the induced surface current density is represented

in the form of a Fourier series in the azimuthal angle, with its coefficients being the



components of the current density along the meridian and azimuth directions,

only depending on the meridian coordinate [i1].

and

L.2 Thesis Outline

In Chapter 2, an integral equation is derived for the induced surface current density

for a conducting object in an arbitrary external magnetic field. A matrix equation

is derived by applying the method of moments. Details of the derivation of matrix

elements for axisymmetric bodies in arbitrary inducing fields are presented for impulse

weighting functions and for both pulse and impulse basis functions.

We present in Chapter 3, details of the computation of the matrix elements and

numerical results for the normalized tangential magnetic field intensity on the surface

of the spheroids in the presence of an axially directed uniform magnetic field and in the

field produced by coaxial circular current-carrying turns. Results for spheres in the

vicinity of a coaxial circular current-carrying turn are also presented as a special case.

The efficiency of using various types of basis functions to compute the induced surface

current density has been investigated by comparing the results obtained with impulse

basis functions and with pulse basis functions. The effect of the number of basis

functions on the convergence of the normalized tangential magnetic field intensity at

the middle of the meridian line has also been studied. We compare the generated

numerical results with the analybical results in [7] by evaluating the percentage error

between them.

Chapter 4 consists of the details of the computation of the matrix equation ele-

ments for a uniform inducing magnetic field directed at an arbitrary angle with respect

to the axis of symmetry of the body and for an external field produced by circular



current-carrying turns \^/hose axes are shifted with respect to the axis of revolution

of the body. Numerical results for the normalized tangential magnetic fields on the

surface of the spheres and spheroids are presented. In the case of spheres, the uniform

fieid is directed at an arbitrary angle with respect to the reference z-axis and the

circular turn axis is shifted with respect to the same axis. For spheres, the generated

numerical results are compared with those from the analytical solution by indicating

the percentage error. Conclusions and suggestions for future work are presented in

Chapter 5.

In Appendix A, we present details of the derivation of the analytical solution for

the magnetic field at the surface of perfect conducting spheroids in the presence of a

coaxial current-carrying circular turn. The analytical solutions corresponding to the

cases of spheroids in axially directed uniform fields and to spheres in the presence of

circular-current carrying turns are derived as special cases.

Details of the analytical solution for the tangential magnetic field at the surface

of a perfect conducting sphere in an uniform field directed at an arbitrary angle with

respect to a reference z-axis are given in Appendix B.



Chapter 2

General Formulation

2.L fntegral Equation for Eddy Currents on an Ar-
bitrarily Shaped Perfect Conducting Body in
a Given }øIagnetic Field

Consider an arbitrarily shaped conductor in an external magnetic freld H¿n. as shown

in Fig. 2.1, where P is the observation point and the position vectors of the source

and observation points are r and / , respectively. The total magnetic field intensity

at an observation point outside the conductor, .tI(r) can be written as

I{r) : Ho^"(r) I H¿n¿(r), (2.1)

where H¿"a(r) is the magnetic field intensity due to the induced currents on the

conducting body. By applying the Biot-Savart law, we have

Ho,¿(r) : * lrr"(/) 
* fiat, (2.2)

where R: r - / and .4 is the density of the current induced on the conductor.

To apply the boundary condition at the conductor surface, observation is made

just outside the body. At a point on the boundary between the two media, the tangen-

tial magnetic field is discontinuous by the amount of the current density induced on



x

Figure 2.1: An arbitrary shaped conductor in an external magnetic field.

the surface of the conductor. If the conductor is assumed to be perfect, the magnetic

fieid inside is zero. Therefore, an integral equation for the surface current density can

be formulated in the form

J"e) - ^" * lrt"rr, " ftæ : ñ.x H¿n.(r), r €,s, (2.3)

where â is the outwardly oriented unit vector normal to the surface ^9 at point P.

When the observation point coincides with the source point, ,R is zero yielding a

singularity in the integral of (2.3).

The integral equation is evaluated numerically by dividing the conductor surface



into patches. A part of the induced magnetic field is produced by the self patch

and the rest is produced by all the other patches. It is assumed that the self patch

becomes a flat surface as the size of the segment becomes small. Therefore, the

scattered magnetic field intensity from the self patch is

Hon¿,".¿Í (r) : -|nx .J',(r). (2.4)

The contribution from the non-self patches to the scattered magnetic field intensity

is

where the integral is taken in principal value. Substituting (2.4) and (2.5) into (2.3)

modifies the integral equation such that

H¿n.,on set¡(r) : * frt,rd¡ 
x ffar' , (2.5)

ït"o, - fia, frt"tt) " fta,' 
: H;^"(,), r e s, (2.6)

with Hi..(r): ñ.x lf¿,.(r).

Once a solution is obtained for the current density d, the total magnetic field

intensity outside the conductor can be obtained easily form (2.1) and (2.2).

2.2 Methods of Solution

2.2.L Method of Moments for Arbitrarily Shaped Bodies

The integral equation (2.6) can be written as

L(J"): H!^.(r), (2.7)

where the L is a linear operator,

L(r") : ït"f,, - fia * lrt"tr, * fia,' . (2.8)



Using the method of moments (2.7) can be converted to a matrix equation. Namely,

.[ is expanded in a series of basis functions and an inner product is taken with a set

of weighting functions W¿(r) [I0],

(Wo(r), L(J"(r))) : (W¿(r), Hi*"@)), (2.e)

where

(w,.nn Iw'nr. (2.10)
Js

The surface current density is expanded in a series of basis functions f¡(r) as

J"(r):Ër*r*('), (2.11)
k=1

where I¡, are constants to be determined. Making use of the linearity of .L, the resulting

equation after substituting (2.11) into (2.9), can be written as

oo

t i-<wn(r),¿ff*(r))) : (w¿(r), Hi*.@)¡, z: r,2,a,. . .. (2.L2)

'b= 1

The equation (2.I2) can be expressed in matrix form as

lzllrl: lvl, (2.13)

where (Z)ox: (Wo(r), ¿(f¡(r))), (V)o: (Wo(r), Hi".@)) and [1] contains the coeffi-

cients 16 to be determined. lZ) is called the impedance matrix and [I/] the inducing

field matrix.

AII the expressions derived so far are valid for bodies of arbitrary shape. Since

the scope of this thesis is limited to bodies which are sym.metric about an axis of

rotation, here afber the focus will be only on bodies of revolution.
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2.2.2 Moment Method for Axisymmetric Bodies

A conducting body of revolution is shown in Fig. 2.2. (p,ó,r) are the circular

cylindrical coordinate variables and ú is a length variable along the meridian C. The

unit vectors (îr,ö,?) forms an orthogonal right-handed triad. â. is the unit vector

oriented along the outward normal to the surface ,S of the body while $ and. i are

tangential to the surface 
^9.

Figure 2.2: Geometry of the axisymmetric conductor.

The induced surface current density and II'on in (2.6) can be written in terms of

JT



l1

the local coordinate variables (t, þ) and of the unit vectors (i, /) as

J"(t,ó): t lri¡^Q,ø)t+ tf ¡r(t,ø)ó)
k:7

H',,"(t, ó) : H'!^.(t, ó)i + tt'|,.(t, ó)Ó,

J"(t,ó): t ltrhrthr+ rjrtflr¡,
m:-æ k:I

oo

Hl,"(t,ó) : t Hln.,*(t)ei*a,

(2.15)

(2.16)

(2.t7)

into (2.9) results in a decoupling of the

set of equations can be expressed as a

(2.t4)

and

respectively. The superscripts t and þ in the coefficients { and lf;, and.in H'ul"and

ttif;" inaicate the direction. Because of the rotational symmetry of the body, the

induced surface current density as well as the inducing field on the body surface have

a 2ø' periodicity in the azimuthal angle. Therefore, both the surface current density

and the non-axisvmmetric inducing field are expanded in Fourier series as

where J'*n : i¡oçt¡ei*Ó, Jl-r: ófnþ)",*r and, Hln",*@ : +n ['" "i^"U, 
ó)e-i^Ó.,, Jo

This allows us to use only segments along the meridian line C, instead of the patches

over the entire conductor surface. We divide the meridian into N number of segments.

We choose weighting functions of the form

Wk(t,þ) : i,ool¡¡"-i"o and wluþ,ó) : óru(t)"-inÓ, (2.18)

where w¿(t) are functions to be selected.

Substitution of (2.16), (2.17), and (2.i8)

Fourier modes. F\rrthermore, the resulting



72

matrix equation with partitioned matrices;

I rzn lz::ll I tql l_ I tv:t1
liql inr l L iäi l 

: 
L i;,Å )' (2 1e)

with the elements

(z*) ur: (wlo, L(4r)) (zf) oo: (wio, t'çfir\¡,

(zl') or: (wlo, L(4ù , Ø#) n*: (wio, t'çth¡¡, (2.20)

(vå)u: \wlo, H!^",,(t)ei"ó) and (ul)r: (wlo, H|,",(t)ei'ó). e.zt)

2.3 Evaluation of Matrix Elements

To demonstrate the calculation of impedance matric elements, consider

(2.20) which can be expanded as

(zli)ur:+ 
I,w¿(t)r¡(t)d, - * f,-,rtli [". f rrrrlí

x!eìn(o'-rr¿rdr,].

We express RlRt and the local unit vectors in terms of the cartesian coord

vectors. Then,

n þcosþ - p' cosó')k+(psin{ - p'sin ó')îl+ Q - z')2
Diro.rL lp- + p'' - 2p/ cos(/ - ó') + (z - z)zl3

(Z!)n* rn

(2.22)

inate unit

(2.23)

i : sin a cos dâ + sin a sin $þ * cos a2,

i : sin a' cos ó'ã + sin o'sin þ'þ + cos a'2,

ó : - sin /â I cosþþ, (2.24)

ó' : -sinþ'b* cosS'fu,

îù : cos a cos þæ + cos a srn þ!¡ - sin a2,
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where a is the angle between 2 and Ú at the observation point P. It is defined to be

positive if ? is directed away from the z-axis and is given by

d : tan-1 (=\l e.25)
\t'n /lp

Similarly, a' is defined with respect to 2 and. l.
For axisymmetric bodies,

l,o,: I" l,^ pd,td,þ. (2.26)

Afber substituting (2.23), (2.24) and (2.26) into (2.22), we obtain finally

(zli) or 
:t 

l" lo'" 
.orrr rr(t) pd.td,þ * h l" I,'" f {:;,Q) rrþ')

(2.27)
{p cos a' - [p' cos o' + (2"- zi) sin a1]_] 

_ 

"jn(ó,_ó) 
opr dtdtt d,öd,ó, .

lp' + p'' - 2pp' cos(/ - ó') + (z - zt)z]Ê

With the observations made at ó : 0, the integrand in (2.27) becomes independent

of /. Therefore, the { integration reduces to 2r. Defining

f" cos nó'
n"= Jo ffa4" (2.28)

where Ro : lpz + p'" - 2pp' cosó' + (z - ,')]È, these matrix elements become

(zii) o* 
:n 

|"w¿(t) f¡(t)po, - + l" f.,tÌfr(t'){2s*p 
cosa' 

(2.2s)

- fp' coscr' + (z - z')sincr'l(7n+t I g,-t)\pp'dtdt'.
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Similarly, the remaining impedance matrix elements can be derived as

(2.30)

(zil)or : 
+ l"f.,f|¡rA)Q - z')(s*+t - sn-,)pp'dtdt',

(zl') or : sina' - p' sinacos a'

- gn-1)pp'dtdt',
+ l"f''rqha')[pcosa
- (z - z') sin rrsin a'] (g,"..,'1

(zl!)uo : n 
l".oþ)fr(t)pd,t -; I"f.UUrUt){-2snp' 

cosa

* [p cos a - (z - z') sin a](g,*,, + g"-t)) pp' dtdt' .

The inducing field matrix elements in (2.21) are obtained from

(v]), : ," 
I"w¿(t)Hil",*(t)pdt 

and

(uÐ, : ," I"w¿(t)ni!.,,(t)pd,t, (2.s1)

where the superscript ú or þ on H'on",n indicates the direction, and. H'uL",^ and, Hil",,

are the n-th Fourier modes of H'L" and, Hif;., respectively.

The impedance matrix depends on the geometric parameters of the body, the

weighting functions and the basis functions while the inducing field matrix is deter-

mined by the external field. Let us now show the evaluation of the matrix elements

with the specified weighting and basis functions. In what follows we always use im-

pulses as weighting functions and impulses, as well as pulses as basis functions.

2.3.L Matrix Elements with Impulse Weighting Functions
and Impulse Basis F\rnctions

When impulses placed at the center of the segments along C are used as basis func-

tions, it is assumed that the surface current is concentrated only at the middle of
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0.5 1.5 /r-0.5 /r+ 0.5

Figure 2.3: Meridian line divided into l/ number of segments.

each segment. Thus,

f n(t) : 6(t - tk), w¿(t) : 6(t - tò, (2.32)

where õ(t - tk) and d(f - t¿) arc the Dirac delta functions, t¿ - k - 0.5, t¿:'i - 0.5,

and k,'i: I,2,...,N.In all the numerical computations performed in this thesis, we

have scaled the size of the body so that the length of each segment is one unit as

shown in Fig. 2.3.

With this choice of functions, vue can easily calculate the impedance and inducing

matrix elements as

l.ztt\ 1

\¿î ) ¿t : 'r pt¿ - ){2G"Ot, 
cos alu - ltrlu .or a'rr + (z¿n - ,!r) sin alu]

'(Gn+t -l G*-t)j ptoPlro,

ØiÐ n^ : fiQr, -'lu)(G,*t - Gn-t) PtuP't^,

(Zl') or : *ror,cos 
o¿u sin alo - Pl* sin c,¿u cos a!¿u

-(rru - zl)sina¿o sinalu](Gn+I- Gn-t)prudro, (2.33)

(zl,)* : rpt¿ -|{-rc.o,rrcoso¿n * [p¿u cos at¿ - (zt¿ - zlr)sina¿n]

'(Gn*, + G,-)Iptuplto,
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ând

where

(v:),

(ul),

2r H1f;",^(t¿) p¿n,

2r H!f;",*(t¿) p¿u.

"r: 

{

1,"
cos nþ'

lp?, + pr- - 2pruptrucos /' * Qru - ,l)lt/'
dó' i,+ k,

(2.34)

(2.35)

d,ó' d: k, Q' e (0,r].

(2.36)

Under the assumption that pt¡,dt¡ and z¿n remain constant and equal to their

values at the midpoint of each segment, (2.33) holds true for this case too, but the

values of Gn will be modified. For pulse basis functions

rtr\ lt (k-1) <t<rî,
-//c(¿/ : I

| 0 elsewhere.

1,"

[.

f" cos nþ'l*nr74***
The subscripts t¿ and ú¿ indicates the values of p, a and z at t : ú¿ and P' , d' and z'

att: ú¡, respectively. The integration G,, is performed numerically using a suitable

integration algorithm (see Section 3.1.2).

2.3.2 Impedance Matrix Elements with Impulse Weighting
F\rnctions and Pulse Basis Functions

Pulse basis functions represent a more realistic distribution of current. It assumes

that the induced currents are distributed evenly along a segment. So, we choose

un

Í(ó')d,ö' 'i: lt, þ' e (0,r1.

(2.37)
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where Í(ó'): Irr r*# d,t'and,&,:lp?,+pr -2prop'cos/'* (rru-z')li. Bv

assuming ú/ to be a straight line between k - 1 and ,k, we obtain

where

t¡ : l(p¿u cos ó' - p!t) sin a¿o I (zr, - z'ro) cos a¿ul,

d: {Rk-rî and

Rit" : lp?, + pi"r - 2ptnplrocos /' * ("r, - 4.)là .

Evaluation of the integration in (2.38) yields

(2.38)

(2.42)

(2.3e)

(2.40)

(2.41)

^t "\ út * 0'5
r \Y ) - d'zv@r¡¡qz gz

ú¡. - 0.5

d2!rek - aîF gz'



Chapter 3

Spheroids in Axisymmetric Fields

Let us now consider a perfect conducting spheroid either prolate or oblate, placed in

an axisymmetric field. The semi-major and the semi-minor axis in case of a prolate

spheroid â,r€ o6 and b6, respectively, while in case of an oblate spheroid, they are be

and øs, respectively.

A perfect conducting prolate spheroid in a 2 directed uniform field is shown in

Fig. 3.1. The geometry of the spheroid is expressed in prolate spheroidal coordinates

rl*,€*,Ó* (-1 < ?* ( *1, 1 < (. < oo, and 0 < Ó* < 2zr') defined with respect to

the center of the spheroid. The relationship between the length of the meridian (see

Section 2.3.1) and the spheroid dimensions is

I/ : Cobo

where the axial ratio ko6 : aolbo ànd

(3.1)

,o:l_"lw)'or. (3.2)

Here, {fi is the prolate spheroid surface equation, with {ff -- k"bJfib - L The prolate

spheroidal coordinates are related to the rectangular cartesian coordinates (r",U*,2*)

18
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2c
21, ./yf

Figure 3.1: Perfect conducting prolate spheroid in a 2 directed uniform field.

whose origin is at the center of the spheroid bV [7]

r* : c[(1 - n.\(€*' - r)]'/' cos/*

a* : c[(1 - ,t"')(€*'- 1)]t/'sind-

z : cnË.

(3.3)
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The corresponding scale factors hr*,hç and h4. are [7]

t - ^l €.' - ,*z1r/zftn* : "lt-r* 1

' Iq*z -r*z1r/zh€-: "LÉl
h". : c[(1 -rt*\(t*'-r)]'/',

(3.4)

where c is the semi-focal length of the prolate spheroid, ¿: fÇ4s.
To compute the impedance matrix, the required geometric parameters of the

spheroid p and z are calatlated using (3.3) with 6- : €ð and @* : 0 (the obser-

vations aremadeonthemeridian atþ:0, p: z* and z: z* aoo). The4*

coordinates at the middle of each segment is found from

rni.

J_rnr.or.:k-0.b,
lc: I,2,...N. (3.5)

Since the generating curve C for the prolate spheroid is an ellipse given by

c : 12 lbï + Q - as)2 I a?o : 1. (3 6)

from (2.25) we have

(3.7)

We present numerical results for two cases of axisymmetric fields: a 2 directed

uniform magnetic field and the magnetic field produced by a coaxial circular current-

carrying turn. In Section 3.2.4, a sphere in the presence of a circular turns with its

axis along the z-axis is presented as a special case.

a:tan-l (".;)
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2I

Spheroids in a IJniform Magnetic Field Di-
rected Along the Axis of Rotation

A uniform magnetic field incident along the axis of rotation is the most simplest of

cases. Due to the axisymmetry in the system, the magnetic vector potential has a þ

component only. Hence, the external magnetic field on the conductor surface is along

the meridian derection.

3.1.1 Computation of the Inducing Field Matrix Entries

As shown in Fig. 3.1, we select the z-axis of our coordinate system along the body's

axis of rotation. Then the inducing magnetic field can be written as H¿n (r) : H¿n"Z.

To compute the inducing field matrix, the external field is expressed in terms of the

local vectors defined in (2.24) as

H¿,"(t): H¿n"(icosa - âsina). (3.8)

Since this field is independent of. þ, Fourier series expansion in azimuthal angle (2.i7)

contains only the component corresponding to m:0. Thus (2.34) yields

:0 and

: -2n H¿n"p¿u COS 0¿u. (3.e)

After the impedance and inducing field matrices are computed, (2.19) is used to

determine the coefficients .Ij* and ff*. The surface current density is calculated using

(2.16) and the resultant magnetic field intensity on the surface of the body is given

by

(vo')n

(ur),

I(r):-ñ.x1"(r). (3.10)
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3.L.2 Results for Prolate Spheroids

We consider a perfect conducting prolate spheroid in a uniform magnetic field directed

along the major axis. The meridian is divided into I/ number of segments and we

use Dirac delta functions as basis functions.

Using impulse basis functions

To evaluate the integration in (2.35), \Me use adaptive Lobatto quadrature algorithm

with an absolute error tolerance of 10-6.

0

-2

-4

-6

-8

-10

-12

-16

-18

Figure 3.2: Percentage error of the normalized tangential magnetic field at rl* : 0

versus the number of meridian segments, for various a6f b6.

Figure 3.2 shows the effect of the number of meridian segments on the conver-

gence of the normalized tangential magnetic field at ?* : 0. The error is calculated

with respect to the normalized tangential magnetic field at the same location with 85

impulse basis functions. Results are presented for prolate spheroids with three dif-

ferent axial ratios. Figure 3.2 shows that by using more than 31 meridian segments,

I
uJ
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a significant accuracy (absolute percentage error less than 1%) at the middle of the

meridian can be achieved.

The normalized tangential magnetic fields generated with 31 and 85 meridian

segments are compared in Table 3.1. The maximum deviation in the solution with

l/:31 compared to the one with l/:85 is2.63To, observed for the prolate spheroid

with a6f bs: l-.5 at lq.l : 0.9.

Table 3.1: Normalized magnetic field generated with 31 and 85 meridian segments, at
several locations along the meridian of a prolate spheroid with different axial ratios.

N rl H lH¿n.
a6/b¡:1.1 as/bt:1.25 as/bs:1.5

31

0

0.6
0.9

L.446
L.\97
0..672

1.395

1.193

0.715

1..J.f /

1.200

0.776

85

0

0.6
0.9

L.459
t.205
0.684

1.406

1.209

0.730

1.349
r.209
0.797

In Fig. 3.3, the normalized tangential magnetic field generated using 31 meridian

segments and the exact solution given in (4.18), are shown for spheroids with aolbo:

I.I,L.25 and 1.5. Details of the derivation of the exact solution are given in Appendix

A. This comparison is possible because f* is along the meridian and therefore is same

as i.

The percentage error of the generated results with respect to the exact solution

are plotted in Fig. 3.4. The accuracy in the results is lower for points closer to the

poles. Another interesting observation is that the deviation from the exact solution

is getting higher as the axial ratio increases from unity.
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" " "' aolbo=1'5 ' 6t"tt
,,,X,, aolbo=1.s: MoM

- - -aolbo=1'25:Exact

- x -ao/bo=125'Yo"

- 

aolb0=1.1 : Exact

*+(- ao/bo=1.1 : MoM

0

Tl*

Figure 3.3: Normalized magnetic fields generated using the MoM and the exact so-

lution for a prolate spheroid with three different axial ratios, impulse basis functions
and N:31, excited by an axially directed uniform field.
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Figure 3.4: Percentage error with respect to the exact solution of the normalized
magnetic field along the meridian for a prolate spheroid with three different axial
ratios, impulse basis functions and N:31, excited by an axially directed uniform
field.
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Using pulse basis functions

Using fewer meridian segments when calculating the tangential magnetic field inten-

sity with impulse basis functions introduces errors, because the surface current density

is assumed to be concentrated at the center of each segment. Pulse basis functions

give a better approximation to the distribution of surface current density.

To compute the impedance matrix with pulse basis functions, G, is calculated

from (2.37). As in the case with impulse basis functions, the integral is evaluated

using the adaptive Lobatto quadrature algorithm with an absolute error tolerance of

10-6.

0.5

0

-0.5

- -1
o
Ètu .-
^ -1.5

à<

-2

-2.5

-3

-3.5

Figure 3.5: Percentage error of the normalized magnetic field at ?* : 0 versus the
number of meridian segments, for various aolbo.

Figure 3.5 shows the variation of the percentage error with the number of meridian

segments, for prolate spheroids with three different axial ratios. The percentage error

of the normalized tangential magnetic field at Tl* : 0 is evaluated with respect to the

value computed with l/ : 65. To have an absolute percentage error Less lhan LTo,
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the meridian needs to be divided into more than 12 segments.

The normalized tangential magnetic field intensities generated with 13 and 65

segments are compared in Table 3.2. The maximum deviation in the solution with

l/ : 13 as compared to the one with l/ : 65 is 4.36T0, observed for the spheroid with

aolbo: L.25 at lry-l :0.9.

Table 3.2: Normalized magnetic field intensity generated with 13 and 65 meridian
segments, at several locations along the meridian of a prolate spheroid with different
axial ratios.

N lri- |
H/H¿n.

asf b6:1.1 asf bs:1.25 asf bs:1.5

13

0

0.6
0.9

I.445
1.185
0..659

1.391

1.188
0.702

1.331

1.189

0.766

65

0

0.6
0.9

r.454
1.203

0.687

7.402
1.206

0.734

r.342
I.205
0.800

The normalized tangential magnetic field intensity at q* - 0 computed with 13

segments, is compared with that from the exact solution. For prolate spheroids with

axial ratios of 1.1, 1.25 and 1.5, the variation of the percentage error along the merid-

ian is shown in Fig. 3.6. The employment of pulse basis functions results in a lesser

deviation from the exact solution as compared to the deviation when using impulse

basis functions, especially closer to the poles.

The computation times of the magnetic field on the surface of prolate spheroids

with the three axial ratios tested, with pulse basis functions and 13 segments, and

with impulse basis functions and Sl segments are given in Table 3.3. Computation was

performed with a notebook computer with Intel Centrino@ Duo processor working at

2GHz. Pulse basis functions yield a faster convergence when compared to the impulse
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basis functions, due to the smaller number of segments required. Because of its higher

efficiency as compared to the impulse basis functions, here after we use pulse basis

functions to obtain the numerical results.

4.5

4

3.5

o

2.5

2lt

1.5

1

0.5

0

-0.5

Figure 3.6: Percentage error with respect to the exact solution of the norma,lized
magnetic field along the meridian for a prolate spheroid with three different axial
ratios, pulse basis functions and N:13, excited by an axially directed uniform field.

Table 3.3: Comparison of the CPU time to obtain a percentage deviation of 1%, with
the two types of basis functions used .

N CPU time (s

a6f b6:1.1 as/bs:1.25 øs/bs: 1'5
13;Pulse 2.L5 2.18 2.20

31;Impulse 4.92 4.86 4.81

o
uJ

s
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3.1-.3 Results for Oblate Spheroids

Consider now the case of a perfect conducting oblate spheroid in a uniform field

directed along the minor axis. By using the transformations (* - j€*, (fi --+ j(fi and

c-- -jc [7], the corresponding matrix elements for the oblate spheroid are obtained

from those for the prolate spheroid.

For oblate spheroids with axial ratios of 0.9, 0.8 and 0.7 in an axially directed

uniform magnetic field, the numerical results for the normalized tangential magnetic

field intensity at ïl* : 0 generated with different numbers of meridian segments are

compared with those obtained with 45 meridian segments. Figure 3.7 shows that, by

dividing the meridian into at least 11 segments, an absolute percentage error of less

than ITo can be achieved.

Figure 3.7: Percentage error of the normalized tangential magnetic field at Tl* : 0

versus the number of meridian segments, for various aolbo.

The generated normalized tangential magnetic field intensity with 11 segments

and the exact solution in (4.19) are given in Fig. 3.8 and they are compared in Fig.

3.9 via the percentage error with respect to the exact solution.

o
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- * -ao/bo=Q'g'5*""'

- x -ao/bo=O'3'Yo*

"""'aO/bO=O'7'E*""t
,,,!,,a0/bo=0.7'Yot

0

Î',ì*

Figure 3.8: Normalized magnetic fields generated using the MoM and the exact solu-
tion for an oblate spheroid with three different axial ratios and N:11, excited by an
axially directed uniform field.
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Figure 3.9: Percentage error with respect to the exact solution of the normalized
magnetic field along the meridian for an oblate spheroid with three different axial
ratios and N:11, excited by an axially directed uniform field.
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Spheroids in the Presence of Coaxial Circular
Current- Carrying T\rrns

Consider a perfect conducting prolate spheroid in the presence of a circular current-

carrying turn as shown in Fig. 3.10. Since the geometry of the prolate spheroid

remains the same, the impedance matrix calculated in the pervious section is not

affected.

2ao

Figure 3.10: A perfect conducting prolate spheroid in the presence of a coaxial circular
current-carrying turn.

ti:,í:.,þ:)
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3.2.L Computation of the Inducing Field Matrix

We first calculate the magnetic field intensity produced by the circular current-

carrying turn at the middle of the meridian segments. The magnetic field intensity

-E[¿,," produced by a circular current-carrying turn is given in 112],

H¿n.: Hf""ît + H:n.z, (3.11)

where

Hl,.

Hln"

2np

I"(z -f h.)

:0 and

: -2rlH,!,"(t¿) sina¿n + Hii.(tò cos a¿ulp¿u. (3.15)

[-"*ffi"] (3 12)

1..ffi"1 (B1B)
I.

2r

Here, K and .Ð are complete elliptic integrals of the first and second kind, respectively,

with modulus 1/4b"pl[(b" + p)2 + (z + h")21 (see notation in Fig. 3.10). Using the

cylindrical to cartesian coordinate transform and the relationships given in (2.24),

the right hand side in (2.6) is determined in the form

Hln": -(Hf*"sina * Hf,"cosa)þ. (3.14)

Independence of. $ in Hln" results in its Fourier expansion to have only the n:0
component. Therefore, from (2.34), the inducing fieid matrix elements are

(V¡),

('t),

The inducing field matrix for an axisymmetric system with multiple coaxial turns

can be computed simply by using the superposition.

(b" + p)2 -l (z -t h")2

(b" + p)' -t (z * h")2
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3.2.2 Results for Prolate Spheroids

To evaluate the complete elliptic integrals in (3.12) and (3.13), we use the subroutine

given in Matlab which is based on the method of arithmetic geometric mean [13].

The magnetic field intensity on the surface of the prolate spheroid is normalized with

respect to l"fbs and the ratio h"fb" is kept at unity, in all cases.

Figure 3.11: Percentage error of the maximum value of the normalized tangential
magnetic field versus the number of meridian segments , for various asf bs and b6f b":

bsf b. : 0.25 

-; 

bolb": 0.5 - - - -; bolb.: 0.75 ' ' ' '.

Figure 3.11 shows the effect of the number of meridian segments on the conver-

gence of the solution for the maximum value of the normalized magnetic field intensity

on the surface of the prolate spheroid. The percentage error of the maximum tangen-

tial magnetic field is calculated with respect to the lesult obtained with 50 segments

and is plotted against the number of meridian segments for prolate spheroids with

various axial ratios and bsf b. : 0.25, 0.5, and 0.75. Using more than 25 segments
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yields an absolute percentage error less than 0.5% for all the cases.

The magnetic field problem for a perfect conducting prolate spheroid in the pres-

ence of a coaxial current-carrying circular turn can be solved analybically. Details of

the derivation are given in Appendix A. We compare the results obtained from the

method of moments with the exact solution given in (4.13). Analybical computation

of tangential magnetic field requires the calculation of associated Legendre functions

with various arguments. Numerical values of Po1 and Q'o fo, arguments smaller than 1

are obtained using the recurrence formulas [13]. The algorithm in [1a] is used to cal-

culate P) for arguments greater than one, while Q| for such arguments is calculated

with the algorithm in [i5].

Figures 3.I2,3.L4 and 3.16 show the normalized tangential magnetic field intensity

calculated using 25 meridian segments and the exact solution for prolate spheroids

with axial ratios of 1.1, 1.25 and 1.5, excited by a coaxial circular current-carrying

turn with b6fb":0.25, 0.5 and 0.75, respectively. The series in the exact solution is

truncated at 25 terms [6].

In Fig.s 3.13, 3.15 and 3.17 v/e compare the normalized tangential magnetic field

intensity for all the cases, computed from the two methods. The percentage error is

calculated with respect to the exact solution. Although a large percentage error is

present closer to the pole opposite to the turn, in all the cases tested, it is less than

5% when ?- € l-1,0.5].
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Figure 3.12: Normalized magnetic field generated using the MoM and the exact
solution for a prolate spheroid with different axial ratios excited by a coaxial turn
with h.f b.: t, bsf b": 0.25 and l/ : 25.
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Figure 3.13: Percentage error with respect to the exact solution of the normalized
magnetic field along the meridian for a prolate spheroid with different axial ratios
exited by a coaxial turn with h.f b.: L, bsf b.:0.25 and Iy' : 25.
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Figure 3.14: Normalized magnetic field generated using the MoM and the exact
solution for a prolate spheroid with different axial ratios excited by a coaxial turn
wíth h.fb": I, bolb": 0.5 and N :25.
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Figure 3.15: Percentage error with respect to the exact solution of the normalized
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Figure 3.16: Normalized magnetic field generated using the MoM and the exact
solution for a prolate spheroid with different axial ratios excited by a coaxial turn
with h.f b": I, bsf b": 0.75 and I/ : 25.
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Figure 3.17: Percentage error with respect to the exact solution of the normalized
magnetic field along the meridian for a prolate spheroid with different axial ratios
exited by a coaxial turn with h"lb": I, bof b":0.75 and N : 25.
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3.2.3 Results for Oblate Spheroids

Applying the transformations in Section 3.1.3 to obtain the results for oblate spheroids

from those for prolate spheroids introduces associated Legendre functions of second

kind with imaginary arguments in the calculation of the exact solution for the tan-

gential magnetic field in the presence of a coaxial current-carrying circular turn. The

algorithm given in [15] is used to compute 8[ with imaginary arguments. The exact

solution in (4.14) is truncated to 25 terms [6].

Results for the normalized tangential magnetic field generated with N :25 merid-

ian segments are presented for oblate spheroids with axial ratios of 0.9 and 0.75. The

tangential magnetic field is normalized with respect to I.f as. The suitable number

of basis functions was obtained by calculating the percentage error of the maximum

value of the tangential magnetic field for different I/'s with respect to the value ob-

tained with l/ : 50. It was found that when the number of basis functions is grater

than or equal to 25, the relative error is less than 0.5%. The results presented have

been obtained by keeping the ratio h"f b. at unity while changing the ratio aolb..

The normalized tangential magnetic field intensity computed by using the method

of moments and its exact solution are plotted in Fig. 3.18; a comparison between

the two in terms of the percentage error is shown in Fig. 3.19. Results are given

for asfb" : 0.25, aolb. : 0.5, and asfb. : 9.25. A significant accuracy (absolute

percentage error less than 2%) compared to the exact solution can be obtained for

4. € [-1.3,0.4].
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Figure 3.18: Normalized magnetic field obtained by using the MoM and the exact
solution for an oblate spheroid with different axial ratios and ¡/ - 25, excited by a
coaxial turn with h"lb":1 and a6fb": (t) a6lb":0.25; (u) a6lb.:0.5; (¡r) asfb":
0.75.
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Figure 3.19: Percentage error with respect to the exact solution of the normalized
magnetic field along the meridian for an oblate spheroid with different axial ratios
and i/ : 25, exited by a coaxial turn with h.lb.: 1 and different values of asf b..
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3.2.4 The Special Case of Spheres

A sphere is a spheroid with an axial ratio fro6 : 1. The results obtained for the prolate

spheroid can be reduced to those for a sphere by using the transformations [7]

c --. 0 ; €ð, €å, (. * - ; 4å * cos 0I, T* ---+ cos g* 
i

4ð -- a,, 4i -* rI, 4* - r*.
(3.16)

Here, á* is the meridian angle defined with respect to the center of the sphere. As

in the previous ca.ses, the subscript c denotes the parameters corresponding to the

current-carrying turn; ø" is the radius of the conducting sphere and rj is the radius

of the virtual sphere whose center is at the conductor center, containing the circular

turn.

By applying the transformations in (3.16) to (3.1), the normalized radius of the

sphere is found to be N f r. Flom (3.3) and (3.5), one obtains in the case of the sphere

(3.17)

The generating curve is a circle with the center at (0,0, ø"). Thus, the expression of

a in (3.7) is still valid.

The tangential magnetic field is normalized with respect to I"f ø". When N :25

meridian segments are used to generate the normalized tangential magnetic field, the

relative deviation from the solution with l/:50 is less than 0.25% for all the cases

presented. Figure 3.20 shows the results generated with I/ : 25 for a sphere excited by

acoaxialcircularcurrent-carryingturn withh"fb":1and a"/b.:0.25, 0.5 and 0.75.

0i

rk

z¡"

k-0.5
o,s

ø" sin di

ø" cos d[.
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Figure 3.20: Normalized magnetic freld generated using the MoM and the exact
solution for a perfectly conducting sphere excited by a coaxial turn wíth h"f b. : 1

and different arf b", for l/ : 25.
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Figure 3.21: Percentage error with respect to the exact solution of the normalized
magnetic field along the meridian for a perfectly conducting sphere exited by a coaxial
turn with h"fb":1 and different aolb", for /y':25.
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In Fig. 3.21, the computed results are compared with those from the exact solution

in (4.21). The infinite series for the analytical solution is truncated by retaining only

the first 20 terms [16]. The percentage error of the norma.lized tangential magnetic

field is calculated with respect to the exact solution. A much higher accuracy than

in the case of spheroids is achieved for the spheres. The error is less than 0.6%

ever¡rwhere along the meridian.



Chapter 4

Conducting Bodies of Revolution
in Arbitrary Fields

In this chapter, the inducing field matrices are calculated for uniform fields directed

at an arbitrary angle with respect to the body's axis of symmetry and for the fields

produced by circular current-carrying turns whose axes are shifted with respect to the

axis of revolution of the body. Numerical results are presented for spheres, prolate

and oblate spheroids.

4.t lJniform Magnetic Field

Let us consider a uniform magnetic field directed at an angle p with respect to the

body's axis of revolution. Assume the field to be parallel to the y - z planq as shown

in Fig. 4.1. The cartesian coordinate system is selected such that the z-axis is the

body's axis of symmetry and the origin is at the bottom of the conductor, as in Fig.

2.2. Then the external inducing magnetic field can be written as

H¿n": Hun"(- sin P!¡ -l cos B2) (4.1)

42
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Expressing (4.1) in local unit vectors iand,$, and expanding its cross prod.uct with

â. þhe right hand side in (2.6)] in a Fourier series in the azimuthal angle yields the

following inducing field matrix elements computed from (2.34)

( o n:0,
(vl)o: I -nor,ron.sinB n: J:r,

I o tut>2,

| -zn pr,tt¿n.cos p cos a¿o n : 0,

(Vl)r: 1 +jnprrHo,o"sinpsinat¿ TL: !L, (4.3)

I o þt>2.
Thus, only Fourier modes corresponding to n : 0 and n : *1 are present in the

solution for the surface current density.

(4.2)

A.I.L Results for Spheres

The impedance matrix for spheres was computed in Section 3.2.4. With (4.2) and

(4.3), numerical results for the normalized tangential magnetic field are generated for

various angles of p. When 25 meridian segments are used, the relative error with

respect to the results obtained with 55 meridian segments is less than0.2% for all the

cases considered.

Figure 4.1 shows the normalized tangential magnetic fields generated using the

method of moments and the exact solution given in Appendix B for different values

of P. The tangential magnetic fietd intensity has components along i and fr dit..-

tions, and the resultant tangential magnetic field is normalized with respect to the

magnitude of the inducing field. 0* is the meridian angle coordinate defined with

respect to the center of the sphere. For small angles p,the results for the normalized

tangential magnetic field are close to the result for the axiallv incident case especially
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Figure 4.1: Normalized magnetic field at ó : 00 generated using the MoM with
N : 25, and the exact solution for a sphere excited by a uniform magnetic field
directed at an angle B with respect to the z-axis: (u)0 :00; (b)É : 100; (c)þ :400;
(d)P :600; (e)B : 900.
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Figure 4.2: Percentage error with respect to the exact solution of the normalized
magnetic field at d : 00 for a sphere excited by a uniform magnetic fietd directed at
different angles with respect to the z-axis, for l/: 25.
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in the region closer to the middle of the meridian, while a higher deviation from the

axially incident field case is observed closer to the poles.

When the inducing field is directed perpendicular to the z- axis, the induced

currents at þ :00 are along the meridian and hence the magnetic field on the surface

of the sphere is along the fr direction.

The results computed with the method of moments are compared in Fig. 4.2 with

the exact solution. A larger deviation from the exact solution is observed closer to

the poles and the absolute value of the percentage error of the normalized tangential

magnetic field generated with the method of moments with respect to the exact

solution is less lhan 0.270 for 0* € [100, 1700] in all the cases tested.

4.L.2 Results for Spheroids

Numerical results are presented for a prolate spheroid with an axial ratio of 1.25 and

for an oblate spheroid with an axial ratio of 0.8 using 25 meridian segments. For

all the cases tested, the absolute value of the percentage error with respect to the

normalized magnetic field at the middle of the meridian ó :00 is less than 0.3% in

the case of the prolate spheroid and less than 0.4V0 for the oblate spheroid.

Figures 4.3 and 4.4 show the normalized magnetic field intensity aJong the merid-

ían þ: 00 for the prolate spheroid and for the oblate spheroid, respectively, for a

uniform inducing field directed at various angles B. The exact solutions corresponding

to the axially directed uniform field are also shown for both spheroids. To check the

algorithm, results have been generated for a small angles of P (< 100) and compared

with the results in the case of an axially directed incident field. As expected, except

near the poles, the difference between the two sets of results is relatively small (see

the plots for B: 1go¡.
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Field from Circular Current-Carrying Turns
whose Axes are Shifted with Respect to the
Body's Axis of Revolution

Let us shift the axis of the current-carrying turn considered in Section 3.2by a distance

d," from the axis of revolution of the induced body in y - z plane. Figure 4.5 shows

such a turn in the proximity of a prolate spheroid. The components of the inducing

magnetic field produced by the circular current-carrying turn at the observation point

on the spheroid surface are Hpt and H"'.

Figure 4.5: Circular turn in the proximity of a conducting spheroid.
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4.2.L Computation of the Inducing Field Matrix

The equations (3.12) and (3.13) are modified to incorporate the shifb in the turn axis.

In this case, the radial distance from the axis ofthe turn to the observation point is p1.

Therefore,thecylindricalcoordinatepisreplacedwithp1:@.
Thus,

Hí;" :

where K and E are complete elliptic integrals of first and second kind, respectively,

withmodulu".Theinducingmagneticfieidintensity
produced by the current-carrying turn, at the point of observation is

H¿n" : Hf).sinuù - Hf;"cos u! + Hí;.2, (4.6)

with sinu - pcosþlq and cosu : (d" - psinö)lpr. Therefore, the inducing field

matrix elements are computed from (2.3a) with

"l Ø4)

(4.5)

h"),

E],

z*

")-
hJ.

-(z
-h.

+h

"+
z*
6
)'
z

Pt

-(
+2.

toIcl

=tpi-
,j

br.

b.

-p
p,

(¿

r
+

b7

b"

,l-*

o* 
('I

p? -r (z + h.)'
H"t:"

2np,

-l (z * h")

I":
t)'211/(b.+ p

H!^",,(t.)

Hf,.,^(to)

-1 
f2n: ; J, (Hf)"sinusin@* Hf)"cosucosþ)e-i"ó¿6 Ø.7)

- 
I î2t,: ; J" (Hf)"sinusinacos ó - Hf;"cosusinosin/ (4.8)

+Hí;"cos a)e-inÓ dS,

where Hfi., HíÅ., sinu and cosu are evaluated at t: t¿. For each Fourier mode

[n e (-oo,oo)], the integrals in (a.7) and (4.8) are evaluated numerically.

I.(z -f h")

(b" + p1.)2 -t (z -l h")2
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4.2.2 Results for Spheres

Unlike in all the other examples presented so far, the Fourier series expansion of the

inducing field produced by the circular current-carrying turn, with its axis shifbed

with respect to the body's axis of symmetry, is an infinite series. In all the cases

considered in this section, the results are computed with 25 meridian segments.

The effect of truncating the Fourier series is investigated for various ratios of

ø"f b. and d"f a" while keeping h"f b":1. Figure 4.6 shows the percentage error with

respect to the maximum value of the normalized tangential magnetic field calculated

with various number n of Fourier modes, ln,l < 10, with respect to the corresponding

value calculated with Fourier modes r¿ from -10 to 10. When n : t4, i.e. when

only the modes from -4 to 4 are used to calculate the tangential magnetic field, the

absolute percentage error is already practically zerc. It can be also seen from Fig.

4.6 that the mode n: 0 gives results with significant accuracy (absolute percentage

error Less than0.25%) for smail shifbs in the turn axts (d"f a" < 0.1).

On the other hand, the results generated with n : *4 and 25 meridian segments

show a very good accuracy as compared to those generated with 50 segments. The

absolute percentage error between the two sets of results is less than 0.3% for all the

cases tested.

The normalized magnetic field on the surface of a sphere in the presence of a

circular turns of different sizes placed at different locations is shown in Fig. 4.7. The

tangential magnetic field is normalized with respect to I.f a". The results from the

exact solution are also shown for the coaxial turn case. For small shifbs of the turn

axis with respect to the z-axis, the results are close to those for the coaxial case,

except near the poles.
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Figure 4.6: Effect of number of Fourier modes on the convergence of the maximum
normalized magnetic field for a sphere in the presence of a current-carrying turn with
h"fb": 1, various d.f a" and a"fb": a"lb":0.25 
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Figure 4.7: Normalized magnetic field at ó : 0o for a sphere in the presence of a
current-carrying turn wíth hcf b.: 1, various d.f a" and: (a)a"f b.:0.25; (b)a"f b":
0.5; (c)a"lb":0.75.
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4.2.3 Results for Spheroids

As in the case of the sphere, only the Fourier modes up to n : t4 are used to

generate satisfactory results for conducting spheroids. There is no difference in the

first 5 significant digits between these results and those obtained with the Fourier

modes up to n : È10. We use 25 meridian segments in all cases considered. The

tangential magnetic field is normalized with respect to I"f bs in case of the prolate

spheroid and I"fas in case of the oblate spheroid.

Figures 4.8 and 4.9 show the normalized magnetic field at þ :00 for a prolate

spheroid with an axial ratio of.7.25 and for an oblate spheroid with an axial ratio of

0.8, in the presence of a circular current-carrying turn of different sizes. The shift of

the turn axis in the y - z plane is varied by changing the ratio d.f bs whi\e keeping

h.lb. : 1. The results corresponding to the exact solution for a coaxial turn are also

shown for both types of spheroids.
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Chapter 5

Conclusion and F\rture Work

In this thesis, an efficient analysis of the magnetic field produced by arbitrary qua-

sistationary inducing fields in the presence of axisymmetric conducting bodies is pre-

sented. An integral equation is formulated for the induced surface current density on

the conductor surface under the assumption of a negligible depth of penetration of the

fields into the conductor. The field quantities on the surfaces of the conductors are

expressed in terms of the meridian and azimuthal coordinates in the form of Fourier

series in the azimuthal angle. For computing numerical results, the integral equation

is converted into a matrix equation by applying the method of moments.

The efficiency of using pulse basis functions instead of impulse basis functions is

shown when calculating the induced surface current densities of a prolate spheroid

in the presence of an axially directed uniform magnetic field. It has been noticed

that about twice the number of meridian segments needs to be used when using

impulse basis functions, to achieve the same accuracy as given by the pulse basis

functions. The numerical results are generated for the normalized tangential magnetic

fieid intensity on the surface of both prolate and oblate spheroids, as well as the

surface of spheres, in the presence of axially directed uniform magnetic fields and

ro
dù
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coaxial circular current-carrying turns. They are compared with the results generated

from exact analytical formulations using the PEC model. For spheres the computed

results are in good agreement with the exact results (absolute percentage error less

than 0.6%). It is noticed that for conducting spheroids the relative error between

the numerical results generated by the method of moments and the exact results

increases as the axial ratio increases for prolate spheroids and as it decreases for

oblate spheroids, especially at points near the spheroid poles.

The numerical computation performed for conducting spheroids and spheres in

uniform fields arbitrarily oriented and in the fields from current-carrying circular

turns whose axes are shifted from the axis of revolution of the spheroids show the high

efficiency of the method employed. The Fourier series expansion converges rapidly

and only Fourier modes up to n : !.4 are sufficient to generate results accurate to

five significant digits as compared to the results generated with Fourier modes up to

r¿ : *10. Also, the generated numerical results for the spheres in arbitrarily oriented

uniform fields are in good agreement with the analytical results (absolute percentage

error Less thanl%o in all the cases considered).

5.1 F\rture.Work

Pulse basis functions yields more accurate results for the normalized tangential mag-

netic field intensity in the case of spheres and in the case of spheroids with axial

ratios close to unity. Performance of the method presented in this thesis needs to be

investigated by using other types of weighting and basis functions in order to improve

the overall efficiency, especially for very elongated prolate spheroids and flat oblate

spheroids, and for the regions in the neighborhood of the poles. The efficiency of
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using smaller lengths for segments closer to the poles than for those at the middle of

the meridian should also be investigated.

The results obtained for the normalized tangential magnetic field on the surface of

spheroids in the presence of an arbitrarily directed uniform fields and in the presence

of a coil with its axis shifted with respect to the body's axis of revolution should be

compared with results obtained by other methods, for instance, the existing method

based on discretizing the entire surface of the conducting bodies.

In this thesis we have considered only objects with smooth boundaries. it will

be useful to investigate the performance of the method presented in this thesis for

conductors with sharp edges and vertices.

Furthermore, the formulation in this thesis can be extended for conducting bodies

of revolution at low frequencies to take into account the penetration of fields inside

the bodies.



Appendix A

Exact Solutions for Perfect
Conducting Spheroids in
Axisymmetric Fields

v2A':oand

V2A,, : lJoJ",..

4.1 Spheroids in the Presence of Coaxial Current-
Carrying Turns

For a prolate spheroid in the presence of a coaxial circular current-carrying turn as

shown in Fig. 3.10, the magnetic vector potential outside the body is in the direction

of fi*, due to the axisymmetry of the system. Also, it is independent of @*. Therefore,

the magnetic vector potential can be written as

A(rt* , €.) : ó- l(?*, €*), (A.1)

which satisfies the vector Laplace equation. A solution for the magnetic vector po-

tential outside can be found by superposing the solutions for two different problems,

(A.2)

(A.3)

56
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The current density in the circular turn carrying the current .I" is expressed as

J" .: 1.6(rt*-q:)ô(6--€å) , (A.4)
c2(ti2 - qi2)

where r7[, Ç are the coordinates of the circular turn and 6 is the Dirac delta function.

The coordinates 4j and (j are related to the radius of the circular turn b" and the

verticaldistancetothecenterof theturnfromtheoriginof the (*,A,r) coordinate

system as

d.I as: crËt:, b.: ct/(7 - ni')(Ëi2 - 1). (A.5)

The solution of (4.2) in prolate spheroidal coordinates defined in (3.3) is given by

the method of separation of variables in the form

A' :Ðcrqrog\P)(n\,

A,,: # 1,t':70""

(A.6)
p=r

where Po1 and Q| arc associated Legendre functions of the first and second kind,

respectively, and C, are constants of integration. A particular solution of (4.3) can

be obtained from the volume integral

(A.7)

where r and / are the position vectors of the observation and source points, respec-

tively. Substituting (4.4) into (4.7) and expanding 1/lr - /l in terms of prolate

spheroidal harmonics [7] yields

A" : -þol',re:n5@ -tÐ##p;c2)aic))piþË)pi0r), (A 8)

(L - ni') (6å' - 1)

where (i and {} are the smallest and the largest of (* and (j, respectively. Thus, the
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total magnetic vector potential outside the body is

oo

A:ÐcoQIG\P)(n.)
P=L 

ó (A.9)

- +'re - æl@=tî ##n P; (€Ða',eÐ pi ØÐ pi (n\2 " 
e=t Plp + 1)1,

The constants of integration are computed by imposing the condition A : 0 on the

surface of the perfect conducting spheroid, i.e. at €- : {ö. Finally, substituting the

calculated value for Co, the magnetic vector potential outside the perfect conducting

With prolate to oblate spheroidal transforms given in Chapter 3, the magnetic vector

prolate spheroid can be written as

^ þoI. a 2p-lro:T,rc_ø@_r>
,i ln(n + 1)12

[#ßt;(ç)aå(€.) - 
P;(tÐP.(€t)] r"'1a; )P](n\

potential for an oblate spheroid is

A:ry.,rc:,ti,l@+ÐD##
p:I

lmrïu €Ðaiu t\ - P; (i €2)P; uß )] e] (ù e) (n\

H,t. : #;6#(hø.A)
Ht : -^+6#Øo.A)

(A.10)

(A'.11)

The magnetic flux density outside the prolate spheroid can be determined by taking

the curl of the magnetic vector potential. Thus, the magnetic field intensity outside

is obtained from

(A.12)
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On the surface of a perfect conductor only the tangential component of the magnetic

field is present. Therefore, at (* - (ff, for a prolate spheroid

Ll G-ni')G;'-Ð l"'Ë zp+t Q'oGÐt
Hn* -:" l,\;- '':;iì)hr -írl t:##e)(nÐe)Ø.). (A.1s)'r?ta - zc l(ç6t: t;tl(€ö, - i)l fr n@ + 1) gå(6ð)'

and for an oblate spheroid

rr _ _ 1" | (1 - ?å,ì(#,^+ 1) l'r'i z! t !-,5!Ð.pì(,Ë)pì(,t\. (A.14)rrn*- z" LGtTtÐGtTT) ?__,e6+talJrri;

4.2 Special Cases

Axially directed uniform field

By letting (J - oo and by taking into account the asymptotic expansions for large

arguments of the associated Legendre functions in (A..10) and (4.11) , the magnetic

vector potential for a prolate spheroid can be found as [7]

l- Ê*+1 2F* I
A: toH^";,Æ=æ)@=il'-ffi_ffl,A1b)

L so-' (o -rl
and

A: po'oni,,rc-'rtre* +Tl'- "":]:" - #l ,A 16)

I cot-l€ð-#hj
in the case of an oblate spheroid, where, H¿n" is the inducing uniform magnetic field

which is given by

H. - 
1 

!i* 
I.(L 

- 
rË2) 

( A.rT)ttxrlc - 2c t",ä\* 6;

Flom (A..12), the tangential magnetic field on the surface is

H-': -24:'"= lf-J.'lt/'(€ð,-rl,"gr-t--Ïlffil (4 18)
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for a prolate spheroid and

Hrt* :

for an oblate spheroid.

I t-r"z lrtz
l€ö' + n.')(€ð' + 1) cot-l €ð - €ð

(A.1e)

Sphere in the presence of a coaxial current-carrying turn

Using the asymptotic expansions for large arguments of the associated Legendre func-

tions and the prolate spheroidal to spherical transforms given in Chapter 3, the mag-

netic vector potential for the case of a sphere is found to be

4- þol"2ingi 

å* ler'r- (ä)" (fr)'.'] Pol(cos 0i)P](cos0.),
P:r - '- 

(A.20)

where ri and rf are the smallest and the largest of r* and rl, respectively. Here, rj
and dj are the coordinates of the circular turn in circular cylindrical coordinates and

ø" is the radius of the sphere.

The tangential component of the magnetic field intensity on the sphere surface

can be found from the curl of the magnetic vector potential as

H6* - #åm (i)'po'1(cos e)p)(cosg.) (A21)



Appendix B

Exact Solution for a Sphere in a
LJniform Field Directed at an
Angle with Respect to the z-Axis

The magnetic field both inside and outside of a conducting sphere in an axially di-

rected uniform field can be determined by using the method of separation of variables.

The magnetic flux density outside a conducting sphere with resistivlty o, permeabil-

íty p, and radius a", placed in a uniform alternating z- directed magnetic field of flux

density 86 is given by [12]

B: Bo[t (t. #) cose* - u. (t - #),i,'d-] , (8.1)

where 9* is the meridian angle with respect to the sphere center and r* the distance

from the center of the observation point, and

Do: (2p+ po)'yal¡/z - {po[t + (rr)'] +2¡-r,]11¡2 : (8.2)
0t- po)tol-r/z+ {po[t+ (t")]- p]h2

Here, 'y : lîoat; and I1¡.¡2 are modified Bessel functions of the first kind with the

argument 1a. At very high frequency, the magnetic field intensity on the surface of

the sphere is given by

H : -L.líosin g* â*,

6i

(8.3)
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where â. it th. unit vector along the meridian angle and Ho: BolPo.

29,

Figure 8.1: Sphere in a uniform magnetic field directed at an angle p with respect

to the z-axis.

For a sphere in a uniform inducing field directed at an angle B with respect to

the z-axis, as shown in Fig. 8.1, the inducing field can be expressed as Hi,. :

Ha."(-!sin þ + Zcosp) W" use a rotation and a translation of the coordinate system

such that the new z-axis be aligned with the direction of the inducing field. The

relationship between the (r,gr,z) system and the new (r2, Uz,zz) system is

û2:

îtz :
t_
.42

æ)

g cos B * 2sin B,

-ysinBl2cosB,

(8.4)
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r

u

z

f2t

ø, sinp * Azcos p - z2sin B,

ø"(1 - cosp) -f y2sin B * z2 cos B.

(8.5)

(8.7)

Then, the tangential magnetic field intensity on the surface of the body is obtained

from (8.3) in the form

H : -1:5ilosín02 â2, (8.6)

where 0z : cos-L(-sin acos1). With (8.4) and (2.24), for observation points at

ó:00 on the surface of the sphere, we have

ã, :i("o, 02 cos þ2 sin a* cos 92 sin /2 cos a sin p - sin lzcos a cos p)

+ ô(cos 02 sin þ2sin B * si,n02 sin B) ,

where a is the angle between the unit vectors 2 and i (see section 2.3), cosS2:

"orol@ and sin óz: -sinasinp/ T"o"'o+"in'o"in? P.
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