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Abstract 

Water resources engineering problems that are solved in a simulation-optimization framework 

often have multiple conflicting objectives that form a tradeoff. Global multi-objective (MO) 

optimization has been successful in solving complex water resources problems. Naturally, these 

problems often have more than three objectives, making MO algorithms inefficient. These 

problems are also characterized by multi-modal properties meaning that multiple optimal and near-

optimal tradeoffs exist. To deal with multi-modal MO problems, a modern MO global optimization 

algorithm should be capable of identifying a well-distributed set of solutions both in the decision 

and objective spaces, but minor attention has been given to the solution diversity in the decision 

space. Diversity maintenance in the decision space can help the algorithm archive optimal and 

near-optimal solutions for flexible and well-informed a posteriori decision-making.  

The first contribution of this research was developing and testing a novel though simple 

approach to tackle the dominance resistance for solving many-objective water resources problems, 

i.e. problems with more than three objectives. The proposed approach, called rounded archiving, 

does not need any changes in the structure of the MO algorithm because it rounds the value of the 

objectives to the user-specified precision level prior to the dominance check. The method is 

implemented and assessed for multiple MO algorithms. The results show that the rounded 

archiving used for solving many-objective applications effectively reduces the archive size by up 

to 87% for algorithms with unbounded archive structure compared to the original archiving 

strategy in these algorithms. It effectively tackles the deterioration issue in algorithms with 

bounded archive size by eliminating similar solutions in the objective space and preventing them 

from populating the bounded archive. 

The necessity to tackle the multi-modal characteristic of water resources problems led this 

research to develop a novel cluster-based solution archiving strategy to preserve a diverse set of 

solutions for MO algorithms. Solutions are dynamically clustered in the decision space and 

alternative solutions that are distant from each other are kept in the archive of good solutions, even 
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if they are globally dominated by solutions from outside their cluster. Results show that, the 

proposed method helps the MO algorithm identify good quality solutions that belong to 

significantly different parts of the decision space, provides a larger archive size, and detects 

optimal and near-optimal tradeoffs with distinguished cluster labels. Such a diverse set of solutions 

(policies) give decision-makers high flexibility in refining their preferences for robust decision-

making. 

The cluster-based optimization developed in this research is also used for approximating 

parameter uncertainty of hydrologic models in a MO fashion. This algorithm finds distinct 

parameter sets that satisfy the so-called acceptance thresholds in each optimization trial. The 

proposed method is found to be either equally effective to or perform better than popular single-

objective uncertainty methods for deriving 95% prediction bounds. Furthermore, it is found that 

the acceptance threshold defined for the aggregated objective formulation in a single-objective 

uncertainty approximation method introduces more uncertainty to behavioral solution set 

identification, and these thresholds need to be individually specified for each objective in an MO 

uncertainty approximation method. A multi-threshold assignment for behavioral solution 

identification shrinks the behavioral solution space and reduces the size of the behavioral solution 

set by up to 98% compared to a single-threshold assignment for the aggregated objective 

formulation. 

Further research on uncertainty analysis motivated the development of a new multi-modelling 

framework. Multi-modelling aims to reduce the structural uncertainty by using the strengths of 

single hydrologic models for improving the accuracy of the simulations of the system behavior. 

Prior to multi-modelling, each model should be individually calibrated based on hydrological 

signature metrics for better parameter identifiability. The calibrated models are then aggregated 

using a novel weighted average model-wrapper based on flow duration curve segmentation. The 

proposed model-wrapper is developed for four different operational flood forecasting models of 

the Upper Assiniboine River Basin. The model-wrapper is found to perform better than the 

individual models, and the weights associated with each model indicate its contribution rate to the 
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model-wrapper in all ranges of streamflow simulation. The proposed framework aids in model 

selection strategy, especially when a hydrologic model has minimal contribution to the model-

wrapper performance. 
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1 INTRODUCTION 

1.1 Problem Statement 

Water resources engineering problems are closely associated with design, operation, rehabilitation, 

ecological balance, and forecast. These problems are often cast as mathematical computer-based 

simulations that also involve optimization. Traditionally, a large number of studies formulated and 

solved water resources engineering problems including, but not limited to, hydrologic model 

calibration (Brazil and Krajewski, 1987; Duan et al., 1994; Jiang et al., 2015; Sorooshian et al., 

1993; Wang, 1991), reservoir operation (Murray and Yakowitz, 1979; Wardlaw and Sharif, 1999), 

water distribution network design (Savic and Walters, 1997; Simpson et al., 1994; Tolson et al., 

2004; Wu and Simpson, 2002), and pump operations (Lansey and Awumah, 1994; McCormick 

and Powell, 2003; Sakarya and Mays, 2000; Yu et al., 1994; Zessler and Shamir, 1989) as single-

objective optimization problems. These problems, nonetheless, have multiple criteria that are 

important for informed decision-making but do not have a single solution that simultaneously 

optimizes all of them. Instead, a set of alternatives that is often called tradeoff, non-dominated 

front, or Pareto front after Vilfredo Pareto (1848-1923), exists since an improvement in the 

quantity of one objective function requires sacrificing at least one other objective function. Multi-

objective optimization has been successfully applied to a wide range of water resources 

engineering problems including hydrologic model calibration (Budhathoki et al., 2020; Gupta et 

al., 1998; Holmes et al., 2020; Madsen, 2003; Pfannerstill et al., 2017; Yapo et al., 1998) , river-

reservoir system operation (Asadzadeh et al., 2014a; Kim et al., 2008; Labadie et al., 2012; 

Tsoukalas and Makropoulos, 2015; Wan et al., 2018), water distribution network design (Farmani 

et al., 2005; Huang et al., 2020; Prasad and Park, 2004; Yazdi, 2016; Zhang et al., 2019), and 
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groundwater pumping operation (Barán et al., 2005; Carpitella et al., 2019; Kougias and 

Theodossiou, 2013; Sadatiyan A. and Miller, 2017). 

Often, water resources engineering problems that are formulated with many (more than three) 

objectives are multi-modal, in that they have multiple solutions that have the same performance 

(Reed et al., 2013). Multi-modality arises from the wicked nature of water resources simulation-

optimization problems due to insufficient understanding of the system, incomplete data, diverse 

stakeholders’ interests, implicit uncertainties and/or simplification in these problems (Kasprzyk et 

al., 2013; Rittel and Webber, 1973; Zechman et al., 2013). For instance, a classical least-cost 

optimization problem assumes that an analyst has a perfect knowledge and problem formulation 

of the system under study that perfectly emulates future system states and responses, which is 

called an “omnipotent” system analysis (Liebman, 1976; Reed and Kasprzyk, 2009). For this 

reason, a single-criterion formulation, hence dimensionality reduction of objectives through a 

priori subjective weighted-sum aggregation of some or all objectives, narrows the mathematical 

definition of many-objective water resources optimization problems, which is not very attractive 

to an analyst for practical design and decision-making (Reed and Kasprzyk, 2009).  

Hydrologic model calibration is an example of a water resources optimization problem that is 

mostly used in this thesis.  A hydrologic model is a similar but simpler structure of the water cycle 

that involves a number of natural components including precipitation, snowmelt, interception, 

evapotranspiration, infiltration, sub-surface flow, surface flow, etc., and their interactions. Figure 

1-1 demonstrates the components of a typical hydrologic model and shows how its parameters is 

calibrated. In fact, model calibration does not necessarily denote the perfect match between a simulated 

dataset to its corresponding measurement mainly due to the imperfect model structure, simplifying 

assumptions in simulation, uncertainty in measurements as well as spatial and temporal variations in 
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model parameters (Efstratiadis and Koutsoyiannis, 2010). More importantly, no single simulation error 

metric as the objective function of the model calibration can measure every important aspect of the fit 

between simulated and measured data (Gupta et al., 1998). Hence, a multi-objective model calibration 

using an efficient global optimization algorithm is necessary to identify a solution that is a tradeoff 

between all error metrics. 

 

Figure 1-1: Schematic of a typical hydrologic model and model parameter calibration 

The tradeoff solutions in multi-objective optimization are obtained solely based on the objective 

functions in the problem formulation, which may be socially undesirable or unable to reflect 

unmodelled or intangible priorities in water resources systems. Providing decision-makers with 

diverse and distinct alternatives (design options) that might not be optimal with respect to the 

modeled objectives but are close enough to the optimal alternatives can give decision-makers a 

great deal of flexibility to identify their most preferred solution. As a result, innovations in 

optimization and modelling are necessary to give a range of probable water futures and help 
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diversification of decision-making and our understanding of the system under study (Brill et al., 

1990).  

1.2 Research Objectives 

This thesis is concentrated on the development of tools and modelling strategies that efficiently 

and effectively solve water resources problems formulated with many-objectives that can be multi-

modal. The following sub-sections outline four inter-connected research goals of this thesis. 

1.2.1 Many-Objective Water Resources Optimization 

In the mid-1980’s, researchers showed interest in optimizing problems that have multiple (more 

than one but no more than three) conflicting criteria using global optimization algorithms 

(Schaffer, 1985). Since then, multi-objective global optimization has been successfully applied in 

different fields including, but not limited to, medicine, chemistry, finance, computer science, 

environmental, and water resources (Coello et al., 2007). However, these algorithms have 

performed fairly poorly when applied to problems that have more than three objectives, because 

they normally return a large number of non-dominated solutions (Farina and Amato, 2002). Many-

objective nature of water resources systems are demonstrated in the literature. For instance, Reed 

et al. (2007) solved a four-objective monitoring network design for a cost-effective contamination 

management and quality control in groundwater resources through long-term sampling of 

observation well networks. Kasprzyk et al. (2009) introduced a many-objective risk-based water 

utility portfolio planning problem over a 10-year planning horizon that allows purchasing water 

supplies using three market mechanisms of permanent rights, leases, and options with six 

conflicting objectives including supply cost, cost variability, reliability, average volume of surplus 

water, frequency of using leases, and dropped water transfers after one year of nonuse. Water 
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distribution network design and hydrologic model calibration problems are other examples that 

are set up respectively with five and fifteen objectives in Fu et al. (2013) and Shafii et al. (2017). 

Figure 1-2 demonstrates the general procedure for solving a multi-objective problem by a multi-

objective global optimization algorithm. With this approach, the Pareto front is estimated by each 

trial of the optimization algorithm, while the single-objective reformulation of the problem results 

in a single solution in each trial. The dominance check and selection strategies constitute the 

principal parts of a multi-objective global optimization algorithm to guide the search toward a 

faster convergence and a well-distributed Pareto front (Coello et al., 2007; Deb, 2001). An increase 

in the number of objectives leads to an increase in the non-dominated portion of the objective 

space, which in turn aggravates the similarity of solutions and exponentially expands the number 

of archived solutions in a multi-objective problem (Farina and Amato, 2004). This leads to 

dominance resistance in many-objective optimization meaning that finding any new dominating 

(better) solution becomes challenging due to high similarity in the objective space. Therefore, the 

structure of multi-objective optimization algorithms need to be modified by a specialized solution 

archiving strategy like epsilon-dominance (Laumanns et al., 2002) that grids the objective space 

to dimensionally meaningful boxes and preserves only the best non-dominated solution in each 

box for a sparse Pareto front. In this thesis, a rounded-archiving method is suggested that rounds 

the value of each objective to a pre-determined precision recommended by decision-makers 

without restructuring the optimization algorithms for solving many-objective problems to deal 

with the archive size and better distribution of solutions along the Pareto front. 
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Figure 1-2: General structure of heuristic MO algorithms 

1.2.2 Diversity Preservation in Water Resources Optimization 

A robust multi-objective global optimization algorithm must converge to a diverse set of solutions 

(Deb, 2001). Solution diversity is divided into two categories, diversity in the objective space and 

diversity in the decision space. A large number of studies proposed novel methods to maintain a 

diverse set of solutions in the objective space. Nonetheless, minor attention is given to the 

importance of the solution diversity in the decision space. The diversity of solutions in the decision 

space is very important for two main reasons: 

1. Distinct design options are required in the decision-making process, particularly when 

some stakeholders’ expectations cannot be directly formulated mathematically.  
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2. The presence of distinct solutions allows decision-makers to review the available design 

options and flexibly change their decisions owing to alterations in the system in terms of 

policy, economy, geography, climate, social or cultural environments.    

The current modern multi-objective algorithms in the field of water resources do not consider 

solution diversity in the decision space during the optimization and make highly subjective 

judgement about diversity measurement based solely on objective function values. Moreover, the 

obtained optimal solutions usually have highly similar characteristics in the decision space limiting 

the ability of decision-makers for finding a preferable option. This thesis argues that multi-

objective optimization algorithms do not retain near-optimal design options that are meaningfully 

distant (dissimilar) from the optimal solutions in the decision space as they are dominated by the 

archived optimal Pareto solutions. In this thesis, in order to take the dissimilarity of solutions in 

the decision space into consideration, an approach is developed that links the density-based spatial 

clustering to the optimization. Unlike the majority of other optimization algorithms that tend to 

progressively move the search toward a globally optimal region, the proposed cluster-based 

optimization allows forming and populating multiple clusters of solutions in distinct regions of the 

decision space by giving a higher expansion opportunity to a cluster in the less crowded region of 

the decision space but closer to the reference or ideal objective function values.  

1.2.3 Uncertainty Estimation in Hydrologic Model Calibration 

Hydrologic model calibration is an example water resources engineering problem that is inherently 

a multi-objective optimization problem (Gupta et al., 1998). Hydrologic models are mathematical 

simulation tools that model our understanding of the hydrological processes in a watershed system. 

Uncertainty due to errors in input and output data, simplified model structure, initial model 

condition, model parameters, and subjective decisions may lead to over conditioning in model 
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calibration problems, i.e. an optimal parameter set may not be desirable and/or necessary.  

Therefore, an approximation of uncertainty associated with response time series in hydrologic 

modelling is crucial for an effective decision-making.  

Available methods for uncertainty approximation broadly fall into two categories: formal 

Bayesian (Krzysztofowicz, 1999; Schoups and Vrugt, 2010; Thiemann et al., 2001; Vrugt et al., 

2009) and “informal” approaches (Beven and Freer, 2001; Blasone et al., 2008b; Ragab et al., 

2020; Uhlenbrook and Sieber, 2005) for deriving posterior distribution of parameters and model 

responses. The former approach explicitly separates the individual sources of uncertainty using 

strong statistical assumptions and evolves solutions into an initially assumed posterior probability 

distribution of model residuals, e.g. Gaussian output error structure (Beven et al., 2008; Schoups 

and Vrugt, 2010; Vrugt et al., 2009). The latter approach, on the other hand, rejects the concept of 

a correct model, acknowledges model equifinality, is structurally simple, and propagates all 

interacting sources of uncertainty into model parameter estimates by defining a subjective model 

evaluation metric, e.g. Nash-Sutcliffe Efficiency, for deriving the posterior total error distribution 

(Beven, 2006; Beven and Freer, 2001; Beven and Smith, 2015; Stedinger et al., 2008). The 

Generalized Likelihood Uncertainty Estimation (GLUE) (Beven and Freer, 2001) for parameter 

uncertainty is the most well-known uncertainty method that uses simple Monte Carlo sampling for 

approximating total uncertainty. Due to its computationally inefficient sampling, more specialized 

sampling strategies have been coupled with GLUE, for example Latin Hypercube Sampling 

(Uhlenbrook and Sieber, 2005), sensitivity-informed GLUE (Ratto et al., 2001), and gradient-

based GLUE (Abbaspour et al., 2004). Other alternatives include low-budget single-objective 

optimization methods with many independent trials (in the order of hundreds of trials) is also 

suggested by Tolson and Shoemaker (2008) that can reduce the total computational budget to one 
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order of magnitude less than random sampling. These methods, however, can handle a single 

objective function and therefore should use one or aggregate multiple calibration objectives into 

one. Ideally, multiple calibration objectives must be analyzed in a multi-objective approach to be 

able to learn about different aspects of the model performance, for example in high-flow versus 

low-flow periods. Therefore, in this thesis, a multi-objective algorithm, primarily developed for 

maintaining diverse sets of optimal and near-optimal solutions through cluster-based archiving and 

localized dominance strategies, is proposed and used for approximating parameter uncertainty in 

hydrologic modelling in a multi-objective context.  

1.2.4 Signature-Based Calibration and Multi-Modelling in Hydrologic Systems 

Calibration of hydrologic model parameters is a water resources systems analysis problem that 

does not necessarily need a global optimal parameter set for a reliable forecasting management as 

its simulation is subject to the model initial condition, simplified model structure, errors in forcing 

data, and uncertainty inherent in physically unmeasurable model parameters. Many techniques are 

used to reduce uncertainty in hydrologic modelling such as data assimilation strategies for reducing 

uncertainty in model initial state and boundary condition (Beck, 1987; Evensen, 1992; Kitanidis 

and Bras, 1980a, 1980b; Moradkhani et al., 2005), suggesting precipitation multipliers for input 

uncertainty reduction (Kavetski et al., 2003; Vrugt et al., 2009), model combination techniques for 

reducing structural uncertainty (Abrahart and See, 2002; Ajami et al., 2006; Shamseldin et al., 

1997), and adopting hydrologic signatures to reduce parameter uncertainty (McMillan, 2021) 

The application of ensemble modelling is claimed to enhance modelling robustness and reduce 

prediction uncertainty (Li and Sankarasubramanian, 2012; Razavi and Coulibaly, 2016). The 

ensemble prediction systems can be created by multiple meteorological forcing (He et al., 2009), 

multiple sets of model parameters (McIntyre et al., 2005; Seibert and Beven, 2009), or simulations 
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of multiple models with distinct structures (Muhammad et al., 2018; Velázquez et al., 2010). The 

evaluation of the ensemble predictions is commonly performed by the weighted average 

(Shamseldin et al., 1997), quantile mapping (Hashino et al., 2007; Piani et al., 2010), and Bayesian 

model averaging (Duan et al., 2007; Parrish et al., 2012) of ensemble members. The weighted 

average is an optimal linear combination of the simulations by assigning weight to each ensemble 

member, with weights summing up to one (Ajami et al., 2006). The Quantile mapping is a bias 

correction method that adjusts the quantiles of the cumulative distribution function of the 

simulations according to the cumulative distribution function of observed response time series 

(Hashino et al., 2007; Wood and Schaake, 2008). Bayesian model averaging is essentially a 

weighted average of the probability density function associated with a set of individual model 

predictions concentrated around their forecasts (Raftery et al., 2005). An optimal multi-model 

ensemble at least partially mitigates model structural uncertainty by compensating for a particular 

model weakness with the help of other models (Ajami et al., 2007; Georgakakos et al., 2004; Li 

and Sankarasubramanian, 2012).  Hence, it produces more reliable forecasts compared to the best 

calibrated individual models and a modeller can dig up and extract further information from a 

group of existing models (Shamseldin et al., 1997). 

Another major source of uncertainty is the unknown value of the hydrologic model parameters. 

According to the concept of equifinality introduced by (Beven, 2006; Beven and Freer, 2001), 

model calibration using a traditional performance metric like sum of squared errors can lead to 

multiple behavioral parameter sets. Hence, these metrics do not supply sufficient information for 

diagnostic assessment of hydrologic models (Arnold et al., 2015; Guzman et al., 2015) or 

distinguishing different model structural forms, unless they are accompanied with hydrologic 

signatures, e.g. the flow duration curve (Westerberg et al., 2011; Yadav et al., 2007; Yilmaz et al., 
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2008), soil moisture information (Rajib et al., 2016), isotope tracer data (Bergström et al., 2002; 

Holmes et al., 2020), and any information about hydrological components including, but not 

limited to, base flow (Arnold and Allen, 1999; Vrugt and Sadegh, 2013), annual evaporation and 

excess precipitation (Asadzadeh et al., 2015). Using the hydrologic signature metrics aids in 

reducing parameter uncertainty and achieving a more hydrologically consistent simulated system 

response.  

In this thesis, a novel signature-based multi-modelling method is developed that combines the 

simulated response of multiple, structurally different models based on the flow duration curve 

quantiles of the measured streamflow to confront both model structural and parameter 

uncertainties for a more reliable operational streamflow forecasting, for example at the Hydrologic 

Forecast Centre of Manitoba Infrastructure.  

1.3 Thesis Content, Research Contributions, and Scope 

The remainder of this thesis is comprised of five chapters. The next four chapters closely mirror 

three peer-reviewed research publications and one article under the peer-review process, each with 

independent literature reviews, methods, results presentation and discussion. Despite ending with 

a brief conclusion in each chapter, extensive concluding remarks followed by recommendations 

for future work are also provided in Chapter 6. 

The extensive results, discussions, and conclusions in this thesis are mostly focused on the 

hydrologic model calibration case studies. However, similar outcomes and conclusions, 

specifically for Chapter 2, Chapter 3, and Chapter 4 are expected in other water resources 

optimization problems for multi-criteria design, operation, and management. The rounded 

archiving method discussed in Chapter 2 is applicable to other multi-objective optimization 
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algorithms for solving many-objective problems. Likewise, the cluster-based archiving and 

dominance localization in Chapter 3 can be applied to other optimization algorithms for diversity 

maintenance in the decision space. The overall goal of this research is thus to enhance the 

performance of the multi-objective global optimization algorithms with a focus on hydrologic 

model calibration, uncertainty approximation, uncertainty reduction, and therefore aiding the 

decision-making process. The specific thesis achievements are listed as follows: 

1) A novel solution archiving approach is developed and compared with existing archiving 

strategies for solving many-objective model calibration problems. The proposed approach 

rounds the objective values based on a pre-set required resolution for each objective to 

guarantee only meaningful discrepancies between solutions during the optimization. This 

approach significantly decreases the final number of the archived solutions for a less 

complicated decision-making process. The proposed archiving strategy is readily 

available for any optimization algorithm solving many-objective applications. In-depth 

information about the rounded archiving and comparison results are reported in Chapter 

2. Chapter 2 is published in the Journal of Environmental Modelling and Software. 

Sahraei, S., Asadzadeh, M., & Shafii, M. (2019). Toward effective many-objective 

optimization: Rounded-archiving. Environmental Modelling & Software, 122, 

104535. 

2) A novel optimization algorithm called Cluster-based Pareto Archive Dynamically 

Dimensioned Search (CB-PA-DDS) is developed that considers distribution of candidate 

solutions in the decision space (also called parameter space in model calibration or design 

space in a design problem) through a density-based solution clustering. Similar solutions 
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are grouped and dissimilar solutions reside in distinct clusters in the decision space. Each 

cluster is evolved based on its distance to other clusters in the decision space and its 

contribution to the convergence. The quality of solutions in terms of convergence is judged 

locally in each cluster and solutions residing in two distinct clusters are not compared for 

convergence. This helps each cluster evolve independently and converge to a locally 

optimal tradeoff in the decision space. The proposed algorithm is successfully applied to 

two benchmark multi-modal mathematical problems and two benchmark environmental 

design and management problems. It offers highly distinct solutions on the entire feasible 

range of decision variables and gives a higher flexibility to decision-makers in the post-

processing stage to refine their preferences. Details are further discussed in Chapter 3 

published in the Journal of Environment Modelling and Software. 

Sahraei, S., & Asadzadeh, M. (2021). Cluster-based multi-objective optimization for 

identifying diverse design options: Application to water resources problems. 

Environmental Modelling & Software, 135, 104902. 

3) The Developed CB-PA-DDS algorithm is further studied to investigate its application in 

estimating hydrologic model parameter uncertainty in a multi-objective context. The 

available widely used methods such as Generalized Likelihood Uncertainty Estimation 

(GLUE) and Dynamically Dimensioned Search-Approximation of Uncertainty (DDS-

AU) mostly use an aggregate approach to convert multiple objectives into a single 

objective function by pre-setting weight to each objective, while the proposed algorithm 

is able to consider all important objectives simultaneously without aggregation and 

identify multiple tradeoffs, each with distinct parameter space characteristics. Different 

subsets of multiple metrics including correlation coefficient, variability index, bias in 
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long-term average of response time series, flow-duration curve partitioning metrics, Nash-

Sutcliffe Efficiency metric, and water balance (Asadzadeh et al., 2016; Gupta et al., 2009; 

Yilmaz et al., 2008) are used for multi-objective uncertainty estimation using CB-PA-

DDS in three hydrologic model calibration problems. All these three uncertainty methods 

need to define a rejection threshold to separate acceptable (or behavioral) from 

unacceptable (or non-behavioral) solutions. To this end, multiple cutoff threshold values 

are considered and the performance of these methods are evaluated in the calibration and 

evaluation periods by comparing the response time series’ length of coverage, size of the 

behavioral set, and thickness of the uncertainty bound. Similar to DDS-AU, the proposed 

CB-PA-DDS approach is found to be one order of magnitude more efficient than the 

GLUE method. The uncertainty bound produced by CB-PA-DDS is however more reliable 

than DDS-AU as the latter is prone to overfitting to the response time series in the 

calibration period, which can result in unacceptable simulations in the evaluation period. 

Details are reported in Chapter 4 and the outcomes are recently submitted to the Journal 

of Water Resources Research. 

4) A novel weighted average multi-modelling based on the flow duration curve partitions is 

designed to linearly combine the simulation results of four structurally different 

hydrologic models used at Hydrologic Forecast Centre of Manitoba Infrastructure for 

operational flood forecasting downstream of Upper Assiniboine River Basin. The multi-

modelling approach assigns a weight to each model component in each segment of the 

flow duration curve signifying its contribution to high-flow, mid-flow, and low-flow 

partitions. Grouping the models significantly improves simulation accuracy in both 

calibration and evaluation periods and reduces structural uncertainty in hydrologic 
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modelling. The proposed multi-modelling method can be used as a diagnostic tool to 

identify less effective or redundant models in a multi-modelling problem based on their 

weight factors for a better model selection strategy. Details about this research 

contribution are published in the Journal of Hydrology and also reported in Chapter 5. 

Sahraei, S., Asadzadeh, M., & Unduche, F. (2020). Signature-Based Multi-Modelling 

and Multi-Objective Calibration of Hydrologic Models: Application in Flood 

Forecasting for Canadian Prairies. Journal of Hydrology, 125095. 
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2.1 Abstract 

Heuristic multi-objective optimization (MO) algorithms lose their efficiency and performance as 

the number of objectives increases, due to the so-called dominance resistance, unless they are 

equipped with a specialized solution archiving strategy, like epsilon (𝜀-) archiving. This study 

introduces an alternative approach to tackle dominance resistance for solving environmental and 

water resources engineering problems with more than three objectives. In the proposed approach, 

objectives are rounded to user-defined precision levels before checking the dominance. Rounded-

archiving is developed and assessed for PA-DDS and Borg MOEA and verified for AMALGAM 

applied to hydrologic model calibration problems with more than three objectives. Results show 

that rounded-archiving significantly improves the performance of MO algorithms and is at least as 

effective as (if not better than) the 𝜀-archiving for solving many-objective optimization problems 

mailto:sahraeis@myumanitoba.ca
mailto:masoud.asadzadeh@umanitoba.ca
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without the need to restructure the algorithm, which is the requirement for the implementation of 

the 𝜀-archiving approach.  

Keywords: Many-objective optimization, Rounded-Archiving, Epsilon-Archiving, Dominance Resistance, Model 

Calibration. 

Software Availability 

Name of Software: PA-DDS with rounded-archiving method 

Developer and Contact Information: Shahram Sahraei & Masoud Asadzadeh; Department of Civil 

Engineering, University of Manitoba, EITC E1-332, 15 Gillson Street, Winnipeg, MB, Canada, 

R3T 5V6 

Email address: sahraeis@myumanitoba.ca & masoud.asadzadeh@umanitoba.ca  

Year First Available: 2019 

Hardware Required: Desktop Computer 

Availability: go to ZDT_round folder in http://home.cc.umanitoba.ca/~asadzadm/software.html to 

see rounded-archiving method in two-objective ZDT1 test problem 

Software Required: MATLAB 

Program Size: <1MB 

2.2 Introduction 

Many-objective optimization, i.e. multi-objective (MO) optimization with four or more conflicting 

objectives, has become an attractive tool in a broad range of environmental and water resources 

problems such as calibration of environmental models (e.g. Shafii and Tolson, 2015; Zhang et al., 

2010), water distribution network design (Fu et al., 2013), reservoir operation (Geressu and Harou, 

2019; Giuliani et al., 2014), stormwater management (Di Matteo et al., 2019), robust decision-

mailto:sahraeis@myumanitoba.ca
mailto:masoud.asadzadeh@umanitoba.ca
http://home.cc.umanitoba.ca/~asadzadm/software.html
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making (Eker and Kwakkel, 2018; Kasprzyk et al., 2013; Singh et al., 2015), and crop/food 

production (Lautenbach et al., 2013). For instance, the hydrologic model calibration is well-known 

to have a MO nature for which no single solution simultaneously optimizes all the objective 

functions (model performance metrics), see for example Boyle et al. (2000), Gupta et al. (2005), 

Maier et al. (2019), and Wagener and Gupta (2005). Instead, a set of alternatives that is often called 

tradeoff or Pareto, after Vilfredo Pareto (1848-1923), exists since improving one objective 

degrades some other objectives. Traditionally, hydrologic models had been calibrated with two or 

three objective functions (Asadzadeh et al., 2015; Asadzadeh and Tolson, 2013; Gupta et al., 1998; 

Shafii and De Smedt, 2009), but recent developments in the hydrologic models, computational 

resources and MO algorithms is changing the trend toward the many-objective model calibration 

(Ercan and Goodall, 2016; Kollat et al., 2012; Reed et al., 2013; Wang and Brubaker, 2015).  

The number of objectives can easily grow beyond three when the calibration problem is 

formulated to represent internal hydrological processes besides optimizing traditional model 

performance metrics such as the sum of squared errors or its variants. For instance, Shafii and 

Tolson (2015) formulated and solved a 15-objective model calibration problem and showed that 

incorporating the objective functions pertaining to the dominant hydrologic processes of a 

watershed aids in selecting the most reliable and hydrologically consistent model parameter values 

with respect to the selected dominant hydrologic processes.  

On the other hand, the size of the non-dominated space grows exponentially as the number of 

objective functions increases (Farina and Amato, 2002) and leads to a two-fold difficulty in solving 

many-objective optimization problems by a heuristic MO algorithm, unless it is equipped with a 

specialized archiving approach. First, identifying any new dominating (better) solution is very 

challenging in many-objective optimization due to the high similarity in the objective space. This 
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is often referred to as the dominance resistance in the literature (Ikeda et al., 2001; Purshouse and 

Fleming, 2007). Second, heuristic MO algorithms that have a bounded archive size, e.g. non-

dominated sorting genetic algorithm-II (NSGA-II) (Deb et al., 2002b), have to discard some good 

quality solutions from the current archive and therefore are subject to the oscillating issue that 

makes them inefficient for solving many-objective optimization problems. On the other hand, MO 

algorithms that have an unbounded archive size such as the Pareto Archived Dynamically 

Dimensioned Search (PA-DDS in Asadzadeh and Tolson, 2013) might archive a large number of 

Pareto solutions. Because solutions for further generations are generated based on the archived 

Pareto set, such algorithms assign a very low selection probability to high-quality solutions that 

are scattered among a huge number of Pareto solutions (Maier et al., 2014; Reed et al., 2013; 

Teytaud, 2007). MO algorithms that have a bounded archive keep at most an a priori specified 

number of non-dominated solutions by the end of optimization. The bounded archive set was first 

suggested in non-dominated sorting genetic algorithm (NSGA) (Srinivas and Deb, 1994) in order 

to reduce the computational time for checking the dominance rank, accelerating the decision-

making process, and concentrating solely on appealing parts of the Pareto front. However, tightly 

bounded archive size of MO algorithms results in an oscillating behavior, in that, some currently 

non-dominated solutions have to be discarded from the archive in the current generation and be 

replaced by some inferior ones in subsequent generations (Hanne, 1999). 

To increase the efficiency of MO algorithms in many-objective applications, several approaches 

have been developed in the literature, including fuzzy-optimality (Farina and Amato, 2004), order 

of efficiency (di Pierro et al., 2007), preferability (Drechsler et al., 2001), and epsilon-preferability 

(Sülflow et al., 2007). These methods are conceptually similar. Preferability is defined as choosing 

non-dominated solutions that are dominating a larger number of objectives when comparing two 
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non-dominated solutions (Sülflow et al., 2007). Fuzzy-optimality is a fuzzy-based concept of 

optimality that considers the number of improved objectives and the order of improvement 

between two solutions. Order of efficiency is the minimum size of non-dominated objective sub-

space for a solution compared with the archived ones. However, these methods must be used with 

caution as the search may be misled into undesired regions of the decision space, especially when 

the objective functions are not equally important to decision-makers (Coello et al., 2007).  

Laumanns et al. (2002) suggested the cell/epsilon (𝜀-) archiving approach to reduce the size of 

non-dominated archived solutions and therefore improve the diversity in the objective space. Deb 

et al. (2003) successfully applied the 𝜀-archiving technique to a multi-objective evolutionary 

algorithm (MOEA) called 𝜀-MOEA that outperformed five other MOEAs for solving 

mathematical MO test problems with two, three, and four objective functions, in terms of diversity 

and convergence. Reed and Devireddy (2004) introduced a variant of NSGA-II called 𝜀-NSGAII 

that utilizes the 𝜀-archiving, applied it to solve a bi-objective groundwater monitoring problem, 

and concluded that 𝜀-archiving significantly increased the efficiency of the optimization algorithm. 

Kollat and Reed (2006) applied 𝜀-NSGAII to a long-term groundwater monitoring design problem 

with four objective functions and showed a superior performance of 𝜀-NSGAII against NSGA-II 

as well as other modern MO algorithms. Hadka and Reed (2013) combined a group of MO 

operators including the 𝜀-archiving and introduced the Borg MOEA that showed a superior 

performance in comparison with six well-known MO algorithms for solving benchmark suites of 

test problems with 2 to 8 objectives. Many modern MO algorithms do not have the  𝜀-archiving 

strategy, e.g. PA-DDS, A Multi-ALgorithm Genetically Adaptive Multi-objective (AMALGAM) 

(Vrugt and Robinson, 2007), strength pareto evolutionary algorithm 2 (Zitzler et al., 2001), NSGA-
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III (Deb and Jain, 2014) and therefore are anticipated to lose their performance in terms of 

convergence and solution diversity when applied to many-objective problems.  

In this study, an alternative approach to ε-archiving is introduced. This approach that is called 

rounded-archiving is technically the point-based dominance archiving of the rounded value of 

objective functions. The main advantage of the proposed approach over ε-archiving is that it does 

not require the user to restructure the MO algorithm computer code. The rounded-archiving 

approach is compared to the ε-archiving approach for solving hydrologic model calibration 

problems that are formulated and solved as many-objective optimization problems, in the 

literature. The proposed approach is not algorithm- or case-specific and is readily applicable to 

other MO algorithms such as PA-DDS and AMALGAM as shown in this study. The remainder of 

this paper is organized as follows. The Methods section describes the proposed rounded-archiving 

method applied to MO algorithms including Borg MOEA, PA-DDS, and AMALGAM, case 

studies including the mathematical and hydrologic model calibration problems, numerical 

experiment setup, and the results analysis approach. Next, results are presented and a general 

discussion is given, followed by the concluding remarks.  

2.3 Methods 

MO algorithms typically start the optimization with a random solution generation and archive 

solutions based on the dominance check in the objective space. Then, one or a population of 

archived solutions are selected for perturbation or recombination to create new solution(s) for 

subsequent evaluations. This process continues until a termination condition is met. 

Point-based archiving and selection strategies therefore constitute the principal parts of a MO 

algorithm to guide the search toward a better proximity (convergence) and diversity of solutions 
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to approximate the Pareto front (Coello et al., 2007; Deb, 2001). Pareto approximate front is 

referred to as the archived non-dominated solutions found by a MO algorithm at the end of 

optimization. In point-based archiving, solution A is said to be non-dominated if and only if there 

is no other solution B that dominates it (Van Veldhuizen and Lamont, 2000). Equation (1) shows 

the mathematical representation of point-based archiving concept of solution A dominating B for 

a minimization problem that has n conflicting objective functions. In the case of maximization, the 

corresponding objective function needs to be multiplied by -1 to change it to a minimization 

problem. 

 

𝑨 ≼ 𝑩 ⇔ {
𝑓𝑖(𝑨) ≤ 𝑓𝑖(𝑩)      ∀ 𝑖 ∈ {1, 2, … , 𝑛}

𝑓𝑗(𝑨) < 𝑓𝑗(𝑩)      ∃ 𝑗 ∈ {1, 2, … , 𝑛}
 (1) 

In general, the regular, point-based dominance check and archiving strategy become ineffective 

as the number of objective functions grows to more than three. Farina and Amato 

(2002) mathematically showed by Equation (2) that the proportion of non-dominated space (e) 

exponentially increases as the number of objectives (n) increases. This issue increases the 

similarity of the archived solutions in the objective space and causes the dominance resistance 

(Ikeda et al., 2001; Purshouse and Fleming, 2007) that degrades the performance of MO 

optimization algorithms. 

𝑒 =
2𝑛 − 2

2𝑛
 

(2) 

The cell-based dominance check and the corresponding 𝜀-archiving introduced by  Laumanns 

et al. (2002), which is based on the 𝜀-dominance, addresses the dominance resistance issue and 

improves the performance of MO algorithms for solving many-objective optimization problems. 
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By definition, in a minimization problem with n objectives, solution A 𝜀-dominates solution B if 

and only if ⌊
𝑓𝑖(𝑨)

𝜀𝑖
⌋ ≤ ⌊

𝑓𝑖(𝑩)

𝜀𝑖
⌋ for all objectives (i=1,…, n) with ⌊

𝑓𝑗(𝑨)

𝜀𝑗
⌋ < ⌊

𝑓𝑗(𝑩)

𝜀𝑗
⌋ for at least one 

objective j. The symbol ⌊ ⌋ returns the floor of a real value. 𝜀-archiving uses this inequality to 

develop a mesh grid in the objective space and archive at most one solution in each grid cell. If 

two solutions A and B reside in one cell, i.e. ⌊
𝑓𝑖(𝑨)

𝜀𝑖
⌋ = ⌊

𝑓𝑖(𝑩)

𝜀𝑖
⌋ for all objectives i, the solution that 

is closer to the dominating (bottom-left in minimization problems) corner of the cell is archived 

and the other solution is discarded. Green points in Figure 2-1 are 𝜀-dominated by the red points 

demonstrating both conditions of 𝜀-archiving relation. The size of each grid-cell is equal to 𝜺, 

which should be determined a priori by the decision-maker or systems analyst (Reed and 

Devireddy, 2004) for each objective function based on the desired precision level. Equation (3) 

shows the mesh grid formulation for the 𝜀-archiving method in the objective space. 

{… , 𝜺 (⌊
𝒇

𝜺
⌋ − 1) , 𝜺 (⌊

𝒇

𝜺
⌋) , 𝜺 (⌊

𝒇

𝜺
⌋ + 1) , … } ,   𝒇 = {𝑓1, … , 𝑓𝑛},    𝜺 =  {𝜀1, … , 𝜀𝑛} , 𝑛:  𝑁𝑜. 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠  (3) 

 

 

Figure 2-1: Schematic of 𝜺-archiving concept. Green points are 𝜺-dominated by red points 
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As discussed in Reed et al. (2007), ε is not a parameter of the MO algorithm. It is rather a case-

dependent value determined either by the decision-maker or by the systems analyst prior to the 

optimization based on the required precision in each objective function to ensure that only 

meaningful differences between non-dominated solutions are considered in solution archiving. ε-

MOEA, ε-NSGAII, and Borg MOEA are among algorithms that are equipped with ε-archiving. 

2.3.1 Rounded-Archiving Method 

In this study, an alternative solution archiving approach to ε-archiving is proposed and called the 

rounded-archiving in which the objective values are rounded to their desired precision levels 

before performing the point-based dominance check. The idea of rounded-archiving evolved after 

observing a significant decrease in the number of non-dominated solutions for a hypothetical 

example where 10,000 points are sampled from a uniformly random distribution in the [0,1]𝑛 n-

dimensional space representing the objective space of an MO problem with n independent 

objective functions, Figure 2-2.  

 

Figure 2-2: The impact of the rounding level and number of objectives on the number of non-dominated 

solutions for a hypothetical example of the objective space 
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By definition, in a minimization problem with n objectives, solution A dominates solution B in 

terms of rounded-archiving technique if and only if 𝜀𝑖 × 𝑟𝑜𝑢𝑛𝑑 (
𝑓𝑖(𝑨)

𝜀𝑖
) ≤ 𝜀𝑖 × 𝑟𝑜𝑢𝑛𝑑 (

𝑓𝑖(𝑩)

𝜀𝑖
) for 

all objectives (i=1,…, n), and there exists at least one objective j that the inequality 

𝜀𝑖 × 𝑟𝑜𝑢𝑛𝑑 (
𝑓𝑖(𝑨)

𝜀𝑖
) < 𝜀𝑖 × 𝑟𝑜𝑢𝑛𝑑 (

𝑓𝑖(𝑩)

𝜀𝑖
)  holds. The symbol 𝑟𝑜𝑢𝑛𝑑( ) rounds a real value to the 

nearest integer. If 𝜀𝑖 × 𝑟𝑜𝑢𝑛𝑑 (
𝑓𝑖(𝑨)

𝜀𝑖
) = 𝜀𝑖 × 𝑟𝑜𝑢𝑛𝑑 (

𝑓𝑖(𝑩)

𝜀𝑖
)  for all objectives i, both solutions are 

equally important and only one of them is retained in the archive. 

Technically, the rounded-archiving method archives the solution that has an objective vector 

value corresponding to the black point (i. e.  𝜺 × 𝑟𝑜𝑢𝑛𝑑 (
𝒇

𝜺
)) in Figure 2-3. This means that the 

rounded-archiving maintains the dominance relation only if it shows a difference that is 

meaningful at the rounded level of objectives. To be more specific, if solution A dominates solution 

B at the full precision of objective values, rounded archiving will prefer A over B if A still 

dominates B after its objective values are rounded. However, if A and B have the same rounded 

objective values, one of them will be archived by the rounded archiving. Similar to the 𝜀-archiving, 

the size of the grids for the rounded-archiving method is equal to 𝜺 but its location is not the same 

as 𝜀-archiving. The mesh grid formulation for the rounded-archiving is shown in Equation (4). The 

symbols ⌈ ⌉ and ⌊ ⌋ in Equation (4) return the ceiling and floor of a real value, respectively. 

{… , 𝜺(
⌊
𝒇
𝜺
⌋ + ⌈

𝒇
𝜺
⌉

2
− 1) , 𝜺(

⌊
𝒇
𝜺
⌋ + ⌈

𝒇
𝜺
⌉

2
) , 𝜺(

⌊
𝒇
𝜺
⌋ + ⌈

𝒇
𝜺
⌉

2
+ 1) ,…} 

𝒇 = {𝑓1, … , 𝑓𝑛},    𝜺 =  {𝜀1, … , 𝜀𝑛} , 𝑛:  𝑁𝑜. 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠 

(4) 
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Figure 2-3: Schematic of rounded-archiving method. Both green and red points change to the black point in 

rounded-archiving method. Red line and blue dash line respectively represent the grids for the 𝜺-archiving 

and rounded-archiving methods. 

As noted in Reed and Devireddy (2004), the resolution (precision level in this paper) is case-

dependent and should reflect decision-makers’ opinion about the meaningful difference between 

different options (solutions). Rounding should be performed in the scaled objective space by the 

precision/resolution level, 𝜺 in 𝜺 × 𝑟𝑜𝑢𝑛𝑑 (
𝒇

𝜺
). For example, for a cost function that ranges up to 

billions of dollars, solutions need to be rounded to the nearest 1 million dollar if it is the deal-

breaker for the decision makers. In the case of hydrologic model calibration, the systems analyst 

might want to round the percent bias error metric to the nearest 1% if this resolution defines the 

meaningful difference between two solutions.  

Script 1 shows a function coded in MATLAB that rounds a set of objective function values to 

the precision level that is given/set by the user. This shows how the modeller needs to implement 

the rounded-archiving strategy. The rounded-archiving method is formulated for the optimization 

problem formulation and not the MO algorithm; therefore, the optimization algorithm does not 

need to be altered to take advantage of the rounded archiving approach for solving many-objective 

optimization problems. 
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Script 1: The pseudo-code function for rounding the exact value of objective function to the user-specified 

precision levels 

Y = RoundObjectives (Y_Exact, rounding_lvl) 

    % User defines rounding_lvl that is a vector variable with the desired rounding level, e.g. [0.1, 0.01, 10, 1000] 

for a four-objective optimization problem.  

    % This function takes as input the vector variable Y_Exact that has the exact value of the objective functions and 

returns in Y their rounded value according to the rounding_lvl.  

    % Length of input vectors should be the same 

   if length(Y_Exact) ~= length(rounding_lvl) 

      error(‘Error: input vector variables Y_Exact & rounding_lvl should have the same size’); 

   else 

    % Round each objective function to desired precision levels. 

      for i = 1 : length(Y_Exact) 

         Y(i) = rounding_lvl(i) * round (Y_Exact(i) / rounding_lvl(i)); 

      end 

   end 

 

 

2.3.2 Optimization Algorithms 

In order to evaluate and compare the effect of the point-based, rounded-, and 𝜀-archiving methods 

on proximity and diversity, three MO algorithms that are frequently used for solving 

environmental and water resources MO problem are considered: Borg MOEA, PA-DDS, and 

AMALGAM. These algorithms have completely different structures in terms of search, selection, 

and solution generation, and therefore represent a wide range of different MO algorithms that have 

similar structures. 

2.3.2.1 BORG MOEA 

Borg MOEA was developed by Hadka and Reed (2013) for solving many-objective optimization 

problems. It is a robust variant of the 𝜀-MOEA algorithm (Deb et al., 2003) and couples multiple 

components of different MO algorithms including the 𝜀-archiving (Laumanns et al., 2002), 

adaptive population sizing (Tang et al., 2006), and adaptive tournament sizing (Hadka and Reed, 

2013) for preserving the selection probability at a constant rate, and multiple recombination 
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operators. This algorithm automatically adjusts the population size and selection probability when 

no meaningful improvement in the objective space is measured after a specified number of solution 

evaluations. The 𝜀-archiving feature of Borg MOEA improves its convergence and preserve the 

diversity of solutions in the objective space during optimization by diminishing the effect of 

dominance resistance and reducing the number of archived solutions. Borg MOEA has been 

successfully applied to many water resources problems such as a constrained six-objective urban 

water portfolio planning (Hadka and Reed, 2015), a four-objective lake pollution control (Quinn 

et al., 2017), and a constrained three-objective engineered injection and extraction for enhanced 

groundwater remediation (Piscopo et al., 2015). 

2.3.2.2 PA-DDS 

PA-DDS (Asadzadeh and Tolson, 2013) is an efficient MO algorithm for solving environmental 

and water resources MO problems. It is not population-based and generates one solution in each 

iteration by selecting one currently non-dominated solution and perturbing it to search for better 

solutions. Asadzadeh and Tolson (2013) recommended hyper-volume contribution as the most 

effective selection metric for PA-DDS solving general MO problems. Convex hull contribution 

(CHC) is another selection metric developed by Asadzadeh et al. (2014b) for PA-DDS applied to 

MO problems with a convex Pareto front. However, CHC is not used in this study since it has not 

been tested on problems with more than three objectives. PA-DDS has only one parameter, which 

is known as the solution perturbation size with a robust suggested value of 0.2 (Asadzadeh and 

Tolson, 2013). PA-DDS has an unbounded archive set and uses the point-based archiving to 

archive all non-dominated solutions throughout the search; therefore, it does not suffer from the 

oscillating behavior, but it is expected to suffer from dominance resistance when applied to many-

objecive optimization problems. In this research, 𝜀-archiving is implemented for PA-DDS to be 
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able to test its performance against the point-based and rounded-archiving approaches. 

Outstanding applications of PA-DDS in water resources include reservoir operation (Asadzadeh 

et al., 2014a; Razavi et al., 2014), model calibration (Asadzadeh et al., 2016, 2015), and water 

distribution network design (Asadzadeh et al., 2012). 

2.3.2.3 AMALGAM 

AMALGAM introduced by (Vrugt and Robinson, 2007) is a multi-algorithm evolutionary 

optimization strategy that combines four well-known and widely used heuristic optimization 

algorithms including NSGA-II (Deb et al., 2002b), particle swarm optimization (Kennedy, 2006), 

adaptive metropolis search (Haario et al., 2001), and differential evolution (Storn and Price, 1997). 

The population size and the number of generations of AMALGAM are set based on the 

computational budget of this study and all its other parameters are set to their default values (Vrugt 

and Robinson, 2007). AMALGAM generates an initial population of solutions by latin hypercube 

sampling and gives each of its sub-algorithms a pre-determined portion of the whole population 

for generating new solutions. Then, the parent and offspring solutions are combined and sorted 

using the fast non-dominated sorting approach introduced in (Deb et al., 2002a, 2002b). If 

necessary, the crowding distance metric is utilized for archiving solutions that have an equal 

dominance rank and the ones that have higher distance are retained in the archive. The sub-

algorithm that contributed more to the set of archived solutions is given a higher portion of 

population size for generating new solutions in subsequent generation. AMALGAM has a point-

based archiving and a bounded archive; therefore it is not reinforced against the dominance 

resistance and oscillating effect. The effectiveness of the proposed rounded-archiving is validated 

on AMALGAM. Outstanding recent applications of AMALGAM include the many-objective 
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signature-based hydrologic model calibration in Shafii et al. (2017) and the multi-site hydrologic 

model calibration in Zhang et al. (2010). 

2.3.3 Case Studies 

2.3.3.1 Mathematical Test Problems 

Benchmark mathematical test problems are designed to challenge the optimization algorithms. 

Often times, they are quick-to-evaluate and the closed form of their true Pareto front is known. 

Therefore, they can be used to efficiently and effectively evaluate the performance of the 

optimization algorithms.  

DTLZ suite of test problems are scalable in terms of the number of decision variables and 

objective functions (Deb et al., 2005). In this paper, the bi-objective and five-objective versions of 

DTLZ1 and R2-DTLZ2 are solved to compare the effect of the archiving methods on the archive 

size at different number of objectives.  

2.3.3.1.1 DTLZ1 

DTLZ1 has m variables with the range [0, 1] and n objectives that are designed to trap MO 

algorithms in local fronts. The ten-variable bi-objective and five-objective DTLZ1 solved in this 

research are proven to have respectively (1110-2+1-1) and (1110-5+1-1) local fronts with the true 

Pareto front where ∑ 𝑓
𝑖
(𝑿)𝑛

𝑖=1 = 0.5. 

2.3.3.1.2 DTLZ2 

The five-objective R2-DTLZ2 test problem is a more complicated version of DTLZ2 with a 

concave true Pareto front with 30 decision variables. According to Zhang et al. (2009), the decision 

variable space of R2-DTLZ2 is mapped by a linear transformation orthogonal matrix and the 
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objective space is extended by a stretching function to make it more challenging to solve. The true 

Pareto front of R2-DTLZ2 is where ∑ (𝑓𝑖 − 1)
2𝑛

𝑖=1 = 1, and the range of its variables is [0, 1].  

2.3.3.2 Watershed model calibration 

2.3.3.2.1 RAVEN Model of Grand River Watershed 

RAVEN is a semi-distributed watershed model introduced by Craig (2015) capable of simulating 

short-term rainfall-runoff events and long-term synthesis of hydrologic processes in a basin for 

resource management and water quality assessment. It divides a watershed into several sub-

watersheds that are further partitioned into multiple hydrologic response units (HRUs). Each HRU 

is lumped areas with a unique combination of topography, geometry/geography, land use/type, and 

aquifer/soil. Meteorological conditions such as rainfall, temperature, and wind velocity are then 

assigned to HRUs. The vertical water balance and energy balance are used for simulating and then 

assembling relevant hydrological processes in each HRU. The flow is then routed downstream and 

laterally by reconnecting HRUs. The interesting fact is that RAVEN’s level of complexity can 

change from a lumped model to a distributed model with a myriad of HRUs depending on data 

availability or analyst’s desire.  

The RAVEN model of an upstream sub-watershed (~274 km2) of the greater Grand River 

Watershed in south-western Ontario, Canada, is re-calibrated in this study. Following Shafii et al. 

(2017), the hydrometric data for time span of 2009-2014 is considered to calibrate 20 tunable 

parameters of the model, using three quarter of the year 2009 as the warm-up period and the rest 

of the data for calibration.  

The preliminary analysis of this case study showed that some of the 15 objectives calibrated by 

Shafii and Tolson (2015) (see Table 2-1) are highly correlated (none conflicting) and therefore can 
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safely be removed from the set of calibration objectives. The proportion of non-dominated space 

unnecessarily increases by considering highly correlated objectives in optimization and MO 

algorithms encounter difficulty in directing the search toward the desired non-dominated front. In 

addition, according to the definition, objective functions of a MO problem should display relatively 

conflicting behaviors. Giuliani et al. (2014a), for example, incorporated the principal component 

analysis in a many-objective reservoir operation problem to reduce the objective functions to a few 

uncorrelated principal objectives (vectors) that describe high percentile variance of the original 

MO problem to reach a more consistent and diverse Pareto approximate front. 

In this study, the calibration objectives in Shafii and Tolson (2015) are compared in a pairwise 

manner and a strong linear correlation higher than 0.8 is observed between eight of these to the 

other seven objectives, see Table 2-1. For instance, the overall runoff ratio (Obj 3) is perfectly 

correlated with the mean of streamflow data (Obj 8) as they both represent the capability of the 

model to simulate the water balance. The seven objective functions that are used for the calibration 

of RAVEN in this paper are highlighted in Table 2-1 and briefly introduced next. 

It is well-known that an optimal parameter set for a single calibration metric such as NSE (Nash 

and Sutcliffe, 1970) does not necessarily guarantee the model to emulate the detailed processes of 

the real system (Gupta et al., 1998). This also holds true in the case of multi- and many-objective 

calibration to a lesser extent (Maier et al., 2019), which is referred to as overfitting due to 

incorporating certain characteristics of error distribution in calibration, imperfect model structure, 

simplifying assumptions in simulation, uncertainty in measurements as well as spatiotemporal 

variations in model parameters (Efstratiadis and Koutsoyiannis, 2010). NSE as shown in Equation 

(5)  is more sensitive to larger errors that often happen in high-flow periods and to the timing and 

shape of the measured stream flux data due to the presence of three components including mean, 
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variance, and the correlation coefficient (Gupta et al, 2009). MSE denote the mean of squared 

errors between the observations and simulations and 𝜎0
2 represents the variance of the 

observations. 

Table 2-1: Pairwise linear correlation coefficient between 15 calibration objectives in Shafii and Tolson 

(2015). Cells shaded in yellow show the highly correlated pairs. Calibration objectives shaded in green are 

considered for this study. 

OBJECTIVES 
Obj 

1 

Obj 

2 

Obj 

3 

Obj 

4 

Obj 

5 

Obj 

6 

Obj 

7 

Obj 

8 

Obj 

9 

Obj 

10 

Obj 

11 

Obj 

12 

Obj 

13 

Obj 

14 

Obj 

15 

Obj 1-NSE(Q) - -0.25 -0.26 -0.24 0.23 -0.23 0.25 -0.26 -0.12 -0.05 0.00 0.80 0.14 0.31 0.07 

Obj 2-NSE(logQ) 

 

- 0.46 0.40 -0.96 0.55 -0.47 0.46 0.71 -0.27 0.52 -0.16 -0.89 -0.97 0.34 

Obj 3-Overall Runoff 

Ratio(Q) 

 

- 0.98 -0.38 0.94 -0.08 1.00 0.64 0.18 0.48 0.04 -0.18 -0.62 0.59 

Obj 4-Overall Runoff 

Ratio(logQ) 

 

- -0.31 0.93 -0.05 0.98 0.62 0.20 0.49 0.08 -0.13 -0.56 0.63 

Obj5-FDC Mid-

segment Slope 

 

- -0.48 0.42 -0.38 -0.68 0.24 -0.48 0.19 0.89 0.90 -0.27 

Obj 6-FDC High 

Segment Vol. 

 

- -0.12 0.94 0.81 0.11 0.66 0.05 -0.39 -0.69 0.71 

Obj 7-FDC Low 

Segment Vol. 

 

- -0.08 -0.34 0.12 -0.31 0.35 0.42 0.45 -0.02 

Obj 8-Mean(Q) 

 

- 0.64 0.18 0.48 0.04 -0.18 -0.62 0.59 

Obj 9-Variance(Q) 

 

- -0.05 0.87 -0.05 -0.72 -0.77 0.70 

Obj 10-Median(Q) 

 

- -0.02 0.01 0.37 0.17 0.00 

Obj 11-Peak(Q) 

 

- -0.07 -0.59 -0.59 0.68 

Obj 12-One-day-lag 

Autocorrelation 

 

- 0.17 0.20 0.16 

Obj 13-Mean(LogQ) 

 

- 0.84 -0.34 

Obj 14-

Variance(logQ) 
 

- -0.44 

Obj 15-

Max_Monthly(Q) 
 - 

 

𝑁𝑆𝐸 = 1 −
𝑀𝑆𝐸

𝜎0
2  (5) 

Hydrologic signatures represented by Equations (6) to (11) are reformulated in the form of 

absolute bias in simulated versus measured values to be minimized with an ideal value of zero. Q 

and 𝑄̅ in Equations (6) to (11) signify the streamflow and the mean of streamflow, P is the 

probability of exceedence, and k is the number of time steps. The metrics in Equations (6) to (8), 
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evaluate the model performance in emulating the flow-duration curve (FDC). FDC is a sorted 

logarithmic flow rate curve plotted versus cumulative frequency of exceedence. Following Shafii 

and Tolson (2015), FDC is divided into three segments of mid-segment slope (25% to 75%), high 

flow volume (0% to 2%), and low flow volume (75% to 100%), as shown in Figure 2-4. The 

respective partitioning of FDC represents soil storage capacity, quick runoff (due to snow-melt 

and/or rainfall), and base flow components of the streamflow (Yilmaz et al., 2008). Median in 

Equation (9) and peak in Equation (10) evaluate the performance in simulating mid-flow and max-

flow (Bennett et al., 2013). The one-day lag auto-correlation coefficient (𝐴𝐶𝑙𝑎𝑔1) in Equation (11) 

captures the repeated periodic patterns in streamflow time series (Bennett et al., 2013).  

 

Figure 2-4: Flow duration curve segmentation 

𝑀𝑖𝑑_𝑆𝑙𝑜𝑝𝑒 = 𝑙𝑜𝑔10(𝑄25) − 𝑙𝑜𝑔10(𝑄75)      ∋        𝑄25 = {𝑄|𝑃(𝑄) = 0.25}  & 𝑄75 = {𝑄|𝑃(𝑄) = 0.75} (6) 

 

𝐻𝑖𝑔ℎ𝐹𝑙𝑜𝑤 =∑(𝑄ℎ)      ∋        𝑄ℎ ∈ {𝑄|𝑃(𝑄) < 0.02} (7) 

 

𝐿𝑜𝑤𝐹𝑙𝑜𝑤 = −∑(𝑙𝑜𝑔10(𝑄𝑙))      ∋        𝑄𝑙 ∈ {𝑄|𝑃(𝑄) > 0.75} (8) 

 

0.1

1

10

100

1000

10000

0 20 40 60 80 100

d
is

ch
ar

g
e 

(c
m

s)

time percentage

0.02 7525



   

 

 

35 

𝑀𝑒𝑑𝑖𝑎𝑛 = {𝑄|𝑃(𝑄) = 0.5} (9) 

 

𝑃𝑒𝑎𝑘 = {𝑄|𝑄 = max(𝑄𝑖) , ∋ 𝑖 = 1, 2, … , 𝑘} (10) 

 

𝐴𝐶𝑙𝑎𝑔1 =
∑ (𝑄𝑗 − 𝑄̅)(𝑄𝑗+1 − 𝑄̅)
𝑘−1
𝑗=1

∑ (𝑄𝑗 − 𝑄̅)
2𝑘

𝑗=1

 (11) 

 

2.3.3.2.2 SWAT Model of the Rouge River Watershed 

SWAT stands for soil and water assessment tool introduced by Arnold et al. (1990) for long-term 

basin-scale simulations of the hydrologic cycle. SWAT combines features of different models to 

enable estimation of runoff, sediment transport rate, and water quality constituents such as 

suspended solids, nitrogen and phosphate components at the outlet of each sub-watershed, Neitsch 

et al. (2011). SWAT is a semi-distributed watershed model that divides the watershed into sub-

watersheds that can have multiple HRUs. However, HRUs do not carry any geographical location 

inside their sub-watershed. For each sub-watershed, SWAT aggregates the simulation components 

that are contiguously pyramided en route from sub-watersheds to the streams and thus to the outlet 

of the watershed. In this paper, the SWAT model of the Rouge River watershed (331 km2), Ontario, 

Canada is used, which was developed by Asadzadeh et al. (2015). The watershed encompasses 

four main land-use classes, agricultural, urban, natural, and water bodies. Agricultural land 

management in terms of crop rotation, cultivation, planting, tillage and fertilizer applications are 

simulated by the model.  

Daily hydrometric and climatic data from 2006 to 2009 are used to automatically calibrate the 

13 most sensitive parameters of the model, considering four objectives: maximizing NSE for daily 

streamflow, and minimizing absolute bias in the volume of high flow segment [less than 2% 
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probability of exceedance], the volume of low flow segment [more than 70% probability of 

exceedance] of FDC, and the slope of the mid-segment [probability of exceedance between 20% 

to 70%] of FDC. Asadzadeh et al. (2015) formulated the SWAT calibration as a constrained 

optimization problem to satisfy the estimated values of evapotranspiration (62% of the annual 

average precipitation) and surface flow contribution to streamflow (60%). In this study, these two 

constraints are handled by adding a fifth objective function that minimizes the total constraint 

violation. As discussed in Asadzadeh et al. (2016), Rouge river watershed has a sub-daily 

hydrologic response to precpitation events and the daily simulation mode of SWAT cannot 

precisely model the timing of peak flows, especially for late calendar day precipitation events. As 

a result, Asadzadeh et al. (2016) observed a one-day offset issue in simulating some of the peak 

flow rates of Rouge River watershed and added a feature to the calibration of SWAT to shift the 

simulated hydrograph for fixing the timing error. The SWAT model calibration in this paper 

automatically handles the timing error.  

2.3.4 Numerical Experiment Setup 

The three approaches of point-based, rounded-, and 𝜀-archiving are implemented and tested in PA-

DDS and Borg MOEA for solving problems explained in the previous section. Table 2-2 provides 

details on these problems, as well as the 𝜀 value or rounding level for each objective. The 

effectiveness of the rounded-archiving as an alternative of the 𝜀-archiving approach is 

subsequently validated for the AMALGAM algorithm. The algorithms are compared based on 

their performance in a multi-trial optimization to capture the variation in their performance due to 

their stochastic nature. We considered 10 and 50 trials for hydrologic model calibration and 

mathematical test problems, respectively. Moreover, the performance of the MO algorithms is 

assessed at a relatively low computational budget of 1000 solution evaluations and a relatively 
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larger budget of 10000 solution evaluations per trial. The low budget case is considered to assess 

the effect of dominance relations in low budget situations and how they help the performance of 

the algorithm concerning proximity and diversity. The high budget case is suggested to minimize 

the effect of initialization of the algorithms and find good quality solutions in each trial of 

calibration (Asadzadeh et al., 2015; Shafii et al., 2017). 

Table 2-2: Number of objectives and parameters and 𝜺 or rounding level for MO case studies 

Test Case 
Number of 

Parameters 

Number of 

Objectives 

Precision Level 

obj1 obj2 obj3 obj4 obj5 obj6 obj7 

SWAT 13 5 0.01 1 1 1 1 - - 

RAVEN 20 7 0.05 5 5 5 5 5 5 

DTLZ1-2D & R2-DTLZ2-2D 10 & 30 2 0.01 0.01 - - - - - 

DTLZ1-5D & R2-DTLZ2-5D 10 & 30 5 0.01 0.01 0.01 0.01 0.01 - - 

The parameterization of PA-DDS, Borg MOEA, and AMALGAM has been done according to 

the default settings recommended by their developers. The initial population for Borg MOEA and 

AMALGAM is set to 100 solutions and PA-DDS automatically commences the search with at 

least five solutions or 0.5% of the total evaluations, whichever is higher, as the size of initial 

solutions. PA-DDS uses the hyper-volume contribution selection metric. 𝜀-archiving is an 

inseparable part of Borg MOEA structure. Therefore, in order to assess its performance with 

rounded-archiving and point-based archiving, an extremely small 𝜀 value (10-6 for all objectives) 

is used in this study. AMALGAM has a bounded archive size equal to its population size. As a 

result, archive truncation is highly likely to occur in many-objective optimization and may lead to 

oscillating effect in AMALGAM.  

2.3.5 MO algorithm Performance Metrics 

Performance metrics are used to quantify the convergence, diversity, and consistency of the Pareto 

approximate fronts obtained by stochastic optimization algorithms. A number of performance 
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indicators exist in the literature including normalized hyper-volume (Fonseca et al., 2006), additive 

epsilon (Zitzler et al., 2003), and generational distance (Van Veldhuizen and Lamont, 1998) that 

evaluate different characteristics of the Pareto approximate front against the true Pareto front or a 

reference Pareto front. These metrics have been widely used for evaluating MO algorithms since 

they can quantify the algorithms’ performance in terms of proximity and solution diversity in the 

objective space (Ward et al., 2015; Yuan et al., 2016).  

2.3.5.1 Normalized Hyper-Volume (NHV)  

NHV normalizes the objective space to the unit hypercube using a Nadir point, an ever-dominated 

point, and a Utopia point, an absolutely non-dominated point for a minimization problem (Fonseca 

et al., 2006). Basically NHV for a front is the portion of this unit hypercube that is dominated by 

the front. Obviously, a higher value of NHV shows better proximity and diversity of the Pareto 

approximate front. The computational cost of the NHV calculation increases exponentially as the 

number of objective functions increases. Therefore, in the many-objective cases of this study, the 

approximation version of NHV (Bader and Zitzler, 2011) is used. 

2.3.5.2 Additive Epsilon (𝜺+) Indicator  

The 𝜀+ indicator (Zitzler et al., 2003) calculates the minimum distance required for shifting a 

Pareto approximate front to dominate a reference set of points as a whole. The 𝜀+ indicator has a 

minimum value of zero that is ideal when the reference set is the true Pareto front and is very 

sensitive to the gaps in the Pareto approximate front; therefore, it shows if outliers with poor 

proximity exist in the Pareto approximate front, the so called inconsistency (Hadka and Reed, 

2012).  
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2.3.5.3 Generational Distance (GD)  

GD is the average Euclidean distance between each point on the Pareto approximate front and its 

closest point on a reference set (the true or best known Pareto) with minimum value of zero that is 

ideal when the Pareto approximate front perfectly matches the reference set (Van Veldhuizen and 

Lamont, 1998). GD purely emphasizes on the proximity rather than the diversity preservation and 

gaps in the Pareto approximate front have minimal effect on it. 

2.3.5.4 Performance Metrics Calculation Procedure 

The following steps are taken in this study to calculate the performance metrics: 

1) In order to have a fair comparison between the MO algorithms, the rounded objective value 

of non-dominated solutions are converted back to their full precision by re-running the case 

studies for the corresponding solutions. 

2)  The true Pareto front is used as the reference set for mathematical test problems. The best 

non-dominated points are collected from all calibration runs, disregarding the type of 

algorithm and archiving method, and used as reference set for these problems. 

3) Instead of exact NHV, the Monte-Carlo approximation NHV (Bader and Zitzler, 2011) is 

calculated for the seven-objective RAVEN model calibration problem. 10000 random 

points are generated from the uniform distribution in the [0, 1]7 space. The portion of these 

points that are dominated by each Pareto approximate front is calculated. To reduce the 

effect of random number generator on the results, this process is repeated ten times, 

independently, and the average of the portion of dominated points  is calculated as the 

approximate NHV for each algorithm.  
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4) Borg MOEA automatically terminates the optimization when no improvement is measured 

in objective values after a certain number of iterations. Results are post-processed to make 

sure that premature convergance did not occur.  

2.3.6 Optimization Algorithm Performance Comparison Approach 

The MO optimization algorithms in this paper result in different performance metric values in each 

trial due to their stochastic search behavoiur. The MO algorithms are compared based on the 

empirical cumulative distribution function (CDFs) that shows the probability of equal to or better 

performance than the argument of the function. The CDF plots of the algorithms are compared by 

the first degree stochastic dominance (Levy, 1992). The concept of stochastic domination is 

referred to as better performance at all levels of probability. With regard to 𝜀+ and GD indicators, 

algorithm A stochastically dominates algorithm B if and only if the CDF of A is less than or equal 

to that of B at each level of probability (Carrano et al., 2011). Whereas, a better performance in 

terms of NHV corresponds to an equal or higher metric value of A compared to B. The statistical 

significance of the stochastic dominance is examined using the two-sided Wilcoxon rank sum test 

with the 95% confidence level. The null hypothesis of this test states no significant difference 

between algorithms A and B. A p-value smaller than the significant level (5% in this paper) in the 

two-sided Wilcoxon rank sum test is preferred to firmly reject the null hypothesis and confirm the 

difference between A and B. Similar performance comparison studies are used in Asadzadeh and 

Tolson (2013) and Hadka and Reed (2012). 
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2.4 Results and Discussion 

2.4.1 Method Development: Borg MOEA and PA-DDS 

2.4.1.1 Mathematical Test Problems 

 According to the observations on the DTLZ1-2D and R2-DTLZ2-2D experiments with low 

computational budget, the three archiving approaches make PA-DDS and Borg MOEA store a 

similar and relatively small number of non-dominated solutions. CDF plots of the performance 

metrics (not shown in this paper) show that, altering the archiving approach does not alter the MO 

algorithm performance. In the case of 10000 solution evaluations, point-based archiving makes 

MO algorithms archive a high number of non-dominated solutions relative to the rounded- and 𝜀-

archiving approaches (see Table 2-3), while CDF plots (not shown in this paper) do not reveal any 

significant preference in the archiving approach. Figure 2-5 shows the Pareto approximate fronts 

obtained by the median performing trial of these algorithms based on 𝜀+ indicator and confirms 

that rounded- and 𝜀-archiving reproduce the same quality Pareto approximate front as the point-

based archiving but with fewer solutions.  

  

Figure 2-5: Pareto approximate fronts identified by PA-DDS and Borg MOEA using alternative archiving 

approaches solving R2-DTLZ2-2D with the budget of 10000 solution evaluations. The trial with median 𝜺+ 

indicator value is represented for each algorithm. 
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According to Figure 2-6-a, rounded-archiving is preferred for PA-DDS for solving DTLZ1-5D 

with 10000 solution evaluations, even though it helps PA-DDS archive fewer solutions on average, 

383 versus 585 and 608 as in Table 2-3. Other CDF plots that are not provided in this paper show 

crossing behavior similar to Figure 2-6-b meaning that changing the archiving technique results in 

a similar performance of PA-DDS and Borg MOEA. 

Table 2-3: The average number of solutions archived by different solution archiving techniques for solving 

mathematical test problems with a budget of 10000 solution evaluations 

MO Problem MO Algorithm 

Archiving Method 

Rounded-Archiving 𝜀-Archiving Point-Based Archiving 

DTLZ1_2D 
PA-DDS 10 9 80 

Borg MOEA 20 16 41 

DTLZ1_5D 
PA-DDS 383 585 608 

Borg MOEA 354 296 622 

R2_DTLZ2_2D 
PA-DDS 41 43 85 

Borg MOEA 58 68 177 

R2_DTLZ2_5D 
PA-DDS 589 561 730 

Borg MOEA 760 780 780 

 

  

Figure 2-6: Empirical CDF plots of 𝜺+ indicator comparing alternative archiving approaches for a) PA-DDS 

and b) Borg MOEA for solving DTLZ1-5D with 10000 solution evaluaitons. A vertical line at zero is ideal. 

2.4.1.2 Hydrologic Models Calibrations 

According to Table 2-4, the number of archived solutions decreases significantly when the 
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to about 22% and 50% in PA-DDS and Borg MOEA, respectively, when rounded- or 𝜀-archiving 

is applied for solving the five-objective SWAT calibrated with 10000 solution evaluations. 

Moreover, the rounded-based Borg MOEA stochastically dominates the CDF plot of the point-

based Borg MOEA based on 𝜀+, as illustrated in Figure 2-7. In the high computational budget 

calibration case, the two-sided Willcoxon rank-sum tests confirm the preference toward rounded- 

over point-based archiving for Borg MOEA in the SWAT calibration problem (p-values of 0.0022, 

0.000769, and 0.0046 for the 𝜀+ indicator, GD, and NHV, respectively). The preference toward 

rounded- against 𝜀-archiving Borg MOEA is only statistically significant based on the GD (p-

value of 0.0312). Results did not show any statistially significant difference between alternative 

archiving approaches for Borg MOEA in the low computational budget case (i.e., 1000-simulation 

runs). For PA-DDS used for SWAT calibration, no statistically significant preference is observed 

among the three approaches, except for the point-based archiving that is preferred over the other 

two archiving approaches based only on GD for 10000 simulations with a p-value of 0.000583. 

All the three archiving approaches statistically preserve the same level of diversity in high 

computational budget for PA-DDS in terms of 𝜀+ indicator and NHV indicators with considerably 

smaller archive size of 504 for the rounded- and 𝜀-based PA-DDS against 2264. 

  

Figure 2-7: Empirical CDF plot of 𝜺+ indicator comparing alternative archiving approaches for PA-DDS and 

Borg MOEA for calibrating five-objective SWAT with a) 1000 and b) 10000 solution evaluations 
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Table 2-4: The average number of solutions archived by different solution archiving techniques for model 

calibration problems 

MO Problem 
Number of 
Evaluations 

MO Algorithm 
Type of Archiving  Method 

Rounded-Archiving 𝜀-Archiving Point-Based Archiving 

SWAT 

1000 
PA-DDS 136 135 320 

Borg MOEA 130 104 166 

10000 
PA-DDS 504 504 2264 

Borg MOEA 483 437 916 

RAVEN 

1000 
PA-DDS 207 213 680 

Borg MOEA 309 326 787 

10000 
PA-DDS 812 689 6097 

Borg MOEA 1160 1104 3749 

Table 2-5 demonstrates the proximity toward the utopia or the ideal point by finding the solution 

that has the shortest distance (knee point) from the utopia point. In light of the fact that the extreme 

events are of greater importance compared with low flow rates, a higher weight (0.4) is given to 

the NSE that is more sensitive to larger errors that often occur in high-flow periods. The rest of the 

objective functions are equally weighted. In general, the distance to the utopia point is shorter 

when rounded-archiving is used for SWAT, except for PA-DDS that performed better with ε-

archiving with the budget of 1000 solution evaluations. This means that the Pareto approximate 

front is bent more towards the ideal point in the case of rounded-archiving.  

According to Table 2-4, the point-based PA-DDS archives more than 60% of generated 

solutions in the case of the seven-objective RAVEN model calibration for 10000 function 

evaluations. While, the rounded- and 𝜺-based PA-DDS respectively archive only about 8 and 7 

percents of all generated solutions in the same number of simulations. In the 1000-evaluation 

experiment on PA-DDS, the rounded- and 𝜺-based techniques store only 207 and 213 solutions in 

the archive significantly less than 680 solutions that are archived using the original PA-DDS. This 

means the traditional archiving method retains all the relatively similar solutions that have even 



   

 

 

45 

slightly better value in only one out of seven objectives that is challenging for the calculation of 

one final preferred solution. 

Figure 2-8 shows that despite the significant decrease in the number of archived solutions, both 

rounded- and 𝜀-archiving approaches are preferred over the point-based archiving version of the 

Borg MOEA for 10000 simulations with a p-value of 0.0211. According to Table 2-5, rounded-

archiving is preferred for both PA-DDS and Borg MOEA for calibrating the seven-objective 

RAVEN model because it helps the MO algorithms find the Pareto approximate front with a knee 

point closer to the ideal point. The only exception is the point-based archiving that is preferred for 

Borg MOEA at the limited budget of 1000 solution evaluations. 

Table 2-5: Knee points distance from the utopia point for the SWAT and RAVEN models calibration using 

Borg MOEA and PA-DDS 

MO 

Algorithm 

Number of 

evaluations 
Archiving method 

Distance 

SWAT RAVEN 

B
o

rg
 M

O
E

A
 

1000 

Point-Based Archiving 0.135 0.162 

𝜀-Archiving  0.141 0.178 

Rounded-Archiving 0.135 0.170 

10000 

Point-Based Archiving 0.110 0.155 

𝜀-Archiving  0.107 0.155 

Rounded-Archiving 0.105 0.152 

P
A

-D
D

S
 

1000 

Point-Based Archiving 0.118 0.163 

𝜀-Archiving  0.111 0.159 

Rounded-Archiving 0.114 0.158 

10000 

Point-Based Archiving 0.097 0.153 

𝜀-Archiving  0.099 0.149 

Rounded-Archiving 0.096 0.147 
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Figure 2-8: Empirical CDF plot of 𝜺+ indicator comparing alternative archiving approaches for PA-DDS and 

Borg MOEA for calibrating seven-objective RAVEN with a) 1000 and b) 10000 solution evaluations 

 

2.4.2 Method Validation: AMALGAM 

The rounded-archiving is tested on AMALGAM for solving the many-objective hydrologic model 

calibrations. AMALGAM uses the point-based archiving technique and has a bounded archive size 

that is defined a priori. Therefore, it is expected to suffer from both deterioration and dominance 

resistance issues when applied to many-objective optimization problems.  

According to Figure 2-9, rounded-archiving improves the performance of AMALGAM for 

calibrating both of the five-objective SWAT and seven-objective RAVEN models with the budget 

of 10000 solution evaluations. This improvement is statistically meaningful with 95% confidence 

level based on the Wilcoxon rank-sum test results in Table 2-6, except for the case of RAVEN 

based on the 𝜀+ indicator. At the lower budget of 1000 solution evaluations, the preference of 

rounded-archiving over the point-based archiving for AMALGAM is statistically significant in 

case of the RAVEN model calibration but not for the SWAT model calibration, see Figure 8-1 and 

Table 2-6.  
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Table 2-6: The p-value of Wilcoxon rank-sum by testing the hypothesis of existing significant difference 

between the optimization results of rounded- versus point-based archiving for AMALGAM 

Hydrologic 

Model 

1000 10000 

𝜀+ GD NHV 𝜀+ GD NHV 

SWAT 0.7913 0.2413 0.0757 0.014 0.000583 0.000183 

RAVEN 0.0211 0.0022 0.0073 0.4727 0.0004374 0.0036 

 

It is understood that, rounded-archiving decreased the oscillating issue due to the bounded 

archive of AMALGAM. The bounded archive makes the MO algorithm eliminate some currently 

non-dominated parameter sets and retain inferior ones in future iterations confirming the published 

study of Hanne (1999). In addition, the archive is rapidly filled with the initially generated low-

quality non-dominated solutions and the subsequent solution production are based on the 

perturbation of the low-quality archived ones. While, the rounded-archiving method gradually 

stores the limited archive set by producing higher quality solutions during the optimization and it 

properly represents the entire range of the reference set if the precision level of each objective 

function is properly quantified.   

A further experiment on the impact of the rounding level of the five-objective R2-DTLZ2 

mathematical test problem in Figure 2-10 demonstrate that consideration of the low-resolution 

desired precision level results in a significant improvement on the 𝜀+ value. A similar result to 

Figure 2-10 is expected for the computationally intensive problems such as the model calibration 

problems of this study. However, the modeller should be aware that a high rounding level increases 

the chance of multi-modality in optimization. 
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Figure 2-9: Empirical CDF plots comparing point-based (green series) versus rounded- (red series) archiving 

for AMALGAM for calibrating five-objective SWAT and seven-objective RAVEN models with 10000 

solution evaluations 

0

0.2

0.4

0.6

0.8

1

0.07 0.11 0.15 0.19

P
ro

b
ab

il
it

y
 o

f 
E

x
ce

ed
an

ce

Additive Epsilon

SWAT

0

0.2

0.4

0.6

0.8

1

0.16 0.18 0.2 0.22 0.24

P
ro

b
ab

il
it

y
 o

f 
E

x
ce

ed
an

ce

Additive Epsilon

RAVEN

0

0.2

0.4

0.6

0.8

1

0.007 0.011 0.015 0.019

P
ro

b
ab

il
it

y
 o

f 
E

x
ce

ed
an

ce

GD

0

0.2

0.4

0.6

0.8

1

0.006 0.007 0.008 0.009 0.01

P
ro

b
ab

il
it

y
 o

f 
E

x
ce

ed
an

ce

GD

0

0.2

0.4

0.6

0.8

1

0.08 0.12 0.16 0.2

P
ro

b
ab

il
it

y
 o

f 
E

x
ce

ed
an

ce

1-NHV

0

0.2

0.4

0.6

0.8

1

0.3 0.32 0.34 0.36 0.38

P
ro

b
ab

il
it

y
 o

f 
E

x
ce

ed
en

ce

1-NHV



   

 

 

49 

 

Figure 2-10: The effect of rounding level on the empirical 𝜺+-CDF of AMALGAM solving five-objective R2-

DTLZ2 mathematical problem 

 

2.5 Conclusions 

A comparative study of an alternative rounded-archiving method to 𝜀-archiving was conducted. 

The proposed archiving method of this study can carry out the task of 𝜀-archiving for algorithms 

that are not equiped with 𝜀-archiving. The rounded-archiving is user-friendly, in that it does not 

require altering the MO algorithm computer code. This method is not algorithm- or case-specific 

and is much needed in situations where (1) the algorithm is not designed for solving many-

objective case studies and (2) the algorithm has a bounded archive structure. The rounded-based 

Pareto approximate front is expected to properly represent the entire range of the true Pareto front 

if the objectives’ resolutions are sufficiently quantified, similar to 𝜀-archiving in Reed et al. (2007).  

At the methodology development stage of this study, the rounded-archiving resulted in 

significantly smaller archive size especially in high computational budgets for the five-objective 

SWAT and seven-objective RAVEN model calibrations using PA-DDS and Borg MOEA while 

maintaining a well-diverse set of solutions in the objective space. The rounded-archiving has at 

least the same convergence level as 𝜀-archiving with no significant difference in the Pareto front 
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diversity for solving mathematical and model calibration problems using PA-DDS and Borg 

MOEA. The calculated knee points resulted from the proposed method have shorter distance to 

the ideal or utopia point than those obtained by the point-based and 𝜀-archiving in the majority of 

numerical experiments. It is concluded that, the MO optimization algorithms need to be equipped 

with more specialized archiving strategies such as the 𝜀- or the rounded-archiving to solve many-

objective optimizaton problems since the traditional point-based archiving method leads to 

exponential increase in the number of non-dominated solutions, especially when MO algorithms 

have an unbounded archive. 

The proposed rounded-archiving method is tested on AMALGAM that has a bounded archive 

and is not equipped with 𝜀-archiving. Rounded-archiving reamarkably improves the level of 

proximity and diversity of the Pareto approximate front compared to the original AMALGAM. 

Results show that rounded-archiving made AMALGAM perform better than the original 

AMALGAM in eight out of 12 hypothesis testings. The rounded-archiving can be easily 

generalized to other multi-objective algorithms for solving many-objective optimization problems.  

Reducing the number of archived solutions using either rounded- or 𝜀-archiving assists 

decision-makers and model analysts to find their desired solution or parameter set based on the 

status-quo of their projects with less confusion. It should be noted that the resolution/rounding 

level of each objective needs to be consulted with decision-makers prior to optimization setting. It 

is shown in this study that using a coarse rounding level leads to a smaller number of archived 

solutions, which confirms findings by Reed et al. (2007). The main advantage of rounded-

archiving over 𝜀-archiving, is that it is readily available for any MO algorithm that is not equipped 

with any specialized archiving, such as PA-DDS and AMALGAM in this study. Moreover, 

rounded-archiving is computationally more efficient, but this advantage becomes trivial when 
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solving problems with a time-consuming simulation and/or evaluation models such as the model 

calibration case studies of this paper.  

The 𝜀-archiving approach retains the exact values of objective vectors while rounded-archiving 

will increase the probability of multi-modality if a very low resolution is set for objectives. 

Rounded-archiving needs to be applied to other MO algorithms and other water resources case 

studies but owing to the highly time-demanding process of this comparison study, three MO 

algorithms are considered as sufficient for generalizing the concluding remarks of this study. 
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3.1 Abstract 

In this study, a novel density-based spatial clustering method is developed to maintain a diverse 

set of solutions for stochastic multi-objective optimization algorithms. This method dynamically 

clusters solutions in the decision space after solution evaluations. Dominance check is localized to 

maintain solutions that are globally dominated but locally non-dominated in their cluster. Unlike 

the original solution archiving, the proposed method implemented for Pareto Archived-

Dynamically Dimensioned Search successfully finds optimal and near-optimal fronts with 

different cluster labels in two mathematical case studies. Two environmental benchmark problems 

are also solved and a three-stage screening process is applied to their archive sets to identify the 

number of dissimilar options. The dissimilarity index devised for this study shows a significantly 

higher distinction level and archive size for the cluster-based solution archiving, which allows 

mailto:sahraeis@myumanitoba.ca
mailto:masoud.asadzadeh@umanitoba.ca
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decision-makers to have higher flexibility in refining their preferences for robust decision-making 

in the environmental problems, compared with the original archiving. 

 

Keywords: Multi-objective optimization, decision-space diversity, dynamic clustering, DBSCAN, water resources, 

engineering design  

3.2 Introduction 

Engineering Design Problems are perceived as multi-objective decision-making problems to 

mitigate the needs of all parties by enhancing the transparency, auditability and reliability of these 

decisions (Dunning et al., 2000; Hajkowicz and Collins, 2007). Explicit consideration of all 

objectives simultaneously can help stakeholders to avoid decision biases, particularly when 

planners inadvertently neglect aspects of the problem by concentrating on a narrow definition of 

problem optimality (Kasprzyk et al., 2013; Reed et al., 2013). However, due to the system 

complexity and various sources of uncertainty in the decision-making and future condition in water 

resources engineering systems such as reservoir operation (Asadzadeh et al., 2014a; Erfani et al., 

2020; Geressu and Harou, 2019; Zatarain Salazar et al., 2017), hydrologic models (Ahmadi et al., 

2014; Asadzadeh et al., 2016; Koppa et al., 2019; Sahraei et al., 2020; Sikorska and Renard, 2017), 

and system design (Asadzadeh and Tolson, 2012; Bode et al., 2019; Marques et al., 2015; Zheng 

et al., 2015), the multi-objective techniques require a tool that provides a flexibile environment for 

stakeholders to select among a large number of distinct options. 

Access to multiple distinct optimal and/or near-optimal alternatives in environmental systems 

optimization is important in many real-world circumstances as these types of optimizations are 

mathematically modelled in a simplified fashion considering highly important objectives, only. 

These problems are under modelling uncertainties due to data unavailability, unmodelled 



   

 

 

54 

objectives, objective prioritization, and other modelling limitations, which changes their behavior 

to a multi-modal optimization (Brill et al., 1982; Burton et al., 1987; Chang et al., 1982; Harrington 

and Gidley, 1985; Rogers and Fiering, 1986; Rosenberg, 2015; Voll et al., 2015; Zechman et al., 

2013) and/or interval multi-objective optimization (Gong et al., 2020, 2013; Sun et al., 2020). 

Multi-modality refers to a situation that different solutions perform similarly in the objective space. 

Interval multi-objective optimization refers to a problem that at least one objective or constraint 

depends on an uncertain coefficient whose upper and lower bounds are known (or can be 

identified) a priori with a high confidence level making the objective function have an interval 

characteristic for each point in the decision space (Gong et al., 2020, 2013; Sun et al., 2020). 

Therefore, other criteria such as stakeholders’ perspectives about social, environmental, and 

economical issues that cannot be mathematically formulated are involved in the post-processing 

stage for selecting most desirable solution(s) through subjective judgements (Liebman, 1976). 

Examples are synthesis of distributed energy supply systems (Voll et al., 2015), pollution control 

(Rosenberg, 2015), reservoir operation (Liu et al., 2011), and aircraft engine design problems 

(Zadorojniy et al., 2012). This paper proposes a novel approach for identifying distinct solutions 

of multi-objective optimization (MO) problems, including the ones on the best Pareto front and 

the ones on the near-optimal front. Moreover, the proposed approach can identify and archive 

distinct solutions of multi-modal problems. 

The past twenty years have seen increasingly rapid advancements in the performance of MO 

algorithms to efficiently identify multiple optimal solutions (Pareto set), which form an optimal 

set of points (tradeoff or Pareto front) in the objective space (Asadzadeh and Tolson, 2013; Deb et 

al., 2002b; Macro et al., 2019; Reed et al., 2013; Sahinidis, 2004; Vrugt and Robinson, 2007; 

Zhang and Li, 2007). Mainstream MO algorithms are equipped with a dominance check and 
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selection strategies that often look at the distribution of points in the objective space to approximate 

the entire Pareto front but they overlook the position of the solutions in the decision space. As a 

result, they are not able to preserve near-optimal solutions that have completely distinct decision 

variables compared to Pareto solutions since they will be dominated by optimal solutions. Figure 

3-1 demonstrates a hypothetical bi-objective example with 2-dimensional decision space 

containing a cluster of solutions that is distant from the Pareto set but form a near-optimal front in 

the objective space. A MO algorithm, as a posteriori decision-making approach, that is able to 

identify distant local Pareto sets and preserve near-optimal solutions with distinct design or 

modelling characteristics from the globally optimal Pareto set(s) has a higher chance to locate the 

most desirable solution.  

 

Figure 3-1: an illustrative example of near-optimal and optimal fronts with entirely distinct clusters in 2D 

decision space. 
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This study focuses on decision-space diversity maintenance for finding distinct decision/design 

options to have a flexible and robust decision making analysis. To this end, a novel dynamic 

clustering approach coupled with a localized dominance relation is introduced to retain near-

optimal fronts along with the optimal front for MO algorithms with an unbounded archive set. 

Solutions residing in one cluster are mutually compared in terms of dominance, and those that 

have different cluster labels are not compared for domination. The proposed methodology is 

applied to a Pareto Archived-Dynamically Dimensioned Search (PA-DDS) algorithm (Asadzadeh 

and Tolson, 2013) and its performance is compared to PA-DDS with original archiving and the 

omni-optimizer (Deb and Tiwari, 2008) as a reference algorithm that considers decision-space 

diversity in multi-modal situation.  

3.3 Related Work 

The stochastic MO algorithms in the literature are classified into three categories in terms of 

diversity maintenance in the decision space. These algorithms are capable of solving multi-modal 

MO problems, effectively but not designed to preserve near-optimal solutions in most cases.  

3.3.1 Decision Space Diversity as an Optimization Criterion 

A group of indicator-based MO algorithms use a diversity metric calculated in the decision space 

to guide their search. The genetic diversity evolutionary algorithm by Toffolo and Benini (2003) 

is equipped with two metrics used as optimization criteria. One metric is maximizing the shortest 

distance to neighbor solutions to encourage exploration of the decision space. The second metric 

is maximizing the dominance rank of each solution with respect to the original objectives of the 

MO problem to exploit the promising regions of the decision space. The former metric is designed 

to keep a diverse set of solutions while the latter emphasizes the optimality or convergence. Ulrich 

et al. (2010) developed an indicator-based evolutionary MO algorithm that integrates the decision-
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space diversity metric into the objective-space hypervolume metric. The diversity metric sums the 

distance of solutions from the median of the non-dominated set in the decision space that 

monotonically increases as new solutions are added to the non-dominated solution set. The 

modified metric is a weighted hypervolume measure that divides the dominated portion of the 

objective space into hypercubical segments, where each segment is dominated by a specific subset 

of the entire population. The hypervolume partition for each segment is thus weighted by the 

diversity of its dominating solutions and their summation is maximized.  

The aforementioned methods solely aim at enhancing relative distribution of solutions with 

each other in the decision space, but they are not designed to retain solutions that are distant from 

the optimal solution in the decision space but have a similar quality in the objective space. 

Zadorojniy et al. (2012) suggested two algorithms for product design problems to find near-

optimal options by considering a degree of compromise of the known global optima. The first 

algorithm maximizes the diversity of solutions in the decision space constrained by a maximum 

allowable compromise (for example, 2%-5% optimality violation) from the Pareto optimal front 

in the objective space. In the second algorithm, violation from the Pareto optimal front is 

minimized subject to a required decision space diversity. This method, however, requires a prior 

knowledge of the Pareto optimal front to commence the search for finding solutions with 

maximum decision space diversity, and it requires a careful setting of optimality violation and 

decision-space diversity thresholds, which are case-specific.  

3.3.2 Decision Space Diversity as Selection Operator 

The selection operators in mainstream MO optimization algorithms focus on the diversity of points 

in the objective space and/or the convergence toward the Pareto optimal front; therefore, it is a 

challenge for them to maintain different solutions that have similar objective vectors. To address 
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this challenge, Deb and Tiwari (2008) developed a toolkit known as Omni-optimizer, a type of 

generational genetic algorithm (Vavak and Fogarty, 1996), that uses the crowding distance 

calculated in both objective and decision spaces (Deb et al., 2002b) for diversity preservation in 

multi-modal problems. Crowding distance is a measure of the solution density around a particular 

solution, and a higher importance should be given to solutions in a less crowded region, i.e. higher 

crowding distance value. If two solutions are identical in the objective space but are distant in the 

decision space, the Omni-optimizer retains both of them, since they are two different local optima. 

This algorithm, nevertheless, gives a superior weight to the diversity in the objective space by 

considering the crowding distance in the decision space only if there is a tie in the crowding 

distance in the objective space.  

Chmielewski (2013) introduced a diversity ranking evolutionary MO algorithm (DREMA) with 

a similar non-dominated sorting method to Deb et al. (2002) that uses the hypervolume 

contribution as the objective space fitness metric for sorting solutions in each non-dominated front. 

DREMA sorts solutions based on three diversity metrics calculated in the decision space to find 

distinct solutions: a) dispersion that is the sum of Euclidean distances of a solution from two 

neighboring solutions in the decision space; b) remoteness that is the distance to the nearest 

solution in the decision space; and c) alternate ranking that is the Euclidean distance in the decision 

space between two nearest solutions in the objective space. Solutions situated in the above-average 

portion of solution ranking list based upon at least one out of three decision-space diversity metrics 

and above-average hypervolume contribution are given more opportunity to be chosen for 

generating new solutions. Nonetheless, this method is algorithm-specific and applicable only to 

population-based optimization algorithms that use solution-sorting strategies.  
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The concern about multi-modality led Cuate and Schütze (2019) to define the (inverse) 

variation rate that assigns each non-dominated solution a combined measure of proximity in the 

objective space (such as crowding distance, hypervolume contribution, or weighted aggregation 

of objectives) divided by the average distance from other solutions in the decision space. A solution 

with lower variation rate (or higher value for its inverse version) has a higher chance to be selected 

for generating new solutions, since it is distant from other solutions in the decision space while 

having the same proximity in the objective space. However, this metric cannot preserve potentially 

useful solutions that are nearly optimal in terms of objectives but completely distinct in the 

decision space. 

3.3.3 Niching Method 

The concept of niching that was first introduced by Cavicchio (1970) formed the basis for 

developing different conventional approaches such as crowding factor (De Jong, 1975), fitness 

sharing (Goldberg and Richardson, 1987), and speciation (Li et al., 2002; Petrowski, 1996) for 

solving multi-modal, single-objective problems by giving a higher importance to solutions in less 

crowded regions of the decision space. In light of the fact that the fitness sharing gives a higher 

chance of selecting solutions in smaller niches, their preservation is not guaranteed (Li et al., 2002). 

Each niche in speciation method is called a species. The dominating solution in each species is 

called species seed, and all the solutions fall within a pre-defined neighborhood radius from the 

species seed belong to the same species. The seeds belonging to different species that are locally 

non-dominated solutions are copied into the next generation of solutions to maintain elite 

solutions. Defining a suitable species radius as a measure of dissimilarity requires a great 

knowledge of the optimization problem at hand and the relationship between decision variables 

and the objective function (Li et al., 2002).  
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The niching method was first developed for single-objective optimization algorithms. It was 

first utilized in a MO problem by (Horn et al., 1994). In an early study of MO optimization, Zitzler 

and Thiele (1998) used a distance-based niching approach for decreasing the size of archive set in 

Strength Pareto Evolutionary Algorithm (SPEA) based on the objective-space diversity. However, 

they stated that niching could be based on the distribution of solutions in the decision space (Deb, 

2001).  

Shir et al. (2010) proposed a dynamic niching framework for the covariance matrix adaptation 

evolution strategy. The niching framework decreases the contribution of the domination ranking 

in the selection process that uses a dynamically adjustable niching radius. In order to form a pre-

specified number of niches, the solutions are checked in their neighborhood after non-dominated 

sorting, and the ones belonging to the same niche fall within a hyper-sphere. The Euclidean 

distance between solutions is calculated in the aggregated space, i.e. the decision and objective 

spaces. The fittest solution in each niche is the representative of that niche, and they are retained 

to guarantee elitism. Zechman et al. (2013) proposed a MO niching co-evolutionary algorithm that 

creates independent multi-sets of solutions in parallel in each generation assuming that each set of 

solutions represents distinct non-dominated sets in the decision space. The original procedure in 

non-dominated sorting genetic algorithm (NSGA-II) (Deb et al., 2002b) is applied to the primary 

set to detect non-dominated front as a reference for other parallel sets and ensure convergence. 

The algorithm then combines all the solution sets and groups solutions using the k-means 

clustering approach (Macqueen, 1967) in the objective space. Therefore, solutions with the same 

cluster label in the same solution set reside in the same niche in the decision space. The algorithm 

prefers selecting a solution distant from its niche center in less crowded regions within the T 

percent optimality of the non-dominated front of the primary set. Despite finding near-optimal 
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fronts, some niches in different sets happen to reside in the same region of the decision space, since 

independent solution sets independently form and evolve niches, which wastes the computational 

budget.  

Kramer and Danielsiek (2010) developed an evolutionary optimization strategy that uses 

reference lines for attaining uniform distribution of non-dominated solutions in the objective space 

(Kramer and Koch, 2009) and uses a density-based clustering approach (Ester et al., 1996) to 

preserve diversity in the decision space. Niches are identified in the decision space and are evolved 

independently for a specific number of generations, until two neighboring solutions in the 

objective space belonging to one niche have a distance higher than a user-specified threshold in 

the decision space, then all the niches are combined and re-clustered. The re-clustering threshold 

is problem-dependent and one cluster may be excessively expanded during evolvement leading to 

a merge with other niches in re-clustering stage and losing useful local optimal fronts. For the sake 

of preservation of local optimal solutions along with global optimal Pareto front, Pajares et al. 

(2018) introduced a new concept of domination for the MO genetic algorithm that considers 

closeness of solutions in screening process, i.e. dominance localization. Two archives are provided 

for this algorithm. Near-optimal solutions are preserved in a separate archive set and the archived 

solutions are mutually distant. If a dominated solution is far enough from the non-dominated ones 

based on a pre-defined dissimilarity vector for decision-variable vector, it moves into the second 

archive for dominance and closeness check with near-optimal solutions. As a result, a dominated 

solution that is not nearby any archived solution is retained. The emphasis is given to less crowded 

regions of decision space for selecting from the archive by an assignment of sharing fitness and 

niche count (Sareni and Krähenbühl, 1998) as a measure of neighborhood density. This algorithm, 

however, has a bounded archive and requires a careful tuning of a user-specified vector for all 
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dimensions of the decision space as a measure of dissimilarity for removing similar solutions if 

decision variables have no physical meaning. A complete survey on niching-based optimization 

can be found in Li et al. (2017), Cheng et al. (2018), and Tanabe and Ishibuchi (2019). 

Liu et al. (2019) devised an evolutionary MO algorithm with two bounded archives and a 

recombination method for multi-modal problems. It can also find near-optimal solutions that are 

distant from the optimal solutions in the decision space. Decision variables that contribute to 

convergence only are identified with an analytical technique and separated from convergence-

independent decision variables. One archive is assigned to convergence-related decision sub-space 

and a second archive is used to retain convergence independent decision variables for diversity 

maintenance. Parent solutions are then chosen from both archives using a tournament selection for 

reproducing offspring solutions and updating the archives accordingly. Solutions in the 

convergence archive are ranked based on a convergence indicator. Solutions nearby another 

solution in the convergence-related decision sub-space are de-emphasized from the archive if they 

have the same convergence rank. For the sake of diversity preservation in the objective and 

decision spaces, solutions nearby another solution in the convergence-independent decision sub-

space are de-emphasized and given a lower chance of selection if they are clustered around a 

reference vector in the objective space. After the termination of optimization, two archives are 

recombined to obtain a final set for a posteriori decision-making. They stated that the basic clearing 

technique that de-emphasizes the neighbor solutions may not find all local optima regions in the 

decision space if the spacing between these regions are different. 

The remainder of this paper is organized as follows. Next section begins with a description of 

the density-based spatial clustering method and its application for a cluster-based solution 

archiving in MO algorithms with an implementation example on PA-DDS. The benchmark 
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optimization problems and numerical experiment settings are explained in section 3.4.5 and 

section 3.4.6, respectively. The results of the proposed methodology are presented in section 3.5 

and a comparison discussion is made with original version of PA-DDS for each problem, followed 

by the concluding remarks (section 3.6). 

3.4 Materials and Methods 

The density-based spatial clustering is restructured to dynamically revise the clusters as new 

solutions are archived by the MO algorithm. The dominance-check is decentralized to eliminate 

solutions from the archive only if they are dominated within their own cluster.  The advantage of 

the introduced clustering approach against k-mean, hierarchical method, and distribution-based 

methods is that it does not require a priori information about the number of clusters or the 

relationship between the objective space and decision space. 

3.4.1 Density-Based Spatial Clustering Of Applications with Noise (DBSCAN) 

DBSCAN introduced by Ester et al. (1996) is an unsupervised clustering method for data mining 

that looks at the neighboring density of each data point in large spatial databases with minimal 

domain knowledge requirements. Each cluster identified by DBSCAN contains at least one core 

point (blue doughnuts in Figure 3-2) that has to be within a user-defined neighboring distance (𝜀), 

i.e. the adjacency from a pre-defined minimum number of points including itself (MinPts) (Ester 

et al., 1996). The value of 𝜀 in Figure 3-2 is equal to the radius of the circles and MinPts is set to 

four or five. Each member of a cluster (blue and red doughnuts in Figure 3-2) is therefore density-

reachable from at least one core member. Two members of a cluster are called density-connected 

if they are neighbors of (density-reachable from) a core. A point that is not a core member of a 

cluster but is density-reachable from a core is called a border member (red doughnuts). An 
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unreachable point from any core is an unclassified data point and called noise in DBSCAN (green 

doughnut in Figure 3-2).  

 

 

Figure 3-2: schematic of the DBSCAN clustering method. Blue, red, and green doughnuts are respectively 

core, border, and noise points with respect to MinPts=4 and a unit radius (𝜺) in 2D space 

 

3.4.2 Cluster-Based Solution Archiving 

Figure 3-3 illustrates the general structure of a MO algorithm equipped with the cluster-based 

solution archiving. In order to eliminate the scaling effect of decision variables for clustering, the 

decision space is normalized to a hypercube of size one. Coordinates of each solution 𝑿 =

(𝑥1, … , 𝑥𝑛) in the normalized decision space is calculated by Equation (12) based on the preset 

lower bounds, 𝑿𝒎𝒊𝒏, and upper bounds, 𝑿𝒎𝒂𝒙, for decision variables. The Euclidean distance is 

used for clustering but other measures such as Manhattan and Minkowski distances are applicable 

(Xu and Wunsch, 2008). After clustering update in every iteration, solutions are converted back to 

their original ranges for model simulation and solution archiving.  

 𝑿𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 =
𝑿−𝑿𝒎𝒊𝒏

𝑿𝒎𝒂𝒙−𝑿𝒎𝒊𝒏
 

𝑿𝒎𝒊𝒏 = (𝑥1,𝑚𝑖𝑛, … , 𝑥𝑛,𝑚𝑖𝑛) 
(12)  
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𝑿𝒎𝒂𝒙 = (𝑥1,𝑚𝑎𝑥, … , 𝑥𝑛,𝑚𝑎𝑥) 
 

 

Figure 3-3: General structure of a MO algorithm with cluster-based archiving 

 

The original DBSCAN is used to cluster initial solutions generated by the MO algorithm in the 

normalized decision space. However, it is modified to dynamically evolve clusters as new 

solutions are introduced by the optimization algorithm. Upon generating new solutions, their 

neighborhood is checked for forming a new cluster or expanding the so-far-clustered solutions. To 

prevent the formation of only one Pareto set in the decision space, the dominance and archiving 

strategy of the algorithm are decentralized from the global to a local dominance check. Equation 

(13) shows that solution 𝑋𝐴 cluster-dominates solution 𝑋𝐵 (𝑋𝐴 ≼𝑐 𝑋𝐵) if and only if three 
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conditions are met. The first condition is extra to the regular dominance relation (second and third 

conditions) and ensures that both solutions reside in the same cluster. To this end, solutions with 

the same cluster label are mutually compared and solutions belonging to different groups are not 

compared by the dominance check. If a solution is not classified yet, its cluster label is assumed to 

be zero and a dominance check is not applied to it. The cluster-dominated solutions are eliminated 

from the cluster and the cluster-dominating and cluster-non-dominated solutions are archived as 

representative of the cluster.  

𝑋𝐴 ≼𝑐 𝑋𝐵 𝑖𝑓𝑓 

1) 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝐼𝐷(𝑋𝐴) = 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝐼𝐷(𝑋𝐵) ≠ 0 

2) 𝑓𝑖(𝑋𝐴) ≤ 𝑓𝑖(𝑋𝐵) ∀𝑖𝜖{1, … ,𝑚} 

3) 𝑓𝑗(𝑋𝐴) < 𝑓𝑗(𝑋𝐵)  ∃𝑗𝜖{1, … ,𝑚} 

(13) 

 

Archived solutions are assigned a memory to store their coverage history for subsequent cluster 

expansions. Coverage history is the cumulative adjacency density that represents the number of 

reachable solutions to a cluster-non-dominated solution from the beginning of optimization. This 

memory helps the border points of a cluster to increase their coverage history and turn to a core 

point, which aids in cluster expansion by connecting nearby unclassified solutions, if any, to the 

cluster and their involvement in cluster-dominance. Each cluster forms a tradeoff in the objective 

space. Figure 3-4 demonstrates a schematic example with two decision variables and two objective 

functions that are minimized. Assume that, STEP1 shows the current set of archived solutions, two 

of which have not yet been clustered and the rest are classified into one cluster (shown as Cluster1 

in Figure 3-4). Solutions in the cluster are called cluster-non-dominated because they are not 
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dominated by any other member of the cluster. In STEP2, a new solution is added to the cluster. 

This new solution is reachable from the core of the cluster and one border point, therefore the 

coverage values of the core and border point are updated to 5 and 3, respectively. However, one 

of the cluster members (the blue point in STEP2) is dominated by the new solution; therefore, it is 

omitted from the cluster and the archive. The coverage values of other solutions in the cluster that 

are cluster-non-dominated, remain unchanged in order to keep track of the coverage history. In 

other words, there remain four members inside the cluster in STEP3 but the core solution keeps its 

coverage history of 5. 

Solutions that have not been clustered yet are retained in the archive disregarding their objective 

values and are called noises to be consistent with the DBSCAN terminologies (see noises in Figure 

3-4). The reason for preserving unclassified solutions is to give an opportunity to the optimization 

algorithm to produce more solutions nearby the unclassified ones to subsequently join previous 

clusters or form a new cluster. A new cluster forms when a density-unreachable noise from the 

core(s) of other clusters becomes a core. Two or multiple nearby clusters complementing one local 

Pareto set are merged if they are sufficiently populated during the optimization.  
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Figure 3-4: Illustration of cluster evolution and coverage history (red and black labels) upon introduction of a 

new solution to a cluster during optimization for a bi-objective hypothetical problem with two decision 

variables. Top row shows the decision space and the bottom row displays the objective space. MinPts is assumed 

equal to 4 for a cluster formation. Solutions with labels equal to 4 in Step 1 are the core points of their clusters. 

The instance with bold marker (Steps 2 and 3) is now generated and added to the cluster. The cluster-dominated 

solution that is a border point with a coverage of 2 and colored in blue is eliminated from the archive but the 

coverage history of its groupmates remain unchanged upon solution omission. 

The proposed cluster archiving inherits the two parameters of DBSCAN, cluster radius (𝜀) and 

minimum solutions coverage (MinPts). Assuming a constant value for MinPts, defining a small 

radius for the initial formation of clusters in a limited computational budget may result in appearing 

many small clusters at the end of the optimization, which could be merged at some point if the 

number of function evaluations was not low. Ester et al. (1996) suggested that the results of 

clustering do not significantly change for MinPts higher than or equal to four and increasing 

MinPts increases the computational time. MinPts is recommended to be set to four or five (Ester 

et al., 1996). However, 𝜀 is a case-specific parameter that has to be defined based on the decision 

space dimension and the number of function evaluations. A very high 𝜀 value results in one cluster 

covering the entire or a large portion of decision space and preserving only the globally non-
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dominated solutions, since all distant and nearby solutions lie in one cluster. By contrast, a very 

low 𝜀 leads to the identification and maintenance of all or the majority of generated solutions as 

unclassified solutions with no opportunity for new cluster formations and dominance-check. 

According to our experience, it is recommended to consult with decision-makers prior to the 

optimization process about the least meaningful discrepancy percentage (Di) for each decision 

variable and approximate 𝜀 as in Equation (14). The reason for defining a range for 𝜀 in Equation 

(14) is that the available computational budget and the number of dimensions in the decision and 

objective spaces affect the value of 𝜀 for an efficient and effective optimization using the cluster-

based solutions archiving. 

𝜀 ∈ [0.8𝑧, 1.2𝑧 ],   𝑧 =
1

100
√𝐷1

2 + 𝐷2
2 +⋯+ 𝐷𝑛2 

(14) 

 

3.4.3 Cluster-Based Multi-Objective Optimization 

The proposed solution archiving strategy is implemented for the Pareto Archiving Dynamically 

Dimensioned Search (PA-DDS algorithm to find high quality solutions that are distinct in terms 

of their design characteristics for MO design problems. 

3.4.3.1 PA-DDS Algorithm 

PA-DDS stochastic MO algorithm generates solutions one-at-a-time. The optimization is 

initialized with a set of randomly generated solutions within the decision variable boundaries with 

a budget of the higher value of five solutions and 0.5 percent of the total number of evaluations. 

The dominance check is then applied to identify and archive the non-dominated solutions in an 

unbound archive. One solution from the archive is selected for generating one new solution. PA-
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DDS commences the heuristic optimization by perturbing all decision variables sampled from 

Normal distributions centered at the current value of each decision variables and dynamically 

reduces the number of perturbed decision variables to transform from a global search to a local 

search near the end of the computational budget. If the new solution is non-dominated or 

dominating, PA-DDS archives it and selects it for generating the next solution; otherwise, it selects 

one of the archived solutions. Asadzadeh and Tolson (2013) and Asadzadeh et al. (2014) 

recommended the hypervolume contribution as the selection metric for solving general MO 

problems and the convex hull contribution for solving MO problems with expected convex Pareto 

front. This process continues until the maximum number of function evaluation condition is met. 

The dominance relation and selection metrics constitute the principal components of the PA-

DDS structure. The process of the domination check and selection strategies are based on the 

objective space proximity of solutions. Therefore, a near-optimal solution is discarded by PA-DDS 

even if it is far distant from the dominating solutions. 

3.4.3.2 Cluster-Based Archiving in PA-DDS Algorithm 

In order to incorporate the proposed cluster-based solution archiving in PA-DDS, the dominance 

check from a global comparison is reduced to local comparison of solutions with equal cluster 

tags. Once a new solution is generated, its neighboring solutions are identified based on the 

minimum adjacency radius and their coverage history are inspected for forming a new or joining 

a previous cluster or linking two or more cores with different labels and merging the associated 

clusters. If none of the above cases occurs, the generated solution will be stored as noise or 

unclassified solution in the archive set for possibly subsequent cluster expansions. 
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3.4.3.3 Selection Operator 

To improve the diversity in the decision space, dissimilar solutions should be retained and selected 

for generating new solutions, even if they are dominated by other dissimilar solutions. Moreover, 

the selection operator should consider the convergence in the objective space. In this study, a 

selection indicator is introduced to promote the solution diversity in the decision space and the 

convergence in the objective space. The proposed selection indicator is a summation of two metrics 

that range between zero and one, resulting in a total value of the indicator between zero and two. 

A higher value gives a higher chance of selection for subsequent solution generation.  

The first term of the proposed selection indicator describes the proximity of a cluster of 

solutions and is calculated based on the distance of its closest solution (called knee point hereafter) 

to the Utopia point, which has the best value of each objective function. The distance from each 

noise (unclassified solution) to the Utopia is also calculated. The groupmates of a knee point have 

equal normalized convergence and equal chance of selection. Solutions belonging to a cluster with 

higher normalized convergence indicator are given a higher chance to be selected for generating 

new solutions. 

The decision-space dissimilarity index is the second term in the proposed selection indicator. 

The dissimilarity index value for clusters is a measure of Euclidean distance between knee points 

with different cluster labels. The dissimilarity of a cluster is calculated as the summation of 

pairwise distances from its knee point to the knee points of other clusters and to unclassified 

solutions in the decision space. This metric is scaled to between zero and one based on its 

maximum and minimum value in each step of optimization. If some of clusters and/or unclassified 

solutions are packed in one region of the decision space, they will get a low dissimilarity index. 
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Solutions in clusters and those that are unclassified in less crowded regions receive a higher 

normalized dissimilarity index of close to one. 

Figure 3-5 illustrates the process of calculating the proposed selection metric for a hypothetical 

situation where there are two clusters of locally non-dominated solutions along with two 

unclassified solutions in a two-dimensional decision and objective spaces for a minimization 

problem. In each step of optimization, the Nadir and Utopia points are determined based on the 

currently generated and archived solutions. The Nadir point correspond to an ever dominated point 

whose objectives equal to the maximum objective values of the solutions for a minimization 

problem. The objective space is then normalized to zero and one based on the Nadir and Utopia 

points and the knee point for each cluster is found, shown with larger marker sizes in Figure 3-5-

b. The selection metric for each cluster and each unclassified solution is calculated as Equation 

(15). The first term is the convergence term that is scaled by diagonal of the normalized objective 

space, i.e. √2 in a bi-objective space and √𝑚 in an m-dimensional space, for a convergence 

between zero and one. The shorter the distance to the origin, the better convergence term and the 

better quality solution. Once the knee point for each cluster is identified, sum of distance of each 

knee point from other knee points and from unclassified solutions is calculated in the normalized 

decision space and it is scaled by the maximum distance summation to have a dissimilarity index 

between zero and one. Knee points represent their cluster and their groupmates are not involved 

in the calculation of the proposed selection metric. After computing the selection metric value for 

a knee point, its groupmates will get the same metric value and one of them in a cluster is randomly 

selected for generating the subsequent solution. 
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𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟1 = (1 −
𝐴

√2
) +

∑ 𝑎𝑖
3
𝑖=1

max{∑𝑎𝑖 ,   ∑ 𝑏𝑖 ,   ∑ 𝑐𝑖 ,   ∑ 𝑑𝑖}
 

𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟2 = (1 −
𝐵

√2
) +

∑ 𝑏𝑖
3
𝑖=1

max{∑𝑎𝑖 ,   ∑ 𝑏𝑖 ,   ∑ 𝑐𝑖 ,   ∑ 𝑑𝑖}
 

𝑆𝑁𝑜𝑖𝑠𝑒1 = (1 −
𝐶

√2
) +

∑ 𝑐𝑖
3
𝑖=1

max{∑𝑎𝑖 ,   ∑ 𝑏𝑖 ,   ∑ 𝑐𝑖 ,   ∑ 𝑑𝑖}
 

𝑆𝑁𝑜𝑖𝑠𝑒2 = (1 −
𝐷

√2
) +

∑ 𝑑𝑖
3
𝑖=1

max{∑𝑎𝑖 ,   ∑ 𝑏𝑖 ,   ∑ 𝑐𝑖 ,   ∑ 𝑑𝑖}
 

(15) 

 

  

  

Figure 3-5: Illustration of selection metric calculation process is a particular step of optimization for a 

hypothetical problem with two dimensional decision and objective spaces. Panels (a) and (b) show solutions in 

the original and normalized objective space. Panels (c) and (d) show solutions in the normalized decision 

space. 
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3.4.4 Omni-Optimizer Algorithm 

Omni-optimizer is a population-based evolutionary optimization algorithm with a bounded archive 

developed by Deb and Tiwari (2008). The structure of omni-optimizer is similar to that of NSGA-

II algorithm with additional operators to help the algorithm solve multi-objective, multi-modal 

problems. It uses a hypercube sampling to generate the initial population and constructs a bigger 

set by two random ordering of the current population in each iteration. It chooses four solutions 

from the bigger set using the nearest neighbor based method in the objective space, for encouraging 

convergence, to determine two parent solutions using binary tournament selection. The parent 

solutions are then recombined and mutated by simulated binary crossover and polynomial 

mutation for generating offspring solutions. The parent and offspring solutions are then combined 

and ranked based on non-dominated sorting and crowding distance. The omni-optimizer favors 

non-dominated over dominated solutions, and less-crowded solutions to more crowded solutions. 

An important feature of the omni-optimizer is that in multi-modal situation where two solutions 

have identical objective vectors, the crowding distance metric is calculated in the decision space 

instead of the objective space. The latter becomes zero while the former has a non-zero value. 

 Omni-optimizer was not designed to identify and maintain near-optimal solutions; however, it 

is used in this study as a reference algorithm for results comparison since it considers crowding 

distance calculation in the decision space among solutions with identical objective vectors. 

Readers are referred to Deb and Tiwari (2008) for more detail about omni-optimizer’s structure 

and its performance. 
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3.4.5 Optimization Problems 

The cluster-based PA-DDS algorithm is compared to the original version of PA-DDS for solving 

two bi-objective mathematical test problems, a bi-objective sorptive barrier design problem, and a 

lake pollution control problem introduced in this section for the identification of distinct optimal 

and near-optimal solutions. 

3.4.5.1 Modified SYM-PART Test Problem 

The SYM-PART bi-objective, bi-variable problem was first introduced by Rudolph et al. (2007) 

as a multi-modal test problem. Schütze et al. (2011) modified SYM-PART to make it have one 

Pareto optimal front and eight near-optimal fronts, shown in problem formulation (16) where 𝑥1 

and 𝑥2 are real-valued decision variables ranging in [-8, 8], 𝑓1 and 𝑓2 are the objective functions, 

and 𝑡1 and 𝛿𝑡 are auxiliary variables. 

𝑓1(𝒙) = (𝑥1 − 𝑡1(𝑐 + 2) + 𝑎)
2 + (𝑥2 − 𝑡2𝑏)

2 + 𝛿𝑡 

𝑓1(𝒙) = (𝑥1 − 𝑡1(𝑐 + 2𝑎) − 𝑎)
2 + (𝑥2 − 𝑡2𝑏)

2 + 𝛿𝑡 

𝑡1 = 𝑠𝑔𝑛(𝑥1)𝑚𝑖𝑛 (⌈
|𝑥1| − 𝑎 − 0.5𝑐

2𝑎 + 𝑐
⌉ , 1) 

𝑡2 = 𝑠𝑔𝑛(𝑥2)𝑚𝑖𝑛 (⌈
|𝑥2| − 0.5𝑏

𝑏
⌉ , 1) 

𝛿𝑡 = {
0       𝑖𝑓 𝑡𝑖 = 0, 𝑖 = 1, 2
0.1                       𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(16) 
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As shown in Figure 3-6, 𝑎, 𝑏, and 𝑐 are constant and if they are respectively set to 0.5, 5, and 5, 

the global (continuous red line) and local optimum (dashed black lines) Pareto sets and fronts are 

formed. 

  

Figure 3-6: optimal and near-optimal subsets in decision (left) and objective (right) spaces for modified SYM-

PART Simple problem 

3.4.5.2 Modified Omni-Test 

The scalable Omni-Test problem in problem formulation (17) is adopted from Deb and Tiwari 

(2008) with a slight modification. This minimization MO problem is slightly modified in this paper 

to a test with one global optimum and multiple local Pareto subsets by introducing a new constant 

𝛿. Increasing the range or the number of decision variables increases the multi-modality of the 

problem (Deb and Tiwari, 2008). Three decision variables with a range between 0 and 4.9 are 

defined in this paper that contains eight near-optimal subsets. 
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The global and local Pareto sets occur where decision variables are between 1 and 1.5 or 

between 3 and 3.5. If all decision variables range from 1 to 1.5, the Pareto optimal front 

(continuous red line in Figure 3-7) is created and the local minimal front (dashed black line in 

Figure 3-7) is produced with other combinations of the mentioned extremum intervals. 

 

Figure 3-7: Illustration of Pareto optimal and near-optimal fronts for modified Omni-Test function 

3.4.5.3 Lake Pollution Control Problem 

Ward et al. (2015) developed a scalable four-objective benchmark optimization problem from a 

modelling study conducted by Carpenter et al. (1999) for the management of eutrophication of a 

shallow lake. This problem, also known as the lake Problem, aims to maximize the economic 

profits of a town by finding the amount of yearly anthropogenic phosphorous release (𝑎𝑡) while 

maintaining the reliability and control policy inertia. The dimensionless total mass concentration 

of phosphorous (𝑃𝑡) at annual time step t is calculated using Equation (18). Besides the annual 
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phosphorous release from the town, 𝑃𝑡 in each time step also depends on 𝑃𝑡−1 and the uncertain 

non-point natural sources of pollution flowing into the lake (𝜀𝑡) that is emulated by a random 

number sampled from a log-Normal distribution with a mean of 0.02 and a log10 variance of -5.5 

as reported in Ward et al. (2015). This problem is a Monte Carlo simulation-based function 

evaluation due to the uncertainty in the uncontrolled pollution term, 𝜀𝑡. Unlike its original variant 

in Ward et al. (2015) that considered 100-year pollution management, twenty decision variables 

(20-year management policy, 𝑎1, 𝑎2, … , 𝑎20) varying from 0 to 0.1 (dimensionless) are considered 

in this problem. There are two parameters, 𝑏 and 𝑞, that are associated with phosphorous recycling 

and decaying rates in the lake. These parameters are respectively fixed to 0.42 and 2 (Ward et al., 

2015) to impose an irreversible eutrophic state on the lake if 𝑃𝑡 exceeds a pre-defined threshold, 

𝑃𝑐𝑟𝑡𝑐𝑙 that is a function of 𝑏 and 𝑞. 

𝑃𝑡 = 𝑃𝑡−1 + 𝑎𝑡 − 𝑏𝑃𝑡−1 +
𝑃𝑡−1
𝑞

1 + 𝑃𝑡−1
𝑞 + 𝜀𝑡 

(18) 

𝑓1(𝒂) =
1

𝑘
∑∑(𝛼𝑎𝑡,𝑖𝛿

𝑡)

𝑇−1

𝑡=0

𝑘

𝑖=1

,       𝑇 = 20,    𝑘 = 100 
(19) 

As shown in Equation (19), the first objective is to maximize the average economic benefit 

across k simulations of T years of random 𝜀𝑡. As in Ward et al. (2015), 𝛼 and 𝛿 are dimensionless 

parameters that are set to 0.4 and 0.98 respectively representing the town’s desire to pay for 

pollution control and the discount factor to convert future profits to present utilities. The second 

objective, Equation (20), is to minimize the highest total phosphorous concentration (𝑃𝑡) averaged 

across k simulations. Stability in anthropogenic phosphorous rate over time is another important 

criterion that needs to be taken into consideration, since rapid reduction in phosphorous in the lake 
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requires large infrastructural investments, and it is best to preserve policy inertia. For this reason, 

the difference between two consecutive release rates should be less than a pre-specified threshold, 

𝐼𝑐𝑟𝑡𝑐𝑙 = 0.02 as in Ward et al. (2015), in Equation (21). The second term in Equation (21) is 

designed to find a reliable management policy to prevent from permanent eutrophication in the 

lake by keeping 𝑃𝑡 below a critical value, i.e. irreversible threshold 𝑃𝑐𝑟𝑡𝑐𝑙 = 0.5. 

𝑓2(𝒂) =  max
𝑡∈{1,2,…,𝑇}

1

𝑘
∑𝑃𝑡,𝑖

𝑘

𝑖=1

 
(20) 

𝑓3(𝒂) =
1

𝑘
∑(

1

𝑇 − 1
∑𝜃𝑡,𝑖

𝑇−1

𝑡=1

)

𝑘

𝑖=1

+ (1 −
1

𝑘𝑇
∑∑𝜗𝑡,𝑖

𝑇

𝑡=1

𝑘

𝑖=1

) 

𝜃𝑡,𝑖 = {
0         𝑖𝑓 𝑎𝑡−1,𝑖 − 𝑎𝑡,𝑖 ≤ 𝐼𝑐𝑟𝑡𝑐𝑙
1         𝑖𝑓 𝑎𝑡−1,𝑖 − 𝑎𝑡,𝑖 > 𝐼𝑐𝑟𝑡𝑐𝑙

 

𝜗𝑡,𝑖 = {
0      𝑖𝑓    𝑃𝑡,𝑖 ≥ 𝑃𝑐𝑟𝑡𝑐𝑙
1      𝑖𝑓    𝑃𝑡,𝑖 < 𝑃𝑐𝑟𝑡𝑐𝑙

 

(21) 

3.4.5.4 Sorptive Barrier Design 

The sorptive barrier design problem introduced by Bartelt-Hunt et al. (2006) is a combinatorial 

simulation-optimization problem that seeks the cheapest option(s) for waste management while 

mitigating the migration of contaminants from organic wastes through a multi-layer sorptive liner. 

The landfill liner design is converted to a single-objective constrained optimization benchmark 

problem by Matott et al. (2012) consisting of six integer-valued decision variables. Thirteen 

alternative 15 cm layers with coded values from one to thirteen are available for each decision 

variable that is made of variable mixture of sand, bentonite, benzyltriethylammonium-bentonite, 
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hexadecyltrimethylammonium-bentonite, shale, and granular activated carbon. The fifth and sixth 

decision variables can take a fourteenth option, which is a no-layer option, to allow for a design 

with variable number of layers (l). The first objective function, f1 in problem formulation (22), is 

the design cost that has to be minimized ($/𝑚2). If the number of layers is higher than four, the 

opportunity cost (𝑐𝑜𝑠𝑡1) will be added to the material cost (𝑐𝑜𝑠𝑡2). This problem also uses a one-

dimensional numerical model to simulate the cumulative amount of 1,2-dichlorobenzene (1,2-

DCB) contaminants 𝐴(𝒙) infiltrated into the ground from the liner over time. The second objective 

function used in this study, in problem formulation (22)  that was a constraint in Matott et al. 

(2012) is to keep cumulative amount of contaminants below a pre-defined allowable amount of 

5.0 𝜇𝑔/𝑚2 over 100 years (design lifetime). Readers are referred to Matott et al. (2012) regarding 

layer compositions and the associated costs. 

𝑓1(𝒙) = 𝑐𝑜𝑠𝑡1(𝑙) + 𝑐𝑜𝑠𝑡2(𝒙) 

𝑐𝑜𝑠𝑡1(𝑙) = 5.625(𝑙 − 4) 

𝑐𝑜𝑠𝑡2(𝒙) =∑𝑙𝑎𝑦𝑒𝑟 𝑐𝑜𝑠𝑡 (𝑥𝑖)

6

𝑖=1

 

𝑓2(𝒙) = 𝐴(𝒙) − 5 

(22) 

3.4.6 Numerical Experiment Setup and Results Comparison Approach 

PA-DDS is a stochastic MO optimization algorithm, in that its solution differs in different trials. 

Therefore, in order to compare the distribution and proximity of the original PA-DDS algorithm 

with hypervolume contribution metric to its cluster-based variant introduced in this study, ten 

independent trial runs are conducted on each of the MO optimization problems. The number of 
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function evaluations is different for each type of problem mentioned in Table 3-1 depending on 

the computational complexity and search/objective space dimensionality of the problem. 

Moreover, determining the value of minimum adjacency density is highly dependent on the 

available computational budget, and the results will be highly different for different values of 𝜀. 

Due to their simple structure, the value of 𝜀 is set to 0.09 for the benchmark test problems, which 

is equivalent to 5 to 6.5 percent discrepancy for each decision variable. It is assumed if the 

difference between two solutions in the lake problem is at least 15 percent for each of their decision 

variables, they are two dissimilar options and the value of 𝜀 is equal to 0.67 for a decision space 

normalized to between zero and one. The decision space in the sorptive barrier design problem is 

integer, and if the values of four out of six decision variables are one step higher or lower between 

two solutions, they are considered as distinct design options, resulting in 𝜀 equal to 0.16 when the 

design space is scaled to between zero and one for each decision variable. 

The omni-optimizer algorithm is compared with the cluster-based PA-DDS in terms of 

decision-space diversity and near-optimal solution preservation. The same computational budget 

and post-processing procedure is used for both of these optimization algorithms. The omni-

optimizer, however, has multiple parameters that influence its performance. They are the 

population size, number of generation, probability of crossover, probability of mutation, 

distribution indices for crossover and mutation that can take different values for different 

optimization problems. Following Deb and Tiwari (2008), the crossover probability and index for 

mutation are respectively set on 0.9 and 20 for all optimization cases. The distribution index for 

crossover is subjectively set to 15 for the SYM-PART and sorptive barrier design problem and 10 

for the modified Omni-Test and lake problems. A higher distribution index value aids in escaping 

local optima and producing an offspring that is far away from its parent while a lower value helps 
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fine-tuning and convergence (Deb and Beyer, 2001). The mutation probability is set to 1/n where 

n is the number of decision variables based on the recommendations by Deb and Tiwari (2008). 

The population size and number of generations are shown in Table 3-2 based on the set 

computational budget in this study. 

The resulted archive in the case of the modified SYM-PART and Omni-Test problems are 

analyzed and processed based on the closeness to their mathematically known global and local 

optimal regions. The optimization results for the modified SYM-PART and Omni-Test problems 

are visualized and compared in their 2D and 3D decision spaces. 

Unlike the mathematical test problems, there is no prior information about the global or local 

optimal solution sets in the lake problem and the sorptive barrier design problem. Therefore, a 

three-stage post-processing analysis is performed on their archives to identify the desirable 

solution(s) based on decision-makers’ preference. The first stage is to (re-)cluster archived 

solutions using DBSCAN in the decision space to distinguish similar solutions from dissimilar 

solutions based on their cluster labels. The same adjacency density parametrizations in Table 3-1 

are considered for (re-)clustering the archives in each type of problem. The second stage is to 

identify and retain dissimilar solutions that include the unclassified archived solutions and only 

one solution in each cluster, which is closest to a reference point in the objective space among its 

groupmates. If there are also constraints, the closest solution to the reference point must meet the 

constraints. The reference point can be an ideal objective vector (Utopia) or any desirable values 

of objectives defined by a decision-maker. The third stage is to define an acceptable threshold for 

each objective function and identify desirable solutions among dissimilar solutions in the second 

stage that have better objective values than the thresholds. In the end, the performance of two 

versions of PA-DDS algorithms are compared based on the solutions that passed the screening 
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process in the third stage by showing their decision variable vectors on a parallel coordinate plot 

and a dissimilarity index shown in Equation (23). 

𝐼 =
 𝑠𝑖𝑧𝑒 (𝑠𝑐𝑟𝑒𝑒𝑛(∑ 𝑎𝑟𝑐ℎ𝑖𝑣𝑒(𝑖)10

𝑖=1 ))

∑ 𝑠𝑖𝑧𝑒(𝑠𝑐𝑟𝑒𝑒𝑛(𝑎𝑟𝑐ℎ𝑖𝑣𝑒 (𝑖))10
𝑖=1

 
(23) 

In order to calculate the dissimilarity index in Equation (23), the archives of all optimization 

trial runs are combined and the three-stage screening process is applied to the combined archive. 

The dissimilarity index value is equal to the number of screened dissimilar solutions after 

combining the archive sets of all individual trials divided by sum of number of dissimilar screened 

solutions for each trial. The higher the value of dissimilarity index, the better the performance of 

the optimization algorithm in terms of identifying distinct desirable options. 

Table 3-1: The numerical experiment specifications for each type of optimization problem considering their 

computational complexity 

Problem 

Number of Decision 

Variables/Objective 

Functions 

# of 

Evaluations 

Average 

Computational Time 

per Evaluation (sec) 

Minimum Adjacency 

Density (𝑴𝒊𝒏𝑷𝒕𝒔/ 𝜺) 
Reference Point 

Modified 

SYM-PART 
2/2 2000 0.02 4/0.09 - 

Modified 

Omni-test 
3/2 5000 0.07 4/0.09 - 

Sorptive 

Barrier Design 
6/2 3000 22 4/0.16 (0, log10(5e-6)) 

Lake Problem 20/3 20000 1.73 4/0.67 (0, 0.784, 1, 1) 

 

Table 3-2: The population size and number of generations for the omni-optimizer algorithm applied to each 

optimization problem of this study 

Problem Population Size # of Generation 

Modified SYM-PART 40 50 

Modified Omni-Test 100 50 

Sorptive Barrier Design 60 50 

Lake Problem 100 200 
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3.5 Results and Discussion 

3.5.1 Mathematical Test Functions 

The cluster-based PA-DDS identifies all optimal and near-optimal regions in each trial in the 

modified SYM-PART and Omni-Test problems while the original PA-DDS and omni-optimizer 

algorithms only find the optimal Pareto front in each trial, and they are unable to detect distinct 

near-optimal solution sets. Figure 3-8 and Figure 3-9 demonstrate the results for one trial 

respectively for the modified SYM-PART and Omni-Test problems and the cluster-based PA-

DDS is able to find and assign a unique cluster tag to each locally optimal region. The archive set 

also contains other low-quality clusters, each of which form a unique tradeoff, along with 

unclassified solutions in other regions of decision space but they are filtered out after post-

processing based on the information we have about the location of the near-optimal and optimal 

regions in the decision space for these test problems. The post-processed results for other trial runs 

are similar to Figure 3-8 and Figure 3-9 but with different cluster tags.  

The original PA-DDS concentrates on global convergence and uniform distribution of non-

dominated solutions in the objective space. Figure 3-8 and Figure 3-9 show that a large number of 

solutions are produced and retained by the original PA-DDS that are well-diversified along the 

optimal Pareto front with no solution representing the near-optimal front. This does not mean the 

PA-DDS algorithm does not explore the near-optimal regions in the decision space. It may find 

and preserve distant near-optimal solutions in the archive set. However, since a global dominance 

check is carried out based on the objective values in the traditional solution archiving, they are 

eliminated from the archive when a new dominating solution is produced. Therefore, the original 

PA-DDS does not consider the decision-space diversity in the optimization process and therefore 

does not guarantee maintenance of distinct near-optimal solutions.  
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The result of the omni-optimizer algorithm is similar to that of original PA-DDS with the 

difference that the omni-optimizer has a bounded archive, i.e. 40 and 100 solutions respectively 

for the SYM-PART and Omni-Test Problems. In light of the fact that the multi-modality of the 

mathematical test problems are modified to a global and multi-local optimal regions, the decision 

space crowding measure in the omni-optimizer cannot help retain solutions representing local 

optima. In fact, that the decision-space crowding measure is activated when there are at least two 

solutions with identical objective vectors, that never happened in problems solved in this study. 

On the contrary, most of the searching power in the cluster-based PA-DDS is used for the 

identification of local optimal regions and dissimilarity maintenance, but distribution of solutions 

along the optimal or near-optimal fronts in the objective space is not in priority. Performing a local 

gradient-based strategy on the desirable clusters or solutions in the archive of the cluster-based 

PA-DDS after the termination of optimization may help to sufficiently populate each cluster for 

having a uniform distribution in the objective space.  

  

Figure 3-8: Distribution of the post-processed archived solutions found by cluster-based PA-DDS for solving 

modified SYM-PART test problem compared to the original PA-DDS and the omni-optimizer algorithms in 

the decision (left) and objective space (right). CLID shows the cluster tag. 
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Figure 3-9: Distribution of the screened archived solutions found by cluster-based PA-DDS for solving 

modified Omni-Test problem compared to the original PA-DDS and omni-optimizer algorithms in the 

decision (left) and objective space (right). 

3.5.2 Pollution Control Problem 

Table 3-3 presents the performance of two variants of the PA-DDS algorithm along with the omni-

optimizer algorithm in terms of distinction level of their archives for the lake problem. The archive 

set for the original PA-DDS algorithm has a very small size ranging from 36 to 87 solutions out 

of 20000 generated solutions compared to the cluster-based version and it has a constant size of 

100 in the omni-optimizer algorithm for each optimization trial. The size of archive in the cluster-

based PA-DDS is close to 3000 solutions.  

Seeking a desirable solution in an archive by comparing the values of decision variables and 

the corresponding objectives is laborious if not impossible. As a result, a systematic post-

processing strategy is utilized in this study to further screen the archived solutions based on a series 

of subjective judgements that often require consulting with decision-makers. The first screening 

stage is to re-cluster archived solutions using DBSCAN with the same adjacency density 
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parameters used by the cluster-based PA-DDS. The nearest solution to the reference point in each 

cluster is maintained along with unclassified solutions and the rest of the archived solutions are 

filtered out. In the second screening stage, a subjective threshold is set for each objective function. 

This threshold should be defined based on the decision-makers’ desirable range for each objective 

function. For example, the lake problem is assumed to have an irreversible eutrophic condition, 

meaning that the reliability index should be 1.0; otherwise the corresponding 20-year pollution 

management policy leads to a permanent eutrophic state in the lake with no possible water quality 

restoration by solely reducing phosphorous loading. Therefore, solutions that have a reliability 

index of less than 1.0 are removed from the archive. The numbers highlighted by the bold font in 

columns five to seven of Table 3-3 show the number of dissimilar design options (solutions) that 

do not tip into irreversible polluted state according to the adjacency density radius in Table 3-1 for 

the lake problem. The higher number of archived solutions by the cluster-based PA-DDS suggests 

that each of its trial identified a significantly larger number of distinct design options that are 

considered reliable in the lake problem. 

In the third screening stage, it is assumed that only design options (solutions) that score more 

than 85% inertia index require acceptable infrastructural investments for phosphorous reduction 

in the lake. Therefore, solutions not meeting this screening criterion are filtered out and the archive 

size is reduced to 2 to 8 solutions for trials of the original PA-DDS and 1 to 4 solutions for the 

cluster-based PA-DDS depending on the trial number, which is displayed inside parenthesis in 

Table 3-3. It is interesting that only a few distinct archived solutions with reliability value of 1.0 

are identified by the original PA-DDS (3 to 10 solutions), and the majority or all of them have 

inertial maintenance index of higher than 85%. Further analysis of the results shows that solutions 

identified by all trials of the original PA-DDS are highly similar. This means that most of the 
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computational budget is consumed by all trials of PA-DDS to converge to a common location in 

the decision space. 

Despite the fact that the original PA-DDS is equipped with an unbounded archive that is 

expected to archive a high number of solutions, the omni-optimizer has a higher number of 

archived solutions and offers higher number of solutions with reliability index of one in each 

optimization trial. The ratio of solutions with inertia index higher than 85 percent among reliable 

solutions is lower for the omni-optimizer compared to that for the original PA-DDS in all trials, 

for example 12/28 versus 7/7 in the first trial, see Table 3-3. This is due to considering decision-

space crowding distance in the structure of omni-optimizer. This ratio is the lowest for the cluster-

based PA-DDS in all trial runs since the algorithm does not solely focus on a specific region in the 

search space. 

The archive sets of all trials for the omni-optimizer algorithm and each variant of PA-DDS are 

combined, resulting in 1000 solutions for the omni-optimizer, 625 solutions for the original PA-

DDS, and 29808 solutions for the cluster-based PA-DDS. The aforementioned three-stage 

screening procedure is applied to these three archive sets, separately. Only five reliable, dissimilar 

solutions are identified by original PA-DDS and only three of these solutions have policy inertia 

index of higher than 85%. Therefore, most of the high-quality solutions identified by different 

trials of the original PA-DDS are similar and only 9% percent of them are dissimilar, giving 

different design options. This number is 149 reliable, dissimilar solutions for the omni-optimizer 

algorithm, 32 of which having inertia index of higher than 85%. As a result, the dissimilarity index 

of the reliable solutions in the omni-optimizer algorithm is 60%, considerably higher than the 

original PA-DDS. On the other hand, the cluster-based PA-DDS identified 1358 dissimilar 

solutions with reliability of 1.0, 23 of which have policy inertia higher than 85%. These 23 
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solutions are the union of solutions identified by all trials of the cluster-based PA-DDS and none 

of them have similar cluster tags. Interestingly, the dissimilarity index increases from 98% to 100% 

with fine-filtering the archived solutions for the proposed PA-DDS structure, while it decreases 

from 60% and 9% to 45% and 6% respectively for the omni-optimizer and the original PA-DDS 

algorithms.  Therefore, it is concluded that the proposed solutions archiving helps the optimization 

algorithm identify dissimilar solutions.  

Identifying higher number of dissimilar solutions after combining the archives of the cluster-

based PA-DDS gives a higher flexibility to decision-makers to choose among higher number of 

solutions with a wider range of benefit (f2) and maximum annual pollution (f1) compared to the 

solutions identified by the conventional algorithm. The range of the first and the second objectives 

for the omni-optimizer algorithm is wider than the proposed PA-DDS structure among reliable 

solutions with inertia maintenance index of higher than 85%. This is mainly due to the structure 

of the omni-optimizer that is a population-based algorithm while PA-DDS is a single-solution-

based method. For a fair comparison about the range of the objectives, the omni-optimizer needs 

to be compared to its cluster-based variant with an adaptive archive size, which is outside the scope 

of this paper. Figure 3-10 demonstrates the parallel coordinate plot of the remaining solutions 

(f4=1.0, and f3>0.85) after screening the combined archives for the omni-optimizer, original, and 

cluster-based PA-DDS, respectively. The cluster-based PA-DDS provides different values of 

annual phosphorous release from the town that are scattered all over their defined range, while if 

the decision-maker relies on the original PA-DDS, they are limited to options with annual release 

values in the lower half of their range, especially from the fourth year to the sixteenth year. 

Similarly, the majority of the post-processed solutions in the omni-optimizer are clustered in the 

lower half of the range in a sub-space containing decision variables from four to sixteen. Therefore, 
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the original PA-DDS discards many solutions that could be interesting for the decision maker, 

because those solutions are dominated but near-optimal in the objective space. 

Table 3-3: Archive size and number of dissimilar solutions for the original and cluster-based PA-DDS after 

performing DBSCAN and further screening based on the reliability index and inertial maintenance in each 

optimization trial and the combined archive of all trials. 

Optimization 

Trial 

Archive Size 

Number of Distinct Archived Solutions with 

f4 = 1.0 (& f3 >0.85) 

[Range of f1]/[Range of f2] when f4=1.0 and f3>0.85 

Omni-

Optimizer 

Original 

PA-DDS 

Cluster-

Based PA-

DDS 

Omni-Optimizer 
Original PA-

DDS 

Cluster-Based 

PA-DDS 

1 100 36 2977 

28 (12) 

[0.17, 0.45]/ 

[0.14, 0.29] 

7 (7) 

[0.22, 0.43]/ 

[0.24, 0.30] 

111 (3) 

[0.29, 0.43]/ 

[0.23, 0.26] 

2 100 46 3017 

27 (6) 

[0.20, 0.42]/ 

[0.21, 0.29] 

3 (3) 

[0.25, 0.35]/ 

[0.25, 0.28] 

142 (1) 

0.27/0.23 

3 100 59 3171 

30 (8) 

[0.13, 0.46]/ 

[0.12, 0.30] 

3 (3) 

[0.15, 0.27]/ 

[0.15, 0.26] 

128 (1) 

0.26/0.23 

4 100 77 3020 

30 (12) 

[]0.13, 0.44]/ 

[0.12, 0.29] 

6 (3) 

[0.21, 0.32]/ 

[0.23, 0.27] 

133 (4) 

[0.28, 0.37]/ 

[0.22, 0.28] 

5 100 42 2871 

28 (6) 

[0.14, 0.34]/ 

[0.14, 0.25] 

10 (8) 

[0.14, 0.43]/ 

[0.16, 0.30] 

164 (3) 

[0.35, 0.40]/ 

[0.23, 0.26] 

6 100 87 3051 

27 (6) 

[0.18, 0.45]/ 

[0.15, 0.29] 

4 (4) 

[0.25, 0.40]/ 

[0.23, 0.29] 

136 (1) 

0.38/0.23 

7 100 76 2931 

15 (6) 

[0.24, 0.44]/ 

[0.24, 0.30] 

6 (6) 

[0.19, 0.43]/ 

[0.21, 0.30] 

149 (4) 

[0.25, 0.36]/ 

[0.19, 0.25] 

8 100 64 2942 

15 (3) 

[0.22, 0.41]/ 

[0.21, 0.29] 

10 (10) 

[0.14, 0.43]/ 

[0.16, 0.30] 

146 (2) 

[0.28, 0.41]/ 

[0.22, 0.25] 

9 100 64 2933 

21 (5) 

[0.32, 0.47]/ 

[0.24, 0.30] 

3 (2) 

[0.26, 0.35]/ 

[0.25, 0.28] 

130 (2) 

[0.31, 0.34]/ 

[0.21, 0.22] 

10 100 74 2895 

26 (7) 

[0.14, 0.36]/ 

[0.13, 0.27] 

4 (4) 

[0.16, 0.31]/ 

[0.18, 0.27] 

147 (2) 

[0.33, 0.47]/ 

[0.24, 0.24] 

All Trials 

Combined 
1000 625 29808 

149 (32) 

[0.12, 0.43]/ 

[0.1, 0.28] 

5 (3) 

[0.24, 0.39]/ 

[0.25, 0.29] 

1358 (23) 

[0.25, 0.47]/ 

[0.19, 0.28] 

Dissimilarity 

Index Value 
- - - 

149/247=0.60 

(32/71=0.45) 

5/56=0.09 

(3/50=0.06) 

1358/1386=0.98 

(23/23=1.00) 
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Figure 3-10: Parallel coordinate plot of decision variables for solutions with the reliability index of equal to 

one and inertial maintenance index of higher than 0.85 after combining the archives of ten optimization trial 

runs for the omni-optimizer (top), original PA-DDS (middle) and the cluster-based PA-DDS (bottom) 
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3.5.3 Sorptive Barrier Design Problem 

A similar filtering process to the lake Problem is conducted for the results of the sorptive barrier 

design problem. The first stage is to employ DBSCAN for clustering and re-clustering archived 

solutions of the omni-optimizer algorithm and PA-DDS with the traditional and cluster-based 

archiving. The second stage is to screen the solutions based on their Euclidean distance to the 

reference point (see Table 3-1) in a semi-logarithmic objective space for this problem, which is an 

ideal zero cost and allowable contaminant rate transported to the soil in the barrier design lifetime. 

The last three columns of Table 3-4 shows the number of dissimilar solutions closest to the 

reference point in the objective space that have a cost (f1) of less than 50 and satisfy the 

contaminant rate (f2) of 5.0 𝜇𝑔/𝑚2 for each optimization trial and the combined archive of all 

trials. Apparently, the original PA-DDS is able to identify multiple distinct design options after 

the filtering process and offer more number of distinct solutions compared to the omni-optimizer 

algorithm. The reason can be attributed to the discontinuity of the decision space. However, the 

dissimilarity level of these algorithms is still less than the cluster-based version when the archive 

sets are combined. These algorithms result in dissimilarity index values of 0.53 and 0.61 versus 

0.76 for the cost values less than 50. Similar to the lake problem, fine-filtering of the archives by 

considering a lower threshold for the maximum acceptable cost increases the dissimilarity ratio 

for the cluster-based PA-DDS to 88%. On the contrary, the dissimilarity ratio for the omni-

optimizer and original PA-DDS decreases to 32% and 51%.  

The high dissimilarity index in the results of the sorptive barrier design problem compared to 

the lake problem has increased when the original PA-DDS is used and reduced when the omni-

optimizer is used. This is mainly due to two reasons. One reason is that the archive size resulted 

from the original PA-DDS for each trial of this type of problem with discrete decision variables is 
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so small that DBSCAN identifies some solutions as noise since they do not meet the minimum 

adjacency density requirement for cluster formation despite having high similarity to other 

archived solutions, which should not be considered as dissimilar options. The second reason is that 

the discrete nature of this problem does not let the original PA-DDS algorithm fine-tune decision 

variable values to decimal places. The integer-valued decision variables also aid in small archive 

size that exacerbates the situation for DBSCAN method to find really dissimilar design options in 

the post-processing stage as it needs a sufficiently populated archive for more accurate clustering. 

The integer-valued decision space also causes low distinction level in the archive of the omni-

optimizer since this type of problem does not have a multi-modal characteristic to make the 

algorithm activate its decision-space crowding measure, since there exists no solution to have an 

identical objective vector with another solution in the decision space. 

Figure 3-11 demonstrates the joint parallel coordinate plot of the decision variable vectors and 

the corresponding scaled objective vectors (
𝑓1

10
,
log (𝑓2)

log (5𝑒−6)
) for solutions with cost of less than 50 

and the contamination of less than 5.0 𝜇𝑔/𝑚2. The red lines represent solutions with cost of less 

than 25. According to Figure 3-11, all the solutions found by the omni-optimizer and original PA-

DDS algorithms have decision variable values of equal to or higher than seven providing no option 

with decision variable values of one to six. However, the cluster-based PA-DDS allows decision-

makers to choose from design options that have decision variable of one to six, when they are 

interested to include these layers for the barrier design provided they are flexible with a higher 

design cost. A more detailed inspection of Figure 3-11 reveals that the cluster-based PA-DDS 

shows a higher distinction among solutions costing less than 25 compared to its original 

counterpart and the omni-optimizer algorithm. For instance, the original PA-DDS cannot identify 

alternate designs having option No. 13 for the fifth layer. Figure 3-11 also illustrates that, among 
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less costly solutions, the proposed PA-DDS structure offers five options for the next layer if layer 

No. 13 is used for a layer, while the omni-optimizer offers one to maximum three options for the 

next layer. 

Table 3-4: Archive size and number of dissimilar solutions for the original and cluster-based PA-DDS after 

performing DBSCAN and further screening based on the cost (f1) and contaminant rate (f2) in each 

optimization trial and the combined archive of all trials. 

Optimization 

Run 

Archive Size 
Number of Distinct Archived Solutions w/ 

f1<50 & f2< 5.0e-6 (f1<25 &f2<5.0e-6) 

Omni-

Optimizer 

Original 

PA-DDS 

Cluster-Based  

PA-DDS 

Omni-

Optimizer 

Original  

PA-DDS 

Cluster-Based 

PA-DDS 

1 60 47 2533 20 (9) 21 (11) 62 (5) 

2 60 38 2588 14 (9) 19 (11) 88 (10) 

3 60 38 2595 18 (11) 16 (6) 80 (9) 

4 60 33 2602 16 (10) 13 (5) 104 (11) 

5 60 36 2563 16 (10) 15 (7) 107 (13) 

6 60 41 2548 13 (8) 22 (13) 68 (3) 

7 60 32 2546 21 (12) 15 (7) 113 (13) 

8 60 43 2532 21 (12) 22 (11) 61 (3) 

9 60 43 2530 18 (11) 14 (6) 47 (4) 

10 60 39 2579 15 (9) 16 (10) 97 (4) 

All Trials 

Combined 
600 390 25608 91 (32) 106 (45) 628 (66) 

Dissimilarity 

Index 
- - - 

91/172=0.53 

(32/101=0.32) 

dissimilar 

106/173=0.61 

(45/87= 0.51) 

dissimilar 

628/827=0.76 

(66/75=0.88) 

dissimilar 
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Figure 3-11: Parallel coordinate plot of decision variables for solutions with the cost of less than 50 and 

contaminant rate of less than 5e-6 after combining the archives of ten optimization trial runs for the omni-

optimizer (top), original PA-DDS (middle), and the cluster-based PA-DDS (bottom). Red lines highlights 

archived solutions with cost of less than 25. 
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3.6 Conclusion 

This work has laid out a foundation for incorporating decision-space diversity maintenance within 

stochastic MO algorithms. A novel cluster-based solution archiving approach is introduced by 

restructuring the DBSCAN clustering strategy to provide multiple distinct optimal and near-

optimal options to decision-makers for a robust decision-making. Similar solutions are clustered 

in the decision space if they meet the pre-defined solution density requirement for initial cluster 

formation. The dominance-check is decentralized such that solutions are compared only within 

their own cluster. Dominated clustered solutions are discarded from the archive after a mutual 

comparison with their groupmates. A selection metric is also devised that gives higher chance of 

selection to distant clusters with higher normalized hypervolume. This solution archiving method 

adds two parameters to the MO algorithms that represent the minimum adjacency density for 

cluster formation and recommendations has been given with regard to pre-setting their values.  

The proposed cluster-based PA-DDS was successfully applied to two bi-objective 

mathematical tests, a three-objective lake pollution control, and a bi-objective integer-valued 

barrier design problems and compared its performance to the original version and the omni-

optimizer as a reference algorithm that considers decision-space diversity in multi-modal 

optimization. The original PA-DDS and the omni-optimizer algorithms provided better distributed 

optimal fronts in the objective space with much lower archive size in a single trial, but they were 

highly similar and clustered in one region in the decision space. The omni-optimizer and PA-DDS 

with the traditional archiving strategy were also unable to preserve dissimilar near-optimal 

solutions in their archive with the progress of optimization due to global domination check among 

solutions, while the cluster-based PA-DDS performed better in terms of diversity maintenance in 

the decision space. 
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The proposed archiving approach was developed for the single solution-based PA-DDS 

algorithm in this study, but it can be also developed for population-based MO algorithms provided 

they are equipped with an unbounded archive or an adaptive archive size, such as BORG MOEA 

(Hadka and Reed, 2013). In a single solution-based MO algorithm such as PA-DDS, clustering 

should be performed as soon as a solution is generated, i.e. 10000 times clustering update for 

10000 function evaluations. However, in a population-based optimization algorithm, clustering 

needs to be performed only after a new generation of solutions are evaluated, e.g. 100 times 

clustering update is required for 10000 solution evaluations when the population size is 100. In 

addition, selection metrics such as the objective space crowding distance, hypervolume 

contribution, or convex hull contributions are not immediately applicable when solutions are 

clustered. Instead, a simple random selection metric or more advanced effective metrics need to 

be introduced to jointly consider the decision space and objective space diversities, such as the one 

used for the cluster-based PA-DDS in this work, or variation rate in Cuate and Schütze (2019) is 

suggested for the cluster-based solution archiving. 

The cluster-based PA-DDS provides a large archive of solutions that gives more flexibility to 

the decision-maker in refining their preferences. There are also objectives in the real world that 

are not quantifiable and cannot be formulated definitively. These types of objectives are evaluated 

through subjective judgements in the post-processing stage (Liebman, 1976). In addition, decision-

makers may change their preferences in the post-processing stage after interacting with 

stakeholders. For example, if a decision-maker is interested in benefit values higher than a 

specified threshold instead of an inertial maintenance index of higher than 0.85 in the lake problem, 

other new distinct or dissimilar solutions will be found. Therefore, we recommend archiving and 

presenting all clustered solutions for the decision makers. Advanced visualization techniques such 
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as VIDEO (Kollat and Reed, 2007) and moGrams (Trawiński et al., 2018) should be used for 

presenting the large number of design options for the decision makers and helping them find their 

most desirable option.  
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4.1 Abstract 

A reliable hydrologic model simulation requires an effective quantification of the uncertainty in 

model parameter values and predictions. This paper introduces a novel method to estimate model 

prediction bounds due to the uncertainty in model parameters considering multiple model 

performance metrics. The cluster-based multi-objective optimization is utilized to identify distinct 

parameter sets that meet the so-called behavioral thresholds in a single trial of the optimization 

algorithm. The proposed method is applied to estimate the parameter uncertainty for three 

hydrologic models with different parameterizations and is compared to GLUE and the many-trial, 

low-budget, dynamically dimensioned search (DDS-AU), based on reliability (percent coverage 

of output time series), sharpness (width of the prediction uncertainty), and the number of 

behavioral solutions. Results indicate that the proposed method is at least as effective as (if not 

better than) DDS-AU and GLUE for deriving 95% prediction bounds. Moreover, it is found that 

mailto:sahraeis@myumanitoba.ca
mailto:masoud.asadzadeh@umanitoba.ca
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the behavioral threshold identification based on the aggregated model performance metrics can 

mislead DDS-AU and GLUE; therefore, it is concluded that these thresholds should be defined in 

a multi-objective uncertainty quantification approach such as the proposed cluster-based multi-

objective optimization.  

 

Keywords: Hydrologic Models, Model Calibration, Parameter Uncertainty Estimation, Multi-Objective 

Uncertainty, Cluster-Based Optimization 

 

4.2 Introduction 

Precipitation-runoff models are essential tools for a myriad of applications in water resources 

systems. These models are mathematical representations of the water cycle and the simplification 

of complex non-linear hydrologic processes. Model calibration can increase the accuracy of 

simulating a desired hydrologic response, typically measured streamflow, in a deterministic 

fashion. Calibration of hydrologic model parameters is perceived as a wicked problem as models 

suffer from multiple sources of uncertainty, including imperfect model structure, observational 

data, model parameters, the initial state of the hydrologic system, model output, modeller’s 

subjective judgements, and natural complexity in the hydrologic system (Beven and Freer, 2001; 

Hoffman and Hammonds, 1994; Nearing et al., 2016; Reed and Kasprzyk, 2009; Uusitalo et al., 

2015). The first three aforementioned sources are considered as fundamental sources of the 

simulation uncertainty (Matott et al., 2009; Tolson and Shoemaker, 2008). Various techniques 

developed for quantifying the model parameter uncertainty and the model simulation reliability 

assessment can be categorized under fuzzy set or possibilistic theory1 (Ahmadi et al., 2019; Franks 

et al., 1998; Freer et al., 2004; Jacquin and Shamseldin, 2007; Wang et al., 2016), probabilistic 
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Bayesian framework (Jin et al., 2010; Schoups and Vrugt, 2010; Vrugt et al., 2009), and 

rejectionist methods (Beven, 2006; Beven and Binley, 1992; Tolson and Shoemaker, 2008; van 

Griensven and Meixner, 2006). Fuzzy set or possibilistic theory originates from the concept that 

uncertainty is due to insufficient or inaccurate information (Jacquin and Shamseldin, 2007; Zadeh, 

1978). There are many variants of fuzzy methods in the literature that have been successfully used 

for characterizing uncertainty including standard and modified fuzzy mathematics and incremental 

modified fuzzy extension (Alvisi and Franchini, 2013; Faybishenko, 2010; Huang et al., 2010; 

Maskey et al., 2004; Nasseri et al., 2013). This thesis mainly focuses on probabilistic and 

rejectionist views of uncertainty analysis in hydrologic modelling. 

Formal uncertainty quantification techniques attempt to separate various sources of uncertainty 

from the model parameters uncertainty. This technique explicitly assumes a priori statistical 

definition for the residuals between measurements and simulated model responses, i.e. the 

probability density function of residuals, to derive a posteriori likelihood and verify the validity 

of assumptions (Box and Tiao, 1992; Dotto et al., 2012; Freni and Mannina, 2010; Hutton et al., 

2014; Schoups and Vrugt, 2010; Stedinger et al., 2008; Yang et al., 2007). For example, Vrugt et 

al. (2009) considered three assumptions to separate model structural and forcing data uncertainty 

from model parameter uncertainty. First, it was assumed that residuals (discrepancy between 

simulated and measured values) take on a Gaussian distribution. Second, it was assumed residuals 

are auto-correlated. Third, the error in forcing data was corrected by unknown multipliers. Beven 

et al. (2008) argued that, the formal Bayesian uncertainty quantification methods introduce new 

unknown variables whose joint inference alongside model parameters may lead to new sources of 

uncertainty implicitly affecting the parameter uncertainty quantification, which is inconsistent 

with the explicit formal inference concept. In addition, the shape of the parameter probability 
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distribution is over-conditioned by a priori definition of a posteriori likelihood and other a priori 

assumptions for the residuals; therefore, a wrong definition/assumption can result in bias in the 

parameter probability distribution and can mislead model prediction bounds (Beven and Smith, 

2015; Beven et al., 2008).  

Approximate Bayesian Computation (ABC), originally developed by Pritchard et al. (1999), is a 

likelihood-free method to deal with impracticality or difficulty of calculating a formal likelihood 

function since it has no general definite form. This technique relies upon a summary statistic that 

compares simulated to observed time series (Turner and Van Zandt, 2012). The summary statistic 

should sufficiently explain the parameter sets by encapsulating entire information in the data 

(Csilléry et al., 2010; Turner and Van Zandt, 2012). For example, mean and variance are sufficient 

for a Gaussian model (Kavetski et al., 2018). However, it is practically infeasible to derive a 

sufficient summary statistic for more general probability models (Fenicia et al., 2018; Kavetski et 

al., 2018). The simplest form of ABC is called ABC rejection sampling that eliminates a sampled 

parameter set if its summary statistic value is worse than a pre-defined tolerance (Beaumont et al., 

2002; Pritchard et al., 1999). This version is often inefficient since the rejection rate becomes 

exponentially high if a small tolerance value is chosen (Turner and Van Zandt, 2012). On the other 

side, a set of acceptable parameters resulting from very loose tolerance value cannot represent 

approximate posterior distribution (Kavetski et al., 2018; Turner and Van Zandt, 2012). Many 

algorithmic enhancements have been made for ABC technique for computational efficiency such 

as Markov Chain Monte Carlo sampling (Marjoram et al., 2003), Population Monte Carlo 

Sampling (Cappé et al., 2004), Sequential Monte Carlo Sampling (Toni et al., 2008), and adaptive 

acceptance tolerance tightening (Albert et al., 2014; Lenormand et al., 2013). The studies by 
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Fenicia et al. (2018), Kavetski et al. (2018), Nott et al. (2012), and Vrugt and Sadegh (2013) are 

examples of ABC application in hydrology for uncertainty assessment. 

Beven and Freer (2001) introduced a Monte Carlo uncertainty quantification approach that does 

not require pre-conditioning and is based on the concept of model equifinality, i.e. different model 

configurations have similar performance. The generalized likelihood uncertainty estimation 

(GLUE), proposed by Beven and Binley (1992), is arguably the most well-known approach that 

uniformly samples from the parameter space and obtains a likelihood by subjectively evaluating 

parameter sets based on commonly used error metrics including, but not limited to, Nash-Sutcliffe 

Efficiency (NSE) (Nash and Sutcliffe, 1970), Kling-Gupta Efficiency (KGE) (Gupta et al., 2009), 

or sum of squared errors. The modeller also requires to subjectively specify a threshold to select 

behavioral solutions for quantifying uncertainty in the model prediction results. Numerous studies 

have used GLUE for quantifying parameter uncertainty in the context of hydrologic model 

calibration (Kan et al., 2020; Ragab et al., 2020; Tegegne et al., 2019; Teweldebrhan et al., 2018; 

Xie et al., 2019; Xue et al., 2018). Despite its simple structure, GLUE is criticized for its inefficient 

Monte Carlo sampling method, especially in computationally intensive models, and subjective 

screening analysis to identify behavioral parameter sets (Blasone et al., 2008a; McMichael et al., 

2006; Tolson and Shoemaker, 2008; Vrugt et al., 2009). It is believed that “GLUE does not 

adequately address the quest for rigorous evaluation of hydrological hypotheses” (Clark et al., 

2011). Interested readers are referred to review comments and discussions raised by scholars with 

different schools of thought about the philosophies and working hypotheses in uncertainty 

assessments of hydrologic models in (Beven, 2006; Clark et al., 2012, 2011; Nearing et al., 2016). 

For the sake of efficient sampling and reliable uncertainty quantification, a number of alternate 

methods have been proposed. Christiaens and Feyen (2002) and Uhlenbrook and Sieber (2005) 
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used Latin Hypercube Sampling (LHS) (Iman et al., 1980) within GLUE for a more uniformly 

distributed and stratified parameter sampling. van Griensven and Meixner (2006) proposed the 

parameter solution (ParaSol) method that utilizes a modified structure of Shuffled Complex 

Evolution-University of Arizona (SCE-UA) algorithm (Duan et al., 1992) with an increased value 

of perturbation rate for parameter space coverage enhancement. ParaSol retains all simulations 

generated during the optimization, classifies them to well-performed and ill-performed simulations 

based on a threshold defined by 𝜒2–statistics. All of the well-performed simulations are equally 

important for creating uncertainty bounds in the ParaSol method. Abbaspour et al. (2004) 

developed Sequential Uncertainty Fitting-2 (SUFI-2) that couples parameter sensitivity with LHS 

for predictive uncertainty analysis. The calibration parameter ranges in SUFI-2 are initially set as 

wide as possible while maintaining their physical feasibility. SUFI-2 recursively narrows down 

the calibration parameter space to the range that sufficiently replicates the hydrological processes 

using the sensitivity matrix and parameter covariance matrix. In addition, SUFI-2 evaluates the 

prediction uncertainty performance based on the percent coverage of response time series (with an 

ideal value of 100%) and the average width of the uncertainty (with an ideal value of zero). If the 

value of the uncertainty performance metrics in SUFI-2 are satisfactory, the posterior parameter 

distribution can be derived by uniform sampling from the narrowed parameter range. McMillan 

and Clark (2009) used a Markov Chain Monte Carlo method called Shuffled Complex Evolution 

Metropolis (SCEM-UA) algorithm based on a modified NSE metric that accounts for the timing 

and magnitude errors. They concluded that the SCEM-UA method provides a more reliable total 

simulation uncertainty bound than its formal Bayesian counterpart due to a better investigation of 

the behavioral region. Tolson and Shoemaker (2008) devised a Dynamically Dimensioned Search 

algorithm for the Approximation of Uncertainty (DDS-AU) that divides the total computational 
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budget into a large number of low-budget independent optimization trial runs. DDS starts with a 

global search and ends with a local search to converge to an effective parameter set. After testing 

DDS-AU for the calibration of multiple hydrologic model cases with 13 to 30 parameters, Tolson 

and Shoemaker (2008) asserted that this algorithm is two to three orders of magnitude more 

efficient than GLUE for identifying behavioral solutions with sharper and more reliable 

uncertainty bounds.  

Model calibration is inherently multi-objective (Gupta et al.,1998), and a behavioral model should 

acceptably pass all the objectives used for model evaluation. For example, a hydrologist estimating 

flood would be concerned about the accuracy of the model simulating the timing, magnitude, and 

volume of the flood. The methods above, however, are not designed to consider multiple model 

performance metrics. Therefore, the modeller must lump the model performance metrics to use 

these methods for uncertainty analysis. Balin (2004), Lamb et al. (1998), Muleta and Nicklow 

(2005) used a combined likelihood measure that weights behavioral parameter sets based on the 

aggregation of performance metrics for multiple responses of their watershed model case studies. 

Blazkova et al. (2002) identified behavioral parameter sets through combined evaluation of 

streamflow time series and simulation of the measured saturated area. Definition of a likelihood 

that accounts for simulating the saturated area strongly constrained the transmissivity parameter 

of their model case study, while it had minimal impact on streamflow prediction uncertainty 

bounds. Gallart et al. (2007) used more internal watershed information for updating the likelihood 

of behavioral parameters, which accounts for water table measured data besides the saturated area 

for conditioning streamflow prediction uncertainty. Other related studies include (Dean et al., 

2009; Mitchell et al., 2009; Sun et al., 2016). An aggregated formulation of multiple performance 

metrics for uncertainty analysis often increases uncertainty and expands the behavioral solution 
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set due to subjective weighting of performance criteria. Also, updating the likelihood of already 

selected behavioral solutions does not check the acceptability of solutions based on behavioral 

threshold specification of new measured data. A multi-criteria uncertainty analysis should 

simultaneously account for multiple pre-determined acceptable thresholds for all likelihood 

measures without combining likelihoods or aggregating the performance metrics. For example, 

Pang et al. (2020, 2019) adopted a multi-criteria decision analysis within GLUE by multiple 

threshold assignments to four performance metrics (representing different aspects of streamflow 

error distribution) for parameter identification and reducing prediction uncertainty of streamflow 

time series. 

This study introduces a multi-objective parameter uncertainty approach that uses the sampling 

strategy of Cluster-Based Pareto Archived-Dynamically Dimensioned Search (CB-PA-DDS) for 

quantifying parameter uncertainty. The proposed approach is compared against GLUE and DDS-

AU based on the number of identified behavioral solutions, length of measured response time 

series covered by the estimated uncertainty band in percent, and the average width of the estimated 

uncertainty band. Moreover, the effect of aggregation of objectives in GLUE and DDS-AU on the 

process of identifying behavioral parameter sets is studied in comparison with the proposed CB-

PA-DDS that simultaneously considers all conflicting objectives without aggregating them. The 

remainder of this paper is organized as follows. Section 4.3 introduces the hydrologic model case 

studies and available data and describes the structure of GLUE, DDS-AU, and the proposed 

cluster-based algorithm for uncertainty estimation of the hydrologic models. The performance of 

the proposed approach is compared with GLUE and DDS-AU in section 4.4, followed by 

concluding remarks in section 4.5. 
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4.3 Materials and Methods 

4.3.1 GLUE 

GLUE was developed by Beven and Binley (1992) based on the equifinality paradigm that rejects 

the idea of finding a single best parameter set as it is an overfit to a specific aspect of modelling 

error distribution. Equifinality stems from insufficient information of the hydrologic system and 

assumes that many model configurations can be considered equally likely (Beven, 1993). The 

GLUE uncertainty quantification method encompasses several steps. First, the feasible parameter 

space is sampled with a Uniform Distribution. Second, a pre-specified likelihood function is 

calculated for each sampled parameter set. Specification of the likelihood function should be 

coherent with the simulation performance and the behavior of the hydrologic system (Beven et al., 

2008). Third, the sampled parameter sets that do not meet a pre-specified likelihood function value 

are discarded and the retained samples represent behavioral models. Each behavioral sample is 

associated with a likelihood value used to weigh its model predictions in obtaining a cumulative 

distribution function of the model prediction variable over all behavioral samples. Then, the 

predictive uncertainty limits are derived from the quantiles of this distribution (for example 2.5% 

and 97.5% percentiles in this paper).  

 

4.3.2 DDS-AU 

As proposed by Tolson and Shoemaker (2008), DDS-AU estimates the model prediction bounds 

using a single-objective stochastic optimization algorithm executed multiple independent times 

with a relatively small computational budget. Similar to GLUE, DDS-AU uses a subjective 

summary statistic and behavioral threshold, but its sampling strategy is not uniform. The 
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optimization commences with a global search that dynamically and probabilistically turns into a 

local search by decreasing the number of dimensions for perturbing the so-far best solution for 

generating a new candidate solution. DDS perturbs each of the selected model parameters of the 

current best solution using a Normal Distribution centered at the current best value of the 

parameter. Each trial of DDS-AU has a different random initialization leading to a different final 

solution for each trial. For instance, if the computational budget allows for 10,000 solution 

evaluations, DDS-AU can be set to 100 independent trials/searches, each with 100 samples from 

the parameter space, resulting in 100 archived solutions for behavioral solution assessment and 

uncertainty quantification. The low computational budget of each trial prevents the algorithm from 

converging to a good quality solution in all trials. An archived solution that has a likelihood worse 

than the pre-determined threshold value is identified as a non-behavioral solution and is excluded 

for uncertainty approximation. Unlike GLUE, DDS-AU does not estimate the cumulative 

distribution function of model predictions. Instead, it approximates prediction bounds without 

probability assignment to the prediction variable. DDS-AU has only one parameter called 

perturbation rate that is suggested to be fixed at 0.2 by the developers of the algorithm. Readers 

are referred to Tolson and Shoemaker (2008) for more details about the DDS-AU structure.  

 

4.3.3 Cluster-Based Pareto Archived-Dynamically Dimensioned Search (CB-PA-DDS) 

This algorithm, developed by Sahraei and Asadzadeh (2021), is a restructured PA-DDS algorithm 

(Asadzadeh and Tolson, 2013) that uses a cluster-based archiving strategy to find optimal and 

near-optimal diverse design tradeoffs by optimizing multiple conflicting objectives 

simultaneously. Upon generating a solution in each optimization iteration, the solution density 

around the new solution is calculated by CB-PA-DDS. Suppose the density is equal to or higher 
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than a pre-specified population density threshold. In that case, the new solution will either form a 

new cluster along with the neighboring solutions with a unique cluster tag assignment or joins a 

previously formed cluster. On occasions that the neighboring density of a new solution is below 

the pre-specified threshold, it is considered as an unclassified solution. The CB-PA-DDS is 

equipped with a localized dominance-check strategy meaning that solutions with different cluster 

labels are not compared, and solutions dominated by their groupmates are discarded from the 

archive. The archive contains only cluster-non-dominated and so-far unclassified solutions. The 

currently unclassified solutions are retained and may form new clusters in subsequent iterations. 

The non-dominated members are assigned a memory of solution coverage density for tracking the 

history of the number of solutions in a cluster from the beginning of the optimization and help the 

algorithm to comply with the definition of cluster formation once a cluster becomes less crowded 

after the local dominance strategy. Each cluster forms a tradeoff in the objective space. CB-PA-

DDS utilizes a selection metric that jointly considers dissimilarity in the decision-space and 

convergence in the objective space for selecting one solution from the archive to generate a new 

solution for the next iteration. The selection metric assigns a value between zero and two to each 

cluster and unclassified solutions. An unclassified solution or a cluster with the shortest distance 

to the ideal point in the normalized objective space (scaled to between zero and one) that is located 

far away from other clusters and unclassified solutions in the normalized decision space (scaled to 

between zero and one based on the feasible parameter range) has a higher selection metric value, 

hence a higher chance of selection. Once a cluster is chosen, one of its members is randomly 

selected for generating new solution.  

CB-PA-DDS has three parameters: (1) the perturbation rate parameter that belongs to the original 

PA-DDS algorithm and, similar to DDS-AU, it is set to a recommended value of 0.2, (2) the 
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minimum number of solutions (MinPts) for initial cluster formation that is recommended to be 

four, (3) the cluster radius or neighboring distance (𝜀) to calculate neighboring density around each 

solution for cluster formation. The value of 𝜀 depends on the available computational budget, the 

dimensions of the decision-space and objective-space, and the multi-modality nature of the 

problem. For this reason, Sahraei and Asadzadeh (2021) recommended the range in equation (14) 

for 𝜀 that reflects its dependency to the computational budget and objective space dimensionality. 

In order to determine the upper and lower bounds for 𝜀, the user needs to identify a meaningful 

distinction level between two decision vectors. For example, if two solutions with at least a 7% 

discrepancy in each decision variable are deemed distinct/dissimilar, 𝜀 would range from 0.125 to 

0.188. For a higher computational budget and a low dimensional decision and objective space, a 

lower value of 𝜀 in this range is chosen and vice versa. 𝐷𝑖 in equation (14) is the minimum 

meaningful discrepancy percentage for the decision variable i, and n is the decision space 

dimension. 

𝜀 ∈ [0.8𝑧, 1.2𝑧 ],   𝑧 =
1

100
√𝐷1

2 + 𝐷2
2 +⋯+ 𝐷𝑛

2 
(24) 

In general, the sampling strategy in optimization algorithms is designed to rather focus on 

exploitation of the parameter space than exploration. Exploitation is defined as rapid convergence 

to the optimal region, while exploration is important to emphasize coverage of a large proportion 

of the parameter space without leaving unsearched areas (Khu and Werner, 2003). The sampling 

method within GLUE is purely random and focuses only on exploration, hence not efficient. Each 

trial of DDS-AU, on the other hand, progressively converges to only one region of interest 

assuming that the behavioral space is composed of multiple distinct regions of interest in the 

domain of the parameter space. For this reason, each region of interest is represented by one 
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solution (or sometimes more than one solution if multiple trials of DDS-AU converge to the same 

region) due to its single-objective characteristic (Tolson and Shoemaker, 2008).  

The clustering strategy and the localized dominance implemented for PA-DDS is to put more 

emphasis on exploration and identifying distinct parameter sub-spaces that contain good quality 

solutions. Each of these sub-spaces is represented with a cluster of solutions that form a tradeoff 

with respect to multiple objectives considered for uncertainty estimation using CB-PA-DDS. As a 

result, unlike DDS-AU, each region of interest is not represented by one solution. Instead, all 

cluster-non-dominated solutions are equally important for a multi-objective uncertainty estimation 

using CB-PA-DDS. For example, Zhou et al. (2016) used a multi-objective optimization-based 

sampling strategy based on the non-dominated sorting genetic algorithm (𝜀-NSGAII) and included 

all non-dominated archived solutions that meet the behavioral thresholds assigned to each 

objective for multi-objective uncertainty estimation. This is called a Pareto-based uncertainty 

approximation in Shafii et al. (2015) and refer to this citation for more details. 

4.3.4 Hydrologic Model Case Studies 

The calibration of two hydrologic models, HBV-SASK and RAVEN, is considered in this study 

to develop and fine-tune the cluster-based optimization approach for uncertainty estimation against 

GLUE DDS-AU. The developed approach is tested for the calibration of a third hydrologic model, 

SWAT, in comparison with GLUE and DDS-AU. These models were previously configured, and 

their calibration problem was published in the literature.  

4.3.4.1 HBV-SASK Model of Bow River 

This hydrologic model is developed by Saman Razavi based on the Hydrologisca Byråns 

Vattenbalansavdelning (HBV) conceptual model (Lindström et al., 1997) at the University of 
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Saskatchewan for educational purposes and research applications (Gupta and Razavi, 2018; Razavi 

et al., 2019). The model demands at least four classes of input data, including long-term monthly 

temperature and potential evapotranspiration to calculate daily potential evapotranspiration, daily 

temperature, and daily precipitation, along with the specification of 12 uncertain parameters for 

successful modelling. The list of model parameters and their ranges is displayed in Table 4-1. The 

snowmelt and snow accumulation in the HBV-SASK model is computed based on the degree-day 

method. A fraction of the released water either from the melted snow or direct rainfall or their 

mixture evaporates and the remaining infiltrates into the soil storage. A proportion of the stored 

moisture in the soil percolates into deep groundwater linear storage (base flow generation), and 

the rest runs off quickly as fast flux. After routing based on the unit hydrograph, the fast discharge 

is added to the base flow, or slow discharge resulted from deep percolation to obtain the total 

watershed daily hydrograph. 

The study area is Bow River Basin at Banff, Canada, with an area of 2178.53 km2 that ultimately 

discharges into the South Saskatchewan River Basin. The historical forcing and response 

observations span from 1950 to 2011, the first three years of which are considered for model spin-

up and the following 15 years are used for model parameter uncertainty analysis. The remainder 

of data is used as evaluation period to compare the performance of the uncertainty techniques for 

a situation that the model has not experienced. The multi-objective uncertainty of the HBV-SASK 

model parameters is estimated by considering three metrics shown in equation (25) that are the 

decomposed terms of the KGE metric, i.e. correlation coefficient (𝑟), long-term mean flow bias 

(𝛽), and the variability index (𝛼) (Gupta et al., 2009). 𝜎𝑠, 𝜎𝑜, 𝜇𝑠, and 𝜇𝑜 represent the standard 

deviation and mean of simulations and observations. The correlation coefficient metric accounts 

for streamflow magnitude and timing performance of the response time series with respect to 
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precipitation events whereas the bias and variability respectively seek a better fit for the first and 

second moments of the response time series (Gupta et al., 2009). The aggregated KGE metric in 

equation (26) is used for uncertainty estimation in GLUE and DDS-AU since they can only handle 

one model performance metric. 

𝐾𝐺𝐸 = 1 − √𝑓1 + 𝑓2 + 𝑓2 (26) 

 

Table 4-1: name, range and description of HBV-SASK model parameters  

Name Range Parameter Description 

TT [-4, 4] Threshold for air temperature in °C for distinguishing snowfall from rainfall or melting/freezing 

C0 [0, 10] Daily base melt factor, in mm/°C 

ETF [0, 1] Correction factor in 1/°C to account for temperature anomaly in potential evapotranspiration 

LP [0, 1] A multiplier to FC that limits evapotranspiration from soil moisture 

FC [50, 500] Maximum soil water containment, i.e. field capacity of soil, in mm. 

Beta [1, 3] Exponent of soil water release equation, i.e. shape parameter (No unit) 

FRAC [0.1, 0.9] A fraction of released water from soil moisture that enters fast storage (No unit) 

K1 [0.05, 1] A regulating factor for daily release of water from fast storage (No unit) 

Alpha [1, 3] Exponent of fast storage equation (No unit) 

K2 [0, 0.05] A regulating factor for daily release of water from slow storage (No unit) 

UBAS [1, 3] Base value of unit hydrograph for routing daily flux produced from fast storage 

PM [0.5, 2] A multiplier for handling uncertainty in daily precipitation (No unit) 

 

4.3.4.2 RAVEN Model of Grand River 

The semi-distributed Raven model developed by Craig (2015) partitions a basin into multiple sub-

basins. Each sub-basin is sub-divided into multiple smaller components called Hydrologic 

Response Units (HRUs). The areas that have similar combination of land type/use, geometry, 

geography, topography, and soil/aquifer are lumped into one HRU. The meteorological 

𝑓1 = (𝑟 − 1)
2 

𝑓2 = (𝛼 − 1)
2 = (𝜎𝑠 𝜎𝑜⁄ − 1)2 

𝑓3 = (𝛽 − 1)
2 = (𝜇𝑠 𝜇𝑜⁄ − 1)2 

(25) 
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assignments to each HRU in the model include the precipitation, temperature, and wind velocity. 

The Raven model simulates the vertical energy and water balance and assembles the simulated 

hydrological components in each HRU. The HRUs are reconnected to laterally route simulated 

flow from each HRU toward main river reach in each sub-basin. The sub-basin elements are then 

reconnected to route streamflow to toward the outlet. 

The Raven model used in this study simulates the outlet streamflow of an upstream sub-basin of 

the greater Grand River with an area of 274 km2 in Ontario, Canada. The model calibration and 

validation were set up as an optimization problem for tuning 20 parameters from 2003 to 2014 by 

Shafii et al. (2017). Table 4-2 lists the name, range, and description of model parameters. In this 

study, the year 2003 is used for the model spin-up period when the model performance is not 

measured for model calibration. Daily measured streamflow in years 2004 to 2009 is used to 

quantify parameter uncertainty, and daily measured streamflow in the years 2010 to 2014 are used 

for model evaluation. The same criteria used for the HBV-SASK model, i.e. equations (25) and 

(26), are used for evaluating the performance of the RAVEN model. For details regarding the 

calculation of hydrologic compartments in the RAVEN modelling framework, readers are referred 

to Craig (2015) and Shafii et al. (2017). 

Table 4-2: name, range, and description of the RAVEN model parameters 

Name Range Parameter Description 

𝑇𝑅𝑆 [-1, 3] Temperature at which a mixture of snow and rain occurs (°C) 

∆𝑇 [0, 1] Range of temperature with 𝑇𝑅𝑆 as a midpoint to consider precipitation as a mixture of snow and rain 

(°C). Out of this range, precipitation is either rain or snow. 

𝛽1 [1, 3] Exponent of HBV method developed by Bergström (1995) to calculate infiltration for 3 out of 7 soil 

groups 

𝛽2 [0.1, 2] Same as above for the rest of soil groups 

𝐹𝑠𝑝𝑎𝑟𝑠𝑒 [0.75, 0.99] Vegetation sparseness index for calculating canopy interception and evaporation 

𝑃𝑚𝑎𝑥  [10, 50] Maximum percolation rate when soil water storage in upper layer exceeds field capacity (mm/day) 

𝐵𝐹𝑚𝑎𝑥  [1, 5] Baseflow equal to maximum baseflow rate in mm/day for top layer of soil classes assuming top layer is 

always at saturation 

𝑘 [0.0001, 0.01] Baseflow coefficient (1/day) in non-linear storage method to calculate the contribution of lower layer of 

soil classes to baseflow 
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𝑛 [1, 3] Exponent of non-linear storage method to calculate the contribution of lower layer of soil classes to 
baseflow 

𝑆𝑐𝑎𝑛𝑜𝑝𝑦 [1, 10] Maximum canopy storage (mm) 

𝛼 [1, 50] Abstraction rate as a proportion of accumulated ponded water due to excess precipitation (%) 

𝐶𝑃𝐸𝑇𝑙𝑎𝑘𝑒 [0.1, 1] Potential evapotranspiration correction coefficient for lakes and open water area 

𝑀𝑎,𝑖𝑛𝑐 [0.1, 5] Potential melt rate added to 𝑀𝑎,𝑚𝑖𝑛 (mm/d/°C) 

𝑀𝑎,𝑚𝑖𝑛  [1, 10] Minimum potential melt rate in mm/d/°C in HBV method 

𝐶𝑎 [0.1, 0.99] Aspect melt correction coefficient for the potential melt calculation using HBV method 

𝐶𝑃𝐸𝑇𝑤𝑖𝑛𝑡𝑒𝑟 [0.5, 1.5] Correction factor for the potential evapotranspiration from November to April 

𝐶𝑃𝐸𝑇𝑠𝑝𝑟𝑖𝑛𝑔 [1, 1.2] Correction factor for the potential evapotranspiration for May and June 

𝐶𝑃𝐸𝑇𝑠𝑢𝑚𝑚𝑒𝑟  [1.2, 1.5] Correction factor for the potential evapotranspiration for July and August 

𝐶𝑃𝐸𝑇𝑓𝑎𝑙𝑙 [1.2, 1.5] Correction factor for the potential evapotranspiration for September and October 

𝐶𝑟𝑎𝑖𝑛𝑔𝑎𝑢𝑔𝑒 [0.85, 1.15] A correction factor near 1.0 to estimate proper rainfall volumes 

 

4.3.4.3 SWAT Model of the Rouge River 

The first version of the semi-distributed soil and water assessment tool (SWAT) was developed by 

Arnold et al. (1990). SWAT divides a basin into sub-basins to simulate long-term hydrological 

processes on a daily time scale. SWAT lumps areas with homogeneous land use and soil 

characteristics within each sub-basin into HRUs. Unlike RAVEN, the HRUs in SWAT are not 

assigned any geographical location meaning that the simulated hydrological sub-components in 

each HRU are aggregated for each sub-basin. The resulting streamflow at the outlet of each sub-

basin is routed downstream via the drainage network towards the outlet. The SWAT model of this 

study is adopted from Asadzadeh et al. (2016) that utilizes the Soil Conservation Service (SCS) 

method for surface runoff modelling of the 331-km2 Rouge River Basin to study the effect of 

agricultural land operations on the streamflow rate and quality (water quality simulation/evaluation 

is not included in this study). The SCS method assigns different values recommended by Neitsch 
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et al. (2011) to the curve number (SCS parameter) based on the land use and slope, soil type and 

permeability, and antecedent moisture. Four main land use classes, including urban, agricultural, 

natural, and water bodies, are defined within the model. Asadzadeh et al. (2015) used this model 

to simulate agricultural operations in terms of cultivation, tillage, planting, crop rotation, and 

fertilizers. Asadzadeh et al. (2016) demonstrated that daily streamflow simulation of the Rouge 

River Basin suffers from a one-day offset issue mainly because of the long concentration time 

between most of the peaks in the hyetograph and the corresponding hydrograph. The SWAT model 

calibration in this paper accounts for the effect of the one-day offset issue. 

The historically observed data, including the hydrometric and climatic data, are available for 

multiple stations from 2005 to 2011. See Asadzadeh et al. (2016) for details about gauges and their 

spatial distributions in the basin. The year 2005 is used for model spin-up, years 2006 to 2009 are 

used for the uncertainty analysis of the model parameters listed in Table 4-3, and years 2010 and 

2011 are used to evaluate the effectiveness of the parameter uncertainty bounds. Two hydrometric 

stations are used for parameter uncertainty quantification of SWAT by maximizing the lower NSE 

value and minimizing the higher simulation error in each segment of the flow-duration curve 

between two hydrometric stations after partitioning their curves into three segments of high-flow 

volume (<2% occurrence time), logarithmic low-flow volume (>70% occurrence time), and slope 

in the mid-flow portion (from 20% to 70% occurrence time). The model is also constrained to 

account for evapotranspiration of equal to 62% of annual precipitation in the basin and 60% of the 

remaining precipitation as surface flow, according to Asadzadeh et al. (2015). The constraint is 

considered as the fifth objective to penalize the parameter uncertainty estimation. The SWAT 

model uncertainty quantification uses the formulations in equation (27) for calculating objective 

functions. 𝑀𝑆𝐸, 𝑂, 𝑆, 𝐸𝐻𝐹, 𝐸𝑀𝐹, 𝐸𝐿𝐹, 𝐸𝑇𝑆, 𝐴𝑃, 𝑆𝐹𝑆, 𝑇𝑌𝑆 in equation (27) respectively denote mean 
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of squared errors, measured streamflow, simulated streamflow, simulated high-flow volume error, 

simulated mid-flow slope error, simulated low-flow volume error, simulated evapotranspiration, 

annual precipitation, simulated surface flow, and simulated total water yield. A weighted 

aggregation is employed for GLUE and DDS-AU since they are single-criterion uncertainty 

methods. As shown in equation (28), a high weight of 0.6 is specified for NSE and the remainder 

are given an equal weight of 0.1 to have a more accurate coverage around peak flows. The 

subscripts and superscripts 1 and 2 in equation (28) represent the hydrometric stations number one 

and two (With respective station IDs of 02HC022 and 02HC028 in 

https://wateroffice.ec.gc.ca/search/historical_e.html). The hydrometric station ID of 02HC022 is 

located downstream of 02HC028. 

𝑁𝑆𝐸 = 1 −
𝑀𝑆𝐸

𝜎𝑂
2  

𝐸𝐻𝐹 = 100(
∑ |𝑂𝑡 − 𝑆𝑡|
2%
𝑡≅0%

∑ 𝑂𝑡
2%
𝑡≅0%

) 

𝐸𝑀𝐹 = 100

(

  
 
|𝑙𝑜𝑔10

𝑆20%
𝑆70% − 𝑙𝑜𝑔10

𝑂20%
𝑂70%|

𝑙𝑜𝑔10

𝑂20%
𝑂70%

)

  
 

 

𝐸𝐿𝐹 = 100(
∑ |𝑂𝑡 − 𝑆𝑡|
100%
𝑡=70%

∑ 𝑂𝑡
100%
𝑡=70%

) 

𝑓 =
|𝐸𝑇𝑆 𝐴𝑃⁄ − 0.62| + |𝑆𝐹𝑆 𝑇𝑌𝑆 − 0.6⁄ |

2
 

(27) 

𝐹 = 0.6 (𝑚𝑎𝑥{−𝑁𝑆𝐸1, −𝑁𝑆𝐸2} + 1) + 0.1(𝑚𝑎𝑥{𝐸𝐻𝐹
1 , 𝐸𝐻𝐹

2 } + 𝑚𝑎𝑥{𝐸𝑀𝐹
1 , 𝐸𝑀𝐹

2 } + 𝑚𝑎𝑥{𝐸𝐿𝐹
1 , 𝐸𝐿𝐹

2 } + 𝑓) 
(28) 

Table 4-3: name, range, and description of the SWAT model parameters 

Name Range Parameter Description 

https://wateroffice.ec.gc.ca/search/historical_e.html
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CN [0.75, 1.25] Curve number multiplier 
SMFMN [1.4, 4.5] Snowmelt factor in 𝑚𝑚 𝐻2𝑂/day/°C on the last day of the fall season, December 21. 
TIMP [0.01, 1] Snowmelt factor representing lag in snow temperature 

ESCO [0.01, 1] Soil depth distribution modifier to compensate for evaporative demand of the soil 
EPCO [0.01, 1] A factor compensating for plant uptake from deeper layers when soil moisture content is low 

SURLAG [0.1, 24] A parameter that accounts for lag in surface runoff 
SOL_AWC [0.1, 2] Available soil water capacity 
SOL_K [0.1, 100] Hydraulic conductivity when soil is saturated (mm/hr) 

GW_DELAY [1, 500] Groundwater recharge delay time in days 
ALPHA_BF [0.1, 1] Baseflow recession constant 
GWQMN [0, 5000] Water level threshold in shallow aquifer to contribute to the main channel streamflow (𝑚𝑚 𝐻2𝑂) 

CH_N2 [0.01, 0.1] Channel Roughness (Manning’s n) 
CH_K2 [0, 100] Effective hydraulic conductivity of channel in mm/hr 

 

4.3.5 Numerical Experiment Setup  

The uncertainty estimation techniques in this paper use a stochastic sampling process for seeking 

behavioral solutions, and their performance should be evaluated through multiple independent runs 

for uncertainty analysis. 10 independent runs with 10000 solution evaluations are considered for 

each uncertainty technique. In each run, DDS-AU is restarted 100 times with a constant number 

of solution evaluations to sample from different regions of the parameter space and archive at most 

100 behavioral solutions, while GLUE continues with no restart until the maximum number of 

function evaluations, i.e. 10000 per trial, is satisfied. CB-PA-DDS is run for multiple settings of 𝜀 

and the algorithm for each 𝜀 value is run for 10 independent trials, each with 10000 solution 

evaluations. According to the recommended range in equation (14) for 𝜀, at least 9 to 11 percent 

difference (𝐷𝑖) between two solutions in each of their parametric dimensions is assumed in this 

paper to have a meaningful level of distinction between them. As a result, different ranges are 

obtained for 𝜀 for each model as the models have a different number of unknown parameters. The 

HBV-SASK and RAVEN hydrologic models are used for fine-tuning the proposed methodology 

and determine recommended values for 𝜀. Assuming that 9% difference results in a lower bound 

𝜀 of 0.249 and 0.322 respectively for the HBV-SASK and RAVEN models. The upper bound of 𝜀 
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will become 0.457 and 0.590 when an 11% difference is assumed for the HBV-SASK and RAVEN 

models, respectively. Table 4-4 shows the 𝜀 values tested within the recommended ranges.  

An 𝜀 value of 0.5 can be interpreted as the distance between two m-dimensional solutions 

with 0.5
√𝑚
⁄  difference in each of their parameters, for example. Alternatively, these two 

solutions can also particularly have equal values in m-1 parameters and a 50% difference in one 

parameter. Both instances can occur, but the latter is similar to dividing each dimension of the 

normalized parameter space by two, resulting in 1048576 (i.e. 220) hypothetical boxes in 20-

parameter RAVEN, 4096 (i.e. 212) boxes in 12-parameter HBV-SASK, or 8192 (i.e. 213) boxes 

in 13-parameter SWAT model. The first example can occur within a box if we assume one of the 

two solutions is located on one corner of the box. According to this description, an 𝜀 value of 0.5 

is equivalent to gridding the normalized parameter space through dividing each dimension by two 

to stochastically allow cluster formation in the majority of these hypothetical boxes in the 

normalized parameter space. A higher dimensional model calibration needs a higher computational 

budget (such as RAVEN) to explore more boxes in the normalized parameter space. If assigning 

a higher computational budget is not possible in RAVEN, for example, the value of 𝜀 can increase 

to more than 0.5 to merge the neighboring hypothetical grids for achieving more number of 

behavioral solutions. 

Table 4-4: 𝜺 values and behavioral thresholds for the uncertainty analysis of the HBV-SASK, RAVEN and 

SWAT model parameters using CB-PA-DDS algorithm 

Model Name Recommended Range of 𝜺 𝜺 values Behavioral Thresholds 

HBV-SASK [0.249, 0.457] 0.24, 0.31, 0.38, 0.45 
Threshold1: 𝐾𝐺𝐸 > 0.67016 

Threshold2: 𝐾𝐺𝐸 > 0.80 

RAVEN [0.322, 0.590] 0.35, 0.42, 0.49, 0.55 
Threshold1: 𝐾𝐺𝐸 > 0.6529 

Threshold2: 𝐾𝐺𝐸 > 0.70 

 

SWAT [0.26, 0.47] 0.47 Threshold1: [1 − 𝑁𝑆𝐸, 𝐸𝐻𝐹 , 𝐸𝐿𝐹 , 𝐸𝑀𝐹 , 𝑓] < [0.5, 30, 30, 30, 30] 
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4.3.6 Behavioral Thresholds, Performance Metrics, and Comparison Strategy 

The impact of behavioral threshold on the quantity of uncertainty in Monte Carlo and, more 

generally, stochastic methods is studied in Beven and Freer (2001), Jin et al. (2010), Montanari 

(2005), Yang et al. (2008), stating that a choice of high threshold value leads to a small number of 

behavioral solutions, a narrow uncertainty interval, and hence a low coverage of observational 

response time series. Lamb et al. (1998) demonstrated that relaxation of the acceptability threshold 

to get a higher number of behavioral simulations would lead to only minor changes in the range of 

simulation uncertainty bounds as the added solutions have a poorer performance and lower 

likelihood values. Low and high behavioral threshold values are chosen (shown in Table 4-4) for 

the HBV-SASK and RAVEN hydrologic models to examine the effect of high and low thresholds 

on the uncertainty prediction results. 

Multiple performance metrics, including reliability, number of behavioral solutions, and 

sharpness, are considered to mutually compare the uncertainty estimation strategies for low and 

high threshold values in the calibration period. Reliability is defined by Yadav et al. (2007) as the 

number of covered time steps on the response time series divided by the length of the simulation 

period. When all measured data points are within the simulated bound for the whole length of the 

simulation period, the reliability index would become 100%. Sharpness, defined by Yadav et al. 

(2007), on the other hand, is the average contraction level of the prediction interval relative to a 

posterior prediction bound of a large number of samples uniformly distributed in the feasible range 

of parameters. The sharpness of only one behavioral solution is 100% since it has no width and 

the value of sharpness for a group of behavioral solutions becomes less than 100%.  

Relaxing behavioral threshold is expected to add more solutions to the behavioral set, increase the 

reliability index, and decrease the sharpness indicator since the estimated uncertainty interval gets 
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wider and more time steps on the response time series are likely to be covered. Hence, reliability 

and sharpness are two conflicting criteria and form a tradeoff if the behavioral threshold is moved 

from a strict to a generous cutoff value. The size of behavioral solution set is also crucial for a 

robust estimate of prediction uncertainty bounds (Blasone et al., 2008b). 

The performance of the estimated uncertainty interval by each method for the evaluation period is 

assessed by the lower bound KGE in the HBV-SASK and RAVEN models and lower bound NSE 

in the SWAT model for the behavioral solutions. Since each prediction uncertainty technique is 

run for 10 trials, an empirical cumulative distribution function (CDF) plot is constructed such that 

the best performing trial has the lowest probability of exceedance and the worst performing trial 

has the highest probability of exceedance. The probability of exceedance is empirically calculated 

by R/(N+1), where R is the trial rank number in a list of N trials sorted from the best to worst 

performance metric value. The CDF plots are compared based on the first-degree stochastic 

dominance strategy, which is defined as better performance in each probability level (Levy, 1992). 

The statistical significance level of the stochastic dominance is evaluated through the two-sided 

Wilcoxon rank-sum test (Asadzadeh and Tolson, 2013; Hadka and Reed, 2012). If the p-value is 

less than 0.05, the null hypothesis of the equal median of two CDFs is rejected, and the stochastic 

dominance is considered significant. 

4.4 Results and Discussion 

4.4.1 Methodology Development and Tuning 

The 12-parameter HBV-SASK and 20-parameter RAVEN model calibration problems are used to 

find the best value for 𝜀 to effectively and efficiently use the CB-PA-DDS algorithm for model 

parameter uncertainty approximation. Figure 4-1 compares four different 𝜀 settings of CB-PA-
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DDS shown in Table 4-4 based on the CDF plots of reliability and size of behavioral set after 

subjectively specifying the KGE values of 0.67 and 0.65 as behavioral thresholds for the HBV-

SASK and RAVEN models, respectively. Unlike RAVEN, HBV-SASK is a well-behaved model 

since the CDF of reliability covers more than 99 percent of the outflow time series for all 𝜀 values.  

Figure 4-1 demonstrate that the reliability index and size of behavioral set tend to increase for both 

models if a higher value of 𝜀 is selected for CB-PA-DDS. The empirical CDF plots for the 

sharpness metric are not shown as this metric decreases when the number of behavioral solutions 

increases by increasing 𝜀 values. However, the aggregate performance of sharpness and reliability, 

which is their Euclidean distance from their ideal values of 100%-100% (Shafii et al., 2015), is 

either similar for different 𝜀 values or better for higher 𝜀 values (not shown here). Therefore, high 

𝜀 values of 0.45 and 0.55 are decided for the CB-PA-DDS technique to estimate parameter 

uncertainty in the HBV-SASK and RAVEN models since higher reliability and number of 

behavioral solutions are of interest.  

 

H
B

V
-S

A
S

K
 (

K
G

E
 >

 0
.6

7
) 

  

0

0.2

0.4

0.6

0.8

1

99 99.5 100

E
x
ce

ed
an

ce
P

ro
b

ab
il

it
y

Reliability (%)

ε=0.24

ε=0.31

ε=0.38

ε=0.45

150 300 450 600
Number of Behavioral Solutions 

ε=0.24
ε=0.31
ε=0.38
ε=0.45



   

 

 

123 

R
A

V
E

N
 (

K
G

E
 >

 0
.6

5
) 

  

Figure 4-1: empirical CDF plot comparison of different spatial clustering resolutions of CB-PA-DDS for 

uncertainty estimation of HBV-SASK (top row) and RAVEN (bottom row) model calibration case studies, 

respectively, with KGE behavioral threshold values of 0.67 and 0.65 

4.4.1.1 HBV-SASK Model 

CB-PA-DDS with 𝜀 equal to 0.45 is compared to DDS-AU and GLUE in Figure 4-2 for two 

behavioral thresholds in the calibration and evaluation periods. Table 4-5 presents the p-values 

comparing CB-PA-DDS and GLUE (𝑃𝐺), and p-values comparing CB-PA-DDS and DDS-AU 

(𝑃𝐷). 𝑃𝐺  and 𝑃𝐷 values of less than 0.05 reject the null hypothesis, assuming that the median of a 

metric for CB-PA-DDS is equal to the median of the same metric for GLUE and DDS-AU, 

respectively. 

A low KGE value of 0.67 is first considered for identifying behavioral solutions in each uncertainty 

method. This threshold is chosen based on the maximum value among the lowest KGE values in 

10 runs of DDS-AU since this method archives at most one solution per trial, i.e. 100 solutions per 

run in this research. According to their CDF plots in calibration and evaluation periods, all tested 

uncertainty estimation methods result in relatively high reliability. DDS-AU results in a wider 

reliability range of (96%-100%) compared to GLUE and CB-PA-DDS that have a higher than 

99.6% reliability in all their trials. CB-PA-DDS stochastically dominates DDS-AU in terms of 

reliability and size of the behavioral set with 𝑃𝐷 values less than 0.05. Despite having very similar 

reliability, CB-PA-DDS offers a higher number of behavioral solutions with higher sharpness than 

0

0.2

0.4

0.6

0.8

1

30 40 50 60

E
x
ce

ed
an

ce
P

ro
b

ab
il

it
y

Reliability (%)

ε=0.35
ε=0.42
ε=0.49
ε=0.55

0 200 400 600

Number of Behavioral Solutions

ε=0.35

ε=0.42

ε=0.49

ε=0.55



   

 

 

124 

GLUE in an equal computational budget, i.e. 280-536 solutions versus 214-266 solutions and a 

sharpness index of 77.1%-79.3% versus 74.85%-77.04%, respectively (see Figure 8-2 for 

sharpness CDFs). 𝑃𝐺  value of less than 0.05 in Table 4-5 for the size of behavioral set and 

sharpness plots presented in Figure 4-2 and Figure 8-2 confirms the superior performance of CB-

PA-DDS over GLUE in the calibration period. 

When the uncertainty estimation methods are compared for the evaluation period, CB-PA-DDS 

and GLUE with 10000 solution evaluations hold their reliability index values above 99.6% but a 

sharper uncertainty band for the CB-PA-DDS method, a 𝑃𝐺  value of 0.0017. The lowest KGE 

values of the evaluation period among all behavioral sets identified by each method are also 

compared in Figure 4-2-f and Figure 4-2-h. The behavioral sets identified by DDS-AU contain 

solutions that have negative KGE in the evaluation period. A negative KGE in DDS-AU may be 

due to conditioning the simulation to overfit the calibration period. This can be resolved by 

increasing the number of optimization trials and decreasing the number of solution evaluations per 

trial, e.g. 200 independent searches, each with 50 solution evaluations resulting in up to 200 

archived solutions. Therefore, a priori setting of the DDS-AU structure requires a profound 

understanding of the hydrologic model to prevent overconditioning in a well-behaved model like 

HBV-SASK. 

When the behavioral threshold is increased to a very high KGE value, the number of behavioral 

solutions and reliability become more important than sharpness. A low number of behavioral 

solutions results in a less robust estimate of prediction uncertainty bounds (Blasone et al., 2008b). 

Moreover, sharpness is significantly affected by the number of behavioral solutions. For example, 

when the behavioral threshold is set to the KGE value of 0.8, GLUE results in a sharper uncertainty 

band calculated based on 22-31 behavioral solutions compared to the band identified by 47-158 
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behavioral solutions in CB-PA-DDS. Therefore, a better sharpness in GLUE due to a low number 

of behavioral solutions does not mean that it performs better. Besides a larger behavioral set, CB-

PA-DDS stochastically dominates GLUE in the calibration and evaluation periods, with respective 

p-values of 0.0452 and 0.0211 (see Table 4-5), in terms of reliability when these methods have an 

equal computational budget, see Figure 4-2-c and Figure 4-2-g.  

More than 75% of archived solutions in DDS-AU have KGE values higher than 0.8. The reliability 

CDFs associated with DDS-AU stochastically dominate those of CB-PA-DDS for the calibration 

and evaluation periods. However, it comes at the cost of a significantly reduced sharpness (see 

Figure 8-2) in the entire simulation period and negative KGE values in the evaluation period. A 

negative KGE value means that the prediction band generated by DDS-AU for the uncertainty 

estimation in the HBV-SASK model is misleading. Hence, high-reliability indices are affected by 

solutions that overcondition the model simulations for the calibration but perform poorly in the 

evaluation period.  

The 10 behavioral sets associated with 10 trials of GLUE with 10000 solution evaluations are 

combined in another experiment that is equivalent to one trial of GLUE with 100000 solution 

evaluations. The uncertainty performance metrics for the GLUE method with 100000 solutions are 

displayed as a vertical red dashed line. The combined behavioral set contains 2319 and 270 

solutions for the KGE behavioral thresholds of 0.67 and 0.80, respectively. This GLUE run 

achieves more behavioral solutions in a relatively high KGE threshold of 0.8 compared to CB-PA-

DDS, DDS-AU, and GLUE with an order of magnitude less computational budget, 10000 solution 

evaluations. 
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4.4.1.2 RAVEN Model 

Based on the results, two behavioral likelihood thresholds of KGE equal to 0.65 and 0.70 are 

considered. GLUE achieves the lowest number of behavioral solutions at the lower threshold of 

0.65 compared to the other two uncertainty estimation methods. At this behavioral threshold, DDS-

AU achieved almost twice as many solutions as GLUE achieved, but  Figure 4-3-a and Figure 4-3-

e show that their reliability CDF plots are intertwined, respectively for the calibration and 

evaluation periods. However, the sharpness in Figure 8-2-d in the appendix shows a dominating 

performance for GLUE for the evaluation period meaning that the higher number of behavioral 

solutions in the DDS-AU only widens the uncertainty band with no added coverage of streamflow 

time series compared to GLUE. The reason could be due to a higher similarity among behavioral 

solutions found by DDS-AU. On the other hand, CB-PA-DDS generates a significantly high 

number of behavioral solutions, i.e. 152-321 solutions in 10 trials. As shown in Figure 4-3-a and 

Figure 4-3-e, CB-PA-DDS dominates GLUE and DDS-AU in terms of reliability with p-values 

significantly less than 0.05 (shown in Table 4-5) in calibration and evaluation periods when the 

KGE threshold is set to 0.65. 
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Figure 4-2: CDF plot comparison of CB-PA-DDS (𝜺 = 𝟎. 𝟒𝟓) with DDS-AU, GLUE (10000), and GLUE 

(100000) for uncertainty estimation with two behavioral thresholds of 0.67 and 0.80 in calibration and 

evaluation periods for the 12-parameter HBV-SASK model. The higher the value of a metric, the better the 

performance.  

CB-PA-DDS and DDS-AU become comparable in a higher behavioral threshold and their CDF 

plots exhibit some crossing behavior, see panels resulting from the KGE threshold of equal to 0.70 

in Figure 4-3. However, a slight relaxation of 0.05 in the behavioral threshold significantly shifts 

(improves) the empirical CDF of reliability and size of behavioral set for CB-PA-DDS to the right 

side of DDS-AU, compare panels c and d respectively with panels a and b in Figure 4-3. Therefore, 

CB-PA-DDS is preferred over DDS-AU. GLUE with 100000 computational budget (shown as red 
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dashed line in Figure 4-3) at the relaxed behavioral threshold of 0.65 outperforms DDS-AU and 

CB-PA-DDS. Still, the CDFs associated with CB-PA-DDS have the shortest distance to it. 

Selecting a tight behavioral threshold of KGE=0.70 deteriorates the GLUE performance because 

it identifies between 2 and 11 behavioral solutions out of 10000 solutions evaluated in each trial. 

In this situation, the uncertainty interval is very narrow (see sharpness CDFs in panels f and h in 

Figure 8-2), and the reliability of solutions found by GLUE in Figure 4-3-c and Figure 4-3-g 

approaches zero. Therefore, the prediction uncertainty band of the RAVEN model parameters 

using the small behavioral set of GLUE is not recommended (Blasone et al., 2008b). At this tight 

behavioral threshold, when the archives of 10 trials of GLUE are combined to theoretically form 

one trial of GLUE with 100000 solution evaluations, its performance becomes similar to one trial 

of DDS-AU or CB-PA-DDS with one order of magnitude less computational budget, see red 

dashed lines in Figure 4-3 for the calibration period in panels c and d and the evaluation period in 

panels g and h. 
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Figure 4-3: CDF plot comparison of CB-PA-DDS (𝜺 = 𝟎. 𝟓𝟓) with DDS-AU, GLUE (10000), and GLUE 

(100000) for uncertainty estimation with two behavioral thresholds of 0.65 and 0.70 in calibration and 

evaluation periods for the 20-parameter RAVEN model. The higher the value of a metric, the better the 

performance.  

 

Table 4-5: PG and PD, respectively representing p-value for the HBV-SASK and RAVEN model calibration 

comparing CB-PA-DDS to GLUE and DDS-AU based on the median of four metrics: reliability, number of 

behavioral solutions, lower bound KGE, and sharpness. P-values less than 0.05 are bolded and show one 

algorithm is statistically significantly preferred over the other algorithm. 

Model  Threshold Period 

PG / PD
 

Reliability 
Number of 

Behavioral Solutions 

Lower Bound 

KGE 
Sharpness 

HBV-

SASK 

KGE ≥ 0.67 
Calibration 0.2876 / 0.0089 1.83e-4 / 1.59e-4 - 1.83e-4 / 0.3847 

Evaluation 0.0940 / 0.1208 - 0.6776 / 1.83e-4 0.0017 / 0.3075 

KGE ≥ 0.80 Calibration 0.0452 / 7.69e-4 1.72e-4 / 0.7912 - 0.0091 / 3.30e-4 
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Evaluation 0.0211 / 4.40e-4 - 0.5205 / 0.0028 0.0046 / 5.83e-4 

RAVEN 

KGE ≥ 0.65 
Calibration 1.83e-4 / 3.30e-4 1.82e-4 / 1.78e-4 - 1.83e-4 / 3.30e-4 

Evaluation 1.83e-4 / 1.83e-4 - 0.1620 / 0.0073 1.83e-4 / 2.46e-4 

KGE ≥ 0.70 
Calibration 3.30e-4 / 0.7913 1.80e-4 / 0.850 - 1.83e-4 / 1.0 

Evaluation 1.83e-4 / 0.7910 - 0.0140 / 0.1618 1.83e-4 / 0.2730 

 

4.4.2 Methodology Validation 

Selecting a proper 𝜀 value for a computationally intensive case study like the SWAT model of the 

Rouge River is crucial. According to the methodology testing of CB-PA-DDS, a value of 0.47 is 

used for 𝜀 as this case study has the same computational budget and a similar number of parameters 

with the HBV-SASK model. In this study, a solution is flagged as behavioral when the NSE is 

higher than 0.5, the error in different segments of the flow-duration curve is less than 30%, and a 

water balance constraint violation is less than 30% at both hydrometric stations (see Table 4-4). 

Figure 4-4-a shows that, on average, all algorithms have a similar performance in this case study. 

Although CDF plots of the number of behavioral solutions identified by GLUE and CB-PA-DDS 

cross each other (Figure 4-4-a), CB-PA-DDS shows a dominating performance in terms of 

reliability (coverage of streamflow time series) with a p-value of 0.0091 in Figure 4-4-b for the 

calibration period at station 02HC022. A similar dominating behavior (but not statistically 

significant) is observed for CB-PA-DDS compared to GLUE at station 02HC028 in Figure 4-4-c. 

Figure 4-4-b and Figure 4-4-c also show a better coverage by CB-PA-DDS results than DDS-AU 

for the calibration period at both stations, but this difference is not statistically significant 

according to the p-values in Table 4-6. DDS-AU possesses a sharper uncertainty interval (Figure 

8-3-a and Figure 8-3-c in the appendix) for calibration. Despite having similar reliability (panels 

b and d of Figure 4-5) and sharpness (see panels b and d in Figure 8-3) in the evaluation period, 
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DDS-AU produces solutions that have a higher range of NSE (see panels a and c of Figure 4-5) 

compared to CB-PA-DDS.  

Figure 4-6 describes the distribution of behavioral solutions in the parameter space for a trial whose 

number of behavioral solutions is closest to the average size of behavioral set in 10 trials for each 

algorithm, 79, 71, and 70 solutions respectively for CB-PA-DDS, DDS-AU, and GLUE out of 

10000 solution evaluations. Overall, all methods found a fairly diverse set of solutions that are 

spread across the parameter space. Figure 4-7 displays the 95% uncertainty band for a 

representative portion of the evaluation period (the year 2011) at station 02HC022, downstream of 

station 02HC028, for the sets of behavioral solutions shown in Figure 4-6. The 95% uncertainty 

band in this figure is obtained from the quantiles of the estimated cumulative likelihood 

distribution. The likelihood value for each behavioral solution is estimated based on the aggregated 

objective function in equation (28) divided by the sum of this objective value for all behavioral 

solutions. The cumulative distribution function for each time step is then calculated by sorting the 

weights based on the simulated streamflow values in each time step over all behavioral solutions. 

Then, the 95% predictive uncertainty limit for the SWAT model is derived from the 2.5 and 97.5 

percentiles of this distribution for each time step.  
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Figure 4-4: CDF plot comparison of CB-PA-DDS (𝜺 = 𝟎. 𝟒𝟕) with DDS-AU, GLUE (10000), and GLUE 

(100000) for uncertainty estimation in calibration period for the 13-parameter SWAT model. The higher the 

value of a metric, the better the performance.  

Table 4-6: PG and PD, respectively representing p-value for the SWAT model calibration comparing CB-PA-

DDS to GLUE and DDS-AU based on the median of four metrics: reliability, number of behavioral solutions, 

lower bound NSE, and sharpness. P-values less than 0.05 are bolded and show one algorithm is statistically 

significantly preferred over the other algorithm. 

Hydrometric 

Station 

 PG / PD
 

Period Reliability 
Number of 

Behavioral Solutions 

Lower Bound 

NSE 
Sharpness 

02HC022 
Calibration 0.0091 / 0.4274 

0.4723 / 0.4708 
- 1.0 / 0.0173 

Evaluation 0.0640 / 0.4725 0.5706 / 0.3847 0.6232 / 0.1859 

02HC028 
Calibration 0.1735 / 0.7337 

0.4723 / 0.4708 
- 0.8501 / 0.0376 

Evaluation 0.0889 / 0.5706 0.3845 / 0.0073 0.9097 / 0.0640 
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Figure 4-5: CDF plot comparison of CB-PA-DDS (𝜺 = 𝟎. 𝟒𝟕) with DDS-AU, GLUE (10000), and GLUE 

(100000) for evaluating their performance in the evaluation period for the 13-parameter SWAT model. The 

higher the value of a metric, the better the performance.  

 

Figure 4-6: Distribution of behavioral solutions identified by each algorithm in the normalized parameter 

space. The mid-performing trial in terms of the identified number of behavioral solutions is used for this 

figure.  
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Figure 4-7: Simulated 95% uncertainty interval of the SWAT model parameters for 2011 (last year of the 

evaluation period) at station 02HC022. The bands in panels a, b, and c respectively belong to a mid-

performing trial in terms of the identified size of behavioral set in GLUE, DDS-AU, and CB-PA-DDS. The 

continuous lines show the upper bound and lower bound of the 95% uncertainty interval. 
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4.4.3 Multi-Objectivity and Behavioral Solution Identifiability 

Adding more criteria to the model evaluation process adds more number of behavioral thresholds 

and, therefore, shrinks the acceptability region and decreases the expected number of behavioral 

solutions. Figure 4-8 exhibits the effect of the number of calibration objective functions that dictate 

the number of behavioral thresholds on the size of behavioral set using a Box and Whisker plots. 

Considering a single criterion and threshold for identifying behavioral solutions such as 𝑓1 <

0.036 for HBV-SASK, 𝑓1 < 0.040  for RAVEN, or 𝑨 = {𝑁𝑆𝐸𝑖 > 0.5} for SWAT in the first 

column of Figure 4-8 shows that GLUE finds more behavioral solutions than CB-PA-DDS and 

DDS-AU. However, adding a second criterion and the corresponding behavioral threshold, i.e. 

{𝑓1 < 0.036 & 𝑓2 < 0.036} for HBV-SASK, {𝑓1 < 0.040 & 𝑓2 < 0.040} for RAVEN, and 

𝑩: {𝑁𝑆𝐸𝑖 > 0.5 & 𝐸𝐻𝐹,𝑖 < 30%} for SWAT, removes more than 50% of the solutions that were 

considered behavioral in the single-objective analysis for both GLUE and CB-PA-DDS that do not 

have a cap on the number of behavioral solutions they can archive. Adding a third criterion or 

threshold further shrinks the region of acceptability (behavioral space) for all hydrologic models 

in the case of GLUE and CB-PA-DDS, but adding the fourth and fifth behavioral threshold in the 

SWAT model did not reduce the number of archived behavioral solutions noticeably.  

The aggregation-based behavioral solution identification is likely to expand the region of 

acceptability. The last column in Figure 4-8 shows the number of archived solutions when all 

important criteria are aggregated into one. When the behavioral solution identification resulting 

from simultaneous consideration of all criteria are compared to the aggregation-based 

identification in the case of GLUE, for example, the size of behavioral solution set decreases 

significantly by 65%-75% in HBV-SASK, 80%-98% in RAVEN models (compare the last two 

columns in Figure 4-8). CB-PA-DDS has similar behavior to GLUE when the criteria are 
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aggregated for behavioral solution identification. In this circumstance, solutions that are behavioral 

with respect to one or two error metrics but do not meet the other threshold may still meet the 

threshold for the aggregated formulation, which is not ideal for multi-objective uncertainty 

analysis.  

As more calibration objectives are aggregated, the size of the behavioral set is expected to increase 

relative to multi-objective uncertainty estimation. For example, the difference in the size of 

behavioral sets for the five-objective SWAT model uncertainty estimation with and without 

aggregation becomes more significant (compare the last two columns in Figure 4-8-c). DDS-AU 

is less sensitive to the number of thresholds. The main reason is that its archive size is limited to a 

maximum that is the number of trials, 100 in this study. Therefore, all generated behavioral 

solutions in one trial of DDS-AU are not retained, and only the best performing behavioral 

solution, if found any, is archived for uncertainty estimation. 

Since the behavioral space shrinks as more behavioral thresholds are considered, the multi-

objective uncertainty estimation is expected to require a higher computational budget to find more 

behavioral solutions. Unlike DDS-AU, CB-PA-DDS is a less subjective approach that tends to 

identify the entire range of optimal and near-optimal tradeoffs clustered at different regions of the 

parameter space with no discrimination between the objectives. Lumping objectives in DDS-AU 

is equivalent to converging to only one point of these distinct optimal and near-optimal tradeoffs 

in each search. Extracting the entire range of optimal and near-optimal tradeoffs for the five-

objective calibration problem in CB-PA-DDS demands higher computational budgets than DDS-

AU. If a higher budget is not feasible, the analyst can reduce the objective-space dimension to 

improve the performance or expand the behavioral (i.e. acceptable or feasible) space by relaxing 

the behavioral threshold to include more solutions to the behavioral set. Thus, despite being more 
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computationally intensive, we recommend multi-objective approximation of uncertainty in model 

calibration and assigning the corresponding behavioral threshold to each objective as it is more 

consistent with the multi-objective nature of model calibration, Gupta et al. (1998). 

4.5 Conclusion 

Uncertainty quantification tools can assist decision-makers in assessing the credibility of 

hydrologic models and improve flood management reliability. Flood management systems have 

different forecasting requirements that cannot be represented by one simple objective function. In 

this paper, CB-PA-DDS is proposed as a multi-objective parameter uncertainty method and 

compared with popular single-objective DDS-AU and GLUE algorithms for uncertainty analysis 

of three hydrologic models. CB-PA-DDS is equipped with dynamic clustering and localized 

dominance strategy to help search and retain distinct groups of solutions in different regions of the 

parameter space, each of which form a tradeoff in the objective space. The performance of the 

proposed method depends on the adjacency density parameter (𝜀) for clustering. The 12-parameter 

HBV-SASK and 20-parameter RAVEN models were used for the methodology development by 

evaluating the performance of multiple settings of CB-PA-DDS by changing the 𝜀 value. The 

results indicated that setting a higher value of 𝜀 leads to better performance. Therefore, the upper 

bound value of 𝜀 was tested for comparing CB-PA-DDS with DDS-AU and GLUE in HBV-SASK 

and RAVEN, then validated its performance on 13-parameter five-objective SWAT model. 
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Figure 4-8: The effect of an increase in the number of objectives on the identification process and number of 

behavioral solutions. The box and whisker plot on the top, middle, and bottom respectively belong to HBV-

SASK, RAVEN, and SWAT models. 𝒇𝟏, 𝒇𝟐, 𝒇𝟑 are the decomposition terms of KGE, as defined in equation 

(25). A, B, C, D, E, and F on the bottom figure are defined as follows. A: {𝑵𝑺𝑬𝒊 > 𝟎. 𝟓}, B: {𝑵𝑺𝑬𝒊 > 𝟎. 𝟓 & 

𝑬𝑯𝑭,𝒊 < 𝟑𝟎%}, C: {𝑵𝑺𝑬𝒊 > 𝟎. 𝟓 & 𝑬𝑯𝑭,𝒊 < 𝟑𝟎% & 𝑬𝑴𝑭,𝒊 < 𝟑𝟎%}, D: {𝑵𝑺𝑬𝒊 > 𝟎. 𝟓 & 𝑬𝑯𝑭,𝒊 < 𝟑𝟎% & 𝑬𝑴𝑭,𝒊 <

𝟑𝟎% & 𝑬𝑳𝑭,𝒊 < 𝟑𝟎%}, E: {𝑵𝑺𝑬𝒊 > 𝟎. 𝟓 & 𝑬𝑯𝑭,𝒊 < 𝟑𝟎% & 𝑬𝑴𝑭,𝒊 < 𝟑𝟎% & 𝑬𝑳𝑭,𝒊 < 𝟑𝟎% & 𝒇 < 𝟑𝟎%}, F: 

Aggregated Objective as in Equation (28). 
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Multiple performance metrics, including reliability, sharpness, and size of behavioral solution set, 

were used for comparison between the uncertainty methods in each behavioral threshold. CB-PA-

DDS has a similar (or better) performance to DDS-AU, but both methods are likely to outperform 

GLUE as they are equipped with specialized sampling strategies. One issue with DDS-AU for 

uncertainty analysis is that it only retains at most one behavioral solution per search, and other 

potential behavioral solutions, if any, are removed in each search. Therefore, its performance 

depends on the prior specifications of DDS-AU archive size. 

The aggregation-based behavioral threshold identification expands the region of acceptability, 

identifies more number of solutions as behavioral, and overestimates the prediction uncertainty 

compared to multiple-threshold behavioral solution identification. GLUE and DDS-AU aggregate 

the objectives in a multi-objective problem and the value of each objective for the archived 

solutions in these methods is not available after their termination. Therefore, the behavioral 

solutions in these methods are identified through specifying a threshold for the aggregated 

objective function. This problem is prevented in CB-PA-DDS as this method simultaneously 

evaluates all objectives without aggregation.  

We acknowledge that a multiple-threshold behavioral solution identification is not fair for the 

single-objective DDS-AU compared to GLUE and CB-PA-DDS since the perturbation and 

sampling processes in DDS-AU depend on the definition of the objective function. 

The value of 𝜀 in CB-PA-DDS can theoretically go beyond one. For instance, two solutions in a 

hydrologic model with a 100 dimensional parameter space, which is normalized to between zero 

and one based on the feasible ranges of parameters, can have a distance up to √100 (or 10) that is 

equivalent to the diagonal distance of the unit hypercubic parameter space. Suppose a modeller 
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deals with a model with very high number of parameters. In that case, first, it is preferred to fix 

some of the less uncertain, physically-based parameters or group the correlated parameters 

logically to decrease the dimensionality of the hydrologic model. Second, it is preferred to increase 

the computational budget. For example, a 30-parameter model needs more than a billion function 

evaluations to effectively place at least one solution in each box in a gridded parameter space that 

divides each dimension by two. Since assigning a high computational budget in the order of 

millions or billions is not normally possible, the accuracy of all uncertainty estimation techniques 

is deteriorated. In this situation, the value of 𝜀 can be increased to beyond 0.5 to mitigate a low-

computational budget in a time-consuming hydrologic simulation if a model has more than 15 

parameters. It is also recommended to apply the uncertainty estimation techniques to models that 

have at most 30 uncertain parameters for a more accurate prediction uncertainty interval. 
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5.1 Abstract 

Multi-modelling aims to make use of the strengths of single hydrologic models to improve the 

accuracy of simulating the watershed system behavior. Considering hydrological signatures such 

as the flow duration curve segmentation in the calibration of each hydrologic model leads to a 

better parameter identifiability. In this study, a novel weighted average model-wrapper based on 

flow duration curve segmentation is introduced to aggregate the calibrated models into a multi-

model. The proposed framework is applied to develop a model-wrapper of the Upper Assiniboine 
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River Basin for flood forecasting upstream of the Shellmouth reservoir in the Prairie region of 

Canada. The HEC-HMS, HBV-EC, HSPF, and WATFLOOD hydrologic models that are being 

used at the Hydrologic Forecast Centre of Manitoba Infrastructure for operational inflow 

forecasting are calibrated using signature-based multi-objective optimization. These models have 

significantly different structural complexities. The calibration of each of these models is set up as 

three simulation-optimization problems with different objective functions to balance the model 

capability in simulating multiple important hydrological signatures. Results show that the model-

wrapper outperforms each of the single calibrated models that are of operational use at Manitoba 

Infrastructure, e.g. NSE improved from 0.44 for the best individual model to 0.76 for the model-

wrapper in the calibration period. Moreover, the weights associated with each hydrologic model 

component indicate the contribution rate of the individual models to the model-wrapper in high-

flow, mid-flow, and low-flow portions of streamflow time series. Quantifying the contribution of 

each model component provides a deeper insight into model selection strategy, especially when a 

component has minimal or no contribution, e.g. HEC-HMS and HBV-EC in this paper, to the 

model-wrapper performance in all ranges of streamflow simulation compared to other model 

components.  

Keywords: Multi-Modelling, Model-Wrapper, Multi-Objective Optimization, Hydrological 

Signature, Canadian Prairie, Flood Forecasting 

5.2 Introduction 

Hydrologic models are systems analysis tools that simulate our understanding of the hydrological 

processes and can help us reanalyze the historical events and estimate the watershed system 

responses to future hydrological events. These models can be categorized based on their structural 

complexity in terms of the distribution of the geographical representation of the watershed system 
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from lumped to distributed models and in terms of the base of their governing equations from 

conceptual to physically-based models. It is well-known that a single model structure cannot 

adequately represent all governing processes of a watershed system response to hydrological 

events (Ajami et al., 2007). Therefore, in order to address the model structural uncertainty in the 

model prediction, one can combine results of multiple models. 

In principle, multi-modelling aims to take advantage of strengths of a group of models that have 

different structural complexities to improve the overall prediction accuracy, because it is expected 

that simulation error from different models can compensate each other (Ajami et al., 2006). Multi-

modelling has its roots in the study by Bates and Granger (1969) who showed that the weighted 

average of two sets of forecasted airline passenger datasets outperforms each individual dataset 

for forecasting the number of passenger miles flown. It took about three decades for the community 

of hydrologic modelling to recognize multi-modelling as a tool to improve the model prediction 

accuracy, when Shamseldin et al. (1997) showed that even a simple or a weighted linear model 

averaging approach can outperform the individual models, a conclusion that was confirmed by 

Ajami et al. (2006) and Georgakakos et al. (2004). To date, several studies have investigated the 

superior performance of multi-model ensembles to individual hydrologic models (Arsenault et al., 

2015; Chen et al., 2015; Goswami et al., 2007; Jeong and Kim, 2009; Kumar et al., 2015; Xiong 

et al., 2001; X. Zhang et al., 2009). Shamseldin et al. (1997) recommended a neural network 

approach to build a non-linear relationship between the models to improve the prediction accuracy. 

Ajami et al. (2006) compared four different multi-modelling approaches, simple model average, 

weighted model average (WMA), multi-model super-ensemble (MMSE), and modified multi-

model super-ensemble (M3SE) methods and recommended MMSE and M3SE that implement bias 

correction. However, Madadgar et al. (2014) argued that the bias correction through quantile 
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mapping (used in M3SE for example) that uses the cumulative distribution function of measured 

and simulated events does not maintain the sequence of events and therefore is not hydrologically 

expressive. Bayesian model averaging (BMA) introduced by Hoeting et al. (1999) is a more 

sophisticated multi-modelling approach that uses the Bayesian statistical inference to calculate the 

weight of each model based on its performance during the training period (Ajami et al., 2007). In 

this paper, a novel model-wrapper approach is introduced for multi-modelling based on the 

weighted model averaging and flow duration curve partitioning. This method allows the models 

for having different weights for predicting high-, average-, and low-flow rates. The optimal value 

of weights shows whether every model adds to the accuracy of flood forecasting. The optimal 

value of weights also show the relative contribution of these models to the flow prediction for three 

mutually exclusive ranges of high-, mid-range, and low-flow. Moreover, the comparison between 

individual models and the model-wrapper shows whether multi-modelling could fix any model 

structural inadequacy. 

The hydrologic models need to be calibrated individually before inserting their simulated 

streamflow time series into the model-wrapper. The performance of a calibrated hydrologic model 

depends on many factors including its structural complexity, parametrization, computational 

budget and problem formulation. In principle, due to the model parameter uncertainty, more than 

one setting of a hydrologic model can adequately simulate the watershed system behavior, the 

concept of equifinality (Beven and Freer, 2001). Therefore, in practice, different settings of a 

hydrologic model are used to predict a range of watershed responses to future events, either 

through a formal Bayesian uncertainty approach by DREAM (Vrugt et al., 2009), an informal 

uncertainty approach by Generalized Likelihood Uncertainty Estimation (GLUE) (Beven and 
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Freer, 2001), or a multi-trial calibration with different calibration objectives such as Tolson and 

Shoemaker (2008). 

Hydrologic model calibration is inherently multi-objective, because no single metric can 

comprehensively represent the distribution of simulation error (residual between the simulated and 

measured data) (Gupta et al., 1998). Over the past decade, novel model performance metrics are 

developed and used in the literature as model calibration metrics that can guide the optimization 

to identify solutions that are more representative of hydrological signatures, see for example 

Pfannerstill et al. (2014), Schaefli (2016), Shafii and Tolson (2015), Yilmaz et al. (2008). Yilmaz 

et al. (2008) advised that the automatic calibration of hydrologic models should consider objective 

functions that represent four major hydrological signatures: the overall water balance, vertical, 

horizontal, and temporal redistribution of water. They introduced three model performance metrics 

using the flow duration curve partitioning. Multi-objective optimization identifies the tradeoff 

among the conflicting objectives, the so-called Pareto front. Solutions corresponding to the tails 

of the Pareto front individually optimize a calibration objective; however, as discussed in 

Asadzadeh et al. (2014b), Kollat et al. (2012), the multi-objective optimization can balance 

between the conflicting calibration objectives and identify a solution corresponding to the so-

called knee point of the Pareto front that is closest to the ideal point and therefore can be selected 

as the best single tradeoff solution. 

This study expresses the importance of using the signature-based, multi-objective calibration 

approach along with multi-modelling by combining the strong points of individual models to 

improve the calibration of the models for accurate forecasting of the streamflow with a focus on 

peak flow estimation. The paper is structured as follows. Section 5.3 describes the case study 

watershed and the hydrologic models that are used for the streamflow simulations. Three different 
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types of formulations for the multi-objective calibration of the models along with the proposed 

model combination approach are then explained. The calibration results for each model and the 

effect of the model-wrapper on simulation accuracy are presented and discussed in Section 5.4, 

followed by study limitations and concluding remarks in Section 5.5 and Section 5.6, respectively. 

5.3 Materials and Methods 

5.3.1  Importance of Flood Forecasting in Canadian Prairies 

Flood forecasting is one of the major applications of hydrologic models in the Canadian Prairie 

Provinces (Ahmari et al., 2016; Blais et al., 2016b, 2016a) where flood is one of the most costly 

natural disasters. Over the past 100 years, this region has experienced significant floods. The 

Assiniboine River in Manitoba alone, for example, has experienced at least six major floods in the 

past 100 years (Manitoba Infrastructure and Transportation, 2016). Flooding has been worse in the 

past 20 years due to the wet-cycle going through the provinces (Unduche et al., 2018) causing 

billions of dollars infrastructural damages (Buttle et al., 2016; Jakob and Church, 2011). The 2013 

flood in Alberta, with estimated damage and recovery cost of CAD 6 billion (Burn and Whitfield, 

2016; Pomeroy et al., 2016), and the 2011 flood in Manitoba, with estimated damage and recovery 

cost of CAD 1.2 billion (Burn and Whitfield, 2016; Manitoba Infrastructure and Transportation, 

2016) are few of the recent examples to mention. In order to better prepare for future flood events 

and mitigate the damages, the provincial and federal governments have initiated reviews of past 

major floods. In Manitoba, the 2011 flood review task force was established to assess the cause of 

the 2011 flood, flood recovery procedures and flood forecasting methodologies (Manitoba 

Infrastructure and Transportation, 2013). A similar task force was established in Alberta to review 

the 2013 historic flood (Alberta WaterSMART, 2013; Flood Recovery Task Force, 2013). Both of 

these reviews emphasized the need for accurate and timely dissemination of flood forecasts to the 
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public and policy and decision makers. Accurate flood forecasting can minimize infrastructural 

damages and the economic and social impacts of floods to communities and can result in measures 

that will enhance ecological conditions (Carsell et al., 2004; Penning-Rowsell et al., 2000). 

5.3.2 Region of Study 

The Upper Assiniboine River Basin at Kamsack in the Prairie Region of Canada is selected for 

this study, see Figure 5-1. It has a total drainage area of 13,000 km2 that flows into the Shellmouth 

Reservoir, also known as Lake of the Prairies. The Shellmouth reservoir, which is retained by the 

Shellmouth dam, is used for multiple purposes including flood control, municipal and irrigation 

water supplies, and recreation. The operation of the dam control structure at the outlet of the 

reservoir is assisted by inflow forecasts that are obtained by simulating multiple hydrologic models 

(Unduche et al., 2018). The Upper Assiniboine River Watershed is dominated by abundant 

potholes, sloughs, and wetlands. These potholes and wetlands significantly increase the surface 

storage capacity through the fill-and-spill process in potholes during snowmelt and/or rainfall 

periods and, consecutively affect the ratio of contributing versus non-contributing area to 

streamflow (Fang et al., 2007; Pomeroy et al., 2005). In addition to the potholes and wetlands, the 

upper Assiniboine River watershed is also characterized by the presence of poorly developed 

stream networks that considerably affect the intensity and timing of surface runoff (Fang et al., 

2007). The other complexity of the upper Assiniboine River watershed rises from the frozen 

ground effect during spring melt. The frozen ground condition reduces infiltration rate during the 

freshet period and remarkably increases the runoff intensity at the outlet (Hayashi et al., 2003).  

The Canadian prairie is a semi-arid region with long, cold winters and short, warm summers 

with perennial flow regime in the Upper Assiniboine River (Upper Assiniboine River Basin Study, 

2000). The continental polar air mass that basically resides over this region creates relatively low 
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amounts of precipitation (Mcginn, 2010). The precipitation amount in this region is highly variable 

and according to Shepherd and McGinn (2003), the annual precipitation over the entire Canadian 

Prairie region ranges from an annual low of 300 mm to a high of 550 mm with a mean value of 

486 mm. Around 70–80% of precipitation is received as rain in the Canadian prairies (Wheaton, 

1998). Within the simulation period used in this study (that is between 1994 and 2017), the 

average, lowest, and highest annual precipitation amounts are 520 mm, 395.1 mm, and 668.1 mm, 

respectively. 

The input data quality check is not a part of this study and the HFC of MI were previously 

conducted a rigorous quality control mechanism on the raw historical meteorological data obtained 

from the Environment and Climate Change Canada weather stations. The data quality check tasks 

included filling missing values (about three percent) in daily temperature and daily precipitation 

time series by interpolating data from nearby stations and using the area ratio method. The 

precipitation data were not corrected for rain-gauge undercatch due to plugging, a considerable 

source of error for precipitation data in snow-dominated regions as discussed in Rasmussen et al. 

(2012), and need to be corrected in future research. 
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Figure 5-1: Map of the study area in Canada. Adopted from (Muhammad et al., 2018) 

5.3.3 Hydrologic Models 

The list of hydrologic models that have been applied for flood forecasting and historical reanalysis 

at HFC of MI include the WATFLOOD™ model (Kouwen, 2010), the Hydrologiska Byråns 

Vattenbalansavdelning (HBV) model (Lindström et al., 1997), the Hydrologic Modelling System 

(HEC-HMS) developed by the US Army Corps of Engineers (USACE, 2017), and the Hydrologic 

Simulation Program-Fortran (HSPF) developed by Bicknell et al. (2001). 

These models have significantly different levels of complexity. WATFLOOD and HBV-EC 

models are distributed but HEC-HMS and HSPF are respectively lumped and semi-distributed 

models. The winter processes simulation is another main difference between these models. The 

winter processes have a major contribution to shaping the hydrograph from the beginning of 

freeze-up to the freshet period. All the models simulate snow accumulation and melting processes 

but only the WATFLOOD model is able to simulate the winter processes such as ice formation 
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and channel/lake freeze-up. This study is solely focused on the hydrologic models that are in 

operation at Hydrologic Forecast Centre (HFC) of MI and use conceptual methods for the 

hydrological processes. However, more advanced physically-based hydrologic models need to be 

set up at HFC to help them have a better simulation. Information regarding the model structure 

and main characteristics of each model in terms of input requirements and process representation 

of each module are found in the following and readers are referred to Unduche et al. (2018) for 

more detail about the Upper Assiniboine River Basin models such as digital elevation model and 

land cover map. 

5.3.3.1 WATFLOOD Model (Kouwen, 2016) 

The WATFLOOD hydrologic model was first developed in 1973 for long-term hydrological 

simulation and flood forecasting. This model uses conceptual approaches for simulating the 

hydrological processes, but the streamflow routing is based on physical methods. WATFLOOD 

has been under continuous development in the past four decades, for example Stadnyk et al. 

(2013) made it capable of simulating stable water isotopes to make the model applicable to remote 

basins that are minimally gauged and Kouwen (2010) added the reservoir operation simulation 

component to it. The model maintains both energy and water balances to respectively calculate the 

losses through evapotranspiration and outflow from the basin. It uses a simple conceptual approach 

for the winter processes simulation that cuts off evaporation, starts sublimation, and stops direct 

precipitation from being added to the streamflow. Land cover, precipitation, and temperature data 

are the minimum required datasets for WATFLOOD; however, it can incorporate information 

about snow depth, solar radiation, wind speed, humidity, and soil moisture as spatially distributed 

input variables. WATFLOOD includes data pre-processing tools to convert the input data points 

into gridded data sets. The model works based on the grouped response unit (GRU) as the smallest 
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computational component that assumes regions with similar land cover have similar soil type and 

topography. Therefore, the hydrologically significant land cover classes are placed in one GRU in 

each grid cell if the land cover resolution is higher than the cell size. This way, the parameters are 

associated with the land cover classes rather than the grid cells, that is, each grid cell has the same 

parametrization. The contribution of each land cover class to the runoff is calculated based on their 

coverage in each cell. The total hydrological response for a cell is equal to the summation of GRU 

responses for the cell. The hydrological responses are routed from the upstream to downstream 

cells connected by the drainage network. 

The drainage of the study basin is modelled with 980 cells at 0.09° longitude and 0.06° latitude 

(7 × 6 km2). Each cell is further sub-divided into eight general GRUs based on land classes that 

are croplands, grasslands, deciduous forest, coniferous forest, mixed forest, wetlands, water, and 

impervious lands. Six river classes are also identified for streamflow routing purposes based on 

natural boundaries and the nature of streamflow. Further details about WATFLOOD can be found 

in Kouwen (2016). 

5.3.3.2 HEC-HMS Model (Feldman, 2000) 

The conceptual Hydrologic Modelling System (HEC-HMS) has long been used for flood 

forecasting and control due to its advanced graphical user interface and flexibility of methods 

selection for the hydrological process calculations. HEC-HMS is a semi-distributed hydrologic 

model that is developed for the spatiotemporal hydrologic simulation of a river basin with stream 

channels branching to form a tree-like pattern (USACE, 2017). It models the entire basin by 

multiple sub-basin and reach elements. Lump models are primarily used for the simulation of 

hydrological processes in each sub-basin element, and the resulted outflow in each sub-basin is 
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routed downstream through reach elements. User is able to choose interactively among different 

methods of precipitation distribution across the watershed, loss models, direct runoff, base flow, 

and streamflow channel routing. Given precipitation, the outflow from a sub-basin element, as a 

representative of the physical watershed, is computed by the summation of the overland flow, 

interflow and base flow components after subtracting losses due to deep percolation and 

evapotranspiration. A portion of excess precipitation turns directly into the overland flow and 

another portion infiltrates into the soil layer. A portion of the infiltrated water then moves vertically 

to the land surface via capillary effect and moves horizontally as interflow to the channel. The 

other portion of the infiltrated water also percolates to the groundwater aquifer and, after losing to 

the deep groundwater, moves horizontally until it is discharged as base flow to the stream. The 

outflow from a sub-basin is routed downstream if it enters a reach element to account for river 

channel flow attenuation. 

Three lumped sub-basin elements are defined for the study area, two of which with outlets at 

Whitesand and Sturgis (see Figure 5-1) and one element for the remaining portion of the Upper 

Assiniboine River Basin from the outlet of the other sub-basin elements to the outlet at Kamsack. 

The outflow from the sub-basin elements are routed downstream through the reach elements and 

then aggregated by defining junction elements. The HEC-HMS model of this study uses the soil 

moisture accounting model, SCS unit hydrograph, linear reservoir, and Muskingum-Cunge 

methods respectively for simulating runoff volume, direct runoff, base flow, and channel routing 

(Unduche et al., 2018). The hyetograph of mean areal precipitation over a watershed is derived by 

applying the inverse-distance-squared weighting method to precipitation gauges. The Priestley 

Taylor method is selected for evapotranspiration and the temperature index method is the only 
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option for snowmelt calculation in HEC-HMS, which represents a conceptual snowpack energy 

balance. 

5.3.3.3 HBV-EC Model (Moore, 1993) 

The conceptual HBV-EC (Hydrologiska Byråns Vattenbalansavdelning-Environment Canada) 

hydrologic model was developed by Moore (1993) that accounts for a glacier routine in the model 

structure. HBV-EC is used for forecasting as it proved to be effective and efficient in simulating 

streamflow in a wide variety of climatic and physiographic conditions, e.g., Beck et al. (2016), Te 

Linde et al. (2008), Vetter et al. (2015), Zhang and Lindström (1996). HBV-EC model works based 

on the grouped response unit concept. Each GRU contains regions with similar elevation, slope, 

aspect, and land cover. The model accepts only four land cover type, that are forest (densely 

vegetated), open (sparsely vegetated or non-vegetated), glacier, and water (e.g., lake and other 

types of wetlands). HBV-EC also divides a watershed into climate zones with unique 

parametrization to account for lateral climatic gradients across a watershed. The snowmelt rate 

varies as a function of terrain slope or aspect within an area of a watershed with the same climate 

zone, elevation band, and land use class. 

HBV-EC requires daily precipitation and temperature in conjunction with long-term monthly 

potential evaporation for a successful hydrologic modelling (Bergström, 1995; Hamilton et al., 

2000; Zegre, 2008). The model then uses the degree-day method (Hamilton et al., 2000) for 

snowmelt and snow accumulation to calculate the volume of liquid released water. The released 

water from the snowmelt, if any, is added to the rainwater after subtracting evaporation as a 

function of soil moisture. A portion of the released water runs off quickly as fast discharge and the 
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remainder percolates into a lower linear reservoir that generates slow discharge or base flow 

(Grillakis et al., 2010; Zegre, 2008). 

In this study, the HBV-EC model of the Upper Assiniboine River Basin encompasses four 

major climate zones and it is developed and run in Green-Kenue (Canadian Hydraulic Centre, 

2010), a freely available data processing tool. Readers are referred to Bergström (1995), Lindström 

et al. (1997) for further details about HBV-EC structure. 

5.3.3.4  HSPF Model 

Hydrologic Simulation Program-Fortran (HSPF) is a conceptual model developed by Bicknell et 

al. (1996) for continuous modelling of the hydrological processes, point, and non-point source 

pollutant loadings in agricultural basins based on water balance. Modellers are empowered to 

operate the model in different temporal scales from minute to day. Weather data and basin 

morphology characteristics such as land use, drainage system, soil type, and topography are 

required for the runoff response quantification. The HSPF model partitions the watershed into sub-

basins with similar topographic characteristics. Each sub-basin is further sub-divided into multiple 

smaller units to account for land use variations inside the sub-basin elements. Each unit is called 

hydrologic response unit that groups land uses with similar hydrological response. Each sub-basin 

spills into a reach element and the overland flow (pervious and impervious lands), base flow 

(pervious lands), and interflow (pervious lands) from the local drainage is summed up with the 

inflows from upstream reaches and routed downstream by using the stage-discharge-volume 

relationship estimated by the user for the element. The HSPF model uses the kinematic wave 

assumption for the channel routing. The air temperature varies with altitude. The model simulates 

a wide range of hydrological processes, including snowmelt and snow accumulation, infiltration, 
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percolation, soil moisture, surface retention, interflow, base flow, evapotranspiration, and surface 

flow. For more in-depth information regarding the model structure, concepts, and applications 

readers are referred to Bicknell et al. (2001), Duda et al. (2012), Kim et al. (2007), Xie and Lian 

(2013). 

The spatial breakdown of the basin is user-specific and the Upper Assiniboine River Basin in 

this paper is divided into 88 reach elements based on the topography and drainage system. Six land 

use type including upland and lowland glacial, glaciolacustrine, and glaciofluvial are assigned to 

the reach elements. Each element is given the portion of drainage area covered by each land cover 

type. The degree-day method is used for snowmelt and snow accumulation processes. 

 

5.3.4  Model Calibration 

5.3.4.1 Model Warm-up, Calibration and Validation Periods 

Daily time series are used for hydrologic modelling of the Upper Assiniboine River Basin with 

simulation period starting from 1994 and ending in 2017. In order to determine the best out of the 

simulation period for the model calibration, a pre-processing analysis is carried out on the 

precipitation, temperature, and runoff data. Figure 5-2 shows the annual mean flow rate to 

distinguish the wet and dry years from the normal years. The average flow rate in this period is 

equal to 15.023 m3/s and all years falling outside the range [75%, 125%] of the average flow rate 

are considered as dry or wet years. This range is case-dependent and is selected based on visual 

inspection of the time series of streamflow to determine the streamflow variability from year to 

year and include years with relatively low and relatively high water volume in the calibration. 

According to this range and Figure 8-4, 1994, 1998 to 2005, 2008, and 2009 are considered as dry 
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years, and 1995, 2007, 2011, 2012, 2014 and 2016 are considered as wet years. Major 

hydrographic events in the precipitation-runoff-temperature graph (Figure 8-4) is also checked for 

each year to identify years with similar dominant hydrological processes. For instance, a peak flow 

in the freshet period can be assumed to be due to a major snowmelt (e.g. 2009) or rain on snow 

(e.g. 2015) while a peak flow in the mid-summer can be assumed to be caused by major rainfall 

events only (e.g. 2010). Each year is therefore classified into one of the categories in Table 5-1 and 

14 consecutive years from 2001 to 2014 are accordingly used for the calibration as this period 

contains both dry and wet years and encompasses at least one year from each category in Table 

5-1. According to Kouwen (2016), at least one year, preferably dry year, is assumed sufficient for 

WATFLOOD model warm-up. However, 1994 and 1995 that are respectively dry and wet years 

are used for the warm-up to minimize the effect of wet and dry situations on the model 

initialization. 1996 to 2000 and 2015 to 2017 are used for the evaluation of the calibrated models. 

Category 6 in Table 5-1 is between categories 4 and 5. If the hydrologic models are capable of 

simulating years in categories 4 and 5 adequately, they are expected to simulate 2016 as well. That 

is why the only year in category 6 is left for model evaluation. 

Table 5-1: Classification of years based on the dominant hydrological processes. Italic font is used for model 

warm-up, bold font is used for model evaluation years, and normal font is used for calibration years. 

Dominant Hydrological Process Years 

1) Base flow dominated 1994, 2000, 2002 

2) Snowmelt Dominated + High Precipitation in Spring 1995, 1996, 1997, 1999, 2001, 2003, 2006, 2007, 2013, 2015 

3) Snowmelt Dominated + Low Precipitation in Spring 1998, 2004, 2005, 2008, 2009, 2017 

4) Snowmelt Dominated + High Rainfall in Summer 2011, 2014 

5) Rainfall Dominated 2010, 2012 

6) Snowmelt Dominated + Low Rainfall in Summer 2016 
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Figure 5-2: identification of the dry and wet years by comparing the mean annual flow with the long-term 

mean flow rate band (MB) [𝟎. 𝟕𝟓𝑸𝒍𝒐𝒏𝒈−𝒕𝒆𝒓𝒎, 𝟏. 𝟐𝟓𝑸𝒍𝒐𝒏𝒈−𝒕𝒆𝒓𝒎]. SP, CA, and EV respectively stand for spin-up, 

calibration, and evaluation periods. 

5.3.4.2 Flow-Duration Curve Segmentation 

Flow duration curve (FDC) is an effective tool to evaluate multiple aspects of a hydrologic model 

performance against the actual watershed system behavior. Yilmaz et al. (2008) suggested that the 

automatic model calibration should incorporate the partitioning of the flow-duration curve (FDC), 

the sorted logarithmic flow rate plotted against cumulative probability of exceedance, as in Figure 

5-3. They suggested dividing FDC into three segments of high-, low-, and mid-range that represent 

important hydrological signatures. The mid-range flow often forms a straight line in the 

logarithmic scale, (20% to 60% probability of exceedance in this study as in Figure 5-3, and its 

slope shows how flashy the rainfall-runoff relationship is. This is a signature of a watershed 

because it is a function of the soil water retaining capacity. A watershed with low field capacity is 

expected to have a steep mid-segment slope and a higher chance of surface flow, while a flatter 

mid-segment slope signifies slower and more sustained groundwater response (Yilmaz et al., 

2008). The volume of high-flow (0% to 5% probability of exceedance in this study) shows the 

quick flow runoff due to the snowmelt or major rainfall and the volume of low-flow (60% to 100% 
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probability of exceedance in this study) represents the vertical redistribution of water and the base-

flow contribution to the streamflow. FDC does not preserve the sequence of events; therefore, 

metrics defined based on FDC must be accompanied with other metrics such as Nash-Sutcliffe 

Efficiency (NSE) or root mean squared error for model calibration proposes.  

  

Figure 5-3: Segmentation of Flow-Duration Curve at Kamsack Hydrometric Station. The exceedance 

probability ranges [0, 0.05], [0.2, 0.6], and [0.6, 1] respectively denote high-, mid-, and low-flow rate 

partitions. 

5.3.4.3 NSE Decomposition 

Nash-Sutcliffe Efficiency is arguably one of the most widely used metrics in the literature of 

hydrologic model calibration. It specifically stresses the high-flow portion of hydrograph since 

large residuals, i.e. absolute difference between simulation and measured values, usually occur in 

high-flow periods and the fit between the simulation and observation in low-flow periods has a 

minimal effect on the value of NSE. Gupta et al. (2009) showed that NSE is composed of the 

variability index 𝛼, the correlation coefficient 𝑟, and the normalized water balance bias 𝛽𝑛 as 

shown in Equation (29) where, M, S, t, N, 𝑀̅, 𝑆̅, 𝜎𝑀, and 𝜎𝑆 respectively denote measured 

streamflow, simulated streamflow, time in daily scale, total number of time steps, mean of the 
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measured values, mean of simulations, standard deviation of measured values, and standard 

deviation of simulations. 

𝑁𝑆𝐸 = 2𝛼𝑟 − 𝛼2 − 𝛽𝑛
2
 

𝛼 =
𝜎𝑆
𝜎𝑀
, 𝛽𝑛 =

(𝑀̅ − 𝑆̅)

𝜎𝑀
, 𝑟 =

𝑁∑(𝑆𝑡𝑀𝑡) − (∑ 𝑆𝑡)(∑𝑀𝑡)

√(𝑁∑𝑀𝑡
2 − (∑𝑀𝑡)2)(𝑁∑ 𝑆𝑡

2 − (∑ 𝑆𝑡)2)
 

(29) 

The variability index and normalized water balance bias aim to fit the model results to the first 

and second moments of the distribution of the measured streamflow, and the correlation coefficient 

evaluates the model performance in terms of the shape and timing of the hydrograph response to 

rainfall and snowmelt dominated events.  Gupta et al. (2009) showed that the optimal NSE value 

of 1.0 will be achieved when the variability index is equal to correlation coefficient and the bias 

term is equal to zero. This means that 𝛼 is constrained by the value of the correlation coefficient 

and cannot reach its optimal value of one due to the correlation coefficient being always less than 

or equal one. The water balance bias has also a minimal effect on the value of NSE since the 

discrepancy between the mean values is normalized by standard deviation of measured streamflow 

(Gupta et al., 2009). Hence, Gupta et al. (2009) recommended a revised aggregation of these three 

metrics called the Kling-Gupta Efficiency (KGE) or a segregated multi-objective optimization of 

𝛼, 𝑟, and 𝛽𝑛instead of the single-objective optimization of NSE. Each of these components is used 

as one calibration objective, in this study. 

5.3.5  Model Calibration Problem Formulations 

Three different multi-objective problems are formulated to automatically calibrate the four 

hydrologic models of the Upper Assiniboine River Basin. These problems use metrics that are 

common for automatic calibration of hydrologic models. Due to the lack of other information in 
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the region such as evapotranspiration, water quality records, or groundwater data, which increase 

parameter identifiability, the model calibration objectives are error metrics and hydrological 

signatures that are based on streamflow. The comparison between the results of these three 

problems show whether one formulation can guide the optimization algorithm toward better 

solutions. The solution of a multi-objective optimization problem with conflicting objectives is a 

tradeoff or Pareto front between the objectives. The true Pareto front is the global optimal solution 

and any sub-optimal tradeoff such as the result of multi-objective model calibration is often called 

the Pareto approximate front.   

5.3.5.1 P1. Max.Min. Formulation 

The first problem formulation, P1 has three objective functions to 1) maximize the model 

performance over the whole calibration period as in Equation (30), 2) maximize the model 

performance for the most challenging wet year as in Equation (31), and 3) minimize the bias for 

the most challenging dry year as in Equation (32), simultaneously. Since flood forecasting is the 

main goal of models at HFC of MI, NSE that is sensitive to residuals in high-flow periods is 

selected for objectives 1 and 2. If the lowest NSE value based on Equation (30) is maximized, the 

NSE values for other wet years are definitely higher. NSE is not a relevant metric for dry years 

since they are expected to have low or no peak flow rate and there is not a large variability in the 

annual hydrograph. As a result, absolute bias in Equation (32) is selected for the third objective to 

evaluate the model performance for simulating persistent low-flows in dry years. 

𝑓1 = 𝑁𝑆𝐸𝑂𝑣𝑒𝑟𝑎𝑙𝑙 = 1 − ∑ (𝑆𝑡 −𝑀𝑡)
2T

𝑡=t0
∑ (𝑀𝑡 − 𝑀̅)

2T
𝑡=t0

⁄ ,        𝑀̅ =
1

𝑁
∑ 𝑀𝑡
T
𝑡=t0

 (30) 

 𝑓2 = 𝑚𝑎𝑥 {𝑚𝑖𝑛{𝑁𝑆𝐸𝑖|𝑖 ∈ {2001,… ,2014},𝑀𝑖̅̅ ̅ > 1.25𝑀̅}} (31) 
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𝑓3 = 𝑚𝑖𝑛 {𝑚𝑎𝑥 {|
𝑆𝑖̅ − 𝑀̅𝑖

𝑀̅𝑖
| |𝑖 ∈ {2001,… ,2014},𝑀𝑖̅̅ ̅ < 0.75𝑀̅}} (32) 

 

5.3.5.2 P2. FDC Segmentation 

Calibration objectives for the second problem formulation, P2 are based on the hydrological 

signatures recommended by Yilmaz et al. (2008). It has four objectives to maximize the overall 

NSE (f1) as in Equation (30) and find the best fit in all three segments of the simulated and measured 

FDC. Three segments of FDC are identified based on the measured flow at the Kamsack 

hydrometric station. Minimizing the error in estimating the slope of the mid-segment of FDC, 

Equation (33), error in the volume of high-flow, Equation (34), and low-flow rates, Equation (35), 

are three objectives in this problem formulation.  

𝑓2 = 100 ×
|𝑆𝑙𝑜𝑝𝑒𝑆−𝑆𝑙𝑜𝑝𝑒𝑀|

𝑆𝑙𝑜𝑝𝑒𝑀
         𝑆𝑙𝑜𝑝𝑒 =

1

𝑁
∑
log (𝑄𝑡)−log (𝑄𝑡′)

𝑡−𝑡′
,       {𝑡, 𝑡′} = {{𝑡, 𝑡′} ∈ 𝑇| 20% ≤ 𝑇 ≤ 60%} 

𝑁: total number of slopes calculated,    𝑄: flow rate,     𝑇: percent time of exceedance 

(33) 

𝑓3 = 100 ×
|𝐻𝑖𝑔ℎ𝑉𝑜𝑙,𝑆−𝐻𝑖𝑔ℎ𝑉𝑜𝑙,𝑀|

𝐻𝑖𝑔ℎ𝑉𝑜𝑙,𝑀
          𝐻𝑖𝑔ℎ𝑉𝑜𝑙 = ∑(𝑄𝑡) , 𝑡 = {𝑡 ∈ 𝑇| 𝑇 ≤ 5%} 

𝑄: flow rate 

(34) 

𝑓4 = 100 ×
|𝐿𝑜𝑤𝑉𝑜𝑙,𝑆−𝐿𝑜𝑤𝑉𝑜𝑙,𝑀|

𝐿𝑜𝑤𝑉𝑜𝑙,𝑀
,          𝐿𝑜𝑤𝑉𝑜𝑙 = ∑ log (𝑄𝑡) ,            𝑡 = {𝑡 ∈ 𝑇| 60% < 𝑇 ≤ 100%} (35) 

5.3.5.3 P3. NSE Decomposition 

Calibration objectives for the third problem, P3, are three components of the KGE metric shown 

in Equation (36) recommended by Gupta et al. (2009).  

𝑓1 = (𝑟 − 1)
2, 𝑓2 = (𝛼 − 1)

2, 𝑓3 = (𝛽 − 1)
2 = (

𝑆̅

𝑀̅
− 1)

2

 
 

(36) 
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5.3.6  Automatic Calibration Approach 

Rounded archiving-based PA-DDS (Sahraei et al., 2019), a more effective version of Pareto 

Archived-Dynamically Dimensioned Search (Asadzadeh and Tolson, 2013) for solving many-

objective optimization problems, is utilized for the automatic calibration of the hydrologic model 

cases in this paper. PA-DDS commences the search with a random solution generation. If there 

are good quality behavioral solutions (for example, with overall NSE of above 0.5) available prior 

to the optimization, they can be injected by the user as the initial solutions. The PA-DDS structure 

has three key elements, namely dominance relation, selection metric, and perturbation to guide the 

search toward the optimal tradeoff. PA-DDS generates only one solution at a time by perturbing 

the recently archived solution and the corresponding objective functions are evaluated. The 

dominance relation is then applied to assess whether or not the objective values of the generated 

solution surpasses those of the previously archived solutions. If the solution is non-dominated, it 

would be retained in the archive. The archive set contains only non-dominated solutions that means 

none is dominating (or dominated by) any other archived solutions. A solution (parameter set) is 

dominated by another solution if all of its objective functions are worse than the other. A solution 

is dominating another solution if all of its objective function values are better than the other. Two 

solutions are mutually non-dominated if one has at least one objective function better and at least 

one objective function worse than the other solution. 

The hyper-volume contribution selection metric of PA-DDS is used in this paper as it is reported 

the best selection metric for solving general multi-objective optimization problems (Asadzadeh 

and Tolson, 2013). An archived solution that has higher hyper-volume contribution value has more 

chance to be selected for perturbation and subsequent solution generation. (Asadzadeh et al., 

2014b) introduced the convex-hull contribution as the preferred selection metric for model 
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calibration problems with up to three objectives; however, it is not applied in this study because 

P2 has four objectives. The perturbation size is the only parameter of the PA-DDS that has a 

recommended robust value of 0.2 (Asadzadeh and Tolson, 2013). 

The multi-objective calibration of the hydrologic models of this study are not readily available. 

WATFLOOD is equipped with two types of single-objective automatic calibration methods, 

namely, the Pattern Search (Hooke and Jeeves, 1961) and the Dynamically Dimensioned Search 

(DDS) optimization tools (Tolson and Shoemaker, 2007). The user is restricted to only select 

among the statistical metrics defined in WATFLOOD for single-objective calibration of the model. 

The HEC-HMS model uses traditional optimization methods such as univariate gradient and 

Nelder Mead (or downhill simplex method) techniques for fine-tuning the model parameters based 

on minimizing the statistical error metrics. The modeller is restricted to use the Monte-Carlo 

method for the automatic calibration of HBV-EC model and HSPF model is limited to using 

manual calibration. Thus, the need for linking a modern multi-objective optimization tool like PA-

DDS to the hydrologic models for a better model parameter identifiability is undeniable. 

Table 5-2 shows the computational budgets and number of trials for each model. Due to the 

model complexity, simulation time of each hydrologic model, and available computing resources, 

different budgets and trials are considered for their calibration. To calibrate WATFLOOD, three 

independent trials with 5000 iterations per trial (4-5 minutes per solution evaluation) are executed. 

Five, Ten, and Five independent calibration trials are performed respectively for HBV-EC (1-1.5 

minutes per solution evaluation), HEC-HMS (35-50 seconds per solution evaluation), and HSPF 

(40-80 seconds per solution evaluation) models with 10000 solution evaluations for HBV-EC and 

HEC-HMS and 5000 solution evaluations for HSPF. The results of multiple trials for each 

calibration problem are aggregated and normalized to between zero and one after removing 
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solutions that produced negative overall NSE values. Then, the solution with the smallest weighted 

Euclidean distance to known ideal objective values is selected as the preferred solution for each 

problem formulation based on the weight factors presented in Table 5-2. The objectives are 

normalized to between zero and one to minimize the scaling effect of the objective functions on 

the Euclidean distance calculation. A higher weight is given to the overall NSE, correlation 

coefficient, and variability index to emphasize the high-flow rates since the flood forecast and 

control is in higher priority for HFC (see Table 5-2). The preferred solution for each model is used 

to create the best calibrated model for the model-wrapper. 

Table 5-2: Hydrologic model parameters and experimental setups 

Hydrologic 

Model 

# of 

Parameters 

# of Trials per 

Objective suite 

# of simulations 

per Trial 

P1 weights P2 Weights P3 Weights 

HBV-EC 19 5 10000 

(0.4,0.4,0.2) (0.4,0.3,0.2,0.1) (0.4,0.4,0.2) 
WATFLOOD 114 3 5000 

HEC-HMS 14 5 10000 

HSPF 19 5 5000 

 

5.3.7 Linking PA-DDS to the Hydrologic Models 

In order to use an external optimization algorithm such as PA-DDS to calibrate the hydrologic 

models of this study, a MATLAB ® function is developed to receive the set of parameter values 

from the optimization algorithm, update the model input files, run the stand-alone model 

application, load the results and calculate the objective functions. The structure of this code is 

shown Figure 5-4. 
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5.3.8 Segmentation-Based Model-Wrapper 

The novel multi-modelling approach developed in this study is based on the hydrologic modelling 

practice at HFC of MI. The forecast results from different hydrologic models are quantitatively 

and visually compared for more accurate prediction of the inflow rate to the Shellmouth reservoir 

in high-flow and low-flow seasons in order to control flood and supply water to downstream 

communities.  

 

Figure 5-4: HBV-EC, WATFLOOD, HEC-HMS, and HSPF model calibration process using an external 

optimization tool 

The multi-modelling approach proposed in this study is based on the weighted average of the 

simulations of the calibrated HBV-EC, WATFLOOD, HEC-HMS, and HSPF models. In practice, 

one model surpasses another depending on the flow rate and season. This is due to the structure of 

the models and the simulation performance of a model for high-flow and low-flow may be 

different. As a result, the predictability of these models are separately evaluated for high-, mid-, 
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and low-flow periods, which is also in line with the practical operations at HFC of MI. Equation 

(37) shows the weighted average multi-modelling for each time step (𝑄𝑀𝑢𝑙𝑡𝑖
𝑡 ) as a system of linear 

equations. 𝑤 is the weight between zero and one and the summation of the weights for each linear 

equation should be equal to one. According to the FDC partitioning of the calibration period 

described in Figure 5-3, 1.7 m3/s and 15.7 m3/s are used for the mid-flow range with relatively 

constant slope from 0.6 to 0.2 probability of exceedance, and beyond this range is considered as 

either high-flow or low-flow condition for the model-wrapper. The optimal value of the weights 

is achieved by minimizing the NSE metric between the multi-modelling simulations and measured 

streamflow data for the calibration period, shown in Equation (38) as constrained minimization. 

𝑆𝑀𝑢𝑙𝑡𝑖
𝑡 = {

𝑤1𝑄𝐻𝐵𝑉𝐸𝐶
𝑡 + 𝑤2𝑄𝑊𝐴𝑇𝐹𝐿𝑂𝑂𝐷

𝑡 + 𝑤3𝑄𝐻𝐸𝐶𝐻𝑀𝑆
𝑡 + 𝑤4𝑄𝐻𝑆𝑃𝐹

𝑡                𝑀𝑡 ≥ 15.7

𝑤5𝑄𝐻𝐵𝑉𝐸𝐶
𝑡 + 𝑤6𝑄𝑊𝐴𝑇𝐹𝐿𝑂𝑂𝐷

𝑡 + 𝑤7𝑄𝐻𝐸𝐶𝐻𝑀𝑆
𝑡 + 𝑤8𝑄𝐻𝑆𝑃𝐹

𝑡     1.7 < 𝑀𝑡 < 15.7

𝑤9𝑄𝐻𝐵𝑉𝐸𝐶
𝑡 + 𝑤10𝑄𝑊𝐴𝑇𝐹𝐿𝑂𝑂𝐷

𝑡 + 𝑤11𝑄𝐻𝐸𝐶𝐻𝑀𝑆
𝑡 + 𝑤12𝑄𝐻𝑆𝑃𝐹

𝑡          𝑀𝑡 ≤ 1.7

 (37) 

𝑀𝑖𝑛.  {1 −∑(𝑆𝑀𝑢𝑙𝑡𝑖
𝑡 −𝑀𝑡)

2

T

𝑡=t0

∑(𝑀𝑡 − 𝑀̅)
2

T

𝑡=t0

⁄ } 

Subject to {

0 ≤ 𝑤𝑖 ≤ 1              
𝑤1 +𝑤2 +𝑤3 +𝑤4 = 1 

    

𝑤5 +𝑤6 +𝑤7 +𝑤8 = 1     
𝑤9 +𝑤10 +𝑤11 +𝑤12 = 1

 

(38) 

 

5.4 Results and Discussion 

Two comparisons are made for each model: (1) between the calibration problem formulations and 

(2) between the calibrated models and the model-wrapper. The comparisons are mainly based on 

the heat map visualization of daily NSE values for each year in Figure 5-5 and annual streamflow 

hydrograph for the calibration and evaluation periods in Figure 8-5. The main reason for 
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considering NSE as the main criteria for the model performance is that it is highly sensitive to the 

model performance in estimating the timing and volume of high-flow events that are of particular 

interest for flood forecasting at HFC of MI. Moreover, NSE has been a very popular metric that 

is normalized for evaluating the hydrologic model performance; therefore, guidelines had been 

developed for interpreting the model performance based on its value. For example Moriasi et al. 

(2007) noted that, negative values of daily NSE can be interpreted as inadequate simulation, while 

NSE values higher than 0.5 can be interpreted as adequate model simulation. A negative NSE is 

colored in red and a positive NSE of higher than 0.5 is colored in blue in Figure 5-5. The annual 

mean flow rate in Figure 5-5 shows that the simulation period begins with a relatively dry 

hydrological cycle from 1996 to 2005 and transitions into a wet cycle from 2006 to 2017. The 

annual precipitation and annual mean temperature as the most important input variables are also 

visualized in Figure 5-5 to distinguish between all combinations of humid, cool, dry, and hot 

years. According to the annual precipitation, 2017 and 2010 are the years with extremely dry and 

extremely humid weather conditions, respectively. 2012 and 2014 are the hottest (red) and coolest 

years (blue) in the entire simulation period.  

5.4.1  Single Model Performance Comparison 

Calibrated models in this study are compared to the same models that were calibrated by Unduche 

et al. (2018) and are currently being used at HFC of MI for flood forecasting. This comparison 

highlights the advantages of the multi-objective calibration conducted in this research. According 

to Figure 5-5, the parameter settings found by the multi-objective automatic calibration using any 

optimization problem formulation (P1, P2, or P3) outperforms the previously used settings. The 

number of years with negative NSE values is reduced and the model performance in years with 

positive NSE values is improved. The previous settings that are used for the HBV-EC, 
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WATFLOOD, HEC-HMS, and HSPF models fail to simulate the annual peak streamflow in 8, 6, 

8, and 7 years out of the 14-year calibration period (2001-2014) and 5, 3, 5, and 5 years out of 8-

year evaluation period, respectively, by giving negative annual NSE values. According to Figure 

8-5, the hydrologic models with the old setting tend to generally overestimate the peak flow rate 

except for WATFLOOD, which had been previously calibrated with the single-objective automatic 

calibration of overall NSE metric. Moreover, the calibrated models in this study generally give a 

more accurate simulation of the peak flows in the wet and normal years. 

All hydrologic models calibrated in this study or by Unduche et al. (2018) failed to adequately 

simulate the extremely and persistently dry years 2002 to 2005 (e.g. year 2002 with no peak 

throughout the year). All the models overestimated streamflow in this period. Therefore, it is 

concluded that all models that are operational at HFC of MI lack hydrological processes that are 

active in persistent low-flow periods. These processes should be related to the interaction between 

groundwater and surface water.  

5.4.2  Problem Formulation Comparison 

In general, none of the three problem formulations is superior for calibrating all the models. HEC-

HMS and HSPF calibrated using any of the three problem formulations can adequately simulate 

peak flows, see Figure 8-5. The simulated peak flow by P1 as a result of snowmelt is generally 

lower than the simulated peak flow by P2 and P3 for all hydrologic models. P1 tends to find a 

setting that decreases the variance for annual NSE and annual bias during the calibration period by 

improving these metrics for the most challenging years toward their ideal values. Using P1 

formulation for the calibration of HEC-HMS and HBV-EC results in better estimation of peak 
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flow in freshet period than P2 and P3. However, HBV-EC and WATFLOOD underestimate the 

high-flow rates when they are calibrated with P1.  

According to Figure 5-5, the HBV-EC model calibrated with P1 captures more number of years 

with positive NSE values (16 years) compared to the same model calibrated using P2 or P3 (14 

years). Despite higher overall NSE value of 0.54, HBV-EC calibrated with P1 generally 

underestimates the daily average annual peak flow in Figure 8-5, and P2 and P3 formulations with 

respective NSE values of 0.50 and 0.48 better represent the streamflow variability for the HBV-

EC model. Therefore, the preferred parameter values found by P3 is selected for multi-modelling 

since the major peak flow rates from 2010 to 2015 are more accurately simulated (not shown in 

this paper), compared to P1 and P2, and HFC is more concerned about major flood forecast 

accuracy.  

Likewise, the setting identified with P1 formulation for WATFLOOD excels those with P2 and 

P3 as its heat map column in Figure 5-5 is more blue-dominated, 17 versus 13 and 15 years, 

respectively. However, the peak flow rates for P1 are generally underestimated based on the annual 

streamflow hydrograph in Figure 8-5. The WATFLOOD setting identified by P3 is therefore 

preferred for the multi-modelling since there is a balance between dry year and wet year simulation 

accuracies compared to P2. 

As regards the HEC-HMS and HSPF models, the parameter set found by P1 has the best 

performance among other settings and its match to the snowmelt-dominated peak flow is preferred 

to P2 and P3 (see Figure 8-5). The preferred solution of P1 is thus selected for the HEC-HMS and 

HSPF models for the multi-modelling analysis. 
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1

9
9
6

 ~
 2

0
1

7
 

0
.5

 

  3
9
5
 

  

-0
.5

2
 

             NSE<0                       

  

  

    
  

         
   

  
  

  

    
  

          
   

  
    

    

      
  

          
   

  
    

    

      
  

          
   

  

4
4
.5

2
 

  

6
6
8

 

  

4
.3

1
 

    
  

          
   

  
  

  

    
  

         
   

  
  

  

             NSE>0.5                       

Figure 5-5: Performance comparison for HBV-EC, WATFLOOD, HEC-HMS, and HSPF with previous 

setting and model-wrapper based on annual NSE values for a simulation period from 1996 to 2017. 
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5.4.3 Multi-Model Simulation 

Figure 5-5 shows that the proposed multi-model that assigns weight to each model based on the 

flow duration curve segmentation results in higher simulation accuracy and better fit in FDC value 

compared to individual model simulation. As shown in Equation (39), the model-wrapper weight 

factors are obtained by maximizing the overall NSE value for the calibration period. Each model 

has a different contribution to the multi-model flow rate simulation. HSPF has the highest 

contribution (68%) to the multi-model for simulating high-flows. WATFLOOD contributes to the 

simulation of high-flows as well with a weight equal to 32%, but its most significant contribution 

is to the simulation of mid-range and low-flow periods with weights equal to 90% and 99%, 

respectively. The high contribution and simulation accuracy of WATFLOOD is also evident from 

Figure 5-7, especially for flow rates with frequency of exceedance higher than 35%. The low-flow 

condition mostly occurs in the winter that is base flow or groundwater flow dominated. The main 

reason for a more accurate simulation of low-flows is that WATFLOOD is capable of simulating 

channel and lake ice formation, freeze-up, and sublimation processes in the cold months of the 

year. WATFLOOD automatically stops the evapotranspiration and activates sublimation in the 

winter. However, other models only consider the snow accumulation and melting processes and 

the winter processes are not simulated. For this reason, the low flow rate is mostly overestimated, 

an example of which is HSPF model in Figure 5-6. 

Figure 5-6 displays the worst (1999) and best (2017) performing hydrograph simulated by the 

model-wrapper in the evaluation period compared to the hydrograph simulated by its individual 

components that are HSPF and WATFLOOD. Since model-wrapper is the optimal weighted 

average version of WATFLOOD and HSPF, its hydrograph falls between its individual 

components. Peak flow as a result of snowmelt is simulated but WATFLOOD starts an early melt 
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process in March due to experiencing a temperature warmer than the calibrated base temperature 

for different land cover classes while soil is still frozen and infiltration is low. The snowmelt 

process is conceptualized and it does not consider the temporal changes such as early or late melt. 

As a result, the calibrated WATFLOOD model looks for the best base temperature and other 

snowmelt parameters to give the overall best fit in the calibration period. In addition, WATFLOOD 

gives an overestimated response to the summer rainfall in June in 1999 and similar years owing to 

experiencing high summer peaks in calibration period. One reason is that WATFLOOD relates 

soil characteristics to land cover classes and it assumes that areas with similar land cover have 

similar soil properties. However, HSPF that is distributed based on soil properties, gives a more 

reasonable estimation of streamflow in June, 1999 compared to WATFLOOD. 

𝑆𝑀𝑢𝑙𝑡𝑖
𝑡 = {

0.3206𝑄𝑊𝐴𝑇𝐹𝐿𝑂𝑂𝐷
𝑡 + 0.6792𝑄𝐻𝑆𝑃𝐹

𝑡                                           𝑀𝑡 ≥ 15.7 𝑐𝑚𝑠

0.897𝑄𝑊𝐴𝑇𝐹𝐿𝑂𝑂𝐷
𝑡 + 0.103𝑄𝐻𝑆𝑃𝐹

𝑡                           1.7 𝑐𝑚𝑠 < 𝑀𝑡 < 15.7 𝑐𝑚𝑠

0.9922𝑄𝑊𝐴𝑇𝐹𝐿𝑂𝑂𝐷
𝑡  + 0.0035𝑄𝐻𝑆𝑃𝐹

𝑡                                        𝑀𝑡 ≤ 1.7  𝑐𝑚𝑠

 (39) 

  

Figure 5-6: simulated hydrographs of individual hydrologic models compared with model-wrapper. 1999 and 

2017 are respectively the worst and the best performing simulations based on model-wrapper in the 

evaluation period. 
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Figure 5-7: Flow-duration curve comparison of the model-wrapper against its hydrologic model components 

in calibration period 

Multi-model combination technique proposed in this study improves the overall and year-to-

year daily NSE metric in the calibration and evaluation periods. As is evident from the heat map 

in Figure 5-5, 17 out of 22 years of simulation have positive annual NSE values, 14 of which are 

greater than 0.5 significantly improving the performance of its individual hydrologic model 

components. Figure 5-8 also compares the overall performance of multi-modelling against single 

hydrologic modelling based on NSE and its log-transformed NSE (Log-NSE) to check the 

goodness-of-fit for high- and low-flow situations, respectively. The red continuous line with circle 

marker in Figure 5-8 represents the model-wrapper performance that is obtained by considering 

all the hydrologic models. Figure 5-8 demonstrates that the model-wrapper performance surpasses 

its individual model components for the entire simulation period except for 2015 to 2017 when it 

performs slightly worse than HSPF based on NSE and HBV-EC based on Log-NSE. For instance, 

HSPF alone fails to simulate the evaluation period 1996 to 2000 by giving negative NSE while its 

combination with other models increases the NSE value to 0.43 in this period. This improvement 

is also demonstrated in Figure 5-9 in both the calibration and evaluation stages that daily average 

annual streamflow hydrograph of the model-wrapper better represents its measured counterpart in 
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the peak, and rising and falling limbs. Moreover, the model-wrapper gives out a simulation range 

and a simulation mean that are consistent with the range and mean of daily streamflow in both the 

calibration and evaluation periods. 

Optimal weights of 0.0 for HBV-EC and HEC-HMS show that these two models do not 

contribute to the multi-model. According to Figure 5-7, FDC of HEC-HMS is significantly 

different compared to that for the measured streamflow in all three segments of FDC; therefore, 

the multi-model does not benefit from HEC-HMS simulation in high-, mid-range, or low-flow 

periods. The optimal weight of HBV-EC is 0.0 as well, because as shown in Figure 5-7, it is very 

similar to HSPF; however, HSPF performs significantly better in high-flow periods that have the 

highest influence on the overall NSE. When HSPF or WATFLOOD is removed from the pool of 

models used for multi-modelling, HEC-HMS and HBV-EC contribute to the multi-model. If HSPF 

is removed, the HBV-EC and HEC-HMS receive optimal weighs of 27.3% and 5.9% respectively 

for simulating high-flows but close to zero for simulating mid- and low-flow partitions. On the 

other hand, by eliminating WATFLOOD and keeping HSPF in the pool of models, HBV-EC 

contributes to the simulation of low-flow rates with a weight of 22.5% but still does not contribute 

to the simulation of high- and mid-range flows. In this case, HEC-HMS would only contribute 

9.5% to the simulation of mid-range flows. The performance of the aforementioned two variants 

of the multi-model is represented by the dashed and dot lines, respectively in Figure 5-8, showing 

that including all hydrologic models in the multi-model combination increases the reliability of 

the multi-model by producing more consistently positive and relatively high NSE and log-

transformed NSE values due to decreasing the structural uncertainty in the hydrologic models. 
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Figure 5-8: Overall performance metric comparison between the model-wrapper technique and its hydrologic 

model components for calibration (2001-2014) and evaluation periods (1996-2000 and 2015-2017) 

  

Figure 5-9: Daily average annual streamflow hydrograph of the model-wrapper technique for the calibration 

and evaluation periods at Kamsack outlet station compared to the measured streamflow data. The Day 

number (1-365) on the horizontal axis starts from January 1st and ends on December 31st. The shaded area in 

grey and pink respectively demonstrate the historical range and multi-model simulation range of daily 

streamflow for the calibration and evaluation periods. 
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5.5 Study Limitations 

In this study, we limited the hydrologic models to those that are currently operational at HFC of 

MI. This does not mean that these models are the best ones for flood forecasting upstream of the 

Shellmouth reservoir. One would expect that including other models that perform better than the 

models used at HFC of MI individually would improve the overall performance of the multi-

model as well. Moreover, each hydrologic model in this study has a significantly different number 

of parameters, with WATFLOOD having the highest number of parameters (114) and HEC-HMS 

having the lowest number of parameters (14). In general, calibrating more parameters require 

more computational budget; therefore, WATFLOOD model should have been calibrated with a 

high number of solution evaluations; however, such computational resources were not available 

for this study. It should be also noted that more solution evaluations can only improve the 

calibration results. Therefore, we believe that this limitation does not have any negative impact 

on the results and conclusion. However, we believe that the WATFLOOD model used at HFC of 

MI has too many parameters to be identifiable. Therefore, we suggest that parameters of this 

model be grouped for calibration, in an approach similar to the calibration of curve number 

parameter of SWAT in Abbaspour (2013). 

The parameters of the HEC-HMS model are assumed spatially constant. Automatically 

calibrated HEC-HMS model performs weakly for the streamflow simulation of Upper Assiniboine 

River Basin at Kamsack with an overall NSE of 0.31 (problem type P1) for the calibration period. 

In an attempt to increase the model simulation accuracy, each sub-basin element was considered 

to have a unique parameterization for HEC-HMS. However, this increases the number of 

parameters and leads to ill-conditioning in the model. Ill-conditioning means that it has a high 

condition number, and it is very sensitive to the number of decimals in its parameter values. A 
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small change in the parameter values changes the simulation results drastically. During the 

optimization, PA-DDS generates a new parameter set and archives it, if non-dominated, with full-

precision level but it is evaluated with lower precision since the HEC-HMS model, first, rounds 

up or down the full-precision parameter values in the parameter file to lower-decimal values, then 

it simulates the flow rate. The parameter distribution in the model domain would be highly non-

smooth and consist of micro-scale nonlinearities if it is assumed that parameters are spatially 

independent. By taking spatial independency assumption into consideration, inappropriate time 

stepping scheme and internal model thresholds lead to an ill-conditioned model (Kavetski et al., 

2006). This issue is resolvable by implementing the regularization methods on model parameters 

such as Tikhonov regularization (Tikhonov and Arsenin, 1977) or constraining the calibration 

problem by adding additional information about the parameter interdependency and their relations 

with the watershed characteristics (Pokhrel et al., 2008). The implementation of the regularization 

methods is out of the scope of this study and the readers are referred to the mentioned citations to 

better understand the concept of ill-conditioning and regularization. 

5.6 Conclusions 

This study demonstrated a segmentation-based model blending strategy for improving the 

performance of individual hydrologic models. The proposed model-wrapper was successfully 

applied to the models used for flood forecasting at HFC of MI. The previously developed 

hydrologic models at HFC of MI were linked to the PA-DDS multi-objective optimization tool to 

re-calibrate the models using three suites of signature-based calibration objective functions. The 

final best parameter set or preferred solution, found by post-processing the archive set of PA-DDS, 

outperformed the previous versions of the hydrologic models meaning that signature-based multi-

objective calibration increases the simulation accuracy and parameter identifiability. 
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After calibrating the models, a segmentation-based weighted average combination technique 

was built to let each model have a different contribution to the simulation of high-, mid-, and low-

flow ranges. The multi-model had a significantly improved performance compared to each 

individual model. Results showed that HBV-EC and HEC-HMS do not partake in multi-model 

simulation. HSPF is the main contributor to simulation of the flow rates higher than 15.7 m3/s 

(time of exceedance less than 20%) but the WATFLOOD model takes over the simulation of mid- 

and low-flow partitions (less than 15.7 m3/s). Assuming the situation when either HSPF or 

WATFLOOD is not available, the HBV-EC and HEC-HMS models join the multi-model 

combination helping to enhance the model-wrapper simulation in comparison with its individual 

hydrologic model components. This means that none of the hydrologic models is able to 

individually capture all the aspects of simulation error distribution. Therefore, grouping the models 

increases the performance and decreases the model structural uncertainty. The segmentation-based 

model-wrapper technique is in line with the practical operations at the HFC of MI for predicting 

inflow to the Shellmouth Reservoir at downstream during low-flow and high-flow seasons. It is 

highly encouraged to include more physically-based hydrologic models that take the temporal 

variations such as early or late melt and spatial distribution of soil properties into consideration to 

increase the timing and magnitude accuracy of peak flows resulted from snowmelt and summer 

rainfall. 

The Upper Assiniboine River Basin in the prairie region of Canada is chosen for the method 

implementation, results demonstration and discussions in this study. However, the signature-based 

multi-objective calibration and segmentation-based model combination techniques are not limited 

to the Upper Assiniboine River Basin and its hydrologic models in this paper. The model-wrapper 

is expected to perform better than its individual model components regardless of region of study 
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and type of hydrologic modelling. If one model, outperform other individual models in all aspects 

of simulation error distribution, the weight factor in the proposed model-wrapper converges to one 

in all ranges of measured streamflow. More broadly, research is needed to study the impact of 

more physically-based hydrologic models on flood forecasting performance of the model blending 

method in regions with different dominant hydrological processes.  

The signature-based calibration metrics in this study were defined solely based on streamflow 

measurements that were in line with the purpose of the models for flood forecasting. However, in 

general, modellers are highly encouraged to include other calibration metrics in the optimization 

that explain other components of hydrological processes, such as the interaction between surface 

water and groundwater, evapotranspiration and sublimation, snow pack, upon existence of 

information and/or measured data. The models in this study were evaluated temporally but the 

spatial evaluation would help increase parameter identifiability if hydrometric observations exist 

at multiple locations across the basin. 

Future work can also focus on considering the ill-conditioning issues for the multi-objective 

calibration of the hydrologic models of this study via implementation of the regularization methods 

on the parameters for a better-conditioned and more identifiable watershed system (Kavetski et al., 

2006). This is facilitated by exploiting additional information from the system such as spatial 

dependency of the model parameters on the watershed properties such as curve number, soil 

properties, and land cover to decrease the parameter space dimensionality and constrain the 

parameters not to take on arbitrary values in their feasible ranges (Pokhrel et al., 2012, 2008).  
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6 RESEARCH SUMMARY, RESEARCH SIGNIFICANCE, 

LIMITATIONS, AND RECOMMENDATIONS FOR FUTURE 

WORK  

6.1 Summary of Thesis Findings 

Multi-objective global optimization algorithms have pushed the boundaries of our knowledge 

about water resources engineering optimization. Water resources engineering and design problems 

essentially have many objectives with nonlinear, multi-modal characteristics, and their 

optimization demands modern multi-objective algorithms that efficiently converge to a diverse set 

of solutions as close as possible to the Pareto optimal set. This dissertation aims at addressing the 

dominance resistance issue and preserving solutions diversity for water resources engineering 

problems.  

In the first phase of this thesis, the effect of a high number of objectives on the optimization 

process was studied. As the number of objective function increases, the fraction of non-dominated 

space in the objective space exponentially increases and mainstream multi-objective global 

optimization algorithms are not able to effectively solve many-objective problems. An increased 

objective space dimensionality results in a high number of similar alternatives that would quickly 

populate the archive set, which is more deteriorative in an algorithm with a bounded-archive 

structure. Therefore, a rounded-archiving strategy is proposed to tackle dominance resistance and 

solution similarity in the objective space. The proposed method discretizes the objective space 

based on the required resolution for each objective function and prevents retaining multiple 

solutions with finer resolution discrepancies. As opposed to the 𝜀-archiving, the proposed 
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archiving method is ready to use and requires no modification or adding extension to the structure 

of the multi-objective global algorithms to be able to solve many-objective optimization problems. 

The multi-modal property of water resources engineering problems, particularly hydrologic 

model calibration, directed the research towards development of a diversity-based multi-objective 

optimization algorithm for retaining optimal and near-optimal tradeoffs. For this purpose, a 

density-based clustering strategy is utilized to identify dissimilar options by placing similar 

solutions in a cluster. The dominance archiving strategy only compares solutions in the same group 

and dominated solutions in a cluster are eliminated. The designed selection metric for this 

algorithm gives more evolving opportunities to clusters that are distant from other clusters in the 

decision space but are closer to the ideal point in the objective space. This way both the decision-

space diversity and the convergence are encouraged at the same time. The developed algorithm 

adds two parameters that represent minimum spatial density for clustering solutions and 

recommendations are provided for a proper setting of these parameters. The cluster-based 

archiving strategy was developed on PA-DDS algorithm and applied to mathematical and 

environmental benchmark problems with multi-modal characteristics. The cluster-based PA-DDS 

algorithm could offer diverse options required for an informed and flexible decision-making.  

The clustering operation imposes extra computational cost to cluster-based PA-DDS. The 

average computational cost of original DBSCAN is equal to O(N.Log(N)) for N points of a 

database (Ester et al., 1996). In the proposed cluster-based archiving approach, unlike original 

DBSCAN, clusters are dynamically formed and expanded, and clustered solutions that are 

dominated by their groupmates are eliminated from the archive. Therefore, the additional 

computational cost due to clustering is less than the original DBSCAN in each iteration of cluster-

based PA-DDS, because the dominated solutions are eliminated from each cluster and cluster-non-
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dominated solutions are assigned a memory of solution coverage. Moreover, the significance of 

this extra computational cost is different for solving different case studies. For example, each 

WATFLOOD model simulation of the Upper Assiniboine River Basin in the previous chapter 

approximately takes 4 to 5 minutes on a laptop with Intel ® Core ™ i5-6300HQ CPU @ 2.3 GHz 

with 8.00 GB of RAM. The 1000 simulation of this case study takes 2 days, 18 hours and 40 

minutes on this machine while the cluster-based PA-DDS auto-calibration with the budget of 1000 

solution evaluations approximately takes 2 days, 18 hours and 42 minutes. Therefore, the 

computational cost of the cluster-based optimization for automatic calibration of the WATFLOOD 

model can be considered negligible when solving computationally intensive optimization 

problems.  

The developed cluster-based PA-DDS algorithm was applied to 12-parameter HBV-SASK, 20-

parameter RAVEN, and 13-parameter SWAT models to quantify parameter uncertainty in these 

models in a multi-objective perspective. The 12-parameter and 20-parameter models were used 

for testing the method in order to identify the best setting for the adjacency density parameter of 

the algorithm and the 13-parameter SWAT model was used for validating the algorithm’s modus 

operandi. The proposed multi-objective algorithm was run for multiple independent trials and 

compared to 10-trial GLUE and 10-trial DDS-AU that are popular single-objective tools for 

approximation of parameter uncertainty among hydrologic science community. The uncertainty 

approximation methods are compared based on several performance metrics including reliability, 

sharpness, and number of behavioral solutions for a specified behavioral threshold. The thresholds 

were mainly determined based on the aggregated version of objectives in each hydrologic model. 

It was found that the aggregation of objectives and behavioral threshold specification based on the 

aggregated objective function led to misidentifying behavioral solutions compared to a situation 
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where the behavioral threshold were defined separately for each objective function in a multi-

objective uncertainty analysis. 

In order to increase parameter identifiability, different hydrologic signature-based objectives 

were incorporated into hydrologic model calibration. A signature-based multi-objective calibration 

resulted in more hydrologically consistent simulations but it was not able to account for errors 

induced by model structural deficiencies. One scheme to correct this deficiency was to combine 

the predictions of multiple models to compensate for a specific model’s simulation error by other 

model components. The under-study models included HEC-HMS, HSPF, WATFLOOD, and 

HBV-EC for the Upper Assiniboine River Basin at Kamsack Hydrometric Station. This research 

was conducted on these models at Hydrologic Forecast Centre of Manitoba Infrastructure and 

developed a multi-model platform for the sake of more accurate predictions. This platform, also 

called flow-duration curve segmentation-based model-wrapper, was based on the weighted 

average of individual model simulations. The weight factor assigned to each model component 

was different for different streamflow rates as one model might perform differently in high-, mid-

, and low-flow conditions. The proposed model blending method outperformed the individual 

model components in terms of simulation accuracy, and it was able to compute the contribution 

percentage of each model to each flow partition. Therefore, it could identify redundant model 

components and helped modellers to review their model selection presumptions. 

6.2 Research significance 

This dissertation has made the following contributions to the research and development of solution 

approaches for multi-objective water resources engineering problems. 

• Improving multi-objective algorithms to effectively solve many-objective problems 
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• Introducing a novel approach for improving decision-space diversity in multi-objective 

algorithms through clustering so-far generated solutions and dominance localization to 

increase the probability of dissimilar alternatives in the archive set for a more flexible and 

well-informed decision making 

• Introducing a novel approach for estimating the parameter uncertainty of hydrologic 

models in a multi-objective context 

• Developing a new method via a flow-duration curve partitioning scheme for multi-

modelling to reduce structural uncertainty in hydrologic models  

The diversity-based archiving strategies in the objective and decision spaces, i.e. the rounded-

objective and cluster-based archiving, developed in this dissertation were successfully applied to 

the PA-DDS algorithm for solving a number of multi-objective simulation-optimization water 

resources problems. However, these archiving methods are neither algorithm specific nor problem 

specific and can be implemented on other multi-objective global optimization tools.  

The objective space discretization using the rounded-based archiving controls the dominance 

resistance issue, significantly decreases the number of alternatives, prevents from quickly 

populating the pre-set archive of an algorithm with a bounded-archive structure, e.g. AMALGAM, 

and provides a better distribution of the approximate tradeoff in many-objective applications. 

Having applied to the PA-DDS, Borg-MOEA, and AMALGAM algorithms, the rounded-objective 

archiving outperforms the traditional point-based dominance archiving and it is as effective as the 

𝜀-dominance archiving. The difference between the latter and the proposed method is in its 

implementation. Contrary to the 𝜀-dominance archiving that requires changing the internal 

structure of the algorithm, the rounded-objective archiving is implemented within the problem 

formulation. The rounding level of each objective should be set a priori by consulting with 
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decision-makers in order to prevent an unnecessarily very coarse resolution, which increases the 

probability of multi-modality in the optimization problem. 

The cluster-based archiving and decentralized dominance strategies implemented on PA-DDS 

is able to characterize not only the optimal front but also a number of near-optimal tradeoffs that 

are locally non-dominated. The cluster-based PA-DDS is compared to the original PA-DDS and 

the Omni-Optimizer algorithm to solve two mathematical problems and two environmental design 

and management problems. The original PA-DDS and the Omni-Optimizer are unable to retain 

near-optimal alternatives, while the cluster-based PA-DDS significantly increases diversity in the 

decision space and provides a number of distinct alternatives that have identical or near identical 

performance to optimal solutions. This scheme is advisable when a multi-objective problem is 

featured with multi-modality, an intrinsic property in water resources simulation-optimization 

problems due to the simplified modelling of the system complexity or absence of objectives and 

constraints not incorporated into the optimization problem formulation. The cluster-based 

archiving and local domination methods are neither algorithm nor problem specific and are 

applicable to other multi-objective global optimization algorithms with unbounded archives or 

with adaptive archive size. This approach can be used simultaneously with the proposed objective-

space discretization providing that the rounding resolution of the objectives accords with the 

instructions given in Chapter 2. Implementation of the cluster-based archiving approach for 

diversity preservation in the decision-space can extend the application of the multi-objective 

optimization tools for an efficient uncertainty of hydrologic model parameters.  

The application of cluster-based PA-DDS for approximating parameter uncertainty of 12-, 20-

, and 13-parameter hydrologic models demonstrates that it is at least as efficient as other 

uncertainty approximation methods such as DDS-AU and GLUE, while it can handle multiple 



   

 

 

188 

calibration objectives simultaneously. The multi-objective parameter uncertainty is the main 

advantage of the proposed algorithm over GLUE and DDS-AU that aggregate all model 

performance metrics into one objective by assigning weight to each performance metric. 

Aggregation of performance metrics apparently expands the behavioral set due to misidentifying 

some of archived solutions as behavioral samples. Incorporating more number of performance 

metrics into a multi-objective uncertainty analysis of hydrologic models decreases the number of 

behavioral solutions.  

Furthermore, in this Ph.D. thesis, four operational hydrologic models at Hydrologic Forecast 

Centre of Manitoba Infrastructure were calibrated using three suites of signature-based metrics. 

The calibrated models using signatures improves parameter identifiability, against the older 

version of the same models calibrated at the center. The flow duration curve segmentation-based 

model-wrapper resulting from the weighted-average combination of the calibrated individual 

models outperforms each of the best calibrated single models in the calibration and evaluation 

periods. Therefore, it is concluded that the proposed method is a reliable framework that 

enumerates the strengths and weaknesses of each model for simulating historically low-, mid-, and 

high-flow ranges. The model-wrapper decreases the unpredictable simulation noise by optimal 

combination of multiple hydrologic models and assign a higher weight to best performing 

individual model. The proposed framework is readily available for real-time operational 

applications and flexible to include more hydrologic models.  

6.3 Limitations and Recommendations for Future Work 

This study introduced methods and developed tools for water resources systems with emphases on 

many-objective optimization, diversity preservation for robust decision-making, multi-objective 
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uncertainty analysis, informed calibration of hydrologic models, and a more reliable forecasting 

system. Throughout this Ph.D. research, some research gaps are identified but could not be 

addressed, mainly because of the limited amount of time. These gaps can be explored further in 

the future for further advancement of the results presented in this thesis. 

• The rounded archiving approach was evaluated on three multi-objective global 

optimization algorithms including Borg-MOEA, PA-DDS, and AMALGAM for solving 

many-objective optimization of hydrologic model calibration. Future work can implement 

the same archiving approach for other well-known multi-objective optimization 

algorithms, e.g. NSGA-II, SPEA2, and other problems such as many-objective reservoir 

operation and water distribution network design problems. 

• The cluster-based archiving and local domination techniques were developed for the 

single-solution PA-DDS algorithm. However, these techniques can be implemented on 

population-based multi-objective global optimization algorithms with unbounded or 

adaptive archive size, e.g. NSGA-II. The clustering technique in this case would be updated 

once in each generation. However, the non-dominated sorting method needs to be replaced 

with local dominance method keeping only cluster non-dominated solutions in their 

adaptive archive.  

• The cluster-based archiving can be developed and tested for single-objective global 

optimization algorithms. In this case, only one solution is retained in each cluster. 

However, the effectiveness of this method for finding optimal and near-optimal solutions 

in the case of single-objective optimization remains unclear. 
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• This thesis did not evaluate the effect of different selection metrics on the performance of 

the Cluster-Based PA-DDS. The selection metric used in Chapter 3 can be replaced with 

any metric that jointly considers diversity in the decision and objective space such as the 

variation rate metric in Cuate and Schütze (2019). The performance of CB-PA-DDS with 

the variation rate as a selection metric can be compared, in future, with the version 

developed in this thesis. 

• The application of the cluster-based PA-DDS for approximating parameter uncertainty was 

evaluated for 10000 solutions evaluations and the performance of this method for higher 

or lower computational budgets is required to be assessed. Specifically, the behavior of the 

adjacency density parameter needs to be investigated for high and low budgets. A very 

high value of adjacency density parameter (𝜀) places all generated solutions in the decision 

space into one cluster representing one Pareto front after the optimization process. The 

cluster-based archiving can be computationally intensive if clusters contain very high 

number of solutions that are locally non-dominated in their clusters. 

• The multi-objective model parameter uncertainty analysis in this dissertation was 

conducted on a single-response hydrologic model, i.e. streamflow time series as the output. 

In cases where the parameter uncertainty is estimated for multi-response hydrologic 

models, it is recommended to define at least one objective function for each model response 

provided that field measurements for these responses are available.  

• The archive size of CB-PA-DDS algorithm can be large as it may contain less desirable 

solutions besides the optimal and near-optimal clustered solutions. Identifying and 

screening less desirable solutions from the archive of CB-PA-DDS was performed 
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separately after the optimization. The post-processing stage can be coupled with the CB-

PA-DDS algorithm to automatically screen the archives and keep only optimal and near-

optimal solutions provided that there is an access to the preferred range of objectives by 

decision-makers. Therefore, future research can focus on developing an interactive 

advanced visualization technique for post-processing and truncating the archive set for 

stakeholders. VIDEO (Kollat and Reed, 2007) and moGrams (Trawiński et al., 2018) are 

two examples of visualization techniques.  

• The WATFLOOD model in Chapter 5 was calibrated with 114 parameters. Model 

calibration with a large number of parameters generally requires a very high number of 

solution evaluations. Large model parameterization also limits the identifiability of 

parameters. Therefore, grouping parameters is suggested for a model like WATFLOOD, 

similar to the approach used for the curve number parameter of SWAT in Abbaspour 

(2013). Future works can focus on decreasing the number of parameters by implementing 

regularization methods on the parameters that exploits additional information from the 

hydro-system or constrains the feasible range of parameters not to take on arbitrary values 

(Kavetski et al., 2006). For example, modellers can investigate the spatial dependency of 

model parameters on the properties of a watershed such as soil or land cover (Pokhrel et 

al., 2012, 2008). 

• The multi-objective calibration of models in Chapter 5 was based on the hydrologic 

signatures that were derived from the measured streamflow time series. Future research 

can include other signatures that describe other components of hydrological processes, 

such as groundwater, evapotranspiration, isotopes, and/or snowmelt for the sake of a better-

posed set of parameters. The model calibrations were also based on temporal evaluation of 



   

 

 

192 

the simulations. However, spatial evaluation of the calibrated parameter sets is highly 

encouraged if multiple hydrometric gauges exist across the watershed.  

• The robustness of the proposed model-wrapper is limited to the methodological choices in 

this thesis. One choice is utilizing only four hydrologic models for only one catchment. 

Future research on multi-modelling can concentrate on drawing a more comprehensive 

conclusion by incorporating a larger number of hydrologic models into model-wrapper for 

several catchments with significantly different catchment sizes and dominant hydrological 

processes. 
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8 SUPPLEMENTARY MATERIAL 

  

  

  
Figure 8-1: Empirical CDF plots comparing point-based (green series) versus rounded- (red series) archiving 

for AMALGAM for calibrating five-objective SWAT and seven-objective RAVEN models with 1000 solution 

evaluations 
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Figure 8-2: empirical CDF plot comparison of CB-PA-DDS with DDS-AU, GLUE (10000), and GLUE 

(100000) for evaluating their estimated uncertainty in the calibration and evaluation periods in terms of 

sharpness for the 12-parameter HBV-SASK (left panels) and 20-parameter RAVEN (right panels) models. 

The methods are compared for two KGE thresholds. The CB-PA-DDS parameter (𝜺) is equal to 0.45 and 0.55 

respectively for the HBV-SASK and RAVEN models. Vertical sharpness at 100% is the ideal performance. 
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Figure 8-3: empirical CDF plot comparison of CB-PA-DDS (𝜺 = 𝟎. 𝟒𝟕) with DDS-AU, GLUE (10000), and 

GLUE (100000) for evaluating their estimated uncertainty in the calibration and evaluation periods in terms 

of sharpness metric for the 13-parameter SWAT model. The higher the value of sharpness, the better the 

performance. 
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Figure 8-4: daily precipitation-runoff-temperature graph used for visual inspection and hydrological process-

based categorization of the years throughout the simulation period.  
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Figure 8-5: Measured versus simulated daily mean annual streamflow hydrographs for the calibration period 

(2001-2014) at Kamsack outlet station considering different preferred parameter sets found by each P1, P2, 

and P3 calibration problems. 
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