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Abstract

There are four phases of a successful clinical trial. Phase I determines the maximum

tolerated dose (MTD) of the drug in human beings. Phase II trial examines the

new drug’s short term efficacy and is the proof-of-concept trial for Phase III.

Phase III is a large and long term trial before applying for marketing the drug. It

concerns the long-term efficacy and safety of the drug. If the new drug is approved

for marketing, Phase VI is the post-marketing surveillance trial. The goal is to

monitor potential side effects of the new drug.

My MSc research is focused on the design of Phase I clinical trials. There are

many designs available in the literature for Phase I clinical trials, including both

nonparametric and parametric designs. The most famous parametric design is

the continual reassessment method (CRM). A parametric model is assumed and

has unknown parameters. These unknown parameters follow a prior distribution

under the Bayesian approach. The observations of patients treated are either

toxic or nontoxic. Observations of patients’ toxicities are used to update the

prior distribution into a posterior distribution. Allocation of the dose to the next

patient is adaptive and based on the estimated toxicity probability that is near

the desired probability. The objective is to identify the maximum tolerated dose

to be used in Phase II clinical trials.



Three parametric models are normally used with the continual reassessment

method, namely the logistic, power and hyperbolic models. They use respectively

the logistic, power and hyperbolic functions. These functions are used to define

the dose probabilities at different dose levels, but they are not so flexible.

In this thesis, we use the continual reassessment method with a new class

of parametric functions. This class is formed with the cumulative distribution

function of the normal distribution. The major advantage is that we can choose

different values of the mean and variance of the normal distribution so we can

model different shapes of dose toxicity probability relationship. So this new class

of parametric designs is very flexible. We conduct simulation studies and compare

our new design with the existing parametric designs. We have found our design

performs better by choosing the appropriate values of the mean and variance.

The use of the cumulative distribution function was motivated by the Advanced

Statistical Theory course taught by Dr. Liqun Wang.

When the toxicity is not immediately observable but delayed, we extend the

continual reassessment method with the cumulative distribution function to late-

onset toxicities. We assume the time to toxicity follows a geometric distribution.

We conduct simulation studies and compare our new design with the existing

parametric designs. We have found our new design with late-onset toxicities

performs better by choosing the appropriate values of the mean and variance.

The use of the geometrically distributed late-onset toxicity was motivated from

taking the Lifetime Data Analysis course taught by Dr. Po Yang.
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Chapter 1

Introduction

In this Chapter, we review some basic concepts about the statistical design of

Phase I clinical trials.

1.1 Introduction

We all want to live long and healthy, but in reality many people are threatened

by health problems, such as heart disease, cancer, diabetes and so on. The goal

of medical research is to find effective treatments to cure diseases and improve

the quality of life of human beings.

Statistics show the global life expectancy was 46 years in 1950 but increased

to 75 years in 2015 (UnitedNations, Accessed 2016-06-28). Advance in medicine

has played an important role in prolonging life besides our better living condi-

tions. Clinical trials are a necessary part of modern medical research, and are

experimental designs to evaluate the reliability and effectiveness of new medical

1
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interventions in human beings.

1.2 Scientific inquiry and study methods

There are three progressive classes of knowledge in empirical science: observed

phenomena among events; association among phenomena; and at the most ad-

vanced level, causation between phenomena (Rosenberger and Lachin, 2002). In

medical research, it is important to identify the causal relationship between disease

and risk factors, such as genetic variation, environmental and living conditions

and some bad habits. For example, why do smokers have more chance to expose

lung cancer than non-smokers, and why does not every smoker have lung cancer?

The possible answer is that smoking is one of the factors causing cancer, but not

the only factor. The task of scientists is to find all possible factors resulting in

diseases and to prevent or cure diseases. How can scientists find these causations

and prevent and treat diseases? One study method is to get information and

data from alternative treatments. Clinical trials are such experimental designs to

statistically test whether new drugs are significantly more effective than the old

ones.

1.3 Preclinical and clinical research

In preclinical and early phase clinical trials, a small number of patients are treated

with safe doses to investigate the pharmacokinetics and pharmacodynamics of
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the new drug (Hedaya, 2007), that is, we need to study what the drug works for

the body and how the body responses to the drug. Compared to later phases of

clinical trials, the preclinical trials have no therapeutic intent (Kummar et al.,

2008)

After the preclinical trials, we move on to the first-in-human phase I clinical

trials. The goal of phase I clinical trials is to identify the maximum tolerated

dose (MTD) in human beings for a new drug. Any drug has two sides. The drug

has benefits of treating disease and the risk of toxicity. A Phase I clinical trial is

normally conducted on 15 to 30 patients to determine the safe dose (MDAnderson,

Accessed 2016-06-28), that is the maximum dose given to patients who can accept

the toxicity level. We usually assume the toxicity monotonically increases by the

dose level, so the trial starts from a low and safe dose, and escalates or de-escalates

the dose level depending on whether the treated patients experience toxicity or

not. The determined MTD will be investigated further in Phase II and Phase III

trials for its efficacy. Any over-dose or under-dose of MTD will mislead the drug

research.

In phase II trials, we study the new drug’s short-term efficacy. This is

normally called the proof-of-concept trial for Phase III. Only a drug showing

potential effect enters a phase III trial, otherwise the study is terminated. For

example, if a tumour shrinks by 50% or more, the longest diameter of target

lesion decreases by 30% or the whole target lesion disappears in comparison with
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baseline treatment, the treatment is regarded to be potentially successful. It takes

a relatively short time to finish a phase II trial and start smoothly a phase III

trial.

Phase III trial is the most important and the last stage before applying for

marketing the drug. It concerns the long-term efficacy and safety of the drug.

It requires a very large number of patients (normally ranging from hundreds to

thousands of patients) and a control treatment. Patients are randomized to receive

one of alternative treatments. Only if the new drug shows significant benefit over

the other treatments, it may be approved to enter the market.

After a successful Phase III trial, if the new drug is approved by FDA (Food

and Drug Administration in the United States), a post-marketing surveillance

Phase VI trial starts. The purpose is to monitor potential side effects. If side

effects are severe, the drug may be required to withdraw from the market.

1.4 Motivation

Clinical trials are important for developing new medical interventions including

drugs, and have remained to be an important part of mainstream clinical research.

Drug development has a vital in improving both quality and quantity of our lives.

However the process of developing new drugs is long and expensive, and many

important statistical factors and ethical issues have to be taken into consideration.

Clinical trials are designed experiments on human subjects and must be safe
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and ethical. Monitoring toxicity and side effects are important issues. Phase

I clinical trials are the building blocks for late phase clinical trials, and it is

important to derive the most reliable, most safe and most effective dose for the

best potential benefit of the drug. Under certain assumptions, this best dose is

the maximum tolerated dose (MTD) that is to be used in Phase II and Phase

III clinical trials. Therefore among the four phases of clinical trials, Phase I is

fundamentally important because both over-estimation and under-estimation of

the maximum tolerated dose will lead to over failure of the clinical research.

Although there are many different approaches to the design of Phase I

clinical trials, each of the designs can be improved. The non-parametric designs

are easy to implement, however not necessarily optimal. In any case, the non-

parametric approach assumes no particular form of the dose toxicity probability

relationship. Moreover the decision of escalation or de-escalation of the next

dose selection depends on the current dose and response only, and ignores all

other previous doses selections and their associated responses. On the other hand,

the parametric designs assume particular forms of the dose toxicity probability

relationship, however more tedious to implement. For the parametric approach,

the dose toxicity probability relationship is described by a distribution function

that defines the toxicity probability at each dose level. This function describes

the overall relationship between toxicity probabilities and the doses, and contains

unknown parameters. These unknown parameters can be estimated using either

the Bayesian approach or the frequentist method. Since making inference about
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the whole curve describes the toxicity probability, the decision of dose selection for

the next patients is determined by all past doses and their associated responses.

These parametric models are incorporated with the continual reassessment method

(CRM) to assign doses to patients and estimate the maximum tolerated dose

(MTD).

In the parametric approach, the particular toxicity probability function is

very important because it defines the toxicity probability at each dose. Currently

in the literature, there are mainly three types of parametric functions used with

CRM: the logistic model, the power model, and the hyperbolic tangent model.

All these functions share two common characteristics: they are increasing and

change concavity from concaving up to concaving down. When I took the graduate

course on Advanced Statistical Inference from Dr. Liqun Wang, the cumulative

distribution function F (x) is used often, particularly for the standard normal

distribution function. So if we replace the function exp(x) with the cumulative

distribution function Φ(x) for the standard normal distribution and use the

function p(x) = 2Φ(x)
1+Φ(x)

in combination with an unknown parameter, we may also

apply CRM. Indeed, this function is increasing and changes concavity, and has

values between 0 and 1. I then thought about generalizing further by considering

the normal distribution with different variances. This became the motivation for

writing Chapter 3 of my thesis.

In reality, if a patient is toxic, we may not be able to observe toxicity
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immediate after the treatment. That is, the toxicity of treating patient may be

late onset. I still treated two possibilities. The patient may be non-toxic at all, or

the patient may be toxic. If the patient is toxic, we assume that the observation

is late-onset. That is, the time to observe the toxic response after treatment

is delayed and maybe censored when the next patient is treated. Because we

model patients who are treated one after another in discrete time, this requires

me to think of a discrete distribution to model waiting time. When I took the

graduate course on Survival Analysis from Dr. Po Yang, I learned some survival

distributions. So I thought the geometric time distribution can be a good fit for

describing the time to toxicity if the patient is toxic after treatment at a particular

dose. This motivated me to work on Chapter 4.

I have always been interested in biostatistics because I believe it is not only

very useful but also practical to find good jobs. One of the major fields of research

in biostatistics is the design and analysis of clinical trials, therefore I wanted

to work on Phase I clinical trials for my MSc research because it is the most

fundamental phase in clinical trials. After my above described motivations, I

believed that the new toxicity probability function might perform good and might

be even better than the ones in the literature. The new function is also flexible

because we can change the variance of the normal distribution, so we have a class

of toxicity probability functions. It is impossible to show this theoretically, so I

decided to do lots of simulations to see if our new design is better. After extensive

simulations, we have observed that our new toxicity function works better than
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the other functions in the literature. This new function can be significant because

if we use it in practice, we will be able to treat more patients in the trial better

and still determine the MTD from the clinical study. That is, we are more ethical

to the patients in the trial and at the same time do a better preparation for the

patients in the late phases of the clinical research.

1.5 Summary and structure of the thesis

The goal of the thesis is to introduce a new parametric design for Phase I clinical

trials and assess its performance. We consider both immediate and late-onset

toxicities. In this chapter, we have reviewed some background materials for Phase

I clinical trials.

In Chapter 2, we review both nonparametric and parametric designs of Phase

I clinical trials.

In Chapter 3, we introduce a new model for the relationship between dose

and its toxicity probability. We apply this new model to the parametric design

using the continual reassessment method. The performance of this new method

is compared with existing parametric methods. Extensive simulation results are

derived to compare the new method with existing methods.

In Chapter 4, we assume late-onset toxicity and use the geometric distribution

to model the delayed time to toxicity. Then the continual reassessment method

is modified to incorporate late-onset toxicity. Extensive simulation results are
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derived to compare the new method with existing methods.

Chapter 5 concludes the thesis by summarizing the results and discussing

future research problems.



Chapter 2

Design of phase I clinical trials

2.1 Introduction

Phase I trial is the first stage of a drug test in human beings before the approval of

the drug for marketing. It is very crucial in the entire process of drug development

because we need to recommend the maximum tolerated dose (MTD) to Phase

II and phase III clinical trials. If the MTD is over-estimated, patients may be

exposed a very risky treatment in the later trials. If the MTD is under-estimated,

the treatment may not be effective and we concern more about the toxicity than

the efficacy of the new drug. Trade-off between efficacy and toxicity of the new

drug is our goal in all the steps of clinical trials. Phase I trial is only focused on the

maximum toxicity dose that patients are not able to tolerate any more. Generally

speaking, from 15 to 30 patients are involved in the Phase I trial (MDAnderson,

Accessed 2016-06-28), which starts from a very low and safe dose specified from

the animal test (usually a small fraction of the MTD in animals). Patients are

10
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treated in cohorts, say of size three in each cohort. The first cohort is treated at

the starting dose. If a large number of patients in this cohort experience toxicity,

the next cohort will be treated as a lower dose. Otherwise the next cohort is

given a higher dose. We expect to observe toxicity immediately for decision. The

situation that the toxicity is not observable from the previous cohort until the

next cohort greatly impacts on the decision-making of dose selection. We face

survived data when we need to determine whether or not to escalate or de-escalate

the dose level for the next cohort. This topic is discussed in Chapter 4 of my

thesis.

As we know, the goal of a Phase I clinical trial is to identify the MTD for

later phase studies. Some important issues of this trial are taken into account:

ethical concerns, the starting dose, the speed of dose escalation, the sample size of

the patients, and the target toxicity probability. These issues have direct impact

on the efficiency of Phase I trial design and the accuracy of the identified MTD

level.

Dose-finding methods in Phase I trial are classified into two classes: one

class consists of nonparametric methods, including 3+3 designs and A+B designs

(Storer, 1989), the accelerated titration design (ATD) (Simon et al., 1997) and

biased coin dose-finding method (BCD) (Durham et al., 1997). The other is the

class of parametric methods which includes continual reassessment method (CRM)

(O’Quigley et al., 1990).
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2.2 Nonparametric methods

2.2.1 3+3 Methods and extension

In Phase I trial study, we are responsible for both safety and efficacy of the

treatment. So the dose cannot be overly toxic and overly low to be effective. That

means escalation of dose cannot be too fast or too slow.

The 3+3 design is a standard and classic method that identifies the MTD

with a targeted toxicity probability. Storer (1989) shows with such design, the

toxicity probability will be less than 33%. In a real clinical trial, the 3+3 design is

widely utilized because of its easy implementation. We assume a predefined dose

level di is increasing in the trial study and the corresponding toxicity probability

pi is non-decreasing. The cohort size is 3, and the first 3 patients are treated at

the lowest starting dose level. The process of 3+3 design is described as follows:

(1) Suppose three patients are treated at a current dose level i, and we need to

evaluate for toxicity.

(2) If no patient is toxic, escalate to the next higher dose level i+ 1, and go back

to step (1).

(3) If one patient is toxic, then three more patients are treated at this same

dose level i and we observe dose limiting toxicity (DLT) of the total of six

patients. If only one patient of the group of six patients experiences toxicity,

we move to the next higher dose level i + 1. If two patients of these six
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patients are toxic, the trial is terminated and the next lower dose level i− 1

is considered as the MDT. If more than two patients of these six patients are

toxic, then the current dose level i is greater than the MTD, and another

three patients will enter the treatment and will be treated at the next lower

dose level i− 1.

(4) If more than one patient is toxic the lowest dose level, the trial will be

terminated and is said to be an inconclusive trial.

To speed up the process, the 3+3 design is modified into a two-stage design.

The first stage is to treat one patient at each dose level from the lowest until the

first toxicity appears. Then starting at this dose, the traditional 3+3 design is

used.

Although the 3+3 design is convenient to use, it has some problems that may

affect the estimation of dose-finding (O’Quigley and Chevret, 1991), (O’Quigley

and Shen, 1996), (Yin, 2012). First, the observation data is only associated with

the current dose level, and other dose levels are not considered. Second, the 3+3

design has poor statistical properties. Third, the 3+3 design only works for a

trial in which the target toxicity probability is smaller than 33%.

2.2.2 A+B Design

Lin and Shih (2001) extend the 3+3 design to A+B design that is more general

in practice. The significant difference from the 3+3 design is that the cohort size
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may not be three. The procedures are described as follows:

(1) Suppose that A patients are treated at the dose level i, and are observed for

toxicity level.

(2) If less than C patients of the total A patients are observed for toxicity, we

escalate to the higher dose level at i+ 1.

(3) If the number of toxic patients is between C and D, we stay at the same

dose level i where we will treat B more patients. If we observe more than E

of A+B patients for toxicity, de-escalate to the next lower dose level i− 1,

otherwise, we escalate to the next higher dose level i+ 1.

(4) If the number of toxic patients are greater than D, de-escalate to the dose

level i− 1.

As we know, the standard 3+3 design is a special case of A+B design when A

and B are 3 and C, D and E are 1. For example, Lin and Shih (2001) considered

the case of A = 3, B = 6, C = 1, D = 2 and E = 2.

2.2.3 Accelerated titration design

In a classic Phase I design, we start from the very low dose level to protect treated

patients from toxicity, however, the determined MTD is always far behind the

starting dose. So it takes a very long time and a large number of patients to

involve the trial before entering the market for a new drug. Simon et al. (1997)
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develop the accelerated titration design (ATD) to speed up the design. The

first stage of the ATD is to treat one patient at each sequential dose level until

observing toxicity. The second stage is the standard 3+3 design. We need two

more patients to enter the trial, and after that three patients are treated starting

from the previous dose level. This procedure provides the opportunity to save

time at the beginning of the trial and to avoid a large number of patients treated

at a very low dose level that is much lower than the effective dose.

2.2.4 Biased coin dose-finding method

The biased coin design (BCD) is another traditional method to determine the

MTD. The BCD decides the number of patients in each treatment with tossing a

biased coin. We start treating the first patient at the lowest dose or at the dose

that we believe is safe and close to the target dosage. Select and fix a number

r, say r > 0.5. If we observe toxicity for the currently treated patient, then the

next patient will receive the lower dose with probability r, and the next higher

dose with probability 1− r. Durham et al. (1997) apply a random walk design to

extend the BCD. Suppose φ is the target toxicity probability. Assume φ ≤ 0.5.

If the currently treated patient is toxic, de-escalate to the next lower dose level.

If no toxicity is observed, escalate to the next higher dose level with probability

φ
1−φ or treat the current patient at the same dose with probability 1−2φ

1−φ . Assume

now φ > 0.5. If we observe toxicity for the currently treated patient, then the

next patient will receive the lower dose with probability 1−φ
φ

, or receive the same
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dose level with probability 2φ−1
φ

. If we observe no toxicity, then the next patient

will receive the higher dose. Stylianou and Flournoy (2002) develop the BCD to

use the maximum likelihood method, weighted least-squares method and isotonic

design.

2.2.5 Group up-and-down design

In the up-and-down design, the current cohort is treated at the dose level di.

Suppose ti patients are observed for toxicity. The cohort size is s. Assume two

integers cl and cu, where 0 ≤ cl ≤ cu ≤ s. The next cohort of patients will receive

the dose di−1 if tj ≥ cu, and the current dose is the lowest, then treat all patients

with this dose. The next cohort of patients will receive the dose di+1 if tj ≤ cl,

and the current dose is the highest, then treat all patients with this dose. The

next cohort of patients will receive the dose di if cl ≤ tj ≤ cu.

2.3 Parametric methods

2.3.1 Continual reassessment method

As we known, rule-based methods to dose-finding only follow some pre-specified

rules, and we collect information based on the current dose, and have no informa-

tion on other doses. To overcome the problems of nonparametric methods, we use

the model-based methods called parametric methods in Phase I trials. First, we

introduce the continual reassessment method (CRM), which is a commonly used
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method in a dose-finding design.

O’Quigley et al. (1990) propose the continual reassessment method which

connects the true toxicity probabilities π1, π2, · · · , πJ with prespecified toxicity

probabilities p1, p2, · · · , pJ at each dose by a parametric model with an unknown

parameter α. So the dose-finding decision making is based on the model that we

define in the trial study. In general, we assume that the toxicity probability pi

is the function of dose level i and πi is the function of pi. Also pi increases with

the dose level. That is, p1 < p2 < · · · < pJ , Let φT denote the target toxicity

probability. The CRM assumes,

P (toxicity at dose level i) = πi = p
exp(α)
i ,

where α is the unknown parameter in the model (O’Quigley and Shen, 1996).

There are some modifications of CRM. For example, a logistic model or a

hyperbolic tangent function can be used in the toxicity probability model. For

example, we can use

πi(α, β) =
exp(β + αdi)

1 + exp(β + αdi)
,

where α and β are unknown parameters, and di is the dose at level i after

standardization.

Another model is the hyperbolic tangent function,

πi(α) =

{
tanh(di) + 1

2

}α
=

{
(e2di − 1)/(e2di + 1) + 1

2

}α
,

Then we are able to use frequentist or Bayesian approach to estimate the
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MTD toxicity. In this chapter, we only focus on the Bayesian method. Suppose

that ni patients are treated at dose level i, for i = 1, 2, · · · , J , and yi patients

over the total ni patients experience toxicity. Assume that D is observed data set.

The likelihood function is

L(D|α) ∝
J∏
i=1

{pexp(α)
i }yi{1− pexp(α)

i }ni−yi ,

We assume a prior that follows a specified distribution denoted by f(α). By

Bayes’ theorem, the toxicity probability at dose level i can be investigated by the

posterior mean denoted by π̂i and given by

π̂i =

∫
p

exp(α)
i

L(D|α)f(α)∫
L(D|α)f(α)dα

dα.

After treating all the patients, we can obtain the posterior mean of the

toxicity probability at each dose level, and find the dose level where the posterior

mean is the closest to the target toxicity probability φT . Then this dose is our

recommended dose level for the Phase II trial.

2.3.2 Bayesian model averaging CRM

In the CRM, we try to model the true toxicity probability. If our modeled toxicity

probabilities are far from the true ones, the estimates may not be precise, and

the design may not perform well. To find the MTD in the Phase I trial, Yin and

Yuan (2009) apply multiple CRMs, each has a different prior, to model the true

toxicity probability. Hoeting et al. (1999) propose a discrete prior probability
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to each CRM and assign each CRM model a weight called a Bayeasian model

averaging (BMA) procedure. In practice, we may assign more weight to the better

fitted model. So the estimates of toxicity probabilities approach closest to the

best fitted one all over CRMs.

The BMA-CRM design uses multiple CRM models. Suppose Mk denotes

the kth CRM model related to toxicity probability set (pk1, pk2, · · · , pkJ), where

k = 1, 2, · · · , K, and K is the total number of CRM models.Then the toxicity

probability at di is

πki(αk) = p
exp(αk)
ki ,

where i = 1, 2, · · · , J , J is the total number of dose levels, and αk is the unknown

parameter related to CRM model Mk (Yin, 2012). Suppose that yi patients who

are treated over the total ni patients experience toxicity. Assume that D is the

observed data set. The likelihood function of CRM model Mk is

L(D|αk,Mk) ∝
J∏
i=1

{pexp(α)
ki }yi{1− pexp(α)

ki }ni−yi .

Then assume that a prior follows a specified distribution, denoted by f(αk|Mk),

in the model Mk. This implies the likelihood function of the model Mk is

L(D|Mk) =

∫
L(D|αk,Mk)f(αk|Mk)dαk,

and the posterior model probability for Mk is

P (Mk|D) =
L(D|Mk)P (Mk)∑K
i=1 L(D|Mi)P (Mi)

.
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Finally, the toxicity probability at dose level j is estimated by the Bayesian

model averaging method as

π̄j =
K∑
k=1

π̂kjP (Mk|D), j = 1, 2, · · · , J.

Here,

π̂kj =

∫
p

exp(αk)
kj

L(D|αk,Mk)f(αk|Mk)∫
L(D|αk,Mk)f(αk|Mk)dαk

dαk

is the posterior mean of the toxicity probability at dose level j, under the assump-

tion of model Mk.

So the Bayesian model averaging estimate of the toxicity probability is a

weighted average of the posterior means, where the weight is given by P (Mk|D).

After treating patients at dose level j, the decision of whether to escalate or

de-escalate the dose depends on the value of π̄j.

An important issue is to develop an algorithm to find MTD that is closest to

the prescribed target toxicity probability.

2.3.3 Escalation with overdose control

Babb et al. (1998) develop the escalation with overdose control (EWOC) design

to protect patients from overdose treatment. Assume yi = 1 if the patient is toxic,

and yi = 0 otherwise. Then the toxicity probability of dose level i is the function

F of dose level. Define

P (toxicity probability of dose i) = P (yi = 1|dose = xi) = F (α + βxi),
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where α and β are unknown parameters. Suppose there are ni patients involved

in the trial study, and the observed data set is Y = {y1, · · · , yn}. The likelihood

function is given by

L(Y |α, β) =
n∏
i=1

{F (α + βxi)}yi{1− F (α + βxi)}1−yi .

Suppose M and φT denote the MTD and the target toxicity probability

respectively. Then x0 is assumed to be the lowest dose level. Then

φT = P (yi = 1|dose = M) = F (α + βM),

and

π0 = P (yi = 1|dose = x0) = F (α + βx0).

So we can calculate α and β as follows:

β =
F−1(φT )− F−1(π0)

M − x0

,

α = F−1(π0)− βx0.

We can assume that F−1(x) is exponential, logistic or hyperbolic tangent

function. After assuming the prior distributions of M and π0, we can get the joint

posterior distribution of M and π0. Integrating out π0, the marginal distribution

of M , denoted as G(x|Y ), can be used to find the next dose level. We define,

G(x|Y ) = P (M ≤ x|Y ).
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In the EWOC design, the minimal posterior expected loss is used to determine

the appropriate dose, ∫
Lγ(x,M)dG(M |Y ),

where γ is a pre-specified threshold, and Lγ(x,M) is an asymmetric loss function

(Yin, 2012).

2.3.4 Bayesian hybrid design

The Bayesian hybrid design can switch from the non-parametric methods to

model-based parametric methods. We can take advantages from both of them

to determine the MTD (Yuan and Yin, 2011). If the information is enough to

determine whether the current dose level is below or above the MTD, we can

use the non-parametric method. If the information from current dose level is not

enough, we introduce the model-based parametric method to determine escalation

or de-escalation of the dose level.

Suppose πi is the toxicity probability at the current dose level i, and we use

three hypotheses to determine where dose πi locates relative to the target toxicity

probability φT . Define the following hypotheses:

H1 : πi ≤ φT − δ,

H2 : φT − δ ≤ πi ≤ φT + δ,

H3 : πi > φT + δ,
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where δ is a toxicity tolerance margin (say, 0.33).

Assume a conditional prior distribution of πi given each hypothesis follows a

uniform distribution, that is,

πi|H1 ∼ Unif(0, φT − δ),

πi|H2 ∼ Unif(φT − δ, φT + δ),

πi|H3 ∼ Unif(φT + δ, 1).

Let yi denote the number of patients who experience toxicity. The posterior

distribution of each hypothesis is

P (Hk|yi) =
P (Hk)

P (H1)BF1,k + P (H2)BF2,k + P (H3)BF3,k

,

BFm,k = P (yi|Hm)/P (yi|Hk), for m = 1, 2, 3.

The marginal distribution of yi given H1 is

P (yi|H1) =

∫ φT−δ

0

(
ni
yi

)
πyii (1− πi)ni−yi 1

φT − δ
dπi.

Similarly, we can obtain the marginal distribution of yi given H2 and H3. Jeffreys

(1961) proposes that if P (H1|yi) > 0.61, the dose level i is below the MTD, and

we need to escalate to the next higher doze level i + 1. If P (H2|yi) > 0.61, we

will stay at the same dose level. If P (H3|yi) > 0.61, we need to de-escalate to the

next lower dose level i− 1.
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2.4 Summary

In this chapter, we have reviewed basic ideas of commonly used nonparametric

and parametric designs of Phase I clinical trials. To summarize, the goal of Phase

I clinical trial is to assess the toxicity of the new drug and identify the maximum

tolerable dose. Details of the continual reassessment method are given and will

be used to extend the method in the next two chapters.



Chapter 3

A new design with immediate
toxicity

3.1 Introduction

row In this chapter, we introduce a new parametric design of dose finding in Phase

I clinical trials by the continual reassessment method (CRM). The true toxicity

probability of the drug is connected with the pre-specified toxicity probability

through the CRM at each dose level. In this clinical trial, patients are assigned to

the dose level most possibly closest to the target, depending on previous toxicity

probabilities. The process continues until the MTD is determined or the maximum

sample size is reached.

In general, let di, i = 1, 2, · · · , K, be the dose levels and pi be the pre-specified

toxicity probability at dose level di. We assume, as commonly used in the literature,

the toxicity probability is monotonically increasing with the dose level. This means

p1 < p2 < · · · < pK at dose level di, i = 1, 2, · · · , K. Let φT be the target toxicity

25
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probability. In a dose finding Phase I clinical trial, a cohort of patients (usually

of size three or of size one) is sequentially assigned to a chosen dose level, and

all patients in the same cohort receive the same dose level. Finally we observe

a binary toxicity outcome Yj for each patient j, where Yj = 1 if the toxicity is

observed and Yj = 0 if no toxicity is observed. The CRM assumes a dose-toxicity

model by defining

Pr(toxicity at dose level i) = πi(α) = pi
exp(α),

where α is an unknown parameter (O’Quigley and Shen, 1996).

The CRM initially introduced in O’Quigley et al. (1990) has been extended

and improved in many directions, often in terms of different dose-toxicity models.

For example, O’Quigley and Shen (1996) introduces a one-parameter logistic

function

πi(α) =
exp(β + αdi)

1 + exp(β + αdi)
,

where β is a fixed constant and di is the standardized dose level i. In particular,

Yin (2012) applies a fixed constant β of −3. A hyperbolic tangent function,

πi(α) =

{
tanh(di) + 1

2

}α
=

{
(e2di − 1)/(e2di + 1) + 1

2

}α
,

was also introduced in O’Quigley et al. (1990).

In this thesis, we introduce a new parametric model for the dose-toxicity

probability function, given by

πi(α) =
2Φ(β + αdi)

1 + Φ(β + αdi)
,
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where Φ(x) = Φ(x, µ, σ2) is the cumulative distribution function of the normal

distribution with mean µ and variance σ2. The rationale is that this function

of di is increasing and changes concavity and their values are between zero and

one. Furthermore, Φ(x) can also be the cumulative distribution function of other

distributions, which we will investigate in the future. To compare our new design

with the current designs, we set β = −3 in our simulations.

To guarantee an increasing relationship between dose level and toxicity

probability, the parameter α in the new model is restricted to be positive. This

can be checked by the first derivative of the true toxicity probability function.

The CRM assumes that the parameter α is random and follows a prior

distribution f(α) and uses a Bayesian approach to obtain the posterior mean

to estimate the toxicity probability at dose level i. Cheung (2011) proposes the

normal prior distribution, that is, α follows a normal distribution with mean µα,

and variance σ2
α. Suppose that we have a prior belief that the dose level i∗ is the

MTD, and set pi∗ = θ, where θ is the target probability, say θ = 0.25. We assume

that p1 < p2 < · · · < pi∗ < · · · < pK , which means the toxicity probability is a

strictly increasing function in dose level. For the logistic function, the backward

substitution gives us

di =
logit(pi∗)− β
exp(µα)

,

where logit(p) = log(p/(1− p)). Then we have

F (di, α) =
exp[β + exp(α− µα)(logit(pi∗)− β)]

1 + exp[β + exp(α− µα)(logit(pi∗)− β)]
,
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where F (di, α) is the toxicity probability, only depending on α − uα, which is

normally distributed with mean zero. So we may set µα = 0 to simplify the

computation. row The CRM starts to treat the first cohort of patients at the

prior MTD i∗. Note that the starting dose has a toxicity probability θ. Each

increasing dose is determined by previous observations and is obtained by likelihood

function and posterior mean of the toxicity probability. At the model-based MTD

estimation, we can find the dose level whose posterior mean is closest to target

toxicity probability.

Let D be the observed information, then the likelihood function is given by

L(D|α, β) ∝
K∏
i=1

{πi}yi{1− πi}1−yi .

Using our definition of πi, the likelihood function becomes

L(D|α) ∝
K∏
i=1

{
2Φ(β + αdi)

1 + Φ(β + αdi)

}yi {
1− 2Φ(β + αdi)

1 + Φ(β + αdi)

}1−yi
.

We assume α is positive. To compare with existing methods, we assume β = −3.

By the Bayes’ theorem, the toxicity probability at dose level di is estimated to be

π̂i =

∫
2Φ(β + αdi)

1 + Φ(β + αdi)

L(D|α)f(α)∫
L(D|α)f(α)dα

dα,

where π̂i is the posterior mean of the toxicity probability at dose di. After each

cohort of patients is treated, we collect all the toxicity data and calculate the

posterior means of the toxicity probabilities at all the dose levels, say π̂1, π̂2, · · · , π̂K .

The dose whose toxicity probability is closest to the target ΦT is recommended to
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the next cohort of patients. The trial terminates when the toxicity probability

converges, then we determine this dose level as the MTD.

The dose finding procedure by CRM follows the following rules (Yin, 2012):

(1) We treat the first cohort of patients at the starting dose.

(2) Let the current dose level be icur, and denote the target toxicity probability

as ΦT . We can calculate the posterior means of the toxicity probabilities

for all the observations, that is, π̂1, π̂2, · · · , π̂K . We obtain the dose level i∗

whose toxicity probability closest to ΦT ,

i∗ = argmin|π̂i − ΦT |,

If icur > i∗, de-escalate to the next lower level, and if icur < i∗, escalate to

the next higher level, otherwise, keep it at the same dose level.

(3) We determine the dose with the toxicity probability closest to ΦT as the

MTD when the maximum sample size is collected.

3.2 A new design

In this chapter, we extend the above models by introducing a new dose-toxicity

model. This was motivated by my graduate course in nonlinear models where the

the cumulative distribution function of the normal distribution is used.
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Specifically, we introduce the model

πi = πi(di, α, β) =
2Φ(β + αdi)

1 + Φ(β + αdi)
= 2− 2(1 + Φ(β + αdi))

−1,

where Φ is the cumulative distribution function (CDF) of the normal distribution

N(µ, σ2), not necessarily the standard normal distribution. The reason for choosing

a general normal distribution is that we can model different shapes of the increasing

dose-toxicity relationship.

We can check the increasing monotonicity of the dose-toxicity function by its

first derivation. Using calculus, for given µ and σ, we have

dπi
ddi

=
2αφ(β + αdi)

(1 + Φ(β + αdi))2
,

where φ is the probability density function (PDF) of the normal distribution and

ranges from zero to positive infinite. To ensure a positive first derivative, we only

need that α is positive.

From this first derivative, we see that the dose-toxicity function is increasing

in dosage as long as the parameter α takes positive values.

We understand the concavity of the dose-toxicity function by checking its

second derivation, which is give by

d2πi
dd2

i

=
2α2φ(β + αdi)

′(1 + Φ(β + αdi))
2 − 4α2φ(β + αdi)

2(1 + Φ(β + αdi))

(1 + Φ(β + αdi))4

=
2α2φ(β + αdi)

′(1 + Φ(β + αdi))− 4α2φ(β + αdi)
2

(1 + Φ(β + αdi))3
.

From this second derivative, we see that the dose-toxicity curve πi concaves

up in di if d2πi
dd2i

> 0 and concaves down in di if d2πi
dd2i

< 0. However there is no closed
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form for the CDF Φ, so we see intuitively that for some values of di, we have

d2πi
dd2i

> 0, and for some other values of di, we have d2πi
dd2i

< 0. The second derivative

d2πi
dd2i

is positive if

(1 + Φ)φ′ − 2φ2 ≥ 0.

This is true if φ′

φ
≥ 2φ

1+Φ
. That is, if (lnφ)′ ≥ (2ln(1 + Φ))′, the second

derivative d2πi
dd2i

is positive. Because a logarithmic function is a one-to-one and

monotonically increasing function, this is true if φ
(1+Φ)2

is increasing in di. To

check the concavity of pii in di, we need just to check this condition which is true

with the help of R.

Using the statistical software R, we draw the graphs of the dose-toxicity

relation for different values of µ and σ2. To maintain readability, we have included

in Appendix B (Figures B.1 to B.16) the graphs of the new function and the three

functions used in the literature, for different values of the parameters. From these

graphs, we see that our new model can depict a variety of dose-toxicity relations,

just like the functions discussed in Section 3.1 (that is, the power function, the

logistic model and the hyperbolic tangent model). However we hope our model

performs better because we can choose different values of µ and σ2 to adjust the

shape of the dose-toxicity curve.



CHAPTER 3. A NEW DESIGN WITH IMMEDIATE TOXICITY 32

3.3 Simulation for the new design

For the purpose of illustration, we set β = −3. In this section, we carry out

some simulation studies to assess the performance of our new design, using the

following criteria: (1) the convergence rate of the dose-selection process, (2)

average proportion of toxic patients. The prior distribution of the unknown

parameter is taken to be the beta distribution beta(2, 2). The first criterion tells

us that the faster the convergence is, the less patients we have in the trial. This

makes the trial more ethical because we subject less patients to toxicity overall.

The second criterion tells us how many patients are toxic in a particular trial, so

with the same sample size, the trial with less toxic patients is more ethical.

We assume the unknown parameter α follows a beta prior distribution with

the probability function, and its probability density function is given by f(x) =

Γ(r+s)
Γ(r)Γ(s)

xr−1(1− x)s−1, where 0 < x < 1. This ensures that α is positive and the

dose-toxicity probability function is increasing. Although the posterior distribution

has no closed form, its support is given by (0, 1) and α is always positive. We

use R programming to derive the posterior distribution and sample from this

distribution. The probability of toxicity is estimated after treating each patient,

and the trial is stopped if the difference of two consecutive estimated toxicity

probabilities of the chosen doses is less than 0.005.

For example, corresponding to the dose trace illustrated on page B-19, the

associated table of prior and posterior mean toxicity probabilities of our new
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model is given on page B-18. The first row of this table gives the prior mean

toxicity probabilities at all doses. The trial started with the lowest dose 1, as

given by the algorithm. From page B-19, we see that patient 1 is not toxic. So we

derive the likelihood, update the posterior distribution and calculate the posterior

mean toxicity probabilities at all doses. Then for the second patient, we apply the

dose whose posterior mean toxicity probability is below 0.33 but closest to 0.33.

From this table, we see that dose 4 is selected. From the results on page B-19,

we see that patient 2 is not toxic. We derive the likelihood again, update the

posterior distribution and calculate the posterior mean toxicity probabilities at

all doses. The results are given in the third row of the table. For the third

patient, we select the dose with the posterior mean toxicity probability that is

below 0.33 but closest to 0.33. Dose 4 is selected again, the patient is not toxic

from page B-19. We derive the likelihood again, update the posterior distribution

and calculate the posterior mean toxicity probabilities at all doses. The results

are given in the fourth row of the table. For the fourth patient, we select the

dose with the posterior mean toxicity probability that is below 0.33 but closest

to 0.33. This time, after observing two non-toxic results at dose 4, we escalate

to dose 5. This seems intuitive and reasonable. Unfortunately after treatment,

the fourth patient is toxic. So we would expect to de-escalate to dose 4 again.

This is confirmed by calculation. After observing a toxic response, we derive the

likelihood, update the posterior distribution and calculate the posterior mean

toxicity probabilities at all doses. The results are given in the fifth row of the
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table. From this row, we see that dose 4 has a posterior mean toxicity probability

that is below 0.33 but still closest to 0.33. The fifth patient is treated at dose

4. But again the patient is toxic. We expect the next patient be treated at the

next lower dose 3. This is confirmed by calculation again. After observing a toxic

response, we derive the likelihood, update the posterior distribution and calculate

the posterior mean toxicity probabilities at all doses. The results are given in the

sixth row of the table. From this row, we see that dose 3 has a posterior mean

toxicity probability that is below 0.33 but still closest to 0.33. This and the next

4 patients (i.e., a total of 5 patients) are treated at dose 3 and all are non-toxic.

Intuitively for the 11th patient, we would escalate the dose 4. This is confirmed

by calculation. We derive the likelihood, update the posterior distribution and

calculate the posterior mean toxicity probabilities at all doses for the 11th patient.

The results are given in the eleventh row of the table. From this row, we see that

dose 4 has a posterior mean toxicity probability that is below 0.33 but still closest

to 0.33. After treatment, a toxic response is observed. As a result, we de-escalate

to dose 3 for the next patient. This process repeats. The next 5 patients are

treated at dose 3 and all are non-toxic. So we escalate to dose 4 again, but a toxic

response is observed. We de-escalate to dose 3 again for the next 5 patients, and

all are observed with non-toxic responses. We then escalate to dose 4, but again

a toxic response is observed. After this, all future patients are treated at dose

3, and the 26th patient was toxic. Nevertheless, dose 3 is identified as the MTD

after convergence. The dose selection process stopped after treating 30 patients.
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Of the 30 patients treated, a total of 6 patients are toxic, or 20%. The sample

mean and variance of the toxicity probabilities of the 30 treated patients are

respectively 0.204 and 0.004. Finally, at the time of stopping, the final estimated

dose probabilities are 0.0148 (at dose 1), 0.0604 (at dose 2), 0.1763 (at dose 3),

0.3680 (at dose 4), 0.5821 (at dose 5), and 0.7591 (at dose 6). Dose 3 is correctly

identified as the MTD, the simulated proportion of toxic patients is slightly higher

than the estimated toxicity probability at dose 3, and the sample mean toxicity

probability of the 30 patients in the trial is slightly higher than the identified dose

probability at MTD.

For another dose trace illustrated on page B-20, the dose selection process

stopped after treating 38 patients. Of the 38 patients treated, a total of 10 patients

are toxic, or 26.3%. The sample mean and variance of the toxicity probabilities of

the 38 treated patients are respectively 0.232 and 0.002. At the time of stopping,

the final estimated dose probabilities are 0.0168 (at dose 1), 0.0736 (at dose 2),

0.2180 (at dose 3), 0.4431 (at dose 4), 0.6702 (at dose 5), and 0.8353 (at dose

6). Dose 3 is correctly identified as the MTD, the simulated proportion of toxic

patients is slightly higher than the estimated toxicity probability at dose 3, and

the sample mean toxicity probability of all 38 treated patients is also slightly

higher than the identified dose probability at MTD. Except for the first 7 patients,

all other patients received dose level 3 for the treatment.

We also repeat the simulation for the case of 10 dose levels. To adjust the



CHAPTER 3. A NEW DESIGN WITH IMMEDIATE TOXICITY 36

dose toxicity probabilities, we have changed the toxicity probability function to

πi(α) =
2Φ(−5 + αdi)

1 + Φ(−5 + αdi)
.

Here we have changed −3 to −5 because this way the transformed dose −5 + αdi,

where di = i, i = 1, 2, · · · , 10, ranges from −5 to 5, since 0 ≤ α ≤ 1. Based on

this new toxicity probability function, the toxicity probabilities at all 10 dose

levels seem reasonable. For example, corresponding to the dose trace with 10

doses illustrated on page B-21, the dose selection process stopped after treating

60 patients. Of the 60 patients treated, a total of 10 patients are toxic, or 16.7%.

The mean and variance of the toxicity probabilities of all 60 treated patients are

respectively 0.214 and 0.002. Finally, at the time of stopping, the final estimated

dose probabilities from dose 1 to 10 are 0.00001, 0.0002, 0.0021, 0.0151, 0.0712,

0.2206, 0.4589, 0.6973, 0.8631, 0.9502 respectively. Dose 6 is correctly determined

as the MTD, the simulated proportion of toxic patients is lower than the estimated

toxicity probability at dose 6, and the sample mean toxicity probability of all 60

treated patients is also lower than the estimated toxicity probability at MTD. It

is interesting to observe that after starting the first patient with the lowest dose

and no toxicity, the second patient is treated at dose 7. The second patient was

toxic so we de-escalated to dose 5, for the next 20 patients. At the beginning , 2

toxicities were observed at dose 5 (for the 5th and 8th patients). However for all

other patients at dose 5, non-toxicity was observed and so we escalate to dose 6

for the next 38 patients. Among these 38 patients, 7 toxicities were observed and

the algorithm converged at dose 6.
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In the dose trace with 10 dose levels illustrated on page B-22, the dose

selection process stopped after treating 44 patients. Of these 44 patients treated,

a total of 12 patients are toxic, or 27.3%. The sample mean and variance of

the toxicity probabilities of all 44 treated patients are respectively 0.232 and

0.006. Finally, at the time of stopping, the final estimated dose probabilities

from dose 1 to 10 are 0.0000001, 0.000006, 0.0002, 0.0024, 0.0215, 0.1119, 0.3350,

0.6230, 0.8400, 0.9494 respectively. Dose 6 is correctly determined as the MTD,

the simulated proportion of toxic patients is higher than the estimated toxicity

probability at dose 6, and the sample mean toxicity probability of all 44 treated

patients is also higher than the estimated toxicity probability at MTD. The dose

trace is interesting. We start with the lowest dose and the observation is non-toxic.

The second treatment is escalated to dose 9 but the observation was toxic. We

then de-escalate to dose 6. After observing a non-toxic response, we escalate

again, to dose 7 for the next 2 patients. However 1 toxic response was observed

and so we de-escalated to dose 6 again, for the next 3 patients, who were all

non-toxic. So we escalate to dose 7 again, but the observation was toxic and so we

de-escalate again to dose 6, for the next 6 patients. All patients were non-toxic

and so we escalate again to dose 7, for the next 24 patients. After observing 8

toxicities, we de-escalated to dose 6 and the treatment was non-toxic. We treated

2 more patients at dose 7, and the last one was toxic. We treated the last 2 of the

44 patients at dose 6, observed no toxicity, and the algorithm converged.

For the above simulations, we used the Beta(2, 2) distribution. This distri-
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bution is symmetric about 0.5 and gives equal weights to both large and small

values in (0, 1). We have extended this to a general beta distribution Beta(a, b).

When the first parameter a is smaller than b, we give more weights to small values

in (0, 1) than large values. This means that both the prior mean and posterior

mean of the toxicity probability function πi(α) tend to be small for all doses

i = 1, 2, · · · , 6. Because of this, the MTD is likely to be at dose 6. This has been

observed from page B-23 and page B-24, where the proportion of dose 6 as MTD

has increased. At the same time, because all toxicity probabilities are small and

dose 6 is the MTD in most times, we expect relatively fast convergence. This is

also observed on page B-25 and page B-26.

On the other hand, we simulated with the Beta(a, b) distribution when a is

larger than b. In this case, we give more weights to large values in (0, 1), and

therefore, most or all the prior and posterior mean toxicity probabilities are large,

and in almost all cases larger than 0.33. As a result, no MTD were selected

according to our criteria.

We also simulated the trial using the uniform distribution over (0, 1) as the

prior distribution. Because we do not favour either small or large values in (0, 1),

we have observed that both dose 1 and dose 6 are very likely to be the MTD, and

the convergence time should be quick too. These have been observed on page B-27

and page B-28.
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3.4 Simulation comparison with other designs

In this section, we carry out simulation studies to compare the performance of

our new design with existing designs. The comparison is based on the following

three criteria: (1) the rate of convergence of the design, (2) the average number

of toxic patients in the trial, and (3) the average toxicity of all patients treated

in the trial. All simulations are based on 1000 replications. All simulations use

the Beta(a, b) prior where a = b = 2 which are very good as we have observed in

Section 3.3. The stopping rule is the same for all designs. That is, we stop each

design when the absolute difference of the toxicity probabilities of the last two

chosen doses is less than 0.005. The dose selection rule is also the same. That

is, for each patient, the dose selected is the one whose toxicity probability is less

than 0.33 but at the same time closest to 0.33.

The motivation of using these three criteria is as follows. The rate of con-

vergence tells us how many patients we treat, on average, before we stop the

trial. The intuition is that the less patients we have in the trial, the less number

of patients are subject to toxicity. For a fixed number of patients in the trial,

the less number of toxic patients, the better the design. So we wish to estimate

the average number of toxic patients for each design. Finally, we estimate the

average toxicity probability of all patients in the trial. We hope that the lower

this average, the better the design, because this average tells us the overall level

of toxicity of all patients treated in the trial.
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For our new design, the dose toxicity probability function is given by πi(α) =

2Φ(−3+αdi,µ,σ
2)

1+Φ(−3+αdi,µ,σ2)
, where α is the unknown parameter following the Beta(2, 2) prior

distribution, µ is the mean of the normal distribution and σ2 is the variance

of the normal distribution, and di = i, i = 1, 2, · · · , 6, is the dose. The dose

toxicity probability function of the logistic design is given by πi(α) = exp(−3+αdi)
1+exp(−3+αdi)

,

where α is the unknown parameter following the Beta(2, 2) prior distribution

and di = i, i = 1, 2, · · · , 6, is the dose. The dose toxicity probability function

of the hyperbolic tangent design design is given by πi(α) =
[
tanh(−3+di)+2

2

]α
,

where α is the unknown parameter following the Beta(2, 2) prior distribution and

di = i, i = 1, 2, · · · , 6, is the dose.

Simulation results are summarized in Appendix C. For our new design, we

simulated the cases of N(0, 0.5), N(0, 1), N(0, 1.5), N(0, 2) and N(0, 3). From

Table C.1 on page C-2, we see our new design performs the best. The average

stopping times for our new design (19.33 for σ2 = 0.5, 24.13 for σ2 = 1, 32.09

for σ2 = 1.5, etc.) are lower than those for the logistic (33.96) and hyperbolic

tangent (42.08) designs, so our new design is efficient. This means that on average,

small sample sizes are needed to complete Phase I clinical trials using our new

design. This is both logistically required and ethically desirable. Our new design

with σ2 = 1 is easy to apply because it is the standard normal distribution. For

this design, the average proportion of toxic patients in the trial is 24.8%, which

is lower than the average proportion of 27.7% for the logistic design and 26.6%

for the hyperbolic tangent design. This implies that on average, we subject less
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patients in the trial to toxicity if we use our new design. This means that our

new design is more ethical than both logistic and hyperbolic tangent designs.

Finally the average toxicity probability for all patients is 20.6% for our new design

with N(0, 1), that is lower than 25.5% for the logistic design and 28.6% for the

hyperbolic tangent design. This also shows that our new design is more ethical.

It is worth pointing out that for our new model with σ2 = 3, all prior mean

toxicity probabilities are more than 0.33 and therefore the trials were inconclusive

and so the variances observed are 0 in Table C.1.

Table C.2 on page E-2 summarizes the simulated average toxicity probabilities

at all dose levels under different models. These estimated probabilities show

that the new design with the standard normal distribution seems to be a very

reasonable design for the dose-toxicity relationship. The estimated average toxicity

probabilities at different doses are 0.014 for dose 1, 0.063 for dose 2, 0.176 for

dose 3, 0.327 for dose 4, 0.470 for dose 5 and 0.583 for dose 6. In this case, does 4

is recommended as MTD for a Phase II clinical trial.

3.5 Summary

This chapter is exclusively focused on simulation studies of the new design alone

and also in comparison with existing designs. One advantage of our new design is

we can adjust the variance of the normal distribution in order to model different

possible patterns of the dose-toxicity relationship. This can normally not be
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achieved by the three functions currently used in the literature. Simulation studies

show that the new design performs much better than the three standard designs

with respect to different criteria including the convergency rate and average

proportion of toxic patients. Finally the MTD is identified together with its

probability.



Chapter 4

A new design with late-onset
toxicity

4.1 Introduction

In Chapter 3, we introduced a new design of dose finding in Phase I clinical trials

when we assumed immediately observed toxicity. However it may happen that

the toxicity cannot be observed immediately after the treatment. Instead it may

be late-onset.

In this chapter, we carry out simulation studies when we assume the toxicity

after treatment is delayed and so late-onset. Specifically we assume the time to

toxicity follows a geometric distribution. Therefore when a particular patient

is treated, the toxicity responses from previously treated patients may not be

available. Instead all we know is some of these patients are not toxic at the time

of treatment. Therefore we require the use of survival analysis to modify the

likelihood function. The idea of using survival analysis came from taking the

43
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Lifetime Data Analysis course from Dr. Po Yang.

4.2 A new design with delayed toxicities

We still use the following same model describing the dose-toxicity relationship:

πi = πi(di, α, β) =
2Φ(β + αdi)

1 + Φ(β + αdi)
= 2− 2(1 + Φ(β + αdi))

−1,

where Φ is the cumulative distribution function (CDF) of the normal distribution

N(µ, σ2), not necessarily the standard normal distribution.

We assume the time T to toxicity follows the geometric distribution with rate

p. The probability mass function of T is given by p(t) = p(1−p)t, t = 0, 1, 2, · · · . In

our simulations, the rate p will take values 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. Be-

cause the expected value of T is 1−p
p

, so the expected time to toxicity is respectively

9, 4, 2.33, 1.5, 1, 0.67, 0.43, 0.25, 0.11 when p is 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9.

Our simulations consider different possible cases.

Due to late-onset toxicities, the likelihood function needs modification. Type

I censoring Maximum Likelihood function at time m is

m−1∏
l=1

[πil(1− πil)til,l ]δil,l [(1− πil)m−l]1−δil,l ,

where il is the dose for patient treated at time l = 1, 2, · · · ,m− 1, til,l is the time

to toxicity for patient treated at time l = 1, 2, · · · ,m− 1 with dose il, and

δil,l = I{til,l≤m−l} =

{
1 if toxicity is observed,

0 if toxicity is censored,
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is an indicator. We also assume α is positive. To compare with existing methods,

we set β = −3. By the Bayes’ theorem, the toxicity probability at dose di is

estimated to be

π̂i =

∫
2Φ(β + αdi)

1 + Φ(β + αdi)

L(D|α)f(α)∫
L(D|α)f(α)dα

dα,

where π̂i is the posterior mean of the toxicity probability at dose di.

After each cohort of patients is treated, we collect all the complete and

censored toxicity data and calculate the posterior means of the toxicity probabilities

at all the dose levels, say π̂1, π̂2, · · · , π̂K . The dose whose toxicity probability is

closest to the target ΦT is the dose that is recommended to the next cohort of

patients. The trial terminates when the toxicity probability converges, and we

determine this dose level as the MTD.

4.3 Simulation for the new design with late-onset

toxicity

For the purpose of illustration, we set β = −3. In this section, we carry out

some simulation studies to assess the performance of our new design when the

toxicity is late-onset. That is, when the next patient is to be treated, the toxicity

of a previously treated patient is delayed and may not be observable. We use

the following criteria: (1) the convergence rate of the dose-selection process, and

(2) average proportion of toxic patients. The prior distribution of the unknown

parameter is taken to be the beta distribution beta(2, 2). The first criterion tells
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us that the faster the convergence is, the less patients we have in the trial. This

makes the trial more ethical because we subject less patients to toxicity overall.

The second criterion tells us how many patients are toxic in a particular trial, so

with the same sample size, the trial with less toxic patients is more ethical.

We assume the unknown parameter α follows a beta prior distribution with

the probability function, and its probability density function is given by f(x) =

Γ(r+s)
Γ(r)Γ(s)

xr−1(1− x)s−1, where 0 < x < 1. This ensures that α is positive and the

dose-toxicity probability function is increasing. Although the posterior distribution

has no closed form, its support is given by (0, 1) and α is always positive. We

use R programming to derive the posterior distribution and sample from this

distribution. The probability of toxicity is estimated after treating each patient,

and the trial is stopped if the difference of two consecutive estimated toxicity

probabilities of the chosen doses is less than 0.005.

The late-onset toxicity is simulated as follows, in two stages. After treatment,

we observed that the patient is either non-toxic or toxic. If the patient is non-toxic,

then we use this endpoint to update our likelihood function. If the patient is toxic,

say at a dose with toxicity probability p, then we assume that the time to toxicity

follows the geometric distribution P (X = x) = p(1− p)x, x = 0, 1, 2, · · · . This is

a very reasonable discrete distribution to describe time to the event of toxicity.

The random time to toxicity is generated by R using the rate 1/p. Suppose that

the generated time to toxicity is x and the patient is treated at time i < n and
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the current patient is treated at time n. If x ≤ n− i, toxicity is observed and the

contribution to the likelihood is p(1− p)x. If x > n− i, toxicity is censored and

the contribution to the likelihood is (1− p)n−i+1.

For example, corresponding to the dose trace illustrated on page D-3, the

associated table of prior and posterior mean toxicity probabilities of our new

model is given on page D-2. The trial stopped after treating 34 patients. The

first row of this table gives the prior mean toxicity probabilities at all doses. The

trial started with the lowest dose 1, as given by the algorithm. From page D-3, we

see that patient 1 is not toxic. So we derive the likelihood, update the posterior

distribution and calculate the posterior mean toxicity probabilities at all doses.

Then for the second patient, we apply the dose whose posterior mean toxicity

probability is below 0.33 but closest to 0.33. From this table, we see that dose 4

is selected. From the results on page D-3, we see that patient 2 is not toxic. We

derive the likelihood again, update the posterior distribution and calculate the

posterior mean toxicity probabilities at all doses. The results are given in the third

row of the table. For the third patient, we select the dose with the posterior mean

toxicity probability that is below 0.33 but closest to 0.33. Dose 4 is selected again,

the patient is not toxic from page D-3. We derive the likelihood again, update the

posterior distribution and calculate the posterior mean toxicity probabilities at all

doses. The results are given in the fourth row of the table. For the fourth patient,

we select the dose with the posterior mean toxicity probability that is below 0.33

but closest to 0.33. This time, after observing two non-toxic results at dose 4,
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we escalate to dose 5. This seems intuitive and reasonable. After treatment, the

fourth patient is still non-toxic, so we escalate to dose 6. But a toxic response

was observed. Simulation showed that after 1 day, toxicity will be observed.

That is, for patient 6, toxicity of patient 5 was observed. After observing a toxic

response, we derive the likelihood, update the posterior distribution and calculate

the posterior mean toxicity probabilities at all doses. The process was repeated

and starting at patient 8, all patients were treated at dose 6. After this, patients

8, 11, 14, 15, 25, 27, and 31 are toxic. Their times to observed toxicity were 2, 0,

1, 5, 1, 1, 1 day(s). Finally, dose 6 is identified as the MTD after convergence.

Of the 34 patients treated, a total of 8 patients are toxic, or 23.5%. The sample

mean and variance of the toxicity probabilities of the 34 treated patients are

respectively 0.227 and 0.003. Finally, at the time of stopping, the final estimated

dose probabilities are 0.0068 (at dose 1), 0.0160 (at dose 2), 0.0346 (at dose 3),

0.0684 (at dose 4), 0.1231 (at dose 5), and 0.2017 (at dose 6). Dose 6 is correctly

identified as the MTD, the simulated proportion of toxic patients is slightly higher

than the estimated toxicity probability at dose 6, and the sample mean toxicity

probability of the 34 patients in the trial is slightly higher than the identified dose

probability at MTD.

For another dose trace illustrated on page D-4, the dose selection process

stopped after treating 35 patients. Of the 35 patients treated, a total of 9 patients

are toxic, or 25.7%. The sample mean and variance of the toxicity probabilities of

the 35 treated patients are respectively 0.223 and 0.006. At the time of stopping,
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the final estimated dose probabilities are 0.0061 (at dose 1), 0.0132 (at dose 2),

0.0266 (at dose 3), 0.0502 (at dose 4), 0.0882 (at dose 5), and 0.1439 (at dose

6). Dose 6 is correctly identified as the MTD, the simulated proportion of toxic

patients is slightly higher than the estimated toxicity probability at dose 6, and

the sample mean toxicity probability of all 35 treated patients is also slightly

higher than the identified dose probability at MTD. Except for 14 patients, all

other patients received dose level 6 for the treatment. The times to toxicity of the

toxic patients are: 1 for patient 3, 2 for patient 8, 1 for patient 13, 3 for patient

17, 0 for patient 18, 2 for patient 20, 13 for patient 21, 7 for patient 23, and 10

for patient 24. These times were used to update the likelihood function.

For the above simulations, we used the Beta(2, 2) distribution. This distri-

bution is symmetric about 0.5 and gives equal weights to both large and small

values in (0, 1). We have extended this to a general beta distribution Beta(a, b).

When the first parameter a is smaller than b, we give more weights to small values

in (0, 1) than large values. This means that both the prior mean and posterior

mean of the toxicity probability function πi(α) tend to be small for all doses

i = 1, 2, · · · , 6. Because of this, the MTD is likely to be at dose 6. At the same

time, because all toxicity probabilities are small and dose 6 is the MTD in most

times, we expect relatively fast convergence.

On the other hand, we simulated with the Beta(a, b) distribution when a is

larger than b. In this case, we give more weights to large values in (0, 1), and
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therefore, most or all the prior and posterior mean toxicity probabilities are large,

and in almost all cases larger than 0.33. As a result, no MTD were selected

according to our criteria.

4.4 Simulation comparison with other designs

with late-onset toxicity

In this section, we carry out simulation studies to compare the performance of our

new design with existing designs when the toxicity is late-onset. The procedure

for dealing with late-onset toxicity is the same as in the previous section. The

comparison is based on the following three criteria: (1) the rate of convergence

of the design, (2) the average number of toxic patients in the trial, and (3) the

average toxicity of all patients treated in the trial. All simulations are based on

1000 replications. All simulations use the Beta(a, b) prior where a = b = 2 which

are very good as we have observed in Section 4.3. The stopping rule is the same

for all designs. That is, we stop each design when the absolute difference of the

toxicity probabilities of the last two chosen doses is less than 0.005. The dose

selection rule is also the same. That is, for each patient, the dose selected is the

one whose toxicity probability is less than 0.33 but at the same time closest to

0.33.

The motivation of using these three criteria is as follows. The rate of con-

vergence tells us how many patients we treat, on average, before we stop the
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trial. The intuition is that the less patients we have in the trial, the less number

of patients are subject to toxicity. For a fixed number of patients in the trial,

the less number of toxic patients, the better the design. So we wish to estimate

the average number of toxic patients for each design. Finally, we estimate the

average toxicity probability of all patients in the trial. We hope that the lower

this average, the better the design, because this average tells us the overall level

of toxicity of all patients treated in the trial.

For our new design, the dose toxicity probability function is given by πi(α) =

2Φ(−3+αdi,µ,σ
2)

1+Φ(−3+αdi,µ,σ2)
, where α is the unknown parameter following the Beta(2, 2) prior

distribution, µ is the mean of the normal distribution and σ2 is the variance

of the normal distribution, and di = i, i = 1, 2, · · · , 6, is the dose. The dose

toxicity probability function of the logistic design is given by πi(α) = exp(−3+αdi)
1+exp(−3+αdi)

,

where α is the unknown parameter following the Beta(2, 2) prior distribution

and di = i, i = 1, 2, · · · , 6, is the dose. The dose toxicity probability function

of the hyperbolic tangent design design is given by πi(α) =
[
tanh(−3+di)+2

2

]α
,

where α is the unknown parameter following the Beta(2, 2) prior distribution and

di = i, i = 1, 2, · · · , 6, is the dose.

Simulation results are summarized in Appendix E. For our new design, we

simulated the cases of N(0, 0.5), N(0, 1), and N(0, 2). From Table E.1 on page

E-2, we see our new design with N(0, 1) performs very good. The average stopping

times for our new design (17.672 for σ2 = 0.5, 24.85 for σ2 = 1, and 21.286 for
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σ2 = 2) are reasonably good compared with the logistic (23.064) and hyperbolic

tangent (19.078) designs, so our new design is efficient, although the hyperbolic

tangent design is also very good. This means that on average, small sample sizes

are needed to complete Phase I clinical trials with late-onset toxicity using our

new design. This is both logistically required and ethically desirable. Our new

design with σ2 = 1 is easy to apply because it is the standard normal distribution.

For this design, the average proportion of toxic patients in the trial is 18.4%,

which is lower than the average proportion of 23.1% for the logistic design and

23.7% for the hyperbolic tangent design. This implies that on average, we subject

less patients in the trial to toxicity if we use our new design. This means that

our new design is more ethical than both logistic and hyperbolic tangent designs.

Finally the average toxicity probability for all patients is 18.3% for our new design

with N(0, 1), that is lower than 21.8% for the logistic design and 23.5% for the

hyperbolic tangent design. This also shows that our new design is more ethical.

For comparison, we have also included the histograms of MTD and the

stopping time, for all three designs: new, logistic and hyperbolic tangent. See

pages E-3 to page E-8.

4.5 Summary

This chapter is exclusively focused on simulation studies of the new design with

late-onset toxicity and comparison with the existing parametric designs with
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late-onset toxicity. Simulation results confirm the advantage of our new design

because we can adjust the variance of the normal distribution in order to model

different possible patterns of the dose-toxicity relationship. Simulation studies

show that the new design performs much better than the three existing designs

when the toxicity is late-onset and follows the geometric distribution. Different

criteria are used, including the convergence rate and average proportion of toxic

patients. Finally the MTD is identified together with its toxicity probability.



Chapter 5

Conclusion

5.1 Summary of achievements

In this MSc thesis, I have introduced a new parametric design of Phase I clinical

trials and compared its performance with existing parametric designs in the

literature. All the designs considered use the continual reassessment method

(CRM).

The new design was introduced after I recognized that instead of the expo-

nential function in the logistic design, the cumulative distribution function has a

similar shape and may be used after some modifications. The new design of the

dose-toxicity relationship is an increasing function and has properties similar to

the existing parametric designs of Phase I clinical trials.

We not only assess the convergence and properties of the new design, but also

compare its performance with the existing parametric designs with regard to three

important criteria: (1) the identification of the maximum tolerated dose (MTD),

54
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(2) the convergence to the MTD, and (3) the proportion of toxic patients. Based

on these criteria, simulation results have demonstrated our new design is both

ethically and statistically better than the parametric designs in the literature,

whether the toxicity is immediately observed or late-onset.

5.2 Future research

Design of Phase I clinical trials is very important in biostatistics because it forms

the foundation for all future phases of clinical trials. The goal of Phase I clinical

trials is to identify the maximum tolerated dose (MTD) to be recommended for

further study in Phase II. If the MTD is incorrectly identified, substantial harms

may be done. If the MTD is under-estimated, then the drug is potentially useless

because its dose is ineffective. On the other hand, if the MTD is over-estimated,

then it will be harmful and overly toxic, and many patients may die.

The design of Phase I clinical trials depends on many factors. Therefore

the design can be improve if practical considerations are included. For example,

important patient’s covariates such as weights, age and gender may be included.

In this case, regression models may be required.
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Appendix A

List of terms and symbols

• MTD: maximum tolerated dose

• DLT: dose limiting toxicity

• FDA: Food and Drug Administration (USA)

• ATD: accelerated titration design

• BCD: biased coin dose-finding method

• CRM: continual reassessment method

• BMA: Bayeasian model averaging

• EWOC: escalation with overdose control

• Φ(x, µ, σ2): cumulative distribution function of the normal distribution

N(µ, σ2)

A-1



APPENDIX A. LIST OF TERMS AND SYMBOLS A-2

• di, i = 1, 2, · · · , K: dose levels

• pi, i = 1, 2, · · · , K: prespecified toxicity probability at dose level di

• φT : target toxicity probability

• Yj: binary toxicity outcome (1 =toxicity, 0 =non-toxicity)

• πi: probability of toxicity at dose level di under the dose-toxicity model

• L(D|α): likelihood function
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APPENDIX B. GRAPHS - IMMEDIATE TOXICITY B-2

Figure B.1: Graph of function f(x) = 2Φ(x,0,1)
1+Φ(x,0,1)

with µ = 0 and σ2 = 1
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APPENDIX B. GRAPHS - IMMEDIATE TOXICITY B-3

Figure B.2: Graph of function f(x) = 2Φ(x,0,2)
1+Φ(x,0,2)

with µ = 0 and σ2 = 2
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APPENDIX B. GRAPHS - IMMEDIATE TOXICITY B-4

Figure B.3: Graph of function f(x) = 2Φ(x,0,3)
1+Φ(x,0,3)

with µ = 0 and σ2 = 3
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Figure B.4: Graph of function f(x) = 2Φ(x,0,4)
1+Φ(x,0,4)

with µ = 0 and σ2 = 4

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

2 
* 

pn
or

m
(x

, 0
, 4

)/
(1

 +
 p

no
rm

(x
, 0

, 4
))
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Figure B.5: Graph of function f(x) = 2Φ(x,0,5)
1+Φ(x,0,5)

with µ = 0 and σ2 = 5
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Figure B.6: Graph of function f(x) = xexp(−2)
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Figure B.7: Graph of function f(x) = xexp(−1)
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Figure B.8: Graph of function f(x) = xexp(0)
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Figure B.9: Graph of function f(x) = xexp(1)
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Figure B.10: Graph of function f(x) = xexp(2)
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Figure B.11: Graph of function f(x) = exp(x)
1+exp(x)
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Figure B.12: Graph of function f(x) =
(

tanh(x)+1
2

)0.2
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Figure B.13: Graph of function f(x) =
(

tanh(x)+1
2

)0.5
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Figure B.14: Graph of function f(x) = tanh(x)+1
2
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Figure B.15: Graph of function f(x) =
(

tanh(x)+1
2

)2
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Figure B.16: Graph of function f(x) =
(

tanh(x)+1
2

)3
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Table B.1: Boldface indicates toxicity, the italicized indicated no toxicity, and the
underlined indicates convergence. The MTD is dose 3.

Mean model toxicity probability at dose.
Patient 1 2 3 4 5 6

1 0.0145 0.0638 0.1786 0.3315 0.4747 0.5880
2 0.0145 0.0633 0.1771 0.3292 0.4720 0.5853
3 0.0111 0.0416 0.1145 0.2251 0.3470 0.4590
4 0.0093 0.0308 0.0821 0.1664 0.2696 0.3744
5 0.0138 0.0559 0.1592 0.3188 0.4918 0.6412
6 0.0172 0.0777 0.2254 0.4362 0.6375 0.7862
7 0.0163 0.0713 0.2070 0.4074 0.6073 0.7614
8 0.0155 0.0660 0.1913 0.3820 0.5796 0.7378
9 0.0148 0.0615 0.1779 0.3596 0.5542 0.7153
10 0.0142 0.0577 0.1663 0.3397 0.5309 0.6941
11 0.0137 0.0545 0.1563 0.3219 0.5096 0.6741
12 0.0158 0.0679 0.1981 0.3988 0.6067 0.7695
13 0.0153 0.0644 0.1876 0.3812 0.5870 0.7528
14 0.0148 0.0613 0.1782 0.3651 0.5686 0.7367
15 0.0144 0.0586 0.1698 0.3503 0.5513 0.7212
16 0.0140 0.0562 0.1622 0.3368 0.5350 0.7063
17 0.0137 0.0540 0.1554 0.3243 0.5197 0.6919
18 0.0152 0.0635 0.1855 0.3809 0.5918 0.7620
19 0.0149 0.0612 0.1784 0.3684 0.5774 0.7495
20 0.0145 0.0591 0.1718 0.3568 0.5636 0.7373
21 0.0142 0.0572 0.1658 0.3458 0.5506 0.7255
22 0.0140 0.0554 0.1602 0.3356 0.5380 0.7140
23 0.0137 0.0538 0.1550 0.3260 0.5261 0.7028
24 0.0149 0.0612 0.1785 0.3707 0.5832 0.7580
25 0.0146 0.0595 0.1732 0.3611 0.5719 0.7480
26 0.0144 0.0579 0.1681 0.3519 0.5610 0.7382
27 0.0156 0.0652 0.1915 0.3948 0.6130 0.7855
28 0.0153 0.0635 0.1861 0.3854 0.6024 0.7765
29 0.0150 0.0619 0.1811 0.3765 0.5921 0.7677
30 0.0148 0.0604 0.1763 0.3680 0.5821 0.7591
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Figure B.17: Illustration of Dose Selection and Toxicities with 6 Dose Levels -
Immediate Toxicity
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Figure B.18: Illustration of Dose Selection and Toxicities with 6 Dose Levels -
Immediate Toxicity
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Figure B.19: Illustration of Dose Selection and Toxicities with 10 Dose Levels -
Immediate Toxicity
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Figure B.20: Illustration of Dose Selection and Toxicities with 10 Dose Levels -
Immediate Toxicity
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Figure B.21: Histogram of MTD for N(0, 1) and Beta(2, 5) prior distribution

Histogram of MTD, new model, N(0, 1), immediate toxicity
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Figure B.22: Histogram of MTD for N(0, 1) and Beta(2, 10) prior distribution

Histogram of MTD, new model, N(0, 1), immediate toxicity
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Figure B.23: Histogram of stopping times for N(0, 1) and Beta(2, 5) prior distri-
bution

Histogram of Stopping Time, new model, N(0, 1), immediate toxicity
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Figure B.24: Histogram of stopping times for N(0, 1) and Beta(2, 10) prior
distribution

Histogram of Stopping Time, new model, N(0, 1), immediate toxicity
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Figure B.25: Histogram of MTD for the uniform prior distribution

Histogram of MTD, new model, N(0, 1), immediate toxicity
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Figure B.26: Histogram of stopping times for the uniform prior distribution

Histogram of Stopping Time, new model, N(0, 1), immediate toxicity
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Table C.1: Performance of different models
Number at stop Toxic Proportion Dose probability

Model Mean Variance Mean Variance Mean Variance

New, σ2 = 0.5 19.329 150.081 0.143 0.017 0.143 0.002
New, σ2 = 1.0 24.13 324.117 0.248 0.020 0.206 0.001
New, σ2 = 1.5 32.086 304.211 0.272 0.010 0.253 0.0004
New, σ2 = 2.0 29.386 269.985 0.323 0.016 0.280 0.0001
New, σ2 = 3.0 2.000 0 0.338 0.111 0.337 0
Logistic 33.955 319.350 0.277 0.016 0.255 0.001
Hyperbolic 42.081 415.734 0.266 0.027 0.286 0.012

Table C.2: Toxicity probabilities of different models

Dose
Model 1 2 3 4 5 6

New, σ2 = 0.5 0.000 0.002 0.055 0.221 0.393 0.528
New, σ2 = 1.0 0.014 0.063 0.176 0.327 0.470 0.583
New, σ2 = 1.5 0.094 0.178 0.290 0.410 0.520 0.611
New, σ2 = 2.0 0.194 0.281 0.378 0.475 0.563 0.639
New, σ2 = 3.0 0.337 0.404 0.471 0.536 0.596 0.650
Logistic 0.078 0.129 0.206 0.305 0.411 0.508
Hyperbolic 0.202 0.390 0.718 0.939 0.991 0.999
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Table D.1: Boldface indicates toxicity, with number of days of late-onset obser-
vations in ( ), the italicized indicated no toxicity, and the underlined indicates
convergence. The MTD is dose 6.

Mean model toxicity probability at dose.
Patient 1 2 3 4 5 6

1 0.0145 0.0638 0.1786 0.3315 0.4747 0.5880
2 0.0145 0.0633 0.1771 0.3292 0.4720 0.5853
3 0.0111 0.0416 0.1145 0.2251 0.3470 0.4590
4 0.0093 0.0308 0.0821 0.1664 0.2696 0.3744
5 0.0076 0.0215 0.0536 0.1102 1876 0.2758 (1)
6 0.0089 0.0268 0.0688 0.1451 0.2533 0.3779
7 0.0083 0.0235 0.0583 0.1225 0.2167 0.3304
8 0.0078 0.0212 0.0511 0.1064 0.1897 2938 (2)
9 0.0068 0.0165 0.0369 0.0743 0.1329 0.2116
10 0.0076 0.0198 0.0464 0.0958 0.1730 0.2748
11 0.0073 0.0183 0.0420 0.0856 0.1546 0.2474 (0)
12 0.0081 0.0219 0.0526 0.1101 0.1995 0.3158
13 0.0078 0.0205 0.0482 0.1000 0.1815 0.2896
14 0.0075 0.0193 0.0447 0.0918 0.1666 0.2673 (1)
15 0.0079 0.0209 0.0493 0.1026 0.1866 0.2985 (5)
16 0.0075 0.0191 0.0438 0.0898 0.1632 0.2633
17 0.0072 0.0177 0.0396 0.0801 0.1451 0.2355
18 0.0069 0.0166 0.0363 0.0725 0.1308 0.2130
19 0.0067 0.0156 0.0337 0.0663 0.1192 0.1944
20 0.0070 0.0169 0.0371 0.0743 0.1343 0.2189
21 0.0069 0.0164 0.0359 0.0715 0.1290 0.2105
22 0.0068 0.0161 0.0348 0.0689 0.1241 0.2026
23 0.0067 0.0157 0.0338 0.0666 0.1196 0.1954
24 0.0067 0.0154 0.0328 0.0644 0.1154 0.1886
25 0.0066 0.0151 0.0319 0.0624 0.1115 0.1823 (1)
26 0.0068 0.0160 0.0347 0.0687 0.1237 0.2022
27 0.0068 0.0157 0.0338 0.0667 0.1199 0.1961 (1)
28 0.0070 0.0166 0.0363 0.0723 0.1305 0.2135
29 0.0069 0.0163 0.0354 0.0703 0.1268 0.2076
30 0.0068 0.0160 0.0346 0.0685 0.1233 0.2019
31 0.0068 0.0158 0.0339 0.0668 0.1201 0.1966 (1)
32 0.0069 0.0165 0.0360 0.0716 0.1294 0.2118
33 0.0069 0.0163 0.0353 0.0699 0.1262 0.2066
34 0.0068 0.0160 0.0346 0.0684 0.1231 0.2017
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Figure D.1: Illustration of Dose Trace with 6 Dose Levels - Late-onset Toxicity
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Figure D.2: Illustration of Dose Trace with 6 Dose Levels - Late-onset Toxicity
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Table E.1: Performance of different models
Number at stop Toxic Proportion Dose probability

Model Mean Variance Mean Variance Mean Variance

New, σ2 = 0.5 17.672 92.573 0.115 0.010 0.126 0.001
New, σ2 = 1.0 24.85 152.86 0.184 0.013 0.183 0.002
New, σ2 = 2.0 21.286 155.55 0.299 0.017 0.278 0.0001
Logistic 23.064 133.658 0.231 0.016 0.218 0.001
Hyperbolic 19.078 44.472 0.237 0.017 0.235 0.0003

Table E.2: Toxicity probabilities of different models

Dose
Model 1 2 3 4 5 6

New, σ2 = 0.5 0.000 0.0002 0.008 0.052 0.129 0.230
New, σ2 = 1.0 0.007 0.020 0.048 0.092 0.148 0.212
New, σ2 = 2.0 0.156 0.193 0.234 0.278 0.321 0.364
Logistic 0.060 0.076 0.098 0.126 0.159 0.196
Hyperbolic 0.065 0.224 0.608 0.912 0.987 0.998
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Figure E.1: Histogram of final selection of MTD, new model, late-onset toxicity

Histogram of MTD, new model, N(0, 1), late−onset toxicity
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Figure E.2: Histogram of stopping times, new model, late-onset toxicity

Histogram of Stopping Time, new model, N(0, 1), late−onset toxicity
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Figure E.3: Histogram of final selection of MTD, new model, late-onset toxicity

Histogram of MTD, logistic model, late−onset toxicity
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Figure E.4: Histogram of stopping times, new model, late-onset toxicity

Histogram of Stopping Time, logistic model, late−onset toxicity
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Figure E.5: Histogram of final selection of MTD, new model, late-onset toxicity

Histogram of MTD, hyperbolic tangent model, late−onset toxicity
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Figure E.6: Histogram of stopping times, new model, late-onset toxicity

Histogram of Stopping Time, hyperbolic tangent model, late−onset toxicity
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