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SUMMARY

An arched-folded plate of revolution, formed by rotating
a folded cross-section about a fixed Tine, is investigated under the
action of uniformly distributed surface loads.

An attempt to analyze the above structure by ordinary one
dimensional structural theories, namely, arch and curved-beam theories
for the longitudinal action and moment distribution for transverse
action while ensuring compatibility between two folds, is the main
objective of this thesis.

The comparisons of numerical results for a two-folds
roof system obtained by the structural and finite element analyses,

are also included .



Chapter

II

ITI

IV

TABLE OF CONTENTS

Page
Acknowledgments . . . . . . « . . v .00 .. ii
SUMMEYY « +v v v o o o o o o o o o o o o o o o o o o s iii
INTRODUCTION. . . . v v v v v v v e e e e e e v e e s 1
1.1 Object of Study. . . . . « ¢« ¢« v ¢ ¢ o v o« v . . 1
1.2 Geometry and Previous Study. . . . . . . . . .. 6
1.3 Assumptions and Limitations. . . . . . . . . .. 9
1.4 Outline of the Method of Analysis. . . . . . . . 12
BENDING OF A CURVED BEAM. . . . . « « « « o v v v . . 15
2.1 Introduction . . . . . . .+ o ¢ o o o000 15
2.2 Saint-Venant's Equations and Equations of
Equilibrium . . . . . . . . . o 0. 15
2.3 Bending Of A Curved Beam Out Of It's Initial
Plane . . . . & ¢ ¢ v v v v v e e e e e e e 22
2.3.1 Beam Subjected To Loadings Having Cosine
Variation (n#1). . . . . . . . . . .. 24
2.3.2 Beam Subjected To Loadings Having Cosine
Variation (n=1). . . . . . . . . . .. 26
CIRCULAR ARCH THEORY. . . . v v v v v ¢ v v v v v v 29
3.1 Introduction . . . . . . « . ¢ v ¢ o o0 0w 29
3.2 Governing Equations. . . . . . . . . o .0 30
3.3 Bending Of A Circular Fixed-Ends Arch. . . . . . 35
3.3.1 Arch Subjected To Loading Having Sine and
Cosine Variations (n#l1). . . . . . . . 37
3.3.2 Arch Subjected To Loadings Having Sine and
Cosine Variations (n=1). . . . . . .. 39
METHOD OF ANALYSIS. . . . « « ¢ v v v v v v v v o v 43
4.1 Introduction . . . . . « « v v o v 0 oo e e . 43
4.2 Elementary Transverse Slab Analysis. . . . . . . 44
4.3 Longitudinal Arch and Curved-Beam Analysis . . . 46
4.4 Correction Analysis. . . . « « v « v v ¢« o o 51
4.5 Superposition . . . . . . o 0000 o0 o 62

jv



Chapter
v

VI

APPLICATION OF THE ANALYSIS METHOD. . . . . . . . . . 63
5.1 Introduction . . . . . . . . . .. . . .. ... 63
5.2 Example - Layout . . . . . . . . e e e e e e e 63
5.3 Example - Analysis . . . . . . . . . . . . ... 68
5.4 Analysis By The Finite Element Method. . . . . . 84
CONCLUSIONS . . v v v v e e e e e e e e e e e e e e 96
6.1 Conclusions. . . . . . . . . . . v v v . ... 96
6.2 Comments For Further Study . . . . . . . . ... 98
References. . . . . . . . . v v . v v e e 100
Appendix I . . . . . . . . oo ... 102



CHAPTER 1

INTRODUCTION

1.1 Object of Study

A prismatic folded-plate structure, formed by a system of
thin plates spanning longitudinally and monolithically connected to
each other along Tongitudinal joints has obtained increasing
popularity in past decades. It is now well known that folded plate
construction utilizes the strength characteristic of shell structures,
such that its inherent stiffness allows for a longer span. VYet,
contrasted with curved shell, the folded plate offers the advantage
of simpler and less expensive formwork. Although mainly used for roof
system, the folded plate has been adapted to bins, bridges, floors
and even foundations, resulting in an economic, rational and pleasing
design.

The analysis of folded plate structures has receijved
considerable attention since the first publication in 1930. G. Ehlers]
of Germany was one of the first to propose a folded-plate theory
based on a linear variation of longitudinal stress in each plate but
neglected the effect of the relative displacement of the joints. Further
development of the theory in the 1930's was made by H. Craemer2 and
E. GruberS. They took into account the transverse moments at the joints

arising from continuity of construction. This method was introduced to



North America in 1947 in a paper by G. Winter and M. Pei4. They
described the folded plate theory neglecting relative joint displace-
ments and developed a convenient iteration procedure for the deter-
mination of the longitudinal stress pattern after the moment
distribution procedure. The more rigorous theory which takes

into account the effect of relative joint displacements was first
proposed by Gruber and Gruening5 in 1932. The theory was simplified

by W. Z. V]assow6 in 1936 with an approach that used linear algebraic
equations for calculation of the longitudinal stresses and ridge
moments instead of solving fourth order simultaneous differential
equations. The theory involving relative joints displacements was

also developed by I. Gaafar7 and D. Yitzhaki8 who introduced different
procedures which reduced the number of equations required for solution
to approximately one half that of Vlassow's method. In addition, an
iteration method was developed to account for relative joint displace-
ment. Further theoretical developments reconsidered the use of simple
beam theory in each plate and the use of one-way slab in the transverse
direction was introduced by H. Simpsonlg. Utilization of the two-
dimensional theory of elasticity for determination of membrane stresses
and two-way slab theory for determination of bending and twisting of
the slab was introduced by Goldberg and Leveg. The ASCE Task Committee
on Folded Plate Construction summarized the literature on analysis of

folded plates structures into the following four basic categories:



(a) beam method,

(b) folded plate theory neglecting relative joint
displacement,

(c) folded plate theory considering relative joint
displacement, and

(d) elasticity method.

A full bibliography on folded plates has been presented in the report

by this committee in 196310.

The behaviour of prismatic folded plate structures is
now well understood. Figure 1.1 shows some typical folded plate
structures together with almost unlimited range of possible cross-
section arrangements. The structures carry the superimposed loads
to the end diaphragms or gable frames through considerable bending
action in the Tongitudinal direction. The tensile longitudinal
stresses require a large amount of reinforcement and thus 1imit the
Tongitudinal clear span of a reinforced concrete folded plate. There
are two ways to overcome such difficulty. One method is to apply
pfestressing forces to folded plate structures]1 where possibility
of cracking, tensile stresses and deflections can be significantly
reduced. Another method is to utilize the fact that an arched
construction can resist loads more effectively than a straight one.
Therefore, an arched folded p]ate will be able to resist loads more
effectively than a conventional straight folded plate. An attempt,

using structural theories, to analyze such structure under the action
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of loads, becomes the main objective of this thesis.

1.2 Geometry and Previous Study

There are two distinct different types of arched folded plate
structures. By translating a folded cross-section along a given curve,
an arched folded plate of translation is formed (Figure 1.2a). However,
by rotating a folded cross-section about a fixed 1ine, an arched fo]déd
plate of revolution is formed (Figure 1.2b). Both structures have the
strength characteristic of a double curvature shell and yet it is
simple in forming due to the straight edges in one direction.

Since each unit of the arched folded plate of translation is
an inclined straight line translating along a shallow curve, each unit
can be analyzed as a translational shallow shell in the longitudinal
direction. Using the governing equations of a general shallow shell
‘given by K. Ma\r‘guerre]2 and the Levy-type solution given by K. Apeland

13

and E. Popov'”, the problem of an arched folded plate of translation,

simply supported along the two transverse edges, has been solved by
Shah and Lansdown14.

Each unit of the arched folded plate of revolution is formed
by rotating an inclined straight line about an axis. It can also be
considered as a section from a circular cone shown in Figure 1.3a. The
plan view of two inclined Tlines of rotation, which form such unit,
is shown in Figure 1.3b. Since each unit of the arched folded plate
of revo]utidn is actually part of a circular cone, it can be analyzed

by Shell theory. The solution is quite complex, and currently being

examined. Only simply supported boundary condition along the two
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(b) Rotational Type

Fig. 1.2 Arched Foided Plate
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transverse edges can be solved by any shell theory. This thesis,
however, combines ordinary one dimensional structural theories for
Tongitudinal action and moment distribution for transverse action,
while ensuring compatibility between two folds, and can solve any

boundary conditions along the transverse edges.

1.3 Assumptions and Limitations

In order to apply one-dimensional structural theories to
arched folded plate structures (Figure 1.4), certain assumptions
must be made. Limitations are thereby introduced in the applicability
of the theory. Some basic assumptions similar to those in the
conventional folded plate theory are:

(1) _The material is elastic, isotropic, and homogeneous.

(2) The principle of superposition holds.

(3) The plates carry loads transversely only by bending
normal to their planes (i.e. transverse continuous one-way slab
action).

(4) The plates carry loads Tongitudinally by bending and
axial force within their planes (i.e. longitudinal arch-curved beam
action).

(5) The variation of Tongitudinal stress across the entire
cross-section of each unit is planar. It varies linearly across the
width and over the depth.

(6) Displacements due to axial forces, bending moments are

considered.
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(7) The longitudinal distribution of all loads on all
units must be symmetrical.

(8) The cross-section of each unit is constant throughout
its span length (i.e. prismatic arched folded plates).

Additional assumptions are:

(9) The arched folded plate is symmetrical in the longitudinal
direction.

(10) The end supporting members along the two transverse
edges must provide built-in boundary conditions.

(11) The open cross-section of each unit may have shapes
other than the basic A\ shape.The ratio of the Targest sectional
dimension to the radius of curvature must be in the order of 1/10
or less. The ratio of span-width should be more than 5.

(12) Each unit can be subjected to inplane and out of plane
loadings which can be forces or moments. Loadings within and normal
to structure's plane of curvature are termed inplane and out of plane
loads respectively.

(13) Individual unit possess torsional resistance. Torsional
stresses due to twisting moments are ignored. Rotational deflections
of the cross-section due to twisting are considered.

(14) Shear stresses in each cross-section have negligible
effect on the deflection of the cross-section.

(15) The actual deflections are small compared to the overall

configuration of the structure.
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(16) The two outer longitudinal edges of the structure
are assumed to be free of supports. It can be supported by edge
beams which are considered as simple supports, but not without

modification of the theory.

The limitations which the preceding assumptions impose are
generally those associated with arch/curved beam theory and one-way
slab action. Certain restrictions on the configuration of the
structure are also introduced. It is noted that the theory
herein is considered to be applicable to reinforced concrete (a
nonhomogeneous material) and to structures composed of properly
jointed prefabricated_sections (initially discontinuous) for which,
effectively, a homogeneous continuous structure results from the
design. A further Timitation, such as maintaining an angle between
- adjoining plates of not less than 15° and not more than 165° has
been recommended by R. B. Moorma\n]5 in order to avoid violating

the assumption of superposition.

1.4 Qutline of the Method of Analysis

The theory of arched folded plates of revolution presented
here considers the Tongitudinal action of each unit to be governed
by arch and curved-beam theories, and the transverse action to be

that of a continuous one-way slab. The procedure of analysis

16

employed here is similar to those developed by D. Yitzhaki'~ in the

conventional folded plate theory and subsequently adopted by D.

17

Billington ° in his book. This analysis is divided into the following
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three parts.

(1) Elementary Analysis (first presented in North America
by M. Pe14) consisting of three separate analyses.

(a) Transverse Slab Analysis:

A11 surface loads are considered to be carried transversely
to the joints by the plates acting as continuous one-way slabs. The
interior joints are assumed unyielding along their entire span length.
Moment-distribution can be used here to give transverse moments at
the joints and the resulting reactions can be used in joint loads with
the same longitudinal distribution as the loads. No Tongitudinal
stresses are developed at this stage.

(b) Longitudinal Arch/Curved Beam Analysis:

The reactions from (a) are applied as loads which will be
transmitted Tongitudinally to the end supporting diaphragms by each
unit acting as an arch and as a curved beam. These vertical joint
reactions must first be transferred to the shear center of every
unit. Longitudinal hinges are then introduced along the joints to
eliminate transverse moments. In addition, each unit is allowed to
behave individually under load. The analysis is now separated into
the following two steps.

(i) Circular Arch Analysis, in which the inplane loads are
accounted for.

(i1) Curved Beam Analysis, in which the out of plane loads

are taken care of.
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Longitudinal stresses in each unit are developed from (1)

and (ii). These stresses are initially determined on the assumption
that each unit carries its loads and behaves independently of every
other unit. Free-edge stresses in two separate units at a common
joint are usually different. Cross-section deflections in each
unit, computed on the same basis as longitudinal stresses, will

also show that relative displacements exists between successive
joints. The incompatibility cannot be allowed in the overall
structure, and corrections must then be applied.

(2) Correction Analysis

The relative joint displacements in (b) violate the basic
assumption of unyielding supports in (a). Self-equalized forces
are applied at each common joint in order to correct such discre-
pancies. However, this will further introduce unequal longitudinal
edge stresses. Equalized edge stresses can be obtained by the
application of self-equalized shear correcticn forces, however this
will destroy the displacement compatibility established previously.

An overall compatibility at every common joint can be
established by using iteration technique. In this study, simultaneous
equations are set up in such a way that the conditions of displacement
and stress compatibility at each common joint are simultaneously
satisfied.

(3) Superposition

The results of the elementary analysis (a) are combined with
those of the correction analysis to give final forces, moments, stresses

and displacements.



CHAPTER 11

BENDING OF A CURVED BEAM

2.1 Introduction

Beams with curved axes under loads normal to the plane of
their curvatures are classified as curved beams. The problem of
bending of curved beams has been intensively investigated. Many

]9, H. Marcus20

well-known elasticians including Barré de Saint-Venant
and A. J. S. Pippard21 have made valuable contributions.

In this chapter a beam with circular axis is examined. The
Saint-Venant's equations which relate displacements to forces are
derived. By considering the equilibrium conditions of the beam,

equilibrium equations are obtained. The expressions for forces,

moments and displacements are presented for a variety of Toadings.

2.2 Saint-Venant's Equations and Equations of Equi]ibrium25

Consider the cantilever curved beam having the constant
cross-sectional properties shown in Figure 2.1. The beam has a local
cartesian coordinates system xyz with the origin 0 at the centroid of
the cross-section of the beam. The shear center S is assumed to
coincide with the centroid. The x and y axes are in the directions
of the principal axes of inertia of the cross-section, while the z-axis

coincides with the tangent to the elastic Tine at 0. The xz-plane also
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coincides with the plane of initial curvature of the beam. The
positive directions of x, y, and z are defined as shown. The arc s
is defined as the arc length of the center line measured from the
fixed end. Other variables, which appear in Figure 2.1, are defined
as follows:
MX = bending moment acting on the cross-section at 0 about
X-axis,
M, = twisting moment at 0 about z-axis,
N. = shear force in y direction,
v = centroid displacement in the direction of y-axis,
g = angle of twist of the cross-section about z-axis,
counterclockwise rotation being positive,
¢ = angle of twist per unit length at the same cross-section,
EI, = flexural rigidity,
K = torsional rigidity,
R = initial radius of curvature of the center line,
R = radius of curvature of the deformed center line at 0
in the yz principal plane.
Furthermore, it is assumed that the effect of cross-sectional warping
is negligible. The original plane section after twist is assumed to
remain plane, such that the torsional rigidity could be calculated
simply as the product of the torsional constant J and the shear modulus

GC of the material. Based on the above definitions and assumptions,

the following equations can be derived,
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EI
XX _

R - Mx
1 (2.1)
Ko = MZ i}

where, K = GCJ.

The radius of curvature R1 and the twist ¢ must be expressed
as functions of displacement v and the angle 8. Small def]eétion
theory implies that v and g will be small quantities. The final
values of R1 and ¢ are obtained by superimposing the separate
effects produced on the beam by the linear displacement v and the
angular displacement 8.

If an element ds of a curved bar (Figure 2.2a) is subjected
to a small displacement dv in the y-direction at a cross-section Ol,
the element will rotate with respect to the axis CO through an angle
dv/ds. Due to this displacement, the axis CO1 will displace into the
new CO axis. The angle 01C02 is equal to dv/R. The twist per unit

2
Tength ¢ will be

dv

dv

1
(6), = R*3 = Rds

—
I-—-‘l\)
N

p

In addition, a displacement dv will also produce a new curvature R1

of the center 1ine of the beam in the yz plane, which will be given

by

(D = - g—z—vz- (2.3)
1 S

The same element is now subjected to a small angular
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displacement 8 (Figure 2.2b). The corresponding curvature will be

given by
_ sing

(R), =R =« § (2.4)

1

The twist per unit length ¢, produced by the angular displacement

dg will be
(6) =48 (2.5)

Equation (2.4) is obtained by the following manipulations in Figure
2.3,
00 =d, CO=R, d=R - Rcossé

v = dsing = (R - Rcose)sinB = RsinB - Rcosesing
2
%!-= Rsinesing, BN Rcosesing
° de?
where, ds = Rds.
2 2
Therefore, curvature = dv _ d%v
ds? R2de2 | de ~ 0
_ Rcosesing
R? de - 0
sing '

R
The summation of equations (2.2) and (2.5), equations (2.3)

and (2.4) gives the following equations,

1.8 _d¥

R R )

1 ds (2.6)
¢ = .d_g + .LV



Figure 2.2 (a) Curved Beamn Element (b) Element subjected to /3

subjected to dv

|

\\\7@' l\\'\\\
I

Bt

Figure 2.3 .Plan View of Angular Displacement )’8" Effect

v=sinfS
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By substituting equations (2.6) into equations (2.1),

Saint-Venant's equations for a curved beam are derived, thus,

Figure 2.4 depicts an element of a curved beam ds in length
with the stress resultants acting on the cut faces and the distributed
loads applied along the elastic line. The positive signs are defined
by the directions of all forces shown. The summation of force in the

y-direction, give,

dNy
Rds - 9y (2.8)

The summation of moments about x and z directions respectively, is

_ i )
N, = HUMES NI (2.9)
M! M

—§-—§-= - m, (2.10)

where prime denotes differentiation with respect to s.
By differentiating equation (2.9) with respect to o6 and substitute
into equations (2.8), give,
i [ 1 2
My + My = Rm + R ay (2.11)

Thus, the resulting set of equilibrium equations is
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1 no 1 2 B
Mz + M RmX + R qy
! — = -
MZ MX Rmz ’ (2.12)
S [P
Ny B ﬁ{Mx * Mz:I - My

Equations (2.7) and (2.12) are inapplicable for open cross-
section curved beams where generally shear centers do not coincide with
centroids. Complete derivation of such a theory for thin-walled, open
section curved bars has been given by J. A. Cheneyzz- However, according
to V. Z. V1asov23 equations (2.7) and (2.12) are still valid provided
that beams have small initial curvature with the ratio of the largest
sectional dimension to the radius of curvature of the order of 1/10 or
less. The cross-sections must also be symmetrical in order to eliminate
Ixy’ the product of inertia. )

In Vlasov's theory, the quantity of —%—is neglected as compared
to unity, where a, is the coordinate of the shear center, and R is the
radius of curvature of the centroidal axis. The stress resultant MX
is referred to the centroid, while the torsional moment MZ and shear
Ny are referred to the shear center. All internal deflections and
external applied Toads are referred to the shear center. In deriving
equations (2.12), all forces are referred to the centroidal axis,
thus introducing some approximate characters.

In this thesis, Vlasov's equations are employed with the above-

mentioned modifications.
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2.3 Bending Of A Curved Beam OQut Of It's Initial Plane

Equations (2.7) and (2.12) are ordinary linear differential
equations. Exact solutions will depend upon the variations of the
applied loads qy, m and m . Furthermore, the following notations
are adopted for the purpose of simplifying equations (2.7)

=V
Y=3
EIXx
a = &R (2.13)
K
MU E
XX

Equations (2.7) then become

2
M:a(B-d_-X.
X de2
y (2.14)
R TIN
M, = va(ge o)

where the angle 6 is measured from the bisector of the angle 2y between
the two points of support (Figure 2.5). The boundary conditions

regardless of loading variations are assumed to be

B(y) = 8(-y) =0
Y(y) = Y(-v) = 0 (2.15)
d¥(y) _ d¥(=y) _ 4

de de

for clamped edges. Then, from equations (2.12), (2.14) and (2.15),
solutions can be readily developed under a variety of loading

variations.



Figure 2.4. Forces and Moments on a curved Beam Element

Figure 2.5 Built-in Curved Beam with ud.l. shown
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2.3.1 Beam Subjected to Loadings Having Cosine Variation (n#l)

In this section, solutions of equations (2.12) are based on
the assumption that beams are subjected to loadings having cosns

variation only. That is,

q = ZH cosne ]
where Hn’ Xn and Zn are the
m = X sinns .
X n f magnitudes of each n value, (2.16)
"o and z =3
My = Zancosne n=0,2,3,.....
m, = zchosne ]

Solutions are valid for each term of a complete harmonic series except
for n = 1. A cosine variation is assumed for the loadings because it
is a symmetrical function and thus satisfies the general assumptions
in Chapter 1. Furthermore, by using the following notation,

Ancosne = R2anosne
or

A_cosns = nRX_cosne (2.17)
n n
and

B cosng = -RZ cosnéd
n n

and qy, my and m, are in the positive direction, equations (2.12)

become

M! + M" = A cosne
z X n

fl

M) - MX Bncosne : (2.18)

- LTomo _ .
Ny = R(MX + MZ) an1nne
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The complete solution of equations (2.74) and (2.18) using

boundary condition equation (2.15) can be written as

(A,-B,)
MX = C cosp + ————— cosnd (2.19%)
1 1 -n2
A -n?B_ .
M, = C sino + LT 5‘2"6 (2.19b)
1 1 - n2
An sinne
Ny =R~ - Xsinne (2.19¢)
C_(1+u) B n2(1+u)-A_(1+n2y)
Y=C + C cose - —%5——~—-esine + .0 n :
2 3 H au (n2-1)2
[cosné _ 1 - (2.19d)
n2 n2
c C (T+u) A (T+u)-B_(n?+y)
B = -(=L+ C )cose + 5 gsing + cosng
au 3 U au(n2—1)2
(2.19)
, A, (1+nZy)
where Bn¢ « —4—rvw—n .
2(- " 1+ (sinycosny-cosy=1ny)
C = - (n2 - 1)2 n
(An—Bn)u u-1 |
—_— sinycosny}/{T;—-c05ysiny + v} (2.20a)
(n2-1) (1+n) ¥
+n2
5 nz_An(] n?u)
_ 1+ . n 1 +p
C = 25—-{(COSY+Y51ny+yCOSYCOtY)C + 2
2 U 1 (n2-1)2
(coty STOMY 4 1 cosnyy, (2.20b)

n2 n2
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A (1+n2y)
1+ Bnnz' - T + sinn
C = - 52 {(1+ycoty)C +2 L 8 (2.20c)
3 Zau siny(n2-1)2 f
For n =20
sinny sinné
n s n ®
1 cosny _y?> cosne _ 1 _ @2
N2 n2 27 2 n2 2
2.3.2 Beam Subjected To Loadings Having Cosine Variation (n = 1)

Equations (2.19's) in Section 2.3.1 do not hold for the case
of n =1. Solutions for such a case are presented in this section.

In equations (2.12), the loading terms will be

qy = chose
mX = Xls1ne
(2.21)
m' = X cose
X 1
mZ = Zlcose

where Hl, X1 and Z1 are the magnitudes for n = 1. Similar to Section

2.3.1, by using the notation

A cose = R2H cose
1 1
or
Alcose = Rchose (2.22)
or

Blcose = -RZ coss
‘ 1
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and qy, m and m, are in the positive direction, equations (2.12)

become
' no-
Mz + MX Alcose
M! - M =B coss : (2.23)
X 1
':.]_. J - 1
Ny R (MX + MZ) Xls1n6

Solutions of equations (2.23) are obtained by considering the effects

of q., m and m, separately. These effects can be combined using the

Yy
superposition technique. The solution of equations (2.14), (2.15) and

(2.23) with only A considered, can be written as
1

A, Ay
MX = (Cq - —?Qcose + — esineg . (2.24a)
Ay
MZ = Cqsine - —5 6C0s8 (2.24b)
. A.u 3A
- T+u 1 _ 1 _ .
Y Ce + C5cose * 7 (1+u 1 Cq)es1ne
Ay (T+u)
+ W— 62c0s6 (2.24C)
CL} Al 1+ Al
- u .
B = -(C5 topt 2559C059 + ?EE-(Cq - —zJes1ne
Ap (1+u)
- Wu—— 62cos6 ) (2.24d)
where
o . (2l |1y A
Cl+ = {51ny(COSY+y51ny) +\ T4y YCOSZY} 1 (2.25a)

S

y + cosysiny (1-7550
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The solution of equations (2.14), (2.15) and (2.23) with only B1
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14, Pav Ay
= QEE{(T;E" Cq)(] + ycoty) - *1-(3 + y2+ ycoty) }
A 1H Al
T+ Y
= 2 {(C - )(cosv + 51.m) + ~Z-(3c05y +

3ysiny + ycosycoty)}

considered, gives

vihere

g

1]

B,
= C cose - —§-esin6
7
By By
= (C + ) sine + —5 6C0s0
7
C +¢C co o - liE-(C Bl)e ) glﬁliﬂze 2¢c0s6
. S Zan (C, 7 sing - Sau 0s
Cs B (U'3)
T+u 1 .
- — + K - +
(C8 + au)cose 7 (C7 —ZTT;§70851ne
81(1+U) )
~—§55~—-e C0oSs6
. u=-3
B cosy(ycosy-siny) - ]+ vsin2y
1 }

4 v + #;1 cosysiny

= _ 4y 2 By By
= - ?EE.{C7 - (1+y2) “I'f (C7 + “Z»YCOtY}
1+u

]

E—*'{(COSY + ysiny + ycosycoty) C -
au 7

B,
(cosy + ysiny - ycosycoty) —}
3

(2.

(2.

(2.

(2.

.25b)

.25¢)

26a)

.26b)

26¢)

.26d)

27a)

.27b)

27¢)



CHAPTER 111

CIRCULAR ARCH THEORY

3.1 Introduction

The arch is a well-known fundamental structural unit. It
can resist external loads more effectively than a straight beam
because its resistance capacity is from internal axial compression as
well as shear and moment. Two different theories have been developed
to describe the structural behaviour of an arch. The General Arch
Theory is subjected to approximations valid for the majority of
structural arches. Most of the analysis techniques, namely, the unit
Toad method, the elastic center method and the column analogy method,
are governed by the above theory. The more exact theory which
includes the effects of axial deformations is called a Deflection

24. Such theory is usually found to be nonlinear, and an

Theory
exact solution is not yet available.

In this chapter, only the symmetrical circular arch is
examined. The governing linear differential equations are obtained
by considering the equilibrium conditions of a differential element.
Forces and displacements relationships are derived from the stress-

strain considerations. The exact solution of these equations is

presented under certain boundary and loading conditions.
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3.2 Governing Equations

It is assumed that the plane of curvature of the arch is also
a plane of symmetry of the cross-section. External loads applied to
the arch act only in this plane. Deformation, under such conditions,
will also take place in this plane. Thus, the problem becomes a two-
dimensional plane-strain problem. Furthermore, the principle of
superposition and Navier's hypothesis is applicable. That is, the
structure obeys the Hooke's Law, and a section that is plane before
bending is plane afterwards. Finally, the small deformations are
assumed.

The displacement functions are derived from the Euler-Bernoulli
Beam Theory. Strain-strain relationships are established under the
plane-strain condition. The moment and force equations are obtained
by integrating over the entire cross-section.

In Figure 3.1, a differential element of a straight beam before
and after deformation is shown. The deformed element has a radius of
curvature p. The slope angle 6 is considered to be small. The relation
between o and the displacement u is thus

~ = U
6 - tans = - (3.1)

The displacement functions for point ¢ within the element given by

Euler-Bernoulli, are

u(z)

w(z,x) = wo(z) + xtane = wo(z) + xwl(z)

u(z,x) (3.2)
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where

w o= tans = & (3.3)

The same expression of equations (3.2) is extended to the
elastic arch, where a small element is shown in Figure 3.2. The

displacement functions thus become

u = u(e)
W= wo(e) + XwW, : ' (3.4)
v=20

The strain-displacement relationships expressed in polar coordinate

are
=8_u_ ::la_vi-}-l'_‘l.
v " ar 9 T ¥ 30 Y
(3.5)
_ow , lau w
Youo “ b oy - T
re r rog r
Differentiating equations (3.4) with respect to r and 68, and
substituting into equations (3.5), yields
T % T Yog T Vgr T O
dw dw,
oTF mtratr (3.6)
_1du Y R
Yro “¥de " r v
If shear strain is ignored, i.e. Yeg 0, Equations (3.6) give
=1 _du
w1 ol (wO Ee) (3.7)
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&t

Figure 3.2 Circular Arch Element
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Differentiating equation (3.7) with respect to 6 and substituting

into equations (3.6) yields

= . (9 _au
@ TR e ) | (3.8)
dw dw
cg = Llu+—2) + X (52 - LUy (3.9)

de?

The theory of elasticity gives the following stress-strain relation

G = oo = B L(u+ 3 + X (G Uy (3.10)
de?

The stress resultant Ne and stress couple Me’ defined as the normal
force and bending moment acting on the cross-section, are the integrals

of stress over the arch thickness.

NZ = Ne = i oedA
(3.11)
My = Me = g xaedA

The force-displacement relations are obtained by substituting equations

(3.10) into (3.11),

=
i

E dw Ex dw
= (u+ Yygp + (du _ d2uygp
R de A R2 de dez

(3.12a)

I

Wl
—
<
+
E
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_ _xE dw Ex2 ,dw d%u
= AL + &0 ERN -~ AN . L LS
My i R (u de)dA £ > (de dez)dA
EI W 42U
A (_CE_ -4 (3.12b)
R2 dez
where
f =
A xdA = 0

dA = A and 2dA = 1
£ an g X vy
The governing differential equations are derived by considering
the equilibrium conditions in a differential arch element as shown in
Figure 3.3. The positive directions of all forces are defined as

indicated. The summation of forces in the x and z directions give

1 'y
ﬁ'(Nz * Nx) - 9

(3.13)
Ny - Ny = Rq,
The summation of moment about y-direction yields
MI
N, o=--f + m, (3.14)

Differentiating equation (3.14) with respect to 6 and substituting into

equations (3.13), the equilibrium equation set can be written as

MN
N A
NZ R my qu
M}
NZ + __R_ = _qu + my : (3.15)
"
Ny =-x* my,
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Again, equations (3.12) and (3.15) are not valid for open
cross-section elastic arches. The more exact derivations will be
those given by J. A. CheneyZ? The approximate theory, proposed by
V. Z. V1asov23w111 again be used. Al1l the related assumptions and

recommendations will be followed as before.

3.3 Bending Of A Circular Fixed-Ends Arch

Equations (3.12) and (3.15) are ordinary linear differential
equations for which exact solution can be found if the loading and

boundary conditions are known. By using the following notation

_EA

o | (3.16)

Y
AR?

Equations (3.12) become

= aw
NZ k{u + de)
(3.17)
M 2
Yoo g (odu o+ W
& = ke de)

de?
where the angle ¢ is measured from the bisector of the angle 2y
between the two supports (Figure 3.4). The built-in supports are

described by the following boundary condition,

il
(@)

u(y)

w(y) = w(-v)

u(-v)

I
(@]

(3.18)
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My+dMy
N, +dN,
Figure 3.3 Forces and

Moment on an
Arch Element

Figure 3.4 Fixed-End Circular Arch



3.3.1 Arch Subjected To Loading Having Sine and Cosine Varijations

(n £ 1)

In this section, solutions of equations (3.15) are based on

the assumption that the loading variations are cosne and sinns. To

be exact, the variation of > 9, and my is

where Vn’ Tn

Solutions do

notation

Encosne = Rvncosne
Encosne = —nUncosne

Fosinne = (-RTn + Un)sinne

and Un are the magnitudes for each n

not hold for the case of n

v
ncosne
*T _sin

n ne

. .
Uns1nne

ZnUncosne

or

and

(3.19)

th harmonic values.

Again, by using the

(3.20)

where 9y 9, and my are assumed in the positive direction, equations

(3.15) become

Mll
-ﬁ% = E cosne
n
My
—§-= Fns1nne
Ml

A ;
R + Uns1nne

(3.21)



- 38 -

The effects of any combinations of 9> 9, and my can be found by
superposition.
The complete solution of equations (3.17) and (3.21),

using boundary conditions equations (3.18) can be written as

(nFn + En)
N_. = D cose + —————— cosno (3.22a)
z 1 1 -n2
M F nFn + En
"L =D -Dcost - (B+ - Meogng (3.22b)
R 3 1 n 1 - n2
n(nFn.+ En)
N, = Usinne - D sine - sinne - F_sinne (3.22¢)
X n 1 1 - n2 N
D3 D1 (1+z) E
us=-.—+Dcoss + ——— 6sins + lié(___ﬂ___+
kg 2 2kzg kg (1-n2)2
F,(1+n%z)
) cosn6 (3.22d)
n(1+z)(1-n2)?2 o
Dy Dy(z-1) LDy (1+0)
W= + [—~?EE——-— D2]51ne + ok 6coso +
2
1+z (nFn+En)C _ En _ Fn(]Jrn ) ] sinng (3.22¢)
KE T (140) (1-n2)  (1-n2)2 n(1+¢)(1-n2)2 O
E F (T+n2g) .
where n__,_m SINNY _ psinny-ycosny+nycotysinny]
p = p (1-n%)2  n(i+z)(1-n2)2 "

9 s 2 _2siny
ycosytyssinytyscosycoty T

(nFn+En) sinny
(1+z)(1-n2) "
ycosy+y2siny+yZcosycoty-

2siny ! (3.23a)
1+z
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3.3.2

of n
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F,(14n%c)
nEn + —~T;ET—~——
D = ”‘ ([1+ coty] D - 2 sinny,  (3,23p)
2 (1-n2)2 siny
D = 1—2—-{[c05y+ vsiny+ ycosycoty] D +o[— N+
3 (] n2)2
2
F(T+n2c) nE, +F %311——
] cosny ~ 2 n cotysinny} (3.23c)
n(1+z)(1-n2)2 (1-n2)2
Fn
F, =0, =0
sinny
n
sinné
. )

Arch Subjected To Loadings Having Sine and Cosine Variations

(n=1)

In this section, solution of equations (3.15) for the case

1 is presented. The variation assumed for Gy > q, and m_ is

Yy
9y = Vlcose
q, = T sine
]_ ) (3.24)
= U sine
my 1
' = U cosse
my 1c |

where Vl, Tl and U1 are magnitudes for n = 1. By using the notation
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E cose = RV coss
1 or !

E coss =-U cose ‘ (3.25)
1 and 1

F sing = (-RT + U )sine
1 1 1
where 9, 4 and my are assumed in the positive direction, equations
(3.15) become

Mll
-y =
NZ R Elcose
My
N, + —x = F sine (3.26)

1
Ml
Nx =-—%~+ Uls1ne

The effects of any combination of dy> 9, and my can be found
by superimposing the individual effects.
The complete solution of equations (3.26) and (3.17), using

boundary conditions equations (3.18), can be written as

N. =D cose -D e6sine (3.27a)
z 10 11
M =D +D cose +D 6sine (3.27b)
Y 14 15 16
N, =-D sine - D 6coss + U sine (3.27¢)
X 12 13 1
Ko
u=D +Dcoss + D osine + —p2cos8 (3.27d)
7 8 9 8
Ky
w=0Doe+D sino + D scose + —g-ezsine (3.27e)
6 5 4
where
E, Fy

Ll = - .._R_’ LZ = -——ﬁ' (3.288.)



and
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I 1L, I L,
SE(AL + AL + WY T W Ty =
1 2 R2

R2 4 3
L4RY K L,RY
EZAI > 2 - 2
yy : AI,YY
I I
WY p, B =+ A
RZ 2 R2
: L,R2 B,
B { + K [(— =
1 EB 2 g2
[(g; -1) + % + (T+ycoty)ycoty] z 2
3 EZX 2 By ycoty
75) + (y2coty +y2-1) 75—+ (1-ycoty) 7
> R? 2
B, L,R2 B, I
(5= -1-vcoty) D - -5+ K [(Z%"" —) AL+
2 L 5 2 9 Bi RZ
B, 2 B,
wmo R gy veow]
2 2
B1Kz
(cosy+ysiny+ycosycoty) (D ) + YCOsycoty
y 4B, 4 2
-D
6
Yy Y By
(1+ycoty) D, +_[(cotY- 7)1 - (1+vcotv)z§;JK2
By
om 5

(3.28b)

(3.28c)

(3.28d)

(3.29a)

(3.29b)

(3.29¢)

(3.29d)

(3.29)

(3.29f)
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14

15

16

(3.29q)

(3.29h)

(3.291)

(3.293)

(3.29k)

(3.291)



CHAPTER IV

METHOD OF ANALYSIS

4.1 Introduction

This chapter deals with the analysis of arched folded plates
of revolution on simple spans. Such structures are composed of folds
in the transverse direction, where each fold is symmetric and arches
along the longitudinal direction. A1l folds are connected mono-
lithically to each other along the common edges in order to develop
the spatial rigidity of the components parts. The structure thus
can be considered as:

(a) a continuous one-way slab spanning transversely

between joints, and

(b) a series of open-section curved beams spanning
longitudinally between end supports.

The analytical procedure presented in this chapter actually

consists of three separate analyses:

(1) Elementary transverse slab analysis, in which all
surface Toads are assumed to be carried trans-
versely to the joints by one-way slab bending only.

(2) Arch and curved-beam analyses for joint loads, in

which the joint reactions from (1) are applied as
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loads to the combined arch-curved beam system.
(3) Correction analysis, in which correction forces are
determined and compatibility between two folds is

ensured.

4.2 Elementary Transverse Slab Analysis

The objective of this analysis is to transform surface
loads into the forms of joint loads and joint moments.

Roof structure is usually subjected to uniformly dis-
tributed surface loadings. At any unit transverse cross-sections,
the system can be considered as a continuous one-way slab (Figure 4.1a)
Since the structure is prismatic, such cross-section will be the same
everywhere. Fictitious supports are placed at every joint along the
entire span length in order to develop joint reactions (Figure 4.2b).
Elementary transverse slab analysis is performed by analyzing the
continuous one-way slab for the transverse distributed loads. The
moment distribution technique may be used to compute the transverse
moments M& and the reactions ﬁb at each joint. Typical results of
the transverse slab analysis is shown in Figure 4.1c.

The transverse reinforcement patterns will be designed
according to the magnitude of the final transverse slab bending
moments. The joint reactions will be applied as joint loads. There

are no longitudinal stresses developed from this analysis.
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Figure 4.1

(c) Typical Transverse Slab Analysis Results
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4.3 Longitudinal Arch and Curved-Beam Analysis

The joint reactions developed in section 4.2 are transmitted
to the end supports by the combined arch and curved-beam system. The
analysis is carried out by considering first, the Primary System, where
longitudinal hinges are introduced along all interior joints to
eliminate transverse joint moments and allow each folded unit to
rotate free]y.. This primary system, however, is not statically
determinate, and is not yet ready to be analyzed, therefore, the
following steps are necessary.

(a)_ The joint loads ﬁ& are resolved into inplane forces Fj
only at the common interior joints between two folds where the joint
J occurs between plates j and j+1 (Figure 4.2a). Fj can be obtained
by the geometric relationships:

cosy,

L _w j+1

Fj Rj —?;ﬂi{;— or (4.1a)
coSy.

=k J (4.1b)

J J sincxj
where equation (4.7a) is applied to the plate to the left of joint j
and equation (4.1b) to the right of joint j. The joint loads are
positive downward, plate forces are positive from right to left. The
angle wj, representing the slope of plate j with the horizontal, is
measured counterclockwise from the horizontal at thé left joint. The
angle a; is measured clockwise from the continuation of plate j and

J
j+1 (Figure 4.2b).
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After joint loads are resolved into inplane forces at all
the common joints, the primary system can be divided into a series
of subsystems. Each primary subsystem consists of individual folded
unit and is allowed to behave separately as an arch and curved beam.
To make these subsystems applicable to the solutions derived in
Chapters 2 and 3, inplane forces in each unit must be transferred
to the shear centers. 1In Figure 4.2c, Qj and Pj are the sum of
forces in the vertical and horizontal directions, and Zj is the
moments sum at the shear center of unit j. From here on, only the
interior common joints between folds are numbered, where the joint
~J now occurs between folds j-1 énd J.

(b) Each primary subsystem subjected to loading Qj is
considered as an arch, and while subjected to Pj snd Zj is considered
as a curved beam. Loadings Qj’ Pj and Zj have the same longitudinal
variation as the joint loads ﬁs and hence the same as the external

surface Toads, i.e.,

Ri)g = (Q5)5s (P)gs (Z4)g = H(e)
which in the case of uniform Toading is a constant.

The resulting internal forces and displacements for each
subsystem can be obtained from the solutions in Section 2.3.1 and
3.3.1 for the case n=0 (Figure 4.3a). The longitudinal edge stresses

are obtained from the internal forces at a cross-section by the simple

‘flexural theory where tensile stress is taken as positive.



Figure 4.2 (a) Joint Loads Resolved into Inplane Forces

@

Figure 4.2 (c) Forces Referred fo Shear Centers of each Unit
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N M
r _ X
o5(e) = [+~ T b zn%i‘ hils gor (4.2a)
NZ M
oi(e) = [ -7 hid; (4.2b)
Yy
where A, Ixx’ Iyy, bj and hj are cross-sectional properties (Figure 4.3b)

of unit j, and Nz’ MX and My are internal force components which is
function of 6. The right edge stress of unit j is given by equation (4.2a),
while the left edge stress is given by equation (4.2b).

The edge displacements of unit j are different from those at
the shear center. Due to effects of the internal rotation, the edge

deflections are given by

ug(e) = us(e) + B5(e) x b, (4.3a)
u§(e) = u;(e) - 8;(0) x b, (4.3b)
vj(e) = vj(e) + Bj(e) X hj (4.3c)

where uj, Vj and Bj are the vertical, horizontal and rotational
displacements at the shear center of unit j. Equation (4.3a) is
valid for the right edge while equation (4.3b) is good for the left
edge (Figure 4.3c). Equation (4.3c) is valid for both edges.

(c) The differences between the edge stresses and the edge

deflections in each unit at every common joint are the errors:
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{c) Rotational Effects on Edge Deflection u ,\V

Figure 4.3




AGIJT(G) = 0§_1’j(e) - 0§"j(e) (4.5)
au5(e) = uf_; 5(6) - u} ;(e) (4.6)
Av'Jr(e) = vjp.5(8) = vy s(0) (4.7)

where the single subséript refers to a common joint value and the
double subscript m,j to a value of unit m (where m = j-1 or j) at
joint j. Figure 4.4a illustrates stress incompatibility at common

joints while incompatibility of displacements is shown in Figure 4.4b.

4.4 Correction Analysis

The Tongitudinal edge stresses and edge deflections computed
in Section 4.3 are initially determined on the assumption that each
unit carries its loads independently of the others. Free edge

stresses and displacements result which are not usually the same on the

two sides of a common joint of two adjacent folds. That is, Aag, Aué
and Av? always exists for every joint j. These incompatibilities,

however, are not allowed, and correction forces must be found to
ensure éompatibi]ity between two folds.

To correct the differences in longitudinal stresses, longitu-
dinal shears will develop at the joints to equalize the edge stresses
(Figure 4.5). These shearing stresses are produced by the application
of self-equilibrating Tongitudinal shear correction forces Tj at the
joint j, which may be thought of as concentrated eccentric tensions

or compressions. The longitudinal variation of these forces must be
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Unit : (@)

(a) Incompatible Longitudinal Edge Stresses due to Loadings

{(b) Incompatible Edge Displacemenfs

Figure 44 Edge Stress and Displacement Discrepancies at Common Joints
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Figure 4.5 The Developmentoflongitudinal Shear Stress T

j*l

Figure 4.6 The Application of Stress correction Force T
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the same as that for the shearing stresses T3 due to the way Tj is

taken as

Tj = Tjtdz (4.8)

where t is the cross-section thickness, and dz equals unity. The
Tongitudinal normal stresses have the variation of cose, which is

the same as the internal forces. To be consistent with those elasticity
equations, the shear stresses t must have a sine variation, which is
anti-symmetric as compared to o. Furthermore, each shear correction

force Tj consists of a complete harmonic series of sine variation.

T

1

ﬁTn’js1nne (4.9)

wheren =1, 2, 3, . . ., and Tn is the unknown magnitude of the

J
correction force for each n at joint j. Then, the shear correction
force Tj is applied to the undeformed configuration of the structure
at every common joint as shown in Figure 4.6. The longitudinal edge
stresses and displacements in each unit due to unit shear correction
force can be obtained from the solutions in Chapter 2 and 3. By

the usual force transformation to the shear center, for example,

the effects of unit j subjected to shear correction forces Tj and

T are the sum of the individual (Figure 4.7). Therefore,

J*

MOEEA .(e)Tj + 50 . (8)T. (4.,10)

VT %5

where Eg i is the right edge stresses of unit j due to Tj’ and

— . ] ) o
0j,j+] is the resulting right edge stresses of unit j due to Tj+1'
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Ly _ =%
oj(8) = 55 ;(0)T5 + 55 5,q(a)Ty, (4.17)
r _-r -r
uj(e) = uj,j(e)Tj + uj’jﬂ(e)TjH (4.12)
u¥(e) = &% .(e)T, + (8)T, (4.13)
J Jsd J ,J+1 J+1
vj(e) = vJ,j(e)Tj + vj’j+](e)Tj+] (4.14)
where Gg, G;, Vj, Eg, and 8? are obtained in the same way as in

equations (4.3) and (4.2). The difference between the Tongitudinal
edge stresses and the edge deflections in each unit at a common

joint j are given by

s0%(6) = of_y(6) - 10 (4.15)
ul(e) = u] () - ul(e) (4.16)
ovi(0) = vs_1(6) - vy(o) (4.17)

where the single subscript at the left side refers to a value at
joint j, while the right side subscript refers to the value of
unit j.

The vertical and horizontal edge displacement errors are to
be corrected by applying a set of self-equilibrating vertical and
horizontal correction forces at the joints. The correction forces
are neceésary only where relative joint displacements occur, thus
their longitudinal variation must be the same as that for the dis-
placements. The edge displacement variation is found to be symmetrical

and therefore can be represented by a cosine function. The correction
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forces not only have cosine variation, but also consist of a complete

harmonic series.

VJ = ﬁvn’jcosne
H. = tH .cosne
NI (P

where n =0, 1, 2, 3 . . . etc., V_ . and H . are the unknown
n,Jj n,Jj

s ]

magnitude of the correction forces for each n at joint j. Again,

the displacement correction forces are applied to the undeformed

(4.18)

(4.19)

shape of the structure at each common joint as shown in Figure 4.8.

Using the solutions given in Chapters 2 and 3, the longitudinal edge

stresses and displacements in each unit due to either Vj or Hj can

be evaluated. For example, the results of unit j subjected to
vertical displacement correction forces Vj and Vj+1 (Figure 4.9)

are

"

o L (8)V. + % .

r
Uj(e) Jsd J J,J+1(e)vj+1

"

2 -4 -2
GJ-(G) GJ-,-(S)VJ. +0j,j+](e)vj+1

r -r -y
i .. L U . ,
u.(s) UJ,J<6)V3 uJ’J+](e)VJ+]

2

2 -9 ~-
. = . . . + . .
ugle) = uy s(e)Vy +uys 54y

(e)vj+1

v.(e) = vj’j(e)vj + vj’j+1(e)vj+]

(4.20)

(4.21)
(4.22)
(4.23)

(4.24)

The difference between the longitudinal edge stresses and displacements

in each unit at a common joint j are given by
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® jth

Figure 4.7 Unit j subjected to Stress Correction Force Tj and T4

Figure 4.8 The Application of Displacement Correction Forces
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s03(8) = o%_;(6) - c§(e) (4.25)
sus(8) = uj_y(e) - ui(e) (4.26)
svi(8) = vs_y(8) - vs(e) (4.27)

Similarly, the results of unit j subjected to horizontal

displacement correction forces Hj and Hj+] (Figure 4.10) are

05(8) = 5% s(8)H; + 5T Lo (oMM, (4.28)
05(0) = 53 5(0)H; + 55 5 q(0)H, g (4.29)
ujle) = G5 (o), + dy J+](6)H (4.30)
uj(e) = 0y s(o)H; + 03 o0 (0)Hy (4.31)
vj(e) = ngj(e)Hj + Vj,j+](e)Hj+] (4.32)
and the difference between the Tongitudinal edge stresses and
displacements in each unit at a common joint j are given by
60?(6) = og_1(e) - 0?(6) (4.33)
aufi(e) = uf_1(8) - ul(e) (4.34)
dv?(e) = v;_1(0) = v (o) | (4.35)

Actually, the correction forces V, H and T are applied to
each common joint simultaneously. The difference in longitudinal
edge stresses and displacements are obtained separately for each

joint. Before simultaneous equations can be set up, the value of
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Figure 4.10 Unit j subjected to Horizontal Correction Forces Hj and Hjyy
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n must be determined. The n value indicates the number of terms in
a harmonic series and represents the number of locations along the
common joints where compatibilities are to be imposed. For example,
if n=3, then at 6 = el, 62 and 83, the condition of compatibility
in Tongitudinal stresses and displacements are ensured. The

correction forces will take on terms 1like

V=V +Vcose +V cos2e
) 1 2
H=H + H cose + H cos26
0 1 2

T =

T sing + T sin26 + T sin38 + T sinde
1 2 3 L

It can be seen that T has one more term than V and H, because due to
the natural restraints at the end supports only 1ongitud1na1 stresses
need to be corrected at boundaries.

Simultaneous equations are set up based on the compatibility
relation.

' L.
'S+ AT's = .
53 S AJ s =20 (4.36)

For examp]e? at joint j, the simultaneous equations using matrix
notation are as outlined on the following page. Equation (4.37)
is continued for evéry joint. Total number of unknowns is equal to
No. of interior common joints x (3n + 1) .
The techniques of solving simultaneous equations are many.
The most popular one is the Gauss-Elimination Method. However, when
the number of unknowns becomes bigger, even with the aid of the
electronic digital computer, the above technique proved to be ineffective.

In such cases Gauss-Seidel iteration may be used.



Tv(

5uj

v H T
5uj(ez)+5uj(ez)+auj(ez)

) H T
auj(en)+6uj(en)+auj(en)

) H T
SV, SV, +8v .,
VJ(61)+ vJ(el) vJ(el)

) H T
avj(en)+5vj(en)+évj(en)

) H T
. +680, + .
GOJ(el) oJ(el) 603(61)

' v H T
60j(en)+60j(en)+60j(en)

v H T
<Soj(Y)+50j(Y)+5Uj(Y)

H T N
el)+6uj(el)+6uj(el)

(3n+1)x(3n+1)

- 6] -

Tn+1,j

(3n+13x1

(4.37)
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4.5 Superposition

The final displaced configurations of the structure are
obtained by superimposing the effects due to the joint loads and the
correction forces. The longitudinal normal edge stresses and dis-
placements of each unit subjected to joint loads are previously
stored. The magnitudes of the correction forces are obtained by
solving equation (4.37), then applying the results to each unit.
The results of each unit due to each component of these correction
forces are combined and added to those previously stored va]ﬁes to
give the final answer.

Stress and displacements compatibilities are expected
especially at the specified locations of each joint. If the
number of locations selected are appropriate, the results in-
between are found to be satisfactory. More precise results will

be obtained with Targer values of n.



CHAPTER V

APPLICATION OF THE ANALYSIS METHOD

5.1 Introduction

The objective of this chapter is to illustrate the
analysis of arched folded plates based on the method presented in
the preceding chapter.

A two-folds roof structure is $e1ected for this purpose.

Results will be compared with those given by the Finite Element Method.

5.2 Example - lLayout

The dimensioning of the structure is usually governed by
the f0110w1ng variables such as span length, plate thickness, plate
depth and slope, and finally radjus of rotation. The effects of these
variables are briefly discussed.

(1) Ratio of span length to the total width of the cross-
section, L/B:-Deflections will be smaller as L/B decreases. As L/B
increases and > 5, the longitudinal stresses tend to approach those
values which would be obtained from én arch analysis of the entire
cross-section. The transverse moments will also rapidly increase with
L/B.

(2) Ratio of overall depth of the cross-section to the radius

of curvature, h/R:-This ratio should be in the order of 1/10 or less.
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The smaller the ratio, the more accurate analysis will be.

(3) The plate slopes should not be too flat or too deep.
The steeper slopes are always difficult to cast. A slope between
30° to 45° would be ideal.

(4) The plate thickness:-A thin slab is difficult and
costly to cast. Thickness of 3 to 4 inches should provide sufficient
moment capacity.

The choice of‘the type of cross-section is restricted to
symmetrical cross-sections only. Although other type of symmetric
cross-sections are possible, however, the simple V-shape is considered
to be basic here.

The single span two-folds arched folded-plate roof shown
in Figure 5.1 has been analyzed for a uniformly distributed loads
over the inclined surface of the roof.

The loading was as follows:

Unit 1 Unit 2
Concrete Dead Load (150 pcf) 37.5 psf 50 psf
Other Dead Load 37.5 psf 150 psf
Live Load +35.0 psf 50 psf
TOTAL ROOF LOAD W 100.0 psf 250 psf

The properties of the system are tabulated in Table 1.
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5.3

is analyzed by moment distribution (Figure 5.2a).

Example - Analysis

A.
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Elementary Transverse Slab Analysis

A typical one foot strip of slab continuous over the supports

The fixed end moments

are distributed and the resulting reactions and transverse moments at

the supports are computed in Table 2 and shown in Figure 5.2b.

TABLE 2 - Transverse Moments and Joint Reactions

For A Typical Cross-Section

0 1 2 3 4 Joint
2 4 Plate
01 10112 21123 32134 43 Member
0 314 414.74 413 0| Relative Stiffness Kr
0 .4281.572 .4571.543 .572].428 0| Distribution Factor DF
0 -173|116 -116{1155 -1155{1730 0| Fixed End Moments ft-1b/ft
0 -47 147 -506|506 -1603|1603 0| Final Moments M ft-1b/ft
-13 131-132 132}-159 1591233 -233| M/d cosy 1b/ft
200 200|200 200{1000 1000 1000 1000 Wd/2 1b/ft
187 213]68 3321841 11591233 ‘ 767 | Total Vertical Shear 1b/ft
187 281 1173 2392 767 | Joint Reactions r‘zj 1b/ft
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w; = 100 psf
W, = 250psf
A, = Fictitious Support

Unit |

(a) One Way Slab bending
1603 ft-1b

(b) Transverse Moments and Joint Reactions Results

Figure 5.2 Transverse Slab Analysis
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B. Longitudinal Arch and Curved-Beam Analysis
(a) Inplane Forces - The joint reactions are resolved into

inplane forces according to equation (4.1) only at the common joint 2.

F¥ = 21173 1b. F™ = 1173 1b.
2 2

The shear center of unit 1 and 2 are at joint 1 and 3 respectively.
The joint reactions ﬁo, Ru and the vertical components of the inplane

forces are transferred to the respective shear center, such that

Q1 = 187 + 281 + 1173 sin30° = 1054.5 1b.+
P =0
1
Z1 = 3.464 (187 - 1173 sin30°) = -1383.87 ft-Tb.D)
Q2 = 767 + 2392 + 1173 sin30° = 3745.5 1b.+
P =0
2
Z =6.928 (1173 sin30° - 767) = -1250.5] ft-1b.0)
2

(b) The primary subsystem subjected to loads Qj is analyzed
as an arch; and when subjected to loads Pj and Zj is considered as a
curved beam. Using the solutions presented in Section 2.3.1 and 3.3.1
for the case n = 0, the internal forces and displacements for each
subsystem can be obtained. The edge stresses and edge deflections are
evaluated according to equations (4.2) and (4.3). The results at o
equals to 0°, 15°, 30° and 45° for unit 1 and 2 are recorded in

Table 3a.
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TABLE 3a
Unit 1 6° o: (1b/Ft2) u: (in) v (in)
a. Arch Case 0 -19931.07272 | -0.06923 ——-
E = 50x(-1054.5) | 15 -22005.40983 | -0.05445 ——-
Fg = 30 -28087.05852 | -0.02098 -
45 -37761.56448 0.00 -
b. Curved Beam Case 0 -29627.94168 -0.06414 0.01164
A, = 15 -29639.28157 | -0.05635 | 0.00574
By = -50x(-1383.87)| 30 -29672.52847 | -0.03399 | -0.00488
| a5 -29725.41666 0.00 0.00
0 -49559.01440 | -0.13337 | 0.01164
. 15 -51644.69140 | -0.11080 | 0.00574
Summation of a and b | 30 | p27e9'eae0g | -0 05497 | -0 00s8s
45 -67486.98114 0.00 0.00
Unit 2 6° oi (b/Ft2) | wl (in) | v (in)
a. Arch Case 0 -18316.35752 -0.09219 -—-
E = 51x(-3745.5) | 15 -23658.44007 | -0.07251 -
Fn = 30 -39320.63364 | -0.02794 ——
n 45 -64235.58561 0.0 _—
b. Curved Beam Case 0 5154.09139 0.01137 | -0.00217
L= 0 15 5154.96785 0.00999 | -0.00232
By = -51x(-1250.51)| 30 5157.53748 0.00603 | -0.00215
45 5161.62517 0.00 0.00
0 -13162.25613 | -0.08082 | -0.00217
: 15 -18503.47222 | -0.06252 | -0.00232
summation of a and b | a0 34963 00616 | —0 02101 | 000235
45 -59073.96044 0.00 0.00
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(c) The errors in longitudinal edge stresses and edge
deflection at joint 2 are computed from equations (4.5) and (4.7)

and recorded in Table 3b.

TABLE 3b

6° ot (psf) sl (in) | b (in)
2 2 2

0 ~36396.74828 -0.05255 0.01381
15 -33141.21918 -0.04828 | 0.00806
30 -23596.49083 -0.03306 -0.00273 .
45 - 8413.0207 -—- -—-

C. Correction Ana]ysis.
The value of n is chosen to be 3. That is, the correction
forces applied at joint 2 have the following form, and the compatibility

conditions at 6 chosen at 0°, 15° and 30° are imposed.

Vo =Vg o, +V; , cose +V, , cos2e
3 3 H

Ho = Hp » + Hy 5 cose + H, , cos26 (5.1)
b b s

To =Ty o sine + T, , sin26 + T3 , sin3s + T, , sinds
3 5 b b

Each term of the harmonic series are applied to the undeformed configuration
of the structure shown in Figure 5.3. The solutions are obtained according

to Table 4.
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] Hz"‘—— Oh 2 LR —— H2

Vo

A

V2 = Vo’z‘*' V],z Cosg + V2,2 Cos 28

Hp=Hgo+H) 2Cos@ +Hyp 5 Cos 26
To = T|’2 Sing + T2,2 Sin 28 +T3128in 36+

+
Section A—-A

Ta 2 Sin46

~ I'd
\ / V : Locations where Compatibilities
Imposed

Figure 5.3 The Application of Correction Forces T,V & H
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The longitudinal normal edge stresses and displacement due to
correction forces V,, H, and T, are calculated from equations
(4.20)-(4.24), equations (4.28)-(4.32) and equations (4.10)-
(4.14) respectively. The differences in longitudinal edge
stresses and deflections at joint 2 due to each of the correction
forces are obtained from equations (4.25)-(4.27), equations (4.33)-
(4.35) and equations (4.15)-(4.17) accordingly. The results are
recorded in Table 5.

The simultaneous equatiohs set up on the basis of
equation (4.26) and presented according to equation (4.27) are as

shown following Table 5.
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TABLE 5
(a)| Term| 6° Guv 6vV so¥
2 2 2
0} 0.00032| -0.00004 126.51481
v 15| 0.00027 | -0.00003 129.94336
0,21 30| 0.00015| 0.0000003| 139.99534
451 0.0 0.0 155.98574
0| 0.00060] -0.00015 113.07389
V.l v 15| 0.00037 | -0.00011 122.49207
21 "1)21 30| -0.00007 | -0.000028 | 139.44067
451 0.0 0.0 131.49910
0] 0.00136| -0.00044 76.19363
v 15| 0.00062 | -0.00032 102.21034
2,21 30| -0.00063| -0.00070 137.27466
451 0.0 0.0 66.40147
(b) | Term | 6° sull 6vH s’
: 2 2 2
0| 0.00129| -0.00262 |- 81.93825
Ho o | 151 0.00051; -0.00247 - 50.37005
> 1 30| -0.00085| -0.00212 42.18324
451 0.0 0.0 189.41426
0| 0.00124| -0.00244 |- 79.08068
H, | Hy o1 15| 0.00050{ -0.00229 |- 47.77438
> | 30| -0.00081 | -0.00195 42.06121
451 0.0 0.0 178.58729
0| 0.00111] -0.00193 - 71.09152
H 15| 0.00043] -0.00181 - 40.54660
2,21 30| -0.00072| -0.00150 41.47119
45| 0.0 0.0 148.78533
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Table 5 continued

(c)| Term| 6° sul GV: GOZ
2
0| -0.00032 | 0.00013 | 13.31576
7. .| 15/ -0.00013 | 0.000099| 2.18806
1,21 30| +0.00020 | 0.000034 19.77059
451 0.0 0.0 19.79238
0| -0.00059 { 0.00024 26.58266
T 15{ -0.00023 | 0.00018 3.71378
2,21 30| +0.00036 | 0.000061 38.10300
45 0.0 0.0 - 27.08445
Ty

0| -0.00076 | 0.00030 39.39091
T 15| -0.00028 | 0.00022 3.96205
3,21 30| +0.00047 | 0.000075 53.26825
451 0.0 0.0 15.79659
0] -0.00083 | 0.00031 50.80227
T 151 -0.00028 | 0.00023 2.44401
4,21 30| +0.00051 0.000074 63.21682
451 0.0 0.0 - 10.53125
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The solutions of equation (5.1) are found as follows:

Vo » = - 2944.86106 b/t
Ho,» = 9501.40318 1b/ft
Ty o = -248953.67749  ft-1b/ft
Vi, =  4109.03864 b/Ft
Hy 2 = - 13648.94789 1b/ft (53
T2 2 = 264018.11955  ft-1b/ft
V2 2 = - 856.34874 b/ Ft
Hp o = 4352.32604 b/t
Ty p = -123606.19378  ft-1b/ft
Ty o = 23302.62672  ft-1b/ft

D. Superposition

To obtain the final Tongitudinal edge stresses and dis-
placements, the magnitude of the correction forces in equation (5.3)

~are applied back to the structure at the common joints according to

their corrected directions. Subsequently, the correction forces are
transferred to the shear centers of their respective units. The
results are again obtained from the solutions presented in
Chapters 2 and 3 for various loading cases. Then, using the principle
of superposition, the effects from the correction forces are combined
with those due to joint Toads calculated previously to give the final
results as shown in Table 6.

The final value of the longitudinal edge stresses and
deflections of unit 1 and 2 at joint 2 are plotted against & in

Figure 5.4,
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TABLE 6
Unit 1
6° GE (psf) ug (in) v? (in)
0* -27064.,76436 -0.09606 0.01035
10 -28133.74616 -0.08636 0.00924
15% -29298.74526 -0.07512 0.00791
20 -30933.24935 -0.06077 0.00624
30* ~-37832.89467 -0.02820 0.00263
35 -44318.57361 -0.01456 0.00070
45% -55266.29357 0.0 0.0
Unit 2
6° 0% (psf) u% (in) v% (in)
0* -27065.37198 -0.09606 0.01036
10 -27967.39349 -0.08658 0.00930
15% -29297.92963 -0.07512 0.00791
20 -31397.19269 -0.06035 0.00603
30* ~-37833.69426 -0.02821 0.00264
35 ~-42004.96116 ~-0.01530 0.00195
45% -55265.10136 0.0 0.0

* Locations where compatibility conditions are imposed
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Fig. 5.4(a) Plot of b“f vs. ©
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Fig. 5.4 © Plot of V¢ Vs e
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5.4 Analysis By The Finite Element Method

From the classical thin-shell theory, it is possible to
generate differential equations of equilibrium or continuity, which
have been solved for only special geometric forms and certain specific
boundary conditions. It js evidenced that the theorylcannot adequately
deal with shell structures having arbitrary geometric shapes and
boundary conditions, such as the érched folded plates of revolution.
However, a completely new approach for the solution of problems in
continuum mechanics, using matrix alegbra and the digital computer,
was introduced in the 50's and later became known as the finite
element method. This method was first applied to the plane stress
problems and was subsequently extended to the plates and shells
analysis with satisfactory results. The major advantages of the
finite element method are the ability to accommodate arbitrary
geometry and boundary conditions together with variable thickness,
variable material properties, discontinuities in the shell surface,
and general 1oading conditions.

The two-fold arched folded plate roof which is the subject
of the present study is analyzed by the finite element method using

26. The roof

a computer program developed by Johnson and Smith
surface is idealized by an assemblage of flat quadrilateral elements
as shown in Figure 5.5. The material properties of each element

are assumed to be homogeneous, isotropic and linearly elastic.

The global and surface coordinates for each node, the boundary

conditions and the nodal loads are among the input data to the

program which are shown in Appendix I.
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The global coordinate system x, y, z, as indicated in
Figure 5.5, is chosen for the structure. Nodal coordinates are

calculated by the following expressions:

x = Rcoss
Y = scoso (5.4)
z = Rsing

where, R, s, o and & are defined in Figure 5.6.

The surface coordinate system gl, gz, g3 is characterized
by the fact that gs is normal to the surface at each node, while
gl and gz are tangent to the surface at each nodal point. Referring

to Figure 5.6, the vector r from origin O to node I is defined as
r = RcosoT + scosaj + Rsinek (5.5)

The unit tangental vectors gl and £ are defined by
2

-1 er -1 ar .
£ = ary s and £, IEEJ 26 (5.6)
2s a8 :

where ]%§¢ and ]gg{ are the magnitudes, and have the values of

ro2

|§£ﬁ = 1224 = /sinZacos20+cos2a*sinZasinZs = ]

) — (5.7)
!gg- = ]%%J = /s25in20sin26+s251n20c0526 = ssina

Therefore,

£ = sinacosei+cosaj+sinasinek

1

(5.8)

£ = -sinei+cosok
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The normal, ga, is generated by the cross-product of gl and 52.

The angles o and 6 are defined in such way that the cross-product

of £ and 52 consistently have an outward normal g3. Careful
attention must be paid to nodal points having ‘sudden change of slope

where gl is approximated by

3 =] (5.9)

The boundary conditions allow specified displacements at
any nodal point. A five degree-of-freedom nodal point displacement
system for the assemblage is utilized. These five degrees of freedom
consist of three linear translations and two rotations, and are

defined as follows:

D1 = Translation in surface £1~d1rection.
D2 = Translation in surface Ez-direction.
D3 = Translation in surface Ea—direction.
Du = Rotation about gl coordinate.

D =

Rotation about 52 coordinate.

The boundary conditions for this example are specified at two special
Tocations. At the fix-end support, all nodal displacement components
are equal to zero. At the axis of symmetry only D2 and Dq are zero.
To be exact, rotation about the global y-coordinate at the symmetry
axis are zero; however, this is not allowed in the programme due to
local base coordinate system was chosen.

The original loading in the previous analysis is taken as

uniformly radial distributed pressure over the inclined surface of



- 89 -

the roof. The programme allows uniform pressure loads UPL which

are normal to the surface of the element only; however, nodal loads
are permitted with considerable flexibility. The five nodal load
components P1 to P5 at each node correspond in an energy sense to the
five nodal point displacement components D1 to DS. Due to the above
programme restriction, the original UPL is converted into nodal point
loads having components P1 and P3 only. Input nodal force values for
each loaded nodes are Tisted in Appendix I.

The output of the computer programme contains the following

information:

(1) Reprint all the input data.

(2) Nodal joint displacements Dl-D5 are expressed in the
base coordinate system which in this case is the
surface coordinate system.

(3) The quantities of element stress resultants are
printed with respect to the average plane coordinate
system. The sign convention for these quantities are
illustrated in Figure 5.7 for surface coordinates.
These stress resultants can be assumed to be acting
at the centroid of the quadrilateral element.

(4) Averaged nodal stress results are also among the output.
These quantities are the averaged element stress
resultants in all the elements surrounding a given
node expressed with respect to the surface coordinate

system.
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Element

(a) Reference Axes €,and €2

{b) Stress Resultants (c) Moment Resultants

€2

/

Figure 5.7 Shell Stresses and Moments
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Previous structural analysis of the arched folded plate
roof yields longitudinal direct stresses and displacements only at
the common joint of the two units, which are comparable with
stresé resultant Nz’ displacement components D1 and D3 of nodal
points 49-54 from the shell analysis. Results of the element
stress resultants for element 36-45 and nodal displacements for nodes

49-54, together with the distribution of transverse bending moments -

M2 at mid-span are plotted in Figure 5.8.



Fig. 5.8 (a)
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Fig. 5.8 (c) Plot of F.E.M. Results
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CHAPTER VI

CONCLUSIONS

6.1 Conclusions

The stress resultants and displacements along the common
Joint of the arched folded plate roof, obtained by the structural
analysis are compared with the results of a finite element analysis using
shell theory. The comparisons are summarized in Figure 5.8a, b, ¢ N
and d.

Figure 5.8a shows reasonably good agreement in the vertical
displacement component values between the two methods of analysis.

These vertical displacement values are referred to edge displacements
u in the structural analysis and nodal displacements D3 expressed in
the surface coordinate 53 in the finite element analysis. For
Tocations having sudden change of slope, the outward normal 53 is
referred to the same direction as to the edge displacement u.

Nodal displacement components'D1 in the finite element analysis
are expressed in the surface coordinate gl-direction, which is parallel
to the global horizontal axis for locations having sudden change of
slope. The edge displacements v in the structural analysis are
referred to the same direction. Figure 5.8b shows no significant
difference in the horizontal displacement values from the two analyses,

although some discrepencies were observed.
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The stress resultants in shell theory are actually force per
‘unit Tength of surface. Values of the longitudinal direct stress N2
in the finite element analysis should therefore be divided by the element
thickness. Due to the fact that the structure did not have an overall
uniform plate thickness, separate element thickness was used for
elements at the trough. Stresses produced by plate bending moments
M1 are not included in the longitudinal membrane stresses because they
contribute ‘less than 5 per cent of the final stress values. The
longitudinal direct stresses yielded by the two methods of analysis
are both expressed with respect to the same direction such that they
can be compared. Figure 5.8¢c shows some disagreement in the longitudinal
direct stress values between the two methods of analysis. The simple
structural analysis yields higher stress values, while discrepancies
become larger towards the fixed-end support. The overall stress
distribution pattern, however, are in a reasonable good agreement between
the two.

Transverse bending is represented in the shell analysis by the
moment M2 shown in Figure 5.7. The maximum M2 values would generally
occur near the center of the long span; therefore, the distribution
of transverse moments M2 obtained from the finite element analysis
at mid-span is shown in Figure 5.8d. Comparison between the two is
relatively meaningless at this stage as a final rotation correction was
not made at the common joint in the structural analysis.

Values of the transverse direct stress Nl, the inplane shear S,

and of the plate torsional moments M were not examined in detail as
12 :

they were found to be less significant from normal structural design
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consideration. Consequently, values of Nl, M12 and S are not compared.
Despite the fact that values of longitudinal direct stress

obtained from both methods of analysis compared favourably only in some

degree, and there is no comparison in transverse moment values; it may

be concluded that the structural theory proposed in this thesis can

predict satisfactorily the internal forces and the deflection behaviour

of an arched folded plates structure under load at this early development

stage. The theory, however, will be far from perfect without any further

research.

6.2 Comments For Further Study

The proposed structural theory obviously does not comprise a
completely satisfactory solution to the problem of arched folded plates
of revolution. Thus, the techniques of the theory are open to improve-
ment and refinement. However, there were two notable areas in which
improvement to the techniques used could have resulted in major

improvements in the qualitative results obtained.

1) Under the current theory, rotation was a]loWed at the
common joints such that the original angle o5 in Figure 4.2b was not
maintained as the structure displaced. This rotational error can be
eliminated by the incorporation of rotation correction within the
correction analysis, such that the conditions of displacement,
stress and rotation compatibility at each common joint of the structure

are ensured. Improvement in the correction analysis would not only
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contribute greatly to the accuracy of the results, but also allow

the more accurate determination of the final transverse moments.

2) The final longitudinal direct stresses and displacements
of the structure at the common joints could be improved. This can be
done by increasing the number of locations where compatibility
conditions are to be imposed. Locations near the support are highly
preferable. Consequently, those discrepancies between units observed

in Figure 5.4 can be removed.

It was recognized that the range of applicability of the
proposed structural theory was very limited. Quite often the theory
was found restricted to many geometric Timitations as indicated in
the early chapters. It was apparent that another approach to the
prOb]ém of the arched folded plates structure was desirable. The
consideration of plate strips, rather than the whole unit itself,

would be very beneficial.
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