
SYNTHESIS OF A SERVICE-BASED

ARCHITECTURE DESCRIPTION LANGUAGE

MICHAEL WILLIAM RENNIE

BY

A Thesis

Submitted to the Faculty of Gra.duate Studies

in Partial Fulfilhnent of the Requirements

for the Degree of

MASTER OF SCIENCE

Department of Computer Science

University of Manitoba

Winnipeg, Manitoba

@September 11, 200b

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies for acceptance, a MSc thesis entitled:

SYNTTIESIS OF A SER.VICE.BASED ARCTIITECTURE ÐESCRIPTION
LANGUAGE

submitted by: MichøelW. Rennie

in partial fulfillment of the requirements for the degree ot MSc

TI]E UNIVERSITY OF MANITOBA

FACULTY OF GRADUATE STUDIES

Dr. Vojislaa Misic, Adaisor
Computer Science

Dr. EkrømHossain
Electricø.I and Computer Engineering

Date of Oral Examination: September 9,2005

The student has satisfactorily completed and passed the MSc Oral Examination.

Dr. Vojisløo Misic, Adoisor
Computer Science

Dr. Yanni Ellen Liu
Computer Science

Dr. Yønni Ellen Liu
Computer Science

Dr. Ekrøm Hossøin
Electricøl ønd Computer Engineering

(The signature of the Chair does not necessarily signify that the Chair has read the complete
thesis.)

Dr. Peter R. King
Chøir of MSc OrøI

TIIE UNTYERSITY OF MANITOBA

FACULTY OF GRADUATE STUDMS

COPYRIGHT PERMISSION PAGB

Synthesis of a Service-Based Architecture Description Language

BY

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University

of Manitoba in partial fulfïllment of the requirements of the degree

of

Michael William Rennie

Permission has been granted to the Library of The University of Manitoba to lend or sell copies
of this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend
or sell copies of the film, and to University Microfilm Inc. to publish an abstract of this
thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor extensive
extracts fì'om it may be printed or otherwise reproduced without the author's written
permission.

MASTBR OF SCTENCB

MICHAEL WILLIAM RENNIE@2005

The service-based computing paradigm is rapidly gaining acceptance as a viable option

for the creation of modern software systems. To effectively design and implement service-

based systems, proper tool support is required. In this thesis we present our design and

irnplementation of an architecture description language (ADL) which is tailored to the

specification of service-based systems. The design of our ADL involved the creation of a

forrnal language and the conversion of the language to an XML schema, which is further

used for validation of specifications. The impìementation of our ADL provides simple code

generation for Jini for Java.

ABSTRACT

I would like to thank Dr. Vojislav B. MiSió for his continued support, most importantly

though I would like to thank my wife Jennifer who always provided the support I needed

to keep me focused on finishing my research.

ACKNOWLEDGMENTS

1. Introduction

2. Related Work

2.I Service-based Computing

2.2 Software Architecture

CONTtrNTS

2.3 Architecture Description Languages

2.3.1 C2SADL

2.3.2 DAOP-ADL

2.3.3 Darwin

2.3.4 r-ADL

2.3.5 Rapide

2.3.6 Weaves

2.3.7 Wright

2.3.8 xADL

2.4 Infrastructure

2.4.7 Jini .

11

16

17

24

29

30

J.)

ctrJJ

38

47

43

45

47

50

52

552.4.2 OSGi

2.5 Tool Support

2.5.1 ACME . .

3. Service-based Computing. .

2.5.2 ArchJava

3.1 Component- vs. Service-based computing

3.2 Component location and access

3.3 Service search and selection

4. Tlte Language

4.L Architectures

4.2 Services

4.3 Cornponents

4.4 Service Messages

4.5 QoS Guarantee

4.6 ResourceRequirement

4.7 Required Services

56

tr-¿l

59

5. The Implementation

5.1 Packages and Structure

61

61

65

68

70

71

tó

74

/ll

((

78

78

82

84

89

96

102

5.2 Package interaction

5.3 Code Generation

6. A Test Case

6.1 Defining the test case

6.2 Using our ADL to describe the test case

7. Conclusìons

7.I Future work

Appendix

A. XML Schema Defrnition

B. lúoúes on Jini

102

106

118

118

121

122

r32

2.7 Simple architecture and component decomposition

2.2 Simple C2 architecture.

2.3 Simple Darwin architecture.

2.4 Lazy instantiation

LIST OF FIGURtrS

2.5 Direct dynamic instantiation

2.6 Simple zr-ADL architecture.

2.7 Sin'rple \4¡eave [14]

28

2.9

Dynamic code insertion or 'splicing'

Components provide services

3.1 Cornponents provide services.

3.2 Systems are built with components

3.3 Systems can be built from services

3.4 Components are used to provide services.

4.1 Architectures can include architectures

[14]

4.2 services might depend on others to provide their services

28

31

35

JI

38

39

44

45

tro¿L

62

63

64

64

4.3 Different components provide the same service with differing requirements.

77

79

80

5.1

tr.)\).¿

5.3

5.4

trtrJ. rJ

5.6

5.t

Package description of ADL irnplementation

Aggregation within the Structure package

Arrangement of classes in the Structure package

Arrangement of classes in the GUI package

The class in the XML package

Arrangement of classes in the

Overall sequence of ADL.

5.8 Creating a nev/ ArchitectureDef instance

5.9 Saving a specification.

5.10 Generating code for a specification

5.11 Arrangement of sections within a codefile

6.1

6.2

6.3

6.4

6.5

Code package

UAV can acquire/provide services frorn/to others in the fleet

UAVs can have similar service t¡'pes, witir differing attributes

Service selection can vary UAV system reconfiguration

84

86

87

88

89

90

9i

92

94

96

99

The architecture defined with a starting service

The new services added to the UAV architecture

6.6 Partial tree view of our UAV design.

4.1 Schema element speci,fi,cation.

4,.2 Schema element architecture

4.3 Schema element starting-uith

4.4 Schema element seru'ice

704

105

106

r07

108

109

122

124

724

125

A-5 Sclrema element component.

A..6 Schema element seruice-messo.ge

4.7 Schema element parameter-l'ist.

4.8 Schema element parameter

4.9 Schema element qos-guarantee

A. 10 Sclrema element required-resource

A. 1 1 Schema element requ,ired-service

8.1 Searching fol a service

8.2 Finding and acquiring services.

8.3 Jini proxy usage.

126

127

128

I29

r29

130

131

r32

i33

134

I

2.7

3.1

5.1

SBC requirements, current systems and their associated problems.

Options for service locations and their accessibility

LIST OF TABLES

Language elements and corresponding source artifacts

25

66

98

Consider the following scenario: A user has a document processing application and needs a

custom spelling checker. The traditional solution to this problem would be to buy another

application with the required functionality, or perhaps to develop it themselves if the avail-

able spelling checkers do not fit the requirements or budget (or both). More often than

not, installation requires shutting down the base application (sometimes even the entire

system) and restarting it afterwards; quite often, some manual interventions are needed

too. Either way, the user will have to invest money and effort, and receive in return an

application which might not be needed when the current job is done.

If the user is, in fact, a large company with hundreds or even thousands of employees and

high-volume site-wide licenses, this translates into large amounts of money and extended

time periods: not only to purchase the appropriate licenses, but also to install the newly

acquired application where it is needed, to educate and train the users) and to provide

support through extended periods of time. In summary, even a small addition to the

existing functionality requires considerable expenditures, and the functionality may not

be needed beyond a single project. Most likely, not all of the functionality of the basic

document processing application is needed either.

1. INTRODUCTION

It should come as no surprise, then, that a noticeable shift in user attitudes has appeared

in recent years. Instead of purchasing a product to use only a part of its functionality for

a limited period of time, and then leaving it on the shelf until it is needed next time, users

are beginning to view software as a service. A service that should be available when the

user needs it, but not longer than is needed; once the user is done with the service it does

not persist on their computer.

The scenario outlined above might, then, look like

part of functionality is needed, the user would notify

might also specify some criteria regarding details of functionality, performance) security,

price, and other characteristics of the service that implements that functionality. The

listing of available services that fulfill the criteria specified would be presented to the user,

so that the most suitable one can be selected (based on the user's preferences). The service

is then downloaded and used, or used as a remote service. Depending on the terms of the

license for the particular service, if downloaded, it may be deleted afterwards or remain

stored on the user's computer. In the latter case, it may remain available for a specified

time period or for a specified number of uses.

In summary, the user could purchase only the base functionality of an application. When

extended functionality is needed, the components that provide that functionality can be

acquired, dynamicaily bound to the base application, used as appropriate, and disposed of.

More companies are moving towards a service-based approach to development and use of

software products, as such an approach, commonly referred to as seru,ice-based, computing,

this:

the

upon recognizing that a major

application about it. The user

12

can be shown to lesult in many benefits, technical as well as economical.

o Economy-wise, the user gets only the functionality they want, not a pre-packaged

collection of functions that are used only rarely or never at all. Applications can be

smaller and consume less resources. The impact in terms of performance is obvious,

a^s are the economic benefits.

e The user is" free to choose the service that

from different vendors can be mixed and

customized as needed.

o In addition to that, the user can always have access to the latest version of the

required functionality, rather than being bound to obsolete versions that are slowly

becoming incornpatible u'ith everything else-

e The focus of development techniques shifts from large, monolithic applications with

ever-changing requirements that are plagued by bugs for years, towards smaller com-

ponents with a well defined scope that may be developed within a shorter time span

and to strict quality requirements.

o Maintenance activities, for developers and support personnel alike, are simplified

considerably.

Hou'ever, advances in several areas are needed before the service-based paradigm can

find widespread use. One such area is the design of service-based applications. Note that

we are not referring to the design of individual components that provide services which do

13

best fits their needs. What's more, services

matched to build applications that can be

not differ lmrch from the design of similar units - classes, modules, packages, and the like

- in the traditional approach. The differences become critical at the system level, where

the service-based paradigrn should be adhered to in the design right from the start, rather

than applied later a.s an afterthought. In particular, the modeling formalisms must take

dynamic reconfiguration into account (a system must be reconfigurable at runtime); so far,

we have been successful only when designing systems with static architectures.

An important step in that direction is the development of architecture description lan-

guages (ADL) specifically designed to support the service-based approach. The availability

of suitable ADLs will not only enable designers to specify the architecture of service-based

applications in sufficient detail, but also to evaluate the design alternatives and validate

them against the lequirements, thus providing a firm foundation upon which service-based

applications ca,n be developed and implemented.

The shift to the service-based paradigm requires new and improved tools for the suffi-

cient treatment of the software life cycle for this paradigm. Considering this shift and the

focus on dynamic system reconfiguration, we now need software tools which can be used

to create, validate, maintain and evolve systems of this type. The object of this thesis is

how to describe software architectures that may be used to develop service-based, dynam-

ically reconfigurable software systems. To solve this problem we have created an ADL and

accompanying tool support that allows us to create, specify and validate architectures for

the se¡vice-based paradigm. Our ADL inciudes a core set of requirements for such systems,

and also provides a view and creates a style for service-based systems.

14

This thesis is organized as follows. Chapter 2 exarnines existing ADLs, with specific

foctis on those that support dynamism, followed by a brief disctission of infrastructure and

tool support- Chapter 3 provides an in depth discussion of service-based computing, con-

trasted with traditional component-based systems, and some issues that require attention.

Chapter 4 describes the language we created for our ADL, with both the structural and

conceptual aspects of our language examined. Chapter 5 provides a comprehensive exami-

nation of the implementation of our ADL. Chapter 6 outlines a test case and uses our ADL

to construct the specification for the test case. Lastly, in the accompanying appendix, we

provide the complete XML schema for our language as well as technical notes on Jini [4g].

15

Over the years there have been many advances in the fietd of software engineering. Such

advances include the study of software architectures (SA) coupled with architecture descrip-

tion languages (ADL), providing a mechanism for describing software systems. The use of

both SA and ADLs has gained popularity in the description of static systems, but, for the

most part, still lacks the ability to describe systems that are dynamically reconfigurable,

specifically those of the service-based paradigm. Such systems require specification meth-

ods that allows for descriptions of highly dynamic (both constrained and unconstrained)

systems, that may be accessed remotely or locally. while quite a f'ew ADLs have been cre-

ated, and progress has been made in the areas of software architecture and service-based

computing, we still lack an applopriate design time tool to facilitate the description of sys-

tems tailored to the service-based paradigm. The use of SA tightly coupled with an ADL

tailored for the SBC paradigm would aid in the creation of a formal design, validation of

the design and (possibly) code generation to execute the design.

Service-based computing (SBC), as mentioned above, changes how users view applica-

tions. Instead of purchasing large monolithic programs, that include functionality likely

to larely be used (if at alÌ), users could instead purchase only the å¿se functionality of an

2. RtrLATtrD WORK

application; when extended functionality is needed, the components that provide that func-

tionality can be acquired, dynamically bound to the base application, used as appropriate,

and disposed of. This approach to computing can be shown to result in many benefits,

technical as well as economical.

This chapter is arranged as follows: In Secti on 2.L, we discuss the service-based comput-

ing paradigm, its requirements, what it is, and how it differs from traditional paradigms.

Section 2.2 examines software architecture, its processes, what it is, and how it relates to

traditional design paradigms. Section 2.3, we review existing ADLs, with focus on how

they address any of the requirements of the service-based paradigm and dynarnic system

reconfiguration- Finally in Sections2.4 and 2.5, we discuss infrastructure and tool support

for ADLs to achieve dynamic system reconfigulation, and address the requirements of the

service-based computing paradigm.

Chances are good that you have been exposed to, or utilized some form of service-based

computing and not even hnown it, like the Linux kernel, or Microsoft Office. The premise

of the SBC paradigm, is that any computational service you require is (possibly) available

when you require it. More specifically, the SBC paradigm is an approach where computa-

tional services required by the user are acquirecl and used only on demand. Services, in this

instance, can be remotely utilized, much like web services [4, 5] or as a service downloaded

and installed on your computer. While having the ability to use services on demand is

2.1 Service-baßed Computing

L7

idyllìc, there are associated drawbacks to the SBC paradigm, like the lack of applopriate

security. Both the advantages and the disadvantages of this paradigm are examined in the

remainder of this section.

Giving users) whether they are individuals or companies, the ability to utilize a host

of different services based on personal criteria, and possibly from alternative vendors, is

a giant leap forward from the traditional computing paradigm. Let us now examine the

benefits of the SBC paradigm.

Dynamic system reconfiguration. Imagine having complete control over the parts

or behavior of any program on your computer; such that you could update, change or

completely reconfigure it to do whatever you wanted, whenever you wanted. Currently

though, this level of unconstrained dynamism requires the aid of some form of infrastlucture

or internal framework [21,50]. While system reconfiguration can take place at the users

behest, it can also happen simply as a service has been updated by the vendor. Since

services are typically only loaded on demand, if a newer version of a service has been created

by a vendor, then that newer version would be loaded when the service is requested.

Service selection. Whose to say that every service must come from one vendor? In

the SBC paradigm services can come from a multitude of service hosts and or vendors.

There could be hundreds of services that all do the same thing, but that provide their

service in a different way, or with other additional features, etc. Now, dependence upon

individual service vendors has been removed; if you don't like the service you are using,

you can update it or switch to another service that offers the same, or better, service.

18

fncreased performance. Since software systems would now be created from a simpìe

core program with separate services providing all other functionality, the performance of a

software system could be improved. An example improvement could be defined as; (1) a

decrease in the amount of memory required for the program, (2) a decrease in the amount

of processing power needed, (3) a decrease in the amount of storage space required for the

program and services, and (4) any combination of the previous three points. If a user wants

a computationally fast service that uses very little memory, then that is what they get,

provided such a service is available.

Service reusability. The development of new systems, or even the maintenance of

old systems, can be intensive. Consider now that systems \Ã/ere composed of many services,

each working together to make up one system. To update or maintain such as system

would typicallv oniy require the redesign and implementation changer or refactoring of one

service, and not the systern as a whole. Also, consider the development of a new system in

which the reuse of oid, or (possibly) services from alternate vendors could decrease the time

and effort for development of the entire system. The idea of extensive reusability is not a

new idea, and has been utilized in many other paradigms, such as the component-based

paradigm [11, 49].

So far, the SBC paradigm appears very attractive for use and design. There are cur-

rently design practices being developed to include the SBC paradigm, most notably, creat-

ing service-oriented architectures (SOA) [34], and utilizing dynamic architecture description

languages [28] to formally design these systems. Like other paradigms, SBC has its share

19

of drawbacks, which hinder its use in large mission-critical applications in industry. The

identification and resolution of these drawbacks, is what guides current research and de-

velopment of the SBC paradigm. In the following we examine some of the drawbacks to

SBC.

Interoperability. Consider a simple scenario; we have four companies independently

making services that rnight be used by others. There is no inter-company communication

on exactly what each service does or requires. Each service should be able to communicate

with a variety of clients, not specifically those used by the developing company. Although

there is no mandate forcing services to listen or respond to clients' requests, the utilization

of a service could be severely decreased if it cannot communicate with many clients. Web

services, an approach within SBC, have made strides to all but eliminate this problem,

with the use of XMl-compìiant messages transported over standard TCP family protocols,

know as the Simple Object Access Protocol (SOAP) [52].

Security. With such a large variety of services available, from so many different ven-

dors, how do you know which service provider to trust? How can you a"s the user be assured

that the service you select will actually perform only what the provider claims? Security

issues like the aforementioned, severely hinder the wide spread use of SBC. In an age of

hackers, trojans, and the like, users need to be reassured that what they are getting is

what they want and is safe to use. Since the SBC paradigm requires the decoupling of

services from where they are run (either remotely or locally), there must be some form

of framework, which can help securely and reliably marshal the deployment of services.

20

Currently though, there is no such framework, and it is this lack of security that leaves

service vendors free to create services that do anything the vendor desires, not necessarily

legally or trustworthy.

Quality of Service. Closely tied in with security is the problem of quality of service

(QoS) QoS is typically defined as the guaranteed minimum level of performance (provide

what they advertise)- Consider an example: you download a virus scanner that has a eoS

indicating it will complete a system scan in no more than 10 minutes; with 10 minutes

being the minimum length of time taken by your virus scanning service, any more and the

QoS is meaningless, any less and that is a bonus.

To ensure QoS is as promised it can be gauged based on feedback obtained from clients

of services [51], mahing the use and evaluation of services a community effort (similar to

tr-Bay and the like). The use of the experiences of other service users to either confirm of

refute the QoS clairns of a provider, would greatly increase the overall reliability and trust

in the QoS statements of services. Other than the evaluation of services; eoS can also be

introduced into the selection process of services. With QoS a user can request a listing of

services, and apply additional constraints in the form of QoS requirements to refine their

search and selection. A framework like this in which the user has absolute control over the

service selection process is desired, but unwieldy. How would a selection mechanism like

this be deployed over both multiple platforms and networks?

Flexible pricing schemes. With the ability to use all of these different services from

different vendors at different times, there must be a method to pay for these services.

21

Traditionally, you would pay for volume iicensing of monolithic software systems, which

can be very expensive, now ltowever, only fees for services actually used would be incurred.

Pricing by service used, benefits companies, but in the same token benefits individual users,

as they now only pay for what they want.

Tool and Development Support. The SBC paradigm will likely not be adopted as

a design or development process until there is sufficient tool and developmental support.

Until now v/e have been speaking strictly in terms of us'ing seruices, but to be able to use

services they first must be designed and created. Without supporting tools both the design

and development of services is extremely difficult. A perfect example is the adoption of the

object oriented paradigm; until there were languages (like Java) and other developmental

tools available, it also did not find widespread acceptance.

l\4ost developers are hesitaut at best to adopt, or even try an immature design paradigm,

unless there have been many tools, and other systems successfully created for it. This is

an unfortunate circumstance, as it seems most developers wait for more mature releases

or standardization before adoption of new paradigms. This "waiting for a better version"

attitude taken by most deveìopers is just as much a hindrance to the development of new

paradigms as the problems of the paradigms themselves. If developers could, as a commu-

nity, dedicate some effort to resolving problems of new design paradigms, there would be

more frequent developments (a steady maturation process), and subsequent developmental

toois will follow; i.e. the Eclipse Project [18].

Many of the issues of SBC, such as interoperability, platform independence, QoS and

22

security are tightly coupled with the client-service communication infrastructure. There

have been considerable attempts made to combat these problems such as the development

of Jini for Java [+8] (as we will see in Section 2.4.1).

The aforementioned issues comprise the disadvantages of the SBC paradigm. More

specifically though some of the disadvantages include the following.

o Dynamic system reconfiguration requires that there be some form of either infrastruc-

ture or framework available, which can work in a platform independent manner to

marshal services to and from clients. Without such a system, dynamic reconfiguration

utilizing remote service providers would be irnpossible.

Interoperability is perhaps the largest of the disadvantages. Since services are made

available to users, regardless of the platfonn they are using we require a mecha¡ism to

provide services in a platform independent manner. 'fhis problem is tightly coupled

with the first one, in that it would likely be the associated infrastructure that woulcì

have to handle such interoperability issues. This problem could also be dealt with if

there was an existing infrastructure which was external to a framework; for example

a service providing framework that used the Java Runtime Environment (JRE).

Security. In the age of hacking and exploitable security vulnerabilities, there must

be a system in place to securely and safely provicle services to users. Currently there

is no such security system, and as such services can be provided by anyone for any

purpose.

23

o Quality of Service, or does the

can be tied to securit¡ in that

provide what they advertise.

We have now seen what the SBC has to

Table 2.1, summarizes what we have, what we

what we need.

With a clearer idea of what we

now examine software architecture

service provide what it claims

we would require a systems for

Software architecture (SA) according to Shaw and Garlan [a7] is the description of system

elements, the interactions of those elements, and patterns that guide arrangement and

interaction of elements. Simply; SA is used to describe a system from a high up abstract

view looking down. It is not concerned with the fine compositional details of classes,

aggregation, polymorphism and the like, but instead, focuses on the decomposition of

a software system into logical processing entities, their interactions [6] and their overall

arrang€ment. This process can dramatically simplify any complex system [17], allowing for

an easily understandable description of the system as a whole represented as a 'box and

Iine' diagram [31] with notes describing system specifics.

offer, and what some of its drawbacks are

need and the associated problems to address

it does. This problem

gauging if services do

have and what we need for the SBC paradigm, let us

in Section 2.2.

2.2 Software Architecture

To represent the architecture of any system is a simple process, with four main concepts;

(1) components, represented as a'boxes', (2) connections between components, represented

24

Requirements

Dynamic system

reconfiguration

Service variation

What we have now

Service

reusability

DLL libraries, frameworks

like the Java Runtime
Environment (JRE)

Increased

performance

Program plugins and web

services

Object oriented

programming languages

Problems

Interoperabiìity

Good programming

practices and proper

design

Programs either interpreted
or use frameworks to marshal

dynamic interaction.

Security

Plugins are specifically targeted.
Web services are remote with
no acquisition available.

XN4L and XMl-using
protocols like SOAP

Proper implementation.

Qos

Design and implementation
pose challenges to the
inter-relation of services.

Any frameworks, etc. in
use to facilitate service

Tool/development

support

Secure SOAP,

digital signatures,

trust authorities.

Not applicable

Tab- 2.1: sBC requirements, current systems and their associated problems.

interaction could be an impedance.

With many services from many
vendors across many platforms,
how can services be effectively used?

Not applicable

How can services be secured?

Can we extend existing security
mechanism, or do we need entirely
new ones?

How can rve ensure services provide

what they advertise?

Tool and development support
is necessary for SBC adoption.

25

as 'lines', (3) styles, or predefined arrangements that the architecture will follow (e.g. pipe

and filter), and () a topology, or the overall arrangement of the architecture.

Architectural representations make it is easy to understand and describe component-

based systems, where a simple mapping of actual system components to components repre-

sented in the architecture yields an architectural representation [i0, 11]. The use of SA in

component-based design is of course not its only intended use and it can be applied to the

description of any system- SA is typically used when we describe systems in a top-down

fashion, and initially consists of alot of prose and diagrams [47], but can also be used to

represent an existing system. The simplicity of describing a system from an architectural

perspective makes it appeaiing to many developers, juxt-opposed to this view are devel-

opers who feel that it is not descriptive enough to capture useful system information, like

using UML [7] during the design phase to capture system information.

There are however, more formal aspects of architectural design which can be applied to

constrain an architecture and allow for a more detailed description:

I. Styles. Any style can be applied to an architecture, and typically are used to constrain

the types of interactions that are allowed within the system [1]. Pipe and Filter, for

example, is a style of architecture that is prevalent in Unix-based systems. In this

case, each component of the architecture would have an input and output, only an

input, or only an output. Styies can be applied to an architecture, and an architecture

could have many styles, even hybrids of other styles. In essence a style is a more formal

way of describing how a component communicates with, and is oriented with respect

26

to, other components in the architecture.

2. Formal'izing Connect'ions. Interconnections between components aid in describing the

behavior of components by focusing on what it takes as input and what it returns

as output [3]. Moreover, behavior of components can be described through their in-

teractions and connections. The main idea is to represent connections with a type

of formal logic while treating components as black boxes, and through this process,

realize how the components involved in these connections behave externally. For-

malizing connections also allows developers to apply more stringent constraints on

connections, which then behave as input or output constraints on the components

involved in the connection.

Architecture Descripti,on Languages. Architecture description languages (ADL) are

specialized ianguages used to formally describe system architectures. ADLs are based

on formal languages that constrain the arrangement of an architecture (aspects of

components, connections, style, topolog¡ etc), via the definition of the language

itself- For exampie, if we have a language that states all connections can only have

two components participating, then we would not be able to represent, for example,

two clients sharing the same connection to one server.

t
i)-

There are many different ADLs, each focusing on a different area of system design.

What they all share is a mechanism for formaliy capturing and specifying design

semantics of a system architecture. More detail is provided in the following section

on ADLs, Section 2.3.

27

When describing the architecture of a system, an architecture can represent a compo.

nent of another architecture and so on, recursively applying architectures to other archi-

tectural components, to achieve a finer description of the system and its components. For

example, Figure 2.1 shows that an individual component of a system can be decomposed

yielding a corresponding architecture with its own components, connections and connection

constraints, just as its parent one.

Gllent

(a) Simple client-servel architecture

This approach to modeling systems is not new by any means, and is simple to both

understand and interpret at a glance. Simply, to further describe any component within an

architecture, break it down into its own architectural description. Of course the description

of architectures and their components is more complicated than simply drawing boxes and

lines, causing some researchers to examine the feasibility of using existing design tools to

effectively describe architectures 116, 45].

In Section 2.3, we examine existing ADLs that explicitly address system dynamism and

what (if any) aspects of these ADLs could be considered as a starting point for my ADL.

28

Fig. 2.1: Simple architecture and

(b) Decornposed Client component.

component decomposition.

Architecture-based design are increasingly recognized as a major phase in the design of large

software systems [6, 47]- As part of this effort, a number of ADLs have been proposed [12,

32] which provide a more formal approach to describing system architectures. While most

efforts have been focused on static architectures and related problems, some researchers

have also discussed the more interesting (and also more difficult) problems of dynamic

architecture specification and reconfiguration [25, 28,30,41]. Dynamism aside, the guiding

premise of ADLs in general is to provide a formal manner to describe the abstract structure

of a software system using components and their connections. While there are currently

many ADLs available, thel' l¿ç¡ consistency of how they describe systems. It would seem

that while each ADL follows simple requirements for any ADL, such as descriptions with

components and connectot's, each ADL has a different focus, like dynarnism or formal

representation of an architecture using a certain logic. An example of this is Weaves

[14' 50], which focuses on existing system artifact integration. For the scope of this thesis,

though, we need only consider the ADLs that have in some way addressed the issue of

system dynamism, and dynamic system reconfiguration.

Let us now discuss ADLs and features of those ADLs that support dynamic composition

and reconfiguration of components, services and systems.

2.3 Architecture Description Languages

29

C2SADL [30] (referred to as C2 for brevity) is an ADL that futly supports dynamic un-

constrained system reconfiguration, in that, a system in C2 can grow and shrink, with-

out any prior knowledge of dynamic changes. In C2, both components and connectors

are considered first-class entities, with message passing through connectors used to link

components to one another, subject to certain restrictions. Furthermore, connectors may

perform optional fiitering of messages f¡om one component to another. Unlike other ADLs,

C2 supports many object oriented (OO) concepts for the creation of new components,

such as typing, sub-typing, generalization/specialization and type conformance. The in-

clusion of these OO concepts allows for a large variety of system configurations with typed

components, sub-components, parent components, etc.

2.3.1 CZSADL

Each component described in C2 has two inputs (incoming requests/notifications) and

two outputs (outgoing requests/notifications), which use the connections between compo-

nents to pass messages to one another. It is through this message passing mechanism that

C2 allows for dynamic system reconfiguration.

In the following example in Figure 2.2, we see a representation of an architecture de-

scription in C2. Architectures in C2 are connected to message buses (that are simply

connectors), which facilitate components communicating to one-another.

C2 allows dynamic binding (referred to as 'welding') of components to connectors, as

well as unbinding (unwelding). All possibilities for reconfiguring or rewiring of an architec-

ture are allowed:

30

0llenl

Fig. 2.2: Simple C2 architecture.

. a component can be unwelded from the architecture

o it can be rewelded in a different place

Cl¡êftt

Servar

o it can be left unwelded and persist within the system

c or be removed from the system

Dynamic reconfiguration is accomplished using message passing between components,

i.e-, in the same way as the ordinary communication between them. This communication

takes pìace through the connections between the components and the resident infrastruc-

ture; the Architecture Construction Notation (ACN) [30, 21]. With the ACN and the asso-

ciated infrastructure, C2 provides an API interface to help marshal the welding/unwelding

process between components. With the use of the ACN, C2 also supports the upgrading

of existing components through sub-typing, modifying the subtype, adding the subtype to

the architecture, and then removing the original component from it.

Despite its advanced capabilities and the associated API, a number of issues have not

31

Componen

Connector

been resolved in C2, mostly in relationship with unwelding. Some of the more prominent

problems associated with unwelding are:

o how to unweld components that are currently in use?

e what happens to a dependent component when their parent is removed?

The language constructs for C2, unlike some more formal languages, are fairly simplistic

and easily understandable. In the case of the C2 Architecture Description Notation (ADN)

and the ACN for communication, both are represented in the same manner, conformant to

Backus-Naur Form. The following examples show the description of a software architecture

in the C2 ADN l22l and the weld/unweld description in the ACN [21].

system : ::

system system_name is

architecture architecture name with

component _ inst a n c e _I i st

end system_nâme;

The above example of a description in C2 is very straightforward, with a system encap-

sulating an architecture, which in turn holds components of the system. The next example

demonstrates that even the description of a welding action is simple. The weld operator is

called with a pair of architectures to be operated on, which are termed the 'welded pair' in

C2 parlance.

32

architecture_welding : :=

archit ecture_name . welding_operat or

welding_pair;

While the dynamism of C2 certainly fits well within the requirements of service based

architectures, the need for an external facility such as the ACN, shows that to achieve

full dynamism would require some form of middleware or framework to broker service

interactions. For our purposes, we consider middleware like that used in Web Services,

which has been expanded in [33] to facilitate brokering interactions between services. By

using middleware to act as broker for component interactions, we can further achieve system

dynamism, by removing the need for either one of the end hosts to explicitly handle any

processing related to system reconfiguration.

DAOP-ADL l44l is an XML based ADL, that is oriented towards aspect- and component-

based architecture descriptions. An architecture described in the Dynamic Aspect-Oriented

Platform (DAOP) has three main elements; (1) components, (2) aspects and, (3) ptug

compatibility rules between (1) and (2).

DAOP-ADL was designed specifically to be used in the DAOP platform, as such, an

architecture created using this ADL can be loaded into DAOP to determine dynamic con-

nections.

In DAOP-ADL, aspects and components are defined separately with the use a public

2.3.2 DAOP_ADL

tt\)J

interfaces. Each element described has at least two public interfaces; a provided interface,

which describes what the output of the component is and a required interface, which

describes what kind of input the component can receive.

Unlike the,description of components, aspects do not have a provided interface, instead

they have an evaluated interface. The evaluated interface describes which messages of

the component the aspect is part of can be eualuated. The required interface for aspects

describes any output messages and can aiso describe output events. Since aspects are

coupled with components, they can also capture the events thrown from components with

a target events interface, which describes which events can be captured.

There are three other main categories of information used for the description of com-

ponents and aspects other than interface definitions [44]:

e Implementation classes. These classes must implement the provided interface of can-

didate components to maintain interoperability

c Properties. Input and output properties are used to allow components and aspects

to communicate. Properties are in a ¡name, signature¿ format, allowing for simple

translation. Furthermore properties can have one of two accessibility options: (1)

usersite; only available to components/aspects of the same instance scope, and, (2)

serversite; available to all components/aspects of the same distributed application.

o Dependencies. Simply, this is a listing of names from the required interface.

Thus far, we have discussed the first two parts of DAOP-ADL: interfaces of components

and aspects. What we need now is to know how connections are handled. The ability of

34

compoìlents and aspects to connect, is handled by describing composition rules, which use

elements from the component and aspect interfaces to determine communication suitability.

This is done for one express purpose; to allow dynamic system reconfiguration, without the

need to recompile altered interfaces. More specifically if composition rules were not used.,

every time reconfiguration took place a nev¡ interface would be created and then compiled,

prior to the reconfiguration completing

The dynamism of DAOP-ADL and the use of XML and XML schemas [b4], are definitely

a step in the right direction. The use of XML especially allows for easy data interchange,

and removes the need for a separate parser and compiler for their ADL, as any one of the

freely available XML parsers will handle this task.

Darwin [28] supports components and connectors, using sub-classing to build more specific

components from generic ones. Bach component is described in terms of services it provides

and services it requires. Darwin also allows composite components obtained from instances

of simpler ones. This design emulates the object oriented style of design, with the inclusion

of sub-classing and aggregation.

2.3.3 Darwin

Individual services are specified using the zr-calculus [38, 39, 40], while the configuration

35

Fig. 2.3: Simple Darwin architecture.

is specified by binding services requested by one component with services provided by

another one. A binding can occur only if the type, what is actually provided, by a service

matches the type, what is required, of the requesting service. Thus, the specification of the

structure is decoupled from the specification of individual components and their services,

as required by the principle of separation of concerns.

The client and server shown in Figure 2.3 could be described in zr-calculus as follows:

C tient(r)d'f : (V o) (REQ ?, o) | C ti,ent, (o))

Instantiation and binding of services can occur either a priori (code statically added

before run time) or dynamically at run time. In the latter case, two options are avaiiable.

Lazy instantiation, is the process where a component is not instantiated until another

component wants to use its services. However, the types of participating components and

the binding(s) between them must be specified beforehand. In this manner) a system can

evolve at run time, but only in a predictable manner which is fixed at design time, also

known as constrained dynamism. However, Darwin constrains dynamism by not aliowing

cycles in the system, in which components directly or indirectly reference themselves.

The premise of lazy instantiation is that there is a place holder for the lazlly instanti-

ated component, but the component is not actually loaded until it's services are required.

Figure 2.4 ts an example of Iazy instantiation. We can see in this example that Client is

S eruer(p)d"/ : (Vs)(P ROV (p, s) | S eruer, (s))

Systey¡¿d"Í = (Ya,,b)(Ctient(a,) | Seruer(b) | Bf ND@,,bò)

36

the resident component, and thal Seruer is only (at this stage) a placeholder available to

Client. Once required, the services of. Seraer will be loaded and become available to Cli,ent.

The other option, for system dynamism, is known as direct dynamic instantiation, which

allows arbitrary structures to evolve at run time. However, if the dynamically instantiated

components are to interact with each other directly, they must exchange the relevant in-

formation (i-e. service references) through a third party, which is not part of the language

per se. To support these types of dynamic architecture changes, an infrastructure is needed

to brolcer these changes and handle components and their interactions throughout those

changes.

The following exarnple in Figure 2.5 shows two resident components, Client and, Ser-

ui,ce Prouid,er- In this case, depending on the service that CLienú requires, a ne\M type of

server might have to be instantiated to access the specific service provider. Simply, in the

aforementioned instance, a new Ser-uer can be created for any given Seru,ice prou,ider.

In either of the aforementioned cases, bindings are permanent and cannot be undone.

The goal of Darwin designers was to keep the notation declarative, and the introduction

of an nnbind operator would violate that requirement [2a]. In other words, architectures

specified in Darwin ûìay grow (subject to certain restrictions), but they cannot shrink.

Furthermore, the communication between system elements is subject to restrictions, and

nry
JI

Fig. 2.4: Lazy instantiation.

the help of an external agent may be required to achieve the full potential of an architecture

specified in Darwin. Darwin integrates architecture dynamism very well, but, in terms

of service-based dynamism, Darwin lacks (1) an unbind operator and (2) unconstrained

dynamism, or the ability to dynamically change with no restrictions (such as the no cycle

constraint).

r*-*--"-
B:Server I

I

)

Fig. 2.5: Direct dynamic instantiation.

zr-ADL [3S] is an ADL specifically designed to describe dynamic and mobile architectures.

Unlike most ADLs r-ADL is focused more on formally describing architectures, and not so

much on the structural aspect.

Aside from formal descriptions, a--ADL is intended to capture the runtime aspect of

architectures. The description of any given architecture in this ADL is similar to many other

ADLs, in that it models components and connectors, with components containing ports

that define connections. More specifically (1) components are considered computational

2.3.4 n-ADL

38

entities, which contain ports availabie for communication, (2) ports are connection points

between other components and/or their environment, (3) connections provide a mechanism

for components to communicate with one another and, (4) connectors, which are special

components that marshal the connections between normal components.

Figure 2.6 is an example of a basic architecture description in zr-ADL. This example

follows the client server exampie used thus far, notice the special Connector component

required for connections between normal components. The Connector component is requ'ired

for any communication to take place between other normal components.

Components are connected on matching ports utilizing a value passing [39] mechanism,

where all information passed between components and connectors are considered 'values'.

Once a connection is made a wide range of data can be passed through it, from component

communication data to architectural specifications. Furthermore, this notion of compo-

nents and connectors is expanded to include composite creation of new elements from

other component/connector combinations. Simply, a component can be comprised of other

component/connector combinations, with the ports of the specialized component acting as

gateways to the internal components. In conjunction with compositionality, ports can also

be declared as restricted, limiting access to internal composite components. The premise

of compositionality, is not constrained to oniy component specifications, but in fact, whole

39

Fig. 2.6: Simple n -ADL architecture.

architectures in zr-ADL can be composed of other architectures-

zr'-ADL is described as a layered system with the following layers [39]:

o The base layer, where behavior and connections are described. Since behaviors are

described by corresponding connections, and subject to type restrictions, this iayer

allows the component connections of an a¡chitecture to be described as well as the

description of abstractions.

o The first order layer, which is a refinement of the base layer. Typing options, such

as data typing, are available here, and connection mobility is introduced.

o The Higher-ordered layer, where first class citizenship of elements is introduced, as

well as behavior mobility.

Although r-ADL is designed to describe both static and dynamic architectures, we

only need consider dynamic architectures and how they are represented within r-ADL. To

describe a dynamic architecture, n--ADL uses the concept of an abstraction (from the base

layer), which is used to describe any element within the ADL. An abstraction is analogous

to a class in Java, and can be instantiated ('created' in r-ADL parlance) at any time.

Once an abstraction has been created, it must be composed with a connection so that it

can communicate with the rest of the architecture.

The following is an example of the client abstraction shown in Figure 2.6

component Client is abstraction(x:Natural) {

port is (connection is 0utPort is out(Natural))

40

behavior is {

Coupled with the formalism of n -calculus and the ability to describe dynamic architec-

tures, r-ADL is an ideal starting point in the creation of our ADL. While r-ADL supports

compositionality of both components and architectures, it lacks the ability to include non-

resident components and architectures. Non-resident components and architectures are

those which physically reside in an alternate architecture. This is powerful idea, which

gives us the ability to create new corrìponents or architectures from almost any existing

component or architecture.

Rapide [27] is an event-based concurrent language used to define and simulate system

architectures. An architecture in Rapide is an executable specification, and the system

may contain several such architectures at different levels of abstraction. An architecture is

made up of a class of systems, which in turn are composed of interfaces, connections and

constraints. The interfaces are simply modules or components of the system, which describe

the operations made available by a module and what the module requires from other

modules- Furthermore) an interface can describe the abstract behavior of modules using

reactive ruies [26], which define how the component will react to certain information being

2.3.5 Rapide

47

received. Connections are used to describe the interactions between interfaces. They have

the ability to describe either synchronous or asynchronous data communications between

interfaces. Finally, to ensure correctness, constraints are described as specific restrictions

placed on various aspects of connections and interfaces.

During the development of an architecture in Rapide, we have the ability to gradually

instantiate modules into the system; in other words, the system can evolve dynamically

at runtime. When a module is assigned to an interface in this manner, the interaction

mechanism of the interface becomes the constraint for the module. Rapide also allows us

to assign a reference architecture to an interface, rather than just modules. Architectures

can thus be embedded, which greatly expands the composability of architectures in Rapide.

To handle relationships between (reference) architectures, Rapide employs a system of

event pattern rnappings [26] to describe the relationship. These mappings describe how

executions of an instance architecture are mapped to that of a reference architecture. Fur-

thermore, as Rapide architectures utilize the partially ordered event set (POSET) executìon

model, module constraints can be checked as messages are passed between modules, and

before messages are sent from modules.

While the composability, architecture execution and the dynamic loading of modules in

any order exemplify service-based concepts, the requirement of interfaces a priori for any

given module detracts from its overall suitability in the service-based computing paradigm.

42

Weaves [14, 50], while not specifically an ADL, is a framework that allows for dynamic

system evolution at run time. Weaves accomplishes this task by taking source code (of

any kind) and wrapping it into intra-process modules. It then uses these modules to weave

together applications or 'tapestries' from dynamically executing code. In this rnanner, any

legacy or future code can be used to dynamically create applications.

The actual structural components of the framework are simple, and are broken down

into five categories [b0]:

1. Modules, which are the obJect code file(s). Each module also has (1) a data context,

which is the state of the module within the scope of the other object files i¡ the

module. (2) a code context, or the code in the files. Each context can also have

multiple entry and exit points.

2.3.6 Weaves

2. Bead, or an instance of a given module. There can be many beads of a given module

within a tapestry. Each bead has its own data context, but can share it's code context

with other beads.

\Meaves, or coliections of data contexts that belong to beads of different modules.

With the collections data contexts, multiple namespaces can be created within one

address space, which is the foundation of the ability for dynamic reconfiguration.

String, which is a thread of execution. A string though, can only operate in a single

weave, although multiple strings can execute simurtaneously.

43

ù.

4.

5. Tapestry, which is a set of weaves that describes the created system.

Figure 2.7 is an example of a simple tapestry, which contains four intra-process module

instances or 'beads' in Weaves parlance. As mentioned the encapsulated code can be any

kind.

Progranr Fmgment

While any code can be wrapped in modules, it is important to note that the code is

unchanged, and that no special code must be inserted to allow for the framework. The

treatment of code in this manner allows Weaves to be as generic as possible, not requiring

any particular coding or language paradigm.

Once the modules have been created within the framework, they then share attributes

of both the traditional process and threading model of computing; (1) like processes, the

modules allow for state separation, (2) like threads, the modules allow for code sharing and

fast context switching.

Fig.2.7: Simple Weave [14].

Frogram Fmgment

From the generality of Weaves and the treatment of wrapped code, two advantages are

immediately evident: we can compose and recompose legacy applications without modi-

fying them, and runtime dynamic system reconfiguration is achieved through the use of

check-pointing, dynamic code insertion and recovery. Figure 2.8 is an example of dynamic

code insertion or 'splicing' in Weaves parlance.

44

Fig. 2.8: Dynamic code insertion or 'Splicing' [14].

Weaves handles composition and recomposition of systems very efficiently, allowing for a

great deal of system flexibility and dynamism. The only drawback to these features is that

the code to wrap the components must be manually processed to utilize the framework.

2.3.7 Wright

Wright [47] was designed in an attempt to apply a more direct specification and analysis

of architecture designs. This is accomplished by direct specification of interaction relation-

ships among system components as protocols. Where protocols characterize the nature of

interaction among components.

An architecture in Wright contains a description of components, connectors and the

system. Each component is described using a collection of ports, which in turn describe

how the ports are used computationally. Each component includes input and output ports,

suffi-cient to describe it's interaction within the system to which it belongs. Not only do the

ports describe what the component can provide to the system, but they also contain the

description of what is required by the component from the system. Simply, ports provide

a complete description of the requirements (both input and output) of a component.

45

Connectors are composed of a set of roles and a glue specification [3]. Roles describe

the behavior of the components involved in the connection, while the glue specifies how

the roles interact among themselves. This is done to ensure port-role compatibility when

using the connector. There is no limit to the number of roles that any one connector can

take on, with each role requiring a glue specification to define the interaction of the role(s).

Glue specifications can in fact describe the interactions of many roles at once, and are not

constrained to describe the interactions of only the two roles associated with a specific

connection.

Lastly, the system itself is described by using a collection of instances and attachments.

The list of instances represents instances of both components and connectors within the

system specification. The attachments however, provide the topology of the system ar-

chitecture, describing how the instances are laid out physically within the system. The

following example shows what a specification for a system could look like in the Wright

language.

System ClientServer

Component Client

port in [protocoll

port out lprotocolJ

conp spec lspecification]

Component Server

46

Connector LAN [specification]

fnstalces

Attachnents

end ClientServer

While the specifications of systems are simple, they do not allow for any form a dy-

namism or system reconfiguration at runtime. Specifications in Wright are simply that of

static architecture descriptions represented as topologies of the 'box and line' style. Even

though Wright is not dynamic, it still does provide a good example of a welì-structured

formal static language.

While xADL [23] is not strictly a stand-alone ADL in its own right, it is however, an

ADL interchange language, which can be used to wrap other ADL specifications. xADL

works by having a predefined set of XML tags and links between them using the Xpointer

[53] mechanism. With predefined types it can decompose alternate architectures into the

xADL style. The underpinning for this effort was to enable non-specific tool integration into

ArchStudio [20], an IDE for the creation of C2 style system architectures. Although xADL

was created to work with ArchStudio, it is easily expanded to include specific notations

2.3.8 xADL

47

and semantics from any ADL, as it has currently been expanded to suit C2, producing the

specification xC2 [23).

To maintain ease and usability, there are only five element tags available;

<Component>, <Connector> <Architecture), <ComponentType> and

<ConnectorType). As an abstract base, these five tags are sufficient to describe

architecture with an architecture made up of components and connectors (in essence).

any given specific ADL though, these tags are likely not sufficient, which is why XML

used, to allow for customizable expansion of these tags to suit specific applications.

By default, each of the elements described above has links associated with it, in the

form of XPointer definitions. Each of the aforementioned elements has one or more XPoint-

ers; Architectures have a Links pointer, Components and Connectors both have Supports

pointers and, ComponentTypes and ConnectorTl,pes both have Interface pointers, which

in turn have Parameter pointers.

The pointers from each element are used

specification. Beiow is a listing of the XPointer

together, taken from [23]:

c Archi'tecture --+ Linlcs is a logical link between a component and a connector respec-

tively

t Component --+ Supports is the specification of acceptable names and types to the

component instance

any

For

was

to link together differing tags within the

types for each element, and what they link

ø ComponentTgpe ---, Interf ace is the specification of both Name and Method inter-

48

fac'cs for this specific component type

(')ort¿ponentType -+ Interf ace --- Pa¡'ameter is the specification of input and output

¡i;,rr a,rneters for the specified component interfaces

('rvr¿nt'-ctor --, Supporús is the specification of the names and type(s) acceptable to

I [,i¡ ¡::otìnector instance

(..'t,'ri'rtr:cl,orT\pe ---+ Interf ace is the specification of both Name and Method interfaces

iì,r i,!lis specific connector type

': r 'tiiìtt(.(torType --- Interf ace ---+ pclTsmeter is the specification of input and output

¡)ir r'liir.1;'f,¡r¡s for the specified connector interfaces

:":iìi' !;r)r)s; â' long way to making ADLs interchangeable, in acting as a language and

:: .:ìi)Dir,: ,iillir,v. IJven though any other ADL can be described in xADL and xADL can

lrt 1')rir)ticirrrl cttstom error and well-formedness checking must be done outside of xADL,

:ì ri ,¡ ,,;iji'v¿¡lid¿r,ted against its own DTD ¿s ¿s.

,!i '.'¡ "ii)L ¡l,nd (more so) an ADL extension, xADL suits the service-based paradigm

¡,r:i'í' liir- rìiltr to the fact that it is created and maintained as XML, removing it from

¡;ì¡r'¡'ifir ¡irlr:r:-qsirl8, and allowing it to be integrated into online transactions using SOAp,

ì,,ii ; :,r r iir,, Jiì<e.

'.i'ìr,' i',iir,rtri¡¡g, section describes different forms of tool and infrastructure support both

'r"': ì :rrir! lr¡ailable to aid in achieving full dynamism when considering runtime system

¡ r', I I; I i rl ¡ li .,,i.i,it.lll.

49

All of the ADLs reviewed rely on external support to achieve true dynamism. Darwin

needs it to support communications of dynamically instantiated components; C2 needs it

to provide the requisite tasks related to welding and unwelding of components on demand;

Rapide needs it to be able to execute its architectural specifications; and Weaves needs it

to provide the operating environment in which individual modules can run. Therefore, it

seems safe to conclude that true dynamism in software architecture requires the support

of the proper runtime support infrastructure. In some scenarios, runtime support may be

built in the generated code, not unlike Java bytecode - which requires the Java runtime

environment to execute on a remote platform. In others, a separate runtime infrastructure

is needed, or the necessary infrastructure may already be available on the execution plat-

form. iVliddleware such as CORBA, RMI, or more recently Jini, offer significant potential

for facilitating the runtime support for service-based systems, although many problems,

especially in terms of interoperability and portabilit¡ remain to be solved [29].

There are many examples of infrastructures available that facilitate system dynamism,

such as Common Object Request Broker Architecture (CORBA) and Java Remote Method

Invocation (RMI).

CORBA [37] is an infrastructure that facilitates remote method invocation. Through

the use of remote interfaces, CORBA can broker remote method requests from clients

that have copies of corresponding rernote interfaces, and stub objects for services. The

interfaces and stubs are required by potential clients in order to know what methods can

2.4 Infrastructure

50

be utilized, what they take as arguments, and what they return. In CORBA all method

invocation takes place at the remote location, and there is no option to acquire the object

for local invocation. RMI works much like CORBA, in that it uses interfaces to describe

the capabilities (in this case methods) of a remote object to be accessed. Unlike CORBA

though, RMI has the capability io transport objects from one location to another for

invocation, through a process caìled serialization. Serialization is simply the wrapping of

an object, in this case an interface, and sending it to a client.

Both infrastructures (CORBA and RMI) provide a solid foundation for creating dy-

namic systems, with one major flaw: the interfaces must be made available to a client at

compile time, and if changes are made to the service being provided, new stubs must be

created and given to the client before communicate can take place. This does not facilitate

the dynamic selection of services as desired by the SBC paradigm, as you would first need

to download and examine all of the available interfaces to determine suitability for your

purposes.

There has however been much work in this area to alleviate this interface dependence

when using middleware like CORBA and RMI. Two such projects Jini for Java [48] and

the Open Services Gateway Initiative (OSGÐ [43], both provide infrastructures that allow

services to be searched for and selected on the basis of criteria which are either explicitly

specified by the developer or derived from the implementation of the service itself.

For thesis thesis we take specific note of Jini, which is fully described in Section 2.4.I.

Services in Jini can be searched for, loaded dynamically, or downloaded to a client and

51

used locally all from within Jini itself. It provides ali of the tools and tool support required

to create, deploy and use services; such as a locater service, leasing service, and object

transportation service. Furthermore, as Jini is implemented in Java, all that is required to

use Jini is a Java Runtime Environment (JRE) and the Jini libraries.

2.4.1 Jini

Fig. 2.9: Components provide services.

TCP/IP

So far we have expressed the need for frameworks or infrastructures to facilitate the marshal-

ing of service-components to and from clients, and Jini [48] provides just such a framework.

Jini is a networking technology that allows devices, services and cooperative programs to

interoperate seamlessly over standard network technologies like TCP/IP. However, there is

no distinction drawn between different resources connected to a Jini network; everything

that comprises the network is considered a service. Simply, Jini provides a method for a

variety of services to exist, co-exist, discover and interact with each other on a network

in a platform independent manner [35, 36]. Jini uses the Java Virtual Machine (JVM) on

client machines to provide platform independence, and a simpie lookup service for clients

to locate services. A simple example of a Jini network is shown in Figure 2.g.

Everything in Jini, whether it is a part of Jini or an external service, all connects to

52

the network- Through the network Jini brings together clients and services through its

lookup service (an in-depth description of this process is available in Appendix B). The

mechanism within Jini that facilitates the lookup and selection process is called the lookup

discovery manager. The lookup discovery manager allows criteria to be added to the service

search process in the form of Entries. Entries are a serializable representation of attributes

of a service, which are passed to the lookup manager at the time service searching takes

place- The addition or removal of Entries can be used to either refine or broaden the search

scope for a service. Jini provides a default set of entries intended to be the most commonly

used when searching for services; such as Vendor, Version, Name, Servicelnfo, ServiceType,

Location, Status and Comment [36]. Each of the aforementioned entries are simple classes

that perform no operations and only store service attribute information.

Services in .Iini are built upon the Java RNII API and aìlow services to be run remotely

(much like web services) or marshaled to the client for local execution. Furthermore,

Jini allows descriptive metadata to be added to services, which enhances searching for

and finding desired services. For a better explanation, lets consider our word processing

example. Imagine that we need a specific spell checker for our word processor, to find one,

we would simply connect to a Jini lookup service and browse for one based on whatever

criteria we wanted. Of course there are restrictions, such as, our word processor would

have to be able to connect to a Jini lookup service, and it would have to be able to execute

services within the JVM. Once a service is found, a spell checker for example, it can be

sent to the client to execute locally, use resources from external JVMs or even use whole

53

other services (either remotely or iocally). Jini does this by extending Java RMI and using

its ability to marshal objects from one JVM to another through a process of serialization.

To provide its functionality and ability, Jini contains a comprehensive set of tools and

services for its framework. Some of these tools include:

e A web server which is used to host objects on the network.

ø Reggie a lookup service, which provides the ability to look up and search for services.

ø Mahalo a transaction manager, that allows multiple operations to be treated as a

single atomic operation.

o Fi'ddler a lookup discovery service, which will perform discovery operations on behalf

of clients.

o MercurA au event mailbox, which will hold events for clients that are currently off-ìine

until they come online again.

The interaction capabilities that Jini provides suit the service-based paradigm extremely

well, as we can have services on a network which can be searchecl, selected, run locally or

remotel¡ and have internal or external dependencies that may be local or remote. A

drawback to Jini is the fact that it depends on the Java JVM, so if one is not present Jini

cannot work. Also the environment and tool support necessary to run Jini in an effective

manner are extremely complicated to run and maintain. There is an alternative that

provides similar support to that of Jini, the Open Systems Gateway Initiative (OSGi) [43],

with emphasis placed on mobile devices rather than an infrastructure to provide services.

54

An alternative to Jini for providing a framework for dynamic services is the Open Systems

Gateway Initiative (OSGi) [43]. The OSGi framework provides a component-based exe-

cution environment for networked components. This is similar to Jini, except that OSGi

places heavy emphasis on components and component-based design instead of considering

all networked entities as services.

The framework itself is designed in a layered fashion with four layers; the Execution

Environment layer which defines the JRE environment for OSGi, the Modules layer which

define class loading policies, Life cycle Management layer that creates bundles for dynamic

usage and the Service Registry layer which provides dynamic interaction points between

bundles. Where bundles are simply a collection of Java classes that are physically grouped

together to provide somc service.

The OSGi provides standard services which are simply Java interfaces and which reside

in the service registry. These services ure not self contained existing services that can be

run in a standalone fashion unlike the provided services for Jini. To make use of any one

of the standard services from OSGi a bundle must implement the service interface so that

it may then be searched for by a client. There are many standard services available for

2.4.2 Osci

implementation as of OSGi Release 3, some of which include [43]: Framework Services used

for administration privileges, System Services that provide system independent functions,

Protocol Services that map external protocols to OSGi, and Miscellaneous Services which

provide a variety of alternative services. Most notably of the standard services is the

55

Protocol Service, which allows Jini services to be recognized and used by OSGi.

OSGi provides an extensive framework for dealing with system dynamics. Since we

consider all components as onlE vehicles to provide services OSGi is not considered in this

thesis as it is strongly component-centric in both services creation and provision.

The problem with most ADLs is that each have different focus in terms of architectural

description. For example Darwin focuses on the formal description of systems with its

use of r-calculus, whereas Rapide focuses on being able to execute and examine system

descriptions. Unfortunately, most of those ADLs are not interoperable with one another.

In essence, if you choose an ADL to aid your design you (typically) do not have the option

of modifying it in auother ADL. To do so wouid require the comRlte redesign of the

architecture to suit the new ADL's format.

When working with architectures in ADLs, typically you would like to perform other

tasks than strictly specification and validation, such as: generating source code, executing

generated code and converting to other ADL formats. This requires that an ADL has

automated tool support, which is why tool support is considered to be an essential part of

any ADL [32]. Of course, different focus requires a different set of tools. Leaving it up to

the creator of the ADL to decide what if any automated tooi support is available.

2.5 Tool Support

56

ACME [13], is an ADL interchange language that proposes to bring a level of interoper-

ability to ADLs. ACME is not designed to make the designs of one ADL work within

another, but instead it promises to interchange common architectural knowledge between

ADLs, while being tolerant of ADL specific knowledge. Simply, it takes common archi-

tectural knowledge, iike component and connector information and makes it available in a

generalized format for other ADLs (and their toolsets) to recognize, while not considering

any ADL specific information about an architecture. The reasoning behind the creation of

ACME consisted of five main goals [13]:

1. Provide an ADL interchange format - a mechanism to interchange information that

can be understood by more than one ADL.

2.5.1 ACME

2. Provide architectural representation and analysis - allow architectures to be repre-

sented in ACME and then provide some level of analysis of those architectures.

3- Provide a foundation for new ADL development - ACME has a simple ontology which

describes common elements of an architecture description, therefore any ADL should,

have these in their ianguage.

4. Work towards standards for architectural representation - to try and standardize what

basic elements should be included with any architectural description from any ADL.

5. Provide architects with meaningful expressive descriptions - make architectural de-

scriptions and their analysis meaningful, human readable and easy to rinderstand.

¿t

The ontology of ACME mentioned above, has seven basic elements: components, con-

nectors, systems (combinations of components and connectors), roles, ports, representations

and rep-maps. Components and connectors both have a set of interfaces that describe them.

The component interface describes ports (which describe input and output), and the con-

nector interface describes the roles of the connector; where roles are how the components

involved interact with the connector. Lastty ACME has representations, which are sim-

ply graphs describing the topology of an architecture, and rep-maps, which describe how

interfaces are interrelated.

With its ontology ACME can wrap any other architecture description, leaving out any

ADL specific information. However ACME does provide a mechanism to also allow ADL

specific information to be included. This mechanism is called ACME Properties, and it

allows ADL specific information to be included as additional information. Consider the

following example where a simple client component is described in ACME, but which

contains other ADL information as properties.

Component client : {

port send;

Properties{C2-style : style-id = client-server

source-code : external = "client.cpp"

Ì

58

The inclusion of specific information in this manner allows C2 and other C2 aware ADLs

(in this example) access to this information, but yet still allows non-C2 av/are ADLs to read

the structural information and ignore these properties. There are other uses for properties

than simply storing ADL specific information, since angthi,ng can be placed in a properties

declaration. For example you could include actual source code snippets, comments, etc..

To work with and create descriptions in ACME, there is a freely available tool called

AcmeStudio 146], which is built upon the Graphical Editor Framework (GEF) l1g] of the

Eclipse platform [18] to provided simple component creation and manipulation, as well as

rich model editing. As mentioned proper tool support for ADLs is ideal, and the creation of

AcmeStudio facilitates the correct usage of ACMtr, especially as it handles the interchange

of information from one ADL to another.

ArchJava f2], provides another form of strongly desired tool support - code generatìon.

Other than infrastructure and interoperability, automated design and development tools

[32] such as code generation only enhance the capabilities of ADLs to be more descriptive.

In particular, code generation tools are needed to convert the architecture from a design

to an executable form. In doing so, architectures can be built and then physically run

to evaluate the design. ArchJava in particular, uses standard executable Java code, to

describe and evaluate designs, with specific focus on maintaining communication integrity.

The use of Java code, then allows architectures created within ArchJava to be run on anv

machine that has a JRE.

59

2.5.2 ArchJava

With the benefits of Jini serving as a framework to marshal system dynamism, in

Chapter 5 we conside¡ the use of Jini as our framework, and extend the idea of Java code

generation for our ADL.

In the following chapter we discuss service-based computing contrasted with traditional

component-based computing, followed by conceptual requirements for the SBC paradigm.

60

Service-based computing is the idea that software systems are made of interacting services,

as opposed to components. Traditional systems are composed of local components with

(typically) no external requirements, whereas service-components of service-based systems

are composed of services that can be either local or remote with any number of external

requirements. Furthermore, not all of the services are known a priori, as services can be

dynamically selected, loaded and unloaded.

3. SERVICE-BASED COMPUTING

This is a shift in the thinking behind computing, as we move from large self contained

software systems, to those which are the surn of a collection of services. In the follow-

ing discussion, we examine how service-based systems are different than their traditional

component-based counterparts.

Software systems currently can be built according to the component-based design philos-

ophy, where components are first-class entities from which systems are built. There are

many benefits to component-based systems, like reusability and reduced refactoring [49].

What component-based systems lack though, is the ability to change, in that, to upgrade

3.1 Component- vs. Service-based computing

or improve such a system typically requires patches to be applied or whole new versions

to be acquired. The reason for this is that within a component-based system a compo-

nent provides or implements some services, which in turn may require input from another

component, as shown in Figure 3.1. Components can also require no input or have no out-

put, and can themselves be composed of other components interacting through appropriate

inputs and outputs.

Whole systems can be made from one or more components that are interacting (or

connected). When a user starts such a system, be they human users or external applications,

one or more components of that system are utilized; those components in turn utilize others,

and so on. In this paradigm, components are the essential units for both packaging and

execution, while the services they provide or require are basically inputs and outputs (plugs

and outlets), that serve to connect those components into a working system, as shown in

Figure 3.2.

It should be noted that the interconnections of components is not dynamic, meaning

that for one component to utilize another (or several) it must be aware of the type and

structure of the input it will receive, requiring prior knowledge of the component when

62

component C1

Fig. 3.1: Components provide services.

required
sery¡ces

the system is created. There are of course exceptions to this general rule, like the use of

shared object files in Linux or Dynamic Link Libraries (DLL) in Windows; components can

use the services they provided dynamically, but they still must know the output of such a

component when the system is created.

Fig. 3.2: Systems are built with components.

Software systems, however, can be designed and built in other ways, for exampìe u/e can

shift our thinking from components being first-class entities to using services as first-class

entities. We still require components to act as the vehicles to provide services, meaning

that the composition and interaction of services now dictate the structure of a system. For

example Figure 3.3 shows interconnecting services which form a system.

While components are still needed, æ shown in Figure 3.4, their role is strictly to

implement or provide services. In this role, one component can now provide one or many

services, which in turn may require other services. Alte¡nate implementations can be

substituted at anE ti,me as long as they implement the same externally observable behavior.

With the ability to change services, yielding alternating implementations, we achieve a very

63

é.-...."'.''
^-4.......'-"'>

-Y"""'...:::t

I

I component C \

Fig. 3.3: Systems can be built from services.

Fig. 3.4: Components are used to provide services.

high level of reusability, as we can reuse and change only individual services as desired,

instead of having to change entire components. It is the dynamic use and substitution of

services that provides the foundation for the service-based paradigm.

-___/
l-.ãr-""-o-\ó'Y

6........':."rq
(Ð""'........,A
lY

t component C

provlded
services

@,:i'.,,::::..

$þ""" -.

@,,,,,-:.-..:..

To summarize, component-based systems are composed of interact,ing components that

provide some service via inpuis and outputs (plug compatibility) of components, whereas

service-based systems are composed of interacting services which are provided by compo-

nents and can be dynamically used and substituted as desired.

ö
eI
@

::È

requ¡red
services

Aside from the fundamental composition of systems, service-based systems, as opposed

64

to component-based ones' call have services or r-equiÏerlents that exist outside of the system

in rvhich they are defined. For example, if we have a system A that contains service 51, 51

could require a service or resource from A or from another systern B, or C, and so o.; 51 is

not constrained to the services and resources of A. Component-based systems on the other

hand, must know about all existing resource and component requirements ahead of time,

and those requirements must be within the available scope of the component, including for

example DLLs' which still must be available when the system is created (although they

can be called dynamically when the system is running).

In the following section we discuss another difference between component- and service-

based systems, which is the location of components, services and resources, and how they

are accessed differently.

In traditional component-based systems all of the components and their required resources

are located within the same system, meaning that everything needed by such a system is

readily available, with no external facilities required to locate or access any components or

resources.

However, when we consider service-components, \¡/e now must realize that not all of the

required components or resources are immediately present or contained within a single sys-

tem' This is why location and accessibility of service-components is extremely important,

especially if one system or service has heavy dependencies upon others to provide it with

3.2 Component location and access

65

services.

Component-based systems typically have local components which are accessed by local

systems' In some cases though, for example Yellowdog updater Modified (yuM) a package

management svstem of Linux, we can have dislocated component-based systems, where

components reside in alternate locations and must be downloaded an installed for use.

with service-components we now have a much larger range of accessibility, which includes

both local and remote access. Table 3.2 provides us with a simpie taxonomy of components,

their residency, and methods for accessing them. As we see with normal components, we

only have one accessibility method, whereas with service-components we can access local

and remote components, both locally and remotely.

If we now consìder implementation aspects of service-components, it becomes apparent

that there must be a common communication mechanism through which client-service

interactions may take place; where a client can be considered either an end-user, or another

system as a whole' In simpler usage scenarios, service providers can reside on local fixed

storage from which they may be loaded when necessary, not unlike DLLs or their equivalents

under other operating systems, like shared objects in your favorite flavour of UNIX.

Tab' 3'7: options for service rocations and their accessib'ity.

traditional or
service-based

Manner of Access

service-based

(client-side)

service-based

(server-side)

service-based

(incl. Web Services)

66

In more complex scenarios services can be accessed through a LAN or the Internet. In

tÌris case, the service-component can run at a remote site, similar to the appr-oach adopted

by Web Services, with its services accessed remotely; alternativel¡ the service-component

can be downloaded to the local site and installed, or installed from the remote site. In the

former case, the interaction will in fact consist of a series of messages exchanged between

the client and the service provider. In the latter case, once the external service-component

is installed, it becomes indistinguishable from a local one. However, when the interaction

is over, the component will be removed from memory, and possibly even deleted from local

non-volatile storage.

Scenarios like those just described necessitate the presence of an infrastructure capable

of managing the interactions described - either as part of the original client application, or

independently of it. Such an infrastructure may be embedded in the operating system a¡d

thus made available to all the applications, or it may be made to run as part of the actual

application' or even act in a third party capacity, helping to marshal dynamic services, but

not part of either the operating system nor the application itself.

with service-components (possibly) from external sources, and users having the ability

to switch them dynamically as desired, a mechanism for searching and selecting services is

required' The following section describes the requirements for both searching and selection

of services.

67

As mentioned in the previous section, if service-components reside at remote locations

(service providers) and there exists a infrastructure in place to âccess them, we still require

a mechanism to search for and select the ones we want. This search-selection process would

involve a registrv of available services, making the process very similar to that of the web

services paradigm, involving the universal description, discovery and integration protocol

(UDDI) to search for available services.

In the Web Services âpproach, services are located via their signatures and simple

descriptions written in web services description language (wsDL) [15]. while simple and

efficient, this approach suffers from a major drawback: namely, it requires the designer to

know in advance the signature of the service to be invoked. By extension, this also means

perspective clients must possess detailed knowledge of the component that will provide the

service.

This, however, does not fit well with the dynamic and ever-changing nature of service-

based applications' Service-components are not known beforehand and they need to be

accessed on the basis of their advertised capabilities for providing particular services,

rather than according to a name and signature. To provide this level of searching, service-

components would have to provide a significant amount of information about themselves.

The minimum information required from service-components would consist of the names

and signatures of the services provided, much like web services. Additional descriptive in-

formation such as; functional constraints (i.e., inputs and required outputs, non-functional

68

3.3 Service search and selection

constraints (memory and timing requirements), and security- and access-related features,

as deemed necessary for the selection andf or use of that particular service-component.

In order to make the search and selection process of services as descriptive and gener-

alized as possible, we need some kind of service lookup facility, which contains sufficient

information about services and their requirements, and which can also provide the services

to the user once selected. Such a facility would have to consider any provided eoS or

requirements of a service, as these can be the determining criterion for the selection or

rejection of a service' If for example we wanted a spell checker service, but only if it can

complete in 30 seconds, then we do not want to see all spell checking services from the

lookup provider, we only want to see those that match our service description and, those

that match our requested QoS property. If supplied, we would also only want to see those

that matched the previous criteria and, any additionally specified requirements.

Lookup and selection of services will be supported within our ADL and our implemen-

tation will rely on the infrastructure of Jini to provide this capabiliiy. In Section 2.4.I and

Appendix B, we further examine Jini and how it allows services to be described with spe-

cific documentation, as well as providing a lookup and marshaling mechanism for services,

making it a viable choice as a framework for service-based system development.

Now that we have discussed the differences in component- and service-based computing,

and differences in location, access, selection and searching, we must create a language for

our ADL that captures or allows for these requirements as best as possibie. In the following

chapter we provide the design and rational of the language for our ADL.

69

The language provides the ordering of and information about component relation for defi-

nitions added to an ADL. our ADL is tailored to the service-based paradigm, such that it
describes the relationships of architectures and their service-components, and how service-

components interact to provide services.

unlike the languages of other ADLs, like c2 for example, that make the connections

between components explicit, in our language we leave the expression of connections im-

plicit' being derived from the location of service-components relative to the services they

provide and the architectures they are defined within. This is done mainly because one

component can provide many different services, within one or many architectures. on the

other hand many components can implement one service from one or more architectures.

To try and explicitly describe all of these possible connections adds a lot of additional,

non-essential information to our language) so we opted to create a language that could be

converted to an XML schema (see Appendix A for full xML schema description) and then

described in XML' using xML to implement our language we could then, through the use

of parent-child relationships and the use of global elements implicitly describe connections

between components and services, by where the component and service element appeared.

4. THE LANGUAGE

architecture A1

f-.*h'tüËì

[^"1

The specification of a service-based system starts with the definition of an architecture.

Architectures can also be composed of whole other architectures, providing a high level of

reusability, as shown in Figure 4-1. When interacting with adjacent or nested architectures,

the openness of the architecture determines if services from one architecture can be shared.

IViore specifically, if one architecture can use the services of another as required services, or

its own services can be used in a similar manner, we would define it as open. Alternately, if
an architecture does not require any outside services, nor ailow access to any of its services

it is defined as closed.

The definitions of services contained within an architecture describe what the architec-

ture does' with the provision to have these abilities extended by adding services as needed.

In the case of nested architectures, services from higher-level architectures can have access

to all services from lower level ones. At the same time, services from a lower level architec-

ture can access services from a higher level one if and oniy if (a) the lower level architecture

is not declared to be closed, and (b) such services are explicitly designated as global, in the

arch¡tecture A

Fig- 4.1: Architectu¡es can include architectures.

4.1 Architectures

77

manner that will be outlined below.

The grarnmar representation for services has no limitation on the number of services

that an architecture may contain, except that there must be at least one service definition

which acts as the so-called starting service, i.e., the service which is to run initially when the

architecture is loaded. other services may be loaded at the same time when an architecture

is loaded; the list of such services is determined automatically by the infrastructure when

it loads the architecture.

Specification

Architecture+

Architecture :-

0penness',architecture', Name,,is,,

"starting" Service

[" contains', Service] x

["includes,' Architecture] x

" end-architecture',

Openness := "open" | "closed,,

72

Each service within an architecture is provided (i.e., implemented) by one or more soft-

ware components. In this model, components are derived entities which can be extracted

from the service definitions, rather than being primary entities that provide services. Fur-

thermore, the definition of a component that provides a service can be located inside or

outside of the definition of a service which it implements. This however is not the same as

a service being external; which means the service is entirely defined outside the scope of

an architecture- When we consider a service as being external, we are referring to the fact

that the service and its implementing component are provided outside the definition of the

current architecture.

If not external, every definition of a service must contain an implementing component.

Components in any case act as implementations of the services they provide (of which there

can be more than one), similar to implementing interfaces in Java. For example, you may

want a quick but not-quite-accurate spell-checker, or a slower but fully accurate one.

The language allows the client to distinguish service provider components and select

the best one. The accessibility, or where it can be accessed from, can allow other services of

nested architectures to have access it, provided the accessibility is not local. Most services

are accessible globallY (bV default), to other services both within the architecture and

outside of it; in some cases, services may be restricted to client services within the same

architecture oniy, by setting thei¡ accessibility to local.

Service

4.2 Services

È7t
,J

Accessibility'tservice" Name "is',

[["provided.-by', Component] |

["external"]]

["provides " ServiceMsgJ +

"end-service "

Accessibility :- "loca}', f "global"

A component is defined with a name and an availability specification. As components

physically implement services, the availabilÍty specification refe¡s to the implementation

itself:

o A private component provides its services to clients within the same architecture o'ly;

such services are always local.

4.3 Components

A protected component is accessible to services residing on other hosts as well, ancl

the interaction is performed through message exchanges via an appropriate commu-

nication link (think of Web Services); services provided by a protected component

may be either local or global.

Finally, a public component may have its executable image (u.g., u Java jar file or

equivalent) available to be transferred to the remote host for execution; in this case,

any accessibility restrictions on the services provided are meaningless.

74

While components can have differing availability, it is important to note that a com-

ponent defined as public does not make the service it implements mobile, only movable;

meaning that it can be sent between clients and executed, but not partially executed on

one client, suspended, transferred to another client and have the execution resume from

where it was suspended.

Component '=

Á,vailability,'component,' Name

" end-c omponent ',

Availabitity :=

"private', l',public', l "protected"

Access restrictions imposed by the components are mapped onto services. In this man-

ner) a service can have different implementations, some of which are global while others

are protected, and possibly some of which are rocal as well.

The default accessibility level is public; protected takes precedence over public, and

private takes precedence over either of them (similar to Java). It may happen that a single

service provider component is labeled with different access restrictions within different

service definitions' In this case, the most restrictive qualifier will be used, eliminating

inconsistencies from the processing of architecture definitions.

Note that the outward extension of an architecture depends entirely on the service

provider definitions, whereas the inward extension depends on the openness of the archi-

75

tecture' In other words, an architecture defined as closed, can declare that it will not
seek help from others, but individual service provider components may be made accessi-

ble or available to the public on a case by case basis, independenily of the architecture

extendi bility setting.

Each service is invoked via an appropriate message. To carry through the relation to
Java' consider the methods defined in an interface as service messages; they describe the

behavior of the service, which are in turn implemented by the service-component. A service

message specifies functional information such as the service name and a list of parameters

in pare'theses (similar to a method signature), while the other aspects describe definitions

that define guarantees and requirements of the service message. A guarantee could be that
processing will take only take x amount of time, or accuracy of task ir gg% or better,
whereas requirements could mean alternate resources or services that this one requires to
provide its service, such as memory or processing constraints.

ServiceMsg :=

4.4 Service Messages

Name "(" Parameterlist ")

["with" QoSGuarantee] +

f"at" ResourceReql x

["requiring" RequiredServ] +

(o

Parameterlist := [Datatype

Datatype := "int" I,'double"

The operational information of a service is formatted as a list of eoS guarantees. Each

guarantee consists of a property and an associated value. This list of guarantees provides

a mechanism for the search and selection process of services by the user. Example: a user

wants a service that can calculate their tax return in 3 minutes, a search of eoS guarantees

of available services is doue, and if there is one, it is selected. If from that same example

more than one matching service was found, then the user has the option to additionally

refine their criteria until the exact service they want is found. Refinement can be the

addition or deletion of guarantees to or from existing search criteria. Coupled with the use

of resource requirements (defined in the following section), a user has very specific control

over what services are searched for and what services are selected. A eoS guarantee can

be anything, ranging from guaranteed computation time to download speed.

QoSGuarantee := property "of" Value

f ", " Datatype] r.]

I "string" I "void"

4.5 QoS Guarantee

Property :=',anything"

Value := "anything"

77

In order to meet the guarantees for a service, a component rnay arso rrave some requirements

of its own' Two main types of requirements can be readily identified: resource requirements

and service requirements' Resource requirements are similar to eos guarantees, except that
they spell out what are the properties of the operational environment that the client must
provide in order for Qos guarantees to be met. such requirements may include minimum
available memory' minimum cPU speed, compatibility with specific versions (or range of
versions) of the operating system andf or other services, and other related information.

ResourceReq := Resource ,,of ,, Value

4.6 Resource Requirement

Resource := "anything',

Value := "anything"

service requirements, on the other hand, identify a number of other services that are (or
may be) needed in order to fulfill the obligations. For exampre, a tax processing service
might need additional services to process returns based on the return type; furthermore it
may require certain Qos guarantees of the required services in order to meet eos guarantees

of its own.

Note that any given component may actually be able to provide one or more services) as

78

4.7 Required Seryices

is the case in the component-based paradigm. However, instead of a component requiring

a set of services regardless of which particular service it provides, our language allows more

precise modeling of dependencies. Namely, it is possible to define a subset of required

services that correspond to each of the provided services, as shown in Figure 4.2.

í-- **ñ;*,-ìr . .,e,
aseryice ç.,,..::::....

=...
...,þ

;TTx;

':i.i ---,@
t á.t.| .r.
i:ìt, ; '5'',;

l ,'.',
¡ ii,:','
il
* * - ^ _ _,1

(a) ,91 requires some services.

This facility provides an additional selection criterion and allows for finer control of

system execution (and, consequently, performance) at runtime. Namely, the client may

prefer to get services from a component which needs less resources; in some cases, less

resources may mean fewer required services, in particular in cases where some of those

services are not available locally and, thus, have to be accessed or even downloaded from a

remote location prior to being used to provide the original service.

We have mentioned above that any single service can be provided by more than one

component' The components that provide the same service may differ in terms of their

QoS guarantees. They may also differ in terms of other services they require; for example,

component C1 may require services Rt, Rz, and Æ3, in order to provide service,gl, whereas

component C2 mayrequire services .R1 and Ratodo the same, as shown in Figure a.3(a)

79

Fig- 4.2: services might depend on others to provide their services.

I cornponent C.i
-ìrI n i.R, r.l¡-i¡.. 'r/

i:Ì:ì; dl'
ì"' "tlyl

aseruice
9,,,,,,,,,.:::..-....._._-....-:

t tQ
ryr*

tÍ;l
.

:=@ ""r"""
r ".,l-\l ',tlrl
tl
!* _ _ - _ _. I

(b) S, requires alternate services.

and Figure refreqc2.

(a) Cl may require Rt, Rz and Æ3 to (b) C2 may require only .R1 and .Ra to
provide ,91 . provide the same service, 51 .

Fig' 4'3: Different components provide the same service with differing requirements.

These services may be limited to services available locaily, i.e., those defined within the

architecture as well as those downloaded from other architectures. The default option is

local as well as remote ones.

Furthermore' a required service can be labeled immediate, in which case it must be

made available prior to execution (by whatever nìeans available) or optional, rvhich may

defer acquisition because the component may not need it at all, or is ready to wait until it
becomes available.

RequiredServ ::

Location Innediacy

| .orpu*r,,ìã
-- -,

I^

".*"* $.,,. : "9
,*"n*

i -=
' I seruices

i "--@
,-*_ ___)

Name [" (" Par"reterlist ',) "]

["with" QoSGuarantee] +

LOCation :- "196¿1 rr ¡ "remote,,

80

Immediacy := "inmediater' | "opti_onal"

The infrastructure that manages the architecture will initially

vice, as well as its immediate required services (subject to resource

optional services will be loaded when they are actually invoked.

We note that the list of required services is an optional part

definitions of services and components that implement them are

service is accessed via a remote host, no guarantees can be given as

require.

An alternative to this service-centric design, is to turn the architecture definition from

inside out, and obtain a more common component-centric definition, similar to the one

created by Cervantes et. al. [8, 9] which pertains to OSGI [43] technology. More specifically,

in their design, they consider dynamic components relationships (loading, transporting,

etc), which is very similar to our notion of dynamic services. The difference is, that thel,

consíder parts of software being transported and dynamically used, whereas we view all of

a system's components as services.

load the starting ser-

limitations, of course);

of the language. The

necessarily local; if a

to the services it may

81

with the complete design of our language and the language mapped to an xML schema

(see Appendix A' an implementation of our ADL was completed using Java 1.5. Java was

chosen as the vehicle for implementation for several reasons; the most important outlined
below:

" Java provides a very diverse and comprehensive ApI for working with XML. xML
documents can be read, written and validated with very few lines of actual code.

xML documents can be searcìred and modified simply with Javas, implementations

of xPath [ss] and XPointer [53]- Furthermore the platform independence of its XML
APIs contribute significantly to its suitability.

o As mentioned in section 2'7, to achieve full dynamism of the scale the service-based

paradigm requit'es, would force us to either implement or utilize a framework to
marshal services' Java again provides the solution to this problem with Jini [4g]
(section 2'a'7); an API that allows services, described as the implementation of re-

mote interfaces' to be located, used remotely, serialized and acquired, dynamically

activated, and dynamicaìly removed. Jini has the ability to communicate with its
lookup services locatecl on the local machìne, local network, or over the internet. The

5. THE IMPLEMtrNTATION

only drawback is that Jini may have difficulty finding services, as its lookup service

does not forward requests, so each lookup service rnust be queried individually.

o With Java, we can run our implementation on any platform with a Java Runtime

Environment, without having to recompile or modify the code in any way. Even

though the implementation was done in Java 1.5, it was compiled to be backward

compatible to Java 1.3, providing some flexibility in JRE versions.

o The OO capabilities of Java allowed us to create general abstract classes and interfaces

for elements and code tools, cutting down on the amount of duplicated code through

sub-classing and polymor-phism.

Once the programming environment was decided upon, the first step was to begin our

design bv breaking our program down into logical package descriptions, or which Java

packages would handle what processing. Once the sectioning of the design was complete

each of the packages was further decomposed into individual classes, represented as class

diagrams with their interactions modeled via sequence diagrams. To help iilustrate how we

envisioned our ADL functioning we then created use-case diagrarns and state diagrams.

The goal of our design was to create an ADL that was menu-driven and had a dialog-

based graphical user interface (GUI) that allows elements to be added and removed from

the overall specification. As a specification within our ADL progresses, the overall form

and element organization is represented to the user as a tree for ease of (re)organization

and understanding. Once an element has been added to the design, it can then be modified

(via it's properties), removed, have children added to it, or depending on the element, have

83

it's source code generated and viewed- The layout of the GuI for our ADL is cornprised of

a tree view on the left hand side and a dynamic content tab pane on the right for viewing

source artifacts.

Figure 5'1 shows the overall package description of our ADL implementation. The Structure

package contains all of the classes that represent elements of our XML schema, the GUI

package contains all graphical interface classes, the XML package contains all classes used

to read/write/parse xML files, and the code package contains all classes used to generate

code.

5-1 Packages and Structure

With the use of XML and XML schema, we \¡/ere required to create a class representation

of our schema to enforce the constraints of the schema within our code. This was done

by creating one class for every element present in the schema, with the exception of the

starts-with element (as it is nothing but a wrapper element). Figure b.3 shows the classes

within the structure package, and how they are related to one another.

ó4

Fig. 5.1: Package description of ADL implementation.

The structure classes use aggregation to maintain the proper schema mapping. More

specifically, all of the structure classes are arranged and composed of one another in such a

way that they directly represent the form of the xML schema (see Figure b.2). Aggregation

is handed within each class using a jaua.util.TreeMap, which is similar to a hashtable, but

provides performance guarantees. The use of TreeMaps u/as further enhanced with the

use of generics, a ne\¡/ concept to Java 1.5, which allows return types of coliections to be

specified at creation time, removing the need for type-casting.

Each of the classes of this package are also used in a corresponding dialog, which allows

users to make instances of them, for example the NewArchitectureDialog from the GUI

package is used to c¡eate instances of the ArchitectureDef class, and so on.

The GUI package, as mentioned, includes all of the classes that make up the user

interface for our ADL' The main window for the application, along with all of the user

input dialogs' and other customized swing classes are contained in this package. one of the

things to note here is that the GUI package depends on the other packages, but there is no

dependence on the GUI package from any of the others. The implementation was designed

this way to keep the data model of our ADL loosely coupled to the user interface. This

way if future expansion was desired, in either the data model or user interface, refactoring

is minimized' The overall arrangement of the GuI package is shown in Figur e 5.4.

All XML processing is handled by the XML package. All constants used for element

names' reading, writing, parsing, and validating of XML is done by the XML ciass in

this package' To ensure processing is as trivial as possibie, the Document object Model

85

specification version 2(DOM2) \Mas used for all

methods to handle XML, for both reading and

DOM2 is as simple as:

Fig. 5.2: Aggregation within the Structure package

docbuilderfact = DocumentBuilderFactory. newfnsta¡ce () ;

docbuilder = docbuilderfact . newDocumentBuilder O ;

docbuilder. setErrorHandl-er(nei¿ Def aultHandlerO) ;

86

XML operations. DOM2 provides simple

writing. To read an XML document using

rry {

document = docbuilder.parse(xmlfile)
;

\//end try

Fig. 5.3: Arrangement of classes in the Structure package.

catch(SAXException spe) {spe.printStackTraceO ;}
catch(I0Exception ioe) {ioe.printStackTraceO ;}

while parsing an XML file, DoM2 also provides validation of the xML document,

allowing us to use the same mechanism for reading an XML file to provide validation

support in our ADL' Since DoM2 represents an XML document as a tree in memory, we

opted to use a JTree in the main user interface to display our specifications. In doing so we

87

dtYPaþ

AI)tFileF¡tter

ølU ' Rn¡tasn

c\pex
CustômTreeRêndèret

.- Shlng

(delegaÞÞ

rrdelegater
l.lewCornponenÐialog

):

):

(¡mpterneßtatlon clãsi
[l¡inW¡¡iiour' '

¡-
I
I
I
I
I
t-:
I
I
I
I

l
t-*\l'
I
I
I

Fig. 5.4: Arrangement of classes in the GUI package.

could use silnple I'ecursive methods to read and write xML to and from the JTree. with
the code to work with Java trivial, the associated XML package is also trivial consisting of

only one class, as shown in Figure 5.5.

code generation for our ADL is contained within the code package (more details on code

generation in section 5'3)' Figure 5-6 shows the relationships between the code generation

classes' The Generator is the main class that actually performs the code generation using

simple recursive methods to walk through the JTree in the main user interface, and generate

corresponding source artifacts.

adef€gaþÉ

I
I
l-
I
I
I
I
I
I

I
I
t
I
I
I

l$qtY[Rcs'olrræDiatog

tlffiR8€ñdcÈÐlelog

<de@ater

88

In the previous section we discussed how all of the packages and classes are arranged.

Now let us discuss how the packages and classes interact with one another. We show in

Figure 5'1 how our ADL is arranged and how each of the classes within each package are

related' Before we discuss how the packages interact, we must first understand tire basic

processes of our ADL and how they relate to one another. In Figure b.7 we vierv the basic

states of interaction and show how they are related to other tasks that can be perforrned.

With our ADL designed to be a dialog-based system we ensure tliat all of the states

in Figure 5'7 must return to the idle state after processing is complete aside from a few

exceptions' The ADL will not proceed with any task until the user explici¡y activates

it, which can take place through either a menu click or a dialog. There are exceptions

where one task depends on another prior to its execution; for example code generation will

never take place until the specification has been saved. Such dependencies only exist where

consistency is required -we only want generated code for the most recent specification,

which requires that it be saved beforehand.

Fig. 5.5: The class in the XML package.

5.2 Package interaction

89

-- -- -* -:t
I

I

¡

styp€Þ
CodeFile

t

Figure 5'7 describes houi the states of our ADL are related, what it does not show is

how the packages of our implementation interact to provide the processing of those states.

To describe this interaction we use sequence diagrams and specific processing tasks from

our ADL.

{nsêrçors¡an(}
linos1f¡rcJor{}
in+rünterlaef)
inælGassPffiBte()
údleFlfe{)

qùlbrfæ-rlcodbFitè

Fig. 5.6: Arrangement of classes

;.Slairg
:Sriq

All interaction

The decomposition

ÈgëlÇúgilts? ' T.èêLleÞ
tgs4nìùIaæsil : TMl'4ãp

:.fudean
:T¡úMap

tSf/0t

:T@Map

:fteeMap
T@e^&,Í)

tioænintetfaæl

involves the GUI package and at least one of the

of the problem makes each of the packages, except

90

in the Code package.

remaining packages.

for the GUI package,

self reliant; such that they do not require any of the resources of any other packages. The

GUI package depends on all of the other packages because it is used to represent these

packages to the user in a graphical manner. In essence the GUI package acts as the portal

to the other packages, in that, every interaction takes place through the GUI package which

then uses resources of another package to perform a task.

With a general idea of how the packages interact, let us more specifically examine how

the packages mentioned in Section 5.1 interact with one another from the perspective of

the class Ma'i'nWindow from within the GtlI package. We need only consider this view

as all of the packages interact only throu gh MainW,indow - even then, none of the other

packages such as XML or Structure interact with one another, only with Mai,nWi,nd,ow.

As mentioned each of the elements from our XML schema have been mapped to a

Fig. 5.7: Overall sequence of ADL.

91

corresponding class, each of these crasses in turn have a corresponding diarog that is used

to create instances. This design pattern is carried through all of the classes in the Structure

package' each one class representing an element with a corresponding dialog. Therefore,

v/e can examine only one example of the interaction between the Mai,nwi,nd,ow and the

structure classes to understand how they are used. Figure b.g shows the interaction between

the Mainwi'nd'ow class and the structure class ArchitectureDef,and how the corresponding

dialog NewArchitectureDi,arog is used to create instances.

ilflFlq¡æ{ralbn dässþ
MainwÀ*iw

It{enr¡Clíc*ed
f^.+"il1
I .l

cdalegate"
N6wÂrclilêcftirÐialôo

To create an instance of any one of the element classes, a menu item is clicked which

then presents the corresponding dialog to the user. The user can at any time cancel creat-

ing an instance, or continue providing information until an instance can be created. Each

of the corresponding element dialogs provide error checking to ensure that the information

92

Fig. 5.8: Creating a new ArchitectureDef instance.

Yalid:=vElidatetnpúl{)
{

hev/ Arútité€lureDéf

provided by the user is correct and will not cause inconsistencies within a specification.

Also, constraints such as elements that have dependencies on others, like an architecture

that must have a starting service, are handled by the corresponding element dialog. For ex-

ample, to create an Archi'tectureDef instance the user is forced to also create the SeruiceDef

that will act as the starting service, before the Archi,tectureDef instance is created.

In terms of state semantics, Figure 5.8 shows movement from the idle state to the

addElement state and back again (refer to Figure 5.7 for state details). Some of the corre-

sponding element dialogs also allow more than one instance to be created; for example when

creating a new SeruiceDef the user has the option of adding as many Serui,ceMessageDef s

as they desire, yielding the cycle on the addElement state.

Next we look at the how a specification is saved, describing how the XML package

interacts with MainWindow. The process for saving is the same regardless of whether

the user initiates it directly, or it is performed automatically. More specifically when

the user initiates the save process through a menu click an abstracted method is used to

perform the actual save operations. This way the same save operations are used anytime a

save is required, providing flexibility for auto-saving (timed or otherwise) and to maintain

consistency (saving before code generation). Figure 5.9 shows the interactions involved in

saving a specification. Since the XML package is only used for handling XML, this is one

of three places it is utilized. The other two uses are for loading a saved specification and

for validating an existing specification.

With a specification represented by an instance of the XML class, we have further

93

{inpbrnerllatjon clÊSSs
r\4a¡hwlridm

meûuClicked

simplified handling a specification between memory and disk. From Figure b.9 we see an

example of this witìr the calling of the method treeToXmlConversion, which is a simple

and efficient rectrrsive method that converts the tree view from Ma,inWind,ow to a valid

DOM2 representation in memory. Alternatively when loading a specification another simple

Iecursive method, xmlToTreeConverison is used to load the specification fiom disk. To

initiate the save process a user simply clicks the save menu item or initiates a task that

auto saves prior to execution (like code generation). This in turn either displays the file

dialog or not depending on various factors and then creates the XML representation of the

specification in memory. The XML in memory is then written to a standard XML file on

disk' The process of loading a specification is the exact opposite; a file is read from disk

and loaded into memory, then the tree view is refreshed based on the XML in memory.

Finallv we look at the interaction of the Code package. Like Structure and XML, this

94

Fig. 5.9: Saving a specification.

package is only used within the MainWi,nd,ow class and does not have any dependencies

on any other packages- There are some notable exceptions in the manner with which

this package is arranged for interaction. Mainly the Cod,e package provides all of the

resources to generate specification source code. To accomplish this however, can be an

intensive process requiring a lot of computational resources. To alleviate the work load

ror Ma'inWindow multi-threading was introduced. Using multiple threads meant that the

interaction with the Code package had to thread safe; which was accomplished using Java

synchronization primitives.

Figure 5'10 describes the interaction of the Cod,e package. Notice that for the most

part it begins the same as for the other packages, in that a user clicks a menu item which

then begins the process, the exception here is that when the generation process is started a

new thread is created which runs the code generation methods. The separate thread use is

characterized by the asynchronous message from the status dialog which continually asks

the thread what its progress is so that the user can be notified in the form of a progress

bar.

Aside from the use of an extra thread, the Cod,e package also has a restriction on how

it can be used' unlike all of the other classes in this project the Genera¿or class -the
class that actually runs the code generation, is a singleton class. Using the singleton design

pattern we can ensure that only one Generaúor instance ever exists to increase thread safety

and prevent more than one set of source files from being generated at the same time.

There is much more to the code generation process, which we discuss in the following

95

{inpbnÌefllaùbn clEssþ
lvlai¡tlìfindow

l mdnuClii*sd

Section.

To aid the design process v/e have included a source code generation toolkit, which generates

the complete source code skeleton for a design. The generated source cocle is backward

compatible to Java 1'3, provides Javadoc compliant commenting for easy documentation,

and is compatible with Jini 1.0 and above.

Generated source is placed in a directory called "Source" located in the design save di-

rectory' As the source code is generated it is separated into packages based on architectures

within the design; i'e', each architecture is its own package. The separation of architec-

tures into packages allows us to maintain openness restrictions from one architecture to

96

Fig. 5.10: Generating code for a specification.

5.3 Code Generation

another, with the use of import statements in code. Although each architecture creates a

new package, all of the sub-elements of an architecture in the design are constituents of

the corresponding package. This way, we can enforce availability and accessibility through

packaging as well.

Consider an example: If we have a specification that contains two architectures, say

A1 and 42, they form two distinct packages, A1 and 42. Inside each of these packages we

would find all of the source code for all of the services, components, interfaces, etc that are

child elements of that architecture. If we have the case where A2 was a nested architecture

of ,{1, then A2 would become a sub package of 41.

With an understanding of how generated source code is arranged, let us discuss how

the sou¡ce is generated from each of the elements in the design. Since our ADL works

with Jini, we have opted to create all source artifacts as skeleton services that work within

Jini. To elaborate, lets examine what part of the source code each element in our language

corresponds to; as shown in Table 5.1.

Not all of the elements of a specification become independent source artifacts, only

those that extend CodifiedDefinition (from Figure 5.3). The other elements become part

of the next closest codified parent element, which will always be either an Architecture,

Component or Service. Each one of the codified definitions contains within it a copy of its

source file, removing the need to explicitly handle directories and location on a specification-

wide scale. This then provides better access to source artifacts though the tree view of our

GUI, as each node in the tree represents a language element, and therefore allows access

97

Language Element

Architecture

Source Artifact

Facade providing Ji.ri ,urrri""ãrrd lookrrp
Remote interface that contains Service_

Tab- s.1: Language erements and corresponding source artifacts

to its sourcecode (if applicable).

messages as methods

RequiredServ

Implements remote interface(s) from the
service(s) it provides

Each of the source files that are generated are stored in memory as class type cod,eFiles

wlriclr extends Rand'omAccessFi'le- Exte'di'g RandomAccessFile provides us with all of the

capabilities of a normal file, but also allows us to seek forwards and backwards within the

file to add or remove text. with the ability to seek in the file, we can write code files, and

seek backward or forward to predetermined sections to insert or remove code. currently

though, as we do not support the editing of code files in our ADL, we do not need to use

the seeking functionality of the RandomAccessFile class. Instead we currently write codes

files in a top-down fashion as shown in Figure 5.11.

Pseudo code for how we produce a code fire is outlined below.

Begin

write-package

Included as method d"fi .ritiorr- irrì.r,ri""

Part of the signature of u Surui""Mrg
Implements AbstractEntry interface
Jini service definition i.r.lrrd.d in tlr"
providing facade

Implements AbstractEntry interface

9B

ûas tþftrilioî

ConEtenls

Albibuiæ

write-imports

write-header-comment

write-cfass-header

Íirite-parent-cIass

Fig. 5.11: Arrangement of sections within a codefile.

Cøgruaæ and Methods

Jffidocffirenls

üir i t e - impl ement ed- int erf ac es

while (nore)

Body sûefeton

write-constants

i¿hile (more)

t^rrite-attributes

while (more)

wrr-te-constructors

write-skeleton-body

whil-e (more)

99

write-methods

End

wrÍte-skeleton-body

The actual process of generating the sourcecode is handled within the Generaúor class

contained in the Code package (see Figure 5.6 for more package details). As each class from

the structure package contains its associated source file and these classes are arranged in a

tree, we recursively traverse the tree to create source artifacts. This way each node in the

tree that we examine, that can have code generated for it, already has the code fi1e accessible

for writing to. The remaining nodes that do not have associated code files, simply return

their information up one level in the tree to the appropriate codified parent node. In the

special case of both QoSGuarantee and ResourceRequirement, they are stand alone codified

definitions that have no cirildren and do not pass any information to a parent node. They

are however used in the service provider as searchable entries, for more information about

entries refer to Section 2.4.1. An example of generated sourcecode artifacts is available in

Chapter 6.

There are however some limitations to our source generation package. At present, the

source code generated by our ADL is not editabte within our ADL, the reason being that

we do not provide any parsing tool support, which would be required to ensure only valid

Java code was inserted. All source that is created though, is fully Java compliant and

provides Javadoc recognizable commenting of classes, interfaces and methods. Generated

source is only a skeleton representation, meaning there is no functionality for methods,

r00

etc., it is only the valid code representation of the specification. Any functionality for the

sourcecode must be added externally to our ADL.

The following chapter provides an example test case that is described in our ADL and

its accompanying sourcecode.

101

This chapter provides an in depth example that exemplifies the service-based paradigm,

in that it has a strong dependence upon the remote acquisition of services to carry out a
required operation' we start the example by describing the parameters and terminology of

the example followed by the specification of the example and viewing tlie generated xML
document, ending with generated sourcecode examples from the specificatio'.

6. A TEST CASE

Let us consider an unmanned Air vehicle (uAV) example, where we have a threat as-

sessment system contained within an autonomous flying vehicle that can be dynamically

reconfigured' A uAV, in this example does not perform its task alone, and is in fact part of

a larger fleet of UAVs each with varying threat assessment services. As a UAV encounters

threats' if it does not have the required threat assessment service loaded, it can ask one of

the other uAvs for it' If available, a uAV can acquire an appropriate assessment service

from another UAV and dynamically load it for use.

From the perspective of only a single uAV, this test case demonstrates dynamic system

reconfiguration on various levels. A uAV can change only one service or all of its services,

6.1 Defrning the test case

either partially or completely changing its capabilities. Although uAVs can dynamically

change their composition depending upon threats encountered, in this test case we have

imposed some constraints on a UAV's ability to do so.

consider the following formal constraints on the uAV system:

i.

2,

the small finite memory is defined as having onry 200M8 of space

the differing input stimuli are defined as: Air to Air (AA), Ground to Air (GA), Air

to G¡ound (AG), and Ground to Ground (GG)

3' there is no time lost for the acquisition of services from differing sources

4. it takes 1 second to remove an active service

5. it takes 1 second to acquire a new service

6. it takes 1 second to start a new service

Next' we examine the dynamic reactivity of the uAV to differing input stimulus. Re-

action is measured by the UAV dynamically acquiring services that it needs for threat

assessment from input stimulus. This example has four types of input (or threats), with

each of the avaiiable threat deterrent services ofa varying size. Each ofthe services all take

the same amount of time to run or provide their service, although this might not always

be the case. Below we outline the services availabre to the uAV.

c AA 100MB: an air to air detection service that requires 100 MB of memory

t AG 90MB: an air to ground detection service that requires g0 MB of memory

103

o GA 25MB: a ground to air detection service that requires 2b MB of memory

o GG 150M8: a ground to ground detection service that requires 150 MB of memory

Figure 6'1 a proposed uAv and how it can interact with other uAVs in the fleet to
acquire and provide services' Each uAV has a simple operating system acting as broker for

sensor stimuli and services to and from the active memory. The main memory available to

the uAv is broken up into four 50 MB sections, with the ability to combine these sections

to make larger sections if needed.

:uArl

ryr

with a single UAV being part of a larger fleet, not all uAVs will share the exact same

services as shown in Figure 6'1. Each uAV could potentiary have similar services, but
which are provided with differing attributes such as Qos guarantees, memory requirements

or executions times' Depending on what a UAV requires for a service it might search for

and select one specific service over another. To demonstrate the difference of adding in
additional service information, consider Figure 6.2, showing more than one uAV with the

same service, but with different attributes.

Fig' 6'1: UAV can acquire/provide services from/to others in the fleet.

IJAVry

104

UAVF
M
L-*J

To illustrate the selection problem, consider that the UAV has AA (100M8) and AG

(90M8) services loaded utilizing 190M8 of the max 200M8 of memory, leaving 10MB of

memory free. Now consider that the UAV encounters a GA threat, and needs the GA

service' In this case we will assume there are many choices available to the UAV depending

on what its criteria are for the required service. If the UAV only required a GA ser-vice and

did not care about memory, execution speed or security, it could simply take the 10MB

GA service, with no further reconfiguration required. If however the UAV had additional

criteria, requiring the service to execute in no more than one second, it would then need to

select a service and reconfigure itself accordingly to accommodate the new service. In the

latter case, depending on which service if selected, the UAV would be partly or completely

reconfigured. Figure 6.3 shows a UAV and the choices of services it has available with the

level of reconfiguration based on the service selection.

In the foliowing section we create a single UAV specification within our ADL, providing

visual references, XML and generated code examples.

UAVF
lcnlronre¡. Il2os-nmæ I

leeltome¡. I
| 20s, nøsrua I

Ë'-r"l
I '"*" I

Fig. 6.2: uAVs can have similar service types, with differing attributes.

tIAVry
Ë1
L_i

105

UAVW

Based on the description of a single uAV above, we can create this example as a single

architecture called uAV. we consider service variation by includins eos guarantees and

resource requirements for the services of this particuìar uAV. we aiso consider that one

service might require another to provide its capabilities, we therefore included required

services in our UAV.

when creating a new architecture for our uAV, we ensure the presence of the required

starting service bv forcing one to be created at the time an architecture is created. In

this case we wili make the os the starting service. Figure 6.4 shows the newly created

architecture with its starting service O,g.

With an architecture defined, we can then begin adding the services available within

our UAV' In this example we wili consider that all elements of the uAV are services,

even the os. This allows us to specify the os, AA-100M8, AG_hLMB, GA_k5MB and the

GG-l50MB as services of the uAv architecture. However, the os was added previously as

106

(a) No reconfiguration.

IJAVF

Fig' 6'3: service selection can vary uAV system reconfiguration.

6.2 Using our ADL to describe the test case

UAVF

(b) Full system reconfiguration.

the starting service for the UAV, so \Ã/e only have to add the remairring sr,nrrr;c,!. ,:ì.jiri irìi, j

for this specification we ignore the 200M8 memory constraint from the previlrr,; ¡,iìrrii¡)r,

\Ã/hen we create a service, it must have at least one implementing cornponti-Ìt ;rri j ;ri j.rr.si

one service-message, unless specified as external. Those constraints are enfor.ce¡l -i1;l'r,';, r|;;-

service is created, by not allowing the creation of a new service until a coinìJcr¿1ìi ;:iìi¡: ;,r

least one service message have been defined, unless defined as external. 'rùe ri,ili ,ì,ìsrj;ì!i,

that none of our services are external, meaning they all must contain arr i¡r.{rl.riri,¡1,!iiri

component' which will be named with the service name it provides concai,e;nati:ri ,¡,,iii; iirr,

word 'Provider' (example: AA-177M?-Prouider). Lastly, before our services c¿r.ri L¡,'{:r.r,j.ìì¡ìi;

we must include at least one service message. In this case \¡/e assume each sr:rv;tr, ,ìr, iiir:

beginning) has only an AssessThreat service message, which we define when.rÃ,'{r (ì1ri,,¡, !!Jrl

service. Figure 6.5 shows the new services added to our UAV architecture.

with ali of the services for our UAV defined, we can then go back and ad<i rnclriì -iji-l,iirl:

messages to non-external services. We also have the ability to add QoS guarantr:es. r.ir-iorìi.i.(-l

107

ffi
Ë-+" ûs

.. S os-r.ovider
5. 't=,_i LoadServices

i',.@l pararneters

Fig. 6.4: The architecture defined with a starting service.

r:J".ës uAv
È+'# os
Íí-,Sl,nn_rooue

i i EAA-_1DoMe_proúider, i....-E assessthreat
È-.4þ,4.,6,96¡"tg
j ¡.-S-ac_sotulE_prsvider
¡ i--,Q assessThreat

Specìfication

requirements, parameters and required services to service messages, while also being able to

add QoS guarantees and parameters to required services. In this example we have assumed

that each service has its own implementing component and AssessThreat service message.

Now' for each AssessThreat service message we will add rime and Distance parameters,

securecomm and AssessmentTime Qos guarantees, a Memory resource requirement, and

a ParseThreat required service.

Lastly for this example, we will add a ThreatType parameter and a T,iming eoS guar-

antee to the ParseThreøú required service. Now that we have described our uAV. \¡/e can

see what the complete specification looks like in Figure 6.6.

once our specification has been saved it is written to an xML document. The corre-

sponding XML for our UAV example is provided below; some portions have been omitted

for brevity.

lË,,.* cs-esl¡e

Fig. 6.5: The new services added to the UAV architecture.

E,+:

(?x¡01 version="1. O" encoding="UTF-8"">

108

Specification
-Ss unv
'E-.€Þ os

i i- S oS_provider
ì !ì-l=--1.t n¡;{(o-.,i^-,: E¿.'bÊ:l-oudservices
F-.&,aA-1ooMe
j f.-"S nt3;iirt4E-.pr:ovjder¡ -*f, nr+3oome. provider

¡-. l=t .
\=-r-+= A55e55lhreãt

Ë '@ Pararneters
: i.-.:i r-,-(Ð- Time
; i ,,þ: Distance
; ^^fl,'s..ur"Cornm
i- -fl l+ssessmentTime
i---ffi Memory

B.-=fà parseThreat

Fig. 6.6: Partial tree view of our UAV design.

<!--This document is generated by DSSX_ADL version 3.0__>

<specification xmrns:xsi="http: / /www .w3.org/2001,/xMLSchema-instance,,

rã.{:'gC_SOf,te

; i '% AG_sonB provider

i ,T,-E r+ssessThÃat
F.# GA_zsltB
ll -tÞ- GG_150f-tB

F'-.ffi/ p¿r.¿meterc
¡ l ._1ri ; .eì trHËégtïn¡Ë{
::-'ü Timina

xsi:noNamespaceSchemalocati.on=,'http: //wwv.cs.uma¡itoba.ca/_softart/schema_final .xsd,,)
(architecture name=',UAV" openness=,,c1osed.,,)

<starting-r¡ith>

(service accessibility="globaÌ" external="f¿fs"rr nane=,,0s,,)
<component availabiLity=,'protected,, name=,,OS_provid.er,, /)
(service-message name=,'LoadServices,,)

<parâmeter-list name="parameters', /)

<,/servi ce-message>

109

(/service)

<,/starting-r¡ith>

(service access ibility= " 91oba1 " externaf ='r f ¿ls g rr nane= r'AA_ looMB,,

<component availabirity= "private " na-me=',AA_1OOMB_provider,, /)
(service-message name=,'AssessThreat',)

<Parameter-list name="Parameters ")

<Parameter name=,'Time,' value=',doub1e"/>

<Parameter name=',Dista:rce', value="double,,/)

</paraneter-list>

(qos-guarant ee name= " SecureComm,, vaf ue=,' true,, /)
(qos-guarantee name="AssessmentTime" varue="< j s seconds,,/)

<required-resource nane=',Menor]', value=,,2Q MB of RAM,,/>

(required-service inmediacy="immediate,, location=,,locaL,,name=',parseThreat,,)

<Parafieter-list name="paTameters ")

<parameter name="ThreatType" vafue="Str ing,' /)

<,/parameter-1ist>

<qos-guarantee name="Timing" var-ue="< 1 second for result,,/)

<,/required-s ervice)

</servi c e-mes sage>

(/service>

(service accessibility="gIobal" external="f ¿f5" rr name=,,AG_90M8,,

<conponent availabif ity=r'private" name="AG-90MB_provider,, /)

(/service)

</architecture>

<,/Specif ication>

110

With the specification saved and Ìhe XML file written, our ADL provides support

for code generation. In this example, when run, the code generation tools create one

package for the UAV architecture, one remote interface for each of the services and one

implementation file for each of the components (see Table 5.1 and Section 5.3 for more

details on code generation)- The generated code files can be viewed within our ADL,

following is an example of the generated remote interface for the AA-\hLMB service.

package UAV;

import java. rmi.Remote;

inport j ava. rni . RemoteException ;

// Tlrjs document is generated by DSSX-ADL version 3.0

x This file describes the skeleton for AA_1OOMB

x COMMENTS:

public interface IAA_1OOMB extends Remote {

public static final String ASSESSMENTTIME = "(S seconds,,;

public static f inal string l,fEMORy : "20 MB of RAM,,;

public static final String SECIIREC0MM = ,'true";

* interface method AssessThreat

111

* @todo implenent nethod AssessThreat in alternate class file

* @param Time doubl-e

* @param Dista¡ce double

* @throws RemoteExceptíon

public void AssessThreat(double Time, double Dista¡ce) throi.¡s RemoteException;

j//end interface

An example of the generated sourcecode of the

AA-171MÛ-Proui,der for the AA_100M8 service is

package UAV;

rnport j ava. rmi . server. UnicastRemoteObj ect ;

import j ava. rmi . RemoteException;

iroport net . j ini . lookup. ServicelDlistener;

import net. jini. core.l-ookup.ServicefD;

inport net . j ini . core . discovery. Lookuplocator;

import net . j ini . lookup. JoinManager;

import net . j ini _ discovery. DiscoveryGroupMaaagement
;

import net . j ini . core . entry. Entry;

import net . j ini . lease . LeaseRenewalMaaager;

import net . j ini . lookup . entry. Naroe ;

import net . j ini . lookup . entry. Servicefnfo;

import net . j ini . discovery. LookupDiscoveryManager;

772

providing component,

shown below-

inport net . j ini .Iookup. entry. Comment ;

import j ava. rmi - RMlsecurityMaaager;

import java. io.Serj-a1izable ;

// This document is generated by DSSX-ADL version 3.0

* This file describes the skeleton for AA-1ooMB_provid.er

X COMMENTS:

pubric class AA-1O0MB-Provider extends unicastRemoteObject impternents

IAA_100M8, Serializable, ServicelDlistener {

x This is the default constructor

public AA_lOOMB_providerO {

\//erj constructor

x interface method AssessThreat

x @todo irnplenent method AssessThreat in alternate class fire

*

* @param Time double

* @para¡ Distance double

i13

* @thror¿s RemoteExceptÍon

public void AssessThreat(double Tine, double Dista¡ce)

return nu11;

]

* skeleton of roethod ServicefdNotify

:

4..0" complete method ServicefdNorify

* @param serviceid Servicefd

public void ServiceldNotify(Serviceld serviceid) {
I
J

* skefeton of method getServiceta

x @todo conplete nethod. getServicefd

throvs RemoteException {

* @return Servicefd

public Serviceld. getservicefdo

return nu1l;

)

r74

* skeleton of nethod toString

* @todo complete method toStríng

*

* @return String

public String tostringO {

return nu1I;

I
J

)/,/end class

Finally the exampìe sourcecode for how we implement our QoS and re,soijr.{r,ìr:r{i,rrì.,,.

ments' As rnentioned they are implementors of the AbstractÛntry irútx.Tac(:' jr.ririi ,¡ ii¡rirr

Jini, which then allows them to be used as both searchable criterion for clieni;s ¿:ì,rÌ(l 1i,is.ììrl

tors for service providers.

package UAV;

import net. jini. entry. x ;

inport net. jini. lookup. entry. x ;

// Tnis

/xx

x This

*

document is generated by DSSX-ADL version 3.0

fife describes the skeleton for SecureConm

115

X COMMENTS:

public class SecureComm extends

ServiceControlled {

private String value = nulf;

/x*

x This is the default constructor

* @param value String

AbstractEntry implements

public SecureComm(String value) {

this.value = val_ue;

\//end constructor

/*x

* skeleton of method toString

@todo complete method toString

x @return String

116

*/

public String toStringo

return nuII;

Ì

l//end class

r77

The problem of ever increasing monolithic software systems, and the push more and more

to service-based computing, drives the need for tools to create these systems.

In my thesis I have created a service-based architecture description language for use to

help design, implement, validate, refactor and evolve these service-based systems. specific

focus of our ADL was given to flexibility in service-based systems, and to providing full
support for dynamically reconfigurable systems.

we rnaintained the focus on flexibility by taking the component-based system view and

changing it, to stipulate that components are only vehicles which provide implementations

for services' In doing so, we made every part of a system a service, which could have various

locations and resource requirements. This then captured the essence of the service-based

paladigm, in that all systems are composed of interacting services.

7. CONCLUSIONS

with the current version of our ADL we can create specifications, edit and validate them

and even have some sourcecode created. From the results of test examples, like Chap-

ter 6'2' we have uncovered some remaining issues within our first iteration. Identifying

7.1 Future work

and addressing these areas of improvement and correcting any outstanding issues is the

direction for future work on our ADL. Some of these issues and what our solution will be

in the next iteration are outlined below.

o Runtime Enu'ironment: We need to include a runtime environment for testing the

specification in a 'live' setting. This would require the ability to start and configure

Jini services to run in conjunction with our ADL. We must be able to demonstrate

the dynamism of our specifications in terms of loading, unloading and searching for

services. With Jini, this is handled for us, as services can be local or remote, searched

for, downloaded (or not), and (de)activated at runtime. Using the Java classes for

reflection, we will include the ability to run the Jini environments by running the

associated jar files as though they were run from the command line. A path collection

mechanism will be created to allow users to specify where the required libraries are

located to run Jini services. Another option would be to use the tool provided by

Jini that presents a graphical mechanism for starting Jini services.

Interoperabi'li'tg: Our ADL is represented in XML, which can make it interoperable

with other ADLs and frameworks like: xADL 123) - which then provides interop-

erability with Archstudio ,.421, ACME [19], xC2 [28], and oSGi [a3]. To achieve

interoperability, we will use XSLT transforms, giving us the ability to convert our

XML representations to that of any other ADL that uses XML or similar markup

languages.

ø Erpanded Code Generat'ion: Currently users can generate and view source skeletons

119

for selected elements, but this is not sufficient for a useful design environment. we

must expand our code generation and handling to include the ability to edit the

code within our ADL, parsing of code and insertion of code snippets via element

properties; meaning the operations of methods could be declared during design time,

and be inserted into the code for the user. This issue will be addressed by either

porting the ADL to Eclipse, or by using the Eclipse editor libraries within our current

implementation.

c Running Generated Cod'e: With generated code and the addition of the Jini runtime

environment, having the ability to actually execute the generated code to evaluate

its suitability' This would require the compilation of code within our ADL as well

as accessing any external resources for running the compiled code. In our case that

would mean the inclusion of the Java compiler (javac) and launching the JRtr from

within our ADL to run code.

o Erpanded Code Support: while currently our code generation is targeted towards Jini,

it would be ideal if there \Ã/a,s more than one type of code that could be generated.

Perhaps the inclusion of code support for other infrastructures such as coRBA could

be incorporated.

The ultimate goal of this work is to take our ADL and code generation tools and deploy

them as a plugin for the Eclipse Project [18]. such a prugin would include the use of
perspectives within Eclipse as well as a graphical editor for specifications using the Eclipse

Graphical Editor Framework (GEF) [19].

720

XIONgddV

Following is a full description of the xML schema representing our ADL language. It is

broken down into the individual elements of the schema for easier understanding. The

schema was designed using global elements to eliminate duplicate definitions, and includes

an id system to allow for ID/IDRtrFS to correlate certain elements.

The specification element is the root element of the schema and only contains one child
type, an architecture.

(xs : el-enent name="Specif ication',)

(xs: complexType>

<xs: sequence>

(xs:efement ref=',architecture" minOccurs=,,o,,maxOccurs=,,u::bounded,,/)

(/xs: sequence>

(,/xs: complexType>

(/xs: el-ement>

A. XML SCHBMA DBFINITION

Architecture elements

Fig. A.1: Schema element specificøtion.

are composed of up to three types of children, there is one

starting-with child which must always

architecture children.

(xs : element nane="architecture,,)

(xs : compfexType>

(xs: sequence)

(xs : element Dame=,'starting-with',)

(xs: complexType>

<xs: sequence>

(xs : element ref=t'service"/)

(/xs: sequence)

</xs: conplexType)

(/xs: element)

be present, and there can be zero or more service or

(xs : element ref=" service " minOccurs="0" max0ccurs="unbounded."/)

(xs : element ref =" architecture " ninOccurs=" 0,' maxOccurs="u¡bounded"/)

(/xs: sequence)

(xs : attribute nane:'tid" type=t'xs : ID" use="required"/)

(xs : attribute name=r'documentation', type="xs : string',/)

(xs : attribute name="openness,t use="required,,)

(xs: simpleTyp">

(xs : restriction base=r'xs : string,')

<xs : enumeration vafue=',open"/)

<xs : entrmeration value=" closed,,/)

(/xs: restriction>

<,/xs: simpleType>

</xs: attribute)

(xs :attri.bute name="name" type=,,xs :string" use="required"/)

r23

</xs: complexType>

(/xs: element)

There is only one starting-with element per architecture element, and it is used to

declare the service that acts as the starting service for that particular architecture.

(xs : ef ement na_üe="starting-with',>

(xs: complexTyp.>

<xs : sequence>

Fig. A.2: Schema element architecture.

(xs : elenent ref =', servicet, />

(/xs: sequence)

</xs: complexType>

(/xs: element)

Services are described as

child, and there must be at

Fig. 4.3: Schema element starting-wi,th.

components and service

least one service-message

messages, there

child.

124

must one component

(xs : element na.me=,tservicet')

(xs: complexType>

<xs : sequence min0ccurs=tOt>

(xs: elenent ref =,,component',/)

(xs : element ref="service-nessage" maxOccurs=r,unbound.ed "/>
(/xs: sequence)

<xs : attribute name=" j.d', type=',xs :fD', use=,'required"/)

<xs : attribute name=',documentation" type=',xs : stringr',/)

<xs : attribute name=rtaccessibilityÙ use=rrrequired")

<xs: simpleType>

(xs : restriction base=',xs : string,,)

<xs : enumeration value="1ocal"/)

(xs : enumeration valus="global ",/)

(/xs: restriction>

</xs: simpleType>

</xs: attribute>

(xs : attribute name="externar" type=r'xs : boolea¡,, use=t,requi red,', /)
(xs: attribute name="Provided-by-component't type="xs: IDREFS,' use=,,opti.ona1,,/)

(xs : attribute name=,'name" type=,'xs : string', use="requj-red,,,/)

</xs: complexType>

(/xs: element>

Fig. 4.4: Schema element

725

seTuzce,.

Components do not have any children, and act simply as an information store.

(xs : element n.ame="componentr')

<xs: complexType>

<xs :attribute name=',idl type="xs:fD,' use=,,required,,/)

<xs : attribute name="documentatioD.r type=rxs : string,,/)
(xs : attribute name=',availabil-ityÍ use=rrrequired,,)

(xs: simpleType>

(xs: restriction base=,,xs : string,')

(xs : enumeration lru1rrs= "pri vater, /)

<xs : enuneration valus="p¿þ1ic"/)

<xs : enumeration value=',protected,,/)

</xs: simpleType>

</xs: attribute>

(xs:attribute name="provides-service" type=',xs:TDREFS,,use=,,optionar,,/>

<xS : attribute name=rrname', type=,'xs : string,, use=,,required,,/>

<,/xs: complexType>

(/xs: element)

(/xs : restriction>

Service-messages are children of only services, with

the remote methods of the parent service.

(xs : ef ement name=" service_message,,)

Fig. A.5: Schema element cornponent.

the information they store describing

126

(xs: complexType>

<xs : sequence>

(xs : element ref="parameter-list"/>

(xs:efement T'ef="qos-guarântee" ninoccurs=t'OttmaxOccurs=,,unbounded'/)

(xs:eleroent ref="required-resource" ¡oinoccurs=,,O,,maxOccurs=,,unbounded,,/)

(xs : el-ement ref ="required-service " ninOccurs=,' 0,, max0ccurs=,,unbou¡ded,, /)
(/xs: sequence)

<xs : attribute na¡re="id,' type=,,¡çs : ID" use=,'requiredr,/)

<xs : attribute name=,'documentation,' type="xs : string,,/)
(xs : attribute name="name', type=',xs : string" use=,'required,,/>

</xs: complexType>

(/xs; element)

The parameter-list element

acts as a wrapper, in this case

(xs : element nane="parameter_1ist',)

(xs: complexType>

<xs: sequence>

Fig. A.6: Schema element ser-u,¿ce-rnessage.

behaves similarly to the

for Parameter elements.

starts-with element, in that it only

127

<xs : element ref - "paramet er " nin0ccurs= r, 0 " maxOc curs=,,unbound.ed,,/>

(,/xs: sequence)

(xs :attribute name=r,id" type="xs : ID" use=',required,,/)

(xs : attribute name="name'¡ type=t'xs : string" use=,,required.,,/>

(xs : attribute name=rdocumentati,on', type="xs : string,,/)

</xs: complexType>

(/xs: element)

The parameter element describes a

as a child of a pararneter-list element.

(xs : element name="parameterr,)

(xs: complexType>

0-'o

Fig. A.7: Schema element pararneter_I,ist.

(xs : attribute name=r'id', type=',xs : fD" use=,,required,,/)

(xs : attribute name=r'vafue,, use=,rrequired,,)

<xs: simpleÏype>

(xs : restriction base="xs : string',)

<xs : enumeration value="int "/)

<xs : enulneration vaLue=,,doubf e,,/)

<xs : enuneration value="String"/)

<xs : enumeration value="void"/)

</xs: restriction>

naüre type pair like (int, arg) and is contained only

128

<,/xs: simpleType>

</xs: attribute>

<xs : attribute name="name " type=',xs : string', use="required',/)

(xs : attribute name=r'documentation" type=',xs : string,,/)

<,/xs: conplexType>

(/xs: element)

A QoS-guarantee describes a searchable constant which provides information about

either service-messages, or required-services.

(xs : element name= "qos-guarantee ")

(xs: complexType>

(xs :attribute name="id,, type=,'xs : fD" use=',required',/>

(xs : attribute natle=rrvafue" type=',xs : string', use="requi red,' /)

(xs :attribute name="name" type="xs : string', use=,,required"/>

(xs :attribute name="docuroentation', type=',xs : string,'/)

<,/xs: conplexType>

</xs: element)

Fig. A.B: Schema element pararneter.

Fig. 4.9: Schema element qos-guarantee.

qos-guâraritee

t29

Required resources are similar

about a service message. In this

resources that may be required by

(xs : element name="required-resource,')

(xs : complexType>

<xs :attribute naae="id" type="xs :ID" use=',required',/)

(xs : attribute name=rrvalue " type="xs : string', use=,,required,,/>

(xs : attribute name=r,name,, type=,,xs : string', l¡se="required.,, /)
<xs : attribute name=,,documentation', type=',xs : string,,/)

(/xs: complexType>

(,/xs: element)

to QoS-guarantees, in that they describe information

case though, they specifically describe any additional

a service message.

Service-messages can have external requirements as well, and those can take the form

of other services that are required to provide a service for another service. The required-

service element describe such dependencies.

(xs : element D.ame="required-service")

(xs: complexType>

<xs : sequeDce>

Fig. A.10: Schema element requ,ired,-resource.

required-reeoutce

(xs : element ref ="parameter-1ist "/)

(XS : e1e¡nent fef-"qOS-guarânteet' maxoCcUrS=t'UnbOulded,,/)

<,/xs: sequence)

i30

<xs :attribute name="id,' type="xs :ID,' use=',required"/)

(xs : attribute name='rdocumentatioDÍ type=r'xs : string',/)

<xs : attribute na_me=,'location,' use='rrequired,')

<xs: sinpleType>

(xs : restriction base="xs : string',)

<xs : enumeration value=" 1oca1', /)

(xs : enumeration value=',remotet, /)

(/xs: restriction)

<,/xs: simpleType>

</xs: attribute>

<xs :attribute name="imrediacy" use="required.',>

<xs: simpleType>

(xs : restriction base="xs : string")

<xs : enumeration val_ue=,,immediate,'/)

<xs : enumeration value="optiona1,' /)

(/xs: restriction>

<,/xs: simpleType>

</xs: attribute)

<xs : attr j-bute nar.e=rrname " type="xs : string" use= "requ ir ed.', /)

</xs: complexType)

(/xs: element)

Fis. A.lf : Schema element requ'¿T-ed-sera,ice.

131

There are many technical aspects of Jini, most important to our research is the search

and selection process of the Jini lookup service Reggi,e. Reggie, exists on the network -
either a LAN or the internet, as itself a service, which provides the capability for users

(whether they are human or other services) to lookup and acquire services. The following

four figures outline the basic process of getting the lookup service and then getting a desired

service' simply, this process involves the user requesting a service locator -Figures 8.1(a)

and B'1(b), using the locator to find the desired service -Figure 8.2(a) and acquiring the

service -Figure 8.2(b).

B. NOTES ON JINI

The services that are provided for the lookup service is handled in an almost identical

way' except that service providers provide their services to the lookup service, instead

of acquiring services for use. An important point here is that there is nothing stopping a

l¡akup Serviôe

(a) Asking fo¡ a locator.

Fig.8.1:

(b) Getting a locator.

Searching for a service.

Lockup Service

service provider from being a user as well. The basic

first the provider asks for a locator and then uses the

available on the lookup service.

Lookup Sellce

(a) Found desi¡ed service.

Fig. 8.2: Finding and

Another provision is the use of proxy servers. using the lookup service in this manner

closely resembles how clients and service providers interact with the UDDI in web services.

Figure B'3 outlines this interaction- First the user and the lookup service communicate,

and so do the provider and the lookup service. once the service request and provider have

been satisfied, the user is then directed to the service location, at which point the user

proxy interacts directly with the desired service.

(b) Acquire the desired se¡vice.

acquiring services.

Lockup Service

idea is the same for providing services;

locator to make the provider's service

1tÐIJJ

Þtr

€ol^JËs dnÏoo"l

[1] G.D. Abowd, R. Allen, and D. Garlan.

of Software Architecture. ACM Trans.

[2] J- Aldrich, c. chambers, and D. Notkin. ArchJava: connecting software Architecture

to Implementation. In Proceedi,ngs of the Llth International Conference on Softuare

Eng'ineerinq, pages tBT_IgT, May 2002.

[3] R A]len and D. Garlan. Formalizing Architectural Connection. In proceedings of the

16th [nternationaL Conference on Software Engzneering? pages 71-80, Sorrento, Italy,

May 1994.

[4] R' Anzbock, S. Dustdar, and H. Gall. Software Configuration, Distribution, and

Deployment of Web Services. In Proceed,ings of the llth internat'ional conference on

Software engineering and knouled,ge engineerinq, pages 649-656, Ischia, Italy,2002.

[5] K-Ballinger. -NET Web Seraices: Arch'itecture and, Implementation. Addison Wesley,

Menlo Park, CA, 2003.

BIBLIOGRAPHY

Formalizing Style to Understand Descriptions

Softw. Eng. Methodol., 4(4):319-364, 199b.

[6] L. Bass, P. Clements, and R.

Series in Sofbware Engineering.

Kazman. Software Architecture in practice. The SEI

Addison-Wesley Reading, MA, 2nd edition ,2002.

[7] G Booch, J- Rurnbaugh, and I. Jacobson- The (Jnifi,ed Mod,euing Language (Jser

Gu,id,e. Addison-Wesley, Boston, MA, 2003.

[8] H Cervantes and R.s. Hall. A Framework for Constructing Adaptive component-

Based Applications: Concepts and Experiences. In Proceed,ings 4th InteTnational

Sgmposi'um on Cornponent-Based, Software Eng,ineering) pages 130-182, Edinburgh,

UK, May 2004.

[9] H Cervantes and R.S. Hall. Autonomous

ing a Service-Oriented Component Model.

Conference on Software Engineeri,nq, pâges

[10] C' chaudet, R.M. Greenwood, F. oquendo, and B.c. warboys. Architecture-driven

Software Engineering: Specifying, Generating, and Evolving Component-based Soft-

ware systems. In IEE software proceed'ings, pages 20J-2r4,2000.

[11] F- chen, Q. wang, H. Mei, and F. yang. An Architecture-based Approach for

Component-oriented Development. rn Proceed,ings of the 26th Annual International

computer software and, Appricat'ions conference, pages 4s0_-455, 2002.

Adaptation to Dynamic Availability Us_

In Proceed'ings of the Z6th Internati.onal

614-623, Edinburgh, UK, May 2004.

[12] P' Clements' A Survey of Architecture Description Languages . rn proceed,ings of

the gth Intemat'ional Workshop on Software Speci.fication and, Des,ign, pages 16-25,

Paderborn, Germany, March 1g96.

[i3] D' Garlan, R' Monroe, and D. Wile. ACME: an Architecture Description Interchange

i36

Language- In Proceedings of the 1997 conference of the Centre for Ad,uanced, Stud,,ies

on collaborati,ue R.esearch, pages T-2r,Toronto oN, canada, November 1g97.

[14] M' Gorlick and R. R¿zouk- Using Weaves for Software Construction and Analysis. In

Proceed'ings of the 13th'intemational conference on Softuare engi,neering, pages 2s_J4,

1991.

[15] K- Gottschalk, S. Graham, H. Kreger, and J. Snell. Introduction to Web Services

Architecture. IBM Systems Journal, aIe):ITT-ITT, 2002.

[16] C. Hofmeister, R.L- Nord, and D. Soni. Describing Software Architecture with UML.

In Proceedi,ngs of the First Working IFIP Conference on Software Architecture, pages

1-10, 1ggg.

[17] R'C' Holt. Software Architecture Abstraction and Aggregation as Algebraic Manipl-

lations- In Proceed'ings of the 1999 conference of the Centre for Aduanced, Stud,ies on

Collaborat'iue researcñ., pages 5-9, 1ggg.

[18] IBN{. The Bclipse project. http:l/www.Eclipse.or g, 2004.

[19] IBM. The Graphical Editor Framework Project. http:/ lwww.eciipse.o rglgef/, 2004.

[20] Institute for Software Research. Archstudi o. http:/ /www.isr.uci.edu/projects/archstudio,

2004.

[21] Institute of Software Research.

http : f f www. isr. uci. edu/architec tur e / adl I ACN. html.

137

ISR Software Architecture Research.

[22] Institute of Software Research.

http: / f www.isr.uci.edu/architec ture/adl/ ADN.html.

[23] R. Khare, M- Guntersdorfer, p. oreizy, N. Medvidovic, and R.N. Tayror. xADL:

Enabling Architecture.centric Tool Integration with XML . rn proceed,i,ngs of the slth
Annual Hawaü Internati,onal conference on system sciences,page 9, January 200r.

[24] J Kramer and J. Magee. Distributed software Architectures.

19th Interr¿ational Conference on Software Eng,ineering, pages

usA, 1997.

ISR Software Architecture Research.

[25] D' Luckham' The Power of Euents: An Introd,uction to complex Euent process,ing in
Di'stributed Enterprise systems- Addison-wesley, Bosto n, MA,2002.

[26] D'c- Luckham, J.J Kenney, L.M. Augustin, J. Vera, D. Bryan, and w. Mann. spec_

ification and Analysis of System Architecture Using Rapide. IEEE Transactions on

S oftw are Engineering, 21 (4) :JJ6--3b4, April 1 9g5.

[27] D'c' Luckham and J' Vera. An Event-based Architecture Definition Lang uage. IEEE
Trans actions on s oftw are Eng'ineering, 2r(g) :7 17 -7 Sl,September 1 gg5.

[28] J' Magee and J' Kramer' Dynamic structure in software Architectures. In proceedings

of the 4th ACM SIGSOFT Symposium on Found,ations of software Eng,ineering.,pages

3-14, San Francisco, California, USA, 1996.

In Proceedings of the

633-634, Boston MA,

[29] N' Medvidovic' on the Role of Middleware in Architecture-based software Develop-

138

ment. In Proceedi.ngs of the l/¡th

and l{nowledge Eng'ineering, pâges

[30] N. Medvidovic, D.s. Rosenblum, and R.N. Taylor. A Language

for Architecture-based software Development and Evolution. In

2lst International conference on software Engineer,ing ICSEIggg,

Angeles California, USA, 1ggg.

[31] N Medvidovic and R.N. Taylor. Separating Fact Fþom Fiction in Software Architec-

ture' In Proceedings of the ?rd, international workshop on Software architecture, pages

i05-108, 1998.

Intemati,onal Conference on Software Engineeri,ng

299-306, Ischia, Italy, July 2002.

[32] N- Medvidovic and R.N. Taylor. A classification and comparison

software Architecture Description Langu ages. IEEE Transactions on

neering, 26(I) :T 0-93, January 2000.

[33] N'K' Mukhi, R. Konuru, and F. Curbera. Cooperative Middleware Specialization for

Service Oriented Architectures. In Proceedings of the lhth international Wortd. Wi,de

web conference on Alternate track papers ü posters, pages 206-215,2004.

[34] E' Newcomer and G. Lomow. Und,erstanding SOA with Web Seruices.Addison Wesley,

Boston, MA, USA, 2004.

and Environment

Proceed,ings of the

pages 44-53, Los

[35] J. Newmarch. Jan Newmarch,s Guide to Jini

http : I / p andonia. canberra. edu. au / iava I iini /tutorial/ Jini.xml, 2004.

Framework for

Software Engi-

139

Technologies.

[36] S' oaks and H' Wong- Jini in a Nutshell: A Quick Reference. o,Reilly, Sebastopal,

cA, 2000.

[37] oMG' common object Request Broker Architecture: Core Services, Revision 3.0.

oMG Document no. g1.12.1, object Management Group, Decemb er 2002.

[38] F' oquendo- Formally Refining software Architectures with r-ARL: A Case Study.

ACM SIGS)FT software Engineering Notes, zg(5), September 2004.

[39] F' Oquendo' zr-ADL: An Architecture Description Language based on the Higher-

order Typed z-Calculus for Specifying Dynamic and Mobile Software Architectures.

ACM SIGSOFT Software Eng,ineering Notes,2g(4), May 2004.

[40] F' oquendo' zr-ARL: An Architecture Refinement Language for Formally Modeling the

Stepwise Refinement of Software Architectures. ACM SIGSOFT Software Engineering

Notes, 29(b), September 2004.

[41] P' oreizv, M. Gorrick, R.N Taylor, D. Heimbigner, G. Johnson, N. Medvidovic,

A'Quilici, D' Rosenblum, and A. Wolf. An Architecture Approach to Self-adaptive

Software' IEEE Intelligent Systems and, Their Appli,cati,ons, r4(Z):54-6z,May 19g9.

[42) P' Oreizy, N' Medvidovic, and R.N Taylor. Architecture-based Runtime Software Evo-

lution' rn Proceedings of the 20th Intemational conference on software Eng,ineeri,ng

(ICSE7S), pages ITT-186, Kyoto, Japan, April 19gg.

osci Alliance. open services Gateway Initiative . http://w,ww.osgi.org/,2005.

140

l43l

[44] Ma#243;nica Pinto, Lidia Fuentes, and Jose Markff2z7;a Troya. DAOP-ADL: An

Architecture Description Language for Dynamic Component and Aspect-based Devel-

opment. In Proceed'ings of the 2nd, i,nternat'ional conference on Generatiue programming

and component enginee,ing, pages 118-137, Erfurt, Germany, 2003.

[45] J.E. Robbins, N. Medvidovic, D.F. Redmiles, and D.S. Rosenblum. Integrating Archi-

tecture Description Languages with a Standard Design Method. In proceed,ings of the

20th Internat'ional Conference on Software Engineerinq, pages 209-218, 1ggg.

[46] B. Schmerl and D. Garlan. AcmeStudio: Supporting Style-centered Architecture De-

veloprnent. In Proceedings of tÌte 26th Internat'ional Conference on Software Engineer-

'ing, pages 704-705, 2004.

[47] M- Shaw and D- Garlan. Software Architecture: Perspectiues on 0,n Emerg,ing Disci-

pL'ine. Prentice Hall, Upper Saddle River NJ, 1996.

[a8] Sun Microsystems, Inc. Jini Network Technology. http://www.sun.com/softw aref iini,

2004.

[49] C. Szyperski. Component Software:

Wesley Professional, Reading, MA,

[50] S. Varadarajan.

nat'ional Parallel

[51] V.Misic, D lbrahim, and M. Rennie. Towards Community-Based Web Service Discov-

The weaves Runtime Framework. In proceedings of the jgth Inter-

and Distributed Processing symposium, pages lgl_z}s, April 2004.

Beyond Object-Oriented Programmeng. Addison-

2nd editÍon,2003.

t4t

erv and selection- rn Proceedings of the web seru,ices workshop MWSw¡s, page 1,

2004.

[52]

[53]

W3C. Simple Object Access Protocol (SOAP) 1.2. online documentation, W3C ,2004.

world wide web consortium (wc3). xML pointer Language.

http: I I www.w3.org/TR/xptr, 2003.

[54] World Wide Web Consortium (WC3).

hftp: I / www.w3. org/XMl/Schem a, 200 4.

World Wide Web Consortium (WC3). XML

http: / f www.w3.org/TR I xpath2} l, 2005.

[55]

XML Schema.

Path Language.

t42

