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ABSTRACT

The service-based computing paradigm is rapidly gaining acceptance as a viable option
for the creation of modern software systems. To effectively design and implement service-
based systems, proper tool support is required. In this thesis we present our design and A
implementation of an architecture description language (ADL) which is tailored to the
specification of service-based systems. The design of our ADL involved the creation of a
formal language and the conversion of the language to an XML schema, which is further
used for validation of specifications. The implementation of our ADL provides simple code

generation for Jini for Java.
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1. INTRODUCTION

Consider the following scenario: A user has a document processing application and needs a
custom spelling checker. The traditional solution to this problem would be to buy another
application with the required functionality, or perhaps to develop it themselves if the avail-
able spelling checkers do not fit the requirements or budget (or both). More often than
not, installation requires shutting down the base application (sometimes even the entire
system) and restarting it afterwards; quite often, some manual interventions are needed
too. Either way, the user will have to invest money and effort, and receive in return an
application which might not be needed when the current job is done.

If the user is, in fact, a large company with hundreds or even thousands of employees and
high-volume site-wide licenses, this translates into large amounts of money and extended
time periods: not only to purchase the appropriate licenses, but also to install the newly
acquired application where it is needed, to educate and train the users, and to provide
support through extended periods of time. In summary, even a small addition to the
existing functionality requires considerable expenditures, and the functionality may not
be needed beyond a single project. Most likely, not all of the functionality of the basic

document processing application is needed either.




It should come as no surprise, then, that a noticeable shift in user attitudes has appeared
in recent years. Instead of purchasing a product to use only a part of its functionality for
a limited period of time, and then leaving it on the shelf until it is needed next time, users
are beginning to view software as a service. A service that should be available when the
user needs it, but not longer than is needed; once the user is done with the service it does
not persist on their computer.

The scenario outlined above might, then, look like this: upon recognizing that a major -
part of functionality is needed, the user would notify the application about it. The user
might also specify some criteria regarding details of functionality, performance, security,
price, and other characteristics of the service that implements that functionality. The
listing of available services that fulfill the criteria specified would be presented to the user,
so that the most suitable one can be selected (based on the user’s preferences). The service
is then downloaded and used, or used as a remote service. Depending on the terms of the
license for the particular service, if downloaded, it may be deleted afterwards or remain
stored on the user’s computer. In the latter case, it may remain available for a specified
time period or for a specified number of uses.

In summary, the user could purchase only the base functionality of an application. When
extended functionality is needed, the components that provide that functionality can be
acquired, dynamically bound to the base application, used as appropriate, and disposed of.
More companies are moving towards a service-based approach to development and use of

software products, as such an approach, commonly referred to as service-based computing,
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can be shown to result in many benefits, technical as well as economical.

e Economy-wise, the user gets only the functionality they want, not a pre-packaged
collection of functions that are used only rarely or never at all. Applications can be
smaller and consume less resources. The impact in terms of performance is obvious,

as are the economic benefits.

e The user is free to choose the service that best fits their needs. What’s more, services
from different vendors can be mixed and matched to build applications that can be

customized as needed.

e In addition to that, the user can always have access to the latest version of the
required functionality, rather than being bound to obsolete versions that are slowly

becoming incompatible with everything else.

e The focus of development techniques shifts from large, monolithic applications with
ever-changing requirements that are plagued by bugs for years, towards smaller com-
ponents with a well defined scope that may be developed within a shorter time span

and to strict quality requirements.

e Maintenance activities, for developers and support personnel alike, are simplified

considerably.

However, advances in several areas are needed before the service-based paradigm can
find widespread use. One such area is the design of service-based applications. Note that

we are not referring to the design of individual components that provide services which do
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not differ much from the design of similar units — classes, modules, packages, and the like
— in the traditional approach. The differences become critical at the system level, where
the service-based paradigm should be adhered to in the design right from the start, rather
than applied later as an afterthought. In particular, the modeling formalisms must take
dynamic reconfiguration into account (a system must be reconfigurable at runtime); so far,
we have been successful only when designing systems with static architectures.

An important step in that direction is the development of architecture description lan-
guages (ADL) specifically designed to support the service-based approach. The availability
of suitable ADLs will not only enable designers to specify the architecture of service-based
applications in sufficient detail, but also to evaluate the design alternatives and validate
them against the requirements, thus providing a firm foundation upon which service-based
applications can be developed and implemented.

The shift to the service-based paradigm requires new and improved tools for the suffi-
cient treatment of the software life cycle for this paradigm. Considering this shift and the
focus on dynamic system reconfiguration, we now need software tools which can be used
to create, validate, maintain and evolve systems of this type. The object of this thesis is
how to describe software architectures that may be used to develop service-based, dynam-
ically reconfigurable software systems. To solve this problem we have created an ADL and
accompanying tool support that allows us to create, specify and validate architectures for
the service-based paradigm. Our ADL includes a core set of requirements for such systems,

and also provides a view and creates a style for service-based systems.
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This thesis is organized as follows. Chapter 2 examines existing ADLs, with specific
focus on those that support dynamism, followed by a brief discussion of infrastructure and
tool support. Chapter 3 provides an in depth discussion of service-based computing, con-
trasted with traditional component-based systems, and some issues that require attention.
Chapter 4 describes the language we created for our ADL, with both the structural and
conceptual aspects of our language examined. Chapter 5 provides a comprehensive exami-
nation of the implementation of our ADL. Chapter 6 outlines a test case and uses our ADL
to construct the specification for the test case. Lastly, in the accompanying appendix, we

provide the complete XML schema for our language as well as technical notes on Jini [48].
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2. RELATED WORK

Over the years there have been many advances in the field of software engineering. Such
advances include the study of software architectures (SA) coupled with architecture descrip-
tion languages (ADL), providing a mechanism for describing software systems. The use of
both SA and ADLs has gained popularity in the description of static systems, but, for the
most part, still lacks the ability to describe systems that are dynamically reconfigurable,
specifically those of the service-based paradigm. Such systems require specification meth-
ods that allows for descriptions of highly dynamic (both constrained and unconstrained)
systems, that may be accessed remotely or locally. while quite a few ADLs have been cre-
ated, and progress has been made in the areas of software architecture and service-based
computing, we still lack an appropriate design time tool to facilitate the description of sys-
tems tailored to the service-based paradigm. The use of SA tightly coupled with an ADL
tailored for the SBC paradigm would aid in the creation of a formal design, validation of
the design and (possibly) code generation to execute the design.

Service-based computing (SBC), as mentioned above, changes how users view applica-
tions. Instead of purchasing large monolithic programs, that include functionality likely

to rarely be used (if at all), users could instead purchase only the base functionality of an




application; when extended functionality is needed, the components that provide that func-
tionality can be acquired, dynamically bound to the base application, used as appropriate,
and disposed of. This approach to computing can be shown to result in many benefits,
technical as well as economical.

"This chapter is arranged as follows: In Section 2.1, we discuss the service-based comput-
ing paradigm, its requirements, what it is, and how it differs from traditional paradigms.
Section 2.2 examines software architecture, its processes, what it is, and how it relates to
traditional design paradigms. Section 2.3, we review existing ADLs, with focus on how
they address any of the requirements of the service-based paradigm and dynamic system
reconfiguration. Finally in Sections 2.4 and 2.5, we discuss infrastructure and tool support
for ADLs to achieve dynamic system reconfiguration, and address the requirements of the

service-based computing paradigm.

2.1 Service-based Computing

Chances are good that you have been exposed to, or utilized some form of service-based
computing and not even known it, like the Linux kernel, or Microsoft Office. The premise
of the SBC paradigm, is that any computational service you require is (possibly) available
when you require it. More specifically, the SBC paradigm is an approach where computa-
tional services required by the user are acquired and used only on demand. Services, in this
instance, can be remotely utilized, much like web services [4, 5] or as a service downloaded

and installed on your computer. While having the ability to use services on demand is
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idyllic, there are associated drawbacks to the SBC paradigm, like the lack of appropriate
security. Both the advantages and the disadvantages of this paradigm are examined in the
remainder of this section.

Giving users, whether they are individuals or companies, the ability to utilize a host
of different services based on personal criteria, and possibly from alternative vendors, is
a giant leap forward from the traditional computing paradigm. Let us now examine the
benefits of the SBC paradigm.

Dynamic system reconfiguration. Imagine having complete control over the parts
or behavior of any program on your computer; such that you could updaté, change or
completely reconfigure it to do whatever you wanted, whenever you wanted. Currently
though, this level of unconstrained dynamism requires the aid of some form of infrastructure
or internal framework [21, 50]. While system reconfiguration can take place at the users
behest, it can also happen simply as a service has been updated by the vendor. Since
services are typically only loaded on demand, if a newer version of a service has been created
by a vendor, then that newer version would be loaded when the service is requested.

Service selection. Whose to say that every service must come from one vendor? In
the SBC paradigm services can come from a multitude of service hosts and or vendors.
There could be hundreds of services that all do the same thing, but that provide their
service in a different way, or with other additional features, etc. Now, dependence upon
individual service vendors has been removed; if you don’t like the service you are using,

you can update it or switch to another service that offers the same, or better, service.
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Increased performance.b Since software systems would now be created from a simple
core program with separate services providing all other functionality, the performance of a
software system could be improved. An example improvemeﬁt cQuld be defined as; (1) a
decrease in the amount of memory required for the program, (2) a decrease in the amount
of processing power ﬁeeded, (3) a decrease in the amount of storage space required for the
program and services, and (4) any cbmbination of the previous three points. If a user wants
a computationally fast service that uses very little memory, then that is what they get,
provided such a service is available.

Service reusability. The development of new systems, or even the maintenance of
old systems, can be intensive. Consider now that systems were composed of many services,
each working together to make up one system. To update or maintain such as system
would typically only require the redesign and implementation change, or refactoring of one
service, and not the system as a whole. Also, consider the development of a new system in
which the reuse of old, or (possibly) services from alternate vendors could decrease the time
and effort for development of the entire system. The idea of extensive reusability is not a
new idea, and has been utilized in many other paradigms, such as the component-based
paradigm [11, 49].

So far, the SBC paradigm appears very attractive for use and design. There are cur-
rently design practices being developed to include the SBC paradigm, most notably, creat-
ing service-oriented architectures (SOA) [34], and utilizing dynamic architecture description

languages (28] to formally design these systems. Like other paradigms, SBC has its share
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of d}“awbacks, which hinder its use in large mission-critical applications in industry. The
~ identification and resolution of these drawbacks, is what guides current research and de-
velopment of the SBC paradigm. In the following we examine some of the drawbacks to
SBC.

Interoperability. Consider a simple scenario; we have four companies independently
making services that might be used by others. There is no inter-company communication
on exactly what each service does or requires. Each service should be able to communicate
with a variety of clients, not specifically those used by the developing company. Although
there is no mandate forcing services to listen or respond to clients’ requests, the utilization
of a service could be severely decreased if it cannot communicate with many clients. Web
services, an approach within SBC, have made strides to all but eliminate this problem,
with the use of XML-compliant messages transported over standard TCP family protocols,
know as the Simple Object Access Protocol (SOAP) [52].

Security. With such a large variety of services available, from so many different ven-
dors, how do you know which service provider to trust? How can you as the user be assured
that the service you select will actually perform only what the provider claims? Security
issues like the aforementioned, severely hinder the wide spread use of SBC. In an age of
hackers, trojans, and the like, users need to be reassured that what they are getting is
what they want and is safe to use. Since the SBC paradigm requires the decoupling of
services from where they are run (either remotely or locally), there must be some form

of framework, which can help securely and reliably marshal the deployment of services.
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Currently though, there is no such framework, and it is this lack of security that leaves
service vendors free to create services that do anything the vendor desires, not necessarily
legally or trustworthy.

Quality of Service. Closely tied in with security is the problem of quality of service
(QoS). QoS is typically defined as the guaranteed minimum level of performance (provide
what they advertise). Consider an example: you download a virus scanner that has & QoS
indicating it will complete a system scan in no more than 10 minutes; with 10 minutes
being the minimum length of time taken by your virus scanning service, any more and the
QoS is meaningless, any less and that is a bonus.

"o ensure QoS is as promised it can be gauged based on feedback obtained from clients
of services [51], making the use and evaluation of services a community effort (similar to
E-Bay and the like). The use of the experiences of other service users to either confirm of
refute the QoS claims of a provider, would greatly increase the overall reliability and trust
in the QoS statements of services. Other than the evaluation of services; QoS can also be
introduced into the selection process of services. With QoS a user can request a listing of
services, and apply additional constraints in the form of QoS requirements to refine their
search and selection. A framework like this in which the user has absolute control over the
service selection process is desired, but unwieldy. How would a selection mechanism like
this be deployed over both multiple platforms and networks?

Flexible pricing schemes. With the ability to use all of these different services from

different vendors at different times, there must be a method to pay for these services.
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Traditionally, you would pay for volume licensing of monolithic software systems, which
can be very expensive, now however, only fees for services actually used would be incurred.
Pricing by service used, benefits companies, but in the same token benefits individual users,
as they now only pay for what they want.

Tool and Development Support. The SBC paradigm will likely not be adopted as
a design or development process until there is sufficient tool and developmental support.
Until now we have been speaking strictly in terms of using services, but to be able to use
services they first must be designed and created. Without supporting tools both the design
and development of services is extremely difficult. A perfect example is the adoption of the
object oriented paradigm; until there were languages (like Java) and other developmental
tools available, it also did not find widespread acceptance.

Most developers are hesitant at best to adopt, or even try an immature design paradigm,
unless there have been many tools, and other systems successfully created for it. This is
an unfortunate circumstance, as it seems most developers wait for more mature releases
or standardization before adoption of new paradigms. This ”waiting for a better version”
attitude taken by most developers is just as much a hindrance to the development of new
paradigms as the problems of the paradigms themselves. If developers could, as a commu-
nity, dedicate some effort to resolving problems of new design paradigms, there would be
more frequent developments (a steady maturation process), and subsequent developmental
tools will follow; i.e. the Eclipse Project [18].

Many of the issues of SBC, such as interoperability, platform independence, QoS and
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security are tightly coupled with the client-service communicatibn infrastructure. There
have been considerable attempts made to combat these problems such as the development
of Jini for Java [48] (as we will see in Section 2.4.1).

The aforementioned issues comprise the disadvantages of the SBC paradigm. More

specifically though some of the disadvantages include the following.

¢ Dynamic system reconfiguration requires that there be some form of either infrastruc-
ture or framework available, which can work in a platform independent manner to
marshal services to and from clients. Without such a system, dynamic reconfiguration

utilizing remote service providers would be impossible.

e Interoperability is perhaps the largest of the disadvantages. Since services are made
available to users, regardless of the platform they are using we require a mechanism to
provide services in a platform independent manner. This problem is tightly coupled
with the first one, in that it would likely be the associated infrastructure that would
have to handle such interoperability issues. This problem could also be dealt with if
there was an existing infrastructure which was external to a framework; for example

a service providing framework that used the Java Runtime Environment (JRE).

e Security. In the age of hacking and exploitable security vulnerabilities, there must
be a system in place to securely and safely provide services to users. Currently there
is no such security system, and as such services can be provided by anyone for any

purpose.
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e Quality of Service, or does the service provide what it claims it does. This problem
can be tied to security, in that we would require a systems for gauging if services do

provide what they advertise.

We have now seen what the SBC has to offer, and what some of its drawbacks are
Table 2.1, summarizes what we have, what we need and the associated problems to address
what we need.

With a clearer idea of what we have and what we need for the SBC paradigm, let us

now examine software architecture in Section 2.2.

2.2 Software Architecture

Software architecture (SA) according to Shaw and Garlan [47] is the description of system
elements, the interactions of those elements, and patterns that guide arrangement and
interaction of elements. Simply; SA is used to describe a system from a high up abstract
view looking down. It is not concerned with the fine compositional details of classes,
aggregation, polymorphism and the like, but instead, focuses on the decomposition of
a software system into logical processing entities, their interactions [6] and their overall
arrangement. This process can dramatically simplify any complex system [17], allowing for
an easily understandable description of the system as a whole represented as a 'box and
line’ diagram [31] with notes describing system specifics.

To represent the architecture of any system is a simple process, with four main concepts;

(1) components, represented as a ’boxes’, (2) connections between components, represented
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Requirements

What we have now

Problems

Dynamic system
reconfiguration

DLL libraries, frameworks
like the Java Runtime
Environment (JRE)

Programs either interpreted
or use frameworks to marshal
dynamic interaction.

Service variation

Program plugins and web

services

Plugins are specifically targeted.
Web services are remote with

no acquisition available.

Service

reusability

Object oriented
programming languages

Proper implementation.

Increased

performance

Good programming
practices and proper
design

Design and implementation
pose challenges to the
inter-relation of services.
Any frameworks, etc. in
use to facilitate service

interaction could be an impedance.

Interoperability

XML and XML-using
protocols like SOAP

With many services from many
vendors across many platforms,
how can services be effectively used?

Security Secure SOAP, How can services be secured?
digital signatures, Can we extend existing security
trust authorities. mechanism, or do we need entirely

new ones?

QoS Not applicable How can we ensure services provide

what they advertise?

Tool/development | Not applicable Tool and development support

support is necessary for SBC adoption.

Tab. 2.1: SBC requirements, current systems and their associated problems.
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as ’lines’, (3) styles, or predefined arrangements that the architecture will follow (e.g. pipe
and filter), and (4) a topology, or the overall arrangement of the architecture.

Architectural representations make it is easy to understand and deseribe component-
based systems, where a simple mapping of actual system components to components repre-
sented in the architecture yields an architectural representation {10, 11]. The use of SA in
component-based design is of course noﬁ its only intended use and it can be applied to the
description of any system. SA is typically used when we describe systems in a top-down
fashion, and initially consists of alot of prose and diagrams [47], but can also be used to
represent an existing system. The simplicity of describing a system from an architectural
perspective makes it appealing to many developers, juxt-opposed to this view are devel-
opers who feel that it is not descriptive enough to capture useful system information, like
using UML [7] during the design phase to capture system information.

There are however, more formal aspects of architectural design which can be applied to

constrain an architecture and allow for a more detailed description:

1. Styles. Any style can be applied to an architecture, and typically are used to constrain
the types of interactions that are allowed within the system [1]. Pipe and Filter, for
example, is a style of architecture that is prevalent in Unix-based systems. In this
case, each component of the architecture would have an input and output, only an
input, or only an output. Styles can be applied to an architecture, and an architecture
could have many styles, even hybrids of other styles. In essence a style is a more formal

way of describing how a component communicates with, and is oriented with respect
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to, other components in the architecture.

. Formalizing Connections. Interconnections between components aid in describing the
behavior of components by focusing on what it takes as input and what it returns
as output [3]. Moreover, behavior of components can be described through their in-
teractions and connections. The main idea is to represent connections with a type
of formal logic while treating components as black boxes, and through this process,
realizve how the éomponents involved in these connections behave externally. For-
malizing connections also allows developers to apply more stringent constraints on
connections, which then behave as input or output constraints on the components

involved in the connection.

. Architecture Description Languages. Architecture description languages (ADL) are
specialized languages used to formally describe system architectures. ADLs are based
on formal languages that constrain the arrangement of an architecture (aspects of
components, connections, style, topology, etc), via the definition of the language
itself. For example, if we have a language that states all connections can only have
two components participating, then we would not be able to represent, for example,

two clients sharing the same connection to one server.

There are many different ADLs, each focusing on a different area of system design.
What they all share is a mechanism for formally capturing and specifying design
semantics of a system architecture. More detail is provided in the following section

on ADLs, Section 2.3.
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When describing the architecture of a system, an architecﬁure can represent a compo-
nent of another architecture and so on, recursively applying architectures to other archi-
tectural components, to achieve a finer description of the system and its components. For
example, Figure 2.1 shows that an individual component of a system can be decomposed
yielding a corresponding architecture with its own components, connections and connection

constraints, just as its parent one.

4 " Client N\
Interface ::‘ :g?:gi
Client e Data Engine
{(a) Simple client-server architecture. {b) Decomposed Client component.:

Fig. 2.1: Simple architecture and component decomposition.

This approach to modeling systems is not new by any means, and is simple to both
understand and interpret at a glance. Simply, to further describe any component within an
architecture, break it down into its own architectural description. Of course the description
of architectures and their components is more complicated than simply drawing boxes and
lines, causing some researchers to examine the feasibility of using existing design tools to
effectively describe architectures [16, 45].

In Section 2.3, we examine existing ADLs that explicitly address system dynamism and

what (if any) aspects of these ADLs could be considered as a starting point for my ADL.
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2.3 Architecture Description Languages

Architecture-based design are increasingly recognized as a major phase in the design of large
software systems [6, 47]. As part of this effort, a number of ADLs have been proposed [12,
32| which provide a more formal approach to describing system architectures. While most
efforts have been focused on static architectures and related problems, some researchers
have also discussed the more interesting (and also more difficult) problems of dynamic
architecture specification and reconfiguration [25, 28, 30, 41]. Dynamism aside, the guiding
premise of ADLs in general is to provide a formal manner to describe the abstract structure
of a software system using components and their connections. While there are currently
many ADLs available, they lack consistency of how they describe systems. It would seem
that while each ADL follows simple requirements for any ADL, such as descriptions with
components and connectors, each ADL has a different focus, like dynamism or formal
representation of an architecture using a certain logic. An example of this is Weaves
[14, 50], which focuses on existing system artifact integration. For the scope of this thesis,
though, we need only consider the ADLs that have in some way addressed the issue of
system dynamism, and dynamic system reconfiguration.

Let us now discuss ADLs and features of those ADLs that support dynamic composition

and reconfiguration of components, services and systems.
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2.3.1 CZSADL

C25ADL [30] (referred to as C2 for brevity) is an ADL that fully supports dynamic un-
constrained system reconfiguration, in that, a system in C2 can grow and shrink, with-
out any prior knowledge of dynamic changes. In C2, both components and connectors
are considered first-class entities, with message passing through connectors used to link
components to one another, subject to certain restriétions. Furthermore, connectors may
perform optional filtering of messages from one component to another. Unlike other ADLs,
C2 supports many object oriented (OO) concepts for the creation of new components,
such as typing, sub-typing, generalization/specialization and type conformance. The in-
clusion of these OO concepts allows for a large variety of system configurations with typed
components, sub-components, parent components, etc.

Each component described in C2 has two inputs (incoming requests/notifications) and
two outputs (outgoing requests/notifications), which use the connections between compo-
nents to pass messages to one another. It is through this message passing mechanism that
C2 allows for dynamic system reconfiguration.

In the following example in Figure 2.2, we see a representation of an architecture de-
scription in C2. Architectures in C2 are connected to message buses (that are simply
connectors), which facilitate components communicating to one-another.

C2 allows dynamic binding (referred to as ‘welding’) of components to connectors, as
well as unbinding (unwelding). All possibilities for reconfiguring or rewiring of an architec-

ture are allowed:
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Fig. 2.2: Simple C2 architecture.

e a component can be unwelded from the architecture

it can be rewelded in a different place

it can be left unwelded and persist within the system

e or be removed from the system

Dynamic reconfiguration is accomplished using message passing between components,
Le., in the same way as the ordinary communication between them. This communication
takes place through the connections between the components and the resident infrastruc-
ture; the Architecture Construction Notation (ACN) [30, 21]. With the ACN and the asso-
ciated infrastructure, C2 provides an API interface to help marshal the welding/unwelding
process between components. With the use of the ACN, C2 also supports the upgrading
of existing components through sub-typing, modifying the subtype, adding the subtype to
the architecture, and then removing the original component from it.

Despite its advanced capabilities and the associated API, a number of issues have not
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been resolved in C2, mostly in relationship with unwelding. Some of the more prominent

problems associated with unwelding are:

e how to unweld components that are currently in use?

e what happens to a dependent component when their parent is removed?

The language constructs for C2, unlike some more formal languages, are fairly simplistic
and easily understandable. In the case of the C2 Architecture Description Notation (ADN)
and the ACN for communication, both are represented in the same manner, conformant to

Backus-Naur Form. The following examples show the description of a software architecture

in the C2 ADN [22] and the weld/unweld description in the ACN [21].

system ::=
system system_name 1s
architecture architecture_name with
component_instance_list

end system_name;

The above example of a description in C2 is very straightforward, with a system encap-
sulating an architecture, which in turn holds components of the system. The next example
demonstrates that even the description of a welding action is simple. The weld operator is
called with a pair of architectures to be operated on, which are termed the *welded pair’ in

C2 parlance.
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architecture_welding ::=
architecture_name.welding_operator

welding pair;

While the dynamism of C2 certainly fits well within the requirements of service-based
architectures, the need for an external facility such as.the ACN, shows that to achieve
full dynamism would require some form of middleware or framework to broker service
interactions. For our purposes, we consider middleware like that used in Web Services,
which has been expanded in [33] to facilitate brokering interactions between services. By
using middleware to act as broker for component interactions, we can further achieve system
dynamism, by removing the need for either one of the end hosts to explicitly handle any

processing related to system reconfiguration.

2.3.2 DAOP-ADL

DAOP-ADL [44] is an XML based ADL, that is oriented towards aspect- and component-
based architecture descriptions. An architecture described in the Dynamic Aspect-Oriented
Platform (DAOP) has three main elements; (1) components, (2) aspects and, (3) plug
compatibility rules between (1) and (2).

DAOP-ADL was designed specifically to be used in the DAQP platform, as such, an
architecture created using this ADL can be loaded into DAOP to determine dynamic con-
nections.

In DAOP-ADL, aspects and components are defined separately with the use a public
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interfaces. Each element described has at least two public interfaces; a provided interface,
which describes what the output of the component is and a required interface, which
describes what kind of input the component can receive.

Unlike the v‘description of components, aspects do not have a provided interface, instead
they have an evaluated interface. The evaluated interface describes which messages of
the component the aspect is part of can b¢ evaluated. The required interface for aspects
describes any output messages and can also describe output events. Since aspects are
coupled with components, they can also c-apture the events thrown from components with
a target events interface, which describes which events can be captured.

There are three other main categories of information used for the description of com-

ponents and aspects other than interface definitions [44]:

e Implementation classes. These classes must implement the provided interface of can-

didate components to maintain interoperability

e Properties. Input and output properties are used to allow components and aspects
to communicate. Properties are in a jname, signature; format, allowing for simple
translation. Furthermore properties can have one of two accessibility options: (1)
usersite; only available to components/aspects of the same instance scope, and, (2)

serversite; available to all components/aspects of the same distributed application.

e Dependencies. Simply, this is a listing of names from the required interface.

Thus far, we have discussed the first two parts of DAOP-ADL: interfaces of components
and aspects. What we need now is to know how connections are handled. The ability of
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components and aspects to connect, is handled by describing composition rules, which use
elements from the component and aspect interfaces to determine communication suitability.
This is done for one express purpose; to allow dynamic system reconfiguration, without the
need to recompile altered interfaces. More specifically if composition rules were not used,
every time reconfiguration took place a new interface would be created and then compiled,
prior to the reconfiguration completing.

The dynamism of DAOP-ADL and the use of XML and XML schemas [54], are definitely
a step in the right direction. The use of XML especially allows for easy data interchange,
and removes. the need for a separate parser and compiler for their ADL, as any one of the

freely available XML parsers will handle this task.

2.3.3 Darwin

Darwin [28] supports components and connectors, using sub-classing to build more specific
components from generic ones. Each component is described in terms of services it provides
and services it requires. Darwin also allows composite components obtained from instances
of simpler ones. This design emulates the object oriented style of design, with the inclusion

of sub-classing and aggregation.

ACHant

r

Fig. 2.3: Simple Darwin architecture.

Individual services are specified using the m-calculus [38, 39, 40), while the configuration
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is specified by binding services requested by one component with services provided by
another one. A binding can occur only if the type, what is actually provided, by a service
matches the type, what is required, of the requesting service. Thus, the specification of the
structure is decoupled from the specification of individual components and their services,
as required by the principle of separation of concerns.

The client and server shown in Figure 2.3 could be described in 7-calculus as follows:
Client(r)™ = (Yo)(REQ(r,0) | Client'(0))

Server(p)® = (Vs)(PROV (p,s) | Server'(s))
System® = (Va,,b,)(Client(a,) | Server(b,) | BIND(a,,b,))

Instantiation and binding of services can occur either a priori (code statically added
before run time) or dynamically at run time. In the latter case, two options are available.
Lazy instantiation, is the process where a component 1s not instantiated until another
component wants to use its services. However, the types of participating components and
the binding(s) between them must be specified beforehand. In this manner, a system can
evolve at run time, but only in a predictable manner which is fixed at design time, also
known as constrained dynamism. However, Darwin constrains dynamism by not allowing
cycles in the system, in which components directly or indirectly reference themselves.

The premise of lazy instantiation is that there is a place holder for the lazily instanti-
ated component, but the component is not actually loaded until it’s services are required.

Figure 2.4 is an example of lazy instantiation. We can see in this example that Client is
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the resident component, and that Server is only (at this stage) a placeholder available to

Client. Once required, the services of Server will be loaded and become available to Client.

SrtYtIaveesevav,

AClant
r

................

Fig. 2.4: Lazy instantiation.

The other option, for system dynamism, is known as direct dynamic instantiation, which
allows arbitrary structures to evolve at run time. However, if the dynamically instantiated
components are to interact with each other directly, they must exchange the relevant in-
formation (i.e. service references) through a third party, which is not part of the language
per se. To support these types of dynamic architecture changes, an infrastructure is needed
to broker these changes and handle components and their interactions throughout those
changes.

The following example in Figure 2.5 shows two resident components, Client and Ser-
vice Provider. In this case, depending on the service that Client requires, a new type of
server might have to be instantiated to access the specific service provider. Simply, in the
aforementioned instance, a new Server can be created for any given Service Provider.

In either of the aforementioned cases, bindings are permanent and cannot be undone.
The goal of Darwin designers was to keep the notation declarative, and the introduction
of an unbind operator would violate that requirement [24]. In other words, architectures
specified in Darwin may grow (subject to certain restrictions), but they cannot shrink.
Furthermore, the communication between system elements is subject to restrictions, and
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Fig. 2.5: Direct dynamic instantiation.

the help of an external agent may be required to achieve the full potential of an architecture
specified in Darwin. Darwin integrates architecture dynamism very well, but, in terms
of service-based dynamism, Darwin lacks (1) an unbind operator and (2) unconstrained
dynamism, or the ability to dynamically change with no restrictions (such as the no cycle

constraint).

2.34 w-ADL

7-ADL [39] is an ADL specifically designed to describe dynamic and mobile architectures.
Unlike most ADLs m-ADL is focused more on formally describing architectures, and not so
much on the structural aspect.

Aside from formal descriptions, n-ADL is intended to capture the runtime aspect of
architectures. The description of any given architecture in this ADL is similar to many other
ADLs, in that it models components and connectors, with components containing ports

that define connections. More specifically (1) components are considered computational
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entities, which contain ports available for cor'nn'mnicatibn,“(Q) pofts are connection points
between other components and/or their environment, (3) connections provide a mechanism
for components to communicate with one another and, (4) connectors, which are special
components that marshal the connections between normal components.

Figure 2.6 is an example of a basic architecture description in 7-ADL. This example
follows the client server example used thus far, notice the special Connector component
required for connections between normal components. The Connector component is required

for any communication to take place between other normal components.

Connettar

Fig. 2.6: Simple m-ADL architecture.

Components are connected on matching ports utilizing a value passing [39] mechanism,
where all information passed between components and connectors are considered ’values’.
Once a connection is made a wide range of data can be passed through it, from component
- communication data to architectural specifications. Furthermore, this notion of compo-
nents and connectors is expanded to include composite creation of new elements from
other component/connector combinations. Simply, a component can be comprised of other
component /connector combinations, with the ports of the specialized component acting as
gateways to the internal components. In conjunction with compositionality, ports can also
be declared as restricted, limiting access to internal composite components. The premise
of compositionality, is not constrained to only component specifications, but in fact, whole
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architectures in 7-ADL can be composed of other architectures.

m-ADL is described as a layered system with the following layers [39]:

e The base layer, where behavior and connections are described. Since behaviors are
described by corresponding connections, and subject to type restrictions, this layer
allows the component connections of an architecture to be described as well as the

description of abstractions.

e The first order layer, which is a refinement of the base layer. Typing options, such

as data typing, are available here, and connection mobility is introduced.

e The Higher-ordered layer, where first class citizenship of elements is introduced, as

well as behavior mobility.

Although m-ADL is designed to describe both static and dynamic architectures, we
only need consider dynamic architectures and how they are represented within 7-ADL. To
describe a dynamic architecture, 7-ADL uses the concept of an abstraction (from the base
layer), which is used to describe any element within the ADL. An abstraction is analogous
to a class in Java, and can be instantiated (‘created’ in m-ADL parlance) at any time.
Once an abstraction has been created, it must be composed with a connection so that it
can communicate with the rest of the architecture.

The following is an example of the client abstraction shown in Figure 2.6

component Client is abstraction(x:Natural) {

port is (connection is OutPort is out(Natural))

40




behavior is {

Coupled with the formalism of 7-calculus and the ability to describe dynamic architec-
tures, m-ADL is an ideal starting point in the creation of our ADL. While 7-ADL supports
compositionality of both components and architectures, it lacks the ability to include non-
resident components and architectures. Non-resident components and architectures are
those which physically reside in an alternate architecture. This is powerful idea, which
gives us the ability to create new components or architectures from almost any existing

component or architecture.

2.3.5 Rapide

Rapide [27] is an event-based concurrent language used to define and simulate system
architectures. An architecture in Rapide is an executable specification, and the system
may contain several such architectures at different levels of abstraction. An architecture is
made up of a class of systems, which in turn are composed of interfaces, connections and
constraints. The interfaces are simply modules or components of the system, which describe
the operations made available by a module and what the module requires from other
modules. Furthermore, an interface can describe the abstract behavior of modules using

reactive rules [26], which define how the component will react to certain information being
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received. Connections are used to describe the interactions between interfaces. They have
the ability to describe either synchronous or asynchronous data communications between
interfaces. Finally, to ensure correctness, constraints are described as specific restrictions
placed on various aspects of connections and interfaces.

During the development of an architecture in Rapide, we have the ability to gradually
instantiate modules into the system; in other words, the system can evolve dynamically
at runtime. When a module is assigned to an interface in this manner, the interaction
mechanism of the interface becomes the constraint for the module. Rapide also allows us
to assign a reference architecture to an interface, rather than just modules. Architectures
can thus be embedded, which greatly expands the composability of architectures in Rapide.

To handle relationships between (reference) architectures, Rapide employs a system of
event pattern mappings [26] to describe the relationship. These mappings describe how
executions of an instance architecture are mapped to that of a reference architecture. Fur-
thermore, as Rapide architectures utilize the partially ordered event set (POSET) execution
model, module constraints can be checked as messages are passed between modules, and
before messages are sent from modules.

While the composability, architecture execution and the dynamic loading of modules in
any order exemplify service-based concepts, the requirement of interfaces a priori for any

given module detracts from its overall suitability in the service-based computing paradigm.
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2.3.6 Weaves

Weaves [14, 50], while not specifically an ADL, is a framework that allows for dynamic
system evolution at run time. Weaves accomplishes this task by taking source code (of
any kind) and wrapping it into intra-process modules. It then uses these modules to weave
together applications or ‘tapestries’ from dynamically executing code. In this manner, any
legacy or future code can be used to dynamically create applications.

The actual structural components of the framework are simple, and are broken down

into five categories [50]:

1. Modules, which are the object code file(s). Each module also has (1) a data context,
which is the state of the module within the scope of the other object files in the
module. (2) a code context, or the code in the files. Each context can also have

multiple entry and exit points.

2. Bead, or an instance of a given module. There can be many beads of a given module
within a tapestry. Each bead has its own data context, but can share it’s code context

with other beads.

3. Weaves, or collections of data contexts that belong to beads of different modules.
With the collections data contexts, multiple namespaces can be created within one

address space, which is the foundation of the ability for dynamic reconfiguration.

4. String, which is a thread of execution. A string though, can only operate in a single

weave, although multiple strings can execute simultaneously.
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5. Tapestry, which is a set of weaves that describes the created system.

Figure 2.7 is an example of a simple tapestry, which contains four intra-process module
instances or ’beads’ in Weaves parlance. As mentioned the encapsulated code can be any

kind.

Write , Read
Program Fragmant Port ™™ Queue - Pott ™ Program Fragment

Fig. 2.7: Simple Weave [14].

While any code can be wrapped in modules, it is important to note that the code is
unchanged, and that no special code must be inserted to allow for the framework. The
treatment of code in this manner allows Weaves to be as generic as possible, not requiring
any particular coding or language paradigm.

Once the modules have been created within the framework, they then share attributes
of both the traditional process and threading model of computing; (1) like processes, the
modules allow for state separation, (2) like threads, the modules allow for code sharing and
fast context switching.

From the generality of Weaves and the treatment of wrapped code, two advantages are
immediately evident: we can compose and recompose legacy applications without modi-
fying them, and runtime dynamic system reconfiguration is achieved through the use of
check-pointing, dynamic code insertion and recovery. Figure 2.8 is an example of dynamic

code insertion or ’splicing’ in Weaves parlance.

44




Client Q1

Fig. 2.8: Dynamic code insertion or 'Splicing’ [14].
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Weaves handles composition and recomposition of systems very efficiently, allowing for a
great deal of system flexibility and dynamism. The only drawback to these features is that

the code to wrap the components must be manually processed to utilize the framework.

2.3.7 Wright

Wright [47] was designed in an attempt to apply a more direct specification and analysis
of architecture designs. This is accomplished by direct specification of interaction relation-
ships among system components as protocols. Where protocols characterize the nature of
interaction among components.

An architecture in Wright contains a description of components, connectors and the
system. Each component is described using a collection of ports, which in turn describe
how the ports are used computationally. Each component includes input and output ports,
sufficient to describe it’s interaction within the system to which it belongs. Not only do the
ports describe what the component can provide to the system, but they also contain the
description of what is required by the component from the system. Simply, ports provide

a complete description of the requirements (both input and output) of a component.
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Connectors are composed of a set of roles and a glue specification [3]. Roles describe
the behavior of the components involved in the connection, while the glue specifies how
the roles interact dmong themselves. This is done to ensure port-role compatibility when
using the connector. There is no limit to the number of roles that any one connector can
take on, with each role requiring a glue spéciﬁcation to define the interaction of the role(s).
Glue specifications can in fact describe the interactions of many roles at once, and are not
constrained to describe the interactions of only the two roles associated with a specific
connection.

Lastly, the system itself is described by using a collection_ of instances and attachments.
The list of instances represents instances of both components and connectors within the
system specification. The attachments however, provide the topology of the system ar-
chitecture, describing how the instances are laid out physically within the system. The
following example shows what a specification for a system could look like in the Wright

language.

System ClientServer
Component Client
port in [protocol]
port out [protocol]
comp spec [specification]

Component Server
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Connector LAN [specification]

Instances

Attachments

end ClientServer

While the specifications of systems are simple, they do not allow for any form a dy-
namism or system reconfiguration at runtime. Specifications in Wright are simply that of
static architecture descriptions represented as topologies of the ‘box and line’ style. Even
though Wright is not dynamic, it still does provide a good example of a well-structured

formal static language.

2.3.8 xADL

While xADL [23] is not strictly a stand-alone ADL in its own right, it is however, an
ADL interchange language, which can be used to wrap other ADL specifications. xADL
works by having a predefined set of XML tags and links between them using the XPointer
[53] mechanism. With predefined types it can decompose alternate architectures into the
xADL style. The underpinning for this effort was to enable non-specific tool integration into
ArchStudio [20], an IDE for the creation of C2 style system architectures. Although xADL

was created to work with ArchStudio, it is easily expanded to include specific notations
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and semantics from any ADL, as it has currently been expanded to suit C2, producing the
specification xC2 [23].

'To maintain ease and usability, there are only five element tags available;
<Component>, <Connector> <Architecture>, <ComponentType> and
<ConnectorType>. As an abstract base, these five tags are sufficient to describe any
architecture with an architecture made up of components and connectors (in essence). For
any given specific ADL though, these tags are likely not sufficient, which is why XML was
used, to allow for customizable expansion of these tags to suit specific applications.

By default, each of the elements described above has links associated with it, in the
form of XPointer definitions. Each of the aforementioned elements has one or more XPoint-
ers; Architectures have a Links pointer, Components and Connectors both have Supports
pointers and, ComponentTypes and ConnectorTypes both have Interface pointers, which
in turn have Parameter pointers.

The pointers from each element are used to link together differing tags within the
specification. Below is a listing of the XPointer types for each element, and what they link

together, taken from [23]:

e Architecture — Links is a logical link between a component and a connector respec-

tively

e Component — Supports is the specification of acceptable names and types to the

component, instance

e ComponentType — Inter face is the specification of both Name and Method inter-
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faces for this specific component type

5]

ComponentType — Inter face — Parameter is the specification of input and output

parameters for the specified component interfaces

e C'onnector — Supports is the specification of the names and type(s) acceptable to

this connector instance

« ClonnectorType — Inter face is the specification of both Name and Method interfaces

for this specific connector type

v",'f"u.r:,/u:cz’;ov"Type — Inter face — Parameter is the specification of input and output

paraioters for the specified connector interfaces

2ADL goes a long way to making ADLs interchangeable, in acting as a language and
feeppine alility. Even though any other ADL can be described in xADL and xADL can
b evicnded, custom error and well-formedness checking must be done outside of xADL,
A ondy validated against its own DTD as is.

A6 an ADL and (more so) an ADL extension, xADL suits the service-based paradigm
perfeciiv, due to the fact that it is created and maintained as XML, removing it from
speciic processing, and allowing it to be integrated into online transactions using SOAP,
EAE o the Jike.

i isilowing section describes different forms of tool and infrastructure support both

el available to aid in achieving full dynamism when considering runtime system

cocs e abion.
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2.4 Infrastructure

All of the ADLs reviewed rely on external support to achieve true dynamism. Darwin
needs it to support communications of dynamically instantiated Componenté; C2 needs it
to provide the requisite tasks related to welding and unwelding of components on demand;
Rapide needs it to be able to execute its architectural specifications; and Weaves needs it
to provide the operating environment in which individual modules can run. Therefore, it
seems safe to conclude that true dynamism in software architecture requires the support
of the proper runtime support infrastructure. In some scenarios, runtime support may be
built in the generated code, not unlike Java bytecode — which requires the Java runtime
environment to execute on a remote platform. In others, a separate runtime infrastructure
is needed, or the necessary infrastructure may already be available on the execution plat-
form. Middleware such as CORBA, RMI, or more recently Jini, offer significant potential
for facilitating the runtime support for service-based systems, although many problems,
especially in terms of interoperability and portability, remain to be solved [29].

There are many examples of infrastructures available that facilitate system dynamism,
such as Common Object Request Broker Architecture (CORBA) and Java Remote Method
Invocation (RMI).

CORBA [37] is an infrastructure that facilitates remote method invocation. Through
the use of remote interfaces, CORBA can broker remote method requests from clients
that have copies of corresponding remote interfaces, and stub objects for services. The

interfaces and stubs are required by potential clients in order to know what methods can
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be utilized, what they take as arguments, and what they return. In CORBA all method
invocation takes place at the remote location, and there is no option to acquire the ob ject
for local invocation. RMI works much like CORBA, in that it uses interfaces to describe
the capabilities (in this case methods) of a remote object to be accessed. Unlike CORBA
though, RMI has the capabihty to transport objects from one location to another for
invocation, through a process called serialization. Serialization is simply the wrapping of
an object, in this case an interface, and sending it to a client.

Both infrastructures (CORBA and RMI) provide a solid foundation for creating dy-
namic systems, with one major flaw: the interfaces must be made available to a client at
compile time, and if changes are made to the service being provided, new stubs must be
created and given to the client before communicate can take place. This does not facilitate
the dynamic selection of services as desired by the SBC paradigm, as you would first need
to download and examine all of the available interfaces to determine suitability for your
purposes.

There has however been much work in this area to alleviate this interface dependence
when using middleware like CORBA and RMI. Two such projects Jini for Java, [48] and
the Open Services Gateway Initiative (OSGI) [43], both provide infrastructures that allow
services to be searched for and selected on the basis of criteria which are either explicitly
specified by the developer or derived from the implementation of the service itself.

For thesis thesis we take specific note of Jini, which is fully described in Section 2.4.1.

Services in Jini can be searched for, loaded dynamically, or downloaded to a client and
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Fig. 2.9: Components provide services.

used locally all from within Jini itself. It provides all of the tools and tool support required
to create, deploy and use services; such as a locater service, leasing service, and object
transportation service. Furthermore, as Jini is implemented in Java, all that is required to

use Jini is a Java Runtime Environment (JRE) and the Jini libraries.

24.1 Jini

So far we have expressed the need for frameworks or infrastructures to facilitate the marshal-
ing of service-components to and from clients, and Jini [48] provides just such a framework.
Jini is a networking technology that allows devices, services and cooperative programs to
interoperate seamlessly over standard network technologies like TCP/IP. However, there is
né distinction drawn between different resources connected to a Jini network; everything
that comprises the network is considered a service. Simply, Jini provides a method for a
variety of services to exist, co-exist, discover and interact with each other on a network
in a platform independent manner [35, 36]. Jini uses the Java Virtual Machine (JVM) on
client machines to pro;\fide platform independence, and a simple lookup service for clients
to locate services. A simple example of a Jini network is shown in Figure 2.9.

Everything in Jini, whether it is a part of Jini or an external service, all connects to
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the network. Through the network Jini brings together clients and services through its
lookup service (an in-depth description of this process is available in Appendix B). The
mechanism within Jini that facilitates the lookup and selection process is called the lookup
discovery manager. The lookup discovery manager allows criteria to be added to the service
search process in the form of Entries. Entries are a serializable representation of attributes
of a service, which are passed to the lookup manager at the time service searching takes
place. The addition or removal of Entries can be used to either refine or broaden the search
scope for a service. Jini provides a default set of entries intended to be the most commonly
used when searching for services; such as Vendor, Version, Name, Servicelnfo, ServiceType,
Location, Status and Comment [36]. Each of the aforementioned entries are simple classes
that perform no operations and only store service attribute information.

Services in Jini are built upon the Java RMI API and allow services to be run remotely
(much like web services) or marshaled to the client for local execution. Furthermore,
Jini allows descriptive metadata to be added to services, which enhances searching for
and finding desired services. For a better explanation, lets consider our word processing
example. Imagine that we need a specific spell checker for our word processor, to find one,
we would simply connect to a Jini lookup service and browse for one based on whatever
criteria we wanted. Of course there are restrictions, such as, our word processor would
have to be able to connect to a Jini lookup service, and it would have to be able to execute
services within the JVM. Once a service is found, a spell checker for example, it can be

sent to the client to execute locally, use resources from external JVMs or even use whole
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other services (either remotely or locally). Jini does this by extending Java RMI and using
its ability to marshal objects from one JVM to another through a process of serialization.
'To provide its functionality and ability, Jini contains a comprehensive set of tools and

services for its framework. Some of these tools include:
e A web server which is used to host objects on the network.
e Reggie a lookup service, which provides the ability to look up and search for services.

® Mahalo a transaction manager, that allows multiple operations to be treated as a

single atomic operation.

e Fiddler alookup discovery service, which will perform discovery operations on behalf

of clients.

e Mercury an event mailbox, which will hold events for clients that are currently off-line

until they come online again.

The interaction capabilities that Jini provides suit the service-based paradigm extremely
well, as we can have services on a network which can be searched, selected, run locally or
remotely, and have internal or external dependencies that may be local or remote. A
drawback to Jini is the fact that it depends on the Java JVM, so if one is not present Jini
cannot work. Also the environment and tool support necessary to run Jini in an effective
manner are extremely complicated to run and maintain. There is an alternative that
provides similar support to that of Jini, the Open Systems Gateway Initiative (OSGi) [43],
with emphasis placed on mobile devices rather than an infrastructure to provide services.
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2.4.2 0OSGi

An alternative to Jini for providing a framework for dynamic services is the Open Systems
Gateway Initiative (OSGi) [43]. The OSGi framework provides a component-based exe-
cution environment for networked components. This is similar to Jini, except that OSGi
places heavy emphasis on components and component-based design instead of considering
all networked entities as services.

The framework itself is designed in a layered fashion with four layers; the Execution
Environment layer which defines the JRE environment for OSGi, the Modules layer which
define class loading policies, Life cycle Management layer that creates bundles for dynamic
usage and the Service Registry layer which provides dynamic interaction points between
bundles. Where bundles are simply a collection of Java classes that are physically grouped
together to provide some service.

The OSGi provides standard services which are simply Java interfaces and which reside
in the service registry. These services are not self contained existing services that can be
run in a standalone fashion unlike the provided services for Jini. To make use of any one
of the standard services from OSGi a bundle must implement the service interface so that
it may then be searched for by a client. There are many standard services available for
implementation as of OSGi Release 3, some of which include [43]: Framework Services used
for administration privileges, System Services that provide system independent functions,
Protocol Services that map external protocols to OSGi, and Miscellaneous Services which

provide a variety of alternative services. Most notably of the standard services is the
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Protocol Service, which allows Jini services to be recognized and used by OSGi.
OSGi provides an extensive framework for dealing with system dynamics. Since we
consider all components as only vehicles to provide services OSGi is not considered in this

thesis as it is strongly component-centric in both services creation and provision.

2.5 'Tool Support

The problem with most ADLs is that each have different focus in terms of architectural
description. For example Darwin focuses on the formal description of systems with its
use of m-calculus, whereas Rapide focuses on being able to execute and examine system
descriptions. Unfortunately, most of those ADLs are not interoperable with one another.
In essence, if you choose an ADL to aid your design you (typically) do not have the option
of modifying it in another ADL. To do so would require the compljte redesign of the
architecture to suit the new ADL’s format.

When working with architectures in ADLs, typically you would like to perform other
tasks than strictly specification and validation, such as: generating source code, executing
generated code and converting to other ADL formats. This requires that an ADL has
automated tool support, which is why tool support is considered to be an essential part of
any ADL [32]. Of course, different focus requires a different set of tools. Leaving it up to

the creator of the ADL to decide what if any automated tool support is available.
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2.5.1 ACME

ACME [13], is an ADL interchange language that proposes to bring a level of interoper-
ability to ADLs. ACME is not designed to make the designs of one ADL work within
another, but instead it promises to interchange common architectural knowledge between
ADLs, while being tolerant of ADL specific knowledge. Simply, it takes common archi-
tectural knowledge, like component and connector information and makes it available in a
generalized format for other ADLs (and their toolsets) to recognize, while not considering
any ADL specific information about an architecture. The reasoning behind the creation of

ACME consisted of five main goals [13]:

1. Provide an ADL interchange format - a mechanism to interchange information that

can be understood by more than one ADL.

2. Provide architectural representation and analysis - allow architectures to be repre-

sented in ACME and then provide some level of analysis of those architectures.

3. Provide a foundation for new ADL development - ACME has a simple ontology which
describes common elements of an architecture description, therefore any ADL should

have these in their language.

4. Work towards standards for architectural representation - to try and standardize what

basic elements should be included with any architectural description from any ADL.

5. Provide architects with meaningful expressive descriptions - make architectural de-
scriptions and their analysis meaningful, human readable and easy to understand.
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The ontology of ACME mentioned above, has seven basic elements: components, con-
nectors, systems (combinations of components and connectors), roles, ports, representations
and rep-maps. Components and connectors both have a set of interfaces that describe them.
The component interface describes ports (which describe input and output), and the con-
nector interface describes the réles of the connector; where roles are how the components
involved interact with the connector. Lastly ACME has representations, which are sim-
ply graphs describing the topology of an architecture, and rep-maps, which describe how
interfaces are interrelated.

With its ontology ACME can wrap any other architecture description, leaving out any
ADL specific information. However ACME does provide a mechanism to also allow ADL
specific information to be included. This mechanism is called ACME Properties, and it
allows ADL specific information to be included as. additional information. Consider the
following example where a simple client component is described in ACME, but which

contains other ADL information as properties.

Component client = {
port send;
Properties{C2-style : style-id = client-server

source—code : external = "client.cpp"
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The inclusion of specific information in this manner allows C2 and other C2 aware ADLs
(in this example) access to this information, but yet still allows non-C2 aware ADLs to read
the structural information and ignore these properties. There are other uses for properties
than simply storing ADL specific information, since anything can be placed in a properties
declaration. For example you could include actual source code snippets, comments, etc..

To work with and create descriptions in ACME, there is a freely available tool called
AcmeStudio [46], which is built upon the Graphical Editor Framework (GEF) [19] of the
Eclipse platform [18] to provided simple component creation and manipulation, as well as
rich model editing. As mentioned proper tool support for ADLs is ideal, and the creation of
AcmeStudio facilitates the correct usage of ACME, especially as it handles the interchange

of information from one ADL to another.

2.5.2 ArchJava

ArchJava [2], provides another form of strongly desired tool support — code generation.
Other than infrastructure and interoperability, automated design and development tools
[32] such as code generation only enhance the capabilities of ADLs to be more descriptive.
In particular, code generation tools are needed to convert the architecture from a design
to an executable form. In doing so, architectures can be built and then physically run
to evaluate the design. ArchJava in particular, uses standard executable Java code, to
describe and evaluate designs, with specific focus on maintaining communication integrity.
The use of Java code, then allows architectures created within ArchJava to be run on any

machine that has a JRE.
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With the benefits of Jini serving as a framework to marshal system dynamism, in

Chapter 5 we consider the use of Jini as our framework, and extend the idea of Java code

generation for our ADL.
In the following chapter we discuss service-based computing contrasted with traditional

component-based computing, followed by conceptual requirements for the SBC paradigm.
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3. SERVICE-BASED COMPUTING

Service-based computing is the idea that software systems are made of interacting services,
as opposed to components. Traditional systems are composed of local components with
(typically) no external requirements, whereas service-components of service-based systems
are composed of services that can be either local or remote with any number of external
requirements. Furthermore, not all of the services are known a priori, as services can be
dynamically selected, loaded and unloaded.

This is a shift in the thinking behind computing, as we move from large self contained
software systems, to those which are the sum of a collection of services. In the follow-
ing discussion, we examine how service-based systems are different than their traditional

component-based counterparts.

3.1 Component- vs. Service-based computing

Software systems currently can be built according to the component-based design philos-
ophy, where components are first-class entities from which systems are built. There are
many benefits to component-based systems, like reusability and reduced refactoring [49].

What component-based systems lack though, is the ability to change, in that, to upgrade
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Fig. 3.1: Components provide services.

or improve such a system typically requires patches to be applied or whole new versions
to be acquired. The reason for this is that within a component-based system a compo-
nent provideé or implements some services, which in turn may require input from another
component, as shown in Figure 3.1. Components can also require no input or have no out-
put, and can themselves be composed of other components interacting through appropriate
inputs and outputs.

Whole systems can be made from one or more components that are interacting (or
connected). When a user starts such a system, be they human users or external applications,
one or more components of that system are utilized; those components in turn utilize others,
and so on. In this paradigm, components are the essential units for both packaging and
execution, while the services they provide or require are basically inputs and outputs (plugs
and outlets), that serve to connect those components into a working system, as shown in
Figure 3.2.

It should be noted that the interconnections of components is not dynamic, meaning
that for one component to utilize another (or several) it must be aware of the type and

structure of the input it will receive, requiring prior knowledge of the component when
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Fig. 3.2: Systems are built with components.

the system is created. There are of course exceptions to this general rule, like the use of
shared object files in Linux or Dynamic Link Libraries (DLL) in Windows; components can
use the services they provided dynamically, but they still must know the output of such a
component when the system is created.

Software systems, however, can be designed and built in other ways, for example we can
shift our thinking from components being first-class entities to using services as first-class
entities. We still require components to act as the vehicles to provide services, meaning
that the composition and interaction of services now dictate the structﬁre of a system. For
example Figure 3.3 shows interconnecting services which form a system.

While components are still needed, as shown in Figure 3.4, their role is strictly to
implement or provide services. In this role, one component can now provide one or many
services, which in turn may require other services. Alternate implementations can be
substituted at any time as long as they implement the same externally observable behavior.

With the ability to change services, yielding alternating implementations, we achieve a very
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high level of reusability, as we can reuse and change only individual services as desired,
instead of having to change entire components. It is the dynamic use and substitution of
services that provides the foundation for the service-based paradigm.

To summarize, component-based systems are composed of interacting components that
provide some service via inputs and outputs (plug compatibility) of components, whereas
service-based systems are composed of interacting services which are provided by compo-
nents and can be dynamically used and substituted as desired.

Aside from the fundamental composition of systems, service-based systems, as opposed
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to component-based ones, can have services or requirements that exist outside of the system
in which they are defined. For example, if we have a system A that contains service S1, S1
could require a service or resource from A or from another system B, or C, and so on; S1 is
not constrained to the services and resources of A. Component-based systems on the other
hand, must know about all existing resource and component requirements ahead of time,
and those requirements must be within the available scope of the component, including for
example DLLs, which still must be available when the system is created (although they
can be called dynamically when the system is running).

In the following section we discuss another difference between component- and service-
based systems, which is the location of components, services and resources, and how they

are accessed differently.

3.2 Component location and access

In traditional component-based systems all of the components and their required resources
are located within the same system, meaning that everything needed by such a system is
readily available, with no external facilities required to locate or access any components or
resources.

However, when we consider service-components, we now must realize that not all of the
required components or resources are immediately present or contained within s, single sys-
tem. This is why location and accessibility of service-components is extremely important,

especially if one system or service has heavy dependencies upon others to provide it with
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Location Manner of Access

local remote

local traditional or | service-based
service-based | (server-side)

remote service-based | service-based
(client-side) | (incl. Web Services)

Tab. 3.1: Options for service locations and their accessibility.

services.

Component-based systems typically have local components which are accessed by local
systems. In some cases though, for example Yellowdog Updater Modified (YUM) a package
management system of Linux, we can have dislocated component-based systems, where
components reside in alternate locations and must be downloaded an installed for use.
With service-components we now have a much larger range of accessibility, which includes
both local and remote access. Table 3.2 provides us with a simple taxonomy of components,
their residency, and methods for accessing them. As we see with normal components, we
only have one accessibility method, whereas with service-components we can access local
and remote components, both locally and remotely.

If we now consider implementation aspects of service-components, it becomes apparent
that there must be a common communication mechanism through which client-service
interactions may take place; where a client can be considered either an end-user, or another
system as a whole. In simpler usage scenarios, service providers can reside on local fixed
storage from which they may be loaded when necessary, not unlike DLLs or their equivalents

under other operating systems, like shared objects in your favorite flavour of UNIX.
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In more complex scenarios services can be accessed through a LAN or the Internet. In
this case, the service-component can run at a remote site, similar to the approach adopted
by Web Services, with its services accessed remotely; alternatively, the service-component
can be downloaded to the local site and installed, or installed from the remote site. In the
former case, the interaction will in fact consist of a series of messages exchanged between
the client and the service provider. In the latter case, once the external service-component
is installed, it becomes indistinguishable from a local one. However, when the interaction
is over, the component will be removed from memory, and possibly even deleted from local
non-volatile storage.

Scenarios like those just described necessitate the presence of an infrastructure capable
of managing the interactions described - either as part of the original client application, or
independently of it. Such an infrastructure may be embedded in the operating system and
thus made available to all the applications, or it may be made to run as part of the actual
application, or even act in a third party capacity, helping to marshal dynamic services, but
not part of either the operating system nor the application itself.

With service-components (possibly) from external sources, and users having the ability
to switch them dynamically as desired, a mechanism for searching and selecting services is
required. The following section describes the requirements for both searching and selection

of services.
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3.3 Service search and selection

As mentioned in the previous section, if service-components reside at remote locations
(service providers) and there exists a infrastructure in place to access them, we still require
a mechanism to search for and select the ones we want. This search-selection process would
involve a registry of available services, making the process very similar to that of the Web
Services paradigm, involving the universal description, discovery and integration protocol
(UDDI) to search for available services.

In the Web Services approach, services are located via their signatures and simple
descriptions written in web services description language (WSDL) [15]. While simple and
efficient, this approach suffers from a major drawback: namely, it requires the designer to
know in advance the signature of the service to be invoked. By extension, this also means
perspective clients must possess detailed knowledge of the component that will provide the
service.

This, however, does not fit well with the dynamic and ever-changing nature of service-
based applications. Service-components are not known beforehand and they need to be
accessed on the basis of their advertised capabilities for providing particular services,
rather than according to a name and signature. To provide this level of searching, service-
components would have to provide a significant amount of information about themselves.
The minimum information required from service-components would consist of the names
and signatures of the services provided, much like Web services. Additional descriptive in-

formation such as; functional constraints (ie., inputs and required outputs, non-functional
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constraints (memory and timing requirements),’ and security- and access-related features,
as deemed necessary for the selection and /or use of that particular service-component.

In order to make the search and selection process of services as descriptive and gener-
alized as possible, we need some kind of service lookup facility, which contains sufficient
information about services and their requirements, and which can also provide the serviceé
to the user once selected. Such a facility would have to consider ény provided QoS or
requirements of a service, as these can be the determining criterion for the selection or
rejection of a service. If for example we wanted a spell checker service, but only if it can
complete in 30 seconds, then we do not want to see all spell checking services from the
lookup provider, we only want to see those that match our service description and those
that match our requested QoS property. If supplied, we would also only want to see those
that matched the previous criteria and any additionally specified requirements.

Lookup and selection of services will be supported within our ADL and our implemen-
tation will rely on the infrastructure of Jini to provide this capability. In Section 2.4.1 and
Appendix B, we further examine Jini and how it allows services to be described with spe-
cific documentation, as well as providing a lookup and marshaling mechanism for services,
making it a viable choice as a framework for service-based system development.

Now that we have discussed the differences in component- and service-based computing,
and differences in location, access, selection and searching, we must create a language for
our ADL that captures or allows for these requirements as best as possible. In the following

chapter we provide the design and rational of the language for our ADL.
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4. THE LANGUAGCE

The language provides the érdering of and information about component relation for defi-
nitions added to an ADL. Our ADL is tailored to the service-based paradigm, such that it
describes the relationships of architectures and their service-components, and how service-
.components interact to provide services.

Unlike the languages of other ADLs, like C2 for example, that make the connections
between components explicit, in our language we leave the expression of connections im-
plicit, being derived from the location of service-components relative to the services they
provide and the architectures they are defined within. This is done mainly because one
component can provide many different services, within one or many architectures. On the
other hand many components can implement one service from one or more architectures.
To try and explicitly describe all of these possible connections adds a lot of additional,
non-essential information to our language, so we opted to create a language that could be
converted to an XML schema (see Appendix A for full XML schema, description) and then
described in XML. Using XML to implement our language we could then, through the use
of parent-child relationships and the use of global elements implicitly describe connections

between components and services, by where the component and service element appeared.
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4.1 Architectures

The specification of a service-based system starts with the definition of an architecture.
Architectures can also be composed of whole other architectures, providing a high level of
reusability, as shown in Figure 4.1. When interacting with adjacent or nested architectures,
the openness of the architecture determines if services from one afchitecture can be shared.
More specifically, if one architecture can use the services of another as required ‘services, or
its own services can be used in a similar manner, we would define it as open. Alternately, if
an architecture does not require any outside services, nor allow access to any of its services
it is defined as closed.

The definitions of services contained within an architecture describe what the architec-
ture does, with the provision to have these abilities extended by adding services as needed.
In the case of nested architectures, services from higher-level architectures can have access
to all services from lower level ones. At the same time, services from a lower level architec-
ture can access services from a higher level one if and only if (a) the lower level architecture

is not declared to be closed, and (b) such services are explicitly designated as global, in the
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manner that will be outlined below.

The grammar representation for services has no limitation on the number of services
that an architecture may contain, except that there must be at least one service definition
which acts as the so-called starting service, i.e., the service which is to run initiélly when the
. architecture is loaded. Other services may be loaded at the same time when an architecture
is léaded; the list of such services is determined automatically by the infrastructure when

it loads the architecture.

Specification :=

Architecture+

Architecture :=
Openness "architecture" Name "ig"
"starting" Service
["contains" Servicel*
["includes" Architecture] *

"end-architecture"

Openness := "open" | "closed"
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4.2 Services

Each service within an architecture is provided (ie., implemented) by one or more soft-
ware components. In this model, components are derived entities which can be extracted
from the service definitions, rather than being primary entities that provide services. Fur-
thermore, the definition of a component that provides a service can be located inside or
outside of the definition of a service which it implements. This however is not the same as
a service being external; which means the service is entirely defined outside the scope of
an architecture. When we consider a service as being external, we are referring to the fact
that the service and its implementing component are provided outside the definition of the
current architecture.

If not external, every definition of a service must contain an implementing component.
Components in any case act as implementations of the services they provide (of which there
can be more than one), similar to implementing interfaces in Java. For example, you may
want a quick but not-quite-accurate spell-checker, or a slower but fully accurate one.

The language allows the client to distinguish service provider components and select
the best one. The accessibility, or where it can be accessed from, can allow other services of
nested architectures to have access it, provided the accessibility is not local. Most services
are accessible globally (by default), to other services both within the architecture and
outside of it; in some cases, services may be restricted to client services within the same

architecture only, by setting their accessibility to local.

Service :=
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Accessibility "service" Name "is"
- [["provided-by" Component] |
["external"]]

["provides" ServiceMsg]+

"end-service"

Accessibility := "local" | "global™

4.3 Components

A component is defined with a name and an availability specification. As components
physically implement services, the availability specification refers to the implementation

itself:

A private component provides its services to clients within the same architecture only;

such services are always local.

e A protected component is accessible to services residing on other hosts as well, and
the interaction is performed through message exchanges via an appropriate commu-
nication link (think of Web Services); services provided by a protected component

may be either local or global.

¢ Finally, a public component may have its executable image (e.g., a Java jar file or
equivalent) available to be transferred to the remote host for execution; in this case,
any accessibility restrictions on the services provided are meaningless.
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While components can have differing availability, it is important to note that a com-
ponent defined as public does not make the service it implements mobile, only movable;
meaning that it can be sent between clients and executed, but not partially executed on
one client, suspended, transferred to another client and have the execution resume from

where it was suspended.

Component :=
Availability "component" Name

"end-component"

Availability :=

"private" | “public" | "protected"

Access restrictions imposed by the components are mapped onto services. In this maﬁ—
ner, a service can have different implementations, some of which are global while others
are protected, and possibly some of which are local as well.

The default accessibility level is public; protected takes precedence over public, and
private takes precedence over either of them (similar to Java). It may happen that a single
service provider component is labeled with different access restrictions within different
service definitions. In this case, the most restrictive qualifier will be used, eliminating
inconsistencies from the processing of architecture definitions.

Note that the outward extension of an architecture depends entirely on the service

provider definitions, whereas the inward extension depends on the openness of the archi-
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tecture. In other words, an architecture defined as closed can declare that it will not
seek help from others, but individual service provider components may be made accessi-
ble or available to the public on a case by case basis, independently of the architecture

extendibility setting.

4.4 Service Messages

Fach service is invoked via an appropriate message. To carry through the relation to
Java, consider the methods defined in an interface as service messages; they describe the
behavior of the service, which are in turn implemented by the service-component. A service
message specifies functional information such as the service name and a list of parameters
in parentheses (similar to a method signature), while the other aspects describe definitions
that define guarantees and requirements of the service message. A guarantee could be that
processing will take only take X amount of time, or accuracy of task if 98% or better,
whereas requirements could mean alternate resources or services that this one requires to

provide its service, such as ImMemory or processing constraints.

ServiceMsg :=
Name "(" ParameterList ")
["with" QoSGuarantee]+
["at" ResourceReq] *

["requiring" RequiredServ] *
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ParameterList := [Datatype [", " Datatype] *]

Datatype := "int" | "double" | "string" | "void"

4.5 QoS Guarantee

The operational information of a service is formatted as a list of QoS guarantees. Each
guarantee consists of a property and an associated. value. This list of guarantees provides
a mechanism for the search and selection process of services by the user. Example: a user
wants a service that can calculate their tax return in 3 minutes, a search of QoS guarantees
of available services is done, and if there is one, it is selected. If from that same example
more than one matching service was found, then the user has the option to additionally
refine their criteria until the exact service they want is found. Refinement can be the
addition or deletion of guarantees to or from existing search criteria. Coupled with the use
of resource requirements (defined in the following section), a user has very specific control
over what services are searched for and what services are selected. A QoS guarantee can

be anything, ranging from guaranteed computation time to download speed.

QoSGuarantee := Property "of" Value
Property := "anything"
Value := "anything"
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4.6 Resource Requirement

In order to meet the guarantees for a service, a component may also have some requirements
of its own. Two main types of requirements can be readily identified: resource requirements
and service requirements. Resource requirements are similar to QoS guarantees, except that
they spell out what are the properties of the operational environment that the client must
provide in order for QoS guarantees to be met. Such requirements may include minimum
available memory, minimum CPU speed, compatibility with specific versions (or range of

versions) of the operating system and/or other services, and other related information.

ResourceReq := Resource "of" Value
Resource := "anything"
Value := "anything"

4.7 Required Services

Service requirements, on the other hand, identify a number of other services that are (or
may be) needed in order to fulfill the obligations. For example, a tax processing service
might need additional services to process returns based on the return type; furthermore it
may require certain QoS guarantees of the required services in order to meet QoS guarantees
of its own.

Note that any given component may actually be able to provide one or more services, as
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is the case in the component-based paradigm. However, instead of a component requiring
a set of services regardless of which particular service it provides, our language allows more
precise modeling of dependencies. Namely, it is possible to define a subset of required

services that correspond to each of the provided services, as shown in Figure 4.2.

requires
T services

@ requires
. @ services

(a) Sy requires some services. (b) Sz requires alternate services.

Fig. 4.2: Services might depend on others to provide their services.

This facility provides an additional selection criterion and allows for finer control of
system execution (and, consequently, performance) at runtime. Namely, the client may
prefer to get services from a component which needs less resources; in some cases, less
resources may mean fewer required services, in particular in cases where some of those
services are not available locally and, thus, have to be accessed or even downloaded from a
remote location prior to being used to provide the original service.

We have mentioned above that any single service can be provided by more than one
component. The components that provide the same service may differ in terms of their
QoS guarantees. They may also differ in terms of other services they require; for example,
component C1 may require services Ry, R, and Rj, in order to provide service S;, whereas
component C2 may require services Ry and R, to do the same, as shown in Figure 4.3(a)
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and Figure refreqc2.

o e - e . -

required 3 service e;‘_‘_‘ """"""""" t required
services g §  senvices

(a) C1 may require Ry, Ry and R; to (b) C2 may require only Ry and Ry to
provide S;. provide the same service, 5.

Fig. 4.3: Different components provide the same service with differing requirements.

These services may be limited to services available locally, i.e., those defined within the
architecture as well as those downloaded from other architectures. The default option is
local as well as remote ones.

Furthermore, a required service can be labeled immediate, in which case 1t must be
made available prior to execution (by whatever means available) or optional, which may
defer acquisition because the component may not need it at all, or is ready to wait until it

becomes available.

RequiredServ :=
Location Immediacy
Name ["(" ParameterList ")"]

["with" QoSGuarantee] +

Location := "local" | "remote"

80




Immediacy := "immediate" | "optional"

The infrastructure that manages the architecture will initially load the starting ser-
vice, as well as its immediate required services (subject to resource limitations, of course);
optional services will be loaded when they are actually invoked.

We note that the list of required services is an optional part of the language. The
definitions of services and components that implement them are necessarily local; if a
service is accessed via a remote host, no guarantees can be given as to the services it may
require.

An alternative to this service-centric design, is to turn the architecture definition from
inside out, and obtain a more common component-centric definition, similar to the one
created by Cervantes et. al. [8, 9] which pertains to OSGI [43] technology. More specifically,
in their design, they consider dynamic components relationships (loading, transporting,
etc), which is very similar to our notion of dynamic services. The difference is, that they

consider parts of software being transported and dynamically used, whereas we view all of

a system’s components as services.

81




5. THE IMPLEMENTATION

With the complete design of our language and the language mapped to an XML schema
(see Appendix A, an implementation of our ADL was completed using Java 1.5. Java was
chosen as the vehicle for implementation for several reasons; the most important outlined

below:

e Java provides a very diverse and comprehensive AP] for working with XML. XML
documents can be read, written and validated with very few lines of actual code.
XML documents can be searched and modified simply with Javas’ implementations
of XPath [55] and XPointer [53]. Furthermore the platform independence of its XML

APIs contribute significantly to its suitability.

¢ As mentioned in Section 2.1, to achieve full dynamism of the scale the service-based
paradigm requires, would force us to either implement or utilize a framework to
marshal services. Java again provides the solution to this problem with Jini [48]
(Section 2.4.1); an API that allows services, described as the implementation of re-
mote interfaces, to be located, used remotely, serialized and acquired, dynamically
activated, and dynamically removed. Jini has the ability to communicate with its

lookup services located on the local machine, local network, or over the internet. The




only drawback is that Jini may have difficulty finding services, as its lookup service

does not forward requests, so each lookup service must be queried individually.

e With Java, we can run our implementation on any platform with a Java Runtime
Environment, without having to recompile or modify the code in any way. Even
though the implementation was done in Java 1.5, it was compiled to be backward

compatible to Java 1.3, providing some flexibility in JRE versions.

e The OO capabilities of Java allowed us to create general abstract classes and interfaces
for elements and code tools, cutting down on the amount of duplicated code through

sub-classing and polymorphism.

Once the programming environment was decided upon, the first step was to begin our
design by breaking our program down into logical package descriptions, or which Java
packages would handle what processing. Once the sectioning of the design was complete
each of the packages was further decomposed into individual classes, represented as class
diagrams with their interactions modeled via sequence diagrams. To help illustrate how we
envisioned our ADL functioning we then created use-case diagrams and state diagrams.

The goal of our design was to create an ADL that was menu-driven and had a dialog-
based graphical user interface (GUI) that allows elements to be added and removed from
the overall specification. As a specification within our ADL progresses, the overall form
and element organization is represented to the user as a tree for ease of (re)organization
and understanding. Once an element has been added to the design, it can then be modified
(via it’s properties), removed, have children added to it, or depending on the element, have
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it’s source code generated and viewed. The layout of the GUI for our ADL is comprised of
a tree view on the left hand side and a dynamic content tab pane on the right for viewing

source artifacts.

9.1 Packages and Structure

Figure 5.1 shows the overall package description of our ADL implementation. The Structure
package contains all of the classes that represent elements of our XML, schema, the GUI
package contains all graphical interface classes, the XML package contains all classes used

to read/write/parse XML files, and the Code package contains all classes used to generate

code.
aframgwork ] asystemp |- —— — >
B cui XML
Structure

1 ] eframework
""""""" 7

Code

Fig. 5.1: Package description of ADL implementation.

With the use of XML and XML schema, we were required to create a class representation
of our schema to enforce the constraints of the schema within our code. This was done
by creating one class for every element present in the schema, with the exception of the
starts-with element (as it is nothing but a wrapper element). Figure 5.3 shows the classes

within the Structure package, and how they are related to one another.
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The structure classes use aggregation to maintain the proper schema mapping. More
specifically, all of the structure classes are arranged and composed of one another in such &,
way that they directly represent the form of the XML schema, (see Figure 5.2). Aggregation
is handed within each class using a java.util. TreeMap, which is similar to a hashtable, but
provides performance guarantees. The use of TreeMaps was further enhanced with the
use of generics, a new concept to Java 1.5, which allows return types of collections to be
specified at creation time, removing the need for type-casting.

Each of the classes of this package are also used in a corresponding dialog, which allows
users to make instances of them, for example the NewArchitectureDialog from the GUI
package is used to create instances of the ArchitectureDef class, and so on.

The GUI package, as mentioned, includes all of the classes that make up the user
interface for our ADL. The main window for the application, along with all of the user
input dialogs, and other customized swing classes are contained in this package. One of the
things to note here is that the GUI package depends on the other packages, but there is no
dependence on the GUI package from any of the others. The implementation was designed
this way to keep the data model of our ADL loosely coupled to the user interface. This
way if future expansion was desired, in either the data model or user interface, refactoring
is minimized. The overall arrangement of the GUI package is shown in Figure 5.4.

All XML processing is handled by the XML package. All constants used for element
names, reading, writing, parsing, and validating of XML is done by the XML class in

this package. To ensure processing is as trivial as possible, the Document Object Model
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Fig. 5.2: Aggregation within the Structure package

specification version 2(DOM2) was used for all XML operations. DOM2 provides simple

methods to handle XML, for both reading and writing. To read an XML document using

DOM2 is as simple as:

docbuilderfact = DocumentBuilderFactory.newInstance();

docbuilder = docbuilderfact.newDocumentBuilder();

docbuilder.setErrorHandler (new DefaultHandler O);
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Fig. 5.3: Arrangernent of classes in the Structure package.
try {
document = docbuilder.parse(xmlfile);
}//end try
catch(SAXException spe) {spe.printStackTrace();}

catch(I0Exception ioe) {ioe.printStackTrace();}

While parsing an XML file, DOM2 also provides validation of the XML document,
allowing us to use the same mechanism for reading an XML file to provide validation
support in our ADL. Since DOM2 represents an XML document as a tree in memory, we
opted to use a JTree in the main user interface to display our specifications. In doing so we
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Fig. 5.4: Arrangement of classes in the QUI package.

could use simple recursive methods to read and write XML to and from the JTree. With
the code to work with Java trivial, the associated XML package is also trivial consisting of
only one class, as shown in Figure 5.5.

Code generation for our ADL is contained within the Code package (more details on code
generation in Section 5.3). Figure 5.6 shows the relationships between the code generation
classes. The Generator is the main class that actually performs the code generation using
simple recursive methods to walk through the JTree in the main user interface, and generate

corresponding source artifacts.
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Fig. 5.5: The class in the XML package.

5.2 Package interaction

In the previous section we discussed how all of the packages and classes are arranged.
Now let us discuss how the packages and classes interact with one another. We show in
Figure 5.1 how our ADL is arranged and how each of the classes within each package are
related. Before we discuss how the packages interact, we must first understand the basic
processes of our ADL and how they relate to one another. In F igure 5.7 we view the basic
states of interaction and show how they are related to other tasks that can be performed.

With our ADL designed to be a dialog-based system we ensure that all of the states
in Figure 5.7 must return to the idle state after processing is complete aside from a few
exceptions. The ADL will not proceed with any task until the user explicitly activates
it, which can take place through either a menu click or a dialog. There are exceptions
where one task depends on another prior to its execution; for example code generation will
never take place until the specification has been saved. Such dependencies only exist where
consistency is required —we only want generated code for the most recent specification,

which requires that it be saved beforehand.
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Fig. 5.6: Arrangement of classes in the Code package.

Figure 5.7 describes how the states of our ADL are related, what it does not show is
how the packages of our implementation interact to provide the processing of those states.
To describe this interaction we use sequence diagrams and specific processing tasks from
our ADL.

All interaction involves the QUI package and at least one of the remaining packages.

The decomposition of the problem makes each of the packages, except for the GUI package,
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Fig. 5.7: Overall sequence of ADL.

self reliant; such that they do not require any of the resources of any other packages. The
GUI package depends on all of the other packages because it is used to represent these
packages to the user in a graphical manner. In essence the GUI package acts as the portal
to the other packages, in that, every interaction takes place through the GUI package which
then uses resources of another package to perform a task.

With a general idea of how the packages interact, let us more specifically examine how
the packages mentioned in Section 5.1 interact with one another from the perspective of
the class MainWindow from within the GUI package. We need only consider this view
as all of the packages interact only through Main Window — even then, none of the other
packages such as XML or Structure interact with one another, only with Main Window.

As mentioned each of the elements from our XML schema. have been mapped to a
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corresponding class, each of these classes in turn have a corresponding dialog that is used
to create instances. This design pattern is carried through all of the classes in the Structure
package, each one class representing an element with a corresponding dialog. Therefore,
we can examine only one example of the interaction between the MainWindow and the
sfructure classes to understand how they are used. Figure 5.8 shows the interaction between
the Main Window class and the structure class ArchitectureDef, and how the corresponding

dialog NewArchitectureDialog is used to create instances.
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Fig. 5.8: Creating a new ArchitectureDef instance.

To create an instance of any one of the element classes, a menu item is clicked which
then presents the corresponding dialog to the user. The user can at any time cancel creat-
ing an instance, or continue providing information until an instance can be created. Each

of the corresponding element dialogs provide error checking to ensure that the information
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provided by the user is correct and will not cause inconsistencies within a specification.
Also, constraints such as elements that have dependencies on others, like an architecture
that must have a starting service, are handled by the corresponding element dialog. For ex-
ample, to create an ArchitectureDef instance the user is forced to also create the ServiceDef
that will act as the starting ser'vice, before the ArchitectureDef instance is created.

In terms of state semantics, Figure 5.8 shows movement fromvthe idle state to the
addElement state and back again (refer to Figure 5.7 for state details). Some of the corre-
sponding element dialogs also allow more than one instance to be created; for example when
creating a new ServiceDef the user has the option of adding as many ServiceMessageDef's
as they desire, yielding the cycle on the addElement state.

Next we look at the how a specification is saved, describing how the XML package
interacts with Main Window. The process for saving is the same regardless of whether
the user initiates it directly, or it is performed automatically. More specifically when
the user initiates the save process through a menu click an abstracted method is used to
perform the actual save operations. This way the same save operations are used anytime a
save is required, providing flexibility for auto-saving (timed or otherwise) and to maintain
consistency (saving before code generation). Figure 5.9 shows the interactions involved in
saving a specification. Since the XML package is only used for handling XML, this is one
of three places it is utilized. The other two uses are for loading a saved specification and
for validating an existing specification.

With a specification represented by an instance of the XML class, we have further
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Fig. 5.9: Saving a specification.

simplified handling a specification between memory and disk. From Figure 5.9 we see an
example of this with the calling of the method treeToXmlConversion, which is a simple
and efficient recursive method that converts the tree view from Main Window to a valid
DOM2 representation in memory. Alternatively when loading a specification another simple
recursive method, xmlToTreeConverison is used to load the specification from disk. To
initiate the save process a user simply clicks the save menu item or initiates a task that
auto saves prior to execution (like code generation). This in turn either displays the file
dialog or not depending on various factors and then creates the XML representation of the
specification in memory. The XML in memory is then written to a standard XML file on
disk. The process of loading a specification is the exact opposite; a file is read froni disk
and loaded into memory, then the tree view is refreshed based on the XML in memory.

Finally we look at the interaction of the Code package. Like Structure and XML, this
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package is only used within the MainWindow class and does not have any dependencies
on any other packages. There are some notable exceptions in the manner with which
this package is arranged for interaction. Mainly the Code package provides all of the
resources to generate specification source code. To accomplish this however, can be an
intensive process requiring a lot of computational resources. To alleviate the work load
for Main Window multi-threading was introduced. Using multiple threads meant that the
interaction with the Code package had to thread safe; which was accomplished using Java
synchronization primitives.

Figure 5.10 describes the interaction of the Code package. Notice that for the most
part it begins the same as for the other packages, in that a user clicks a menu item which
then begins the process, the exception here is that when the generation process is started a
new thread is created which runs the code generation methods. The separate thread use is
characterized by the asynchronous message from the status dialog which continually asks
the thread what its progress is so that the user can be notified in the form of a progress
bar.

Aside from the use of an extra thread, the Code package also has a restriction on how
it can be used. Unlike all of the other classes in this project the Generator class —the
class that actually runs the code generation, is a singleton class. Using the singleton design
pattern we can ensure that only one Generator instance ever exists to increase thread safety
and prevent more than one set, of source files from being generated at the same time.

There is much more to the code generation process, which we discuss in the following
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Fig. 5.10: Generating code for a specification.

section.

5.3 Code Generation

"To aid the design process we have included source code generation toolkit, which generates
the complete source code skeleton for a design. The generated source code is backward
compatible to Java 1.3, provides Javadoc compliant commenting for easy documentation,
and is compatible with Jini 1.0 and above.

Generated source is placed in a directory called ”Source” located in the design save di-
rectory. As the source code is generated it is separated into packages based on architectures
within the design; i.e., each architecture is its own package. The separation of architec-

tures into packages allows us to maintain openness restrictions from one architecture to
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another, with the use of import statements in code. Although each architecture creates a
new package, all of the sub-elements of an architecture in the design are constituents of
the corresponding package. This way, we can enforce availability and accessibility through
packaging as well.

Consider an example: If we have a specification that contains two architectures, say
Al and A2, they form two distinct packages, Al and A2. Inside each of these packages we
would find all of the source code for all of the services, components, interfaces, etc that are
child elements of that architecture. If we have the case where A2 was a nested architecture
of Al, then A2 would become a sub package of Al.

With an understanding of how generated source code is arranged, let us discuss how
the source is generated from each of the elements in the design. Since our ADL works
with Jini, we have opted to create all source artifacts as skeleton services that work within
Jini. To elaborate, lets examine what part of the source code each element in our language
corresponds to; as shown in Table 5.1.

Not all of the elements of a specification become independent source artifacts, only
those that extend CodifiedDefinition (from Figure 5.3). The other elements become part
of the next closest codified parent element, which will always be either an Architecture,
Component or Service. Each one of the codified definitions contains within it a copy of its
source file, removing the need to explicitly handle directories and location on a specification-
wide scale. This then provides better access to source artifacts though the tree view of our

GUI, as each node in the tree represents a language element, and therefore allows access
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Language Element | Source Artifact ‘l

Architecture Facade providing Jini service and lookup

Service Remote interface that contains Service-
messages as methods

Component Implements remote interface(s) from the
service(s) it provides
ServiceMsg Included as method definition in service
| interface
ParameterList Part of the signature of a ServiceMsg
QoSGuarantee Implements AbstractEntry interface
RequiredServ Jini service definition included in the

providing facade

ResourceReq Implements AbstractEntry interface

Tab. 5.1: Language elements and corresponding source artifacts.

to its sourcecode (if applicable).

Bach of the source files that are generated are stored in memory as class type CodeFiles
which extends RandomAccessFile. Extending RandomAccessFile provideé us with all of the
capabilities of a normal file, but also allows us to seek forwards and backwards within the
file to add or remove text. With the ability to seek in the file, we can write code files, and
seek backward or forward to predetermined sections to insert or remove code. Currently
though, as we do not support the editing of code files in our ADL, we do not need to use
the seeking functionality of the RandomA ccessFile class. Instead we currently write codes
files in a top-down fashion as shown in Figure 5.11.

Pseudo-code for how we produce a code file is outlined below.

Begin

write-package
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Methods

Fig. 5.11: Arrangement of sections within a codefile.

write-imports

write-header-comment

write—class~header
write—pareﬁt—class
write-implemented-interfaces

while(more)
write-constants

while (more)
write—attributes

while (more)
write—constructors

write-skeleton-body

while (more)
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write-methods
write-skeleton-body

End

The actual process of generating the sourcecode is handled within the Generator class
contained in the Code package (see Figure 5.6 for more package details). As each class from
the structure package contains its associated source file and these classes are arranged in a
tree, we recursively traverse the tree to create source artifacts. This way each node in the
tree that we examine, that can have code generated for it, already has the code file accessible
for writing to. The remaining nodes that do not have associated code files, simply return
their information up one level in the tree to the appropriate codified parent node. In the
special case of both QoSGuarantee and ResourceRequirement, they are stand alone codified
definitions that have no children and do not pass any information to a parent node. They
are however used in the service provider as searchable entries, for more information about
entries refer to Section 2.4.1. An example of generated sourcecode artifacts is available in
Chapter 6.

There are however some limitations to our source generation package. At present, the
source code generated by our ADL is not editable within our ADL, the reason being that
we do not provide any parsing tool support, which would be required to ensure only valid
Java code was inserted. All source that is created though, is fully Java compliant and
provides Javadoc recognizable commenting of classes, interfaces and methods. Generated

source is only a skeleton representation, meaning there is no functionality for methods,
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etc., 1t is only the valid code representation of the specification. Any functionality for the

sourcecode must be added externally to our ADL.

The following chapter provides an example test case that is described in our ADL and

its accompanying sourcecode.
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6. A TEST CASE

This chapter provides an in depth example that exemplifies the service-based paradigm,
in that it has a strong dependence upon the remote acquisition of services to carry out a,
required operation. We start the example by describing the parameters and términology of
the example followed by the specification of the example and viewing the generated XML

document, ending with generated sourcecode examples from the specification.

6.1 Defining the test case

Let us consider an Unmanned Air Vehicle (UAV) example, where we have a threat as-
sessment system contained within an autonomous flying vehicle that can be dynamically
reconfigured. A UAV, in this example does not perform its task alone, and is in fact part of
a larger fleet of UAVs each with varying threat assessment services. As a UAV encounters
threats, if it does not have the required threat assessment service loaded, it can ask one of
the other UAVs for it. If available, a UAV can acquire an appropriate assessment service
from another UAV and dynamically load it for use.

From the perspective of only a single UAV, this test case demonstrates dynamic system

reconfiguration on various levels. A UAV can change only one service or all of its services,




either partially or completely changing its capabilities. Although UAVs can dynamically
change their composition depending upon threats encountered, in this test case we have
imposed some constraints on a UAV’s ability to do so.

Consider the following formal constraints on the UAV system:
1. the small finite memory is defined as having only 200MB of space

2. the differing input stimuli are defined as: Air to Air (AA), Ground to Air (GA), Air

to Ground (AG), and Ground to Ground (GG)
3. there is no time lost for the acquisition of services from differing sources
4. it takes 1 second to remove an active service
5. it takes 1 second to acquire a new service
6. it takes 1 second to start a new service

Next, we examine the dynamic reactivity of the UAV to differing input stimulus. Re-
action is measured by the UAV dynamically acquiring services that it needs for threat
assessment from input stimulus. This example has four types of input (or threats), with
each of the available threat deterrent services of a varying size. Each of the services all take
the same amount of time to run or provide their service, although this might not always

be the case. Below we outline the services available to the UAV.
e AA 100MB: an air to air detection service that requires 100 MB of memory

e AG 90MB: an air to ground detection service that requires 90 MB of memory
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e GA 25MB: a ground to air detection service that requires 25 MB of memory

e GG 150MB: a ground to ground detection service that requires 150 MB of memory

Figure 6.1 a proposed UAV and how it can interact with other UAVs in the fleet to
acquire and provide services. Each UAV has 2, simple operating system acting as broker for
sensor stimuli and services to and from the active memory. The main memory available to
the UAV is broken up into four 50 MB sections, with the ability to combine these sections

to make larger sections if needed.

UAY UAY . UAV

0s 08 Qs

2 b M
AG (90MB) - o N

TONE \ AAL0MB) e . {1 }
riemgry slot .

S0MB Tl ae (SoMB,) 50MB-
viemory slot ’ memory sfol
508 1038 50MB
memory slot avaiibala memory slot

Fig. 6.1: UAV can acquire/provide services from/to others in the fleet.

With a single UAV being part of a larger fleet, not all UAVs will share the exact same
services as shown in Figure 6.1. Each UAV could potentially have similar services, but
which are provided with differing attributes such as QoS guarantees, memory requirements
or executions times. Depending on what a UAV requires for a service it might search for
and select one specific service over another. To demonstrate the difference of adding in
additional service information, consider F igure 6.2, showing more than one UAV with the

same service, but with different attributes.
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20s, nonsecure GA (200MB)
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AA(100MB), GG {100MB),
S, secire 5s, sacum

Fig. 6.2: UAVs can have similar service types, with differing attributes.

To illustrate the selection problem, consider that the UAV has AA (100MB) and AG
(90MB) services loaded utilizing 190MB of the max 200MB of memory, leaving 10MB of
memory free. Now consider that the UAV encounters a GA threat, and needs the GA
service. In this cése we will assume there are many choices available to the UAV depending
on what its criteria are for the required service. If the UAV only required a GA service and
did not care about memory, execution speed or security, it could simply take the 10MB
GA service, with no further reconfiguration required. If however the UAV had additional
criteria, requiring the service to execute in no more than one second, it would then need to
select a service and reconfigure itself accordingly to accommodate the new service. In the
latter case, depending on which service if selected, the UAV would be partly or completely
reconfigured. Figure 6.3 shows a UAV and the choices of services it has available with the
level of reconfiguration based on the service selection.

In the following section we create a single UAV specification within our ADL, providing

visual references, XML and generated code examples.
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(a) No reconfiguration. (b) Full system reconfiguration.

Fig. 6.3: Service selection can vary UAV system reconfiguration.

6.2 Using our ADL to describe the test case

Based on the description of single UAV above, we can create this example as a single
architecture called UAV. We consider service variation by including QoS guarantees and
resource requirements for the services of this particular UAV. We also consider that one
service might require another to provide its capabilities, we therefore included required
services in our UAV.

When creating a new architecture for our UAV, we ensure the presence of the required
starting service by forcing one to be created at the time an architecture is created. In
this case we will make the OS the starting service. Figure 6.4 shows the newly created
architecture with its starting service OS.

With an architecture defined, we can then begin adding the services available within
our UAV. In this example we will consider that all elements of the UAV are services,
even the OS. This allows us to specify the OS, AA_100MB, AG_90MB, GA_25MB and the

GG_150M B as services of the UAV architecture. However, the OS was added previously as
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Fig. 6.4: The architecture defined with a starting service.

the starting service for the UAV, so we only have to add the remainiﬁg services. ard fhiu
for this specification we ignore the 200MB memory constraint from the previcus section
When we create a service, it must have at least one implementing component and at feasi
one service-message, unless specified as external. Those constraints are enforcer! wher, flie
service is created, by not allowing the creation of a new service until a component i ol
least one service message have been defined, unless defined as external. We will assiie

that none of our services are external, meaning they all must contain an impiementing

component, which will be named with the service name it provides concatenated with

word "Provider’ (example: AA_100MB_Provider). Lastly, before our services cau b cre

we must include at least one service message. In this case we assume each scrvice fin the
beginning) has only an AssessThreat service message, which we define when we cionie onr
service. Figure 6.5 shows the new services added to our UAV architecture.

With all of the services for our UAV defined, we can then go back and add more service

messages to non-external services. We also have the ability to add QoS guarantees, resci
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Fig. 6.5: The new services added to the UAV architecture.

requirements, parameters and required services to service messages, while also being able to
add QoS guarantees and parameters to required services. In this example we have assumed
that each service has its own implementing component and AssessThreat service message.
Now, for each AssessThreat service message we will add Téme and Distance parameters,
SecureComm and AssessmentTime QoS guarantees, a Memory resource requirement, and
a ParseThreat required service.

Lastly for this example, we will add a ThreatType parameter and a Timing QoS guar-
antee to the ParseThreat required service. Now that we have described our UAV, we can
see what the complete specification looks like in Figure 6.6.

Once our specification has been saved it is written to an XML document. The corre-
sponding XML for our UAV example is provided below; some portions have been omitted

for brevity.

<7xml version="1.0Q" encoding="UTF-8"7>
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Fig. 6.6: Partial tree view of our UAV design.

<1--This document is generated by DSSX-ADL version 3.0-->

<Specification xmlns:xsi="http://www.w3.org/2001/XMLSchema—instance"

xsi:noNamespaceSchemaLocation="http://www.cs.umanitoba.ca/”softart/schema—final.xsd">
<architecture name="UAV" openness="closed">

<starting-with>

<service accessibility="global" external="false" name="(QS" >
<component availability="protected" name—"OS _Provider" />
<service-message name="LoadServices">

<parameter-list name="Parameters"/>

</service-message>
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</service>

</starting-with>

<service accessibility="global" external="false" name="AA_100MB" >
<component availability="private" name="AA_100MB_Provider" />

<service-message name="AssessThreat">

<parameter-list name="Parameters">
<parameter name="Time" value="double"/>

<parameter name="Distance" value="double"/>

</parameter-list>

<qos-guarantee name="SecureComm" value="true"/>

<qos-guarantee name="AssessmentTime" value="&1t; 5 seconds"/>
<required-resource name="Memory" value="20 MB of RAM"/>

<required-service immediacy="immediate" location="local" name="ParseThreat">

<parameter-list name="Parameters">

<parameter name="ThreatType" value="String"/>
</parameter-list>
<gos-guarantee name="Timing" value="&lt; 1 second for result"/>
</required-service>
</service-message>
</service>
<service accessibility="global" external="false" name="AG_90MB" >

<component availability="private" name="AG_SOMB_Provider" />

</service>
</architecture>

</Specification>
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With the specification saved and the XML file written, our ADL provides support
for code generation. In this example, when run, the code generation tools create one
package for the UAV architecture, one remote interface for each of the services and one
implementation file for each of the components (see Table 5.1 and Section 5.3 for more
details on code generation). The generated code files can be viewed within our ADL,

following is an example of the generated remote interface for the AA_100MB service.

package UAV;

import java.rmi.Remote;

import java.rmi.RemoteException;

// This document is generated by DSSX-ADL version 3.0
VA

* This file describes the skeleton for AA_100MB

*

* COMMENTS:

*/

public interface IAA_100MB extends Remote {

public static final String ASSESSMENTTIME = "< 5 seconds";
public static final String MEMORY = "20 MB of RAM";

public static final String SECURECOMM = "true";

VEZLS

* interface method AssessThreat
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* @todo implement method AssessThreat in alternate class file

* @param Time double

* @param Distance double

*

@throws RemoteException
*/

public void AssessThreat (double Time, double Distance) throus RemoteException;

}//end interface

An example of the generated sourcecode of the providing component,

AA_100MB_Provider for the AA_1 00MB service is shown below.

package UAV;

import java.rmi.server.UnicastRemoteObject;
import java.rmi.RemoteException;

import net.jini.1ookup.ServiceIDListener;
import net.jini.core.lookup.ServiceID;

import net.jini.Core.discovery.LookupLocator;
import net. jini.lookup.JoinManager;

import net.jini.discovery.DiscoveryGroupManagement;
import net.jini.core.entry.Entry;

import net.jini.lease.LeaseRenewalManager;
import net.jini.lookup.entry.Name;

import net.jini.lookup.entry.ServiceInfo;

import net.jini.discovery.LookupDiscoveryManager;
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import net.jini.lookup.entry.Comment;
import java.rmi.RMISecurityManager;

import java.io.Serializable;

// This document is generated by DSSX-ADL version 3.0
[k
* This file describes the skeleton for AA_100MB_Provider
*
* COMMENTS:
*/
public class AA_100MB_Provider extends UnicastRemoteObject implements

IAA_100MB, Serializable, ServiceIDListener {

YETS

* This is the default comstructor
x/

public AA_100MB_Provider() {

}//end constructor

VELS

* interface method AssessThreat

*

@todo implement method AssessThreat in alternate class file

* @param Time double

* Qparam Distance double
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* Q@throws RemoteException
*/
public void AssessThreat(double Time, double Distance) throws RemoteException {

return null;

/k*
* skeleton of method ServiceIdNotify
* Qtodo complete method ServiceIldNotify
*
* @param serviceid ServiceId
*/
public void ServiceIdNotify(Serviceld serviceid) {

}

/[ *%

* skeleton of method getServiceld

* Q@todo complete method getServiceIld

* @return Serviceld
*/

public ServicelId getServiceld() {

return null;

VETS
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* skeleton of method toString
* @todo complete method toString

*

* @return String

*/

public String toString() {
return null;

}

}//end class

Finally the example sourcecode for how we implement our QoS and vesoiirce regirives
ments. As mentioned they are implementors of the AbstractEntry interface irom within
Jini, which then allows them to be used as both searchable criterion for clients and descrn

? X

tors for service providers.

package UAV;

import net.jini.entry.*;

import net.jini.lookup.entry.*;

// This document is generated by DSSX-ADL version 3.0

VET:

* This file describes the skeleton for SecureComm
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* COMMENTS:
*/
public class SecureComm extends AbstractEntry implements

ServiceControlled {

private String value = null;

/®%
* This is the default constructor
* Q@param value String
*/
public SecureComm(String value) {
this.value = value;

}//end constructor

VAL
* skeleton of method toString

* Qtodo complete method toString

*

*

@return String
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*/
public String toString() {

return null;

}//end class
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7. CONCLUSIONS

The problem of ever inéreasing monolithic software systems, and the push more and more
to service-based computing, drives the need for tools to create these systems.

In my thesis I have created a service-based architecture description language for use to
help design, implement, validate, refactor and evolve these service-based systems. Specific
focus of our ADL was given to flexibility in service-based systems, and to providing full
support for dynamically reconfigurable systems.

We maintained the focus on flexibility by taking the component-based system view and
chahging it, to stipulate that components are only vehicles which provide implementations
for services. In doing so, we made every part of a system a service, which could have various
locations and resource requirements. This then captured the essence of the service-based

paradigm, in that all systems are composed of interacting services.

7.1 Future work

With the current version of our ADL we can create specifications, edit and validate them
and even have some sourcecode created. From the results of test examples, like Chap-

ter 6.2, we have uncovered some remaining issues within our first iteration. Identifying




and addressing these areas of improvement and correcting any outstanding issues is the
direction for future work on our ADL. Some of these issues and what our solution will be

in the next iteration are outlined below.

e Runtime Environment: We need to include é runtime environment for testing the
specification in a ‘live’ setting. This would require the ability to start and configure
Jini services to run in conjunction with our ADL. We must be able to demonstrate
the dynamism of our specifications in terms of loading, unloading and searching for
services. With Jini, this is handled for us, as services can be local or remote, searched
for, downloaded (or not), and (de)activated at runtime. Using the Java classes for
reflection, we will include the ability to run the Jini environments by running the
associated jar files as though they were run from the command line. A path collection
mechanism will be created to allow users to specify where the required libraries are
located to run Jini services. Another option would be to use the tool provided by

Jini that presents a graphical mechanism for starting Jini services.

e [nteroperability: Our ADL is represented in XML, which can make it interoperable
with other ADLs and frameworks like: xADL [23] - which then provides interop-
erability with ArchStudio [42], ACME [13], xC2 [23], and OSGi [43]. To achieve
interoperability, we will use XSLT transforms, giving us the ability to convert our
XML representations to that of any other ADL that uses XML or similar markup

languages.

e Ezpanded Code Generation: Currently users can generate and view source skeletons
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for selected elements, but this is not sufficient for a useful design environment. We
must expand our code generation and handling to include the ability to edit the
code within our ADL, parsing of code and insertion of code snippets via element
properties; meaning the operations of methods could be declared during design time,
and be inserted into the code for the user. "This issue will be addressed by either
porting the ADL to Eclipse,A or by using the Eclipse editor libraries within our current

implementation.

e Running Generated Code: With generated code and the addition of the Jini runtime
environment, having the ability to actually execute the generated code to evaluate
its suitability. This would require the compilation of code within our ADIL as well
as accessing any external resources for running the compiled code. In our case that
would mean the inclusion of the Java compiler (javac) and launching the JRE from

within our ADL to run code.

o Ezpanded Code Support: While currently our code generation is targeted towards Jini,
it would be ideal if there was more than one type of code that could be generated.
Perhaps the inclusion of code support for other infrastructures such as CORBA could

be incorporated.

The ultimate goal of this work is to take our ADL and code generation tools and deploy
them as a plugin for the Eclipse Project [18]. Such a plugin would include the use of
perspectives within Eclipse as well as a graphical editor for specifications using the Eclipse

Graphical Editor Framework (GEF ) [19].
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APPENDIX




A. XML SCHEMA DEFINITION

Following is a full description of the XMI, schema representing our ADL language. It is
broken down into the individual elements of the schema, for easier understanding. The
schema was designed using global elements to eliminate duplicate definitions, and includes

an id system to allow for ID/IDREFS to correlate certain elements.
The specification element is the root element of the schema and only contains one child

type, an architecture.

<xs:element name="Specification">
<xs:complexType>
<xXs:sequence>
<xs:element ref="architecture" min0ccurs="0" max0ccurs="unbounded" />
</xs:sequence>
</xs:complexType>

</xs:element>

Fig. A.1: Schema element specification.

Architecture elements are composed of up to three types of children, there is one




starting-with child which must always be present, and there can be zero or more service or

architecture children.

<xs:element name="architecture">
<xs:complexType>
<xs:sequence>
<xs:element name="starting-with">
<xs:complexType>
<xs:sequence>
<xs:element ref="service"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element ref="service" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="architecture" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" type="xs:ID" use="required"/>
<xs:attribute name="documentation" type="xs:string"/>
<xs:attribute name="openness" use="required">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="open"/>
<xs:enumeration value="closed"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>

<xs:attribute name="name" type="xs:string" use="required"/>
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</xs:complexType>

</xs:element>

Fig. A.2: Schema element architecture.

There is only one starting-with element per architecture element, and it is used to

declare the service that acts as the starting service for that particular architecture.

<xs:element name="starting-with">
<xs:complexType>
<xs:sequence>
<xs:element ref="service"/>
</xs:sequence>
</xs:complexType>

</xs:element>

Fig. A.3: Schema element starting-with.

Services are described as components and service messages, there must one component

child, and there must be at least one service-message child.
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<xs:element name="service">
<xs:complexType>
<xs:sequence minOccurs="0">
<xs:element ref="component"/>
<xs:element ref="service—message" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" type="xs:ID" use="required"/>
<xs:attribute name="documentation" type="xs:string"/>
<xs:attribute name="accessibility" use="required">
<xs:simpleType>
<Xs:restriction base="xs;string">
<xs:enumeration value="local"/>
<xs:enumeration value="global/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="external" type="xs:boolean" use="required"/>
<xs:attribute name="provided-by-component" type="xs:IDREFS" use="optional"/>
<xs:attribute name="name" type="xs:string" use="required"/>
</xs:complexType>

</xs:element>

Fig. A.4: Schema element service.
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Components do not have any children, and act simply as an information store.

<xs:element name="component">
<xs:complexType>
<xs:attribute name="id" type="xs:ID" use="required"/>
<xs:attribute name="documentation" type="xs:string"/>
<xs:attribute name="availability" use="required">
<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="private"/>

<xs:enumeration value="public"/>
<xs:enumeration value="protected"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="provides-service" type="xs:IDREFS" use="optional®/>
<xs:attribute name="name" type="xs:string" use="required"/>
</xs:complexType>

</xs:element>

Fig. A.5: Schema element component.

Service-messages are children of only services, with the information they store describing

the remote methods of the parent service.

<xs:element name="service-message">
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<xs:complexType>
<Xs:sequence>
<xs:element ref="parameter-list"/>
<xs:element ref="qos-guarantee" minOccurs="0" maxOccurs="unbounded" />
<xs:element ref="required-resource" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="required-service" minOccurs="Q" maxUccurs="unbounded" />
</xs:sequence>
<xs:attribute name="id" type="xs:ID" use="required"/>
<xs:attribute name="documentation" type="xs:string"/>
<xs:attribute name="name" type="xs:string" use="required"/>
</xs:complexType>

</xs:element>

N |_'""""T_ """ T
s -aarequired-service 3

B e ' -t

0.0

Fig. A.6: Schema element service-message.

The parameter-list element behaves similarly to the starts-with element, in that it only

acts as a wrapper, in this case for Parameter elements.

<xs:element name="parameter-list">
<xs:complexType>

<xXs: sequence>
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<xs:element ref="parameter" minOccurs="0" max0ccurs="unbounded" />
</xs:sequence>

<xs:attribute name="id" type="xs:ID" use="required"/>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="documentation" type="xs:string"/>

" </xs:complexType>

</xs:element>

parameter-list

B R S A BN

Fig. A.7: Schema element parameter-list.

The parameter element describes a name type pair like (int, arg) and is contained only

as a child of a parameter-list element.

<xs:element name="parameter">
<xs:complexType>
<xs:attribute name="id" type="xs:ID" use="required" />
<xs:attribute name="value" use="required">
<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="int"/>
<xs:enumeration value="double"/>

<xs:enumeration value="String"/>

<XsS:enumeration value="void"/>

</xs:restriction>
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</xs:simpleType>
</xs:attribute>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="documentation" type="xs:string"/>
</xs:complexType>
</xs:element>

[

Fig. A.8: Schema element parameter.

A QoS-guarantee describes a searchable constant which provides information about

either service-messages, or required-services.

<xs:element name="qos-guarantee">

<xs:complexType>
<xs:attribute name="id" type="xs:ID" use="required"/>
<xs:attribute name="value" type="xs:string" use="required"/>
<¥s:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="documentation" type="xs:string"/>
</xs:complexType>

</xs:element>

Fig. A.9: Schema element qos-guarantee.
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Required resources are similar to QoS-guarantees, in that they describe information
about a service message. In this case though, they specifically describe any additional

resources that may be required by a service message.

<xs:element name="required-resource">

<xs:complexType>
<xs:attribute ﬁame="id" type="xs:ID" use="required"/>
<xs:attribute name="value" type="xs:string" use="required"/>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="documentation" type="xs:string"/>
</xs:complexType>

</xs:element>

required-resource

Fig. A.10: Schema element required-resource.

Service-messages can have external requirements as well, and those can take the form
of other services that are required to provide a service for another service. The required-

service element describe such dependencies.

<xs:element name="required-service">
<xs:complexType>
<xs:sequence>
<xs:element ref="parameter-list"/>
<xs:element ref="qos-guarantee" maxOccurs="unbounded"/>

</xs:sequence>
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<xs:attribute name="id" type="xs:ID" use="required"/>
<xs:attribute name="documentation" type="xs:string"/>
<xs:attribute name="location" use="required">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="local/>
<xs:enumeration value="remote"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="immediacy" use="required">
<xs:simpleType>
<¥s:restriction base="xs:string">
<xs:enumeration value="immediate"/>
<Xs:enumeration value="optional"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="name" type="xs:string" use="required"/>
</xs:complexType>

</xs:element>

parameter-list:

WS e e

required-service

R .

=
s

,qoS&Qﬁl,ﬂraiﬂe;

Fig. A.11: Schema element required-service.
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B. NOTES ON JINI

There are many technical aspects of Jini, most important to our research is the search
and selection process of the Jini lookup service Reggie. Reggie, exists on the network —
either a LAN or the internet, as itself a service, which provides the capability for users
(whether they are human or other services) to lookup and acquire services. The following
four figures outline the basic process of getting the lookup service and then getting a desired
service. Simply, this process involves the user requesting a service locator —F igures B.1(a)
and B.1(b), using the locator to find the desired service —Figure B.2(a) and acquiring the

service ~Figure B.2(b).

[Desiodsar

(a) Asking for a locator. (b) Getting a locator.

Fig. B.1: Searching for a service.

The services that are provided for the lookup service is handled in an almost identical
way, except that service providers provide their services to the lookup service, instead

of acquiring services for use. An important point here is that there is nothing stopping a




User

{Eesired Service

(2) Found desired service. (b) Acquire the desired service.
Fig. B.2: Finding and acquiring services.
service provider from being a user as well. The basic idea is the same for providing services;
first the provider asks for a locator and then uses the locator to make the provider’s service
available on the lookup service.

Another provision is the use of proxy servers. Using the lookup service in this manner
closely resembles how clients and service providers interact with the UDDI in web services.
Figure B.3 outlines this interaction. First the user and the lookup service communicate,
and so do the provider and the lookup service. Once the service request and provider have
been satisfied, the user is then directed to the service location, at which point the user

proxy interacts directly with the desired service.
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Fig. B.3: Jini proxy usage.
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