
Trigger Management in Active Multidatabase
Systems

William Douglas Baker

A thesis
presented to the University of Manitoba

in partial fulfilment of the
requirements for the degree of

Masters of Science
tn

Computer. Science

Winnipeg, Manitoba, Canada, 1gg4

@lVilliam Douglas Baker 1994

by

Trigger Management in Active Multidatabase Systems

I hereby declare that I am the sole author of this thesrs.

I authorize the University of Manitoba to lend this thesis to other institutions
or individuals for the purpose of scholarly research.

I further authorize the tiniversity of Vlanitoba to repr-oduce this thesis by pho-

tocopying or by othel means, in total or- in palt,, at the lecprest of other institutions
or individuals for the pulpose of scholarly resealch.

T}IE AUTHOR HAS GRANTED AN
IRREVOC ABLE NON-EXCLUSIVE
LICENCE ALLOTVING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS TI{ESIS
AVAILABLE TO INTERESTED
PERSONS.

TI{E AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE TFTESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

Sl"** FI National Library
ffi*{ Li of Canada

Acquisitions and
Bibliographic Services Branch

395 Wellinoton Street
Ottawa, Oñtario
K1A ON4

Bibliothèque nationale
du Canada

Direction des acquisitions et
des services bibliographiques

395, rue Wellington
Ottawa (Ontarìo)
K1A ON4

ISBN 0-3i5-99087-2

L'AUTEIIR A ACCORDE I.]NE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTTIEQUE
NATIONALE DU CANADA DE
REPRODTIIRE, PRETER" DIS TRIBUER
OU VENDRE DES COPIES DE SA
TI{ESE DE QUELQIIE MANIERE ET
SOUS QTIELQUE FORME QI]E CE SOIT
POTIR METTRE DES E)GMPLAIRES DE
CETTE TI{ESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QI.'I PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

Your l¡le Volte rélércrce

Out lile Notrc Élércnce

Canadif

O-. .f-¡ t t
Nome b'iltbak¡
Ditt"tr ose select ihe one subiect which most
neorly describes the content of your disserioiion. Ênter ihe ãor.esponding fou-ãigit code in the spoces provided.

i^
- .({¡JFu l\J ¡ec?-

SUBJECT TERM

Sublecr Cotegories

rwË wwffi&8wEwaffi$ eF8& s@€B&& S€EEN€E$
C0MtrIUNICATI0NS AND IHt ARTS psycholoov Os2s
4rchileclure..............................0729 Reíod¡nqi]...............................,.0535
Art History0377 Relioioùs0527
Cinemo0900 Scieices...................................0714
Donce......................................0378 Secondory................................0533
Fi¡e Arts ..,.........--......0357 Sociol Scíences0534
Intormotion Science..............0723 Socioloqy of O34OJournolism0391 Speciollj.....................,............0529
libroryScience..........,..............0399 fåo.herfràin¡nô.......................0S¡O
MossCommunicotions...............0708 Technoloqy.....l......_._...............02ìO
Music-...............0¿1 3 Tests ondñleosurements,.0288
Speech Communicotion0459 Vocotionoj......-...0747
Theoter 0¿ó5

EDUCATION
Generol051 5
Administrolion 05 I 4
Adult ond Continuinq 051 ó
Agriculturol :................. 05 I 7
Art -.. 027 3
Bilinouol ond Multiculturol0282
Business 0ó88
Community Colleqe,....O27 5
Curriculum ond Instructìon0727

PHITOSOPHY, RETIGION AND
THTOIOGY
Philosophv
Keirqron

Generol
Biblicol Studies
Clerqy
Histõry of....
Philosôohv of

Theology ..'...:.....

Speech Potholoqv

,, Toxicology.......i.'.
¡ome fconomtcs _....

PHYSTCAt S(|rN(tS

Conodion.......

Lolin Americon
Middle Eosfern .

United Stotes....
History o[Science ..
Low.................
Politicol Science

........0334

........0335

........033ó

........0333

........0337

.......0585

........0398

Generol,.................. 0ól 5
Internotionol Low ond

Relolions Oól ó
Public Adminiskotion Oól 7Recreolion081 4

Sociol Work OAS2
Socioloov

Geñérol,........ Oó2ó
Criminoloqy ond Penoloov ... Oó22Demooropìry .::. . O93B
Ethnic onð Rociol Studies Oó3ì
Individuol ond Fomilv

Studies:............ Oó28
Industriol ond Lobor

Re1otions Oó29
Pubiic ond Sociol Welfore0ó30
Sociol Structure ond

Development OTOO

_ Theory ohd Methods0344
I ronsporlotion _............... 0709
Urbon ond Reqionol Plonnino0999
Women's SrudíesL.... O¿S¡

..........03ì I

.......... 032 l

.......... 031 I

..........0320

....0422

...0322

...04ó9

Higher 0745
Hiitory o[......0520

I.ANGUAGT, I.ITERAIURT AND
r.rNGUtsTt(5
Lonouooe

Generol-.0679
4ncient............................... 0289
Linguistics 0290
Modern 0291

Literolure
Generol -............................. 040 I
Clossicol -. 029 4
Comporot¡ve 029 5
Medievol 0297
M-odern -....... 0298
Alr¡con 031 ó
Americon_................ 059ì
Asion -..............................,. 0305
Conodion {Enqlish) 0352
Conodion (French) 0355
Enolish 0593
Germonic031 1

Lotin Amerìcon 031 2
Middle Eostern,..03 1 5
Romonce 031 3
Slovic ond Eosf Europeon.....03l4

KN@å&åËËmgN&
.,..0320
....0372
,...0373
....0388
....04t I
....0315
....0426
.... 0¿ I I
...098s
....0427
. 03ó8
...04t5

SOCIAI. SCIEN(ES
Americon Studies-.-. 0323
Anlhropology

Archoeoloqy 0324
Culturol ...l......... 0326
Physicol,........ 0327

Businels Adminislrolion
Generol 031 0
4ccountin9 027 2
8onkin90770
Monoqement-....... 0¿5¿
Morkeiinq0338

Conodion Stùdies 0385
Economics

Genero¡,.............. 050 ì
Aqriculluroi 0503
Còmmerce-Business 0505
Finonce.............0508
History...,............................ 0509
Lobor-................................. 05ì0
theory................................051 I

Folk|ore 0358
Geoorophy......... 03óó
Geroìntcilogy 035 I
nrsrory

(ienerol . -........... ..,........... -.. 0 57 I

Home Economics 0278
lndustriol0521
Longuoge ond Literoture0279
Mothemotics 0280
Music,...............................0522
Philosophy of 0998
Physiccil 0523

YffiE S€BffiN€MS &NM
Bt0t0Gr(At sctINCES
Aqriculture

çenero| ..,.......... 0 47 3
Aoronomy 0285
Añimol CLlture ond

Nutrition,................O47 5
Animol Potholoqv 047ó
Food Science oñä

Technoloqy 0359
Forestry onð Wildlile 0478
Plont Cu1tureO479
Plont Potholggy O¿80
Plont Physroloqy0817
Ronqe Monoqãmen¡ 0777
Woõd Technõloov07 46

ó¡otoov
Gënero|,............................. 030ó
Anotomy 0287
Biostotisiics 0308
Botony,............................... 0309
Cell ..'................. 037 I
Ecoloqy 0329
8nfomo|oqy........................ 0353
Genet¡cs,........ 03ó9
Limnoloqy 0793
Microbiõloqy 0¿l 0
Moleculor :......................... 0307
Neuroscience 03 I Z
Oceonoqrophy,................... 04 I ó
Phvsìoloõv:..................... 0433
Rodiorioñ'............................ 082 I
Velerinory Science....,.......... 0778

^.
2oo1o9y0472

öropnyStcs
Generol0786
Medico1 07 60

EARTH S(ITN(ES
Bioqeochemistry.. O 425
Geõchemistry 099ó

HEAI.TH AND ENVIRONMENTAL

sqtN(ts
Environrnenfol Sciences 07ó8
Heollh Sciences

Generol O 56ó
Audio|oqy.........................,. 0300
Chemolheropy 0992
Dentistrv -. 0 567
Educotión-...... 0350
Hospitol Monooem enl 07 ó9
Humon Development 0758
lmmunoloqy 0982
Medicine ðird Surqery 05ó4
Mentol Heolth:....'............ 0347
Nursinq,.....05ó9
Nuhitiõn,.................. 0570

Pure Sciences
Chemìstry

Generol 0485
Agriculiuro1 07 49
Anolylìco1 048ó
Biochemistry 0487
Inorgonic 0488
Nuc|eor 0738
Orgonic.............................. 0490
Phoimoceuticol 0 4g 1

Physicol,. O49 A
Po|ymer 0495
Rodiol¡on 07 5 4

Molhemotics -............... O¿05
Physics

Uenero| 0ó05
Acousf ics 098ó
Astronomy ond

Astrophysics............. 0ó0ó
Almospheric Science............ 0ó08
Atom¡c,..... 07 48
Electronics ond Electricitv0607
EIemenlory Porticles ond

Hlqh tnerqy....... 07 98
Fluidond Plõómo 0259
Mo|ecu1or 0ó09
Nucleor,............ 0ó'l0
Optics 07 52
Rodiot¡on 07 56
Solid Srore,................ 0óì I

Stotistìcs 0463
Applied Sciences
Applied Mechonics 034ó
Computer Science 0984

Enqineerino
YGenerol 0537

Aerospoce 0538
Agricullurol 0539
Automol¡ve 0540
Biomedicol 0541
Chemico10542
Civi|,.. .. 0543
Eleclronìcs ond Electricol0544
Heot ond Thermodynomìcs ... 0348
Hydrou1ic 0545
Industriol 05¿ó
Morine0547
Moteriols Science 0794
Mechonicol 0548
Metollurqy07 43
Mininq 1............................. 0551
Nucleór0552
Pockoqìnq 0549
Pelroleum07 ó5
Sonito¡y ond Municipol 0554
Syslem 5cience...0790

Geotóchnoloqy 0 428
Operotions RËseorch0796
Ploslics I echno1oqy 079 5
Textìle Technolog-y 099 4

0460
0383
038ó

Obstelrics ond Gynecoloqy
Occupotionol Heôlth ond'Occupotionol

'loqv ..0380
nd'

Theropy 0354
Ophtholóo1ogy 038 I

PSY(HOtOGY
Generol
Behoviorol
Clinicol
Developmentol
fxpenmentol
Induslnol
Personolify..........
Physioloqícol
Psychobó1ogy
rsycnomerncs
òocro|................... .

Pothology,... i........
rnormocotogy
rnormocy

............057ì

............04ì 9
o572

.0ó2t

.0384

.0622

.0620

.oó23

.0ó24

.0625

.0989

.0349

.0ó32

.0¿51

rnormocy UJ / I
Physicol theropv 0382
Public Heolth ' o573......... ,0573Public Heolth...

ÞÞ-lalvl {J"Nß{
SUBJECT CODE

Ancient........................
Medievol
Modern,.
81ock,.....
Atricon
Asio, Austrolio ond Oceonìo 0332

o579
058 I
0582
0328
033 I

Rodioloqy 057 4
Recreohon 0575

Nom
D;,,"uiets'Veui|lezs.v'p.choisir|esu|etquidécrit|emieuxvotre
thèse et inscrivez le code numérique opproprié dons l'espoce réservé ci-dessous'

I]-[-T-I KJrußr
SUJET

CoÍégories por su¡ets

wwffiA$$BY'ÉS &Y S€effi$8€Ë$ S@€E&&ËS

Lecture
Molhémotiques
Musrque,.,....,.
Orieniolion el consullotion
Philosophie de l'éducotion
Physique
Prógrómmes d'études el

s€ËEå{€Ës ffiY B8ü6ÉNsËRå&

Européenne,....,.. 0335
Moyen'oriento|e 0333
Lotino-oméricoine................ 033ó
Asìe, Austrolie et Océonìe.... 0332

Histoire des sciences............ 0585
loisirs 081 4
Plonificotion urboine el

réqiono|e 0999
Scieñce politìque

Générolirés 0ól 5
Adminìstrotìon publique 0ó I 7
Droit et relofions

inlernotionoles 0ól ó
Socioloqìe

Générolirés 0ó26
Aide et bien-òtre sociol 0ó30
Crìminologie et

óloblissements
pénitentioìres 0627

Démoqroohie 0938
Etudes"de l' individu el
- de lo fomille..........0ó28
Eludes des relotions

inlereihniques el
des relolions rocioles 0ó3l

Sfruclure el dóveloppemenl
sociol,............. 0200

Théorie et méthodes.,...O34A
Trovoil el relotions

indushìe11es,...... 0ó29
Tronsporls 0709
Trovoìl sociol 0452

Biomédicole
Choleur et ther

modynomique
Conditìonnement

I F-h^ll^^.ì
^rÈ...¡ve'¡vvv/

1.i....
uen¡e oetospolror
\renre cnrmrqUe
uenre ctvrl

..............0579

. 058 1

......0582

.............0328

.............. 033 1

...0334
...0332

. ..0541

. .03¿8

....0549

....0538

....0s42

....0543
lìÁnìa Álo¡lr¡nì¡,,o ot

électrique........05A4
Génie induslriel 054ó
Génie méconique 0548
Génie nucléoirô................... 0552
Inqénierie des systömes........ 0790
Mèconìque novo1e 05y'7
Méto|1urqie,............ 07 43
Science ðes molórioux 0794
Technique du pétrole07 65
Technicjue miriière 0551
Techniques sonìtoires et

munìèipo|es........,............. 0554
Technolooie hvdroulioue 0545

Méconique oäplicíuee.....1.......... 034ó
Géorechnoloöiê0428
Motìères plos'Íiques

fTechnolobie)0795
Recheiche opérõtiónne||e 079 ó
Textiles et tisìus (Technologìel0794

CODE DE SUJET

Ancienne -...........
Médiévo|e...........
Moderne.............
Histoire des noirs .

Africoine

Etols-Unìs

P5Y(HOI.OGIE
Générolités
Personnolité
Psvchobiolooie
Psícholooie"clinioue
Psícholoõie du cómoorlemenl
Psicholoõie du dévéloooement ..

Psícholoõie exoerimeritä|e
Psícholoõie industrielle..............
Psycholo!ie physiologique
rsvcnotoore socrote
Psychomðt.ie

(OMMUNI(ATIONS TT TEs ARTS
Architecture 07 29
Beoux-orls0357
Bibliothéconomie,-..... 0399
Cinémo 0900
Communicotion verbole............. 0459
Communicotions 0708
Donse ..-.-................................. 0378
Histoire de l'ort 0377
Journolisme 0391
Musique-.-........... 041 3
Scienèes de l'informotion0723
Théôke 0¿ó5

Éoucnrroru
Générolités515
Administrolion 05 ì 4
Art 027 3
Coìlèqes communoutoires 0275
C^-'i"r¡p .0ó88
[conomie domesfique................ 0278
Educotion oermonénie.........-.,.,. 051 ó
Educotion bréscoloire 051 I
Educolion lonitoire 0ó80
Enseionement oorico|e............... 051 7
Enseiãnement bïlinque et

m u I li cullurel 0282
Enseiqnemenl industriel-.. 052ì
Enseiãnement orimoire. 0524
EnseiInement Þçfessionnel07A7
Ensei!nemenl ieligieux 0527
Ensei[nement secõndoire 0533
Enseiqnement spéciol,..... 0529
Enseiõnemenl sLpérieur 07 45
Evoluãiion 0288
Finonces 0277
Formotion des enseiqnonts......... 0530
Histoire de l'éducotiõn 0520
I nnn, ,ec pt littárnt, ¡rp .0279

scrENCtS Bt0r.0Gl0ut5
Aqriculture" Gónérolirés 0473

Aqronomie. . ,.0285
Alïmenlotion et technoloqie

o1imentoire 0359
ÇullureO479
Elevooe el olimentotion-.. 0r'75
Exolo-rtotion des oélvroqes ... 0777
Poiholoqie onimole1........ 047ó
Potholoõie véqétole 0480
Phvsiolõqie véioétole .,.......... 08 I 7
Svfuicultüre et loune 0478
Téchnoloqie du bois............. 074ó

Bioloqie
Générolirés 030ó
Anotomie........... 0287
Biolooie {Stotistiques} 0308
Bioloõie moléculóire 0307
Botonìque 0309
Çellule 0379
Ecoloqie,.................... 0329
Enlom-oìoqie ...,.................... 0353
Génétiquã........................... 03ó9
Lìmnolobie -...... -............. 0793
Microbiõ1oqie 041 0
NeuroloqiJ...........-............. 03 ì Z
Océonoõroohie 0¿ì ó
Phvsioloöìe'......................... 0433
Roäiof ioñ 082 I
Science vélérinoire 0778
¿ooloqle v4 / t

Biophvsìqi,e'Gi;néi.olirés 078ó
Medicole -........................... 07ó0

SCITN(Es DE tA TTRRE
Bioqéochimie .,.... 0 A25
Géõchimie -. -..................... 099 6
Géodésie,0370
Géogrophie physique................ 03ó8

.....0535
. .. 0280
.....o522
.....0519
.....0998
.....0523

Sciences socio|es,...... 0534
Socioloqie de l'éducotion...........0340
Technol-ogie 07 I 0

I.ÂNGUT, IITTÉRATURT TT

I.INGUISTIOUE
Lo nques

öénérolités 0679
Anciennes0289
Linquislique 0290
Moãerne!0291

L¡ttéroture
Générolités 0401
Anciennes ...,......O29 4
Comporée0?9 5
Medíévo|e.......... 0297
Moderne.................,,.......... 0298
Africoine 03 I ó
Américoine 059'i
Anqloise -. 0593
Asiátique,...................... 0305
Conodienne {Anoloise) 0352
Conodienne (Fronçoise) 0355
Germonique 031 I
Lotino-oméricoine................ 03'l 2
Moyen-orientole,....... 031 5
Rorírone,.. - 03 ì 3
Slove el esl-européenne03ì 4

PHII.OSOPHIT. REI.IGION ET

THEOTOGIE
Philosophie.........
Reliqion

êénérolités
Clerqé
ÉrudËs bibliques
Histoire des ieliqions

_, . Philosophie de lã religion ...
Ineorogre

.0422

.03 rI

.0319

.0321

.0320

.0322

.0a69

sqtNCts S0crArEs
Anlhroooloqie

Arëhéofoqie -.. -.... -..... 0324
CulturellJ........... 0326
Physique 0327

Droit,.............................0398
Economie

Générolités-................ 050'l
Çommerce-Affoires.............. 0505
Economie oqrico]e 0503
Economie dú trouoìl 05 I 0
Finonces 0508
Histoire .-............................. 0509

. Théorie..........,....................05'|ì
Ftrdps nmérirnincs .0323
Etudes conodiennes................... 0385
Etudes féministes 0¿53
Folklore...-................................ 0358
Géoqroohìe 03óó
Géronto|oqie 035 I
Geslion de-s offoires

Gónérolités0310
Administrotion 0A54
Bonques0770
Comþrobil¡ré 0272
Morketinq 0338

Histoire
Histoire générole 0578

........0372

........0373

........0388

...,.,.. 041 I
..,....04r 5
........0345
....,...042ó
........0¿18
........0985
........0a27

SqtNcts PHYstouts

Sciences Pures
Lnrmre

Genérolìlés
Biochimie......................
Chimie oqrìco|e.............
Chimìe oñolytique
Chimie minórolä
Chimie nucléoire,..
Chimie orqonique
Chimie phärmciceutique .

......0485

........487

......0749

...... 048ó

......0488

......0738

...... 0490

......0491
SCIENCES DT |.A SANÏE ET DT

L'TNVIRONilTMTNT
Économie domestique................ 038ó
Sciences de l'envirónnemenl 07 ó8
Sciencés de lo sonlé

Générolités ...-..................... 05óó
Administrotion des hìpitoux .. 07ó9
Alimenlotion et nutrilion0570
Audioloqie 0300
Lhlmlolneropfe-.-.... vYY I
Dentisterie O 5ó7
Déveloooemenl humoin 0758
Enseionement...................... 0350
lmmu"noloqie,................. 0982
Loisirs1....,-..,. 0 57 5
Médecine du trovoil et

thóropie 0354
Médecìhe et chirurqie 0564
Obstétrioue et qvnðcoloqie... 0380
(Johlolmoloore 0381
Oi'thophonìe" 04ó0
Potholoqie .. -. -..................... 0 57 1

Phormoãie0572
Phormocoloqie 041 9
Phvsiothérop"ie-............... 0382
Rolioloqie057 A

Sonté mËnto|e0347
Sonté publique . -. -................0573
Soins ínfirmiers,......... 05ó9
Toxicologie-......... 0383

Physique....
rotymçres
Rodìotion ...

o49A

Mothémotiques
Physique' Gènérolités

Acoustique-........
Astronomie et

.0495

.0754
0405

.0ó05

.098ó

oslrophysique................... 0ó0ó
Ejecçonique èt élechìcité0607
Fl,,,dÞ< êr ñr^<mñ 0759
Méléorologie 0ó08
Optique .. -.........07 52
Pcjrticules (Physìque

_, nucléoire) 0798
Physique otomique 07 48
Phvsiciue de l'étot solide0óì I

Phvsiciue moléculoire 0ó09
Phvsidue nucléoire............... 0ól 0
Rodiotion 075ó

Stotistiques04ó3

Sciences Aopliqués Et
Technolooi'e'
InformotiqJe 0984
Inoenìerìe

Générolilés O537
Aqricole,............... 0539
Aùtomobìle 05¿0

o62l
0625
0349
0622
038¿
oó20
o623
oó24
0989
045 l
0632

tr*'sw7

TRIGGER MANAGEMENT IN ACTIVE UIILTIDATASASE SYSTE}TS

I{II¿IAH DOTIGI.AS B.AKER

A Thesis submitted to the FaorlÇ of Graduate Studies of the University of Manitoba in partial

fulfillment of the requirements for the degree of

I,ÍASTER OF SCIENCE

@ 1994

Pennission has been granted to the LIBRARY OF THE UMVERSITY OF MANTIOBA to lend or

sell copies of this thesis, to the NATIONAL LIBRARY OF CAòIADA b microfifm this thesis and

to lend or sell copies of the film, and UNTI/ERSITY MICROFILMS to publish an abskact of this

thesis.

The autho¡ reserves other publications rights, and neither the thesis nor extensive extracts ftom it
may be printed or otherwise repmduced without the autho/s per::nrission.

BY

Trigger Management in Active Multidatabase Sysf ems

The University of Manitoba lecluires the signatures of all persons using or pho-
tocopying this thesis. Piease sign below, and give address and date.

iii

Abstract

Multiclatabase systems aïe constluctecl from autonomotts inclepencient clat¿rbase

managers and are an alte-,.'native to homogeneous integrated clistributecl clatabase

systems. Two or more clata items that are lelated through a value clepenclency are

termecl interdependent data. Multiclatabase systems may recluire that the value

dependencies of interdepenclent data be satisfied. Active clatabases clefine lules ol
triggers to automatically perf'or-m actions when certain clatabase conclitions alise.

This thesis provides a model for an active multiclatabase system capable of main-

taining interdependent data. It rigorously formulates the different types of tligger-s

and events that participate ìn an active multidatabase system. A definition of ac-

tive multidatabase serializability (callecl AMDB-serializability) is introducecl ancl

a graph theoretic tool is clescribed that clefines precisely when a given execution

sequence is ser-ializable. An ar-chitecture for tr-igger ancl transaction management in

an active multidatabase system is clefined to descr-ibe the interactions between the

different software layers of the management facilities. The architecture is usecl to

identify the components that are required for trigger management, event cletection,

and concrurency control. This thesis introduces algorithms for these components

and describes the interactions between thern. The correctness of the concurrency

control algorithms in ensuring AMDB-serializability is shown using the glaph theo-

retic tool. These algorithms are incolporated in such a way that they clo not violate

the autonomy of the local database systems.

1V

Acknowledgements

I would like to thanlç many people fol their suppor-t while I was writing this thesis.
First, and foremost, I would like to thank my supervisor Dr. Ken Balker. FIe taught
me how to do research and how to wlite up your results. There often were times
when I questioned the directions he was taking me but I now unclerstancl that all
of the "grunt work" was necessary to ensure the research is well-founcled. Seconcl,
I woulcl like to thank the members of the Advanced Database Systems Laboratory.
The research gloup meetings that were held folmed new ideas ihat were eventually
added to this work. Third, I must thank the good people of the Computer Science
ancl Vfath department at Brandon University. They gave me a stlong background
in the undergladuate principles upon which this thesis rests. Finally, I would lil<e
to thaniç my parents. Their encouïagement and support over these many year-s
cannot be matched and I could not have done it withotit them.

Contents

1 Introduction
1.1 Interdatabase Depenclencies

I.2 Active Database Systems

L.2.I Active Multidatabase Systems

10I.J

1.4

Background

2.I Fundamental Definitions

2.I.1 Seriaiizability

2.2 Relatecl Wolk

Formal Model of AMDS

Transaction Types

Giobal Triggers +4

3.2.1 Triggel Events 45

3.2.2 Coupling Modes

Flistories

Global Transaction Families

AMDB- Serializability .

Active Multidatabase Serializability Graphs

AMDS Architecture.

1

4

5

o

7

I
Problem Definition

Outline of Thesis

3A
o1ò.1

e.)

\2

42

42

10

10

T2

46

50

ÐJ

60

3.3
q,1
ù.+

ó.Ð

3.6

VI

Tt-igger X[anagement in Active Mu]tidatabase Svstems vlt

64

ol

69

7T

J.f

J.ò

4.2

tq+.J

4.4

Active Multidatabase Serializabiliiy Theorem

Summary of Assumptions

Global Trigger Manager

4.7 Full Dependency Trigger-s

4.1.1 Embeddins Issues

Genelic GST

tò

fÐ

tù

93

LO7

108

109

122

130

1t)
.L.Jd

GST SLrbmission

Signal, Quely, and Termination Handling

Global Scheduler

5.1 Schedulel Requirements

5.2 Active Global Schedulel for. AMDB-Ser.ializability

5.2.I Correctness of the Active Globai Scheduler

Conclusion

6.1 Interdatabase Dependencies

T,ist of F igures

1.1 Components of an MDS

I.2 ANIDS Architecture.

Example Postgres rules

Arr.liti..r "rrler \Lrlrrurrró r Lrru

Incoming user commancl

Rewritten user command

3.1 Sample Event trees

3.2 Summary of Coupling Mode Implications

3.3 Depiction of Transaction Families for Example 3.4.1 .

3.4 Depiction of the Computational Model

3.5 CDG for Example 3.5.1 .

3.6 MSG for Example 3.3.1 .

3.7 AMSG for Example 3.6.1

3.8 AMSG for Example 3.7.1

4.I Illustration of the GTRM 70

4.2 Generic Global Subtransaction . 76

4.3 Global Trigger Managel Submission 81

4.4 GST trigger modification . 83

4.5 GST monitor procedule 84

4.6 GST embeddins routine 86

2

8

2.1

2.2

r)?

2.4

29

30

Ð1J1

31

tL7

ÐU

55

Ðo

59

61

63

65

viii

Trigger Management in Active Xlultidatabase Sysúems ix

87

88

92

97

A7

4.8

4.9

4.10

A 11t. a I

tl 1n
A.IL

/t 1t
:1 . _L t_'

4.r4

+.1¿)

5.1

(t

d.-t

-r

ð.o

Embedded GST

Terminator insertion routine

Event Log Tlace fol Exarnple 4.3.1

Global Trigger Managel Signal Handlel

Global Trigger Manager Query Handler

Global Tligger Manager Ter-rnination Flandler

Plocedure Terminate

Subtransactions Bxecuting At Each

Event Log Trace for Example 4.4.I

Site

98

100

101

r02

106

110

IT4

Global Scheduler

Active Global Schecluler' (PaLt 1)

Active Global Scheduler' (Part 2)

Global Transaction Dependencies of

Trace of the AGS execution (part 1)

Tlace of AGS execution (part 2)

Example 5.2.3

115

118

123

124

Trigger Nlanagement in Active lulttltidatabase Systems

Glossary of Acronyrns

AGS Active Global Schedulel
AGSS Agressive Global Serial Schecluler

AMDB Active Multidatabase
AVIDBSR Active Multidatabase Serializable
AMDMS Active Multiclatabase Management System

AMDS Active Multiclatabase System
AMSG Active Multiclatabase Serializability Graph
CDG Causal Dependency Graph
DG Dependency Graph
trL Event Log
GH Global History
GRiVI Global Recovery Manager
GS Global Schedulel
GSH Global Subtransaction History
GSS Global Serial Scheduler'

GST Global Stibtransaction
GT Global Transactior-
GTF Global Transaction Family
GTM Global Transaction Manaqer-

GTR Global Tligger
GTRD Global Trigger Dictionary
GTRM Global Triggel Manager
LDB Locai Database
LH Local History
LRM Local Recovery Manager-

LS Locai Scheduler
LT Local Transaction
LTM Local Transaction Managel
MDBSR Multidatabase Serializability
MDMS Multidatabase Management Systern
MSG Multidatabase Seriaiizability Graph
TFT Transaction Family Tree

Chapter l-

ïntroduction

A mttltidataba"se systern (MDB)is a collection of autonomous ancl possibiy heter-o-

Seneous) pre-existing local database systems (DBMSs). An MDB supports global

applications that access data items in mole than one local database. This environ-

ment cliffers fi'om traditional homogeneous distributecl database systems in that it
interconnects DBMSs in a bottom up fashion, thereby allowing existing applica-

tions developed on each of the DBMSs to be executable without rnodification. An

MDB aliows the sharing of data and resources at the same time as retaining the

autonomy of local database systems.

The autonomy of the local systens makes multiclatabase reseaÌch especially clif-

ficult. This requirement means that any work done to the MDS cannot moclify

the local database systems local operations. That is, a local clatabase participat-

ing in an MDS has its choice of tlansaction moclel, quely techniques, ha¡clwar-e

configurations, etc.

A high level component view of an MDS is pr-esentecl in Figure 1.1. The envi-

ronment contains a number of independent local database systems and the MDMS

CHAPTER 1, INTRODUCTION

Figure 1.1: Components of an MDS

layer which lies above them. The MDMS allows users to access multiple local

clatabases with one transaction. Local users of some database may also submit

transactions directly, as if the local database did not exist as part of an MDS. As

far as a local database is concernecl the ViDMS is just another local user. This

construction maintains the autonomy of each local database'

The areas of research in multidatabase systems include schema integration, as-

pects of heterogeneity, autonomy, clifferences in data lepr-esentation, global quely

processing) concurrency control, r'eliability, seculity, ancl global integrity constraints'

MDS Layer

DBMSl

CTIAPTER 1. INTRODUCTION

lelevant to this thesis soThe aspects of global integrity constraints is particular-ly

we describe it in more detail in the next section.

1-.1- ïnterdatabase Ðependencies

One of the problems in rnultidatabase systems is the maintenance of global i¡tegrity
constlaints. These are often called interdatabase dependencies. Interdatabase cle-

pendencies arise when two or more data items located at differ.ent local clatabases

are related in some way such that if one is updated with a new value then the other

may have to be updated in ordel fol the two data items to be semantically co¡r'ect.

The following presents some examples of intelclatabase dependencies.

Exarnple 1.1.1 Consider a multidatabase systerl consisting of a phone company

database and a constr-uction company clatabase. The two associations are worliing

togethel on several plojects and r-equire access to each others clata. The i'for.mation

for one of the projects is read often by usels at each site but is rarely upclatecl. The

database administr-ators have decidecl to replicate this infolmation at each site to

improve pelformance. Flence, we have the following interclatabase clepende¡cy:

P r oj ect _X _copyl :: P r oj ect _X _copyT

If some tlansaction updates one of the ploject infor-mation items then the system

must automatically update the other.

The company leaders have also decided that the cost of project X must never

exceed the cost of project Y. The phone conpany manages the cost of project X
and the construction company manages the cost of ploject Y. This results in a
second interdatabase dependencv:

CTIAPTER 1. INTRODUCTION

Proj ect -X -cost 1 Proj ect-Y -cost

1,.2 Active Ðatabase Systerns

Tlaclitional clatabases ar..e passive persistent stores. Data in the clatabase are in-

serted, cleletecl, modifiecl, ancl otherwise manipulatecl. The database cloes not per-

for.m operations so all operations on the clata are made entilely by users inclucling

constraining their values. It is the users lesponsibility to ensure operations on clata

are "semantically corlect" and that all necessary actions ale perfoltnecl, inclucling

maintaining integrity constraints.

Actiue clataba.ses define ru,les or triggers to automatically pet-f'orm actions when

certain conclitions in the database arise. These actions usually occttl as a response

to actions caused by tlansactions executing on the database. The database monitors

transaction execution, detects events that triggel actions, sets ttp triggeled actions,

and executes therrr.

Active clatabases ancl knowleclge bases use similar constrncts [35]. Both r-eact

to events genelated in the database ancl respond with some action. However, the

main clifference between the two is the way triggers aLe executed. Database triggers

are executecl as a result of normal clatabase operatious. Rules in knowleclge bases

are usually executed upon explicit lequest of an application ancl attempt to clerive

ìnfolmation from a database of. facts.

Triggers have many uses in active databases including maintaining integrity

constraints, view management, access control, logging, aler-ting, etc. This helps

in writing clatabase tasks by removing the responsibility of executing consistency

w

CHAPTER 1. INTRODUCTION

maintaining opelations for the user. In addition, triggels are only clefinecl once so

code reuse occuls and fewer elror-s are experienced.

Resealch in active databases include detection of complex events, triggel ex-

ecution models, trigger colrectness, optimization of triggel execution, etc. The

featules of active databases are cullently being extenclecl to other paracligms such

as object-orientecl clatabases [1, 19, 16, Zl.

L.2.L Active Multidatabase Svstems

We define an actiue mu"ltidatabase system (AMDS)that will automatically pe¡form

actions when cer-tain "multidatabase conditions" arise. Tr-aclitional active clatabase

use euent detection mechanisms to rnonitor the opelations of executing tr-ansac-

tions' Each event is generally passecl to a trigger subsystern which cletermines if
a trigger event has occurred, and if so, will execute the triggered action. The na-

tule of a multidatabase system complicates trigger event cletection ancl execution

because a multidatabase is constructed in a "bottorn-up" fashion whele local claia-

ìlase systerìs al-e autonomous and cannot be rnoclifiecl. If a local clatabase system

is not initially active then detecting events of executing multidatabase transactions

at that site is vely difficult. Local databases that are initially active woulcl lecluir-e

extensive rnodifications to allow the multidatabase to benefit from the trigger ex-

ecution and event detection techniques. Mechanisms that incorpolate activeness

into a multidatabase system must ensure that the autonomy of the local systems

is not violatecl.

CHAPTER 1. INTRODUCTION

tr-.3 AMÐS Architecture

We use an active multidatabase architecture (AMDS) as a platform f'or the worli

presentecl in this thesis. The components of an AIVIDS are clepictecl in Figrue 1.1.

Each local clatabase is managecl by a clifferent DBMS. The AN{DIVIS layer provides

users with the ability to access different local databases. lVe will concentrate on

the pa¡ticular events necessary for tr-igger ancl transaction management in this en-

vir.onment (Figure 1.2). Ttris architecture assumes that each local clatabase systeur

lras a common centralizecl structure (for example, Bernstetn et al. [8]) anct is basecl

on one provicled by Barker [6].

The components of a DBMS are a Local Transaction Nlanager (LTNI)' a Local

Sched,uler (LS), and a Local Recouery Manager (LRM). The LTM interacts with

the user, coordinates the atomic execution of transactions, ancl hanclles transaction

initialization proceclures such as tr-ansaction identification. The LS is responsible

for cor..rect concurr-ent execution of transactions submitted to the DBMS ancl may

¡se any concurrency control technique. The Local Recovely Manager ensures the

iocal clatabase (LDB) contains precisely the effects of committecl tlansactions.

The AMDMS layer rests above the DBMSs and plovides a communication fa-

ciiity between local DBNISs. Its four components inclucle a Global Transaclion

lVlanager (GTM) , Global Trigger Manager (GTRM) , Gloltal Sclt'eduler (GS)' and a

Cltobat Recouery Nlanager (GRM). The GTM hanclles transaction management du-

ties relatecl to tr-ansactions spanning multiple clatabases including zr,ccepting tlans-

action submission from users, ensuring their syntactic correctness, ancl ultimately

¡eturning resuits to the user.. The Giobal Trigger Manager is lesponsible for control-

ling event cletection ancl trigger.. execution in the multidatabase envit-onment' The

Global Schecluler provides concur-r-ency controi fol global transactions and multi-

CHAPTER 1. INTRODUCTION

database tliggers. The Global Recovery Manager ensures that global tlansactio¡s

and triggers execute reliably and are recoverable.

7,.4 Froblem Definition

This thesis addresses the problem of tr-igger managernent ancl concu¡r'ent t¡ansac-

tion execution in active multidatabase systems. Acti,ue multiclatabase serializability

is defined, which is an extension of multidatabase serializability 16l applicable to

multidatabase systems. This provides a theoretical basis for the discussion of con-

cullency control algolithms. Event detection and triggel execution mechanisms

are described' The thesis then plesents a scheduler for executing transactions and

triggeled actions concurrently in an active multiclatabase envilonment.

This thesis makes the followins contributions:

1. Plovides a summary of previous leseaÌch relatecl to actiae multid,atabuse sus-

tems.

2. Discusses the problems encountered in provicling general trigger management

in an active multidatabase system.

3. Introduces a new correctness criteria fol the active multidatabase environ-

ment.

4' Provides mechanisms for event detection and trigger support with minimal

violation of local database autorromv.

5. Offers a global scheduling aigorithrn which guarantees corlect execution of

global transactions and tr.iggered tlansactions.

CHAPTER 1. INTRODUCTION

Clobal
Transaction
Manager

Global
Scheduler

Globat
Recovery

Manager

Clobal
Trigger
Manager

Local
Transaction
Manager

Local
Scheduler

Local
Recovery
Manager

Local
Transaction
Manager

Local

Scheduler

Local
Recovery

Manager

Figure 1.2: AMDS Architecture

CHAPTER 1. INTRODUCTION

6. Proves that this algorithm is cor-r.ect.

This is then used to illustr-ate how global integrity constraints can be supportecl

as descril¡ed in Section 1.1. Thelefore, the constlaint problem can be seel as both

the motivation fol this work and the final challenge that will demonstrate thc ,,rilii'
of an active multidatabase svstem.

1-.5 Outline of Thesis

The remainder of this thesis is as follows. Chapter 2 cliscusses fundamental t¡ans-

action definitions and plesents previous related wolk. A formal transaction and

tligger model and the study of AMDB-serializability are provicled in Chapter 3.

Chapter 4 discusses event detection and tligger execution in this environment.

A concurrency control algolithm is presented in Chapter' 5 ancl its cor-r'ectness is

ploved. Finaliy, Chapter 6 summalizes the thesis ancl presents some suggestions

for- futule lesealch.

Chapter 2

EBackground

This chapter presents the necessary backgrouncl information. Relevant resealch

includes active clatabases, transaction managernent (specific to multiclataltase sys-

tems), and interclependent data management of multiclatabases'

2.L Fundarnental Deflnitions

The definitions and notations for traditional transaction management are talçen

from Örs.r ancl Valduriez [28] . Q4€ {read,write} denotes opelation j of transaction

i. O5¿ is the set of alì operations of transaction i (u¡O;r). We also denote with

l/, the telmination condition for ?¿, whele /[e {abort,commit}. The abbrevia-

tions r,tu,ø, ancl c will be usecl for the reacl, wr-ite, abort, ancl commit opelations,

resoectivelv. A traditional transaction ìs:

Definition 2.L.7 (Transaction): Ã transaction 4 is a partial orclel T¡: {Ð¿,<,¿}

whele X¿ is the domain consisting of the operations ancl the termination conclition

10

CTIAPTER 2. BACIrcROUND

of T;, and {; is an irreflexive and tlansitive binary

order of these opelations such that

1. Ð;: os; u{¡/,},

for any two operations O¿¡,

data item z, then eithel O¿,

VO¿¡eOS;, O¿¡ 1¿ N¿.

11

relation indicating the execution

O;¡eOS¡, if O¿¡ : r(¿) and O;¡,: ?.r(¿) f'o¡ a¡y

1; O;* or- O;* -<,¿ O¿¡, and

2.

H,1.

A history is a log that records the execution of tlansactions. Histories provicle a

lTleans for inspecting the execution of transactions to ensuÌe that they have a cor-rect

ordering when executed concurrently. Thus, histories are definecl with respect to

transactions:

Definition 2.1.2 (History): Given a DBMS with a set of transactions T a"historv

(H) is a partial orcler H : (E,{) where:

X : U¡ X¡ whele X¡ is the domain of transaction T¡eT,

<s) U: l, whele {¡ is the ordering relation fol transac tion T¡ at the DBMS,

and

3. for any two conflicting opelations p,,c1 eH, either p 4n q or q < Hp. m

This clefinition implies that if the operations of two transactions conflict, the trans-

actions also conflict.

1.

2.

CI-IAPTER 2. BACI(GROUND

2.'i".t Serializability

The generally acceptecl co-,.'rectness cr.iter.ion f'or traditional trans¿rctions is conf ict

serializal¡ility, where conflicting operations of transactions must be orcierecl so the

transactions appear to execute ser-ially. That is, all the opelations of one transaction

musr appeal ro execute before ail of the operations of another transaction. This

correctness cliterion recluires the follor,ving clefinitions:

12

Definition 2.1.3 (Serial): A history f/ :

that p <n q) + (VreT¿,VseT¡,r <rr s).

{Tt,...,2;} i. serial itr (-lteT;,-qe7rr such

&

Definition 2.1.4 (Confl.ict Equiualent:) Two

they are over.' the same set of transactions ancl

caily.

histories are confl.ict eqtr'iualent if

orcler conflicting operations iclentì-

m

These clefinitions leacl to the definition of a serializable history:

Definition 2.7.5 (Serializable) :

alent to a serial history.

A lristoly is serializaóle if ancl only if it is eqr-riv-

K

2.2 Related \Mork

Polytransactions

Sheth et al. 134,30, 32, 25, 33] clefine the polytransaction model for the manage-

ment of inter-clepenclent clata (clata stored in two or trtole databases that are relatecl

thr-ough an integi-ity constraint). They plopose a framework with two important

CHAPTER 2. BACI{GROUND

features: a declarative specification of inteldependent clata ancl their- mutual con-

sistency lequirements, and use of the specification to automatically ge¡e¡ate up-

date tlansactions that manage interdependent data. The declarative specification

involves colleciing all of ihe dependencies and stoling them together. This al-

lows them to be examined and modified in one place, independent of application

plograms. Automating updates elirrinates the erlol plone approach usecl when

the transaction designer manages interdependent data. Various aspects of Sheth's

modei ale discussed below.

Specification of Interdatabase Dependencies: The fir'st feature must cap-

ture inteldatabase dependencies. Sheth's moclel rses Data De7tendency Descrzprors

(D3) which is a 5-tuple:

D3 : <S,U,P,C,A>

where:

13

Sis

Uis

Pis

tlre set of source data obiects.

the target data object,

a boolean-valued predicate called the interdatabase dependency pred,icate (de-

pendency component). It specifies a relationship between the source and

target data objects, and evaluates to tr-ue if this relationship is satisfied.

C is a boolean-valued pr-edicate, called the mutual consistency prerlicate (consis-

tency component). It specifies consistency lequirements and clefines when P

must be satisfied.

CHAPTER 2. BACT(GROT]ND 14

A is a collection of consistency restoration Ttrocedtn"es (action component). Each

procedure specifies actions that must be taken to restore consistency clefined

bv P.

Data Depenclency Descriptors ar-e uni-ciilectional; fi'om the set of source clata ob-

jects to the target data object. Perforrning an operation on the sottrce or target

data objects may lecluir-e aclclitional actions to maintain mutual consistency of iu-

telclependent clata. The Interdatabase Dependency Sch,ema (IDS) is the set of all

D3s enforcecl in a multiclatabase system.

System Architecture The polytransaction model uses an architectur-e simi-

lal to that described in Section 1.3 [34] but recluires sotrre aclclitional features. Each

LDBS is augmentecl with a clependency subsystenz (DS) which acts as an intelface

between LDBSs and can communicate with DSs of other LDBSs. A DS analyzes

transactions submittecl to its LDBS f'or updates related to clata in othel clatabases

by consulting the IDS for D3s involving data modified by the local transaction. If

it cliscovers that the transaction updates lelatecl clata in othel clatabases, then a

selies of update transactions ale scheclulecl.

Properties of Polytransactions A Polytlansaction (7+) is the "transitive

closure" of a transaction ? submittecl to the multidatabase management system.

The transitive closure is computecl with r-espect to the IDS [34]. That is, a poly-

transaction is a nested transaction with the original transaction T as root ancl any

triggeled transactions as children. Fol each data item X modifiecl by ? the IDS

m¿st be checked. If there exists a D3 with X as a soulce data object ancl the

effects of T violate that D3s dependency and consistency predicates then a new

subtransaction ?' must be createcl to upclate the talget data object. A nelv nocle

CHAPTER 2. BACT(GROUND

corresponding to 7' is added to the tree as a child of the 7 nocle. This p¡ocess is

then applied iteratively to all children of T. These subtransactions corresponcl to

the consistency lestolation procedules defined in the D3s.

Children ale r-elated to their parents in two ways which are specified by the

coupling mode in the consistency lestoration plocedures of the D3s.

1. Tlre subtransaction rnay be coupled (where the parent waits for the chilcl to

complete).

2. The subtransaction may be decoupled (so it runs concullently). If it is co¿piecì

tlren it may be either uital (the parent fails if the chilcl fails) or. non-uital.

fnterdatabase Dependency Schema The depenclency pleclicate P is a boolean-

valued expression specifying the relationsirip that should holcl between the sour.ce

and target data objects 130]. It can be specified using the tlaclitional operators of

relational algebla (selection, projection, join, clifference, union, intersection, etc.)

as well as aggregat" (€) and transitive clos'r'e (cv) ope'ators.

The rnutual consistency requirement specifies "how far" the interdependent clata

is allowed to diverge before the consistency must be restorecl. The specification of

the consistency predicate can involve multiple boolean valuecl terms callecl consxs-

tency terms and each is denoted lry
";. C is a logical expression constructecl using

the c¿s and the logical oper-ators Â, V and -. The pledicate can be definecl both in
terms of time and data state.

A few examples will p'ove useful (see sheth et at. pal for. details):

o @11:00 on 21-Nov-1991 means the data must be consistent at 11 o'clocr(on

the 21"r of November, 1g91.

L¿

CHAPTER 2. BACI{GROU¡\rD

25-Aue-1992 ! means clata must be consistent after August 25, 1992

LENIP.Sctlctry) 500 specifies that the data must be consistent if a transac-

tion changes an employee's saialy by more than $500.

e 10 ripclates on -R1 where A1e S specifles that data must be consistent after

the 10¿À upclate to -Rr) a source object.

When a D3's clependency and consistency predicates have been violatecl, the set

of consistency restolation pr-ocedures must be usecl to generate appropliate upclate

transactions. The authols assume the existence of a multidatabase monitor which

examines updates to databases for violations of D3s in the IDS. If a violation occuls

then the monitor must use the consistency restoration proceclure of the violatecl

D3 to generate an update transaction. Thele may be several ways to violate the

preclicates of a D3 so there may be several consistency restolation pt-oceclures.

OSCA

Sriniclhi [31] describes an interopelability alchitectule callecl OSCA that pro-

vicles large corpolations the flexibility to combine software products in ways which

satisfy authorizecl user needs. OSCA supports data redundancy as a means for

achieving improved perfor.mance, reliability, and availability.

OSCA separates business functionality into three "layers" of :

e corpolate data management functionalify (data layer),

o business aware operations and management functions (processing layer), ancl

o human interaction functionality (user layer).

16

CHAPTER 2, BACI(GROUND

Eacir layer is partitioned into autonomous units called build,ing blocks that contain

softwale to irnplement each layer''s functionaliiy. The data layer contains d.ata layer

build,itzg blocks (DLBBs), the processing layer contains processing layer btLilcling

blocks (PLBBs), and the usel layer contains user layer buitd,ing blocks (I-rLBBs).

trach DLBB steuards some allocated portion of the corpolate clata so it is com-

pletely responsible for the data that it stewards.

Building blocks interact with each other using interfaces callecl contracts. Co¡z-

tract s\tecif'cations define the way functionality provided by a contract is involiecl

ancl any suppolt commitments that are requiled. Contract specifications include

functionality, interface) response time, and availability.

Redundant data in OSCA falls into one of two categories. Priuate reclund,ant

data are copies of stewarded data ownecl within indiviclual building bloclcs b¡t are

not visibie outside of the building block. Shared redundant dato are supported only

in a DLBB and outside the building block they are visible for retrievai only.

If a building block has private redundant data and lequiles updates to be sent

by the stewalding DLBB whenever the stewarding data is upclated then pr-e-clefinecl

cleate/update/delete (CUD) contracts have to be established between the trryo. If
a DLBB supports shared redundant data then it offers retrieval contlacts on that

data. Pre-defined CUD contracts must also be established with the stewarcling

DLBB.

OSCA provides two schemes for updating ledunclant data. The Linkecl Con-

tlacts Table Scheme is used when eventual ol lagging consistency of redunclant

data is acceptable. Each redundant copy lequiring updates is responsible for es-

tabiishing the update frequency with the stewarding DLBB. The upclate fi'ec1ue¡cy,

contracts for updating redundant data, and alternate clata views are all stor-ed in

the linked contracts table which may be part of the stewarcling DLBB or managed

L7

CHAPTER 2, BACI(GROUTúD

by redunclancA management seruices (RiVIS).

When an update occrlls at the ster,varding DLBB it commits the upclate ancl

provides RMS with the r-esults. The RIVIS consults the linked contracts table to

cletermine which redunclant copies shoulcl get the upclate ancl provides co'ntract

interaction seraices (CIS) with the information. The CIS then invokes the cor-

responding upclate contlact at DLBBs containing the reclundant data. Since the

stewarding DLBB commits the results of the update before any tipclate checlis are

made this technique will only ensure eventual or iagging consistency.

The Synchr-onous Upclate Scheme is useful if the redundant ancl oliginal data

must be the same at all times. This technique recpriles that updates to stewarded

data be committed after the corresponding reclunclant data is upclatecl so the stew-

arcling DLBB provicles the RVIS with the update prior to committing the result.

The RMS consults the table for redundant copies that require synchronous update

and provides CIS with the results. CIS uses transaction monitors (TMs) to invoke

a clistributed transaction across building blocks which require synchronous updates

to the redunclant data. The TM facilities must use two-phase commit to ensure

colrect execution.

Quasi-transactions * Rules

Arizio et al l5] describe a rule model and system architectur-e to manage inter'-

database clependencies in a multidatabase system using cluasi-transactions. Their

rule model follows the HiPAC moclel for active database systems. A rule has the

following structure: (OL,OM,E,C,A). OL are the data reacl by the rule and OiVI

are the data written, inserted, or deleted by the operation described in A. tr is the

event predicate that clescribes when the clependency has to be verified. It can be a

simple event or a complex combination of events using o.nd) orr or not. C descr-ibes

l8

CHAPTER 2. BACI{GROUND

the condition predicate that must hold among the interdepenclent clata of the ¡ule.

A is the action component of the rule which lestores consistency when executecl.

A quasi-transaction (QT) consists of a set of operations, each of which may

be basic data opelations or another QT. A quasi-transaction defines weak ACID
propelties' The inclusion of a QT and its descendent QTs is clesc¡ibecl as a tree.

A palent QT terrninates when all of its children terminate. In case of fail¿r.e, eTs
offer a mechanism to repair actions thereby modifying the outcome to a successful

one.

Quasi-transactions may be schedulecl in three kincls of ways: imrnediate, cle-

ferred, and coupled. Immediate scheduling suspends execution of the parent 1¡til
the child completes. Deferred scheduling delays the QT so it is executecl as the

last child of the parent. Decoupled scheduling starts a QT that has no terminatio¡
relationship with the cleator. They ale executed as siblings of the c¡eator. The

HUC (hold until commit) option is usecl with decouplecl QTs if it is to be executecl

only if the creator cornmits.

The model also sttppolts transactions that require fìrtl ACID pr-operties. They

may be nested and their chilclren must be tlansactions. A child may commit b¡t
its results will be committed only if its palent commits. If a transaction aìro¡ts,

its children aÌe aborted too, but a subt-,-ansaction may abort without causing the

abortion of its parent.

Transactions can also be executed as immecliate, deferred, or decoupled. How-

ever, the behavior of the deferred ancl decoupled modes differs from proper quasi-

transactions. Deferled transactions ale deferled until the commit of the entir.e

transaction subtree in which they are generated. Hence, they become children of
the root transaction and are executed concurrently just before the root's commit.

A decoupied transaction begins a completeiy new transaction, inclepencle¡t from

10

CHAPTER 2. BACI(GROU¡\¡D

the one that createcl it. The clecoupled transaction becomes a sibling of the root

transaction of the subtree that created it.

Quasi-transaction exceptions provicle a way of retulning ettol information about

success or failure from chilclren QTs. Error conditions propagate up the QT tree

until they reach a node with an appropriate hancller fol that erceptìonal conclition.

Erro¡ conditions that are not hanclled may cause the entire QT tree to abort.

A qtrasi-tr-ansaction has two types of errol handlers. Eúernctl handlers are those

usecl to handle an exception arising flom the QT itself. Internal l"¿andlers treat error

conclitions that have propagatecl up fr.'on a nocles chilclren. Internal handlers may

deal with child aborts and malçe clecisions as to the aborts criticality.

This mociel assumes a system architectur-e where each local clatabase consists of

some commercial DBMS with a rule manager and rule base built onto it. The rule

base contains the rules which are fir-able by transactions at the DBN4S. The OL ancl

OM clauses of rules are used to determine this. The Rule Managel consists of the

Event Detector and the Controller. The Event Detector is able to recognize events

causecl by transaction operations as r,vell as temporal events using infrastructurai

timing services. The Event Detector sealches for rules that may fire because of

event occrir-rences ancl passes these to the Controller. The Controller evaluates the

conclition portion of these rules ancl if the expression "E and (not C)" evaluates to

true then the trigger action is executecl accorcling to its execution mocle.

HiPAC

The HiPAC project is investigating active, time-constrained clatabase manage-

ment. HiPAC ploposes an Event-Conclition-Action (ECA) formalisrn f'or active

clatabases capable of automatic enforcement of integrity constlaints, expressing rela-

20

CHAPTER 2. BACI(GROUND

tionships between data items, alertels, access constraints, and tliggers. These f¡nc-
tions rvere previously implemented with special puïpose mechanisms [14, 1b, 24,26).

HiPAC's object-oriented data model's lules are first-class objects. Rule at-

tributes inclucle:

Event The event that tliggers the rule.

Condition A set of quet'ies that are evaluated when the rule is tliggerecl. eue¡ies
are specifiecl in an object-oriented data manipulation language.

Action An operation that is executed when the ruie is triggelecl if the co¡clition

is satisfiecl. The action could be database operations or calls to application

pt'ograms.

E-C coupling A coupling mode that specifies when the conclition is evaluatecl

lelative to the transaction in which the triggeling event is detectecl.

C-A coupling Specifies when the action is executecl relative to the tlansaction in
which the condition is evaluated.

The event can be a primitive event such as a database opelation (clata clefinition,

data manipulation), a temporal event (absolute, r'elative to another event, per-ioclic),

ol an external notification (application defined event). Since clatabase operations

ar-e not instantaneous it is possible to define two events for each ope¡ation: the

beginning and the end of tire opelation.

The model also sttpports cornposite events. The d,isju,nction ol two events, -81

and 82, is a composite event signaled when either El or E2 is signalecl. The sequence

of two events, E1 and 82, is a composite event signaled when E2 is signaled proviclecl

2I

CI]APTER 2, BACI{GROUND

that -Ðr has ah-eacly been signalecl. The closure of event E occurs after' -E has been

signaled an arbitrary numbel of times in a transaction.

tr-C coupling modes can be one of the following:

L lmmed,iate: Evaluate the conclition immediately within the context of the

transaction causing the event.

2. Deferrer,/; Evaluate the condition upon termination of the transaction causing

the event, but before it commits.

3. Se2tarate, causally dependent: Evaluate the conclition in a separate transaction

after ancl iff the triggering tlansaction commits.

4. Separate, caztsally independenú; Evaluate the conclition in a sepalate trans-

action. The scheduler may scheciule this transaction inclependent of the trig-

ger-ing tlansaction.

C-A coupling have precisely the same coupling mocles except the lelationship exists

between the condition and the action.

Rules have special operations of their own:

Fire Evaluate the conclition and if satisfied execute the ¿rction.

Disable Disable the automatic rule fir'ing for the event.

Enable Bnable automatic rule firing for the event.

HiPAC lses a nestecl tlansaction moclel. When a rule fires, a new transaction

is created ancl the lule's condition is evaluated by the spawned transaction. If the

L¡le's tr-C coupling is immediate then the triggering transaction is suspencled ancì

22

CEIAPTER 2. BACIrcROUT,{D

the spawned transaction is executed as a subtransaction. A deferrecl E-C coupling

causes the condition transaction to be executed just prior to the parent's coinrnit.

If the E-C coupling is sepalate then the new transaction is a top-level tlansaction.

It rnay l¡e scheduled concurrently if it is causally indepenclent.

If the rule's condition is satisfied then anothel transaction is created for- the

action and is dealt with in an analogous manner based on the C-A coupling of the

triggered rule.

If the triggering tlansaction causes multiple rules to file tiren a new tra¡saction

is created for each lule triggered. Immediate subtlansactions wiil execute concuÌ-

rently' Sepalate, causally indepenclent transactions can be executed concurre¡tly.

Separate, causally depenclent transactions will be schecluled after the trigger^ing

tÌansaction has committed. If the execution of a lule's action causes more lules

to lle triggered then this plocess lepeats itself, thereby creating a tlee of nesteci

transactions.

For example, a HiPAC lule such as:

Event: Update Xerox pr-ice

Conclition: Where new pr-ice : 50

Action: Send request to buy b00 shares for client A

E-C Coupling: Separ-ate, Causally dependent

C-A Coupling: Immediate

This lule ensutes that if the Xelox price is updatecl to 50 then 500 shales are bousht

fol client A [26].

For a DBMS to support HiPAC's knowledge and execution models it nust
support nested transactions and object-oliented data management. Its functional

comÞonents include:

.l?
LI

CHAPTER 2, BACI(GROU¡\TD

Object Manager: Provides object-orientecl clata managenent.

tansaction Manager: Provides nested transactions.

Event Detectors: Detect events ancl signal them to the Ruie Nlanerger

Rule Manager: Vlaps events to rule firings, ancl rule firings to tr¿rnsactions.

C ondition Evaluat or : Evaluates lule conclitions.

Ode

Ocle is an object-orientecl clatabase system ancl environment cleveloped at AT&T

Bell Labs [1, 19,20]. It offels an integratecl clata moclel for both databa,se ancl

gener-al purpose manipulation by providing database functionality ancl iteratols to

allow sets of objects to be manipulated as cleclalatively as clatabase query languages

basecl on relational calculus. It uses the language O** based on, and upwarcl

compatible with, C++, to define, quely and manipulate the database.

Ode is active in that it clefines constraints and triggers associated with objects.

Constraints and triggers in Ode have separate facilities since the two are logically

indepenclent. Constraints ensure the consistency of the database state but triggers

have a mole general applicability.

Updates that violate constraints are not aliowed. A class can have constraìnts

associated with it and all instances of that class must satisfy them. A derived class

inhelits all the constraints of its palent class and new constraints can be adclecl.

Ot1L't

CI-IAPTER 2, BACI(GROUND

Constraints in Ode can either be Jtardor soft. Halcl constraints are checked at

the boundar-ies of public member functions that upclate objects. Soft constraints

ale checkecl at the end of transactions. Hence, harcl constraints can be violatecl

only within the boundaries of member functions whereas soft constraints can be

violated within a transaction. This distinction allows the constlaint progÌammeï

to implove efficiency of constraint checking by deferring checks of less important
constraints.

Constraints are specified in the class definition section as follows:

constr-aint:

constrainfi: handlerl;

constraint2 : handler2 ;

constraintn : handlern ;

where constraint¿ is a boolean expression involving components of the class involvecl

and handlerr is an action to be performed when the constraint is violatecl. The

keyword solú plecedes the keywold constraint fol a soft constraint. If thele is no

handler then the violating transaction is simpiy aborted. The handler is usecl to

manipulate the data so that the constraint is no longer violatecl. After the irancller

is executed the constraint is checked again and if violatecl the tlansaction is abo¡tecl.

Consider the followinq hard constraint:

constraint:

state :: Name("NY") ll Name(,,,');

25

This forces the

set the state to

state to either be undefined or ((NY". A transaction atternpting to

something else is aborted.

CHAPTER 2, BACI(GROUND

Triggers monitor the clatabase for celtain conclitions that recluire the execution

of an associatecl action. Tliggers are specifiecl in the class clefinition ancl consist

of a conclition ancl an action. Triggels apply only to the specific objects for which

they lvere activatecl.

If a triggel is active ancl its condìtion becomes tr-ue then its action is executecl

in a separate tr-ansaction (unlike constlaints). Triggers that file will be executecl

only if the transaction causing them to fire commits successfully.

Ocle suppolts two kinds of triggers: once-only (default) ancl perpetual. A once-

only tr-igger is automatically cleactivated aftel it has "fited", ancl it must be explic-

itly reactivatecl to fire again. Perpetual triggels ale reactivated automatically aftel

each firing. A triggel Ti associated with an object whose id is o-icl is activated

(reactivated) bV the call:

o-icl --+ T¿ (arguments)

This activation leturns a trigger icl which can be used to manually cleactivate the

trigger:

deactivate(tLiggerì d)

The trigger syntax is:

trì ooer'

26

[perpetual]

lperpetuall

fperpetual] T,

T1

Tz

(parameter-decl1) : trigger-boclyl

(parameter-clecl2) : trigger'-body2

(parameter-decl') : trigger-bocly"

CTIAPTER 2. BACIrcROUND

where T; are the tligger names and the palameters can be usecl in tligger boclies,

which are of the forrn:

trigger-condition : > trigger-action

Fol example, consider the following trigger:

trlgger:

order0 : clty (reorder-level0 ::;' place_older|;

Tlris trigger will fire when c1tybecomes less than reorder-teuel). The response will
be to execute the function place-order0.

A second form of trigger body is used fol specifying timecl trigge¡s. Once ac-

tivated' a timed trigger must fire within the specifyed periocl ol else the timeout-

action is performed. These have the for-m:

within expr-ession ? trigger'-condition :> tr-igger-action [:timeout-actionl

Gehani et aI. [20] specify complex events for Ode. These inclucle T,Ite relatiue, prior,

and sequence operator.s.

Postgres

Postgres is an extended relational DBMS and is the successor of the Ingres

relational DBMS [36,37,38]. It extencls Quei to the Postcluel query lang¿age

for data access. Postgles allows the definition of general rules that have a wicle

range of applications including view management, triggers, maintenance of integlity

constlaints, protection, referential integrity control and ver.sioning.

Postgles rules have the following syntax:

27

CHAPTER 2. BACI{GROUND

ON event (TO) object WI-ItrRE

P O STQUEL-qualifi cation

THENI DO [instead]

POSTQUtrL-command(s)

wlrere euent is one of retrieve, t-eplace, clelete, appenil, new or oìcl. The object

is eitlrer the name of a class or class.column. The heyword instearl is usecl to

specify actions that ale to be executed instead of the action which causecl the

rule to tligger. If instead is missing then the lule specifies actions that are to be

taken in adclition to the trigger causing actions. These actions are specified in

the POSTQUtrL-commancl(s) section of the rule declaration. These commancls are

Postquel commands with an enhanced syntax to allow reference to new ot curr-ent

states of a class.

Postgres rule contlol can be set to forward or backward chaining contlol mech-

anisms [38]. For example, suppose we wished to ensure that Joe's salary is always

equal to Fred's. We could use the rule in Figure 2.1(a). Whenever an adjustrlent

to Fled's salary occllr's) Joe's salary will be updated automatically by the system

(forward chaining). On the other hand, we could use the rule in Figule 2.1(b) to

enforce the constraint. In this case evely time Joe's salary is letrievecl we retrieve

Fred's salary instead (backward chaining) and Joe's salary is not explicitly storecl.

These two different methocls of rule control can be usecl to improve rtile effi-

ciency. If there are a high number of retrievals of Joe's salary ancl a low number of

updates to Fred's salary then forward chaining would be most efficient. Howevet', if

there are a high number of updates to Fred's salary ancl a low number of retrievals

of Joe's salary then baclcward chaining would be preferled.

Postgles has two approaches to rules. The first is through run-time recorcl level

28

CÍIAPTER 2. BACIrcROUND 29

on new EMP.salary where

EMP.name : "Fred"

then do replace

E (salary : new.sala¡y)

fi'om E in trMP

where E.name: ttJoett

(a,

on retrieve to EMP.salaly where

EMP.name : "Joet'

then clo instead letrieve

(EMP.salary)

wher-e EMP.name : "Fled"

(b)

Figule 2.1: Example Postgres rules

CHAPTER 2, BACI(GROUND

on replace to EMP.salary

then do

appencl to AIJDIT

(name : cutLent.name)

salaly : cnt'rent.salat'y,

new : new.salary) Ltser' : user'0)

Figure 2.2: Auditing rule

processing. This ruie system is callecl when indiviclual recolcls are accessecl. Fol

example, in the r.ule in Figure 2.1(a) the lecord-level rule system places a ma-,'kel

(which contains this rule's identifier) on the salary attribute of Frecl's instance. If

the executoÌ' accesses a marked attribute then it will call the rule system to hanclle

rule processing. After this is complete the executor will continue processing the

oliginal transaction.

The second approach is through a quer-y rewrite module. This converts a nser

command to a more optimal alternate form. Consider the rule in Figule 2.2 ancl

the incoming user commancl of Figure 2.3. This command will clearly catrse the

rule to fire once per employee over 50 years of age (a large overheacl). The cluery

rewrite rules system will rewrite the usel commancl to the mole efficient commancls

of Figure 2.4.

The recorcl-level rule system performs well when there are a large numbel of

small-scope rules whereas the query lewr^ite rules system worlçs better if there are

a small number- of large-scope rules. It tulns out that the two lules systems al'e

complementary and Stoneblaker ancl Kemnitz [38] explore a ruie chooser which

suggests the best implementation.

30

CHAPTER 2. BACTrcROUND

replace EMP

(salary : 1.1 * EMP.salary)

where BMP.age > 50

Figule 2.3: Incorning user command

append to AUDIT

(name : EMP.name, salaly - ENlP.salaly,

new : 1.1 * EMP.salary, user : userQ)

wher-e EMP.age > 50

replace EMP

(salary : 1.1 * EMP.salary)

where EMP.age > 50

Figure 2.4: Rewritten user command

31

CHAPTER 2. BACI(GROUT,{D

In Postgres there are four clifferent types of r-ule activation policies:

immediate - sarne trunsactzon

immediate - different tratzsaction

deferred - same transaction

deferred - difrerent transaction

The rule to set Joe's salary to Fred's (Figure 2.1) must run immecliately in the

same transaction. If the original t-,.-ansaction is abortecl then the lule is iro longer

applicable ancl cloes not neecl to upclate Joe's salary. I-Iowever, the rule in Figure 2'2

rrust be activatecl immecliately in a different tlansaction. If the original aborts lve

still wish for the aucliting to occur'.

The rule of Figure 2.1(a) sets Joe's salaly to Fred's r,vhenever Frecl's is upclated.

The activation policy for this rule is immecliate - same transo'ction If the transac-

tion which upclates Frecl's salary aborts then we want the trigger to abort (as Joe's

salar-y no longer needs updating). The trigger action is part of the triggering trans-

action so we get the clesirecl results. However, the lule of Figure 2.2 ts activated

immecliately in a rlifferent tlansaction. If the triggering transaction abor-ts we still

wish the auditing to occur'.

Postgres rules have a large Ìange of applicability. For example, take the following

Postgres view:

define view TOY-trMP(trMP.all)

where EMP.dept - "toy"

This view is compiled into the following Postgres rule:

on letrieve to TOY-trMP

òa

CTIAPTER 2. BACI{GROUND

then do instead r-etrieve (EMP.all)

where trMP.deot : "tov"

A quely letrieving tuples from iÌre TOY-trMP lelation rvill tliggel this rule ancl the

correct tuples fi'om EMP will be letrieved instead.

Rules in Postgres can be glouped into ru,leseús. A ruleset is hierarchically str.uc-

tured and is defined as follows:

Define Ruleset ruleset_name

[inherits luleset {,ruleset}]

[init -script proc-name]

Icleanup -sclipt proc-namel

The inh'eriús clause allows common collections of rules to be shared among multiple

lulesets. The init-script and cleanup-script procedures each contain a script of

commands to be run when the luleset is activated or deactivated, respectively. A

ruleset can be removed with the followine command:

Remove Ruieset ruleset_name

Rulesets can be activated using the following command:

Activate ruleset_name

[i-script]

Iate-signal]

Iauto-deactivate]

When set i-scripú flag indicates that the initialization script is to be run. The

late-signal flag indicates that the user wishes to be notified aftel no new inferences

.J !)

CHAPTER 2. BACI(GROUND 34

have been made as a lesult of the luleset activation. The auto-deactiuate flag

inclicates that the r-uleset is to be deactivatecl as soon as no new inferences have

been macle as a result of activation.

Rulesets can be deactivated using the commancl:

Deactivate ruleset -name

Id-sclipt]

When set the rl-script flag indicates that the deactivation script shoulcl be run.

Iris

Iris is an object-oriented DBMS developed at Hewlett-Packarcl Laboratories

t29] Iris can automatically notify application plograms when stored ol clerivecl

data changes. Iris uses database monitors to observe changes in the contents of

clatabase objects (e.g., the curLent price of some commodity ol the location of some

ship). Monitors can also obselve changes to derivecl data (e.g., the highest paid

employee in a department).

Application programs house tracking procedures caliable by a database monitor

if the value of some monitored data has changed. The DBVIS cloes not transmit

monitored clata to tlacking procedures but melely invokes them. The tracking

proceclures then retrieve any clata requirecl for its monitoling action ancl takes

appropliate action.

Tracking procedule invocations can either be local or e:uternal. An invocation

is local if the program containing the traclcing proceclure caused the change to the

database which in turn caused the tracking procedure to be invoked. The invocation

is external if it is the result of changes made by some other process. Local tracking

CHAPTER 2. BACI{GROUND

procedules are invoked before updates have been committed and external tracking

procedules ale invoked aftel the commit. Local tlacking procedures ale invokecl

synchronously (the system waits for thern to return) ancl external ones ale invokecl

asynchronously. There is also a no-interrupt option where the DBMS accumulates

notifications until the process is leady to handle them.

Monitols are expensive so lestricting them applopriately may be requi¡ed. They

can be tirne localized, whete they ale only active duling a limited tirne periocl

or client localized by deactivating them when thele is no client that neecls them.

Monitors can be object localized, meaning that if the objects it involves are not

ìreing accessed then the rnonitor may be deactivated. Finally, they can be properry

locali,zed so that just the attributes of interest ar-e monitored.

The change detection algorithm used by monitors has four steps. Filst, eveÌy

object tlrat is updated by a transaction is tracked in a ui,rtual table. Seconcl, at mon-

itor checl<ing time each object in the viltual table is checkecl for monitors clefinecl on

them. Next, for each monitor detected object, a more expensive instance cletection

is done to test if its value changed. Finally, if the value changed, notifications ar.e

sent to the corresponding client processes.

tJtJ

Beeri and Milo Beeri et al. [7] desc'ibe a formal model

oriented database. In this model, method execution causes the

Methods selve as triggers wiren they are defined as:

for an active object-

triggeling of actions.

iype meth6d : [M-name,M-code,{triggered-action}]

where ilI-name is the name of the method, fu[-cod.e is the method code, ancl each

element tn triggered-acti,on is the name of an action. Whenever the methocl is

invol<ed by an object, the actions in the set are tliggered for future execution basecl

CHAPTER 2. BACI(GROUND

on a plogr-ammer specified erecution interaal, r,vithin r'vhich

must be executed. This interval consists of a star-t event and

36

l,he tliggered actions

an enci event:

l,ype execution-intelv¿l : [start-event,end-event]

The triggered action must be executecl as early as start-euent ancl no later than

end-euent. Example events include:

Nlethocl invocations,

Points in time such as "12:00 am)' ot' "Monclay m.orning",

e Conjunctions of events using ancl, and

ø any úinze which is used to specily intervals with only one encl point.

Suppose we have a client with multiple account objects, each with a rnethocl:

ultclate-account. Furlhel, assume we have a derivecl attribute callecl a'ccottnt-balance

which is the sum of all the accounts and each of the zr,pdate-accot¿nú methocls

have a trìggerecl action that upclates account-balctnce when invokecl. Let UP-

DATE-ACCOUNTS be a higher level method that invokes the update-account

of each object to upclate each account to a new value. If we now exectlle UP-

DATE-ACCO\INTS then the account-bal¿nce must be recomputed evely time an

update-accountmethocl is called by UPDATE-ACCOUN?S, which introduces a veÌy

Iarge and unnecessary overhead.

This overheacl is avoided if the execution interval for the triggered action is

defined to be IUPDATE-ACCOUNTS, get-balance], where get-bctlance leacls øc-

count-balance. This indicates that the accou,nt-balance shouicl be upclatecl some-

where between the end of update-accounts and the start of get-balance. The schecl-

nler will perform the update after UPDATE-ACCOUNTS, thereby avoiding the

overhead.

CHAPTER 2. BACI{GROI]ND

There are three options in the case of triggering method failure. The triggerecl

action could be rolled back (if it was executed) or deleted (if still pencling), or. the

tliggered action can be erecuted as pianned. This is done by using abort or ignore

statements in the tliggered action descr-iption.

If a triggered action fails several options ale possible. The action co¡lcl l¡e
retried ol the tliggering method coulcl be abolted using ignore ancl abort(trans),

respectively. Other. options include: try n times before aborting, ancl. rttn t instead,

where I is a compensating tlansaction.

The tliggered action syntax is:

type trigger-ed-action-descliption :

Itriggered-action,

act-to-perform (location,parameters),

execution-interval,

scheduling-information,

triggered- action-fai1,

tr-igger-fail]

Triggered-action is the trigger identifier and act-to-perform(locati,on,parameters)

is the action to perform at the object locati,on. We have alreacly cliscussed the

execution-interval. Scheduling-informatioz contains information such as priorities.

The triggered-action-fail and trigger-fail fields indicate what to clo if the triggered

action abor-ts or tliggering method fails, respectively.

Actions that are triggeled may not be executed immecliately so r.elevant infor-

mation is stored about them until they are executed. The logical storage place fol
this information is within the object itself (assuming at this point that the action

does not involve multiple objects).

JI

CHAPTER 2. BACI(GROU¡\ID

Both an object's structure ancl methods are extendecl to Ìranclle triggelecl ac-

tions. Its structure is augmented with an actiue part that contain recorcls of the

form:

type active-action :

[tliggered- action (parameters),

tri ggeling-metho cl-i clentity (location),. . .]

Records of this type each represent one action waiting lbl execution. Whenever

a triggeling method executes, its triggelecl action information is insertecl into an

actiae-action recold and aclclecl to the object's active part.

An object's methods at-.e extenclecl to include methods to insert, retlieve, exe-

cute, and delete actions. These methods share the properties of regular- methocls

in that they can be inheritecl and overriclden.

To execute a method (^)
" transaction called global-control-m consisting of five

subtransactions is created. The first subtransaction insert-start-m inselts lecords,

corresponding to those trigger-ed actions of n¿ that clo not use any of the outptit

parameters of rn, into the active part of the object. The second subtransaction,

execute-start-m, checks the contents of the active part of the object involved ancl

executes triggered actions that must be executed befole the star-t of m. Some

trigger-ed pending actions that do not need to be executecl befbre the start of m

can also be executed. The third subtransaction invokes ?n. If m calls any othel

methods, these are scheduled as subtransactions of m and are handled in the same

manner. Next, insert-end-rn, inselts records into the active palt of the object

corresponding to triggeled actions that use output palameters of rn. This is similar

to insert-start-rn. The final subtransaction, erecute-end-m, executes the actions

38

CHAPTER 2. BACI{GROUND

that must be executed no iater than the end of m, and. possibly some others. It is

sirniiar to er ect¿te-start -rn.

Quasi-copies A Quasi-copy is a cached value that can cleviate from the original

in a controlled way. The management of quasi-copies is callecl quasi-cach,ing. These

weÌe proposed by Alonso eú a/. [3, 4] for use in large multidatabase systems to

r.educe the high communication costs associated with continually accessing clata on

remote database systems.

Quasi-caching cliffers from traditional caching because quasi-copies are not nec-

essalily updated as soon as the original is changed. Since MDBSs have a high

communication cost associated with updating these copies quasi-caching allows the

user of the data to specify exactly what data is to be cachecl (selection) ancl how

far- it may deviate from the original (colterency). For example, the user. may spec-

ify that a copy may not diverge by more than 10% from the original, or that the

information may be no more than t hour old. The home site of this data will then

send updates whenever these coherency conditions ale violated.

Information flow within a large multidatabase system with quasi-copies is simila¡

to the flow in many "real organizations". F'ol example, the manager of a compaly

is not told evely time an employee is hired or leaves. The information is filterecl so

that only peliodic information is passed along such as pelsonnel changes o¡ when

an exceptional condition occurs (e.g., a mass hiring of employees). Hence, quasi-

caching plovides a very natural way of dealing with distributecl clata in very lar.ge

multidatabase systems and also has a reasonable pelformance overhead [41.

Identity Connection

39

CI-IAPTER 2, BACI{GROUND

The Identity connection has been introclucecl for mocleling the upclate plopaga-

tion of replicated data within autonomous and clistributed clatabase systerns [32].

An identity connection linlcs copies of clata that may be locatecl at cliffelent sites

and specifies the consistency recprirements between them.

One of the copies specified in an iclentity connection is ca1lec1 the prirnary copy

and tlre others are called secondary copies. A. temporal constrainú is specifiecl r,vith

ever.y identity connection to specify when an update on the plimary copy must

pr-opagate to the seconclary copies. To maintain a connection, whenever an upclate

occurs to the plimary copy a tlansaction containing the temporal constraint is sub-

mitted to the sites of the seconclary copies. tansaction scheclulers at seconclaly

sites detelmine whethel they can satisfy the temporal constraint using a satisf'a-

bility test. If a schecluler can satisly the constraint, it wiII prornise the pr-imary site

to execute the transaction in accordance r,vith the temporal constraint. The upclate

at the primary site can commit as soon as it receives promises from all seconclary

sites.

Barker Barlçer [6] defines a folmal muiticlatabase system model. A multiclatabase

system consists of a number of autonomolls local database systems each with their

own DBMS and a multidatabase management system layer (MDMS) logically above

them.

There are two types of transactions in this multidatabase system model: local

ones that are submitted to each DBViS and global ones that are submitted to the

MDMS. Local transactions execute on the database where they wer-e submittecl

while global transactions may access multiple clatabases. Global transactions ale

managed by the MDMS which parses them inlo global subtransacúions that are

submitted to the local DBMSs for execution. The DBMSs are responsible for

.10

CHAPTER 2.

executing local

reliability. The

MDMS.

BACI{GROI]ND

transactions and global subtr.ansactions

synchronization of global transactions

IIT

concurrently and fol local

is the responsibiiity of the

Barl<er clefines MDB-Selializability as a corïectness cliter.ion fol rnulticlatabase

systems ancl plesents concttrrency control algorithms for global transactions which

ensure this cot'rectness. This thesis ploposes to add active functionality to Ba¡ker's

moclel and so it is not discussed to any great length here. Insteacì, relevant portions

of the model ate pt'esented throughout this thesis as we moclify it to support active

behaviol accordingly.

Chapter S

A Forrnal VIodeX of AVÏÐS

This chapter pr-esents the basic definitions necessaly to clescribe an active mul-

ticlatabase system. This chapter is presentecl as follows: Section 3.1 clefines the

various transaction types that are part of this model. Section 3.2 presents the

definitions for global triggers in this envi-,.-onment. The definitions of various types

of histories are given in Section 3.3 and transaction families are definecl in Sec-

tion 3.4. A new form of serializability called active multidatabase seriaiizability is

described in Section 3.5. Actiue multidatøbase serializabi,lity graphs are clescribecl

in Section 3.6 and usecl to ïeason about a histories correctness with the AN4DB

serializability theorem presented in Section 3.7. Finally, Section 3.8 summarizes

the model by explicitly stating the assumptions imposecl by this moclel.

3"1- Tbansaction Types

An active multidatabase system contains two types of transactions: locct'l and global.

Local tr-ansactions are submitted to each DBMS and global ones are submittecl to

,4,

CHAPTER 3, A FORMAL MODEL OF AMDS

the AMDMS (Figur"e 1.2). Local transactions execute on a single clatabase wher.eas

global transactions may access rnultiple databases.

An AMDS also contains global triggers which can be firecl by executing global

tr-ansactions. Befole folmally defining global triggers we present definitions from

Barker [6] that will be used as the foundation for oul moclel.

Definition 3.1.1 (Local Database): Each of the autonomous databases that malçe

up a rnultidatabase is called a local database (DBMS). The set of data items storecl

at a DBMS, say i, is denoted LDBi. The set of all clata in the multiclatabase can

be defined as MDB : l)i LDB'. W

Definition 3.1.2 (Local transaction).' A transaction fr submittecl to DBMS r (.1"-

noted DB IUI St) is a local transaclion (denoted LT!) on DB A,I Si if OS; c LDB| .

E

Definition 3.1.3 (Global transaction).' A tlansaction is a global transaction (GT¿)

iff:

1. -1LDBt such that BSo C LDBr or

GT; is snbmitted to DBMSÀ but ßS¿ c LDß, (k I ù.

Item (i) states that global tlansactions, subrnittecl to the AMDMS, access clata

items stoled in more than one database. Item (2) represents the case whele a rlseÌ

wolking on one DBMS requir.es access to the data storecl ancl managecl by another'.

Global tlansactions do not directly access databases. They are parsecl into a

set of global subtransactions lhat are submitted to the local DBMSs. Thus, the

subt'-ansactions wolk on behalf of the global transaction. Our clefinition of a slobal

/1')a¿

n2.

CHAPTER 3. A FORNTAL NIODEL OF ANTDS 4+

slbtÌansaction has adclitional infolmation supporting the cletection of global Lliggel

events. Global subtransactions ale defined in telms of the clata items referencecl

(i.e., their base-set), the global transaction creating them, ancl the global t'riggers

they coulcl fir'e.

Definition 3.1.4 (Gtobal subtransaction): A global subtlansaction submittecl to

DBNISj for global transaction G?, (ctenoiecl GSfi) is a tlansaction where:

L. Xf C Ð; ancl

ßSt ç LDB|, where ßSr; is the base-set of GST!

3.2 Global TYiggers

Global triggers are fired when global subtransactions cause events to occur'. A

global trigger is executecl similar to a global transaction however it has adclitional

information, called the triggers cou'pli,ng rnode, that describes how it is executecl.

Definition 3.2.L (Global trigger): A global trigger is an orclerecl triple GTRk:

(GT, E,M) where:

GT is the trigger action (which is in the form of a global tlansaction),

E is some database event, ancl

M is the triggers coupling mocle. f

Global tlansactions can cause the execution of global triggers so we introduce a

new operation: f.re(GT¡..,cause?). If one or'more of the opelations of a global

m2.

1.

2.

Ð.).

CHAPTER 3, A FORMAL MODEL OF AMDS

tt'ansaction cause ol may cause the event of some global trigger- GT Rj to occuL,

then fire(GT¡.n,cazt.se?)eO,9,. The value of cause? is true if and only if the t¡igge¡

is causally depenclent (see Section 3.2.2)

If aglobalsubtransactionGsTlcausesaglobaltligger GTRktofir-e(i.e. causes

the event of GT Rt to occur) then GSÇ executes its f ire(GT¿, ccruseT) operation.

This causes the submission of a global transaction G?¿ which will execute the action

ol GTR;. Note that t: k.n and n is the copy identifier. Fol example, the thircl

filing of GTR¡, means n : 3. Thus, all GTs executing on the AMDS are still
uniquely identifiable by their. subscripts.

3.2.L Trigger Events

Global triggel events can occur because of a read or write to some clata itern o¡ a
complex function of these operations. The following definitions capture this i¡tu-
ition:

Definition 3.2.2 (Simple Euent): An event is simple if it is a leacl or wlite oper-

ation. n

Definition 3.2.3 (Compler Euent): A comytler euent is composed of other events

(which may be simple or complex). These include:

Disj(E1,Er),occurs when either-event E1 or event E2 occrits.

Con.i(E1,,Er)' occtlls when both events E1 and E2have occnLrecl, r-egaldless of the

order of occurlence.

Seq(E1,Er)' occurs when both events E1 and E2haveoccurrecl but -Ðrs occuïr.ence

precedes -Ð2.

45

CHAPTER 3. A FORIIAL NTODEL OF ANIDS

Clos(E1,/VJ; occur-s when the event E1 has occurrecl N times.

Some examples of complex events inclucle:

Disj(r(r),wþ)): Occuls when the clata item z is accesserl.

Conj(Disj(r(y),r(*)),u(z)): Occuls when either r(y) or tr'(r) have occurrecl ancl

ztl z'l has occul'l'ecl.

(c) Seq(r(r),r(a))' Occurs when y is written ancl r has alreacly been reacl by the

same slobal transaction.

(d) Conj(Conj(r(a),r(b)),Disj(r(c),r(d))):Occurs when c, ó, and either of c ancl d

have been reacl bv some slobal transaction.

Complex events have a natural nested structure so they are clescribed by a tree.

The leaf nodes of a complex event tree are always simple and are referred to as the

event's sirnple euents. Figure 3.1 shows the event trees for the example complex

events above.

3.2.2 Coupling Modes

The coupling mode M specifies how the triggered transaction is executecl with

lespect to the triggering transaction. It describes va-,.'ious dependencies between the

trigger-ing transaction and tliggered transaction. The modes we suppolt include the

i,ndependenú (Idep), causally depenclent(Cclep) , trigger dependent(Tclep), ancl fttlly

depend ent(Fdep) modes:

o Idep (independent): The global trigger-is executed and completes incle-

pendent of the trigger-ing transaction so the trigger commits or aborts in-

dependent of the termination decision of the triggering transaction. Since

46

K

(n)

(b)

CHAPTER 3. A FORMAL MODEL OF AMDS

D

v)r(

+t

r(x) w(x)

Disj

/\

(a)

Seq

/\
/\

Conj

/\
/\

isj w(z)

w(x)

(b)

Conj

r(x) w(y) Disj

,4'.
(c)

r(a) r(b)

(d)

r(d)

/\
Conj

/\

Figure 3.1: Sample Event trees

r(c)

CHAPTER 3. A FORTUTAL MODEL OF AMDS

these are inclepenclent transactions the serialization oriLer of the transactions

is irr-elevant.

Cdep (causally dependent): The tligger nakes its telmination clecision

indepenclent of the triggering transaction howevet, the trigger is causally de-

pendent on the triggering transaction so the triggering transaction must not

"see" any of the triggels results. Therefore, the triggel must be seli¿rlized

after the triggering transaction in the resulting history.

Tdep (trigger dependent): The trigger is commit clependent on the tligger-

ing tr-ansaction so the trigger must abort if the triggeling transaction abolts.

The trigger is also causally clepenclent.

Fdep (fully dependent): The trigger and triggeling transaction are commit

dependent on each other. The triggel is causally clependent. A triggel of this

mode is considered a. child of the triggering transaction (see Section 3.a).

An ailline leservation system is usecl to illustrate these mocles cornposed of

several airline DBMSsl. Atry one database stor-es information regarcling flights,

passengers, security, etc.

o ldep: Our reselvation system r-equiles a global trigger to log wr-ites to airplane

data items at locai database DBMS'. Whenever a transaction r,vrites to an

airpiane clata item aL DBfuIS', a global trigger to upclate the security access

logs sitriatecl at local clatabase DBNLST must fire. The global trigger is not

commit clependent on the triggering tlansaction because we do not want tire

lThis is intended to illustrate the desired effects, the details of how each will be supported in

an AMDS is deferred to later sections.

48

CHAPTER 3. A FORMAL MODEL OF ANIDS

tligger to abort if the triggeling transaction aborts. All accesses, committecl

or not, must be logged for security pruposes.

Cdep: With the preceding trigger it was possible for the triggering tlansac-

tion to be serialized after the triggered transaction. This is effectively like the

security ìogging tr-ansaction executed before the transaction which macle the

upclate' If this is of conceln to the users of the database then the causally

dependent mode should be used. This will ensure that all results of the the

security appeal' to have occurred aftel the triggering tr-ansaction. The loggi¡g

transaction mnst comrnit even if the triggeling transaction aborts.

Tdep: Updates to the number of passengeÌ's on planes at any database fire a

global trigger'. The triggel checks the amount that the number of passengers

changed. If the change is significant then the trigger will upclate a list of

agglegate values at DBIVIS'. If the deviation is insignificant then it witl

simply abort. The tliggering tlansaction may still commit. If tire triggering

transaction decides to abort then the triggered action is no longer needecl ancl

must abort.

Fdep: The system must support the update of replicated data. D B NI Si ancl

D B AI Sr have decided to r-eplicate important flight infornation from D B II S,

at DBMSi. Whetterrel, a global transaction updates the flight infolmation,

a global trigger must fire to update the replicated infolmation at D B IVI Si . H
the original abolts then the trigger should abolt as well because the r.eplicatecl

data no longer needs to be updated. If the trigger aborts the original must

abolt so we do not have inconsistent data.

Figure 3.2 summalizes the various coupling modes with r-espect to commit ancl

serializability restrictions.

+9

CHAPTER 3. A FORNTAL MODEL OF AMDS

VIode Commit Selializability

Independent ó ó

Causally Depenclent ö P.AC"l P <C

Trigger Dependent P"l co P,AC"l P <C

Fuìly Dependent P, I C, whele re(a, c) P,AC,I P <C

Figure 3.2: Summary of Coupling Mode Implications

3"3 Histories

Histories are used to clefine corlect erecutions within clatabase systems. Barlçer's

history definitions are aclapted [6].

Definition 3.3.1 (Local History): Given a DBfuISk with a set of local tlansactions

LTk and. a set of global subtransactions ÇSTk,, a local history (LHo) is a partial

orcler LIIç: (I*,<f,r) where:

1. tÈ : U, Xf where lf ls the clomain of transact íon T¡eLTu l) ç STo at D B NLS'ç ,

2. <l,r) U¡ <! where <f ls the oldering relation for transaction I at D B fuI Sk ,

and

3. for any two conflictingopelations p,cleLïk,eithel p <l,a qor q <l,n p- n

This captures the ordering of transactions submittecl to a palticuiar clatabase. I\ext

we project the orclerings of the global subtransactions submittecl.

Definition 3.3.2 (Global sul¡transaction history): The global subtransaction his-

tory of a DBMS, say k, is clefinecl by the partial or.'del GSH+: (Xåsr'<å"")

where:

ÐU

CHAPTER 3. A FORMAL MODEL oF AIVTDS

1. Ðårr : U¡ Xj, where Ðf ls the clomain of tr-ansaction T;eÇSTÀ' and

.br,rÇ<1.r.

A global histor-y is the collection of ali the global subtlansaction iristor.ies of an

AMDS.

Definition 3.3.3 (Glol:al History): A global histoly GH : (Ð"¡¡, <cø) is the

union of all global subtransaction histolies:

1. Ðcn : U* Xår.¡,

i'cn) [-J¡ <þs¡r, and

for. any two conflicting opetations p, qeGH, either. p -4cn q or q '-cn p. K

The final history definition describes all transaction executions on the AMDS. A
global history is the combination of the local histories ancl the elobal histor.v.

Definition 3.3.4 (MDB History): A multidatabase history (clenoted MH) consists

of n local histories and a global histor-y (GH) is a tuple ilIH :< L'll,GH) where

L',Jl : {LHr, LHr,...,, LH.}. n

The following example is used throughout the thesis to illustrate impo¡ant,

concepts. It extends the example plesented in Balher [6].

Example 3.3.1 Two local databases constitute our example multiclatabase sys-

tem whose contents are: LDB| : d,e,frg and LDBZ : srt,Ll,,ù. Two globaÌ

tlansactions are posed to the multidatabase as follows:

l1
c_t

w2.

2.

ò.

CHAPTER 3. A FORMAL IVTODEL OF ANTDS

GT1 : ,r(d);rr("); f irel(GTs,true);u,r(s); zu{d);c1;

GT2 : ,r(d);r2(zt);tt,2(s); ru2(d); c2;

These generate the following global subtr-ansactions:

52

G srl
GSrl

G sr;
GSr:

,1@);"1("); J ire!(Gft,tru,e); rul(d); c!;

ul(s); czr;

,"1@);r|(d); c1,;

rl(u,);wl(s); czr;

Next, we define one global triggel on the multidatabase:

GT Rr' (["(g);r(s);tr.'(l);], "(t),
Tdep)

The action of GT Rt is [r(g); r(s); tr.'(l);] and is erecuted when the event r(e) occurs.

This triggers coupling mode ís Tdep (trigger clependent). The firing of this tligger

generates the following global transaction:

GTt., : rt :(g),rr.r (s) ; u1.i (ú) ; c1.1 ;

The subtransactions for this global tlansaction are:

GSTÌt : rl"(s); cä;

GST?r: rl(s); zu2t(t); c!;

Fulther, we introduce local transactions into each DBMS as follor,vs:

Lrl : f}(");ú1('); ri:i@);ê.i;

LTI : f?(") ; r.î:2r(u) ; èl;

CHAPTER 3. A FORMAL MODEL OF AÌVIDS

The r(ti') notation distinguishes local transaction operations from operations of

global subt'ansactions. This is for notational convenience only.

Assume that the foÌlowing local histolies are prodr-rcecl at each site:

LHl : rl(,1);'i('); f ire!(GT11,true);*l(d);rl.r(t/);fi("); ,l(rt);,r.ô|(e);úl(ú/);

.t (d); r\;
"L;

cT:; ê1;

LH2 : ,?(");"?,("); zu2r.r(t);.?("); zul(s);fl(zt);zî:2r(zr);
"?;

rZ; c?t; ô?;

The following global subtransaction histories can be p'ojectecl:

G S H\ : r!(d); r1("); f irel(GT1 1,true); ul(d); r!,.r(s); rLkt); zul(ct); c!; clr; cl ,;
G S H2 : rl (u) ;

"?.,
(r) ; zu2r r(t) ; *? (t) ; -3 G) ; cl; c2r; cl.r;

Tlre global history is the paltial oldel which combines GSTl and GS'72 as GH :
{GS Hr U GS H2} and the multidatabase history is d[H :< {LHt , LII2}, GH > .

n

3"4 Global TYansaction Farnilies

Recall, the full dependency coupling rnode defines a close relationship between the

triggering and triggered transactions but independent transactions (either'fired by

a tligger ol submitted by a user.) are themselves the top-level of thei¡ own tree.

This notation is formalized by:

Definition 3.4.1 (Topt-Leuel GT): A Top-Level GT; is one which is submittecl by

a user ol has an independent, causaliy dependent, or tr-igger depenclent coupling

mode' That is, the only GTs which are not top-level are ones with a full depenclency

ãmode.

CHAPTER 3. A FORMAL A,TODEL OF AMDS 54

tro,nsaction family GT F; isDefinition 3.4.2 (Globøltransaction farnilTl: A global

a set of global transactions containing:

1. GT;, a top-level

{GT¡ | GT¡ is a

of GT¿j

global transaction, ancl

full global transaction firecl by GT; ot firecl by a clescenclent

We use an extended notation fol global tr-ansactions and subtransactions to inciicate

theil tlansaction family. If GT¿ is a global tlansaction,, GST! is a sulttt'¿nsaction

oÎ GT¡, and GT¿ belongs to GTF¡, then i,ve may refer to GT; as G?,qt¡ ancl GS'T!

as GST!,rr. This extended notation explicitly states the GTF to r,vhich a particular

GT or GST belongs. This is illustratecl by the following example.

Example 3.4.L The following global transaction is submitted to the AMDMS:

GTt : r t(a) ; f ir ey(GT s.1, tr tr' e) ;.t (ó) ; f ir e 7(GT1.7, tr u e) ; zu { o') ; c1;

The execution of Gft causes the execution of five global triggels:

L.

m

GT RI

GT R2

GT R3

GT R4

GT R5

(["(.); u:(i); f ire(GTz:,true);-(d);.u(j); f ire(GT+t,.f u'lse);], tu(ó), Fdep)

([.("); *@);], T.u(i), T dep)

([.(");),,.(d), Fdep)

(["(-) ; zuþn);], -(j), I dep)

([-(r);],'(o) ,, Fdep)

Global transactions GT1.1, GTz:, GTt.r, GTn.r, and G75.1 execute the action com-

ponents of. GTRt,, GTR2, GTR3, GTR4, GTRs respectiveiy. G?' fires two full

dependency tliggers GTRl and GTRs. GTt., fires GTz.r (commit depenclency),

CHAPTER 3. A FORNIAL MODEL OF AMDS

Figure 3.3: Depiction of Transaction Famiiies for Exampie 3.4.1

GTz., (full dependency), and GTa.1 (indepenclent). GTl, GTr.r, GTut, and GT3.1

are all members of GTil and GT2l and GT+.r form their own families. Figure 3.3

depicts the farnilies. A

The computational model discussed thus fal is depictecl in Figure 3.4. This

figule extends the simple architecture of Figur-e 1.1 to include tr-ansactions ancl

trigger fir'ings.

3.5 AMÐB-Serializabilitv

The multidatabase serializability colrectness criterion is insufficient fol the AMDB

environment because it does not suppoú causality. For example, if one global

transaction causes another and the second is causally dependent on the first then

CHAPTER 3. A FORMAL MODEL OF ANIDS

GTr

GTr.r

ôsrl,

oo

GTz

I
LT

1

n
LT

1GST;

GSTÏ
1

/\
/1

fire(GTR1)

eae

Figure 3.4: Depiction of the Computational Moclel

DBMSNDBMSI

CHAPTER 3, A FORMAL ALODEL OF AMDS

the first must not see the results of the second. Thus, the original transaction must

be ser-ialized before the triggered transaction in the multidatabase history.

Fulthermore, MDB-serializability does not captule global transaction family

orderings. Subtrees of transaction families must execute as isolatecl units. That

is, it must appear as if all of the global transactions of a subtree have executecl

without sorne other transaction inbetween. If a transaction triggers one ol moLe

sulltlees then the effects of the triggered subtrees must occur immecliately after

the parent. This prevents another transaction flom reading from the pa¡ent ancl

mahing decisions based on data that was to be "corrected" by a triggered subtree.

The full depenclency coupling mocle tightly integrates a subtr-ee, ancl thus a fa¡rily,

together as an atomic, isolated unit.

The following definitions present a suitable cor.r-ectness criterion.

Definition 3.5.1 (Causal dependency graph): Given an albitraly active multi-

database history (MH), its causal dependency graph CDG(AIH) : (f,7) is:

1. f a set of labeled vertices representing global transactions.

2. 1 is a set of arcs connecting two veltices in f . A 7-arc is formecl fr-om G?,

GTi iÎ f ire¿(GT¡,true)elVI H .

Considel the following example.

Exarrrple 3.5.1 Suppose we have an active multidatabase history AIH. The GH

por-tion of At[H is:

GH : {{"i(o); fire!(GT5.r,true);-l(ó); fire!(GT11,true);"1.r(.); *I.rGt);

ùl

to

r

f ir e\ r(G\.1, tr ue) ; *l(o) ;"1 ; cl.r ; Ì

CTIAPTER 3. A FORNIAL MODEL OF AAIDS

u {u.'f ,(i); f ire!,(GT21,tru,e);u?.'(j); Jirel.r(GTa.1, f alse);rl.t(nz);

u! r(n);.1.r@); c?:) c3 t; c1:;\

t-J { tr.'f , (z) ; zo! r(z) ; ru|.rfu) ; c3., ; .3.' ; } }

Tlre CDG lor NIH is illustrated in Figure 3.5. Fivefirings exist in the histoly:

Gfi fir'es GTr.t

GZr fires GTu.t

GTtt frres GT2.1

GTrt fires GZe.r

GTr., fires GT¿.r

All but the last involve causal depenclencies so thele ale foul arcs in the CDG fol

the history. GTt.t is causally dependent on GT1, GTu., is dependent on GTt, GTz.t

is clepenclent on GTr1, and GTsl is clepenclent on GTr.r. n

Note that causal dependencies are transitive. For instance, Example 3.5.1 GTa.r is

causally dependent on GTr.r and GTr.

Definition 3.5.2 (AMDB-Serial): Ã multidatabase history is AIVIDB-Serial iff:

1. every LHeLll is (conflict) serializable,

2. given a GII : {GSTï,...,G}Tï}, if -peGST!,c1eGST! such that P lcn Q,

then Vú,VreGST!,YseGSTj,r 4cø s, ancl

3. if)GTi and GT¡eMIl and a path exists from GQ to GT¿ in CDG(IMH)' then

Vk,YreGST!,VseGSTf ,r lcn s.

Ðòi

CHAPTER 3. A FORMAL MODEL OF AAITDS

Figur-e 3.5: CDG fol Example 3.5.1

4. 1l
=GTi

and GT¡eM H, GT¡ a child of GT¡ and lp with I 4cn p ancl p lcn s

fol some teGT;, seGT¡ then peGT¡,, GT¡:M H, a descendent of G4. n

The fir'st condition states that all local histories ar-e conflict serializable. The seconcl

condition states that if an oper.ation of a global transaction precedes an oper.ation of

another global transaction at the same site, then all operations of the fir-st tr-ansac-

tion must prececle all operations of the second transaction, at all sites. The fir'st ancl

seconcl conditions together ensure that the multidatabase history is MDB-Serial.

The third condition states that if one global tlansaction is causally dependent on

anothel global tlansaction, either dir-ectly or indilectly, tiren all operations of the

fir'st must precede any operations of the second, at all sites. The fourth conclition

states that if an operation exists between an operation of some parent and an op-

er-ation of a child then that operation must belong to a descendent of the parent.

59

CHAPTER 3. A FORMAL MODEL OF ANIDS

This ensures that global transaction family ordelings are corLect.

Definition 3.5.3 (Equiualence of Histories (=)):Two histolies ale conflict eclttiv-

alent if they are cleflnecl over the same set of tr-ansactions ancl conflicting operations

of nonabortecl transactions are o-,.'clereci in the same way. K

60

Definition 3.5.4 (AÌvIDÛ-Serializable (ANIDBSR)) :

iff it is ec¡uivalent to an AMDB-Selial history.

A MH is ANlDB-serializable

K

3.6 Active Multidatabase Serializability Graphs

To leason about the AMDB-selializability of active multiclatabase histories) we tlse

a variation of the multidatabase serializability graphs (MSGs) definecl by Barliel

[6]. MSGs alone are inadequate because they do not capttir-e conditions 3 ancl 4 of

Definition 3.5.2 (recall Example 3.3.1).

Barker's MSGs use À - cLrcs to represent the serialization order of transactiotls

execnting at the local databases ancl 7 - (rlcs to replesent orclerings of global

transactions [6]. The MSG for this example is presentecl in Figule 3.6. Double

headecl aÌrows are used to represent 1 - arcs and single heacled arrows for À - r¿rcs

Note that the graph is acyclic ancl by Theorem 4.1, page 41 in Barker 16] the

multidatabase histoly is MDB-serializable. However', examining the GH portion of

the multidatabase historv tuple:

GH : {{"ï(¿);"l('); f ire!(GT1r,tru.e);ul,(d);"l'(g); rL@);ul(d);r";rL;.].'; }

U { "?
(
") ; r? r(') ; -?.r(t) ;.? (

"
) ; .3G) ; r?;

"7;
r?.'; } }

we see that rf r(s) <.u ,?(") at DBNISl. Since fire!(GT11,trute)e GH this

multidatabase histoly is not AMDB-serializable.

CHAPTER 3. A FORAIAL MODEL OF AMDS

Figure 3.6: MSG for Example 3.3.1

o1

CHAPTER 3. A FORNIAL AIODEL OF ANIDS

We modify the serializability graphs presented in Bar-lier to capture these vio-

lations.

Definition 3.6.1 (Actiue illultidatabase Serializability Gra'ph): Given an zi.rbitlaly

active multidatabase histoly (MH), its active multidatabase seri¿rlizability graph is

a digraph definecl .,vith the or-derecl five: ANIS'G(NII-I) : (f,Ä, ^1,À,T). Each

element of the orcler-ecl flve is defined as follo,'vs:

1. f is a set of labeled vertices representing global transactions.

2. A is a set of labelecl vertices representing local transactions.

3. 1is a set of a-,.'cs, each connecting two veltices in f . A 7 - arcis folmecl r,vhen

two global transactions (GT¿,GT¡IÇT) conflict, if an opelation of any GST!

precedes a conflicting operation of GST! in MG, a 1 - arc is formed f'olm the

cor-r-esponding nodes in f from GTi to GTj.

4. À is a set of arcs, each connecting two vertices in f lJr\ when tr,vo conflirrino

transactions f ancl fi submittecl to DBNISk so that 7oÀ prececles {:

(.)

if T:,Tt'eLTk a I - arc is formecl from ff to T!.

if T:,Tf eÇSTk a À - arc is formed between GT¿ and GTr, respectively,

i.e. GT¿ --+ GT¡.

if TleÇSTn,Tl, LTk (or vice velsa) a À - arcis formecl flom G4 to

LTI (or reverse: LT: -- çf;)

5. n is a set of arcs each connecting two vertices in f. A r - arcis formecl from

GT¿ to GÇ whenever fire¿(GT¡,true)e MH.

62

{-a)

(b)

I

CHAPTER 3, A FORMAL MODEL OF AMDS

Figule 3.7: AMSG for Example 3.6.1

The first four elements of Definition3.6.1 are Barlcer's multidatabase serializability

graplr [6]. The fifth element is a set of arcs lepresenting causality. For example, if
a global transaction causes another global tlansaction and thele is a causal clepen-

dency between them, then a 7T - arc is formed from the oliginal to the triggelecl.

The significance of these ar-cs is described later.

Exarnple 3.6.1 Recall Example 3.3.1. A histoly was described that was MDB-

serializable but not AMDBSR. The AMSG for this example is illustlatecl in Fig-

ule 3.7. The graph is the same as the one in Figure 3.6 except it captures causal

clependencies. There is a zr - arc from GZr lo GT1.1. I

OJ

CÍIAPTER 3. A FORNTAL MODEL OF AMDS

3.7 Active Multidatabase Serializability Theo-

retrrt

AiVISGs can be usecl to demonstrate when an arbitlary active multiclatabase his-

tory is AMDB-serializable. Before presenting the serializability theor-em we plesent

clefinitions which will aicl in the unclerstancling of the theorem ancl its proof.

Definition 3.7.L (r -pattt): An AMSG(MIf) contains a r -path florn G7, to GT¡

if there exists a path consisting soiely of n arcs from GÎ to GT¡ in ANISG(N/II{).

m

Definition 3.7.2 (À,1 - ?tcúh): An AVISG(MH) contains a À,^l - path fron G7'

to GT¡ if only À ancl 7 alcs occul from GT; to GT¡ in AMSG(NÍH). &

Definition 3.7.3 (Causal Discrepancy): Ãn AMSG contains a causal clisclepancy

if la r-pathflomGl toGT¡ ancll aÀ,^t -pct'thfromGf toGT¿. n

In other words, a causal discrepancy exists if thele exists a GT¡ which is causally

dependent on GT¡ and there is a path consisting of À ancl J aÌcs from GT¡ - GT¿

in the AMSG, then, assurring that the rnultidatabase history is MDBSR, G?, will

be ordeled before G7,. This is a violation of the causal depenclency.

Definition 3.7.4 (Family Order Discrepancy): An AMSG(VIH) contains a farnily

older discrepancy if there exists a À,7 - path from GT; to a child GT¡ ancl there

exists a node on this path (other than G7,) which is not a clescencleú of GT¿.

n

64

CHAPTER 3, A FORMAL MODEL OF AMDS oð

Figure 3.8: AMSG for Example 3.7.1

Example 3.7.L Consider the AMSG of Figule 8.8. The gr-aph shows that GTl <
GTz < GTtt which violates the family ordering described in item 4 of Defini-

tion 3.5.2. The path from G71 to its child G71 1 contains G?z whictr is not a

descendent of GTt n

We are now in a position to present the theolem.

Tlreorem 3.7.1 (AMDB Seriali,zabili,ty Tlteorem) A multiclatabase history (MH)

is AMDB-selializable if and only if AMSG(MH) i. r - acyclic, À - acyclic, does not

contain any causal discrepancies, and does not contain any family older- clisc¡epan-

cies.

Proof:

(if): Given a ^'l - acgclic, À - acyclic, causal discrepancy-free, and family ord.er

CHAPTER 3. A FORMAL MODEL OI¡ AMDS

discrepancy-free AMSG for a multiclatabase history NiH; MH is AMDB-serializable.

Witlrout loss of gener-ality, assume that ùIH :1 LJl,GH > refers to the commit-

tecl projection of a multidatabase histoly.2 Suppose the global history GH is definecl

ovel the set of tlansactions ÇT : {GTt,...,GT,}. The AMSG for MH i. 1- ucyclic

ancl À - acyclic so by Theorem 4.1 of Barker [6], MH is MDBSR.

Assume MFI is not AMDBSR. This implies MII is ecprivalent to a histoly which

satisfies conditions 1 and 2 of Definition 3.5.2 (because MII is MDBSR) but not

conditions 3 or- 4. Suppose conclition 3 is violatecl. Then, tlie following are true:

there exist G4,Gf where GT¡ is causally clependent on GT¿, GT¡ is serializecl

before GT;in the multidatabase histoly ancl, GT; and GT¡ conflict, either clirectly

or indirectly. Since GT¿ and GT¡ conflict, there is a À, 1 - path fì'orn Gf Io GT¿

in AMSG(IVIH). However, AMSG(MI-I) also contains a, iT - path from GT; to GT¡.

This implies that AMSG(MI-I) contains a causal discr-epancy, which we know to be

false. Hence, point 3 cannot be violatecl.

Snppose point 4 is violated. This means there exist a parent GT¿, a chilcl GTr,

ancL some other GT* a non-descenclent of G4 where GT¿ ís ser-ializecl before G7¡

ancl G7¡ is serializecl before GTr. This implies lhat GT¿ and GT¡ conflict ancl that

G7¡ and GT¡ conflict. Since they conflict there is a À, 1 - pcúh froln GT¿ to GT¡

and flom GT¡ to GT¡. Llence, there is a À, 1 - path frorn GT¿ to GT¡ ancl G7¡ lies

on this path. This implies that AMSG(VIH) contains a family orclel cliscrepancy

which is a contradiction. Thus, item 4 is not violated either. Hence, our original

assumption that MH is not AMDBSR was false, as lequirecl.

(only if): Given that the history is AMDB-serializable we must show that the

AMSG produced must be 1 - acyclic, À - acyclic, causal discrepancy free, attcl

2C(Ull) is the cornmitted history of a 1VIDB schedule which includes the committed transac-

tions in each local hisiory ancl the global history. C(MH) includes C(LHL),C(LH2),...,C(LH")

and C(GH) which are those GTs in GH that ate committed.[6]

66

CHAPTER 3. A FORMAL MODEL OF AALDS

family ordel discrepancy free.

Since MH is AMDBSR it is also MDBSR. Hence, by Theorem 4.1 in Ballier. [6],

AMSG(MFI) i. Z - acyclic and) - acyclic. Now, we need to show that AMSG(MH)

contains no discrepancies.

Assunre AMSG(MII) contains a causal discr^epancy. Then thele exists GT¿ ancl GT¡

nodes in AMSG(MH) with a 7T - patlt from GT¿ to GT¡ and a À,7 - path from GT¡

to GT¿. This implies that GT¡ is causally dependent on GT¡, and GT¡ was se¡ializecl

before G7,. This means that MH is not AMDBSR, which violates ouÌ assumption.

Hence, our asslrmption that AMSG(MH) contains a causal disclepancy is i¡cor-

rect.

Assume AMSG(MH) contains a family order discrepancy. Then there exists a

À,1 - path' from GT¿ to GT¡ (a chilcl of GT¿) and at least one nocle G?¡ on this

path is a non-descendent of GT¿. So, GT¿ was ser-ialized before a non-clescendent

G7¡ which was serialized before GT¡, a child of GT¿. This implies MFI is not

AMDBSR, which it is. Hence) our assumption that AMSG(MH) contains a family

order discrepancy is incorrect. Thelefore, AMSG(MH) i.7 - acyclic, À - ctcyclic,

and causal disclepancy free.

3.8 Sumrnary of Assurnptions

This modei makes several assumptions either implicitly ol explicitly. This chapter

is concluded by collecting these assumptions.

L. Local Autonomy; Each of the local DBMSs are assumed to be totally au-

tonomous. This rneans that no modifications to any DBMSs is per.mittecl.

This also means that the DBMSs cannot directly communicate with each

67

n

CHAPTER 3. A FORMAL MODEL OF AMDS

other. An individual DBNIS is capable of executing a transaction submittecl

to it from start to finish and will ensure that in the event of a failure that the

DBVIS is able to fully recover without any tlser inpLrt.

2. Su,btransactions: Compilation technicpres erist to clecompose a global transac-

tion submitted to an AMDMS into global subtlansactions. Further, a global

tlansaction may submit at most one global subtransaction to any one DBVIS.

Reliability: We viei,v the issues of leliability and recovely as orthogonal so

failules are not consiclerecl. Reliability ancl recovery techniques describecl in

Barker [6] should be extencled to ensule successful erecution in this environ-

ment but these issues are left as future lesearch.

Trigger termination; This moclel allows global trigger firings to be nestecl

to any depth so trigger executions can fi.re other triggers. This can lead

to infinite nestings of trigger executions. For example, a triggel GT R¡ frres

another trigger GT Rj, which in turn causes GT R¿ to fire, which tliggers

GT Rj, ancl so on. This work assumes this situation will not occrtr'. Ailien

et al. [2] define mechanisms fol detecting when a trigger set may leacl to

nontelminating executions and f'or- detecting the triggers at fault. Other ideas

may be found in Voort and Siebes [40].

68

J.

+.

Chapter 4

Global Trigger Manager

The global trigger manager is responsible for triggel event detection and for. en-

suling that global triggels are setup and submitted properly. However-, cletecting

trigget' events in tliis environrlent poses rnany pr.oblems. Existing moclels ttse eaent

detectors [26,,74,I5,,24] to detect events as transactions ale executing on the data-

llase' Howevet, in a multidatabase envilonment adding event cletectors to inclivicl¡al

DBMSs would require major modifications resulting in a serious violation of local

autonomy.

The GTRM deals with this problem by modifying submittecl GSTs to pelform

theil own event detection. If a global tr-igger event occlu's as a r-esult of the execution

of an operation of some GST then the GST must signal to the GTRM that the event

has occurred. It is then the GTRMs responsibility to execute the global tr.igger(s)

filecl as a result of the events occurrence.

Figure 4.1 illustlates the major components used by the GTRM in the event

detection and trigger execution plocesses. These include the Global Trigger Dic-

tionary (GTRD), Event Log (trL), and Dependency Gr.aph (DG)

69

CI-IAPTER 4. GLOBAL TRTGGER MANAGER 70

To/From Global Transaction Manaser

Global
Trigger
Manager

Global
Trigger
Dictionary

ÕO
-\"

()- - -

ób
Dependency GraphTo/From Global Scheduler

Figure 4.1: Illustration of the GTRM

CHAPTER 4, C}LOBAL TRIGGER NTANAGER

Normally, the GTRM wiil setup a global tlansaction to execute the action of a

tligger when the trigger event has been detected. The global transaction will then

be submitted to the GS fol scheduling. The GS will schedule the tlansaction as

usual but will bear in mincl any causal dependencies that may exist. The GRM will

ensrue that commit dependencies ale ensured. However, there is one special case,

the fuil dependency mode, when the GTRM will not be able to setup and submit

global transactions. The next section addlesses this sit'ation.

4"L Full Dependency Tliggers

The full commit dependency coupling mode poses a problem in the multidataÌrase

environrnent. Deadlock may alise if subtransactions of a triggering tlansaction ancl

the triggered tt-ansaction execute concurrently at the same DBMS. We illustrate

this problem with the following example.

Example 4.L.7 Our example uses a multidatabase consisting of thlee local data-

bases. A global transaction GTt is submitted to the AMDMS ancl is parsecl i¡to
two subtransactions, GSTÌ and GSTI, which are submittecl to the local clatabases.

Snppose that GS?r1 fires a global trigger- GT Rt which has a fully clepenclent cou-

pling mode. The AMDMS cleates GTtt and its two subtransactions, GSTI, and

GSTl1, to execute the trigger action. Suppose that the global scheduler subrnits

these GSTs to the local databases as well. GST?t acquires a wlite lock on data

item r¿ at DBM52. GST? attempts to get a read lock on ¿ but is suspenclecl by the

Iocal scheduler and placed in the wait queue for data item ¿. GST?.1conpletes its

opelations and sencls a precomlnil to the recoveïy manager. GSTI. also completes

its operations and sends a, precommit to the GRM. GTr.r's GSTs are all in a pre-

commit state and is fully dependent so GTr.r will be committed if GT commits.

7r

CHAPTER 4. GLOBAL TRIGGER MANAGER

However, GS'T? is waiting lor GSTI., to give up a wlite loch, but it cannot until

Gfi commits. Hence, we have "self imposecl" cleaclloclç. K

Deacllock can also arise even if the two GT's access inclepencient sets of clat¿r..

GST?t may have a loclç on a data item r ancl some locai transaction LT! l;rray entel

the wait clueue for the lock. Now, GST? enters the wait queue for a lock on y which

I7r2 holds. GSTI. completes ancl precommits. tr?r2 is still waiting fol GSff., to

give up a lock and GS7r2 is waiting on LTl. HoweveL, GTr.t is .,vaiting f'or GTr to

commit. Again, we have deacllock.

One solution is to change the way the Global Scheclulel ancl/or Global Recovery

Managers work. We take the approach of modifying the GS and GRIVI as little ¿rs

possible because proven algorithms exist fbl them that can extended to suppolt

active behavior [6].

An alternative solution is to embed the GSTs of full depenclency GTs at the encl

of the GSTs of the triggering transaction. When the triggering transaction is com-

plete the operations of the triggered GST may begin execution. If the operations

of one GST clictate an abort then all of the GSTs are aborted. This is acceptable

because the two transactions are commit dependent on each other. If the tliggelecl

transaction fires another full clependency tr-igger then this plocess recursively re-

peats itself. Hence, it is possible to get a GST that contains the operations of

several subtlansactions. This cloes, however', impose a serialization orcler f'ol full

dependency tr^ansactions. The embeclcling process is clescribecl in more detail when

the algolithms ale presentecl.

72

CHAPTER 4. GLOBAL TRIGGER MANAGER

4.L.L trmbedding Issues

trmbedding GSTs laises some interesting issues such as if a trigger is to erecute

zelo times or mote than once. The easier case is when a triggel is to file zelo tiiles.
If GST! is embedded in some othel GSTI and Gfl's event cloes not occlrr then the

G ST! portion of G ST! must not execute. If GTi fir'es two or more times then GS'?]t

should execute the that number of times. These issues requile that we embecl the

execution part of GSTs in a loop. At the beginning of each loop the GST will query

the GTRM to determine the number of times to execute. The GTRX4 will know

this because the triggering transaction had sent signals to it each tirne it causes a,

triggering event.

The next issue is when the loop of an embedded GST should terminate. The loop

should complete when it is lcnown that the triggering event of the embeclclecl GST

cannot occul again (i.e. the tliggering transaction has completed). The GTRM

knows that a triggeling event will never occul again if enough of the triggering GTs

subtransactions complete so that it is not possible for the event to by causecl by the

triggering GT. This requires that any subtransactions that cause simple events of

GTRs must send a rnessage to the GTRM notifying it that the triggeling GST has

completed its execution. At this point the GTRM examines each event that the

GT may possibly cause and eliminates triggers that will never fire again. We call

the message which notifies the GTRM of the GSTs completion a termination. Note

that a GSTs abort ol commit message is not sufûcient for this purpose because we

want the GTRM to know when a GST has completed its oper-ations ancl if anothel

GST is embedded in it then ttre GTRM would not be notified until the embeclclecl

GST compietes.

Termination of GSTs is more conplicated than it first seems. Consider the

l.)

CI-IAPTER 4. GLOBAL TRIGGER MANAGER

following example.

Exarnple 4.L.2 Suppose the execution of G,îTl coulcl caLrse event e1 to occur

which triggers GST]t. Further, suppose that the execution of CJST/r coulcl cause

event e2 to occtir which fires GS$r. Both triggers are fully clepencleut so GTFI

contains all three transactions. Ali thlee access the same DBNIS so they ¿ìr'e em-

beddecl into the same GST. Now suppose that GSTI erecutes ancl cloes ttot ca,use

e1. It sends its termination to the GTRNI which recolds \1. GSTll begins its loop

ancl queries the GTRM for the number of times to execute. The GTRM knows

that GS?rl., is not to execute so replies with a message that the event occutrecl zero

times ancl r,vill nevel occrllagain. GSTI' is bypassed ancl GST].r begins its loop. It

clueries the GTRM. The GTRM lçnows that ez has not occurred yet ancl also knows

that tlre GT which causes it will never occlrr again. The GTRM infbr-ms G ST) , to

execute zero times and complete.

The pr-eceding example implies that the GTRM must checlç aclditional events when

a GST terminates. That is, when GSfÌ completes and sends its termination, the

GTRM must mar-k the event which causes GSTil (e1), as final. Since €1 r€ver

occulred the GTRIVI must ma-,.-ic all of the events causecl by clependents of e1 as

final and set the number of occurrences to zero. GSTL, is execution clependent on

e1 and GSTlr câuses €2. Event e2 must be marlced as final. This is a reculsive

pÌocess until events are reachecl that have no clependents. When GSTil clueries in

Example 4.1.2 the GTRM will ltnow that it is to execute zero tirnes.

trmbeclded GSTs which execute two or mole times in a loop require extenclecl

data structures to r-ecorcl events causecl by them. For example, suppose GSTI

coulcl cause the event conj(e1re2) to occnr. The fir'st loop causes e1 to occttl ancl

the second loop causes e2. Semantically, conj(e1,e2) has not occurred as the sirnple

'7 tlt-l

ö

CHAPTER 4. GLOBAL TRIGGER MANAGER

events were caused by two logically separate GTs. Therefole, the GTRM rnust

Ì<eep track of the events caused by diffelent executions of a GST for triggelfiring
puÌposes.

4.2 Generic GST

The algorithms presented in this thesis assume that global subtransactions have

a certain stlucture. Figure 4.2 illustr.ates the basic featules of a GST submitted

to a local database. The GST begins with a database login which logs onto the

local database where the GST is submitted. Next, the initi,alization section sets

np variables used by the transaction. The transaction code section performs the

actual computations and database accesses. After the transaction cocle a pr-ecomrnit

section sends a ready message to the AMDMS. The GST is then blocl<ecl until the

AMDMS responds Once the Ìesponse is received it commits ol aborts accolcling

to the message. Finally, the database logout completes the GST. This approach is

consistent with Barlcer f6l.

4"3 GST Submission

Global transactions are parsed into theil lespected subtransactions by the global

tlansaction manager. The set of GSTs are submitted as a group dowir the AMDS

alchitectule to the GTRM (see Figure 1.2). This section describes the activities of

the GTRM before the GSTs are passed to the global scheduler-.

Global transactions are leceived and analyzed to determine if they coulcl cause

the event of one oÌ more global triggers to occur. The GSTs of the submittecl GT

tù

CHAPTER 4. GLOBAL TRIGGER MANAGER to

Begin Transaction GST

database login

initialization

transaction cocle

sencl ready accept q-cond

if ci-cond :: aboLt or sencl failed then

abort

else

commit

clatabase logout

End Transaction GST

Fisure 4.2: Genelic Global Subtransaction

CHAPTER 4. GLOBAL TRIGGER MANAGER

aÌe then modified so they can send a message to the GTRM whenever they cause

a simple event of a potential GTR. The GTRM will recold event occurrences ancl

contlol the execution of triggeled GTs. If a potential GTR is fully clependent then

a GT is created immediately for the GTR and added to the global transaction

family of the submittecl GT. This may involve embedding one ol more GSTs (as

discussed eallier). The intuitive initial GT submission algorithm follows.

Global Trigger Manager (Initial GT; Su,bmission)

1. Dete'mine the global t'iggers that are potentially firable by GT¿.

2. Moclify each GST or GT; to signal the GTRM whenever the GST causes a

simple event of a potential GTR.

3. For each potential GT Rr:

(a) If GT Rk is not fully dependent then lecor d GT Rk and its event in the

event log.

77

(b) If GT Rk is fully dependent then

i. Modify each GST! that causes one or.

to send a terminaúion message when

operations.

more simple events of GT Rt

the GST has compleied its

ii. Create a global tr-ansaction GT¡, to execute GTR*.

iii. Record GT¡ and its event in the event log.

iv. Fol each GSTIIGT¡ : ir GT¡'s farnily contains a GSTi' then embecl

GSTï into GSZi; othe'wise GST; will be submitted witrr trre GSTs

of GT¿.

v. Recursively call this algorithm with G?¿.

CHAPTER 4. GLOBAL TRIGGER NTANAGER

The following is a list of functions/clata structntes necessary for the clescription

of the algorithms:

Dependency Graph : The depenclency graph (DG) contains a nocle fol each

GT. A cornmit-arc from GT; to GT¡ ís constructecl if GT; is cornmit clepen-

clent on GTj.
^

cause-arc from GZ to GT¡ is constrticted if GT; ts causally

clependent on GT¡.

pending-GSTs (GT¿): This is a set of triggerecl GSTs that are potentially fir'able

by GT¿. It is global in scope.

Add-Pending-GSTs (set-of-GSTs): Aclcls set-of-GSTs to the pending-GSTs list.

This procedure modifies each GST so that it executes within a cluely loop (see

the Embed-GST pr-ocedure clescribecl below).

event log : The event log (EL) is a stable log with six fields: eaent, euenttree,

occurrences, f,nal, blocked, ancl deqtendent.s. Occtmences lecorcls the number

of times euent has occurled, which is initially 0. Eaenttree is an ordeled set

of event tlees that record simple events (of euent) which have occurrecl but

have not yet caused euent to occur. It initially contains only one eventtree

but others may be added if this event is causecl by a full depenclency GT.

Final is true il euent will not occul again because transaction that causes one

or more of the simple events has completecl. The l¡locked fielcl is a set of GSTs

blocked on euent. These GSTs may be started when occurrences is updatecl.

Dependents is a set of global transaction or global trigger identifiers that are

execution dependent on eaent so when euent occrls each clependent is firecl.

EL-Add (eventìd): Acldsarowtotheeventlog. Euentissettoeventìcl, euenttree

is initializecl to I\ULL, occurredis set to 0, f.nal is initializecl to false, blocked

78

CHAPTER 4, GLOBAL TRIGGER MANAGER

is initialized to the empty queue, and dependents is initialized to the empty

set. Only adds the row if eventjd does not already occul in trL.

El-Add-Dependent (id,eventìd): Adds id to the deltendents of the EL row with

euent : eventid.

TFT : This is transaction famiiy tlee that G4 belongs to. It recorcls the f¡]}
clependencies Ìretween a GT and zelo or more triggeled GTs. It has a global

scope.

TFT-Initialize (GT¿): Initializes the TFT to node Gfr.

TFT-DBMSs 0: Returns a set of DBMS identifiers that are submitted to by

GTs palticipating in the TFT.

TFT-GST (r): Perfolms an orclered traversal of the TFT searching for the fir.st

GT¡ that submits a GST to DBAIS''. Returns |heGS'T]'.

TFT-Add (GT¡,GT¿): Creates a node GT¡ and adds it to the TFT as the lieht-

most child of node GZ..

tr\rll-Dependency (GT R¡): Returns true if GT Rk has a full dependency coupling

mode. Otherwise, retulns false.

Generate-Potential-GTRs (set-of-GSTs): Generates and leturns a set of GTRs

which could directly fire as a result of the execution of set-of-GSTs.

GSTS (GTn): Returns the set of GT¡'s GSTs.

Event (GTR¡): Returns the event of GTRr.

Insert-Tþansaction (GS{,line,line-of-code): Inserts line-of-code after position

line in the actual GST! code.

79

CHAPTER 4. GLOBAL TRIGGER MíANAGER

Transaction-Code (GSTi): The transaction cocle of G'ST!

Initialization-Section (GST!): The initialization section of G'ST! .

Insert-Terminator (GSTi): Inselts a piece of cocle which we will call a termina-

tor into GSf;to sencl a termination message to the GTR1VI wheir GS'T,/ has

completed its execution.

SimpleJvents (GT R¡,): Returns the set of simple events fbr the event of GT Rr.

Create-Global-Tbansaction (GT R¡): Creates a global transaction I'or the ac-

tion of GT R*. The depenclency glaph is updated r,vith any commit ancl causal

dependencies between the newly cleatecl transaction ancl its tliggering tlans-

action. Retur.ns the new GT.

Figures +.3,4.4,4.5, and 4.6 present the algorithms. Global transactions sub-

mitted to the AMDMS are parsecl into theil respective subtransactions by the global

transaction manager and are passed down to the global triggel manageÌ. Figure 4.3

pr-esents the submission algorithm which accepts the GSTs ancl per-forms the nec-

essary modifications fol event detection ancl trigger execution. Line (1) sets the

transaction family tlee for GT¿ to a graph containing only GT¿ which is the globzrl

transaction of the GSTs submitted. Line (2) initializes pending-GSTs to the empty

set. Line (3) calls a routine to modify the GSTs to cletect simple events of global

triggers which may fire as a result of. GTis execution (see Figure 4.4). Finally, line

(4) submits the GSTs of GT;, ancl GSTs of full GTRs which may be firecl by G7,,

to the global scheduler.

Figule 4.4 presents the recursive GST modification procedure. Line (1) gerìer'-

ates the set of globai tliggers that could potentiai-GTRsly fire as a result of GTis

exectrtion. Line (2) creates the monitor-seú which is the union of the sets of simple

80

CHAPTER 4, GLOBAL TRIGGER A,{ANAGER

Algoritlrm 4.7 (Global Trigger Manager - Initial Submit)

begin

input GT; : global tlansaction identifier;

set_of-GSTs : set of GST;

TFT-Initialize(GT;);

pending-GSTs +- /;
GST-Trigger-Modifi cation (set -of-GSTs) ;

Submit-GS (Set-of-GSTs [J pending-GSTs)
;

end;

Figure 4.3: Global Trigger Manager Submission

81

(1)

(2)

(3)

(4\

CHAPTER 4. GLOBAL TRIGGER A/LANAGER

events for each GTR that is potential-GTRsly firable. Lines (3-a) adcl each trig-

ger's event to the event log, concatenatecl with Gf 's identifler. The concatenation

will clistinguish this event fr-om the same event causecl by some othel global trans-

action. Lines (5-6) moclily each GST of GT¿ so that each will inform tlie GTRNI

whenevel they cause an event of monitor-set to occtlr. Lines (7-19) examine each

potential-GTRs GTR.If GTRi does not have a full clepenclency then lines (8-9)

acIc| GT R¡'s iclentifier to the clepenclents fielcl of the triggering event in the event

log. Il GTRi has a full clependency then lines (10-11) examine each GST ol GT¿

ancl ensure there is a terminator at the end of each GST that causes one or rrtore

simple events of GTR*. Line (12) creates a new global tlansaction (GTn) for the

trigger. Line (13) adds G?¿ to the clependents fielcl of the event log row with event

: GT¿: Euent(GTRt). Each GST|, of GTn is examinecl lines (i4-17). Line (15)

determines if there is a GT in the transaction family tree with a GST th¿r.t is to

be submitted to the same site as GSTI. If there is then line (16) embecls GSTí;

into the GST. If there is not, then line (17) adds GSf[to pending-GSTs. Line

(18) adds GTnto the TFT as a chilcl of GT¿. Line (19) recursively calls this routine

using the GSTs of GTn

The algorithm presentecl in Figure 4.4 uses two important subroutines. FiS-

ure 4.5 modifies a GST to signal the GTRM whenever a monitorecl simpie event

occuls. Line (1) Ioops thlough each line in the database operations section of GSTi .

Line (2) loops through each simple event caused by the current line. Line (3) checks

if the simple event is to be monitorecl ancl, if so, a line of cocle is insertecl in GST!

after the iine which causes the event (lines (4-6)) The insertecl line will signal the

GTRM of the event's occulrence. If the triggerecl GST is of full depenclency then

the signal will include the execution number'.

Figure 4.6 plesents the subroutine to embecl one GST into another. Line (l)

82

CHAPTER 4, GLOBAL TRIGGER MANAGER

Pro cedure GST-Trigger-Modifi cation;

begin

input set-of-GSTs : set of GST;

var potential-GTRs : set of GTR;

var monitor-set : set of simple events;

potenti al-GTRs .- Generate-Potential_GTRs (set _of_G S Ts) ;

monitor-set <- U* Simple-Ðvents(GZA ¡), GT Rne potential_GTRs;

for each GT Rne potential-GTRs do

EL-Add(cfr : Event (GT Rn)) ;

for each GST|e Set-of-GSTs do

Monitor-GST (GSry,Monitor_set) ;

for each GTR¡,e potential-GTRs do begin

if not Full-Dependency(G?-B¡) then

EL -A d d -D ep endent (G T R ¡",,GT¿ :Event (G?Ã¡)) ;

else begin

for each GSTIe set_of_GSTs do

Terminat or -G S T (GST,/, S i mp l" -event s (G? A¡)) ;

GT ¡ * Create_Global_Transaction (GTA¡) ;

EL-A dd -Dependent (G T ¡,GT¿:Event (G7Æ¿)) ;

for each GSTI:GT¡ do

if DBM S'' e TFT-DBMSs0 then

Embed-GS T (G S Ti;,TFT-GST(r)) ;

else

Add-Pending-GSTs (G S r[) ;

TFT-Add(GT¡,GT¿);

GST-Triggel-Modifi cation(GSTS (G7¿)) ;

end; (* else *)

end; (t for' *)

end;

83

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(e)

(10)

(11)

(12)

(13)

I t4ì

(15)

(16)

(17)

(18)

(1e)

CÍIAPTER 4. GLOBAL TRIGGER NIAI{AGER

P ro cedure Monitor'-G S T (G.9ry, set -of-events) ;

begin

var

line : iine of tlansaction cocle;

for each line in Transaction-Cocle(GST!) do (1)

for each simple event e causecl by line do (2)

if ee set-of-events then (3)

if not Full(GS?ll) then (4)

Inserl-Transaction(GS(,line,"Signal-GTRilil(G"9?,1 : e'1);"); (5)

else

Insell-Transaction(GST1,line, "Signal-GTRM(GSry : e,loop) ;") ; (6)

end;

Figure 4.5: GST monitor ploceclure

8rl

CHAPTER 4, GLOBAL TRIGGER A,TANAGER

finds the line used to plecommit in the GST which will have anothel GST embed-

ded. Line (2) embeds the relevant GST cocle before the oliginal GST's precomrnit.

The next example plovides a detailed trace of the submission algorithm's exe-

cution.

Exarnple 4.3.1 Oul example AMDS consists of five local databases: LDB| :
{d,"}, LDß2: {", y}, LDB3 : {r,m}, LDBa: {s,ú}, ancl LDBí : {p,r1}. The

global trigger dictionary contains three GTRs:

GT Rl : ({r(d); -(d); tr.'(r); u(y); w(tn); c;} , r(e), F dep)

GT R2 : ({u.'(d) ; r(p); -(q); c; }, w(s), C dep)

GT R3, ({r (y) ; . (r) ; * ("); * (p) ; c; }, con j (w (r), w (d)), F dep)

A single global tlansaction is submittecl to the AMDMS:

GT1 : r{e); r-r'(s); wr(y);uld); q;

GT1's GSTs are received by Algolithm 4.1:

GSrÌ : r](e); ul(d); c!;

GSr? : rol(y); cl;

GSTI: r.r.'f (s); wl(t);c!;

The GTRM's algorithms ale illustrated by the following execution sequence:

1. The TFT is initialized to node GTy and pending-GSTs is initialized to the

empty set (lines (1 2)) The routine to perform trigger-modifications is called

fol the GSTs of GTy (line (3)).

öÐ

CHAPTER 4, GLOBAL TRIGGER MANAGER

Procedure Embecl-GST(G.97t , GST!, event);

begin

var

line : line of transaction cocle;

line <- PrecommitJine(GS{);

Inselt -Transact ion (G5{,line- 1,

"{

" *InitializationSection(GSfi) +

" int countJoop, loop, final : 0;

do

countJoop, final : Query-GTRM(G.97í,loop)

whiie loop (count-Joop do

{

" +Transaction-Cocle(G ST[)

-¡ "loop**

Ì
while lfinal

Ì
");

end;

86

(1)

(2)

Figure 4.6: GST embedding routine

CHAPTER 4. GLOBAL TRIGGER MAI,{AGER

Begin Transaction GST

database login

initialization

tlansaction code

{

ll begin embedded GSfi

initialization

int countloop, loop, final : 0

do

countJoop, final : Query_GTRM(GS"i,loop)

while loop (countJoop do

{

tlansaction code

Ioop*_F

Ì
while !final

I I end embedcled G Sf!

Ì
send ready accept q-cond

if q-cond :: abolt or send failed then

abor-t

else

commit

database logout

End Transaction GST

87

Figule 4.7: Embedded GST

CHAPTER 4. GLOBAL TRIGGER MANAGER

P ro c edure Terminator-G S T (GS'T/, set -of-event s) ;

begin

var

line : line of transaction code;

if GST! cloes not have a telminator then

for each line in Transaction-Code(GST!) do

if line causes an event of set-of-events then

begin

Insert-Terrninator(G S f Ð ;

return;

end;

end;

Figur-e 4.8: Terminator insertion routine

88

CHAPTER 4, GLOBAL TRTGGER MANAGER

The potentiai-GTRs set of triggers firable by GTl is genelated in the trigger

modifications procedure. The GTR events include r(e), r.i.'(s), and cot't j (tu(r), w(ct)).

The simple events are r(e), .(r), .(*), and r.r.'(r/). GT1 may cause all but

to(r) to occul. Hence, the event conjþu(r),.(d)) will not occul as a result

of GTis execution and GT-Rg will not fire. Flowever, GTRl ancl G?Ã2 may

flre. Ilence, we get:

potential-GTRs : {GT Rl, GT R2}

The set of all simpie events of the potential GTRs is gener.ated (tine (2)):

monitor._se¡ : {r(e), r(")}

Each tligger's event is added to the event log (lines (3-4)) with the G?'

identifier (see line (1) of Figure 4.g which depicts the event log).

2. Each GST of GTl is modified to cletect the simple events of monitor'-set (lines

(5 6)) This involves a call to Monitor-_GsT. The line:

Signal-GTRM(G.941 : r(e),1) ;

is inselted into G,97r1 after the r(e) operation and the line:

Signal-GTRM(GS'44 : u-'(s),1) ;

is inserted into GSTI after the tu(s) operation. When these iines are executed

by the GST, a message is sent to the GTRM with the event that has occurrecl.

The GTRM can then execute GT Rt and GT Rz, r'espectively. Each tr.igger. in

potential-GTRs is examined, stalting with GTÆr (line (7)). GTh is a full

89

CHAPTER 4, GLOBAL TRIGGER AIANAGER

clepenciency trigger (line (8)) so a ter-minator is aclclecl to

11)) A new global transaction GTr.t for GTRt is createcl

GSTs ale:

90

GSrl (iines (10-

(line (12)) r,vhose

GSTl.t: rl ,(d); r-o!.r(d); c\,;

GST?r: u.'f ,(r) ;w?.r(y); c?.r;

GSTI.: uf ,(m);cf ,;

Information is added to the event log that inclicates GTrt is execution clepen-

dent on the event GT1 : r(e) (line (13)) Line (2) of Figure 4.9 clepicts the

event log at this point.

3. GSTlr is checlced to see if the transaction family contains a GST to be sub-

mitted to DBMST (DBIVI52) (line (15)) The TFT contains only nocle GTi

whiclr visits DBM51, DBNI52, and DBM,9a so TFT-DBMSs: {rBM,gr,
DBNI52,DBIVIS4j. GSTil GSfl) is embeddecl into GSTI (G.97,2) lline

(16)) GSTil accesses D B NI 53 which is not currently accessecl by GTs of the

TFT so GSTft is added to pencling-GSTs (line (17)). I'locle GTt.t is addecl

to the TFT as the rightmost child ol GTt (line (18)). The TFT now contains

the node Gfi ancl its chilcl GTt.t. The GST trigger moclification routine is

called (recursiveiy) with the GSTs of GT1.1 to determine the triggels which

may fire due to its execution (line (19))

The recursive call begins by generating the set of potential triggels f,or GT11.

The only trigger event that is possible is the conj(zu(r), tu(d)) event of GT Rz.

Hence:

potential-GTRs : {GTh}

The set of all simple events of. GT Rz is generated:

CHAPTER 4, GLOBAL TRIGGER MANAGER

monitor_se¡ : {ti.,(r), u(d)}

The event log is updated and line (3) of Figure 4.9 depicts the situation.

4. Each GST of GTt.t ate now modified to detect the simple events of moni-

tor-set. GT R3 is a full dependency trigger- so a terminator is added to G STI ,
ancl GSTl.r. A new global tlansaction GTz.t is created for GTRz and the

GSTs fol G73.1 are:

G ST:.1
'
,3.r(y); w! r(r); c?,,;

GSTSt : T.r.'$,(n); c!,;

GSTil: u:!.r(¡t);c!r;

Information is added to the event log that indicates GTz.t is execution clepen-

dent on the event GTr.t: conj(u(r),.(r/)). The updated event log appears

on line (a) of Figure 4.9.

5. I\ext, each GST for GTg.r is examined to determine whether the TFT cur-

rently contains a GT which is sending to that site. The TFT now contains

NOdCS GTr ANd GTT] ANd SO TF'T_DBMSS: {DBNT51,DBM52,DBM53,DBM,g4}.
G ST:.1is embedded into G Sf? and G.9?r3., is embedclecl in G STI,. D B M S5

is not part of TFT-DBMSs so GSZj, is added to pending_GSTs.

The node GTs: is added to the TFT as a right sibling of GTr.t's chilclren.

The TFT now contains the node Gfi, its child GTt:, and GT.r's child GTs:,.

The GST modification loutine is reculsively called with the GSTs of GTz.t

but returns quickly as there are no t'iggels potentially firable by GT3.1.

This GST-Trigger-Modification call leturns to the caller (the GST trigger-

modification executing on GTt). The second potential trigger ror GT1 Gr Rr)

91

CHAPTER 4, GLOBAL TRIGGER NTANAGER

event

(1) GT1 : r(e)

eventree occurrecl final blockecl clepenclents

ó 0 Jctlse ó ó

ö 0 falseó ó

ó 0 foJseó {GTt.r}

ó 0 fctlse ó ö

ó 0 Jo.lse ó {GT"}
ó 0 Jctlse ó ó

ó 0 false ö {GT'r}

ó 0 JcLlse ó ó

92

-tmLr-l 1

(2) Gr,

Lz-t 1

(3) GT,

GT't

zu(s)

,(e)

.(')

'(')
r.r.'(s)

GTr.r:conj(ru(r),u(d))þ 0 Jctlse ó ó

(4) GT1 : r(e)

GT1 : u(s)

(5) GT1 : r(e)

GT1 : u:(s)

GT'.':conj(tn(r),u(d))$ 0 false ó {GTt.'}

ö 0 falseó {GTr.'}

ó 0 false ó {GfRr}
GTr.r:conj(zu(x),-(d))ó 0 false ó {GT".r}

Figure 4.9: Event Log Trace for Example 4.3.1

does not have afull dependency (line (8)) ancl GTRz is added to the depen-

dents field of the row in the event log with event : GTt : u(s). Line (5) of

Figule zl.9 illustlates the event log. The GST triggel modification subroutine

completes and returns to Algorithm 4.i. Algorithm 4.1 finishes by submitting

GSTI, GST?, and GST{ as well as the pending GSTil ancl GS735r to the

globai scheduler.

T

CTIAPTER 4. GLOBAL TRIGGER MAI,{AGER

4.4 Signal, Query, and Termination F{andlittg

The plocess of tligger management does not stop at GST submission to the gloìral

scheduler. Communication between the GTRM and executing GSTs is an irnpor.-

tant part of triggel management in this environment. This section describes the

signaÌ, query, and telmination handling techniques.

While subtransactions are executing on DBMSs they must signøl the GTR]VI

whenevel simple events are tr-iggelecl. Embedded GSTs must qzerg the GTRM fo¡

the numbel of times to execute. Finally, GSTs that cause sirnple events of full

dependency GTRs must send their termination so the GTRM can infolm waiting

GSTs that an event will not occur again. Each of these concepts is descr-ibecl

intuitively below:

Global tigger Manager (Si,gnal Handling)

1. Send acknowledgement to sending GST so that it rnay Ìesume its execution.

2. For each event in the event log that may occul due to the simple event sig-

naled:

Update the event log entry.

if event of the EL occurs then

i. Inclement the numbel of occurr-ences of this event.

ii. Send the number of occurrences of the event to all GSTs that ale

currently blocked on it. Remove these GSTs from the blocked queue

for this event.

93

(aJ

(b)

CHAPTER 4, GLOBAL TRIGGER IVIANAGER 94

that is execution

initial submission

iii. Create a global transaction GT¡, for each GTR

clepenclent on this events occullence. Ca1l the

algor.ithm with the GSTs of GTn.

Global tigger Manager (Query Hat-tdling)

Find the event in the event log that the cluerying GST ic rìenpnrlonl ntr

of occurrences ancl ¿If the event r,vill not occul again then sencl the number

final message to the querying GST. Terminate.

3. Otherwise, if the querying GST has executecl the same number of times as the

number of times the event has occulled then add the sender to the blockecl

queue of the event.

4. If the actual number of event occurlences is greater than the nunbel of tirnes

the querying GST has alreacly executecl then send the actual number of event

occullences ro rhe GST.

Befole presenting the intuitive telmination handler we define what is meant by

a necessary simple euent of a complex event.

Definition 4.4.L (Necessary simple euent): Let e¿ be a simple event of some com-

plex event e¡. We sa! e¡ is necessary if e¿ must occur for e¡ to occur. m

Fol example, the complex event conj(e1, e2) is composed of the simple events e1

and e2 both of which are necessary for conj(e1, e2) Lo occur.

In the algorithm below, if GST; terminates then all events that are causecl by

GT¡ arc checked for necessary simple events causecl lty GST]. If one or more ale

found then the event will never occllr aeain and can be marked as final.

1.

2.

CHAPTER 4, GLOBAL TRIGGER MANAGER

Global Tbigger Manager (Termination Handling)

1. For each event in the event log which contains necessar7 sirnple euents caused

by the telminating GST:

(a) Mark the event as being final.

(b) Send each GST that is blocl<ed on the cullent event the numbel of oc-

ctll-rences of the event and a final messaqe. Remove the GST from the

blociced queue.

(c) If the current event never occurred then for each identifier i that is ex-

ecution dependent on this event, mark the events that i causes (in the

event log) as final and perform step (b) on any blocked GSTs. Recur-

sively perform siep (c) on the events caused by dependents of the culrent

event.

The aigorithms that handle event signals, queries, and terminations are pre-

sented in Figules 4.10, 4.11, and 4.12, respectively. The following is a list of

additional functions/data structules necessary fol the description of the algorithrns:

signal (GST,event,execution number): Message sent from a GST to the GTRM

when some event occurs. A signal contains the event that occurled. the

execution number.., and the GST that caused it.

query (GST,times-to-date): Message sent from a GST to the GTRM when the

GST needs to l<now how many times to execute. A query contains the GST

that is cluerying and the number of times that it has executed so far.

terrnination : Message sent fi'om a GST to the GTRM when the sendins GST

has completed its execution.

95

CHAPTER 4, GLOBAL TRIGGER NTANAGER

Event (msg): Returns the event of the msg signal.

Sender (msg): Retulns the GST ,,vhich sent msg.

Executions (msg): Retur^ns the times-to-clate of the query msg.

GT (msg): Returns the GT of the senclel of msg.

When a GST signals the GTR\tI of an event's occlllrence, Algorithm 4.2 oï

Figure 4.10 is invokecl. First an acknowledgement is sent to the signaling GST

that notifies the GST to lesume its execution (line (1)). Each low in the event

log is considered in turn (line (2)). If the event of the signal is a simple event of

the current Low's event (line (3)) then the eventtree of the current row is updatecl.

The execution number of the message is used to detelmine the correct eventtree

to upclate (line (+)). If the eventtree for the execution number does not exist then

one is createcl and updatecl. If the upclated eventtree is occurs then the eventtlee

is reset (line (6)) the number of event occrurences is inclemented (line (7)). trach

GSTi that was blockecl on the event is sent the new number of occulrences ancl the

final flag ancl is lemoved flom the blocked queue (lines (8-10)).

Line (1i) loops through each globai trigger identifier in the clepenclents fielcl of

the row. Line (12) creates a new global transaction for the GTR ancl line (13) sub-

mits it to Algorithm 4.1 to receive trigger modifications. Algorithm 4.1 is executecl

by a separate, concurrent process.

The GTRM query handlel is much simpler. When a GST qu.eries the GTRNI for

the number of times to execute Algolithm 4.3 is involcecl (illustrated in Figure 4.11).

The row in the BL which the sending GT is dependent on is found (line (1)). If

the number of occurrences of the event is eclual to the number of executions of the

c¡rer-ying GST (line (2)) then the GST has executed the requirecl numbel of times

96

CHAPTER 4, GLOBAL TRIGGER MAIVAGER

Algoritlrrn 4.2 (Global Trigger Mlanager - Signal Handler)

begin

input msg : signal;

send aclc to Sender(msg); (1)

for each Ìow l in EL do (2)

begin

if Event(msg) e row.event and Sender(msg) : GT(row.event) then (J)

begin

update r'.eventtree with Event(msg) and Executions(msg); (4)

if r'.eventtree occurs then (5)

begin

reset the r.eventtree; (6)

r.occurred ê- r.occulled * 1; (7)

for each GSTle r.blocked do (8)

begin

send r.occurred and r.final to GSTI; (g)

remove GST| from r'.blockecl; (10)

end;

for each i er.dependents where i is a GTR identifi,er do (11)

begin

GT¡ <- Create-Global-Transaction(i); (I2)

pipe to Algorithm 4.l with l¿ and GSTS(G"¿); (13)

end; (+ for' *)

end; (+ if x)

end; (* if x)

end; (x for *)

end;

97

Figule 4.10: Global Trigger Manager Signal Handler-

CTIAPTER 4. GLOBAL TRIGGER MAI,IAGER

Algorithm 4.3 (Global Trigger fulanager - Qztery Handler)

begin

input msg : query;

find row l in trL with GT(msg) e r.clepenclents;

if r.occurrecl : Executions(msg) and not r.final then

add Sender'(msg) to r'.blockecl;

else

send r'.occulred and r.final to Senclerfmss.):

end;

Figule 4.11: Global Trigger lVlanagel Quely Hancller

and is added to the blocked queue of the event in the EL (line (3)). If not, the

number of occurrences and the final flag of the event are sent to the cprerying GST

(iine (a)) which executes the desirecl number of times.

The GTRM telmination handler is also quite simple. When a GST sencls its

termination to the GTRM, Algorithm 4.4 of Figure 4.12 is callecl. Each event in

the EL which is caused by the GT that sent the termination is consiclerecl in turn

(line (1)). If the event of the EL contains necessary simple events causecl by the

terminated GST (line (2)) then the final flag of the event is set to true (line (3)).

Each GST that is bloched on the event (line (a)) is sent the numbel of occurrences

and final flag (line (5)) ancl is removecl from the blocked queue (line (6)). If the

event has never occurred then procedrire Terminate is called with r-.clependents

(lines (7 8))

98

(1)

(2\

(3)

t4l

CHAPTER 4. GLOBAL TRIGGER MANAGER

Telminate (Figure a. i3) is a procedur-e that lecursively updates events caused by

terrrinated GTs that nevel executed. Each GT identifier in set-of-IDs is consideled.

Each event in the event log which is caused by the culrent GT is checked (line (2)).

The final flag is set to true and the blocl<ed GSTs are updatecl (lines (3-6)) as in

Algorithm 4.4. Terminate is lecursively called with the dependents of the current

r.ow (line (7)). This way, all events that will never occur' (as a result of some GSTs

termination) will be ploperly rnarked as final with zelo occul'rences.

The next example provides a detailed trace of signal, query, and termination

algorithm executions.

Exarnple 4.4.1 Recall 4.3.1. Suppose that the subtransactions of GTn (GTr,

GTr.r, and GTz:) have been successfully schedulecl by the globai scheduler and

are executing at the corresponding sites. We use the execution of these GSTs to

demonstr-ate the functionings of Algorithms 4.2, 4.3, and 4.4. We will limit oul

example to the GSTs presented in Example 4.3.1. Of course, there could be local

transactions and GSTs of other active GTFs executing at the local databases, but

we keep the example simple. Figure 4.14 illustr-ates the subtransactions at each

locai database.

I. GSf? is the first to complete. GST?.,, which is embedded in GS'T!, makes

a quely to the GTRM, indicating that it has executed zero times so far.

Algorithm 4.3 is invoked by the GTRM and finds the ently lor GTt: in the

event log, checking if the numbel of occurrences in the event log matches the

number of executions of GSTl.r. The number of occull'ences is zelo which

is equal to the number of executions, and the event is not final so GSTI, is

added to the blocked queue of the event (line (3)). The GTRM does not have

to actually block GSTl.r as it has suspended itself as a result of this cprery.

99

CHAPTER 4. GLOBAL TRIGGER IVIANAGER

Algoritlrnr 4.4 (Global Trigger ilIanager - Termination Hancller)

begin

input msg : termination;

for each row r in EL with GT(r.Event) : GT(msg) do (1)

if r.event contains necessaly simple events caused by Sencler'(-.g) then (2)

begin

r.final <- true; (3)

for each GSTI: r.blockecl do (4)

begin

send r-.occurrecl and r'.finaI to GST!; (5)

remove GSfi from r.blockecl; (6)

end;

if r.occurled : 0 then (7)

Ter-minate(r.dependents); (8)

end;

end;

Figure 4.12: Global Trigger Manager Termination Handler

100

CHAPTE,R 4. GLOBAL TRIGGER MANAGER

Pro cedure Terminate(set-of-IDs) ;

begin

for each GT identifier i e set-of-IDs do

for each Ìow l in BL with GT(r..Event) : i do

begin

r.final <- tluei

for each GSTIe r'.blockecl do

begin

send r.occurred and r.finaI to GST!;

remove GST! frorn r.bloched;

end;

Telminate (r. dependents) ;

end;

end;

Figule 4.13: Procedure Ter-minate

101

(1)

0\

(3)

(4)

(5)

(6)

(7)

CHAPTER 4. GLOBAL TRIGGER NIANAGER r02

DB M S1:

DBM,92.

DBNT53:

DBfuTS :

DBNI S5.

at11 IfL7l r' I

(G.g?i1r;, GS?i1(1))

(G ST?G), G STI]rt'' G ST:1@)

(GS?il(1), GS41'r'l)

G STl0)

GS45r(r)

GT Fz]

/'J q'f 1
L,ut2.1

(: ç''t5L. 'J t 2-7

2.

Fisure 4.i4: Subtransactions Executine At Each Site

This completes Algorithm 4.3. Line (1) of Figure 21.15 depicts the event 1og

at this point.

GSTil is next to query to the GTRVI, indicating that it has executecl zero

times so far. Algorithm 4.3 fincls the ently for GT31in the event log. The

numbel of occurrences is zero as is the number of executions, and the event

is not final so GST:, is aclded to the bloclcecl queue of the event. Line (2) of

Figure 4.15 illustrates the event 1og.

Next, GST| executes its r(e) operation and signals the GTRNI of its occur-

lence which invokes Algorithm 21.2. GS'fl is sent an aciçnowleclgement to

resume its execution. The event that was signalecl is checlced to see if it is a

simple event of the current event of the event log. It is for the event GT1 : r(e).

The eventtree of GT1 : r(e) is updated ancl GT1 : r(e) is checked for occur'-

rence. The event is the simple event r(e) causecl by Gfi so it has occullecl.

The eventtree is reset and the number of occurrences is incremented. Each

GST that is blocked on the event is sent the number of occurrences and is

removed from the queue (lines (8 10)). GST?, is the only one ancl so begins

t).

CTIAPTER 4. GLOBAL TRIGGER MANAGER 103

4.

its first execution. Line (3) of Figure 4.15 depicts the event log.

Next, GSTf signals that it has executed its to(s) operation. Algorithrn 4.2

sends an acknowledgement to GSTI and checks to see if the signaled event is

a simple event for one or mole lows in the event log It is for G71 : tr-'(s). The

eventtree of GTt : tu(s) is updated and has occurred. The eventtlee is leset

and tlre nurnber.of occur-rences is inclernented. GTR2 is the only dependent

global trigger identifier (line (11)) so a new global transaction GTz., is setup

for the newly fired trigger'. The GSTs of GT2l are sent to Algorithm 4.1 for'

trigger modification. No moclifications ar-e necessar.y and GTz.t's GSTs are

sent to the global scheduler. To keep this example simple suppose the GS

submits GSTil and GSTf., immediately. Line (a) of Figule 4.15 depicts the

event log.

GSTÌ executes its u.'(d) operation next and sends its telmination to the

GTRM which invokes Algor-ithm 4.4. Each event in the event log that is

caused by GTl is considered and GTt: r(e) is the fir.st. GT1 : r(e) is checkecl

for necessary simple events caused by GSTrl of which r(e) is the only one (line

(20 This event can never occuï again so the final flag of GTt : r(e) is set

to tlue. There are no GSTs blocked on the event so GZr : tr.'(s) is considered

next but does not contain simple events caused by GSTI. This completes ttre

algorithm. Line (5) of Figure 4.15 depicts the situation.

Next, GSTil queries invoking Algorithm 4.3. The entry in tire event log for'

GTt., is founcl . The number of executions of GSfi., is one and the numl¡el

of executions of GSTI, is zero so the number of occurrences and the final

flag are sent to GSTI. and Algolithm 4.3 completes. G,gTl executes its u.'(ú)

opelation and precommits. GSTI. executes its u(r) operation and signals

o.

CTIAPTER 4, GLOBAL TRIGGER NIANAGER

7.

this event to the GTRM invoking Algorithrn 4.2 which detelmines that T.r.,(c)

is a simple event of GTt:: conj(zu(r),u-'(r/)). The eventtlee is updatecl but

GTt,.t, : conj(u(r),.(d)) has not occulrecl (line (5)). In this case, the eventtree

still laclcs the tu(r/) event, so it is not satisfied and Algorithm 4.2 terrninates.

Line (6) of Figure 4.15 depicts the event 1og.

GSTl.l executes its r(d) ancl to(d) opelations next, ancl signals the GTRNI

of the 'i.u(c/) event which invokes Algorithm 4.2. The eventtree of Gft i

conj(zu(r),*(d)) is upclated and bothT.u(c/) andTl(s) have occur''-ed so the

eventtree is satisfied. The eventtlee is reset anci the number of occurrences is

incremente d. G ST: I is the only blocked GST so it is sent the new occur-r-ences

ancl is removecl from the c¡ieue. GST:, begins its first execution. Line (7) of

Figur-e 4.15 illustrates the situation.

Next, GSTl.r executes its tu(rn) operation ancl clueries the GTRM invoking

Algolithm 4.3. The entry for GTr l in the event log is f'ouncl ancl the event is

final. The number of occurrences ancl the final flag ale sent to GST].1 Algo-

lithm 4.3 completes and GSTl, completes. Meanwhile, GST;t ancl GS7r5,

execute and commit independent of GT1, GT11, and G73.1. GS'T3.1qlreries,

is sent the number of occu'-rences (1), the final flag (false) and begins its fir'st

execution. GSTil finishes its filst execution and knows that it is supposecl

to execute only once. It is complete ancl sends its termination to the GTRM

invoÌ<ing Algorithm 4.4. GTl.1 : cortj(u(n),.(d)) is the only event caused by

GTt.t and contains necessary simple events causecl by G.9Qr, namely r"u(d).

The final flag of GTr., : conj(u(r),.(d)) is set to true. Thele ale no bloclcecl

GSTs and the event did occur- (lines (4-8)) so the Algorithm terminates. Line

(8) of Figure 4.15 depicts the event 1og.

104

8.

CHAPTER 4. GLOBAL TRIGGER MANAGER 105

9. Next, GST?.1 finishes its first execution and cluelies. The GTRM responcls

with one execution and a true final flag. GSTI., is complete and sends its ter'-

mination, which was necessary f'or the monitoring of GT1.1 : conj(w(r), tr.,(r/)).

GST:1 quelies and is leplied to with one execution and a true final flag. It

begins its only execution. Next, G,ST:r and GS7.3, complete theil execution

and query I'eceiving one execution and a true final flag. They ale complete.

GST:t executes its operations and precommits. At this point all GSTs have

precommitted and the recovery manager handles globaì tlansaction commit-

ment.

K

CÍIAPTER 4. GLOBAL TRIGGER MANAGER

event eventÌee occurred final bloclçed clepenclents

(1) GT1 : r(e) ó 0 f atse {GSr?.l} {GTi.,}
GTl : zu(s) ó 0 J alse 4' {GT Rr}

GTt.r:conj(w(r),.(d))ö 0 false ö {GZs,}
(2) GT1 : r(e) ó 0 f atse {GSTI.J {G7,,}

GT1 :u(s) ó 0 false ó {GfRr}
GTtt: conjþ.u(r),*(d)) ó 0 f u,lse {GSf:.11 {Gfs.r}

(3) GT1 :r(e) ö I false ó {G?r.r}
GTl:u(s) ó 0 fuJse ó {GfRr}
GTt': conjþ"u(r),zu(d)) þ 0 f cilse {GS?r|r} {GTtr}

(4) GT1 :r(e) ó 1 false ó {GTr.r}

GT1 :w(s) ó I fulse ó {GTRr}
GTr., : conj(w(r),*(d)) ó 0 f alse {GS'T:.J {Gfa r}

(5) GT1 :r(e) ó I true ó {GTr.r}

GT1 :u(s) ó I false ó {GfRr}
GT'.r: conj(zu(r),-(d)) ó 0 f alse {GST:.11 {G7: i}

(6) G\ : r(e) ó L trz¿e ó {GTr r}

GT1 :u(s) ó 1 false ó {GfRz}
GTr.r: conj(w(r),zu(d)) u(r) 0 f cr.lse {GST:.J {Grs r}

(7) GT1 :r(e) ó 1 trtte ó {G?r.r}

G\:tn(s) ó I false ó {GfRr}
GT'.r:conj(zu(r),t"u(d))þ I false ó {GTs.r}

(8) GT1 :r(e) ó I true ó {GTr.r}

GT1 :u(s) ó I Jalse ó {GfRr}
GT'.t:conj(w(r),zu(d))g 7 true ó {GT".r}

i06

Figure 4.15: Event Log Trace for Example 4.4.1

Chapten 5

Global Scheduler

The architecture of Chapter' 1 and formal model of Chapter 3 allow for moduiar.

design of concurlency control algorithms which ensure AMSB-serializability. This

chaptel presents one such algorithm. We modify Barker's AGSS (Aggressive Global

Serial Scheduler) which ensures MDB-selializability so that the resulting algorithm

ensrlr'es the more restlictive AMDB-serializability.

The remaindel of this chapter proceeds as follows. Section 5.1 clescribes re-

quirements of the scheduler to ensure AMDB-serializability. Section 5.2 presents

an intuitive description of the schedulel and a more detailecl pseudocode repr-e-

sentation of the algor-ithm. An example and step by step walkthrough are given

to demonstrate the execution of the algorithm. Finally, the algorithm is pïoven

correct.

107

CHAPTER 5. GLOBAL SCHEDULER

5.1 Scheduler Requirernents

Barlcer [6] plesents two concurrency control algorithms f'or the global schecluier

each of which ensrlres MDB-Serializability. These algorithms contlol the orcler of

GST submission in a pessimistic fashion. However, these clo not ensure AVIDB-

Serializability. To see this we present two exanples.

Exarnple 5.1

corresponding

.1 Consider- the following sequence of global transactions ancl theil

108

Lr-l 1

Lz-¿ 1.1

1111\-rr2

GTt

GSTs:

G sri
GSr? 1

GST; GSTî

G sr| G sr?

Suppose that G\.r is a full global transaction fired by GTt. The following sequence

is possible with the AGSS:

DB
^[

Sr : GTt < GTt

DBM52: GTzlGTr.t

DBM53 : GTz < GTz

which would produce an AMSG with a family orcler- clisclepancy where GT1 --

GTs -- GT2 -- GTr.r. n

The next example demonstrates that causal discrepancies are possible with the

AGSS.

Example 5.L.2 Consider the following sequence of global tr-ansactions and their

corresponding GSTs:

CHAPTER 5, GLOBAL SCHEDT]LER 109

nm nñm1Lrft : LrJl i

GT, : GST; CST;

GTt., : GST?.

Suppose thaL GTll has a causally depenclent coupling mode and is fired by Gfi.
The following sec¡rence is possible with the AGSS:

DBMSr: GT2<GTt

DBM 52 : GT1.1 I GT,

whiclr woulci p'-oduce an AMSG with the causal discrepancy GTt: -- GTz -- GTt.

K

5.2 Active Global Scheduler for AMDB-serializabilitv

We extend Barlcer's AGSS to cope with the situations of Examples 5.1.1 and 5.1.2.

Tlris section describes the extended algorithm, which we refer to as the Actiue Gtobal

Sclzeduler(AGS). Intuition, pseudocode, examples, and colrectness ar..e presented in

this section. Figur-e 5.1 illustrates the global scheduler'. The GS r-eceives GSTs

from the GTRM. When the GS realizes that it is safe to submit them it passes the

GSTs to the global recovery manager which submits the GSTs to the appropr-iate

DBMSs. The GS uses the dependency graph created by the global triggel manager.

The AGS must ensure that the AMSGs of histories it produces do not contain

any causal or family order disclepancies. We investigate Examples 5.1.1 and 5.i.2

for new icieas.

CHAPTER 5, GLOBAL SCHEDULER

ToÆrom Global Recovery Manager

Figure 5.1: Global Scheduler

110

.ro
-\ '.\\
A--oób

;";";J";"t G;ôh

To/From Global Trigger Manager

Global
Scheduler

CHAPTER 5. GLOBAL SCHEDULER

Exarnple 5.2.L Consider Example 5.I.1. GTr

tlansaction family. If our algorithm schedules

families instead of global transactions then we

111

and GTt: belong to the same global

with respect to global tr-ansaction

have the following:

GTil: GSTI¡¡ GST?.IF)

GT F2: GSTlpt GST:p)

GT h: G.97r].r¡ GSff1:¡

Suppose that GT & is sul¡mitted first, followed by GT F2. Both are schedulecl

accor-clingly. GT Fs is the last to be submitted. Our moclifiecl algorithm will biock

GT h so as to avoid a possible family orclel discrepancy. ffi

Example 5.2.2 Consider Example 5.I.2. Oru modified algor^ithm must examine

the dependency graph created by the global trigger rnanagel to ensure causal de-

pendeucies ale not violated. Assume GT n arrives at the global scheduler- fir'st ancl

is submitted. GTF2 allives next and is submitted. GTn.l is the last to arr-ive

bnt is blocl<ed because it overlaps with GT F2 which overlaps with GZF1 on which

GTil.lis causally dependent. Blocking GTn.l ensures that a causal disclepancy

will not occur. E

Through examination of Examples 5.2.1 and 5.2.2 two icleas for the AGS present

themselves:

1. Schedule global tlansaction families instead of global transactions. This will

prevent farnily orcler discrepancies.

2. Bloclc GSTs whose candidate sets contain one ol mole GTfs on which they

ale causally dependent. The DG created by the GTRM is used to establish

any direct or" indirect causal disclepancies.

CI-IAPTER 5. GLOBAL SCHEDULER IT2

Our AGS must incolporate these trvo icleas in olclel to scheclule ANiDB-selializable

histolies.

].

Active Global Scheduler (lnitial GTF Stúmission)

Each global subtransaction is schecluled independently. Each is submittecl ol

suspencled basecl on the activities of other active global tlansaction families.

All global subtransactions 1'orm a uniclue set of cancliclate GTFs rvhich may

cause the GST to be suspencled. The candiclate set is basecl on the DBiViS

to which the GST is to be submittecl. For example, given GSTlrreCiTF;

to be submitted fo DBAISÈ, th" cancliclate set is composecl of ail global

tlansaction families which are waiting to access data at LDBk or which have

an active GST at DBMS4. In acldition to these GTFs, any GTF which

ovellaps r,vith them may cause non-AMDB-serializable schedules. The entire

set is consideled when attempting to submit a global subtransaction.

Given an arbitrary GTF¡ in the cancliclate set, if the intersection of GTFis

DBMS set and the set of othel DBMSs to be accessed by GTFi is not empty,

then GST.!1;¡ cannot be submitted so Siep (3) is executecl. Othelwise, Step

(2) is performed.

If there exists a GT¿ in the canclidate set which GTFi is car-rsally dependent on

then GSfii; cannot be submitted so Step (3) is execLrted. Otherwise, GS'Tfç;¡

is submitted. If there is another global subtransaction to be submittecl, it is

tested at Step (1). Otherwise, the algorithm terminates.

2.

3. GSfl(ù cannot be submitted immecliately, so it is suspenclecl in a wait quetle

and the next subtransaction is tested at Step (1). If no other GSTs neecl to

be tested the algorithm telminates.

CHAPTER 5. GLOBAL SCHEDULER 113

Active Global Scheduler (GSTs Completion Process)

1. The completion of the global subtlansaction is lecorcled.

2. Compleiion of a global subtransaction inay pelmit the submission of waiting

subtransactions. This involves testing eveÌy waiting global subtransaction at

the DBMS where the completing GST was active.

3. The global subtlansaction at the head of the wait queue for the DBMS un-

dergoes the same testing plocedu'-e as in Steps (1) and (2) of the initial global

tlansaction farnily alrival process described above. If a GTF is active which

can calrse a non-AMDB-serializable schedule, Step (4) is perfolmed, otherwise

Step (5).

4. Since a GTF is still present that could cause a non-AMDBSR schedule the

GST remains passive. The next GST waiting is tested at Step (3) unless the

entire queue has been tested which terminates the process.

5. The GST can be submitted so its status is changed fi'om passive to active.

If GSTs are waiting, each must be retested at Step (3) or the algolithrr

telminates.

The following is a list of routines/data structules lequired by this algor-ithm:

DBMS-set(GT Fi) : The set of DBMSs where GT Fi submits subtlansactions.

Active-se t'(D B M Sk) : The set of global transaction families which have an active

global subtr-ansaction executing at DBXISk.

card : Cardinality function which returns the number of elements in the alqument

set.

CTIAPTER 5. GLOBAL SCHEDIJLER

Algoritlrrn 5.L (Actiue Global Scl¿eduler - Initial SclzedrLler)

begin

input GT Fi : global tlansaction farnily;

var candiclate-set : set of GTF identifiers;

DBMS-set (GT Fi) <- set of DBMSs accessed;

GSTs-active(GT F¿) <- S;

GSTs-passive(GT F¿) *- $;

GSTs-complete(GZf) * ó;

for each GST:(ù e DBMS-set(GTF¿) do

begin

canclidate-set e- Active-set(DBNISk) u Wait-Q(DBM,gk) - GTF;;

for each GT F*e candidate-set do

if I active GT F" (m f n, i I ") such that

begin

GSTs-passive(GT F;) *- GSTs-passive(G?4) U DB tuI Sk ;

passivate GSfi(ù on Wait-Q@BMSk);

end (+ if +)

else begin

GSTs-acti ve(GT F¿) <- GSTs-a ctive(GT F¿) \) D B NI S
k

;

Activeset(D B XI Sk) <- Active-set (D B NI Sk) l) GT F;;

submit GST:(ù to DB NI Sk ;

end; (+ else +)

end; (+ for *)

end;

114

(l

(t

(3

(4

t,-

(6

(7

DBMS-set(GrF^) | DBIVIS-seL(GTF") I $then (8

candidate-set <- candidate-set lJ GT F.; (9

if lGTF¡e candidate-set such that (cardQSf t¡ > 1 and card(ÇST;) > 1 and

DBMS-set Gr F) | (DBMS-s et(GT F¡) - D B AI Sk) + ó)

or (lG?¿ e candidate-set with GTF¿ causally depenclent on GT¿) then (1

(1

(1

(i

(1

(1

CHAPTER 5. GLOBAL SCTIEDULER

Algoritlrrrr 5.2 (Actiue Global Sch,eduler - Sul¡transaction Termination)

begin

input GSTI(ù: GST for GTF; at, DBfuISß completes;

var candidate-set ; set of GT identifiers;

Active-set(DBM Sk) <- Active-set(DBM Sk) - GT Fn;

GSTs-active(GT F¿) * GSTs-active(GT F¿) - D B M Sk ;

GSTs-com plet e(GT F¿) <- GSTs-complete(GT Fó) l) D B M S
k

;

for each GST:(ù e Wait-Q(D BM Sk) do

begin

candidate-set +- Active-set(DB AI S\ ¡) ({GT Ft I GT F¿e Wait-Q(D B XI Sk)

A GT Ft is active] - GT F¡);

for each GT F^e candidate-set do

if I active GTF. (* # r, j I ") such that

DBMS-set(GTF*) [l DBMS-set(GTF") I þ then

candidate-set <- candidate-set [J GT F,;

if 1GTF,e candidate-set such that (caldQSf ,l > 1 and cañ(ÇSTr) > 1 and

DBMS-set(GT F,) fl (DBMS-set(GTF¡) - DBM Sk) + ó)

or (1GT¿ e candidate-set with GT Fj causally dependent on GT¡) then (9)

repassivate GST!1¡ on Wait-Q @B\UI Sk) (10)

else begin

GSTs-passive(GT F¡) *- GSTs-passive(G7 F¡) - D B NI Sk;

GSTs-active(GT F¡) * GSTs-active(GT F¡) l) D B M Sk ;

Active-set(DB M Sk) <- Active-set(D B M S\ ¿ Gf f,;
remove GSf:(ù frorn Wait-Q(Ð BMSk);

submit GSf:Ø tu DBNISk;

end; (x else *)

end; (* for +)

end;

115

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(1i)

(12)

(13)

t 14l

(15)

Figule 5.3: Active Global Scheduler (Part 2)

CHAPTER 5. GLOBAL SCHEDULER 116

Wait-Q(DBIIS) : Global subtr-ansactions whicir cannot be submitteci immecli-

ately ale placed on a wait queue for access to the DBN/iS. There is one lVait-Q

for each DBMS.

GSTs-active(GTf) : The set of DBMSs r,vhich have an active subtransaction of

GT Fi.

GSTs-passive(G?fl,) : The set of DBMSs which have a waiting subtransaction

of GTF¿.

GSTs-active(GTF;): The set of DBMSs which have a complete subtransaction

of GT F¿.

Figure 5.2 ancl 5.3 present the algolithm in two palts. The algorithm works

simiiar to Barlcer's AGSS [6] but contains aclclitional functionality to handle causal

and family order discrepancies.

Figure 5.2 describes the GT initial submission process. Line (1) folms a

clescribing the DBMSs accessed by the GT. Line (2), (3), ancl (a) initialize

GTFs reference sets to reco'-cl the status of their GSTs.

Global transaction families are tested to deter-mine if an overlap exists with other

GTFs. Each GST (line (5)) is testecl for submission independently. The set of global

transaction families which could cause the passivation of a global subtransaction

are those that have a GST at or waiting to be submitted to that DBMS (line (6)).

In addition to these GTFs, any others which overlap with them must be incluclecl

in the candidate set (lines (7 9)) Assume that G"9$14eGTF; is to be submitted to

D B M Sk. Line (10) determines if thele exists a GT F¡e canclidate-set which accesses

another DBMS accessed by GT F¿. If such a GT F¡ exists, GSf :(ù is passivatecl (lines

(11-12)). Line (10) also deter^mines if there exists a GT* candidate-set on which

set

the

CHAPTER 5. GLOBAL SCHEDULER II7

GTFi is causally dependent. If so, GSr;(ù is passivated (line (11-12)). rf G,ST:(i)

is not passivated as a result of line (10) then it may be submitted (lines (13-15)).

When a global subtransaction completes, the sets are updated to leflect the

completion at lines (1-3) of I'igule 5.3. Line (4) retests all waiting GSTs at this

DBMS for submission eligibility. The condition fol submission is nearly the same

as when the GTF initially arrived. The candidate set is formed at line (5), but it is

necessaty to remove the GTF which we are attempting to submit the subtransaction

for and any which are inactive. The lest of the algolithm is logically identical to

the initial submission plocess.

The following provides a demonstration of the AGS.

Example 5.2.3 We extend Example 4.3.1 to include two additional GTs:

GT2: GSTî GSTI

GT3: GST: GSTS

Two new global triggels GTR4 (Tdep) and GTRs (Cdep) are also added ancl

each fir'es once. Tiris genelates two global transactions each accessing only one

database:

GT+t : GSTf ,

GTs:: GST!.,

GT¿: is trigger-ecl bv G?s and GTs r by GTa.1. Finally, we add a sixth local clata-

base to the multidatabase of Bxample 4.3.1. The dependency graph of Figule 5.4

illustrates the various dependencies of ouÌ example global transactions.

The Active Global Scheduler (AGS) algorithm is demonstrated by the following

execution sequence:

CHAPTER 5. GLOBAL SCI-IEDULER 118

Figure 5.4: Global Tr-ansaction Dependencies of Example 5.2.3

CTIAPTER 5. GLOBAL SCHEDULER 119

1. GT n (GTr, GTr1 , and G73 1) is presented to the AGS and the requiled sets

are folmed. Since no othel GSTs ale pïesent at any DBMS ail of the GSTs

ale submitted. The active sets of DBMSl, DBXI52, DB]VI53, DBÀt[Sa, ancl

D B M Ss are updated. The GSTs-active(GT F1) set is {DB XI Sr ,D B
^,1

S'2 ,,D B,^,[,5'3 ,

DBM54,DBMSs). Line (1) of Figures 5.5 ancl 5.6 illustrates this scenalio.

GTF2 allives ancl each GST is tested for submissability. GST; is tested

fiLst (line (5)). The candidate set contains GTn (lines (6 9)) The test

for conflict faiis (Ìine (10)) and GSTI is subrnitted (lines (20-22)). GST|

is tested next and since there ar.'e no GSTs at DBM56 the candidate set is

empty. The test for conflict fails again (line (10)) and G,9Tf is submitted.

The GSTs-active(GTF2) set is {DBNI54,DBdl56]. Line (2) of Figules 5.5

and 5.6 depicts the situation.

GTt., fires but is palt of GT& so it is handled as part of that family. GTr.t

fires but is not part of the triggering family (it is only causally dependent).

GTF2.r arrives at the scheduler and GST], is tested first. The candidate set

is created (lines (6 9)) and is {GTn} Consider the possible submission of

GST;, Lo DBIvISt:

test for GT FI DB]I[51

DBMS-set(GTFI) | (DBMS-set(GTF21) - DBNI 51)

{D B M Sr,D B AI 52,D B M 53,D B]UI 54,DB A45t] n
({D B M 51,D B NI S5} - D B M 51)

{DB AI S5]

This indicates that an overlap exists with an active tr-ansaction family of

the candidate set. GST;.I must be placed on the Wait-Q(DB&1S1) and

GSTs-passive(GT F21):{D B NI 51}.

2.

o.).

^+dL

:

CHAPTER 5. GLOBAL SCHEDULER

GSTil is tested next. The cancliclate set is {GfF1}. The following test

clemonstrates that GST:.1must be placecl on Wait-Q(DBMS5):

test for GTil at DBMSl

: DBMS-set(GTF1) l (DBNtIS-set(GTF21) - DBNIS's)

: {D B II 51,D B]VI 52,DB
^[

53,D B ÌI 54,DB AI Ss])
({D B NI 51,DB M 55} - DB X4 S'5)

: {DBAI Sr]

4. GT& unclergoes the same testing procedure. Cf Sf: is testecl first ancl the

canclidate set is {GT F2.1,GT F1,GT F2}.

test f'or GTF2.1 at DBXI55

: DBIVIS-seí(GTF21) n (DBMS-set(G7fl3) - DBMSs)

: {DBNIS1,DBNISs] À({DBNf ,gs,,DBAI,5'6] - DBMS'5)

:ö

test for GT il at D B d[S5

: DBMS-set(G?F1) [l (DBMS-seI(GTF3) - DBNISS)

: {D B NI Sr .,D B IVI 52,D B M 5',3,D B NI 54,D B IVI 55 } a
({D B II S5,D B M 56] - D B Nr Ss)

:Ó

test for GT F2 at D B ilI Ss

: DBMS-set(GTF2) ¡'l (DBMS-set(GTFs) - DBMSs) .

: {DBMS4,DBM56})
({D B M S5,D B AI 56] - DB NI S5)

: {DBMS6}

120

CTIAPTER 5. GLOBAL SCHEDULER

Since the test succeeds in the third case, the subtransaction must be passi-

vated to ensure correct AMDB-selializability. The second GST is tested in the

same fashion and must be irassivated. See line (a) of Figules 5.5 and 5.6. Note

that Ballcer''s AGSS would allow GSf: and G.9?.j to be submittecl. I{or,vever.,

tlris could cause a family oldel discrepancy with GT, < GT, I GT, I GTs.r.

Next, G Sfl completes at D B lltt 51 . The active set for D B NI 51, active set fol

GTFr, and the complete set for GTil are updated (lines (1-3) of FigLrle b.2).

GST;.1 is curlently in the wait queue fot DBIVISl and is letestecl. The can-

didate set is empty so the test (line (9)) fails and GST]., is submitted (lines

(11-15)). Line (5) of Figules 5.5 and 5.6 illustrates the active set fol eacþ

DBMS.

GTst fires next but is part of GT n so scheduler opelations ale unaffectecl.

GSTI completes and GSTr4 is submitted. GSTf also completes and G,S'ff is

submitted (see line (6) of Figures 5.5 and 5.6).

GT¿t fir'es and GSTi.l is its only subtlansaction. The candiclate set is {GZF1,

GT F2 r,,GT h,GT F2j. There is only one GST so the first part of the test (line

(10)) fails. However, GTs e candidate-set and GTF4.l is causally dependent

on GTs, so the seconcl half of the test succeeds and GST¿.1 is passivated on

the wait queue (lines (11-12)) (line (7) of Figures 5.5 and 5.6). Note that the

AGSS [6] would submit GSTit.

Next, G,gT;.l, GST?, and GS7r5, all complete their executions. The wait

queues for DBMS\ and DBMS2 ale empty so checl<s are not lequired for

those. There are no GSTs culrently active at DBI7IS's so GST|., is immedi-

ateiy submitted flom the wait queue. GSf: is also tested for submissability.

Tlre candidate set is {GT F2,GT fi,GT F2.1}.

7.

L2I

6.

8.

CHAPTER 5. GLOBAL SCHEDLTLER r22

test for GT F2 DB]VTS5

DBMS-set(GTF2) fl (DBVIS-set(GTr3) - DBXISs)

{D B IVI 54,D B II 56]) ({D B M,95,D B NI 5',6} - D B NI Ss)

{D B Nr 56}

Tlre test inclicates that GSQ shoulcl remain in the wait clueue. G,STit is also

tested but it is causally depenclent on GTF3 i,vhich is in the cancliclate set.

GST:.I remains in the wait querie (line (8) of Figures 5.5 ancl 5.6).

9. GSTI. and GSTf., complete GSf: is submitted ancl GSTilretestecl. GST:.1

is cansally dependent on GT F3 and so is repassivatecl on the wait clueue (line

(9) of Figures 5.5 and 5.6).

10. G.9ry completes and GS?as, is submitted. GTs.t fires ancl contains GSTI.I

^^:r^ ^-^1-. ^--L,d.b -rr,ö ur-Lry sr-rubransaction. The cancliclate set is {GTft,GTFa1,GTF2}. The

firstpartofthetest(line(10)) failsascard(Ç5Tt.t):1. Flowever',thesecond

part succeeds as GTFsr is causally dependent (transitively) on G73. Hence,

GST:.r is passivated on the wait ctueue (line (10) of Figures 5.5 ancl 5.6).

11. Finally, GSTf, GSTit, and GS?,j complete ancl G,57r6, is submittecl ancl

completes (line (11) of Figures 5.5 and 5.6). n

5.2.L

We will

identify

theorem

Correctness of the Active Global Scheduler

^ldL

:

use the same tr,vo step plocedure describecl in Bar-ker'[6]. Filst, we will

some attributes of histolies produced by the AGS. Second, we provicle a

which proves that the AGS produces only AMDB-serializable histolies.

CHAPTER 5. GLOBAL SCHEDULER r23

(0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(e)

(10)

(11)

Activeset(DBf[51)

ó

{GrFl}
{GrFl}

{GrFl}
{GrFl}
{GTF21}

{GT F21}

{GTF2.1}

ó

ó

ó

ó

Active-set(DBM52)

ó

{GrFl}

{GrFl}

{GrFl}

{GrFl}
TGTN}

{Gr F:-}

{Gr Fl}

ó

ó

ó

ó

Active-set (D B IVI 53)

ó

{Gr Fl}

{GrFl}

{Gr FI}

{GrFl}
{Gr FI}

{GrFl}

{GTFr}

{GrFt}
ó

ó

ó

Figure 5.5: Trace of the AGS execution (palt 1)

CHAPTER 5. GLOBAL SCHEDULER lntl

(0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(e)

(10)

(11)

Active-set(DBilI54)

ó

{GT N}

{GTFI,GTF2}

{GTF1,GTF2}

{GT n,GT F2}

{GT FI,GT F2}

{GTFr}

{GTFr}

{GrFr}

{GrFr}

{GT Fr}

ó

Activeset(D B AI 55)

ó

{GrFl}
{Gr F|}

{GrFI}
{GTFl}

{GTFl}

{GrFl}

{GrFl}
{GT F2 r,G7 Ft}

{GTF4J}

{GTF4.1}

ó

Active-set(DBNI Sb)

ó

ó

{GT Fr}

{GT Fr}

{GT Fr}

{GrFr}

{Gr h}
{GTh}
{Gr h}
{GT 4}
{GT &}
ó

Figure 5.6: Trace of AGS execrrtion (part 2)

CI-IAPTER 5. GLOBAL SCHEDULER

In Chapter' 3 we assume that each DBMS is capable of correctly selializing all

submitted tlansactions. This is statecl in the following proposition.

Proposition 5.2.1 Each local schedtiler always schedules all tlansactions in a se-

rializable order. W

As desclibed in Chapter- 4 the global trigger manageï embecls GSTs submitted

to the same site if theil GTs belong to the same global transaction family. The

GTRM uses the same ordel for embedding for each DBMS so that it does not violate

serializability. The embedding ordel for a GTF is eclual to the order constructed by

an orclered travelsal of the family tree. A r.esult of this is specified in the following

Proposition and is used in the ploof of Theorem 5.2.7.

Proposition 5.2.2 Ir GT¡6¡ is a descendent or GT¿67 and GT¡,6¡ is not then

GT*Ø)'s embeclding order is either- befor-e both GT¿1r¡ and GT¡@ or after both.

r
The following lernma is presented in Barker' [6] and is used to prove the GSS

and AGSS algorithms correct. We present it here to support the proof of the AGS.

Lernrna 5.2.1 Fol every pair-of global transactions GT¿, GT¡eÇT, scheduled by

the AGS, either all of GTis subtransactions ale executed before GTis at every

DBMS ol vice velsa.

Proof: The AGS and AGSS ale similar algorithms so the proof described in Lernma

4.3 of Barker' (pug" 68) [6] is modified for oul purposes. Filst we will prove that

for every pair- of families GTFi, GTFj eÇTF, either all of GTFis subtransactions

ar-e executed before GTFis at ever-v DBMS or vice versa.

r25

CTIAPTER 5. GLOBAL SCI-IEDULER r26

Consider GT F" requiring only a single subtransaction (eg. GSf*"\). From Ploposi-

tion 5.2.1 it follows that any othel GSTlp¡eG?fl¿, either prececles or follows GSf:kù.

Global tr-ansaction families which submit to multiple clatabases ìrut only access one

database in common with all other active GTFs are submittecl immecliately. This

occurs because each GST is tested inclependently (line(5) Figure 5.2). Since only

one DBMS is accessed in common for each GTF in the candidate set (lines(6-9)) the

test will fail at line(i0) of Figure 5.2 which lesults in the submission of each GST.

Since each GTF in the canclidate set overlaps at only one DBMS, it f'ollows i,vith-

ont loss of generality that, when we consicler a GSTfi"¡eGTF" ancl G5'{&1qeGTFr,

whose base-sets ovellap, any olclering chosen by DBfuISß is consistent. That is,

since DBNLSÀ is the only place where GTF" a,ncl GTF¡ access common clata, we

know from Proposition 5.2.1 that either GTF" < GTFt, or GTF6 < GTF*, as le-

cluired.

Global transaction families that overlap at more than a single DBMS ar-e always

submitted and executed in the same order at each ovellapping DBVIS. Suppose r,ve

have two arbitrary active global subtransactions G5fi1ù, GSTj@eGTF" which ac-

cess DBNLgÀ and DBIVISt, respectively. Consider the attempt to submit GSTib).

Since there exists another GST at DBNISt, eithel waiting ol active, GST'fu, is

passivated (lines (11-12) of Figure 5.2). GST:@ is blocked for the same reason.

Consicler the completionof GTF". Assumingthat thele ale no other similar GSTs,

the test at line (9) of Figr-rre 5.3 allows GST:@ to be submittecl. Since GSff@)

is complete, it follows immediately that GSf:@ < GST:(Ð. GST:@ is submitted

in the same way. It follows that GST\ø¡ < GSTl,or. Clearly the GSTs of, GTF^

CHAPTER 5, GLOBAL SCHEDULER

plecede the GSTs of GTF6 at every DBMS, as required.

To complete the ploof we must show that for every pair of tlansactions GT;6¡,

GT¡6¡IGTF' either all of Gfr's GSTs are executed before GT¡'s at every DBMS or

vice versa. GT¿f") and GT¡6¡ belong to the same GTF so if they access a comnlon

DBIVISk then G.9f and GST! are embeclclecl in the same submitted GST. The

embedding ot'der used by the GTRM is the same at each DBMS where the GTs

inter-sect. Hence, either GT¿ < GT¡ or GT¡ < GT; aT, every DBMS, wliich completes

the proof. ñ

We are now in a position to plove the AGS correct. This involves showinq that

all histories ploduced by the AGS ale AMDB-serializable.

Theorem 5.2.L The AGS prod'ces only AMDB-serializable histories.

Proof: To prove that the AGS creates only AMDB-serializable schedules we must

slrow that the AMSG of an arbitrary history ploduced by the AGS is l\ - crrcyclic,

| - acyclic, family order discrepancy free, and causal discrepancy free.

Acyclic: To show that the AMSG is Ä - acyclic and f - acgclic we appeal to

Theorem 4.7 of Barlçer [6]. This theorem states that if a scheduler algor-ithm can

satisfy Proposition 5.2.I and Lemma 5.2.I then it produces histories with acyclic

AMSGs. The AGS is one such scheduler so the acyclicity of the AMSGs is ploven.

Family order discrepancy free: Next, we rlust show that the AMSG is famiiy

order discrepancy fi'ee. Assume that a family order discrepancy does exist. Then

there exists a path GT;@) ---) ... -) GT¡ --+ ... --+ GT¡ç,¡ in the AMSG wher-e GT¡ is

a clrild of GT¿ and G7¡ is not a descendent of GT¿. Two cases are possible:

Case L: GT* is not a membel of GT Fr. Each arc into or out of a GT node leple-

sents a conflict between GSTs of the nodes at some site. If all of the conflicts occur

127

CHAPTER 5. GLOBAL SCHEDULtrR

at the same DBMS then Proposition 5.2.1 is violatecl. Hence, at least one GT nocle

(other than GT; and GÇ) on the path conflicts at two different sites. Withotit loss

of genelality, let this be G7¡. Consicler the submission of one o1 GT¡'s conflicting

GSTs. Since every GT on this path overlaps the cancliclate set r'r'onlcl inclucle every

GTF on the path. Thr.rs, the site of the other conflicting GST of G7¡ woulcl in-

ter-sect with a cancliclate GTf and the GST woulcl not be submittecl. The same is

tlue for the submission of the other GST. Hence, G7¡ must be a member o,T GTFr.

Case 2: GT¡ is a member of GTF, but is not a descendent of GT¿. From case (1)

above we lçnow every GT on the path is a memb er of GT Fr. Furthermore) we know

that none of the nocles represent LTs. If thele dicl erist a LT then Proposition 5.2.1

would be violated. As a result of GTRNI family embeclment we know that thele is

only one GST submittecl to each site accessecl by GT Fr. Since GZ; executes a con-

flicting operation before another- family member GT", it must have been embedcled

before G4. This principle can be appliecl to GT" and the family member GTt,lhat

it conflicts with. Hence, GT; is embedded before GTu as weli (if they access simiiar

sites). If follows that GT; is the "oldest" with respect to embeclment, Gf is the

"yonngest", and GT* is between them. However, this violates Proposition 5.2.2.

Hence, G7¡ must be a descendent of GT¿.

Causal discrepancy free: Finally, we must show that the AMSG is causal clis-

crepancy free. Assume the AMSG contains a causal discrepancy. That is, there is

a A, f - path fron GT¡ to GT¿ and a r - path, from G7, to GT¡

Strppose GT¿ and GT¡ are members of different families. Consider the submission

of GT¡. G4 caused GTr to occur and so is active at one or- more DBMSs when

GT¡ is leceived by the GS. There is a path from G7, to GT; so evely GTF on this

path would have been in the candidate- set when GT¡ was submitted. However',

line (10) of Figure 5.2 and line (9) of Figure 5.3 woulcl not submiT GTis GSTs but

128

CHAPTER 5. GLOBAL SCHEDULER 729

would block them until Gfrs family completes. Thus, GT; and GQ must belong to

the same family.

The path must contain some GT* not in the family or else GT¡'s embedment olcler-

would be ealliel than Gfr's which coulcl never occur (see case (2) of family oldel

discrepancy free section). Suppose that the conflict arcs of G7¡ occur at two cliffer'-

ent DBMSs. Every GT on the path would be in the candidate set when GTt was

submitted and G?¡'s GSTs would be blocked (see case (1) of family older discrep-

ancy free section). Hence, every GT not in the farnily and on the path conflicts at

tlre same DBMS. This implies that operations of GT¡ precede those of GTt which

plececle those of GT¿ at some DBMS. This violates Proposition 5.2.1. Thelefole,

the AMSG is causal discrepancy free and the theorem is ploved. K

Chapter 6

Conclusion

Triggel and transaction management issues in active multiclatabase systems ale

stucliecl in this thesis. This thesis has contlibuted in a numbel of important ways.

Barker's formal model of multidatabase system is extencled to a formal moclel of

active multidatabase system. This paladigm uses global tr-iggels to automatically

perform database actions when certain conditions in the clatabase ar-ise. Global

triggers have a coupling mode associatecl with them which inclicates how the friøoor

is to be executed with respect to the triggering transaction.

Histories in this thesis are considered colrect if they are ANIDB-serializable.

AMDB-serializability is an extension of Barker's MDB-serializability. The exten-

sions include lestrictions to ensure transaction families are orcler-ecl pr-opelly ancl

that causally depenclent transactions appear to have executecl after theil triggeling

transactions. Additionally, a new actiue multidatabase serializability graph (AMSG)

is used to simplify the process of cletermining whethel a multidatabase history is

AMDB-serializable. An AMDB-selializability theorem is presented and its correct-

ness oroved.

130

CTIAPTER 6. CONCLUSIO|'¡

Trigger execution and event detection mechanisms are pr-esented in this thesis.

A unique method of event detection is used where the global subtransactions signal

when simple events of global triggers occur. The Global Trigger Manager receives

these rrressages and decides which global triggers to execute. Special techniqr-res for

subtlansaction embedment are used to over-come cleadlock anomalies which may

alise fi-om the full dependency coupling mode. A majol resuit of this research is

the ability to detect conplex events that span more than one local datal)ase, eve¡

if the databases are heterogeneous. All of this is accomplished without a violation

of local autonomy.

This thesis also contributes by preseniing a scheduler algorithrn (AGS) which

ensul-es AMDB-selializable executions. This algor-ithrn is a modification of Ballçer's

AGSS which ensures MDB-serializability. The algorithm works by scheduling zr.t

the global subtransaction level as opposecl to the traditional read/write level. The

Active Global Scheduler- is ploved correct by dernonstrating that any arbitlaly

history produced by it is AMDB-serializable.

Many aspects of trigger and transaction management ar-e not discussed in this

thesis. Some of these open resealch problerns ale enumerated by Bar-ker [6]. These

include:

1. The formation of global subtr-ansactions from a globai transaction.

2. Consideration of heterogeneity in this research. Cer-tain aspects of local data-

bases may lend to an improvement in transaction management. Specifically,

would it be possible to exploit a locai system that already has built-in event

detection.

3. The global schedulel could incorporate semantic infor-mation to inclease con-

currency. This would involve detecting the meaning of a subtransaction and

1?1a(ra

CHAPTER 6. CONCLUSION

scheduling accordingly.

4. The full autonomy assumption coulcl be lelaxecl.

modifications to the local clatabases that shoulcl

concurrency and reliability. However, this may not

1'lt

This woulcl allor,r, rnore

reveal lvays of imploving

always be possible.

There are also many open problems relatecl to the original wolk plesented in this

thesis. Barker's [6] ideas for reliability and recoveÌy will have to be extendecl to fit

the work of this thesis. This inclucles adcling functionality to the Global Recovery

Manager so that it can cope with failures such as lost signals and clueries or aborting

subtransactions. Furthermore, the GRM will have to use the Depenclency Graph

(DG) to contlol commitment and abortion of Global tansactions. The GRM

would have the job of purging the DG ancl the Event Log (trL) when transactions

have completecl.

A prototype of the algorithms should be deveiopecl so that perfolmance studies

can be made. The lesults may reveal any inefficiencies in tliis work so it can be

optimized. This includes implementing the Global Trigger Vlanager algorithrns as

well as the Active Global Scheduler algor-ithm. These results can also be compzrr^ecl

to the simulation results of Barkel's wolk to get a "feel" for how much of an increase

in overhead the active technicues introduce.

This work assumed that trigger events were restricted to read ancl wlite events

ol complex combinations of events such as conjunction and disjunction. We clid not

addr.ess the issue of temporal event detection in a multiclatabase envilonment. An

example temporal event is "@3:00pm" which occrlrs at 3 oclock evely day. The fact

that each DBMS has its own clock makes this a very clifficult area of distributecl

research. Also, this thesis did not allow events such as pr-oglam executions to file

triggers.

CHAPTER 6, CONCLUSION lJJ

The coupling modes presented in this thesis provide a reasonable amount of

flexibility in describing how a triggel should be executed. Additional coupling

modes may be desiled to achieve othel types of trigger executions. This may leacl

to clrastic changes in the algolithms presented depending on the nature of the mocles

created.

This thesis assumes that local database systems are initially not active. Future

work could involve using the existing active components of a local database system

for trigger management at the multidatabase level. This could implove efficiency

of event detection. However-, this may not be possible without a further violation

of autonomy.

Some ideas of Alizio et al. l5] could be applied to this worlc. One in particulal

is the analysis of local transactions fol possible fired tliggers. If a local tlansaction

could nevet file a trigger then it remains a local tlansaction. However, if the local

tlansaction could potentially fire one ol mole triggers then it would become a global

transaction with one GST.

Finally, the results of this thesis should be considered with other. multidatabase

alchitectules and rnodels. The result that local autonomy is not violated in this

apploach makes it worthy of attention.

6.1 ïnterdatabase Dependencies

The model and algorithms desclibed in this thesis ale impoltant research in the

field of multidatabase systems. Maintaining interdependent data in these systems

in a way such that the autonomy of the local systems is not violated is a difÊcult

and open ploblem. The ideas of this thesis could be used to solve that problem.

CHAPTER 6. CONCLUSION

Consicler Erampie 1.1.1 from Chapter'1. A multidatabase system consisting of

a phone company clatabase and a construction company database has two inter-

database depenclencies:

Proj ect-X -copyl -: Proj ect-X -copy2

Proj ect-X -cost 1 Proj ect-Y -cost

Using oul model, tr-iggers are requirecl to hanclle these constraints. The following

triggers are used for the first constraint:

Global Trigger 1 : Action: upclate ProjectJ-copy2 with ner,v value

Event: update to ProjectJ-copy1

Coupling Mode: Fu1l Dependency

Global Trigger 2 : Action: update PlojectJ(-copy1 with nei,v value

Event: upclate to ProjectJ(-copy2

Coupling Mode: Full Depenclency

When an update occuls to either copy one of the triggels will fire to upclate the

other copy. The second constraint requires only one trigger:

Global Trigger 3 : Action: if (new value > Project-Y-cost) then abort

Event: update to Projecti(-cost

Coupling Mocle: Full Dependency

An update to Plojectj(-cost will cause the action to be executed in a global tlans-

action. The action checks if the new value exceeds the cost of ploject Y ancl if so

the tlansaction aborts. The full dependency coupling mode is usecl so the abort

will cause the updating transaction to abort.

134

CHAPTER 6, CONCLUSrcAI
-L J(J

Special higher ievel constructs could be set up fol common types of interdatabase

dependencies to ease the complexity of cleating muitipletriggers to handle one task.

The equality constraint is the most common type of dependency in multidatabase

systems. An example of such is the first constraint of Example i.1.1. Oul highel

level construct could be: equality-dependency(Pr-ojectj(-copy1, ProjectJ(-copy2).

The GTRM would interpret this correctly and setup and submit the appropliate

update tr-ansactions whenevel one copy is r-rpdated.

Othel types of dependencies that could be handled include aggregate, referential,

and existence dependencies. For example, suppose the dependency C:avelage(D¿)

exists on the multidatabase. Triggels could be setup to fir'e whenever a D¿ is

updated. The action of these triggels would tipdate C with the colrect avelage of

the D¿s.

Referential integlity is also vely irnportant. Suppose empl is a data item on

some local database which contains employee information regarding one employee.

On another database exist several payroll lecords fol this employee. If a user-

deletes the etnpl r'ecor-d then the payroll records will exist without an employee

recold. Trigger.s could be used to delete the payroll lecords (or take sorre other.

action) when T,lte empl recold is deletecl.

Currently this model can only support i,rnrnediate consistencg. That is, inter-

database dependencies are always satisfied. Flowever, often it is not necessary to

be so severe. It may be acceptable to let dependent data become inconsistent and

only maintain the constlaint per-iodically. This type of consistency is called euetztual

consistencg. For example, the fir'st constraint of Example 1.1.1 coulcl be enforcecl

once eveÌy two hours or once every five updates. The copy may be slightly out

of clate but is still acceptable for some pulposes. The GTRM would require some

modifications so it could "delay" triggers or track the number of times an event

CI-IAPTE,R 6. CONCLUSIO¡\T

occrlls on an inter-tlansaction basis.

Many of the dependency icleas discussecl lecluire the ability for transactions to

communicate with each other. This is necessary fol even simple constraints such

as Project-X-copyl:: Project-X-copy2. To maintain this constraint the upclate

triggel must know the value that is written to the fir'st copy so that it may correctly

upclate the second copy. The message sending mechanisms of Chapter- zl coulcl be

modified to handle these situations but this is beyond the scope of this thesis.

The interdatabase clependency problem is a very important one in multidatabase

systems. Much research is lequirecl to aclequately cope with this ploblem.

136

Bibliography

[1] R Agrawal and N. Gehani. ODE (Object Database and Envilonment): The
Language and the Data Model. In ACNI SIGMOD Conference on Managemenr
of Data, pages 36-45, 1989.

[2] A Aiken, J. Widom, and J. Hellerstein. Behaviour of Database Plocluction
Rnles: Telmination, Confluence, ancl Obselvable Deter-minism. In ACNI SIG-
AIOD Conference on ilIanagement of Data,, pages 59-68, 1992.

[3] R Alonso, D. Barbara, and S. Cohn. Data Sharing in a Large Heterogeneous
Environment. In Proceedings from the Seuenth International Conference orz

Data Engineering, pages 305-313, Aplil 1991.

[4] R Alonso, D. Barbara, and H. Garcia-Molina. Data Caching Issues in an
Information Retrieval System. In ACM-TODS, pages 3bg-984, Septembel
1990.

[5] R Arizio, E. Bomitali, M. Demarie, A. Limoniello, and P. Mussa. Managing
Inter-database Dependencies with Rules * Quasi-transactions. In Proceedings

frorn RIDE-IMS, pages 34-47, April 1993.

[6] K Balker. Transaction Managernent on IVlutti,database Sgsterns. PhD thesis,
University of Albelta, 1990.

[7] C Beeri and T. Milo. A Model for Active Object Or-iented Database. In
Proceedings of the 17th International Conference on Very Large Data Bases,
pages 337-349, September 1991.

[8] P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrencg Control and
Recoaery in Database Systems. Addison Wesley, 1987.

[9] T Bloom. Issues in the Design of Object-Oliented Database Programming
Languages. In OOPSLA Conference Proceedi,ngs, pages 44I-45I, 1987.

r37

BIBLIOGRAPHY 138

[10] F. Cacace, S. Ceri, S. Crespi-Reghizzi, L. Tanca, ancl R. Zicari. Integrating
Object-Oriented Data Mocleling with a Rule-Basecl Programming Paradigm.
In ACIVI SIGMOD Conference on fu[anagernent of Data, pages 225-236, 1990.

[11] S. Ceri. A Declarative Approach to Active Databases. In Proceedings oJ the
IEEE Conference on the fuIanagement of Data, pages 452-456,1992.

[12] S. Chakravarthy. Rule Management ancl Evaluation: An Active DBX/IS
prospective. SIGilIOD RECORD, 18(3):20-28, 1989.

[13] A. Colnelio and S. Navathe. Using Active Database Techniqr-res For Real
Time Engineering Applications. In Proceedings of the IEEE Conference on tlze

Ma'nagement of Data, pages 100-107, 1993.

[14] U. Dayal, B. Blaustein, and A. Buchmann. The HiPAC Project: Combining
Active Databases and Timing Constraints. In SIGXIOD Recorrl, March 1988.

[15] U. Dayal, A. Buchmann, and D. lVIcCalthy. Rules Are Objects Too: A Knowl-
edge Model For An Active, Object-Oriented Database System. In Proceecl-
ings of the 2nd International Workshop on Object-Oriented Datal¡ase Systems,
pages i29-143, 1988.

[16] O. Diaz, N. Paton, ancl P. Glay. Rule Management in Object Or-ientecl Data-
bases: A Uniform Approach. In Proceedings of the 1Tth International Confer-
ence on Very Large Data Bases, pages 31,7-326, September 1991.

[17] K. Dittrich, A. Kotz, and J. Mulle. An trvent/Trigger Mechanism to Enforce
Complex Consistency Constlaints in Design Databases. SIGIVIOD RECORD,
15(3):22-36, September' 1986.

[18] S. Gatziu and K. Dittrich. Detecting Composite Events in Active Database
Systems Using Petri Nets. In Proceedings from RIDE-AD,9, pages 2-9, Febr-u-

ary 1994.

[19] N. Gehani and H. Jagaclish. Ocle as an Active Database: Constraints ancl

Triggers. In Proceedings of the 17th Internutional Conference on Very Large
Data Bases, pages 327-336, September 1991.

[20] N. Gehani, H. Jagadish, and O. Shmueli. Event Specification in an Active
Object-Oriented Database. In ACM SIGMOD Confernece on Management of
Data, pages 81-90, 1992.

BIBLIOGRAPHY

[21] A. Gupta and J. Widom. Local Verification of Global Constlaints in Dis-
tlibuted Databases. In ACM SIGMOD Conference on fuIanagement of Data,
pages 49-58, 1993.

l22l E. Hansen. Rule Condition Testing and Action Execution in Aliel. In ACfuI
SIGMOD Conference on Management of Data, pages 49-58, 1992.

[23] E. Hanson. An initial Report on the Design of Ariel. SIGMOD RECORD,
18(3):12-19, 1989.

[24] M. Hsu, R. Ladin, and D. McCarthy. An Execution Model for Active Database
Management System. In SIGfuIOD Record, March 1988.

[25] G. Karabatis and A. Sheth. Specifying Interdependent Data: A Case Str-rcly

at Bellcore. Technicai leport, University of Houston, July 1992.

[26] D. McCalthy and U. Dayal. The Architecture of an Active Database Nlanage-
ment System. In ACAI SIGMOD Conference on Nlanagernent of Data, pages
215-224, 1ggg.

127) D. Mukhopadhyay and G. Thomas. Practical Appr-oaches to Maintaining Ref-
elential Integr-ity in Multidatabase Systems. In Proceedings from RIDE-IMS,
pages 42-49, April 1993.

[28] M. Özsu and P. Valduriez. Principles of Distributed" Database Systems. Prentice
Hall, 1991.

[29] T. Risch. Monitoling Database Objects. In Proceedings of the 15th Interna-
tional Conference on Very Large Data Bases, pages 445-453, 1989.

[30] M. Rusinkiewicz, A.. Sheth, and G. Karabatis. Specifying Interdatabase De-
pendencies in a Multidatabase Environment. Technical report, Beilcole, Mar.ch
1991.

[31] A. Sheth and P. Krishnamurthy. Redundant Data Management in Bellcore
and BCC Databases. Technical leport, University of Houston, Jtine 1989.

[32] A. Sheth, Y. Leu, and A. Elmagalmid. Maintaining Eventual Consistency of
Inteldependent Data in Multidatabase Systems. Technical r-epor-t, Bellcole,
June 1991.

[33] A. Sheth and M. Rusinkiewicz. Management of Interdependent Data: Specify-
ing Dependency and Consistency Requirements. In Proceedings of the Work-
sholt on the lVlanagement of Replicated Data, pages 34-49, November 1990.

139

BIBLIOGRAPI]Y

[34] A. Sheth, M. Rusinkiewicz, and G. Karabatis. Using Polytransactions to N4an-

age Interdepenclent Data. In Ahmecl K. Elmagarrnid, editor, Database Tra'ns-
action il[odels Jor Aduanced Applications, pages 556-581. Morgan Kaufirann,
1990.

[35] M. Stonebralcer. The Integration of Rule Systems ¿r.ncl Database Systens.
IEEE Transactions on Knowledge a,ncl Data Engineering,,4(5):415-423, Octo-
ber 1992.

[36] M. Stonebralçer, NI. Hearst, ancl S. Potamianos. A Commentary on the POST-
GRtrS Rules System. SIGMOD RECOR\ 18(3):5-11, September 1989.

[37] M. Stonebralcel, A. Jhingran, J. Goh, ancl S. Potamianos. On Rules, Ploce-
clules, Caching ancl Views In Data Base Systems. In ACAI SIG]VIOD Confer-
ence on lVlanagernent of Datq pages 281-290, 1990.

[38] VI. Stonebralçer and G. Kemnitz. The Postgres Next-Generation Database
Management System. Commttnications of the AC\I,3rt(10):78 92, October
1991.

[39] S. Urban and L. Delcamble. Constraint Analysis: A Tool For Explaining
The Semantics of Complex Objects. In Proceedings of tl'¿e 2ncl International
Workshop on Object-Oriented Database Systems, pages 156-161, 1988.

[40] L. Voort ancl A. Siebes. Termination and Confluence of Rule Execution. Tech-
nical report, CWI, January 1993.

r40

