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Abstract

Multidatabase systems are constructed from autonomous independent database
managers and are an alternative to homogeneous integrated distributed database
systems. Two or more data items that are related through a value dependency are
termed interdependent data. Multidatabase systems may require that the value
dependencies of interdependent data be satisfied. Active databases define rules or
triggers to automatically perform actions when certain database conditions arise.
This thesis provides a model for an active multidatabase system capable of main-
taining interdependent data. It rigorously formulates the different types of triggers
and events that participate in an active multidatabase system. A definition of ac-
tive multidatabase serializability (called AMDB-serializability) is introduced and
a graph theoretic tool is described that defines precisely when a given execution
sequence is serializable. An architecture for trigger and transaction management in
an active multidatabase system is defined to describe the interactions between the
different software layers of the management facilities. The architecture is used to
identify the components that are required for trigger management, event detection,
and concurrency control. This thesis introduces algorithms for these components
and describes the interactions between them. The correctness of the concurrency
control algorithms in ensuring AMDB-serializability is shown using the graph theo-
retic tool. These algorithms are incorporated in such a way that they do not violate
the autonomy of the local database systems.

v
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Chapter 1

Introduction

A multidatabase system (MDB) is a collection of autonomous and possibly hetero-
geneous, pre-existing local database systems (DBMSs). An MDB supports global
applications that access data items in more than one local database. This environ-
ment differs from traditional homogeneous distributed database systems in that it
interconnects DBMSs in a bottom up fashion, thereby allowing existing applica-
tions developed on each of the DBMSs to be executable without modification. An
MDB allows the sharing of data and resources at the same time as retaining the

autonomy of local database systems.

The autonomy of the local systems makes multidatabase research especially dif-
ficult. This requirement means that any work done to the MDS cannot modify
the local database systems local operations. That is, a local database participat-
ing in an MDS has its choice of transaction model, query techniques, hardware

configurations, etc.

A high level component view of an MDS is presented in Figure 1.1. The envi-

ronment contains a number of independent local database systems and the MDMS
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Figure 1.1: Components of an MDS

layer which lies above them. The MDMS allows users to access multiple local
databases with one transaction. Local users of some database may also submit
transactions directly, as if the local database did not exist as part of an MDS. As
far as a local database is concerned the MDMS is just another local user. This

construction maintains the autonomy of each local database.

The areas of research in multidatabase systems include schema integration, as-
pects of heterogeneity, autonomy, differences in data representation, global query

processing, concurrency control, reliability, security, and global integrity constraints.
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The aspects of global integrity constraints is particularly relevant to this thesis so

we describe it in more detail in the next section.

1.1 Interdatabase Dependencies

One of the problems in multidatabase systems is the maintenance of global integrity
constraints. These are often called interdatabase dependencies. Interdatabase de-
pendencies arise when two or more data items located at different local databases
are related in some way such that if one is updated with a new value then the other
may have to be updated in order for the two data items to be semantically correct.

The following presents some examples of interdatabase dependencies.

Example 1.1.1 Consider a multidatabase system consisting of a phone company
database and a construction company database. The two associations are working
together on several projects and require access to each others data. The information
for one of the projects is read often by users at each site but is rarely updated. The
database administrators have decided to replicate this information at each site to

improve performance. Hence, we have the following interdatabase dependency:
Project_X _copyl == Project_X _copy?

If some transaction updates one of the project information items then the system

must automatically update the other.

The company leaders have also decided that the cost of project X must never
exceed the cost of project Y. The phone company manages the cost of project X
and the construction company manages the cost of project Y. This results in a

second interdatabase dependency:
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Project X _cost < Project Y _cost

1.2 Active Database Systems

Traditional databases are passive persistent stores. Data in the database are in-
serted, deleted, modified, and otherwise manipulated. The database does not per-
form operations so all operations on the data are made entirely by users including
constraining their values. It is the users responsibility to ensure operations on data
are “semantically correct” and that all necessary actions are performed, including

maintaining integrity constraints.

Active databases define rules or triggers to automatically perform actions when
certain conditions in the database arise. These actions usually occur as a response
to actions caused by transactions executing on the database. The database monitors
transaction execution, detects events that trigger actions, sets up triggered actions,

and executes them.

Active databases and knowledge bases use similar constructs [35]. Both react
to events generated in the database and respond with some action. However, the
main difference between the two is the way triggers are executed. Database triggers
are executed as a result of normal database operations. Rules in knowledge bases
are usually executed upon explicit request of an application and attempt to derive

information from a database of facts.

Triggers have many uses in active databases including maintaining integrity
constraints, view management, access control, logging, alerting, etc. This helps

in writing database tasks by removing the responsibility of executing consistency
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maintaining operations for the user. In addition, triggers are only defined once so

code reuse occurs and fewer €ITors are experienced.

Research in active databases include detection of complex events, trigger ex-
ecution models, trigger correctness, optimization of trigger execution, etc. The
features of active databases are currently being extended to other paradigms such

as object-oriented databases [1, 19, 16, 7].

1.2.1 Active Multidatabase Systems

We define an active multidatabase system (AMDS) that will automatically perform
actions when certain “multidatabase conditions” arise. Traditional active database
use event detection mechanisms to monitor the operations of executing transac-
tions. Each event is generally passed to a trigger subsystem which determines if
a trigger event has occurred, and if so, will execute the triggered action. The na-
ture of a multidatabase system complicates trigger event detection and execution
because a multidatabase is constructed in a “bottom-up” fashion where local data-
base systems are autonomous and cannot be modified. If a local database system
is not initially active then detecting events of executing multidatabase transactions
at that site is very difficult. Local databases that are initially active would require
extensive modifications to allow the multidatabase to benefit from the trigger ex-
ecution and event detection techniques. Mechanisms that incorporate activeness
into a multidatabase system must ensure that the autonomy of the local systems

1s not violated.
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1.3 AMDS Architecture

We use an active multidatabase architecture (AMDS) as a platform for the work
presented in this thesis. The components of an AMDS are depicted in Figure 1.1.
Each local database is managed by a different DBMS. The AMDMS layer provides
users with the ability to access different local databases. We will concentrate on
the particular events necessary for trigger and transaction management in this en-
vironment (Figure 1.2). This architecture assumes that each local database system
has a common centralized structure (for example, Bernstein et al. [8]) and is based

on one provided by Barker [6].

The components of a DBMS are a Local Transaction Manager (LTM), a Local
Scheduler (LS), and a Local Recovery Manager (LRM). The LTM interacts with
the user, coordinates the atomic execution of transactions, and handles transaction
initialization procedures such as transaction identification. The LS is responsible
for correct concurrent execution of transactions submitted to the DBMS and may
use any concurrency control technique. The Local Recovery Manager ensures the

local database (LDB) contains precisely the effects of committed transactions.

The AMDMS layer rests above the DBMSs and provides a communication fa-
cility between local DBMSs. Its four components include a Global Transaction
Manager (GTM), Global Trigger Manager (GTRM), Global Scheduler (GS), and a
Global Recovery Manager (GRM). The GTM handles transaction management du-
ties related to transactions spanning multiple databases including accepting trans-
action submission from users, ensuring their syntactic correctness, and ultimately
returning results to the user. The Global Trigger Manager is responsible for control-
ling event detection and trigger execution in the multidatabase environment. The

Global Scheduler provides concurrency control for global transactions and multi-
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database triggers. The Global Recovery Manager ensures that global transactions

and triggers execute reliably and are recoverable.

1.4 Problem Definition

This thesis addresses the problem of trigger management and concurrent transac-
tion execution in active multidatabase systems. Active multidatabase serializability
is defined, which is an extension of multidatabase serializability [6] applicable to
multidatabase systems. This provides a theoretical basis for the discussion of con-
currency control algorithms. Event detection and trigger execution mechanisms
are described. The thesis then presents a scheduler for executing transactions and

triggered actions concurrently in an active multidatabase environment.

This thesis makes the following contributions:

1. Provides a summary of previous research related to active multidatabase sYs-

tems.

2. Discusses the problems encountered in providing general trigger management

in an active multidatabase system.

3. Introduces a new correctness criteria for the active multidatabase environ-

ment.

4. Provides mechanisms for event detection and trigger support with minimal

violation of local database autonomy.

5. Offers a global scheduling algorithm which guarantees correct execution of

global transactions and triggered transactions.
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6. Proves that this algorithm is correct.

This is then used to illustrate how global integrity constraints can be supported
as described in Section 1.1. Therefore, the constraint problem can be seen as both
the motivation for this work and the final challenge that will demonstrate the utility

of an active multidatabase system.

1.5 Outline of Thesis

The remainder of this thesis is as follows. Chapter 2 discusses fundamental trans-
action definitions and presents previous related work. A formal transaction and
trigger model and the study of AMDB-serializability are provided in Chapter 3.
Chapter 4 discusses event detection and trigger execution in this environment.
A concurrency control algorithm is presented in Chapter 5 and its correctness is
proved. Finally, Chapter 6 summarizes the thesis and presents some suggestions

for future research.



Chapter 2

Background

This chapter presents the necessary background information. Relevant research
includes active databases, transaction management (specific to multidatabase sys-

tems), and interdependent data management of multidatabases.

2.1 Fundamental Definitions

The definitions and notations for traditional transaction management are taken
from Ozsu and Valduriez [28]. Oyj¢ {read,write} denotes operation j of transaction
i. OS; is the set of all operations of transaction i (U Oix). We also denote with
N; the termination condition for 7}, where N;e {abort,commit}. The abbrevia-
tions r,w,a, and ¢ will be used for the read, write, abort, and commit operations,

respectively. A traditional transaction is:

Definition 2.1.1 (Transaction): A transaction T} is a partial order T; = {%;, <;}

where ¥; is the domain consisting of the operations and the termination condition

10
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of T;, and <; is an irreflexive and transitive binary relation indicating the execution

order of these operations such that

1. Y = OS5; U{N;},

2. for any two operations O;;, O;cOS;, if Oy = r(z) and Oy = w(z) for any
data item z, then either Oi; =i O, or Oy, < O;j, and

3. \V/OZ‘]‘GOSZ', Oi]‘ <; N;. .
A historyis a log that records the execution of transactions. Histories provide a
means for inspecting the execution of transactions to ensure that they have a correct

ordering when executed concurrently. Thus, histories are defined with respect to

transactions:

Definition 2.1.2 (History): Given a DBMS with a set of transactions 7 a history
(H) is a partial order H = (%, <) where:
1. ¥ =U,; ¥; where ¥, is the domain of transaction T;eT,

2. <g2 U; <; where <; is the ordering relation for transaction T} at the DBMS,

and

3. for any two conflicting operations p,q eH, either p <y gor g~ Hp. &

This definition implies that if the operations of two transactions conflict, the trans-

actions also conflict.
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2.1.1 Serializability

The generally accepted correctness criterion for traditional transactions is conflict
serializability, where conflicting operations of transactions must be ordered so the
transactions appear to execute serially. That is, all the operations of one transaction
must appear to execute before all of the operations of another transaction. This

correctness criterion requires the following definitions:

Definition 2.1.3 (Serial): A history H = {T4, ..., T,} is serial iff (IpeT;,3qeT; such
that p <g ¢) = (VreT;,VseT;,r <m s). |

Definition 2.1.4 (Conflict Equivalent:) Two histories are conflict equivalent if
they are over the same set of transactions and order conflicting operations identi-

cally. |

These definitions lead to the definition of a serializable history:

Definition 2.1.5 (Serializable): A history is serializable if and only if it is equiv-

alent to a serial history. | |

2.2 Related Work

Polytransactions

Sheth et al. [34, 30, 32, 25, 33] define the polyiransaction model for the manage-
ment of interdependent data (data stored in two or more databases that are related

through an integrity constraint). They propose a framework with two important



CHAPTER 2. BACKGROUND 13

features: a declarative specification of interdependent data and their mutual con-
sistency requirements, and use of the specification to automatically generate up-
date transactions that manage interdependent data. The declarative specification
involves collecting all of the dependencies and storing them together. This al-
lows them to be examined and modified in one place, independent of application
programs. Automating updates eliminates the error prone approach used when
the transaction designer manages interdependent data. Various aspects of Sheth’s

model are discussed below.

Specification of Interdatabase Dependencies: The first feature must cap-
ture interdatabase dependencies. Sheth’s model uses Data Dependency Descriptors

(D?) which is a 5-tuple:
D3 = <S,U,P,C,A>
where:

S is the set of source data objects,
U is the target data object,

P is a boolean-valued predicate called the interdatabase dependency predicate (de-
pendency component). It specifies a relationship between the source and

target data objects, and evaluates to true if this relationship is satisfied.

C is a boolean-valued predicate, called the mutual consistency predicate (consis-
tency component). It specifies consistency requirements and defines when P

must be satisfied.
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A is a collection of consistency restoration procedures (action component). Each

procedure specifies actions that must be taken to restore consistency defined

by P.

Data Dependency Descriptors are uni-directional; from the set of source data ob-
jects to the target data object. Performing an operation on the source or target
data objects may require additional actions to maintain mutual consistency of in-
terdependent data. The Interdatabase Dependency Schema (IDS) is the set of all

D3s enforced in a multidatabase system.

System Architecture The polytransaction model uses an architecture simi-
lar to that described in Section 1.3 [34] but requires some additional features. Each
LDBS is augmented with a dependency subsystem (DS) which acts as an interface
between LDBSs and can communicate with DSs of other LDBSs. A DS analyzes
transactions submitted to its LDBS for updates related to data in other databases
by consulting the IDS for D% involving data modified by the local transaction. If
it discovers that the transaction updates related data in other databases, then a

series of update transactions are scheduled.

Properties of Polytransactions A Polytransaction (1'F) is the “transitive
closure” of a transaction 1" submitted to the multidatabase management system.
The transitive closure is computed with respect to the IDS [34]. That is, a poly-
transaction is a nested transaction with the original transaction T as root and any
triggered transactions as children. For each data item X modified by 1" the IDS
must be checked. If there exists a D® with X as a source data object and the
effects of T violate that D3s dependency and consistency predicates then a new

subtransaction 7" must be created to update the target data object. A new node
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corresponding to 7" is added to the tree as a child of the 7' node. This process is
then applied iteratively to all children of 7. These subtransactions correspond to

the consistency restoration procedures defined in the D3s.

Children are related to their parents in two ways which are specified by the

coupling mode in the consistency restoration procedures of the D3s.

1. The subtransaction may be coupled (where the parent waits for the child to

complete).

2. The subtransaction may be decoupled (so it runs concurrently). If it is coupled

then it may be either vital (the parent fails if the child fails) or non-vital.

Interdatabase Dependency Schema The dependency predicate P is a boolean-
valued expression specifying the relationship that should hold between the source
and target data objects [30]. It can be specified using the traditional operators of
relational algebra (selection, projection, join, difference, union, intersection, etc.)

as well as aggregate (¢) and transitive closure («r) operators.

The mutual consistency requirement specifies “how far” the interdependent data
is allowed to diverge before the consistency must be restored. The specification of
the consistency predicate can involve multiple boolean valued terms called consis-
tency terms and each is denoted by ¢;. C is a logical expression constructed using
the ¢;s and the logical operators A, V and —=. The predicate can be defined both in

terms of time and data state.

A few examples will prove useful (see Sheth et al. [34] for details):

e @11:00 on 21-Nov-1991 means the data must be consistent at 11 o’clock on

the 21° of November, 1991.
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e 25-Aug-1992 ! means data must be consistent after August 25, 1992.

e AEMP.Salary > 500 specifies that the data must be consistent if a transac-

tion changes an employee’s salary by more than $500.

e 10 updates on R; where Rje S specifies that data must be consistent after

the 10** update to Ry, a source object.

When a D¥s dependency and consistency predicates have been violated, the set
of consistency restoration procedures must be used to generate appropriate update
transactions. The authors assume the existence of a multidatabase monitor which
examines updates to databases for violations of D’s in the IDS. If a violation occurs
then the monitor must use the consistency restoration procedure of the violated
D3 to generate an update transaction. There may be several ways to violate the

predicates of a D® so there may be several consistency restoration procedures.

OSCA

Srinidhi [31] describes an interoperability architecture called OSCA that pro-
vides large corporations the flexibility to combine software products in ways which
satisfy authorized user needs. OSCA supports data redundancy as a means for

achieving improved performance, reliability, and availability.
OSCA separates business functionality into three “layers” of :
e corporate data management functionality (data layer),
e business aware operations and management functions (processing layer), and

e human interaction functionality (user layer).
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Each layer is partitioned into autonomous units called building blocks that contain
software to implement each layer’s functionality. The data layer contains data layer
building blocks (DLBBs), the processing layer contains processing layer building
blocks (PLBBs), and the user layer contains user layer building blocks (ULBBs).
Each DLBB stewards some allocated portion of the corporate data so it is com-

pletely responsible for the data that it stewards.

Building blocks interact with each other using interfaces called contracts. Con-
tract specifications define the way functionality provided by a contract is invoked
and any support commitments that are required. Contract specifications include

functionality, interface, response time, and availability.

Redundant data in OSCA falls into one of two categories. Private redundant
data are copies of stewarded data owned within individual building blocks but are
not visible outside of the building block. Shared redundant data are supported only
in a DLBB and outside the building block they are visible for retrieval only.

If a building block has private redundant data and requires updates to be sent
by the stewarding DLBB whenever the stewarding data is updated then pre-defined
create/update/delete (CUD) contracts have to be established between the two. If
a DLBB supports shared redundant data then it offers retrieval contracts on that
data. Pre-defined CUD contracts must also be established with the stewarding
DLBB.

OSCA provides two schemes for updating redundant data. The Linked Con-
tracts Table Scheme is used when eventual or lagging consistency of redundant
data is acceptable. Each redundant copy requiring updates is responsible for es-
tablishing the update frequency with the stewarding DLBB. The update frequency,
contracts for updating redundant data, and alternate data views are all stored in

the linked contracts table which may be part of the stewarding DLBB or managed
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by redundancy management services (RMS).

When an update occurs at the stewarding DLBB it commits the update and
provides RMS with the results. The RMS consults the linked contracts table to
determine which redundant copies should get the update and provides contract
interaction services (CIS) with the information. The CIS then invokes the cor-
responding update contract at DLBBs containing the redundant data. Since the
stewarding DLBB commits the results of the update before any update checks are

made this technique will only ensure eventual or lagging consistency.

The Synchronous Update Scheme is useful if the redundant and original data
must be the same at all times. This technique requires that updates to stewarded
data be committed after the corresponding redundant data is updated so the stew-
arding DLBB provides the RMS with the update prior to committing the result.
The RMS consults the table for redundant copies that require synchronous update
and provides CIS with the results. CIS uses transaction monitors (TMs) to invoke
a distributed transaction across building blocks which require synchronous updates
to the redundant data. The TM facilities must use two-phase commit to ensure

correct execution.

Quasi-transactions + Rules

Arizio et al [5] describe a rule model and system architecture to manage inter-
database dependencies in a multidatabase system using quasi-transactions. Their
rule model follows the HiPAC model for active database systems. A rule has the
following structure: (OL,0OM,E,C,A). OL are the data read by the rule and OM
are the data written, inserted, or deleted by the operation described in A. E is the
event predicate that describes when the dependency has to be verified. It can be a

simple event or a complex combination of events using and, or, or not. C describes



CHAPTER 2. BACKGROUND 19

the condition predicate that must hold among the interdependent data of the rule.

A is the action component of the rule which restores consistency when executed.

A quasi-transaction (QT) consists of a set of operations, each of which may
be basic data operations or another QT. A quasi-transaction defines weak ACID
properties. The inclusion of a QT and its descendent QTs is described as a tree.
A parent QT terminates when all of its children terminate. In case of failure, QTs
offer a mechanism to repair actions thereby modifying the outcome to a successful

one.

Quasi-transactions may be scheduled in three kinds of ways: immediate, de-
ferred, and coupled. Immediate scheduling suspends execution of the parent until
the child completes. Deferred scheduling delays the QT so it is executed as the
last child of the parent. Decoupled scheduling starts a QT that has no termination
relationship with the creator. They are executed as siblings of the creator. The
HUC (hold until commit) option is used with decoupled QTs if it is to be executed

only if the creator commits.

The model also supports transactions that require full ACID properties. They
may be nested and their children must be transactions. A child may commit but
its results will be committed only if its parent commits. If a transaction aborts,
its children are aborted too, but a subtransaction may abort without causing the

abortion of its parent.

Transactions can also be executed as immediate, deferred, or decoupled. How-
ever, the behavior of the deferred and decoupled modes differs from proper quasi-
transactions. Deferred transactions are deferred until the commit of the entire
transaction subtree in which they are generated. Hence, they become children of
the root transaction and are executed concurrently just before the root’s commit.

A decoupled transaction begins a completely new transaction, independent from
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the one that created it. The decoupled transaction becomes a sibling of the root

transaction of the subtree that created it.

Quasi-transaction exceptions provide a way of returning error information about
success or failure from children QTs. Error conditions propagate up the QT tree
until they reach a node with an appropriate handler for that exceptional condition.

Error conditions that are not handled may cause the entire QT tree to abort.

A quasi-transaction has two types of error handlers. External handlers are those
used to handle an exception arising from the QT itself. Internal handlers treat error
conditions that have propagated up from a nodes children. Internal handlers may

deal with child aborts and make decisions as to the aborts criticality.

This model assumes a system architecture where each local database consists of
some commercial DBMS with a rule manager and rule base built onto it. The rule
base contains the rules which are firable by transactions at the DBMS. The OL and
OM clauses of rules are used to determine this. The Rule Manager consists of the
Event Detector and the Controller. The Event Detector is able to recognize events
caused by transaction operations as well as temporal events using infrastructural
timing services. The Event Detector searches for rules that may fire because of
event occurrences and passes these to the Controller. The Controller evaluates the
condition portion of these rules and if the expression “E and (not C)” evaluates to

true then the trigger action is executed according to its execution mode.

HiPAC

The HiPAC project is investigating active, time-constrained database manage-
ment. HiPAC proposes an Event-Condition-Action (ECA) formalism for active

databases capable of automatic enforcement of integrity constraints, expressing rela-
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tionships between data items, alerters, access constraints, and triggers. These func-

tions were previously implemented with special purpose mechanisms (14, 15, 24, 26].

HiPAC’s object-oriented data model’s rules are first-class objects. Rule at-

tributes include:

Event The event that triggers the rule.

Condition A set of queries that are evaluated when the rule is triggered. Queries

are specified in an object-oriented data manipulation language.

Action An operation that is executed when the rule is triggered if the condition
is satisfied. The action could be database operations or calls to application

programs.

E-C coupling A coupling mode that specifies when the condition is evaluated

relative to the transaction in which the triggering event is detected.

C-A coupling Specifies when the action is executed relative to the transaction in

which the condition is evaluated.

The event can be a primitive event such as a database operation (data definition,
data manipulation), a temporal event (absolute, relative to another event, periodic),
or an external notification (application defined event). Since database operations
aré not instantaneous it is possible to define two events for each operation: the

beginning and the end of the operation.

The model also supports composite events. The disjunction of two events, F
and Fy, is a composite event signaled when either E; or E, is signaled. The sequence

of two events, E; and E,, is a composite event signaled when Fj is signaled provided
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that E; has already been signaled. The closure of event E occurs after E has been

signaled an arbitrary number of times in a transaction.

E-C coupling modes can be one of the following:

1. Immediate: Evaluate the condition immediately within the context of the

transaction causing the event.

9. Deferred: Evaluate the condition upon termination of the transaction causing

the event, but before it commits.

3. Separate, causally dependent: Evaluate the condition in a separate transaction

after and iff the triggering transaction commits.

4. Separate, causally independent: Evaluate the condition in a separate trans-
action. The scheduler may schedule this transaction independent of the trig-

gering transaction.

C-A coupling have precisely the same coupling modes except the relationship exists

between the condition and the action.

Rules have special operations of their own:

Fire Evaluate the condition and if satisfied execute the action.
Disable Disable the automatic rule firing for the event.

Enable Enable automatic rule firing for the event.

HiPAC uses a nested transaction model. When a rule fires, a new transaction
is created and the rule’s condition is evaluated by the spawned transaction. If the

rule’s E-C coupling is immediate then the triggering transaction is suspended and
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the spawned transaction is executed as a subtransaction. A deferred E-C coupling
causes the condition transaction to be executed just prior to the parent’s commit.
If the E-C coupling is separate then the new transaction is a top-level transaction.

It may be scheduled concurrently if it is causally independent.

It the rule’s condition is satisfied then another transaction is created for the
action and is dealt with in an analogous manner based on the C-A coupling of the

triggered rule.

If the triggering transaction causes multiple rules to fire then a new transaction
is created for each rule triggered. Immediate subtransactions will execute concur-
rently. Separate, causally independent transactions can be executed concurrently.
Separate, causally dependent transactions will be scheduled after the triggering
transaction has committed. If the execution of a rule’s action causes more rules
to be triggered then this process repeats itself, thereby creating a tree of nested

transactions.

For example, a HiPAC rule such as:

Event: Update Xerox price
Condition: Where new price = 50
Action: Send request to buy 500 shares for client A

E-C Coupling: Separate, Causally dependent
C-A Coupling: Immediate

This rule ensures that if the Xerox price is updated to 50 then 500 shares are bought
for client A [26].

For a DBMS to support HiPAC’s knowledge and execution models it must
support nested transactions and object-oriented data management. Its functional

components include:
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Object Manager: Provides object-oriented data management.

Transaction Manager: Provides nested transactions.

Event Detectors: Detect events and signal them to the Rule Manager.

Rule Manager: Maps events to rule firings, and rule firings to transactions.

Condition Evaluator:Evaluates rule conditions.

Ode

Ode is an object-oriented database system and environment developed at AT&T
Bell Labs [1, 19, 20]. It offers an integrated data model for both database and
general purpose manipulation by providing database functionality and iterators to
allow sets of objects to be manipulated as declaratively as database query languages
based on relational calculus. It uses the language O++ based on, and upward

compatible with, C4++, to define, query and manipulate the database.

Ode is active in that it defines constraints and triggers associated with objects.
Constraints and triggers in Ode have separate facilities since the two are logically
independent. Constraints ensure the consistency of the database state but triggers

have a more general applicability.

Updates that violate constraints are not allowed. A class can have constraints
associated with it and all instances of that class must satisfy them. A derived class

inherits all the constraints of its parent class and new constraints can be added.
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Constraints in Ode can either be hard or soft. Hard constraints are checked at
the boundaries of public member functions that update objects. Soft constraints
are checked at the end of transactions. Hence, hard constraints can be violated
only within the boundaries of member functions whereas soft constraints can be
violated within a transaction. This distinction allows the constraint programmer
to improve efficiency of constraint checking by deferring checks of less important

constraints.

Constraints are specified in the class definition section as follows:

constraint:
constraint, : handler;;

constrainty: handlery;

constraint,: handler,;

where constraint; is a boolean expression involving components of the class involved
and handler; is an action to be performed when the constraint is violated. The
keyword soft precedes the keyword constraint for a soft constraint. If there is no
handler then the violating transaction is simply aborted. The handler is used to
manipulate the data so that the constraint is no longer violated. After the handler

is executed the constraint is checked again and if violated the transaction is aborted.

Consider the following hard constraint:

constraint:

state == Name(“NY”) ” Name(cm);

This forces the state to either be undefined or “NY”. A transaction attempting to

set the state to something else is aborted.
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Triggers monitor the database for certain conditions that require the execution
of an associated action. Triggers are specified in the class definition and consist
of a condition and an action. Triggers apply only to the specific objects for which

they were activated.

If a trigger is active and its condition becomes true then its action is executed
in a separate transaction (unlike constraints). Triggers that fire will be executed

only if the transaction causing them to fire commits successtully.

Ode supports two kinds of triggers: once-only (default) and perpetual. A once-
only trigger is automatically deactivated after it has “fired”, and it must be explic-
itly reactivated to fire again. Perpetual triggers are reactivated automatically after
cach firing. A trigger T; associated with an object whose id is o-id is activated

(reactivated) by the call:

o-id — T;(arguments)

This activation returns a trigger id which can be used to manually deactivate the

trigger:

deactivate(triggerid)

The trigger syntax is:

trigger:
[perpetual] Ty (parameter-decly) : trigger-body,
[perpetual] Ty (parameter-decly) : trigger-bodys

[perpetual] T, (parameter-decl,) : trigger-bodys
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where T; are the trigger names and the parameters can be used in trigger bodies,

which are of the form:
trigger-condition => trigger-action
For example, consider the following trigger:

trigger:

order() : qty < reorderlevel() ==> place_order();

This trigger will fire when gty becomes less than reorder_level(). The response will

be to execute the function place_order().

A second form of trigger body is used for specifying timed triggers. Once ac-
tivated, a timed trigger must fire within the specifyed period or else the timeout-

action is performed. These have the form:
within expression 7 trigger-condition => trigger-action [:timeout-action]

Gehani et al. [20] specify complex events for Ode. These include the relative, prior,

and sequence operators.

Postgres

Postgres is an extended relational DBMS and is the successor of the Ingres
relational DBMS [36, 37, 38]. It extends Quel to the Postquel query language
for data access. Postgres allows the definition of general rules that have a wide
range of applications including view management, triggers, maintenance of integrity

constraints, protection, referential integrity control and versioning.

Postgres rules have the following syntax:
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ON event (TO) object WHERE
POSTQUEL-qualification
THEN DO [instead]
POSTQUEL-command(s)

where event is one of retrieve, replace, delete, append, new or old. The object
is either the name of a class or class.column. The keyword instead is used to
specify actions that are to be executed instead of the action which caused the
rule to trigger. If instead is missing then the rule specifies actions that are to be
taken in addition to the trigger causing actions. These actions are specified in
the POSTQUEL-command(s) section of the rule declaration. These commands are
Postquel commands with an enhanced syntax to allow reference to new or current

states of a class.

Postgres rule control can be set to forward or backward chaining control mech-
anisms [38]. For example, suppose we wished to ensure that Joe’s salary is always
equal to Fred’s. We could use the rule in Figure 2.1(a). Whenever an adjustment
to Fred’s salary occurs, Joe’s salary will be updated automatically by the system
(forward chaining). On the other hand, we could use the rule in Figure 2.1(b) to
enforce the constraint. In this case every time Joe’s salary is retrieved we retrieve

Fred’s salary instead (backward chaining) and Joe's salary is not explicitly stored.

These two different methods of rule control can be used to improve rule effi-
ciency. If there are a high number of retrievals of Joe’s salai‘y and a low number of
updates to Fred’s salary then forward chaining would be most efficient. However, if
there are a high number of updates to Fred’s salary and a low number of retrievals

of Joe’s salary then backward chaining would be preferred.

Postgres has two approaches to rules. The first is through run-time record level
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on new EMP.salary where
EMP.name = “Fred”
then do replace

E (salary = new.salary)

from E in EMP

where E.name = “Joe”

(a)

on retrieve to EMP.salary where
EMP.name = “Joe”

then do instead retrieve
(EMP.salary)

where EMP.name = “Fred”

(b)

Figure 2.1: Example Postgres rules
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on replace to EMP.salary

then do

append to AUDIT

(name = current.name,
salary = current.salary,

new = new.salary, user = user())

Figure 2.2: Auditing rule

processing. This rule system is called when individual records are accessed. For
example, in the rule in Figure 2.1(a) the record-level rule system places a marker
(which contains this rule’s identifier) on the salary attribute of Fred’s instance. If
the executor accesses a marked attribute then it will call the rule system to handle
rule processing. After this is complete the executor will continue processing the

original transaction.

The second approach is through a query rewrite module. This converts a user
command to a more optimal alternate form. Consider the rule in Figure 2.2 and
the incoming user command of Figure 2.3. This command will clearly cause the
rule to fire once per employee over 50 years of age (a large overhead). The query
rewrite rules system will rewrite the user command to the more efficient commands

of Figure 2.4.

The record-level rule system performs well when there are a large number of
small-scope rules whereas the query rewrite rules system works better if there are
a small number of large-scope rules. It turns out that the two rules systems are
complementary and Stonebraker and Kemnitz [38] explore a rule chooser which

suggests the best implementation.
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replace EMP
(salary = 1.1 * EMP.salary)
where EMP.age > 50

Figure 2.3: Incoming user command

append to AUDIT
(name = EMP.name, salary = EMP.salary,
new = 1.1 * EMP.salary, user = user())

where EMP.age > 50
replace EMP

(salary = 1.1 * EMP.salary)
where EMP.age > 50

Figure 2.4: Rewritten user command
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In Postgres there are four different types of rule activation policies:

immediate - same transaction
immediate - different transaction
deferred - same transaction

deferred - different transaction

The rule to set Joe’s salary to Fred’s (Figure 2.1) must run immediately in the
same transaction. If the original transaction is aborted then the rule is no longer
applicable and does not need to update Joe’s salary. However, the rule n Figure 2.2
must be activated immediately in a different transaction. If the original aborts we

still wish for the auditing to occur.

The rule of Figure 2.1(a) sets Joe’s salary to Fred’s whenever Fred’s is updated.
The activation policy for this rule is immediate - same transaction. 1f the transac-
tion which updates Fred’s salary aborts then we want the trigger to abort (as Joe’s
salary no longer needs updating). The trigger action is part of the triggering trans-
action so we get the desired results. However, the rule of Figure 2.2 Is activated
immediately in a different transaction. If the triggering transaction aborts we still

wish the auditing to occur.

Postgres rules have a large range of applicability. For example, take the following

Postgres view:

define view TOY_EMP(EMP.all)
where EMP.dept = “toy”

This view is compiled into the following Postgres rule:

on retrieve to TOY-EMP
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then do instead retrieve (EMP.all)
where EMP.dept = “toy”

A query retrieving tuples from the TOY-EMP relation will trigger this rule and the

correct tuples from EMP will be retrieved instead.

Rules in Postgres can be grouped into rulesets. A ruleset is hierarchically struc-

tured and is defined as follows:

Define Ruleset ruleset_name
[inherits ruleset {,ruleset}]
[init_script proc-name]

[cleanup_script proc-name]

The inherits clause allows common collections of rules to be shared among multiple
rulesets. The init_script and cleanup_script procedures each contain a script of
commands to be run when the ruleset is activated or deactivated, respectively. A

ruleset can be removed with the following command:
Remove Ruleset ruleset_name
Rulesets can be activated using the following command:

Activate ruleset_name
[i_script]
[late_signal]

[auto_deactivate]

When set iscript flag indicates that the initialization script is to be run. The

late_signal flag indicates that the user wishes to be notified after no new inferences
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have been made as a result of the ruleset activation. The auto_deactivate flag
indicates that the ruleset is to be deactivated as soon as no new inferences have

been made as a result of activation.

Rulesets can be deactivated using the command:

Deactivate ruleset name

[d_script]

When set the d_script flag indicates that the deactivation script should be run.

Iris

Iris is an object-oriented DBMS developed at Hewlett-Packard Laboratories
[29]. Iris can automatically notify application programs when stored or derived
data changes. Iris uses database monitors to observe changes in the contents of
database objects (e.g., the current price of some commodity or the location of some
ship). Monitors can also observe changes to derived data (e.g., the highest paid

employee in a department).

Application programs house tracking procedures callable by a database monitor
if the value of some monitored data has changed. The DBMS does not transmit
monitored data to tracking procedures but merely invokes them. The tracking
procedures then retrieve any data required for its monitoring action and takes

appropriate action.

Tracking procedure invocations can either be local or external. An invocation
is local if the program containing the tracking procedure caused the change to the
database which in turn caused the tracking procedure to be invoked. The invocation

is external if it is the result of changes made by some other process. Local tracking
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procedures are invoked before updates have been committed and external tracking
procedures are invoked after the commit. Local tracking procedures are invoked
synchronously (the system waits for them to return) and external ones are invoked
asynchronously. There is also a no-interrupt option where the DBMS accumulates

notifications until the process is ready to handle them.

Monitors are expensive so restricting them appropriately may be required. They
can be time localized, where they are only active during a limited time period
or client localized by deactivating them when there is no client that needs them.
Monitors can be object localized, meaning that if the objects it involves are not
being accessed then the monitor may be deactivated. Finally, they can be property

localized so that just the attributes of interest are monitored.

The change detection algorithm used by monitors has four steps. Iirst, every
object that is updated by a transaction is tracked in a virtual table. Second, at mon-
itor checking time each object in the virtual table is checked for monitors defined on
them. Next, for each monitor detected object, a more expensive instance detection
is done to test if its value changed. Finally, if the value changed, notifications are

sent to the corresponding client processes.

Beeri and Milo Beeri et al. [7] describe a formal model for an active object-
oriented database. In this model, method execution causes the triggering of actions.

Methods serve as triggers when they are defined as:
type method = [M-name,M-code,{triggered-action}]

where M-name is the name of the method, M-code is the method code, and each
element in t¢riggered-action is the name of an action. Whenever the method is

invoked by an object, the actions in the set are triggered for future execution based
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on a programmer specified ezecution interval, within which the triggered actions

must be executed. This interval consists of a start event and an end event:
type execution-interval = [start-event,end-event]

The triggered action must be executed as early as start-event and no later than

end-event. Example events include:
e Method invocations,
e Points in time such as “12:00 am” or “Monday morning”,
e Conjunctions of events using and, and
e any time which is used to specify intervals with only one end point.

Suppose we have a client with multiple account objects, each with a method:
update_account. Further, assume we have a derived attribute called account_balance
which is the sum of all the accounts and each of the update_account methods
have a triggered action that updates account_balance when invoked. Let UP-
DATE-ACCOUNTS be a higher level method that invokes the update_account
of each object to update each account to a new value. If we now execute UP-
DATE_ACCOUNTS then the account_balance must be recomputed every time an
update_account method is called by UPDATE_ACCOUNTS, which introduces a very

large and unnecessary overhead.

This overhead is avoided if the execution interval for the triggered action is
defined to be [UPDATE_ACCOUNTS, get-balance], where get balance reads ac-
count_balance. This indicates that the account_balance should be updated some-
where between the end of update_accounts and the start of get_balance. The sched-

uler will perform the update after UPDATE_ACCOUNTS, thereby avoiding the

overhead.
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There are three options in the case of triggering method failure. The triggered
action could be rolled back (if it was executed) or deleted (if still pending), or the
triggered action can be executed as planned. This is done by using abort or ignore

statements in the triggered action description.

If a triggered action fails several options are possible. The action could be
retried or the triggering method could be aborted using ignore and abort(trans),
respectively. Other options include: try n times before aborting, and run t instead

where ¢ is a compensating transaction.

The triggered action syntax is:

type triggered-action-description =
[triggered-action,
act-to-perform(location,parameters),
execution-interval,
scheduling-information,
triggered-action-fail,

trigger-fail]

Triggered-action is the trigger identifier and act-to-perform(location,parameters)
is the action to perform at the object location. We have already discussed the
execution-interval. Scheduling-information contains information such as priorities.
The triggered-action-fail and trigger-fail fields indicate what to do if the triggered

action aborts or triggering method fails, respectively.

Actions that are triggered may not be executed immediately so relevant infor-
mation is stored about them until they are executed. The logical storage place for
this information is within the object itself (assuming at this point that the action

does not involve multiple objects).
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Both an object’s structure and methods are extended to handle triggered ac-
tions. Its structure is augmented with an active part that contain records of the

form:

type active-action =
[triggered-action(parameters),

triggering-method-identity(location),...]

Records of this type each represent one action waiting for execution. Whenever
a triggering method executes, its triggered action information is inserted into an

active_action record and added to the object’s active part.

An object’s methods are extended to include methods to insert, retrieve, exe-
cute, and delete actions. These methods share the properties of regular methods

in that they can be inherited and overridden.

To execute a method (m) a transaction called global_control_m consisting of five
subtransactions is created. The first subtransaction insert_start_m inserts records,
corresponding to those triggered actions of m that do not use any of the output
parameters of m, into the active part of the object. The second subtransaction,
ezecute_start_m, checks the contents of the active part of the object involved and
executes triggered actions that must be executed before the start of m. Some
triggered pending actions that do not need to be executed before the start of m
can also be executed. The third subtransaction invokes m. If m calls any other
methods, these are scheduled as subtransactions of m and are handled in the same
manner. Next, insert_end_m, inserts records into the active part of the object
corresponding to triggered actions that use output parameters of m. This is similar

to insert_start_m. The final subtransaction, execute_end_m, executes the actions
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that must be executed no later than the end of m, and possibly some others. It is

similar to ezecute_stari_m.

Quasi-copies A Quasi-copy is a cached value that can deviate from the original
in a controlled way. The management of quasi-copies is called quasi-caching. These
were proposed by Alonso et al. [3, 4] for use in large multidatabase systems to
reduce the high communication costs associated with continually accessing data on

remote database systems.

Quasi-caching differs from traditional caching because quasi-copies are not nec-
essarily updated as soon as the original is changed. Since MDBSs have a high
communication cost associated with updating these copies quasi-caching allows the
user of the data to specify exactly what data is to be cached (selection) and how
far it may deviate from the original (coherency). For example, the user may spec-
ify that a copy may not diverge by more than 10% from the original, or that the
information may be no more than 1 hour old. The home site of this data will then

send updates whenever these coherency conditions are violated.

Information flow within a large multidatabase system with quasi-copies is similar
to the flow in many “real organizations”. For example, the manager of a company
1s not told every time an employee is hired or leaves. The information is filtered so
that only periodic information is passed along such as personnel changes or when
an exceptional condition occurs (e.g., a mass hiring of employees). Hence, quasi-
caching provides a very natural way of dealing with distributed data in very large

multidatabase systems and also has a reasonable performance overhead [4].

Identity Connection
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The Identity connection has been introduced for modeling the update propaga-
tion of replicated data within autonomous and distributed database systems [32].
An identity connection links copies of data that may be located at different sites

and specifies the consistency requirements between them.

One of the copies specified in an identity connection is called the primary copy
and the others are called secondary copies. A temporal constraint is specified with
every identity connection to specify when an update on the primary copy must
propagate to the secondary copies. To maintain a connection, whenever an update
occurs to the primary copy a transaction containing the temporal constraint is sub-
mitted to the sites of the secondary copies. Transaction schedulers at secondary
sites determine whether they can satisfy the temporal constraint using a satisfia-
bility test. If a scheduler can satisfy the constraint, it will promise the primary site
to execute the transaction in accordance with the temporal constraint. The update
at the primary site can commit as soon as it receives promises from all secondary

sites.

Barker Barker [6] defines a formal multidatabase system model. A multidatabase
system consists of a number of autonomous local database systems each with their
own DBMS and a multidatabase management system layer (MDMS) logically above

them.

There are two types of transactions in this multidatabase system model: local
ones that are submitted to each DBMS and global ones that are submitted to the
MDMS. Local transactions execute on the database where they were submitted
while global transactions may access multiple databases. Global transactions are
managed by the MDMS which parses them into global subtransactions that are
submitted to the local DBMSs for execution. The DBMSs are responsible for
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executing local transactions and global subtransactions concurrently and for local
reliability. The synchronization of global transactions is the responsibility of the

MDMS.

Barker defines MDB-Serializability as a correctness criterion for multidatabase
systems and presents concurrency control algorithms for global transactions which
ensure this correctness. This thesis proposes to add active functionality to Barker’s
model and so it is not discussed to any great length here. Instead, relevant portions
of the model are presented throughout this thesis as we modify it to support active

behavior accordingly.
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A Formal Model of AMDS

This chapter presents the basic definitions necessary to describe an active mul-
tidatabase system. This chapter is presented as follows: Section 3.1 defines the
various transaction types that are part of this model. Section 3.2 presents the
definitions for global triggers in this environment. The definitions of various types
of histories are given in Section 3.3 and transaction families are defined in Sec-
tion 3.4. A new form of serializability called active multidatabase serializability is
described in Section 3.5. Active multidatabase serializability graphs are described
in Section 3.6 and used to reason about a histories correctness with the AMDB
serializability theorem presented in Section 3.7. Finally, Section 3.8 summarizes

the model by explicitly stating the assumptions imposed by this model.

3.1 Transaction Types

An active multidatabase system contains two types of transactions: local and global.

Local transactions are submitted to each DBMS and global ones are submitted to

42
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the AMDMS (Figure 1.2). Local transactions execute on a single database whereas

global transactions may access multiple databases.

An AMDS also contains global triggers which can be fired by executing global
transactions. Before formally defining global triggers we present definitions from

Barker [6] that will be used as the foundation for our model.

Definition 3.1.1 (Local Database): Each of the autonomous databases that make
up a multidatabase is called a local database (DBMS). The set of data items stored
at a DBMS, say 1, is denoted £DB®. The set of all data in the multidatabase can
be defined as MDB = |J; LDB". B

Definition 3.1.2 (Local transaction): A transaction T; submitted to DBMS j (de-
noted DBMS’) is a local transaction (denoted LTY) on DBMSI it OS; C LDB.
|

Definition 3.1.3 (Global transaction): A transaction is a global transaction (GTy)
iff:

1. =3LDB’ such that BS; C LDBI or

2. GT; is submitted to DBMS* but BS; C LDB" (k # r). [

Item (1) states that global transactions, submitted to the AMDMS, access data
items stored in more than one database. Item (2) represents the case where a user

working on one DBMS requires access to the data stored and managed by another.

Global transactions do not directly access databases. They are parsed into a
set of global subtransactions that are submitted to the local DBMSs. Thus, the

subtransactions work on behalf of the global transaction. Our definition of a global
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subtransaction has additional information supporting the detection of global trigger
events. Clobal subtransactions are defined in terms of the data items referenced
(i.e., their base-set), the global transaction creating them, and the global triggers

they could fire.

Definition 3.1.4 (Global subtransaction): A global subtransaction submitted to
DBM S’ for global transaction GT; (denoted G/ST!) is a transaction where:

1. Eff C ¥; and

2. BS{ C LDB?, where BS{ is the base-set of GSTij. &

3.2 Global Triggers

Global triggers are fired when global subtransactions cause events to occur. A
global trigger is executed similar to a global transaction however it has additional

information, called the triggers coupling mode, that describes how it is executed.

Definition 3.2.1 (Global trigger): A global trigger is an ordered triple GT' Ry =
(GT, E, M) where:

1. GT is the trigger action (which is in the form of a global transaction),
2. F is some database event, and

3. M is the triggers coupling mode. | |

Global transactions can cause the execution of global triggers so we introduce a

new operation: fire(GT;,,cause?). If one or more of the operations of a global
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transaction cause or may cause the event of some global trigger GTR; to occur,
then fire(GT;n, cause?)e0S;. The value of cause? is true if and only if the trigger
is causally dependent (see Section 3.2.2)

If a global subtransaction GST} causes a global trigger GT Ry, to fire (i.e. causes
the event of GT Ry to occur) then GST} executes its fire(GT}, cause?) operation.
This causes the submission of a global transaction GT; which will execute the action
of GT'Ry. Note that ¢t = k.n and n is the copy identifier. For example, the third
firing of GT' Ry means n = 3. Thus, all GTs executing on the AMDS are still
uniquely identifiable by their subscripts.

3.2.1 Trigger Events

Global trigger events can occur because of a read or write to some data item or a
complex function of these operations. The following definitions capture this intu-

ition:

Definition 3.2.2 (Simple Event): An event is simple if it is a read or write oper-

ation. B

Definition 3.2.3 (Complex Event): A complex event is composed of other events

(which may be simple or complex). These include:

Disj(Ey, E5): occurs when either event E; or event FE5 occurs.

Conj(Ey, E3): occurs when both events E; and F; have occurred, regardless of the

order of occurrence.

Seq(E1, Ey): occurs when both events F; and E5 have occurred but Ejs occurrence

precedes Ej.
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Clos(Ey, N ): occurs when the event Ey has occurred N times. |
Some examples of complex events include:

(a) Disj(r(z),w(z)): Occurs when the data item z is accessed.

(b) Conj(Disj(r(y),w(x)),w(z)): Occurs when either r(y) or w(z) have occurred and

w(z) has occurred.

(c) Seq(r(z),w(y)): Occurs when y is written and « has already been read by the

same global transaction.

(d) Conj(Conj(r(a),r(b)),Disj(r(c),r(d))): Occurs when a, b, and either of ¢ and d

have been read by some global transaction.

Complex events have a natural nested structure so they are described by a tree.
The leaf nodes of a complex event tree are always simple and are referred to as the
event’s simple events. Figure 3.1 shows the event trees for the example complex

events above.

3.2.2 Coupling Modes

The coupling mode M specifies how the triggered transaction is executed with
respect to the triggering transaction. It describes various dependencies between the
triggering transaction and triggered transaction. The modes we support include the
independent (Idep), causally dependent(Cdep), trigger dependent(Tdep), and fully
dependent(Fdep) modes:

e Idep (independent): The global trigger is executed and completes inde-
pendent of the triggering transaction so the trigger commits or aborts in-

dependent of the termination decision of the triggering transaction. Since
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Disj

/N

1(X) w(X)

(a)

Seq

/N

r(X) w(y)

(c)

Conj

/N

Disj w(z)
1(y) w(X)
.(b)

Conj

/N

/Con\ Disj
r(a) r(b)  r(c) r(d)
(d)

Figure 3.1: Sample Event trees
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these are independent transactions the serialization order of the transactions

is irrelevant.

o Cdep (causally dependent): The trigger makes its termination decision
independent of the triggering transaction however, the trigger is causally de-
pendent on the triggering transaction so the triggering transaction must not
“see” any of the triggers results. Therefore, the trigger must be serialized

after the triggering transaction in the resulting history.

e Tdep (trigger dependent): The trigger is commit dependent on the trigger-
ing transaction so the trigger must abort if the triggering transaction aborts.

The trigger is also causally dependent.

e Fdep (fully dependent): The trigger and triggering transaction are commit
dependent on each other. The trigger is causally dependent. A trigger of this

mode is considered a child of the triggering transaction (see Section 3.4).

An airline reservation system is used to illustrate these modes composed of
several airline DBMSs!'. Any one database stores information regarding flights,

passengers, security, etc.

e Idep: Our reservation system requires a global trigger to log writes to airplane
data items at local database DBMS®. Whenever a transaction writes to an
airplane data item at DBMS", a global trigger to update the security access
logs situated at local database DBM S’ must fire. The global trigger is not

commit dependent on the triggering transaction because we do not want the

1This is intended to illustrate the desired effects, the details of how each will be supported in

an AMDS is deferred to later sections.
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trigger to abort if the triggering transaction aborts. All accesses, committed

or not, must be logged for security purposes.

e Cdep: With the preceding trigger it was possible for the triggering transac-
tion to be serialized after the triggered transaction. This is effectively like the
security logging transaction executed before the transaction which made the
update. If this is of concern to the users of the database then the causally
dependent mode should be used. This will ensure that all results of the the
security appear to have occurred after the triggering transaction. The logging

transaction must commit even if the triggering transaction aborts.

e Tdep: Updates to the number of passengers on planes at any database fire a
global trigger. The trigger checks the amount that the number of passengers
changed. If the change is significant then the trigger will update a list of
aggregate values at DBMS*. If the deviation is insignificant then it will
simply abort. The triggering transaction may still commit. If the triggering
transaction decides to abort then the triggered action is no longer needed and

must abort.

e Fdep: The system must support the update of replicated data. DBMS® and
DBM S’ have decided to replicate important flight information from DB M S*
at DBM S?. Whenever, a global transaction updates the flight information,
a global trigger must fire to update the replicated information at DBMS. If
the original aborts then the trigger should abort as well because the replicated
data no longer needs to be updated. If the trigger aborts the original must

abort so we do not have inconsistent data.

Figure 3.2 summarizes the various coupling modes with respect to commit and

serializability restrictions.
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Mode Commit Serializability
Independent ) 0]

Causally Dependent | ¢ PANC.FP<C
Trigger Dependent | P, - C, PANC,FP=<C
Fully Dependent P, + C, where ze(a,c) | PPAC.F P <C

Figure 3.2: Summary of Coupling Mode Implications

3.3 Histories

Histories are used to define correct executions within database systems. Barker’s

history definitions are adapted [6].

Definition 3.3.1 (Local History): Given a DBM S* with a set of local transactions
LT* and a set of global subtransactions GST*, a local history (LH*) is a partial

order LH* = (X%, <% ) where:

1. 2F =, E;‘T where ¥ is the domain of transaction T;eLT*UGST" at DBM S*,

g
2. <k U; —<§ where <f is the ordering relation for transaction T; at DBM S*,
and

3. for any two conflicting operations p, geLH*, either p <5 q or ¢ <k . | |
g op q LH LH

This captures the ordering of transactions submitted to a particular database. Next

we project the orderings of the global subtransactions submitted.

Definition 3.83.2 (Global subtransaction history): The global subtransaction his-
tory of a DBMS, say k, is defined by the partial order GSH* = (S&gpy, <Esy)

where:
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1. Shep = U; Ef, where Ef is the domain of transaction T;¢GST* and
2. <EsyC<ty. &

A global history is the collection of all the global subtransaction histories of an

AMDS.

Definition 3.8.3 (Global History): A global history GH = (Ygy, <) is the

union of all global subtransaction histories:
L. Yo = Uk ElcC;SHa
2. <em2 Uy <&sp, and
3. for any two conflicting operations p, g¢GH, either p <gy qorq <gy p. [

The final history definition describes all transaction executions on the AMDS. A

global history is the combination of the local histories and the global history.

Definition 3.3.4 (MDB History): A multidatabase history (denoted MH) consists
of n local histories and a global history (GH) is a tuple M H =< LH, GH > where
LH={LH',LH? .. LH"}. |

The following example is used throughout the thesis to illustrate important

concepts. It extends the example presented in Barker [6].

Example 3.3.1 Two local databases constitute our example multidatabase sys-
tem whose contents are: LDB' = d,e, f,g and LDB? = s,t,u,v. Two global

transactions are posed to the multidatabase as follows:




ot
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GTy : mi(d);ri(e); firea(GTs, true); wi(s); wi(d); e;
GTy : ro(d); r2(u); w2(s); wa(d); c2;

These generate the following global subtransactions:

GST} :ri(d);ri(e); firei(GTs, true); wi(d); ey
GST? : w(s);

GSTy : ry(d);r3(d); c3;

GST3 : ry(u);wi(s); ¢

Next, we define one global trigger on the multidatabase:
GTR; : ([r(g);r(s);w(t);],r(e), T'dep)

The action of GT'Ry is [r(g); 7(s); w(t);] and is executed when the event r(e) occurs.
This triggers coupling mode is T'dep (trigger dependent). The firing of this trigger

generates the following global transaction:

GTy 7“1.1(9);7"1.1(5);101.1(t)§ C1.1,
The subtransactions for this global transaction are:

GST11.1 : 7":1%(9)5 01133
GSTY, : r3(s); w3(t); c3;

Further, we introduce local transactions into each DBMS as follows:

LT} : 71 (e); wi(e); wy(d); éf;

1
1
LT : 73 (u); 3 (u); &
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The 7(w) notation distinguishes local transaction operations from operations of

global subtransactions. This is for notational convenience only.

Assume that the following local histories are produced at each site:

LH : ri(d);ri(e); firel(GTha, true); wl(d);rl,(g); 7L (e); ro(d); wi(e); wi(d);
wy(d); i e3¢ 13 &

LH : r3 ()2, (s); w?  (2); wh(s); wd(s); 72 oe)s 3 ) s 3 15 5
The following global subtransaction histories can be projected:

GSH' :rl(d);r (e);firei(GTl.l,true);w%(d);r%_l(g);r%(d);w%(d);c%;cé;c%.l;

1 1
1 1
GSH? iri(u)iris(s);wi(£);wi(s); wh(s); el s el

The global history is the partial order which combines GST?! and G'ST? as GH —
{GSH' UGSH?} and the multidatabase history is MH =< {LH?, LH*},GH > .
|

3.4 Global Transaction Families

Recall, the full dependency coupling mode defines a close relationship between the
triggering and triggered transactions but independent transactions (either fired by
a trigger or submitted by a user) are themselves the top-level of their own tree.

This notation is formalized by:

Definition 3.4.1 (Top-Level GT): A Top-Level GT: is one which is submitted by
a user or has an independent, causally dependent, or trigger dependent coupling

mode. That is, the only GTs which are not top-level are ones with a full dependency
mode. |
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Definition 3.4.2 (Global transaction family): A global transaction family GTF; is
a set of global transactions containing:

1. GT;, a top-level global transaction, and

2. {GT; | GT; is a full global transaction fired by G7T; or fired by a descendent

We use an extended notation for global transactions and subtransactions to indicate
their transaction family. If GT; is a global transaction, GSTZ-j is a subtransaction
of GT;, and GT; belongs to GT Fy, then we may refer to GT; as GTyy and GST!
as GS'TI{,C). This extended notation explicitly states the GTF to which a particular
GT or GST belongs. This is illustrated by the following example.

Example 3.4.1 The following global transaction is submitted to the AMDMS:
GTy : ri(a); firei(GTs., true);wi(b); firei(GT1a, true);wi(a); ci;

The execution of GT} causes the execution of five global triggers:

GTRy : ([r(c); w(3); fire(GTyq, true);w(d);w(y); fire(GTan, false);],w(b), Fdep)
GT Ry : ([w(z); w(y); ], w(z), Tdep)

GTRs: ([w(n); ], w(d), F'dep)

GT Ry« ([r(m); w(m); ], w(y), Idep)

GT R : ([w(2); ), (@), Pde)

Global transactions GTi1, GTo1, GT51, G144, and G751 execute the action com-
ponents of GT' Ry, GT Ry, GTR3, GT' Ry, GT Rs respectively. GTj fires two full
dependency triggers GT' R; and GTRs. GTi, fires G131 (commit dependency),
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Figure 3.3: Depiction of Transaction Families for Example 3.4.1

GTs; (full dependency), and GTy4 (independent). GTy, GTi1, GTs1, and GTs,
are all members of GT'F; and GT,1 and GTy; form their own families. Figure 3.3
depicts the families. =

The computational model discussed thus far is depicted in Figure 3.4. This
figure extends the simple architecture of Figure 1.1 to include transactions and

trigger firings.

3.5 AMDB-Serializability

The multidatabase serializability correctness criterion is insufficient for the AMDB
environment because it does not support causality. For example, if one global

transaction causes another and the second is causally dependent on the first then
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Figure 3.4: Depiction of the Computational Model
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the first must not see the results of the second. Thus, the original transaction must

be serialized before the triggered transaction in the multidatabase history.

Furthermore, MDB-serializability does not capture global transaction family
orderings. Subtrees of transaction families must execute as isolated units. That
1s, it must appear as if all of the global transactions of a subtree have executed
without some other transaction inbetween. If a transaction triggers one or more
subtrees then the effects of the triggered subtrees must occur immediately after
the parent. This prevents another transaction from reading from the parent and
making decisions based on data that was to be “corrected” by a triggered subtree.
The full dependency coupling mode tightly integrates a subtree, and thus a, family,

together as an atomic, isolated unit.

The following definitions present a suitable correctness criterion.

Definition 3.5.1 (Causal dependency graph): Given an arbitrary active multi-
database history (MH), its causal dependency graph CDG(MH) = (T, ) is:

1. T" a set of labeled vertices representing global transactions.

2. 7 s a set of arcs connecting two vertices in I'. A y-arc is formed from GT; to

GT; if fire,(GTj,true)e M H. |
Consider the following example.

Example 3.5.1 Suppose we have an active multidatabase history M H. The GH
portion of M H is:

GH = {{T%(a);fire%(GTm,true);w}(b);fire%(GTl,l,true);r}_l(c);w%_l(d);

fire1 1(GTs, true);wi(a); ek ch s}
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U {wi (2); fired (GTaa, true);wi ((5); firel 1(GTya, false);rs (m);
w§.1 (n); wi&(m); C%.ﬁ C§.1§ 63.13 }

U {w1(2); w1 (2);w54(y); 55505
The CDG for M H is illustrated in Figure 3.5. Five firings exist in the history:

GTy fires G114
GT) fires GTs 4
G4 fires Gy
GTy 4 fires G145,
GTyq fires GTya

All but the last involve causal dependencies so there are four arcs in the CDG for
the history. GT}; is causally dependent on Gy, GTs, is dependent on GTy, G154
is dependent on G141, and GT3; is dependent on GTi ;. [ |

Note that causal dependencies are transitive. For instance, Example 3.5.1 GT5 is

causally dependent on G711 and GTj.
Definition 3.5.2 (AMDB-Serial): A multidatabase history is AMDB-Serial iff:

1. every LHeLH is (conflict) serializable,

2. given a GH = {GST},...,GST™}, if E!peGE/Tik,qeG’ST;c such that p <gm ¢,
then Vt,VreGST{,VseGST},r <gm s, and

3. if AGT; and GT;eM H and a path exists from GT; to GT; in CDG(MH), then
Vk,’VreGS’Tf,VseGSTf,r <GH $-
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Figure 3.5: CDG for Example 3.5.1

4. if 3GT; and GTjeM H, GT; a child of GT; and dp with t <gg p and p <gg s
for some teGT;, seGT; then peGTy, GTwe M H, a descendent of GT:. |

The first condition states that all local histories are conflict serializable. The second
condition states that if an operation of a global transaction precedes an operation of
another global transaction at the same site, then all operations of the first transac-
tion must precede all operations of the second transaction, at all sites. The first and
second conditions together ensure that the multidatabase history is MDB-Serial.
The third condition states that if one global transaction is causally dependent on
another global transaction, either directly or indirectly, then all operations of the
first must precede any operations of the second, at all sites. The fourth condition
states that if an operation exists between an operation of some parent and an op-

eration of a child then that operation must belong to a descendent of the parent.
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This ensures that global transaction family orderings are correct.

Definition 3.5.3 (Fquivalence of Histories (=)): Two histories are conflict equiv-
alent if they are defined over the same set of transactions and conflicting operations

of nonaborted transactions are ordered in the same way. [

Definition 3.5.4 (AMDB-Serializable (AMDBSR)): A MH is AMDB-serializable
iff it is equivalent to an AMDB-Serial history. |

3.6 Active Multidatabase Serializability Graphs

To reason about the AMDB-serializability of active multidatabase histories, we use
a variation of the multidatabase serializability graphs (MSGs) defined by Barker
[6]. MSGs alone are inadequate because they do not capture conditions 3 and 4 of

Definition 3.5.2 (recall Example 3.3.1).

Barker’s MSGs use A — arcs to represent the serialization order of transactions
executing at the local databases and 4 — arcs to represent orderings of global
transactions [6]. The MSG for this example is presented in Figure 3.6. Double
headed arrows are used to represent v — arcs and single headed arrows for A —arcs
Note that the graph is acyclic and by Theorem 4.1, page 41 in Barker [6] the
multidatabase history is MDB-serializable. However, examining the GH portion of

the multidatabase history tuple:

GH = {{r}(d);ri(e); firel(GTva, true);wi(d);ri(g);r5(d); wi(d); eis e c145 }
U {r2(u);r?(s); w?,(t); wi(s); wi(s); s cq5 ¢l 45}

we see that r2,(s) <gg w?(s) at DBMS'. Since firej(GTy1,true)e GH this
multidatabase history is not AMDB-serializable.
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/
()

Figure 3.6: MSG for Example 3.3.1
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We modify the serializability graphs presented in Barker to capture these vio-

lations.

Definition 3.6.1 (Active Multidatabase Serializability Graph): Given an arbitrary
active multidatabase history (MH), its active multidatabase serializability graph is
a digraph defined with the ordered five: AMSG(MH) = (I',A,~v,\, 7). Each

element of the ordered five is defined as follows:

1. T is a set of labeled vertices representing global transactions.
2. A is a set of labeled vertices representing local transactions.

3. ~is a set of arcs, each connecting two verticesin I'. A v —arc is formed when
two global transactions (GT;, GT;eGT) conflict, if an operation of any GSTF
precedes a conflicting operation of GSTJ-IC in MG, a v — arc is formed form the
corresponding nodes in I' from GT; to GTj.

4. X is a set of arcs, each connecting two vertices in I'J A when two conflicting

1

transactions TF and T* submitted to DBMS* so that TF precedes T'%:
7 i P J

(a) if T}, TFeLT" a X — arc is formed from T} to T
(b) if TF, TjkegSTk a A — arc is formed between GT; and GT}, respectively,
le. GT; — GT;.
(c) if TFeGST", TFe LT* (or vice versa) a A — arc is formed from GT; to
LT (or reverse: LT} — GT).
5. 7 is a set of arcs each connecting two vertices in I'. A 7 — arc is formed from
GT; to GT; whenever fire;(GTj,true)e MH.
|
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Figure 3.7: AMSG for Example 3.6.1

The first four elements of Definition3.6.1 are Barker’s multidatabase serializability
graph [6]. The fifth element is a set of arcs representing causality. For example, if
a global transaction causes another global transaction and there is a causal depen-
dency between them, then a m — arc is formed from the original to the triggered.

The significance of these arcs is described later.

Example 3.6.1 Recall Example 3.3.1. A history was described that was MDB-
serializable but not AMDBSR. The AMSG for this example is illustrated in Fig-
ure 3.7. The graph is the same as the one in Figure 3.6 except it captures causal

dependencies. There is a 7 — arc from GT to GTj ;. |
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3.7 Active Multidatabase Serializability Theo-

rerm

AMSGs can be used to demonstrate when an arbitrary active multidatabase his-
tory is AMDB-serializable. Before presenting the serializability theorem we present

definitions which will aid in the understanding of the theorem and its proof.

Definition 3.7.1 (7 —path): An AMSG(MH) contains a @ —path from GT; to G}

if there exists a path consisting solely of 7 arcs from GT; to GT; in AMSG(MH).
|

Definition 3.7.2 (\,y — path): An AMSG(MH) contains a A,y — path from GT;
to GT; if only A and « arcs occur from GT; to GT; in AMSG(MH). |

Definition 3.7.3 (Causal Discrepancy): An AMSG contains a causal discrepancy
if 3ar — path from GT; to GT; and 3 a A,y — path from GTj to GT;. B

In other words, a causal discrepancy exists if there exists a GT; which is causally
dependent on GT; and there is a path consisting of A and v arcs from GT; — GT;
in the AMSQG, then, assuming that the multidatabase history is MDBSR, GT will

be ordered before GT;. This is a violation of the causal dependency.

Definition 3.7.4 (Family Order Discrepancy): An AMSG(MH) contains a family
order discrepancy if there exists a A,y — path from GT; to a child GT; and there

exists a node on this path (other than GT;) which is not a descendent of GT;.
8
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Figure 3.8: AMSG for Example 3.7.1

Example 3.7.1 Consider the AMSG of Figure 3.8. The graph shows that GT} <
GT, < GTi1 which violates the family ordering described in item 4 of Defini-

tion 3.5.2. The path from GT; to its child GTy; contains GT, which is not a
descendent of GTy.

We are now in a position to present the theorem.
Theorem 3.7.1 (AMDB Serializability Theorem) A multidatabase history (MH)
is AMDB-serializable if and only if AMSG(MH) is v — acyclic, A — acyclic, does not

contain any causal discrepancies, and does not contain any family order discrepan-
cies.

Proof:

(if): Given a v — acyclic, A — acyclic, causal discrepancy-free, and family order
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discrepancy-free AMSG for a multidatabase history MH; MH is AMDB-serializable.
Without loss of generality, assume that M H =< LH,GH > refers to the commit-
ted projection of a multidatabase history.? Suppose the global history GH is defined
over the set of transactions G7 = {GT1, ..., GT,.}. The AMSG for MH is v —acyclic
and A — acyclic so by Theorem 4.1 of Barker [6], MH is MDBSR.

Assume MH is not AMDBSR. This implies MH is equivalent to a history which
satisfies conditions 1 and 2 of Definition 3.5.2 (because MH is MDBSR) but not
conditions 3 or 4. Suppose condition 3 is violated. Then, the following are true:
there exist GT;, GT; where GT; is causally dependent on GT;, GT; is serialized
before GT; in the multidatabase history and, GT; and GT; conflict, either directly
or indirectly. Since GT; and GTj conflict, there is a A,y — path from GT; to GT;
in AMSG(MH). However, AMSG(MH) also contains a m — path from GT; to GTj;.
This implies that AMSG(MH) contains a causal discrepancy, which we know to be
false. Hence, point 3 cannot be violated.

Suppose point 4 is violated. This means there exist a parent GT;, a child GTj,
and some other GT, a non-descendent of GT; where GT; is serialized before G,
and GT}, is serialized before GT;. This implies that GT; and GT} conflict and that
GT), and GT; conflict. Since they conflict there is a A,y — path from GT; to GTj
and from GT}, to GT;. Hence, there is a A,y — path from GT; to GT; and GTj, lies
on this path. This implies that AMSG(MH) contains a family order discrepancy
which is a contradiction. Thus, item 4 is not violated either. Hence, our original
assumption that MH is not AMDBSR was false, as required.

(only if): Given that the history is AMDB-serializable we must show that the

AMSG produced must be v — acyclic, A — acyclic, causal discrepancy free, and

2C(MH) is the committed history of a MDB schedule which includes the committed transac-
tions in each local history and the global history. C(MH) includes C(LH'), C(LH?),...,C(LH™)
and C(GH) which are those GTs in GH that are committed.[6]
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family order discrepancy free.

Since MH is AMDBSR it is also MDBSR. Hence, by Theorem 4.1 in Barker 6],
AMSG(MH) is v — acyclic and A — acyclic. Now, we need to show that AMSG(MH)
contains no discrepancies.

Assume AMSG(MH) contains a causal discrepancy. Then there exists GT} and GT;
nodes in AMSG(MH) with a = — path from GT; to GT; and a X,y — path from GT;
to GT;. This implies that G7T} is causally dependent on GT;, and GT; was serialized
before GT;. This means that MH is not AMDBSR, which violates our assumption.
Hence, our assumption that AMSG(MH) contains a causal discrepancy is incor-
rect.

Assume AMSG(MH) contains a family order discrepancy. Then there exists a
A,y — path from GT; to GT; (a child of GT;) and at least one node GT} on this
path is a non-descendent of GT;. So, GT; was serialized before a non-descendent
GT) which was serialized before GT;, a child of GT;. This implies MH is not
AMDBSR, which it is. Hence, our assumption that AMSG(MH) contains a family
order discrepancy is incorrect. Therefore, AMSG(MH) is v — acyclic, A — acyclic,

and causal discrepancy free. H

3.8 Summary of Assumptions

This model makes several assumptions either implicitly or explicitly. This chapter

is concluded by collecting these assumptions.

1. Local Autonomy: Each of the local DBMSs are assumed to be totally au-
tonomous. This means that no modifications to any DBMSs is permitted.

This also means that the DBMSs cannot directly communicate with each
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other. An individual DBMS is capable of executing a transaction submitted
to it from start to finish and will ensure that in the event of a failure that the

DBMS is able to fully recover without any user input.

2. Subtransactions: Compilation techniques exist to decompose a global transac-
tion submitted to an AMDMS into global subtransactions. Further, a global

transaction may submit at most one global subtransaction to any one DBMS.

3. Reliability: We view the issues of reliability and recovery as orthogonal so
failures are not considered. Reliability and recovery techniques described in
Barker [6] should be extended to ensure successful execution in this environ-

ment but these issues are left as future research.

4. Trigger termination: This model allows global trigger firings to be nested
to any depth so trigger executions can fire other triggers. This can lead
to infinite nestings of trigger executions. For example, a trigger GT R; fires
another trigger GTR;, which in turn causes GTR; to fire, which triggers
GTR;, and so on. This work assumes this situation will not occur. Aiken
et al. [2] define mechanisms for detecting when a trigger set may lead to
nonterminating executions and for detecting the triggers at fault. Other ideas

may be found in Voort and Siebes [40].



Chapter 4

Global Trigger Manager

The global trigger manager is responsible for trigger event detection and for en-
suring that global triggers are setup and submitted properly. However, detecting
trigger events in this environment poses many problems. Existing models use event
detectors [26, 14, 15, 24] to detect events as transactions are executing on the data-
base. However, in a multidatabase environment adding event detectors to individual
DBMSs would require major modifications resulting in a serious violation of local

autonomy.

The GTRM deals with this problem by modifying submitted GSTs to perform
their own event detection. If a global trigger event occurs as a result of the execution
of an operation of some GST then the GST must signal to the GTRM that the event
has occurred. It is then the GTRMs responsibility to execute the global trigger(s)

fired as a result of the events occurrence.

Figure 4.1 illustrates the major components used by the GTRM in the event
detection and trigger execution processes. These include the Global Trigger Dic-

tionary (GTRD), Event Log (EL), and Dependency Graph (DG).

69
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To/From Global Transaction Manager

Event Log
Global Global
Trigger Trigger
Dictionary Manager
D0
To/From Global Scheduler " Dependency Graph

Figure 4.1: Hlustration of the GTRM



CHAPTER 4. GLOBAL TRIGGER MANAGER 71

Normally, the GTRM will setup a global transaction to execute the action of a
trigger when the trigger event has been detected. The global transaction will then
be submitted to the GS for scheduling. The GS will schedule the transaction as
usual but will bear in mind any causal dependencies that may exist. The GRM will
ensure that commit dependencies are ensured. However, there is one special case,
the full dependency mode, when the GTRM will not be able to setup and submit

global transactions. The next section addresses this situation.

4.1 Full Dependency Triggers

The full commit dependency coupling mode poses a problem in the multidatabase
environment. Deadlock may arise if subtransactions of a triggering transaction and
the triggered transaction execute concurrently at the same DBMS. We illustrate

this problem with the following example.

Example 4.1.1 Our example uses a multidatabase consisting of three local data-
bases. A global transaction GT is submitted to the AMDMS and is parsed into
two subtransactions, G.STY and GSTE, which are submitted to the local databases.
Suppose that GIST} fires a global trigger GT R, which has a fully dependent cou-
pling mode. The AMDMS creates GT'; and its two subtransactions, GSTE, and
GSTY,, to execute the trigger action. Suppose that the global scheduler submits
these GSTs to the local databases as well. GST?, acquires a write lock on data
item a at DBMS?. GST? attempts to get a read lock on @ but is suspended by the
local scheduler and placed in the wait queue for data item a. G'ST2, completes its
operations and sends a precommit to the recovery manager. GST?, also completes
its operations and sends a precommit to the GRM. GTy1’s GSTs are all in a pre-

commit state and is fully dependent so GT; will be committed if GTy commits.
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However, GST? is waiting for GSTE, to give up a write lock, but it cannot until

GTy commits. Hence, we have “self imposed” deadlock. B

Deadlock can also arise even if the two GT’s access independent sets of data.
GST}, may have a lock on a data item z and some local transaction LT? may enter
the wait queue for the lock. Now, G'ST} enters the wait queue for a lock on y which
LT? holds. GST?, completes and precommits. LT is still waiting for GSTY; to
give up a lock and GSTl2 is waiting on LTf. However, G111 is waiting for GT} to

commit. Again, we have deadlock.

One solution is to change the way the Global Scheduler and/or Global Recovery
Managers work. We take the approach of modifying the GS and GRM as little as
possible because proven algorithms exist for them that can extended to support

active behavior [6].

An alternative solution is to embed the GSTs of full dependency GTs at the end
of the GSTs of the triggering transaction. When the triggering transaction is com-
plete the operations of the triggered GST may begin execution. If the operations
of one GST dictate an abort then all of the GSTs are aborted. This is acceptable
because the two transactions are commit dependent on each other. If the triggered
transaction fires another full dependency trigger then this process recursively re-
peats itself. Hence, it is possible to get a GST that contains the operations of
several subtransactions. This does, however, impose a serialization order for full
dependency transactions. The embedding process is described in more detail when

the algorithms are presented.
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4.1.1 Embedding Issues

Embedding GSTs raises some interesting issues such as if a trigger is to execute
zero times or more than once. The easier case is when a trigger is to fire zero times.
If GST! is embedded in some other GST,f and GT;’s event does not occur then the
G'ST! portion of GST} must not execute. If GT; fires two or more times then GST?
should execute the that number of times. These issues require that we embed the
execution part of GSTs in a loop. At the beginning of each loop the GST will query
the GTRM to determine the number of times to execute. The GTRM will know
this because the triggering transaction had sent signals to it each time it causes a

triggering event.

The next issue is when the loop of an embedded GST should terminate. The loop
should complete when it is known that the triggering event of the embedded GST
cannot occur again (i.e. the triggering transaction has completed). The GTRM
knows that a triggering event will never occur again if enough of the triggering GT's
subtransactions complete so that it is not possible for the event to by caused by the
triggering GT. This requires that any subtransactions that cause simple events of
GTRs must send a message to the GTRM notifying it that the triggering GST has
completed its execution. At this point the GTRM examines each event that the
GT may possibly cause and eliminates triggers that will never fire again. We call
the message which notifies the GTRM of the GSTs completion a termination. Note
that a GSTs abort o‘r commit message is not sufficient for this purpose because we
want the GTRM to know when a GST has completed its operations and if another
GST is embedded in it then the GTRM would not be notified until the embedded
GST completes.

Termination of GSTs is more complicated than it first seems. Consider the
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following example.

Example 4.1.2 Suppose the execution of GST} could cause event e; to occur
which triggers GST},. Further, suppose that the execution of G'ST}; could cause
event e, to occur which fires GSTS,. Both triggers are fully dependent so GT'Fy
contains all three transactions. All three access the same DBMS so they are em-
bedded into the same GST. Now suppose that GST} executes and does not cause
e;. Tt sends its termination to the GTRM which records it. GST}, begins its loop
and queries the GTRM for the number of times to execute. The GTRM knows
that G.ST}, is not to execute so replies with a message that the event occurred zero
times and will never occur again. GSTY, is bypassed and GST}, begins its loop. It
queries the GTRM. The GTRM knows that e; has not occurred yet and also knows
that the GT which causes it will never occur again. The GTRM informs GSTy, to

execute zero times and complete. [

The preceding example implies that the GTRM must check additional events when
a GST terminates. That is, when GST}! completes and sends its termination, the
GTRM must mark the event which causes GST}; (e1), as final. Since e; never
occurred the GTRM must mark all of the events caused by dependents of e¢; as
final and set the number of occurrences to zero. GSTY}; is execution dependent on
e; and GST}, causes ey. Event e; must be marked as final. This is a recursive
process until events are reached that have no dependents. When G'ST;; queries in

Example 4.1.2 the GTRM will know that it is to execute zero times.

Embedded GSTs which execute two or more times in a loop require extended
data structures to record events caused by them. For example, suppose G.STY
could cause the event conj(ei,es) to occur. The first loop causes e, to occur and

the second loop causes e;. Semantically, conj(eq, e2) has not occurred as the simple
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events were caused by two logically separate GTs. Therefore, the GTRM must
keep track of the events caused by different executions of a GST for trigger firing

purposes.

4.2 Generic GST

The algorithms presented in this thesis assume that global subtransactions have
a certain structure. Figure 4.2 illustrates the basic features of a GST submitted
to a local database. The GST begins with a database login which logs onto the
local database where the GST is submitted. Next, the initialization section sets
up variables used by the transaction. The transaction code section performs the
actual computations and database accesses. After the transaction code a precommit
section sends a ready message to the AMDMS. The GST is then blocked until the
AMDMS responds Once the response is received it commits or aborts according
to the message. Finally, the database logout completes the GST. This approach is

consistent with Barker [6].

4.3 GST Submission

Global transactions are parsed into their respected subtransactions by the global
transaction manager. The set of GSTs are submitted as a group down the AMDS
architecture to the GTRM (see Figure 1.2). This section describes the activities of
the GTRM before the GSTs are passed to the global scheduler.

Global transactions are received and analyzed to determine if they could cause

the event of one or more global triggers to occur. The GSTs of the submitted GT
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Begin Transaction GST

database login

initialization

transaction code

send ready accept q-cond

if q_cond == abort or send failed then
abort

else
commit

database logout

FEnd Transaction GST

Figure 4.2: Generic Global Subtransaction
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are then modified so they can send a message to the GTRM whenever they cause
a simple event of a potential GTR. The GTRM will record event occurrences and
control the execution of triggered GTs. If a potential GTR is fully dependent then
a GT is created immediately for the GTR and added to the global transaction
family of the submitted GT. This may involve embedding one or more GSTs (as

discussed earlier). The intuitive initial GT submission algorithm follows.
Global Trigger Manager (Initial GT; Submission)

1. Determine the global triggers that are potentially firable by GT:.

2. Modify each GST of GT; to signal the GTRM whenever the GST causes a
simple event of a potential GTR.

3. For each potential GT Ry:

(a) If GTRy is not fully dependent then record GT' R;, and its event in the

event log.
(b) If GT R, is fully dependent then

1. Modify each GSTij that causes one or more simple events of GT R,
to send a termination message when the GST has completed its
operations.

i. Create a global transaction GT}, to execute GT R.

—

1. Record GT}, and its event in the event log.

—

1
iv. For each GST}eGT), : if GT)’s family contains a G'ST] then embed
GSTY into GSTY; otherwise GST] will be submitted with the GSTs
of G'T;.

v. Recursively call this algorithm with GT,.
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The following is a list of functions/data structures necessary for the description

of the algorithms:

Dependency Graph : The dependency graph (DG) contains a node for each
GT. A commit-arc from GT; to GTj is constructed if GT; is commit depen-
dent on GTj. A cause-arc from GT; to GT; is constructed if GT; is causally

dependent on GTj.

pending GSTs (GT;): This is a set of triggered GSTs that are potentially firable
by GT;. It is global in scope.

Add_Pending GSTs (set_of_GSTs): Adds set_of GSTs to the pending GSTs list.
This procedure modifies each GST so that it executes within a query loop (see

the Embed_GST procedure described below).

event log : The event log (EL) is a stable log with six fields: event, eventiree,
occurrences, final, blocked, and dependents. Occurrences records the number
of times event has occurred, which is initially 0. FEventtree is an ordered set
of event trees that record simple events (of event) which have occurred but
have not yet caused event to occur. It initially contains only one eventtree
but others may be added if this event is caused by a full dependency GT.
Final is true if event will not occur again because transaction that causes one
or more of the simple events has completed. The blocked field is a set of GST's
blocked on event. These GSTs may be started when occurrences is updated.
Dependents is a set of global transaction or global trigger identifiers that are

execution dependent on event so when event occurs each dependent is fired.

EL_Add (event.id): Adds a row to the event log. Ewvent is set to event_id, eventiree

is initialized to NULL, occurred is set to 0, final is initialized to false, blocked
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1s initialized to the empty queue, and dependents is initialized to the empty

set. Only adds the row if event.id does not already occur in EL.

EL_Add_Dependent (id,event_id): Adds id to the dependents of the EL row with

event = eventid.

TFT : This is transaction family tree that G7; belongs to. It records the full
dependencies between a GT and zero or more triggered GTs. It has a global

scope.
TFT Initialize (GT;): Initializes the TFT to node GT;.

TET_DBMSs (): Returns a set of DBMS identifiers that are submitted to by
GTs participating in the TFT.

TFT_GST (r): Performs an ordered traversal of the TFT searching for the first
GT; that submits a GST to DBMS”. Returns the GST.

TFT_Add (GTy,GT;): Creates a node GT; and adds it to the TFT as the right-
most child of node GT:.

Full_Dependency (GT Ry): Returns true if GT Ry has a full dependency coupling

mode. Otherwise, returns false.

Generate Potential GTRs (set_of GSTs): Generates and returns a set of GTRs

which could directly fire as a result of the execution of set_of_GSTs.
GSTS (GTy): Returns the set of GT)’s GSTs.
Event (GTRy): Returns the event of GT Ry.

Insert_Transaction (GSTij Jine lineof_code): Inserts line_of_code after position

line in the actual GST? code.
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Transaction_Code (GST?): The transaction code of GST?.
Initialization_Section (G.ST?): The initialization section of GSTY.

Insert_Terminator (G:STY): Inserts a piece of code which we will call a termina-
tor into GST;' to send a termination message to the GTRM when G'ST! has

completed its execution.
Simple Events (GT Ry): Returns the set of simple events for the event of GT Ry.

Create_Global _Transaction (GT Ry): Creates a global transaction for the ac-
tion of GT Ry. The dependency graph is updated with any commit and causal
dependencies between the newly created transaction and its triggering trans-

action. Returns the new GT.

Figures 4.3, 4.4, 4.5, and 4.6 present the algorithms. Global transactions sub-
mitted to the AMDMS are parsed into their respective subtransactions by the global
transaction manager and are passed down to the global trigger manager. Figure 4.3
presents the submission algorithm which accepts the GSTs and performs the nec-
essary modifications for event detection and trigger execution. Line (1) sets the
transaction family tree for GT; to a graph containing only GT; which is the global
transaction of the GSTs submitted. Line (2) initializes pending_GSTs to the empty
set. Line (3) calls a routine to modify the GSTs to detect simple events of global
triggers which may fire as a result of GT}’s execution (see Figure 4.4). Finally, line
(4) submits the GSTs of GT;, and GSTs of full GTRs which may be fired by GT,
to the global scheduler.

Figure 4.4 presents the recursive GST modification procedure. Line (1) gener-
ates the set of global triggers that could potential GTRsly fire as a result of GT}’s

execution. Line (2) creates the monitor_set which is the union of the sets of simple
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Algorithm 4.1 (Global Trigger Manager - Initial Submit)

begin
input G7T; : global transaction identifier;
set_of _GSTs : set of GST;

TET Initialize( GT;);

pending GSTs «+ ¢;

GST _Trigger_Modification(set_of_GSTs);
Submit_GS(Set_of_GSTs | pending_GSTs);

end;

Figure 4.3: Global Trigger Manager Submission
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events for each GTR that is potential GTRsly firable. Lines (3-4) add each trig-
ger’s event to the event log, concatenated with GT;’s identifier. The concatenation
will distinguish this event from the same event caused by some other global trans-
action. Lines (5-6) modify each GST of GT; so that each will inform the GTRM
whenever they cause an event of monitorset to occur. Lines (7-19) examine each
potential GTRs GTR. If GT'R; does not have a full dependency then lines (8-9)
add GTR;’s identifier to the dependents field of the triggering event in the event
log. If GTR; has a full dependency then lines (10-11) examine each GST of GT;
and ensure there is a terminator at the end of each GST that causes one or more
simple events of GT Ry,. Line (12) creates a new global transaction (GT}) for the
trigger. Line (13) adds GT}, to the dependents field of the event log row with event
= GT; : Event(GTRy,). Bach GST} of GT} is examined lines (14-17). Line (15)
determines if there is a GT in the transaction family tree with a GST that is to
be submitted to the same site as GST}. If there is then line (16) embeds GST}
into the GST. If there is not, then line (17) adds GST} to pending-GSTs. Line
(18) adds GTy, to the TFT as a child of GT;. Line (19) recursively calls this routine
using the GSTs of GT},

The algorithm presented in Figure 4.4 uses two important subroutines. Fig-
ure 4.5 modifies a GST to signal the GTRM whenever a monitored simple event
occurs. Line (1) loops through each line in the database operations section of GST!.
Line (2) loops through each simple event caused by the current line. Line (3) checks
if the simple event is to be monitored and, if so, a line of code is inserted in GSTZ-j
after the line which causes the event (lines (4-6)). The inserted line will signal the
GTRM of the event’s occurrence. If the triggered GST is of full dependency then

the signal will include the execution number.

Figure 4.6 presents the subroutine to embed one GST into another. Line (1)
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Procedure GST _Trigger_Modification;
begin
input set_of GSTs : set of GST;
var potential GTRs : set of GTR;
var monitorset : set of simple events;
potential GTRs « Generate_Potential GTRs(set_of GSTs);
monitor.set « |, Simple Events(GT Ry.), GT Ry.¢ potential_ GTRs;
for each GT R potential_.GTRs do
EL_Add(GT;:Event(GT Ry));
for each G'STYe Set_of GSTs do
Monitor_-GST(GST? ,Monitor_set);
for each GT Rye potential GTRs do begin
if not Full Dependency(GTRy) then
EL_-Add Dependent(GT Ry,GT;:Event(GT Ry));
else begin
for each GSTe set_of_GSTs do
Terminator GST(GST! ,Simple_events(GT Ry));
GT), « Create_Global_Transaction(GT Ry);
EL_Add_Dependent(GT5,GT;:Event(GT Ry));
for each GST]e¢GT, do
if DBMS” ¢ TFT_DBMSs() then
Embed GST(GST; , TFT_GST(r));
else
Add Pending GSTs(GSTY);
TFT_Add(GT,,GT;);
GST Trigger Modification(GSTS(GT}));
end; (* else *)
end; (* for *)

end;
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Procedure Monitor GST(GST?, set_of_events);
begin

var

line : line of transaction code;

for each line in Transaction_Code(GSTY) do
for each simple event e caused by line do
if ee set_of_events then
if not Full(G'ST/) then
Insert_Transaction(GSTZ-j,line,“Signal_GTRM(GSTij e, 1))
else
Insert_Transaction(GST! line, “Signal GTRM(GSTY : e,loop);”);

end;

Figure 4.5: GST monitor procedure
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finds the line used to precommit in the GST which will have another GST embed-
ded. Line (2) embeds the relevant GST code before the original GST’s precommit.

The next example provides a detailed trace of the submission algorithm’s exe-

cution.

Example 4.3.1 Our example AMDS consists of five local databases: £DB! =
{d,e}, LDB* = {a,y}, LDB® = {n,m}, LDB* = {s,t}, and LDB® = {p,q}. The
global trigger dictionary contains three GTRs:

GT Ry : ({r(d); w(d); w(z);w(y); w(m);c; },r(e), Fdep)
GTR, <{w(d); T(p), w(Q)’ G }? w( )7 Cdep)
GT Ry : ({r(y); w(z); wn); w(p)i ¢ }, conj(w(z), w(d)), Fdep)

A single global transaction is submitted to the AMDMS:
GTy :ri(e); wis); w1 (y); wi(d); e
GTy’s GSTs are received by Algorithm 4.1:

GSTY : ri(e); wh(d); )
GSTY : wi(y); of;
GSTY - wi(s); wi(t); ek

The GTRM’s algorithms are illustrated by the following execution sequence:

1. The TFT is initialized to node GT; and pending_GSTs is initialized to the
empty set (lines (1-2)). The routine to perform trigger modifications is called

for the GSTs of GTy (line (3)).
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Procedure Embed GST(GSTY, GST?, event);

begin
var

line : line of transaction code;

line «— Precommit line(GSTY); (1)
Insert_Transaction(G.STY line-1, (2)
B
”+Initialization_Section(GST] )+
“int count_loop, loop, final = 0;
do
count_loop, final = Query GTRM(GST] loop)

while loop < count_loop do

{
?+Transaction_Code(GSTY)

+ “loop+-+

}
while !final

end;

Figure 4.6: GST embedding routine
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Begin Transaction GST
database login
initialization
transaction code
{
// begin embedded GSTY
initialization
int count_loop, loop, final = 0
do
count loop, final = Query_ GTRM(GSTY,loop)
while loop < count_loop do
{
transaction code
loop++
}
while !final
// end embedded GST?
}
send ready accept q_cond
if g_cond == abort or send failed then
abort
else
commit
database logout
End Transaction GST

Figure 4.7: Embedded GST
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Procedure Terminator_GST(GSTij , set_of_events);

begin
var

line : line of transaction code;

if GST? does not have a terminator then
for each line in Transaction Code(GSTY) do
if line causes an event of set_of_events then
begin
Insert_Terminator(GST?);
return;
end;

end;

Figure 4.8: Terminator insertion routine
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The potential GTRs set of triggers firable by GT} is generated in the trigger
modifications procedure. The GTR events includer(e), w(s), and conj(w(z), w(d)).
The simple events are r(e), w(s), w(z), and w(d). GT, may cause all but
w(x) to occur. Hence, the event conj(w(z),w(d)) will not occur as a result
of G'T}s execution and GT Rz will not fire. However, GTR; and GTR, may

fire. Hence, we get:
potential GTRs = {GTR;, GT R,}

The set of all simple events of the potential GTRs is generated (line (2)):
monitorset = {r(e),w(s)}

Each trigger’s event is added to the event log (lines (3-4)) with the GT}
identifier (see line (1) of Figure 4.9 which depicts the event log).

2. Each GST of GT; is modified to detect the simple events of monitor_set (lines

(5-6)). This involves a call to Monitor_GST. The line:
Signal GTRM(GSTY : r(e),1);

is inserted into GSTY after the r(e) operation and the line:
Signal GTRM(GSTY : w(s),1);

is inserted into GST} after the w(s) operation. When these lines are executed
by the GST, a message is sent to the GTRM with the event that has occurred.
The GTRM can then execute GT'R; and GT Ry, respectively. Each trigger in
potential GTRs is examined, starting with GT'R; (line (7)). GTR; is a full
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dependency trigger (line (8)) so a terminator is added to GST} (lines (10-
11)). A new global transaction GTy, for GT Ry is created (line (12)) whose
GSTs are:

GST11.1 : T%.l(d); w‘}.l(d); C%.l?
GST12.1 : IU%.I(m);w%.l(y); C%.l;

v 3 . 3 .
GSTY, 1”1.1(m)a €115

Information is added to the event log that indicates G171 is execution depen-
dent on the event GTy : r(e) (line (13)). Line (2) of Figure 4.9 depicts the

event log at this point.

3. GST!, is checked to see if the transaction family contains a GST to be sub-
mitted to DBM S (DBM S?) (line (15)). The TFT contains only node GT;
which visits DBM S, DBM S?, and DBM S* so TFT_DBMSs = {DBM S*,
DBMS? DBMS*}. GST}, (GST?,) is embedded into GST} (GSTE) (line
(16)). GST2, accesses DBM S? which is not currently accessed by GT's of the
TFT so GST?, is added to pending-GSTs (line (17)). Node GTi; is added
to the TFT as the rightmost child of GT; (line (18)). The TFT now contains
the node GTy and its child GT1;. The GST trigger modification routine is
called (recursively) with the GSTs of GT; to determine the triggers which

may fire due to its execution (line (19)).

The recursive call begins by generating the set of potential triggers for G4 ;.
The only trigger event that is possible is the conj(w(z),w(d)) event of GT' Rs.

Hence:
potential GTRs = {GT R3}

The set of all simple events of G'T'R3 is generated:
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monitor_set = {w(z),w(d)}

The event log is updated and line (3) of Figure 4.9 depicts the situation.

4. Each GST of GTi; are now modified to detect the simple events of moni-
tor_set. GT'Rs is a full dependency trigger so a terminator is added to GST!,
and GSTY,. A new global transaction GTs; is created for GT' Ry and the
GSTs for G154 are:

GST3, :r3(y);wiy(2); 2y
GSTP?J : wg.l (n)v Cg.1§

GST3y : wi (p); S

Information is added to the event log that indicates G753 is execution depen-
dent on the event GTi; : conj(w(z), w(d)). The updated event log appears
on line (4) of Figure 4.9.

5. Next, each GST for G753, is examined to determine whether the TFT cur-
rently contains a GT which is sending to that site. The TFT now contains
nodes GTy and G714 and so TFT_DBMSs = {DBM S*,DBM S?, DBM S*, DBM 5*}.
G'ST;, is embedded into GSTE and GSTS, is embedded in GST2,. DBMS®
1s not part of TFT_DBMSs so GST?, is added to pending_GSTs.

The node G715 is added to the TFT as a right sibling of GT;.’s children.
The TFT now contains the node G, its child GT} 1, and GT; ’s child GTs,4.
The GST modification routine is recursively called with the GSTs of G734

but returns quickly as there are no triggers potentially firable by GT5 ;.

This GST_Trigger-Modification call returns to the caller (the GST trigger
modification executing on GT1). The second potential trigger for GTy (GT Ry)
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event eventree
GTy : r(e) ¢
GTi :w(s) ¢
GTy :r(e) ¢
GTy - w(s) ¢
GT; :r(e) ¢
GTi :w(s) ¢
GTia : conj(w(z), w(d)) ¢
GTi :r(e) ¢
GTy : w(s) ¢
GTy. ¢ conj(w(z),w(d)) ¢
GTy :r(e) ¢
GTy :w(s) ¢
GT1a = conj(w(z), w(d)) ¢

Figure 4.9: Event Log Trace for Example 4.3.1

occurred final

o O O O O o o O o o o o 9 ©

false
false
false
false
false
false
false
false
false
false
false
false
false

blocked

S S S R N T e S S > S S = S

92

dependents

¢

¢
{GT14}

{GTl.l}

{GTy1}

{GT54}
{GT41}
(GTRy)
{GT35.1}

does not have a full dependency (line (8)) and GT' R, is added to the depen-

dents field of the row in the event log with event = GT} : w(s). Line (5) of

Figure 4.9 illustrates the event log. The GST trigger modification subroutine

completes and returns to Algorithm 4.1. Algorithm 4.1 finishes by submitting
GST}, GST?, and GST; as well as the pending GST?, and GSTS, to the

global scheduler.
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4.4 Signal, Query, and Termination Handling

The process of trigger management does not stop at GST submission to the global
scheduler. Communication between the GTRM and executing GSTs is an impor-
tant part of trigger management in this environment. This section describes the

signal, query, and termination handling techniques.

While subtransactions are executing on DBMSs they must signal the GTRM
whenever simple events are triggered. Embedded GSTs must query the GTRM for
the number of times to execute. Finally, GSTs that cause simple events of full
dependency GTRs must send their termination so the GTRM can inform waiting
GSTs that an event will not occur again. Each of these concepts is described

intuitively below:
Global Trigger Manager (Signal Handling)

1. Send acknowledgement to sending GST so that it may resume its execution.

2. For each event in the event log that may occur due to the simple event sig-

naled:

(a) Update the event log entry.
(b) If event of the EL occurs then

1. Increment the number of occurrences of this event.

1. Send the number of occurrences of the event to all GSTs that are
currently blocked on it. Remove these GSTs from the blocked queue

for this event.
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iii. Create a global transaction GTj for each GTR that is execution
dependent on this events occurrence. Call the initial submission

algorithm with the GSTs of GT},.
Global Trigger Manager (Query Handling)

1. Find the event in the event log that the querying GST is dependent on.

2. If the event will not occur again then send the number of occurrences and a

final message to the querying GST. Terminate.

3. Otherwise, if the querying GST has executed the same number of times as the
number of times the event has occurred then add the sender to the blocked

queue of the event.

4. If the actual number of event occurrences is greater than the number of times
the querying GST has already executed then send the actual number of event

occurrences to the GST.

Before presenting the intuitive termination handler we define what is meant by

a necessary stmple event of a complex event.

Definition 4.4.1 (Necessary simple event): Let e; be a simple event of some com-

plex event e;. We say e; is necessary if e; must occur for e; to occur. |

For example, the complex event conj(es, e3) is composed of the simple events e;

and ey both of which are necessary for conj(e;, e3) to occur.

In the algorithm below, if GST; terminates then all events that are caused by
GT; are checked for necessary simple events caused by GSTJ?. If one or more are

found then the event will never occur again and can be marked as final.
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Global Trigger Manager (Termination Handling)

1. For each event in the event log which contains necessary simple events caused

by the terminating GST:

(a) Mark the event as being final.

(b) Send each GST that is blocked on the current event the number of oc-
currences of the event and a final message. Remove the GST from the

blocked queue.

(¢) If the current event never occurred then for each identifier 7 that is ex-
ecution dependent on this event, mark the events that ¢ causes (in the
event log) as final and perform step (b) on any blocked GSTs. Recur-
sively perform step (c) on the events caused by dependents of the current

event.

The algorithms that handle event signals, queries, and terminations are pre-
sented in Figures 4.10, 4.11, and 4.12, respectively. The following is a list of

additional functions/data structures necessary for the description of the algorithms:

signal (GST,event,execution number): Message sent from a GST to the GTRM
when some event occurs. A signal contains the event that occurred, the

execution number, and the GST that caused it.

query (GST,times to_date): Message sent from a GST to the GTRM when the
GST needs to know how many times to execute. A query contains the GST

that is querying and the number of times that it has executed so far.

termination : Message sent from a GST to the GTRM when the sending GST

has completed its execution.
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Event (msg): Returns the event of the msg signal.
Sender (msg): Returns the GST which sent msg.
Executions (msg): Returns the times_to_date of the query msg.

GT (msg): Returns the GT of the sender of msg.

When a GST signals the GTRM of an event’s occurrence, Algorithm 4.2 of
Figure 4.10 is invoked. First an acknowledgement is sent to the signaling GST
that notifies the GST to resume its execution (line (1)). Each row in the event
log is considered in turn (line (2)). If the event of the signal is a simple event of
the current row’s event (line (3)) then the eventtree of the current row is updated.
The execution number of the message is used to determine the correct eventtree
to update (line (4)). If the eventtree for the execution number does not exist then
one is created and updated. If the updated eventtree is occurs then the eventtree
is reset (line (6)) the number of event occurrences is incremented (line (7)). Each
GS Tij that was blocked on the event is sent the new number of occurrences and the

final flag and is removed from the blocked queue (lines (8-10)).

Line (11) loops through each global trigger identifier in the dependents field of
the row. Line (12) creates a new global transaction for the GTR and line (13) sub-
mits it to Algorithm 4.1 to receive trigger modifications. Algorithm 4.1 is executed

by a separate, concurrent process.

The GTRM query handler is much simpler. When a GST queries the GTRM for
the number of times to execute Algorithm 4.3 is invoked (illustrated in Figure 4.11).
The row in the EL which the sending GT is dependent on is found (line (1)). If
the number of occurrences of the event is equal to the number of executions of the

querying GST (line (2)) then the GST has executed the required number of times
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Algorithm 4.2 (Global Trigger Manager - Signal Handler)
begin

input msg : signal;

send ack to Sender(msg);

for each row r in EL do

begin

if Event(msg) ¢ row.event and Sender(msg) = GT(row.event) then

begin
update r.eventtree with Event(msg) and Executions(msg);
if r.eventtree occurs then
begin
reset the r.eventtree;
r.occurred « r.occurred + 1;
for each GST?¢ r.blocked do
begin
send r.occurred and r.final to G.STY;
remove G'ST/ from r.blocked;
end;
for each 7 er.dependents where i is a GTR identifier do
begin
GT), < Create_Global_Transaction(z);
pipe to Algorithm 4.1 with 2 and GSTS(GTy);
end; (* for *)
end; (* if *)
end; (* if *)
end; (* for *)

end;

Figure 4.10: Global Trigger Manager Signal Handler
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Algorithm 4.3 (Global Trigger Manager - Query Handler)

begin
input msg : query;
find row r in EL with GT(msg) ¢ r.dependents;
if r.occurred = Executions(msg) and not r.final then
add Sender(msg) to r.blocked;
else
send r.occurred and r.final to Sender(msg);

end;

Figure 4.11: Global Trigger Manager QQuery Handler

and is added to the blocked queue of the event in the EL (line (3)). If not, the
number of occurrences and the final flag of the event are sent to the querying GST

(line (4)) which executes the desired number of times.

The GTRM termination handler is also quite simple. When a GST sends its
termination to the GTRM, Algorithm 4.4 of Figure 4.12 is called. Each event in
the EL which is caused by the GT that sent the termination is considered in turn
(line (1)). If the event of the EL contains necessary simple events caused by the
terminated GST (line (2)) then the final flag of the event is set to true (line (3)).
Each GST that is blocked on the event (line (4)) is sent the number of occurrences
and final flag (line (5)) and is removed from the blocked queue (line (6)). If the
event has never occurred then procedure Terminate is called with r.dependents

(lines (7-8)).
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Terminate (Figure 4.13) is a procedure that recursively updates events caused by
terminated GTs that never executed. Each GT identifier in set_of_IDs is considered.
Each event in the event log which is caused by the current GT is checked (line (2)).
The final flag is set to true and the blocked GSTs are updated (lines (3-6)) as in
Algorithm 4.4. Terminate is recursively called with the dependents of the current
row (line (7)). This way, all events that will never occur (as a result of some GSTs

termination) will be properly marked as final with zero occurrences.

The next example provides a detailed trace of signal, query, and termination

algorithm executions.

Example 4.4.1 Recall 4.3.1. Suppose that the subtransactions of GTFy (GTy,
GTi1, and GT54) have been successfully scheduled by the global scheduler and
are executing at the corresponding sites. We use the execution of these GSTs to
demonstrate the functionings of Algorithms 4.2, 4.3, and 4.4. We will limit our
example to the GSTs presented in Example 4.3.1. Of course, there could be local
transactions and GSTs of other active GTFs executing at the local databases, but
we keep the example simple. Figure 4.14 illustrates the subtransactions at each

local database.

1. G'ST? is the first to complete. GSTE,, which is embedded in G'ST?, makes
a query to the GTRM, indicating that it has executed zero times so far.
Algorithm 4.3 is invoked by the GTRM and finds the entry for GT} 1 in the
event log, checking if the number of occurrences in the event log matches the
number of executions of GSTE,. The number of occurrences is zero which
is equal to the number of executions, and the event is not final so GST?, is
added to the blocked queue of the event (line (3)). The GTRM does not have
to actually block GSTZ, as it has suspended itself as a result of this query.
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Algorithm 4.4 (Global Trigger Manager - Termination Handler)

begin
input msg : termination;
for each row r in EL with GT(r.Event) = GT(msg) do
if r.event contains necessary simple events caused by Sender(msg) then
begin
r.final « true;
for each G'ST¢ r.blocked do
begin
send r.occurred and r.final to GSTY;
remove GST/ from r.blocked;
end;
if r.occurred = 0 then
Terminate(r.dependents);

end;

end;:

Figure 4.12: Global Trigger Manager Termination Handler
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Procedure Terminate(set_of_IDs);

begin
for each GT identifier i ¢ set-of_IDs do (1)
for each row r in EL with GT(r.Event) = i do (2)
begin
r.final « true; (3)
for each G'STe r.blocked do (4)
begin
send r.occurred and r.final to GSTY; (5)
remove ST/ from r.blocked; (6)
end;
Terminate(r.dependents); (7)
end;
end;

Figure 4.13: Procedure Terminate
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GTFy GTF2
DBMSY: (GSTky), GST! ) GST4
DBMS>: (GSTZy, GST?, 0y GSTE )
DBMS®: (GSTE ), GSTE )
DBMS*:  GST}y,
DBMS®: GSTZ, GST3,

Figure 4.14: Subtransactions Executing At Each Site

This completes Algorithm 4.3. Line (1) of Figure 4.15 depicts the event log

at this point.

2. GST? . is next to query to the GTRM, indicating that it has executed zero
times so far. Algorithm 4.3 finds the entry for G135, in the event log. The
number of occurrences is zero as is the number of executions, and the event
is not final so GST%, is added to the blocked queue of the event. Line (2) of

Figure 4.15 illustrates the event log.

3. Next, GST} executes its r(e) operation and signals the GTRM of its occur-
rence which invokes Algorithm 4.2. GST} is sent an acknowledgement to
resume its execution. The event that was signaled is checked to see if it is a
simple event of the current event of the event log. It is for the event GT7 : r(e).
The eventtree of G : r(e) is updated and GT; : r(e) is checked for occur-
rence. The event is the simple event r(e) caused by G174 so it has occurred.
The eventtree is reset and the number of occurrences is incremented. Each
GST that is blocked on the event is sent the number of occurrences and is

removed from the queue (lines (8-10)). GISTE, is the only one and so begins
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its first execution. Line (3) of Figure 4.15 depicts the event log.

4. Next, GST{ signals that it has executed its w(s) operation. Algorithm 4.2
sends an acknowledgement to GST} and checks to see if the signaled event is
a simple event for one or more rows in the event log It is for GT : w(s). The
eventtree of G} : w(s) is updated and has occurred. The eventtree is reset
and the number of occurrences is incremented. GT'R; is the only dependent
global trigger identifier (line (11)) so a new global transaction GTy; is setup
for the newly fired trigger. The GSTs of GTy, are sent to Algorithm 4.1 for
trigger modification. No modifications are necessary and GT41’s GSTs are
sent to the global scheduler. To keep this example simple suppose the GS
submits G.STy, and GST;, immediately. Line (4) of Figure 4.15 depicts the

event log.

5. GST! executes its w(d) operation next and sends its termination to the
GTRM which invokes Algorithm 4.4. Each event in the event log that is
caused by G is considered and GTj : r(e) is the first. GT} : r(e) is checked
for necessary simple events caused by G'ST} of which r(e) is the only one (line
(2)). This event can never occur again so the final flag of GT : r(e) is set
to true. There are no GST's blocked on the event so GT : w(s) is considered
next but does not contain simple events caused by GST!. This completes the

algorithm. Line (5) of Figure 4.15 depicts the situation.

6. Next, GST}, queries invoking Algorithm 4.3. The entry in the event log for
GTy 4 is found . The number of executions of GST}, is one and the number
of executions of GST}; is zero so the number of occurrences and the final
flag are sent to GSTY; and Algorithm 4.3 completes. GST} executes its w(t)

operation and precommits. G'ST}, executes its w(z) operation and signals
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this event to the GTRM invoking Algorithm 4.2 which determines that w(z)
is a simple event of GTy1 : conj(w(z),w(d)). The eventiree is updated but
GTiq : cong(w(z),w(d)) has not occurred (line (5)). In this case, the eventtree
still lacks the w(d) event, so it is not satisfied and Algorithm 4.2 terminates.

Line (6) of Figure 4.15 depicts the event log.

7. GST}, executes its r(d) and w(d) operations next, and signals the GTRM
of the w(d) event which invokes Algorithm 4.2. The eventtree of GTj :
conj(w(z), w(d)) is updated and both w(d) and w(s) have occurred so the
eventtree is satisfied. The eventtree is reset and the number of occurrences is
incremented. GST3 | is the only blocked GST so it is sent the new occurrences
and is removed from the queue. GST?, begins its first execution. Line (7) of

Figure 4.15 illustrates the situation.

8. Next, GSTY, executes its w(m) operation and queries the GTRM invoking
Algorithm 4.3. The entry for Gy ; in the event log is found and the event is
final. The number of occurrences and the final flag are sent to GST},. Algo-
rithm 4.3 completes and GST}, completes. Meanwhile, GSTy, and GST,
execute and commit independent of GTy, GT} .1, and GT3,. GSTZ, queries,
is sent the number of occurrences (1), the final flag (false) and begins its first
execution. G'ST}, finishes its first execution and knows that it is supposed
to execute only once. It is complete and sends its termination to the GTRM
invoking Algorithm 4.4. GT4 1 : conj(w(z),w(d)) is the only event caused by
Gy, and contains necessary simple events caused by GST},, namely w(d).
The final flag of G171 : conj(w(z), w(d)) is set to true. There are no blocked
GSTs and the event did occur (lines (4-8)) so the Algorithm terminates. Line
(8) of Figure 4.15 depicts the event log.
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9. Next, GST?, finishes its first execution and queries. The GTRM responds
with one execution and a true final flag. GST?, is complete and sends its ter-
mination, which was necessary for the monitoring of GT 1 : conj(w(z),w(d)).
G'ST3, queries and is replied to with one execution and a true final flag. It
begins its only execution. Next, GST3, and GST3, complete their execution
and query receiving one execution and a true final flag. They are complete.
GSTZ, executes its operations and precommits. At this point all GSTs have
precommitted and the recovery manager handles global transaction commit-

ment.
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event eventree occurred final  blocked dependents
(1) GTi:r(e) é 0 false {GSTE,} {GTi.}
GTy : w(s) ¢ 0 false ¢ {GTR,}
61+ con(uw(x), w(d)) ¢ 0 false 4 (6T,)
(2) GTy:r(e) ¢ 0 false {GST{,} {GTi.i}
GTy = w(s) ¢ 0 false ¢ {GT Ry}
G, - cong(uo(z), w(d) 6 0 false (GSTS) {GTo)
(3) GT::r(e) y I false ¢ (6T}
GTy :w(s) ¢ 0 false ¢ {GT R}
GTy 1 : conj(w(z),w(d)) ¢ 0 false {GST3,} {GTs:}
(4) GTi:r(e) ¢ 1 false ¢ {GT1.1}
G} w(s) ¢ L false [GTRs)
Gy - conj(w(z), w(d) 4 0 false {GSTL) {GTi)
(5) GTy:r(e) ¢ 1 true ¢ {GTy.1}
GTy = w(s) ¢ 1 false ¢ {GTR,}
GTy1 : conj(w(z),w(d)) ¢ 0 false {GST?,} {GTsi1}
(6) GTy:r(e) ¢ 1 true ¢ {GTy1}
GTy : w(s) ¢ 1 false ¢ {GTR,}
GTis: conj(w(e),w(d) w(z) 0 false {GSTS) {GTa)
(7) GTi:r(e) ¢ 1 true ¢ {GTi1}
GTy : w(s) ) 1 false ¢ {GTR,}
GTyy : cong(w(z),w(d)) ¢ 1 false ¢ {GT51}
(8) GTiy:r(e) é 1 true ¢ {GTy1}
GTy : w(s) é 1 false ¢ {GTR,}
GTi 1 : conj(w(z),w(d)) ¢ 1 true ¢ {GT34}

Figure 4.15: Event Log Trace for Example 4.4.1



Chapter 5

(zlobal Scheduler

The architecture of Chapter 1 and formal model of Chapter 3 allow for modular
design of concurrency control algorithms which ensure AMSB-serializability. This
chapter presents one such algorithm. We modify Barker’s AGSS (Aggressive Global
Serial Scheduler) which ensures MDB-serializability so that the resulting algorithm

ensures the more restrictive AMDB-serializability.

The remainder of this chapter proceeds as follows. Section 5.1 describes re-
quirements of the scheduler to ensure AMDB-serializability. Section 5.2 presents
an Intuitive description of the scheduler and a more detailed pseudocode repre-
sentation of the algorithm. An example and step by step walkthrough are given
to demonstrate the execution of the algorithm. Finally, the algorithm is proven

correct.

107
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5.1 Scheduler Requirements

Barker [6] presents two concurrency control algorithms for the global scheduler
each of which ensures MDB-Serializability. These algorithms control the order of
GST submission in a pessimistic fashion. However, these do not ensure AMDB-

Serializability. To see this we present two examples.

Example 5.1.1 Consider the following sequence of global transactions and their

corresponding GST's:

GT, : GST}

GTyy : GSTZ,

GTy GST? GST?
GTs : GST} GSTS

Suppose that G771 is a full global transaction fired by GTj. The following sequence
is possible with the AGSS:

DBMS' : GTy < G154
DBMS? : GTy < GT1,1
DBMS?: GT5 < GT,

which would produce an AMSG with a family order discrepancy where GT} —

G155 — GTy — GTi ;. B

The next example demonstrates that causal discrepancies are possible with the

AGSS.

Example 5.1.2 Consider the following sequence of global transactions and their

" corresponding GSTs:
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GTl . GSTll
GT, : GST}GST?
GTl.l . GST121

Suppose that GTy; has a causally dependent coupling mode and is fired by GT}.
The following sequence is possible with the AGSS:

DBMS! : GT, < GT
DBMS2 . GTl.l < GT2

which would produce an AMSG with the causal discrepancy GTy, — GT, — GT;.
[ |

5.2 Active Global Scheduler for AMDB-Serializability

We extend Barker’s AGSS to cope with the situations of Examples 5.1.1 and 5.1.2.
This section describes the extended algorithm, which we refer to as the Active Global
Scheduler(AGS). Intuition, pseudocode, examples, and correctness are presented in
this section. Figure 5.1 illustrates the global scheduler. The GS receives GSTs
from the GTRM. When the GS realizes that it is safe to submit them it passes the
GSTs to the global recovery manager which submits the GSTs to the appropriate
DBMSs. The GS uses the dependency graph created by the global trigger manager.

The AGS must ensure that the AMSGs of histories it produces do not contain
any causal or family order discrepancies. We investigate Examples 5.1.1 and 5.1.2

for new ideas.
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To/From Global Trigger Manager

Global Dependency Graph

Scheduler

To/From Global Recovery Manager

Figure 5.1: Global Scheduler
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Example 5.2.1 Consider Example 5.1.1. GT; and GT; ; belong to the same global
transaction family. If our algorithm schedules with respect to global transaction

families instead of global transactions then we have the following:

GTF: GSTY,y GSTZy,
GTFy: GSTQZ(Z) GSTS@)
GTFy: GST}y, GST5

Suppose that GTFl- is submitted first, followed by GTF,. Both are scheduled
accordingly. GT'F3 is the last to be submitted. Our modified algorithm will block

GTF3 so as to avoid a possible family order discrepancy. B

Example 5.2.2 Consider Example 5.1.2. Our modified algorithm must examine
the dependency graph created by the global trigger manager to ensure causal de-
pendencies are not violated. Assume GT F} arrives at the global scheduler first and
1s submitted. GTF, arrives next and is submitted. GTF;; is the last to arrive
but is blocked because it overlaps with GT'F, which overlaps with GT'Fy on which
GT I, is causally dependent. Blocking GT'F) ; ensures that a causal discrepancy

will not occur. [ |

Through examination of Examples 5.2.1 and 5.2.2 two ideas for the AGS present

themselves:

1. Schedule global transaction families instead of global transactions. This will

prevent family order discrepancies.

2. Block GSTs whose candidate sets contain one or more GTFs on which they
are causally dependent. The DG created by the GTRM is used to establish

any direct or indirect causal discrepancies.
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Our AGS must incorporate these two ideas in order to schedule AMDB-serializable

histories.
Active Global Scheduler (Initial GTF Submission)

1. Each global subtransaction is scheduled independently. Each is submitted or
suspended based on the activities of other active global transaction families.
All global subtransactions form a unique set of candidate GTFs which may
cause the GST to be suspended. The candidate set is based on the DBMS
to which the GST is to be submitted. For example, given GS]}f(,i)eGTFi
to be submitted to DBMS*, the candidate set is composed of all global
transaction families which are waiting to access data at LDB* or which have
an active GST at DBMS*. In addition to these GTFs, any GTF which
overlaps with them may cause non-AMDB-serializable schedules. The entire

set is considered when attempting to submit a global subtransaction.

Given an arbitrary GTF; in the candidate set, if the intersection of GT F}’s
DBMS set and the set of other DBMSs to be accessed by GT F; is not empty,
then GST;(Z-) cannot be submitted so Step (3) is executed. Otherwise, Step
(2) is performed.

2. If there exists a GT} in the candidate set which G'T'F} is causally dependent on
then GSTpk(i) cannot be submitted so Step (3) is executed. Otherwise, GS’T;U)
is submitted. If there is another global subtransaction to be submitted, it is

tested at Step (1). Otherwise, the algorithm terminates.

3. GST;“(Z.) cannot be submitted immediately, so it is suspended in a wait queue
and the next subtransaction is tested at Step (1). If no other GSTs need to

be tested the algorithm terminates.
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Active Global Scheduler (GSTs Completion Process)

1. The completion of the global subtransaction is recorded.

2. Completion of a global subtransaction may permit the submission of waiting
subtransactions. This involves testing every waiting global subtransaction at

the DBMS where the completing GST was active.

3. The global subtransaction at the head of the wait queue for the DBMS un-
dergoes the same testing procedure as in Steps (1) and (2) of the initial global
transaction family arrival process described above. If a GTF is active which

can cause a non-AMDB-serializable schedule, Step (4) is performed, otherwise

Step (5).

4. Since a GTF is still present that could cause a non-AMDBSR schedule the
GST remains passive. The next GST waiting is tested at Step (3) unless the

entire queue has been tested which terminates the process.

5. The GST can be submitted so its status is changed from passive to active.
If GSTs are waiting, each must be retested at Step (3) or the algorithm

terminates.

The following is a list of routines/data structures required by this algorithm:

DBMS_set(GTF;) : The set of DBMSs where GT'F; submits subtransactions.

Active_set(DBMS*) : The set of global transaction families which have an active

global subtransaction executing at DBM S*.

card : Cardinality function which returns the number of elements in the argument

set,.
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Algorithm 5.1 (Active Global Scheduler - Initial Scheduler)
begin
input GTF; : global transaction family;
var candidateset : set of GTF identifiers;
DBMS set(GTF;) « set of DBMSs accessed,;
GSTs_active(GT F};) « ¢;
GSTs_passive(GT F;) «— ¢;
GSTs_complete(GTF;) «— ¢;
for each GSTIf(Z-) ¢ DBMS.set(GTF;) do
begin
candidate set « Activeset(DBMS*) | Wait_Q(DBMS*) - GTF;;
for each GTF,,¢ candidate_set do
if 3 active GT'F,, (m # n, © # n) such that
DBMS set(GTF,,) N DBMS.set(GTF,) # ¢ then
candidate_set « candidate_set | GT Fy;
if 3GT Fje candidate set such that (card(GS7T ;) > 1 and card(GST;) > 1 and
DBMS_set(GTF;) N (DBMSset(GTF,) - DBMS*) # ¢)
or (3GT; e candidate_set with GT F; causally dependent on G7;) then
begin
GSTs_passive(GT F;) « GSTs_passive(GTF;) U DBMS*;
passivate GST;”’(Z.) on Wait_Q(DBM S*);
end (*if *)
else begin
GSTs_active(GTF;) « GSTs_active(GTF,) U DBM S*;
Activeset(DBMS*) « Activeset(DBMS*) UGTF;
submit GSTpk(i) to DBM S*;
end; (* else *)
end; (* for *)

end;
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Algorithm 5.2 (Active Global Scheduler - Subtransaction Termination)
begin
input GSTPI‘"(Z-) : GST for GT'F; at DBMS* completes;
var candidate_set : set of GT identifiers;
Activeset(DBMS*) « Activeset(DBMS*) - GTF;;
GSTs_active(GT F;) «— GSTs_active(GTF;) - DBM S¥;
GSTs_complete(GTF;) «— GSTs_complete(GTF;) |J DBM S*;
for each G’STsk(j) ¢ Wait_Q(DBM S*) do
begin
candidate set « Activeset(DBMS*) U ({GTF, | GT Fie Wait_Q(DBM S*)
A GTF, is active} - GTF;);
for each GTF, ¢ candidate_set do
if 3 active GT'F,, (m # n, j # n) such that
DBMS_set(GT F,,) N DBMS_set(GTF,) # ¢ then
candidate_set « candidate_set |JGT F},;
if 3GT F e candidate set such that (card(GST,) > 1 and card(GST;) > 1 and
DBMS_set(GTF,) N (DBMSset(GTF;) - DBMS*) # ¢)
or (3GT; ¢ candidate_set with GT'F; causally dependent on GT;) then
repassivate GSTSk(j) on Wait_Q(DBM S*)
else begin
GSTs_passive(GT'F;) «— GSTs_passive(GTF;) - DBM S*;
GSTs.active(GT F;) « GSTs_active(GTF;) U DBM S*;
Activeset(DBMS*) « Activeset(DBMS*) UGT F;;
remove GSTsfij) from Wait_Q(DBM S*);
submit GSTSI‘"(J-) to DBM S*;
end; (* else *)
end; (* for *)

end;

Figure 5.3: Active Global Scheduler (Part 2)
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Wait_Q(DBMS) : Global subtransactions which cannot be submitted immedi-
ately are placed on a wait queue for access to the DBMS. There is one Wait_Q)
for each DBMS.

GSTs_active(GTF;) : The set of DBMSs which have an active subtransaction of
GTF;.

GSTs_passive(GTF;) : The set of DBMSs which have a waiting subtransaction
of GTF;.

GSTs_active(GTF;) : The set of DBMSs which have a complete subtransaction
of GT'F;.

Figure 5.2 and 5.3 present the algorithm in two parts. The algorithm works
similar to Barker’s AGSS [6] but contains additional functionality to handle causal

and family order discrepancies.

Figure 5.2 describes the GT initial submission process. Line (1) forms a set
describing the DBMSs accessed by the GT. Line (2), (3), and (4) initialize the
GTFs reference sets to record the status of their GSTs.

Global transaction families are tested to determine if an overlap exists with other
GTFs. Each GST (line (5)) 1s tested for submission independently. The set of global
transaction families which could cause the passivation of a global subtransaction
are those that have a GST at or waiting to be submitted to that DBMS (line (6)).
In addition to these GTFs, any others which overlap with them must be included
in the candidate set (lines (7-9)). Assume that GSTIf(i)eGTFZ- is to be submitted to
DBMS*. Line (10) determines if there exists a GT Fe candidate_set which accesses
another DBMS accessed by GT'F;. If such a GT'F; exists, GSTIf(i) is passivated (lines

(11-12)). Line (10) also determines if there exists a GTye candidate_set on which
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GTF; is causally dependent. If so, GST:U) is passivated (line (11-12)). If G’ST:U)
1s not passivated as a result of line (10) then it may be submitted (lines (13-15)).

When a global subtransaction completes, the sets are updated to reflect the
completion at lines (1-3) of Figure 5.3. Line (4) retests all waiting GSTs at this
DBMS for submission eligibility. The condition for submission is nearly the same
as when the GTF initially arrived. The candidate set is formed at line (5), but it is
necessary to remove the GTF which we are attempting to submit the subtransaction
for and any which are inactive. The rest of the algorithm is logically identical to

the initial submission process.

The following provides a demonstration of the AGS.
Example 5.2.3 We extend Example 4.3.1 to include two additional GTs:

GT,: GSTS GSTS
GTs : GSTS GSTS

Two new global triggers GT'Ry (T'dep) and GTRs (Cdep) are also added and
each fires once. This generates two global transactions each accessing only one

database:

GT4.1 . GSTAISI
GT5,1 . GST561

GTy, is triggered by GTs and GTs; by GTy;. Finally, we add a sixth local data-
base to the multidatabase of Example 4.3.1. The dependency graph of Figure 5.4

illustrates the various dependencies of our example global transactions.

The Active Global Scheduler (AGS) algorithm is demonstrated by the following

execution sequence:
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(=

Figure 5.4: Global Transaction Dependencies of Example 5.2.3
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1. GTF, (GT1, GTy1, and GT3y) is presented to the AGS and the required sets
are formed. Since no other GSTs are present at any DBMS all of the GSTs
are submitted. The active sets of DBMS', DBM S?, DBM S®, DBM S*, and
DBM S® are updated. The GSTs_active(GT Fy) setis {DBMS*, DBMS* DBM 53,
DBMS*,DBMS®}. Line (1) of Figures 5.5 and 5.6 illustrates this scenario.

2. GTF, arrives and each GST is tested for submissability. GST; is tested
first (line (5)). The candidate set contains GTF; (lines (6-9)). The test
for conflict fails (line (10)) and GST; is submitted (lines (20-22)). GST$
is tested next and since there are no GSTs at DBMS® the candidate set is
empty. The test for conflict fails again (line (10)) and GSTY is submitted.
The GSTs_active(GT Fy) set is {DBMS*,DBMS®}. Line (2) of Figures 5.5

and 5.6 depicts the situation.

3. GTy, fires but is part of GTF; so it is handled as part of that family. GT5
fires but is not part of the triggering family (it is only causally dependent).
GT Fy;q arrives at the scheduler and GSTy , is tested first. The candidate set
is created (lines (6-9)) and is {GT'F;}. Consider the possible submission of
GSTy, to DBMS*:

test for GT'F, at DBM St
= DBMS.set(GT Fy) N (DBMS_set(GT Fy1) - DBMS?)
= {DBMS*,DBMS*,DBMS3 DBMS* DBMS®} N
({DBMS'",DBM S®} - DBM S*)
= {DBMS*}

This indicates that an overlap exists with an active transaction family of
the candidate set. GST,, must be placed on the Wait_ Q(DBMS!) and
GSTs_passive(GT Fy1)={DBMS"}.
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GSTy, is tested next. The candidate set is {GTF,}. The following test
demonstrates that GSTP, must be placed on Wait_Q(DBM S?):

test for GTF; at DBM S?!
= DBMS_set(GT Fy) | (DBMS set(GT Fy) - DBMS?)
= {DBMS" DBMS*,DBMS* DBM S* DBMS®} N
({DBMS*,DBMS®} - DBM 5%)
— {DBMS'}

4. GTF;5 undergoes the same testing procedure. GST? is tested first and the
candidate set is {GT Fy,,GT F1,GTFy}.

test for GT' F,4 at DBM S?
= DBMS_set(GT F31) N (DBMS_set(GT Fs) - DBMS?)
= {DBMS*"\ DBMS®*} N ({DBMS®,DBM S®} - DBM S®)
= ¢

test for GTF; at DBMS®
— DBMS_set(GT'F;) () (DBMS_set(GT Fs) - DBMS®)
= {DBMS',DBMS* DBMS® DBMS* DBMS®}
({DBMS®,DBMS®} - DBMS®)
= ¢

test for GTF, at DBM S*®
= DBMS_set(GT F,) N (DBMS_set(GT Fs) - DBMS?)
= {DBMS*,DBMS®} N
({DBMS®,DBMS®} - DBM S%)
= {DBMS°®}
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Since the test succeeds in the third case, the subtransaction must be passi-
vated to ensure correct AMDB-serializability. The second GST is tested in the
same fashion and must be passivated. See line (4) of Figures 5.5 and 5.6. Note
that Barker’s AGSS would allow GST3 and GSST? to be submitted. However,

this could cause a family order discrepancy with GTy < GTy < G145 < GTs ;.

5. Next, GST] completes at DBMS!. The active set for DBMS?, active set for
GT Fy, and the complete set for GT'Fy are updated (lines (1-3) of Figure 5.2).
GSTy, is currently in the wait queue for DBMS' and is retested. The can-
didate set is empty so the test (line (9)) fails and GST, is submitted (lines
(11-15)). Line (5) of Figures 5.5 and 5.6 illustrates the active set for each
DBMS.

6. G154 fires next but is part of GT'F; so scheduler operations are unaffected.
GST} completes and G'ST; is submitted. GST¢ also completes and G'STS is
submitted (see line (6) of Figures 5.5 and 5.6).

7. GTy, fires and GSTY | is its only subtransaction. The candidate set is {GT Fy,
GT F51,GT F3,GT Fy}. There is only one GST so the first part of the test (line
(10)) fails. However, GT; € candidate_set and GT Fy; is causally dependent
on G7T3, so the second half of the test succeeds and GST}; is passivated on
the wait queue (lines (11-12)) (line (7) of Figures 5.5 and 5.6). Note that the
AGSS [6] would submit GSTY,.

8. Next, GST,;, GSTE, and GSTZ, all complete their executions. The wait
queues for DBMS' and DBMS? are empty so checks are not required for
those. There are no GSTs currently active at DBMS® so GST, is immedi-

ately submitted from the wait queue. GST} is also tested for submissability.

The candidate set is {GT Fy,GT Fy,GTF,1}.
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test for GT' F, at DBM S?
= DBMS_set(GT F3) N (DBMS.set(GT F3) - DBMS?®)
= {DBMS* DBMS®} N ({DBMS? DBMS®} - DBM S®)
= {DBMS°®}

The test indicates that GST3 should remain in the wait queue. GST? is also
tested but 1t is causally dependent on GT F3 which is in the candidate set.

GST;, remains in the wait queue (line (8) of Figures 5.5 and 5.6).

9. GST?, and GSTy, complete. GSTY is submitted and GSTY, retested. GST?,
is causally dependent on GI'F; and so is repassivated on the wait queue (line

(9) of Figures 5.5 and 5.6).

10. GST} completes and GST}, is submitted. GTs; fires and contains GST?,
as its only subtransaction. The candidate set is {GT F3,GT Fy1,GTF,}. The
first part of the test (line (10)) fails as card(GST5.1) = 1. However, the second
part succeeds as GT Fy 1 is causally dependent (transitively) on GT3. Hence,
GSTE, is passivated on the wait queue (line (10) of Figures 5.5 and 5.6).

11. Finally, GST3, GST?,, and GST? complete and GST?, is submitted and
completes (line (11) of Figures 5.5 and 5.6). |

5.2.1 Correctness of the Active Global Scheduler

We will use the same two step procedure described in Barker [6]. First, we will
identify some attributes of histories produced by the AGS. Second, we provide a
theorem which proves that the AGS produces only AMDB-serializable histories.
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Activeset(DBM S*)
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Figure 5.5: Trace of the AGS execution (part 1)
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Figure 5.6: Trace of AGS execution (part 2)
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In Chapter 3 we assume that each DBMS is capable of correctly serializing all

submitted transactions. This is stated in the following proposition.

Proposition 5.2.1 Each local scheduler always schedules all transactions in a se-

rializable order. |

As described in Chapter 4 the global trigger manager embeds GSTs submitted
to the same site if their GTs belong to the same global transaction family. The
GTRM uses the same order for embedding for each DBMS so that it does not violate
serializability. The embedding order for a GTF is equal to the order constructed by
an ordered traversal of the family tree. A result of this is specified in the following

Proposition and is used in the proof of Theorem 5.2.1.

Proposition 5.2.2 If GTjp) is a descendent of GTypy and GTy is not then
GTipy’'s embedding order is either before both GTypy and GTj(p) or after both.
| |

The following lemma is presented in Barker [6] and is used to prove the GSS

and AGSS algorithms correct. We present it here to support the proof of the AGS.

Lemma 5.2.1 For every pair of global transactions GT;, GT;eG7T, scheduled by
the AGS, either all of GT}’s subtransactions are executed before GT}’s at every

DBMS or vice versa.

Proof: The AGS and AGSS are similar algorithms so the proof described in Lemma
4.3 of Barker (page 68) [6] is modified for our purposes. First we will prove that
for every pair of families GTF;, GTF; eGT F, either all of GTF;’s subtransactions

are executed before GT'F}’s at every DBMS or vice versa.
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Consider GT F, requiring only a single subtransaction (eg. GSTZ-’Ea)). From Proposi-
tion 5.2.1 it follows that any other GST]-}”'(b)eGTFb either precedes or follows GSTJZG).

Global transaction families which submit to multiple databases but only access one
database in common with all other active GTFs are submitted immediately. This
occurs because each GST is tested independently (line(5) Figure 5.2). Since only
one DBMS is accessed in common for each GTF in the candidate set (lines(6-9)) the
test will fail at line(10) of Figure 5.2 which results in the submission of each GST.
Since each GTF in the candidate set overlaps at only one DBMS, it follows with-
out loss of generality that, when we consider a GSTfEa)cGTFa and GS’T]-k(b)eGTFb
whose base-sets overlap, any ordering chosen by DBMS* is consistent. That is,
since DBM S* is the only place where GTF, and GTF, access common data, we
know from Proposition 5.2.1 that either GTF, < GTF, or GTFy, < GTF,, as re-

quired.

Global transaction families that overlap at more than a single DBMS are always
submitted and executed in the same order at each overlapping DBMS. Suppose we
have two arbitrary active global subtransactions GSTJ-]“(G), GST;(Q)EGTFQ which ac-
cess DBMS* and DBM S', respectively. Consider the attempt to submit GSTZ-}E,,).
Since there exists another GST at DBMS', either waiting or active, GS’Ti}Eb) is
passivated (lines (11-12) of Figure 5.2). GSTZ-[(b) is blocked for the same reason.
Consider the completion of GTF,. Assuming that there are no other similar GSTs,
the test at line (9) of Figure 5.3 allows GSTi’Eb) to be submitted. Since G’ST]-’“(Q)
is complete, it follows immediately that GSTjk(a) = GSTZEb). GSTil(b) is submitted
in the same way. It follows that G’ST}((I) = GSTZ-I(,)). Clearly the GSTs of GT'F,
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precede the GSTs of GT'F;, at every DBMS, as required.

To complete the proof we must show that for every pair of transactions GTyay,
GTa)eGT F, either all of GT;’s GSTs are executed before GT}’s at every DBMS or
vice versa. G'Ty,) and GTj(,y belong to the same GTF so if they access a common
DBMS* then GSTF and GST} are embedded in the same submitted GST. The
embedding order used by the GTRM is the same at each DBMS where the GTs
intersect. Hence, either GT; < GT; or GT; < GT; at every DBMS, which completes
the proof. B

We are now in a position to prove the AGS correct. This involves showing that

all histories produced by the AGS are AMDB-serializable.

Theorem 5.2.1 The AGS produces only AMDB-serializable histories.

Proof: To prove that the AGS creates only AMDB-serializable schedules we must
show that the AMSG of an arbitrary history produced by the AGS is A — acyclic,
I' — acyclic, family order discrepancy free, and causal discrepancy free.

Acyclic: To show that the AMSG is A — acyclic and T' — acyclic we appeal to
Theorem 4.1 of Barker [6]. This theorem states that if a scheduler algorithm can
satisfy Proposition 5.2.1 and Lemma 5.2.1 then it produces histories with acyclic
AMSGs. The AGS is one such scheduler so the acyclicity of the AMSGs is proven.
Family order discrepancy free: Next, we must show that the AMSG is family
order discrepancy free. Assume that a family order discrepancy does exist. Then
there exists a path GTi(p) — . =G, — ... — GTjpy in the AMSG where GT; is
a child of GT; and GT} is not a descendent of GT;. Two cases are possible:

Case 1: GT is not a member of G1'F,. Each arc into or out of a GT node repre-

sents a conflict between GSTs of the nodes at some site. If all of the conflicts occur
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at the same DBMS then Proposition 5.2.1 is violated. Hence, at least one GT node
(other than GT; and GT;) on the path conflicts at two different sites. Without loss
of generality, let this be GT}). Consider the submission of one of GT}’s conflicting
GSTs. Since every GT on this path overlaps the candidate set would include every
GTF on the path. Thus, the site of the other conflicting GST of GT} would in-
tersect with a candidate GTF and the GST would not be submitted. The same is
true for the submission of the other GST. Hence, GT} must be a member of GTF,.
Case 2: GT} is a member of GTF), but is not a descendent of G7;. From case (1)
above we know every GT on the path is a member of GT F,,. Furthermore, we know
that none of the nodes represent LTs. If there did exist a LT then Proposition 5.2.1
would be violated. As a result of GTRM family embedment we know that there is
only one GST submitted to each site accessed by GT'F,. Since G'T; executes a con-
flicting operation before another family member G'7T,, it must have been embedded
before GT,. This principle can be applied to GT, and the family member GT), that
it conflicts with. Hence, GT; is embedded before GT, as well (if they access similar
sites). If follows that GT; is the “oldest” with respect to embedment, GT; is the
“youngest”, and GT}, is between them. However, this violates Proposition 5.2.2.
Hence, G'T}, must be a descendent of GT;.

Causal discrepancy free: Finally, we must show that the AMSG is causal dis-
crepancy free. Assume the AMSG contains a causal discrepancy. That is, there is
a A, I' — path from GT; to GT; and a 7 — path from GT; to GT;

Suppose GT; and GT; are members of different families. Consider the submission
of GT;. GT; caused GT; to occur and so is active at one or more DBMSs when
GT; is received by the GS. There is a path from GTj to GT; so every GTF on this
path would have been in the candidate_ set when GT; was submitted. However,

line (10) of Figure 5.2 and line (9) of Figure 5.3 would not submit GT;’s GSTs but
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would block them until GT;s family completes. Thus, GT; and GT; must belong to
the same family.

The path must contain some GT}, not in the family or else GT};’s embedment order
would be earlier than GT;’s which could never occur (see case (2) of family order
discrepancy free section). Suppose that the conflict arcs of GT} occur at two differ-
ent DBMSs. Every GT on the path would be in the candidate set when GT), was
submitted and GT}’s GSTs would be blocked (see case (1) of family order discrep-
ancy free section). Hence, every GT not in the family and on the path conflicts at
the same DBMS. This implies that operations of GT; precede those of G7} which
precede those of G'T; at some DBMS. This violates Proposition 5.2.1. Therefore,
the AMSG is causal discrepancy free and the theorem is proved. |
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Conclusion

Trigger and transaction management issues in active multidatabase systems are
studied in this thesis. This thesis has contributed in a number of important ways.
Barker’s formal model of multidatabase system is extended to a formal model of
active multidatabase system. This paradigm uses global triggers to automatically
perform database actions when certain conditions in the database arise. Global
triggers have a coupling mode associated with them which indicates how the trigger

is to be executed with respect to the triggering transaction.

Histories in this thesis are considered correct if they are AMDB-serializable.
AMDB-serializability is an extension of Barker’s MDB-serializability. The exten-
sions include restrictions to ensure transaction families are ordered properly and
that causally dependent transactions appear to have executed after their triggering
transactions. Additionally, a new active multidatabase serializability graph (AMSG)
1s used to simplify the process of determining whether a multidatabase history is
AMDB-serializable. An AMDB-serializability theorem is presented and its correct-

ness proved.
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Trigger execution and event detection mechanisms are presented in this thesis.
A unique method of event detection is used where the global subtransactions signal
when simple events of global triggers occur. The Global Trigger Manager receives
these messages and decides which global triggers to execute. Special techniques for
subtransaction embedment are used to overcome deadlock anomalies which may
arise from the full dependency coupling mode. A major result of this research is
the ability to detect complex events that span more than one local database, even
if the databases are heterogeneous. All of this is accomplished without a violation

of local autonomy.

This thesis also contributes by presenting a scheduler algorithm (AGS) which
ensures AMDB-serializable executions. This algorithm is a modification of Barker’s
AGSS which ensures MDB-serializability. The algorithm works by scheduling at
the global subtransaction level as opposed to the traditional read/write level. The
Active Global Scheduler is proved correct by demonstrating that any arbitrary

history produced by it is AMDB-serializable.

Many aspects of trigger and transaction management are not discussed in this
thesis. Some of these open research problems are enumerated by Barker [6]. These

include:

1. The formation of global subtransactions from a global transaction.

2. Consideration of heterogeneity in this research. Certain aspects of local data-
bases may lend to an improvement in transaction management. Specifically,
would it be possible to exploit a local system that already has built-in event

detection.

3. The global scheduler could incorporate semantic information to increase con-

currency. This would involve detecting the meaning of a subtransaction and
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scheduling accordingly.

4. The full autonomy assumption could be relaxed. This would allow more
modifications to the local databases that should reveal ways of improving

concurrency and reliability. However, this may not always be possible.

There are also many open problems related to the original work presented in this
thesis. Barker’s [6] ideas for reliability and recovery will have to be extended to fit
the work of this thesis. This includes adding functionality to the Global Recovery
Manager so that it can cope with failures such as lost signals and queries or aborting
subtransactions. Furthermore, the GRM will have to use the Dependency Graph
(DG) to control commitment and abortion of Global Transactions. The GRM
would have the job of purging the DG and the Event Log (EL) when transactions

have completed.

A prototype of the algorithms should be developed so that performance studies
can be made. The results may reveal any inefficiencies in this work so it can be
optimized. This includes implementing the Global Trigger Manager algorithms as
well as the Active Global Scheduler algorithm. These results can also be compared
to the simulation results of Barker’s work to get a “feel” for how much of an increase

in overhead the active techniques introduce.

This work assumed that trigger events were restricted to read and write events
or complex combinations of events such as conjunction and disjunction. We did not
address the issue of temporal event detection in a multidatabase environment. An
example temporal event is “@3:00pm” which occurs at 3 oclock every day. The fact
that each DBMS has its own clock makes this a very difficult area of distributed
research. Also, this thesis did not allow events such as program executions to fire

triggers.
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The coupling modes presented in this thesis provide a reasonable amount of
flexibility in describing how a trigger should be executed. Additional coupling
modes may be desired to achieve other types of trigger executions. This may lead
to drastic changes in the algorithms presented depending on the nature of the modes

created.

This thesis assumes that local database systems are initially not active. Future
work could involve using the existing active components of a local database system
for trigger management at the multidatabase level. This could improve efficiency
of event detection. However, this may not be possible without a further violation

of autonomy.

Some ideas of Arizio et al. [5] could be applied to this work. One in particular
is the analysis of local transactions for possible fired triggers. If a local transaction
could never fire a trigger then it remains a local transaction. However, if the local
transaction could potentially fire one or more triggers then it would become a global

transaction with one GST.

Finally, the results of this thesis should be considered with other multidatabase
architectures and models. The result that local autonomy is not violated in this

approach makes it worthy of attention.

6.1 Interdatabase Dependencies

The model and algorithms described in this thesis are important research in the
field of multidatabase systems. Maintaining interdependent data in these systems
in a way such that the autonomy of the local systems is not violated is a difficult

and open problem. The ideas of this thesis could be used to solve that problem.
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Consider Example 1.1.1 from Chapter 1. A multidatabase system consisting of
a phone company database and a construction company database has two inter-

database dependencies:

Project X copyl == Project_X _copy?
Project X _cost < Project Y _cost

Using our model, triggers are required to handle these constraints. The following

triggers are used for the first constraint:

Global Trigger 1 = Action: update Project X_copy2 with new value
Event: update to Project X _copyl
Coupling Mode: Full Dependency

Global Trigger 2 = Action: update Project X _copyl with new value
Event: update to Project_X_copy?2
Coupling Mode: Full Dependency

When an update occurs to either copy one of the triggers will fire to update the

other copy. The second constraint requires only one trigger:

Global Trigger 3 = Action: if ( new value > Project_Y_cost ) then abort
Event: update to Project X _cost
Coupling Mode: Full Dependency

An update to Project_X_cost will cause the action to be executed in a global trans-
action. The action checks if the new value exceeds the cost of project Y and if so
the transaction aborts. The full dependency coupling mode is used so the abort

will cause the updating transaction to abort.
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Special higher level constructs could be set up for common types of interdatabase
dependencies to ease the complexity of creating multiple triggers to handle one task.
The equality constraint is the most common type of dependency in multidatabase
systems. An example of such is the first constraint of Example 1.1.1. Our higher
level construct could be: equality_dependency(Project X _copyl, Project X _copy?2).
The GTRM would interpret this correctly and setup and submit the appropriate

update transactions whenever one copy is updated.

Other types of dependencies that could be handled include aggregate, referential,
and existence dependencies. For example, suppose the dependency C=average(D;)
exists on the multidatabase. Triggers could be setup to fire whenever a D; is
updated. The action of these triggers would update C with the correct average of

the D;s.

Referential integrity is also very important. Suppose emp; is a data item on
some local database which contains employee information regarding one employee.
On another database exist several payroll records for this employee. If a user
deletes the emp; record then the payroll records will exist without an employee
record. Triggers could be used to delete the payroll records (or take some other

action) when the emp; record is deleted.

Currently this model can only support immediate consistency. That is, inter-
database dependencies are always satisfied. However, often it is not necessary to
be so severe. It may Ee acceptable to let dependent data become inconsistent and
only maintain the constraint periodically. This type of consistency is called eventual
consistency. For example, the first constraint of Example 1.1.1 could be enforced
once every two hours or once every five updates. The copy may be slightly out
of date but is still acceptable for some purposes. The GTRM would require some

modifications so it could “delay” triggers or track the number of times an event
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occurs on an inter-transaction basis.

Many of the dependency ideas discussed require the ability for transactions to
communicate with each other. This is necessary for even simple constraints such
as Project X _copyl == Project_X _copy2. To maintain this constraint the update
trigger must know the value that is written to the first copy so that it may correctly
update the second copy. The message sending mechanisms of Chapter 4 could be

modified to handle these situations but this is beyond the scope of this thesis.

The interdatabase dependency problem is a very important one in multidatabase

systems. Much research is required to adequately cope with this problem.
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