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Abstract

Recently, interest in the Graphics Processing Unit (GPU) for general purpose par-

allel applications development and research has grown. Much of the current research

on the GPU focuses on the acceleration of regular problems, as irregular problems

typically do not provide the same level of performance on the hardware. We explore

the potential of the GPU by investigating four problems on the GPU with regular

and/or irregular properties: lookback option pricing (regular), single-source shortest

path (irregular), maximum flow (irregular), and the task matching problem using

multi-swarm particle swarm optimization (regular with elements of irregularity). We

investigate the design, implementation, optimization, and performance of these al-

gorithms on the GPU, and compare the results. Our results show that the regular

problem achieves greater performance and requires less development effort than the

irregular problems. However, we find the GPU to still be capable of providing high

levels of acceleration for irregular problems.
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Chapter 1

Introduction

For decades, the gaming and graphics industries have driven the evolution of the

Graphics Processing Unit (GPU). Essentially the only users of GPUs, these industries

pushed the performance and parallelism of the GPU to greater heights, year by year.

With the introduction of the programmable shader, however, the GPU became open

to General Purpose GPU (GPGPU) applications. Now it was possible to execute

algorithms that did not belong to the gaming or graphics world on a GPU. With the

more recent addition of frameworks such as CUDA and OpenCL, from Nvidia [36] and

Khronos Group [14] respectively, developing GPGPU applications became even easier.

The result was a surge of interest in GPGPU applications, and an explosion of research

into the capabilities and potential of the GPU for general purpose applications.

We originally considered the GPU not only because it was a new architecture

for parallel computing, but also because it provides us with a tremendous level of

exploitable parallelism and computational performance. Nvidia [33], for example,

measures the peak performance of a modern, high-end GPU (GTX 580) at slightly

1
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over 1.5 TFLOPS (Trillions of FLoating Point Operations per Second), whereas a

modern high-end multi-core CPU from Intel ranks in at under 250 GFLOPS (Mil-

lions of FLOPS). To lend further credence to this performance gap, Suda et al. [50]

compared a high-end (at the time) GPU to a single node of the T2K Todai supercom-

puter (containing four quad-core processors). They concluded that the GPU offers

power savings, improved single-precision floating point performance, and ten times

lower cost compared to the supercomputer node.

Unfortunately, not all types of algorithms are guaranteed to fully exploit the GPU

and harness this tremendous power. We note here two classifications of problems: reg-

ular and irregular. Regular problems feature a very structured, predictable nature in

terms of both program flow and memory accesses. Consider our matrix-vector multi-

plication example in Figure 1.1. We know beforehand exactly what computations are

required in order to generate the output vector. We know the computational steps

of the basic tasks (computing an element in the output vector), and we know exactly

how many of these tasks we will require. As a result, we can generally optimize an

algorithm for solving this problem for a given architecture easily. In a multi-processor

environment, for example, we may simply have each processor compute the resulting

elements for a given number of unique rows in the matrix.

In our regular problem example, we note that the operations and data access

patterns required to compute any given element in the result vector are exactly the

same. We compute each task, or computation of an element in the result vector, in

the exact same way, only changing the data we access. As a result, we develop an

algorithm with data-parallel properties. Data-parallel implies that we can execute the
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Figure 1.1: An example of a regular problem: matrix-vector multiplication

same instruction across multiple pieces of data in parallel. We provide an example of

data-parallel processing in Figure 1.2. Note how each threads “feeds” a unique piece

of data through the same instruction in parallel.

In the literature, a large amount of research has been dedicated to studying data-

parallel algorithms. These types of algorithms are well suited for the GPU, due

to the very data-parallel nature of the architecture which we will discuss further

in Chapter 2. Regular, data-parallel algorithms allow one to exploit the thread-level

parallelism of the GPU very easily and observe significant performance improvements.

Irregular problems, on the other hand, feature very unpredictable and unstruc-

tured properties for their program flow and data access patterns. They feature dy-

namic changes at run-time. Such problems typically (but not always) use pointer-

based data structures such as graphs. With irregular problems, we do not know

the interactions between tasks, or even the number of total tasks, ahead of time.

Along with these unpredictable computations, these problems further features very

unpredictable and unstructured memory accesses.

We use the breadth first search, shown in Figure 1.3, to illustrate the features

of an algorithm with irregular properties. Until we reach a vertex and prepare to
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Figure 1.2: An example of data-parallel computations

traverse its edges, we do not know what data we will need next. We do not know

how many edges we will traverse until we have completed a full breadth first traversal

of the graph, and we do not know the general structure of the vertices and edges at

compile time (given an unstructured graph). Furthermore, the path(s) we traverse

through the graph may differ depending on which vertex we choose to start with.

The data itself defines the structure of the computations and, as a result, we cannot

easily optimize this algorithm for the particular nuances of an architecture, especially

when it comes to memory accesses and load balancing. This holds true for the GPU,

where we see reduced performance with irregular problems due to their unstructured

and unpredictable nature.

Irregular problems have been studied extensively for CPU-based architectures.

The burden of parallelism, however, has generally been left to smart, automatic com-

pilers rather than the developer. The Galois system from Kulkarni et al. [26], for
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Figure 1.3: An example of an irregular problem: breadth first search

example, investigated the potential of automatic, dynamic (or optimistic, as they

refer to it) parallelization of irregular problems. The system uses a set of parallel

primitives which encapsulate parallel operations in order to invoke parallelism. The

authors test their method against two irregular problems and show promising results.

They further mention that the traditional static methods of automatic parallelization

are ideal for regular problems, but are entirely unsuitable for irregular problems.

Kulkarni et al. [25] later investigated a number of irregular parallel algorithms

using a tool they developed called “ParaMeter”, which searches a given algorithm for

parallelism and generates parallelism profiles of the algorithm. They then use these

profiles to determine where the available parallelism lies in an algorithm, or, perhaps,

to investigate if an algorithm contains a reasonable level of exploitable parallelism

to begin with. These examples show that as of two years ago, there has been much

ongoing investigation into the parallelization of irregular algorithms.

The study of irregular problems on the GPU, however, remains in its infancy.

Due to the optimal mapping between regular problems and the GPU, the majority
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of existing GPU research focuses on these types of problems. In general, the GPU

provides significant performance gains on regular problems when compared to tradi-

tional CPU implementations. For example, Preis et al. [39] investigate a few financial

algorithms on the GPU that contain regular properties. The authors measure an

approximate 80 times performance improvement on the GPU when compared to a

sequential CPU implementation for the highest performing algorithm. An earlier pa-

per by Fujimoto [11] investigated dense matrix-vector computations on the GPU and

saw up to 32 times better performance on the GPU compared to a sequential CPU

implementation.

In this work, we investigate the design, implementation, and performance of algo-

rithms for both regular and irregular problems on the GPU. In order to accomplish

this we closely investigated four different problems: lookback option pricing, layered-

network construction, the maximum flow problem, and the task matching problem.

Within this set of problems we have a regular problem (lookback option pricing),

a simple irregular problem (single-source shortest path), a complex irregular prob-

lem (the maximum flow problem), and a problem that is computationally difficult

and requires heuristics to solve (task matching). The algorithms we choose to solve

these problems maintain the same regular or irregular properties of their respective

problem. In this respect, we choose the binomial lattice method for pricing lookback

options, a breadth-first search to solve the single-source shortest path problem, the

MPM maximum flow algorithm for solving the maximum flow problem, and a multi-

swarm particle-swarm optimization algorithm for solving the task-matching problem.

We believe this diverse choice of problems and algorithms will help to show the dif-
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ferences in strategy and effort required to optimize regular versus irregular problems

for the GPU, as well as the general performance possible on the architecture.

This, then, is where we make our major contribution with this work. By describing

the design and extensively investigating the performance of a variety of problems on

the GPU, we build a solid foundation of knowledge regarding what works well on the

GPU, and the general capabilities of the architecture. We present the issues associated

with regular and irregular problems, discover methods for improving the performance,

and provide an in-depth examination of the performance each implemented algorithm

achieves on the GPU. By experimenting with a number of algorithms we build a

comparison of the major differences between algorithms with regular and irregular

properties, such as the effort required for optimization, the performance achieved,

and even the general structure of the GPU algorithms. We chose to investigate the

GPU not only for its power, but also because we believe that the results from our

work will provide greater insight and understanding for the relatively young GPGPU

area, an area of parallel computing that continues to grow.

We organize this thesis as follows: Chapter 2 starts with a brief introduction into

parallel systems, describes the GPU architecture and CUDA framework, and con-

cludes with a discussion on some parallel computing primitives and speedup. Chap-

ter 3 describes the first problem we investigate, the lookback option pricing problem,

using the binomial lattice algorithm. Chapter 4 contains our investigation of the

breadth first search algorithm for solving the single-source shortest path problem,

and Chapter 5 discusses the MPM algorithm. We complete the chapters dedicated

to the problems we investigated with Chapter 6, which provides our work on a multi-
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swarm particle swarm optimization algorithm for solving the task matching problem.

In Chapter 7 we compare the algorithms we looked at, and discuss what similarities

and differences we observed in terms of design, implementation, and performance.

Finally, we discuss our conclusions and routes for future work in Chapter 8.



Chapter 2

Parallel Computing and the GPU

In this chapter, we discuss the relevant details of the GPU architecture, the CUDA

framework, and two basic parallel algorithms that we use in our work. As we im-

plemented and tested all of our work on an Nvidia GTX 260 GPU (based on the

GT200 architecture), all information (and hard numbers) in this chapter pertains to

this particular model. Because the GPU is a relatively new architecture in the general

purpose parallel algorithms arena, we start with a brief discussion on the two general

categories of parallel systems and where the GPU fits in.

2.1 Parallel Systems

We divide the parallel systems used in parallel computing into two major camps,

homogeneous and heterogeneous, based on the processing elements contained within

the system. Homogeneous systems are the most common systems, and are used very

widely to this day. These include hardware like the traditional multicore processor

9
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which contains a number of equivalent, or symmetrical, cores. The system is homoge-

neous, it does not contain any processing elements that differ. Heterogeneous systems,

on the other hand, contain processing elements that differ from others within the same

system. They are not composed of the same hardware throughout, but contain other

processing elements that may be more suited to specialized tasks.

The GPU falls under the heterogeneous systems category. While the GPU itself

is composed of a number of identical processing elements, it, alone, does not compose

the entirety of the system. The GPU requires a traditional CPU to drive the com-

putational processes we want to execute on it. In effect, the GPU is an accelerator:

when present in a system, we design algorithms that the main CPU will schedule

for execution on the GPU in order to accelerate tasks. We need both a CPU and a

GPU within a system in order to execute algorithms/code on the GPU, creating our

heterogeneous system.

Outside of definitions based on processing element composition, Flynn [8], with his

taxonomy, splits up parallel computing systems into three categories 1 based on their

execution capabilities. The two we are concerned about here are Multiple Instruction

Multiple Data (MIMD) and Single Instruction Multiple Data (SIMD). With MIMD,

each processing element executes independently of one another. In essence, MIMD

allows for each processing element to execute different instructions on different data

from one another.

SIMD, on the other hand, involves each processing element executing in lock-step

with one another. That is, every processing element executes the same instruction at

1Flynn describes four total categories of computing systems, however the Single Instruction Single
Data category is a uniprocessing system, rather than a parallel system
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the same time as one-another, but executes this instruction on different data. MIMD

exploits task-level parallelism (achieving parallelism by executing multiple tasks at

one time), while SIMD exploits data-level parallelism (achieving parallelism by taking

advantage of repetitive tasks applied to different pieces of data). As we discuss in the

next two sections, the MIMD style of system is very different from that of the GPU,

which follows the SIMD paradigm.

2.2 CUDA Framework

Prior to discussing the GPU architecture itself, we will cover some details of the

CUDA framework. Nvidia developed CUDA [36], or the Compute Unified Device

Architecture, in order to provide a more developer-friendly environment for GPU

application development. CUDA acts as an extension to the C language, providing

access to all of the threading, memory, and helper functions that a developer requires

when working with the GPU.

The GPU hardware provides us with a tremendous level of exploitable parallelism

on a single chip. Not only does a standard mid-to-high end GPU contain hundreds

of processing cores, but the hardware is designed to support thousands, hundreds of

thousands, even millions of threads being scheduled for execution. CUDA provides

a number of levels of thread organization in order to make the management of all

these threads simpler. At the top level of the thread organization we have the thread

grid. The thread grid encompasses all threads that will execute our GPU kernel (the

application we run on the GPU). To get to the next level down, the thread block, we

split up the threads in the thread grid into multiple, equal-sized blocks. The user
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Figure 2.1: 2D Organization of thread grid and thread blocks. [33]

specifies the organization of threads within a thread block and thread blocks within

a grid. What this means for a thread block is that we may organize and address

threads in a one, two, or three-dimensional fashion. The same holds true for thread

blocks within a grid, the user specifies one, two, or three-dimensional organization

of the blocks composing the thread grid. Figure 2.1 provides an example of two-

dimensional organization of a thread grid and thread blocks.

At the lowest level of thread organization we have the thread warp. Equal sized

chunks of threads from a thread block form the thread warps for that block. Unlike

the size or dimensions of a block/grid, the hardware specifications predetermine the

size of a warp, and the threads are ordered in a one-dimensional fashion. For the

GT200 (and earlier) architecture, 32 threads form a warp. The hardware issues each
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thread within a warp the same instruction to execute, regardless of whether or not

all 32 threads have to execute it (we discuss this concept further in Section 2.3).

When branching occurs, threads which have diverged are marked as inactive and do

not execute until instructions from their path of the branch are issued to the warp.

Algorithms for GPUs should therefore reduce branching, or ensure that all threads

in a warp will take the same path in a branch in order to maximize performance —

a difficult task when working with the unpredictability of irregular algorithms.

Typically, a parallel application will involve some degree of synchronization. Syn-

chronization is the act of setting a barrier in place until some (or perhaps all) threads

reach the barrier. In essence, this ensures that the threads in question will all be at

the same step in the algorithm immediately after the synchronization point. CUDA

provides a few mechanisms for synchronization based around the thread warp, block,

and grid. First, each thread in a warp is always synchronized with all the other

threads in that same warp as they all receive the same instruction to execute. Sec-

ondly, CUDA provides block-level synchronization in the form of an instruction. By

using the __syncthreads() instruction, threads reaching the instruction will wait

until all threads in the thread block have also hit that point.

Unfortunately, CUDA does not provide any mechanisms within a kernel to syn-

chronize all threads in a grid. As a result, we must complete execution of the kernel

and rely on the CPU to perform the synchronization. CUDA provides two methods

for accomplishing this:

1. Launching another kernel — After invoking one kernel, attempting to launch

another will result in the CPU application halting until the previous kernel has
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completed execution (effectively “synchronizing” all threads in the thread grid,

as they must all have completed execution of the first kernel).

2. Using the cudaThreadSynchronize() instruction in the CPU application —

Essentially the same as the above, but explicitly controlled by the user. Again,

the CPU application will halt here until the previous kernel has completed

execution.

To conclude this section we make note of a few memory instructions that CUDA

provides, as we use them in our work in order to avoid read-after-write and write-

after-write memory hazards. These hazards occurs when multiple threads attempt to

perform some computations and store the result into the same location in memory.

A second thread may read outdated data while the first thread has not completed

writing the updated data to the memory location. This second thread then uses the

outdated data for its computations, rather than the updated data it should have read

(from the first thread). In order to remove these potential errors, we use CUDA’s

AtomicX operations, where X represents the actual operation we wish to perform

on the data (such as OR or AND). This atomic memory operation forces each thread

executing it to perform their accesses/transactions in a serial fashion, ensuring that

each subsequent thread works with the most recent value in that memory location.

2.3 GPU Architecture

In this section we move on to a description of the GPU architecture itself. Further,

we connect the architectural details of the GPU with the CUDA framework informa-
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Figure 2.2: General Layout of a Streaming Multiprocessor

tion we discussed in the previous section. We begin with the GPU as a whole, which

is composed of two separate units: the core and the off-chip memory, connected by

a proprietary and undisclosed interconnection network. At this moment in time we

are most interested in the units that compose the core of the GPU, the Streaming

Multiprocessors or SMs. As pictured in Figure 2.2, each SM contains eight CUDA

Cores, or CCs. These CCs are the computational cores of the GPU, and handle the

execution of instructions for the threads executing within the SM. SMs also contain

a multi-threaded instruction dispatcher, and two Special Function Units (SFUs) that

provide extra transcedental mathematic capabilities.

Execution of instructions on each SM follows a model similar to SIMD, which

Nvidia [33] refers to as SIMT, or Single Instruction Multiple Threads. In SIMT, the

hardware scheduler first schedules a warp for execution on the CCs of an SM. The

hardware then assigns the same instruction for execution across all threads in the
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chosen warp — only the data each instruction acts on is changed. This threading

model implies that all threads in a warp are issued the same instruction, regardless

of whether or not every thread needs to execute that instruction. Consider the case

where the threads encounter a branch: half of the threads in a warp take path A in

the branch, the other take path B. With SIMT, the hardware will issue instructions

for path A to all threads in the warp, even those that took path B. This represents an

important concept as threads in a warp diverging across different paths in a branch

results in a loss of parallelism — each branch is essentially executed serially, rather

than in parallel. That is to say, rather than having 32 threads performing useful

work, only a subset of the threads do work for path i, while the remaining threads

idle, waiting for instructions from their own path.

The importance of the thread block becomes apparent when we discuss them

in context of the SM. All of the threads within a thread block must execute entirely

within a single SM. This means that we (or the hardware) cannot split up the threads

in a thread block between multiple SMs. Multiple thread blocks, however, may exe-

cute on a single SM if that SM has enough resources to support the requirements of

more than one thread block.

Each of the SMs further contains 16 kilobytes of shared memory. This shared

memory essentially acts as a developer-controlled cache for data required during kernel

execution. As a result, the responsibility is on the developer to place data into this

memory space — there does not exist any automatic hardware caching of data (Nvidia

changed this in their Fermi [33] architecture, which introduced a hardware-controlled

cache at each SM). Nvidia [35] claims that accesses to shared memory are up to 100
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times faster than global memory, given no bank conflicts. As shared memory is split

into 16 32-bit wide banks, multiple requests for data from the same bank arriving

at the same time cause bank conflicts and, as a result, are serialized. In effect,

bank conflicts reduce the overall throughput of shared memory, as some threads must

wait for their requested data until the shared memory has serviced the requests from

previous threads. Shared memory is exclusive to each thread block executing on a

given SM. That is to say, a thread block cannot access the shared memory data from

another thread block, even if it is executing on the same SM.

Moving on to the other memory systems present within the GPU we have the

global memory. Global memory is the largest memory space available on the GPU and

is read/write accessible to all threads. Unfortunately, a significant latency, measured

by Nvidia [33] at approximately 400 to 800 cycles, occurs for each access to global

memory. Global memory accesses are not cached at any level, which serves to further

compound this latency issue. Thus, every access to global memory will result in the

same latency hit. The GPU contains, however, some auxiliary memory systems that

are cached at the SM level. Each SM has access to caches for the constant and texture

memory of the GPU. While these two memories are still technically part of global

memory (that is, data stored in these memories are stored in the global memory

space) their caches help to reduce the latency penalty by exploiting data locality.

Based on what we have learned about the memory systems within the GPU, we

clearly want to place an emphasis on exploiting shared memory as much as possible.

With comparatively fast access speed and no dependencies on data locality to miti-

gate high latencies, shared memory represents the most optimal location for storage.
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Unfortunately, we run into many situations where the small size of shared memory

results in insufficient storage space for the data required at a given moment in time.

Due to the stringent size constraints, along with the unpredictable nature of irregu-

lar algorithms, our irregular algorithms in particular rely heavily on global memory,

while still attempting to exploit shared memory where possible.

While global memory clearly represents a major area of performance loss due

to latency, there is one important technique we can use to mitigate the damage:

global memory coalescing. In order to understand how coalescing works, we must first

revisit the idea of a warp. As we described earlier, a thread warp is composed of 32

threads, all of which are given the same instruction to execute. In the worst case, we

would expect there to be 32 individual requests to global memory if the instruction

in question requires data from global memory. With coalescing, however, we have the

ability to reduce the total number of requests down to only two requests in the best

case. The reason for this lies with how memory requests are handled at the warp

level: they are performed in a half -warp fashion. That is, 16 threads request data

from memory first, followed by the remaining 16 shortly thereafter. As a result, the

best scenario for coalescing combines all memory requests from each half-warp.

In the GT200 architecture, coalescing occurs when at least two threads in one half

of a warp are accessing from the same memory segment in global memory. This tech-

nique is very powerful and leads to tremendous improvements in the performance of

global memory. Unfortunately, data access patterns must be very structured in order

to ensure threads will access data from the same memory segment as one another,

something that is not guaranteed when working with irregular algorithms. The easi-



Chapter 2: Parallel Computing and the GPU 19

est way to achieve this result is ensuring that each thread accesses data from global

memory that is one element over from the previous thread’s access location. As we

will show, we make use of coalescing as much as possible in our algorithms in order

to achieve greater memory performance.

We close this chapter off with a brief discussion on the isolation between thread

blocks enforced by CUDA. Recall that shared memory is exclusive to a thread block —

other threads in other blocks cannot access the shared memory allocated by the block.

Furthermore, there are no built-in mechanisms for communication or synchronization

between thread blocks 2. All of these items combine to show one of the main tenets

of CUDA: thread blocks are isolated units of computation. Threads within a thread

block communicate with one another, but they cannot readily communicate with

other thread blocks. Due to this lack of thread-grid-wide communcation, we will

show that our algorithm design changes from what it would otherwise be with full

communication functionality. In essence, we rely on multiple kernels for the processing

of an algorithm, rather than packing all program code into a single kernel.

2.4 Parallel Techniques and Performance Metrics

In this section we describe two of the basic parallel techniques that we use a

number of times throughout our GPU implementations. In essense, these techniques

form a base for many algorithms in parallel computing, and, true to this, we make

use of them in almost every algorithm we investigate. Following a description of these

2Of course, the availability of global memory means that there will always exist a method for
communication if desired. The latency of global memory coupled with the overhead of potentially
thousands (if not more) of threads accessing a single data element (say, as a synchronization flag)
results in an entirely unacceptable solution with a tremendous degree of performance degradation.
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techniques, we describe the speedup performance metric.

2.4.1 Parallel Reduction

A parallel reduction involves reducing a set of values into a single result, in parallel.

More formally, given a set of values, v1, v2, ..., vn, we apply some associative operator,

⊕, to the elements: v1 ⊕ v2 ⊕ ...⊕ vn, resulting in a single value, w. We consider the

structure of a parallel reduction to be that of a binary tree. At the leaf nodes, we

have the original set of values. We apply ⊕ to each pair of leaf nodes stemming from

a parent node one layer up the tree (closer to the root node), giving us the value for

that parent node. We repeat this process until we reach the root node, providing us

with the final result, w.

When we want to parallelize this reduction technique, we first note that layer i

of the tree (where the root node is layer 0, and the leaves layer log n) requires the

accumulated partial solution values from layer i + 1. This requirement results in

synchronization; we can compute one layer of the tree in parallel, but we must wait

for all threads to complete their processing of nodes in that layer before moving on

to the next. Figure 2.3a provides an example of performing an addition reduction

(that is, ⊕ = +) in parallel. Each subsequent array represents the next layer of

computations. In the first layer, we have the initial array. In parallel, we add up each

pair of elements (four parallel operations in total) and place the results back into

the array. The next layer we have two remaining parallel operations which we use to

add up the partial sums from the previous layer. Finally, we add the remaining two

partial sums together and end up with the final result in element zero of the array
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Figure 2.3: Two styles of parallel add reduction on an array of elements.

which contains the total sum of all initial values.

On the GPU, we typically perform a parallel reduction within a single thread

block if possible. This allows us to use thread block level synchronization rather than

the more costly thread grid level synchronization. As parallelism is plentiful on the

GPU, we assign one thread per node in the current layer of the tree. To further

optimize this algorithm for the GPU, we do not use the interleaving method shown in

Figure 2.3a but, rather, split the layer into halves, and work on one side (pulling data

from the other). We show this technique in Figure 2.3b. By working on contiguous

areas/halves we ensure coalescing takes place as we read data from global memory,

and bank conflicts do not occur as we read data from shared memory.
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Figure 2.4: Example of an additive scan initial value and result.

2.4.2 Scan

The scan (sometimes referred to as a “parallel prefix sum”) operation takes a

set of values, v1, v2, ..., vn and an associative operator, ⊕, and returns another set of

values, v‘1, v
‘
2, ..., v

‘
n such that v‘1 = v1, v

‘
2 = (v1 ⊕ v2), v

‘
3 = (v1 ⊕ v2 ⊕ v3), ..., v

‘
n =

(v1⊕v2⊕ ...⊕vn). We provide an example of the resulting data from a scan operation

where ⊕ = + in Figure 2.4.

While we implement the parallel reduction algorithm ourselves, we use the high

performance scan operation provided in the CUDA Data Parallel Primitives (CUDPP)

Library [43, 42] in cases where we require it. Sengupta et al. [41] thoroughly describe

and explain the design and optimization of the scan algorithm present within CUDPP.

The authors describe the build up from a warp-level scan, to a block-level scan, to

a grid/global-level scan. They emphasize further optimizations such as the increased

workload provided to each thread to better hide global memory latency, and the focus

on reducing per-thread register use to ensure that a large number of threads may be

active at one time within a block (which serves to further help hide the latency of

global memory accesses). We chose this library as it has been extensively optimized
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for the GPU and offers all the functionality we require.

2.4.3 Speedup

Speedup is a frequently used performance metric for parallel applications. Basic

speedup measures the difference in execution time for the same application when exe-

cuted on one processing element versus n processing elements. Equation 2.1 provides

the formula for speedup, where T1 is the execution time on one processing element,

and Tn the execution time on n processing elements.

S(n) =
T1
Tn

(2.1)

We believe that the standard speedup metric as shown in Equation 2.1 is unfair not

only for the GPU, but for parallel systems in general. When developing an application

for parallel execution, the developer generally ensures the application is optimized for

parallel execution. That is, we assume we have a parallel computing environment and

develop the application accordingly. Thus, executing such an application on a single

processing element and comparing its execution time against the same application

running on n processing elements does not provide very useful results. Instead, we

turn to absolute speedup, which we believe creates a more suitable environment for

comparison.

Unlike speedup, absolute speedup measures the difference in execution time be-

tween the parallel application running on n processing elements, and an optimal

sequential application. Thus, two applications must be created in order to measure

absolute speedup: the parallel application, and a sequential application. In this case,

both implementations are designed around the type of system (parallel or sequential)
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they will execute on, resulting in a fairer measurement. The formula for absolute

speedup replaces T1 from Equation 2.1 with Ts, where Ts is the execution time of the

sequential application.

Throughout this work we use the absolute speedup metric when measuring per-

formance, but refer to it as “speedup” for simplicity.
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Binomial Lattice for Pricing

Lookback Options

In this chapter we discuss our work on lookback option pricing for GPUs. The

pricing of options represents a fundamental problem in finance and is useful for a

variety of purposes from risk analysis to portfolio management. Due to the dynamic

and volatile nature of the market, pricing options quickly represents an advantage for

the players in the market. As a result, advanced algorithms and hardware platforms

are always in demand for real-time pricing.

We chose to investigate this problem on the GPU not only for the reasons de-

scribed above, but also because of the structured nature of a particular solution to

this problem. As we will explain, we investigate the binomial lattice method of pricing

options due to its very regular, very structured nature. This binomial lattice algo-

rithm serves as a helpful benchmark to determine the level of effort required for the

optimization of a regular problem, as well as a base measure of performance/speedup.

25



Chapter 3: Binomial Lattice for Pricing Lookback Options 26

We first lead in with a description of option pricing, followed by the related work

in this area, and conclude with details on the mapping and implementation of our

algorithm itself.

3.1 Introduction to Option Pricing

Financial options form a contract between two parties. The holder of an option

gains the right to exercise the option up to the end of the contract period, otherwise

referred to as the maturity date of the option. On the opposite side, we have the

writer of an option. While an option grants its holder the right to exercise, an option

obligates its writer to follow the whims of the holder. If the holder decides to exercise

the option, the writer must comply, and if the holder decides not to exercise the

option, the writer cannot force the holder to exercise.

We categorize options into two main types: call options and put options. A call

option gives the holder the right to buy an underlying asset (such as a stock) at

a price specified at the time of writing the option (the strike price). A put option

provides the opposite scenario; it gives the holder the right to sell an underlying asset

at a pre-specified price.

Alongside these two types of options are a variety of different styles as well. Eu-

ropean and American represent the two “vanilla” (simple) option styles. A European

option grants the holder the right to exercise the option only at the maturity date,

while the holder of an American option may exercise at any point in time during

the contract period. There exist other styles of options as well, generally referred to

as exotic options, which include Asian options, chooser options, and the particular
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exotic option style we focus on in this Chapter: lookback options.

In terms of exercise style, lookback options may be treated as either a European or

American option. For this work, we consider the American-style put lookback option.

The payoff of a lookback option is based on the maximum (for a put) or minimum

(for a call) value of the underlying asset between the purchase date and the maturity

date of the option.

We are, of course, interested in the pricing of these lookback options. We define an

option price as the premium associated with the option — the price the holder must

pay to the writer in order to purchase the option. In other words, the option price

represents the cost associated with the actual purchase of the option. A variety of

methods exist for pricing options of various styles, and we explore one such technique

in this work: the binomial lattice method for option pricing.

3.1.1 Binomial Lattice Method for Option Pricing

The binomial lattice, as described by Cox et al. [3], is a popular method for

approximating the movement of an underlying asset’s value, which enables the pricing

of an option. A binomial lattice is essentially a binary tree, where the root represents

time zero (of the option contact) and the leaf nodes represent the maturity date of

the option. The binomial lattice method assumes the value of the underlying asset

follows some random walk from the root node to a leaf node of the lattice.

As we move from one node in the lattice to the next, we have a choice of moving

“up” or “down”. An up movement corresponds to an increase in the value of the

underlying asset, S and a downward movement a decrease in the value. We represent
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Figure 3.1: Structure of a three-layer binomial lattice.

the increased value via an upward movement with u, and the decreased value via a

downward movement with d. The lattice also contains a probability (based on the

volatility of the asset) of an upward movement, p, and a probability of a downward

movement, 1−p. We compute a value for p using the formula provided by Haug [16]:

p =
er∗δt − d
u− d

We provide a simple example of a three-layer binomial lattice structure in Fig-

ure 3.1. We note that this figure does not exactly resemble a binary tree, as we

combine nodes at each layer, forming a recombining binomial lattice. This combining

of nodes helps to reduce redundant computations as we move through the lattice.

The binomial lattice supports this recombining strategy as an upward movement fol-

lowed by a downward movement in the lattice is equivalent to a downward movement

followed by an upward movement. For this reason, we combine these equal nodes at

each level in the lattice, resulting in the structure shown in Figure 3.1.

The binomial lattice method offers us a very iterative, structured algorithm to
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work with. We start at the leaves of the lattice, and work backwards, layer-by-layer,

until we reach the root node (at which point we compute the option price). We label

the root node as layer zero, and the leaf nodes as layer L − 1, where L equals the

total number of layers in the lattice. Hence, any node in layer i + 1 represents one

time step in the future from any node in layer i. As we reach a node at each layer we

need to compute the option payoff at that node. As an example, for a European-style

option we compute the option payoff of a node in layer i of the lattice based on the

option payoff value of the two adjacent nodes in layer i+1 using the formula provided

by Haug [16]:

Ci,j = e−r∗δt ∗ (pCi+1,j+1 + (1− p)Ci+1,j−1) (3.1)

where r is the risk-free interest rate, δt is the change in time between each level in

the lattice, p is the probability of an up movement in the lattice, and Ci,j represents

the option payoff for node j at level i in the lattice. Essentially, the option payoff at

Ci,j is influenced by the up and down movements of the underlying asset at a future

time (level i + 1) as well as the probability of either movement. Of course, we use

an alternative formula for the leaf nodes, as they do not have any adjacent nodes

at a higher level to use in the option payoff calculation. For leaf nodes, the payoff

equation (for a put option) becomes:

Ci,j = max(S −K, 0)

where S is, again, the price of the underlying asset and K is the strike price of the

option.
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3.1.2 Pricing Lookback Options using the Binomial Lattice

While the basic binomial lattice works for vanilla American and European options,

we cannot use it as-is for American-style lookback options. Hull [17] (Technical Note

13) describes how to modify the binomial lattice method in order to support lookback

option pricing. Hull suggests a new parameter, Y (t). Y (t) takes the place of the asset

price at each node in the lattice, and the author defines it with the following equation:

Y (t) = G(t)/S(t) where G(t) represents the maximum asset price achieved up to time

t, and S(t) the current asset price at t. We compute the value for Y (t) at each node

in the lattice using the following rules:

1. Y is equal to 1 at the root node of the lattice.

2. When we move to the next time step from a node where Y = 1, Y = u if the

move is an upward move, or 1 if the move is a downward move.

3. When we move to the next time step from a node where Y = um for m ≥ 1,

Y = um+1 for an upward move, or Y = um−1 for a downward move.

We provide an example of the modified binomial lattice in Figure 3.2, complete

with the associated Y (t), G(t), and S(t) values for each node, given that u = 1.12.

We orient the lattice in the traditional manner in Figure 3.2, where increasing values

at each node (represented by Y (t) instead of the asset value in this case) are preceded

by an upward movement in the lattice. However, we note a few key differences from

the original binomial lattice. First, we stress that while an upward movement in the

original binomial lattice was paired with an upward movement in the asset price, an

upward movement in this modification of the binomial lattice represents a downward
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Figure 3.2: An example of the binomial lattice for an American put lookback option
and the associated Y (t), G(t), and S(t) values for each node.

movement in the asset price, but an upward movement in Y (t), our new “parameter

of importance”. This reversal results from how we construct Y (t). In order for Y (t) to

increase, S(t) must decrease, as G(t) cannot, by definition, decrease (recall that G(t)

represents the maximum asset price observed thus far, hence it can only increase).

As a result, a downward movement in the lattice corresponds to an increase in the

value of S(t).

As a further example, consider the first choice of movement from the root node,

with values S(0) and G(0). Clearly, G(0) = S(0) as the highest asset price we

have observed thus far can only be the initial asset price. If we take a downward

movement in the lattice (in Figure 3.2 this is simply a horizontal movement as Y (t)

will not change), then S(i) increases. This increase implies that S(i) > S(0), and

G(i) = S(i), and, therefore Y (i) = 1.

The modifications to the binomial lattice do not end with this new parameter,

however. We must also modify the option payoff formula for each node to correspond

with the formula required for lookback option payoff/pricing. We replace the original
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formula defined in Equation 3.1 with one defined in Hull [17], resulting in the following

formula:

Ci,j = max(Yi,j − 1, e−rδt ∗ ((1− p)Ci+1,j+1d+ pCi+1,j−1u)) (3.2)

for j ≥ 1, and

Ci,j = max(Yi,j − 1, e−rδt ∗ ((1− p)Ci+1,j+1d+ pCi+1,ju)) (3.3)

for j = 1. All parameters remain the same as in the original binomial approach, and

i represents the current time step (which, to reiterate, is further represented by a

vertical layer in the lattice). The introduction of u and d represent the proportional

movement of the asset price, up or down respectively, at each time step (layer in the

lattice).

The first argument inside the max function on the right-hand side of each equation

represents the local payoff, or option value at that particular node, in terms of Y .

The second argument provides the computed option value for node Ci,j based on its

children nodes at Ci+1,j+1 and Ci+1,j−1. Put another way, we weight the local payoffs

at nodes Ci+1,j+1 and Ci+1,j−1 by their probabilities of achieving these payoffs. As

these children nodes represent a time in the future (from Ci,j), we discount this

weighted sum in order to simulate its value at the current layer, i, in the lattice. We

then compare the resulting discounted option value with the local payoff at that node,

and denote the maximum of these two values as the option value Ci,j.

Due to the very structured, regular nature of the binomial lattice, we believe it

represents a “good fit” for the GPU architecture. We compute each time step/layer

in the lattice synchronously, and we know ahead of time what data will be required at
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what step in the computations, hence the algorithm contains very regular, predictable

properties. This well-suited nature of the algorithm motivated us to choose to work

with the binomial lattice method on the GPU. We extended this choice to cover

lookback options, as they had not been previously studied on the GPU hardware.

Further, due to the ever-present need for faster and faster algorithms in the finance

industry, a comparison to sequential CPU will help to show how beneficial a GPU

may or may not be for financial applications.

3.2 Related Work

The traditional binomial lattice method for vanilla options has been studied on

the GPU in the past. Podlozhnyuk [38] provided one such example of the binomial

lattice method on GPUs using CUDA. The author describes a novel technique where

they divide the lattice into sub-trees. A thread block then processes each sub-tree

independently. Podlozhnyuk explains that this method allows for computations to

take place solely within shared memory. The author admits, however, that redun-

dant computations take place as a side effect of splitting the lattice into sub-trees.

The improved speed of shared memory, however, may more than compensate for

the redundant computations required. Unlike the work of Podlozhnyuk, we target

an alternative method for the binomial lattice method that exploits global memory

coalescing and removes all redundant computations.

Jauvion and Nguyen [23] further extended the work of Podlozhnyuk to the tri-

nomial lattice, an incremental improvement over the binomial lattice. In their case,

however, the authors investigate the potential for pricing one option per thread block,
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effectively pricing multiple options in parallel. The authors describe the GPU’s pre-

cision as being sufficient, and claim that they achieve four decimal points of precision

with 1000 time steps. Jauvion and Nguyen further show a speedup of up to 31.6 when

parallelizing the pricing of 64 options over 1024 time steps.

As discussed earlier, we base our work around the lookback option pricing method

described by Hull [17] (Technical Note 13). To the best of our knowledge, outside of

our own work by Solomon et al. [46], there does not exist any other existing work

studying the design, implementation, and performance of the binomial lattice method

for pricing lookback options on the GPU.

3.3 Option Pricing on the GPU

In this section, we discuss the actual design and implementation of our GPU

algorithm. As mentioned before, we do not follow the work of Podlozhnyuk [38] and,

instead, choose a design technique that exploits global memory coalescing instead of

shared memory and removes the redundant computations associated with dividing

the lattice up into sub-trees.

Furthermore, we exploit the synchronous, iterative nature of the binomial lattice in

our implementation. Computations start at the leaf nodes of the lattice and progress

backwards, layer-by-layer (synchronously), until we reach the root node and compute

the final option price. Due to this synchronous, layer-by-layer nature, each invocation

of our GPU kernel handles one layer of the lattice. In other words, an invocation of

our GPU kernel processes all nodes within a given layer, and, as a result, we require

N invocations of the GPU kernel in order to complete the processing of a lattice with
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N time steps/layers.

Although we are aware of the general structure of the computations, we have to

map these computations to threads on the GPU. As the GPU is a very highly parallel

architecture we take a fine-grained approach: we assign one thread to each node in

the current layer of the lattice being processed. As we cover a single layer with each

kernel invocation, this implies that we require only as many threads as there are nodes

within the current active layer.

Within a given lattice layer t, we have t+ 1 nodes that require processing 1, and,

thus, we must launch that exact number of threads for each layer. We note that this

implies a reduction in the number of threads launched as the algorithm progresses.

Clearly, we will have the most threads, and thus the most parallelism, at the first

phase of the algorithm (covering the leaf-node layer of the lattice). Each subsequent

phase of the algorithm reduces the number of threads we require by one.

In our algorithm, we store the data in global memory. Since global memory access

carries a high latency penalty, we try to avoid as many accesses to global memory

as possible. We also reduce the memory footprint of the algorithm by taking into

account the structure of the computations. For example, if our problem instance has

N time steps, and thus, N layers in the lattice, we initially require a maximum of

N + 1 nodes allocated in the GPU’s global memory. Note that we do not store the

nodes for every layer in the lattice into memory. Consider that we work layer-by-

layer through the lattice; clearly, by Equations 3.2 and 3.3 we only need data from

the previous layer in order to generate the new layer.

1Layer t does not contain 2 ∗ t + 1 nodes, as one might expect, due to the recombining nature of
the lattice.
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Therefore, we require at least N + 1 nodes of the lattice stored in global memory

in the worst case. Our actual memory requirements double, however, due to not

knowing which threads will execute when during each phase. We cannot simply write

over the current node data in global memory as one thread may still require the data

from the previous layer when another thread is attempting to write new data into

that location for the node in the current layer. As a result, our memory requirements

increase to 2 ∗ (N + 1) in order to maintain two sets of lattice node data in global

memory and double-buffer the data. At each phase, we swap the lattice node data

set that we update with the new option payoffs for the given layer.

Finally, we make use of a small amount of shared memory. As we have shown in

Figure 3.2, a node requires multiple values from the previous layer, and multiple nodes

in the current layer may require data from the same node in the previous layer. In

order to avoid redundant accesses to global memory from threads requiring the same

data to update their respective nodes, we perform an initial load of the required data

for all nodes in a thread block into shared memory. When the algorithm begins, each

thread accesses the required data from shared memory, rather than global memory.

In this way, we eke out a small amount of extra performance by reducing the overall

global memory accesses.

Furthermore, our reading of data in global memory (in order to populate shared

memory) makes full use of global memory coalescing. We have each thread store

a single value from global memory into the shared memory space. The other piece

of data a thread requires is written to shared memory by the thread’s neighbor.

Figure 3.3 provides an example of this data access pattern — each thread pushes one
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Figure 3.3: Thread-level data access patterns in the lookback GPU kernel.

value from global memory to shared memory, but reads two from shared memory.

In this way, we exploit coalescing and improve the overall performance of all but

one (per thread block) of our global memory reads 2 due to the structured, regular

nature of the binomial lattice algorithm. Writing data back to global memory exploits

coalescing as well, as each thread writes its value at the same time as its neighbors.

Our completed algorithm consists of two parts: the GPU kernel and the CPU con-

trol loop. The GPU kernel is shown in pseudocode in Algorithm 1. The OptionVals[]

and TempOptionVals[] arrays are the two lattice node data sets. TempOptionVals[]

contains the data that will be replaced with the current nodes data that we compute

using the previous layer’s values found in the OptionVals[] array. The first major if

block (line 3) handles the loading of required data into shared memory (from global

memory), and the second major if block (line 11) performs the actual computations

to update a node. The CPU control loop manages the kernel invocations, the double-

buffering of the node arrays, and decides when to terminate the algorithm (which

2As shown in Algorithm 1 the last thread in a block must perform one extra global memory read
to finish populating the shared memory buffer. This single read is uncoalesced as there are no other
threads available in the warp to combine memory requests.
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occurs when the algorithm completes processing of the root node).

Algorithm 1 Lookback GPU Kernel

Require: u, d, pu, pd, disc, OptionVals[], TempOptionVals[], timeStepNodeCount

1: threadID ← blockIdx.x ∗ blockDim.x + threadIdx.x

2: sVal[] //Location in shared memory

3: if threadID < timeStepNodeCount then

4: sVal[threadIdx.x] ← OptionVals[threadID]

5: if This thread is the last in the block, or the last node in the lattice then

6: sVal[threadIdx.x +1] ← OptionVals[threadID +1]

7: end if

8: yValue ← uthreadID //Compute y-value for this node

9: end if

10: __syncthreads()

11: if threadID < timeStepNodeCount then

12: if threadID == 0 then

13: optionValue ← max(yValue - 1, (pu * sVal[1] * d) + (pd * sVal[0] * u)

14: else

15: optionValue ← max(yValue - 1, (pu * sVal[threadIdx.x + 1] * d) + (pd *

sVal[threadIdx.x] * u)

16: end if

17: TempOptionVals[threadID] ← optionValue

18: end if
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3.3.1 Hybrid Computations

Before closing this section, we want to bring attention back to the reduction

in parallelism throughout the algorithm. Recall that each subsequent phase of the

algorithm (covering a subsequent layer in the lattice) requires one less thread than the

previous phase. With the GPU, we have an architecture that places a strong emphasis

on parallel execution. Due to the structure of the lattice, we are reduced to throwing

only a few threads at a time at the hardware by the close of the algorithm. In order

to try to combat the reduction in performance this may imply, we investigated the

potential of a hybrid algorithm that moves the computations over to the CPU when

the number of threads required for an iteration has dipped below a certain threshold.

The threshold value defines how few iterations must remain before switching to CPU

computations. For example, a threshold value of 128 implies that when there are 128

iterations remaining (that is: 128 layers left to be processed in the lattice), we cease

computations on the GPU and shift to the CPU.

When we shift the computations to the CPU we must first copy the current state

of the lattice from the GPU’s global memory over to the CPU’s main memory. The

amount of data required for the transfer is small, however. As we will only be tran-

sitioning to CPU computations when the number of remaining levels are small, the

number of lattice vertices required in the transfer will also be small. As a result, we

do not expect the memory transfer overhead to be of a concern. We further hypoth-

esized that the CPU will prove to be an optimal choice for executing the remaining

iterations of the computations. Due to the lack of parallelism present in the later

layers of the lattice, a comparatively powerful CPU may very well prove to outper-
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form the lower-powered GPU cores that rely on high degrees of parallel throughput.

As we show in the following section, however, this modification did not provide the

performance improvement expected.

3.4 Results

Before investigating the performance of our GPU algorithm, we first tested it

for correctness. In order to determine whether or not the GPU algorithm provided

correct pricing results, we first ran a sequential CPU algorithm against a known test

case provided in Hull [17] (Technical Note 13). Once we confirmed the sequential

CPU algorithm was producing correct answers, we ran a more thorough set of tests

involving unknown problem instances. We ran each instance on the sequential CPU

algorithm and the GPU algorithm and compared the results. So long as the results

were within the third order of accuracy (0.001) we accepted them as correct. Table 3.1

provides the results of some of these tests. In the case of smaller time steps, the GPU

and Hybrid implementations provided results that fell within the acceptable range

of error. However, as we increased the number of time steps above 10,000 steps,

the level of precision began to drop and the GPU and Hybrid implementations no

longer provide acceptable solutions. Our tests ended at 30,000 time steps, as single-

precision floating-point data could no longer cope at higher steps. Higher time step

counts resulted in overflow due to an exponentiation step in the algorithm.

We believe that there are two reasons for why the result on the GPU begins to

lose precision (when compared to a reference CPU solution). First, the GPU we

used (a GTX 260) does not have ECC-enabled memory on board, and second, the
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S - 50, T - 0.35, σ − 0.3, r - 0.1, N - 1000
CPU GPU Hybrid

6.676507 6.676391 6.676435

S - 50, T - 1.5, σ − 0.3, r - 0.15, N - 5000
CPU GPU Hybrid

12.671818 12.670992 12.671094

S - 25, T - 0.75, σ − 0.3, r - 0.1, N - 10000
CPU GPU Hybrid

4.895824 4.895118 4.895140

S - 25, T - 0.75, σ − 0.3, r - 0.1, N - 15000
CPU GPU Hybrid

4.901764 4.900720 4.900743

S - 25, T - 0.75, σ − 0.3, r - 0.1, N - 20000
CPU GPU Hybrid

4.913733 4.912446 4.912470

S - 25, T - 0.75, σ − 0.3, r - 0.1, N - 30000
CPU GPU Hybrid

4.914032 4.911983 4.912004

Table 3.1: Correctness tests for GPU and Hybrid implementations on a GTX 260. S
is the price of the underlying asset, T is the time (in years) until the maturity date
of the option, σ is the volatility, r is the risk-free interest rate and N is the number
of time-steps.

GPU handles single-precision floating-point mathematics in a slightly different man-

ner when compared to the CPU. Both of these combined likely caused the increased

error rate as the number of time steps (and, thus, floating-point operations) increases

substantially.

In order to test our hypothesis we investigated the solution quality of the GPU

and Hybrid implementations on a new model of Nvidia GPU, a GTX 570. This GPU

supports the CUDA 2.0 specification, and, as claimed by Nvidia [34], more closely

follows the IEEE-754-2008 floating point standards. Table 3.2 provides our results

for very large time steps. Clearly, the results are much improved over the GTX 260,
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S - 25, T - 0.75, σ − 0.3, r - 0.1, N - 10000
CPU GPU Hybrid

4.895786 4.895808 4.895805

S - 25, T - 0.75, σ − 0.3, r - 0.1, N - 15000
CPU GPU Hybrid

4.901701 4.901758 4.901771

S - 25, T - 0.75, σ − 0.3, r - 0.1, N - 20000
CPU GPU Hybrid

4.913624 4.913828 4.913815

S - 25, T - 0.75, σ − 0.3, r - 0.1, N - 30000
CPU GPU Hybrid

4.913840 4.914063 4.914051

Table 3.2: Correctness tests for GPU and Hybrid implementations on a GTX 570. S
is the price of the underlying asset, T is the time (in years) until the maturity date
of the option, σ is the volatility, r is the risk-free interest rate and N is the number
of time-steps.

and allow us to run up to the maximum of 30,000 iterations while still retaining the

required precision 3.

In all cases, the GPU algorithm computes a result with acceptable precision.

The GPU does not generate a result exactly equal to the CPU result due to the

differences between how the two architectures handle single-precision floating-point

numbers and arithmetic. This inconsistency explains the slightly differing results

between the sequential CPU and parallel GPU code.

With the correctness tests completed successfully, we move on to the actual per-

formance tests. For the first set of performance tests we look exclusively at the Hybrid

algorithm. Before comparing the performance results of all three algorithms (CPU,

GPU, and Hybrid), we wanted to determine the optimal threshold value for the hy-

3The slightly differing CPU values from Table 3.1 to Table 3.2 are due to the different hardware
systems used for each test. We ran the GTX 260 tests on AMD CPU running CentOS Linux, and
the GTX 570 tests on an Intel CPU running Windows 7.
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brid algorithm. The threshold value determines at what iteration/time step we shift

the computations from the GPU to the CPU. For example, a threshold value of 128

enforces a switch in execution to the CPU when there are 128 time steps left for the

algorithm to compute (before reaching the root node in the lattice).

We investigated a number of the thresholds, and we have provided a graph of the

performance results in Figure 3.4. As we have shown, lower threshold values typically

exhibit an improved level of performance over higher values. These results fall in

line with our expectations. Prior to these tests, we hypothesized that there were two

problems with a higher threshold value: increased emphasis on sequential code for

completing a greater amount of overall work as well as higher data transfer costs as

the GPU must transfer the current state of the lattice from its global memory to the

CPU’s main memory. With a low threshold value of 128 or 256, we delay sequential

execution on the CPU until we reach levels of significantly reduced parallelism.

Despite running the hybrid threshold tests over a large number of runs (with the

results in Figure 3.4 an average), a threshold value of 256 slightly edged out that

of 128. We believe this is due to a slightly more optimal balance between taking

the load off the GPU when parallelism is lower, and communication costs compared

to thresholds of 128 or 384. As this threshold value was optimal, we use it in the

remaining performance tests that include the Hybrid algorithm.

Following the analysis of the Hybrid algorithm, we investigated the performance

of all three algorithms: sequential GPU, parallel GPU, and Hybrid. We immediately

observe, from the results pictured in Figure 3.5, that the GPU and Hybrid imple-

mentations vastly outperform the CPU implementation at large time step counts.
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Figure 3.4: Performance of the Hybrid lookback algorithm with varying threshold
values.

Hull [17] describes this particular lookback pricing technique as being slow to con-

verge, hence performance results for large time steps are of immediate interest due to

the inherent, improved accuracy of the result.

We also observe in Figure 3.5 a slightly disappointing trend: despite our best

efforts to optimize the Hybrid implementation, it does not perform noticeably faster

than the standard GPU algorithm. We see a performance improvement of only a few

milliseconds for the Hybrid implementation at best. We initially believed this lack of

improved performance results from the time required to transfer data from the GPU to

the CPU. Using the CUDA profiling tool, however, showed us that we were mistaken.

Unfortunately, the time required to transfer the small amount of data to the CPU,

only 0.02% of the total run time, was miniscule. Our only remaining explanation is
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Figure 3.5: Performance of the CPU, GPU, and Hybrid lookback algorithm
implementations.

that, while we see a clear reduction in parallelism as we approach the root node/layer

of the lattice, there still exists some degree of exploitable parallelism throughout (even

at layer one we can execute the computations for two nodes in parallel). In the end, it

appears that the GPU still provides competition against sequential CPU code while

there still exists the capability to execute this very regular code in parallel.

Finally, we show these results from another angle in Figure 3.6, where we measure

the speedup of the Hybrid implementation compared to the sequential CPU imple-

mentation. We observe a roughly linear increase in speedup up to a time step count

of 30,000. After this point, the speedup continues to increase as the time step count

increases, but at a reduced rate. Our results show that the GPU is clearly able to

dramatically outperform the CPU for large time step counts. We see a maximum of
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Figure 3.6: Speedup of the Hybrid implementation relative to a sequential CPU
implemenation.

101 times speedup with the largest time step count tested (30,000 steps).

3.5 Summary

In this chapter we have described a high performance GPU algorithm for the

pricing of lookback options using the binomial lattice technique. We originally chose

this problem because it provided us with a very regular, data-parallel algorithm to

experiment with on the GPU, and had not been done in the past. Due to the regular

nature of this problem we were able to develop a very efficient algorithm that exploits

both the high performance shared memory as well as the global memory coalescing

capabilities of the GPU. We have shown tremendous speedup values, up to 101 times

faster than a sequential CPU implementation, as the time step count grows large.
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These results help to show that the structured, predictable nature of a regular problem

allows for the realization of very high performance algorithms on the GPU.

In the next chapter we move on to an investigation of the Breadth First Search

for solving the single-source shortest path problem. While the option pricing problem

we just examined was very regular, the single-source shortest path problem provides

us with the chance to experiment with a simple irregular problem. We expect that

our results will provide some contrast between the performance of parallel algorithms

with regular and irregular properties on the GPU.



Chapter 4

Breadth First Search

In this chapter we discuss our use of the Breadth-First Search algorithm for solving

the single-source shortest path problem. We chose to investigate the BFS algorithm

for two reasons: (1) BFS is an example of an irregular algorithm, and, (2) BFS

is a relatively simple algorithm, that, unlike the binomial lattice for option pricing

algorithm, contains irregular properties. As a result, we believe looking at the BFS

algorithm serves as an ideal benchmark for the last two algorithms we cover in this

thesis, which contain irregular properties but are significantly more complex.

4.1 Introduction to BFS

In a typical breadth-first traversal of a directed graph G = (V,E), where V

represents the set of vertices, and E the set of edges in the graph, we start from some

vertex, s ∈ V , designated as the source vertex. In the first iteration we traverse all

outgoing edges from s in order to reach all vertices neighboring s. We then repeat

48
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Figure 4.1: Layered network of a graph.

this process for each neighbouring vertex that we reached in the previous iteration (if

and only if it had not already been visited in an even earlier iteration) until either

all possible nodes in the graph have been visited or we have found the vertex we are

searching for.

In order to test the worst-case of the BFS, and better connect it to the maximum

flow algorithm that we investigate in the next chapter, we use the BFS to construct a

layered network, which will allow us to solve the single-source shortest path problem.

In this case, the BFS does not terminate until it has visited every vertex possible in

the graph, assuming we are starting from some source vertex. In essence, we use the

BFS to solve a simplified version of the single-source shortest path problem where all

edge weights are assumed to be equal to one.

Our simplified version of the single-source shortest path problem involves finding

a label for every vertex connected to s. The label on some vertex v represents the

minimum number of edge traversals required to reach v from s. In effect, we construct

a layered network of the graph, relative to s. A layered network of a graph labels
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the vertices based on the minimum number of edge traversals required to reach them

from the source vertex and, further, only retains edges in G such that the edge moves

from layer i to layer i+ 1. Figure 4.1 provides an example of a layered network with

four layers, where the number inside a node represents the layer it belongs to. Layer

0 contains only the source vertex, and layer 1 contains all vertices directly reachable

from the source. The vertices in layer 3 contain no further outgoing edges to “new”

vertices, and, thus, layer 3 is the final layer in the network. The dotted edges represent

edges in the original graph that no longer exist in the layered network (as they do

not connect to a vertex in the next layer).

The layered network we construct using BFS allows us to then determine the

shortest path to any vertex from a single source, s. We assign vertices to a layer

based on the minimum number of edge traversals required to reach them from the

source, and any edge from any vertex always moves to the next layer. As a result, we

have a new graph structure that contains a guaranteed shortest path route from the

source to any other vertex in the graph.

We chose to investigate this particular solution for the single-source shortest path

problem not only because it allows us to test an algorithm with irregular properties on

the GPU, but also because of the importance of a layered network for the maximum

flow algorithm we discuss in Chapter 5.

4.2 Related Work

Unlike lookback option pricing, which was a new work for the GPU, there does

exist some prior work on the BFS for GPUs. Hussein et al. [18] investigated a par-
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allel BFS algorithm to traverse a graph layer-by-layer on the GPU. In their imple-

mentation, each invocation of a kernel handles the construction of one layer, with

synchronization occurring between layers. The authors use a flag array to mark ac-

tive vertices, and a parallel prefix sum (also known as a scan) operation to compact

the list. They further optimize the BFS for traversal of grid-graphs by introducing

lockstep traversal. This traversal method takes advantage of the structured nature

of a grid-graph and activates vertices along each cardinal direction one at a time per

active vertex. Hussein at al. further discuss that the version of the BFS not opti-

mized for grid-graphs may not be able to provide improved performance over a CPU

implementation. They discuss this in terms of computational complexity, however,

and do not provide any actual performance results.

Following the work of Hussein et al. [18], Harish et al. [15] developed an alter-

native BFS implementation on the GPU a few years later. The authors’ followed

Hussein et al.’s work, as they move through the graph synchronously, layer-by-layer,

and use an array of flags to identify the layer each vertex belongs to. Unlike Hus-

sein et al. however, Harish et al. use two flag arrays. One stores a boolean value

indicating whether or not a vertex has been visited, and the other stores a boolean

value indicating whether or not a vertex needs to be visited in the next iteration (the

“frontier” vertices). The frontier array requires a secondary kernel to copy values

between a dummy array, in a sort of double-buffering strategy. Furthermore, they

use a third array to store the layer information for each vertex. In effect, their so-

lution requires a large number of memory operations, space, and even an auxiliary

kernel invocation for copying the current state of the frontier array. The authors show
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that their algorithm achieves up to 15 times speed up compared to a sequential CPU

implementation when working with random graphs.

Mart́ın et al. [30] implemented Dijkstra’s algorithm on the GPU in order to solve

the single-source shortest path problem. The authors focus on the parallelization

of the edge-relaxation step of Dijkstra’s algorithm. They further experiment with a

number of hybrid implementations that offload some of the inherently sequential pro-

cessing to the CPU. Finally, Mart́ın et al. develop two GPU kernels: one that makes

use of atomic memory operations, and another that does not. The authors show that

their GPU implementations perform better than their CPU implementations. They

further describe how their kernel that uses atomic memory operations outperforms

the non-atomic kernels due to the changes in logic required to strip away the atomic

memory operations. However, the authors claim that one of the reasons why the

performance penalty is not high for the kernel that uses atomic memory operations

is due to the low-degree graphs that they experiment with. Mart́ın et al. show that

for high-degree graphs the performance of the atomic memory kernel dips below that

of the others.

Finally, Solomon and Thulasiraman [47] investigated the performance of the BFS

on grid graphs as a comparison to another algorithm with similar iterative proper-

ties, matrix parenthesization. Our results on small grid graphs showed that the GPU

implementation could not provide improved performance over a sequential CPU im-

plementation. We further described, however, that the performance disparity between

the GPU and CPU shrank as the graph size (in terms of vertex count) increased. Due

to the simple and rudimentary nature of the work, we significantly expand on it here,
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and focus on large, random graphs for our testing.

4.3 BFS on the GPU

The work that we present here marks an improvement on the work we previously

described in Solomon and Thulasiraman [47]. We extend the work to cover random

graphs, and, more importantly, test with very large random graphs in order to get a

better idea of the GPU performance.

Our work, as with the previous work by Solomon and Thulasiraman [47], loosely

follows the design of Harish et al.’s [15] BFS. We invoke our GPU kernel, which

performs the actual work associated with the BFS, once per layer in the graph. In

other words, one invocation of our GPU kernel constructs one layer of the graph by

following edges from each vertex in the current layer and performing the appropriate

labeling operation.

In terms of thread responsibilities, we map one thread to one vertex in the graph.

Thread i covers vertex i, thread i + 1 covers vertex i + 1 and so on. Initially, we

do not consider maintaining a record of only those vertices that will be active in the

current iteration and assigning only enough threads to cover those vertices. Instead,

our first design of this algorithm for the GPU simply launches all threads covering all

vertices in the graph, regardless of whether or not that vertex belongs in the current

layer (and, thus, will be active and performing some useful work).

In order to store the graph data itself, we use the same two one-dimensional

arrays, described by Harish et al. [15], which represent an adjacency matrix. Elements

of the first array, of length |V |, store the offset of the starting edge for the vertex
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Figure 4.2: Structure of two-array adjacency list for storing graph data on the GPU.

corresponding to that element’s index. The second array, of length |E|, stores the

actual edges themselves; elements in the first array provide indices into this array.

Figure 4.2 provides one example of the two-array adjacency matrix we use to store

graph data. We base this example on a graph that contains six vertices and nine edges.

As an example of how we find the index of a vertex’s starting edge, consider element

three in the vertex-edge offsets array (assuming a zero-based indexing). Element three

corresponds to the fourth vertex in the graph, and has a value of 4. This 4 tells us

that the fourth element in the edge destinations array contains the starting edge for

vertex four. We then peek at the next element in the vertex-edge offsets array, which

contains a value of 7. This 7 tells us that all edges from elements 4 to 6 in the edge

destinations array are edges with their source at vertex four.

Having described the data structure we use to store the graph data we can now

begin our description of the algorithm. At the start of an invocation of the GPU

kernel, each thread first determines if the vertex it covers is active or not. We make

this determination by reading the thread’s assigned layer. Consider iteration i of the
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kernel. In this iteration we search for all vertices that belong to layer i+ 1. In order

for a vertex to belong to layer i + 1 it must be connected by an edge to a vertex in

layer i. Thus, any threads assigned to a layer equal to the current iteration number

are “active”. Any threads that are not active simply halt their processing and do not

participate further in the current iteration of the kernel.

Following the determination of which threads are active, each active thread then

iterates through the edges of its vertex and sets the level of each unlabeled neighbor-

ing vertex to the appropriate value. In order to iterate through the edges of a vertex,

however, each active thread must first read in the corresponding data from the adja-

cency matrix. The way in which we store the graph data allows us to exploit global

memory coalescing for the reading of the vertex-edge offset array. As thread i covers

vertex i, we guarantee that each thread reads from a location in memory offset by one

element from its neighboring threads. Of course, inactive threads do not participate,

but this lack of participation does not break the coalescing effect. Unfortunately, we

cannot guarantee any level of coalescing while each thread iterates through the edges

of its vertex, as we have no guarantee that each vertex contains the same number

of edges. Thus, some threads may either read from dramatically different segments

of memory, or may simply have more work to cover than the majority of threads

(depending on how many edges each vertex contains).

As we know from Figure 4.2 and our corresponding example, we need two values

for each thread from the vertex-edge offset array — the starting element/offset for

that vertex’s edges, and the starting element/offset for the next vertex’s edges (from

which we compute how many edges the vertex contains). When we load this data, we
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have each thread read a single value from global memory, rather than the two values

that are required. This is possible as we store these read values in shared memory.

As a result, thread i reads the value it requires for a starting offset (value i in the

vertex-edge offsets array), and thread i + 1 reads value i + 1, which both thread i

and i+ 1 require. This allows us to cut down the global memory reads required when

loading in graph data at the start of the kernel.

One of the benefits of our method compared to the work of Harish et al. [15] is

that we do not require multiple arrays to store the status of our vertices. In their

work, they maintained a frontier array, a visited array, and a vertex-label array. This

required more global memory operations to keep these arrays updated, potentially

reducing the performance. Instead, we manage with a single array: the vertex-label

array. This array defines which vertices are active in a given phase based around

what layer the algorithm assigned them to. If a vertex belongs to a layer equal to

the current iteration it forms a part of the frontier, any vertex with a layer number

assigned to it at all has been visited, and any vertex with no layer assigned simply

waits to be assigned a label.

We guarantee that an unlabeled vertex will always receive the most optimal label

the moment a thread encounters it due to the synchronous nature of the algorithm.

In the first iteration, only the source vertex is active, and from there, we visit ev-

ery neighboring node and assign them to level 1, thus activating them for the next

iteration. All edges leading out from every active vertex are investigated at each

iteration, and each thread assigns any unlabeled vertex a label equal to the current

level. Hence, we visit each vertex as early as possible and with the minimum number
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of hops required to reach it from the source vertex.

As was the case with the option pricing algorithm, the CPU drives the iterations,

and invokes the GPU kernel each iteration. The CPU terminates the algorithm

once an iteration has passed and the kernel has assigned no new vertices to a layer.

Algorithm 2 provides the pseudo-code for the GPU kernel. Lines 5 – 7 perform the

loading of the edge offset data. We require a block-level synchronization instruction

immediately thereafter to ensure that all required data has been loaded in to global

memory in case a thread moves on and tries to read data another thread has not

loaded yet. Lines 9 through 19 perform the actual BFS algorithm we have discussed

in this section. Following the BFS work itself, we perform a parallel OR reduction

on the shared memory flag array which will tell us whether any thread in the thread

block has added at least one vertex to the current level. Finally, the first thread in

all thread blocks write this reduced value into the same location in global memory.

We use an AtomicOR operation to ensure consistency. This single value in global

memory will contain either a 1 (at least one vertex was added to the level) or a 0

(no vertices were added to the level) which the CPU control loop uses to determine

whether or not to terminate the algorithm. While the CPU control loop is simple,

we provide the pseudo-code in Algorithm 3 for completeness sake.

4.3.1 Active Vertices Modification

With the original BFS algorithm completed for the GPU, we noted one primary

concern. The fact that we simply launched all threads covering all vertices in the

graph with every iteration of the algorithm was a clear issue in the original im-
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Algorithm 2 Breadth First Search GPU Kernel

Require: G = V,E, Levels[], VertexEdgeOffsets[], EdgeDests[], CurrLevel

1: threadID ← blockIdx.x ∗ blockDim.x + threadIdx.x

2: sEdgeOffsets[] //Location in shared memory

3: sNewVertex[] //Location in shared memory

4: //Load in the edge offsets for the graph data.

5: if threadID < |V | then

6: Read a single edge offset value equal to thread ID, store in sEdgeOffsets[]

7: end if

8: __syncthreads() //Synchronize threads in block.

9: if threadID < |V | then

10: if Levels[threadID] = CurrLevel −1 then

11: Load startEdge and endEdge offset data from shared memory.

12: for each edge e = (u, v) in EdgeDests[] from startEdge to endEdge do

13: if Levels[v] has no level then

14: Levels[v] ← CurrLevel

15: Set this thread’s sNewVertex[] entry equal to 1.

16: end if

17: end for

18: end if

19: end if

20: __syncthreads()

21: //Determine if any thread in the block updated a vertex label

22: Perform parallel OR reduction on sNewVertex[]

23: Thread 0 (per block) AtomicOR’s sNewVertex[0] to static global memory location
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Algorithm 3 Breadth First Search CPU Control Loop
1: NewVertices ← 1

2: level ← 1

3: while NewVertices > 0 do

4: Invoke BFS GPU kernel for the current level

5: NewVertices ← active vertex count from GPU Global Memory

6: level ← level +1

7: end while

plementation. In an effort to improve on our design, we implemented the “active

vertices” modification.

Our modification follows a similar idea as that of Hussein et al. [18]. In their

work, they describe the use of a parallel prefix sum, or scan, operation to determine

the active vertices for a given iteration. We, too, use a scan operation in order to

determine the active vertices for the next iteration. To accomplish this, we generate

a vertex flag array that defines which vertices will be active in the next iteration of

the BFS. A 1 value for vertex i tells us that i has been assigned a level in the previous

iteration, and will be active in the next, while a 0 tells us the opposite, that i will not

be active in the next iteration. In order to generate this we require an extra write to

global memory in our BFS algorithm — each active thread must mark each vertex it

encounters with a 1 in the appropriate spot in this array.

Of course, we require more than just the vertex flag array, as the end result that we

desired was to have zero “useless” threads (that is, threads covering inactive vertices)

launched with each iteration of the BFS kernel. Having a linear array of boolean



Chapter 4: Breadth First Search 60

Figure 4.3: Process of recording active vertices for the next iteration.

flags does not help us achieve this goal as we would still have to launch the kernel

with all threads and have each one read its element in this array. At this point, we

introduce the scan operation. We perform, using the CUDPP Library’s [43, 42] high

performance GPU algorithm, a scan operation on the vertex flag array. This gives us

a new array where each change in value from one element to the next corresponds to

the index of an active vertex. Consider the example in Figure 4.3. The scan operation

consumes the vertex flag array and outputs an array where element i equals the total

sum of elements 0 through i − 1 in the vertex flag array. We see that each index in

the scan operation output array where the value changes from that of the previous

element represents the index of an active vertex. Using a lightweight auxiliary kernel,

we read this scan array and write out, to global memory, an exact listing of the active

vertices along with the total number of active vertices (so we know how many threads
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to launch in the next iteration).

We did not perform any major additions to the existing GPU kernel in order to

introduce the active vertices strategy. In fact, we were able to simplify the kernel as

we longer needed to maintain a record of whether or not each thread block updated

at least one vertex. With the active vertices modification we moved these checks to

the auxiliary kernel that generates the flag array used for the scan operation.

We hypothesized that both the simplification of the kernel, as well as the fact

that we were no longer launching many useless threads with every iteration may out-

weigh the overhead created by the scan and auxiliary kernel operations. We believed

the end result would improve our performance over the standard BFS algorithm.

Unfortunately, as we show in the following section, that was not necessarily the case.

4.4 Results

Prior to discussing our results, we must first describe how we generate our random

graphs. In order to accomplish random graph generation we use the graph generation

tool described by Viger and Latapy [54, 55]. We chose this particular tool as it

generates simple random graphs and supports the ability to define the range of degrees

for vertices. By being able to adjust the average degree of the vertices in a graph, we

can test performance across a wide range of scenarios. For all of our performance tests

we generate at least five different graphs for each vertex count, with slightly different

vertex degrees. This allows us to average the performance results for a certain graph

size across a few unique graphs. We further average the performance results for each

individual graph by taking the average execution time of 50 runs per individual graph.
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Figure 4.4: Performance of the CPU, GPU, and active vertices GPU implementations.

We test the performance of the BFS for both the standard GPU implementa-

tion as well as the active vertices implementation, and compare the results against

a sequential CPU implementation. We provide the comparison results for all three

implementations in Figure 4.4. For these performance tests we set the average vertex

degree at 12 in order to test scenarios where the BFS will likely have to run for more

than a few iterations in order to encounter all the vertices possible. As Figure 4.4

shows, both GPU implementations outperform the sequential CPU implementation.

Our results contradict Hussein et al.’s [18] hypothesis, as both GPU implementa-

tions, including the active vertices implementation (which relies on a scan operation)

outperform the CPU.

Unfortunately, we do not see the performance improvements we had hoped for

in the active vertices implementation. In fact, this version of the GPU algorithm

consistently performs worse than the basic implementation! As we show in Figure 4.5,
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Figure 4.5: Performance comparison of GPU implementations

which removes the CPU performance results in order to get a closer look at the

GPU results, both implementations perform very similarly, but the active vertices

implementation does not provide superior performance at any time.

To show these results from another angle, we compute the speedup of both GPU

implementations relative to the sequential CPU code and provide a graph of the

results in Figure 4.6. From the speedup results, we see that the GPU increases its

performance relative to the CPU as the problem size increases. This falls in line with

our expectations as more vertices potentially equals more exploitable parallelism at

any given iteration. The GPU hardware, being a very highly parallel architecture,

can handle the extra parallelism with ease. We see up to approximately 17 times

speedup for the largest graph sizes tested, and, on average, a speedup of 13. As we

expect, the speedup results for the active vertices implementation do not match those
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Figure 4.6: Speedup of GPU BFS implementations.

of the basic GPU implementation, but they come close (in general, the speedup was

only 0.5 units lower).

BFS kernel time (µs) Scan & auxilary kernel (µs) Total (µs)

Basic BFS 47135.71 — 47135.71
Active vertices BFS 40696.96 6889.21 47586.18

Table 4.1: Profiling data for GPU BFS kernels

The lack of improved performance inherent to the active vertices implementation

left us with the question of why. We found that the overhead resulting from the

scan operation (and the auxiliary kernel required to prepare the data) outweighs the

performance savings in the BFS kernel. To provide an example of this we profile

one execution run of both GPU implementations using the CUDA Profiling Tool.

Table 4.1 provides our results. From the table, we see that the BFS kernel itself
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performs much better in the active vertices implementation. We expect this, as we

are launching only the threads necessary to complete the iteration, rather than all

threads covering all vertices in the graph (despite many of them likely being inac-

tive). Unfortunately, the overhead of the scan operation outweighs these performance

benefits. The end result, as Table 4.1 shows, is that the basic BFS implementation

manages to provide a greater level of performance.

4.5 Summary

In this chapter we investigated an algorithm with irregular properties: the BFS

algorithm for solving the single-source shortest path problem. While we observed a

high level of speedup with the BFS, the performance paled in comparison to the results

of our option pricing algorithm. The disparity in performance between these two

algorithms is the result of the irregularity present in the BFS. Unlike the option pricing

algorithm we were unable to guarantee global memory coalescing. Further, threads

had workloads of varying sizes, and not all threads were guaranteed to be active

without extra effort made to cull inactive threads from execution. Unfortunately,

further issues occurred as the effort made to cull inactive threads resulted in even

worse performance. Despite these problems, however, we still measured up to 17

times speedup with our GPU implementation, showing that the GPU still offers a

high level of potential performance for a simple irregular algorithm. In the next

chapter, we build on this simple irregular problem and introduce a more complex

irregular problem and associated algorithm: the MPM maximum flow algorithm for

solving the maximum flow problem.
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The MPM Maximum Flow

Algorithm

In this chapter we investigate the use of the MPM algorithm for solving the irreg-

ular maximum flow problem. Unlike the BFS, which contained only a single phase,

the MPM algorithm contains a number of phases which we parallelize. These phases

add complexity, and require optimizations of their own in order to prepare them for

efficient GPU implementation. We lead this chapter with an introduction to the

maximum flow problem before moving on to describe the MPM algorithm itself.

5.1 Introduction to Maximum Flow

Before describing the MPM algorithm, and how it solves the maximum flow

problem, we must first define the maximum flow problem. Given a directed graph

G = (V,E) where V is the set of vertices, and E is the set of edges, G must satisfy

66
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the following conditions:

1. There exists a single vertex with zero indegree. By indegree, we refer to the

number of directed edges leading into a vertex. Hence, a vertex v has zero

indegree if there are no edges in E of the form (i, v), where i ∈ V . We refer to

this vertex as the source, or s.

2. There exists a single vertex with zero outdegree. Opposite to indegree, outde-

gree refers to the number of directed edges leading out of a vertex. Hence, a

vertex v has zero outdegree if there are no edges in E of the form (v, j), where

j ∈ V . We refer to this vertex as the sink, or t.

3. Every directed edge e = (i, j) is assigned a non-negative real number c(i, j).

This value represents the capacity for flow of e, or how many units of flow we

can send across e. c(i, j) = 0 if there is no edge directed from i to j.

A flow, f , through G is an assignment of positive real numbers, f(i, j), to the

various edges e = (i, j) such that the following conditions are satisfied:

1. Capacity constraint : 0 ≤ f(i, j) ≤ c(i, j), for all e = (i, j).

2. Conservation constraint :

∑
j

f(i, j)−
∑
j

f(j, i) =



∑
j f(s, j) if i = s,

−
∑

j f(j, t) if i = t,

0 otherwise

The capacity constraint ensures that the flow across an edge does not exceed the

capacity for flow of that edge. The conservation constraint ensures that a vertex does
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not trap flow: all flow entering a vertex via incoming edges must be able to be pushed

out of that vertex via the outgoing edges while still satisfying the capacity constraint.

In other words: the inflow of a vertex (all flow entering the vertex) must be equal to

the outflow of the same vertex (all flow exiting the vertex). In the case of s and t,

we can, of course, have no inflow or outflow respectively. The conservation constraint

captures these special cases as well.

The value of a flow f , denoted by val(f), is defined as val(f) =
∑

j f(s, j) =∑
j f(j, t), or the total sum of all flow across all edges in G. Due to the conservation

constraint, the total amount of flow pushed out of the source is equal to the total

amount of flow pushed into the sink, which is equal to the total flow pushed through

all other edges not connected to s or t in G. We have found a maximum flow, f ?,

in G if there exists no other flow f in G such that val(f) > val(f ?). Therefore, the

maximum flow problem is to find the maximum flow, f ?, in a given graph, G = (V,E).

5.2 The MPM Algorithm

Malhotra, Pramodh Kumar, and Maheshwari [29] (“MPM”) based their maximum

flow algorithm around the layered network concept proposed by Dinic [6]. The authors

designed their algorithm around a number of phases, where each phase performs a

distinct task in the algorithm. This algorithm exhibits very synchronous, iterative

properties between phases and, as a result, we hypothesized it to be a good fit for the

GPU. We came to this conclusion by considering the SIMD nature of the GPU along

with the synchronicity inherent between kernel executions in the GPU. In essence,

the algorithm iterates through the various phases, with synchronization between each
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phase. Hence, we hypothesized that phases would readily map to kernels and retain

the original nature of the algorithm.

We first break the MPM algorithm down into its constituent phases before describ-

ing the algorithm in full. Each phase covers some unique function in the algorithm,

and the next phase cannot start until the current phase has completed 1. In total, the

MPM algorithm contains six phases: layered network construction, construction of

blocking flow, pushing of flow, pulling of flow, updating edge capacities, and pruning.

We describe each phase in more detail in the subsections below.

5.2.1 Construction of layered network

In this phase, we construct a layered network, GL, from G. This phase considers

only useful edges of G, or any edge that has not been fully saturated with flow. Put

more formally, we call an edge e = (u, v) useful if f(e) < c(e). The first layer L0

contains the source. The next layer L1 consists of those vertices v of G such that

there is an useful edge from s to v. We add an edge, e = (u, v), to the layered

network if and only if e is useful, u belongs to layer Li−1, and v has not been assigned

to any of the previous layers. This process continues until the sink vertex, t has

been assigned to some layer, or no new layers can be constructed (in which case the

algorithm terminates). Finally, edges that lead to “dead ends” (that is, they reach

a vertex with no useful outgoing edges and, thus, do not form a path from s to t in

GL) are pruned from GL. In essence, to construct a layered network we perform a

breadth-first traversal of a graph.

1The one exception, as we will discuss in Section 5.4, is the pushing and pulling of flow.
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As we traverse the edges in this phase, we assign each edge e ∈ GL a residual

capacity value. The residual capacity of an edge, c̃(e) = c(e) − f(e), represents the

remaining units of flow this edge can support. For example, if an edge, e, already has

20 units of flow (f(e) = 20), and a capacity of 30 (c(e) = 30) its residual capacity

becomes c̃(e) = 10. The residual capacity of an edge becomes important when we

investigate the method by which we push and pull flow throughout GL.

5.2.2 Construction of blocking flow

In this phase we search for a candidate vertex in GL which will act as the starting

point for the pushing and pulling of flow. We begin with a few important defitions.

Let v be a vertex of the layered network GL. Then the in-potential of v is the sum

of all residual capacities of the edges directed into v. The out-potential of v is the

sum of all residual capacities of all edges directed out of v. The potential of v is then

the minimum of the in-potential and the out-potential of v. Each of the vertices in

GL calculates their potential and we choose the vertex with the minimum potential

greater than zero, vm, as the candidate vertex for initiating the pushing and pulling

of flow through GL.

5.2.3 Push flow

Let candidate vertex vm of smallest potential, p, be in layer Li. Consider the edges

out of vm. Clearly these edges belong in layer Li+1. Examine all these edges and try

to saturate each edge with flow until all required flow is pushed (where the required

flow is equal to p). Next, consider all vertices of Li+1 that received some flow from



Chapter 5: The MPM Maximum Flow Algorithm 71

the previous layer. Perform the push operation as explained above from this layer to

layer Li+2. Repeat this process until the flow reaches t. Note that at each layer we

push exactly p units of flow. As the candidate vertex vm was of minimum potential

in GL we are guaranteed to always be able to push p units of flow through even just

a single vertex in any layer in GL.

5.2.4 Pull flow

Similar to the pushing of flow, we must also pull p units of flow from vm to all

layers lower than Li. Consider all the incoming edges of vm in Li and saturate as

many as possible until we have pulled p units of flow out of vm. Next, consider all

vertices of Li−1 that received some flow from the previous layer. We perform the

pull operation again from this layer to layer Li−2. Repeat this process until the layer

containing source s (layer L0) is reached.

5.2.5 Pruning

Once we have pushed the flow to t and pulled flow from s, we prune GL. This

pruning step removes saturated edges as well as vertices with no incoming and/or

outgoing edges. We are guaranteed to remove at least one vertex initially, as the

vertex vm that had minimum potential must have had either its incoming or its

outgoing edges (or both) saturated. When pruning a vertex, we completely remove

all of its incoming and outgoing edges. Next, there may be other vertices that we

are now able to remove. This pruning effect potentially cascades to the neighboring

vertices of a removed vertex and continues until we can prune no further vertices from
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GL.

5.2.6 Update capacities

We increased the flow in various edges, e, of GL by pushing/pulling flow through

them and, as a result, the residual capacities of each edge decreased. We now need

to update the capacities of each edge in G from the corresponding edges in GL. The

edges in GL contain the updated residual capacities and, by updating G with these

values, the flow in G reflects the latest amount of flow in GL.

5.2.7 The complete algorithm

Once the algorithm completes the pruning phase, we iterate through the construc-

tion of blocking flow, pushing flow, pulling flow, and pruning phases again if there

still exists some path from s to t in GL. In the event that no vertices remain in GL,

or there is no path from the source to the sink, the total flow sent through the edges

of GL are merged with the current data stored in G (phase six). A pruning step takes

place in G and the algorithm restarts by constructing a new layered network (phase

one) from the updated state of G. The algorithm terminates when we can no longer

create a layered network from G with a path between s and t.

We provide an example of an iteration of the MPM algorithm in Figure 5.1.

Consider part (a) in Figure 5.1, which shows a graph, G, in its initial starting state.

Numbers above (to the left, in the case of edge (4, t)) represent c(e), while numbers

below represent f(e). In the initial state of G, f(e) = 0 for all edges, as we have not

pushed any flow through G. In part (b), we construct the layered network, GL from
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Figure 5.1: An example iteration of the MPM algorithm.

G. Note that edge (2, 4) and vertex 4 are pruned from GL as they are not a part of

any valid path from s to t in the layered network. We then search for vm in GL in

part (c). We choose vertex 2 as its potential equals 1, which is smaller or equal to

the other possible vertex in GL, 1 (potential of 3). Part (c) further involves pushing

and pulling from from vertex 2. As the potential of this vertex equals 1, we push 1

unit of flow across edge (2, t) and pull one unit of flow across edge (s, 2), updating

the f(e) values in GL accordingly. Notice that edge (2, t) becomes fully saturated at

this point — as a result, we prune it from GL, as shown in part (d) of Figure 5.1.

As vertex 2 no longer forms any part of a path from s to t we prune it as well, with
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further cascades in to pruning edge (s, 2). We still have a path from s to t in GL,

however, so we search for the next vm. We choose vertex 3, with a potential of 3, and

push/pull 3 units of flow to the sink and source respectively. As a result, we end up

pruning vertex 3 and all of its incoming and outgoing edges. With no further paths

from s to t in GL we terminate the iteration and merge the flow results into G. From

here, we start another iteration by constructing a new layered network and repeating

the process.

5.3 Related Work

While we focus on the MPM algorithm in particular, there are many known algo-

rithms for solving the maximum-flow problem in the literature. Ford and Fulkerson [9]

described the first original flow augmenting path algorithm. The authors, using their

algorithm, proved the max-flow-min-cut [37] theorem. This theorem proposes that

the maximum amount of flow possible from the source (s) to the sink (t) of some

graph equals the minimum capacity removed from the graph when enough edges are

removed such that no path exists from s to t. Later, Edmonds and Karp [7] proposed

an improvement to this algorithm. While Ford and Fulkerson’s [9] algorithm was

unbounded and exponential in complexity, Edmonds and Karp [7] improved this to

O(|E|2|V |) (bounded by vertices, V , and edges, E, in the graph).

Shortly thereafter, Dinic [6] described an O(|V |2|E|) algorithm for solving the

max flow problem. Dinic’s algorithm introduced the concept of a layered network.

Constructed from some graph, G, the layered network contained only those edges of

G such that each edge moves from a layer i to layer i+ 1, where each layer represents
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one step closer to t. Dinic’s algorithm then constructs a blocking flow on this layered

network such that at least one edge along all the possible paths from s to t becomes

saturated with flow.

Malhotra, Pramodh Kumar and Maheshwari’s [29] “MPM” algorithm provides

a more efficient, potentially parallelizable method of finding blocking flows on the

layered network with a complexity of O(V 3). The algorithm makes use of several

phases which we previously explained in Section 5.2. The authors essentially built on

top of the previous work by Dinic, Edmonds and Karp, and Ford and Fulkerson.

Unlike the previous authors, Goldberg and Tarjan [12, 13] did not extend the

layered network and flow augmenting path ideas, and instead designed a push-relabel

method for solving the maximum flow algorithm. The push-relabel algorithm, with a

complexity of O(EV log(|V |2/|E |)), is unlike all other algorithms mentioned in this

section in that it violates the conservation constraint. At times during the algorithm,

edges may be over-saturated with flow. The idea here is that oversaturated edges

will push back their flow in order to get back to a valid state. Goldberg and Tarjan’s

push-relabel algorithm exhibits asynchronous properties and is well suited for paral-

lelization. These asynchronous properties, however, may result in performance issues

on the very synchronous hardware of the GPU.

In the general parallel computing literature, Shiloach and Vishkin [45] developed

a parallel maximum flow algorithm based on Dinic’s [6] algorithm. Their algorithm

also shares some concepts with the later max flow algorithm from Goldberg and

Tarjan [12, 13], as vertices may be oversaturated with flow that must be pushed

back at some point in time. Shiloach and Vishkin subdivide the graph amongst the
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available processors and use a parallel BFS to generate a layered network and initiate

the pushing of flow.

Anderson and Setubal [1] developed a parallel push-relabel algorithm on shared

memory machines. Each processor works on subsets of the vertices in the graph,

retrieving more from a shared queue when they complete their current workload.

They measure up to an approximate 7 times speedup when running their algorithm

on 20 processors.

Bader and Sachdeva [2] extended the work of Anderson and Setubal [1] and de-

veloped a cache aware implementation of the push-relabel algorithm on symmetric

multiprocessor architectures. The authors focused on cache awareness in order to mit-

igate the issue of memory latency and speed and try to improve the overall speedup of

the application. They further modify the algorithm to better support random graphs

— Bader and Sachdeva note that the basic cache aware implementation performs

well on dense graphs, but required more work to improve the performance on random

level graphs. Random level graphs are graphs where vertices are organized into rows

(forming an overall rectangular set of vertices) and each vertex on a row connects

with three random vertices on an adjacent row. They do not provide any speedup re-

sults compared to sequential CPU code, but show that they achieve nearly four times

speedup when executing their algorithm across eight processors when compared to

execution on two processors.

On the GPU/CUDA side of the literature there exists a number of works inves-

tigating the design and performance of the push-relabel algorithm for solving the

maximum flow problem. Hussein et al. [18] described one such GPU implementation
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of Goldberg and Tarjan’s [13] push-relabel algorithm. In their work, the authors im-

plemented a series of optimizations that target grid graphs. One such example is the

authors’ development of a cache emulation system. With cache emulation, Hussein

et al. enforce cooperation amongst threads when accessing data from global memory.

In effect, the authors exploit global memory coalescing by taking advantage of the

structured nature of a grid graph, and loading in tiles of vertex data from global

memory at a time. The authors show that their algorithm achieves up to 4.5 times

speedup compared to the fastest known sequential CPU implementation.

Vineet and Narayanan [56] later implemented a push-relabel max flow algorithm

on the GPU that attempts to provide better load balancing between active and in-

active vertices in a graph. In order to accomplish this, the authors developed an op-

timization that skips inactive nodes from processing. Vineet and Narayanan further

investigated the impact compacting data in order to reduce global memory accesses

had on the performance. Interestingly, they experimentally showed that the com-

paction schemes resulted in worse performance of the overall application. Further,

the authors’ described, implemented and tested two versions of the algorithm: one

that uses atomic memory operations and one that does not. Like the work of Hussein

et al., Vineet and Narayanan’s algorithm is limited in scope to grid graphs.

Most recently, Harish et al. [15] described their implementation of a series of graph

algorithms on the GPU. As was the case with the previous GPU work, Harish et al.

also focused on the push-relabel algorithm for solving the maximum flow problem.

The authors used a scan operation to identify vertices that will be active in a given

phase and only assign threads to those vertices. Harish et al. concluded that high



Chapter 5: The MPM Maximum Flow Algorithm 78

degree graphs perform significantly better than graphs with a low degree. The authors

explained this result by describing the lack of parallelism present in graphs with lower

vertex degrees (that is, more linear graphs).

From the following works, we note that research in parallel computing for the

maximum flow problem on the GPU has been focused on the push-relabel algorithm.

In the current work, we consider the MPM algorithm on the GPU as our choice of max

flow algorithm, as it contains properties we believe make it more suited for the GPU

architecture. The MPM algorithm is synchronous and can be more readily mapped

to an SIMD architecture unlike the push-relabel method, whose asynchronicity may

not make it an ideal match for the GPU. We believe the design and implementation

of the MPM algorithm will make a nice comparison piece to the existing push-relabel

work.

5.4 MPM on the GPU

We begin the discussion on our GPU implementation of the MPM algorithm with

a description of how we modified the phases. In Section 5.2 we described the six main

phases of the MPM algorithm: construction of the layered network, construction of

the blocking flow, pushing flow, pulling flow, pruning, and updating capacities in G.

These phases work well in serial, as we can only complete one task at a time. In

parallel, however, we have the added benefit of being able to perform operations at

the same time, assuming that they do not require any consistency or synchronization

between them. In the MPM algorithm, the pushing of flow and pulling of flow phases

meet these requirements. Consider which layers of GL the pushing and pulling of
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flow phases work on. When pushing flow, we work only with layers Li through Lt

(where Li contains vm, and Lt contains t). Conversely, when pulling flow, we work

only with layers L0 through Li (which contain s and vm respectively). As a result,

both phases never update or interact with the same edges (or vertices, outside of

vm) at any point in time, allowing us to execute them in parallel without requiring

performance-degrading consistency checks.

Due to this lack of interaction, we merge the pushing of flow and pulling of flow

phases into a single phase. Effectively, this merger allows us to work on both sides

of the layered network (relative to vm) in parallel, removing the synchronization

barrier that would otherwise be in place between these two phases, and improving

performance. Furthermore, due to the simplicity of the construction of blocking flow

phase, which involves only a search for vm, we merge it with the pushing and pulling

of flow phase as well. As the search for vm is very simple, and involves only a single

search for a minimum potential value across all edges in GL, we feel that it holds

little interest and do not treat it as a separate phase in our discussion.

In our GPU implementation, we store only the residual capacity, c̃(e), for each

edge’s flow data. That is, each edge stored on the GPU maintains only its residual

capacity value, rather than c(e) and f(e). With this approach, we reduce the num-

ber of memory accesses required, as well as the memory storage requirements and

computations required for an edge. In the same manner as our BFS algorithm, we

use the two-array adjacency list structure for storing the vertices and edges of G (see

Figure 4.2 in Section 4.3). As we have previously discussed the set up and use of this

structure in Section 4.3 we do not repeat the material here. Finally, we use a number
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of one-dimensional arrays to store the state of flow in the graph:

1. Layers — Stores the layer each vertex in GL belongs to, if any.

2. EdgeState — The state of an edge in GL, either ACTIVE or INACTIVE.

3. EdgeFlow — The residual capacity along each edge in G.

4. InPotential — The current in-potential of each vertex in GL.

5. OutPotential — The current out-potential of each vertex in GL.

Note that EdgeFlow stores the residual capacity of edges in G, not in GL. By doing

this, we avoid the phase requiring us to merge the flow results from GL into G.

Instead, we simply work on G’s flow data directly.

In the end, we compress the original six phases of the MPM algorithm into three:

layered network construction, pushing and pulling of flow and pruning. A description

of our design and implementation for each of these phases follows.

Layered Network Construction

We use a breadth-first traversal of G in order to construct the layered network,

GL. The breadth-first traversal we use for this phase differs only slightly from that

we described in Chapter 4. As was the case with our BFS algorithm, we run multiple

iterations of the kernel in order to construct the layered network. Each iteration

corresponds to the construction of a single layer in GL. A CPU control loop manages

the GPU phases, continually launching new phases for each layer until the sink node,

t, has been assigned to a layer. At this point, we no longer need to continue the

traversal of G as at least one path now exists between s and t in GL.
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In terms of thread responsibilities, we assign a single thread to cover a single

vertex in G. With each iteration of the kernel, each thread assigns adjacent vertices

to the next layer following the rules for layered network construction described in

Section 5.2. We further mark the edges connecting this thread’s vertex with the

vertices added to the new layer as “ACTIVE”. We need to know ahead of time which

edges we can traverse when pushing and pulling flow in GL, hence we mark edges

accordingly in the EdgeState array.

Another minor modification we make to our BFS algorithm updates the in-potential

and out-potential of each vertex. We perform this step in order to reflect the activa-

tion of an edge in GL — the in-potential and out-potential of vertices in GL rely on

which edges are marked as “ACTIVE”. We use a simple auxiliary kernel to update

the in and out-potential data. Within this kernel, each thread simply loops through

its “ACTIVE” edges and updates the in and out-potential accordingly. Rather than

threads potentially updating this data at any time during the execution of the more

complex BFS kernel, we enforce that they update this data all at the same time,

within the same, simple kernel. As a result, we exploit global memory coalescing and

improve the overall performance of this necessary operation.

As the layered network construction kernel does not differ significantly from our

BFS kernel, we do not provide the pseudocode.

Pruning of GL

As we described earlier, the pruning phase involves removing useless vertices (and

edges) from GL. As was the case with the layered network construction phase, we
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map one thread to one vertex (this further implies that a thread is responsible for all

of the edges attached to a vertex). If the potential of a vertex equals 0, we prune that

vertex from GL, as it clearly does not contain any useful outgoing and/or incoming

edges (at least one of these sets must be empty, or have a total residual capacity of

0).

When pruning a vertex, however, we need to check whether the in- or out-potential

was 0. If the in-potential of a given vertex is 0 then we remove the outgoing edges

of this vertex, whereas if the out-potential is 0 we remove incoming edges. In order

to reduce thread divergence in the kernel, we assign temporary pointers pointing to

the in or out-potential arrays, ensuring threads performing work do not diverge when

the actual pruning steps occur (and, instead, push the divergence to the simple task

of setting a pointer). As the removal of incoming edges requires “backwards” edges

(that is, rather than e = (u, v) we need e′ = (v, u) which does not exist in G), we

also assign a pointer to the graph to use (containing forward or backward edges). In

this respect, we store both the original graph data, as well as the “backwards” graph,

called G′, which stores all edges in reverse. This increases the memory requirements

of our algorithm, but allows us to quickly locate both the original (forward) edges as

well as backward edges.

Algorithm 4 CPU Layer Network Pruning Loop

1: while At least one vertex was pruned in the previous phase do

2: Call LayerNetworkPruningGPU

3: end while

Similar to the layered network construction above, the CPU loop controller invokes
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multiple iterations of the pruning phase on the GPU. The CPU controller continually

invokes the GPU pruning kernel until an iteration with no vertices pruned has been

completed. In order to check for termination conditions, the CPU retrieves 4 bytes

of data after each kernel invocation in order to determine if any vertices have been

pruned in the last iteration. We provide the pseudocode for the CPU control loop in

Algorithm 4, and the GPU kernel in Algorithm 5. Lines 5—15 handle the intermediary

pointers, which allows us to control some of the easily guaranteed thread branching

that occurs in lines 17—20 (as not all threads contains the same number of edges they

consider in the for loop). The AtomicSub operation on line 18 ensures consistency

in the event that multiple threads attempt to write to the same data element in

EdgeFlow at the same time. This instruction reduces performance, as threads writing

to the same location must proceed with their operations in serial, but is required in

order to ensure write-after-write hazards do not occur.

Push/Pull Flow

As we described earlier, we concatenate the pushing and pulling of flow into a

single GPU kernel in order to perform both of these tasks in parallel. In this kernel,

each thread is, again, responsible for a single vertex in G. Pushing flow is handled by

saturating as many edges as possible at each vertex from vm to t using forward edges

in GL. Pulling flow, on the other hand, uses backward edges in GL (as read from G′)

and “pushes” flow from vm to s along the backward edges (thus, “pulling” flow from

s).

Before the pushing or pulling of flow can occur, however, we must locate vm. A
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GPU kernel performs this search and executes a minimum-reduction on the vertex

potential data in order to discover the position and potential of that minimum vertex.

We provide the pseudocode of this kernel in Algorithm 6.

With vm found we can now begin the pushing and pulling of flow, which we handle

using another kernel. Each iteration of the GPU kernel for the pushing/pulling of

flow pushes flow across a single layer and pulls flow from a single layer in GL. Similar

to the pruning phase, we use temporary/intermediary pointers to reduce the thread

divergence, as a single kernel handles both the pushing and pulling of flow. This

phase requires a state array (VertexState[]) to maintain a record of which vertices

are pulling and which are pushing, and another state array to keep track of the total

amount of flow waiting to be pushed/pulled at each vertex (FlowAtVertex[]). When

a vertex pulls (pushes) flow, it sets the state array of the vertex receiving the flow to

indicate this new vertex will pull (push) in the next iteration.

As expected, this phase requires the most memory operations out of all the phases.

We must keep track of not only which vertices and edges are active, but also the

various flow states, flow amounts, and other such data across the ACTIVE edges and

vertices. Each thread must also update the residual capacity value for edges that it

pushes flow across, as well as the in or out-potential for both its own vertex as well

as the vertices receiving flow. Because we must invoke the kernel multiple times in

order to complete the pushing/pulling, we cannot store this data in shared memory

for fast retrieval. Due to the high memory complexity of this kernel, we expect that it

will perform the worst, relative to a sequential CPU implementation, as the number

of irregular reads and writes to memory are high. Unfortunately, such problems are
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inherent to algorithms with irregular properties, and while we have made some efforts

to reduce their performance-degrading effects (such as the use of intermediary pointers

to avoid high thread divergence), many other occurrences, such as the irregular reads

and writes as the various threads push/pull flow across edges that are unknown ahead

of time, are simply unavoidable.

Algorithm 7 CPU Push/Pull Flow Control Loop

1: while at least one vertex needs to push/pull flow do

2: Call Push/PullFlowGPUKernel

3: end while

As was the case with the other phases, a CPU control loop (shown in Algorithm 7)

repeatedly invokes the Push/Pull kernel until it encounters some termination condi-

tion. In this case, we terminate the algorithm when no new vertices have had flow

pushed or pulled to them in a given phase. As with the other two phases, this requires

a negligible 4 bytes of data transferred from the GPU to the CPU.

The Complete MPM Algorithm

Having covered the individual phases of our MPM algorithm, we can now piece

the parts together and describe the algorithm as a whole. Algorithm 8 shows the

high-level CPU framework used to drive the MPM algorithm computations on the

GPU. Currently, the CPU only controls the invocation of GPU kernels and the termi-

nation condition checks. The GPU performs all other computations. This allows for

minimal memory transfers between the CPU and GPU, which are generally costly and

time consuming. As discussed, in each phase the CPU requires only 4 bytes of data
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following each GPU kernel invocation in order to check the termination condition for

each individual phase as well as the MPM algorithm as a whole.

Algorithm 8 MPM Maximum Flow Algorithm Framework

Require: G = (V ,E , s , t)

1: while A path exists from s to t in G do

2: GL ← G partitioned into a layered network

3: while A path exists from s to t in GL do

4: Find vertex v with min. vertex potential

5: Push/pull flow from v to s , t

6: Prune GL

7: end while

8: end while

5.4.1 Active Vertex Modification

We recognize the same critical flaw in our implementation of the MPM algorithm

on the GPU that we noted with the BFS: at every iteration of every kernel for every

phase all threads covering all vertices in G are launched. Clearly this is sub-optimal

as: (1) the pruning and pushing/pulling of flow phases work on vertices in GL and

not G, and (2) not all vertices in GL will be active during every iteration of every

phase (consider the pushing/pulling of flow which works on a layer-by-layer basis —

clearly there will be, at most, 2 layers of active vertices in GL for a given iteration!).

In order to improve on our algorithm, we modify each phase such that they perform

an extra operation that determines which vertices will be active in the next iteration,
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and store the vertex numbers in an array. As we discussed in the BFS chapter, Harish

et al. [15] describe this technique, and we modify it for use in our algorithm. Our

hypothesis at the time was that the effect of this strategy should have a noticeable

impact on performance, as we now have the entire thread grid for a kernel saturated

only with threads that will perform useful work. As we originally observed with

the BFS, however, this strategy did not result in improved performance overall. We

believed, however, that the differences in the pruning and push/pull kernels from

the BFS/layered network construction kernels will likely result in the active vertices

modification improving performance.

While the underlying active vertices technique was tuned to the requirements of

the kernel (and will be explained for each below), the common theme for each was the

use of a scan operation to determine the active vertices. In essence, each kernel keeps

track of vertices that have been activated (using a scan state array with one slot for

each vertex where 0 is inactive and 1 is active), and we perform a scan operation on

this state array to determine the actual vertex indices for each active vertex. Similar

again to our work on the BFS, we use the high performance parallel scan operation

that is a part of the CUDPP library [43, 42] in order to accomplish this.

We conclude this section with a description of the modifications made to each

phase in order to support the active vertices strategy.

Modified Layered Network Construction Phase

Due to the reduction of performance we observed in the BFS active vertices mod-

ification, we neglected to investigate the potential of this strategy for layered network
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construction. As this phase is nothing more than a breadth-first traversal of a graph

with a few minor modifications, we believe that no performance improvement is pos-

sible via this strategy.

Modified Pruning Phase

In the pruning phase, we can only mark threads as active if we believe they may

cover a vertex that requires pruning. Clearly, in the first iteration of this kernel

all threads must be marked as active, as, potentially, any vertex could be pruned.

We simply cannot have this information ahead of time. When a vertex is pruned,

we mark all neighboring vertices (using backward edges in the case of a vertex with

zero out-potential, and forward edges for vertices with zero in-potential) with a one

value in the vertex flag array. The next iteration of the kernel will then launch with

threads considering only these vertices for pruning. As was the case with the original

pruning phase, we iterate until no further vertices are considered for pruning in a

given iteration.

Modified Push/Pull Flow Phase

For the pushing/pulling of flow phase, we structure the modifications in a manner

similar to the modified pruning phase. Rather than start with all vertices active,

however, we start with only vm active. As flow is pushed/pulled to neighboring

vertices, we mark those vertices as active in the vertex flag array. The next iteration

of the kernel will then launch threads covering only those vertices that must now push

or pull flow. We iterate this phase until flow has reached both s and t — the point

at which no vertices are active in a given iteration, as s contains no incoming edges,
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and t no outgoing edges in GL.

5.5 Results

We averaged the performance results for the MPM algorithm across at least 5

random graphs for each vertex count (with an average degree of 12). We ran the

MPM algorithm against each of these graphs 25 times in order to gather averaged

execution time results.

For our initial results, we compared the overall execution time between all three

implementations (CPU, GPU, and active vertices modification). We show that our

persistence with the active vertices strategy paid off in Figure 5.2. From the results,

we can see that both GPU implementations perform significantly better than the se-

quential CPU implementation, but also that the active vertices modification resulted

in further performance improvements over the base GPU version. Previous work by

Solomon et al. [48] tested only a small number of graphs over a small number of iter-

ations. By improving our tests with many more graphs and iterations for this work,

the averaged speedup of the base GPU MPM implementation was reduced from 8 [48]

to approximately 6.5. However, the averaged speedup of the active vertices version

of the GPU MPM implementation was approximately 9.5, higher than our previously

optimistic results in Solomon et al. [48] without the active vertices strategy.

We further investigated the performance of each phase of the MPM algorithm

individually, in order to gain a greater understanding of which computations perform

well on the GPU. Figure 5.3 provides a graph detailing the total execution time taken

by the layered network construction phase in a sequential CPU implementation and
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Figure 5.2: Performance of the MPM Algorithm.

a parallel GPU implementation. As we expected, given the performance of the BFS,

the GPU implementation performs significantly better than the CPU implementation.

Unfortunately, as was also the case with the BFS, the active vertices modification is

unlikely to provide any performance improvements.

From Figures 5.4 and 5.5 we can see that the results for pruning and push-

ing/pulling of flow appear to be much better than that of the layered network con-

struction phase, or the BFS, in terms of the active vertices modification. Table 5.1

shows that both of these phases see their execution times improved upon by over

50% on average when switching from the basic kernel to the active vertices kernel.

We believe these phases see such a tremendous improvement while the BFS/layered
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network construction did not, for two reasons:

1. Their kernels are more complex than the layered network construction kernel,

with more computations and many more accesses to global memory.

2. The layered network construction phase contains different patterns of change in

the active threads compared to the pruning and pushing/pulling of flow phases.

For layered network construction the number of active vertices (in the best case)

grows by a factor of a∗d where a is the number of active vertices in the previous

iteration and d is the average vertex degree. That is to say, the active vertex

count has the potential to grow very quickly. Thus, in later phases, the number

of active vertices we write to the state array are large — in these cases the

overhead of the scan operation becomes far greater than just letting a relative

few inactive threads slip past. Pruning, however, starts with all vertices active

and then rapidly diminishes based on the number of vertices pruned at each

iteration. For pruning, the active vertex count decreases with each iteration.

Finally, for pushing/pulling flow, we have a somewhat consistent active vertex

count after the first iteration. This is simply because the vertices that have the

potential to be active must be located in one of the two layers considered in the

current iteration.

When we combine these reasons with the ability to fill warps with only those threads

that are active, it begins to become apparent as to why we see such a large perfor-

mance improvement in these two phases with the active vertices strategy. The high

potential for growth of the (relatively) simple layered network construction kernel

cannot take full advantage of the active vertices technique. In this kernel, we likely
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Figure 5.3: Total execution time taken by layered network construction phase.

% Improved
Layered Network Con. —

Pruning 61.0%
Push Pull Flow 56.5%

Table 5.1: Average Performance Improvement Between Normal GPU and Active
Vertices Implementations

have a large number of threads active at each iteration, reducing what performance

improvements we hoped to achieve by ignoring inactive threads. In contrast, the

reduction or consistent nature of the pruning and push/pull flow phases respectively,

coupled with their greater complexity, results in the active vertices strategy having a

greater impact on performance improvement of the kernels.

Next, we measured the approximate percentage of the run time each phase con-
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Figure 5.4: Total execution time taken by pruning phase.

sumes and provide the results in Table 5.2. For these results, we ignore miscellaneous

computations outside of the phases. We also measured the average speedup between

the GPU phases, using the best implementation of each kernel (active vertices strategy

for all but the layered network construction) versus the sequential CPU implementa-

tion and place the results in Table 5.3. When we look at the data from Tables 5.1, 5.2,

and 5.3, we observe some interesting results. Firstly, while the pruning phase con-

sumes slightly over half of the phase execution time it saw the greatest improvement

with the active vertices strategy, a 61% improvement. With the active vertices strat-

egy we have substantially improved the most time consuming phase in the algorithm,

thus providing us a significant performance improvement in the algorithm as a whole.
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Figure 5.5: Total execution time taken by push/pull flow phase.

While the push/pull flow phase also saw a tremendous performance improvement, at

56.5%, the phase only makes up 19% of the phase execution time, resulting in a much

smaller impact on the improvement of the overall performance. Finally, while the

layered network construction phase displayed the best speedup out of the three, it

does not gain any improved performance via the active vertices implementation. The

layered network construction phase also represents a large portion of the execution

time, at 30% of the share, which makes the inability to improve its performance an

unfortunate situation.

Overall, however, we believe the final results are impressive. Not only does the

active vertices version of the GPU code feature improved performance over the basic
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Execution Time %
Layered Network Con. 30%

Pruning 51%
Push Pull Flow 19%

Table 5.2: Average division in execution time between all three phases.

Speedup
Layered Network Con. 18

Pruning 9
Push Pull Flow 3

Table 5.3: Average speedup of best implementation versus sequential CPU
implementation

GPU code, but we also see a reasonable level of speedup compared to a sequen-

tial CPU implementation. While we never reach the speedup values we saw with

the BFS, we expected this. The BFS represented a simple algorithm with irregular

properties, whereas the MPM algorithm represents a more complex algorithm with

irregular properties. The differences in memory and computational complexity have

been well covered, and they result in the performance on the GPU suffering some-

what. We feel that the fact that we can still achieve nearly a ten times performance

improvement over the CPU helps to show that the GPU still provides a reasonable

level of performance when working with complex irregular problems.

5.5.1 Comparison to Existing Work

Finally, we attempt to compare our results to Harish et al.’s [15] GPU imple-

mentation of the push-relabel algorithm. Unfortunately, the author’s paper does not

provide any hard numbers for the majority of the performance result, nor do they
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Figure 5.6: Performance scaling by average vertex degree.

publish the exact random graphs used for their main performance tests. Further,

they use superior GPU hardware with a higher clock speed, more SMs, and more

global memory compared to our testing (their hardware included a GTX 280 and

Tesla S1070 compared to our GTX 260). As a result, the comparisons we make here

are not concrete, but merely an interesting diversion. With that said, Harish et al. did

publish some hard performance numbers when they tested the vertex degree scaling

of their algorithm. We performed the same type of tests, with random graphs similar

to theirs (100K vertices with varying average vertex degrees). Unfortunately, due to

the lack of available memory on our GPU we could not test extremely high vertex

degrees.
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Figure 5.6 provides a graph with the vertex degree results (the numbers posted

at each data point are the average execution times for the active vertices implemen-

tation). Comparing our results to those of Harish et al. [15] we see that our MPM

implementation comes very close to their performance levels for average vertex degrees

of 100 and 200 (808 and 2976 milliseconds [15] respectively). We want to reiterate

that we do not believe we can draw a full comparison from these results as our works

use different random graphs from one another. We do consider it of interest, however,

to note that two very different maximum flow algorithms appear to perform similarly

on the GPU.

Another observation we make from these results deals with the performance of the

MPM algorithm degrading as the average vertex degree increases. While this may

seem somewhat counter-intuitive — higher vertex degrees should potentially equal

more parallelism — having a graph composed of vertices with very high degrees

results in much larger data sizes, as the number of edges in the graph increases. This

increase in the overall amount of data that may or may not require processing at

some point in time during the algorithm explains the increase in execution time. To

explain this further, consider that one thread covers one vertex in all phases of our

MPM implementation. As the average degree increases, each thread must perform

much more work as it has many more edges to cover in its vertex.

5.6 Summary

As expected, the level of speedup we observed for the MPM algorithm was lower

than both the BFS and option pricing algorithms we previously investigated. Similar
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to the BFS algorithm, we encountered issues with the inability to fully exploit global

memory coalescing and were unable to ensure we provided each thread with equal

workloads. Unlike the BFS, however, we observed a fairly significant performance

improvement with the active vertices modification. Despite the overhead inherent

to this technique, we increased the speedup of our implementation from 6.5 up to

9.5. While the speedup results were nearly halved from what we observed with the

BFS, we feel that these results still help to show that the GPU allows for adequate

performance when solving even a complex irregular problem. Outside of the rare

occurrence of super-linear speedup, we expect to require at least 10 traditional CPU

processing cores to achieve the same speedup results as we saw on a single mid-range

GPU.

For the next chapter, we investigate a very different algorithm. Thus far, each

algorithm contained either regular or irregular properties in their entirety. Particle

swarm optimization for solving the task matching problem, however, features a num-

ber of very regular, data-parallel segments coupled with some areas of irregularity.

Due to this mix, we expect that the performance will fall between the BFS and option

pricing algorithm. We do not expect greater performance than the option pricing al-

gorithm due to the irregular sections, but expect the performance to greatly exceed

that of the BFS due to the large amount of regular areas. We expect that the particle

swarm optimization algorithm will help us understand the design, optimization, and

performance of algorithms on the GPU to an even greater degree due to the dramatic

differences between it and the previous algorithms we have investigated.
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Algorithm 5 GPU Layer Network Pruning Phase

Require: G ={V ,E}, G ′ ={V ,E ′}, Layers[], EdgeState[], EdgeFlow[], InPoten-

tial[], OutPotential[]

1: tid = blockIdx.x ∗ blockDim.x + threadIdx.x

2: if tid ≤ |V | then

3: if Layers[tid] ≥ 0 AND Vertex Potential = 0 then

4: Layers[tid] = −1

5: if InPotential[tid] = 0 then

6: //We will prune outgoing edges

7: Graph = G

8: MyVertexPotentialPtr = OutPotential

9: AdjVertexPotentialPtr = InPotential

10: else

11: //We will prune incoming edges

12: Graph = G′

13: MyVertexPotentialPtr = OutPotential

14: AdjVertexPotentialPtr = InPotential

15: end if

16: MyVertexPotentialPtr[tid] = 0

17: for each e = (u, v) in G where u = tid do

18: AtomicSub(AdjVertexPotentialPtr[v], EdgeFlow[e])

19: EdgeState[e] = INACTIVE

20: end for

21: end if

22: end if
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Algorithm 6 GPU Push/Pull Flow Kernel

Require: G ={V ,E}, G ′ ={V ,E ′}, Layers[], VertexState[], EdgeState[], Edge-

Flow[], FlowAtVertex[], InPotential[], OutPotential[]

1: tid = blockIdx.x ∗ blockDim.x + threadIdx.x

2: if tid ≤ |V | then

3: if NodeState[tid] = PUSH then

4: MyState = PUSH, GraphPtr = G

5: MyVertexPotentialPtr = OutPotential, AdjVertexPotentialPtr = InPotential

6: end if

7: if NodeState[tid] = PULL then

8: MyState = PULL, GraphPtr = G′

9: MyVertexPotentialPtr = InPotential, AdjVertexPotentialPtr = OutPotential

10: end if

11: if (MyState = PUSH OR PULL) AND (EdgeFlow[tid] > 0) then

12: remainingFlow = FlowAtVertex[tid]

13: for Each edge e = (u, v) in GraphPtr where u = tid do

14: VertexState[v] = MyState

15: Update EdgeFlow[e], remainingFlow, and potentials of u and v

16: if EdgeFlow[e] = 0 then

17: EdgeState[e] = INACTIVE

18: end if

19: Break from for loop if remainingFlow ≤ 0

20: end for

21: end if

22: end if



Chapter 6

Multi-Swarm Particle Swarm

Optimization

Having completed our investigation of two irregular problems and one regular

problem, we turn our attention towards the computationally difficult problem of task-

matching. The final algorithm we investigate to solve this problem is a multi-swarm

Particle Swarm Optimization (PSO) algorithm. We chose a multi-swarm PSO al-

gorithm as it is an algorithm that contains significant degrees of parallelization and,

thus, we found it interesting to experiment with on the GPU. We target this algorithm

at solving the task matching problem not only because it is a real-world problem, but

also because solving this problem with PSO results in some areas of irregularity in

terms of data-access patterns. We had already investigated a thoroughly data-parallel

algorithm with lookback option pricing, so we chose to move things along a different

path here.

We start this chapter off with an introduction to the PSO and multi-swarm PSO

101
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algorithms, a description of the task matching problem, and the related work for

this area. From there, we move on to a description of our PSO algorithm for solv-

ing the task matching problem and then describe our GPU implementation, and its

performance.

6.1 Introduction to PSO and Multi-Swarm PSO

The PSO algorithm, first described by Kennedy and Eberhart [22], is a bio-inspired

or meta-heuristic algorithm that uses a swarm of particles which move throughout an

area, searching for an optimal solution. In essence, the PSO algorithm was inspired

by swarm activities in nature. For example, consider a flock of birds searching for

food. As one bird finds food, others may move in towards the same general location

as that area is known to have that desirable property (sustenance).

In PSO, our particles function like the aforementioned birds. Each particle searches

for some optimal value, and collaborates with other particles in the swarm. We refer

to the area that the particles search through as the solution space. Each point in

the solution space (represented by a real number for every dimension) represents one

solution to the optimization problem (not necessarily an optimal solution, however).

The solution space itself may be composed of as many dimensions as required for the

optimization problem at hand. For example, searching across a land mass for food

requires only two or three dimensions in the solution space (representing positions

along the x, y, and optionally, z, axes). Other problems, however, may require solution

spaces of higher dimensionality. In other words, PSO works with an n dimensional

solution space, where 0 < n <∞.
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Figure 6.1: Continuous (left) and Discrete (right) solution spaces.

Furthermore, we can define a solution space as either continuous or discrete. In

the case of a continuous solution space, each dimension contains an infinite number

of real points. That is to say, there does not exist any discrete, exact points along the

dimensions defining where particles may lie — in a continuous solution space particles

may exist at any possible location. Conversely, a discrete solution space contains,

along each dimension, a set of discrete points. Unlike the continuous space, which

allows particles to fall wherever they please, the discrete space enforces that particles

must be located on one of the points, and nowhere else. We provide a simple example

of continuous and discrete 2-dimensional solution spaces in Figure 6.1. Note that the

particles (the circles in Figure 6.1) are constrained to the gridlines (discrete points

along the x and y dimensions) in the discrete solution space, while the continuous

solution space allows the particles to be located at any point.

Particles move throughout the solution space over the course of the algorithm and,

as a result, require a position and velocity. We represent the position of particle i at

iteration j of the algorithm with Xj
i and the velocity with V j

i . As we work with an
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n-dimensional solution space, Xj
i and V j

i contain n components (or elements) each

— one for each dimension in the solution space.

Now that we have attached a position and velocity to our particles, we need

some method of testing the optimality of their current location in the solution. Each

particle tests the fitness (or optimality) of the solution at its current location and uses

this information to decide on where it will move next. The fitness function uses a

formula to determine the optimality of a point in the solution space (a given solution

for the optimization problem). This function must be intrinsically tied to the specific

optimization problem at hand, as every problem contains its own definition for what

makes a solution optimal. For example, if we were working with a problem of finding

an area with the greatest deposits of food, we would set the fitness function to provide

a value tied to the amount of food in an area. The greater the total mass of food in

an area, the greater the value the fitness function returns. More complex problems,

such as the problem we investigate (the task matching problem) require more complex

fitness functions.

Similar to the MPM algorithm, we will describe the actual PSO algorithm in piece-

meal fashion by splitting it up into phases. In this case, we have four main phases to

PSO: the initialization of the swarm, the updating of the velocity and position of each

particle, updating fitness, and the updating of the (local and swarm) best positions.

6.1.1 Initialization

The initialization phase involves initializing the particles within the swarm. We

provide each particle with a random starting position and a random starting velocity.
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Recall that Xj
i (position) and V j

i (velocity) contain n elements, corresponding to the

n dimensions in the solution space. Thus, we must initialize all n elements for each.

We set the random starting position along each dimension such that:

Xmin,i < X0
i < Xmax,i

where Xmin, i and Xmax, i represent the minimum and maximum positions possible in

dimension i. We randomly assign the velocity for a particle as any value between 0

and Xmax,i/2.

6.1.2 Velocity and Position Update

In order to have these particles move throughout the solution space we must pro-

vide them with a velocity value. We follow the modified PSO algorithm as established

by Shi and Eberhart [44]. These authors update the velocity of a particle, i, using

Equation 6.1.

V j+1
i = w ∗ V j

i + c1 ∗ rnd() ∗ (XPbest −Xj
i ) + c2 ∗ rnd() ∗ (XGbest −Xj

i ) (6.1)

where Xj
i is the particle’s current location, XPbest is the particle’s local best position,

XGbest is the global/swarm best position, and rnd() generates a uniformly distributed

random number between 0 and 1. w, the inertial weight factor, along with c1 and c2

provide some tuning of the impact the previous velocity, V j
i , XPbest, and XGbest have

on the particle’s updated velocity. Typically, c1 and c2 do not change throughout

the iterations of PSO. Shi and Eberhart [44], however, proposed that changing w

from iteration to iteration may improve the performance or solution quality of the

algorithm. The authors recommend that w be started at 0.9 and slowly reduced such
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that w = 0.4 by the final iteration of the algorithm. Once we update the velocity, the

particle changes its position using Equation 6.2.

Xj+1
i = Xj

i + V j+1
i (6.2)

6.1.3 Fitness Update

The next step of the PSO algorithm involves updating the fitness of each particle,

based on its current position in the solution space. As the fitness update phase is

tied directly to the optimization problem, we leave the discussion of this phase until

our explanation of our GPU implementation.

6.1.4 Local and Swarm Best Position Update

In the last phase of PSO we update the local best position and values for each

particle as well as the global (or swarm) best position and value for the swarm as a

whole. To start, each particle compares its current fitness value with the best value

it found in the previous iterations (local best value). If the current fitness value is

greater, the particle then replaces its local best value with its current fitness value.

We maintain a record of the position of the local best value in XPbest as we use this

value in the velocity update Equation 6.2. After each particle updates their respective

local best value, we compare the best of the local best values against the best value

found by the entire swarm (global best value) thus far. If this “best-of-the-best” value

represents an improvement over the current global best value, then we replace the

global best value. As was the case with the local best, we update the global best

position, XGbest, as well.
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6.1.5 The Complete PSO Algorithm

With all of the phases of standard PSO defined, we can build the algorithm as

a whole. In Algorithm 9 we provide the basic high-level pseudocode for PSO. In

this code we terminate the algorithm after a given number of iterations have been

executed. We note that this is not the only choice of a termination condition. If we

value solution quality over execution time we could terminate the algorithm when the

global best value surpasses a threshold value. As we are concerned about performance,

and the ability to deterministically measure the performance of a non-deterministic

algorithm, we use the first option, and terminate processing after a set number of

iterations.

Algorithm 9 Basic PSO Algorithm

Randomly disperse particles into solution space

for i = 0→ numIterations do

for all particles in swarm do

Compute fitness of current location

Update XPbest if necessary

Update XGbest if necessary

Update velocity

Update position

end for

end for
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6.1.6 Multi-Swarm PSO

As we are working with the highly parallel GPU hardware, we wanted to investi-

gate the potential of a highly parallel PSO algorithm on the architecture. As a result,

rather than designing and implementing a standard PSO algorithm we consider a

variant of PSO that collaborates amongst multiple swarms. With multiple swarms

we have the potential for more particles, and, thus, more parallelism. We further

hypothesized that such a variant of PSO may provide higher quality solutions than

we would otherwise generate with a large number of particles within a single swarm.

Finally, as we will discuss in Section 6.3, there are a few examples of work related to

(standard) PSO on the GPU, but none besides our own that investigates multi-swarm

PSO on the GPU.

The particular multi-swarm PSO algorithm we choose, described by Vanneschi et

al. [53], collaborates amongst swarms by replacing some of a swarm’s “worst” particles

with its neighboring swarm’s “best” particles. By best and worst we refer to the fitness

of the particle relative to all other particles in the same swarm. This swap occurs every

given number of iterations, and forces communication among the swarms, ensuring

that particles are mixed around between swarms. Further, Vanneschi et al. [53] use

a repulsion factor for every second swarm. This repulsive factor repulses particles

away from another swarm’s global best position (XFGBest) by further augmenting the

velocity using the equation:

V j+1
i = V j+1

i + c3 ∗ rnd() ∗ f(XFGbest, XGbest, X
j
i ) (6.3)

where function f , as described by Vanneschi et al. [53], provides the actual repulsion

force, and c3 represents another tuning factor similar to the c1 and c2 values of stan-
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dard PSO. We believe that this algorithm represents a good fit for the GPU, as it

combines the potential for high degrees of parallelism with the iterative, synchronous

nature of the PSO algorithm.

6.2 Introduction to the Task Matching Problem

The task matching problem represents a significant problem in heterogeneous,

distributed computing environments, such as grid or cloud computing. The problem

involves determining the optimal assignment, or matching, of tasks to machines such

that the total execution time is minimized. More specifically, if we are given a set of

heterogeneous computing resources and a set of tasks, we want to match (assign) tasks

to machines such that we optimize the time taken until all machines have completed

processing of their assigned tasks. We refer to this measure of time that we look to

optimize as the makespan, which is determined by the length of time taken by the

last machine to complete its assigned tasks.

We provide an example of one (sub-optimal) solution to a task-matching problem

instance in Figure 6.2. In this case, we have three resources (machines) and six

tasks. Each task in the figure is vertically sized based on the amount of time required

to execute the task (we assume all three machines are equal in capabilities for this

example). In the solution provided, machine three defines the makespan, as it contains

the lengthiest amount of tasks. Of course, this solution is sub-optimal, as we could

move task six to machine two in order to generate an improved solution. In this

improved solution, machine three still defines the makespan, but the actual value will

be smaller, as only task four needs processing, rather than four and six.
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Figure 6.2: Example of task matching and makespan determination.

While a toy problem such as the one in Figure 6.2 may not seem particularly

intensive, the task matching problem becomes very computationally intensive as the

problem size scales upwards. With many machines, and even more tasks, the possible

combinations of task to machine matchings becomes extraordinarily high. Rather

than a brute force approach, we need more intelligent algorithms to solve this problem

within a reasonable amount of time.

While we will discuss the PSO-related solutions to this problem in Section 6.3.3, we

will conclude this section with a brief look at some of the simpler heuristic algorithms

developed for solving the task matching problem. The simplest of these is the first-

come first-serve (FCFS) algorithm, that simply matches a task to the most optimal

machine as they are observed by the algorithm. The algorithm will choose a best

machine based on the current Machine Available Time (MAT) of each machine. The

MAT of a machine is the amount of time required to complete all tasks currently

matched to that machine. The algorithm assigns the task to the machine with the
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lowest MAT.

Two more heuristics for solving the task-matching problem are the min-max and

min-min [10] algorithms. The min-min algorithm first determines the minimum com-

pletion time for each task that we want to consider across each machine. Within

these minimum completion time values it searches for the minimum and assigns that

task to the corresponding machine. The min-max algorithm handles this problem in

a slightly opposite manner. The algorithm still computes the minimum completion

times, but rather than assigning the task with the minimum value to the correspond-

ing machine, it assigns the task with the maximum value.

The issue with these two algorithms is that they are suited for very particular

instances of the problem. Min-min, for example, works well with many small tasks,

as it will assign them to their optimal machines first, leaving the few longer tasks

for last. This algorithm may improve the makespan for problems with many small

tasks, but as the number of larger tasks increases the results worsen. Min-max, on

the other hand, performs better when there are many longer tasks in the problem

instance. Neither of these problems provide optimal solutions across all potential

cases. PSO, on the other hand, searches for optimal solutions through the solution

space, and may work effectively regardless of the task composition.

6.3 Related Work

As this chapter deals with a few areas that can be considered independently, we

split this section of related working into a few subsections: multi-swarm PSO, PSO

for the GPU, and PSO targeted at the task-matching problem. We investigate the
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existing work for each of these areas independently.

6.3.1 Multi-Swarm PSO

The literature contains a number of works based around multi-swarm PSO. One

such work by Liang and Suganthan [28] acts as a modification to a dynamic multi-

swarm algorithm. The dynamic multi-swarm algorithm initializes a small number

of particles in each swarm and then randomly moves particles between swarms after

a given number of iterations. The authors augment this algorithm by including a

local refining step. This step occurs every given number of iterations and updates the

local best of a particle only if it is within some threshold value relative to the other

particles in the swarm.

A different work by van den Bergh and Engelbrecht [52] considers having each

swarm optimize only one of the problem’s dimensions, and provide a number of “col-

laborative” PSO variants. The authors showed that their algorithm provides better

solutions as the number of dimensions increases. Compared to a genetic algorithm,

van den Bergh and Engelbrecht experimentally show that their collaborative PSO

algorithms consistently perform better in terms of solution quality. They further

compare their algorithms against a standard PSO algorithm and show that the col-

laborative PSO algorithms beat this standard algorithm four times out of five. The

authors mention, however, that if multiple dimensions are correlated, they should be

packed within a single swarm.

As was previously mentioned, we follow the work described by Vanneschi et al. [53]

for our implementation on the GPU. Their “MPSO” algorithm solves an optimiza-
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tion problem via multiple swarms that communicate by moving particles amongst

the swarms. Every given number of iterations swarms will move some of their best

particles to a neighboring swarm, replacing some of the worst particles in that swarm.

They describe a further addition to this algorithm, “MRPSO”, that further uses a

repulsive factor on each particle. Their results show that both MPSO and MRPSO

typically outperform the standard PSO algorithm, with MRPSO providing improved

performance over MPSO.

6.3.2 PSO on the GPU

To the best of our knowledge, there does not exist any collaborative, multi-swarm

PSO implementations on the GPU in the literature. Veronese and Krohling [4] de-

scribe a simple implementation of PSO on the GPU. Their implementations use a

single swarm and split the major portions of PSO into separate kernels, with one

thread managing each particle. In order to generate random numbers Veronese and

Krohling [4] use a GPU implementation of the Mersenne Twister pseudo-random

number generator. When executed against benchmark problems the authors show up

to an approximately 23 times speedup compared to a sequential C implementation

when using a large number of particles (1000).

Similar to the work of Veronese and Krohling, Zhou and Tan [59] also describe

a single-swarm PSO algorithm for the GPU. The authors, too, assign one thread to

manage one particle, and split up the major phases of PSO into individual GPU

kernels. For random number generation, however, Zhou and Tan [59] differ from

Veronese and Krohling [4] in that they use the CPU to generate pseudo-random
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numbers and transfer these to the GPU. The authors achieve up to an 11 times

speedup compared to a sequential CPU implementation. They take care to note,

however, that they used a mid-range GPU for their tests, and they expect the results

to be improved further on more powerful GPU hardware.

Mussi et al. [31] investigate the use of PSO on the GPU for solving a real-world

problem: road-sign detection. When updating the position and velocity of the par-

ticle, the authors map threads to individual elements/dimension values and not a

particle as a whole. Similarly, multiple threads within a block collaborate to compute

the fitness value of each particle during the fitness update phase. Mussi et al. show

that their GPU implementation achieves around a 20 times speedup compared to a

sequential CPU implementation.

Mussi et al. [32] provide another, more recent GPU implementation of PSO. As

with their earlier work in [31] the authors assign a single thread to a single dimension

for each particle. Mussi et al. [32] test their algorithm against benchmarking problems

with up to 120 dimensions, and show that the parallel GPU algorithm outperforms

a sequential application. Finally, the authors mention in passing the ability to run

multiple swarms, but do not elaborate or test such situations.

The general theme across the works we have covered has been parallelizing single

swarm PSO (with, perhaps, a brief mention of multi-swarm PSO, but no actual

descriptions of the work). In the most recent case, Mussi et al. [32] provided a

fine-grained implementation of PSO that attempts to take advantage of the massive

threading capabilities of the GPU. The authors, however, only run test sizes up to

120 dimensions and 32 particles. For our work, we wished to test across not only a
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larger number of dimensions, but a large number of particles as well. As a result,

we use a mixed strategy that does not lock a static responsibility to a thread, and,

further, provides support for multiple swarms that collaborate with one another.

6.3.3 PSO for Task Matching

Applying PSO to the task matching/mapping problem has been studied in the

past by various groups. These previous works have investigated both the continuous

and discrete methods of PSO. All of the works we discuss here have one main idea

in common: they work in an n dimension solution space, where n is equal to the

number of tasks. One dimension maps to one task, and a location along a dimension

(typically, but not always) represents the machine that the task is matched to.

To start, Zhang et al. [58] apply the continuous PSO algorithm to the task map-

ping problem. In their implementation, the authors use the Smallest Position Value

(SPV) technique (described by Tasgetiren et al. [51]) in order to generate a posi-

tion permutation from the location of the particles. Hence, the solution by Zhang

et al. does not directly map a location in a dimension to a matching matching, but

rather uses the locations to generate some permutation of matchings. Zhang et al.

benchmark their algorithm against a genetic algorithm and show that PSO provides

superior performance.

A recent work by Sadasivam and Rajendran [40] also considers the continuous

PSO algorithm coupled with the SPV technique. The authors focus their efforts

on providing load balancing between grid resources (machines), thus adding another

layer of complexity into the problem. Unfortunately, the authors only compare their
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PSO algorithm to a randomized algorithm, and show that PSO provides superior

solution quality.

Moving away from continuous PSO, Kang et al. [24] experimented with the use of

discrete PSO for matching tasks to machines in a grid computing environment. They

compared the results of their discrete PSO implementation to continuous PSO, the

min-min algorithm, as well as a genetic algorithm. The authors show that discrete

PSO outperforms all of the alternatives in all test cases. Shortly thereafter, Yan-Ping

et al. [57] described a similar discrete PSO solution with favorable results compared to

the max-min algorithm. Both sets of authors, however, test with very small problem

sizes — equal to or below 100 tasks.

Our work described in this thesis follows our previous work from Solomon et

al. [49].

6.4 Multi-Swarm PSO on the GPU

To lead into our description of the GPU implementation, we will first discuss the

main concepts of multi-swarm PSO for task matching without consideration of the

GPU architecture. From this groundwork we can then move on to discuss the specifics

of the GPU version itself.

We define an instance of the task matching problem as being composed of two

components:

1. The set of tasks, T , to be mapped, and,

2. The set of machines, M , which tasks can be mapped to.
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We define a task by the number of instructions it contains, or its length. In the same

simple manner, we define a machine by nothing more than its MIPS (Millions of

Instructions Per Second) rating. We define the problem size of our problem instance

using two components as well:

1. The total number of tasks, |T |, and,

2. The total number of machines, |M |.

A solution for the task matching problem consists of a vector, V = (t1, t2, ..., t|T |)

where the value of ti defines the machine that task i is assigned to.

We use the elements of V to compute the makespan of the solution. The makespan

for v is equal to the maximum MAT of the machines in the solution. From this, we

know that we need to compute the execution time of each task t ∈ T on the machine

it has been assigned to in V , in order to build up the MAT values for each machine.

Our final goal, of course, is to find a V that provides as minimal a makespan as

possible.

As we know, PSO works by using a number of particles, all with their own local

solutions (V ), that move around the solution space for a number of iterations (where

each particle ideally finds a new solution every iteration). As a result, we expect to

be computing the makespan many times over the course of the algorithm — which

further requires constantly computing the execution time of each task on the machine

it has been matched to. We use an Estimated Time to Complete (ETC) matrix

to store lookup data on the execution time of tasks for each machine in order to

remove redundant computations. An entry in the ETC matrix at row i, column j

defines the amount of time machine i requires to execute task j, given no load on
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the machine. While the ETC matrix is not a necessity, the reduction in redundant

computations during the execution of the PSO algorithm makes up for the (relatively

small) additional memory footprint.

Similar to the work described in Section 6.3.3, we map one dimension in the

solution space to one task in the problem instance. The solution space for a given

instance contains exactly |T | dimensions. As any task may be assigned to any machine

in a given solution, each dimension must have coordinates from 0 to |M | − 1.

At this point, we must deviate slightly from the standard continuous PSO repre-

sentation of the solution space. Typically, a particle moving along dimension x moves

along a continuous domain: any possible point along that dimension represents a

solution along that dimension. Clearly, this is not the case for task mapping as a task

cannot be mapped to machine 4.32427, but, rather, must be mapped to machine 4 or

5. Unlike Kang et al. [24] or Yan-Ping et al. [57], we do not move to a modified dis-

crete PSO algorithm, but maintain the use of the continuous domain in the solution

space.

We ran a few brief tests of simple, single-swarm implementations of continuous

versus discrete PSO for task matching and found that a continuous domain provides

improved results, as shown in Figure 6.3. However, unlike Zhang et al. [58] or Sada-

sivam and Rajendran [40] we do not introduce an added layer of permutation to the

position value by using the SPV technique. Rather, we use the much simpler tech-

nique of rounding the continuous value to a discrete integer. We chose this simplified

technique as the focus of our work rests on the GPU performance of multi-swarm

PSO for task matching, not specialized techniques branching off of the main path.
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Figure 6.3: Global best results for continuous and discrete PSO by iteration.

6.4.1 Organization of Data on the GPU

We begin the description of our GPU implementation with a discussion on data

organization. For our GPU PSO algorithm, we store all persistent data in global mem-

ory. This includes the position, velocity, fitness, and current local best value/position

for each particle, as well as the global best value/position for each swarm. As we re-

quire random numbers at each iteration, we also store a set of pre-generated psuedo-

random numbers in global memory. We use a separate one-dimension array as the

storage container for each of these data sets.

For position, velocity, and particle/swarm-best positions, we store the dimensional

values for the particles of a given swarm in a special ordering. Rather than group each

dimension for one particle and then moving on to the next, we group the values up
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by dimension. Figure 6.4 provides an example of how this data is stored (swarm-best

positions are stored per swarm, rather than per particle, however). In a given swarm,

we store all of dimension 0’s values for each particle, followed by all of dimension

1’s values, and so on. While we explain this choice further in Section 6.4.2, we

immediately note that this ensures the GPU coalesces all data accesses to these

memory locations due to how we structure the thread responsibilities within our

kernels. We store per-particle fitness values as well as particle-best and swarm-best

values in a linear manner with only one value per particle (or swarm, in the case of the

swarm-best values). We use this simpler structure for this particular data as threads

will access it in a coalesced fashion without requiring any extra work. Figure 6.5

shows this organization.

Figure 6.4: Global memory layout of position, velocity, and particle best positions
(Pxy refers to particle x’s value along dimension y).

Figure 6.5: Global memory layout of fitness and particle best values.

During the calculation of a particle’s fitness value, all threads require access to the

ETC matrix. To compute the makespan, each particle must first add to the execution

time of tasks assigned to each machine. This is, of course, handled by observing the
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particle’s position along each dimension. As dimensions map to tasks, we are looping

through each of the tasks and determining which machine this particular solution

is matching them to. As there are likely to be many more tasks than machines in

the problem instance, there will likely be many duplicate reads to the ETC matrix

by various threads. As a result, we place the ETC matrix into texture memory.

As we discussed in Section 2.2, texture memory offers a cache at the SM level. As

it is extremely likely that there will be multiple reads to the same location in the

ETC matrix by different threads, we believe using the texture cache will result in

a reasonable level of performance gains as, in the worst case, we require accesses to

global memory, but in the best case, we access the much speedier cache.

6.4.2 GPU Algorithm

With the organization of data on the GPU set, we move on to discuss the GPU

algorithm itself, the issues we ran in to, and the resolutions we came up with. The

first issue surrounding our GPU algorithm is random number generation. As we

know from Equation 6.1, PSO requires random numbers for each iteration. In order

to generate the large quantity of random numbers required, we make use of the

CURAND library included in the CUDA Toolkit 3.2 [33] to generate high quality,

pseudo-random numbers on the GPU. We generate a large amount of random numbers

at a time (250MB worth) and then generate more numbers in chunks of 250MB or

less when these have been used up.

Our implementation of multi-swarm PSO is split up into a series of kernels that

map to the various phases of the algorithm. These phases and kernels are as follows:
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Particle Initialization

This phase initializes all of the particles by randomly assigning them a position

and a velocity in the solution space. As each dimension of each particle can be

initialized independently of one another, we assign multiple threads to each particle:

one per dimension. All of the memory writes are performed in a coalesced fashion, as

all threads write to memory locations in an ordered fashion. As this kernel is simple

and straight-forward we do not list the pseudocode.

Update Position and Velocity

This phase updates the velocity of all particles using Equation 6.1 and then moves

the particles based on this velocity. As was the case with particle initialization, we

can handle each dimension independently. As a result, we again assign a single thread

to handle each dimension of every particle. In the kernel, each thread updates the

velocity of the particle’s dimension it is responsible for, and then immediately updates

the position as well. We note that when updating the velocity using Equations 6.1

and 6.3 all threads covering particles in the same swarm will each access the same

element from the swarm-best position in global memory. While this may seemingly

result in uncoalesced reads, global memory provides broadcast functionality in this

situation [33], allowing this read value to be broadcast to all threads in the half-warp

using only a single transaction. While simple, we provide the pseudocode of the GPU

kernel in Algorithm 10.
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Algorithm 10 Update Position and Velocity Kernel

Require: NumSwarms, NumParticles, NumTasks, NumMachines, Velocity[], Posi-

tion[], lBestPos[], pBestPos[], Rands[]

1: tid = blockIdx.x ∗ blockDim.x + threadIdx.x

2: if tid ≤ NumSwarms ∗ NumParticles ∗ NumTasks then

3: Update velocity along one dimension for one particle following Equation 6.3

4: Write velocity to global memory (Velocity[tid])

5: Position[tid] ← Position[tid] + Velocity[tid]

6: end if

Update Fitness

In this phase, we update the fitness values for all particles after they have moved

to their new positions. Not only is this phase more complex than the previous phases,

but it encapsulates the irregular computation aspects of this algorithm. As a result,

we cannot exploit parallelism to the same degree as the previous phases. Rather than

map a thread to a single dimension of a particle, we map a single thread to each

particle. Our reasoning behind this choice of thread-particle mapping is due to how

makespan is computed. This computation involves first determining the MAT for

each machine, and then taking the maximum value as the makespan.

These computations are irregular in nature due to the unpredictable memory

accesses required to compute the MAT of a machine. When computing the MAT we

must read from the ETC matrix at a location based on the task-machine matching.

We do not know ahead of time which tasks will be assigned to which machines. As

a result, we cannot guarantee any structure in the memory requests, and we cannot
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ensure coalescing.

One option for parallelization involves having a thread compute the makespan for

a single machine and then perform a parallel reduction to find the makespan for each

particle. The issue with this approach, however, is that a particle’s position vector

is ordered by task, not by machine. We do not and cannot know which tasks are

assigned to which machine ahead of time. If we parallelized this phase at the MAT

computation level then all threads would have to iterate through all of the dimensions

of a particle’s position anyways, in order to find the tasks matched to the machine the

thread is responsible for. As a result, we choose to take the coarser-grained approach

and have each particle compute the makespan for a given particle.

We implement two different kernels in order to accomplish this coarser-grained

approach. With the first approach, we use shared memory as a scratch space for

computing the MAT for each machine. Each thread requires |M | floating-point ele-

ments of shared memory. Due to the small size of shared memory, however, larger

values of |M | (dependent on the number of particles in a swarm) require an amount

of shared memory exceeding the capabilities of the GPU. To solve this, we develop

a second, less optimal kernel, where we use global memory for scratch space. Given

only one thread block executing per SM, the first kernel can support 128 threads

(particles) with a machine count of 30, whereas the second kernel supports any value

beyond that.

The second, global memory kernel shows our reasoning for choosing the ordering

of position elements in global memory (Figure 6.4). When computing the makespan,

each thread reads the position for its particle in the current dimension being consid-
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ered in order to discover the task-machine matching. All the threads within a thread

block work in lockstep with one another, and, thus, work on the same dimension at

the same time. The threads within a thread block, therefore, read from a contiguous

area in global memory and exploit coalescing. This coalescing results in an approxi-

mate 200% performance improvement over an uncoalesced version based on our brief

performance tests.

Algorithm 11 Shared Memory Fitness Update Kernel

Require: TotalParticles, NumTasks, NumMachines, Matching[]

1: sScratch[] //Shared memory location

2: mySwarm ← blockIdx.x ∗ TotalParticles ∗ NumTasks

3: myScratchOffset ← threadIdx.x ∗ NumMachines

4: makespan ← 0

5: Each thread clears their scratch table elements

6: for i← 0 to NumMachines do

7: matchingVal ← Matching[mySwarm +(i∗TotalParticles)+threadIdx.x]

8: etcVal ← ETC Matrix texture lookup

9: sScratch[myScratchOffset + bmatchingValc] += etcVal

10: //Keep a running total of the current highest makespan

11: if etcVal > makespan then

12: makespan ← etcVal

13: end if

14: end for

15: Each thread writes makespan value out to global memory
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We provide the pseudocode of our shared memory kernel in Algorithm 11. Note

that we keep a running total of the makespan for each particle’s solution within

the for loop (lines 11–13). This avoids requiring another for loop after the kernel

has computed the MAT values which finds the maximum MAT. The global memory

kernel, not provided as pseudocode, is exactly the same — only sScratch changes,

as we use global memory, rather than shared memory, as the scratch space for each

thread.

Update Best Values

This phase updates both the particle best and global best values. We use a single

kernel on the GPU and assign a single thread to each particle, as we did with the

fitness updating. As was the case with previous phases, we assign all threads covering

particles in the same swarm to the same thread block. The first step of this kernel

involves each thread determining if it must replace its particle’s local best position,

by comparing its current fitness value with its local best value. If the current fitness

value is greater, then the thread replaces its local best value/position with its current

fitness value and position.

In the second step, the threads in a block collaborate to find the minimal local

best value out of all particles in the swarm using a parallel reduction. If the minimal

value is better than the global best, the threads replace the global best position.

Threads work together and update as close to an equal number of dimensions as

possible. This allows us to have multiple threads updating the global best position,

rather than relying on only a single thread to accomplish this task. Similar to the
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initialization phase, this kernel is very straightforward and, as a result, we do not

provide the pseudocode.

Swap Particles

Our final phase, the swap particles phase, replaces the n worst particles in a swarm

with the n best particles of its neighboring swarm. Following the work of Vanneschi

et al. [53] we set the swarms up as a simple ring topology in order to determine the

direction of swaps. We use two kernels for this phase. The first kernel determines

the n best and worst particles in each swarm. For this kernel, we again launch one

thread per particle, with thread blocks composed only of threads covering particles

in the same swarm. In order to determine the n best and worst particles, we iterate

n parallel reductions, one after the other. Each parallel reduction determines the

nth best/worst particle in the swarm covered by that thread block. We improve the

performance of this lengthy kernel by reading from global memory only once: at the

beginning of a kernel each thread reads in the fitness value of its particle into a shared

memory buffer. This buffer is then copied into two secondary buffers which are used

in the parallel reduction (one for managing best values, one for worst).

Once a reduction has been completed, we record the index of the located particles

into another shared memory buffer. We then restart the reduction for finding the n+

1th particle by invalidating the best/worst particle from the original shared memory

buffer, and recopying this slightly modified data into the two reduction shared memory

buffers. This process continues until all best/worst particles have been found. At this

point, n threads per block write out the best/worst particle indices to global memory
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in a coalesced fashion.

The second kernel handles the actual movement of particles between swarms. This

step involves replacing the position, velocity, and local best values/position of any

particle identified for swapping by the first kernel. For this kernel we launch one

thread per dimension per particle to be swapped.

As the second kernel is very simple, we provide only the pseudocode for the first

kernel in Algorithm 12. Note that the parallel reductions for finding the best and

worst particle are performed at the same time (in order to reduce the number of loops

required).

6.5 Results

We start with an investigation into the effects that increasing the swarm, task, and

machine counts individually have on the execution time of our algorithm. Figure 6.6

shows the results for variable swarm counts. In these tests we used 80 tasks and 8

machines. We used such a low number of tasks to ensure that our algorithm uses the

shared memory fitness kernel. We do this in order to reduce the effects that tasks and

machines have on the run time in order to isolate the effect of the swarm count as

much as possible. As expected, the GPU implementation outperforms the sequential

CPU implementation to a very high degree. With the swarm count set at 60 the GPU

algorithm achieves an approximate 32 times speedup over the sequential algorithm.

We investigated these results further by observing how the individual execution

times of the top four kernels change as the swarm count increases (we do not include

the other kernels, as their total execution times are a fraction of any of the pictured
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Algorithm 12 Swap Particles Kernel

Require: NumSwarms, NumParticles, NumToSwap, Fitness[], BestSwapIndices[],

WorstSwapIndices[]

1: tid = blockIdx.x ∗ blockDim.x + threadIdx.x

2: if tid ≤ NumParticles then

3: Load our fitness data into shared memory

4: end if

5: //Perform the parallel reductions, each one finding a best/worst value.

6: for 0 to NumSwap do

7: for i← blockDim.X /2 to 0, step >>= 1 do

8: if tid < i then

9: Perform one parallel reduction step for finding best value.

10: Perform one parallel reduction step for finding worst value.

11: end if

12: end for

13: Invalidate fitness values in shared memory

14: (Those corresponding to the newest best/worst particle found)

15: __syncthreads()

16: end for

kernels). We show these results in Figure 6.7. The update position and velocity

kernel forms the greatest contributor to the increase in the GPU’s execution time as

the swarm count increases. We explain this by revisiting the overall responsibilities of

this kernel. That is, the update position and velocity kernel requires a large number of
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Figure 6.6: Comparison between sequential CPU and GPU algorithm as swarm count
increases.

global memory reads and writes (to read in the many-dimensioned position, velocity,

and current bests position data), and is relatively computationally intensive when

determining the new velocity. When combined with the fact that we are launching

a thread per dimension per particle the GPU’s resources quickly become saturated,

hence the linear increase in execution time.

We explain the “jump” present in the last three data points of the fitness kernel

as being due to oversaturation of the GPU’s resources. The GTX 260 GPU has 27

SMs available. With, for example, 56 swarms, we have 56 thread blocks assigned

to the fitness kernel. With the resources required by the configuration tested, each

SM can support only 2 thread blocks simultaneously. Hence, the GPU executes 54

thread blocks simultaneously, leaving 2 thread blocks waiting for execution. These 2
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Figure 6.7: Total execution time for the various GPU kernels as the swarm count
increases.

thread blocks must then wait until resources are freed on an SM by another thread

block completing execution, causing a significant increase in the execution time of the

kernel.

Another interesting observation with the fitness kernel is that despite the swarm

count increasing, the execution time remains relatively static until a swarm count of

56. This is, again, caused by the SM saturation point being reached with a swarm

count of 56. Prior to that swarm count, all threads blocks may execute immediately

on an SM — the GPU has enough resources to allow parallel execution of all threads

required by the kernel. This ensures that we do not observe any significant perfor-

mance loss as the swarm count increases until we run out of available SMs for thread

blocks at a count of 56.
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Figure 6.8: Comparison between GTX 260 and 570 GPUs as swarm count increases.

To help prove this, we take our experiments a step further and observe the per-

formance of the algorithm on a GTX 570. While the GTX 570 technically contains

less SMs than the GTX 260, each SM contains more SPs and allows for more threads

and/or thread blocks to execute on each simultaneously. As a result, we expect the

jump in execution time with swarm counts greater than or equal to 56 to be absent

in the GTX 570 tests. As we show in Figure 6.8, our expectation matched our exper-

imentation. We see that the GTX 570 performance line does not contain the same

jump in the last three data points (at swarm count sizes of 56, 58, and 60). The

superior overall performance of the GTX 570 is expected and is simply due to the

nature of testing on newer, more powerful hardware with more available hardware

parallelism compared to the GTX 260.

Before concluding with the swarm count tests we also investigated our use of
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Figure 6.9: Comparison between sequential CPU and GPU algorithm as machine
count increases.

texture memory in the fitness kernel. We profiled a few runs of the algorithm using

the CUDA profiling tool which allowed us to measure the cache hits. The results

from the analysis showed that our hypothesis that texture memory would help the

fitness kernel’s performance was correct. The profiler reported ETC Matrix cache

hits anywhere from 88% to 97%. As a result, we dramatically reduced the number

of global memory reads required to compute the makespan, and, instead, exploit the

speedier texture caches of the GPU.

Moving on, we examine the performance and scaling of the algorithm when we

increase machine counts as well as increase the task counts. For the machine count

scaling we keep the task count and the number of swarms static at 80 and 10 re-

spectively. As the machine count increases, we observe the effect that switching to
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Figure 6.10: Total execution time for the various GPU kernels as the machine count
increases.

the global memory fitness kernel has on the execution time. Figure 6.9 shows the

results with machine counts from 2 to 100. Unlike the swarm count tests, we see

that the execution time does not change dramatically as the machine count increases.

However, the GPU execution time still increases by 14% when the machine count

increases from 30 to 32. This occurs due to the shift from shared memory to global

memory use for the fitness kernel, which, in turn, results in a 50% increase in the

total execution time for this kernel.

Figure 6.10 provides the execution time results of some of the kernels as the

machine count increases. We immediately observe that all of the kernels, with the

exception of the fitness update kernel, exhibit roughly static execution times. We

expect these results, as increasing the machine count does not result in any compu-
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tational or memory access increases for these kernels (the same effect we saw when

considering the performance of the algorithm itself with varying machine counts). We

do, however, see a substantial increase in the execution time of the fitness kernel after

30 machines. As we know, this is the point where the algorithm shifts from using

the shared memory fitness kernel to the global memory kernel. These results help

us to observe the significant improvements in performance achieved by using shared

memory over global memory.

Moving on to the task count scaling tests, we keep the machine count and number

of swarms static at 8 and 10 respectively. We provide the results for task count

scaling in Figure 6.11. The results are very similar to those of the swarm count tests

in that the GPU algorithm significantly outperforms the sequential CPU algorithm,

and the execution time increases as the task count increases. Overall, however, the

GPU cannot provide the same level of speedup while the swarm count remains low,

despite task sizes increasing. We expect this, as increasing the number of swarms

increases the exploitable parallelism at a faster rate than the task count. We do not

provide a separate graph of the various kernel execution times as they are very similar

to those in Figure 6.7, in that the update position and velocity kernel dominates the

run time again as the algorithm uses the shared memory fitness kernel throughout.

Finally, we ran two tests using a large number of tasks and swarms, with one using

the shared memory kernel (10 machines) and the other using the global memory kernel

(100 machines) in order to gauge the overall performance of the algorithm as well as

come up with the overall percentage of execution time each kernel uses. We provide

the results in Table 6.1 (the percentages for the initialization and swapping kernels
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Figure 6.11: Comparison between sequential CPU and GPU algorithm as task count
increases.

are not included in the figure as, combined, they contribute less than 1% to the overall

execution time). We see that the update position and velocity kernel dominates the

run time of the shared memory instance, whereas the global memory instance sees

the fitness kernel moving to become the top contributor to the overall execution time.

We expect this behavior, as the only change in the global memory instance resides

within the fitness update kernel. As expected, the shared memory instance sees an

improved speedup (compared to the sequential CPU algorithm) of 37 compared to

the global memory instance’s speedup of 23.5.
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Kernel Shared Memory Fitness Global Memory Fitness

Update Pos/Vel 54% 34%
Update Fitness 21% 50%
Update Bests 6% 4%

Rand Gen 19% 12%

Table 6.1: Percentage of execution time taken by most significant kernels

6.5.1 A Short Discussion on Solution Quality

Similar to the option pricing problem, PSO for task-matching involves an out-

put answer that cannot be simply labeled as correct or incorrect. While the BFS

and MPM algorithms either provided a correct solution or not, PSO, as a heuristic,

attempts to locate as optimal a solution as possible. In order to test out the solu-

tion quality, we benchmark the answer we get from our GPU PSO algorithm with

some alternative algorithms. We compare the solution quality against a sequential

single-swarm PSO implementation and a First-Come-First-Serve (FCFS) algorithm

that serially assigns tasks to the machine with the lowest MAT value at the time (in

this case, the MAT value includes the time to complete the task in question).

For the solution quality tests we use 10 swarms with 128 particles per swarm. c1

is set to 2.0, c2 to 1.4, and w to 0.9. We also introduce a wDecay parameter which

reduces w each iteration, we set this value to 0.995, and run 1, 000 iterations of PSO

for each problem. Finally, we randomly generate 10 task and machine configurations

for each problem size considered, and run PSO against each of these data sets. Each

data set is run 100 times, and the averaged results are taken over the 100 ∗ 10 runs

for each task/machine count configuration.

Table 6.2 provides the averaged results of the solution quality experiments, nor-
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Num Tasks Num Machines MSPSO PSO

60 10 0.906 0.925
60 15 0.935 0.921
70 10 0.939 0.923
70 15 0.941 0.933
80 10 0.964 0.934
200 40 1.322 1.312
1000 100 3.106 3.109

Table 6.2: Solution quality of MSPSO and PSO normalized to FCFS solution (< 1 is
desired).

malized to the FCFS solution. We first tested small data sets of sizes similar to

those from Sadasivam and Rajendran [40] as well as Yan-Ping et al. [57]. We can see

from these that, unfortunately, MSPSO does not outperform the single-swarm PSO

to any significant degree, and performs worse on many occasions. Furthermore, as

the problem size increases, both variants of PSO fail to generate improved solutions

when compared to FCFS. In short: we do not see a reasonable level of quality im-

provement from MSPSO with small problem sizes, and both variants of PSO utterly

fail to provide acceptable solution quality as the problem size increases.

Our explanation for this failure to provide a reasonable level of quality in the

solution rests with the nature of the solution space. Our hypothesis is that the

unstructured, random-esque nature of the solution space presents an environment

inimical to the intelligence of the particles. These particles attempt to use their

memory and intelligence to track down optimal values in the solution space and

are influenced by previously-known optimal locations. In essence, they follow some

structure in the solution space and hope their exploration leads to an ideal solution.

Unfortunately, with the task matching problem, we have no real structure to the
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solution space. With even one task changing assignment from one machine to another

the makespan may dramatically change. As a result, the intelligence of the particles

cannot help us here. The end result, we believe, is that the PSO algorithm devolves

into a randomized algorithm (or worse, since the intelligence of the particles reduces

the overall area of the solution space explored). The added cooperation between

swarms in MSPSO further provides no benefits, and perhaps even serves to cluster

particles between swarms in all the same areas. In essence, the exploration aspects

of PSO help us to no greater degree than a randomized algorithm, and, thus, the

exploitation aspects are rendered useless, as exploitation of areas around local optima

provide no help given the unstructured nature of the solution space. As we will

discuss in Chapter 8, this is an area with definite possibilities for future work and

investigation.

6.6 Summary

We have studied and described the design and implementation of a multi-swarm

PSO algorithm for GPUs in this chapter. Targeting the task matching problem, we

noted that the algorithm contained both regular and irregular (fitness update) prop-

erties. Unlike the irregularity of the BFS and MPM algorithms, however, we were able

to more readily optimize the fitness update for the GPU as the main issue occurred

with data-access patterns. Due to the relatively small memory footprint of the ETC

matrix along with the expectation of redundant reads to the same elements, we were

able to exploit texture memory for the storage of the ETC matrix. Unfortunately,

the scratch space used for the computations of MAT values were forced into global
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memory when the number of machines grew large. Despite this issue, however, we

observed up to a 23.5 times speedup when using the global memory for storage of

scratch space. Even more impressive was the 37 times speedup we measured when

using shared memory for the scratch space.

As expected, the overall performance (in terms of speedup) of our PSO algorithms

falls between the option pricing and BFS algorithms. We hypothesized this would

be the case due to our PSO algorithm featuring more regularity than the BFS, but

periods of irregularity that were not present in the option pricing algorithm.

In the next chapter, we link our knowledge of the four algorithms and problems we

have studied and discuss what efforts were required to get each one running efficiently

on the GPU. Having explored a variety of algorithms we feel that we have a greater

understanding of what works well on the GPU, as well as the difference in effort

required to optimize these algorithms for the GPU.
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Discussion and Comparison

In this chapter, we look at combining our knowledge about the four algorithms

we investigated, and discuss/compare their design, implementation, optimization, and

performance on the GPU hardware. We believe such a discussion provides a high level

of value-add to our results, as we will observe the major differences between regular

and irregular problems/algorithms on the GPU. Out of the problems we investigated

we have a regular problem (option pricing), a simple irregular problem (single-source

shortest path), a complex irregular problem (maximum flow), and a problem that

features sections of both regularity and irregularity (PSO for task matching). As a

result, we have a wealth of information regarding a variety of problems with which to

make comparisons. These problems share some similar traits, such as the ability to

exploit a high degree of parallelism, but differ in many ways as well. How we developed

GPU-specific optimizations for the algorithms we used to solve each problem each

varied quite significantly as well. Our efforts ranged from the simple (global memory

coalescing) to the complex (active vertices modification), and we measured the effect

141
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each had on the performance of our GPU implementations.

7.1 Data Structures and Memory Performance

We first consider the use of various data structures for storing the relevant data in

each algorithm. As our choice of data structures and data organization were always

instrinsically linked to memory performance, we include that discussion here as well.

With the GPU we have efficiency concerns involving accesses to global memory that

must be taken into account when developing a high performance GPU algorithm. Not

only are we concerned about the frequency or amount of global memory accesses, but

also the patterns of access between threads within warps. Ideally, we want each of

the 16 threads within a half-warp to access data from the same block of memory in

order to combine the original 16 accesses into a single access. The simplest method

of accomplishing this coalescing is to ensure that each thread reads one element over

in global memory from the previous thread (based on thread IDs within the warp)1.

In terms of data itself, three of the algorithms we investigated bear strong simi-

larities to one another. The option pricing, BFS, and MPM algorithms all use graph

structures throughout their processing. As a result, we will compare these three with

one another first, before moving on to discuss the PSO algorithm, which focuses on

a very different data structure.

While the aforementioned three algorithms focus on graph structures, the option

pricing algorithm uses a lattice/tree structure rather than the randomized graphs of

1In all but the edge case where some of the 16 threads accesses happen to cross over to another
block in global member, the hardware will perform coalescing in full (and even in this case, coalescing
will occur — we will see more accesses than the one we get with full coalescing, but the total will
still be below the worst case of 16).
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the BFS and MPM algorithms. In all cases, however, we use data structures that

remove the inherent sparsity in the graphs and store only the relevant data. In the

lookback option pricing algorithm we make use of a single one-dimensional array

representing the vertices at the current layer of computation, while we use a dual-

array system to describe the edges connecting vertices in the graph for the BFS and

MPM algorithms. Further, thanks to the massive parallel capabilities of the GPU,

both algorithms map a single thread to a single vertex and retain the ability to work

on massive data sets.

In the case of the lookback option pricing, the regularized nature of the lattice

allows us to not only make use of a simpler data structure, but also exploit global

memory coalescing. In effect, every thread reads in structured, consecutive data from

global memory, which allows for coalescing to take place. This results in a reduc-

tion of the latencies typically associated with global memory and provides significant

performance improvements.

Unfortunately, due to the irregular nature of the BFS and MPM algorithms, we

cannot guarantee coalescing, and we must also make use of a more complex data

structure than the linear array used for option pricing. Our attempts to exploit

coalescing are largely limited to the loading of edge offsets, which we handle in a

coalesced manner as they are stored in a one-dimensional array and accessed in a

regular fashion. However, the areas where we do exploit coalescing are but a small

portion of the overall memory operations performed in each kernel.

The similarities for the data structures end here, however. With the lookback

option pricing the computations themselves drive the creation of the lattice, and, as
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such, the structure is known, well-defined, and, thus, very regular. On the other hand,

the unstructured graphs for the BFS and MPM algorithms are created independently

from the algorithm. From this, we see that a simple regular problem allows for

full exploitation of coalescing, as well as a simplification of the data structure (a

lattice devolves into a single one-dimensional array). When we make the move to an

algorithm with irregular properties, whether it is simple (BFS) or complex (MPM), we

require more complex data structures and can no longer take advantage of coalescing

to the same degree.

Finally, we have PSO for task matching, which does not follow the same patterns

as the other algorithms. We do not use any data structure beyond directly storing

individual one-dimensional arrays for packing particle and swarm-related data. Unlike

the previous algorithms we discussed, however, the overarching data structure itself

is not the area of interest but rather the organization of data within that structure.

We exploit coalescing by organizing the data within the arrays such that the ordering

of data may no longer be the simplest, most intuitive method, but works well with

the GPU hardware. The irregular nature of the fitness update computations required

us to think of an alternative solution beyond coalescing. As the values used in the

fitness update are typically used more than once, we exploited the texture memory

of the GPU in an effort to improve the performance via caching. The only other

alternative was uncoalesced reads from global memory, clearly not an ideal scenario.

We also note that we found heavy use of the higher performing memories in the

GPU to be possible for only the algorithms that exhibited regular properties. For op-

tion pricing, we stored the data we knew that we would need for the current iteration
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into shared memory. For PSO we not only used shared memory in this same manner,

but we also used texture memory to store the ETC matrix. Of course, we were unable

to exploit these memories for the purely irregular problems outside of token shared

memory use when loading graph data. Overall, we see simplified data structures, and

improved exploitation of memory when working with the predictability of regular

problems as compared to irregular problems.

7.2 Load Balancing

When we use the term “load balancing” for the GPU we refer to the saturation of

active threads within each warp and/or thread block. Ideally, we want all 32 threads

within a warp to be active, effectively allowing 32 threads to execute more-or-less

simultaneously. Consider the alternative case where we have some threads in a warp

that are inactive. Clearly, these threads will not perform any useful computations

when this warp is provided an instruction to execute. As a result, we can see a loss

of thread-level parallelism in this scenario as only xi threads, where xi < 32, will be

executing the instruction simultaneously for warp i, rather than 32.

For the option pricing and PSO algorithms we have this load balancing without

any added effort. For each layer of the lattice that is being computed in the option

pricing algorithm, we assign a single thread to a single vertex. Thus, every warp with

the exception of the “last” warp is guaranteed to be saturated with active threads.

Our methods for PSO are similar: either we map a thread to a particle, or one

dimension of a particle based on the kernel we are currently launching. All particles

are active at all times in the algorithm and, as such, we do not launch any threads
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that will be inactive.

With the BFS and MPM algorithms, however, we had to explicitly develop a load

balancing strategy. We accomplish this with the active vertices strategy. The end

results for the layered network construction (and BFS) and push/pull phases are the

same as it was with the lookback option pricing: we are guaranteed that every thread

in every warp (with the exception of the “last” warp) will contain 32 threads covering

active vertices. The MPM pruning phase works slightly differently however, in that

we activate threads we believe will be pruned in the next iteration. As a result, we

dramatically improve the number of active threads per warp, but not to the same,

guaranteed extent as the other two phases.

Unfortunately, as we discussed in Section 4.3.1, this active vertices strategy re-

quires the overhead of a scan operation in order to compute the vertex numbers of

each active vertex and write them in order to a state array. Hence, we do not get load

balancing “for free” as was the case in the option pricing and PSO algorithms. Due

to this, we actually saw performance degradation occur for the BFS/layered network

construction phase.

7.3 Hybrid Computations

For this work, we only considered the lookback option pricing as a candidate for

hybrid computing. In Section 3.4 we provided the performance results between the

regular GPU implementation and the hybrid implementation. As we discussed, the

hybrid version does not outperform the strictly GPU implementation by anything

more than a few milliseconds.



Chapter 7: Discussion and Comparison 147

Due to these disappointing results, we do not consider the BFS or MPM algorithms

as a reasonable candidate for such computations. With the lookback option pricing,

we had only a small amount of data to transfer from the GPU to the CPU when the

computations switched to the CPU. With the BFS and MPM algorithms we have a

very large amount of data to transfer that covers the current state of vertices and

edges in G. Along with this large data set we have another problem: when is an

optimal time to transfer the computations back to the CPU? A solution on more

traditional hardware will typically reduce the size of the graph by removing vertices

and edges from the graph, thus shrinking the data set. Due to the performance issues

with global memory, and the data structure we used to store the graph data, we

believe it is more optimal to use state arrays to virtually remove vertices and edges.

We now have a new difficulty associated with determining the current problem size

remaining along with the inability to easily transfer the disjointed active data set.

Due to the irregular nature of the computations, and the fact that we do not modify

the graph structure itself in the GPU’s global memory, we cannot determine how

far along the computations are with any reasonable level of performance. For these

reasons, we leave all BFS and MPM computations on the GPU.

The PSO algorithm, on the other hand, represents a unique scenario. For the

most part, each swarm does not communicate with one another, except during the

swap phase. This phase, however, does not require the transmission of a large amount

of data; only the information pertaining to the best and worst particle sets must be

transferred. We believe PSO may represent a possible candidate for hybrid computing

where the CPU manages the execution of one swarm at the same time as the GPU
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executes multiple swarms. We discuss this possibility further in Section 8.

7.4 Speedup

Our results for speedup compared to a sequential CPU implementation were ex-

actly as we expected. We see the most significant speedup with a regular problem:

lookback option pricing. When we move to another regular problem with some ir-

regular properties (PSO for task-matching) we see a drop in the speedup, but still

record it as being significantly higher than the last two, irregular problems we tested.

We expect this due to what we have previously discussed in this chapter. With the

regular option pricing algorithm we get most of our GPU optimizations for free, and

fully exploit coalescing/load balancing. With PSO, we have the same very regular

aspects across most of the algorithm, allowing for the exploitation of coalescing and

load balancing, but also run into some irregular sections as well (fitness update).

During the fitness update phase we cannot exploit coalescing whatsoever, and turn

to the texture memory/cache for support. Further, we must move to coarser-grained

parallelism in this phase, bringing the GPU that much closer to the sequential CPU

implementation.

Finally, with the BFS and MPM algorithms we end up fighting for possible opti-

mizations. The few that we find possible to accomplish (load balancing) require work

of their own to use (scan operation), pushing the execution time higher. Coalescing

is impossible to guarantee in almost all occasions due to the unstructured and un-

predictable nature of the graph and the data access patterns of the algorithm. As a

result, we see the GPU offering less of a performance improvement over the sequential
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implementation when compared to the option pricing algorithm. The BFS, being a

simpler irregular algorithm with only a single phase, offers improved speedup over

the more complex, irregular MPM algorithm.

The comparisons we have drawn help to show the difficulty associated with paral-

lelization of algorithms for solving irregular problems. We observed what efforts were

required to optimize the algorithms, and how we accomplished these in the areas of

memory performance, load balancing, data structures, and hybrid computing. In the

case of memory performance especially, many of the optimizations we found possible

for a regular algorithm were simply not possible to accomplish when we introduced

irregularity. This leads to our immediate conclusion that some of the most important

points of optimization are more-or-less free when dealing with a regular problem,

while an irregular problem requires significantly more effort in order to attempt to

optimize for the GPU.

7.5 A Brief Aside on Price:Performance

Before closing this chapter, we wish to briefly touch on the price-to-performance

ratio offered by the GPU. We use this to explain why we compare the GPU results

to a sequential CPU implementation rather than other parallel systems, as well as

further support for the GPU as a parallel architecture. In essence, the GPU provides

an extremely powerful parallel chip at a substantially lower cost than traditional

parallel systems. Consider the costs of purchasing a GPU against the potential costs

of multiple computer systems and a high performance interconnection network, or a

modern multi-core processor with a large number of cores. For instance, while the
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GPU we use for our experiments is out-dated and can no longer be easily purchased,

a Canadian retailer [19] lists a comparable GPU (in terms of CC count) at $125

(Canadian dollars).

A recent work by Delong and Boykov [5] claimed to achieve near-linear speedup for

a push-relabel max flow algorithm on an 8-core Intel processor. Their work applies the

maximum flow algorithm to grid graphs for image processing. Near-linear speedup on

an 8-core processor implies a maximum of 8 times speedup compared to a sequential

implementation. We have shown our GPU implementation of the MPM algorithm to

be capable of up to 9.5 times speedup. In this very rough comparison, we observe a

mid-range GPU providing improved speedup over a high-end multi-core CPU in the

same category of algorithm.

For another example we look to the recent work of Li and Wada [27] on paral-

lel PSO. Their work investigated the performance of a parallel PSO algorithm that

focused on hiding communication latencies behind computation. They parallelized a

single PSO swarm across 16 nodes, each running modern Intel Xeon processors. Their

results showed a roughly linear speedup — 16 nodes resulted in slightly lower than 16

times speedup compared to a single node. The authors tested their PSO application

against benchmark optimization problems. Our GPU algorithm, which focused on

solving a problem with some irregular properties, produced up to 37 times speedup

compared to a sequential CPU implementation.

While we cannot directly compare the results of either of these examples to our

implementations, we mention them to show that the relatively inexpensive GPU

provides extremely competitive performance for both regular and irregular algorithms
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when compared to traditional CPU architectures. Given the high costs associated

with a consumer-grade Intel hexacore CPU2 ($1, 180, roughly 9 times the price of

our mid-range GPU [21]), or even a quad-core CPU [20] at $300, as well as the cost

associated with interconnection networks required to set up multiple systems (or the

added costs of motherboards supporting multiple CPUs), we feel that the GPU offers

a substantial improvement on existing traditional architectures when viewed from the

price-to-performance standpoint.

As a result, we stand by our decision for comparing the performance of our GPU

algorithms to sequential CPU implementations and measuring the absolute speedup.

We feel that our performance tests show the most value when we investigate the

absolute speedup possible for a parallel algorithm on the GPU. By doing so, we

more readily understand the strengths and weaknesses of the GPU by comparing the

speedup results of each algorithm.

2We choose an Intel CPU here as the work from Delong and Boykov [5] and Li and Wada [27]
use Intel processors. As a quote for the 8-core variants was not available, we use a quote for the
lesser-priced 6-core variants. Despite the lower price of the 6-core variants, our argument does not
change and the GPU still maintains a significantly lower cost.
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Conclusions and Future Work

We have studied the design, implementation, and performance of four algorithms

for solving four regular and irregular problems on the GPU. Through this study

we have gained a greater understanding of what strategies improve performance on

the GPU (and to what degree) as well as the efforts required to achieve greater

performance. We have learned what it takes to efficiently map algorithms with regular

and irregular properties to the hardware, and discovered which optimization efforts

work and which do not.

Starting with the binomial lattice algorithm for pricing lookback options we in-

vestigated a regular, data-parallel algorithm that represented a very good fit for the

GPU. We showed that global memory coalescing was possible to exploit in full, and

that load balancing warps was provided “for free”. With our performance analysis,

we saw tremendous speedup compared to a sequential CPU implementation. These

results further emphasized the idea that regular algorithms map very well to the GPU

architecture.

152
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We then moved on to the BFS algorithm, chosen for its irregular properties as

well as its simplicity. Due to the highly parallel nature of the GPU we were able to

map threads to vertices in a one-to-one fashion, essentially using very fine-grained

parallelism not readily available on many other architectures. We noted that the

optimizations we took for granted in the option pricing algorithm were not always

possible to accomplish in the BFS. In essence, the irregularity locked out the potential

of exploiting global memory coalescing. With extra effort, however, we were able to

load balance warps, but this load balancing came at a substantial cost. In the end, this

optimization step resulted in longer execution times than the basic algorithm. With

the BFS we saw a steep drop in the speedup when compared to the option pricing

algorithm. Not unexpectedly, the performance results emphasized the difficulties

associated with irregular algorithms on the GPU.

We found these difficulties magnified when we moved on to our more complex

algorithm for solving an irregular problem, the MPM algorithm. Here we had not

one but a number of phases to focus on. By taking into consideration the parallel

nature of our implementation, our design merged some phases together, resulting in a

total of three phases required for the algorithm. Mapping each phase to an individual

kernel provided us with the necessary global synchronization present in the original

algorithm. Interestingly enough, we observed improved performance with the active

vertices modification when applied to the pruning and push/pull flow phases — the

opposite of what happened with the BFS/layered network construction phase. Our

performance results showed a speedup of up to 9.5, clearly lower than the results we

observed for the BFS and due to the poorer performance of the pruning and push/pull
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phases.

Finally, we investigated a multi-swarm PSO algorithm for solving the task match-

ing problem. While the solution quality results were unfortunate, we felt that the

performance results were impressive. By exploiting texture memory, we reduced the

negative impact the irregular fitness update phase had on the execution time of our

algorithm. For smaller data sets we further used shared memory in this phase, reduc-

ing the overall reliance on global memory. With the other phases being very regular

and data-parallel in nature, we achieved significant speedup results, up to 37 times

faster than a sequential CPU implementation.

By combining our knowledge of the design of each algorithm with our in-depth

performance analyses, we discussed the major differences between each algorithm on

the GPU. While the general data of three of our algorithms was based around graph

structures, we described how the lookback option pricing algorithm achieved a much

more optimal mapping to the GPU due to its regular nature. The BFS and MPM

algorithms, on the other hand, required data structures that maintained the original

graph structure of the data and reduced the possibilities for global memory coalescing

and load balancing. PSO represented a special case where we were able to exploit

these optimizations in almost all the phases by restructuring the ordering of data,

but could not do the same for the fitness update phase. In all, our performance

results showed that the speedup lowers as the algorithm becomes more complex and

irregular.

One major point of future work that we identify immediately is that of hybrid

computing. We investigated the potential of switching back to the CPU for the look-
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back option pricing problem but did not observe any significant level of performance

improvement. While we feel that the BFS and MPM algorithms do not represent ideal

candidates for hybrid computing, due to the large amount of data required (which

would have to be transferred to the CPU’s main memory), we believe that this may be

interesting to study for multi-swarm PSO. With multi-swarm PSO, each swarm works

independently for n iterations until we swap particles. Even with the repulsion factor

included, only a small amount of data (the location of the global best particle) must

be transmitted between swarms every iteration. As a result, we believe it is worth-

while to investigate the performance ramifications of executing at least one swarm

on the CPU, while the GPU manages the other swarms. Perhaps multi-threading on

the CPU could be used as well in order to improve the performance further. While

a hybrid approach failed for the lookback option pricing algorithm, we believe the

potential of this approach for multi-swarm PSO merits an investigation.

While not directly related to our parallelization work, we want to bring atten-

tion to the lack of solution quality in our PSO for task matching algorithm. While

PSO may not provide an ideal algorithm for solving this problem, we believe com-

bining ideas from maximum flow warrants an investigation. We plan to map the task

matching problem to a graph structure and treat the problem as a maximum flow

problem, where vertices represent machines, and edges represent task-trading paths

from machines with high MAT to machines with low MAT. We would further com-

pare a future parallel implementation on the GPU to our standard MPM maximum

flow iteration to gauge performance.

Finally, the GPU architecture is constantly evolving year by year. Not only are



Chapter 8: Conclusions and Future Work 156

the core counts and computational performance increasing, but the hardware manu-

facturers add additional feature sets as well, such as the on-board cache memory we

discussed for the Fermi architecture. Beyond even these incremental steps, however,

lie new architectures such as AMD’s Fusion architecture, which brings an integrated

GPU into the same die as the CPU. With both GPU and CPU sharing the same

memory, we feel that experimenting with hybrid computing becomes even more in-

teresting. We believe future investigation into such an architecture would make a fine

companion piece to the research covered in this thesis. Not only would we investigate

the viability of a Fusion-style architecture for parallel computing with regular and

irregular algorithms, but we would also be able to compare the design, performance,

and optimization steps with our existing work on the GPU.

Through our work, we have shown that the GPU has proven itself capable of

accelerating both regular and irregular algorithms. While the performance of algo-

rithms with irregular properties clearly suffers when compared to those with regular

properties, the overall results still show dramatic speedups for all types of algorithms.

Whether or not the close coupling of the GPU and CPU provides more added value

than the typical discrete GPU card is an area we are absolutely interested in pursuing

in the future.
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