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Abstract 
 

 

The central concern of this thesis is the study of non-equilibrium behaviour in 

magnetic materials and its interpretation within the framework of a theoretical model 

based on the Preisach hypothesis, which decomposes all magnetic materials into a 

collection of bistable units. More specifically, we have performed comprehensive 

experimental characterizations of a variety of magnetic materials, including a naturally 

occurring mineral of nanodimensional titanomagnetite particles embedded in volcanic 

glass, a compressed powder of nanodimensional magnetite particles immobilized in an 

organic binder, a thin film of nanodimensional Fe particles embedded in alumina, and a 

series of sintered, bond-disordered CaxSr1-xRuO3 ferromagnets. We have measured (a) the 

initial magnetizing curve, the magnetizing remanence, the descending branch of the 

major hysteresis loop and the demagnetizing remanence as a function of applied field 

over a broad range of temperatures, (b) the field cooled moment, the zero field cooled 

moment, the thermoremanent moment and the isothermal remanent moment as a function 

of temperature in a broad range of applied fields, and (c) viscosity isotherms in a series of 

negative holding fields following recoil from positive saturation as a function of time 

over a wide range of temperatures.  The measurements were compared with numerical 

simulations based on a Preisach model ensemble of thermally activated two-level 

subsystems, characterized individually by a double well free energy profile in a two-

dimensional configuration space, an elementary moment reversal, a dissipation field and 

a bias field, and characterized collectively by a distribution of these characteristic fields. 

Our efforts were concentrated on two principal spheres of investigation. (1) By 
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performing detailed numerical simulations of the relaxation response of model Preisach 

collections of two-level subsystems under the same field and temperature protocols used 

to probe experimentally the relaxation dynamics of spin glasses, we have been able to 

show that aging, memory and rejuvenation effects are not unique to collectively ordered 

materials with spin glass correlations, but rather are an ubiquitous feature of materials 

with a broad distribution of energy barriers where relaxation proceeds as a superposition 

of independent overbarrier activation events, each with its own characteristic relaxation 

time constant. (2) The second line of inquiry pertains to probing the two principal 

mechanisms, thermal fluctuations and barrier growth, which are jointly responsible for 

shaping the measured temperature dependence of the magnetic properties of all magnetic 

materials which exhibit a history dependent response to an external field excitation. We 

have proposed a general strategy for isolating and quantifying these two mechanisms 

which is based on the analysis of viscosity isotherms and, in particular, on a plot of T 

ln(tr/!0) versus Ha , where tr is the time at which a viscosity isotherm measured in a field 

Ha at temperature T reverses sign. When the magnetic response is dominated by thermal 

activation events, this plot will yield a universal curve from which it is possible to extract 

the mean elementary moment reversal and to reconstruct the distribution of metastable 

state excitation energies. When barrier growth dominates, the plot fractures into a family 

of isothermal curves from which it is, in principle, possible to reconstruct the evolution of 

the free energy landscape with temperature and to observe the collapse of the barriers as 

the material is warmed through the critical ordering temperature. The strategy is applied 

to the analysis of all four materials listed above.  
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Chapter 1: Basic Concepts 

1.1 Introduction 

Two major facets of ferromagnetic behaviour can be identified experimentally, 

and depending on the type of measurement that is performed, one would infer that 

ferromagnetism [1-6] is identified by the observance of either (a) a Curie point at a well-

defined critical temperature TC, below which the atomic moments cooperatively lock 

together into a parallel configuration and the material exhibits a spontaneous 

magnetization even in the absence of an applied magnetic field, or (b) a path-dependent 

response to a changing excitation field at a temperature T < TC, such as a hysteresis loop 

similar to the one presented in Figure 1.1. The topics and experiments discussed in this 

thesis will be focused on the hysteretic characteristics of a diverse collection of magnetic 

materials measured over a wide range of temperatures (in some cases, up to or even 

beyond the critical temperature TC), and a wide range of applied fields up to technical 

saturation.   

Hysteresis loops are measured by applying a cyclical magnetic field Ha to a 

sample of interest, and measuring the induced magnetization M (average magnetic 

moment per unit volume) along the applied field direction (Figure 1.1). The presence of 

hysteretic behaviour is a central feature of a variety of magnetic materials including 

ferromagnets below their Curie temperature, superparamagnetic collections of magnetic 

nanoparticles below their blocking temperature [1, 7], and spin glasses below their 
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freezing temperature [8], and physicists are still in need of a convincing general theory to 

interpret this extremely rich phenomenon. From the physicists and mathematicians point 

of view, hysteresis represents an example of an intriguing and fundamental problem that 

poses significant and complex challenges. However, hysteresis is also the source of 

ubiquitous technological progress since it is the property that is exploited by engineers in 

almost all practical applications of magnetic materials, from magnetic recording to 

magnetic motors to hysteresis brakes in high speed automated winding machines, used, 

for example, in wire marking, braiding, material slitting, sheeting and weaving, to control 

wire tension in a precise manner for the duration of wind, hook, and cut operations [9].  

 

Figure 1.1 The initial magnetizing curve and the major hysteresis Loop measured at T=15K on a bond-

disordered ferromagnet, Ca0.2Sr0.8RuO3. 
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Hysteresis phenomena manifest themselves in various ways and in various 

natural, economic, and sociological spheres. In addition to the technologically pervasive 

role of magnetic hysteresis phenomena, hysteresis emerges in economic theories of 

persistent unemployment [10, 11], solutions to traffic flow problems [12-14], pulmonary 

tissue mechanics and its relationship to infection [15], and in environmental policy 

decisions where the phenomenon of hysteresis is applied in an attempt to determine the 

dynamics of recovery of an ecosystem succeeding the imposition of a pollution control in 

response to an environmental insult [17]. 

 

 

1.2 Hysteresis and Persistent Memory:  

General Considerations    

The physical mechanisms underlying hysteresis phenomena lie within the sphere 

of nonequilibrium thermodynamics [18,19], a conceptually difficult topic with many 

unresolved issues. In order to elucidate the basic problem of hysteresis, we will discuss 

the general aspects within a framework that is independent of a particular context [20].  

From a thermodynamic perspective, the macroscopic state of a material is 

prescribed by the values of experimentally measurable quantities called state variables. 

These include quantities such as energy, pressure, volume, temperature, and 

magnetization.  
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Consider a situation in which we act on a physical system via an external action, 

which causes the system to respond by changing its state. We wish to understand and 

predict the response of the system to this external action by monitoring the time 

dependence of a dependent output variable as a function of an independent input variable. 

We can designate the input variable by the symbol H, and the output variable by some 

quantity X. In the case of a magnetic system, the total magnetic moment M of the body is 

typically the output variable. In a system that exhibits hysteretic behaviour, future 

evolution of the output variable X depends on past history. From this perspective, stating 

that a system displays hysteresis is synonymous with stating that the system has memory 

of past input. Specifically, the output X(t) at time t not only depends on the input H(t), 

but also on all previous input values H(t') at earlier times t' < t.  

In 1895, the Scottish physicist Alfred Ewing formulated a precise definition of 

hysteretic behaviour: “When there are two quantities M and N, such that cyclic 

variations of N cause cyclic variation of M, then if the changes of M lag behind those of 

N, we may say that there is hysteresis in the relation of M and N.” [21] When hysteresis 

is strictly a consequence of a phase lag between the input and output signals, the memory 

effect is transient or nonpersistent. However, for systems that possess a complex internal 

structure, it is possible that the state of the system which has been subjected to a time-

dependent input H(t) and then subsequently held at constant input H0 for all times t > t0 

continues to retain memory of the past history of the input at all times t < t0, even after a 

sufficient time has elapsed for all input transients to dissipate. For a particular value of H, 

there are several states that may potentially be occupied, but it is the history of the input 
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which selects which one of these states is actually occupied at the time t0 of application 

of H0. The system remains in that state indefinitely, as long as the external conditions are  

 

 

Figure 1.2 Evolutionary branching. The path that is taken by the system upon increasing the field from H1 

to H > H1 depends on the sense of approach to the point B(H1, X1) prior to increasing the field. 

 

not modified further, and this produces the persistent memory effect. Furthermore, the 

equilibrium state under given conditions of field H and temperature T is unique, and thus, 

a system with persistent memory which is trapped in one of many states, cannot be in 

thermodynamic equilibrium.  

 Figure 1.2 shows the path traced out by a system which has been prepared in the 

state A(H0, X0) and then subjected to a decreasing input H until the state B(H1, X1) is 

reached. For a system that has persistent memory, future evolution depends upon past 

history. Thus, if the field H is subsequently increased from H1 to H2, the system will trace 

out a new evolutionary branch from B(H1, X1) to C(H2, X2), as opposed to retracing the 
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original path back to A(H0, X0). The fact that the original path is not retraced in the 

reverse sense when the field direction is changed indicates that the system is not in 

thermodynamic equilibrium, and is a manifestation of irreversible, dissipative effects as 

the system exchanges energy with its surroundings.  

The direction in which the path X(H) is traced out is established by macroscopic 

thermodynamics. The First Law of Thermodynamics is dU = HdX + !Q  [22,23] for a 

system where HdX is the work done on the system by external sources in the 

infinitesimal transformation where the output changes by an amount dX. For a closed 

path, 

� 

dU = 0!  and 

 

                                       

 

HdX
cycle

!! = " #Q
cycle

!! .                                            (1.1) 

 

From this relation it is evident that X(H) must always be traversed counterclockwise, so 

as to make the area of the loop (left hand side) positive and hence the heat flow (integral 

on right hand side) negative (corresponding to a loss). To traverse the loop clockwise 

would be to transform perfectly the heat absorbed from the reservoir into work, a 

violation of the second law of thermodynamics. For systems in thermodynamic 

equilibrium with their surroundings, net heat loss has ceased, and there is a one-to-one 

correspondence between the value of H and the resulting value of X at a temperature T. 

Under these circumstances, the X(H) curve is independent of the sense in which it is 

traversed.  



 7 

When the values of H and X are sufficient to identify the state of a system, then 

the system is said to have local memory [20]. The various states associated with a given 

H are necessarily designated by different values of X, which is to say that a single point 

in the H-X plane uniquely identifies one and only one state. When H and X do not 

completely characterize the state of the system, then the system is said to have nonlocal 

memory [20]. Many states are associated with a single point in the H-X plane, and a 

whole series of X(H) curves emanating from the initial point (H1,X1) in Figure 1.2 may be 

made manifest, depending on past input history. Thus, in a system with nonlocal 

memory, additional internal state variables are needed to complete the characterization of 

the state of the system.  

 

1.3 Metastability and Free Energy Landscapes 

The observation of hysteretic behaviour in a magnetic system is a direct 

consequence of the complex, multi-valley structure of its intrinsic free energy landscape 

[20]. That is, due to the complexity and variety of the energy contributions involved in a 

magnetic system, as well as the presence of structural disorder, the system becomes 

trapped in local free energy minima known as metastable states and the global lowest 

energy state is inaccessible to the system on laboratory time scales. Thermodynamic 

equilibrium is forever out of reach. 

As a means of exploring the relationship between hysteresis and metastability, we 

will consider transformations from one thermodynamic state to another. A 

thermodynamic transformation can occur under constraints which involve both thermal 
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energy and external work considerations, such as constant temperature and constant 

applied field.  A force that is not counterbalanced by other forces may cause a 

‘displacement’ or change in another quantity, such as position, volume, magnetic 

moment, etc. These force/displacement pairs are known as conjugate variables and the 

product of the force and ‘displacement’ is the energy transferred in the process. A 

thermodynamic potential can be introduced which controls how the ensuing 

transformation will unfold when the system is constrained to have one fixed variable in 

each of the conjugate pairs fundamental to our discussion, namely (T,S) and (H,X). Thus, 

there are four possible combinations for the constraint variables, and hence four 

thermodynamic potentials that can be defined: the Helmholtz free energy F(X,T), the 

Gibbs free energy G(H,T), the internal energy U(X,S) and the enthalpy E(H,S) [22, 23]. 

Each thermodynamic potential has the property that it never increases in any 

transformation which has its arguments fixed at a constant value [22,23]. When the 

thermodynamic potential appropriate to the constraints attains its global minimum, 

thermodynamic equilibrium is achieved. Of particular interest for magnetic systems are 

the properties of the potentials for transformations that occur under fixed temperature and 

fixed field.  

For simplicity, we will consider a system with local memory, where the values of 

the field H, the state variable X, and the temperature T, completely specify the 

thermodynamic states. Let F(X,T) be the Helmholtz free energy of the system. If H and X 

are conjugate work variables, then G(H,T) = F - HX is the corresponding Gibbs free 

energy. The only spontaneous transformations that can occur between two states under 

fixed H and T are those for which the Gibbs function decreases. During transformations 
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of this type, the state variable X varies as the system passes sequentially from one 

thermodynamic state, delineated by a particular value of X, to another. Transformations 

proceed until G attains its global minimum value and thereby thermodynamic equilibrium 

is achieved. The energy of these nonequilibrium states at fixed H and T is given by 

GL(X;H,T) = F(X,T)-HX and is called the Landau free energy. The Landau free energy, 

expressed as a function of X, is the energy when the state variable X is constrained to 

assume a particular value; in other words, since the system has not reached equilibrium, it 

can only acquire a certain value of X which corresponds to one of the local energy 

minima that could be occupied to give that value of X, and not the sum over all possible 

minima for all values of X. That is, the system has not ergodically explored its options, 

and only ‘sees’ the minima which give one particular value of X. By contrast, the Gibbs 

energy G is a function of H and T only, with X also expressed in terms of H and T via the 

equation of state for the system.  

When the two competing thermodynamic forces acting on the system during the 

approach to equilibrium balance, namely, the force [dF/dX]T describing internal 

mechanisms and the external applied field H, equilibrium is attained. The condition for 

equilibrium is thus 

 

                                                          
!F

!X

!

"#
$

%&T
=H .                                            (1.2) 

 

Combining this equilibrium requirement with the definition of the Landau free energy 

GL(X;H,T) = F(X,T)-HX leads to 
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!G

L

!X

"

#$
%

&'H ,T
= 0                                           (1.3) 

which shows that GL is an extremum in equilibrium. However, the fact that the 

thermodynamic forces acting on the system balance does not imply that complete 

thermodynamic equilibrium has been attained, only that the system occupies one of many 

metastable states with a particular value of X. (See Figure 1.3.) The past input history 

determines which of the innumerable minima accessible to the system will actually be 

occupied. Persistent memory arises naturally out of the sheer number of metastable states 

accessible to the system.  

 

Figure 1.3 Landau free energy landscape. The occupation of a particular energy minimum corresponds to 

the system being characterized by a particular value of X. 
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1.4 Thermal Relaxation and the Approach to 

Equilibrium 

In the limit of zero temperature, the system will remain indefinitely in any local 

energy minimum it may initially occupy, provided that the external conditions do not 

change, thereby creating a situation where the memory is absolutely persistent. In this 

limit, the only way to force the system to occupy a different metastable state is to change 

the external field H. Changing the external field H distorts the energy profile due to the –

HX term in the Landau free energy expression, eventually transforming the GL minimum 

into an inflection point, causing the system to make a spontaneous jump to the nearest 

local minimum. This event corresponds to a loss of stability and is called a Barkhausen 

jump [24,25]. The energy loss of the system during the jump is irreversibly dissipated as 

heat into the thermal bath. 

With regard to Barkhausen jumps, it is important to understand that the term 

spontaneous implies that the evolution of the system to a new metastable configuration 

occurs in a short time relative to the rate at which the external field changes during the 

jump. Under these special conditions, denoted by the term rate-independent hysteresis, 

time is of no consequence. The external field plays the only role in forcing the system to 

pass from one local minimum to the next via a Barkhausen jump, which occurs upon the 

creation by the field of an instability threshold. However, at finite temperatures, there is 

always a chance for the system to escape the energy well it is occupying under the 

influence of thermal agitation, and in this sense, rate-independent hysteresis is a zero-

temperature approximation. On slow time scales, random thermal fluctuations increase 
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the probability of the system making a spontaneous thermally activated jump to another 

metastable state. In particular, when the thermal agitation is sufficient to find the system 

at a local energy maximum separating the initial state occupied from neighbouring energy 

minima, a different state becomes accessible. In this way, the system probes 

progressively larger regions of phase space until thermodynamic equilibrium is reached, 

where the probability of the system to occupy any specific metastable state is governed 

by Boltzmann statistics.  

 When thermal effects play a significant role in allowing the exploration by the 

system of its free energy landscape, X(t) becomes a stochastic variable [20,26] reflecting 

the exchange of energy of the system with the thermal bath at a microscopic level. Since 

we are only interested in the average behaviour of X(t) over time scales long enough to 

track the macroscopic evolution of the system, we may use probabilistic methods and 

concepts. 

 Let P(X,t)dX represent the probability that the value of the state variable lies 

between X and X+dX at time t. P(X,t) thus characterizes the state of the system, and the 

value of X that we associate with a given state is the statistical-ensemble average over a 

large number of identical copies of the system:  

 

                                                 X(t) = XP(X, t)dX!                                        (1.4) 

 

At sufficiently long times, the system will reach thermodynamic equilibrium, where the 

probability Peq(X) to find a given value of X is controlled by Boltzmann statistics: 
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                                  Peq (X) ! P(X,t"#)$ exp %
GL (X;H ,T )

kBT

&

'(
)

*+
                 (1.5) 

 

If GL varies rapidly with X relative to kBT, then Peq(X) will exhibit sharp peaks around 

the local energy minima, and we can describe the problem in terms of discrete states. If Pi 

is the probability of finding the system around the i
th

 energy minimum, found by limiting 

the integral of P(X,t) to values of X in the neighbourhood of the minimum at Xi, then one 

can study Pi(t), the probabilities as a function of time for each discrete state, with the 

constraint P
i
= 1

i

! . 

 

1.5 Bistable Systems 

Hysteretic systems can be described in terms of a complicated, multidimensional, 

multi-valleyed energy landscape with nonlocal memory effects, but studying them by 

beginning with such a complex description presents insurmountable conceptual and 

mathematical obstacles. Many fundamental aspects of the hysteresis phenomenon can be 

illustrated for the simple case of a bistable system, whose free energy is characterized by 

two minima only [20]. Since there are at most two metastable states available to the 

system, a system characterized in this way necessarily has only local memory.  

 Consider a system whose free energy is given by: 

 

                                                   f(x) = x4 ! 2ax2                                                (1.6) 
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where a is a positive constant. f(x) has two minima of equal magnitude located at 

x = ±a
1/2

and a maximum at x = 0 depicted in Figure 1.4 with a = 1: 

 

 

Figure 1.4 Plot of the free energy f(x) = x
4
 – 2ax

2 
with a = 1.0. 

 

The Landau free energy under nonzero input h will be: 

 

                                                  gL (x;h) = x
4
! 2ax2 ! hx                                        (1.7) 

 

The metastable states under the application of a field h are found by applying the 

conditions !gL / !x = 0 and !2gL / !x
2
> 0 , which identify local minima in gL. When h = 

0, the two wells have the same depth. When h = hc, the minimum initially occupied by 

the system at h < hc becomes an inflection point, causing the system to make a 
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spontaneous and irreversible Barkhausen jump to the lower energy state. When h > hc, 

only one minimum exists. By plotting the state variable x as a function of the input field 

h, a hysteresis loop, shown in Figure 1.5 is obtained. Despite having a simple structure, 

the loop arising from the bistable system manifests many of the structural features of 

hysteresis loops measured for real systems, as will now be explored. 

 

 

Figure 1.5 Plot of df/dx as a function of x. The stable portions are those segments for which there exists 

equilibrium between thermodynamic forces and the applied field. The dotted segment is unstable. 

 

  

At h = 0, two stable states exist. These states are called remanent states, and the 

state variable has the value x = x
r
= ±a

1/2 . The points where the system becomes unstable 
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and Barkhausen jumps take place are h = h
c
= 8(a / 3)

3/2 , x = !x
c
= !(a / 3)

1/2 , and 

h = !h
c
= !8(a / 3)

3/2 , x = x
c
= (a / 3)

1/2 . 

 From the thermodynamic viewpoint, the system gains energy from the external 

field as the minimum it occupies increases in energy and the well becomes more shallow. 

When the minimum becomes an inflection point, the energy gained from the field is 

rapidly transferred to the thermal bath during the jump to a lower energy state. In this 

way, the work done on the two-level system by the external field is transformed into heat. 

 The state x = 0 is an energy maximum, and thus cannot be realized for an 

individual subsystem. In the case where we have a spatially extended system, consisting 

of an ensemble of two-level subsystems, however, the condition <x> = 0 can be realized 

with an appropriate phase mixture. Each phase or domain consists of two-level 

subsystems all of which are either in their x = xr state or in their x = -xr state. The relative 

volumes of the phases can then be adjusted so that the system can acquire values of <x> 

that span the entire interval –xr ! <x> ! +xr . In Figure 1.6, phase coexistence 

corresponds to the total moment of the ensemble traversing the vertical broken line at h = 

0; as the ensemble smoothly passes from <x> = -xr to <x> = +xr the fractional volume of 

the –xr domains adjusts continuously from 1 to 0. 

Thermal effects become important when the system is coupled to a heat bath, and 

we can calculate the mean value of the state variable x by introducing the probabilities, p+ 

and p-,  of finding the system occupying one of the two energy minima at x+ and x- . In 

this approximation [20, 27-29],  

                                < x(t) > = x+p+ + x- p- = x- + (x+ - x-)p+                              (1.8) 
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since p+ + p- = 1. For a statistical ensemble of identical systems, p+ and p- are 

proportional to the number of systems occupying the (+) and (-) minima, respectively. 

If we introduce the transition rates w- and w+, as the probability per unit time of a system 

occupying the (-) or (+) state making a transition into the (+) or (-) state, respectively, 

then p+(t) obeys the master equation, 

 

                                                 

� 

dp
+

dt
= w

!
p
!
!w

+
p

+
.                                                 (1.9) 

 

 

Figure 1.6  Solid line: The system moment x as a function of applied field h for a bistable system displays 

hysteresis. The broken line is the phase coexistence curve which is obtained for an ensemble of bistable 

systems with a mixture of phases or domains. This figure was published in “Hysteresis in Magnetism” by 

Giorgio Bertotti, page 47. Copyright Academic Press (1998). Reprinted with permission. 
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The flows from (-) to (+) and from (+) to (-) proceed independently of each other, and the 

master equation represents the total balance at any time t. The transition rates w
±
are 

found by the Arrhenius formula 

  

                                           

� 

w
±

=
1

!0
exp "

#gL±

kBT

$ 

% 
& 

' 

( 
) ,                                              (1.10) 

 

where T is the temperature, and 

� 

!gL±
> 0 are the two energy barriers depicted below: 

 

 

Figure 1.7  The energy barriers and relaxation paths of a bistable system influenced by thermal 

fluctuations. 

 

The characteristic time constant "0 represents the time interval between each ‘jump 

attempt’ and physically is related to the curvature of the potential well [30]. The 

probability of finding a given system of the statistical ensemble at the top of the energy 

barrier relative to the (-) or (+) state is given by the Boltzmann factor, exp(-#gL-/kBT) and 

exp(-# gL+/kBT), respectively. The Arrhenius formula (1.10) is an expression for the 
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number of times per second that the system will be found on top of the barrier, since this 

state is dynamically unstable. The system has a probability of ! of making a jump toward 

the other energy minimum every time it is found on top of the barrier. 

 The solution of the master equation (Eq(1.9))is 

  

                                  

� 

p
+
(t) = p

+,eq + [p
+
(0) ! p

+,eq ]exp(!t /")                                  (1.11) 

 

where 

  

                                    

� 

p
+,eq =

w
!

w
+

+w
!

and " =
1

w
+

+w
!

                                 (1.12) 

 

The relaxation is exponential, with a time constant ". The two energy minima both 

acquire significant populations in the final equilibrium state only under the condition 

� 

!gL" " !gL+
# kT. Otherwise, the larger barrier separating the states is such that the 

probability of a jump over that barrier is low and hence, only one of the two flows exists 

with any finite magnitude. 
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1.6 Hysteresis Loops, Magnetizing Curves, and 

Demagnetizing Procedures 

 

We conclude this overview by describing a number of fundamental hysteresis 

loop parameters and magnetizing processes which are particularly relevant to an 

experimental characterization of hysteresis phenomena with reference to the schematic 

picture shown below in Figure 1.8: 

 

 

Figure 1.8 The identification of salient characterization parameters of a typical hysteresis loop. 

 

 

(a) Initial Magnetizing Curve. Starting from the demagnetized state (M=0, Ha=0) 

at point 1, increasing the field yields the initial magnetizing curve 1-2-4. 

(b) Remanence. Point 3 represents the resulting magnetization after the 

application of an external field to the system followed by field removal (path 1-2-3). 
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(c) Saturation. The state of the system is described by its domain structure, of 

which there can be many for given values of Ha and M. The past history of the material 

determines which domain structure will be realized and how it will evolve under further 

field changes. The application of a field of large enough amplitude will sweep away the 

existing domain structure, leaving the system in a state of uniform magnetization called 

the saturation state (point 4). Once saturation is reached, the subsequent evolution of the 

state is independent of its history prior to the application of the saturating field. 

Saturation Remanent Magnetization or Saturation Remanence, Mr. Point 5 represents the 

magnetization remaining after the removal of a saturating magnetic field (path 1-2-4-5). 

The remanence is indicative of the fact that a ferromagnet can have a spontaneous 

magnetization, even in the absence of an external field. Mr is of the same order of 

magnitude as the spontaneous magnetization Ms, but may differ slightly due to 

geometrical or structural features. 

 (d) Coercive Field. The coercive field (point 6) is the reverse field required to 

reduce the magnetization from the remanent value to zero (path 5-6). The coercive field 

measures the order of magnitude of the fields that must be applied in order to reverse the 

magnetization of the material. 

 (e) Return Branches. Starting from saturation and reversing the field at a certain 

point (point 7) on the saturation loop forms a first-order return branch (path 7-4). Return 

branches provide experimental evidence that an infinite number of different 

magnetization curves can be associated with the same field interval. 

 (f) Anhysteretic state. The demagnetized state (point 1) is obtained by applying an 

oscillating field starting from a large initial value, and reducing the amplitude to smaller 
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and smaller values until the field reaches zero. This results in a spiraling magnetization 

curve ending at the origin. A sample that is demagnetized in this way is said to have been 

ac-demagnetized. Similarly, demagnetization can be achieved by superimposing an 

oscillating field of decreasing amplitude on a constant field Ha. The resulting state is the 

anhysteretic state. The anhysteretic curve (dotted line) is obtained by connecting the 

anhysteretic states resulting under different bias fields Ha. Since the memory of previous 

states occupied prior to demagnetization is completely erased by the oscillating field, the 

anhysteretic curve is independent of past history, and is essentially the skeleton around 

which hysteresis develops. 

 (g) Thermally demagnetized state. The demagnetized state can also be obtained by 

heating the system above the critical temperature or above the blocking temperature and 

then slowly cooling it down to the final temperature under constant field Ha. Both the 

anhysteretic and the thermally demagnetized state represent different ways of bringing 

the system immediately to the free energy minimum that the system would eventually 

occupy in thermodynamic equilibrium after waiting for an infinite time in a given applied 

field Ha. Hysteresis phenomena are a manifestation of the fact that the system is 

prevented from reaching equilibrium on the experimental time scale, and thus cause 

excursions from the minimum energy curve described by the backbone. Understanding 

the relationship between anhysteretic, thermally demagnetized, and minimum energy 

states is essential, but presents highly nontrivial difficulties, to describing hysteretic 

behaviour. The complexity of the free energy of a magnetic system makes finding 

detailed knowledge of its structure difficult. It is generally unknown where and how far 

from the minimum energy state the system is after a particular field history. 
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Barkhausen jumps. On a fine scale the magnetization curve M(Ha) is not smooth but 

rather exhibits a staircase structure as a result of Barkhausen jumps (Figure 1.9). The 

nearly flat portions of the curve are a result of the domain structure undergoing springlike 

distortions under the influence of the applied field, while the nearly vertical parts are 

located at those fields which cause the domain structure to become unstable and jump to 

a new state. The observed signal, however, shows the occurrence of instabilities over 

many time scales and it is not generally as clear-cut. 

 

 

Figure 1.9 The initial magnetizing branch of a measured hysteresis loop. The inset shows the stepwise 

sequence of Barkhausen jumps which characterize the change in moment as a function of applied field. 

This figure was published online at http://en.wikipedia.org/wiki/Barkhausen_effect, 2007. Permission was 

granted to reproduce this figure under the terms of the GNU Free Documentation License. 
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Chapter 2: Micromagnetics 

The goal of micromagnetics is to perform a point-by-point spatial reconstruction 

of the complete magnetization vector field 
  

� 

! 
M global all

! 
r ( )  over the entire volume of the 

magnetic sample under prescribed conditions of applied field 
  

� 

! 
H 

a
 and temperature T [1-

7]. This volume has a free energy GL(X;
  

� 

! 
H 

a
,T), where X is some appropriate state 

variable, from which we can find the set of local minima by setting dGL/dX = 0. Each 

minimum represents a possible metastable state. However, the energy minimization in 

this space-dependent approach is complicated by the fact that the state variable X is not 

simply a scalar quantity, but instead represents the complete magnetization vector field 

  

� 

! 
M global all

! 
r ( )  over the entire body volume. The set of equations that express the 

conditions under which the energy of a particular magnetization configuration is 

minimized are called Brown’s equations, after W.F. Brown [8,9] who pioneered the 

formulation of this problem in general terms. 

 Suppose we have a ferromagnetic body and we subdivide it (in imagination) into 

many elementary volumes  !V, where !V is small enough on the scale over which the 

magnetization changes significantly to have uniform properties throughout, yet large 

enough to contain a significant number of atomic magnetic moments so that physical 

properties can be described using statistical and thermodynamic methods. 
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 We designate the free energy of the local volume element !V around the position 

 

!
r  by  !GL(

 

!
Mlocal (

!
r );
!
Ha,T ), where 

  

� 

! 
M 

local

! 
r ( ) is the local magnetization vector in !V and 

  

� 

! 
H 

a
 is the externally applied field. There are five contributions to !GL: 

 (a) Local Exchange. Due to the quantum mechanical exchange interaction 

 
Hex = !Jij

!
Si "
!
Sj  between elementary atomic spins 

 

!
Si and

!
Sj , !V is characterized by a 

local magnetization vector 
 

!
Mlocal (

!
r )  with a magnitude equal to the spontaneous 

magnetization Ms(T). Due to the isotropy of the exchange interaction, any direction is 

possible for 
 

!
Mlocal (

!
r ) , and it is expected that, in general, magnetization vectors will point 

along different directions in different elementary volumes. Thus we can write 

  

� 

! 
M local(

! 
r ) = Ms(T) ˆ m local(

! 
r ) where 

 
m̂local (

!
r )  is a local unit vector at  

!
r . Since the 

dependence of the spontaneous magnetization Ms on applied field is weak at temperatures 

below the Curie temperature, it follows that the spontaneous moment, and hence the 

exchange energy, is a function of temperature only. At a fixed temperature T, the local 

exchange contribution to the free energy is thus a constant and will henceforth be 

neglected.   

 (b) Nonuniformity exchange energy. Exchange favours parallel alignment of the 

local magnetization vectors in neighbouring volume elements !V over the entire body. 

As a consequence, whenever 
 

!
Mlocal (

!
r )  changes orientation from point to point, 

neighbouring magnetic moments misalign, and this costs energy which is known as 

nonuniformity exchange energy.  This nonuniformity energy can be expressed in terms of 



 29 

the gradients   

� 

! 
! Mlocal,x ,   

� 

! 
! Mlocal,y ,   

� 

! 
! Mlocal,z. For a system with cubic symmetry, the 

lowest-order term in the energy is 

 

                    
 

!FEX = A
!
"Mlocal,x

2

+
!
"Mlocal,y

2

+
!
"Mlocal,z

2

( ) # A
!
"
!
Mlocal (

!
r )( )

2

                (2.1) 

where A is a phenomenological constant. Strictly speaking, !FEX is not a purely local 

contribution to !GL, since it depends on how 
 

!
Mlocal (

!
r )  varies from one volume element 

to another. 

 (c) Anisotropy. Anisotropy favours alignment of  
 

!
Mlocal (

!
r )  along certain local 

preferred directions, called easy axes. In a perfect single crystal where only 

magnetocrystalline anisotropy is important, the preferred directions do not change with 

position. However, in systems where random quenched-in stresses give rise to local stress 

anisotropy, the easy axes and the value of the anisotropy constants vary with position in 

space. If we denote the set of local preferred axes and anisotropy constants by 
 

!
K
an
(
!
r ) , 

the anisotropy energy of the volume element !V can be expressed in the form 

 
!Fan = fan[

!
Mlocal (

!
r );
!
Kan(
!
r )]!Vwhere fan is the anisotropy energy density. 

 (d) Magnetostatic energy. Magnetostatic energy is the potential energy of the 

local magnetization vectors 
  

� 

! 
M 

local

! 
r ( ) in their own magnetostatic field 

 

!
Hmag . The 

contribution from each elementary volume is 

  

                                           
  

� 

!Fmag = "
µ 0

2

! 
H mag #

! 
M local!V                                      (2.2) 
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 where 
 

!
Hmag  is the solution of the following magnetostatic equations:  

 

                                                

 

!
! "
!
Hmag = #

!
! " (
!
Mlocal )

!
! $
!
Hmag = 0

                                        

� 

(2.3)

(2.4)
 

These relationships are nonlocal in the sense that knowledge of 
 

!
Mlocal (

!
r )  in the 

neighbourhood of a certain point  
!
r  is not sufficient to determine 

 

!
Hmag . Even magnetic 

moments far away from  
!
r  may contribute to the magnetostatic field at  

!
r . Magnetostatic 

energy favours configurations where the magnetization follows closed paths inside the 

body, so that the net magnetic moment vanishes. 

(e) Interaction with an applied field. This is the potential energy of the local 

magnetization vector 
  

� 

! 
M 

local

! 
r ( ) in the applied magnetic field 

  

� 

! 
H 

a
, and it is given by:  

 

                                            
 
!Fapp = "µ0

!
Ha #
!
Mlocal !V .                                           (2.5) 

 

Combining all of these individual contributions and then summing up over all 

elementary volumes yields the complete micromagnetic free energy 

 

 

GL[
!
Mglobal (all

!
r);
!
Ha ] = A

!
!
!
Mlocal( )

2

+fan (
!
Mlocal;

!
Kan ) -

µ0

2

!
Hmag "

!
Mlocal -µ0

!
Ha "
!
Mlocal

#
$%

&
'(

V

) d3r
   

                                                                                                                                (2.6)  
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where 
 
GL[
!
Mglobal (all

!
r);
!
Ha ]  is a functional, since it depends on the complete vector field 

 

!
Mglobal (all

!
r ) .  

If thermal agitation does not play a significant role, the local minima in GL represent 

states in which the system tends to persist for long times. In the limit of zero temperature, 

the set of all local GL minima is the set of all possible states in which the system can be 

found under the influence of a particular external field. The behaviour of GL should be 

viewed in the infinite-dimensional space of all possible magnetization vector fields 

 

!
Mglobal (all

!
r ) . In this space, we can identify metastable states by certain configurations 

 

!
M

meta
all
!
r( )  which have the property that 

 
GL[
!
Mmeta (all

!
r )] !GL[

!
Mglobal (all

!
r )]  for all other 

configurations 
 

!
Mglobal (all

!
r ) in the vicinity of 

 

!
M

meta
all
!
r( ) . Systems which can have a 

number of different metastable configurations 
  

� 

! 
M 

meta
all
! 
r ( )  with identical macroscopic 

values of the total moment M(Ha,T) for the same applied field Ha and temperature T, 

exhibit non-local memory.  

To minimize GL and establish the metastable configurations 
  

� 

! 
M 

meta
all
! 
r ( )  we vary the 

direction of the local magnetization vector 
 

!
Mlocal (

!
r )  at each point  

!
r  by a small arbitrary 

amount 
 
!
!
Mlocal (

!
r ) , 

 

!
Mlocal (

!
r )!

!
Mlocal (

!
r ) + "

!
Mlocal (

!
r ) , subject to the constraint 

 
!
!
M

local
=
!
M

local
" !
!
# , where  !

!
"  describes a small rotation of 

 

!
Mlocal (

!
r )  around an arbitrary 

axis identified by the direction of  !
!
" . This yields 

 

                 

 

!GL = µ0 (
!
Mlocal "

!
Heff ) # !

!
$ d3r

V

% & 2 A
S"%

!
Mlocal "

'
!
Mlocal

'n
(
)*

+
,-
# !
!
$ da              (2.7) 
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where  

 

                            

 

!
Heff =

2

µ0

!
! " (A

!
!
!
Mlocal ) #

1

µ0

$fan

$
!
Mlocal

+
!
Hmag +

!
Ha                               (2.8) 

and where ! / !n is the derivative along the outward normal to the surface of !V. 

At an extremum,!G
L

= 0 for an arbitrary variation  !
!
" , which yields the 

following: (a) a stability condition 
 

!
M

local
!
!
H
eff
= 0  at each point in the volume, which 

amounts to 
 

!
Mlocal (

!
r )  aligning with 

 

!
H
eff

in every single volume element throughout the 

material, and (b) a boundary condition 
 

!
M

local
!
"
!
M

local

"n
= 0  on the surface, which is a 

consequence of the fact that the magnitude of 
 

!
Mlocal (

!
r )  is fixed at the spontaneous 

magnetization value Ms(T). 

Brown’s equations suffice under equilibrium conditions. However, the formalism 

also demands a description of how the system will approach equilibrium when beginning 

from a non-equilibrium situation, and how the magnetization will respond to a time-

varying applied field. 

The field 
 

!
H
eff

exerts a torque on the local magnetization vector 
 

!
M

local
, which 

leads to the equation of motion  

 

                                                 
  

� 

!
! 
M 

local

!t
= "

G

! 
M 

local
#
! 
H 

eff
.                                             (2.9) 
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Eq(2.9) predicts that the magnetization vector will precess around the local field 
  

� 

! 
H 

eff
 

under non-equilibrium conditions, and thus will never approach equilibrium in the 

absence of dissipation mechanisms. 

Dissipation-driven relaxation to equilibrium can be described phenomenologically 

by [8,10,11] 

  

                                                        
 

!
H

!
" #

G

$
!
M

local

$t
= 0 ,                                         (2.10) 

 

where !
G
> 0 and 

 

!
H

!
is the component of 

 

!
H
eff

 perpendicular to 
 

!
M

local
.  Precession and 

dissipation can then be combined into a single equation known as Gilbert’s equation 

[8,11] 

 

                                       

 

!
!
M

local

!t
= "

G

!
M

local
#
!
H
eff
$ %

G

!
!
M

local

!t
&
'(

)
*+

                           (2.11) 

 

or a mathematically equivalent form known as the Landau-Lifshitz Equation [12] 

 

                                     
 

!
!
M

local

!t
= "

L

!
M

local
#
!
H
eff
$ %

L

!
M

local
#
!
H
eff( ) .                       (2.12) 

 

            The solution of Brown’s equations shows that changes in the external field 
  

� 

! 
H 

a
 

distort the free energy hypersurface and will eventually cause the metastable 
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configuration 
  

� 

! 
M 

meta
all
! 
r ( )  in which the system is trapped to lose stability when the local 

energy minimum occupied by the system is transformed into a saddle point. The system 

then evolves rapidly toward a new metastable configuration corresponding to a new local 

minimum. This sudden evolution corresponds to a Barkhausen instability.    

The rigour which characterizes the exploration of micromagnetism, although 

deeply satisfying on an intellectual level, introduces formidable complexity into the 

solving of fundamental problems, and requires a detailed knowledge of microstructural 

features of materials while also demanding large, involved computations whose temporal 

rendering quickly exceeds tolerable limits. In contrast to micromagnetic models, 

theoretical approaches like the Preisach model, to be introduced shortly in Chapter 4, 

adopt a much broader perspective and attempt to formulate a general, unified framework 

for the joint description of metastability and thermal activation which is based on the 

premise that all magnetizing processes may be reduced to a sequence of Barkhausen 

instabilities, and on general energy considerations which are independent of the 

microstructural details of a specific material, no matter how complex. To quote Bertotti  

[1] “The situation has some resemblance to classical thermodynamics where certain 

general conclusions about the existence of thermodynamic potentials are deduced from 

purely macroscopic properties of thermodynamics, leaving to statistical mechanics the 

task of providing explicit expressions for these potentials based on microscopic models.” 
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Chapter 3: Mechanisms for Moment Reversal 

3.1 Introduction 

The magnetization process is the result of a change in the micromagnetic 

magnetization vector field 
 

!
Mglobal (all

!
r ) characterizing the magnetic state of the body, 

brought about by a change in the applied magnetic field 
 

!
H
a
.  This process is very 

complex and involves a large number of degrees of freedom. A realistic strategy for 

attacking a problem of this complexity is to reduce the magnetizing process to a 

superposition of independent elementary degrees of freedom. This philosophy paves the 

way for the Preisach formalism to be discussed in the next chapter. In section 3.2 the 

elementary contributions will be “particles” (real or fictitious) which reverse their 

magnetization by coherent rotation. In section 3.3 the moment reversal mechanism is 

domain wall motion, and the elementary degree of freedom will be a small segment of 

wall surface. 

 

3.2 Coherent Rotation (The Stoner-Wohlfarth Model) 

 The basic premise underlying the concept of coherent rotation [1,2] is that a single 

magnetization vector is sufficient to describe the state of the system. A magnetic particle 

small enough to favour a single domain configuration is the best example of a system that 

is magnetized by this process. The magnetization is uniform and independent of position 
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in space, as is the change in magnetization when the magnetization vector rotates under 

the action of an external field.  

 Imagine a small magnetic particle, with no domains. Its magnetization in any 

arbitrary direction is always completely saturated in a particular direction at the 

spontaneous value Ms, and thus it is sufficient to give the orientation of its magnetization 

vector 
 

!
M(
!
r )when describing its state. The particle may display magnetic anisotropy as a 

result of magnetocrystalline or shape effects. For simplicity, we consider a spheroidal 

particle composed of a material with uniaxial magnetocrystalline anisotropy, and assume 

also that the symmetry axis of the spheroid and the crystal anisotropy axis coincide. 

The behaviour of the particle is controlled by two energy terms: (a) the energy of 

interaction with the external field 
 
E
EXT

= !µ
0

!
M(
!
r ) "
!
H
a
 and (b) the uniaxial anisotropy 

energy [1] F
AN

= KVsin
2
! , where ! is the angle between  

!
M  and the easy axis, and V is 

the particle volume. The anisotropy axis is an easy magnetization direction, so K > 0.  

The free energy GL of the particle is thus 

 

                           
 
G
L
(!;
!
H
a
) = V[Ksin

2
! " µ

0
MH

a
cos(! " !

H
)]                     (3.1) 

 

where !H is the angle between 
 

!
H
a
and the easy axis. By introducing the dimensionless 

quantities 

 

                                      

 

gL =
GL

2KV
,
!
ha =

µ0Ms

2K

!
Ha =

!
Ha

Han

, Han =
2K

µ0Ms

 ,                 (3.2) 
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as well as the components of the applied field perpendicular and parallel to the easy axis, 

h
!
= h

a
sin"

H
 and 

 
h
!
= h

a
cos!

H
, the free energy of the particle becomes 

 

                          
 

gL (!;
!
ha ) =

1

2
sin2 ! " h

#
sin! " h

"
cos! .                              (3.3) 

 

For small applied fields 
 

!
h
a
around zero, the condition !gL / !" = 0 yields two 

local minimum, one stable and one metastable, separated by an energy maximum, while, 

for sufficiently large fields, only one local minimum is available, in which  
!
M  is closely 

aligned with the field. Discontinuous changes in the orientation of the magnetization 

occur when one minimum and one maximum merge to form an inflection point. In 

general, the excitation energy barrier which must be overcome to induce a transition 

depends on the angle ! and exhibits a complex dependence on applied field. The calculus 

of the energy barriers has been studied in detail in the literature [1-3]. By imposing the 

conditions  !gL / !" = 0 and !2gL / !"
2
= 0we arrive at the following parametric 

representation of the instability condition (bifurcation set) for Barkhausen jumps: 

 

       

 

h
!
= sin

3
"

h
!
= # cos

3
"

                                              (3.4)          

                                                                      

 

where ! represents the orientation of   
!
M  with respect to the easy axis in the state which 

is losing stability.  
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Figure 3.1 A Stoner-Wohlfarth astroid showing the free energy wells as a function of field. For applied 

fields outside the boundaries of the astroid, there exists only one stable orientation, while for applied fields 

inside the astroid, there are two solutions, one stable and one metastable. 

 

The curve generated by the instability conditions Eq(3.4) when ! varies over the 

entire allowed interval (-", ") is the astroid [4-7] shown in Figure 3.1. By eliminating ! 

from the instability conditions, the equation of the astroid can be written 
 
h
!

2 /3
+ h

!

2 /3
= 1 . 

Outside the astroid, the system only has one state accessible to it; inside the astroid, two 

states are accessible, but the orientation realized depends on past history. The possible 

orientations of the moment  
!
M at each point are obtained by drawing tangent lines to the 

astroid which intersect with the field point. The possible states, one stable and one 

metastable, have magnetization vectors which lie parallel to the tangent lines, as shown in 

Figures 3.1 & 3.2. 
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Figure 3.2 Determination of the two possible states for each applied field that exists within the boundaries 

of the astroid.  

 

Tangent lines that are drawn through points where – " < ! < 0 have stable 

orientations that point to the left, as shown in Figure 3.2, while tangent lines that are 

drawn through points where 0 < ! < ", have stable orientations that point to the right. 

Figure 3.3 depicts the magnetization process applicable to the particular situation 

of a slowly varying, alternating magnetic field 
 

!
h
a
, but only shows the portion of the 

cycle for which the field intensity ha increases from negative to positive values. The point 

representing the field slides back and forth along the fixed straight line. If the field 

oscillates with an amplitude such that the field point is contained inside the astroid, the 

magnetization simply oscillates around the initial occupied state, but insufficient field 
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energy is available to allow an instability point to form and thereby induce a transition 

from one state to another. However, when the field amplitude is large enough for the field 

point to cross the astroid boundary, the system responds in a qualitatively different way. 

At the moment the field point exits the astroid, the state occupied by the system loses 

stability and a Barkhausen jump takes place. By tracking the change in moment for a 

given value of !H under an alternating field of magnitude sufficient to cross the astroid, a 

hysteresis loop is obtained. Figure 3.4 below shows representative examples of these 

hysteresis loops for 0 ! !H !  "/2. In the special case of the field being exactly 

perpendicular to the anisotropy axis, i.e !H = "/2, the hysteresis loop is closed (the 

response is perfectly reversible).  

 

 

Figure 3.3 The magnetizing process for a changing magnetic field increasing in intensity from negative to 

positive values. 
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Figure 3.4 Hysteresis loops obtained from the Stoner-Wohlfarth astroid for various angles  !H. This figure 

was published in “Hysteresis in Magnetism” by Giorgio Bertotti, page 241.Copyright Academic Press. 

(1998). Reprinted with permission. 

 

3.3 Domain Walls 

Attempts to image experimentally the magnetization vector field 
 

!
M(
!
r )  of bulk 

magnetic materials using optical techniques such as the Kerr effect and the Faraday 

effect, or electron beam deflection methods such as Lorentz microscopy, or magnetic 

probes such as the Bitter powder technique or magnetic force microscopy [8-12], show 

that the vector field appears to consist of relatively extensive regions of nearly uniform 

magnetization, called domains, separated by comparatively narrow interface layers 

known as domain walls. Over short spatial scales, exchange and anisotropy forces favour 

the parallel alignment of the atomic moments along a certain preferred direction to form a 

uniformly magnetized state. However, over large spatial scales, magnetostatic energy 
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becomes the dominant influence on the properties of the bulk magnetic structure, and 

favours a “fractured” configuration of numerous misaligned domains, over a single, 

uniformly magnetized configuration [4, 13-22].   

To understand the reasons for this, recall that the magnetostatic field 
 

!
Hmag due to a 

magnetization vector field 
 

!
M(
!
r )  is equivalent to that produced by an effective volume 

pole density 
 
!
m
= "
!
#i

!
M  and an effective surface pole density 

 
!
m
=
!
Min̂ , where 

� 

ˆ n  is the 

outward surface normal, and that the magnetostatic energy is proportional to the integral 

over all space of the square of the magnetostatic field (Hmag)
2
.  The magnetostatic energy 

thus attains its absolute minimum when 
 

!
Hmag  vanishes everywhere and, therefore, a low 

magnetostatic energy configuration is one where the magnetic pole densities #m and $m 

are zero in as many locations as possible. This is known as the principle of pole 

avoidance [23]. Subdividing the material into misaligned magnetic domains reduces the 

pole density by placing positive and negative poles in close proximity, as illustrated in 

Figure 3.5 for the case of surface poles.   

In principle, the micromagnetic approach can be used to explain the existence of 

domains and to predict the domain structures observed in real materials [12] by solving 

Brown’s equations for the complete set of local minima corresponding to the metastable 

states available to the system. For a given field, there are as many domain structures as 

there are metastable states, that is, solutions to Brown’s equations. In most situations, 

however, the problem is intractable due to the mathematical complexity of the procedure, 

and also due to the fact that structural disorder dominates the behaviour of real materials.  
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Domain theory is an attempt to reduce the micromagnetic formulation of the 

problem to a more tractable form. Domain theory postulates that it is possible to 

distinguish a sharp demarcation between the large regions where the magnitude and 

orientation of the magnetization is nearly uniform (domains) and the narrow interface 

layers where the magnetization changes rapidly from one orientation to another (domain 

walls). The atomic spins within the domain wall are misaligned with each other and with 

the easy direction and, consequently, the formation of domain walls costs both exchange 

and anisotropy energy. Furthermore, by neglecting the thickness of the wall, the wall 

becomes a two-dimensional surface with surface tension, thus significantly reducing the 

complexity of the original three-dimensional problem.  

For classification purposes, domain walls are generally described in terms of the 

direction of the magnetization in neighbouring domains separated by the wall. For 

example, when the wall separates domains of opposite magnetization, it is called a 180-

degree domain wall. For the special case of a 180-degree wall geometry and uniaxial 

anisotropy, a micromagnetic analysis [24] for a simple system in which the magnetization 

only changes direction along an axis perpendicular to the easy axis, and remains either 

parallel or anti-parallel to the easy axis, shows that complete magnetization reversal takes 

place in a spatial interval of !
w
= "

A

K
1

, which is generally taken to be a measure of the 

wall thickness. The total energy per unit surface % w stored in the domain wall (found by 

integrating the energy density gL over all x) is given by !
W
= 4 AK

1
, and amounts to 

the exchange and anisotropy energies densities being of the same order of magnitude 

inside the wall. 
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Figure 3.5 The reduction of magnetostatic energy that follows the formation of a domain. 

 

 

3.4 Domain Wall Dynamics 

If we neglect their finite thickness and internal structure, domain walls can be 

conceived of as geometrical surfaces which extend throughout the volume of a sample of 

magnetic material in an interconnected network, which evolves in response to changes in 

the external field through a random sequence of spatially localized deformations, each of 

which corresponds to a small fragment of the domain wall surface being displaced 

discontinuously and irreversibly from one location to another.     

The equations that govern domain wall dynamics [1, 25-27] are identical to those 

in section 1.3, which describe the approach to equilibrium of any system that relaxes 

through a sequence of nonequilibrium thermodynamic states represented by a Landau 
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free energy GL(X;H,T) = F(X,T) - HX, where X is some appropriate internal degree of 

freedom or state variable. As previously noted, equilibrium corresponds to a balance 

between the external field Ha and dF/dX, a gradient describing internal mechanisms: 

 

                                  dGL/dX = Ha - dF/dX = 0                                      (3.5) 

 

If the system is not initially in equilibrium, X will change with time at a rate 

dX/dt which depends on dGL/dX. However, sufficiently close to equilibrium, dX/dt may 

be expanded in powers of dGL/dX and truncating the expansion after the first order term 

yields:  

 

                                           !
dX

dt
= "

#G
L

#X
                                              (3.6) 

 

where % is a positive friction constant.  The equality above is equivalent to stating that the 

velocity is proportional to the force, and hence the change in X with time is controlled by 

a viscous-like mechanism. Substituting for dGL/dX from Eq(3.5) yields 

 

                                      !
dX

dt
= H

a
(t) "

#F

#X
= H

a
(t) " H

F
(X)                             (3.7) 
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where HF(X) = dF/dX is an internal field. In the case of domain wall motion, the internal 

degree of freedom X is the position of the wall, or equivalently, the magnetic flux & 

through the cross sectional area in which the magnetization reversal is taking place.  

The free energy F is a function of the position X of the moving wall for two 

reasons. (a) The effect of the spatial variation of magnetostatic energy is intrinsically a 

nonlocal effect, and thus may give rise to a complex dependence of the system energy on 

wall position despite the apparent homogeneity of the medium surrounding a domain 

wall. (b) Structural disorder gives rise to spatial variations in the parameters used to 

describe the micromagnetic free energy, and hence introduces a spatial dependence into 

the exchange and anisotropy energy stored in the domain wall. As a consequence, HF will 

contain two distinct contributions, a large-scale contribution, related primarily to 

magnetostatic effects, and a short-scale contribution, related to structural disorder. If the 

large-scale contribution to the free energy is approximated by a parabolic potential well, 

F(X) = AX
2
, then 

 

                                      HF(X) = 2AX + Hp(X) .                                             (3.8) 

 

The field Hp(X) describes the random energy fluctuations around the large-scale 

curve and is called the pinning field.  

To solve the domain wall equation of motion (Eq(3.7)) it is usual to express it as a 

pair of coupled equations in X and Ha as follows: 
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!
dX

dt
= H

a
" H

F
(X)

dH
a

dt
= r(t)

                                            (3.9) 

 

where r(t) is the rate of change of the input field. If we further assume that the field Ha 

changes at a fixed rate r(t) = c, independent of time, then we can eliminate t from these 

two equations to obtain the differential equation for the trajectory Ha(X) which the 

system follows in response to its free energy gradient HF(X):  

 

                                                  
1

!

dH
a

dX
=

c

H
a
" H

F
(X)

.                                         (3.10) 

 

For a simple bistable system with a double well free energy F(X) = X
4 
- 2aX

2
, 

HF(X) = "F/"X = 4X
3
 – 4aX, and a phase portrait of domain wall motion can be obtained 

from Eq(3.10), where the possible trajectories in the (X,Ha) plane are plotted for a fixed, 

time-independent field change such as the one described. Each point in the (X,Ha) plane 

has only one possible trajectory passing through it (Figure 3.6).  
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Figure 3.6 The phase portrait of domain wall motion from (3.10) for a field rate of r = 0.25. This figure was 

published in “Hysteresis in Magnetism” by Giorgio Bertotti, page 58. Copyright Academic Press (1998). 

Reprinted with permission. 

 

If c > 0, then in the limit c ' 0, a possible solution of Eq(3.10) is Ha ( HF(X) and 

dHa/dX  ( dHF/dX, provided that dHF/dX > 0. Thus, Ha tracks HF(X). In those regions 

where dHF/dX < 0, we simply set dHa/dX  ( 0, whatever the value of Ha - HF(X). This is 

where a Barkhausen jump takes place. Thus, one obtains a trajectory made up of the 

stable branches of HF(X), joined by horizontal segments where Barkhausen jumps occur. 

This trajectory is shown as the dotted line in the Figure 3.7. 

x 
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Figure 3.7 Phase portrait of domain wall motion for c ' 0. The Barkhausen jumps occur in those regions 

where dh/dx ~ 0. This figure was published in “Hysteresis in Magnetism” by Giorgio Bertotti, page 272. 

Copyright Academic Press (1998). Reprinted with permission. 

 

 

The Barkhausen effect is evidence for the existence of domains, and can be 

observed aurally. For instance, by subjecting a magnetic specimen to a smoothly 

increasing field, the Barkhausen effect can be ‘heard’ with an amplifier and a loudspeaker 

connected to a magnetic search coil wrapped around the specimen. The speaker emits a 

crackling noise no matter how smoothly the field is changed, and it is this crackling that 

is indicative of abrupt changes in the magnetic moment as the field is changed [28]. 

An interesting application of the bistable double-well phase portrait shown in 

Figure 3.6 appears in a model, due to Zeeman [29], of the heart beat. 

In Zeeman’s model, there exists a state corresponding to relaxation of the heart 

muscle (diastole), a threshold that allows the triggering of an electrochemical wave which 
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forces a contraction of the heart muscle (systole), followed by an efficient and quick 

return to diastole. Completing the whole cycle results in a hysteresis loop, shown in 

Figure 3.8. 

 

 

 

Figure 3.8 A hysteresis loop that describes the heartbeat cycle as it relaxes (diastole) and contracts 

(systole). Reproduced with permission of Taylor & Francis Group LLC, from “Differential Equations and 

Mathematical Biology” by D.S. Jones and B.D. Sleeman, Copyright 1983; permission conveyed through 

Copyright Clearance Center, Inc. 

 

If the control variable is the electrical potential b (analogous to the role of the 

magnetic field Ha in magnetic systems) and the state variable is the muscle fibre length x 

(measured relative to a relaxed fibre of a length x0 and analogous to the role of the 

magnetic moment in magnetic systems), then the coupled differential equations that are 

employed in Zeeman’s model of the heartbeat are: 
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!
dx

dt
= "(x

3
" Tx + b)

db

dt
= x " x

0

                                            (3.11) 

 

where ) allows a rapid initial decrease/increase of the fibre length during the approach to 

systole/diastole, and the chemical control changes at a rate proportional to the muscle 

fibre extension. 

Figure 3.9 shows the phase portrait of the dynamics of the coupled equations in 

Eq(3.11). As is, the flow along AB corresponds to the descending branch of the 

hysteresis loop, and represents the switch from diastole to systole, but CD does not 

represent a return to the diastolic state. To satisfy the requirement of a rapid return to 

equilibrium, an additional control variable, u, must be imposed to close the trajectory: 

 

                                                      

!
dx

dt
= "(x

3
" Tx + b)

db

dt
= x " x

0
+ (x

0
" x

1
)u

                                         (3.12) 

 

Figure 3.10 shows the phase portrait that incorporates the additional control 

variable.  
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Figure 3.9 The phase portrait of a beating heart whose dynamics are described by Eq(3.11). Notice that the 

branch CD does not represent a return to the diastolic state. Reproduced with permission of Taylor & 

Francis Group LLC, from “Differential Equations and Mathematical Biology” by D.S. Jones and B.D. 

Sleeman, Copyright 1983; permission conveyed through Copyright Clearance Center, Inc. 

 

 

Figure 3.10. The phase portrait of a beating heart whose dynamics are described by Eq(3.12). Notice that 

with the addition of the control variable u, a repeating cycle can be observed, as required for a rapid return 

to equilibrium (diastole) from systole. Reproduced with permission of Taylor & Francis Group LLC, from 

“Differential Equations and Mathematical Biology” by D.S. Jones and B.D. Sleeman, Copyright 1983; 

permission conveyed through Copyright Clearance Center, Inc. 
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Chapter 4: The Preisach Model 

4.1 Introduction 

The notion of constructing a generic hysteretic system from the superposition of 

many bistable elements is inevitably associated with the name of Ferenc Preisach [1], 

who introduced this notion into the literature in 1935 and who provided an elegant and 

illuminating graphical representation. Over the past several decades, the Preisach 

formalism has blossomed into a general mathematical and physical framework for the 

description of nonequilibrium phenomena in a variety of materials, including 

ferromagnets, fine magnetic grains, spin glasses, minerals, type II superconductors, 

amorphous glasses, rubber, and polymers below the vitreous transition, and composite 

materials [2-29]. The Preisach formalism is based on the premise that every 

magnetization process can be reduced to a sequence of Barkhausen events. Each such 

event is inherently bistable, in the sense that it corresponds to the system leaving one 

metastable state in favour of another metastable state of lower free energy, and each 

involves two characteristic energies, the free energy difference !F between the initial and 

final states, and the energy !E dissipated as heat during the event.  

The working hypothesis is that the probability distribution p(!F, !E) of characteristic 

energies exists and is an intrinsic property of any given material, prescribable in advance 

and independent of the specific field history to be imposed on the material. The 
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fundamental building block of the formalism is a one-dimensional, double well potential 

in a two-state configuration space, as shown in Figure 4.1. The state variable m may 

assume three possible values m = ± µ, and m = 0, where µ is a characteristic moment 

reversal associated with a single Barkhausen event, and the free energy F(m) is 

characterized by two energy levels F(m = ±µ) = ± µHs, separated by an energy maximum 

F(m = 0) = µHd , where Hs and Hd are equivalent fields. 

 

       

Figure 4.1: An elementary Preisach double-well potential in zero applied field (top). An elementary 

Preisach double-well potential in an applied field Ha (bottom). 
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Each elementary bistable unit is coupled linearly to the applied field Ha and its 

stability is controlled by the Gibbs free energy G(m,Ha) = F(m)-mHa. When Ha " Hs+Hd, 

G exhibits only one local minimum at m = +µ. Similarly, when Ha  # Hs - Hd, only m = -µ 

is a minimum. In the intermediate case where Hs - Hd  < Ha  <  Hs + Hd, G exhibits two 

local minima, one stable and one metastable. 

 

4.2 The Preisach Plane 

These stability conditions may be summarized conveniently in a graphical form using 

the Preisach plane, shown in Figure 4.2, defined by the rectangular coordinate axes Hd 

and Hs. Each Preisach element is located by its representative point with coordinates (Hd, 

Hs). The stability conditions partition the Preisach plane into three regions. All Preisach 

subsystems in region I are definitely in their –µ state, and all subsystems in region III are 

definitely in their +µ state. In region II, both states +µ and -µ are available. In principle, 

any subdivision of region II into +µ and -µ subregions is an acceptable metastable state 

for the system. However, in practice, we are concerned primarily with those subdivisions 

which have been created by a specific history of field applications and reversals. 

In fact, any arbitrary field history starting at positive or negative saturation and 

ending with the field value Ha will partition the Preisach plane into only one +µ and one –

µ region separated by a state line C(Hd) which originates from the point (Hd = 0, Hs = 

+Ha) and consists of a chain of linear segments of alternating slope dR/dHd = +1 and 
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dR/dHd = -1 as shown in Figure 4.3. The shape of the state line C(Hd) depends only on 

the sequence of field reversal points.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: The Preisach plane in zero applied field. The stability conditions partition the plane into the 

three regions (I, II, III) illustrated above. 
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Figure 4.3: The Preisach configuration for an arbitrary field history starting at positive or negative 

saturation and ending at Ha > 0.  

 

When a Barkhausen jump occurs, the free energy F changes by !F = 2µH
s
, while 

the Gibbs free energy suddenly decreases by !G = "µH
d
and this energy is dissipated as 

heat. The characteristic field coordinates Hd and Hs of a Barkhausen element thus 

measure energy dissipated versus energy stored, respectively. 

The response of each elementary bistable subsystem to a cyclic field sweep from Ha = 

+$ to Ha = -$ and back to Ha = +$ is thus the rectangular hysteresis loop shown in 

Figure 4.4. The loop width and loop asymmetry vary with the field coordinates (Hd,Hs). 

In principle, the loop height µ(Hd,Hs) may also vary from unit to unit.  
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Figure 4.4: An elementary Preisach hysteresis loop. 

 

4.3 Collections of Preisach Elements 

 

Suppose that n(Hd,Hs) is the density of Preisach elements normalized as  
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where N is the total number of Preisach elements. The total moment M in a state defined 

by a particular partition of the Preisach plane is then given by the weighted sum: 
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                    M = dHd dHs ±µ(Hd,Hs )[ ]
partition

n(Hd,Hs )
!"

"

#
0

"

#                              (4.1) 

 

where the choice of ±µ in the integrand depends on the specific process and partition. 

Since the combination µ(Hd,Hs)n(Hd,Hs) appears only as a product in the 

integrand, it is usual to define an average subsystem moment µ as 

 

                        µ =
1

N
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d
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s

!"

+"

# µ(H
d
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s
)

0

"

# n(H
d
,H

s
)                                     (4.2) 

 

and to define the Preisach density p(Hd,Hs) as the fractional contribution of subsystems of 

type (Hd,Hs) to the saturation moment Msat=Nµ  as follows 

 

                         p(Hd,Hs ) =
µ(Hd,Hs )n(Hd,Hs )

Nµ
                                           (4.3) 

 

normalized to unity: 

 

                                 dHd dHsp(Hd,Hs ) = 1
!"

"

#
0

"

#                                              (4.4) 

in which case the total moment becomes: 

 

                          M = dHd dHs(±1)partition p(Hd,Hs )
!"

"

#
0

"

# .                                (4.5) 
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The Preisach distribution has the following general properties: 

a. If, for any generic field-moment history [Ha(t),M(t)], inversion to [-Ha(t) , 

-M(t)] also yields an admissible history, then the Preisach density p(Hd,Hs) 

must be an even function of Hs:   

p(Hd,Hs ) = p(Hd,!Hs)  

b. The Preisach description is substantially simplified if the Preisach density 

is factorizable. Two factorizations are compatible with the even symmetry 

with respect to Hs: 

p(Hd,Hs ) = f(Hd ! Hs)g(Hd + Hs) and p(Hd,Hs ) = f(Hd )g(Hs )  

where g(Hs) is an even function of Hs. 

The exchange, anisotropy, and magnetostatic energies which ultimately determine the 

energies of the metastable states, and hence the energy profiles of individual Preisach 

elements, depend explicitly on temperature. As a consequence, the Preisach distribution 

is also expected to be temperature-dependent. Furthermore, the entire Preisach 

distribution should collectively collapse into a delta-function p(Hd,Hs )!"(Hd )"(Hs ) as 

the temperature T approaches the critical temperature TC above which the material cannot 

sustain a spontaneously ordered magnetic configuration. 

 

4.4 Energy Considerations 

If we focus only on the fine-scale metastable state structure responsible for hysteresis, 

which is encoded at the level of the individual Preisach elements, and ignore large-scale 
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mean field effects which are expressible as a function of the total system moment M and 

the temperature T, and which describe the influence on a given elementary Preisach unit 

of the rest of the system taken as a whole, then the minimum free energy Fmin will occur 

when all Preisach units are in their individual ground states with free energies 

f = !µ H
s

. It is natural to measure the free energy F of an arbitrary metastable 

configuration of the Preisach plane with state line C(Hd), such as that shown in Figure 

4.3, relative to Fmin. It then follows that F will be given by the increase in free energy of 

those Preisach elements between Hs = 0 and Hs = C(Hd) which have been trapped in their 

higher energy metastable minimum. For each such element !f = +2µ H
s

, and the total 

change in free energy is given by 

 

     F = N dHd

0

!

" dHs 2µ Hs( )p Hd,Hs( ) = 2Msat dHsHsp Hd,Hs( )
0

C(Hd )

"
0

C(Hd )

" .         (4.6) 

 

It follows that the Gibbs free energy G of this metastable configuration is given by  

 

                            G = 2Msat dHd dHs(Hs + Ha )p(Hd,Hs ).
0

C(Hd )

!
0

"

!                              (4.7) 

To find the state of minimum free energy Gmin, we must calculate the variation %G in G 

when the state line C(Hd) is varied infinitesimally by %C(Hd), and then set %G = 0:  

 

                   !G = 2Msat dHd C(Hd ) + Ha[ ]
0

"

# !C(Hd )p Hd,C(Hd )( ) = 0                  (4.8) 
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which yields  

 

                                                   Ceq (Hd ) = !Ha .                                                 (4.9) 

 

Thus, in the absence of mean field effects, the equilibrium state line is a horizontal line at 

Hs = -Ha. 

 

4.5 Properties of Preisach Magnetization Curves 

Due to its internal mathematical structure, the magnetization curves predicted by the 

Preisach model exhibit two properties, independent of the details of their shape: return-

point-memory and congruency. 

Return-Point-Memory: If a Preisach system is brought from saturation to a field H1 

and then subjected to a field reversal from H1 to H2 followed by another field reversal 

back to H1, then the original H1 state line is restored exactly, and the system loses all 

memory of the intermediate field oscillation. (See Figure 4.5.) 

Congruency: If, starting from saturation, a Preisach system is subjected to an 

arbitrary sequence of field reversals which eventually terminate in a minor loop defined 

by the field cycle H1& H2& H1, then any other field history which starts at saturation 

and terminates in the same field cycle will produce a minor loop which is geometrically 

congruent to the first minor loop. (Figure 4.6) 
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Figure 4.5: An experimental illustration of return-point memory, as measured at T = 6K on a 

ferromagnetic ruthenate, Ca0.4Sr0.6RuO3. 

 

 

Figure 4.6: An experimental illustration of congruency, as measured at T = 6K on a ferromagnetic 

ruthenate, Ca0.4Sr0.6RuO3. 
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The significance of these two properties is that they act as macroscopic fingerprints 

for the existence of the Preisach density p(Hd,Hs) and can be employed as experimental 

tests of the validity of the Preisach decomposition. If these properties are obeyed by a 

given material, then it is certain that this material can be described by the Preisach model 

and that the decomposition of the micromagnetic free energy into bistable elements can 

be performed. However, these tests disclose no details regarding the structure of the 

distribution itself. 

It is natural to ask whether it is possible to associate real physical entitites with the 

Preisach bistable subsystems. This identification would certainly appear to be 

straightforward for materials with a discrete microstructure, like an assembly of fine 

magnetic particles. Each particle has a total moment due to interatomic exchange forces 

and an anisotropy axis due to dipolar forces, which supplies the energy barrier, and it is 

straightforward to postulate a one-to-one correspondence between particles and Preisach 

units. However, the interpretation of a Preisach unit in ferromagnets or spin glasses pose 

more of a problem. Preisach apparently was keenly aware of the difficulty of justifying 

physically the existence of the elementary subsystems and thus simply presented his 

theory as a model system which exhibits hysteresis. Very significant progress in this 

regard was achieved by Neel [3] when he introduced his model of a random potential for 

a Bloch wall in a ferromagnet interacting with pinning forces. Neel was able to show the 

occurrence of a random distribution of square cycles for the magnetization, depending on 

the position of the wall in the potential, and was able to map the movement of domain 

walls onto an equivalent assembly of hypothetical fine grains. 
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In fact, it is possible to show rigorously that if the magnetization process is dominated 

by stochastic domain wall dynamics, and if the pinning field fluctuates in space according 

to the Wiener process, then both fingerprints of the Preisach decomposition, return-point-

memory and congruency, will be obeyed. Furthermore, under these circumstances, the 

functional form of the Preisach density can be established explicitly by exploiting the 

properties of the Wiener process. This yields [9]:  

 

                              p(Hd ) =
2

Hd

(Hd / Hd )coth Hd / Hd( ) !1
sinh2 (Hd / Hd )

.                                 (4.10) 

 

 

4.6 Thermal Relaxation in the Preisach Model 

The state of a Preisach system described by the state line C(Hd) is in general a 

metastable state. At finite temperatures, as time elapses, this metastable state will relax 

toward the equilibrium configuration C(Hd) = -Ha. A discussion of the details of this 

relaxation process will be delayed to Chapter 6, where it is presented in the context of 

aging and memory effects. 
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Chapter 5 

Equipment and Sample Preparation 

5.1 Measuring the Magnetic Moment 

5.1.1 The Physical Property Measurement System (PPMS) 

 A Physical Property Measurement System (PPMS Model 6000) manufactured by 

Quantum Design was used to obtain measurements of the magnetic moment as a function 

of temperature T, applied field Ha, and time t.  The PPMS Model 6000 consists of a 

Probe (see Figure 5.1), a pump to control pressure, an aluminum dewar to contain the 

helium bath in which the PPMS probe is immersed, an electronic controller (Model 

6000), a magnet controller, and a magnet power supply [1]. 

 The PPMS probe is the essential hardware component of the measurement 

system, and sits within the liquid helium bath contained in the aluminum dewar. The 

probe integrates all of the fundamental temperature control hardware, the 

superconducting magnet, the helium-level meter, electrical connectors, gas lines, and 

sample puck connectors. The probe is constructed with several concentric stainless steel 

tubes, along with the inner and outer vacuum tubes, the sample tube, thermometers and 

heaters, the impedance assembly, the probe head, and the protective cap (open to helium). 

 The pump is direct drive and continuously pumps on the entire assembly to 

control the internal pressure of the sample tube and to help maintain thermal control. 
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 The dewar is constructed out of aluminum and is used to contain the liquid helium 

bath and PPMS probe. The outer layer of the dewar is composed of reflective super 

insulation to aid in the minimization of helium consumption. The outer layer is evacuated 

and has layers of activated charcoal on the surface in contact with the cold liquid helium 

in order to maintain the vacuum set up inside. 

 The electronic controller (Model 6000) contains all of the gas control valves and 

system electronics for the PPMS. It is composed of a processor, a motherboard, a system 

bridge board (for temperature readings), and gas valves and gas lines to control 

temperature. 

 Finally, the magnet power supply is the current source for the superconducting 

magnet, while the control of the charging and discharging of the magnet is accomplished 

by the magnet controllers. The maximum magnetic field that can be reached in the dewar 

is 9T, and it has a stability of 0.05 G. 

The PPMS probe is capable of performing DC magnetization measurements with 

a sensitivity between 2.5 x 10
-5

 and 5 emu, is capable of maintaining a sample chamber 

temperature below 4.2K (boiling point of helium) indefinitely, in addition to allowing 

smooth temperature transitions when both cooling and warming through 4.2K. The 

temperature range is 1.9K ! T ! 400K with an accuracy of ±1%, and is stable to within 

±0.2% for T ! 10K, and ±0.02% for T > 10K. The sample chamber can hold a sample 

with a diameter of up to 3mm, and length of up to 8mm. For a complete block diagram 

illustrating the function of the PPMS system, see Figure 5.2. 
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Figure 5.1: The PPMS Probe [1] 
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Figure 5.2: PPMS System block diagram [1]. 
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5.1.2 The ACMS Insert 

The ACMS insert (Figure 5.3) is an additional component of the assembly that is 

used to perform DC magnetization measurements, and houses the system’s drive and 

detection coils, thermometer, and electrical connections [1]. The insert can be positioned 

directly inside the PPMS sample chamber, and its sample space lies directly within the 

uniform field region of the PPMS, allowing DC field and temperature control to be 

maintained. 

The sample is held within the insert’s coil set on the end of a thin, rigid sample 

rod. The sample holder is translated in the longitudinal direction by a DC servo motor in 

the sample transport assembly, which mounts to the top of the PPMS probe. The DC 

servo motor enables smooth and rapid longitudinal sample motion. 

The ACMS includes an AC drive coil set that supplies a detection coil set and an 

alternating excitation field that inductively responds to the combined sample moment and 

excitation field. The copper drive and detection coils are positioned within the ACMS 

insert, concentric with the PPMS’ superconducting DC magnet. 

The drive coil is wound longitudinally around the detection coil set. The field 

amplitude that may be applied depends on both the frequency of the alternating applied 

field and the temperature maintained within the PPMS probes. However, the drive coil 

can generate alternating fields of up to ± 10 Oe in a frequency range of 10 Hz ! f ! 10 

kHz at all temperatures. Larger amplitude fields can be applied as the temperature and 

frequency are reduced.  

The detection coils are configured such that two sets of counterwound copper 

coils are connected in series and separated by several centimeters (first-order gradiometer 
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configuration), in order to electrically isolate the sample’s signal from uniform 

background sources.  

 

Figure 5.3: The ACMS insert and coil set [1]. 
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During a typical DC measurement, a constant field is applied to the measurement 

region and the sample is moved rapidly through both sets of copper coils, inducing a 

signal in them according to Faraday’s law. This measurement method is known as the 

extraction method. The servo motor translates the sample through the entire detection 

coil set in approximately 0.05s. The sample translation is synchronized with data 

acquisition by the transmission of a handshake signal from the servo motor to the digital 

signal processor (DSP) that triggers data acquisition. The ACMS acquires 4096 voltage 

readings during each translation of the sample and produces a voltage profile curve for 

each. The change in flux "(t) caused by the moving sample induces a time-dependent 

voltage across the terminals of the pickup coils, 

 

                                                   

� 

V(t)!
d"

dt
   .                                              (5.1) 

 

Thus, the voltage profile is simply the derivative with respect to time of the net magnetic 

flux through the coils. By integrating the voltage profile and fitting the known waveform 

for a dipole advancing through the detection coils to the resulting data using a regression 

algorithm, the total sample moment is found. 

Outside the AC drive coil is a compensation coil. The two coils are counterwound 

and connected in series so that they receive the same excitation signal. Within the 

measurement region, there remains a net field, but outside the measurement region, the 

fields from the two coils combine to cancel. The compensation coil effectively confines 

the excitation fields to the volume of the coil set, thereby reducing the interaction of the 



 80 

instrument with conductive materials outside the measurement region, such as the sample 

chamber walls, the magnet core, et cetera, by approximately three orders of magnitude.  

During a typical DC measurement, the amplitude of the detection signal depends 

on both the speed of extraction and the magnetic moment of the sample. The ACMS 

extracts samples at speeds of ~ 100 cm/s thus minimizing the effects of time-dependent 

errors like drift, for example. Since the scan time is brief, several scans can be performed 

for each measurement, reducing the contributions of random error. 

The software package accompanying the PPMS serves as an interface to the 

hardware and includes numerous automatic protocols to assist in positioning the sample, 

demagnetizing and determining a number of sample characteristics, in addition to 

monitoring the atmosphere of the sample chamber. Sequences are easily written and 

executed using the built-in software package, thus allowing us to automatically measure 

hysteresis loops, field cooled magnetization, thermoremanent magnetization (TRM), zero 

field cooled magnetization, and isothermal remanent magnetization (IRM) as a function 

of field, temperature, and time, and to view the results graphically in real time.  

 

5.1.3 The Vibrating Sample Magnetometer (VSM) 

A number of our experimental magnetic measurements were made utilizing a 

Princeton Measurements Corporation Model 3900 MicroMag
TM

 Vibrating Sample 

Magnetometer (Princeton Measurements Corporation, 1995) is housed in the Institute for 

Rock Magnetism at the University of Minnesota. The VSM is a computer-controlled 

magnetic measurement device that is highly sensitive and capable of measuring the 
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magnetic properties of a large array of magnetic materials. A schematic diagram of the 

VSM is shown in Figure 5.4 [2]. 

As a result of the fact that the field in the vicinity of a magnetic material is 

spatially-dependent, the field existing at any specific point in space can be altered by 

translating the magnetized body. Thus, the VSM works by vibrating a sample vertically 

at the midpoint of the field produced by a magnet. An electric current is induced in 

pickup coils placed near the vibrating sample as a result of the vibration, proportional to 

the magnetic moment and of the same frequency as the frequency of vibration of the 

sample. Thus, the change in flux #(t) caused by the vibrating sample, induces a time-

dependent voltage across the terminals of the pickup coils (Eq(5.1)), where #(t) is 

proportional to the field induced in the pickup coils by the sample. Specific signal 

processing techniques guarantee that the measurement resulting from this process will 

depend only on the amplitude of the moment and not of the drive amplitude. It is possible 

to calibrate the absolute moment and the sensitivity of the pickup coils by performing the 

measurement with a sample of known magnetization.  

The mechanical transducer assembly vibrates the sample at a frequency of 83.0 

Hz, and allows precision three dimensional translation, vibration isolation, and 

continuous rotation about a vertical axis with the aid of computer control. 

The magnetometer has a sensitivity of 5 µemu, defined as the standard deviation 

at room temperature operation at one second averaging time per point. The magnetometer 

is capable of measuring moments in the range 50 µemu ! m ! 10 emu. The accuracy of 

the measured moments is 2% as compared to calibration with a pure nickel standard.  
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Since the measured magnetic quantity is the total moment and not the magnetization, 

knowing the volume of the sample is important when comparing absolute values of the 

measurements. Also, the shape of the sample determines the degree to which 

demagnetization effects play a role. Although the data processing abilities of the VSM 

include correction factors for demagnetization effects and normalization for sample mass 

or volume, the absolute values of the measured moments are not essential to interpreting 

and comparing data and amount to no more than scaling factors. Thus, although our 

values are irrelevant to a certain extent on an absolute scale, the relative values of the 

measured moments are very accurate, based on the high sensitivity of the VSM. 

 

Figure 5.4: Schematic of the Vibrating Sample Magnetometer, shown from the front of the translation 

stage [2]. 
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The applied field is generated by a high-performance laboratory electromagnet 

with a 4-inch pole face diameter with pole caps tapering to 2 inches. The maximum field 

range for this system is ±18 kOe. The applied field is recorded continuously with the aid 

of a built-in Hall-effect gaussmeter that is accurate to within 2% ± 1 Oe. Because of this 

high degree of accuracy, the null field in the sample chamber can also be determined 

accurately. The magnet power supply is a bipolar, wideband pulse-width modulated 

power amplifier that uses a feedback signal to regulate the field, thus allowing precise 

servo-control under static or field sweeping conditions. The maximum magnet slew rate 

is 20 kOe/s with an option to pause for magnetic field stabilization before a new 

measurement is taken. The electromagnet also allows for a rapid settling of the field, 

making it particularly convenient for measuring hysteresis loops. 

The pick up coils are mounted on the ends of the pole pieces, while the sample is 

mounted at the end of a glass rod suspended in the electromagnet gap. The sample 

chamber is composed of fused silica. The sample holder is composed of high purity 

boron nitride, capable of withstanding high temperatures, and allows vertical mounting of 

the sample in the chamber. 

The VSM system is also equipped with a high-temperature oven that uses a 

continuous flow of He gas at a rate of two to four liters per minute to stabilize at 

temperatures greater than the ambient temperature. The oven is capable of heating to 

750°C and is accurate to 0.75% ± 2.2K. A thermocouple of designation type K, is a 

chromel/alumel construction that is reliable for temperatures -200°C ! T ! 1250°C, and is 

mounted ! inch from the heater and is used to monitor and control the internal 
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temperature. The sample chamber is located directly above the thermocouple. The 

temperature controller is integrated into the system and a temperature change that covers 

the whole operating region can occur in eight to ten minutes. For a schematic of the oven 

assembly see Figure 5.5. 

The software package accompanying the VSM includes a variety of automatic 

procedures to assist in positioning the sample, demagnetizing and determining a number 

of sample characteristics. We performed measurements of hysteresis loops, field cooled 

(FC) magnetization, thermoremanent magnetization (TRM), zero field cooled (ZFC) 

magnetization as a function of field, temperature, and time with the VSM. 
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Figure 5.5: The oven assembly of the VSM [2]. 
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5.2 Magnetic Systems and Sample Preparation 

 

A variety of experiments were performed to investigate numerous aspects of 

hysteretic behaviour in magnetic systems with a variety of chemical compositions and 

microstructures, which are important for reasons of both fundamental and technological 

interest. These ranged from discrete suspensions of nanodimensional magnetite particles, 

which are of considerable interest as information storage media and for use as biosensors 

(Section 5.2.1), to minerals like Tiva Canyon Tuff, (Section 5.2.2), to exchange-bond 

disordered ferromagnetic perovskites, which are employed for read-write applications in 

hard disk drives (Section 5.2.3), and finally to a thin film of nanodimensional Fe particles 

embedded in an insulating matrix of alumina (Section 5.2.4). 

 

5.2.1 Magnetite 

Magnetite is the most important and fundamental oxide in rock magnetism, and as 

a result, it is desirable to acquire a comprehensive understanding of its magnetic 

properties as a rock-forming mineral. Magnetite has also become important in 

technological applications. Collections of nanodimensional magnetic particles are utilized 

in biosensors, and are particularly useful if the individual particles are fabricated to have 

smooth surfaces, spheroidal shapes, narrow size distributions, and are chemically stable 

[3]. 

The crystal structure of magnetite is an inverse cubic spinel (Fd3m, 

[Fe
3+

]A[Fe
2+

Fe
3+

]BO4, where lattice site A is surrounded by 4 oxygen ions tetrahedrally, 

and lattice site B is surrounded by 6 oxygen ions octahedrally. One unit cell of the crystal 
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structure is comprised of eight (Fe3O4) molecules. Magnetite is a typical ferrimagnetic 

substance, with the magnetic moments of the iron ions in the octahedral and tetrahedral 

sites in the crystal arranged in an antiparallel configuration. The ferromagnetic critical 

temperature TC is 578ºC, and bulk magnetite has a saturation magnetization of ~ 92 

emu/gram. 

The sample of magnetite used for the purposes of our investigation, is a 

compressed powder of nanodimensional magnetite (Fe3O4) particles immobilized in an 

organic binder.  

The magnetite particles were provided by Professor Y.K. Hong of the University 

of Idaho, and were synthesized  by the chemical coprecipitation process [4]. The starting 

materials consisted of Iron (II) chloride tetrahydrate – 99% Fe2Cl2 · 4H2O, iron (III) 

nitrate nonahydrate – 98% Fe(NO)3· 9H2O, and sodium hydroxide solution – 97% NaOH, 

all provided by Fisher Chemicals Co. The molar ratio of Fe
2+

 to Fe
3+

 was established at 1 

to create spherical magnetite nanoparticles with an average particle size of 7 nm. Final 

production of the magnetic particles by coprecipitation was accomplished with the 

addition of a 0.1 mol ferrous chloride and 0.1 mol ferric nitrate mixed solution to a 

strongly stirred 3 mol sodium hydroxide solution in de-ionized water at a temperature of 

88ºC for a duration of ten minutes. The precipitated product was decanted with a 

permanent magnet, then washed with de-ionized water to eliminate the remaining cations 

and anions, and subsequently dried at a temperature of 50ºC for a total time of 6 hours in 

a dryer oven.  

A vibrating sample magnetometer was used to characterize the magnetic 

properties of individual magnetite nanoparticles. The hysteresis curve measured at 300K 
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has a vanishingly small coercive field, in contrast with that of bulk magnetite, whose 

coercive field at 300K is about Hc ~ 115-150 Oe. The difference was attributed to the 

superparamagnetic behaviour of nanodimensional magnetite particles. The measured 

saturation magnetization of the magnetite particles is 49 emu/gram (a reduction of 

approximately a factor of two from the bulk value, the reduction being a result of the 

increase in surface effects with decreasing particle size [5, 6]. Transmission electron 

micrography was used to determine that the spherical magnetite particles ranged in 

diameter from 5-10 nm, with an average particle diameter of 7 nm. 

 

 

5.2.2 Tiva Canyon Tuff 

 

Tiva Canyon Tuff is a volcanic rock that was supplied by the Institute for Rock 

Magnetism at the University of Minnesota, and was acquired at various depths from the 

Yucca Mountain, Nevada, USA, near the Nevada Test site and future repository for the 

USA’s depleted nuclear fuel [7]. It is comprised of grains of titanomagnetite, Fe3-xTixO4 

with x ! 0.1 which are embedded rigidly and randomly in a volcanic glass. What makes 

the tuff such a superb sample to study is that the titanomagnetite grains are essentially 

non-interacting and consist of a mixture of stable single-domain and superparamagnetic 

grains. 

Titanomagnetite is a solid solution of ulvöspinel (Fe2TiO4) and magnetite, both 

with the inverse spinel structure, that forms with the substitution 2Fe
3+

  $ Fe
2+

 + Ti
4+

. 

The relative ratio of magnetite to ulvöspinel in the solid solution changes the Curie 

temperature TC from the nominal values of TC ~ 578ºC for pure magnetite, and ~ -150ºC 
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for pure ulvöspinel.The dependence of TC on % molar concentration of Fe2TiO4  is shown 

in Figure 5.6 [8]. 

The titanomagnetite grains in the Tiva Canyon Tuff are acicular (needle-like), 

have a narrow grain size distribution and are spatially well separated. When the Tuff was 

initially deposited, the cooling rate varied as a function of height above the base of the 

unit, leaving the quickly-cooled base with extremely fine oxides that are less than 10 nm 

in diameter, and leaving the much more slowly-cooled top layer with oxides greater than 

1000 nm in diameter that are essentially single-domain, in that they resemble, as closely 

as possible, ideal Stoner-Wohlfarth grains. Once the tuff was excavated, the material was 

homogenized by the Institute for Rock Magnetism, by crushing and mixing the cores, 

first using a Braun “Chipmunk Crusher,” then a rotary disc mill, before using a ball mill 

to complete the process. 

High temperature susceptibility measurements give evidence of a single ordered 

phase, while peaks in the temperature derivative of the susceptibility imply an ordering 

temperature of TC ~ 550°C. Furthermore, the particles have an average grain volume of 

5.75 x 10
-23

 m
3
, a length to width ratio of ~ 0.3, and a length of about 87 nm. 
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Figure 5.6: Dependence of the Curie temperature TC on percent molar concentration of TiFe2O4 in a solid 

solution of Fe3O4 - TiFe2O4. [8] 

 

 

 

 

5.2.3 Ferromagnetic Ruthenates (CaxSr1-xRuO3) 

CaxSr1-xRuO3 is a polycrystalline mixed ruthenate with an orthorhombically 

distorted perovskite structure and a single magnetically active species (Ru).  The limiting 

members of the series (x = 0 and x = 1) are a long-range ferromagnet and a highly 

exchange-enhanced paramagnet, respectively. The manifestation of extreme magnet 

behaviour is a consequence of the degree to which the RuO6 octahedra are distorted. The 

distortion is minimal in the x = 0 member, and significant in the isostructural x =1 

member. 
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 Polycrystalline samples of CaxSr1-xRuO3 were supplied by one of our colleagues, 

Dr. G. Williams of the University of Manitoba, and were prepared utilizing a 

conventional solid-state reaction method [9]. Stoichiometric quantities of SrCO3 

(99.99%), CaCO3 (99.99%), and RuO2 (99.99%) powders were mixed together and 

heated at 900°C for a period of 24 hours in air, with six intermediate grindings. The final 

compounds were single phase, as confirmed by subsequent powder X-ray diffraction 

measurements. After heating, the compounds were pressed into circular disks with a 

typical thickness of 1 mm and a diameter of 5 mm, and were then annealed in air at a 

temperature of 1300°C for a period of 24 hours. Scanning electron microscope images 

reveal a sintered network of “particles” with an average “particle” size of approximately 

1 µm. 

 The systems investigated for our purposes have Ca fractions x = 0.2, 0.4, and 0.6, 

and all three are exchange bond-disordered ferromagnets with paramagnetic-

ferromagnetic critical temperatures TC (x = 0.2) " 120K, TC (x = 0.4) " 75K, and TC (x = 

0.6) " 45K. 

 

 

5.2.4 Nanodimensional Fe Particles Embedded in an Insulating 

Matrix of Alumina (Fe/Al2O3) 

 

Fe40Al24O36 (atomic ratio) is a nano-structured granular film. Thin films are used 

in applications such as magnetic recording and microelectronics, where thermal stability 

becomes extremely important.  They are also of practical significance due to their 
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potential for exhibiting giant magnetoresistance effects (GMR) for use in 

magnetoelectronics [10, 11].  

Granular films of Fe40Al24O36 were fabricated by a group from Lanzhou 

University in China [12], and were deposited onto a glass substrate by rf reactive 

sputtering from a composite target comprised of Al chips, of 6 mm diameter, placed 

homogeneously on a disk of pure Fe having a diameter of 80 mm.  

To determine the resulting structure of the films, X-ray diffraction (XRD) and 

transmission electron microscopy (TEM) were used. XRD patterns showed that the Fe 

particle sizes are not uniform, but have diameter sizes which having a range of 2-4 nm. 

Furthermore, since no diffraction peaks were present indicating a crystalline Al2O3 

structure, it can be concluded that Al2O3 exists in the amorphous phase. The thickness of 

the film is approximately 1 µm. 

The Langevin formula was fit to measurements of M against H to determine that 

the films exhibit paramagnetic behaviour at room temperature, and that the magnetic 

moments of the large and small particles are 3.38x10
4
 µB and 4.25x10

3
 µB, respectively.  
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Chapter 6 

Aging, Memory and Rejuvenation in 

Collections of Two-Level Subsystems 

 
6.1 Introduction 

Spin glasses [1-3] have been an active field of research for the last three decades, 

yet many questions regarding the nonequilibrium relaxation dynamics in the spin-glass 

phase remain unresolved [4-7]. A spin glass is a collection of magnetic moments which 

undergo an apparently cooperative phase transition, below a well-defined critical 

temperature TG , into a magnetically frozen state in which the moments are locked into an 

orientationally random configuration which lacks the long-range uniform or periodic 

order typical of conventional frozen magnetic states like ferromagnets and 

antiferromagnets. In order to produce such a state, it appears that two ingredients are 

necessary. There must be a competition between the interactions which couple the 

magnetic moments so that no single configuration of moments is able to satisfy all of the 

interactions simultaneously (this is commonly referred to as “frustration”), and the 

interactions must be at least partially random, implying that there must be some 

structural disorder in the spatial arrangement of the moments.  

The three defining characteristics of the nonequilibrium relaxation dynamics of 

spin glasses are aging [8], memory [9], and rejuvenation [10, 11]. Aging refers to the 



 96 

observation that the magnetic response depends on the time ta for which the system is 

held at constant temperature following cooling from above to below TG , and is visible 

directly as a relaxation of the moment (or the frequency dependent susceptibility) as a 

function of observation time t in the cooling field, or through the appearance of structural 

anomalies in the time dependence of the relaxation isotherms following field application 

or removal at an observation time t which coincides with the aging time (t! ta). Memory 

refers to the observation that if cooling in a field (zero or nonzero) below TG is 

temporarily halted and the system is aged at a constant temperature T for a time ta before 

cooling is resumed, then the magnetic response exhibits a “step” (in the field cooled case) 

or a “dip” (in the zero field cooled case) at the aging temperature T when the system is 

subsequently warmed from low temperatures in a field. Rejuvenation refers to the 

observation that if aging at temperature T is followed by a temperature shift from T to 

 T ± !T  then, for sufficiently large shifts !T, the system relaxes as if it was unaffected by 

the previous aging at T and had been cooled directly to  T ± !T . However, if the system is 

subsequently cycled back to the initial temperature T, then the relaxation at long times 

may be superposed onto the original relaxation curve by means of a simple shift, 

indicating that the system has preserved a memory of the original aging in spite of the 

rejuvenation at  T ± !T .    

The interpretation of nonequilibrium relaxation dynamics in spin glasses is 

usually conducted within one of two competing theoretical frameworks. In mean field 

“phase space” models [12-15], the dynamical evolution of the system is pictured as a 

random walk among metastable states organized on an hierarchical tree which bifurcates 

continuously as the system is cooled below TG. In “real space” droplet excitation 
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models [16-22], the dynamics are associated with the logarithmically slow growth of 

domains pinned by the disorder, and the fragility of the spin glass state to changes in 

temperature is described through the concept of an overlap length L!T , which defines 

the length scale over which the equilibrium configurations at two neighbouring 

temperatures T and  T ± !T are identical and beyond which they are completely 

uncorrelated. In either case, the evolution of the system with time proceeds through the 

mechanism of thermal activation over energy barriers which grow with decreasing 

temperature and, consequently, we are led to enquire whether any of the common 

mathematical representations of hysteresis, all of which involve a thermal- and field-

activated migration through a corrugated, metastable free energy landscape, might not 

also exhibit some form of nonequilibrium, age-dependent relaxation dynamics. The 

question is particularly relevant in the context of dense assemblies of magnetic 

nanoparticles, which they have become fashionable to refer to as superspin glasses in 

order to emphasize the comparatively large size of the magnetic moment (typically on the 

order of 10,000µB), where slow dynamics potentially originate from two possible 

sources, one collective and one non-collective. The non-collective source is simply the 

broad distribution of single-particle anisotropy energy barriers EA=KV (K is the 

anisotropy energy density and V is the volume of the particle) which leads to a 

correspondingly broad distribution of single-particle relaxation times " = "0 exp(EA/kT). 

The collective source is the frustrated state formed by the strong dipolar interactions 

between the particles coupled with the randomness in the particle positions and 

anisotropy axis orientations.      
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In this section, we present detailed numerical simulations of magnetic relaxation 

isotherms of a Preisach collection of two-level subsystems in response to all of the 

standard field and temperature histories which are typically imposed experimentally to 

probe the relaxation dynamics of spin glasses. The purpose was to search for evidence of 

nonequilibrium aging phenomena in Preisach assemblies, and to explore their 

relationship and possible relevance to spin glass and superspin glass dynamics.  These 

simulations show that Preisach systems do indeed exhibit aging, memory and, potentially, 

rejuvenation effects, analogous to those observed in real nanoparticulate assemblies and 

other spin glasses, including certain properties which have traditionally been assumed to 

be a unique signature of collectively ordered, frustrated spin glasses and superspin 

glasses, such as the “flatness” of the field-cooled magnetization below the critical 

temperature, and memory effects in the zero-field cooled magnetization.    

 

6.2 Thermal Relaxation of a Preisach Ensemble of Two-

Level Subsystems 

 
The application of a magnetic field Ha (positive or negative) to a Preisach 

ensemble of two-level subsystems creates two distinct subpopulations as shown in Figure 

6.1: (a) subsystems with 
 
H

s
! "H

d
+H

a
or with 

 
H

s
! H

d
+H

a
which have only one free 

energy minimum and moments which are saturated at 
 
m = +µ or 

 
m = !µ , respectively, 

and (b) subsystems with 
 
!H

d
+H

a
" H

s
" H

d
+H

a
 which have two free energy minima and 

two positive free energy excitation barriers, a lower barrier 
 
W

L
! µH

L
= µ H

d
" H

s
" H

a( )  

with relaxation time constant 
 
!L = !0exp WL / kT( ) = !0exp HL / Hf( )  where 

 
H

f
= kT/µ is the 
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thermal fluctuation field [23], and a higher barrier 
 
W

H
! µH

H
= µ H

d
+ H

s
" H

a( )  with 

relaxation time constant 
 
!H = !0exp WH / kT( ) = !0exp HH / Hf( ) .   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: The configuration of the Preisach plane in an applied field Ha > 0 at T = 0. 

 

 

Only the bistable subsystems in category (b) can participate in thermally driven 

relaxation phenomena, and the time constant for these relaxation processes is 

 
! = !

L
!

H
/ !

L
+ !

H( ) . However, due to the exponential dependence of 
 
!

L
and 

 
!

H
 on barrier 

height W, it follows that 
 
!

L
<< !

H
  for all subsystems for which 

 
H

H
! H

L( ) / H
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" H
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! H

a
/ H

f
#1 , that is, for which the magnitude of the energy level 

Hd 

Hs 
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+µ 
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splitting 
 
H

s
! H

a
exceeds the thermal fluctuation field Hf . Thus 

 
! " !

L
 for essentially all 

but the degenerate subsystems, and the thermal relaxation time constant for a bistable 

subsystem is given by 
 
! " !0exp ! Hd # Hs # Ha( ) / kT$

%
&
' = !0exp HL / Hf( ) .  

If a subsystem (Hd, Hs) is prepared in an initial (t = 0) state with level occupation 

probabilities (P+(0), P-(0)) which does not correspond to the equilibrium configuration 

under the prevailing experimental conditions (Ha,T), then the subsystem level occupation 

probabilities ( )tP±  and the ensemble average subsystem moment <m(t)> = µ[P+(t)-P-(t)] 

= µ[2P+(t)-1] will relax exponentially as exp(-t /") toward their thermal equilibrium 

values (see Section 1.5 of Chapter 1). Substituting the subsystem relaxation time constant 

" = "L = "0 exp(HL /Hf) into the exponential relaxation factor yields: 

 

                                      

 

g t,HL( ) = exp !
t

"
#
$%

&
'(
= exp !

t

"0

exp !HL /Hf( )
)

*
+

,

-
. .                     (6.1) 

 

If g(t,HL ) = 1, no relaxation has yet occurred, while if g(t,HL) = 0, relaxation to the 

equilibrium configuration is complete. Figure 6.2(a) shows a plot of g(t,HL) as a function 

of the logarithm of the observation time ln(t/"0) for two fixed values of the lower barrier 

height, HL/Hf = 5 and HL/Hf = 10. On a logarithmic time scale, the transition from the 

initial nonequilibrium configuration to the final equilibrium configuration is spread over 

an observation time interval !ln(t/"0) ~ 3 centred at ln(t/"0) = HL/Hf , the ratio of the 

excitation barrier HL to the fluctuation field Hf . Alternatively, we may plot g(t,HL) as a 

function of HL/Hf for a fixed experimental observation time t = texp , as shown in Figure 
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6.2(b) for two different values of the observation time, texp/"0 = 2.2x10
4
 and texp/"0 = 10

9
. 

This expression defines a “thermal relaxation front [24]” centered at HL/Hf = ln(texp/"0) = 

10 for texp/"0 = 2.2x10
4 
and at HL/Hf = ln(texp/"0) = 20.7 for texp/"0 = 10

9
, of width !HL/Hf 

~ 3. The front separates the subsystems into 3 subpopulations, subsystems with HL/Hf < 

ln(texp/"0) - !HL/Hf which are completely relaxed to equilibrium, subsystems with HL/Hf > 

ln(texp/"0) + !HL/Hf which have not yet begun to relax, and subsystems with ln(texp/"0) - 

!HL/Hf  < HL/Hf  < ln(texp/"0) + !HL/Hf  which are actively relaxing at this time texp. The 

relaxation front in Figure 6.2(b) propagates from left to right with increasing observation 

time.  

 

 

 

Figure 6.2:  (a) A plot of the relaxation factor g(t, HL) in Eq(6.1) as a function of ln (t/"0) for two fixed 

values of the lower barrier height HL/Hf. (b) A plot of the relaxation factor as a function of HL/Hf for two 

fixed values of the observation time t/"0. The dotted lines are step function approximations to the real 

relaxation factor. 
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The relaxation response M(t) of the entire Preisach ensemble in a field Ha at 

temperature T is obtained by superposing the relaxation contributions from all of the 

individual Preisach subsystems: 

                

                              M t( ) = Nµ dHd

0

!

" dHs

#!

+!

" 2P+ t( )#1$% &' p(Hd,Hs ) .                            (6.2) 

 

If the Preisach distribution p(Hd,Hs) is constant over characteristic field intervals !Hd and 

!Hs on the order of Hf , then the contribution to the ensemble moment in Eq(6.2) from 

the actively relaxing subsystems in the transition layer of width 3Hf in Figure 6.2(b) is 

proportional to the integral ( )! ! sdsd H,Ht,gdHdH  over the relaxation frontal boundary 

g(t,HL). For fixed Hd, the integral over Hs can be approximated to excellent accuracy by 

replacing the exponential factor g(t,HL) by a vertical step function, as shown by the 

dotted lines in Figure 6.2(b). In this limit, there is a one-to-one correspondence between a 

particular experimental observation time texp and a specific barrier height HL, so that the 

single subsystem relaxation response function in Figure 6.2(a) also reduces to a step 

function (dotted lines). The “critical” condition for the thermal activation (on warming) 

or thermal deactivation (on cooling) of bistable subsystems is then represented 

geometrically in the Preisach plane as a sharp thermal boundary defined by 

 
HT = Hf ln texp /!0( ) = Hd " Hs " Ha = HL , which subdivides the Preisach plane into two 

subpopulations, subsystems with HL < HT which are in thermal equilibrium, and 

subsystems with HL > HT which are trapped in their t = 0 nonequilibrium configuration, 
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as shown in Figure 6.3. However, it is important to keep in mind that, in reality, this 

thermal boundary has an intrinsic “thermal fuzziness” !HT ~ 3 Hf .        

 

 

 

 

  

 

  

 

 

 

 

 

 

 

 

 

Figure 6.3: A geometrical representation of the entire Preisach ensemble in a field Ha at a temperature T. 

The region labelled geq(t) = 0 represents subsystems which are in thermal equilibrium. The region labelled 

g(t)=1 represents subsystems which are trapped in their initial nonequilibrium configuration. 
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6.3 Modeling Changes in Temperature: Cooling, 

Warming and Temperature Cycling  

 
In both phase space (hierarchical) and real space (droplet excitation) models of 

spin glasses, aging and memory effects are intimately related to the sensitivity of the free 

energy landscape or to the fragility of the domain configuration to changes in 

temperature. A rigorous exploration of aging and memory effects in collections of two-

level subsystems thus demands a precise model representation for the various 

experimental cooling, warming and temperature cycling protocols normally employed to 

probe spin glass relaxation dynamics. We have adopted the following representation. 

All changes in temperature are modeled as a sequence of two steps. The first step 

is an instantaneous “quench” to the target temperature T from the previous temperature 

T± !T, which resets the relaxation clock to t = "0 and hence the thermal viscosity field to 

HT = 0, while temporarily freezing the entire Preisach plane at its previous configuration. 

The second step is a temperature stabilization pause at T of duration tstab , during which 

the thermal viscosity field grows continuously from HT = 0 to HT = Hf ln(tstab/"0), and the 

thermal boundary HT sweeps smoothly through the Preisach plane, driving all subsystems 

with lower barriers HL < HT to thermal equilibrium at T, and leaving all subsystems with 

HL > HT trapped in their previous configurations. For a particular subsystem with 

characteristic fields (Hd,Hs), the condition 
 
H

T
= H

f
ln t

stab
/!

0( ) = H
L
= H

d
" H

s
" H

a
defines 

the blocking temperature 
 
T

B
= µ H

d
! H

s
! H

a( ) / k ln t
stab

/"
0( )( ) . For T > TB, the 

subsystem relaxation time " is shorter than the experimental stabilization (measurement) 
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time tstab (" < tstab) , the subsystem reaches thermal equilibrium during the time scale of 

the experiment, and the subsystem moment is given by meq = µ tanh[µ(Ha #Hs) / kT]. For 

T < TB, the Boltzmann occupation probabilities of the two subsystem levels are 

permanently frozen at their T = TB values and the subsystem moment is permanently 

frozen at mB = µ tanh[µ(Ha#Hs)/kTB]. If cooling or warming with a fixed stabilization 

time tstab is interrupted temporarily at a preselected temperature Ta, at which the system is 

aged for a time ta >> tstab, then subsystems with lower barriers between (kTa/µ) ln(tstab/"0) 

< HL < (kTa/µ) ln((tstab+ta)/"0) , which would have failed to reach thermal equilibrium at 

Ta during uninterrupted cooling or warming, now have sufficient time to equilibrate at Ta. 

When cooling or warming is resumed after aging, and the system is quenched 

instantaneously and incrementally to Ta± !T followed by stabilization for tstab, this aged 

“pocket” of subsystems will remain trapped (blocked) in their Ta-configurations, leaving 

a “permanent” imprint on the configuration of the ensemble. It is this imprint which 

distinguishes the aged system from the unaged system, and which is responsible for the 

various memory effects described below. However, it is important to remember that the 

approximation by which the real relaxation front is replaced by a perfectly sharp 

transition (Figure 6.2) can potentially produce “artificial” aging imprints which are 

effectively wiped out when the “thermal fuzziness” Hf  of the thermal front is taken into 

consideration. Thus, for an “aging imprint” to survive as a physically reality, the 

difference between the thermal boundary HTa = (kTa/µ) ln((tstab+ta)/"0) immediately 

after aging and the thermal boundary HT±  = (k(Ta± !T )/µ) ln(tstab/"0) immediately 

after the temperature change, !HT = HTa – HT±  , must be not only positive (that is, 
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TaT
HH <

±
), but also large in comparison with Hf 

 
!H

T
= H

Ta
" H

T± >> H
f
> 0( ) . As a 

corollary, it follows that a negative value of  !HT = HTa – HT±  (that is 
TaT

HH >
±

) 

necessarily wipes out all evidence of aging and consequently leaves no aging imprint.  

When presenting model simulations, it is convenient to express fields and 

temperatures in dimensionless units, and to identify these with lowercase letters. Thus all 

fields H (and field dispersions) are reduced to the median dissipation field Hdm as            

h = H/Hdm , and all temperatures T are expressed in terms of the reduced thermal 

fluctuation field hf = Hf / Hdm = kT/(µHdm). This convention will be adhered to throughout 

the remainder of this chapter. 

As an illustration of the effects of the experimental time constant tstab on standard 

magnetic response functions, Figure 6.4(a) shows numerical simulations for two different 

measurement (stabilization) times tstab = 2.2x10
4"0 and tstab = 4.9x10

8"0, of the 

temperature dependence of the field cooled (FC) moment and the zero field cooled (ZFC) 

moment of an ensemble of two-level subsystems described by a product of a lognormal 

and a Gaussian distribution of characteristics fields p(hd,hs) = (2$%d
2
hd

2
)

-1/ 2
 exp[ -(ln 

hd)
2
/(2%d

2
)] (2$%s

2
)

-1/ 2
exp(-hs

2
/2%s

2
) with %d = 0.5 and %s = 0.5. The FC moment is 

obtained by cooling in a reduced field ha = 0.1 from a reference temperature hf,ref which 

exceeds the highest blocking temperature of the assembly to hf = 0, assuming the same 

stabilization time tstab at all temperatures, while the ZFC moment is obtained by cooling 

in zero field ha = 0 to hf = 0 followed by the application of a field ha = 0.1 and then by 

warming, once again assuming the same stabilization pause tstab at all temperatures. 



 107 

According to Figure 6.4(a), increasing the experimental measuring time tstab enhances the 

in-field response of both the FC and ZFC branches, precisely as observed experimentally.   

Figure 6.4(b) shows numerical simulations of the temperature dependence of the 

field cooled (FC) moment and the zero field cooled (ZFC) of an ensemble of two-level 

subsystems with the same lognormal distribution of dissipation fields as above, f(hd) = 

(2$%d
2
hd

2
)

-1/ 2
 exp[ -(ln hd)

2
/(2%d

2
)] with %d = 0.5, but with a bimodal Gaussian 

distribution of bias fields g(hs) =  (8$%s
2
)

-1/ 2
exp[-(hs-hs0)

2
/2%s

2
] +(8$%s

2
)

-1/ 2
exp[-

(hs+hs0)
2
/2%s

2
] with %s = 0.5 and hs0 = 1.5. In contrast to the behaviour observed in Figure 

6.4(a), the FC moment in Figure 6.4(b) increases with increasing temperature, much like 

the behaviour reported for real spin glasses, and an increase in the experimental 

measuring time tstab has the opposite effect on the two branches, suppressing the 

magnitude of the FC moment and enhancing the magnitude of the ZFC moment. 

 

Figure 6.4: (a) Numerical simulations of the temperature dependence of the field cooled (FC) moment and 

the zero field cooled (ZFC) moment of an ensemble of two-level subsystems with a lognormal distribution 

of dissipation fields and a gaussian distribution of bias fields, in an applied field ha = 0.1, for two different 

stabilization times. (b) Numerical simulations of the temperature dependence of the FC moment and the 

ZFC moment of an ensemble of two-level subsystems with the same lognormal distribution of dissipation 

fields as in (a) but with a bimodal Gaussian distribution of bias fields in an applied field ha = 1.1.  
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6.4 Aging  

The principal experimental signatures of aging in atomic spin glasses and superspin 

glasses are summarized in Figure 6.5. Figure 6.5(a) shows the time dependence of the FC 

moment of a Fe0.5 Mn0.5TiO3 Ising spin glass at several constant temperatures below TG 

following field cooling from above TG [25]. The relaxation is monotonically upward at 

higher temperatures, monotonically downward at lower temperatures, and crosses over 

from downward at short times and to upward at longer times at intermediate 

temperatures. Figure 6.5(b) shows the time dependence of the real part of the frequency 

dependent susceptibility of an assembly of FeC nanoparticles after cooling through TG 

and stabilizing at a fixed temperature below TG [26]. The susceptibility relaxes 

monotonically downward with time. Figure 6.5(c) shows the time dependence of the 

TRM of an assembly of ferritin (iron-storage protein) nanoparticles after cooling from 

above to below TG in a field Ha = 200 Oe, aging the system for various times tw at 

constant temperature in constant field, and then removing the field [27]. The TRM 

relaxation isotherms exhibit a systematic shift toward longer observation times with 

increasing wait time. Figure 6.5(d) shows the relaxation rate S = dm/dlnt of a CuMn spin 

glass after zero field cooling from above to below TG, aging the system for various times 

tw at constant temperature in zero field, and then applying a positive probing field [28]. 

The relaxation rate exhibits a maximum at an observation time which is essentially 

coincident with the aging time tw. Figure 6.5(e) shows the same experiment as that in 

Figure 6.5(d) performed on a frozen ferrofluid of &-Fe2O3 nanoparticles [29]. Once again, 
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the relaxation rate exhibits a age-dependent maximum which propagates toward longer 

observation times with increasing age.  

 

Figure 6.5(a): The time dependence of the FC moment of a Fe0.5Mn0.5TiO3 Ising spin glass at various 

temperatures below the glass temperature TG. Reprinted figure with permission from Jonsson, Jonason, and 

Nordblad, Physical Review B 59, 9402 (1999). Copyright 1999 by the American Physical Society. 

http://link.aps.org/abstract/PRB/v59/p9402 

 

Figure 6.5(b): The time dependence of the real part of the frequency dependent susceptibility of an 

assembly of FeC nanoparticles after cooling from above TG and stabilizing at T < TG. Reprinted figure with 

permission from Jönsson, Hansen, and Nordblad, Physical Review B 61, 1261 (2000). Copyright 2000 by 

the American Physical Society. http://link.aps.org/abstract/PRB/v61/p1261 

(b) 

(a) 
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Figure 6.5(c): The time dependence of the TRM of an assembly of ferritin nanoparticles after cooling from 

above TG in a field of Ha = 200 Oe and aging the system for various waiting times tw at fixed temperature, 

followed by removal of the field. Reprinted figure with permission from Sasaki, Jönsson, Takayama and 

Mamiya, Physical Review B 71, 104405 (2005). Copyright 2005 by the American Physical Society. 

http://link.aps.org/abstract/PRB/v71/e104405 

 

Figure 6.5(d): The relaxation rate (S = dm/dlnt) of a CuMn spin glass after cooling in zero field from 

above TG, aging the system at constant temperature for various times tw, followed by the application of a 

positive field. Reprinted figure with permission from Granberg, Sandlund, Nordblad, Svedlindh, and 

Lundgren, Physical Review B 38, 7097 (1988). Copyright 1988 by the American Physical Society. 

http://link.aps.org/abstract/PRB/v38/p7097 

(c) 

(d) 
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Figure 6.5(e): The same experiment as in 3(d), but performed on a frozen ferrofluid of &-Fe2O3 

nanoparticles. Reprinted Figure with permission from Jonsson, Mattson, Djurberg, Khan, Nordblad, and 

Svedlindh, Physical Review Letters 75, 4138 (1995) Copyright 1995 by the American Physical Society. 

http://link.aps.org/abstract/PRL/v75/p4138 

 

Numerical simulations of the aging experiments described above, performed on a 

model ensemble of two-level subsystems, show that aging is also a characteristic of a 

collection of interacting entities which relax independently over individual free energy 

barriers. Figure 6.6(a) shows a geometrical representation in the Preisach plane of the 

aging of the FC moment at a fixed aging temperature hfa = kTa /(µHdm) in a constant field 

ha, following cooling from a reference temperature hf, ref = kTref /(µHdm), which exceeds 

all of the subsystem blocking temperatures, to hfa with a cooling stabilization time 

constant tstab = tc. The dashed diagonal lines in Figure 6.6(a) with vertex at hd = hTa,c =  

hfa ln(tc/"0) show the location of the thermal relaxation front immediately following 

thermal stabilization at hfa, and the solid diagonal boundaries with vertex at hd = hTa = hfa 

ln((tc+ta)/"0) show the location of the thermal front after aging for a time ta. The 

subsystems to the left of the dashed lines relaxed to equilibrium during stabilization, 

(e) 
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while the subsystems between the dashed and solid boundaries relaxed to equilibrium 

during the subsequent aging. Figure 6.6(b) shows numerical simulations of the relaxation 

of the FC moment for two model ensembles, with identical lognormal distributions of 

dissipation fields f(hd) = (2$%d
2
hd

2
)

-1/ 2
 exp[ -(ln hd)

2
/(2%d

2
)] with %d = 0.5, but with 

different distributions of bias fields, one a simple Gaussian g(hs) =  (2$%s
2
)

-1/ 2
exp(-

hs
2
/2%s

2
) with %s = 0.5, and the other a bimodal Gaussian g(hs) =  (8$%s

2
)

-1/ 2
exp[-(hs-

hs0)
2
/2%s

2
] +(8$%s

2
)

-1/ 2
exp[-(hs+hs0)

2
/2%s

2
] with %s = 0.5 and hs0 = 1.5. The relaxation was 

calculated at a reduced temperature hfa = 0.1, and in reduced fields ha = 0.8 for the simple 

Gaussian, and ha = 1.1 for the bimodal Gaussian. The FC moment of the simple Gaussian 

system relaxes upward with increasing wait time, while the FC moment of the bimodal 

system relaxes downward. It is clear from Figure 6.6(a) that, in both cases (and, in fact, in 

all subsequent experimental simulations), the relaxation originates physically from that 

group of subsystems (labels italicized in Figure 6.6(a)) which were blocked in low 

moment states |mB(hfB)| at thermal fluctuation fields hfB > hfa and subsequently allowed to 

reach thermal equilibrium at the lower thermal fluctuation field hfa where the moment is 

closer to saturation |meq(hfa)| > |mB(hfB)|. For the simple Gaussian distribution, the 

contribution from subsystems below the line hs = +ha with positive moments dominates, 

and the moment relaxes upward. For the bimodal distribution, the contribution from 

subsystems above the line hs = +ha with negative moments dominates, and the moment 

relaxes downward. Figure 6.7(a) shows Preisach representation of the relaxation of the 

TRM at the instant of removal of the field ha from the aged FC state in Figure 6.6(a). 

Figure 6.7(b) shows numerical simulations of the time dependence of the TRM after field 
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cooling to hfa = 0.04 in a field ha = 0.01 followed by field removal, for three different FC 

aging times ta = 10
11"0, 10

12"0, and 10
13"0 for a lognormal-simple Gaussian Preisach 

density with %d = 0.5 and %s = 0.01. Figure 6.7(c) shows the relaxation rate defined by S 

= - dTRM/dlnt for each of the relaxation isotherms in Figure 6.7(b). Each of the TRM 

relaxation isotherms exhibits a change in slope at an observation time which is essentially 

coincident with the aging time, that is, at lnt ~ lnta . Lastly, Figure 6.8(a) shows the 

Preisach representation of the relaxation of the ZFC moment at the instant that a positive 

field is applied to an aged ZFC state. Figure 6.8(b) shows numerical simulations of the 

time dependence of the relaxation rate S = dmZFC/dlnt of three ZFC relaxation isotherms 

for a system with a lognormal-simple Gaussian Preisach density with %d = 0.5 and %s = 

0.2 which has been cooled to hfa = 0.1 at tc = 2.2x10
4"0 , and aged at hfa for ta = 

2.6x10
10"0, 1.4x10

12"0, and 7.9x10
13"0 before applying a field ha = 0.2. As before, the 

relaxation rate exhibits structure, in this case a local maximum, at an observation time 

which is coincident with the aging time. 

Proponents of droplet domain theories of spin glasses have long insisted that 

aging of the ZFC moment is a unique signature of cooperatively ordered magnetic states 

with spin glass correlations, and completely incompatible with model ensembles of 

independently relaxing elements [27, 30]. This study clearly shows that, while 

interactions between the Preisach elements are indeed a necessary prerequisite for the 

observation of ZFC aging effects, and that these aging effects disappear when the 

interaction field distribution collapses to a '-function, g(hs) !  '(hs) , there is no 
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requirement that these interactions necessarily originate from collective ordering 

phenomena.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6(a): A geometrical representation in the Preisach plane of the aging of the FC moment at a fixed 

aging temperature hfa in a constant field ha > 0. 
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Figure 6.6(b): Numerical simulations of the relaxation of the FC moment for two model ensembles, both 

with lognormal distributions of dissipation fields, but each with different distributions of bias fields: one a 

single gaussian, the other a bimodal gaussian. 

 

There is also compelling evidence to suggest that the distribution of bias fields 

may indeed be bimodal in high density nanoparticulate assemblies. Micromagnetic 

simulations [31] of the magnetization process in systems of ellipsoidal particles with 

uniaxial anisotropy, coupled by magnetostatic interaction fields, and governed by 

Landau-Lifshitz-Gilbert dynamics, performed for various packing fractions and easy axis 

orientations show that, for high packing fractions and highly oriented easy axes, the 

distribution of interaction fields evolves from a single-peaked distribution with a positive 

mean at positive saturation, to a double-peaked distribution with zero mean near the zero 

moment coercive field state, to a single-peaked distribution with a negative mean at 

negative saturation. This behaviour is attributed to the formation of “superferromagnetic 
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cluster domains” of magnetic particles which are analogous to traditional domains in bulk 

atomic ferromagnets, in the sense that the particle moments within a given cluster are 

aligned by the strong intracluster magnetostatic interactions along a common direction 

which varies from cluster to cluster. Cluster growth in response to a change in field is 

analogous to ferromagnetic domain growth in the sense that the border between clusters 

moves as particles from one cluster switch into the direction of the particles in the 

neighbouring cluster. The interactions described by the bimodal distribution are the 

interactions between clusters rather than the interactions between individual particles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7(a): The Preisach representation of the relaxation of the TRM at the instant of field removal 

from the aged FC state depicted in Figure 6.6(a). 
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Figure 6.7(b): Numerical simulations of the time dependence of the TRM after field cooling in a constant 

field ha = 0.01, and aging for three different times ta / "0, followed by field removal. 

 

Figure 6.7(c): The relaxation rate as a function of ln(t/"0) for each of the relaxation isotherms in Figure 

6.7(b). 
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Figure 6.8(a): The Preisach representation of the relaxation of the ZFC moment at the instant that a 

positive field ha > 0 is applied to the aged ZFC state. 
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Figure 6.8(b): Numerical simulations of the time dependence of the relaxation rate of ZFC relaxation 

isotherms that have been aged for the three different aging times noted in each panel, following application 

of a positive field ha = 0.2. 

 

 

6.5 Memory 

When a spin glass is cooled, memory of the cooling process is imprinted on the 

spin structure. The principal experimental signatures of memory in atomic spin glasses 

and superspin glasses are summarized in Figure 6.9. Figure 6.9(a) shows memory steps 

in the temperature dependence of the FC moment of a short-ranged Ising atomic spin 

glass Fe0.5Mn0.5TiO3 which has been cooled in a field Ha = 0.5 Oe from above the glass 

temperature TG = 21K at a constant rate of 0.4K/min with the exception of two temporary 

stops, one at T = 18K for 2h and another at T = 15K for 3h, and subsequently warmed 

from the lowest measurement temperature T = 11.5K [25]. During each of the isothermal 

aging pauses, the FC moment relaxes downward and persists at the lower level when 
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cooling is resumed. When the system is warmed, the warming curve tends to merge with 

the cooling curve, but only at temperatures well above the corresponding aging 

temperature. Figure 6.9(b) shows memory dips in the temperature dependence of the 

imaginary component ! ""  of the frequency dependent susceptibility of a Cu-13.5at%Mn 

atomic spin glass measured on warming after the system has been subjected to two 

temporary aging stops on the order of 10
4
s at T = 50K and T = 40K during cooling from 

above TG = 68K [32]. The susceptibility on warming clearly exhibits two memory dips 

below the reference curve measured at a constant cooling rate in the absence of thermal 

pauses. Finally, Figure 6.9(c) shows a “genuine” memory dip in the ZFC moment of a 

dense assembly of Fe3N nanoparticles for which cooling in zero magnetic field from 

above the ordering temperature has been interrupted temporarily by aging at constant 

temperature T = 40K for 9000s followed by further cooling, the application of a field Ha , 

and warming [27].  The figure shows that the difference mZFC – mZFC(ref) between the 

ZFC moment measured on warming after interrupted cooling, and the reference ZFC 

moment measured without interrupted cooling exhibits a clear minimum at the aging 

temperature. As mentioned earlier, proponents of droplet domain theories contend [27] 

that “genuine” ZFC anomalies like that in Figure 6.9(c) are a unique signature of spin 

glasses, and provide a definitive criterion for distinguishing cooperatively ordered spin 

glasses from sequentially blocked superparamagnets.  
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Figure 6.9(a): Memory steps in the temperature dependence of the FC moment of Fe0.5Mn0.5TiO3 after 

having been cooled in a constant field with temporary stops at T = 18K and T = 15K, followed by warming.  

Reprinted figure with permission from Jonsson, Jonason, and Nordblad, Physical Review B 59, 9402 

(1999). Copyright 1999 by the American Physical Society. http://link.aps.org/abstract/PRB/v59/p9402 

 

 

 

Figure 6.9(b): Memory dips in the temperature dependence of the imaginary component of the frequency 

dependent susceptibility of a Cu-13.5at%Mn spin glass measured on warming after having been aged at 

two different temperatures, T = 50K and T = 40K, during cooling. Reprinted figure with permission from 

Jonsson, Jonason, Jönsson, and Nordblad, Physical Review B 59, 8770 (1999). Copyright 1999 by the 

American Physical Society. http://link.aps.org/abstract/PRB/v59/p8770 

(a) 

(b) 
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Figure 6.9(c): A memory dip in the ZFC moment of a dense assembly of Fe3N nanoparticles for which 

aging at T=40K has occurred during cooling, followed by further cooling, the subsequent application of a 

positive field, and warming. Reprinted figure with permission from Sasaki, Jonsson, Takayama, and 

Mamiya, Physical Review B 71, 104405 (2005). Copyright 2005 by the American Physical Society. 

http://link.aps.org/abstract/PRB/v71/e104405 

 

Numerical simulations show that memory steps and memory dips are also 

characteristics of Preisach ensembles of two-level subsystems which relax independently 

over individual free energy barriers. Figure 6.10(a) shows the configuration of the 

Preisach plane for a system which has been cooled in a field ha to hfa with time constant 

tc, aged at hfa for a time ta , and then cooled to hf = 0 with time constant tc , before 

warming with time constant tw = tc . Figure 6.10(b) shows numerical simulations of the 

temperature dependence of both the cooling and warming curves for an ensemble of two-

level subsystems with a lognormal-bimodal Gaussian Preisach density with parameters %d 

= 0.5, hs0 = 1.5, and %s = 0.5, for which cooling in a field ha = 1.1 with a fixed time 

constant tc = 2.2x10
4"0 has been twice interrupted temporarily, once at hfa = 0.12 to age 

for ta = 4.9x10
8"0 , and again at hfa = 0.06 also to age for ta = 4.9x10

8"0 , before cooling to 

hf = 0.02 and then warming with time constant tw = 2.2x10
4"0 . The cooling curve shows 

(c) 
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two downward steps at the two aging temperatures, and the warming curve shows 

memory of each aging event through a tendency to approach and merge with the cooling 

curve above the corresponding aging temperature, precisely as observed experimentally.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10(a): The Preisach representation of a system that has been cooled in a field ha > 0 to a 

temperature hfa, aged, then cooled to hf = 0, and warmed. 
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Figure 6.10(b): Numerical simulations of the temperature dependence of the FC moment in a constant 

field ha = 1.1 for a Preisach ensemble which has been aged during cooling at two different temperatures hf 

= 0.12 and hf = 0.06, and then warmed. The upper set of data corresponds to cooling, and the lower set of 

data corresponds to warming. 

 

 

 

Figure 6.11(a) shows the configuration of the Preisach plane at the instant of 

application of a positive field ha for a system which has been previously cooled to a 

temperature Ta in zero field ha = 0 and aged at hfa for a time ta . Figure 6.11(b) shows 

numerical simulations of the temperature dependence of the difference !mZFC = 

mZFC(aged) – mZFC(unaged) between the aged ZFC moment calculated on warming and 

the unaged (reference) ZFC moment also calculated on warming, for an ensemble of two-

level subsystems with a lognormal-single Gaussian Preisach density with distribution 

parameters %d = 0.5 and various values of %s , and with ha = 0.7, hfa = 0.1, tc = 2.2x10
4"0 , 

ta = 8.9x10
6"0 , and tw = 2.2x10

4"0 . The difference shows a dip in the neighbourhood of 
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the aging temperature hfa , which becomes progressively more pronounced as the 

dispersion of bias fields increases, emphasizing that the ZFC memory effect depends on 

the existence of interactions between the subsystems, and vanishes in the limit %s !  0 . 

There is, however, no requirement that these interactions be collective in any sense.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.11(a): The Preisach representation at the instant of field application of a system which has been 

previously cooled to a temperature hfa in zero field and aged in zero field. 
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Figure 6.11(b): Numerical simulations of the difference between the aged ZFC moment and the unaged 

ZFC moment on warming.  

 

 

6.6 Temperature Cycling, Rejuvenation, and Memory 

Figure 6.12 shows measurements of the relaxation of the imaginary component 

! ""  of the frequency dependent susceptibility as a function of time t for an atomic 

Ag0.89Mn0.11 spin glass [11] with a critical temperature TG = 32.8K which has been (a) 

aged for ta = 10
4
s at a series of temperatures Ta = 30K-!T followed by a positive 

temperature shift to Tm=30K where the relaxation is observed for a further ta = 10
4
s 

(Figure 6.12(a)) and, (b) aged for ta = 10
4
s at a series of temperatures Ta = 30K+!T 

followed by a negative temperature shift to Tm = 30K where the relaxation is observed for 
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a further ta = 10
4
s (Figure 6.12(b)). In both cases, if the temperature shift !T is 

sufficiently large, most of the aging accomplished at Ta = 30K± !T is virtually wiped out 

by the shift to Tm=30K, and the relaxation at Tm is essentially the same as if the system 

had been cooled directly to Tm=30K without any aging. That is, the system behaves as if 

it had been completely rejuvenated. In this limit, the measured relaxation curve at 

Tm=30K superposes almost perfectly onto the unperturbed “virgin” 30K relaxation curve 

with only a minor shift teff in the time scale. However, as the temperature shift !T 

becomes smaller, progressively more of the aging imposed on the system at Ta = 

30K± !T survives the temperature shift, the rejuvenation effect becomes progressively 

weaker, the relaxation at Tm departs progressively further from the “virgin” 30K 

relaxation curve, and a progressively more significant time shift teff  is required to achieve 

superposition. The insets in Figures 6.12(a) and 6.12(b) show that the superposition is 

never perfect, and always exhibits a transient deviation, which is below the “virgin” 

curve for !T > 0 and above the “virgin” curve for !T < 0.  

Figure 6.12(c) shows a temperature cycling experiment performed on the 

Ag0.89Mn0.11 spin glass, which consists of aging at 30K for 3000s, followed by a negative 

temperature shift to 28K for 3000s, and finally by a positive temperature shift back to 

30K. The system is essentially completely rejuvenated following the temperature shift to 

28K. When the original temperature is recovered, the relaxation curve shows an initial 

transient, but eventually joins smoothly onto a time-shifted “virgin” 30K relaxation 

curve. Thus, in spite of the strong rejuvenation at 28K, the system eventually heals from 
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the effects of the perturbation at 28K while preserving some memory of the original 

aging at 30K.  

 

                

Figure 6.12(a): Measurements of the relaxation of the imaginary component of the frequency dependent 

susceptibility as a function of time of an atomic Ag0.89Mn0.11 spin glass which has been aged at a series of 

temperatures below 30K, followed by a positive temperature shift to 30K where the relaxation is continued. 

 

 

      

Figure 6.12(b): Measurements of the relaxation of the imaginary component of the frequency dependent 

susceptibility as a function of time of an atomic Ag0.89Mn0.11 spin glass which has been aged at a series of 

temperatures above 30K, followed by a negative temperature shift to 30K where the relaxation is observed 

further.  
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Figure 6.12(c): A temperature cycling experiment performed on an Ag0.89Mn0.11 spin glass. The cycling 

consisted of aging at T = 30K, cooling to 28K and aging, followed by warming to 30K and measuring the 

subsequent relaxation. Figures 6.12(a), (b), and (c) are reprinted with permission from Jönsson, Mathieu, 

Nordblad, Yoshino, Katori, and Ito, Physical Review B 70, 174402 (2004). Copyright 2004 by the 

American Physical Society. http://link.aps.org/abstract/PRB/v70/e174402 

 

 

The behaviour of superspin glasses in response to temperature shift and 

temperature cycle protocols differs from that of atomic spin glasses in several significant 

respects. Figure 6.13 shows measurements of the relaxation of the imaginary component 

! ""  of the frequency dependent susceptibility as a function of time t for the strongly 

interacting nanoparticulate Fe3N superspin glass [33] with critical temperature TG ~ 60K. 

Figure 6.13(a) shows a T-shift experiment which consists of a quench from Tref = 120K 

to Ti = 42K, followed by aging at Ti for ta ~ 10
4
s and then by a negative temperature shift 

to Tm = 40K. Figures 6.13(b) and 6.13(c) show the relaxation of the susceptibility ! ""  

with time t during all three stages of negative and positive T-cycle experiments consisting 

of the sequence 
 
T

m
t

w1( )! T
m
± "T t

w2( )! T
m

. The insets show that the susceptibility 

(c) 
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relaxes with time in all three stages of the cycling process, and the main body of these 

figures shows the relationship between the initial and final stages of the relaxation at Tm 

following superposition of the third stage data onto the virgin reference isothermal 

relaxation curve at Tm by time shifting through teff(!T). The time shift teff for T-cycle 

experiments is negative for !T < 0 and positive for !T > 0. In contrast with the behaviour 

of atomic spin glasses, complete rejuvenation is never observed in the nanoparticulate 

Fe3N superspin glass even for the largest temperature shifts !T investigated 

experimentally. Furthermore, the magnitude of the time shift 
eff
t  required to achieve 

superposition onto the virgin (or, equivalently, the perfectly rejuvenated) relaxation curve 

at Tm varies directly with the amplitude 
 
!T of the temperature shift.   

 

Figure 6.13(a): Measurements of the relaxation of the imaginary component of the frequency dependent 

susceptibility as a function of time for a Fe3N superspin glass. The glass was cooled to Ti = 42K, aged for 

1000s, and then subjected to a negative temperature shift to Tm = 40K and allowed to relax further. Reprinted 

figure with permission from Jönsson, Yoshino, Mamiya, and Takayama, Physical Review B 71, 104404 

(2005). Copyright 2005 by the American Physical Society. http://link.aps.org/abstract/PRB/v71e104404 
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Figures 6.13(b) and 6.13(c): Measurements of the relaxation of the imaginary component of the frequency 

dependent susceptibility as a function of time during all three phases of negative and positive temperature 

cycling experiments. The main body of each figure shows the superposition of the third phase data onto the 

virgin isothermal reference curve at Tm by shifting the data in time by teff (!T). The insets show the 

relaxation of the susceptibility with time. Reprinted figures with permission from Jönsson, Yoshino, 

Mamiya, and Takayama, Physical Review B 71, 104404 (2005). Copyright 2005 by the American Physical 

Society. http://link.aps.org/abstract/PRB/v71/e104404 

 

Numerical simulations show that rejuvenation and transient effects are also 

characteristics of Preisach ensembles of two-level subsystems which relax independently 

over individual free energy barriers. Figure 6.14(a) shows the configuration of the 

Preisach plane for a system which has been cooled in a field ha to a temperature hfa with 

time constant tc , aged at hfa for a time ta , and then warmed to a temperature hf+ with time 

constant tw = tc. When hTa = hfa ln(ta/"0) > hT+ = hf+ ln(tw/"0)  , this procedure leaves an 

“aging imprint” at hf+ consisting of  a group of subsystems which have been aged at hfa 

and which have “survived” the temperature shift to hf+ . Figure 6.14(b) shows numerical 

simulations of the relaxation of the moment as a function of time t/"0 for an ensemble of 

two-level subsystems with a lognormal-bimodal Gaussian Preisach density with 

parameters %d = 0.5, hs0 = 1.5, and %s = 0.2, which has been cooled in a field ha = 1.1 with 

(b) 
(c) 
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time constant tc = 2.2x10
4"0 , aged for a time ta = 2x10

12"0  at a series of temperatures hfa 

= 0.075, 0.085, 0.09, 0.094, 0.096, 0.097, 0.099, and then subjected to a positive 

temperature shift to hf+ = 0.1 with a warming time constant tw = 2.2x10
4"0 . The inset in 

Figure 6.14(b) shows the details of the relaxation response at hf+ = 0.1 on magnified 

vertical and horizontal scales. For all aging temperatures hfa > 0.07, hTa – hT+ > 3hf and 

the aging imprint is real. Notice that the relaxation response at hf+ = 0.1 following the 

temperature shift is strongly rejuvenated for “large” temperature shifts !hf = hf+ – hfa > 

0.02. In this regime, the increase in the total (negative) moment of those subsystems with 

hs > + ha which were aged to equilibrium at hfa and then re-equilibrated following the 

temperature shift to hf+ = 0.1 exceeds the decrease in the total moment of those 

subsystems which were blocked during the original cooling process and subsequently 

aged at hfa , and the system essentially behaves as if it had been cooled directly to hf+ = 

0.1 with time constant tc = 2.2x10
4"0 and then allowed to relax, that is, the system appears 

to be completely rejuvenated. However, as the temperature shift !hf = hf+ – hfa becomes 

smaller, the re-equilibration effect becomes progressively weaker, the aging effect 

gradually becomes more dominant, progressively more of the aging at hfa survives the 

temperature shift, and the relaxation response deviates progressively further below the 

“virgin” relaxation curve at hf+ = 0.1 and merges with the rejuvenated curve at 

progressively later times. We refer to this situation as partial rejuvenation.  Thus, 

according to the two-level subsystem formalism, the deviations below the rejuvenated 

relaxation curve observed for small temperature shifts, and referred to as transients in 

the context of the spin glass investigations described above, are actually an intrinsic 
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characteristic of the relaxation response originating directly and naturally from the 

competition between the re-equilibration and aging processes. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14(a): The Preisach representation of a system that has been cooled in a constant field ha > 0 to a 

temperature hfa, aged at hfa for a time ta, and them warmed to a temperature hf+. This protocol leaves an 

aging imprint on those subsystems labeled ‘aged at hfa.’ 
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Figure 6.14(b): Numerical simulations of the relaxation of the moment as a function of t/"0 for a collection 

of subsystems that were cooled in a constant field ha = 1.1, aged for a time ta / "0= 2x10
12

 at the series of 

temperatures listed next to each virgin relaxation curve, and then subjected to a positive temperature shift to 

hf+ = 0.1. 

 

Figure 6.15(a) shows the configuration of the Preisach plane for a system which 

has been cooled in a field ha to a temperature hfa with time constant tc , aged at hfa for a 

time ta , and then cooled to a temperature hf- with time constant tc . Since hTa = hfa ln(ta/"0) 

> hT- = hf- ln(tc/"0) for all hfa > hf- , this procedure always leaves an “aging imprint” at hf- 

As a consequence, negative temperature shifts are incapable of inducing complete 
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rejuvenation. This is indeed confirmed by the numerical simulations in Figure 6.15(b), 

which show the relaxation of the moment as a function of time t/"0 for an ensemble of 

two-level subsystems with a lognormal-bimodal Gaussian Preisach density with 

parameters %d = 0.5, hs0 = 1.5, and %s = 0.2, which has been cooled in a field ha = 1.1 with 

time constant tc = 2.2x10
4"0 , aged for a time ta = 2x10

12"0  at a series of temperatures hfa 

= 0.102, 0.104, 0.106, 0.108, 0.11, and then subjected to a negative temperature shift to 

hf- = 0.1 with a cooling time constant tc = 2.2x10
4"0. A close inspection of this figure also 

reveals that the model systematics under negative temperature shifts are precisely the 

opposite to those observed in Figure 6.14(b) under positive temperature shifts, in the 

sense that the rejuvenation time (that is, the time interval between the instant of the 

temperature shift from hf- to hf and the instant that the relaxation curve joins the virgin 

(unaged) hf relaxation isotherm) is shortest for the smallest temperature shift from hf- = 

0.102 to hf = 0.1, and increases monotonically as the magnitude of the temperature shift 

increases. This behaviour is contrary to that reported in atomic spin glasses, where the 

largest temperature shifts (positive or negative) always induce the strongest rejuvenation 

(see Figures 6.12(a) and (b)), but is, however, very similar to the behaviour observed in 

nanoparticulate superspin glasses (see Figure 6.13(c)), which also happen to be 

particularly compatible, from a microstructural point of view (an ensemble of “big spins” 

[24]), with the spirit of the Preisach formalism.       

.   
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Figure 6.15(a): The Preisach representation of a system that has been cooled in a constant field ha > 0 to a 

temperature hfa, aged at hfa for a time ta, and then cooled to a temperature hf-. This protocol leaves an aging 

imprint on those subsystems labeled ‘aged at hfa.’ 
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Figure 6.15(b): Numerical simulations of the relaxation of the moment as a function of t/"0 for a collection 

of subsystems which have been cooled in a constant field ha = 1.1, aged for a time ta / "0= 2x10
12

 at the 

series of temperatures listed next to each virgin relaxation curve, then subjected to a negative temperature 

shift to hf- = 0.1. The inset shows a magnified image of early time relaxation at hf-. 
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Chapter 7 

Probing the Temperature Dependence of the 

Free Energy Landscape in Magnetic 

Materials with Persistent Memory: A Scaling 

Approach based on Viscosity Isotherms 
 

 
7.1. Introduction 

The magnetic properties of all magnetic materials which exhibit persistent 

memory and a history dependent response to an external field stimulus are functions of 

temperature, and the interpretation of the measured temperature dependence of important 

design parameters, like the coercive field and the saturation remanence, and of standard 

macroscopic response functions, like the field cooled (FC) moment, the zero field cooled 

(ZFC) moment, the thermoremanent moment (TRM), the isothermal remanent moment 

(IRM), and moment and remanence hysteresis loops, continues to pose a significant 

challenge. Figure 7.1 illustrates the types of complex thermal profiles which are typically 

encountered in experimental characterizations of magnetic materials with a 

nanoparticulate microstructure, in this case for an assembly of Fe nanoparticles 

embedded in a thin film of alumina. The main body of the figure shows the temperature 

dependence of the FC moment, the ZFC moment, the TRM, and the IRM measured in a 

fixed field of Ha = 6 Oe. As we have seen, systems with permanent memory are 
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characterized by a highly corrugated free energy hypersurface in a multidimensional 

configuration space [1], and their evolution through configuration space consists of a 

sequence of irreversible transitions between metastable configurations, in which the 

system is temporarily trapped in a local minimum and then liberated either by field-

induced distortions of the free energy landscape, or by random energy exchanges with a 

heat bath, which trigger the spontaneous escape of the system from metastable states by 

thermal activation over local energy barriers, or by some combination of these. The 

temperature dependence of the measured magnetic response of the material is thus shaped 

by a complex coexistence of two processes: (a) thermal overbarrier activation events, 

which relax the system toward thermodynamic equilibrium, and (b) the explicit evolution 

with temperature of the free energy landscape itself, which ultimately originates from the 

explicit dependence on temperature of intrinsic material parameters, such as anisotropy 

constants and the spontaneous magnetization. The purpose of the current investigation is 

to explore a general strategy [2,3] for isolating and quantifying the contributions from 

these two processes, and hence for reconstructing the spectrum of intrinsic metastable 

state excitation barriers and its evolution with temperature. 
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Figure 7.1: The temperature dependence of the FC moment, the ZFC moment, the TRM, and the IRM of an 

assembly of Fe nanoparticles embedded in a thin film of alumina measured in an applied field of Ha = 6 Oe.  

 

7.2. Modelling Magnetic Viscosity Isotherms 

Thermal fluctuations introduce a dependence on observation time t into the 

measured response functions of systems which are out-of-equilibrium, and the key to 

unraveling the intricate relationship between landscape evolution and thermal activation 

lies in the interpretation of magnetic relaxation isotherms. In magnetic materials, the 

relaxation of the magnetic properties that accompanies the spontaneous approach to 

equilibrium is also of considerable practical interest, particularly in connection with the 

limitations that it imposes on the ultimate bit size of storage media and on the stability of 

permanent magnets, both of which depend on the preservation of a stable magnetic state.  

Model magnetic systems composed of a Preisach ensemble of elementary 

metastable two-level subsystems provide a unified treatment of hysteresis and thermal 
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relaxation [1, 4] which is particularly well adapted for studying the combined effects of 

thermal overbarrier activation and landscape evolution on macroscopic response 

functions [5, 6], including relaxation isotherms. The unification rests on the assumption 

that hysteresis and thermal relaxation involve a common set of energy barriers which are 

to be regarded as an intrinsic property of the material at any given temperature, in 

the sense that these barriers would define the response of the system in the hypothetical 

limit where all changes in applied field and temperature could be accomplished 

instantaneously (that is, in the limit t !  !0). Thermal activation events are modeled by an 

effective activation moment reversal µ and are driven by a fictitious random thermal 

fluctuation field with amplitude Hf = kT/µ [7] which mimics the action of thermal 

perturbations. For purposes of the current investigation, we focus on a particular class of 

relaxation experiments which are conventionally referred to in the literature as 

“viscosity” isotherms (although the term “viscosity” has a much more general 

significance). The experimental protocol consists of temperature stabilization, followed 

by the application of a positive saturating field Ha !" , and then by recoil to a negative 

holding field Ha < 0, after which the relaxation of the magnetic moment is recorded as a 

function of observation time t in fixed field Ha at fixed temperature T. The Preisach 

representation of the viscosity protocol is shown in Figure 7.2. The subsystems which are 

primarily responsible for the relaxation of the ensemble moment with time are those with 

characteristic fields (Hd,Hs) = 

� 

(Hd,Ha ! Hs ! Hd +Ha)  (the +µ  region above the 

horizontal dashed line in Figure 7.2), which are trapped in their higher energy metastable 

+µ state immediately following field reversal to Ha, and which will eventually experience 
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a moment reversal with time into a negative equilibrium moment configuration meq = µ 

tanh[µ(Ha"Hs)/kT] < 0. The remaining subsystems are either purely and permanently 

monostable, with time independent moments +µ or  –µ , or are bistable but with a 

positive moment which relaxes from +µ to the positive equilibrium configuration meq > 0, 

without sign reversal.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: The Preisach representation of the experimental protocol for measuring viscosity isotherms.  

The subsystems in the region labeled +µ are those which experience a moment reversal to a negative 

equilibrium moment configuration with time. “A” is a typical subsystem in this region, and its free energy 

profile is sketched in the lower right hand corner of the figure. 
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Suppose that we consider a typical subsystem within the region labelled as +µ in 

Figure 7.2 such as subsystem “A”, with characteristic fields (Hd,Hs) and with a free 

energy profile sketched on the lower right of the figure. If we adopt the same 

approximations to treat the thermal relaxation of two-level subsystems as those discussed 

in detail in Chapter 6.2, then subsystem A will remain trapped in its +µ configuration 

until a time t = tr at which the thermal viscosity field HT = Hf ln(tr /!0) precisely matches 

the lower subsystem energy barrier HL = Hd "Hs+Ha , at which point the subsystem 

moment will instantaneously invert to its equilibrium value meq. Thus, the condition for 

thermal activation of subsystem A is:   

 

                                                Hf ln(tr /!0) = Hd " Hs + Ha                                            (7.1) 

or, equivalently, 

 

                                              ln(tr /!0) = (1/Hf)Ha + (1/Hf) (Hd " Hs) .                         (7.2) 

 

Thus, according to the model, the logarithm of the reversal time ln(tr /!0) for a single 

subsystem is predicted to vary linearly as a function of the holding field Ha, with a slope 

which is the inverse of the thermal fluctuation field Hf and with an intercept which yields 

the intrinsic zero field excitation barrier  HL = Hd " Hs for the subsystem.  

Of course, measured relaxation isotherms are actually a superposition of a 

multitude of relaxation events involving the entire ensemble of Preisach subsystems, each 
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with its own characteristic reversal time tr, and the value of ln(tr /!0) for the ensemble 

must be determined by integrating over the entire Preisach plane in Figure 7.2: 

 

            

 

M t( ) = Nµ dHd

0

!

" dHs

#!
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where ( )x!  is a step-function defined by: 
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  We have generated model simulations of viscosity isotherms numerically for a 

Preisach ensemble of two-level subsystems described by a Preisach density of 

characteristic fields p(Hd,Hs) consisting of the product p(Hd,Hs) = f(Hd) g(Hs) of a 

lognormal distribution of dissipation fields Hd and a Gaussian distribution of bias fields 

Hs: 

 

p(Hd,Hs) = f(Hd) g(Hs)  

               = (2$%d
2
Hd

2
)

-1/ 2
 exp[ -(ln Hd/Hdm)

2
/(2%d

2
)] (2$%s

2
)
-1/ 2

exp(-Hs
2
/2%s

2
) .        (7.5) 

 

As in our previous discussions, all fields and field dispersions are normalized to 

the median dissipation field Hdm as h = H/Hdm and all temperatures are expressed in terms 
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of the reduced thermal fluctuation field hf = Hf /Hdm = kT/(µHdm). The microstructural 

properties of a specific magnetic material are encoded in the Preisach distribution 

function p(hd,hs), and microstructural disorder is expressed through the dispersions %d and 

%s of characteristic fields, with vanishing dispersions corresponding to the hypothetical 

limit of an ensemble of perfectly identical, aligned, noninteracting particles. We initially 

assume that the Preisach distribution, and hence the landscape of metastable states and 

free energy excitation barriers, possesses no explicit dependence on temperature. The 

implications of relaxing this restriction will be discussed shortly.   

Figures 7.3(a) through 7.3(d) show four sets of model relaxation isotherms for 

four different Preisach distributions with characteristic field dispersions (%d,%s) = 

(0.1,0.5), (0.5,0.1), (0.5,0.5) and (1.0,1.0), respectively, representing varying degrees of 

structural disorder. The shapes of the four distributions, and the extent to which the 

subsystems are dispersed over the Preisach plane, are compared in Figure 7.4, which 

shows “limiting” contour plots of constant density in the Preisach plane, defined in each 

case as the value of p(hd,hs) for which p(hd,hs) / pmax(hd,hs) = 0.01. Each set of isotherms 

in Figure 7.3 was generated for a series of negative holding fields ha between ha = 0 (top 

curve) and ha = -1.2 (bottom curve), and each is plotted as a function of the thermal 

viscosity field hT = hf ln(t/!0) over the same field interval 0 ! h
T
! 1.4 . Since the only 

source of temperature dependence in the model other than the fluctuation field hf is the 

comparatively weak dependence on temperature associated with the equilibrium 

subsystem moment meq = tanh[(ha"hs)/hf], it follows that such plots yield universal 

curves in the sense that, for a given distribution, each relaxation curve in a given holding 
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field ha is valid for all temperatures hf and for all observation times t. The curvature of the 

relaxation isotherms in Figure 7.3 is most pronounced, and the approach to equilibrium in 

the limit hT !"  is most rapid, when the distribution is narrow along either the hd or hs 

axis (as in Figures 7.3(a) and 7.3(b)) subject, of course, to the particular functional forms 

chosen for the distributions. As the subsystem distribution becomes broader and more 

uniform, the relaxation becomes progressively more gradual and featureless, and the 

approach to equilibrium extends to progressively longer time scales (Figures 7.3(c) and 

7.3(d)). Structural disorder places severe limits on our experimental ability to probe the 

complete spectrum of metastable state excitation barriers. The vertical lines in Figure 7.3 

illustrate those portions of the universal curves which would be visible in an experiment 

performed at three different reduced temperatures hf = 0.005, 0.015, and 0.03, and over a 

limited observation time window 
 
10

10
! t/"

0
!10

13  , which is typical of commercial 

magnetometers (assuming !0 = 10
-9

s). It is clear that, even for quite modest levels of 

structural disorder, only a short quasi-logarithmic fragment of the complete relaxation 

response function is visible in an experiment performed at one temperature, over a 

restricted observation time window. Structural disorder also affects the equilibrium 

moment of the ensemble. Each isotherm in Figure 7.3 converges to an equilibrium 

moment which is dependent on the holding field ha. This particular effect is specifically 

related to disorder in the distribution of bias fields and hence to the dispersion %s. In the 

equilibrium limit hT !" , and in the presence of an applied field ha, the Preisach plane is 

subdivided into two subpopulations, subsystems with bias fields hs > ha which have 

negative equilibrium moments (either meq = -µ or meq =  tanh[(ha"hs)/hf] < 0), and 
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subsystems with bias fields hs < ha which have positive equilibrium moments (either meq 

= +µ or meq =  tanh[(ha"hs)/hf] > 0). For all nonzero applied fields ha < 0, the population 

of negative moment subsystems exceeds the population of positive moment subsystems, 

and it is this imbalance which is responsible for the field dependence of the equilibrium 

moment observed in Figure 7.3. In the limit %s !  0, all subsystems have negative 

equilibrium moments and, if the weak dependence of meq = tanh(ha/hf) on temperature hf 

is neglected, all viscosity isotherms converge to negative saturation m!  -1  independent 

of %d (with the obvious exception of the ha = 0 isotherm, which always converges to zero 

moment in equilibrium.)     

 

 

 

 

Figure 7.3: Model relaxation isotherms for Preisach distributions with characteristic field dispersions ( %d, 

%s) = (a) (0.1,0.5), (b) (0.5,0.1). 
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Figure 7.3 (cont’d): For characteristic field dispersions (c) (0.5,0.5), and (d) (1.0,1.0). 

 

 

 

Figure 7.4: Contour plots of constant density p(Hd,Hs)/pmax(Hd,Hs) in the Preisach plane for each of the four 

Preisach distributions with dispersions (%d, %s) listed in the figure.  

 

Guided by our analysis of the relaxation response of a single subsystem in Eq(7.1) 

and (7.2), according to which the logarithm of the time ln(tr /!0) at which the moment 

reverses sign is predicted to vary linearly as a function of the holding field Ha, with a 

Hs 

Hd 
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slope which is the inverse of the thermal fluctuation field Hf, we focus attention on the 

zero moment (m=0) crossing points of the relaxation isotherms in Figure 7.3. Figure 7.5 

shows a plot of the “critical” thermal viscosity field hTr = hf ln(tr /!0), at which the 

relaxation isotherm in a particular holding field reverses sign, as a function of the holding 

field ha, for each of the four sets of relaxation isotherms in Figure 7.3. Since the 

individual isotherms from a given set are universal functions of hT, it follows that each of 

the plots in Figure 7.5 also defines a universal curve, valid for all thermal reversal fields 

hTr, that is, for all temperatures hf and for all reversal times tr. In spite of their universal 

character, however, it is important to emphasize that only a fragment of each curve is 

actually accessible in an experiment performed at a fixed temperature and over a finite 

experimental time window and that, from an experimental perspective, each curve must 

be assembled segment-by-segment from measurements performed over a wide range of 

temperatures which ideally spans the entire irreversible phase. The three pairs of 

horizontal lines in Figure 7.5 show the segments of the universal curves that would be 

accessible experimentally within the same temperature-time windows as those which 

defined the vertical lines through the relaxation isotherms in Figure 7.3.  

In the following sections, we propose and implement a general analytical strategy 

for reconstructing the spectrum of intrinsic metastable state excitation barriers of a 

magnetic material and its evolution with temperature which exploits, as its basis, the 

concept of the universal curve, as shown in Figure 7.5. Before articulating the details of 

the strategy, we first summarize the principal characteristic features of these curves, as 

revealed by numerical simulations. (1) Starting from the limit of low viscosity fields hTr 
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!  0 , that is, low temperatures T !  0 and/or short reversal times tr !  !0, the universal 

curves for all Preisach distributions, independent of their shape, exhibit a regime which is 

linear in holding field ha, and identical in form to Eq(7.2) obeyed by a single subsystem, 

with a slope &hTr /&ha = 1 exactly and an intercept along the ha-axis equal to the coercive 

field hci of the intrinsic (t !  !0, hT !  0) major hysteresis loop: 

                                               hTr = hf ln(tr /!0) = ha + hci .                                        (7.6)  

 

 

Figure 7.5 A plot of the thermal viscosity fields hTr at which the relaxation isotherms in Figure 7.3 reverse 

sign as a function of holding field ha. Each of these plots defines a universal curve for a particular Preisach 

distribution of dissipation and bias fields (listed for each curve). 

 

(2) While the principle of the existence of the linear regime is general and independent of 

the details of the Preisach distribution, the range of validity of the linear regime does 
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depend on the precise values chosen for the dispersions %d and %s. For distributions which 

are sufficiently narrow, the linear regime can extend over a wide range of holding fields, 

as illustrated by the universal curves labeled (a), (b) and (c) in Figure 7.5. In fact, in the 

limit where one of the two dispersions vanishes (%d !  0 or %s !  0) and the 

corresponding distribution f(Hd) or g(Hs) collapses to a '-function, the linear relation is 

rigorously valid over the entire range of holding fields, and the universal curve reduces 

exactly to the straight line in Eq(7.6). However, as structural disorder becomes 

progressively more significant and the distribution becomes progressively broader, the 

range of validity of the linear regime shrinks dramatically, and linear behaviour is 

restricted to a progressively smaller range of holding fields close to the intrinsic coercive 

field hci, and to very low viscosity fields hTr !  0, as illustrated by the universal curves 

labeled (d) and (e) in Figure 7.5. (3) For fields outside the linear regime, the universal 

curve always deviates above the limiting straight line for vanishing dispersions. These 

deviations become progressively more severe as ha !  0, and eventually culminate in a 

divergent slope at ha = 0. The origin of these deviations from linearity is easy to 

appreciate from an inspection of the Preisach diagram in Figure 7.6. The straight line in 

this figure which intersects the hs-axis at –hci shows the location of the intrinsic coercive 

field boundary, which bisects the distribution and reduces the total moment to zero in the 

limit hT !  0 (that is, t !  !0). The integrated moment of the subsystems to the left of this 

line, all of which are in their –µ state, exactly cancels the integrated moment of the +µ 

subsystems to the right of the line. The figure also shows the configuration of the plane in 

the presence of a negative holding field ha > "hci and a finite thermal viscosity field hT > 
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0, chosen so as to satisfy the linear relationship hTr = ha + hci in Eq(7.6). These two 

configurations are clearly not identical, and differ in the orientations of the subsystems in 

the shaded region, which is +µ when hT > 0, compared with –µ when hT = 0. It follows 

that a thermal fluctuation field hTr > ha + hci is needed in order to reduce the moment to 

zero whenever ha > "hci.  This “correction” becomes progressively more significant as ha 

!  0, and leads to a progressively more severe upward deviation of the universal curve 

from linearity. When either %d << 1 or %s << 1, the shaded region in Figure 7.6 is 

essentially unoccupied, and the deviation from linearity is negligible (except, of course, 

when ha = 0 exactly, in which case hTr !" ). (4) When thermal effects are not 

restricted exclusively to thermal overbarrier activation events, and when the free energy 

landscape itself is allowed to evolve explicitly with temperature, then the principle of 

universality breaks down. Thus, if either the Preisach distribution of free energy barriers, 

defined by the intrinsic material parameters (Hdm, %s, %d), or the spontaneous subsystem 

moment µ depend explicitly on temperature, then a plot of hTr as a function of ha will, in 

general, no longer be universal and will fracture into an infinite family of isothermal 

curves, each with properties which reflect the characteristics of the ensemble at that 

specific temperature. There is only one instance of landscape evolution for which this 

infinite family of isotherms will not fracture and for which a plot of hTr as a function of ha 

will continue to yield a common universal curve, and that is the special case where the 

temperature dependence of the landscape is localized exclusively in the intrinsic median 

dissipation field Hdm(T), with all other intrinsic material parameters (µ, %s, %d) being 

rigorously independent of temperature provided, of course, that each individual 
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isothermal curve is scaled to its own intrinsic dissipation field Hdm(T) along both field 

axes hTr and ha.  

Based on the properties summarized above, we suggest the following 

experimental protocol for analyzing viscosity isotherms. At each temperature T, viscosity 

isotherms are measured over the widest possible range of negative holding fields Ha such 

that moment reversal is observed at times t = tr which span the entire experimentally 

available time window, that is,  10s ! t !10
4
s  for a typical commercial magnetometer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6: Preisach diagram depicting the origin of the deviations from linearity of universal curves. The 

shaded region is that region which is responsible for the nonlinear variation of hTr with applied field ha. 
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These measurements are repeated over a wide range of closely spaced temperatures 

which ideally spans the entire irreversible phase. A plot of T ln(tr/!0) as a function of Ha , 

consisting of a sequence of (ideally overlapping) isothermal segments, is constructed, and 

the microscopic time constant !0 is adjusted, within physically reasonable bounds 

 
10

!13
s " #

0
"10

!9
s , until the individual segments align to form a convincing universal 

curve, or until it is established conclusively that alignment is not possible. In the case 

where alignment is not convincing, it may be concluded that the observed temperature 

dependence of the material response functions originates exclusively from thermal 

overbarrier activation events within a temperature independent free energy landscape, 

and the plot will terminate, in the limit of low temperatures T !0, in a linear regime 

with a slope &[T ln(tr/!0)] / &Ha = µ/k which yields the intrinsic spontaneous subsystem 

moment µ (that is, the intrinsic elementary activation moment reversal) and an intercept 

along the Ha-axis which yields the coercive field Hci of the intrinsic  major hysteresis 

loop, and hence the mean intrinsic dissipation barrier Hdm (assuming reversible effects are 

negligible), corresponding to the hypothetical limit (T = 0 and/or t = !0) where thermal 

fluctuations could be eliminated. Fits of the universal curve to model simulations would 

then complete the description of the spectrum of intrinsic excitation barriers by 

establishing the dispersions ! %d and %s of characteristic fields Hd and Hs. When the 

intrinsic properties of the system, as summarized in the distribution of characteristic 

fields T),H,p(H sd and the subsystem moment 
 
µ(T) , are allowed to vary explicitly with 

temperature, the model formalism predicts that universality will break down and that the 
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Tln(tr/!0)-versus-Ha plot will fracture into an infinite family of isothermal curves. Thus, 

the absence of universality for reasonable values of the microscopic characteristic time 

0
!  may be interpreted as a signature of the coexistence of thermal relaxation and 

landscape evolution. Under these circumstances, fits of model simulations of Tln(tr/!0)-

Ha curves to experimental data, as proposed above, are of very limited use for purposes of 

determining the intrinsic material parameters (µ, Hdm, %s, %d), since only a tiny fragment 

of each isothermal curve is available experimentally for purposes of comparison, and 

further analytical progress depends on the implementation of drastic simplifying 

assumptions which can only be justified a posteriori, by model comparisons with other 

experimental response functions, specifically the temperature dependence of the FC, 

ZFC, thermoremanent and isothermal remanent moments. As stated earlier, there is only 

one instance of landscape evolution for which it is possible to pursue a reconstruction of 

the entire universal curve, and that is the special case in which the temperature 

dependence of the intrinsic material parameters is limited exclusively to the median 

dissipation field Hdm(T), with all other material parameters (µ, %s, %d) being rigorously 

independent of temperature. Under these conditions it is still possible to achieve 

universality, with the entire infinite family of isothermal curves collapsing onto a 

common universal curve, provided that each isothermal curve is scaled to its own 

intrinsic median dissipation field Hdm(T).  

Finally, it is important to point out that the magnetic response of most real 

magnetic materials to changes in applied field contains a reversible component, which 

originates from purely elastic, non-dissipative processes like reversible moment rotation 
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or domain wall flexing, or from the presence of populations of very small magnetic 

grains with energy barriers which are too low to be resolved in all applied fields of 

practical interest. A convenient way to include contributions of this nature within the 

Preisach formalism is to introduce a new distribution function prev(Hs) which describes a 

collection of purely reversible subsystems, concentrated exclusively along  the Hd =0 axis 

in the Preisach plane [1].  Each reversible subsystem is characterized only by a bias field 

Hs, and each possesses only one energy minimum in all applied fields. The total Preisach 

distribution then becomes a weighted superposition of a distribution pirrev(Hd,Hs) of 

metastable subsystems (with non-vanishing dissipation fields Hd ! 0) and a distribution 

prev(Hs) of purely reversible subsystems (with Hd = 0), as follows: 

 

                            p(Hd,Hs) = (1-f) pirrev(Hd,Hs) + f prev(Hs)                                      (7.7) 

 

where 0 !  f !  1. The total moment of the system is then the sum of an irreversible, 

history-dependent component Mirrev and a purely reversible component Mrev which 

depends only on the instantaneous value of the applied field Ha: 

 

      

 

M Ha ,T,t( ) = Mirrev history of Ha ,T,t( ) + Mrev Ha ,T( )

= Nµ 1! f( ) dHs

!"

+"

# dHd

0

+"

# pirrev Hd ,Hs( ) + Nµf dHs

0

Ha

# prev Hs( )

     (7.8) 

The thermal viscosity field HT = Hf ln(t/!0) appears exclusively in the first term in 

Eq(7.8), and consequently it is this dissipative term which is solely responsible for any 



  

 160 

time dependence which is observed in the magnetic response, as well as for any 

temperature dependence arising specifically from thermal fluctuations. The second, 

purely reversible term is independent of time, but may depend on temperature T. For 

viscosity measurements, which are performed in negative holding fields Ha < 0, the 

reversible term is also negative, Mrev (Ha) < 0, and consequently this term imposes a 

uniform field-dependent downward shift on to each of the relaxation isotherms in Figure 

7.3, all of which are purely dissipative in origin. This has the effect of reducing all of the 

reversal times tr in Figure 7.3 which, in turn, distorts the universal plots of Tln(tr /!0) 

versus Ha in Figure 7.5 by shifting every point on these curves downward parallel to the 

Tln(tr /!0) axis, by an amount which depends on the holding field Ha. If the reversible 

term is independent of temperature, then the universality of the Tln(tr /!0) versus Ha plot 

will be preserved , and consequently it will still be possible to conclude that the 

temperature dependence of the magnetic response originates exclusively from thermal 

fluctuations. However, the distortion of the universal curve will tend to invalidate some 

of the specific conclusions listed earlier. In particular, the initial slope of the linear 

regime of the universal curve in the limit of low temperatures and/or short observation 

times (if it still exists) is no longer a measure of the true elementary moment reversal µ, 

and the absolute value of the intercept along the Ha-axis will underestimate the true 

median intrinsic dissipation field Hdm. If the reversible term introduces an extra 

dependence on temperature beyond the linear dependence which appears in the thermal 

fluctuation field Hf = kT/µ, then the distortions of the Tln(tr /!0) versus Ha plot will 

become temperature dependent, and this will act to destroy the universality of the Tln(tr 
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/!0) versus Ha plot. In this case, universality loses its significance as a diagnostic tool for 

establishing the dominance of thermal fluctuations over barrier growth.  

We now present applications of the analytical strategy proposed above to five 

magnetic materials with a spectrum of magnetic and microstructural characteristics. 
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7.3  Tiva Canyon Tuff  

Figures 7.7 through 7.9 summarize the experimental measurements of the field, 

temperature, and time dependence of the magnetic response of a sample of Tiva Canyon 

Tuff, which is a magnetic rock consisting of nanodimensional particles of titanomagnetite 

Fe3-xTixO4 (with x !  0.1) embedded rigidly and randomly in a volcanic glass.  

Figure 7.7 shows a typical hysteresis loop measured at T = 15K by repeated 

application, removal, and reapplication of the magnetic field in increments of  !Ha = 20 

Oe, starting from a thermally demagnetized inital state (achieved by cooling to T = 15K 

in zero field Ha = 0 from a reference temperature Tref = 325K in the superparamagnetic 

regime, where the magnetic response is completely reversible), and then proceeding to a 

maximum positive field Ha = 4.0 kOe close to technical saturation, and terminating at a 

maximum negative field Ha = -2.5 kOe . The measurements in Figure 7.7 include the 

initial magnetizing curve, the initial magnetizing remanence (IRM), the descending 

branch of the major hysteresis loop, and the demagnetizing remanence. 

Figures 7.8(a) through 7.8(e) show typical measurements of the temperature 

dependence of the field cooled (FC) moment, the zero field cooled (ZFC) moment, and 

the thermoremanent moment (TRM) in a series of applied fields Ha. The FC moment was 

measured by first thermally demagnetizing the sample in zero applied field Ha=0 at a 

reference temperature Tref =325K, followed by the application of a positive field Ha, then 

by cooling in the field at a rate of about 10K/min to the lowest measurement temperature 

T=10K, and then by incremental warming in steps of !T=5K. The TRM was measured  
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Figure 7.7: A hysteresis loop measured at T=15K for Tiva Canyon Tuff. The solid circles are the moment 

and the open circles are the remanent moment. 

 

by field cooling from Tref =325K to T=10K, followed by field removal, and then by 

incremental warming. The ZFC moment was measured by cooling in zero applied field 

from Tref =325K to T=10K, followed by the application of a positive field Ha at T=10K, 

and then by incremental warming. The data in Figure 7.8 exhibit a number of structural 

features which are characteristic of materials that are conventionally classified as 

superparamagnets. Microstructurally, such materials typically consist of an ensemble of 

physically distinct magnetic grains, and the material exhibits a gradual and progressive 

loss of magnetic response (known as “blocking”) upon cooling, as the individual grains 

fall of out thermal equilibrium sequentially, and as their individual moments drop below 

their thermal equilibrium values. Most notable among these structural features is a 

bifurcation temperature Tbif ! 150K which lies well below the critical ordering 

temperature of the constituent magnetic grains (TC ! 800K for Fe2.9Ti 0.1O4). It is at this 
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temperature that the FC and ZFC moments bifurcate into two distinct branches, 

accompanied by the appearance of remanence (TRM) and hysteresis, and is the 

temperature that separates a high temperature reversible (equilibrium) regime where the 

FC and ZFC moments are identical and decay very gradually with temperature and the 

remanent moment is negligible, from a low temperature irreversible regime, where the 

system is unable to reach thermal equilibrium within the time scale of the experimental 

measurement (in this case, texp ~ 100s). The FC/ZFC bifurcation in low applied fields Ha 

!  20 Oe is quite significant in this particular sample, a behaviour which tends to be 

indicative of weak inter-granular coupling[8-11]. As we shall see, this is indeed 

confirmed by the subsequent analysis. To the list of structural features characteristic of 

superparamagnets, it is appropriate to add the presence of a broad maximum in the 

temperature dependence of the ZFC moment which is located just below the bifurcation 

temperature, and which propagates systematically toward lower temperatures with 

increasing applied field.  

Figures 7.9(a) through 7.9(d) show representative measurements of viscosity 

isotherms performed at four different temperatures within the irreversible regime, in a 

series of negative holding fields Ha< 0 (listed in each figure), over an experimental 

observation time window s10t10s
4

!! , and plotted on a logarithmic time scale. At each 

temperature, the material was first subjected to a positive saturating field Hsat =10 kOe, 

followed by recoil to a negative holding field Ha, chosen so that the “critical” time t = tr at 

which the relaxation isotherm reverses sign (that is, passes through zero moment, m = 0) 

lies within the experimentally available time window, after which the decay of the 
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moment was recorded as a function of observation time at fixed temperature and in fixed 

magnetic field. The measurements presented here were performed on a magnetic mineral 

in its “natural” state, as extracted from the Earth, and, as a consequence, the magnetic 

signal is relatively weak and the viscosity data are relatively noisy. Nevertheless, within 

the limitations imposed by the scatter and also by the width of the experimental time 

window, the functional form of the decay in Figure 7.9 may be characterized as quasi-

logarithmic.   

Figure 7.10 summarizes the complete set of “reversal time” data for Tiva Canyon 

Tuff, obtained from measurements like those shown in Figure 7.9 performed over a range 

of temperatures 8K ! T ! 80K that spans a significant portion of the irreversible regime, 

in the form of a plot of Tlntr as a function of holding field Ha, where tr is the time at 

which a relaxation isotherm measured at temperature T in a holding field Ha reverses 

sign. 
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Figure 7.8: Measurements of the FC moment, ZFC moment, TRM, and IRM of Tiva Canyon Tuff in 

applied fields of  (a) Ha = 10  Oe, (b) Ha = 20 Oe, (c) Ha = 50 Oe, (d) Ha =  100 Oe and (e) Ha =  1000 Oe. 

The solid lines are guides to the eye. 
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Figure 7.9: Measurements of viscosity isotherms of Tiva Canyon Tuff in a series of negative holding fields 

at temperatures: (a) T = 15K, (b) T = 30K, (c) T = 50K, and (d) T=80K. The fields in which each isotherm 

was measured are listed in each panel. The straight lines are guides to the eye.                                                      
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Figure 7.10: Reversal time data expressed in the form Tlntr and plotted a function of the holding field Ha 

for a range of temperatures from T = 8K to T = 80K listed in the figure. 

 

As the first step toward establishing the physical origins of thermal effects in Tiva 

Canyon Tuff, and the relative importance of the roles played by thermal fluctuations and 

barrier growth, the “reversal time” data in Figure 7.10 have been replotted in Figure 7.11 

in the form Tln(tr/"0) versus Ha, for a series of values of "0 lying within the range 

 
10

!18
s " #

0
"10

!6
s , in order to search for evidence of universality. The main body of Figure 

7.11 shows the complete plots over the entire range of temperatures and holding fields 

investigated experimentally, while the inset shows a magnified view in the limit of low 

fields and high temperatures.  An inspection of this figure shows that there are four 

values of "0 for which the “reversal time” data scale convincingly onto universal curves 



  

 169 

of roughly comparable quality, namely, "0 = 10
-13 

s, 10
-12 

s, 10
-11

 s, and 10
-10

 s, all of 

which fall within physically acceptable limits, as defined in the literature [12-14]. For 

values of "0 outside this range, deviations from universality become progressively and 

systematically more severe (see inset). The existence of the universal curves allows us to 

conclude, at least tentatively (for reasons to be discussed later in this section), that the 

temperature dependence of the magnetic response of this particular assembly of 

titanomagnetite nanoparticles is shaped almost exclusively by thermal overbarrier 

activation events within a fixed free energy landscape which does not itself evolve 

explicitly with temperature.   

As predicted by the model simulations of universal curves shown in Figure 7.5, 

the four experimental universal curves in Figure 7.11 each exhibit a regime which is 

linear in applied field Ha, and with a relatively wide range of validity -450 Oe < Ha < -

150 Oe, as illustrated by the straight lines in Figure 7.11. According to the model, the 

slope of the linear regime yields the mean characteristic elementary moment reversal µ, 

while the intercept along the Ha-axis yields the intrinsic coercive field Hci, and hence a 

first estimate for the median intrinsic dissipation field Hdm. The preliminary estimates for 

the parameters (µ, #dm) obtained from the slope and intercept, respectively, of the four 

straight lines in Figure 7.11 are listed below in Table 7.1.   
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Figure 7.11: Tln(tr/"0) versus Ha plots shown over the entire range of temperatures and holding fields for a 

series of values of  "0.  The straight lines through the four curves with 10
-13

 $ "0 $ 10
-10

 s show the linear 

portions of each universal curve. The inset is a magnified version of the Tln(tr/"0) versus Ha plots in the 

limit of low fields and high temperatures. 
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Table 7.1: Preliminary Universal Curve Simulation Parameters 

"0 (s) µ (10
-16

emu) Hdm (Oe) %d %s  

10
-13

 7.0 ± 0.5 434 ± 11 0.5±0.05 0.1 ± 0.05 

10
-12

 6.6 ± 0.5 434 ± 10 0.5±0.05 0.1± 0.05 

10
-11

 6.3 ± 0.4 425 ± 14 0.5±0.05 0.1± 0.05 

10
-10

 5.8 ± 0.4 435 ± 7 0.5±0.05 0.1± 0.05 

 

Once initial estimates for µ and Hdm have been established, and the thermal fluctuation 

field Hf = kT/µ is known, a functional form may be chosen for the Preisach distribution 

p(Hd,Hs), and the dispersions %d and %s of characteristic fields Hd and Hs determined by 

comparing model simulations of universal curves like those shown in Figure 7.5 to the 

measured universal curves in Figure 7.11, for various combinations of  %d and %s.  Figure 

7.12 shows the best model representations of the four universal curves with 10
-13

 $ "0 $ 

10
-10

 s in Figure 7.11, assuming a Preisach density of characteristic fields p(Hd,Hs) 

consisting of the product p(Hd,Hs) = f(Hd) g(Hs) of a lognormal distribution of dissipation 

fields Hd and a Gaussian distribution of bias fields Hs, as given in Eq(7.5). In all four 

cases, the best description was achieved with the same combination of dispersions, %d = 

0.5 and %s = 0.1 (Table 7.1).     
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Figure 7.12: The best model representations of the four universal curves whose values of  "0 fall within 

physically acceptable limits. The representations assume a Preisach density consisting of a product of a 

lognormal distribution of dissipation fields and a Gaussian distribution of bias fields, with dispersions of  %d 

= 0.5 and %s = 0.1 respectively.  

 

Although the viscosity-based thermal fluctuation analysis presented above is certainly 

compelling, it is nevertheless incomplete, and the entire set of model parameter values (µ, 

Hdm, %d, %s) in Table 7.1 must be regarded as preliminary, since the analysis entirely 

ignores contributions from reversible magnetizing processes, which form a significant 

component of the magnetic response of Tiva Canyon Tuff. This reversible contribution is 

most evident in measurements of hysteresis loops like that shown in Figure 7.7, primarily 
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through the large ratio of the saturation moment Msat(Ha& ") to the saturation isothermal 

remanent moment IRMsat(Ha& "). As previously discussed toward the end of Section 

7.2, a proper description of systems like Tiva Canyon Tuff requires the superposition of 

two distinct distributions of characteristic fields, one distribution pirrev(Hd,Hs) to describe 

dissipative, time-dependent processes, and another distribution prev(Hs) to describe purely 

reversible processes, as indicated in Eq(7.7) and Eq(7.8). The introduction of a reversible 

term can have a profound effect on the properties of model relaxation isotherms, and on 

the shape and characteristics of the Tln(tr /"0) versus Ha plots, generated from a 

dissipative distribution alone. As a consequence, it is necessary to revisit the original 

model simulations in Figure 7.12 in order to ascertain the extent to which the original 

physical interpretation, as summarized by the parameter values in Table 7.1, survives the 

superposition substantially intact. The first step in this process is to choose a suitable 

functional form for the distribution prev(Hs) of purely reversible subsystems. For reasons 

of computational simplicity, the following exponential form was adopted  

 

                                              prev(Hs) = ' exp(-' |Hs|)   ,                                   (7.9) 

 

where ' is a constant, independent of Hs, but possibly temperature-dependent. Next, 

estimates for the reversible parameters f and ' were determined by fitting model 

simulations of hysteresis loops to the measured hysteresis loop in Figure 7.7, using the 

superposition in Eq(7.8). For purposes of establishing the shape of the reversible response 

function, the effects of thermal fluctuations are irrelevant, and the fit was performed by 
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setting the thermal viscosity field HT = 0 (that is, setting # = ") and the intrinsic coercive 

field Hdm equal to the measured remanent coercive field Hcr(T = 15K) = 500 Oe, and by 

adopting the original estimates for the dispersions %d = 0.5 and %s = 0.1 listed in Table 

7.1. This procedure yielded best fit values for ' and f of ' = 6.7x10
-4

 Oe
-1

 and f = 0.7.  

With the reversible component thus defined, numerical simulations of viscosity 

isotherms and reversal time plots of Tln(tr/"0) as a function of Ha were generated once 

again assuming the superposition in Eq(7.8). The original parameter values µ, Hdm, %d, 

and %s were revised as necessary in order to achieve the best overall representation of the 

measured universal curves in Figure 7.12. The results of these simulations are shown by 

the solid curves in Figure 7.13 for the two universal data sets with "0 = 10
-13

 and "0 = 10
-10

 

s , and the corresponding sets of best fit parameter values are listed in Table 7.2. In order 

to better appreciate the nature of the distortions caused by introduction of the reversible 

component, the dashed line in Figure 7.13 shows the Tln(tr /"0) versus Ha plot for the 

dissipative component alone using the moment µ required to describe the data with "0 = 

10
-13

 s. A comparison of the final parameter values in Table 7.2 with the preliminary 

estimates in Table 7.1 shows that the inclusion of a reversible term necessitates 

reductions in both µ and %s, and an increase in Hdm. However, the essential features of the 

original interpretation remain fundamentally unaltered. In particular, Tiva Canyon Tuff 

may be classified as a material which is fluctuation-dominated in the sense that the 

temperature dependence of the irreversible component of the magnetic response 

originates primarily from a thermally activated migration through a free energy landscape 
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which does not evolve explicitly with temperature, at least over the temperature range T 

< 150K where non-equilibrium history-dependent and time-dependent effects are 

observed.   

 

Table 7.2: Final Universal Curve Simulation Parameters 

 

Once the distribution pirrev(Hd,Hs) of dissipative subsystems and the distribution prev(Hs) 

of reversible subsystems as well as the characteristic elementary moment reversal µ are 

known, the characteristics of the spectrum of metastable state excitation barriers of Tiva 

Canyon Tuff are in principle completely defined, and it is possible to predict the results 

of other experimental measurements such as hysteresis loops and the FC/ZFC/TRM 

measurements shown in Figure 7.8(a) to 7.8(e). Such predictions provide an important 

and necessary internal consistency check on the validity of the thermal fluctuation 

analysis performed above, and the conclusions reached thereby, since these response 

functions are themselves also highly sensitive probes of the structure of the free energy 

landscape, and particular structural features of the response functions, as well as their 

systematic variation with applied field and temperature, have been linked to particular 

Preisach distribution parameters, specifically, to the two dispersions of characteristic  

"0 (s) µ (10
-16

emu) Hdm (Oe) %d %s / Hdm f ' (10
-4

 Oe
-1

) Msat (emu) 

10
-13

  4.9± 0.5 650 ± 11 0.5 ±0.1 0.05 

±0.02 

0.7 

±0.1 

6.7 ±0.5 0.02 

10
-12

 4.6 ± 0.5 650 ± 10 0.5 ±0.1 0.05 

±0.02 

0.7 

±0.1 

6.7 ±0.5 0.02 

10
-11

  4.4± 0.5 650 ± 14 0.5 ±0.1 0.05 

±0.02 

0.7 

±0.1 

6.7 ±0.5 0.02 

10
-10

 4.0 ± 0.5 650 ± 7 0.5 ±0.1 0.05 

±0.02 

0.7 

±0.1 

6.7 ±0.5 0.02 
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Figure 7.13: Numerical simulations of reversal time plots (solid curves) for universal data sets with  "0 = 

10
-13

 s and  "0 =10
-10

 s. The simulations incorporate both dissipation and reversible Preisach distributions. 

The dotted curve shows the reversal time plot for the dissipative component only. 

 

fields %d and %s [6, 9]. Figures 7.14(a) through 7.14(e) shows numerical model 

simulations of the same sequence of FC/ZFC/TRM measurements shown in Figure 7.8, 

and the solid curves in Figure 7.15 show numerical model simulations of the hysteresis 

loop in Figure 7.7 superposed onto the measured loop. In order to achieve the most 
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faithful reproduction of the experimental data, minor adjustments were necessary to a few 

of the model parameters, specifically a reduction in the mean elementary moment 

reversal to µ = 3x10
-16

 emu, reductions to some of the applied fields Ha in the 

FC/ZFC/TRM sequence below the nominal experimental values and, in the case of the 

hysteresis loop, a reduction in the dispersion of dissipation fields to %d = 0.4. However, in 

all cases, these adjustments are consistent with the tolerances established by the analysis, 

and the need for such adjustments is even less significant in light of the fact that the 

viscosity measurements in Figure 7.9 and the hysteresis/FC/ZFC/TRM measurements in 

Figures 7.7 and 7.8 were performed on two different magnetometers. Tables 7.3 and 7.4 

summarize the parameter values used to generate the FC/ZFC/TRM and hysteresis loop 

simulations, respectively.  

 

Table 7.3: FC/ZFC/TRM Simulation Parameters 

 

Table 7.4: Hysteresis Loop Simulation Parameters 

 

 

"0 (s) texp(s) µ (10
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Figure 7.14: Numerical model simulations of the same sequence of FC/ZFC/TRM measurements shown in 

Figure 7.8, for the simulation parameters listed in Table 7.3: (a) Ha = 10 Oe, (b) Ha = 20 Oe, (c) Ha = 50 

Oe, (d)  Ha = 100 Oe, and (e) Ha = 1000 Oe. 
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Figure 7.15: Numerical model simulation (solid curves) of the measured hysteresis loop (dots) shown in 

Figure 7.7 for the model simulation parameters listed in Table 7.4. 
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7.4 Nanoparticulate Magnetite      

Figures 7.16 through 7.18 summarize the principal characteristics of the field and 

temperature and time dependence of the measured magnetic response of a compressed 

powder of nanodimensional magnetite (Fe3O4) particles immobilized in an organic 

binder.   

Figures 7.16(a), (b) and (c) show representative hysteresis loops measured at T = 5K, 

10K and 15K, following thermal demagnetization in zero field from a reference 

temperature Tref = 325K, by repeated application, removal, and reapplication of the 

magnetic field in increments of  !Ha = 100 Oe, starting from the demagnetized state and 

then proceeding to a maximum positive field Ha = 6.0 kOe close to technical saturation, 

and terminating at a maximum negative field Ha = -6.0 kOe . The measurements in these 

figures include the initial magnetizing curve, the initial magnetizing remanence (IRM), 

the descending and ascending branches of the major hysteresis loop, and the 

demagnetizing remanence. Figure 7.16(d) shows plots of the measured coercive field Hc 

and the measured remanent coercive field Hcr as a function of temperature over the 

interval 5K ! T ! 80K.  
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Figure 7.16: Measured hysteresis loops for a nanoparticulate magnetite powder at temperatures of (a) T = 

5K, (b) T = 10K, (c) T = 15K. (d) The temperature dependence of the measured coercive field (open 

circles) and the measured remanent coercive field (solid circles) for the magnetite powder. The solid lines 

are guides to the eye. 

 

Figures 7.17(a) through 7.17(d) show representative measurements of the 

temperature dependence of the field cooled (FC) moment, the zero field cooled (ZFC) 

moment, the thermoremanent moment (TRM) and the isothermal remanent moment 

(IRM) between 10K ! T ! 300K in a series of applied fields Ha. The experimental 

protocols for the FC moment and the TRM were identical to those described for Tiva 

Canyon Tuff in the Section 7.3. The ZFC moment and the IRM were measured by first 
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thermally demagnetizing the sample in zero applied field Ha = 0 at a reference 

temperature Tref =325K, then cooling in zero applied field to the lowest measurement 

temperature T=10K, followed by the application of a positive field (to obtain the ZFC 

moment), then field removal (to obtain the IRM), and then by field reapplication and 

incremental warming to the next measurement temperature, where the field removal and 

reapplication protocol was repeated. The response functions of the magnetite powder in 

Figure 7.17 share many of the same superparamagnetic characteristics as those of 

titanomagnetite in Figure 7.8, including a bifurcation temperature Tbif ! 250K which lies 

well below the bulk ferrimagnetic critical temperature TC ! 850K of pure magnetite, a 

purely reversible high temperature regime (T > Tbif), and an irreversible low temperature 

regime (T < Tbif) where the moment bifurcates into two distinct FC and ZFC branches, 

accompanied by a simultaneous bifurcation of the remanent moment into distinct IRM 

and TRM branches. In spite of their overall similarity, the behaviour of magnetite and 

titanomagnetite nevertheless differs in one important respect: the thermal profile of the 

low field FC moment in magnetite is quite flat, particularly below the bifurcation point 

and, consequently, the divergence between the FC and ZFC branches is weak, in 

comparison with titanomagnetite, where the rapid variation of the FC moment with 

temperature, which persists down to the lowest measurement temperatures, leads to a 

strong divergence of the FC and ZFC branches.    

Figures 7.18(a) through 7.18(e) show representative measurements of viscosity 

isotherms performed at five different temperatures within the irreversible regime, in a 

series of negative holding fields Ha< 0 (listed in each figure), over an experimental  
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Figure 7.17: Measurements of the FC moment, ZFC moment, TRM, and IRM for nanoparticulate 

magnetite in fields of (a) Ha = 50 Oe, (b) Ha = 100 Oe, (c) Ha = 200 Oe, and (d) Ha = 300 Oe. The solid 

lines are guides to the eye. 

 

observation time window s10t10s
4

!! , and plotted on a logarithmic time scale. The 

experimental protocol was identical to that described in Section 7.3 for Tiva Canyon 

Tuff, but with a different positive saturating field Hsat =10 kOe. As before, only a 

logarithmic or quasi-logarithmic fragment of the complete relaxation isotherm is visible 

within the limited experimental time window.     
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 Figure 7.18: Measurements of viscosity isotherms for nanoparticulate magnetite in a sequence of holding 

fields (listed in each figure) at temperatures (a) T = 10K, (b) T = 15K, (c) T = 20K, (d) T = 40K, and (e) T 

= 50K. The solid lines are guides to the eye. 



  

 185 

The analytical strategy described in Section 7.3 for Tiva Canyon Tuff was 

repeated, in precisely the same sequence, for the system of magnetite nanoparticles, and 

the results are summarized in Figures 7.19 through 7.22 and in Tables 7.5 through 7.8. 

Figure 7.19 shows plots of the “reversal time” data obtained from the viscosity isotherms 

in Figure 7.18 in the form Tln(tr/"0) versus Ha, for a series of values of "0 lying within the 

range 
 
10

!18
s " #

0
"10

!6
s . The inset in this figure shows a magnified view of the behaviour 

of these plots in the limit of low fields and high temperatures. As before, values of "0 

from the centre of the range, specifically "0 = 10
-12 

s and "0 = 10
-11 

s, yield the most 

acceptable universal behaviour, with deviations from universality becoming 

progressively more severe for values of "0 approaching the extreme ends of the range. For 

purposes of the current analysis, we have adopted a value of "0 = 10
-11 

s.  The solid curve 

in Figure 7.19 shows the best model representation of the measured universal curve for 

"0 = 10
-11 

s, assuming a single, purely dissipative Preisach density of characteristic fields 

pirrev(Hd,Hs) consisting of the product of a lognormal distribution of dissipation fields Hd 

and a Gaussian distribution of bias fields Hs. Table 7.5 summarizes the preliminary 

values of the model parameters (µ, Hdm, #d, #s), neglecting reversible contributions. 

Estimates for the reversible parameters f and $, as defined in Section 7.3, were then 

determined by fitting model simulations of hysteresis loops to the measured hysteresis 

loop for T = 5K in Figure 7.15(a), using the superposition in Eq(7.8) and the reversible 

distribution function defined in Eq(7.9). As before, the fit was performed by setting the 

thermal viscosity field HT = 0 (that is, by setting " = #) and the intrinsic coercive field 
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Hdm equal to the measured remanent coercive field Hcr(T = 5K) = 550 Oe, and by 

adopting the original estimates for the dispersions #d = 1.0 and #s = 1.0 listed in Table 

7.1. This procedure yielded best fit values for $ and f of $ = 7.0x10
-4

 Oe
-1

 and f = 0.67. 

Once the reversible component of the magnetic response was defined, model simulations 

of viscosity isotherms were performed assuming the complete superposition of 

dissipative and reversible Preisach densities in Eq(7.8), and comparisons with the 

experimental plot of Tln(tr/"0) versus Ha in Figure 7.19 for "0 = 10
-11 

s were revisited, and 

the parameters in Table 7.5 were revised as necessary. The solid curve in Figure 7.20 

shows the best model description of the data, and the dashed curve shows the 

contribution from the purely dissipative subsystems alone. Table 7.6 summarizes the 

complete set of model parameter values. A comparison of Tables 7.5 and 7.6 shows that 

the principal effects of including a reversible term are significant reductions in the 

elementary moment reversal µ, and in both dispersions #d and #s below the preliminary, 

dissipation-only estimates.       

 

Table 7.5: Preliminary Universal Curve Simulation Parameters 

"0 (s) µ (10
-16

emu) Hdm (Oe) #d #s  

10
-11

 s 2.6 ±0.6  365 ± 5 1.0 ±0.2 1.0 ±0.2 
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Figure 7.19: Reversal time plots (Tln(tr/"0) versus Ha) for a series of values of "0. The solid curve is the 

best model representation of the universal curve for "0 = 10
-11

 s, and assumes a Preisach density consisting 

of a product of a lognormal distribution of dissipation fields and a Gaussian distribution of bias fields, with 

dispersions of  #d = 1.0 and #s = 1.0. 
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Figure 7.20: A model simulation of the reversal time plot (smooth curve) for the universal data set with 

"0 = 10
-11

 s (solid dots). The simulation incorporates a distribution of purely reversible subsystems as well 

as a distribution of dissipative subsystems with Preisach dispersions of #d = 0.6, and   #s = 0.4.  The dotted 

curve is the plot for the dissipative distribution alone (no reversible component). 

 

 Table 7.6: Final Universal Curve Simulation Parameters 

 

 

Once the characteristics of the entire ensemble of two-level subsystems have been 

defined, and the spectrum of metastable state excitation barriers as well as the thermal 

fluctuation field are known, the model acquires predictive capability which may be 

"0 (s) µ (10
-16

emu) Hdm (Oe) #d #s  f $ (10
-4

 Oe
-1

) Msat 

(emu) 

10
-11

 1.8 ± 0.5 650 ± 10 0.6 ±0.2 0.4 ±0.2 0.67 

±0.05 

7.0 ±2.0 2.55 
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exploited to confirm the validity of the viscosity analysis. The solid curves in Figure 

7.21(a) through 7.21(c) show numerical model simulations of moment and remanence 

hysteresis loops at T = 5K, 10K and 15K, superposed directly onto the measured loops 

from Figure 7.16, while Figures 7.22(a) through 7.22(d) show numerical model 

simulations (smooth curves) of the same sequence of FC/ZFC/TRM/IRM measurements 

shown in Figure 7.17. As before, minor adjustments were necessary to a few of the model 

parameters in Table 7.6 in order to optimize the correspondence with the experimental 

data, specifically an increase in the mean elementary moment reversal to µ = 2.5x10
-16

 

emu as well as to some of the applied fields Ha above the nominal experimental values in 

the FC/ZFC/TRM/IRM sequence and, in the case of the hysteresis loops, an increase in 

the dispersion of dissipation fields to #s = 0.5 and in the reversible parameter $ to $ = 

8.0x10
-4

 Oe
-1

. However, in all cases, these adjustments are consistent with the tolerances 

established by the viscosity analysis. Table 7.7 and Table 7.8 summarize the parameter 

values used to generate the hysteresis loop and the FC/ZFC/TRM/IRM simulations, 

respectively.  

We remarked earlier in this section that the single most striking contrast between 

the measured FC/ZFC response functions of magnetite and those of Tiva Canyon Tuff in 

low magnetic fields was the comparative flatness of the FC moment and the comparative 

weakness of the FC/ZFC divergence below the bifurcation point in magnetite with 

respect to Tiva Canyon Tuff. A comparison of the model parameters for the two systems 

in Table 7.2 and Table 7.6, as deduced from the viscosity analyses, reveals that the two 

systems have remarkably similar characteristics (which might have been anticipated to 
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some extent given that the two materials are chemically so similar) with one important 

exception, the dispersions #s of bias fields, which differ by an order of magnitude, with 

#s(magnetite) = 0.4 and #s(titanomagnetite) = 0.05. This is no coincidence. Model 

simulations of FC/ZFC/TRM/IRM response functions based on Preisach collections of 

two-level subsystems have shown [5] that the field and temperature dependence of the 

FC moment (and the TRM) are encoded almost exclusively in the dispersion of bias 

fields #s. (By contrast, the field and temperature dependence of the ZFC moment and the 

IRM are encoded primarily in the dispersion #d of dissipation fields, and are relatively 

insensitive to the dispersion #s of bias fields [5].) Since the role of the bias field Hs within 

the Preisach formalism is to lift the degeneracy of the two-level subsystems, it is 

frequently interpreted as an interaction field (particularly if the microstructure is discrete 

and granular), and we conclude that the difference in the behaviour of the FC/ZFC 

moments observed experimentally in the two systems is directly correlated with the 

strength of the interparticle interactions, which are significant in magnetite where the 

particle packing density is high, and weak in titanomagnetite where the particle 

distribution is comparatively dilute. This situation is correspondingly manifested in the 

model dispersion of bias fields, which is wide (#s = 0.4) in magnetite and narrow (#s = 

0.05) in Tiva Canyon Tuff.      
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Figure 7.21: Model simulations (solid lines) of hysteresis loops using the parameters in Table 7.7, 

superposed over measured hysteresis loops for nanoparticulate magnetite at (a) T = 5K, (b) T = 10K, and 

(c) T = 15K. 

                         

Table 7.7: Hysteresis Loop Simulation Parameters 
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Figure 7.22: Model simulations of the same sequence of FC/ZFC/TRM/IRM measurements for 

nanoparticulate magnetite shown in Figure 7.17, with the simulation parameters listed in Table 7.8: (a) Ha = 

50 Oe, (b) Ha = 100 Oe, (c) Ha = 200 Oe, and (d) Ha = 300 Oe. 

 

 

 Table 7.8: FC/ZFC/TRM Simulation Parameters 
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7.5  Ferromagnetic Ruthenates 

We now turn our attention to a series of three magnetic systems with quite different 

magnetic characteristics from those of the previous two nanoparticulate materials. All 

three are members of a family of polycrystalline mixed ruthenates with chemical formula 

CaxSr1-xRuO3, an orthorhombically distorted perovskite structure, and a single 

magnetically active species Ru [15, 16]. The systems investigated here have Ca fractions 

x = 0.2, x = 0.4, and x = 0.6, and all three are exchange bond-disordered ferromagnets 

with paramagnetic-ferromagnetic critical temperatures TC(x = 0.2) ! 120K,  TC(x = 0.4) ! 

75K, and TC(x = 0.6) ! 45K.  

 

7.5.1 CaxSr1-xRuO3 with x = 0.6    

Figures 7.23 through 7.25 summarize the principal characteristics of the field, 

temperature, and time dependence of the measured magnetic response of Ca0.6Sr0.4RuO3. 

Figures 7.23(a) through 7.23(g) show seven representative hysteresis loops 

measured at T = 5K, 6K, 8K, 10K, 12K, 14K and 16K, following thermal 

demagnetization in zero field from a reference temperature Tref = 80K, by repeated 

application, removal, and reapplication of the magnetic field in increments of  !Ha = 500 

Oe, starting from the demagnetized state and then proceeding to a maximum positive 

field Ha = 50kOe close to technical saturation, and terminating at a maximum negative 

field Ha = -50kOe . The measurements in these figures include the initial magnetizing 

curve, the initial magnetizing remanence (IRM), the descending branch of the major 

hysteresis loop, and the demagnetizing remanence. Figure 7.23(h) shows plots of the 
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measured coercive field Hc (solid dots) and the measured remanent coercive field Hcr 

(open circles) as a function of temperature over the interval 2.5K " T " 18K. An 

inspection of Figure 7.23(h) shows that the measured coercive fields of Ca0.6Sr0.4RuO3 in 

the limit of low temperatures (T"10K) are a factor of 20-30 times larger than those in 

either of the nanoparticulate systems studied in Sections 7.3 and 7.4, and also that the 

magnitudes of the two coercive fields Hc and Hcr are virtually identical, indicating that 

reversible processes in the ruthenates play a much less significant role than they do in the 

superparamagnetic nanoparticulates.  

  

 

 

Figure 7.23: Measured hysteresis loops for Ca0.6Sr0.4RuO3 at (a) T = 5K, (b) T = 6K, (c) T = 8K, and (d) T 

= 10K. 
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Figure 7.23 cont’d: Measured hysteresis loops for Ca0.6Sr0.4RuO3 at (e) T = 12K, (f) T = 14K, (g) T = 16K. 

(h) Measured coercive field Hc (solid circles) and measured remanent coercive field Hcr (open circles) for 

Ca0.6Sr0.4RuO3. The dotted lines are guides to the eye. 

  

 Figures 7.24(a) through 7.24(f) show representative measurements of the 

temperature dependence of the field cooled (FC) moment, the zero field cooled (ZFC) 

moment, the thermoremanent moment (TRM) and the isothermal remanent moment 

(IRM) between 5K " T " 55K in a series of applied fields Ha = 300Oe, 500Oe, 800Oe, 

1000Oe, 2000Oe and 4000Oe. The experimental measurement protocols were identical to 

those described for the nanoparticulates in Sections 7.3 and 7.4 (with the exception of the 

reference demagnetizing temperature Tref = 80K), and will not be repeated here. There are 

(h) 
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clear structural similarities between the FC/ZFC/TRM/IRM response functions of the 

ferromagnetic ruthenate in Figure 7.24 and the corresponding response functions of the 

nanoparticulates in Sections 7.3 and 7.4: specifically, a bifurcation temperature Tbif ! 

45K, below which the moment splits into two distinct FC and ZFC branches, and the 

remanent moment splits into two distinct TRM and IRM branches, and a maximum in the 

temperature dependence of both the ZFC moment and the IRM. In spite of these 

superficial similarities, the response functions of the ruthenate and the nanoparticulates 

nevertheless differ in several important respects. (1) In low applied fields, the bifurcation 

temperature for the ruthenate is essentially coincident with the critical temperature (Tbif ! 

TC), in contrast with the situation in the nanoparticulates, where Tbif << TC. (2) The 

magnitude of the FC moment of the ruthenate decreases significantly with increasing 

temperature throughout the entire irreversible regime and, as a consequence, the magnetic 

response in the high temperature reversible phase is negligible in comparison with the 

low temperature response in the magnetically ordered phase in the limit T " 0. This 

behaviour is characteristic of a material which undergoes a cooperative phase transition 

from a high temperature paramagnetic phase where the response originates from 

individual, uncoupled atomic moments, to a low temperature collectively frozen 

ferromagnetic phase where the atomic moments align spontaneously under the influence 

of the quantum mechanical exchange interaction, and respond cooperatively to changes in 

field. It is the rapid growth of the spontaneous moment with decreasing temperature as 

the system is cooled below TC and through the ferromagnetic phase which is responsible 

for the temperature dependence of the FC moment observed in Figure 7.24. By contrast, 

in the nanoparticulate assemblies, the crossover from the irreversible blocked phase to the 
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reversible superparamagnetic phase occurs at temperatures well below the critical 

ordering temperature of the individual grains, where the spontaneous moment has ceased 

to evolve significantly with temperature and, as a consequence, the magnetic response in 

the two regimes is comparable. (3) In the ruthenate system, the magnitude and the 

thermal profile of the remanent moment both bear a close resemblance to those of the 

corresponding in-field moment, as can be seen by comparing the IRM to the ZFC 

moment, and the TRM to the FC moment in each of the six panels of Figure 7.24. In the 

nanoparticulates, the IRM is typically only a small fraction of the ZFC moment, and the 

maximum in the IRM is displaced toward lower temperatures relative to the maximum in 

the ZFC moment, while the FC and TRM branches diverge rapidly with increasing 

temperature. The data analyses described in Sections 7.3 and 7.4 show that these 

relationships between the branches in nanoparticulates are a signature of materials in 

which effects of temperature are limited exclusively to random energy exchanges with a 

heat bath and in which the moment induced by the application of a field originates 

predominantly from thermal overbarrier activation events.    

 Figures 7.25(a) through 7.25(f) show representative measurements of viscosity 

isotherms performed at six different temperatures T = 8K, 12K, 16K, 24K, 26K and 34K 

within the ferromagnetic phase, in a series of negative holding fields Ha< 0 (listed in each 

figure), over an experimental observation time window s10t10s
4

!! , and plotted on a 

logarithmic time scale. The experimental protocol was identical to that described for the 

nanoparticulates in Sections 7.3 and 7.4, but with a different positive saturating field Hsat 

= 40kOe. As before, only a logarithmic or quasi-logarithmic fragment of the complete 

relaxation isotherm is visible within the limited experimental time window.   
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Figure 7.24: The measured FC moment, ZFC moment, TRM and IRM for Ca0.6Sr0.4RuO3 in fields of (a) Ha 

= 300 Oe, (b) Ha = 600 Oe, (c) Ha = 800 Oe, (d) Ha = 1000 Oe, (e) Ha = 2000 Oe, and (f) Ha = 4000 Oe.  
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Figure 7.25: Measured viscosity isotherms for Ca0.6Sr0.4RuO3 at temperatures of (a) T = 8K, (b) T = 12K, 

(c) T = 16K, (d) T = 24K, (e) T = 26K, and (f) T = 34K. The field in which each isotherm is measured is 

noted to the right of the isotherm. The solid lines are guides to the eye. 
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The analytical strategy described in Sections 7.3 and 7.4 for the nanoparticulate 

systems was repeated for the ferromagnetic ruthenate Ca0.6Sr0.4RuO3, and the results are 

summarized in Figures 7.26 through 7.31 and in Tables 7.9 through 7.12. As before, 

“reversal time” data obtained from viscosity isotherms like those shown in Figure 7.25 

were replotted in the form Tln(tr/#0) versus Ha over an extremely wide range of values of 

the parameter #0 between 10
-40

s " #0 " 10
-5

s, in order to search for evidence of 

universality. By contrast with the behaviour observed in the nanoparticulates, we were 

unable to identify any single value of #0 which was capable of aligning the entire 

“reversal time” data set, for all measurement temperatures T between 6K " T " 34K, onto 

a common universal curve. The main body of Figure 7.26 shows plots of Tln(tr/#0) versus 

Ha for two values of #0, namely, #0 = 10
-9

s and #0 = 10
-12

s which, by common consensus 

[12-14], define approximately  the limits of physical acceptability of this parameter. 

While it may indeed be argued that the data obtained from temperatures below T !10K, 

corresponding to holding fields Ha " $2kOe, are compatible with a common curve, it is 

nevertheless transparent from an inspection of this figure that the degree of alignment of 

neighbouring isothermal segments becomes gradually less satisfactory and the deviations 

from universality become progressively more severe as the temperature increases above 

T = 10K. These deviations are illustrated in the inset to Figure 7.26, which shows a 

magnified view of the behaviour of the two plots for temperatures T #16K and holding 

fields Ha # -1kOe. As an illustration of the systematic manner in which the deviations 

from universality evolve with changes in #0, and as further evidence of the absence of 

convincing universality in this system, Figure 7.27 shows a plot of Tln(tr/#0) versus Ha for 
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an extreme value of #0 = 10
-25

s which lies well outside the nominal range of physical 

acceptability. In the limit of such extremely short characteristic times, deviations from 

universal alignment are observed simultaneously at both low temperatures (T < 15K) and 

high temperatures (T > 25K), as shown by the magnifications in the two insets. (There is 

some indication that continued decreases to #0  may ultimately restore the alignment at 

high temperatures, but only at the expense of introducing even more severe distortions at 

low temperatures.)   

 

Figure 7.26: Reversal time data Tln(tr/ #0) as a function of applied field Ha of Ca0.6Sr0.4RuO3 for two values 

of #0, listed in the figure, which lie in the physically acceptable range. The straight lines represent the 

approximation that considers each isothermal segment to belong to the linear regime of its individual 

isothermal curve. The inset shows a magnification of this plot for temperatures T % 16K. 
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Figure 7.27: A reversal time plot, Tln(tr/ #0) as a function of applied field Ha, of Ca0.6Sr0.4RuO3 for a value 

of #0 = 10
-25

 s which is well below the physically acceptable range for #0. The insets show magnified views 

of the plot for “low” temperatures T & 12K and “high” temperatures T % 26K. 

 

Based on this preliminary analysis, we may tentatively conclude that the 

individual isothermal viscosity segments in Figure 7.26 are each fragments of distinct 

members of an infinite family of isothermal curves, each of which defines the functional 

relationship between the holding field Ha and moment reversal time tr at one fixed 

temperature T, and that the temperature dependence of the magnetic response observed in 

the ferromagnetic ruthenate Ca0.6Sr0.4RuO3 is shaped by a coexistence of thermal 

overbarrier activation events within a free energy landscape which is itself evolving 

explicitly with temperature. The task of the current analysis is to resolve and quantify the 

contributions from these two “competing” processes. However, given the fragmentary, 

non-universal nature of the viscosity data, and hence the absence of any a priori 
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knowledge regarding the functional forms of the individual isothermal curves, it is 

necessary, at least in the initial stages of the analysis, to resort to drastic simplifying 

assumptions. Thus, we may obtain a “zeroth order” estimate for the intrinsic dissipation 

field Hdm(T) and for the elementary characteristic moment reversal µ(T) by adopting a 

linear approximation in which each isothermal segment in Figure 7.26 is assumed to 

belong to the linear regime of its individual isothermal curve. The straight lines in Figure 

7.26 represent this linear approximation. The magnitude of the intercepts Hint(T) of these 

straight lines along the Ha-axis then provide an lower limit on the true intrinsic 

dissipation field, |Hint(T)| " Hdm(T), while the slopes of the straight lines provide an upper 

limit on the mean elementary moment reversal µ(T). Figure 7.28 summarizes the 

temperature dependence of the two parameters Hdm(T) and µ(T) obtained in this way, as 

well as the temperature dependence of the thermal fluctuation field Hf = kT/µ(T). The 

solid curves in this figure are smooth functional representations of the parameters which 

were used to generate model simulations of hysteresis loops and FC/ZFC/TRM/IRM 

response functions.   

At this point, it becomes necessary to depart somewhat from the analytical 

protocol developed for the nanoparticulates in Sections 7.3 and 7.4, since there is 

insufficient information available from the fragmentary viscosity data in Figure 7.26 to 

permit an unambiguous identification of the characteristics of the dissipative Preisach 

density pirrev(Hd,Hs,T) and its evolution with temperature from a comparison with model 

simulations of universal curves. In particular, further progress demands a heavier reliance 

on the hysteresis loop data in Figure 7.23 than before. Thus, model simulations of 



 204 

 

Figure 7.28: The temperature dependence of Hdm(T) (solid circles) and µ(T) (open circles) obtained from 

the straight lines of Figure 7.26, along with the temperature dependence of the thermal fluctuation field Hf 

= kT/µ(T) multiplied by ln(t/#0) = 25. The solid curves are smooth functional representations of the discrete 

data. 

  

hysteresis loops were generated assuming the superposition Preisach density in Eq(7.7), 

with the usual lognormal-Gaussian product distribution of dissipative subsystems in 

Eq(7.5) and the exponential distribution of reversible subsystems in Eq(7.9), as well as 

the temperature dependences for Hdm(T), µ(T) and Hf(T) shown in Figure 7.28. Fits to the 

experimental data in Figure 7.23 were used to establish not only the reversible parameters 

f and ', but also the dispersions (d and (s of dissipative fields and bias fields, 

respectively. The solid curves in Figure 7.29(a) through 7.29(g) show the best model 

representations of the measured hysteresis loops in Figure 7.23 superposed directly over 

the data, and Table 7.9 summarizes the parameter values obtained from these fits. 
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Table 7.9: Hysteresis Loop Simulation Parameters 

 

 

 

 

 

 

 

Figure 7.29: Numerical simulations (smooth curves) of hysteresis loops of Ca0.6Sr0.4RuO3, for (a) T = 5K, 

and (b) T = 6K, superposed on the experimental measurements of the moment (solid circles) and the 

remanence (open circles) from Figure 7.23. 
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Figure 7.29 cont’d: Numerical simulations (smooth curves) of hysteresis loops of Ca0.6Sr0.4RuO3, for (c) T 

= 8K, (d) T = 10K, (e) T = 12K, (f) T = 14K, and (g) T = 16K, superposed on the experimental 

measurements of the moment (solid circles) and the remanence (open circles) from Figure 7.23. 
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Before we can proceed to exploit the model to predict the results of experimental 

measurements of the FC/ZFC/TRM/IRM response functions, one further step is 

necessary. As mentioned earlier, ferromagnetically ordered materials like Ca0.6Sr0.4RuO3 

are characterized by a spontaneous moment which decreases systematically with 

increasing temperature throughout the ferromagnetic phase, from a saturation value at 

low temperatures T " 0, where the atomic moments are all perfectly aligned within each 

domain, to a negligible value in the vicinity of the critical temperature T ) TC, where 

thermal fluctuations are sufficient to destroy the cooperative ferromagnetic alignment of 

the atomic moments [17]. This behaviour is in turn reflected in the temperature 

dependence of the measured response functions in Figure 7.24, and most directly in the 

temperature dependence of the FC branch, where the subsystem moments are each 

permanently frozen into a fixed orientation by a constant cooling field. There is no 

explicit physical or mathematical provision in the Preisach formalism for describing the 

critical “melting” of the two-level subsystems, and the associated collapse of the 

subsystem spontaneous moment µ(T), as T " TC from below and each bistable 

subsystem “disintegrates” into a paramagnetic cloud of uncoupled atomic spins (see, 

however, Souletie [14]). In principle, such effects may be introduced into the formalism 

phenomenologically through the prefactor Msat(T) = N(T)µ(T) in Eq(7.8), which 

represents the saturation spontaneous moment of the entire ensemble of two-level 

subystems in the limit Ha " * (excluding field-induced growth of the single-subsystem 

spontaneous moment µ(T)). However, this presents a dilemma since, in the absence of a 

priori knowledge concerning the total number N(T) of Preisach subsystems, it is 
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impossible to reconstruct Msat(T) from a knowledge of µ(T) alone. Furthermore, the 

magnitude of the elementary activation moment reversal µ(T) as deduced from the 

viscosity analysis actually increases with increasing temperature, as shown in Figure 

7.28, contrary to the behaviour expected of a spontaneous ferromagnetic moment, which 

implies that the growth of the effective activation volume dominates the critical collapse, 

at least for all temperatures up to T ) 34K. Reports of activation volumes which increase 

with increasing temperature are not uncommon in the literature [18, 19], and are not hard 

to rationalize from a physical perspective. If µ(T) measures the volume of the material 

which is swept out when a fragment of domain wall executes a single jump between 

pinning sites, then it is not unreasonable to expect that the magnitude of this jump will 

grow on average as warming reduces the height of the pinning barriers, and the walls 

become increasingly more mobile and freer to translate over longer distances. (From the 

perspective of the model formalism, this growth in µ(T) must presumably be 

counteracted by an even more rapid decrease in N(T), in order that the product N(T)µ(T) 

remain well behaved, that is, a monotonically decreasing function of temperature, 

consistent with the shapes of the FC branches in Figure 7.24.) In light of these conflicting 

considerations, we have chosen to proceed by adopting the physically reasonable 

hypothesis that the thermal profile of the FC moment in the limit of low fields (see 

Figures 7.24(a) and 7.24(b)), where paramagnetic contributions are negligible, provides 

an essentially undistorted image of Msat(T) = N(T)µ(T) which summarizes the combined 

effects of  subsystem population changes, activation volume growth and critical collapse. 

For purposes of model simulations, we have replaced the low field FC data by a smooth 
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functional representation, as shown in Figure 7.30. With Msat(T) thus established, model 

simulations of FC/ZFC/TRM/IRM response functions were generated using the 

parameter values listed in Table 7.9 and the functions plotted in Figure 7.28. The solid 

curves in Figures 7.31(a) through 7.31(f) show these model simulations overlaid on the 

measured FC/ZFC/TRM/IRM data. We emphasize that no parameters were allowed to 

vary during the preparation of these simulations. The model simulations clearly replicate 

the principal structural features of the data and their systematic variation with field and 

temperature remarkably well, and offer compelling support, not only for the linear 

approximation adopted for the interpretation of the viscosity isotherms (straight lines in 

Figure 7.26) in the thermal fluctuation analysis, but also for our principal conclusion that 

the temperature dependence of the magnetic response of Ca0.6Sr0.4RuO3 is dominated by 

field induced transitions over a spectrum of free energy barriers which collapse explicitly 

with temperature as the system is warmed through the ferromagnetic phase, with thermal 

overbarrier activation events playing only a comparatively minor role.     

 

Figure 7.30: A smooth functional representation (solid curve) of the FC moment of low field data in Ha = 

200 Oe, used as an approximate description of the saturation moment Msat(T).  
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Figure 7.31: Numerical simulations (smooth curves) of the FC moment, ZFC moment, TRM and IRM of 

Ca0.6Sr0.4RuO3, for (a) Ha = 300 Oe, (b) Ha = 500 Oe, (c) Ha = 800 Oe, (d) Ha = 1000 Oe, (e) Ha = 2000 Oe, 

and (f) Ha = 4000 Oe, superposed on the experimental measurements (solid dots) originally shown in 

Figure 7.24. 
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7.5.2  CaxSr1-xRuO3 with x = 0.4 

 The analysis of the remaining two ruthenates with compositions x = 0.4 and x = 

0.2 proceeded in precisely in the same manner as that described above and, consequently, 

we content ourselves in the next two sections with a brief summary of the highlights only. 

 Figures 7.32(a) through 7.32(f) show representative measurements of viscosity 

isotherms performed at six different temperatures T = 7K, 14K, 26K, 34K, 42K and 54K 

within the ferromagnetic phase T < TC + 75K, in a series of negative holding fields Ha< 0 

(listed in each figure), over an experimental observation time window s10t10s
4

!! , and 

plotted on a logarithmic time scale. The system was saturated in a field Hsat = 40kOe prior 

to recoiling to the holding field Ha and, as before, the functional form of the decay is 

quasi-logarithmic. 

 In order to quantify the roles played by thermal overbarrier activation and barrier 

growth, “reversal time” data obtained from viscosity isotherms like those shown in 

Figure 7.32 were replotted in the form Tln(tr/#0) versus Ha over a wide range of values of 

the parameter #0, and Figure 7.33 shows one such plot for #0 = 10
-9

s. The inset shows a 

magnified view for temperatures T # 38K. As before, no single value of #0 was capable of 

aligning the entire “reversal time” data set, for all measurement temperatures T between 

7K " T " 62K, onto a common universal curve. For values of #0 from the physically 

acceptable range 10
-12

s " #0 " 10
-9

s, approximate alignment is observed at low 

temperatures T " 14K, but deviations from universality are clearly observed for 

temperatures T #18K and become progressively more severe with increasing 

temperature, as seen in Figure 7.33.   
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Figure 7.32: Measured viscosity isotherms of Ca0.4Sr0.6RuO3 at temperatures (a) T = 7K, (b) T = 14K, (c) T 

= 26K, (d) T = 34K, (e) T = 42K, and (f) T = 54K. Each viscosity isotherm was measured is labelled by its 

holding field Ha. The solid lines are guides to the eye. 
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Figure 7.33: Reversal time data Tln(tr/ #0) as a function of applied field Ha of Ca0.4Sr0.6RuO3 for #0 = 10
-9

s. 

The straight lines represent the approximation that considers each isothermal segment to belong to the 

linear regime of its individual isothermal curve. The inset shows a magnification of this plot for those 

temperatures T % 38K. 

 

 

 The analysis of the viscosity data in Figure 7.33 was conducted by adopting the 

linear approximation in which each isothermal segment is replaced by a straight line, and 

Figure 7.34 shows estimates for the median intrinsic dissipation field Hdm(T) and the 

mean elementary moment reversal µ(T) obtained from the intercept and slope, 

respectively, of the straight lines in Figure 7.33. The solid curves in Figure 7.34 are 

smooth functional representations of Hdm(T), µ(T) and the thermal fluctuation field Hf(T) 
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= kT/µ(T). For purposes of comparison, Figure 7.34 also shows the experimental values 

of the coercive field Hc and the remanent coercive field Hcr obtained from measured 

hysteresis loops. The two coercive fields are virtually identical in magnitude, and lie 

below the intrinsic dissipation field Hdm estimated from the viscosity plots in Figure 7.33. 

 

Figure 7.34: The median intrinsic dissipation field Hdm(T) and the mean elementary moment reversal µ(T) 

obtained from the intercept and slope, respectively, of the straight lines in Figure 7.33. The solid curves are 

smooth functional representations of Hdm(T), µ(T) and the thermal fluctuation field Hf(T) = kT/µ(T), which 

is multiplied by ln(tr/#0) = 25. 

 

 Model simulations of hysteresis loops were generated assuming the superposition 

Preisach density in Eq(7.7), with the usual lognormal-Gaussian product distribution of 

dissipative subsystems in Eq(7.5) and the exponential distribution of reversible 

subsystems in Eq(7.9), as well as the smooth functional representations for Hdm(T), µ(T) 

and Hf(T) shown in Figure 7.34. Fits to the experimental hysteresis loop data were used 
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to establish not only the reversible parameters f and ', but also the dispersions (d and (s 

of dissipative fields and bias fields, respectively. The solid curves in Figures 7.35(a) 

through 7.35(d) show the best model descriptions of four representative hysteresis loops 

measured at T = 6K, 10K, 15K and 20K, superposed directly over the data, and Table 

7.10 summarizes the parameter values obtained from these fits. 

 

 

 

 

Figure 7.35: Numerical simulations (solid curves) of hysteresis loops of Ca0.4Sr0.6RuO3, for (a) T = 6K, (b) 

T = 10K, (c) T = 15K, and (d) T = 20K, superposed on the experimental measurements of the moment 

(solid circles) and the remanence (open circles). 
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Table 7.10: Hysteresis Loop Simulation Parameters 

  

  

Finally, model simulations of FC/ZFC/TRM/IRM response functions were 

generated using the parameter values listed in Table 7.10 and plotted in Figure 7.34. The 

solid curves in Figures 7.36(a) through 7.36(g) show these model simulations overlaid on 

the measured FC/ZFC/TRM/IRM data, and Table 7.11 summarizes the corresponding 

parameter values, which are identical to those in Table 7.10 with one exception, the 

dispersion (d of dissipation fields, which was increased slightly (but within experimental 

tolerances) in order to optimize the description. 

 

 

 

                                       Table 7.11: FC/ZFC/TRM/IRM Simulation Parameters 
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Figure 7.36: Numerical simulations (smooth curves) of the FC moment, ZFC moment, TRM and IRM of 

Ca0.4Sr0.6RuO3, for (a) Ha = 200 Oe and (b) Ha = 400 Oe (c) Ha = 600 Oe, (d) Ha = 1000 Oe , (e) Ha = 2000 

Oe, and (f) Ha = 6000 Oe, superposed on experimental measurements of the FC/ZFC/TRM/IRM (solid 

circles). 
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Figure 7.36 cont’d: Numerical simulations (smooth curves) of the FC moment, ZFC moment, TRM and 

IRM of Ca0.4Sr0.6RuO3 (solid lines), for  (g) Ha = 10000 Oe superposed on experimental measurements of 

the FC/ZFC/TRM/IRM (solid circles). 

 

7.5.3 CaxSr1-xRuO3 with x = 0.2    

 Figures 7.37(a) to 7.37(d) show representative measurements of viscosity 

isotherms performed at four different temperatures T = 15K, 30K, 60K and 80K  within 

the ferromagnetic phase T < TC + 120K, in a series of negative holding fields Ha< 0 

(listed in each figure), over an experimental observation time window s10t10s
4

!! , and 

plotted on a logarithmic time scale. The system was saturated in a field Hsat = 40kOe prior 

to recoiling to the holding field Ha and, as before, the functional form of the decay is 

quasi-logarithmic. 

In order to quantify the roles played by thermal overbarrier activation and barrier 

growth, “reversal time” data obtained from viscosity isotherms like those shown in 

Figure 7.37 were replotted in the form Tln(tr/#0) versus Ha over a wide range of values of 
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Figure 7.37: Measured viscosity isotherms of Ca0.2Sr0.8RuO3 at temperatures (a) T = 15K, (b) T = 30K, (c) 

T = 60K, and (d) T = 80K. Each viscosity isotherm is labelled by its holding field Ha. The solid lines are 

guides to the eye. 

 

the parameter #0, and Figure 7.38 shows one such plot for #0 = 10
-9

s. As before, no single 

value of #0 was capable of aligning the entire “reversal time” data set, for all 

measurement temperatures T between 2K " T " 90K, onto a common universal curve. 

For values of #0 from the physically acceptable range 10
-12

s " #0 " 10
-9

s, approximate 

alignment is observed at low temperatures T " 10K, but deviations from universality are 

clearly observed for temperatures T #15K and become progressively more severe with 

increasing temperature, as seen in Figure 7.38.   
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Figure 7.38: Reversal time data Tln(tr/ #0) as a function of applied field Ha of Ca0.2Sr0.8RuO3 for #0 = 10
-9

 s. 

The straight lines represent the approximation that considers each isothermal segment to belong to the 

linear regime of its individual isothermal curve.  

 

The analysis of the viscosity data in Figure 7.38 was conducted by adopting the 

linear approximation in which each isothermal segment is replaced by a straight line, and 

Figure 7.39 shows estimates for the median intrinsic dissipation field Hdm(T) and the 

mean elementary moment reversal µ(T) obtained from the intercept and slope, 

respectively, of the straight lines in Figure 7.38. The solid curves in Figure 7.39 are 

smooth functional representations of Hdm(T), µ(T) and the thermal fluctuation field Hf(T) 

= kT/µ(T).   
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Figure 7.39: The median intrinsic dissipation field Hdm(T) and the mean elementary moment reversal µ(T) 

obtained from the intercept and slope, respectively, of the straight lines in Figure 7.38 (solid circles). The 

solid curves in Figure 7.39 are smooth functional representations of Hdm(T), µ(T) and the thermal 

fluctuation field Hf(T) multiplied by ln(tr/#0) = 25. 

 

 Model simulations of hysteresis loops were generated assuming the superposition 

Preisach density in Eq(7.7), with the usual lognormal-Gaussian product distribution of 

dissipative subsystems in Eq(7.5) and the exponential distribution of reversible 

subsystems in Eq(7.9), as well as the smooth functional representations for Hdm(T), µ(T) 

and Hf(T) shown in Figure 7.39, and fits to the experimental hysteresis loop data were 

used to establish not only the reversible parameters f and ', but also the dispersions (d 

and (s of dissipative fields and bias fields, respectively. The solid curves in Figures 

7.40(a) through 7.40(d) show the best model descriptions of four representative hysteresis 
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loops measured at T = 5K, 20K, 40K and 70K, superposed directly over the data, and 

Table 7.12 summarizes the parameter values obtained from these fits. 

 

                                       Table 7.12: Hysteresis Loop Simulation Parameters 

 

 

 

Finally, model simulations of FC/ZFC/TRM/IRM response functions were 

generated using the parameter values listed in Table 7.12 and plotted in Figure 7.39. The 

solid curves in Figures 7.41(a) through 7.41(d) show these model simulations overlaid on 

the measured FC/ZFC/TRM/IRM data, and Table 7.13 summarizes the corresponding 

parameter values, which are identical to those in Table 7.12 with one exception, the 

dispersion (d of dissipation fields, which was increased slightly in order to improve the 

description. 
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Figure 7.40: Numerical simulations (smooth curves) of hysteresis loops of  Ca0.2Sr0.8RuO3, for (a) T = 5K, 

(b) T = 20K, (c) T = 40K, and (d) T = 70K, superposed on the experimental measurements of the moment 

(solid circles) and the remanence (open circles). 

  

  

Table 7.13: FC/ZFC/TRM/IRM Simulation Parameters 
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Figure 7.41: Numerical simulations (smooth curves) of the FC moment, ZFC moment, TRM and IRM of 

Ca0.2Sr0.8RuO3 (solid lines), for (a) Ha = 1000 Oe, (b) Ha = 2000 Oe , (c) Ha = 3000 Oe, and (d) Ha = 6000 

Oe , superposed on experimental measurements (solid circles). 
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7.6  Nanodimensional Fe in Alumina 

The final system to be investigated was a nano-structured granular thin film 

consisting of nanodimensional particles of Fe embedded in an insulating alumina (Al2O3) 

matrix. From a microstructural perspective, this system is closely related to the 

nanoparticulate titanomagnetite and magnetite systems studied in Sections 7.3 and 7.4. 

However, from the perspective of its magnetic characteristics, the behaviour of the 

Fe/Al2O3 thin film differs significantly from that of the other two nanoparticulate 

materials and, in many respects, is more reminiscent of the ferromagnetic ruthenates 

discussed in Section 7.5.  

The field, temperature, and time dependence of the measured magnetic response 

of the Fe/Al2O3 thin film is summarized in Figures 7.42 through 7.45. Figures 7.42(a) 

through 7.2(d) show four representative hysteresis loops measured at T = 10K, 20K, 30K 

and 35K, following thermal demagnetization in zero field from a reference temperature 

Tref = 325K. The loops were generated by repeated application, removal, and 

reapplication of the magnetic field in increments of  !Ha = 10 Oe, starting from the 

demagnetized state and then proceeding to a maximum positive field Ha = 2kOe close to 

technical saturation, and terminating at a maximum negative field Ha = -2kOe . The 

measurements in these figures include the initial magnetizing curve, the initial 

magnetizing remanence (IRM), the descending branch of the major hysteresis loop, and 

the demagnetizing remanence. The descending branches of the major loops at all 

temperatures exhibit an anomalous structural feature, in the form of a “knee”, at fields 

intermediate between the coercive field and the field which defines the onset of the 
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approach to saturation. As we shall see shortly, similar anomalous structure is observed 

in measurements of viscosity isotherms. Figure 7.42(e) shows plots of the measured 

coercive field Hc (solid dots) and the measured remanent coercive field Hcr (open circles) 

as a function of temperature over the entire temperature range investigated here 2K ! T ! 

220K. The two coercive fields are almost identical in magnitude, indicating that 

reversible effects play a relatively minor role in this system.   

 

 

Figure 7.42: Hysteresis loops of Fe/Al2O3 measured at (a) T = 10K, (b) T = 20K, (c) T = 30K, and (d) T = 

35K. 
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Figure 7.42 cont’d: (e) Measured coercive field Hc (solid circles) and measured remanent coercive field 

Hcr (open circles) for Fe/Al2O3. The right hand side is a magnified image of this plot for 90K " T " 250K. 

The dotted lines are guides to the eye. 

 

Figures 7.43(a) through 7.43(c) show representative measurements of the 

temperature dependence of the field cooled (FC) moment, the zero field cooled (ZFC) 

moment, the thermoremanent moment (TRM) and the isothermal remanent moment 

(IRM) between 10K ! T ! 300K in a series of applied fields Ha listed in the figures. 

Figure 7.43(a) summarizes the behaviour of the FC and ZFC moments. The ZFC moment 

is negligible at low temperatures, but then develops rapidly upon warming until it merges 

with the FC branch, which decreases monotonically with temperature over the entire 

experimental temperature range. The characteristic temperatures that define the onset of 

rapid ZFC moment growth, and the bifurcation of the FC and ZFC branches, shift 

systematically downward with increasing applied field. Figure 7.43(b) shows the 

temperature dependence of the TRM and the IRM obtained by removing the applied field 

Ha from the FC and ZFC states, respectively. The systematics are essentially identical to 
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those just described for the FC and ZFC moments in Figure 7.43(a). A field of Ha = 

100Oe is sufficient to saturate the TRM at all measurement temperatures T " 5K. For 

applied fields Ha < 100Oe, the individual TRM branches deviate progressively further 

below the saturation branch and merge with the saturation “envelope” at progressively 

higher temperatures. Although the magnetic response is very soft for all temperatures T > 

120K, in the sense that the coercive field Hc becomes vanishingly small (Hc < 5Oe), the 

remanent moment continues to be a significant fraction of its low temperature saturation 

value mTRM(T = 5K, Ha = 100Oe) at all temperatures up to T = 200K. Between 200K < T 

< 250K, the magnitude of the remanence decreases rapidly and vanishes near T # 250K, 

above which the system response becomes purely reversible. While the behaviour 

described above is superficially reminiscent of that observed in the two other 

nanoparticulate systems in Sections 7.3 and 7.4, there are two important distinctions. 

First, the temperature dependence of the moment of Fe/Al2O3 in Figure 7.43(a) above the 

FC/ZFC bifurcation point exhibits a relatively strong, concave downward curvature, and 

the moment rapidly approaches vanishingly small values as T $ 300K from below, in 

sharp contrast to the behaviour observed in the superparamagnetic nanoparticulates in 

Sections 7.3 and 7.4, where the moment decreases very gradually with temperature above 

the bifurcation point. Second, the magnitude and the thermal profile of both of the 

remanent moments of Fe/Al2O3 in Figure 7.43(b) are very similar to those of the 

corresponding in-field moment in Figure 7.43(a). In order to emphasize this similarity, 

the temperature dependence of all four FC/ZFC/TRM/IRM branches have been plotted 

together in Figure 7.43(c) for a single measurement field Ha = 20Oe. This behaviour is 

once again quite different from that observed in the superparamagnetic nanoparticulates, 
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where the IRM is typically a small fraction of the ZFC moment, and where both the TRM 

and the IRM vanish at much lower temperatures than either the FC or ZFC moments. In 

fact, the relationship between the four branches shown in Figure 7.43(c) bears a striking 

resemblance to that observed in the FC/ZFC/TRM/IRM response functions of all three 

ferromagnetic ruthenates at higher fields (as can be seen by comparing Figure 7.43(c) 

with, for example, Figures 7.31(e) and (f), Figures 7.36(f) and (g), and Figure 7.41(d)), 

suggesting that the alumina matrix may well mediate a ferromagnetic coupling between 

the Fe moments which is strong enough to induce the formation of a collectively frozen 

state.  

 

 

Figure 7.43: Measurements of the FC moment, ZFC moment, TRM, and IRM of Fe/Al2O3. (a) The FC and 

ZFC moments in a series of applied fields listed in the figure. (b) The TRM and IRM in a series of applied 

fields listed in the figure. (c) The FC moment, ZFC moment, TRM, and IRM in a field Ha = 20 Oe. 



 230 

Figure 7.44 shows the field dependence of the TRM and the IRM at several 

selected temperatures within the irreversible phase, with all moments normalized to their 

respective saturation remanence. These data offer a complementary perspective on the 

systematics of the temperature dependence summarized in Figure 7.43. Thus, at all 

measurement temperatures, the TRM is observed to lead the corresponding IRM in the 

approach to saturation, while cooling delays the approach to saturation for both branches. 

The distinction between the TRM and IRM branches is particularly pronounced at low 

temperatures (T !  10K), where the TRM reaches saturation in applied fields for which 

the IRM is still a negligible fraction of the saturation remanence.   

 

Figure 7.44: The field dependence of the TRM and the IRM of Fe/Al2O3 as a function of applied field Ha 

measured at the three temperatures listed in the figure. The moments have all been normalized to their 

respective saturation remanence. 

 

Figures 7.45(a) through 7.45(e) show representative viscosity isotherms measured 

at five different temperatures T = 2K, 5K, 15K, 25K and 32K within the irreversible 
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regime, after recoiling from a positive saturating field Ha = 3000 Oe to a series of 

negative holding fields Ha< 0 (listed in each figure). The field recoil rate was |dHa/dt| ~ 

100 Oe/s, and the total effective recoil time (from zero field to the holding field) was 

typically a few seconds, while the time required to stabilize the holding field and lock the 

magnet in persistent mode was tstab ~ 60s. The relaxation of the moment was measured 

over an experimental observation time window s10t10s
4

!! , and is plotted in Figure 

7.45 on a logarithmic time scale. The most distinctive feature of these relaxation 

isotherms, and one which sets the Fe/Al2O3 system apart from all the systems studied up 

to this point, is their curvature, which is comparatively weak at the lowest measurement 

temperatures T ! 3K, but which becomes progressively more pronounced as the 

temperature is increased. The relaxation response is a highly non-linear function of lnt 

and is characterized by a well-defined inflection point which occurs at a time tinfl which is 

roughly coincident with the time tr at which the moment reverses sign, and which shifts 

systematically toward shorter time scales as the magnitude of the holding field increases. 

Furthermore, relaxation isotherms measured in holding fields with magnitudes in excess 

of the major loop coercive field (|Ha|" Hc) exhibit a secondary inflection point which lies 

to the right of the principal inflection point along the lnt-axis, at lntinfl% > lntinfl. This 

secondary structure is clearly visible in Figure 7.45(d) in the relaxation isotherms 

measured at T = 25K in the two highest holding fields Ha = 90Oe and Ha = 100Oe. As we 

will show in detail in the following section, this secondary inflection point is the temporal 

image (equivalent) of the “knee” which is observed in the field dependence of the 

demagnetizing branch of the major hysteresis loops in Figure 7.42. However, the 

existence of such a relationship is easy to anticipate from an inspection of the Preisach 
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Figure 7.45: Measurements of viscosity isotherms of Fe/Al2O3 in a sequence of applied fields (listed in 

each figure) at temperatures (a) T = 2K, (b) T = 5K, (c) T = 15K, (d) T = 25K, and (e) T = 32K. 
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diagram in Figure 7.46, which shows that the subset of Preisach elements which 

experience moment reversal from the +µ state to the –µ state when the frontal boundary 

moves through the Preisach distribution from position 1 to position 2 (shaded region in 

Figure 7.46) is the same, whether the motion of the boundary is driven by changes in 

field Ha at fixed observation time t, or by changes in observation time t at fixed field Ha. 

As a consequence, the functional form of the relaxation response at a given temperature T 

is expected to mirror the shape of the demagnetizing branch of the major hysteresis loop 

at that temperature.  

 

Figure 7.46: The Preisach diagram showing that the subsystems which experience moment reversal from 

+ µ to –µ (shaded region) when the frontal boundary moves from 1 to 2 is the same whether time lapses at a 

fixed Ha, or the field changes at a constant rate. 
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The reversal-time-based viscosity analysis was applied to the Fe/Al2O3 relaxation 

isotherms in Figure 7.45, and Figure 7.47 shows a plot of Tln(tr/&0) as a function of 

holding field Ha over the entire temperature range 2K ! T ! 40K investigated here, for a 

series of four values of &0 lying within the range 

� 

10
!18
s " #

0
" 10

!6
s. The inset shows a 

magnified view of the behaviour of these plots in the limit of low fields |Ha| ! 60Oe and 

high temperatures T " 28K for &0 = 10
-9

s and &0 = 10
-12

s. The principal features of these 

plots and their systematic variation with &0 are essentially identical to those of the three 

ferromagnetic ruthenates in Figures 7.26, 7.33 and 7.38 in Section 7.5. In particular, there 

is no single value of &0 which is capable of simultaneously aligning all of the isothermal 

viscosity segments to form a single continuous universal curve, although there is some 

suggestion that, for values of &0 in the physically acceptable range 10
-12

s ! &0 ! 10
-9

s, the 

data at low measurement temperatures T ! 12K may be compatible with a common 

curve. In the absence of compelling evidence for universality over a significant 

temperature interval, the linear approximation was adopted for each isothermal segment, 

and the left panel of Figure 7.48 summarizes the temperature dependence of the median 

dissipation field Hdm(T) obtained from the intercepts, the mean elementary moment 

reversal µ(T) obtained from the slopes, and the thermal fluctuation field Hf = kT/µ(T). 

The symbols with attached error bars show the individual parameter values, while the 

solid curves are smooth functional representations which were used to generate model 

simulations of magnetic response functions. Due to difficulties associated with resolution 

and excessive data scatter, no reliable viscosity measurements were available for 

temperatures above T = 50K, and consequently the measured coercive fields were used as 
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a guide to define the functional representation of Hdm(T) in this region. The solid dots in 

the right hand panel show these measured coercive fields Hc, and the solid curve shows 

the continuation of the functional representation of Hdm(T) from the left hand panel.  

 

Figure 7.47: Reversal time plots (Tln(tr/&0) vs. Ha) for four values of &0, shown over the entire range of 

temperatures and holding fields. The inset is a magnified version of the plots for T ' 28K. 

 

As before, model simulations of hysteresis loops were then generated assuming 

the superposition Preisach density in Eq(7.7), with the usual lognormal-Gaussian product 

distribution of dissipative subsystems in Eq(7.5) and the exponential distribution of 

reversible subsystems in Eq(7.9), as well as the temperature dependences for Hdm(T), 

µ(T) and Hf (T) shown in Figure 7.48, and fits to the experimental data in Figure 7.42 

were used to establish not only the reversible parameters f and (, but also the dispersions 

)d and )s of dissipative fields and bias fields, respectively. The solid curves in Figure 
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7.49(a) through 7.49(d)  show the best model representations of the measured hysteresis 

loops in Figure 7.42 superposed directly over the data, and Table 7.14 summarizes the 

parameter values obtained from these fits. 

 

Figure 7.48: The temperature dependence of Hdm(T) (solid circles) and  µ(T) (triangles) obtained from the 

slopes of the individual isotherms in Figure 7.47, along with the temperature dependence of the thermal 

fluctuation field Hf = kT/ µ (T) (open circles) multiplied by ln(tr/&0) = 25. The solid curves are smooth 

functional representations of the point-by-point data. 

 

Table 7.14: Hysteresis Loop Simulation Parameters 

 

 

 

&0 (s) texp(s) )d )s (normalized to 

Hdm(0) = 430Oe) 

f ( (10
-4

 Oe
-1

) Msat (emu) 

10
-9

 10
2
 0.1 

±0.02 

0.015 ±0.002 0.42 ± 

0.03 

2.00 ± 0.05 0.012 
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Figure 7.49: Numerical simulations (smooth curves) of hysteresis loops of Fe/Al2O3 superposed on the 

experimental measurements of the moment (solid circles) and the remanence (open circles) from Figure 

7.42, at temperatures (a) T = 10K, (b) T = 20K, (c) T = 30K, and (d) T = 35K. 

 

Finally, model simulations of FC/ZFC/TRM/IRM response functions were 

generated using the parameter values listed in Table 7.14 and plotted in Figure 7.50 and 

Figure 7.51. The solid curves in Figures 7.50 show model simulations of the remanent 

moments (TRM and IRM) in five applied fields Ha = 10Oe, 15Oe, 20Oe, 25Oe and 80Oe, 

assuming a constant, temperature independent saturation moment Msat(T) = N(T)µ(T), 

and Figure 7.51 shows model simulations of the entire set of FC/ZFC/TRM/IRM 

response functions which include a smooth functional representation for the saturation 
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moment Msat(T) that reproduces the shape of the FC data measured in a field Ha = 6Oe. 

The model simulations clearly replicate the complex structural characteristics of the 

experimental data in Figure 7.43, as well as their systematic variation with field and 

temperature, remarkably well, and offer compelling evidence that the temperature 

dependence of the magnetic response of Fe/Al2O3 is dominated by field induced 

transitions over a spectrum of free energy barriers which collapse explicitly with 

temperature as the system is warmed through the irreversible phase. This collapse is 

illustrated in Figure 7.52, which shows contour plots of the Preisach density of 

dissipative subsystems pirrev(Hd,Hs) at six temperatures within the irreversible phase. The 

simulations also lend indirect support to our earlier contention that the system of Fe 

nanoparticle moments forms a collectively ordered state with ferromagnetic correlations. 

If this is indeed the case, then it is unlikely that the parameter )s = 0.015 is a direct 

measure of the actual magnetostatic interaction fields between the Fe nanoparticles (as it 

is in the superparamagnetic titanomagnetite and magnetite systems), any more than the 

parameter )s # 0.02 in the ferromagnetic ruthenates is a direct measure of the interatomic 

exchange interactions between the magnetic Ru atoms. We speculate that in magnetically 

ordered materials, )s measures either the strength of the interactions between magnetic 

domains, or fluctuations in the energies of the metastable states themselves due to spatial 

variations in the local anisotropy constants ()d measures the fluctuations in the 

metastable state excitation barrier heights).    
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Figure 7.50: Numerical simulations of the TRM and IRM for Fe/Al2O3 in the applied fields listed in the 

figure, assuming a temperature independent saturation moment. 

 

 

Figure 7.51: Numerical simulations of the FC, ZFC, TRM, and IRM in the applied fields listed in the 

figure, for comparison with Figure 7.43(a) and 7.43(b). The simulations include a smooth functional 

representation of the saturation moment Msat(T). 
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Figure 7.52: Contour plots of the Preisach density of dissipative subsystems pirrev(Hd,Hs) at a series of 

temperatures within the irreversible phase. 
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7.7  Comparisons with Other Analytical Strategies 

The Preisach two-level subsystem formalism has inspired two other closely 

related analytical strategies for extracting the thermal fluctuation field Hf from families of 

viscosity isotherms like those shown in Figure 7.2. Both prescriptions employ a 

transformation of variables from lnt to an effective field Heff, which is the sum of the 

applied field and an effective thermal field Heff = Ha + Hthermal, and which collapses the 

relaxation isotherms measured at one temperature T in a sequence of different holding 

fields Ha onto a common “master” relaxation curve which is congruent to the major 

intrinsic hysteresis loop measured in the limit of infinitely fast sweep rates (t ! "0). 

(a) Prescription 1 [20-22]: The first approach applies to a family of relaxation 

isotherms which have been generated in a series of negative holding fields Ha < 0 after 

recoiling at a prescribed negative rate dHa /dt < 0 from a large positive saturating field. 

As a consequence of the finite relaxation rate, Preisach subsystems with dissipation fields 

Hd < H* = Hf ln[Hf /("0|dHa /dt|)] have already reached their equilibrium (t ! #) 

configuration before the holding field H0 is stabilized at its final value, and relaxation 

measurements commence. If the number of Preisach elements with dissipation fields Hd < 

H* is vanishingly small, then the Preisach formalism predicts that the measured major 

loop coercive field Hc will vary linearly with the sweep (or recoil) rate as follows: 

 

 

                                                 Hc = Hf ln(|dHa /dt|) + C                                            (7.10) 
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where C is a constant. Furthermore, the entire family of relaxation isotherms M(t, Ha, dHa 

/dt) measured in a series of holding fields Ha will collapse onto a single “master” curve 

M(Hathermal) under a transformation of variables from lnt to an effective “athermal” field 

Hathermal which summarizes the combined effects of applied field and temperature in the 

hypothetical limit where thermal effects may be completely eliminated, and which is 

defined by [20] 

 

                Hathermal = Ha – Hf ln[(t/"0) + Hf /("0|dHa /dt|)]  .                   (7.11) 

 

Moreover, this master relaxation curve M(Hathermal) is identical to the intrinsic (t ! "0) 

hysteresis loop obtained by applying the transformation in Eq(7.11) to a series of  

experimental hysteresis loops measured in a series of different finite sweep rates dHa /dt 

[20].  

Figure 7.53 shows an application of the transformation in Eq(7.11) to viscosity 

data obtained from the Fe/Al2O3 system studied in Section 7.6. For typical magnetometer 

sweep rates dHa /dt $100 Oe/s and typical thermal fluctuation fields Hf on the order of a 

few Oersteds, the second term in Eq(7.11) is negligible in comparison with the first term, 

and Hathermal may be safely approximated by 

 

                          Hathermal  % Ha – Hf ln(t/"0)                                      (7.12)   
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Figure 7.53 shows the entire set of viscosity isotherms in Figure 7.45(d) measured at T = 

25K replotted as a function of the athermal field in Eq(7.12) using the value of the 

thermal fluctuation field Hf = 3.6 Oe obtained from the “linearized” viscosity analysis in 

Section 7.5, and assuming "0 = 10
-9 

s. For purposes of comparison, the figure also shows 

the descending branch of the major hysteresis loop measured at T = 25K (solid curve 

through open circles). The “master” relaxation curve faithfully replicates the shape of the 

major loop, including the “knee” which is observed near Ha % – 200 Oe close to the 

approach to saturation.  

 

Figure 7.53: Transformation of variables (solid circles) from lnt to an effective field Hath applied to the 

viscosity data for Fe/Al2O3 in Figure 7.45 measured at T = 25K. The solid curve through open circles is the 

descending branch of the major hysteresis loop measured at T = 25K. 
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(b) Prescription 2 [23-25]: The second approach is based on the model prediction 

that viscosity isotherms for a Preisach ensemble of completely non-interacting bistable 

subsystems with vanishing bias fields Hs = 0 are identical in shape and differ only in a 

horizontal shift along the lnt-axis which varies linearly with the difference in holding 

field Ha as [23] 

 

                                                             &lnt = – &Ha / Hf   .                                   (7.13) 

 

Thus, by applying suitable time shifts, the entire family of relaxation isotherms in all 

holding fields may be superposed onto a common curve. Furthermore, this “master” 

relaxation curve is perfectly congruent with the major hysteresis loop under a 

transformation of variables from lnt to an effective field given by [23] 

 

                    Heff = Hf lnt – Hf ln["0 e
-(µ/kT)

] + Ha                          (7.14) 

 

where µ is the chemical potential. Figure 7.54 illustrates this behaviour for a weakly 

interacting model system with a lognormal-Gaussian Preisach density and with 

dispersions 'd = 0.5 and 's = 0.01. Figure 7.54(a) shows a set of model viscosity 

isotherms generated in a series of holding fields ha and plotted as a function of the 

thermal viscosity field hT = hf ln(t/"0), while Figure 7.54(b) shows the same set of 

isotherms plotted as a function of the effective field heff in Eq(7.14), assuming µ = 0. For 
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all holding fields |ha| > 0.2, the isotherms are perfectly congruent with each other and 

with the major intrinsic hysteresis loop.  

When the Preisach elements are allowed to interact, that is, for non-vanishing 

values of the dispersion of bias fields 's, the relaxation isotherms generated in different 

holding fields are no longer identical in shape, and each isotherm approaches an 

asymptotic equilibrium moment meq(t ! #) which depends on the holding field ha, as 

may be clearly seen by an inspection of the four families of model isotherms shown in 

Figure 7.3. The second prescription claims (without any rigorous, formal justification) 

that the linear relationship in Eq(7.13) and the field transformation in Eq(7.14) continue 

to be valid, and continue to produce superposition and congruency, for assemblies of 

interacting Preisach elements provided that the viscosity isotherms are first renormalized 

to have a common equilibrium moment meq(t ! #) = –1  by implementing the following 

algorithm[25]: 

 

               ( ) ( )[ ]
( ) ( )
( ) ( )

1
m0m

mtm
10mtm !"

#

$
%
&

'

(!

(!
+=   .                               (7.15) 

 

The successful application of this algorithm clearly depends on accurate estimates 

for the equilibrium moment m(!), which in turn demands that a sufficient portion of the 

complete relaxation function be accessible within the available experimental time 

window (typically limited to the interval between 1s " t " 10
5 
s for commercial 

magnetometers) to define at least the initial stages of the approach to equilibrium.    
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Figure 7.54: Model viscosity isotherms calculated in the fields listed to the right of each plot, for a 

lognormal-Gaussian Preisach density with 'd = 0.5 and 's = 0.01, plotted as a function of (a) HT, and (b) 

replotted after the transformation of HT to heff = Ha + HT. 

  

The two analytical prescriptions outlined above are very similar in several 

respects. In both cases, the determination of the thermal fluctuation field Hf depends on 

the validity of a linear relationship, which is Eq(7.10) for prescription 1 and Eq(7.13) for 

prescription 2. Both strategies also impose certain conditions on the Preisach distribution 

of characteristic fields p(Hd,Hs) which effectively demand that the distribution be 

concentrated in the vicinity of the mean dissipation field Hdm. This condition is 

essentially equivalent to placing limits on the structural disorder which guarantee that the 

distribution of metastable state excitation barriers is sufficiently narrow that there is a 

negligible population of Preisach elements with relaxation time constants which lie 

outside the experimentally accessible time window, at either the long time or short time 

end of the relaxation spectrum. 

 However, macroscopic magnetic systems are typically characterized by significant 

structural disorder (grains and grain boundaries, fluctuations of composition, surface 

roughness, random variations of particle shape, size, orientation, and position) leading to 



 247 

an extremely complex free energy landscape with a multitude of local minima and 

maxima hierarchically distributed over a broad energy scale. As a consequence, the 

spectrum of system relaxation times extends continuously from microscopic time scales t 

= "0  ( 10
-9 

s  to geological time scales and beyond, and only a short, quasi-logarithmic 

fragment of the complete relaxation response curve is observed within the experimental 

time window. In the absence of both short-time and long-time points of reference and 

sufficient structural features to define the functional form of the relaxation isotherms, 

“conventional” scaling prescriptions become highly unreliable, and new strategies must 

be developed. In particular, we will show that the applicability of “conventional” scaling 

techniques is severely limited by the temperature at which the isotherms are measured, 

and that attempts to enforce superposition indiscriminately may lead to spurious 

behaviour for Hf. The vast majority of magnetic systems studied in our research 

laboratory possess considerable structural disorder, and one of the principal motivations 

for the investigations undertaken in this thesis was the need to develop a general strategy 

for analyzing sets of “fragmentary” relaxation isotherms which is independent of the 

specific functional form and characteristics of the Preisach distribution.  

The presence of structural disorder in a given magnetic material is reflected in the 

two dispersions of characteristic fields 'd and 's. Vanishing dispersions correspond to the 

hypothetical limit of negligible disorder. In order to illustrate the relationships between 

the various strategies as well as the limitations of the individual approaches,  we have 

chosen to present numerical simulations of viscosity isotherms for a model system with a 

lognormal-Gaussian Preisach density, with dispersions 'd = 1.0 and 's = 1.0, 

corresponding to substantial structural disorder. Figure 7.55 shows the viscosity 
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isotherms for this model system generated in a sequence of negative holding fields 

between 0 " ha " – 8 and plotted as a function of the reduced thermal viscosity field hT. 

The three pairs of vertical lines in this figure show those portions of the isotherms which 

would be visible experimentally at three different temperatures hf = 0.01, hf = 0.03 and hf 

= 0.1, if the measurement time window were limited to 10s " t " 10
4
s. The presence of 

significant structural disorder has three principal consequences. (1) The relaxation is very 

gradual and relatively featureless. (2) Relaxation measurements performed at a single  

 

Figure 7.55: Model viscosity isotherms calculated in the fields listed to the right, for a lognormal-Gaussian 

Preisach density with 'd = 's = 1.0. The vertical lines show those portions of the isotherms which would be 

visible in an experimental time window 10s ) t ) 10
4
s at temperatures hf = 0.01, 0.03, and 0.1. 

 

temperature yield only a short quasi-logarithmic fragment of the entire relaxation 

isotherm. (3) Each isotherm converges to an equilibrium moment in the limit hT ! # 

which is dependent on the holding field ha. This last effect is very specifically related to 

the finite value of the dispersion of bias fields 's. In the limit 's ! 0, all viscosity 

isotherms converge to a common equilibrium moment meq = tanh(ha/hf) $ –1, 
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independent of 'd, for ha < 0 and hf  sufficiently small, as illustrated in Figure 7.54(a).  In 

Figures 7.56(a) through 7.56(c), the model relaxation isotherms in Figure 7.55 have been 

replotted as a function of the effective field heff = ha – hf ln(t/"0) defined in Eq(7.12), for 

all three temperatures hf. For purposes of comparison, these figures also show the 

descending branch of the intrinsic major hysteresis loop (solid curves) generated in the 

limit of zero temperature hf ! 0 and replotted as a function of |ha|. For the lowest  

 

Figure 7.56: The relaxation isotherm segments within the experimental temperature-time windows (solid 

circles) of Figure 7.55 replotted as a function of heff :  (a) hf = 0.01, (b) hf = 0.03, and (c) hf = 0.1. The solid 

line in each panel is the descending branch of the intrinsic major hysteresis loop. 

 

temperature data at hf = 0.01, the transformation of variables to heff does indeed lead to an 

acceptable (but not perfect) superposition of the original set of isotherms on to a universal 

curve which is also coincident with the major intrinsic loop. However, the higher 
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temperature data at hf = 0.03 and hf = 0.1 do not scale onto a universal curve and are far 

from coincidence with the intrinsic major loop, except perhaps at holding fields 

approaching negative saturation. It follows that superposition is not, in general, a reliable 

criterion for establishing the thermal fluctuation field since it presupposes conditions of 

temperature and disorder that are not a priori verifiable. In fact, any attempt to enforce 

scaling and congruency with the major loop at these higher temperatures by treating hf as 

an adjustable parameter would inevitably lead to a serious underestimate of the 

fluctuation field, as illustrated in Figure 7.57 for the hf = 0.1 relaxation data, where it is 

seen that a value of hf = 0.01 yields quite convincing scaling for all fields up to and 

beyond the coercive field hc # 1.2.   

 

 

Figure 7.57: Scaling ‘attempt’ for the hf = 0.1 segments of the viscosity isotherms of Figure 7.55 plotted as 

a function of hef (Figure 7.56(c)). The most convincing scaling occurs with hf = 0.01. The solid curve is the 

descending branch of the hysteresis loop plotted as a function of the applied field ha. 
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Furthermore, renormalizing the equilibrium anhysteretic moment to -1, as 

required by prescription 2, does not significantly improve either the quality of the scaling 

or the overlap with the intrinsic loop. In Figure 7.58, the model relaxation isotherms in 

Figure 7.55 have been replotted after renormalizing to a common equilibrium moment 

meq = –1 using the algorithm in Eq(7.14), and Figures 7.59(a) through 7.59(c) show the 

effect of replotting the portions of the isotherms which lie within the three temperature 

windows indicated by the pairs of vertical lines in Figure 7.58 as a function of the 

effective field heff = ha – hf ln(t/"0). The deviations from the intrinsic hysteresis loop are 

in the opposite sense to those in Figure 7.56 obtained from the original isotherms in 

Figure 7.55, and deviations from isotherm scaling are observed at all temperatures, even 

at the lowest temperature hf = 0.01, where renormalization actually destroys the “natural” 

scaling of the original isotherms in Figure 7.56(a). 

 

Figure 7.58: The same set of model viscosity isotherms shown in Figure 7.55, replotted with m normalized 

to a common equilibrium moment meq = -1. 
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Figure 7.59: The normalized relaxation isotherm segments within the experimental temperature-time 

windows (solid circles) in Figure 7.58 replotted as a function of heff :  (a) hf = 0.01, (b) hf = 0.03, and (c) hf 

= 0.1. The solid line in each panel is the descending branch of the instrinsic major hysteresis loop. 

 

Systematics very similar to those shown in the model simulations in Figure 7.56 

are observed in experimental measurements of relaxation isotherms. As an example, 

Figures 7.60(a) through 7.60(c) show the effects of applying the field transformation in 

Eq(7.12) to the measured viscosity data and major hysteresis loop data of the 

nanoparticulate magnetite system in Figures 7.18 and 7.16 of Section 7.4. Figure 7.60(a) 

shows the viscosity data measured at T = 10K (solid dots) after applying the effective 

field transformation using the value of the elementary moment reversal µ = 2.8x10
-16 

emu 

deduced from the viscosity analysis in Figure 7.19, assuming "0 = 10
-12

s, as well as the 

descending branch of the major hysteresis loop at T = 10K (smooth curve) after 
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transforming to Heff  = Hf ln(texp/"0) + Ha assuming an experimental measurement 

(stabilization) time constant texp = 100s. The viscosity data scale very convincingly onto a 

“master” relaxation curve that coincides with the transformed (intrinsic) hysteresis loop. 

Figures 7.60(b) and 7.60(c) show the result of repeating this procedure at T = 30K and    

T = 60K, respectively. The deviations from scaling become progressively more 

pronounced with increasing temperature, and exhibit a systematic evolution with 

temperature which is strikingly reminiscent of that observed in the model simulations in 

Figures 7.56(b) and 7.56(c).      

 

Figure 7.60: Transformation of variables from lnt to an effective field Heff applied to the measured 

viscosity data for nanoparticulate magnetite from Figure 7.18. The solid curves shown the same 

transformation applied to and to the measured descending branch of the major hysteresis loop. 
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 The strength of an analytical approach based on “reversal times” rests on the fact 

that Tlntr data collapse onto a universal curve even when the relaxation isotherms do not. 

The solid curve labeled (a) in Figure 7.61 shows the complete “reversal” curve generated 

from the model relaxation isotherms in Figure 7.55 for all temperatures 0 " hf  " # and all 

holding fields between -1.2 " ha " 0. The two pairs of horizontal dotted lines in Figure 

7.61 show the portions of the universal curve which would be visible at temperatures hf = 

0.01 and hf = 0.1 in a  measurement time window 10s " t " 10
4
s.  With the correct choice 

of the microscopic time constant "0, the segment of curve (a) in Figure 7.61 constructed 

from reversal times acquired at temperature hf = 0.1 falls on the same curve as the 

segment acquired at hf = 0.01. However, the corresponding family of relaxation isotherms 

within the hf = 0.1 window in Figure 7.55 do not collapse onto a common curve, even 

with the correct choice for hf and "0, as shown in Figure 7.56(c). The solid curve labeled 

(b) in Figure 7.61 corresponds to the “reversal” curve generated for the renormalized 

model relaxation isotherms in Figure 7.58. Contrary to the claims of prescription 2, 

renormalization does not restore the linear relationship between hT and ha expected for a 

non-interacting system (straight line labeled (c) in Figure 7.61), and in fact 

overcompensates for the curvature of the original plot.  
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Figure 7.61: (a) Reversal curve generated for the model relaxation isotherms in Figure 7.55. (b) Reversal 

curve generated for the renormalized model relaxation isotherms in Figure 7.58. (c) Linear relationship 

between hTr and ha expected for a perfectly non-interacting system. The horizontal lines define the limits of 

the experimental time window 10s ) tr ) 10
4
s for hf = 0.01 and hf = 0.1. 
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Chapter 8 

 

Conclusion and Future Work 

 
 

One of the characteristic signatures of a material which is not in thermodynamic 

equilibrium is the dependence of the material properties on the time t for which the 

material is observed. In magnetic materials, the relaxation of the magnetic properties that 

accompanies the spontaneous approach to equilibrium, and which is ultimately driven by 

random energy exchanges with a heat bath, is of considerable fundamental interest for its 

potential as a sensitive probe of the structure of the free energy landscape, with its 

multitude of local metastable minima, maxima and saddle points, as well as of 

considerable practical interest, particularly in connection with the limitations that it 

imposes on the ultimate bit size of information storage media and on the stability of 

permanent magnets, both of which depend on the preservation of a stable magnetic state. 

The investigation presented here employs model simulations and experimental 

measurements of the field and temperature and time dependence of a suite of standard 

macroscopic magnetic response functions, which include viscosity isotherms, hysteresis 

loop isotherms, the field cooled moment, the zero field cooled moment, the 

thermoremanent moment and the isothermal remanent moment. Two fundamental aspects 

of the non-equilibrium relaxation dynamics which characterize the approach to 

equilibrium were studied: (a) aging, memory, and rejuvenation effects in materials (both 
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magnetic and nonmagnetic) which are observed to undergo a vitreous transition, either 

structural or magnetic, into a frozen, disordered glassy ground state configuration, and (b) 

the intricate relationship between metastability, which is responsible for hysteresis, and 

thermal fluctuations, which are responsible for relaxing the system toward equilibrum, 

and their joint evolution with temperature as a material is progressively warmed through 

the irreversible regime and its hysteretic response to changes in field and temperature 

gradually and systematically fades toward the ideal equilibrium limit of perfect 

reversibility. The model simulations are predicated on the “Preisach hypothesis” that the 

free energy landscape may be decomposed into an ensemble of bistable fragments, each 

with a double-well free energy profile in a two-state configuration space. The principal 

emphasis in this thesis is on model systems and real materials which are characterized by 

substantial structural disorder, which leads to a very broad distribution of energy barriers 

and a correspondingly broad spectrum of relaxation times stretching from microscopic to 

geological time scales, as well as to a broad distribution of magnetostatic and exchange 

interactions of competing magnitude and sign.  

 

8.1. Aging, Memory, and Rejuvenation Effects in 

Collections of Two-Level Subsystems 

 

The model simulations presented in Chapter 6 offer a systematic and 

comprehensive theoretical exploration of the relaxation dynamics of a Preisach ensemble 

of two-level subsystems in response to all of the standard experimental protocols which 

are employed to study aging, memory and rejuvenation effects in magnetic spin glasses. 
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The simulations show that these effects are potentially far more ubiquitous than was 

previously imagined, and that aging, memory and rejuvenation are also fundamental 

characteristics of Preisach ensembles of interacting bistable elements, although their 

physical origins are very different from those proposed for spin glasses, which depend on 

the formation of a cooperatively ordered, highly degenerate, frustrated magnetic ground 

state, with either a hierarchical tree of metastable configurations which bifurcates with 

decreasing temperature or with a system consisting of two types of droplet domains 

which grow by thermal activation. Preisach theory incorporates no such collective critical 

effects, and Preisach ensembles consist of bistable elements which may indeed interact 

with each other, but which otherwise relax independently over their own individual 

energy barriers. In such ensembles, the transition from reversible to irreversible 

behaviour which occurs as the system is cooled from high temperatures is directly related 

to the gradual and progressive blocking of the individual Preisach elements as they fall 

out of thermal equilibrium on the time scale of the experimental measurement. Under 

these conditions, aging, memory and rejuvenation are all essentially a consequence of 

trapping a particular group of subsystems into their instantaneous (blocked) equilibrium 

configurations mB during cooling, each at a temperature TB which depends on the 

properties of that subsystem, and then allowing this group to relax (or age) to thermal 

equilibrium at a temperature T (lower than all the individual blocking temperatures TB), 

thereby replacing their blocked moments mB(TB) by equilibrium moments meq(T) which 

are all  closer to saturation, !meq(T)!> !mB(TB)!. When the ensemble is subsequently 

subjected to a change in field or to a shift in temperature, the relaxation response exhibits 

characteristic structure which depends on whether this “aging imprint” survives totally 
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intact, or partially intact, or is completely obliterated by the change (rejuvenation). The 

effects predicted by the model are similar in magnitude and in their systematic 

dependence on field and temperature and time to those observed experimentally in spin 

glasses, although the specific structural details are not all identical. Although the effects 

described here are all non-collective in origin, they are nevertheless all sensitive to the 

characteristics of the distribution of bias (or interaction) fields and some, like aging 

effects under zero field cooled conditions, depend upon the presence of non-vanishing 

interactions for their existence. It is important to emphasize that the model formalism 

studied here is in no way intended to replace collective theories of aging and memory 

based on droplet domain growth or bifurcating hierarchical trees but, rather, we imagine 

that the behaviour observed in spin glasses is most likely the result of a coexistence of 

collective and non-collective relaxation dynamics due to some combination of 

intercluster magnetostatic fields, which are describable by a Preisach-like approach, and 

genuine interatomic exchange fields, which require cooperative theories of phase 

transitions. 

While the model simulations presented here are certainly compelling, little effort 

has thus far been expended searching for experimental evidence of aging, memory and 

rejuvenation in weakly interacting superparamagnetic materials which fall out of 

equilibrium during cooling via a gradual, progressive blocking process. An age 

dependence has been observed in the thermoremanent moment of a dilute assembly of 

Fe3N nanoparticles, and we have preliminary (but inconsistent) evidence of aging in the 

TRM of the Fe/Al2O3 nanoparticulate thin film. We have also observed memory effects 

in Fe/Al2O3, but only under conditions where temperature cycling is accompanied by a 
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change in field, which is now a widely accepted and understood memory feature of both 

superparamagnets and spin glasses. In principle, all of the nanoparticulate assemblies 

studied in this thesis are potential candidates for observing the types of aging and 

memory effects described by our numerical simulations, and future work will concentrate 

primarily on the experimental identification of these effects in these systems.    

 

8.2. Probing the Temperature Dependence of the Free 

Energy Landscape in Magnetic Materials with 

Persistent Memory 

 

The magnetic properties of all materials which exhibit persistent memory and a 

history dependent response to an external field stimulus are functions of temperature, and 

the joint experimental and theoretical investigation conducted in Chapter 7 was motivated 

by the need to develop a rigorous analytical framework for the interpretation of this 

temperature dependence based on physical considerations which are of sufficient 

generality to embrace all materials with metastable free energy landscapes, independent 

of the specific details of their microstructure. Surprisingly enough, much of this 

interpretation is still conducted on a highly qualitative level, and relies on “folklore” 

recipes and superficial correlations based on flimsy or incomplete evidence. A 

particularly striking example, which appears with regularity in the scientific literature, is 

the insistence on treating the bifurcation of the moment as a function of temperature into 

a field cooled (FC) branch and a zero field cooled (ZFC) branch as a diagnostic signature 

of spin glass freezing when, in fact, its real physical significance is considerably broader 
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than this. We have proposed an analytical strategy based on the Preisach two-level 

subsystem hypothesis which is designed to isolate and quantify the two principal 

contributions to the temperature dependence of the material properties and response 

functions: (a) thermal fluctuations which are responsible for relaxing the system toward 

thermodynamic equilibrium, and (b) the explicit evolution with temperature of the free 

energy landscape itself, which ultimately originates from the explicit dependence on 

temperature of intrinsic material parameters, such as anisotropy constants and the 

spontaneous magnetization. The method was designed specifically for materials that 

possess substantial structural disorder, where only a short quasi-logarithmic fragment of 

the entire relaxation function is accessible in an experiment performed over a finite time 

window, as opposed to “patterned” media that are tailored to have highly regular or 

periodic microstructures with a narrow distribution of particle volumes and minimal 

interactions. The strategy is based on the analysis of viscosity isotherms, measured by 

applying a positive saturating field, recoiling to a negative holding field, and recording 

the decay of the moment with time at fixed temperature and fixed field, and specifically 

on a plot of Tln(tr/"0) versus Ha, where tr is the time at which the relaxation isotherm 

measured at temperature T in a field Ha reverses sign. If the measurements are performed 

over a sufficiently wide range of closely spaced fields and closely spaced temperatures 

which ideally span the entire irreversible phase, then this plot will act as a sensitive 

diagnostic tool to identify which of the two processes listed above is dominant. If thermal 

overbarrier activation events dominate explicit barrier growth then, for the correct choice 

of microscopic time constant "0, the individual isothermal segments will align to form a 

continuous universal curve, from which it is possible to obtain the mean elementary 
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activation moment reversal (or, equivalently, the thermal fluctuation field) and to 

reconstruct the distribution of metastable state excitation energies. In materials where 

barrier growth is the dominant source of temperature dependence, the plot will fracture 

into a sequence of misaligned isothermal segments from which, in principle, it is possible 

to reconstruct the evolution of the spectrum of metastable state excitation energies with 

temperature. This strategy has been applied to the interpretation of the magnetic response 

functions of a series of magnetic systems with a variety of microstructures and 

magnetically ordered configurations, and these analyses show that a compressed powder 

of nanodimensional magnetite particles and a system of nanodimensional titanomagnetite 

particles suspended in a glass matrix are both fluctuation-dominated, while a series of 

bulk sintered ferromagnetic ruthenates and a thin film of nanodimensional iron particles 

embedded in alumina are dominated by the explicit evolution of the free energy 

landscape with temperature. 

The analytical strategy proposed here has a number of unsatisfactory features 

which limit its potential to develop into a rigorous theoretical framework, and which will 

form the content of future investigations. (a) Principal among these is the fragmentary 

nature of the reversal time data when landscape evolution becomes an important 

contributing factor, as it is, for example, in ferromagnetic materials at temperatures close 

to the critical temperature. Under these circumstances, only a short segment of the entire 

isothermal reversal time curve which falls within a relatively narrow range of holding 

fields is visible experimentally at each temperature due to limitations imposed by the 

finite experimental time window, which is typically only a few orders of magnitude wide 

(seconds to hours). As a consequence, further analytical progress depends on the 
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implementation of drastic approximations, which are essentially impossible to justify a 

priori, although they receive some a posteriori support in the form of comparisons 

between model predictions and experimental measurements of certain response functions.    

Further model simulations are currently in progress which may suggest a method to 

circumvent such limitations. (b) Another is the ad hoc, phenomenological treatment of 

the “melting” of the spontaneous moment of the two-level subsystems as the ensemble is 

warmed through the critical magnetic ordering temperature, which infers the temperature 

dependence of the spontaneous moment from the thermal profile of the field cooled 

moment. This approach was inspired by the use of “thermomagnetic curves” (the 

saturation moment as a function of temperature measured in a fixed field during both 

cooling and warming) in rock magnetism studies to identify magnetic transition 

temperatures in minerals which consist of a mixture of magnetically distinct phases. We 

anticipate that the approach developed by J. Souletie to describe the shrinking of the 

correlation volume in spin glasses to atomic sizes above the glass temperature, based on a 

crossover from an Arrhenius law to a Fulcher law, may provide some valuable theoretical 

guidance in this regard.                                        


