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Abstract

Generalized inverses of matrices are of great importance in the resolution of linear

systems and have been extensively studied by many researchers. A collection of

some results on generalized inverses of matrices over commutative rings has been

provided by K. P. S. Bhaskara Rao [30]. In this thesis, we consider constructing

algorithms for finding generalized inverses and generalizing the results collected

in [30] to the non-commutative case.

We first construct an algorithm by using the greatest common divisor to find a

generalized inverse of a given matrix over a commutative Euclidean domain. We

then build an algorithm for finding a generalized inverse of a matrix over a non-

commutative Euclidean domain by using the one-sided greatest common divisor

and the least common left multiple. Finally, we explore properties of various

generalized inverses including the Moore-Penrose inverse, the group inverse and

the Drazin inverse in the non-commutative case.
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Notation and Terminology

Below is a list of special notation and terminology to be used in Chapters 1 to 4.

(Notation that is either standard or only used locally has not been included.)

F a field

R a division ring, p. 10

σ an automorphism of R, p. 10

σ−1 the inverse of σ

δ a σ-derivation, p. 2

σδ (δσ, resp.) the composite mapping σ ◦ δ (δ ◦ σ, resp.)

S the skew polynomial ring R[x;σ, δ], p. 10

Q(S) the Ore quotient ring of S, p. 14

lc(f) the leading coefficient of a polynomial f in S, p. 1.2

nf(f) the normal form of a polynomial f in S, p. 1.2

a quol b (a quor b) the left (right) quotient of the division of a by b, p. 11

0 a zero matrix of suitable size

A(i, j) the (i, j)th entry of a matrix A

(aij)m×n an m× n matrix in which the (i, j)th entry is aij

det(A) the determinant of a matrix A over a commutative ring

adj(A) the adjoint matrix of a matrix A over a commutative ring

v
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Rowi(A) the ith row of a matrix A (i ∈ N), p. 28

Coli(A) the ith column of a matrix A (i ∈ N), p. 28

Ro a unimodular matrix corresponding to row operations,

p. 27

Co a unimodular matrix corresponding to column operations,

p. 28

A∗ the involution transpose of a matrix A, p. 5

A− a {1}-inverse of a matrix A, p. 6

A+ the Moore-Penrose inverse of a matrix A, p. 7

A# the group inverse of a matrix A, p. 7

rank(M) the (unique) rank of a free module M , p. 17

ρ(A) the (inner) rank of a matrix A, p. 19

diag(A,B)

A 0

0 B

 , where A,B are matrices, p. 19

Z(P ) the center of a ring P , p. 48

Mm×n(P ) the ring of all m× n matrices over P

Mm(P ) the ring of all m×m matrices over P

⊕ direct sum of modules

⊗ tensor product of modules

A← B assign a value B to a variable A, p. 27[ ]
an empty matrix, p. 28

vi



Introduction

Generalized Inverses

A generalized inverse of a matrix A, as the name implies, is a matrix G that is

analogous to the usual inverse, and it possibly exists when A is singular or even

rectangular. In other words, given a matrix A, a generalized inverse of A is a

matrix G such that

AGA = A. (1)

If A is a square nonsingular matrix, then G reduces to the usual inverse of A.

The theory of the generalized inverse for matrices originated from the need

of finding a solution to a linear system of algebraic equations. Concretely, the

concept of a generalized inverse was first introduced in 1903 by Fredholm [12],

where a particular generalized inverse that serves as an integral operator was

called “pseudoinverse”. The notion of a generalized inverse for a matrix (not

necessarily a square matrix) was mentioned for the first time by Moore [25] in

1920. However, in the following 30 years, except for a few extensions of Moore’s

work, no systematic study was done on the subject due to the ambiguous notion.

The first breakthrough in the study of generalized inverses came in 1955, when

Penrose [28] redefined the Moore generalized inverse based on the results obtained

by Bjerhammar ([1], [2]) in 1951. In his paper, Penrose introduced a generalized

inverse satisfying the four equations (1.1)-(1.4) in Chapter 1, and showed the

uniqueness of the inverse. This discovery has greatly affected and promoted the
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development of the theory of generalized inverses, and the generalized inverse

defined by Penrose is therefore widely known as the Moore-Penrose inverse.

Today, the literature on the theory of generalized inverses is extensive. A

variety of generalized inverses, such as the group inverse and the Drazin inverse,

have been constructed for different purposes. To avoid confusion, we shall refer

to the generalized inverse satisfying condition (1) as {1}-inverse for the rest of

this thesis.

The application of generalized inverses of matrices has been extended to sev-

eral areas, including statistics, numerical analysis, and cryptography. For exam-

ple, the Moore-Penrose inverse is commonly used to find a least square solution to

a linear system that has multiple solutions (Penrose and Todd [29]) and to solve

problems in linear statistical models (Kirkland [19]); the Drazin inverse plays

an important role in singular linear systems, differential equations and Markov

chains (Hanke [15], Campbell [6], C. D. Meyer, Jr [22, 23]); generalized inverses of

matrices over finite fields have been proposed as protential tools in cryptographic

research (Wu [32, 33]).

To analyze the properties of generalized inverses of matrices, many algorithms

have been proposed. For instance, K. P. S. B. Rao [30] has introduced an algo-

rithm for determining the existence of a generalized inverse and finding a gen-

eralized inverse of a given matrix over a commutative principal ideal domain;

Courrieu [11], Katsikis and Pappas ([17] [18]) have introduced fast algorithms for

computing Moore-Penrose inverses of real matrices; Miljković [24] has introduced

iterative methods for computing generalized inverses of complex matrices. Nev-

ertheless, fast algorithms for finding generalized inverses of matrices, especially

in the non-commutative case, are still in great demand.

Skew Polynomial Rings

A skew polynomial ring, also called an Ore extension, is a polynomial ring whose

multiplication by the indeterminate is “skewed” by an endomorphism and an
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associated skew derivation on the coefficient ring. Concretely, let R be a ring, σ

a ring endomorphism of R, and let δ be a σ-derivation on R, namely, an additive

map δ : R → R satisfying δ(ab) = σ(a)δ(b) + δ(a)b for all a, b ∈ R. A skew

polynomial ring over R, written S = R[x;σ, δ], is a ring S satisfying the following

conditions:

(a) S is a ring, containing R as a subring;

(b) x is an element of S;

(c) S is a free left R-module with basis {1, x, x2, ...};

(d) xr = σ(r)x+ δ(r) for all r ∈ R.

For any element f of S, f is uniquely expressed in the form

f = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

where n ∈ N and a0, ..., an ∈ R. If R is a commutative ring, σ is the identity

mapping and δ is the zero derivation, then the skew polynomial ring S reduces

to the ordinary polynomial ring R[x].

The concept of a skew polynomial ring was first considered in 1920 by Noether

and Schmeidler [26]. In 1933, the general definition of a skew polynomial ring was

introduced by Ore [27], who first systematically studied this object. Since then,

the structure and construction of skew polynomial rings have been extensively

studied by numerous authors, such as Jacobson [16], Cohn [9], and Lam [21], and

the theory of skew polynomials has thus had a substantial growth.

It has been shown that the study of skew polynomial rings is of great impor-

tance and has applications in many research areas. In pure mathematics, skew

polynomials can be used for solving systems of linear differential and difference

equations (Bronstein and Petkovšek [5]). In coding theory, skew polynomial rings

over finite fields can be used to study linear codes and to construct error-correcting
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codes (Boucher, [3], [4]). In control theory, linear control systems over Ore al-

gebras have been investigated for potential values and applications in electrical

engineering and computer science (Chyzak, Quadrat and Robertz [7]).

Outline of the Thesis

This thesis is organized as follows.

In Chapter 1, we outline the basic definitions and results to be used in the

thesis.

In Chapter 2, we construct an algorithm for finding {1}-inverses of matrices

over commutative Euclidean domains by using the extended Euclidean algorithm

and some properties of the greatest common divisor. Given a matrix A, the

algorithm first determines the existence of a {1}-inverse of A, then computes a

{1}-inverse of A (if there is any). The complexity of the algorithm is given for

comparing its efficiency with that of others. Some examples are presented for the

demonstration of the algorithm.

In Chapter 3, we build an algorithm for finding {1}-inverses of matrices over a

skew polynomial ring S (whose definition is given in Chapter 1) based on the fact

that S is a non-commutative Euclidean domain. Compared with the algorithm

in Chapter 2, this algorithm is constructed by using one-sided greatest common

divisors and least common multiples.

In Chapter 4, we investigate the existence and construction of various gen-

eralized inverses of matrices including {1}-inverses, Moore-Penrose inverses and

Drazin inverses.

In the Appendix, we give the Maple codes of the first algorithm.
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Chapter 1

Preliminaries

This chapter outlines some of the basic mathematical definitions and results rel-

evant to the thesis.

1.1 Generalized Inverses for Matrices

It is known that there are different types of generalized inverses for matrices. In

this section, we list the definitions and properties of the generalized inverses to

be investigated in this thesis.

Let P be a ring. An involution on P is an anti-automorphism f on P of order

2. The image of an element p ∈ P under f , written p, is called the involution of

p. We define a mapping g : Mm×n(P ) → Mn×m(P ) such that for A = (aij) ∈

Mm×n(P ), g(A) = A∗, where A∗ = (A)T , A = (aij)m×n. We call the image A∗ of

the matrix A under the mapping g the involution transpose of A. By definition,

we have

(A∗)∗ = A,

(AB)∗ = B∗A∗.

For this section, we now fix the notation that P is a ring (not necessarily

5



1.1. GENERALIZED INVERSES FOR MATRICES

commutative) with an involution, Am×n, Gn×m (m,n ∈ N) are two matrices over

P and k ∈ Z+. Consider the following equations.

AGA = A (1.1)

GAG = G (1.2)

(AG)∗ = AG (1.3)

(GA)∗ = GA (1.4)

AG = GA (1.5)

Ak = Ak+1G. (1.6)

Definition 1.1. (a) If A and G satisfy Equation (1.1), then G is called a {1}-

inverse of A, written A−, over P . If A has a {1}-inverse, then A is called a

regular matrix. The matrix ring Mn×n(P ) (n ∈ N) is called a regular ring if

every matrix from Mn×n(P ) is regular.

(b) If A and G satisfy Equation (1.1) and (1.2), then G is called a {1, 2}-inverse

of A over P . Generalized inverses named {1, 2, 3}-inverse, {1, 2, 4}-inverse

and so on are defined analogously.

Proposition 1.1. A {1}-inverse for a matrix is not unique.

If G is a {1}-inverse of A, then GAG is a {1}-inverse of A. For example,

let A =

3x+ 1 2x 1

0 x2 x+ 1

 be a matrix over the polynomial ring Q[x]. Then

G =


1− 3

2
x2 − 3

5
x3 −1− 2

5
x

−3
2

+ 33
10
x2 + 9

5
x3 11

5
+ 6

5
x

−9
5
x4 − 3

2
x3 + 3

2
x2 −6

5
x2 − x+ 1

 is a {1}-inverse of A. One can verify

that GAG =


1− 3

2
x2 − 3

5
x3 −1− 2

5
x

−3
2

+ 33
10
x2 + 9

5
x3 11

5
+ 6

5
x

−9
5
x4 − 3

2
x3 + 3

2
x2 −6

5
x2 − x+ 1

 is also a {1}-inverse of A.

Proposition 1.2. If A has a {1}-inverse over P , then A has a {1, 2}-inverse

6



1.1. GENERALIZED INVERSES FOR MATRICES

over P .

If G1 and G2 are two {1}-inverses of A over P , then G1AG2 is a {1, 2}-inverse

of A over P .

Proposition 1.3. If A has a {1, 3}-inverse over P , then A has a {1, 2, 3}-inverse

over P .

If G is a {1, 3}-inverse of A, then GAG is a {1, 2, 3}-inverse of A.

Definition 1.2. If A and G satisfy Equations (1.1) to (1.4), then G is called the

Moore-Penrose inverse (MP-inverse, for short) of A, written A+, over P .

Lemma 1.1. ([30], p16) The MP-inverse of a matrix is unique.

Note that if A has a {1, 3}-inverse G1 and a {1, 4}-inverse G2 over P , then

G2AG1 is a MP-inverse of A over P .

Proposition 1.4. ([30], Proposition 3.10)

(a) Am×n has a {1, 3}-inverse if and only if (i) A∗A is regular and (ii) for a

matrix Cn×s (s ∈ N) over P , AC = 0 whenever A∗AC = 0.

(b) Am×n has a {1, 4}-inverse if and only if (i) AA∗ is regular and (ii) for a

matrix Dk×s (s ∈ N), DA = 0 whenever DAA∗ = 0.

(c) Am×n has an MP-inverse if and only if (i) A∗A and AA∗ are both regular and

(ii) for any matrices Cn×s and Dt×m over P (s, t ∈ N), AC = 0 whenever

A∗AC = 0 and DA = 0 whenever DAA∗ = 0.

(d) Am×n has an MP inverse if and only if (i)A∗AA∗ is regular and (ii) A has the

properties that, for any matrices Cn×s and Dt×m over P (s, t ∈ N), AC = 0

whenever A∗AC = 0 and DA = 0 whenever DAA∗ = 0.

Definition 1.3. (a) If A and G satisfy Equations (1.1) and (1.5), then G is

called a commuting g-inverse of A over P .

7



1.2. GENERAL SKEW POLYNOMIAL RINGS

(b) If A and G satisfy Equations (1.1), (1.2) and (1.5), then G is called a group

inverse of A, written A#, over P .

(c) If A and G satisfy Equations (1.2), (1.5) and (1.6), then G is called a Drazin

inverse of A over P .

From the definitions we can see that the Drazin inverse is a generalization of

the group inverse.

Proposition 1.5. ([30], p. 89) The group inverse of a matrix is unique.

Proposition 1.6. ([30], Proposition 6.23) The Drazin inverse of a matrix is

unique.

1.2 General Skew Polynomial Rings

In the Introduction, we saw that the indeterminate of a skew polynomial does

not commute with its coefficients. In order to work with skew polynomial com-

putations, we introduce the Leibniz rule for skew polynomial multiplication and

rules for exchanging the indeterminate and coefficients of a skew polynomial in

this section.

Let S = R[x;σ, δ] be a skew polynomial ring and f = anx
n + an−1x

n−1 +

· · · + a1x + a0 ∈ S with a0, a1, ..., an ∈ R, an 6= 0. The degree of f , written

deg(f), is defined to be max{i|ai 6= 0, i = 0, 1, ..., n}. The leading coefficient of

f , written lc(f), is defined to be an. If f = 0, then deg(f) = −∞, lc(f) = 0. If

the coefficient ring R is a skew field, then we define the normal form of f , written

nf(f), to be (lc(f))−1f . For any two skew polynomials f1 and f2 in S, the degrees

of their sum and product satisfy the following condition:

deg(f1 + f2) ≤ max{deg(f1), deg(f2)}.

8



1.2. GENERAL SKEW POLYNOMIAL RINGS

Moreover, if the coefficient ring R is a domain, then

deg(f1f2) = deg(f1) + deg(f2).

Lemma 1.2. (Leibniz rule) Let S = R[x;σ, δ] be a skew polynomial ring. For

any r ∈ S,

xkr =
k∑

i=0

(
k

i

)
σiδk−i(r)xi. (1.7)

If σ = 1, δ 6= 0, then

xkr =
k∑

i=0

(
k

i

)
δk−i(r)xi, rxk =

k∑
i=0

(
k

i

)
(−1)k−ixiδk−i(r); (1.8)

if σ 6= 1, δ = 0, then

xkr = σk(r)xk, rxk = xkσ−k(r). (1.9)

The above rule can be shown by induction. Clearly, (1.7) holds for k = 1.

Suppose (1.7) holds for all k = n where n ∈ N, n ≥ 1. Then for k = n + 1, we

have

xkr = x

(
n∑

i=0

(
n

i

)
σiδn−i(r)xi

)

=
n∑

i=0

(
n

i

)
xσiδn−i(r)xi

=
n∑

i=0

(
n

i

)(
σi+1δn−i(r)xi+1 + σiδn−i+1(r)xi

)
=

(
n

0

)(
σδn(r)x+ δn+1(r)

)
+ · · ·+

(
n

n

)(
σn+1xn+1 + σnδ(r)xn

)
=

(
n

0

)
δn+1(r) +

n∑
i=1

((
n

i− 1

)
+

(
n

i

))
σiδn−i+1(r)xi +

(
n

n

)
σn+1(r)xn+1

=

(
n+ 1

0

)
δn+1(r) +

n∑
i=1

(
n+ 1

i

)
σiδn−i+1(r)xi +

(
n+ 1

n+ 1

)
σn+1(r)xn+1

9



1.3. A SKEW POLYNOMIAL RING S

=
n+1∑
i=0

(
n+ 1

i

)
σiδn+1−i(r)xi

=
k∑

i=0

(
k

i

)
σiδk−i(r)xi.

Thus, (1.7) holds for all r ∈ R. Identities (1.8) and (1.9) follow directly from

(1.7).

Lemma 1.3. Let S = R[x;σ, δ] be a skew polynomial ring. For any r, s ∈ R, k ∈

N,

δk(rs) =
k∑

i=0

(
k

i

)
σk−iδi(r)δk−i(s). (1.10)

Lemma 1.4. Let S = R[x;σ, δ] be a skew polynomial ring. Let k ≥ 1 be an

integer. If δ = 0, then for any a ∈ R,

(xa)k = xk

(
k∏

i=1

σ−k+i(a)

)
=

(
k∏

i=1

σi(a)

)
xk. (1.11)

(ax)k = xk

(
k−1∏
i=0

σ−k+i(a)

)
=

(
k−1∏
i=0

σi(a)

)
xk. (1.12)

1.3 A Skew Polynomial Ring S

From now on, we fix the notation that S = R[x;σ, δ] is a skew polynomial ring,

where R is a division ring, σ is an automorphism of R and δ is a σ-derivation.

We shall give conditions for S to be a (non-commutative) Euclidean domain and

an Ore domain (and thus to have a unique ring of fractions) in order to support

the investigation on generalized inverses of matrices over S in Chapters 3 and 4

of this thesis.

1.3.1 Euclidean Domains

Recall that a principal left (right, resp.) ideal domain is a domain in which every

left (right, resp.) ideal is generated by a single element, and a principal left and

10



1.3. A SKEW POLYNOMIAL RING S

right ideal domain is called a principal ideal domain (PID).

Proposition 1.7. ([14], Theorem 2.8) The skew polynomial ring S is a PID.

We now turn to Euclidean domains. A left (right, resp.) Euclidean domain is

a domain D with a function d : D → N
⋃
{−∞} such that for all a, b ∈ D with

b 6= 0, there exist q, r ∈ D such that

a = qb+ r (a = bq + r, resp.), d(r) < d(b),

in other words, for any a, b ∈ D with b 6= 0, d(a) ≥ d(b), there exists c ∈ D

satisfying

d(a− cb) < d(a) (d(a− bc) < d(a), resp.). (1.13)

The element q is called the left (right, resp.) quotient of the division of a by b,

written q = a quol b, (q = a quor b, resp.). The function d is called a left (right,

resp.) Euclidean function on D. A ring that is a left and right Euclidean domain

is simply called a Euclidean domain.

Proposition 1.8. Let d : S → N
⋃
{−∞} denote the degree function over S.

Then S is a Euclidean domain with d being a Euclidean function on it.

The above proposition can be shown as follows. Let f =
n∑

i=0

fix
i, g =

m∑
i=0

gix
i

be polynomials in S such that gm 6= 0. By (1.13), it suffices to show that

there exist h1, h2 ∈ S such that d(f − h1g) < d(f), d(f − gh2) < d(f). (1.14)

If d(f) < d(g), then (1.14) is clear. Suppose d(f) ≥ d(g). Then fn 6= 0. Since

σ is an automorphism of R and gm 6= 0, we have σn−m(gm) ∈ R \ {0}, and so

σn−m(gm) has an inverse (σn−m(gm))−1 in R. Let h1 = fn(σn−m(gm))−1xn−m.

Then

11



1.3. A SKEW POLYNOMIAL RING S

f − h1g

= f − fn(σn−m(gm))−1xn−m(gmx
m + gm−1x

m−1 + · · ·+ g0)

= f − fn(σn−m(gm))−1(xn−mgmx
m + [terms of lower degrees])

= f − fn(σn−m(gm))−1

(
n−m∑
i=0

(
n−m
i

)
σiδn−m−i(gm)xi+m + [terms of lower degrees]

)

= f − fn(σn−m(gm))−1(σn−m(gm)xn + [terms of lower degrees])

= f − fnxn − [terms of lower degrees],

and so d(f − h1g) < d(f). The existence of an element h2 in S such that d(f −

gh2) < d(f) can be shown analogously.

1.3.2 Ore Domains

Recall that the skew polynomial ring S is a PID (Proposition 1.7). In this section,

we shall use this fact.

Let us start with some basic definitions. Let X be a multiplicative set in a ring

P (i.e., a subset X ⊆ P such that 1 ∈ X and X is closed under multiplication).

Then X is called a left (right, resp.) Ore set if for each a ∈ X and r ∈ P ,

Xr = Pa (rX = aP, resp.).

If X is a right and left Ore set, then X is called an Ore set.

Definition 1.4. A left (right, resp.) Ore domain is any domain D in which

the non-zero elements form a left (right, resp.) Ore set, i.e., for each nonzero

a, b ∈ D, Da
⋂
Db 6= 0 (aD

⋂
bD 6= 0, resp.). A left and right Ore domain is

called an Ore domain.

Recall that a left (right, resp.) Bézout domain is a domain in which every

finitely generated left (right, resp.) ideal of R is principal. Since the skew poly-

nomial ring S is a PID, it is a Bézout domain. Every Bézout domain is Ore ([14],

Exercise 6D). Thus, we have the following result.

12



1.3. A SKEW POLYNOMIAL RING S

Proposition 1.9. The skew polynomial ring S is an Ore domain.

1.3.3 Rings of Fractions

The fact that the skew polynomial ring S is an Ore domain enables us to construct

a ring of fractions for S and investigate problems over S from the perspective of a

division ring. In this section, we shall outline some properties of rings of fractions

and give some results on a ring of fractions for the ring S.

We first fix the following notation for this section:

P a ring

X(⊆ P ) a multiplicative set of non-zero divisors in P

A left (right, resp.) ring of fractions (or a left (right, resp.) quotient ring)

for P with respect to X is any overring P ′ ⊇ P such that:

(a) Every element x in X has an inverse x−1 in P ′.

(b) Every element of P ′ can be expressed in the form x−1a (resp., ax−1) for some

a ∈ P and x ∈ X.

Proposition 1.10. ([14], Theorem 6.2) A left (right, resp.) ring of fractions for

P with respect to X exists if and only if X is a left (right, resp.) Ore set.

If X(⊆ P ) is a left (right, resp.) Ore set, we shall write X−1P (PX−1, resp.)

to denote any left (right, resp.) ring of fractions for P with respect to X.

Proposition 1.11. ([14], Proposition 6.5) If X(⊆ P ) is a right and left Ore set,

then PX−1 = X−1P , and vice versa.

We now turn to classical quotient rings. A classical left (right, resp.) quotient

ring for P is a left (right, resp.) quotient ring for P with respect to the multi-

plicative set of all non-zero divisors in P . If P has both a classical left quotient

13
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ring and a classical right quotient ring, then by Proposition 1.11, the two one-

sided classical quotient rings coincide; In this case, P is said to have a classical

quotient ring.

Proposition 1.12. ([14], Theorem 6.8) For a ring P , the following conditions

are equivalent:

(a) There exists a right (left, resp.) Ore set X of non-zero divisors in P such

that PX−1 (X−1P , resp.) is a division ring.

(b) P has a classical right (left, resp.) quotient ring which is a division ring.

(c) P is a right (left, resp.) Ore domain.

Recall that the skew polynomial ring S is a left and right Ore domain (Propo-

sition 1.9). By Proposition 1.10, there exist a classical left (right, resp.) quotient

ring for S with respect to S \ {0}; Moreover, by Proposition 1.11, the classical

left (right, resp.) quotient ring is also a right (left, resp.) quotient ring. Thus,

we just refer to the Ore quotient ring of S, and use Q(S) to denote it for the rest

of this paper.

1.4 Inverse of a Matrix

The inverse for a matrix is sometimes needed in the investigation of a generalized

inverse for a matrix. In this section, we give some properties of the inverse of a

matrix over the skew polynomial ring S, together with some relevant definitions.

Let A be an n×n matrix over a ring P . A left (right, resp.) inverse of A over

P is an n×n matrix A−1L (A−1R , resp.) such that A−1L A = I (AA−1R = I, resp.). An

inverse of A over P is an n× n matrix A−1 over P such that A−1A = AA−1 = I.

If both A−1L and A−1R exist, then A−1L = A−1R = A−1, and A is called an invertible

matrix over P . The uniqueness of an inverse for a matrix is obvious.

For any matrix A over the skew polynomial ring S, a left (or right) inverse

of A is in fact the inverse of A over S. To prove this, we use the fact that S is

14
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Noetherian and thus is stably finite.

Definition 1.5. A ring P is said to be right Noetherian if it satisfies the ascending

chain condition (ACC) on right ideals, namely, whenever I1 ⊂ I2 ⊂ · · · is a

strictly increasing chain of right ideals of P , there exists a positive integer m such

that In = Im for all n ≥ m. A left Noetherian ring is defined correspondingly.

Using the property that S is a PID, we can verify the following conclusion

without difficulty.

Proposition 1.13. The skew polynomial ring S is left and right Noetherian.

We now give the property that S is stably finite.

Definition 1.6. ([20], p. 5) A ring P is Dedekind-finite if, for any a, b ∈ P ,

ab = 1 implies ba = 1. We say that a ring Q is stably finite if the matrix rings

Mn(Q) are Dedekind-finite for all natural numbers n.

Proposition 1.14. ([20], Proposition 1.13) The skew polynomial ring S is stably

finite, that is, for any n× n matrix A over the skew polynomial ring S, a left (or

right) inverse of A over S is the inverse of A over S.

For matrices over S, there are three types of elementary row (column, resp.)

operations defined as follows:

(i) Interchange of any two rows (columns, resp.)

(ii) Addition of a multiple of a row (column, resp.) by a non-zero polynomial

from S to another row (column, resp.)

(iii) Scalar multiplication from the left (right, resp.) of a row (column, resp.) by

a non-zero element from R.

An elementary matrix over S is a square matrix obtained by applying one

single elementary row (or column) operation on an identity matrix. A matrix
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over S is called a unimodular matrix if it is a product of elementary matrices

over S.

It is known that every elementary (unimodular, resp.) matrix over a field F

has an inverse that is also elementary (unimodular, resp.) over F. A proof of this

result can be found in any elementary linear algebra book. For matrices over S,

we have a similar result (which can be shown analogously) as follows.

Proposition 1.15. (a) Every elementary matrix over S is invertible over S.

Moreover, the inverse of an elementary matrix over S is also an elementary

matrix over S.

(b) Every unimodular matrix over S is invetible over S. Moreover, the inverse

of a unimodular matrix over S is also a unimodular matrix over S.

The above proposition can be shown in a similar way as we did for the com-

mutative case (which can be found in any standard elementary linear algebra

book).

1.5 Rank of a Matrix

In this section, we give the result that the skew polynomial ring S is a free

ideal ring. By interpreting matrices over S as S-module homomorphisms, we

define three types of rank of a matrix over S and show that the ranks are in fact

equivalent.

1.5.1 Free Ideal Rings

Let P be a ring. An indexed set X = (xi)i∈I of elements of a module over P is

called left (right, resp.) linearly independent if for every finite sequence x1, ..., xn

of elements of X and every p1, ..., pn ∈ P ,

n∑
i=1

pixi = 0 (
n∑

i=1

xipi = 0, resp.) implies p1 = · · · = pn = 0.
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A free left P -module (of rank cardinality I) is a left P -module M with a linearly

independent spanning set X = (xi)i∈I . In other words, M is a free left P -module

if M is isomorphic to ⊕i∈IPxi . If I is finite, that is, M ∼= ⊕n
i=1Pxi for some

n ∈ N, then n is called the rank of M , written n = rank(M). A free right

P -module N and the rank of N are defined correspondingly.

Definition 1.7. ([10], P. 110) A free left ideal ring (a left fir, for short) is a ring

P in which all left ideals are free as left P -modules, of unique rank. A right fir is

defined correspondingly. A free ideal ring (a fir, for short) is a left and right fir.

Since S is a left and right Ore domain, we have the following result.

Proposition 1.16. ([10], Proposition 2.2.2.) The skew polynomial ring S is a

fir.

Definition 1.8. ([10], P. 111) Let α be a cardinal. A left α-fir is a ring P in

which all α-generated left ideals are free as left P -modules, of unique rank. A

right α-fir is defined correspondingly. An α-fir is a left and right α-fir.

Clearly, S is an α-fir.

Proposition 1.17. ([8], Theorem 2.1) Let α be a cardinal.

(i) In a left fir every submodule of a free left module is free.

(ii) In a left α-fir every α-generated submodule of a free left module is free.

1.5.2 Rank of a Matrix

After seeing that the skew polynomial ring S is a free ideal ring, we can define

the rank of a matrix over S. We fix the following notation for this section.

Sm the set of 1×m matrices over S

nS the set of n× 1 matrices over S

0 a zero matrix of suitable size
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Both nS and Sm are free S-modules, thus, any n-generated submodule of nS and

any m-generated submodule of Sm are free (Proposition 1.17).

We interpret a matrix Am×n over S in the following ways:

(a) a right S-module homomorphism of columns nS → mS, that is, a function

f : nS → mS such that f(u + v) = f(u) + f(v) and f(va) = f(v)a for all

u, v ∈ nS and a ∈ S,

(b) a left S-module homomorphism of rows Sm → Sn.

(c) an element of the (Mm(S),Mn(S))-bimodule mS ⊗ Sn.

The column rank of A over S is the rank of the submodule of mS spanned

by the n columns of A, that is, the rank of the image of A under the above

interpretation (a). The row rank of A over S is the rank of the submodule of

Sn generated by the m rows of A under the above interpretation (b). Since S is

an n-fir for any n ∈ N, n ≥ 1, the definitions of column rank and row rank of a

matrix over S are valid. Note that the column (row, resp.) rank of the matrix is

independent of the choice of bases. In particular, the column (row, resp.) rank

is not affected by elementary operations.

We now define the inner rank of a matrix. Let A = Bm×rCr×n be a decomposi-

tion of A over S, where r is the least number that such a matrix C can have. The

number r is called the inner rank of A, written r = ρ(A), and the factorization

BC is called the rank factorization of A over S.

Proposition 1.18. ([10], Proposition 5.4.3.) Let A ∈ Mm×n(S). The following

four numbers are equal and do not exceed min{ρr(A), ρc(A}), where ρr(A) denotes

the row rank of A and ρc(A) denotes the column rank of A:

(i) the least r such that the map A (under interpretation (a) or (b)) can be

factored through Sr,

(ii) the least r such that A can be written
r∑

i=1

bi ⊗ ci, under interpretation (c),
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(iii) the least r such that the image of A in Sn is contained in a submodule

generated by r elements (interpretation (b)),

(iv) the least r such that the image of A in mS is contained in a submodule

generated by r elements (interpretation (a)).

In Part (ii) of Proposition 1.18, the number r is equivalent to the least number

r such that A = Bm×rCr×n and thus is in fact the inner rank of A. Therefore, for

any m× n matrix A,

0 ≤ ρ(A) ≤ min{m,n}, (1.15)

and

ρ(A) = 0 if and only if A = 0. (1.16)

Also, using rank factorization, we can verify that for any two matrices A and B,

ρ(diag(A,B)) ≤ ρ(A) + ρ(B), (1.17)

ρ(AB) ≤ min{ρ(A), ρ(B)}. (1.18)

We now turn to the relation between the three types of rank defined above.

Since the skew polynomial ring S is a Bézout domain, we have the following

result.

Proposition 1.19. ([10], Proposition 5.4.4) Over the skew polynomial ring S,

the row rank, the column rank and the inner rank of a matrix are equal.

From above we can see that, for any matrix A over S,

ρ(A) = ρ(AT ). (1.19)

Also, since the three types of rank of A coincide, we shall just refer to the rank

of A and use ρ(A) to denote it in the rest of the thesis.
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Definition 1.9. Let A ∈ Mm×n(S), where m,n ∈ N, 1 ≤ m ≤ n (1 ≤ n ≤ m).

Then A is said to be of left (right. resp.) full rank if ρ(A) = m (ρ(A) = n). If

m = n and ρ(A) = n, then A is of full rank.

Lemma 1.5. ([10], Corollary 5.4.5) Let Am×n, Bk×m and Ck×m (k,m, n ∈ N) be

matrices over S. Then BA = CA (AB = AC, resp.) implies B = C if and only

if A is of left (right, resp.) full rank.
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Chapter 2

An Algorithm For Finding

{1}-inverses (Commutative Case)

An algorithm for finding a {1}-inverse of a matrix over a (commutative) ring

has been introduced by K. P. S. B. Rao ([30], p. 41). In this chapter, we shall

improve the efficiency of the algorithm given by K. P. S. B. Rao and use it to find

{1}-inverses of matrices over a polynomial ring F[x], where F is a field. In fact, all

of the results of this chapter hold for matrices over any commutative Euclidean

domain. The Maple code of the improved algorithm will be given in Appendix.

2.1 Theoretical Basis

Let us start with some properties of matrices over the polynomial ring F[x].

Lemma 2.1. Let Am×n, Bm×n (m,n ∈ N) be two matrices over F[x] such that

B = Em×mAFn×n, where

(i) E is a square matrix over F[x] obtained by applying row exchanging and/or

row addition to an identity matrix,

(ii) F is a square matrix over F[x] obtained by applying column exchanging

and/or column addition to an identity matrix.

Then
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(a) E and F are invertible in Mm×m(F[x]) and Mn×n(F[x]), respectively;

(b) A has a {1}-inverse over F[x] if and only if B has a {1}-inverse over F[x].

Proof. We first show that E is invertible over F[x]. By definition, E is a product

of elementary matrices whose determinants are 1. Thus, det(E) = ±1, and so

E is invertible over F[x] with E−1 = 1
det(E)

adj(E) = ± adj(E), where adj(E)

denotes the adjoint matrix of E. Similarly, we can show that F is invertible over

F[x].

If B has a {1}-inverse GB over F[x], then (EAF )GB(EAF ) = EAF , which

implies A(FGBE)A = A, that is, A has a {1}-inverse FGBE over F[x].

Conversely, suppose A has a {1}-inverse GA over F[x], namely, AGAA = A.

Since B = EAF , we have A = E−1BF−1. Then AGAA = A implies

B(F−1GAE
−1)B = B, and so B has a {1}-inverse (F−1GAE

−1) over F[x].

Theorem 2.1. (a) Let A =

[
a1 · · · an

]
(A =

[
a1 · · · an

]T
, resp.) be a 1 × n

(n×1, resp.) matrix over F[x] with a1 6= 0. If A has a {1}-inverse over F[x],

then gcd(a1, ..., an) = 1.

(b) Let A =

 a z

0m×1 Bm×n

 be a matrix over F[x] with a 6= 0 and z =

[
z1 · · · zn

]
.

If A has a {1}-inverse over F[x], then gcd(a, z1, ..., zn) = 1.

(c) Let

 a 01×n

0m×1 Bm×n

 be a matrix over F[x]. If A has a {1}-inverse, then (i)

either a = 0 or a has a multiplicative inverse in F[x] and (ii) B has a {1}-

inverse over F[x].

Proof. (a) We shall only show the case for A =

[
a1 · · · an

]
. The case for A =[

a1 · · · an

]T
can be shown analogously.

Let G =

[
g1 · · · gn

]T
be a {1}-inverse of A. Then

[
a1 · · · an

]
=

[
a1 · · · an

] [
g1 · · · gn

]T [
a1 · · · an

]
=

[
(a1g1 + · · ·+ angn)a1 · · ·

]
.
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It follows that a1 = (a1g1+ · · ·+angn)a1, that is, (a1g1+ · · ·+angn−1)a1 = 0.

Since F[x] has no zero divisors, and since a1 6= 0, we have a1g1+· · ·+angn = 1.

Since F[x] is a principal ideal domain, gcd(a1, ..., an) = 1 ([30], Theorem 4.2).

(b) By [30], Theorem 4.15.

(c) By [30], Theorem 4.15.

Theorem 2.2. Let Am×n = (aij) be a matrix over F[x].

(a) There exists an invertible matrix Em×m over F[x], such that

EA =



g ∗ · · · ∗

0 ∗ · · · ∗
...

...
. . .

...

0 ∗ · · · ∗


where g = gcd(a11, a21, ..., am1) and each ∗ stands for some element in F[x].

(b) There exists an invertible matrix Fn×n over F[x], such that

AF =



h 0 · · · 0

∗ ∗ · · · ∗
...

...
. . .

...

∗ ∗ · · · ∗


where h = gcd(a11, a12, ..., a1n) and each ∗ stands for some element in F[x].

Proof. (a) Since F[x] is a Euclidean domain, by the traditional extended Eu-

clidean algorithm for commutative Euclidean domains (for example, [31],

Algorithm 3.6), we can find some g1, s1, t1 ∈ F[x] such that

gcd(a11, a21) = g1 = s1a11 + t1a21.
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Define E1 to be an m×m elementary matrix over F[x] such that

E1(i, j) =



s1, i = 1, j = 1,

t1, i = 1, j = 2,

−a21
g1
, i = 2, j = 1,

a11
g1
, i = 2, j = 2,

1, 3 ≤ i ≤ m, j = i,

0, otherwise.

, i.e., E1 =



s1 t1 0 · · · 0

−a21
g1

a11
g1

0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1


.

Then

E1A =



s1 t1 0 · · · 0

−a21
g1

a11
g1

0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1





a11 a12 · · · a1n

a21 a22 · · · a2n

a31 a32 · · · a3n
...

...
. . .

...

am1 am2 · · · amn



=



g1 ∗ · · · ∗

0 ∗ · · · ∗

a31 a32 · · · a3n
...

...
. . .

...

am1 am2 · · · amn


,

where each ∗ stands for some element in F[x].

Using the same idea, we define m×m elementary matrices Ek over F[x] for

k = 1, ...,m− 1 as follows
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Ek(i, j) =



sk, i = 1, j = 1,

tk, i = 1, j = k,

−ak+1,1

gk
, i = k, j = 1,

gk−1

gk
, i = k, j = k,

1, 2 ≤ i ≤ m, i 6= k, j = i,

0, otherwise,

where sk, tk, gk ∈ F[x] such that

gk = gcd(gk−1, ak+1,1) = skgk−1 + tkak+1,1.

Then for each k,

Ek · · ·E1A =



gk ∗ · · · ∗

0 ∗ · · · ∗
...

...
. . .

...

0 ∗ · · · ∗

ak+2,1 ak+2,2 · · · ak+2,n

...
...

. . .
...

am1 am2 · · · amn


where gk = gcd(a11, a21, ..., ak+1,1). Let E = Em−1 · · ·E1. Then E is the

desired unimodular matrix.

(b) Similarly, we can show the existence of the matrix F . Since F[x] is a Euclidean

domain, by the traditional extended Euclidean algorithm for commutative

Euclidean domains, we can find some h1, p1, q1 ∈ F[x] such that

gcd(a11, a12) = h1 = p1a11 + q1a12.
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Define F1 to be an n× n elementary matrix over F[x] such that

F1(i, j) =



p1, i = 1, j = 1,

q1, i = 2, j = 1,

−a12
h1
, i = 1, j = 2,

a11
h1
, i = 2, j = 2,

1, 3 ≤ i ≤ m, j = i,

0, otherwise.

, i.e., F1 =



p1 −a12
h1

0 · · · 0

q1
a11
h1

0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1


.

Then

AF1 =



a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n
...

...
...

. . .
...

am1 am2 am3 · · · amn





p1 −a12
h1

0 · · · 0

q1
a11
h1

0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1



=



h1 0 a13 · · · a1n

∗ ∗ a23 · · · a2n
...

...
...

. . .
...

∗ ∗ am3 · · · amn


,

where each ∗ stands for some element in F[x].

Using the same idea, we define n × n elementary matrices Fk over F[x] for

k = 2, ..., n− 1 as follows
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Fk(i, j) =



pk, i = 1, j = 1,

qk, i = k, j = 1,

−a1,k+1

hk
, i = 1, j = k,

hk−1

hk
, i = k, j = k,

1, 2 ≤ i ≤ n, i 6= k, j = i,

0, otherwise,

where pk, qk, hk ∈ F[x] such that

hk = gcd(hk−1, a1,k+1) = pkhk−1 + qka1,k+1.

Let F = F1 · · ·Fn−1. Then F is the desired unimodular matrix.

2.2 Algorithm

We now give the algorithm for finding a {1}-inverse of a matrix over the polyno-

mial ring F[x].

Algorithm 1 Row operations (RowOp)

Input A ∈ Mm×n(F[x]) and k, i ∈ N, where m,n ∈ N, m ≥ 2, n ≥ 1, 1 ≤ k ≤
m− 1, k + 1 ≤ i ≤ m, and at least one of A(k, k), A(i, k) is nonzero.

Output A unimodular matrix Ro ∈Mm×m(F[x]) such that

(RoA)(k, k) = gcd(A(k, k), A(i, k)) and (RoA)(i, k) = 0.

1: Use the extended Euclidean algorithm to compute g, s, t such that

g = gcd(A(k, k), A(i, k)) = sA(k, k) + tA(i, k).

2: Ro← Im
3: Ro(k, k)← s, Ro(k, i)← t, Ro(i, k)← −A(i,k)

g
, Ro(i, i)← A(k,k)

g

4: return Ro
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Algorithm 2 Column operations (ColOp)

Input A ∈ Mm×n(F[x]) and k, j ∈ N, where m,n ∈ N, m ≥ 1, n ≥ 2, 1 ≤ k ≤
n− 1, k + 1 ≤ j ≤ n, and at least one of A(k, k), A(k, j) is nonzero.

Output A unimodular matrix Co ∈Mn×n(F[x]) such that

(ACo)(k, k) = gcd(A(k, k), A(k, j)) and (ACo)(k, j) = 0.

1: Use the extended Euclidean algorithm to compute g, s, t such that

g = gcd(A(k, k), A(k, j)) = sA(k, k) + tA(k, j).

2: Co← In
3: Co(k, k)← s, Co(k, j)← −A(k,j)

g
, Co(j, k)← t, Co(j, j)← A(k,k)

g

4: return Co

Algorithm 3 Find a {1}-inverse of a given matrix

Input A ∈Mm×n(F[x]) and m,n ∈ N.

Output

{
G ∈Mn×m(F[x]) such that AGA = A, if A has a {1}-inverse;

“The given matrix has no {1}-inverse. ”, otherwise.

Steps

1: s← min{m,n}
2: Ro← Im, Co← In, E ← Im, F ← In
3: if A =

[ ]
or A = 0m×n then . A: an empty matrix or a zero matrix.

4: return G← AT

5: end if

6: B ← A
7: if s > 1 then
8: for k from 1 to s− 1 do

9: if Colk(B) = 0 and Rowk(B) = 0T then
10: k ← k + 1 and goto step 7
11: end if

12: for i from k + 1 to m do
13: Call Algorithm 1 to compute Ro← RowOp(B, k, i)
14: B ← RoB
15: E ← RoE
16: end for

17: C ← B
18: for j from k + 1 to n do
19: Call Algorithm 2 to compute Co← ColOp(C, k, j)
20: C ← CCo
21: F ← FCo
22: end for
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Algorithm 3 Find a {1}-inverse of a given matrix (continued)

23: if C(k, k) 6= 1 then
24: return “The input matrix has no {1}-inverse.” . Theorem 2.1.

25: else
26: for i from k + 1 to m do
27: Call Algorithm 1 to compute Ro← RowOp(C, k, i)
28: C ← RoC
29: E ← RoE
30: end for
31: B ← C
32: end if
33: end for
34: end if
35: if m = n then . m = n = s.
36: if B(s, s) ∈ F then
37: if B(s, s) 6= 0 then
38: Ro← the matrix obtained by multiplying Rows(Im) by 1

B(s,s)

39: B ← RoB, E ← RoE
40: end if
41: return G← FBTE

42: else . B(s, s) /∈ F.
43: return “The input matrix has no {1}-inverse.” . Theorem 2.1.
44: end if

45: else
46: if m > n then
47: B ← BT

48: end if
49: rB ← row dimension of B, cB ← column dimension of B . rB < cB.

50: if RowrB(B) = 0 then
51: if m > n then
52: return G← FBE
53: else
54: return G← FBTE
55: end if
56: else
57: for j from rB + 1 to cB do
58: Call Algorithm 2 to compute Co← ColOp(B, rB, j)
59: B ← BCo
60: if m > n then
61: E ← CoTE
62: else
63: F ← FCo
64: end if
65: end for
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Algorithm 3 Find a {1}-inverse of a given matrix (continued)

66: if B(rB, rB) 6= 1 then
67: return “The input matrix has no {1}-inverse.”
68: else if m > n then
69: return G← FBE
70: else
71: return G← FBTE
72: end if
73: end if

74: end if

Theorem 2.3. In Algorithm 3, if the given matrix A has a {1}-inverse over F[x],

then the matrix G is a {1}-inverse of A over F[x].

Proof. From Algorithm 3 we can see that, the matrices Em×m, Fn×n and Bm×n

obtained at Step 4 / 41 / 52 / 54 / 69 / 71 satisfy the following conditions:

(a) E and F are invertible over F[x],

(b) EAF = B,

(c) B(i, j) =


1 or 0, for i = 1, ..., s and j = i (s = min{m,n})

0, otherwise

.

If m ≤ n, then s = m and so BBT = Im, which implies BBTB = Im; otherwise,

m > n = s, and so BTB = In, which also gives BBTB = B. Thus, BT is a

{1}-inverse of B, i.e., BBTB = B. Then, from EAF = B we can get

(EAF )BT (EAF ) = EAF.

By Theorem 2.1, E and F have inverses E−1 and F−1 over F[x], respectively. So

E−1(EAF ) BT (EAF )F−1 = E−1EAFF−1, that is,

A(FBTE)A = A.

Hence, G = FBTE is a {1}-inverse of A.

30



2.3. EXAMPLES

2.3 Examples

Below are some examples generated by using the algorithm.

(a) Let A =

1 2 3

4 5 6

 be a matrix over Q.

Then GA =


−1 1

2

0 0

2
3
−1

6

 is a {1}-inverse of A over Q.

(b) Let B =


1 x

0 1

5 6

 be a matrix over Q[x].

Then GB =

1 −x 0

0 1 0

 is a {1}-inverse of B over Q[x].

(c) Let C =


3x5 − 6x4 + 4x3 + 6x2 + 1 −x4 + 2x3 − x2 − 2x x3 − 2x2 + 2 x2 + 1

−3x3 + 3x2 − 4x x2 − x + 1 −x + 1 x

3x2 −x 1 x3

 be

a matrix over Q[x]. Then GC =



1 x2 x2 − 2

4x 4x3 + 1 4x3 − 7x− 1

x2 x4 + x x4 − x2 − x+ 1

0 0 0


is a {1}-

inverse of C over Q[x].

(d) Let D =

1 x

x 1

 be a matrix over Q[x]. By Algorithm 3,

1 x

x 1

 Row2−xRow1→Row2−−−−−−−−−−−−→

1 x

0 −x2 + 1

 Col2−xCol1→Col2−−−−−−−−−−−→

1 0

0 −x2 + 1

 .

Since deg(−x2+1) > 0,

[
−x2 + 1

]
has no {1}-inverse over Q[x]. By Theorem

2.1, D has no {1}-inverse over Q[x].
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Chapter 3

An Algorithm For Finding

{1}-inverses (Non-commutative

Case)

Recall that S = R[x;σ, δ] denotes the skew polynomial ring where R is a skew

field, σ is an automorphism of R and δ is a σ-derivation. In this chapter, we con-

struct an algorithm for finding {1}-inverses for matrices over the skew polynomial

ring S based on the fact that S is a Euclidean domain (Proposition 1.8).

3.1 Theoretical Basis

In this section, we shall discuss some properties of generalized inverses, which

will be used to formulate an algorithm for finding a {1}-inverse of a given matrix

over the skew polynomial ring S.

3.1.1 GCRD, GCLD, LCRM and LCLM

Let f, g ∈ S. A greatest common right divisor (GCRD) of f, g, written gcrd(f, g),

is the normal form nf(s) of a nonzero skew polynomial s ∈ S such that

(a) s is a common right divisor of f and g, namely, f = f1s and g = g1s for some
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f1, g1 ∈ S,

(b) if t ∈ S is a common right divisor of f and g, then t is a right divisor of s.

In particular, gcrd(0, f) = f . The greatest common left divisor (GCLD) of f and

g, written gcld(f, g), is defined correspondingly.

Lemma 3.1. (Bézout’s identity) Let a1, a2, ..., an, a ∈ S. The following state-

ments are equivalent.

(i) Sa1 + Sa2 + · · ·+ San = Sa (a1S + a2S + · · ·+ anS = aS, resp.).

(ii) nf(a) = gcrd(a1, a2, ..., an) (nf(a) = gcld(a1, a2, ..., an), resp.).

Moreover, gcrd(a1, a2, ..., an) (gcld(a1, a2, ..., an), resp.) is unique.

Proof. We shall only prove the case of GCRD. The case of GCLD can be shown

analogously.

(i) ⇒ (ii). Suppose (i) holds. Then a = c1a1 + c2a2 + · · · + cnan for some

c1, c2, ..., cn ∈ S. Also, for each i = 1, 2, ..., n, Sai ⊆ Sa, namely, ai = ca for

some c ∈ S, that is, a is a right divisor of ai. Let b ∈ S such that b is a

common right divisor of a1, ..., an. Then b is a right divisor of a. By definition,

nf(a) = gcrd(a1, a2, ..., an).

(ii) ⇒ (i). Suppose (ii) holds. Since S is a left principal ideal domain, for

a1, .., an ∈ S, there exists c ∈ S such that Sa1 + · · · + San = Sc. By the result

above, nf(c) = gcrd(a1, a2, ..., an). Thus, c and a are right divisors of each other,

namely, c = sa and a = rc for some r, s ∈ S. It follows that a = rsa, namely,

(rs − 1)a = 0. Since S is a domain, rs = 1. Therefore, r, s ∈ R. Since GCRDs

are monic, r = s = 1. Thus, a = c, and so Sa1 + Sa2 + · · · + San = Sa. The

uniqueness of gcrd(a1, a2, ..., an) is also shown by proving c = a.

We now turn to one-sided least common multiples of polynomials from the

skew polynomial ring S.

Let f, g ∈ S \ {0}. A least common right multiple (LCRM) of f, g, written

lcrm(f, g) is the normal form nf(s) of a nonzero skew polynomial s ∈ S such that
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(a) s is a common right multiple of f and g, namely, s = ff1 = gg1 for some

f1, g1 ∈ S,

(b) t ∈ S is a common right multiple of f and g, then t is a right multiple of s.

The least common left multiple (LCLM) of f and g, written lclm(f, g), is defined

correspondingly.

Proposition 3.1. Let a1, a2, ..., an, a ∈ S. Then the following are equivalent.

(i) a1S
⋂
a2S

⋂
· · ·
⋂
anS = aS (Sa1

⋂
Sa2

⋂
· · ·
⋂
San = Sa, resp.).

(ii) nf(a) = lcrm(a1, a2, ..., an) (nf(a) = lclm(a1, a2, ..., an), resp.).

Moreover, lcrm(a1, a2, ..., an) and lclm(a1, a2, ..., an) are unique.

Proof. We shall only prove the case of LCRM. The case of LCLM can be shown

analogously.

(i) ⇒ (ii). Suppose (i) holds. Then for each i = 1, 2, ..., n, aS ⊆ aiS, that is,

a = aici for some ci ∈ S, and so a is a right multiple of ai. Let b be a common

right multiple of a1, ..., an. Then for all i = 1, 2, ..., n, bS ⊆ aiS, and so bS ⊆ aS.

Thus, b = ac for some c ∈ S, and whence b is a right multiple of a. By definition,

nf(a) = lcrm(a1, a2, ..., an).

(ii) ⇒ (i). Suppose (ii) holds. Since S is a right PID, for a1, a2, ..., an ∈ S,

there exists c ∈ S, such that a1S
⋂
a2S

⋂
· · ·
⋂
anS = cS. By the previous result,

nf(c) = lcrm(a1, ..., an). Thus, c and a are right multiples of each other, namely,

a = cr and c = as for some nonzero monic polynomial r, s ∈ S. It follows that

a = asr, that is, a(1 − sr) = 0. Since S has no zero divisor, sr = 1, which

implies r, s ∈ R. Hence s = r = 1, and so a = c. Also, the uniqueness of

lcrm(a1, a2, ..., an) is shown by proving a = c.

3.1.2 Extended Euclidean Algorithm

In the previous section, we gave the definitions of one-sided GCD and LCM of

elements from the Euclidean domain S. To compute the GCRD and LCLM,
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we can use the following algorithm that is analogous to the traditional extended

Euclidean algorithm for commutative Euclidean domain ([31], Algorithm 3.6).

Algorithm 4 Extended Euclidean Algorithm (EEA)

Input f, g ∈ S, where deg(f) = n, deg(g) = m, m ≤ n, m,n ∈ N.
Output k ∈ N, ri, si, ti ∈ S for 0 ≤ i ≤ k + 1, and qi ∈ S for 1 ≤ i ≤ k, as

computed below.
1: r0 ← f , s0 ← 1, t0 ← 0, r1 ← g, s1 ← 0, t1 ← 1
2: i← 1
3: while ri 6= 0 do

qi ← ri−1 quol ri, ri+1 ← ri−1 − qiri
si+1 ← si−1 − qisi, ti+1 ← ti−1 − qiti, i← i+ 1,
where ri−1 quol ri is the left quotient of the division of ri−1 by ri (see page

11)
4: end while
5: k ← i− 1
6: return k, ri, si, ti for 0 ≤ i ≤ k + 1, and qi for 1 ≥ i ≥ k.

The above algorithm eventually terminates since deg(r1), deg(r2), ..., deg(rk)

are strictly decreasing non-negative integers. For all 1 ≤ i ≤ k, we have sif+tig =

ri; in particular, gcrd(f, g) = nf(rk), lclm(f, g) = nf(slf) = nf(tlg) (see Lemma

3.3). To show this, we first give the following lemma.

Lemma 3.2. Let ri, si, ti for 0 ≤ i ≤ k+1 and qi for 1 ≤ i ≤ k be as in Algorithm

4. Consider the matrices

R0 =

s0 t0

s1 t1

 , Qi =

0 1

1 −qi

 for 1 ≤ i ≤ k

in M2×2(S), and Ri = Qi · · ·Q1R0 for 0 ≤ i ≤ k. Then

(a) Ri

f
g

 =

 ri

ri+1

,

(b) Ri =

 si ti

si+1 ti+1

.

Proof. (By induction) The case for i = 0 is clear from step 1 of Algorithm 4.

Suppose (a) and (b) holds for i ≥ 1. Then by the induction hypothesis and the
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fact that Ri+1 = Qi+1Ri, we have

Ri+1

f
g

 = Qi+1

 ri

ri+1

 =

 ri+1

ri − qi+1ri+1

 =

ri+1

ri+2

 .
Similarly, we have

Ri+1 = Qi+1Ri =

0 1

1 −qi+1


 si ti

si+1 ti+1

 =

si+1 ti+1

si+2 ti+2

 .

Lemma 3.3. In Algorithm 4, the following statements hold.

(a) sif + tig = ri for all 1 ≤ i ≤ k + 1.

(b) gcrd(f, g) = nf(rk).

(c) lclm(f, g) = nf(sk+1f) = nf(tk+1g).

Proof. (a) It follows directly from Lemma 3.2.

(b) By (a) and Lemma 3.2, we have

rk
0

 =

 rk

rk+1

 =

 skf + tkg

sk+1f + tk+1g

 = Rk

f
g

 = Qk · · ·Q1R0

f
g


= Qk · · ·Q1

r0
r1

 = Qk · · ·Q1

f
g

 .

For each i ∈ {1, ..., k}, Qi is invertible over S, with inverse Q−1i =

qi 1

1 0

.

Thus,

f
g

 = Q−11 · · ·Q−1k

rk
0

 ,
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which implies that rk is a common right divisor of f and g. On the other

hand, by (a), rk = skf + tkg. Thus, any common right divisor of f and g is

a right divisor of rk. Hence, gcrd(f, g) = nf(rk).

(c) By (a), sk+1f+tk+1g = rk+1 = 0. Thus, v = sk+1f = −tk+1g is a left common

multiple of f and g. Meanwhile, deg(v) = deg(f) + deg(g)− deg(gcrd(f, g))

([13], p. 468). Thus, v = lclm(f, g).

Example 3.1. (EEA) Suppose S = C[x;σ] with σ(c) = c, where c is the complex

conjugate of c. Let f = ix2 − i, g = ix2 + x be two elements of S. Set r0 = f ,

r1 = g, s0 = 1, s1 = 0, t0 = 0, t1 = 1. Then, by Algorithm 4,

r0 = r1 + (−x− i) = q1r1 + r2, where q1 = 1, r2 = −x− i,

r1 = (−ix)r2 = q2r2, where q2 = −ix,

s2 = s0 − q1s1 = 1,

s3 = s1 − q2s2 = ix,

t2 = t0 − q1t1 = −1,

t3 = t1 − q2t2 = 1− ix.

By Lemma 3.3,

gcrd(f, g) = nf(r2) = x+ i = −f + g,

lclm(f, g) = nf(s3f) = nf(ix(ix2 − i))

= nf(t3g) = nf((1− ix)(ix2 + x))

= x3 − x.

An algorithm for finding GCLD and LCRM of elements from the Euclidean

domain S can be constructed analogously. To complete the computations for more

complicated cases, for instance, S = R[x;σ, δ] where σ 6= 1, δ 6= 0, the computer
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algebra package “Ore algebra” (and the package “OreTools”, if needed) in Maple

can be used.

3.1.3 {1}-inverses of Matrices over S

Theorem 3.1. (a) Let A =

a z

0 B

 be a matrix over S with a 6= 0, z =

[
z1 · · · zn

]
and B ∈Mm×n(S). If A has a {1}-inverse over S, then

gcld(a, z1, ..., zn) = 1.

(b) Let A =

a 0

0 B

 be a matrix over S, where B ∈Mm×n(S) and each 0 denotes

a zero matrix of the appropriate size. If A has a {1}-inverse over S, then

a ∈ R and B has a {1}-inverse over S.

Proof. (a) Let G =

 g x

yT H

 be a {1}-inverse of A, where y =

[
y1 · · · yn

]
and

H ∈Mn×m(S). Since A = AGA, we have

a z

0 B

 =

a z

0 B


 g x

yT H


a z

0 B

 =

aga+ zyTa ∗

∗ ∗

 ,
where each ∗ stands for some element in S. Then aga + zyTa = a, hence

(ag + zyT − 1)a = 0. Since S has no zero divisor, we have ag + zyT − 1 = 0,

i.e., ag + z1y1 + · · ·+ znyn = 1. By Lemma 3.1, gcld(a, z1, ..., zn) = 1.

(b) Let G =

 g x

yT H

 be a {1}-inverse of A, where x =

[
x1 · · ·xm

]
, and H ∈

Mn×m(S). Since A = AGA, we have

 a 0

0T B

 =

 a 0

0T B


 g x

yT H


 a 0

0T B

 =

aga ∗

∗ BHB

 ,
where each ∗ stands for some element in S. Thus, we have aga = a and
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BHB = B, so (ag − 1)a = a(ga − 1) = 0 and B is regular over S. Since S

has no zero divisor, either a = 0 or ag = ga = 1. Therefore a ∈ R.

Lemma 3.4. Let A =

a11 a12

a21 a22

 ∈ M2(S), gR = gcrd(a11, a21) and gL =

gcld(a11, a12). Then there exist invertible matrices E,F ∈M2(S), such that

EA =

gR ∗

0 ∗

 , AF =

gL 0

∗ ∗

 ,
where each ∗ stands for some element in S.

Proof. We first show the existence of the above matrix E. By Lemma 3.1 and

Proposition 3.1, there exist s, t, k, l ∈ S, such that

sa11 + ta21 = gR, lclm(a11, a21) = ka11 = la21. (3.1)

Assume a11 = b11gR, a21 = b21gR for some b11, b21 ∈ S. Then (sb11 + tb21−1)gR =

0, and (kb11 − lb21)gR = 0. Since S is a domain, either gR = 0 or

sb11 + tb21 = 1, kb11 − lb21 = 0. (3.2)

If gR = 0, then a11 = a21 = 0, and we are done with E = I2. Otherwise, we have

(3.2). Also, by (3.1), gcld(k, l) = 1. So there exist p, q ∈ S such that

kp− lq = gcld(p, q) = 1. (3.3)

Let

E =

s t

k −l

 , E1 =

b11 p− b11sp− b11tq

b21 q − b21sp− b21tq

 .
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Then, by (3.1)–(3.3),

EA =

s t

k −l


a11 a12

a21 a22

 =

sa11 + ta11 ∗

ka11 − la21 ∗

 =

gR ∗

0 ∗


and

EE1 =

s t

k −l


b11 p− b11sp− b11tq

b21 q − b21sp− b21tq


=

sb11 + tb21 s(p− b11sp− b11tq) + t(q − b21sp− b21tq)

kb11 − lb21 k(p− b11sp− b11tq)− l(q − b21sp− b21tq)


=

1 sp− (sb11 + tb21)sp− (sb11 + tb21)tq + tq

0 kp− lq − (kb11 − lb21)sp− (kb11 − lb21)tq


=

1 0

0 1

 .
Thus, E1 is a right inverse of E over S. By Proposition 1.14, E1 is the inverse of

E over S.

The existence of the above matrix F can be shown analogously. By Lemma

3.1 and Proposition 3.1, there exist s′, t′, k′, l′ ∈ S such that

a11s
′ + a12t

′ = gL, a11k
′ = a12l

′ = lcrm(a11, a12). (3.4)

Suppose a11 = gLc11 and a12 = gLc12 for some c11, c12 ∈ S. Then

c11s
′ + c12t

′ = 1, c11k
′ − c12l′ = 0. (3.5)

By (3.4), gcrd(k′, l′) = 1. So there exist some p′, q′ ∈ S such that

p′k′ − l′q′ = 1. (3.6)
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Let

F =

s′ k′

t′ −l′

 , F1 =

 c11 c12

p′ − p′s′c11 − q′t′c11 q′ − p′s′c11 − q′t′c12

 .

Then, by (3.4)–(3.6) and Proposition 1.14, AF =

gL 0

∗ ∗

, F1 = F−1.

The above proof of Lemma 3.4 actually shows the construction of the desired

matrices E and F . In general, the matrices E and F are not unique.

In the following theorem, we generalize the row and column operations de-

noted by E and F in Lemma 3.4 to those applied on a matrix of any size.

Theorem 3.2. Let A = (aij) ∈ Mm×n(S), gR = gcrd(a11, ..., am1) and gL =

gcld(a11, ..., a1n). Then there exist invertible matrices E ∈ Mm(S) and F ∈

Mm(S), such that

EA =

gR ∗

0 ∗

 , AF =

gL 0

∗ ∗

 ,
where each ∗ stands for some matrix over S of suitable size and each 0 stands for

a zero matrix of the appropriate size.

Proof. We first show the existence of E. If m = 1, then we have nothing to prove.

If m = 2, then the existence of E is clear by Lemma 3.4. Suppose m ≥ 3. By

Lemma 3.4, there exists an invertible matrix E1 ∈M2(S) such that

E1 0

0 Im−2

A =



gcrd(a11, a21) ∗ · · · ∗

0 ∗ · · · ∗

a31 a32 · · · a3n
...

...
. . .

...

am1 am2 · · · amn


.
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Let M be the m×m elementary matrix which corresponds to interchanging row

2 and row 3. Then by Lemma 3.4, there exists an invertible matrix E2 ∈ M2(S)

such that

E2 0

0 Im−2

M
E1 0

0 Im−2

A =



gcrd(a11, a21, a31) ∗ · · · ∗

0 ∗ · · · ∗

0 ∗ · · · ∗

a41 a42 · · · a4n
...

...
. . .

...

am1 am2 · · · amn


.

By Lemma 3.4,

E2 0

0 Im−2

M
E1 0

0 Im−2

 is invetible over S. If we keep pro-

ceeding in the above way, we eventually get an invertible matrix E ∈ Mm(S),

such that EA =

gR ∗

0 ∗

.

The existence of the matrix F can be shown analogously.

Lemma 3.5. Let A =

1 0

0 B

 be a matrix over S, where B ∈Mm×n(S), m,n ∈

N+ and each 0 is a zero matrix of the appropriate size. Then A is regular over

S if and only if B is regular over S. Moreover, if C ∈Mn×m(S) is a {1}-inverse

of B, then

1 0

0 C

 is a {1}-inverse of A over S.

Proof. If A is regular over S, then by Theorem 3.1, B is regular over S. Con-

versely, suppose C ∈ Mn×m(S) is a {1}-inverse of B, that is, BCB = B. Let

G =

1 0

0 C

. Then AGA =

1 0

0 BCB

 =

1 0

0 B

 = A, and so G is a {1}-

inverse of A over S. Therefore, A is regular over S.
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3.2 Algorithm

We now introduce the algorithm for finding a {1}-inverse of a given matrix over

the skew polynomial ring S.

Algorithm 5 Find a {1}-inverse of a given matrix over S

Input A = (aij) ∈Mm×n(S), where m,n ∈ N+.

Output

{
G ∈Mn×m(S) such that AGA = A, if A is regular

“Not regular.”, otherwise

1: g1 ← gcrd(a11, a21, ..., am1), g2 ← gcld(a11, a12, ..., a1n)

2: for i from 1 to 2 do

if gi ∈ R then hi ←

{
g−1i , if gi 6= 0

0, otherwise
end if

3: end for

4: if m = n = 1 then

5: if g1 ∈ R then return G← [h1] else return “Not regular.” end if

6: else if m = 1 then

find an invertible matrix F ∈Mn×n(S) such that

AF =
[
g2 01×(n−1)

]
(Theorem 3.2)

7: if g2 ∈ R then return G← F

[
h2

0(n−1)×1

]
else return “Not regular.”

8: end if

9: else if n = 1 then

find an invertible matrix E ∈Mm×m(S) such that

EA =

[
g1

0(m−1)×1

]
(Theorem 3.2),

10: if g1 ∈ R then return G←
[
h1 01×(m−1)

]
E

11: else return “Not regular.”

12: end if

13: else find invertible matrices E ∈Mm×m(S) and F ∈Mn×n(S) such that

EA =

[
g1 b

0(m−1)×1 ∗

]
, (EA)F =

[
g 01×(n−1)
∗ B

]
,
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Algorithm 5 Find a {1}-inverse of a given matrix over S(continued)

14: where b =
[
b1 · · · bn−1

]
, g = gcld(g1, b1, ..., bn−1), and each ∗ denotes

some matrix of the appropriate size (Theorem 3.2)

15: if g 6= 1 then return “Not regular.” (Theorem 3.1)

16: else find an invertible matrix M ∈Mm×m(S) such that

M((EA)F ) =

[
1 01×(n−1)

0(m−1)×1 B

]
,

call Algorithm5 to compute a {1}-inverse H of B over S,

return G← F

[
1 01×(m−1)

0(n−1)×1 H

]
ME

17: end if

18: end if

Theorem 3.3. In Algorithm 5, the n×m matrix G is a {1}-inverse of the m×n

matrix A over the skew polynomial ring S.

Proof. Let A, G, B, H g and h be as in Algorithm 5.

If m = n = 1, then AGA =

[
g1

] [
h1

] [
g1

]
=

[
g1

]
= A.

If m = 1, then

AGA = AF

 h2

0(n−1)×1

A =

[
g2 01×(n−1)

] h2

0(n−1)×1

A = A.

If n = 1, then

AGA = A

[
h1 01×(m−1)

]
EA = A

[
h1 01×(m−1)

] g1

0(m−1)×1

 = A.

If m ≥ 2, n ≥ 2, then Em×m, Fn×n Mm×m and H(n−1)×(m−1) are such that

MEAF =

 1 01×(n−1)

0(m−1)×1 B

 , BHB = B,
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which gives

MEAGAF = MEAF

 1 01×(m−1)

0(n−1)×1 H

MEAF

=

 1 01×(n−1)

0(m−1)×1 B


 1 01×(m−1)

0(n−1)×1 H


 1 01×(n−1)

0(m−1)×1 B


=

 1 01×(n−1)

0(m−1)×1 BH


 1 01×(n−1)

0(m−1)×1 B


=

 1 01×(n−1)

0(m−1)×1 BHB


=

 1 01×(n−1)

0(m−1)×1 B


= MEAF.

Since E, F and M are invertible over S (Theorem 3.2), we have AGA = A, which

completes the proof.

Example 3.2. Let S = C[x;σ] (= C[x;σ, 0]), where σ is the standard complex

conjugation on C. Then ∀c ∈ C, xc = cx. Let A =

 1 ix 0

ix2 −x3 − x2 + 1 x

 be a

matrix over S. Then G =


1 + x3 −ix

−ix2 1

ix3 x

 is a {1}-inverse of A over S.
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Chapter 4

Other Results

In this chapter, we explore the properties of a variety of generalized inverses for

matrices over the skew polynomial ring S.

4.1 Involutions on Skew Polynomial Rings

From Chapter 1 we know that the concept of an involution is needed when study-

ing MP-inverses. The existence of an involution is known for some division rings

(for example, the quaternion conjugation over the division ring of quaternions).

In this section, we extend involutions on division rings to some particular skew

polynomial rings in order to support our investigation on the skew polynomial

ring S = R[x;σ, δ], where R is a division ring, σ is an automorphism of R and δ

is a σ-derivation.

In this section, we let R be the division ring with an involution f : r 7→ r.

Proposition 4.1. Suppose σ = 1 and δ(r) = δ(r) for any r ∈ R. Define a

function g

g : S → S
n∑

i=0

rix
i 7→

n∑
i=0

(−x)iri
, ri ∈ R, i = 1, ..., n.

Then g is an involution over S.
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Proof. Let p =
m∑
i=0

aix
i, q =

n∑
j=0

bjx
j be two arbitrary polynomials in S with

ai, bj ∈ R. Clearly, g(p) + g(q) = g(p+ q). Let axs, bxt (a 6= 0, b 6= 0) denote the

sth term of p and the tth term of q, respectively. Then, to show g(pq) = g(q)g(p),

it suffices to prove that g(axsbxt) = g(bxt)g(axs) holds for any s ∈ {0, ...,m} and

t ∈ {0, ..., n}.

g(axsbxt) = g

(
a

(
s∑

i=0

(
s

i

)
δs−i(b)xi

)
xt

)
[ Lemma 1.2 ]

=
s∑

i=0

g

(
a

(
s

i

)
δs−i(b)xt+i

)
=

s∑
i=0

(
s

i

)
(−x)t+iaδs−i(b)

=
s∑

i=0

(−1)t+i

(
s

i

)
xt+iδs−i(b)a,

g(bxt)g(axs) = (−x)tb(−x)sa

= (−1)t+sxt(
s∑

i=0

(
s

i

)
(−1)s−ixiδs−i(b))a [ Lemma 1.2 ]

=
s∑

i=0

(−1)t+2s−i
(
s

i

)
xt+iδs−i(b)a

=
s∑

i=0

(−1)t+i

(
s

i

)
xt+iδs−i(b)a.

Thus, g(axsbxt) = g(bxt)g(axs). One can easily verify that g is a bijection. So

g is an anti-automophism. We now prove that g is of order 2. Since g(p + q) =

g(p) + g(q) for any p, q ∈ S, it suffices to show that g(g(axn)) = axn for any

a ∈ R, n ∈ N.

g(g(axn)) = g((−x)na)

= (−1)ng(
n∑

i=0

(
n

i

)
δn−i(a)xi) [ Lemma 1.2]

=
n∑

i=0

(−1)n+i

(
n

i

)
xiδn−i(a)

=
n∑

i=0

(−1)n−i
(
n

i

)
xiδn−i(a)
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= axn [ Lemma 1.2 ]

Hence g is of order 2 and so is an involution over S.

Recall that for a ring P , the centre of P is

Z(P ) = {x ∈ P | xr = rx for all r ∈ P}.

Proposition 4.2. Suppose σ = 1 and δ(r) = δ(r) for any r ∈ R. Let c ∈ Z(R)

such that c 6= 0, δ(c) = 0 and define a function g as follows

g : S → S
n∑

i=0

rix
i 7→

n∑
i=0

(cx)iri
, ri ∈ R, i = 1, ..., n.

(a) If there exists some a ∈ R \ {0} such that δ(a) 6= 0, then g is an involution

over S if and only if c = −1.

(b) If δ = 0 and cc = 1, then g is an involution over S.

(c) If c 6= −1 and g is an involution over S, then δ = 0.

Proof. (a) Let a ∈ R \ {0} be as above. Suppose g is an involution. Since σ = 1

and δ(c) = 0, we have xc = σ(c)x + δ(c) = cx. Let p = x, q = ax be two

elements of S. Then

g(pq) = g(σ(a)x2 + δ(a)x)

= g(ax2) + g(δ(a)x)

= (cx)2a+ cxδ(a)

= x2c2a+ xcδ(a),

g(q)g(p) = (cx)a(cx)

= c2xax

= c2x(xa− δ(a))

= x2c2a+ x(−c2δ(a)).

If g is an involution on S, then g(pq) = g(q)g(p), and so cδ(a) = −c2δ(a),

i.e.,

(1 + c)cδ(a) = 0.
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Since c 6= 0 and R has no zero divisor, we have either δ(a) = 0 or (1 + c) = 0,

i.e., δ(a) = 0 or c = −1. Since f is a bijection and δ(a) 6= 0, we have δ(a) 6= 0.

Hence c = −1.

Conversely, if c = −1, then by Proposition 4.1, g is an involution on S.

(b) Suppose δ = 0. Then for all r ∈ R, xr = σ(r)x+ δ(r) = rx. Let p =
m∑
i=0

aix
i,

q =
n∑

j=0

bjx
j be two arbitrary polynomials in S with ai, bj ∈ R. Clearly,

g(p) + g(q) = g(p + q). Let axs, bxt (a 6= 0, b 6= 0) denote the sth term of

p and the tth term of q, respectively. Then, to show g(pq) = g(q)g(p), it

suffices to prove that g(axsbxt) = g(bxt)g(axs) holds for any s ∈ {0, ...,m}

and t ∈ {0, ..., n}.

g(axsbxt) = g(abxsxt)

= (cx)s+tab

= cs+txs+tba,

g(bxt)g(axs) = (cx)tb(cx)sa

= ctxtbcsxsa

= ct+sxt+sba.

Clear, g(axsbxt) = g(bxt)g(axs). One can easily verify that g is a bijection.

Therefore, g is an anti-automorphism on S.

We now prove that g is of order 2. Since g is a homomorphism of the additive

group of S, it suffices to show that g(g(axn)) = axn for any a ∈ R, n ∈ N.

g(g(axn)) = g((cx)na) = g(cnaxn) = (cx)ncna = a(cc)nxn = axn.

Hence g is of order 2 and so is an involution over S.

(c) Suppose c 6= −1 and g is an involution. Then for any p, q ∈ S, g(pq) =

g(q)g(p). Let a be an arbitrary element in R \ {0}. Set p = x and q = ax.

Then, by Part (a), g(pq) = g(q)g(p) gives

(1 + c)cδ(a) = 0.
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Since c 6= −1, c 6= 0 and R has no zero divisor, we have δ(a) = 0, i.e.,

δ(a) = 0. By definition, f is a bijection. So δ(a) = 0. Hence for all r ∈ R,

δ(r) = 0.

Recall that for an element c of R, the conjugation by c is the automorphism

hc : r → c−1rc over R, where c−1 is the inverse of c in R.

From the above we see that involutions on skew polynomial rings exist when

the skew polynomial rings satisfy some conditions. Thus, we can assume the

existence of an involution on the skew polynomial ring S and use the involution

to define generalized inverses for matrices over S.

4.2 Some Basic Properties

Recall that, given a matrix A = (aij)m×n over the skew polynomial ring S =

R[x;σ, δ], where R is the skew field with an involution a → a (a ∈ R), the

involution transpose of A over S is A∗ = (A)T = (aji)n×m. Let B = (bij)n×k be a

matrix over S as well. Then by definition, we can verify the following identities

without difficulty:

(A)T = (AT ),

(A∗)−1 = (A−1)∗.

Note that the following identities do not generally hold:

(a) (AB)T = BTAT ,

(b) (A)(B) = BA,

(c) (A−1)T = (AT )−1,

(d) (A−1) = (A)−1.

50



4.2. SOME BASIC PROPERTIES

For instance, let A =

a a

0 b

, B =

b b

0 a

, where a, b ∈ S such that ab 6= ba.

Then

(AB)T =

 ab 0

ab+ a2 ba

 6=
 ba 0

ba+ a2 ab

 = BTAT ,

(A)(B) =

ba ba+ a2

0 ab

 6=
ba ba+ b2

0 ab

 = BA,

(A−1)TAT 6= (AA−1)T = IT = I, that is, (A−1)T 6= (AT )−1,

(A−1)(A) 6= A−1A = I = I, that is, (A−1) 6= (A)−1.

In Section 1.5.2 we gave the definition of the rank of a matrix over S. We

now give a property of matrices of left (right, resp.) full rank as follows.

Lemma 4.1. Let Am×n be a matrix over S. Suppose ρ(A) = m, 1 ≤ m ≤ n.

Then A has a right inverse over Q(S). Similarly, A has a left inverse over Q(S)

if ρ(A) = n, 1 ≤ n ≤ m.

Proof. We shall only prove the result for the case ρ(A) = m. The case ρ(A) = n

can be shown analogously.

By Proposition 1.12 and Theorem 3.2, there exists an n × n matrix F over

Q(S), such that

AF =

1 01×(n−1)

∗ ∗

 ,
where each ∗ denotes some matrix of the appropriate size. Since ρ(A) = m, by

using the above method, we can find a n× n matrix B1 over Q(S), such that

AB1 =


[
Im 0m×(n−m)

]
, if m < n

Im, if m = n

.
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Let

B2 =



 Im

0(n−m)×m

 , if m < n

Im, if m = n

,

and B = B1B2. Then AB = Im, and so A has a right inverse over Q(S).

4.3 Matrix Diagonalization

Matrix Diagonalization is very useful when studying properties of matrices. Over

a commutative PID, every square matrix can be changed into a particular di-

agonal matrix, by the Smith normal form theorem ([30], Theorem 4.10). In

non-commutative case, we have some similar results.

In this section, we show that every matrix (not necessary square) over the

skew polynomial ring S can be converted into a diagonal matrix that has the

same fundamental properties of the underlying matrix in order to support our

further investigation on the generalized inverses for matrices over S.

Proposition 4.3. Let A ∈Mm×n(S) \ {0} such that ρ(A) = r. Then there exist

invertible matrices U ∈Mm×m(S) and V ∈Mn×n(S) such that

UAV =



x1 0 · · · 0 · · · 0

0 x2 · · · 0 · · · 0

...
...

. . .
...

. . .
...

0 0 · · · xr · · · 0

...
...

. . .
...

. . .
...

0 0 · · · 0 · · · 0


, (4.1)

where x1, x2, ..., xr are nonzero elements in S.

Proof. We first prove the following
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Claim. The matrix A can be converted into an m× n matrix of the form∗ 0

0 D

 , (4.2)

where ∗ denotes some element in S and each 0 denotes a zero matrix of the

appropriate size, by performing elementary row and column operations.

Let A1 = A. Suppose A1(s, t) is a nonzero entry that is of the lowest de-

gree in A1. Then there exist invertible matrices E1 ∈ Mm×m(S) and F1 ∈

Mn×n(S) such that E1A1F1 = A2, where A2(1, 1) = A1(s, t). Suppose b1 =

gcrd(A2(1, 1), ..., A2(m, 1)). By Theorem 3.2, there exists an invertible matrix

E2 ∈Mm×m(S), such that

E2A2 = B =



b1 b2 · · · bn

0 ∗ · · · ∗
...

...
. . .

...

0 ∗ · · · ∗


, b2, ..., bn ∈ S.

If gcld(b1, b2, ..., bn) = b1, then there exists an invertible matrix F2 ∈Mn×n(S)

such that

BF2 =



b1 0 · · · 0

0 ∗ · · · ∗
...

...
. . .

...

0 ∗ · · · ∗


.

If gcld(b1, b2, ..., bn) = 1 6= b1, then by Theorem 3.2, there exists an invertible

matrix F2 ∈Mn×n(S) such that
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BF2 =



1 0 · · · 0

∗ ∗ · · · ∗
...

...
. . .

...

∗ ∗ · · · ∗


,

and so there exists an invertible matrix E3 ∈ Mm×m(S), such that E3BF2 is of

the form (4.2).

If gcld(b1, b2, ..., bn) = c1, where c1 6= 1 and c1 6= bi for i = 1, 2, ..., n, then

deg(c1) < deg(b1) ≤ deg(A2(1, 1)) ≤ deg(A1(1, 1)). By Theorem 3.2, there exists

an invertible matrix F2 ∈Mn×n(S) such that

BF2 = C =



c1 0 · · · 0

c2 ∗ · · · ∗
...

...
. . .

...

cm ∗ · · · ∗


, c2, ..., cm ∈ S.

If gcrd(c1, c2, ..., cm) = c1 or gcrd(c1, c2, ..., cm) = 1, then the claim is clear. Oth-

erwise, we let A1 = C and repeat the above process.

Since deg(A1(1, 1)) strictly decreases in each iteration, we eventually get a

matrix B such that gcld(b1, b2, ..., bn) = b1 or gcld(b1, b2, ..., bn) = 1 (or a matrix

C such that gcrd(c1, c2, ..., cm) = c1 or gcrd(c1, c2, ..., cm) = 1). Thus, we can

convert B (or C) into a matrix of the form (4.2) by applying elementary column

(or row) operations.

After we convert A into the form (4.2), we let A1 = D and repeat the above

process. Since ρ(A) = r, we eventually convert A into the form (4.1). Therefore,

there exist invertible matrices U ∈ Mm×m(S) and V ∈ Mn×n(S) such that UAV

is of the form (4.1).

54



4.4. {1}-INVERSES

4.4 {1}-inverses

Recall that a matrix A over the skew polynomial ring S is called a regular matrix

if there exists some matrix G over S such that

AGA = A.

In this case, G is called a {1}-inverse of A, written A−.

In Section 1.5.2 we gave the definition of the rank of an m × n matrix A,

written ρ(A), over the skew polynomial ring S. In this section, we shall explore

the relation of the rank of a matrix to the existence of a {1}-inverse of the matrix

over S.

Proposition 4.4. Let Am×n, Gn×m be two matrices over S.

(a) If AGA = A, then ρ(A) ≤ ρ(G).

(b) If AGA = A and GAG = G, then ρ(A) = ρ(G).

Proof. By (1.18).

We now give a result that can be used to determine the existence of a {1}-

inverse of a matrix over S.

Proposition 4.5. Let A be an m×n matrix over S such that ρ(A) = m (ρ(A) =

n, resp.). Then a matrix G over S is a {1}-inverse of A if and only if G is a

right (left, resp.) inverse of A over S.

Proof. We shall only prove the result for the case ρ(A) = m. The case ρ(A) = n

can be shown analogously.

Suppose that G is a {1}-inverse of A over S. Consider Am×n as a matrix over

Q(S). Since ρ(A) = m, A has a right inverse over Q(S), by Lemma 4.1. Let B

denote a right inverse of A over Q(S). Then AG = AGAB = AB = I, and so

G is a right inverse of A over S. Conversely, if G is a right inverse of A over S,

then AGA = IA = A, and so G is a {1}-inverse of A.
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In Section 1.5.2 we gave the definition of rank factorization for a matrix over

S. We now give an alternative definition of rank factorization as follows.

Proposition 4.6. Given any m × n matrix A over S, where m,n ∈ N. Let

A = Bm×rCr×n be a decomposition of A over the Ore quotient ring Q(S) of S,

where r ∈ N. The following are equivalent.

(a) A = BC is a rank factorization of A over S, i.e., ρ(A) = r.

(b) ρ(B) = r, ρ(C) = r.

(c) B has a left inverse and C has a right inverse over the Ore quotient ring

Q(S) of S.

Proof. (a) ⇒ (b). Suppose ρ(A) = r. Note that r ≤ min{m,n}. By (1.15) and

(1.18), ρ(B) = r, ρ(C) = r.

(b) ⇒ (c). Suppose ρ(B) = r, ρ(C) = r. By Lemma 4.1, B has a left inverse

and C has a right inverse over Q(S).

(c) ⇒ (a). Suppose B has a left inverse B−1r×m and C has a right inverse C−1n×r

over Q(S). Then B−1AC−1 = Ir. By (1.18), ρ(A) ≥ ρ(Ir) = r. On the other

hand, ρ(A) ≤ r, by the definition of inner rank. Thus, ρ(A) = r.

4.5 {1, 2}-inverses

Given a matrix A over the skew polynomial ring S, a matrix G over S is called

a {1, 2}-inverse of A if

AGA = A,

GAG = G.

We have seen that, for any matrix A over S, there exist invertible matrices U and

V over S such that UAV is a diagonal matrix that shares the same fundamental

properties with A (Proposition 4.3). In this section, we shall use this property to

investigate the {1, 2}-inverses of matrices over S.
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Theorem 4.1. Let A be a regular matrix over S.

(a) Suppose A = U

I 0

0 0

V for some invertible matrices U and V over S. A

matrix of the form

V −1

 I B

C CB

U−1 (4.3)

for some matrices B,C of appropriate size is a {1, 2}-inverse of A. Moreover,

every {1, 2}-inverse of A can be expressed in the form of (4.3).

(b) Suppose A has a rank factorization A = ALAR such that AL has a left inverse

A−1L and AR has a right inverse A−1R over S. The matrix A−1R A−1L is a {1, 2}-

inverse of A. Moreover, every {1, 2}-inverse of A can be expressed in the

form A−1R A−1L .

Proof. (a) By definition, one can verify that V −1

 I B

C CB

U−1 is a {1, 2}-

inverse of U

I 0

0 0

V with out difficulty.

On the other hand, if a matrix G over S is a {1, 2}-inverse of U

I 0

0 0

V ,

namely,

U

I 0

0 0

V GU
I 0

0 0

V = U

I 0

0 0

V, GU

I 0

0 0

V G = G,

then we haveI 0

0 0

V GU
I 0

0 0

 =

I 0

0 0

 , V GU

I 0

0 0

V GU = V GU,

since U are V are invertible over S. This gives that V GU is a {1, 2}-inverse
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of

I 0

0 0

 over S. Without loss of generality, suppose V GU =

E B

C D

 for

some matrices E,B,C,D of appropriate size. Then

I 0

0 0


E B

C D


I 0

0 0

 =

I 0

0 0

 ,
E B

C D


I 0

0 0


E B

C D

 =

E B

C D

 ,
that is,

E 0

0 0

 =

I 0

0 0

 ,
E2 EB

CE CB

 =

E B

C D

 ,

which implies that E = I, D = CB. Therefore, V GU =

 I B

C CB

, and so

G = V −1

 I B

C CB

U−1.
(b) By definition, one can easily verify that A−1R A−1L is a {1, 2}-inverse of ALAR.

On the other hand, let G be a {1, 2}-inverse of ALAR over S. Then

ALARGALAR = ALAR, (4.4)

GALARG = G. (4.5)

Since AL has a left inverse A−1L over S and AR has a right inverse A−1R over

S, we get

GAL = A−1R , ARG = A−1L (4.6)

from (4.4). Substitute (4.6) into (4.5), we get G = A−1R A−1L .

Theorem 4.2. Let A be a matrix over S. If G is a {1, 2}-inverse of A over S,
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then every {1, 2}-inverse of A can be expressed in the form

fG(X, Y ) = G+ (I −GA)XAG+GAY (I − AG) + (I −GA)XAY (I − AG)

for some matrices X, Y of appropriate size. In addition, every matrix of the form

fG(X, Y ) in which G is a {1, 2}-inverse of A over S is also a {1, 2}-inverse of A

over S.

Proof. Suppose G is a {1, 2}-inverse of A. One can easily verify that G =

fG(G,G). On the other hand, let X, Y be matrices of suitable size over S. One

can verify that AfG(X, Y )A = A, fG(X, Y )AfG(X, Y ) = fG(X, Y ) without diffi-

culty. Thus, fG(X, Y ) is a {1, 2}-inverse of A over S

4.6 MP-inverses

Given a matrix A over the skew polynomial ring S, a matrix G is said to be the

MP-inverse of A over S, denoted by A+, if

AGA = A,

GAG = G,

(AG)∗ = AG,

(GA)∗ = GA.

In this section, we investigate the existence and construction of MP-inverses of

matrices over the skew polynomial ring S.

Recall that for any invertible matrices A and B over S, we have (A−1)∗ =

(A∗)−1 and (AB)−1 = B−1A−1. Using these two identities, we can get the follow-

ing identities:

(A∗A)−1 = ((A∗A)−1)∗, (4.7)

(AA∗)−1 = ((AA∗)−1)∗. (4.8)
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We now introduce theorems used to determine the existence of MP-inverses

of matrices over S.

Theorem 4.3. Let A be an m× n matrix over the skew polynomial ring S with

an involution a → ā such that m ≥ n and ρ(A) = n (m ≤ n and ρ(A) = m,

resp.). Then A has a MP-inverse if and only if A∗A (AA∗, resp.) is invertible. If

A∗A (AA∗, resp.) is invertible, then G := (A∗A)−1A∗ (G := A∗(AA∗)−1, resp.)

is the MP-inverse of A, and GG∗ (G∗G, resp.) is the inverse of A∗A (AA∗, resp.)

over S.

Proof. We shall only prove the case in which m ≥ n. The case in which m ≤ n

can be shown analogously.

Suppose A has a MP-inverse G over S. Since ρ(A) = n, A has a left inverse

AL over Q(S). Then AGA = A implies

GA = I.

Also, AGA = A together with (AG)∗ = AG give (AG)∗A = A, hence

G∗A∗A = A.

Thus, GG∗A∗A = GA = I, that is, A∗A has a left inverse GG∗ over S. By

Proposition 1.14, A∗A is invertible, and GG∗ is the inverse of A∗A over S.

Conversely, suppose A∗A is invertible. We verify that G := (A∗A)−1A∗ is the

MP-inverse of A over S. Since GA = (A∗A)−1A∗A = I, we have AGA = A,

GAG = G and (GA)∗ = GA. Moreover, by (4.7), we have

(AG)∗ = G∗A∗ = ((A∗A)−1A∗)∗A∗ = A((A∗A)−1)∗A∗

= A(A∗A)−1A∗ = AG.

Therefore, G := (A∗A)−1A∗ is the MP-inverse of A over S.
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Theorem 4.4. Let A be an m× n matrix over the skew polynomial ring S with

an involution a→ ā. Let ρ(A) = r. Let A = ALAR, where AL is an m×r matrix

and AR is a r × n matrix. Then the following are equivalent.

(i) The MP-inverse A+ of A over S exists.

(ii) The MP-inverse A+
L of AL and the MP-inverse A+

R of AR over S exist.

(iii) A∗LAL and ARA
∗
R are invertible.

Proof. (i)⇒ (ii). Suppose (i) holds, that is,

ALARA
+ALAR = ALAR, (4.9)

A+ALARA
+ = A+, (4.10)

(ALARA
+)∗ = ALARA

+, (4.11)

(A+ALAR)∗ = A+ALAR. (4.12)

We shall only show that ARA
+ is the MP-inverse of AL. The case of the MP-

inverse of AR can be shown analogously.

By (1.15) and (1.18), ρ(AL) = r, ρ(AR) = r. Thus, AL has a left inverse A−1L

and AR has a right inverse A−1R over Q(S). Then from (4.9) and (4.10) we get

AL(ARA
+)AL = AL, (4.13)

(ARA
+)AL(ARA

+) = ARA
+. (4.14)

Moreover, by (4.13), we have

ARA
+AL = (A−1L AL)ARA

+AL(ARA
−1
R )

= A−1L (ALARA
+AL)ARA

−1
R

= A−1L ALARA
−1
R

= I,
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and so

ARA
+AL = (ARA

+AL)∗. (4.15)

Hence, by (4.11), (4.13), (4.14) and (4.15), ARA
+ is the MP-inverse of AL over

S.

(ii)⇒ (i). Suppose (ii) holds. Then

AA+
RA

+
LA = ALARA

+
RA

+
LALAR

= ALARA
+
R(ARA

−1
R A−1L AL)A+

LALAR

= ALARA
−1
R A−1L ALAR

= ALAR

= A,

A+
RA

+
LAA

+
RA

+
L = A+

RA
+
LALARA

+
RA

+
L

= A+
R(A−1L AL)A+

LALARA
+
R(ARA

−1
R )A+

L

= A+
RA
−1
L ALARA

−1
R A+

L

= A+
RA

+
L ,

AA+
RA

+
L = ALARA

+
RA

+
L

= ALARA
+
R(ARA

−1
R )A+

L

= ALARA
−1
R A+

L

= ALA
+
L

= (ALA
+
L)∗

= (AA+
RA

+
L)∗,
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A+
RA

+
LA = A+

RA
+
LALAR

= A+
R(A−1L AL)A+

LALAR

= A+
RA
−1
L ALAR

= A+
RAR

= (A+
RAR)∗

= (A+
RA

+
LA)∗.

By definition, A+
RA

+
L is the MP-inverse of A.

(ii)⇔ (iii) follows from Theorem 4.3.

Theorem 4.5. Let A be an m× n matrix over the skew polynomial ring S with

an involution f : a→ a. If

(a) ρ(A∗A) = ρ(AA∗) = ρ(A) and

(b) A∗A and AA∗ are regular over S,

then H = A∗(AA∗)−A(A∗A)−A∗ is the MP-inverse of A, where (AA∗)− and

(A∗A)− are {1}-inverses of AA∗ and A∗A, respectively.

Proof. Consider A,A∗A and AA∗ as matrices over Q(S). Since ρ(A∗A) = ρ(A),

there exists an unimodular matrix B over Q(S) such that BA∗A = A. Also,

since ρ(A) = ρ(AA∗), there exists an unimodular matrix C over Q(S) such that

AA∗C = A. Hence

AHA = AA∗(AA∗)−A(A∗A)−A∗A

= AA∗(AA∗)−BA∗A(A∗A)−A∗A

= AA∗(AA∗)−BA∗A

= AA∗(AA∗)−A

= AA∗(AA∗)−AA∗C

= AA∗C

= A,
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HAH = A∗(AA∗)−A(A∗A)−A∗AA∗(AA∗)−A(A∗A)−A∗

= A∗(AA∗)−BA∗A(A∗A)−A∗AA∗(AA∗)−AA∗C(A∗A)−A∗

= A∗(AA∗)−BA∗AA∗(AA∗)−AA∗C(A∗A)−A∗

= A∗(AA∗)−BA∗AA∗C(A∗A)−A∗

= A∗(AA∗)−A(A∗A)−A∗

= H,

(AH)∗ = (AA∗(AA∗)−A(A∗A)−A∗)∗

= (AA∗(AA∗)−AA∗C(A∗A)−A∗)∗

= (AA∗C(A∗A)−A∗)∗

= (A(A∗A)−A∗)∗

= (BA∗A(A∗A)−(BA∗A)∗)∗

= (BA∗A(A∗A)−A∗AB∗)∗

= (BA∗AB∗)∗

= BA∗AB∗

= AH,

(HA)∗ = (A∗(AA∗)−A(A∗A)−A∗A)∗

= (A∗(AA∗)−BA∗A(A∗A)−A∗A)∗

= (A∗(AA∗)−BA∗A)∗

= (A∗(AA∗)−A)∗

= ((AA∗C)∗(AA∗)−AA∗C)∗

= (C∗AA∗(AA∗)−AA∗C)∗

= (C∗AA∗C)∗

= C∗AA∗C

= HA.
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Thus H is the MP-inverse of A over S.

4.6.1 {1}-inverses of the Form PCQ

In Theorem 4.5 of the previous section, we saw that if a given matrix A over

the skew polynomial ring S has an MP-inverse, then the MP-inverse of A can be

expressed in the form of A∗CA∗ for some matrix C over S, or, in other words, in

the form of PCQ, where P and Q are given matrices over S. Since the MP-inverse

is a special kind of {1}-inverse, we investigate whether a given matrix over S has

a {1}-inverse of such form.

Theorem 4.6. Let Am×n, Pn×k and Ql×m be matrices over the skew polynomial

ring S.

(a) If Ck×l is a matrix over S, then PCQ is a {1}-inverse of A if and only if

(i) ρ(QAP ) = ρ(A),

(ii) C is a {1}-inverse of QAP over S.

(b) For some matrix Ck×l, A has a {1}-inverse of the form PCQ if and only if

(i) ρ(QAP ) = ρ(A),

(ii) QAP is regular.

Moreover, if ρ(P ) = ρ(Q) = ρ(A) and A has a {1}-inverse of the form PCQ,

then this {1}-inverse of A is unique.

Proof. (a) If PCQ is a {1}-inverse of A over S, that is,

APCQA = A, (4.16)

then APCQAPCQA = A. By (1.18),

ρ(A) = ρ((APC)(QAP )(CQA)) ≤ ρ(QAP ), ρ(QAP ) ≤ ρ(A),
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so ρ(QAP ) = ρ(A). Also, By (4.16), QAPCQAP = QAP . Thus C is a

{1}-inverse of QAP over S.

Conversely, suppose (i) and (ii) of Part (a) hold. By (1.18),

ρ(QAP ) ≤ ρ(QA) ≤ ρ(A), ρ(QAP ) ≤ ρ(AP ) ≤ ρ(A).

By assumption ρ(QAP ) = ρ(A), so we get

ρ(QA) = ρ(A) = ρ(AP ).

Consider QA,AP,A as matrices over Q(S). Since ρ(QA) = ρ(A), ρ(AP ) =

ρ(A), there exist matrices D and E over Q(S) such that

DQA = A, (4.17)

APE = A. (4.18)

Since C is a {1}-inverse of QAP , namely, QAPCQAP = QAP , we have

DQAPCQAPE = DQAPE,

By (4.17) and (4.18), APCQA = A, that is, PCQ is a {1}-inverse of A.

(b) Follows from Part (a).

Now, let ρ(P ) = ρ(Q) = ρ(A). Suppose that A has a {1}-inverse of the form

PCQ for some matrix C over S. By Part (a), ρ(QAP ) = ρ(A), which implies

ρ(P ) = ρ(Q) = ρ(QAP ). Consider Q,P,QAP as matrices over Q(S). Then there

exist matrices D and E over Q(S) such that

E(QAP ) = P, (4.19)

(QAP )D = Q. (4.20)

66



4.6. MP-INVERSES

By (4.19),(4.20),

PCQ = (EQAP )C(QAPD)

= EQ(APCQA)PD

= EQAPD

= EQ (or PD).

This implies that the matrix PCQ is in fact independent of C. Also, from (4.19)

and (4.20) we can see that E and Q are dependent on P and Q. Therefore, the

matrix PCQ is unique.

Theorem 4.6 outlines the sufficient and necessary conditions for a matrix to

have a {1}-inverse of the form PCQ. Using this result, we can get the following

conclusions without difficulty.

Corollory 4.1. Let A be an m× n matrix over the skew polynomial ring S.

(a) If C is a n×n matrix over S (D is a m×m matrix over S, resp.), then CA∗

(A∗D, resp.) is a {1}-inverse of A if and only if

(i) ρ(A∗A) = ρ(A) (ρ(AA∗) = ρ(A), resp.),

(ii) C (D, resp.) is a {1}-inverse of A∗A (AA∗, resp.) over S.

(b) For some n×n matrix C (some m×m matrix D, resp.), A has a {1}-inverse

of the form CA∗ (A∗D, resp.) if and only if

(i) ρ(A∗A) = ρ(A) (ρ(AA∗) = ρ(A), resp.),

(ii) A∗A (AA∗, resp.) is regular.

Proof. The result for matrices of the form CA∗ is obtained by taking P = I,Q =

A∗ in Theorem 4.6. The result for matrices of the form A∗D can be shown

analogously.

Corollory 4.2. Let A be an m× n matrix over S.

67



4.6. MP-INVERSES

(a) If C is a m×n matrix over S, then A∗CA∗ is a {1}-inverse of A if and only

if

(i) ρ(A∗AA∗) = ρ(A),

(ii) C is a {1}-inverse of A∗AA∗ over S.

(b) For some m × n matrix C, A has a {1}-inverse of the form A∗CA∗ if and

only if

(i) ρ(A∗AA∗) = ρ(A),

(ii) A∗AA∗ is regular.

Proof. The result is obtained by taking P = A∗, Q = A∗ in Theorem 4.6.

Corollory 4.3. Let A be an m×m matrix over S.

(a) If C is a m×m matrix over S, then AC (CA, resp.) is a {1}-inverse of A

if and only if

(i) ρ(A2) = ρ(A),

(ii) C is a {1}-inverse of A2 over S.

(b) For some m×m matrix C, A has a {1}-inverse of the form AC (CA, resp.)

if and only if

(i) ρ(A2) = ρ(A),

(ii) A2 is regular.

Consequently, AC is a {1}-inverse of A if and only if CA is a {1}-inverse of A.

Proof. The result for matrices of the form AC is obtained by taking P = A,Q = I

in Theorem 4.6. The result for matrices of the form CA can be shown analogously.

Corollory 4.4. Let A be an m×m matrix over S.
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(a) If C is a m×m matrix over S, then ACA is a {1}-inverse of A if and only

if

(i) ρ(A3) = ρ(A),

(ii) C is a {1}-inverse of A3 over S.

(b) For some m×m matrix C, A has a {1}-inverse of the form ACA if and only

if

(i) ρ(A3) = ρ(A),

(ii) A3 is regular.

Further, if A has a {1}-inverse of the form ACA, then the {1}-inverse of the

form ACA of A is unique.

Proof. The result is obtained by taking P = A,Q = A in Theorem 4.6.

Corollory 4.5. Let Am×m be a matrix over S, m ∈ N. The following statements

are equivalent.

(i) A has a {1}-inverse of the form AC for some matrix C over S.

(ii) A has a {1}-inverse of the form CA for some matrix C over S.

(iii) ρ(A) = ρ(A2) and A2 is regular.

(iv) A has a {1}-inverse of the form ACA for some matrix C over S.

(v) ρ(A) = ρ(A3) and A3 is regular.

(vi) ρ(A) = ρ(An) and An is regular for n ∈ N, n ≥ 2.

Proof. (i)⇔ (ii)⇔ (iii). By Corollary 4.3.

(iv)⇔ (v). By Corollary 4.4.

To show (iii)⇔ (v), it suffices to show (iii)⇔ (vi).
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(iii) ⇒ (vi). Suppose (iii) holds. Since ρ(A) = ρ(A2), there exists a matrix

B over Q(S) such that A2B = A. This gives

A = A2B = A(A2B)B = A3B2 = · · · = AnBn−1. (4.21)

By (1.18), ρ(A) = ρ(AnBn−1) ≤ ρ(An), ρ(An) ≤ ρ(A). Therefore, ρ(A) = ρ(An).

On the other hand, let G be a {1}-inverse of A2, that is, A2GA2 = A2. By

(4.21), A2GA = A2GA2B = A2B = A. Thus

An(GA)n−1 = An−2A2GA(GA)n−2 = An−2A(GA)n−2 = · · · = A,

and so

An = AAn−1 = An(GA)n−1An−1 = An(GA)n−2GAn,

that is, (GA)n−2G is a {1}-inverse of An over S.

To show (vi)⇒ (iii), it suffices to show (vi)⇒ (i). Suppose (vi) holds. Let G be

a {1}-inverse of An. Since ρ(A) = ρ(An), there exists a matrix B over Q(S) such

that AnB = A. Since AnGAn = An, we have AnGA = AnGAnB = AnB = A,

i.e.,

A(An−1G)A = A.

Therefore, A has a {1}-inverse of the form AC over S.
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4.7 {1, 2, 3}-inverses and {1, 2, 4}-inverses

Let Am×n and Gn×m be two matrices over the skew polynomial ring S. Recall

that G is called a {1, 2, 3}-inverse ({1, 2, 4}-inverse, resp.) of A if

AGA = A,

GAG = G,

(AG)∗ = AG ((GA)∗ = GA, resp.).

In this section, we shall investigate the existence and construction of {1, 2, 3}-

inverses and {1, 2, 4}-inverses of matrices over the skew polynomial ring S.

Proposition 4.7. Let A be an m× n matrix over S. Then

(a) A {1}-inverse G of A is a {1, 2, 3}-inverse of A if and only if G is of the

form CA∗ for some matrix C over S.

(b) A {1}-inverse G of A is a {1, 2, 4}-inverse of A if and only if G is of the

form A∗C for some matrix C over S.

(c) A {1}-inverse G of A is the MP-inverse of A if and only if G is of the form

A∗CA∗ for some matrix C over S.

Proof. (a) If G is a {1, 2, 3}-inverse of A, i.e., AGA = A, GAG = G, (AG)∗ =

AG, then G = GAG = G(AG)∗ = GG∗A∗, and so G is of the form CA∗.

Conversely, if G is a {1}-inverse of A and G = CA∗ for some matrix C over S,

thenACA∗A = A. This givesACA∗AC∗A∗ = AC∗A∗. So (ACA∗)(ACA∗)∗ =

(ACA∗)∗. On the other hand, (ACA∗)(ACA∗)∗ = ((ACA∗)(ACA∗)∗)∗ =

((ACA∗)∗)∗ = ACA∗. Thus, (ACA∗)∗ = ACA∗, that is,

(AG)∗ = AG.
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This also implies

GAG = CA∗ACA∗ = CA∗(ACA∗)∗ = C(ACA∗A)∗ = C(AGA)∗ = CA∗ = G.

Hence, G is a {1, 2, 3}-inverse of A over S.

(b) If G is a {1, 2, 4}-inverse of A, i.e., AGA = A, GAG = G, (GA)∗ = GA, then

G = GAG = (GA)∗G = A∗G∗G, and so G is of the form A∗C.

Conversely, if G is a {1}-inverse of A and G = A∗C for some matrix C

over S, then AA∗CA = A. This gives A∗C∗AA∗CA = A∗C∗A, that is,

(A∗CA)∗(A∗CA) = (A∗CA)∗. On the other hand, (A∗CA)∗(A∗CA) =

((A∗CA)∗(A∗CA))∗ = A∗CA. Thus, (A∗CA)∗ = A∗CA, that is,

(GA)∗ = GA.

It follows that

GAG = A∗CAA∗C = (A∗CA)∗A∗C = (AA∗CA)∗C = (AGA)∗C = A∗C = G

By definition, G is a {1, 2, 4}-inverse of A over S.

(c) If G is the MP-inverse of A, i.e., AGA = A, GAG = G, (AG)∗ = AG,

(GA)∗ = GA, then G = GAG = GAGAG = (GA)∗G(AG)∗ = A∗G∗GG∗A∗,

and so G is of the form A∗CA∗.

Conversely, if G is a {1}-inverse of A and G = A∗CA∗ for some matrix C

over S, then AA∗CA∗A = A. This gives AA∗CA∗AC∗AA∗ = AC∗AA∗ and

A∗AC∗AA∗CA∗A = A∗AC∗A, that is,

(AA∗CA∗)(AA∗CA∗)∗ = (AA∗CA∗)∗,

(A∗CA∗A)∗(A∗CA∗A) = (A∗CA∗A)∗.
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It follows that

(AA∗CA∗)∗ = (AA∗CA∗)(AA∗CA∗)∗ = ((AA∗CA∗)(AA∗CA∗)∗)∗ = AA∗CA∗,

(A∗CA∗A)∗ = (A∗CA∗A)∗(A∗CA∗A) = ((A∗CA∗A)∗(A∗CA∗A))∗ = A∗CA∗A,

namely,

(AG)∗ = AG, (GA)∗ = GA.

Now,

A∗CA∗AA∗CA∗ = (A∗CA∗A)∗A∗CA∗ = (AA∗CA∗A)∗CA∗ = A∗CA∗,

that is, GAG = G. Hence, G is the MP-inverse of A over S.

Corollory 4.6. Let A be an m × n matrix over the skew polynomial ring S

with an involution a → a. If ρ(A∗A) = ρ(A) and A∗A is regular, then A has a

{1, 2, 3}-inverse over S.

Proof. Let A be as above. Since ρ(A∗A) = ρ(A) and A∗A is regular, by Part (b)

of Corollary 4.1, A has a {1}-inverse of the form CA∗ for some matrix C over S.

By Part(a) of Proposition 4.7, CA∗ is a {1, 2, 3}-inverse of A over S.

Theorem 4.7. Let Am×n be a matrix of rank r over the skew polynomial ring

S with an involution a → a such that A has a factorization A = ALAR over S,

where AL is m× r and AR is r×n. Then A has a {1, 2, 3}-inverse over S if and

only if A∗LAL is invertible and AR has a right inverse over S .

Proof. Let A be as above. Then, by (1.15) and (1.18), ρ(AL) = r, ρ(AR) = r,

and so AL has a left inverse over Q(S), AR has a right inverse over Q(S).

Suppose A has a {1, 2, 3}-inverse G over S. Consider A and G as matrices
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over Q(S). Since AGA = A, that is, ALARGALAR = ALAR, we have

ARGAL = I. (4.22)

Thus, AR has a right inverse over S. Also, since (AG)∗ = AG, we have

G∗A∗RA
∗
L = ALARG. (4.23)

By (4.22) and (4.23),

ARGG
∗A∗RA

∗
LAL = ARGALARGAL = I.

Thus, A∗LAL has a left inverse over S. By Proposition 1.14, A∗LAL is invertible

over S.

Conversely, suppose that A∗LAL has an inverse, denoted by (A∗LAL)−1, and AR

has a right inverse, denoted by A−1R , over S. Let G = A−1R (A∗LAL)−1A∗L. Then

AGA =ALARGALAR

=ALARA
−1
R (A∗LAL)−1A∗LALAR

=ALAR

=A,

GAG =A−1R (A∗LAL)−1A∗LAA
−1
R (A∗LAL)−1A∗L

=A−1R (A∗LAL)−1A∗LALARA
−1
R (A∗LAL)−1A∗L

=A−1R (A∗LAL)−1A∗L

=G,
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(AG)∗ =(AA−1R (A∗LAL)−1A∗L)∗

=(ALARA
−1
R (A∗LAL)−1A∗L)∗

=(AL(A∗LAL)−1A∗L)∗

=AL((A∗LAL)−1)∗A∗L

=AL(A∗LAL)−1A∗L [By (4.8)]

=ALARA
−1
R (A∗LAL)−1A∗L

=AA−1R (A∗LAL)−1A∗L

=AG.

By definition, G is a {1, 2, 3}-inverse of A over S.

4.8 Group Inverses

Let A be an m ×m matrix over a ring. An m ×m matrix G is called a group

inverse of A, denoted by A#, if

AGA = A, (4.24)

GAG = G, (4.25)

AG = GA. (4.26)

If G satisfies only (4.24) and (4.26), then G is called a commuting g-inverse of A.

The group inverse of a given matrix is unique. For if G and H are both group

inverses of A, then

G = GAG = GAHAG = (AG)(AH)G = AHG,

H = HAH = HAGAH = H(GA)(HA) = HGA = HAG = AHG,

and so G = H. For a given matrix A, if G is a commuting g-inverse of A, then

GAG is a group inverse of A. Thus, a square matrix has a group inverse if and
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only if it has a commuting g-inverse.

Proposition 4.8. Let A be a square matrix over S and n ∈ N, n ≥ 2. The

following statements are equivalent.

(i) A has a group inverse over S.

(ii) A has a {1}-inverse of the form AC for some matrix C over S.

(iii) A has a {1}-inverse of the form CA for some matrix C over S.

(iv) A has a {1}-inverse of the form ACA for some matrix C over S.

(v) ρ(A) = ρ(A2) and A2 is regular.

(vi) ρ(A) = ρ(An) and An is regular.

Further, if ACA is a {1}-inverse of A over S, then ACA is the group inverse of

A.

Proof. By Corollary 4.5, (ii) to (vi) are equivalent.

(i)⇒ (ii). If G is a group inverse of A, then G = GAG = AGG. Thus, A has

a {1}-inverse of the form AC for some square matrix C over S.

(iv)⇒ (i). Suppose A has a {1}-inverse G over S, where G = ACA for some

matrix C. Then

A = AGA = A2CA2 (4.27)

By (1.18), ρ(A) = ρ(A2). Thus, there exists a matrix B over Q(S) such that

BA2 = A. (4.28)

Since A2CA3 = A2, by using (4.28), we get

ACA3 = A. (4.29)
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Also, (4.27) gives A3CA2 = A2. Using the same method as above, we get

A3CA = A. (4.30)

By (4.29) and (4.30), we have

GAG = ACAAACA = ACA = G, AG = ACA3ACA = ACAA = GA.

Therefore, G is the group inverse of A over S.

4.9 Drazin Inverses

Let A be an n× n matrix over the skew polynomial ring S. An n× n matrix G

over S is called a Drazin inverse of A if for some positive integer k,

Ak+1G = Ak, (4.31)

GAG = G, (4.32)

AG = GA. (4.33)

The Drazin inverse of a given matrix is unique. For if G and H are both Drazin

inverses of A, then for some positive integer k,

G = GAG = G2A = · · · = Gk+1Ak = Gk+1Ak+1H = Gk+1Ak+1HAH

= Gk+1Ak+2H2 = · · · = Gk+1A2k+1Hk+1 = Gk+1AkAk+1Hk+1

= GAk+1Hk+1 = Ak+1GHk+1 = AkHk+1 = Ak−1HAHHk−1

= Ak−1Hk = · · · = H.

If A has a Drazin inverse G satisfying (4.31), then, by (1.18), ρ(Ak) = ρ(Ak+1).

We define the smallest positive integer p such that ρ(Ap+1) = ρ(Ap) to be the
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index of A.

Proposition 4.9. Let A,G be two matrices over the skew polynomial ring S and

let p be the index of A.

(a) If A and G satisfy (4.31), then A and G satisfy Ap+1G = Ap.

(b) If A and G satisfy Ap+1G = Ap, then A and G satisfy (4.31) for all k ≥ p,

k ∈ N.

Proof. Consider A as a matrix over Q(S).

(a) If A and G satisfy (4.31), then ρ(Ak) = ρ(Ak+1), and so ρ(Ak) = ρ(Ap).

Thus, there exists a matrix B over Q(S) such that Ap = BAk, which implies

Ap = BAk = BAk+1G = ApAG = Ap+1G.

(b) Trivial.

We now establish a relation between the existence of the Drazin inverse of a

given matrix A over S and the existence of a {1}-inverse of Ak for some integer

k.

Theorem 4.8. Let A be an n × n matrix over the skew polynomial ring S and

let p be the index of A.

(a) If A has a Drazin inverse over S, then Ap+1 is regular over S.

(b) If Ap+k is regular over S for some integer k ≥ 1, then both Ap+k+1 and Ap+k−1

are regular over S, and A has a Drazin inverse over S.

(c) If A2p+1 has a {1}-inverse (A2p+1)− over S, then Ap(A2p+1)−Ap is the Drazin

inverse of A over S.
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Proof. (a) Let G be the Drazin inverse of A over S. Then Ap+1 = ApA =

Ap+1GA. On the other hand, GA = Gp+1Ap+1. Thus, Ap+1 = Ap+1Gp+1Ap+1,

and so Ap+1 is regular over S.

(b) Let G be a {1}-inverse of Ap+k over S. We first show that Ap+k+1 is regular.

Since Ap+kGAp+k = Ap+k, it follows from (1.18) that ρ(Ap+k) = ρ(Ap+k−1),

and so there exists a matrix B over Q(S), such that Ap+kB = Ap+k−1. Thus,

we have

Ap+kGAp+k−1 = Ap+k−1. (4.34)

Let H = GAp+k−1G. By (4.34), we have

Ap+k+1HAp+k+1 = A(Ap+kGAp+k−1)GAp+k+1

= AAp+k−1GAp+k+1

= Ap+k+1.

Also, by (4.34), we have Ap+k−1AGAp+k−1 = Ap+k−1. Hence, both Ap+k+1

and Ap+k−1 are regular over S.

The above result implies that, if Ap+k is regular over S for some integer k ≥ 1,

then A2p+1 is regular over S. Thus, to show that A has a Drazin inverse over

S, it suffices to show Statement (c) of this proposition.

(c) Let H = Ap(A2p+1)−Ap. Since ρ(A2p+1) = ρ(Ap+1) = ρ(Ap), there exist

matrices B,C,D over Q(S) such that

Ap+1 = BA2p+1, Ap = CA2p+1 = A2p+1D.

It follows that

AH = Ap+1(A2p+1)−Ap = BA2p+1(A2p+1)−A2p+1D = BA2p+1D = Ap+1D,
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HA = Ap(A2p+1)−Ap+1 = CA2p+1(A2p+1)−AA2p+1D = CA2p+1AD = Ap+1D,

whence AH = HA. Also, we have

Ap+1H = A2p+1(A2p+1)−Ap = A2p+1(A2p+1)−A2p+1D = A2p+1D = Ap,

HAH = Ap(A2p+1)−ApAp+1(A2p+1)−Ap

= Ap(A2p+1)−ApBA2p+1(A2p+1)−A2p+1D

= Ap(A2p+1)−ApBA2p+1D = Ap(A2p+1)−ApAp+1D

= Ap(A2p+1)−Ap = H.

Therefore, H is the Drazin inverse of A over S.

The above result shows that a given matrix A of index p over S has a Drazin

inverse over S if and only if Ap+1 is regular over S. In the following theorem, we

shall see that the existence of the Drazin inverse of A can also be determined by

the existence of the group inverse of Ap over S.

Theorem 4.9. Let A be a matrix of index p over the skew polynomial ring S and

let k ≥ p, k ∈ N. Then A has a Drazin inverse over S if and only if Ak has a

group inverse over S.

Proof. Suppose A has a Drazin inverse G over S. We show that Gk is the group

inverse of Ak over S. By (4.32), (4.33), we have AG = AkGk, GA = GkAk,

GkA = Gk−1. Hence,

GkAkGk = GkAG = Gk−1G = Gk,

GkAk = GA = AG = AkGk.

Also, by Proposition 4.9, we have Ak+1G = Ak. Thus, AkGA = Ak, and so

A2kGk = AkGkAk = AkGA = Ak.
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By, definition, Gk is the group inverse of Ak.

Conversely, suppose Ak has a group inverse H over S. Then, by Part (v) of

Proposition 4.8, A2k is regular over S, and by Part (b) of Theorem 4.8, A has a

Drazin inverse over S.

After seeing the above conditions for a given matrix to have a Drazin inverse

over the skew polynomial ring S, we give a result on the decomposition of a

Drazin inverse of a matrix over S as follows.

Proposition 4.10. Let A be a square matrix over the skew polynomial ring S.

Then A has a Drazin inverse over S if and only if A can be uniquely expressed

as A1 + A2, where

(i) A1 has a group inverse over S,

(ii) A2 is nilpotent,

(iii) A1A2 = A2A1 = 0.

Proof. Suppose that A has a Drazin inverse G over S. Let A1 = AGA and

A2 = A − AGA. We first show that (i), (ii) and (iii) hold. Since GAG = G,

AG = GA, we have

A1GA1 = AGAGAGA = AGA = A1,

GA1G = GAGAG = G,

A1G = AGAG = GAGA = GA1,

and so G is the group inverse of A1 over S. Also, since GAGA = GA, AG = GA,

we have

A1A2 = AGA(A− AGA) = AGA2 − AGAGA2 = AGA2 − AGA2 = 0,

A2A1 = (A− AGA)AGA = A2GA− A2GAGA = A2GA− A2GA = 0.
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In addition, Ak+1G = Ak for some positive integer k, so ρ(Ak+1) = ρ(Ak), whence

we may let the index of A to be some positive integer p. By Proposition 4.9,

Ap+1G = Ap, so Ap+1G− Ap = 0. Also, AG = GA. Thus,

Ap
2 = (A− AGA)p = Ap(I − AG)p = (Ap − Ap+1G)(I − AG)p−1 = 0.

We now show that the decomposition A = A1+A2 is unique. Suppose A = B1+B2

such that B1 has a group inverse B#
1 over S, B2 is nilpotent and B1B2 = B2B1 =

0. Then it suffices to show B1 = A1. In the previous part we have seen that, if

G is the Drazin inverse of A over S, then G is the group inverse of A1 over S.

Thus, to show B1 = A1, it suffices to show that the group inverse B#
1 of B1 is

the Drazin inverse of A (by the uniqueness of group inverse and that of Drazin

inverse).

Since B#
1 is the group inverse of B1, we have (B#

1 )2B1 = B#
1 , and so B#

1 B2 =

(B#
1 )2B1B2 = 0. Similarly, we have B2B

#
1 = 0. Thus, AB#

1 = (B1 + B2)B
#
1 =

B1B
#
1 , B#

1 A = B#
1 (B1 +B2) = B#

1 B1, and so

AB#
1 = B#

1 A.

On the other hand, by assumption, Bq
2 = 0 for some integer q ≥ 1, B1B2 =

B2B1 = 0, so Aq = (B1 +B2)
q = Bq

1. It follows that

Aq+1B#
1 = Bq−1

1 B2
1B

#
1 = Bq−1

1 B1 = Bq
1 = Aq,

B#
1 AB

#
1 = A(B#

1 )2 = (B1 +B2)(B
#
1 )2 = B1(B

#
1 )2 = B#

1 .

Therefore, by definition, B#
1 is the Drazin inverse of A, which completes the

proof.
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Appendix

Maple Codes

Below are local procedures defined for finding {1}-inverses of matrices over a

commutative Euclidean domain (see Algorithms 1, 2 and 3).

with(LinearAlgebra):

with(Student[LinearAlgebra]):

with(VectorCalculus):

with(ArrayTools):

# Packages that are used.

RowOp:=proc(B,k,i)

# Local procedure corresponding to Algorithm 1.

local rB:=2, g:=1, s:=0, t:=0, Ro:=Matrix():

rB:=RowDimension(B):

Ro:=IdentityMatrix(rB);

g:=gcdex(B[k,k],B[i,k],x,’s’,’t’);

Ro[k,k]:=s;

Ro[k,i]:=t;

Ro[i,k]:=-B[i,k]/g;

Ro[i,i]:=B[k,k]/g;

Ro;

end proc;
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ColOp:=proc(B,k,j)

# Local procedure corresponding to Algorithm 2.

local cB:=2, g:=1, s:=0, t:=0: Co:=Matrix():

cB:=ColumnDimension(B):

Co:= IdentityMatrix(cB);

g:=gcdex(B[k,k],B[k,j],x,’s’,’t’);

Co[k,k]:=s;

Co[k,j]:=-B[k,j]/g;

Co[j,k]:=t;

Co[j,j]:=B[k,k]/g;

Co;

end proc;

GInverse:=proc(A,rA,cA)

# Local procedure corresponding to Algorithm 3.

global rA, cA:

# rA and cA are the row dimension and column dimension of the input matrix

A, respectively.

local Str:= ”The input matrix has no g-inverse.”:

local m:=0, n:=0, s:=min(m,n);

local k:=1, i:=1, j:=1, p:=1;

local B:=Matrix(), C:=Matrix(), MD:=Matrix(), G:= Matrix():

local E:= Matrix(), F:= Matrix():

local Ro:= Matrix(), Co:= Matrix():

local rowB:=[ ], colB:=[ ]:

local arraycol:= Array(), arrayrow:= Array():

m:=rA; n:=cA;

s:=min(m,n);

E:= IdentityMatrix(m); F:= IdentityMatrix(n);
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if m=0 or n=0 then

# A is an empty matrix.

G:=Transpose(A);

return G;

elif IsZero(A) then

# A is a zero matrix.

G:=Transpose(A);

return G;

elif m=1 and n=1 then

# A is 1× 1.

if degree(A[m,n],x)=0 then

G:=Matrix(1,1,[1/A[m,n]]);

return G;

else

return Str;

fi;

elif m=1 then

# A is 1× n (n ≥ 2, n ∈ N).

for j from 1 to n do

if not A[1,j]=0 then

p:=j;

# Find the first nonzero entry A(1, p) of A.

break;

fi;

od;

Co:=ColumnOperation(IdentityMatrix(n),[1,p]);

B:=A.Co;

F:=F.Co;

for j from 2 to n do
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Co:=ColOp(B,1,j);

B:=B.Co;

F:=F.Co;

od;

for i to m do

for j to n do

B[i,j]:= expand(B[i,j]);

end do;

end do;

# Now A1×n = B1×nFn×n, B = [gcd(A(1, 1), ..., A(1, n)) 0 · · · 0].

if degree(B[1,1],x) > 0 then

# gcd(A(1, 1), ..., A(1, n)) 6= 1.

return Str;

else

G:=F.(Transpose(B));

return G;

fi;

elif n=1 then

# A is m× 1 (m ≥ 2, m ∈ N).

for i from 1 to m do

if not A[i,1]=0 then

p:=i;

# Find the first nonzero entry A(p, 1) of A.

break;

fi;

od;

Ro:=RowOperation(IdentityMatrix(m),[1,p]);

B:=Ro.A;

E:=Ro.E;

86



4.9. DRAZIN INVERSES

for i from 2 to m do

Ro:=RowOp(B,1,i);

B:=Ro.B;

E:=Ro.E;

od;

for i to m do

for j to n do

B[i,j]:= expand(B[i,j]);

end do;

end do;

# Now Am×1 = Em×mBm×1, B = [gcd(A(1, 1), ..., A(m, 1)) 0 · · · 0]T .

if not B(1,1)=1 then

#gcd(A(1, 1), ..., A(m, 1)) 6= 1.

return Str;

else

G:=(Transpose(B)).E;

return G;

fi;

fi;

B:=A;

for k from 1 to s-1 do

here:

if k < s then

rowB:=[seq(B[k,j], j=k..n)];

colB:=[seq(B[i,k], i=k..m)];

if is(colB,[0 $ nops(colB)]) then

# B(k, j) = 0 for j = k, k + 1, ..., n.

if is(rowB,[0 $nops(rowB)]) then

# B(i, k) = 0 for i = k, k + 1, ...,m.
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k:=k+1;

goto(here);

# Go back to the step where the label “here” is.

else

for j from k+1 to n do

if not B[k,j]=0 then

p:=j;

break;

# Find the first nonzero entry B(k, p) in the kth row of B.

fi;

od;

Co:=ColumnOperation(IdentityMatrix(n),[k,p]);

B:=B.Co;

F:=F.Co;

fi;

else

for i from k to m do

if not B[i,k]=0 then

p:=i;

# Find the first nonzero entry B(p, k) in the kth column of B.

break;

fi;

od;

Ro:=RowOperation(IdentityMatrix(m),[k,p]);

B:=Ro.B;

E:=Ro.E;

fi;

for i from k+1 to m do

Ro:=RowOp(B,k,i);
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B:=Ro.B;

E:=Ro.E;

od;

for i to m do

for j to n do

B[i,j]:= expand(B[i,j]);

end do;

end do;

C:=B;

for j from k+1 to n do

Co:=ColOp(C,k,j);

C:=C.Co;

F:=F.Co;

od;

if not C[k,k]=1 then

return Str;

else

MD:=C;

for i from k+1 to m do

Ro:=RowOp(MD,k,i);

MD:=Ro.MD;

E:=Ro.E;

od;

fi;

B:=MD;

fi:

od;

rowB:=[seq(B[m,j], j=1..n)];

colB:=[seq(B[i,n], i=1..m)];
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if m > n then

if is(colB,[0$nops(colB)]) then

# B(i, n) = 0 for i = n, n+ 1, ...,m.

G:=F.(Transpose(B)).E;

for i to m do

for j to n do

G[j,i]:= expand(G[j,i])

end do;

end do;

return G;

else

for i from n to m do

if not B[i,n]=0 then

p:=i;

# Find the first nonzero entry B(p, n) in the nth column of B.

break;

fi;

od;

Ro:=RowOperation(IdentityMatrix(m),[n,p]);

B:=Ro.B;

E:=Ro.E;

for i from n+1 to m do

Ro:=RowOp(B,n,i);

B:=Ro.B;

E:=Ro.E;

od;

for i to m do

for j to n do

B[i,j]:= expand(B[i,j])
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end do;

end do;

if not B[n,n]=1 then

return Str;

else

G:=F.(Transpose(B)).E;

for i to m do

for j to n do

G[j,i]:= expand(G[j,i])

end do;

end do;

return G;

fi;

fi;

elif n>m then

if is(rowB,[0$nops(rowB)]) then

# B(m, j) = 0 for j = m,m+ 1, ..., n.

else

for j from m to n do

if not B[m,j]=0 then

p:=j;

# Find the first nonzero entry B(m, p) in the mth row of B.

break;

fi;

od;

Co:=ColumnOperation(IdentityMatrix(n),[m,p]);

B:=B.Co;

F:=F.Co;

for j from m+1 to n do
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Co:=ColOp(B,m,j);

B:=B.Co;

F:=F.Co;

od:

for i to m do

for j to n do

B[i,j]:= expand(B[i,j])

end do;

end do;

if not B(m,m)=1 then

return Str;

else

G:=F.(Transpose(B)).E;

for i to m do

for j to n do

G[j,i]:= expand(G[j,i])

end do;

end do;

return G;

fi;

fi;

else

# A is m×m (m ≥ 2, m ∈ N).

if not degree(B[s,s],x) > 0 then

# B(m,m) ∈ F.

if not B[s,s] =0 then

Ro:=RowOperation(IdentityMatrix(s),s,1/B[s,s]);

B:=Ro.B;

E:=Ro.E;
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fi;

G:=F.(Transpose(B)).E;

for i to m do

for j to n do

G[j,i]:= expand(G[j,i])

end do;

end do;

return G;

else

return Str;

fi;

fi;

end proc;
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(8)(8)

> > 

> > 

> > 

> > 

> > 

(7)(7)

> > 

(6)(6)

> > 

> > 

(1)(1)

> > 

> > 

(5)(5)

(9)(9)

> > 

(4)(4)

> > 

(2)(2)

(3)(3)

> > 

> > 

Examples:

"The input matrix has no g-inverse."
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(15)(15)

> > 

> > 

(16)(16)

(13)(13)

> > 

> > 

(14)(14)

> > 

> > 

(11)(11)

> > 

(17)(17)

> > 

(12)(12)

> > 

(9)(9)

(10)(10)"The input matrix has no g-inverse."
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> > 

> > 

(18)(18)

(19)(19)
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[25] E. H. Moore, On the reciprocal of the general algebraic matrix,

Bull. Amer. Math. Soc. 26 (1920), 394–395.

[26] E. Noether and W. Schmeidler, Moduln in nichtkommutativen bereichen,

insbesondere aus differential-und differenzenausdrücken, Mathematische

Zeitschrift 8 (1920), no. 1, 1–35.

[27] O. Ore, Theory of non-commutative polynomials, Annals of mathematics

(1933), 480–508.

[28] R. Penrose, A generalized inverse for matrices, Mathematical proceedings of

the Cambridge philosophical society, vol. 51, Cambridge University Press,

1955, pp. 406–413.

[29] R. Penrose and J. A. Todd, On best approximate solutions of linear matrix

equations, Mathematical Proceedings of the Cambridge Philosophical Soci-

ety, vol. 52, Cambridge Univ Press, 1956, pp. 17–19.

[30] K. P. S. B. Rao, Theory of Generalized Inverses over Commutative Rings,

Taylor and Francis CRC Press, 2002.

[31] J. von zur Gathen and J. Gerhard, Modern Computer Algebra, Cambridge

university press, 2013.

[32] C. Wu, A public-key cryptosystem based on generalized inverses of matrices,

Journal of China Institute of 4 (1993), 016.

99



BIBLIOGRAPHY

[33] C. Wu and E. Dawson, Generalised inverses in public key cryptosystem de-

sign, IEE Proceedings-Computers and Digital Techniques 145 (1998), no. 5,

321–326.

100


	Notation and Terminology
	Introduction
	Generalized Inverses
	Skew Polynomial Rings
	Outline of the Thesis

	Preliminaries 
	Generalized Inverses for Matrices
	General Skew Polynomial Rings
	A Skew Polynomial Ring S
	Euclidean Domains
	Ore Domains
	Rings of Fractions

	Inverse of a Matrix
	Rank of a Matrix
	Free Ideal Rings
	Rank of a Matrix


	An Algorithm For Finding {1}-inverses (Commutative Case) 
	Theoretical Basis
	Algorithm
	Examples

	An Algorithm For Finding {1}-inverses (Non-commutative Case) 
	Theoretical Basis
	GCRD, GCLD, LCRM and LCLM
	Extended Euclidean Algorithm
	{1}-inverses of Matrices over S 

	Algorithm

	Other Results 
	Involutions on Skew Polynomial Rings
	Some Basic Properties
	 Matrix Diagonalization
	{1}-inverses
	{1,2}-inverses
	MP-inverses
	{1}-inverses of the Form PCQ

	{1,2,3}-inverses and {1,2,4}-inverses
	Group Inverses
	Drazin Inverses

	Appendix
	Maple Codes

	References

