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ABSTRACT i

Abstract

A hybrid method is used to analyze 3D wave scattering by inhoinogeneities in an
isotropic cylinder. The hybrid method is a technique that combines a finite element
idealization of a bounded region containing the inhomogeneities and a wave function
expansion outside. Continuity conditions for displacements and tractions are applied at
discrete points on the common boundaries between the two regions. This results in a
system of linear equations in the unknown wave function amplitudes. The solution gives
the amplitudes which are used to obtain the reflection and transmission coefficients of the
scattered wave fields. Satisfaction of reciprocity and the principle of energy conservation
are used to check the validity and accuracy of the results. The model is calibrated against
previously and independently obtained numerical as well as experimental data.
Comparisons reveal excellent agreement between the current 3D hybrid model and a
previous 2D hybrid model. On the other hand, the 3D hybrid model predicts somewhat
lower values for the reflection and transmission 6oefﬁcients compared with the quasi-

exact method of Bai et al. A refined or non-uniform finite element mesh is likely to

narrow this difference but at appreciable computational cost.
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Chapter 1

Introduction

1.1 Nondestructive Evaluation of Cylinders

Cylinders are used widely in engineering applications. Cylindrical columns are
used to support structures. Power transmission shafts in machines are nothing but
cylinders. The conduits that carry fluids (gases or liquids) in power plants, refineries and
nuclear reactors have mostly cylindrical shapes. In all these applications, cylindrical
components are designed to sustain severe loading and environmental conditions.
However, due to manufacturing defects or degradation during service, these components
may fail. Their failure may be catastrophic. Hence, there is an imperative need to
periodically inspect and monitor their structural integrity. The branch of science that
deals with detecting flaws in structural and machine elements, without impairing their
future serviceability, is known as nondestructive evaluation (NDE). There are several

such techniques available in industry. They include:

1. ultrasonic testing,

2. eddy current and magnetic testing,

3. radiography,
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4. visual (optical) testing,

5. microscopy, '

6. nuclear magnetic resonance,
7. microwaves, and

8. thermography.

1.2 Ultrasonic Techniques

In ultrasonic NDE systems like the one shown in Figure 1.1, a transmitter
launches (elastic) waves into a cylinder and a receiver measures the scattered signals
from the internal flaw. A couplant placed between the specimen and the transmitter as
well as the receiver ensures proper contact. The application of ultrasonic waves to detect
flaws and inhomogeneities in a metal was suggested first in 1929 (Fredrick 1965). The

fundamental concept upon which ultrasonic flaw detection is based is the scattering

(reflection and transmission) of incident elastic waves by flaws and inhomogeneities. The

advantages of ultrasonic nondestructive evaluation techniques include (McMaster 1959):

high sensitivity, permitting the detection of small defects;
great penetrating power that allows an examination of extremely thick sections;
accurate measurement of a flaw’s position and size;

fast response that permits a rapid and automated inspection; and

A

easy access since only one surface of the specimen need be contacted.

Ultrasonic techniques may involve the use of time-of-flight measurement, acoustic

emission, or guided wave techniques.
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1.3 Guided Waves In Cylinders

There are several advantages of using guided waves in ultrasonic testing. First, the
multimodal dispersive behavior of a guided wave can provide many data points in a
given range of frequency (Rattanawangcharoen 1993). Second, the velocity of a guided

wave Is very sensitive to material properties. Third, the velocity of a guided wave is larger

than the velocity of free waves (Rattanawangcharoen 1993) which makes it capable of

reaching inaccessible areas (Rose and Quarry 1999). Certain (Lamb wave) modes do not
suffer significant modification by a protective coating (Pan et a/. 1999). This advantage

can be used to inspect coated pipes without removing the coating layer.

The use of guided waves to detect cracks is an inverse problem in which a crack’s
location and geometry are to be determined from the scattered wave field. It is extremely
difficult, if not impossible, to solve the inverse problem theoretically. However, a better
understanding of the direct problem of scattering of elastic waves from simulated cracks

would greatly help interpreting experimental ultrasonic test results.

A scattered wave field in a linearly elastic cylinder having a defect can be
approximated by the modal summation of a finite number of normal modes that
propagate in the undamaged cylinder. Hence, the study of elastic wave scattering must be

preceded by a detailed study of the elastic wave propagation in cylinders.
1.4 Wave Propagation in Cylinders

The first analytical solution for elastic wave propagation in an infinite cylinder
was obtained by Pochhammer (1876) and, independently, by Chree (1889). The
Pochhammer-Chree solution satisfies the wave equation throughout a cylinder that has
traction free boundary conditions on its lateral surfaces. Bancroft (1941) obtained the first

numerical solutions for the Pochhammer-Chree dispersion equation for the case of

compressional waves. Davies (1948) experimentally confirmed the Pochhammer-Chree
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solution. Onoe et al (1962) computed numerical results over a wide range of frequencies
for a finite set of real and complex wavenumbers for each individual frequency. Real
wavenumbers correspond to the modes whose energies pfopagate in the cylinder.
Complex wavenumbers, on the other hand, correspond to evanescent modes. It is worth
mentioning that complex wavenumbers play an important role in the reflection and
scattering of elastic waves from inhomogeneities. Several approximate methods have
evolved to solve the Pochhammer-Chree dispersion equation because an exact solution is
very difficult to obtain. Green (1964) summarized, in a review article, all the approximate
methods available at that time. Gazis (1959) and Armenikas et al (1969) presented a
three dimensional (3D) solution of the Pochhammer-Chree equation based on elasticity

formulations.

Many researchers (McNiven et al. 1963, Armenakas 1967 and 1971, and Lai
1971) investigated, analytically, the dispersive characteristics of a number of perfectly
bonded concentric isotropic cylinders using the theory of elasticity. The technique
becomes impractical, however, for a large number of laminae. Rattanawangcharoen and
Shah (1992a and 1992b) developed an efficient algorithm that circumvents this difficulty.
In this algorithm, a propagator matrix imposes the displacement and stress continuity at
the interfaces of the laminae based on a 3D elastic form of the dispersive relation. The
numerical implementation used Muller’s method (1956) with initial guesses obtained

from a displacement based Rayleigh-Ritz approximation.

1.5 Scattering by a Crack in a Cylinder

Wave scattering occurs when an incident wave strikes a crack or an irregularity.
The scattered field carries substantial information about the location, size and shape of
the scatterers. This information may be inferred by comparing test results with theoretical
predictions. However, few previous publications involve a theoretical study of elastic

wave scattering by a crack in a cylinder because of the problem’s geometric and

computational complexity.
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Oliver (1957) conducted the first study of wave scattering by cracks in cylinders.
He investigated, experimentally, the free end reflection of axisymmetric waves in elastic
rods. McNiven (1961) predicted the existence of an end resonant frequency using a 3-
mode approximation. There is a difference of 13 percent between Oliver’s experimental
results and McNiven’s approximations. McNiven and Shah (1967) investigated the
influence of the end mode on the resonant frequencies of elastic hollow cylinders. They
found that the hollow cylinder has lower end resonance frequency than the solid cylinder.
Zemanek (1972) reconsidered McNiven’s problem using 5-, 7-, and 9-mode
approximations with a slightly higher Poisson’s ratio. With a 9-mode approximation,
Zemanek obtained an end resonant frequency that agreed very closely with Oliver’s
experimental findings. Several other techniques, such as an asymptotic expansion (Kim
and Steele 1989), a least square method (Gregory and Gladwell 1989), and a hybrid
model have been used successfully to solve this problem. The hybrid method will be

reviewed in detail next.

1.6 The Hybrid Method

The hybrid method is a technique that combines a finite element idealization of a
bounded region containing the crack and a wave function expansion in the exterior
region. Continuity conditions of displacements and interactive forces are applied at
discrete points on the common boundaries between the two regions. This procedure
results in a system of linear equations in the unknown wave function amplitudes. These
amplitudes are used to obtain the reflection and transmission coefficients of an incident

wave.

A similar approach to the hybrid method was used in the 1970s by electrical
engineers (McDonald and Wexler 1972, Mei 1974, and Chang and Mei 1976) to
investigate the scattering of electromagnetic waves. Datta, Shah and Fortunko (1982)
were able to apply the method to the field of elastic waves in their study of diffraction by

edge cracks in a half-space. The first application to waveguides was made in 1982
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(Abduljabbar et al) in a study of the scattering of horizontélly polarized shear (SH)
waves by a symmetric crack in a plate.

Recently, the hybrid method has been used to study 2D wave scattering in a
cylinder containing a finite axisymmetric region of inhomogeneity or a crack
(Rattanawangcharoen et al. 1997). Zhuang et al. (1997) used a hybrid technique to
investigate the scattering of elastic waves in a welded cylinder containing a
circumferential crack. To the best of the author’s knowledge, the application of the
hybrid method to 3D elastic wave scattering in a cracked cylinder has not been reported

yet.

1.7 Objectives

The main objective of the current study is to extend the hybrid method to the
analysis of 3D wave scattering by a crack in a cylinder. The study is motivated by the
need to solve, numerically, the problem of 3D scattering from arbitrary geometric and
material irregularities. Since the hybrid technique applies the finite element idealization
to the flawed region, it would be highly suitable for this purpose providing an appropriate
meshing scheme is employed. However, the method is computationally demanding which
hampers its implementation in three dimensions. Using a condensation scheme that
confines the storage requirements only to the boundary nodal points is expected to-

partially circumvent this difficulty.

Numerical results will be presented for a linearly elastic isotropic cylinder with a
weldment and/or symmetric, surface-breaking crack. The satisfaction of the reciprocity
relations and the principle of energy conservation will be used to check the accuracy of

the results. The validity will be finally confirmed by comparing results from the current

study with previous, corresponding experimental findings and theoretical predictions.
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1.8 Outline of Thesis

In this thesis, a hybrid formulation of 3D wave scattering in a cracked circular

cylinder is investigated. Applications to practical problems are presented.

In Chapter 2, the propagation of elastic waves in an isotropic laminated cylinder
is considered. The dispersion equation for the cylinder is derived. Then numerical

solution techniques are presented and used in illustrative examples.

In Chapter 3, hybrid modeling of wave scattering by cracks in an elastic media is
reviewed. A 3D formulation of the hybrid method is also presented. Procedures that are

needed to validate and check the accuracy of the numerical procedure are outlined.

In Chapter 4, numerical results for wave scattering by symmetric surface brcaking
cracks in seamless as well as welded cylinders are presented. A comparison of these

results with available theoretical predictions and experimental findings is performed.

Conclusions and recommendations for future work are given in Chapter 5.
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Chapter 2

Elastic Wave Propagation in Isotropic Laminated

Cylinders

Propagation of time harmonic elastic waves in an infinite, isotropic, laminated

cylinder is considered in this chapter. The objective is to obtain dispersion characteristics

of the cylinder, i.e. the frequency and phase speed spectra. The layers may have distinct
mechanical properties as well as different thicknesses. The cylinder has the coordinate
system shown in Figure 2.1. It has a mean radius R and a uniform thickness, . The
inner and the outer surfaces of the cylinder are assumed stress free. The complete
cylinder is composed of cylindrical layers that are bonded perfectly. The inner and outer
surfaces of each layer "/"are designated 7 and 7,, respectively, as illustrated in Figure

2.1. Each layer is divided into a number of sublayers such that the total number of

sublayers in the cylinder is N,. The outer and inner surfaces of each sublayer "k"are.

~ designated #, and ,,,, respectively.

Two methodologies are used for elastic wave propagation in cylinders; a
displacement based Rayleigh-Ritz approximation and an analytical method. The

displacement based Rayleigh-Ritz approximation involves the formulation of the

dispersion equation using Hamilton’s principle. In the analytical method, which employs
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the equations of linear elasticity, the exact dispersion relation is derived with the aid of
propagator matrices. Roots of the approximate dispersion equation are found by solving a
generalized eigenvalue problem. The eigenvalues correspond to the frequency @, for a
fixed wavenumber ¢ or, alternately, the eigenvalue problem can be solved for & if @ is
given. Approximate roots then serve as initial guesses in Muller’s approach (Muller

1956) to solve the exact dispersion equation.

2.1 Description of the Problem

First, an approximate dispersion equation is formulated by using a displacement
based, Rayleigh-Ritz approximation (Rattanawangcharoen ef. al. 1992a and Bai 2001).

This equation is used to calculate the frequency ® for a given wavenumber &, or

alternatively for a given frequency @ to solve for the wavenumber &.

Second, an exact dispersion equation is formulated analytically using three-
dimensional theory of elasticity (Rattanawangcharoen etl al. 1992a and Bai 2001). Roots
of the exact dispersion equations are determined using Muller’s method. Approximate
roots, from the displacement based Rayleigh-Ritz approximation, are used as initial

guesses in Muller’s method.

2.2 Displacement Based, Rayleigh-Ritz Approximation

In a displacement based Rayleigh-Ritz approximation, the cylinder is divided into
N, sublayers. Displacement componeﬁts u,u’ andw® are approximated over each

sublayer by interpolation polynomials in the radial direction so that:

U(r.0.z)=N(n)Q,(8,2) (2.1)

where,
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Ur=(u" o ), | (2.2)

0;

(u; Ul U}, (2.3)

in which a “T"” superscript denotes the transpose, and

nn 0 0 n, 0O O n, 0 O
N=0 n 0 0 n, 0 0 n O0f. (2.4)
0 00n, 0 0 n, 0 0 n

In equation (2.1) through (2.3), the nodal displacements U,,U, and U are taken at the
back (inner), middle and front (outer) nodal surfaces of a sublayer. The interpolation

polynomials, #,, are quadratic functions given by:

1 1
m=(n) m=l-n's m=_(r+n) @5
where
p=2 "l ' (2.5b)

h,
and £, is the thickness of the £ sublayer.

By using Hamilton’s principle, the Lagrangian, L, , for the £* sublayer is calculated as:

!

L= % [ f { [ [ 0’00 - £7Ce | rdr}ddedt (2.6)
z 8

i
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where an overbar indicates a complex conjugate; a dot denotes differentiation with
respect to time ¢; p is the material density of sublayer £ and C is its elasticity matrix.

The latter is defined as:

[A+2u4 A A 0 0 0

A A+2¢ A 0 0 O
Co A A A+2u 0 0 O @7

0 0 0 ux 0 0

0 0 0 0 u O

0 0 0 0 0 u

in which 4 and g are Lamé’s constants. Moreover ¢ is the strain vector defined, in terms

of the displacement, by (Bai 2001):

W 1,00, 3 1

=B +-B 4P 4= RU (2.82)
roor r
where
r
8=<£” g% g7 ¥ 47 y"’) (2.8b)
and

P =[e,e..e], P, =[e5e,.e,], P.=[ese.e], P=[e,—e,0]. (2.8¢)

The ¢, (i=1..6) are the fundamental unit column vectors in R°; P,, P, P, and P, are six

by three real matrices and a “7 “superscript represents the transpose. Substituting

equation (2.1) into equation (2.8a) gives the strain vector as,

£ =B,U+BQ%%+BZ%I—]- 7 (2.92)
Z
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where

B =P i]y—-%Po, B&,:—I-PHN, Bz=-1-PzN. (2.9b)
dr ¥ ¥

r r

By substituting equations (2.1) and (2.92) in equation (2.6), the Lagrangian can be
written in terms of the generalized nodal displacements given in equation (2.3). For a
time harmonic wave of the form e, where @ is the circular frequency, upon setting
the first variation of the summation of the contributions from all sublayers to zero, the

governing equation for the entire cylinder is obtained as (Bai 2001):
Ker + KGQ,B + KzQ,z - K&GQ.GB = KzBQ,zQ - KzzQ,zz - a)zMQ = 0 - (2'10)

where a comma subscript denotes partial derivative(s) with respect to the adjacent

variable(s). The matrices K, K,,K,, K, andM are real and symmetric,

K, and K, are anti-symmetric. They are given by:

RD

M=2rx ijTN rdr (2.11)
R
Rﬂ

K, =2n [BICB, rdr, i=1,0,z (2.12)
&
RU

K, =2r [(BjCB,+B[CB,) rdr (2.13)

&

and

R

K,=2zn j(BfCBj ~B]CB)rdr  j=0,z (2.14)

&

)
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where C is the elasticity matrix, given by equation (2.7), the B, (i =r,6,z) are given by

equation (2.9b), and @ contains the nodal displacements along one radius of the

cylinder.

For a wave propagating in the positive z —direction, the solution of equation (2.10) can

be assumed to take the form:
Q = Q,¢/"4) (2.15)

where =y~1 and 0, represents the nodal amplitude vector. Substituting equation
(2.15) into equation (2.10) results in the following set of linear homogeneous algebraic

equations:

our, m a0 wllat @
o’M-K, jK ||£0,] |0 K,||£0,

where I is the identity matrix, and
K,=K_, K,=jmK,~K,, K,=m’K,,+ jmK,+K_. (2.17)

This results in a quadratic algebraic eigenvalue problem which serves as the approximate

dispersion relation for the cylinder.
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2.3 Analytical Method

2.3.1 Hollow Cylinder

Using the Helmholtz resolution (Morse and Feshback 1953), the displacement
field in cylindrical coordinates can be written in terms of the Lamé potential functions, @

and H , as:

U=VO+VxH V.H =F(x,t) (2.18)

where F (x,t) is an arbitrary function arising from the gauge invariance of the resolution
(Morse and Feshback 1953 and Gazis 1959 ). If cylindrical coordinates are used so that

H=(H,H, H,) the corresponding components of the displacement field,

Us(u’,ug,u’), are given by:

00 10H, OH,

il (2.19a)
or r 0@ oz
1 -_-l.aE.F%._ OH, (2.19b)
¥ 068 0z or :
ob 1 ¢ 1 6H
Pz (rH ) — ==L, 2.19
“ dz r Or (r 9) r 868 ( °)

Consequently, the scalar potential @ and vector potential H satisfy the following scalar

and vector wave equations:

1 8*d

= 2.20a
cpz atz ( )

Vip =

and




CHAPTER 2. ELASTIC WAVE PROPAGATION IN ISOTROPIC LAMINATED CYLINDERS 16

1 &*H
VIH=—21" 2.2
cZ atz ( Ob)

5

where V ? is the Laplacian operator. The ¢, and ¢, are the speeds of the dilatational and

distortional waves, respectively. They are defined as:

cf,=’“2" and c=£. 2.21)
P P
The expanded forms of the left hand side of equations (2.20a) and (2.20b) are:
2 2 2
V”(I)=a ?+l@+—1?—a ?+a CZD (2.22a)
or* ror r°oe 0z
and
. H, 2 8H, H, 2 8H, ‘
V°H [VZH,_ "‘r—z""r—z" ags)er +[V2Hg —-;j‘i- r—z ) ]ee +V2Hzez (222b)

where e,, e,, and e, are unit vectors in the », 8, and z directions, respectively. Any

solution must satisfy the boundary conditions that the outer and inner surfaces of the

cylinder are free of stress. Mathematically this requirement can be written as

c"=0"=06"=0 at r=R,R (2.23)

0"

Assume that a harmonic wave is propagating in the positive z-direction. Then @ and H

take the form:

® = £, (r)ee (2.242)

H, = £ (r)e™e/ ) (2.24b)

Hy = f,(r)e e (2.24c)
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H, = f,(r)e™e/t=, (2.24d)

where the f, ( r), i=®,r,8,z, have to be determined still. The equations of motion

(2.20) are satisfied if:

fmﬂ‘"lfm""( 2‘%‘]}‘;:0 (2.25a)
r r
: { 2
Ay ﬂz—(mti) Jf,=0 (2.25b)
r \ ¥
v 1 ( 5 mzj .
S =L+ B ~-—|f.=0 (2.25¢)
¥ \ r _ :

where a prime superscript denotes differentiation with respect to » while

at = “’—2—52 and f’= 32-—52 (2.26)

2 2
c, c;

and f; (r)=~jf, (r). The solution of equation (2.24) can be obtained in terms of Hankel

functions (Rattanawangcharoen ez al. 1992a) as:

fo(r)= 4HY (ar)+ BH® (ar), (2.272)
£, (r) = 4,H), (Br)+ B,HE, (Br), (2.27b)
£, (r)=4HD (pr)+ BHS (Br) (2.27¢)

in which 4,,4,,4,,B,,B,, and B, are arbitrary complex constants for the sublayer; H'"
and H ,Ef) are, respectively, the mth order Hankel functions of the first and second kind;

and H!"), and H®

m+l

are the corresponding (m + 1) th order Hankel functions.
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The generalized Hooke’s law gives the stress components as:
o’ = A8, +2ue’ i,j=r6,z (2.28)

where §,; and A are defined by:

i=j

1
d; =Kronecker delta = { T
0 iy

and

By substituting equation (2.27) into equations (2.24) and (2.19) and, in turn, into
equations (2.8a) and (2.28), the displacement and stress components at the interface

r =1, can be represented as:

v, . [4
Lo o

where

Ukr=(u; u; uj), SkT=(0',f’ o’ of) (2.30a)

A"=(4 4, A4), B =(B, B, B,)). (2.30b)

The six by six matrix, @,, contains the Hankel functions # ,(,,l) and H ,(:). It is detailed in

| Appendix A.

Similarly, the evaluation of the displacements and stresses at the interface, » =1r,,,, of the

k* layer yields:
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Yeu! 4 231
s, =0y Bl (2.31)

By eliminating the arbitrary coefficients from equations (2.29) and (2.31), the following

relations can be obtained between the displacements and stresses at the interfaces of the

k* sublayer:

U U
Sk+1 Sk
where

P =00, (2.33)

The six by six matrix P, is the propagator matrix for the k" sublayer. Repeated

application of equation (2.33) to each successive sublayer of the cylinder’s N, sublayers

gives:
U :
N+l :P{Ui} » (2-34)
SN, *l Si

P=P, P, ... P. (2.35)

where

The matrix P can be divided into four three-by-three sub-matrices as follows:

p= F, B, _ (2.36)
B, By
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-Invoking in equation (2.34) the zero traction boundary conditions at the innermost and

outermost surfaces of the cylinder (i.e. Sy.a=8={0} )leads to:

P, U, ={0}. ' (2.37)
Then the exact dispersion relation can be obtained by equating the determinant of the

coefficient matrix to zero, i.e.:
|P,|=0. (2.38)

2.3.2 Solid Cylinder

For the special case of a solid circular cylinder, Bessel functions of the second
kind, Y, tend to infinity as r approaches zero. Hence, the solution (which corresponds

to equation (2.27)) becomes:

fo(r)=CJ, (ar), (2.39a)
f(r), =G (Br), (2.39b)
f.(r)=CJ,.(8r) (2.39)

for the innermost (i.e. first) sublayer of the solid rod which is bounded by »=0and
r=r. Moreover, J,is the Bessel function of the first kind. The C,,C, and C, are
arbitrary constants for the innermost sublayer. The displacement and stress components at

the interface r =4, U, and S, respectively, can be written in terms of these constants as:

U =RC | » (2.40a)
S, =TC (2.40b)

where
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C=(C, C, G). (2.40c)

The R and T are three by three matrices that contain the Bessel function J. . They are

given in Appendix A. The stiffness matrix K, which relates the stresses to the
displacements, can be determined by combining equations (2.40a) and (2.40b) to

eliminate C . Then
S, = TR"U, =KU, {2.40d)

where K =TR™ Applying the propagator matrix between the first and last interfaces

gives:

UN,+I _!:Pn"'PlszlU 24
= t (2.41)
SN,+I P21 +P22K

By invoking the traction free boundary conditions at the outer radius of the solid cylinder,

the analogous dispersion relation to equation (2.38) can be written as:

|P, + P,K|=0. (2.42)

2.4 Roots of Dispersion Equation

For a fixed value of frequency @ or wavenumber &, the exact dispersion relations

(2.38) and (2.42) are transcendental functions of either & or @ , respectively. It is possible

to evaluate the roots of these equations by using a “brute force” search method. This

approach is computationally demanding as the roots are complex and sparse. Instead,
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Muller’s method is used as it requires less computational time when initial guesses from a

displacement based Rayleigh-Ritz approximation are employed.

2.5 Spectra of Frequency and Phase Speed

Numerical results are presented next for two illustrative examples. The first
example is a steel pipe that was investigated both experimentally and numerically by
Alleyne er al. (1998) and Lowe et al. (1998), respectively. The second example is a steel
pipe that has been studied numerically by Zhuang et al. (1997).

Example 2.1

The cylinder’s material in this example has a modulus of elasticity, £, and

Poisson ratio, v, 0of 216.9 GPa and 0.287, respectively. The longitudinal and torsional
wave speeds are ¢, =32.6x10° m/s and ¢, =5.96x10° m/s. The inner radius, R,, and

the thickness, #, of the cylinder are 38 mm and 5.5 mm respectively. Therefore, the
thickness-to-mean radius ratio, H/R, is 0.135. The geometrical data and material
properties are summarized in Table 2.1. Frequency spectra for a longitudinal wave
(m=0) and a flexural wave (m=1) are shown in Figure 2.2. In this figure the non-

dimensional wavenumber and frequency are defined as:

Q=2 ad y=2 (2.43)
a)ref ref
where,
1 |u 1
o, =— |~ and =—, 2.44
ref H \/; éref H ( )

Dispersion curves are shown in Figure 2.3 over a frequency range from 0 to 750

kHz. The asymptotic behavior of the phase speed curves is apparent at high frequencies.

For example, modes L(O,I),L(O,Z),F(l,l),F(1,2),F(1,3) and F(1,4) have a common
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asympfotic phase spreed of approximately 4 um/s. The distinctive feature of the
longitudinal and flexural modes coinciding over a wide range of frequencies is
pronounced in two cases: (a) L(0,1) and F (L,1) as well as (b) L(0,2) and F(,3). For
modes other than L(0,1), the phase speed curves increase sharply at their cutoff
frequencies. The explanation is that when the wavenumber approaches zero (i.e. the
wavelength approaches infinity), the phase speed approaches infinity at the cutoff
frequency. The nondispersive behavior of modes L£(0,2),F(1,2) and F (1, 3) is evident
in the frequency ranges 25-125 kHz, 25-350 kHz and 75-125 kHz respectively. It is
desirable since the travel distance then does not affect the wave speed as the wave
propagates in the cylinder. (Note that the attenuation capacity of a cylinder’s material

itself is neglected here.)
Example 2.2

The cylinder’s material in this example has a modulus of elasticity, E, and

Poisson ratio, v, of 211.7 GPa and 0.29 respectively. The longitudinal and torsional
wave speeds are ¢, =35.6x10° m/s and ¢, =5.88x10° m/s. The inner radius, R,, and

the thickness, H ,of the cylinder are 48.26 mm and 5.08 mm respectively. Therefore, the
thickness-to-mean radius ratio, H/R, is 0.1. The geometrical data and material
properties are summarized in Table 2.2. Frequency spectra for m =0 and lare shown in
Figure 2.4. Dispersion ciirves are presented in Figure 2.5 over a frequency range from 0
to 750 kHz. The frequency spectra and dispersion curves are similar to the previous

example.

The wave modes in the undamaged cylinder determined in this chapter will be

used in the modal summation representation of the scattered wave fields in the following

chapter.
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Table 2.1. Geometric and material properties for Example 2.1

PROPERTY VALUE
H, mm 550
H/R 0.135

M, Gpa 84.29
A, Gpa 113.15
p, kgl m? 793.19

Table 2.2. Geometric and material properties for Example 2.2

PROPERTY VALUE
H, mm 5_._08
H/R 0.100
H, Gpa 82.00
A, Gpa 112.00
o, kg !/ m’ 780.00

24
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Figure 2.1. Cross section of a laminated cylinder
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Figure 2.2. Frequency spectrum of a steel pipe. H/R = 0.135 and v =0.287.
(a) Longitudinal wave (m=0), and (b) flexural wave (m=1)
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Figure 2.3. Phase speed as a function of frequency for a steel pipe. H/R =0.135 and.
v =(.287. (a) Longitudinal wave (m=0), and (b) flexural wave (m=1)
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3] n=3
n=2

®) I

Figure 2.4. Frequency spectrum of a steel pipe. H/R = 0.1 and v =0.29.
(a) Longitudinal wave (m=0), and (b) flexural wave (m=1)
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Figure 2.5. Phase speed as a function of frequency for a steel pipe. H/R=0.1 and
v=0.29. (a) Longitudinal wave (m=0), and (b) flexural wave (m=1)
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Chapter 3

Hybrid Modeling of 3D Wave Scattering

Wave scattering happens when an incident wave strikes a crack or an irregularity.
The scattered field carries substantial information about the location, size and shape of
the scatterer. However, there are few publications giving theoretical data for elastic wave
scattering by a crack in a cylinder. This is mainly because of the geometric and
computational complexity of the problem. Most existing theoretical work has been
confined to the axisymmetric case, (Rattanawangcharoen ef al. 1997 and Zhuang et al.
1997). Only recently, Bai et al. (2001) studied 3D wave scattering by cracks in cylinders.
However, the technique can not be applied to arbitrarily oriented flaws (cracks or
inclusions). These cases, on the other hand, can be handled efficiently by using the hybrid
method. To the best of the author’s knowledge the use of the hybrid method for 3D wa\}e

scattering in cylinders has not been reported.

The hybrid method is a technique that combines a finite element idealization of a
bounded region containing the inhomogeneities and a wave function expansion in the
exterior region. Continuity conditions for displacements and tractions are applied at
discrete points on the common boundaries between the two regions. This results in a

system of linear equations in the unknown wave function amplitudes. The solution gives

the amplitudes which are used to obtain the reflection and transmission coefficients of the
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scattered fields. Satisfaction of reciprocity and the principle of energy conservation are
used to check the validity and accuracy of the results. It is worth mentioning here that any
other numerical technique (e.g. the finite difference method) could be used in the
bounded region instead of the finite element method. Similarly, integral equations, for

example, could be used instead of a wave function expansion in the external region.

3.1 Mathematical Idealization of a Crack

Since the problem of elastic wave scattering will be formulated mathematically, it
is of paramount importance to have a clear vision of the mathematical abstraction of
cracks and crack-like flaws. By definition, a crack is a two-dimensional surface of finite
or infinite area located in the interior of an elastic solid (Kraut 1976). According to the
type of boundaries, cracks are generally divided into two types, weak cracks and rigid
cracks. In the case of a weak crack the surfaces of the crack are assumed free of stress. In
the case of a rigid crack, conversely, the void is considered filled with an absolutely rigid
material. In the present work, results are presented only for a weak crack. However, the
numerical procedure can be extended to rigid cracks by imposing zero displacement

boundary conditions on a crack’s surfaces.

It is very important to recognize that ideal and real cracks may differ substantially
in their behavior. Such differences may be attributed to two factors; the loading
conditions and the interaction between the crack surfaces (Kraut 1976). First, a cracked
specimen may show different ultrasonic scattering characteristics depending on whether
it is loaded or not. Second, a planar crack (i.e. a crack whose thickness is neglected and
whose faces are assumed to occupy the same plane), although mathematically

convenient, neglects interactions between its faces.

3.2 Description of the Problem

Scattering of time-harmonic waves by cracks in an infinitely long cylinder is

considered. The cylinder may be composed of one linearly elastic isotropic layer or a




CHAPTER 3. HYBRID MODELING OF 3D WAVE SCATTERING 32

number of perfectly bonded concentric cylinders with distinct mechanical properties. A
lateral section of the geometry is represented in Figure 3.1 where the cylinder’s mean
radius is R and its uniform thickness is H. The surfaces of the cylinder are assumed free
of stress. The illustrated cylinder extends to infinity in the axial direction from both ends.
All the flaws are assumed to be localized so that they can be bounded appropriafely by
two vertical boundaries B* and B, respectively, at z=z"and z=2z" where z is the

coordinate along the axis of the cylinder.

The incident wave is considered to be harmonic. It is taken to be a single mode
propagating in the negative z-direction. The common factor e/™ is suppressed in the
following mathematical formulation for convenience. For the finite element mesh
representing the bounded region, the only externally applied forces are those acting on
the nodes located at the boundaries B* and B~ . The external forces vanish elsewhere. No

constraints are imposed at any node.

3.3 Mathematical Formulation

3.3.1 An Overview

One aim of the following overview of the mathematical formulation is to

underscore the physics of the hybrid model. Consider a cylinder having flaws located
between z* andz~. Assume this cracked region to be a “black box”. The black box
represents an obstacle to the propagating incident mode ( p,q) excited at —o and
travelling to the left. To the left and right of the obstacle there will be incident and
transmitted wave fields. Since the material of the cylinder is assumed linearly elastic, the
principle of superposition applies, i.e. displacements and forces external to the obstacle

can be determined by summing a finite number of normal modes of the undamaged

cylinder. These forces and displacements represent the boundary conditions imposed on

the bounded region.
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The bounded region, which may contain geometric and/or material irregularities,
is handled best numerically. The finite element procedure was chosen in the present
formulation. Recall that other numerical techniques, e.g. the finite difference method,
may be used instead. The end result of a numerical method is a system of algebraic
equations with complex coefficients. The unknown variables are the complex amplitudes
of the reflected and transmitted wave modes. These amplitudes represent the “footprint”

(i.e. the location, shape, size, and orientation) of the crack.

3.3.2 Wave Function Expansion

Consider an incident wave mode ( p,q)that corresponds to a wavenumber p in

the 6-direction and a wavenumber §;q in the z-direction. Upon striking the crack at z = 0,
a scattered field is generated. Using a wave-function expansion, the displacement vector

of the scattered field can be Wﬁtten on the boundaries B* and B~ as:

St N”’ t _ % ng .] mnz
Uy, =% Ya,U,.e (3.1)
M 1

where superscript “S” refers to the scattered field. Moreover, a “+” superscript refers to
B" and superscript “—“ refers to B~. M is the number of circumferential wavenumbers;

N, is the number of axial modes corresponding to a particular a,,is the unknown

complex amplitude of the (m, n) scattered mode; and

imn

mn

r g z r a8 z
Umn g [ulmn u[mn ulmn o imn Wipnn Uinn e uNﬂmn uNan uNan ] (3 2)
mn
where
N 2
g, = (lum +|u +iu, ) . (3.3)
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e . . . .
The u,,,, u,, and u;, are the displacement components in the ¥, @ and z directions,

respectively, at the ith nodal point. They correspond to the (m,n)th mode. N, is the

(identical) number of nodal points on each boundary, B* and B~. Equation (3.1) can be

rewritten in matrix form as:
Uﬁ* =G A* (3.4)

The matrices on the right side of equation (3.4) are defined as:

G*:(Uj,,, « Vine Uit « Ul Usy « Upy o Ufy .« Uy Uy . Ul ) 3.5)

_ _ _ _ _ - _ _ V _ _ T
A =(a-t.w Ve Ty, - By e Ty gy - Gy @iy~ » By o Gy o ‘fm,,) (3.6)
where

a, =a: exp ( Jj mnz*) . 3.7

Similarly, the force vectors at the boundaries B* and B~ due to the scattered field can be

written as:

P =F*4* (3.8)

where
F¢=(Pj“ o Pin Piy o Piy Py o Py B . By Pa, . Biy ) (39)
and

1 r z r z r z
Pmn =§—[plmn pfmn p[mn "‘pimn pfmr pimn "'pNﬂmn Pfr,mn pNamn]' (310)

mn

The p;,., po, and p? are the force components in the 7, § andz directions that

correspond to the mode (m,n) at the ith nodal point. In constructing the load vector, the

consistent load vector formulation (Bathé 1982 and Zienkiewicz 1977) is used. It can be
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shown (see Appendix B) that G~ can be obtained from G* by replacing the z-component

of a displacement with its negative value. Similarly F~ can be obtained from F* by

replacing the z-component of a force with its negative value.

The boundary displacement and force vectors can be constructed for the incident

wave as:

Uy =a,, G, exp(—j&,z") (3.11a)
Uy =a,,G,, exp(-j&,z") (3.11b)
Pj =a) F, exp(~jé,z") (3.11¢)
P =—a, F; exp(-j&,z"). - (311d)

where a “I” superscript indicates the incident wave field. G:q, and F, :q are the column of
the G* and F*matrices corresponding to the incident mode (p,q) and a, is the

amplitude of the incident mode (p,gq).

3.3.3 Finite Element Idealization

The bounded region that contains the crack is idealized by using finite elements
(Bathé 1982 and Zienkiewicz 1977). A 20-node (quadratic) brick element is used
throughout the entire mesh. (For the same number of degrees of freedom, this element
gives higher accuracy than an 8-node brick element (Kardestuncer 1987). Moreover a
brick elment with more than 20 nodes incurs more computational effort with no

gaurantee of better accuracy.) The displacement vector, U, at any point within the

element “e” requires the interpolation of the nodal displacement vector @, . Indeed

U =N, (3.122)
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where N is a matrix containing the interpolation (shape) functions. (See Appendix C.)

Hence, for the 20-node brick element,

mn 0 0 n, 0 0 .. .n 0 O
N=[0 n 0 0 n, 0 ... 0 n, 0/ (3.12b)
0 0, 0 0 n, ... 0 0 n

Then the strain vector, &, is given in terms of the displacement by:

r T .
£=<5” ¥ g2 y? 47 yé) =DpU (3.132)

—a— 0 0
or
AR
r T r\ o8
0 o 2
= % 3.13b)
) ) G
oz r\ 08

9 0 (."?_
oz or

l[_é‘_) 8.1

(r\o8,; or r A

By substituting the U given by equation (3.12a) into equation (3.13a), the corresponding

strain vector, &, can be written as:

e=B0, (3.14)
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where
B =DN. (3.15)

The strain energy of the crack region is:

V= -;- [g7cear (3.16a)
R

where an overbar refers again to a complex conjugate. C is the elasticity matrix given,

for an isotropic material, by equation (2.7); while for an orthotropic material it takes the

form:

-

™

cooNNA

. (3.16b)

o O o O

oo o NNN

OO:EQOOCD

o N
[

In terms of the finite element idealization, equation (3.16) can be rewritten as,

N,
V=23 [#"CzdR, (3.17)
1

B | s

where N, is the number of elements and R, is the element domain (volume). Similarly,

the kinetic energy of the crack region is:

T=-;-w2 [oUTUaR. (3.18)
R
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which can be rewritten for the finite element idealization as:
, - i
T= Eaﬁz j pUTUdR, . (3.19)
H R,
The virtual work exerted on the crack region by the external forces is:
W=_{U, P,+U; B} (3.20)

A conventional assembly over the elements gives the total energy of the region, £, as:

Nc
Ey=V~T-W =%{Z{ j (27Ce- pwzﬁrﬁ)dRe}—ﬁ;PB —U;P'B}. (3.21)

1 R,

It is important to point out that the total energy of the finite element domain is
independent of time, t, since exp(—jatf)exp(~jwr) is unity. In view of equations (3.12)

through (3.15), E, can be rewritten as:

{0,/ sU, -0, P,-U, P, (3.22)
where

v =(u" U, | (3.23a)

and

S
S=K—m2M=[ o S’B]. (3.23b)

SBI S BB
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A subscript “P” refers to the degrees of freedom associated with the internal nodes in the
finite element mesh; subscript “B”, on the other hand, refers to the degrees of freedom
associated with the boundary nodes. K and M are global stiffness and mass matrices,
respectively. They are defined as:

N, .
K=Y [BICB.dR, (3.240)
i R,
and
Nr
M=) [pN'NdR,. (3.24d)
t g,

Minimizing the total energy given by equation (3.22), results in the following equation of

motion for the interior region (Bathé 1982 and Zienkiewicz 1977):

SE, =80, SU, -6U, P, =0. (3.25)
& implies a first variation and an overbar denotes the complex conjugate.
3.3.4 General Solution

The general solution is obtained by applying the displacement and force
continuity conditions at the common boundaries B* and B™ between the internal and

external regions, as follows:

U,=U.+US (3.26a)

P,=P +PS (3.26b)
where

vyt =(UyT Uyt (3.27a)

Uy =(UsT UsT) | (3.27b)
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P =(P" B (3.270)

P =(B" Py, (3.27d)

In equation (3.26), quantities on the left side of the equality are associated with the
interior region while those on the right side correspond to the exterior region. Using

equations (3.4) and (3.11) in equation (3.26) and, in turn, in equation (3.25) results in:

S,U, +8,U, =0 (3.284)
G" (SyU, +85U;) =GP, (3.28b)

where the S; (i, j = I, B)are defined in equation (3.23b) and

G 0
G_[O G+]. (3.28¢)

G~ and G" are defined in equation (3.5). Equation (3.28a) gives:
U,=-S,'S,U,. ' (3.29)

Substituting equation (3.29) in equation (3.28b) and makmg use of equation (3.26) leads

to:
|67 (85,6 -F)|a=6" (P -5,,U}) (3.30)
in which,
Shs=8,,—8,8,'S,, (3.31)
A= (A‘ A*) (3.32)

and
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F 0
F_[ . F+], (3.33)

where F~ and F* are defined by equations (3.9) and (3.10). The size of the matrix of
coefficients in equation (3.30) is 2N, by 2N, where N is the total number of modes

taken in the wave function expansion. The amplitudes a®, are obtained by solving the
linear equation (3.30) for A" and A", making use of (3.7). The U, whose overall form
is given by equation (3.4), is computed from equation (3.26) while U,is given by

equation (3.29).

The reflection coefficients R, ,,of the (m,n)reflected mode and the transmission

coefficient 7, of the (m,n)transmitted mode, due to the (p,q)incident mode, are

defined as:
Qpin
R,pq,rm = a] (3343)
Fo )
and
(-
-1 m#*#pOrn#*q
T K
- _ (3.34b)
o a +a
P"a, = m=pandn=q.
Fa

3.3.5 Principle of Energy Conservation

Reflected and transmitted energy is carried far from the crack by the propagating

modes. The time-averaged value of the energy flux associated with the (m, n) mode

propagating through the cylinder, that is due to the (p,q) incident mode, is given by
(Karunasena 1992):
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O, = 02l Ry ] Fo (3.35)
where

=Im(F;7T;,) 1<n<N,. (3.36)

The N, represents the number of propagating modes in the axial direction. The energy

flux of the (m,n)transmitted mode and the (p,q) incident wave can be written

respectively as:

rom=ola 1T, [, (3.37a)

<pj;q =a)[a:,q| ¥, (3.37b)

The percentage error in the energy balance, e, is defined as:

199[ - ZZ( - )J (3.38)

q)pq -M n=1

Application of the principle of conservation of energy to the closed region R, which is
bounded by z=2z" and z =z", and the outer and inner surfaces of the cylinder is used to

assess the accuracy of the numerical computations.
3.3.6 Reciprocal Relations

Application of the elastodynamic reciprocity theorem (Achenbach 1973; Auld
1973 and Tan and Auld 1980) to region R results in (Karunasena 1992 and Karunasena
et al. 1991):
(3.392)

mrmm

T Lo =L pg L g - (3.39%)
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Y, isrelated to ¥, by:

Y, =2/%, . (3.40)
LetE}, ,,be the proportion of the energy of the incident (p,q) mode transferred to the

(m, n) reflected mode. Then, from equations (3.35) and (3.37b),

. D 2 ¥
E\ym = q‘;' =[Rm,,,,,, \p—"' (3.41)
g Fi
and,
. @ 2 ¥
i = = R | (3.42)

Equation (3.39) and equations (3.40) through (3.42) lead to:
Bl =B (3.43)

Similarly, it can be shown, for the transmitted modes, that:

E,m=E,

m, pg "

(3.44)

The reciprocity relations given in equations (3.39), (3.43) and (3.44) serve as another

useful check of the numerical computations.
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Figure 3.1. Lateral section in a cylinder having a surface breaking, symmetrical crack
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Chapter 4

Numerical Implementation

The numerical implementation of the hybrid method for three dimensional
problems requires enormous computer storage due to the imperative need for a refined
finite element mesh in the bounded region. This obstacle has been circumvented in the
following numerical implementation by using a condensation technique in which the
stiffness matrix of the entire mesh is divided into smaller sized submatrices. Moreover, »
the condensation requires not only less storage but also less computational time for a

given problem.

4.1 Condensation Technique

The mesh adopted in the finite element region is chosen to suit the condensation
procedure. The numbering of the global nodes starts at the point (r=0,8=0,z=0). At

any plane z = const., and each increment in the r — direction , numbering starts at =0
and proceeds in the positive & —direction, see Figure 2.1. The planes normal to the
z —direction are ordered in the following manner. First, the plane at z =0 is considered

Plane 1. Then the adjacent two planes (on the negative and positive sides of the crack) are

considered Plane 2 and so on.
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The mathematical formulae of the condensation method are presented for the 20-
node brick element. The number of planes perpendicular to the z-direction is assumed,
for simplicity, to be four. An illustration of the meshing scheme for this configuration is
shown in Figure 4.1. Now equation (3.25) can be rewritten, in conjunction with equation
(3.23b), to take the form:

Sy Sp S 0 0 'U1 ] 0)
SnT Sn S8y 0 0 ||y, 0
Sy S, S, Sy S, U =103 (4D
0 S34T Su S v, 0
. 0 0 Sh Su Swm Us) s
The elimination of U,,U, and U, is performed as follows:
* _l = -
U, =-S," {SpU, +S,U,} (4.22)
=1 __»
Uz =-S5 $,xU; (4.2b)
. -1 * .
U,=-S; {S34U4 +S3BUB} (4.2¢c)
U,=-8, SU, (4.2d)

where S,‘r are given more conveniently in Appendix D. This results in the following two

simultaneous linear equations:

[S;* S:BHU‘}:{O}. (4.3)
S Sss|WUs) | Ps

The dynamic memory allocation capabilities of Fortran 90 (Schick and Silverman

1995), combined with the directives of OpenMP (Chandra et al. 2001), enable the

numerical condensation scheme to be implemented on parallel processing platforms. The
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use of four threads, each with a 700 MHz clock speed and a 1GB hard drive, saves 67%
of the

CPU time compared with only one thread being employed. Increasing the number of
threads from four does not necessarily reduce the computational time because of the

corresponding increase in the time overhead for the parallel processing.

4.2 Numerical Procedure

The hybrid modeling has five major computational tasks. These tasks are:

pre-processing;
calculation of condensed finite element stiffness;
calculation of wave functions.;

forming the linear system; and

wok WD

post-processing.

In the pre-processing phase, the finite element mesh and wave data are generated
for the undamaged cylinder. The finite element mesh is used in the second phase to
calculate the condensed stiffness matrix. Wave data are used in the third phase to
compute the wave functions. The condensed stiffness is used in the fourth phase, in
combination with the wave functions, to form a linear system of equations in the cofnplex
unknowns. In the post-processing phase, the equations are solved, complex amplitudes

are evaluated and the error in the energy balance is determined.

4.3 Validation

Three necessary conditions must be met to primarily validate the numerical
procedure (Karunasena ef al. 1991 and Karunasena 1992). First, for an incident wave and

no crack in the interior region, the resulting scattered field must disappear. Second, the

percentage error in the energy balance must also vanish. Third, the elastodynamic
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reciprocity relations must be satisfied. These conditions were successfully met with
negligible error for the numerical results presented in the following section. A
comparison of these results with previously and independently obtained, numerical and

experimental data also validates the model.

4.4 Numerical Results and Discussion

In the upcoming examples considered in this section, the non-dimensional wavenumber

and frequency are defined respectively as:

0=-2  amd y=-=2 (4.4a)
wref gref
where,
1 |u 1
o, =—|— and =—, 4.4b
ref H J; gref H ( )

The crack’s geometry is described by two parameters; viz. the non-dimensional crack

depth, D, and the non-dimensional crack length L. D is given by,

p=2 (45

=% (4.6)
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8, (rads) is the angle circumscribed at the center of the cylinder by radii passing through

the two circumferential edges of the crack. Furthermore, the non-dimensional width, 7,

of the bounded region R is defined as:

W = 4.7

i
H
where w is the width of R, ie. w=z" — z7. If the cylinder is welded, the non-

dimensional thickness of the weld is defined as:

b
B=— (4.8)

where b is the weld’s (constant) thickness.

Numerical results are presented for the following examples.

Example 4.1 A cylinder, investigated previously by Zhuang et al. (1997), has the
geometric and material properties summarized in Table 2.1. Numerical
results are presented for axisymmetric cracks having a non-
dimensional crack depth, D, 0of 0.125, 0.25 and 0.5.

Example 4.2 The cylinder in the Example 4.1 is reconsidered. Numerical results are
presented for two vertical cracks having a non-dimensional crack
length, L, of 0.5 and 0.1 and a constant non-dimensional crack depth,
D, of 0.5. A comparison is given with an axisymmetric crack having

the same depth.

Example 4.3 The cylinder in the Example 4.1 is re-examined to study the variation

of the reflection and transmission coefficients as the non-dimensional

length of a crack is changed for a constant non-dimensional crack
depth, D, of 0.5.
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Example 4.4 A cylinder that has been investigated previously (Alleyne et al. 1998,
Lowe et al 1998 and Bai et al. 2001) is considered. It has the
geometric and material properties summarized in Table 2.1. Numerical
results are presented for three cracks having a non-dimensional crack
length, L, of 0.1, 0.5 and 1 and a constant non-dimensional crack

depth, D, of 0.55.

Example 4.5 The cylinder in Example 4.4 is reconsidered to assess the division of
the reflected and transmitted energies between different modes. The
crack has a non-dimensional crack depth, D, of 0.55 and a non-

dimensional crack length, L, of 0.5.

Three key factors affect the numerical accuracy of the hybrid model; the sizing of.

the finite element mesh, the total number of modes used in the wave function expansion
and the total number of sublayers. The finite element mesh refers to the number and
distribution of elements in each coordinate direction. The number of modes refers
implicitly to the number of circumferential and axial modes. The total number of
sublayers, N, is taken such that a convergent value is obtained for the ¥ , given by
equation (3.36). The percentage error in the energy balance guides the adequacy of a
particular finite element mesh and the number of modes used in the wave function

expansion.

Consider a cylinder having the geometric and material properties given in Table

2.1. The cylinder contains an axisymmetric crack corresponding to a non-dimensional
depth, D=0.5. The incident wave is the longitudinal mode L(0,2). Using 10 radial

elements, the percentage error in the energy balance is as little as 0.093%. Increasing the

number of radial elements from 10 to SO decreases the percentage error in the energy

balance to 0.008%. However, the corresponding reflection coefficient | Ry, ;, | grows by
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less than 2%. {See Figure 4.2.) Consequently, 10 radial elements are a reasonable

compromise in the radial direction.

Consider the previous cracked cylinder but the incident wave is changed from
L(O,Z) to F (1,3). The number of radial elements is fixed at 10. Numerical accuracy

depends now on the number of circumferential elements used. For 20 circumferential

elements, the percentage error in the energy balance is around an acceptable 0.006%.

To determine the number of modes to be used in the wave function expansion, the
numerical procedure was tested for a cylinder having the geometry and material data
presented in Table 2.1. The cylinder contained a surface-breaking crack in the z=0

plane. The non-dimensional crack depth and crack length were D=0.5 and L=0.5,
respectively. The incident wave was the second longitudinal mode L (0,2)with a
frequency of 70 kHz. A plot of the percentage error in the energy balance is shown in
Figure 4.3 for different numbers of modes used. This percentage error is around 0.006%

for 957 modes. These modes include 37 axial modes corresponding to m =0 and 46 axial

modes that correspond to each m from +1 to +10. When the incident wave is the
F(1,3) rather than the L(0,2) mode, the 957 modes in the wave function expansion

give a somewhat larger 0.050% error in the energy balance which is still acceptable.
Example 4.1

Two steel pipes are welded edgewise by a vertical weldment, with a surface-
breaking crack on one of the weldment’s interfaces. The non-dimensional width, W, of
the bounded region is 0.28 for a non-dimensional thickness of the weldment of 0.14.
The thickness-to-mean radius ratio, /R, and the total thickness, #, of the steel pipes
are 0.1 and 5.08 mm , respectively. The cylinder’s material in this example has a modulus

of elasticity, £, and Poisson ratio, v, of 211.7 GPa and 0.29 respectively. The

longitudinal and torsional wave speeds are ¢, =35.6x10° m/s and c, =5.88x10* m/s.
P s
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The geometrical data and material properties are summarized in Table 2.2. The weld

material is orthotropic. Its properties are summarized in Table 4.1.

Figure 4.4 shows that the results from the 2D (Zhuang et al. 1997) and 3D hybrid
models are identical except at the higher frequencies when the 3D hybrid model gives
slightly lower predictions. The relatively fewer radial elements employed in the 3D

model accounts for this difference. Besides serving as a validating test, this example also
shows the sensitivity of the reflection coefficient, R, to a variation in the non-

dimensional crack depth, D. (See Figure 4.4.)
Example 4.2

The geometric and material properties are identical to those used in Example 4.1.
Results are presented in Figure 4.5 for two vertical cracks having non-dimensional
lengths, L, of 0.5 and 0.1 and a constant non-dimensional crack depth, D, of 0.5. The
corresponding axisymmetric curve is superimposed on Figure 4.5. A comparison of the

three curves shows that the reflection coefficient R, ,, is very sensitive to the variation of

the non-dimensional crack length, L.
Example 4.3

The geometric and material properties of the cylinder considered in this example

are the same as before. The non-diniensional crack depth, D, is 0.5. The reflection and

and T,

Ol,mn

transmission coefficients, R

0t.mn

(m=0,n=1,2) (m=1,n=1.3), respectively,
are shown in Figure 4.6 as a function of the non-dimensional crack length, L, for a

frequency, £, of 190 kHz. It can be seen from this figure that the reflection coefficients,
|R0,.0,|and ]Rm'ozl, and the corresponding transmission coefficients, [’I{,Lml and IIEn.ozl , are

nearly linear functions of L. However, the former increase with increasing L but the

latter decrease.
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Example 4.4

The modulus of elasticity, £, and Poisson’s ratio, v, of the cylinder’s material

are 216.9 GPa and 0.287, respectively. Hence, the longitudinal and torsional wave
speeds are ¢, =32.6x10° m/s and ¢, =5.96x10° m/s. The inner radius, R;, and the

thickness, H, of the cylinder are 38 mm and 5.5 mm respectively. Therefore, the
thickness-to-mean radius ratio, /R, is 0.135. The geometrical and material properties

are summarized in Table 2.1.

The frequency and phase speed spectra of the incident waves have been discussed
thoroughly in Chapter 2. See also Figures 2.2 and 2.3. Alleyne er al. (1998) and Bai et

al. (2001) presented experimental and numerical results, respectively, for the frequency
range from 60 to 85 kHz. The incident wave is the second longitudinal mode, L(O,2).

The crack’s non-dimensional crack depth is D=0.5.

Three different crack configurations are considered. However, in all cases, the
plane containing the crack is perpendicular to the axial direction, z. Furthermore, the
non-dimensional crack depth, D, is always 0.5. In the first configuration, the non-
dimensional crack length, L, is 1 so that the problem is axisymmetric. In the second and

third configurations, the non-dimensional crack length, L, is changed to 0.5 and 0.1.

A comparison of the results from the 3D-hybrid model with those of Alleyne et
al. (1998) and Bai et al. (2001) is shown in Figure 4.7. The results from the hybrid model
are about 9% lower than the numerical predictions of Bai et al (2001). This is
attributable to the difference in the finite element idealizations. Bai et al. employed
10,000 circumferential elements while the present hybrid model uses only 20 such
elements. As the number of elements increases, the finite element procedure predicts a
larger displacement (Desai et al. 1972). Experimental data are also higher than that

predicted by the 3D hybrid model. One or more of the following factors may account for

this difference:
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1. material imperfections;
2. poor coupling between the experimentally used sensors and the wall of the
cylinder;

3. experimental error in measuring the crack depth.

Numerical experiments were conducted using the present numerical procedure to
predict an adjustment factor for a given crack depth. It was found that, if the crack depth
was adjusted by a factor of 1.125, the experimental and current numerical data fitted very
closely. See, for instance, Figure 4.8. On the other hand, the adjustment for Bai’s
predictions was 1.1 rather than 1.125. Again, the different finite idealizations account for

the discrepancy.
Example 4.5

The geometric and material properties are given in Example 4.4 The crack’s non-
dimensional depth and length are 0.55 and 0.5, respectively. The variations of the
reflection and transmission coefficients are shown in Figures 4.8 and 4.9 for different
modes. Clearly, the reflection and transmission coefficients have a very weak dependence

on frequency. This feature would be attractive for ultrasonic measurements over long

pipes.
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Table 4.1. Properties of the weld material (Examples 4.1, 4.2 and 4.3)

PROPERTY VALUE
Ci=Cy, Gpa 231.83
Cy;, Gpa 265.23
C,, GPa 67.83
C,, =Cyy, GPa 161.97
C, =Cy; =Cq, Gpa 82.00
p, kglm’ 780.00
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Figure 4.1. Ilustration of the meshing scheme for the condensation procedure
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Figure 4.2. Variation of reflection coefficients with an increasing number of radial
elements for a steel pipe. H/R=0.135, v=0.287, D=0.5, I=1.0, #=0.2
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Figure 4.3. Percentage error in the energy balance versus the total number of modes
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Figure 4.4. Reflection coefficients versus normalized frequency for various
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Figure 4.5. Reflection coefficients versus normalized frequency for various
circumferential cracks in a welded steel pipe. H/R=0.1, v=0.29, D=0.5,
w=0.28, B=0.14
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Figure 4.6. Normalized reflection and transmission coefficients in a welded steel
pipe as a function of the crack length. f=190kHz, H/R=0.1, v=0.29, D=0.5, W=0.28,
B=0.14. (a) Reflection coefficients, and (b) transmission coefficients
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Chapter 5

Conclusions and Recommendations

5.1 Conclusions

In the present study a hybrid method, involving finite elements and a wave
function expansion, was extended to analyze 3D scattering in a cracked circular cylinder.
The implementation of the hybrid method was found to be hampered by its potentially
tremendous computer storage requirements. The condensation technique outlined in
Chapter 4 partially solved this problem. Fortran 90 dynamic memory allocation
capabilities, combined with OpenMP directives, also enabled the numerical condensation

scheme to be implemented beneficially on a parallel computer platform.

Satisfaction of reciprocity and the principle of energy conservation were used to
validate the numerical results. The results were also compared with available numerical
and experimental data. Results from the current model and a previous 2D hybrid model
are identical except at the highest frequencies. Then the current model gives very slightly
lower values. The somewhat greater number of layers used in the 2D hybrid model

probably accounts for this difference. The current model predicts somewhat lower values

for the reflection and transmission coefficients compared with the quasi-exact method of
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Bai et al. However the CPU time required by the current model is about 32 times that

consumed by Bai et al.’s procedure for the same problem.

5.2 Recommendations For Future Work

The computational time can be reduced either by modifying the condensation
procedure or by improving the parallel processing capability of the code. Dividing the
overall finite element stiffness matrix into more but smaller sized sub-matrices may
improve the condensation procedure’s computational efficiency. Paralleling more
segments in the code may enhance the parallel processing but radical changes would be
needed in the present algorithm. The current 3D algorithm also lacks the ability to handle
a non-uniform finite element mesh. Algorithmic modifications are required and

numerical experiments are needed to determine the most appropriate non-uniform finite

element mesh for m greater than zero.
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Appendix A

Propagator Matrix

Defining:

Ck(1,1)=%Zm(ar)—aZm ar),

+1(

C(L2)=¢z_ . (Br),

G(.3)=i%2, ()

.m
C(2,1)=—i —r—Zm (ar),

Ck(2,2)=i§Zm+1(,3r),
G (2,3) =ﬂzm+1(ﬁr)-%zm (B7),
C.(31)=iz_(ar),

G 02)=-ip2.(0r)
C,(3.3)=0, (A1) »

C,(41)= y{(ﬂ’—gill+(§z - ﬁZ)JZm (ar)+2—ra-zm o (ar)},

¥
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Ck(4’2)=2ﬂf{ﬂZm (ﬁr)_(_’%l_)

2, (1)}
o= 20Dz () g, (00,
-2z (5r)-az,,, (9],
(52)-ne 2Nz, (5)- 2, ().
(5=l 2- 20z ()22 (09}
C,(6,1) =2iug {aZm (@) —-’:-'zm (ar)},

ck(s,z)=,-y{(ﬂ2_gz)zm+1(ﬂr)-ﬂ—:’-zm (ﬁr)},

Hmg
C(6.3)=2"2 (pr)
then the elements of matrix @, given in equation (2.29) are:

Q. (i./)=C, (i, /) i=1...,6j=1...,3. _ (A.2)

Here Z, and Z,,,, are H and HV

m+l 2

respectively, and 7 =r,. The other three columns,

ie. j=4,..,6,can be obtained from the first three columns by replacing the Hankel

functions H\ M and g

m+1

by H? and H1?)

m+l ?

respectively.
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The element of the three by three matrices R and T in equation (2.40) are:

R(i,j)=C. (i, }). (A.3a)

and

T(5,j)=C(i+3,j), i=l...3;jj=h.u..,3 (A.3b)

where Z, and Z

m+l

denote J,, and J

m+]?

respectively, and r =17,.
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Appendix B’

Sign Convention in the Hybrid Method

B-1. The frequency equation for the cylinder

Consider an isotropic elastic cylinder circular extending from —co to +c in the

z direction. The equations of motion, in an invariant form, are
LVU +(A+ VYV -U = p 5*U[ 3¢, B.1)

where U is the displacement vector, p is the mass density, 1 and ux are Lame’s

constants and V? is the three-dimensional Laplace operator. The eigenvalue problem

consists of finding solutions U that satisfy equation (B.1) and the boundary conditions:
o™ =0, ¢?=0, " =0. (B.2)

The formulation of the displacements and stresses in terms of the potential functions @

and H is:

' Appendix B is courtesy of Dr. Hao Bai, a research associate in the Civil and Geological Engineering Department,

University of Manitoba.
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U=VO+VxH, V-H=F(x,1) (B.3)

where F(x,f) is an arbitrary function. The potentials @ and H satisfy the scalar and

vector wave equations,

, (B.4)

where ¢, and ¢, are the dilatational and distortional wave speeds, respectively. They are

given by

2

O

I
SRR

In expanded form, V’® and V*H are

_d® 180 1750 70

VD —_—t
or* ror r gt 87
H 2 0JH H, 20JH
VH=|VH -—t-="Lie +|VH, -2+ "t e +V’He .
H[ Tt rzﬁa)e'( o rzé’BJg il
Assume that solutions of the wave equations (B.4) take the form:

= fm (r)ejpmﬂej(q§z+mr) (B.5a)
H = f:_(r)efpmﬂej(qézwr) (B.5b)
H, = f,(r)e e/ o= (B.5¢)
H_ = f,(r)e?e/tetson (B.5d)

where p, ¢ =1, m>0. The e?™e/®***" is suppressed in the sequel. Then
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fits fi+ (@ =Ty =0 . (B6a)
f;'+% f+(p ——:’T)f, =0 (B.6b)

P f B = L+ 2ipmfy + ) =0 (B9

fots i+ B =y =2jpmf, + [)=0  (B6d)

where a prime superscript denotes differentiation with respect to » and

o =w2/cﬁ _é_—z’ ﬂz =Cz)2/C,2 _52.
By considering the property of gauge invariance, it may be assumed that -

Jo=—Jpf,, f.=jpf,-

Consequently, from equation {B.6c), f, satisfies:

f:+§f:+{ﬂ2 —Q’—’;i}ﬁ =0. ®.7)

The scalar components of U are given by:

PR 10H, JH,

or r 08 oz
o 180 JH, JH,
u =———+

rd0 oz Or

U

(B.8)




APPENDIX B 77

The displacement components on the other hand, are derived by substituting equation

(B.5) into equation (B.8), so that:
' = fo-pgsfi+E f,
u =2+ jgsf, - f] (B.9)
u' = jgéfo—jp(f+22 1)

The strain components are given generally by,

P e W 108 ow
or’ r r oo’ dz
r a8 [} r z [ z
2e8 LOW OW W om _OW  OW e OW | 10U
r o8 or or z Or 2z r 50

so that

" = fo—pPab I+ 2 (f] -1+ 1)

& =(t o5 fo)-Pas = -2 (f-1 1)

€7 ==& fo + pa&(fi+22 1)

&0 =B (St fo)+ L (-t g )+ (et f1- 22 1)
& = g fo £ (frrmt £+ -2 [, ) - pal £ ,

(B.10)

: 1 ' mt |
&% =—pgs 2 fo+ (2 £~ (& =20, ) -5 jas L
Hence the dilatation is given by

[/ 2 2
A=e"+&% +e% =—(a’ +¢& } fo-

The stresses are derived from Hooke’s law, o = 1A, +2u¢” , as:
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o =l =2 fi+(& - B +22) £y, ~2pag i+ 2 22 (11 1)

" =p2 fy+(207 - B+ -2 ) £, ~2pgg = £ -2 2 (111 1)]
0" = u[ (20~ - fu+ 200t (£ + 22 1,)]

o = k[ 288 (fy =t o)+ JaE (=22 £) (2 £+ (B - 207 )]
0" =u[2jaé Sy~ (2 [+ @~ B 2 f ) pag 2 £,

o = u[ -2paf 2 fo +(2 f1+(2m-g) 1 )~ jat f:].

(B.11)

For a solid rod,

fo(r)=CJ,(ar)
[y =qCyJ,, . (Br) (B.12)
(1) =CJ,(Br)

where C,,i=123 are arbitrary constants. The frequency equation is derived from the

boundary condition {B.2), which can be rewritten as:

c"=RC+hR,C,+R,C,=0
o =PB,C +PB,C,+B,C, =0, : (B.13)
o =g (‘P.'HCI +B,C, + B,C ) =0

It can be seen from the equation (B.13) that the coefficients C,,i=1,2,3 do not change

their signs with a change in the sign of g . Furthermore,

u' (r,0,z,t;9)=u (r, 8,z,t)
u’ (r,6,z,t,9)=u’(r,0, z,t) (B.14)
u' (r,0,z,6;q)=u*(r,0,2,t)q
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o7 (r,6,z,t;9)=c" (r.6,2,t)q
o (r.0,2,5,9) =0 (r,0,2,t)q (B.15)
o (r,0,z,t,q)=c"(r,86, z,1).

Variables without a subscript q as well as the matrices P, D and T are given in section B-

2 of this Appendix. The tractions at the cross section, z = const which has a normal

vector n ==¢_, are given by:

Pr (I",B, Z:I;Q)z—azr (1",9, Z,t)q
P’ (r.0,2,64)=~0" (1,6,2,t)q (B.16)
P (r.0.2,9)=-07 (r,0,2,1).

As g =-—1 for the reflected wave field and ¢ =1 for the incident and transmitted wave

fields, then:

r.i r.- r.+ 8.1 .- 8,+ z.f z,- 7.+ (B 17)

rd .- o+ 8.1 a,- g+ z,f z2,- z,+ (B 18)

u=u " =uw", W =T =wT, w =t ==t (B.19)

pr,! =pr,— =pr,+’ pﬁ,l =p8,- =p8,+, pz.l =pz,— =_pz.+‘ (Bzo)

B-2 Supplement

The displacement and stress components appearing in equations (B.14) and (B.15) are:
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u =D, C +D,C,+D,C

¥’ =D,,C, +D,C, +D,,C,, (B-21)

u* =D, C +D,C, '

o” = u[1,C +T,C, +T,C, |
o”=u [I;lcl +T,C, +T23C3] (B-22)

o =u [];!Ca +1,C + 1,C ]

in terms of C; (i =1..3) where D, (i, j=1..3) are defined as:

D,=2J (ar)-al,, (ar),

Dy, =-p&J,. (Br),

D, =jL;_'"-Jm (ﬂr),

D, =27 (ar),

Dy, = jéJ,..(Br), (B.23)
Dy =—=2J,(Br)+BJ,.(Br),

D, =jéJ, (ar),

Dy, ==jpBJ, (Br),

D,, =0.

Furthermore, the T, (i, j =1..3) are:
T, ==2i¢(ad,,, (dr)—%Jm (ar)),
T, ==ip(22J,(Br)+(£ - B} (Br));

T, =_p’:§ I (ﬁr),

T, =227 (ar),

T, =220, (Br)-€'7,.(6r), (B-24)
Ty = =i&( B (Br) -2 7, (Br)),

T, =(22* - p* - &%) J, (ar),

T, =2p&BJ, (Br),

T, =0.
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The elements of the matrix P appearing in equation (B.13) are:

B, =(§2 —,32+21’3r;—’").]m (ar)+2J,, (ar),
B,=-2p¢(BJ, (Br)-=2J,..(Br)),

13 =—2P7m(ﬁ‘]m+| (ﬂr)_mr;ljm (ﬂr))
B =22(aJ,, (ar)-22J,{(ar)),

v

By =JE(BJ, (Br)-222J,,,(Br)), (B.25)
w=(82-222) 0, (Br)-2J,. (Br),
w=—2jé(al,, (ar)-2J, (ar)),

By==jp (8T, (Br)+(& = B ), (B7)),
By=-257 (Br).

-
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Appendix C

Shape Functions and Derivatives for the 20-node Brick

Element

The shape functions of the twenty-node brick element, see Figure C.1, are
(Kardestuncer 1987):

n = (1/8) (1""5:'6) (1 + ﬂi’?)(l"';fg)(é‘f""?i’?*'gi;“ 2) (C.12)
i=13,5,7,13,1517,19

n = (1/4)(1-&*)(1+nn)(1+¢ ) (C.1b)

i=2,6,14,18

n=(1/48)(1=")(1+ ££)(1+46) ~(C.1c)
. i=4,8,16,20

n=(1/4)(1-¢7)(1+£&) (1+77) (C.1d)

i=9,10,11,12

Their derivatives n, n! and nf (with respect to &, 7, and ¢ respectively ) are:

nf = (1/8)(1"'77;77)(1 +gx§){§ (6:6 +am+6s - 2)} (C.2a)
i=13,5,7,13,1517,19
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né = (14} 1+ 7)1+ (1-28) (C.2b)
i=2,6,14,18
ni; = (1/4) (1 —772)(1 +gi¢) ¢ (C.2c)
i=4,8,16,20
nf =(/4)(1-¢*)(1+mm)é (C2d)
i=9,10,11,12

whereas

n = (1/8) (1 + gzé) (1 + é’,C) {77:' (6;5 +nn+6¢6 - 2) + 77; (1 + 77;'77)} (C3a)

i=1,3,5,7,13,15,17,19
n? =(1/4)(1+£€)(1+ ¢S ), (C.3b)
i=2,6,14,18 | |
n? =(1/4)(1-&&)(1+¢L W 1-27) (C.3¢)
i=4,8,16,20
n? =(1/4)(1-¢*)(1+&€)n, (C.3d)
i=9,10,11,12

and

nf =(U8)(1+ )+ )G (E€ +mn+$6 -D)+ 6 (1+¢C)) Cn)
i=1,3,5,7,13,15,17,19 |

né =(1/4)(1+&€)(1+n7)¢, (C.4b)
i=2,6,14,18
né =(Y4)(1-7")(1+&£)¢, (C.4c)
i=4,8,16,20
nf =(Y4)(A+&EE)n (1-24) (C.4d)

i=910,11L12.
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Figure C.1. 20-node brick element
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Appendix D

Condensation Formulae

The matrix coefficients S} (i =1..4, j =1..4, B) in equations (4.2) and (4.3) are given by:
S, =85, ' (D. 1)
S =58, (D.2)
Sy, =8, (D. 3)
S, =8,-S, 8.8, (D. 4)
S, =8,-58,87'sr, (D.5)
S, = Su =Sy SIS =85 8y S5, o (D. 6)
| S, =5, | D.7
S, =S, (D. 8)
S, =S, -8, S8, (D. 9)

and

815 =S.5-85 83y S5y - (D.10)




