SUPFOSED BEACH RIDGES IN THE LAKE AGASSIZ BASIN
A IETHODOLOGICAL APPROAGH TO THE
STUDY OF THEIR ORIGINS

A Thesis

Presented to

The Department of Geography
of

The University of Manitoba

In Partial Fulfilment
of the Requirements for the Degree
of

Master of Arts
by

Susan Margaret Ringrose

October, 1970

ABSIRACT

A stuảy of two areas of supposed Lake Agassiz beach ridges was undertaken to ascertain the origin of the features and to establish criteria by which similar features might be recognized in the flelde One ridge is at Ste. Anne, in Southern Manitoba, the other three ridges are at Ponton, in Northern Manitoba.

This work was mainly achieved by a substantial study of the more phology and depositional elements of the ridges. The morphology was esm tablished by means of airmphotograph analysis and accurate surveying. Firstly, the stratigraphy was described. For gravel size particles, sphericity, roundness and longmaxis orientation values were determined. Secondly, textural analyses and the percent heavy mineral determinations were used to characterize the various deposits.

Throughout the work, an atterpt is made to compare the various aspects of the supposed beach ridges with other features, in the literam ture, whose origin is known. The ridges could conceivably be beachriages, off-shore bars, berms, eskers, kames, drumlins, morainic features, or sand dunes. On the basis of morphology, statistical testing procedures, comparing these features with ones of known origin, indicated that because of the inequality of slopes, the Ste. Anne ridge and ridges 1 and 3 at Ponton may not be eskers or transverse dunes. Resemblances occur between these ridges and beaches, off-shore bars and berms. Ridge 2 at Ponton may be an esker.

The sedinent description of the Ste. Anne doposits evidence a beach type of environment (with storm beach and foreshore constituents)
and the laminations, graded bedding and high angle stratification would substantiate this; but the latter features have also been described in the beds of known eskers. The Ponton sands are relatively homogeneous, which may be consistent with an aeolian environment. Modifications due to periglacial activity may also have occurred.

Sphericity values for the Ste. Anne ridge, using Folk and Vard's scale, range between 0.668 and 0.895 . A plot of sphericity and distance suggests a shifting of grains from north to south, possibly due to longe shore drift. A marked increase in sphericity towards the center of the ridge is shown which suggests deposition in a fluvial environment. The pebbles are spherical (compact) and rod shaped. An average sphericity value for Ponton is 0.728 .

Roundness values for Ste. Anne, according to the Krumbein Scale, are 0.354 to 0.571 , and, by the Callieux Method 222 to 601 . The roundness may suggest deposition in a beach environment. The long axis orientation showed only two significant directions, 80-100 degrees and 120-140 degrees (east of north), which may indicate beach deposits with their long axes parallel to the backwash direction. The high degree of scatter is also similar to that found in outwash deposits.

Textural analyses at Ste. Anne vary according to section position A - E across the ridge. The mean grain size suggests a shoreline environment, sorting is inconclusive, skewness indicates a shoreline or dune environment and kurtosis suggests a beach, dune or aeolian flat en. vironment. The Ponton sediments may more closely approximate beach sands than dune or aeolian flat deposits. The sorting, which decreases from R3 to RI is consistent with the decline in the level of Lake Agassiz from SW to NE. The heavy mineral content varies in Ste. Anne between 4.28
and 8.49 percent and at Ponton between 13.93 and 20.91. This indicates different source materials or a considerable amount of reworking, especially in the Ponton area.

The conclusions reached are that the Ste. Anne ridge consists of a modified till deposit which has been reworked by water in high and low energy environments. The Ponton ridges may have been deposited in a beach or aeolian environment, and have also been reworked, to a greater extent.

ACKNOWLEDGMENTS
I would like to acknowledge the assistance of the following people, whose help has been invaluable during the completion of this work. For assistance with the writing of the thesis, and for academic advice, I would Iike to thank Dr. W. J. Brown and Mr. S. C. Zoltai of the University of Manitoba, and Professor A. R. Lockery of the University of Winnipeg. Thanks are also due to the Faculty and students of the University of Winnipeg, Geography Department, for their help in surveying and laboratory work. I would also like to thank Miss J. Butcher and Miss R. Stevenson for assistance in the field, Mr. A. Hosey for cartographic work, Miss W. Spence for Iaboratory assistance, Mrs. R. Spence who typed the final draft, and Mr. J. I. McDougall for proof-reading the manuscript.

The research project was financially feasible as a result of a National Research Council avard to Dr. W. J. Brown and a University of Manitoba Fellowship awarded to the author. Financial assistance towards laboratory work was also awarded by the University of Winnipeg.

TABLE OF CONTENTS
Page
ABSTRAST i
ACKNOWLEDGMENTS iv
CHAPTER 1 1
Introduction 1
CHAPTER 2 13
Morphological Analysis 13
CHAPTER 3 66
Macroscopic Elements of Sedimentary Analysis 66
A description of the stratigraphy 66
An evaluation of sphericity data 102
An evaluation of roundness data 140
An evaluation of orientation data 157
CHAPTER 4 167
Microscopic Elements of Sedimentary Analysis 167
The textural analysis of Ste. Anne and Ponton sands 167
An evaluation of the percent heavy mineral content atSte. Anne and Ponton199
CHAPTER 5 210
Conclusions 210
SELECTED BIBLIOGRAPHY 217
APPENDIX 1 235
Ste. Anne 235
APPENDIX 2 262
Ponton 262

LIST OF ILLUSTRATIONS

Figure 2-1	"Normal" beach proflles	22
Figure 2-2	Diggramatic sketch of shoreline features	23
Figure 2.3	"Normal" beach profiles	24
Figure 2-4	Chesil Beach and beaches and dunes on Lake Michigan	25
Figure 2.5	Beach ridges in Tabasco, Mexico	26
Figure 2.6	Crest line of long profile, Ste. Anne	27
Figure 2-7	Cross profiles of the ridge, Ste. Anne	32
Figure 2-8	Cross profiles of the ridge, Ste. Anne	33
Figure 2-9	Relationship between height and slope angle at Ste. Anne	42
Figure 2-10	Crest lines of long profiles, Ponton	51
Figure 2-11	Cross profiles of the ridges at Ponton	52
Fig. 2-12	Eskermcross profiles, Reflection Lake, Baffin Island: cross valley moraines	62
Figure 3-I	Sediment descriptions of the sections at Ste. Anne	73
Figure 3-2	Section 2	74
Figure 3-3	Section 4	75
Figure 3-4	Section 10	76
Figure 3-5	Section 16	77
Figure 3-6	Section 19	78
Figure 3-7	Sediment descriptions of the sections at Ponton	90
Figure 3-8	Traverse -4,00	91
Figure 3-9	Traverse 400	92
Figure 3-10	Traverse 900	93
Figure 3-11	Traverse 1500	94

(LIST OF ILLUSTRATIONS cont.)

Figure 3-12	Plot of effective settling sphericity and distance	108
Figure 3-13	Variations in sphericity across the ridge	113
Figure 3-14	Variations in sphericity across the ridge	114
Figure 3-15	Sphericity form diagram for particle shapes.-.Section 30	116
Figure 3-16	Sphericity form diagram for particle shapes-..Section 50	117
Figure 3-17	Sphericity form diagram for particle shapes.-Section 100	118
Figure 3-18	Sphericity form diagram for particle shapes-..Section 13G	119
Figure 3-19	Sphericity form diagram for particle shapes.-Section 160	120
Figure 3-20	Sphericity form diagram for particle shapes-.-Section 190	127
Figure 3-21	Plot of average roundness and distance, Ste. Anne	145a
Figure 3-22	Plot of orientation strength, after S. A. Harris	$161 a$
Figure 3-23	Fabric analysis of Ste. Anne pebbles	(in pocket)
Figure 4-I	Size distribution across ridge, Ste. Anne	184 a
Figure 4-2	Grain size distribution with depth, Ste. Anne	186a
Figure 4-3	Grain size distributions.-ridges, Ponton	189a
	LIST OF TABLES	
Table 1	Long profile, cross profile and width data, Ste. Anne	30
Table 2	The Wilcoxon Matched Pairs Signed Ranks Test, Ste. Anne	35

(LIST OF TABLES cont.)

Table 3	Calculations of regression analysis, Ste. Anne	38
Table 4	Slope angles versus orientation data, Ste. Anne	44
Table 5	Height and width data, Ponton	53
Table 5a	Wilcoxon Matched Pairs Signed Ranks Test, Ponton	54
Table 6	Wilcoxon Test on esker profiles	58
Table 7	Wilcoxon Test on beach profiles	60
Table 8	Sphericity measurement data, Ste. Anne	109
Table 9	Sphericity measurement data, Ponton	112
Table 10a	"t" test of effective settling sphericity	123
Table 10b	Sphericity measurements, Ste. Anne	124
Table 10c	Student measures for "t" test	130
Table 11	The Chimsquare Test on roundness data, Ste. Anne	146
Table 12	Roundness values (average of 5), Ste. Anne, (W. C. Krumbein)	151a
Table 13	a. Orientation by section numbers, Ste. Anne b. Test of orientation strength, after S. A. Harris c. Chi..Square test, taking average values	154
Table 13A.	The particle size scale	171
Table 14	Generalized cumulative frequency data (Ste. Anne), variation by section	185
Table 15	Generalized cumulative frequency data (Ste. Anne), variation by depth	187
Table 16	Generalized cumulative frequency data (Ponton)	190
Table 17	A. Section data (Ste. Anne) B. Depth data (Ste. Anne) C. Ridge data (Ponton)	191

(LIST OF TABLES cont.)
Table 18 Heavy mineral data (Ste. Anne) 203
Table 19 Heavy mineral data (Ponton) 204
$\begin{array}{lll}\text { Table } 20 & \text { Wilcoxon Matched Pairs Signed Ranks } \\ & \text { Test (Ste. Anne) }\end{array}$
$\begin{array}{ll}\text { Table } 27 & \begin{array}{l}\text { Wilcoxon Matched Pairs Signed Ranks } \\ \text { Test (Ponton) }\end{array} 206 .\end{array}$
Table 22 Heavy mineral content, by ridge (Ponton) 207

LIST OF PLATES

Plate 1
Plate 2
Plate 3
Plate 4
Plate 5
Plate 6
Plate 7
Plate 8
Plate 9

Map 1
Map 2
Map 3

Map 4

Chapter I

INTRODUCTION

The introductory chapter consists of the following sub-sections:
A. Introduction and aims.
B. A Survey of Previous Work on Lake Agassiz.
C. A Description of the Study Areas.
D. An Outline of the Analysis.

A. Introduction and Aims

The following research project is an attempt to add to the overall knowledge of the history and changing environment of the area that was once occupied by proglacial Lake Agassiz. Attention here is focussed on investigations of some ridge features which have been presumed to be beaches of the lake. The intention of the present work is to disregard this assumption and, following a detailed analysis of form and sediment content, to arrive at certain mare specific conclusions concerning the origin of certain ridges.

Some of the supposed Lake Agassiz ridges need to be considered more closely for the following reason. Assuming some Pleistocene lake beaches were deposited on the periphery of Lake Agassiz, criteria are needed so that these forms might be recognized in the field and dism tinguished in a meaningful way from fluviomglacial, aeolisn and offshore features. A generalized lake beach morphology and stratigraphy should be elucidated so that beaches may be recognized and compared with others in the Agassiz Basin. Whether the conclusion is that the supposed Lake Agassiz beaches are beaches or not, the work leads ultimately to a more
detailed knowledge of the dynamics of processes operative in the Pleistocene environment.

The chronology of the Lake Agassiz water-planes vismàmis the history of Lake Agassiz as a whole is omitted from the present work.

B. A Survey of Previous Work on Lake Agassiz

A necessary introduction to this thesis is a brief summary of the past literature on Lake Agassiz beach ridges. The reason for its inclusion is to emphasize the lack of detailed morphological and sedimentological description in the previous works. These, in general, include extensive areas and the descriptions of the beaches tend to be vague. There are no particular factors which would conclusively prove these features were Lake Agassiz ridges as distinct from similar features of entirely different origins.

The work of Warren Upham is, to some extent, exceptional, in so far as descriptions are included of generalized Lake Agassiz beach form and content. The Monograph of 1895 described how Upham surveyed an extensive area from the U.S. border to the Duck Mountains of Manitoba. He gave a graphic description of the "beaches", along with descriptions of other landforms. The features consist of "beach gravel and sand, and each forms a continuous smoothly rounded ridge" which rises $10-20$ feet above the level of the surrounding terrain on the landward side and 3-10 feet on the lakeward side (p. 26). The width of these varies from $412 \frac{1}{2}$ to 495 feet. Upham asserted that variation in beach size was due to the unequal power of former waves and currents. He gave a generalized stratigraphy, varying from till or unstratified clay off the ridge to stratified sand and gravel, with some stones and boulders, underlying the ridge itself. A detailed sedimentological description is not given,
but certain pebbles were measured and found to vary in size from between 2-3 inches and 6 inches in diameter. Upham's work is one of the more comprehensive treatises on the Agassiz Basin, because of its lucid, quantitative description which includes the heights, dimensions and deposits of the ridges. However, there are no particular characteristics which would distinguish these presumed Agassiz beach ridges from the eskers (osars) and kames which Upham also describes.

The accounts of morphology and sediments in later works are less specific. These include the writings of T. C. Chamberlain (1887), J. Bo Tyrrell, who wrote papers in 1889, 1892 and 1893, and F. Leverett, writing in 1912, 1932 and 1936. Their papers tend to concentrate either on the mapping of the beaches, or tend to stress the geological history and interpretation of Lake Agassiz. The above authors exclude quantitative descriptions of the presumed beach ridges or their modes of formation.

More detail relating to the ridges (as opposed to other features in the basin) appeared in the work of W. A. Johnston (1946), who found that the Agassiz beaches were particularly conducive to a study of variations in isostatic uplift, because of their number (about 50) and their directional tilt. This is demonstrated in their length, which exceeds 300 miles (p. 2). Johnston's work consisted of a detailed recording of crest heights along most of the ridges. This included some crest heights which had not previously been recognized. The morphological description of the ridges is very brief in Johnston's work, since he was primarily concerned with hinge-line formation consequent upon isostatic readjust. ment then with the development of the beach ridges.
C. C. Nikiforoff (1947) demonstrated that the fragmentary nature
of the beaches is such that their declination to the south is more apparent than real. He asserted that the beach fragments at similar heights represent stages of a falling lake level, thus negating the necessity of inferring isostatic readjustment.

Similarly, work completed on the geomorphology of Northern Manitoba has tended to exclude details of beach ridges. Certain ridges do occur, for instance, in the area where E. Antevs (1931) studied the depositional sequences of varved deposits and within the limits of the geombotanical survey of J. C. Ritchie (1962). However, no analysis of these forms has yet been made.

Very little reference is made to the beach ridges of Manitoba in the general chapters of J. H. Ellis's publication of 1938, due to the comparative insignificance of the ridges as parent materials for soils. An exceptional section is that referring to the West-Lake region (pp. 58-60). Here a cross section is drawn showing a low hill of sand and gravel, overlying "boulder till or drift". Modified drift occurs landward of the ridge. Lake-ward there is "textured variation due to water sorting", but no details are given. In the well-defined beaches, the fines, silt and clay, have been removed by water sorting, leaving the gravel to be deposited as "more or less rounded, stratified beach ridges".
W. M. Laird (1964), working from North Dakota, described beach sediments lying unconformably over a planed till surface. These consist largely of gravel and send. To the north of Grand Forks some of the multiple beaches appear to have the same general elevation within a given beach complex (e.g. the Blanchard Beaches), and so they may have been off-shore bars and do not necesserily represent still-stands of the lake Ievel.

Earlier work by W. M. Laird (1944) shows a particle size analysis report of samples taken from beaches in North Dakota. Some beaches are extremely well-sorted and bimodal grain size distributions are comon. But no decisive interpretation was drawn from the analysis.

A considerable amount of work on Lake Agassiz deposits has been compiled by J. A. Elson. In his "Soils of the Lake Agassiz Region" (1961) is found a table on lake deposits. Five different depositional types are discussed. These include beaches, near-shore (littoral) deposits, deltaic deposits, deep water deposits and lag concentrates (pp. 53-54). The beaches are described as consisting of "well-sorted sand and gravel" in the southeast and southwest of Manitoba and of "medium grained sand" which occurs on the inner part of the lake basing especially on the west side. Associated with the former, in the southwest and the Whitemouth area are littoral deposits of silt and fine sand. Chemical and mineral analyses of "drift" deposits were performed and reported, as were the grain size distributions of tills and Lake Agassiz sediments in terms of silt, sand and gravel content. Elson described the beach ridges as being 2 to 20 feet high and 100 to 300 feet wide. The sand and gravel towards the center is 5-8 feet thick with lenticular cross sections (p.71). There are no diagrams showing this. Elson also described many beaches with wavo-cut terraces between them, possessing boulders several feet in diameter and made up of coarse gravel.

Later work by J. A. Elson (1962) finds only brief treatment given to the higher strandlines. This was surpassed in importonce by the elucidation of the post-glacial history of Lake Agassiz.

In "Life, Land and Water" (1966), J. A. Elson has written the most comprehensive study to date on the Lake Agassiz region. In this
work, the beaches are described as ridges usually 2-15 feet high, and locally as high as 30 feet where spits have extended across the embayments (p. 75). The width of these features ranges from approximately 150 to 500 feet, and some groups of ridges form complexes exceeding half a mile in width. Beach formation generally occurs when waves attack the parent material (till), which yields sand and gravel size particles.
J. A. Elson itemised some of the factors which influence the form of the Agassiz "strandlines" (p.77). In outline these include:

1. slope of the coast
2. depth of the water
3. the fetch
4. the parent material
5. the duration of water level
6. the frequency of storms

Because of the unusual environmental conditions which persisted, and because of the proportions of the lake at any given time, other factors, such as the wave period (if any), periglacial modifications, the ice. push effect and the seiche effect, may be comsidered important in the formation of beach ridges. Preliminary roundness studies have been made by J. A. Elson on the Herman, Campbell and Burnside beaches, showing that there may be some relationship between the degree of roundness and the hypothetical fetch calculations.

Therefore, it is apparent that conclusions concerning lake levels and supposed beach ridge production have been drawn from an overall study of the entire Agassiz Basin. There is a comparative lack of detailed morphological and sedimentological work in specific areas. This deficit is, to some extent, being filled by present research. An important
aspect is the necessity of determining whether these somcalled beach ridges have, in fact, the lake shoreline origin which is ascribed to them by the previous authors. No one has been able to prove conclusively that these features are beach ridges. The intention in this thesis is to assume no specific environment of deposition. The aims are rather to validate the origin of certain ridges by acceptable morphological and sedimentological testing procedures, the results being checked and compared with comparable ones obtained by other authors.

C. A Description of the Study Areas

In order that the aims of this thesis might be fulfilled, the following areas of supposed Agassiz beach ridges were chosen for study, with the assistance of S. C. Zoltai.

The Ste Anne ridge. The ridge occurs in an area 40 miles to the east of Winnipeg as shown on Map 1. It is $2 \frac{1}{2}$ miles in length, and at Latitude $49^{\circ} 45^{\prime}$ and Longitude $96^{\circ} 40^{\prime}$. Fieldwork at this location took place during May and June, 1969. This area, which is designated the Ste. Anne ridge, was chosen for the following reasons:
I. Here are found reasonably exposed sections of a ridge, previously described by W. A. Johnston and noted in the interpretation of the southeastern part of Lake Agassiz.
2. Several depositional sequences are represented. These vary from boulder clay and lake clay off the ridge to stratified sand and gravel on the ridge itself.
3. The ridge is bounded immediately to the north by a similar area, containing ridges whose geomorphological history is currently being interpreted.
4. The morphology of the ridge is comparatively distinct in relation to others in the immediate area.
5. The accessibility along the ridge was permissible, since it was largely cleared of bush.
6. The area was also close to Winnipeg on the Trans-fanada Highway and was small enough to cover adequately with the financial assistance, and in the time available.

The Ponton ridges. Three ridges, totalling one mile in length, to the north of Lake Winnipeg and to the south of the Hudson Bay Railway at Ponton, were also chosen for study. The location of these ridges is at Latitude $54^{\circ} 36^{\circ}$ and Longitude $99^{\circ} 05^{\prime}$. (See Map 1). Fieldwork in this area took place during June, 1969. The Ponton ridges were chosen for the following reasons:

1. These are a series of ridges which, if, in fact, they are beaches, would represent the largely unknown later, or last, stages in the history of Lake Agassiz.
2. There is a lack of detailed geomorphological work done by field crews in Northern Manitoba. Interest particularly is focussed on the relatively unique conditions which occur in this particular sediment. ological environment.
3. The area was reasonably accessible via the Thompson Highway and the newly formed Grand Rapids-Ponton road.
4. Despite the northern location, work in the area was financially feasible and could be adequately executed within a limiting time factor.

A further aspect of importance is an indication of how these ridges fit into the current histories of Lake Agassiz. The beaches to the east of Winnipeg are mentioned by W. A. Johnston (1946). The

Burnside beach is indicated on Johnston's map (Johnston's Fig. 1), as occurring at 888 feet $0 . D$. at the southern Ste. Anne location. The actual heights surveyed on this ridge are 897.8 feet. At this location, 48 miles north of the U. So border, the ridge, according to Johnstonis Fig. 2, corresponds to the Burnside beach. This occurs to the imnediate south of isobase 6.

A similar diagram was modified by J. A. Elson (1966, p. 46). At the height at which the ridge occurs, and at the location given, the ridge at Ste. Anne becomes the Gladstone ridge. Therefore there is a discrepancy in identification. Elson (Fig. 6, p. 76) described the Gladstone ridge as being one step in the decline in lake level after the Lake Agassiz III maximum, dated as being formed approximately 8-9000 years, B.P. (Elson's Fig. 6). The northward retreat of ice at this stage opened easterly outlets such that the level of Lake Agassiz dropped in a series of steps to about the Grand Rapids waterplane (p. 93).
W. A. Johnston (1946, p. 4) referred to the Ponton ridges as being those 109 and 110 miles from The Pas on the Hudson Bay Railway. These are tentatively identified as "Grand Rapids" beaches because "they are the lowest Lake Agassiz beaches known anywhere in the Lake basin". On Johnston's diagram (Fig. I) the heights indicated for this region range from 828 to 845 feet $0 . D$. The ridges studied in the Ponton region vary in height from 821 to 843 feet O.D. 814 to 853 feet O.D., and 824 to 845 feet $0 . D$. Therefore, it may be assumed that these are, in fact, the ridges which Johnston mentions. They are very irregular but tend to become lower at their extremities. Whether or not they continue south to the Grand Rapids region is debatable.
J. A. Elson (1966) does not include a water-plane at the particular
heights and location where the Ponton ridges lie. The ridges are higher than the Pipun which is approximately $750-800$ feet O.D. on the same latitude (Elson's Fig. 5, p. 46). The lower one of the two unnamed ridges between the Pipun and Grand Rapids "beaches" may correspond to the Ponton ridges in terms of location and height, but disappears to the south of the area in question. The ridges relate to the very last stages of Lake Agassiz and presumably can be accommodated between the Grand Rapids and Pipun water-planes. According to Elson, the last stages of Lake Agassiz took place with the disintegration of the ice-sheet on Hudson Bay which opened the northern outlets, such as the Sachigo, Echoing, Hayes and Bigstone River. The lake level fell in a series of steps until stabilizing as the present Lakes Manitoba, Winnipeg and Winnipegosis.

D. An Outline of the Analysis

The aims of the thesis will be fulfilled if it is possible to identify the features in terms of their morphology and sedimentological composition. This will be done in different sections of the thesis. Chapter 2 deals with the morphology of the ridges. Methods of morphom logical analysis are described, the quantitative measurement of the ridges is given. Once the relevant literature is reviewed, comparisons are made with a number of Pleistocene and modern landforms such as kames, eskers, ice-push ramparts, beach ridges (ancient and modern in each case). A similar procedure is followed in the sedimentological sections, Chapters 3 and 4. Chapter 3 deals with the stratigram phical and structural descriptions of the ridges, together with sphericity determinations and long axis orientation. Chapter 4 involves the particle size analysis of the samples obtained, followed by the percent heavy mineral content. Each section should provide evidence for
the origin of the supposed beach ridges, and provide criteria by which they may be identified in future work.

Chapter 2

MORPHOLOGICAL ANALYSIS

The second chapter presents a detailed morphological analysis of the ridges at Ste. Anne and Ponton. The following aspects will now be covered:
A. A Review of the Relevant Current Literature on Morphological Studies. B. A Quantitative and Qualitative Analysis of the Ridges At Ste. Anne and Ponton.
C. A Comparative Analytical Study of the Ridge Morphology at Ste. Anne and Ponton in Relation to Similar Ridges Described in Past Iiterature.
A. AReviev of the Relevant Cument Literature on Morphological Studies

Some past literature tends to suggest that the genesis of landforms may be determined by morphology. However, the evidence quoted in the present research indicates that this premise is untrue in the case of supposed Lake Agassiz beach ridges.
I. Some quantitative literature on slope studies. Very little has been written on the statistical analyses of slope components, despite the abundance of quantitative data. Certain writers have demonstrated that morphology is the result of particular controlling factors without focussing on the genesis of constructional landforms, as a whole. This type of slope study includes articles by A. Wood (1942, 1959), S. A. Schurm (1956), J. T. Hack (1960), A. Young (1960, 1963, 1964)
S. A. Schumm and R. J. Chorley (1966), and A. F. Pitty (1966). Work presented by K. J. Gregory and E. H. Brown (1966) exemplifies attempts to evaluate slope forming processes, in which the complexity of multivariate reality necessitates the formulation of a computer program.

2. The Iiterature on Pleistocene ridge-like forms.

a. Drumlins. Detailed work on the dimensional, planimetric and spatial relations of drumins has been written by R. W. Lemke (1958), R. J. Chorley (1959) and B. Reed, C. J. Galvin and J. P. Miller (1962). The paucity of the quantitative statistical literature on orumlins was particularly emphasized by the latter authors who state that "there is a lack of description of relatively simple symetrical landforms which are characteristically associated with specific processes and commonly restricted in areal distribution"。
b. Eskers. The analysed data on eskers is similarly restricted, although descriptions are numerous. Work which has tended to be quantitative includes that of W. V. Levis (1949) and J. C. Stokes (1958). C. Embleton and C. A. M. King (1968, p. 380) illustrated a series of esker profiles from Reflection Lake, Baffin Island. These figures are used for comparison with the ridges of Ste. Anne and Ponton in the present study.
c. Kames and kame terraces. There is a paucity of quantitative data on the morphology of kames. Most articles are descriptive and emphasis is placed rather on the mode of formation than the detail of dimensions. These and other fluviomglacial terraces usually have their heights accurately surveyed, but their overall morphology is generally disregarded, for instance, in the work of H. E. Tomlinson (1925) on the Warwickshire Avon. This and similar works are oriented
towards estoblishing a chronology of formative events, based on waterplane heights. Morphology is ignored in favor of rather elusive height data. This has included the use of the height - range diagram, as shown in the work of A. Coleman (1954) and A. A. Miller (1955) e Similar concepts were used in the detailed morphological analysis of glacio-fluvial terraces by R. P. Kirby (1969).
d. End moraines. End moraines have been extensively studied with regard to their mode of formation, but quantitative morphological data is rare. Exceptions include the work of J. T. Andrews and B. B. Smithson (1966) in Canada.
e. Beaches. The analysis of Pleistocene beaches solely on the basis of morphology has been neglected. Profiles have been drawn to demonstrate their history of formation (an example being shown in the work of F. E. Zeuner, 1961). Slope angle data on the raised beaches along the west coast of Scotland were not collected by S. B. McCann (1963), who obtained height data to indicate isostatic variations. Work on raised beaches carried out by J. B. Sissons, D. E. Smith and R. A. Cullingford (1966) similarly has tended to consist of map formation based on the accurate levelling of the features involved, together with a study of borehole records. The beaches have been analysed by a series of plots of distance against height and are regarded solely as indicators of isostatic and eustatic variations.
J. Chappell (1967) has examined the applicability of grain size analysis as a means of recognition of fossil strandlines in New Zealand. He considers morphology as an element which might lend itself to the diagnosis of origin. Morphology is not generally regarded to be completely diagnostic in the identification of glacio-fluvial or
glacio-lacustrine features. Yet most of the identification of, and by inference, the origin of, supposed Lake Agassiz beaches has been predominantly morphological, with very few sedimentological studies.

3. The literature on aeolian ridge-like features. Other

features which have been described in the literature as being "ridgelike" in form include the sand dunes of E. D. McKee (1966). Here various types of dunes are described, including the ridgemilke transverse dune. S. L. Hastenrath's (1967) work consists of a quantitative account of barchans in the Arequipa region of Southern Peru. Among the analytical techniques used is a plot of crest height against the gradient angle of the windward slope of the barchan. This results in a high correlation coefficient. The method is adopted in Part B of Chapter 2 with the intention of formulating a clearer descriptive index of the hypothetical relationship of slope angle and height, as demonstrated by the ridges at Ste. Anne and Ponton.
4. Some Iiterature on modern beach profiles. There is an extensive literature on beach ridge morphology, including that of off. shore bars and related features. As with other ridge-like features, most work has tended to include a description of morphology, and the mode of formation of the ridges is stressed. An important aspect is the profiling of such ridges. Despite the paucity of accurate height information associated with some of the data, the profiles themselves facilitate comparison, with respect to the ridges at Ste. Anne and Ponton.

A number of workers have profiled beaches at regular intervals to indicate seasonal erosional and depositional changes, and variations in sediment content at high and low water. Processes and the controls
of development have been studied by W. C. Krubein (1950). Aspects of grain size in relation to morphology are included in the work of W. N. Bascom (1951) and J. O. Norrman (1964). By contrast J. I. Davies (1957), IN. P. Psuty (1967) and D. J. P. Swift (1968) have focussed their attention on variations in water level and associated sequential shoreline changes. Similar variations in profile formation can be seen from the diagrams of W. C. Krumbein (1963), D. Dolan and J. C. Ferm (1967), and A. O. Beall (1968). Recent morphological work involving the profiling of a bar-tombolo landform includes that of A. P. Carr (1969).

The comparison of these profiles with ones surveyed at Ste. Anne and Ponton can only be generally draw. From the examples quoted above there is no typical beach ridge profile because of the variety of controlling factors involved. Most of the profiles, which have been drawn from the works mentioned above, are shown in Figs. 2-1 to 2-5. Some have no scale because this was omitted in the original draft; otherwise the scele, location and author are as indicated on the figure. The dimensions and the long and cross profile forms of modern beaches have to be determined so that comparisons with Pleistocene lake beaches can be made. Using morphology alone as the criterion for comparison, certain problems arise:
a. The Pleistocene lake beaches themselves must be extremely variable, changing in form with different environmental conditions.
b. The Pleistocene features are relict in nature and heve been subjected to $5-7000$ years of modifying processes by various agents, including man.
c. The literature relates beach profiles to present day onergy conditions which may not be comparable to those of the Pleistocene。
d. Ocean beach ridges cannot readily be compared to lacustrine beach ridges because of Inherent differences based on the relative scales of dynamics which vary in each case.

Therefore morphological comparisons of Pleistocene lake baaches and modern marine ones must be made cautiously with respect to these important considerations.

With reference to Section A, it can be concluded that particular values or statistical (analytical) formulae are rare in the past works. Yet, by comparing the relevant morphology of the cited literature with that of the ridges at Ste: Anne and Ponton, certain similarities may be found to assist in providing an indication as to the origin of the supposed Lake Agassiz beach ridges. In particular, it may be possible to determine whether the Ste. Anne or Ponton ridges were deposited in a fluviomglacial, glacial, aeolian or littorol environment, and to ascertain which particular feature(s) of those reviewed above do they most likely resemble.

B. A Quantitative and Qualitative Analysis of the Ridges at Ste. Anne and Ponton

1. A genergl description of the area. For purposes of simplification the Ste. Anne ridge will be discussed first, folloved by the Ponton ridge.

The Ste. Anne ridge, as indicated by Map 2, is one of a series of ridges trending north - south where the Manitoba Lowlands approach the Pre-Cambrian Shield in Southern Manitoba. Generally these ridges become progressively lower towards the west, demonstrating a drop in the level of Lake Agassiz, concurrent with the development of a prograding
shoreline sequence. Photographs showing the form of the ridge between Sections 6 and 7 are shown as Plates I and 2. Plate I shows a higher degree to the east of the area. Plate 2 shows the western boundary of the Ste. Anne ridge and a gradual drop towards the former Lake Agassiz. These features have been described by J. A. Elson (1966) as being Lake Agassiz beaches and appear to range in altitude from the Carmbell in the east to the Gladstone or Ojata in the west. Research by R. A. McPherson (unpublished Ph.D. thesis, 1970) has shown that the Ste. Anne area is basically an end moraine, extending from the Milner ridge and through the Agassiz Forest Reserve (as shown on the inset map of Nap 3). Most of the moraine is apparent in the present day landscape. The linear ridges are superimposed upon it.

The basic form of the Ste. Anne ridge, as determined by preliminary aerial photograph investigations (shown on Map 2), tends to be linear, trending from north to south and having some degree of sinuosity. A sample area was studied, measuring 2_{2}^{T} miles long, but varying in width (Map 3). This ridge was chosen for the reasons outlined in Chapter 1. It becomes indistinct, both on the ground and on the aerial photographs, when traced northwards, and its southern limits have been destroyed by man.

More information on the ridge was obtained by accurate surveying. The overall form was mapped by planetabling, and heights measured across and along the ridge, using an N3 level. The heights were levelled to an accuracy of 0.1 foot and taken from a premexisting bench mark to the south of the ridge, where it is crossed by the Trans-Canada Highway. Eighteen sample crossmsections were selected along the length of the ridge, and numbered 2-19. The center point of each was chosen so that a

Plate 1

Between Sections 6 and 7 looking east

Plate 2

Between Sections 6 and 7 Iooking west

Fig. 2-1

'Normal' beach profiles

GENERAUSED SUMMER a WNTER PPOFILES MARICN BAY, SE TASMAVAA J.L.DAVES (1956)

Fig. $2=4$

Fig. $2-5$

VERTICAL SCALE " $1^{\prime \prime}=20^{\circ}$
HORIZONTAL SCALE $I^{\prime \prime}=1320^{\circ}$

long profile could be drawn. From each center point certain cross profile positions were also chosen. The interval for these varies with local circumstances, but averages 700 ft . This form of systematic serial sampling was used so that all types of morphology, changing throughout the length of the ridge, would be equally regarded. The spatial distribution of the cross-profiles is shown on Map 3. Other reasons for choosing this particular number and spacing include:
a. The length was relatively accessible by means of a road and track through the bush.
b. The size of the area was reasonable in terms of the extent of the financial resources and the time available.
c. There is a comparative lack of dense vegetation over half the length of the surveyed section. This facilitated distinguishing the A, B, C, D, E points.
2. A numerical study of height data (Ste, Anne). On each cross profile the five points marked A, B, C, D, E and, in once case, F (on Map 3) were chosen such that:
a. They would give an accurate picture of the outline of the ridge.
b. The variations in height along the ridge could be determined.
c. The variations in height across the ridge could be determined.
d. The planimetric position of the crest could be determined.

The variation in height (with distance) along the ridge can
be seen in the long profile which has been drawn of the complete ridge (Fig. 2-6), and the data shown on Table I. Despite local variations the ridge maintains essentially the same height throughout. The average height of the southern half is 897 ft 。 O.D. and the average of the northern half, 898 ft . Although there is a localised rise, the sample is too small to allow generalized conclusions to be drawn on the longitudinal gradient. The long profile data is hypothetical because it is interpolated between the surveyed points 2-19. Some compensation has been made for quarrying. However, the maximum variation in crest height is between Section 17 (8991) and Section 9 (893.51), thus giving an overall variation of 5.5 ft .

The height differences of A, B, C, D, E (F) west - east across the ridge are shown in Figs. $2-7$ and $2-8$ and given in the accompanying Table 1. The average height of A (the lowest western extremity) is 889.61', of $B, 893.1^{17}$, of C (the crest in many cases) 895.82^{\prime}, of D, 895.27' and of E (the lowest eastern extremity) 892.71'. The average elevation above the surrounding ground level is 6.21' on the west (lakeward side) and 3.11 on the east side. This varies considerably from the dimensions given by W. Upham (1895, Ch. 1). In Upham's description the landward side of the ridge in relation to the surrounding terrain is twice as high as the lakeward size.

The ridge has a smoothly rounded convex form, which often appears to be steeper towards the west and gentle in slope towards the eastern, landward extremity. This marked difference tends to decrease at Sections 7, 8 and 9, but the convexity is pronounced again in Sections 10, 11 and 12, where the ridge becomes a narrower, semi-cylindrical feature. The convexities flatten again through Sections 14 and 15, but become more pronounced, though less rounded than at 10, 11

Table 1

Long Frofile, Cross Profile and Width Data (Ste. Anne)
$\left.\begin{array}{cccccccc}\hline \begin{array}{c}\text { Section } \\ \text { Number }\end{array} & \begin{array}{c}\text { Long } \\ \text { Profile } \\ \text { Data (ft.) }\end{array} & & \text { Cross Profile Data (ft.) (Ste. Anne) }\end{array} \quad \begin{array}{c}\text { Width } \\ \text { Data (ft.) }\end{array}\right)$
and 12, at 17 and 18. There is a tendency for the ridge to decrease again at 19.
3. A numerical study of width data. The width of the various sections is also given on Table 1 , and illustrated in Figs. $2-7$ and 2-8. The widest point is at Section 15 (608.21) and the narrowest at Section 13 (62.21), demonstrating the considerable variation. The original width variation here may have been caused by differences in sedimentation-. current processes and deposition. Present day contributory factors include the large swamp to the eastern edge of Section 13, which has encroached on the ridge itself by a process analogous to spring sapping. At Section 15, the relative clarity of morphological expression has resulted from a road traversing the ridge at this point. A subjective assessment of ridge limits was necessary because additional materials.... exaggerating the ridge's width-may have been brought in for road building. The average width of the ridge is 344.131, one hundred feet narrover than the average width of ridges described in W. Upham's (1895) work.

4. A comparative study of slopes using the Wilcoxon Matched

 Pairs Signed Ranks Test. The slope angles for the 18 sections are given on Table 2. The angles are denoted by α being the points between A and B, β between B and C, γ between C and D, and δ between D and E. A non-parametric test was used to compare the angles of the east and west facing slopes. The two steepest comparable angles α and \mathcal{S} had to be compared separately from β and γ because the area B, C, D represents the rounded crest portion of the ridge, with little or no angle of elevation.

Fig. $2-7$

Fig. 2-8

The Wilcoxon Matched Pairs Signed Ranks Test was used for the following reasons:
a. The study employs two related samples (i.e. the steepest gradients on the same cross profile).
b. The study yields different angles of elevation which may be ranked in order of magnitude.
c. The data is nononormal and has a positive skewness. Considering the comparison of the α and δ slopes (referred to as the steeper slopes) and the β and γ (upper slopes) on the east and west sides of the ridge, the data can be found in Table 2.

The Null Hypothesis:
Ho: The steeper or upper slopes on the west of the Ste. Anne ridge do not differ from the comparable slopes to the east of the ridge.

Hi: Either the steeper or upper slopes on one side of the ridge have a greater gradient than the corresponding slopes on the other side of the ridge.

Significance level $=.05$
$N=$ number of pairs (18) minus any pairs whose difference is zero

$$
\begin{aligned}
\therefore \quad N & =16 \\
T & =37
\end{aligned}
$$

The critical value from Tables (p. 254 S. Seigel, 1956) $=30$.: reject the Null Hypothesis.

The conclusion is that at the 05 level, the slopes are unequal. The \propto slope is significantly steeper than the δ slope, and the β slope significantily steeper than the γ slope.

Table 2

The Wilcoxon Matched Pairs Signed Ranks Test (Ste. Anne)

Section Number	α	β	γ	δ	Diff.		Rank	
2	7	(1)	6	(1)	+1	(0)	+4	(0)
3	6	(0.5)	2	(1)	+4	(-0.5)	+15	(-1)
4	5	(5)	1	(1)	+4	$(+4)$	+15	$(+14.5)$
5	4	(4)	1.5	(1)	+2.5	$(+3)$	+8.5	$(+13)$
6	2	(4)	1.5	(0)	+0.5	$(+4)$	+1.5	$(+1.5)$
7	4	(3)	2	(1)	+2	$(+2)$	+6.5	$(+9.5)$
8	2	(2.75)	5	(5)	-3	(-2.25)	-11.5	(-11)
9	3	(2)	4	(1)	-1	$(+1)$	-4	$(+4.5)$
10	7	(3)	7	(4)	0	(-1)	0	(-4.5)
11	5	(4)	7	(3)	-2	$(+1)$	-6.5	$(+4.5)$
12	2	(3)	1	(1)	+1	$(+2)$	+4.5	$(+9.5)$
13	3	(5.5)	0	(16)	+3	(-9.5)	+11.5	(-16)
14	5	(0)	2	(1)	+3	(-1)	+11.5	(-4.5)
15	2	(3)	1.5	(2)	+0.5	$(+1)$	+1.5	$(+4.5)$
16	4.5	(3.5)	2	(2)	+2.5	$(+1.5)$	+8.5	$(+8)$
17	4	(4)	4	(1.5)	0	$(+2.5)$	0	$(+12)$
18	2	(3)	6	(2)	-4	$(+1)$	-15	$(+1.5)$
19	4	(1)	1	(1)	+3	(0)	+11.5	(0)

Steeper slope angles: The sum of the (least) negative values $\begin{aligned} & =37(T) \\ & =16 \text { (N) }\end{aligned}$ Number in sample
$=16$ (N)

Upper slope angles: The sum of the (least) negative values $=37$ (T) (in parenthesis) Number in sample 16 (N)

The heights A, B, C, D and E are indicated on Table I and the relevant data shown on Table 3. The graph of the plots is given in Fig. 2-9. The calculations are indicated in Table 4. The results are as follows:

Regression: ($B-A$) $=1.01-41.7$ ($\operatorname{Sin} \alpha$) : $r=+.682$
Regression: ($D-E$) $=2.36+12.27$ (Sin δ) : $r=+.307$
The coefficients of correlation are not high, but in the regression curve, at least 47% of the variable (B-A) is accounted for by differences in the variable \propto or, almost along half the ridge, the variation in slope angle on the west side of the ridge but not on the east, is associated with increased crest height. The formulae are given as an index for later comparison. The curve does not resemble the one found in S. L. Hastenrath's work.
6. A slope orientation study. From the slope angle data presented in Table 2 further determinations were made to check the relative steepness of the slopes in relation to their orientation. From Maps 2 and 3 it can be seen that the ridge is sinuous in form, having an open "S" shape. Consequently, various segments of the ridge are oriented in different directions. The orientation taken here consists of three major directions. The northwest - southeast oriented profiles (from 300-120 degrees east of north) occur in Sections 2, 3, 4, 8, 9, 10, 16, 17, 18 and 19. The east - west oriented profiles (from 270-90 degrees) occur at 5, 6,7 and 15. The northeast - southwest oriented profiles (from 230-60 degrees) occur at $11,12,13$ and 14. In the NW-SE oriented portion of the ridge, the mean angle of elevation for the relevant NW facing slope is 4.45 degrees and that for the SE facing slope is 3.8 degrees.

Table 3

		$\operatorname{Sin}_{(x)}$	$\begin{gathered} (B-A) \\ (y) \end{gathered}$	$\begin{gathered} (\operatorname{Sin} \alpha)(B-A) \\ (x y) \end{gathered}$	$\frac{(\sin \alpha)^{2}}{\left(x^{2}\right)}$	$\frac{(B-A)^{2}}{\left(y^{2}\right)}$
2	7			QUARRYING		
3	6	. 105	6.03	.633	. 011	36.36
4	5	. 087	5.35	. 465	. 008	28.62
5	4	. 070	3.29	. 230	. 005	10.82
6	2	. 035	2.98	. 104	. 001	8.88
7	4	. 070	4.15	. 291	.005	17.22
8	2	. 035	2.77	. 062	. 001	3.13
9	3	. 052	1.11	. 073	. 003	1.99
10	7	. 122	6.04	. 737	. 015	36.48
11.	5	. 087	3.40	. 296	. 008	11.56
12	2	. 035	1.84	. 064	. 001	3.39
13	3	. 052	0.76	. 040	. 003	0.58
14	5	. 087	5.22	. 464	. 008	27.25
15	2	. 035	3.56	. 128	. 001	13.40
16	4.5	. 087	3.43	. 268	. 006	11.76
17	4	. 070	6.08	. 426	. 005	36.97
18	2	. 035	3.26	. $11 / 4$. 001	10.63
19	4	. 070	5.46	. 383	. 005	29.81
$\Sigma x=1.125$ $\bar{x}=0.066$ $\Sigma y=64.13$ $\bar{y}=3.772$ $\Sigma x y=4.767$ $\Sigma x^{2}=0.087$ $y^{2}=288.85$				$\begin{aligned} & \bar{x}=0.066 \\ & \vec{y}=3.772 \end{aligned}$		

Slope: $y=1.022+41.673 x$

Table 3 (continued)

		$\sin _{(x)} \delta$	$\frac{(D-E)}{(Y)}$	$\underset{(\mathrm{xy})}{(\operatorname{Sin} \delta)(D-E)}$	$\frac{(\sin \delta)^{2}}{\left(x^{2}\right)}$	$\frac{(D-E)^{2}}{\left(\mathrm{y}^{2}\right)}$
2	6	. 105	4.86	. 510	. 011	23.62
3	2	. 035	3.41	. 119	. 001	11.63
4	1	. 017	4.30	. 073	. 000	18.49
5	1.5	. 026	4.27	. 111	. 001	18.23
6	1.5	. 026	4.17	. 108	. 001	17.39
7	2	. 035	2.84	. 099	. 001	8.07
8	5	QUARRYIMG				
9	4	. 070	2.29	. 160	. 005	5.24
10	7	. 122	3.50	. 427	. 015	12.25
11	7	. 122	2.36	. 288	. 015	5.57
12	1	. 017	0.12	. 002	. 000	. 01
13	0	. 0	-	-	-	6.30
14	2	. 035	1.56	. 055	. 001	2.43
15	1.5	. 026	3.10	. 081	. 001	9.61
16	2	. 035	0.82	. 029	. 001	0.67
17	4	. 070	2.20	. 154	. 005	4.84
18	6	. 105	5.96	. 626	. 011	35.52
19	1	-105 QUARRYING .011				
		$\Sigma x=0.846$ $\bar{x}=0.05$ $\Sigma y=45.76$ $\bar{y}=3.05$ $\Sigma x y=2.842$ $\Sigma x^{2}=0.069$ $\Sigma y^{2}=173.57$				

Table 3 (continued)

Calculations of Regression Analysis (Ste. Anne)

$$
\begin{aligned}
\text { Using } b & =\frac{\Sigma x y(n)-(\Sigma x)(\Sigma y)}{n\left(\Sigma x^{2}\right)-(\Sigma x)^{2}} \\
b & =\frac{(17)(4.767)-(1.125)(64.13)}{(17)(0.087)-(1.125)^{2}} \\
a & =y-b x \\
a & =3.772-(41.673)(0.066) \\
a & =1.022 \\
\text { Slope } \quad y & =1.022+41.673 x \\
\text { Using } r & =\frac{n \Sigma x y-(\Sigma x)(\Sigma y)}{\sqrt{\left[\Sigma x^{2}-(\Sigma x)^{2}\right]\left[n \Sigma y^{2}-(\Sigma y)^{2}\right]}} \\
r & =\frac{(17)(4.767)-(1.125)(64.13)}{\left.\sqrt{\left.(17)(0.087)-(1.125)^{2}\right]\left[(17)(288.85)-(64.13)^{2}\right.}\right]} \\
r & =81.039-72.146 \\
r & =0.682
\end{aligned}
$$

Calculations of Regression Analysis (Ste. Anne)

$$
\begin{aligned}
\text { Using } b & =\frac{\sum x(n)-(\Sigma x)(\Sigma y)}{n\left(\sum x^{2}\right)-(\Sigma x)^{2}} \\
b & =\frac{(15)(2.842)-(0.846)(45 n .76)}{(15)(0.069)-(0.846)^{2}} \\
a & =\bar{y}-b \bar{x} \\
a & =3.05-(12.268)(0.056) \\
a & =2.36 \\
\text { Slope } \quad y & =2.36+12.268 x \\
\text { Using } r & \approx \frac{n \Sigma y-(\Sigma x)(\Sigma y)}{} \\
& \sqrt{\left[n \Sigma x^{2}-(\Sigma x)^{2}\right]\left[n \Sigma y^{2}-(\Sigma y)^{2}\right]} \\
r & =\frac{15)(2.842)-(0.846)(45.76)}{\left[(15)(0.069)-(0.846)^{2}\right]\left[(15)(173.57)-(45.76)^{2}\right]} \\
r & =\frac{4.2 .63-38.713}{}=\sqrt{.319-509.572}=\frac{3.917}{2.750} \\
r & =0.307
\end{aligned}
$$

In the $N=S$ oriented portion of the ridge the mean angle of elevation for the west facing slopes is 3 degrees, and for the east facing slope is 1.625 degrees. In the NE - SW oriented profiles the mean angle of elevation for the STI facing slope is 3.75 degrees and for the $\mathbb{N E}$ facing slope is 2.5 degrees.

This emphasizes the fact that the slopes on the westward side of the ridge are steeper, as indicated by the Wilcoxon Test. There is a higher degree of equality in the opposing steeper slopes. If one assumes that the ridge is a storm beach, then it is possible that the greatest directional energy emanated from the northwest, with a secondary force from the northeast. The west-east oriented segments may have been in a relatively sheltered position.

1. A general description of the area. At Ponton there is an irregular series of three parallel ridges (Map 4), which may relate to the latter stage of Lake Agassiz, since the final basin of sedimentation is found in the Grass River area (J. A. Elson, 1967). These three ridges are relatively unique "beach" features in the area that is depicted by the Weskusko Lake topographic sheet. Other features include wave-washed eskers and moraines. Because the exact relationship of the ridges with other features is obscured by the dense vegetal cover (conifers and muskeg), which reduces accessibility and visibility in the area, an aerial photograph analysis does not show the features clearly.

The Ponton ridges trend from northvest to southeast and are relatively short. Each ridge is approximately half a mile in length. These are designated RI, R2, R3 on Map 4, reading from northeast to southwest. Each tends to be linear. R2 and R3 are slightly sinuous. RI and R2 extend northwards beyond the railway tracks.

Table 4

NW - SE		$E-W$	NE - SW	
W	E	W E	W	E
7	6	41.5	5	7
6	2	21.5	2	1
5	1	42	3	0
2	5	21.5	5	2
3	4	-	-	-
7	7			
4.5	2	$12 \quad 6.5$	15	10
	4			
2	6			
4	1			
-	-			
44.5	38			
		$\begin{aligned} & \bar{X} \text { NW }-S E(W)=4.45 \\ & \overline{\bar{X}} \text { NW }-S E(E)=3.8 \end{aligned}$		
		$\begin{aligned} & \bar{X} \quad E-W(W)=3 \\ & \bar{X}-\mathbb{Z}(E)=1.625 \end{aligned}$		
		Q - SW (W) $=3.75$ X $\mathrm{NE}-\mathrm{SW}(\mathrm{E})=2.5$		

NWSES, E-N, NE $-S N=$ profile orientations

The ridges vary considerably in morphological composition with distance. An overall map was drawn up after the area had been surveyed by the compass and chain method. A clearing which had been cut for a line of Hydro pylons was used as a base line, because it could be traced on the aerial photographs which were employed as a base map for the orea. Also, the initial surveyed heights of this line were provided by Manitoba Hydro. Sample traverses were selected, perpendicular to this line, and incorporating the observed length of the three ridges to the south of the railway tracks. These are designated, from northwest to southeast, -400 , $000,200,400,600,700,900,1100,1300,1500$. An interval of 200 ft . was generally used, but this was extended to 400 in the north (-400) because of morphological similarity at the -200 point. There are only 100 ft . between 600 and 700 because of the relative morphological complexity towards the center of the three ridges.
on the ground, surveying took place to obtain height and slope measurements. A steel tape and clinometer were used, with an Abney level serving as a chock. Limited accessibility precluded the use of heavier, more accurate equipment. A variable number of points were chosen for measurements leading to the morphological profile. These are lettered throughout the lengths of the profiles, commencing with A on Ridge 3 and proceeding through the alphabet to P or beyond until the Hydro line is reached (Map4).

The density of traverse lines (-400 to 1500) was selected because it was necessary to use the same systematic serial sampling as had been used at Ste. Anne. This was to include all the major changes in morphology which occur along the ridges in the most systematic manner. The frequency of the points $A-P$ were chosen for the following
reasons:
a. The frequency inclucles most of the varieties of morphological form exhibited by the ridges.
b. There is a lack of vegetation on the ridges compared with the surrounding muskeg. This facilitates the distinction of the points lettered A - P.
c. The number of points which were included complied with the financial resources and time available.
2. A numerical study of height data. The variation in height along the ridge can be seen in the long profiles, shown in Fig. 2-10 and Table 5. This variation is quite marked, particularly in R2. Rl varies from 8271 in the northwest, reaches 843 ' towards the center, and decreases to $839{ }^{1}$ in the southeast. There is an overall increase towards the south of 12 feet in 1900 feet. The maximum height difference throughout is $16 \mathrm{ft}^{2}$. R2 varies from 828^{\prime} in the northwest, drops in 400 ft . to 814^{\prime}, reaches 853^{\prime} at the center, and drops again to $834{ }^{\prime}$ in the southeast. The difference from north to center is 39 ft. , and from center to south, 14 ft . The R3 varies from 838^{\prime} and 823^{\prime} in the northwest to 844' towards its southeastern extremity, and finally drops to 8371. The overall height variation along the ridge is 21 ft .

The variations in height across the morphological traverses are also shown on Table 5 and on Fig. 2-11. The three columns of readings here refer to the heights on either side and on the center of the ridge. The average figures for RI are 828 (SIV), 834 (C), 829 (NE). For R2 they are $827(\mathrm{SW}), 838(\mathrm{C}), 827(\mathrm{NW})$, and for $\mathrm{R} 3833(\mathrm{SN}), 835(\mathrm{C}), 828(\mathrm{NE})$.

The average elevations of the three ridges above the surrounding ground level are:

This steepness of slope indicates that the lower western slope of the ridge, facing the former lake, is significantly steeper than its counterpart on the landward side. Again this does not correspond to Lake Agassiz beach ridges, quoted in Ch. I, or the present day beach profiles, seen in Figs. 2-1 to 2-5.
5. A regression analysis--the plot of height versus slope angle. Attempts here are also made to effect some type of correlation between the angle of slope and the height of the crest. This follows the method used by S. L. Hastenrath (1967). In this study the angle of the windward side of a barchan increases with increasing height, while the angle of the leeward side is maintained. In the present study the test was used for the following reasons:
a. To provide an index to account for the variations between slope angles and crest height of supposed Agassiz beach ridges.
b. If the Ste. Anne data results in similar equations to the ones resulting from S. L. Hastemrath's work, then it may indicate that the Ste. Anne ridge was a wind - formed feature.

The plots were made on the steeper slope angles marked α and δ. The sine of the angle was used because:

Height of feature
Sine $x=$ Slope length of feature
The other slope angles (β and γ) were ignored because of the relative insignificance of the slopes in relation to height around the crest area, and that 4 faces at Ste. Anne could not be compared to Hastenrath's windward and leeward slopes.

Sin α is plotted against height ($B-A$)
Sin δ is plotted against height (D - E)

Plate 3

S.W. slope of R2 from 900 looking S.E.

Plate 4

N.E. slope of R2 from 900 looking S.E.

Comparatively speaking, there is no apparent uniformity of morphology of the ridges, or similarity in terms of local relief.
3. A numerical study of width data. The widths of the ridges, as determined at the various crossmprofiles, are given in Table 5. The average width of Ridge R1 is 92 ft ., of R 2 is 89 ft . and of R 3 is 59 ft . There is a considerable variation in difference over the 660 yds . covered. RI varies from 17 to 199 ft . wide, giving a variable difference of 182 feet. R2 varies from 20 to 133 ft., the variation being 113 feet. R3 varies from 25 to 100 ft ., the variation being 75 feet. The width between ridges also varies (see Table 5). These figures, in the case of RI, refer to the distance between RI and the Hydro line. In the case of R3, they refer to the distance between R2 and R1, and, under R3, they refer to the distance between R3 and R2.

R2 is seen to be the most variable ridge in terms of height, and Rl the most variable in terms of width. Because of these morphological differences, a different origin may be signified.

The profiles themselves vary throughout their length. Inspection of Fig. 2-11 shows:
a. the variations in the cross profiles from -400 to 1500
b. the differences with each cross-profile.

The Figure al.so shows a marked inequality of the opposite slopes of RI and R3, when compared to R2 whose slopes are equal. This pattern is relatively consistent throughout the length of the ridge, as observed by inspecting the slope angles of Table 5. In the case of compounded
slopes, the steepest, or longer facet is here taken.

4. A comparative study of slones using the Wilcoxon Matched

Pairs Signed Ranks Test. In order to compare the variation between the southwest and northeast facing slopes on each ridge, the Wilcoxon Matched Pairs Signed Ranks Test was used. The data is shown on Table 5a.
a. For each ridge, respectively, the following hypothesis
was tested:
The Null Hypothesis:
Ho: That the NE facing slopes on the Ponton Ridge 1 do not differ significantly in inclination from the SN facing slopes.

Hi: The NE facing slopes are steeper than the SW facing slopes.
b. Significance level $=.05$
$N=$ the number of pairs, minus any pairs whose difference is zero.
c. RI There are no least values.
$T=0$
$N=9 \quad \therefore$ reject the Null Hypothesis
R2 $T=11.0$
$N=8 \quad \therefore$ accept the NuII Hypothesis
R3 $T=1.5$
$N=9 \quad \therefore$ reject the Null Fypothesis
The results show that, along RI, all the steeper slopes face SI. R2 exhibits a marked similarity between the NE and SW facing slopes. R3 has most of its steeper slopes (to the . 01 level) facing NE.
5. The plots. On the regression analysis, plotting height against slope for the three Ponton ridges were very scattered and had

Table 5

Height and Width Data (Ponton)

	Section Number	Height	(ab	Solute)	Traverse \#S	Width of ridge	Width between ridges
Ridge 1		SW	C	NE			
	-400	822	827	824	K . M	42	(399)
	000	806	832	824	$\mathrm{K}-\mathrm{R}$	199	(287)
	200	821	827	823	$\mathrm{K}-\mathrm{O}$	114	(254)
	400	828	830	828	H -K	129	(216)
	600						
	700	837	843	830	$F-I$	197	(97)
	900	838	839	833	$\mathrm{K}-\mathrm{N}$	85	(79)
	1100	829	833	830	$J-L$	17	(140)
	1300	832	836	832	J - K	13	(156)
	1500	835	839	83.4	K-I	30	(1/1)
Ridge 2	-400	822	828	820	E- H	77	(196)
	000	810	814	806	$F-I$	108	(100)
	200	820	826	821	$S-I$	91	(250)
	400	814	842	827	E-S	71	(172)
	600	839	853	834	D - F	117	(320)
	700	825	851	839	B-D	133	(180)
	900	836	851	835	$\mathrm{E}-\mathrm{H}$	98	(142)
	1100	841	843	829	$C-D$	20	(178)
	1300	837	839	832			
	1500						
Ridge 3	-400	831	838	832	$A-D$	100	(39)
	000	820	823	810	$A-D$	89	(18)
	200	830	831	820	A-F	91	(30)
	400	822	825	814	A-D	59	(179)
	600	837	839	833	$A-C$	42	(152)
	700		825				
	900	842	843	837	A - B	24	(90)
	1100	841	842	841	A - B	52	(26)
	1300	840	844	838	A - C	25	(36)
	1500	835	837	833	A - C	51	(142)

Table 5a

Slope Angles					
		SW	NE	di	Rank
Ridge 1	-400	12	2	± 10	
	000	18	2	+16	
	200	11	4	+7	
	400	17	7	+10	
	600				
	700	11	9	+2	
	900	13	1	+12	
	1100	16	8	+8	
	1300	18	4	414	
	1500	10	5	+5	
Ridge 2	-400	21	20	+1	+2
	000	21	6	+15	+7
	200	22	4	+18	+8
	400	20	19	$+1$	+2
	600	17	15	+2	+4
	700	20	25	-5	-5.5
	900	15	20	-5	-5.5
	1100	7	6	\& 1	+2
	1300				
	1500				
Ridge 3	-400		13	-3	-3.5
	000	6	7	-1	-1.5
	200	3	14	-11	-7.5
	400	3	14	-11	-7.5
	600	8	12	-4	-5
	700				
	900	10	13	-3	-3.5
	1100	3	2	+11	+1.5
	1300	16	27	-11	-7.5
	1500	4	15	-11	-7.5

extremely low correlation coefficients. Therefore there is no resem. blance to the dune plots of S. $L_{\text {e }}$ Hastenrath (1967).
6. A slope orientation study. As an extension of the slope angle data which is found in Table 5A, determinations were made to check the relative steepness of slopes in relation to their orientation. The ridges at Ponton are very slightly sinuous in form, trending from north west to southeast. The relative steepness of each slope is shown in Section 4. The average slope angles on each side of the ridge are again taken as this may reflect differences in weathering and/or erosional and depositional agents, active on either face. The average angle for the SW facing slope of RI is 4.67 degrees; the NE slope is 14.0 degrees. On R2 the average angle for the SW facing slope is 14.38 degrees and for the NE slope 17.88 degrees. For $R 3$ the average SN facing angle is 5.1 degrees and the NE angle, 13 degrees. Because of the linearity of the ridges, the orientation of the cross-profiles is not here considered.

In general, there is no apparent uniformity throughout the three ridges other than the fact that RI and R3 face inwards towards the center, (R2), and are steeper on the inward facing slopes, while the center ridge (R2) has equal slopes.
C. A Comparative Analytical Study of the Ridge Morphology at Ste, Anne and Ponton in Relation to Similar Ridges Described in Past Literature

A comparison of the data which has been presented in the previous section with some similar ridge-like forms described elsewhere will now be attempted.

1. A comparison with drumlins, eskers and komes. In the reviow of the literature of Pleistocene ridge-like forms in Section A2, drumlins, eskers and kames were incIuded. The drumlin form, according to R. J. Chorley (1959) and B. Reed, C. J. Galvin and J. P. Miller (1962) is inherently ellipsoidel and therefore does not resemble the elongated nar. row morphology of either the Ste. Anne or Ponton ridges. Linear drumlins are found in the work of R. W. Lemke (1958). Hence drumlins may not be recognized solely on the basis of morphology and, in terms of the past literature, the ridges at Ste. Anne and Ponton may be identified as drumlinoidal forms, or parallel drumlinoid flutings.

Because of their long and narrow form the ridges may be considered to resemble eskers. Eskers may be sinuous or straight, narrow ridges. According to C.Embleton and C.A.M. King (1968) the slopes are steep, although gentle 5-10 degree modified slopes may occur, often approximating the angle of the rest of the material (p. 369). The diagrammatic form of an esker at Reflection Lake, Baffin Island, is shown in Fig. 2-12, and detailed slope angles are given in Table 6. Not all the slope profiles are here reproduced because of irregulaxities on the diagram. The Wilcoxon Matched Pairs Sigmed Ranks Test is also shown in Table 6. On the esker shown, there was found to be no significant dif. ference between the east and west facing slopes. The same test was used on the Ste. Anne slope profile data in Section B4(a). Here the west facing slope was found to be significantly steeper than the east facing slope at the .05 level. When applied to the ridges at Ponton (Section B4 (b)), the test showed that the southwest facing slope of RI is significantly steeper as is the northeast facing slope of R3. This is again at the .05 level. The central ridge, $R 2$, demonstrates no
significant difference between northeast and soutbwest facing slopes.
Although this test is inconclusive in so far as only one example has been taken, the following hypothetical conclusions might be dram:
a. The ridges at Ste. Anne and R1, R3 of Ponton do not resemble eskers morphologically because of their inequality of slopes.
b. Because of the strong similarity of slope gradients on both flanks of R2, it more resembles an esker then does either RI or R3.

There is not sufficient comparable data on kames to test the resemblance of the Ste. Anne and Ponton ridges with these features. However, this origin should not be discounted completely since a superficial likeness (linearity and sinuosity) may be seen.
2. A comparison with morainic forms. The moraines studied by J. T.Andrews and B. B. Smithson (1966) are asymmetrical in crosssection, with a steop distel slope averaging 34 degrees and a gentler proximal slope averaging between 18 and 24 degrees. They vary from 1-20 meters above the adjacent swales. The moraines are spaced at intervals of about 50 m . Their form varies from being simple, linear, hooked or S-shaped. This detail, and the diagram given (2-12) leads to the following tentative conclusions:
a. The inequality of opposite slopes is similarly a feature of the Ste. Anne ridge, as it is of ridges 1 and 3 at Ponton. b. The average slope angles of the moraines are considerably higher than those measured at Ste. Anne and Ponton. The closest approximation of slope angles is R2, which also has equal opposite slopes.

Table 6

Wilcoxon Test on Esker Profiles (Reflection Lake, Baffin Island p. 380) after C. Embleton and C. A. M. King (1968)

\#	L	R	di	Rank
1	44	36	-8	-11
2	54	36	-18	-16
3	49	48	-1	-1. 5
4	50	42	-8	-11
5	55	50	-5	-8.75
6	50	55	-5	-8.75
8	50	55	-5	-8.75
9	43	20	-23	-17
11	50	40	-10	-13.5
13	50	40	- 10	-13.5
14	50	48	-2	-3.
16	40	55	-15	-15
17	45	50	-5	-8.75
21	45	41	-4	-4
22	43	42	-1	-1.5
23	42	47	-5	-8.75
24	28	20	-8	- 11
$\mathrm{L}=$ left side of ridge $R=$ right side of ridge				

The Null Hypothesis:
Ho: The slopes on the left (L) of the diagram are equal to those on the right (R)

Hi: There is inequality of slopes between L and R.

Significance level:
Let $=.05$
$N=$ the number of pairs
$T=$ the sum of the least values
$T=50$
$\mathrm{N}=17$
\therefore accept the Null Hypothesis
c. The height above adjacent swales is considerably higher in moraines.
d. There are overall similarities in form The simple linear form resembles that of the ridges at Ponton. The S-shaped form is not dissimilar from the ridge at Ste. Anne.

Therefore, as a result of morphological interpretation from an aerial photograph survey, the ridges at Ste. Anne and Ponton might conceivably be identified as moraines. More detailed observations could indicate that they were unlikely to be morainic.
3. A comparison with aeolian features. The similarity of the ridges to aeolian features is now considered. The transverse dunes described by E. D. McKee (1965) are long, parallel ridges which tend to be straight crested for as long as 800 feet. The Fig. 7 of E. D. Mckee (p. 22-24) reveals their inequality of opposite slopes. Their maximum height is 40 ft . and width is 400 ft .

The height and width of the transverse dune is considerably larger than the ridges found at Ste. Anne and Ponton. The inequality of opposite slopes resembles the ridge at Ste. Anne and RI and R3 at Ponton. R3, in parts, has a similar height with a narrover width, but its opposite slopes are equal. R2 is also very unevenly crested, with a considerable variation in height with distance. Therefore, on morphological grounds, the ridges do not reserable transverse dunes similar to the ones described by McKee.

Further aeolian features (barchans) have been described by S. L. Hastemrath (1967). The dunes themselves have no morphological resemblance to the supposed beach ridges. In order to demonstrate the

Table 7

Wilcoxon Test on Beach Profiles (Chesil Beach, South England) after A. P. Carr (1969)

\#	E	W	di	Rank
1	55	49	+6	42
2	50	30	+20	$+12.5$
3	30	45	-15	-8.5
4	42	23	+19	+11
5	44	22	+22	¢ $1 / 4$
6	41	34	+7	+3.5
7	45	36	49	+6
8	39	24	+15	+8.5
9	40	32	+8	+5
10	35	28	+7	+3.5
11	31	28	+3	+1
12				
13	31	20	+11	+7
1.4	25	8	+17	+10
15	30	10	+20	+12.5

The Null Hypothesis:
Ho: The slopes on the east side (E) of the diagram ($2-2 \mathrm{~A}$) are equal to those shown on the west side (W).

Hi: There is inequality of slopes between E and W.
Signiflcance level:

$$
\text { Let } \begin{aligned}
& \alpha \equiv 00 \\
& N=\text { the number of pairs } \\
& T=\text { the sum of the least values } \\
& T=8.5 \\
& N=14
\end{aligned}
$$

\therefore reject the Null Hypothesis
relationship between crest height and slope angle (Hastenrath, Fig. 9, p. 309), a plot of crest height H as a function of $\operatorname{Sin} \alpha$ is used. The figure showed that the angle of the windward slope increased with increasing height. At Ste. Anne by comparison, in Section B5(a), the angle of slope is seen to increase with increasing height only 47% of the time. No positive correlation could be found in the Ponton area. Therefore it is unlikely, on morphological grounds alone, that these features were formed in an aeolian environment.
4. A comparison with present shoreline forms. The supposed beach ridges may also resemble, in terms of their long and cross profiles, shoreline forms existing in the present environment. Certain of these beach ridges are shown in Figs. $2-1$ to $2-5$. There is a notable tendency for the profiles to dip down towards the water level, forming a consistent slope from the land to the sea or lake. This is the case in the generalized profiles drawn by W. C. Krumbein (1963), W. N. Bascom (1951) and J. O. Norrmon's work from Lake Vattern (Fig. 2-1). Profiles drawn by other authors show major and minor undulations. These include the beach profiles and berms drawn by W. C. Krumbein (1950) (Fig. 2-2), the generalized winter and summer profile of J. L Davies (1956), the inner and outer bar on the profilo of R. Dolan and J. C. Ferm (1967), the washover fan and berm of A. O Bealn's profile (1963), and finally the gravel-spit formation shown in D. J. P. Swift's work (1968) (all shown in Fig. 2-3). The formation of sub-aqueous features with inequality of slopes is demonstrated by the sequence of profiles, A - E, taken from J. S. Olson's work (1958) on the sequential development of beach and dune ridges on Lake Michigan (Fig. 2m/). Only by visual comparison can

Fig. $2-12$
these latter profiles be said to resemble the supposed Lake Agassiz beach ridges, and their genesis, therefore, coincident with supposed Lake Agassiz ridges.

A more detailed analysis was taken from slope studies, the work of A. P. Carr (1969) on the spit.tombolo formation known as Chesil Beach, South England. A series of profiles are shown in Fig. 2-4. The Wilcoxon Matched Pairs Signed Ranks Test showed that, at the . 01 level of significance, the lagoonward facing slopes were steeper than the seaward facing ones, Table 7. This would seem to demonstrate that the steepest slope is on the landward side and therefore, reasonably sheltered from the effects of the open ocean. This spit is essentially a stormoconstructed feature, the larger pebbles being those washed over during periods of storms and high waves.

The ridge at Ste. Anne shows a similar inequality of opposite slopes, although in this case, the steeper slope occurs lakewards towards the former Lake Agassiz. In Ponton one steeper slope, Rl, faces land. wards (towards the SW). In the case of R3 the steeper slope faces lake. wards (towards the NE). Therefore the level of Lake Agassiz may have fluctuated considerably at this time before J. A. Elson's (1966) Pipun phase. The inequality of opposite slopes may indicate a washover berm or spit origin for these ridges.

Lastly, comparison may be between the supposed beach ridges and those described by N_{e} Pe Psuty (1967) in Tabasco, Mexico. Admittedly visual, there is some resemblance between the third profile there draw (Fig. 2-5) and the ridge at Ste. Anne's cross-profiles. The steeper slope is here seaward and the gentler slope, landuard.
5. Tentative conclusions regarding the origin of the supposed
beach ridges. Only tentative conclusions can be drawn at this juncture, because the methods of comparing the Ste. Anne and Ponton ridges with similar forms of known origin is inherently limited. When the aspect of morphology alone is considered, a number of different origins may be seen to be equally applicable to the ridges under study.
a. Visual similarities indicate that the Ste. Anne and Ponton ridges may be kames or drumlinoid figures.
b. The results of the Wilcoxon Test, comparing the ridges with eskers at Baffin Island (Table 6), suggests that they are not eskers.
c. Dimensions and visual similarities suggest a resemblance of the ridges to the moraine forms of J. T. Andrews and B. B. Smithson (1966), shown in Fig. 2-12.
d. Dimensions and visual similarities, in the case of the work of S. L. Hastenrath (1967) and E. D. McKee respectively, suggest that the ridges were not formed in an aeolian environment.
e. Comparison to the various cross-profiles (Figs. 2-1, 2-5) suggests that the ridges may have been formed as a beach. The Wilcoxon Test for Chesil Beach (Table 7) indicates that, because of inequalities of slope, the ridge may be a spit-tombolo feature, with a subsequent storm ridge formation. The lagoonward slopes are steeper than the seaward slopes. In the case of Ste. Anne, if the ridge is a bar, the active (lakeward) side would be, by analogy, the eastern side as this has the gentler slope, the lagoonward side being the steeper west facing slope. This is contrary to the idea of a Lake Agassiz to the west of Ste. Anne. At. Ponton, R1 has a steep SW facing slope; the gentler NE facing one, if analogous to Chesil Beach, represents the
lakeward side of the bar. The SW side of R3 would be the lakoward side of this bar.

Therefore, on the basis of morphological evidence, the supposed beach ridges at Ste. Anne and Ponton may owe their genesis to processes similar to those forming kames, drumlinoid features, morainic forms, beach ridges or spit-tombolo formations or storm beaches. It is impossible to determine the true origin of the features on the basis of morphology alone.

Chapter 3

MACROSCOPIC ELEMENTS OF SEDIMENTARY ANAEYSIS

Because of the apparent lack of sensitivity of morphological analysis in determining the origin of the ridges at Ste. Anne and Ponton, depositional elements of the latter are now considered to see if any of the tentative conclusions found in Chapter 2 may be validated, or if any new conclusions can be made.

Chapter 3 is divided into the following sections:
A. A Description of the Stratigraphy.
B. An Evaluation of Sphericity Data.
C. An Evaluation of Roundness Data.
D. An Evaluation of Orientaifon Data.

Section A. A Description of the Stratigraphy

The description of the sedimentary sequences involves a number of different aspects of the entire sedimentology of the present work. The sampling points have been discussed in Chapter 2, with reference to the morphology. The rationale behind the selection of both the horim zontal and vertical sampling patterns is now discussed. The samples taken from pits dug at these points in the horizontal sampling grid are relevant not only to the description of the sedimentary sequence which was found in the various pits, but also as a data basis for the sphericity, roundness and orientation studies (Chapter 3) and for the textural analysis and heavy mineral content (Chapter 4).

The description consists of the following subusections:

1. The borizontal sampling net
2. The stratigraphy.
3. Tentative conclusions.
4. The horizontal sampling not. Because of the unknown origin of the ridges, the application of a horizontal sampling net presented problems. Variations in sediment types across the ridges (E - W at Ste. Anne and NE - SN at Ponton) had to be included, as well as varia tions along them. This type of sampling in the literature is mainly found in connection with shoreline sampling patterns. W. N. Bascom (1951), in his work on the Pacific Coost of the U.S.A., chose to consia der some 500 profiles, which mainly extended in straight line traverses from the dune line to minus 30 ft . below sea level. One of the most comprehensive works on beach sampling methods was written by W. C. Krumbein and H. A. Slack (1956). The principal objective of the sampe ling methods described by these authors was to ascertain depositional changes across and along the beach. One method of fulfilling this is by determining the various beach zones and designing the sampling net to coincide with these. The beach zones which the authors described consist of the following:
a. the nearshore bottom
b. the foreshore
c. the backshore
d. the dune belt.

It is possible that, if the Ste. Anne or Ponton ridges were beach ridges, some or all of these environments of deposition would be represented.

Krumbein and Slack have described varieties of spacing based on a practical compromise bstween cost and a desired degree of reliability. This could only be done on a quantitative basis after the variation of deposits in each beach zone was known. Eight sampling plans were tried:
a. simple random samples
b. random in cells
c. systematic in cells
d. clusters of four
e. three level design
f. stratified random
g. three strata (combined samples)
h. purposive selection.

Particle size data were collected in each and the "relative efficiency" of each was formulated. The use of particular sampling grids varies according to the purpose for which the sample is being taken. In the case of Ste. Anne and Ponton, the principal objective was to ascertain the variability of deposits along and across the ridge. Therefore some form of random sampling is desirable. Stratified random sampling, which has a high "relative efficiency", could not be accomplished because of the lack of prior knowledge of the depositional environnents of somalled Pleistocene beach ridges.

A similar procedure has been described by E. W. Biederman (1962) to find a meaningful distinction between shoreline environments in New Jersey, U.S.A. Randomness was introduced by dividing the environ. ment zones into equidimensional blocks, then choosing certain blocks for sampling by using Random Number Tables.

Other studies on the sampling of variable beach deposits include
the work of R . $\mathrm{N}_{\text {. Ginsburg (1956) in South FIorida carbonate sediments. }}$ This study was to relate variations in grain size and constituent composition to differences in enviroment. Two sampling methods were used:
a. The traverse method by which the samples were taken along three traverses orieated perpendicularly to the trend.
b. Grab samples were taken in a more random manner, where traverses were less appropriate.

A grid system of sampling has been used by C. C. Mason and R. L. Folk (1958) on Mustang Island, Texas. The basic pattern consists of four traverses (perpendicular to the shoreline) spaced at intervals of four miles. Stratified samples were taken within the grid, relating to the depositional environments found on the shoreline. Two traverses were also taken parallel to the shoreline, spaced 0.8 miles apart, thus making up the grid pattern. This sampling pattern is a systematized stratified system and accurately parallels topographic variation along and across the ridge.

Relatively recent work by J. R. Hails (1967) considers the sampling of Pleistocene and Holocene sediments on a barrier coast of New South Wales, Australia. Sections were taken perpendicular to the beach, extending from the low water mark, across a barrier or deltaic plain, to a degraded Pleistocene beach. A regular grid sampling pattern, per. pendicular to the coastline, is used by A. P. Carr (1969). Along Chesil Beach, England, 23 sections were chosen at approximately half mile intervals. Samples were taken at baach crest, high water mark, and low water mark, and where variability in pebbles occurred.

On the basis of the literature described above, two varieties of sampling patterns are appropriate to the sampling of sediments at

Ste. Anne and Ponton:
a. the method of grid and iraverse
b. stratified random sample。

An outline grid was formulated for both the Ste. Anne and Ponton ridges. At Ste. Anne, 18 crossmectioned traverses were sampled at intervals of 660 yds. (approximately). Five samples, labelled A - E, were taken along each profile, as shown on Map 3. These were selected on the basis of morphological variation, which may reflect stratigraphic change. The Variations across the ridge coincide with
a. the lake level in the west
b. environmental changes between the crest and the lake level
c. the crest
d. environmental chonges between the crest and the eastern boundary
e. the eastern boundary.

In total 90 pits were dug in the Ste. Anne ridge. These varied in depth from 209 feet. The depth limitation was the water table, beyond which the sediments became mixed. At Ponton 10 crossmsectional traverses, averaging 200 ft. apart, were used as a sampling grid. All three Ponton ridges were sampled in the same manner. A variable number of samples was taken across each profile to coincide with supposed facies changes from the NE to SW of the ridges. Occasionally the ridges are complicated with terrace-like forms on one or both flanks. Additional samples were taken on the terraces, on a stratified basis. Samples were taken between the three ridges, since it was thought that by doing so useful supple. mental evidence concerning the depositional environments may be derived.

At Poaton, 130 pits were dug, varying from $1-6$ feet in depth. The depth Iimitation was frozen ground in the lower lying areas. All the pits were hand dug, using shovels.
2. The sediment description. From the various pits in the localities descriptions were made of the sediments, structures and depositional changes.

Once a pit was dug the procedure was as follows. The section (depth) was measured by means of a steel tape, calibrated to 0.1 ft. A description of the section was made, indicating the constituent materials and structures. Because of the orientation of the quarries on the Ste. Anne ridge, some pits were dug parallel to the long axis of the ridge, hence cross profile depositional structures were not easily deter. minable. Structures were noted in pits dug parallel to the transverse axis of the ridge. All significant structurel and depositional chenges were noted. Whereas there is considerable variety in the depositional structures in the pits dug at Ste. Anne, there is more apparent homo. geneity in the Ponton pits.

The sediment descriptions from the various pits are to be found in Appendix 1 (Ste. Anne) and Appendix 2 (Fonton). The descriptive nomenclature and sediment size grades follows that outlined by R. L. Folk, (1968) p. 25, and on Table 13.

For the descriptions of the depositional sequences the ridge at Ste. Anne will be discussed first, followed by the ones at Ponton.

As is apparent from Appendix 1, the section descriptions vary considerably throughout the length of the ridge. The diagrams (figs. 3.l to 3-6) demonstrate this variety both along and across the ridge.

Illustrations of 4 sections are shown as Plates 5, 6, 7 and 8. A number of surface horizons have been disturbed by quarrying.

Significant and recurrent aspects of the sections include certain tendencies:
a. Coarse material tends to occur towards the crest of the ridge and fine material occurs at the eastern and western limits. This is shown in Figs. 3-2 to 3-6 and Plates 5 and 6.
b. A characteristic generalized section of the ridge from ground level downwards may consist of the following: very coarse sedie ments, granules and pebbles occur near the surface, as is shown in Figs. $3-2(\mathbb{L}), 3-3(40), 3.4(100), 3-5(16 B)$ and $3-6$ (190). The fact that there are 45 out of a total of 55 sections with coarse pebble or granule horizons in the top two feet of the section is highly significant. These beds tend to be unsorted in nature and contain a particle size range from sand to cobbles. Of the 45 sections in which this bed Was represented, 39 were unsorted. It is possible that these beds may be classified in one particular category as regards their environment of deposition. Perhaps they were laid down by the same agency or agencies.

Below the surface strata horizons of medium to coarse sand size sediments may be distinguished. These are shown on Figs. 3-2, 3-4, 3-5 and 3-6. These beds may also comprise a significant depositional unit since examples may be found in 48 of a possible 55 sections. The beds, or individual laminae, are relatively well sorted. Either graded bedding or laminations are exhibited in 40 of the 48 beds described. These may also represent a different eaviroment of deposition at a particular time in the depositional sequence.

Below the sands, and in certain sections only, silty-clay

Fig. 3-I

Fig. 3-4

Fig. 3-5

Plate 5

Section 2

Plate 6

Section 4D
sediments are observed. These are shown on Figs. 3-2 and 3-3. These deposits only occur in 15 out of a possible 55 sections. At the base of some sections very coarse sediments, including quantities of pebbles, are occasionally found. Examples are seen in Figs. 3-2 (2B), 3-4 (100), 3-5 (IOB) and 3-6 (I9D). These deposits are only found at the base of 25 out of a possible 55 sections.
c. The majority of the beds display grading, sorting and laminations (especially in the B, C, D sections). Evidence of this may be seen in all the Figures 3-2 to 3-6. The very unsorted beds tend to occur at the top and base of each section.
d. A number of the coarser beds towards the top of the section are inclined in an east - west plane. This high angle (in some cases) stratification is therefore seen to dip both landward and lake. ward. Examples are shown in the B, C, and D sections of Figures 3-2 to $3-6$.
e. Silt and clay horizons predominate in the A and E sections, or on the periphery of the ridge. Different combinations of silt and clay occur in 25 of the 36 possible locations. To the south of the ridge, silt, silty-clay or clay with pebbles are found in the A sections. Towards the center of the ridge, clean grey and white clays, silty-clays and boulder-clays are found in the A section, with variable sond, silty-clays and pebbles in the E section. Towards the north of the ridge, silty sand with clay and pebbles occur at the A points, with silty-sands, silty-clays, clays and silts found at E.

Generally speaking, boulder-clays (clays and pebbles) are more prevalent on the west side (lakeward) then on the east side (landward) of the ridge. The relatively homogeneous silt or clay beds found on the
west side are presumably reworked boulder-clay, deposited by some agency, possibly water sorting. Their texture and color is similar to that found in a lacustrine environment.

Folloving the above descriptions (a to e) certain tentative deductions may be drawn. Further evidence concerning environments of deposition awaits the textural analysis of the sedimentation unit samples (Chapter 4).

It is possible that some indication as to the origin of the ridge may be deduced by comparing the stratigraphy with that found in features of known origins. Morainic deposits and drumlins generally consist of boulder-clay deposits and these are found on the periphery of the ridge. Therefore, although the ridge itself, based on the stratigraphy, is not a moraine, it appears to be (as R. A. McPherson, 1970, suggested) some ridge-like form superimposed on a moraine.

The ridge may be an esker or fluvial deposit. A fluvioglacial deposit is by definition stratified, due to the differential flow of meltwater streams. Such deposits contain abundant sand and gravel. The eskers described by C. Embleton and C. A. M. King (1968) are bedded and dip at 10-20 degrees or more. Normally the beds dip outward from the axis of the esker, their gradients occasionally paralleling the lateral slopes. Additional sedimentary features (G. Hoppe, 1961) include the occasional presence of silt in the esker or on its surface heaps of boulders may be found. Variability of deposits is also a marked feature. For instance, there are depositional changes from fine sand to coarse gravel within an esker. Embleton and King (p. 375) maintain that "there appears to be relatively little connection between their internal struc. ture and their external form". Certain structural variations have been
described by F. M. Synge (1950) with respect to eskers in Antrim. In outline these features include apparently horizontally bedded sand and gravel, arch-bedding, unsorted washed gravels, with erratics and delicate deltaic bedding, with bands of lacustrine clay. Bedding is graded or reverse graded.

Assuming an esker to be a water - Iaid deposit, there should be depositional correspondence between present day fluvial sediments and some of those found at Ste. Anne. According to L. B. Leopold, H. G. Wolman and J. P. Miller (1964) there is a decrease in the velocity of flow towards the bed and banks of a stream. The maximum velocity occurs near the stream's center line. There is a lack of information appertaining to the character of materials comprising the river bed and banks for a given discharge. According to the authors last quoted, the Einstein bed load function demonstrates the dependence of sediment trans. port rate on sheer stress and particle size. With a decreasing rate of transport (discharge) there is a decrease in sediment concentration.

Assuming the ridge to be a fluvioglacial deposit, the coarse material towards the center of the ridge may have been the lag deposit of a glacial stream, when the coarser size grades could not be carried by the velocity of flow.

Therefore the Ste. Anne ridge may be an esker because of:
a. bedded sands and gravels
b. dipping or arch-bedded deposits
c. the occasional presence of silt,
d. the occasional presence of boulders
e. internal variation of deposits
f. deltaic bedding, with bands of clay, and the graded or
reverse graded deposits
g. the transition from coarse to fine deposits in keeping with present day observations of streams.

It is possible that the rjdge may be an aeolian deposit, since it is long and sinuous. In his work in the White Sands National Monument E. D. Mchee (1966) examined vertical trench sections cut through 4 dif.ferent types of dune. The transverse dune is made up of mediun sand, with good sorting, and has steeply (20-30 degrees) dipping laminae in its lover part. The upper part consists of thin, gently dipping to horizontal beds, with moderately dipping crossmstrata Wavy or contorted Iaminae also occux. Despite certain similarities (for instance, the sand content at ste. Anne) it cannot be described as a dure because
a. There is a lack of current bedding at Ste. Anne.
b. Sand size particles only make up about half the sections.
c. The laminae, and certain other beds, show a greater tendency towards horizontality.
d. A major constituent is mediun to coarse size sand.

A third possibility is that the ridge could be a shore.like form. The forms of shorelines have been indicated in earlier diagrams. W. C. Krumbein (1950) has defined certain beach areas where different sedimentation processes occur. The foreshore extends from the low water Iine to the crest of the berm (Fig. 2-2). The crest of the berm is the limit of normal uprush of waves. The backshore extends from the crest of the berm to the Iandward Iinit of the beach. The slope of the fore. shore ranges from flat to steep, according to prevalent energy charactoristics. The backshore consists of sand which has been shifted about by blowing winds. The foreshore represents a zone of active bydraulic
force (W. C. Krunbein, 1963) between the berm and the plange point where waves break, and is subjected to a succession of highly turbulent waves which wash the foreshore before their water returns downslope as backwash. The effect of this motion is to sort out and arrange the forem shore material selectively according to its particle size, shape and density. Because of the dependence of the beach properties on the prom cess elements, a beach as such is difficult to deflne in nature. So much depends on the height, period and steepness of waves and currents in terms of direction and velocity (W. C. Krumbein, 1961).

In his work on the sedinents of Trout Lake, Wisconsin, V. G. McKelvey (1940) sinilarily recognized different zones of beach deposits. Eight textural zones, parallel to the shoreline, were recoge nized:
a. Washed cliff, consisting of pebbles
b. backshore of medium to fine sand with occasional pebbles and cobbles derived from ice ramparts
c. swash-line, containing pebble concentrations, sticks, twigs and shells; pebbles rolled up on the beach by heavy waves, finer material removed by backwash.
d. foreshore of well sorted, coarse - medium sand
e. plunge-line of very coarse sand
f. cobble-line of well washed cobbles, covered partially by modium sand (first breaking point for waves)
g. a well rippled medium to fine sand zone which forms a veneer over cobbles.
h. a zone of dirty sand and plant covered cobbles, apparently free from wave action.

A feature which is characteristic of deposition under differential flov rates is the graded bedding found in the sections. This may be ascribed to the
a. varying backwash and swash action on the foreshore
b. varying aeolian activity in the backshore.

If this deposit was to occur beyond or below the reach of wave action, it could be formed as a result of turbidity currents (P. H. Kuenen and H. W. Menard, 1952).

Beach laminations have been described by K_{0} O. Emery and R. E. Stephenson (1950). They found laminae in beach samples from Bikini Atoll, Mono Leke and a beach near Newport, California. Laminae were present in fine and coarse sand, the coarser sand having thicker Iaminze. All the sends were well sorted.

A further important aspect of beach formation is the high angle stratification which was observed by J. M Hoyt (1962) in the Sapelo Islands, Georgia. Here the foreshore sand bars were reported to have a steep landward slope. Deposition on this slope resulted in the landward movement of the bar, such that the slopes were as high as 30° on the seaward side.

The beach ridge at ste. Anne contains certain features which accompany modern marine shoreline developments:
a. There is a distinct decrease in sediment size lakeward, which corresponds to a decrease seavard in modern shorelines.
b. At Ste. Anne certain stratigraphic units may be recognized. They may be assigned tentatively to shoreline units.
i. The coarse unsorted dipping material at top may be a washover, berm deposit.
ii. The medium and fine sands may be a backshore or foreshore deposit.
iii. The relatively fine silt and clay may be lacu... strine incursions.
iv. Coarse, unsorted material at depth may be parent materials.
c. Laminations, sorting and grading are characteristic feam tures of modern day ridges and of Ste. Anne ridge.
d. At Ste. Anne there are a number of examples of high and Iow angle stratification, which are shown in the Figs. 3-2 to 3-6. A number of these dip lakeward and therefore may be relict foreshore deposits. Others (the majority) dip landwards. The latter resemble the structures found in Hoyt's foreshore sand bars and Psuty's beach ridges in Tabasco.

The last alternative is the realization that the beach ridge resembles a spit or bar. In this case, certain characteristics of the shoreline sedimentation zones would also be recognized, plus additional peculiar features.

Aspects of the geomorphology of beach ridges have been described by N. P. Psuty (1967). The Tabascan beach ridges occur on part of a deltaic plain. Here, because of active distributory discharge, there is local progradation and a series of beach ridges have built up. By soma means there must be sufficient sediment to produce the progradation and to result in its accumulation in the form of a ridge. Psuty describes the norte winds as the agency involved. After a norte season of storm waves a berm was analyzed and seen to display near-surface stratification, which is either horizontal or dips slightly inland. The sediments are
also stratified below the berm crest. According to Psuty the steepest dip represents the storm foreshore. When the storm abates the dip is seen to occur at slightly lower inclinations. Some of the beach laminae at Tabasco sloped seavards at less than 10°. Some groupings were horizontal or londward dipping at a lower inclination. Below the berm stram tifications the laminations have slopes of less than 50. There is a 3 fold division of laminae, reminiscent of deltaic sedimentation. This type of stratification is shown on Fig. 2-5.

On present day beaches, examined by Psuty, the landward dipping foreset laminae were seen to develop by water washing over a ridge. This type of deposit, characteristic of a marine bar or spit, is the same as that of a foreshore zone. On the bayward side of an offshore bar or spit it resembles a backshore beach. This consists of short, steeply inclined foreset laminae, dipping bayward interstatified with layers of long gently inclined topset laminae, which also dip bayward.

An analysis of graded coarser materials towards the surface of a spit-tombolo formation is found in the work done by A. P. Carr on Chesil Beach, England. Here coarse material on, or imnediately behind, the beach crest is thought to be "stranded" during longshore transport under severe storm conditions. No evidence of stratification is given.

Therefore, in addition to the features mentioned above, the ridge at Ste. Anne may be a former
a. beach ridge on a prograding coast
b. spit or offshore bar, with high anglo stratification, both landward and lakeward, with coarse washover (berm) deposits at its crest.

Despite the apparent simplicity of the deposits, the stratigraphies
of the Ponton area are of considerable geomorphic complexity. A description of the stratigraphy is found in Appendix 2. Therefore an explanam tion of the features described above in terms of present day environments of deposition is extremely problematical. Certain tentative points can be made, but no definite conclusions, concerning:
a. the depositional enviroment(s) of the clays
b. the depositional environment (s) of the sands and gravels
c. the problems of modification in a periglacial environment
d. alternative specialized environments of deposition. Environments of deposition for the clay deposits may have occurred at two stages. The original source material following the presumed glacial retreat is boulderoclay. This has been extensively reworked throughout the entire Grass River basin of sedimentation (J. A. Elson, 1966, p. 59). This basin has been quoted by Elson as being the last area of lake formation, inmediately prior to the drainage of Lake Agassiz via the Nelson River. Therefore it is possible that the clays at Ponton are Iake bottom deposits.

The sediments of the Ponton ridges are illustrated by Figs. 3-7 to 3-11 and Plates 7 and 8. Although the individual sections show a degree of homogeneity, variation c an be seen across the traverses ($A-M$) and between the different traverses (-400 to 1500). A number of generalizations can be made from the sections.
a. The ridges are made up of medium to fine sand with a well marked grey (podsolized) horizon. This is shown in Figs. 3-8 (A), (FG), (LM), 3-19 (M), 3-11 (H). Silty sand occurs off the main ridges in $3-9(C)$, (K) and 3-10 (K).
b. The inter-ridge areas are made up of clay with occasional

Fig. 3.7

Fig. 3-8

Fig. 3-9

Fig. 3-10

Plate 7

Section 7000' (R2)

Plate 8

Section 900M

Plate 9

Boulders on Kinor Terrace
N. E. Ridge 2
pebbles. They are illustrated in Fig. 3.8 (B), (H) and (CD). Minor sand unclulations which also occur betwoen the main ridges are exemplified in Fig. 3-10.
c. The sends overlie clay at depth, shown in Fig. 3-8 (K), (N).
d. Some current bedding occurs (especially in R2), but this is rarely distinct.

Deposition of sands and gravels could have oceurred in a number of environments similar to the ones described for the Ste. Anne region. These include the possibilities that the Ponton ridges may be an esker of fluvial deposit, a dune, a beach deposit (with ice push features) or a spit or bar formation. There also may be evidence of modification in a periglacial environment.
a. For the reasons described in the background Iiterature in the section on Ste. Anne it is possible that the ridges are not fluvioglacial features. An esker possesses bodded sand (and possibly gravel), and these features are not seen at Ponton. Furthernore, there is no evidence of inclined or arched beds, nor is there variability. in the deposits. However, there are features which resemble sediments deposited in a fluvial environment. This is the coarser-medium sand deposited towards the center of the ridge and the finer silty sand on the periphery.
b. The Ponton ridges may have been deposited as sand dunes. Following the work of W. A. Thompson (1937), a diagnostic feature of dunes is their Iaminations. On the U.S. coast, between San Francisco and San Diego, gently inclined laminao consist of coarse grain sizes and dip into the wind. Steoply inclined laminae of fine grain sizes dip with
the wind. Laminations of this type are quite rare in the three ridges at Ponton. With reference to other works quoted above (for example, E. D. MeKee, 1966) certain similarities do exist between the Ponton ridges and dunes. These are their homogeneity, which is axhibited in all sections and ridges, their current bedding and grading which is particularly seen in R2, and moderately good sorting which is seen in all the ridges.
c. Some examples of the extensive literature on shoreline sediments have been quoted above. At Ponton there is a lack of bedding or depositional change with depth or distance lakeward or landward, such as that described by V.E. McKelvey (1940).
i. There is no evidence of differential flow rates.
ii. There is a lack of distinct laminations.
iii. There are few dipping bedsmindicative of foreshore deposits.
iv. However, moderately good sorting is a charactex. istic feature of the sand.
d. A particular aspect of beach deposition in a polar environment may be applicable to the area in question. J. D. Hume and M. Shalk (1964) have described the effects of ice push on arctic beaches. This phenomenon occurs where the beach is frozen for nine months of the year. The ice finally breaks up and chunks of it are forced onto the beach by wind. The ice gouges beach material and pushes it up the shore. At the furthest position of the ice edge a line of mounds (20-30 ft . high) of sand and gravel was deposited. This deposit is protected by beach progradation.
R. L. Nichols (1961) describes other beach deposits found in the

Molurdo Sound, Antartica. A particular form of pitted beach occurs when debris falls from glaciers onto ice floes which are washed up onto beaches. Sediment then covers the ice, which hardly melts. This gives rise to an extremely irregular surface, due to differential collapse.

Certain aspects of the Ponton ridges may resemble ice push or pitted (glacial) beach deposits:
i. Terrace-like mounds, made up of sand and cloy, occur peripherally to RI and R3.
ii. Assuming the original source sediment consisted of homogeneous sand, the ridges could have been deposited as a result of ice push. Their variability of form might be explained in this way. The three parallel ridges may have resulted along one shoreline, with an oscillating lake levels causing progressive rafted beaches to have been developed.
iii. The fact that boulders (medium sized, igneous rock) occur, perched on the terraces, could provide more evidence for ice push features. The boulders themselves may be ice rafted. (Plate 9).
e. Certain sedinentological changes may have taken place as a result of the Ponton area occurring in a periglacial environment. A possible explanation for the ridges is that they may have been formed as a result of altiplanation, and may therefore be solifluction terraces. This is unlikely because the bedding is not convoluted, although the possibility still remains. The Ponton area is one of sporadic parmafrost, according to R. F. Black (1940). In this environment the sediment will
have been exposed to alternate freezing and thawing. A. E. Corte (1962, 1963) subjected a saturated sandy gravel to freeze.thaw. The results showed a vertical sorting of mixed material, with fine particles moving downwards and coarse particles upwards. The differentiation of coarse sands and silts in the Ponton region could be the result of the freezing of a sandy sediment from the base upwards.

One of the peculiar features of the Ponton region is the fact that large boulders have become perched on the edge of the terrace forms. FIat slab-like limestone and dolomite rocks also occur on the surface in the inter-ridge area between RI and R2. These anonalies may have arisen due to the ridges being subjected to periglacial processes in the broad sense. Accoraing to A, Holmes (1964) in cool, temperate climates there is a tendency for stones to work their way up to the surface. During freezing the undersurface of a stone is chilled more quickly than the surrounding sediment. Ice, therefore, collects underneath the stone. This expansion, in turn, opens up an increasing number of porespaces (capillaries) in the soil. This enables more water to collect, and the ice thickens. As this occurs, the stone is pushed upwards. The whole effect is to give stones a perched appearance. Boulders may or may not be able to rise up through clay in the same manner. The thin slabs of limestone-dolomite are equally not well explained by this process, but alternative explanations are not available, since the slabs are underm lain by frozen silty sand and the bedrock is many feet below the surface. The following are the deductions made in the previous section. Resemblances are based solely on verbal descriptions of other sites. Howe ever, a description of the stratigraphy at Ste. Anne indicates that the ridge was constructed either as an esker or a beach (possibly a berm or
offshore bar), but not as a dune.
The Ponton ridges do not fulfill the bedding requirements for an esker or a "normal" beach deposit. There is evidence that the ridges may have been formed in an aeolian environment. Other features peculiar to the Ponton ridges suggest an ice push effect or freezenthaw (leading to sorting). Furthermore, there is some evidence of subsequent perim glacial modification.

Section B. An Evaluation of Sphericity Data

The second section of Chapter 3 deals with the evaluation of sphericity data from Ste. Anne and Ponton and consists of the following sub.sections:
I. A Review of the Methods of Sphericity Determination.
2. Considerations of the Variations of Sphericity, Longitu. dinally and Transverse to, Each Ridge.
3. Evaluation of the Ste. Anne Data from Sphericity Form Triangles.
4. Some Measure of the Subjectivity of the Sphericity Form Triangle。
5. Comparison with the Premexisting Literature and Formulation of Tentative Conclusions Regarding the Origin(s) of the Ridges.

1. A Review of the Mothods of Sphericity Datermination. The purpose of this section is to ascertain whether or not the origin of the Ste. Anne and Ponton ridges can be determined by sphericity studies. Some indication of their origin may be seen by the shape of the particles In the pebblemganule class (R . L. Folk, 1968) . The motion of such par. ticles, both in and out of a liquid medium, gives some indication as to
their environment of deposition. A sphere rolls more easily than solids of other shapes because it has the smallest surface area in relation to volume than any other solid. Certain problems arise when considering the relative settling velocities of pebbles of different shapes because the variation in shape affects the settling velocity. C. K. Wentworth's (1919, 1922a, 1922b) quantitative study of shapes was expressed in terms of roundiess and flatness ratios. Later H_{0} Wadell (1935) derived a sphericity formula which has, in common with the work of C. K. Wentworth, an inclination to ignore the setiling velocities of the different shapes. For instance, one is unable to determine whether or not the pebbles are disc-shaped or rodushaped, which are useful factors in environmental differentiation。

The limitations of the earlier methods are shown by the following formula of Wadell (1935).

$$
\sqrt[3]{\frac{v p}{v c s}}
$$

where $\mathrm{vp}=$ the actual volume of the particle when measured by immersion in water
vcs $=$ the volune of the circumscribing sphere (or the smallest sphere which will just enclose the particle).

The measurement of relatively large sedimentary particles has been discussed by W. C. Krumbein (1941). This determination involves the measurement of the long, intermediate and short diameters, which are three perpendicularly intercepting planes. The actual sphericity is then read off on a chert "by means of two ratios between pairs of the diameters" (p. 65). The intercept method, based on the triaxiel ellipsoid, is less time consuning than the Wadell method and comparably
accurate to within a few percent.
A further method of expressing particle sphericity has been described by B. C. Aschenbrenner (1956). This method is not strictiy comparable to the pebble size fractions in question because sand size particles were used. Aschenbrenner advocates the return to Wadell's concept of true sphericity, although he measured shape tridimensionally since it is defined by three mutually perpendicular parameters. Measurement by this method, after sieving, is done photogrammetrically, the error being approximately 6.4% smaller than the sphericity as measured by Krumbein's (1941) method. The sphericity (X) is converted into a shape factor (F) by the use of a chart.

This type of work has been expanded by P. A. Catacosinos (1965) who formulated additional tables to determine the sphericity and shape of rock particles. These tables are derived from W. C. Krumbein's intercept method and the T. Zingg (1935) classification of shape. The tables have been produced to eliminate the manual plot and to increase the speed of determining the required velues.

In 1958 E. D. Sneed and R. L. Folk developed a new method of sphericity determination. This involved the formulation of the "maximum projection sphericity". Sphericity was found to be related to the size of the pebbles, and so form determinations were made to indicate changes in perticle morphology. Because shape is also involved, this method is thought to be more useful when applied to the pebbles and granules found in the Ste. Anne and Ponton ridges. Sneed and Folk developed a sphericity triangle, which is further exemplified in $R_{\text {. }}$ L. Folk (1968). Here the sphericity value, which is a more behavioristic measure in terms of particle transportation, is reiterated and described by the
formula,
$\sqrt[3]{\frac{S}{L I}}$ maxinum projection sphericity
where S, I and L equal the short, intermediate and long axes, respectively. The maximum projection area (transportation potential) is the plane of the long and intermediate axes. Particles tend to settle with this plane perpendicular to the direction of motion. To apply this method, the long, intermediate and short axes are measured, using vernier calipers. These values are then substituted in the formulae
$\frac{S}{L}$ and $\frac{L_{-I}-I}{L}$ and plotted on the sphericity form triangle (e.g.
Figs. 3-15 to 3-20). Where the two values intercept, the third value-m the maximum projection sphericity-can readily be determined.

A more recent method of determining the maxinum projection sphericity has been described by K. Burke and S. J. Freeth (1969). They advocated placing pebbles on a grid, which is then projected on an over. head projector. The fragment is moved around the platform such that the intercepts (long, intermediate and short) can be measured. This method is claimed to be quicker than the caliper method of Krumbein (1941) and E. D. Sneed and R. L. Folk (1958). This is considered by the author not to be a considerable advantage, especially if accuracy is sacrificed.

2. Considerations of the Variations of Sphericity, Longitudinally

 and Transverse to each Ridge. In order to ascertain the sphericity of the granule-pebble content of the Ste. Anne ridge, 390 pebbles were taken from 44 sedimentation units (G. H. Otto, 1938) from depths of 2 and 4 feet. The samples were taken from a variety of sedimentation units along and across the ridge, but were mainly limited to the C, B, D pits because ofthe paucity of appropriately sized pebbles in the A and E sections. The particles measured were overwhelmingly (98\%) limestone and dolomite, the remainder, granitic and metanorphic. The granites tended to have low sphericities because of the disaggregation of the minerals as a result of weathering.

The long, intermediate and short axes were measured with vernier calipers and substituted directly in the formula

(Folk, 1968)
because of the necessity of eye-balling in the second and third decimal values when using the triangle method. The results of the formula were determined for each pebble. The mean, median, range, variance and standard deviation were then calculated for the pebbles in each section sample. The calculations were made to quantify the changes in sphericity which may occur with distance. Shape is considered later in the chapter. The computed data are shown on Table 8.
a. Variations N - S along the ridge. In Table 8 the first colum indicates the sections from which the pebbles were sampled. Where pebbles occurred at depth two or more samples were taken. The random nature of the selection is here shown. The highest mean sphericity occurs at Section $13 C$ and the lowest at $11 B$, being 0.895 and 0.644 respectively. Since all other sphericity measurements occur between the two, there is a high overall sphericity value for the pebbles in the entire ridge. The highest median value also occurs in Section 136 with a sphericity of 0.944 , and the lowest in 11B with 0.568 . The highest and lowest sphericity values occur in close proximity along the ridge which emphasizes the variability of the values. The range between the highest
and lowest values is small and the standard deviation is also quite low, which would tend to indicate uniformity in the data. A plot (Fig. 3-12) has been drawn up showing the relationship of sphericity with distance along the ridge, as indicated by the section numbers. Section C was chosen becauss it closely approximates to the crest-1ine, and because there is a more continuous record of values from this section. One striking factor is the degree of variability, with alternating high and low sphericity values along the ridge. However, both the high values (60 and 90) are lover and the low values are lower than the corresponding values to the north end of the ridge, which has relatively high, high values (130 and 18C) together with relatively high low values (150 and 190). This would indicate that, although the overall picture is one of variability and fluctuation between the sections, there is some (not a marked) overall trend towards an increase in sphericity towards the north end of the ridge. This is clearly shown on the graph. Only the samples which were approximately 2 feet below the surface were measured.
b. Variations E - W across the ridge. Because of the paucity of pebbles and granules in some sections, a complete record of sphericities cannot be shown. Although there is variability in the data; as shown in Table 8, some overall tendency is shown on Figs. 3-13 and 3-14. In Fig. 3-13, Section 3 shows that the pebble sphericity increases from the western edge toward the ridge crest. The values become relam tively low at $3 D$ and higher again at 3E. The second diagram, Section 6, shows a similar increase in sphericity between the B and C sections. The increase between B and C is shown in Section 5. The decrease between C and D can be seen in both Sections 5 and 9. In Fig. 3-14, certain similar trends are again recognized. In Section 13, (as in Section 5) there

Table 8

Sphericity measurement Data (Ste. Anne)

Section Number	Mean	Median	Range	Variance	Standard Deriation
2A	0.822	0.728	0.163	0.0084	0.09
2 C	0.769	0.732	0.391	0.018	0.134
3B	0.722	0.670	0.210	0.008	0.090
3B	0.771	0.757	0.176	0.006	0.078
3 C	0.745	0.769	0.431	0.018	0.134
3D	0.680	0.624	0.414	0.121	0.015
3E	0.720	0.760	0.274	0.007	0.082
4 D	0.748	0.776	0.285	0.023	0.152
40	0.676	0.667	0.440	0.016	0.126
5B	0.757	0.786	0.498	0.001	0.034
50	0.796	0.838	0.138	0.006	0.078
50	0.719	0.751	0.470	0.078	0.279
50	0.688	0.734	0.313	0.089	0.298
66	0.760	0.770	0.377	0.025	0.159
6 B	0.712	0.702	0.438	0.016	0.125
7 C	0.690	0.666	0.426	0.038	0.195
8 D	0.800	0.845	0.376	0.018	0.133
8 E	0.795	0.810	0.099	0.002	0.043
9 D	0.721	0.721	0.300	0.008	0.091
9 C	0.794	0.774	0.118	0.008	0.091
$\begin{aligned} & L_{\text {eft }} \\ & 10 \mathrm{C} \end{aligned}$	0.777	0.734	0.320	0.015	0.122

Table 8 (continued)

Section Number	Mean	Median	Range	Variance	Standard Deviation
$\begin{aligned} & \text { Right } \\ & 10 \mathrm{C} \end{aligned}$	0.668	0.574	0.252	0.014	0.117
118	0.644	0.568	0.390	0.042	0.205
110	0.712	0.800	0.317	0.013	0.116
11E	0.793	0.850	0.206	0.007	0.085
120	0.718	0.681	0.298	0.022	0.147
12 D	0.696	0.693	0.162	0.003	0.052
13A	0.812	0.794	0.266	0.008	0.0918
130	0.895	0.944	0.148	0.008	0.087
13D	0.772	0.789	0.185	0.004	0.077
14 B	0.782	0.747	0.284	0.01	0.097
146	0.746	0.735	0.261	0.008	0.088
14D	0.725	0.710	0.178	0.006	0.075
150	0.731	0.755	0.113	0.003	0.05
15D	0.729	0.709	0.175	0.004	0.064
West 16B	0.708	0.706	0.146	0.002	0.045
East 16B	0.731	0.743	0.254	0.009	0.093
17 D	0.755	0.760	0.381	0.010	0.099
180	0.822	0.799	0.233	0.013	0.113
18D	0.775	0.714	0.184	0.013	0.112
19A	0.781	0.788	0.119	0.003	0.053
190	0.778	0.770	0.195	0.005	0.067
19D	0.796	0.791	0.129	0.002	0.039

is an increase in sphericity from A to C, and a sharp decrease to D. Section 14 shows a decline eastwards from B to E. A similar trend is shown in Section 9. A reverse trend, showing an increase in values from B to E, occurs in Section 11. Section 19 resembles Section 3 with respect to its lowering of sphericity values near the center of the ridge. Generally four major trends may be recognized. The trend for the sphericity to increase towards the crest of the ridge from the west. ern extremity is found in 5 cases (Sections 3, 6, 5, 11 and 13). The trend for the sphericity values to decrease from the crest to the eastern extremity occurs in 4 cases (Sections 5, 9, 13 and 14). The trend showing both the increase and decrease in the same cross profile is shown in Sections 5 and 13. There is also a tendency for the sphericity values to increase towards the eastern extremity of the ridge, that is, away from Lake Agassiz.

The sphericity determinations from the Ponton ridge will now be considered. Because of the relative paucity of stones in the granule. pebble size range there is a scarcity of data in this area. One sample of pebbles was taken from 700A in R3. Otherwise a few pebbles which occur at the junction of the sand and clay (probably due to their exposure by the roadside), were chosen randomly along the western extremity of R2. All the measurements were made on igneous and metamorphic rocks. These can be found in Table 9.

The sample taken from 700A indicates an average sphericity not unlike some of the mean values ascertained for the Ste. Anne ridge, but conclusions cannot be drawn from these two samples alone.

The random sample from R2 has a lower sphericity value than the
majority of those found at Ste. Anne. The decrease in this value is to some extent related to the various lithologies. In the northern ridges the fragments are entirely shield-derived igneous and gneissic pebbles, which contrast to the Ste. Anne sedimentaries.

Table 9

Sphericity Measurement Data (Ponton)

Section Number	Mean	Median	Renge	Variance	Standard Deviation
700A	0.775	0.751	0.220	0.0045	0.068
Random R2	0.684	0.665	0.232	0.0067	0.082

These values are not very useful in determining the origin of the ridges at Ponton because of the scarcity of pebble fragments in the sands, which would probably indicate a considerable amount of remorking. For this reason (the paucity of pebbles) there are no roundness measure ments of orientation studies done on the Ponton pebbles.

3. Evaluation of the Ste, Anne Data from Sphericity Form

Triangles. The method of computation of sphericity form data from the long, intermediate and short axes of pebbles has previously been described in this section. The values for the following sections were measured and plotted on sphericity form triangles. The sections involved are the crest (c) sections in every case. The samples are numbered 3, 4, $5,7,10,11,12,13,15,16,18$, and 19. In Section $3 C$ there are two marked areas where the points cluster together. This is shown on Fig. 3-15. There is a tendency for the pebbles to be either compact-elongated

or compact-bladed, with a smaller percentage becoming more platy. In Fig. 3-16, Section 5, there are distinctly fewer elongated and platy pebbles. The predominant area of cluster occurs in the compact.bladed to bladed area. In Fig. 3-17, Section 10, the compactwelongated pebbles predominate, with secondary clusters of bladed, platy and compact pebbles. In Fig. 3-18, Section 13, there is no particular point where the pebbles cluster on the diagram, since there are some in the major categories of compact-platy, compact-bladed and compact-elongated, with secondary clusters in the compact and bladed areas. A similar representation occurs in Section 16, Fig. 3-19, although here there are relatively more elongated pebbles. In Section 19, Fig. 3-20, the greatest number of pebbles occur in the compact-bladed area, with others becoming more cormact-platy or bladod. In short, the following general. ization can be made:

Section 3 compact bladedmplaty-compact-elongated
5 compact.bladed-bladed
10 compact elongated
13 compact
16 compact
19 compact-bladed.
The data from which these figures were drawn and the values for the following section occur as Table 10b。

4. Some Measure of the Subjectivity of the Sphericity Form

Triangle. In order to test the validity of the sphericity form triangle as a means of determining sphericity values, 25 pebbles were measured (the long, intermediate and short diameters of each) at each chosen

- $\stackrel{\leftrightarrow}{\rightrightarrows}$

section by two different students in each case. These were taken from Sections 3, 4, 5, 7, 10, 11, 12, 13, 15, 16, 18 and 19. All C or crest sections were used. The measurements were made with similar vernier calipers, and all the students were equally experienced. The $\frac{S}{L}$ and $\frac{L_{-I}}{L_{-S}}$ values were plotted on the triangular diagram of Folk (1968) and the effective settiling sphericity was determined. Each student measured the same 25 pebbles from each section. The two effective settling sphericities, the difference (di) and differences squared (di^{2}), are to be found in Tables 10b and 10c. The Student "t" Test was run on the data and a "t" value was found for each. The test is shown on Table 10a. The formula used for the calculation of the " t " value was

$$
t=\frac{\bar{\alpha}-\mu D}{S_{\alpha} / \sqrt{n}}
$$

where d a the differences between sphericity measurements
$n=$ the number of pairs of measurements
$S_{d}=$ the variance
$\mu D=$ the mean.
From the 12 samples measured by different students only 9 indicate that, within the .05 level of significance, the sphericity values measured by the calipers are similar. In three cases there was too great a variation within the pairs of results for a significant similarity to exist. Therefore, it is possible that with any given sample the measure. ment of the effective settling sphericity, using Folk's triangle, is objective 83% of the time. Similarly 68% objectivity was obtained by W. C. Krumbein (1955) when, out of 100 students measuring a pebble of sphericity $0.75,68$ obtained values between 0.73 and 0.77 . The experimental error in this case was considered by Krumbein as being negligible.

Table 10a

Testing the null hypothesis that the effective settling sphericity of 25 pebbles measured by one student is the same as the sphericity measured on the same pebbles by a second student, using the triangular method outlined by R. L. Folk (1968)

$$
\begin{aligned}
& \text { Null Hypothesis: } \text { Ho: ESS (1) }=\text { ESS (11) } \\
& \text { Hi: ESS (1) }=\text { ESS (11) } \\
&=0.025
\end{aligned}
$$

Sample number

3	$t=\$ 0.924 \mathrm{~A}$	
4	$t=\$ 0.019 \mathrm{~A}$	
5	$t=\$ 0.125 \mathrm{~A}$	
7	$t=-0.435 \mathrm{~A}$	
10	$t=-0.068 \mathrm{~A}$	
11	$t=\$ 2.220 \mathrm{R}$	
12	$t=+4.554 \mathrm{~A}$	
13	$t=+1.283 \mathrm{~A}$	
15	$t=-1.073 \mathrm{~A}$	
16	$t=-1.243 \mathrm{~A}$	
18	$t=-0.200 \mathrm{~A}$	
19	$t=\$ 0.553 \mathrm{~A}$	
	$\mathrm{~A}=$ accept the Ho	
	R	$=$ reject the Ho

Table 10b

Sphericity Measurements (Ste. Anne)

$$
\begin{aligned}
& S_{\mathrm{d}}=. .145 \\
& \mathrm{t}=.924
\end{aligned}
$$

$\mathrm{L}=$ long axis
$I=$ intermediate axis
$s=$ short axis

Table 10b (continued)

Section 5								
L	I	S	$\frac{S}{L}$	$\frac{I_{-I} I}{I_{m} S}$	$\frac{(1)}{\text { ESS }}$	$\frac{(2)}{\operatorname{ESS}}$	di	$d i^{2}$
1.95	1.18	1.08	. 557	. 884	. 80	. 67	. 13	. 017
1.64	1.33	. 94	. 573	. 443	. 75	.70	. 05	. 003
1.53	1.05	. 83	. 542	. 686	. 75	. 78	-. 03	. 001
1.43	1.0	. 94	. 657	. 878	. 86	. 58	. 28	. 078
1.02	. 65	. 45	. 447	. 649	.67	. 63	. 04	. 002
1.01	. 80	. 41	. 406	. 600	. 64	. 61	. 03	. 001
. 83	. 61	. 44	. 530	. 564	. 72	. 75	.. 03	. 001
. 82	. 62	. 36	. 439	. 556	. 65	. 58	. 07	. 005
. 95	. 50	. 43	. 453	. 865	. 73	. 67	. 06	. 004
. 88	. 62	. 38	. 432	- 520	. 63	. 63	00	000
. 75	. 70	. 33	. 440	. 120	. 58	. 82	. .24	. 058
. 76	. 60	. 36	. 474	. 400	. 65	. 71	-. 06	.004
. 74	. 52	. 42	. 568	. 486	. 78	. 74	. 04	. 002
. 72	. 62	. 38	. 528	. 204	. 68	. 58	. 10	. 010
. 83	. 57	. 37	. 446	. 565	. 65	. 53	. 12	. 014
. 77	. 54	. 28	. 364	. 470	. 58	. 70	-. 12	. 014
.76	. 51	. 43	. 566	. 758	. 79	. 68	. 11	. 012
. 72	. 42	. 37	. 514	. 857	. 78	. 54	. 24	. 058
. 66	. 53	. 30	. 455	. 361	. 63	. 62	. 01	000
. 69	. 42	. 24	. 348	. 600	. 58	. 48	. 10	. 010
. 65	. 55	. 23	. 354	. 238	. 53	. 75	-. 22	. 048
. 74	. 44	. 22	. 298	. 577	. 51	. 78	-. 27	. 013
. 77	. 46	. 24	. 317	. 585	. 54	. 57	-. 03	. 001
. 68	. 42	. 22	. 324	. 565	. 53	. 62	.. 09	. 008
.61	. 46	. 32	. 525	. 517	. 77	. 58	. 13	. 017
							-. 42	. .381
$\begin{aligned} & S_{\mathrm{d}}=.125 \\ & t=.672 \end{aligned}$								

Table lob (continued)

Section 10

L	I	S	$\frac{S}{L}$	$\frac{L_{-I}-I}{L_{-S}}$	$\frac{(1)}{\operatorname{ESS}}$	$\frac{(2)}{E S S}$	di	$d i^{2}$
2.12	I. 45	1.23	. 58	. 753	. 52	. 78	-. 26	. 068
. 96	. 83	. 33	. 34	. 206	. 69	.46	. 23	. 053
1.64	. 80	. 46	. 28	. 712	. 95	. 54	. 41	. 168
1.26	. 86	. 86	. 68	1.000	. 60	. 88	-. 28	.078
1.80	1.16	. 64	. 36	. 552	. 75	. 59	. 16	. 026
1.10	. 76	.67	. 61	. 79	. 63	. 84	-. 21	. 044
1.12	. 83	. 67	. 60	. 64	. 88	. 78	. 10	. 010
1.77	1.32	. 96	. 54	. 56	. 79	. 67	. 12	. 014
. 92	. 71	. 57	. 62	. 60	. 60	. 73	-. 13	. 017
. 96	. 63	. 30	. 31	. 50	. 57	. 51	. .106	. 004
. 67	. 64	. 48	. 72	. 16	. 56	. 82	-. 26	. 068
.67	. 53	. 48	. 72	. 74	.86	. 87	. 01	000
. 89	. 58	. 58	. 66	1.00	. 84	. 86	-. 02	000
. 95	. 83	. 31	. 33	. 19	. 75	. 48	. 27	. 073
. 94	. 82	. 65	. 69	. 47	. 50	. 82	-. 32	. 102
. 82	. 54	. 45	. 55	. 76	. 74	. 78	-. 04	. 002
. 72	. 51	. 34	. 47	. 55	. 47	. 69	-. 22	.048
. 82	. 45	. 35	. 43	. 79	. 81	. 68	. 13	. 017
. 92	. 53	. 30	. 33	. 63	. 70	. 58	. 12	.014
. 54	. 42	.35	.65	. 64	. 54	. 80	.. 26	. 068
. 54	. 32	. 35	. 46	. 76	.72	. 70	. 02	000
. 73	. 67	. 25	. 34	. 13	. 78	. 48	. 30	. 090
. 81	. 42	. 31	. 38	. 78	. 79	. 64	. 15	. 023
. 56	. 51	. 44	. 78	.42	.71	. 88	-. 17	$.029$
. 32	. 31	. 16	. 50	. 06	. 68	. 64	. 04	. 002
							-. 07	1.018
$\begin{aligned} & S_{d}=.2059 \\ & t=-.0680 \end{aligned}$								

Table IOb (continued)

Table IOb (continued)

Section 16

L	I	s	$\frac{\mathrm{S}}{\mathrm{~L}}$	$\frac{L_{-} I}{L_{-S}}$	$\frac{(1)}{\operatorname{ESS}}$	$\frac{(2)}{\text { ESS }}$	di	$d i^{2}$
1.53	1.04	. 42	. 269	. 4.38	. 46	. 825	-. 37	. 137
1.39	. 93	. 20	.144	. 387	. 39	. 88	-. 58	. 336
1.45	. 79	. 69	. 476	. 868	. 75	. 81	.. 06	. 004
. 76	. 38	. 31	. 405	. 844	. 70	. 72	..02	000
. 95	. 71	.48	. 505	. 511	. 70	. 69	. 01	000
. 40	. 38	. 15	. 375	. 080	. 54	. 53	. 01	000
. 45	. 39	.17	. 354	. 290	. 52	. 735	. 22	.048
. 92	. 69	. 43	. 464	. 469	. 65	. 68	.. 03	. 001
. 93	. 63	. 50	. 538	. 698	. 78	.77	. 01	000
1.04	. 65	. 41	. 394	. 619	. 63	. 61	. 02	000
. 60	. 53	. 43	. 737	. 412	. 52	. 69	-. 17	. 029
1.08	.45	. 33	. 306	. 840	. 61	. 777	-. 17	. 029
. 60	. 50	. 40	. 667	. 500	. 54	. 79	.. 25	. 063
. 60	. 58	. 38	. 633	. 091	. 75	. 74	. 01	000
. 56	. 40	. 25	. 446	. 516	. 65	. 78	.. 13	. 017
. 68	. 40	. 31	. 456	. 757	. 71	. 81	.. 10	. 010
. 55	.49	. 43	. 782	. 500	. 89	. 82	. 07	. 005
. 93	. 63	. 50	. 538	. 698	. 76	. 68	. 08	. 006
. 55	. 72	. 55	. 625	.438	. 79	. 62	. 17	. 029
. 69	. 62	. 53	. 768	.485	. 87	. 82	. 05	. 003
. 64	. 48	. 40	. 625	. 661	. 82	. 68	. 14	. 020
1.30	. 58	. 43	. 331	. 828	. 68	. 90	-. 22	.048
. 68	. 60	.47	. 691	. 381	. 82	. 65	. 17	. 029
$.58$. 51	. 38	. 655	. 350	. 79	. 76	. 03	. 001
. 55	. 40	. 35	. 636	. 750	. 83	. 83	00	000
							-1.11	. 815

Table 10b (continued)

Section 19

L	I	S	$\frac{\mathrm{S}}{\mathrm{~L}}$	$\frac{L_{-I}}{L-S}$	$\frac{(1)}{E S S}$	$\frac{(2)}{E S S}$	di	$d i^{2}$
2.14	1.61	1.285	. 60	. 62	.79	- 46	. 33	. 109
1.22	.75	. 72	. 59	. 94	. 84	. 30	. 54	. 292
. 83	.67	. 475	. 572	. 4.5	. 74	. 75	.. 01	000
. 955	. 74	. 49	. 513	. 355	. 68	. 69	.. 01	000
1.69	1.39	1.05	. 621	-469	. 78	. 76	. 02	000
1.03	. 94	. 58	. 563	. 20	. 70	. 52	. 18	. 032
. 75	. 68	. 35	. 467	. 175	.61	. 53	. 08	. 006
2.12	1.61	1.32	. 624	. 639	. 80	. 65	.15	.023
. 76	. 47	. 22	. 289	. 537	. 50	. 76	-. 26	. 068
. 653	. 58	. 35	. 536	. 241	. 69	. 63	. 06	. 004
. 82	. 68	. 61	. 744	. 667	. 86	. 84	. 02	000
. 69	. 61	. 21	. 391	. 190	. 54	. 61	. .07	. 005
1.14	. 73	. 54	. 474	. 683	. 71	. 81	-. 10	. 010
. 75	. 72	. 58	.773	. 176	. 84	. 74	. 10	. 010
.75	. 525	. 32	. 427	. 523	. 64	. 65	. .01	000
. 66	. 52	. 31	. 47	. 40	. 65	. 71	. .06	. 004
. 60	. 51	. 28	. 467	. 281	. 63	. 89	-. 26	. 068
. 58	. 41	. 24	. 414	. 50	. 62	. 74	-. 12	. 014
. 75	. 56	. 46	. 613	. 655	. 79	. 78	. 01	000.
1.77	1.22	1.17	. 661	. 917	. 88	. 87	. 01	000
1.70	1.52	1.20	. 706	. 36	.83	.81	. 02	000
1.92	1.53	1.03	. 536	. 438	. 77	.64	. 07	. 005
1.78	1.32	. 94	. 528	. 548	. 72	. 83	-. 11	. 012
1.71	1.35	1.02	. 596	. 522	.77	. 78	-. 01	000
. 59	. 46	. 33	. 559	. 50	.73	. 84	-. 11	. 012
							. 46	.674

Table 10c

Student Measures for " t " Test

Sect (1) ESS	(2) ESS	di	$d i^{2}$
. 93	. 85	. 08	. 006
.79	.76	. 03	. 001
. 86	. 50	. 36	. 130
. 81	. 75	. 06	. 004
. 68	. 82	+.14	. 020
. 85	. 71	. 14	. 020
. 68	. 81	-. 13	.017
. 68	. 89	-. 21	.044
. 39	. 76	-. 37	. 137
. 76	. 51	. 25	. 063
.77	. 55	. 22	. 048
. 74	. 78	..04	. 002
. 73	. 66	. 07	. 005
. 58	. 73	.. 15	. 023
. 78	. 53	. 25	. 063
. 75	. 50	. 25	. 063
. 68	. 74	. .06	. 004
.47	. 82	. .35	. 123
. 64	. 68	. .04	. 002
. 75	. 80	. 0.05	. 003
. 87	. 73	. 14	.020
. 93	. 63	. 30	. 090
. 69	. 91	-. 22	. 048
. 75	. 83	..08	. 006
. 46	. 75	-. 29	. 084
		\$.02	4.026
$\begin{aligned} & S_{d}=.207 \\ & t=.019 \end{aligned}$			

Table 10c (continued)

Section 7			
$\frac{(1)}{\text { ESS }}$	$\frac{(2)}{E S S}$	di	$d i^{2}$
.76	. 62	. 14	. 020
. 57	. 65	-. 08	. 006
. 77	. 53	.24	. 058
.65	. 83	. .18	. 032
. 68	.65	. 03	. 001
. 86	.76	. 10	. 010
. 90	.80	. 10	. 010
. 82	. 82	00	000
. 60	. 82	-. 22	. 048
. 54	. 89	-. 35	. 123
. 77	.65	. 06	. 004
. 67	. 68	-. 01	000
	.65	. 06	. 004
. 67	. 82	. .15	. 023
. 71	.79	. .08	. 006
. 81	. 69	. 12	. 014
. 65	.63	. 02	000
.79	. 80	.. 01	000
. 75	. 70	. 05	. 003
. 69	. 94	. 25	. 063
. 87	.78	. 09	. 008
. 79	.87	.. 08	. 006
. 87	. 85	. 02	000
. 83	.81	. 02	000
. 80	. 74	. 06	. 004
		-. 30	.443

Table 10c (continued)

Table 10c (continued)

Section 12

$\frac{(I)}{E S S}$	$\frac{(2)}{E S S}$	di	$d i^{2}$
. 88	. 82	. 06	. 004
. 77	. 71	. 06	. 004
. 82	. 78	. 04	. 002
. 72	. 64	. 08	. 006
. 69	- 48	. 21	. 044
. 75	. 65	.10	. 010
. 68	. 55	. 13	. 017
. 61	. 65	. 0.04	. 002
. 65	.44	. 21	. 044
. 74	. 45	. 29	. 084
. 67	. 64	. 03	. 001
.76	. 38	. 38	. 14.4
. 75	. 57	. 18	. 032
. 68	. 63	. 05	. 003
. 76	. 65	. 11	. 012
. 78	. 73	. 05	. 003
.74	. 65	. 09	. 008
. 68	. 61	. 07	. 005
.85	. 53	. 32	. 102
. 68	. 64	. 04	. 002
. 64	. 62	. 02	000
. 72	. 65	. 07	. 005
. 88	. 75	. 13	. 017
.74	. 87	-. 13	. 017
		2.55	. 568

$$
\begin{aligned}
& S_{d}=0.1131 \\
& t=4.554
\end{aligned}
$$

Table 10c (continued)

Sect $\frac{(1)}{\operatorname{ESS}}$	$\frac{(2)}{E S S}$	di	$d i^{2}$
.67	. 68	-. 01	000
.75	. 87	-. 12	. 014
. 73	. 73	00	000
. 72	. 90	. .18	. 032
. 87	. 92	. .05	. 003
. 78	. 78	00	000
. 65	. 69	. 04	. 002
. 65	. 70	. .05	. 003
. 66	. 83	. .17	. 029
.80	. 86	. .06	. 004
. 77	. 65	. 12	. 014
. 69	. 69	00	000
. 78	. 75	. 03	. 001
.74	. 75	. 01	000
. 88	.65	. 23	. 053
. 63	. 80	. 17	. 029
. 59	. 52	. 07	. 005
. 65	. 66	..01	000
. 87	. 69	. 18	. 032
. 68	. 62	. 06	. 004
. 78	. 79	.. 01	000
. 69	. 86	-. 17	. 029
. 78	. 72	. 06	. 004
	. 86	. .10	$.010$
. 59	. 78	-. 19	. 036
		--. 59	. 304
	$\begin{aligned} & S_{d}=. .110 \\ & t=-1.0727 \end{aligned}$		

Table 10c (continued)

Section 18			
$\frac{(1)}{E S S}$	$\frac{(2)}{\operatorname{ESS}}$	di	$d i^{2}$
. 79	. 78	. 01	000
. 84	. 85	. .01	000
. 74	. 60	.14	. 020
. 68	.72	. .04	. 002
. 78	. 83	. .05	. 003
. 70	.77	. .07	. 005
. 61	.74	-. 13	.017
.80	. 53	.27	. 073
. 50	. 64	-. 14	. 001
. 67	.79	. 12	. 014
. 86	.77	. 09	. 008
. 70	.70	00	000
. 83	. 52	. 31	. 096
. 64	. 83	. .19	. 036
. 65	. 83	-. 18	. 032
. 62	. 67	. 01	000
. 61	. 73	. .12	. 014
. 81	. 86	-. 05	. 003
. 88	. 54	. 34	. 113
. 84	. 87	. . 03	. 00.1
. 71	. 79	-. 08	. 006
.72	. 69	. 03	. 001
.77	.72	. 05	. 003
$.72$	$.77$	$.05$	$.003$
. 55	. 68	. .13	. 017
		-. 14	. 477

5. Comparison with Premexisting Iiterature and the Formulation of Tentative Conclusions. It is now necessary to consider the past literature with the intention of determining a possible origin at least for the ste. Anne ridge, based on previous work done with comparable sphericity measurements.

An interesting study on the Lake Erie sand was written by F. J. Pettijohn and A. C. Iundahl (1943). They found, having teken sam. ples along the south side of Lake Erie, that the sphericity declined slightly in the direction of sand shift. Simple abrasion was not comm sidered accountable for the observed trends. The sands are sorted in a down current direction, the less spherical grains being carried further than the more spherical ones.

As W. J. Morris (1957, p. 31) has pointed out, there is a pau. city of work to date on the exact relationship between certain particle attributes and the fluid laws governing the transporting medium. Once this is ascertained, more knowledge can then be accummulated on the determination of the characteristics of a sedimentary deposit-and hence the environment. Certain conclusions arrived at by Morris in his experiment include the fact that conditions of intermediate flow rates of water cause a high rate of transportation for grains having high sphericities ($0.8 \mathrm{~m}, 0$) and Iow sphericities (Iess than 0.6).

In 1958, E. D. Sneed and R. L. Folk produced their work on para ticle morphogenesis in the lower Colorado River of Texas. Here the concept of the maximum projection sphericity was first introduced. Particle size, even within the narrow range of between $32-64 \mathrm{~mm}$. was found to have a greater effect on sphericity than 200 miles of fluvial transportation. Large quartz pebbles were discovered to become more
rodlike, smaller ones more discoidal. Limestone pebbles in the Colorado River maintain a low sphericity, and this does not significantly change with distance. In the fluvial environment an additional point is the dominance of bladed forms, except in the limestone pebbles which are more discoidal. Sphericity is a function of pebble size and distance with the lithology involved.

Later work by H. Blatt (1959) (substantiated, in so far as only isotropic rocks were measured, by C. W. Sames, 1966) saw a larger variety of size grades used when analyzing beach sediments. The method of finding the maximum projection sphericity is essentially similar to that used by Sneed and Folk. Blatt places a great deal of emphasis on the type of quartz and indicates that sphericity variations reflect, in Iarge part, the quartz varieties. The New Jersey beach deposits are discoidal, contrasting with the rods found in a fluvial environment such as those investigated by Sneed and Foly. The sliding motion of wave wash is quoted as the cause, compared with the turbulent rolling action of river water. The latter process develops to a more elongate form in smaller particles. Blatt also points out that "river and beach pebbles are apparently indistinguishable by form in sizes finer than -2.5少 (p. 205).

Detailed work on the sedimentation of beach gravel in South Wales was carried out by B. J. Bluck (1967). The classification of shape was carried out according to the Zingg (1935) and Krumbein (1941) methods. The surface layers of pebbles in South Wales are divided into four zones:
a. a large disc zone - Iandward
b. imbricate disc zone - approaching seaward
c. an infill zone of spherical and rod-shaped pebbles
d. spherical cobbles on the seavard margin.

The shapemarea system relates to the settling velocity and pivotability of the gravels rather than the energy of marine erosion as such. The size frequency of the pebbles and cobbles along and across the ridge reflect a reworking of the boulder-clay parent material. The disc shaped pebbles occur as a result of "lag" deposition (when this coincides with the modal size). Spherical or rod-shaped perticles are found when there is rolling caused by backwash.
C. A. M. King and J. T. Buckley (1968) have measured the shapes and sizes of a number of pebbles from different eavironments in the Arctic Tundra. Shape measurements were ascertained using the W. C. Krumbein (1947) method. Beaches, deltas, eskers, kames, areas sub. jected to periglacial activity, moraines, and features of unknown origins were studied by using the non-parametric KologorovmSmirnov test. It was found that mean size alone could provide a criterion by which deltas, eskers and ice-contact deposits could be differentiated from each other. Beaches could not be readily distinguished by the shape method. Because of the lack of overall environmental differentiation, this method was not adopted.

Following the review of the literature, certain tentative conclusions can now be made.
a. Despite dissimilarities in grain size, the fact that F. J. Pettijohn and H. G. Lundahl's (1943) sphericities decreased along a lake beach, due to sediment sorting, is seen to be similar to the generalized trend of a decrease from north to south in the overall sphericities found on the Ste. Anne ridge. This suggests a shifting
of grains, due to a long-shore wind in a beach enviroment.
b. Although the pebblemgranule sizes measured at Ste. Anne cover a greater range than those measured in the Colorado River by E. D. Sneed and R. I. Folk, certain generalizations can be made.
i. The Iinestones/dolomites of the Ste. Anne ridge were relatively consistent in value, despite local fluctuations.
ii. Most of the rodalike pebbles at Ste. Anne fall in the compact-elongated class, which itself is not dominant.
iii. There are no discoidal pebbles at Ste. Anne, despite the fact that they are predominantly lime. stones and dolomites.
c. To some extent contradicting the analysis of beach sediments of H. Blatt (1959), the Ste. Anne pebbles are rarely discoidal and tend to be more rod-like, such as would be found in a fluvial environment.
d. The Ste. Anne pebbles more closely coincide with the seaward margin cobbles and pebbles as described by B. J. Bluck (1967). Here there is an infill zone of spherical and rod-shaped rod-shaped pebbles, which is analogous to the compact-bladed and compact-elongated pebbles found at Ste. Anne.

Although the evidence as demonstrated here does not conclusively prove any particular environment of deposition based on the sphericity alone of the supposed Lake Agassiz ridge gravels, there is some indication:
a. that it may be a beach because of the sphericity
variations along the ridge, and because of the spherical (compact) and rod-shaped pebbles (as in points a and c above).
b. that the ridge also may be fluvial because of the decrease in size of limestone rapidly with transportation, because of the variation in sphericity across the ridge (shown in Figs. 3-13 and 3-14), and because of the elongated rod-like forms (as in point b above).

Section C. An Evaluation of Roundness Data

Observations of roundness data were made on the pebble and gram nule sizes of the Ste. Anne ridge. An outline of this section is as follows:
I. A Review of Some of the Past Literature of Roundness Measurement Methods.
2. Presentation of Roundness Data from the Ste. Anne Ridge.
3. A Review of the Past Literature and the Interpretation of the Ste. Anne Ridge Data.

1. A Review of Some of the Past Iiterature of Roundness

Measurement Methods. Roundness was defined by H. Wadell (1932, 1933, 1935) as "the ratio of the radius of the corners and edges to the radius of curvature of the maximum inscribod sphere when projected to a stand. and diameter of 70 mm ". Roundness is directly related to the sharpness of the corners and edges of the particle, and, as such, is distinguished from sphericity. The author also suggested that roundness is an index of the maturity of a sediment, with distance of transportation.

Later authors, R. D. Russell and R. E. Taylor (1937), measured the roundness and shape of certain Mississippi River sands. Their values were based on sand grains which showed no evidence of becoming rounded
as a result of attrition during transportation. In order to determine the roundness of the particles a visual method was used, the comparison of grains with a photomicrograph, in addition to a descriptive index. No measure of the subjectivity of the index was given.
H. C. Krumbein (194I) amplified the visual representation method of particle roundness. In this method, the pebble is compared with standard images of known roundness. Once put in a certain category, a roundness value is assigned to it. The images which are used in the comparison have been drawn from pebbles measured by Wadell's method. Krumbein states that statistical studies between the two methods indicate a reasonable similarity. The plate with the set of standard images is shown in the article. The largest projection of the pebble is compared to the images, the most similar ones are identified, and the roundness value recorded. The roundness categories vary from 0.1-0.9, with increasing roundness.
M. C. Powers (1953) suggested a new roundness scale, defined by six roundness classes. He attempted an improvement on the pre-existing Russell and Taylor (1937) method. Because the arithmetic means of the intervals were used as midepoints and the values did not provide the smaller submivisions that are needed in the lower roundness values, F. J. Pettijohn (1949) sought to improve it by using a geometric scale. There was still a paucity of divisions in the lower part of the scale。 Powers added a further roundness category to the scale, so that it became more sensitive. The 6 categories consisted of very angular, angular, sub-angular, sub-rounded, rounded and well-rounded. These have geometric class intervals and means. A visual comparison is made between photographs of clay models which fall near the geometric mean. To

142

determine an average roundness, the number of particles in each class is multiplied by the geomatric mean of that class. The sum of the products is then divided by the total number of particles counted.
M. A. Beal and F. P. Shepard (1956) considered the scales set up by W. C. Krumbein (1941) and M. C. Powers (1953) to determine their relative validities when using a microscope. Power's scale was chosen for quartz grains, but difficulty was encountered when comparing these quartz with the silhouettes on the Krumbein scale. J. D. Waskom (1958), following the work of Beal and Shepard, also used the Power's roundness scale for quartz grain analysis.

A further method was introduced by D. A. Robson (1958). This was devised because the Wadell system was considered to be too laborious. Another method is preferred by which a measured granule is fixed to a microscope. The circles of known size are then compared directly to minerals, using transmitted light. The relative efficiencies of this and the Power's scale have not been tested.

A further method of assessing roundness has been described by I. J. Smalley (1967). It was the Szadeczky-Kardoss (1933) technique. This was used by Smalley to supplement general shape data. The method necessitates an estimate being made of the proportions of the particle surface which can be described (subjectively) as being; flat, convex and concave. The several results are then expressed as a point on a tri. angular net.

Finally, a method was used by C. A. M. King and J. T. Buckley (1968) following a technique devised by M. Blenk (1960). When meam suring the size and shape of stones in arctic environments this Callieux Index is applied. The roundness is calculated from the formula
$2 R / a \times 1000$, where R is the minimum radius of curvature in the principal plane and a is the long axis. For a completely round stone, the roundness $=1000$ or $Z=\mathrm{a}$ 。 The values can be calculated by using a reference set of arcs of different radii to fit the individual stone. This method is less subjective than the use of the Krumbein scale, and is therefore adopted in the present study.

The Power's scale was not used because it has been used mainly to measure sand size grains, and therefore no direct comparison can be made between the results obtained here and other results in the literature. The Robson technique is disregarded for the same reason.

The method suggested by W. C. Krumbein (1941) is used and, if sufficiently objective, is preferrable because the scale is more readily adaptable to variable pebble sizes. It is easy to use by relatively inexperienced students, and the results are similar to those derived from the Power's scale.

2. Presentation of Roundness Data from the Ste, Anne Ridge.

Because the roundness scale used here is based on the method first proposed by W. C. Krumbein (1941), a test of the subjectivity of the technique is necessary.
a. The Chi-Square Test on roundness data, using the Krumbein

Scale. Approximately twenty pebbles/granules were measured from each of the Ste. Anne sections by 5 equally experienced students independently, using the Krumbein scale of roundness. The results are shown on Table 11.
i. Null Hypothesis: Ho: the different roundness values measured by 5 students independently give essentially the same results, if the same technique is used.
ii.

Hi: the results obtained by the 5 students are dissimilar
iii. The test is chosen because the students and the values obteined are independent and because the values are frequencies in discrete categories. A grouping of the data was required so that the categories, formerly $0.1,0.2,0.3,0.4,0.5,0.6,0.7$, $0.8,0.9$, were put into groups $0.1-0.3,0.4-0.6$, 0.7-0.9. There were no broken pebbles.
iv. Significance level: Let $\propto=.05$
N is variable between 88 - 108
v. Sampling distribution: X^{2} as computed from the following formula:

$$
\begin{aligned}
& \sum_{i=1}^{r} \sum_{j=1}^{k} \frac{\left(0 i j-E_{i} j\right)}{E i j} \\
& \text { where Eij}=\frac{R i \times K i}{N} \\
& \text { and where } \\
& \text { Oij }=\text { observed values } \\
& \text { Eij }=\text { expected values }
\end{aligned}
$$

The degrees of freedom are as follows:

$$
\begin{aligned}
\mathrm{df} & =(r-1)(k-1) \\
r & =\text { number of rows } \\
k & =\text { number of columns } \\
d f & =(5-1)(3-1)=8
\end{aligned}
$$

vi. Rejection Region:

After consulting the appropriate Table for x^{2} values in S. Siegel (1956, p. 249), the region of rejections is

$$
(-2.18 \leqslant x \leqslant+17.5)
$$

a total number of 18 tests were conducted and the following results obtained, such that the NuIl Ifypothesis was either accepted or rejected:

Section	2 - reject	Section	11 - reject
	3-reject		12-accept
	4 - accept		13-reject
	5-reject		14-reject
	6 -reject		15-accept
	7 -reject		16-accept
	8 - accept		17-accept
	9-accept		18-reject
	10 - accept		19 - reject

The overall results show that 45% of the time the NuIl Hypothesis was accepted, and 55% of the time it was rejected, at the .05 level of significance. The results are therefore inconclusive.
b. The roundness data from the Ste, Anne ridge. The roundness data taken from the Ste. Anne ridge is found in Table 12. The average value from each section is calculated to determine the trend in roundness values along the length of the ridge. A plot of this data, against distance, is shown on Fig. 3-2l. This plot was based on similar axes as Fig. 3-12, "Plot of Effective Settling Sphericity with Distance". A similar degree of variation is shown in both. An overall trend can be

Table 11

The ChimSquare Test on Roundness Data (Ste. Anne)

Table 11 (continued)

Table 11 (continued)

Table 11 (continued)

	Students		Roundness volues					
		$.1-.3$. $4-.6$. $7-.9$		
		0	$-x^{2}$	0	x^{2}	0	x^{2}	
$\begin{aligned} & \text { Sample } 11 \\ & \text { (total: } 27.30 \text {) } \end{aligned}$	1	6	. 03	9	. 10	5	. 54	20
	2	13	6.81	6	1.60	1	1.88	20
	3	8	. 40	11	. 10	1	1.88	20
	4	0	6.40	16	3.60	4	. 04	20
	5	5	. 31	8	. 40	7	3.21	20
		32		50		18		100
$\begin{aligned} & \text { Sample } 12 \\ & \text { (total: } 15.54 \text {) } \end{aligned}$	1	3	. 1.1	11	. 17	5	. 48	19
	2	4	1.43	11	. 62	2	2.75.45	17
	3	3	. 01	13	. 28	6		22
	4	2	. 02	6	. 83	9	1.38	17
	5	0	2.22	6	. 83	11	3.94	17
		12		47		33		92
$\begin{aligned} & \text { Sample } 13 \\ & \text { (total: } 26.98 \text {) } \end{aligned}$						7		16
	2	10 7	2.08 .00	4	1.12	7	1.91 2.07	18
	3	9	. 47	8	. 23	1	2.34	18
	4	9	. 47	3	2.08	6	. 89	18
	5	0	7.16	13	5.79	5	. 20	18
		35		33		20		88

Table 11 (continued)

	Students		Roundness values					
			. 3	-	. 6	. $7-.9$		
		0	x^{2}	0	x^{2}	0	x^{2}	
$\begin{aligned} & \text { Sample } 1 / 4 \\ & \text { (total: } 21.89 \text {) } \end{aligned}$	1	8	. 60	12	1.95	0	1.24	20
	2	7	. 89	8	. 02	4	6.79	19
	3	13	. 91	6	. 35	0	7.18	19
	4	10	.00	8	. 02	1	. 03	19
	5	13	. 97	5	. 91	1	. 03	19
		57		39		6		97
$\begin{aligned} & \text { Sample } 15 \\ & \text { (total: } 16.54 \text {) } \end{aligned}$	1	7	1.01	7	. 53	6	0.00	20
	2	4	. 13	11	. 35	5	. 17	20
	3	5	. 01	7	. 53	8	. 67	20
	4	7	1.01	5	1.92	8	.67	20
	5	1	3.01	16	5.03	3	1.50	20
		24		46		30		100
$\begin{aligned} & \text { Sample } 16 \\ & \text { (total: } 11.16 \text {) } \end{aligned}$								21
	1	10	.13 .73	7 7	.69 .49	4 2	. 91	20
	3	5	1.45	15	3.81	0	2.38	20
	4	9	. 03	8	. 13	3	. 16	20
	5	8	. 03	9	. 00	3	. 16	20
		43		46		12		101

Table 11 (continued)

Table 12

Roundness Values (Average of 5) Ste. Anne (W. C. Krumbein)

Section	. 1	. 2	. 3	. 4	. 5	. 6	.7	. 8	- 9	Average Roundness Value for Sample
2 c	0.12	0.44	0.66	0.88	1.8	2.88	1.12	1.16	0.18	0.412
3 c	0.04	0.32	0.36	1.12	1.90	4.32	1.68	1. 28	0.36	0.571
4 c	0.18	0.52	0.9	1.36	1.4	1.92	1.82	1.12	0.72	0.497
5 c	0.04	0.2	0.66	1.04	2.40	2.28	1.54	0.8	1.62	0.529
6 c	0.12	0.6	1.08	1.2	1.8	1.56	1.82	0.8	0.72	0.485
7 c	0.12	0.32	1.02	0.96	0.14	2.04	1.68	I. 28	0.18	0.387
8 c	0.0	0.12	0.6	0.64	1.55	3.24	2.66	1.76	0.36	0.547
9 c	0.04	0.0	0.6	1.2	2.8	3.48	1.68	0.9	0.18	0.565
10 c	0.02	0.04	0.42	0.88	0.22	3.48	1.82	1.6	0.72	0.460
11 c	0.01	0.36	1.08	1.12	2.4	1.44	1.26	0.08	0.72	0.424
120	0.04	0.12	0.42	0.4	0.9	1.92	3.22	1.44	0.18	0.432
13 c	0.04	0.6	1.08	1.12	1.0	1.08	1.82	0.32	0.9	0.398
14 c	0.12	0.76	1.56	1.42	1.6	0.72	0.42	0.48	0.0	0.354
15 c	0.12	0.36	0.54	1.44	1.0	2.16	0.98	2.24	1.62	0.523
160	0.2	0.64	1.02	1.76	1.7	0.96	0.98	0.64	0.18	0.404
17 c	1.0	0.16	0.54	1.04	1.6	1.76	2.1	1.76	0.72	0.489
18 c	0.32	0.6	0.84	1.28	1.3	1.56	0.98	0.48	0.9	0.473
190	0.08	0.56	0.78	0.8	1.9	2.28	0.56	2.24	0.0	0.460

here recognized, which is dissimilar from the sphericity plot; there is a tendency for the pebbles and granules to decrease in roundness northwards along the ridge.

Local decreases in sphericity correspond with roundness decreases, for instance at 7c and 11c in both Figs. 3-12 and 3-21. There is also a correspondence of peaks in the roundness graph (15c) with troughs in the sphericity graph (15c). The degree of variability of the roundness corresponds with the variability in the sphericity, such that the task of recognizing overall trends from the data is complicated.

A further test was also used to compute the roundness of pebbles in random samples from the Ste. Anne ridge. Here the Caillieux method was emplojed. Average roundness values of individual pebbles from dif. ferent sections are 472, 478, 645, 364, 308, 222, 601, 444, 415, 364, $296,625,424,280,432,439,397,256,262,227,418,372,299,295$ and 360. The values again represent a cousiderable amount of variety throughout the sections, as the average roundness value for all the ridge pebbles sampled is 387.8 , compared with a maximum and minimum of 645 and 222 respectively.

3. A Review of the Past Literature and the Interpretation of

 the Ste. Anne ridge data.a. A considerable amount of literature has been written on the interpretation of roundness data. S. D. Russell and R. E. Taylor (1937) considered the roundness of certain Mississippi River sands and found that there was no evidence of increased roundness with distance downstream. In fact, the larger sand particles become slightly more angular downstream, due to the chipping and fracturing of grains. There
is no definite longitudinal trend in roundness values along the Ste. Anne ridge, so current directions cannot be determined. Russell and Taylor expressed the fact that in their area of analysis there was a fluctuam tion of roundness values concomitant with the directional trend. A further similarity with the Ste. Anne data is the overall tendency for roundness values to decrease northwards. A valld comparison cannot take place, however, because Russell and Taylor analyzed sand particles, and in the present study pebbles were measured.
b. According to W. C. Krumbein (1941), degree of roundness is the product of modification by the abrasion to which the particles are subjected. It is not a reflection of conditions of transportation or deposition. The attoinment of roundness is relatively rapid in the early stages of transportation, after which further rounding becomes much slower. F. J. Pettijohn and A. C. Lundahl (1943), as a result of their measurement of Lake Erie sands, concluded that roundness and sphericity were closely associated there and, that whereas sphericity declined slightly in the direction of sand shift, roundness declined considerably. They maintained that the decreased roundness in this case is due to the sorting of sands by water movement in a down current direction, which carries the less round grains further along the beach. The results here cannot be directly compared with those found by Krumbein or Pettijohn and Lundahl, because of the extreme fluctuation in values throughout the length of the Ste. Anne ridge.
c. The work of M. A. Beal and F. P. Sheperd (1956) is of importance in so far asroundness is used to determine depositional environments. However, it relates mainly to ssnd size deposits. A dif. ference was shown in the results of roundness analysis between beach and

Table 13
a. Orientation Direction by Section Numbers (Ste. Anne)

Section	Primary	Secondary	Tertiary
$2 B-3 C$	$60-80$	$80-100$	$5-20$
$4 D$	$120-140$	$100-120$	$5-20-40-60$
10 C	$80-100$	$100-120$	$60-80$
14 B	$5-20$	$20-40$	$160=180$
16 B	$100=120$	$120-140$	$140-160$
18 D	$120-140$	$100-120$	$140-160$

b. Test of Orientation Strength after S. A. Harris (1969)

Section Number of Orientation Observed frequency Result pebbles direction in modal class

$2 B-3 C$	103	$60-80$	19	NS
$4 D$	100	$120-140$	17	NS
$10 C$	102	$80-100$	27	S
$14 B$	104	$5-20$	20	NS
$16 B$	106	$100-120$	24	NS
$18 D$	100	$120-140$	29	S
	S $=$ significant	NS $=$ not	significant	

c. ChimSquare Test taking Average Values

dune sands. The difference is thought to be due to selective sorting by wind. Part of their work involved sampling of grains that were taken from beachadune traverses on Padre Island and Mustang Island, Texas. In Padre Island the roundness of sends in the beach berm is approximately . 34 , that of the beach backslope . 31, and the dune sands .39. If a comparison can be made between the Ste. Anne data and that of Beal and Shepard, the Ste. Anne ridge appears to be more comparable to dune ridge deposits. But it must be noted that sand and pebbles cannot be directly compared.
J. D. Waskom (1958) took 59 sand samples from the Panhandle coast of Florida. From different enviroments of deposition the results show that the average roundness value of quartz grains for the offshore environment $=.260$, in the open swash zone $=.268$, dune. .269 , beach ridge $=.287$, and marsh $=.243$. Hence, the open swash zone, dune and beachuridge environments have relatively high values compared to the offshore environment and marsh samples. A comparison between these results and the ones obtained at Ste. Anne is ineccurate because of the distinction between sand and pebble grain sizes. However, the beach. ridge value obtained by Waskom is closer to the pebble values found at Ste. Anne than the values obtained by him for other environments of deposition.

When considering pebble associations, C. S. Sames (1966) states that only littoral, fluvial and detrital ones can be differentiated. The data he analyzed showed that littoral and fluvial associations share the medium grades of roundness. The fluvial associations, however, have a certain percentage of angular components and show a wider variety of pebble shapes than do the littoral deposits, which tend to be more
uniform and show higher degrees of roundness since angular particles are eliminated. By comparison, the Ste. Anne roundness values are quite uniform since the range is not extreme.
d. A different roundness method was used in the work of C. A. M. King and J. T. Buckley (1968) and environments of deposition were equally well able to be differentiated. The roundness factor is claimed by the authors to be the most veluable tool of environmental differentiation. Moraines (138), kanes (238), eskers (332), beaches (398) can be distinguished because of the different roundness values of their constituents. The values for eskers and deltas (334) are almost identical; therefore presumably the two camot be clearly differentiated. Of the values obtained for the Ste. Anne data, the average 387.8 most closely corresponds to a beach pebble value, when compared with the table in King and Buckley's article (p. 211).

Therefore this section is inconclusive because roundness values which occur in the literature are taken on sand size particles and here pebbles are used. If one can consider trends in roundness variation there are similarities between the Ste. Anne pebbles and the Mississippi. River sands, discussed in part a, above.

There is no evidence of rapid attainment of roundness and subsequent drop-off as described by Krumbein. The overall increase in roundness to the north at Ste. Anne resembles the trend described by Pettijohn and Lundahl. The direction of a current in this section of Lake Agassiz may have been northwards at this time.

The Ste. Anne data may indicate that the ridge is a dune when compared with Beal and Shepard's data, or a beach-ridge when compared with Waskom's data, the uniformity obtained by Sames, and the values
found by King and Buckley.
The inference is therefore that the Ste. Anne ridge is most probably a beach, but it may possibly be an esker or a dune deposit. Section D. An Evaluation of Orientation Data

The last section of Chapter 3 consists of the following sube sections:

1. A Review of the Past Literature on Orientation Methods and Results.
2. A Consideration of the Long Axis Data from the Ste. Anne ridges.
3. Interpretation of the Orientation Data from the Ste. Anne ridge and Tentative Conclusions.

1. A Review of the Past Literature on Orientation Methods and

Results. Some of the earliest works on orientation studies are reviewed in W. C. Krumbein and F.J. Pettijohn's book (1938). In general the aim of orientation studies is to determine the direction of transport of a pebble by measuring the orientation of its long axis, and, if any, its dip. K. Richter (1932) measured the long axes of till pebbles with a compass to determine the direction of ice movement. This study lead the way to a number of other petrofabric analyses.

Methods of collection of samples and laboratory analysis are described by W. G. Krumbein and F.J. Pettijohn (1938). A Brunton pocket compass was suggested, plus lacquer to mark the pebbles. The samples are then measured with an "ordinary two-circle contact goniometer". The long axis and dip are then readily read off.

Methods of presenting the data include a histograph or frequency
diagram of strike or dip direction, or polar comordinate diagrams. Linear statistical methods are advised for use in computing the moment measures.
N. V. Karlstrom (1952) developed a new method of measuring orientation data in the field. By substituting a $5^{\prime \prime} \times 4^{\prime \prime}$ template instead of Wadell's drawing method. However, the use of the goniometer is basically the same.
J. R. Curray (1956) described the analysis of two dimensional orientation data, and suggested different statistical methods to indicate the preferred orientation direction, degree of preferred orientation and the probability that a prefermed orientation is real and not due to chance. The resultant vector method is preferred over linear statistical methods because of the circular distribution of the data. The vector direction is the preferred orientation direction of the long axes, and the vector magnitude provides a measure of dispersion. When trying to ascertain if the frequency is due to chance alone, Curray discounted the use of the ChimSquare Test because the "deviations from randomess which produce a significant result do not necessarily represent a preferred orientation" (p. 125). This is basically true of most statistical tests of this type. Curray prefers the use of the Rayleigh Test (originally used for describing random phases in sound waves) because each observation can be represented by a vector, with direction and magnitude, and analyzed from a graph.

Later work by J. R. Curray (1956) undertook an analysis of sands, taken from various locations around the Gulf of Mexico. The data showed a tendency for elongate sand grains to align themselves with their long axes parallel to the backwash direction of waves on the beach and
therefore perpendicular to the latter's trend.
T. A. Jones (1968) suggests that linear distributions may not be used in order to estimate the significance of the circular distri. bution. Vector mean and vector strength are defined following a pre. vious description of a vector mean by W. H. Wood and R. M. Wood (1966). Jones suggests the use of other statistics which are derived from a circular distribution.

The supposition that mechanical forces do lead to an orientation of grains has often been assumed, rather than proven. However, laboram tory work by E. A. Rusnak (1957) has demonstrated that, under unidirectional flow, the most stable position for sand particles is with their long axes parallel to the direction of fluid motion. Furthermore, they possess some imbrication, dipping slightly into the current. The preferred orientation in this case was determined statistically by the use of the ChimSquare Test.

The orientation of pebbles in running water has been examined by C. E. Johansson (1963). The basic unit examined is the deltaic form. In the top-set beds the orientation of pebbles is seen to depend on the form of the bed and mode of transportation. A primarily transverse orientation (and some longitudinal orientation) occurs when pebbles are transported as contact load along a bed without obstacles. A longitudinal orientation results from long jumps, or when the particles turn round obstacles during bed-load transportation. The foreset beds are thought to be more comparable to the Ste. Anne pebbles than top-set and bottom-set beds, described by Johansson.

Therefore there are a number of techniques described in the literature. The results obtained may vary with the technjques chosen. A
relatively early writer (h. Wadell, 1936) used the clinometer method and plotted his data on a histogram. He compared the orientations of pebbles in an esker with those from an outwash delta. These were found to differ with respect to the beds in which they were contained.
W. C. Krumbein, stimulated by the work of Wadell and Richter, suggested that equiarea polar coordinate paper be used in conjunction with petrofabric (shaded) diagrams. In this way both the relatively raw data and the interpretation may be seen. He found that a drumlin contained a number of pebbles with their "A" axes parallel to the direction of ice movement. The mean direction was found by using the standard radius - vector summation method. Histograms were drawn showing the azimuthal distribution of till pebbles (" A " axis measurements). Results from petrofabric diagrams showed that, in the case of outwash pebbles, there was a considerable amount of scatter and weak orientation, with some indication of streamflow. Beach pebbles and disc.shaped dolomites were also analyzed. The long axis analysis showed a tendency for the pebbles to lie parallel to the shoreline. It is therefore assumed that they are transported with their "A" axes normal to wave direction. Orientation work has been extended in the area of till fabric analysis by various authors, including R. G. West and J. J. Donner (1965), in East Anglia, England. In their work, proof of ice-direction is drawn from inconclusive evidence. New methods of obtaining till fabric data, including detailed accounts of field and laboratory prom cedures, have been described by P. W. Harrison (1957a) and their employment described in a later article (1957b). Using samples from ground moraines and end moraines, it was shown that disc and blade shaped particles have a preferred imbrication upstream to former glacier movement
directions. Other till fabric studies include work by A. Shrirmadas (1957) and R. B. Rains (1969). Mainly these consist of detailed anaIytical works which are based on the assumption that the preferred orientation of particles in till deposits is accordant with the direction of ice flow.

Recent work on till fabric analyses has been completed by S. A. Harris (1969). Here the method of plotting the data involves the use of rose diagrams as opposed to the more common alternative, the three dimensional polar stereographic protection, because of the relative ease with which statistics might be applied to the data. Also the rose diagram is easier to comprehend visually, and preferred orientations are more readily discerned. A disadvantage of this method was pointed out by J. T. Andrews and K. Shimizu (1966). This is because the data needs to be grouped so generalizations occur, their extent depending on the size of the class interval used.

Harris (p. 319) uses the ChimSquare Test to analyze his results because the observed and expected results in each class can be compared, and an .05 level of significance can be evaluated for the primary mode. Also this test has been used in other studies, so the results may be compared. The graph, which is used in Harris' work to determine whether or not the primary mode is significant, is adopted for use in the present study in Section b.

2. A consideration of the Long Axis Data from the Ste. Anne

ridge. As can be discerned from the past literature, a large proportion of orientation studies involve the use of varied statistical anaIytical techniques. A particularly valuable technique because of its

after S.A.Harris (1909)

Fig. 3.22
statistical validity and ease of calculation is that outlined by S. A. Harris (1969). In this work the graph showing the number of pebbles needed in the primary modal group to give a . 05 significance level Value against a given total frequency of pebbles is shown. This is adopted in the present study as Fig. 3-22.

In the Ste. Anne area at least 100 pebbles were measured from Sections $2 B$ and $3 C$ combined, $4 D, 10 C, 14 B, 16 B$ and 18D. These particular locations were chosen at random from the sites which contained pebbles. Only the long axes of pebbles were measured, 100 to 106 being taken in each case. The face was first cleaned off with a brush, the long axis was determined in situ and its orientation measured with the use of a Brunton compass. Only the orientations of pebbles in horizontal beds were measured.

The results of the orientation analysis are show on Fig. 3-23 (in pocket). Some inaccuracies occur as the pebbles are grouped in 20° arcs. The radial scale shows the number of pebbles counted, and the values for each section are shown in the figure. The modal frequencies here are to some extent obvious. Towards the southern part of the ridge the orientation of the pebbles is variable, a primary mode occurring between 60 and 80 degrees east of north, and a secondary mode between 80 and 100 degrees. At 4 d there is also a high degree of variability, but the primary modal area occurs between 120-140 degrees, the secondary node occursbetween 100-120 degrees. At Section 10c, towards the center of the ridge, the modal area is more pronounced, occurring between 80 and 100 degrees. At 1/4b more variability is again introduced, with a greater north-south orientation as opposed to the predominantiy eastwest one found in the previous 3 Sections. The primary modal frequency
occurs between 0-20 degrees and the second most populated class is between 160-180 degrees. At 16 b and 18 d there is a greater tendency towards an WNW - ESE orientation, with the primary modal frequency in 16b being between 100 - 120 degrees and secondary grequency between 120 140 degrees. In 18 d there is a very large primary modal frequency be. tween 120-140 degrees. The Table 13a is taken directly from a visual inspection of Fig. 3-23. Relative division of the rose diagram results shows certain primary, secondary and tertiary orientation modes in each section. The frequency of appearance in each orientation group, when $2 l l$ are taken together, indicates the dominance of the $100-120$ degree class. The second most dominant class is that between $0-20$ degrees. However, as stated above, there is a considerable amount of variability in the data. Therefore the significance of these values can only be ascertained if the Chi-Square Test is run. The method used is that described by Harris (Fig. 3-22) to find the significant orientation strength. The results of this test are found in Table 13b. Only in two cases, 10 c and 18d, are the primary modal frequencies high enough to have a significant orientation strength. Therefore the preferred ori- . entations are weak and rather inconclusive except at the center and northern limits of the ridge (where it is oriented NE - SW). Yet there is no consistency in the preferred orientations at 10c (80-100 degrees) and 18 d ($120-140$ degrees). Therefore there may have been no dominant current direction.

Because of the variability of the data and because the secondary modal frequency often occurs in a class contiguous with the primary class larger groupings had to be taken to attempt to achieve more significant results. The larger orientation groupings are 0-60,60-120,

120-180 degrees. The relevant data are shown on Table 13c. The test is run as follows:
a. Null Hypothesis: Ho: there is no difference in the modal frequency in the 3 orien. tation directions (using average values from six sites)

Hi: there are differences in the modal
frequencies of the three groups.
b. Test: the Chi-Square Test is used because the observed and expected frequencies occur in discrete categories.
c. Significance level: $\alpha \equiv .05$

$$
N=102.5
$$

The sampling distribution of x^{2} is computed from the formula

$$
\left.\begin{array}{rl}
x^{2}= & \sum_{i}^{k} \frac{(0 i-E i)}{E i} \\
i & =1
\end{array}\right\} \begin{aligned}
\text { where } & =\text { the observed values } \\
\mathrm{Ei}^{\mathrm{m}} & =\text { the expected values } \\
\mathrm{df} & =\text { degrees of freedom } \\
k & =\text { number of categories } \\
d f & =k-1
\end{aligned}
$$

The result of the computations $=4.39$
The relevant \mathcal{X}^{2} value (S. Seigel, p. 249) $=5.99$
Therefore the Null Hypothesis cannot be rejected, so there is no significant difference in the different modal frequencies, when all are taken together, and there is no significant orientation along the Ste. Anne ridge。

The only statistically significant orientation results are obtained from individual sections 10 c and 18 d , which have significant orientation strengths at $80-100$ degrees and $120-140$ degrees respectively or E - W and NE - SW across the riage.
3. Interpretation of the Orientation Data from the Ste, Anne Ridge and Tentative Conclusjons. Because of the lack of significant orientation strengths throughout the ridge it may be assumed that there is no significant preferred orientation in the Ste. Anne ridge, or the sample taken was too small.

However, in two locations there are significant orientation strengths involving $E-W$ and $S E-N W$ components. If the Ste. Anne ridge were an esker and therefore subjected to uni-directional flow, there should be a relatively strong northosouth component of orienta. tion, in spite of a slightly winding course. This is assuming that E. A. Rusnak's (1957) work on sand particles is applicable to the pebo bles here studied. Although, if there were no obstacles in the bed, an E - V component is equally likely. This is assuming a similarity with C. E. Johensson's (1963) work when he was discussing a delta type of situation. On this basis, therefore, no tentative conclusions can be drawn.
W. C. Krumbein (1939) found that there was a considerable scatter on pebbles from outwash deposits. The degree of scatter is not stated, but that at Ste. Anne is sinilarly large. The same author also determined that beach pebbles lay parallel to a shoreline. The pebble orientations at Ste. Anne have preferences which, exeept in the case of 14b, do not even approximately parallel the ridge.

Work by J. R. Curray (1956b) showed that beach sands align them. selves with their long axes parallel to the backwash direction. If this effect is applicable to pebbles, then there is evidence in the form of preferred orientations that the Ste. Anne ridge may have been deposited in a beach environment.

The various till fabric analyses in the literature cited in section a tend to indicate that a preferred orientation of pebbles does occur, although the study areas are much larger than the Ste. Anne ridge. Localized scatter occurs in these areas, as exemplified by the results of S. A. Harris' work (1969). So, assuming a low degree of modification by reworking processes, then basically the Ste. Anne ridge may consist of a till deposit. Although at a depth of $2 \mathrm{f}^{\mathrm{t}}$., this is extremely unlikely. The evidence of the Ste. Anne data is not strong but some orientation is preserved in the ridge.

The conclusions drawn here are extremely tentative, and more work is required on this aspect of environmental determination, both on the supposed Agassiz beach ridges and elsewhere. Hovever, the evidence suggests that the Ste. Anne ridge may be a shoreline feature or an endmoraine deposit.

Chapter 4

MICROSCOPIC ELEMENTS OF SEDIMENTARY ANALYSIS

In Chapter 4 two aspects of sedimentology are discussed.
A. The Textural Analysis of the Ste. Anne and Ponton Sands.
B. An Evaluation of the Percent Heavy Mineral Content at Ste. Anne and Ponton.
A. The Textural Analysis of the Ste. Anne and Ponton Sands

This section of the chapter is presented under the following headings:

1. Methods of particle size analysis
2. Theory of particle size analysis
a. Grade scales
b. The size distribution of sediments
c. Populations in sedimentary analysis
3. Literature on the validity of certain particle size param meters in the interpretation of depositional environments
4. The presentation of the particle size data from Ste. Anne and Ponton
5. Conclusions based on an interpretation of the data, and comparisons with the past Iiterature
6. Methods of particle size analysis. Samples of sand were taken from both the Ste. Anne and Ponton areas. In each case a homogeneous sample was obtained, complying with G. H. Otto's (1938)
sedimentation unit, as this was redefined by A_{0} V. Jopling (1964). Samples were taken such that a group of representative values may be deter. mined for the A, B, C, D and E sections at Ste. Anne. As the variation in particle size with depth is important, samples were taken from dife ferent beds at a number of sections. In the Ponton area, samples were taken from each ridge so that variations may be revealed.

A number of different methods of particle size analysis had to be considered prior to sampling. A lengthy review on the principles and mathods of mechanical analysis is found in W. C. Krumbein and F. J. Pettijohn's book (1938) "Manual of Sedimentary Petrography".

Sand size particles can be measured by the following methods: a. The microscopic measurement of loose grains (W. C. Krumbein, 1935, J. C. Griffiths, 1958, 1961) tends to be tedious compared to-other methods, hence inaccuracies are due to the small sam ple size.
b. The settling tube has the advantage of speed, but is considered to be a rather inaccurate method. D. M. Poole (1957) stated that the settling tube method used in the size analysis of sand has advantages over other techniques because the fluid media involved permits a close approximation to the hydrodynemic conditions of sedimentation. It is admitted that the sediment diameters discerned by this method are generally coarser than the equivalent sieve diameter. They are also finer than the microscopically measured diameters. C. L. Bascombe (1968) developed a new method to determine the size analysis of sediments by sedimentation. This involves the use of a manometer and transducer which follow the drop in hydrostatic pressure near the bottom of a colurn of soil suspension during sedimentation. The electrical current
is fed onto a recorder, which traces an accumalation curve. This method is as accurate as both sieving and pipotte analyses, over the $20-200 \mu$ range. A similar method, involving a Hand settling tube and event recorder, has been described by H. G. Modarresi (1968), and is also used for sand size particles. These methods are not yet widely used.
c. Sieving is considered by R. L. Folk (1964) to be prom bably the most accurate method for the general analysis of sand and gravel. It is not as fast as the settling tube method, but it has the advantage of accuracy. A close analysis can be made provided that screens of $\frac{1}{4} \phi$ intervals are used. Methods of sieve analysis are given in detail by W. C. Krumbein ad F.J. Pettijohn (1938) and R. L. FoIk (1968). Possible variations within the method itself may be reflected in the type of sievemshaker used. In 1946, A. Swineford and F. Swineford compared three types of sieve-shakers with a different action. The mechanical sieve-shaker with a jarring action was found to be superior to two others which had only a horizontal motion. Because of its accuracy, wide acceptance, and usage in general, sieve analyses were made on the sand-size fraction of the sediments from Ste. Anne and Ponton.

2. Theory of particle size analysis.

a. Grade scales. One of the first geometric grade scales was introduced by $J_{0} A_{0}$ Udden (1898). The intervals decreased by the ratio of $\frac{1}{2}$ and originally included twelve grades from 16 mn . diameter to $1 / 256 \mathrm{~mm}$. This scale was later modified by C. K. Wentworth (1922). Certain definitions were also suggested so that use of the terms pebbles sand, silt and clay might be standardized. This had been done to a lese ser extent in both Atterberg's Size Classification and the classification
used by the U. S. Bureau of Soils. In 1934 W. C. Krumbein modified the Wentworth Scale into its logarithmic equivalent by means of a transformation equation $\phi=-\log _{2} 5$ (where $5=$ the diamoter in millineters)。 The scale was developed so that conventional statistics could be applied to sedimentary data. In 1938, W. C. Krunbein considered the value of the normal phi-curve. The Phi-Scale is used almost entirely in recent work in particle size analyses. The different scales are shown on Table 13, after R. Le Folk (1968). A criticism of particular uses of the phimotation was discussed by D. A. McManus (1969). Among other errors, inaccuracies in the literature included the correlation of ϕ with the equivalent mms. instead of with the symbol 5 , and the log value was not being considered a dimensionless number. The general aca ceptance and usage of the particle size scale has been reviewed by W. F. Tanner (1969) for an S.E.P.M. report. Complimentary assets include the flexibility of the scale, which may extend to any extreme, the geometric basis allowing all parts of the size range spectrum to be observed, and the fact that the major dividing points coincide with natural class boundaries (approximately).
b. The size distribution of sediments. The size distri. bution curve, which was doveloped by W. C. Krumbein (1934, 1938) was based on the assumption that sedimentary particles are normally distributed such that a curve is easily defined by the mean and standard deviation. The logarithmic probability law (the normal phimeurve) has the same attributes. Determinations of normalcy may be made by consideration of the first 4 momentsmmean diameter ($M \phi$), standard deviation ($\sigma \phi$), skewness $\left(\alpha_{3}\right)$ and kurtosis $\left(\alpha_{4}\right)$. Once sieved, the resulting data is generally plotted on Arithmetic Probability Paper. The Cumulative

Table 13 A

The Particle Size Scale

After R. L. Folkg 1968.

Frequency (0.100%) occurs on the Y axis, and the Phisunj.t values on the X axis. The latter may be geometrically spaced, giving the size distrio bution curve an open "S" appearance. Alternatively, it may be a log scale, such that if the data is normally distributed the curve becomes a straight line. G. H. Otto (1939) was probably among the first to use a Log Probability graph. Different theoretical curves can be drawn from the distributions found on Log Probabilitity Paper. Certain of these are discussed by W. C. Krumbein and F.J. Pettijohn (1938) and E. A. Lohse (1955). S. A. Harris (1958) also found that certain deposits obeyed the Log Probability function. The resulting lines assisted in the recognition of the adjustment of present day and past deposits to their depositional enviroment.
W. F. Tanner (1958) discussed the fact that many distributions of sedimentary data are non-normal. Using nine examples, each was plotted as a zigmzag line consisting of two or more straight line segments, the inference being that more than one population is involved. The pata tern is caused by the deficiency of particles of certain sizes. Later Tanner (1959) devised the method of differences to ascertain the nature and properties of the combined populations, although Tanner does not guarantee that the procedure always works.

As will be demonstrated in a later section, the distinction of certain environments of deposition in many cases is thought to be rem flected in the third moment. G. M. Freidman (1962a) stated that duwe sands are generally positively skewed and beach sands negatively skeved. This skewness, which occurs in different forms varying with the sediment, is indicative of a non-normal distribution. In 1963, J. Brezina detailed a method of converting a normal distribution into a log-normal
type using Kapteyn's transformation. This is done graphically by means of a Log-Hydrodynamic Probability Chart, which utilises logarithms of settling velocity. The ideal LogmHydrodynamic Probability Chart would remove from the cumulative grain size distribution curves the negative skewness caused by water deposition. The deviations in the transformed distributions may then be interpreted as being due to local aberrations in the geological or hydrodynamic environment.
c. Populations in sedimentary analysis. As becomes apparent from Section b, complications to grain size anolyses occur when the geom logical populations are mixed. Early work on populations includes that of D. J. Doeglas (1946) who recognized three main types of transported detritus which are dependent on energy conditions at the site of dep. osition. The concept of geological populations has been reviewed by a number of workers, including W. C. Krumbein (1960). A. J. Moss (1962) distinguishes these discrete populations in nature, which he referred to as A, B and C. Only A, a water laid deposit, occurs in an unmixed state. Remaining deposits are made up of combinations of the three. Six combination types are common and are found in different environments, ranging from coarser to finer. J. N. J. Visser (1966) showed that cer.tain grain sizes were deficient in nature, deponding on the depositional environment. These values include ranges of $4-1$ and $1 / 8-1 / 16 \mathrm{~mm}$. for particles in fluvial deposits, 2-1 and $1 / 32-1 / 128 \mathrm{~mm}$. for marine deposits, $1 / 32-1 / 128 \mathrm{~mm}$. for lacustrine deposits, $1 / 8-1 / 16 \mathrm{~mm}$. for aeolian deposits and $1 / 8-1 / 32 \mathrm{~mm}$. for glacial deposits. Assuming that all sizes of material are produced in equal amounts, then certain size grades tend to be more abundant due to various processes transporting and modifying the grains prior to deposition. This knowledge is supported
by the fact that certain size grades are unstable during transportation. R. L. Folk (1968) graphically developed a "population" diagram by plotting mean sediment size (of all sediments) against sorting. Well sorted areas occur at -4ϕ, between 0ϕ and 4ϕ and at approximately 10ф. Badly sorted deposits occur at -2ϕ and 8ϕ. Three similar pop. ulations were recognized by D.W. Spencer (1963) since he divided geoo logical populations into gravel, sand with coarse silt, and clay. The factors which characterize a sedimentary population are therefore:
i. the mean size which is dependent, among other things, on the parent materials and the competence and capacity of the transporting media.
ii. sorting, which depends on the source material and probably the consistency of the transporting media, the type of transm port and the lack of disturbance in situ. According to R. L. Folk (1968), a beach produces better sorting values than a river for the same size values, because the currents of the former resort the same deposits comtinuously. Variations can be seen in the sorting values of sands between 1ϕ and 3ϕ. In beach sands, the standard deviation is between 0.25 and 0.5ϕ, and in river sands the standard deviation is between 0.35 and 1.0ϕ.
iii. skewness and kurtosis, considered in detail in the next section.
3. Literature on the validity of certain particle size parameters in the interpretation of depositional environments. One of the first analyses of sediments which was made in terms of a curulative frem quency distribution was writton in 1937 by W. C. Krumbein and
E. J. Aberdeen. In considering the sediments of Barataria Bay, Louisiana five main types of sedimentary curves were found, showing a characteristic variation from the deeper to the shallower parts of the bay. A form of distinction between beach and dune sands occurred in the work of W. D. Keller (1945). He postulated a differentiation of environments based on an F/C Ratio (the proportion of pebble sizes to the maximum grade size). Fromthis modern beaches are distinguished from dune sand and sandstone formations on the basis of size distribution. Ming-Shen Sun (1956) is responsible for a grain size analysis of Jacksonian sediments. Again, a relationship between mean size and energy conditions in a shoreline environment is seen. The Jacksonian Sea is thought to have been rapidly regressive because coarse beach deposits occur immediately above the fine deposits.

Following on from the work of P. D. Trask (1930) and G. H. Otto (1939), various parameters have been described by geologists to define sediments in certain environments. These are reviewed in detail in R. L. Folk's (1966) article. The parameters, mean grain size, sorting (standard deviation), skewness and kurtosis, are used to distinguish certain environments of deposition as a result of hydrodynamic variam tions. A relatively unused method has been described by R. Passega (1957). By using an approximation to the maximum grain size (c) and the median (M), CM Patterns were drawn which are seen to vary with the depositional agent. C. F. Royse (1968) recognized fluvial facies as defined by CM Patterns. Channel proximal, flood plain and basin environments were distinguished.

Sedimentary analyses of deposits in shoreline environments in clude the work of J. L. Hough (1942), J. C. Griffiths (1951),
D. L. Inman (1949) and D. L. Inman and T. K. Chamberlain (1955). In their work on the Brazos River Bar, R. L. Folk and W. C. Ward (1957) considered the quantities of sand and gravel in terms of their particle size distribution, and concluded that there is a lack of correlation between the current strength and the modal grain size of gravel and sand. Therefore the control from the source area is little affected by stream action. The parameters introduced by the authors are modified after P. D. Trask (1930), G. H. Otto (1939) and D. I. Inman (1952), are graphm ically determined, then computed as follows:
a. mean grain size

$$
\left.M z=\frac{(\phi 16 \&-\phi 50}{3}+\phi 84\right)
$$

b. sorting

$$
\sigma_{I}=\frac{(\phi 84-\phi 16)}{4}-\frac{(\phi 95-\phi 5)}{6.6}
$$

c. skewness

$$
S k_{x}=\frac{\phi 84 \phi \phi 16-2 \phi 50}{2(\phi 84-\phi 16)}-\frac{\phi 95+\phi 5-2 \phi 50}{2(\phi 95-\phi 5)}
$$

d. kurtosis

$$
\mathrm{Kg}=\frac{\phi 95-\phi 5}{2.44(\phi 75-\phi 25)}
$$

For one Brazos River Bar the mean size ranged from -1.7ϕ to $+3.2 \phi$ for different samples, the sorting from 0.40ϕ to 2.58ϕ, skewness from -68ϕ to $+.53 \phi$, Furtosis (depending on whether the sample was the channel or spot variety) was either $0.36-0.47 \phi$ or 0.96ϕ, respectively. In 1958, C. C. Mason and R. L. Folk distinguished beach, dune and aeolian flat emvironments on Mustang Island, Texas, by size analysis. The beach deposits showed a nearly normal distribution, with mean size averaging 2.82ϕ. The average dune mean was 2.86ϕ, the aeolian flat
mean was 2.83ø. Sorting was measured, using the inclusive graphic standard deviation. Beach sands are relatively poorly sorted (0.3 to 0.35ϕ), whereas dune sands have the best sorting (0.21 to 0.26ϕ) and aeolian flat samples have an intermediate sorting (0.26 to 0.28ϕ). Skewness measured the symmetry of the distribution around 0.00, with the range of skewness being $\pm \mathbf{1 . 0 0}$. Beaches have a skewness of -0.20 to -0.02ϕ, dunes or beaches -0.02 to -0.05ϕ and the aeolian flat environment was a skewness of -0.13 to -0.30ϕ. Positive skewness reflects a number of fine grains in the tail of the distribution. The kurtosis values have been converted by a normalised function,

$$
\mathrm{Kg}^{\prime}=\frac{\mathrm{Kg}}{\mathrm{Kg}-1}
$$

and are as follows: beach or dune sands are 0.47 to 0.53 (mesokurtic) and aeolian flat sands 0.55 to 0.61 (leptokurtic). This is a measure of normality since it compares the sorting in the central part of the curve with that in the tails. Therefore the three environments can be distinguished by size analysis. Mason and Folk found that the clearest distinction occurs when skewness is plotted against kurtosis.

To some extent supporting the work of Mason and Folk, S. A. Harris (1959) stated that the effect of wave action, without longshore drift, on the mechanical composition of sands mainly consists of the removal of the finest grades of material from the beach face (leading to negative skewness). According to Harris, the mechanical composition of the parent material, and not any sorting process, is the primary influence in controlling the range of grain sizes in the coarser fractions. Beach and dune sands were distinguished. F. P. Shepard and R. Young (1961) were able to distinguish between beach and dune sands on the basis of roundness, heavy mineral content (for dunes), shells and mica content for
beaches. They stated that beaches are mainly negatively skewed, and dunes positively skewed.

In 1961, G. M. Friedman discussed the use of the method of mom ments, which is defined by functions rather than graphical interpreta tions, claiming that previous graphical methods were unsatisfactory. As in other works, the dune sands are seen to be mainly positively skewed and the beach sands megatively skewed. The formulae used are given in Friedman's works. Environmental differentiation occurs when the 1st, 2nd, 3rd and 4th moments (mean, standard deviation, skewness and kurtosis) are plotted against each other in various combinations. Most of the dune sand amples have a mean grain size higher than 1.49ϕ, and 40% of the beach sand samples have mean values lower than this amount.

A review of diagnostic textural parameters of beach and river sands was written by G. $M_{\text {. Friedman in 1966. Two environments of depm }}$ osition are contrasted, the backwash and swash of the beach, where the fine particles are removed seaward, and the sediments of a river. Environmentel differentiation is determined by the calculation and plotting in various combinations of the Third Moment, Mean Cubed Deviation, Standard Deviation, Graphic Skewness, Graphic Standard Deviation, too gether with the Simple Skewness Measure and Simple Sorting Measure. Results obtained earlier by Friedman are similar to those found by D. B. Duane (1964). In a beach deposit off northern Carolina the Method. of Moments was applied to the size distribution. Skewness was seen to be environmentally sensitive due to the winnowing action produced in the sediments of beaches, littoral zones and tidal inlets. R. A. Gees (1965) also used Friedman's moment measures when considering the depositional
environment of river sands, and concluded that they were not totally reliable.

A criticism of moment measure has been written by R. B. McCamon (1962), who claimed that the low order moments do not necessarily characterize the shape of the distribution. R. L. Folk (1964) Iists the dism advantages of the Moment Method of calculation (G. M. Freidnan, 1962a and b) when compared to the Percentile-Intercept Method, which is generally a more flexible measure. The relative efficiencies of this latter method have been assessed by McCammon. The efficiencies of the different intercept methods used to obtain the mean, standard deviation, skewness and kurtosis increase with the number of percentiles used as the numerator. An example is the approximation to the mean. P. D. Trask's (1930) median ($\phi 50$) is 64% efflicient compared to R. L. Folk and W. C. Ward ${ }^{\text {is }}$ (1957) formulae (described above) which is 88% efficient. An extended numerator, introduced by $\mathrm{McCamon}^{\text {s }}$ ranging from 5-95 (increasing by increments of five) / 10, is 97% efficient since it includes the entire range of the distribution.

In considering the use of certain textural parameters, R. J. Moiola and D. Weiser (1968) stated that a plot of mean diameter versus skewness is the most sensitive method of distinguishing between beach and dune sands. Other methods distinguish river sands from beach and dune sands. J. S. Mothersill (1968, 1969) analyzed samples of longshore bars and troughs in Lake Superior, Ontario. There were found to be distinct differences between the longshore bar sands, which were better sorted and finer grained than the shoreward longshore trough sands. R. L. Folk and W. C. Ward's (1957) Percentile-Intercept Method was used. The longshore bar sands were unimodal and tended to be positively skeved
whereas the longshore trough sands were either unimodal or bimodal and tended to have strong negative skewness. The finer grains are considered to have been moved from the trough area where they were dislodged by wave action, transported lakeward by the undertow and deposited onto the longshore bars.

Similarly skemess was found to be the only single parameter which would differentiate environments of deposition along the coast of New South Wales, Australia, (J. R. Hails, 1967). This is because the beach, barrier and dune sands are all polygenetic in origin.

Later work by J. R. Hails and J. H. Hoyt (1969) demonstrates variations in the lower coastal plain of Georgia. In the barrier island environment, about 70% of the samples of the coarsest sediments were negatively skewed. A small percentage of positively skewed barrier iso land sands, in the author's opinion, reflected the diagenesis of these sands. Approximately 90% of the Holocene beach sands are negatively skewed, and 70% of the dune sands show positive skewness. The Folk and Ward measures were used.

When attempting to recognize fossil strandines in New Zealand, using the GraphicaIntercept Method of Folk and Ward, J. C. Chappell (1967) was not completely successful. The beach sands were negatively skewed, the dune sand positively skeved, although the values became less apparent in direct proportion to the increased lithification in the Pleistocene sediments.

A further alternative method of analyzing clastic sediments has beon described by B. K. Sahu (1964). It is related to the formulation of several discriminate functions, with their levels of signjficance established by multivariate discriminatory analysis, to distinguish
between environments with closely similar energy conditions. One parm ticular method, using a multivariate statistical technique, is the factor analysis of J. E. Klovan (1966). The data is analyzed by means of vectors. W. C. Krumbein and E.J.Aberdeen (1937) provided the original grain-size frequency distributions of sediments in Barataria Bay. The analysis showed that, of the three types of energy conditions prevalent in the Bay, wave energy was the most prevalent, current energy the seca ond prevalent component, while gravitational energy was comparatively minimal. In a recent article by J. H. Solohub and J. E. Klovan (1970) the various techniques of grainmsize analysis were applied to Lake Winnipeg, Manitoba, sands. The size parameters of R. Passega (1957), C. C. Mason and R. L. Folk (1958), G. M. Freidman (1961) and B. K. Sahu (1964) were insensitive in determining environments of deposition comm pared to the factor analysis method. The authors concluded that grainsize distributions reflect depositional processes rather than the environment of deposition; the two should be considered as being distinct.

4. The presentation of the particle size data from Ste. Anne

and Ponton. With such a considerable wealth of conflicting information on the relative value of methods of evaluating grainesize paremeters a a choice of suitable parameters applicable to the Ste. Anne and Ponton areas needs to be based on certain important considerations:
a. the arithmetic suitability of the method
b. the widespread use and general acceptability of the
method
c. the value of the method when an unknown depositional
agent is involved
d. the publication of comparable results so that modern and ancient depositional environments can be compared.

Reference should here be made to the previous section (3) where the relative values of the various textural parameters are discussed. Briefly, the Passega CM Pattern method does not comply with points b and c, and factor analysis does not comply with point c (J. E. Klovan, 1970 personal communication) unless a control is used. The moment methods of G. M. Friedman (1961) and R. L. Folk and W. C. Ward (1957) both comply with the points mentioned. The Folk and Ward Percentile Intercept Mathod has certain advantages in so far as it is more flezible (adjustments can be made for variations in screen size, Folk 1966), and deposits in ancient environments have been determined by this method (J. Chappe11, 1967).
a. Sand Anelysis. In total 152 sand and gravel samples were analyzed in the Ste. Anne and Ponton areas, 89 from the former location and 63 from Ponton. Standard sedimentary anelytical procedures took place in each case.
i. The clean and completely unconsolidated samples were split in a sample splitter.
ii. A nest of sieves was prepared and sieving took place at $\frac{3}{4}$ phi intervals.
iii. After 15 minutes each sample was weighed to 0.01 gram.

In each case, the weight percent data was converted to a cumulative frequency distribution and plotted on Arithmotic Probability Paper. The plots (152) were drawn up and these were grouped in the following manner. The Ste. Anne curves were seen to vary in relation
to their position across the ridge (A, B, C, D and E) and in relation to the depth from which the sample was taken. Therefore the single samm ple data was generalized so that these variations might bo distinguished in graphical form. At Ponton possible variations which may have occurred between the three ridges, R1, R2 and R3, lead to the generalization of the data on these three. An average value for the inter-ridge area is also taken.

On the original 152 plots, the Folk and Ward (1957) parameters were deduced by the Percentile.Intercept Method. The different formulae are shown on page 176. The four measurements are:
i. the graphic mean (Mz)
ii. the inclusive graphic standard deviation (σ_{I})
iii. the inclusive graphic skewness (Sk_{I})
iv. the graphic kurtosis (K_{g}) and transformed kurtosis (Kg^{\prime}) R. L. Folk (1968).

All the moments were determined from the individual graphs for each sediment. Averages were taken to correspond with variations across the ridge and with depth at Ste. Anne, and variations within the three ridges and beyond at Ponton. The generalized data, cumative frequency and moment measures are shown on Tables 14,15 and 16. All the values were calculated by means of a Hewlett-Parkard Desk Calculator.
i. Variation by Section (Ste. Anne). The first grain size distribution graph (Fig. 4-1, Table 1/4) shows some variation in size distribution across the various ridge sections. As stated in Chapter 2, A occurs on the so-called lakeward side of the beach ridge, and E on the landward size. Curve A reveals a higher frequency of finer grains than do the other curves. Marked inflexion points occur at
3.3ϕ and -2.0ϕ, with good sorting between the two, in the fine sand to very fine sand range. Relatively poor sorting characterizes the remaining distribution from the -2ϕ point, where the curve again becomes steeper. The curve representing the B sections has a relatively low frequency of finer, poorly sorted grains. The steeper portion of the curve in this case occurs between 3.3ϕ to 1.3ϕ, incorporating more medium sand than in the case of curve A. Relatively badly sorted material occurs between 1.3ϕ and -2ϕ. Curve C reveals the lowest frequency of very fine sand. The higher point of inflexion is similar to curve B, but the remainder of the curve is more evenly unsorted to approximately O申. Curve D has a similar distribution to curve C, although it has a high frequency of extremely coarse grains as well as a high frequency of fine-grained sends. Curve E is intermediate in appearance, with minor inflexions at 3.2ϕ and 1.8ϕ. It has a lower frequency of relatively badly sorted grains between $+1.8 \phi$ and -1.2ϕ, and a low proportion of coarse grains beyond this point.

Table 17 shows the variation in mean grain size with the position of sections A to E across the ridge. Relatively fine coarse sand occurs. at point $A(0.422 \phi)$ and coarser coarse sand is found at $B(0.311 \phi)$. The sand then becomes increasingly fine from C (0.5830 - coarse sand) to D (0.617ϕ - finer coarse sand) and E (0.802ϕ - very fine coarse sand). The sorting indeces are not extremely variable according to the R. L. Folk (I968) classification. All the average values of σ_{I} for A, B, C, D and E indicate poorly sorted deposits. The skewness values (Folk) may be categorized as follows. The A sections, with a skewness of $+0.031 \phi$ is said to be near-symmetrical, the B sections, skewness $-0.103 \not$, are coarsemskewed, the C sections, skewness $40.066 \not$, are near-symmetrical,

Table 14

Phi Scale	A	B	C	D	E
4.5	1.90	0.39	0.21	0.37	0.87
4.0	2.38	0.49	0.36	0.51	1.42
3.5	2.83	0.63	0.65	0.69	2.33
3.0	7.08	2.04	2.78	2.76	4.86
2.5	22.01	9.94	8.3	11.65	13.66
2.0	32.56	21.17	21.34	27.27	32.89
1.5	37.63	30.23	32.89	36.69	44.57
1.0	43.86	37.99	46.81	46.53	57.48
0.5	50.37	46.78	57.51	55.04	67.11
0.0	57.15	56.22	67.51	62.10	75.19
-0.5	63.55	59.67	73.33	67.39	79.46
-1.0	70.05	67.69	77.40	72.64	84.92
-1.5	74.43	77.90	81.35	75.70	87.74
-2.0	79.55	75.88	85.50	79.26	90.46
>2.0	98.60	96.48	99.67	93.90	98.34

Percent sand in $\frac{1}{2} \phi$ size fractions from Sections A to E.
the D sections, skewness $\$ 0.139 \phi$, are fine-skewed, and the E sections, with a skewness of $\$ 0.029 \phi$, are near-symnetrical. Therefore most of the curves are nearly symmetrical, but B has an excess of coarse material and D has an excess of fine material.

The transformed kurtosis values are also quite variable。 In the A section the average Kg^{\prime} is 0.556ϕ or leptokurtic, in the B section the value is 0.645ϕ or leptokurtic, in the C section the Kg^{\prime} is 0.511ϕ or mesokurtic, in the D section the Kg^{\prime} is 0.492ϕ or mesokurtic, and in the E section the transformed kurtosis is 0.479ϕ or platykurtic.
ii. Variation by Depth (Ste, Anne). The grain size distribution (shown on Fig. 4-2, Table 15) shows a slight variation with depth. In the figure, the values 1 to 4 refer to the depths l-1.9', $2-2.9^{\prime}, 3-3.9^{\prime}$ and greater than 4^{\prime}, respectively. In curve 1 there is a lack of sorting between $3-4.5 \phi$ and a relative abundance of grains at the fine end of the curve. Better sorting occurs between the two inflexion points at 3ϕ and 2ϕ. Lack of sorting characterizes the distribution between 2ϕ and -2ϕ, with increased sorting beyond the -2ϕ point. Curve 2 follows a similar pattern, indicating the degree of similarity between these two depths of deposits. Curve 3 is generally more open. With increasing depth, the percentage of fine grains decreases. The better sorted area again occurs between approximately $2-3 \phi$, but the point of inflexion between the fine, medium and coarse sands is not as clearly evident. Curve 4, representing the greatest depth, is the most distinct. A lower percentage of fine grains characterize the right hand side of the curve. The higher inflexion point occurs around 3.5ϕ with the steeper portion of the curve between 0.5 and 3.5ϕ. Hence the sorting is reasonably good, but over an extended mediummfine range between 0.5 and

Table 15

Generalized Cumulative Frequency Data (Ste. Anne) Variation by Depth

$\begin{gathered} \mathrm{Phi} \\ \text { Scale } \end{gathered}$	$1.1 .9^{8}$	$\stackrel{2}{2=2.9}$	$\begin{gathered} 3 \\ 3.3 .98 \end{gathered}$	$\stackrel{4}{>4}$
4.5	0.81	0.53	0.43	0.12
4.0	1.10	0.79	0.69	0.23
3.5	1.47	1.01	1.52	0.33
3.0	4.27	2.27	4.72	3.27
2.5	14.35	7.65	17.82	11.58
2.0	26.02	20.67	37.17	25.80
1.5	33.88	30.26	49.19	38.31
1.0	43.62	42.56	56.90	49.80
0.5	53.83	52.53	61.78	62.19
0.0	62.90	61.05	66.00	72.78
-0.5	67.17	66.48	68.61	76.64
-1.0	75.66	72.32	73.26	79.71
-1.5	79.36	76.50	76.15	82.77
-2.0	83.68	80.53	78.90	85.78
>2.0	98.56	97.46	93.08	99.96

-2ϕ the deposits are unsorted. Better sorting occurs above the -2ϕ boundary.

Table 18 shows that, whereas the mean grain size does decrease with depth from 0.472ϕ to 0.724ϕ, the coarsest grains are to be found approximately 2.0^{\prime} down (0.406ϕ), and finest grains at 3 to 3.9' (0.959) . All these fall within the coarse sand category. The sorting is variable becoming better with depth, except at 3 to 3.9^{1} where the best sorting occurs. According to the definitions found in R. I. Folk (1968), the sorting may be categorized as follows: the l-1. 9^{\prime} depth, with a value of 1.331 , is poorly sorted, the $2-2.9^{\prime}$ depth, with a value of 1.181ϕ, is poorly sorted, the 3-3.9' depth, with a value of 0.977ϕ, is moderately sorted and the greater than 4^{\prime} depth, with a value of $I_{6} 100 \phi$, is also poorly sorted.

The skewness values are all positive and low which indicates an excess of fine material. Verbal limits are also placed on these values by F. L. Folk. The I-I.9' depth is $+0.017 \phi$ and is described as near symnetrical. The 2-2.91 and the 3-3.9', with values of $+0.03 \phi$ and +0.025 , are also near-symmetrical. The greater than 4^{\prime} value, which is $+0.185 \phi$, is described as being fine-skewed. Therefore near-symmetry is constant with depth until the 4.0^{\prime} mark is reached, and a more positive skemness occurs.

The kurtosis indicates that the curves tend to be normally dis. tributed. The limits placed on the transformed kurtosis indicate that at a value of $0.516 p$ at 1-1.91 depth the distribution is mesokurtic, at 2-2.9' depth, with a value of 0.520ϕ, the same distribution occurs. Between 3.3.9', with a value of 0.653ϕ, the distribution is Ieptokurtic, and at 4^{\prime} and below, with a value of 0.522ϕ, the distribution is
mesokurtic.
iii. Variation by Ridges (Ponton). Gumulative grain size frequencies for the Ponton ridges are given in Table 16, and curves for the ridges and intermridge areas are shown on Fig. 4m3. One out. standing feature is the lack of variation between the 4 curves. There is a higher frequency of finer grains in the inter-ridge area and the fines become progressively less frequent from R3 to R2 and RI. Points of inflexion occur between 3.5ϕ and 2.0ϕ. The steepest portions of the curves between these two points indicate better sorting within the size range. From 3.5ϕ to $<-2 \phi$ the sediments consist of unsorted particles. There is a higher frequency of coarse grains in the inter-ridge area, and the lowest proportion of coarse grains occurs in R3 and RI.

The Table 17 indicates a variation in mean grain size with the location (Ch. 2) of the three ridges. RI may be considered to be lakeward of R2 and R3. The mean grain size of R1 is 2.427\%, a medium fine sand; R2 is 2.474ϕ, a fine fine sand, and R3 is $2.726 \neq$, a very fine, fine sand. The inter-ridge area is made up of an even finer sand of 2.758ϕ. The sorting values for the ridges do not vary considerably, $\mathrm{Rl}, \mathrm{R} 2$ and R3 are all moderately well sorted. The inter-ridge area is not as well sorted, and falls in the moderately sorted category of R. L. Folk (1968). Similarly the skewness values for the three ridges ($=0.087 \phi, 10.050 \phi$ and $+0.063 \phi$ for R1, R2 and R3 respectively) are all low positive values, falling in the nearmsymetrical category. The skewness for the interridge area ($+0.108 p$) falls into the fine-skewed category, because of its excess of fine materials.

The kurtosis value for $R 1$ is 0.530ϕ and the distribution is mesokurtic. That for R2 and R3 is 0.756ϕ and 0.563ϕ respectively and is

PHI-SCALE
Fig. $4-3$

Table 16

Generalized Cumulative Frequency Data (Ponton)

Table 17

Data in PhieUnits
A. Section Data (Ste. Anne)

Section	Mz	$\sigma_{\bar{I}}$	Sk	Kg
A	0.422	1.226	-0.031	0.556
B	0.311	1.193	0.103	0.645
C	0.583	1.085	-0.066	0.511
D	0.617	1.256	-0.139	0.492
E	0.802	1.217	-0.029	0.479
B. Depth Data (Ste. Anne)				
Depth Categories	Mz	$\sigma_{\text {I }}$	Sk	Kg
1	0.472	1.331	-0.017	0.516
2	0.406	1.181	-0.03	0.520
3	0.959	0.977	-0.025	0.653
4	0.724	1.100	-0.185	0.522

C. Ridge Data (Ponton)

Ridge	Mz	$\sigma_{\mathbf{I}}$	$\mathbf{S k}$	Kg
	2.427	0.703	-0.057	0.530
RI	2.474	0.695	-0.050	0.756
R2	2.726	0.644	-0.063	0.563
R3	2.758	0.728	-0.108	0.557

leptokurtic. The value for the intermridge area, 0.557ϕ, is also leptokurtic.
5. Conclusions based on an interoretation of the data and comparisons with the past literature. Assuming that the ridge deposits were originally morainic, as described in Chapter 2, they must represent a reworked fraction of unsorted drift deposits. The agents chiefly rea sponsible for the resorting process may be reflected in the grain size distribution of the sediments and the four moment measures.
a. Variation by section. Throughout the sections coarse sands predominate. If the source material was unsorted drift, then the predominantly coarse sand fraction may be a result of paucity of medium or fine sands in the parent material, or the relatively fine material may have been removed.

By considering the variation in the grain size characteristics by section at the Ste. Anne site it might be possible to determine whe. ther there is evidence of wind or wave action on one or both sides of the ridge, and how these may be seen to vary with distance. The size distribution curve gives no indication of systematic change from $A-E$ across the ridge, although changes in the constituent sediments do take place as indicated above in Section 4 a i. Section C has more grains in the central portion of the distribution than A, B, D or E (see Table 14 , Fig. 4-I). The coarse sand at Section A is relatively fine and at B is quite coarse. Therefore it is possible that the finer constituents were being introduced from the A or E sections of the ridge, towards the center. This is not only reflected on the somalled lakeward edge (A) but also on the landward periphery. From C through D and E this same
tendency is reflected at a more pronounced rate. Hence whatever causes the progressive coarsening of grains towards B and C does so, unequally, on either side of the ridge, that is, on both the landward and lakeward edges. W. C. Krumbein and E.J. Aberdeen (1937) suggest that the deposition of finer particles occurs in deeper water, the finest being laid dow in areas farthest removed from the currents, so there was relatively deep water on both sides of the Ste. Anne ridge. In 1966, G. M. Friedman stated that fine particles are removed by the backwasheswash action, prevalent on the shore.

If water action were prevalent, both the unj-directional flow of a stream or the twoodirectional flow in a shoreline environment (as suming a constant source material) would sort the sediment. On the Brazos River Bar (R. L. Folk and W. C. Ward, 1957) sorting was found to vary from 0.40ϕ to 2.58ϕ, or from well to poorly sorted. The sorting in the various sections across the Ste. Anne ridge has a relatively low range, from $I_{\text {. }} 085 \phi$ at C, where the material is better sorted, to $I_{\text {. }} 256 \phi$ at D where the poorest sorting occurs. The lack of substantial varize tion in the sorting values would tend to signify that the conditions of deposition were constant across the ridge. When considering the sorting of particles on Mustang Island, Texas, C. C. Mason and R. L. Folk (1958) found sorting of beach sands varied between 0.3 and 0.35ϕ, while dune particles had between 0.21 and 0.26ϕ. These values indicate a much better sorting than the ones found at Ste. Anne. However, it is evident from previous studies that sorting has not been found to be a good indicator of sedimentary environnental differentiation.

By contrast skewness has been found by a number of writers to be the only moment measure sensitive enough to reflect the environnent of
deposition of the constituent sands. The Ste. Anne data by section shows that the skemess values vary across the ridge. The positive (near-symmetrical) skewness at A is followed by the oniy negative skewe ness. At B sections (on the lakeward side of the ridge) this is fol. lowed by three more low positive skemess values at C, D and E. Hence there is a change from coarsemskeved to finemskewed across the ridge.

Skevmess values found in river deposits, namely the Brazos River Bar (Folk - Ward, 1957), showed a range between $\mathbf{0} 0.68 \phi$ to $\$ 0.53 \phi$, which is too wide a range to suggest identification. Considering the values suggested by Mason and FoIk (1958) for the Mustang Island beaches, dunes and aeolian flats, the skewness in sediments of sections A and C of the Ste. Anne ridge indicates that they may be beach or dune deposits, whereas the skewness in B and D indicates a definite beach deposit. the skewness at C is not pariticularly conclusive. Many authors, for example S. A. Harris (1959), G. M. Friedman (1961), A. O. Fuller (1962), D. B. Duane (1964), and J. R. Hails and J. H. Hoyt (1969), agree that a beach deposit either has a negative skewness (generally) or a low nearsymmetrical positive skewness because of the winnowing effect of the backwash and swash, removing the finer sand size. The longshore bars described by J. S. Mothersill (1968, 1969) also tended to be positively skewed.

The kurtosis values found across the sections are quite variable. The values do not compare with river channel kurtosis values found by Folk and Ward (1957) on the Brazos River Bar. When compared with the Mustang Island data of Mason and Folk (1958, p. 219), Section A is found to be within the aeolian flat range, Section B is indistinct and C, D and E may be either beach or dune deposits.

Therefore, although there are variations in mean grain size (suggesting a shoreline environment east and west), sorting (with one depositional agent or constant source), skewness (a shoreline or dune environment with more evidence of the lake being on the west side in the former case) kurtosis(either beach, dune or aeolian flat environment), there are no consistent variations across the ridge. The possibility of a number of depositional environments is still suggested.
b. Variation by depth. Because the deposit consists of a reworked zone, a number of different depositional environments are sug. gested. The variation in sedimentation is discussed in Chapter 3. The mean grain size tends to decrease with depth, so that finer deposits are found below and coarser deposits above. The finer deposits are laid down in a period of relative quiescence, the coarser deposits in a high energy environment. There are no comparable sizes found in the literature, so a unique depositional environment may here be ine volved.

The sorting is also inconclusive. The top two feet are compar= atively unsorted; this coincides with the coarser overall grain size and again suggests a higher energy, turbulent environment. The lower beds are better sorted which suggests a more regular sequence of depositional events. The poorer sorting, at depths exceeding 4 feet, may indicate the influence of the underlying deposits.

The skewness values are all positive and low. The lowest skewe ness is exhibited by the uppermost beds, the highest by the deepest bed. This may reflect to some extent the time involved in the reworking of the deposit, since more finer material is found at depth. With reference to the work of Mason and Folk (1958) on Mustang Island, depth category 1 at

Ste. Anne may be identified as a beach, categories 2 and 3 as a beach or dune and 4 as an aeolian flat or dune. With this evidence, and the grain size evidence, one may be lead to conclude that:
i. category 1 is a beach formed in a high energy environment (storm beach)
ii. category 2 is a reworked portion of 3 , also formed in a high energy environment (aeolian)
iii. category 3 is a beach formed in a low energy environment (foreshore)
iv. category 4 is a reworked wind deposit, on the original drift.
This is rather inconclusively supported by the kurtosis results. Beds category 1, 2 and 4 , in comparisor with the Mustang Island data, may be either beach or dune deposits, while depth category 3 lurtosis value points to an acolian flat situation.

Therefore variation in deposition occurs with depth. The evidence is not conclusive as most of the beds may be either water or wind laid deposits. Writers (quoted above) who agree that low negative skew. ness or a near-symmetrical distribution characterizes a beach deposit, might consider that the ste. Anne ridge was in fact a beach deposit. The positive skewness might equally indicate dune deposition.
c. The Ponton Ridge data. The Ponton ridge data differs in meny ways from the Ste. Anne ridge, reflecting a variation in source material and a large distance between the two areas.

As stated previously (Chapter 2), the Ponton ridge may have its sediment source in pro-glacial deposits, which have been reworked, pos. sibly by the waters of Lake Agassiz. The size distribution curves for
the three ridges and the inter-ridge area demonstrates a close similarity which reflects that the same source material was responsible for the construction of all of the ridges.

The mean grain size of the data all falls into the fine sand category. There is a variation in sand sizes throughout the ridges. The coarsersediments are found in RI and the finest sizes in R3. If wave action, as stated above, removes the finer grains, then, assuming a shoreline environment, R3 may have been exposed for a shorter period of time to the backwash and swash action than R2. RI may have been exposed for the greatest duration. The latter point is not inconsistent with the fact that RI is closest to the "lakeword" margin.

When the particle size data is compared with that of Mason and Folk's (1958) on Mustang Island the Ponton values are found to be cone sisteatly coarser than the coarsest deposit (the beach sands) recognized here. This is only by a small fraction, and the Ponton sediment may be said to more closely approximate to beach sands than to dune or aeolisn flat deposits.

The three ridges are all moderately well sorted (Folk, 1866). R3 is better sorted than R2, which in turn is better sorted than R1. The worst sorting occurs in the interaridge areas. Whatever depositional agent (assuming a constant size source) caused these features, R3 has been exposed the longest, and presumably has been subjected to the most winnowing by wind or water. This is consistent with the decline of the level of Lake Agassiz, causing a prograding shoreline sequence from $S W$ to $N E$. The sorting values are not similar to the ones found in the literature.

The skewness values are again all low and fall into the near-
symmotrical category, except the inter-ridge area, which has a higher frequency of fine grains. The skewness values do not vary systematically from ridge to ridge, for RI and R3 have the highest values. In comparison with the data of Mason and Folk (1958), the results are in determinate, with the exception of R2 which may have been formed in a beach or dune environment.

Likewise the kurtosis values do not vary systematically with the ridges. Most of the results show a tendency towardsa leptokurtic type of distribution, except RI which is mesokurtic. This would tend to indicate that RI was either a beach or dune (compared to Mason and Folk's data), R3 and the inter-ridge area tend towards the aeolion flat category. R2 is prominently leptolurtic, which may indicate that this too was formed in an aeolian environment.

Therefore there is apparently reasonable evidence at this point (if comparisons are valid) that the Ponton ridges may have been formed In a similar manner. On the basis of mean pariticle size and sorting, R3 was formed first (being exposed the longest) and RI was the last to be formed. The sends indicate that the ridges may be either beaches or aeolion features.

No clear conclusions can be reached as to a definite origin of the Ste. Anne and Ponton "supposed" Agassiz beach ridges on the basis of particle size analyses. The weight of the evidence indicates that the Ste. Anne ridge is a moroine which has been reworked in different stages by wind or water, and with a directional force perpendicular to the N - S orientation of the ridge. At Ponton, the evidence suggests either a modified aeolian or water laid deposit. The fact that R3 may have been exposed longer to modifying processes tends to indicate that the
three ridges may have been beaches in a regressive shoreline sequence. Subsequent asolian modification may also have taken place.
B. An Evaluation of the Percent Heavy Mineral Content at Ste, Anne and

Ponton

This section consists of descriptions of heavy mineral analyses taken from the Ste. Anne and Ponton ridges. The following subsections are included:

1. A review of the relevant literature on heavy mineral analysis
2. Presentation of data from Ste. Anne and Ponton
3. Tentative conclusions based on the data in relation to findings described in the past literature.
I. A review of the relevant literature on heavy minoral analysis. Much of the work done on the analysis of the heavy minerals of sedimentary rocks has tended to vary in terms of both the techniques used and the conclusions drawn from the results. Most writers tend to suggest that either heavy minerals reflect the source rock from which the sediment was derived or the process factors which are involved during transpor. tation and deposition.

A number of heavy mineral analyses have been used to evaluate the original sediment sources of the deposit in question. Attempts were made in 1942-43 by G. Rittenhouse to demonstrate the validity of the assumption that the mafic content of a sediment is a direct reflection of the provenance material. After analyzing samples from a transverse section of the middle Rio Grande Valley, Rittenhouse concluded that the size distribution of heavy minerals in a fluvial deposit depends more on the hydraulic conditions at the time and place of deposition and the
size of the minerals available than on source materials. Therefore, unless such factors as sediment size and the competence and capacity of the transporting agent are accounted for in the analysis, a true reflection of the source material can hordly be validly assessed.

Another attempt to determine the source rocks from which certain heavy minerals were derived is that completed by D.C.Carroll (1957), J. J. W. Rogers and W. F. Powell (1958). The latter authors stated that the types and distributions of heavy minerals (especially zircon) found in the Beaumont clay in Texas are largely controlled by their source rocks. Similarly W. P. F. H. de Greaff and C. F. Woensdrect (1963), in the Coruna Province of Spain, analyzed two beaches for their heavy mineral content. The Iittoral zone was divided longitudinally into three zones, with certain outstanding heavy minerals in each. This die vision accordswith the local disposition of igneous and metamorphic rocks and the heavy mineral content relates to each. The work of D. M. Poole (1958) indicates that the hydraulic index may have had a greater control on the distribution of certain heavy mineral types than would source materials.

The fact that heavy and light minerals settle at different rates, and therefore dominate in different depositional environments in relation to prevalent energy conditions, is shown in the work of B. M. Hand (1967) who used delta values to differentiate beach foreshore and dune sands. In 1941, F. J. Pettijohn related the persistence of heavy minerals in certain stratigraphic horizons with geological age, and concluded that younger arenaceous rocks have a more diverse mineral assemblage (probably by inference, a higher percentage of heavy minerals) than older rocks. This is because the less stable heavy minerals in the
older deposits tend to disappear by solution.
Perhaps it should be concluded that, when determining the source rocks from which heavy minerals are derived, extreme care should be exercised because of the variations inherent in the transportation and sedimentation (and possible further reworking) of the deposit.

As regards the aim of the present work, to determine the en vironment of deposition of supposed Lake Agassiz beach ridges, it is proposed that heavy mineral studies, not necessarily of a detailed nam ture, should be used for environmental differentiation. This type of work has previously been undertaken by J. S. Bradley (1957) on Mustang Island, Texas. Here, barrier island sediments are distinguished from gulf sediments on the basis of their heavy mineral content ($0.4 .5 \%$ and 0.05%) by volume, respectively. The berm zone is intermediate in value between the two (0.34%).
2. The presentation of data from Ste Anne and Ponton. The samm ples for heavy mineral analysis from Ste. Anne and Ponton were teken ac. cording to the stratified method described in Chapter 2. Not all the sections were sampled. Certain sections were eliminated because of the unsuitability of the sedinent. From the remaining sections samples were chosen at random. The laboratory procedure was as follows:
a. The sample was sieved so that 4 fractions corresponding to the amount of sediment retained on the $35,50,70$ and 100 sieves was used.
b. The sample was passed through a sample splitter.
c. Half the sample was then washed by decantation and dried thoroughly.
d. The magnetic minerals were removed by a hand magnet.
e. The sample was run through a Fronz Isodynamic Magnetic Separator twice to ensure maximum separation.
f. The light and heavy minerals were weighed separately to determine the percentage of each. The results obtained are found in Tables 18 and 19.

No mineralogical check was made on the heavy minerals since this is not necessarily consistent with the determination of the environnent of deposition.

The results given in Table 18 (Ste. Anne) show an average value for the heavy mineral content is relatively high in the 35 sieve, and relatively low in the 70 sieve. The average percent of heavy minerals in the Ste. Anne area is therefore between 4.28 and 8.49. In Table 19 (Ponton) the values show a much higher percent than the ones for Ste. Anne. As on the ste. Anne ridge, there is a similar proportional decrease from the sieve 35 (19.31% at Ponton) to sieve 70 (13.93\%) and increase to sieve 100 (20.91\%) 。

Tests were run on the data to determine what possible differences in the values related to the sieve sizes, rather than to the heavy mineral content itself. The two extreme sieve sizes were used, because any significant difference should be closely reflected in these. Details of the test are shown on Table 20 and 21.
a. Null Hypothesis: Ho: the heavy mineral content of the 35 sieve does not differ from that in the 100 sieve

Hi: the mineral percent in the 35 sieve is different from that in the 100 sieve

Table 18

Heavy Mineral Data (Ste. Anne)

Section Number	Percent Heavy kinerals (sieve sizes)			
	35	50	70	100
2 B III	7.407	4.486	4.310	9.396
2 I I	8.832	16.626	4.208	5.639
30 I	7.321	5.028	4.102	8.312
4 DII	8.019	3.259	4.191	7.090
4 D IV	7.826	4.920	7.829	4.107
6 C II	8.281	6.725	3.712	4.739
7 BI	8.311	4.630	4.781	8.256
\% I	8.100	5.309	3.768	5.855
8 A II	8.327	5.061	3.047	4.507
8D III	9.712	4.681	3.619	4.719
8 E V	12.353	5.313	4.154	6.254
90 II	8.882	4.560	3.269	4.638
160 II	8.576	6.725	4.382	4.101
17 BI	6.857	4.630	4.558	16.073

From an average depth of 2-3 ft.

$$
\begin{aligned}
& \text { 妾 } 35=8.4860 \\
& z=50=5.8538 \\
& \% 70=4.2807 \\
& \% 100=6.6919
\end{aligned}
$$

Total number analyzed a 56

Table 19

Heavy Mineral Data (Ponton)

Section Number	Percent Heary Minerals (sieve sizes)			
	35	50	70	100
-400B	18.703	12.644	13.712	33.524
- 2000	18.264	14.028	11.396	15.028
-400E	19.276	12.728	10.554	14.990
- 4005	21.624	12.282	14.181	15.623
200A	26.236	10.763	15.926	14.850
200 H	16.505	10.836	12.083	13.506
200M	25.801	25.255	8.742	12.412
600 E	20.146	18. 212	17.195	16.528
900A	9.813	13.791	1/40368	13.082
900G	16.508	13.149	30.339	13.150
9002	10.01	12.428	12.475	13.064
13000	28.540	15.482	10.714	10.394
1300 J	19.545	16.187	15.381	15.532

From an average depth of $2-3 \mathrm{ft}$.

$$
\begin{aligned}
& \text { 푸 } \quad 35=19.305 \\
& \text { ㅍ } \quad 50=14.137 \\
& \text { * } 70=13.928 \\
& \mathrm{E} 100=20.910
\end{aligned}
$$

Total number analyzed=52

Table 20

Wilcoxon Matched Pairs Signed Ranks Test

Table 21

Wilcoxon Matched Pairs Signod Ranks Test

Ponton					
	35	100	d	Rank of di	Rank with less frequent sign
-400B	18.70	33.52	-14.82	-12	-12
-4006	18.26	15.03	3.23	+3	
-400E	19.28	14.99	4.29	+8	
-400L	21.62	15.62	6.00	+9	
200A	26.24	14.85	11.39	410	
2 OH	16.51	13.51	3.00	$\dot{+1}$	
200M	25.80	12.41	13.39	+17	
600 E	20.15	16.53	3.62	¢ 6	
900A	9.8.1	13.08	-3.27	-4	-4
900G	16.51	13.15	3.36	+5	
900L	10.01	13.06	-3.05	-2	-2
13000	28.54	10.39	18.15	$+12$	
1300 J	19.55	15.53	4.02	+7	
					$T=18$
	$\begin{aligned} & T=21 \\ & \mathbb{N}=13 \end{aligned}$				
	At $\alpha=0.5=17$				
	\therefore There is no significant difference between the percentages in the 35 or 100 sieve.				

b. The Wilcoxon Matched Pairs Signed Ranks Test was chosen because the semples were related.
c. The values for the tests are found in Tables 20 and 21 .
d. In both ceses, therefore, it is necessary to accept the Null Hypothesis and assume there is no variation in heavy mineral content with grain size.

From the values found on the Ponton ridges (Table 22) the re. sults of the samples taken from each ridge were computed separately to determine any possible variation in the heavy mineral content between ridges 1,2 and 3. The results are tabulated as follows:

Table 22

Ridge		Sieve Size		
	35	50	70	100
R1	19.14	16.66	11.80	13.70
R2	18.39	14.22	17.11	14.74
R3	20.31	13.34	13.22	17.38

The average heavy mineral percent for RI is 15.33%, for R2 is 16.12% and for R3 is 16.10\%. One outstanding feature is that there is very little variation in the overall heavy mineral content between R2 and R3 and only a slight variation between these and RI.
3. Tentative conclusions based on the data in relation to findings described in the past literature. A particularly characteristic feature in the results is the abundance of heavy minerals in the

Ste. Anne and Ponton ridges. These far exceed the values obtained by J. S. Bradley (1957). Therefore comparison of eavironments, based on the percentage of heavy minerals, cannot be made.

Following the work of F. J. Pettijohn (1941), a younger deposit may contain a greater diversity of heavy minerals than an older one of similar environmental deposition. Therefore it would seem plausible that the Ponton ridge is younger than the Ste. Anne ridge. Also, if this inference is correct, RI may have been formed before R2 and R3. Although the short length of time here taken in sedimentation could negate this conclusion.

In terms of sediment sources, it is perhaps valid to suggest that the Ponton ridges may have greater proximity to the source of heavy minerals than does the Ste. Anne ridge. Heavy minerals in both areas probably originated from the Predambrian Shield areas, but are most probably derived by reworking of till. So, because of the differences in heavy mineral content, the Ponton sediments may be further away from their source material than those at Ste. Anne. The assumption, following the work of G. Rittenhouse (1942-3), that hydralic conditions at the time of deposition are more important than source areas cannot be accurately checked in the case of the Ste. Anne and Ponton data. As seen by the stam tistical test run, there is no apparent significant relationship between the sieve sizes used and the respective heavy mineral contents. Nevertheless, taking the first three sieve sizes only (35-70), there is a decrease in the average percentage of heavy minerals in both areas. So there are more heavy minerals in the coarser size grades. Energy conditions may have been more important controls than the source areas.
B. C. Rao (1957) suggested that there is a dense accumulation of heavy minerals in the littoral environment caused by the reworking of
the sands and the washing away of light minerals during certain periods of coastal erosion and deposition. The accumulation of heavy minerals in the case of ste. Anne would suggest reworking by some agent that had caused the minerals to be laid down in laminations, as described in Section A of Chapter 3. Following the work of B. M. Hand (1957), the evidence of laminations would strengthen the fact the Ste. Anne ridge was made up of vater laid deposits. The higher heavy mineral content at Ponton also suggests reworking by some agent, possibly either water or wind.

Definite conclusions regarding the emviroments of deposition of the ridges at Ste. Anne and Ponton cannot be made on the basis of the percent heavy mineral content. Some evidence points towards a littoral environment in both cases (simply based on the noted accumulation of heavy minerals). More reworking is indicated in the Ponton case because the accumulation there is higher.

Chapter 5

CONCLUSIONS

The aims of this thesis, as stated in Chapter I_{9} were to provide meaningful criteria for the recognition and distinction of certain examples of supposed Lake Agassiz beach ridges, and to discern the origin, if possible, of the ridges at Ste. Anne and Ponton.

Certain authors, quoted in Chapter 1 , have amassed facts on the Lake Agassiz beach ridges in Manitoba, but have not stated how these features may be specifically identiffed in the field. Although the samm ple at Ste. Anne and Ponton is very small, and perhaps not representative of the population of beach ridges as a whole, a number of characteristics exist which provide evidence of the original environment(s) of deposition.

When considering the morphology, the overall helght of the ridges over a short distance varies. In the case of Ste. Anne the Iongitudinal variation is quite small, being only 5.5^{\prime} in 2.5 miles; steeper height variations occur at Ponton, where at RI there is a difference of 12^{\prime} in 1900', and R3 has a difference of $21^{\prime \prime}$ in 1900'. The maximum variation can be seen in R2 with $21^{\prime \prime}$ in 1900°.

The ridges may be smootbly rounded in form with the slope angles equal on either side, as in the case of R2 at Ponton, or, more often, they may have one slope steeper than the other, as in the case of RI and R3 at Ponton and the ridge at Ste. Anne.

The maximun width varies for the measured portions of the ridges. The widest ridge is RI at Ponton with a wiath of 197'。 R2 is 13 ' across.
and $R 3$ is 100 ft . across at the widest point. The Ste. Anne ridge is the widest feature, having a maximum width of $608 \mathrm{ft}^{t}$. and average width of $344 \mathrm{ft}^{\mathrm{t}}$ 。

When the above facts are cormared to morphologically similar feam tures of known origin, described in the literature, certain tentative conclusions can be made. The fact that the slope angles on both sides of the Ste. Anne ridge are unequal indicates that it cannot be identified as an esker or a transverse dune. It may be a morainic feature or some land form found in the beach, off-shore bar or berm type of environment. Similar possible environments of deposition are suggested for the ridges at Ponton. R2, because of the equality of slopes on either side, may also be an esker.

The sediment descriptions are variable and there is little similarity between the stratigraphy in the Ste. Anne ridge and that found at Ponton. At Ste. Anne coarser particles tend to occur towards the center of the ridge, in the C, B and D sections. These become gradually finer towards the A sections on the western presumed "lakeward" side of the ridge and towards the E sections on the eastern "landward" side. Assuming the entire area consists of a morainic ridge, the reworking has caused coarser particles to accumulate towards the center of the ridge, while removing the finer deposits. The sizes of the coarse particles generally occur within the granule-pebble range, therefore a high energy environment is suggested. Possibly a storm beach would fulfill this type of requirement. By inference, the finer deposits would then be removed to the sides by the winnowing effect and be deposited in deeper water.

Immediately below these coarser sediments and again towards the center of the ridge, medium to coarse sands are found which are intermittently interbedded with silty clay. These may represent the type of
sands found elsewhere as foreshore deposits, and the silty clay may indicate minor fluctuations in lake level. If this were so, then the fore. shore sands were deposited at an earlier stage than the overlying coarse sediments, which is accordant with the theory of a prograding shoreline sequence. The evidence for a shoreline environnent is supported by the greded bedding, sorting and laminations which occur. The high angle stratification also supports the above hypothosis. The same evidence suggests that the Ste. Anne ridge may have been doposited as an esker. The ridges at Ponton, by contrast, have a degree of homogeneity in their stratigraphy. They consist of medium to fine sands, with the occasional pebble or granule horizons, and very slight indications of lamination in R2. Therefore there is a lack of stratigraphical ovidence which might suggest an environment of deposition. There is nothing to favor the theory that any of the ridges is an esker. The homogeneous sand is consistent with an aeolian environment. The material may have been sorted by freeze-thaw activity in a periglacial environment, and the boulders which occur on the terraced portions of the ridges may owe their positions to the ice-push effect. The latter would in turn suggest that the ridges were constructed during, or prior to, lake formation.

Sphericity values were determined for certain samples mainly at Ste. Anne, and for two samples only at Ponton. For the Ste. Anne ridge, the range of sphericities is between 0.668 and 0.895 ; this is not dism similar to the value obtained from the Ponton ridges, (R2 and R3), where an average sphericity of 0.728 was obtained. As well as the absolute values, certain trends were recognized. The generalized trend of a de. crease from north to south in the overall sphericities is evidence to suga gest a shifting of grains, possibly due to longshore drift, or other
current offects in a beach environment. The Ste. Anne pebbles were plotted on sphericitymorm diagrams which, when compared to others in the Iiterature, indicated that the deposits here, because of the constituent spherical (compact) and rodeshaped pebbles, may owe their shape to the backwash and swash action. However the same evidence could indicate that the ridge was formed in a fluvial enviroment. This is substantiated by the decrease in the sphericity values of limestone rapidly with trans. portation, and because of the east - west variation in sphericity across the ridge.

Roundness indeces were determined for the Ste. Anne ridge. According to the Krumbein Scale, the value varies from 0.354 to 0.571 , and between 222 and 601 by the Callieux Method. The roundness values are more consistent which contrasts with the sphericity measurements, ree flecting the different samples which were used in each case. Similar trends are described in the literature and, assuming a beach environment, the current direction may have been northwards. The values obtained also indicate that the rounding occurred in beach deposits.

The long axis orientation of pebbles taken from certain sections. in the Ste. Anne ridge is, in many cases, statistically insignificant. Only two significant directions were found. These were in the ranges of 80-100 degrees and 120-140 degrees in the central and northern portions of the ridge, respectively. When compared to long axis studies in the literature, the Ste. Anne ridge may not be an esker. There is no evidence of a north - south component suggesting uni-directional flow. In previous works, beach pebbles have been reported as lying parallel to the shoreline. This trend is not significantly shown at Ste. Anne. There is evidence that the pebbles may have been deposited in a beach
environment, if they (like sands) have their long axes parallel to the backwash direction. The high degree of scatter in the data is similar to that found in outwash deposits.

Textural analyses were perforned on samples from both the ste. Anne and Ponton ridges. The Moment Measures which are cited in the Interature are used as evidence for the depositional enviromments of sediments. These are the Mean, Standard Deviation (Sorting), Skewness and Kurtosis. These measures vary with respect to section position on the ridge at Ste. Anne, and with respect to depth. The variations, $A=E$ across the ridge, indicate that coarser material occurs towards the cen ter. The mean grain size in the various sections suggests a shoreline environment, the sorting is inconclusive, the skewness indicates a shoreline or dune environment, and the kurtosis suggests either a beach, dune or aeolian flat environment. Between 2 and 2.9^{8} the sediments may have been deposited in an aeolian environment. Between 3 and 3.9^{8} the sedi. ments show evidence of having been deposited as a beach, formed as a lowenergy foreshore deposit or aeolian flat. Below 4^{\prime} there is evidence of aeolian modification of the original till (parent material).

When considering particle size data, the Ponton sediment may more closely approximate beach sands than dune or aeolian flat deposits. The sorting varies from RI to R3, the latter having been exposed the longest, which is consistent with a decline in Lake Agassiz from SW to NE. The skewness values are mainly indeterminate, except in the case of R2, which may have been formed in a beach or dune environments. Similarly, the kurtosis values indicate that the ridges were deposited either as beaches or dunes.

The heavy mineral data is inconclusive. The evidence points to
reworking, which is more prevalent in Ponton than at the Ste. Anne ridge.
On the basis of morphology the ste. Anne ridge may be a morainic feature or some landform found in the beach, offshore bar or storm beach environment. The storm beach, or off shore bar, hypothesis is supported by a study of the stratigraphy in the central sections since finer mam terial is found on the east and west edges, indicating that deeper water surrounded the feature. Off-shore bar or foreshore sands are found below the coarse storm beach sediments. The same bedded sequence could be evim dence that the ridge is an esker.

The generalized trend on the sphericity data is not dissimilar to that found to result from longshore drift. But the sphericity form diam grams indicate that a fluvial environment is also plausible. The round. ness values decrease in an opposite direction from the sphericities in dicating a different current direction. The values indicate that the rounding occurred in beach deposits. Evidence from the long axis ori. entation is inconclusive but suggests that the pebbles were deposited as outwash or glacial till.

Different evidence again is derived from the textural analyses. Some parameters suggest a shoreline or dune environnent, others indicate deposition within a dune or aeolian flat exvironment. Deposition as a beach is suggested for the upper coarse deposit, and the remainder may have been subjected to either water or wind reworking. The reworking is also suggested by the heavy mineral analyses.

The evidence tends to be contradictory and therefore inconclusive. The Ste. Anne ridge is a modified till deposit, reworked by wind and water. Evidence for the latter is stronger bacause of the coarse pebble horim zons, suggesting a high energy environment. The ridge may bs polygenetic
in origin.
The morphology of the Ponton ridges differs. All the three ridges may have been formed as a beach or offushore bar. In addition R2 may have been deposited as an esker. The stratigraphy in all three Ponton ridges is made up of homogeneous sands, consistent with an aeolian environment. The degree of sorting, and the fact that boulders are perched on the terraces, suggests modification in a periglacial environment.

The textural analyses show the sediment more closely resembles beach than dune or aeolian flat sands, although there is some suggestion that each of the ridges may have been deposited as beaches or dunes, The heavy mineral analyses indicate a high degree of reworling, which could take place either by water or uind.

As with the findings at'Ste Anne, the results for Ponton are inconclusive. There is evidence to suggest a beach or an aeolian environ. ment of deposition. The ridges mey be polygenetic.

SELECTED BIBLIOGRAPHY

$\begin{aligned} & \text { Andel, J. H. Van. } \\ & \text { 1959: } \end{aligned}$	Reflections on the interpretation of heavy mineral analysis; Journ. Sedimentary Petrology, Vol. 39, No. 9, pp. 153.163.
Andrews, J. T. and 1966:	Shimizu, K_{0} Three dimensional vector techniques for analyzing till fabrics. Discussion and fortran program; Geogr. Bull., Vol. 8, No. 2, pp. 151.-165.
Andrews, J. T. a 1966:	Smithson, B, B. Till fabrics of the cross valley moraines of north central Baffin Island, Northwest Territories, Canada; Geol. Soc. Amer. BuII., Vol. 77, pp. 271-290.
$\begin{aligned} & \text { Antevs, E. } \\ & \text { 1931: } \end{aligned}$	Late glacial correlations and ice recession in Manitoba; Geol. Survey of Canada, Memoir 168, No. 2283, no pp.
$\begin{aligned} & \text { Aschenbrenner, B. } \\ & \text { 1956: } \end{aligned}$	A new method of expressing particle sphericity; Journ. Sedimentary Petrology, Vol, 26, pp. 15m3.
Bascom, W. N. 1951:	The relationship between sand size and beachuface slope; Trans. Amer. Geophysical Union, Vol. 32, No. 6, pp. 866.874.
$\begin{aligned} & \text { Bascombe, C. L. } \\ & \text { 1968: } \end{aligned}$	A new apparatus for recording particle size distribution; Journ Sedimentary Petrology, Vol. 38, No. 3, pp. 878-884.
$\begin{aligned} & \text { Beal., A. } 0 . \\ & \text { 1968: } \end{aligned}$	Sedimentary processes operative along the western Louisiana shoreline; Journ. Sedimentery Petrology, Vol. 38 , No. 3, pp. 869-877.
Bhattacharya, N. 1963:	Weathering of glacial tills in Indiana, II. Heavy minerals; Journ. Sedimentary Petrology, Vol. 33, pp. 789-794.

Biederman，E．W． 1962：

Distinction of shoreline environments in New Jersey； Journ．Sedimentary Petrology，Vol．32，pp．181－200．

Blatt， $\mathrm{H}_{\text {。 }}$ 1959：

Effect of size and genetic quartz type on sphericity and form of beach sediments，northern New Jersey； Journ．Sedimentary Petrology，Vol．29，pp．197－206．

Black，R． F 。 1940：
＂Permafrost＂Ch． 14 in P。D。Trask＇s Applied Sedi－ mentation；Wiley and Sons，New York，pp．247－255．

Blenk，M
1960：
Ein Beitrag Zur morphometrischen Schotteranalyse； Zeit．Fur Geomorphologie，N．F．g Heft I，pp．202－242， quoted in C．A．M．King and J．Buckley， 1968.

Bluck，B． 1967：

Sedimentation of beach gravels，examples from South Wales；Journ．Sedimentary Petrology，Vol．37，No．1， p． 128.

Bradley，J．S． 1957：

Brezina，J． 1963：

Kapteyn＇s transformation of grain size distribution； Journ．Sedimentary Petrology，Vol．33，No．4，pp．931． 937.

Differences of marine and subaerial sedimentary en－ vironments by volume of heavy minerals，Mustang Island，Texas；Journ．Sedimentary Petrology，Vol．27， pp．116－125．

Burke，K．and Freeth，S．J．
A rapid method for the determination of shape， sphericity and size of gravel fragments；Journ．Sedi－ mentary Petrology，Vol．39，No．2，pp．797－798．

Carr，A．P．
1969：

Carroll，D．C． 1957：

Size grading along a pebble beach，England；Journ． Sedimentary Petrology，Vol．30，No．1，pp．297－311．

A statistical study of heavy minerals in sands of South River，Augusta County，Virginia；Journ．Sedi－ mentary Petrology，Vol．27，No．4，pp．387－404．

Catacosinos，P．A． 1965：

Tables for the determination of sphericity and shape of rock particles；Journ．Sedimentary Petrology， Vol．35，No．2，pp．354－365．

Chamberlain, T. C. 1887:

The upper beaches and deltas of the glacial Lake Agassiz; U. S. Geol. Survey, Bull. 39, 84 pp.
Chappoll, J. 1967:

Recognizing fossil strandlines from grain size analysis; Journ. Sedimentary Petrology, Vol. 37, pp. 157.165.

Chorley, R. J. 1959:

The shape of drumlins; Journ. Glaciology, Vol. 3, pp. 339-344.

Coleman, A 1954:

The use of the heightarange diagram in morphological analysis; Geogr. Studies, Vol. 1, pp. 19-26.

Curray, J. R. 1956a:

Analysis of twomimensional orientation data; Journ. Geology, Vol. 64, pp. 117.131.

Curray, J. R. 1956b:

Dimensional grain orientation in recent coastal sands; Amer. Assoc. Petrol. Geologists Bull., Vol. $40, \mathrm{pp} .2440-2456$.

Davies, J. L_{0}
1957: 1957:

The importance of cut and fill in the development of sand beach ridges; Aust. Journ. Science, Vol. 20, pp. 105-171.

De Graaff, W. P. F. T. and Woensdrect, C. F. 1963:

Heavy mineral analysis of the beaches between Ria de Lives and Ria de Muros Y Moya, La Coruna, Spain; Estudios Geologicos, Vol. 19, pp. 9-14.

Doeglas, D. J. 1946:

Interpretation of the results of mechanical analyses; Journ. Sedimentary Petrology, Vol. 16, No. 1, pp. 19-40.

Dolan, R. and Ferm, J. C. 1967:

Temporal precision in beach profiling; Prof. Geogr., Vol. 19, No. I_{9} pp. 12-14.

Dreimanis, A_{0} and others 1957:

Heavy mineral studies in tills of Ontario and adjacent areas; Journ. Sedimentary Petrology, Vol. 27, pp. 148-161.

Dryden, A. L. 1931:

Accuracy percentage representation of heavy mineral frequencies; Nat. Acad. Science Proceedings, Vol. 17, pp. 233-238.

Duane, D. B. 1964:

Significance of skewness in recent sediments, Western Pamlico Sound, North Carolina; Journ. Sedimentary Petrology, Vol. 34, pp. 864-874.

Ellis, J. H_{0} 1938:

The soils of Manitoba; Manitoba Economic Survey Board, Univ. of Manitoba, 112 pp .

Elson, J. A. 1961:

Soils of the Lake Agassiz region in "Soils of Canada", ed. R. F. Leggett; Royal Soc. Canada Spec. Publ., Ottawa, pp. 51.82.

Elson, J. A. 1962:

History of glacial Lake Agassiz in "Problems of the Pleistocene Epoch and Arctic Area"; McGill Univ., Museum Publication, Vol. 2, No. 2., pp. 1-16.

Elson, J. A. 1966:

Geology of Lake Agassiz, part III, in "Life, Land and Water", ed. W. J. Mayer-Oakes; Jniv. of Manitoba Press, pp. 37-96.

Embleton, C. And King, C. A. M.
1965: "Glacial and periglacial geomorphology;" Arnold, London. 608 pp.

Emery, K. O. and Stephenson, R。E.
1950: Laminated beach sands; Journ. Sedimentary Petrology, Vol. 20, pp. 220-223.

Flinn, D. 1958:

On tests of significance of preferred orientation in three dimensional fabric diagrams; Journ. Geology, Vol. 66, pp. 526-539.

Folk, R. $L_{\text {. }}$ 1966:

A review of grain size parameters; Sedimentology Elsevier, Vol. 6, pp. 73-94.

Folk, R. I. 1968:
"Petrology of Sedimentary Rocks"; Hermphills, Univ. of Texas, Austin, Texas, 170 pp .

Folk, R. I. and Ward, W. C. 1957:

The Brazos River Bar: A study in the significance of grain size parameters; Journ. Sedimentary Petrology, Vol. 27, pp. 3-27.

Friedman, G. M. 1961:

Distinction between dune, beach and river sands from their textural characteristics; Journ. Sedimentary Petrology, Vol. 31, No. 4, pp. 514-529.

Friedmen, G. M. 1962a:

On sorting, sorting coefficients and the log nor. mality of the grain size distribution of sandstones; Journ. Geology, Vol. 70, pp. 737-753.

Friedmen, G. Mo 1962b:

Comparison of moment measures for sieving and thin section data in sedinentary petrological studies; Journ. Sedimentary Petrology, Vol. 32, pp, 15-25.

Friedman, G. M. 1966:

Diagnostic textural paramoters of beach and river sands, in geol. survey of America, abst. for 1966; Geol. Soc. Amer., Spec. Paper 87, 366 pp.

Friedman, G. M. 1967:

Dynamic processes and statistical parameters compared for size frequency distribution of beach and river sands; Journ. Sedimentary Petrology, Vol. 37, pp. 327-354.

Gees, R. A. 1965:

Moment measures in relation to the depositional environments of sands; Eclogae Geological Helvetiae, Vol. 58, pp. 209-213.

Ginsberg, R. N. 1956:

Environmental relationships of grain size and constituent particles in some South Florida carbonate sediments; Amer. Assoc. Petroleum Bull. . Vol. 40, No. 10, pp. 2364-2427.

Gregory, K. J. and Brown, E. H.

Data processing and the study of landforms; Zoit. Fur Geomorphologie, Band 10, Heft 1, pp. 237.263.

Griffiths, J. C. 1951:

Size versus sorting in some Caribbean sediments; Journ. Geology, Vol. 59, pp. 211.243.

Griffiths, J. C. 1961:

Measurements of the properties of sediments; Journ. Geology, Vol. 69, pp. 487-498.

Hack, J. T. 1960:

Interpretation of erosional topography in humid temperate regions; Amer. Journ. Science, Vol. 258A, pp. 80-97.

Hails, J. R.
1967: Significance of statistical parameters for dis. tinguishing sedimentary environments in New South Wales, Australia; Journ. Sedimentary Petrology, Vol. 37, No. 49 pp. 1059-1069.

Hails, J. R. and Hoyt, J. H.
1969: The significance and limitation of statistical param meters for distinguishing ancient and modern sedimentary environments of the lower Georgia coastal plain; Journ. Sedimentary Petrology, Vol. 39, No. 2, pp. 558-580.

Hand, $\mathrm{B}_{\mathrm{o}} \mathrm{M}_{\text {。 }}$ 1967:

Differentiation of beach and dune sands using settiling velocities of light and heavy minerals; Journ. Sedimentary Petrology, Vol. 37, pp. 511re520.

Harris, S. A. 1958:

Probability curves and the recognition of adjustment to depositional environment; Journ. Sedimentary Petrology, Vol. 28, No. 2, pp. 151-163.

Harris, S. A. 1959:

The mechanical composition of some intertidal sands; Journ. Sedimentary Petrology, Vol. 29, pp. $412=424$.

Harris, S. A. 1969:

The meaning of till fabrics; The Canadian Geogr., Vol. 12, No. 49 pp. 317-337.

Harrisong P. W. 1957a:

A clay till fabric, its character and origin; Journ. Geology, Vol. 65, No. 3, pp. 275-308.

Harrison, P. W. 1957b:

A new technique for three-dimensional fabric analyses of till and englacial debris containing particles 3 - 40 mm . in size; Journ. Geology, Vol. 65, No. 1, pp. 78-104.

Hastenrath, S. L. 1967:

The barchans of the Arequipa regions, Southern Peru; Zeit. Fur Geomorphologie, Heft 3, Band 11, pp. 300. 331.

Holmes, A.
1964: "Principles of Physical Geology", revised edition; Nelson, London, 1288 pp .

$\begin{aligned} & \text { Hoppe, G。 } \\ & \text { 1961: } \end{aligned}$	The continuation of the Uppsala esker in the Bothnian Sea and ice recession in the Gavie area; Geografiska Annaler, Vol. 43, pp. 329-335.
$\begin{aligned} & \text { Hough, J. L. } \\ & \text { 1942: } \end{aligned}$	Sediments of Cape Cod Bay, Massachusetts; Journ. Sedimentary Petrology, Vol. I2, pp. 10-30.
$\begin{aligned} & \text { Hoyt, J. M。 } \\ & \text { 1962: } \end{aligned}$	High angle beach stratification, Sapelo Islands, Georgia; Journ. Sedimentary Petrology, Vol. 32, No. 2, pp. 309.311.
Hume, J. D. and Scha 1964:	alk, M. The effects of ice-push on arctic beaches; Amer. Journ. Science, Vol. 262, No. 2, pp. 267-273.
Imbrie, J. and Van 1964:	Andel; T. H_{A} Vector analysis of heavy mineral data; Geol. Soc. Amer. Bull. ${ }^{2}$ Vol. 75, pp. 1131.1156.
$\begin{aligned} & \text { Inman, D. I. } \\ & \text { 1949: } \end{aligned}$	Sorting in the light of fluid mechanics; Journ. Sedimentary Petrology, Vol. 19, pp. 51.70.
$\begin{aligned} & \text { Inman, D. L. } \\ & \text { 1952: } \end{aligned}$	Measures for describing the size distribution of sediments; Journ. Sedimentary Petrology, Vol. 22, pp. 125-145.

Inman, $D . L$. and Chamberlain, T. $K_{\text {. }}$ 1955:

Particle size distribution in near shore sediments in "Finding Ancient Shorelines", eds. J. H. Hough and H. W. Menard; Soc. Econ. Palaeonotologists, Spec. Publ. 3, pp. 106-129.

Johensson, C. E. 1963:

Orientation of pebbles in running water, a laboram tory study; Geografiska Annaler, Vol. 45, No. 2-3. pp. 85-111.

Johnston, W. A. 1946:

Glacial Lake Agassiz with special reference to the mode of deformation of the beaches; Geol. Survey Canada, Bull. F, Ottawa, 20 pp .

Jones, T. A. 1968:

Statistical analyses of orientation data; Journ. Sedimentary Petrology, Vol. 38, No. I, pp. 61.67.

Jopling, A. V. 1964:

Interpreting the concept of the sedimentation unit; Journ. Sedimentary Petrology, Vol. 34, No. 1, pp. 165-174.

Karlstrom, N. V. T. 1952:

Improved equipment and techniques for orientation studies of large particles in sediments; Journ. Geology, Vol. 60, pp. 489-492.

Keller, W. D. 1945:

Size distribution of sand in some dunes, beaches and sandstones; Amer. Assoc. Petroleum. Geolists Bull., Vol. 29, pp. 215-221.

King, C. A. M. and Buckley, J. T.
An analysis of stone size and shape in arctic environments; Journ. Sedinentary Petrology, Vol. 38, No. 1, pp. 200-214.

Kirby, R. P. 1969:

Morphometric analysis of glaciofluvial terraces in the Esk Basin, Midlothian; Inst. Brit. Geographers, Trans. 48 , pp. 1.18.

Klovan, J. E. 1966:

Use of factor analysis in determining depositional environments from grain size distributions; Journ. Sedimentary Petrology, Vol. 36, No. 1, pp. 115.125.

Krumbein, W. C. 1934:

Size frequency distribution of sediments; Journ. Sedimentary Petrology, Vol. 4, pp. 65-77.

Krumbein, W. C. 1935:

Thin section mechanical analysis of indurated sediments; Journ. Geology, Vol. 43, pp. 482-496.

Krumbein, W. C. 1938:

Size frequency distributions and the normal phi curve; Journ. Sedimentary Petrology, Vol. 8, No. 3, pp. 84-90.

Krumbein, W. C. 1939:

Preferred orientation of pebbles in sedimentary deposits; Journ. Geology, Vol. 47, pp. 673.706.

Krumbein, W. C. 1947:

Measurement and geological significance of shape and roundness of sedimentary particles; Journ. Sedimentary Petrology, Vol. 11, pp. 64-72.

Krumbein, W. C. 1950:

Geological aspects of beach engineering; in "Applications of Geology to Engineering Fractice", Chairman, S. Paige, Berkey volume; Geol. Soc. Amer.s pp. 195-224.

Krumbain, W. C. 1955:

Student operator error in the determination of roundness, sphericity and grain size; Journ. Sedimentary Petrology, Vol. 25, No. 4, pp. 297.301.

Krumbein, W. C. 1960:

The "Geological Population" as a framework for analysing numerical data in geology; Liverpool and Manchester Geological Journal, Vol. 2, Pt. 3, pp. 34I-368.

Krumbein, W. C. 1961:

The analysis of observational data from natural beaches; U. S. Army Coastal Engineering Research Center, Technical Memo. No. 130, 59 pp .

Krumbein, W. C. 1963:

A geological process response model for analysis of beach phenomena; Beach Erosion Board Annual Bulletin 17, pp.1-15.

Krumbein, W. C. and Aberdeen, E. J.
1937: The sediments of Barataria Bay; Journ. of Sedimentary Petrology, Vol. 7, pp. 3-17.

Krumbein, W. C. and Pettijohn, F. J.
1938:
"Manual of Sedimentary Petrography"; D. Appleton Co., New York, 549 pp.

Krumbein, W. C. and Slack, H. A.
1956:
Relative efficiency of beach sampling methods; Beach Erosion Board Technical Memo. 90, 43pp.

Kuenen, Ph. H. and Menard, H. W.
1952: Turbidity currents as a cause of graded bedding; Journ. Sedimentary Petrology, Vol. 22, pp. 83-96.

Laird, W. M. 1944:

The geology and groundwater resources of the Emerado Quadrangle; North Dakota Geol. Survey 17, 35pp.

Laird, W. Mo 1964:

The problem of Lake Agassiz; North Dakota Academy of Science, Vol. 18, pp. 11/4-134.

Lapinsky, W. J., Revell, S. R., Winters, S. S. 1958:

Sedimentary analyses of terrace deposits in the Panhandle of Florida; Journ. Sedimentary Petrology, Vol. 28, No. 1, pp. 75-82.

Lemke, R.W. 1958:

Narrow linear drumlins near Velva, North Dakota; Amer. Journ. Science, Vol. 256, pp. 270-284.

Leopold, L. B., Wolman, M. G. and Miller, J. P. 1963:
"Fluvial Processes in Geomorphology"; Freeman, San Francisco; 522 pp.

Leverett, F. 1912:

Glacial investigations in Minnesota in 1911; Geol. Soc. Amer. Bull., Vol. 23, pp. 732-735.

Leverett, F. 1932:

Leverett, F. 1936:

Quarternary geology of Minnesota and parts of adjacent states; U. S. Geol. Survey, Professional Paper 161, Washington, 149pp.

Quoted by J. A. Elson (1966) in, "Life, Land and Water," ed. W. J. Mayer.Oakes; Univ. of Manitoba Press, p. 397.

Lewis, W. V. 1949:

An esker in process of formation, Borerbreen, Jotunhein, 1947; Journ. Glaciology, Vol. I, pp. 314-319.

Lohse, E. A. 1955:

A theoretical curve for the statistical analysis of sediments; Journ. Sedimentary Petrology, Vol. 25, pp. 293-296.

McCammon, R. B. 1962:

Efficiencies of percentile measurements for describing the mean size and sorting of sedimentary particles; Journ. Geology, Vol. 70, No. 4, pp. 453. 466.

NeCann, S. B.

1963:

McManus, D. A. 1969:

The late glacial beached and readvance moraines of the Ioch Corran area, Rossmshire; Scottish Geol. Magazine, Vol. 79, pp. 164-169.

A criticism of certain usage of the phinnotation; Journ. Sedimentary Petrology, Vol. 33, No. 3, pp. 670-674.

Mc Koe , E. D. 1957

Primary structures in some recent sediments; Amer. Assoc. Petroleum Geologist's Bull., Vol. 4l, pp. 1704-1747.

McKee, E. D.
Structures of dunes at White Sands National Monument, Nev Mexico; Sedimentology 7, Elsevier, pp. I.69.
McKelvey, V. E.
1940:
McPherson, R. A.
1970:

Beach sediments of Trout Lake, Wisconsin; Journ. Sedimentary Petrology, Vol. 10, pp. 58.m6.
"Pleistocene Geology of the Beausejour Area, Manitoba"; Unpublished Ph。D. thesis presented to the Department of Earith Science, University of Manitoba, p. 153.

Mason, C. C. and Folk, R. L.
Differentiation of beach, dune and aeolian flat environments by size anolysis, Mustang Island, Texas; Journ. Sedimentary Petrology, Vol. 28, No. 2, pp. 211-221.

Miller, A. A 1955:

Notes on the use of the height range diagram; Geographical Studies, Vol. 2, pp. 111.115.

Miller, R. III 1945:

Heavy mineral.s in Florida beach and dune sands; American Minerologist, Vol. 30, pp. 65.75.

Ming-Shan, Sun 1956:

Grain size analysis of Jacksonian sediments of Mississippi and adjacent areas; Journ. Sedimentary Petrology, Vol. 26, No. 2, pp. 103-110.

Modarresi, H. G. 1968:

Settling tube velocity apparatus for successive determination of fall velocities of sand size particles; Journ. Sedimentary Petrology, Vol. 38, No. 49 pp. 1354-1361.

Morris, W. J. 1957:

Effects of sphericity, roundness and velocity on traction transportation of sand grains; Journ. Sedimentary Petrology, Vol. 27, No.1, pp. 27-31.

Moss, A. J. 1962:

The physical nature of common sandy and pebbly deposits (part 1); Amer. Journ. Science, Vol. 260, No. 6, pp. 337-373.

Moiola, R. J. and Weiser, D_{0}
1968:

Textural parameters, an evaluation; Journ. Sedimentary Petrology, Vol. 36, No. 1, pp. 45-53.

$\begin{aligned} & \text { Mothersil1, J. S. } \\ & \text { 1968: } \end{aligned}$	Grain size analysis of longshore bars and troughs, Batchewana Bay, Lake Superior, Ont; The Lakehead Univ. Press, Vol. 1, No. 2, pp. 181-192.
```Mothersill, J. S. 1969:```	Relationship of grain size modes to nearshore sedimentary environments, Lake Superior, Ont.; Canadian Journ. Earth Sciences, VoI. 7, 1970, pp. 522-527.
Nichols, R. $I_{0}$ 1961:	Characteristics of beaches formed in polar climates; Amer. Journ. Science, Vol. 259, No. 9, pp. 694m708.
$\begin{aligned} & \text { Nikiforoff, C. C. } \\ & \text { 1947: } \end{aligned}$	The life history of Lake Agassiz, alternative interpretation; Amer. Journ. Science, Vol. 245, pp. 205-239.
$\begin{aligned} & \text { Norrman, J. } 0_{0} \\ & \text { 1964: } \end{aligned}$	Lake Vattern investigations on shore and bottom morm phology; Geografiska Annaler, Vol. 46, Nos. I-2, 238 pp.
$\begin{aligned} & \text { 01son, J. S. } \\ & \text { 1958: } \end{aligned}$	Lake Michigan dune development 3. Lake level, beach and dune oscillations; Journ. Geology, Vol. 66, pp. 473-483.
Otto, G. H. 1938:	The sedimentation unit and its uses in field sampling; Journ. Geology, Vol. 46, pp. 569-582.
$\begin{aligned} & \text { Otto, G. } H_{0} \\ & \text { 1939: } \end{aligned}$	A modified logarithmic probability graph for the interpretation of mechanical analyses of sediments; Journ. Sedimentary Petrology, Vol. 9, pp. 62-76.
$\begin{aligned} & \text { Passega, R. } \\ & \text { 1957: } \end{aligned}$	Texture as a characteristic of clastic deposition; Amer. Assoc. Petroleum Geologists Bull. Vol. 4l, No. 9, pp. 1952-1984.
$\begin{aligned} & \text { Pettijohn, F. J. } \\ & \text { 194l: } \end{aligned}$	Persistence of heavy minerals and geologic age; Journ. Geology, Vol. 49, pp. 610-625.
$\begin{aligned} & \text { Pettijohn, F.J. } \\ & \text { 1949: } \end{aligned}$	"Sedimentary Rocks", Harper Bros., New York, 526 pp.
$\begin{aligned} & \text { Pettijohn, F. J. } \\ & \text { 1943: } \end{aligned}$	d Lundahl, A. C.   Shape and roundness of Lake Erie beach sands; Journ. Sedimentary Petrology, Vol. 13, pp. 69-78.


Pincus, $H_{0} J_{0}$ 1956:	Some vector and arithmetic operations on twodimensional orientation variates with application to geologic data; Journ. Geology, Vol. 64, pp. 533-537.
Pitty, A. F. 1966:	Some problems in the location and delimitation of slope profiles; Zeit. Fur Geomorphologie, Heft I, Band 10, pp. $454 \mathrm{~m} / 61$.
$\begin{aligned} & \text { Poole, D. Mo } \\ & \text { 1957: } \end{aligned}$	Size analysis of sand by the sedimentation technique; Journ. Sedimentary Petrology, VoI. 27, No. 4, pp. 460-469.
$\begin{aligned} & \text { Poole, } D_{0} M_{0} \\ & \text { 1958: } \end{aligned}$	Heavy mineral variation in San Antonio and mesquite bays of the central Texas coast; Journ. Sedimentary Petrology, Vol. 28, No. 1, pp. 65-74.
$\begin{aligned} & \text { Powers, M. C. } \\ & \text { 1953: } \end{aligned}$	A new roundness scale for sedimentary particles; Journ. Sedimentary Petrology, Vol. 23, pp. 117-119.
$\begin{aligned} & \text { Psuty, N. P. } \\ & \text { 1967: } \end{aligned}$	The geomorphology of beach ridges in Tabasco, Mexico; Louisiana State Univ. Press, Baton Rouge, 51 pp.
$\begin{aligned} & \text { Rains, R. B. } \\ & \text { 1969: } \end{aligned}$	Differentiation of till deposits in the Whitemud Creek, Edmonton, Alberta; The Albertan Geographer, No. 5, pp. 12-20.
$\begin{aligned} & \text { Rao, B. C. } \\ & \text { 1957: } \end{aligned}$	Beach erosion and concentration of heavy mineral sands; Journ. Sedimentary Petrology, Vol. 27, pp. 143-147.
$\begin{aligned} & \text { Reed, B. Galvin } \\ & \text { 1962: } \end{aligned}$	J. and Miller, J. P.   Some aspects of drumlin geometry; Amer. Journ. Science, Vol. 260, pp. 200-210.
$\begin{aligned} & \text { Ritchie, J. C. } \\ & \text { 1962: } \end{aligned}$	A geobotanical survey of Northern Manitoba; Arctic Institute of North America Technical Paper No. 9, 47 pp .
$\begin{aligned} & \text { Ritcher, K. } \\ & \text { 1932: } \end{aligned}$	Die Bewegungsrichtung des Inlandes, rekonstruiert aus den Kritzen und langsachen der Geschiebe; Zeit. Fur Geschiebeforschung, Vol. 8, pp. 62-66, quoted in W. G. Krumbein and F. J. Pettijohn, 1938.

Rittenhouse, $G$. 1943:

Robson, D. A. 1958:

A new technique for measuring roundness of sand grains; Journ. Sedimentary Petrology, Vol. 28, No. I, pp. 108.110.
Transportation and deposition of heavy minerals; Gool. Soc. Amer. Bull., Vol. 54, pp. 1725-1780.

Rogers, J. J. W. 1959:

Detection of lognormal size distributions in clastic sediments; Journ. Sedimentary Petrology, Vol. 29, No. 3, pp. 402-407.

Rogers, J. J. W. and Powell, W. F.
Size distribution of zircon grains in some samples of lower Beaumont clay; Journ. Sedimentary Petrology, Vol. 28, pp. 36-39.

Royse, C. F. 1968:

Recognition of fluvial environments by particle size characteristics; Journ. Sedimentary Petrology, Vol. 38, No. 4, pp. 1171.1178.

Rubey, W. W. 1933:

Size distribution of heavy minerals within a waterlain sandstone; Journ. Sedimentary Petrology, Vol. 3, pp. 37-39.

Rusnak, E. A. 1957:

The orientation of sand grains under conditions of unidirectional flow. 1. Theory and experiment; Journ. Goology, Vol. 65, No. 3, pp. 384-409.

Russell, R. D. and Taylor, R.E.
1937:
Roundness and shape of Mississippi River sands; Journ. Geology, Vol. 45, pp. 225-267.

Sahu, B. K. 1964:

Depositional mechanism from size analysis of clastic deposits; Journ. Sedimentary Petrology, Vol. 34, No. I pp. 73-83.

Sames, C. W. 1966:

Morphometric data on recent pebble associations; Journ. Sedimentary Petrology, Vol. 36, No. 1, pp. 126-142.

Savigear, R. A. G. 1952:

Some observations on slope development in South Wales; Inst. Brit. Geographers Irans. 18, pp. 31-51.

Schum, S. A. 1956:

The role of creep and rainwash on the retreat of badland slopes; Amer. Journ. Science, Vol. 254, pp. 693-706.

Schumm, S. A. and Chorley, R. J. 1966:

Talus weathering and scarp recession in the Colorado Plateau; Zeit. Fur Geomorphologie, Heft 1, Band 10, pp. 11-36.

Shepard, F. P. and Young, R.
1961: Distinguishing between beach and dune sands; Journ. Sedimentary Petrology, Vol. 31, No. 2, pp. 196.214.

Seigel, S. A. 1956:
"Nonparametric Statistics for the Behavioral Sciences;" McGraw-Hill, New York, pp. 312.

Sissons, J. B., Smith, D. E. and Cullingford, R. A. east Scotland; Inst. Brit. Geographers Trans. 39, pp. 9-18。

Smalley, I. J. 1967:

The presentation of subjective shape and roundness data; Sedimentology 8, Elsevier, pp. 35-38.

Solohub, J. T. 1967:

A test of grain size distribution statistics as indicators of depositional environments; M. Sc. Thesis presented to the Departrent of Earth Science, Univ. of Manitoba, 118 pp .

Solohub, J. T. and Klovan, J. E. 1970:

Evaluation of grain size parameters in lacustrine environments; Journ. Sedimentary Petrology, Vol. 40, No. 1, pp. 81-101.

Sneed, E. D. and Folk, R. L. 1958:

Pebbles in the lower Colorado River, Texas. A study in particle morphogenesis; Journ. Geology, Vol. 66, pp. 11.4-150.

Spencer, D. W. 1963:

The interpretation of grain size distribution curves in clastic sediments; Journ. Sedimentary Petrology, Vol. 33, pp. 180-190.

Shrirmadas, A. 1957:

Appositional fabric study of the coastal secimentaries East Godavar District, Andhra, India; Journ. Sedimentary Petrology, Vol. 27, No. 4, pp. 447-452.

Tyrrel, J. B. 1889:

Tyrrel, J. B. 1892:

Udden, J. 1898:

Uphom, W. 1895:

Visser, J. N. J. 1966:

Wadell, H. 1932:

Wadell, $\mathrm{H}_{0}$ 1933:

Wade11, H. 1935:

Wadell, $\mathrm{H}_{0}$ 1936:

Waskom, J. D. 1958:

Wentworth, C. K. 1919:

Wentworth, C. K. 1922:

Notes to accompany a preliminary map of the Duck and Riding Mountains in north western Manitoba; Annual Report of the Geological and Natural History of Canada, 1887-88, No. III, Pt. Is pp. Im16, Ottawa.

Report on north western Manitoba with portions of adjacent districts of Assiniboine and Saskatchewan; Annual Report of the Geol. Survey, Canada, No. 5, Section E, Ottawa, 235 pp .

Mechanical composition of wind deposits; Augustana Library Publication, Vol. $1,69 \mathrm{pp}$.

The glacial Lake Agassiz; U. S. Geol. Survey Monograph, No. 25, Washington.

The distribution of grain sizes in nature; Annals S. African Geol. Survey 3, 1964, pp. 107-111.

Volume, shape and roundness of rock particles; Journ. Geology, Vol. 40, pp. 443-451.

Sphericity and roundness of rock particles; Journ. Geology, Vol. 41, pp. 310-331.

Volume, shape and roundness of quartz particles; Journ. Geology, Vol. 43, pp. 250-280.

Volume, shape and position of rock fragments in openwork gravel; Geografiska Annaler 1, pp. 74m-92.

Roundness as an indicator of environment along the coast of Panhandle, Florida; Journ. Sedimentary Petrology, Vol. 28, pp. 351-360.

A laboratory and field study of cobble abrasion; Journ. Geology, Vol. 27, pp. 507-521.

The shape of beach pebbles; U. S. Geol. Survey Bull., 131~C, pp. 75-83.

$\begin{aligned} & \text { Wentworth, C. K. } \\ & \text { 1922b: } \end{aligned}$	The shape of pebbles; U. S. Geol. Survey Bull., 730 © , pp. 91-114.
Wentworth, C. K. 1922c:	A scale of grade and class terms for clastic sediments; Journ. Geology, Vol. 30, pp. 377-390.
West, R. G. and 1956:	ner, J. J.   The glaciation of East Anglia and the East Midlands, a differentiation based on stone orientation measure. ments of the tills; Quart. Journ. Geol. Soc. London, Vol. 112, pp. 69-91.
$\begin{aligned} & \text { Wood, } A_{0} \\ & \text { 1942: } \end{aligned}$	The development of hillside slopes; Geol. Assoc. Proceedings, Vol. 53, pp. 128-138.
$\begin{aligned} & \text { Wood, A。 } \\ & \text { 1959: } \end{aligned}$	The erosional history of the cliffs around Aberystwyth; Liverpool and Manchester Geol. Journ., Vol. 2, pp. 271.-287.
Wood, W. H. and 1966:	, R.   Arithmetic means of circular data; Journ. Sedimentary Petrology, Vol. 36, PP. 50-56.
$\begin{aligned} & \text { Young, } A_{0} \\ & \text { 1960: } \end{aligned}$	Soil movement by denudational processes on slopes; Nature, Vol. 188, No. 4745, pp. 120.122.
$\begin{aligned} & \text { Young, A. } \\ & \text { 1963: } \end{aligned}$	Some field observation of slope form and regolith, and their relation to slope development; Inst. Brit. Geographers Trans. 32, pp. 1-29.
Young, A. 1964:	Slope profile analysis; Zeit. Fur Ceomorphologie, Supplemental Band 5, pp. 17-27.
$\begin{aligned} & \text { Zeuner, F. E. } \\ & \text { 1961: } \end{aligned}$	Criteria for the determination of mean sea level for Pleistocene shoreline features; Quatermaria, Vol. 5, pp. 143-147.
$\begin{aligned} & \text { Zingg, T. } \\ & \text { 1935: } \end{aligned}$	Beitrag Zur Schotteranalyse; Schlveiz Mineral. Petrog. Mitt., Vol. 15, PP。39-140, quoted in P. Catacosinos, 1965, B. J. Bluck, 1967, and W. C. Krumbein, 1941.

Appendix 1

THE STE. ANNE RIDGE

Section 2A
Pit

Depth (fte)

$$
\begin{aligned}
& 0.0-1.3 \\
& 1.3-2.3
\end{aligned}
$$

## Description

Soil horizon. Unbedded granules, mixed sand and coarse silt. 10 YR 7-2.

Section 2B
Quarry perpendicular to the long axis of the ridge

0.0-1.8	Contorted area, mixed by quamrying.
$1.8-2.0$	Unsorted granules, very coarse and medium sand.
2.0-2.15	Laminated medium sand, with a few granules.
2.15-2.3	Granules, very coarse send and medium send.
2.3-2.4	Finely laminated medium sand.
2.4-2.7	Predominantly medium sand, with very coarse sand laminae, and granules.
2.7-2.8	Medium sand with coarse sand laminae.
2.8-3.2	Very coarse sand lamina.
3.2-3.5	Laminated fine sand and coarse silt. 2.5 Y7-2。
3.5-4.4	Predominantly medium sand, with fine granules and pebbles.
4.4-4065	Medium sand, with coarse laminae and granules.
$4.65-4.85$	Coarse sand lamina - graded.
4.85-5.1	Dark clay horizon, with granules.
$5.1-5.3$	Coarse sand lamina.
$5.3-5.4$	Dark clay horizon, with granules.
$5.4-5.6$	Very coarse sand lamina.
$5.6-5.7$	Dark clay horizon, with granules.

Structures:
I Beds 1.8-2.8 dipping 3 degrees downward to east.
II Bed 2.8-3.2 dipping 30 degrees downward to east. III Bed 3.5-4.4 dipping 30 degrees downward to east.

Section 2 Quarry perpendicular to the long axis of the ridge

Depth (fte)	Description
0.0-1.4	Soil horizon.
1.4-2.2	Coarse sand lamina, interbedded with medium sand. Few granules.
2.2-2.7	Graded sand horizon, with coarse sand above and fine sand and coarse silt below. 2.5 Y 7-2.
$2.7-3.05$	Unsorted medium and coarse sand. Some lamina development.
3.05-3.6	Medium sand, with very coarse sand lamina at 3.1 and 3.2. Coarse sand Iamina at 3.35 and 3.45.
3.6-4.45	Unsorted granules and medium sand.
4.45-4.85	Interbedded medium and coarse sand with coarse silt and fine sand. 2.5 Y 7-2.
4.85-5.2	Predominently coarse granules, with medium and coarse sand.
5.2-5.4	Coarse sand lamina.
$5.4-5.5$	Fine granule lamina.
$5.5-5.55$	Sand lamina with granules.
5.55-5.8	Granules and very coarse sand lamina.
5.8-5.85	Dark clay, with discontinuous pebble horizon.
$5.85-6.25$	Interbedded mixed sand, with pebbles and coarse sand.


I Bed $1.4-2.2$	dipping 10 degrees downward to east.
II Beds $5.2-5.8$ dipping 11 degrees downward to east.	

Section 2D Pit

$$
\begin{array}{ll}
0.0-1.5 & \text { Soil horizon. } \\
1.5-2.0 & \text { Medium send. }
\end{array}
$$

Section 2E

## Pit

$$
\begin{aligned}
& 0.0-1.0 \\
& 1.0-3.0
\end{aligned}
$$

Soil horizon.
Medium and fine sand, with granules. 2.5 Y 6-2.

Section 3A Pit

Depth (ft, $)$

$$
\begin{aligned}
& 0.0-1.5 \\
& 1.5-2.0
\end{aligned}
$$

## Descrintion

Soil horizon.
Fine sand predonimantly, with coarse and medium sand and silt.

Section 3B

0.0-1.4	Soil horizon.
1.4-1.7	Sandy soil, mixed with granules.
1.7-2.6	Bedded gravel horizon-.coarse below and fine above.
2.6-2.95	Unsorted pebbles, granules and coarse sand.
2.95-3.0	Very coarse sand lamina.
$3.0-3.05$	Coarse gronule lamina.
$3.05-3.25$	Medium sand, with coarse sand laminae.
$3.25-3.5$	Graded, coarse granules below and fine above.
$3.5-4.25$	Granules and very coarse sand, with medium sand Iaminae at 3.75 and 3.8 .
$4.25-4.3$	Fine granule horizon.
$4.3-4.8$	Medium to fine sand--few granules.
$4.8-5.0$	Very coarse sand.
5.0-5.2	Predominantly coarse granules and very coarse sand.
5.2-5.4	Medium sand.
5.4-5.6	Medium and very coarse sand.
5.6-5.8	Granules and very coarse sand.
$5.8-6.1$	Mediun sand.
$6.1-6.3$	Medium sand, very coarse sand laminae at 6.1 and 6.3.
6.3-6.1	Mixed granule horizon.
6.4-6.6	Medium sand with coarse sand laminae.
6.6-8.0	Fine to coarse sand, with fine granules

I Beds 1.4-3.0 dipping 2.5 degrees downwards to west.

Section 3C
Quarry perpendicular to the long axis of the ridge

Depth (ft.)

$$
\begin{aligned}
& 0.0-1.0 \\
& 1.0-1.7 \\
& 1.7-1.9 \\
& 1.9-2.0 \\
& 2.0-2.2 \\
& 2.2-2.45 \\
& 2.45-3.3
\end{aligned}
$$

$3.3-3.7$
$3.7-4.0$
$4.0-4.1$
$4.1-4.2$
$4.2-4.4$
$4.4-4.8$
$4.8-5.0$
$5.0-5.1$
$5.1-5.5$
$5.6-6.1$
6.1-6.4
$6.4-6.7$
$6.7-6.9$
$6.9-6.95$
$6.95-7.4$
7.4-8.8

Descrintion
Soil horizon.
Mixed zone disturbed by quarry worling.
Graded...coarse sand above, granules below.
Medium sand, with coarse sand laminae.
Very coarse sand, with granule laminae.
Unsorted granules, very coarse and fine sand.
Medium sand, with very coarse sand lamina at 2.6 and 3.0 . 10 YR 8-2.
Predominantly very coarse sand, grading into granules below. Unsorted medium sand, with few granules.
Mixed granule horizon--few pobbles.
Very coarse sand lamina.
Coarse sand lamina.
Unsorted sand and granules.
Finely laminated sand.
Coarse sand lamina.
Mixed sand and granules.
Medium sand and few granules.
Coarse sand, with fine sand.
Iamina at 6.3.
Graded bed of medium to coarse sand-mgranules below.
Medium send.
Very coarse sand.
Madium sand.
Unsorted granules, coarse and medium sand.

I	Beds	$1.0-2.2$	dipping 27	degrees downwards to east.
II	Beds	$4.2-4.4$	dipping 7 degrees downwards to west.	
III	Bed	$6.1-6.4$	dipping 9 degrees dowwards to west.	
IV	Bed	$6.9-6.95$	dipping 7 degrees dowwards to west.	

Section 3D Quarry perpendicular to the long axis of the ridge

Depth (ft.)

$$
\begin{aligned}
& 0.0-0.5 \\
& 0.5-0.9 \\
& 0.9-1.1 \\
& 1.1-1.4 \\
& 1.4-1.8 \\
& 1.8-2.0 \\
& 2.0-2.7
\end{aligned}
$$

## Section 3E

Pit

$$
\begin{aligned}
& 0.0-0.8 \\
& 0.8-1.0 \\
& 1.0-2.0 \\
& 2.0-3.6 \\
& 3.6-4.0
\end{aligned}
$$

Section 4A
Pit

$$
\begin{aligned}
& 0.0-0.3 \\
& 0.3-1.4 \\
& 1.4-1.6 \\
& 1.6-2.3
\end{aligned}
$$

Pit

$$
\begin{aligned}
& 0.0-2.3 \\
& 2.3-2.7 \\
& 2.7-3.05 \\
& 3.05-3.7 \\
& 3.7-4.9 \\
& 4.9-5.3 \\
& 5.3-6.0
\end{aligned}
$$

Soil horizon, mixed with coarse sand and gravel.
Unsorted granules, very coarse and medium sand. Medium sand, with coarse lamina at 1.0 .
Graded horizon--coerse granule above and sand below. Very coarse and medium sand. Very coarse sand and granules. Medium to fine sand, coarse grit lamina at 2.5.

Soil horizon. Soil and sand. Coarse sand, interbedded with pebbles and medium sand. Reverse graded medium to fine sand. $\quad 2.5 \mathrm{YR} \mathrm{7-2}$. Very coarse sand.

Soil horizon, with pebbles and coarse sand.
Clayey silt, with fine sand. Granules, coarse sand and some silt.
Predominantly fine to very fine sand. Some coarse silt. 2.5 Y 7-2.

Unsorted granules and coarse sand.
Interbedded medium and fine sand.
Unsorted granules, pebbles and sand.
Coarse silt, with fine sand lamina at 3.4. 10 YR 7-2. Mixed granules in bedded coarse and medium sand.
Pebble horizon.
Unsorted pebbles, granules and sand.

Section $4 C$
Depth (ft.)
$0.0-2.3$

Description
Unsorted sand with granules and pebbles. $10 \mathrm{YR} 7-2$.

Section 4D
Quarry parallel to the long axis of the ridge

$$
\begin{aligned}
& 0.0-0.9 \\
& 0.9-1.75 \\
& 1.75-2.1 \\
& 2.1-2.2 \\
& 2.2=3.35 \\
& 3.35-3.75 \\
& 3.75-3.8 \\
& 3.8-4.05 \\
& 4.05=4.25 \\
& 4.25-405 \\
& 4.5-4.6 \\
& 4.6-5.0 \\
& 5.0-5.4 \\
& 5.4-5.45 \\
& 5.45-6.1 \\
& 6.1-6.8 \\
& 6.8-8.0 \\
& 6
\end{aligned}
$$

Section $4 E$
Pit

$$
\begin{aligned}
& 0.0-0.7 \\
& 0.7-1.1 \\
& 1.1-2.2 \\
& 2.2-3.0
\end{aligned}
$$

Soil horizon.
Unsorted very coarse send, granules and pebbles. Coarse sand and granules, inter. bedded with medium sand and silt. 10 IR 3-7.
Very coarse sand lamina. Unsorted pebbles, coarse sand and granules. Medium to fine sand, few granules. 10 IR 8-2. Coarse granules, interbedded with coarse and medium sand. Very coarse sand lamina. Pebblemgranule lamina. Unsorted fine and very coarse sand.
Coarse pebble horizon. Unsorted sand and granules. Medium sand, with coarse laminge. Very coarse sand lamina. Unsorted pebbles, granules and sand.
Predominantly coarse sand, with very coarse laminas below.
Medium to fine sand, with laminae of coarse silt. Few granules. $\quad 2.5$ Y 7-2. Pebble horizon.
Unsorted granules, pebbles and coarse sand.

Soil horizon.
Fine sand and soil. Fine sand and coarse silt.

$$
2.5 \text { Y 6.2 }
$$

Unsorted fine and medium sand. Few granules.

Section 5A Pit

Depth (fte)
$\begin{array}{ll}0.0-0.6 & \text { Soil horizon. } \\ 0.6-1.2 & \text { Darik silty clay. } \\ 1.2-3.6 & \text { White clay. }\end{array}$

Large boulders e.g. Porphyritic granite $6.0 \mathrm{z} \mathrm{3.5} \mathrm{\%}$

Section 5B Pit

$$
\begin{array}{lll}
0.0-1.6 & \begin{array}{l}
\text { Unsorted pebbles, sand and } \\
\text { cobbles. }
\end{array} & \text { 2.5 Y 2.8. } \\
3.6-3.0 & \begin{array}{l}
\text { Fine sand. }
\end{array} & 2.5
\end{array}
$$

Section 5 5 Quarry parallel to long axis of ridge

$$
\begin{aligned}
& 0.0-1.0 \\
& 1.0=1.4 \\
& 1.4=2.5 \\
& 2.5-3.5 \\
& 3.5-4.0 \\
& 4.0=4.7 \\
& 4.7=5.0 \\
& 5.0=5.1 \\
& 5.1=5.22 \\
& 5.22-6.6 \\
& 6.6-6.7 \\
& 6.7=6.8 \\
& 6.8-6.85 \\
& 6.85-6.9 \\
& 6.9-7.0 \\
& 7.0-7.1 \\
& 7.1=8.4
\end{aligned}
$$

Soil horizon.
Soil mixed with pebbles and cobbles.
Sand and cobble horizon, with calcareous accretions on underside of cobbles. Medium sand, with coarse sand laminae.
Graded bed-mcoarse sand lamina above, granules below. Cobble and pebble horizon-. some sand.
Coarse sand lamina.
Medium-coarse sand.
Coarse sand lamina.
Medium sand with coarse lamina at 5.3, 5.4 and 5.5.
Lamina of coarse sand and fine granules. $\quad 104 R \quad 7-2$.
Coarse granule lamina.
Very coarse sand lamina. Granule horizon. Coarse granules and sand. Pebbles and very coarse sand. Coarse pebbles, granules and very coarse sand.

Section 5D Pit

> Depth (ft.)
> $0.0-0.6$
> $0.6-1.0$
> $1.0-1.3$
> $1.3-1.4$
> $1.4-1.6$
> $1.6-2.3$
> $2.3-2.9$
> $2.9-3.15$
> $3.15-3.3$
> $3.3-3.5$

Section 5E
Pit

$$
\begin{aligned}
& 0.0-1.0 \\
& 1.0-1.4 \\
& 1.4-2.0 \\
& 2.0-2.9 \\
& 2.9-3.4
\end{aligned}
$$

Section 6A
Pit

$$
\begin{aligned}
& 0.0=0.4 \\
& 0.4=1.3 \\
& 1.3-2.6
\end{aligned}
$$

Pit

$$
\begin{aligned}
& 0.0-0.5 \\
& 0.5-0.7 \\
& 0.7-1.1 . \\
& 1.1-1.5 \\
& 1.5-2.3
\end{aligned}
$$

Section 6B

## Descrintion

Soil horizon.
Mixed granule horizon, sand and soil.
Coarse granules and sand.
Very coarse sand laminae.
Medium sand with coarse sand laminae.
Unsorted granules, pebbles and sand. $\quad 2.5$ Y 7-2. Medium sand with coarse laminae. Pebble horizon--some sand. Medium sand. Pebble horizon.

Soil horizon.
Soil and fine sand. Unsorted granules, very coarse and medium sand.
Medium to fine sand with coarse laminae. $\quad 2.5$ Y 7-2. Mediumecoarse sand.

Rotted leaf mat. Dark clay. White clay.

Soil horizon.
Soil with fine sand and pebbles. Very coarse sand. Medium to fine sand.
2.5 Y7-2.

Unsorted coarse pebbles, granules, sand and coarse silt.

10 YR 7-2.

Section 60 Quarry parallel to the long axls of the ridge

## Depth (ft.)

$0.0-0.5$
$0.5-0.8$
$0.8-1.1$
$1.1-1.3$
$1.3-1.55$

1. $55-1.65$
2. $65-2.05$
2.05-2.15
2.15-3.6

Section 6D Pit

$$
\begin{aligned}
& 0.0-0.5 \\
& 0.5-0.8 \\
& 0.8-1.1 \\
& 1.1-1.8 \\
& 1.8-2.05 \\
& 2.05-3.3 \\
& 3.3-4.0
\end{aligned}
$$

Section 6E
Pit

$$
\begin{aligned}
& 0.0-0.8 \\
& 0.8-1.2 \\
& 1.2-1.6 \\
& 1.6-2.1 \\
& 2.1-2.8
\end{aligned}
$$

Soil horizon. Coarse sand, granules and pebples, with soil. Unsorted very coarse sand, granules and pebbles. Granules and coarse silt with fine sand laminae at $1.45,1.6$. Medium sand and coarse silt. 10 YR 7-2.
Medium sand--few pebbles and granules.
Pebbles and very coarse sand.

Soil horizon.
Fine sand and soil. Medium sand, with granules and fine pebbles.
Fine sand and grenules, interbedded with mediun sand and coarse silt. 10 YR 7-2. Graded sand-afine above becoming coarser below.

Section 7A Pit
Depth (ft. $)$
$0.0-1.0$
$1.0-1.5$
$1.5-1.6$
$1.6-3.0$

Section $7 B$
Pit
$0.0-1.0$
$1.0-1.3$
$1.3-1.9$
$1.9-2.0$
$2.0-2.1$
$2.1-2.2$
$2.2-2.35$
$2.35-2.8$
2.8-3.6

Section 7 Pit
$0.0-1.0$
$1.0-1.2$
1.2-1.3
$1.3-1.55$

1. $55-2.0$
$2.0-2.35$
2.35-2.8
2.8-3.9

Section 7D Pit

$$
\begin{aligned}
& 0.0-0.9 \\
& 0.9-2.2 \\
& 2.2-2.7
\end{aligned}
$$

## Description

Soil horizon.
Mixed sand and soil.
Fine sand.
Unsorted pebble, with fine and coarse sand. 2.5 Y 7-2.

Soil horizon.
Soil, sand and fine granules.
Mediun to fine sand, with
granules.
10 YR 7-3.
Very coarse sand lamina.
Medium sand.
Pebble horizon.
Medium sand.
Pebbles and sand.
Coarse to medium send.

Soil horizon-meoarse sand, granules and pebbles.
Medium sand, coarse lamina at 1.03.

Graded bed--very coarse sand to granules.
Pebbles interbedded with sand. Medium to fine sand.

10 YR 7-3.
Coarse sand.
Unsorted pebbles and granules. Medium sand.

Soil horizon.
Unsorted medium sand, with pebbles and granules.
Reverse graded bed--medium sand and fine sand with granules.

Section 7 E
Pit

## Depth (fte)

## Description

$$
\begin{array}{ll}
0.0-0.6 & \text { Soil horizon. } \\
0.6-1.0 & \text { Mediun sand. }
\end{array}
$$

$$
1.0-1.9
$$

$$
1.9-2.4
$$

$$
2.4-3.0
$$

Medium to fine sand, and granules. Graded bed, mediun to very coarse sand.
Very coarse sand and granules.

Section 8A Pit

$$
\begin{aligned}
& 0.0-1.0 \\
& 1.0-1.65 \\
& 1.65-2.2 \\
& 2.2-2.6
\end{aligned}
$$

Soil horizon.
Medium sand and granules. Fine sand. $\quad 2.5$ Y 8-2。 Coarse and medium sand.

## Section 8B

Pit

$$
\begin{aligned}
& 0.0-1.6 \\
& 1.6-2.9 \\
& 2.9-3.8
\end{aligned}
$$

Soil horizon.
Unsorted pebbles, granules, fine sand and coarse silt.

10 YR 7-2.
Unsorted coarse gravel and sand.

Section SC Quarry perpendicular to the long axis of the ridge

$$
\begin{array}{ll}
0.0-0.5 & \text { Soil horizon--some pebbles. } \\
0.5-1.0 & \text { Medium sand, pebbles and soil. } \\
1.0-1.2 & \text { Coarse pebbles-msome soil. } \\
1.2-1.7 & \text { Medium sand. } \\
1.7-2.8 & \text { Unsorted medium sand and pebbles. } \\
2.8-3.0 & \text { Unsorted pebbles, granules, send } \\
3.0-4.6 & \text { and coarse silt. } 2.5 \mathrm{Y} 7-2 . \\
3.0 & \text { Coarse sand, granules and pebbles. }
\end{array}
$$

Section 8D
Quarry perpendicular to the long axis of the ridge

$$
\begin{aligned}
& 0.0-0.6 \\
& 0.6-1.0 \\
& 1.0-1.4 \\
& 1.4-1.5 \\
& 1.5-1.6
\end{aligned}
$$

Soil horizon, with very coarse sand and granules.
Pebbles with mediuxn sand.graded to fine sand.
Irregular pebble horizon.
Fine sand, with dipping medium sand Iamina.
Partially disintegrated pebbles, in mixed sand.

Section SD (continued)

Depth (ft.)	Description
$1.6-1.8$	Granules and mixed sand.   $1.8-2.0$
Unsorted pebbles, granules and   send.	
$2.0-2.5$	Unsorted pebbles, granules and   send. Few cobbles.   Fine and some mediun sand, with   coarse silt.
$3.9-3.9$	Unsorted granules and sand.

Structure:
I Beds 0.6-2.0 dipping 16 degrees downards to west.

Section 8F Quarry perpendicular to the long axis of the ridge

$$
\begin{array}{ll}
0.0-0.35 & \begin{array}{l}
\text { Soil horizon. } \\
0.35-0.65
\end{array} \\
0.65-1.05 & \begin{array}{l}
\text { Soil with pebbles. } \\
\text { Unsorted horizon of fine } \\
\text { granules, medium sand and soil. }
\end{array} \\
1.05-1.3 & \begin{array}{l}
\text { Unsorted bed of pebbles, } \\
\text { granules, sand coarse silt. }
\end{array} \\
1.3-2.15 & \begin{array}{l}
\text { Coarse sand, with medium fand }
\end{array} \\
2.15-2.6 & \begin{array}{l}
\text { Iaminae. } \\
\text { Fine pebbles interbedded with }
\end{array} \\
2.6-3.45 & \begin{array}{l}
\text { sand. } \\
\text { Predoninantly fine sand with }
\end{array} \\
3.45-4.0 & \begin{array}{l}
\text { some coarse silt } 10 \mathrm{YR} \mathrm{7-3.}
\end{array} \\
4.0-4.6 & \begin{array}{l}
\text { Fine clay. } \\
\text { Medium sand. }
\end{array}
\end{array}
$$

Structure:
I Bed 1.05-1.3 dipping downward to east.

Section 8F Pit

$$
\begin{array}{rll}
0.0-0.5 & \text { Soil horizon. } \\
0.5-2.1 & \text { Medium sand, graded coarser } \\
2.1-3.6 & \text { below. } \\
& & \text { Predominantly fine sand and } \\
& & \text { coarse silt, with pebbles and } \\
& & \text { granules. }
\end{array}
$$

Section 9A
Pit

Depth (ft.)

$$
\begin{aligned}
& 0.0-1.1 \\
& 1.1-1.7
\end{aligned}
$$

Soil horizon. Fine sand.

Section 9B
Pit

$$
\begin{aligned}
& 0.0-1.0 \\
& 1.0-1.7 \\
& 1.7-2.1 \\
& 2.1-2.6 \\
& 2.6-2.8
\end{aligned}
$$

Pit
Soil horizon. Medium sand with coarse sond laminae.
Medium granules, with sand. Medium sand with granules. 2.5 Y 7-2.

Unsorted granules and sand.

Section 9C

Section 9D

Section 9E

Section 10A

$$
\begin{aligned}
& 0.0-0.9 \\
& 0.9-1.2 \\
& 1.2-2.4 \\
& 2.4-3.0
\end{aligned}
$$

Pit

$$
\begin{aligned}
& 0.0-1.5 \\
& 1.5-2.7
\end{aligned}
$$

Soil horizon. Medium to fine sond. 2.5 Y 6-2.

Pit

$$
\begin{aligned}
& 0.0-0.2 \\
& 0.2-0.8 \\
& 0.8-1.8 \\
& 1.8-2.0
\end{aligned}
$$

Soil horizon.
Medium sand and soil.
Graded coarse sand and granules.
Fine sand 2.5 Y 8-2.

Quarry parallel to the long axis of the ridge

$$
\begin{aligned}
& 0.0=0.55 \\
& 0.55=1.5 \\
& 1.5=4.3 \\
& 4.3=5.0
\end{aligned}
$$

Soil horizon.
Unsorted soil, fine sand and granules. 2.5 Y 7-2. Fine to medium, with irregular dark streaks. (Fe?) Medium sand.

Soil horizon.
Soil, with granules and pebbles.
Medium sand, grey clay and fine pebbles.
Medium sand and fine pebbles.

Section 10A (continued)

Depth (fte)
2.0-2.2 Fine sand.
$2.2-2.5$ Fine sand, some stgining. (Fe?)
2.5-3.0 White clay, irregular pebbles.

Section 10B Pit

$0.0-0.7$	Leached coarse and gravel。
$0.7-1.4$	Soil horizon and fine pebbles.
$1.4-2.1$	Medium sand, granules and coarse
$2.1-3.1$	silt.
$3.1-3.5$ Y-2.	
$3.8-5.1$	Unsorted sand and pebbles.
3.8	Graded bed-medium to coarse
	sand.
	Graded bed.-fine to medium sand.

Description
Fine sand.
Fine sand, some staining. (Fe?)
White clay, irregular pebbles.

$$
\begin{aligned}
& 0.0-0.7 \\
& 0.7-1.4
\end{aligned}
$$

Soil horizon and fine pebbles.
Medium sand, granules and coarsesilt.

$$
2.5 \text { Y 7-2. }
$$

Section 100
Quarry perpendicular to the long axis of the ridge

$$
\begin{aligned}
& 0.0-0.5 \\
& 0.5-1.7 \\
& 1.7-2.1 \\
& 2.1-2.5 \\
& 2.5-3.0 \\
& 3.0-3.2 \\
& 3.2-3.5 \\
& 3.5-4.33 \\
& 4.33-4.38 \\
& 4.38-4.6 \\
& 4.6-5.05 \\
& 5.05-5.28 \\
& 5.28-5.32 \\
& 5.32-7.00
\end{aligned}
$$

Unsorted sand and pebbles. Graded bed--medium to coarse sand. Graded bed.ufine to medium sand.

Soil horizon. Soil and fine pebbles. Unsorted coarse pebbles, granules and sand.
Fine granules.
Medium sand and coarse silt. 2.5 Y 7-2.

Unsorted pebbles, granules and coarse sand.
Coarse pebble horizon.
Medium sand and granules.
Coarse granules.
Coarse sand. Coarse, medium and fine sand. 2.5 Y 7-2.

Medium to coarse sand.
Clay band and coarse granules. Medium sand containing very coarse sand.

Structures:
I Bed 1.7-2.1 dipping 10 degrees downards to east. II Bed 2.5-3.0 dipping 20 degrees dowward to east.

Section 10 D
Pit

Depth (ft.)

$$
\begin{aligned}
& 0.0=1.0 \\
& 1.0-2.4 \\
& 2.4-3.6
\end{aligned}
$$

## Description

Very coarse sand.
Soil, with fine granules and pebbles.
Medium sand, coarse silt with few gramules. (Fe?)
2.5 Y 7-4.

Soil horizon.
Soil with medium sand. Coarse silt, with fine to coarse sand. 2.5 Y 5-2.

Soil horizon.
Soil with some silt.
Very coarse sand.
Light clay.
Dark clay.

Soil horizon.
Very coarse sand and coarse granules.
Intermixed coarse and very coarse sand, with granules. 2.5 Y7-2.
$0.0-1.7$
1.7-2.1
2.1-3.2

Section 11C Pit

$$
\begin{aligned}
& 0.0-0.7 \\
& 0.7-1.1 \\
& 1.1-4.0
\end{aligned}
$$

Soil horizon.
Very coarse sand, with granule laminations.
Medium and coarse send, with very coarse laminations.

$$
2.5 \text { Y 7-2. }
$$

Section 110 Pit

Depth (fti)

$$
0.0-0.9
$$

$$
0.9-2.2
$$

$$
2.2-3.6
$$

Section 11E
Pit

$$
\begin{aligned}
& 0.0-0.7 \\
& 0.7-1.6 \\
& 1.6-3.4
\end{aligned}
$$

Soil horizon. Soil with silt and pebbles. Silt with coarse to medium sand. 2.5 Y 6-2.

Section 12A. Pit

$$
\begin{aligned}
& 0.0-1.1 \\
& 1.1-2.0 \\
& 2.0-3.9
\end{aligned}
$$

Pit

$$
\begin{aligned}
& 0.0=0.8 \\
& 0.8=2.9 \\
& 2.0-4.0
\end{aligned}
$$

Section 12
Pit

$$
\begin{aligned}
& 0.0-0.4 \\
& 0.4=0.85 \\
& 0.85-2.0 \\
& 2.0-3.6
\end{aligned}
$$

Section 12D
Pit

$$
\begin{aligned}
& 0.0-0.55 \\
& 0.55-0.9 \\
& 0.9-2.0
\end{aligned}
$$

Description
Soil horizon. Graded fine granules and coarse grit. Coarse to medium sand. 2.5 Y 804.

Section 12B
Soil horizon. Unsorted granules, pebbles, sand and silt. 10 YR 7-2. Medium sand.

Soil horizon. Very coarse sand and granules. Unsorted fine to very coarse sand with granules.

10 YR 6-3.
Pebbles with medium sand.

Soil horizon Soil, with granules and very coarse sand. Unsorted pebbles, coarse and medium sand.

Section 12D (continued)

Depth ( $f t_{\Omega}$ )

$$
\begin{aligned}
& 2.0-2.1 \\
& 2.1-2.6 \\
& 2.6-2.8 \\
& 2.8-3.4
\end{aligned}
$$

## Description

Pebble horizon, some sand. Graded medium sand and granules. $10 \mathrm{YR} 7-3$.
Pebble horizon.
Very coarse send.

Structure:
I Bed 0.9-2.1 dipping 7 degrees downward to east.

Section 12F Pit

$$
\begin{aligned}
& 0.0-1.0 \\
& 1.0-2.4 \\
& 2.4-3.6
\end{aligned}
$$

Section 13A Pit

$$
\begin{aligned}
& 0.0=0.9 \\
& 0.9-1.3 \\
& 1.3=3.4
\end{aligned}
$$

Soil horizon with some gramules. Gravel horizon.
Pebbles, granules and coarse sand.
2.5 Y 7-2.

Section 13B Pit

$$
\begin{aligned}
& 0.0-0.8 \\
& 0.8=1.4 \\
& 1.4-1.65 \\
& 1.65-2.4 \\
& 2.4-3.8
\end{aligned}
$$

Soil horizon.
Soil with gravel.
Coarse sand interbedded with medium sand.
Unsorted granules, with coarse and very coarse sand. 2.5 Y 6m.

Silty sand.

Section 13C Pit

$$
\begin{aligned}
& 0.0=0.5 \\
& 0.5-1.3 \\
& 1.3=1.5 \\
& 1.5-3.0
\end{aligned}
$$

Soil horizon.
Soil with pebbles.
Very coarse sand and granules. Predominantly very coarse sand, with granules and coarse sand. 10 YR 6-2.

Section 13 D Pit

Depth (ft.)	Descrintion
$0.0-0.7$	Soil horizon.   $0.7-0.9$
$0.9-1.8$	Pebbles and granules.   Predominantly very coarse sand,   with some medium sand and   granules.
$1.8-3.8$	Coarse sand, with very coarse   sand, granules and irregular   pebbles.
$3.8-4.0$	Silty sand.

No 13E position was sampled because the ridge narrows at this point.

Section 14 A Pit

$0.0-1.0$	Soil with coarse pebbles.
$1.0-1.6$	Very coarse and medium sand.
$1.6=1.8$	Clay, with some medium sand.
$1.8-3.8$	Clay horizon.

Section 14B Quarry parallel to the transverse axis of the ridge

0.0-0.9	Soil with coarse pebbles.
0.9-1. 15	Very coarse sand lamina.
$1.15-1.25$	Medium sand, with very coarse send laminae.
1.25-1.4	Very coarse sand lamina, with irregular pebbles.
$1.4-1.55$	Graded coarse to medium sand lamina.
1.55-1.6	Pebble horizon.
1.6-1.85	Graded bed--coarse sand to medium granules.
1.85-2.1	Coarse and medium sand--pebble horizon at 2.1.
$2.1-2.5$	Graded very coerse to medium sand.
2.5-3.3	Graded coarse to fine sand. $10 \mathrm{YR} 7-3$.
3.3-3.8	Mixed sand horizon with irregular granules.
3.8-3.83	Clay horizon.
3.83-5.3	Boulders, with unsorted pebbles and mixed sand.

## Section 14B (continued)

Structures:

> I Bed $1.6-1.85$ dipping 4 degrees downward to west. II Bed $1.85-2.1$ dipping 4.5 degrees downward to west.

Section 14C Quarry parallel to the transverse axis of the ridge

Depth (fte)
$0.0-1.2$
1.2-1.65
1.65-2.25
2.25-2.8
2.8-2.9
2.9-3.1
3.1-3.2
3.2-3.25
3.25-3.8
3.8-4.8

Description
Soil with pebbles and very coarse sand. Medium sand. Silty clay horizon. Medium sand graded, coarser below with irregular pebbles. Very coarse sand and pebble lamina. Modium sand with irregular pebbles.
Clay horizon.
Coarse granules. Very coarse pebble horizon, some medium sand. Predominantly coarse sand, with medium sand, coarse pebbles, granules and boulders. 2.5 Y 7-2.

Structures:

I	Bed	1.2 -1.65	dipping 7 degrees downward to east.	
II	Bed	$1.65-2.15$	dipping 4	degrees downward to east.
III	Bed	$2.15-2.25$	dipping 5 degrees downward to east.	
IV	Bed $2.8-2.9$ dipping 17 degrees downward to east.			

Section 14 D Pit

$$
\begin{aligned}
& 0.0-0.8 \\
& 0.8-1.7 \\
& 1.7-2.5 \\
& 2.5-2.7 \\
& 2.7-3.4
\end{aligned}
$$

Soil horizon with fine granules and pebbles.
Horizon of very fine granules graded to pebbles below. Coarse to medium sand and irregular pebbles. $10 \mathrm{YR} 7-2$. Very coarse sand lamina. Unsorted horizon of very coarse sand, and pebbles.

Section 14E Pit

Depth (fte)
$0.0-0.8$
0.8-3.0
$3.0-3.5$

## Description

Soil horizon. Soil with coarse sand and irregular pebbles. Unsorted grenules with fine sand, silt and clay. 2.5 Y 7-4。

Soil horizon. Pebble lamina. Coarse sand and pebbles. 2.5 Y 7-2. Boulders.

Soil horizon, with pebbles. Coarse sand, graded, coarser below.
Clay horizon, with some granules. Coarse gravel horizon. Coarse sand, graded, very coarse below, with some granules. 2.5 y 7-2.

Silt horizon, with irregular pebbles.

Section 150 Pit

$$
\begin{aligned}
& 0.0=0.6 \\
& 0.6=1.0 \\
& 1.0=2.5 \\
& 2.5-3.5
\end{aligned}
$$

Soil horizon.
Soil with irregular pebbles. Very coarse sand and pebbles. Unsorted coarse to medium sand, some granules. 2.5 Y 7-2.

Section 15D Pit

$$
\begin{aligned}
& 0.0-0.9 \\
& 0.9-1.4 \\
& 1.4-1.5 \\
& 1.5-1.8
\end{aligned}
$$

Soil horizon. Coarse sand. Coarse granule horizon, reverse grading into coarse sand below. Very coarse sand, with medium sand laminae.

Section 15D (continued)

Depth (ft.)
$1.8-1.9$
$1.9-2.2$
$2.2-3.0$

$$
2.2-3.0
$$

Section 15E Pit
$0.0-0.1$
$0.1-1.6$
1.6-2.0 2.0-3.6

Pit

$$
\begin{aligned}
& 0.0-1.2 \\
& 1.2-2.0 \\
& 2.0-3.5
\end{aligned}
$$

Soil horizon. Clay with irregular pebbles. Clay.
Soil horizon. Fine silty clay, with irregular granules. Clay, with few granules. White clay.

Section 16A

## Description

Very coarse sand lamina. Unsorted very coarse to medium sand. Some granules and pebbles. 2.5 Y 7-2.

Boulders and cobbles in clay matrix.

Section 16B East
Quarmy parallel to the transverse axis of the ridge Top soil removed by quarry workings.
0.0-0.8 Disturbed horizon due to quarrying.
$0.8-0.85$
$0.85-0.95$
$0.95-1.3$

1. $3-1.9$
1.9-2.2
2.2-2.5
$2.5-2.55$
$2.55-2.75$
2.75-2.95
2.95-3.0
3.0-3.1
3.1-3.3
3.3-3.35

Very coarse sand lamina.
Pebble horizon, with coarse sand.
Very coarse sand lamina.
Pebble horizon with coarse and very coarse sand. 10 YR 6 m . Very coarse sand, graded with granules below. Medium sand. Coarse sand lamina. Coarse and medium sand, with some clay. 10 YR 7-2. Unsorted pebbles, coarse sand and silt. 2.5 I 7-2. Coarse granules with very coarse sand.
Clay horizon.
Mediun sand, graded below into granules.
Mediun and very coarse sand.

Section 16B East (continued)

> Depth (fte)
> $3.35-3.45$
> $3.45-3.55$
> $3.55-3.65$
> $3.65-3.8$
> $3.8-3.9$
> $3.9=4.35$
> $4.35-4.45$
> $4.45=4.9$
> $4.9-5.1$

Description

Structures:

I	Bed	$0.95-1.3$	dipping 11	degrees downard to west
II	Bed $2.5-2.55$	dipping 10	degrees downward to west	
III	Bed	$2.75-2.95$	dipping 2	degrees downward to west
IV	Bed	3.1	-3.3	dipping 15
degrees downard to east				
$V$	Bed	$3.55-3.65$	dipping 4.5 degrees downard to east	
VI	Bed	$4.35-4.45$	dipping 16	degrees dowward to east.

Section $16 B$ West Quarry parallel to the transverse axis of the ridge

0.0-1.75	Disturbed horizon due to quarrying.
1.75-1.85	Very coarse sand and granule lamina.
1.85-2.0	Coarse sand lamina.
2.0-2.1	Pebble horizon.
2.1-2.8	Granules, pebbles and coarse sand. 2.5 Y 7-2.
2.8-2.9	Clay horizon.
2.9-3.2	Coarse and fine granules and mixed sand.
3.2-3.4	Sand lamina with irregular granulesmereverse graded.
3.4-3.45	Medium granule horizon.
$3.45-3.7$	Coarse sand and granules.
$3.7-3.9$	Pebbles, very coarse sand with some fine sand and silt.
3.9-4.4	Unsorted pebbles, coarse and very coarse sand.

Section 16B Mest (continued)
Structures:

$$
\begin{aligned}
& \text { I Bed 2.1-2.8 dipping } 15 \text { degrees downward to west } \\
& \text { II Bed } 3.9-4.4 \text { dipping } 4 \text { degrees downard to east }
\end{aligned}
$$

Section 160 Pit

Depth (fte)	Description
$0.0-0.6$	Disturbed horizon due to   quarrying.
$0.6-1.6$	Coarse granules with very   coarse sand.
$1.6-2.1$	Unsorted coarse sand to coarse   silt with granules and pebbles.   I
$2.1-2.2$	Very coarse sand lemina.
$2.2-2.6$	Coarse granule horizone
$2.6-3.3$	Unosrted coarse sand and peb.   bles.

Structures:
I Bed 1.6-2.2 dipping 3 degrees dowward to east.

Section 16D Pit
$0.0-1.0$
1.0 - 1.4

1. $4-2.3$
Soil with coarse granules and
very coarse sand.
Very fine sand graded into fine
granules. 2.5 Y 7-2.
Pebble horizon with coarse sand.

Section 16E Pit

$$
\begin{aligned}
& 0.0-0.8 \\
& 0.8=1.2 \\
& 1.2-2.0
\end{aligned}
$$

Soil horizon.
Dark clay.
Very coarse to fine sand with some granules and light clay. 2.5 Y 8.2.

Section 17A
Depth (ft.)

$$
\begin{aligned}
& 0.0=0.8 \\
& 0.8-1.6 \\
& 1.6-3.5
\end{aligned}
$$

Section 17B Pit

$$
\begin{aligned}
& 0.0=1.0 \\
& 1.0-1.5 \\
& 1.5-2.6 \\
& 2.6-3.7
\end{aligned}
$$

## Descrintion

Soil horizon, with large boulders on surface. Very coarse sand and pebbles. 2.5 Y 5-2. Silty sand and irregular peb. bles.

Soil horizon.
Predominantly soil with very coarse sand and irregular granules.
Very coarse sand and coarse granules. Medium sand with granules and pebbles. $\quad 2.5$ Y7-2.

Section 17\% Pit

$$
\begin{aligned}
& 0.0-0.6 \\
& 0.6-2.2 \\
& 2.2-2.4 \\
& 2.4-3.0 \\
& 3.0-3.4 \\
& 3.4=3.65 \\
& 3.65-3.85 \\
& 3.85-3.95 \\
& 3.95=5.3
\end{aligned}
$$

Soil horizon.
Mixed horizon of granules, very coarse and medium sand. Medium sand.
Medium sand, with coarse sand laminae and irregular pebbles. Very coarse send and granules. Medium sand lamina. 2.5 Y 7-2. Unsorted sand and granules. Coarse granule horizon. Unsorted coarse and very coarse sand, and granules.

Structure:
I Bed 3.0-3.4 dipping 27 degrees downward to east.

Section 17D Pit

$0.0-0.6$	Soil horizon.
$0.6-1.55$	Soil, with granules.
$1.55-2.0$	Coarse granules and very coarse
$2.0-2.9$	sand.
	Medium send and irregular
granules.	

Section 1 ID (continued)

> Depth (fte)
> $2.9-2.95$
> $2.95-3.8$
> $3.8-4.6$

## Description

Coarse granule horizon. Unsorted very coarse to fine sand some granules. 2.5 Y 7-2. Very coarse sand and granules.

Section 17E
Pit

$$
\begin{aligned}
& 0.0-1.4 \\
& 1.4-2.0 \\
& 2.0-3.6
\end{aligned}
$$

Soil horizon.
Medium to fine sand, some coarse silt. $\quad 10 \mathrm{YR} 5$-2.
Dark clay.

Section 18A
Pit

$$
\begin{aligned}
& 0.0-0.6 \\
& 0.6-1.1 \\
& 1.1-1.6 \\
& 1.6-3.4
\end{aligned}
$$

Pit

$$
\begin{aligned}
& 0.0=0.5 \\
& 0.5-1.2 \\
& 1.2-2.0 \\
& 2.0-3.4
\end{aligned}
$$

Quarry parallel to the transverse axis of the ridge
$0.0-0.5$
0.5-1.1
1.1-1.2
$1.2-1.35$
1.35-1.75

$$
\begin{aligned}
& 1.75-1.9 \\
& 1.9-2.05
\end{aligned}
$$

Disturbed due to quarrying. Unsorted granules in clay. Silt, with coarse sand and granules. Unsorted gravel and sand. Medium sand, with very coarse sond laminae, some pebbles and silt. 2.5 Y 7-2. Coarse sand, grading into fine granules. Unsorted coarse granules and send.

Section 180

Soil horizon
Soil with very coarse sand and granules.
Coarse sand with pebbles, granules and silt. 10 YR 7-2. Granules, with coarse silt.

Soil horizon.
Soil, pebbles, very coarse sand and boulders.
Granules, pebbles and coarse
sand.
2.5 Y 6-2.

Silty sand.

Section 180 (continued)


Structures:

$$
\text { I Bed } 1.75-1.9 \text { dipping } I \text { degree downward to west }
$$

II Bed 2.05-3.0 dipping 5 degrees downward to east.

Section 18D Pit

$0.0-0.5$	Soil horizon
$0.5-1.0$	Soil with fine pebbles.
$1.0-1.5$	Predominantly medium sand, with
$1.5-2.2$	very coarse sand and granules.
$2.2-3.4$	Pebble horizo
$3.4-4.0$	Coarse pebbles.
	Silty sand.

Section 18E Pit

$$
\begin{aligned}
& 0.0=1.6 \\
& 1.6=1.8 \\
& 1.8=2.3
\end{aligned}
$$

Soil horizon.
Silty send.
Silty clay.

Section 19A Pit

$$
\begin{array}{ll}
0.0-0.9 & \text { Soil horizon. } \\
0.9-1.3 & \text { Clay with irregular granules. } \\
1.3-3.0 & \text { Clay. }
\end{array}
$$

Section 19B Pit

$$
\begin{aligned}
& 0.0-0.5 \\
& 0.5-1.0 \\
& 1.0-1.2 \\
& 1.2-1.5 \\
& 1.5-2.3
\end{aligned}
$$

Soil horizon. Granules and soil. Unsorted coarse and medium sand. Very coarse sand lamina and ir. regular granules.
Unsorted sand with irregular granules, pebbles and coarse laminae.

Section 190 Quarry perpendicular to the long axis of the ridge.

Dapth (ft.)

$$
\begin{aligned}
& 0.0-0.6 \\
& 0.6-1.2 \\
& 1.2-2.3 \\
& 2.3-3.9 \\
& 3.9-4.6
\end{aligned}
$$

Description
Soil horizon. Soil, with very coarse sand and granules. Coarse sand and irregular granules. Very coarse sand with discontinuous gravel laminae.
2.5 Y 6-2.

Pebble horizons, with medium and very coarse sand.

Structure:
I Bed 2.3-3.9 dipping 10 degrees downward to west

Section 19D Pit

$0.0-0.8$	Soil horizon.
$0.8-1.3$	Granules and very coarse send.
$1.3-1.5$	Silty clay, with irregular
$1.5-3.6$	granules.
	Unsorted cobbles, pebbles and
	granules.

Section 19E Pit
$0.0-0.6$
$0.6-2.6$

Soil horizon.
Light clay, with some silt.

## Appendix 2

## THE PONTON RIDGES

Transect - 400.
Section -SOOA Pit

$$
\begin{aligned}
& \text { Depth (ft.) } \\
& 0.0-2.3 \\
& 2.3-2.5 \\
& 2.5-4.0
\end{aligned}
$$

## Description

$$
\begin{array}{r}
\text { 0.0-2.3 Silty sand, clay and granules. } \\
2.5 Y 7-2 .
\end{array}
$$

$$
2.5 \text { Y 7-2. }
$$

Ash grey fine soil horizon. Orange sand horizon.

Section - 400 B Pit

$$
0.0-2.3 \quad \text { Clay. }
$$

Section -4000 Pit

$$
0.0-2.0 \quad \text { Clay. }
$$

Section-400D Pit

$$
0.0-2.4 \quad \text { Clay. }
$$

Section-LOOE Pit.

$$
\begin{array}{ll}
0.0-2.1 & \text { Fine silty sand. } \\
2.1-3.7 & \text { Clay horizon. }
\end{array}
$$

Sections - 400F and G.
Pit.

$$
\begin{aligned}
& 0.0-0.3 \\
& 0.3-0.6 \\
& 0.6=4.0
\end{aligned}
$$

Silty $\operatorname{sand}$.
Ash grey fine soil horizon. Unsorted coarse to fine orange sand, with some coarse silt. 2.5 Y 7-4.

Section - 400 H Pit
Depth (fta) Description

$$
0.0-2.5 \quad \text { Clay. }
$$

Section $-400 I$ and $J_{\Omega}$
Pit

$$
\begin{array}{ll}
0.0-0.6 & \text { Soil horizon. } \\
0.6-0.8 & \text { Silty sand. } \\
0.8-1.9 & \text { Clay }
\end{array}
$$

Section 0400 K Pit

$0.0-6.6$	Fine sand and some coarse silt.
$6.6-7.2$	

Section - 400 L Pit

$$
\begin{aligned}
& 0.0=0.6 \\
& 0.6=0.9 \\
& 0.9=2.8 \\
& 2.8=4.1
\end{aligned}
$$

Medium to fine sand, some coarse silt. $\quad 2.5$ Y 604.
Ash grey horizon. Orange sand horizon. Fine sand.

Section - 400 M contains the same sedimentological differentiation as -400 L .

Section-600N. Pit

$$
\begin{array}{ll}
0.0-3.2 & \text { Very fine sand. } \\
3.2-3.9 & \text { Clay horizon. }
\end{array}
$$

Section - $400(0)$ Pit
Wet peat swanp.

Transect 000 .
Section 000A Pit

$$
\begin{array}{ll}
0.0-0.6 & \text { Silty sand. } \\
0.6-0.7 & \text { Organic horizon. }
\end{array}
$$

Section OOOA (continued)

Depth (ft. $)$

$$
\begin{aligned}
& 0.7-0.9 \\
& 0.9-3.0
\end{aligned}
$$

Section $000 B$ and $C$
Pit

$$
\begin{array}{lll}
0.0-0.7 & \text { Organic horizon. } & \\
0.7-3.0 & \text { Clay. } & 2.5 \text { Y 8.02. }
\end{array}
$$

Section OOOD Pit

$$
0.0-3.6
$$

Fine to very fine sand, some coarse silt. 10 IR 7-2.

Section 000E Pit

$$
\begin{aligned}
& 0.0-1.0 \\
& 1.0-3.7
\end{aligned}
$$

Pit

$$
\begin{aligned}
& 0.0=0.8 \\
& 0.8-2.6
\end{aligned}
$$

Pit

$$
0.0-4.0
$$

Fine sand, and some coarse silt. 2.5 Y 6.4.

Sections OOOH and OOOI disturbed by the road. Silty sand above and clay beneath. Some granules evident.

Section OOOK Pit.

$$
\begin{array}{ll}
0.0-0.3 & \text { Organic horizon--peat. } \\
0.3-0.6 & \text { Silty sand. } \\
0.6-3.4 & \text { Coarse to fine sand, some } \\
& \text { coarse silt and granules. } \\
&
\end{array}
$$

Section 000L Pit

Depth (ft.)

$$
0.0-4.0
$$

Pit

$$
\begin{aligned}
& 0.0=1.0 \\
& 1.0=2.3
\end{aligned}
$$

Silty sand.
Very coarse sand and granules.

Section 000N Pit

$$
0.0-2.0 \quad \text { Very coarse sand. }
$$

Section 000(0) Pit

$$
0.0-400
$$

Fine sand with irregular peb. ples.
2.5 Y 7-2

Section 000P Pit

$$
0.0-2.6
$$

Silty sand, and irregular pebbles

Section 0000 Pit

$$
\begin{array}{ll}
0.0-1.0 & \text { Fine sand and irregular pebbles. } \\
1.0-1.6 & \text { Ash grey fine soil horizon. } \\
1.6-2.6 & \text { Orange sand horizon. } \\
2.6-4.4 & \text { Medium to fine sand. } 2.5 \text { Y 7-4. }
\end{array}
$$

Section 000R Impenetrable vegetative mat and peat.

Transect 200
Section 200A Pit

0.0-1.0	Silty sand with some clay
	2.5 Y 7-2.
1.0-1.2	Dack organic soil horizon.
1.2-1.4	Ash grey fine soil horizon.
$1.4-1.6$	Orange sand horizon.
1.6-3.6	Very fine and medium sand.
3.6-5.0	Clzy. 2.5 Y 6-4.

Section 200B
Pit

Depth (ft.)

$$
\begin{aligned}
& 0.0-0.6 \\
& 0.6-3.0
\end{aligned}
$$

Sections 200C, D and E
Pit

$$
0.0=0.5
$$

Section 200F Pit

$$
\begin{aligned}
& 0.0-2.6 \\
& 2.6-3.3
\end{aligned}
$$

Section 200G Pit

$$
0.0-1.6
$$

Section 200 H

## Pit

$$
0.0-4.0
$$

Medium and fine sand.
2.5 Y 704.

Medium to fine sand-osome silt. 2.5 Y 7-2.

Silty clay.
Fine sand.
Fine silty sand. 2.5 Y 7-2. Clay. 2.5 Y 7-2.

$$
0.5-2.3
$$ Silty sand. Clay. $\quad 2.5$ Y 8-2.

Section 200I Pit

$$
\begin{aligned}
& 0.0=0.8 \\
& 0.8-3.2
\end{aligned}
$$

Section 200J Pit

$$
\begin{aligned}
& 0.0=0.6 \\
& 0.6-2.3
\end{aligned}
$$

Fine orange sand horizon. White/light grey clay horizon.

Silty sand. Coarse to medium sand. No one color.

Section 200L Pit

Depth (ft.)
$0.0-1.0$
1.0-2.3 2.3-2.7

## Description

Medium to silty sand. 2.5 Y 6-2.

Very fine sand. 2.5 Y 7-2. Very coarse sand with irregular pebbles and clay lenticles.

Section 200M Pit

$$
\begin{aligned}
& 0.0-1.1 \\
& 1.1-1.3 \\
& 1.3-2.6
\end{aligned}
$$

Section 200N Pit

$$
0.0-4.0
$$

Very fine sand with medium lamina, at 2.0'. 2.5 Y 8-4.

Section 200(0) Pit

$$
\begin{aligned}
& 0.0-1.0 \\
& 1.0-3.6
\end{aligned}
$$

Fine orange sand. Fine sand. 2.5 Y 6 m.

Transect 400
Section 400A Pit

$$
\begin{aligned}
& 0.0-2.0 \\
& 2.0-4.0
\end{aligned}
$$

Section 400B
Pit

$$
\begin{aligned}
& 0.0-2.0 \\
& 2.0-3.6
\end{aligned}
$$

Fine to very fine sand. Clay, and some silt. 2.5 Y 7-4。

Section 4000 Pit

$$
0.0-4.0 \quad \text { Fine textured silty sand. }
$$

Pit

$$
\text { Depth }\left(f t_{\Omega}\right) \quad \text { Description }
$$

$$
\begin{aligned}
& 0.0=0.8 \\
& 0.8=1.0
\end{aligned}
$$

Silty sand. Clay horizon.

Section 400E Pit

$$
\begin{array}{lll}
0.0-0.9 & \text { Medium to fine sand. } \\
0.9-2.4 & \text { Clay. } & 2.5 Y 7-20 \\
& 2.5 Y=20
\end{array}
$$

Section 400F
Pit

$$
0.0-5.0
$$

Fine to very fine sand. 2.5 Y 7-4.

Section 400G
Pit

$$
0.0-3.2 \quad \text { Medium to fine sande }
$$

No clay at base but fer clay lenticles in the section.

Section 400 H Pit

$$
\begin{aligned}
& 0.0-1.6 \\
& 1.6-1.8 \\
& 1.8-3.6
\end{aligned}
$$

Medium send.
Pebble horizon.
Fine to very fine silty sand.
2.5 Y 7-2.

Section 4,00I Pit

$$
\begin{aligned}
& 0.0-1.0 \\
& 1.0-4.6
\end{aligned}
$$

Fine orange sand.
Fine sand.
2.5 Y 7-4.

Section 400J
Pit

$$
0.0-4.0
$$

Orange medium sand.

Section 400K
Pit

$$
\begin{aligned}
& 0.0-1.0 \\
& 1.0-2.0 \\
& 2.0-2.1
\end{aligned}
$$

Orange sand.
Medium sand.
Pebble layer (disintegrating)
with white clay.

Section 400 K (continued)
Depth (ft.)
Description
$2.1-4.2$
Fine to very fine silty sand.
2.5 Y 7-2.

Boulders on the crest of the ridge.

Transect 600
Section 600A
Pit

$0.0-0.4$	Ash grey fine soil horizon.	
$0.4-3.7$	Orange sand.	
$3.7-4.2$	Clay.	$2.5 Y 7-2$.

Section 600B Pit

$$
\begin{aligned}
& 0.0=0.1 \\
& 0.1=2.6 \\
& 2.6=2.7 \\
& 2.7=2.9 \\
& 2.9=3.2 \\
& 3.2=4.6
\end{aligned}
$$

Scattered pebbles. Silty clay. Organic horizons. Orange sand horizon. Ash grey soill horizon. Orange sand horizon.

Section 6000 Pit

$$
0.0-4.0
$$

Clay.
2.5 Y 7-2.

Section 600D Pit

$$
0.0-3.6 \quad \text { Silty clay }
$$

Section 600E Pit

$$
\begin{aligned}
& 0.0-2.0 \\
& 2.0-4.0
\end{aligned}
$$

Orange sand horizon.
Fine to very fine sand.
2.5 Y 7-4.

Section 600F Pit

$$
\begin{array}{ll}
0.0-0.2 & \text { Medium sand. } \\
0.2-1.0 & \text { Very coarse sand. } \\
1.0-3.6 & \text { Fine, silty sand. }
\end{array}
$$

Section 600G Pit

Depth (ft. $)$

$$
0.0-4.0 \quad \text { Medium sand. }
$$

Section 600H Pit

$$
\begin{aligned}
& 0.0=0.6 \\
& 0.6-2.6 \\
& 2.6=3.7
\end{aligned}
$$

Ash grey fine soil horizon. Orange medium sand. Fine to very fine sand.

$$
2.5 \text { Y 7040 }
$$

Section 600I Pit

$$
\begin{aligned}
& 0.0-1.0 \\
& 1.0-2.6 \\
& 2.6-3.9
\end{aligned}
$$

Medium sand.
Sand faintly laminated with silty horizons.
Sandy silt.

Transect 700
Section 700A
Pit

$$
\begin{aligned}
& 0.0=0.2 \\
& 0.2=0.6 \\
& 0.6=1.6 \\
& 1.6=1.8
\end{aligned}
$$

Ash grey soil horizon. Pebble horizon. Fine to very fine sand. 2.5 Y 6.4. Clay.

Clay extends to about 12 feet in depth--seen in ditch exposure.

Section 700B Pit

$$
0.0-12
$$

Clay--in roadside ditch.

Section 7000 Pit

$$
\begin{aligned}
& 0.0-2.0 \\
& 2.0-5.0
\end{aligned}
$$

Orange fine to medium sand horizon.
2.5 Y 7-4.

Medium sand.

Section 700D
Pit

$$
\begin{array}{ll}
0.0-0.6 & \text { Fine sand. } \\
0.6-1.0 & \text { Clay. }
\end{array}
$$

Section 700E
Pit

Depth (ft.)

$$
\begin{array}{lll}
0.0-1.0 & \text { Fine sand。 } & 2.5 \text { Y 7. } \\
1.0=3.9 & \text { Clayey sand-هfrozen ground. }
\end{array}
$$

Section 700F Pit

$$
\begin{gathered}
\text { Fine sand. } 2.5 \text { y 7-2. } \\
1.0 \text { and surrounding and below-tabular boulders } \\
\text { encountered. }
\end{gathered}
$$

Section 700G. Pit

$$
0.0-4.8
$$

Predominantly fine to very fine orange sand. $\quad 2.5$ Y 7-4.

Section 700H Pit

$$
0.0-2.0 \quad \text { Medium sand. }
$$

Pransect 900
Section 900A Pit

$$
\begin{array}{ll}
0.0-3.0 & \text { Fine sand and some coarse silt. } \\
3.0-4.0 & \text { Clay. }
\end{array}
$$

Section 900B Pit

$$
0.0-4.0 \quad \text { Clay. }
$$

Section 900D Pit

Section 9000

Section 900E

Pit

$$
0.0-3.0
$$

Very fine sand and coarse silt. 2.5 Y 6-2.

$$
0.0-3.0
$$

Silty sand with clay below.

Pit

$$
\begin{array}{ll}
0.0-2.0 & \text { Fine to very fine sand } 2.5 \text { Y 7-2. } \\
2.0-3.7 & \text { Clay. }
\end{array}
$$

Section 900F Pit

$$
\begin{aligned}
& \text { Depth }\left(\mathrm{ft}_{0}\right) \\
& 0.0-400 \quad \text { Fine sand. } \quad \text { Description }
\end{aligned}
$$

## Section 900G Pit

$$
0.0-4.5
$$

Fine sand with faint, very fine sand laminations. 2.5 Y 7-4.

Section 900H Pit

$$
\begin{aligned}
& 0.0-1.1 \\
& 1.1-2.3
\end{aligned}
$$

Fine to very fine silty sand. 2.5 Y 7-2.

Silty clay--frozen ground. 2.5 Y 7-2.

Section 900I Pit

$$
0.0-3.0
$$

Very fine sand.

Section 900J Pit

$$
0.0-3.0
$$

Fine sand.

Section 900 K
Pit

$$
\begin{aligned}
& 0.0-1.0 \\
& 1.0-2.3
\end{aligned}
$$

Silty sand. Fine sand--frozen ground.

Section 900I Pit

$$
\begin{aligned}
& 0.0=0.3 \\
& 0.3-1.6 \\
& 1.6=3.4
\end{aligned}
$$

Silty sand. Ash grey soil horizon, with some sand.
Very fine sand and coarse silt. 2.5 Y 6-4.

Section 900M Pit

$$
\begin{aligned}
& 0.0-1.0 \\
& 1.0-4.6 \\
& 4.6-5.3
\end{aligned}
$$

Ash grey soil horizon. Medium sand predominantly with some fine sand. Clay. 2.5 Y 7-2.

Transect 1100
Section 1100A Pit

$$
\begin{aligned}
& \text { Denth (fte) } \\
& 0.0-0.4 \\
& 0.4-4.0
\end{aligned}
$$

Descrintion
Ash grey soil horizon. Predominantly coarse to medium sand, with some fine sand. 10 YR 4-4.

Section $1100 B \quad$ Pit

$$
\begin{aligned}
& 0.0-1.0 \\
& 1.0-3.8
\end{aligned}
$$

Orange sand horizon. Medium to fine sand with some indications of laminations. 2.5 Y 7-4.

Section 11000 Pit

$$
\begin{aligned}
& 0.0-0.6 \\
& 0.6-3.6
\end{aligned}
$$

Peat.
Fine silty sand.

Section 11000 Pit

$$
\begin{aligned}
& 0.0-3.0 \\
& 3.0-3.6
\end{aligned}
$$

Medium to fine silty sand. 2.5 Y 7-2. Clay.

## Section 1100E Pit

Water table at the surface penetration beneath indicated that the prevalent deposit was the same fine silty sand as found at 1100D.

Section 1100F Pit
F G H I in the 1100 sections have boulders, platy in type, lying horizontally at the surface.

Section 1700J Pit

$$
\begin{array}{ll}
0.0-0.3 & \text { Peat soil. } \\
0.3-1.5 & \text { Silty sand with grit Iaminae } \\
1.5-1.55 & \text { Pebble layer. } \\
1.55-2.5 \text { Y-2. } & \text { Clay. }
\end{array}
$$

Section 1700 K Pit

Depth (fte)

$$
0.0-4.0
$$

## Description

Fine sand.

Section 1300 L and $M_{0}$
Pit

$$
\begin{array}{r}
0.0-4.0 \quad \text { Fine to very fine sand. } \\
2.5 \text { Y } 7040
\end{array}
$$

Section 1100N Pit

$$
\begin{array}{ll}
0.0-0.2 & \text { Peat horizon. } \\
0.2-0.6 & \text { Ash grey soil horizon. } \\
0.6-1.2 & \text { Orange medium sand. } \\
1.2-2.3 & \text { Fine to very fine sand. } \\
2.3-3.5 & \\
2.5 \text { Y 7-4 }
\end{array}
$$

Transect 1300
Section 1300A Pit

$$
\begin{aligned}
& 0.0=0.9 \\
& 0.9-1.8 \\
& 1.8=2.7 \\
& 2.7-2.8 \\
& 2.8-3.8
\end{aligned}
$$

Peat horizon. Ash groy soil horizon. Fine sand. 2.5 Y 6-2. Black ? horizon. Fine sand.

Section 1300B Pit

$$
\begin{aligned}
& 0.0-0.7 \\
& 0.7=1.3 \\
& 1.3-4.6
\end{aligned}
$$

Fine sand.
Ash grey soil horizon.
Fine to very fine sand. 2.5 Y 7-4.

Section 13000 Pit

$$
\begin{aligned}
& 0.0-0.8 \\
& 0.8-1.0
\end{aligned}
$$

Silty sand.
Hard indurated sand horizon, consisting of fine to very fine sand. 2.5 Y 6-4.

Section 13000 Pit

$$
\text { Depth }\left(f t_{0}\right)
$$

$0.0-1.3$
$1.3-4.0$
4.0-4.1
4.1-4.5

Pit

$$
0.0-3.8
$$

Predominantly fine sand, with some medium sand. 2.5 Y 7-4.

Section 1300F Pit

$$
\begin{aligned}
& 0.0-1.0 \\
& 1.0-1.1
\end{aligned}
$$

Silty sand.
Hard indurated sand horizon-m frozen ground.

Section 1300G Pit

$$
0.0-3.0
$$

Fine to very fine silty sand. 2.5 Y 6-4.

Section 1300H Pit

$$
\begin{aligned}
& 0.0-3.8 \\
& 3.8 \text { and below }
\end{aligned}
$$

Pit

$$
0.0-3.0
$$

Silty sand.
Impenetrable below 3.0 feet because of frozen ground.

Section 1300J Pit

$$
0.0-1.2 \quad \text { Silty sand. }
$$

Section 1300K Pit

$$
\begin{aligned}
& \text { Depth (fte) } \\
& 0.0-1.0 \\
& 1.0-1.8 \\
& 1.8-4.4
\end{aligned}
$$

$$
0.0-1.0 \quad \text { Mediun sand. }
$$

Ash grey soil horizon, with some sand.
Orange medium sand with some coarse and fine sand.

$$
2.5 \text { Y 7-4. }
$$

Ash grey soil horizon. Orange medium sand. Coarse to medium sand. 215 Y 7-4.

Transect 1500
Section 1500A Pit
0.0-0.9
0.9-1.4
1.4 and below

Ash grey soil horizon. Orange sand horizon. Impenetrable frozen ground.

Section 1500B Pit

$$
\begin{aligned}
& 0.0-1.0 \\
& 1.0-4.0
\end{aligned}
$$

Dark orange sand horizon. Light orange sand.

Section 15000 Pit

$$
0.0-1.3
$$

$$
1.3 \text { and below }
$$

Fine sand. $\quad 2.5$ Y 7 70. Impenetrable frozen ground.

Section 1500D Pit

$$
0.0-4.0 \quad \text { Medium sand. }
$$

Section 1500E Pit

$$
\begin{array}{ll}
0.0-1.0 & \text { Orange sandy soil. } \\
1.0=4.0 & \text { Medium sand. }
\end{array}
$$

Section 1500F Pit

Depth ( $f t_{0}$ )
$0.0-400$

Descrintion
Medium to fine sand. 2.5 Y 7-2.

## SAMPLING POINTS-AGASSIZ RIDGE

 STE. ANNE, MANITOBA. SURVEYED AUGUST, I969


RIDGES IN THE PONTON AREA
NORTHERN MANITOBA.




## FABRIC ANALYSIS OF STE. ANNE PEBBLES.

SECT $2 b 3 c$


103pebbles SECT 4d


SECT IOc 102 pebbles



0






