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Abstract 

 

This thesis develops the dynamic phasor model of a line-commutated converter (LCC) 

high-voltage direct current (HVDC) transmission system. The mathematical definition and 

properties of dynamic phasors are utilized to model both the dc-side and the ac-side of a 

LCC-HVDC transmission system as well as 6-pulse Graetz bridge, which is the building 

block of such a system. 

The developed model includes low-frequency dynamics of the systems, i.e., 

fundamental frequency component (50 Hz) at the ac-side and dc component at the dc-side, 

and removes high-frequency transients. The developed model, however, is capable of 

accommodating higher harmonics if necessary. The model is also able to simulate the 

system during abnormal modes of operations such as unbalanced operation and 

commutation failure. In order to develop the dynamic phasor model of a line-commutated 

converter, the concept of switching functions is utilized. 

The developed model is capable of capturing large-signal transients of the system as 

well as steady state operating conditions. The model can be used in order to decrease the 

computational intensity of LCC-HVDC simulations. The developed model in this thesis 

enables the user to consider each harmonic component individually; this selective view of 

the components of the system response is not possible to achieve in conventional 

electromagnetic transient simulations.  
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Chapter 1 

Introduction 

1.1 Background 

High-voltage direct current (HVDC) transmission systems play an integral role in modern 

electric power networks. HVDC is considered to be a suitable option for such applications 

as: 

- transmission via underground/submarine cables; 

In such cases conventional transmission via high-voltage ac lines will face major 

operating challenges posed by the excessive capacitance of the 

underground/submarine cables, whereas the direct-current nature of an HVDC 

system will not be impacted by the capacitance of the cable.  

- linking ac systems with unequal frequencies; 

In cases where two or more ac electric networks with different frequencies (e.g., 50 

Hz and 60 Hz) are to be connected, HVDC transmission systems are the only choice 

to do so. 
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- long-distance transmission [1], [2]. 

Transmission of electric power over long distances with ac electric networks is 

limited by the amount of line reactance. Therefore, in order to overcome this 

problem and to utilize the full capacity of the transmission system, ac lines must be 

equipped with series/shunt compensators to reduce the total reactance. Series 

compensated lines may impose stability problems to the network, which need 

further investigation. On the other hand, the line reactance is not of concern in 

HVDC transmission systems as the voltages and currents are dc. 

Although a new breed of HVDC systems using voltage-source converters (VSC) is also 

developed and is the subject of wide-spread interest, the majority of existing HVDC 

systems are based upon conventional line-commutated converters (LCC). LCC-HVDC 

schemes offer the benefits of a more mature technology (than the VSC-based systems) and 

are available in much larger ratings than the currently available VSC-HVDC systems. 

Presently, VSC-HVDC systems exist in power ratings of up to 1500 MW (per converter), 

whereas LCC-HVDC converters of more than twice this rating are commonly available 

[3]. Therefore, it is anticipated that LCC-HVDC systems will continue to play a major role 

in the future adoption of HVDC transmission. 

The complexity of interconnected power systems disallows an extended use of 

analytical methods for their design. Limitations of field experiments (in terms of feasibility 

of experiments and security of the grid), on the other hand, often render them infeasible for 

practical purposes to analyze the behaviour of the network. Therefore, computer 

simulations for modeling, analysis, design, and operation of power systems have been the 
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practice of choice over the past few decades since the advent of modern computing 

platforms.  

Power system transient simulation programs are broadly categorized to two types [4]:  

- Electromagnetic transient (EMT) programs; 

- Electromechanical transient programs. 

Electromagnetic transient programs are the most accurate type of computer simulation 

programs for simulating transients in an electric power network. EMT simulators are 

historically used for the study of short-term, fast transients, which typically include 

frequencies that exceed the fundamental; they use detailed models and numerically 

demanding solution methods, which make them computationally affordable only for small 

networks or studies with a short period of interest.  

On the other hand, electromechanical transient programs have been developed to study 

slower dynamics, which involve oscillations of machine rotors and typically include 

frequencies less than the fundamental. These types of programs are also called transient 

stability programs. The period of interest in transient stability programs is longer than 

EMT-type studies, ranging from a few seconds to several tens of minutes. Electromagnetic 

transient simulation programs, in which high-fidelity models of transmission systems and 

power electronic converters are available, have been extensively used for the analysis and 

design of HVDC schemes. For instance, in [5] the authors investigate the modeling and 

simulation of the first CIGRE HVDC benchmark system using two simulation tools, 

namely the PSCAD/EMTDC and PSB/SIMULINK, and compare the results. In [6] a 

procedure for using optimization-enabled electromagnetic transient simulation for the 

design of HVDC system controls is introduced. In this work a sequence of simulation runs 
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of the network are conducted, which are guided by a nonlinear optimization algorithm. In 

[7] an electromagnetic transient program-based study of the CIGRE HVDC benchmark 

system operating with weak ac systems is carried out. 

Despite the accuracy of an EMT simulator in representing fast transients within HVDC 

systems, an EMT simulator may indeed be excessively detailed for the study of large, 

interconnected networks with embedded HVDC, particularly when only the low-frequency 

dynamics of the network are of interest. For such cases simulation of the switching 

transients, which are often small in magnitude, adds unnecessary computational 

complexity and prolongs the simulation time. This problem becomes exacerbated in 

modern power grids wherein multiple HVDC converters may converge in close electrical 

proximity in schemes known as multi-infeed HVDC [8]. Multi-infeed systems are known 

to give rise to complex and interacting transients [9], which render modeling with 

conventional EMT simulators computationally inefficient. 

This research presents a computationally low-cost, average-value model for an LCC-

HVDC system using dynamic phasors. Dynamic phasors use the quasi-periodic switching 

nature of a power electronic converter, for which voltages and currents can be represented 

using time-varying Fourier coefficients [4], [10], [11]. Dynamic phasor modeling retains 

the low-frequency dynamic characteristics of a power system without having to model the 

high-frequency transients caused by the operation of power-electronic switches and 

converters. Additionally, a dynamic phasor model can be easily augmented to account for 

harmonic components, if so needed.  

Dynamic phasors have been successfully used in modeling and analysis of electrical 

machines [12], [13], [14], power system dynamics and faults [15], [16] flexible ac 
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transmission systems (FACTS) devices [17], [18] sub-synchronous resonance (SSR) [19], 

dc-dc converters [20], multi-converter dc systems [21], multi-converter ac systems [22], 

and renewable energy systems [23]. Special studies including real-time and repetitive 

simulations [24], [6], [25] can benefit from the reduction in computational intensity offered 

by dynamic phasor modeling. A dynamic phasor model of a line-commutated converter 

has been developed in [26], however the authors use a different approach to derive the 

model, which is valid only for the fundamental frequency component under balanced 

operating conditions. The developed model in this research uses the switching functions of 

the converter voltages and currents, which enable one to include higher harmonic 

components if so needed. In addition, the developed model can properly model the large-

signal dynamics of LCC-HVDC transmission systems operating under unbalanced 

conditions as well as during commutation period. 

1.2 Research Objectives and Motivation 

This research extends the use of dynamic phasors to modeling of large-excursion transients 

of LCC-HVDC transmission systems, caused by control actions or faults. The reduced 

simulation intensity of the model resulting from its neglecting switching transients makes 

it particularly useful in the study of large-signal, low-frequency transients, or in repetitive 

simulations when time savings over conventional EMT simulations become significant. 

The objectives and motivation of this thesis are as follows. 

1. Dynamic phasor modelling of LCC-HVDC transmission systems; 

A dynamic phasor-based model of the line-commutated converter is derived based 

on the switching functions that are described in Chapter 3. In addition, dynamic 
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phasor models of the ac network, transmission line (model), and phase locked 

loop (PLL) will also be derived. 

2. Inclusion of higher harmonics; 

The developed model can include higher harmonic orders as well as the 

fundamental frequency component. As an example the 11th and 13th order 

harmonics are added to the ac current of an LCC to clearly show the effect of 

including higher order harmonics. 

3. Commutation failure; 

The developed model from (2) above is not able to properly simulate the behaviour 

of the system during transients in which commutation failure occurs. Therefore, 

modifications are needed in order to accurately model the system during these 

transients. 

4. Operating under unbalanced conditions; 

The models to be developed (2) and (3) require modifications in order to be able to 

properly simulate the system operating under unbalanced conditions. The results 

are shown for various unbalanced conditions including unbalanced faults at the 

converter bus. 

The dynamic phasor models are developed in MATLAB and the results are compared 

against those obtained from the PSCAD/EMTDC, which is a widely used electromagnetic 

transient simulator. The results of PSCAD/EMTDC are accurate and they are well matched 

with experimental results. Therefore, comparing the results of the developed dynamic 

phasor model against the results of the PSCAD/EMTDC is considered to be a reasonable 

and convincing test to conclude that the developed models work properly.  
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One of the main advantages of modeling using dynamic phasors over electromagnetic 

transient simulations is its ability to include or exclude various portions of the system 

response (in terms of frequency contents) in the simulations in favour of a simplified and 

computationally more affordable model. As an example in the modeling of LCC-HVDC, 

it is possible to add any combinations of harmonic orders to the simulations. For example, 

the user may choose to only include the 13th order harmonic and not the 11th to solely focus 

on a single harmonic content. The same can be said for unbalanced terms. The separated 

components can be much more insightful to the system designer, which can use them for 

various purposes including controller design. On the other hand, the electromagnetic 

transient simulations produce the most detailed and accurate results without much 

information about the effects of various terms. 

1.3 Thesis Organization 

Chapter 2 discusses various types of transient simulation programs in power systems 

including electromagnetic and electromechanical transient simulations. After that the 

description of the mathematical foundations of modeling using dynamic phasors is 

provided.  

In Chapter 3, the basic operation of an LCC-HVDC transmission system for both the 

power circuit and the control systems are discussed and the governing steady state and 

dynamic equations of the line-commutated converter are derived. 

In Chapter 4, a dynamic phasor-based model for the CIGRE HVDC benchmark model 

[27] is developed using MATLAB/SIMULINK. The chapter will proceed with the 
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definition of the switching functions and development of the dynamic phasor model of the 

line-commutated converter, dc system, ac network, and phase-locked loop (PLL). 

The developed average-value dynamic phasor model is validated against a detailed 

switching model implemented in PSCAD/EMTDC. In order to investigate the accuracy of 

the dynamic phasor model in representing transient events, a third model of the system is 

also developed used, in which the bridge converters are modeled with dynamic phasors, 

while the ac system is represented using a constant admittance matrix. 

In Chapter 5, the dynamic phasor model of the LCC-HVDC transmission system 

developed in Chapter 4 is extended to simulate the system under unbalanced conditions as 

well as during commutation failure periods. 

In Chapter 6, the conclusions and contributions of this research are discussed and a 

number of directions for work are proposed for further investigation on this subject. 
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Chapter 2 

Power System Transient Simulation 

2.1 Overview of Power System Transient 

Simulation 

Due to the complexity and interconnectivity of large power networks, use of analytical 

methods for their control, design, operation, and maintenance is extremely challenging if 

not impossible altogether. Therefore, computer simulation of power systems has been used 

over the past decades for these purposes. 

There are various types of studies that need to be conducted for a power system each 

involving different components, different portions of the network, and different time-

periods of interest. The frequency of interest in power system studies varies from fractions 

of 1 Hz up to several MHz depending on the types and objectives of studies. Figure 2-1 

illustrates the various types of power system transient studies and their corresponding 

frequencies of interest [28]. 
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Figure 2-1: Time scale of power system transients. 

 

In power system simulations if the frequency range of interest is high, i.e., when a 

transient phenomenon with rapid variations is to be studied, detailed and accurate models 

of components and a small simulation time step have to be used in order to properly 

simulate the network. The models need to contain adequate details to allow representation 

of the transient phenomenon. If such a study must be done for a large network, then the 
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simulation becomes slow and computationally expensive, or at times even impossible, to 

perform. 

On the other hand, in the studies where the frequency range of interest is low, models 

with less detail and large simulation time-steps suffice, and simulations for large networks 

are computationally affordable. Decisions regarding the accuracy of models and solution 

methods, and the trade-off between accuracy and computational complexity of the resulting 

simulation need to be made for a study of transients in power systems.  

2.2 Electromagnetic Transient Simulation 

Electromagnetic transient (EMT) programs are the most accurate and detailed type of 

power system transient simulation programs. Component models used in EMT programs 

contain a large level of details. 

EMT programs are most suitable for the study of fast transients (usually more than 

nominal steady state frequency). SF6 transients [29], wave propagation [30], lightning 

transients [31], switching over-voltages [32], insulation coordination [33], transformer 

saturation [34], HVDC systems [6], and design of flexible ac transmission systems 

(FACTS) [35] are examples of studies commonly done with EMT programs. 

EMT programs use small time-steps (typically in the order of a few micro-seconds) to 

properly simulate fast transients. As a rule of thumb, the time step in an EMT program 

needs to be at least one-tenth to one-fiftieth of the minimum of the smallest time constant 

and the smallest oscillation period in the system for proper simulation of transient events. 

Therefore, EMT simulators are suitable choices only for the studies with a small network 
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or studies with a short period of interest. Otherwise, the resulting simulation becomes too 

slow and sometimes even impossible to conduct.  

2.3 Electromechanical Transients Simulation 

Unlike EMT simulators, electromechanical transient programs are most suitable for slower 

transients (usually less than nominal steady state frequency) in power systems. Sub-

synchronous resonance [36], transient stability (rotor dynamics) [37], inertia oscillations 

[38], mid-term, and long-term stability [39] are some of the studies that are done commonly 

with electromechanical transient programs. The period of interest for electromechanical 

transients is usually between a few seconds to tens of minutes. For this reason, simplified 

models of power system components are used; otherwise the simulations become too slow 

and sometimes even impossible to perform. 

Electromechanical transient programs use a quasi-steady state approach to modeling 

and simulation, which allows them to use large step sizes upwards of tens of milli-seconds. 

In electromechanical transient simulations it is often assumed that the frequency of the 

electrical network remains constant at the rated, which then allows representation of the ac 

systems using simplified phasor models. Although this assumption is valid for low-

frequency transients, it becomes increasingly inaccurate in the presence of fast-acting and 

high-frequency system components such as LCC-HVDC. 

In an LCC-HVDC transmission system if the dc current of the converter is assumed to 

be purely dc, i.e., comprising only one component with a 0 Hz frequency, the fundamental 

component of the ac line current will be a sine wave with a fixed amplitude and with a 

frequency of fs (nominal frequency of the electric network, e.g., 50 Hz or 60 Hz). However, 
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during transients the dc current may undergo oscillations and hence will not be constant. If 

the dc current, during its transient variations, has a low-frequency oscillatory component 

at fo, it can be shown that the amplitude of the fundamental component of the ac line current 

will have oscillations at fo. This amplitude-modulated fundamental component results in 

two sidebands of fs+ fo and fs - fo [40]. If fo is relatively small (typically below 5 Hz) both 

sidebands are adequately close to fs and the ac system may be represented using a constant 

admittance representation (also called a phasor model). However, if fo is large both 

sidebands differ significantly from fs and the constant-frequency assumption of the electric 

network in no longer acceptable. Therefore, a simulation program based upon the 

assumption of a constant-frequency ac system cannot properly simulate the transient 

events. 

As discussed above, both the electromagnetic and the electromechanical transient 

simulations have their own merits and disadvantages. There is a gap between these two 

methods of power system simulations, which needs to be filled. A new method of power 

system simulations is required in such cases where a relatively large electric network needs 

to be simulated while the dynamics of the ac or dc power system cannot be accurately 

modeled with the assumption of constant frequency for the (ac) network. The dynamic 

phasors method for power system simulation is proposed to overcome the difficulties 

associated with electromagnetic and electromechanical transient simulation. 
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2.4 Modeling Using Dynamic Phasors 

2.4.1 Definitions 

A firm understanding of the concept of dynamic phasors and the way they are applied to 

modeling dynamic systems is essential in creating a model using them. The following 

section presents a description of dynamic phasors.  

The concept of dynamic phasors is based on the generalized averaging method 

proposed in [10]. Consider a waveform x(τ) viewed over the interval τ(t-T,t]; the 

waveform can be described using its Fourier series expansion coefficients )(tx
k  as 

follows. 

 





k

sTtjk

k
setxsTtx )()()( 

 (2-1)

where s ϵ [0,T], ωs=2π/T, and the coefficients are obtained as follows. 

  
T sTtjk

k
dsesTtx

T
tx s

0

)()(
1

)( 
 (2-2)

In modeling power electronic converters T is selected to be the switching period. The 

notation )(tx
k describes the kth order harmonic component. In the simulation of power 

system transients, x() may be any arbitrary voltage or current waveform within the circuit.  

The waveform x() may contain a variety of harmonic components. For example, the 

dc-side voltage waveform of a 6-pulse LCC converter contains a large dc (i.e., 0-order) 

component as well as 6n harmonics. The ac current of the same converter contains a large 

fundamental (k = 1) components as well harmonic components of the orders 6n±1.  
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Although the waveform x(τ) may attain periodicity in steady state, it may not generally 

repeat the same form in each switching period during transients. As such its Fourier 

coefficients over the interval (t-T,t] will not be constant when t is allowed to slide; they 

will rather be functions of time and hence the notation )(tx
k

. These coefficients are 

referred to as dynamic phasors. In the other words, dynamic phasors are the complex 

Fourier coefficients of the waveform x(t).  

The benefit of this generalized averaging approach is in enabling its user to select a 

desired number of Fourier coefficients to construct an approximation of the original 

waveform. For example, if the waveform x(τ) comprises both low- and high-frequency 

components, the user may choose to only consider its low-frequency contents in a 

simplified representation. Normally only the first or the first few dominant harmonic 

components are selected for this purpose. Inclusion of additional components increases the 

accuracy of estimation at the expense of a higher-order model, which will naturally 

translate to computationally more demanding simulations (due to the requirement of 

smaller time-steps).  

2.4.2 Mathematical properties of dynamic phasors 

When applying dynamic phasors to model power system components, the following 

properties prove useful.  

 )()()( txjktx
dt

d
t

dt

dx
ksk

k

  (2-3)

 






i

iikk
tytxtxy )()()(  (2-4)
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*

kk
xx 


 (2-5)

where * denotes the complex conjugate operator. Equation (2-5) is valid only if x() is a 

real function. 

Equation (2-3) holds for situations where the fundamental frequency s is constant. It 

is shown in [10] that the same formulation remains largely accurate when the system 

frequency changes, in particular when the rate of change of frequency is slow. In the work 

presented in this thesis the frequency is not assumed to change drastically. Therefore the 

equation (2-3) remains accurate. 

The fundamental operations presented in this section are used in Chapter 3 to build 

models for different blocks of an LCC-HVDC system, which are then interfaced to form 

its average model. 

2.5 State-of-the-Art of Simulation of Electrical 

Networks Using Dynamic Phasors 

A great deal of work has been done by many authors to solve the dynamic phasor equations 

of electrical networks. In [4], the author uses the example described below to compare the 

dynamic phasor method of solving power system equations with electromagnetic and 

electromechanical transient simulations. In this example assume a contingency in the 

electrical network, which may cause the frequency of the system to deviate by 2% (i.e., 

variations between 58.8 Hz and 61.2 Hz in a 60 Hz system). In some severe contingencies 

the frequency can deviate up to 10%. Now assuming that 20 steps per cycle provides 
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accurate results, one needs to use the simulation time step of 0.8 ms ((1/60)/20 = 0.00083 

s).  

On the other hand, in the dynamic phasor-based method the integration is done on a 

much slower waveform, which allows to the use of a larger time step. In that example it 

was shown that the 8.0 ms time step is enough to have accurate results, which can 

potentially make the simulation 10 times faster. Although the 8.0 ms time step is acceptable 

in most transient stability programs these programs assume that the frequency of the 

network is constant, which causes major inaccuracies in case the frequency of the network 

deviates by a considerable amount. 

In [4], the author also uses the relaxed trapezoidal integration method and proposes a 

variable time step simulation to decrease the time step during a transient and then increase 

it as the simulation approaches steady state. In simulations using dynamic phasors the 

simulation time step can be very large in steady state because phasors become constants 

and there is no need for small time steps. The author also compares the accuracy and 

stability of several integration methods with each other. 

In [41], the author uses the exponential method for numerical integration to discretize 

differential equations. The dynamic phasor equation of electrical components (resistor, 

capacitor, inductor, ...) and control systems are converted to the algebraic form in the 

branch level to create the network admittance matrix and solve it by nodal analysis method. 

In [16], the author examines a number of integration methods and analyzes them in 

terms of numerical accuracy, stability and efficiency. The author also optimizes the 

integration methods for dynamic phasor equations. 
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As mentioned above, in the literature a voluminous amount of work has been done to 

show the efficiency, accuracy, and stability of dynamic phasors for simulation of electrical 

networks. The main purpose of the present research is to develop the dynamic phasor 

equations of LCC-HVDC transmission systems for both balanced and unbalanced 

conditions as well as during commutation failure. The specific numerical integration 

method for solving the derived equations is not the focus of this research. The derived state-

space equations are implemented in MATLAB/SIMULINK and solved by one of 

MATLAB’s internal ODE solvers. 

2.6 Chapter Summary 

This chapter provided a brief overview of the principles of transient simulation of power 

systems. Study of fast transients requires small time steps in order to properly simulate the 

phenomenon at hand. Therefore, simulation of fast transients is normally confined to small 

electrical networks in order to perform the simulation in a reasonable period of time and 

on available computing platforms. On the other hand, studies involving slower transients 

can be done on larger electrical networks, as simplified models of electrical components 

are used. 

The dynamic phasors method for power system simulation has been proposed to retain 

the slower dynamics without having to model higher order transients. However, it is 

possible to add any number of harmonics if so desired. Dynamic phasors have the 

flexibility to adjust the level of representation to the needs of the study at hand. 
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In addition, dynamic phasors have the advantage of separating different terms in the 

simulations making the simulations more insightful. This can be helpful from various 

aspects including controller design and harmonic interaction studies. 
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Chapter 3 

LCC-HVDC Transmission Systems 

Figure 3-1 shows a schematic diagram of a 12-pulse mono-polar line-commutated 

converter-based high-voltage direct current (LCC-HVDC) transmission system. The 

system layout shown in this diagram is similar to the first CIGRE HVDC benchmark 

system [27] which is used as a case study in this research. 

In the following sections a LCC-HVDC transmission system is briefly explained in 

terms of its ac systems, dc system, line-commutated converter, and control systems. 
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Figure 3-1: A 12-pulse LCC-HVDC transmission system. 



 

 22 

3.1 AC Systems 

The ac side of an HVDC transmission system for both the rectifier and the inverter includes 

an equivalent ac source, harmonic filters, and a transformer bank. In the case study that is 

described in this thesis the ac system is modeled with a Thevenin equivalent circuit. The 

ac system is often characterized with its short-circuit ratio (SCR).  

The SCR is defined as the short-circuit capacity of ac converter bus divided by the 

active power of the converter. In HVDC applications, the effective short circuit ratio 

(ESCR) is used more often than the SCR. In calculating ESCR the effect of HVDC 

harmonic filters are also considered; the amount of reactive power produced by the filters 

are reduced from the short circuit capacity of the ac bus and then the result is divided by 

the dc power. Therefore, the ESCR value is less than the value of SCR. An ac system may 

be characterized as very weak system to a strong based on its ESCR value. Higher ESCRs 

generally mean a more robust ac systems and hence an easier control task. The following 

are the approximate ranges for weak and strong system designations based on ESCR [42]. 

ESCR < 1.5   : Very weak system 

1.5 ≤ ESCR < 2.5  : Weak system   

2.5 ≤ ESCR < 5  : Strong system   

3.1.1 AC filters 

Filters are used to prevent penetration of current harmonics of the ac side of the converters 

to the network. Filters are designed to filter the lowest dominant harmonics (eleventh and 

thirteenth in case of a 12-pulse converter) [1]. There is also a high-pass filter for filtering 
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higher order harmonics. Filters are also designed to provide the required reactive power for 

proper operation of the converters.  

3.1.2 Transformers 

A transformer bank is used to convert the voltage level of the ac system to a voltage level 

that is suitable for proper operation of the converters and the dc transmission line. The 

transformer bank in a 12-pulse converter configuration consists of a Y- transformer and 

a Y-Y transformer, which results in elimination of the sixth order harmonic in each of the 

six-pulse converters. In this case the eleventh and the thirteenth order harmonics are the 

lowest two remaining harmonics, thereby resulting in filters with smaller size and lower 

cost. 

3.2 Line-Commutated Converter 

3.2.1 Principles of operation 

Figure 3-2 shows a schematic diagram of a 6-pulse Graetz bridge, which is the building 

block of a LCC-HVDC transmission system. This converter block consists of six thyristor 

valves, which are fired consecutively (as numbered in Figure 3-2) with a delay of α (in 

radians) known as the firing angle measured with respect to a particular instant of time, 

which is most commonly selected to be the positive zero-crossing of the line voltage. The 

dc side of the converter is represented using a constant current source of id≈Id. In practice 

large smoothing reactors are deployed on the dc side of LCC-HVDC systems to ensure that 

the dc line current is essentially constant and with minimum ripple. On the ac side, the 
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converter is connected to a set of three-phase voltages via transformers. For the analysis 

that follows a lossless converter is assumed, i.e., the switches do not incur losses during 

turn-on and turn-off periods and also have no losses during conduction.  

Figure 3-3 shows the dc voltage and ac current waveforms of the LCC. It also includes 

the square and trapezoidal waveform approximations of the ac current that are discussed 

later in this chapter.  

 

Figure 3-2: Circuit diagram of a line commutated converter (LCC). 
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Figure 3-3: Line commutated converter waveforms. (a) three-phase line voltages and the 
dc voltage; (b) phase-a line current; (c) square-wave approximation of the ac line 
current;(d) trapezoidal approximation of the ac line current.  

 

It is noted that the ac line current (Figure 3-3(b)) contains a finite duration of time over 

which the current moves from one constant value to another, e.g., from 0 to Id or from Id to 

0. This period of time starts at the switching instant and has an angular duration of μ, and 

is widely known as the commutation period. The commutation period results from the ac-

side inductance (Lc), which opposes an instantaneous transition between the current levels. 

The switches that are involved in the process of commutation will be ON during this period; 

Id

-Id

t

vab vac vbc vba vca vcb



 


 



























Id

Id

-Id

-Id

0

(a)

(b)

(c)

(d)

t

t

t

V
ol

ta
ge

C
ur

re
nt

C
ur

re
nt

C
ur

re
nt

vd

561 61 612 12 123 23 234 34 345 45 456 56

BA 


S
w

it
ch

es
 t

ha
t 

ar
e 

co
nd

u
ct

in
g



 

 26 

one switch will have diminishing current flow while the other one will gain increasing 

current. During the overlap period the ac line current has a nonlinear transition between its 

two constant boundary values as seen in Figure 3-3(b). The equivalent circuit of the LCC 

during commutation period between switches 1 and 5 is shown in Figure 3-4. The 

commutation period between other switches is similar under balanced operating conditions 

as long as operation conditions remain intact.  

 

 

Figure 3-4: Equivalent circuit of the LCC during commutation between valves 1 and 5. 

 

3.2.2 Waveform analysis 

In the following, analytical expressions are developed for the actual ac line current.  

It is assumed that the phase voltages of the ac system are balanced as follows. 
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To find the phase-a current (ia) during a given overlap period, e.g., between valves 1 

and 5 when the dc voltage transfers from vcb to vab as shown in Figure 3-4, the sets of 

equations in (4-22) must be solved. 

 
( ) 0

( )

a c
a s c s

c d a

a

a d

di di
v L v L

dt dt
i I i

i t

i t I

 
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
  

  
  


  

 (3-2)

Solution of these equations results in the following expression for ia. 

 ))cos((cos)( tIti sa    (3-3)

where 

 
3

2
m

s
s

V
I

L 
  (3-4)

and Vm is the peak value of ac phase-voltage, Ls is the source-side inductance, and ω is the 

nominal angular frequency of the system. With this expression for the phase-a current 

during the given overlap interval, the following expression for ia for the entire period can 

be obtained.  
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(3-5)

This representation for the ac line current proves to be overly complicated for its 

intended use in an analytical formulation of the converter operation using dynamic phasors; 

therefore, approximations are considered to simplify it. A square wave (see Fig. 3.3 (c)) is 

widely used to approximate the ac current waveform of an LCC [1]. To better represent the 

variations of the ac current during overlap periods, a trapezoidal approximation (see Fig. 

3.3(d)) is also considered in this thesis. In the following section, the fundamental 

component of both the square-wave and the trapezoidal-wave approximations are 

compared with that of the above expression. 

The power factor of the converter system resulting from the actual current waveform 

and its two approximations will also be studied. The aim of the next section is to investigate 

the amount of error that is introduced in the fundamental component of the line current and 

the converter’s power factor as a result of square-wave and trapezoidal-wave 

approximations. 
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3.2.3 Waveform approximation for the AC current 

As it can be seen from (4-22) the actual ac line current is excessively complicated to be 

used in dynamic phasor modeling method. Due to switching phenomena, the ac-side 

current of a line-commutated converter is not purely sinusoidal and its actual wave shape 

depends on such factors as the magnitude of the applied ac voltage, ac line inductance, dc-

side current, firing angle (α), commutation period (μ), and frequency of the system as seen 

in (4-22). When LCC-HVDC systems are simulated using an electromagnetic transient 

(EMT) simulator, the ac line current waveform is represented with adequate accuracy 

provided that a small enough simulation time-step is selected. While it is possible to use 

the ac current waveform directly as in (3.5), these expressions are often found to be overly 

complicated due to the nonlinear transitions of the current during overlap periods.  As such 

piecewise linear approximations of the ac current waveform are commonly used [1]. 

Dynamic phasor modeling of a LCC will also be much simplified with a piecewise linear 

approximation of the ac current waveform. The accuracy of the results of a study conducted 

using an approximation will depend on how faithful a simplified representation is in 

capturing the properties of the actual ac line current. It is therefore necessary to quantify 

the error introduced by approximate waveforms in the development of dynamic phasor 

models. 

It should also be noted that including additional details in order to obtain more accurate 

results might not be always advantageous; this is because for the analysis of a system the 

uncertainty of a model’s parameters is also a determining factor in deciding if a more 

accurate method of solving will indeed result in more accurate and meaningful results. 
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This section develops analytical expressions for both square-wave [26], [40] and 

trapezoidal-wave [43] approximations and presents an analysis of the error of these two 

common waveforms in representing the fundamental frequency component of the ac 

current and the power factor of the converter. 

The two approximations of the ac line current are also shown in Figure 3-3. The square 

wave approximation (Figure 3-3(c)) ignores the overlap period and shows sudden jumps at 

the instant of switching. The trapezoidal approximation (Figure 3-3(d)), however, includes 

a period of time equal in length to the actual overlap period, during which the current is 

assumed to vary linearly between the two boundary values. 

Derivation of the fundamental components of the square and trapezoidal waveforms is 

straightforward as will be shown later. Although it is possible to derive a closed form 

expression for the fundamental component of the actual ac current [44], it provides little 

practical value in dynamic phasor modeling. 

A. Fundamental Frequency Component of AC Current 

The peak value of the fundamental component of the square-wave approximation (Figure 

3-3(c)) is obtained as follows. 

 (1) 2 3
dI I


  (3-6)

Similarly, the following expression is obtained for the peak value of the fundamental 

frequency component of the trapezoidal approximation. 

 (1)
sin( )2 3 2

( )
2

dI I




  (3-7)
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Figure 3-5 shows the variation of the fundamental component of the ac current versus 

the overlap angle (μ). For convenience of comparison, the y-axis is per-unitized by the dc 

current Id. A family of curves is shown for  = 0 and 60° (rectifier mode of operation) and 

for  = 120 and 150° (inverter mode of operation). Although the overlap angle is a function 

of the firing angle, it is shown as an independent variable as its value can be adjusted by 

other parameters, e.g., the ac side inductance, dc current, and ac voltage. 

The overlap angle cannot exceed 60° (note that it is for this kind of overlap where there 

are only two switches involved), as can be deduced from Figure 3-3(b) by observing the 

distance of /3 between the two points A and B. This period encompasses the overlap angle 

and as such the largest attainable value for the  is 60°, as indicated on the x-axis in Figure 

3-5. Also note that + cannot exceed 180°; therefore, for every value of the firing angle 

the corresponding curve continues only until °(only overlap between two 

switches are considered here).  
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Figure 3-5: Fundamental frequency component of the ac current over dc current. 

 

As shown in Figure 3-5, the square waveform approximation depends neither on the 

firing angle nor on the overlap angle and, therefore, has a constant value. The trapezoidal 

waveform, on the other hand, only depends on the overlap angle; the actual current 

waveform depends on both the firing angle and the overlap angle. As seen the approximate 

waveforms present varying degrees of error depending on the firing and overall angle 

combinations.  

Figure 3-6 shows the calculated percentage error for the normalized fundamental 

frequency component of the ac current. Table 3-1 compares the maximum percentage 

errors for both approximate waveforms. As shown the largest absolute percentage error in 

estimating the fundamental component of the ac current is 4.54% for the square wave and 
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1.49% for the trapezoidal approximation, and both occur at °. In [1] the maximum 

percentage error of the square wave was reported as 4.3%, which is due to the division of 

the difference by the approximate value and not by the exact value as is done in this 

research. 

 

 

Figure 3-6: Percentage error of fundamental frequency component of ac current over dc 
current.  

 

Table 3-1: Percentage error of both types of approximation 

Max. percentage error of Square approximation Trapezoidal approximation 
AC  current magnitude 4.54 -1.49 
AC  current magnitude 
for normal operating 
condition (µ≤30°) 

 
1.14 

 
-0.38 

Converter’s power factor -4.34 1.52 
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In practice the overlap angle is normally much smaller than 60° and hence the 

percentage error of the two approximations will be less. For example, for overlaps angles 

below 30° the square wave and the trapezoidal approximations will have percentage errors 

of less than 1.14% and 0.38%, respectively. 

 

B. Converter Power Factor 

For calculating the power factor of the converter it is assumed that the converter is lossless; 

i.e., the real power at its ac terminals equals the real power at its dc side. Therefore, the 

following expression can be stated. 

 
(1)

3( )( ) PF
2 2
m

d d

V I
V I   (3-8)

where Vd is the average dc voltage and is given in (4-22) [1], and PF is the power factor. 

 
3 3 3

cosd m s dV V L I 
 

   (3-9)

From (3-9) the power factor of the converter is simply derived as follows. 

 (1)

2 1
PF

3
d d

m

V I

V I
  (3-10)

As seen in (4-22) the approximation used for fundamental component of the ac current 

affects the calculation of the converter power factor. Therefore, the percentage error in 

estimating the converter’s power factor is calculated for the two approximating waveforms. 

The results are shown in Figure 3-7 and the largest percentage errors are reported in Table 

3-1. It is again seen that the trapezoidal approximation provides a much more accurate 

representation of the converter power factor. 
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Figure 3-7: Percentage error of the power factor of the converter. 

 

Based on the above results the trapezoidal approximation offers more accurate 

approximation than the square waveforms while the equations are still simple enough to be 

used in dynamic phasor method. Therefore, in this work the trapezoidal-wave 

approximation will be used. 

3.3 Converter Control Systems 

Figure 3-8 shows typical control blocks of a conventional LCC-HVDC system. The control 

variables used are also marked in Figure 3-1. Normally the rectifier controls the dc line 

current, whereas the inverter operates in constant extinction-angle control mode. Although 

additional control functions are deployed for special modes of operation, during normal 

operation the rectifier and inverter control functions can be described using proportional-
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integral (PI) controllers acting upon the dc current and the inverter extinction angle, 

respectively. The voltage-dependent current order limit (VDCOL) reduces the dc current-

order during ac under-voltage conditions to protect the valves [1], [2], [6]. The internal 

components and connections used in the control system of Figure 3-8 are available in detail 

in [7] and [26] and are used in this thesis. To ensure proper timing of firing pulses to the 

converters phase-locked loops (PLLs) are employed at both ends. Modeling of the PLL is 

presented in the next chapter.  

 

Figure 3-8: LCC-HVDC control scheme 

 

3.4 Chapter Summary 

In this chapter a brief introduction to a line-commutated converter based HVDC 

transmission system was presented. The various parts of a LCC-HVDC transmission 
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system, such as ac systems, ac filters, transformers, line-commutated converter and control 

systems were also explained. 

The rectangular and trapezoidal methods of approximation for the ac current of a line-

commutated converter were described and it was shown that the trapezoidal approximation 

results in a more accurate model while itis still simple enough to be used in the dynamic 

phasor modeling. 
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Chapter 4 

Dynamic Phasor Modeling of LCC-

HVDC Systems 

In this chapter a dynamic phasor-based model for a LCC-HVDC power transmission 

system operating under balanced operating conditions is developed. The model includes 

the fundamental frequency component for the ac side and the first dominant Fourier 

component, i.e., the zero-order term, for the dc side of the system. The developed model is 

then upgraded to include the first two dominant harmonics, i.e., the 11th and the 13th, on 

the ac side as well. This model represents the dynamics of the dc component of the dc 

quantities and the fundamental frequency component of the ac quantities as well as 

eleventh and thirteen orders harmonic.  

4.1 Line Commutated Converter Model 

As mentioned before in derivation of a dynamic phasor model of the LCC, a lossless 

converter is assumed. It is also assumed that the smoothing reactor at the dc side is 

adequately large so that the ripple on the dc current is negligible, i.e., ddd Iii 
0 . In 

typical implementation two 6-pulse bridges are connected in series in what is called a 12-



 

 39 

pulse configuration, using Y-Y and Y- transformers as shown in Figure 3-1. The 12-pulse 

converter arrangement offers improved harmonic spectrum (by eliminating 5th and 7th order 

harmonics of the individual 6-pulse converters) and achieves a larger dc voltage (by series 

connection of the two converters on the dc side).  

It is instructive and convenient to firstly develop the dynamic phasor model of the 6-

pulse converter. Once developed, it can be easily scaled up to the 12-pulse case. The 

derivation that follows pertains to the 6-pulse bridge and is directly applicable to the bottom 

6-pulse converter of Figure 3-1, i.e., the converter connected to the Y-Y transformer, whose 

leakage inductance is shown as Lc in Figure 3-2.  

The phase voltages of the ac system at the ac system side of a 6-pulse converter are as 

in (3-1).The /6 phase shift of phase-a voltage is introduced merely to simplify the 

representation of the switching functions that are described later, and has no other bearing 

on the derivation. 

Figure 4-1 shows the dc side voltage, as well as the voltage and current switching 

functions of the phase-a of the converter. A switching function serves to relate the ac- and 

dc-side quantities, and is obtained by inspecting the waveforms it interrelates [45]. For 

example, the line current ia in Figure 3-2 can be obtained by multiplying its switching 

function (Figure 4-1(b)) by the dc current id. Note that the switching functions do include 

the effect of the transformer leakage inductance in creating an overlap period denoted by 

. Transitions in the current switching function are assumed to be linear as per a trapezoidal 

wave approximation explained in the previous chapter. It was shown in Chapter 3 that the 

trapezoidal approximation only has negligible impacts on the magnitude of the ac current 

waveform and the power factor of the converter. Nonlinear approximations for the 
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transitions have also been proposed [9]. Switching functions for the quantities of the other 

phases are obtained by shifting phase-a switching functions by 2/3.  

 

Figure 4-1: Waveforms and switching functions: (a) actual line and dc-side voltages of 
the 6-pulse converter; (b) current switching function for the Y-Y 6-pulse bridge; (c) 
current switching function for the Y-D 6-pulse bridge; (d) current switching function for 
the 12-pulse converter; (e) voltage switching function.  
 
 

The dc-side voltage waveform of the 6-pulse converter is expressed in terms of the ac-

side phase voltages and their switching functions in equation (4-1). 
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 ,6d P va a vb b vc cv f v f v f v    (4-1)

where fva, fvb and fvc are switching functions of the voltages of phases a, b and c, 

respectively. The function fva is given in Figure 4-1(e). The other two functions are phase-

shifted versions of this switching function. To determine the dc value (0-th order 

component) of the dc-side voltage one can apply (2-2) with k = 0 to (4-1); therefore: 

 ,6 0 0 00d P va a vb b vc cv f v f v f v    (4-2)

The three terms on the right-hand side of (4-2) include the averages of the products of the 

switching functions and phase voltages. These terms can be expanded into products of 

averages using (2-4), as follows. 
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   

   

   
 (4-3)

The index-1 averages of the phase-a voltage and the switching function for phase-a are 

obtained using (2-2) as follows. The corresponding terms for phases b and c are simply 

phase-shifted versions of these expressions.  
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Substituting these terms into (4-3) yields the following expression for the average dc-

voltage of the 6-pulse bridge. 
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where Vd,6P is the dc component (i.e. the average) of the dc side voltage, and  

 
0,6

3 3
d P mV V


  (4-7)

 cc LR 

3

  (4-8)

The Rc is often called the equivalent commutation resistance, Vd0,6P is called ideal no-

load dc voltage, and Id is the average of the dc current at the dc terminal of the 6-pulse 

converter and may vary with time [26], [46]. The amplitude of the point of common 

coupling (PCC) voltage (Vm) may also vary with time due to, for example, the varying 

amount of current through the ac line. 

Similarly, it is noted that for the ac-side current the following expression holds. 

 , ,a YY ia YY di f i  (4-9)

In order to determine the fundamental-frequency component of ac current 

)exp(2 )1(
,

)1(

1, YYaYYYYa IIi  , (2-2) is applied to (4-9) with k = 1, which yields the 

expressions (4-10) and (4-11) for the magnitude and phase of the fundamental Fourier 

component of the phase-a current. 
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    (4-11)

Note that the /6 term is due to the assumed phase angle of phase-a voltage (see(3-1)). 

In general, this must be set to the actual phase angle of the phase-a voltage.  

The expressions given in (4-6), (4-10) and (4-11) describe the dynamics of the dc 

voltage and ac current of the 6-pulse converter. It is noted that the dc voltage of the 12-

pulse converter (vdR or vdI in Figure 3-1) results from the series connection of two 6-pulse 

converters with equal average voltages. Therefore, the average of the dc voltage of the 12-

pulse converter is simply obtained as follows. 

 dcmPddd ILVVVv 





6
cos

36
2 6,0

  (4-12)

where Id is the average of the dc current of the 12-pulse converter. 

Similarly, the ac-side current of the 12-pulse converter can be obtained by noting that 

the switching functions for ac-currents of the Y-Y and Y- connected 6-pulse bridges have 

equal fundamental components and are in phase; i.e., 

 , ,1 1ia YY ia YDf f  (4-13)

therefore, 

 ,1 1
2a a YYi i  (4-14)

For converter banks with higher pulse numbers, e.g., 24 or 48, it is merely enough to 

multiply the averaged values of the constituent 6-pulse converters by the respective number 

of blocks used to create the bank.  
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Note that the generalized averaging formula used here allows inclusion of harmonics 

that are ignored in conventional averaging techniques. For instance, it would have been 

straightforward to retain higher harmonic components if a more accurate expression for the 

dc-side voltage would have been desired. This flexibility in deciding the level of detail in 

a model is a direct benefit of the dynamic phasor modeling approach.  

4.2 DC System Model 

The dc system of an HVDC transmission system consists of a dc transmission line/cable 

and the smoothing reactors at the rectifier and inverter ends. Here a T-model is used for 

the dc transmission line as shown in Figure 4-2. This configuration with constant 

(frequency independent) lumped circuit elements is used throughout this research for all 

the developed models. The smoothing reactors are included in the equivalent series 

inductance of the line. 

 

Figure 4-2: DC transmission line model. 

 

The dynamic behaviour of the line is described using three state variables – its two 

inductor currents and one capacitor voltage. It can be shown that the equivalent leakage 

inductance of the ac transformer, seen from dc side of the converter, is different during the 

commutation and non-commutation periods [26]. During non-commutation intervals of a 

6-pulse bridge, two ac lines each with an inductance of Lc are in series with the dc-side 
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inductance (Ld), thereby presenting an ac equivalent inductance of 2Lc. During the 

commutation period, the paralleled ac inductances of the two phases involved in 

commutation and the single ac-side inductance of the return path are in series, creating an 

ac equivalent inductance of (3/2)Lc. In each interval of /3, the commutation and non-

commutation periods are  and /3- radians long, respectively. Therefore, the average 

inductance of the ac system seen from the dc terminals of the 6-pulse converter will be as 

follows. 

 _

3 3
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3 2 2
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c average c c
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L L L

   


      (4-15)

In a converter system comprising NB 6-pulse bridges, the average equivalent inductance 

of the combined ac and dc systems for each of the receiving and sending ends will therefore 

be as follows. 
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The Ldyn for the rectifier and the inverter sides may be different due to the leakage 

inductance of the transformer at the respective side. The dynamic equations of the dc 

transmission line are as follows. 

 

1
( )

2

1
( )

2

1
( )

dR d
dR c dR

dynR

dI d
c dI dI

dynI

c
dR dI

di R
v v i

dt L

di R
v v i

dt L

dv
i i

dt C

  

  

 

 
(4-17)

The dynamic phasor equivalents of these equations are obtained using (2-2) with k=0 (to 

denote the dc component). The resulting equations are as shown in (4-18). 
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4.3 AC Network Model 

Modeling of the ac network involves development of dynamic phasor representations for 

components such as transformers, filters, loads, and transmission lines [9], [47]. It was 

shown that if the dc-side current of the converter is assumed to be purely dc, i.e., 

comprising only one component with a 0 Hz frequency, the fundamental component of the 

ac line current is a sine wave with a fixed amplitude (as shown in (4-10)) and with a 

frequency of fs. During transients the dc current may undergo oscillations and hence is not 

constant. If the dc current, during its transient variations, has a low-frequency oscillatory 

component at fo, it can be shown that the amplitude of the fundamental component of the 

ac line current has oscillations at fo. This amplitude-modulated fundamental component 

results in two sidebands of fs+fo and fs - fo [40]. If fo is relatively small both sidebands are 

adequately close to fs and the ac system may be represented using a constant admittance 

representation. However if fo is large both sidebands are significantly different from fs and 

the constant-admittance representation of the ac network is no longer acceptable, and 
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dynamic phasor model of the ac network must be used to properly represent the ac network 

dynamics during transients [40], [48].  

Consider, for example, a series RL circuit as shown in Figure 4-3. The time-domain 

differential equation for such a circuit is given in (4-19). 

 

Figure 4-3: A simple RL circuit. 

 

 
dt

di
LRiv   (4-19)

By applying (2-2) and (2-3) for k = 1 (fundamental component) to (4-19) the following 

dynamic phasor relationship is obtained.  

 )(
1

1
11

ij
dt

id
LiRv   (4-20)

where
1

v  and 
1

i  are the dynamic phasors of voltage and current, respectively. Note that 

(4-20) reduces to the conventional phasor equivalent of the series RL circuit if the rate of 

change of 
1

i tends to zero. Neglecting the term d
1

i /dt in other situations, changes the 

equations from differential to algebraic, albeit at the expense of reduced accuracy. 

Therefore, the constant-admittance matrix formulation of ac systems is in fact a special 

subset of the dynamic phasor model. Separating (4-20) into real and imaginary components 

yields the following differential equations for the circuit.  
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where 

 IR jVVv 
1 ,  IR jIIi 

1  (4-22)

Similar equations can be derived for RC circuits and other combinations as well. The 

ac system in the CIGRE HVDC model consists of an impedance for the terminating ac 

system and shunt-connected RLC branches for the filters and reactive components at the 

converter terminals [27]. Dynamic phasor models for these elements are obtained using a 

similar procedure and are interfaced to form a complete ac-side representation. The ac 

quantity dynamic phasors are complex numbers; the dc quantity dynamic phasors are real 

numbers. The linkage between these two sets is provided through the converter equations.  

Inclusion of higher order harmonics in the representation of ac quantities is simply 

achieved by developing dynamic equations similar to (4-20) with higher index terms, e.g., 

k= 11 and 13 to include 11th and 13th order harmonics of the ac-side currents.  

4.4 Phase-Locked Loop (PLL) Model 

A PLL is a control system for tracking the phase angle of the fundamental positive-

sequence component of an ac waveform. Several PLL architectures are available; the 

model developed here pertains to the PLL shown in Figure 4-4 that first proposed in  [49] 

and then further analyzed in [50]. It can, however, be readily extended to other 

configurations as well. 
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Figure 4-4: Three-phase PI-controlled phase-locked loop (PLL). 

 

In Figure 4-4, the output  is a ramp train between [0,2], which is synchronized with 

the positive zero-crossing of the positive-sequence fundamental component of phase-a 

voltage. The limits shown on the integrator input in Figure 4-4 ensure that the PLL tracks 

the angle of the ac waveform within a ±20% window around the nominal frequency s.   

From the viewpoint of the fundamental ac components, the PLL can be represented as 

a closed loop control system as shown in Figure 4-5. Whenever there is a change (due to 

perturbations in the system or changes in system set-points) in the phase angle of the 

voltage at the PLL point, its output undergoes a transient period before it detects and locks 

onto the phase angle. The closed loop system of Figure 4-5 is used to control the dynamics 

of this transient period.  

 

 

Figure 4-5: Phasor-based model of the PLL. 
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4.5 Inclusion of High-Order Harmonics 

It is straightforward to include higher order harmonics into the model if so desired. So far 

the described model only includes the fundamental frequency component for the ac side 

and the first dominant Fourier components for the dc side of the system; i.e., the zero-order 

term for the dc side. Therefore, the developed model represents the dynamics of the dc 

component of the dc-side quantities and the fundamental frequency component of the ac-

side quantities. This section aims to include the 11th and 13th order harmonic quantities into 

the ac side. It should be mentioned that addition of other harmonics is similar to adding 

11th and 13th order harmonics. 

As mentioned in Chapter 3 the case study includes a 12-pulse mono-polar HVDC 

transmission system, which means there is no 5th or 7th harmonic current injected to the ac 

system under idealized conditions [1]. Therefore, it was decided to include the 11th and 13th 

order harmonics into the model, which are the first dominant harmonic quantities on the ac 

side as an example of including higher order harmonic quantities to the system. Note that 

there may be small amounts of other harmonics (including 5th and 7th) in the ac waveform 

of a 12-pulse converter due to factors such as small firing angle mismatches, nonlinear 

distortions, or imbalances between the two converters. These harmonics are small in 

magnitude compared to the dominant 11th and 13th order harmonics of a 12-pulse converter 

and as such are neglected in this study. It is assumed that the current at the dc side is purely 

dc and the ripples on the dc current are ignored, i.e., ddd Iii 
0 . 
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As discussed above in (4-9) the ac side current is derived by multiplying the current 

switching function by the dc current. The phase-a current of the Y-Y transformer is 

expressed as follows:  

 , ,a YY ia YY di f i  (4-23)

In order to determine the kth order component of the dynamic phasor model of the current 

ia,YY, (2-2) is applied to (4-23), which yields: 
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Based on the assumption made earlier that the dc current only contains the dc component 

and its ripples are ignored, 〈݅ௗ〉௞ is zero for all values of k except when k is equal to 0. 

Therefore (4-24) can be simplified as follows. 

 
kYYiaddkYYiakYYa fIifi ,0,,   (4-25)

After some mathematical manipulations the kth order component of the phase-a current 

switching function of the Y-Y converter transformer, 〈 ௜݂௔,௒௒〉௞ , is calculated and (4-25) 

can be re-written as below. 
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where sinc(x)=sin(x)/x and V  is the phase angle of phase-a of the commutating voltage. 

A similar procedure is followed to derive kth order components of phase-a of the ac current 



 

 52 

for the Y- converter transformer 〈 ௜݂௔,௒∆〉௞. The kth order components of phase-a of the ac 

current injected to the ac system can then easily be calculated by adding 〈 ௜݂௔,௒∆〉௞  and 

〈 ௜݂௔,௒௒〉௞ .
 

After developing the formula of the injected ac current to the ac network for any 

specific harmonic order, the dynamic phasor model of the ac network for any desired 

harmonic order needs to be determined. The dynamic phasor model of the ac network for 

the fundamental frequency component is shown in Chapter 3. The following extends the 

discussed concept to include other harmonic components into the ac network. 

The same RL circuit shown in Figure 4-3 is considered here in this section as an 

example. By applying (2-2) and (2-3) to the time domain differential equation of the RL 

circuit (4-19), dynamic phasor relationship of the RL network is obtained as follows. 
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where 〈ݒ〉௞ and 〈݅〉௞ are the kth order dynamic phasors of the voltage and current, 

respectively. Separating (4-27) into real and imaginary components yields the following 

differential equations for the circuit.  
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A similar method is used for other network configurations (like an RC circuit) to develop 

the dynamic phasor models associated with the network for selected harmonic orders.  

4.6 Model Validation and Results 

A dynamic phasor-based model for the CIGRE HVDC benchmark model [27] is developed 

in MATLAB/SIMULINK as per the procedures in this chapter. The benchmark model has 

a power circuitry and control layout similar to Figure 3-1 and Figure 3-8. 

The developed dynamic phasor model is validated against a detailed switching model 

that is implemented in the PSCAD/EMTDC electromagnetic transient simulator. While 

this involves validation of a computer simulation model against another computer 

simulation model, it must be noted that electromagnetic transient simulations (conducted 

using small enough time steps on commercial grade simulators) are widely regraded as 

highly accurate representations of the actual behavior of power systems [51], [52], [53], 

[54]. Therefore, use of EMT simulation results as a benchmark for validation of other 

simulation methods is a common practice in power systems [4], [26], [41]. 

In order to ensure that the benchmark EMT results (using an EMT simulation tool) are 

indeed accurate, one must use small enough simulation time-steps. Analytical 

determination of a small enough time-step is often not possible, due to the nonlinear and 

complicated nature of systems under consideration. The practice of choice is to use trial 

and error using successively decreasing time-steps and to observe the results. The time-

step below which no notable change in the generated results is observed is adopted. In the 

simulation cases that are presented next, a time-step of 20 s is used in all PSCAD/EMTDC 

simulations. 
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In order to investigate the accuracy of the dynamic phasor model in representing 

transients below the switching frequency, a third model of the system is also used, in which 

the bridge converters are modeled as an averaged model; however, the ac system is 

represented using a constant admittance-matrix. In this model the passive elements of the 

ac systems at the rectifier and the inverter sides are represented using impedances at the 

fundamental frequency of 50 Hz. This constant-admittance matrix model ignores the time 

variations of the Fourier components of the line current. Note that the constant-admittance 

matrix model is a simplification of the dynamic phasor model in which the time-derivatives 

of the Fourier coefficients are set to zero as was discussed in Section 4.3. 

Four case studies involving all three models are presented:  

Case 1: Rectifier side dynamics; 

Case 2: Complete system dynamics; 

Case 3: Fault analysis with and without commutation failure; 

Case 4: High-order harmonics; 

A simulation time-step of 1000 s is used in the simulation of the low-frequency 

dynamics using the dynamic phasor model (cases 1 to 3). For the simulations in case 4, 

wherein harmonics are also included, a time-step of 100 s is used for the dynamic phasor 

model. Similar to an EMT solver, use of excessively large time-steps in a dynamic phasor 

solver will adversely impact the accuracy of its results. The simulation time-steps reported 

for the developed dynamic phasor model are selected using trial and error in a manner 

similar to the selection of time-steps for an EMT solver.  

The system specifications for both power circuitry and control layout used in the case 

studies are mentioned in Table 4-1 and Table 4-2. 
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Table 4-1: CIGRE HVDC Benchmark System Data 

Parameter Rectifier Inverter 
AC voltage base values 345 kV 230 kV 
Base MVA 1000 MVA 1000 MVA 
Nominal dc voltage 500 kV 500 kV 
Nominal dc current 2 kA 2 kA 
Rated trans. voltages 345:211.42 kV 211.42:230 kV 
Transformers leakage 0.18 pu 0.18 pu 
Filter VAR supply 625 MVAR 625 MVAR 
Nominal angle   = 15° = 15° 

 
 
 
 

Table 4-2: Controller Parameters for the Case Study 

Controller Parameter Rectifier Inverter 
Phase-locked Proportional gain 10 10 
loop Integral gain 50 50 
Current Proportional gain 0.1 0.63 
controller Integral gain 100 65.617 
 Min. commutation margin - 15° 
Gamma Max. margin error - 30° 
controller Proportional gain - 0.5 
 Integral gain - 20 

 

4.6.1 Case 1: Rectifier side dynamics 

For the simulation of Case 1, the inverter side is modeled as a constant dc source of 500 

kV (replacing vc in Figure 4-2). The rectifier control system follows its dc-current order 

via adjusting the converter’s firing angle. A PLL locked onto the rectifier PCC maintains 

synchronism with the ac voltage and provides a reference for generation of the firing 

pulses.  

Figure 4-6 shows the response of the system to a step change in the current order from 

1.1 to 0.9 pu. Three traces generated by the three models are shown. The dynamic phasor 

model follows the transient simulation model’s response excluding the high-frequency 
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switching contents. The constant admittance matrix model fails to show the transient 

oscillations of the actual response, although it settles into the correct steady state value. As 

shown in Figure 4-6, the system response has damped oscillations at a frequency of 

approximately 62 Hz. The dynamic phasor model successfully predicts these oscillations. 

These oscillations are, however, far too rapid for the constant admittance-matrix 

representation, and hence are absent in its predicted response. It must be noted that the 62-

Hz oscillations occur in the first dominant Fourier component of the dc current, i.e., the 0-

order term, for which a dynamic phasor model is developed. Prediction of these oscillations 

does not require inclusion of additional Fourier components as the harmonic contents of 

the dc current of a 12-pulse converter (with symmetrical firing) includes the considered dc 

component as well as 12n harmonics (720 Hz, 1440 Hz, etc.), which are by far higher than 

62 Hz.  

 

 

Figure 4-6: Step response of the dc current. 

 

4.6.2 Case 2: Complete system dynamics 

The complete system model with both converters and their respective ac systems and with 

a current controller on the rectifier side and constant extinction-angle controller on the 
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inverter side with a VDCOL is considered. Figure 4-7 shows the step response of the 

system to a large current-order change from 1.05 to 0.5 pu. The rectifier current controller 

is engaged to adjust its firing angle. The inverter controller maintains its extinction angle 

at 15°. The figure also shows the dynamics of the ac voltage magnitude at the rectifier 

PCC.  

 

 

Figure 4-7: Response of the system to a step change in the current order. top: rectifier 
current, middle: inverter current, bottom: PCC ac voltage 
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The dynamic phasor model follows the system response including the sharp rise of the 

voltage at the inception of the step change at t = 2.0 s. The traces in Figure 4-7 show 

conformity between the EMT and the dynamic phasor models of the system, except for the 

high-frequency ripple, which is ignored in the averaging process. The constant-admittance 

matrix model does not accurately follow the transients, as it shows an earlier peak voltage, 

a smaller magnitude of oscillations, and a quicker settlement into steady state.  

4.6.3 Case 3: Fault analysis with and without commutation 

failure 

Performance of the models in representing faults is assessed in two stages. In the first stage, 

adequately remote faults, which do not result in commutation failures, are considered. 

Figure 4-8 and Figure 4-9 show the rectifier and inverter current waveforms when the 

magnitude and phase angle of the inverter-side ac voltage are changed by 5% and 10°, 

respectively. Such changes may occur due to remote faults and while they disturb the 

operation of the system, they are not severe enough to lead to commutation failure. As 

shown, both the EMT and the dynamic phasor models correctly represent the dynamics of 

the response. The constant-admittance matrix model, however, has considerable error 

during the transient period, as it predicts a larger peak at an earlier time, and settles into 

steady state faster. These indicate inaccuracies in both the magnitude and damping of 

oscillatory modes. 

The faults are modeled using changing the voltage of the equivalent ac networks at the 

rectifier and inverter sides. It is, however, possible to apply faults at any location using an 

impedance to ground at that location. 
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Figure 4-8: Response of the system to a 5% reduction in the inverter-side ac voltage 
magnitude. top: rectifier current, bottom: inverter current. 

 

Figure 4-9: Response of the system to a -10° change in the inverter-side ac voltage phase 
angle. top: rectifier current, bottom: inverter current. 
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Figure 4-10 shows the response of the model to a severe fault in the inverter-side ac 

system. The fault is modeled with a 20% reduction in the ac voltage magnitude. The EMT 

model clearly indicates commutation failure. Both the dynamic phasor and the constant-

admittance matrix models have large error during the transient period, although they 

converge to the correct steady state value. The reason for the discrepancy in the transient 

period is that these two models are developed without provisions for operation of the 

converter under abnormal conditions, which occur during commutation failure.  

 

Figure 4-10: Response of the system to a 20% reduction in the inverter-side ac voltage 
magnitude top: rectifier current, middle: inverter current, bottom: current order. 
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4.6.4 High-order harmonics 

All the cases so far have used only the fundamental frequency components. It was, 

however, previously discussed that it is possible to add any number of high-order 

harmonics is so desired. Figure 4-11 shows the current at one of the ac filter branches with 

and without considering the 11th and 13th order components of the dynamic phasor 

simulation. In this case, a step change is applied to the dc current order of the rectifier from 

1 to 0.8 pu while the inverter is modeled as a constant dc source of 500 kV. 

 

Figure 4-11: Current at one of the ac filter branches with (top) and without (bottom) 
considering the 11th and 13th order components of the dynamic phasor simulation. 
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4.7 Discussions 

It is necessary to investigate the benefits of modeling using dynamic phasors in accelerating 

the simulation. EMT simulations normally require a small time-step in the order of 5-50 

s, to correctly predict the high-frequency switching transients. Since these high-frequency 

components are neglected in dynamic phasor modeling, it is expected that larger time steps 

can be used, which lead to speed-ups in the simulation time. The simulations shown in this 

case study are conducted with a time step of 20 s for the EMT model and 1000 s for the 

dynamic phasor and the constant admittance-matrix models. Since the EMT model and the 

two average models are not implemented in the same simulation platform, it is not directly 

possible to compare their simulation speed. It is, however, expected that the reduced 

computational intensity of the average models, due to their much larger time step, will 

considerably reduce their simulation time. 

It should be mentioned that one might argue that acceleration of EMT simulation can 

be achieved by using larger time steps. While this may be achievable to some extent for a 

small range of time steps, it cannot be extended to large time steps. EMT models include a 

high level of detail and a large time step might jeopardize the ability to capture them. For 

example, switching commands to valves are issued at a fine rate and use of a large time 

step may result in missed firing pulse and hence mal-representation of the converter 

operation, and subsequently incorrect results for the rest of the system. At adequately large 

time steps, EMT simulation solvers may also experience divergence. As an example, the 

following figure shows the response of the dc current on the rectifier side using EMT 

simulations with time steps of 20 and 500 s. The traces clearly show the deterioration of 

the accuracy when the time step is increased to 500 s. As seen the trace obtained with a 
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large time step of 500 s clearly predicts much lower peaks an at earlier instants of time 

during the transient oscillations.  

 

Figure 4-12: The response of the dc current on the rectifier side using EMT simulations 
with time steps of 20 s and 500 s. 

 

4.8 Chapter Summary 

In this chapter the dynamic phasor model of a LCC-HVDC transmission system operating 

under balanced and normal (no commutation failures) conditions were developed. The 

chapter described how to derive the dynamic phasor models of various parts of a LCC-

HVDC transmission system including line-commutated converter, DC system, AC 

network, and phase-locked loop.  

The model was first developed only for the fundamental frequency components (50 

Hz) at the ac side quantities. However, it was shown how straightforward it is to include 

higher harmonic orders if so desired. As an example the 11th and 13th order harmonic 
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components were added to the developed model. Various simulations were performed to 

validate the accuracy of the developed models. 
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Chapter 5 

Unbalanced Conditions and 

Commutation Failure 

In the previous chapter the dynamic phasor model of a LCC-HVDC was developed. 

However, the developed model had a number of limitations as it worked properly only for 

balanced and normal (i.e., no commutation failure) operating conditions. Therefore, this 

model is not able to fully model the transient phenomena that may occur in an HVDC 

system. 

This chapter extends the model in order to properly represent a LCC-HVDC system 

operating under unbalanced conditions and during commutation failure. Unbalanced 

conditions may arise as a result of unbalanced faults, such as a single line to ground fault, 

at the ac side of the converter; severe faults can cause commutation failure in the converter 

system in particular at the inverter. 

5.1 Modeling for Unbalanced Conditions 

In this section the developed model in Chapter 4 is modified in order to derive the dynamic 

phasor model of a line-commutated converter operating under unbalanced conditions. 

Developing a dynamic phasor model of LCC to properly work under unbalanced conditions 
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can be of great help to investigate the behaviour of the system during unbalanced faults 

such as single-phase to ground faults, double-phase faults, and double-phase to ground 

faults. This is advantageous as there has not been substantial work to analytically 

investigate operating characteristics of LCC-HVDC transmission systems during 

unbalanced voltage conditions. 

The term “unbalanced operating conditions” in this chapter is applied to situations 

where the LCC AC voltages are not balanced due to any reason. In other words, there are 

other types of unbalanced operating conditions that are NOT considered in this thesis (e.g., 

different impedance values for three phases or different loading for different phases). It is, 

however, possible to extend the model to include other types of unbalanced operating 

conditions as well. 

In this section firstly the dynamic phasor model of a line-commutated converter 

operating under unbalanced condition will be developed. The developed model can then 

be used to derive the ac current at the ac side of the YY converter transformer. This is 

because the current at the two sides of a YY transformer have similar waveforms. 

The developed model will then be modified and expanded in order to be able to 

properly simulate a LCC connected to a YD transformer operating under unbalanced 

conditions. 

The above mentioned two models will then be combined to fully model a 12-pulse 

bridge. 
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5.1.1 Line-commutated converter under unbalanced conditions 

In this section the dynamic phasor model of a line-commutated converter operating under 

unbalanced conditions is developed. For convenience the schematic diagram of a LCC is 

shown again in Figure 5-1.  

 

 

Figure 5-1: Circuit diagram of a line commutated converter (LCC)  

 

It is assumed that ac voltages have some negative-sequence contents (unbalanced 

operating conditions) and as such the instantaneous voltages are as follows. 
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where  

VP  : voltage magnitude of the positive sequence component  
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aP : phase angle of phase-a for the positive sequence component 

VN  : voltage magnitude of the negative sequence component  

aN : phase angle of phase-a for the negative sequence component 

The line voltage can be calculated using (5-1) as follows. 
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To make the analysis simple the ratio of imbalance is defined as the voltage magnitude 

of the negative sequence component divided by the voltage magnitude of the positive 

sequence component. In addition to that the angle φ is defined as the angle difference 

between the negative and the positive sequence components of phase-a voltage. These are 

shown as follows. 
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In order for a thyristor to be turned ON the voltage across its anode-cathode terminals 

needs to be positive when the firing pulses are applied to its gate terminal. Therefore, it is 

possible that the valve cannot be turned ON when firing pulses are applied as the voltage 

across its anode-cathode terminals is not positive yet. This phenomenon can happen under 

unbalanced operating conditions for which the firing angle is calculated and applied based 

on the ac voltage angle measured by a PLL; as it was mentioned earlier a PLL is a control 

system for tracking the phase angle of the fundamental positive-sequence component of an 

ac waveform. 

The firing pulses in LCC-HVDC systems are calculated based on fundamental positive-

sequence components of phase-a and are applied to valve 1 and then to valve 2 for which 

the phase angle calculated for valve 1 is shifted π/6. The same equidistant pattern of shifting 

by π/6 is continued for other valves as well. 

For the reason discussed above for a LCC operating under unbalanced conditions there 

is a minimum firing angle required for each phase in order to turn ON the valves of that 

phase once the firing pulses are applied. The minimum firing angle for each valve is 

calculated such that the voltage across the anode-cathode terminal for that valve becomes 

positive. The minimum firing angle required for each phase is as follows. 
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If the firing angle is less than the minimum firing angle for that phase, the minimum 

firing angle will be used for that phase in the dynamic phasor equations. As previously 

discussed this phenomenon is what actually happens in real HVDC systems due to the 

tracking of the fundamental positive-sequence phase by a PLL.  

5.1.2 Commutation period 

In order to develop the dynamic phasor-based model of a LCC operating under unbalanced 

conditioned the current and voltage switching functions need to be re-defined. Calculation 

of commutation periods is the first step to develop the current and voltage switching 

functions. Therefore, in this section the commutation period of a LCC operating under 

unbalanced conditions is derived.  

The procedure is similar to the calculations of commutation period of LCC operating 

under balanced conditions. To find the commutation period between valves 1 and 5, when 
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the dc voltage transfers from vcb to vab as shown in Figure 3-4, the set of equations in (5-6) 

must be solved.  
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As mentioned before if in the above equations the firing angle () is less than the 

minimum firing angle (a,min in (5-5)) then the firing angle will be replaced with the 

minimum firing angle. 

Solution of the equation in (5-6) results in the following expression for a. 

 

 




































 







 





































 














 







 







3

2
sin

1
3

2
cos

tan

1
3

2
cos

3

2
sin

cos
3

2
cos

sin

1

22

1

K

K

KK

KA

a
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where 

 
P
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IL
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2
  (5-8)

A similar procedure is followed for phases b and c to derive the commutation period 

formulas for other phase. (5-9) and (5-10) show the commutation period for phases b and 

c for a LCC operating under unbalanced conditions. 
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5.1.3 DC voltage switching functions 

In this section the dynamic phasor equations of the dc voltage of a LCC operating under 

unbalanced conditions are derived. As explained in Chapter 4 the dc side voltage waveform 

of the 6-pulse converter can be expressed in terms of the ac-side phase voltages and their 

switching functions as follows. 

 cvcUbvbUavaUd vfvfvfv   (5-11)

where fvaU, fvbU and fvcU are the voltage switching functions of a LCC operating under 

unbalanced conditions for phases a, b, and c, respectively. The functions fvaU, fvbU and fvcU 

are shown in Figure 5-2.  
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Figure 5-2: Voltage switching functions of phases a, b, and c for unbalanced condition. The 
DC side voltage of the LCC is also showed at the top waveform. 
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Therefore, to develop the dynamic phasor equations of the dc voltage for a LCC operating 

under unbalanced conditions both the zero- and second-order components of (2-2) are 

considered. 

To determine the dc value (0-th order component) of the dc-side voltage one can apply 

(2-2) with k = 0 to (5-11); therefore: 

 0000 cvcUbvbUavaUd vfvfvfv   (5-12)

The three terms on the right-hand side of (5-12) include the averages of the products of the 

switching functions and phase voltages. These terms can be expanded into products of 

averages using (2-4), as follows. 
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A similar procedure is taken to derive the second component of the dc voltage. To 

determine the dc second order component of the dc-side voltage one can apply (2-2) with 

k = 2 to (5-11); therefore: 

 2222 cvcUbvbUavaUd vfvfvfv   (5-14)

The three terms on the right-hand side of (5-14) can be expanded using (2-4), as follows. 
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It should be mentioned that the dynamic phasor equations of ac voltages only include 

1 and -1 components (i.e., 
1av  and 

1av ) and all the other components are equal to zero. 
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Therefore, the results of their products to other terms are zero. The kth factors of voltage 

switching functions are as follows. 
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The results show that up to the third harmonic (3rd component) of the voltage switching 

functions are adequate for calculation of the second harmonic dc voltage mentioned in 

(5-15). However, it is possible to include higher factors as well if more accuracy is desired. 

5.1.4 AC current switching functions 

In this section the dynamic phasor equations of the ac current of a LCC operating under 

unbalanced conditions are derived. As explained in Chapter 4 the ac side current 

waveforms of the 6-pulse converter can be expressed in terms of the dc-side current and 

their current switching functions as follows. 
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where fiaU, fibU and ficU are the current switching functions of a LCC operating under 

unbalanced conditions for phases a, b, and c respectively. The functions fvaU, fvbU and fvcU 

are shown in Figure 5-3. Similar to balanced operating conditions the trapezoidal 

approximation method has been used. 
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Figure 5-3: Current switching functions of phases a, b, and c for unbalanced condition. The 
DC side voltage of the LCC is also showed at the top waveform. 
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The fundamental component of the ac current is calculated using (5-17). However, as 

discussed in Chapter 4 it possible to add other harmonics if so desired. The fundamental 

frequency component of phases a, b, and c are calculated by applying (2-2) to (5-17).  
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 (5-18)

The right-hand side of the above equation can be expanded as follows: 
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 (5-19)

As mentioned in the previous section it is known that in the presence of unbalanced ac 

voltages in a LCC the dc voltage of the converter will have a second harmonic component 

in addition to the dc component. This will result in the presence of second harmonic in the 

dc current as well. Therefore, to develop the dynamic phasor equations of the ac current 

for a LCC operating under unbalanced conditions both the zero- and second-order 

components of the dc current are considered. 

To obtain the right-hand side of the (5-19) it is necessary to determine the 1st and 3rd 

factor of current switching function. The kth factors of current switching functions are as 

follows. 
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)

 

The terms 
0di  and 

2di  in (5-19) are calculated in a similar way to the dc system 

equations developed in Chapter 4, in which the dynamic equations of the dc transmission 

line were developed. In the next section the dynamic phasor equations of the dc system 

will be developed for a LCC-HVDC transmission systems operating under unbalanced 

conditions. 

5.1.5 DC system expressions 

In this section the dynamic phasors model of the dc system is developed for a LCC-HVDC 

operating under unbalanced conditions. For the convenience of readers, the time-domain 

equations of the dc system are shown again as follows. 
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The dynamic phasor equivalents of these equations are obtained using (2-2) with k=0 (to 

denote the dc component) and k=2 (to denote the second harmonic component). The 

resulting equations are as follows. 
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As mentioned before in the properties of dynamic phasors the negative factors in (2-2) can 

be calculated by calculating the complex conjugates of the positive factors. Therefore the 

negative factors in (5-19) can be calculated as follows. 
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5.1.6 Y transformers 

In the above sections the dynamic phasors equations of a LCC operating under unbalanced 

conditions were developed. It was shown that the phase angle difference between positive 

sequence and negative sequence of the ac voltage is an key factor for developing of voltage 

and current switching functions for phases a, b, and c.  

If a LCC is connected to a YY transformer, then the phase angle difference between 

the positive and negative sequence components will be the same for both primary and 

secondary side of the transformer. However, in case of a Y transformer if the phase angle 

difference between positive and negative sequence components is   at the Y side of the 

transformer then the phase angle between positive and negative sequence voltage 

components will be 
3

  .  

Figure 5-4 shows an example of the phasor diagrams of line-to-ground and line-to-line 

voltages of balanced and unbalanced voltages. It can be observed that the phase angle 

between the negative and positive sequence of phase-a line-to-ground voltages is  . 

However, the phase angle between the negative and positive sequence of line-to-line 

voltages (phase a and b) is 
3

  . 
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5.1.7 Simulation results 

In the above sections the dynamic phasors model of a LCC-HVDC operating under 

unbalanced conditions were developed. In this section the developed model is validated 

against the detailed model in PSCAD/EMTDC during several unbalanced conditions 

including unbalanced faults. Please note that the test system is exactly the same as the one 

discussed in previous chapter. System parameters and other specifications are shown in 

Appendix A. 

Figure 5-5 shows the voltage and current waveforms of the converter for 50% 

unbalanced conditions (K=0.5). It can be seen that both the voltage and current of the dc 

VaP 
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Figure 5-4: Phasor diagrams of balanced and unbalanced voltages. 
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side include second-order harmonic components, which is related to the unbalanced ac 

voltages. The results show that the developed dynamic phasor model can accurately capture 

the second harmonic components caused by unbalanced ac voltages. 

 

Figure 5-5: DC voltage (top) and DC current (bottom)  of the converter for 50% 
unbalanced conditions (K=0.5). 

 

Figure 5-6 shows the results of both voltage and current of the converter for an 

unbalanced fault, which results in 20% negative sequence component (K=0.2) and 

reduction of positive sequence voltage by 10%. It is clear from both the dynamic and steady 
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state results that the developed model is able to properly model the system for both 

transients and steady state conditions. 

 

Figure 5-6: DC voltage (top) and DC current (bottom) of the converter for an unbalanced 
fault, which results in 20% negative sequence component (K=0.2) and reduction of positive 
sequence voltage by 10%. 

 

In this section the dynamic phasor model of LCC HVDC transmission systems 

operating under unbalanced conditions were developed. This is, in particular, advantageous 

for analyzing the system under unbalanced faults. The developed model was validated 
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against first CIGRE HVDC test system and it was shown that the developed model is 

capable of properly simulating the system under unbalanced operating conditions for both 

steady state and dynamic conditions. 

 

5.2 Commutation Failure 

In the previous chapter the dynamic phasor model of a LCC-HVDC transmission system 

operating under balanced conditions were developed. The derived model was validated 

against the results of a PSCAD/EMTDC model and it was shown that the model is accurate 

in capturing both transient and steady state results. It was, however, observed that the 

developed model din not properly simulate the system during commutation period. 

In this section it is intended to modify and extend the model in order to be able to 

properly capture the transient of the system during commutation period. For the 

convenience of readers, the equivalent circuit of a LCC during commutation failure is 

shown again in Figure 5-7. 
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Figure 5-7: Equivalent circuit of the LCC during commutation (valves 1 and 5). 

 

The first step to model a LCC operating during commutation failure is to detect when 

commutation failure is about to happen. With such information it is possible to modify the 

dynamic phasor equations as soon as commutation failure is detected. After detecting the 

commutation failure, a new set of equations need to be used in order to properly model the 

system during this transient. As mentioned in Chapter 3, the DC current can be expressed 

as follows. 

   


 coscos
2

3

c

m
d L

V
I  (5-25)

It is obvious that the term   cos  is always equal or greater than -1. Therefore, in order 

to have successful commutation (no commutation failure) the following condition needs to 

be satisfied. 

  1cos
2

3
 

 c

m
d L

V
I  (5-26)
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If the above criterion is not met, then it is concluded that the system is under commutation 

failure. After detecting the commutation failure, it is now necessary to model the system 

under this operating regime. During commutation failure the commutation period between 

two valves becomes so long that the next commutation starts before the existing one ends. 

As an example of commutation failure, the commutation between valve 2 and valve 6 starts 

while the commutation between valve 1 and valve 5 is in progress. This causes the valves 

2 and valve 5 conduct at the same time as shown in Figure 5-8. 
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Figure 5-8: Equivalent circuit of the LCC during commutation failure 

 

As it can be seen in the above figure during commutation failure the DC voltage become 

zero as valve 5 and valve 2 are both conducting. The AC current also becomes zero 

meaning that AC side becomes isolated from the DC side. Therefore, during commutation 

period, the following equations are valid. 
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Figure 5-9 shows the results of both rectifier and inverter current for a 10% reduction 

in the inverter’s AC voltage, which causes commutation failure in the inverter side. In 

Figure 5-9 the results of the developed dynamic phasor model both with and without 

commutation failure modification of the dynamic phasor model are compared with the 

results of PSCAD/EMTDC.  
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Figure 5-9: Rectifier (top) and inverter (bottom) current during commutation failure 

 

5.3 Chapter Summary 

In this chapter the developed dynamic phasor model in Chapter 4 was further developed in 

order to properly model both transient and the steady state response of the system during 

unbalanced conditions as well as operations under commutations failures. The model of a 

line-commutated converter operating under unbalanced conditions was first developed and 
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then it was shown how to include the effect of a Y transformer to be able to expand the 

LCC model to a 12-brige converter of CIGRE first HVDC benchmark system.   

With the improvements done in this chapter and their verification via comparison with 

EMT simulation results it is concluded that the developed model is able to fully model the 

LCC-based HVDC transmission systems during both transients and steady state for various 

operating conditions. 
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Chapter 6 

Conclusions, Contributions, and 

Future Work 

6.1 Conclusions and Contributions 

High-voltage direct current power transmission systems are becoming increasingly 

integrated into modern power networks. The majority of HVDC transmission systems in 

the world are based upon line-commutated converters.  

Computer simulations have been a significant part of control, design, and operation of 

power systems for many years. Different computer simulation programs have been 

developed for different types of studies in power systems. Among them, electromagnetic 

transient (EMT) programs are the most accurate one and use the most detailed models of 

the power system components, which make EMT simulation slow. Therefore, EMT 

programs are traditionally considered to be suitable only for small networks or studies with 

the short periods of interest. However, because of the complexity and interconnectivity of 

the modern power networks, it is necessary to use EMT programs for both larger networks 

and longer durations of time. Therefore, research needs to be done to develop both new 
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simulation techniques and new models for power system components to accomplish this 

goal. The conclusions and contributions of the thesis are described as below: 

1. Development of a switching function-based model of a LCC-HVDC system 

The thesis developed the dynamic phasor model of a LCC bridge using the concept of 

switching functions. This model facilitates the analysis of the LCC and has the capability 

to be used to model the LCC for high-order harmonics and operating under unbalanced 

conditions and commutation failure.  

The developed model was shown to be accurate in predicting the transient and steady-

state large-signal response of the system over a frequency range that well exceeds the 

fundamental frequency of the variables of interest. This expanded range is unattainable by 

constant-admittance matrix models. The dynamic phasor model is, therefore, deemed an 

acceptably accurate and computationally inexpensive option for the analysis of the 

dynamic behaviour of an LCC-HVDC system and for the study of interactions between ac 

and dc systems. 

2. Analysis of waveform approximation for the AC current of a LCC 

In the thesis an investigation was done on the error introduced by the square-wave 

approximation of the AC current of a LCC (both magnitude and phase angle) and it was 

shown that this error can be large. Therefore, a trapezoidal-wave approximation was 

adopted and it was shown that this method is more accurate while the formula is still simple 

enough to be used in dynamic phasor model. 

3. Inclusion of high-order harmonics 

The developed model has the capability of including any number of harmonics in addition 

to the fundamental frequency component, albeit at the expense of a higher order model. 
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This can be helpful in the case one is interested to observe the effect of specific harmonic(s) 

separately. This can also be beneficial in controller design as the user has access to each 

and every harmonic independently. 

4. Operating under unbalanced conditions 

The developed model was further expanded to accurately model a LCC-HVDC under 

unbalanced condition. This is essential in order to investigate the dynamic behaviour of the 

system under unbalanced operating conditions of the system such as single-phase-to-

ground (which is the most common fault in power systems) and double-phase-to-ground 

faults. 

5. Commutation failure 

The developed model would not be complete unless the model is able to properly represent 

a LCC-HVDC system operating during commutation failure as this is crucial for 

investigating dynamics of the system under sever faults causing commutation failures. The 

model was expanded to properly represent the system under this phenomenon.  

6.1.1 Publications arising from the thesis 

 M. Daryabak, S. Filizadeh, J. Jatskevich, A. Davoudi, M. Saeedifard, V. K. Sood, 

J. A. Martinez, D. Aliprantis, J. Cano, A. Mehrizi-Sani, "Modeling of LCC-HVDC 

Systems Using Dynamic Phasors," IEEE Transaction on Power Delivery, vol. 29, 

no. 4, pp. 721-726, Aug 2014. [55] 

This paper presents an average-value model of a line commutated converter-based HVDC 

system using dynamic phasors. The model represents the low-frequency dynamics of the 

converter and its ac and dc systems, and has lower computational requirements than a 
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conventional electromagnetic transient (EMT) switching model. The developed dynamic-

phasor model is verified against an EMT model of the CIGRE HVDC Benchmark. 

Simulation results confirm the validity and accuracy of the average-value model in 

predicting the low-frequency dynamics of both the ac and dc side quantities. Merits and 

applicability limitations of the average model are highlighted. 

 

 M. Daryabak, S. Filizadeh, "Analysis of Waveform Approximation for the AC 

Current of a Line-Commutated Converter," in The 3rd International Conference 

on Electric Power and Energy Conversion Systems (EPECS), Istanbul, 2013. [56] 

This paper analyzes mathematical approximations of the ac current of a line-commutated 

converter (LCC), which is the building block of conventional HVDC systems. The paper 

derives analytical expressions for the ac current of an LCC during the commutation and 

non-commutation periods and continues with calculating the percentage error of both the 

fundamental frequency component of the ac current and the power factor of the converter 

when the ac current is approximated with either a square or a trapezoidal waveform. The 

results quantitatively show the benefit of the trapezoidal waveform approximation in 

terms of its percentage error and simplicity. 

 

6.2 Directions for Future Work 

The developed model in this research is in dynamic phasor format and domain. It is 

recommended to perform research in order to find methods on how to integrate this model 
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in electromagnetic transient programs. This can also be advantageous in using the 

developed model in existing electromagnetic transient programs. 

It is also recommended to develop a systematic way to assemble network and converter 

equations. This will be helpful in integration of the dynamic phasor model of LCC-HVDC 

with any AC network regardless of the complexity of the ac system and its 

interconnections. 

A proper and formal analysis of computational savings in terms of computing time and 

simulation time step also is recommended for future investigation. Such an analysis will 

firmly quantify the computational benefits of simulating with dynamic phasors.  
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