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ABSTRACT

An extended triple system is a pair (S, W) where S is a

finite set and W 1is a collection of unordered triples from § , where
each triple may have repeated elements, such that every pair of elements
of S , not necessarily distinct, belongs to exactly one triple of W .
Algebraically, an extended triple system on an n=-set S is equivalent

to a quasigroup on S satisfying the laws =x(xy) =y and (yx)x =y.

If all elements of the quasigroup are idempotent, then the system is
equivalent to a Steiner triple system. We define {n; b} to be the
class of all extended triple systems on n elements with b idempotent
elements., 1If {n; b} is non-empty, we shall say {n; b} exists. It is

known that necessary conditions for the existence of {n; a} , 0 <a <n,

are:
(1) if n =0(mod 3) , then a = O(mod 3) ;
(2) if n % O(mod 3) , then a = 1(mod 3) ;
(3) if n 1is even, then a < g-;

(4) if a=n-1 , them n =2 ,

This thesis is concerned mainly with the sufficiency of the
known necessary conditions for the existence of {n; a} . A direct
method of construction is used to show that if the necessary conditions

are satisfied, then {n; a}l exists. In addition, we shall give

recursive methods of construction including the use of the direct and
singular direct product of quasigroups. It is shown that, with a few
obvious exceptions, there exist at least two non=-isomorphic systems in

each class {n; a} .
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CHAPTER 1

Introduction

A Steiner triple system, briefly STS, is a pair (§, T)

where S 1is a finite set and T a collection of 3-subsets of S,

called triples, such that every pair of distinct elements of S is

contained in exactly one triple of T . The number |S‘ is called

the order of (S, T) . It is known (see, e.g., [5]) that there is an

SIS of order n, briefly STS(n), if and only if n =1 or 3(mod 6).
Algebraically the set of all Steiner triple systems may be

looked upon as a variety of quasigroups satisfying the three identities

(1) x2 = x (idempotent)

(11) x(xy) =y

} (totally symmetric)
(ii1) (yx)x =y ,

Quasigroups satisfying (i), (ii), (iii) are called Steiner quasigroups.

Quasigroups satisfying (ii) and (iii) are commutative, and are

called totally symmetric quasigroups.

An extended triple systém is a pair (S, W) where 'S is a
finite set and W 1is a collection of non-ordered triples from S, where
each triple may have repeated elements, such that every pair of elements

of S, not necessarily distinct, belongs to exactly one triple of W .

The class of all extended triple systems is co-extensive with
the variety of quasigroﬁps satisfying only the totally symmetric identities
x(xy) =y and (yx)x =y

Quasigroups satisfying the totally symmetric identities are not

necessarily idempotent. We shall denote by {n; b} the class of all



extended triple systems on n elements which have b idempotents.
Clearly, {n; n} 1is the class of all STS(n) and this class is non-

empty if and only 1f n =1 or 3(mod 6).

We say {n; a} exists if there exist systems with parameters
n and a . If (S, W) belongs to {n; a} , we simply write W € {n; al.
Johnson and Mendelsohn [8] gave the following conditions which

are necessary for the existence of {n; a} , 0<a<n:

(L) if =n

O(mod 3), then a = O(mod 3) ;

=]

(2) if % O(mod 3), then a = 1(mod 3) ;

(3) if n is even, then a <

N':’

(4) if a=n-1, then n =2 .

It was also conjectured in [8] that the necessary conditions for the
existence of {n; a} given above were sufficient.
. « .
Let (S, W) and (S, Ww) be two extended triple systems.
% *
If S<S and WEW , we shall say that (S, W) 1is a subsystem of
% % * % *
(8 ,W) and that (S , W) contains (S, W) . If WNW = ¢ , then
* %k
we say that (S, W) and (S , W) are disjoint. If there is a

% *
bijection o : 8 — S such that (W)o =W , then we say that (S, W)

* %
and (S , W) are isomorphic (or equivalent).

There are essentially two inequivalent systems based on the

set S = {1, 2, 3} . We shall denote these by

‘JO = {(1: 1, 2), (2)-2’ 3), 3, 3, 1)} € {3; 0} P)
Iy ={@, 1, 1, (2, 2, 2), (3, 3, 3), (1, 2, 3} € {3; 3} .

There are two inequivalent systems on S = {1, 2, 3, 4} . We denote these

by




3.

}‘4 = {(1: 1, 1), (2, 2, 1), (3, 3, 1), (4, 4, 1), (2, 3, 4)}6 {4§ 1},
W= {1, L, D, 2,2,1,3,3,2), G, 4 2, 1,3, D1 411

Algebraically M4 is associated with the '"four -group". Up to isomorphism,

there is only one system on S = {1, 2, 3, 4, 5} . We denote this system by
Us = {(1,1,1),(2,2,3), (3,3,4), (4,4,5), (5,5,2), (1,2,4), (1,3,5) } € {55 1].

A system W € {n; al which contains the maximum possible
number [%] mutually disjoint copies of 33 is called a consistent
system. ([x] denotes the largest integer not exceeding x .)

For convenience and completeness we state

Theorem 1.1 (Johnson and Mendelsohn [8]). Suppose {n; a} exists with

0 £a<n . Then

L}
Hl

(1) 1f n = O(mod 3), then a = O0(mod 3) ;

it

(2) if n % O(mod 3), then a = l(mod 3) ;

(3) if n 1is even, then a < %— 5

(4) if a=n=-1, then n =2 .

Chapter 2 of this thesis deals mainly with some of the

essential properties of {n; al . Some basic constructions are given, and
examples of consistent systems, for small values of n , are included at
the end. These examples provide enough initial cases for recursive
constructions which follow. In Chapter 3 we use direct construction
methods to show that the necessary conditions for the existence of
[n; a}l given in Theorem 1.1 are also sufficient. Small embeddings of

extended triple systems are considered in Chapter 4, and a recursive

method of construction is developed. An algebraic approach is taken in



Chapter 5. 1In this chapter we construct consistent systems using
Direct Products and Singular Direct Products. In Chapter 6 we comment
on the existence of non-isomorphic extended triple systems, and some
examples of non-isomorphic systems a%e given. Apart from a few
exceptions, it is shown that there exist at least two non-isomorphic

systems in each class {n; a} .




CHAPTER 2

Properties of {n; a} and some basic constructions

1. Preliminaries.

A partial Steiner triple system is a pair (P, T) where P

is a finite set and T a collection of 3-subsets of P, called triples,
such that every pair of distinct elements of P is contained in at most

one triple of T . Unlike Steiner triple systems, there is no cardinality

restriction on P . The number |P| is called the order of the partial
Steiner triple system (P, T) . A partial Steiner triple system (P, T)
is called maximal if |T'| < |T| for every partial Steiner triple system
(P, T') . It is known [7, 19] that a maximél partial Steiner triple
system of order n exists for every positive integer n . In particular,
if n=1 or 3(mod 6), it is clear that a maximal partial Steiner

triple system of order n 1is indeed an STS(n) . 1In the following
section we shall be concerned mainly witﬁ maximal partial Steiner triple

systems.

2. Some useful connections.

It is already clear that {n; n} exists if and only if there
exlsts an STS(n) . The purpose of this section is to establish further

connections between a certain class of extended triple systems and

maximal partial Steiner triple systems. We shall utilize some properties

of {n; a} determined in [8].




If there is a system W € {n; a} , the triples of W are

essentially of three types: (1) (i, i, i), (2) (i, i, k),

3 4, ]

, k), where i, j, k are pairwise distinct. Johnson and

Mendelsohn [8] proved the following

Lemma 2.1.

(1)

each idemp

Suppose there is a system W € {n; a} .

If n 1is even, then amongst the type (2) triples (j, j, k)

otent appears an odd number of times as the single element k ,

and each non-idempotent appears an even number of times.

(i1)

each non-i

If n 1is odd, then amongst the type (2) triples (j, j, k)

dempotent must appear at least once as the element k . 1In

particular, if the non-idempotents are 1, 2, 3, «--, b, then in the

triples (
elements
oy £1 .

(iii)

Lemma 2.2.

order n .

1, 1, ), (2, 2, @), (3, 3, @), +++, (b, b, &) the

Uy Oy, v+, 0y are a permutation of 1, 2, -++, b with

The number of type (3) triples (i, j, k) is

n(n-1) (n-a)
6 3

.

J. Schonheim [19] proved in essence

Let (P, T) be a maximal partial Steiner triple system of

Then



sz-Zk {f n = 6k,

6k> + k 1f  no=6k+1,

6k> + 2k if  no=6k+2,
IR

6k” + 5k + 1  if n =6k + 3,

6k + 6k + 1  if n = 6k + 4,

6k + 9k +2 if no=6k+5 .

We are now in a position to prove the following theorems.

T
Theorem 2.3, There is a system W € {n; 5 } if and only if there is an

STS(n+1).

Proof. Let (S, T) be an STS(n+1) where S = {1, 2, ..., n+1)}

We shall eliminate from T the collection of all triples containing a

particular element, say n+1 . Let T(n+1) be the collection of all

triples of T containing the ele‘ment n+1 and assume, without loss of

generality, p(rF+D {(n+1, 1, 2), (a+1, 3, 4), ---, (ﬁ+1, n-1,n)1}.

Let T ={(1, 1,2), (2, 2, 2), (3, 3, &), (4, &, &), -, (n—1,n-1,n),
(n, n, n)} .

(n+1)

% : 0}
Put W = (T-T YUT . Then W € {n; 3 } , based on S-{n+1} .

Assume there is a system W € {n; 1‘2_1_ .} based on the set
% *
s =1{1,2, ---, n} . Introduce a new element o and put S=S U {=} .
We now derive from W an STS(n+1)

By Theorem 1.1, n =0 or 2(mod 6). So, by Lemma 2.1, we find
that amongst the type (2) triples (j, j, k) in W , the element k must

*
be idempotent. 8o, up to permuting the elements of S8 , W must contain

the triples J = {(1, 1, 2), (2, 2, 2), (3, 3, &), (4, &, &),

+>(n=-1,n-1,n), (n, n, n)} .




‘Let T_={(1,2,®, (3,4, ®, -+-, (n-1, n, ®)} . Put T=W-HUT_.
Then it is easily seen that (S, T) is an STS(n+1), which completes

- the proof.

t

Remark 1. 1In our cdnstructidn of W € {n; g-}? there are several
*
possibilities for the collection T , because in each of the %

disjoint pairs (1, 2), (3, 4), *++, (n—1, n) any one of the two

elements may be idempotent in W . This is a crucial point, since our

%
choice of T may very well determine the internal structure of the

gsystem W .
For example, let (8, T) be the STS(7) where
s =1{1,2,3,4,5, 6,7}, and
T={(, 2,4), (1, 3,7), (1, 5, 6),(2,3,5),(2,6,7),(3,4,6),(4,5,7)%.
™D 2@, 3, n, @, 6,1, 4, 5 D} .

Let W, and W be the following two systems derived from (S, T) by

1 2
(7

deleting T from the collection T :
Wl = {(1’ 1’ 1)) (31 3’ 1)’ (2, 2’ 2)) (6’ 6’ 2)’ (5, 5, S)J (4’ 4) 5)’

(i, 2, &), (1, 5, 6), 2, 3, 5, (3, 4, 6)} € {65 3} .

W, = {1, 1, 1), (3, 3, 1), (2, 2, 2), (6, 6, 2), (4, &, &), (5, 5, 4),
A, 2,4, (1, 5, 6), (2,3, 5, 3, 4, 6)} € {65 3} .

It is easy to check that W, contains no copy of 33, while W2 contains

1

a copy of 33 on the set {1, 2, 4} . This remark is not restricted to

the construction given in Theorem 2.3. It is worth noting that the
collection {(i, i, 1), (j, j, 1)} may always be replaced with the
collection {(i, i, j), (j, 3, j)} within any system. This procedure

is treated more generally in the next section.




Theorem 2.4. There is a system W € {én+4; 3n+1} if and only if

there is a maximal partial Steiner triple system of order 6n+4 .

Proof. Let (P, T) be a maximal partial Steiner triple system where
p=1{1,2, .., 6n+4} . It follows from Lemma 2.2 that
|T| = 6n2+6n+1 and so the triples of T give rise to a total of

18n2+18n+3 unordered pairs. As a result, there are

<6n;-4

in any triple of T . The number of pairs containing‘a particular

>-(18n2+n+3) = 3n+3 pairs of elements from P not contained

element in (P, T) is an even number, and each element is contained in
an odd number 6n+3 pairs, counting all pairs from P . Consequently, -
one particular element must appear in 3 of these 3n+3 excluded pairs,
while all other elements appear in one pair. Up to permuting the
elements of P , we may assume that the pairs (1, 2), (1, 3), (1, 4),
(5, 6), (7, 8), -+, (6n+3, 6n+4) do not appear in any triple of T ,
but évery other palr appears in exactly one triple of T .
Let T = {(1,1,1), (2,2, 1), (3, 3, 1), (4, &, 1), (5, 5, 5), (6, 6, 5),
(7, 7,7), (8,8, 7), *++, (bn+3, 6n+3, 6n+3),
(6bn+4, 6n+4, 6n+3)}
Put W=TU T* . It is easily verified that W €{6n+4;3n+1} based
on P . Conversely, let us assume that there is a system W€ {6n+4; 3n+1}
based on some set P = {1, 2, -++, 6n+4} . Let T be the collection of

all type (3) triples (i, j, k) in W . By Lemma 2.1,

|Tl L (6n+4)(6n +3)
6
indeed a maximal partial Steiner triple system of order 6n+4 . This

- (n+1) = 6n2+6n+1 . It is clear that (P, T) is

completes the proof of the theorem.
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Theorem 2.5. There is a system W € {6n+5; 6n+1} if and only if there

1s a maximal partial Steiner triple system of order 6n+5 .

Proof. Let (P, T) be a maximal partial Steiner triple system, where
P = {1, 2, +++, 6n+5} . By Lemma 2.2, lTl = 6n2 + 9n+2 . Thus the

triples of T give rise to 18n2+27n+6 unordered pairs. There must

be <6n;-5

in any triple of T . Each element is contained in an even number

> - (18n2+27n+6) = 4 pairs of elements of P not contained

6n+4 pairs, counting all pairs from P . In (P, T) the number of

pairs containing a particular element is always even. So we. may assume,

without loss of generality, that the pairs (1, 2), (2, 3), (3, 4),

(4, 1) do not appear in any triple of T , but that every other pair

appears in exactly one triple of T .

Let T =1{(1,1,2), (2,2, 3), (3, 3, 4), (4, &4, 1), (5, 5, 5), (6,6,6),

cee, (bn+5, 6n+5, 6n+5)}

Put W=TU T . Clearly W € {6n+5; 6n+1} based on the set P .
Conversely, let us assume that W € {6n+5; 6n+1} based on

some set P = {1, 2, «++, 6n+5} . Let T be the collection of all

type (3) triples (i, j, k) of W . Then it is easily verified that

|T| = 6h2+9n+2 and (P, T) is a maximal partial Steiner triple system

of order 6n+5 . This completes the proof.

Theorem 2.6. There is a system W € {6én+4; 3n+1} if and only if there

%*
is a system W € {én+5; 6n+1} .

Proof. Suppose there is a system W ¢ {6n+4; 3n+1} based on the set

S =1{1,2, *++, 6n+4} . Then by Lemma 2.1, each of the 3n+1
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idempotents must appear an odd number of times as the element k in
type (2) triples (j, j, k) . Up to a permutation on S , it is clear

that W must contain one of the two collections of triples:

A={(1, 1, 1), (2, 2, 1), (3, 3, 1), (4, &4, 1), (5, 5, 6), (6, 6, 6),
(7,7,8),(8,8,8), «++, (6n+3, 6n+3, 6n+4), (6n+4, 6n+4, 6n+4) 1,

or .

B={(1, 1, 1), (2, 2, 1), (3, 3, 2), (4, 4, 2), (5, 5, 6), (6, 6, 6),

(7,7,8),(8,8,8), «--, (6bn+3,6n+3,6n+4), (bn+4, 6n+4,6n+4)]} .

Let us introduce a new element o , and put S* =8 U {o} . We shall
construct W € {én+5; 6n+11 based on s* as follows.
If W contains the collection A, we let
AT (1,1, 2), (2,2, 9, (= ® 3), (3,3, 1), (L, 4, =), &4, &, &),
(5,5,5), «++, (bn+4, 6n+4, bn+4), (5,6,=),(7,8,®), ---,

(n+3,6n+4,2)7} .

% *
"Then put W = (W= A) UA . It is easily verified that
% , *
W ¢ {n+5; 6n+1}, based on S .
If W contains the collection B, we let

B*”{(l: 1, ), (», =, 3), (3, 3, 2), (2, 2, 1), (2, 4, ®), (4, 4, 4),

(5,5,5), =+, (6bn+4, 6“"'4: bn+4),(5,6,®),(7,8,x), -,
(n+3,6n+4,0) 7} .,
* K % :

Put W = (W -B)UB . Then W € {6n+5; én+1} . Conversely, we

s : :
assume there is a system W € {6n+5; 6n+1} based on the set

%* ‘ :
s = {0, 1, 2, «e+, 6n+4} . Again by Lemma 2.1, we find that, up to a
%*
permutation on S , W must contain the collection of triples
*
T ’{(0: 0, 1)) (1,1, 2), 2, 2, 3, (3’ 3,0, (4, 4, 8), (5, 5, 5), =**,

(bn+4, 6n+4, 6n+4)] .
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We shall construct W€ {6n-+4; 3n+1}1 by eliminating some triples from
W* , but we must be .careful which fri%ples we delete. If we delete all

triples containingvone of the element:‘.s 0, 1, 2, 3, this procedure will
always guarantee us the desired result. Otherwise, we may be forced

into a situation where the end result is not always a system in

*
0

*
triples in W  containing the element 0 and assume, without any loss

{én+4; 3n+1} . To this end we let T be the:collection of all
of generality,
%
TO '{(0’ 0, 1), (3, 3, 0), (0, 2, 4), (0, 5, 6), (0, 7, 8),---,
(0, 6n+3, 6n+4)} .
Let
. .
A ”{(2’ 2, 2), (1, 1, 2)) (3, 3, 2), (4, 4, 2), (5, 5, 6), (6, 6, 6) ,
(7,7,8),(8,8,8), -+, (6n+3,6n+3,6n+4), (6n+4,6n+4,6n+4)7} .
%* %* * %
Put W= (W = (T U TO ) UA . It can be checked that
%*
W e {6n+4; 3n+11 based on S =~ {0} . This completes the proof of the

theorem.

Theorem 2.7. There is a system W € {én+4; 3n+1} containing a copy of

: %
}64 if and only if there is a system W € {6n+5; 6n+1} containing a

copy of Us

Proof. Assume there is a system W € {6n+4; 3n+1} based on the set

S =1{1,2, -+, n+4) and containing a copy of J‘(,4 based on the set

{1, 2, 3, 4} . Wé may assume without loss of generality that W contains
the collection

A={Q, 1, 1), (2, 2, 1), (3, 3, 1), (4,4,1),(2,3,4), (5,5,6),(6,6,6),

(7,7,8),(8,8,8), «++, (6n+3,6n+3, 6n+), (bn+4,6n+4, 6n+4)7} .
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*
Introduce a new element o and put S =S U {e} .
Let

A*={(1: 1, 2), (2, 2, ®), (w, ®, 3), (3, 3, 1), (2, 3, 4), (1, 4, =,

(4,4,.4), (5,5,5), -, (bn+4,6n+4,6n+4),(5,6,0), (7,8,x), -

(bn+3, 6n+4,x) 1 .
Put W* = (W = A) -U A* . Then W* € {n+5; 6n+1} and W* contains a
copy of 115 based on the set {1, 2, 3, 4, »} . Conversely, assume
there is a system W* € {6n+5;_61_1+1} based on the set
s* = {o, 1, 2, **+, 6n+4} and containing a copy of L, based on the
set {0, 1, 2, 3, 4} . We may assume that W* contains the followihg
two collections of triples: |
T ={(0,0, 1), (1, 1, 2), (2, 2, 3), (3, 3, 0), (0, 2, 4), (1, 3, &),
Cbylyb),(5,5,5), ¢+, (bn+b,bn+4,6n+4)}, and
T, ={(0, 0, 1), (3, 3, 0), (0, 2, 4), (0, 5, 6), (0, 7, 8), ++-,
(0, 6n+3, 6n+4)} .
Let _
A =((2,2,2), 1, 1,2, (3,3, 2), G 4, 2), (1, 3, &), (5, 5, 6),
(6,6,6),(7,7,8),(8,8,8), *++, (6n+3, 6n+3, 6n+4),
(bn+4, 6n+4, 6n+4)7 .
Put W= W - (T U To*)) UA" . Then W € {6n+4; 3n+1} and W

contains a copy of ¥, based on the set {1, 2, 3, 4} .

3. The replacement property.

So far we have seen how extended triple systems may be derived
from Steiner and similar triple systems. Perhaps more importaﬁt is the

fact that extended triple systems may be derived from each other. We

3



14.

outline here a technique that will prove very effective in most of our

constructions that appear in subsequent chapters.

Lemma 2.8. Suppose there is a system W € {n; al containing asubsystem

. 2 .
Q ¢ {q; r} . Suppose there is another system Qc € {q; s} . Then there

* *
is a system W o€ {n; a-r+s} containing a copy of Q .

*
Proof. We may assume, without loss of gemerality, that the system Q

is based on the same set of elements as Q ; for otherwise we can relabel

%* * ’
the elements to achieve this. We put W = (W=-=Q UQ . It is readily

*
verified that W € {n; a-r+s} .

Remark 2. The fact that we can remove subsystems, and appropriately
replace them, will prove quite crucial in most of our constructions. It
is worth noting that even if Q and Q* are isomorphic in Lemma 2.8,
then W and W* need not be isomorphic. For example, in M4 we may
replace the sybsystem Q = {(1, 1, 1), (2, 2, 1)} with

% *
Q = {(1, 1, 2), (2, 2, 2)1 thus obtaining a copy of X,

Theorem 2,9. Suppose there is a system W € {n; al containing t

mutually disjoint copies of 35 . Then there is a system

wk € {n; a-—3k} containing at least k mutually disjoint copies of

Sb and t-k mutually disjoint copies of 33 , where k =1,2, -+, ¢t.

Proof., The proof follows directly by applying Lemma 2.8. We obtain Wl
from W by removing one of the t disjoint copies of 33 and .
replacing it with the appropriate copy of 36 . For k=1,2,--*,t~-1,

bt ' . .
we obtain Wk+1 from Wk by the same procedure
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then there exists a
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there exists a consistent system W € {n; a} B

consistent system W

a
k=1, 2, «-, [51 .

Example 2.11. Let W € {9;

(i, 1, 1), (2, 2,
4, 4, 4), (5, 5,
7,7, 7, (8, 8,
a,4, 7, (1, 5,
3, 4, 9, (@3, 5,
We obtain W, €
(1, 1, 1), (2, 2,
&4, 4, 4), (5, 5,
7, 7, 8), (8, 8,

(2, 5, 9, (2, 6,

(1, 1, 1), (2, 2,
(4, 4, 5), (5, 5,
(1, 5, 8), (1, 6,

(3, 6, 8) .

(1: 1, 2), (2, 2,
8, 8,9, (9,9,

(2, 6, 7), 3, 4,

2), (B,
5), (6,
8), (9,
8), (1,

7) 2 (3’

{9; 61 :

2), (3,
5), (6,
9, (9,

7, (B,

{9; 31 :

6), (6,
9, (2,

{9; 01 :

3), (3,
7), (1,

9, (3,

9} be

3),
6),
92,
9,

8).

3,
6),
7,

9,

3),
4),

8),

v,
7),
7),

K € {n; a-3k} where

given by

1, 2, 3),
4, 5, 6),
(7, 8, 9),

(2’ 4’ 8)’ (2’ 5’ 9)’ (2’ 6’ 7))

(1) 2‘) 3)’
(4, 5, 6),
(1’ 4’ 7),(1} 5) 8)’(1’6’9))(254’ 8)’

3, 5, 7), (3, 6, 8).

(1} 2, 3)’
(7) 7) 8)’ (8)8, 9)J (9’ 9’7)’ (1’4, 7))

(2, 5,9),(2,6,7),(3,4,9),(3,5,7),

(4, 4, 5),(5,5,6),(6,6,4),(7,7,8),
(1, 5, 8), (1,6,9),(2,4,8), (2,5,9),

(3, 6, 8).

For an application of Lemma 2.8, let us consider the following

theorem and example.
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Zgéorem 2.12, Let n =2 or 4(mod 6), n 24 ., Then there exists a

system W € {n; 1} which contains at least one copy of Y, -

‘Proof. Let (S, T) be any STS(n—-1) . We add to S a new element

: %* * *
©,andput S =S U f{o}. Let T ={(x,%x, |x€8 7} and
C %
W=TU T . Then W € {n; 1} , based on S . Since n=4 , T

contains at least one triple (a, b, c). Hence, W contains the

collection K = {(», ®, @), (a, a, ), (b, b, ®), (c, ¢, ®), (a, b, )},

which is a copy of MZ .

Remafk 3. The system W constructed in the proof of Theorem 2.12 is
associated algebraically with a totally symmetric loop (see for example
[2]). It is clear that W does not contain a copy of X *, but contains
as many copies of Mz as there are triples in T . The copies of MA

pairwise intersect in (®, ®, =) .

Corollary 2.13. Let n =2 or 4(mod 6), n =4 . Then there exists a

. % *
system W € {n; 11 containing a unique copy of M4 .

Proof. Let W € {n; 1} be as constructed in the proof of Theorem 2.12.

% *
Let Q be a copy of M4 in W. Let Q ©be a copy of ¥, , based on
% %
the same set as Q . Put W = (W ~-Q UQ . A straightforward

' * * *
verification shows W € {n; 1} contains Q as its only copy of M4

Example 2.14. This example illustrates Theorem 2.12 and Corollary 2.13

for the cases n = 8, 10
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(1)
W€ {8; 1}

(°°J @, °°): (12 11 °°): (21 2, °°), (3, 3’ °°): (13 2, 3);

(4, 4, =), (5, 5, =), (6, 6:'°°)§' (7,7, =, 1,4, 7),(1,5,6),(2,4,5),
(2, 6, 7), (3, 4, 6), (3, 5, 7).
W o€ {8; 1)
. %* * . * ) %
(®, w, ©) , (L, 1, ®) , (2,2,1), (3,3,1), (2,3, ,

(4, 4, ©), (5, 5, ), (6, 6, @), (7,7, ©),(1,4,7),(1,5,6),(2,4,5),

2, 6, 7y, (3, &, 6), (3, 5, 7).

(11)
| W e {10; 1}
(0, ©, @), (1, 1, ), (2,2, @, (3,3, @, (1,2, 3),
(4,' 4, @), (5, 5, =, (6,'6, ©), (7, 7, ©), (8,8,%),(9,9,=, (1,4,7),
(1, 5, 9, (1, 6, 8), (2, &4, 9, (2, 5, 8),(2,6,7), (3,4,8), (3,5,7),

W oe {105 1}
*® * * * *
(o, ©, @) , (1, 1, ) , (2, 2, 1) , (3, 3, 1) , (2, 3, =) »

(4, 4, @), (5, 5, ®), (6, 6, ®), (7, 7, »),(8,8,®),(9,9,x),(1,4,7),

(1, 5, 9), (1, 6, 8), (2, &, 9), (2, 5, 8),(2,6,7),(3,%4,8),(3,5,7)
(3, 6, 9), (4, 5, 6), (7, 8, 9).

*
Remark 4. In (i) and (ii) of Example 2.14 the systems W and W

are clearly non-isomorphic. Algebraically the system W € {8; 11 is a

group, but the system W € {10; 1} cannot be associated with any group.
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Before we proceed to list some examples of systems which are consistent,
we give some simple examples to illustrate that there are systems which

are not consistent.

Example 2.15. 1In each case the system W given below is easily checked

to be inconsistent:
(1) we{7; 7}

(1, 1, 1, (2, 2, 2), (3, 3, 3), (4, &, 4), (5, 5, 5),
(6, 6, 6), (7,7, 7, (1, 2, 4), (1, 3, 7), (1, 5, 6),

(2, 3, 5), (2, 6, 7), (3, 4, 6), (4, 5, 7).

(11) W e {11; 7}

(1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4), (5, 5, 5), (6, 6, 6),
(7, 7, 7, (8, 8, 9), (9, 9,10), (10, 10, 11), (11, 11, 8),

(1, 2, 3), (1, 4, 8), (1, 5,11),(1, 6, 10), (1, 7,'9), (2, 4, 10),
(2, 5, 9, (2, 6,11), (2, 7, 8), (3, 4, 5), (3, 6, 7), (3, 8,10),

(3, 9,11),(4, 6, 9), (4, 7,11), (5, 6, 8), (5, 7,10) .

Observe W € {11; 7} contains a copy of Us on

{3, 8,9, 10, 11} .

(ii1) W e {12; 6}
(1, 1, 1), (2, 2, 2), (5, 5, 5), (6, 6, 6), (9, 9, 9),

(10,10,10), (7, 7, L), (4, 4, 2), (12,12,5), (8, 8, 6),

(11,11, 9), (3, 3,10), (1, 2, 3), (1, 4,11), (1, 5, 10),
(1, 6, 9), (1, 8, 12), (2, 5, 9), (2, 6, 12), (2, 7, 11),
(2, 8,10), (3, 4, 8), (3, 5, 7), (3, 6,11),(3, 9, 12),

(4, 7,12), (4, 9, 10), (5, 8,11), (6, 7,10), (7, 8, 9), (10,11,12)
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Remark 5. There are examples of consistent systems in {11; 7} and

{12; 6} , but there can be no consistent W € {7; 7} since the copies

of 33 in such a W pairwise intersect.

4, .Illustrative Examples: Consistent systems.

Theorem 2.9 will be one of our most effective tools used in
future constructions. We list here some examples, for small values of
n , of systems W to which the theorem applies. The techniques ouﬁliﬁed
in the previous sections have been utilized in constructing these
examples., The parameters n, a, t are as in the statement of Theorem 2.9.

The examples provide a source for future reference.

W e {8; 4) n=8,a=4,¢t=1,
(1, 1, 1), (2, 2, 2), (3, 3, 3), (1, 2, 3),
(7, 7, 7), (6, 6, 1), (5, 5, 2), (4, 4, 3), (8, 8, 7),
(, 4, 7), (1, 5, 8), (2, 4, 8), (2, 6, 7), (3, 5, 7),

(3, 6, 8), (4, 5, 6).

W e f{9; 9} n=9,a=9,t=3,
(1, 1, 1), (2, 2, 2), (3, 3, 3), (1, 2, 3),
(4, &, &), (5, 5, 5), (6, 6, 6), (4, 5, 6),
(7,7, 7), (8,8, 8), (9,9, 9), (7,8, 9),
(1, 4, 7), (1, 5, 8), (1, 6, 9), (2, 4, 8), (2, 5, 9),

(2, 6,7), (3, 4,9, 3,5,7), (3, 6, 8).

Observe W € {9; 9} and W € {8; 4} are derived from the same STS(9)
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w e {10; 4} n=10,a=4,t=1,
(a) (1,1, 1), (2, 2, 2), (3, 3, 3), 1, 2, 3),
(6, 6, 6), (7, 7, 6), (5, 5, 1), (4, 4, 2), (10, 0, 3),

(8, 8,10), (9, 9,10), (1, 4, 9, (1, 6,10),(1, 7, 8),
(2, 5,10),(2, 6, 8), (2,7, 9, (3, 4, 8), (3, 5, 1,

(3, 6, 9), (4, 5, 6), (4, 7,10),(5, 8, 9).

() (1,1, 1), (2, 2,2), (3,3,3), (1,2, 3),

> 1), (6, 6,2), (7,7, 3),

. (4) 4) 4)1 (8’ 8’ 4)) (5) 5
(9, 9, 1), (10,10,1), (1, 4, 6), (1, 7, 8), (2, 4, 5),
(2,7, 9, (2, 8,10), (3, 4, 9, (3, 5, 8), (3, 6,10),

(4, 7,10), (5, 6, 7), (5, 9,10), (6, 8, 9

(e) (1, 1,1), (2,2, 2), (3,3, 3), (1, 2, 3),
4, 4, 4), (8, 8, 4), (5, 5, 1), (6, 6, 2), (7, 7, 3),
9, 9, 5, (10,10,5), (1, 4, 6), (1, 7, 8), (1, 9,10),
(2, 4,5), (2,7, 9), (2, 8,10), (3, 4, 9, (3, 5, 8),

(3, 6,10), (4, 7,10), (5, 6, 7), (6, 8, 9).

We observe the following properties concerning thethrge systems (a),

(b), (c).

(1) (a) contains no copy of M4 or "M4*
(ii) (b) contains a copy of X, on {1, 5, 9, 10} .

%
(i11) (c) contains a copy of X, on {1, 5, 9, 10}, and

(¢) 1is derived from (b) by an application of Lemma 2.8.

(iv) (a) 1is derived from W € {11; 7} which follows.
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w e {11; 7} n=1l,a=7,t=2% .
(1, 1, 1), (2, 2, 2), (3, 3; 3), (1, 2, 3),

4, 4, 4), (5, 5, 5), (6, 6, 6), (4, 5, 6),

7,7, 7, (8, 8,10), (9, 9, 11), (10, 10, 9), (11,11,8),
(1’ 4.’ 9)) (1) 5, 11)} (1J 6) 10)) (1’ 7) 8)’ (ZJ 4’ 11)’
(2, 5,10), (2, 6, 8), (2,7, 9), (3, &, 8, (3, 5, 1),

(3, 6, 9), (3,10,11), (4, 7,10),(5, 8, 9), (6, 7,11) .

w e {12; 6} n=12,a=6, t =2,

(3, 3, 3), (6, 6, 6), (11,11,11), (3, 6, 11),

4, 4, 8), (7,7, 7), (12,12,12), (4, 7,12),

(10,10, 3), (8, 8, 6), (9, 9,11), (2, 2, &), (1, 1, 7),
(5, 5,12), (1, 2, 3), (4, 5, 6), (7, 8, 9, (10, 11,12),
(1, 4,11), (1, 5,10), (1, 6, 9), (1, 8,12), (2, 5, 9),
(2, 6,12), (2, 7,11), (2, 8,10), (3, 4, 8), (3, 5, 7),

(3, 9,12), (4, 9, 10), (5, 8,11), (6, 7, 10).

W e {13; 13} n=13, a=13, t =4 .

(1, 1, 1), (2, 2, 2), (3, 3, 3), (1, 2, 3),

(4: 4’) “‘)’ (5: 5: 5): (6’ 6’ 6): (4; 5: 6):
(7, 7, 7), (8, 8, 8), (9,9, 9, (7,8, 9,
(10, 10, 10), (11, 11,11), (12,12,12), (10, 11,12),

(13,13,13), (1, 4,11), (1, 5,10),(1, 6, 9), (1, 7,13),

(1, 8,12),(2, 4,13), (2, 5, 9, (2, 6,12),(2, 7,11),
2, 8,10), (3, 4, 8, (3, 5, 7), (3, 6,11), (3, 9,12),
(3,10,13), (4, 7,12), (4, 9,10), (5, 8,11), (5,12,13),

(6, 7,10), (6, 8,13), (9, 11, 13)
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Note W € {13; 13} and W € {12; 6} come from the same STS(13)

W oe {14; 7} n=14,a=7,t=2,
(1, 1, 1), (5, 5, 5), (9, 9, 9, (1, 5, 9,
(2, 2,2), (7, 7, 1, (14, 14, 14), (2, 7, 14),
8, 8, 1), (11,11,5), (12,12,9), (10,10,2), (4, &, 7), (13,13, 14),
(3, 3, 3), (6, 6, 3), (1, 2, 3), (1, 4,14), (1, 6,12), (1, 7, 10),
(1,11,13), (2, 4,12), (2, 5,13), (2, 6, 8), (2, 9,11), (3, &, i1),
(3, 5, 7), (3, 8,13), (3, 9, 10), (3,12, 14), (4, 5, 6), (4, 8, 10),
(4, 9,13), (5, 8,12), (5,10,14), (6, 7,11), (6, 9, 14), (6, 10, 13),

(7, 8, 9), (7,12,13), (8,11, 14), (10,11, 12).

w € {15; 15} n=15,a=15,t =5 .
1, 1, 1), (2, 2, 2), (3, 3, 3), (1, 2, 3),
(4, 4, 4), (5, 5, 5), (6, 6, 6), (4, 5, 6),
(7, 7,7), (8, 8, 8), (9, 9, 9, (7, 8, 9),
(10, 10, 10), (11,11, 11), (12,12,12), (10,11, 12),
(13, 13, 13), (14, 14, 14), (15, 15,15), (13, 14, 15),
(1, 4,14),(1, 5, 9), (1, 6,12), (1, 7,10), (1, 8, 15), (1, 11,13),
(2, 4,12); (2, 5,13), (2, 6, 8), (2, 7, 14), (2, 9,11), (2, 10, 15),
(3, 4,11), (3, 5, 7), (3, 6,15), (3, 8,13), (3, 9, 10), (3, 12, 14),
(4, 8,10), (4, 9,13), (4, 7,15), (5,11, 15), (5, 8,12), (5, 10, 14),

(6, 7,11), (6, 9, 14), (6, 10,13), (7, 12,13), (8,11, 14), (9, 12, 15).

W € {15; 15} and W € {14; 71 are derived from the same STS(15)
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W € {16; 7} n=16,a=7,t =2,
(1, 1, 1), (6, 6, 6), (8, 8, 8), (1, 6, 8),

(2, 2, 2), (4, 4, &), (12,12,12), (2, 4,12),

(15, 15, 15), (13, 13, 15), (14, 14,15), (16, 16,15), (7, 7, 1), (3,3, 6),
(5, 5, 8), (11,11,2), (10,10,4), (9, 9,12), (1, 2, 3), (1, &, 13),

(1, 5, 9), (1,10,14), (1,11,15), (1,12,16), (2, 5,13), (2, 6>, 14),
(2, 7,15), (2, 8,16), (2,9,10), (3, 4, 11), (3, 5,14), (3, 7, 16),

(3, 8,10), (3, 9, 15), (3,12,13), (4, 5, 6), (4, 7,14), (4, 8, 15),

(4, 9,16), (5, 7,12), (5,10, 15), (5,11,16), (6, 7,11), (6, 9, 13),
(6,10, 16),(6,12,15),(7, 8, 9), (7,10,13), (8, 12,14), (8,13, 16),

(9,11, 14), (10,11,12), (13, 14, 16).

w e {17; 13} n=17,a=13, t =4 .
(1, 1, 1), (2, 2, 2), (3, 3; 3), (1, 2, 3),
by b4, &), (5, 5, 5), (6, 6, 6), (4, 5, 6),
i, 7, 7), (8, 8,8), (9,9, 9, (7, 8, 9),
(10, 10, 10), (11,11,11,), (12,12,12), (10, 11,12),

(13, 13, 13), (14, 14,15), (15, 15,16), (16,16,17), (17,17, 14),

(l, 4, 13),(1, 5, 9), (1, 6, 8), (1, 7, 17),(1, 10, 14), (1,11,15),
(1,12,16), (2, 4,12), (2, 5,13),(2, 6, 14), (2, 7, 15), (2, 8, 16),
(2, 9,10), (2,11, 17), (3, 4, 11),43, 5, 14), (3, 6,17), (3, 7, 16),

(3, 8,10), (3, 9,15),(3,12,13), (4, 7,14), (4, 8,15), (4, 9, 16),

(4,10,17),(5, 7,12), (5, 8,17), (5, 10, 15), (5, 11,16), (6, 7,11),
(6, 9,13), (6, 10, 16), (6,12,15), (7,10, 13), (8,12,14), (8,13, 16),

(9,11, 14), (9,12,17), (13, 14,16), (13, 15,17).
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Concerning the systems W € {16; 73}, W € {17; 13} note the following:
(1) w € {16; 7} 1is derived from W € {17; 13} by deleting all

triples containing the number 17 from the system W € {17; 13} .

(i1) W € {16; 7} contains a copy of ¥, on {13, 14, 15, 16} .

4

(1i1) W € {17; 13} contains a copy of VY. on {13, 14, 15, 16, 17} .

5
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CHAPTER 3

Direct construction of extended triple systems

1. 1Introduction.
The main purpose of this chapter is to show that the necessary
conditions for the existence of {n; a} given in Theorem 1.1 are also

sufficient. This result is proved in Section 2, using direct comnstruc-

tion methods and applying the techniques of the previous chapter. 1In

Section 3 a graphical method is used to construct a system in

{én+5; 6n+1} which contains a copy of U, for every integer n 2 0

5
Similarly, a system in {6n+4; 3n+11 containing a copy of H4 is
obtained. These systems are inequivalent to those constructed in

Section 2. Finally, it is shown that there exists a consistent system

in"{n; al for every n #7 and every appropriate value of a,0<a<n.

2. Existence Theorems.

The result of our first theorem is contained in [8]. For

completeness we shall give the construction and establish the existence

of {n; 01 , n = O(mod 3), using Lemma 2.8.

Theorem 3.1. If n = O(mod 3), then {n; 3} and {n; 0} exist. If

n # O(mod 3), then {n; 1} exists.

Proof. Let S = {1, 2, «-+, n} .
Let W = {(x, vy, 2) ‘ X, Y, 2 €S 3 x+y+z = 0(mod n)?} .

If n = O(mod 3), then it is easily checked that W € {n; 3} , where the
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idempotents of W are %-, %?-, n . Clearly, W contains a copy of 33,
based on {%‘, %?-, n} . By Lemma 2.8, there also exists a system

W, € {n; 01 containing a copy of 36

If n % O(mod 3), then W € {n; 1} , where the idempotent of W is the

number n .

Theorem 3.2. For every non-negative integer n , there exists a consistent

system W € {6n+3; 6n+3} .

Proof. It is clear that the theorem is true for n =0, 1, 2, in view of
examples already given. More generally, we have the following
construction.

Let 8 =1{0,1, 2, «-., 6n+2} . Divide S into three mutually disjoint

sets AO, Al’ A2 where
Ay = {0, 1, 2, ---, 2n},
A = {2n+1, 2n+2, -+, 4n+11 ,
A, = {tn+2, n+3, -.., 6n+21 .

In what follows subscripts are taken modulo 3.

Let B and C be the following collection of triples:
B={(x, x+2n+1, x+4n+2) lx EAO},

C = {(x: ¥, 2) \x,y GAi, z EAi-l-l’ i=0,1,2; x ?£Y:

x+y = 2z(mod 2n+1) 7} .

Let T=BUC . Then (S5, T) is an STS(6n-+3).
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This construction is essentially due to R.C. Bose [1], and was
reproduced by Th. Skolem [21].

Now let J = {(x, x, x) | x €s}.

Finally, put W=TU J . Then W € {6n+3; 6n+3} and W contains
2n+1 pairwise disjoint copies of 33 based on the sets
Bk = {k, k+2n+1, k+4n+2} , k =0, 1, 2, .-+, 2n . Consequently, W

is consistent.

Corollary 3.3. Let a =0(mod 3), 0 £a <6n+3 , where n is a non-

negative integer. Then there exists a consistent system W€ {6n+3; al.
Proof. The result follows from Theorems 2.9 and 3.2,

Theorem 3.4. There exists a consistent system W € {6n+1; 6n+1} if

and only if n # 1

Proof, Let § = {0, 1, 2, ---, Gn}
For 1 =0,1,2,put L = {x+2ni | x=0,1, 2, -+, n-11},
R, = {x+n+2ni | x =0, 1,2, -+, n-1}.

We have the following:

Lo ®o
0, 1, ¢eee,n=1 . n,n+l, cecs 2n-1
Ly : R

2n,2n+1, *++,3n-1. 3n,3n+1,.-., 4n-1
LZ R2

4n,4n+1,°**,5n~1. 5n,5n+1, """, 6n-1
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In what follows all subscripts are reduced modulo 3.

Let B, C, D be the following collection of triples:
B = {(x, x+2n, x+4n) l x=0,1, «+., n-1},

(x+ n, x+2n, 6n)
C =4{(x+3n, x+4n, 6n) : x=0,1, +»*, n~1,

(x+5n, =x, 6n)

D= {(x,y, 2) ‘ X, ¥y ELi U Ri ; if x+y 1is even, then zE'Li_I_l

and satisfies x-+y = 2z(mod 2n); if x+y is odd, then

z €Ry . and satisfies x+y=2z+1(mod2n); x #y?} .

Put T=BUCUD . Then (S, T) is an STS(6n+1). This construction
is due to Skolem [21].

Now let J = {(x, x, x) | x €S} andput W=TUJ . Clearly,
We{én+l; 6n+1} . We now prove that W is consistent, if n#1,
by considering four cases. It is sufficient to show that the collection

T contains 2n pairwise disjoint triples in each case.

Case 1. n = O0(mod 4). It can be checked that T contains the following
collection of triples.

( n+bk, n+2+4k, 2n+1 +4k)

A1 =4 (3n+4k, 3n+2+4k, 4n+1+4Kk) : k=0,1, -, n;lr )
(5n+4k, 5n+2+4k, 1+4k)
(n+1+4k, n+3+4k, 2n+2+4k)

A2 = (3.n+1+4k, 3n+3+4k, n+2+4k) k=0,1, ; n;4 »

(5n+1+4k, 5n+3 +4k, 2 +4k)




(3+4k, 2n+3+4k, 4n+3+4k)
n-8
A3 = k=0, 1, s %
(4 +4k, 2n+4 +4k, 4n+4 +4k)
A, = {(0, 2n, 4n), (n-1, 3n~1, 5n-1)} if n =4 .
B, = A =A =A =¢ if n=0.
Set A = A1 Y A2 U A3 U A4 . Then it is easily verified that A contains

2n mutually disjoint triples. As an example, we may consider the case

n =14,
s5: 0 1 2 3 ! 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 : 20 21 22 23 24

Disjoint triples in A :
(4, 6, 9 (5, 7, 10) (0, 8, 16)
(12, 14, 17) (13, 15, 18) (3, 11, 19)

(20, 22, 1) (21, 23, 2)

Case 2. n =1(mod 4), n #1 . T contains

(n+l+4k, n+3+4k, 2n+2+4k)

Al ={(3n+1+4k, 3n+3+4k, 4n+2 +4k) P k=0,1, -+, HZS P
(5n+1+4k, 5n+3 +4k, 2 +4k)
(n+2+4k, n+4+4k, 2n+3 +4k)

A, ={(3n+2+4k, In+b+bk, bn+3+4K) 1 k=0,1, ---, 9;5,

(5n+2+4k, 5n+4 +4k, 3 +4k)




(4 +4k, 2n+4 +4k, 4n+b +4K)
A, = : k=0, 1,
(5+4k, 2n+5+4k, 4n+5+4k)

%‘={abl,&ﬂ,(hu2n+1,ﬁ0,(hb4n+1ﬂﬂ,(n—l,&p-LSn—l)}.

T,

30.

n-9
4

J

Set A = Al U A2 U A3 UA, . Then it is easily checked that A contains

4

2n mutually disjoint triples. As an example, let n =5 .

s 0 1 2 3 4 . 5 6 7 8 9

10 11 12 13 14 . 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30
Disjoint triples in A : ( 6, 8,12) ( 7, 9,13) ( 0, 1,15)

(16,18,22) (17,19,23) (10,11,25)

(26,28, 2) (27,29, 3) (20,21, 5)

Case 3. n = 2(mod 4). T contains

(n+l+4k, n+3+4k, 2n+2 +4k)

(5n+1+4k, 5n+3+4k, 2 +4k)

h-g
et
U .
TS

(n+2+4k, n+b+bk, 2n+3+4k)

(5n+2+4k, 5n+4 4k, 3 +4k)

5
™~
"
T

( 4k , 2n+4k , 4n+bk )

A, = :  k=0,1,

(L+4k, 2n+1+4k, 4n+1 +4k)

A,

[}
~

Set A=A1UA2UA U A

3
triples. As an example, let n =6 .

(3n+1+4k, 3n+3+4k, 4n+2+4k) : k=0, 1,

(3n+2+4k, 3n+4 +4k, 4n+3 +4k) : k=0,1,

(4,14 ,24)

(n~1, n, 4n~1), (3n~1, 3n, 6n-1), (5n~1, 5n, 2n-1), (n—2 5 3n=2, 5n=2) } .

4 Then A contains 2n mutually disjoint
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s : 0 1 2 3 4 5 < 6 7 8 9 10 11
12 13 14 15 16 17 .18 19 20 21 22 23
24 25 26 27 28 29 . 30 31 32 33 34 35 36
Disjoint triples in A : (7, 9,14) ( 8,10,15) ( 0,12,24) ( 5, 6,23)

(19,21,26) (20,22,27) ( 1,13,25) (17,18,35)

(31,33, 2) (32,34, 3) ( 4,16,28) (29,30,11)

Case 4. n = 3(mod 4). T contains

(n-1+4k, n+1+4k, 2n+4k)

A, ={(3n-1+4k, 3n+1+4k, bn+4k) : k=0,1, -, 323

(5n =1 +4k, 5n+1+4k, 4k

( n+4k, n+244k, 2n+1+4k)

A, = {Gn+4k, In+2+4k, dn+1+bk) k=0, 1, -, B2
(5n +4k, 5n+2+4k, . 1 +4k)
(2+4k, 2n+2 +4k, 4n+2 +4k) n-7
AB= : k=0,1, «-, =
(3+4k, 2n+3 +4k, 4n +3 +4k)
Set A= A1 U A2 U A3 . Then A contains 2n mutually disjoint triples.

As an example, let n =7 .

S 0 1 2 3 4 5 6 . 7 8 9 10 11 12 13
14 15 16 17 18 19 20 . 21 22 23 24 25 26 27

28 29 30 31 32 33 34 . 35 36 37 38 39 40 41 42

Disjoint triples in A :
(6, 8,14) (7, 9,15 (10, 12, 18) (1i, 13, 19) (2, 16, 30)
(20, 22, 28) (21, 23, 29) (24, 26, 32) (25, 27, 33) (3, 7, 31)

(34, 36, 0) (35,37, 1) (38, 40, 4) (39, 41, 5)
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Combining these results, we have shown that the system VJE{6n4—1;6n—F1}

1s consistent, provided n #1 . By Remark 5, the proof of the theorem

1s complete.

Corollary 3.5. Let a = 1(mod 3), 1 <a <6n+1l, where n #1 . Then

there exists a consistent system W € {6én+1; a} .

Proof. The corollary follows from the proofs of Theorems 2.9 and 3.4.

Example 3.6.

There can be no consistent system W € {7; 7} , since

W € {7; 71 1is equivalent to the projective plane of order 2 . However,

if there exists a W € {7; 7}, then W necessarily contains a copy of

3

3, . Soboth {7; 7} and {7; 4} exist. By Theorem 3.1, {7; 1} exists.

We list three systems on {1, 2, eee, 7%

i) {75 7}

(11) {7; 4}

0 (1,1,1),(2,2,2),(3,3,3),(4,4,4),(5,5,5),(6,6,6),
,7,7,1,2,4),1,3,7),(1,5,6),(2,3,5) ,(2,6,7),
(3,4,6),(4,5,7)

: (1,1,1),02,2,2),(3,3,3),(6,6,6) ,(4,4,5),(5,5,7) ,(7,7 ,4),

1,2,4),(1,3,7),(1,5,6),(2,3,5),(2,6,7),(3,4,6)

(iii) {7; 1} : (1,1,1),(2,2,3),(3,3,4) ,(4,4,5) ,(5,5,6),(6,6,7),

Theorem 3.7.

(7,7,2),(,2,5),(1,3,6),(1,4,7),(2,4,6) ,(3,5,7) .

For every positive integer n , there exists a consistent

system W € {6n; 3n} .

Proof. Let

Theorem 3.4.

(8, T) be the STS(6n-+1) constructed in the proof of

Then T contains the two collections:
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B = {(x, x+2n, x+4n) | x=0,1,2, -, n~1} , and

(x+ n, x+2n, 6n)
C =4(x+3n, x+4n, 6n) : x=0,1,2, v+, n~1

(x+5n, x , 6n)

To construct W € {6n; 3n} on the elements {0, 1, 2, ..., 6n—-1} , we

shall eliminate the collection C from T .

Let
(x, x, x)

le(x+h,x+in,x+h0 : x =0, 1, +++, n-1,

(x+4n, x+4n, x+4n)

ix-FSn, x+5n, x)

J2== (x+n, x+n, x+2n) : x=0,1, ««», n-1

(x+3n, x+3n, x+4n)
Put W= (T~-0C) U Jl U J2 .

Then W € {6n; 3n} and W contains n pairwise disjoint copies of 33,

based on the sets = {k, k+2n, k+4n} , k =0, 1, *++, n-1 , and

By

consequently W is consistent.

Corollary 3.,8. Let a = O(mod 3), 0 < a < 3n , where n is any positive

integer. Then there exists a consistent system W € {6n; al} .

Proof. The proof follows directly from Theorems 2.9 and 3.7.

Theorem 3.9. For every non-negative integer n , there exists a consistent

system W € {6n+2; 3n+1} .
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Proof. Let (S, T) be the STS(6n+3) constructed in the proof of

(0

Theorem 3.2. Let T be the collection of all triples of T

(O

containing the element O . We shall eliminate from T in order

to construct W € {6n+2; 3n+1} . We shall consider two cases, and in

(0)

each case a representation of T is given in a form that will

facilitate verification of the results.

Case 1. n = O(mod 2). T(o) can be represented as follows

(0, 2n+1, 4n+2),
0 . . =
T 0, 2x, x+2n+1) . x=1, 2, y 2n

(0, 2x+4n+1, 6n+4-—2x) : x =1, 2, oo,

where 2x is taken modulo 2n+1 .

Let (2n+1, 2n+1, 2n+1),
J, = (x+2n+1, x+2n+1, x+2n+1) Pox=1,2, ¢+, 2n,

(2x+4n+1, 2x+4n+1, 2x+4n+1) : x =1, 2, «e-,n
(4n+2, 4n+2, 2n+1),
J, = (2x, 2x, x+2n+1) o x=1,2, -, 2n7

(bn+4 -2x, 6n+4-2x, 2x+4n+1) : x =1, 2, «-+, n ;

where 2x is taken modulo 2n+1 .

Put W = (T - T(O)) UJ, UJ, . Itis easily seen that we{bn+2;3n+1}

on the set {1, 2, «-+, 6n+2} . We now show that W is consistent.

First we observe that T =~ T(O) contains the following collection D

of n mutually disjoint triples !




{(2n+1+2x, 2n+2 +2x, ‘§n+3+2x) : x=0,1, -, 5 s
D = '

(3n+2+2x, 3n+3+2x, 4n+3+2x) : x=0,1, -, 5 .

D=¢g if n =0 .

It follows that the collection D U J, oprovides n pairwise disjoint

1
copies of 3'3 in W . So W is consistent.

0)

Case 2. n = 1(mod 2). T( may be represented as follows

(0, 2n+1, 4n+2),

T(O) ={ (0, 2x, x+2n-+1) : x=1,2, +++, 2n ,

(0, 2x+4n+2, 6n+3 ~2x) P x=1,2, ¢soy,n 3

where 2x 1is taken modulo 2n+1 .

(2n+1, 2n+1, 2n+1),

(4n+2, 4n+2, 2n+1)

2

Let
Jo= (x+2n+1, x+2n+1, x+2n+1) x=1,2, <+, 20 ,
(2x+4n+2, 2x+4n+2, 2x+4n+2) : x =1, 2, -+, n ;
J, = {(2:{, 2xX, x+2n+1) : x =1, 2, «++, 2n ,

(bn+3-2x, n+3~-2x, 2x+4n+2) : x =1, 2, «++, n ;

where 2x is taken modulo 2n+1 .

Set W = (T - T(o)) U Jl U Jz . It is easy to check that

W e {n+2; 3n+1} on the set {1, 2, +++, 6n+2} . We shall now show

that T - T(O) contains a collection D of n pairwise disjoint triples,

each element of a triple being idempotent in W .
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(2n+1+2x, 2n+2 +2x, 5n+3 +2x) : x =0, 1, “.,nzl ,
Let D = ne3
(Bn+3+2x, 3n+4+2x, 4n+4 +2x) : x=0,1, .-, 5 -

It is a routine matter to check that D contains n pairwise disjoint
triples, and that D UJ Jl provides n mutually disjoint copies of 33

in W . This completes the proof of the theorem.

Corollary 3.10. Let a = 1l(mod 3), 1 <a <3n+1 , where n is a

non-negative integer. Then there exists a consistent system

W€ {én+2; a} .
Proof. The proof is a consequence of Theorems 2.9 and 3.9.

-Remark 6. In the proofs of Theorems 3.7 and 3.9 our construction of Jl

and J2 determined the consistency of the system W . There are many
other possibilities for J1 and J2 in general, but some may give rise

to inconsistent systems.

Example 3.11. This example illustrates the construction in Theorem 3.9

for the case n =2, (S, T) T(o) J and D are as in the proof
2 > J

12 92

of the theorem. The system W € {14; 7} is easily seen to be consistent.

% *
J1 and J2 are modifications of J1 and J2 respectively.

%
It can be checked without much difficulty that the system W € {14; 71

1s not consistent.
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(8, T)

(0, 1, 8) (0, 2, 6) (0, 3, 9) (0, 4, 7) (0, 5,10) (0,11,14) (0,12,13)

(1, 2, 9) (1, 3, 7) (1, &4, 5) (1, 6,11) (1,10,12) (1,13,14) (2, 3, 5)

(2, 4, 8) (2,

7,12) (2,10,14) (2,11,13) (3, &, 6) (3, 8,13) (3,10,11)

(3,12,14) (4, 9,14) (4,10,13) (4,11,12) (5, 6,13) (5, 7,11) (5, 8,14)

(5, 9,12) (6, 7,14) (6, 8,12) (6, 9,10) (7, 8,10) (7, 9,13) (8, 9,11)

Woe {14; 71

)
T~ T 3 I,

A,

T . - —
, 2, 9) (2, 4, 8) (3,12,14) (5, 9,12)

(2, 7,12) (4, 9,14) (6,

(5,5, 5) (10,10, 5)

(1, 3, 7 7,14) (6, 6, 6) (2, 2, 6)

(1, 4, 5)
(1, 6,11)
(1,10,12)
(1,13,14)

(2, 3, 5

(2,10,14)
(2,11,13)
(3, &, 6)
(3, 8,13)

(3,10,11)

(4,10,13)
(4,11,12)
(5, 6,13)
(5, 7,11)

(5, 8,14)

(6,
(6,
@,
@,

(@8,

8,12)
9,10)
8,10)
9,13)

9,11)

D= {(5, 6, 13), (8, 9, 11)} .

el

-

A, 2, 9
(1, 3, 7)
Q, 4, 5)

(1, 6,11)
(1,10,12)
(1,13,14)

(2, 3, 5)

T-T(

A

(3, &4, 8)
(2, 7,12)
(2,10,14)
(2,11,13)
(3, &, 6)
(3, 8,13)

(3,10,11)

W€ {14; 7}

0)

———

(3,12,14)
4, 9,14)
(4,10,13)
(4,11,12)
(5, 6,13)
(5, 7,11)

(5, 8,14)

(5,9,12)
(6,7,14)
(6,8,12)
(6,9,10)
(7,8,10)
(7,9,13)

(8,9,11)

(7,7,7) (4,4, 7

(8,8, 8)
(9,9, 9
(11,11,11)

*

!

(1,1, 1)
(2,2,2
( 3, 3, 3)
(4, 4, 4)

(10,10,10)

(11 1) 8)
(3,3,9
(14,14,11)

(12,12,13)

*

J2

(8,8,1)
(6, 6, 2)
(9,9, 3
(7,7, 4)

( 5, 5,10)

(11,11,11) (14,1%4,11)

(12,12,12) (13,13,12)
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In [7], A.J.W. Hilton gave a direct method for comstructing maximal
partial Steiner triple systems. Hilton's final note is essentially the

following basic lemma.

Lemma 3.12. Let S = {1, 2, 3, «++, 6n+3} and let {x, y} be two

numbers of S such that x ~y * 3n+1, 3n+2, O(mod 6n+3).

Let A = {(k, k+31i+1, k+6i+3) |k €s;1=0,1, -, n—1;
eéch numﬁer taken modulo 6n+3} .

Then {x, y} 1is contained in exactly one of the triples of A .

Proof, Let B be the following set of numbers:

B={31+1, 3i+2, 6i+3 | i=0,1, «-+, n-1} .
Th;n for every pair {x, y} satisfying the lemma one of the differences
of {x, y} is equal to an element of B . So every pair {x, y}
satisfying the lemma is contained in at least one triple of A . There

are at most 3n(6n+3) distinct unordered pairs arising from the triples

6n+3
2

the lemma. So every pair satisfying the lemma is contained in exactly

in A , and there are < ) - (n+3) = 3n(6n+3) pairs satisfying

one triple of A , as required.

One immediate consequence of Lemma 3.12 is the following

theorem.

Theorem 3.13. Let n = 3(mod 6). There exists a system W € {n; 0}

which does not contain any proper subsystem. If W is based on the set
S = {1, 2, -+, n} , then up to a permutation on § » W contains the
collection

{1, 1, 2), (2, 2, 3), (3, 3, 4), *++, (n=1,n=1,n), (n,n, 1)?.
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Proof, Let n = 6m+3 , where m is a non-negative integer. Let
s=1{1,2, «--, 6m+37} .
Let A = {(k, k+3i+1, k+6i+3) |k€s; i=0,1, -+, m-1; each

number taken modulo 6m+3} .

Let B = {(k, k, k+3m+1) | k € S; each number taken modulo 6m+3} .
Set W=AUB . It follows from Lemma 3.12 that W € {n; 0} and W

satisfies the conditions of the theoremn.

Example 3.14. (i) Let n = 9in Theorem 3.13, then we have

W€ {9; 0} :
(1,1,5), (5,5,9), (9,9,4), (4,4,8), (8,8,3), (3,3,7),
(7)7)2)) (2’2’6)f (6)6)1)’ (1)2)4)’ (2)3’5)) (3)4)6)}

(4,5,7), (5,6,8), (6,7,9), (7,8,1), (8,9,2), (9,1,3).

(ii) Let n =9 in Theorem 3.1, then we have
W, € {9; 0} :
(3,3,6), (6,6,9), (9,9,3), (1,1,7), (7,7,4), (4,4,1), (2,2,5),
(5’5)8), (8’8)2)} (1’2’6)J (1,3’5), (1J8’9)’ (2)3’4), (2’7,9))

(3,7,8), (4,5,9), (4,6,8), (5,6,7).

This example shows that there are at least two inequivalent
 systems in {9; 0} . Observe that the system in (ii) contains three
mutually disjoint copies of 36 on the sets {1,4,7}, {2,5,8} and

{3,6,91 .

Theorem 3.15. For every non-negative integer n , there exists a

consistent system W € {6n+4; 3n+1} .
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Proof. Let P = {1, 2, -+-, bn+4} .
Let A = {(k,k+3i+1,k+61+3) |k=1,2, -+, 6n+3; i=0,1,-+,n=1;
each number taken modulo 6n +3} .

Let B = {(6n+4; k, k+3n+2) |k =1,2, ..., 3n+17 .

Set T =AUB . Applying Lemmas 2.2 and 3.12, it can be verified that
(P, T) is a maximal partial Steiner triple system of order 6mn+4&

(cf£. [7]).
Now the 3n+3 pairs {(3n+2,6n+4)JU{(k,k+3n+1):k=1,2, +--,3n+2}

do not appear in any triple of T , while every other pair from P is
contained in exactly one triple of T . To obtain W € {6n+4; 3n+1}

based on the set P , we shall consider three cases as follows:

Case 1. n = O(mod 3).

If n=3, it is easily verifiéd, putting 1 = %?— in A, T contains
the following collection D of n pairwise disjoint triples;

D= {(6bn+4, n+1, 4n+3)} U {(k, 2n+1+k,4n+3+k) |k=2,3, .-+, n} .

Now let
: {(1,1,1)} if n=0,

{(bn+4, 6n+4, 6n+4), (n+1, n+1, n+1) ,

(4n+3, 4n+3, 4n+3), (n+3, n+3, n+3)} U {(k, k, k) ,

(20+1+k, 2n+1+k, 2n+1+k), (4n+3+k, bn+3+k, 4n+3+k) |
k =2,3, «««, n} if n =3 .

Let
{(2,2,1), (3,3,2), (4,4,2)} if n =0,

{(1,1,3n+2), (3n+2, 3n+2, 6n+4), (6n+3, 6n+3, 30+2) ,
(n+2, n+2, 4n+3), (4n+2, 4n+2, n+1),
(4n+4, bn+b4, n+3)Y U {(3n+1+k, 3n+1+k, k),

(5n+2+k,.5n+2+k, 2n+1+k), (n+2+k, n+2+k, 4n+3 +k) |

k=2,3, e, n} if n=23 .
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Set W=7TU Jl tuJ A straightforward verification shows

9
We{bn+4; 3n+1} , and W contains n pairwise disjoint copies of

33 arising from D U J1 if n=3 .

Case 2. n = 1(mod 3)

Let D be the following n pairwise disjoint triples obtained by
putting i= [%] in A :

D = {(kn+k, 2n+1+k) |k =1, 2, .., n} .

‘Let J, = {(2n+1, 2n+1, 20+1)Y U {(k, k, k), (n+k, n+k, n+k),
(2n+1+k, 2n+1+k, 2n+1+k) |'k =1, 2, «+, n} , and
J, = {(5n+2, 5n+2, 2n+1), (6n+3, 6n+3, 3n+2),
(6n+4, 6n+4, 3n+2)} U {(3n+1+k, 3n+1+k, k),
(4n+1‘+k, 4n+1+k, n+k), (5n+2+k, 5n+2+k, 2n+1+k) |
k =1, 2, «++-, n} .
Put W=TUJ, UUJ, . It can be checked that W € {6n-+4§ 3n+1} and

1 2
W contains n mutually disjoint copiles of 33 provided by D U Jl .

Case 3. n = 2(mod 3)

T contains n pairwise disjoint triples in the collection

D= {(k, 2n+k, bn+1+k) |k =1, 2, ++-, n] , putting i = [g_;_]
in A .
Let J, = {(3n+1, 3n+1, 3n+1)} U {(k, k, k), (2n+k, 2n+k, 20+k),

(4n+1+k, bn+1+k, bn+1+k) |k =1, 2, +++-, n} , and

J, = {(bn+2, 6n+2, 3n+1), (6n+3, 6n+3, 3n+2),
(bn+4, 6n+4, 3n+2)1 U {(3n+1+k, 3n+1+k, k),
(5n+1+k, 5n+1+k, 2n+k), (n+k, n+k, 4n+1+k) |

k=1,2, ---, n} .,
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Set W=7TU g U3, . Then W € {6n+4; 3n+1) and D U J, provides

n pairwise disjoint copies of 33 in W .

This completes the proof of Theorem 3.15.

Corollary 3.16. Let a = 1l(mod 3), 1 <a <3n+l1 , where n is a
‘non -negative integer. Then there exists a consistent system
W € {6n+4; al .

Proof. The result follows from Theorems 2.9 and 3.15.

Example 3.17. We give an example illustrating the comstruction of W

in Theorem 3.15 for the case n =2 . By modifying J1 and J2 we

%
also exhibit a system W which is not consistent. A, B, Jl, J2 and

are as in the proof of Theorem 3.15.




(6,7, 9
(7, 8,10
( 8,.9,11)
( 9,10,12)
(10,11,13)
(11,12,14)
(12,13,15)
(13,14, 1)
(14,15, 2)

(15, 1, 3)

(1, 5,10)
( 2, 6,11)
( 3, 7,12)
( 4, 8,13)
( 5, 9,14)
( 6,10,15)
( 7,11, 1)
( 8,12, 2)
( 9,13, 3)
(10,14, 4)
(11,15, 5)
(12, 1, 6)
(13, 2, 7)
(14, 3, 8)
(15, 4, 9)

W e {16; 71

(1, 9,16)
(2,10,16)
(3,11,16)
(4,12,16)
(5,13,16)
(6,14,16)

(7,15,16)

D = {(1, 5,10), (2, 6,11)} .

9

(1,1,1)
(5,5, 5)
(10,10,10)
(2,2, 2)
( 6, 6, 6)
(11,11,11)

(7,7, 7

)

(14,14, 7)
(15,15, 8)
(16,16, 8)
(8,8, 1)
(9,9, 2)
( 3, 3,10)
(4, 4,11)
(12,12, 5)

(13,13, 6)
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(7, 8,10)
( 8, 9,11)

( 9,10,12)

(10,11,13)

(11,12,14)
(12,13,15)
(13,14, 1)
(14,15, 2)

(15, 1, 3)

1, 5,10)

L T e Y Y . T Y e T

*
W

‘\

2, 6,11)
3, 7,12)
4, 8,13)
5, 9,14)
6,10,15)
7,11, 1)
8,12, 2)

9,13, 3)

(10,14, &)

(11,15, 5)

(12, 1, 6)

(13, 2, 7)

(14, 3, 8)

(15, 4, 9)

€ {16; 7}

(1, 9,16)
(2,10,16)
(3,11,16)
(4,12,16)
(5,13,16)
(6,14,16)

(7,15,16)

(1,1,1)
(2,2,2)
(3,3,3)
(4,4,4)
(5,5,5)
(6,6,6)

(7,7,7)

( 8, 8,1)
(9, 9,2
(10,10,3)
(11,11,4)
(12,12,5)
(13,13,6)
(14,14,7)
(15,15,8)

(16,16,8)

44,
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Theorem 3.18. Let a = l(mod 3), 1 < a < 6n+1 , where n is a

non-negative integer. Then there exists a system W € {6n+5; al} .

Proof. By Theorem 3.1, {n; 1} exists for all n % 0(mod 3)
In particular, {én+5; 1} exists for all n 20 . To complete the
proof we shall show there is a system W* € {én+5; 6n+1} containing
a minimum of 2n-~1 mutually disjoint copies of 3'3 for all n =1
Let P = {1, 2, ««-, 6n+57} .
Let A = {(k, k+3i+1, k+6i+3) | k=1,2,...,6n+3; i=0, ly+ee,n—-1; |
each number taken modulo 6n+3);¥ .
(bn+4, k, k+3n+1)
Let B = : k=1, 2, -+, 3n+1 .
: (bn+5, k, k+3n+2)
Put T=AUB . Then (P, T) 1is easily verified to be a maximal partial
Steiner triple system, by applying Lemmas 2.2 and 3.12 (cf. [7]).
Now the four pairs (3n+2, 6n+3), (6n+3, 6n+4), (6n+4, 6n+5),
(3n+2, 6n+5) are not contained in any triple of T , while every
other pair from P is contained in exactly one triple of T . We
construct W* € {6n+5; 6n+1} on P as follows:
Let F = {3n+2, 6n+3, 6n+4, 6n+5} , and P =P -F .
Let J= {(k, k, K) | k €2"}, and
Jy= {(3n+2, 3n+2, 6n+3), (bn+3, 6n+3, 6n+4),
(bn+4, 6n+4, 6n+5), (6n+5, 6n+5, 3n+2)1} .

% 3
Set W =TUJ UJ Then it is easy to see that W € {6n+5; bn+11 .

1 2 -

%
We show W’ contains at least 2n~1 mutually disjoint copies of 33 .

Consider three cases:
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Case 1. n = O(mod 3), n =23 .
Putting i = %?— in A, we find that T contains the following

collection D of 2n-1 disjoint triples:

D= {(2n+k, 4n+1+k, k) |1 <k <2n, k Zn+21 .
It is easily checked that D U Jl provides 2n-1 pairwise disjoint

copies of 35

Case 2. n = 1(mod 3), nh =1 .

*
If n=1,W contains two disjoint copies of 33 based on the sets

{1,7,81, {3,4,6} . 1If n=4 ; then T contains the following

collection D of 2n-1 pairwise disjoint triples (i =0, [F%%]ill A)

D= {(6n-1,6n,6n+2)}U{(k,2n=1+k,4n-1+k) |1<k<2n-1,k#n+3}.
It can be verified that D U Jl contains 2n-1 pairwise disjoint
copies of 33

Case 3. n = 2(m§d 3), n =22,

If n =2, then W* contains four mutually disjoint copies of 33
based on the sets {4,5,7}, {9,10,12}, {13,14,1}, {2,6,11} (see
Example 3.19).

If n =5, then we observe, with i = [%?] in A , that T contains

the collection D of 2n-1 disjoint triples:
D={(k, 2n+k, 4n+1+k) |1 sk <2n, k £n+2} .

A straightforward verification shows that D U Jl contains 2n~-1

palrwise disjoint copies of 33 .

Combining these cases together, we have proved that the system
k4
W € {6n+5; 6n+1} contains a minimum of 2n~-1 mutually disjoint

coples of 33 for all n =21 . By Theorem 2.9, the proof of Theorem 3.18
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is complete.

*
Example 3.19. Let n = 2 in the construction of W in the preceding

*
theorem. We show the system W € {17; 13} is consistent. Let A, B,

be as in the proof of Theorem 3.18. Explicitly, we give the

Jl, J2

*
following construction of W ¢ {17; 13} .

A

W € {17; 13}

B

J

J

1 2
“C1,2,4) (1,510 (1,8,16) (1,1,1) (8, 8,15
(2,3,5 (2,6,11)" (2,9,16) (2,2,2) (15,15,16)
(3,4,6) (3,7,12) (3,10,16) (3,3, 3) (16,16,17)
(4,5, D" (4, 8,13) (4,11,16) (&, &, &) (17,17, 8)
(5,6,8) (5,9,14) (5,12,16) (5, 5, 5)
(6,7,9) (6,10,15) ( 6,13,16) (6, 6, 6)
(7, 8,100 (7,11, 1) ( 7,14,16) (7, 7, 7)
(8,9,11) (8,12,2) (8,15,16) (9,9, 9)
( 9,10,12)" (9,13, 3) (9, 1,17) (10,10,10)
(10,11,13) (10,14, 4) (10, 2,17) (11,11,11)
(11,12,14) (11,15, 5) (11, 3,17) (12,12,12)
(12,13,15) (12, 1, 6) (12, 4,17) (13,13,13)
(13,14, 1)° (13, 2, 7) (13, 5,17) (14,14,14)
(14,15, 2) (14, 3, 8) (14, 6,17)
(15, 1, 3) (15, 4, 9) (15, 7,17)

The triples marked with

of 35

3
in W € {17; 13} .

an asterisk determine four disjoint copies

%
So W is comsistent.
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For future reference we add the following theorem:

Theorem 3.20. Let n be a positive integer.

(i) There exists a consistent system W € {_611 +4; 3n+1} such

%
that W does not contain a copy of X, or }(4

A
(ii) There exists a system W € {6n+5; 6n+1} such that W
contains at least 2n-1 mutually disjoint copies of 33 , and no copy

of 11'5.-

Proof. (i) Let W € {6n+4; 3n+1} be as constructed in the proof of
Theorem 3.15. Then each idempotent of W appears exactly once as the
element k in triples of the type (j, j, k) . So the possibility of
W containing a copy of }64 is ruled out. On the other hand, a
straightforward verification shows that any copy of }ﬂ4* in W must
essentially be based on the set {1, 3n+2, 6n+3, 6n+4} . However,
the pair (1, 6n +4) is contained in the ﬁriple (én+4, 1, 3n+3)

*
So W cannot contain a copy of }64 . W was shown to be consistent in

Theorem 3.15.

(ii) Let W € {én+5; 6n+1} be as constructed in the proof
of Theorem 3.18. W* contains at least 2n-1 mutually disjoint copies
3 - By construction, any copy of Us in W* must contain the
collection of triples {(3n+2, 3n+2, 6n+3), (6n+3, 6n+3, 6n+4),

of &

(bn+4, 6n+4, 6n+5), (bn+5, 6n+5, 3n+2)} . So any copy of 1;5 in
%

W must be based on some set of five elements which contains 3n+2,
én+3, 6n+4, 6n+5 . Now the pair (3n+2, 6n+4) is contained in the

triple (1, 3n+2, 6n+4), while the pair (6n+3, 6n+5) is contained
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%
in the triple (3n+1l, 6n+3, 6n+5) . Obviously W cannot contain a
copy of U5 .

This completes the proof of the theorem.

We are now in a position to state the main theorem of this

section.

Theorem 3.21. Let n be a positive integer. Let a be an integer

such that 0 £ a £ n . Then nécessary and sufficient conditions for the

existence of {n; al are :

(1) if n =0(mod 3),. then a = O0(mod 3) ;
(2) if n % O(mod 3), then a = L(mod 3) ;
(3) if n is even, then a S'%-;
(4) if a=n-1, then n = 2 |

Proof. The necessity follows from Theorem 1.1. The sufficiency follows

from Theorem 3.18, Corollaries 3.3, 3.5, 3.8, 3.10, 3.16, and Example 3.6 .

3. Construction of a system in {6n-+5; 6n+1} containing US .

In this section we construct, for all integers n =20 , a

system in {6n+5; 6n+1} which contains a copy of U Equivalently,

5 -
we obtain a system in {6n+4; 3n+1} which contains a copy of M4 .
A consistent system in {6n+5; 6n+1} for all n =0 is also
constructed. We shall use standard graph notation and definitions, as
found in [6].

Let G be a graph. We denote by V(G) the set of vertices

of G , and by E(G) the set of edges of G . A factor of G 1is a




spanning subgraph of G . A factorization of G
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is a set of edge-

disjoint factors whose union is G . A one-factor of G is a factor

which is regular of degree 1.

A one -factorization of G is a

factorization_whose factors are all one-factors.

one -factorable if it admits a one-factorization.

G 1is said to be

For undefined graph-

theoretic notions which appear in this thesis, see [6].

Construction 3.22,

Theorem 3

S

And T =

Let T(O)

Let (S, T) be the STS(6n+3) constructed in the proof of

2.

A0 U A1 U A2 , where

{0, 1, -+, 20},

{2n+1, 2n+2, ..., 4n+11,
{tn+2, tn+3, ..., 6n+21 ,
B l) C , where

Kx,x+2n+1,x+4n+2)|:<=0,1,

{(x, y,bz) l x+y = 2z(mod 2n+1) ; x, y € Ai’ z € Ai-F

-+, 2n} , and

Ly,

i=0,1,2; x #y , all subscripts reduced modulo 3}.

be the collection of all triples in T

containing the element

*
0. Let T =T - (B U T(O)) and P =8 - {0} . Then e, T*) is

clearly a partial Steiner triple system of order 6n +2

Now let G be the graph with V(G) =P

and

*
E(G) = {[x, y] | (x, y) is not contained in any triple of T€3

Explicitly, E(G) consists of the following 9n+1

edges.
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There are 6n edges {[x, x+2n+1], [x, x+4n+2] R

[x+2n+1, x+4n+2] | x=1,2, ..., 2n} arising from triples in B,
(0)

and the following 3n+1 edges arising from triples in T

[2n+1, 4n+2] |

[2x, x+2n+1], x =1, 2, ++-, 2n,

[x+4n+2, (2n+1-x)+4n+2], x = 1, 2, +++, n ;
where 2x is reduced modulo 2n+1 when necessary.

* , _
Let A={1,2, -+, 2n} and G =G - (2n+1) - (4n+2) , the graph

%
- obtained from G by removing the vertices 2n+1 and 4n+2 . G is

easily seen to be a regular graph of degree 3 .

| If we denote by Cx the component of G* containing the
vertex x , then it follows that Cx = C2n-+1-x for each x € A .
Clearly, G* = J Cx . We illustrate the graph G* for the cases

n = 2 (Figure T)eiﬁd n = 3 (Figure 2). In general, the component Cx
is essentially one of two types:

1) as illustréted in Figure 1, when 2k1cE - x(mod 2n+1) for

some k ; or, noting that 2T x= %x(mod 2n+1) for some m ,

2) as illustrated in Figure 2, otherwise.

Type (1) and type (2) graphs are one-factorable, since it is

always possible to find a hamiltonian cycle in each case. 1In Figures 1

and 2 the edges of such a cycle are marked alternately with I and ‘l »
and the remaining edges are marked with ]ll so that the set of all edges
marked with any one of | ) ll or |'| is é one -factor. Consequently,

%
the graph G  is one-factorable.




—

Figure

2.

Figure




53.
%*
Let (P, T ) be as defined previously. Introduce three new elements

%*
ool > %y s ®, and put S =P (] {col ,wz , 003 1. We shall construct
% _
on S a system W.€ {6n +5; 6n+1} containing a copy of 1;5

as follqws .

*
Let P =P - {2n+1, 4n+2} .

3 * %k ' : *
Let & = {Fl N F2 R F3} be a one-factorization of G

Ex3 %
Let T = {(o, x,y) | [x,y] €F,, 1 =1,2,3), and

I o=, x, 0 |xer).

Let V be any copy of 1!5 based on the elements ®5 3% 3Py, 2n+1,
4n +2
% ke
Put W=T UT uJguv.
It is easily checked that W € {6én+5; 6n+11 .

Hence, we have proved the following theorem.

Theorem 3.23. For every integer n = 0 , there exists a system

W € {6n+5; 6n+1} such that W contains a copy of 1!5 .

Corollary 3.24. For every integer n 2 0 , there exists a system

W € {6n+4; 3n+1} such that W contains a copy of }64 .

Proof. This follows from Theorems 2.7 and 3.23.

Theorem 3.25. For every non-negative integer n , there exists a

%*
consistent system W € {6n+5; 6n+1} .

Proof. We shall consider three cases in what follows.

Case 1. n = O(mod 3)
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*
Let W be as W € {6n+5; 6n+1} in Construction 3.22.

% .
If n 23, T contains the following collection D of 2n disjoint

triples:
D= {(k, k+2, k+2n+2), (k+2n+1, k+2n+3, k+4n+3),

(k+4n+2, k+b4n+4, k+1) |k =1, 4, 7, -, 2n-21 .

*
So W contains 2n mutually disjoint copies of 35 in DUJ .

Case 2. n = 2(mod 3)
%
Let W be as W € {6n+5; 6n+1} in Construction 3.22,

where the idempotent of V is ® -

Since one of [2n, 4n+1], [2n, 6n+2], [4n+1, 6n+2] must

Kk

*
belong to the one-factor F T must contain one of the triples

1 J

' %
(a&, 2n, 4n+1), (w , 2n, 6n+2), (w , 4n+1, 6n+2) . In addition, T

1’

contains the following 2n-1 diaﬁdnttrnﬂes D={(k,k+2,k+2n+2),

(k+2n+1,k+2n+3,k+4n+3),(k+4n+2, k+én+4,k+1) |k=1,4,7, «ve, 2n~3].
* Kk . ‘

Soin T Urt we can find 2n pairwise disjoint triples such that no

triple contains any of the elements ®y 5 g ,Zn-Fl,-4n-+2 . Consequently,

%
W contains 2n mutually disjoint copies of 33 .

Case 3. n = 1(mod 3)

We first of all make the observation that in GConstruction 3.22
the system W € {én+5; 6n+1} contains a subsystem Q € {11; 7} based
on the set

2n+1 8n+4 1lbn+7
E ={w1,m2,w3,2n+1,4n+2, n3 R n3 » n3 R

4n +2 10n+5 16n+8 1
3 3 2 3 -
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This arises from the fact that in this case (S, T) contains an STS(9)

based on the elements 0, 2n+1, 4n+2, 2n43-1 , Sn;-l; , l4n—;—7 ,

4n +2 10n+5 16n+8
3 2 3 2 3

% % *
Now let W = (W=-Q UQ , where Q ¢ {11; 7} is a

This is easy to verify and details are omitted.

consistent system based on E .
* *
Clearly W € {6n+5; 6n+11 . We now show that W is
consistent.

Let

(k, k+2n+1 , k_'_10n+5>
3 3
D = <k+2n+1, k+§%, k+1_6£%'.§.> : k=1, 2, --, 2n52
<k+4n+2, k+14“;“7 ,k+‘m;“2 )

Then D consists of 2n-2 pairwise disjoint triples from T* , and each
element of a triple in D is idempotent in W* . Moreover, no triple of
D contains an element from E . So W*g contains a total of

(2n-2)+2 = 2n mutually disjoint copies of 33 . This completes the

proof of Theorem 3.25.

Corollary 3.26. Let a =1(mod 3) , 1 <a<6n+l, where n is a

non-negative integer. Then there exists a consistent system

Wef{bn+5; al .

Proof. The proof follows from Theorems 3.25 and 2.9.

Combining the result of Corollary 3.26 with results from the

previous section, we can now state the following theorem:

Theorem 3.27. Let n #7 be a given positive integer. Then there exists

a consistent system W € {n; a} for all values of g satisfying the
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necessary conditions for the existence of {n; al .

Proof. The statement follows from Corollaries 3.3, 3.5, 3.8, 3.10,

3.16, 3.26.

Remark 7. One can directly construct a system W € {6n+4; 3n-k1} via

: * k%
the one-factorization jk = {Fl, F,, FB} in Construction 3.22 as follows:

2
* %
Let P, P , T be as in Construction 3.22. Suppose
* , %
F3 = {[x, vl I x €X,y €Y}, where P. =X WY . Then introduce two
*
new elements o ,e, , and put § =P {ai ,ab} .

Kk * .
Let T = {(Ooi, 'xJ y) | [x) Y] eFi 2 1= l) 2-} 2

I o={(x, %%, (,y,%) | x€X,y €Y, [x, y] €F§3
Let K be a copy of M4 on {e s®y 5 2n+1, 4n+2%1 . Put
WaT Ut U JUK . Then it is readily verified that W €{6n+4; 3n+11,
based on S* . Apart from the fact that W contains a cdpy of M4 , it is
quite difficult to assess the internal structure of the'system in general.
This results fromnot knowing precisely what the idempotents and non-

idempotents of the system are (see Remark 1).

Example 3.28. This example illustrates Construction 3.22 for the case

n =2 . We construct a system W € {16; 7} which contains M4 and is
*
consistent. The consistent system W € {17; 131 containing US is

obtained as outlined in the proof of Theorem 3.25:




(0, 5,10)
0, 1, 8)
(0,12,13)
©(1,13,14)
(3, 4, 6)

(5, 6,13)

(6, 8,12)

(1, 2, 9)
(2, 3, 5)
(3,10,11)
(5, 7,11)

(6, 9,10)

%*

(1, 6,11)
(0, 2, 6)

1, 2, 9

(2, 3, 5)

(3,10,11)
(5, 7,11)

(6, 9,10)

a, 3,7
(2, &4, 8)
(3,12,14)
(5, 8,14)

(7, 8,10)

(8, T
2, 7,12)
0, 3, 9)
1, 3, 7)
(2, &4, 8)
(3,12,14)

(5, 8,14)

(7, 8,10)

®, )

(1, &, 5)
(2,10,14)
(4,10,13)
(5, 9,12)

(7, 9,13)

(3, 8,13)
0, 4, 7)
1, 4, 5)
(2,10,14)
(4,10,13)
(5, 9,12)

(7, 9,13)

(1,10,12)
(2,11,13)
(4,11,12)
(6, 7,14)

(8, 9,11)

(&4, 9,14)
(0,11,14)
(1,10,12)
(2,11,13)
(4,11,12)
(6, 7,14)

8, 9,11)

(1,13,14)
(3, 4, 6)
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Let F, = {[1,11], [2, 6}, [3, 91, [&4,14], [ 7,121, [ 8,131},

F. = {[1, 81, [2,121, [3,131, [4, 71, [ 6,111, [ 9,141} , and

¥, = {{1, 6], [2, 71, [3, 81, [4, 9], [11,14], [12,13]} .

Let X = {1, 2, 3, 4, 11, 12} , and

Yy ={6,7,8,9, 13, 14} .




@, T
, T

S

“(1

@, 2, 9
(1, 3, 7
(1, 4, 5)
(1,10,12)
(1,13,14)
2, 3, 5)
(2, 4, 8)
(2,10,14)
(2,11,13)
(3, 4, 6)
(3,10,11)

(3,12,14)

{
1 s l P > 2
.
3 5
) J
2

—

(4,10,13)
(4,11,12)
(5, 6,13)
(5, 7,11)
G,
G,
(6,
6,
(6,
@,
(7,
(8, 9,11)

8,14)
9,12)
7,14)
8,12)
9,10)
8,10)

9,13)

W
€ {16;
_ 3 73
(@, 51,11) i ‘
P)
(001,2 6 ’ 1, 1)
s 6) (2 o K
(,,3 . .
e S (5,5
. (3 g >
(=, ,4 . .
4 ,14) » -
(4 8, 8 o )
(w1:7 12 > &, 8) i
»12) (11 (9,9 Q’GE’ ,
(=, ,8 _ )11,11 -

: o - - (10,10, 5
(00 1 2;12)12 ’14’11) ’ )
> : s (wl)m 10
(e, ,2 »13,12) i )

(co
2,3,13)
(f&;4: 7)
(
m2,6,11)
°°>2,9,14)
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TR RIS
(4,10,13)

(1, 2, 9
(1, 3, 7
1, 4, 5)

(1,10,12)

(1,13,14)

(2, 3, 5)
(2, 4, 8)
(2,10,14)
(2,11,13)
(3, 4, 6)
(3,10,11)

(3,12,14)

N :
By Theorem 3.25, W € {17; 13} contains 4 pairwise disjoint copies

(4,11,12)
(5, 6,13)
(5, 7,11)
G,
(3,
(6,
(6,
(6,
7,
i,

(8, 9,11)

8,14)
9,12)
7,14)
8,12)
9,10)
8,10)

9,13)

k3
W e {17; 13}

ek

7 ~C AN
ml,l,ll) (“3: 1, 6)

(“1,2, 6)
(=535 9
(m1,4,14)
(=,7,12)
(mi,8,13)
(251, 8)
(m2,2,12)
(w2,3,13)
(m§’4’ 7)
(w2,6,11)

(mz )9)14)

(235 2, 7)
(255 3, 8)
(25 45 9)
(e5,11,14)

(23,12,13)

(1,1, 1)
(2,2,2)

(3, 3, 3)

Chy by &)

(6,6, 6)
(7,7, 7)
(8,8, 8)
(9,9, 9)
(11,11,11)

(12,12,12)

' (13,13,13)

(14,14,14)
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\
(w]. ’ml ’w].)
(°°2 ’002 ,m3)
CNTIE
( 5, 5,10)
(10,10,,)
(w]. 2 5 ,002) :

of J, based on the sets {«1,4,14}, {1,3,71, {2,11,13} and

{6,8,12} .
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CHAPTER 4

Embeddings of extended triple systems

1. Introduction.

If there exists a system W € {n; al based on S and a
* %* % *
system W € {m; b} based on S such that S €S and WEW 5
% *
we shall say that W is embedded in W . If W is embedded in W ,

then élementary considerations show that m 22n and b =a . In

particular, if n is even, then according to Lemma 2.1 m must be even.
| Lemma 2.8 suggests that in order to embed a system W in some
system W* we need not pay any attention to the triples of the systemb
W . However, it may be necessary to impose conditions on W if the
embedding system W* is to possess ceftain properties. We shall show
that under certain conditions the embedding sYstem is either consistent
or contains-a specified minimim number of mutually disjoint copies of
33 . The embeddings also provide examples of systems which are not

consistent. Finally, we give a recursive method for constructing

extended triple systems.

2. Preliminaries.

9n the complete graph on 2n vertices.

If VK, ) = {1, 2, -+, 2n} , then it is well -known [6] that

. We shall denote by K

an = {Gl, Gyy +ovs G2n-—1} is a one-factorization of K, where
6, = {{l2n, 113U {[i-3, 1431 | §=1,2, ---, n-13}, 4, i-j and
i+j being taken modulo 2n-1 in the range {1, 2, -++, 2n-13 .

Wallis [23] has shown that there are at least two non-isomorphic
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one -factorizations of K2n for every integer n =24 .,

The following two definitions appear in [14,15]:

Definition 4.1. An (A, k)-system is a set of k disjoint pairs

(pr, qr) covering the elements {1, 2, -++, 2k} exactly once and such

" that qr--pr =r for r=1,2, «.., k.

Definition 4.2. A (B, k)-system is a set of k disjoint pairs

(pr, q,.) covering the elements {1, 2, e+, 2k=1, 2k+1} exactly once
and such that 9.<p, =T for £ =1, 2, ««+, k . |

It is known [7,16,20,21] that an (A, k)-system exists if and
only if k =0 or 1(mod 4), and a (B, k) -system exists if and only if

k =2 or 3(mod &)

it}

3. Embedding Theorems.

In what folloﬁs we shall consider the embedding of a system
. %
W € {n; al in a system W ¢ {m; b} , where 2n <m < 2n+8 and

asb<m.

Theorem 4.3. If there exists a system W € {n; a} > then W can be
3 ‘ *
embedded in a system We € {2n; al . The system W is consistent if

and only if W 1is consistent.

Proof. Let W be based on the set S1 = {al, Uyy *o*y ah} and let

* ,
S, = {By5 By, -, B,} such that SiNS,=¢. Set § =5, US, . On

* *
S we construct W € {2n; a} as follows:




Case 1. n odd.

Let W, = {(8,;, Bys o) |1 <4, j<n,i#3j; i+j = 2k(mod n), 1<ks<n},

Wz = {(Bi’ Bi’ O’i) ‘ i=1,2, -+, n}.

*
Put W =WUW UW2 .

1

Case 2. n even, n = 2m .

62.

Let W, = {(ei, B o) |1 <41, j<2m, i #j; if i+j is even,

2k(mod 2m) and 1 <k <m ; if i+]j

i

then  1i+j

2k+1(mod 2m) and m+1<k<2m} ,

then 1+ j
W2 = {(Bi, Bi, Q’i)’ (Bm+i’ Bm"“i’ Q/i) ‘ i = 1’ 2’ e, m}

*
Put W ="WUW1 IJW2 .

*
In each case it is easily verified that W € {2n; a) » and also -

%
W is consistent if and only if W is consistent.

Theorem 4.4. Let n be an odd integer. - Suppose there exists a system

*
W € {n; al . Then W can be embedded in a system W € {2n+1; a+n+11.

Proof. Let W be based on §, = {al, Oy *oe, ozn} and let

. : . %
5, = {sl, Bys tos 5n+1} such that §, NS, =¢ . Set S =5

* *
‘We shall construct W € {2n+1; a+n+1} on S

Let & = {Fl, Fz, sy, Fn} be any one-factorization of Kn+1

n+1) = SZ

V(K
Let W, = {(oy, %, y) | [x, y] € Fi,i=1,2, «=-, n},
W2={(Bi, Bi, Bi) ' i=1’ 2, ..., n+l} .
%*
Put W =WwWt) w1 U Wz . A straightforward verification shows

*
W €{2n+1l; a+n+1?

is od

1US

where

d,

9 *
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Theorem 4.5. Let n be an odd integer. Suppose there exists a system
n+1l
2 L]
*
consistent system W € {2n+1; a4n+11} .

We{n; al with 0 <a< ‘Then W cannot be embedded in any

Proof. Let W € {n; a} be based on s, = {al, Uy *2s an}

Let 8, = {Bl, Bys *vvs Bn-+1} where 8, n S, = ¢ .

Let § = S; U8, and assume there is a system W € {2n+1; a+n+1}
on § such that W W' . Since W contains a-+n+1 idempotents,
- it follows that each element of S2 must be idempotent in W* . We
shall show that W* is not consistent. First of all, W* cannot
contain a copy of 33 based on three elements from the set 52

For suppose there is a copy of 35 on {Bl, 82, 53} . Since Bl is
idempotent, each of the =n pairs (ak, Bl) sy k=1,2, «+e, n , is
contained in some triple of the form (qk’ Bl’ Y) where.

Y € {Qﬁ’ BS, SN 1 . Consequently, some pair (Bl,vY) appears

n+1-

%
in more than one triple of W which is impossible.
' . %
There are only two possibilities for a copy of 33 in W
%
A copy of 33 in W is based on (1) a three-element set of the type

{Wi’ aj, o 1, or (2) a three-element set of the type {ai, Bj, Bk} .

k:
There can be at most Ei;l- disjoint copies of 33 of the type  (2)

*
It is clear that the number of disjoint copies of 33 in W  cannot
exceed a , when all the possibilities are considered. On the other hand,
*
the number of disjoint copies of 33 required for W to be consistent

is @ ={(a+n+1)/3] . We consider three cases and show @ > a .

n+1l

Observe 0 < a < and Theorem 1.1 is applied in each case.
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Case 1. If n =6k+1 , then a = 3m+1 , m an integer such that

O<m<k . So w=m+2k+1>3m+1 =a .

Case 2. If n =6k+3 , then a = 3m , m an integer such that

O0Osm=<k . So w=m+2k+1 =3m+1>a .

-Case 3. If n =6k+5 , then a =3m+1 , m an integer such that

0O<m<k . So w=m+2k+2 =3m+2>a .

This completes the proof of the theorem.

Corollary 4.6. Let n be an odd integer. If there exists a system

n+1l
2

%*
W € {2n+1; a+n+1} which cannot be consistent.

W € {n; a} with 0 <a< , then there exists a system

Proof. The result is an immediate comnsequence of Theorems 4.4 and 4.5.

Example 4.7. (1) By Corollary 3.3, tflere is a system W € {6n+3; a}

for a =0, 3, 6, -+, 3n . By Corollary 4.6, there is an inconsistent

*
system W € {12n+7; a+6n+4} for a =0, 3, 6, -+, 3n .

(11) According to Corollary 3.5, there is a

WeE({bn+l; a} for a=1,4,7, -+, 3n-2 . By Corollary 4.6, there is

*
an inconsistent W € {12n+3; a+6n+2} for a = 1, 4,7, *++, 3n+2

(iii) Theorem 3.18 guarantees the existence of a

W€ {6n+5; a}] for a=1,4,7, »--, 3n+1 . Consequently, by Corollary
*
4.6, there is an inconsistent W € {12n+11; a+6n+6} for

a=1,4,7, «++, 3n+1
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Theorem 4.8. Let n =5 be an odd integer. A system W € {n; a}

*
can be embedded in a consistent system W € {2n+1; a+n+1} if and

n+1
2

mutually disjoint copies of 33

<asn and W contains at least [(2a=-n-1)/6]

only 1f

Proof. Following the argument in the proof of Theorem 4.6, the condition

Eﬁgl-s a s n is obviously necessary. Furthermore, there are at most
n+l |

2
*
[(a+n+1)/3] disjoint copies of 33 are required for W to be

disjoint copies of 33 not contained in W , and since

consistent, W must contain at least [(a+n-+1)/3] -(n;-l)z [(2a=n=-1)/6]
disjoint copies of 35

Conversely, let us assume there is a system W € {n; al with

II;I <as<n and W contains at least [(2a-n-1)/6] disjoint copies
of 3, . Let W be based on the set S; = {al, Uy *ovs an} , and let

I be the set of idempotents of W . Without any loss of generality, we

shall make the following assumptions:

(1) if n =4m+1 , then I contains the set

J = {o,, li=1,2, .-, 2m} U CONP

(ii)’ if n=4m+3 , then I contains the set

J = {o | 1 =2,3, «~«, m, m+2, 2m+1, 3m+3, 3m+4, -+, 4n+3},

(ii1) W contains [(2a-n-1)/6] disjoint copies of 33 on elements

from I -J in cases (i) and (ii) above.

n+1l
2

Now let S, = {sl, Bys vvs Bn+l} such that 8, N S, = ¢ . Set

' *
Observe in (i) and (ii) |[J] = . Let J = {(x, x, x) | x €J}.

%

* %
S = S1 U 82 . We construct W on § as follows.
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Let w ={(B,, B., ) |1 <i, j<n,i#j; i+j = 2k(mod n), 1<k<n},
1 i’ Yj? Tk
Wy =By Byys o) |11 =aly
Wy = {(Bi, B;» Bi) |1 <i<sn+1} .

* .
Put W =WUW1UW2 Uw

3
It is easily checked that W € {2n+1; a+n+1} . We shall show W is

consistent. Consider two cases:

2
n+1l e .
following collection D of 2m+1 = =5 disjoint triples:

Case 1. n =4m+1 . It is readily verified that W1 U W, contains the

Bomt1? Pama2? Ypi1) 2

D (Pt —17 Py Fpagy) 212152, oy my
Pom+2i7 Pom2i412 %) P11 2 -0 m
n+1l ' . . .
So > mutually disjoint copies of 53 can be found in
* *
W1 U W2 U W3 UJ . Consequently, W contains a total of
[(2a=n=-1)/6] + (n-;—l) = [(a+n+1)/3] mutually disjoint copies of 3'3 .

Case 2. n =4m+3 . It is readily checked that Wl U W2 contains the

following collection D of 2m+2 = t-l%—l- disjoint triples:

(83m+3’ B3m+4’ Olm+2)" (BZm+1’ Yom+1’ B~4m+4) ’

D =B Bongg 412 Oy P11 2 e, mil

Bot1+i’ Pamasti? G ag) i1 =152, oo, m-1

. .

So W1 U W, U W3 UJ contains n;-l. mutually disjoint copies of 3'3 s
*

and W contains a total of [(a+n+1)/3] mutually disjoint copies of

3’3 as in the previous case. Y
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*
In each case W is consistent, and the proof of

Theorem 4.8 1s complete.

Remark 8. A system W satisfying the conditions imposed in Theorem 4.8

need not be consistent. For example, a system W € {7; 7} will satisfy

the necessary conditions in the theorem. Hence W can be embedded in a
‘ *

consistent W € {15; 15} . Consequently, a consistent system may

‘contain an inconsistent subsystem.

Theorem 4.9. Let n be an odd integer, n @ 5 . Suppose there exists a

n+1
5

%
there exists a system Wc € {2n+1; r+n+1-3k} which cannot be

system W € {n; r} with 0 < < Then for each k€{0,1,---, ¢},

consistent.

Proof. By Theorems 4.5 and 2.9, it is sufficient to show that the system
W € {n; r} can be embedded in some W* € {2n+1; r+n+1} containing |
r disjoint copies of 33 . This is easily achieved by extending W as

- we did in the proof of Theorem 4.8, assuming the idempotents of W are
all contained in the set J . Clearly, the embedding system W* S0

obtained contains r pairwise disjoint copies of 83 in .

ki3
W, UW, Uw, UJ

1 2 3

Example 4.10. Theorem 4.9 can be used to improve the results we have in

Example 4.7 as follows:
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% .
(1) we€ {n+1l; 3n-21 = inconsistent W € {12n+3; 9n -3k},

k=0, 1,2, «+oy 30-2 .

(11) W € {6n+3; 3n} = 1inconsistent. W* € {12n+7; 9n+ 4 -3k},

k=0,1,2, +-+, 3n .

%
(ii1) W € {én+5; 3n+1} = inconsistent W € {12n+11; 9n+7 -3k},

k=0,1, 2, «+-, 3n+1 .

Theorem 4.11. Let n be an even integer. If there exists a system

*
W € {n; al , then W can be embedded in a system W € {2n+2; a+n;2} .

Proof. Let W € {n; al} be based on 8, = {ozl, Uy **2y ozn} , and let
5, = {Bl’ Bos =ves Bn+2} such that §, NS, =¢ . Let

&= {Fl, FZ’ seey Fn+1} be any one-factorization of Kn+2 where

V(Kn+2) - SZ
T R L' PPN R

where il’ 12, cee, 1 are a permutation of 1, 2, ***, n+2 .

n+2
Let W1'= {(Q’i: X, ¥) ‘ [x, y] € Fi’ i=1,2, «++, n},

W, = {(Bik, P P | k=1,3,5, -+, n+1},
w, ={(B, ,8B, , 8 )| k=2,4,6, -+, n+2} .
3 ik ik ik-l ‘ 2> T >

:'
Put W =W U Wl U W2 U W3 . Then it is easily seen that

n+2
2

%
W o€ {2n+2; a+ }, based on s, Us, .

Theorem 4.12. Let n be an even integer. Suppose there exists a system

W€ {n; a} with 0 s a< Ellp—:l;g-] . Then W cannot be embedded in any

%*
consistent system W € {2n+2; a+r-1--§-2-} .
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Proof, An argument similar to that given in the proof of Theorem 4.5

shows that if the system W € {n; a}, a < [‘LZ.'_Z_] » is embedded in some

n+2
2

% %
W  cannot exceed a . On the other hand, the number required for W

*
W € {2n+2; a+ } , then the number of disjoint copies of 3’3 in

to be consistent is w = [(2a+n+2)/6] . We consider the residues of

n modulo 12 in the cases which follow and show that ® > a . Note we

are assuming 0 € a < H—-—gil » and Theorem 1.1 is applied in each case.

Case 1. If n =12k , then a = 3m » m an integer such that 0 < m<k ,

and w=m+2k > 3m = g ,

Case 2, If n = 12k+2 , then a = 3m+1, m an integer such that

0<m<k ,and w=m+2k+1>3m+1 =a .

Case 3. If n = 12k+4 , then a = 3m+1 » m an integer such that

0<m<k ,and w=m+2k+1> 3m+1 =a .

Cagse 4. If n = 12k+6 , then a = 3m » m an integer such that

Osm<k,and w=m+2k+1 = 3m+1>a .

Case 5. If n = 12k+8 , then a = 3m+1 > @ an integer such that

0<m<k,and w=m+2k+2 2 3m+2>a .

Case 6. If n = 12k+10 , then a = 3m+1 » m an integer such that

0O<m<k,and w=m+2k+2 = 3m+2 > a .

This proves that W cannot be embedded in any consistent

¥
system W € {2n+2; a+t-1--2|-—2—} .
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‘Theorem 4.13. Let n = 8(mod 12) . Suppose there exists a system
W E {n; al . Then W cannot be embedded in any consistent system
%
W € {2n+2; a+r-l—~—;—g-}

Proof. Suppose there exists a W € {n; al and a system

n+2
2

have already shown in Theorem 4.12 W  cannot be consistent. In what

* %
W e{nm+2; a+ 1 such that WSW . 1If OSa<E‘Z———2],we

follows we assume E—I—Z—g-] < a =< r2_1_ . When all possibilities are considered,

. *
the maximum number of mutually disjoint copies of 33 which W can

-
contain is A = ELZ;-?-] + [(a - E‘ZZ )/3] . However, the number of

disjoint coples of J

%
3 required for W to be consistent is

w=[(2a+n+2)/6] . By Theorem 1.1, if n = 12k+8, then a = 3m+1 ,
k<m<2k+1 . So A =3k+2+(m~k=-1) =m+2k+1 <w=m+2k+2 .

*
Consequently, W cannot be consistent.

Corollary 4.14. Let n be an even integer. Suppose there exists a

system W € {n; a} with 0 s a < EH-——Z:J . Then there exists a system

A
% ; : :
W € {2n+2; a+n;2 } which cannot be consistent.

Proof. The proof follows directly from Theorems 4.11 and 4.12.

Corollary 4.15. Let n = 8(mod 12) . Suppose there exists a system

z ;2 1 which

%*
W € {n; al . Then there exists a system W € {2n+2; a+

cannot be consistent.

Proof. The result follows from Theorems 4.11 and 4.13.
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Theorem 4,16. Let n be an even integer, n # 8(mod 12) . A system

x
W € {n; a] can be embedded in a consistent system W € {2n+2; a+n-2|-2}

if and only 1if Elzz] < a sg— and W Eontains at least [(a - [nZZ])/{I

disjoint copies of 3'3 .

Proof. Sdppose W € {n; al is embedded in some consistent

+2
n2 }.

is clearly necessary. Also there can be at most E‘ZZ] disjoint copies

%
W €e{2n+2; a+ By Theorem 4.12, the condition Elz—-gﬂ <a Srzl

. of 3'3 not contained in W , each such copy involving an idempotent of
N .
W . For W to be consistent, it is easy to check that W must contain

at least [(a _‘?;{__&])/3] disjoint copies of 53 .

Conversely, we assume there 1s a system W € {n; al with

E‘Zz] <ac< g— and W contains at least [(a - EIZZ:D 3] disjoint

copies of 3'3 . Let W be based on S1 = {ozl, Upy =o*y ozn} , and let I

be the set of idempotents of W .
We shall assume, without loss of generality,
(i) if n =4m , I contains the set

J = {Q/Zi__l l i= 1) 2) ) m} 5

(ii) if n =4m+2 , I contains the set

J = |1 =1,2, -+, m+1} ;

logs 4
(11i) W contains [(a - H——%)/B] disjoint copies of 'J3 on elements
from I - J in the cases (i) and (ii) above.

Note that |J‘ = EIZ———Z—] . Let J*=-{(x, X, X) |XEJ} .

Let S, = {sl, Bys "t an+2} such that S, N S, = ¢ -

* * *
Set § = Sl U S2 . We shall construct W on S as follows.
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Let W, = {(B,, B o) | 1 =4, j<a+1,i#§, i+j = 2k(mod n+1),

1<k <n},

=
%

2 {(Q’i, Bi’ Bn+2) | l1=i Sn} P)

Wy = {(B, By B) |1 =3+1, 2wz, oov 1),

=
']

n
o= LBy B By ) Lm0 2, ey BYULGR, 08,0508, DY

%
Put W

WUW1 UW2 Uw
n+2

3 ] W4 . It is a routine matter to check

% %*
W € {2n+2; a+ } . We show W is consistent. Let
e lnt2 < _ Int2 >
A [——-—4 ] + [a [4 ] 3] .

Case 1. n =4m . Then W1 contains the following collection D of

m = H—-—g-] disjoint triples:

D = {(52m+21—1’ 82m+21’ 0[2'1"'1) | i = ]_’ 2, cee, m}

%
So J U W1 t) W3 contains EZZ] mutually disjoint copies of J

3 -
Thus W contains at least ) disjoint copies of 3'3

Case 2, n =4m+2 . Then W1 contains the following collection D of

m+l = |E’1+-7;£:| disjoint triples:

D= {Cniarr Pomagrarr By-p) [1=1, 2, oy w1}

¥ n+2 s s s .
Hence J U Wl U W3 contains v mutually disjoint copies of 3'3 R

and W contains at least ) disjoint copies of 3'3 as in the previous

case.

%
Now the number of disjoint copies of 33 required for W to

be consistent is ®w = [(2a+n+2)/6] .

In what follows we consider five cases and show A\ = @ .

2
(1) if n =12k , then a = 3m’ sk=m’ <2k ,m’ an integer, and

./ . ’
A= 3k [RSI ;31‘] =m'+2 = E’———————-—m +36k+1] = ;

Noting that nZZ] <as< and applying Theorem 1.1, we have:
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(2) 1if n =12k +2 , then a = 3m'+1, k <m’ <2k » m’ an integer,

R s R R =]
b~ -

14

(3) if n = 12k+4 , then a =3m'+1, k <m’ < 2k , n’ an integer,

3m’ - 3k ; 3m’ + 6k +4]
N 3 ] m +2k+1 3

(4) if n =12k+6 , then a =3m’ , k+1 <m’ < 2k+1 s m’ an integer,

-, '
and )\ = 3k+2+ ?ﬂ-—'—-&—?—] «m 42k +1 = E‘““L—-—-—@—‘—i—‘*] = w3

and )\ = 3k+1+ = @ 3

3 3

b

(5) 1f n = 12k+10, then a =3m’+1 , k+1 <m’ < 2k+1 , m’ aninteger,

p ’
and )\ = 3k+3+[3m—_______§§_:_2_] am’ +2k+2 = W =

This completes the proof of our theorem.

Illustrative example: Any system W € {4; 1} trivially satisfies the

conditions in Theorem 4.16. Suppose W is based on S1 ={ozl, Uy s Ol 014}
A and assume o is idempotent in W . Let S2 = {Bl, BZ’ B3, 54, B5, 86} .

Following the construction in Theorem 4.16, we obtain
_ Wl = {(al’ 52: 55): (al’ 53: 34): (QZ’ Bl’ 53): (d2’ 34: BS)’
(d3: Bl’ BS)’ (QSJ BZ’ 54): (QL: Bl’ 52): (QL; 53: BS)};

WZ = {(W ) Bl’ 56); (dz: BZ’ 86)’ (03: 53: 56)’ (QA: 54’ 86)};

=
[}

W4 = {(Bl’ Bl’ 54): (52: BZ’ 53), (BG’ 56’ BS)}*

%
Then W =W U W, UWZUW3UW € {10; 4} contains ¥ on {o 1.

1 4 3 1> Bgs By

Theorem 4.17. Let n be an even integer. Suppose there exists a system

W€ {n; rl with OSr<E{—% . Then for each k € {0, 1, -+, r},

* n+2 .
there exists a system W € {2n+2; r+——2——-— 3k} which cannot be

consistent.
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Proof. Following the construction in Theorem 4.16, we may embed W in

W* € {2n+2; r+r-l--2t2~} in such a way that W* contains r mutually
disjoint copies of 3'3 . We simply assume that all Vthe idempotents of
W are contained in the set J so that eventually J* U W1 U W3
contains r disjoint copies of 33 . The result then follows from

Theorems 4.12 and 2.9.

Theorem 4.18. Let n = 8(mod 12). Suppose there exists a system

W € {n; al with nZ—Z <ac< g— . Then there exists a system

o n+2, " o . »

W € {2n+2; a + > 1 containing A disjoint copies of 33 , where

A= EIZZ] + ka‘ nZZ > 3:! » provided W contains at least

. %
[(a— E—-%l)/B] disjoint copies of 33 - Furthermore, W cannot be

consistent.

. * n-2
Proof. We embed the system W in a system W € {2n+2; a + > 1

*
exactly as we did in the proof of Theorem 4.16. The system W contains

A disjoint copies of J, and A = w=-1 , where w = [(2a+n+2)/6]

3

Example 4.19. Corollary 3.10 guarantees the existence of a consistent

system W € {12n+8; 6n+4} . By Theorem 4,18, there exists an

*
inconsistent system W € {24n+18; 12n+9} which contains A = 4n+2
mutually disjoint copies of 3'3 . Consequently, there exists an

inconsistent system in {24n+18; 12n +9 -3k} for each k=0,1, **+,4n+2.

Theorem 4.20. Let n be an odd integer. Suppose there exists a system

%
W € {n; a}l . Then W can be embedded in a system W € {2n+3; a} .

*
W is consistent if and only if W 1is consistent.
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Proof. Let W be based on the set § = {ozl, Uyy *oo) ozn} .

Let S2 = {Bl, BZ’ ceny Bn+3-} such that S1 n S2 = ¢ .

Let & = {Fl’ Fos moms Fn+2} be any one-factorization of K o453 where
VR, L 3)= 8, « |
et G = F U F . Then G consists of disjoint cycles of even

n+1l n+2
length k 24 .

Corresponding to each cycle C of G given by Bi 3 Bi )t 51 » where
' k

i, =i, ,let J. ={(B, , B ,B8 ) |e=0,1, -+, k=-1}.
k 0 C it i, it+1

Set W, = U J
CSG

c -
Let Wl = {(Q'i; X, Y) l [x, y] € Fi’ i=1,2, -, n] .
%
Put W =WUW1 UWC .
* L
It is readily verified that W € {2n+3; a} , and that W is consistent

if and only if W is consistent.

Remark 9. W.D. Wallis [23] proved that if Gi and Gk

one -factors in an 5 then Gi U Gk consists of a cycle of length

are any two

Vik+1 and !E(dik—l) cycles of length 2vik , where dik is the

greatest common divisor of i-k and 2n-1 , and Vi =‘(2n—1)/dik .-

Clearly if & , in the proof of Theorem 4.20, is isomorphic to

Qn+3 s Wwe can always choose Fn+1 and Fn+2 so that Fn+1 U Fn+2

is a cycle of length n+3 . On the other hand, if n+2 is not a prime,

we can also choose Fn+1 and Fn+2 so that Fn+l U Fn+2' is not a
cycle of length n+3 . Consequently, the embedding system

*

W € {2n+3; a} need not be the same for every choice of F ,, and

Fn+2 :
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Analogous to a special case of Rosa's Theorem 2 [17] on

Steiner triple systems, we have the following:

Theorem 4.21. Let n = 3(mod 6) . Suppose there exists a system

‘ %*
W€ {n; al . Then W can be embedded in a system W € {2n+3; a+n+3}.
*
Furthermore, W contains %-+-1 disjoint copies of 33 » each disjoint

% .
from W . Consequently, W is consistent if W is consistent.

Proof. The method of construction used is the same as that for the
STS(2n+3) (see [17]).

Let W be based on the set 8, = {al, Uy "0, an} .
Let Sz = {Bl, Bz’ ) Bn-* 2 33 = {Yl’ Yz) 'YB} so that 81) Sz) S3 are
pairwise disjoint. Let W1 be a copy of 33 on’ S3 . Let
n-1
2

=3t+1 and let Q={(_, a) | a. -p_ =

m = r ,r=1,2,.-., m}

be an (A, m)-system or (B, m)-system according to whether m = 0 or

l(mod 4) or m=2 or 3(mod &) .
I

Let Q@ = Q= {(pyry1s Bp 4yl -
¥

- %
Let S, = S, =V , where V = {Ei 1= P, Or q.; (pr, q.) €0 1.

Clearly [s,”| =3 . Let s?_* = {8, l1=1,2,31.

Set W, = {(Yi, o 5 sji+k_1) | 1 =11, 2,3; k=1,2, ---, n},
W3 = LB Beige i1 Begaesn) | =12, oony 2041,
LARRIC Pop k=1, g 4ic1) [ B =12, —sms (o, 0 a1,
We = {(8, B, B8) [k=1,2, -, a},

where subscripts are reduced modulo n as necessary.

*
Finally, put W =W U W1 U W2 ] W3 U W4 U W5 . It can be readily verified

*
that W € {2n+3; a+n+3} . Since W3 contains %‘ pairwise disjoint
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triples it is clear that Wl U W3 U W5 contains %’ +1 disjoint

copies of 33 » and our theorem has been proved.

Corollary 4.22., If n = 3(mod 6) and there exists a system

*
W € {n; a} , then W can be embedded in a system W € {2n+3; a+3t},
where t=0,l,2,-~,%+1.

Proof. The result follows directly from Theorems 4.21 and 2.9.

Example 4.23. Let n = 3(mod 6) . Then Theorem 3.1 guarantees the

existence of {n; 0} . Also {n; n} exists. By Corollary 4.22, the
existence of {n; 0} and {n; n} together will imply the existence of

{2n+3; €} for a11 t =0, 3,6, c++, 2n+3 .

In [17], A. Rosa showed how an STS(n) can be embedded in an
STS(2n+7), provided n 2 7 . In our next theorem we give the analogue
for extended triple systems. We follow the construction for Steiner

triple systems which can be found in [14, 15].

Theorem 4.24. Let n 27 be an odd integer. Suppose there exists a

system W € {n; a} . Then W can be embedded in a system

%
W € {2n+7; a+n+7} which contains a subsystem Wi € {7; 7} disjoint

from W .

Proof. Let W be based on the set S1 = {al, Upy an} .

Let Sz = {Bl’ Bz’ ) Bn} ’ 53 = {Yl’ Yz) cey 'Y7.} 3 S]_’ Sz) SB
pairwise disjoint. Let W, € {7; 71 be based on S, -

=r,r=1,2, ***, m} be an

n-—1
Let m = and QQ = {(pr, qr) ‘ 9.-P

r

(A, m)-system or (B, m) -system according to whether m = 0 or 1(mod 4)

or m =2 or 3(mod 4).
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%
Let S, =85, -V where V={8 |i=p_ or q

2 9 s, =4, 5, «vcpm ;

r

(Pr’ qr) € Q} .
{ l i 1 2 M ° }
Then |SZ | = 7 ., Let S-2 = BJ i=1., ) ° ,;

i
Let W, = {(v,, o, Bji‘kk-l) |1 =1,2, -+, 73 k=1,2, -++, n},

W3 = {(cvk, pr+k,—1’ qu+k—1) | k=1,2, -+, n ;

r::l;., 5: Ttc,Mm; (pr’ qr) GQ}’

=
]

4 {(Bi’ Bi+1’ Bi+3) | i=1,2, «-+, n}, and

=
]

5 {(Bi, B;» By | 1 =1, 2, --+,.n} , where all subscripts are

reduced modulo n in the range {1, 2, *-+, n}
%*
Finally, put W =W U Wl U WZ ] W3 U W4 U W5 .
*
A straightforward verification shows that W € {2n+7; a+n+7}

It is clear that W, is disjoint from W .

Theorem 4.25. Let n =7 be an odd integer. Suppose there exists a

system W € {n; al . Then W can be embedded in a system

-
W € {2n+7; a+n+7 -3t} , where t =0, 1, ---, [%]'H'

: *
Proof. We extend the system W to the system W € {2n+7; a+n+7}

%
constructed in the proof of Theorem 4.24. Then we observe that W

contains a copy of 3'3 in W1 and [2—] disjoint copies of 3’3 based

*
on {Bl+4k’ 52+4k’ B4+4k} s k=0, 1, <, [;%]-1 . So W contains

[Z-'-]+1 mutually disjoint copies of 3’3 , which are disjoint from W .

The result follows immediately.

Example 4.26. (1) By Theorem 4.25, the existence of any W € {6n-3; 0}

%
implies the existence of a system W € {12n+1; 6n+4 -3t} , where

t=0,1, --.., [6n;3]+1 5 Pprovided n =22 . Similarly we have for
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%
nz2, We{n-3; n-3}=>W € {12n+1; 12n+1 -3t} , where

t =0>’ 1, ==+, [6_11_2_.3_].}.1

Similar results are obtained Qhen n=sl

or 5(mod 6) in Theorem &4.25.

It is worth noting that no assumption regarding the system W is made

so far.

%
(ii) If n =7 in the construction of W in

Theorem 4.24, then vW3 =¢ . If we choose W € {7; 7}, it is easily

*
checked that the embedding system W € {21; 21} contains 7 pairwise

disjoint copies of 33 , and is thus consistent.

Remark 10.

In what follows we shall not restrict our attention to any

particular (A, m)-system or (B, m)-system. For convenience, in our

next theorem we shall impose conditions on the system W € {n; al

similar to those required in Theorem 4.8. These conditions are not

absolutely necessary to obtain the end result in every case.

Theorem 4.27. Let n be an odd integer, n = 9

> n+1l

Suppose there exists

a system W € {n; a} with a =5 , and W contains at least

[(2a=n-1)/6] disjoint copies of 35 . Then W

can be embedded in a

* *
system W € {2n+7; a+n+7} such that W contains at least

[(a+n+1)/3] disjoint copies of 3,

Proof. Let W be based on the set S1 = {al, %

the set of idempotents of W .

I contains the set J = {al, ¥y s

W

I

contains [(2a=-n=~1)/6] disjoint copies of

-J

*
Let J = {(x, x, x) | x€J}.

I3

n
cey ah} where m = =/

s, 0.} . Let I be
n

Let us assume, without loss of generality,

5 ) and

on elements from
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Let Wi » 1 =1,2,3,4,5, be as in the proof of Theorem 4.24,
%*
and put W HWUW1 UW2 UW3UW4 UW5 .

*
Then W € {2n+47; a+n+7} .

Now Wl € {7; 71 contains at least one copy of 3'3 .

For any (A, m)-system or (B, m)-system, W3 contains the following

collection D of m = 2r disjoint triples:

D={(ak, BP +k_1’ qu+k_1) |k=1, 2, 't.’ m’}
J _
So J U W3 9] Wy contains m = g__z__l_ mutually disjoint copies of 33 .

. % -
Consequently, W contains at least [(2a-n-1)/6] +r_1_2__1_ +1= [(a+n+1)/3]

mutually disjoint copies of 8’3 , as required.

Theorem 4.28. Let n be an odd integer, n 2 9 . Suppose there exists a

system W € {n; al with a 2 E—;i , and W contains at least

[(2a=-n~-1)/6] disjoint copies of 3'3 . Then there exists a system

* %*
W € {2n-1_—7;_a+n+1} such that W contains at least [(a+n-2)/3]

disjoint copies of 3'3 .
Proof. 1If we choose W, € {7; 11 in the proof of Theorem &4.27, the

result follows immediately.

Corollary 4.29. Let n be an odd integer, n 2 9 ., Suppose there exists

a system W € {n; al with a 2~n;—1 , and W contains at least

[(2a-n-1)/6] disjoint copies of 33 . Then there exists a system

* .
W € {2n+7; a+n+7-3t}, where t =0, 1, ce+, [(a+n+4)/3]

Proof. The result follows directly from Theorems 4.25, 4.28 and 2.9
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Theorem 4.30., Let n be an odd integer, n = 7 . Suppose there exists

a system W € {n; a} . Then W can be embedded in a system

% %*
W € {2n-+6; a+3} such that W contains a subsystem Wl € {6; 3}

disjoint from W .

Proof. Let W be based on the set S1 = {al, Uy **° an} .
Let SZ = {81: BZ’ Tty ﬁn3 ’ S3 = {'Y]_J Yz) M) 'Y6} » where Sl’ 82’ 53
are pairwise disjoint.

€ {6; 31 be based on S

Let ,W 3 °

1 .
and Q = {(Pr: qr) ‘qr_Pr=r sy T =1, 2, oo, m} be

- n-
Let m =

an (A, m)-system or (B, m)-system according to whether m =0 or
l(mod 4) or m=2 or 3(mod &) .
%
Set 82 =-Sz -~V where V = {Bi | i= pf or q.,r= 4, 5, «c,m;
(Pr? qr € Q} .
*
Clearly |V| =n-7 and |5, | =7

%
Let S, ={g, |i1=1,2, --,7}.
2 Ji

Set W, = {(v,, o, Bji+k-l) |i=1,2, v+, 65 k= 1,2, -+, n},

1

Wy = {Cop, P+ =1, Pq_+x-1) k=12, om0 24,5, m;

(Pr} qr) €ql,
w4 = {(Bi’ Bi+1’ Bi+3) l i=1,2, ***y n} , and

W = {(Bj7+k_1, Bj7+k_1, o) | k=1,2, -+, n}, where the

subscripts are reduced modulo n in the range {1, 2, **+, n} .
% : :
Put W =W U W1 U W2 U W3 U W4 U W5 . It is readily verified that

%
W € {2n+6; a+3}, and our theorem is proved.




82.

Corollary 4.31. Let n be an odd integer, n = 7 . If there exists

a system W € {n; a} , then W can be embedded in a system

*
W € {2n+6; a} which contains a subsystem Wl € {6; 0} disjoint

from W .

Proof. The dorollary follows from the proof of Theorem 4.30 and

Lemma 2.8,

Remark 11. The subsystem W1 € {6; 3} in Theorem 4.30 is obviously

unique. We exhibited two systems in {6; 31 , one containing a copy of

85 and the other not containing a copy of 35 (see Remark 1 following
*

Theorem 2.3). As a result, the embedding system W € {2n+6; a+3} is

£
not unique. Further, W 1is consistent only if W1 contains a copy of

33 .

Theorem 4.32. Let n be an even integer, n 2 6 . Suppose there exists

a system' W € {n; a} . Then W can be embedded in a system
% n : ki3
W € {2n+8; a-+§"f4} such that W contains a subsystem W, € {7; 1

disjoint from W .

Proof. Let W be based on S1 = {al, Upsy =**s ah} .
Let Sz = {Bl) Bz) ) Bn+l} > SB = {Yl’ Yz’ '..J 'Y7’} 3 Sl) Sz’ SB
pairwise disjoint. Let W, € {7; 71 be based on Sy -

n
Let m = 5 and 0 = {(pr, qr) l 9,.7p. =¥ , r = 1, 2, *++, m} be an

(A, m) ~system or (B, m)-system according to whether m = 0 or 1(mod 4)

or m =2 or 3(mod &) .

Set Sz* =8, -V where V = {Bi | i= P, or q ,r= 4, 5, *°+, m;
(Pr, qr) €Ql .
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* % .
Then |82 | =7 . Let 5, = {Ej' fi=1,2, -, 7).

1
Set WZ = {('Yi: o BJ +k—1) ‘ i=1,2, «ec, 7' k=1, 2, =+, n},
i

)| k=1,2, «»+, n;3 r=4,5, " ,m;

' (Pr’ qr) € Q} )

Wy = oy Po +k -1 Pg_+k-1

4 {(Bi’ Bi+1, Bi+3) l i=1,2, -, n+1} )

=
]

=
0

5 {(Bji-'-n, Bji+n’ Yi) l i= l’ 2’ cee, 7} » and

=
]

{( ‘: B ’ ) 5 (B s B > B ) |r=4:5:"":m;
6 pr+n pr+n pr+n qr+n qr+n pr+n | :
(o, a) €0},
~ where subscripts are reduced modulo n+1 in the range
{1, 2, ==+, n+11} .
*
Finally, put W =W U W1 U W2 U W3 U W4,U W5 U W6 .

%* n
Then W € {2n+8; a-+§"F4} . The verification is direct.

4. Recursive construction of extended triple systems.

For a given positive integer n the integers a which satisfy
the necessary conditions for the existence of {n; a} will be called

admissible.

We shall apply the results of the previous section to show that,

for every positive integer n , {n; al exists for all admissible values
of a . Our method of proof will be inductive, and we refer to Section 4

of Chapter 2 for all the initial cases required for induction. We also

~ assume the existence of _{n; 0} for n = O(mod 3) , and {n; 1} for

n # O(mod 3) , established in Theorem 3.1.

Lemma 4.33. Let n =1 or 3(mod 6) , n 27 . There exists a system

W e {n; n} containing at least ELE—J disjoint copies of 33 .
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Proof. The statement is obviously true for n = 7, 9, 13, 15, and hence,
by Example 4.26 and Theorems 4.8 and 4.27, for n = 21, 25, 27.

Let n = 31 an:d assume the statement is true for all m<n ;

mz29 ,m=1 or 3(mod 6)

o
rh
=]

L}

1 or 9(mod 12) , then m = %(n=-7) =1 or 3(mod 6)

-Since 12 <m <n , there exists a system in {m; m} containing at least

[m;G] disjoint copies.of 33 . So by Theorem 4.27, there exists a

system W € {2m+7; 2n+7} = {n; n} containing at least [zm—--;l] = E‘;———Q]

disjoint copies of 3’3 .

If n=3 or 7(mod 12) , then m = %(n-1) =1 or 3(mod 6) .

i

Since 15 <m <n , there exists a system in {m; m} containing at least
El;—f-@] disjoint copies of 3'3 . By Theorem 4.8, there exists a system
WeE{2m+1; 2m+1} = {n; n} containing [zm—;--—l-;] = [%] > El;———G] disjoint

cbp:les of 33 . This proves our lemma.

Lemma 4.34. Let n = 5(mod 6) s 0 211 . There exists'a system

WE {n; n-41 containing at least [?;10] disjoint copies of 33 and

a copy of l.rs .

Proof. The statement is true for n = 11, 17 (see illustrative examples
of Chapter 2), and hence for n = 23, by Theorem 4.8.

Let n =229 and assume the statement is true for all m <n 3

Let n = 5(m6d 12) . Then m = %(n-7) = 5(mod 6)

Since 11 s m<n » there exists a system in {m; m-4} containing at

5 -
there exists a system W € {2m+7; 2m+3} = {n; n-4} such that W

least En;lO] disjoint copies of 33 and a copy of VU By Theorem 4.27,
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contains at least [2111;3] = [1:1;10] disjoint copies of 33 and a
copy of US
Let n = 11(mod 12). Then m = %¥(n-1) = 5(mod 6)

Since 14 < m <n , there exists a system in {mj m-4} containing at

3
there exists a system W 6 {Zm-kl 2m-3Y = {n; n-41 such that W

contains [%m %] [; L 1§} disjoint copies of 35 and a copy of

least En.— 10] disjoint copies of '3’ and a copy of 1;5 . By Theorem4%.8,

5 This completes the proof of the lemma.

Corollary 4.35. Let n = 4(mod 6) , n 2 10 . There exists a system

W € {n; g'— 1} containing a copy of X,
Proof. The result follows from the proof of Theorem 2.7 and Lemma 4 .34.

Remark 12. Corollary 4.35 can be pfoved by recursively applying

Theorems 4.11 and 4.32.

Theorem 4.36. Let n =21 be an odd integer. Then {n; al exists for

all admissible values of a .

Proof. The statement is certainly true for all odd n , 1 <n < 17 B

and n = 21  (see Chapter 2 and Example 4.26). By Theorem 3.1,
{n; 0 and {n; 3} exist for n = O(mod 3), and {n; 1} exists for

n # O(mod 3) . For the remainder of the proof we consider the following

cases. ' ;

Case 1. n = 3 or 7(mod 12) , n =15 .
Then n = 2m+1 , where m =1 or 3(mod 6) ,m27 . By

Lemma 4.33, there exists a system W € {m; m} containing at least
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S En;___ﬁ] disjoint copies of 3’3 . By Thebrem 4.8, W can be extended to
. . -
a consistent system W € {n; n} . So {n; al exists for all admissible

values of a , by Theorem 2.9,

Cagse 2. n =1 or 9(mod 12) , n =25 .

Then n = 2m+7 , where m =1 or 3(mod 6) ,m=29 . By
Lemma 4.33, there exists a systemy W € {m; m} containing at least E-n-g-é]
Vdisjo‘int‘copies of 3'3 . By Corollary 4.29, there exiéts a system |

% ' -
W € {n; n-3t} , where t =0, 1, *--, El3_—§-]

Case 3. n = 1l(mod 12) , n =23 .

Then n = 2m+1 , where m = 5(mod 6) , m =2 11 . By Lemma 4.34,‘

there exists a W € {m; m~41 containing at least En;lO] disjoint
copies of 33 . So by Theorem 4.8, there exists a consistent system

*
W €{n; n-4} . Hence f{n; a}l exists for all admissible values of a .

Case 4. n = 5(mod 12) , n = 29

Then n = 2m+7 , where m = 5(mod 6) , m = 11 . By Lemma 4.35;

there exists a W € {m; m~4} containing at least @;10] disjoint
. - ‘
copies of 3'3 . By Corollary 4.29, there exists a W € {n; n-4-3t},

where ¢t = 0, 1, *--, E‘;——Z-] . This cdmpletes the proof of Theorem 4.36.

Corollary 4.37. Let n = 2 be an even integer. Then {n; a} exists for

all admissible values of a .

Proof. The statement is true for all even n , 2 £ n < 16 (see examples in
Chapter 2). In what follows we shall apply Theorems 4.3, 4.30 and

Corollary 4.31, using the results of Theorem 4.36. It is clear that
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{n; 1:2_1_ } exists for n =0 or 2(mod 6) , and {n; g- -1 exists
n

for = 4(mod 6)

By Theorems 4.36 and 4.3, we have

1) W-e{6k+ 1; a}l, k=21; a=1, &4, , 6k+1 ,
%
=W € {12k+ 2; al, k 21; a=1,4, ---, 6k+1 3
2) W €{6k+ 3; al, k 20; a =0, 3, , 6k+3 ,
o, | _
=W € {12k+ 6; a}, k20; a =0, 3, -+, 6k+3 3

3) W €{6k+ 5 al, k 20; a =1, 4, ceey, 6k+1

%
=W € {12k+10; a}, k 20; a=1, 4, -+, 6k+1 .
By Theorems 4.36, 4.30 and Corollary 4.31, we have
4) W e{6k=- 3;a},k=22;a=0,3, ..., 6k-3 ,
.
2W € {12k; b}, k 2 2; b =0, 3, .-+, 6k ;.
5) W €{6k+ 1;a}, k13 a=1,4, «or, 6k+1 ,
% .
=W € {12k+ 8; b}, k =213 b =1, 4, **, 6k+4 ;
6) W e{6k-1; a}, k=2; a=1,4, ---, 6k=5 ,

* .
=W € {12k+ 4; b}, k 22; b =1, 4, -+, 6k~2 .

This completes the proof of Corollary 4.37.
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CHAPTER 5

Recursive methods for constructing consistent systems

l.v‘Introduction.

A totally symmetric quasigroup is a quasigroup satisfying the

identities x(xy) =y and yx)x =y .

A Steiner quasigroup is an idempotent quasigroup satlsfylng

the totally symmetric identities. It is known (see [8]; cf. also 2
that an extended triple system is algebraically a totally symmetrlc
quasigroup, and a Steiner triple system is algebralcally a Steiner
quasigroup. We shall say that an extended triple system (S, W) is
associated with a totally symmetric quasigroup (S; o) provided that
(a, »€) €W if and only if aob=c . In a similar manner, we
associate a Steiner triple system (8, T) with a Steiner quasigroup
(S, o) . |

In this chapter we shall construct consistent systems, using
the direct product and singular direct product of quasigroups. The
constructions given are recursive and require the use of a smalier
system on which we impose very little or no restrictions. We refer to
the examples given in Chapter 2 for all initial cases of induction. We
conclude with a remark on the use of tricovers. It will subsequently be
shown that the constructions in this chapter provide examples of systems

which are inequivalent to some previdusly given,
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2. Direct Products.

Let (Q, *) and (V, o) be totally symmetric quasigroups of

orders n and m , respectively. Let W = Q XV and define on W a

binary opératibn ® as follows:
P, VO®@,w) =(p*q,vow),p, g €Q v, w€EV.
Then it is readily verified that (W, ® is a totally symmetric

quasigroup of order mn, called the direct product of (Q, *) and

(V, o)

Let q be an idempotent of (Q, *) and v be an idempotent
of (V, o) . Then it is easily checked that
(1) (q, v) 1is an idempotent of (W, ®) ;
(2) (Q x {vl, ® is a sgbsystem of (W, ® isomorphic to (Q, *) ;
(3) ({q1 x Vv, ® 1is a subsystem of (W, 8» isoﬁorphic to (V, o)

Combinatorially we can state the followiné theorem (cf. [8, Theorem 2]).

o | . , B
Theorem 5.1. Suppose there exists a system Q € {n; r} based on Q .
. ,
Suppose there exists a system V € {m; s} based on V . Then there
: ' * ‘ %
exists a system W € {mn; rs} based on W =Q XV such that W

contains r disjoint copies of V' and s disjoint copies of Q .

3. S8ingular Direct Products.

In [18], A. Sade gave a construction for quasigroups which he

calls the singular direct product. More recently, C.C. Lindner

[9, 10, 11, 12] has given some genéralizations of this construction. Most
of the constructions in this chapter will be based on a special case of the

following generalized Singular direct product. of quasigroups. All
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quasigroups considered will be finite, and we use the notation of
Lindner. The results of this section may also be compared with

[8, Section 4], where the singular direct product was used to construct

examples of exteﬁded triple systems.
Let (Q, ® be any quasigroup and on the set Q define six
binary operations ®(1,2,3), ®(1,3,2) , ®(2,1,3) , ®(2,3,1),

®(3,1,2), ®(3,2,1) as follows:

a®b =c if and only if

a®(l,2,3)b=c ,
a®(l,3,2)c=b ,
b®(2,1,3)a=c ,
b ®(2,3,1)c=a ,
c®(3,1,2)a=b ,

c®(3,2,1)b=a .

The six (not necessarily distinct) quasigroups (Q, ® (i, j,k)) are

called the conjugates of (Q, ® [22]

Denote by (T, *) the Steiner quasigroup of order 3 where

T=1{1,2,3} . Let (V, © be any Steiner quasigroup and (V, t) the

asgsociated Steilner triple system. Let tl’ tz, .., t:r be the triples
of t . Then each (ti’ ® 1is a subquasigroup_of (V, ©) and is
isomorphic to (T, *) . Let @, be a fixed isombrphism of (;:i’ ©)
6ntd (T, *) . Let Q be a set and for each v in V 1let o(v) be

a binary operation on Q so that (Q, o(v)) 1is a totally symmetric
quasigroup. Further suppose that: P S Q and p o(v) q =p o(w) q for

‘all p, g €EP and all v, w € V and that (P, o(v)) is a subquasigroup
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of (Q, o(v)) . Let (P’ =Q-P, ® be any quasigroup. If p, q € P’
and v #w €V , by p ®(v,w, vOw)q is meant the element

P ®(vai,wai,vozi* wozi)q where (v, w, vOw) =t, . On the set

PU @' XV) define the binary operation @ by means of the following

generalized singular direct product:

(1) p®g=po(v) g=po(w) q, if p, q €P ;

(2) p®(q, v) =(p o(v) q, V), if p €P, q€P’, vEV;

3) (q, v) ®p = (q o(v) p, V), if p €P, q € P', vev;

(4) (p, v) ® (q, v) =p o(v) q, if p o(v) g €P, and
=(o(v) ¢, v), if p o(v) q €P’ ;
3) (@, v ® (q, w) =p (v, w, VGWSq: vOw), v £w .

Lindner denotes the quasigroup constructed by V(®) XQ(o(v), P, P’ ®(u, v, w)) .

Remark 13. (1) The operations o(v) are not necessarily related other

than agreeing on P , unlike in [18] where o(v) = o(w) forall v,w eV,

(1i1) (V, ©® and (Q, o(v)) are both totally symmetric, but

the quasigroup (P', ® 1is not necessarily totally symmetric,

(1i1) The single operator ® may be replaced by a set of
operators ®i’ i= 1,2, --+, r, associated with each triple ti €t .

Further, ®l, ®2, ceey, ®r are not necessarily related (see [12])

The results of Lindner [9, 10, 11, 12] enable us to state the

following lemma (see also [13]) :
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Lemma 5.2. The singular direct product
W=PU@E' XV, d =V(©) XQqlo(v), P, P/ ®(u, v,w)) defined

previously is a totally symmetric quasigroup which contains at least

one’ isomorphic copy of each of the quasigroups (Q, o(v)) and at
least as many disjoint copies of (V, ©) as there are elements in P’
which are idempotent under ® and under every o(v) . If (Q, o(v))

is a Steinervquasigroup, then (W, ®) is a Steiner quasigroup. In

general, we have |W| = v(q - p) +p , where |V| = v, \Q‘ = q and

Il =» .
Combinatorially we can state the following theorem

(cf. [8, Theorem 7]) .

%
Theorem 5.3. Suppose there exists a system V € {v; v} based on V .

Suppose there exists a system Q € {q; r}l based on Q and containing
a subsystem P € {p; t}? based on P . If (' =q- P, ® is any

quasigroup having )\ idempotents in common with Q* ,Athen there exists
a system W* € {v(a-p) +p; (r-t)v+t} on W=P U (P' X'V) such that

* * *
W contains at least v copies of Q and \ disjoint copies of V

Remark 14. It is worth noting that the hypothesis of Theorem 5.3 is
more general than that given in [8, Theorem 7], where the quasigroup
(®’, ® 1is assumed to be totally symmetric. Furthermore, Theorem 5.3

itself can be generalized (see a1so [8, Theorem 8]) . If in place of

* *

Q € {q; r} we assume the existence of Qi € {q; ri} s 1 =1,2,°, v,
%* * %* *

such that Q Q5 Q, have a common subsystem P € {p; t},

then in this case we are guaranteed the existence of a systen

, %
W € {v(q- p)-+p, t+ Z(r -—t)} such that W contains A disjoint
i=] .
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* * * %
coples of V and a copy of each of Q1 B Q2 s *T Yy Qv . However,
in most of what follows we shdll need only & simple application of

*
Theorem 5.3, invariably choosing V € {3; 3} .

4., Construction of consistent systems.

In Chapter 2, we have given some examples of consistent
systems in {n; a} for values of n < 17 . In what follows we shall
apply Theorems 5.1 and 5.3 recursively to construct consistent systems

in {n; al for n =18 .

Theorem 5.4. Let n be a positive integer. Suppose there exists a

* :
~system Q € {n; rl . Then there exists a consistent system

% % %
W € {3n; 3r} such that W contains 3 disjoint copies of Q

Proof. Let Q* € {n; r} be based on Q , and choose V* € {3; 31
based on V in Theorem 5.1. By Theorem 5.1, there exists a system

W* € {3n; 3r} based.on W = QXV such that W* contains r disjoint
copies of V* and 3 disjoint copies of Q* . This completes the proof

of the theorem.

Example 5.5. Let n be a positive integer. Then, by Theorem 5.4,

% *
(1) Q € {6n; 3n} = consistent W € {18n; 9n} containing

*
3 disjoint copies of Q ;

* %
(ii) Q € {6n+1; 6n+1} = consistent W € {18n+3; 18n+3) containing

1

3 disjoint copies of Q* ;

* *
(1ii) Q € {6n+2; 3n+1} > consistent W € {18n+6; 9n+3} containing

%
3 disjoint copies of Q ;
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% *
(1v) Q € {6n+3; én+3) = consistent W € {18n+9; 18n+9} containing

*
3 disjoint copies of Q ;

U * _’
(v) Qx € {6n+4; 3n+11 = consistent W € {18n+12; 9n + 3} containing

k3
3 disjoint copies of Q ;

* %
(vl) Qc € {én+5; 6n+1} = consistent W ¢ {18n+15; 18n +3} containing

*
3 disjoint copies of Q‘ .

Theorem 5.6. Let n be a positive integer. If there exists a system

&

Q‘ € {6n+4; 3n+1} containing a copy of }64 , then there exists a
%

consistent system W € {18n+12; 9n+6} containing a subsystem

%
W€ {125 6} .

%
Proof. Let Q € {6n+4; 3n+1} be based on the set Q={1,2, .-, 6n+4}
*
such that 1, 5, 6, --+, 3n+4 are the idempotents of Q . Let
% % *
P € {4; 1} be based on P = {1, 2, 3, 4} so that P € Q . Let
*
V. € {3; 3} be based on V = {1, 2,3} . Let (Q, %) and (V, o) be
3 *
the quasigroups associated with Q’ and V , respectively, and consider
*
the direct product (W = QXV, ® . Let W be the triple system

*
associated with (W, ® . Then it is clear that W ¢ {18n+12; 9n+3}

and W contains 3n disjoint copies of 3'3 on sets
*
s, ={(+4, 3 | 1=1,2,3},1=1,2, -.., 3n . Further, W contains

Jede
a subsystem W € {12; 3} based on the set S=[(i, i) li==1, 2,3,4;35=1,2,3}.

¥k
Let W € {12; 6} be a consistent system based on S . Finally, we
* * k% Foke * *
put W =W -W ) U W . Then W € {18n+12; 9n+6} and W contains

3n+2 disjoint copies of 33 > which completes the proof of the theorem.
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Tﬁeorem 5.7. Let n be a positive integer. If there exists a system
%
Q € {6n+5; én+1} containing a copy of 'Us , then there exists a

*
consistent system W € {18n+15; 18n+15} containing a subsystem

v € {155 15} .

Proof. The proof is very similar to that of Theorem 5.6. We let

% *

V' € {3; 3} be based on V = {1, 2,3} . Let Q € {6n+5; 6n+1} be
based on Q = {1, 2, *++, 6n+5} . Then via the direct product

ki3 ‘ %
(QXV, ®  we obtain a W € {18n+15; 18n+3} such that W contains

6n disjoint copies of 35 which are mutually disjoint from a subsystem
*k Foke

W o€ {15; 3} . By removing W and replacing it with a consistent
Kok % * k% Foke

W € {15; 15} , we obtain W = W -w yuumw such that

.

b € {18n+15; 18n+15} contains 6n+5 mutually disjoint copies of

35 » which proves the theorem.

Theorem 5.8. Let n be a positive integer. Suppose there exists a
*
system Q € {n; al with a =1 . Then there exists a consistent
% *
system W € {3n=-2; 3a-2} containing at least 3 copies of Q . If

%
n is even, then W contains a copy of M4 .

* %
Proof., Let V € {3; 31 . Let Q € {n; al be based on Q . Since
% *
a2l ,Q containsa P € {1; 1} on P = {i} for some i € Q.

Let (P’ = Q-P, ® be any idempotent quasigroup. Clearly (P, ®)

*
contains a-1 idempotents in common with Q . By Theorem 5.3,
* *
there exists a system W € {3n-2; 3a-2} such that W contains a-1
* * *
disjoint copies of V  and at least 3 copies of Q . So W is

' *
consistent. If n is even, we further observe that Q contains a
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ok *
subsystem Q € {2 1} which contains P , and the result follows

*
from the construction of W .

Example 5.9. Let n be a positive integer. Then, by Theorem 5.8,

* * v
(1) Q € {6n; 3n} = consistent W € {18n-2; 9n ~ 21 containing

%
3 copies of Q and a copy of HZ 5

% 3
(11) Q € {6n+1; 6n+1} = consistent W € {18n+1; 18n+1) containing

*
3 copies of Q ;

% ' %*
(ii1) Q € {6n+2; 3n+1} = consistent W ¢ {18n+4; 9n+1} containing

5
3 copies of Q and a copy of M4 ;

* %*
(iv) Q7 € {6n+3; 6n+3} = consistent W € {18n+7; 18n+7]} containing

*
3 copies of Q ;

* *
(v) Q € {6n+4; 3n+1}= consistent W € {18n+10; 9n+1} containing

%
3 copies of Q and a copy of X, ;

% %
(vi) Q € {6n+5; 6n+1} > consistent W € {18n+13; 18n+1} containing

*
3 copies of Q .

Lemma 5.10. If n = 4(mod 6) , there exists an idempotent quasigroup of

order n containing a subquasigroup of order 4 .

Proof. 1In what follows let (Q4, *) and (Q4, *) be the quasigroups

given by the accompanying tables.
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1 2 3 4 |1 2 3 4
1123 |4 Lf1(3]4]z2
212111413 2 1412 11]}3
31314112 31214 (13¢f1
414 (3]21]1 41341214
Qs ) (Qs *)

Let 'n = 6k+4 . Let S be the set {0, 1, 2, -+, 6k+3} . Let

(So,'T) be an STS(6k+3) where S0 = S§-{0} and T contains a

collection A of 2k+1 pairwise disjoint triples covering S0
(see for example the proof of Theorem 3.2). Let T* = {(x, x, 0) |x€S}
and put W =T U T" . Then W € {6k+4; 1} based on S . Since each
triple of A gives rise to a copy of }64 in W, W contains 2k +1
copies of }ﬂ4 palrwise intersecting in (0, YO, 0) . Let (S, ® be
the quasigroup associated with W . Then (5, © contains 2k+1
coples of (Q4, *) pairwise intersecting in the idempotent 0 . Let
(8, ® be the result of removing the 2k +1 copies of ‘(Q4, *) and

replacing them with 2k+1 copies of (Q4, *) pairwise intersecting in

the idempotent O . Then it is clear that (S, ® is an idempotent
quasigroup of order n = 6k+4, and (S, ® contains a subquasigroup of

order &4 .

Remark 15. The quasigroup (S, ® constructed in the proof of Lemma 5.10

satisfies x2 = x, x(yx) =y

As an example, let n=10. S={O,1,2,3,4,5,6,7,8,9}. Let

(so, T) be an STS(9) where T = {(1, 2, 3), (4,5,6), (7,8,9),
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(1J 4) 7)) (1J 5)9)) (1)6’8)) (2, 4) 9)) (2.’ 5’ 8)) (21 6)7)’ (3) 4’8)’
(3,5,7), (3,6,9}, A=1{(1,2,3), (4,5,6), (7,8,9} .
R 0 1 2 3 4 5 6 7 8 9

(S, ® is given by the
Ogo0 |3 |1]2)6(i4]|5]91}171¢}8

table at right.

Theorem 5.11. Let n be a positive integer. If there exists a system

* .

Q € {6n+5; 6n+1} containing a copy of Us , then there exists a
“ .

consistent system W € {18n+13; 18n+13} containing a subsystem

w” e f13; 137 .

: *
Proof. Let Q € {6n+5; 6n+1} be based on the set Q= {1,2,+++,6n+5}
% * »
s0 that Q contains P1 € {5; 1} based on P1 ={1,2,3,4,5} , where
the element 1 1is idempotent. Then 1,6,7, :+,6n+5 are idempotents
* * *
of Q and so Q contains a subsystem P € {15 1} based on P = {11 .
*
Let V € {3; 31 bebased on V= {1,2,3} . Let (¢’ = Q-P, ® be an
idempotent quasigroup of order 6n+4 containing a subquasigroup of order

4 based on the set {2, 3, 4, 5} .
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Let (V, ©, (Q, o(v)), (P, o(v)) be the quasigroups
* kK
agsociated with V , Q , P , respectively, and consider the singular
direct product

W, ® = V(® X Qo(v), P, P’ ®(u,v,w)) .

*
Let W be the extended triple system associated with (W, &) . Then
* ' * Fok
W € {18n+13; 18n+1} , and W contains a subsystem W € {13; 1},

based on the set S = {(i, j) | i =2,3,4,5; j=1,2, 33U {1}, and

6n disjoint copies of 33 , based on sets Si = {(i+5, j) | j=1, 2,3},

e

{i=1,2,3, »++, 6n . Let W be a consistent system in {13; 13}
% 3 Jok Xk

based on S . Finally, put W = W =W ) UW . Then

%

W € {18n+13; 18n+13} contains 6n+4 mitually disjoint copies of

35 , and this completes the proof of the theorem.

Theorem 5.12. Let n be a positive integer. Suppose there exists a

system Q € {6n+4; 3n+1} containing a copy of M& . Then

*
(1) there exists a consistent system Uﬁ € {18n+10; 9n+4} containing

' %*
a copy of X, and a subsystem Uﬁ* € {10; 41 ;

*
(11) there exists a consistent system Ub € {18n+11; 18n+7) containing

%*
a subsystem W, * ¢ {11; 71 .

%
Proof. (1) Let Q € {6n+4; 3n+11 be based on the set

*

*
Q= {1, 2, *++, 6n+41 so that Q contains a copy Pl of X

* .
P1 = {1, 2, 3, 4} . Assume the idempotents of Q ‘are 1,5,6, *+-,3n+4 .

on

* *
It is clear that P, contains a P € f1; 13 on P = {1} . Let

* ’
v o€ {3; 31 on V = {1, 2,3} . Let (P’ =Q-P, ® be a Steiner

quasigroup containing a subquasigroup of order 3 om {2, 3, 4}
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Let (V, ©), (Q, o(v)), (P, o(v)) be quasigroups associated with
L T
V., Q, P, respectively. Consider the singular direct product

(W, & =V(®) X Q(o(v), P, P' ®(u, v, w)) .

" .
Let W be the triple system associated with (W, ®) . Then

% % %k

W € {18n+10; 9n+1) . W contains a subsystem W € {10; 1} based
on 8={1YU {4, 5 |1=2,3,4; j=1,2,3}, and 3n mutually

disjoint copiles of 3'3 on sets Si = {(i+4, j) | i=1,2,3}, i=1,2,--+,3n.

ek %%
Let UJl € {10; 41 be based on S such that \Dl contains a copy of

* * k% ok .
}64 and a copy of 3'3 . Put wl = W -W )Y U lbl . Then it is readily

*
verified that lbl € {18n +10; 9n+41} contains a copy of }64 and 3n+1

mutually disjoint copies of 3'3 » completing the proof of (i)

%
(ii) The system lbl € {18n+10; 9n +41 constructed in part (i)
is based on the set W = {1} U {(4, j) | i =2,3, -.., 6n+4 ; j=1,2,3]}.
Now let W, =W U {o} , where ® is a new element. Let

* *
W, € {18n+11; 180 +7) , based on W, ; be derived from lblc using the

L%
construction given in the proof of Theorem 2.7. Then Wz contains a subsystem

ook %
w, “6{11; 7} based on the set § ={1,}U{(i, i) |i=2,‘3,4-; i=1,2,3%.

%k

k%
Wz contains Lfs and 1s thus not consistent. Let wz be a consistent

L * * * o ek
system in {11; 7} based on § and put UJZ =W, =W, ) U W,

. ‘
then UJ; € {18n+11; 18n +71 , based on W2 » contains 2 disjoint copies

*k
of 3'3 in UJZ in addition to 6n mutually disjoint copies of 3, on

3

- %
the sets Si = {(1+4, j) l i=1,2,3}Y,i=1,2, -+, 6n .

%
Thus UJ2 is consistent, and the proof of the theorem is complete.
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Theorem 5.13. Let n be a positive integer. Suppose there exists a

* ,
system Q € {6n; 3n} . Then there exists a consistent system

%
W ¢ {18n-1; 18n -5} containing a copy of b's .

Proof. We shall first construct a consistent system W* €{18n-2; 9n-21
containing a copy of HL,. as follows. Let Q* € {6n; 3n} be based on
Q=1{1,2, ---, 6n} . Assume the idempotents of Q* are 1,3,4, " *,3n+1
and Q* contains a subsystem Q** € {2; 1} on the set {1, 2} . Clearly,
Q”c contains a P* €{1; 1} on P = {11 . Let Vo€ {3; 31 be based on

v =1{1,2,3}. Let (P' = Q-P, ® be any idempotent quasigroup. Let

w, 9, (Q, o(v)), (P, o(v)) be the quasigroups associated with V*, Q*,
P*, respectively. Consider the singular direct product

W, ® =v(©) X Q(o(v), P, p’ ®(u,v,w)) . Let W* be the triple system
associated with (W, ® . Then a straightforward verification shows

W€ {18n-2; 9n -2} contains a copy of }{4 on the set

s={1tu{d, » |1=2;3=1,2,3}. In addition, W  contains 3n-1
mutually disjoint copies. of 33 on sets §, .= {(i+2,39) |j=1, 2,A3} s

i=1,2, «+«, 3n-1 . So W is also consistent. Now let us add a new
element o to W= {1YU {(i, 3) |i=2,3,...,6n;j = 1,2,31 .

Put W' ={o} UW . Let W € {18n-1; 18n-5} , based on W’ , be the
system derived from W* via. the construction given in Theorem 2.7. Then 117*
contains a copy of Us on the set S*={1, {(i,5) ] 1=2; j=1,2,3) .
Also UJ* contains 6n-2 mutually disjoint copies of 3'3 on sets

31* = {(1+2, j) I j=1,2,3},1=1,2, -, 6n-2 . Hence % is

consistent and our theorem is proved.
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Theorem 5.14. Let n be a positive intéger. Suppose there exists a

*
system Q € {6n+2; 3n+1} . Then there exists a consistent system

4
W o€ {18n +5; 18n+1} containing a copy of US

Proof. The proof of this theorem is identical to that given in

Theorem 5.13 and the details are omitted.

Theorem 5.15. Let n be a positive integer. Suppose there exists a

%
system Q € {6n+5; 6n+1} containing a copy of US . Then there
*
exists a consistent system W € {18n+5; 18n+1} containing 3 copies

%
of Q

Proof. Let P € {5; 1} and assume = Q* € {n+5; 6n+11

Let V. € {3; 31 be based on V , and assume Q* and P* are based

on Q and P , respectively. Let (P’ = Q-P, ® be any idempotent
quasigroup. Then (P', ® has 6n idempotents in common with Q*

By Theorem 5.3, there exists a system W% € {18n +5; 18n+1}1 containing
at least 3 copies of Q* and 6n disjoint copies of V* s> which completes

the proof of the theorem.

Similarly, one can prove

Theorem 5.16. Let n be a positive integer. Suppose there exists a

%*
system Q € {6n+4; 3n+1} containing a copy of }64 . Then there exists

% *
a consistent system W € {18n+4; 9n+1} containing 3 copies of Q .

Theorem 5.17. Let n = 2 be an even integer. 1If there exists a system

*
Q € {n; a} with a =1 » then there exists a consistent system

Ye %
W € {3n-4; 3a-2)} containing 3 copies of Q
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*
Proof., Since n is even and a =1 , Q € {n; al contains a
* % *
subsystem P € {2; 1} . Let Q and P be based on Q and P ,

respectively. Let (P’ = Q=P, ® be aﬁy idempotent quasigroup. Let

% ’ :

V' € {3; 3] be based on V . By Theorem 5.3, there exists a system
% * *
W € {3n-4; 3a-2} such that W contains at least 3 copies of Q

*
and a-1 disjoint copies of V , which proves the theorem.

Example 5.18. Let n be any positive integer. Then, by Theorem 5.17,

, %
(1) Q € {6n; 3n} = consistent W*€{18n—4; 9n - 21 containing

*
3 copies of Q ;

% *
(11) Q € {6n+2; 3n+13} = consistent W €{18n+23; 9n+1} containing

*
3 copies of Q ;

% . *
(11i) Q € {6n+4; 3n+1} = consistent W €{18n+8; 9n+1} containing

*
3 coples of Q .

Theorem 5.19. Let n be a positive integer. Suppose there exists a

%
gystem Q € {6n+4; 3n+1} containing a copy of 3'64 . Then there exists

*
a consistent system W € {18n+8; 9n+4} containing a subsystem

B e (8; 4 .

%
Proof. Let Q € {6n+4; 3n+1} be based on the set Q={1,2, -+, 6n+4}

* %* *
and assume Pl & Q where Pl is a copy of }ﬂ4 on P1={1, 2,3,4%.

* %
Let the idempotents of Q be 1, 5, 6, ++-, 3n+4 . Clearly, Q = contains
* %
a subsystem P € {2; 1} on P = {1, 2} . Let V € {3; 3} be based on
v={1,2,3V. Let (V, ®, (Q, o(v)), (P, o(v)) be the quasigroups

* % %
associated with V , Q and P , respectively. Let (P’ = Q-P, & be
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the quasigroup associated with an extended triple system
W' € {6n+2; 3n+1} based on P’ in which 4, 5, 6, +-+, 3n+4 are

idempotents and the triple (3,3,4) is contained in W’ . Then

(P', ® has 3n idempotents in common with (Q, o(v)) . Comnsider the
singular direct product (W,®) = V(O) X Q(o(v), P, P’ ®(u,v,w)) . Let
%
W  be the triple system associated with (W, ® . Then
% ' %* ok
W € {18n+8; 9n+11 . Further, W contains a subsystem W € {8; 1}

on 8§ ={1,2YU0 {4, i) |1=3,4; j=1, 2, 31 and 3n mutually

disjoint copies of 33 on the sets Si ={(i+4, j) |j =1,2,3},
Fede *%
i=1,2, +++, 3n . Let W € {8; 4} be based on S so that W
contains a copy of 33 .
* * _kk Kl

Put W = (W -W ') UW " . Then it is readily verified that
*
W € {18n+8; 9n+41 contains 3n+1 mutually disjoint copies of 33 3

and so the proof of the theorem is complete.

Summarizing some of the results of this section we have proved

inductively

Theorem 5.20. Let n 2= 18 be an integer. Then

(1) if n =1 or 3(mod 6) > then there exists a consistent system

in  {n; n} containing a subsystem on m elements, where 3 <m<n ;

(2) 1f n =0 or 2(mod 6) » then there exists a consistent system

n
in {n; E} containing a subsystem on m elements, where 3 <m<n H

(3) if = 4(mod 6) , then there exists a consistent system in

n
)
2

{n; -1} containing a copy of HZ ;
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(4) if n =5 or 17(mod 18) , then there exists a consistent system

in {n; n-41 containing a copy of US ;

(5) if n = 11(mod 18) , then there exists a consistent system in

{n; n-4} containing a subsystem in {11; 7} .

By Theorem 2.9, the result of Theorem 5.20 is sufficient to
guarantee the existence of a consistent system in {n; a} for every

Integer n = 18 and every admissible value of a .

5. The use of Tricovers.

The following notion of tricover may be found in [4]

Let Al’ Az, A3 be three mutually disjoint nonempty sets, each

containing the same number n of elements.

Let T be a set of subsets of A1 U A2 U A3 such that

(1) each element of T 1is a triple of the form (al, ay, a3) whete

a, €4, ,1=1,2,3;

(i1) all pairs of elements of A, U A2 U A3 not belonging to the same

1

Ai belong to exactly one element of T .

Then T 1is called a tricover for the system (Al’ Ay, A3)

A tricover exists for every system (Al, Az, A3) . For let

A= {5, | 3=1,2, -«-,n} ,i=1,2,3. Then it is readily checked
that

T={(1], ips ky) |1 £4,5,k €n; i+3j+k = OCmod n)} is a

tricover for (Al’ A2, A3)
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The object of this section is to illustrate how tricovers can
be used in the construction of extended triple systems. The role which
the tricover plays is similar to that of the quasigroup (P', ®) in the
singular direct product defined in the third section. We shall confine
ourselves to only one illustrative example, but it is worth noting that
most of the results in the previous section can be obtained using

tricovers.

Example 5.21. In Theorem 5.13 we have shown that the existence of

| {6n; 3n} implies the existence of a consistent system in {18n-1;18n-—5}

containing US - In this example we shall assume the existence of a system

Q* € {6n-F1; 6n-+l} and establish the existence of a consistent system

W* € {18n-~1; 18n -5} containing US .

Let Q* € {n+1; 6n+1) be based on the set

Q = ® 5 %oy 1, 2, -+-, 6n~1} so that (ml, ®y s 1) belongs to Q*

Let A = {ki |k =1,2, -+, 6n=1}; i =1, 2, 3.

Let Ai* = Ai 0] {wl, mé} and W, € {én+1; 6n+1} be based on Ai* so

that apart from subscripts each Wi, i= 1, 2, 3, 1is fhe identical copy

of Q* - In particular, note that (“i’ 2, 5 11) belongs to Wi,i.N1, 2,3.

Let T = {(11, Jys k) | 1 <41, 5, k <6n-1; i+j = 2k(mod 6n ~1)}

be a tricover for (Al’ AZ’ A3)

Let V' Loy = @)y (s 0 @), (g, 15 1), (135 135 150 (3515, 1),
1 20 1) (s @0 1)y (o, =5 19, (1, 1,, 1]

Clearly V* is contained in W1 U W2 U W3 .

bet Vo= lops oy @)y (o5 =, 1), (g 15 1), (s 1y, 1), (14,15, ),
(wl, 11, 13), (wl, @y 12)} . Then V is a copy of U5 .

% %
Put W = ((W1 U W2 U Ws)-V JUVUT . It is readily verified that
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* *
W € {18n-1; 18n~5} and W contains 6n -2 mutually disjoint

copies of 33 on the sets 8 = {(k-i-l)i | i=1, 2, 31,

k=1, 2,

i)

6n -2

*
Consequently, W

is consistent and contains

b

5 -
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CHAPTER 6

Non -isomorphic systems in {n; al

1. Introduction.

% %
Let (S, W) and (8 , W) be two extended triple systems.
%*

* %
An isomorphism from (S, W) onto (S , W) 1is a bijection o : S =+ 38
%* * %
such that (Wa =W . If (S, W) and (S , W ) are isomorphic, then

v they necessarily belong to the same class {n; al and we simply say the

*
systems W and W are isomorphic in {n; a}l .

The main purpose of this chapter is to show that, with a few
exceptions to be found in Section 3, there exist at least two non-
isomorphic systems in {n; a} for a given n and a for which {n; a}
exists. Section 3 is devoted to examples of non-isomorphic systems in
{n; al for values of n <11 . The main result is obtained in Section &
and is based almost entirelf on the constructions given in the previous
chapters. In Section 5 we give a simple application of the singular
direct product. Finally, in Section 6 the thesis is concluded with some

remarks and problems.

2. Preliminaries.

*
Suppose W and W are two non-isomorphic systems in {n; al

each containing at least t mutually disjoint copies of 33 . Further
3
suppose W and w‘ do not contain a copy of 36 . Let Wk and wk*

‘ *
be, respectively, the systems derived from W and W by removing k
of the t mutually disjoint copies of 33 and appropriately replacing

them with k mutually disjoint copies of 3b . Then Wk and Wk*

belong to {n; a—3k} . We may also claim that Wk and Wk* are non-




isomorphic systems. For suppose there exists an isomorphism from

*
onto Wk . Then such an isomorphism must map the
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e

k mutually disjoint

copies of J, 1in Wk onto the k mutually disjoint copies of 36 in

0

k

contrary to what we have assumed.

% . %
W, . This immediately gives rise to an isomorphism from W onto W ,

We now state the following basic

lemma that will be applied in most of the constructions given in this

chapter,

Lemma 6.1. If there exist two non-isomorphic systems in {n; al each

containing at least t mutually disjoint copies of 35 and no copy of

0

non-isomorphic systems in {n; a -3k}

disjoint copiles of 35 and k mutually disjoint copies of 36 .

3. Non-isomorphic systems in

3y » then, for every k € {1, 2, ..

{n; al, 1 <n <11

For each class

{n; al , where

-, t} , there exist at least two

each containing t-k mutually

1 <n <11, we shall list a

representative. In cases where there are non-isomorphic systems in

{n; a} we give at least two examples. It is instantly seen that {1; 1},
{25 11, {3; 03, {3; 31 have a unique representation. Apart from

isomorphism, there is only one
and {9; 91 are uniquely represented.
manipulation, it is not unduly difficult to show that

{7; 1}, {7; 43, {8; 4} and {9; 61 are also uniquely represented. Apart

SIS(n) for n =7 or 9 . So

{7; n

Using Lemma 2.1 and a bit of

{5; 1}, {6; 01,

from these exceptions, there exist at least two non -isomorphic systems

in {n; a} for n < 11

and all values of

a

for which {n; a}

exists.




Class

{1;
{2
{3;
{3;

{4;

{5;

{6;

{6;

{7;

1}

1}

0}

3}

1}

1}

0}

3}

1}

{7; 43

(1,

- (1,

(1,

(1,

W.:

1

W2:

1,

a1,

(1,

(1,

!

(1,

7,

(1,
(7,
(3,
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Example
1,1).

1,1), (2,2,1).
1,2), (2,2,3), (3,3,1).
1,1), (2,2,2), (3,3,3), (1,2,3).

(1’1’1)’ (2’ 2’ 1)) (3, 3)1), (4’4) 1)) (2) 3’4)'

(1,1,1), (2,2,1), (3,3,2), (4,4,2), (1,3,4).

1,1), (2,2,3), (3,3,4), (4,4,5), (5,5,2), (1,2,4),

3, 5).

1:2>: (2: 2: 3): (3: 3: 1>’ (4: 4, 1): (5) 5: 2): (6) 6', 3):

5,6), (2,4,6), (3,4,5).

(1,1,1), (2,2,2), (3,3,3), (4,4,1), (5,5,2),

(6,6,3), (1,2,3), (1,5,6), (2,4,6), (3,4,5).

(1,1,1), (2,2,2), (6,6,6), (4,4,1), (5,5,2),
(3,3,6), (1,2,3), (1,5,6), (2,4,6), (3,4,5).
contains a copy of 3, , while W, does not contain a

3 2
copy of 33.

1,1), (2,2,3), (3,3,4), (4,4,5), (5,5,6), (6,6,7),

7,2), (1,2,5), (1,3,6), (1,4,7), (2,4,6), (3,5,7).

1,1), (2,2,2), (3,3,3), (4,4,4), (5,5,6), (6,6,7),
7’5), (1) ZJ 5), (1) 3’ 6)) (1’4’ 7)) (2) 3)7)} (2’ 4, 6))
4,5).




Class

{7; 1

{8; 1}

{8; 4}

{9; 0}

(1,

@,

111.

Example
1,1), (2,2,2), (3,3,3), (4,4,4), (5,5,5), (6,6,6),

7,7, 1,2,4), 1,3,7, (1,5,6), (2,3,5), (2,6,7),

(3,4,6), (4,5,7).

Wl:

(8’ 818), (1’ 1)8)1 (2) 2,8)J (3’ 3)8)J (1) 2’ 3)J
(4J 4’8)’ (5’ 5}8)5 (6) 6’ 8)’ (7J7’8)1 (1’41 7))

(1,5,6), (2,4,5), (2,6,7), (3,4,6), (3,5,7).

(8,8,8), (1,1,8), (2,2,1), (3,3,1), (2,3,8),
(4,4,8), (5,5,8), (6,6,8), (7,7,8), (1,4,7),

(1,5,6), (2,4,5), (2,6,7), (3,4,6), (3,5,7).

(8,‘8,8), (1,1,2), (2,2,3), (3,3,1), (7,7,8),
(5,5,1), (4,4,2), (6,6,3), (1,4,7), (1,6,8),
(2,5,8), (2,6,7), (3,4,8), (3,5,7), (4,5,6).
contains a copy of ¥, , but does not contain a copy of

%
contains a copy of KZP . W1 and W2 do not contain 30 .

contains a copy of 3’0 » but does not contain a copy of

*

¥, or 3{4

4

(1,1,1), (2,2,2), (3,3,3), (4,4,4), (5,5,1), (6,6,2),

(7,7,3), (8,8,4), (1,2,3), (1,4,7), (1,6,8), (2,4,5),

Wl:

(2,7,8), (3,4,6), (3,5,8), (5,6,7).

(lJ 1}2)) (2’ 2)3)’ (3’ 3)4)’ (4)4, 5)) (5} 5’ 6)’
(6,6,7), (7,7,8), (8,8,9), (9,9,1), (1,3,7),
(1,4,6), (1,5,8), (2,4,8), (2,5,7), (2,6,9),

(3,5,9), (3,6,8), (4,7,9).

}C*
4




Class

{9; 0}

{9; 3}

(1,1,2),
6,6,7),
(1,5,9,
(3,4,6),

(1) ]" 2),
(6,6,4),
(1,5,8),

(3,4,9,
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Example

(2,2,3),
(7,7,8),
(1,6,8),

(3,5,8),

(2,2,3),
(7,7,8),
(1,6,9),

(3,5,7),

3,3,1), (4,4,53), (5,5,6),
(8)8,9)) (9’ 9’4)) (114’ 7)’
(2’4, 8)1 (2) 5) 7)) (2’ 6’9),

(3,7,9).

(3,3,1), (4,4,5), (5,5,6),
(8,8,9), (9,9,7), (1,4,7),
(2’4)8)1 (2’ 5J9)’ (2’ 6) 7))

(3, 6,8).

does not contain a copy of 30 .

contains precisely one copy of 8‘0 .

contains 3 mutually disjoint copies of 30 .

(L,1,1),
(6,6,7),
(1, 3,96),
(2,6,9),

(1,1,1),
(6,6,7),
(1,4,7),

(2’ 6’ 9))

(1, 1, 1)’
(6,6,4),
(1,4) 7)’

(2,6,7),

(ZJ 2J 2)’
(7,7,8),
(1,4,7),

(3,5,8),

2,2,2),
7,7,8),
(1,5,9),
(3,4,6),

(2,2,2),
7,7,8)),
(1,5,8),

(3,4,9),

(3,3,3), (4,4,5), (5,5,6),
(8,8,9), (9,9,4), (1,2,8),

(1,5,9), (2,3,4), (2,5,7),

(3,7,9), (4,6,8).

(3,3,3), (4,4,5), (5,5,6),
(8,8,9), (9,9,4), (1,2,3),
(1,6,8), (2,4,8), (2,5,7),

(3, 5,8).

(3, 3,3), (414,5), (5,5,6),
(8,8,9, (9,9,7), (1,2,3),
(1,6,9), (2,4,8), (2,5,9,

(3,5,7), (3,6,8).




Class

{9; 31

{9; 6}

{9; 9}

{10; 1}
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Example

w1 does not contain a copy of Eb or 33 .
W2 contains a copy of J, ,but does not contain a copy of 36 .

W3 contains a copy of 35 and two disjoint copies of 36 .

(1, 1’1)’ (2) 2’ 2)’ (3’ 3,3)’ (4, 4) 4)’ (5’ 5) 5)’ (6, 6, 6)’
(71 7)8)) (8)8)9)’ (9)9’7)1 (]', 2’ 3)’ (1,43 7), (1’ 5)8))
(1, 6,9)) (2’ 4’ 8).’ (2’ 5’ 9), (ZJ 6, 7)’ (3) 4’ 9)’ (3J 5’ 7)’

(3,6,8), (4,5,6).

1,1,1), (2,2,2), (3,3,3), (4,4,4), (5,5,5), (6,6,6),
(7) 7) 7)) (8J 8J8)) (9} 9: 9)) (1) 2:3)) (.1)4: 7): (1: 5)8)‘)
(1) 6’9)) (21 4) 8), (2.7 5’ 9)) (2’ 6’ 7): (3}4’9)) (3) 5} 7)J

(3,6,8), (4,5,6), (7,8,9).

Wy: (10, 10,10), (1,1,10), (2,2,10), (3, 3,10), (1,2,3),
(4,4,10), (5,5,10), (6,6,10), (7,7,10), (8,8, 10),
(9,9,10), (1,4,7), (1,5,9), (1,6,8), (2,4,9),
(2,5,8), (2,6,7). (3,4,8), (3,5,7), (3,6,9),

(4,5,6), (7,8,9).

W,: (10,10,10), (1,1,10), (2,2,1), (3,3,1), (2,3, 10),

(4,4,10), (5,5,10), (6,6,10), (7,7,10), (8,8, 10),
(9,9,10), (1,4,7), (1,5,9), (1,6,8), (2, 4,9),
(2,5,8), (2,6,7), (3,4,8), (3,5,7), (3,6,9),

(4) 5’ 6), (7, 8, 9).
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Class Example
{10 1} wy: (10,10,10), (1,1,2), (2,2,3), (3,3,1), (4,4,5),

(5,5,1), (6,6,2), (7,7,10), (8,8,3), (9,9,5),

(1,4,6), (1,7,8), (1,9,10), (2,4,7), (2,5,10),
(2,8,9, (3,4,9), (3,5,7), (3,6,10), (4,8,10),

(5,6,8), (6,7,9).

(10,10,10), (1,1,8), (8,8,4), (4,4,2), (2, 2,6),

(6,6,8), (3,3,4), (5,5,10), (7,7,6), (9,9, 2),
(1,2,7), (1,3,6), (1,4,5), (1,9,10), (2,3,5),
(2,8,10), (3,7,10), (3,8,9), (4,6,10), (4,7,9),
(5,6,9), (5,7,8).

W. contains a copy of }ﬂ4 » but does not contain a copy of

1
*
M4 s 8’0 or 'Lr5 .
v ' %
W2 contains a copy of }{4 and M4 , but does not contain a

copy of 3'0 or US .
W contains a copy of 3’0 but does not contain a copy of

*
M4, 3{4 or US .

W, contains a copy of Uy on {2, 4, 6, 8, 10} , but does

*
not contain a copy of 30, }64 or }64

Observe that both Wl and W2 contain several copies of

*
contains a unique copy of }64 on

X and W

4 2
{1, 2, 3, 10} .

{10; 4} Wye (1,1,1), (2,2,2), (3,3,3), (4,4,4), (5,5,1),
(6,6,2), (7,7,3), (8,8,4), (9,9,1), (10,10,1),

(1,2,3), (1,4,6), (1,7,8), (2,4,5), (2,7,9),

(2,8,10), (3,4,9), (3,5,8), (3,6, 10), (4,7,10),

(5’ 6, 7)) (5, 9’ 10)’ (6’ 8’ 9) .
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Class Example
{10; 4} WZ: (1,1,1), (2, 2,2), (3,3,3), (4,4,4), (5, 5,1),

(6,6,2), (7,7,3), (8,8,4), (9,9,5), (10,10,5),

(1,2,3), (1,4,6), (1,7,8), (1,9,10, (2,4,5), R

2,7,9, (2,8,10), (3,4,9), (3,5,8), (3,6,10),

(4,7,10), (5,6,7), (6,8,9).

Wor (1,1,1), (2,2,2), (3,3,3), (6,6,6), (4,4,2),

3
(5,5,1), (7,7,6), (8,8,10), (9,9,10), (10, 10, 3),
(1,2,3), (1,4,9, (1,6,10), (1,7,8), (2,5,10),
(2,6,8), (2,7, 9, (3,4,8), (3,5,7), (3,6,9),
(4,5,6), (4,7,10), (5,8,9).

W,r (1,1,1), (2,2,2), (7,7,7), (10,10, 10), (3, 3, 10),

(4,4,2), (5,5,1), (6,6,7), (8,8,10), (9,9,10),
(1,2,3), (1,4,9, (1,6,10), (1,7,8), (2,5,10),
(2,6,8), (2,7,9), (3,4,8), (3,5,7), (3,6,9),
(4,5,6), (4,7,10), (5,8,9).

W, contains a copy of 3'3 and a copy of }64 .

*
W, contains a copy of 8’3 and a copy of }64 .

W contains a copy of 3’3 but does not contain a copy of

*

3'64 or }64
%*

W4 does not contain 33, }64 or }64

{(11; 11 w: (11,11,11), (1,1,2), (2,2,3), (3,3,1), 4, 4,5),
(5,5,6), (6,6,4), (7,7,8), (8,8,9), (9,9, 10),
(10, 10,7), (1,4,10), (1,5,7), (1,6,9), (1,8,11),
(2,4,7),(2,5,9),(2,6,8),(2,10,11), (3,4, 8), (3, 5, 11),

(3,6,10), (3, 7,9), (4,9,11), (5,8,10), (6,7, 11).



Class

{11; 1}

{11; 4}

W

1)

le

2!

1

2
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Example

(11, 11, 11), (1,1,2), (2,2,3), (3,3,4), (4,4,5),
(5,5,6), (6,6,7), (7,7,8), (8,8,9), (9,9,10),
(10,10, 1), (1,3,6), (1,4,7), (1,5,8), (1,9,11),
(2,4,8), (2,5,11), (2,6,10), (2,7,9), (3,5,9,
(3,7,11), (3,8,10), (4,6,9), (4,10,11), (5,7, 10),
(6,8,11).
contains two disjoint copies of 3’0 .

does not contain a copy of 30 .

(1,1,1), (2,2,2), (3,3,3), (4,4,4), (5,5,6),

6,6,7), (7,7,8), (8,8,9), (9,9,10), (10,10, 11),
(11, 11, 5), (1,2,3), (1,4,8), (1,5,9), (1,6,10),
(1,7,11), (2,4,6), (2,5,8), (2,7,10), (2,9,11),
3,4,11), (3,5,7), (3,6,9), (3,8,10), (4,5,10),

(4,7,9), (6,8,11).

(i,1,1), (2,2,2), (3,3,3), (4,4,4), (5,5,6),
(6,6,7), (7,7,5), (8,8,10), (10,10,9), (9,9,11),
(11,11,8), (1,2,3), (1,4,8), (1,5,11), (1,6,10),
1,7,9, (2,4,9), (2,5,10), (2,6,8), (2, 7,11),
(3,4,5), (3,6,9), (3,7,8), (3,10,11), (4,6,11),

(4,7110)) (5’8;9)-




Class

{11; 4}

{11; 77

W,:

1)

1
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Example
(1,1,1), (2,2,2), (3,3,3), (4,4,4), (5,5,6),

(6,6,7), (7,7,5), (8,8,10), (10,10,9), (9,9, 11),

(11,11,8), (1,2,5), (1,3,11), (1,4,8), (1, 6,10),
(1,7,9), (2,3,10),' (2,4,9), (2,6,8), (2,7,11),
(3,4,5), (3,6,9), (3,7,8), (4,6,11), (4,7,10),
(5,8,9), (5,10,11).

contains a copy of 3'3 s but does not contain a copy of 3'0 .

W, containsa copy of 33 and 30 , and

W

W1:

W

3

1

contains a copy of 'Jo but does not contain a copy of 3'3 .

(1,1,1), (2,2,2), (3,3,3), (4,4,4), (5,5,5),
(6,6,6), (7,7,7), (8,8,10), (10,10,9), (9,9,11),
(11,11,8, (,2,3), (1,4,9), (1,5,11), (1,6,10),
a,7,8), (2,4,11), (2,5,10), (2,6,8), (2,7,9),
(3,4,8), (3,5,7), (3,6,9), (3,10,11), (4,5,6),

(4,7,10), (5,8,9), (6,7,11).

(1,1,1), (2,2,2), (3,3,3), (4,4,4), (5,5,5),
(6,6,6), (7,7,7), (8,8,9), (9,9,10), (10,10,11),
(11, 11,8), (1,2,3), (1,4,8), (1,5,11), (1, 6,10),
(1,7,9, (2,4,10), (2,5,9), (2,6,11), (2,7,8),
(3,4,5), (3,6,7), (3,8,10), (3,9,11), (4,6,9),
(4,7,11), (5,6,8), (5,7,10).

contains two disjoint copies of I, on {1,2,33},{4,5,67.
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Class ' Example
{11; 73 W, contains a copy of US on {3, 8,9, 10, 11} and

cannot contain two disjoint copies of 33 . Observe

that W1 does not contain a copy of US . It is easy
to verify that a system in {11; 7} which contains a

copy of US cannot be consistent. Note that W2

contains copies of I, on {1, 2, 33, {3, 4, 573,

{3, 6, 7}

4. Main results.

I. Non-isomorphic consistent systems in {6n+1; a}, n =2

Example 6.2. There are essentially two non-isomorphic STS(13)

and these are given in [5, p. 237]. We give here the two non-isomorphic
extended triple systems which are associated with these STS(13)

The systems W and W oin {13; 13} differ only in the four triples
marked with an asterisk, and each system contains 4 mutually disjoint
copies of S, on the sets {1,6,7}, {2,9,12}, {4, 10,13} and

*
{5,8,11} . Hence W and W are consistent systems.
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k3
w e {13; 13} : W€ {13; 13} :

(1, 1, DA, 2, 3) 3, 6,13 (1, 1, 1) (I, 2, 3) (3, 6,10)"
(2, 2, 2) (1, 4, 5 (3, 7,11) (2, 2, 2) (1, 4, 5) (3, 7,11)

3 (1, 6, 7 (3, 9,100 (3, 3,3 (1, 6, 7 (3, 9,13

(3, 3,

(4, 4, 4) (1, 8, 9) (4, 7, 9) (4, 4, &) (1, 8, 9 (4, 7, 9)

(5, 5, 5) (1,10,11) (4,10,13) (5, 5, 5) (1,10,11) (4,10,13)

(6, 6, 6) (1,12,13) (4,11,12) (6, 6, 6) (1,12,13) (4,11,12)
(

(7, 7, 1) (2, 4, 6) (5, 6,100° (7, 7, 7) (2, 4, 6) (5, 6,13
(8, 8,8 (2, 5, 7) (5, 8,11) (8, 8, 8 (2, 5, 7) (5, 8,11)
(9, 9, 9 (2, 8,10 (5, 9,13)* (9, 9, 9) (2, 8,10) (5, 9,10)"
(10,10,10) (2, 9,12) (6, 8,12)  (10,10,10) (2, 9,12) (6, 8,12)
(11,11, 11) (2,11,13) (6, 9,11)  (11,11,11) (2,11,13) (6, 9,11)
(12,12,12) (3, 4, 8) (7, 8,13)  (12,12,12) (3, 4, 8) (7, 8,13)

(13,13,13) (3, 5,12) (7,10,12)  (13,13,13) (3, 5,12) (7,10, 12)

Theorem 6.3, For every integer n = 2 » there exist at least two

non-isomorphic consistent systems in {6n+1; 6bn+11 .

Proof. For n = 2 , the result is established in Example 6.2. We now
consider the case n 23 . J. Doyen [3] has shown that the STS(6n+1)
constructed in the proof of Theorem 3.4 contains no subsystems other
than those of order 1, 3 and 6n+1 . Thus, by Theorem 3.4, the
extended triple system W € {6n+1; 6n+1} associated with this
STS(6bn+1) is consistent and contains no subsystems other than those
on 1, 3 and 6n+1 elements. On the other hand, Example 5.9 and

Theorem 5.11 guarantee the existence of a consistent system
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%*
W € {6n+1; 6n+1} which contains a subsystem on m elements,

; *
where 3 <m< 6n+1 . It is clear that W and W are non-isomorphic

systems and our theorem is proved.

Corollary 6.3. For every integer n = 2 , there exist at least two

non-isomorphic consistent systems in {6n+1; al , whete 1 €a <6n+1

and a = 1(mod 3)

Proof. The result is a consequence of Theorem 6.2. and Lemma 6.1.

II. Non-isomorphic consistent systems in {6n+3; a}l , n =22 .

Example 6.4. 1In Remark 8 following Theorem 4.8 we pointed out that it
is possible to construct a consistent system W* € {15; 15} containing
a subsystem in {7; 7} . Explicitly, we give the construction here.

It is easily checked that the system W* € {15; 15} contains a
subsystem in {7; 7} on {1, 2, «++, 7} and 5 mutually disjoint copies
of J, on the sets {1,2,4}, {3,9,12}, {5,8,13}, {6,10,11} and

{7,14,151 .
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.
W € {15; 15} :

(1, 1, 1) (1,11,11) (1,10,14) (3, 9,12) (5,11, 14)

(2, 2,2 (12,12,12) (@1,12,13) (3,10,15) (5,12, 15)

(3, 3,3 (13,13,13) (2, 3, 5 (3,11,13) (6, 8,12)
(4, 4, &) (14,14,148) (2, 6, 7) (4, 5, 7) (6, 9,14)
(5,5, 5 (15,15,15) (2, 8,11) (4, 8, 9) (6,10, 11)
(6,6, 6 (1,2, 4 (2, 9,15 (4,10,13) (6,13,15)

(7,7, 1 (1, 3, 7) (2,10,12) (4,11,15) (7, 8,10)

(8, 8, 8 (1, 5, 6) (2,13,14) (4,12,14) (7, 9,13)
(9,9, 9 (1, 8,15 (3, &, 6) (5, 8,13) (7,11,12)
(10, 10,10) (1, 9,11) (3, 8,14) (5, 9,100 (7, 14,15)

Theorem 6.5. For every integer n = 2 » there exist at least two

non-isomorphic consistent systems in {6n +3; 6n+31 .

Proof. Let G = {1, a, az, oo, azn} be a multiplicative cyclic group

of order 2n+1 and let us consider the Cartesian product S==G><{0,1, 21.
For every i € {0, 1, 2} , the element (x, 1) of the subset G X{i}

will be dgnotéd by (x)i or, where there is no danger of confusion,

simply by X, - Let ¢ be the permutation on {1, a, az, veey, azn}
defined as follows:
o@) = AT oyr o< cn-2

-1
pa” ") = 1,

m(aJ) = aJ if n<j<2n .




Let A
B
c
) D
Put T

{(XO’ xl’ XZ) ‘ x € G} p)

: 2

{(XO’ Yo? Zl) | X,7,2€G6;x#y 3 xy =21,
2

= {(xl’ Y10 22) | X, 5,2 €6 ;3 x#y ; xy =2z},

= {(xy, v,,20) | %, 9,2 €65 x#y; ox)gy) =

=AUBUCUD . Then it can be verified without much difficulty

122 .

(o(z)) %1 .

that (S, T) is an STS(6n+3) . This construction is essentially due

to Doyen [3], who has shown that the STS(6n+3) described here contains
no subsystems other than those of order 1 , 3 and 6n+3 .

T = {(x, %, %) | X €S} ,and set W=TUJ .

Now let

Then W € {6n+3; 6n+3}

and W contains 2n+1 mutually disjoint copies of 33 on the sets

{xo) le xz} s X E G .

Consequently, W is a consistent system which

does not contain any subsystems other than those on 1 , 3 and 6n+3

elements. However, according to Examples 5.5 and 6.4 and Theorem 5.7,

% %
we can construct a consistent system W € {6n+3; 6n+3} such that W

contains a subsystem on m elements, where 3 <m<é6n+3 .

Clearly,

% ,
the systems. W and W are non-isomorphic and the proof is complete.

Corollary 6.6. For every integer n = 2 , there exist at least two

non-isomorphic consistent systems in {6n+3; al , where

and a

Proof.

= O(mod 3)

The proof follows from Theorem 6.5 and Lemma 6.1.

0 <ac<é6n+3
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ITI. Non-isomorphic systems in {6n; al ,n=2

Theorem 6.7. Let n be a positive integer. Then there exists an

% * .
inconsistent system W € {6n; 3n} such that W contains n=-1

mutually disjoint copies of 33 .

Proof. Let (S, T) be the STS(6n+1) described in the proof of
Theorem 3.4. As in the proof of Theorem 3.7, we shall construct

%
W € {6n; 3n} by deleting from T the collection C of all triples

containing the number 6n .
(x+n, x+2n, 6n)
C = 4(x+3n, ¥+4n, 6n) : x=0,1,2, -+, n-1

(x+5n, x , 6n)

We consider two cases as follows.

Case 1. n even.

Let:
(5n, 5n, 5n) ,

" (x, x, x) :x=1,2, ««., n=-1,

(x+n, x+n, x+n) : x =0, 1, ..., n-1,

(x+3n, x+3n, x+3n) : x =0, 1, -, n=-1 ;

(0, 0, 5n) >

* (x+5n, x+5n, x) : x =1, 2, .., n-1,

(x+2n, x+2n, x+n) : x =0, 1, -+, n-1 ,

(x+4n, x+4n, x+3n) : x =0, 1, cee, n-1

% * *
Put W =-(T—C)UJ1 UJ2
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Case 2. n odd.

Let (
(bn-1, 6n—-1, 6n~-1) ,

(x, x, x) : x=0,1, -+, n=-2,

*
3 =4
(x+n, x+n, x+n) : x =0, 1, ---, n-1,

L(x+3n, x+3n, x+3n) : x =0, 1, -+, n~1 ;

(n-1, n-1, 6n~1) ,
(x+5n, x+5n, x) : x =0, 1, ..., n~2 s
(x+2n, x+2n, x+n) : x =0, 1, ceey,n=-1,

(x+4n, x+4n, x+3n) : x =0, 1, *cey,n-l

*

o+ ¥
Put W = (I-C) UJ, UJ,

In each of the two cases it is cleaf that W' € {6n; 3n} . From the
description of (S, T) it is not difficult to show that W* is |
inconsistent. If o and P are integers such that 0 < &< 2n-1
and 3n < B <4n-1 , then neither (&, B, 5n) nor (o, B, 6n-1) 1is
a triple of T=~C , and when all the possibilities are considered W*
contains at most n-1 mutually disjoint copies of 33 . If n is
even, then T~C contains the following colllection of n-1 disjoint

triples:

(x, x+1, x+3n) : x = 1, 3,5, ---, n-1,
D =
(x+n+1, x+n+2, x+3n+1) : x =1, 3, 5, «++, n=-3

If n23 is odd, then T-C contains n-1 disjoint triples:

(x, x+1, x+3n) : x =0, 2, 4, *re, n=3 ,

(x+n+1, x+n+2, x+3n+1) : x = 0, 2,4, «++, n-3
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*
It is then readily verified that W € {6n; 3n} contains n~-1

mutually disjoint copies of 35 s and our theorem is proved.

Corollary 6.8. For every integer n = 2 , there exists an inconsistent

%*
system W € {6n; a} , where 3 <a <3n and a = O(mod 3) .
Proof. The result follows from Theofems 6.7 and 2.9.

Theorem 6.9. For every integer n = 2 , there exist at least two

non-isomorphic systems in {6n; a} , where 0 <a <3n and a = O(mod 3) .

Proof. We shall consider two cases as follows.

Case 1. n=22 , a=0,

Let W = {(x, vy, 2) | l<x,y,z=<6n; x+y+z = 0(mod 6n)} .
By Theorem 3.1, W € {6n; 3} and W contains a copy of 35 on
{2n, 4n, 6n} . We further claim that W does not contain a copy of 36 .
Suppose W contains a collection T = {1, 1, », G, i, k), (k, k, 1)} .
Then we have 2i+j = 2j+k = 2k+i = O(mod 6n) » and elementary considera-
tions show i = j =k ., So W does not contain a copy of Ub . Let

ok
W € {6n; 0} be the system derived from W by removing the copy of 35

*
and replacing it with a copy of ﬂb . Then W contains a single copy of

36 . However, Theorems 2.9 and 3.7 guarantee the existence of a system

W € {6n; 0} which contains n mutually disjoint copies of 36 . Since

%
n =2, the systems W and W are clearly non -isomorphic.

O(mod 3) .

Cage 2. n2=22 ,3<as<3n,a
*
Let W € {én; a} be as in Corollary 3.8 and W € {6n; a}

* .
be as in Corollary 6.8. Then W and W are non-isomorphic.
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This completes the proof of Theorem 6.9.

Remark 16. It is known [3] that the STS(6n+1) constructed in the
proof of Theorem 3.4 contains no subsystems other than those of order 1,
3 and 6n+l1l . It follows directly that the consistent system

W € {6n; 3n) of Theorem 3.7, which is derived from this STS(6n+1) ,
contains no subsystems other than those on 1, 2, 3 and 6n elemerts.,
However, for n = 3 Theorem 5.20 guarantees the existence of a
conslstent system W* € {6n; 3n} such that W* contains a subsystem
on m elements, wvhere 3 <m <6n ., Consequently, for n = 3 there
exist at least two non-isomorphic consistent systems in {6n; a} ,

where 0 < a <£3n and a = O(mod 3) .

1V. Non-isomorphic systems in {6n+2; a} , n 22 .

In what follows K denotes the complete graph on 2n

2n
vertices. A one-~factorization & = {Fl, FZ’ ses, FZn-—l} of K2n is
said to contain a one-factorization G = {Gl, Gys o0y GZm-—l} of K,

if V(sz) < V(KZn) and, for each i € {1, 2, ..., 2m~1} , there exists
a j€{1, 2, ««¢, 2n-1} such that E(Gi) GE(Fj) . Let (S, T) be
any STS(n) , where S = {1, 2, +++, n} and (1, 2, 3) €ET . Let

L B

S ={0,1,2, «se, n} . Let F= {F, | 1 =1, 2, «ee, n} , where

F, = {10, 11} U {Ix, y1 | (i, x, y) € T} . Then it is readily verified

*

that & 1is a one~factorization of K with V(Kn-kl) =3 |,

n+1l

Furthermore, & contains a one-factorization of K4 on {0, 1, 2, 3},
since {10, 11, [2, 31} = Fy» {10, 21, [1, 31} < F, and
{1o, 31, [1, 21} = F3 . Consequently, for n = 1 there is always a

-one ~factorization of K6n+2 which contains a one-factorization of Ka-.
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We shall use this fact in our next theorem.

Theorem 6.10. Lét n be a positive integer. Then there exists an

, * *
inconsistent system W € {12n+2; 6n+1} such that W contains

Z2n—=1 mutually disjoint copies of 3'3 .

Préof. Let (8, T) be an STS(6n+1) , where S = {ozl, o, ""a6n+1}
and T contains a set of 2n-1 mutually disjoint triples
D= {(os o, @), (og, 0y, op), oe, (O —17 %n? %q 4y} - The
existence of such an STS(6n+1) is guaranteed by the proof of
*
Theorem 3.4. Let § = {1, 2, «++, 6n+2} . Let ¥ = {F, | i=1,2,c0.,6n+1}
%
be a one-factorization of K6n+2 with V(K6n+2) = § such that &
contains a one-factorization of K4 on {1, 2, 3, 4} . Assume, without
loss of generality, that [i, én+2] € Fi >y I =1, 2, «se, 6n+1 . Set
%
F, =T - {[i, 6n+21} . Let

e . * :
= {(O[i’ X, y) | [x, y]l € Fi 3 1=1,2, e+, 6n+1} ,

J, = {(Q’i: o s a’i) I 1=35,6, -, n+1} U {(4, i,1) |i=1: 2,3,41,

1
I, = {{, i, o) | £ =5, 6, -, 6n+1} U {(ozi, o, 1) |1=1,2,3,4},
* %

Put W =TUT U Jl U J'2 « Then it is readily checked that

% %*

Wc € {12n +2; 6n+1} and W contains 2n-1 mutually disjoint copies

of J, on the sets {ozs, 5 oz7'}, {as,alg,aflo},'“, {a6n-1’ O s Q’6n+1} .
%

It is also easily verified that W contains no more than 2n-1 mutually

disjoint copies of 3'3 » since there cannot be two disjoint copies of 3'3

on sets of the type {ar, s, t} ,where 5<r <6n+l and l<s<t<é4 .

%*
Consequently, W is inconsistent and the proof of the theorem is complete.
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Theorem 6.11, Let n be a positive intéger. Then there exists an

% %
inconsistent system W € {12n+8; 6n+4} such that W contains 2n

mutually disjoint copies of 83 .
Proof. We consider two cases,

Case 1. n =1,

Let W € {7; 7} . Then according to the construction given
in the proof of Theorem 4.30, we can embed W in an inconsistent
éystem W* € {20; 10} which contains a pair of disjoint copies of 33

(see Remark 11) .

Case 2, n =2,
| By Theorem 3.4, there exists a consistent system
W€ {n+l; 6n+1} . By Theorem 4.30 and Remark 11, W can be embedded
in an inconsistent system W* € {12n+8; 6n+4} such that W* contains
precisély the 2n mutually disjoinf copies of 35 in W . This coﬁpletes

the proof of the theorem,

Corollary 6.12. For every integer n = 2 s there exists an inconsistent

*
system W € {6n+2; a} , where 4 <a <3n+1 and a = 1(mod 3) .
Proof, The result is a consequence of Theorems 2.9, 6.10, and 6.11.

Theorem 6.13. For every integer n 2 2 , there exist at least two

non-isomorphic systems in {6n+2; a} , where 1 <a < 3n+1 and

a = 1l(mod 3) .,

Proof. We shall consider two cases.
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Case 1. n=21,a=1.
Let W € {6n+2; 1} be as constructed in the proof of

*
Theorem 2,12 and W € {6n+2; 1} be as in Corollary 2.13. Then W

and W are clearly non-isomorphic. In addition, Theorem 3.9
guarantees the existence of a system W € {6n +2; 1} which contains

n mutually disjoint copies of 30 . It is easily checked that neither

% .
W nor W contains a copy of 3'0 s and so for n =1 ‘there are at

least three non-isomorphic systems in {6n-+2; 1} .

1

Case 2, n=22 ,4<a<3n+1, a=1(mod 3) .
Let W € {6n+2; a}l be as in Corollary 3.10 and
% _ %
W € {6n+2; al be as in Corollary 6.,12. Obviously, W and W are

non~isomorphic systems, and this completes the proof of the theorem.

Remark 17. If n 24 , then there are inconsistent systems in

{6n; 3n} and {6n-+2; 3n+1} which contain fewer than n~1 mutually
disjoint copies of 3'3 + In fact, if n is any odd integer, there is
a system in {6n; 3n} which does not contain a copy of 33 and, if n

is even, there is a system in {6n+2; 3n+1} which does not contain a

copy of 3'3 - The following examples are designed to illustrate this

point (cf. also Remark 6).

Example 6,14, Let (8, T) be the STS(6n+1) constructed in the proof

of Theorem 3.4, Then T contains
(x+n, x+2n, 6n)
C = \(x+3n, x+4n, 6n) : x =0, 1, seey, n=-1 |,

(x+5n, .x, 6n)




Let
(x, x, x)
Jl* = Y(x+4+n, x+n, x+n)
(x+4n, x+4n, x+4n)
_ (x+5n, x+5n, x)
JZ* = \(x+2n, x+2n, x+n)

(x+3n, x+3n, x+4n)

130 .

x=0,1, **+, n-1,

x=0,1, cee, n~-1.

% _ * * * L
Put W = (T=-C) U Jy UJ, . Then W € {6n; 3n} and, by construction

%
of (S, T) , it is readily seen that W contains at most [Il]

~mutually disjoint copies of 3’3 .

Example 6.15. Let (S, T) be the STS(6n+3)

of Theorem 3.2, Then T contains
(0, 2n+1, 4n+2) ,

T(O) = {(0, 2x, x+2n+1)

(0, x+4n+2, 6n+3 ~x)

reduced modulo 2n+1 .
Let i .
(n+2, 4n+2, 4n+2),

.

2

constructed in the proof

X = 1, 2,’ --_-‘,.Zn 2

x=1, 2, **+, n ; wvhere 2x is

J = { (2x, 2x, 2x) sx=1,2, *c¢, 2n,

(x+4n+2, x+4n+2, x+4n+2) : x = 1, 2, ces, 1

(2n+1, 2n+1, 4n+2),

J = { (x+2n+1, x+2n+1, 2x)

(n+3-x, n+3~x, x+4n+2) : x =1, 2, cee,

where 2x 1s reduced modulo 2a+1

e

tx=1,2, *°*, 2n,

“e

o% % * { *
Put W = (T-T(O)) UJ, UJ, . Then W € {én+2; 3n+1} , and it is
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. *
easily seen from the construction of (8§ 5 T) that W contains at most

El;-_];] mutually disjoint copies of 3’3 .

Example 6.16., Let n =1 or 3(mod 6) . Let (S, T) be any
SIS(n) , where S = {afl, Ups afn} R

% *
Let § = {el, Bys *ovs an} such that S N§ =g .

Let w]_ = {(Bi’ aj’ ak) l 1<i, j,k<n;i#3;i+j = 2k(mod nl,

W2 = {(Bi’ Bi, Bi)’ (Q’i, 0!1, Bi)l i= 1’ 2’ **°y n} .

* *
Put W =TUW UW, . A direct verification shows W € {2n; n} ,

*
and it is clear that W does not contain a copy of 3'3 .

Remark 18. With regards to Remark 17 and Example 6.16, it should be

pointed out that, for n =0 or &4(mod 6) , any system W* € {2n; n}

must contain é copy of 3'3 « For if W% € {2n; n} is based on

‘{011, Upy =% O, Bl, BZ, see, Bn} so that W* contains the collection

{(Oli, Oy O’i), (Bi’ By > Oli) |1 =1,2, «cc; n}, then a simple

numerical argument shows that there can be at most Il(n—z_-z-)— triples of t;he

type (ozi, ozj, Bk), where i, j, k are pairwise distinct. Consequently,
n(n-1) n(n-2) n

there are at least 5 5 = 7 pairs (o, ozj), with i #3j ,

not contained in triples of the type (ozi, ozj, Bk) s where i, j, k are

% .
palrwise distinct, and W contains at least l—g-l copies of 33 B

where rx] denotes the smallest integer which is not less than x .

V. Non-isomorphic consistent systems in {6n+4; a} , n =1 .

In Theorem 3.20 we established the existence of a consistent

o ' *
system W € {6n+4; 3n+1} which does not contain a copy of H4 or )64 .
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The illustrative examples given in Section 4 of Chapter 2 and the results
of Chapter 5, summarized in Theorem 5.20, guarantee the existence of a
*
consistent system W € {6n+4; 3n+1}which contains a copy of }64 . A
%
simple application of Lemma 2.1 shows that W cannot contain a copy
% : *
of 3'64 . However, the existence of W implies the existence of a
ke %
consistent system W € {6n+4; 3n+1} which contains a copy of M4 .
* k%
It is immediately clear that the three systems W, W , W are non-

isomorphic, and so we can state the following theorem:

Theorem 6.17. For every integer n =1 , there exist at least two

non-isomorphic consistent systems in {6n+4; 3n+1} .

Corollary 6.18. For every integer nzlv , there exist at least two non-

1somorphic consistent systems in {6n+4; al,where 1<€a<3n+1and a=1(mod 3) .

Proof. The proof is an immediate consequence of Theorem 6.17 and Lemma 6.1.

VI. Non-isomorphic systems in {6n+5; al ,n 21,

. Theorem 6.19. For ex)ery integer n 2 1 , there exist at least two

non-;-iso_rnorphic systems in {6n+5; a} s where 1 <a <6n+1 and

a = 1(mod 3) .
Proof. We consider two cases.

Case'l. n21,a=1,

Let W={(x,y,2) |1<x,y, z < 6n+5; x+y+z = 0(mod 6n+5)} .
By Theorem 3.1, W € {6n+5; 1} . We claim W does not contain a copy of
30 + If W contains a collection T = {(i, i, 3, (3, i, k), (k, k, i)},
then we must have 2i+j = 2j+k = 2k+1 = O(mod 6n+5) , and it is




133 .

readily verified that i = j =k = 6n+5 is our only solution. So
our claim is justified. On the other hand, according to Theorem 3.25
there exists a consistent system in {6n+5; 6n+1} for every positive
integer n . This implies the existence of a vsystem W* € {6n+5; 1}
which contains 2n mutually disjoint copies of 3’0 . Consequently, W

* ,
and W are two non-isomorphic systems in f{6n+5; 1} .

Case 2. n21,4<a<6n+l, a=1(mod 3) .

By Theorem 3.20, there exists a system W € {6n +5; 6n+1v}.
which coptains at least 2n-1 mutually disjoint copies pf 33 ~and no
éopy of Us . In the proof of Theorem 3.25 we considered three cases in
constructing a consistent system in {6n+5; én+1} . For the cases
n = 0(mod 3) and n = 2(mod 3) , we constructed a cons‘istent systein
W € {6n+5; 6n+1} containing a copy of \;

5
. % *
we constructed a consistent system W € {6n+5; 6n+1} such that W

. For the case n=1(mod3) ,

contains 2n -2 mtually disjoint ‘copies of 3'3: wﬁich do not intersect
a subsystem Q* € {11; 7} . Observing there is a system in {11; 7}

- which contains a copy of 1:5 and a copy of- 3'3 s we have essentially
shown, for every integer n = 1 , there exists a system W%€{6n+5; 6n+1}
_which contains a copy of 'Lr5 and at least 2n-1 mutually disjoint
coples of 33 . Obviously, the systems W .and W* are noﬁ-isomorphic

and by applying Lemma 6.1 we complete the proof of the theorem.

Gathering together the results of this section we have proved

the main theorem:

Theorem 6.20. For every given integer n = 10 and every admissible value
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of a , there exist at least two non ~isomorphic systems in {n; a} R

5. An application of the singular direct;produét.

For large values of n it is expected that the number of
non-isomorphic systems in {n; al will be very large indeed.
C.C. Lindner [12] has shown that the singular direct product defined
in Séction 3 of Chapter 5 can be used to construct large numbers of
non-isomorphic totally symmetric quasigroups, if the single operator ®
15 replaced by a set of operators ® si=1,2, ceo, r = (vz-v)/6.

As a special case of [12, Theorem 3], we can state

Theorem 6.21. Let (Q, o) be any totally symmetric quasigroup contain-

ing the subquasigroup (P, o) . Then there are at least
((a-p)! (gq=p=1)! ... 2! 1!)(vz _V)/6/(v(q-p) +p)! non-isomoif:phic
totally symmetric quasigroups of order v(q=-p) +p , where |Q| =q,
[P| =p , and v=1 or 3(mod 6) .

Using Lindner's argument in the proof of Tﬁeorem 6.21, we

obtain the following combinatorial analogue:

Theorem 6.22. Suppose there is a system V € {v; v} . Suppose there is

a system Q € {q; r} containing a subsystem P € {p; t1 . Then there
are at least ((a=p)! (q-p 1)1 +ve 20 1YY “D/6/ 0oy
non-isomorphic systems in {v(q=-p)+p ; (r—-t)v+t} .

The following example may be compared with that given in [12]
for quasigroups satisfying x(yx) =y . The examples given in Section 3
of.this chapter permit us to make the‘appropriate choiceé of V, Q and

P in Theorem 6,22,
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Example 6.23. (1) Take V € {7; 7}, Q € {10; 4} , and P € {3; 3} .
_ Then there are at least 109 non-isomorphic systems in {52; 10} .

(11) Take V € {7; 7} , Q € {11; 7} , and P € {3; 3} .

9

Then there are at least 10> non-isomorphic systems in {59; 311} .

(i1i) Take V € {7; 7}, Qe {10; 4} , and P € {15 1} .

Then there are at least 1059 non -isomorphic systems in {64; 221} .

6. Céncluding remarks and pfdblems.

In conclusion the author would like to make some remarks and
mention a few problems,

In this thesis we havevshown that, for every positive integer
n#7 and every admissible value of a , there exists a consistent
system in {n; a} . In addition, examples of inconsistent systems in
{n; a} have been constructed for most values of n and a . Outstanding

cases of interest to the author still to be considered are:

(i) n
(ii) n

1 or 3(mod 6) , n®15; a = n .

5(mod 6) , n 217 ;3 a=n=-4 .
In this connection we may ask:
(a) For what values of n does there exist an inconsistent system
W € {n; a} in cases (i) and (ii) ?
*
(b) 1Is the system W € {6n+5; 6n+1} constructed in the proof of

Theorem 3.18 consistent for every integer n =1 ?

(c) Are the conditions on W € {n; a} in Theorem 4.27 sufficient for W
* . '
to be embedded in a consistent system W € {2n+7; a+n+7} for

every odd integer n 27 7?
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The answer to both (b) and (c) appears to be yes, but very little can

'be said about (a)

Let n be an odd integer and suppose there exists a system

W € {n; a} based on the get § = {1, 2, ««+, n} , where 0 €a<n .
Further suppose that J = {1, 2, +se, r} 1is the set of non-idempotents

Cof W « Then |J[ =Y =n-a . By Lemma 2.1, W necessarily contains

Lk ‘
a-collection J = {(i, i, di) | i=1,2, ¢ee, r}, where oy QQ: AT AE

are a permutation of 1, 2, ---; r , with a, # i . Now corresponding to
W, we let G be the graph where V(G) =J and

E(G) {[i, ai] l =1, 2, eoe, r 3 (i, i, ai) € J*} . It follows that
G consists of disjoint cycles of length k s 3k <n-a. If ¢
consists of a single cycle of length n-a » we shall say W € {n; al 1is
unicyclic. According to the results contained in this thesis, for every
odd n #7 and every admissible value of a , 0 sa<n , there exists a

system W € {n; a} whose corresponding graph G consists of:

(1) I13a disjoint cycles of length 3 s if n=1 or 3(mod 6) ;
-a-4
(11) R=a
: 3

if n = 5(mod 6) .

disjoint cycles of length 3 and one cycle of length 4,

For n=a+6 in (i) or n ® a+7 in (ii) , it-should be noted that
such a system W € {n; al 1is never unicyclic. Clearly, aﬁy system in

{n; n=3} or {n; n-4} must be unicyclic for odd n =3 ., For special

values of n and a , the author has been able to comstruct unicyclic
systems in {n; a} (see for example Theorem 3.13, Theorem 4.20 combined
with Remark 9, and the examples given in Section 3 of this chapter).

However, the problem of constructing a unicyclic system in {n; al for
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every odd n and every admissible a 5 0 <a<n , has not been
solved. We may ask: For what values of n and a does there exist

a unicyclic system W € {n; a} ?

Two Steiner triple systems (S, Tl) and (S, TZ) are said

to be disjoint if |T1 N T2| =0 , and are said to be almost disjoint
if |T1 n T2| =1 (see [15]) . The existence of a pair of disjoint
STS(n) has been shown for every n = 7 » and the existence of a pair
of almost disjoint STS(n) has been shown for every n = 3 , where it
is understood that n =1 or 3(mod 6) .

Concerning extended triple systems, we give thé following

'similér definitions: Two extended triple systems (s, Wl) and (S, W2)

in {n; al are said to be disjoint if W1 N W2 = ¢ , and are said to be

almost disjoint if W1 N W2 = {(x, X, x)}» for some x €S . Note that

if (S, Wl) and (S, W2) are disjoint, then the latin_squéres
corresponding to ﬁheir associated quasigroups do not agree in ény cell,
while if (8, Wl) and (S, Wz) are almost disjoint, then the latin
squares corresponding to their associated quasigroups agree in exactly
one cell. We ask the following: For what values of n and a can a
pair of disjoint (almost disjoint) systemf (S,‘W1), (S, W2) € {n; a} be
constructed? The author has obtained partial solutions to this problem,

but several cases remain to be investigated.

For n =3, 7, 9 there is one STS(n) , apart from isomorphism.
There are essentially two non-isomorphic §TS(13) and 80 non-isomorphic
STS(15) . It is also known (see for example [14]) that the number of

non-isomorphic STS(n) goes to infinity with n . In most cases, we
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have shown how extended triple systems can be derived from Steiner

triple systems. It is also worth mentioning that the embedding theorems
of Chapter 4 can be used to obtain inforﬁation regarding the number of
non-isomorphic systems in {n; a} , at least for some valués of n and

a (cf. [14]) . Concerning the results of this final chapter, it seems
reasonable to expect that the number of non-isomorphic systems in {fn; a}

willngo to infinity with n , for every admissible value of a .
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