
THE UNIVERSITY OF MANITOBA

A Retrospective Analysis of Survival

Data of Snapping Turtle Embryos using

Generalized Linear Modets

BY

AMELIA TERESA SHEOCHARAN

A PRACTICUM SUBMITTED TO THE FACULTY OF GRADUATE

STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTM ENT OF STATISTICS

June 2005



0-494-08955-5

T*T Library and
Archives Canada

Published Heritage
Branch

395 Wellínoton Street
Ottawa O[\IK1A 0N4
Canada

Bibliothèque et
Archives Canada

Direction du
Patrimoine de l'édition

395, rue Wellinqton
Ottawa ON K1Â0N4
Canada

NOTICE:
The author has granted a non-
exclusive license allotruing Library
and Archives Canada to reproduce,
publish, archive, preserye, conserye,
communicate to the public by
telecommunication or on the lnternet,
loan, distribute and selltheses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author reta¡ns copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwíse
reproduced without the author's
permission.

Your file Votre reférence
/SB/Vi

Our fìle Notre retérence
/SB/Vi

AVIS:
L'auteur a accordé une licence non exclus¡ve
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, arch¡ver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'lnternet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
eVou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doívent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à fa loi canadienne
sur la protect¡on de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ln compliance with the Canadian
Privacy Act some supporling
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada



THE UNTYERSITY OF MANITOBA

F'ACULTY OF GRADUATE STUDIES
ù¿gss

COPYRIGHT PERMISSION

"A Retrospective Analysis of Survival Data of Snapping Turtle Embryos using Generalized Linear
Models"

BY

Amelia Teresa Sheocharan

A ThesislPracticum submitted to the Faculty of Graduate Studies of The University of

Manitoba in partial fulfillment of the requirement of the degree

of

MASTER OF'SCIENCE

Amelia Teresa Sheocharan O 2005

Permission has been granted to the Library of the University of Manitoba to lend or sell copies of
this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell
copies of the film, and to University Microfilms Inc. to publish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and

copied as permitted by copyright laws or with express written authorization from the copyright
owner.



Abstract

The effect of temperature, moisture and site on the proportion of turtle

eggs that survived after hatching was analyzed. Preliminary main effect plots

showed that temperature and moisture had no effect on the survival of a turtle

egg. On the other hand site showed some differences. Next, the interaction

effects were then examined using interaction plots. Here it was found that site by

temperature showed some slight differences.

The data were analyzed using a newly developed technique called

Generalized Linear Models. After the analysis was completed it was found that

indeed site had an effect on the survival rate of turtle eggs.
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lntrodwction

ln 19BB Michele Bobyn, a student at the University of Guelph, conducteå

an experiment to help her determine the incubation conditions needed to

influence embryonic survival in snapping turtles. The research ín this practicum

re-evaluates the same study but uses modern methods to analyze the 1988 data.

The objective of this practicum is to determine the effect of temperature,

moisture and site on the embryonic survival of a snapping turtle egg. The

analysis used is a newly developed method called generalized linear model.

A generalized linear mixed modelwill be fit and used to help determine

what conditions are needed to have the highest survival rate of a turtle egg and

estimate the probability reflected in those conditions.

ln chapter 1 we focus on the factors our researcher is considering and

make some ínitial main effect and interaction evaluations.

Chapter 2 examines the temperature effects and introduces new concepts

needed to evaluate the data.

Chapter 3 builds on the temperature model and examines the added

effects in the model when the factor moisture is introduced.

Chapter 4 introduces the last effect site and uses all our data to fit a model

that best reflects the data. The model is then used to make predictions for the

turtles using best linear unbiased techniques.

Finally in chapter 5 we summarize our conclusions and give final remarks.



ühapter 1: Øvewiew

1.1 THE OBJECTIVE

The following information was provided through a case study report written

by the experimenter.

The experiment was conducted in June 1988 by Michele Bobyn at the

University of Guelph under the supervision of Dr. R.J. Brooks.

The objective was to:

'determine the effect of temperature, moisture and site on the embryonic

survival of a snapping turtle egg and to determine how embryonic survival

varies from clutch to clutch.'[3]

1.2 THE EXPERIMENT

Snapping turtle eggs were collected from four Ontario nesting sites:

l. North Madawaska drainage system of Algonquin Park (AP)

ll. Cootes' Paradise near Hamilton (CP)

lll. Big Creek Marsh near Long Point (LP)

lV. Cranberry Marsh near Ajax (CM).

The sites are shown on figure 1.1.
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Each egg was labelled with:

. its location (AP, CP, LP, CM)

" clutchidentification

o egg number (#1 = last laid egg).

For transport the eggs were arranged in a single layer plastic shoe box and

covered with a mixture of vermiculite (a type of mineraf and water. The shoe

box was covered with aluminium foil to prevent dehydration. All eggs were

maintained at a constant 20oC before being placed into an incubator.

For the experiment there were six incubators used, two set at each of

three temperatures: 21oC, 25oC and 29.5oC. A total of 720 eggs were collected.

The following table shows how many eggs were collected from each site.

Table 1.1:

Sife No. of clufches Â/o, of eggs

AP 6 212

CP 5 183

LP 5 154

CM 5 171

TOTAL 21 720

The eggs were then randomly assigned to a tray. Each tray had a total of 40

eggs with a maximum of 2 eggs from each clutch at each site.
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The trays were then randomly assigned to one of iwo moistures: dry or

wet.

A total of three trays were placed in each incubator. The combinations of

moistures were either two wet and one dry or two dry and one wet tray per

incubator.

When the first sign of hatching occurred in an incubator all the eggs were

removed at that temperature and placed in a glass jar.

Less then a week into the start of the incubation period one of the

incubators at 29.50C malfunctioned and 120 eggs were lost. This left five

incubators for the study.

The response variable, survival, was measured two months after the egg

hatched. Survival was scored a 1 or 0 depending on whether the turtle lived or

died.

1.3 ÐES¡GN OF T'HË EXPEruTüENT'

The design of the experiment followed a split- split plot layout. At the

whole plot level the factor is temperature and the experimental units are the

incubators. Two incubators were randomly assigned to each temperature level.

At the split plot level the factor is moisture and the experimental units are

the trays within incubators. At this point the trays were assigned to one of two

moisture levels; wet or dry.

At the split- split plot level the factor is site and the experimental units are

the eggs. For the experiment approximately 600 eggs were used.

5



1"4 åNåTIAL PLOT'S FOR T'þ{Ë MA¡IU ËFFËGTS

Before any formal data analysis is done, we are going to look at main

effect and interaction plots with plus and minus one standard error bands for

each data point.

The first factor, temperature, has 3 levets: 210Ç,2s0c, and 2g.50c.

Fígure 1.2:

Proportion Alive by Ternperature

21 2s tr=----
Temperature

As we can see there is very little change in the proportion of turfles that

survived as the temperature increased from 21oC to 2g.50C. This tells us that the

main effect of temperature has very little effect on the survival of a tudle egg. We

notice that at temperature 29.50C there is a larger standard error; that is because

at 29.50C one of the incubators malfunctioned and 120 eggs were lost. At each
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210C and 250C we are looking at the number of eggs that survived out ot 24O,

whereas at 29.50C we are looking at the number of eggs that survived out of 120.

Next, we looked at the factor moisture.

Figure 1.3:

Proportion Alive by lVloistur*

t,2

I

D
Moisture

As we can see moisture shows very little difference between wet and dry, which

tells us that the factor mÒ¡sture has no notable effect on the survival of a turfle.

The next factor is site.
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Figure 1.4:

Proportion Alive hy Site
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We notice there is a considerable difference as to where the turtle egg

came from and whether it survived. lt seems Big Creek Marsh (Lp) had the

highest mean survíval rate and Cootes' Paradise (CP) the lowest.

1.5 PRELIMINARY INTERACTION PLOTS

Next, we consider interactions between factors.

First we look at temperature by moisture.
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Figure 1.5:

Proportion Alive by Temperature and ldoisture
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As we can see the interaction plot of temperature by moisture shows no

interaction effect.

Next, we look at site by moisture.
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Figure 1.6:

Proportion Alive by Site and [,rloisture
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Again we see no interaction between these two factors.

Lastly, we look at the temperature and site interaction to see if there are

any effects.
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Figure '1.7:

Proportion ,Alive by Temperature and $ite
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As we can see there appear to be some differences here. As we continue we will

revisit this relationship.
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At this time we will look at the clutch to clutch variation. To do this we have

plotted the proportion oJ turtle eggs that survived in each clutch from our four

sites.

Figure 1.8:

Proportion Alive by Clutclr

ï1 I,T II

il r1 rj t4 t5 l6 ?l ?223 24 25 lt t2 t3 i4 t5 4t 42 43 44 45

clulch

LEGEND:
Clutch #11 - 16: Site: AP
Glutch #21 - 25: Site: CM
Clutch #31 - 35: Síte: CP
Clutch #41 -45: Site: LP

From this we see there is similar variation between sites AP and LP as well as

sites CM and CP. Overall, we see that sites CM and CP are more variable than

sítes AP and LP.

The next graph looks at the proportion of turtle eggs that survived from

each clutch at each temperature level.
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Figure 1.9:

1,0

0.8

ü.6

t.4

0,2

0,0

ll i2 lt t4l5 16 2t

tenp

LEGEND:
Clutch #11 - 16: Site: AP
Clutch #21 - 25: Site: CM
Clutch #31 - 35: Site: CP
Clutch W1 - 45: Site: LP

?2 23 7.+ 25 3t 37

c lutch
t-t+j Zl Erei-€ Zs

Pro¡rortion Alive lry Clutch ancl Temperature

4

ê
È

J] J4 J5

:k--:{-ilq 29

From this graph we do not see any patterns between clutch and temperature.

B+*E

EE
Ì+TE

f
E

ÉEEE
i.\

J.'lç

13



Ëfaapf er 2: Ãnalysøs of t&zæ Tewzperatasres

2.1 ¡I{TRODUCTTON

At the first level, the whole plot, one looks at the effect temperature has on

the survival of a turtle egg.

lf the response variable were continuous we might assume that it followed

a normal distribution therefore a linear model or general linear model could be

used. Because our data are binomially distributed a generalized linear model is

appropriate at this stage.

A linearmodel has model equation Y:Xþ+s, where the ¿(I) =Xþ. lt

postulates a linear relationship between a dependent or response variable l',

and a linear combination of fixed predictor variables. The e stands for the error

i.e. variability in I that cannot be accounted for by the predictors. The expected

value of an error is assumed to be zero and it is independently normally

distributed with constant variance i.e. q- w (o,o't) .

To estímate the unknown parameters we use the method of least squares.

Because we assume the error terms are normally distributed we can carry out

tests on the parameters. ln addition confidence intervals for the parameters, and

confidence intervals for the mean of the response variable are obtainable.

14



lnthegeneral linearmodel, Y=Xþ+€, E(¡):Xþ asabove,and s has

mean zero but a more general variance covariance structure ie. I. As before,

the dependent variables are expected to follow the normal distríbution. To

estimate the unknown parameters we now use the method of general least

squares.

A generalized linear model, with form S(p)= Xp is a generalization of the

general linear model. lt was developed for data that do not follow the

assumptions of a general linear model. For example, we have independent

response variables !t,.......!n with means p1,......F,,. The response variable may

or may not be a continuous variable; instead it could be a count. A generalized

linear model can be used in two situations:

i. for dependent variables which are discrete random variables

ií. for dependent variables, which are not linearly related to the

predictor variables i.e. data that needs to be transformed so that a

function of the mean of the response variable is linearly related to

the predictor variables.

The generalized linear model has three aspects:

First, it extends linear models to the situation where response variables

are members of the exponential family. The exponential family includes normal,

binomial, Poisson, Geometric, negative binomial, exponential, gamma and

inverse normal distributions. Members of the exponential family of distributions

have probability density function for a response y that can be expressed in the

form:

15



f, (t; o, ó)= exP {+# *,o, Ð}

where:

á is the natural location parameter. lt is a function of the mean e(p), where ¡r is

the mean of the response.

þ is a scale or dispersion parameter.

a(.),0(.)a nd c(") are specific functions.

The variance, v(¡l), is a function of ¡.r rather than 0.

Table 2.1, taken from SAS System for Mixed Models, is a table of functions for

some common members of the exponential family.

Table 2.1:

Table of functions for the three distributions [5]

Poisson Normal Bernoulli

Mean(y) I p

va(v) Ã o2 l,(1- ")l
e(p) log, (z) p tos,lnf (t- n)

a(ø) 1 o2 1

,(p) Ä 1 n(t- n)

Secondly, as in the two previous models, it has a set of parameters B and

explanatory variables .x = [¿ ... . .+]

16



Thirdly, there is a fink function g such that: g(¡t,)= X,Ê where rt, = g(p,)

The link function is a function of the mean ¡z. lt connects the mean of the raw

data to the natural parameters to give us the basic form of the generalized linear

model: ry : X þ. Various link functions can be chosen, depending on the

assumed distribution of the y variable e.g. togit link: rog[, " ).\I-n )

ln the analysis of this chapter we will use a logit link function since the

data we are dealing with follow a binomial distribution.

ln generalized linear models, iterative methods are needed to solve for the

parameter estimates.

2"2 ITERAT¡VE METHOD FOR PARAMETER

E$TIMATION IN GENËRAtiZED L¡NEAR MOÐELS.

The next two sections are a summary of the iterative method for

parameter estimation from Generalized Linear and Mixed Models by Searle and

McCulloch [8].

The method of maximum likelihood is the basis for parameter estimation in

generalized linear models. However, the actual operation of maximum likelihood

results in an algorithm based on iteratively weighted least squares.

The likelihood function is defined as the joint density function of n random

variables f (X,0). lt is considered a function of 0 and can be denoted as L (e,X).

17



Given x we want to maximize t(e,x) or in this case L(y,{) w" set the

derivative of the log-likeliho od L(t, þ) to O and solve for þ .

ln matrix notation the maximum likelihood equations (also called the score

equations) can be written as

X'W LY = X'W LP

where:

w = {owi} is a nxn diagonal matrix with elements w¡ = lr(a,)s'r(p,)l-' an¿

s,,(p,)=+. ,fu,) is the varÍance function for the ith observation. We note' dþ,

lhat p, is n,. The weights (w¡) depend on the parameters p, . we can re-write w¡

1
âS---.---_

var(/i)

distribution. Thus var(y) equals 1",(- ")]. Therefore the ith diagonat element

of thewmatrixis w = -+--- .,+]'. ^- {oso(ø,)}i,annxndiasonat matrix.' o,(r- r)lôrt, t

From this we see that w and À both depend on the mean /-¿,. Therefore

w, A and p (o, q) all involve the unknown param eter þ through the rink

function. Because the maximum likelihood equation is a nonlinear function of É

we cannot solve this equation analytically. Therefore we use the Fisher scoring

method.

/ ^ 12

t +1. For the turtle data, the variabte y follows a binomial
\ôrt )

18



2"3 FI$HHR SGORING ffiHTI{OD

Solutions for the maximum likelihood equation for pare performed by an

iterative weighted least s[uares method. This can be derived as an example of

the use of Fisher scoring. "Fisher scoring, the method used by SAS, is an

iterative method for maximizing a likelihood and it takes on the form:

6m+t _ 6@,) *¡(s(,,)-' #lr=¡o

where (m) represents the mth iteration, f (a) is the information matrix and d is

the entire parameter vector'' [8].

lf we rewrite the previous equation in the context of our situation we have:

p(*+t) = p(*) *(x'w@) x)-t x'w(,) r.@) (z- øø'1\

Fon this iterative procedure we need starting value estimates for the

parameter P(o). On.e we have this value we can obtaÍn starting values for

p,W,a (denoted by /r(0), WP),¡(0)). These are all part of our iterative equation.

We then use these estimates to revise our equation to solve for the next

parameter estimate. We linearize the model about these new values and linear

least squares is applied again to find a second set of estimates. This procedure

is repeated until the desired degree of co¡3:Xgrgence is obtained.

19



2"8 QUA$I - L¡KELIHOOÐ

The following is adapted from Generalized Linear Models by Myers,

Montgomery and Vining [9].

Sometimes we are dealing with situations ín which a modified version of

maximum likelihood is needed. One such situation is when the responses are

correlated. Wedderburn (1974) developed the concept of quasi - likelihood for

such situations. The main point is that in using maximum likelihood above (i.e.

sec. 2.2 & 2.3) we are only using the first two moments of the distribution of the

response. The score equatíons are replaced by the equations F'v-l (v_- A) = g

where F is a matrix of derivatir"" !. lf the responses are independent this
dp

equation can eventually be written in the form X'LV-'(y_- a)= 0 where

L = diaol A1
" 

la't¡ )

2.5 GENERALIZED L¡NHAR MOT}EL INFERENCE

lnference for a generalized linear model starts with its deviance.

The deviance (D) is defined as:

D(p)=-^lffil

where: t(g)is the likelihood for the fitted logistic model, the reduced model, and

t@)is the likelihood for the saturated model. The saturated model is regarded

20



as providing a complete description of the data. A probability is given for each

unit at this level. The reduced model reparameterizes the saturated model such

that we have fewer parameters than the saturated model. The deviance allows

us to compare the reduced with the saturated model to see if the reduced model

is an adequate fit.

lf the reduced model fits the data then the deviance is approximately

distributed a" 
^ 72 with n-p degrees of freedom, where n is the number of

observations and p is the number of distinct parameters in B.

The deviance can be used for two purposesl

1. To assess goodness of fit of the reduced model, by comparing the

calculated deviance to the critical value of the appropriate X2 distribution.

2. Hypothesis testing, which consists in thinking of each hypothesis in terms

of a model and comparing the goodness of fit statistic for the full model

and the reduced model. For example, / is broken down into two sub

vectors þ.t and þzso we can write X þ as X þ = Xtþl + Xzþ2. Now, we

use the difference between the deviance of the full model and the

deviance of the reduced model (i.e. fitting X1ft alone) to test Ho : p, = g 
.

The likelihood ratio statistic is approximately distributed as ¡2wíth p-p1

degrees of freedom, where p1 is the number of distinct parameters in p1.

Hypothesis testing can also be done using Wald, or score tests.

ln addition to testing hypotheses and assessing goodness of fit we are

also able to calculate confidence intervals for the parameters, and confidence

21



intervals for the expected value of the response variable in a generalized linear

model.

2.6 RESIDUÅLS

After we fit the generalized linear model we should check to see if there

are any problems with the model.

Similarly to linear regression, we will look at residual plots.

For fixed effects there are three types of residuals available in SAS for

model checking; they are Pearson, deviance and raw residuals.

The pearson residuals are defined as rD, :U,- i)-{ where w¡ is the", 
^¡v (lt,)

weight matrix. The ith residual is the ith contribution to the Pearson Chi-square.

The deviance residual is defined as ro = (sign (V, - tt,ÐJ4 where d¡ is the

square root of the ith contribution to the total deviance. ln other words

I¿, = D(p)

Lastly, the raw residuals r¡ âro given bV, r¡ = y¡-¡?,, where y¡ is the

response and p,ís the corresponding predicted mean.

According to Myers, Montgomery & Vining [9]the raw residuals are not

appropriate for generalized linear models þecause the va(yi) is not constant.

McCullagh & Nelder [7] recommend plotting the deviance residuals.

The residual plot is a scatterplot of standardized deviance residuals

against the estimated linear predictor f or against the fitted values.
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The fitted values are transformed to a constant scale based on the error

distribution. For the turtle data the distribution was assumed to be binomial.

Binomial errors are transformed using 2sin-t..lþ .

After constructing a residual plot you want to look for patterns. Examples

of patterns seen in the resídual plot that indicate a problem with the model

include curvature in the residual plot, and a systematic change in the range of the

residuals with the fitted values.

Curvature in the residual plots may be the result of choosing the wrong

link function, wrong choice of scale of one or more covariates, or omission of a

quadratic term in a covariate. Residual plots are also used to help detect outliers

or influential observations.

2"7 TEMPERATUREANALYSIS

Utilizing the turtle data at the whole plot level, we consider the effect of

temperature (denoted as r¡ ). Temperature has three levels

(210C,250C and 29.50C, so i = 1,2,3). At each temperature we have two

incubators, except at temperature 29.50C where one incubator malfunctioned and

alllhe sggq were lost,

pigure ?.1 is a f¡ont view of en incUþator, The incubator is a visual

representation of the experimental unit at this stage of the analysis.
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Fígure 2.1:
I

I

The response variable Y is the survival of a turtle egg. lt is defined as:

" 
=1, 

if egg survives (success)
' 

lo, if egg dies (failure)

We assume that Y follows a Bernoulli distribution. Since this is a member

of the exponential family, a generalized linear model can be used to analyze the

data at this stage.

For the turtle data let Y,j = number of turtle eggs that survived in incubator j

at temperature i. Then

Y¡-Binomial(n t¡, ft i)

where:

zi ís the probability that a turtle egg at the ith temperature successfully hatches

and n¡ denotes the number of turtle eggs at temperature i in incubator j.

A generalized linear model at the whole plot level for the turtle data can be

defined as follows:
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For binomially distributed data a logit link function is used. Hence, we

write the model 
"" "n(Éî)= 

* n Here we have two incubators ( = 1,2)

randomly assigned to the three temperature levels (i = 1, 2, 3) and so

JL _

\1
T12

n2i

nzz

n31

, anA rog(-4-l ,, ,n" vector of síze 5 x 1 representing the mean
\1- s- )

logits of turtle eggs successfully hatching in jth incubator at temperature i. We

recall that one incubator failed at temperature 29.50C and all the eggs were lost.

The X and B matrices are defined as follows;

( ,.\ttþ=l'il
l.l
l'z )

To asses the temperature effect SAS uses a reference cellformulation ie.

all means are written in terms of their differences from a certain cell mean which

is referred to as the reference cell. ln the case of the temperature effect the

reference cell is identified as temperature 29.50C. Using the reference cell

formulation the parameters at the whole plot level can be defined as follows:

p" is the mean rooit 
[r"s[ #))at 2e b'c

"i 
is tne mean logit at 210C - mean logit at 29.50C

"2 
is tne mean logit at 250C - mean logit at 29.50C
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The design matrix is: X_=

110
110
101
101
100

. Thus the expected value form of the

model equation is rls(:-)= 
" 

B .

\r-z ) -
Earlier, when we looked at our main effect plots we saw that temperature

had no effect on the survival of a turtle egg. To look at this more formally we use

PROC GENMOD in SAS.

PROC GENMOD is designed to fit generalized linear models using

maximum likelihood theory and iterative methods to solve for the parameter

estimates.

The following selected output was obtained using SAS.

First, we will asses the goodness of fit of our model. The deviance given

to us in SAS wifl be used to determine the fit.

Griteria For Assessing Goodness Of F¡t

Griterion DF Value Value/DF
Deviance 2 0.5509 0.2754

The PQI >0.5509) = 0.7592, suggests that the model is a good fit.
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Next we test the hypotheses:

ys

H^,:l +o

where "i 1i=1,2) is previously defined.

Analysis Of Parameter Estimates

Standard Ch¡-

Parameter DF Estimate Error Square Pr > GhiSq

lntercept 1 0.8473 0.1992 18.09 <.0001
temp 21 1 0.1431 0.2465 0.34 0.5616
temp 25 1 0.3191 0.2504 1.62 0.2024
temp 29.5 0 0.0000 0.0000
Scale 0 1.0000 0.0000 1.00 1.0000

Using the Chi-squared test, from SAS we get f12 = 0.34. The corresponding p-

value 0.5616 is not significant which suggests that temperature 210C has the

same impact as temperature 29.50C on the probability of survival of a turtle egg.

A similar result was obtained for 250C.

Alternatively we can use the likelihood ratio test from SAS to again look at

the hypothesis that temperature has no effect on the survival of a turtle egg

versus the alternative that temperature does have an effect on the survival of a

turtle egg.
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LR Statistics For Type 3 Analysis

ch¡-
Source DF Square Pr > ChiSq

temp 2 1.72 0.4227

The test statistic i" 12 :1.72 and the corresponding p-value is 0.4772,we again

see that the temperature eftect is not significant.

Lastly, we will look at a residual plot:

Figure 2.2:

Residuals of Y by Predicted Y
Daviance Residuals

o.7 0.7t 75 0.735 0,7525 0.77

Predicted Y

As we can see the residual plot at this stage only contains five data points.

Unfortunately there is not enough information to make meaningfuljudgements.
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Ç&napter 3: Æørædys¡s CIf t&ne Mo¡sf&dres

3.,l TNTROÐ|"iCT|ON

ln the previous chapter, we looked at temperature and its impact on the

survival of a turtle.

The terms involved in the whole plot model, aside from the error, were

fixed effects.

At the split plot level, we introduce a new factor: moisture. The factor

moisture has two levels: wet and dry. There are three trays in each incubator.

One of the two moisture levels was randomly assigned to each tray such that

there were two wet and one dry /or two dry and one wet tray per incubator.

At this time, we want to see how the factor moisture and the interaction of

moisture with temperature influence the survival of a turtle.

With the introduction of moisture it is no longer the case that there is one

random term i.e. error. Since the trays and incubators are considered random

we need to reflect this in the model. An extension of the generalized linear Wedel

that takes into consideration random effects is a generalized linear mixed effec*s

model or generalized linear mixed model.

The generalized linear mixed model contains fixed effects as well as at

least two random terms, one of which accounts for the model error. The mixed

model can be written in the following matrix form:
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rl = X þ+Zll

where:

ry is the link function, here a vector of logit means.

X is the design matrix associated with the fixed effects

þ are fixed effect parameters

Z is the design matrix associated with random effects

u are random effects u-(0, G).

Let e be an unknown random error vector a - (O,R)

When averaged over u, the expectation is: rt = X þ .

The variance -covariance structure is typicatly represented as Varlol = [1 il
Lql Lo Rl

Estimates for G and R can be found using SAS. To analyze a generalized linear

mixed modelwe will use extensions and analogues to the techníques used in the

generalized linear model.

We recallthat a generalized linear model has observations ¿,.........y, with

means Ft...........11,,. The response variable has a distribution which is a member

of the exponential family. lt has a set of parameters p and explanatory variables

'T-'r
" =1",..........*o) associated with it. There is a linkfunction around which the

model is built. The link function connects the mean of the raw data to the linear

predictor (z).

ln a generalized linear mixed model the parameters of the model p , G

and R must be estimated. To estimate the unknown parameters we will extend
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the method of maximum likelihood and Fisher scoring as in generalized linear

models.

The non - error random effects in the mixed módel are seen in the 7g

portion of the model. The effects in u are not parameters, but random variables.

ln the theory of mixed models, inference is/can be done on the non - error

random effects u. The type of inference that is done is prediction. The predictor

of u is known as the Best Linear unbiased Predictor (BLUP). lt is found by

methods analogous to those used to estimate /.
The next chapter wíll look in detail at BLUP inference.

For parameter estimation in mixed models a procedure that looks at both

fixed and random effects at the same time is needed. PRoc MIXED in sAS

does that. The MIXED procedure, used when dealing with mixed models, is for

normally distributed data. As we can see with the turtle data, the response

variable is not normal. This is the reason for using generalized linear model

procedures in the previous chapter. To cater to these conditions and the mixed

model we use the GLIMMIX macro, a SAS macro written for fítting generalized

linean mixed models using PROC MIXED estimation methods.

3.2 MOËSTURF ANALYS!S

At the whole plot level we found that temperature had no effect on the

survival of a turtle.

At the next level, the subplot level, we are going to consider the added

effect of moisture and interaction of moisture by temperature that might exist.

3r



The following front view of an incubator portrays the subplot level.

Figure 3.1:

i.'

WET
t,,.:,:,.,.::Ì.... ..,-.,...r-ì.,.-

:l:..t:,a:j :.:i' : :::al. :ia-.: .)
.

' .: . '. :|
r,Ì:ij.:t:r:.i ::./.:r:.iIli::lji

.'.'. .WET

We have an incubator at one of three temperatures. ln each incubator

there are three trays; each tray is randomly assigned to one of two moisture

levels, there are one wet and two dry trays or two wet and one dry tray.

ln the last chapter we used the logit link to fit the data. Continuing wíth the

same link function at the subplot level we define the generalized linear mixed

model for the turtle data as follows:

Y¡r.r- Binomial (ni¡¡1, n¡p)

Let Y¡rr equal the number of turtle eggs that survived on tray I in incubator j

at temperature i and moisture k. We define trijkt as the probability that a turtle

egg at the ith temperature in jth incubator and kth moisture in lth tray successfully

hatches. ri¡n, denotes the number of turtle eggs at temperature i in Íncubator j

randomly assigned to moisture k and tray l.

The generalized linear mixed model can be written as:
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.*l+-l =xþ+zu
\I- lt )

..

where irlrgl -4- | t"pt"t"nts the vector of mean logits at all temperatures, all"\t- z)

moistures in all incubators on all trays. At this level we will have a vector of size

(15 x 1).

The þ vector with dimensÍon (6 x 1) includes the parameters needed at

the subplot level. p =

p
Tl

{
v:

('r),,

(,r).,,

Fixed effects will be denoted by Greek letters and random effects by

Rornan letters.

Continuing with the reference cellforrnulation we define the parameters

AS:

¡'t*o ¡, the mean logit at temperature 29.50C and moisture wet

{ and r) are previously defined

7i is the mean logit at moisture dry - mean logit at moisture wet

(ry).r, is the mean logit at temperatu re 210C and moisture dry - mean logit at

temperatu re 210c and moisture wet - mean logit at temperature 2g.50c and

moisture dry + mean logit at 29.50C and moisture wet.
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(rr).u is the mean logit at temperature 25oc and moisture dry - mean logit at

temperatu re 25oc and moisture wet - mean logit at temperature 2g.s0c and

moisture dry + mean logit at 29.50C and moisture wet.

The X matrix has dimensions (15 x 6) and is as follows:

1 1 . 11 11

tit ir ir
ttl

tit . i. i.ttt
1i1 . ir ir

ttt1i1 i. l.ttt
1i1 .i i

11. 1
I

1i 1
I1i. 1
I1i. I

1i- 1

1i. 1
I

I

.t.
I

1i. 1
I

I.t.
I

I
't'

tt
.1.t. tttt

The next part of the mixed model is the random

expressed in the Z and u matrices.

The vector u consists of the non - error random

effects, which can be

variables in the

experiment at the subplot level. The random components at the subplot level

include: A¡rui effect of incubator j within temperature i and 8¡61¡¡ effect of moisture

k within incubator j and temperature i.

The Z and u matrices are defined below:

rl'.t.1.
+ L\.Jq.J(-/J

¡i' ,i rí ('r)iu
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4ll
-lt
1 .t- .tft

,l I. lr r

_-_J____J
l¿ I. rl r

tt
I .tt. t l¡
tt
t 4t' I rl

----1-----1tt'lt
lr

.tt tt
lt.tt

---J----ltt.tt
¡t
tt.tt
tt
tt'tt

---..1----T

L
I

I

I

I

I

I

I

Ir
I

I

I

I

I

I

I

L
1

.1

L
I

I

I

I

I

I

I

I

t
I

I

I

I

I

I

I

L

1

1

.1

1

1

.1

4(,)
Ar(,)

4e)
or(r)

4(.)
Br(r1r¡¡'

Bz(r1r¡¡

Bt(z(t))

Bz(z1t¡)

Br1r1z¡¡

Bz(t1z¡)

Btlz1z¡)

Bzlzlz¡)

Br1r1s¡)

Bz(ris¡¡

Z_

u-

i 1i
---- l-----r

Br1;1i¡¡

The dots represent zeros.

The G - matrix is the variance - covariance matrix for the random

components in the mixed model. The matrix is a 15x15 diagonal matrix where

the first 5x5 submatrix along the diagonal has the variance associated with

incubator within temperature and the remainÍng 10x10 submatrix along the

diagonal has the variance associated with moisture within incubator and

temperature.
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3,2"1 Fenalized Quasi - Nlkelihood

The version of the likelihood that SAS uses in generalÍzed linear mixed

models is penalized quasi - likelihood. Penalized quasi - likelihood as used in

generalized línear mixed models is the analog to quasi - likelihood used in

generalized linear models. ln this situation (i.e. a generalized linear mixed

model) the quasi - likelihood has been augmented by a term involving u (i.e.

exp(t;'G-'a) . fh" mixed model relates p to ,l_by using the expected value of ry

given u. The conditional mean of ? given u is relatedto þ via the equation

rl = X þ + Zrl. The covariance matrix of u, denoted by G, depends on the vector

of parameters d. The variance contains terms involving the variance of 7!and

the variance of e (i.e Z'GZ + R).

Similarly to section 2.4,we wish to estimate þ and á using maximum

likelihood or an approxímation to it. We recall in section 2.4 there was difficulty in

implementing likelihood methods directly. To estimate É and d when using the

penalized quasi - likelihood, a method of integral approximation is used.

3.2.2 Fitting the model

To fit the generalized linear mixed model we use the GLIMMIX macro.

The following selected SAS output was obtained.

First we look at how well the modef fits the data:
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GLIMMIX Model Statistics

Descrlptiom Value

Deviance 11.5797

Scaled Deviance 10.9453

Pearson Chi-Square 11.6598

Scaled Pearson Chi-Square 11.0211

Extra-Dispersion Scale 1.0580

Simílarly, to the previous chapter we will compare the devian ceto a x$ .

We find the p-value=0.2381 which suggests the model is a good fit.

The output suggests that with the addition of the moisture effect we still

have no signifÍcant factors i.e. the above factors have no effect on the survival of

a turtle egg.

Solution for Fixed Effects

Effect Moist Temp Estimate Standard
Erron

DF t Value Fr>
Irl

lntencept 0.8473 0.3239 2 2.62 0.1203

ternp 21 0.1 908 0.3741 2 0.51 0.6608

temp 25 0.4363 0.3821 2 1.14 0.3718

nroist D 0.04256 0.4691 2 0.09 0.9360

molst"ten'lp D 21 -0.09333 0.5588 2 -0.17 0.8827

moistntemp D 25 -0.2148 0.5689 2 -0.38 0.7420
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Estimates for the random effects provide us with variance estimates for

the 3 random components in our model.

Gova rla nce Fa na¡-¡¡eter Estirnates

Gov Panr'¡r Estirnate

inc(tennp) -0.03564

moist*inc(temp) 0.01459

R.esidual 1.0580

Le. ôlr"ç"mp) =-0.03564 , ôh6st*inc(temp)= 0.01459 and the subplot model

error ô2 = 1.0580. The estimate ô2nc&emp): -0.03564 is negative. We will

replace the value by zero i.e. ôz¡rç"mp) =0. This suggests that the variance of

the data is less then that predicted by the binomial model.

hlext we present the solutions for the random effects.
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Solr.¡tion for Rarido¡m Effects

Effect l¡'¡oist ¡nc ternp Estimate srd
Err

Pred

DF t Value Pr>
Irl

inc(temp) 1 21 -0.2090 0 5 -lnfty <.0001

lmc(tennp) 2 21 0.2090 0 L lnfty <.0001

inc(temp) 1 25 -0^08359 0 5 -lnfty <.0001

inc(temp) 2 25 0.08359 0 5 lnfty <.0001

inc(temp) 1 29 7.93E-16

¡noist*inc(ten'lp) D 1 21 0.04660 0114A 5 0.41 0.6997

molst*inc{temp) Ð , 21 -0.04660 0.1140 5 -0.41 0.6997

¡r'roist*lnc(temp) W 1 21 0.03899 0.1 1 3B 5 0.34 0.7458

moist*inc(temp) W 2 21 -0.03899 0.1138 5 -0.34 0.7458

rnolst*inc(ternp) D 1 ¿,r 0.04647 0.1146 5 0.41 0,7019

rnoist*inc(temp) D 2 25 -0.04647 0.1146 5 -0.41 0.7019

moistn!nc(temp) W ,| 25 -0.01224 0.1153 5 -0.11 0.9196

moist*inc(temp) W 2 25 0.01224 0.1 1 53 5 0.11 0.9196

moist*inc(ternp) D 1 29 -164E-18 0j208 5 -0.00 1.0000

rnoist*inc(ternp) W 1 29 -1448-18 0.1 208 5 -0,00 1.0000
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Pearson Residuals for z
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Lastly we look at a residual plot to see if there are any patterns.

Figure 3.2:

As we can see there are no patterns in the data set. There are a few points in

the residual plot that could be considered influential observations.
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#ftæpfe r 4: ÃnæÊysss ofl ffeæ $r"fes

4.{ truTROÐUeTtON

ln chapter two a detailed look at estimating a fixed effect (i.e. temperature,

here) was completed. For this fixed effect analysis of the turtle data, a

generalized linear model was used. For the generalized linear model the

distribution form of the response variabfe is known. ln the case of the turtle data

the response variable followed a binomial distribution. With the distribution

known, the likelihood function can be found. Once the likelihood function is found

it is then maximized to find the estimates.

ln the case of the turtle data it was found that the likelihood function

became too complex; as a result Quasi- likelihood was used. Similarly to the

maximum likelihood, the quasi-likelihood function is maximized to find the

estimates of the parameters.

ln the last chapter we introduced random effects terms into the model,

denoted by u. By including random effects the model became a generalized

linear mixed model. To obtain estimates for the mixed model a penalized quasi -
likelihood function was maxirnized.

The next stage of the analysis is to look at site effects. We will also

predlct the survival of a turtle egg in various situations,
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4"2, SåTES ANAtYSTS

At the sub-sub-plot level we consider the factor site. The experiment was

conducted at four sites in Ontario. With the help of our initial plot in figure 1.4, it

can be seen that site had an effect on the suruival of a turtle egg,

Figure 4.1 represents a top view of a tray in an incubator.

Figure 4.1:

Considering the factor site the following can be defined:

Y*, - B(rro,,,o,r,,)

where: Y^,, is the number of turtle eggs that survived at temperature i, in

incubator j at moisture k on tray I from site m. fl¡¡a, is the total number of turtle

eggs at ternperature i, in incubator j at moisture k on tray lfrom site m. Finally,

tT4a^ is the probability that a turtle egg survived at temperature í, in incubator j at

moisture k on tray lfrom site m.

ContinuÍng with the logit link, the generalized linear mixed model can be

written as:

"t(t )=xþ+zu

@@@@@@

42



At this time the dimension and terms involved ín the mixed model will be

considered. ïhe 
'"nl-g-lvector 

is of size (60x1). This takes into account the"\t- q-)

four sites, three trays per incubator and five incubators. 
"t(Ér)represents

( o',...\
I'l

the vector of 60 mean logits. where o = | . I i"' nsttzt represents the meantl
\frTnq )

logit at temperature 29.5oC, in incubator 1 at moisture dry on tray 2 and from site

LP.

There are two ways of considering the factor site; both possibilities will be

modeled. ln the first way if the locations were predeterrnined then sites would be

considered fixed. On the other hand, if the sites were randomly chosen from a

variety of possible sites then sites would be considered random.

First site is considered a fixed factor.

4.2.1 FIXËD SITES

Let us analyze the data assuming sites are fixed. The fixed effects are

represented by the X matrix andthe p vector. B has dimension (18x1) and

includes the parameters from the sub - plot level r,,r),yi,(ry)".,r,(ty)'r, which were

previously defined. ln addition the following new parameters are added.

(o"' 6; 6; 4 (,a)i. þd)i, ("a),. (d)i, þ6); (d))" (yd),,, (rd)i,UÐi")
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Continuing with the reference cellformulation the additional parameters can be

defined as follows:

/¿*** is the mean logit at temperature 29.5oC, moísture wet and site LP.''

áf is the mean logit at site AP - mean logit at site LP

á, is the mean logit at site CM - mean togit at site LP

áj is the mean logit at site CF - mean logit at site LP

(rd)i. is the mean logit at temperature 21oC, site AP - mean logit at temperature

21oC, site LP - mean logit at temperature 29.5oC, site AP + mean logit at

temperature 29.5oC, site LP.

("d)i, is the rnean logit at temperatu re 21o},site CM - mean logit at temperature

21oC, site LP - mean logit at temperature 29.5oC, site CM + mean logit at

temperature 29.5oC, site LP.

("4),. is the mean logit at temperatureZloC, site CP - mean logit at temperature

21oÇ, site LP - mean logit at temperature 29.5oC, site CP + mean logit at

temperature 29.5oC, site LP.

(rd))., is the mean logit at temperature 25oC, site AP - mean logit at temperature

25oC, site LP - mean logit at temperature 29.5oC, site AP + mean logit at

temperature 29.5oC, site LP.

(rd)), is the mean logit at temperature 25oC, site CM - mean logit at

temperature 25oC, site LP - mean logit at temperature 29.5oC, site CM + mean

logit at temperature 29.5oC, site LP.
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(rd)), is the mean logit at temperature 25oC, site CP - mean logit at temperature

25oC, site LP - mean logit at temperature 29.5oC, site CP + mean logit at

temperature 29.5oC, site LP.

(yd)i., is the mean logit at moisture dry, site AP - mean logit at moisture dry, site

LP - mean logit at moisture wet, site AP + mean logit at moisture wet,'site LP.

(yd)i, is the mean logit at moisture dry, site CM - mean logit at moisture dry, site

LP - mean logit at moisture wet, site CM + mean logit at moisture wet, síte LP.

(rA)i" is the mean logit at moisture dry, site CP - mean logit at moisture dry, site

LP - mean logit at rnoisture wet, site CP + mean logit at moisture wet, site LP.
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The design matrix, X is of size (60x18). We present the part for the first

temperature.

1l
I

1i
1i
1lI
1l

I
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1l
I

1i

1l
1i

I

1i
I

1i
--+
1i

I

1i

1i
I

1i
I

1i
I

1i
I

1i

1i

1-t
I

1i
I

1i
II

1 . 11 i
tt1 . 11 itt1 . 11 i

t .iti__ rl
)ttf . i.

II .1.
If . i.
If . i.

f . i.
If . i.

f . i.
I

f .i.

1- 
r-1-l

t . it I
tt

1 . i1 i
ttf . i1 I

---J-{

-1-:------r-

--JJt .iti
ttf . i1 I

ltf . i1 Ir iri
t -.1- 

,-

ltr . i. i
lt

AllI r. r

tt

U;j
'i vi

.t.r.l
__J_____J______L

tt
r.i. 1 .i. 1tt
t I tl1 .i. 1i. 1

tt,tllI ¡. r.

. .1. 1 .i. 1i ;i 1
tt
tt

Gv)ir ô; (.¿)t

As can be seen a pattern of sub-matrices arise. The above matrix can be

written as:
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Jgy¿)
01s*s¡ i llrrs¡
Oçr*e¡ i 01r*e¡

01s*s¡ i 01s*e¡

Qøt¿l 01r*e¡ i 01rra¡

Jøvel
l13xa¡ 01s*s¡ i l1s*e¡

01r*s¡ i 011"3¡

01srs¡ i 01srs¡

01r"s¡ j 0lrrs¡

01s*s¡ i llsrs¡

01r"s¡ i 01rrs¡

Ots*gl i Otg*sl 
i

3:li-þ:.i

The identity matrix (denoted by l) is repeated every three lines to show the

different sites followed by a line of zeros (represented by 0) to denote the

reference site. The J sub-rnatrix represents a matrix of 1's. The matrix size is

wr¡tten in brackets.

The random components of the mixed model are in Zandu. The u vector

has dimension (20x1) and includes the following random effects:

An, incubator within temperature. (There are two incubators at each of three

temperature levels minus the one incubator that malfunctioned at temperature

29.50C.)

{ir1,t*o¡ tray nested within incubator within temperature by moisture. For some

reason SAS would not accept this formulation. The random effect was rewritten

as 8,1,*¡*n¡i.e. tray nested within incubator, temperature and moisture. A portion

of the vector can be written as follows:

^ il(sxs) illsxs¡
u1+xt) iOtr*sli0tr*sl

____________.!__________i-_________

^ iltsxsl iltsx3l
u1+x1) i01rxs¡ i0(r*s)
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(¿u, 49 4el 4rrl Atrl 4¡,,¡ Btlttz) Bzlrt¡ Bltn¡ ...4*'r)

The design matrix Z of the random effects is of size (60x20). The portion

of Zfor temperature 210C can be written as:

1 .i1
I1 .i1
I1 .¡1

1it

1

1

.1. 1
I

.1. 1

I

I

I

I

I

I

I

I

I

I

I

I
-1

.1

.1

.1r r .l.

A¡(ù Þ
"t(i. i,k\

The portion of Zfor temperature 21oC can be rewritten as a set of sub matrices.
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J(tzxt) Olrzxr¡

O1z+*a¡

J1+rr¡ O1+os¡ O1+xs¡

01+*t¡ J1a*t¡ Olax+) O1+xo)

01a"2¡ J1+rr¡ O1+xe) O1+xs;

01rzxr¡ Jgz^t¡

01+*s¡ J1+"r¡ Olaxz) O1+xs¡

01+ra¡ Jlarr¡ O1+"rl O1+xs¡

01+*s¡ J1a"r) O(¿xe)

As we can see there is a pattern developing for temperature 210C. A

similar pattern can be seen for temperature 250C and 29.50C.

At this time the general¡zed linear mixed model for the turtle data can be

stated as:

e frog-Iar- lA,,u,B,1ouo¡]= ,r* +ri + A¡(¡)+ yi, +(ry).*+84,.i,0¡ +á] + (ø)",^+(rõ).0*
L " 1 -Yon,^l 't') I

Where: k= 1,2 A¡(ù_(Or:)

i = 1,2,3 l = 1,2,3, . .n¡x B,ç,¡,0¡ - (O r;)
j=1,2,...ni m=1,2,3,4



Using the SAS GLIMMIX macro to fit the model the following selected SAS

output was obtained to analyze the generalized linear mixed model.

First, we determine how well the model fits the data. To do so the

deviance value given in the output is used:

GLIMMIX Model Sfafisfics

Description Value

Deviance 22.4526

Scaled Deviance 43.1 196

Pearson Chi-Square 19.3548

Scaled Pearson Chi-Square 37.1703

Extra-Dispersion Sca le 0.5207

The deviance value is compared to a 72 with n-p degrees of freedom. We find

pr(f2n> 22.4536)= 0.9942 suggesting the model does fit the data.

Next, we estimate the three variance components which are called

covariance parameter estimates by SAS. These estimates correspond to the

random sources of variation. The output is:

Covariance Parameter Estimates

Gov Parm Estimate

inc(ternp) -0.06109

tray(moist*inc*temp) 0.1751

Residual 0.5207
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The covariance parameter inc(temp) is the estimate tor o2". lt represents

the variation (or error) associated with the different incubators used for the turtle

experiment. The estimate was found to be -0.06109. The estimates are in terms

of the logit scale.

Estimates of the fixed effect parameters in the model are as follows: The

estimates are given in terms of the logit link function. We recall that SAS uses

reference cell models.

Solution for Fixed Effects

Effect site rnoist ternp Estimate Standard
Error

DF t Value Fr>
FI

!ntercept 2.7300 0.7909 2 3.45 0.4746

temp 21 -0.2736 0.7908 2 -0.35 0.7623

temp 25 1.5245 1.0191 2 1.50 0.2733

moist D -0.2139 0.8187 7 -0.26 0.8014

moist*ternp D 21 0.09979 0.7197 7 0.14 0.8936

moist*temp D 25 -0.1508 0.7279 7 -0.21 0.8418

site AP -0.9880 0.7981 33 -1.24 o.2245

site CM -2.7860 0.7555 33 -3.69 0.0008

site CP -2.4485 0.7454 33 -3.28 0.0024

site*temp AP 21 1.0155 o.7823 33 1.30 0.2033

site*úernp AP 25 -0.8142 1.0045 33 -0.81 0.4234

site*temp CM 21 1.0510 0.7307 33 1_44 0.1598

site*temp CM 25 -0.3191 0.9768 33 -0.33 0.7460

site"ternp CP 21 -0.5383 0.7192 33 -0.75 0.4595
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Sok¡tion fon Fixed Ëffects

Effect site moist ternp Estimate Standard
Error

DF tValue Pr>
Itl

site*tenrp CP ¿Ð -1.8878 0.9616 33 -1.96 0.0581

site*ynoist AP D -0.07428 0.674A 33 -0.11 0.9129

site"moist CM D 0.05259 0.6250 33 0.08 0.9334

site*rnoist CF D 0.2843 0.6147 33 0.46 0.6468

The estimates of the temperature and moisture main effects and

temperature by moisture interaction are consistent with the last section; therefore

they are not discussed here.

For the site effect, the SAS output indicates differ^ences, similarly to the

results found in figure 1.4. Specifically, we find that site CM (Cranberry Marsh)

(p-value = 0.0008) and CP (Cootes' Paradise) (p-value = 0.Gt24) are sigaliflcantiy

!o'*r.'er than LP iBig Creek Marsh) while AP (Algonquin Park) is not significantly

different than LP-

Next, we will look at the interactions involving site.

For the site by moisture interaction: ln figure 1.6 tlie åntei'action plcts

sh+'¡+ed -;':o lrsieraciion befu¡.'een these t¡yo factors. The output above agrees with

this.

For the site by temperature interaction: ln figure 1.7 the interactlon plots

showed sorne differences. The SAS oi*þut shows ihe *nilr lnteracti+sr thet

approaches significance is site cP at temperature 250c (rd)irit has p-value of

0.0581 which is significant at 10% but not at5%. Recall, that the site by
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temperature interaction is a contrast of four logits, (rd)i"is the mean logit at

temperature 25oC, site CP - mean logit at temperatu re 25oC, site Lp - mean logit

at temperature 29.5oC, site Cp + mean logit at temperature 2g.5oC, site Lp.

Using our modef we can find estimated probabilities that a turile egg will

survive given various conditions. For example the following SAS output gives the

estimate probability of a turtle egg surviving at temperatu re 21, moisture dry and

from site AP as 0.9085. Similarly we find the estimated probability that a tur¡e

egg will survive temperature2l, moisture dry and from site cM as 0.6592.

Estirnates

l-abel Tt.t.t

2llD,tAPt 0.9085

2ltwÛttil 0.6592

251Ð!API 0.8822

Lastly we will look at the residual plot:

Figure 4.2:
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As we can see there are no patterns in the residual plot.

4,2.2 RANDOM S¡TES

Alternatively to the previous section we could consider sites as being

random.

First, we consider the fixed effects represented in the X matrix and p

vector. The þ vector has dimension (6x1) and includes the parameters

(1,.. , ,i, ,), yi ,(rr)'.,,, (ry).r.,)' trom the sub - plot level which were previously

defined.
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The design matrix, X is of size (60x6). The following portion represents

the fixed effects at temperature 210C.

I'T--.,T,

r__ I I

1i1 . i. I

1 1 . 11
tt

1i1 . 11tit ir
tit ir

1i1 I.tt
1i1 .i

lt
1i1 .i.

tit lr
tt

1i1 .it

1i1 
Itit 
i

tit.itt
tit . i.

1 i1 .it
lt

1i1 . i1
tt

1i1 . i1

1i1 . i.
tt

1i1 . l.
lt1i1 i.

f .i
If .i

.tl
ri
__t

I

.t
I

I.l
I

I

'l
I

I

1

1

1

1

1

1

1 .¡
- - --'l

'l

(,r)i^

rtt
1i1 .i1 I

--t----.t---l

l--l I

tit i,t i

ìll-.1--ttt

¡ lr . l. Iq¿J \-¿J q¡J

lI Ti ì/n
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The X matrix can be rewritten as a set of submatrices:

J¿xz O¿xt J+xz O¿xr

Jtxz o+xr Oqxz O+xr

J¿xz Oaxt Jqxz O¿xr

J¿xz O¿xr O¿xz O¿xr

Jtxz O¿xr Jqx2 O¿xr

J+xz o¿xr O+xz O¿xr

The random portion seen in the u matrix has dimension (44x1) and

includes the following terms:

,4r,, incubator within temperature

8,1,*¡*u¡ tray nested within incubator, temperature and moisture.

S, main effect of site.

("S)., temperature by site interaction.

(yS)r,, moisture by site interaction.

The random design matrix Z is of size (60x44). Because the matrix is so

big it is efficient to write it as a pattern of submatrices. The portion for

temperature 210C can be written as follows:
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Jo*, on*o

Jo*, oo*o

Jo*, oo*o

oo*, Jo*,oo*

oo*, Jo,,oo*

oo" Jo*roo*,
\______-____y-

Arù

Jo*, oo*tn

oo*, Jo*, oo*,,

oo*, Jo*, oo*,,

oo*, Jo*, oo*r,

oo*o Jo*, oo*,0

oo*, Jo*, oo"n
\---------YJ

41;*¡*¡

Io*o In*o oo** oo*o

Io*o lo*o Oo*o on*o

Io** Io*o oo*o oo*o

Io*o Io*o o o*o oo*o

Io*o r.*o oo*, O o*o

Io*o lo*o oo*o oo*o
\-J

('s)*

Io*o oo*o

oo*o lo*o

Io*o o o*o

oo*o lo*o

Io*o oo*o

oo*o Io*o
\____t/__iJ

(rs)u.

The generalized linear mixed model for the turtle data can be stated as:

eløglt!t-lA,,,r,B,1,rou¡,s,,(es)-,(rr)-,-l - /!o* +ri + A¡(ù+yî,+(ry)',u+B,r*¡,r) +s, +(rs). +(rs)u,
L 

'1 -Y¡a^l' 
.J\t)'- t\txrxK)' -m'\' - tim'\/ 

J

Where:

i = 1,2,3

j=1,2,...n¡

k= 1,2

l= 1,2,3,.

m = 1,2,3,

.fl,jt

4

A¡rù - (o ': )

Btli,¡*x¡ - (o "î)
s,, - (o 03)

("s),' - (o';)
(ys)*, - (0,'i)
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Using the SAS GLIMMIX macro to fit the model the following selected

output was obtained.

First, determine how well the model fits the data.

G LIMMIX Model Sfafisfics

Deseription Value

Deviance 24.6602

Scaled Devíance 52.6238

Pearson Chi-Square 20.2377

Scaled Pearson Chi-Square 43.1864

Extra-Dispersion Scale 0.4686

Using the deviance value glven by SAS and comparing it to a chi-square

distribution Pr(fir> 24.66t2)= 0.99g8 we find the rnode! does fìt the data.

hiext, the six varlance or covariance pararneters are estimated. The

output is:

Covariance Parameter EstlcnaË€s

Cev Farrr¡ Estimate

site 1.7708

siteoternp 0.2134

site*¡'noist -0.01450

lnc{temp} -0.05733

tra y{ rn o i s t"i nc"temr p} 0.1725

Residual 0.4686
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ln terms of the turtle data these covariance parameters estimate the

variation associated with each of the random components seen at the sub-sub

plot level.

The SAS output for the fixed effects was found to be consistent with the

previous fixed effects output; therefore it is not displayed here.

The following SAS output was found for the random effects in the mixed

model.

Solution for Random Effects

Effect site moist tray rnc temp istimate Std Err
Pred DF t Value Pr > ltl

¡ite AP 0.682i 0.7134 33 0.96 0.3455

¡ite CM -0.7742 o.71 33 -1.09 0.2834

¡ite CP -r.363i 0.7089 33 1.92 0.0631

¡ite LP 1.4551 0.7252 33 2.01 0.0531

rite*temp AP 21 0.328i 0.3649 33 0.90 o.3745

lite*temp AP 25 -0.0888ç 0.3664 33 -o.24 0.8098

;ite*temp AP 29.5 -0.1574 0.3704 33 -0.42 0.6736

rite*temp CM 21 0.170t 0.3556 33 0.48 0.6347

;ite*temp CM 25 0.0908r 0.3585 33 0.25 0.8015

;ite*temp CM 29.5 -0.354i 0.3638 33 -0.97 0.3367

rite"temp CP 21 -o.292i 0.3s35 33 -0.83 0.4137

rite*temp CP 25 -0.361i 0.355 33 -1.O2 0.3162

;ite*temp CP 29.5 0.4897 0.361 33 1.36 0.1841

iite*temp LP 21 -0.206¿ 0.3807 33 -0.54 0.5914

rite*temp LP 25 0.359r 0.3945 33 0.91 0.3689
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Solution for Random Effects

Effect site moist tray tnc temp istir¡'¡ate Std Err
Pred

DF t Value Pn > ltl

;ite*ternp LP 29.5 0.0223i 0.3932 33 0.06 0.9551

¡ite*rnoist AP D 0.03711 0 JJ lnfty <.0001

;lte*moist AP W -0.0427Ê 0 33 lnfty <.0001

;ite*moist CM D 0.044s 0 33 lnfty <.0001

¡ite*snoist CM W -0.0385e 0 33 lnfty <.0001

¡ite"rnoist CP D -0.08271 0 33 lnfty <.0001

¡ite*moist GP w 0.0938€ 0 33 lnfty <.0001

;itenmoìst LP D 0.00064i 0 33 lnfty <.0001

;iteomoist LP W -0.0125e 0 33 lnfty <.0001

nc(ternp) 1 21 -0.259( 0 33 lnfty <.0001

nc(temp) 2 21 0.2595 0 33 lnfty <.0001

nc(temp) I 25 -0.142t 0 33 lnfty <.0001

nc(temp) 2 25 0-142t 0 33 lnfty <.0001

nc(tennp) 1 29.5 3.99E-'1

iray( m o ist* i n cotern p) D ,l
1 21 0.282i 0.2791 33 1.01 0.3184

:ray(moist*inc*temp) D 2 1 21 0.1 35¡ 0.2776 33 0.49 0.6286

:ray(moist*inc*temp) D 1 I 25 0.431i 0.2867 33 1.51 0.1417

:ray(moist*inc*temp) D , ,l 25 0.0595i 0.2811 33 0.21 0.8336

lray(rnoist*inc*temp) D 1
,l 29.5 -0.16i 0.3332 33 -0.50 0.6196

tray(rnolst*inc*temp) D 2 1 29.5 0.16i 0.3332 33 0.50 0.6196
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Solution for Random Effects

Effect site mo¡st tray i¡¡c temp istirnate Std Err
Pred DF t Value Fr > ltl

lray(rnoist.i nc"ternp) D 1 ¿ 21 -0.418i 0.1 736 33 -2.41 0.0217
Inay(moist* incotenn p) D 1 2 25 -0.491i 0.186 33 -2.64 0.0125
iray(rnoist* i nc*temp) W 1 ,l 21 0.363t 0.181 33 2.01 0.0s27
:ray(moist* inc*ternp) w I 1 25 -0.0627! 0.1 948 33 -0.32 0.7494
:ray(moist*lnc*temp) W 7 1 29.5 -1.048-U 0.4153 33 0.00 1.0000
:ray(moistoinc"temp) w 1 2 21 -0.546€ 0.2782 33 -1.97 0.0578
:ray(rnoist*inc*tem p) W 2 2 21 0.1 83 0.2835 33 0.65 0.5230
:ray(n'loist*inc"temp) W 1 2 25 -0.273t 0.2831 33 -0.97 0.3406
Lray(moist*inc*temp) W 2 2 25 0.336r 0.2936 33 1.15 0.2600

From the above SAS output there are a few points to consider. First there

are a few combinations of interaction effects that have an estirnated variance

component that is less than zero and as a result the terms involved in these

ínteractions have infinite t-values. The zero standard error is a consequence of

a negative variance estimate. This happens to the incubator within temperature

and the site by moisture variances. ln view of that, the site by moisture

interactions and incubator within temperature effects have no meaningful

influence on the survival of a turtle egg.

Next we will look at the residual plot.
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Figure 4.3:

As we can see the residual plot indicates a good fit.

Generally speaking, in the case of the turtle data when site is considered

either random or f¡xed it is known to affect the survival of a turtle egg. This can

be seen in figure 1.4. Next we will attempt to predict the survival of a turtle egg

using the generalized linear mixed model.

4.3 Best Linear Unbiased Predictors

ln the case of this generalized linear mixed model and according to the

book Contemporary Statistical Models for the Plant and Soil Sciences [10]; there

are two main reasons for incorporating random factors into models:

1) 'They accommodate correlated data' [10]. For example the turtle eggs

were collected from four Ontario sites. You would expect that each turtle

egg would have been laid and collected in similar conditions and around

the same time suggesting correlation amongst the eggs from a site.
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2) 'Allows for broader inference' [10] - this is done by making inferences to a

rger population. For example by allowing sites to be random we do not

'' have to draw conclusions specific to the sites chosen for the experiment

but our inferences can be made for the overall site effect on the survival of

a turtle egg.

To estimate random effects in a mixed modelwe use best linear

unbiased prediction, or BLUP.

ln statistics, when we use the term predictor (or prediction) we commonly

associate it with the outcome of futune events. ln our context, when we refer to

the term prediction we will refer to it as the est¡rnatlon of random variables.

Maximizing the penalized quasi-likelihood for þ and u gives us pqint

predictors for u and point estimates for B. Best linear unbiased predicffiøn; or=

BLUP can be considered in two ways;

l. Broad lnference or population wide

ll. Narrow lnference or subject-specific

The assumptions needed for BLUP are that V=var( s ), cov(u, q ) and

var(u) are known matrices.

Next, we will calculate BLUPs in a few cases using the turtle data.

The factor site will be consídered as a random effect in thís section.

Similar calculations can be done using site as a fixed effect.

The model is computed on the logit scale. To interpret the value in terms

of the raw data the estimates can be transformed by applying the inverse link
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function. The link 
'r '"n[É) 

,n" predicted varue is obtained by usins

oX P+ZQ .=

t= i;øA. The two types of BLUPs can be seen in the following examples.

4.3.1 - BROAD INFERENCE

Broad inference or population - wide inference estimates the (fixed) effects

of temperature and moisture while averaging over all possible sites, incubators

and trays to predict the overall survival of a turtle egg.

Example 1: Considering site as a random factor. Using

temperature = 21oc (i=1) and moisture - dry (k=1) we write the model and

calculate the predictor as follows:

The expected value is:

I v.., I
'l"n -ffilA,t),8,{ooo))= 

,t.' + ri + vi *(,v)".,, for anv j,l and m

Using the estimates found under 'Solutions for fixed effects'from the SAS

i

output, log+=1.26043 wíth standard error 0.7358. Recallthat the
| - frt jtt,

expected value of the generalized linear model is x þ. Because this point

estimate is given in terms of the link function we transform backwards to get

^ e*þ
frri.,, = Ge i.e. the predicted probability that a turtle egg will survive from any

site, tray and incubator. The predicted probability is 0.7791. rn sAS the

predicted standard error is given on a logit scale. To approximate the standard
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error in the original scale we can use the delta method. The delta method is

used to obtain variances of transformed estimators. ln general we have an

estimator B and a known function f (0) ln our case the known function is the

inverse of the l"gi. 
[f;) 

tn" function evatuated ar the estimate can be

approximated by a Taylor series f (e): r (e)+@ - t)#lr=, ln our case we find

the variance of f to be: var (t) = var [tog it (ñ))x tî (1- A) . Thus the standard

error for the broad inference is approximately 0.35b9.

similarly to the broad inference, the BLUp is -frti-tt^ =1.2604 but now with
1_ fi,,,,,^

standard error 0.1420. Because this BI-UP is given in terms of the link function

we will apply the inverse link function to find the predicted probability. The

4"3.2 NARROW I h¡FERËNCË

The second type of BLUP to consider is narrow or subject specific

inference. Narrow inference looks at predicting functions that limit inference to

the specific random effects observed.

Example 1 : Using temperatu re = 21 (i=1) and moisture - dry (k=1) the

BLUP is taken from SAS. The appropriate quantity to predict is:

It['"n 
]*ø,1,¡,8,1,,,ru¡'s',(es), .,(rs),,,1 = r.-. +ri +]lo,ro+r; +(rùi.

. +l"f ,,uruu . +Tr.t- . + å 
(,s ),, . +T=,,(rs ),,



pred¡cted probability that a turtle egg will survive at temperature 21oC and

moisture dry from the given trays, incubators and sites used in the experiment is

0.7791. Applying the delta method the corresponding þredícted standard error is

0.1563.

As we can see the point estimates for the broad and narrow inference

spaces are the same. The difference between broad and narrow inference

shows up in the standard error. The transformed standard error for broad

inference was calculated as 0.3559 and for narrow inference 0.1563. As we can

see, broad inference has a larger standard error than narrow.

The following SAS output was obtained for several BLUps.

S¡fes Random:

Estimates: Logit Scale

!-abel Estimate Súandard Error DF t Value Pr > ltl

211ÐIBLUP BROAD 1.2604 0.7358 7 1.71 0.130s

?IIDIBLUP NARRCIW 1.2604 0.1420 7 8.88 <.0001

25IW BLUP BROAD 1.5593 0.7410 7 2.10 0.0734

25IW BLI.JP NARROW 1.5593 0.1667 7 9.35 <.0001

The label 2l|D|BLUP BROAD is interpreted as the broad BLUp for

temperatureZlo} and moisture dry.

Using the same model we can predíct the probability that a turtle egg will

survive in each site. The following sAS output shows just that.
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Estimates: l-ogit Scale

Label Esti¡'¡rate Standard
Error

DF t Value Pr > ltl

211ÐIAP ELUP NARROW 2.3088 0.2509 7 9.20 <.0001

211ÐICM BLUP NARROW 0.7016 0.1814 7 3.87 0.0061

?tITICP BLUP NARROW -0.4785 o.1734 7 -2.76 0.0281

211ÐILP B¡.UP NARROW 2.5097 0.3005 7 8.35 <.0001

Using our estimates we can apply the inverse link function to find the predicted

probabilities. The predicted probability that a turtle egg will survive at

temperature2l (i=1), moisture dry (k=1) at site AP (m=1) is 0.9096. Applying the

delta method the corresponding predicted standard error is 0.1436. The

following table summarizes the predicted probabilities and standard errors for all

sites.

The last factor the researcher ís interested in is the amount of variation

between clutches. We recall that2l clutches were collected from four sites. Of

Estimates: Probabilities

Label fr1.1.r, Predicted
Standard Error

DF t Value Pr > ltl

?1IDIAP BLUP NARROW 0.9096 0.1436 7 9.20 <.0001

2îID/CM BLI.JP h¡ARROW 0.6685 0.2005 7 3.87 0.0061

21/,UCP tsLUP NARR.OW 0.3826 0.2026 7 -2.76 0.0281

21/,Ðil-P BLUP NARROW 0.9248 0.1446 7 8.35 <.0001
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those four sites we saw that sites CM and CP were significantly lower than LP.

We also saw that the interaction of temperatu re 25 and site CP was significant at

the 10% level.

At this stage we are not able to use our generalized linear mixed model to

analyze the clutches. According to Searle and McCullough penalized quasi

likelihood 'has not been found to work well in practice, especially for bínary data

in small clusters' [B]. This can be considered a limitation of generalized linear

mixed models.
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Çfiapfer 5: Swmmary

5.1 S¡..'MMARY

ln chapter 1 we made initial main effect and interaction plots showing the

proportion of turtle eggs that survived. From these plots we found that the main

effect of site and the interaction plot of temperature by site were the only two

plots to show some differences in the proportion of turtle eggs that survived.

From the formal analysis, we found the only main effect to be significant

was site. we considered site as a fixed effect and as a random effect.

As a fixed effect we found site CM and CP were significantly lower than

the reference cell LP while AP showed no difference.

From the interaction plots the only interaction to show some differences

was the site by temperature. ln fact the SAS output indicated the only interaction

term to approach significance was site CP at temperature 250C.

When sites were considered random we were able to use the estimates

from the output to calculate a set of predictors. Usíng these predictors in the

future we can help determine what set of conditions appear to give the highest

proportion of turtles surviving.

As a result of our analysis we found our initial plots and formal analysis to

agree in their findings.
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To analyze the data we used a newly developed technique called

Generalized linear models. The dataset used for our analysis was 15 years old.

This research shows how to analyze data using this newly developed têchnique.

Research in this area is still ongoing, new developments are continuing.

The results of the experiment show that the factor site cannot be

overlooked when examining whether or not a turtle egg survives. A suggested

next step for the researcher would be to investigate the environmental

differences in these locations ie: were the sites located near cities or were they

located in more rural area? ls there a problem with pollution in the sites? etc.
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AppemdEx A

CHAPTER 1: Proportion suwived and ather Descriptir¡e sfafi.sfics
Prapartion

atal Sf¡lFrrrnr

0.890
0.646
0.464
0.944

0.024
0.042
0.041

0.019

AP
CM

CP
LP

84

154

134

173
130
151

142

70

0.732
0.769

0.706

0.029
0.027

0.042

239
238

119

21

25

29.5

175
183

B4

64
35
23
53
62
37
29
55
28
12

18

26

AP 21

cM 21

cP 21

LP 21

AP 25
cM 25
cP 25
LP 25
AP 29.5
cM 29.5
cP 29.5
LP 29.5

0.914
0.660
0.397
0.914
0.899
0.725
0.468
0.982
0.824
0.462
0.581

0.929

0.033
0.065
0.064
0.037
0.036
0.062
0.063
0.018
0.065
0.098
0.089
0.049

70
53
5B

58
69
51

62
56
34
26
31

28
232
210

319
277

0.727

0.758
0^025

0.026

D

W
D7991
D4269
D3780
D7479
W7582
w4261
w3371
w6063

AP
CM
CP
LP
AP
CM
CP

LP

0368
0.609
0.463
0.937
0.915
0.689
0.465
0.952

0.035
0.059
0.056
0.027
0.031
0.059
0-059

0.027
D86
D90
D56
w89
w93
W28

21

25
29.5
21

25
29.5

120
120
79
119
118

40

0.041
0.040
0.051
0.040
0.038
0.072

0.717
0.750
0.709
0.748
0.788
0.700

Stfe Ternp Moist Ative Tatat Suruived
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CþIAPTER 4: Froportion af turfles eggs swwived by Clutch
Prapoñian Survived

Temp Çlwtch Froportion
Su¡vived Temp Clwteh

Praportion
Swruived

21 11 1.0000 29.5 11 0.8333
21 12 1.0000 29.5 12 0.8333
21 13 0.8462 29.5 13 0.8333
21 14 0.7500 29.5 14 0.6000
21 15 1.0000 29.5 15 1.0000
21 16 0.9167 29.5 16 0.8000
21 21 0.4444 29.5 21 0.3333
21 22 0.9091 29.5 22 1.0000
21 23 0.9167 29.5 23 0.0000
21 24 1.0000 29.5 24 1.0000
21 25 0.0833 29.5 25 0.0000
21 31 0.0000 29.5 31 0.1667
21 32 0.3333 29.5 32 0.6667
21 33 0.0000 29.5 33 0.0000
21 34 0.7500 29.5 34 1.0000
21 45 0.9167 29.5 45 1.0000
21 41 0.8182 29.5 41 1.0000
21 42 r.0000 29.5 42 1.0000
21 43 0.9167 29.5 43 r.0000
21 44 1.0000 29.5 44 0.8333
21 45 0.8333 29.5 45 0.8333
25 11 1.0000
25 12 0.9000
25 13 0.7692
25 14 0.8333
25 15 0.8889
25 16 1.0000
25 21 0.6250
25 22 1.0000
25 23 0.8333
25 24 1.0000
25 25 0.1000
25 31 0.0833
25 32 0.2222
25 33 0.0714
25 34 0.8333
25 45 1.0000
25 41 1.0000
25 42 1.0000
25 43 1.0000
25 44 1.0000
25 45 0.9091
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/* This pt-ogram is used to make the main effect plots
options linesize=96 pagesize=54 nodate;
data one;
infile ,C: \turtles\turtles dâtafull.txt ';
input obs Siteg clutch$ eggid,,inc tray temp moistg fe
alive stage exmth exday,htÍintli htday htwt;
run;
data two; set one;
if alive in(0,1 );
if inc in (1,3,4,S,6);
run;

Proc fneq;
tables moist*alive/nopercent nocol binomial;
tables temp*alive/nopepcent nocol bino¡nial;
tables site"alive/nopercent nocol bÍnomial;
run;

proc
class
Table
Table
TabIe
Title
run i

tabulate data =two;
molst temp slte alive;

moist, (alive)iRoWPCTN;
tenp, (alive)*RoWPCTN;
Site, (aIive)*RoWPCTN;

'Main Effect';

proc summaty;
CIass
output
nun;

clutch molst temp site;
out= two N(alive)= Total Mean(aLive) = meanalive std(alive)=stdalive stderr(ative)=stde¡no

proc print;
run;

/T À,[AIN EFFECT PLOTS - PLOT MEANS AND STDERRORS
Proc gplot;
plot meanalive * moist/frame hninor = O vminon
symboll i=stdlmJt v=none l=23 c=black;
axisl Label=(a=90 r =O h=t.S) value=(h=t.S) offset=(4) o.den=(0.2 to i.O byaxlsz }abel=(h=1.5) value=(h=1.5) offset=(4);
run;
Proc gpLot data = two;
plot meanarive * temp/frame hminon = o vminon =4 vaxis=axisl haxis=axis2
synboll 1=stdlmjt v=none l=29 c=blâck;
axisl Label=(a=90 r =O h=l,S) vatue=(h=i.S)
axis2 label=(h=1.5) value=(h=1.s) offset=(4)
run;
Proc gplot data = two;
plot meanâIÍve r site/ftame hminon = O

symb011 I=stdlmjt v=none 1=23 c=black;
axlsl LabeÌ=(á=go r =o h=1.5) vatue=(h=l.s)
axisz labeI=(h=1.5) value=(h=i.s) offset=(4)
run;

UIITH PROC GPLOT*/

=4 vaxis=axisl haxis=axis2

offset=(4) order=(0.2 to
order = (21 to 29 by 4);

vmLnor =4

offset=(4) o¡¿s¡=(O,2 to 1,O by

vaxis=axi.sl haxis=axis2 name='GBO7O2Z , 
;

by



/* lhis program is used to make the main effect pLots found Ín
options linesize=96 pagesize=54 nodatei
data one;
infile'C: \Documents and Settings\Owner\Desktop\turtles\turtles
input oþs Site$ cLutch$ eggid inc rray temp moist$ fert
alive stage exmth exday htmnth htday htwt;
run i
data two; set one;
if alive in(0,1)t
if inc in (1,3,4,5,6) ;
f un;

**r Pnint Means Breakdown for the Dependent Variables
proc summary data=TWO noprint;ll

class TEMP;

VAR ALIVE;
output out=wo¡k._aovout

mean = _mean
std = _std
stdern = _stderr
n=_n

data work._aovout; set work._aovout; drop
Label _mean = ,Mean of ALIVE';
label _std = "Std. Dev. of ALIVE',i
label _stdenn = 'Std. Enror of ALIVE";
label _n = "Number Non-missing of ALM';

chapter 1tl

datafull. txt ' ;

Proc prj.nt dâta=work._aovout(drop= _type_) noobs 1abel;
titlel 'Means and DescnlÞtive Statistics';

id TEMP;

run;
titLe l ;
proc delete data=work._aovout;
goptions reset=aIl device=WIN;

+i+16'

footnote;
*** Means plots with standard ennor bars fon groups
goptions ftext=SWISS cteXt=BLACK htext=1 ceLls

gunit=pct htltIe=6;
symboll 1=stdlmtj c1=BLUÊ co=BLUE v=none h=i celLs width=1;
axisl offset=(10 pct) label=(h=4) wj.dth=2 orden=(2.1 to 29 by 4);
axis2 major=(number=5) 1¿5s1=1a=90 h=4) width=2;
proê gplot data=Ttvo;

p]otALIVE.TEMP=1 i
hminor=0 vminon=0 caxls=BLACK
description="Means plot of ALM by TEMP' name='means'
haxis=axls1 vaxis=axis2i

axisl length-so offset=(i0 pct) tabel=(h=4) width=2 order=(21 to 29 by
axis2 length=so o¡6s¡=(0.0 to 1 .O by 0.2);
f un;

quit;
goptions r€set=symbol.;
axj.s1; axis2;

goptions neset=all device=WIN;

*** Print Means Breakdown
options pageno=f;
pnoc summary data=two noprint;

class M0IST;
VAT ALIVË;
output out=work,_aovout

mean = _mèân
std = _std
stdern = _stdet¡
n=_n

run;
data work._aovout; set work,_aovout; drop _FREOlabel _mean = "Mean of ALIVE"i

labeL _std = "Std. Dev. of ALIVE";
label _stdenr = "Std, Error of ALIVE'i
labeI _n = "Number Non-missing of ALIVE";

run;

MoJSTUREf r***i****+****i***************r******* i
for the Dependent Variables ***,

pnoc pnínt data=work,_aovout(dnop= _type_) noobs labe1;
titlel 'Means and Descriptive Statistics,;

id MOIST;
run;

proc delete data=work._aovout; run;
goptions reset=al1 devÍce=WINi

tÍt le ;
footnote;

r*r Means plots with standard erron bars for gnoups
goptions ftext=SWISS ctext=BLACK htext=l celLs

gunit=pct htitle=6;
symboll i=stdlmtj ci=BLUE co=BLUE v=none h=i ceLls
axisi offset=(10 pêt) label=(h=4) wldth=A;
axis2 major=(number=5) 1¿6s1=1a=90 h=4) width=2
p¡oc gplot data=two ;

plotALM*MoIST=1 /
hminon=0 vminor-0 caxls=BLACK
description="Means plot of ALIVE by MOIST,,
haxis=ax1sl vaxis=axis2;

axisl length=50 offset=(.tO
axisz length=so orden=(0.0

nun;
qult;
goptfons neset=symbol;
axisl; axis2;
goptions reset=a11 device=WIN

*** Pnint Means Breakdown for the Dependent Vaniables
options pageno=1;
proc summary data=Tt4/o noprinti

cLass SITE;
VAT ALIVE;

Pct ) widt h=2;
to 1.0 by 0,2)i

o"¿g¡=(0,0 to 1.0 by 0,2);



I

I mean = _mean
std = _std
stderr = _stderr.

run;
data work,_aovout; set work,_aovout; drop _FBEO_;

labsl _mean = "Mean of ALIVE";
Iabel _std = "Std. Dev. of ALIVE";
IabeI _stdern = "Std. Enror of ALIVE';

run;
proc pnint data=work._aovout(drop= _type_) noobs
title1 'Means and Descriptive Statistics,;

output out=work,_aovout

id SITE;
run;
title 1 ;
proc delete dâta=work._aovout; run;
goptions reset=a]1 device=WINi

title;
footnote;

+r* Means plots tvith standand enron bars fot gt-oups
goptions ftêxt-swlss ctext=BLAcK htext=1 cells

gunit=pct htitle=6;
symboll i=stdlmtj c1=BLUE co=BLUE v=none h=1 cells width=1;
axisl offset=( 10 pct) labe1=(h=4) width=2;
axis2 major=(number=5) label=(a=90 h=4) rvidth=zi
proc aPl.ot data=Two ;

plotALM*SITE=1/
hminor-0 vmi.nor=0 caxis=BLACK
description="Means plot of ALM by
haxis=axis1 vaxis=axis2;
axisl length=50 offset=(5 pct) width=z ;
axis2 length=so order=(0.0 to 1.0 by 0.2);

goptions reset=symbol;
axlsl; axis2;
goptions reset=alL device=WIN

nam€= 'means '



/* This program is used to make the interaction plots found in chapten i*/
options linesize=96 pagesize=S4 nodate;
data one;
infiLe'c:\Documents and settings\olvnen\Desktop\turttes\turtl.es datafulL.txt'.
lnput obs siteg clutchg eggld inc tray temp moist$ fert
alive stage exmth exdây htmnth htday htwt;
nun;

data two; set one;
11 allve in(0,1 );
run;

pnoc summâry; ¡. ll

Class moist temp site;
output out= two N(alive)= Total Mean(alive) = meanative std(a1lve)=stdalive stderr(alive)=stderno
run;

/*fnteraction PIotsr/

data mts mt ms ts cs;
set two;
IfIf _type_=,110'B then outPut mt;
If tvoe =r101'B thèn outDUt ms!If _type_='101'B then output ms;
If tvoe = 'Ol I ' B then Õutnrt +s :If _type_= '01 I ' B then output ts ;
If tvoe ='111'B then ôrrlnilt hfs
symboll v=none I-l l=stdttmj vr=z c=þl.ack;
symbol2 v=none l=zp i=stdltmj w=2 c-red;
symbol3 v=none l=1O i=stdltmj w=2 c=blue;
symbol4 v=none I=15 i=stdttmj w=2 c=purple;

proc gplot data = mt;
plot meanarive*temp=¡s1.a7 fiane vaxis=axis1 vminor=l haxis=axisz legend=regendl
name=rG80712';
Iegendl Label=(h=I.6 'Mean Alive,) value =(h=1.,5) shape=line(4);
axisl 1aþel=(a=90 r=0 h=1.8) value=(h=1.S) order=(O,Z to i.O by O.Z)offset=(2);
axisz rabel=(a=90 r=0 h=l.8) value=(h=t.s) orden=(21 to 29 by 4) offset=(o) minon = none;
run;

_type_= 
, 

1 1 1 ,B then output mts ;

proc gplot dâta = ms;
prot meanarivetslte =molst/ vaxis=axis1 vmlnor=1 haxls=axÍs2 frame regend=legendl

legendl .label=(h='l .6 'Mean Alive') value =(h=i.5) shape=Iine(4);
axisl labèl =(a=90 n=o h=1.8) vatue=(h=1.S)oFden=(0,2 to 1.o by 0.2)offset=(2);
axis2 label =(a=90 r=0 h=1,8) value=(h=i.Sloffset=(g) minor = none;
run;

Proc gplot data = ts;
plot meanallve*temp =511"¡ vaxis=axisl

legendl label=(h=l.6 ,Mean Alive') velue =(tr=1.S) shape=Iine(4);
axisl label =(a=90 r=0 h=t.B) value=(h=2.0) order=(0.2 to 1.0 by o.2)offset=(2);
axis2 Label =(a=90 ¡=0 h=1.8) varue=(h=1.7) order=(21 to 29 by 4) offset=(3) minoF = none;
run;

haxls=axls2 fname legend=legend1



/* This program is used to make the interaction plots found in chapten 1*/
optlons linesize=96 pagesize=s4 nodate;
data one;
infile 'C: \Docunents and Settings\Owner\Desktop\turtles\tuntles datafuU.txt,i
input obs Site$ clutch$ eggid inc tray temp moíst$ fert
alive stage exmth exday htmnth htday htwt;

data two; set one;
if alive Ín(0,1 ) i
íf inc in (1,3,4,5,6);
¡un;

titIEl 'SITE * MOIST';
proc gLm data= Tr¡rO;

C]ass MOIST SITE;
MOdE] ALIVE = MOIST SITE MOIST*SITE / SS3 SOIUt1ON;

*r Create output data set for plots **;
output ouT=wot-k._plotout p=_pred r=_resid student=_stres rstudent=_rstres

dffits=_dffits h=_h covratio=_covn lgs=_tgs ugs=_ugs lgsn=_}gsm

quit ;

Print Means Breakdown for the euantitative VariabLes
proc summany data= Tt'10 noprint;

C1AS6 MOIST SITE;
var ALIVE;
output out=wonk._aovout

mean = _mean
std = _std
stderr = _stderr
n=_n

SUM = SUM

run;
data work._aovout; set wotk._aovout;

Iength _effect $ 200;

MOIST *

_nway = length(compress(put(_type_,binany16. ),if 
-nway 

<= 2;
label _mean = 'Mean of ALIVE";
label _std = 'std. Dev, of ÄLM";
Label _stderr = "Std. Error of ALM';
label _n = 'Number Non-missing of ALIVE";
1f MoIST ^= ', then _effect = trlmn(_effect) I I "*t\tOIST";
if SITE ^= ', then _effect = trimn(_effect) ll '.SITE.;
ff j.ndexc(_effect,,*,) then _effect = substr(_effect,2);
lf _effect = " then _effect = 'Overall,i
labeL _effect = ¡Effect';

|.un;
proc sort data=work._aovout;

by _nway _effect;
run i
proc print data=wonk,_aovout(drop=_nway _type_) noobs label;
titlel 'Bneakdown of Means and Othen Descrlptíve Statistics';

id MOISI SITE;
by _effect notsortedi

proc delete data=work._aovout;
goptions reset=alL device=WIN;

goptions ftext=swlss ctext=BLAcK htext=1 cells
gunlt=pct htitle=6;

axisl maJon=(number=5) Iaþe1=(a=90 h=4) width=2;
axlsz offset=(10 pct) label=(h=4) width=2;

axlsl length=50;
axis2 length=50 i
proc gplot data=work._pLotout ;

where ALIVE is not missing and MOIST is not missing and SITE is not
missing;

** Two-vJay Plots '*;
symboll j.=stdlmtj v=none colon=cxOOgOBO height=l cells wÍdth=i;
symbo12 1=stdlmtj v=none color=cxdogcl6 height=t celLs width=f;
symbolS l=stdlmtj v=none color=cxcdog6g height=1 ceLls width=ji
symbol4 i=stdlmtj v=none color=cx5b76gd helght=l cells width=1;
symbols l=stdlmtj v=none color=cxFF82gg height=1 cells width=1;
symbolo i=stdlmtj v=none color=cxffooff height=1 cells width=1;
symbolT i=stdlmtj v=none color=cxOO999g height=1 ceIls width=1;
symbolS i=stdlmtj v=none color=cxaosooo height=l cells width=1;
synbolg i=stdlntJ v=none color=cx2e7g4f height=i cells width=1;
symboll0 i=stdlmtj v=none color=cxOOOOBO height=1 cells tvidth=1;
plot ALIVE * SITE = MoIST /

frame hminor=o vminor=O vaxis=axis1 haxis=axis2
caxis=BLACK name=' MEANS,

description="Means plot ot ALIVE by MOIST and SITE,;
axisl length=so width=2 order=(O.O to f.O by 0,2);
axis2 Iength=so offset=(S pct);
nun;

qult;
proc delete data=wo¡k._plotout; run;
goPtions reset=symbol ftext= ctext= htext=;
axisl; axis2; axis3i
g0ptions neset=aIl device=tllIN;

t itle 1

proc g1m data=Two;
CIASS TEMP MOIST;
model ALIVE = MOIST TEMP MoISTTTEMP / ss3 solution;ii Create output data set for plots **;
output ouT=work._plotout p=_p¡ed r=_Fesid student=_stres rstudent=_rstres

dffits=_dffits h=_h covratio=_covr 19S= l9S ugs= ugs lgsm= l95m
u95m=_u95m;

run; quit;
*** Print Means Breakdown for the Ouantitative Variables
proc summary data=Two noprint;

class TEMP M0ISTi

Linear Models Analysis

TEMP * MOISTURE



VAT ALIVE;
outPut out=work._aovout

mean = _mean
std = _std
stderr = _stderr
n=_n

SUM=SUM

run;
data wonk._aovout; set v/ork._aovout; dnop _FREQ_;

length _effect $ 2OO;

_nway = length(compness(put(_type_,binany16,),'0' )) ;
if 

-nway 
<= 2;

label _mean = 'Mean of ALIVE";
labe1 _std = "Std. oev, of ALIVE"i
laþel _stdenn = 'Std. Error of ALM';
label _n = "Number Non-missing of ALIVE,;
if TEMP ^= , then _effect = trimn(_effect) I I "reup";
lf Mo¡sT.= ,,then _effect = trimn(_effect) ll ".MoIST"i
1f lndexc(_effect,'r ' ) then _effect = substn(_effect,2);
lf _effect = " then _effect = '0vera11';
1âbel _effect = 'Effect'i

run;
proo sort data=work._aovout;

by _nway _effect;
run;
proc prlnt data=wonk._aovout(drop=_¡e¡¿y _type_) noobs label;
title2 'Breakdown of Means and 0ther DescrÍptive Statistlcs,;

ld TEMP MOIST;
by _effect notsorted;.

run;
titIe2;
proc delete dâta=work._aovouti run;
goptions reset=aLl device=MN;

tltle;
footnote;

rtr Plots ***.
goptions ftext=swlss ctext=BLAcK htext=l cells

gunit=pct htítIe=ô;
axisl major=(numbsn=5) 166s1=¡a=90 h=4) width=2;
axis2 offset=('10 pct) label=(h=4) width=2 oRDER = (21 To 29 By 4);
axisl length=50;

axis2 Iength=50;
proc gplot data=work,_plotout ;

whene ALIVE is not missing and TEMP is not missing and MOIST is
mls slng;

** Two_way Plots **;
symboll i=stdlmtj v=none coloF=cx008080 height=1 oeLls width=1;
symbo12 i=stdlmtJ v=none''coior=cxdo8cl6 helght=1 celts width=1;
symbo13 i=stdlmtj v=none color=cxcd0369 heÍght=1 cells width=1;
symbol4 i=stdlmtj v=none colon=cx5b768d height=1 cells width=1;
symbo15 i=stdlmtj v=none color=cxFF8293 height=1 cells v,idth=1;
symbolo i=stdlmtj v=none colon=cxffooff helght=1 ceIIs width=1;
symbolT Í=stdlmtj v=none color=cx009998 height=1 celts width=1;
symbolS i=stdlmtj v=none color=cxa05000 helght=1 cells rvidth=1;

symbolg i=stdlmtj v=none color=cxze734f height=l cetls width=1¡
syßboll0 i=stdimtj v=none colo¡=cx000080 height=1 cetLs width=i;
plot ALIVÊ * TEMP = MoIST /

fname hminor=0 vminor=0 vaxls=axis1 haxi-s=axi.s2
caxis=BLACK name=' MEANS'

descniption="Msans plot of ALIVE by MoIST and TEMP";
axisl length=so wldth=2 orden-(0.0 to 1,0 by 0,2);
axis2 length=so o11"s1=(10 pct)onder =(21 to 29 by 4);
FUN;

quit;

titlE1 .TEMP * SITE";
*** Linêar Models Analysis
proc glm data=Two;

class TEMP SITE;
model ALIVE = SITE TEMP SITE*TEMP

** Creatè output data set for plots
output ouT=work._plotout p=_pred

dffits= dffits h= h covnatio=

run; quit;
*r* PnÍnt Means B¡eakdown for the Quantitatlve Variables
pnoc summary data=Two noprlnt;

class TEMP SITE;
VAT ALIVE;
output out=work._aovout

nean = _mean
std = _std
stderî = _stdern
n =_n

SUM = SUM

run;
data work._aovout; set work,_aovout; drop _FREo_;

length _effect $ 200;

SS3 solution;

r=_nesid student=_stres
covn 195=_195 u95=_u95

_nway = Iength(compress(put(_type_,bj.nany16. ),
if _nway <= 2;
label _mean = "Mean of ALIVE"i
label _std = 'Std, Dev, of ALM,;
label _stderr = "Std, Enror of ALM";
label _n = 'Number Non-missing of ALIVE";
if TEMP ^= , then _effect = t¡imn(_effect) | | ,*TEMP,;

if srTE ^= " then _effect = trimn(_effect) I I ,'*sITE";
if indexc(_effect,'*') then _effect = substn(_effect,2);
if _effect = I' then _effect = 'overall,;
IabeI _effect = 'Effect';

run;
Pnoc sort data=work._aovout;

by _nway _effect;
run;

rstude nt=.
195m=_I95m

rstres

p¡oc print data=work,_aovout(dnop=_ntvay _type_)
titlez 'Breakdown of Means and other Descniptive

id TEMP SITE;

noobs label;
Statistlcs ' ;



by _effect notsorted;
run;
tit1e2;
proc delete data=work._aovout; run;
goptions neset=all device=l¡lIN;

+i+1ô.
footnote;

ri* Plots
goPtions

gunit-Pct htltLe=6;
axisi major=(numben=5) Iabe]=(a=90 h=4) width=2;
axís2 offset=(10 pct) label=(h=4) ìvidth=z oRDER = (21 T0 29 BY 4);
âxls1 length=50;

axis2 Iength=50;
proc gplot data=wonk._Plotout ;

where ALIVE is not missing and TEMP is not mlssing and SITE is not
r* Two-way Plots **;

symboll j.=stdlmtj v=none color=cx008080 helght=l celIs $/idth=1;
symbolz i=stdlmtj v=none color=cxdo8c16 height=1 ceLls $/idth=1;
symbolS i-stdlmtj v=none color=oxcd0369 height=1 ce1ls width=1;
symbol4 i=stdlmtj v=none color=cx5b768d height=1 cells width=1;
symbo15 i=stdlmtj v=none colon=cxFF8283 height=1 cells wj.dth='li
symbolo i=stdlmtl v=none colon=cxffooff helght=1 cells wi.dth=1;
symbolT i=stdlmtj v=none color=cx009998 height=1 ceIIs width=1;
symþo18 i=stdlmtj v=none color=cxa05000 height=1 cells width=1;
symbo19 i=stdlmtj v=none coLor=cx2e734f height=1 cells width=1i
symboll0 i=stdlmtj v=none color=cx000080 heÍght=1 ceIIs width=1j
plot ALIVE * TEMP= SITE /

frame hmlnor=0 vmlngr=0 vaxis=axis1 haxls=axi.s2
caxis=BLACK nane=' MEANS'

description='Means plot of ALIVE by SITE and TEMP"i
axisl length=5o width=2 o"6s¡=(0.0 to 1.0 by 0.2);
axis2 length=so offset=(5 pct) order=(21 to 29 by 4);
nun;

quit i
proc delete data=work._plotouti run;
goptlons ¡eset=symbol ftext= ctext= htext=;
axfsl; axis2; axis3;
goptions reset=all device=wlN;

ftext=SWISS ctext=BLACK htext=l cells

missing;



/*This program was
options Linesize=96
data one;
infile,c:\turtles\turtles datafult2.txt, ;
input obs Siteg clutch$ eggid inc tray temp moistg fe¡t
elive stage exmth exday htìinth htday htwt;
FUN;

data two; set one;
if alive in(o, I );
if lnc in (r,3,4,s,6);

used to fit the ctutch to ctutch varj.ation plot in chapter
pagesize=54;

pnoc tabulate;
class te¡np clutch ative;
tabLes (temprclutch ALL),aLlve all;
tables (temp*clutch ALL)*rowpctnralive all;
proc summary;
Class temp clutch;
outPut out=two N(alive¡=¡q1¿1 Mean(alive)
run;
pnoc print;
goptions reset =a11;
Proc gpLot;
plot meanallve*clutch=temp/ freme hminor = 2 vminor =4 vaxis=axis1 haxis=axis2;
symboll l=stdlmt v=none l=23 c=white ;
symbol2 I=stdlnt v=dlamond 1=23 c=gneen ;
symbol3 l=stdlmt v=square Ì=23 c=red ;
symbol4 l-stdlmt v=stan l=30 c=b1ue ;
axlsl Label=(a=90 r =O h=1.5) vatue=(h=t.S) offset=(4) order=(O.O to
ax1s2 Label=(h=1,S) value=(h=l.5) offset=(4);
Title 'Proportlon Alj.ve, by Clutch and Temperature,;

/*Proc gplot;
plot meanarÍve*crutch/ frane hmino¡ = 2 vmÍnor =4 vaxis=axisl haxls=axisz;
symbo]1 I=stdlmt v=none I=Zg c=black ;
symbolz l=stdlmt v=diamond I=23 c=green i
symbol3 l=stdlmt v=squane l=23 c=red ;
symbol4 l=stdlmt v=stan I=30 c=blue ;

meanalive std(alive)=stdalive stderr(alive¡=s16u..or"

axisl Label=(a=90 r =O h=l.S) value=(h=1,5) offset=(4) order=(O.O to
axisz label=(h=1.5) value=(h=1.5) offset=(4);
Title 'Proportion Alive by C1utch and Temperature,;
¡'un;

by

þy



/* This program is used to analyze the whole plot in chapter 2*/
options lineslze=96 pagesize=54;
data one;
inf ile'C: \Documents and Settings\owner\oesktop\tuntLes\turtles datafull.txt r 

;

input obs Site$ clutch$ eggld inc tray temp moist$ fert
alive stage exmth exday htmnth htday htrrt;
run;
data two; set one;
if alive in(0,1 );
if inc in(1,3,4,5,6);
run;
proc freqi
tables 1nc*alive/nopercent nocol
tables tempralíve/nopencênt nocol
run;
Proc freq;
tables molst*aLive/nopercent nocol
tables site¡aIive/nopercent nocol
run;
proc summary;
class temp inc;
output
Title
run;
proc printi
run;

Data two; set
j-nput inc n y
cards;
1 120 84 29

1 120 S2 25
2 120 91 25

1 120 90 21

2 120 85 21

proc logistic;
cLass temp;

out= tl¡/o N(aI1ve)= Total [.{ean(a]lve) = meanal ve std(alive)=stdalive stdenn(alive)=stdenrona
Temperature within Incubator' ;

binomlaL;
binomial;

blnomial;
binomial;

model Y/n =

run i
ods html;
ods graphics
pnoc genßod;
Class temp;

temp i

modeL y/n = temp/link = Iogit error = blnomlal typeg
output out=n€w rêsdev = nesiduals p=predj-cted j

nun;
proc
pl.ot
run;
ods
ods
proc
tun;

cLass
table s
table s
run;t/

Plot;
residuals * predicted;

graphlcs off;
html close;
print;

temp inc alive;
(temprinc ALL), alive all;
(temp*inc ALL)*Ro|'IPCTN, alive all;

/*proc tabulate;



| /. This program uses the grimmix nacro to fix a genenalized linear mixed model used
chapter 3¡/
options linesize=96 pagesize=s4 nodate;
dâta onei
infile 'C: \Documents and Settings\owner\Desktop\turtles\turtles datafull..txt' ;
input obs Site$ clutch$ eggid inc tray tenp moist$ fert
alive stage exmth exday htnnth htday htwti
run;

data twoi set one;
if alj.ve in(0,1)t
if inc in ( 1 ,3,a,5,6) ;
run;

class temp lnc noist tray;
output out= two N(alive)= Tota] suil(alive) = sum Mean(alive)
FUN;

data three;
input temp inc moist$ tray N Y;
cards;
21 1

21 1

21 1

21 2
21 2
21 2
25 'l

25 1

25 1

252
252
29 1

29 1

29 1

run;

0 1 4030
ù 2 4029
l,|J 1 40 31

014027
w 1 s926
t\ 2 4032
D 1 4033
D24030
y,, 1 39 29
014027
l'l I 392S
w 2 4035
D 1 3926
D 2 4030
Iv 1 4028

ods htnl;
ods graphics on;

tinclude 'C: \Documents and Settings\owner\Desktop\Tunt1ês\gl1mmix macro.sas';
%gLimmix ( data=three ,

pr ocopt=nobound,
stmts=tst r (
cl.ass Íroist inc temp tray;
model Y/N = temp moist temp*moist/solution residual;
randon inc(temp) /solution;
random moist*inc (temp) /solution;

estimate'21/D/BLUPBRoAD,interceptltempl00moistlotemprmoistlooooo/c]e;

estimate'z'llDl BLUP Narrow' lntencept 2 temp 2 0 0 moist 2 O temp*noist 2 0 O O O O

meanalive std(alÍve)=stdalive stdern

linc(temp) 1 1 000moistrinc(temp) I 1

eitimate '25lDi BLUP BBOAD' intencept 1 t

estimate '25lOl BLUP NaF¡ow' intercept 2

llnc(temp) 0 0 1 1 0 moj.st*inc(temp)

)'
e rro r=þinomial,
link= Iogit , out=setp, maxit=50

FUn;
ods gnaphics off;
ods html close;
proc print;
run;

0 0 0 0 0 0 0 0 / divlsor = 2 e cl;

emp 0 1 0 moist 1 0 temp*moist 0 1 0 0 O O/e cI;

temp 0 2 0 moist 2 0 temp*moist 0 2 0 0 0 o
0 0 I 1 00 0 0 00 / divisor = 2 s cI;



I

| /-This program again uses the glimmix macno to fit a generalized linear mixed mod€l

i as weLl it calculates the BLUPs all can be seen in chapter 4, This program also assumes

I the factor site 1s fixedr/
I opt:.ons linesize=92 pagesize=53;

i data three;
I j.nput temp inc tray molst$ site$ N Y;

cards;
21

21

21

2'l
21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25

l1DAP
,1 lDCM
'IlDCP
,IlDLP
11lllAP
lll,icM
11WCP
11I¡JLP
12DAP
120CM
12DCP
12DLP
21\¡¡AP
21tllCM
21WCP
21!TLP
2'IDAP
2'IDCM
2'IDCP
21DLP
22WAP
22WCM
22WCP
2 2 W ,LP

1lOAP
110CM
1lDCP
11DLP
11!VAP
11$rCM
11WCP
'IlWLP
l2DAP
l2DCM
120CP
12DLP
21rlvAP
2'l$/cM
21WCP
21WLP
21DAP
2 'l D Cl\,r

2'IDCP
21DLP
22rVAP
22WCM
22VlCP
22!VLP

11 10
96
10 4
10 10
13 12

85
t0 5

99
'll 10
10 6
94
10 I
12 11

96
81
l0 I
11 10
96
10 3
10 I
12 tl
86
11 6
99
12 1'1

76
11 6

10 10
12 10
86
'1 1 5

88
12 11

95
10 5
99
10 10
86
11 3
l0 10
t1 9
95
'10 4
'10 I
12 11

10 9
96
99

29. s
29. 5

29.5
29 .5
29. s
29, 5
29.5
29,5
29. 5
29,5
29 .5
29,5

tun;

lDAP
lDCM
lDCP
fDLP
lWAP
ltvcM
lWCP
IWLP
2DAP
2DCM
2tcP
2DLP

ods html;
ods gnaphics on;
%lnclude 'c : \Turt]es\glimmix macro, sas ' ;
%glimmix (data=thne€,

procopt=nobound ,
stûtts=%st p (

class tnay sÍte moist lnc temp ;
model Y/N = temp molst temp*moist site site*temp sitermoist/residual;
nandom lnc(temp)/s;
rsndom t¡ay(molst*temp*inc) /solution;

title 'Blup Inference when Sites is fixed'i
estimate'2llDlAP BLUP SRoAD'intercept 1 tenp 1 0 0 molst 1 O temp*molst 1 0 0 O O O

site 1 0 0 0 site*temp 1 0 0 0 0 0 0 0 0 0 0 0 site*moist 1 0 0 0 0

estimate'zllDl\PlBLUPNarnow',intenoept6temp600moist6otemp*moist6000oo
site 60 0 0 temp*slte 6 0 0 0 0 0 0 0 0 0 0 0 siteimoist 6 0 0 0 0 0 0 0

llnc(temp) 3 3 0 0 0 tpay(moist'temp*1nc) 2 2 0 O 0 0 2 0 0 0 / divisor = 6 e;

estimate'z5lDlAP BLUP BRoAD', intencept I temp 0 I 0 moist 1 o temp*moist 0 I 0 0 0 0
site 1 0 0 0 sitê*temp 0 1 0 0 0 0 0 0 0 0 0 0 slte*molst 1 0 0 0 0

estimate'zSlDlAPlBLUPNa¡nov,,intercept6temp060moist6otemp*moist060ooo
6ite 6 0 0 0 temp*slte 0 6 0 0 0 00 0 0 0 0 0 site*moist 6 0 0 0 0 0 0 0

linc(temp) 0 0 3 3 0 tnay(noist*temprlnc) 0 0 2 2 O 0 0 2 0 O / divisor = 6 e;

o6tißate'zllDlcçlBLUPNarrow,intercept6temp600moist6otenp.moist600000
slte 0 6 0 0 temp"site 0 0 0 6 0 0 0 0 0 0 0 0 site*molst 0 0 6 0 0 0 0 0

linc(tenp) 3 3 0 0 0 tray(noist*temp*inc) 2 2 O O 0 0 2 0 0 0 / divisor = 6 e;

),
ernor=binomial,
link=logit , out=setp, naxit=50

run;
proc printi
run;
ods gnaphics off;
ods html close;

1',|

I
10
10
1l
10
11

12
I
l0
10

3
6

I
't0

4

7
7
10
5
5
10



/*This program again uses the glimmix mãcro to fit a genenalj.zed linear nixed model
as welÌ it calculates the BIUPS aLl can be seen in chaPter 4. This prognam also assumes

the factor sÍte is random*/
options línesize=92 pagesize=s3;
data threei
input temp inc tray moist$ site$ N Y;
cards;
21

21

21

21

2'l
21

21

2'l
21

llD
'1 lD
110
1'lD
1lW
1lw
11W
11W
120
120
12D
12D
21W
2 1 tr,/

21tV
21W
210
210
210
210
22W
22W
22W
2zlv
110
11D
11D
11D
1lW't 1w
11W
1lW
120
12D
120
120
21r¡l
21W
21W
21W
21D
210
2'lD
210
2zlv
22W
22$l
2zr¡J

AP 11 10

cM9 6
cP 10 4
LP 10 10
AP 13 12

cM8 5
cP 10 5

LP9 9
AP 11 10
cM 10 6
cP9 4
LP 10 9
AP 12 11

cM I .6
cPs 1

LP 'IO B

AP 11 10
cM9 6

cP 10 3

LP 10 8
AP 12 11

cM8 6

cP f1 6

LP9 9
AP 12 11

cil,76
cP 11 6
LP 10 10
AP 12 10
cM8 6
cP 11 5

LP8 8

AP 12 11

cM9 5
cP 10 5

LP9 9
AP 10 10
cMI 6
GP 11 3

LP 10 10
AP 11 9
cM9 5

cP 10 4
LP 10 9
AP 12 11

cM 10 9
cP9 6
LP9 9

21

21

2'l
21

21

21

21

21

21

21

21

21

21

21

25
25
25
25
25
?5
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25

29 .5
29 .5
29 .5
29.5
29.5
29.5
29. 5

29.5
29.5
29.5
29 .5

1D
10
1D
1D
ll(l
1l¡'
1W
1U¡
2D
2D
2D
20

AP 11 8
cM8 3
cP 10 6

LP 10 9
AP 11 10
cM l0 4
cP t1 7

LP8 7
AP 12 10
cM8 5
cP 10 5
LP 10 10

i
run;
ods html;
ods graphics on;
e6include ,C: \Turtles\glimmix macro . sas | ;
%glimmix (data=three ,

procopt=nobound,
stmts=%str (

cLas6 tray site moist ino temp ;
model Y/N = temp moist temprmoist /solutlon residual;
random site site*tenp síte*molst/s;
nandom i.nc(temp),/s;
random tray(moistrtemp*inc)/solutlon;
title ' BIup Inferenco when Sites ls Bandom';
estimate'21/D/BLUPBroad'lnterceptl templ 00moist l 0temp*molst 1 00000 / e¡

estimate'z1lDlÀ?BLUPNaprow'intercept12tomp1200moist120temp*moist1200000
linc(temp) 6 6 0 0 0 tray(moist*temp*inc) 4 4 0 0 0 0 4 0 o o site 12 0 0 0
temp*site 12 0 0 0 0 0 0 0 0 0 0 0 site*moist 12 0 0 0 0 0 0 o / dlvisor = 12 ê;

estimate '21lDlCM BLUP Narrow' intercept 12 temp 12 0 0 moist 12 0 temp*moist 12 0 0 0 0 0

linc(temp) 6 6 0 0 0 tfay(moist*tempiinc) 4 4 0 0 0 0 4 0 0 0 site 0 12 0 0

temp*site 0 0 0 12 0 0 0 0 0 0 0 0 site*moist 0 0 12 0 0 0 0 0 / divison = 12 e;

estlmate'zllDlCPBLUPNarrow'int€rcept12temp1200noist120temp*molst1200000
linc(temp) 6 6 0 0 0 tray(moist*temprinc) 4 4 0 0 0 0 4 0 0 o site 0 0 12 0

temprsite 0 0 0 0 o o 12 0 0 0 0 0 si.te*ßoist 0 0 0 0 12 0 0 0 / divlsor - 12 e;

estimate'zllOlLPBLUPNarrow'Íntercept12temp1200moist120temprmoist1200000
finc(tenp) 6 6 0 0 0 tray(moist*temp*ino) 4 4 o 0 0 0 4 0 0 0 site 0 0 0 12

temp*site 0 0 0 0 0 0 0 0 0 12 0 0 sitormoist 0 0 0 0 0 0 12 0 / divison = 12 e;

),
ê rro r=blnonial,
i.ink=Iogit, out=setp,maxit=50
);
run;
pr oc print;
rqn;
ods graphlcs off;
ods html close;



CASE STUDY #]-

The effects of incubation temperature and moisture on the
survival of snapping turtle (Chelydra serpent.ina) embryos

Experiment performed by Michele Boblm
under Lhe supervision of Dr. R. .f. Brooks

Objective: Determine the effect. of
1) Lemperature
2 ) moisture
3 ) síte

on Lhe embryonic survival of snapping turtle
. embryos and how embryoníc survival varies from
clutch to clut.ch.

It is h1¡pothesized that more ext.reme Lemperatures or very dry

substrate may adversely affect survival of embryos until

hatching and that some clutches or even population siLes

(eg. Coot.es' Paradíse) may be more prone to embryo death

prior t.o hatching regardless of environmental conditions

during incubatÍon. For example, toxic load.

Materials and Method.s

Eggs from snapping turtle cluLches were colLected. in early

rÏune. 1988, within 24 h. of oviposit.ion from 4 Ont,ario nesLing

sites in the following areas: thë North Madawaska drainage system

of Algonquin Park (45 35'N, 78 30'W) (6 clutches-Lhesè eggs were

individually weighed), Cootes' Paradise (43 17'N, 79.53'ül) near

Hamilton (5 cluLches), Big Creek Marsh (42 36,N,80 2i'wl near

Long Point (5 clutches) and Cranberry Marsh (?,?) near Ajax (5

clut,ches). The eggs were individually labelled with their

oviposition siLe (AP, CP, LP or CM), clutch ídentification and

egg number (#1-=1ast laid egg) wich a fine-tipped permanent felt

marker, or pencil. Eggs from Cranberry Marsh were collect,ed from

female turtles ínjecued with o:q¿Eocin Lo induce release of Lheir

eggs. Each clutch was arranged in a single layer in a 32.3x20.5x

12.6 cm plastic shoe-box mouse cage, embedded in and lighEly



. 
covered with a l-:1.i- mixture of vermiculíte:water (or damp sand

in Lhe case of the CM eggs); the cage was loosely sealed with,vse lvvÞç¿J Þe:rsu w-l Llr

aluminum foil to prevent d.esiccat.ion on the Lrip back to --Lhe

university of Guelph. Alt eggs were kept. at. a cool temperature

(20 C) prior to being placed in incubators.

On.Tuly 6, L988, a t,otal of.72O eggs from 6 Ap, 5 Cp, 5 Lp

and 5 cM clutches were randomry distributed ínto i_g covered.

plastic boxes (33.4x22.6x5.9 cm: Durphy packaging co., Huntingdon.

valley, Pa. usA) which contained 200 g of room humidity, medium-

size "Terra-Lite" vermiculiEe. Nine boxes (or trays) were

rand.omly assigned t,o each of 2 moisture contents:

1-) !ùET: 342.86 g water added to the 200 g vermiculite in the

tray (63t humidiry)

2) DRY: 85.7 s water added to 200 s vermicurite (30g

humidíty)

Each box hetd 40 eggs such that 2 eggs from each cl_utch (wherever

possible) were in each box. The eggs were randomly arranged in
eíghL rows of five eggs each and were posi-tioned so that half of

the egg was exposed to the air within Èhe box and the other harf
buried ín the vermiculiLe. Each egg hras oriented. so that the

whit,e spoL (indicating adherence of membranes Lo the interior
surface of the egg shell) was uppermost, and. care was taken to

keep the eggs this way. only those eggs that had distinct white

spot,s r^¡ere selected for incubaLion. Each box with its eggs,

vermiculíLe and water was weighed before being put inÈo the

incubat,ors. There were 6 incubators (Koolatron cooler-warmers,

Koolatron Corp., Brantford, Ont. ), 2 set Eo each of three

temperatures (2g.5 c, 25 c and 2L ct. Three boxes were placed in



each incubator such that an incubat,or contained either L,,,ro high

moisture boxes (trays) and one low moisLure Lray (HHL), or one

high moisture tray and two low moistu¡e tra-ys (LLH) ; each

temperature contained. a HHL and LLH group of trays. The

temperature and moisture conditions v¡ere not considered to be

very exbreme, as they have been recorded in natural nest,s. rh?.

Lhree brays were btacked vertically wíLhin the Koolatron. Below

them r¡ras kept a small 15x6 cm aluminum Lray fu11 of water in
order Lo keep humídity inside each incubat,or relatively constant,.

During the incubation of the eggs, every Monday, Wednesd.ay and

Friday, temperaEure readings from a stick mercury thermometer

inside each Koolatron vrere recorded. rn ad.dition, the top box of

eggs was switched to the boLtom position and the ent,ire stack of

Lhree boxes was rot,at,ed l-80 degrees so thaL. the eggs were exposed

to the range of temperaLure variation within that, Koolatron..

All 6 Koolatron uniLs were placed in a rov¡ on a table inside

a temperature-controlled room (1-9-20 c); room humidity was not,

controlled.. To monitor the moisture leve1 in the boxes, all the

. eggs from a given box were removed Lo a t.empofary Lray, the box

\Àrith its moist. vermiculite v¡as weighed., and sufficient wauer was

added t,o return Lhe box assembly t.o its original weight. As the

eggs were remove¿, they were weighed to 0.1 g. They were then

replaced in theír original positíons. This procedure was followed

weekly throughout, the course of incubation. Except, during the

rotat.ion of the trays and the weekly weighings, Lhe eggs were noL

disturbed. ïf eggs were dropped or ot,herwise accid.ent,ally

disturbed somewhat more severely than usual, it was noted.

(usually this did not Èeem t.o resulL in any ad.verse effecLs in

hatching, deformiLies etc. except in Lhe case of some very large



eggs in Lhe

weighed) .

Às soon

pípping of

VùET substrate which bursL on contacL while being

as the first signs of-haLching were apparent (i.e.

eggs or complete emergence of a hatchlíng from it,s

eggshell), all the eggs from that KoolaLron lvere removed and.

placed individually in 100 ml (4.Lxl-.1 cm) glass jars whichì

contained 7,0 g of vermiculite and eiLher L2.0 g of waLer (wET)

or 3.0 g of water (DRy). The lids of the jars were labelled with.
the egg's id.enti-Ly, screvred on and roosened by L/4 Lirn to atlow

for respiration. These jars were stored in a separate room set at
20 c. ,upon hatching, the turLle,hras removed from the jar, rinsed

of adheríng vermiculite and. egg membranes, pat.ted dry on paper

'Lowels and . weighed to 0.1 s. Measurements of carapace length,

carapace height' and plasLron rength were also taken, and the

turtfe was returned..Lo a clean jar half full of v¡at.er. Notes of

any obvious morphological deformiLies \¡rere taken. Each hatchling

was then individuall-y taqged with small loops of .020 gauge sLeel

fishing wire througå one or more posterior marginal scutes of the

carapace. After being bagged, the LurLles r¡/ere placed in one of

ten 20 gallon aquaria in 5 cm of tap waEer, wiEh approximately 40

turtles per tank. They were then moved to a t,emperature-

conLrolled room (25 c) with a 13 h:11- h light/dark cycle. They

are present,ly being fed weekly with a mixture of chopped chicken

or pork heart, bone meal powd.er, crushed reptile food peIlet.s and.

bLoodworms) in the amount of .2s-.5 g/turtle (essentÍally ad lib)
while they acclimate to the food, light and temperature

condi-tions. The turtles will soon be grouped, as they were in Lhe

incubators, into one of 5 Lanks.



There will only be 5, ¡rot 6, tanks used because, less than a

week (.Tuly 3-2) after Lhe st.art of the artificial incubation, one

Koolatron experienced a mysterious mechanicar failure resultíng

in the loss of 120 eggs. A total of 495 eggs hatched and. 4i-6

hatchlings survive at, present. During íncubat.ion, those eggs Lhat

appeared dead, crumpled or ínfected with fungus hrere removed. from

Lhe boxes, opened. and. examined.. OLher viable eggs were noL

dísturbed. rf presenL, the embryo was identified. as having died

in one of the following developmental stages:

0 ugg was infert,ile
5 stages 0-10; some development has occurred

"-trl åi:å'ï ;:Êäi,,", wh*e harchins
27 survived hatching

If the embryo died aL a late developmental stage (>22f , its sex

was det,ermined if possible. The plastron and viscera \^rere

dissect,ed. av\¡ay t.o e>(pose the gonads and. oviducts (if presenL),

a preliminary sex determinaLion was made based on gross

morpholog:y. Each dead hatchling was individually labelled wÍLh a

vinyl loop labe1 (C, Frensch Ltd., Grimsby, Ont. ) slipped over

its head., and preserved in 708 ethanol . A second .blind. sex

deEermination will also be mad.e. Eggs Lhat, failed to hatch and.

turt.les thaL died after hatching were similarly E,reat.ed.

SITE

AP

CLUTCH ID NO. EGGS IN CLUTCH (initially)

40
31

L1-1_ 39
36
34
32
36
29
36
4L
40
33

B7
K7

N7
s10
x6
2L
2B
69
80

30L
1_00

CP

LP



Ynt,ema' s en{cryonic

*Tota1 incubation Lime

incieases, Lherefore time

176
L79
184
L90

L
9

L32
134
]-37

snapping turt,le

STAGE
0

L
2
3

4
5

6

7

B

9

1_0

l_1

L2
13
L4
1_5

L6
t7
L8
L9
20
2I.
22

,23

24
25
26

(27

stages at 20 C

f} DAYS
laying

L
ôz
3

4

5

7

9
L2
1-6

20
25
30
35
42
49
56
63
70
77
84
9L
98

1_ 05
t_L9
1_33

l_4 0

survived

incub. temp.

past hatching)

CM

34
3s
35
35
24
32
34
35
29

decreases as incubaLion t.emperat.ure

between stages is compressed.

Objective: Determine Ehe effect of
1 ) temperature
2 ) moisture
3 ) site

on the embryonic survivaL of snapping turtle
embryos and how embryonic survíval varies from
clutch to clutch.



rL ís hlpothesized that more ext.reme temperatures .or very dry
substrate may ad.versely affect survival of embryos until
hat.chingi and that, some c-Iutches or even

(eg. CooLes' parad.ise) may be more prone

prior to hatching regardless of environment.ar conditions
during incubat,ion. For example, toxic load.

DATA SET: THE DATA SET IS SUPPLIED BELOI/.I. A BRIEF DESCRIPTION oF

EACH VARTABLE IS INCLUDED BELOW THE DATA SET.

C

L
SU

orT
BTC
SEH

. DATA WAS

E

GTT
GÌRE
INAM
DCYP

INSERTED HERE

MAS
OFLT
ÏETA
SRVG
TTEE

population siLes

to embryo deaLh

H
TH
MT
ND
TA
HY

E

x
M

T
H

H

T
W

T

E
x
D

å

OBS =
STTE

CLUTCH
EGGTD

TNC

OBSERVATION NUMBER

= AP = ALGONQUIN PARK
CP = COOTE,S PARADISE
CM = BTG CREEK MARSH
LP = LONG POINT

= CLUTCH IDENTIFTCATION
= EGG IDENTIFICATION l¡Ul¿SSn
= TNCUBATOR NUMBER (UOTN INCUBATOR 2 EXPERTENCED MECHANÏCÀL

,fuLY 14)
FAÏLURE

TR-AY =
TEMP =
MOIST =
FERT =
ALIVE =

STAGE =
EXMTH =

EXDAY =
HT¡4I{TH =
HTDAY =
HTWT =

TRAY IDENTTFTCATION
2t, 25 0R 29 C
EITHER HIGH MOISTURE (h¡) OR LOVü MOTSTURE (D)
INÐICATES IF THE EGG vùAS FERTTLE (1 = yES ÀND 0 = NO)
INDTCATES IF THE HATCHLING TS ÀLTVE AS OF LAST CHECK
(APPROXIMATELY 2 MONTHS AFTER HATCHING DATE)
fF THE EMBRYO HAS DTED, THE STAGE TT DTED AT
THE MONTH THE EGG OR HATCHLTNG WAS EXÀMINED TF TT DIED
(NOTE THTS DOES NOT INDTCATE WHEN THE EGG DÏED, STNCE IT
MAY TAKE A WEEK OR TWO FOR STGNS TO BECOME APPARENT)

THE DAY THE EGG OR HATCHLING h¡.A,S EXAMINED
fF THE EGG HATCHED, THE MONTH
IF THE EGG HATCHED, THE DAY
THE WETGHT OF THE HA,TCHLTNG AT HATCHTNG

The eggs were collecLed within 24in of oviposítion ín early ,June. Theyhad approx. one monLh to d.eveI0p - aL room temperaLure or Lower _
before they were transported. to the lab at cuelph and. placed inLo theincubators. À11 clutches of eggs were kept in the same cond.it,ions asfar as possíble before artificial incubation start,ed. The eggs,



therefore, developed. for @ 1 monLh at cool
which would correspond roughly to stag.es
actual days each clutch was laid on (,June
correspond.

rf the slage is 5 this means thaL the embryo died in earry d.evelop-ment when the precise''stage is difficult Lo a-scertain. presuñab1y theone stage 5 embryo from the incubat,or Lhat failed died naturally beforethe incubator cooked the rest of the eggs. rE is possíble ¿;;;-;"*e of rhe eggsin that íncubator died naturally but r ihink, given the stages they vrere at,mostif not all were due t.o the malfunction.

Thanks for the quest.ions. r hope this makes things a bít more cLear.

Michete Bobyn

*** 1. For some reason, this daEa line is mÍssing:

LP 1-90 35 4 3 25 v{ 1_ t_ 27 g 4 9.0

(sit,e, clutch, eggid, inc, tray, t.emp, moist, fert,, alive,stãge, exammonLh, examday, hatchmonlh, hatchday, hatchwL)

2. "alive" code=2 if the egg was accídenbry broken or if it burstof iLs own accord. obs. 2L0 was broken by me,. obs. 26g and 3g9burst in rhe incubaror; obs. s03 looked i""õårlãrra-ããuä""o r¡ras^ dissected and a rive embryo found. inside. The egg was noLfungoid.

3' obs' 543 - eggwas fungoid and dead but was not staqed or examined

4. obs. 76 and 197 died whire hat,ching and so were not weighedstill attached to and had noL resorbed. their yolk sacs. obs. l_77was not, weighed and it. died immediaLely afLer
hatching. Obs. 31g was simply noL weighed, by misLake...

t,emp. and. 6 days at hot temp.
L3-l-5. Taking into account the

6-22l, , the stagies would

as theywere
hatched but



Eihliøgrap&ay

1. Bain, Lee J., Engelhardt, Max. lntroductÌon to probability and mathematical

sfafisfics ld ed., Duxbury

2. Brown, Jason. GLIMMIX macro for Version 8,

http : //ewe. 3s a s. cp, /tech s u p/d own I oad/stat/g I m m B 0 0. htm I

3. Bobyn, Michelle. The effects of incubation temperature and moisture on

the su¡vival of snappíng tuñle (chelydra serpentina) embryos. university

of Guelph., 1988

4. Breslow, N. E. and clayton, D.G. Approximate lnference in Generalized

Linear Mixed Models Journal of the American Statistical Association.

March 1993, Vol, 88.

5. Littell, Ramon C., Milliken, George A., Stroup, Walter W., and Wolfinger,

Russell D., SAS@ Sysfem for Mixed Models, Cary, NC: SAS lnstitute lnc.,

1 996.

6. Map of Ontario - http://atlas.qc.ca

7. Mccullagh, P. and Nelder, J.A. Generalized LinearModels, chapman and

Hall, London. 1987

8. McCullagh, Charles E.,Searle, Shayle R., Generalized, Linear, and Mixed

Models, Wiley series in probability and statistics 2001

9. Myers, Raymond H., Montgomery, Douglas C., Vining Geoffrey G.,

Generalized linear models; wíth applications in engineering and the

sciences, Wiley series in probability and statistics 2002..

10.Pierce, F.J., schabenberger, oliver., contemporary statisticat modelsfor

the plant and socìalsciences, CRC Press, 2002 . 738 pp.

I l. SAS lnstitute lnc.-online Documentation: nttp:/vgooc.sas.com/sasdoc

93


