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Abstract 

Cardiac fibrosis is the excess deposition of myocardial extracellular matrix components, 

which increases tissue stiffness and heterogeneity, causing impaired diastolic/systolic 

function and arrhythmias, and eventually leading to heart failure and death. There are no 

available treatments for cardiac fibrosis. Myofibroblasts mediate fibrosis, and are 

characterized by hypersynthesis of collagens, decreased migration, and increased α-

smooth muscle actin, which is incorporated into stress fibers, imparting contractility. 

Scleraxis is a transcriptional regulator of collagen-rich tissues, increased in response to 

the same stimuli that drive the myofibroblast phenotype, such as cyclic stretch. We show 

that Scleraxis mediates the conversion of cardiac fibroblasts to myofibroblasts, by 

increasing myofibroblast marker expression and contraction, and decreasing migration. 

Additionally, a proximal 1500 bp human SCLERAXIS promoter is activated by stretch 

and is responsive to transforming growth factor-β1. Thus, Scleraxis is a specific 

mechanoresponsive regulator of the myofibroblast, representing a novel target for the 

treatment of cardiac fibrosis. 
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1: INTRODUCTION 

Cardiac fibrosis is the excess deposition of fibrillar collagens and other extracellular 

matrix components in the heart. The resulting increase in myocardial stiffness and 

heterogeneity can result in systolic and/or diastolic dysfunction, cardiac arrhythmias, and 

eventually, heart failure [1]. The current lack of treatment options for cardiac fibrosis 

underscores the importance of understanding the molecular mechanisms governing 

fibrosis. At the cellular level, myofibroblasts are primarily responsible for the 

development of cardiac fibrosis. In the healthy heart, cardiac fibroblasts are the most 

numerous cell type, and are necessary for maintaining homeostasis of myocardial tissue 

through turnover of extracellular matrix components. In response to pro-inflammatory 

factors released following injury, such as infarct and hypertrophy, cardiac fibroblasts 

become activated. Upon activation, cardiac fibroblasts proliferate and migrate to the site 

of injury, where they release enzymes such as matrix metalloproteinases (MMPs) to 

degrade damaged tissue to allow infiltration of immune cells. Following this 

inflammatory phase, cardiac fibroblasts convert to myofibroblasts, which initiate the 

wound healing phase. In comparison to fibroblasts, cardiac myofibroblasts are 

hypersynthetic for collagens and other matrix components that make up cardiac scar 

tissue, and exhibit increased expression of key markers including the smooth muscle 

isoform of α-actin (α-smooth muscle actin/αSMA), which is incorporated into de novo 

cytoskeletal stress fibers [2]. Functionally, these stress fibers impart contractility upon 

cardiac myofibroblasts, a necessary function in scar maturation and proper collagen cross-

linking. Although myofibroblast function is critical to the wound healing process, their 

persistence in the healed myocardium and continued deposition of collagenous scar tissue 
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is the basis for the development of cardiac fibrosis [3]. Thus, preventing or reversing the 

myofibroblast phenotype, after proper wound healing has concluded, represents a novel 

approach to the treatment of cardiac fibrosis. 

1.1: Fibroblasts and Cardiovascular Disease 

Cardiovascular diseases, including heart attack and stroke, cause nearly 70,000 deaths per 

year in Canada alone [4]. Cardiac fibrosis is a common result of many of these diseases, 

the most notable being myocardial infarction (MI) and cardiac hypertrophy. 

Unfortunately, treatment for cardiac fibrosis is practically non-existent, limited to end-of-

life care and/or heart transplant. In addition to the heart, fibrosis affects a host of other 

organs, in which the stiffening resulting from excess collagen deposition can also be fatal 

– such as the lungs and kidney. In fact, taken together, scarring and fibrosis account for 

45% of all chronic diseases in the Western world [5]. In the last 30 years, short-term 

survival post-MI has increased, yet so has the incidence of post-MI heart failure, 

underscoring the need for treatments targeting the detrimental effects of adverse cardiac 

remodeling [6].  

1.1.1: Response to Myocardial Injury 

Myocardial infarction is the result of obstructed blood flow (i.e. oxygen and nutrients) to 

cardiomyocytes resulting in ischemia, usually associated with coronary artery disease and 

affecting the left ventricle. Within 30 minutes of ischemia, cardiomyocytes suffer 

irreversible death, resulting in activation of the inflammatory complement system and an 

acute inflammatory response. Additionally, ischemia/reperfusion induces apoptosis in 

cultured cardiac fibroblasts [7]. The release of damage indicators and pro-inflammatory 

cytokines from dead/dying cardiomyocytes and surrounding resident cells (such as 
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fibroblasts) attracts immune cells (neutrophils, macrophages) to the site of infarct. In 

response to the acute inflammation following MI, fibroblasts and immune cells release 

proteolytic enzymes (such as MMPs) and mediators that cause degradation of the cardiac 

extracellular matrix, allowing for further infiltration of immune cells and engulfment of 

cellular debris. Due to the limited regenerative potential of the myocardium, the collagen-

rich scar produced by fibroblasts (and later myofibroblasts) is required to maintain 

myocardial integrity by counteracting the drastic loss of cardiomyocytes – thus avoiding 

left ventricular dilation and cardiac rupture [8]. Four distinct but overlapping phases have 

been identified in humans following MI [9]. The initial phase, lasting about 2 days, 

involves cardiomyocyte death through apoptosis and necrosis, the latter of which invokes 

an early inflammatory response [10]. This inflammatory response, which occurs between 

6 to 96 hours post-MI, is considered the second phase of cardiac wound healing, and is 

characterized by activation of the complement system [11], the release of pro-

inflammatory cytokines (such as interleukins) [12, 13], and infiltration of the infarct area 

by immune cells including neutrophilic granulocytes, white blood cells, and 

macrophages. These immune cells remove dead cardiomyocytes and initiate matrix 

degradation [14], and also release growth factors such as transforming growth factor-β 

(TGFβ), platelet-derived growth factor (PDGF), and fibroblast growth factor (FGF) to 

induce the proliferation and recruitment of cardiac fibroblasts to the wounded area [15]. 

The wound healing or proliferative phase begins within 2 to 3 days of infarct [9], and is 

associated with inhibition of pro-inflammatory mediators as well as activation of pro-

fibrotic pathways [16]. This phase is dependent upon the activation, proliferation, and 

migration of fibroblasts into the infarcted area and surrounding border zone. These 

fibroblasts then begin to secrete extracellular matrix (ECM) proteins, beginning with 
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fibrin, and subsequently other non-collagen constituents such as fibronectin and tenascin 

[17, 18]. Fibroblasts also release other proteoglycans, glycoproteins, and fibrillar 

collagens type I and III. In addition to synthesis and deposition of such proteins, 

fibroblasts also contribute to the wound healing process via degradation of existing ECM 

through enhanced expression of MMPs, which is kept in check by expression of tissue 

inhibitors of matrix metalloproteinases (TIMPs)[15].  

In addition to acting as chemoattractants for immune cells, inflammatory mediators 

stimulate resident cardiac fibroblasts and other lineages to differentiate or convert into 

myofibroblasts, the primary cells responsible for deposition of collagen-rich scar tissue 

[19]. Within a few days post-MI, myofibroblasts heavily populate the border region of the 

infarct zone, where their purpose is to produce high quantities of fibrillar collagens type I 

and III that make up the infarct scar [20]. Initial formation of scar tissue, which occurs 

within about 4 days post-MI, is also accompanied by the appearance of new blood vessels 

derived either from pre-existing nearby vessels or endothelial cells recruited to the 

infarcted area [21]. The events occurring over the following weeks to years after initial 

scar formation and resolution of the inflammatory phase fall into the maturation phase of 

cardiac wound healing. Upon initiation of this phase, approximately 2 to 3 weeks post-

MI, cardiac myofibroblasts begin to cross-link collagen fibers deposited in the infarct and 

surrounding border zone, resulting in increased tensile strength and stiffness of the 

collagen-rich scar. After wound healing has been completed and collagen deposition and 

synthesis is no longer necessary, the majority of myofibroblasts disappear from the infarct 

through apoptosis [22]. However, in many cases, myofibroblasts persist in the infarcted 

region as well as the distal, non-injured myocardium, continuing to inappropriately 
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deposit fibrillar collagens and contract the tissue. The persistence of myofibroblasts in the 

healed myocardium, for up to decades after MI, is the basis for the development of 

cardiac fibrosis [23]. 

1.2: Extracellular Matrix of the Heart 

The ECM of the heart is critical to cardiac structure and function, coordinating 

transmission of contractile forces produced by cardiomyocytes while preventing over-

extension or rupture of the myocardium during ventricular systole [24, 25]. Additionally, 

the ECM acts as a reservoir of latent cytokines and growth factors that can be made 

readily available in response to stress and injury, and undergoes dynamic alterations 

during the different phases of post-MI remodeling [16]. The cardiac ECM is primarily 

composed of various structural proteins such as collagens and elastins, glycoproteins and 

glycosaminoglycans (GAGs), non-structural matricellular proteins (Connective tissue 

growth factor, Cysteine-rich protein, and Nephroblastoma overexpressed gene (CCN) 

family, secreted protein acidic and rich in cysteine (SPARC), thrombospondins, etc.), and 

a system of proteolytic MMPs and their inhibitors, TIMPs [15, 26].  

1.2.1: Collagens in the Cardiac Extracellular Matrix 

Fibrillar collagens type I and III make up about two-thirds of total protein content in 

humans [25], are the primary non-cellular component of the cardiac ECM, and comprise 

about 96% of total myocardial collagen content, although this may vary between species 

[25, 27, 28]. Additionally, the type I and III collagen content of the myocardium increases 

as rats develop from fetuses into neonates and further into adulthood [29]. Collagens are 

synthesized and secreted by fibroblasts and myofibroblasts as pro-collagen precursors, 

which are subsequently converted to mature collagen molecules through proteolytic 
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cleavage [30]. Cross-linking and assembly of mature collagens into fibers is catalyzed by 

lysyl oxidase [31]. Collagen degradation, after a half-life of about 80-120 days, is 

mediated by the enzymatic activity of matrix metalloproteinases (mainly collagenases and 

gelatinases) [32]. Mature type I collagen fibers, which are the primary determinant of 

cardiac stiffness [25], are a triple helix composed of two collagen 1α1 chains and one 1α2 

chain, transcribed in proportion from the COL1A1 and COL1A2 genes, respectively [33]. 

Type III collagen is the second most abundant collagen in the myocardium, forming 

thinner fibers than those of type I collagen, and is composed of three identical collagen 

3α1 monomers [25, 34]. In the healthy myocardium, the ratio of collagen type I/III is 

approximately 2:1 [35], increasing significantly in myocardial diseases associated with 

adverse ventricular remodeling [36-40]. Though collagen synthesis and cross-linking are 

critical to post-injury scar formation, excessive collagen deposition by myofibroblasts is 

the hallmark of cardiac fibrosis, involving scar tissue formation even in remote, non-

infarcted areas that contributes to increased myocardial stiffness, development of 

arrhythmias, and impaired function [9, 41].  

1.2.2: Non-Collagen Matrix Components 

Next to collagens, glycoproteins are the most abundant component of the cardiac 

extracellular matrix [29]. These include fibronectin, proteoglycans like fibrillins, 

versicans, and syndecans, the GAG hyaluronan, and matricellular proteins such as 

periostin and osteopontin [42]. As for collagens, the distribution and abundance of non-

collagen proteins is also altered throughout development [42], with aging [29], and in 

response to myocardial stress or injury [16]. While collagens increase in the aging rat 

myocardium, fibronectin and periostin decrease [29]. During the early stages of 
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inflammation following MI, hyaluronan, and other non-collagen components are also 

degraded by ECM enzymes, producing pro-inflammatory and chemotactic low molecular 

weight matrix fragments [43-45]. With degradation of the existing ECM, the provisional 

matrix produced in its place is fibrin-based and serves as a scaffold for the proliferation 

and migration of fibroblasts and other cell types [43, 46]. During the proliferative phase 

of post-MI remodeling, fibroblasts secrete large amounts of fibronectin and hyaluronan, 

which then serve as the basis for a more organized, cell-derived matrix to replace the 

fibrin-based provisional matrix [16, 17, 47]. Though matricellular proteins like 

thrombospondins, osteopontins, periostins, and tenascins are normally not expressed in 

the cardiac ECM, they play a crucial role following myocardial injury by regulating 

related cellular functions. Tenascin-C is produced by fibroblasts during the proliferative 

phase of myocardial repair in the infarct border zone [18, 48]. Its transient up-regulation 

during this phase appears to be stimulated by a variety of factors, such as tumor necrosis 

factor-α (TNFα), TGFβ, basic fibroblast growth factor (bFGF), and angiotensin II 

(AngII). Studies have demonstrated that tenascin-C promotes a de-adhesive state and is 

associated with recruitment of myofibroblasts to the infarct zone [48, 49]. 

Thrombospondin-1 (TSP1) is also upregulated in the border zone post-MI, and is 

involved in inhibiting inflammation and expansion of the infarct zone, likely through 

induction of TGFβ activation [16, 50]. Additionally, thrombospondin-2 (TSP2) also 

appears to be important to myocardial repair, as TSP2-null mice exhibit a high incidence 

of cardiac rupture [51]. Osteopontin, periostin, and SPARC have also been shown to play 

significant roles in the healing myocardium [16].  
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1.2.2.1: Fibronectin 

Fibronectin is a large multi-domain ECM glycoprotein expressed by many cell types, 

including fibroblasts. Fibronectin binds cell membrane integrins as well as other ECM 

proteins, including heparin sulfate proteoglycans, fibrins, and collagens. Through various 

types of cell and matrix interactions, fibronectin is capable of regulating cell behaviour, 

and has been shown to play a crucial role in adhesion, growth, migration, and 

differentiation [52]. For example, fibronectin is critical not only in producing the 

secondary matrix that replaces the fibrin-based provisional matrix during the proliferative 

phase of post-MI remodeling (via fibronectin fibrillogenesis), but also in the phenotype 

conversion of cardiac fibroblasts to myofibroblasts [53], as well as the deposition of type 

I collagen and TSP1 [54], at least in vitro. In general, fibronectin exists as a homodimer 

of two 250 kDa monomers, each of which contains three types of repeating units (types I, 

II, and III) [55]. Alternative splicing of type III repeats is the mechanism through which 

the extracellular domain-A (ED-A) splice variant (also called EIIIA) is produced. ED-A 

fibronectin (ED-A Fn) expression is a necessary component of fetal heart development, is 

increased in myocardial injury, and also appears to be necessary for the conversion of 

cardiac fibroblasts to myofibroblasts [42, 53].  

1.2.3: Cardiac Fibroblasts and the Extracellular Matrix 

Though previously thought to act simply as the ‘glue’ that holds cardiac tissue together, 

the last few decades have brought to light the fact that fibroblasts provide far more than 

structural support to the myocardium. Cardiac fibroblasts also act as autocrine and 

paracrine modulators of pro-inflammatory and pro-fibrotic chemokines and cytokines, 

both through releasing these factors and through intracellular signaling pathways [56-58]. 
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Though cardiomyocytes make up the majority of myocardial volume, cardiac fibroblasts 

are far more numerous, comprising up to 70% of all cardiac cells [59]. The primary 

function of cardiac fibroblasts is to maintain tissue homeostasis in the myocardium 

through continual remodeling of the ECM.  

1.3: Migration of Cardiac Fibroblasts 

Coordinated and directed migration of cardiac fibroblasts to sites of cardiac injury is a 

critical step in the cardiac remodelling process. Pro-inflammatory cytokines released by 

injured cardiomyocytes and immune cells, in addition to biomechanical cues, attract 

cardiac fibroblasts to regions of damaged myocardium. The process of migration begins 

with a phenomenon known as cell polarization, in which fibroblasts develop distinct 

regions at the forefront (the leading edge) and rear (the trailing edge) of the cell. Through 

polymerization of actin monomers at the leading edge, fibroblasts develop protrusions 

called lamellopodia that extend in the direction of cell movement, while the trailing edge 

is retracted through a process termed "retrograde actin flow". Cell movement requires 

dynamic turnover of cell-matrix adhesions to allow detachment of the trailing edge and 

the formation of new adhesions at the leading edge of the lamellopodia. An array of 

factors contribute to cardiac fibroblast migration, such as composition and mechanical 

state of the ECM or substrate, the presence of other cell types and their interaction with 

fibroblasts, as well as the presence and concentration of various cytokines. As fibroblasts 

convert to myofibroblasts, the increased strength and size of cell-matrix adhesions is 

associated with decreased motility, though this is a subject that remains under debate [60-

64].  
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Increased cardiac fibroblast migration is associated with the inflammatory response to 

myocardial injury. Thus, it is not surprising that a number of injury-related and pro-

inflammatory cytokines and chemokines are found to enhance cardiac fibroblast motility 

in vitro. The main modes of action of these cytokines appears to involve activation of 

MMPs (e.g. MMP9) and/or dissociation of cell-matrix adhesions [65]. AngII stimulates 

cardiac fibroblast migration through a nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidase-4 (Nox4)- and reactive oxygen species (ROS)-dependent mechanism 

that results in increased matrix degradation (via MMP activation) and down-regulation of 

the adhesion protein Reversion-inducing-Cysteine-rich protein with Kazal motifs (RECK) 

downstream of Rho/Rho-associated protein kinase (ROCK) signaling [66, 67]. 

Interleukins (IL)-8 , -17, and -18 stimulate similar pathways involving transcription 

factors activator protein-1 (AP-1) and nuclear factor kappa B (NFκB) that stimulate MMP 

activity in cardiac fibroblasts, and have been demonstrated to stimulate migration of 

fibroblasts from non-cardiac tissues as well [68-74]. IL-1β induces cardiac fibroblast 

migration through a mitogen-activated protein kinase kinase (MEK1)-dependent 

mechanism that involves up-regulation of MMP9 and is augmented by the addition of the 

damage-related factor TNFα [75, 76]. IL-1β has also been shown to prevent TGFβ-

induced conversion to the cardiac myofibroblast in vitro [77]. Adipokines such as leptin 

and adiponectin stimulate migration in cardiac fibroblasts via MMP activation and 

cytoskeleton reorganization [3, 78-80] (Figure 1). 

The ECM influences cardiac fibroblast migration through both composition and rigidity 

[81]. The matrix protein fibronectin is an important component of the provisional matrix 

post-MI, and is both stimulatory for fibroblast migration and chemoattractive for 
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fibroblasts from various sources [82-85]. As its name would suggest, migration 

stimulating factor (MSF), a truncated version of fibronectin, is also able to stimulate 

fibroblast spreading and migration [86]. The large matrix glycoprotein Tenascin-C is 

transiently upregulated during injury, functioning to reduce cell-matrix adhesions as well 

as up-regulating MMP production, thereby increasing fibroblast migration [87, 88]. Other 

matrix proteins such as osteopontin and periostin also regulate cardiac fibroblast 

migration [89, 90]. Migration of cells in response to changes in substrate stiffness, from a 

region of lower stiffness to one of increased stiffness, is termed “durotaxis” (Figure 1). A 

number of in silico and in vitro models of durotaxis have indicated that fibroblasts 

preferentially migrate towards regions of higher stiffness [91-95].  

Although direct treatment with pro-fibrotic growth factors such as PDGF and TGFβ 

inhibits cardiac fibroblast migration, these factors can act as chemoattractants. Various 

studies utilizing Boyden chamber assays, in which chemoattractant is placed opposite 

cultured cells separated by a porous membrane, found that both PDGF and TGFβ 

stimulated fibroblast chemotaxis [96-100] (Figure 1). Similar experiments using in vivo 

subcutaneous chambers found that PDGF and TGFβ increased fibroblast chemotaxis 

[101]. Chemotactic responses of fibroblasts in dermal wounds were also increased with 

PDGF and TGFβ [102]. 

Focal adhesion kinase (FAK) is a tyrosine kinase associated with the turnover of 

adhesions in fibroblasts and other cell types. Evidence for FAK involvement in fibroblast 

migration is extensive – it promotes the formation of stable lamellopodia [103-105], it 

facilitates directed motility, and modulates release and retraction of the trailing edge 

through cooperation with RhoA signaling pathway proteins such as ROCK [106-109]. 



12 

 

Studies in FAK-null fibroblasts have demonstrated that this kinase is critical for fibroblast 

migration, and loss of FAK results in reduced motility due to lack of turnover of cell-

matrix adhesions [110] (Figure 1). 
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Figure 1: Migration of cardiac fibroblasts. The migration of cardiac fibroblasts requires 

adhesion turnover, which in turn requires focal adhesion kinase (FAK) activity, 

cytoskeleton reorganization, as well as degradation of the extracellular matrix (ECM) by 

matrix metalloproteinases (MMPs) to facilitate fibroblast movement through the stroma. 

Cardiac fibroblasts demonstrate directional migration towards chemoattractants such as 

fibronectin, platelet-derived growth factor (PDGF), and transforming growth factor-β 

(TGFβ) in a process called chemotaxis. Cardiac fibroblasts also migrate towards regions 

of increased stiffness in a process termed durotaxis. Various injury-related modulators 

induce fibroblast migration via distinct pathways. Binding of angiotensin II, interleukin-8, 

and interleukin-18 to their respective receptors induces activation of NADPH oxidase-4 

(Nox4) and downstream production of reactive oxygen species (ROS). This cascade 

results in activation of the transcription factors nuclear factor kappa-B (NFκB) and 

activator protein-1 (AP-1), which cause MMP activation. Angiotensin II receptor binding 



14 

 

also inhibits activity of the adhesion protein reversion-inducing-cysteine-rich protein with 

kazal motifs (RECK), in turn repressing adhesion. Interleukins-1β and -17 induce NFκB 

and/or AP-1 activation through a mitogen-activated protein kinase (MAPK)-dependent 

mechanism. The adipokines leptin and adiponectin induce both MMP activation and 

cytoskeleton reorganization. The ECM glycoprotein tenascin-C, which is upregulated 

during myocardial injury, stimulates both adhesion turnover and cytoskeletal 

reorganization. Other pathways likely contribute to the migration of cardiac fibroblasts, 

though these remain currently unknown.  
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1.4: Phenoconversion of Cardiac Fibroblasts to Myofibroblasts 

Since the initial discovery of myofibroblasts in granulation tissue 40 years ago [111],  it 

has since been determined that these cells are the predominant cell type responsible for 

scar formation in the majority of tissues, including the skin, lungs, liver, kidney, 

vasculature, and heart [112]. In the healthy heart, myofibroblast presence is limited to the 

valve leaflets and is absent from myocardial tissue, but myofibroblasts can be found 

throughout the heart in the injured myocardium, especially in the border zone of infarct 

scars [113-115]. Though primarily derived from resident cardiac fibroblasts, 

myofibroblasts in the heart may also arise from other cell types, including circulating 

bone marrow-derived fibrocytes, mesenchymal stem cells, pericytes, monocytes, and 

endothelial or epithelial cells [116]. Myofibroblasts share features of fibroblasts 

(synthesis of ECM components) and smooth muscle cells (contractility and actin isoform 

expression). Various cellular features are used to distinguish myofibroblasts from their 

precursor fibroblasts (Table 3). Transition to the myofibroblast is characterized by 

increased expression of ED-A Fn [53], αSMA [117], and embryonic non-muscle myosin 

heavy chain (SMemb) [3, 60, 118, 119], of which αSMA is the most commonly used 

marker to distinguish myofibroblasts from fibroblasts [120]. However, the 

phenoconversion process in vitro appears to produce an intermediate phenotype, called 

the proto-myofibroblast, which exhibit increased expression of αSMA without its 

incorporation into stress fibers, making these cells less contractile than ‘fully converted’ 

myofibroblasts [120-124]. Proto-myofibroblasts are characterized by increased expression 

of ED-A Fn, SMemb, and αSMA, increased levels of focal adhesion proteins, and de 

novo stress fibers composed of β- and γ-actins [3, 60, 119, 121, 122]. Although there is 

evidence of proto-myofibroblasts during the in vitro transition from cardiac fibroblast to 
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myofibroblast [60], the challenges of identifying these cells and their adhesion structures 

in vivo leaves the question as to whether they exist outside of cell culture models 

unanswered [120]. With additional stimuli, these proto-myofibroblasts convert further to 

myofibroblasts, which demonstrate even higher expression of αSMA, which is then 

incorporated into stress fibers allowing a high degree of cell contractility [120, 122, 123, 

125]. Morphologically, myofibroblasts in vitro appear larger than fibroblasts and proto-

myofibroblasts, with a stellate shape, and have αSMA-positive stress fibers that are 

anchored at large focal adhesions [122]. Such contractile stress fibers not only allow the 

production of contractile forces by the myofibroblasts, but also oppose retractile 

extracellular forces, further promoting the cardiac remodeling process [117, 122]. 

Myofibroblasts are also hypersynthetic for fibrillar collagens type I and III, the primary 

components of infarct scars, and exhibit decreased proliferation and migration [121, 126]. 
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Table 1: Distinguishing features of cardiac fibroblasts, proto-myofibroblasts, and 

myofibroblasts in vitro. 

 FIBROBLASTS PROTO-

MYOFIBROBLASTS 

MYOFIBROBLASTS 

Primary function(s)  

in vivo 

Proliferation 

Migration 

MMP production 

Unknown 

Fibrillar collagen 

synthesis 

Contraction 

Expression of α-SMA Low, if at all Intermediate High 

Actin cytoskeleton 
β- and γ-actin 

filaments 

β- and γ-actin stress 

fibers 

α-SMA-

containing stress 

fibers 

Contractility Low Intermediate High 

ED-A Fn and SMemb 

expression 
Low, if at all Intermediate High 

Cell-matrix 

attachments 
Focal contacts 

Developing focal 

adhesions 

Mature, large 

focal adhesions 

  



18 

 

1.4.1: Regulation of Phenoconversion 

A variety of factors contributes to the temporal and spatial regulation of cardiac fibroblast 

phenoconversion in the heart. In vitro work has identified a number of key players in this 

process. One major factor that weighs heavily on the clinical relevance of in vitro models 

is the impact of mechanical stress [127, 128]. In the healthy myocardium, cardiac 

fibroblasts are exposed to external forces of approximately 4 to 18.5 kPa [129-131], but 

stiffness drastically increases with fibrosis to between 20 and 100 kPa [132]. 

Additionally, stiffness of the cardiac ECM increases with age; whereas fetal rat ECM has 

a stiffness of about 10 kPa, this increases to about 18 kPa in neonates, and even further in 

adult rat hearts, with a stiffness of about 20 kPa [29]. In response to increased stiffness, 

fibroblasts convert to myofibroblasts, which display increased expression of αSMA, 

which is subsequently incorporated into de novo stress fibers that terminate at focal 

adhesions [132], imparting increased contractility and stiffness to these cells. In vitro, 

mouse embryonic fibroblasts internally match the stiffness of their surrounding substrate 

up to approximately 10 kPa, at which point cell spreading is maximized and after which 

increasing stiffness of the substrate is no longer matched by fibroblasts, inducing 

formation of stress fibers to accommodate extracellular stress [133, 134]. Since typical 

plastic tissue culture dishes exhibit stiffness in the range of 106 kPa [135], and even 

flexible membranes used in stretch assays have a stiffness of 930 kPa (FlexCell Internal 

data sheet, www.flexcell.com), standard culture of primary cells itself is a potent inducer 

of fibroblast to myofibroblast conversion [136]. Interestingly, a number of studies have 

shown that the myofibroblast phenotype can be prevented, or even reversed, by reducing 

the extracellular tension applied to these cells, causing the loss of myofibroblast markers 

such as αSMA and the dissolution of stress fibers [128, 137, 138]. These studies indicate 
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that mechanical stress is a critical factor in driving phenoconversion. It is likely that this 

mechanical effect on phenotype may result from increased Rho/ROCK signaling and 

activation of myocardin-related transcription factor-A (MRTF-A) that also occurs during 

ECM remodeling [122, 139]. Cardiac fibroblasts plated on substrates resembling fibrotic 

myocardium (approximately 40 kPa) exhibited increased phenoconversion compared to 

those plated on softer substrates (10 kPa). However, with addition of the ROCK inhibitor 

Y27632 prevented phenoconversion on the stiffer substrate [140].  Another study of NIH-

3T3 fibroblasts exposed to mechanical stress implicates FAK as a necessary intermediate 

during force-induced translocation of MRTF-A to the nucleus, where it activates αSMA 

transcription, promoting the myofibroblast phenotype [141, 142]. The response of cardiac 

fibroblasts to mechanical stimulation is discussed further in the Mechanosensing section 

(1.7). 

TGFβ stimulation appears to be the major factor driving cardiac fibroblast conversion to 

myofibroblasts. ED-A Fn, which is increased with phenoconversion, appears to act in a 

feed-forward loop by further promoting the myofibroblast phenotype in a TGFβ-

dependent manner [53]. Other growth factors, such as PDGF and connective tissue 

growth factor (CTGF), increased in response to myocardial injury, also contribute to 

phenoconversion through TGFβ signaling [143-148]. Additional factors influencing 

phenoconversion include angiotensin II signaling, which appears to converge with 

canonical TGFβ signaling pathways to promote the myofibroblast phenotype, as well as 

the mechanosensitive transient receptor potential channel-6 (TRPC6) [149], the 

vasoconstrictor endothelin-1 (ET-1) [150], ECM components such as hyaluronan [151, 

152], microRNAs [153-155], and many others. Inhibitors of the phenoconversion process 
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include the proto-oncoprotein Ski [156], the homeobox transcription factor mesenchyme 

homeobox-2 (Meox2) [157], and bFGF [158]. 

1.5: Transforming Growth Factor-β1 

Transforming growth factor-β (TGFβ) belongs to a highly conserved superfamily of 

cytokines that also includes bone morphogenetic proteins (BMPs), activins, and inhibins. 

TGFβ exerts pleiotropic effects on a myriad of cell types, regulating processes such as 

differentiation, proliferation, ECM production, and apoptosis [159]. In mammals, TGFβ 

exists in three isoforms (TGFβ1, TGFβ2, and TGFβ3) that display similar yet diverse 

biological effects. All three TGFβ isoforms are involved in EMT during cardiac 

development [160]. Of these isoforms, TGFβ1 is the most well characterized in regards to 

cardiac injury and subsequent fibrosis, although there are studies to suggest a role for the 

other two isoforms in cardiac remodeling. TGFβ1 is released by a variety of cell types, 

including cardiomyocytes [161, 162], fibroblasts/myofibroblasts, vascular smooth muscle 

cells, and immune cells [163]. TGFβ2 is also secreted by cardiac fibroblasts [164], is 

increased in response to MI and norepinephrine-induced cardiac hypertrophy in rats 

[165], and may be involved in induction of the fetal gene program during remodeling. 

However, there is a paucity of information regarding the role of TGFβ2 in cardiac fibrosis 

and related cardiac fibroblast activities. The role of TGFβ3 in the adult myocardium is not 

well known, though its expression is correlated with increased MMP and TIMP 

expression following MI in rats [166], and thus TGFβ3 may be involved in the cardiac 

remodeling process.  

TGFβ is secreted as a dimer in an inactive form, bound non-covalently to a TGFβ pro-

peptide termed the latency-associated peptide (LAP), which prevents association of TGFβ 



21 

 

with its receptor [167].  The complex formed by TGFβ and LAP is called the small latent 

complex (SLC). This SLC is in turn bound by latent TGFβ-binding protein (LTBP) [168], 

forming the large latent complex (LLC) within the endoplasmic reticulum, prior to 

secretion [169]. LLC is secreted in either soluble or matrix-bound form, the latter of 

which provides stores within the ECM that can be made readily available upon activation. 

LTBP is responsible for binding of the LLC to matrix components such as vitronectin and 

fibronectin [127, 170, 171]. Additionally, LTBP binds cell membrane integrins, providing 

a link between the cell cytoskeleton and the matrix [172-174]. Activation of latent TGFβ 

by dissociation from the LLC occurs either via proteolytic cleavage by ECM-degrading 

enzymes such as MMPs [175-179], or through protease-independent integrin-mediated 

deformation of the LLC [180, 181]. In the latter mechanism, integrins containing the αv 

subunit (such as αvβ3, the primary integrin of focal adhesions) bind to LAP via an 

arginyl-glycyl-aspartic acid (RGD) motif [182, 183], and myofibroblast contraction 

induces release and activation of the TGFβ molecule, which is then free to associate with 

its receptor and induce downstream pro-fibrotic signaling events [181, 184]. 

TGFβ1 is released in response to various clinical pathologies, including hypertension 

[185], cardiac hypertrophy [161], and following myocardial infarction [166, 186]. In 

humans, TGFβ1 expression increases in response to cardiac pressure- and volume-

overload-induced hypertrophy [187, 188]. In response to MI in rats, TGFβ1 levels 

increase 3 days post-MI, peaking at 7 days post-MI, and remain consistently elevated 

through 4 weeks post-MI [189]. Expression of TGFβ1 increases in fibroblasts and 

myofibroblasts by treatment with angiotensin II, which is elevated in response to cardiac 

pathology [190-192]. TGFβ1 is a potent driver of fibrosis in the heart and other organs 
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[193-198], and is critical for phenoconversion of cardiac fibroblasts into myofibroblasts 

[193-197, 199]. In fibroblasts and myofibroblasts, TGFβ treatment induces increased 

expression of fibrillar collagens [199-203], CTGF [204], ED-A Fn [205-207], and αSMA 

[208, 209], as well as inducing stress fiber and focal adhesion formation and subsequent 

contraction [208, 210-213]. TGFβ promotes cardiac fibroblast proliferation [214, 215], 

but abrogates proliferation of converted myofibroblasts [121]. TGFβ also contributes to 

fibrosis through the reduction of MMPs and induction of TIMPs [216-222]. TGFβ1 has 

also been shown to drive epithelial-to-mesenchymal transition (EMT) both in vitro and 

during embryonic development of the heart [160, 223], a process that may contribute to 

fibrogenesis in the heart and other organs [224]. 

1.5.1: Canonical TGFβ Signaling 

The canonical TGFβ signaling pathway is initiated by binding of TGFβ1 ligand to a 

homodimer of type II threonine/serine kinase receptors (TβR-II) at the cell surface [225], 

recruiting the type I TGFβ receptor (TβR-I) homodimer to form a heterotetrameric 

receptor complex [226]. TβR-II activates TβR-I through phosphorylation of a glycine-

serine (GS)-rich region [227], which provides a docking site for receptor-regulated Smads 

(R-Smads) 2 and 3, named for their homology to sma and mad proteins in Caenorhabditis 

elegans and Drosophila melanogaster, respectively [159, 228]. Other members of the 

TGFβ superfamily activate R-Smads 1, 5, and 8. Phosphorylation and activation of R-

Smad2 and/or R-Smad3 by TβR-I induces the formation of a complex between Smad2/3 

and the common Smad called Co-Smad4 [229-231]. The resultant Smad complex 

translocates to the nucleus where it acts as a transcriptional regulator of a variety of target 

genes through binding to a conserved CAGAC DNA sequence termed the Smad-binding 
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element (SBE) [232]. The inhibitory Smad7 interferes with binding of R-Smads to TβR-I, 

preventing downstream Smad signaling to target genes such as collagens [233, 234] 

(Figure 2). Different complexes bind DNA with varying affinity and Smads alone are 

weak transcriptional activators, which is reflected in the ubiquitous nature of their 

recognition sequence in various gene promoters [136, 235]. Thus, regulation by Smads 

involves association with other transcription factors and coactivators that may result in 

either enhanced or repressed target gene expression. Such factors identified in fibroblasts 

include Scleraxis (Scx) [136] (Figure 2), the cofactor p300 [236-240], the nuclear binding 

protein Fast-1 [241], p300/cyclic adenosine monophosphate (cAMP) response element-

binding protein (CREB)-binding protein (CBP)-associated factor (P/CAF) [242], and 

specificity protein-1 (Sp1) [243-245], as well as the co-repressors c-Ski [246, 247], Ski-

related novel protein-N (SnoN) [248, 249], Krüppel-like factor-15 (KLF15) [250], TGFβ-

induced factor (TGIF) [251], and AP-1 [252, 253].  Signaling through the canonical Smad 

pathway activates a number of cardiac ECM genes, including type I collagen and CTGF 

[136, 231, 243, 254]. Disruption of Smad3 signaling inhibits phenoconversion of 

fibroblasts to myofibroblasts post-MI [61].  In hypertension-induced heart failure, Smad2 

phosphorylation was increased [255]. Additionally, TGFβ1 exerts protective effects in 

neonatal and adult cardiac fibroblasts exposed to ischemia/reperfusion, preventing 

apoptosis through both canonical Smad-mediated and non-canonical extracellular signal-

regulated kinase-1/2 (ERK1/2) and Akt/protein kinase-B (PKB) pathways [7, 256]. 

1.5.2: Non-Canonical TGFβ Signaling  

TGFβ may also contribute to the development of fibrosis through non-canonical signaling 

pathways. Studies of the αSMA promoter in rat lung fibroblasts have shown that 
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transactivation occurs through a non-Smad-binding TGFβ-responsive element (TRE). 

Myofibroblasts derived from dermal wounds required an intact MCAT element for αSMA 

promoter activation [257]. In smooth muscle cells, TGFβ-induced activation of the αSMA 

promoter required two conserved CC(A/T)6GG (CArG) boxes and a TGFβ control 

element (TCE) [258]. Thus it appears TGFβ may be capable of stimulating the 

myofibroblast phenotype and fibrosis through both Smad-dependent and -independent 

signaling pathways. Binding of TGFβ to its receptor has been shown to induce non-

canonical pathways including MAPK [259], Ras/mitogen-activated protein kinase kinase 

(MEK)/ERK and associated TGFβ-activated kinase-1 (TAK1) [7, 251, 260, 261], c-Jun 

amino (N)-terminal kinase (JNK) [262], phosphatidylinositol 3-kinase (PI3K)/Akt, and 

Rho guanosine triphosphate (GTP)-ase signaling pathways [7, 263] (Figure 2). In addition 

to regulation of fibrotic genes such as collagens, non-canonical TGFβ pathways may also 

promote fibrosis through activation of the fibrillar collagen cross-linking enzyme lysyl 

oxidase (Lox), as inhibition of PI3K, p38-MAPK, ERK1/2, or JNK prevents increased 

Lox protein levels in cardiac fibroblasts treated with TGFβ1 [262].  

1.5.2.1: Phosphatidylinositol 3-kinase/Akt Signaling Pathway 

TGFβ1 treatment can induce phosphorylation of Akt in non-cardiac fibroblasts, which is 

prevented by the use of a dominant negative RhoA mutant and increased with 

constitutively active RhoA, suggesting that Akt activation occurs downstream of non-

canonical TGFβ-induced Rho/ROCK signaling [263, 264]. Similarly, in human 

glomerular mesangial cells and scleroderma fibroblasts, TGFβ1 treatment rapidly 

stimulates PI3K and Akt activation to induce COL1A2 gene expression through increased 

Smad3 transcriptional activity, indicating cross talk between the PI3K/Akt and Smad 
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signaling pathways downstream of TGFβ [265, 266]. There is also evidence that 

PI3K/Akt-mediated cell signaling is involved in EMT and cell migration [263, 267-270] 

(Figure 2). However, PI3K/Akt activation appears to inhibit expression of Collagen Iα2 

and Collagen IIIα1 genes in human skin fibroblasts [271], thus it remains unclear how 

this signaling pathway contributes in general to fibroblast phenotype and function, let 

alone that of cardiac fibroblasts. 

1.5.2.2: Mitogen-Activated Protein Kinase/Extracellular-Signal-Regulated Kinase 

Signaling Pathway 

In addition to phosphorylation of TGFβ receptors at serine and threonine residues, TβR-II 

is also autophosphorylated in response to TGFβ1 binding in cultured NIH-3T3 fibroblasts 

[272]]. This results in recruitment of Src homology-2 (SH2) domain-containing proteins 

such as Src homology domain 2-containing protein (Shc) [273], which then associates 

with growth factor receptor-binding protein-2 (Grb2) and Son of sevenless (Sos) [274], 

directly inducing activation of the Ras, Raf, MEK1/2, and ERK1/2 MAP kinases [274, 

275] (Figure 2).  In cardiac fibroblasts, TGFβ1 treatment induces type I collagen 

expression through MEK/ERK activation, which is inhibited by cAMP-elevating agents 

such as forskolin and isoproterenol [260]. There is also evidence that the 

Ras/Raf/MEK/ERK pathway mediates canonical Smad-mediated TGFβ signaling in 

various cell types, including cardiac fibroblasts [276], however it remains controversial as 

to whether signaling through ERK in response to TGFβ1 positively or negatively 

regulates Smad signaling [277]. In non-cardiac fibroblasts, ERK activation was required 

for expression of type I collagen [260], though this has yet to be examined in cardiac 
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fibroblasts. In a fibrosarcoma-derived cell line, JNK signaling, independently of Smad4, 

was required for induction of fibronectin expression by TGFβ [278]. 

1.5.2.3: Rho Signaling Pathway  

Rho signaling regulates a number of cellular processes, one of the most notable being 

stimulation of actomyosin contractility. Additionally, Rho signaling has been shown to be 

involved in fibrosis of various tissues [279, 280], including the myocardium [281, 282]. 

Rho signaling can also act downstream of TGFβ signaling [283]. A number of studies in 

various cell types have shown that Rho GTPases such as cell division cycle-42 (Cdc42) 

and RhoA are required for TGFβ-induced reorganization of the actin cytoskeleton, 

influencing processes such as stress fiber and lamellopodia formation [284], cell 

contraction [285], and EMT [286]. There is also evidence of Rho/TGFβ crosstalk during 

transition of lung and kidney fibroblasts to the myofibroblast phenotype [287, 288]. This 

likely occurs through induction of the transcription factor MRTF-A in response to ROCK 

activation. Signaling through ROCK induces organization of cytoskeletal actin into 

filamentous (F)-actin [289], releasing globular (G)-actin-bound MRTF-A [290], which 

forms a complex with serum response factor (SRF) [290, 291]. This MRTF-A/SRF 

complex translocates to the nucleus where it activates transcription of pro-fibrotic genes 

such as αSMA and Tenascin-C [139, 292-294], as well as inducing actin cytoskeleton 

reorganization and myofibroblast phenoconversion (Figure 2). In cardiac fibroblasts, 

treatment with TGFβ induces MRTF-A nuclear translocation in a ROCK-dependent 

manner. Additionally, knockdown of MRTF-A expression in mice reduces fibrosis and 

scar formation following MI or treatment with AngII, exhibiting decreased expression of 
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Collagen Iα2 and αSMA [295]. Thus, Rho signaling appears to be an important non-

canonical signaling pathway in TGFβ-induced transition to the cardiac myofibroblast. 
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Figure 2: Transforming growth factor-β signaling in cardiac fibroblasts and 

myofibroblasts. TGFβ binding induces TGFβ receptor dimerization and initiation of 

various signaling cascades. Canonical TGFβ signaling involves recruitment and activation 

of R-Smad2/3, which is repressed by inhibitory Smads (e.g. Smad7). R-Smads form 

complexes with co-Smad4 or other proteins that may enhance (e.g. SCX) or inhibit (e.g. 

SKI) transcriptional activation of target genes. Non-canonical TGFβ signaling may occur 

through the mitogen-activated protein kinase pathway, involving recruitment of adaptor 

proteins Src homology domain 2-containing protein (Shc), growth factor receptor-binding 

protein-2 (Grb2), and Son of sevenless (Sos). This complex initiates downstream 

signaling through Ras, Raf, mitogen-activated protein kinase kinase-1/2 (MEK1/2) and 
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extracellular signal-regulated kinase-1/2 (ERK1/2) to induce transcription of type I 

collagen. Non-canonical signaling also occurs through the phosphatidylinositol-3 kinase 

(PI3K)/Akt pathway, activating Smad3 transcription as well as genes involved in cell 

migration and EMT. Additionally, the RhoA/Rho-associated kinase (ROCK) pathway 

may be activated through TGFβ receptor activation, resulting in the formation of a 

myocardin-related transcription factor-A (MRTF-A)/serum response factor (SRF) 

complex which activates transcription of target genes involved in phenoconversion, such 

as tenascin-C and α-smooth muscle actin (αSMA). Figure adapted by author from Roche 

et al. (2015), Comprehensive Physiology, In Press. 
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1.6: Cell-Matrix Adhesions 

Cardiac fibroblasts and myofibroblasts play an active role in remodeling their 

surroundings, and in turn, their structure and function are dependent on the status of their 

environment and interactions with the extracellular substrate or matrix. The ability of 

fibroblasts to sense and respond to changes in ECM structure and composition is afforded 

through cell-matrix adhesions. In fact, unlike non-adhesive cell types such as leukocytes, 

fibroblasts are so reliant on interaction with their surroundings that cells in suspension or 

on non-adhesive substrates are incapable of growth and proliferation, even in the presence 

of growth factors or serum [296]. The adhesions linking cardiac fibroblasts to the ECM 

are also critical to their ability to contract and migrate - important processes that facilitate 

cardiac remodeling and wound healing [297]. Cell-matrix adhesions in fibroblasts rely on 

transmembrane receptor proteins called integrins, which link various ECM components to 

the actin cytoskeleton. Though integrins are the primary component of both adhesion 

types, the specific β- and α-isoforms utilized may differ not only between adhesion types, 

but also depending on cell context cues such as location, matrix composition, and the 

presence of other cells. Inside the fibroblast, various cytoplasmic proteins are recruited to 

sites of cell-matrix adhesions to form adhesion complexes that link integrins to the actin 

cytoskeleton. These include adaptor proteins such as zyxin, talin, vinculin, paxillin, and 

α-actinin, scaffolding proteins like p130Cas, and associated kinases that interact directly 

with β-integrins, such as FAK and Src family kinases (SFKs) [298, 299]. It should be 

noted that although cell-matrix adhesions are critical to fibroblast survival and function, 

their turnover is necessary for fibroblast migration and is regulated by a complex 

interplay of signaling pathways, many of which appear to involve FAK.  
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1.6.1: Formation of Focal Complexes 

Initial formation of cell-matrix adhesion involves the development of weak, nascent 

adhesions called focal complexes or contacts, which form in response to interaction of 

fibroblasts with their substrate. Focal complexes are highly dynamic structures with a 

diameter of less than 1 µm, which employ αvβ3 as their primary integrin component [210, 

298]. Generally, focal complex formation appears to occur independently of mechanical 

tension [300, 301], though studies in NIH-3T3 have found myosin II-generated 

contractility to be indispensable for focal complex formation on fibronectin-coated 

substrates [302].  

1.6.1.1: Signaling Pathways in Focal Complex Formation 

Focal complex formation relies on RhoA signaling, which is also associated with the 

formation and maturation of stress fibers in myofibroblasts [302]. Several studies have 

demonstrated the necessity of RhoA signaling in focal complex development and 

maturation through induction of myosin II-mediated actin cytoskeleton contraction 

induced by the downstream kinase ROCK [301-303]. Interestingly, the initial stages of 

adhesion formation involve RhoA down-regulation. This is mediated at least in part by 

Src-dependent, integrin-mediated phosphorylation and activation of the RhoA inhibitor 

p190RhoGAP [304, 305]. The RhoA antagonist Rac is another GTPase that can inhibit 

RhoA in early focal complex formation through direct activation of p190RhoGAP [306], 

or indirectly through increased production of ROS [307]. FAK may also be involved in 

this transient RhoA down-regulation, since it forms a complex with p190RhoGAP and 

p120RasGAP during focal complex formation in fibroblasts [109]. This latter model is 

further supported by the findings that FAK-null cells show reduced activation and 



32 

 

localization of Rac to focal complexes, and that FAK forms a complex with Src, 

p130Cas, and dedicator of cytokinesis-180 (Dock180), which is associated with elevated 

Rac and JNK expression in adhering fibroblasts [308, 309]. Activation and 

autophosphorylation of FAK at tyrosine 397 (Y397) induces formation of a binding site 

that allows further FAK phosphorylation and full activation by Src. FAK and Src both 

mediate the phosphorylation of additional downstream adhesion proteins such as p130Cas 

and paxillin, facilitating recruitment of adaptor proteins and formation of signaling 

complexes at sites of focal adhesions [310, 311]. 

1.6.2: Maturation of Focal Adhesions 

Following cell spreading and increased attachment, focal complexes can mature into focal 

adhesions that are characteristic of myofibroblasts in vitro [312] (Table 3). In comparison 

to their smaller, nascent counterparts, new focal adhesions are stronger and larger, with a 

diameter of several micrometers, expanding up to 30 µm in fully converted 

myofibroblasts – these larger focal adhesions are considered super-mature focal 

adhesions, distinguished by increased expression of Tensin [210, 298]. Various factors 

contribute to regulation of focal adhesion strength and size, including extracellular forces 

such as substrate stiffness, integrin activation and clustering, expression of other 

transmembrane receptors such as discoidin domain receptor 1 (DDR1) [313, 314], as well 

as the localization and interaction of cytoplasmic effector proteins [315]. Mechanical 

tension has been shown to be one of the more important factors in the maturation of focal 

adhesions [316, 317], which may originate from inside the cell through actomyosin 

contractility [318], or externally through the application of extracellular forces [301]. In 

fact, in myofibroblasts, contractile activity produced by αSMA-containing stress fibers is 
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required for the maturation of super-mature focal adhesions [300]. Additional stimuli 

associated with transition to the myofibroblast phenotype also induce focal adhesion 

maturation, including TGFβ and ED-A Fn [210, 319]. 

1.6.2.1: Signaling Pathways in Focal Adhesion Maturation 

Following transient down-regulation of RhoA during initial adhesion formation, Rac is 

gradually inhibited, accompanied by an increase in RhoA activation and maturation of 

focal complexes into focal adhesions [320]. RhoA activation during focal complex 

maturation permits the establishment of cytoskeletal tension and recruitment of adaptor 

proteins such as talin, paxillin, vinculin, and α-actinin that augment associations between 

the fibroblast cell membrane and actin cytoskeleton [321, 322]. FAK also plays a role in 

focal adhesion maturation that relies on actomyosin contractility – treatment of MEFs 

with blebbistatin, an inhibitor of contraction, reduces FAK phosphorylation at Y397 and 

impairs maturation of focal adhesions [323]. A key step in the establishment of these 

mechanically stable cell-matrix adhesions is the clustering of various integrins, for 

example, the integrin αvβ3 (found in focal complexes), and its association with the 

fibronectin receptor integrin α5β1 [298]. Clustering of integrins is correlated with the 

recruitment and activation (via Y397 autophosphorylation) of FAK to the cell membrane. 

Subsequently, adaptor proteins are recruited to adhesion sites, allowing association of 

focal adhesions with stress fibers that form during phenoconversion to the myofibroblast 

[324].  

1.7: Mechanotransduction in Fibroblasts and Myofibroblasts 

The ability of cells to respond to mechanical stimuli and translate such forces into 

biochemical signals is referred to as “mechanotransduction” [325]. Although the heart 
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beats over 100,000 times per day, the cardiac ECM acts to shield cardiac fibroblasts from 

constantly changing mechanical conditions, permitting fibroblasts to maintain equilibrium 

between internal and external forces. However, when the matrix is disrupted, cardiac 

fibroblasts become exposed to increased mechanical stress, leading to activation of force 

transduction pathways through mechanosensitive receptors and adaptor proteins that can 

induce both structural and functional changes. In addition to external forces, internally-

produced tension (through actomyosin contractility) will also affect the amount of force 

experienced by the cell. Different experimental models of stress have been utilized to 

study mechanotransduction by fibroblasts and other cell types, such as uni-, bi-, or multi-

axial extension of cells plated on elastic membranes to around 10-15% of their original 

length, either through static or cyclic stretch [326], the latter of which is discussed later in 

this section. Using light microscopy, Haston et al. observed that fibroblasts exposed to 

uniaxial static stretch reoriented in the direction of force application [327]. Single cell and 

single molecule force application approaches have also been developed that include 

adhesive pipette tips [301, 328], coated magnetic beads [329], and optical tweezers [330, 

331].  

The observation that cardiac fibroblasts are capable of phenoconversion on rigid 

substrates, even in the absence of additional stimuli, indicates a mechanism must exist 

whereby cells are able to identify physical changes in their environment and respond by 

eliciting intracellular signals that alter gene expression. In turn, mechanosensitive factors 

and their downstream messengers are able to alter cell morphology, contractility, 

migration, and phenotype [332, 333]. Various mechanisms have been proposed to 

regulate mechanotransduction in fibroblasts, including force-activated ion channels such 
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as transient receptor potential cation channels (TRPCs) that facilitate influx of ions like 

calcium and subsequent myofibroblast conversion [149, 334-337]. Experiments in 

ventricular cardiac fibroblasts provide evidence that TRPCs integrate mechanical and 

biochemical signals during phenoconversion. Inhibition of TRPV4 prevents TGFβ-

induced conversion of cardiac fibroblasts to myofibroblasts. This result may be due to 

TRPV4-mediated β1 integrin activation, supported by findings that these two 

transmembrane receptors co-localize at focal adhesions, and that TRPV4 is necessary for 

integrin activation in endothelial cells [338, 339]. Interestingly, atrial fibroblast 

phenotype conversion appears to rely on another TRPC, TRPM7, and not TRPV4, which 

may be due to differences in mechanical environments between the chambers [335]. 

Another potential mechanotransduction mechanism in fibroblasts is force-induced 

activation of integrins and subsequent activation of downstream kinases, small GTPases 

such as RhoA and Rac, and additional signaling pathways such as the ERK pathway 

[340]. Additionally, direct force transmission may through transcriptional regulators of 

the Hippo pathway (Yap and Taz), such as occurs in epithelial cells cultured on rigid 

substrates. Direct force transmission can also occur through the cytoskeleton, altering the 

shape of the nucleus and chromatin organization. The latter mechanism occurs through 

the linker of nucleoskeleton and cytoskeleton complex (LINC), which can transmit forces 

to the nuclear matrix and lamin network of the nuclear membrane, causing changes in 

chromatin folding and protein-DNA associations [341]. However, these direct force 

transmission mechanisms have yet to be examined in cardiac fibroblasts. 

Focal adhesions are the crux of mechanotransduction in cardiac fibroblasts, and because 

integrins are the link between ECM and cytoskeleton at these sites, they appear to do the 
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majority of the heavy lifting when it comes to force sensing [342]. The response to 

mechanical force is dependent upon the type of integrin activated, which is in turn 

determined by the substrate. For example, integrin αvβ3 was shown to undergo 

conformational activation in response to mechanical strain in NIH-3T3 cells plated on 

fibronectin or fibrinogen, accompanied by increased PI3K/Akt phosphorylation and 

activation [343]. Force-dependent activation of JNK relies on upstream activation of 

integrin αvβ3 [343]. However, integrins are not the only cell membrane component that 

contribute to mechanotransduction in fibroblasts. N-cadherins, the primary component of 

cell-cell interactions in fibroblasts, also possess mechanosensitive capabilities in 

fibroblasts through interaction with α-/β-catenin complexes that bind various adaptor 

proteins such as vinculin, α-actinin, and F-actin itself [344, 345]. Additionally, loss of the 

mechanosensitive proteoglycan syndecan-4 (Syn4) prevented cardiac fibroblast to 

myofibroblast transition both in vitro and in vivo, likely through reduced nuclear factor 

and activator of transcription-4c (NFAT4c) transcriptional activity [346].  

1.7.1: Rho Signaling Pathway in Mechanotransduction 

In addition to its activity downstream of TGFβ1 signaling, the Rho signaling pathway has 

been strongly implicated in mechanotransduction in fibroblasts. Direct force application 

to integrins is capable of inducing RhoA activation and downstream signaling [139, 347]. 

Although RhoA activity is initially down-regulated in response to mechanical force, such 

as culture on stiff substrates [305], sustained adhesion induces activation of several Rho-

activating guanine exchange factors (GEFs) [348]. In NIH-3T3 fibroblasts, RhoA 

signaling and resultant formation of focal adhesions and stress fibers is activated by 

p115RhoGEF and leukemia-associated Rho guanine nucleotide exchange factor (LARG), 
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in response to plating on fibronectin-coated plates [349]. Force-induced integrin 

activation in fibroblasts activates LARG and GEF-H1, another GEF that activates Rho 

signaling in response to force [347]. RhoA activity also plays a critical role in the 

assembly and contraction of fibronectin fibrils [350], and thus may be involved in 

producing this type of provisional matrix in response to increased mechanical stress in 

fibroblasts during post-MI wound healing. 

FAK is also implicated in mechanically induced Rho signaling. In addition to RhoA, 

FAK is involved in adhesion of fibroblasts to fibronectin matrix as well as being a crucial 

component in fibronectin matrix contraction [350, 351]. In MEFs plated on fibronectin, 

FAK forms a complex with p190RhoGEF, upstream of Rho activation [352]. FAK 

activity activates the GEFs PDZ-RhoGEF, GEF-H1, and LARG [353]. Inhibition of FAK 

prevents force-induced GEF-H1 induction in fibroblasts, but not that of LARG [347]. 

Numerous studies have demonstrated that integrin activation and adhesion to fibronectin 

in fibroblasts induces FAK activation, primarily through phosphorylation at tyrosine 397 

(Y397) [354-357]. FAK is a key player in integrin-mediated mechanosensing by cardiac 

fibroblasts, modulating focal adhesion turnover, migration, and force-induced αSMA gene 

activation via the transcription factor MRTF-A [333, 358]. Myosin-II-induced 

contractility increases FAK phosphorylation and subsequent recruitment of focal 

adhesion proteins like paxillin and vinculin [141, 359]. The mechanosensitive scaffolding 

protein p130Cas can be activated in response to mechanical stress either through kinase 

(FAK and SFK)-mediated phosphorylation or by direct conformational changes that 

reveal active domains [360, 361]. p130Cas plays an important role in cell spreading, 

integrin activation, migration, and focal complex formation [323, 362-364]. Downstream 
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of FAK, as well as the GTPase Ras, ERK signaling is also implicated in 

mechanotransduction through Rho signaling, via induction of the Rho-activating factor 

GEF-H1. MAPK signaling has also been shown to act in fibroblast mechanotransduction 

through integrins [347, 365, 366], independently of FAK activation [355], indicating the 

presence of multiple signaling pathways in response to integrin-mediated force sensing in 

fibroblasts. 

1.7.2: Response to Stretch 

The myocardial ECM constantly exposes cardiac fibroblasts to mechanical stress in vivo, 

though in the healthy heart, they are ‘stress-shielded’ from the majority of external forces. 

In response to increased mechanical strain, such as occurs with degradation of the ECM 

post-MI, cardiac fibroblasts are exposed to increased extracellular forces [367]. Cyclic 

stretch experiments are models that attempt to recapitulate the force exposure of 

fibroblasts in a cyclical manner in vitro. However, though there are a number of studies 

examining the effect of cyclic stretch on cardiac fibroblasts, the regimes vary in substrate 

used (fibronectin, vitronectin, collagen, etc.), elongation (percent stretch), dimension 

(uni- versus bi-axial strain), frequency, and duration, all of which potentially affect the 

response to cyclic stretch. Thus, the effect of cyclic stretch on cardiac fibroblast biology 

in vitro remains relatively unexplored, though most studies implicate cyclic stretch as 

being an inducer of collagen synthesis and increased contractility in cardiac fibroblasts, 

suggesting a transition to the myofibroblast phenotype. 

In response to low degrees of cyclic stretch (3-10%), primary rat cardiac fibroblasts show 

increased synthesis and secretion of fibrillar collagens type I and III [368-370], αSMA 

[371], TGFβ [372], MMP-2, TIMP-2 [373], fibronectin [368], and insulin-like growth 
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factor-1 (IGF1) [374], as well as p42/44-MAPK activation [375]. The transcription factor 

NFAT4c, which has been shown to promote the myofibroblast phenotype, was also 

increased in cardiac fibroblasts exposed to cyclic stretch, in a Syn4- and calcineurin-

dependent manner [376]. Cardiac fibroblasts plated on a variety of substrates showed 

decreased proliferation and increased type I collagen mRNA levels in response to 5% 

cyclic stretch for 12 hours [375]. Although these responses have not been performed at 

higher levels of strain (e.g. 15-20%), some of them, like fibroblast orientation, may be 

strain intensity-independent [377].  

Cyclic stretch of non-cardiac fibroblasts also induces increased activation of cellular 

pathways implicated in cardiac myofibroblast phenoconversion, such as members of the 

RhoA, MAPK, ERK1/2, and Akt signaling pathways [378, 379]. The RhoA signaling 

pathway in particular is significantly affected by cyclic stretch. Within 5 minutes of 10% 

equi-biaxial cyclic strain (0.3 Hz), active RhoA was increased in MEFs. In MEFs and 

primary embryonic chick skin fibroblasts, 10% cyclic stretch induces increased formation 

of stress fibers and nuclear translocation of the MRTF-A homolog myelin and 

lymphocyte protein (MAL), and increased expression of Tenascin-C [289]. Fibronectin 

appears to play a critical role in cyclic stretch-induced Rho signaling, as fibronectin-

depleted MEFs showed a significant decrease in RhoA activation, stress fiber formation, 

and MAL translocation, responses which were rescued by plating on fibronectin-coated 

membranes [380]. Additionally, integrin-linked kinase (ILK) was necessary for activation 

of RhoA and subsequent focal adhesion and stress fiber formation, as well as nuclear 

translocation of MAL in response to 10% cyclic strain of primary embryonic chick skin 

fibroblasts [294]. The mechanosensitive scaffolding protein p130Cas, implicated in Rho 
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signaling, is also affected by cyclic stretch in fibroblasts, such that its response involves 

binding to the focal adhesion protein zyxin, which is activated by ERK in response to 

stretch. In response to cyclic strain, zyxin relocalizes to stress fibers and is necessary for 

recruitment of α-actinin to stress fibers in mechanically stretched fibroblasts [381, 382].  

1.7.2.1: Focal Adhesion Kinase in Response to Cyclic Stretch 

Increased FAK autophosphorylation (Y397) is also induced in response to cyclic strain in 

non-cardiac fibroblasts, though this has only been demonstrated with very high levels of 

elongation (120% stretch) and short duration (60 minutes). Uniaxial cyclic stretch (120%, 

1 Hz) of 3Y1 fibroblasts induced reorientation perpendicular to the stretch axis and 

increased expression of paxillin and p130Cas, increased FAK tyrosine phosphorylation, 

as well as increased kinase activity of Src within 30 minutes [379, 383, 384]. 

Additionally, mesenchymal stem cells exposed to 10% stretch (1 Hz) for 30 minutes also 

showed increased tyrosine phosphorylation (Y397) of FAK [385]. However, after 60 

minutes, levels of FAK phosphorylation begin to decline. In airway epithelial cells, 20% 

cyclic stretch (0.5 Hz) induced a transient increase in FAK phosphorylation (Y397) that 

decreased to below levels in unstretched cells after 6 hours [386]. Additionally, 

experiments in FAK-null fibroblasts exposed to 10% cyclic stretch indicate that FAK is 

not necessary for stretch-induced stress fiber formation, nor for ERK activation. Rather, it 

appears that these processes are dependent upon stretch frequency, of which 1 Hz appears 

to be the most potent inducer of stress fibers and ERK induction [387]. Nonetheless, FAK 

appears to play an important role in fibroblasts exposed to cyclic stretch. In MEFs 

exposed to 1 hour of 20% uniaxial cyclic stretch (0.25 Hz), loss of FAK resulted in 

drastically reduced cell viability [388]. These data suggest that FAK phosphorylation at 
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Y397 may be a transient event that occurs early during the fibroblast response to cyclic 

stretch, in order to redistribute focal adhesion complexes. 

1.8: Myofibroblast Contraction 

The ability of myofibroblasts in the heart and other tissues to contract and exert 

mechanical forces on their surrounding matrices is dependent upon expression of αSMA 

and its incorporation into stress fibers. It is well known that the mechanical forces 

produced by myofibroblasts are essential for proper wound healing and tissue remodeling, 

partly through regulation of cytokine activation and ECM synthesis [2].  

1.8.1: Stress Fibers 

In non-muscle cells, stress fibers are the primary contractile apparatus, and are composed 

of large actin bundles anchored at one or both ends by focal adhesions, from which stress 

fiber formation begins [389, 390]. Stress fibers are cross-linked through an alternating 

distribution of α-actinin and myosin II, the latter of which is responsible for stress fiber 

contractility and the development of isometric tension in fibroblasts from various tissues 

[125, 391-394]. The appearance of stress fibers and incorporation of αSMA protein is 

characteristic of the transition of cardiac fibroblasts to myofibroblasts, and their 

development is highly dependent upon cellular forces [395]. In fibroblast-populated 

collagen gels attached to a tissue culture dish, release of gels and thus cellular tension 

induces rapid gel contraction and compaction of stress fibers, followed by spontaneous 

stress fiber disassembly [396-398]. Stress fiber formation in human dermal fibroblasts 

requires expression of α4 integrin, and is further promoted by ED-A Fn [399]. Although 

stress fiber formation is associated with increased fibronectin expression and the 
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development of fibronectin fibrils, stress fiber formation and subsequent cell contraction 

can occur independently of fibronectin and fibronectin fibril assembly [399, 400].  

Stress fiber formation and turnover is modulated by two pathways, Rho signaling and 

myosin light chain kinase (MLCK) [401]. RhoA, which has been shown to bind directly 

to stress fibers, primarily regulates central stress fibers [358, 402, 403], while MLCK 

appears to modulate stress fibers near the periphery of the cell [125, 394, 404, 405]. In 

response to culture on rigid substrates, RhoA is activated, in turn activating downstream 

effectors ROCK and ROCK2, of which Rho and ROCK2 are critical in the formation, 

maintenance, and contractility of centrally located stress fibers [403, 404, 406-408].  

1.8.2: Mechanisms of Myofibroblast Contraction 

Myofibroblasts demonstrate a greater degree of contractility than fibroblasts [128, 409, 

410]. Contractility increases with increased mechanical tension, and is correlated with 

increased αSMA expression [128]. Some of the factors that modulate conversion to the 

myofibroblast phenotype also induce cardiac fibroblast contraction, including TGFβ1 

[156, 211, 212, 411], PDGF [123, 411, 412], IGF1 [413], AngII [414], Similarly, anti-

fibrotic factors that inhibit the myofibroblast phenotype prevent contraction, such as c-Ski 

[156].  

In cardiac fibroblasts/myofibroblasts, contraction generally occurs via two signaling 

mechanisms: short, transient contractions are generated through Ca2+-dependent 

calmodulin/MLCK signaling, and longer, sustained contractions generated via Ca2+-

independent RhoA activation of ROCK [407, 415, 416]. Both pathways converge in the 

phosphorylation of stress fiber-bound myosin light chain (MLC), which allows 

contraction. In Ca2+-dependent contraction, influx of cellular Ca2+ can occur in response 
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to stretch-activated channels (such as TRPCs). Intracellular Ca2+ ions bind and activate 

calmodulin, in turn activating MLCK, which phosphorylates MLC, inducing contraction. 

Contraction of stress fibers is disrupted by dephosphorylation of MLC by myosin 

phosphatase [417-419]. In Ca2+-independent contraction, activation of RhoA through 

mechanical stimulation and activation of integrins induces activation of downstream 

ROCK, which can induce not only phosphorylation of MLC, but also inhibit MLC 

dephosphorylation by myosin phosphatase. Thus, in the latter mechanism, inhibition of 

myosin phosphatase allows MLC to remain phosphorylated and permits sustained 

contraction of stress fibers [407, 416] (Figure 3). 
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Figure 3: Contraction in cardiac myofibroblasts. In calcium-dependent contraction, 

stretch-activated membrane proteins such as transient receptor potential channels 

(TRPCs) transport calcium into the cytoplasm, where it forms a complex with 

calmodulin. This complex activates myosin light chain kinase (MLCK), resulting in MLC 

phosphorylation and contraction. Stress fiber contraction is disrupted by myosin 

phosphatase (MP) dephosphorylation of MLC, resulting in rapid, transient calcium-

dependent contraction. Conversely, calcium-independent contraction results from force-

activated integrin signaling through the RhoA/Rho-associated kinase (ROCK) pathway, 

which not only activates MLC phosphorylation, but also inhibits dephosphorylation by 

MP, thus resulting in slower and more sustained calcium-independent contraction. Figure 

adapted by author from Roche et al. (2015), Comprehensive Physiology, In Press. 
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1.9: Scleraxis 

1.9.1: Basic Helix-Loop-Helix Proteins 

SCX is a 201 amino acid protein belonging to the basic helix-loop-helix (bHLH) family 

of transcription factors, which also includes proteins involved in myogenesis, 

cardiogenesis, and neurogenesis [420]. The highly conserved bHLH motif was first 

identified in 1989 in the immunoglobin enhancer-binding murine transcription factors 

E12 and E47 [421]. The bHLH region is homologous to regions in proteins of the myc 

family, MyoD, and the Drosophila gene products of daughterless, achaete-schute, and 

twist. The bHLH motif, made up of approximately 60 amino acid residues, consists of an 

N-terminal basic motif, and a carboxyl (C)-terminal HLH region consisting of an α-helix, 

an unstructured loop region, and another α-helix. The amphipathic HLH region of these 

proteins mediates the formation of hetero- and homodimers between various bHLH 

proteins [422]. Dimerization of bHLH proteins induces combination of the basic domains 

to form a bipartite DNA-binding domain, which recognizes the DNA consensus sequence 

CANNTG, also known as an E-box [421, 422]. bHLH proteins were originally divided 

into 6 classes (I-VI), based on their tissue distribution, dimerization potential, and DNA 

binding specificity [423]. In the late 1990s, a new classification system of four groups (A-

D) was introduced that considers evolutionary relationships and conservation of other 

motifs, as well as E-box binding and the presence or absence of additional domains [424]. 

More recently, 2 additional groups (E and F) were added as a result of the advent of high 

throughput genome sequencing and phylogenetic mapping [425]. Class A bHLH 

transcription factors, to which Scleraxis belongs, are widely expressed, generally form 

heterodimers with class B bHLH proteins, and preferentially bind CAGCTG and 
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CACCTG sequences [425-427]. Scleraxis has been shown to bind E12, E47, and more 

recently, Smad3, of the canonical TGFβ signaling pathway [136, 428]. In vitro assays 

have shown that Scx and its binding partner E47 form a complex with p300 and Sry-type 

HMG box 9 (Sox9, a major transcription factor regulating chondrogenesis) to 

transcriptionally activate the Collagen IIα1 gene promoter via E-box binding [429]. 

1.9.2: Role of Scleraxis in Development 

Olson et al. used in situ hybridization experiments to examine Scleraxis expression 

during murine development [426]. Low basal levels of Scx throughout the embryo were 

observed up to 9.5 days post-coitum (d.p.c.), after which increased transcripts were 

detected in the lateral sclerotome of somites that gives rise to collagen-rich dense 

connective tissues such as tendons, ligaments, and cartilage [430, 431]. Scx has since 

been identified as a specific marker for tendons and tenocytes [432-434]. In tenocytes, the 

cells responsible for synthesis and organization of the tendon ECM, Scx and NFATc 

regulate tenocyte differentiation and production of type I (α1) collagen, the most 

abundant tendon protein [435]. Expression of Scx in tenocytes is potently induced by 

treatment with TGFβ, and experiments using TGFβ and Scx knockout mice that show 

significant impairment in the formation of load-bearing tendons underscores the 

importance of these proteins in tendon development [436, 437]. Examination of various 

collagen-rich musculoskeletal tissues demonstrates that Scx and Collagen Ia1 expression 

are highest in the load-bearing collagen bundles of tendon, as compared to other tendon 

regions, muscles, cartilage, and bone [438]. Additionally, Scx has been implicated in 

development of the auditory system [439] and Sertoli cells [440]. Work that is more 

recent has provided evidence for a role of Scx in cardiac development. The morphology 
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of cardiac valves is significantly altered in Scx-null mice, with increased valvular 

thickness, ECM disorganization, alterations in collagen content, and a generalized 

decrease in proteoglycan content [441, 442].  

1.9.3: Scleraxis in the Heart 

Post-MI remodeling is the precursor for the development of the infarct scar and 

subsequent cardiac fibrosis. Thus, the levels of proteins that regulate scar development 

rise early after MI. The more than 3-fold increase in Scx levels in the infarct scar of rat 

hearts 4 weeks post-MI, concomitant with significant increases in levels of type I and III 

collagens, indicates a role for Scx in the wound healing response [136]. SCX is increased 

in human myxomatous mitral valves, a condition associated with increased matrix 

production, and its over-expression in interstitial valve cells induces increased 

proteoglycan production and the associated myxomatous phenotype [441]. Remodeling 

heart valves of Scx-null mice display decreased proteoglycan content, and SCX over-

expression in embryonic avian valve precursor cells induces increased levels of 

chondroitin sulfate proteoglycans (CSPGs), which are known to associate with ECM 

components such as fibronectin and collagens [441]. 

Scx is expressed by cardiac fibroblasts, and is increased by in vitro passaging of primary 

rat cardiac fibroblasts, a process which induces conversion to the myofibroblast 

phenotype. Compared to freshly isolated (P0) cardiac fibroblasts, first passage (P1) proto-

myofibroblasts show approximately doubled levels of Scx mRNA, alongside more drastic 

increases in αSMA and collagen Iα2 mRNA. Fully phenotypically converted second 

passage (P2) myofibroblasts show even greater levels of Scx mRNA (more than four-fold 

that of P0 fibroblasts), again concomitant with increases in αSMA and COL1A2 [136, 
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443]. Treatment of cardiac fibroblasts with TGFβ, a potent inducer of the myofibroblast 

phenotype, increases Scx levels [443]. Additionally, Smad3 and Smad7 of the canonical 

TGFβ signaling pathway are capable of regulating Scx expression at both the mRNA and 

protein level. Over-expression of Smad3, a positive modulator of TGFβ signaling, more 

than doubles Scx mRNA levels in primary rat cardiac fibroblasts, concomitant with 

increased Scx protein, whereas over-expression of inhibitory Smad7 decreases Scx 

mRNA levels by more than half, and protein levels by about 25%. Over-expression of Scx 

in NIH-3T3 fibroblasts increases Collagen 1α2 mRNA levels, as does TGFβ1 treatment. 

Scx over-expression in P0 cardiac fibroblasts induces a more than two-fold increase in 

COL1A2 mRNA, and Luciferase reporter assays showed that Scx directly activates the 

COL1A2 promoter [443]. Deletion of either the basic DNA-binding domain or helix-loop-

helix protein-protein interaction domain resulted in a significant decrease in the ability of 

Scx to transactivate the COL1A2 promoter [443]. Thus, it appears that Scx is directly 

involved in the pro-fibrotic process following MI, and alongside fibrillar collagens, may 

potentially regulate other factors involved in the myofibroblast phenotype, though this has 

not yet been examined. 

1.9.4: Role of Scleraxis in Transforming Growth Factor-β Signaling 

Numerous lines of evidence demonstrate that TGFβ stimulates Scleraxis expression. For 

example, treatment of mouse muscle with TGFβ1 increases protein levels of Scx and 

procollagen Iα2. TGFβ treatment shifts developing limb mesoderm from chondrogenesis 

to fibrogenesis, which is accompanied by Smad-mediated increases in Scx [444]. TGFβ1 

treatment also induces SCX expression in osteoblastic osteosarcoma cells [445], tendon 

fibroblasts [446], and tenocytes, the latter of which was dose-dependent and showed 
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accompanying increases in tendon ECM collagens and biglycan [447]. In NIH-3T3 

fibroblasts and avian valve precursor cells, TGFβ2, which increases Smad2 expression, 

also induced increased mRNA levels of Scx. Additionally, TGFβ2 treatment induced 

increased mRNA levels of the CSPG Aggrecan in a Scx-dependent manner [441]. Both 

responses to TGFβ2 treatment were inhibited by constitutively active MEK1 (a 

downstream component of ERK1/2 signaling). In transgenic ScxGFP reporter mice, loss 

of TGFβ2 or TGFβ3 reduces Green fluorescent protein (GFP) expression in tendons and 

prevents the development of limb tendons [436]. Scx physically interacts with Smad3, 

and is down regulated in the tendons of Smad3-null mice, alongside decreased levels of 

type I collagen and Tenascin-C [428]. However, Scx expression may not require the 

presence of TGFβ, as injured tendons in mice treated with TGFβ-inhibiting antibodies did 

not show alterations in Scx gene expression [448]. Other growth factors, including early 

growth response factors-1 and -2 (Egr1, Egr2) [449], IGF1 [450], BMP-12 and -13, [451-

453], growth/differentiation factors (GDFs, a subfamily of the bone morphogenetic 

protein family) [454-459], epidermal growth factor (EGF) [460], FGFs [460-463], and 

PDGF [464], have also been shown to increase Scx expression in a variety of tissues and 

cell types. 

Scx may not just be induced by TGFβ, but may also regulate downstream pro-fibrotic 

responses. In NIH-3T3 cells, Scx was found to directly transactivate a human COL1A2 

promoter, which was prevented by the inhibitory Smad7. Additionally, Scx and the pro-

fibrotic Smad3 were shown to act synergistically to activate the COL1A2 promoter. 

However, using a mutant version of Scx lacking the DNA-binding domain, TGFβ-induced 

expression of COL1A2 is abolished in cardiac myofibroblasts [136]. Thus, Scx does 
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indeed appear to regulate TGFβ-induced COL1A2 activation, and potentially other pro-

fibrotic or myofibroblast phenotype-related processes. 

1.9.5: Response of Scleraxis to Mechanical Force 

In addition to growth factors, Scx is also responsive to mechanical stimulation. Scleraxis 

levels increase in the adaptation of adult tendon to increased mechanical loading, 

alongside increased expression of type I collagen [446, 465, 466]. Similarly, unloading of 

cultured tenocytes induces a reversible decrease in Scx expression [467]. Scx acts 

synergistically with mechanical force to induce commitment of human embryonic stem 

cells to the tenocyte phenotype [468, 469]. 

In a mesenchymal stem cell (MSC) line (C3H10T1/2) exposed to 5% static tension 

through tethering to bioartifical tendons, SCX expression increased more than 5-fold 

within a week [438]. Comparison of varying static strain (from 0% to 10%) demonstrated 

a load-dependent increase in SCX and COL1A1 expression. The addition of cyclic stretch 

(5%, 0.1 Hz) further increased Scx expression in these cells, as did increasing the number 

of repetitions of cyclic stretch. In MSCs, which are able to give rise to cardiac fibroblasts, 

10% uniaxial cyclic stretch (1 Hz) for 24 or 48 hours significantly increased mRNA 

levels of SCX, TENASCIN-C, COL1A2 and COL3A1 in either 2D or 3D cultures [385, 

459, 470-472]. However, MSCs exposed to the same regimen with increased stretch 

(15%) did not show significant changes in the levels of these transcripts [470]. 

Application of 2 days of 8% uniaxial cyclic stretch (1 Hz) to periodontal ligament cells 

resulted in increased expression of SCX as well as the ECM protein elastin [473]. In 

human mesenchymal stem cells, 10% cyclic stretch (1 Hz, 3 hours stretch alternating with 

3 hours rest for 14 days) induced differentiation to fibroblasts, accompanied by 
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significant increases in mRNA levels of SCX, TENASCIN-C, COL1A2 and COL3A1 

[474]. MSCs subjected to 7 days of cyclic stretch (1% elongation for 30 minutes per day 

at 1 Hz) significantly augmented cell contractility, increased expression of SCX, 

ELASTIN, COL1A2, and COL3A1, while causing down-regulation of MMPs-9 and -13 

[475]. The same study found that culturing MSCs in 3D versus 2D collagen environments 

for 7 days also was sufficient to significantly increase SCX expression [475], further 

supporting the hypothesis that SCX expression is sensitive to the forces exerted on these 

cells. 
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2: RATIONALE, HYPOTHESIS & OBJECTIVES 

2.1: Scleraxis as a Mechanoresponsive Regulator of the Cardiac Myofibroblast 

Numerous studies of different tissues and cell types have shown that Scx is activated by 

static and cyclic mechanical strain [385, 438, 446, 459, 465, 466, 470-475]. Additionally, 

Scx is implicated in the wound healing process post-MI. Scx, alongside collagens, are 

upregulated during post-MI remodeling, and Scx directly regulates transcription of type I 

collagens [136, 435, 443]. The cardiac remodeling process is mediated by the activities of 

myofibroblasts, and Scx is induced by the same stimuli that drive conversion of cardiac 

fibroblasts to myofibroblasts, namely TGFβ and its canonical signaling components 

Smads [136, 444-447], mechanical strain [385, 438, 446, 459, 465, 466, 470-475], and in 

vitro cell passaging [443]. Thus, we hypothesized that Scx expression is 

mechanoresponsive in cardiac fibroblasts, and Scx is directly involved in regulating the 

cardiac myofibroblast phenotype through induction of key markers and functions. 

2.1.1: Objective 1 – The Effect of Cyclic Stretch 

Our first objective was to determine if expression of Scx and characteristic myofibroblast 

markers is induced by cyclic stretch of cardiac P1 proto-myofibroblasts and P2 

myofibroblasts. To achieve this objective, we subjected these cells to cyclic stretch over a 

24-hour period and examined mRNA and protein levels of Scx, αSMA, type I and III 

collagens, ED-A Fn, and SMemb, as well as phosphorylation (Y397) of FAK. 

2.1.2: Objective 2 – The Effect of Scleraxis Expression 

Our second objective was to determine if Scx over-expression in cardiac P1 proto-

myofibroblasts would result in increased myofibroblast marker expression. For this 
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objective, we used adenoviral vectors to over-express Scx, and examined resulting levels 

of myofibroblast marker mRNA and protein. 

2.1.3: Objective 3 – Scleraxis and Contractility 

As myofibroblasts are more contractile than their fibroblast precursors, we wished to 

examine how changing Scx expression would affect contractility in both cardiac P1 proto-

myofibroblasts and P2 myofibroblasts. To achieve this aim, we subjected these cells to 

2D collagen gel contraction assays, examining contractility in the context of Scx over-

expression, knock down, and also using a dominant negative, DNA binding-deficient 

version of Scx, in the presence and absence of TGFβ1. 

2.1.4: Objective 4 – Scleraxis and Migration 

To determine the effect of Scx on migration, which is reduced with phenoconversion of 

fibroblasts to myofibroblasts. We used a transwell migration assay (with TGFβ1 as a 

chemoattractant), as well as a wound-healing (scratch) assay, to determine the effect of 

Scx over-expression and knock down on migration of cardiac P1 proto-myofibroblasts. 

2.2: The SCLERAXIS Promoter 

In situ analysis of the proximal 1500 bp of the human SCX promoter revealed a SBE of 

the consensus sequence CAGACA 510 bp upstream of the ATG transcriptional start site 

that is conserved in mouse and rat transcripts, which we have termed SBE1. Additionally, 

another SBE was found in a more distal region of the human SCX promoter, 1231 bp 

upstream of the transcriptional start site, which was also conserved in mouse and rat, and 

termed SBE2. Thus we hypothesized that TGFβ1 may activate the proximal 1500 bp 

region of the human SCX promoter directly through Smad binding to one or both of these 

sites.  
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2.2.1: Objective 5 – Activation of the SCLERAXIS Promoter by TGFβ1 

To determine if TGFβ1 treatment was sufficient to activate a proximal 1500 bp region of 

the human SCX promoter, as well as truncated distal (lacking SBE2) and proximal 

(lacking SBE1) versions of this promoter, we purchased a luciferase reporter vector 

driven by the 1500 bp human SCX promoter (pGL4.10-SCX1500). The vectors 

containing different versions of the SCX promoter were transfected into NIH-3T3 

fibroblasts, and changes in luciferase expression in response to varying doses of TGFβ1 

were measured.  

 2.2.2: Objective 6 – Activation of the SCLERAXIS Promoter by Cyclic Stretch 

To determine if the 1500 bp human SCX promoter is responsive to other stimuli, such as 

cyclic stretch, we subjected transfected NIH-3T3 fibroblasts to 24 hours of cyclic stretch 

and compared luciferase expression values to those of unstretched controls. 
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3: MATERIALS & METHODS 

3.1: Cell Culture 

3.1.1: Primary Adult Rat Ventricular Fibroblast Isolation 

Rats were anesthetized with 90 mg/kg ketamine (C44016, Ketaset, Wyeth Animal Health, 

Canada) and 10 mg/kg xylazine (B3D3, Rompun, Bayer Inc., Canada) to a surgical plane 

of anesthesia (determined via pedal reflex). Heparin (9041-08-1, Thermo Fisher 

Scientific, Canada) was injected into the heart (100 U/kg body weight) to prevent blood 

clotting, and the heart placed into Dulbecco’s Modified Eagle Medium/Ham’s Nutrient 

Mixture F-12 (DME/F-12) media (SH3002301, Thermo Fisher Scientific, Canada). The 

ventricular portion of the heart was transferred to fresh DME/F-12 media and cut into 1 

mm3 cubes, which were transferred to Simple Modified Eagle Medium (SMEM) 

(11380037, Life Technologies, Canada) and rinsed. In a small volume (less than 1 ml) of 

1 mg/ml collagenase type 2 (CLS-2, Worthington Biochemical Corporation, USA) in 

SMEM, the cubes were finely minced. The slurry was then transferred to a 25 ml 

Erlenmeyer flask containing 15 ml of 1 mg/ml collagenase type 2, and digested with 

constant stirring at 37°C/5% CO2 for 1 hour. After digestion, large particles were allowed 

to settle and the supernatant was transferred to a 50 ml Falcon tube containing fibroblast 

feeding media (DME/F-12 + 1% penicillin/streptomycin (SV30010, Thermo Fisher 

Scientific, Canada), 1 mM ascorbic acid (A5960-25G, Sigma-Aldrich, USA), and 10% 

heat-inactivated characterized fetal bovine serum (FBS-HI, SH3039603HI, Thermo 

Fisher Scientific, Canada)). This initial digestion was then centrifuged at 2000 rpm 

(24°C) for 5 minutes. The supernatant was aspirated and discarded, and the pellet 

resuspended on ice for 1 minute in 5 ml of Gey’s solution (0.13 M NH4Cl, 1.24 M KCl, 



57 

 

0.06 M Na2HPO4·7H2O, 0.04 M KH2PO4, 1.39 M glucose, 1.03 mM MgCl2·6H2O, 0.28 

mM MgSO4·7H2O, 1.53 mM CaCl2, 0.01 M Na2HCO3) to lyse and remove red blood 

cells. After an additional round of centrifugation (2000 rpm, 24°C, 5 minutes), the 

remaining pellet was aspirated, resuspended in 5 ml of fresh fibroblast feeding medium, 

and plated on a 10 cm culture dish in fibroblast feeding medium. Fibroblasts were 

allowed to attach for 3-4 hours before thorough washing with 1X PBS and addition of 

fresh fibroblast feeding medium. The remaining tissue fragments in the Erlenmeyer flask 

from the first digest were digested with a fresh 15 ml of 1 mg/ml collagenase type 2 (in 

SMEM) at 37°C/5% CO2 for 1 hour with stirring, and extracted following the same 

procedure as the initial digest.  

3.1.2: Cell Culture  

Primary rat cardiac fibroblasts (rCFs) plated directly from the digestions were considered 

P0 fibroblasts, which were passaged to P1 proto-myofibroblasts after no more than 72 

hours of culture. P1 proto-myofibroblasts were then passaged to P2 myofibroblasts within 

72 hours of plating. Cell counts were determined via haemocytometer and cells serum 

starved (DME/F-12 + 1% penicillin/streptomycin, 1 mM ascorbic acid) for 24 hours prior 

to infection. Proto-myofibroblasts (P1) and myofibroblasts (P2) were infected with over-

expression adenovirus encoding enhanced green fluorescent protein (AdEGFP) or Scx 

(AdSCX) for 24 hours at 10 MOI, with adenovirus encoding a Scx mutant lacking the 

DNA-binding domain (AdSCXΔDBD) for 24 hours at 50 MOI, or with knockdown 

adenovirus encoding for LacZ-targeting shRNA (AdshLacZ) or Scx-targeting shRNA 

(AdshSCX) for 48 hours at 200 MOI, as per prior optimization [136, 443].  
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3.1.3: Adenoviral Constructs 

3.1.3.1: Scleraxis Over-Expression Adenovirus (AdSCX) 

Scleraxis cDNA was derived from pECE-HA-FLAG-Scx [476] and sub-cloned into the 

pACCMVpLpA(-)loxP-SSP shuttle vector (University of Michigan, USA). In vitro 

Cre/loxP-mediated recombination was used to construct recombinant adenoviruses, using 

cosmid cs360loxP containing the adenovirus type V dl309 genome [477]. Scx-expressing 

viral clones were confirmed by Western blot and propagated in 911 cells. Viral 

supernatants were clarified via centrifugation and titered via plaque assay, and stored at -

80°C [443]. AdSCX experiments were performed at 10 MOI for 24 hours, alongside 

AdEGFP infection controls [478]. 

3.1.3.2: DNA Binding Deficient Scleraxis Over-Expression Adenovirus (AdSCXΔDBD) 

PCR was used to amplify and sub-clone the SCXΔDBD coding region into pSHUTTLE-

CMV transfer vector (AdEasy Vector System, 24007, QBiogene, USA), which was 

subsequently cloned into BJ5183 bacterial cells to generate replication-deficient 

adenoviruses [136]. The Adeno-X rapid titer kit (632250, Clontech Laboratories, Inc., 

USA) was used to determine viral titer. AdSCXΔDBD experiments were performed at 50 

MOI for 24 hours, alongside AdEGFP controls [478]. 

3.1.3.3: Scleraxis Knockdown Adenovirus (AdshSCX) 

For rat Scleraxis gene knockdown, shRNA sequences were designed using the BLOCK-

iT RNAi Advisor program (Life Technologies, Canada). The oligonucleotide pairs were 

annealed and cloned as per manufacturer instructions into the pENTR/U6 RNAi Entry 

Vector (K4945-00, Life Technologies, Canada), then sub-cloned into pAd/BLOCK-iT-

DEST vector (v49220, Life Technologies, Canada), generating pAd-shScleraxis. Vectors 
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were packaged to produce AdshSCX in 293A cells (CRL-1573, ATCC, USA). The 

Adeno-X rapid titer kit (632250, Clontech Laboratories, Inc., USA) was used to 

determine viral titer. Infection of primary rat ventricular P1 proto-myofibroblasts were 

infected at varying MOI (50, 100, and 200) for 48 hours for optimization. Infection 

controls were treated with adenovirus encoding shRNA for LacZ (AdshLacZ) [479]. 

Knockdown experiments were performed using 200 MOI for 48 hours. 

3.1.4: Luciferase Assays 

NIH-3T3 fibroblasts (CRL-1658, ATCC, USA) from passage 13-21 were cultured in 

DMEM High-Glucose (SH30022.01, Thermo Fisher Scientific, Canada) supplemented 

with 10% HI-FBS and 1% penicillin/streptomycin were seeded in 6-well tissue culture-

treated dishes at 2.5 × 104 cells/well and allowed to grow for 48 hours to reach ~75% 

confluence. Cells were co-transfected (Lipofectamine 2000, Life Technologies, Canada) 

for 24 hours in Opti-MEM (31985-070, Life Technologies, Canada) with 250 ng of empty 

Luciferase expression control vector (pGL4.10, E6651, Promega, USA) and 250 ng of 

either 1500 bp SCX promoter in pGL4.10 backbone (pGL4.10-SCX1500, GeneCopoeia, 

USA), one of two truncated versions – missing either the proximal region (pGL4.10-

SCXΔ+78/-829) or the distal region (pGL4.10-SCXΔ-670/-1525) of the 1500 bp 

promoter region, or empty control vector (pGL4.10). Following transfection, cells were 

washed with sterile 1X PBS and treated with either serum-starvation medium (DMEM 

High-Glucose with 1% penicillin/streptomycin) or serum-starvation medium 

supplemented with either 0, 0.1, 0.5, 1, 5, or 10 ng/ml recombinant human transforming 

growth factor-β1 (TGFβ1, 240-B-002, CedarLane, Canada). Truncation of the proximal 

region (+78 to -829, relative to the ATG transcriptional start site of the 1500 bp SCX 
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promoter) was achieved by restriction enzyme digestion with NcoI (R3193, New England 

Biolabs, USA) followed by ligation with T4 DNA ligase (M0202, New England Biolabs, 

USA). Truncation of the distal region (-670 to -1525) of the 1500 bp SCX promoter was 

achieved via double restriction enzyme digestion with KpnI (R3142, New England 

Biolabs, USA) and NheI (R3131, New England Biolabs, USA), followed by formation of 

blunt ends with T4 DNA Polymerase (EP0062, Thermo Fisher Scientific, Canada) and 

ligation with Quick Ligation kit (M2200, New England Biolabs, USA). 5 ng of renilla 

expression vector (pRL was used as a control for transfection. The Luciferase activity of 

each sample was assayed using Dual Luciferase Reporter Assay System (E1960, 

Promega, USA) on a Glomax Multi+ Detection System (Promega, USA). 

3.2: Western Blotting 

To isolate protein, cells washed with 1X PBS were lysed using 5 ml RIPA extraction 

buffer (50mM Tris-HCl, pH 7.4, 150mM NaCl, 1mM EDTA, 1% Triton X-100, 0.5% 

sodium deoxycholate, 0.1% sodium dodecyl sulfate/SDS) supplemented with 1 mM 

phenylmethylsulfonyl fluoride (PMSF, 7110, EMD Millipore, USA), 1 mM of 

dithiothreitol (DTT), and 1X protease inhibitor cocktail (87786, Thermo Fisher Scientific, 

Canada). Total protein was extracted from adherent cells on ice using a cell scraper and 

from pelleted cells by 10X pulse vortex/ice treatment. Cell debris was pelleted from these 

samples by centrifugation in an Eppendorf 5417C centrifuge at maximum RPM (15,000) 

for 5 min at 4°C, and the supernatant transferred to a fresh 1.5 ml tube. Protein 

concentration was determined via Bradford assay (measured at 600 nm wavelength) using 

Coomassie Blue Protein Assay Reagent (1856209, Thermo Fisher Scientific, Canada) and 

bovine serum albumin standards (Thermo Scientific, 23209). Samples were prepared 
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using 6X Laemmli buffer (0.25% bromophenol blue, 0.25% xylene cyanol, 30% glycerol, 

10% 2-mercaptoethanol), boiled for 10 min at 100°C, and loaded onto polyacrylamide 

gels (7% or 12%). Proteins were separated by electrophoresis in 1X SDS-polyacrylamide 

gel electrophoresis (PAGE) buffer (25 mM Tris-OH, 192 mM glycine, 0.1% SDS) at 150 

volts for 60-90 minutes, alongside Precision Plus Protein Western C Standard ladder 

(161-0376, Bio-Rad, USA). Proteins were transferred to 0.45 µm pore size 

polyvinylidene fluoride (PVDF) membrane (Immobilon-P, IPVH00010, EMD Millipore, 

USA) in 1X Towbin’s buffer (25 mM Tris-OH, 192 mM glycine, with or without 20% 

methanol) at 300 mA for 1 hour (4°C) with stirring. Membranes were blocked with 5% 

non-fat milk powder (NFMP) in PBST (1X PBS + 0.1% Tween-20 (9005-64-5, EM 

Science, USA)) for 1 hour (24°C) with shaking.  

Membranes were probed with primary antibody overnight (4°C) with shaking in 1-3% 

NFMP-PBST. Primary antibodies used included mouse 12G10 anti-α-tubulin (DSHB, 

USA), mouse anti-α-smooth muscle actin (αSMA, A2547, Sigma, USA), rabbit anti-type 

I collagen (CL50141AP-1, Cedarlane, Canada), mouse anti-cellular ED-A fibronectin 

(MAB1940, EMD Millipore, USA), mouse anti-non-muscle myosin IIB (SMemb, ab684, 

abcam, USA), rabbit anti-focal adhesion kinase (FAK, AHO0502, BioSource 

International Inc., USA), rabbit anti-Y397 phosphorylated focal adhesion kinase (pFAK, 

44-624, BioSource International Inc., USA), or rabbit anti-Scleraxis (QED Bioscience, 

Inc., USA). Streptavidin horseradish peroxidase-conjugated secondary antibodies used 

included goat anti-mouse and goat anti-rabbit (Jackson ImmunoResearch Laboratories 

Inc., USA). Antibodies were detected using Western Blotting Luminol Reagent (sc-2048, 

Santa Cruz Biotechnology, USA) and visualized with CL-Xposure blue X-ray film 
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(PI34091, Thermo Fisher Scientific, USA). Adjusted volume of bands was measured via 

densitometry (GS-800 Calibrated Densitometer, Bio-Rad, USA) using QuantityOne 

software (Bio-Rad, USA), and normalized to that of α-tubulin (12G10) as a loading 

control. 

3.3: Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) 

Total RNA was isolated using GeneJET RNA Purification Kit (K0739, Thermo Fisher 

Scientific, Canada). One-step qRT-PCR analysis was performed using a Bio-Rad iQ5 

iCycler and B-R One-Step SYBR Green qRT-PCR kit (170-8893BR, Quanta Biosciences, 

USA) with 25 ng RNA and 2 µM each reverse and forward primers (Table 1). Reactions 

were exposed cycling conditions outlined in Table 2 for all primer sets. Fold changes in 

mRNA expression were analyzed by the 2-ΔΔCT method [480, 481] and normalized to 

GAPDH for loading control. 

 

Table 2: Primers used in 1-Step qPCR analysis. Primers are specific for both rat and 

mouse transcripts. 

AMPLICON DIRECTION SEQUENCE (5’  3’) 

α-Smooth Muscle 

Actin 

Forward CGGGCTTTGCTGGTGATG 

 Reverse CCCTCGATGGATGGGAAA 

Collagen 1α1 Forward TGCTCCTCTTAGGGGCCA 

 Reverse CGTCTCACCATTAGGGACCCT 

Collagen 1α2 Forward GTCCCCGAGGCAGAGAT 

 Reverse CCTTTGTCAGAATACTGAGCAGC 

Collagen 3α1 Forward GGTTTCTTCTCACCCTGCTTCA 

 Reverse GGTTCTGGCTTCCAGACATC 

GAPDH Forward TGCACCACCAACTGCTTAGC 

 Reverse GGCATGGACTGTGGTCATGAG 

Scleraxis Forward AACACGGCCTTCACTGCGCTG 

 Reverse CAGTAGCACTGGCGGGAGGTG 
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Table 3: Reaction conditions for 1-Step qPCR Analysis. 

STEP DURATION TEMPERATURE REPEATS 

cDNA Synthesis 10 minutes 50°C 1X 

Initial Denaturation 5 minutes 95°C 1X 

Denaturation 10 seconds 95°C 45X 

Annealing 30 seconds 60°C 45X 

Melt Curve 30 seconds 55-95°C 81X 

 

3.4: Cyclic Stretch Assay 

Untreated Bioflex flexible silicone elastomer membranes in 6-well plate format (BF-

3001U, FlexCell Corporation, USA) were pre-coated with 100 ng/µl human plasma 

fibronectin (FC010, EMD Millipore, USA) in serum-starvation media (as in section 3.1.2) 

and incubated at 37°C/5% CO2 overnight. After washing excess fibronectin from the 

plates with sterile 1X PBS, cells were seeded in feeding media at either 2.5 × 104 

cells/well (for NIH-3T3 fibroblasts and RNA analysis of P1 cardiac proto-myofibroblasts) 

or 5.0 × 104 cells/well (for protein analysis of P1 cardiac proto-myofibroblasts and all P2 

cardiac myofibroblasts). Cells were allowed to attach for 24 hours, followed by serum 

starvation for 24 hours. Using a FlexCentral FX-4000 FlexerCell Strain Unit (FlexCell, 

USA), a program of cyclic (1 Hz), biaxial stretch of either 15% (for P1 proto-

myofibroblasts and NIH-3T3 fibroblasts) or 20% (for P2 myofibroblasts) elongation was 

applied to stretch plates for 24 hours, and no elongation applied to unstretched controls in 

the same apparatus. For RNA analysis, cells were lysed and scraped directly from wells, 

and for protein analysis, cells were trypsinized, centrifuged (10,600 × g, 23°C, 5 

minutes), washed, centrifuged a second time, aspirated, and resuspended in protein lysis 

buffer.  
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3.5: 2-Dimensional Collagen Gel Contraction Assay 

Compressible collagen gels were prepared prior to cell seeding by combining 7 ml of cold 

purified bovine collagen solution (PureCol, 3 mg/ml, 5005-B, Advanced Biomatrix, 

USA) with 2 ml of 5X concentrated DMEM/F-12 (12500-039, Life Technologies, 

Canada) and 1 ml of filter-sterilized ddH2O in a 50 ml Falcon tube, and adjusted to pH 

7.0 with filter-sterilized 1 M HCl. Bubbles that developed upon mixing were removed by 

allowing the solution to sit still at 4°C for 1-2 minutes. In a 24-well tissue culture dish, 

500 µl aliquots of gel mixture were added to each well. Gels were solidified by 

incubation at 37°C/5% CO2 for a minimum of 3 hours prior to seeding cells. Primary P1 

proto-myofibroblasts or P2 myofibroblasts were seeded at a density of 3.5 × 104 cells/well 

in fibroblast feeding media and allowed to attach for 24 hours. Cells were then serum 

starved for 24 hours and infected with over-expression (AdEGFP or AdSCX, 10 MOI, 24 

hours) or knockdown adenovirus (AdshLacZ or AdshSCX, 200 MOI, 48 hours). At time 

0 hours, wells were aspirated and treatments added accordingly (either serum-starvation 

media, feeding media for 10% FBS maximal contraction, or 10 ng/ml recombinant human 

TGF-β1 in serum-starvation media). Collagen gels were then released from the walls of 

the well by use of a custom-made stainless steel dowel or medium sterile pipette tip, and 

pictures taken at 0 and 24 hours with a Canon Rebel xSi digital camera. Contraction was 

determined by the change in gel area measured at 24 and 0 hour time points (using 

custom measuregel software, courtesy of Dr. Ian Dixon). 

3.6: Transwell Migration Assay 

Cells were plated on tissue culture treated sterile polycarbonate 24mm membrane inserts 

in 6-well format with pore size of 8.0 µm (3428, Corning Life Sciences, USA) at a 
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seeding density of 3.125 × 104 cells/insert in fibroblast feeding media, and allowed to 

attach for 24 hours. Following serum starvation for 24 hours, cells were infected with 

either over-expression or knockdown adenovirus, as above, or left in starvation media 

(control). At time 0 hours, 10 ng/ml TGF-β1 (in starvation media) was added to the lower 

chamber of all wells. Serum starvation media was added to the upper chambers to 

establish a chemoattractant gradient. After 24 hours, inserts were removed and lower 

chambers washed with 1X PBS, followed by fixation with 4% paraformaldehyde (PFA, in 

1X PBS) for 10-15 minutes at room temperature. Following removal of fixative and 

washing (3X) with 1X PBS, cells were stained with 5% crystal violet for 5 minutes at 

room temperature, rinsed to run clear with ddH2O, and air-dried. The number of migrated 

cells was determined by manual counting of cells stained in a minimum of 5 fields per 

well at total magnification of 400X, and multiplied by the area factor for each field 

(6012.5) to represent the total number of cells per well. 

3.7: Wound Healing Assay 

Primary rat cardiac P1 proto-myofibroblasts were seeded in 6-well tissue culture-treated 

dishes at 1.0 × 105 cells/well and allowed to attach overnight. Following 24 hours of 

serum starvation, cells were infected with either AdshLacZ or AdshSCX adenovirus at 

200 MOI for 48 hours, or either AdEGFP or AdSCX adenovirus at 10 MOI for 24 hours. 

A dashed line was made on the underside of each well and a scratch introduced over this 

line using a medium pipette tip. Cells were washed 3 times with 1X PBS to remove 

excess cells from wounding, and treated with either starvation media (for control and 

adenovirus-infected treatments), feeding media, or starvation media containing 10 ng/ml 
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TGFβ1. Pictures of initial wounds (0 hours), as well as 24 and 48 hour time points were 

taken using a Nixon CoolPix 995 digital camera at 40X objective.  

3.8: Statistical Analysis 

Experiments were repeated with a minimum of 3 biological replicates (n=3), such that 

each replicate was produced from a different source rat (for primary cells). In qPCR 

experiments, the value for each biological replicate represented an average of three 

technical replicates (duplicate readings of the same sample). Experiments comparing two 

samples (i.e. cyclic stretch assays and vehicle vs. TGFβ1 experiments) were analyzed by 

Students t-test, and those with multiple samples (i.e. migration, contraction, and TGFβ1 

dosage experiments) were analyzed by one-way analysis of variance (ANOVA) with 

Brown-Forsythe test for equal variance and Tukey post-hoc analysis. Results with p ≤ 

0.05 were considered statistically significant. 
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4: RESULTS 

4.1: Cyclic Stretch of Cardiac Proto-Myofibroblasts 

To determine the effect of mechanical strain on expression of Scx and myofibroblast 

markers, we exposed first- (P1) passage rat cardiac fibroblasts to 24 hours of cyclic 

stretch at a rate of 1 Hz. Using quantitative real-time PCR (qPCR) and Western blotting, 

we then examined changes in mRNA and protein levels, respectively, of prototypical 

myofibroblast markers, fibrillar collagens, and Scx.  

4.1.1: Cyclic Stretch Increases Scleraxis Expression 

Compared to unstretched controls, P1 proto-myofibroblasts exposed to 15% stretch (1 

Hz) for 24 hours displayed significantly increased mRNA levels of Scx (from 1.00 ± 0.14 

to 3.27 ± 0.73, n=3, p ≤ 0.05) (Figure 4A). Similarly, protein levels of Scx were also 

increased in response to cyclic stretch of P1 proto-myofibroblasts (from 1.00 ± 0.05 to 

2.34 ± 0.39, n=3, p ≤ 0.05) (Figure 4B). 
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Figure 4: Effect of cyclic stretch on Scleraxis expression in cardiac proto-myofibroblasts. 

mRNA (normalized to GAPDH) (A) and protein (normalized to α-tubulin) (B) levels were 

measured after 24 hours of cyclic biaxial stretch (15%, 1 Hz) of primary rat ventricular P1 

proto-myofibroblasts in serum-free medium. Representative Western Blot images are 

shown in (B) for Scleraxis and α-tubulin loading control. (*n=3, Student’s t-test p ≤ 0.05, 

mean ± SEM) 
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4.1.2: Cyclic Stretch Increases Collagen and Myofibroblast Marker Expression 

Concomitant with increased Scx levels in P1 proto-myofibroblasts, cyclic stretch also 

induced significant increases in mRNA levels of collagen types I and III (n=3, p ≤ 0.05). 

Collagen Iα1 mRNA levels increased from 1.00 ± 0.23 to 5.01 ± 0.57, Collagen Iα2 from 

1.00 ± 0.24 to 3.02 ± 0.01, and Collagen IIIα1 from 1.00 ± 0.27 to 2.60 ± 0.32 (Figure 

5A). Similarly, protein levels were significantly increased (n=3, p ≤ 0.05) for both type I 

pro-collagen (from 1.00 ± 0.25 to 3.91 ± 0.73) and mature type I collagen (from 1.00 ± 

0.23 to 2.44 ± 0.29) (Figure 5B). In addition to increasing collagen I and III levels, cyclic 

stretch also resulted in increased levels of myofibroblast marker expression. αSMA 

expression was increased at both the mRNA (from 1.14 ± 0.42 to 5.44 ± 0.55, n=3, p ≤ 

0.01) (Figure 6A) and protein level (from 1.00 ± 0.14 to 2.19 ± 0.60, n=3, p ≤ 0.05) 

(Figure 6B). Other myofibroblast markers showed a trend towards increased protein 

levels with cyclic stretch, as determined by Western blotting. Protein levels trended 

towards an increase for ED-A fibronectin (from 1.00 ± 0.18 to 2.26 ± 1.63), though the 

difference was not statistically significant for p ≤ 0.05. However, SMemb protein levels 

increased significantly (n=3, p ≤ 0.05) with cyclic stretch (from 1.00 ± 0.38 to 5.03 ± 

1.77) (Figure 6C). Additionally, the amount of autophosphorylated FAK (pFAK Y397, 

normalized to total FAK) was significantly (n=3, p ≤ 0.05) decreased to 0.43 ± 0.13 after 

24 hours of cyclic stretch, as compared to unstretched controls with protein values of 0.99 

± 0.10 (Figure 7). 
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Figure 5: Effect of cyclic stretch on fibrillar collagen expression in cardiac proto-

myofibroblasts. Primary rat ventricular P1 proto-myofibroblasts in serum-free medium 

were exposed to 24 hours of cyclic biaxial stretch (15%, 1 Hz). mRNA levels (normalized 

to GAPDH) were measured for collagen Iα1, Iα2, and IIIα1 (A). Protein levels (normalized 

to α-tubulin) were measured for type I pro- and mature collagen (B). A representative 

Western blots for type I collagen and α-tubulin controls are shown in (B). (*n=3, students 

t-test p ≤ 0.05, **n=3, Student’s t-test p ≤ 0.01, mean ± SEM) 
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Figure 6: Effect of cyclic stretch on expression of myofibroblast markers in cardiac proto-

myofibroblasts. Primary rat ventricular P1 proto-myofibroblasts in serum-free medium 

were exposed to 24 hours of cyclic biaxial stretch (15%, 1 Hz). mRNA levels (normalized 

to GAPDH) were measured for α-smooth muscle actin (αSMA) (A). Protein levels 

(normalized to α-tubulin) were measured for αSMA (B), and the myofibroblast markers 

ED-A Fibronectin and embryonic non-muscle myosin heavy chain (SMemb) (C). 

Representative Western Blot images are shown for αSMA (B), and myofibroblast markers 
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(EC), accompanied by respective α-tubulin controls. (*n=3, students t-test p ≤ 0.05, **n=3, 

Student’s t-test p ≤ 0.01, mean ± SEM)  
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Figure 7: Effect of cyclic stretch on tyrosine 397 (Y397) phosphorylation status of focal 

adhesion kinase (FAK) in cardiac proto-myofibroblasts. Protein levels of total FAK and 

phosphorylated FAK (Y397) (normalized to α-tubulin) were measured for serum-starved 

primary rat ventricular P1 proto-myofibroblasts exposed to 24 hours of cyclic biaxial 

stretch (15%, 1 Hz). Western blots are shown for phosphorylated FAK (Y397) and total 

FAK. (*n=3, Student’s t-test p ≤ 0.05, mean ± SEM) 
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4.2: Cyclic Stretch of Cardiac Myofibroblasts 

In P2 cardiac myofibroblasts exposed to 20% cyclic biaxial stretch (24 hours, 1 Hz), Scx 

mRNA levels increased significantly (from 1.00 ± 0.05 to 1.39 ± 0.13, n=5, p ≤ 0.05) 

(Figure 8). Collagen Iα2 mRNA levels were significantly reduced in P2 cardiac 

myofibroblasts stretched for 24 hours, from 1.00 ± 0.03 to 0.85 ± 0.02 (Figure 8). In P2 

cardiac myofibroblasts stretched for 24 hours, mRNA levels of α-SMA showed a trend 

towards increase from 1.00 ± 0.38 to 1.52 ± 0.26, though the difference was not 

significantly different for p ≤ 0.05 (Figure 8). 
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Figure 8: Effect of cyclic stretch on Scleraxis, Collagen Iα2, and αSMA expression in 

cardiac myofibroblasts. Primary rat ventricular P2 myofibroblasts were subjected to 24 

hours of cyclic biaxial stretch (20%, 1 Hz) for 24 hours in serum-free medium. mRNA 

levels (normalized to GAPDH) were measured for Scleraxis, Collagen Iα2, and α-smooth 

muscle actin (αSMA). (*n=3, Student’s t-test p ≤ 0.05, mean ± SEM) 
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4.3: Scleraxis Regulates the Myofibroblast Phenotype 

4.3.1: Scleraxis Over-Expression Increases Collagen and Myofibroblast Marker 

Expression 

To determine the effect of increased Scx levels on the phenotype of P1 primary rat cardiac 

proto-myofibroblasts, we over-expressed a FLAG/HA-tagged version of Scx via 

adenoviral infection at 10 MOI for 24 hours. Western blot analysis revealed that 

compared to AdEGFP-infected controls, Scx over-expression increased Scx protein levels 

from 1.00 ± 0.35 to 12.07 ± 1.13 (n=3, p ≤ 0.001) (Figure 9). Protein levels of both type I 

mature and pro-collagen were also significantly increased (n=3, p ≤ 0.01) with Scx 

overexpression. Pro-collagen type I levels increased from 1.00 ± 0.22 in AdEGFP 

controls to 3.79 ± 0.56 in AdSCX-infected proto-myofibroblasts. Mature type I collagen 

protein levels rose drastically from 1.00 ± 0.20 in AdEGFP controls to 10.33 ± 0.20 with 

Scx overexpression (Figure 10A). Additionally, protein levels of ED-A fibronectin were 

significantly (n=3, p ≤ 0.05) increased (from 1.00 ± 0.28 to 3.23 ± 0.39), as were those of 

SMemb (from 1.00 ± 0.24 to 2.53 ± 0.10) (Figure 10B).  
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Figure 9: Scleraxis over-expression in cardiac proto-myofibroblasts. Protein levels 

(normalized to α-tubulin) were measured for Scleraxis in primary rat ventricular P1 proto-

myofibroblasts infected with Scleraxis-expressing adenovirus (AdSCX, 10 MOI) or 

enhanced green fluorescent protein (EGFP)-expressing adenovirus (AdEGFP, 10 MOI) for 

24 hours in serum-free medium. (Ɨn=3, Student’s t-test p ≤ 0.001, mean ± SEM) 
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Figure 10: Effect of Scleraxis over-expression on collagen and myofibroblast marker 

protein levels in cardiac proto-myofibroblasts. Primary rat ventricular P1 proto-

myofibroblasts were infected for 24 hours with either Scleraxis-expressing adenovirus 

(AdSCX, 10 MOI) or enhanced green fluorescent protein (EGFP)-expressing adenoviral 

control (AdEGFP, 10 MOI) in serum-free medium. Protein levels (normalized to α-tubulin) 

were measured for type I pro- and mature collagen (A) as well as the myofibroblast markers 

ED-A Fibronectin and embryonic non-muscle myosin heavy chain (SMemb) (B). Western 

blots for collagen and myofibroblast markers are shown in (A) and (B), respectively, 
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alongside α-tubulin controls. (*n=3, Student’s t-test p ≤ 0.05, **n=3, students t-test p ≤ 

0.01, mean ± SEM) 
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4.3.2: Scleraxis Regulates Cell Contractility 

To determine the effect of changes in Scx expression on primary rat cardiac proto-

myofibroblast (P1) and myofibroblast (P2) contractility, a collagen gel contraction assay 

was used [119, 156, 411]. As positive controls, cultures were supplemented with either 10 

ng/ml transforming growth factor-β1 (TGF-β1), or 10% fetal bovine serum (10% FBS), 

both of which have been shown to strongly induce fibroblast contraction [211, 212, 411, 

482, 483]. 

4.3.2.1: Scleraxis Regulates Contraction of Cardiac Proto-Myofibroblasts  

Treatment of proto-myofibroblasts with 10% FBS for 24 hours reduced gel area to 60.95 

± 5.81% of its original size. Using percent contraction (reduction in gel area) induced by 

10% FBS as an arbitrary maximum, we found that percent of maximal contraction 

induced in untreated, serum-deprived control was 10.82 ± 4.82%. Pre-infection with 

AdSCX induced a significant increase in contractility (51.14 ± 2.88% of maximal 

contraction, n=6, p ≤ 0.05) compared to the untreated control, whereas pre-infection with 

control adenovirus (AdEGFP) did not (eliciting only 16.78 ± 5.48% of maximal 

contraction). The addition of 10 ng/ml TGFβ1 to untreated controls induced contraction 

(78.20 ± 13.23% of maximum) that was significantly greater than untreated or AdEGFP-

infected controls (n=6, p ≤ 0.05), but did not differ significantly from contraction induced 

by Scx over-expression (Figure 11). In combination with 10 ng/ml TGFβ1, AdEGFP 

elicited contraction of 116.72 ± 1.35% of maximum, significantly greater than contraction 

induced by untreated, AdEGFP-, or AdSCX-treated proto-myofibroblasts (n=3, p ≤ 0.05) 

(Figure 11). However, when TGFβ1 treatment was combined with AdSCX infection, 

proto-myofibroblasts elicited contraction (120.91 ± 8.18% of maximal) that was 
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significantly greater than that of any other treatments (n=3, p ≤ 0.05), except for the 

combination of TGFβ1 and AdEGFP (Figure 11). The use of a dominant negative DNA 

binding-deficient version of Scx (AdSCXΔDBD) caused a trend towards increased 

contraction (44.02 ± 2.22% of maximum). However, the increase in contractility with 

AdSCXΔDBD only reached significance in comparison to the untreated control (n=3, p ≤ 

0.05), but not in comparison to AdEGFP-treated control. The contraction observed with 

AdSCXΔDBD was not significantly different than AdSCX- or TGFβ1-induced 

contraction (Figure 11). Nonetheless, treatment with the DNA binding-deficient 

AdSCXΔDBD in combination with TGFβ1 induced a high level of contraction (117.24 ± 

5.45% of maximum) that was greater than contraction induced by TGFβ1 treatment alone 

(n=3, p ≤ 0.05) (Figure 11). 

Conversely, knockdown of Scx expression via 48 hour pre-infection with a Scleraxis-

targeting shRNA-expressing adenovirus (AdshSCX, 200 MOI) elicited a degree of 

contraction (7.29 ± 6.02% of maximal contraction) which was not significantly different 

than that of knockdown LacZ-targeting shRNA-expressing adenoviral controls 

(AdshLacZ, 3.51 ± 0.08% of maximal contraction). Pre-infection with AdshLacZ did not 

prevent TGFβ1-induced contraction by cardiac proto-myofibroblasts, with this 

combination eliciting 49.95 ± 4.24% of maximal contraction. Co-treatment with 

AdshLacZ and TGFβ1 induced contraction that was significantly greater than that of 

AdshLacZ or AdshSCX treatments alone (n=3, p ≤ 0.05) (Figure 12). However, 

knockdown of Scx (AdshSCX) was able to prevent TGFβ1-induced contraction, with the 

combination eliciting only 11.06 ± 6.69% of maximal contraction, significantly less 
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contraction than induced by the combination of AdshLacZ and TGFβ1 (n=3, p ≤ 0.05) 

(Figure 12). 
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Figure 11: Gel contraction assay of cardiac proto-myofibroblasts in response to Scleraxis 

over-expression. Contraction of compressible collagen gels by primary rat ventricular P1 

proto-myofibroblasts after 24 hours of gel release from well walls. Contraction (reduction 

in gel area) is expressed as a percentage of maximal contraction as induced by 10% FBS 
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treatment. Contraction was measured for proto-myofibroblast pre-infected for 24 hours in 

serum-free medium with either Scleraxis-expressing adenovirus (AdSCX, 10 MOI), a 

dominant negative DNA binding-deficient Scleraxis mutant-expressing adenovirus 

(AdSCXΔDBD, 50 MOI), enhanced green fluorescent protein (EGFP)-expressing 

adenovirus (AdEGFP, 10 MOI) as a control for infection, or no virus (uninfected controls). 

At time 0 hours (gel release from wells), all conditions were subjected to treatment with 10 

ng/ml transforming growth factor-β (TGFβ) or vehicle (serum-free medium) (A). 

Representative gel images at 24 hours are shown in (B) with gel circumference outlined.  

(*n=3, one-way ANOVA p ≤ 0.05, compared to control, AdEGFP, AdEGFP + TGFβ1, and 

AdSCX + TGFβ1; фn=3, one-way ANOVA p ≤ 0.05, compared to all treatments except 

AdEGFP + TGFβ1; NS = not statistically significant; mean ± SEM)  
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Figure 12: Gel contraction assay of cardiac proto-myofibroblasts in response to Scleraxis 

knockdown. Contraction of compressible collagen gels by primary rat ventricular P1 

proto-myofibroblasts after 24 hours of gel release from well walls. Contraction (reduction 



89 

 

in gel area) is expressed as a percentage of maximal contraction as induced by 10% FBS 

treatment. Contraction was measured for proto-myofibroblast pre-infected for 48 hours in 

serum-free medium with either Scleraxis-targeting shRNA-expressing adenovirus 

(AdshSCX, 200 MOI), or LacZ-targeting shRNA-expressing adenovirus (AdshLacZ, 200 

MOI) as a control.  At time 0 hours (gel release from wells), all treatments were subjected 

to either 10 ng/ml transforming growth factor-β (TGFβ) or vehicle (serum-free medium) 

(A). Representative gel images at 24 hours are shown in (B) with gel circumference 

outlined.  (**n=3, one-way ANOVA p ≤ 0.05, compared to control, AdshSCX, and 

AdshSCX + TGFβ1 treatments, mean ± SEM) 
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4.3.2.2: Scleraxis Increases Cardiac Myofibroblast Contractility 

To determine whether Scx could further enhance the contractility of already 

phenoconverted myofibroblasts, collagen gel assays were performed on primary rat 

ventricular P2 cardiac myofibroblasts. Treatment of P2 myofibroblasts with 10% FBS 

caused a reduction in gel size to 63.57 ± 0.98% of the original area, which was defined as 

maximal contraction. Untreated, serum-starved control P2 myofibroblasts elicited 6.16 ± 

5.51% of maximal (10% FBS-induced) contraction. Pre-infection of P2 cardiac 

myofibroblasts with AdEGFP (50 MOI, 24 hours) induced 16.26 ± 5.59 % of maximal 

contraction, which was not significantly different from untreated controls. Scx over-

expression (AdSCX, 10 MOI, 24 hours) induced a significant increase in contractility 

compared to untreated and AdEGFP controls (n=3, p ≤ 0.05), eliciting 58.16 ± 4.64% of 

maximal contraction. However, over-expression of the dominant negative DNA binding-

deficient version of Scx (AdSCXΔDBD, 50 MOI, 24 hours) did not increase contraction 

beyond control levels, eliciting only 11.31 ± 4.88% of maximal contraction. Treatment 

with 10 ng/ml TGFβ1 for 24 hours after collagen gel release resulted in a significant 

increase in percent of maximal contraction (65.76 ± 2.69%) compared to untreated and 

AdEGFP-infected controls, as well as AdSCXΔDBD treatment (n=3, p ≤ 0.05), but which 

did not differ significantly from AdSCX-induced contraction (Figure 13).  
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Figure 13: Gel contraction assay of cardiac myofibroblasts in response to Scleraxis over-

expression. Contraction of compressible collagen gels by primary rat ventricular P2 

myofibroblasts after 24 hours of gel release from well walls. Contraction was measured 

for myofibroblast pre-infected for 24 hours in serum-free medium with either Scleraxis-

expressing adenovirus (AdSCX, 10 MOI), a dominant negative DNA binding-deficient 

Scleraxis mutant-expressing adenovirus (AdSCXΔDBD, 50 MOI), enhanced green 
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fluorescent protein (EGFP)-expressing adenovirus (AdEGFP, 10 MOI) as a control for 

infection, or no virus (uninfected controls). At time 0 hours (gel release from wells), 

untreated myofibroblasts were treated with 10 ng/ml transforming growth factor-β 

(TGFβ) (A). Representative gel images at 24 hours are shown in (B) with gel 

circumference outlined.  (*n=3, one-way ANOVA p ≤ 0.05, compared to control, 

AdEGFP, and AdSCXΔDBD, mean ± SEM)  
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4.3.3: Scleraxis Regulates Migration of Cardiac Proto-Myofibroblasts 

4.3.3.1: Transwell Migration Assay 

To determine the effect of changes in Scx expression on cardiac proto-myofibroblast 

migration, we performed a modified Boyden chamber (transwell) migration assay using 

20 ng/ml TGFβ1 as a chemoattractant. After 24 hours, 1.56 ± 0.24 × 105 cells had 

migrated into the lower chamber of the untreated well.  Pre-infection with control 

AdEGFP virus did not significantly increase migration, with 1.68 ± 0.18 × 105 cells 

having migrated into the lower chamber. AdSCX infection significantly decreased 

migration, exhibiting only 0.75 ± 0.15 × 105 migrated cells. Infection with control 

knockdown virus, AdshLacZ, resulted in migration of 1.46 ± 0.21 × 105 cells, which did 

not differ significantly from untreated or AdEGFP controls. Knockdown of Scx with 

AdshSCX infection significantly increased the number of migrated cells to 2.37 ± 0.08 × 

105 (Figure 14A).  

4.3.3.2: Wound Heal Assay 

To visualize the effect of Scx expression on migration, we performed a wound healing 

assay by creating a scratch in a confluent monolayer of P1 cardiac proto-myofibroblasts. 

After 24 hours, it can be seen that untreated control, AdEGFP-, and AdshLacZ-infected 

controls have a similar influx of proto-myofibroblasts into the wound area (Figure 8B). 

Scx over-expression (AdSCX) produces fewer cells within the wound, whereas 

knockdown (AdshSCX) appears to increase migration, even in comparison to controls 

(Figure 14B). 
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Figure 14: Migration of cardiac proto-myofibroblasts. Primary rat ventricular P1 proto-

myofibroblasts were pre-infected in serum-free medium either for 24 hours with Scleraxis-

expressing adenovirus (AdSCX, 10 MOI) or enhanced green fluorescent protein (EGFP)-

expressing control adenovirus (AdEGFP, 10 MOI), or for 48 hours with Scleraxis-targeting 
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shRNA-expressing adenovirus (AdshSCX, 200 MOI) or LacZ-targeting shRNA-

expressing adenovirus (AdshLacZ, 200 MOI). At time 0 hours, 20 ng/ml transforming 

growth factor-β1 (TGFβ1) was added to the lower chamber of modified Boyden chambers 

as a chemoattractant. The number of migrated cells was measured in the lower chamber 

after 24 hours for transwell assays (A) and wound healing assays were utilized to visualize 

differences in migration (B). (*n=3, one-way ANOVA, p ≤ 0.05, mean ± SEM) 
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4.4: Activation of the Proximal 1500 bp Human SCLERAXIS Promoter 

4.4.1: Response to Cyclic Stretch 

4.4.1.1: Cyclic Stretch Activates the Proximal 1500 bp SCLERAXIS Promoter 

To determine whether the SCX promoter is directly activated by factors that promote 

myofibroblast conversion, NIH-3T3 fibroblasts were transfected with a reporter vector 

containing the proximal 1500 bp region of the human SCX promoter upstream of a 

luciferase reporter gene within a pGL4.10 backbone (pGL4.10-SCX1500) (Figure 15A). 

24 hours after transfection with pGL4.10-SCX1500, 15% cyclic stretch (1 Hz, 24 hours) 

of NIH-3T3 fibroblasts induced a significant increase (n=3, p ≤ 0.05) in luciferase 

expression (3.18 ± 0.39-fold) as compared to unstretched controls (1.00 ± 0.37-fold), 

indicating stretch is sufficient to activate the 1500 bp human SCX promoter (Figure 15B). 
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Figure 15: Effect of cyclic stretch on luciferase expression by the 1500 bp human 

SCLERAXIS promoter. NIH-3T3 fibroblasts were transfected with a luciferase reporter 

vector containing the proximal 1500 bp human SCLERAXIS promoter region (pGL4.10-

SCX1500) (A) for 24 hours, followed by 24 hours of cyclic biaxial stretch (15%, 1 Hz). 

Luciferase activity (normalized to renilla luciferase) was measured for stretched and un-

stretched controls (B). (*n=3, Student’s t-test p ≤ 0.05, mean ± SEM) 
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4.4.2: Response to Transforming Growth Factor-β1  

4.4.2.1: TGFβ1 May Activate the 1500 bp SCLERAXIS Promoter in a Dose-Dependent 

Manner 

To determine the effect of the pro-fibrotic cytokine TGFβ1 on the proximal 1500 bp SCX 

promoter (Figure 16A), we performed luciferase assays in response to varying doses of 

TGFβ1. NIH-3T3 fibroblasts transfected with 500 ng of empty pGL4.10 control vector 

displayed decreased luciferase expression with increasing doses of TGFβ1. Normalized to 

pGL4.10-transfected cells in the absence of TGFβ1, pGL4.10-transfected cells treated 

with 0.5 ng/ml TGFβ1 for 24 hours displayed 0.53-fold luciferase expression. Treatment 

with 1 ng/ml induced 0.33-fold expression, with 5 ng/ml luciferase expression was 

decreased to 0.19-fold, and even further decreased to 0.25-fold with 10 ng/ml TGFβ1 

(Figure 16B). Conversely, NIH-3T3 fibroblasts transfected with the pGL4.10-SCX1500 

vector displayed a trend towards increased luciferase expression levels, though these 

differences were not statistically significant. Compared to cells in the absence of TGFβ1 

(1.00 ± 0.15-fold expression), treatment with 0.5 ng/ml TGFβ1 slightly decreased 

expression (0.84 ± 0.20-fold). However, luciferase expression driven by pGL4.10-

SCX1500 increased in a dose-dependent manner; with 1 ng/ml TGFβ1, expression was 

1.22 ± 0.20-fold that of untreated controls, with 5 ng/ml TGFβ1, expression increased to 

1.29 ± 0.44-fold, and with 10 ng/ml TGFβ1, expression was 1.57 ± 0.03-fold (Figure 

16B). If luciferase activity of pGL4.10-SCX1500 is normalized to that of empty pGL4.10, 

however, there is a significant increase in expression at doses of 5 and 10 ng/ml TGFβ1. 

Normalized values, compared to untreated (0 ng/ml TGFβ1) controls (1.00 ± 0.15-fold 

expression), are increased with increasing dosage. Treatment with 0.5 ng/ml TGFβ1 
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induces 1.58 ± 0.38-fold luciferase expression, and with 1 ng/ml TGFβ1, pGL4.10-

normalized expression is increased further to 3.70 ± 0.62-fold, though these expression 

levels do not differ significantly from that of untreated control (Figure 16B). However, 

pGL4.10-normalized luciferase expression of pGL4.10-SCX1500-transfected fibroblasts 

treated with 5 ng/ml TGFβ1 (6.63 ± 2.25-fold) is significantly greater than that of 0 and 

0.5 ng/ml TGFβ1 treatments (Figure 16 B). Additionally, treatment with 10 ng/ml TGFβ1 

produces similar luciferase expression levels (6.15 ± 0.14-fold), which are significantly 

greater than that of untreated (0 ng/ml TGFβ1) controls (Figure 16B). 

4.4.2.2: The effect of TGFβ1 is Dependent on SCLERAXIS Promoter Length 

To determine whether specific regions of the proximal 1500 bp SCX promoter are 

responsible for its responsiveness to TGFβ1, we removed the proximal and distal regions 

of the promoter within the pGL4.10-SCX1500 vector via restriction enzyme digestion. 

We analyzed luciferase expression of a construct lacking the proximal 829 bases and the 

ATG transcriptional start site of the 1500 bp SCX promoter, which was designated 

pGL4.10-SCXΔ(+78/-829), as well as a construct lacking the distal 634 bases of the 

promoter, designated pGL4.10-SCXΔ(-640/-1525). As with TGFβ1-dose experiments 

performed with the full-length promoter (pGL4.10-SCX1500), luciferase expression 

decreased in empty vector (pGL4.10)-transfected control treated with 10 ng/ml TGFβ1, 

compared to untreated control (Figures 16C and 16D). In pGL4.10-SCX Δ(+78/-829)-

transfected cells, luciferase expression did not appear to change with TGFβ1 treatment 

(1.04 ± 0.12-fold) compared to vehicle-treated cells (1.00 ± 0.11-fold). However, if these 

expression values were normalized to those of empty pGL4.10-transfected readings, 

treatment with TGFβ1 significantly increased luciferase e expression to 4.09 ± 0.48-fold, 
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compared to vehicle-treated controls (Figure 16C). In cells transfected with the proximal 

version of the SCX promoter (pGL4.10-SCXΔ(-640/-1525)), TGFβ1 treatment 

significantly decreased luciferase expression to 0.38 ± 0.09-fold, compared to vehicle-

treated controls (1.00 ± 0.05-fold). Again, when normalized to pGL4.10 expression 

values, the response differs. Normalized expression of TGFβ1-treated cells transfected 

with the pGL4.10-SCXΔ(-640/-1525) vector trended towards increase to 1.48 ± 0.36-fold 

that of vehicle-treated controls, though the difference was not statistically significant 

(Figure 16D). 
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Figure 16: Effect of TGFβ1 on luciferase activity of different SCLERAXIS promoter 

constructs. NIH-3T3 fibroblasts were transfected for 24 hours with different luciferase 
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constructs, containing either the full proximal 1500 bp human SCLERAXIS promoter 

(pGL4.10-SCX1500) with two Smad-binding elements (SBEs) conserved between 

human, rat, and mouse genomes, or one of two truncated constructs (A). The distal 

promoter construct [pGL4.10-SCXΔ(+78/-829)] lacks the proximal SCLERAXIS 

promoter region and SBE1. The proximal promoter construct [pGL4.10-SCXΔ(-670/-

1525)] lacks the distal region of the SCLERAXIS promoter and SBE2 (A). Following 

transfection, varying doses of transforming growth factor-β1 (TGFβ1) were added to 

pGL4.10-SCX1500-transfected cultures, and 10 ng/ml TGFβ1 added to cells transfected 

with either pGL4.10-SCXΔ(+78/-829) or pGL4.10-SCXΔ(-670/-1525). Luciferase 

activity (normalized to renilla) was measured for pGL4.10, pGL4.10-SCX1500 (B), 

pGL4.10-SCXΔ(+78/-829) (C), and pGL4.10-SCXΔ(-670/-1525) (D). Luciferase activity 

values normalized to pGL4.10 activity are also shown for pGL4.10-SCX1500 (B), 

pGL4.10-SCXΔ(+78/-829) (C), and pGL4.10-SCXΔ(-670/-1525) (D).  (*n=3, one-way 

ANOVA, p ≤ 0.05 compared to 0 ng/ml TGFβ1, **n=3, one-way ANOVA, p ≤ 0.05, 

compared to 0 and 0.5 ng/ml TGFβ1, фn=3, Student’s t-test p ≤ 0.05, mean ± SEM) 
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5: DISCUSSION 

5.1: Response of Scleraxis to Cyclic Stretch 

Cardiac fibroblasts respond to cyclic stretch by increasing expression of myofibroblast 

marker genes such as αSMA [289], TGFβ [372], fibrillar collagens type I and III [375], 

and Fibronectin [368]. In non-cardiac fibroblasts, cyclic stretch increased the formation 

of stress fibers, which are characteristic of the myofibroblast transition [289, 294, 381, 

382]. Additionally, the transcription factor NFAT4c, which has been shown to cooperate 

with Scleraxis in the activation of the Collagen Iα1 gene in tendon fibroblasts [435], is 

also increased in cardiac fibroblasts exposed to cyclic stretch [376]. mRNA and protein 

levels of Scx and fibrillar collagens type I and III increase in response to different regimes 

of cyclic stretch in different cell types [366-368, 373, 383, 436, 457, 468-473]. The 

majority of studies examined have been performed in MSCs, which have been shown to 

spontaneously differentiate into fibroblasts in culture and share similar properties such as 

surface markers and the ability to differentiate into varying cell lineages [484, 485]. Most 

of the MSC studies utilize cyclic stretch regimes similar to ours, though some have 

utilized lesser degrees of elongation (1 – 10%) and longer duration (48 hours to 7 days) 

[385, 438, 459, 470-472]. However, one experiment was performed under nearly identical 

conditions in MSCs (15% stretch, 24 hours, 1 Hz, with uniaxial as opposed to biaxial 

stretching), which actually showed a decrease in mRNA levels of SCX [470]. This 

discrepancy could be due to a number of factors, which may include the orientation of 

stretching (in one dimension, as opposed to two in our experiments), and the cell type 

used. Thus, it appears that in fibroblast-like cells, cyclic stretch induces SCX expression, 
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with which our findings in cardiac proto-myofibroblasts and myofibroblasts agree 

(Figures 4 and 8).  

15% equi-biaxial cyclic stretch (24 hours, 1 Hz) of cardiac P1 proto-myofibroblasts was 

found to significantly increase levels of Scx mRNA and protein (Figures 4 and 8), as well 

as fibrillar collagens I and III (Figures 5 and 8) and myofibroblast markers αSMA, ED-A 

Fn, and SMemb (Figures 6 and 8). These findings indicate that cyclic stretch promotes the 

generation of cardiac myofibroblasts through mechanical force, and Scx is involved in 

this process. The observation that Scx mRNA levels were also significantly increased in 

P2 myofibroblasts (Figure 8), yet to a lesser degree than in proto-myofibroblasts (Figure 

4), indicates a strong sensitivity of Scx expression to cyclic stretch, even in already fully 

converted myofibroblasts. However, even though stretch was increased to 20% elongation 

in P2 myofibroblasts, the trend towards increased αSMA mRNA levels was not 

significant, and in fact, Collagen Iα2 showed a significant decrease (Figure 8). This lack 

of responsiveness of cardiac myofibroblasts to cyclic stretch may be due to their 

phenotype, in that these cells express increased levels of αSMA and fibrillar collagens, 

and thus may be resistant to further transcriptional activation of these genes. That is to 

say, myofibroblasts may be “maxed out” in their ability to respond to cyclic stretch by 

increasing collagen and myofibroblast marker expression. Additionally, there is an 

obvious increase in the level of experimental error between biological replicates when 

examining αSMA responses to cyclic stretch in P2 myofibroblasts (Figure 8). It is possible 

that the increased error may be due to an increase in cell seeding density in cardiac 

myofibroblasts, as reports have shown that increasing cell density tends to decrease 

myofibroblast marker expression, especially that of αSMA [486, 487]. Thus, the greater 
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density of cardiac myofibroblast cultures in stretch assays may have itself altered αSMA 

expression, independently of stretching. Additionally, myofibroblasts are larger than 

fibroblasts [122], which may also be a factor that needs to be considered when making 

comparisons of the responses of these two cell phenotypes in response to cyclic stretch. 

The observation that tyrosine phosphorylation of FAK at Y397 is decreased with 24 hours 

of cyclic stretch in cardiac proto-myofibroblasts (Figure 7) appears at first glance to 

conflict with reports in non-cardiac fibroblasts, indicating increased Y397 

phosphorylation. However, upon closer inspection, one notices that these reports are 

temporally limited (i.e. less than 6 hours) [379, 383-385], and in fact FAK 

phosphorylation only begins to decline after 6 hours [386]. The response of FAK 

phosphorylation to longer-term stretch (e.g. 24 hours or more) has not been examined 

previously. The implications of its decreased phosphorylation herein (Figure 7) are likely 

related to the apparent effect of cyclic stretch on the myofibroblast phenotype. Since FAK 

is involved primarily in turnover of focal adhesions [110, 358], and stretch promotes the 

myofibroblast phenotype, which exhibits stronger and larger focal adhesions [298], it is 

not surprising that FAK phosphorylation (and in turn, its kinase activity) would be down-

regulated by this stimulus. This is further supported by reports that the focal adhesion 

proteins zyxin and α-actinin are recruited to stress fibers with cyclic stretching of mouse 

embryonic fibroblasts [381, 382].  

The mechanisms through which mechanical forces stimulate myofibroblast 

phenoconversion are not well characterized. For αSMA, numerous lines of evidence 

indicate that stretch-induced transcriptional activation occurs through the Rho signaling 

pathway and actin reorganization-mediated translocation of MRTF-A to the nucleus, and 
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is dependent upon fibronectin [289, 380]. However, there are no studies examining the 

transcriptional regulation of Scx in response to stretch in cardiac fibroblasts and their 

derivatives. Thus, examining reporter gene activity in response to cyclic stretch was an 

important experiment in determining the mechanoresponsive capabilities of the Scx 

promoter. It is clear that cyclic stretch in cardiac proto-myofibroblasts potently activates 

the proximal 1500 bp human SCX promoter (Figure 15).  

The mechanism by which this activation occurs remains entirely unknown. A few 

different pathways have been implicated in cyclic stretch-mediated responses in 

fibroblasts. Various members of the MAPK pathway appear to be activated by cyclic 

stretch in cardiac [375] and non-cardiac fibroblasts [289, 378, 379], and plays a central 

role in stretch-mediated responses in lung fibroblasts [488]. p38-MAPK can activate 

transcription of target genes through translocation to the nucleus and subsequent 

activation of the AP-1 transcription factor [489], which binds the consensus sequence 

TGA(C/G)TCA [490, 491]. We noted that this site (TGAGGTCA) is also found in the 

human SCX promoter, 1415 bp upstream of the ATG start site, though it is not conserved 

in mouse and rat genomes. Additionally, the RhoA pathway is activated in MEFs exposed 

to cyclic stretch in a fibronectin-dependent manner [289, 380], and thus is also a 

candidate for stretch-induced activation of SCX. Tenascin-C, which is also upregulated by 

cyclic stretch, as well as Collagen XI, contain a conserved putative ‘stretch-responsive’ 

sequence in their promoter regions that has been implicated in shear stress-induced 

responses in endothelial cells [492, 493]. In examining the SCX promoter, we also 

observe this sequence, GAGACC, within 100 bp upstream of the transcriptional start site, 

conserved among rat, mouse, and human sequences. Within a short stretch-responsive 
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region of the Tenascin-C promoter [493], there is also a canonical NFκB response 

element with the sequence GGGRNYYYCC (in which R is a purine, Y is a pyrimidine, and 

N is any nucleotide) [494]. In cardiomyocytes, induction of Tenascin-C by cyclic stretch 

is NFκB-dependent [495]. Interestingly, this site is also found in the human SCX 

promoter, 1084 bp upstream of the transcriptional start site, though this is not conserved 

in rat or mouse transcripts. Thus, there are a few putative transcription factors that may be 

involved in cyclic stretch-mediated transcriptional activation of the human SCX promoter. 

5.2: Induction of Cardiac Myofibroblast Markers by Scleraxis 

It has been well established that no single marker is sufficient for the identification of 

myofibroblasts, or even fibroblasts [116]. Common myofibroblast marker genes such as 

ED-A Fn, SMemb, and αSMA are also expressed in smooth muscle cells, which are 

morphologically similar to myofibroblasts in their shape and organization of stress fibers 

[496-498]. Additionally, expression of these proteins is also increased in the intermediate 

proto-myofibroblast phenotype [122]. The incorporation of αSMA into stress fibers is a 

defining feature of the myofibroblast [499, 500], and thus increased αSMA expression 

alone should not be used to define the myofibroblast phenotype. Thus, examining levels 

of these three proteins in concert, in addition to αSMA incorporation into stress fibers, 

provides a relatively effective means for defining fibroblasts, proto-myofibroblasts, and 

myofibroblasts in vitro. Infection with Scx over-expression adenovirus (AdSCX) for 24 

hours dramatically increases Scx protein levels in cardiac proto-myofibroblasts (Figure 

9), and results in significant increases in the myofibroblast markers ED-A Fn and SMemb 

(Figure 10). Other experiments performed by our lab have demonstrated that αSMA and 

its incorporation into stress fibers is also increased with Scx over-expression (48 hours) in 
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these cells (Bagchi and Czubryt, data not shown). Additionally, experiments in Scx 

knockdown mice show decreased levels of these same markers (Bagchi and Czubryt, data 

not shown). Thus it is apparent that Scx is required for expression of these key 

myofibroblast markers in cardiac proto-myofibroblasts. We also observe an increase in 

protein levels of pro and mature type I collagen in response to Scx over-expression for 24 

hours (Figure 10). The drastic increase in collagen I synthesis by proto-myofibroblasts in 

response to Scx overexpression, in concert with increased myofibroblast markers (Figure 

10), indicates Scx is capable of driving phenoconversion of cardiac proto-myofibroblasts 

to myofibroblasts. 

5.3: Scleraxis Regulates Cardiac Myofibroblast Function 

We have demonstrated here that the changes induced by Scx are not limited to alterations 

of gene expression, and that rather these changes have functional implications in cardiac 

proto-myofibroblasts and myofibroblasts. Increased contractility is a hallmark of the 

myofibroblast, and we have demonstrated that Scx over-expression in both proto-

myofibroblasts (Figure 11) and myofibroblasts (Figure 13) increases this function. Scx 

over-expression in proto-myofibroblasts increases contractility to similar levels as 

treatment with the pro-contractile cytokine TGFβ1, regardless of DNA-binding capability 

(Figure 11). The blunted, yet still significant, response of myofibroblasts to TGFβ1 

treatment or Scx over-expression (Figure 13) is likely indicative of the already increased 

contractile ability of these cells. In this context, the contractile ability of myofibroblasts in 

response to additional stimuli may not be as drastically increased as these cells already 

possess an abundance of stress fibers and their capability to contract in response to these 

discrete stimuli may become ‘maxed-out’ at this level of phenotypic conversion. In proto-
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myofibroblasts, Scx further augments the contractility induced by TGFβ1 (Figure 11), 

which may be either through up-regulation of TGFβ1 signaling or some other TGFβ1-

dependent mechanism. AdEGFP treatment also appears to augment TGFβ1-induced 

contractility in primary ventricular proto-myofibroblasts, and though the increase is not 

significant compared to TGFβ1 alone, contractility in response to the combination of 

AdEGFP and TGFβ1 is also not significantly different than that of AdSCX and TGFβ1 or 

AdSCXΔDBD and TGFβ1 (Figure 11). The relationship between potential off-target 

adenoviral effects and TGFβ1 treatment in proto-myofibroblast contractility may be 

elucidated by increasing the number of replicates in this experiment. However, we also 

observed that Scx was required for TGFβ1-induced contractility – knockdown of Scx 

prevented contraction by proto-myofibroblasts treated with TGFβ1 (Figure 12). 

Interestingly, this effect appears to be independent of the DNA-binding capability of Scx. 

With over-expression of the dominant negative, DNA binding-deficient version of Scx, 

TGFβ1 was still able to induce proto-myofibroblast contraction to the same level as full-

length Scx in combination with TGFβ1 (Figure 11). These results suggest that Scx may 

mediate TGFβ1-induced contraction through interaction with other cofactors, 

independently of DNA binding. There are a few candidate proteins that may participate in 

this cooperative endeavour. These include Smad3, which has been shown to bind directly 

to Smad3 and regulate tendon matrix organization [428], as well as acting in concert with 

Scx to synergistically regulate Collagen Iα2 gene expression [136], and NFATc, which 

cooperates with Scx in activation of the Collagen Iα1 gene in tendon fibroblasts [435]. 

There also exists the possibility of an intermediate gene through which Scx, in 

cooperation with another cofactor, may regulate expression. For example, αSMA 

expression has been shown to directly correlate with the contractile ability of 
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myofibroblasts [123], and preliminary data from our lab has suggested that Scx may 

directly regulate its transcription (Bagchi and Czubryt, data not shown). Whether this 

occurs in cooperation with another transcription factor remains undetermined.  

Interestingly, unlike in proto-myofibroblasts, which contracted to a similar degree 

regardless of the DNA-binding ability of Scx, the dominant negative AdSCXΔDBD 

treatment failed to induce contraction in cardiac myofibroblasts (Figure 13). This is 

indicative of a different, DNA binding-dependent mechanism through which Scx induces 

contraction in these fully converted myofibroblasts. Perhaps augmentation of contraction 

in myofibroblasts, which already have increased contractile ability, requires a direct 

transcriptional mechanism through which Scx may act. The promoter of the αSMA gene 

indeed contains a number of E-boxes to which Scx may potentially bind. However, 

because this experiment was not repeated in myofibroblasts in the presence of TGFβ1, the 

question still remains as to whether Scx DNA binding ability is required for contraction, 

or is simply able to further increase this function in cardiac myofibroblasts. 

In addition to regulating contraction, Scx expression also regulates the migratory ability 

of cardiac proto-myofibroblasts, as is shown both quantitatively (via transwell migration 

assay) and qualitatively (via wound-healing assay) (Figure 14). Because TGFβ1 acts as a 

chemokine for fibroblasts, control treatments (untreated, AdEGFP-, and AdshLacZ-

infected) exhibited some migration of proto-myofibroblasts through the porous membrane 

of the well insert. However, Scx over-expression drastically inhibited the ability of these 

cells to migrate through the membrane, and appears to diminish the number of cells 

migrating into the scratch produced in the wound-healing assay (Figure 14). Conversely, 

knockdown of Scx expression enhances the ability of proto-myofibroblasts to migrate 
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towards TGFβ1 and into the scratch area (Figure 14). This supports the notion that Scx 

promotes the myofibroblast phenotype, which is less migratory than its precursors due to 

increased adhesion to its substrate via focal adhesions. This is in agreement with the 

finding that cyclic stretch induces Scx expression concomitant with decreased FAK 

phosphorylation (and thus decreased focal adhesion turnover) in proto-myofibroblasts 

(Figure 7). These results also suggest that not only does Scx induce phenoconversion, but 

a lack of Scx may, in fact, induce reversion of proto-myofibroblasts, since migration was 

increased following Scx knockdown (Figure 14), rather than simply remaining at similar 

levels as control treatments. Overall, these functional studies further implicate Scx in 

driving the cardiac myofibroblast phenotype. We propose a model whereby Scx promotes 

phenotypic conversion of cardiac proto-myofibroblasts to myofibroblasts, and inhibits the 

reversion of proto-myofibroblasts to the fibroblast phenotype (Figure 17). Although 

changes in Scx expression induce alterations in myofibroblast marker expression and cell 

behaviour (contraction and migration), in many cases the question arises as to whether the 

effect is via a direct transcriptional mechanism or requires the involvement of other 

transcriptional regulators.  
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Figure 17: Proposed model of Scleraxis regulation of the cardiac proto-myofibroblast 

phenotype. We propose that Scleraxis expression promotes conversion of proto-

myofibroblasts to myofibroblasts, and inhibition of Scleraxis promotes reversion of proto-

myofibroblasts to fibroblasts. Though the role of Scleraxis in vivo remains yet to be 

elucidated, it may play a role in driving the development of myofibroblasts following 

myocardial injury, as well as the maintenance of the myofibroblast phenotype in cardiac 

fibrosis. 
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5.4: Effect of Transforming Growth Factor-β1 on Expression of the Human SCLERAXIS 

Promoter 

Though renilla luciferase is used as an internal control for transfection efficiency in most 

luciferase assays, empty (i.e.: promoter-less) ‘backbone’ vectors are often used to 

demonstrate background levels of luciferase expression. However, responsiveness of the 

empty vector may be affected by various treatments applied to cells. In the case of 

pGL4.10, NIH-3T3 cells transfected with pGL4.10 display decreasing luciferase signal 

(normalized to renilla) in response to increasing TGFβ1 dose (Figure 16). Increasing 

TGFβ1 dose in NIH-3T3s transfected with pGL4.10-SCX1500 trends towards increased 

luciferase expression (normalized to renilla) (Figure 16). However, the changes in 

luciferase expression by pGL4.10-SCX150 in response to increasing TGFβ1 dose are 

modest and not statistically significant. When luciferase values for pGL4.10-SCX1500 

are normalized to those of empty pGL4.10, however, the difference in luciferase activity 

becomes significant for doses of 5 and 10 ng/ml, compared to vehicle alone (0 ng/ml 

TGFβ1) (Figure 16). This agrees with our previous data demonstrating increased Scx 

expression in response to TGFβ1 treatment [441].  

There are a few possible interpretations of this phenomenon. One is that TGFβ1 represses 

expression by pGL4.10 through one mechanism, mechanism “A”, yet increases 

expression from pGL4.10-SCX1500 via the SCX promoter by another mechanism, 

mechanism “B”. If this were the case, then it would appear TGFβ1 activates the SCX 

promoter in a dose-dependent manner. However, there also exists the possibility that 

TGFβ1 represses expression by pGL4.10 through mechanism “A”, and by inserting the 

SCX promoter into this vector, we have abolished this mechanism, independently of any 
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function through the promoter itself. In this case, we would not conclude that TGFβ1 is 

activating the SCX promoter. Additionally, it is possible that transfection efficiency is 

altered by use of the pGL4.10 vector – by analysis of luciferase values, independently of 

renilla (data not shown); it appears as though TGFβ1 does not affect pGL4.10, but TGFβ1 

increases expression of pGL4.10-SCX1500. However, when normalized to renilla, this 

effect is negated by differences in transfection efficiency. The same issue arises when 

examining the response of truncated promoter vectors pGL4.10-SCXΔ(+78/-829) and 

pGL4.10-SCXΔ(-670/-1525). When pGL4.10 expression values are not considered, the 

distal version of the promoter, pGL4.10-SCXΔ(+78/-829) does not appear to be affected 

by TGFβ1 treatment, but if normalized to pGL4.10 values, luciferase expression by the 

distal promoter significantly increases (Figure 16). Similarly, raw luciferase values 

(normalized to renilla) for the proximal promoter vector, pGL4.10-SCXΔ(-670/-1525) are 

decreased with TGFβ1 treatment, but appear unaffected, or even slightly increased, when 

these values are normalized to those of empty pGL4.10 (Figure 16). Thus, although the 

effect of TGFβ1 on the SCX promoter cannot be clearly elucidated through these data, it 

does appear that TGFβ1 does affect activation of the 1500 bp human SCX promoter, and 

may differentially affect various regions (i.e.: proximal vs. distal). Repeating these 

experiments in the context of a different empty vector, or in the presence of inhibitors of 

the TGFβ1 signaling pathway (such as Smad7), may shed light on the true nature of the 

relationship between TGFβ1 and the 1500 bp SCX promoter.  
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6: CONCLUSION 

In summary, we have demonstrated the following: 

 Cyclic stretch increases levels of Scx in both cardiac proto-myofibroblasts and 

myofibroblasts, and drives conversion of proto-myofibroblasts to myofibroblasts 

 Scx overexpression increases proto-myofibroblast collagen synthesis and 

myofibroblast marker expression 

 Scx expression is sufficient to induce contraction and is required for TGFβ1-

induced contraction in cardiac proto-myofibroblasts 

 The DNA binding domain-deficient Scx mutant is capable of inducing contraction 

in cardiac proto-myofibroblasts, but not fully converted myofibroblasts  

 Scx expression induces contraction in cardiac myofibroblasts in a DNA binding-

dependent manner 

 Scx inhibits cardiac proto-myofibroblast migration, and knockdown of Scx 

increases migration 

 Cyclic stretch activates the proximal 1500 bp human SCX promoter 

 The 1500 bp human SCX promoter responds to TGFβ1 treatment, which is altered 

by its truncation either in the proximal or distal regions 

The results shown here provide evidence sufficient to conclude that the bHLH 

transcription factor Scleraxis is indeed a novel mechanoresponsive regulator of the 

cardiac myofibroblast phenotype in vitro, through regulation of key myofibroblast 

markers and cellular functions. 
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7: SIGNIFICANCE & FUTURE DIRECTIONS 

Adverse cardiac remodeling occurs in response to nearly all cardiovascular diseases, and 

progressively worsens over time. Although cardiac fibrosis is a pretext for heart failure, 

there remain no treatments that directly target the root cause of fibrosis - the function and 

persistence of myofibroblasts. In contrast, the majority of treatments are aimed at 

assuaging symptoms associated with the underlying disease (such as hypertension) [501]. 

There is evidence that treatment of patients with hypertensive heart disease with the 

angiotensin-converting enzyme (ACE) inhibitor lisinopril modestly regresses cardiac 

fibrosis independently of changes in blood pressure and left ventricular hypertrophy 

[502], suggesting there may be a direct effect on myofibroblast function. Other ACE 

inhibitors, such as enalapril, have also been shown to regress cardiac fibrosis in rats [503-

506], and a clinical trial in hypertensive patients with LV hypertrophy has shown mild 

regression of cardiac fibrosis with enalapril treatment [507]. Other common drugs utilized 

in the treatment of cardiovascular disease have shown promising effects on cardiac 

fibrosis, yet there remains no standard regime for reducing cardiac fibrosis in heart failure 

patients, and treatment is limited to end-of-life care or transplant [508]. By understanding 

the factors that regulate the myofibroblast phenotype, we may discover novel, and highly 

specific, regulators of this phenotype that can be pharmacologically targeted to develop 

clinically relevant treatments for the inhibition and/or reversal of the myofibroblast 

phenotype. As the functions of the myofibroblast are critical to proper wound healing 

following cardiac injury, the timing of treatment must be carefully determined to allow 

this process and prevent the induction of subsequent adverse cardiac remodeling. Though 

there have been treatments aimed at targeting the myofibroblast phenotype, many of 

these, such as inhibition of TGFβ1 or αSMA expression, will undoubtedly affect other cell 
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types and tissues, due to the pleiotropic nature of these factors [508, 509]. Conversely, a 

cardiac-specific approach targeting SCX expression or activity may improve clinical 

outcomes in patients with cardiac fibrosis, in the absence of significant negative side 

effects. Although preliminary evidence from our lab indicates Scx is up regulated in 

response to other factors, such as CTGF and AngII (Bagchi and Czubryt, data not shown), 

there remains a paucity of information regarding the transcriptional mechanisms affecting 

Scx expression both in vitro and in vivo. Additionally, Scx appears to play an important 

role in heart valves, and the possibility exists that targeting SCX in the myocardium may 

negatively affect valve function. Further study is needed into the direct transcriptional 

mechanisms regulating SCX, and elucidation of potentially unwanted side effects that 

may arise from targeting this transcription factor. There also remains a number of 

unanswered questions regarding the role of Scx not only in myofibroblasts (such as its 

effect on proliferation, apoptosis/survival, etc.), but in other cardiac cells. Before 

proceeding to in vivo studies, it will be important to note whether changes in SCX 

expression affect cardiomyocytes and their response to stress, as well as smooth muscle 

cells – this kind of information will be crucial in predicting the response of the heart to 

changes in SCX, in both physiological and pathological settings. 
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