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Abstract

Th¡ee-dimensional (3D) shape acquisition has many important appiications in different

fields. Engineering, medicine, architecture, and entertainment are some examples where

it is used.

This research is focused on the evaluation and development of a feasible and economic

technique for 3D data acquirement. Nowadays different methods are used for 3D shape

acquisition. These methods can be divided into the contact and non-contact approaches.

The most popular contact devices are the joined arms and the coordinate measure

machines (CMMs). The most common non-contact products are the laser scanners. These

methods are high accurate and easy to use, but they are expensive.

Other methods used for 3D acquisition involves projected light into the object's surface

and digital camer¿rs for capturing the image. These methods are charactenzed by the low

cost since only a projected light and a digital camera are needed.

Three objectives are proposed for this work. The first one is the evaluation of existing 3D

acquisition methods. The second one is the implementation of a new approach to obtain

confident 3D data at a low cost. And the last one deals with the comparison between the

different approaches. To achieve the goals two methods are proposed based on image

processing techniques. The methods are the shape from shading method (SFS) and the

structured light approach.

An improved SFS approach is implemented based on one of the studied methods. A new

structured light method is developed. In this method a grid with separation between lines

of 6 pixels and 1 pixel thickness of line is projected to the object. A digital camera that

captures the distortion of the grid takes the image. 3D data is then collected from the

distortion of the grid. The 3D data is then recovered based on the distortion of the grid on

the object.
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Three-dimensional (3D) shape recovery is a technique used to obtain 3D data of physical

objects. The applications of this technique are related to not only engineering processes

such as reverse engineering, design, manufacturing and virtual environment creation, but

also a¡chitecture, entertainment and medicine. The use of 3D digital images is becoming

essential and necessary in those areas. Different products that can measure 3D shape of

objects are now available in the market with different characteristics and prices. These

products are either hard to operate or expensive to use. Therefore it is necessary to

develop a new technique for the faster, easier and cheaper dig¡talization of3D objects for

industrial applications.

Chapter l. Introduction

1.1 Research Background

The idea of the research came from a local foot clinic in Winnipeg. The clinic requires an

automatic system for 3D foot shape acquisition. This research is intended to find a cost-

effective solution to substitute the plaster molds currently used to obtain the foot shape

for the clinic.

The requirements are analyzed based on application environments of the project. First of

all, the proposed method has to be affordable by the clinic, be easy operation and quick

data caphring process. Consequently, the resea¡ch focuses on the evaluation and

development of a feasible and economic technique for 3D data acquirement.



In order to have a good overview of the existing techniques, different 3D recovery

approaches are evaluated. An existing method is improved and a new method is

developed to improve existing techniques.

1.2 Objectives

The main objective of this research is to search for a cost-effective solution for 3D shape

acquisition method. Although there are different approaches available to acquire

confident 3D data, the cost of using them is high and the use of these methods is time-

consuming. The examples include 3D shape measuring methods using Coordinate

measuring machines and 3D lasers canners. In order to develop a new approach to

simplify and economize existing 3D acquisitions techniques, following objectives are

proposed for this research:

o Evaluate existing 3D acquisition methods.

o Implement a new approach to obtain con-fident 3D data at low cost.

o Compare the method developed with existing approaches.

1.3 Proposed methods

Two methods were proposed to acquire confident 3D data. One is the improvement of an

existing method. Modification in image processing was applied to obtain better results.

Another is a new method, which combines the structured light and stereo techniques.

This method reconstructs 3D shape using only a c¿tmera and a projector. For the existing

stereo approach, minimum fwo cameras are required for the reconstruction process. ln the

proposed method, a projector is used to substitute one camera. Even though the proposed



method is similar to the structured light approach, difference is that a pattern is projected

on the object. The projected pattern is a grid, not a strip. The pattern is fixed; there are no

lines or strips projected onto the object in sequence in a time period. Other difference is

number of images needed. In the proposed method, only one picture is required to

reconstruct the object.

In the operation to capture a 3D object, a camera takes a picture of the object on which a

grid is projected; the deformed pattern on the image gives the clue to reconstruct 3D

points of the object. The related coordinates of the grid are pre-defined, the location of

each point to recover is known. The height is found with triangulation. V/ith this method

it is intended to get a good 3D approximation of the object under study.

1.4 The structure of the thesis

The thesis is organized as follows: A description of different 3D shape recovery methods

is presented in Chapter 2. The comparison of these systems is presented. The

practicability of each method is also discussed, which forms the basis of the thesis work.

Two of the methods are selected for further work based on the objectives and restrictions

established for the research. These methods are the shape from shading (SFS) approach

and the structured light method.

Chapter 3 presents an overview of SFS methods. These methods are analyzed and tested.

Finally an improved technique based on one of the chosen algorithms is presented. A

comparison with the other methods is performed.



The structured light approach is reviewed in Chapter 4. Different research that has

worked in this area is presented. The purpose of this chapter is to review existing research

in structured light approach and propose a feasible method. At the end of the Chapter, a

new method is proposed using structured light and triangulation.

Chapter 5 introduces the development of a new method. The components of the system

are presented. The calibration procedure is solved. The completed 3D reconstruction

system is discussed. All the algorithms related to the proposed method are described.

These include the comer detection, interpolation, relation between coordinates of the

equipment used, triangulation, and mesh generation. The algorithms are programmed

using Matlab, and developed codes are presented in the Appendix section.

The results obtained by the proposed method are presented in Chapter 6. A comparison

with a laser scanner is performed and discussed.

Finally, the conclusions and further work of the research are presented in Chapter 7.



3D shape recovery techniques are used to obtain 3D data of a physical object for a

specific application. According to methods of data acquisition, these techniques can be

classified in two groups: contact and non-contact techniques. The principal difflerence

between them is the way of the shape acquisition. The related-techniques are shown in

Fig.2.1.

Chapter 2. Review of 3D acquisition Techniques

Fig.2.l 3D recovery classification

ln contact techniques a physical mechanical component follows the contour of the part of

interest. Two different ways of data acquisition are used: destructive and non-destructive

techniques.

Destructive devices are those that destroy the part during the process. The system uses a

precise fly cutter to accurately machine away ultra-thin layers of the part. The location of

Stereo
Shape from Shading
Photomefic Stereo

lmage Radar
Laser scanner
Skuctured light
lnterferometry



each layer is computed by software that automatically files each point of data. Because

the devices cut the part into pieces, the part becomes useless for further applications.

Non-destructive methods leave the part intact so it could be used again. In this method a

mechanical arm is used for data acquisition. It follows the contour of the part sending the

detected signal to a computer that registers the coordinates. A coordinate measuring

machine (CMM) is an example of this method.

The measuring device does not touch the part of interest using non-contact techniques.

Usually a source of energy such as laser, light, microwave or sound, is used to create a

reflective effect that is captured by a camera or other data acquisition systems. These

methods are divided in two areas: tamsmisive and reflective. In tramsmisive techniques

light passes through the object. Computer topography (CT) and digital radiography (DR)

are examples of this technique. In reflective techniques the energy applied is reflected

from the object so that a device is able to capture the signal and process it. Depending on

the energy applied, it can be sub-classified into optical and non-optical techniques. kr the

non-optical method a frequency energy source such as microwaves or sound \ryaves are

projected to the object. This method is based on the Doppler effect considering the

energy that is reflected from the surface.

The optical method uses lights as energy. Depending on the light applied, it is classified

into passive and active technique. In the passive technique no external energy is imposed

onto the object of interest. The ambient light is enough to get the shape of the object. One



of the principal problems that these techniques face is at the moment of data

reconstruction. The process of matching the same point at different capfures is complex;

the difficulty includes repetitive patterns, occlusion and bland regions. The advantages

are related to redundancy of images, full modeling of all parameters and the low cost.

The disadvantages are the high level of computation required for the surface

reconstruction; the setting up for each required image; the lack of techniques for fast and

dynamic measurement and low accuracy. Some examples of the passive technique are

stereo image acquisition, shape from shading (SFS), photometric stereo (PS), and

photogrammetry, where commercial digital c¿rmeras, charge-coupled device (CCD)

cameras or video cameras are used for the data acquisition.

Active techniques are based on an emitter that projects some sort of structured and

controlled illumination to the object of interest. In this approach light, such as point or

stripe patterns are projected onto the surface. A sensor, fpically a CCD camera, acquires

images from the distortion of patterns reflected by the object surface. Depth information

is reconstructed by triangulation. Laser scanners are the most common and popular

examples. Some of the advantages of this technique are related to the accuracy obtained

and the easy implementation they can provide. The principal disadvantage is related to

the noise that the ambient light can produce and the high cost. [1-3]

In this chapter a review of the most representative 3D acquisition techniques are

presented. The methods studied are the laser scanner, CN&f, SFS, structured light, and

stereo. The characteristics of each technique and their working processes are discussed.



After analyzing the advantages and disadvantages of each of the presented techniques, a

new approach is proposed.

2.1 Laser Scanners

Laser scanning is an active stereoscopic technique where the distance of the object is

computed using a directional laser light source and a camera. The working principle is as

follows. A laser beam is deflected from a mirror onto the desired object. Light is reflected

and captured by a CCD camera located at a known distance from the laser. Data is then

estimated by triangulation. The camera records the deformation at each point based on

the reflected light, and creates a digitized image of the object known as a cloud of data.

This process is applied more than once to cover the complete surface and to fill the holes

that the initial scan leave. The separate data files from each scanning are combined to

produce a complete integrated image of the scanned object. This method is the most

coÍtmon technique for digitalization because it is fast, robust and easy to use compared to

other methods. The amount of data acquired makes the system highly accurate. The cost

of this device is high.

2.2 Coordinate Measure Machines (CMMs)

CMMs are high preciston measurement equipment that integrates mechanical, optical,

numerical control and computer technologies. Liu et al explained the principle of

operation of a CMM known as parallel-link CMM [a]. The CMM consists of a structure

of three perpendicular joints with servomotors, struts, a probe and a platform where the

object is placed. 'When 
the process is started, the servomotors, located in the three joints,



control the struts to expand and confract along their own axis direction. Variation in the

length of the struts makes the platfonn move in a 3D space. The probe that has a ball in

the end does the measurement of the object. Data acquisition is performed in two

perpendicular directions registering nxrn coordinates. Where n and m aÍe the number of

measuring points. The distance between two measurement points may be constant for

planar surfaces or adapted to a variable curve surface. The CMMs require calibration.

The 13010360-2 standard is used to acceptance of re-verification of the machine [5].

Brenner et al discussed CMM limitations including the high cost and low measurement

speed, corresponding to a long validation time [6]. CMMs are used as the central activity

in quality control and reverse engineering. Quality control is focused on tolerance

verification, which is based on tolerance analysis and verification algorithms. In reverse

engineering CMMs a¡e able to reconstruct the shape of an object by meaning of CAD

software. CMMs provide an accurate and flexible method for data acquisition. Its

advantages are diminished by the slow rate of data captured that is related to the speed

that the probe is moved between meastuements.

2.3 Shape from Shading (SFS)

SFS is the technique used in computer vision to derive a 3D scene description from one

or more 2D images. The first reference to SFS is dated back to Horn in 1970 who

formulated the reconstruction problem [7]. He established that given an intensity image

of a continuous surface, for which the reflectance and illumination are known, the surface

can be recovered. Therefore, SFS deals with the recovery of shape form a gradual



variation of shading in the image given the light source and the surface reflectance

information. This method is cheap and easy to implement. No expensive lights are

required; a simple flashlight can be used for the reconstruction process. A camera and a

source of light are required for the reconstruction. The setup of the system is hard since

the light has to be located in a way that illuminates the object. Surface reconstruction

depends on the way that the light projected onto the object. The surface reflectance

produces noise in the reconstructed image. The accuracy obtained by this method is low.

2.4 Structured Light

Structured light (SL) is a technique based on the projection of light onto the object of

interest. Different authors [8-12] used this technique widely for various applications in

robotics and computer vision. Characteristics of the projected light, such as colour,

dimension and location, have to be known in order to solve the correspondence problem.

When the camera captures the stripe, its characteristics allow obtaining a unique match.

More than one image of the scene is required to reconstruct the entire scene. This is

required since several strips are projected in different times with different intensities and

characteristics. The most common example is the sequence of binary stripe patters

projected by a projector and recorded with a CCD camera. The patterns captured in the

image as deformed stripes are detected with a suitable image algorithm. Thus, the

sequences of patterns are converted into sequences of bit planes. ln other words, the

location of a specific objectpoint is encoded in a sequence of pixel values according to

the bit plane. Given the position of the illuminant projector and the calnera, the range

data of the object can be computed by trigonometry. This method is cheap and easy to

l0



implement. The characteristics of the projected pattem solve the correspondence

problem, making the method suitable for high volume reconstruction. A dark room is

required to reduce the noise produced by light reflection of the object's surface. Since

different pattems are projected one after another, the method is slow and the algorithm is

complex.

2.5 Stereo

This method is based on the way of the human visual system to perceive the depth of a

scene. It is known as stereovision. Stereovision refers to the process in which a scene is

watched by the right and left eye. For example, for two image frames, a projection carries

a typical point of the scene onto two different image locations. The difference is called

the disparity. From this disparity and from the knowledge of some basic geometric

relations between the two imaging systems, the depth of the point can be calculated.

A particular stereo reconstruction process consists of three stages. The first is known as

feature detection that locates special feature points in a scene. kr the second step, the

feature points have to be matched between images, allowing the calculation of a disparity

map of the scene. Finally, in the third step, the depth values of these points are calculated

from the disparity map. The stereo process is very similar to photogrammetry, except for

the featu¡e-matching step, which is usually much simpler in photogrammetry as the

features are marked points fixed on the object surface. The feature detection can rely on

results of the vision research field, and the depth calculation is based on geometry, the

matching of feature is commonly believed to be the most difficult and time-consuming

11



step of stereovisions. Thus, most of the research in stereovision is in the field of feature

detection and matching.

2.6 Analysis of the techniques

The analysis is to evaluate the different characteristics of the presented techniques. The

goal is to define the method to follow or establish a new idea to develop. Table 2.1

presents the comparison between systems and their advantages, disadvantages and cost.

Since one of the restrictions established for this research is to develop a fast and non-

expensive method, the CMM and the laser scanner are discarded. Because another

restriction is to use only one digital picture to make the system cheaper, the stereo

method is not considered. Therefore the research is oriented to those techniques where

only one picture and an external light source are required. For that reason, the SFS

technique and the SL approach are considered.

T2



Table 2.1 Comparison between 3D acquisition systems

Tvpe

CONTACT

Technioue

Slicing

Advantases

Mechanical
Probe

-The volume is
known.
-Hieh accurate
-Specific attention
on important points
-More measurements
could be done
-Hish accurate

Stereo and
Photogram.

Disadvantaees

-Infrastructure is
cheap
-Able to sense the
complete object
-Colour information

- Part is useless
-Takes long time
-No colour infomration

Shape from
Shading

-Takes long time
-Person has to move it
-Probability of mistake
-No colour information

-Infrastructure is
cheap
-No expensive
extemal light

NON
CONTACT

-Slow
-Advance error
detection algorithm
-Camera \il'orkspace

Cost

Structured
Light

Hish

-High quality
precision method
-High Accuracy
-Easy to use
-High working
volume

-Slow
- Surfac e reconstruction
is hard
-Regular accuracy
-No colour information
-Noise from the light
condition

Hish

-Short scanning time
-Not requires
specific light
conditions
-Good resolution
-Low measurement
noise
-High accuracy
-No distortion
-Easy to use
-High working
volume

-Surface Reflectance
-Noisy fringes
-Requires image
enhancement
-Slow data acquisition
-No colour information
-Requires specific light
conditions

Low

Laser Bean

Low

-Considerable post
processing data

Medium

13
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SFS is a technique used in computer vision to derive a 3D scene description from one or

more 2D images. SFS deals with the recovery of shape form a gradual variation of

shading in the image given the light source and the surface reflectance information.

Chapter 3. Shape From Shading (SFS)

In this section a description of the basic theory for SFS is covered, followed by a

comparison of different SFS techniques and finally an improved method is proposed and

tested.

3.1 SFS Basic Theory

An image is defined as a 2D pattern of brightness produced in an optical forming system

[13]. Brightness is referred to two difflerent concepts: image brightness and the scene

brightness. Image brightness, known as irradiance (E), is related to the energy flux that

reaches the image plane as shown in Fig. 3.1. Scene brightness, known as radiance (I),

is the reflected energy by the surface as shown in Fig. 3.2

Fig. 3.1 Irradiance

do/

Fig.3.2 Radiance

T4

Suíace



The tilt (t) and the slant (o) angles define the direction of the light reaching the object.

Tilt of the illuminant is the angle between the projection of the surface normal on the

image plane and the horizontal axis. Slant is defined as the angle between the line of sight

and the surface normal [14,15]. The representation of these angles is shown in Fig. 3.3

Fig. 3.3 Representation of Tilt and Slant angles

The bi-directional reflectance distribution frurction (BRDF) tells how bright a surface

appears when it is viewed from one direction while light falls on it from another. Once

the BRDF is known, it is possible to calculate the reflected radiance in terms of the

source radiance.

Based on the physical properties different surfaces can be classified from the light

reflection. Surfaces can be categorized as pure Lambertian, pwe specular, and the

combination of both known as hybrid surfaces. An ideal Lambertian surface is the one

that appears equally bright from all directions and reflects all incident light, absorbing

none [16]. The Lambertian model is the simplest model of image formation.

l5



A specular surface is presented when the incident angle of the light source is equal to the

reflected angle. Finally, hybrid surfaces are combination of Lambertian and specular

surfaces. Lambertian surface is considered in this research.

Surface orientation is another important parameter to consider. Knowing the position of a

surface, it is easy to determine other constants such as the reflectance map. To explain

this concept a smooth surface is considered since it has a tangent plane at every point.

This tangent represents the orientation of the surface at that point. The normal of the

surface is known and it is used to specify the orientation of the plane. The coordinate

system is fixed to an axis aligned with the optical æris of the imaging system. The surface

normal is aligned in terms of z and the partial derivatives of z with respect to x and

y axis. If a small step áx is considered to start from a given point (x,y), the change in z

can be represented using Taylor series expansion as

^uz^ùz =-¿**,
Ax

where e contains higher order terms. p and q are used to represent the first partial

derivative of z with respect to x ffid y, respectively. Therefore, p is the slope of the

surface measured in the -r-direction, while q is the slope in the y-direction. If a small step

of length õx in x direction is taken, the height changes by p&. Similarly for 6y in y

direction, the height will changeby q6y. The relation between p arLd g is shown in Fig.

3.4.

(3. 1)
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The reflectance map makes explicit the relationship between surface orientation and

brightness. It contains information about surface reflectance properties and light source

distributions, giving scene radiance on surface direction. When a source with radiance E

illuminates a Lambertian surface, the scene radiance is described by

Fig. 3.4 Surface orientation is parameterized
by the first partial derivatives p Mdq of the
surface height z

L = LEcoso,
ît

for 0, >0 where Ø is the angle formed between the surface normal and the direction

toward the source. That equation can be represented in unit vectors as follows:

cosá, =
l+ p,p + q,q

^lt* 
p' + q' Jr+ p| + ql

The last equation shows how bright an image is depending on the surface orientation. The

result of the equation is called the reflectance map and it is denoted by R(p,q).

Usually the reflectance map is normalized to set its maximum to one since the image

inadiance is proportional to the fixed brightness of the source. A Lambertian surface

t7
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illuminated by a single distance point source is related to:

R(p,q) = l+p'*q'rll+p!+qi

The lighting conditions are traditionally simplified assuming an infinite point light

source. This is equivalent to say that the light rays are parallel and reach each point of the

surface with the same angle.

l+ p,p + q,q

3.2 SFS Techniques

According to Tsai et al lITl and Kimmel et al [18], recovering shape can be expressed in

four different ways: depth, surface normal, surface gradient and surface slant and tilt.

In depth the z plane is supposed to be recovered considering the relative surface height

about the x - y plane. In the surface normal the orientation of a perpendicula¡ vector to

the tangent plane on an object surface is recovered. kr the surface gradient the depth rate

of change is considered in x nd y coordinates. The surface tilt and slant are related to the

surface by a magnitude of the surface normal.

(3.3)

Different authors divided SFS into four groups according to the algorithm used:

minimization, propagation, local and linear approaches U9-2I1. Minimization and

propagation approaches are generalized as global approaches. Global approaches

propagate information across a shaded surface starting from points with known surface

orientation. Global algorithms assumed that the surface is smooth in some sense in order

to extact surface orientation. Local and linear algorithms attempt to estimate shape from

local variations in image intensity as was established by Pentland [15]. Local algorithms
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suppose surface shape assumptions in order to extract surface orientation from the

shading information within a small image neighbourhood. ln the following sections the

analysis ofthese techniques are discussed.

3.2.1 Minimization approaches

Minimization approaches recover shape by minimizing an energy function. The function

involves one of the following constrains: a) Brightness constraint, which is derived

directly from the image irradiance. b) Smoothness constraint that ensures that the surface

is smooth in order to stabilize the convergence to a unique solution. c) Intensity gradient

constraint that requires that the intensity gradients of the input image and reconstructed

image are in the same x, y directions, and d) unit normal constraint that forces the

recovered surface normal to be a unit vector U9,201

3.2,2 Propagation approaches

In propagation approaches the shape information is propagated from a set of swface

points to the entire image. Starting points are usually singular points where the intensity

is either maximum or minimum. At singular points the shape of the surface is either

known or can be determined.

3.2.3 Local approaches

The basic assumption in these approaches is that the surface is locally spherical at each

pixel point. Pentland presented a solution in 1984 1221, andthen an improvement of it in

1988 [15]. He assumed that surface points are umbilical points. The idea was to construct
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a linear approximation to the true reflectance function, allowing efficient close forrn

solution for the surface shape. ln order to obtain a convenient and efficient solution, the

intensity equation was transformed into the Fourier domain.

3.2.4 Linear approaches

Pentland used the linear approximation of the reflectance function in terms of the surface

gradient (p,q) [23]. Fourier hansform to the linear function was applied to get a closed

form solution for the depth at each point. The depth map can be computed rearranging the

terms in the equation and taking the inverse Fourier transform. Tsai and Shah applied a

discrete approximation of the gradient (p,q) using finite differences first, and then

employed the linear estimate of the reflectance function in terms of the depth directly

[17]. This approach makes the algorithm faster than other algorithms because each

operation was purely local and it could be applied to any reflectance fi.rnction.

3.3 Selected AlgorÍthms

Due to the good results reported by the authors and the easy implementation of the

algorithms, Pentland's [23] nd Tsai and Shah's approaches [17] were selected and

programmed in Matlab. Pentland's method was chosen because the algorithm produces

good results on most surfaces that change linearly. It was also found that this approach

produces the best result for real images. Tsai and Shatr's approach was selected due to the

simplicity of the algorithm and the good results it generated in a short time.
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These two algorithms were further tested with synthetic and real images. Different

synthetic images of a ball were created in "Autodesk VV 4" with different illumination

conditions as shown in Fig. 3.5. Fig. 3.6 shows the synthetic image that generates the best

result when the 3D surface was reconstructed. This image is considered as the ideal

illumination model due to the results. The image has a bright illumination in the centre

that gradually becomes dark. This is the desired image for any SFS algorithm.

For the real images a camera and lights were required to get the pictures. The camera

used is a "Logitec QuickCam" with mæ< resolution of 640X480 pixels. The lights were

outdoor bulbs arranged in such away that the object gets the illumination in the required

place. Several bulbs were distributed around the object to obtain a better illumination as

shown in Fig. 3.8. The distribution of the lights was performed to get a better

illumination model. Even though in theory the lights are punctual, at the moment of

illuminating only with one lamp, the object was not suitable for reconstruction.

Therefore, several lamps were located along the object to obtain a better distribution of

light in the entire object. A potentiometer was also used to vary the intensity of the light.

The foot image is shown in Fig. 3.9.

The real images used in this section were a ping-pong ball, and a foot. The ping-pong ball

was subject to different light conditions as seen in Fig. 3.7. A rubber cover was added to

the ball to make it a lambertian surface. 'Without the cover, the image behaves like a

specular surface, and the light was reflected producing noise in the reconstruction. For

this model several different illumination conditions were applied to it, only the best

confi guration is shown.
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Fig. 3.5 Synthetic sphere images with
different light conditions created in Autodesk
VIZ 4

æ

F-1L'

Fig.3.7 Real sphere image with different illumination

Fig. 3.6 Ideal sphere
illumination

Fig. 3.8 Lights anangement in the SFS implemented method
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3.3.1 Pentland Approach

Fig. 3.9 Real foot image

Pentland's algorithm uses a linear approximation of the reflectance map. The

assumptions for this method are related to the image properties [23]. The surface is

assumed to be Lambertian, the surface is illuminated by distant point sources and the

surface does not produce shadows. Under orthography projection the normalized image

intensity is: .i'(x,y) =

^lp' 
* q' +l

A Taylor series expansion is applied to convert the equation to a form that relates the

image and 3D surface in terms of their Fourier transforms as:

I(x,y)= cosd +pcosrsino + qsinrsinø - "o)o @' + q'). (3.5)
¿

This is a good approach ifp and q are small and the illuminant direction is oblique. If the

illumination is vertical, the quadratic terms in the last equation dominate and a frequency

doubling effect occurs. Now the Fourier spectrum F, = (f ,0) of z(x,y)is:

F,(f ,e) = m,(f ,e)ei(Ô'u'e)

(3.4)

(3.6)



where m"(f,e)is the magnitude at position (f ,0). Then the Fou¡ier fransform of the

image is:

F, (-f , 0) = 2n sin ofm, (-f , 0)"'(Ó'' r'0)+ r / 2) 
þos á sin r + sin á sin r] .

From this equation if the illuminant direction is given, the Fourier transform of the

surface can be recovered directly as:

F,(f ,0) =

The Matlab code is presented in Appendix A. The illuminant conditions were assigned

based on experimentation. It was seen that the better results in the scale were presented

when: a) the values were close to one in the x direction, b) greater than one in the y

direction, and c) z was set to one all the time. It was noticed that small values in the

illuminant direction, generates the reconstructed surface to be bigger than the original

object.

2n sin oflcos 0 cos r + sin á sin r]
m, (f ,0)ei(þ¡Ç'e)-r 

/2

Fig. 3.10 shows the results of the synthetic ball images using Pentland's algorithm. It can

be seen that the brightness part of the sphere in the picture has the maximum value in the

reconstructed image. Unfortunately, the brightness section of an object sometimes cannot

be reconstructed as the case of the first image in Fig. 3.10. The reconstructed object that

more approximates to a 3D sphere is presented in Fig.3.11. In this figure, light

conditions applied to the object make the brighhess part be in the center and gradually

vanish along the object until black.

(3.7)

(3.8)
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Fi-e. 3. 10 Results of different synthetic ball images using Pentland approach

Fig. 3.11 Ideal illumination for SFS recovery in a
sphere and the reconstructed shape using Pentland
approach

Fig. 3.11 shows some of the results of the ping-pong ball under different light conditions,

and Fig. 3. 13 shows the reconstructed foot.
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Fig. 3.12 Results of the ping-pong ball under different light conditions using Fentland
approach

Fig. 3.13 Real Images reconstructed using Pentland approach
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3.3.2 Tsai and Shah Approach

Tsai and Shah used the reflectance function for lambertian surfaces [17]:

E(x, y) = R(p,q) =

The above reflectance equation can be written as

g = f (E(x,y),2(x,y),2(x -I,y),2(x,y -T))
= E (x, y) - R(Z (x, y) - Z (x - l, y), Z (x, y) - Z (x, y - l))

l+ pp, + qq, _ coso + pcoszsinø + øsinrsinøffi

For a fixed point (x,y) and a given image E , alinear approximation using Taylor series

expansion up through the first order term of the function f about a given depth map Zn-t .

Followed by a Jacobian iterative method, the equation is reduced to:

g = f(Z(x,y)) * f(Z'-' (*,y)) + (Z(x,y) - Zn-t f*,y))å,y)f(Z*' (*,y)). (3.11)

Then for Z(x,y) = Zn (x,y),the depth map at the nth iteration can be solved as:

Z^(x,y)- Zn-t(x,y)+

(3.e)

df (Z*'(x,y)) _

å¡t(z'-'(*,Y))

dZ(x,y)

- f (Z'-'(x, v)

(3.10)

'.I

This algorithm is easy to implement. It also produced good results. The illuminant light

direction was tested with the values recommended by authors. The Matlab code is

presented in Appendix B. Fig.3.l4 shows the results of the synthetic images. Fig. 3.15

(p, + q,

-

^lp' 
* q' +l^lp| + q! +r

(p + q)(pp, + qq, +l

^l@' 
* q' +t)' 

^lpi 
* q: +r

(3.t2)

],, 
,,,
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shorvs the results of the ideal illumination. Fig.3.l6 shows the results of theping-pong

ball and Fig. 3.17 shows the result of the real picture of the foot.

4P'
bb

ry
ry

Fig. 3.14 Results of the synthetic images under different light conditions
projection using Tsai and Shah's algorithm

Fig. 3.15 Ideal illumination for SFS recovery in a sphere and the
reconstructed shape using Tsai and Shah algorithm
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Fig. 3.16 Results of the ping-pong ball under different light projection using Tsai and
Shah algorithm

Fi9.3.17 Real Image reconstructed by Tsai and Shah's algorithm

The last set of pictures (3.10-3.17) show clearly that Tsai and Shah algorithm presents a

better result than Pentland's method. The reconstructed images are smoother comparing

the results in Fig. 3.11 and Fig. 3.15. Tsai algorithm presents a better approximation and

the process is faster. The sphere looks compact and the surface looks better. In the ping-

pong ball the results are not ideal due to the light conditions applied. The important
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difference is shown in the foot image. It is clearly shown that Tsai and Shah's algorithm

presents more detail than Pentland's algorithm. Therefore, this algorithm was chosen for

fi.uther work.

3.4 Modified SFS algorithm

Tsai and Shah's algorithm was improved to obtain better results. The improvements were

focused on the image processing. Before applying the algorithm an image threshold,

image enhancement and image restoration were applied. A threshold was implemented to

isolate the desired object by removing images that a¡e not desired in the recovering

process. A median filter was followed for smoothing the image by the suppression of

noise, and preserving of edges. Finall¡ the image restoration was applied to remove or

minimize some known degradations in an image such as noise infunded by the lights.

Appendix C shows the modified algorithm. After applynlg these modifications, the

quality of the resulting image increments and the reconstructed image is smoother. A

comparison between the three algorithms is presented in Figs. 3.18-3.20. The

illumination model was tested for each image. The bulbs located in different parts along

the objects with different intensities were the only illumination present.

3.5 Discussion

Although the presented results show a 3D shape, the dimensions that the algorithm

generates are not accurate enough as shown in Tables 3.1- 3.3. These tables compare the

minimum value of the data acquired that is the lowest point of the height, and the

maximum value registered that is the highest point obtained in the reconstruction process.
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These tables also show the total difference between the values of the reconstructed image,

the real difference between the measured image and the original image, the error between

the true depth and the estimated one and finally the computer processing time. The

computer used is a Pentium [V, with l3GHz CPU and 520 MB DDR memory.

As shown in the Tables 3.I-3.4, the values of the reconstructed images comparingwith

the original ones differ considerably. In the case of the foot recovery, the reconstructed

high value is a good approximation of the real value. But the other dimensions, such as

the length of the foot, present a large error as shown in Table 3.4. Values obtained in the

modified algorithm are closer to the original dimensions. The modified algorithm

presents a better-reconstructed image since the surface seems to be smoother, and the

approximation to the original value is closer. The disadvantage that the algorithm

presents is the running time. The main reason is the fact that in the algorithm, the image

processing is considered at the moment of time calculation. Compared with the other two

methods, calculation time is increased by three times. Another problem is that the shape

of the object only with the bright parts is well recovered. Dark parts are not recovered at

all. For these reasons and the fact that the light has to be posed in a certain point to obtain

a better result, this algorithm is not suitable for the objectives of the research.
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Table 3.1: Comparing the results of the synthetic ball.

Method

Original
Value

Pentland

Min Value
lmm)

Tsai and
Shah

Implemented

0

Table 3.2 Comparing the results of the ping-pong ball.

-10.59

Max Value
lmm)

-38.03

Method

-43.8s

40

Original
Value

42.32

Total Difference

Pentland

Tsai and Shah

1.64

Min Value
lmm)

Implemented

1.88

(llìm
40

)

0

Table 3.3 Comparing the results of the foot (High Values-Z).

31.73

-r7.25

Max Value
lmm)

Difference
lmm)

-38.08

36.3

Method

-39.12

4t.12

Original
Value

40

0

48.81

Pentland

Tsai and Shah

Total Difference
lmm)

Enor (%)

9.27

Min Value
lmm)

8.2

Implemented

3.6

6.66

r.t2

40

0

20.675

Table 3.4 Comparing the results of the foot (X and Y Values).

Processing
Time (sec)

-38.03

31.56

Max Value
lmm'l

9.25

-38.03

29.88

Difference
lmml

Method

-38.03

32.46

2.8

0

80

Original
Value

2.84

0

2.51

33.5

Total Difference
lmm)

Pentland

Tsai and Shah

33.96

Enor (Yo)

8.44

4.78

Min X
lmm)

10.12

Implemented

34.5

7.54

80

0

A new method has to be tested to get a better result. A static light is required to avoid the

problems presented in the SFS approach. The suggested method is Stn¡ctured Light. The

literature review of this method will be discussed in the next chapter.

Processing
Time lsec)

2t.t

7r.s3

r66

MaxX
lmml

25.3

Difference

65

t54

18.85

72.53

r54

(

260

0

cm

r4.11

)

0

Difference X
lmm)

806

15.99

8.47

Enor (%)

798

29.4

790

15

260

7.47

640

10.58

Processing
Time lsec)

Error X
(Y"\

644

18.75

636

9.33

0

146.15

25

t47.69

23

144.61

80.8
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A structured light system is based on the projection of a single pattern or a set of patterns

onto the measuring scene, which is imaged by a set of cameras. Structured light is an

effrcient technique for obtaining 3D scene information of an object by using a specially

designed light source to project sheets or beams of light with a known a priori spatial

distribution on to the object. [24]

Chapter 4. Structured Light

A complete overview of the structured light technique is presented in Fig. 4.1. The

general classification is based on the coding strategy applied. The sub-classification is

according to the code used for projecting the pattem. The idea of this review is to know

the existing methods proposed and then develop a new approach. These techniques are

discussed as follows.

Time Multiplexing

BinaryCodes

Structured Light

GrayCode

Spatial Neighborhood

Fig. 4.1 Classification of the Structured Light

N-anayCode

Hybrid Code

Nopformal Codification

M-ana1s

Direct Codification

Gray Levels

Color
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4.1 Time-multiplexÍng strategy

One of the most commonly exploited strategies is based on temporal coding. In this case,

sets of patterns are successively projected onto the measuring surface. This technique can

achieve high accuracy in the measurements due to two factors. The first one is related to

the multiple patterns projected. The location basis tends to be small and therefore a small

set of primitives is used, being easily distinguishable from each other. The second factor

is due to the position of a pixel. The pixel is encoded more precisely while the patterns

are successively projected. As it is shown in Fig. 4.1, according to the techniques used

the multiplexing approaches are classified as: a) techniques based on binary codes,

where a sequence of binary pattems is used in order to generate binary strips; b)

techniques based on n-array codes, where a basis of n primitives is used to generate the

projected strips; c) gray code combined with phase shifting, where the same pattern is

projected several times, changing the direction in order to increase the number of strips;

and d) hybrid techniques, which are a combination of time-multiplexing and

neighborhood strategies.

4.1.1 Techniques based on binary codes

There are only two illumination levels commonly used in binary codes, which are coded

as 0 and 1. An important characteristic of this technique is that only one of the axes is

encoded. Postdamer et al first proposed the projection of a sequence ofm pattems to

encode 2'stripes using a plain binary code as shown in Fig. 4.2 1251. The number of

stripes is increasing by a factor of two at every consecutive pattern. lnokuchi et al.

improved the codification scheme by introducing gray code instead of plain binary [26].
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Its advantages are that consecutive stripes have a pixel distance between the strips, being

more robust against noise. Trobina presented a model of coded light based on gray coded

patterns 1271. He demonstrated that by simple bina¡ization of the images, the edges of the

stripes can be found. After experimental results, he realized that linear interpolation is

more accruate than other order interpolations.

Fig. 4.2 Postdamer Pattern

4.l.2Techniques based on n-array codes

The main drawback of the schemes based on binary codes is the large number of patterns

to be projected. However, the fact that only two intensities are projected makes easy for

the segmentation of the imaged patterns. There was work concerning the problem of

reducing the number of patterns by means of increasing the number of intensity levels

used to encode the stripes. The authors that worked in this technique are Hom and

Kiryati. They proposed that codes are based on multiple gray levels instead of binary

levels as shown in Fig. 4.3 L281. The aim of the work was to find the smallest set of

patterns that meet the accuracy requirements of a certain application producing the best

performance under certain noise conditions.

Fig. 4.3 Horn's Pattern
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4.1.3 CombÍnation of Gray code and Phase shÍfting

Patterns based on gray code, as well as binary and n-array codes have the advantage that

the codification is made in each pixel. It means no spatial neighborhoods have to be

considered. However, the discrete nature of such patterns limits the range resolution.

Phase shifting methods exploit higher spatial resolution since they project a periodic

intensity pattern several times by shifting it in every projection. The drawback is the

periodic nature of the pattems, which introduces ambiguity in the determination of the

signal periods in the camera images.

4.1.4 Hybrid methods

In the bibliog¡aphy, there are some methods based on multiple pattem projection. They

use time multiplexing, and also take account of spatial neighborhood information in the

decoding process. The idea of Sato consisted of designing a certain binary pattern whose

rows have a sharp impulse on its auto-correlation function [29]. The pattern is projected

several times by shifting it horizontally several times. For every projection, an image is

grabbed, in which the maximum autocorrelation peak of every row is computed.

Knowing the phase shift of the corresponding projected pattem, the pixels containing

such peaks can be reconstructed by triangulation. Hall-Holt and Rusinkiewicz divided

four patterns into a total of 111 vertical stripes that were painted in white and black [30].

Codification is located at the boundaries of each pair of stripes. Fig. 4.4 shows the

pattern.
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mrumru
Fig.4.4 Hal-Holt et al pattem

4.2. Spatial neighborhood

The techniques in this group tend to concentrate the entire coding scheme in a unique

pattern. The strip that labels a certain point of the pattern is obtained from a

neighborhood of the points arotmd it. However, the decoding stage becomes more

difficutt since the spatial neighborhood cannot always be recovered and 3D errors can

arise. Normally, the visual features gathered in a neighborhood are the intensity or color

of the pixels or groups of adjacent pixels included on it. These spatial neighborhood

techniques can be classified as: a) strategies based on non-formal codification, where the

neighborhoods are generated intuitively; b) strategies based on M-arrays.

4.2.1 Strategies based on non-formal codification

Some authors have proposed techniques based on patterns designed so the required

information can be generated with a different label for different regions without using

any mathematical coding theory. Maruyama and Abe designed a binary pattern coded

with vertical slits containing randomly distributed cuts as shown in Fig. 4.5 1311. The
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system was designed for measuring surfaces with smooth depth changes. The random

cuts generate a set of linear segments so that its own length and the lengths of the six

adjacent segments determine the position of a segment in the pattern.

l | il ilil | 
lt 

| il ll il il | ll| | ll | il ll il | lt I ll lll| lil | lllill

Fig. 4.5. Maruyama's pattern

Durdle et al. proposed a periodic pattern composed by horizontal slits encoded with th¡ee

gray levels [32]. The pattern is formed by the sequence of a band of four black pixels,

followed by a band of four white pixels and continued by a band of four half bright

pixels. This sequence is repeated in the pattem until it covers all the vertical resolution.

An example of pattern codification is shown in Fig. 4.6.

4.2.2 Strategies based on M-arrays

Fig. 4.6. Durdle's pattem

There is a set of authors who have adopted the theory of perfect maps in order to encode

a unique pattem. Using M-arrays to codiff a pattern means that a bi-dimensional coding

scheme is being used. Because every point of the pattern has a different label, vertical

and horizontal coordinates are encoded. However, some authors prefer to project .

additional patterns in order to ease the segmentation part of the system or to carry out an

intensiry or color normalization. For example, Morita et al. designed a pattern made by
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painting black dots on a white background, for the array elements corresponding to

symbol i, as it is shown in Fig. 4.7 1331. Two patterns are projected onto the surface: the

first one contains all the possible black dots in order to locate their centers in the camera

image. The second pattern is the M-array representation.

aaaaaaoaaalaaa
aaooaraaalaaaa
aaraaaaoaataa¡
aaaraaafaraaaa
oaaaaaaaalraaa
aataaaaaaaaaaaoaafallaaaaa¡aaorrfaalalaaaatalaararlllaao
aaaaaaaaaaaaao
aalaa¡a¡aaaaaa
aaaaaaaaataoaa
aa¡ataaaaaaaaa¡alrarattlaal¡

I Illunlinateddot

Fig. 4.7 Morita's Pattern

ao aa aaaa aa
o aaa a la aaa
aaaa aaoao a a
aaaaaaaaaaa alaaaaaaaaaaaaar aalolaa aaoaaaoaaaataa ala taooa¡t ta laalolta
aaaaa ¡a a aaa
aar aalaatao ao aaaltaaaaaaf aaaaaalaata tlaa I aa a

Morano et al. proposed an algorithm for constructing an M-array, fixing the lengfh of

stripe, the window property size, the dimensions of the array and a distance between

every window [34]. Since every dot is contained in nine windows, the authors applied a

voting algorithm where every window proposes a codeword of length. This codeword

indicates its position in the pattern for every one of its elements. Then, every imaged dot

has up to nine labels proposed by every window that it belongs to. The label with

maximum number of votes is the more reliable, so it is used to label the dot. The pattern

is shown in Fig. 4.8.

Fig. 4.8 Morano's Pattern

4.3 Direct codification

Direct codification is usually constrained to neutral color objects or pale objects. For this

reason, it is necessary to perceive and identify the whole spectrum of colors. Two groups
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of methods using direct codification are identified. The first one is known as codification

based on gray levels, where a spectrum of gray levels is used to encode the points of the

pattern. The other one is the codification based on color, where the advantages of a large

spectrum of colors are applied.

4.3.1 Codification based on gray levels

Carrihill and Hummel developed a system called intensity ratio depth sensor. It consists

of a linear wedge spread along vertical columns containing a scale of gray levels as

shown in Fig. 4.9 1351. A ratio is calculated between every pixel of the imaged wedge

and the same pixel value under constant illumination. Since two patterns must be

projected, dynamic scenes are not considered. Miyasaka et al. reproduced the intensity

ratio depth sensor by using an LCD projector and a CCD camera. [36]

4.3.2 Codification based on color

The methods belonging to this goup use the same principle as the ones discussed in last

section by Carrihill and Hummel and Misayaka. However, color is used to encode pixels

instead of using gray levels. For instance, Tajima and Iwakawa presented the rainbow

pattern as shown in Fig. 4.1.0l37l.In this method, large sets of vertical narrow slits were

encoded with different wavelengths. A large sampling of the spectrum from red to blue

was projected. Two images of the scene were taken through two different color filters. By

calcrrlating the ratio between both images an index for every pixel is obtained that does

not depend on illumination, or on the scene color. Geng improved this approach by using

single image of the measuring surface [38].
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Fig. 4.9 Hummel Pattern

4.4. Proposed method of grid projection

In the literature review it was observed that by projecting strips or beams of light with a

known spatial distribution on to the object the correspondence problem was solved. It

was also reviewed that only the vertical or horizontal axis is used for the reconstruction

process. It was mentioned that using a simple binarization of the image the strips of the

projected pattern could be found when only black and white strips are projected. Finally,

it was demonstrated that only one image was enough for the reconstruction of the object.

Following these ideas, a new method is proposed and implemented.

Blu'

Fig. 4.10 Tajima pattem

In this research a static mesh with non-colored grids is projected to the object. The image

captured by a digital camera is used for the reconstruction. The grid composed of a single

projection of nxn slits is shown in Fig.4.il. The horizontal and vertical lines have

known dimensions and distance between them due to a prior construction process.

Moreover, the location of each corner formed by the lines is also known since a mark is

presented in the middle of the grid to establish a reference point.
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The technique used fbr unique identification is based on the position of the comers

formed by the intersection of the lines. Only the lines are considered and not the squares

formed b.v- the intersection of them. Each position of a line can be tracked since the

distance bet*'een lines is known. When the line is deformed due to the characteristics of

the object a comparison between the pixels around the line is performed. If the value is

grater than an established distance, the point is considered not part of the same line.

Fig. 4.1 I Proposed grid

The slits are designed and projected in such a way that each slit is easily identified and

referred to the center of the pattem. Vertical slits are in the X-axis and the horizontal ones

are in the Y-axis. This allows finding a slit on a single a,ris, and finding each crossing

point in both axes. Each imaged crossing point can be located, obtaining the fi,Y)
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position from where it comes from, and the imaged slit segments can be located knowing

where it is vertical or horizontal.

The pattern projection system can be placed in any orientation with respect to the camera

because a relation between the projector and the camera is established in the calibration

step. When the pattem projection system is used to capture 3D information of an object, a

camera takes a picture of a grid projected onto the object under study. The deformed

pattern along the image is reconstructed to 3D points by triangulation. The principle

follows the stereo approach with the difference that the second c¿rmera is substituted by

the projector. Using the projector, for each point captured in the picture by the camera,

the related coordinates of the grid are known solving the correspondence problem. As the

camera, the projector must be calibrated. The values of the projector a¡e estimated in the

same way as the camera. It is assumed that the projector works like the second camera.

This approach is intended to obtain a much better approximation of the object shape

compared with the SFS method reviewed in Chapter 3. Projecting the grid along the

object with minimal spaces between the strips of the grid is assumed to generate an

accurate reconstruction. The cost involved in the process is low since only a digital

camera and a data projector are required. In the next chapter the complete mathematical

model of the proposed method is introduced.

46



5.1 Description of the method

The basic idea of the approach is to project a non-colored mesh to the object of interest

with a data projector. A digital camera captures the scene where the object is present.

These deformed lines are the clue for obtaining the 3D data of the object.

Chapter 5. Grid Projected Method

The method is divided into two areas as shown in Fig.5.l: inÊastructure and 3D

reconstruction process. The infrastructure is related to the physical devices use for the

reconstruction such as the carnera, the projector and the calibration pattems. The 3D

reconstruction is the procedure followed to complete the reconstruction.

Pictue Acquisition

Fig. 5.1 General overview of the method

The overview of the proposed method is as follows. Firstly, the camera and the projector

need to be calibrated to obtain the intrinsic and extrinsic values explained in the next

ComerDetection Camera and Projector
Calibnation
Interpolæion

Relation between
the camera and the griC

Triangulation
Mesh Reconstruction
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section. A calibration pattern is used to link the image to an established real world

coordinate system. This relation is performed by detecting the same points of the

calibration patterns in the image coordinate system and the real world coordinate system.

Once the instruments are calibrated, they have to be related to a common coordinate

system. ln this case they are related to the camera's coordinate system. Next the camera

takes the scene where the grids are projected into the object under reconstruction. The

corners created by the intersection of the lines a¡e deformed in the object. The comers are

calculated and related to the center of the projector and the center of the camera. The

center of the projector is located in the middle of the projected grid. The center of the

picture is the center of the image acquired. The centers are not necessarily in the same

position. The triangulation and mesh reconstruction follows the process. The complete

skeleton of the method is shown in Fig. 5.2.

The differences of the proposed method from the structured light are: a) the grid

projected is static, it is not a set of grids projected in different time; b) the projected grid

has only one color, black; c) the thickness of the grid is considerably thinner, only lines

are projected and not strips or dots or columns vrrith different color or gray intensity; d)

only one picture is taken. The use of the proposed method consists of infrastructure and

3D reconstruction.
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Fig.5.2 Description of the Data processing steps

5.2 Infrastructure

The basic components of the system include

computer, a calibration pattern and the grid

components of the system.

The projector used is an "EPSON Power-lite 9100" series. The camera is a "Sony FD

Mavica" with 2.1Meg Pixels. The resolution used for this resea¡ch is 1200X1600 pixels.

The computer is a Pentium IV, with l.|GHz. CPU and 520 MB DDR memory.

a data projector, a digital c¿tmera, a

projected. Fig. 5.3 shows the basic
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abcd
Fig. 5.3 Components of the System, a) projector, b) camera, c) object, d) base

The calibration pattern is formed by equally spaced planar black squares on a white

background simulating a chessboard. The pattern is located in a base formed by two

perpendicular walls. This system represents the world coordinates:Xn,Y*,Zn. Fig.

5.4(a,b) shows the world arrangement of this system as well as the camera and projector

calibrations patterns used.

The grid is composed by a single projection of nxn slits as shown in Fig. 5.4c. Non-

colored strips are presented in both vertical and horizontal directions. A mark is presented

in the middle of the grid to establish a reference point. The camera and the projector are

placed in parallel. The camera is located at the right or left side of the projector.
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Fig. 5.4 World arrangement and Calibration patterns
a) Camera Calibration Pattem, b) Projector Calibration Pattern, c) Grid Projected

5.3 Reconstruction Process

The reconstruction process is divided into three steps as shown in Fig. 5.1. The first step

is the system setup that involves the acquisition of the pictures required for the

reconstruction. These pictures are used for the camera and projector calibration, as well

as the projection of the grid on the scene to be reconstructed. These pictures are shown in

Fig.5.4(a-c).

The next step is preprocessing. The acquired images are prepared to be used in the

following step. The last step is data processing for the shape recovery by calculations.

The first calculation is the camera and projector calibration. This calibration is performed

once only if the camera and the projector are not moved when taking the picture of the

projected grid. Then numbers of corners in the object are increased by interpolation.

Triangulation is required next for preparing the data for the final step called mesh

generation.
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5.3.1 System Setup

The first step for the reconstruction is the calibration of the camera and the projector. A

physical pattern is used for the camera calibration as shown in Fig. 5.4a. For the projector

calibration, the projector displays the pattern on the world system as demonstrated in Fig.

5.4b. The world dimension of each pattern is measured to relate it with picture

coordinates. Once the pictures of the calibration patterns are taken, the projector shows

the grid. This projected grid, created in MS Excelru, is aligned with the center point of

the projector to ensure correspondence. The projected grid is shown in Fig. 5.4c. After

this alignment, the object is placed and a single picture is taken and loaded into the

computer for the next step.

5.3.2 Preprocessing

This step is the preparation of the pichres for fi¡ther processing. The main goal is to de-

noise the pictures and to find the corners presented on them. A corner detector is used to

achieve the task.

a) Corner Detection.

The detection of feature points in images is essential for many tasks in computer vision,

such as structure from motion; object tracking and 3D scene reconstruction from stereo

image pairs just to mention some. Gonzales and Woods [39] define corners as connected

pixels that lie on the boundary between two regions. He also relates comers as pixel

intensity discontinuities in an image that refer to connected chains of edge points.
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The corner detector must satisfy the requirements that a) all the corners should be

detected; b) no false corners should be detected, c) corner points should be well localized

and finally d) the detection should be efficient. Corner detection is typically a three-step

process: noise smoothing, enhancement and localization. Noise smoothing is the

suppression of the image noise as much as possible, without destroying the true edges.

Enhancement is the design of a filter responding to the corners. The filter's ouþut is large

at comer pixels and low in other regions of the image, so that corners can be located as

the local maxima in the filter's ouþut. Finally the corner localization is decided by which

local maxima in the filter's ouþut are corners and which are not. A threshold is normally

applied.

The corner detector used is based on the Harris and Stephens algorithm. Harris described

what is known as the "Plessey'' feature point detector [40]. It estimates the

autocorrelation from the first-order derivatives of the image, where at each pixel location

a 2X2 autocorrelation matrix is computed as:

A=w*[ 
(o,J' (#)t#)]

A=w 

lrnw) [#)']

I(x,y) is the gray level intensity and w is a Gaussian smoothing mask. The filter is used

to avoid false corners located due to the image noise. The matrix characterizes the

structure of the grey levels. These levels are represented by the eigenvalues of A and

(s.l)
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their geometric interpretation. I is symmetric and can be diagonalized by a rotation of

the coordinate axes. Thus I as a diagonal malrix is represented by:

lz ol
A=w*l ' L

Lo )"J

The two eigenvalues, Aand Â"rare both nonnegative as is explained next. If the

neighbour is perfectly uniform, the image gradient vanishes everywhere so I becomes a

null matrix and the relation 4 = l, = 0 is present. If the neighbours are ideal black and

white step edge, the relatiofr 1z=0,4>0and the eigenvector associated with l.,is

parallel to the image gradient. Finally, if the neighbourhood contains the corner of a black

square against a white background, the relation 4 > l, > 0 is expected. The larger the

eigenvalues, the stronger their corresponding lines.

A corner is identified by two strong edges; therefore, as ).>1r, acomer is a location

where the smaller eigenvalues 2, is large enough.

The used algorithm can be simplified as follows. The input is formed by an image l and

two parameters: the thresho ld on ).r3 aÍtdthe linear size of a square window with size

2N+ I pixels.

1. The image gradient is computed over the entire image -I
2. For each image pointp,

(s.2)

a. The matrix C is formed over a (2N + 1) x (2N + 1) neighbourhood I of p.

b. 2, is computed, getting the smallest eigenvalues of C

c. if 4 > r the coordinates ofp are saved into a list Z

The list Z is sorted in decreasing order of )"r.
For the sorted list from top to bottom: for each point p, all points appearing

further on in the list that belong to the neighbourhood of p afe deleted.

J.

4.
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The output is a list of feature points which 1r)r and whose neighbourhoods do not

overlap. The algorithm corner. m is presented in Appendix D.

The results corresponding to the corner detector are presented next. The image tested is

an electric kettle where a grid is projected onto it as shown in Fig. 5.5.The pictures show

different values of the Gaussian smoothing mask, variable defined as w in equation 5.1,

as well as the th¡eshold applied to the images. The values tested were based on the

recofitmended by the authors where the algorithm comes. This is a smoothing constant

equal to 2 and thresholding, that is optional, equals to 1000. The corners detected under

different conditions are presented in the Figs. 5.6-5.8.

Fig. 5.5 Original image to be tested with different
conditions of comer detection
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Fig. 5.6 Corners detected with th¡eshold equal to 2500 and a) w:5 b) w:3, c) w:l

Fig. 5.7 Corners detected ivith threshold equal to 1000 and a) w:5 b) || :3, c) w :l
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Fig. 5.8 Corners detected with th¡eshold equal to 10 and a) w

As it is observed, the difference of the corners detected by varying the smooth constant as

well as the threshold in the algorithm allow to acquire different corners even of the same

image. Setting the threshold low as well as the smooth constant, bright objects are

identified, obtaining a better result.

5.3.3 Data processing

Data processing involved several different operations such as the camera calibration,

linear interpolation, relation of the picture and the camera with the center of the grid and

finally the triangulation.

c

=5 b) w :3, c) w:l
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a) Camera and Projector Calibration

The goal of the calibration method is to obtain the intrinsic and extrinsic parameters of

the camera model. Given the correspondences between a set of point features in the world

(X * ,Yn ,Z*) and the projection in an image (x ¡,, !,^) , the calibration can be calculated.

In this section the calibration algorithm used is presented. The algorithm is programmed

in Matlab. It is assumed that the world reference frame is known. In this case, it is located

in the middle of the projected pattern as shown in Fig. 5.4c. It is also necessary to have

the pattern's corners in world coordinates (X,f ,Z) as well as the corresponding value in

the image (*,y). These values are obtained with the corner detector.

The algorithm is used for both, camera calibration and projector calibration. The only

difference is related to the calibration pattern used. For the camera a physical pattem is

photographed. For the projector, even the calibration pictures are taken with the same

camera; the projector projects the pattem. Raskar and Beardsley considered the projector

a dual of a camera so that the image projection process can be expressed using the

standard pinhole camera model [41]. The internal and extemal parameters of a projector

Fig. 5.9 World Reference Frame
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can be expressed in the same way as those of the camera. The projector cannot view the

illuminated surface, thus, to calibrate a projector is necessary to give the correspondence

between six or more 2D projector pixels and corresponding 3D points on a known target

object as mentioned by Faugeras [42]. Since the projector is supposed to be a second

camera, this calibration is possible.

The exhinsic parameters model the position and orientation of the camera frame with

respect to the world reference frame [a3]. They define the relation between the camera

coordinate system located on the image plane with respect to the world coordinate system

located at any point in the scene. These parameters are necessary to link the pixel

coordinates of an image point with the corresponding coordinates in the camera reference

frame.

The transformation uses a 3D translation vector Z

the relative positions of the origins of the two

orientation of the coordinate axis of the camera

system. Z is represented by

lr,1tt
r =lT, I

lr, )

The matrix R is the product of the rotation of ot,þ,rc þitch, roll, jaw) degrees around the

axes x, y, z respectively. Each rotation is expressed by the following equations.

and a rotation matrix R. T describes

reference frames and R gives the

with respect to the world coordinate
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[ro
I((ø) =l 0 cosú)
I

L0 srnú)

el
-srnar l;

.o- J

So thatR is represented as:

fcos/cosr -cosøsinr +sinøsin/cosr
I

R =i sinrcosr cosøcosK+sinøsin/sinr

L -ri"/ sinøcos/

I cosó 0 sin/l 
fcosr

R,(ó)=l 0 1 1 l;&(r)=l sinr

[-sin/ocos/J Io

To simpliff the representation of the -R matrix, it is represented with respect to its three-

orientation vector r,

( ,r, rtz /i, I
R =l ,r, rzz ,rr l

[n, ttz 
'rr)

-sinr
cosK

0

sinøsinr + cosøsin/cosr I
- sinø cosr + cosø sin/ sin r I

cosøcosþ J

As shown in Fig. 5.10, the relation between the coordinates of a point

and camera { frames is given by

I = R(L-r)

or by components

I x"1 I x.f
l¿ l= nlr-l+r
lt,) lr")

0l

ol 64)
1J

(s.5)

X 
" 

= rrrX, + rrrYn + rrrZ n + T,

Y" = rrrX n + rrrYn + rrrZ n + T,

Z, = rrrX * + rrrY* + rrrZ * + T,

(5.6)

Pin a world{

(5.7)
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The intrinsic parameters are needed to characterize the optical, geometric and digital

characteristics of the viewing camera. They relate a 3D object point with respect to its

observable 2D projection on the image plane. The 3D object point must be expressed

with respect to the camera coordinate system, and the 2D image point with respect to the

image coordinate system. The camera intrinsic parameters are defined as the focal length

.f , the location of the image centre in pixel coordinates (o,,or), the effective pixel size

in the horizontal and vertical direction J,,s.y, and the radial distortion coefficient Æ.

Fig. 5.10 The relation between camera and world
coordinate frames

The modeling of the intrinsic parameters is divided by þal in four variables. i) Ideal

projection that models the projective relationship befween a 3D object points in its 2D

image point. ii) Lens distortion that takes into account the discrepancy between the ideal

2D point and the observed 2D point. iii) Pixel adjustment that transforms the 2D

observed point from metric coordinates to pixels. And iv) principal point that gives the

2D observed point coordinates with respect to the computer coordinate system.
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i) Ideal projection

Consider that any optical sensor can be modeled as a pinhole camera. It is assumed that

the camera coordinate system has been located at the optical centre C with the Zraxrs

along the optical axis of the image sensor. Also it is pre-established that the image plane

is located at a distance/from the optical centre C, and it is parallel to the plane defined

by the coordinate axisxr,Yr. From these assumptions, an ideal projection P,, on the

image plane must lie on the line passing through the object point P and the optical centre

C. In order to obtain the equations that relate the 3D pointPu with respect to P andl the

geometric law of the perspective relation will be used as in [45,46]. The perspective

relation is given by the following equations:

x, _ Pr" Y, _ Pr,

f P^' .f Pz.

*, = f ?r',tzc

Therefore, a single intrinsic parameter has to be considered in order to model the ideal

projection; this parameter is the focal length/

D

- 
f tY"
- 

Pr-

ii) Lens distortion

Weng et al. l47l demonstrated that as a result of some imperfections in the design and

assembly of the lenses, the linear relationship of the perspective projection is not true.

Lens distortion can be modeled by a radial and tangential approximation. Radial

distortion causes an internal or external displacement of a given image point from its
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ideal projection. This type of distortion is mainly caused by imperfect radial curvature of

the lens. The displacement given by the radial distortion can be modelled by the

following equations

x = Xo(I+ krrz + krr4)

! = Y¿(l+ krrz + krra)

Where Xd,Ydare the coordinates of the distorted points, r is the radial distance of the

observed projection from the projection of the focal point on the image plane. And

kt,k2... are the coefficients of the radial distortion. Since they are usually very small,

radial distortion is ignored whenever high accuracy is not required in all regions of the

image, or when the peripheral pixels can be discarded.

Tangential distortion models the optical system subjected to various degrees of decentre

ring. That is, the optical centres of the lens elements are not strictly collinear. Most of the

authors have affirmed that radial distortion is the most important lens distortion.

iii) Pixel adjustment

The pixel adjustment is based on the transformation of the real projection on the retinal

plane from metric coordinate to the coordinates of the image plane in pixels. This

transformation is based on a simple scale'adjustment of both axes shown in equation

5.1I. Xd,Yo are the real projection with lens distortion in metric coordinates and X o,Yo

are the same point expressed in pixels.

(s.12)

63



Xo=s,Xu

Yo:srYu

Fig.5.l shows these relations.

iv) Principal Point

The principal point, also known as image centre, is def,rned as a point ox,oy orrthe image

plane given by the intersection of the optical axis of the camera and the image plane. The

principal point is the projection of the focal pòint on the image plane that is given in

pixels.

(5. 13)

Oçi Y.t
()ç. Yo)

Fig. 5.11 Transformation from metric coordinates of the retinal plane to pixel
coordinates of the image plane

The origin of the coordinate system in the computer image plane is located at the left

superior corner of the image. Fig.5.l2 illustrates this relation. A translation is required in

order to place the principal point from the corner of the image to its real location on the

image plane. This translation is given by the. values o,,o y, with respect to each axe of the

coordinate system. o* and o/ axes of the computer image plane are inverted from the X ,

and the Y, axe of the retinal image plane.

hnage
Plane
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Given a point x¡^,1¡, expressed with respect to the camera coordinates system, the same

point will be expressed with respect to the computer image coordinate system using the

following equations.

x,^=-(Xp+o,)s,

!,, = -(Yp + or)s,

The resulting pointx,y is the point observed

computer.Error!

ï
(0

V

Cornputcr inra_{c.

co-ordin:rtc
svste¡ìt

U

(s.14)

in pixels on the image plane of the

X

Fig. 5.12 Transformation from the coordinate system of the
camera image plane to the coordinate system of the computer
image

v) The whole camera model

(rb,\'o)

Now it is possible to establish a relation between the pixel coordinates of an image point

with the world coordinates of the corresponding 3D point. The equations (5.7) and (5.14)

are the basic equations of the perspective projection in the camera frame to obtain the

relation

Canr¡.-ru

co-ordi¡ratc
s,rstenì

\
Principll point
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where Ri, i=1,2,3, is a 3D vector formed by the i-th row of the matrix R. Last

equations define the 3D coordinates of a point in the world reference to the image

coordinates of the corresponding image point, via the camera exhinsic and extrinsic

parameters. If the radial distortion is not considered, the intrinsic parameters and extrinsic

parameters are combined as follows:

!-or:- f

rrr(X.) + rrr(Y*) + rrr(2,) + T,

rrr(X -) + rrr(Y*) + rrr(2.) + T,

AIso (5.13) can be rewritten in a matrix product of two matrices defined as: M,n, and

M"r,ß

rrr(X *) + rrr(Y*) + rrr(2.) + T,

(-flt, o z,) (r,, rtz t, 1,1
M.,:l o -flt, v"l;M*,=lr^ rzz lzt rrl

I o 0 l) l.t, rtz rst T,)

(5.1 s)

The last equation is a 3X3 M,n, only depending on the intrinsic parameters, while the

3X4 matrix M u,only depends on the extrinsic parameters. A forth coordinate is added to

obtain a linear matrix equation describing perspective projections. The linear matrix

equation of perspective projection is then

(5.16)

(s.t7)
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(5.18)

47, 481. For convenience, M^rMu, aÍe

iill)

(s.1e)

ffitz ffitt

ffizz ffizt

ffitz ffitz[l] "-,-ll)l¡,

The solution is presented based on f4I, 42,

substitute for M :

r't 4+)
It is assumed that o, = oy= 0 and ^s, =.s, = 1

(- fr" - fr,, - fr,, nTr\
u =l - frr, - h, - .frr, ßîr I

I n, rtz rtt ßîr )
(s.20)

(s.2t)

Note that the sub-index of the variables is changed since more than one point is arnlyzed

at the same time.

The matrix M is defined up to an arbitrary scale factor and has therefore only eleven

independent entries. The eleven entries are the fact that zu is divided by r2,,. At least

mr.,Xï +mrrY,* +mrrZ! +mro

mrrXï +mrrY,n +mrrZ! +mro

mrrXï +mrrY,o +mrrZi +mro

mrrXï +mrrY," +mrrZ! +mro

u,
^- w.

I

u,

w.I
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N = 6world-image point correspondences to solve for the entries of M are required. The

values of mu are determined through a homogeneous linear system formed by equations

5.21. However, with the use of the calibration pattern many more correspondences and

equations can be obtained because more points are located. Therefore, M can be

estimated through the least square technique. It is assumed that l/ matches are given for

the homogeneous linear system:

Am =0

where

xl
0

x2

0

YtZtl
0 00
Y2 22 1

000
A_

000
xt Yt zl
000

x2 Y2 22

XN YN ZN 1

0 0 00

and

o -xrx,
| - y,X,

0 - xrX,
L - yrX,

m = lmr, I,tp 2...,,\3, * rol

0000
XN YN ZN 1

The vector z can be recovered from St/D related techniques as the column V

corresponding to the zero singular value of A,with A=(JDVr .

- xrY, - xrZ, -xl
- YtY, - ltZt - lt
- xrY, - xrZz - xz

- !rY, - !rZ, - lz

The last column of V is denoted as m so the next relations are established

vhere r is the scale factor and, y = 
t

m = Km OÍ m = fn wneÍe K rS tne Scale 
K

-xrX, -x*Y* -x*Z* -xN
-l*X* -xrY, -xrZ* -f¡t

(s.22)

(s.23)

(s.24)
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Matrix M is calculated with the help of the calibration pattern. Different positions in the

world coordinate system are taken, and then these positions are located in the camera

coordinate system. The same points in the image taken by the camera can also be found

by this relation. The code of this section called Projmat.m is presented in Appendix

E.

The camera parameters are calculated as functions of the estimated projection matnx M

The full expression for the enhies of M is rewritten as follows:

l- frrrr+oxr3t -.f,rrr+oxr3z - -f,ru+oxrß - frT*+orT"l
M =l-frrrt+oyr3t -frrrr+oy\z -frru+oyhr -frTr+orT"l {s.ZS)

L r' tsz rtt T, l

The vectors are defined as:

f^ 'tT
qr = wn,mn,ffin l

r^ T
Qz = Vflzt,ffizz,ffizz l

r^ w
llt = Vfrtt,r/\2,r/\31

f^ 1T

Q q = vnv ,t7t2a 7n\4 l

Since M is defined up to a scalar factor

U =ylut .

The scalar factor is obtained from q, that is the last row of the rotation matrix R .

From the last row of M itis established that

T, = ofiro (5.28)

(s.26)
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rr, = Õfir,

where o = *1

Taking the dot products of q,

o,=g14,

o, = gIÇ1,

1_
- Jt-

ancl
f-Jy

with qrand Qzit is found that

The remaining parameters are obtained as

rr,=o(o,ñrr-fir,)l f,
rzi=o(oyñrr-ñr,)l f,
T,=o(o,7,-ñr)lf,
T, = o(orT, -ñr)l f,

(s.2e)

The sign of o is obtained from T, = úro. It is positive if T, > 0and negative if T, <0

The Matlab code for this part is called CameraParameters.m. The code used for

the complete representation of the model is FinalCalib. m. The code is presented in

Appendix E

(s.30)

b) Linear interpolation

Linear interpolation is a process employed in linear algebra, and numerous applications

including computer graphics and numerical analysis. In this research, it is applied to

(s.3r)

(s.32)
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increment the number of points detected in the comer detection algorithm. A

incrimination of points represents a better approach at the moment of reconstruction. Fig.

5.i3 shows two points (¡,,-y,) distantied to (xo,yo).

To find an intermediate value (.r,y)
that:

!-lo

!o

h- lo

rox4
Fig. 5.13 Linear Interpolation

- x-xo
rl -fo

By manipulating this algebraically, and writing

x-xo
xt-xo

between these points, by inspecting the figure we see

(5.33)

It is obtained:

y =(l-q)yo+et

that is the same as:

!= lo*W(r-ro)xt-xo

(5.34)
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The same formula can easily be derived for x when y is known. Appendix F shows the

Matlab file called linearinterpol .m.

c) Relation between camera and projector

Once the corners of the grid of the desired object are detected, they are related to the

image coordinate system. This coordinate system is referred to the middle point of the

image size. The image used is a 1600X1200 pixels, the centre of the image is located at

the point 800X600. A simple algorithm assigns the value corresponding to the image

coordinate system. Corners over the middle value of the image are reduced by that value

and vice versa.

After comers are translated to image coordinate system, the position corresponding to the

lines of the grid can be found. An average value of the corners is calculated and set as the

middle point where the value is (0,0). In most of the cases the value corresponds with the

value of the centre of the grid previously selected. This is the fact that the centre of the

grid is oriented to the centre of the object too. Both algorithms are presented in Appendix

G.

d) Triangulation

The simplest case arises when the optical axes of the camera and projector are parallel,

and the translation of the projector is only along the X axis. For this case lets consider

the optical setting as it is shown in the Fig. 5.14.
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Z is a pinhole camera and R is a projector with parallel optical axes referred to left and

right respectively. / is the focal length of both devices. The baseline is perpendicular to

the optical axes. Let å be the distance between the two lens centers. XZ is the plane

where the optical axes lie, XY plane is parallel to the image plane of both devices, X

axis equals the baseline and the origin O of (X,Y,Z) world reference system is the lens

center of the left camera. S,und ,Srare projections of the base line. Tree triangles are

b
Fig. 5.14 Triangulation of parallel devises

identified as

x, =f -xzEZ's2

,S, is established form the following relation:

Sz =å-Sr

By substituting 5.39 in 5.38, the relations obtained are:

(5.3 8)

IJ

(s.3e)



x,= x,
^sr å-s,
xr= x,
^sr å -s, (5.40)

BX, = SrX, +S,X, = S, (X, + Xr)

c- Xrb.r- y¡y,

Finally the values of X Y andZ are obtained from:

.-5,-f - f Xtb
Xt Xt Xr+ X,

u_xrz _^ xrz
1t- ff
- -YrZf

_bf

When the devises are not parallel, the camera can be rotated with respect to the projector

in the three axes. The relation between triangles is established in the same way as when

the camera and projector are parallel.

Xr+X,

In the case of rotation around the I a,xis(á)the optical axes are not parallel, but they

both lie on the XZ plane, so they intersect in a point (0,0,2), that is called fixation

point and could also be behind the camera and projector (Zo <0).

If theta is the rotation angle, then

Zo=
tan(0)

(s.41)
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Under small angle approximation, it still assumed the right

the left image plane and hence to XY plane. ln this case:

a b"f
L : x1-*2*ç* 6¡

zo

v_xl*zA -- f 
(s.43)

t, Yl* Z

f

Rotation around

triangulation is

v þ"f)L=-
xl-x2

u_xl*Z
f

image plane to be parallel to

X æcis (þ) only affects the Í coordinate in reconstruction. The stereo

Y_
Z +tan(þ)* Z

yl* z

Rotation around Z axis (ç) is usually dealt with by rotating

matching and triangulation. In the general case, given the

rotation matrix ,R describing the transformation from left

coordinates, the equation to solve for stereo triangulation is

p' = RT(P-T)

the image before applying

translation vector T and

camera to right camera

(s.44)
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where p and p'are the coordinates of P in the left camera and right projector

coordinates respectively, and RT is the transpose mahix ofR. The triangulation

algorithm is presented in Appendix H.

e) Mesh Generation

The mesh generation is the process where the cloud of 3D points is processed to create a

surface. The first step is to approximate all the points that are together with an average of

their neighbours. Not all the points have a valid number of neighbours. The number of

valid neighbours is a parameter that can vary according to points desired to be

considered. A good value is four considering the neighbours surrounding the desired

pixel. The next step is to smooth the generated mesh. For each point, the number of valid

neighbours close to the point in a certain distance is calculated. That value is replaced by

the average between the point and the neighbour. The final step is to generate triangles.

Four neighbour points at a time are taken. Two triangles using the shortest diagonal are

created only ifthe points are considered close to each other. Ifthere are only three points

and if they are close to each other, then they are connected. If there are only two or less

valid points, they will not be connected.

The next chapter discusses the results of the camera and projector calibration. The testing

and comparison of the developed method with the laser scanner are also presented.
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The objective of the experiments is to show and compare the performance of the

proposed approach. Three objects are used as samples to study the performance of the

method. The evaluation is based on the comparison of the accuracy obtained by the

developed system and a commercial laser scanner. The three objects are an electric kettle,

a volleyball and a foot model.

Chapter 6. Experiments and Results

In this chapter, following the methodology presented in Fig. 5.2, the calibration and

results are presented. Then, the analysis of the reconstructed objects is followed. Finally,

the reconstructed objects are compared with the results produced by a single shot of the

laser scarrner.

6.1 Calibration

The camera and projector need to be calibrated before performing the reconstruction

process. The internal and external parameters, as well as the relation between the camera

and the projector must be established. To achieve this goal two measurements of each

calibration pattem are required to establish the world image relation. The first one is a

real measurement of the comers presented in each pattern. The second goal is to find the

same points in the image using the corner detector algorithm. The calibration algorithm is

performed to obtain the intrinsic and extrinsic parameters of the camera and projector'
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Fig. 6.1 and Fig. 6.2 show the calibration pattern and the corner detected for the camera

and the projector respectively. The characteristics of the calibration pattern are discussed

in section 5.2.Table 6.1 presents the result of the camera and projector calibration.

Fig. 6.1 Camera Calibration Results a) Calibration Pattern, b) Corner detected, c) Zoom of
the comer detected.

78



Fig.6.2 Projector Calibration Results a) Calibration Pattem, b) Comer detected, c)

Zoom of the comer detected.

Table 6.1 Calibration Results

Camera Calibration

R_
0.94t -0.337 0.017
-0.037 -0.1 15 -0.987
0.336 0.928 -0.158

Proiector Calibration

R:
0.292 -0.9s6 0.003
-0.022 -0.0r 1 -0.999
-0.956 -0.292 0.024

The results obtained are similar to different values calculated by Bouget [49] where

different methods are tested, therefore the calibration is considered valid.

T,= -7.021
7.,-_ 11.867
T"= -99.263

T. = 4.657
7., =t2.906

f -:t283.4

T. =-119.61

f,,:1046.5

l;=s81.82
f"=60432

o,=410.79
o,,:128.62

o=505.55
o*166.26
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6.2 Reconstructed objects

Th¡ee objects were tested by projecting meshes with different distance between lines.

One mesh has I2XI2 pixel separation befween lines in both directions x and y. Another

one was a thirurer mesh where the distance between lines was 6X6 pixels. Finally a 3X3

pixel separation between lines was also projected. It was noticed that long distances

between grids were not suitable for the reconstruction process. Big holes were found in

the surface making the object not suitable for interpolation. Smaller distances between

grids were not supported either because the space between lines was not distinguished on

the captured image. The mesh that generates better results was the 6X6 pixels spaced

mesh. It is difference from the other meshes tested, this mesh is well identified by the

carnera, the corners can be detected easily and the interpolation can be achieved due to

the short distance between the grids. The image resolution used for the acquisition was

1200X1600 pixels.

The first object tested using this mesh was an electric kettle. The projected mesh onto the

object is presented in Fig. 6.3 (a). The corner detection algorithm was performed

generating good results as shown in Fig. 6.3 (c). Atthough almost all the corners were

found, a linea¡ interpolation was applied to increase the number of points as shown in

Fig. 6.3 (d). Once the corners of the projected grid were found, theywere related to the

picture center and grid center to apply the triangulation. Fig. 6.4 shows the final

reconstructed image. The right image shows the reconstructed object,'the left image

represents the curvature found by the process. The third image present represents the

image in 3D space.
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Fig. 6.3 Electric kettle image preparation; a) Image to be reconstructed by the 6X6
projected grid, b) Zoom of the projected mesh, c) corner detection d) interpolation.
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Fig. 6.4 Reconstructed
curvature of the kettle
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image of the electric kettle a) the reconstructed image, b)
from the lateral view, c) other view of the result
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In order to study the functionality of the developed method, the recovered shape was

compared with other sets of results. The first one was the original data obtained by the

physical measure of the object. The object \¡/as measured manually with a ruler in the

different directions. In the case of the depth value, only half of the object was measured

since the projected grids are only available to reach this part. The other was a single laser

scan as shown in Fig. 6.5.

The single scan was performed to show the same surface acquired with the developed

method. The results presented in the Table 6.2, considered the maximum and minimal

value direction present in the reconstructed object. The difference between the values w¿ts

considered to obtain width, height and depth. The error is calculated by the difference

between the real dimensions of the object minus the estimated dimension divided by the

real dimension

The original values of the teapot are 210mm, 165mm, and 85mm. corresponding to X, Y,

Z. The Z value was measured from the half of the object since it is the part that the

developed method is able to capture. The error reported corresponding to the Z seems to

be wrong. The reason is the points obtained by the laser scanner overpass the manual

measured object, where there is only half of the object considered.
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Table 6.2 Electric Kettle Reconstructions Comparison (mm)

Developed M.

Fig. 6.5 one shot of the laser scanner

Points

reconstructed

Min value

Max value

X

Estimated Dim

2,917

Difference with

Real object

Y

101.4

2,917

Error Real

object (%)

299.2

z

259.9

t97

2,917

Comparing images of the object captured by the developed method and the laser scanner

(Fig. 6.4, 6.5), it is obvious that the laser approach is superior. The scanner-reconstructed

image has 1 18 times more points than the developed algorithm. Therefore the quality is

better. Although more points are needed to obtain a better approximation, the developed

algorithm cannot afford that. More points to be calculated represents a higher processing

time that eventually crashes down the computer due to the limitation of Matlab.

Laser
Scanner

12.4

434.9

3rr.7

174.1

Points

reconstructed

5.9

9.1

394.8

83. I

Min value

5.5

Max value

1.9

X

Estimated Dim

344,375

2.2

Difference with

Real object

Y

236.50

Error Real object

(%)

344,375

45t.37

214.87

z

-73.829

4.87

344,375

73.077

146.90

2.31

314.28

l8.l

439.68

125.46

10.96

40.46

47.6
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The structured light approach generated a close approximation to the real object. The

obtained values of the length, depth and height are a few millimeters over the original

values. In Fig. 6.4 c it can be observed that the curvature along the body is similar to the

original object. It is also identified the difference between the body and the handle, the

same as the body and the spout. The slot between the walls of the spout and the handle

are also presented in the reconstructed object.

Dimensions reported by the laser scanner seem to be erroneous in the height and depth.

This is due to the acquired points. In the case of the height, the teapot handle was not

scanned completely. Therefore fewer points were acquired. For the depth, the scanner

was able to obtain more points than the established method for the Z reconstruction where

only the half of the object was supposed to be acquired. Therefore more points were

presented.

A detail comparison was made between the scanner and the developed method. The data

corresponding to each method was compared by overlapping them. The lengfh and height

recovered are almost the same but different orientation. The depth comparison presents a

big difference. The data captured by the scanner is not the same area captured by the

developed method. Even though the orientation when acquiring data tried to be the same

in both methods, some differences are presented. At the same time, the laser beam

projected by the scanner covers more region of the object than the mesh'projected. The

curvature presented in the developed algorithm is not as good as the scanned one. The

reason is the laser sca¡ner \ryas able to obtain more points from the back part of the
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object's body than the established method for reconstruction. Different views of the

comparison are presented in Fig. 6.6. The object in black color is the result generated by

the scanner. The blue one is the approximation acquired by the developed method.

The second object tested was a volleyball ball. The same steps were followed as the

teapot. The diameter of the ball is 200mm. Only one of the faces was considered.

Therefore only half of the ball was supposed to be reconstructed. Fig. 6.7 shows the

results corresponding to the image acquisition of the projected mesh, the corner detection

and the interpolation. Fig. 6.9 shows the obtained approximation.

In Fig. 6.10 the collected data by the laser scanner is shown, making emphasis in the

curvature acquired. The comparison with the real object and the laser scanner are

presented in Table 6.3

The results generated by comparing the real data were not as good as expected. The shape

of the ball was not reconstructed in a correct way. The length and height of the

reconstructed part are larger than the original and laser scanner. One reason of the

difference can be related to the points calculated. Although the comer detector finds the

corners, corners not corresponding to the object are considered. Sometimes the corner

detector founds points with different pixel intensity in the scene and marks it like a

corner, producing noise in the image.

85



Fig. 6.6 Comparing the object reconstructed with the structured based method and the
laser scanner
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Fig.6.7 Volleyball ball image preparation a) Image to be reconstructed by the 6X6
projected grid, b) Zoom of the projected mesh c) comer detection d) interpolation
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Fig. 6.8 Reconstructed image of the ball a) reconstructed image, b) curvature of
the ball, c) other view of the result
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Table 6.3 Ball Comparison (mm)

Developed M.

Points

reconstructed

CÐdPd .?¡¿E
s-¿dPË* 0

Fig. 6.9 Single shot of a ball using the scanner

Min value

Max value

X

Estimated Dim

867

Difference with

Real object

Y

51.04

867

Er¡or Real

object (%)

t57.6

z

106.5

867

t2r.9

93.5

2r5.6

Laser Scanner

93.98

146.8

Points

reconstructed

46.75

106

192.7

The curvature present in the ball is not recovered because the camera did not catch the

lines projected. The lines deformed following the curvature of the ball were not present in

the image therefore no corners were detected.

45.9

Min value

53

54.t

Max value

Total length

X

423,755

27.05

Difference with

Real object

-65.14

Error Real object

(%)

Y

423,755

In the results corresponding to the laser scanner, some differences are present too. These

differences can be produced due to an incomplete reconstruction of the object. Scanning

7l.58

r43.72

567.34

z

56.25

423,755

758.67

t9t.33

28.t2

282.58

8.67

385.57

102.99

4.33

-2.99

NA
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the object more times will generate a better approximation. The depth reconstructed by

the scanner over passed the required scanning area, presents a bigger curvature. The data

comparison between the implemented method and the laser scanner lvas not possible. The

difference between the objects is huge, the pictures cannot be overlapped. The value NA

present in the error is due to the fact that more points recovered than the points measured

in the comparison.

The last object scanned was the shape of a foot. A foot plaster was followed by the same

procedure as the last two samples. Fig. 6.10 shows the object acquisition, comer

detection and linear interpolation. Fig.6.11 shows the reconstructed foot by the

developed method. Fig. 6.12 shows the data obtained by the laser scanner. Table 6.3

compares the results of the two methods and the original dimensions measured directly

from the object. These are 280 mm length, 87 mm width and 90 mm dçth.

ln the case of the foot, the results seem to fit better than the other two objects. The

difference in length, height and depth is minimal compared with the original object. The

toe of the foot is getting a curvature because the position of the image scanned. The

picture taken is not able to see the complete lines projected. Better orientation of the

object to acquire could generate better results.
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Fig. 6.10 Foot image preparation a) Image to be reconstructed by the 6X6 projected
grid, b) Zoom of the projected mesh, c) corner detection d) interpolation

The shape acquired by the scanner looks similar to the acquired shape by the developed

method. An obvious difference is the number of points reconstructed. The laser scanner

has 490 times more points that the proposed method, this is the reason why it looks

darker.
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Fig. 6.1 I Reconstructed image of the foot, a) reconstructed image, b) curvature of the
teapot, c) other view of the result

Fig. 6.12 Reconstructed shape using laser scanner
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The comparison between the results of the two methods was also performed and results

are presented in Table 6.4. The difference between the laser scanner and the real

dimensions is minimal. One of the reasons why the foot seems to be smaller is the lack of

data from the acquired corners. The threshold the image processing deleted some of the

grid lines closed to the borders because of different image background, which results in

missed corners. Once again the depth reconstructed by the scanner over passed the depth

measured from the object for the reconstruction. Even the resulting data is smaller than

the scanned one; the data seems to overlap in a correct way as shown in Fig. 6.14.

Table 6.4 Foot Comparison (mm)

Developed M.

Points

reconstructed

Min value

Max value

X

Estimated Dim

671

Difference with

Real object

Y

56.9

671

Error Real

object (%)

295.9

Z

239

t42.7

671

4t

234.4

Laser Scanner

The shape of the foot was reconstructed as one of the objectives of the research. One of

the characteristics of the foot is that it has only some curvatures in the case of the arc and

in the ends.

91.7

326.7

Points

reconstucted

14.6

4.7

388. l

61.4

Min value

5.4

28.6

Max value

Total length

X

328635

31.7

Difference with

Real object

466.20

Error Real object

(%)

Y

32863s

737.38

271

45.86

Z

9

328635

50.35

96.21

3.21

283.68

9.2r

351.24

67.56

10.6

22.4

24.3
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Fig. 6.l3 Comparing the object reconstructed by the developed method and the laser
scanner

These examples demonstrated the performance of the developed method. The results

presented were compared with the real data measured directly from the object and the

data generated from a laser scanner. The introduced method generates a good

approximation in the length and height. Some difficulties were presented when

reconstructing depth. especially if the object is curved. The major problem in curvatures

was shown in the ball. In this example the projected lines are lost or become smaller in

curve areas, making the reconstruction a complex process. Smooth curvatures are well
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reconstructed, as the case of the teapot. Linear objects are well recognized and

reconstructed as the case of the foot. Lines are well identified making the process

effective. Problems related to accuracy in the length and high could be fixed by focusing

more on borders of the acquired image. The values obtained by the developed method

seem better than the values generated by the scanner. The reason is that the surface

obtained by the scanner is not the same one acquired by the developed method. The

orientation varies at the moment of getting the data. Other factor is the real measu¡ement

of the object. The measurement of the object was from the orientation of the captured

image by the developed method.

ln the case of concave objects or surfaces with holes, the algorithm will not work. The

reason is that the projected lines are not present in the holes, making the reconstruction

process impossible to achieve.
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7.1 Conclusions

This research was focused on finding a cost-effective and fast 3D reconstruction

approach. Different methods were introduced to study the existing methods used for 3D

acquisition. The methods such as the laser scanner, CMM, SFS, stereovision and

structured light were reviewed and compared. Considering the applications established

for the project in the introduction, two methods where selected from these revisions.

Chapter 7. Conclusions and further work

The characteristic of the selected methods is to capture the object under reconstruction

using a single camera. The methods are SFS and the structured light approaches. SFS is

the method where the depth reconstruction depends on an adequate light orientation.

Structured light approach is where a light with known characteristics such as measure and

colour is projected onto the object to obtain the 3D data.

SFS method was first considered due to its simple and fast reconstruction. Different

techniques related to this approach were studied. Two of these techniques were adopted

due to the good results reported by the authors and the easy implementation of the

algorithms. The two methods were tested and compared using synthetic and ¡eal images.

According to the results produced, a method suitable for modifications was selected. The

first method analyzed was Pentland's algorithm, ffid another was Tsai and Shah's

method.
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Pentland's method produces good results on most surfaces that change linearly. It was

found that this approach produces good results for real images. Tsai and Shah's approach

was selected due to the simplicity of the algorithm and the good results it generated. The

algorithm presents a better approximation and the process is faster than other methods

tested. The reconstructed images seem to be smoother than Pentland's approach.

Therefore, this method was selected for improvements.

The improvements were in the image processing before using the algorithm. Image

enhancement and filtering were applied obtaining better results than the studied

algorithms. The modified algorithm presents a better-reconstructed image since the

surface seems to be smoother, and approximates to the original value.

Although the shape reconstructed by the modified method was better compared to the

original Tsai and Shah's and Pentland's methods, the dimensions obtained were still not

accurate enough for the application. Another problem was related to the illumination

conditions required for the reconstruction. It is required to establish a good distribution of

the lights surrounding the desired object to be scanned. Different position and intensity of

the lights were required to be adjusted to obtain the perfect illumination. Brightness parts

are not recovered at all. For these reasons and the fact that the assisting light has to be

used to obtain a better result. This method was not suitable for the objectives of the

research. Therefore it was concluded that a new method has to be considered where a

static light is required to avoid the problems presented in SFS approach.
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The developed approach follows the restrictions established for the research where only a

camera and a source of light are allowed. This method is based on structured light and

triangulation. A complete non-coloured grid is projected onto whole surface of the object

in the proposed method to simpliff the image capturing and processing. The traditional

structured light methods use strips of different grey intensities or bands with colours.

The basic idea of the proposed approach is to take a pichre of the deformed grids

projected onto the object by the projector. The projected lines are shifted or deformed on

the object surface, which is captured on the image. This relation is used to find the 3D

position of each recovered point of the object using triangulation. A calibration of the

camera and projector used is required to relate the projected pattern with the captured

image.

Th¡ee objects were tested to evaluate the proposed approach. The first object tested was a

teapot, the second is a ball and finally a foot plaster. The recovered data were compared

with the same object data but measured by different methods. One group of data was

obtained by a manual measurement using the standard ruler. Another group of data was

obtained by the laser scanner.

The developed method generates a good approximation in the length and height. Some

difficulties were presented when reconstructing depth especially if the object is curved.

The problem is related to the projected lines. Lines are lost or become smaller in curved

areas, making the reconstruction a complex process. In addition to this, the camera is not
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able to capture some of the features behind a curve. The angle of vision of the camera

cannot reach some parts of the curue, the same as the projected grds. On the other hand,

smooth curvatures are well reconstructed since there is little change of the projected lines

on the object. Linear objects are well recognized and reconstructed in the case of the foot

model. Lines a¡e well identified making the process effective. Although the data

reconstructed is not as accurate as the one acquired by a laser scanner, it is a good

approximation to real object in the case of the foot model. There is no doubt that this

method generates a better approximation than SFS approach.

The objectives of the project have been achieved in the research. An evaluation of 3D

acquisition methods was performed. A cost-effective method for 3D data acquisition has

been developed. A comparison was performed to evaluate the performance of the

proposed method. The proposed approach is easy to use and the cost-effective comparing

lriith 3D laser scanners.

7.2 Further work

To improve accuracy of the proposed method, one of the areas that must be improved is

to increase the number of points processed. In the proposed method the number of points

considered is not enough to make the surface smooth. Although points increase in the

point density was attempted, the existing progam does not support the data. The program

could be re-written in other programming language such as C or C++ to fix this problem.
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Problems related to precision could also be fixed by focusing more on the borders of the

acquired image. Instead of comer detection, edge detection could be performed first to

find the complete lines across the object.

Curvatures also present a problem that must be fixed. A different position of the object or

the projector could be a solution of this problem. Although not all the curvatures could be

reconstructed, applying these changes could generate a better result.

A high resolution of the picture can also improve the result of the developed method. In a

better image, a better corner detection can be found. In the same way if the projector is

substituted or located in other orientation a better approximation could be achieved.

Another way to improve the accuracy is by locating more precise lines projected onto the

object. An idea is to project the grid with different colours in each line. ln this way, each

color can be tracked along the surface to be reconstructed.

In this research the comparison between the developed method and the laser scanner was

performed. The values compared were obtained by the difference of the minimal and

maximal values present in the axis of interest. The results reported are not higtrly accurate

because only the minimal and maximal values are considered in comparison. An

algorithm which can compare all data obtained has to be implemented. Therefore, other

way to measure and compare the data obtained by both methods has to be implemented.

One path to follow is to find a common point along the data of the two methods. The

coordinates of the points have to be known and related to established common position.

At this moment only the x and y values are considered to locate the point. Once the point

correspondent to each data is correctly found in the same position, the depth value is

analyzed. A comparison between the points could be performed to obtain the real
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difference between them. For each point an error can be established by a normalization of

the depth data corresponding to the scanner and then compared with the depth of the

developed method. This process could be repeated for all the points found in the

developed method. The reason is that the developed method has fewer points than the

data generated by the laser scanner

A combination of SFS and the developed method could be considered for further work as

well. The only restriction to be considered is the fact that the lights required by the SFS

method should be in some way absorbed by the surface to have not noise induced by

them. The object should be covered or coloured to reduce the effect of reflection caused

by the lights.

Another area that may be interesting to follow is the creation of a protoþpe for the foot

clinic. A compact system must group the projector and the camera. An idea of this

prototype is presented next.

The projector required must be small and cheap. The projector will only be used for

projecting the gdd. The proposed projector is a Sony WLES-I. Th e price of this

projector is 1499.99 Canadian dollars. It was selected based on the price and the size. The

dimensions of this projector are22.8 cm width, 6.6 cm high and 28.5 cmdepth. Fig. 7.1

shows the projector.
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It is also recommended that the camera import the pictures automatically to the computer

for processing. Therefore a web-camera is proposed. The camera must have high

resolution as the camera used for this research. The camera recommended is the

"Logitech Quickcam Pro 4000 Pc Camera" that has a value of 159.95 Canadian dollars.

The resolution of the camera is 1280X960 pixels, 1.3M pixels. Fig.7.2 shows the camera

proposed.

Fig. 7 .I Proposed Projector

The design of the system is proposed as shown in Figs. 7.3 and 7.4. The projector is

placed into a case. The carnera is located in the left of the projector. The camera lens is

located at the same height of the projector. An angle is present in the camera but facing

the right size of the projector. A platform is also required to support the foot. A black

structure recommended preventing reflection on the walls. A sketch of the proposed head

of the system is shown in Fig. 7.3. A complete overview of the structure is presented in

Fis.7.4.

Fig. 7 .2 Proposed Camera

Fig.7.3 Proposedheadof the System
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Fig.7.4 Complete overview of the proposed structure
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ToPentland.m

Ima=imread('image jp g') ;
imshow(Ima)

%This irnage is a 8 array and a double is needed, for that:
o/oconvert 1þs rrnif 8 array to double array and remove the Z

Imac=double(Ima( :, :, 1 )) ; ;

Inrow,ncol]:size(Imac);
\m:Imc/255;

Appendix A. Pentland Matlab code

lg=[.866,1.5,1];
lg2:lglnom(lg);
tilt : atan2 ( lg 2 (2),1g2(l)) ;
slant: acos(lg2(3));
costilecos(tilt);
sintilFsin(tilt);
sinslant=sin(slant);

FI{ft2(Imacl255);
for r:l:n¡ow

for c:l:ncol
ifr:l &c:l

FZ(r,c):0;
else

%Read the image
%oDisplay the image

fl(r,c): FI(r,c)/ (((c- I )*costilt*sinslant + (r-1))*sintilt*sinslant);

end
end

end
Z=eal(tffr2(FZ));

%Ligbdi¡ection Sx, Sy, Sz;

%Applþg Fourier
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Tsai.m

Ima=imread('image jpg') ;

imshow(Ima);

%oThts image is a 8 array and a double is needed, for that:
%oconvert ¡þs rnit 8 array to double array and remove the Z

Imac=double(Ima(:,:, I ));
[nrow,ncol]=size(Imac);

Appendix B. Tsai and Shah ùIatlab code

lg:[.866,1.5,1];
lg2:1glnorrn(1g);
Iter_2;
V/:le-8;

%Getting points

"._old:zeros(nrow,ncol) ;

s_old:ones(nrow,ncol) ;

p=zeros(nrow,ncol);
q:zeros(nrow,ncol);
ps=tg2(z)ng2(3);
qs:lg2( I )ng2(3);
ss=( I +ps*ps+qs*qs);

run:l;
iterations:10;
while run

%Read the image
%Display the image

o/o corryute the differences
p:zeros(nrow,ncol);
q:zeros(nrow,ncol);
p(2 :nrow,2 :ncol):z_old(2 :nrow,2 :ncol) -z_old(2:nrow,1 :ncol- I );
q(2:nrow,2:ncol):z_old(2 :nrow,2 :ncol)-z_old( I :nrow- 1,2 :ncol) ;

pq =p.*p+q.*q+1;
pqs:pi'ps+q*qs+ 1;

f : (Imc I 255 - max(0,pqs./(sqrtþq). * sqrt(ss)))) ;
dfz: -(þs+qs).(sqrt(ss).*sqrt(pq)) - (p+Ð.* pqs ./ (sqrtþq.^3).* sqrt(ss)) );
K : s_old .* dîz./(W + (dfz.^z).* s_old);
s:( l -K.'rdfz). *s_old;

z:z_old-K.*f;
z_old=z;
s_old=s;
iterations:iterations+ I ;
maxs:max(max(s));
maxËmax(max(f));
if iterations >:Iter

run=O;

end
end

%Ligth direction Sx, Sy, Sz;

% Star cycle
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ImprovedSFS.m

Ima=imread('image jp g') ;

imshow(Ima)

%This image is a 8 array and a double is needed, for that:
o/oconvert the unit 8 array to double array and remove the Z

Imac I =double(Ima(:, :, I )) ;

Imac2=nd2 gtay(Imac 1 ) ;

Imac3:imadjust(Imac2,[],[],.5);
Imac=nedfilt(Ima3. [3,3 ] )

Ia,b]:size(Imacl);
lg=[.866,1.5,1];
lg2:lginorm(lg);
Iter:10;
end
W:le-8;

%Getting points
z_old=zeros(a,b);
s_old:ones(a,b);
p:zeros(a,b);
q=zeros(a,b);
ps:lsz(z)As2(3);
qs:1e2(1)/le2(3);
5s:( I +psþs+qs*qs);
run:l;
iterations=0;
while run

Appendix C. ùIodified Matlab code

%Read the image
%Show the image

%Converring to gray scale

%Adjusting the image
%Applyng Median Filter

%Ligth direction Sx, Sy, Sz;

o/o compute the differences
p:zeros(a,b);

q=zeros(a,b);
p(2:a,2:b):z-old(2:a,2:b)'z-old(2:a,1:b-l);
q(22a,2:b):z-old(2:a,2:b)-z-old(1:a-1,2:b);

Pq :p.*p+q.*q+ 1;

pqs:p*PS+q*qs+1;
¡ : (Imacl 1255 - max(0,pqs./(sqrtþq). *sqrt(ss)))) 

;

dfz: -(þs+qs)./(sqrt(ss).*sqrtþq)) - (p+Ð.* pqs ./ (sqrtþq.^3)'* sqrt(ss)) );
K : s-old .* dfz.l(w + (dfz.^z).* s-old);
s=(1-K.*dfz).*s_old;
z=r_old-K.*f;
"._old=z;
s_old:s;
iterations:iterations+ I ;

maxs=nax(max(s));
maxÈmax(max(f));
if iterations >=Iter

run:0;
end

end

o/ostar cycle
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Corner.m

o/o*+**4******{.**,r.{.**¡1.*r.*{.{.coRNER DETECTION****i!**i.****l
%This algorithm finds the corners of the images using the using Harris corner Detector. The inputs are the

%picnues of the calibration pattems (camera and projector calibration patterns) as well as the objected to

Tobe reconstructed. The output is the location ofthe corners.

AppendÍx D. Corner Detection Nlatlab code

function [compos,cornerPpict]:comer(Ima)

figure,
imshow(Ima),
title('Real Image to Reconstruct')
RGB: imadjust(Ima,[.2 .3 0;.6 .7 l],[);
I=gb2gray(RGB);

sigma:4;
thresh:1500
radius:7;
disP:l;

dx:[-l 1l;-1 11;-l I l];
dY: dx';
Ix: conv2(irn, dx, 'same');
Iy: conv2(irn, dy, 'same');

o/oGaussian filter of size 6*sigma (+/- 3sigma) and of minimum size lxl.

g : fspecial('gaussiau',max( 1,fx(6*sigma)), sigma);
Ix2: convà(Ix.n2, g, 'same'); % Smoothed squared image derivatives
Iy2: conv2(fy.n2, E, 'same');
Ixy: conv2(Ix.*Iy, g, 'same');

%Compute the Harris corner measure

k:0.04;

"i*: (Ix2.*Iy2 -ky.^2) - k*(Ix2 +Iy2).^2;%oHarns

YoBxÛact local maxima by performing a grey scale morphological ,

%dilation and then Frnding points in the corner süength image that
o/omatchthe dilated image and are also greater than the tb¡eshold.

%Show Original Image
%Adjust Color in the image
oóTransform color Image to grayscale

o/o Derivative masks

%olmzge derivatives

sze = 2*radius+l;
mx : ordfilt2(cirn sze^2,ones(sze)) ;

sirn : (çim:rrx) &(cim>thresh) ;

[r,c] : find(cim);
cornpos=[c,r];
mval=nean(cornval);

medval=nedian(comval) ;

o/o Size of mask.
o/o Grey-scale dilation.
% Find maxima.
% F ndrow (y),col(x) coords.
o/o Values of the comers detected...x, y
%oMean value of the corners detected (to

% fndthe center of the line)
% Median value of the corners detected (to

%o {nd the centrer of the line)
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%oPlot all corners
figure,imagesc(im), colormap Eray,title('6. corners'), axis equal, hold on;
h=plot(c,r,'r+');set(t¡'linewidth',2.5);
hold off;
'WCenesize(Ima)l2; 

%ocenter of the image.
figure,irnagesc(im), colormap Fay, title('corners and center'), axis equal, hold on;
h:plo(c,r,'r+');
set(h,'linewidth',2. 5)
plot(WCent( :,2),WCent( :, I ),'yd')
savefi.le:'C:\Documents and Settings\Hector\Desktop\FlNAt AlGORlTHÌvf\parts\xycamera.mat'

save(savefile,'corners');
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Appendix E. Camera and

Camera and Projector Calibration
ProjMat.m
CameraParameters.m
FinalCalib.m

o/o**+*****+,ri.{.**d.{.{.*+***{.*{.{.+cAT.IBRATION**'r{.'***,t{.,r***{.*{.{.t *{.{.{c********
% ln this algorithm the calibration of the camera and the projector is
% Calculated. The input data comes from the result generated from the
o/o corner detector algorithm The ouþut is the data related to the
% inrinsic and extrinsic values of both, the camera aud the projector.

o/oC amer a Cal ibration :

Projector Calibration Matlab code

load xycamera;
load XYZcamera;
Ima:imread('CameraCalibration. JPG');
figure( 1),imshow(Ima),hold or¡title (' l. Camera Calibrafion Image')
figure(2),imshow(Ima),hold on,title ('2. Detected corners in the camera calibration image')
plot (xycamera(:, 1 ),xycamera( :,2),'r+');hold off
figure(3),plot(xycamera(:,1),xycamera(:,2),'r+'), title ('2. Calibration in Camera Plane');
YY Zc amer a=Y{ Zc amer ao/o* | 0 ; %%Ndllime Eos

%A is obtained from the matrices xy and XYC
o%Construct A-matix

[Ac,Mc,mc] : ProjMat(xycamera, KY Zcamera);

% Mc is m reshaped to a 3,4 Matrix
% Estimate the Camera Parameters

Ifxc, ff c, oxc, oyc,Rc,Tc, alfac, omegac,kapac,PM]=CameraParameters(Mc) ;

% Final Calibration Matrix M

Mcamera: FinalCalib( frc, ffc, oxc, oyc, Rc, Tc ); %PROJECTION MATRD(

fc=[fxc;ffc]; %CAMERA:L
cr[oxc;oyc]; %CAIvßRA:L
O/o*********,t 1.*{.1.{.+**t'l,f ;f ****i.;ß**!i**:f*{.{.*'1.,t*d.:i*t ¡1.**:t**;l*;ß,i¡¡*d.:t:È

% CAMERA RESULTS:
o//o

%a) Extrinsic Parameters of the Camera:
%P':q' %3X3 rotation Matrix
YoT c ; YoT r anslation Vector
%oalfac;
%oomegac;

%okapac;
%b) Instrinsic Parameters of the Camera:
o/ooxC, OyC ; 

o/ocamera Center

%ofxc; %ofocal length in horizontal pixel size units
%ofyc; Vofocal length in vertical pixel size I'nits
o/o**********¡i.,t,1.,f*****:l**;*t(;*;f**i.**{.*,t*,1.*1.*r.'l'{'**;t*¡ßi'****;l'******{'

{.

,t

*
i.

*
+

*
*
,fi

*
*
*
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savefile='C:\Documents and SettingsVlector\Desktop\FlNAl AlGORlTHÌvf\parts\CameraCalibration.mat'
save(savefi le,'Rc','Tc','fc','cc');

o/ o/ o/ o/lo /o /o /o

load XYZproj ector.mat; o/ocm

load xyprojector.mat;
Ima:imread('Proj ectorCalibration. JPG') ;

figure(4),imshow(Ima);title('Proj ector Calibration Pattern');

figure(5),imshow(Ima);hold on;plot(xyproj ector(:, I ),xyprojector(:,2),'r*'),
title ('3. Detected corners in the projector calibration image');
hold off
f,rgure(6), plot(xyprojector(:, 1),xyprojector(:,2),'r+');
title ('4. Projector Calibration in Camera parameters')

%Construct A-matix

%%%%P R:OJE CTOR CALIB RATI ON%%%%%

[Ap,Mp] : Proj Mat(xyproj ector, KYZproj ector) ;

% Estimate Camera Parameters

Ifxp,fyp, oxp,oyp,Rp,Tp,alfap,omegap,kapap]:CameraParameters(Mp) ;

%Final Calibration Matix M

Mprojector: FinalCalib( ftp, ffp, oxP, oyp, Rp, Tp );
fp:lfxp;ffp]; %PROJECTOR:R
cp=[oxp;o1p]; %PROJECTOR:R

o/o**rl*****rl****¡1.********1.***,ß:ß,f***¡1.i.¡.)**{.¡*,t,Í***t tl.{.**'¡****{'**

% PROJECTORRESULTS: *

o/ o/ o/ o//o /o /o /o

%
%a) Extrinsic Parameters of the Camera:
o/oRp; %o3X3 rotation Matrix
%T p ; % o/oTranslation Vector
%oalfap;
%oomegap]
%okapap;

%b) Instrinsic Parameters of the Projector:
%ofxp;o/ofocal length in horizontal pixel size units

%ofyp;Yofocal length in vertical pixel size units *

yo*i******** *¡1.¡i*{.*1.***** *{.d. **¡1.,1.1.**;t * ****{'+ **{'*+**+* *** **;È *

savefile:'C:\Documents and SettingsVlector\Desktop\FlNAl
ALGORITHIvÍ\parts\Proj ectoCalibration. mat'

save(savefi le,'Rp','Tp','þ','cp');

% RELATING THE CAMERA AND THE PROJECTOR:

R=Rc*Rp';
T=Tp-Rp*Rc'*Tc

%SETTING NOTATION FORNEXT STEP:

*
*
+

*
*
*
¡t

*
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%R = zuGHT: PROJECTOR
%xR = xyprojector';
fR: [fxp;fyp];
cR: [oxp;oyp];
%L: LEFT : CAMERA
%vL= xycamera';
fL: [ftc;fyc];
cL: [oxc;oyc];
savefrle:'C:\Documents and Settings\Flector\Desktop\FlNAl ALGORITHIvI\parts\ProjCamaRel.rnat'
save(savefi le, R'r'T'r'R'r'cR','fL','cL') ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Yo%o%o%o%o%oo/o%%%%%%%%%
% END OF CALIBRATION %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

STJBRUTINES USED:

ProjMat.m

% This function finds the projection matrix. The inputs are the xy
o/o coordinates of the calibration pattern (Corners located in the

% picture) and the KYZ coordinates of the pattern (physical place where
o/o the comers in the pattern are located.

function [A,M l,m] :ProjMat ( xy, YYZ );

x: xy(:,1);
y: xy(:,2);
X: XYZ(:,1);
Y:KYZ(:,Z);
Z:YYZ(:,3);
o : ones( size(x) );
z: zeros( size(x) );
Aoddrows: I XY Zozzzz-x.*X-x.*Y -x.*Z -xf;
Aeven¡ows : I z z z zXY Z o -y.*X -y.*Y -y.*Z -y );
¡ = [Aoddrows; Aevenrows];

%Calculate solution of A m: 0

[U, D, V] : svd( A );
m: V(:,end);

%Reshape m vector into M matrix

Ml : reshape(nt4,3)';

CameraParameters.m

% This function estimates the internal parameters of the camera.

% Such as focal length (ft,fy), Center point (ox,oy), Rotation

% Matrix (R), Translation Vector (T), alfa, omega and kappa

%(Trarslation angles) and the Projection matrix frxed with tbe %o Yo

o/o correcfion factor (M)
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function[ft,fy,o4oy,R T,alfa,omega,kapa,M]:CameraParameters(M I ,inFront )
M:Ml;
M : lvf /s qrt(lvf ( 3, I ) ^2 +M( 3, 2) ^ 2+M(3,3)n2) ; %oD ercminator = s c alar fac tor
s=-sign(M(3,4));
T(3):s*M(3,4);
R:zeros(3,3);
R(3,:):s*M(3,113);
ql:M(1,1:3)';
q2:M(2,1:3)';
q3:M(3,1:3)';
q4=M(l:3,4);
ox:ql'*q3;
oy:q2'*q3;
fx:sqrt( ql'*ql - ox^2 );
û:sqrt( q2'*q2 - oy^2 );
R(1,:):s*(ox*M(3,1 :3) - M(l,l :3) ) / ft;
R(2,:)=s*(oy*M(3,1 :3) - M(2,1:3) ) / fy;
T(l;=t*1o***n(3,4) - M(1,4) ) / fx;
T(Z¡:r*1ot*t(3,4) -M(2,4)) I fV;
T:T';
[U,D,V]=svd(R);
R=U*V';
alfa:-atan(R( 1,3)iR(3,3)) ;

omega=asin(-R(2,3));
kapa:atan(R(2,1)lR(2,2));

FinalCalib.m

%oThis fi.ruction reorders the projection makix using all the different
%o values obtained before.

function M:FinalCalib(ft,ff,ox,oy,R T);

M:I
-fx+R(1, l)+ox*R(3,1) -fr*R(1,2)+ox*R(3,2) -fr*R(1,3)+ox*R(3,3) -ft*T(l)+ox*T(3);
-ff*R(2,1)+oy*R(3,1) -fy*R(2,2)+oy*R(3,2) -fu*R(2,3)+sy*R(3,3) -$r*T(2)+oy*T(3);
R(3,1) R(3,2) R(3,3) r(3) l;
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Appendix F. Linear Ineterpolation Matlab code

Línearínterpol .rr

70****{.*,1.{.**,r{.{.¡i{.***,r{.**LINEAR INTERPOLATJON{.{.*{.*r.****:1.{.:tt *;1.{.{3*,t{.{.!t

%This algorithm is used for linear interpolation.

functìon [resxN,resyNl:linearinterpol(matx,maty);
pathþatt¡'C:\Documents and Settings\llector\Deskfop\f INAL ALGORITHIvf\pads');
clear all
load comersobject.mat;
matx=cornersplus(:, 1);

maty:cornersplus( :,2) ;

[ij]:size(mau<);
N:I;
for a:l:i-l;

if maa(a)>:maÞ<(a+ 1 ) % && ma*(a)-matx(a+ I þ-7;
Xl : mau<(a+l);
Yl : maty(a+l);
X2 : rnab<(a);
Y2: naty(a);

else

X2 : maÞr(a+l);
Y2 : maty(a+l);
Xl : maÞ<(a);
Yl : maty(a);

End
X: Xl:0.5:X2;
Y: Yl + (Y2-Yll(X2-Xt¡ * (X-Xl); %oLtneat lnterpolation

if a:l
resxN:[X];
resyN:ffi;
N:N+1;

end
1f a-2. &&N:2;

resxN:[resxN,KJ;
resyN:[resyN,Yl;
N:N+l;

end
if a>:3

resxll:1+[resxN- l,X];
resyN:1+[resyN-l,Y];
N:N+l;

end
end

linear:[resxN;resyN] ;

linear:linear'
savefrle:'C:\Documents and Settings\llector\Desktop\FlNAf AlGORlTHlvflpartsVinear.mat'
save(savefile,'liaear');
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Centrofoto.m
Centrogrid.m

**+***{.{.*r.'r.r.*RELATION BETV/EEN CAMERA AND PROJECTOR***{.***;r***{.********¡*
%In this algorithm the relation between the picture, and the grid is %obtained

Centrofoto.m

o/ocorner values related to image center:
o/ofu nction [valorc enüofoto, i j ] : c enbofoto (valorcorner,I) ;

path(path,'C:\Documents and SettingsVlector\Desktop\FINAL ALGORITHIvf\parts');

load linear.mat
valorcorner:linear
CENTRO:size(I);
CENTRO:CENTRO'
i:CENTRO( l) / 2; %ptxels
j:CENTRO(2)/2;%pu.els
XlPC:valorcorner(:, 1 );
YLP C:valorcorner( :,2) ;
Xditmin(XLPC)-i;%i800
Ydi Èrnax(YLP C) -j ;%{ 600
ComDefCentX:XLPC-Xdif;
CornDefCentY:YLP C-Ydif;
ValCentCorners:[CornDefCentX,CornDefCentYl; oZcorner values in picture coordinate system... it is the
required for the faracross
figure(8), plot (CornDefCentX,CornDefCentY,'y*'), title('8. Corners related to camera world coorrlinate
system')
valorcenüofoto:ValCentCorners ;

savefrle:'C:\Documents and Setings\Flector\Desktop\FINAL ALGORITHIIf\parts\CenüoPict.mat'
save(savefile,'valorcentofoto') ;

CentrogrÍd.m

%ocomer values related to grid center:
%fu nction fvalorgridcenno,ClX, ClYI--centrogrid(valorcorner) ;

pathþath,'C:\Documents and Settings\IlectorÐeskfoptFlNAl AIGORITHN{\parts');
clear
load linear.mat
valorcorner:linear
CLX:845;%pixels
CLY:521; %pixels
Xgp:valorcorner(:, I ) ;

Ygp:valorc orner( :,2) ;

despX=nin(Xgp)-CLX%800
despY:max(Ygp)-ClY%5 08
LinesDefCentX:Xgp-despX;
LinesDefCentY=Ygp-despY;
ValCent:[LinesDe fCentX, LinesD efCentY] ;

valorgridcenüo:ValCent
savefile:'C:\Documents and SettingsVlector\Desktop\FlNAl ALGORITHIvf\parts\CenüoGrid.mat'

APPENDIX G. RelatÍon between camera and projector
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Triuangulation.m
o/o********** ** *+{. *r.¡.:r *{. * *1. **:f *TRINGULATION**i. *{.****r.*1.:

% ln this algorithm the riangulation is performed.
%o The input variables are the camera and projector calibrarion results, the linear interpolafion and the
o/o relation between the camera and the grid. The output frle is the cloud of points of the object.

%function [Triangu]:tri a2%o(xc,cc,fc,xp,cp,þ,R,T)
pathþatb,'C:\Documents and SettingsVlector\lDesktop\FlNAl ALGORITHIvf\parts');
load linea¡.mat
load CentoPict.mat
load ProjCamaRel.mat
load CenroGrid.mat
xp:valorgridcenfro';
cc=cL;
fc{R;
xc:valorcenEofoto';
cp:cR;
fp:fl;
N: size(xc,2);
kc:.O15;
kp:l;

%o normaljge camera coordinates
xc2Bar: (xc - cc*ones(l,l.f) ./ (fc*ones(l,N));
xcBar : comp_distortion(xc2Bar, kc);

o/o normaltze proj ector coordinates
xpBar: (xp - cp *ones(1,N)) ./ (fp*ones(1,N));

o/o compute matrix A: [a b; c -l]
a :-(R( 1, I )*xcBar( l, :) + R( 1,2)*xcB ar(2,:) + R( 1,3)*ones(size( I'N))) ;

b : xpBar(1,:);
c :-(R(3, I )*xcBar( l, :) + R(3,2)*xcB ar(2,:) + R(3,3)*ones(size( 1,N)));

o/o compute Zc (depth of points in the camera frame of coorrlinates)

2ç : -(T(l)*ones(1,N) + T(3)*b) .i (a - b.*c);

% the cloud of 3D points
Triangu : (ones(3, l)+Zc) .* fxcBar; ones( l,N)] ;

Triangu: TrianCiu';

fi gwe,plot(Triangu( :, 1 ),Triangu( :,2),'.r'), title('Triangulation')
savefile:'C:\Documents and SettingsVlector\Desktop\FlNAl AlGORlTHlvf\parts\triangulation.mat'
save(savefile,'Triangu');

a:Triangu(:,1);
b:Triangu(:,2);
c=Triangu(:,3);
one=nin(a);
fwo:max(a);
difl:one-rwo;
nee=nin(b);
four=nax(b);
dif2:ree-four;
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five=nin(c);
si.x:max(c);
dif3:five-six;
DTFERENCTAS= [difl ; dif2 ; diß ] ;

savefile:'C:\Documents and SeningsWector\Desktop\FINAL ALGORITHtvf\partsBdcoord.mat'
save(savefile,'DiFERENCIAS');
save('C:\Documents and SetringsVlector\Desktop\FlNAl AlGORlTHÌvf\parts\teapot_ascii.xyz','Triangu','
ASCII')
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