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Abstract 

This thesis covers the study of an actively assisted passive walker with discontinuous and 

impulsive actuation. The dynamics of the passive and active portions are derived, and a 

comprehensive mathematical model is proposed. An actuation method is also proposed to 

study the use of multiple discrete actuation events in a walking gait. Two key cases are 

considered: actuation at the stance point and at the EA point of a non-kneed walker.  An 

experimental walker was designed that is capable of passive walking and has an experimental 

implementation of the proposed actuation system. A thorough characterization of the model is 

then performed, with experimental validation to show that: at high ramp angles, energy 

injection results in an increase in BOA of ~38% on a stable walking gait at a Ct of 0.086, and at 

low ramp angles, injection results in a stride length increase of ~29% at a Ct of 0.06.   
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α – Angular acceleration of the hipshaft of the walker 

ωi – Angular velocity of the limb with index i in the walker system.  

θi – Leg angle of the limb with index i in the walker system. 

a – Lower leg portion of NK-Walker model, analogous to shank. 

b – Upper leg portion of NK-Walker model, analogous to thigh. 

d1 – Upper portion of K-Walker shank 

d2 – Lower portion of K-Walker thigh 

L – Total leg length (K-walker or NK-Walker) 

Ls – K-Walker shank length 

Lt – K-Walker thigh length  

Ii – Index inertia of each portion of the hip actuation mechanism, taken about the hip. 

IO – Total inertia of the hip actuator assembly, taken about the hip. 
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   ⃑⃑ ⃑⃑ ⃑⃑  ⃑ – Fixed points angular velocities of the stride function, represent period 1 gait cycle ωi. 

L(ω) – The magnitude of the angular momentum delivered via actuation, as a function of ω. 

rg – Radius of gyration, measured using only the leg mass and the inertia of the leg. 

xm – Mass center location, measured as a distance down from the hip along the leg axis.  

ω – The angular velocity of the hipshaft of the walker.  

ωt – The terminal value for the angular velocity of the hipshaft of the walker.  

 ( ) – Torque as a function of time for the actuator. 

   – The torque slope coefficient for the motor (specific to PMDC motors selected). 

   – Net actuator inertia, taken as the sum of all declutched inertial components 

  – Time constant for actuation, taken as the rest time between MTGE gait events. 

τs – Step period, measured for a single step only from one heelstrike to the next.  

f0 – Natural frequency of the swing leg, experimentally measured value. 

   – Peak hip motion (vertical), calculated for a specific gait only.  

   – Stride length of the walker (measured for a single step), experimental or simulation. 
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Lexicon - Concepts 

Active Systems – A system has dynamics influenced by inertial forces, as well as an external 

force other than gravity. Systems (in the context of this thesis) will only be considered active if 

the energy injection into the system results in a change in system dynamics. 

Passive Systems – A system has dynamics influenced by inertial forces, and no other forces with 

the exception of gravity. Typically employs the principles of passive dynamics to respond to 

disturbances. 

Passive Dynamic Walking – A type of walking mechanism that is capable of walking passively on 

a ramp of fixed slope.  

Human Bipedal Simulacrum – A mechanism that exhibits bipedal walking behavior but of a 

form not strictly found in nature or human bipedal locomotion. Devices of this nature are 

meant to provide understanding into similar systems, even If they are not a simulation of a real 

life system. 

Natural Dynamics – The simple inertial response of a system described by Newtonian 

Dynamics. Typically used to describe systems that have a desirable response when undergoing 

inertial forcing or free response based on a set of initial conditions.    

Stance Leg – The leg of the walker that is supporting the weight of the walker on it, and is the 

pivot point on the ground for the walker.  

Swing Leg – The leg of the walker that is not supporting weight during the swing phase and is 

undergoing a swinging type motion.  

Planar Walker – A walker with a mechanism requiring the walker to walk without any yaw 

motion of the hips, typically in the form of a four legged walker frame with the two outer legs 

linked and the two inner legs linked.  

3D Walker – A walker that has hip motion and therefore moves in a 3 dimensional path (hip 

yaw motion), similar to a human walking gait. 

N-Cycle Gait – A gait that repeats with a periodicity of N. Typically only gaits with N = 1 or N = 2 

are studied in the field of passive dynamic walking. 
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Gait Cycle – A type of bipedal walking behavior that is comparable to human walking that 

occurs cyclically in a system. 

Gait Event – A part of the gait cycle of a walker where the walker undergoes a drastic change in 

dynamics. These are typically impact type events that occur in a walking gait. 

Heel Strike – A gait event when the swing leg of the walker contacts the ground and becomes 

the stance leg in the case of a periodic gait. 

Knee Lock – A gait event where the knee of the walker is prevented from hyper-extension. This 

can only occur in walkers with a knee is not strictly necessary with some walker designs.  

Stride Function – A discrete mapping utilized by the walker simulation model to map a set of 

pre-heelstrike initial angles and angular velocities through the dynamics of the chosen walker 

model to their post heelstrike counterparts.   

Actuator Impedance – The dynamic response of an actuator to external forcing when the 

actuator is either disabled or in a state that is dormant. When a joint is said to have zero 

impedance, the dynamics of the joint are completely unaffected by the actuator attached to the 

joint. 

Launch Target – A set of physical conditions corresponding to the fixed point of a walker gait for 

a given ramp angle that are used as a baseline to launch the walker. 

SEA – Acronym for Series Elastic Actuator, a type of actuator that is typically employed on 

systems where joint impedance is of concern. Typically employs an elastic element between the 

actuator and the joint to assist in masking actuator impedance.   

MTGE – Acronym for Modified Transitional Gait Event, a novel actuation method proposed in 

this research that utilized existing gait events to mask actuation forces (in the case of a simple 

MTGE) or creates new gait events for actuation that have a similar form (impulsive) to existing 

gait events. 

BOA – Acronym for Basin of Attraction, the region surround the fixed point of a dynamical 

system that converges to the fixed point when an initial condition is started within it. 

 



 

 

  

1 

 

 

 

 

Chapter 1 

1 Introduction 
 

1.1 Motivation 

 

Passive dynamics is a relatively complex field of research that is primarily focused on the 

behavior of systems responding to inertial disturbances. One key focus of this type of research 

is to use it to produce a desired motion from the system with a variety of initial conditions [1] 

via natural dynamics. This means that the system will respond in a desirable way to a 

disturbance (potentially to counter act it) or will produce a desired motion from an inertial 

disturbance which may come from within the system itself. A typical example of this is a passive 

bipedal walker, a device which can produce a cyclic bipedal walking gait by using the system’s 

natural response to gravitational force and the systems own inertia. This generally takes the 

form of a small passive or active robot or mechanism that is placed on an inclined surface and is 

capable of walking down the surface in a controlled manner with a periodic bipedal gait [2]. 

There are a wide variety of reasons why there is keen research interest in harnessing 

natural dynamics, but one of the most basic is that devices utilizing natural dynamics have been 

shown to be substantially more energy efficient than devices employing traditional trajectory 

planning based control. An example of this is a passive dynamic biped vs. a trajectory control 

based biped such as Honda’s ASIMO biped. While both can produce stable walking motions, a 
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purely passive biped on a slope of only 2˚ can produce a walking gait that is nearly 93 times 

more efficient than the one produced by ASIMO [3].  On the surface, this would make it seem 

as though the passive walker is substantially better than a traditionally controlled one, but in 

reality there are limitations inherent to passive walkers that must be considered. One of the 

simplest issues, is that a passive walker can only walk under a very specific set of initial 

conditions (which encompass a narrow region of the state-space of the walker system), and can 

only walk under these conditions if the right system parameters are also used. This includes 

having carefully set inertial properties of the walker legs, as well as the need for a relatively 

fixed rate of energy input (normally via a carefully controlled ramp angle). The most common 

solution to this is to try and vary the response of the walker via joint actuation governed by a 

control system. 

In terms of practical applications, the first step is to look at the overall approach of the 

research instead of merely observing the direct outcome of it. The direct outcome of passive 

walking research is to produce a machine capable of bipedal walking gaits, but that is not to say 

the outcome is a simulation of a typical humanoid bipedal gait. In human walking, thousands of 

energy impulses control and shape each step, which is quite different from the outcome of a 

simple system responding to only gravitational energy. This means that the direct outcome 

does not have a strong link to humanoid bipedal walking, and the application of the research 

towards that end is significantly limited by this. If instead the overall approach of the research is 

considered, a different application can be seen where the research is very relevant: the 

fundamental study of the effect of energy injection on a passive system.  

In terms of fundamental research on passive systems, there have been countless studies on 

very simple systems like an inverted pendulum with the focus being placed on the controlling a 

system with relatively simple passive dynamics. In most real world applications however, the 

passive dynamics of a physical system are not simple to study, and often governed by non-

linear dynamics. In the case of a passive walking system, the dynamics are relatively complex 

but if system can produce a stable walking gait then the dynamics of the system are at least 

predictable. This offers a middle ground to study passive dynamics that is more complex than 

what would be found in a system that trivializes the dynamics (such as an inverted pendulum), 
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but is still less complex than many real life systems. These systems can also be studied as 

partially passive systems, where active elements (energy injection components) can be added 

to change the behaviour of the system without changing the passive dynamics substantially.  

The study of such middle-ground systems opens up the potential to study more complex 

system and the capacity to extend the developed control concepts to subsets of more complex 

systems. Examples of where partially passive systems could be implemented include the fields 

of robotics and prosthetic design. To achieve these goals however, the first step is to 

understand the idea of actuating a passive system, as discussed next. 

1.2 Actuation of Passive Systems 

One issue with actuation in a system that has passive dynamics comes down to a simple 

concept: joint impedance. The motion of a zero joint impedance planar walker is governed by 

the Newtonian dynamics of a simple revolute joint planar manipulator in phase space. When an 

actuator is added to the system, the response is no longer similar to that of a planar revolute 

joint manipulator as the joint impedance will usually cause some restriction of motion that is 

proportional to the angle, velocity or acceleration of the joint. A typical example of this is 

shown in the figure below, where a simple three link manipulator is modeled with and without 

joint impedance. One can see that in the system shown as Figure 1.1, each joint responds to 

torque in a simple Newtonian manner. For the system shown in Figure 1.2 one example of joint 

impedance is modelled, which takes the form of a spring and a damper at each joint. This is 

often what you would see on a system actuated by a pneumatic actuator, but in the general 

case, each joint has a term T = f(θ,ω), which dictates the non-linear joint impedance torque 

that restricts motion. This can be generally modeled as a non-linear spring/damper on each 

joint. In the case of something like a geared electric motor, you can have a much more complex 

joint impedance term that can significantly affect the model dynamics [4]. 
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Figure 1.1: Fully Passive Walker – without Knees and without Joint Impedance 

 

 

Figure 1.2: Fully Passive Walker – without Knees and with Joint Impedance 

Up until recently, in the field of passive dynamics, the main research focus has been 

towards understanding the effect of actuators on a system. This is generally based around 

including the actuator dynamics in the control of a biped. This leads to countless examples 

(notable ones in [5] [6] [7]) where bipedal walkers are built that have full actuation (i.e. the 
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system has every degree of freedom actuated) or walkers that are under-actuated but with a 

trajectory planning based control system for the overall walker. These walkers all 

fundamentally have one drawback: the efficiency of the actuated walkers is substantially lower 

in practice than what can be achieved with a purely passive walker. An example of this can be 

seen when we consider the purely passive walker in [1], where the total cost of transport for 

the walker can be computed as: 

   
      

   
 

 

This cost of transport is a non-dimensional measure of the total energy efficiency of a 

process that transports mass. In a traditional walker, it can be seen that the power input to the 

system is only due to gravitational energy, so if the walker is on a constant slope the net cost of 

transport is equal to sin(γ), where γ is the ramp angle in radians. Now when we look at one of 

the most notable efficient active-passive walkers in [3], we see that the mechanical cost of 

transport (Cmt) is 0.055, from sin(γ), and the added electrical cost of transport is (Cet) is ~ 0.2. 

These figures are for a walker which is under-actuated and uses a passive knee. This results in a 

net Ct ~ 0.255, which is substantially higher than the purely passive biped from [1], that can 

operate on a low ramp angle of 2.29˚ with similar mass and has a Ct = 0.04, which is six times 

less.  Now although it’s easy to say that the system itself is mechanically efficient and that the 

electrical portion has less efficiency compared to the system in [1], a more accurate statement 

would be: the systems are not fundamentally the same and therefore the effect of the 

actuation on the mechanical efficiency is difficult to measure. This is mainly because the effect 

of the actuation impedance changes the system dynamics from the baseline unactuated 

walkers that are frequently studied. When comparing the presence of natural dynamics to an 

unactuated system, it becomes difficult to understand where the actuation is providing efficient 

walking energy and which portion of the walking gait is done via passive dynamics.  This makes 

it incredibly difficult to study the nature of the passive dynamics and what effect the system 

parameters have on the passive dynamics as they interact with the actuation, which is one of 

the key research foci in the field of passive/active dynamics. 
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1.3 Current Research Approaches 

Based on the difficulty of actuating a mainly passive system, without affecting the dynamics, 

the primary focus of current literature is clear: finding a method to decouple joint dynamics 

from the actuation dynamics.  

1.3.1 Series Elastic Actuation  
 

One key approach taken in literature is to use what are known as “elastic actuators”. A very 

simple version of this type of actuator is known as a Series Elastic Actuator (SEA). The 

fundamentals of SEA use are covered in [8], where a simple scheme is proposed to couple a 

physical actuator with an elastic element. A typically chosen combination for an SEA is a DC 

motor with a spring box or torsional spring. In terms of passive bipeds, several notable bipeds 

use this type of SEA to great effect [9] [10] [11].When an SEA is added to the system, the joint 

dynamics become more predictable as the elastic element of the actuator masks the actuator 

joint impedance, since the spring elastic force of the SEA is the primary force acting on the 

joint. When the actuation torque is applied to this, the spring tension is varied, which means 

that the actuation can be modeled as a variable rate spring, which allows for a system model 

with predictable dynamics. The main downside to this is that the passive dynamic model 

presented in [1] is no longer directly comparable if a spring is added at each joint, and the 

efficiency of the walker then becomes a property of the actuation method and control scheme 

as well as any desirable passive dynamics the new system model would have. As an example 

[12] is a biped that uses SEA to provide energy into the system, but without the actuators, the 

biped cannot walk on its own. This indicates that the natural dynamics of the system cannot 

provide enough energy to produce a walking motion on their own, and therefore are directly 

comparable to the dynamics in [1].  

A common argument for SEA based approaches is that the dynamics of a system need not 

adhere to the guidelines in [1] in order to benefit from passive dynamics. Although this is a valid 

statement, the simple counter argument comes from the research presented in [1]. Although all 

systems with no joint impedance exhibit passive dynamics, the benefit to a bipedal walker is 

that portion of the passive dynamics that produce joint torque favourable to a passive walking 
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gait. In a system that doesn’t follow the form posed in [1], the insight provided by the thorough 

quantitative analysis done on passive walking bipeds cannot be applied in a simple manner. 

Without this insight into what the passive efficiency of the system is and insight into how the 

energy in the system behaves naturally, it becomes very difficult to draw conclusions about 

additional actuation of the system and its effect on passive dynamics. As an example of this, we 

could take a simple case of an actuated walker on a ramp of 2.29˚. In the case of the passive 

system in [1] it is known that the dynamics of the system can be set with certain mass 

parameters to produce a stable walking gait with Ct = 0.04 when started with specific initial 

conditions. If actuation is then added to the system but using SEA, and the walker is no longer 

capable of walking passively, then a successful active walking gait at 2.29˚ has a Ct = 0.04 + Cmt + 

Cet, where Cmt and Cet come from the resulting gait parameters and the energy usage of the 

actuation. In this situation the abovementioned problem occurs, namely that the two cases (the 

passive and active) no longer are directly comparable. This means that while the original system 

used Ct = 0.04 from gravitational energy to produce a walking gait, it is not possible to 

determine how much of the energy input in the new system is coming from the gravitational 

contributions and how much comes from the actuator. All that is known is that in the combined 

case of Ct = 0.04 + Cmt + Cet, a walking gait is produced. This results in a very weak 

understanding of the effects of the actuation on the passive dynamics of the model, because it 

is very difficult to decouple the passive/active efficiencies. 

One particular subset of SEA actuation is the use of a pneumatic actuator, which by nature 

acts as an SEA. One of the main differences in the implementation of a pneumatic actuator is 

that the normal use of this actuator is in line with the legs of the actuator (described as an axial 

SEA) vs. the use of a motor driven SEA at a rotational joint of the walker. An example of a biped 

that uses this is given in [13], which uses McKibben muscles to provide actuation energy into 

the walker. Another example is shown in [14], where FESTO PMA muscles are used in a tandem 

pair to actuate the joint with a comprehensive muscle model to characterize joint impedance. 

This has also led to developments in fully actuated bipeds using several pneumatic air muscles 

for actuation such as the biped developed in [15] and Lucy, a fully actuated pneumatic muscle 

biped [16]. Ultimately, these bipeds present controllable joints and relatively predictable joint 
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dynamics, but have the same fundamental problem as motor based SEA: with the actuation 

disabled, none of the referenced walkers have the capability to walk passively.  

1.3.2 Inertial or Pulsed Energy Input 
 

From the previous section, we see that there is a substantial challenge to most approaches 

that use SEA: the un-actuated form of the walker no longer describes a well-documented 

passive walking biped. One approach that can be taken to completely circumvent this problem 

is to design a walker that uses a pulsed actuation method that injects energy into a passive 

system and then allows the system to control and shape the energy into usable motion via its 

passive response. If this pulsing motion is of a discontinuous type (i.e. the actuation can be 

removed from the system dynamics), then the dynamics of the original system in [1] can be 

preserved. The concept behind this type of actuation is that the discontinuous coupling of the 

actuator to the system substantially reduces the effect of the joint impedance on the system. If 

the actuation can be nearly instantaneous, then the effect of the joint impedance change can 

be largely ignored. In contrast to previously discussed approaches, this also optimizes the 

passive dynamics of the system to provide the best walking capability and also allows for 

actuation to potentially enhance the basin of attraction (BOA) or the quality the walking gait. In 

[1], such a method is discussed, where the possibility to use a spring actuator is brought up but 

never developed. Based on these concepts, three main works have been developed [17] [18] 

[19] that are notable in literature. In [17] an adaptation of [1] is proposed with elastic actuation 

at the hip and a discontinuous actuation at the toe. This produces a simple system with energy 

injection through an impulsive toe-lift, which still has predominantly passive dynamics. In [18] a 

theoretically implemented adaptation of [17] is presented, where the concept of a passive toe-

lift biped is discussed/modelled, to show that impulsive actuation (if applied at the toes of a 

biped) is viable. In [19], a different approach is taken, where a clutched SEA actuator is used so 

that the actuation can be decoupled from a system. In this case however, the actuation is not 

applied to a passive walker system, but still introduces the concepts involved.  

Another approach that can be taken to solve these problems is through the use of a 

momentum wheel actuator. These types of actuators use a flywheel at the hip of the walker of 

substantial mass that is spun up or down using a specified angular acceleration. When the 
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angular acceleration change is substantial, the reaction force can be sent into the stance leg, or 

if a motor connection is used, it can be sent into the swing leg. An example of this is shown in 

[20], where a theoretical implementation of a momentum wheel actuator is implemented. 

Another example of this (but applied to a simple inverted pendulum system) is [21]. From [20] 

we can see that this approach tends to require near zero actuator inertia, due to the highly 

discontinuous nature of the control output requirements for a reaction wheel. This is 

fundamentally known as an issue with impact based passive walkers, as the dynamics of the 

system require large and abrupt changes in angular velocity to correct for the dynamics of the 

system, as shown in [22] and [23]. This is the rationale for approaches such as [24], where the 

requirement for a non-linear control for mimicking passivity in a biped system is analytically 

shown. One of other limitations of this approach is that the implementation of such an actuator 

is extremely difficult on a walking system, due to the need for a hip shaft that not only pivots 

and floats but has near zero friction. 

1.3.3 Overview of Different Approaches 
 

The natural evolution of these approaches is to go towards what is presented in [24], where 

a model is proposed that is capable of having adaptive, non-trajectory planned dynamics, in a 

walker that is “pushed” towards a desirable limit cycle type response via actuation. Although 

the combination of the actuation method in [19] and the control method in [24] would create a 

rather efficient walker that is actuated yet primarily relies on passive dynamics, the level of 

overhead and complexity is very large and is not something that is trivial to implement on the 

vast majority of systems. It also becomes very complex to compare the resulting system to the 

original system in [1]. This is because the energy efficiency has decreased and it can be seen 

that the walking gait is not as efficient as what was originally presented, however the dynamics 

of the system are vastly different and the versatility is substantially improved.  

1.4 Previous Work at the University of Manitoba 

In the field of passive dynamics, a substantial basin of knowledge has been developed at the 

non-linear dynamics laboratory at the University of Manitoba under the guidance of Dr. 

Christine Wu. Initially, the research focus was based on experimental walkers, starting with a 
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bipedal walker developed that used wooden legs and a pair of knees. The dynamics of this 

walker were studied experimentally as detailed in [25]. The work was then developed into a 

more comprehensive physical walker constructed using aluminum legs and a simple knee 

mechanism [26]. These two walkers both had round feet and work was done to compare the 

results to [1] [2], and it was found the walkers constructed in the lab used very similar gait 

patterns and had a similar structure to many commonly studied passive walkers. The analysis of 

the gait patterns produced by these walkers was measured in [27] [28] [29] and it was shown in 

all three cases that the behaviour of the walkers constructed in the lab and the techniques used 

to test them were capable of producing highly accurate bipedal walkers.  

Once a solid experimental background was established, a significant amount of analytical 

and simulation work was completed in the lab based on and developed from the experimental 

side. A fully modelled 2 link walker, with frictional modeling for the ground interaction, was 

developed and validated in [30] and a thorough analysis of the stability of 2 link walkers was 

conducted in [31] based on a non-impact contact model. Models were also developed to study 

the effect of compliant ankle joints in a walker model [32] with a conceptual design for an 

elastic actuator being presented in [33]. Models for impact dynamics and foot constraint 

conditions in bipedal walkers was also studied in [34] and [35], applied specifically to the heel 

and knee impact events in a walker model. The latest research is based on passive/active 

bipedal walkers, with a proposed model in [36] that utilizes a hip actuator. Finally one of the 

most recent works in the laboratory has been to develop a comprehensive model based on gait 

events for kneed bipedal walkers with compliant ankles and flat feet [37]. This work is focused 

on incorporating actuation into the hip of the walker, and was experimentally validated via a 

SEA based walker with a torsional spring based hip actuator.  

Between both the computational and experimental work done in the non-linear dynamics 

lab, there is a significant pool of knowledge to draw upon for a bipedal walker design. In the 

case of this thesis, the work presented primarily draws from the work done in [30] [36] [34], 

with the goal of strengthening the fundamental knowledge of passive dynamics at the lab by 

exploring active/passive bipedal walking using a simple model and experimental setup. 
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1.5 Overview and Thesis Approach 

From the previous section, it is clear that there is a gap in current published research in 

terms of developing a passive walker that uses actuation of an impulsive or discontinuous 

nature, and can achieve a motion that: is similar to that of [1], is less complex to implement 

than [24], and is less complex from an actuation perspective as what is presented in [19]. To 

this effect, the research presented in this research aims to introduce a novel energy injection 

method into an otherwise passive system, the end result of which is a selectively actuated 

system that primarily operates on passive dynamics. To achieve this, three main research goals 

are set: 

1. create a simulated passive walker that is capable of being accurately modelled, and 

have the versatility to walk on a variety of fixed ramp angles; 

2. create an experimental setup that can be validated against the simulated walker 

model; 

3. fit the experimental walker with an actuation system that uses an impulsive and 

discontinuous actuator to supply energy into the system; and 

4. explore the performance of the actuation system to gain insight into active/passive 

hybrid systems. 

 

Since the approach taken is one which is relatively novel, the main aim for the research is to 

gain insight instead of producing a viable alternative to present actuation methods. Based on 

this, many of the design decisions are directed towards producing a wide range of results and 

focus on the physical/simulation model interaction, instead of looking at simple optimized 

cases. In order to do this, the first step requires an in-depth understanding of what a passive 

model is, for a walking system, and the construction of a computational backbone for the 

project as detailed next. 
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Chapter 2 

2 Mathematical Model 
 

2.1 Introduction 

 

In order to explore how to selectively actuate a passive system, the very first step is to come 

up with a model and an experimental walker that behave similarly. Unlike a simple investigation 

into passive walking, the addition of actuators and tuning results in a fairly large number of 

trials required to explore an active/passive system. Now although this is possible with a simple 

walker on its own, a validate-able computational model corresponding to a physical system 

allows for quick investigation of a broad number of actuation types and also allows for simple 

iterative tuning of parameters. In order to do this, the first step is to pick a system model with 

desirable passive dynamics. In terms of passive walkers, a variety of models are available, 

including bipedal walkers with knees [1], without knees [2], and other walking models (ballistic, 

quadruped, etc…) . The simplest of these systems that retains a strong analog to human walking 

is a bipedal walker with or without knees. In terms of bipedal walkers, the three main 

considerations are: the dimensionality of the walker (planar vs. 3d), the inclusion of a knee to 

the walker, and the foot shape of the walker. Looking at the main goals of the research, it’s 

clear that the selection of a “simple model” is ideal as the goal of the study is not to analyze the 

most realistic model of human walking, but merely provide a simulacrum for bipedal 

locomotion as a medium to study active/passive actuation.  This idea leads to a serious 

complication, since there is the need to develop an experimental setup and do limited 
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parametric study, as the definition of a “simple” model must then take into account what is 

simple in terms of an experimental walker as well as what is simple in terms of a simulation 

model. This leads to an aspect of design, where each aspect of the model can be considered 

from all viewpoints to create a model that is best suited to achieve the research goals, as 

discussed next. 

When thinking of a passive walking model, one of the concerns with the type of feet chosen 

is the difficulty created in accurately modeling the feet of the walker. In a simple case (point 

feet), the only forces capable of being transmitted by the feet are point loads, and with careful 

material selection, the constraint at the foot of the walker can be considered as a simple 

holonomic constraint. When the weight of the walker is applied to the point of the foot, a 

frictional force is created that prevents the foot from moving. With a sufficiently sharp point 

the foot has the capability to pivot bi-axially around the point of contact. This means that 

contact model is relatively simple and any errors can be accounted for via tuning of the 

pre/post impact velocities of the model. When using round feet, this problem becomes much 

more complex, as the constraint becomes non-holonomic, with the frictional force and the 

mass center location determining the constraint conditions. Although this can be modeled 

using a friction and contact model, this makes the walker gait computation incredibly complex 

[38]. The other complication is that the equations of motion of the walker are also influenced 

by this constraint as the rotation of the leg causes a shift in the location of the mass center of 

the walker. This means that the precision of the contact model is very important, which further 

complicates modeling. On the other hand, a thorough qualitative and quantitative 

parameterized design guide is given in [1] for walkers of this type. In terms of a flat-foot walker, 

the addition of an additional joint also creates a substantially more complex walking model, 

with relatively unknown passive dynamics. If the joint is instead treated as a slave joint in that 

the foot is flat on the ground at all times and the ankle has zero impedance, then the walker is 

fundamentally a point foot walker with extensions to the feet, and can be modeled via a point 

foot model.  

In terms of the dimensionality of the walker (i.e. 2d vs. 3d), there are compelling research 

arguments for each case. From a modeling perspective, the 2D walker moves only in a planar 
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motion (looking perpendicular to the axis of rotation of the joints of the walker) and any and all 

lateral motion is cancelled out internally on the walker. This poses some interesting challenges 

physically, as described in [1], but provides a drastic decrease in model complexity as the angle 

of each joint can be described by a single principle angle instead of two. Comparatively, a 3D 

walker is more complex in that there is a yaw motion present in the walker (hip motion in all 

three dimensions), which makes the model substantially more complicated. In the case of 

emulating human bipedal locomotion, it is obvious that a 3D model would provide substantially 

better representation. If has however been shown that the walking gaits in even the simplest 

2D models are sufficiently analogous to human walking gaits to provide a basis for study of 

bipedal locomotion [1] [2]. One major benefit of the 2D walkers, from an actuation perspective, 

is that that the actuation of a hip joint on a planar walker requires a simple actuator since the 

joint only has one DOF. The actuation is also relatively simple, since the joint torque is always 

perpendicular to the direction of forward walking motion. This makes actuator design much 

easier than a 3d walker, where the joint torque at the hip is multidimensional and the 3D 

actuation torque has to be accounted for during the walking gait.  

In terms of knee joints, the first point to consider is the primary function of the knee in a 

passive walker; it is present simply to provide foot clearance during the swing phase to prevent 

toe-scuffing. By allowing the knee to bend, the leg can naturally shift the tip of the swing leg 

foot (considered as the toe regardless of layout) at the point when the walker has both its legs 

at an equal absolute angle to the horizontal. This action is also coupled with a mechanism to 

prevent hyperextension, such that the leg can support weight without buckling and the walker 

ends the stride with a straight leg. This usually takes the form of having a knee that can lock (so 

that the stance leg can take the compressive load of the walker weight) and selectively unlock 

as the knee swings. This poses a large challenge both experimentally and from a theoretical 

standpoint as the ability to selectively lock a joint during motion, in a predictable manner, is not 

a trivial problem from either perspective. From the mechanical side, this is usually achieved by 

using an offset foot contact point (foot offset), which places a locking torque on the knee when 

the foot is under load (i.e. on the stance leg) and places a non-holonomic constraint on the 

swing leg knee joint. This means that bending of the knee is permitted in one direction, but the 
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knee is constrained at the point of hyper-extension [1] beyond the locking point (full extension). 

From a computational perspective, this is far from a trivial solution as the addition of a second 

non-holonomic constraint to the system requires an impact model or other state transition 

model between the locked and unlocked phases of the swing as well an additional knee lock 

constraint used during simulation of the leg post knee lock. Another complication is that the 

use of this type of knee lock requires that the walker model is of the round/flat foot type, which 

in itself poses a computational challenge. An alternative to this is to use a point foot walker 

with an active knee lock. This means the constraint in the model is holonomic, and is 

accompanied by a state transition (a loss of 1 degree of freedom) at the point of knee lock. This 

poses a challenge experimentally, as an active knee lock system is not trivial to construct and 

requires careful tuning to manage the dynamics of the knee lock impact, and must be tunable 

to match a basic impact model.  

If no knee joints are present, the walking model becomes substantially simpler and is still 

considered as a simulacrum of human locomotion [2]. From a modeling perspective, this 

approach also substantially decreases the complexity and also the computational burden when 

simulating gaits. From an experimental side this approach does pose one main difficulty: unless 

a system is made to allow for foot clearance, the walker must walk on a surface that has relief 

for the swing leg, in order to prevent toe-scuffing. The solutions to this are normally twofold: an 

active retraction system for the swing leg which allows the walker to walk on a flat surface 

without scuffing, or stepping stones that the walker walks across to elevate the contact point of 

the walker above the ground and allow foot clearance.  

2.2 Proposed Mathematical Model 

 

Between the considerations in the previous section, it’s clear that there are a large variety 

of configurations of walkers to base a model on. Since the goal of the study was to focus on the 

actuation, it is desirable from a simulation perspective to choose a simple walking model that is 

capable of describing a wide range of walking machines. To this effect, the model that was 

chosen is of a planar walker with point feet and selectively lockable knees. The advantage to 

this model is that it describes bipeds that are relatively simple to theoretically analyze, and can 
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encompass bipeds that have knees (if the selective knee locking is used) as well as bipeds that 

do not have knees (if the knees are permanently locked). Shown below is the basis for this 

model, in Figure 2.1. 

 

 

Figure 2.1: Passive walker model with knees (K-Walker)  

  From the figure above it can be seen that model K-Walker is a simple three link planar 

manipulator with a shank of length Ls and a thigh of length Lt as components of a swing leg of 

length L and a stance leg of equal length. The connections are all treated as revolute pin joints, 

with a holonomic constraint for the swing foot and ground connection. In order to study the 

dynamics, the links of the walker are treated as rigid and lumped mass, with a point mass 

located at some distance away from each pivot point on each link. When the legs of this 

arrangement are locked we see that we end up with a simple 2 legged walker with no knees. In 
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this case it would make sense to reduce the number of leg masses to 1 per leg. The model 

without knees, NK-Walker, is illustrated in Figure 2.2. 

 

Figure 2.2: Passive walker model without knees (NK-Walker) 

Based on these two model descriptions, we see that we have a general description of a 

model that will meet all of the original research goals, and is capable of describing a wide range 

of walking machines, as discussed in the previous section. With the desired model in mind, the 

next step is to come up with a mathematical description of its dynamics. 

2.2.1 Models for Continuous Dynamics 

 

In the simplest case of a two-legged non-kneed biped, the walking gait is divided into 3 

discrete actions: heel off, swing phase, and heel strike. During the swing phase, the dynamics of 

the system are merely those of a 2 link rigid planar manipulator. However, during the heel off 

and heel strike events, there exists a nearly discrete impact in the walker model which must be 
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simulated. In order to do this, the simplest approach is to use numerical integration to solve the 

equations of motion of the manipulator during the swing phase, and use a discrete impact 

event to model the interactions at the heel strike event. Based on Lagrange’s Equations, we end 

up with the following system of equations for the K-Walker in its 3 link phases: 

 

When the knees are unlocked, dynamics are given by:   ( ) ̈    (   ̇) ̇    ( )    
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Once the knee lock event occurs in the K-Walker model, the dynamics are then modified to 

the equations of motion of a 2 link manipulator. It can be noted that the dynamics can be 
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mathematically rearranged to represent the case of the NK-Walker by setting:        , 

and       
 

 
 . In this case, we end up with a model defined by Figure 2.2, in the previous 

section. The dynamics for the general case are listed below: 

 

When the knees are locked, dynamics are given by:   ( ) ̈    (   ̇) ̇    ( )    
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Since the system of equations describing the system is non-linear and coupled, a closed 

form solution is not available. Hence an alternative approach must be taken to solve the system 

dynamics: namely computing the trajectories of the system via numerical integration. While 

this gives a reasonably accurate approximation of the system dynamics, the insight into the 

system’s topology is curbed by the issue that a large portion of the system dynamics is hidden. 

This is because the numerical integration approach only provides solution trajectories evolved 

from specific initial conditions, with no higher order dynamical insight into the system behavior. 

One large advantage of this approach, however, is that the solution concept for both NK-
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Walkers and K-Walkers would be identical, and the overall model would cover the continuous 

dynamics of both models, based on different knee lock conditions. With this in mind, we can 

simulate a passive walker of either configuration through the swing phase by describing an 

initial condition of the set: 

 

[   ⃑⃑⃑⃑     ⃑⃑⃑⃑  ⃑]                 

  

Once the dynamics reach one of the two major gait events described earlier, namely the 

knee-lock or heel-strike events, the model reaches a point where the dynamics must account 

for these new gait events. This can be done via a contact or impact based model as discussed 

next.  

2.2.2 Models for Impact Events 

 

In the case of the heel-strike event, the walking motion will continue forward as weight is 

transferred from the stance leg to the swing leg, and if the walking gait is successful there will 

be a repeatable limit cycle gait. Numerous studies have looked at the effect of this type of 

motion transition and the best way to study it. A particularly interesting method is highlighted 

in [38] where a passive walker is implemented that uses a friction model (LuGre) to describe the 

complex interactions between the stance/swing feet and the ground. When such a complex 

model is considered one of the main challenges that arises is that the analysis of the system 

becomes excessively complex. This, in turn, causes tuning of the system parameters to match 

an experimental setup (required for validation of the model) to become a much more involved 

process than with a simpler model. In terms of the knee lock collision, there is a potential for 

even more complex behavior as the walker can have compliance and play in the joints that 

would then have to be accurately modeled or compensated for via extensive model parameter 

tuning. Between these aspects it’s clear that any work that can be saved at this stage in the 

model will allow for substantially simpler validation and a simpler model overall. 

In the case of a simple point foot walker, the actual behaviour of the system is much simpler 

and therefore easier to model in a different manner. In the event of a heel strike, the physical 
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walker has a rigid point foot impacting on a hard substrate in a nearly inelastic manner. In the 

event of a knee lock, the walker (using a knee lock system based on a latch or solenoid) has a 

nearly inelastic knee lock, resulting in a loss of 1 degree of freedom in the system. Both of these 

events can be considered as inelastic collisions as long as little to no elasticity is present at the 

ground and knee of the walker, and can be modelled simply as such. Since the experimental 

walker can also be built to match the theoretical system, it is relatively straightforward to 

physically ensure the walker has tolerable inelastic collision behavior in both of these events. 

For the heel strike case, the NK-Walker or K-Walker geometry can be used and an inelastic 

collision can be considered about the pre-impact swing foot. Considering that the impact foot 

has the only external force on the system at the point of impact, the angular momentum is 

conserved about this point before and after impact, leading to a simple state transition matrix 

that can be used to describe the pre-impact and post-impact velocities. In the case of the NK-

walker, the pre-impact walker and post impact walker are both 2 link systems, but the angular 

numbering convention of the leg angles are reversed after collision (as the stance and swing 

foot swap) for convenience of modelling. In the case of the K-walker, the pre-impact walker is a 

2 link system, and the post impact walker is a 3 link system (as the knee unlocks). In order to 

solve for this extra degree of freedom, a constraint is used such that the shank and thigh of the 

swing leg have post collision angular velocities that are equal, since they are locked during the 

event. This means that the walker is treated the same in the K-Walker and NK-Walker cases 

during heelstrike. To this effect, the state transition matrix is given by:   ̇  (  )
     ̇  
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In the special case of the K-Walker system, the additional impact event is the knee lock 

event, where the leg is prevented from hyper extension and the system converts from 3-link 

manipulator to a 2-link manipulator. In this case, an impact is exerted at the knee. This causes 

an internal force at the knee, which means that angular momentum conservation can only hold 

for the stance leg about its foot and for the swing leg about the hip. Using the third condition 

that the leg angles before/after impact are equal, a state transition matrix can be formed as: 

 

Knee Lock Dynamics given by:   ̇  (  )
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For both of the discrete events, an impact surface and an error function are created to 

describe the proximity of the system state to the impact point. For the heelstrike case, the 

impact surface is taken as:  

 

    {   
     ( )     (    )     (    )   } 

 

In the case of the knee lock, the impact condition is taken as the point where the swing leg 

thigh and shank angles are equal. This is described by the surface: 

 

    {   
     ( )         } 

 

In a typical walking gait, the impact matrix for both of these events is non-singular; 

therefore an error function can be used to interrupt the numerical integration when either of 

the impact conditions is reached. The actual impact point is then calculated by cubic 

interpolation between the highest tolerance numerically computed pre/post impact states. At 

this point, there are now two different sets of continuous dynamics: one set of equations of 

motion describes a 2 link walker and one describes 3 link walker. There are also two separate 

discrete events: one describes the heel strike event of a 2/3 link walker and one describes the 

knee lock event of a 3 link walker. In order to simulate the walkers, a set of scripts were written 

using MATLAB that utilize an ODE45 based solver to numerically integrate the dynamic 

equations with simple state transition functions to handle the discrete events. The end result is 

a stride function as described in [1], but describing a simple point foot walker with or without 

knees. 

2.2.3 Overview of Proposed Model 

 

The end goal of this phase of research was to produce a model that described a walker that 

is predominantly passive, and we see that the goal has been satisfied as the walker model 

described in this section can simulate the passive dynamics of the walkers similar to those in [1] 

and [2] and is similar to the models proposed in [39] and [40]. From this, it can be concluded 
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that the passive dynamics of the chosen model are already well known as it is predominantly 

analogous to countless passive models in literature and is capable of simulating a large variety 

of them with some modifications. Based on the proposed model, the next step is to investigate 

the performance of the model, which can be done using the baseline geometry presented in 

[39]. 

2.3 Baseline Simulation Results with Proposed Model 

 

With the proposed model thoroughly described in the previous section, the first issue worth 

noting is that the system that is being studied does not have a closed form solution. This means 

that the kinematics of the system are only observable (i.e. topological dynamics cannot be 

analytically determined) and any study is normally only from looking at individual trajectories. 

The downside to this approach is that there is little to no insight into how any type of actuation 

would affect the stability of the system short of testing a wide variety of actuation cases and 

having the model tuned and validated to match an experimentally developed walker.  

The restriction this places on the research is that the walker model must be well understood 

and developed prior to considering an actuation scheme, as the model can only provide 

representative results for the specific mass/inertial parameters chosen for the passive walking 

system. With this in mind, we can do some preliminary theoretical testing of the walking model, 

to help characterize the system behaviour. A series of Matlab scripts were created to iterate 

the stride function of the walker, which is the complex non-linear discrete mapping f which 

includes the continuous and discrete dynamics of the walking gait and is of the form: 

 

[   ⃑⃑⃑⃑     ⃑⃑⃑⃑  ⃑]     ([   
⃑⃑⃑⃑     ⃑⃑⃑⃑  ⃑] )  

Where:     ⃑⃑⃑⃑  ,    ⃑⃑⃑⃑  ⃑     

 

In the case of the NK-Walker, the stride function is a mapping that takes initial conditions at 

the start of the stride, namely the starting angles/velocities of the limbs, and maps them to the 

post heel strike angles and velocities. Through the mapping, the initial conditions are first 

simulated via the continuous mechanics of the NK-Walker model and a script is used to check 
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for the only impact event of the walker: heel strike. When the heelstrike event takes place, an 

internal discrete mapping is used based on the momentum conservation state transition matrix 

to map to post heelstrike velocities and angles, which is the output of the stride function. 

In the case of the K-Walker, the stride function is a mapping that takes initial conditions at 

the start of the stride, but treats the walker as a two link walker initially. This is due to the legs 

being locked immediately before heel strike, leading to the same initial conditions for both the 

shank and thigh of the swing leg. The function computes the 3 link kinematic model of the K 

walker, looking for the transitional gait event created by the knee lock condition of the walker. 

Once a knee lock is detected, the model uses the internal discrete mapping of the knee lock 

state transition matrix to map the pre/post impact velocities of the event. Then the K walker is 

simulated as a locked knee walker via the 2 link kinematic model, until the next transitional gait 

event: the heel strike. For the heel strike event, the state transition matrix maps the pre/post 

impact velocities for the swing/stance legs, which is the output of the stride function. 

Both of these functions have complex internal dynamics, as the mapping is a discretized 

version of a very complex system, therefore analysis of the stride function directly is not 

feasible. One of the inherent limitations to this type of study is also that there is no way 

(without higher order dynamics or a closed form solution to the system) to modify the system 

parameters and easily acquire the new initial conditions that would produce a walking gait. 

Thankfully, in the case of the walking models selected, we note that there exist stable periodic 

gaits in literature for the specific conditions described in [1]. We note that any initial condition 

set mapped by the stride function that is within the basin of attraction of a stable periodic gait 

for a walking model will be a period 1 fixed point of the stride function mapping f. We also note 

that gaits can exist that are n- cycle fixed points, which are multiple step gaits. In the case of a 

stable period 1 gait, we note that a fixed point is of the form: 

  

[   ⃑⃑⃑⃑     ⃑⃑⃑⃑  ⃑]
 
  ([   ⃑⃑⃑⃑     ⃑⃑⃑⃑  ⃑]

 
)  

Where:     ⃑⃑⃑⃑  ,    ⃑⃑⃑⃑  ⃑     

 

In the general case, however, we can describe all period gaits by the n-cycle fixed points: 
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[   ⃑⃑⃑⃑     ⃑⃑⃑⃑  ⃑]
 
   ([   ⃑⃑⃑⃑     ⃑⃑⃑⃑  ⃑]

 
)  

Where:     ⃑⃑⃑⃑  ,    ⃑⃑⃑⃑  ⃑           ,      

 

The downside to this system is that there are an excessive number of parameters that can 

be varied in the mapping f, based on the various physical parameters of the walker, and for 

each of these variations there is a narrow basin of attraction in each dimension of state space 

that can produce stable periodic gaits. As described in [1], there exists methods of 

quantitatively characterising these parameters, but the time involved is beyond the scope of 

this research. Without the data from a parametric study, the approach that is left is simple: take 

a known walking geometry with known initial conditions and iterate it while changing 

parameters to a more ideal baseline. The initial baseline is taken from [39] for the NK-Walker 

and the model parameters are taken as: a = 0.5, b = 0.5, m = 1, M = 2. When iterating the 

walker, we note from [1] that the masses of the walker can be scaled without affecting the gait, 

but the mass ratio   ⁄  is a fundamental parameter of the gaits. We also note that the leg 

length and mass center location must also be changed based on the chosen walker geometry.  

If parametric study is required, a method that can be used to great effect is the iterative 

parameter scaling method. This method is a type of iteration that utilizes the structural stability 

of the fixed point of the walking gait and allows for parametric variations.  To use this approach, 

one walker parameter (such as b, L, etc..) is defined as a parameter C where C   [C1, C2], with all 

other parameters held fixed. With the starting value as C1 and the terminal value of C2, we also 

define a disturbance ε such that     where ε is a sufficiently small value. An iterative loop is 

set up, as shown: 

Define C = C1 + ε, iterate  ([   ⃑⃑⃑⃑     ⃑⃑⃑⃑  ⃑]
 
  ) until: 

 

[   ⃑⃑⃑⃑     ⃑⃑⃑⃑  ⃑]
 
  ([   ⃑⃑⃑⃑     ⃑⃑⃑⃑  ⃑]

 
  )  

Where:     ⃑⃑⃑⃑  ,    ⃑⃑⃑⃑  ⃑    

 

Redefine C as C + ε, repeat process until C = C2 

  

It should be noted that this approach is not guaranteed to work in all cases, but for most 

walker geometries it was tested with a reasonable success rate as long as ε is sufficiently small 
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and the geometry defined by C + ε can produce a stable n-cycle walking gait.  

Since the experimental walker geometry is unknown, a stride function was tested with the 

baseline geometry and actuator impulses L(ω) =0, the output of which is shown in Figure 2.3, 

and a BOA for the gait in Figure 2.4. We can see that a stable limit cycle gait of period 1 

develops for the model for the initial conditions    ⃑⃑ ⃑⃑ ⃑⃑  = [0.2191, 0.3252], which matches the 

results in [39]. 

 

 

Figure 2.3: Stride Function of baseline walker at 3.00˚ ramp angle 
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Figure 2.4: BOA of Baseline Walker at 3.00˚ Ramp Angle 

From the BOA and phase portrait shown above, we note that the expected results for the 

geometry selected match the results in [31] and [39], where the same shape of phase portrait 

and basin of attraction are present for a very similar geometry. Noting the work in [2] we can 

also see that the results are in line with what is expected with a round foot passive walker, 

indicating that the model is also similar in behaviour to a round foot passive biped of similar 

structure. When the value of the fixed point is considered, we can also see that it accurately 

captures the results of study done using the exact same walker geometry [39]. The angle 

changed is then changed slightly to 2.86˚, and the leg length scaled to 14.5” leg length (the 

height of the last passive walker from the lab discussed in [29]) using the iterative parameter 

scaling technique, as discussed earlier in this section. Based on these new parameters, a new 

gait for the walker is described in Figure 2.5 and Figure 2.6, with the phase portrait describing 

the state space trajectories of the walker and the stride function describing the angles with 
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respect to the time domain.  

 

 

 

Figure 2.5: Location of the EA Crossing Point for an Archetypal Gait 

 

Figure 2.6: Phase portrait of a benchmark NK-Walker at 2.86˚ ramp angle. 
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In this gait, we note that there are two key points in an archetypal NK-Walker gait cycle: the 

heelstrike point, and the EA crossing point. Both of these points are recurring gait points, which 

occur once per gait cycle for any given stable gait of the NK-Walker. If the angle of the gait is 

parametrically varied, we note that these points remain approximately in the same location, as 

shown in Figure 2.7 below. 

 

 

Figure 2.7: Stride Functions for Various Stable Walker Gaits 

One important behaviour that can be observed when generating the various stride 

functions in Figure 2.7 is that the gait patterns exhibit a predictable behaviour when the target 

gait is either higher or lower than the initial conditions. In the case of low ramp angle gaits 

situations, there is a tendency to diverge inwards i.e. the limit cycle magnitude tends to zero. In 

the case of high ramp angle gaits, there is a tendency to diverge outwards, i.e. the limit cycle 

magnitude tends to move away from zero. This behaviour can be seen clearly in the plots in 

Figure 2.8 and Figure 2.9 respectively.  
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Figure 2.8: Low ramp angle gait divergence  

 

Figure 2.9: High ramp angle gait divergence  
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Since the proposed model is clearly capable of producing a wide range of results, the next 

step is to discuss the results and determine the best way to implement an actuation system into 

the existing passive model. 

2.4 Adding Actuation to the Proposed Model 

 

The first step to solving the problems posed by varying actuation approaches is to look at 

the model itself and understand how it is that the passive motion in the model is perpetuated 

from one stride to the next. It can be seen from Figure 2.6 that the walking gait in the NK-

Walker is composed of two continuous motions where energy in injected into the system and 

this energy is then regulated by a set of impact events. The smooth motions are shown above 

as the solid lines in the phase portrait, with the impacts (occurring at a single angle) being the 

vertical dashed lines. The key to the walking motion is that the impact events control the 

distribution of angular momentum between the two legs and allow for the swing leg to transfer 

energy to the stance leg. We note that neither leg has an angular velocity of zero before or 

after the impact point, as both legs share the energy of the walking gait and transfer it between 

each other. We can also see that the net angular velocity of the swing leg tends to be higher 

than the angular velocity of the stance leg and therefore the angular kinetic energy (as the legs 

are symmetric) is also higher.  

A fundamental aspect of the walker is that the system falls into a regulated rhythm of 

energy balance given a certain level of energy injection and the behavior of the system during 

the impacts. In the simple case of the NK-Walker, large ramp angles affect this regulation 

substantially, as the energy going into the walker is too high and the regulation is not capable of 

effectively controlling the gait energy. This would be akin to the case of putting a ball on a 

slope, where the energy injection is not bounded by the system and the ball increases in speed 

continually. In the case of a passive walker, this result causes the walker to fall outside its 

operating range and ceases to produce a stable gait. As the ramp angles become smaller and 

smaller, the energy injection is not sufficient during the transfer event to correct the walkers 

leg velocities back to their initial conditions. An example of this is shown below from NK-Walker 
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simulation where low ramp angle phase portrait trajectories are shown in Figure 2.8 and high 

ramp angle phase portrait trajectories are shown in Figure 2.9. We see that in either case, the 

energy injection is either too high or too low, causing the system to not be able to converge to 

a stable walking gait.  

Another way to consider this is the case where heelstrike event does not occur. In this case, 

any gait cycle could theoretically be a limit cycle if an event existed that translated the pre-

impact states to the initial conditions of that specific stride. It is known that in an inelastic 

collision based walking model, the governing dynamics of the impact events are based on the 

conservation of angular momentum of the legs. This means that we can base an actuation 

event on the same principle as the impact events, and have it coincide with the impact that 

occurs at the heel strike event. The result of this can be called a MTGE or modified transitional 

gait event, which is an event that affects the passive dynamics of the system (but modifying the 

effect of the impact events, or creating new ones) but does not change the continuous 

dynamics of the system. Looking at the previous diagram we see that in the case where the 

walker is at a low ramp angle, a MTGE could be used to correct the terminal conditions of the 

walker to the starting conditions via an increase in the energy of the system. Since this requires 

both a change in initial and terminal angles as well as angular velocities, the effect of this event 

on the continuous dynamics must also result in a favorable outcome, as a MTGE as described 

can only change the angular velocities for a given set of leg angles. This concept, at its heart, is 

the principle of what is proposed in this research as a hybrid passive/active dynamic walker.   

2.4.1  Simple MTGE Concept 

 

In the case of the walking model proposed in section 2.2, the two main impact events of the 

walker can both be treated as MTGE’s if actuation can inject angular momentum into the 

system but otherwise does not affect the dynamics of the system. Since these events take the 

form of inelastic collisions, a simple approach would be to use an actuator that uses ballistic 

actuation, capable of providing a controllable joint torque that occurs over a very short period 

of time and with a controllable rate of angular momentum change on the joint. This can be 

modelled as actuation that takes the form of angular impulse at the joint, the simplest example 



CHAPTER 2. MATHEMATICAL MODEL  34 

 

 

of which would be a flywheel that can provide selective torque to the joint. With a simple 

flywheel setup, the angular momentum could be varied via the rotational speed of the flywheel 

and the inertial properties of the flywheel. If the flywheel could be selectively coupled/de-

coupled from the joint, then the actuation could also be varied. In the event that this 

coupling/decoupling could produce an inelastic collision, then the end result could be combined 

with one of the existing discrete events in the gait to create what was referred to earlier as an 

MTGE. 

In the case of the walking model described in Section 2.2, the addition of such an actuator 

to the model would be as simple as providing a fixed increase in the angular momentum about 

the actuated joint during the existing gait event. In order to do this, the form taken by an MTGE 

is expressed as: 

 

 ̇  [ (  )
      ( )] ̇  

 

 This results in a simple expression of the actuation of the system via the function L with 

parameter ω. In the case of the flywheel, the momentum is given by: 
 

 ( )   ∑  

 

   

 

Where Ii is the index inertia of each portion of the actuator about the hip axis 
 

When parameter ω is zero (the limiting case of zero angular velocity for a flywheel) the total 

momentum is zero and the energy injection is zero. We see that for both MTGE’s in the K-

Walker and the one MTGE in the NK-Walker, this would result in no change to the original 

system model proposed in Section 2.2. This is because the addition of zero angular momentum 

will cause the impact event that the MTGE is based on to proceed as it would passively since 

the angular momentum is conserved about the stance foot just as it is in the existing impact 

equation. When ω > 0, a positive injection of angular momentum is present at the joint, and in 

the case where ω < 0, a negative injection of angular momentum is present at the joint. Since 

both discrete events can have this energy injection and all 3 joints (in case the K-Walker, or 2 in 

the case of the NK-Walker) can have this type of energy injection, there would be up to 5 
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different energy injection positions in a standard gait cycle that qualify as simple MTGE’s. These 

points can be seen on the figure below of an archetypal stride function for an K walker (which 

has the most potential MTGE points: 

 

 Stance foot torque at A 

 Swing foot torque at A 

 Hip torque at A 

 Knee torque at B 

 Hip torque at B 

 Stance foot torque at B 

 

Figure 2.10: MTGE points for a general K-Walker model 

An important note for the NK-Walker is that all of the events at B disappear if describing 

MTGE’s as defined earlier in this section. In every other case, the result of actuation torque 

simply modifies an existing impact event through the injection of additional angular momentum 

at different points. At each of these points there exist two distinct actuation possibilities, one 

where the momentum is added constructively with the motion of the walker, and one where it 

is added to counter the motion of the walker. A measure of this can be called the polarity of the 

actuation, which is fundamentally linked to the direction of each ωi at the point of actuation, 

but is a net quantity combining all of the effects of the direction of each ωi. In essence, the 

injection of different ωi at a joint not only affects the magnitude of the actuation event, but also 

the net effect of the MTGE on the stride. 
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2.4.2 Complex MTGE Concept 

 

Another interesting concept that is developed when pursuing this actuation method is the 

capability to provide actuation at times where the model is not undergoing an existing gait 

event. Instead of piggyback actuation at a time when there is an impulse event, an MTGE could 

also occur during one of the continuous dynamic phases of the gait. The inspiration for this 

concept comes from the original development of the passive walking knee. In a passive walker 

with knees, one of the fundamental purposes of the knee is to prevent toe scuffing when both 

legs are at an equal angle. The locking action of knee provides an additional impact event 

where an impulsive collision is used to provide regulation to the passive walking gait and the 

energy injection into the system. The effect of this action provides additional stability to the 

walking gait [1] [2], which leads to the fundamental question: can the addition of new impulsive 

events in the gait cycle also produce similar results? In what can be called a complex MTGE, we 

can pick any repeatable point in the gait cycle and create an artificial MTGE by injecting energy 

impulsively, similar to the knee lock event on the K-Walker model. 

In order to create a complex MTGE, the first step is to understand a concept known a 

repeatable gait point. In a walking gait, there are many different points that could be chosen as 

a complex MTGE point, but the complication is that these points may not always recur in a 

given gait if the event is time based, or tied to a specific state, as the gait will change in period 

and step length as the ramp angle is changed [1]. An example of this is shown in Figure 2.7, 

where we see the stride function of the various limit cycle gaits of a passive NK walker, as the 

ramp angle is changed. 

The complication that arises out of this is simple: it is difficult to find a dynamic landmark in 

a walking gait. By definition, a dynamic landmark would be a point that occurs in all stable gait 

cycles and is a function of both leg angle states. Examples of this from a typical gait K/NK-

Walker would be the heelstrike or knee lock points.  One simple point that does this to some 

extent however, is the Equal Angle point of the stride, which is the point where the absolute leg 

angles are the same (as measured from the horizontal). On any recurring gait, this point takes 

place at the crossing point of the legs due to simple geometry. This point does not necessarily 
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occur at the middle of the stride (with respect to the time domain), as shown in the Figure 2.5. 

We see that the equal angle crossing varies in the time-domain of a gait, but the points are all 

still roughly around the half-way point in the stride (in the time domain).  

When the actuation is done at this equal angle crossing point, the only potential actuators 

that should be used are of the hip actuation type or the foot actuator type, regardless of if the 

walker is of the NK or K configuration. This is because, In the case of the K walker, although 

knee actuation is possible, actuation at the EA point could cause the shank to swing forward too 

quickly. This would cause foot-scuffing which is a very undesirable effect on the gait, so to avoid 

foot contact, the actuation would have to be carefully tuned. 

When looking at theoretically described actuation concepts, one simple question that is 

often asked is: are these actuation events feasible in experiments or are these events 

something that can’t be implemented on a physical walker? In the case of the hip and knee 

actuation, the simple clutched flywheel example given earlier in this section would suffice as a 

real world application, although the physical construction of such a device would prove to be 

challenging as discussed later in this research. In the case of the toe/foot actuation, a simple 

method is described in [17] where ballistic foot actuation is used, however the impulse 

provided by this actuation does not produce an ankle torque, therefore changes to the 

actuation model used in this research would be required. An alternative method of providing 

foot actuation would be via a walker with low-mass flat-feet, actuated via a ballistic or a 

clutched flywheel approach. This would likely manifest itself as a pair of flat feet that follow the 

ground pivot point and have no ankle impedance. These feet would be capable of being 

clutched in and actuated with respect to the shank of the leg. From a mathematical 

perspective, this would represent a point foot walker (as the foot cannot take any load when 

unclutched) with the potential to provide positive/negative ankle torque. In a simple 

experimental case, it would be logical to choose only one or two of the potential actuation 

types since the goal of the research is to understand the effect of the actuation on the system, 

and each of these cases are analogous in the study of MTGE’s. 
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2.4.3  Integration of MTGE’s into Proposed Passive Model 

 

Overall, between the simple MTGE’s and the one complex MTGE discussed, there are 2 

potential actuation points for the simple NK-Walker model using a simple inertial actuator that 

can be used for an initial study of MTGE actuation. This increases up to 3 potential points in a K-

Walker model when similar actuation is used. It is clear that the only time the knee actuation 

can realistically be used is on the K-Walker, right before the knee lock event. Comparing this to 

the other two types of actuation, it’s clear that a simple actuation study should be focused on 

one of the other two types of actuations (hip actuators and toe actuation) in order to maximize 

the potential to study the system. 

 

In the case of simple MTGE’s, all that is required to implement them in both models is a 

correction to the state transition matrix from the impact events to reflect the additional angular 

momentum being injected. For the case of a complex MTGE, another terminal gait event is 

added with a state transition matrix determined by the type of actuator used and the position 

of the system pre/post actuation. For both walkers, an actuator at the hip that is active at heel 

strike was implemented in the model, with parameter L(ω) being the magnitude of angular 

moment injected at the hip during heel strike. In the case of the NK walker, a complex MTGE 

was also added, where the transitional condition is the equal angle crossing point, and a hip 

actuator is modeled as injecting momentum L(ω) at the hip. In the K walker case, an additional 

hip actuation was also considered at the knee lock case with magnitude L(ω).  

2.5 Overview of Mathematical Modeling 

 

Overall, it’s clear that the passive walker model presented in this section is capable of 

emulating a broad range of walking machines and is perfectly suited for the goals set out for 

this research. This is however not without a major drawback, in that the model parameters are 

suited to a baseline walker that is 1m tall and has a total weight of 4kg. From the work in [1] we 

see that the leg masses can be scaled, meaning that any walker with a leg length of 1m using 

point feet and no knees can be emulated using this model, however the baseline walking gait 
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requires a mass ratio   ⁄  = 2. When either the leg length, mass location, or mass ratio are 

changed, the dynamics of the walker will change drastically, therefore any further research into 

the walker model requires a finalized geometry. Ideally, the baseline case represents a 

functional example of stable walker geometry, but from an experimental view this is not ideal 

as it might not be possible to construct a physical model to meet the baseline parameters when 

an actuation system is added. Since one of the research goals is to produce a walker geometry 

that can produce stable walking gaits while actuated/unactuated without any changes to the 

walker, care must be taken to ensure that the theoretical and experimental walker models 

match closely. This means that the next step towards studying the model is to design/build the 

experimental setup of the walker and finalize the mass properties of the walker, before doing 

further analysis.  
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Chapter 3 

3 Experimental Setup 
 

Since an all-inclusive passive model was proposed in the previous section, the typical step 

forward would be to perform a comprehensive simulation study using the baseline geometry. 

Following this, an experimental walker could be built to match the model parameters. In any 

walking model however, one of the key issues is that the basin of attraction of the walker is 

rather narrow and fundamentally varies when the mass parameters of the walker are modified. 

If the walker mass parameters are varied substantially from the baseline parameters, the basin 

of attraction shrinks rapidly. In an extreme case, a change in mass parameters can result in the 

disappearance of the gait cycle. In the case of an actuated model, this is typically a large 

stepping stone that must be overcome, as the physical implementation of a walker often 

changes the model substantially from the ideal baseline. The mass and inertia added by 

actuators and their joint connections are not simple to account with a simple walker model. In 

the case of a passive walker, even a robust walker produces results that are difficult to 

reproduce and require a high degree of precision in the construction of the walker itself [1]. To 

this end, the goal of this section is to construct a walker that uses the baseline geometry as a 

design guideline with constant interplay between the walking model and the experimental 

walker to ensure that in the end, the experimental walker is accurately characterized in the 

walking model. To start this process, we can begin by looking at the various mass parameters 

and focus on selecting ideal values that are physically viable to design the experimental setup 

around.   
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3.1 Mass Parameter Selection 

 

In the case of the NK-Walker model, the physical design of such a walker can be done in a 

large variety of ways; one of the most basic methods is to build a simple planar walker out of 

planks of aluminum, some form of foot at one end, and a pivoting hip at the other. The problem 

with this approach, and one of the fundamental stumbling blocks of experimental walker 

design, is that simple mechanical solutions can often complicate the walker model. In the case 

of a walker leg, one can treat it as a simple pendulum or inverted pendulum (depending on 

which leg is swinging). Just like a simple pendulum, the walker can have a point mass placed 

somewhere on the leg, which affects how the leg behaves. The leg acts as a pendulum of length 

a (in the NK model) when the leg is the stance leg, and acts as a pendulum of length b 

(suspended from a moving point) when the leg is the swing leg. In the case of large a plank 

aluminum leg, the problem is that there is a large amount of inertia in the leg that is not 

accounted for. In the case of a leg of length L with a uniformly distributed weight mL, there 

exists methods to model the leg as a simple pendulum if held from either end (using the 

principle of a physical pendulum), however the effective length of the leg in the model would 

then be the summation of the two simple pendulums. This would result in a model which 

accurately describes a single link system, but when the second link is added, it causes the model 

to not be able to correctly describe the system. To solve this problem, a traditional approach is 

to try and model the walker with variable mass on the legs to get a more complex description 

of the inertial properties of the leg. 

An alternative approach that is being used in this research is to view the analytical-

simulation paradigm from a different perspective, and change the physical system to match the 

model. In the case of many systems of engineering relevance, this is not a possibility, because 

the physical system of interest is one that already exists in the physical world and cannot be 

changed without trivializing the research. In the case of a passive dynamic walker, however, the 

system is based on a mathematical concept, namely a behavior that exhibits itself in systems of 

a certain topological structure that have similar kinematics. This is often a mistaken fact, as 

many researchers view a passive walker as a simulation of human walking, which is not strictly 
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true. In the case of human and other bipedal locomotion, there is generally always a 

mechanism to provide energy into the walking gait, which means that nearly all walking 

motions in nature are a mixture of passive and active dynamics. With a passive walker, the main 

goal is to study the passive side of this type of motion, via dynamical systems that can be 

designed to have bipedal walking gaits when specific initial conditions are used. To this effect, 

we can take the numerical model, one with massless links and point masses, and try to build a 

physical walker that has similar properties. In a physical sense, this is not entirely possible as 

the legs of the walker will always have some mass, but by minimizing the differences between 

the physical walker and the model as much as possible there exists the possibility to match the 

two without changing the model proposed in section 3. 

From the baseline geometry, we see that the walker should have a   ⁄  ratio of about 2, 

but the actual masses can be of any value, without changing the model behaviour. The leg 

length, however, determines the stride length of the walker as well as the step period [40] and 

therefore it is important to settle on a desired leg length. For a physical test walker, an 

appropriate leg length (from previous work in the field) is between ~200mm-400mm, as the 

weight of the walker starts to become very large with longer leg lengths and it is also very 

difficult to work with long leg walkers on a test ramp. A midrange value of ~300mm was chosen 

as a design goal, with the requirement design feature to allow for small adjustment up and 

down in terms of leg length. 

With the leg length set, the next parameter to decide on is the mass of the leg. In the 

model, the walker masses (as described earlier) allow each leg to act as linked simple 

pendulums. This means that each leg can be kinematically described by three fundamental 

properties, the inertia of each leg Io, the mass centre location xm, and the radius of gyration rg. 

In terms of the model, each of these properties is easy to determine: 
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Between these parameters and the   ⁄  ratio of the leg, there is a full description of the 

leg mass in the model as well as the physical walker. From the baseline geometry, the 

 
 ⁄  value of 2 produces a reasonable basin of attraction, and higher mass ratios have been 

shown to be favourable via preliminary analysis, therefore the design goal is set at   ⁄     . 

The last parameter to be selected was b, the location of the leg mass relative to the hip. To 

select an ideal value for this parameter, a small-scale parametric study was done for mass ratios 

between:       ⁄      .The result of this study showed that  ~     is a reasonable value 

for b that produced a large basin of attraction at nearly all mass ratios chosen. 

With these initial design goals set, the next aspect of the experimental walker is the design 

of the actuator. Since the actuator mass/inertia must be hidden in the walker frame (for it to be 

modeled accurately) it is of great importance to have an initial design of the actuator based 

around the target mass properties of the walker, and also to evaluate the types of actuation 

that can be successfully done on the walker for an initial study.    

3.2 Actuator Design 

 

From the discussions in the previous sections, the baseline for the experimental walker was 

selected as: a four legged planar walker that has point foot legs with L~300mm,  ~    ,  and 

 
 ⁄  > 2. To produce a physical walker, the first issue that came up was the design of the 

actuation system. In the proposed hybrid active/passive model, one of the key aspects is that 

the unactuated walker has the same mass properties as the actuated one (no removal of 

actuators for passive walking) and that the dynamics of the actuator when disengaged are 

included in the joint motion. This presents a series of technical problems that were solved 

during the design of the walker, namely: 
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1. The actuation system must be composed of elements that can be reasonably modelled 

with a point mass walker model. 

2. The actuator dynamics must be known when disengaged and have little to no effect on 

the aforementioned kinematic properties of the leg. 

3. The actuator must be able to provide a reasonable amount of angular momentum 

compared to the nominal angular momentum (pre-collision) at the joint, in order to 

actuate the walker to a reasonable degree. 

 

In order to minimize the first issue, the goal would be to place the actuators such that they 

are in line with the axis of rotation of the joints. Small/slender actuators would permit the 

actuator to be primarily equivalent to a point mass (in the planar view) as long as the actuator 

has a sufficiently small diameter. In the case of a linear actuator, there would have to be some 

sort of linkage converting the actuation motion to rotary motion, which makes it very difficult 

to produce a small size actuator. This means that the most reasonable choice would be to go 

for a rotary actuator that acts directly on the joint of the walker. Since it was determined in 

section 2 that the simplest actuation case would be the hip only actuator, the simplest design 

concept is to place an actuator directly on the hip axis. This would affect the mass properties of 

the walker because: additional mass from the actuator MA at the hip that would have to be 

accounted for by the mass M in the model and an additional inertia about the hip (Io) from the 

diameter of the actuator which would have to be accounted for in the model by increased mass 

m. In terms of the type of actuator, 3 main types were considered: electric, hydraulic and 

pneumatic. Due to the very small rest time (τ ~0.3s-0.9s from the baseline geometry), a 

hydraulic actuator can be ruled out due to feasibility and ease of actuation. Another concern 

would be the effect of additional high pressure lines coming out of the walker, which is a 

significant concern in both the pneumatic and hydraulic cases, but largely minimal in the 

electric actuation option. Based on these simple issues, the most logical decision was to use an 

electric motor at the hip to provide electric rotary actuation, with careful design of the wiring to 

the actuator to ensure that there is no joint impedance added by the power lines to the walker. 

Since the theoretically desired actuator response is discontinuous and impulsive, the next 
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problem is to determine how to physically achieve discontinuous (or near discontinuous) 

response. There are a wide variety of methods that can be used to provide impulsive actuation 

including: using an impact hammer type mechanism, using a high impulse rotary actuator, using 

a high torque actuator geared for abrupt actuation, and finally using a clutch between the 

actuator and the walker.  In the case of an impact hammer type mechanism, one of the issues is 

that the actuator response must be quick enough to overcome the lag in the system (time 

between activation of the actuator and timing the “kick” from the impact hammer). This type of 

lag is very difficult to mechanically tune into the system, and would vary with actuation 

force/speed, creating the potential for a large amount of tuning required to match the actuator 

response to the impact model. In terms of high impulse actuators and high torque geared 

actuators, it can be seen easily that both suffer from the same problem: namely, relatively high 

actuator impedance. This is because any option with a relatively high actuation potential either 

uses a strong magnetic motor drive system or a gearbox, both of which result in significant joint 

impedance on a light frame walker. In the case of a high torque rotary actuator, concepts such 

as a harmonic drive based actuator were considered in order to minimize this, but the dynamics 

imposed on the joint by the actuator when unpowered (being driven) are amplified by the 

gearbox substantially, so ultimately the joint impedance is still high. This leads to the most 

reasonable option, where a clutch is used to decouple and recouple the actuator from the 

walker. In the case of a clutch, abrupt engagement of the clutch results in a fixed amount of 

inertia being added to the joint based on the components of the clutch that spin with the hip 

shaft and the speed at which they are spinning. When the clutch is disabled, the actuator 

dynamics are completely decoupled from the joint, and when engaged, the actuator and the 

joint are forced to match angular velocities. The issue with a system like this occurs when the 

actuator is coupled to the joint. If the actuator has internal dynamics that affect the joint 

dynamics, the portion of actuation where the clutch engages results in a portion of the walking 

gait where joint impedance must be considered. One way around this is to reduce the clutched 

time to a near instant impact event, and also to use a low torque high speed actuator with a 

flywheel to build up inertia and minimize the joint impedance when engaged. 

Considering an actuator of this form, the first challenge is to design a physical 
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implementation of this concept that is feasible. The first issue is to select a motor type, for the 

energy injection part of the actuator. Although a wide variety of motor types are available, the 

simplest type to use would be a simple brushed DC motor with low mechanical impedance. By 

using a high rpm low torque motor, the impedance is minimized, which allows the effect of the 

motor dynamics (when connected to the walker) to be minimized. For the time response, we 

can look at the rest time for the baseline walker (τ ~0.3s-0.9s) and note that even in the event 

of a single MTGE, the actuator must be able to achieve full speed in under 0.3s, in order to 

actuate once per cycle. If multiple MTGE’s are used, this rest time decreases as well. We note 

that in a very simple case (no loss), the torque for a typical brushed PMDC motor is given by the 

first equation below, where T0 is the stall torque and Kt is the torque slope. The angular 

acceleration of the actuator is given by the second relation, where α(t) is the acceleration of the 

actuator and IA is the net inertia of the actuator about the hip axis. The last equation is the 

solution to the linear ODE of the hip actuator response ω as a function of time:  
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From these equations, we can see that there is a simple method to select an actuator once 

the walker has already been constructed. Firstly, the design values for the walker must be 

chosen, and the rest time for the chosen passive geometry must be determined. The target 

motor characteristics can then be easily found. 

 The next step is to address the clutch itself, and to find a suitable design to actuate the 

walker leg. From simple mechanics, we can see that the walker needs to be able to actuate the 

swing leg, however there would be an internal reaction force via the motor frame which must 

be countered. In the case where the walker is in single support (i.e. immediately after heel-

strike, or at any point before the next heel strike), we see that the stance leg is fixed with 
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respect to the ground. The actuator must therefore be mounted in such a way that the reaction 

torque is reacted by the stance leg, while the impulse is provided to the swing leg. After several 

design iterations, the final layout was chosen to be a simple configuration using a floating hip 

shaft (B) with inertial weights (C/D), a pair of axially mounted motors (E), and a set of clutches 

(A) that have a dog engagement system to the inner legs and are pinned to the hip shaft. The 

letters ‘A through E’ are labelled in the diagram in Figure 3.1.   

        

 

Figure 3.1: Component View of Hipshaft Actuator 

 

Figure 3.2: Clutched Actuation Mechanism 

When the motors spin up the hip shaft, the reaction torque is applied to the fixed leg about 

the hip axis (which doesn’t affect the walking dynamics of that leg). When the hipshaft reaches 
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its peak actuation speed at t ~3τ, the clutches can engage and the motor can disengage. This 

adds the angular momentum of the: hipshaft, the clutch assembly, the inertial weights, and the 

motor rotating assembly to the swing legs. These are noted as the sum of all of the rotational 

inertia in the actuator assembly about the hip, to the inner legs of the walker in the equation 

below. If the rotation of this assembly is the same direction as the motion of the swing legs 

then the polarity of the actuation (as discussed in section 3) is positive, which causes the energy 

to be injected into the system in the direction of motion. If the rotation is reverse, then the 

polarity is negative and energy is injected into the system to counter the motion of the swing 

legs. The net momentum injection into the system, if ω reaches the value of ω(τ) is: 
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With the actuation system designed in concept, the next step is to set up the structure of 

the walker, and finalize the physical design for the walker so that an actuator can be selected.  

3.3 Walker Design 

 

One of the primary goals of the experimental physical walker is to establish a physical 

geometry that is nearly identical to the NK walker model. As discussed earlier in this section, 

this means matching the three main dynamic parameters of the NK walker model, namely the 

radius of gyration (rg), the inertia about the hip (IO) and the mass centre location (xm). Since the 

walker model was designed in 3D cad software (a combination of NX and Solidworks) the main 

mass properties for the designs were extracted from the mass properties of each element of 

the design, with careful physical measurement of all fabricated and purchased components. 

This allowed different design concepts to be evaluated based on how close the walker was to 

the NK walker geometry. Since the NK walker is a point mass, as shown earlier, all of the 

parameters are linked mathematically since the walker has point masses and massless links. In 

the case of the real walker, all three of the parameters can be individually varied, which poses a 

rather large design challenge. Ideally, the leg component of the physical walker would be nearly 

massless, so the inertia would come only from the thigh mass. This means that increasing thigh 
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mass and hip mass at the same time result in the same mass centre location but increasing 

inertia. In this same example on the physical walker, the issue is to get the large hip mass to be 

small enough in diameter to not create a significant inertial contribution to the walker. This 

leads to a design with a very wide structure that is difficult to experimentally handle. If this is 

ignored and the hip mass ends up adding inertia to the legs, the only way to account for it is to 

model mass m as larger than it actually is, or change parameter b, both of which drastically 

affect the model. It is also incredibly important to balance these effects between the four legs 

of the walker (since it is a planar biped) so that the physical properties of each leg are not only 

similar to the model, but are identical to each other. To accomplish this, a hollow 6061-T6 light 

alloy tube is used for each leg with 7075-T6 light alloy hard anodized point feet and FORTAL HR 

light alloy hip components. This design was optimized via structural analysis to be as light as 

possible, to minimize the non-modelable inertia and mass of the walker frame.  

 

Figure 3.3: Bare Experimental Walker Frame 

The end result is shown above, without any inertial weights on the frame. The net walker 

structure has the following parameters: 0.669kg weight (without a hipshaft), 74.8 kg⦁cm2 of 

inertia, leg length L of 350mm, and center of mass location of 38mm (down from the hip of the 



CHAPTER 3. EXPERIMENTAL SETUP 50 

 

 

walker). This correlates to a walker model with 0.247kg of leg mass and 0.8kg of hip mass with a 

b = 0.5L, and L = 350mm, which is very reasonable for just the frame of the walker. Very little 

leg mass was required to balance the inertia. In order to mask the mass properties of the 

walker, large weights were added at length b from the hip location of the walker (effectively 

increasing mass m). In order to mask the weight of the walker frame, a large magnitude was 

chosen for the leg weight. As a baseline, a weight of 1.26kg was chosen, split between the outer 

legs. With just this mass added, the new properties of each pair of legs of the walker were: I0 = 

500.22 kg-cm2 and xm = 0.45L. Compared to the model, this setup has the same properties as a 

walker with m = 1.63kg, b = 0.5L, L =350mm, and M = 0.17kg. This result is very reasonable, as 

there is variation in the leg mass of the model to account for the weight of the frame of the 

walker, and the inertia of the foot assembly, and M is now very close to the hip weight of the 

walker. In order to then push up the mass ratio, additional mass was added to the hip of the 

walker, via a hipshaft, inertial weights, and a pair of counterweights (which would eventually be 

replaced with motors) to bring the net hip mass up. The total hip weight added was ~5.6kg, 

resulting in a total hip weight of 5.8kg in the physical walker. At this point, small changes were 

made in the geometry of the walker, including adding additional weight to the walker legs until 

the final parameters were set as shown in Table 3.1. 

 

Table 3.1: Experimental properties of the walker vs. model parameters 

Model Physical Walker 

m = 1.63kg m ≈1.50kg 

M = 5.825kg M ≈ 5.99kg 

M + 2m = 9.09kg M + 2m = 8.99kg 

L = 0.368m L = 0.368m 

b = 0.5L b ≈ 0.5L 

M/m = 3.57 M/m ≈  3.99 

IO = 552.75 kg-cm2 IO = 550 kg-cm2 

xm= 6.61cm xm= 6.09cm 

rg =7.80 rg= 7.82cm 
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For the actuation, a set of Pittman PMDC motors were used with a peak joint torque T0 of 

288 N-cm, and a torque slope of -8.49x10-3 Nm-s Kt. The net inertia of the actuator assembly Ia 

is: 5.82x10-5 kg-m2. Based on the equations derived earlier in this section, this results in an 

actuation time constant of τ ~ 7ms, which is more than acceptable to actuate any of the 

observed walking gaits. From these parameters, the peak angular momentum that can be 

injected L(w) = 0.0125 kg-m2/s, at t = τ. If the time between steps is substantially higher, one 

can assume that ω → ωt = 339 rad/s, which results in an energy injection L(wt) = 0.0197 kg-

m2/s. Both of these figures are easily achieved with τ ~ 7m, therefore the upper value of L(wt) 

will be used as a peak actuation force. It is worth noting that wt varies in a somewhat linear 

manner (as tested) by applying varying voltages to the motors for speeds in the range of 0.5ω t 

to ωt. This means that a net actuation force can be varied somewhat linearly between the 

approximate range: 0.01 kg-m2/s < L(ω) < 0.02 kg-m2/s, with the potential to drop L(ω) lower 

than 0.01 with some difficulty using careful voltage/speed regulation. For the clutch setup, a 

pair of Reel EC25L’s were used for either direction (four clutches in total) providing a net 

forwards/backwards torque of 566 N-cm, and an engagement time of τe < 15ms. Combining this 

engagement time with the previous time constant of actuation, the end result is a bi-directional 

actuator capable of providing up to 0.02 kg-m2/s with a positive or negative actuation polarity 

within time ~ 3τ + τe = 36ms. This means that all of the tested benchmark gaits can be actuated 

well within the bounds of a stride, such that continuous actuation of a gait is allowable 

including more complex MTGE’s. 

With the baseline mass parameters set, the full physical walker was constructed and 

weighted with the pair of Pittman PMDC motors and REEL clutches described above. A view of 

the physical walker is shown in Figure 3.4, with all of the major components attached to the 

walker and accounted for via the walker model as well.  With some careful weighting of the 

existing components of the walker, the actuator setup was added on with no change to the 

mass parameters from Table 3.1. 
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Figure 3.4: Experimental Walker Model 

With the main portion of the physical design complete, the next step is to test and tune the 

actuation system of the walker. Since the actuation system is not well tested in literature, an 

important part of this testing is to ensure that the actuator behaves as predicted, to ensure that 

the active/passive walker model is correct. 

3.4 Experimental Results 

 

In order to test the actuation, a simple setup was used to validate the dynamics of the 

actuator against the theoretical behaviour. The angular momentum input to the system was set 
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to a desired level and the mass/inertial properties of the system were modified slightly. This 

was achieved by removing components of the leg to make the system behave more like a 

simple pendulum. The walker was then held by the fixed portion of the hipshaft (the motor 

housings), and the natural frequency f0 of the system was measured. With the walker legs 

stationary, energy was injected into the system at the EA actuation point continually, with the 

same magnitude of L(w). The EA point was chosen as its easily repeatable and always the point 

of peak swing velocity for all amplitudes of oscillation. The frequency of the new oscillations 

was then measured for values of w from near zero to near wt. For this experiment, the mass 

was varied on the leg such that the f0 = 1.25 Hz, and the experimentally measured natural 

frequency for each actuation speed is measured and plotted below. Theoretically it is expected 

that there is no variation of f0 with actuation speed ω. 

 

 

Figure 3.5: Swing Frequency of Walker Leg under Varying Actuation Impulse 

As predicted by the actuation model, the injection of angular momentum into the system 

via the clutched setup resulted in the walker reaching peak amplitudes that varied according to 

the energy input into the system. The time it took to reach the peak amplitude also decreased 
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as the energy injection increased. It is however notable that the natural frequency of the 

system did not change, and it stayed relatively constant at an average value of f0 = 1.24 Hz as 

measured by the best bit line through the data points measured. The data points were 

measured by allowing the leg to reach peak amplitude and timing the distance between 

actuation points, which were triggered with an optical sensor set to go at the equal angle 

crossing point of the legs. The clutch actuation was done using a pair of arc suppressors and a 

fast action relay fed by a switch-mode high current supply. The net triggering/disengage time 

for the clutch with this arrangement was estimated via manufacturing specs to be < 20ms, 

which results in a modified net actuation time constant of τ < 41ms    This result indicates that 

the effect of the actuation is not to change the dynamics of system it’s actuating, but to inject 

energy into the system via an increase in angular momentum. If the dynamics of the actuator 

were to come into play the natural frequency of the system would be likely vary due dynamics 

of the actuator.  

With the actuation testing complete, the final stage of the preliminary testing of the 

physical walker is to get the walker to produce a stable gait and measure the key gait 

parameters: the stride length and the time per step. This gives the rate of advancement (speed) 

of the walker, as well as two values to compare in the model to determine how close the 

theoretical model is to the physical walker. Although this normally just involves finding an 

angled surface to launch the walker on, the complication that arises when using an NK-Walker 

is the issue of foot scuffing. With a traditional K-Walker model, the purpose of the knee is to 

provide foot clearance at the EA point of the gait, such that the toe is lifted due to a bend in the 

knee when the swing leg passes the stride leg. If this does not occur, when the walker reaches 

the equal angle point the tip swing leg and the stance leg feet both share the exact same 

vertical position at the equal EA point. The walker will scuff the swing leg foot on the ground 

upsetting balance. One simple solution to this is to use “Lift Pads”, which are small platforms 

that elevate the points of contact of the walker with respect to the ramp surface. These pads 

are thin risers that are placed at every point where a stance leg is expected to pivot on, i.e. 

when the outer legs are the stance legs, the first set of pads would be under the outer feet and 

a pair of pads for the inner feet would be spaced away by the stride length    of the walker. 
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These pads require a fairly accurate knowledge of the fixed point stance angle    

[     ]         of the gait so that they can be spaced apart by the stride length    

     (
  

 
). This is complicated by the need for these pads to be as narrow as possible and have 

minimal height. The complication that arises if the pads are too tall is that the walker can 

abruptly fall off the pads causing a large upset in balance. The complication from having them 

too long (in the direction of travel) is that the actual stride length of the walker can vary slightly 

from the pad spacing. If the length is different than the spacing, after a few steps the contact 

points of the walker on the steps will shift forwards or backwards from the centreline which 

means the walker will eventually fall off the steps or scuff on them due to the gap for clearance 

not being in the right location relative to the stride. In order to implement these lift pads, a 

ramp was built which has 3” long hardwood pads of 3/8” height that are nailed down to the 

ramp surface underneath. A shim based angle adjustment setup to allow for ramp angles from 

γ = 0 – 10 degrees was implemented. Pre-set shims were used to increase angles by 1 degree 

increments, with a digital inclinometer fixed to the ramp to set the angle accurately to any 

intermediate point using a series of finer shims. The designed ramp therefore allows for a 

variable ramp angle γ in ~0.05˚ increments as well as variable stride length   , if the pads are 

moved and reattached in new positions. Safety rails were also installed on the side of the ramp 

to allow the walker to rest on the motors in the event of the walking gait failing (to catch the 

walker from falling). The height of these rails was very carefully set as the vertical location of 

the walker hip deviates by a maximum of          
 (
  

 
) once per stride. The height was set 

such that a peak stride of 40˚ was allowable before the walker hits the rails, so that a wide 

variety of potential walking gaits is possible, but the walker is still protected from falling any 

substantial height.  

With the ramp set to an initial ramp angle of γ = 0.05rad and the lift pads set in place with 

double stick tape, several trial runs were made to get the walker to produce a stable gait 

pattern with the end result being a passive walking gait with the Gait parameters shown in 

Table 3.2.  
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Table 3.2: Measured Gait Parameters of the Experimental Walker 

Parameter Value 

Stride Length    =8.0” (average) ± 0.1” 

Step Period τs = 0.492s ± 0.041s 

Walking Velocity v = 0.413 m/s 

Froude Number Fr = 0.222 

 

The ramp arrangement is shown below, with the physically constructed walker shown in 

mid stride, and the lift pads, guide rails and weighting system clearly shown. 
 

 

 

Figure 3.6: Walker Test Ramp 

 

This gait cycle was reasonably repeatable with a launch success rate of ~20%, and when the 

motors were turned on for the actuator (but no clutch engagement) the walker was still able to 

achieve the same walking gait. This indicates that that model for the actuator when disabled 

that was described in section 2.2 was accurate, resulting in an experimental setup that is largely 

analogous to the proposed passive walker model.   
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3.5 Experimental Setup Overview 

 

Since the walker was shown to be able to produce a stable walking gait, the instinctive 

thought is to proceed experimentally to dynamically characterize the actuation. This is not a 

very reasonable option, however, since it took weeks of work to grasp the basic dynamics of 

the walker, be able to produce a limit cycle gait, and measure the gait. This highlights one of the 

main advantages the simulation approach has over the experimental one: changes can be made 

rapidly and the effect of small changes can be documented. Between these difficulties and the 

limited time scope of the walker project, it was decided that the dynamic characterization of 

the hybrid active/passive portion of the walker would be via simulation first. This means that 

the actuation on the experimental walker was characterized via simulation. After some insight 

is provided into the dynamics, specific actuation points can be selected and experimentally 

tested.  
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Chapter 4 

4 Active/Passive Simulation Results 
 

In this section, the simulation results from the model proposed in Section 2.2 will be 

discussed, scaled to the parameters of the experimental setup listed in 3.3. The baseline 

simulation results are shown first to validate the proposed model. Following that, three cases of 

actuation are implemented and tested via simulation: simple MTGE energy injection at heel 

strike, complex MTGE energy injection at the EA point, and a combined case. These cases are 

tested at low and high ramp angles to characterize the response of the system to varying levels 

and types of actuation. To start this process, first the experimental setup results (passive) will 

be validated. 

4.1 Validation of Passive Experimental Setup 
 

With both the experimental setup and the fully functioning simulation model for the system 

complete, the next step in the research is to link the two such that they both are representative 

of the same walker geometry. This means that the model parameters must be matched to the 

parameters of the experimental setup. In all research involving passive dynamics walkers, this is 

a challenging process as the system is not structurally stable in the region surrounding the 

period 1 cycle walking gait fixed point. This means the fixed point as well as the Basin of 

Attraction (BOA) both shift rapidly as model parameters are changed, and for many physical 

arrangements of the walker the fixed point of the gait cycle disappears completely. An example 

of where this would happen is shown in chapters 2 and 3, where the physical geometry of the 

walker was changed multiple times in order to present a physically realizable walker. Small 
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changes were also made as the walker was constructed and the actuation system was built. If 

this was done without any regards to the established guidelines set out in section 3, there 

would have been a large possibility that the system would not produce a walking gait. By 

keeping track of the model parameters required to represent the physical system, we end up 

with the following parameter set for the simulation model vs. the original baseline geometry 

explored in Section 2: 

Table 4.1: Comparison of Baseline and Experimentally Derived Model Properties 

Model Baseline Geometry 

m = 1.63kg m = 1 kg 

M = 5.825kg M = 2 kg 

M + 2m = 9.09kg M + 2m = 4 kg 

L = 0.368m L = 1m 

b = 0.5L b = 0.5L 

M/m = 3.57 M/m = 2 

IO = 552.75 kg-cm2 IO = 2500 kg-cm2 

xm= 6.61cm xm= 25 cm 

rg =7.80 rg =25 cm 

 

The chosen parameters are fairly far from the baseline geometry, and do not have a known 

walking gait fixed point but they are representative of a physical walker that produces a walking 

gait, so it is known that a simulation gait for this walker must exist. Each parametric change will 

result in a change to the walking dynamics, and therefore must be accounted for 

independently. For example, the increase in leg length will end up changing the walking gait, as 

the stride length and step period both change with leg length. The Mass parameter b also 

affects the stability of the walker, but it still remains unchanged with respect to L compared to 

the baseline geometry. The mass ratio has also increased by a factor of 1.8, which also affects 

the gait of the walker. To accomplish the parameter matching task, the iterative parameter 

scaling technique from section 2.3 will be used. Each parameter from Table 4.1 was scaled, with 

an example of the Leg length scaling being shown in Figure 4.1.  
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Figure 4.1: Walker Fixed Points as a Function of Leg Length 

After short iteration process both the leg length and mass ratio were modified from the 

baseline parameters to account for changes in the experimental setup. Since the leg lengths b 

and a remained the same (with respect to L), they did not need to be scaled.  The individual 

mass values can also be scaled without changing the gait, as long as the mass ratio is the same, 

so the experimentally derived mass values were input into the model directly with the 

experimental walker’s mass ratio. With the updated parameters, we end up with a stride 

function and a basin of attraction for a stable walking gait as shown in Figure 4.2 and Figure 4.3, 

with a benchmark ramp angle of γ = 0.05 rad. We note that the step period of the stride 

changes considerably (compared to Figure 2.5), but the basic stride function of the walker 

remains visually similar to the results in [1] [38] [39]. This is reasonable, because a shorter 

stride length is shown to have shorter step periods in [1] and [2]. It is also expected that the 

simulation setup can produce a stable walking gait considering the experimental setup was able 

to produce a stable walking gait using the same parameters. 
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Figure 4.2: Stride Function, Using Experimentally Derived Mass Properties 

 

Figure 4.3: Basin of Attraction, Using Experimentally Derived Mass Properties 
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These outputs show that for the experimental NK-Walker with a moderate ramp angle 

(2.86˚), there is a small yet physically attainable period-1 gait cycle with a basin of attraction 

characteristic of a typical passive walker [39]. For selected geometry we find that the peak 

stride length is 7.99”, with a step period of 0.474s, and the following fixed point:  
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From the result above, we see that the walker model has been successfully scaled to the 

parameters of the experimental setup. From this fixed point with high ϵ iteration using the 

iterative parameter scaling technique in section 2.3, a fixed point was also found at 2.29˚, as 

shown in the table below. To compare these to experimental results, the walker was first tested 

in simulation, then the walker was walked ~5 steps with the experimental setup. The values of 

stride length Ls and step period τs were compared as shown: 

  

Table 4.2: Gait Parameters Comparison for Experimental and Simulation Models 

Angle γ Model Physical Walker 

2.86˚ Ls = 7.99”, τs =0.474s  Ls = 8.0”± 0.1”, τs =0.492s ± 0.041s  

2.29˚ Ls = 7.44”, τs =0.470s Ls = 7.6” ± 0.1”, τs =0.451s ± 0.041s 

 

Comparing these values, it’s clear that the walker model has a strong correlation to the 

experimental setup with both the absolute value of the step length and step period being very 

close for the same ramp angle. It should be noted that the chosen geometry (from the model) 

exhibits a variation of stride length with ramp angle, which is documented well in [2] and in 

[30]. The error of measurement is small enough on the experimentally measured stride length 

to agree with this trend. In terms of step period, there is no trend noted in the simulation 

results, and the experimental results (factoring in the error measurement) also agree with this. 

Overall, these results would indicate that the walker model in its passive form can provide a 

valid approximation for the performance of the experimental walker, which allows for iterative 

optimization and testing of the model. Since the model has been validated, the next step is to 

explore the passive side of the walker in the simulation domain to gain an understanding of its 
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dynamics prior to actuation. To start this process, a small parametric study is done on the 

walker, such that multiple gaits can be easily studied.  

4.2  Parametric Study of Proposed Model 

 

When the walker was tested in Section 3, it became abundantly clear that the work involved 

in establishing a stable walking gait, with little quantitative knowledge of the walker’s passive 

dynamics, becomes a daunting task. The need to accurately set the lift pads and match the 

initial conditions of the walker make it nearly impossible to get the walker to produce a stable 

gait without repeated runs and video analysis of the walker as the gait fails. With a good 

parameter matched simulation model, many of the variables of the walking gait are removed 

(in the simulation domain) and it becomes much simpler to investigate the walker’s behaviour 

at different ramp angles. This means that it is possible to characterize several stable gait cycles 

in the simulation domain, then go back to the experimental walker and set a launch target (of a 

specific set of initial conditions, stride length, and ramp angle) in order to make the walker 

physically produce a stable walking gait. If the values of the fixed point were not available, 

launching the walker becomes very difficult as there are four parameters that can be varied: 

the stance angle      stance leg initial angular velocity  ̇ , swing leg initial angular velocity 

 ̇   and the ramp angle γ.  

When looking at the basin of attraction of the walker, it is clear that these four parameters 

span an oddly shaped and rather complex basin of attraction where      ( ̇ , ̇   ). When 

launching the walker, there is uncertainty in  ̇  and  ̇  as there is no simple way to control the 

angular velocities of the links when launching, so this makes it very tough to produce a stable 

gait for a walker without a known set of initial conditions. If the conditions are known however, 

the value of γ can be carefully set to match the model, and the value of    can be controlled via 

markings on the walking surface to give a visual guide for the launching stride length. This only 

leaves the angular velocities to adjust, which can be subtly adjusted over a large number of 

launches to identify the correct technique required to hit the fixed point velocities when 

releasing the walker. This type of launch target is especially important in the case of the NK-
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Walker, as the walker requires lift-off pads to be placed such that toe scuffing does not occur at 

the equal angle point of the gait. These pads require a fairly accurate knowledge of the fixed 

point stance angle    of the gait so that they can be spaced apart by the stride length   . In 

order to assist with launching the walker, the next step is to then produce curves of fixed points 

such that a variety of ramp angles can be tested with all of the launch target values known. The 

curves for [   ⃑⃑⃑⃑     ⃑⃑⃑⃑  ⃑]
 
 as a function of Ƴ are listed in Figure 4.4 and Figure 4.5 respectively. 

 

        

 

Figure 4.4: Fixed Point Leg Angles as a Function of Ramp Angle 

 

Figure 4.5: Fixed Point Leg Angular Velocities as a Function of Ramp Angle 
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From these curves, we see that the fixed points for    and     decrease somewhat linearly 

from about 1 degree to 2.5 degrees with a sharp taper off after that. This means that the stance 

angle     (the sum of the two curves) also decreases linearly. With the passive dynamics of the 

system reasonable characterized, the next step is to introduce some level of actuation into the 

model to study the effects of varying levels and cases of MTGE based actuation.  

4.3 Actuation Case Studies 

 

With the basics of the passive portion of the model covered, and the model parameters 

scaled to match an experimental setup, the last step in the model is to test the actuation 

portion of the model to see how the walker behaves. Since the model bears a strong correlation 

to the physical walker, the actuation behaves in a predictable way (as tested in section 3), and 

does not add significant joint impedance to the system. This means that simulation testing is a 

reasonable approach to use to explore the actuation dynamics. In the theoretical model, the 

difficulty in “launching” the walker is not present as there is no disturbance built into the initial 

conditions of the walker, i.e. if the basin of attraction for the walking gait fixed point collapsed 

into a single point, the theoretical model would still be able to produce a walking gait. In the 

case of actuation and studying the behaviour of the actuated system, the key point is that the 

trends do not necessarily have to be physically achievable via the current experimental setup to 

be valuable, as the goal of the study is to provide insight into the behaviour of a system. With 

this in mind, the first step is to try a single actuation at the heelstrike event via a simple MTGE, 

as this is the simplest way to actuate the walker. 

  For actuation system, there are two basic positive outcomes that could arise from energy 

injection: the gait of the walker changes in terms of speed/stride/period, or the basin of 

attraction changes. If the basin of attraction of the walker increases, the result is desirable as it 

indicates that the energy from the actuation system is making the system more stable and 

therefore easier to launch/implement. This would drastically affect the efficiency, as the size of 

the basin of attraction is not included in the non-dimensional cost of transport Ct, however the 

energy input into the system affects this value negatively. It the case of a modified gait, the cost 

of transport is affected both positively and negatively in combination with the increase in 
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energy use, so there is a chance to keep the walker at the same or comparable efficiency as a 

purely passive system. To test this, the simplest method is to select an angle with a known set 

of fixed points where the walker produces a reasonably large basin of attraction but is on the 

lower end of the feasible walking angles. In this case, 2.29˚ (0.04 rad) is a good angle to start 

with. For this angle, the Ct = 0.040 and the fixed point is given by:  
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In order to test actuation, L(ω) was linearly increased from 0.00 in increments of 0.001 kg-

m2/s and using the same scheme for iteration as the parameter scaling approach followed 

earlier in this section. 

4.3.1 Simple MTGE Testing, Stance Point Impulse 
 

To do an initial study of MTGE actuation, a simple actuation procedure was tested where 

only stance point actuation was used. Since the goal was to increase the energy in the system, 

only positive polarity actuation was tested. It was found that 0 < L(ω) < 0.05 kg-m2/s produced 

walking gaits with reasonable basins of attraction, and any impulse beyond ~0.05 kg-m2/s 

resulted in large reductions in the basin of attraction size. The BOA’s for two extremes of 

actuation, at 0.00 kg-m2/s and at 0.05 kg-m2/s, are shown in Figure 4.6 and Figure 4.7 

respectively. These figures were generated using a mesh of initial conditions and testing if they 

produced a limit cycle gait. Any red point is one that belongs to the BOA of the stable walking 

gait. Comparing the change in fixed points, we note little stance angle variation: 
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Figure 4.6: BOA at 2.29˚, Stance Impulse, L(ω)=0.00 kg-m2/s 

 

Figure 4.7: BOA at 2.29˚, Stance Impulse, L(ω)=0.05 kg-m2/s 
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From the fixed point values, it’s noted that the stance angle    does in fact increase but only 

by a relatively small amount (~1%). When comparing the step period, it is also found that the 

period stays relatively fixed at ~0.45-0.47s with a variation of 4.5% between the unactuated 

and fully actuated cases at steady state walking fixed point. In terms of the basin of attraction, 

however the change is rather pronounced, where a large number of IC’s are now included in 

the basin of attraction, which would otherwise not produce a stable gait. This has two effects, 

one is that the system has a larger stability region; the other is that the robustness of the 

system has increased in terms of handling disturbances in the angular velocities. This may seem 

like a trivial gain, but in the case of a physical walker, the stride to stride interaction with the 

ground has a significant amount of variability. This means that even if the walker is launched 

perfectly, the small imperfections in the ground and variations in ramp angle can cause the gait 

to swing outside of the stability region relatively easily. In order to mitigate this when designing 

the experimental walker, a large push was made to create a very solid impact event to minimize 

this variation. This results in high loads throughout the walker and very sharp point feet which 

limits the real world application of the walker substantially, as the walker requires minor 

surface penetration in order to keep the feet from moving. This is often not possible in real 

world use, but is used simply to provide a stable test platform. With a more robust system, 

more compliance could be added to the system in order to make the walker easier to launch 

and able to produce more versatile gaits. The negative side to an increase in BOA size is that the 

system efficiency will have clearly dropped (as discussed later in this section) due to additional 

energy being injected into the system with negligible changes in the walking gait. 

One point worth noting from the above plots is that the experimental walker is unable to 

provide actuation higher than the peak value of L(ω) < 0.02 kg-m2/s, so although the model can 

predict the results at higher magnitudes, the feasible level is less than half of that. Shown in 

Figure 4.8 is the more realistic actuation level of L(ω) = 0.025 kg-m2/s, which is attainable with 

the addition of some small inertial weights on the walker. 
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Figure 4.8: BOA at 2.29˚, Stance Impulse, L(ω)=0.025 kg-m2/s 

Although the BOA at L(ω) = 0.025 kg-m2/s, is not as large as the BOA for L(ω) = 0.05 kg-m2/s, 

the result still shows a measurable improvement over the unactuated case. Next, the penalty 

on the non-dimensional cost of transport of these cases can be calculated. We note that each 

one carries the following cost: 
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From these equations it’s noted that the fully passive system at γ =0.04 rad has a Ct = 0.040.  

Using the value of L(ω) =  0.025 kg-m2/s and ωt =339 rad/s from section 4, we find that Ia would 

need to be increased by 7.6% to Ia = 7.37x10-5 kg-m2. This means EInput = 4.23J. Therefore Cet = 

0.237 and Ct = 0.278. Now although this figure seems substantially higher than the passive 

walker alone, some of the most notable active/passive walkers have a Ct > 0.25 as discussed in 

section 1. The case chosen in this example is also the case where the actuation system is least 

efficient i.e. the stride length is not changing measurably and the energy injection is only 

providing an increased basin of attraction. From these results, we can see that a K walker with a 

simple MTGE actuation at the heelstrike event, at a moderate ramp angle where there is 

sufficient energy in the walker, can accept L(ω) < 0.05 kg-m2/s, of actuation. The result of this is 

to measurably increase the basin of attraction with 0.04 < Ct < 0.44.  

One very important note from this section, however, comes from the definition of the L(ω) 

actuation efficiency. From the previous equations, it can be seen that the magnitude of L(ω) is 

proportional to ω and IA, so for any given value of L(ω), a much larger value of IA can be used to 

reduce the value of ωt required during actuation. However, when looking at the energy term, 

we note that the proportionality changes to ω2. As a case study of this, the L(ω) = 0.025 kg-m2/s 

case can be used as an example. If IA is increased by 12 fold to 8.844x10-4 kg-m2, then ωt = 28.25 

rad/s. This in turn decreases the value of EInput to only 1.01J, which is a decrease from before of 

74%. This means for a 15 fold increase in IA, Cet drops by 74% down to 0.0612, which leads to a 

Ct of 0.101. This value is substantially lower than most notable active-passive walkers in 

literature, again in the worst case in terms of efficiency of this specific walker.  

To evaluate the feasibility of such a change in inertia, one could simply look at the idea of 

using annular weights on the hip. With the hipshaft of the walker being 6.35 mm in radius (r1) 

and with 25.4mm of length LW on either side of the walker (between the legs), we see that a 

pair of annular tungsten weights (ρ ≈ 19,250 kg-m3) would have the following inertia: 
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If this is solved for the 15 fold increase of inertia from before, we find that weights of 

approximately 24.02mm diameter are required, which adds a total floating mass of 0.31 kg to 

the walker. In terms of the time constant of actuation τ, it increases to 104ms, which is still a 

very reasonable value of τ for a gait with a period of ~0.47s; especially considering ω does not 

have to reach ωt with the increased inertia. In terms of the physical model, although it would be 

relatively simple to add on inertial weights, one of the goals of the original design was to have 

the walker compatible with a wide range of gaits initially to test the design. The principle of the 

proposed hybrid model is that the difference between a large inertia low velocity actuator and 

a small inertia high velocity actuator can easily be modelled, so a change in these properties 

does not drastically affect the model or its validation. So with that said, although the possibility 

exists to lower the physical Ct, the physical walker actuation properties will be left as is to 

continue exploring gait parameters with the potential for future optimization for specific gaits. 

4.3.2 Complex MTGE Testing, Equal Angle Point Impulse 
 

With the equal angle case explored extensively at a single angle, the next step is to explore 

the addition of a complex MTGE at the equal angle point in the gait. Since this was already 

setup in the previous sections as a part of the model, it becomes simple to test various 

magnitudes of it. Since the study on the simple MTGE case used the ramp angle γ = 0.04rad, the 

same angle can be used for the complex MTGE case. In the same way as in the previous case, 

the first thing to do is to use the single parameter modification iteration approach to figure out 

an upper bound to the magnitude of a positive polarity L(ω) complex MTGE at the equal angle 

point. With the simple MTGE even disabled, it was found that only L(ω) < 0.01 kg-m2/s of 

angular momentum could be added before the basin of attraction became so small that 

physical walking would have been unfeasible. The BOA plots of these cases are shown in Figure 

4.9 & Figure 4.10 respectively, with the fixed points of the gaits shown immediately following 

Figure 4.9 & Figure 4.10. 
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Figure 4.9: BOA at 2.29˚, EA Impulse, L(ω)=0.00 kg-m2/s 

 

Figure 4.10: BOA at 2.29˚, EA Impulse, L(ω)=0.01 kg-m2/s 
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From these plots it’s clear that the complex MTGE produces substantially poorer results 

than the simple MTGE taking place at the heel strike. We see that the behaviour of the walker is 

similar in terms of stride length (small, largely insignificant increase) and step period (more or 

less the same) for L(ω) < 0.01 kg-m2. Above that point we see the stride length decreases and 

there was a notable reduction in BOA that resulted in a walking gait fixed point that would not 

be physically realizable. It was also noted that most of the gait cycles for L(ω) < 0.01 kg-m2 had 

a 2 cycle periodic form, which is not a desirable quality in the walker. An example of this is 

shown in Figure 4.10, where the split BOA represents two different fixed points for the same 

gait cycle that alternate from step to step. In general we note that the effect of injecting energy 

via the EA impulse is to decrease the BOA substantially and increase the stride length 

marginally. Since the energy input and efficiency calculations are identical to the previous 

analysis, the Cet can be stated as 0.0034, and Ct can be stated as 0.043 in the case of L(ω) = 0.01 

kg-m2, with a semi optimized IA = 8.844x10-4 kg-m2 and ωt= 11.31 rad/s. 

Based on the comparison of results of the simple MTGE vs the complex MTGE shown above, 

it’s very clear that the complex MTGE does not actuate the system effectively, nor does it 

produce a positive result on the system. This is likely because the injection of energy at mid 

stride alone causes a jump in energy at a point in the walking gait where it has diminished 

stability, disrupting the passive dynamics of the walker. This is, as noted in section 3, one of the 

fundamental drawbacks of this actuation method, as there is no way to determine exactly why 

the actuation at that point alone is not effective without more information about the system 

dynamics.  

With the two basic cases tested, a simple option exists for a third test case: to combine the 

two types of actuation and see if a positive result can be gained by injecting energy at both 

points. This is a fundamentally different actuation type than either point alone as the walker 
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would have a higher energy when crossing the equal angle point due to the simple MTGE, 

which could result in substantially different actuation effects. 

4.3.3 Combined MTGE Testing, Stance and EA Impulse 
 

Since the EA impulse case was shown to produce poorer results, the concept of the third 

test case is to combine case 1 and 2, and have two points of energy injection into the walker. In 

general this concept could be evolved to include multiple complex MTGE’s so this test is just an 

example of the most basic form of a multi MTGE injection system. To have the results directly 

comparable to the previous cases, the same ramp angle as the previous cases (γ = 0.04rad) will 

be used, and two separate MTGE’s were defined, with an independent value of L(ω) for each. 

For the simple MTGE at heel-strike, L(ω) would be held at the peak value of L(ω) =  0.05 kg-m2 

from the previous case. This means that the most energy possible is injected into the walker at 

heel strike. For the complex MTGE, the value of L(ω) was increased from zero actuation up to 

the maximum that the walker model would take while still producing a stable walking gait. It 

was found that L(ω) <  0.01 kg-m2 produced stable gaits, but with L(ω) =  0.005 kg-m2 producing 

the best results from the ΔL(ω) =  0.0025 spaced grid of values tested. Although further 

optimization would be possible by then redoing the study with a grid of values of L(ω) <  0.05 

kg-m2  for the stance impulse, the simplest case will be studied as an initial view of the effects 

of complex/simple MTGE actuation with the potential for future work to expand the scope of 

the research. The actuation study resulted in the following fixed points, and the respective 

BOA’s shown in Figure 4.11 and Figure 4.12. 
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Figure 4.11: BOA at 2.29˚, L(ω) = 0.05 kg-m2/s (Stance), L(ω) = 0.00 kg-m2/s (EA) 

 

Figure 4.12: BOA at 2.29˚, L(ω) = 0.05 kg-m2/s (Stance), L(ω) = 0.005 kg-m2/s (EA) 



CHAPTER 4. ACTIVE/PASSIVE SIMULATION RESULTS 76 

 

 

The results from this case present an unexpected result compared to the previous two 

studies. Since the simple MTGE case produced positive results, and the complex MTGE case 

produced negative results, it is logical that the end result would be a combination of those two 

effects. Since the model behaviour is governed by very complex non-linear dynamics, the actual 

effect of the combination of the two actuations is much more complex. The end result, as can 

be seen from the BOA plots above, is that the addition of a complex MTGE at the equal angle 

crossing point actually increases the BOA of a stable walking gait, again without effecting the 

stride length or step period significantly.  

For the efficiency of this actuation, some small adjustments must be made to previous 

estimates, as the value of ω decreases for the second MTGE due to less energy being put into 

the system, considering that IA cannot be changed mid stride without a more complicated 

physical system with variable IA. For the simple MTGE, we take the value of IA = 8.844x10-4 kg-

m2 from previous simple MTGE case, which requires ω = 56.28 rad/s in order to get L(ω) =  0.05 

kg-m2 for the first actuation event, and with IA held constant, we see that ω = 5.63 rad/s for 

L(ω) =  0.005 kg-m2 in the complex MTGE case. This results in a total EInput of 1.42J, which results 

in a Cet = 0.086, and a Ct = 0.126, which is still exceptionally low.  

Compared to the previous cases, we see that this case carries the highest cost of transport, 

but as discussed earlier there exists the possibility of optimization in this case. Unfortunately, 

due to a lack of higher order characterization in the chosen model from a lack of a closed form, 

the system dynamics become very complex, and in turn the 2 parameter optimization problem 

becomes much more complex than a simple linear system. In a simple linear system, if the 

dynamics are known, the effect of one parameter can be studied, and the effect of the second 

parameter can be studied independently. The results can either be combined via superposition 

(on some systems) for an accurate characterization. In the case of a highly non-linear system, 

the complexity in the system dynamic means that each possible combination of parameter 

values can have a drastically different effect. This means that substantial research can be done 

on  interaction of the two types of MTGE’s to find an optimal point in future research. To 

compare the final actuated result with the initial BOA, both plots are overlaid below, with some 

of the outlier points removed for clarity.  
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Figure 4.13: BOA at 2.29˚ with Stance and EA impulse vs. Unactuated 

From this image we see that there is a 38% increase in the BOA of the actuated system 

(dark) vs the original system (light) at the peak width point where swing leg initial velocity is ~ 0 

rad/s. Considering that the non-dimensional energy cost for this extra robustness/stability is 

only 2x the walking energy cost, this can be viewed as a very reasonable result, especially 

considering the passive dynamics of the system are clearly maintained due to the similarity in 

stride length and step period. One application of this would be to use the actuation method as 

a control output for a stability control system to assist in launching the walker, but could 

theoretically be disabled once the walking gait fixed point is reached. This is primarily driven by 

the benefit that fixed point from the mixed mode actuation is so similar to the fixed point for 

the un-actuated system that they both lie in overlapping BOA’s. This means that a steady state 

system (that is already converged to the fixed point) can theoretically remain in the overlapping 
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region and transition from actuated to unactuated without large changes to the system 

dynamics. This type of “removable actuation” system is one of the main advantages of using an 

active/passive system, as there is the potential for the system to retain the original dynamics 

(at a 3 fold efficiency increase) or slightly modified dynamics (at a 3 fold efficiency decrease). 

Overall, this is a very useful result, because the stride length and step period of this system at 

the ramp angle of γ = 0.04rad are considered to be very reasonable for a passive walker. This 

also correlates well to one of the favourable simulation outcomes, which is the expansion of 

the characteristically small BOA of the passive gait. 

4.3.4 MTGE Actuation Overview 
 

Between the three cases a wide variety of actuation dynamics have been shown, all at a 

moderate ramp angle of γ = 0.04rad. In the case of a simple MTGE, the system responds 

without a significant change in gait quality, and the overall walking gait character stays roughly 

the same (Froude Number, Fr   0.231) but with a greatly increased BOA. In the case of a 

complex MTGE it was found that the gait character did not change much (Fr   0.231), but the 

BOA area shrank rapidly as energy was injected. In the case of combined actuation, the 

dynamics of using a stance impulse and an EA impulse with a 10:1 ratio on the magnitude 

resulted in the dynamics of the system remaining the same (Fr   0.231) but with a substantial 

increase in BOA (~38%). For all three cases, the approximate peak energy cost remained under 

2x the passive walker energy usage, with an overall Ct of 0.126 for the combined actuation case. 

With the basics of the MTGE Dynamics worked out at a benchmark angle, the next step is to 

evaluate the dynamics over a large range of angles to see if the behaviour of the system varies 

substantially. 

4.4 Characterization of Hybrid System Dynamics 

The next step in studying the hybrid system is to characterize the behaviour over a large 

number of ramp angles. Going back to the initial fixed point curve, we can now run an alternate 

set of curves to the original one to compare actuated/un-actuated cases. The initial curve (solid 

red) on Figure 4.14 shows the case where no actuation is used. When actuation is added, we 

have the line shown as the cyan dash-dotted line, where L(ω) =  0.01 kg-m2 is injected at the 
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equal angle point in a complex MTGE. When further actuation is added, we have the line shown 

as the dashed blue line, where L(ω) =  0.005 kg-m2 is added at the equal angle point in a 

complex MTGE and L(ω) =  0.025 kg-m2 is added at heelstrike via a simple MTGE. 

 

 

Figure 4.14: Actuated Test Cases, Walker Fixed Point Curves 

We see that the behaviour is as expected for higher ramp angles, but as the ramp angles 

decrease, the divergence between the curves varies substantially, relative to the magnitude of 

the leg angles. At ramp angles as low as γ = 0.11˚, we see that the stride angle of the walker has 

increased over 29%, which is a substantial increase in stride length on the walker, compared to 

the < 1% change in the stride length at higher ramp angles. These curves provide initial insight 

into how the system behaves under actuation given the chosen parameters. At higher ramp 

angles, where the gait parameters of the walker are nearly ideal, most of the energy from the 
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actuation (via the simple and complex MTGE investigated) creates an increase in basin of 

attraction magnitude. At lower ramp angles where the stride length is small (undesirable), the 

injection of additional energy produces gaits with longer strides, which means that the energy 

injection is working to add energy directly into the system dynamics. Although this behaviour is 

very beneficial, one of the large complications resulting from the use of this type of actuation is 

that there is little to no control on this. From the magnitude of energy injection, one of the 

many different fixed point curves can be picked, but unless different types of MTGE’s are tested 

there is no way to control how the curve is specifically shaped. The solution to this would be to 

try and describe the behaviour of the system via higher order dynamics (such as using 

conventional stability theories), but the mathematical complexity in those approaches is 

substantially out of scope of this research. Therefore, the simplest approach is to merely study 

the extreme cases of the actuation (at γ = 0.04 Rad and γ = 0.002 Rad) and draw general 

conclusions about the behaviour between the two. Since the behaviour at γ = 0.04 Rad is 

already described in detail above, the next step is to look at the BOA at the γ = 0.002 Rad case 

and put a figure to the efficiency of the actuation at that ramp angle. 

Energy use in the 0.002 rad studies is based on an inertial actuator of IA = 8.844x10-4 kg-m2, 

with three different terminal velocities for the two different cases. For the case with just knee 

actuation and L(ω) = 0.01 kg-m2, we have ω = 11.307 rad/s, resulting in a total energy input to 

the system of EInput = 0.056J. This results in a Cet = 0.0069, which causes the total cost of 

transport to be Ct = 0.0089, which is substantially lower than other active walkers in literature. 

When the energy input is increased via two separate MTGE’s for the second case, we have the 

total energy injection increased to E = 0.509J. This results in a Cet = 0.0600. When coupled with 

the walker’s passive energy requirements, we have Ct = 0.0620. In the case where no actuation 

is used, we have Ct = 0.002, which is substantially lower than both of the actuated cases. This 

result shows that the energy injection requires a fair bit of optimization, as the energy costs 

vary drastically even though the stride length only changes marginally between the two 

actuated cases. 

From these results we see that the actuation system can provide a wide variety of 

responses from the system and generally be used to improve the system performance. In the 
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higher ramp angle cases, the walker stride length is already sufficient to produce a reasonable 

gait, and the energy from actuation is used towards increasing the side of the BOA. In the case 

of small ramp angles, the stride length is very small, and the 29% increase in stride length via 

actuation indicates that a large portion of the actuation energy is going directly into the 

kinematics of the walker. 

4.5 Actuation Performance and Limitations 

Now that the actuation of the walker has been carefully examined in simulation, the final 

step is to evaluate the performance of the walker and validate the simulation model. To do this, 

quite a challenge is presented based on two simple issues: the tolerance for the physical 

properties of the gait, and the tolerance of hitting the required initial conditions of the gait. At a 

ramp angle of 0.1˚, the stride length of the walker is only 2.92”, which is substantially smaller 

than the 7.44” gait that occurs at 2.29˚. At the larger ramp angle, however, the amount of 

energy injected into the gait is substantially higher as it is a function of: 
 

 

               ( ) 

 

 

The difference between the energy consumption at the 0.1˚ ramp angle case (0.0114J) and 

the 2.29˚ ramp angle case (0.711J) is staggering since more than 62 times the energy input is 

provided at the larger ramp angle. This is mathematically accounted for when considering the 

cost of transport for both cases as Ct is substantially higher for the larger ramp angle, at 20 

times the non-dimensional cost of the 0.1˚ ramp angle case. Based on this, we can see a clear 

problem when energy loss is considered in the system: the physical system can afford almost 

no energy loss at a 0.1˚ ramp angle. In the experimental setup, each of the hip bearings has a 

small amount of friction associated with it, especially when under load, as do the clutches used 

to disengage the actuator from the walker. Looking at the ball bearings alone, based on the 

specified frictional loss for the 8 ball bearings supporting the hip shaft, there would be an 

average loss of 0.0168W of energy per stride. Comparing that to the power coming into the 

walker in the 0.1˚ ramp angle case (~0.0285W), we see that nearly half of the energy is 

consumed just by the rolling friction of the bearings. In the 2.29˚ ramp angle case, we see that 
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the bearing energy consumption is ~1.50W, with the frictional loss accounting for only 1% of 

the total energy injected into the stride. This means that at low ramp angles producing a 

passive walking gait itself is rather difficult. This means that the production of a walking gait 

stable enough that it can be tested with the hybrid active/passive actuation method is nearly 

impossible.  

The next concern is the variation in the initial conditions of the gait. This poses a challenge 

not only in the low ramp angle cases, but also in the high ramp angle cases. On the passive high 

ramp angle (2.29˚) walker, we see a region known as the launch target (shown in the figure 

below), the centroid of which is the easiest set of initial angular velocities to start with. This is 

because the launch target centroid is approximately very near the fixed point of the walking 

gait and is the largest region of gaits that converge very quickly to the fixed point gait.  

 

Figure 4.15: Launch Target of Walker, Actuated vs. Unactuated 

We note that in order to hit this launch target, the initial conditions must be within the 

range of 1.5-1.9 rad/s for the stance leg and -1 and 1 rad/s on the swing leg. Of these two 

targets, the smaller region presented by the stance leg angular velocity is the tougher of the 
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two to stay within as the tolerance is only 0.4rad/s and both of the values are positive non-zero 

(as opposed to the simple launch goal of the swing leg angular velocity being 0 rad/s). After a 

few trial runs with the walker at this angle, the success rate of a walking gait can be seen to be 

between 10-25% depending on the condition of the lift pads and the condition of the walker 

(which deteriorates due to falls, scuffs and rounding of the feet). From a study using a simple 

test setup of an optical encoder and an individual leg from the walker, it was found that the 

total tolerance for launching with angular velocity of ~1.0rad/s was somewhere around 

±0.3rad/s, with the results improving with practice. What this means is that the results shown 

for the 2.29˚ case with actuation are very difficult to experimentally reproduce, as the increase 

in the size of the launch target window (although it increases by 38% at its peak) includes 

regions on either side of the main BOA where a more complex shape in the BOA exists. This 

means that although these regions could theoretically increase the basin of attraction, 

statistically it would be very difficult to measure given the low success rate of launching the 

walker.  

Although both of these issues seem to put the theoretical results in a negative light, the real 

insight that is gained is the understanding of why a strong link between modelling and 

simulation is important: being able to see limitations from both the experimental and 

simulation models and understanding how to work around them. In the case of the first 

limitation, the energy efficiency of the walker, we can see that a substantially simpler system 

can be built, compared to the complex experimental prototype in this research, to purely test 

the actuation at lower ramp angles. The low energy injection levels and energy mean that 

substantially smaller actuators can be used, and much simpler clutch mechanisms can be 

utilized to drastically reduce the weight of the walker. Based on the preliminary bearing load 

calculations, the bearing drag can also be reduced by an order of magnitude by using carbon 

fibre shank components and a needle bearing setup, which is enough to reduce the bearing 

drag to only about 5% walker energy use at 0.1˚ ramp angle. Although this was not feasible on a 

first attempt at making the system, this result gives insight into how to develop the 

experimental test setup to allow for lower ramp angle walking/actuation. From the launch 

condition variance, we also note that a key experimental issue with the walker is the ability to 
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launch the walker with a controlled swing leg angular velocity. This is often overlooked in many 

passive cases as there are often no ways to subtly improve the stability of the walker. With the 

potential this research presents, this can be a design consideration for future research. A simple 

solution to this problem would be to use a launch frame or other jig that releases the walker 

with set starting velocities/angles such that a wide variety of initial conditions can be tested 

accurately. Looking at the graph above, we note that if swing leg angular velocity (initial) is kept 

at ~0 rad/s, an entire range of initial conditions can be tested for the stance leg: from 1.59 

rad/s – 2.0 rad/s in the case of the unactuated walker and 1.42 rad/s-2.0 rad/s in the case for 

the actuated walker. We note that as long as the tolerance of the launching can be done with 

0.05 rad/s or finer (±0.5rpm), then the increase in BOA could actually be measured and used as 

a simple form of validation for the overall system. In the case of the system as it is however, the 

complications that arise from the actuation performance mean that an alternate approach 

must be used to validate the system model. 

4.6 Discussion of Experimental Testing with Actuation 

Due to the technical issues presented by the wide number of actuation potentials, overall 

actuation testing of the experimental system was done via smaller tests. The first test is to 

check the walking model passively against the walker itself. This test was done near the start of 

section 3.5 , to show that the final walker was able to produce a gait with approximately step 

period and stride length as predicted by the model (with a peak error of 4% on the stride 

length)  

The next step was to show that the actuators were providing energy input into the system 

in a measureable and controllable manner, and that the natural dynamics of the system were 

not affected. This was tested in section 3.4 with a simple check involving the natural frequency 

of the system. By energizing the system with different levels of energy injection the actuator 

impedance was measured by checking that the natural frequency of the system remained 

unchanged as it was actuated. The actuation impulse was also checked against the amplitude of 

oscillation to verify that the energy input into the system was as predicted. With these two 

validation tests, we can conclude that the walker behaves as modelled, passively, and that the 

actuator behaves as modelled.  
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This leads to a final test, which can be done for the overall system, by testing the extreme 

cases of actuation. We note from the 2.29˚ ramp angle case study that the walker can only 

accept a certain amount of energy in the form of hip actuation before the stability region 

drastically shrinks and the stable 1-Cycle walking gait disappears. From the case study, it was 

found that the limiting value for actuation was at L(ω) > 0.01 kg-m2 applied as an actuation 

impulse, where the stability region of the walker diminished significantly and a two cycle gait 

was produced. Since the basin of attraction for this gait is so small and the stride length is not 

the same as the standard gait, we can use this as a simple test. If L(ω) > 0.01 kg-m2 is applied to 

the system, we would expect that the walker would not be able to walk, which would mean 

that the effect of the actuation on the model has a close parallel with the physical system. To 

test this, the walker was held at a ramp angle of 2.29˚, and L(ω) = 0.00, 0.005 and 0.011 were 

applied at the equal angle point of the stride. In order to measure the magnitude of L(ω) input, 

the system was placed at rest on a test stand and the motor was given time to reach full speed 

at different voltages, using an optical encoder to measure output from the motor. With both 

motors at near full voltage (22.9V) and using no modifications to the inertial weight of the 

walker it was found that and L(ω) = 0.011 kg-m2 was achievable. By reducing the voltage to 

(15.15V) it was found that L(ω) = 0.005 kg-m2 was deliverable, with no changes to the inertial 

weight. With the motors disabled, the setup could also test the no actuation case. With these 

three cases in mind, the walker was placed on the ramp with no changes between each setup. 

With no angular energy input it was found that the walker would walk ~20% of the times it was 

launched without any obvious issues. In the L(ω) = 0.005 kg-m2 case, the walker seemed to 

have no issue launching, with the same approximate success rate (~20%) as the unactuated 

case. In the L(ω) = 0.011 kg-m2, it was found that the walker was unable to produce a walking 

gait of more than 1-2 steps with an approximate success rate of ~3% in those cases. The test 

was also repeated with the voltage applied to the actuator but no clutch engagement in all 

three cases to test for any possible effect from the motor rpm on the walker. All of the trials 

unactuated cases ultimately resulted in no noticeable change in the walking behaviour, 

meaning that the actuator dynamics when unclutched from the walker did not affect the 

experimental setup at all.  
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With the three validations complete, it was clear that the walking model that was proposed, 

even if not capable of being fully validated via testing at lower ramp angles, still shared a strong 

agreement with the experimental setup, and none of the devised checks produced any 

abnormality as would be expected if the model and the experimental setup did not correlate 

strongly. Combined with the existing measurements compared to the passive walking dynamics 

of the walker, this indicates that the walking model presented can be accurately used to 

characterize the performance of an active-passive hybrid biped with the proposed actuation 

system. 

4.7 Hybrid Dynamics Summary 

From these results, we overall see that the initial investigation into the use of the novel 

method of MTGE actuation resulted in very surprising and useful results. It was found that the 

actuation behaves in a way that is very desirable, where gaits that have a higher energy cost are 

affected by the actuation in a way that produces a larger basin of attraction, and gaits that have 

a low energy cost are affected by the actuation in a way that produces a longer (more useful) 

stride. In an optimized case at a ramp angle of 2.29˚, we can increase the basin of attraction at 

its widest by 38% at the cost of ~2.15 times the walking energy required passively. In the 

optimized case at a low ramp angle gait at 0.1˚, we see an increase in stride length of over 29%, 

at an energy cost of equivalent to a walker travelling on a 3.43˚ incline. From both of these 

results we see that the overall passive-active model proposed has the potential for very 

interesting results, and considering that there are only three cases of MTGE’s and that only the 

NK-Walker model was considered. Considering that both of these cases were studied from the 

simplest real world perspective, there is clearly significant future research potential. Overall the 

novel actuation method researched in this thesis presents a stark contrast to currently 

published studies in the field that focus on complex actuation and control.  
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Chapter 5 

5 Conclusions and Future Work 
 

In this thesis, a novel concept has been presented for a discontinuously actuated planar 

bipedal walking robot. The idea of the walker was shown to fit in a unique gap in current 

knowledge and published literature, where a passive system (specifically a passive dynamic 

walker) is actuated via a momentum based approach that injects energy into an existing passive 

system. A mathematical model for this was proposed, encompassing almost all of the possible 

simple planar walking systems that can be iterated and used to study the trajectories for a 

broad range of walking machines. This model was tested and was parametrically studied to 

provide design guidelines for an experimental walker. It was then also validated against existing 

models to show that it accurately characterizes the behaviour of a passive walker. A walker was 

then built based on these guidelines, which utilizes the novel actuation concept presented in 

the model, in the form of a clutched hip actuation system using a flywheel system to inject 

momentum in to the walker in a controlled manner. The experimental test setup was then 

shown to function as a passive walker, and was tested at a variety of ramp angles, with 

actuation enabled but no energy injection into the system. The walking model was then 

modified to match the parameters of this experimental setup via single parameter scaling, and 

a thorough investigation of three main cases of MTGE based actuation events was considered. 

Via a three point approach, these results were experimentally validated, and several 

conclusions were drawn regarding the proposed hybrid actuation system.   

5.1 Conclusions 

The research presented in this thesis overall serves as a design guide for a class of hybrid 
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actuated walking machines that are not seen in literature, and is therefore the platform for a 

signification portion of future work. From this research, several key conclusions can be drawn 

about the behaviour of a passively actuated biped system.  

The first conclusion that can be drawn is regarding the general concept of a hybrid 

active/passive walker. In current literature, a long standing research focus is on using SEA based 

approaches or other elastic actuation methods to combat joint impedance and create passive 

bipeds. In the case of this research, a viable alternative has been presented in the form of 

discontinuous joint actuation via angular momentum injection. In section 3.2 it is clearly shown 

that this type of actuation is not only viable to implement on the hip of the walker as detailed in 

this research, but can also be incorporated in the foot, knee, ankle, and any other joint on a 

passive biped. The model presented in this thesis has been shown to be compatible with hip, 

knee and foot actuation, and an experimentally implemented test setup shows an archetypal 

hip actuator of this class.  

The second conclusion that can drawn is regarding the effectiveness of angular momentum 

injection in a passive/active hybrid walker. From the results in section 3.4, it is very clear that an 

actuator of the form presented not only behaves as predicted, but is also capable of selectively 

controllable actuation. The tested system was shown to be able to inject L(ω) > 0.011 kg-m2 

into the swing leg of the walker, and was able to do so without disturbing the fundamental 

frequency of the walker swing leg (as shown in Figure 3.5). This system was also shown to be 

capable of providing discrete values all the way down to the point of no actuation, which means 

that the energy injection can be accurately modelled, injected, and controlled reasonably and 

serves to be a high effective actuator for active/passive hybrid walkers. 

The third conclusion that can be drawn is regarding the design of the experimental walker, 

in regards to passive walkers. In the experimental setup a split approach was used, where the 

model is a simple lumped mass model that is tuned to match the experimental setup and the 

experimental setup is designed to emulate a lumped mass model. Via the cooperative tuning 

and single parameter scaling approaches shown, a passive walker was made that was capable 

of matching the presented simulation model without any parameter scaling or tuning with an 

peak error of ~4% on the stride length of the walker. This means that the presented approach 
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for walker design can fundamentally be extended to all walkers attempting to match a lumped 

mass model. 

The fourth conclusion that can be drawn is regarding the actuation of the biped at high 

ramp angles. At high ramp angles, the proposed actuation model showed that simple MTGE 

actuation was able to successfully increase the BOA of the walker by ~33% alone, and when 

combined with a complex MTGE event, the net result was an increase in BOA width of ~38%. 

This came at a total cost of ~2.15 times the energy input into the system and a theoretically 

derived net Ct of approximately 0.126. At high ramp angles, a complex MTGE at the stride 

function was shown to have negative effects on the walking gait, and was not considered a 

viable option for actuation. Overall, the high ramp angle cases present positive results, where 

the existing gait quality is retained, and the energy cost of the actuation is put towards 

expanding the BOA of the walker and improving the stability region.  

The final conclusion that can be drawn is regarding the actuation of the biped at low ramp 

angles. The walking model was shown to produce stable walking gaits down to ramp angles of 

0.1˚. At that angle, it was found that a 29% stride length increase could be realized via simple 

and complex MTGE injection, with the potential for a significant increase via complex MTGE 

alone. The peak cost increase resulting in a Ct = 0.060, which is approximately equal to the 

efficiency of a passive walker on a 3.43˚ degree incline. This varies drastically from the high 

ramp angle cases and presents an overwhelmingly favourable outcome for the low ramp angle 

cases.  

Overall, the research presented showcases some of the rich research potential in the field 

of active/passive bipedal actuation, with several notable conclusions that have not been seen in 

the field of passive walking before. The work is intended as a foundation study in the field, and 

presents a broad potential for future work, as discussed next.  

5.2 Future Work 

From the work shown above, it is clear that there is substantial potential for research in the 

field of hybrid active/passive bipeds of the class presented in this thesis. Since the work is 

functionally a foundational work in the field, there is a significant amount of future work that 

can be developed based on the presented research. Since the list of long term future work is 
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quite substantial, it’s much more relevant to focus on strategic work that could be done on a 

short term plan. In general, the strategic future work can be split up in two ways, development 

of the actuation system (experimentally) and developing more MTGE actuation concepts. 

In terms of developing the experimental setup, the current setup has a relatively low 

efficiency as it uses a high speed low inertia actuation mechanism. By modifying this to be of 

the high inertia low speed type, the efficiency can be drastically improved. Another issue is that 

the weight of the setup is relatively high at ~9kg, which means that the dynamic load on the 

bearings is high. For the low ramp angle cases a much lighter walker with a lower potential 

actuation system would be ideal to test walker performance in the <2.0˚ range of ramp angles 

successfully. Finally, significant work should be done on a launch test platform to accurately 

launch the walker with a specified set of initial conditions. This would make the validation of 

the walker a straightforward process and also allow for simple validation (experimentally) of 

the overall actuation system. 

In terms of developing the model, countless MTGE events were covered in the course of 

this research. In terms of dynamical characterization, only the most significant and simple 

events were considered, as this research is merely an introductory study in the field. In the 

short term, the other types of actuation presented (knee, foot) can be considered on walkers of 

the same class but built of a different configuration (such as a flat foot walker). The model can 

also be modified to accept multiple smaller MTGE’s to test the effectiveness of regular 

(repeatable) MTGE actuation of a smaller magnitude at multiple points. The concept of polarity 

could also be tested to see if higher ramp angles than normal could be viable via a negative 

polarity energy injection. 

Overall the list of future work for this research is diverse, as the overall work presented is a 

platform, and is a paradigm shift compared to the current research focus on SEA actuators in 

the field of hybrid passive bipeds.   
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