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Abstract

The ELAIS N-l deep field is a low column density window into the extragalactic

universe. The difiuse galactic foreground of this window must be understood in order

to measure anisotropies in the Cosmic Background Radiation Field - a principal

goal of the Planck science team. The Dominion Radio Astrophysical Observatory

(DRAO) synthesis telescope can be used to distinguish low-level signal from noise in

order to map the galactic foreground and improve the accuracy of the Planck CMB

measul-ements. This is accomplished by rnodeling system temperatule uoise for the

synthesis telescope in order to create a noise map, whiclt allows positive detection

of the low-level polarization features that exist in the field. This difficul.t nou-

linear optimization problem does not lend itself well to standard local optimization

techniques. We have developed software, based on an advanced genetic algorithn

(Ferret), to characterize the spatial distribution of noise power in synthesis telescope

mosaic images.
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1

Introduction

Since its discovery in 1964, the Cosmic Microwave Background (CMB), a field of electro-

magnetic radiation which fills the universe, has been essential to Big Bang theory. The presence

of this radiation field, wìrich emits rnost strongiy in the microwave region, has been vital in sup-

porting early Universe theories. The Universe shortly after time zero can be described by an

extremely hot (4000K to 3000K) plasrna-filled space from wìrich photons escaped as the Uni-

verse cooled. This cooling began as the rapid expansion of space at tirne 10-a3s. Current data

suggests that inflation, or something sirnilar, occurred during the evolution of the Universe as

we know it. These photons ìrow plesent thernselves as the CMB which is nearly isotropically

present throughout space (1).

The Planck satellite has been launched by the European Space Agency with the intention of

providing the rnost accurate CMB study to date. Planck will rneasure both the temperature and

polarization properties of the CMB, which have been shown to correlate in previous observations

(2). This study, along with the European Large Area ISO Survey N1 (ELAIS-NI) deep field

sulvey which has been carried out at the Dominion Radio Astrophysical Observatory) can

provide us with essential foreground information to improve the accuracy of Planck's CMB

measurements. Using these tools to study the CMB will potentiaÌly provide the most accurate

picture of the early Universe to date (3).



1. INTRODUCTION

1.1 The Cosmic Microwave Background

The Big Bang model predicts that small fluctuations in the early universe have glown into the

Iarge scale structure that we see today. Under this model, we can unfold primordial fluctuations

in the early Universe by measuring the temperature anisotropies around us. If we are indeed

measuring fluctuations in the early Universe, this mears that the temperature anisotropies were

present at ]ast scattering and we al.e abie to observe a polarized cMB (2).

Scientists have measured polarization features in the CMB, lneaning that we have solrle

certainty that our predictors stand, but there are still several things that an accurate study of

CMB polarizatio¡ could tell us. These are the science goals of the Planck CMB project, which

are outlined in the next section.

The polarized components of the CMB exist in E-mode and B-mode polarization. Theorists

state that E mode polarization arises naturally from the Thomson scattering in an inhomoge-

neous plasma. In the CMB case, the E-modes are detections of the reurnants of last-scattering.

B-mode polarization has a vanishing curl, and a naximum amplitude of 0.1pK. It is believed

that B-modes a¡e deterrnined by the density of gravitational waves ìn the primordial plasna

which existed before inflation. This type of polarization has not yet been detected because of

technological restrictions. Detection would require sensitivities lower than Ip'K at frequencies

around 70GHz (where the Galactic synchrotron signal is ten times this value) (4). B-modes

give us vital information of the early Universe and would provide support for current inflation

theories.

The gravitational waves that B-mode polalization would allow us to detect should exist

everywher-e in the Uuiverse. These waves would have been created in the primordial plasma

when gravitons came into existence but were pulìed apart by inflation before being annihilated

by an anti-particle. At this time, virtual gravitons became real gravitons and' as the Universe

expanded, the gravitational waves were stletched to large wavelengths.

Gravitational waves wouid be useful to astronomels because they are not absorbed by media

as are other types of radiation, meaning that gravitational waves would allow us to observe

pr.eviously undetectable objects. This is also true of the early Universe. Gravitatioual waves

produced during the Big Bang would not be impeded by anything in the early Universe plasma,

makilg them the clearest record of the Universe after the Big Bang. Measuring tl-re polarization

of the C\{B allows us to 'see' these waves because there was nothing eÌse present in the early

univer-se that had the ability to polarize radiation. The mass anisotropies had no left or right

hand orientations, meaning that gravitational waves, which propagate in a screw rnotion, tnust

have polarized the CMB (5).
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L.2 The Planck Mission

Planck, a Eulopean Space Agency satellite, was

anisotropies in both tempelature and polarization'

and WMAP, Planck is designed to collect data with

to create the m.ost accurate CMB maps to date'

include (1):

Iaunched in May 2009 to measure CMB

The thìrd mission of its kind after COBE

improved sensitivity and angular resolution

New implications for cosmological science

o Improved test of early Universe models

o Accurate estimates of cosmological parameters

o Test of non-Gaussianity in CMB fluctuations

o New secondary science probes (eg. Iensing, dark enelgy)

o Measurements of polarization power spectra

Early polarization measurements of the CN{B have been consistent with the predicted level,

supporting the case for adiabatic perturbations in the decoupliug era of cosmology as well as

reinforcing inflation. However, current CMB polarization data does not begin to match the

certainty of the temperature data. For example, WMAP has an angular resolutio[ of 14 arcmin

while planck has a resolution of 5 arcrnin, and while W\,{AP had only five frequency channels,

planck is able to measure in nine. This makes the addition of Planck data exceptionally vaiuable

to early universe cosmology, with the frrst possibility of neasuring B-mode polarization (2)'

Knowledge of the Galactic foreground is invaluable to CMB scientists. The higher the

âccur.acy of the foreground determination, the higher the accuracy of the CMB measurement

itself. At 50 GHz, Planck is equipped with an onboard foreground detector whicli is capable

of 3 arcmin resolution. For the purpose of foreground study, a gloup of Canadian scientists,

using the Dorninion Radio Astrophysical Observatory, Iaunched the DRAO Ptanck deep fields

(DpDF) project in preparation for the Planck mission. This foreground study, which uses data

with o¡e arcmi¡ute resolution, is the main goal of this project, with the intention of aiding

Planck in increasing the accuracy of its polarization measulements.

Full details of Planck construction and measurement capabilities in polarization can be found

in the Planck pr-imer (1).
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1.3 The ELAIS-NI Deep Field Survey

The European Large Area ISO Survey N1 (ELAIS-N1) deep field is a window into the extra-

galactic universe, containing very low amounts of Galactic emission (6). The field is located

at 50 degrees Galactic latitude and 80 degrees Galactic longitude. A Survey of this field was

carried out by the Dominion Radio Astrophysical Observatory (DRAO) synthesis telescope in

1420MHz HI, total intensity, and Stokes Q and U. The deep field consist of 40 fields (30 of

which are considered for this project) which are spaced very close together and observed for

long integration times, providing high sensitivity for a small region of sky.

+l:it. t:¡11rr¡.il f .i.:tr¡ )Jrìilr

s&

q '.:

!;t! _ l;(. l: ::,r¡ì |,j¡r

Figure l-.1-: ELAIS-NI - Field location upper right in relation to the Canadian Galactic Plane

Survey and the Planck Deep Field (upper left). (7)

Its ìow level diffuse foreground makes it ideal for observing the extragalactic Universe. For

this reason, this region will be analyzed for cosmological purposes, including the rnost accurate

rrreasulement of the Cosmic Backglound Radiation Field which is to be carried out by the

Planck project. Although this field is considered to be relatively empty, there does exist some

low level diffuse emission in the field. Planck, which intends to look through this window to

map the CMB, rnust have knowledge of the location and intensity of this diffuse emission in

order to accurately measure CN¡IB anisotropies.
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L.4 Polarizatron

Radio emission is measured by a telescope as an electric field Ë. This electric field can be ob-

served using Stokes pararneters in different polarization and intensities. The Stokes parameters

are given as follows (8):

r:nl+n|
Q:E?-83

U :2ÐtÐzcos9

V :2EtÐzsinî

(r.1)

(1.2)

(1 3)

(i.4)

Restrictions in bandwidth mean we ale not necessarily measur-ing radiation that is 100%

polarized. This is because Stokes pararneter-s are defined in terms of mean quantities, therefore,

I'> e'+u2 +v2 (i.5)

These equations describe monochromatic radiation where E1 and E2 are the amplitudes of

field components -8" and Eo and d : 0, - 0a is the phase offset between E, and Eo . These

vectors can describe both circul.al and Linear polarization. Circular polarization occurs when

Et:82, e: i and [/: Q:0. Linear polarization occurs when I/:0 and Etl Ez, whiclt
+

shows that -B is oscillating with time. As it does so it traces out an ellipse on the xy-plane.

This is elliptical polarization. Linear polarized intensity is described by,

PI: JQ2 +U2

with fraction of polarization given by,

(i.6)

Angle of polarization is measured from North towards East on the sky and is given by,

JæTÚ
Ill, 

- 

-

I

Þ : !¡ontQ
2U

(1.7)

(1 8)

Synthesis telescope antennas cannot dilectly detect Stokes parameters. Instead the syntltesis

telescope receives both hands, R and L, of circular polarization. Stokes pararneters in terms of

these quantities are

I_ RR+ LL
(1.e)
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RL+LRo:Y (1.10)

(1.11)

(1.12)

i(LR - RL)
2

RR- LL
2

More detailed information can be found in Rohlfs and Wilson, Tools of Radio Astronotny,

Chapter 3.

1.5 The DRAO Synthesis Telescope

The DRAO synthesis telescope is a seven elernent antenna array. The parabolic reflector anten-

nas make up an east-west interferometer with a maximum baseline of 617.18m and a minirnum

baseline of 12.86rn. A synthesis telescope with only seven elements cannot take a complete

sample of the uv-plane in one synthesis, and therefore, in order to maximize the telescopes

sanrpiing, the array consists of four stationary antennas (1,5,6,7) and three antennas (2, 3, 4)

which move along a rail track. Two of the antennas (1,7) have a diameter of 9.14rn while the

remaining 5 (2,3,4, 5, 6) have a diameter of 8.53m (9).

West

I

Antenna Number

o

X

East

7

X
I

I

I

6--ì

Figure 1.2: The DRAO synthesis array - The frgure shows the seven eiement interferometer

configuration displayed on the lorvel axis with baselines in units of L:4.286m. Displayed on the

upper axis, s, is the spacing number for a palticular antenna pair. (9)

The telescope observes atomic hydrogen emission using the 2l-cm HI spectral line and

continuum with two bands centred at 408MHz and 1420N4H2 in four sub-bands as shown in

XXXX
Ã

X
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figure 1.3. The 7420MHz band, which observes in Stokes I, Q and U is the one being considered

for this project. The total field of view of this band is 2.65 degrees.

Frequency, MHz

1406.65 1414.15tt

7427.0

r420.4

I

12.5

I

20.0
I

47.5

I

I

I

l-

/1,
t'.

S

I

ttr
¿ I .C ,t¿.4)

30.0

1426.65 L434.75

lt

I

40.0

Intermediate Frequency, MHz

Figure 1-.3: FYequency bands - Frequency sub-bands of the DRAO synthesis array. (9)

In order to complete a full observation, a complete synthesis consists of twelve l2-hour

observations fol each baseline configuration of the telescope. As in Figure 1.2, the movable

dishes are moved in increments of L:4.29m. Each synthesis rnaps out the uv-plane. This plane

can be Fourier transformed to obtain the spacial distribution of ernission on the sky.

Allocated Radio Astronomy Band
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1.5.1 Noise Properties of an Interferometer

As a telescope detects astlonomical signal, it aÌso picks up a certain amount of noise from

therrnal oligins and fi'om electronic processes rvith spectra similar to thermal spectra. This is

a comrnorl form of additive noise that rnanifests itself as the system temperature of a radio

telescope. The contributions to system temperature are:

o Receiver noise- The 1420MHz receiver under consideration has a sensitivity which is

primarily determined by a low-noise amplifier, having a noise temperature of Tp = 35K,

or 18K 1Tn 138K and (7n):g¡.¿N for 16 amplifiers built.

o Ground noise- Antenna sidelobes detect spillover and scattering from ground. For the

DRAO synthesis telescope this occurs at 3K-8K depending on the antenna being consid-

ered.

Atmospheric emission- Radio spectrum contribution frorn the atmosphere. At 1420MHz

this contributes 2K at the zenith and 3K at a zenith angLe of 45 degrees.

Cosmic Microwave Background- Low level background contributor to uoise which

contributes 2.7K.

Galactic emission- Additional background noise contribution from our own Galaxy

which typically contributes 0.5K-1.5K to the overall system temperature.

All of these contributors present themselves in the images we observe as the r.m.s. noise:

4,9: w Jtkr"
( 1.13)

q"r¡¡A,,/ñlñ¡pÃfi
Where W is a weighting factor applied during imaging, k is the Boltzmann constant, 4" is

the correlator efficiency,\,qis the aperture efficiency of the array, which when rnultiplied by the

collecting area A which gives the effective àrea 4", N6 is the number of baselines, ly'¡¡ is the

number of IF channels with bandwidh A,f (Hz), r is th.e integration tine and 4 is the system

temperatule (K).This tenperature is chalactelized for the DRAO synthesis telescope by the

technique described in the next chapter.

The goal of this work is to determine if we are able to reliably detect diffuse Galactic emission

in the foreground of the ELAIS-N1 field. This emission is of such low intensity that it cau be

difficult to distinguish from the system temperatule noise of the DRAO synthesis telescope,

making it necessary to char-acterize the system temperature, a secondary goal of this project.

The following chapters describe:
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¡ How genetic algorithms are used to derive the systern temperatules of the 7 antennas of

the DRAO interferometer' (Chapter 2).

¡ Error analysis of synthesis telescope observations of the ELAIS-N1 field (Chapter 2).

o How synthetic images are made from derived system temperatures (Chapter 2).

o Temperature results for 30 ELAIS-NI fields in Stokes Q and U (Chapter 3).

¡ Power spectra of Mosaics of ELAIS-NI data vs. synthetic data in Stokes Q and U (Chapter

3).

¡ Other applications of the software used and how it is relevant to industry and other

branches of astronomy (Chapter 4)



1. INTRODUCTION

10



2

Techniques

The ELAIS-NI fleld is an ideal region through which to view the universe beyond our Galaxy.

However, despite its low column density, there still exists some low level emission in the field.

This signal is of such a low intensity that it is difficult to distinguish from the system noise of the

synthesis telescope. If the signal were of higher intensity, we could simply apply conventional

imaging techniques to analyze the field, however, the signal is so weak that new methods must be

used to determine what the noise looks like. To separate this weak signal most effectively fron-r

the noise, a llev,¡ technique has been developed to characterize the noise of an interferometer.

Once this noise is characterized, it will be possible to differentiate real astronomical signal from

what is created by the telescope.

This chapter describes the analytic technique that was developed to complete this task, a

genetic algorithm based model interferometer. Also desclibed are the error analysis techniques

as well as details of the data used in this analysis.

2.t Aperture Synthesis

In radio astronomy, r'esoiution is limited by the extent of a telescope. The larger the physical

size, the higher the anguiar resolution of the irnage. This means that we are limited by our

inability to create lalger telescopes. The solution to this problem is the technique of aperture

sylthesis.

In aperture synth.esis, sever-al telescopes are used to sirnulate a large collecting area. This

allay of telescopes measures the spatial coherence functiou (8):

îV(r1,r2): I I"
J

-2i¡rS(f r -fc)________;-dQ

1i

(2.1)
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Figure 2.1-: The DRAO synthesis telescope - The DRAO telescope which uses aperture syn-
thesis to simulate a large effective area. (7)

where f is the specific intensity and 11 - 12 is the sphelical separation vectoï. This separation

vector, known as a baseline, represents the separation oftwo antennas in the array. The function,

V1rr,r2¡, known as the visibility, is rneasured by correlator output of individual interferometers

(pails of antennas). The visibilities are written on to the uv-plane where u and v are rectangular

coordinates that ploject in a plane. Dominance of data in short spacing suggest broad structure,

while higher data levels in long spacing suggest fine detail.

As the Earth rotâtes beneath. a synthesis telescope, the antennas map out the uv-plane, a
Fourier space which can be transformed to cleate the image of a field. The number of data points

collected by the array during an obselvation determines the completeness of an irnage. This
effect is shown in figure 2.2, which compares the uv-plane and image plane for an observation

of a supernova rernnant.

Sirnilar to the way signal is distributed across a baseline, the system temperature noise is as

well. Each antenna is equipped with two receivers, one for each hand of circular polarization.

These receivers are not identical, so each contributes a different noise level to the visibility data.

A consequeuce of this is that the noise is not distributed uniformly throughout the uv-plane,

making the noise from each antenna difficutt to disentangie. This is evident in the visibility plane

images that will be shown in sections 3.8 and 3.9. Each plateau represents the temperature of

a particular pair and it is clear from the figures that they are not equai. There is no analytical

I2
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way to derive the systern temperature noise of each of the DRAO antennas, therefore, a model

must be created u'hich can characterize the noise generated by an interferometer. To ar*rive at

a set of system temperatures) we can colnpare the noise generated by a model, to the measured

noise which occurs from the antenna pairs.

2.2 Genetic Algorithms

In this project a genetic algorithm is used to derive system temperatures for the synthesis tele-

scope. Genetic algorithms are a form of evolutionary computing inspired by biological paradigms

such as natural selection and genetic variation. These methods are used to evolve a population

of solutions and optimize a large nurnber of parameters. These types of aJ.gorithrns are ideal for

searching through computational problerns with a lalge number of possible solutions, which are

typically found in science and engineering (10).

Genetic algorithms rely on three types of operators :

r Selection - gives preference to individuals with good fitness. Fitter individuals are mole

likely to be selected to reproduce.

o Crossover - chooses two individuals which are exchanged. This offspring is then intro-

duced into tìre population. Crossover can take two good individuals and create a better

individual.

o Mutation - In most GA's this is done by randomly flipping some of the bits of an individ-

ual. In Ferret, discussed in the next section, this is done with real nurnber representations.

This occurs with a very low probability but ensures diversity in the population. Muta-

tion promotes random searches throughout the parameter space preventing premature

convergence.

These operators at'e common in tnost genetic algorithms, howevel, basic to a genetic algo-

rithm is an operator that combines solutions, taking two parents solutions and creating children

with similar properties, and a mutation operator which introduces a landom kick to the system.

A comrnon application of genetic algorithms, and the one applied in this case, is optimization.

In the case of this problem the objective is to obtain the most favorable set of solutions by

finding the global minimum of some fitness value.
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Figure 2,2: This irnage shows the uv-plane and image plane for various stages of synthesis. From

the top going light, these represent irnages after thour, 4 hours, 10 hours, 12 hours, 4 days, 8 days,

10 days and 12 days. These images ale of a super rlo\¡a remnant and rvere created by Roland Kothes,

DRAO.
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2.3 Ferret

2.3 Ferret

Ferret, an advanced genetic algolithm, wlitten by Dr. Jason Fiege, can efficiently solve difficult

optimization problems with many paraureters. Ferret extends the basic genetic algorithrn by

identifying non-linearities in the search space and using this information to divide Ìarge problems

into several small ones that can be solved more easily(3).

Ferret has the ability to stretch beyond the capability of rnost traditional genetic aÌgo-

rithms because of iurprovements built into the code. These include but are not limited to
rMulti-objective search and pararneter space mapping oSimple handling of discrete and cyclic

parameters oAutomatic zooming oCritical Parameter Detection olinkage-Learning oAdvanced

Lethal Suppression ¡Strategy Auto-Adaptation rPausing, stopping, and resurning luns ¡Anal-

ysis and integration of polishers and olntegrated visualization (3). The Ferret environrnent is

shown in Figure 2.3.

tile ¡nsed Ðesklop Coñkol X-Àxìr Y-ÁxB Z-^rir ViÊq kmos ?role(B túndow Othê.

qhd tus€Md.

\t

&

)ø. -- "
l ... 'l¿; l p,!re,.lÈl

i -' ú;;;iàÀi - -- ...... .!*,lf:.. .....

Figure 2.3: Ferret environment - The figure shows the Ferlet window during a run. Top left :

Evaluation statistics: Nuurber of individuals and average fitness value is shown for each generation.

Top right : Optinal fitness bounds, maximum and minimurn, throughout the run. Bottom left :

Distribution of paratneters, in this case ft and 72, in 2-D. Bottom Right :User plot showing the
fit between DRAO visibility data and modeled visibility data.

Ferret is able to return a family of solutions within o of the minimum. In this case d refers

to a tolerance set by the user for a particular problem. For this model, Ferret leturns solutions

within one of the minimum. These solutions map out a surface in the parameter space that

displays the confidence of our minirnized parameters (3). Figure 2.4 shows an ellipse-like surface

representing the possible solutions while optimizing antenna tempelature fol ELAIS-N1-7 in

I r' Þ . '¿i- ?
10., tutuildsblb&s:6r9
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Stokes Q.

2.4 Data

The DRAO synthesis telescope, shorvn in figure 2.1, observes in ninety second intervals over

twelve houls for each of its configurations. Each field is observed for 12 hours in each of 12

telescope configurations for a totaì obselving time of 144 hours. The deep field data used for

this project includes 30 deep fields wliich ale located near a:16h 11m, ô:55d.

The data used for the model is polarization data in the visibility plane. In order to prepare

the data for the fitting process, the visibility data for a cornplete field is sorted by baseline and

averaged over the 12 hour observing time. This process is done by the program srtaug written

by Andrew Gray, DRAO (11). Data sorted in this way can be fit to equation 2.2. It is an

ordered representation of quantities lead directly from an antenna.

2.5 Detecting Foregrounds

In order to determine whether a significaut signal is detected, it will need to be compared to

the signal of the system noise. The most effective way of doing this is by analyzing the power

spectrum of both of these quantities. A power spectrum is a measure of power against spectral

frequency. Power spectra will be created for each of the individual fields as well as the lower

noise central region of the complete irnage mosaic.

In order to create a powel spectrum, an irnage must first be transformed back into the

uv-plane. This will revert the image to an ellipse representing the plane of the telescope at the

declination of the field being considered. The pixel values along each track of the ellipse are

averaged for a complete synthesis, and sorted in order of spacing. The power spectra of data

vs. noise will show us where the real signal in the field lies.

2.5.L Deriving System Temperature

Pure noise from the synthesis telescope is approximated by subtracting bands A and B of the

DRAO intelferorneter, which have frequency 1406.65 MHz and 14I4.I5 \{Hz. These adjacent

bands are close enough in frequency that subtracting thern renroves practically all astronomical

signal, Ieaving only signal produced by the system temperature of the telescope. The variance,

o2 of a particular baseline i, j can be described by:

16
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2.5 Detecting Foregrounds

where 4 is the system temper-ature of the ità antenna,Ti is the system temperature of the

j¿l' antenna, and, g¿,¡ is the redundancy (how many tirnes a spacing is measuled in a complete

observatiou) of the antenna pair i, j. It is this equation that is used in our code to derive

antenna temperature. The basis of the code is fitting the equation to pure noise visibility data

using Fellet in older to derive the seven ternperature parameters. After compì.eting the number

of generations specified by the output file (for the case of this project 200, or typically 150

past convergence), Ferret returns a seven parameter solution which is equivalent to the system

terlpelatures of the seven antennas.

The software for tìris project is written in Matlab. A detailed description of the code can

be found in the last section of this chapter and the software can be found in its entirety in the

appendix.
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Figure 2.4: Left: Analysis rvindow of solution surface returned by Ferret. Tliis surface is produced
after 100 gener-ations. Right: Histogram of the 480 baud A minus band B data points that are
averaged into one baseline. The distribution suggests standard gaussiau error analysis cannot be

applied. The temperature values diffel froll the final results by an arbitraly factor of approximately
2.

2.5.2 Bootstrap Monte Carlo Method

As is shown in figure 2.4,the data that are aveÌaged to one visibility data point are not visually

gaussian. This distribution is couìrnon to all data sets which make up the visibility plot being

considered as the fit for our model. This means that in order to properly analyze the errors in

our data and results, a method independent of distribution must be used.
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For unknorvn distributions, the bootstrap method is a good estimator of elrors. This rnethod

uses the data set being considered to generate â r1ew, synthetic data set with any nuurber of

points. That is, considering some data set, D¿ which contains N data points, we can obtain any

nunrber n data sets D1, D2... Dn frour the original set.This is possible because replacenent

is allorved, therefore returning a resampling of the oliginal data set with a random fraction of

data points, on rvhich we can carry out comrnonly known error analysis techniques and statistics

(\2).

2.5.3 Noise Characterization in Short Spacings

It is common for interferometric data to be unusabl.e at short spacings. These spacings contain

large amounts of noise because of the proximity of the telescopes that make up these baselines.

Though it is not really known, it is suspected that these antennas "talk" to each other and

create greater noise because they detect spillover from each others sidelobes and share comulon

ground noise. This effect is shown in figure 2.5.
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Figure 2.5: Noise at Short Spacings - Visibility data for EN08 Stokes Q, in which lve can

a large spike in the signal at short spacings.

The figure shows a ìarge spike at short spacings which contain information about the broad

structure in the sky. Often, in ordel to compensate for this unusable data, single dish obser-

vations are used to supplement the synthesis telescope data because of their ability to resolve

broad structule.

For the purposes of this experiment, these short spacings have been removed. Because of

the robust genetic algorithm technique being used, very little information is lost due to this

VisibilÈ/ Daä EN8 St*ÊsO

fî'"-n\ï
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2.5 Detecting Foregrounds

removal, wheu deriving system temperature.

2.5.4 Mosaics

fn order to achieve a high sensitivity level, the 30 flelds of the ELAIS-NI deep field are observed

close togeth.er. A technique designed to increase sensitivity is producing a tiled image of the total

field called a Mosaic. This mosaic is created by averaging data from each field and weighting

that value by a value that is determined by distance fron the fi.eld centre. The weighting factor

is given as (13):

/ '/ rr 2

It)m:(A\P*)l 1z'a¡\o- )
Where A is the primary bearn attenuation, p- is the offset of the pixel in field m, and o-

is the rms noise level at the centre of the field. The rms noise in the final mosaic is (i3):

Th.e centre of the mosaic is close to tl-l

the mosaic has the least noise.

(2.4)

fields, meaning that this area of

Note: Polarization images and data mosaics of the ELAIS-N1 field were processed by Julie

Glant, University of Calgary.

2.5.5 Creating fmages

When an image plane is created by Fourier transfolming the simulated visibility data, it needs

to be output into a readable format in order for a mosaic to be created. The MATLAB package

mfitsio (14), which contains a fits writing package, is used to create fits fites of each of the

individual fields. These fits files, are then converted into madr format so that a mosaic can be

made using the DRAO supert'ile routine. The output of. supert'ile is a 1024x1024 Mosaic image.

This process is done on the synthetic system temperature data. The mosaics of the entire

30 ELAIS-NI fields which are used fol comparison were created by Julie Grant, University of

Calgary. For more information see "Compact Polarized Radio Sources in the ELAIS-Nl Field"

2.5.6 Mosaic Analysis

In order to get an idea of what type of noise is present in a large portion of the sky, the mosaic

of both the synthetic system temperature field and the ELAIS-NI field are compared in both

Stokes Q and U. For this purpose, point sources are removed from the real data mosaics so that

/ N \--
f tr-l
\--:r /
e centre of several
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the signal we are left with is mainly diffuse structure. This can only done for either positive or

negative point sources at a time. so, four different mosaics have been considered for this project.

During the mosaicing process, images are tiled in order to reduce the noise level in the field

centre. The best data from which to take a power spectrum would be near the image centre

and not the sides of the mosaic (rvhich are rnuch noisier than the centre.) Therefore, a section

of the image centre is transforured into the uv-plane, and a power spectrurn is taken along this

plane. This allows us to determine if there is any detectable diffuse emission in the centre of

the field. The results of these processes are shown in the following section.

2.6 Creating and Analyzing Images

In this section, tìre software which rvas developed throughout the course of this project is

described in detail. The previous sections of this chapter are intended to provide inforrnation

which rnakes the scientific processes in the code understandable. This section is supplemented

by the Appendix which contains a printed version of code with com.ments.

2.7 Software Outline

The following description of the software written for this project follows the actual code shown

in th.e Appendix. This description will explain initial setup files, the fitting plocess, and any

post processing done to the results.

2.7.L Initial Setup: init-AllFields.m, DRAo-Constants.m, and CatcVisData.m

init-AllFields.m is an initial ploglam. which loads all the data files that are required for cal-

culating visibility data for the the model. This program also calls DRAO-constants.m, which

contains alì of the constants relevant to the DRAO synthesis teJ.escope and its observation of

the ELAIS-N1 fields considered for this project. AIso contained in this file is the information

about the redundancies of each baseline, and which antennas make up particular baselines. This

information is used to cleate a synthetic visibility plane and to properly assign a temperature

to each pair, so that the individual temperatures can be extracted by the model.

After loading the data and constants, the visibility data must be prepared so it can be flt
by the model. This is done in the program CalcVisData.rn by the fol.lorving methods. First,

visibility data from bauds A and B of the synthesis telescope are subtracted and devided bV ,/2
to remove all astronomical signal and produce a visibility place that consists entirely of noise.
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BandA - BandB
Response: (2.5 )

Flagged data points (bad data) ale removed and the visibility plane is converted into units

Kelvin. The data must now be sorted into a usable form, so it is placed in baseline order and

the standard deviation of the 480 observations that make up a full synthesis is taken. The value

at each baseline now lepresents the variance of that antenna pair. The error in this baseline

value is determined by using bootstrap Monte Carlo methods on these 480 observations. This

is the type of data that we wish to fit our rnodel to, but the problern at this stage is that we

are missing a calibration factor that is characteristic of synthesis telescopes.

This factor arises from the subtleties of the Fourier relationship between the uv-plane and

the image plane; More specifically, the fact that no uv-plane is complete unless all baselines are

present, which is not true in the case of DRAO because spacings 14I,742 and 143 are not filled

in during synthesis. Limitations in irnage resolution can also allow for gaps or missing pixels

in the plane. If a uv-plane is to be represented as a large image, say 1024x1024, this means

ulore zero value pixels than an image of size 256x256. The uv-plane translates to power on

the sky, and thelefore a uv-plane which contains only noise should have the same value when

averaged as the noise of the image it creates. So, when data is taken by the telescope and is in

its unprocessed visibility form, the power lost to missing spacings is not accounted for. Because

the data being used for the fitting is unprocessed, the missing power factor must be derived by

some rrreans before the true system temperature can be determined.

In order to derive this factor, a uv-plane is created from the visibility data. Tìris is done

by distributing the data along an ellipse that is geometrically defined by the declination of the

field. The data is distributed along one quadrant, simulating an observation, and then that

quadrant is placed on all colners of a grid. This forms an image of the ¡1-plane.

The non-zero tracks on the uv-plane created should have the same standard deviation as a

noise image cleated by subtracting bands A and B in the image plane. Therefore in order to

calibrate the visibility data, a noise image is sirnulated by subtracting the single band image

data. The ratio of its standard deviation and the standald deviation of the created uv-plane is

the calibration factor.

The visibility data is then multiplied by the calibration factor. The short spacings are

removed to eliminate unexplainable noise spikes in the data (see section 2.5.3). The data is now

ready to be fit by the model.

J'
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2.7.2 Fitting Process: ComputePower.m, fitness.m

In the code ComputePower.m, derivation of the antenna temperatures is carried out by allowing

the seven temperatures to be free parameters during the fitting plocess. A visibility plane is

modeled by use of the variance equation:

V{r,T'^o¿u¿: (2.6)

As the temperatures ale varied this equation is fit to the data described in the previous

section. The model is fit to the data using the Ferret genetic algorithm and reduced in fitness.rn

using reduced ¡2 equation:

(2.7)

\Mhere Var^o¿"¿ is the variance value evaluated by Ferret, Var¿o¿o is the variance value of

tlre data, o is the error in the data, n¿ is the nurnber of data points a:nd no is the number of

palatneters. For this problem, Ferret was run for 100 generations for each field in Stokes Q and

U polarizations. The outputs are a surface of possible solutions, and a plot of the model to

data. These are shown for each field in the results chapter.

2.7.3 Post Processing, makefmage.m

The post processing code takes the seven temperatures which are derived and uses them to

make a synthetic noise irnage. The seven temperatures ale converted from Kelvin to mJy and

distributed acloss the uv-plane in quadrants by the sarne method as in 2.7.1. This uv-plane is

sampled in the same way as the DRAO interferometer. That is, each twelve hour observation

contains 480 observed data points, rneaning each quadrant contains 240 sampled points per

baseline. These sampled points are placed on a uv-plane which contains random. gaussian noise.

The ellipse that is created is then analyzed to show a power spectra of the synthetic temperature

data. It is irnportant to note that, as with the DRAO synthesis teiescope softwal'e) each elliptical

baseline is considered to contain the same number of points regardless of the physical length of

the track. This presents itself as the slight tapering of the power spectra at higher spacings and

can be seen in the figures presented in the next section.

The synthetic power spectrurn is compared to one taken from the data. The fast fourier

transform of the image of the field is taken, and then a powel spectrum is taken of the resulting

eIÌipse. The difference in the two spectra shows where the signal in the field is located relative

to the noise.

-., _ V ar2^o0", - V arfiorot' - o'4*,
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2.7.3.I Making Mosaics

A mosaic allorvs us to leduce the noise in an image. which is why the ultimate goal is to compare

the synthetic and real data at that level. In order to create a rnosaic of the synth.etic data, the

uv-plane which is created purely from derived temperatures is fast fourier transfolmed to create

an image that is entirely system temperature noise. These images are made in fits format

files that are turned into mosaics using DRAO software. A 256x256 section is selected from

both the synthetic and real irnages, and a powel spectrum is taken in the same manner as in

makelmage.m. The results are shown in the next chapter.

2.8 Summary

Software, written in Matlab, uses the Ferret genetic algorithm to derive the seven system tem-

peratures of the DRAO antennas. It does so by fitting a modeÌ interferometer to visibility data

from which all signal has been removed, Ieaving data which contains only noise. Images ar-e

then created from this data and a mosaic is made.

The individual field irnages are conÌpared by power spectra to the real data. The same is

done for a low-noise section of the rnosaics, frorn which either positive or negative poiut sources

have been retnoved. These power spectra show the level of noise of the synthesis telescope in

relation to the real data. From these spectra it can be deduced if there is any detectable diffuse

emission in the field.
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Results

There is no analytical way to measure the system temperature of a synthesis telescope because no

two antennas can be completely identical. This is especially true of the DRAO interferorneter.

The results presented in this chapter show the derived systen temperatures for the DRAO

synthesis telescope for 29 ELAIS-NI fields in Stokes Q and U polarizations. Also included are

the power spectra for each field taken from au image created by the ternperature data, and an

image of real data. It is from this irnage we can deduce th.e foleground contribution in each

field. These spectra can be found at the end of the chapter. In addition, the quality of the

Ferret results will be demonstrated in this chapter by comparing ternperature and X2 quantities

to those obtained using other optimizers.

For the purpose of this experirnent, the visibility data for EN01 was not com.plete enough

to be fit by the software within confidence. Because EN01 lays on the outside of the ELAIS-NI
field, it will not be present in the final power spectrum (which only includes a mosaic of the

field centre), and therefore will not irnpact the final result.

Mosaics of the systern ternperature noise for Stokes Q and U are presented, as well as a

powel spectrum of this mosaic vs. the ELAIS-N1 mosaics.

While optimizing system temperature, Ferret outputs an elrot' surface representing all pos-

sible solutions within one of the optimal, as well as a user plot which has been specified to show

the fit between the model and data. These plots are included at the end of this chapter.

3.1 Ferret System Temperature Results
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3. RESULTS

Field Name Antenna Temperatures (K) Chi-squared
ENO2

ENO3

ENO4

ENOs

ENO6

ENOT

ENOS

ENO9

ENlO

ENi 1

EN12

EN13

EN14

EN15

EN16

EN17

EN18

ENi9
EN2O

EN21

EN22

EN23

EN24

EN25

EN26

EN27

EN28

EN29

EN3O

76.4I,61.78, 50.91, 52.00, 97.95, 80.11, 57.59

73.9r, 59.39, 48.20, 49.79, gg.gg, 74.09, 55.2r

56.68, 53.40, 47.02, 49.29, 80.76, 64.97, 45.99

64.18, 47.49, 43.33, 44.23, 96.57, 69.25, 49.47

67.63, 49.27, 45.62, 45.79, 99.01, 75.79, 51.43

6 5.9 9, 57 .r7 , 47 .24, 47 .99 , g5 .67 , 69 .40, 49.6 6

76.52, 58.75, 48.66, 50.32, 99.22, 79.75, 57.70

64.69, 49.29, 42.29, 46.55,94.93, 66.r9, 49.24

62.24, 54.79, 49.42, 5r.r7,76.69, 59.94, 44.30

67.20, 52.92, 43.05, 43.32, 90.04, 72.99, 57.52

65.35, 55.02, 43.83, 43.69, 86.99, 70.43, 49.75

6L42, 50.25, 42.89, 45.42,90.04, 67.73, 44.96

54.26, 56.94, 44.39, 45.00, 71.05, 57.09, 47.52

56.81, 54.36, 42.41, 42.92, 74.43, 59.93, 43.39

78.46, 53.38, 45.09, 44.96, 96.55, 79.13, 59.02

65.27, 58.68, 48.87, 50.95, 94.10, 69.60, 50.41

62.50, 52.80, 46.81, 47.63, 76.93, 63.50, 45.37

58.28, 52.07, 45.05, 49.05, 72.91, 59.51, 43.29

59.69, 51.38, 44.59, 45.84, 76.27, 60.35, 45.03

59.90, 56.r7,43.01, 43.63, 76.77, 60.9I, 44.74

62.68, 50.31, 44.9r, 45.3r, 94.95, 69.45, 47.99

60.47, 54.52, 48.29, 49.65, 74.00, 59.10, 44.16,

62.46, 53.99, 47.33, 49.32, 79.59, 63.06, 47.66

60.09, 52.94, 44.28, 45.92,79.10, 63.91, 46.45

68.35, 50.92, 39.63, 39.79, 98.26, 69.22, 51.34

64.64, 49.79, 43.67, 44.96, 94.43, 65.99, 47.92

66.47, 50.52, 43.7 7, 45.13, 95.25, 66.47, 49.55

65.57, 58.58, 45.99, 45.69, 83.71, 65.44, 49.24

59.04, 69.15, 54.83, 54.89, 77.50, 63.52, 44.42

2.98

2.51

8.54

2.69

1.90

2.40

2.59

2.r1

2.30

i.83

1.34

1.89

2.27
qDt
L.ùJ

2.38

2.09

2.46

2.80

2.42

1.58

2.07

3.00

3.81

2.77

\.73

2.50

4.72

2.04

1.59

Table 3.1: Temperature and fitness values obtained by using the Ferret genetic algorithm, Stokes

Q. The ternperatures ale shorvn to vary from field to field as the factors which contribute to system

tempelature are not coustant betweeu observations. There ale also l'andolrrizations present in genetic

aigorithms that can contribute to small differences between runs.
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3.1 Ferret System Temperature Results

Field Name Antenna Temperatures (K) Chi-squared
ENO2

ENO3

ENO4

ENOS

ENO6

ENOT

ENOS

ENO9

ENiO

EN11

EN12

EN13

EN14

EN15

EN16

EN17

EN18

ENi9
EN2O

EN21

EN22

EN23

EN24

EN25

EN26

EN27

EN28

EN29

EN3O

78.7r, 59.11, 49.18, 49.96, 100.00, 93.03, 5g.gi

73.28, 60.08, 49.46, 5r.70, 91.86, 72.50, 54.47

57.72, 54.72, 47.43, 49.5L, 79.60, 63.75, 45.10

66.99, 44.56, 42.08, 4r.4r, 93.85, 73.91, 51.99

64.77, 50.66, 47.51 , 46.97, 85.16, 74.I0, 49.68

67.69, 55.96, 46.32, 47.07, 87.66, 71.29, 50.06

70.70, 63.99, 52.75, 54.59, 90.00, 72.87, 53.42

67.9r, 46.47, 40.r2, 42.16, gL.47,6g.gg, 50.53

63.44, 53.03, 46.18, 49.05, 78.75, 63.15, 46.20

66.76, 52.48, 42.60, 42.66,89.99, 73.51,, 57.47

63.95, 57.55, 45.68, 44.44, 84.28, 68.83, 48.40

64.22, 46.34, 40.45, 41.91, g5. gg, 67 .07, 49.49

64.61, 47.34, 41.44, 43.69, 96.06, 69.74, 5t.23

65.18, 48.4I, 37.36, 38.82, 85.83, 67.33, 49.04

80.14, 52.89, 44.65, 44.44,98.49, 79.50, 59.97

64.14, 59.r7, 49.27,51.49, g2.gg, 69.7r, 49.75

63.68, 51.55, 45.78, 46.60,78.59, 65.74, 46.3I

57.08, 55.06, 46.39 , 49.99, 69.77, 57.78, 42.53

64.84, 48.89, 41.53, 43.64, 80.32, 65.20, 48.49

60.25, 54.61, 43.01, 43.49, 77.r2, 61.12, 45.29

62.97, 49.42, 43.43, 44.59,86.36, 69.77, 49.95

57.27, 56.74, 50.74, 51.95, 77.39, 56.42, 42.67

67.5r, 49.63, 42.83, 44.26, 95.11, 70.39, 53.13

66.20, 47.53, 40.70, 4r.6r, 96.32, 70.37, 51.90

66.59, 52.73, 4I.34, 41.23, 84.2r, 67.7I, 50.27

62.05, 50.43 , 44.47, 46.34, 82.24, 64.09, 47.34

69.77, 47.50, 4r.59, 43.03, 92.01, 70.95, 51.46

66.85, 56.80, 44.51 , 44.49, 96.70, 67.63, 5L.34

67.36, 59.48, 48.21, 47.67,89.88, 72.64. 57.46

2.30

2.50

9.01

2.8L

2.69

2.49

2.63

1.86

2.40

r.57

2.10

1.69

5.77

1.99

2.39

2.t5

2.45

3.99

2.36

7.87

1.60

2.56

3.01

3.01

2.07

2.20

3.18

2.20

1.92

Table 3.2: Tempelature and fitness values obtained by using the Ferret genetic algorithrn, Stokes

U.
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3. RESULTS

3.2 Mosaics

Shown in this section are the Mosaics created from images synthesized using the system tem-

perature der-ived, which are shorvn in the previous section. A powel spectrum of the centre

256x256 pixeis is then taken and compared to the same section of the real data mosaic, which

was created by Julie Grant. Those power spectra are also presented here.
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3.2 Mosaics
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Figure 3.1: Stokes Q synthesized mosaic
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3.2 Mosaics
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3. RESULTS
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3.2 Mosaics

Stokes Q Power Spectrum, Negative Point Sources Removed
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3.2 Mosaics

Stokes U Power Spectrum, Positive Point Sources Removed
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3.3 Validation of Technique: Tbials with other Optimizers

3.3 Validation of Technique: Tþials \ /ith other Optimizers

The Qubist package includes other optirnizers which could be effective in solving the seven-

parameter probJ.em which is presented. To demonstlate the robust nature of genetic algorithms,

the ploblem was appÌ'oached with the other optirnizers available. Results frorn the other opti-

mizels in the package are conÌpared to those of Ferret in the following sections.

Details about the type of optimizer used as well as the features of the optimizers in the

Qubist package rvill be discussed. A more detailed description of the package and its contents

can be found in the Qubist user guide (3).

3.3.1 Locust

Particle swarm optimizers (PSO) are based on swarm intelligence and the social behavior of

flocking birds or schools of fish. Like a genetic algorithm, PSOs begin with a population of

landom solutions and search a space generation by generation, however in a PSO potential

solutions swarrn the space as particles and find the best solution by (15):

r Keeping track of the position of the best solution a particle has achieved in the solution

space.

r Knowing the best solution found in the particles neighborhood.

r Keeping track of the best solution that any palticle in the solution space has achieved so

far.

Locust is a PSO in the Qubist package which is capable of solving rnulti-objective problems.

While not as sophisticated as Felret, it serves as one of the prinaly optimizers in the package,

and is able to obtain solutions for this problem which are nearly, or as good, as those produced

by ferret. These results are displayed in tables 3.3 and 3.4, and are done for ten fields in Stokes

Q and U.
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3. RESULTS

Field Name Antenna Temperatures (K) Chi-squared
ENO2

ENO3

ENO4

ENOs

ENO6

ENOT

ENOS

ENO9

ENlO

ENil

,1.¿Ð

2.70

8.46

2.76

2.TI

2.48

2.63
, n,7

o (o
L.¿J

7.94

69.02, 68.03, 55.64, 56.85, 88.80, 72.83, 52.25

70.33, 62.29, 50.46, 52.04, 85.63, 7L.60, 52.97

55.22, 54.29, 48.04, 50.04, 79.23, 64.r9, 45.66

63.71, 48.20, 43.73, 44.52,85.49, 68.76, 49.34

61.70, 54.0t, 49.96, 50.49, 82.23, 69.39, 46.26

67.27, 56.07, 46.20, 46.79, 86.88, 77.47, 49.82

70.r4, 63.46, 52.52, 54.26,89.94, 72.53, 52.93

6r.77, 51.80, 44.5r, 48.79, 80.41, 62.32, 45.96

66.85, 50.57, 45.045, 47.78,83.68, 65.72, 47.96

63.10, 56.01, 45.r9, 45.72, 84.75, 68.47, 48.46

Table 3.3: Locust System Temperature Results: Stokes Q - Temperatu¡e and fitness values

obtained by using the Locust optimizer.

Field Name Antenna Temperatures (K) Chi-squared
ENO2

ENO3

ENO4

ENO5

ENO6

ENOT

ENOS

ENO9

ENlO

EN11

71.86, 65.20,53.66, 54.56, 89.50, 75.43, 53.55

66.31, 65.98, 54.59, 56.76, 81.82, 65.80,49.22

57.45, 53.92, 46.82, 47.93, 79.97, 65.45, 45.42

62.82, 47 .77, 45.20, 43.79, 83. 80, 68.83, 48.64

62.r7, 53.20, 49.27, 48.80, 81.68, 70.89, 47.48

64.09, 58.77,48.39, 49.39, 83.70, 67.63, 47.67

7r.25, 63.64, 52.48, 54.44, 89.99, 73.56, 53.22

61.39, 51.73, 44.69, 47.04, 80.93, 62.89, 45.84

68.86, 49.00, 42.4r,45.06, 86.10, 68.76, 50.07

66.02, 52.84, 43.2r, 43.05, 89.14, 72.67, 5r.29

2.6r

2.64

8.81

2.79

2.57

2.53

2.64

2.06

2.54

r.52

using the LocustTable 3.4: Locust: Stokes U - Tempelature and fitness values obtained by

optimizer'.
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3.3 Validation of Technique: Tbials with other Optimizers

3.3.2 Anvil and SAMOSA

Anvil, rvhich is also a multi-objective optiurizer. is a simulating annealing (SA) code. Simulated

annealing is based on annealing in metallurgy, in which the cooling of metal is slow to mininize

Iattice imperfections. In the code, particles are at a high enelgy and as they 'cool' they are able

to sealch the space for a global solution.

SAMOSA or "Simple Approach to a N4ulti-Objective Simplex Algorithm" is based on a
Nelder-Mead simplex algorithm. In these types of algorithms, a simplex, or polygon which has

nf 1 sides searches n dimensions by contorting itself throughout the search space. SAMOSA's

advantage is it's speed. It is mainly used as a polisher for Ferret and Locust.

The Anvil and SAMOSA optimizes were used to derive systern temperatures for ten EN

fields in Stokes U. While they don't produce results with as favorable a X2value as Ferret or

Locust, which are lrlole suited to this type of probìem, they do produce reasonable results (3).
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Figure 3.11: Left: The Locust optirnizer envilonment. Right: The Anvil optimizel environment.
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3. RESULTS

Field Name Antenna Temperatures (K) Chi-squared
ENO2

ENO3

ENO4

ENOS

ENO6

ENOT

ENOS

ENO9

ENlO

EN11

67.52, 66.63, 56.87, 57.54, 87.91, 71.43, 50.43

68.67, 63.28, 52.82,55.06, 84.31, 67.95, 50.60

40.26, 76.87, 65.70, 66.87, 56.13, 47.09, 32.02

44.71, 66.68, 62.66, 63.17, 67.49, 49.34, 33.90

51.36, 62.57, 58.88, 59.04, 69.95, 59.47, 40.54

56.26, 66.96, 55.49, 55.64, 7 3.39, 59.12, 42.06

68.28, 66.00, 54.67, 55.76,96.56, 70.69, 52.11

49.41, 62.82, 54.7 6, 57 .27, 66. 10, 51.23, 37 .42

52.55, 65.18, 55.93, 59.47, 64.38, 51.77, 38.08

45.76, 77.70, 63.08, 62.40, 62.02, 49.76, 35.29

2.59

2.48

TT.26

4.r5

3.15

2.75

2.57

2.56

2.64

2.47

Table 3.5: SAMOSA System Temperature Results: Stokes IJ - Temperature and fitness

values obtained by using the Locust optimizer.

Field Name Antenna Temperatures (K) Chi-squared
ENO2

ENO3

ENO4

ENOs

ENO6

ENOT

ENOS

ENO9

ENlO

EN11

2.74

2.98

9.78

4.05

3.48

3.4t

3.05

3.06

2.6r

2.27

67.25, 69.82, 57.24, 58.68, 83.97, 72.30, 49.7r

64.49, 73.44, 62.38, 62.32, 79.23, 64.I9, 47.99

51.98, 57.64, 5t.26, 52.48, 7r.gg, 62.35, 40.43

46.65, 66.32,60.61, 60.80, 61.06, 51.23, 35.59

52.33, 59.27, 54.59, 55.74, 72.95, 67.40, 42.97

62.36, 6I.52, 54.75, 52.69, 77.46, 59.79, 44.09

60.30, 74.68, 61.91, 64.37, 75.40, 62.53, 44.39

46.78, 62.44, 56.09, 59.50, 67.64, 51.57, 36.39

59.15, 57.00, 49.34, 5r.73, 76.77, 60.99, 43.79

65.55, 42.76,33.03, 33.84, 84.98, 69.74, 49.19

Table 3.6: Anvil System Temperature Results: Stokes IJ - Tenrperature and fitness values

obtained by using the Anvil optirnizer.
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3.4 Power Spectra: Stokes Q

3.4 Power Spectra: Stokes Q

For each ELAIS-NI field, a power spectrum

temperatures of that field, is cornpared to a

presented for this section in Stokes Q.

Power Spedra Nolse (broo) Vs. Sisn¿l (rd). srokes O, EN2

Bas€lin6 (ñere,s)

PoBerspedra Noíse {blu€) Vs. Sigf,al (red), Stokes O, EN4

0

0.8

o.7

ô6

400 600 800
Baserns (mêlêrs)
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spectrum of the real field.

the derived system

These results are

0.8

o.7

Pot/er SpedG Nois€ (blue) Vs. Signal (red), Slokes O, EN3

0
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0.

0.
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Figure 3.12: Comparison of power spectra EN02-EN05, Stokes Q.

Pover Specta Nois€ (blue) vs. Síqnal {red). Slok€s O, EN5

43



3. RESULTS

Pow€r sædra No¡se (blüo) vs. S¡snal (red), Stok8s O, EN6
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Figure 3.13: Comparison of porvel spectra EN06-8N09, Stokes Q
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3.4 Power Spectra: Stokes Q

Power Sp€dra Noise (blue) vs. Slsnal (rd). Slokes O, ENÍ0
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Figure 3.L4: Cornpalison of power spectla EN10-ENi3, Stokes Q.
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Figure 3.15: Comparison of power spectra EN14-EN17, Stokes Q.
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3.4 Power Spectra: Stokes Q

Po\ler Spedra Noise (blue) Vs. S¡!nal (rd), Slokes O, ENlS Po$e¡ Spedra Nolse (bluo) Vs. Signal (rd), Srokes O. ENi9
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Figure 3.16: Comparison of porver spectra EN18-EN21, Stokes Q.

Powersp€cûa Nolse (blue) vs. S¡gnal {rd), Stokes O, ENz1
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Poeer Sædra Noìse (blus) Vs. slgnal kd), Slokes O, EN?3
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3.4 Power Spectra: Stokes Q

Powe¡ Specra Noìse (blue) Vs- S¡qnal (rdl, Slokes O. EN26
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Figure 3.18: Compalison of porvel spectra EN25-EN27, Stokes Q.
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3.5 Power Spectra: Stokes U

3.5 Power Spectra: Stokes U

The same power comparison of power spectra is done for Stokes U.
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Figure 3.20: Comparison of power spectra EN02-EN05, Stokes U.
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3. RESULTS
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Figure 3.21: Comparison of potver spectra EN06-EN09, Stokes U.
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3.5 Power Spectra: Stokes U
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Figure 3.22: Compaì'ison of power spectla EN10-EN13, Stokes U.

PowerSp€dra Noise (blu€) vs. Slsnal (rd), Slokes U. EN12
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3. RESULTS

PowerSpecra Noise (bloe) Vs. Signal (r&), Stokes U, EN14
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Figure 3.23: Comparison of porver spectra EN14-EN17, Stokes U.
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3.5 Power Spectra: Stokes U
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Figure 3.24: Comparison of power spectra EN18-EN21 Stokes U.

Poper Spedra Nois6 (blus) Vs. Signal (rcd), Slok€s U. EN20
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Figure 3.25: Comparison of porvel spectra EN22-8N24, Stokes U.

Power Spedra Nolse (blue) Vs- Slgnal fed). Slokes U, EN24
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3.5 Power Spectra: Stokes U
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Figure 3.26: Compalison of porver spectra EN25-EN27, Stokes U.
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Figure 3.27: Compalison of porvel spectla EN28-EN30, Stokes U.
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3.6 Ferret Solution Surfaces: Stokes Q

3.6 Ferret Solution Surfaces: Stokes Q

For problems with multiple parameters, Ferret is able to output a farnily of solutions within a

user specified value of the optimal (in this case, one). These surfaces are mapped out generation

by generation as Ferret searches the parameter space.
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Figure 3.28: Family of solutions EN02-EN05, Stokes Q.
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3. RESULTS
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Figure 3.29: Faraily of solutions EN06-8N09, Stokes Q.
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3.6 Ferret Solution Surfaces: Stokes Q

Stokes O, EN10 Parameter Dlstrlbutlon Stokes O, EN1 1 PaÌameter Dlstr¡bullon

70

65

Ëoo
ts

55

s

Stokes Q, ENI2 Parameter Dlstrlbutlon

s2 s4 53æ6264
Tempt

Figure 3.30: Farnily of solutions EN10-EN13, Stokes Q.
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3. RESULTS
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Figure 3.31: Family of solutions EN14-EN17, Stokes Q.
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3.6 Ferret Solution Surfaces: Stokes Q
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Figure 3.32: Family of solutions EN18-EN21, Stokes Q
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3. RESULTS
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Figure 3.33: Farnily of solutions EN22-EN24, Stokes Q

64



3.6 Ferret Solution Surfaces: Stokes Q
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Figure 3.34: Family of solutions EN25-EN27, Stokes Q.
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3. RESULTS
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Figure 3.35: Family of solutions EN28-EN30, Stokes Q.
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3.7 Ferret Solution Surfaces: Stokes U

3.7 Ferret Solution Surfaces: Stokes U
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Figure 3.36: Family of solutions EN02-EN05, Stokes U.
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Figure 3.37: Farnily of solutions EN06-EN09, Stokes U.
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3.7 Ferret Solution Surfaces: Stokes U
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Figure 3.38: Family of solutions EN10-8N13, Stokes U
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Figure 3.39: Family of solutions EN14-EN17, Stokes U.
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3.7 Ferret Solution Surfaces: Stokes U
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Figure 3.40: Family of solutions EN18-EN21. Stokes U.
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3. RESULTS
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Figure 3.41: Farnily of solutions EN22-EN24, Stokes U.
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3.7 Ferret Solution Surfaces: Stokes U
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Figure 3.42: Family of solutions EN25-8N27, Stokes U.
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Figure 3.43: Fanily of solutions EN28-EN30, Stokes U.
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3.7 Ferret Solution Surfaces: Stokes U

3.8 Model Fitness Plots: Stokes Q
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Figure 3.44: Visibility fitness plot EN02-EN05,

rnodel (blue) fitting data (red).

Stokes O, EN03 Vis¡bil¡ty F¡t

75



3. RESULTS
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Figure 3.45: Visibility fituess plot EN06-EN09, Stokes Q.
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3.7 Ferret Solution Surfaces: Stokes I-I
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Figure 3.46: Visibility fitness plot EN10-EN13, Stokes Q.
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Figure 3.47: Visibility fitness plot EN14-8N17, Stokes Q.
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3.7 Ferret Solution Surfaces: Stokes U
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Figure 3.48: Visibility fitness ploi EN18-EN21, Stokes Q.
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Figure 3.49: Visibility fi.tness plot EN22-8N24, Stokes Q.
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3.7 Ferret Solution Surfaces: Stokes U
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Figure 3.50: Visibility fitness plot EN25-EN27, Stokes Q.
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Figure 3.51: Visibility fi.tness plot EN28-EN30, Stokes Q.

Stokes O, EN30 Vls¡bllity Fit

82



3.9 Model Fitness Plots: Stokes U

3.9 Model Fitness Plots: Stokes U
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Figure 3.52: Visibility fitness plot EN02-EN05, Stokes U.
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Figure 3.53: Visibility fitness plot EN06-EN09, Stokes U.
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3.9 Model Fitness Plots: Stokes U
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Figure 3.54: Visibility fitness plot EN10-EN13, Stokes U.
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Figure 3.55: Visibility fitness plot EN14-EN17, Stokes U.
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3.9 Model Fitness Plots: Stokes U
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Figure 3.56: Visibility fitness plot EN18-EN21, Stokes U.
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3. RESULTS
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Figure 3.57: Visibility fitness plot EN22-EN24, Stokes U.
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3.9 Model Fitness Plots: Stokes U
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Figure 3.58: Visibility fitness ploi EN25-EN2Z, Stokes Il.
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3. RESULTS
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Figure 3.59: Visibility fitness plot EN28-EN30, Siokes U
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4

rscusslon

4.L CMB Foregrounds in ELAIS-NI

From figures 3.4, 3.5, 3.9 and 3.10, which show power spectra from both the synthesized data and

the real ELAIS-N1 data, we can conclude that significant polarized emission has been detected

in all baseliues in the ELAIS-NI field. This is true for both the spectla from the individual

fields, and frorn the mosaics. By producing these spectra we can see that the Galactic emission

appears to be 2 to 3 times higher intensity than the noise, depending on the baseline. The

plocess of mosaicing has reduced the noise level significantly in both images, and thus reduced

the difference in the noise levels as well. However despite the small difference in rnagnitude, it
is obvious where there is signal present.

Common to the power spectra of the individual fields (section 3.4 and 3.5) and of the mosaic

(fig 3.4, 3.5, 3.9 and 3.10), is the presence of a large noise peak at short spacings. The possible

causes for this peak have been discussed in Chapter 2. Wtrile the rnosaic has reduced the peak

significantly it is still obviously larger than any other signal in the spectrum. This is a difficult

area to analyze, because hidden in the high level of spurious signal, are the broadest structures

we would like to observe. The spectla also show that a large arnount of the signal is being

detected at approximately 300 meters, suggesting a cìraracteristic size of 2 arcminutes.

Now that it has been established that there is an extended structure in the this area of the

Galactic foreground two questions arise, the first, 'what is this emission in the field?' and the

second, 'how can this be distinguished from the CMB?'. The fact that this emission disperses

itself throughout an image makes it difficult to analyze in the image plane, however, Iooking at

it in the visibility plane proves to be an efficient rnethod for classifying the emission. Aperture

synthesis gives us an idea of the stlucture of the emission we are looking at.
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4. DISCUSSION

4.-J,.L Confidence in Results

The sensitivity of these rneasurernents, and the consequence of their analysis means that we

tleed to have a good handle on the accuracy of our rneasurements. CMB polarization is ex-

tremely sensitive to small pertulbations and we need to be sure that the system ùerlperature

measurements come with reasonable errols that wilÌ not affect the results of Planck. Consider-

ing the results presented in chapter 3, we can demonstrate our errors by considering both the

chi-squared values presented in tables 3.1 and 3.2 (which are supported by the fitness plots in

sections 3.8 and 3.9) and the solution surfaces which are presented in sections 3.6 and 3.7.

First, considering the chi-squared values, there is a visible and quantifiable cor.relation be-

tweeu chi-squared and quality of data. For example, ELAIS-NI fields whicìr have the highest

chi-squared are 8N04, 8N14. Looking at their visibility fits shows that these fields have partic-

ularly large errors in the data, which can be velified by the magnitude of their erroïs. Despite

the fitness of the rnodel to the data appearing near-perfect, these large uncertainties in the data

mean a less reliable temperature derirration. Though, if we look at the difference in temperature

values between 8N04, and EN14 with a field with a chi-squared closer to one, we see very Ìittle
variation in temperature. There is rarely a diffelence of more than 1.bK.

The family of solutions in section 3.6 and 3.7 show a sarnpling of possible solutions that exist

within the specified tolerance. This featule in Ferret maps out a range of possible solutions.

The figures show (for the first two parameters, systern temperatures for antenna 1 and antenna

2) a range of solutions where most of thern lie within 5K of each other', with the exception of

vely few outliers. This compact surface suggests a high level of precision for oul ternperature

values, especially given the consistency across aÌl fields and polarizations.

Also, in considering errors, r'ecall that in order to optirnize system temperature determi-

nation, noise peaks at short spacings were removed. Because it is somewhat uncertain wltere

this phenomenon comes from, it is difficult to assess how fal this peak might travel down the

visibility plane. In an effort to quantify how this removal may be affecting the system tem-

perature results baselines wele removed one by one and the ternperatures were derived after

each removal. Figure 4.1, is a plot showing by how rnuch each antenna (T1-T7) is affected by

each baseiine rernoval up to 43. We see large dips in temperature when we approach an area

wlrere a particular baseline euds. That is, for example, when all the baselines containing T7,T2

and T3 are rernoved, we see a drop in their temperature because they are contributing less to

the complete spectlum of data. For the results presented, baselines were not removed up to or

beyond the first major dip in the results, which occurs after lemoving ten basel.ines. For this

experiment only 8 baselines have been lemoved, which suggests, given the plot, an adequately
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4.2 Versatility of Software and F\rture 'Work

stable data set. However, the fact

that they are large contlibutors to

that T1, T2, and T3 vary so

the data, and thus are highly

much across this plot, suggest

sensitive to baseline removaL.
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Figure 4.1-: Removing baselines - Removing baselines and optimizing system temperature
changes the values as letnovals get falther down the telescope line. The figure shows how the
temperatur-e values change throughout that plocess. We see large variations, palticularly at value
ten which corresponds to baseline 12, because this highly redundant baseline is r.elnoved. The
antenna ternperatures here have been normalized to T7.

Another demonstration of confidence in our methods is table 4.1. This table shows the

variation in system temperature from one lun to another. As shown, the variation in both

temperature andy2 are minimal, rneaning that Ferret is consistent between trials and it is not

expected that optimization errors have occurred.

4.2 Versatility of Software and Fbture Work

The result of this project and the methods described in the previous chapters have shown that a
method has been developed that can accurately measure the system temperature of the DRAO

synthesis telescope. Knowing systern ternperatures is â common endeavour of astronomers and

engineels as it provides them with boih information on how effi.cient a telescope is and tells

them the accuracy of the data it collects. This r-esult of this method is not only useful for
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4. DISCUSSION

Field Name Antenna Temperatures (K) Chi-squared
EN02 trial | 77.39,65.36, 53.87, 55.11, 92.26,75.39, 54.16

EN02 trial 2 77.37,65.49, 54.03, 55.29,92.06, 75.71,54.2I
EN02 trial 3 73.65, 63.32, 52.28,53.43, 95.2I,77.57,55.79
EN02 trial 4 75.57,60.05, 49.68, 50.56, 99.83, 81.80, 58.79

EN02 trial 5 76.4I, 61.78,50.91, 52.00, 97.95,80.11, 57.58

EN03 trial 1 70.03, 62.9I,50.93, 52.65,85.00, 70.17, 52.I8

EN03 trial 2 68.24, 64.7I,51.84, 53.69, 83.50, 68.98, 51.46

EN03 trial 3 7I.27, 61.52, 49.82, 5I.52,86.89, 71.60, 53.40

EN03 trial 4 73.50,59.32, 47.97, 49.69,89.85, 74.7I,55.05
EN03 trial 5 73.91, 59.39, 48.20, 49.79,89.98, 74.08,55.2I
EN04 trial 7 57.40,53.24, 46.64,48.58, 80.79, 65.29, 46.35

EN04 trial 2 6I.16, 49.87, 43.96,45.81, 85.87, 69.7I, 49.26

EN04 tlial 3 58.92, 50.78, 44.99, 46.52,84.23,68.19, 48.18

EN04 trial 4 55.79, 55.76, 48.72,51.00, 77.38, 63.10, 44.40

EN04 trial 5 56.68, 53.40, 47.02,49.29,80.76, 64.97, 45.98

EN05 trial 7 65.97,46.19, 42.25, 42.86,88.78, 71.02,50.74
EN05 trial 2 67.31., 45.49, 4I.44, 42.20,89.99, 72.57,5I.66
EN05 trial 3 65.99, 46.47, 42.43,42.90,88.86, 70.85, 50.69

EN05 trial 4 65.98, 46.74, 42.89, 43.42,89.25,77.42,50.76

EN05 trial 5 64.18, 47.49,43.33, 44.23,86.57, 69.25,49.47

EN06 trial I 70.75, 46.87, 43.56, 43.65, 94.38, 79.31, b3.93

EN06 trial 2 69.76, 47.39, 43.96, 44.07, 92.99, 77.92, 52.65

EN06 trial 3 70.68, 46.84,43.37,43.56, 94.70,79.11, 53.84

EN06 trial 4 69.62, 47.53, 43.99,44.08,93.28, 78.28, 53.09

EN06 trial 5 67.63, 49.27, 45.62, 45.78,89.01, 75.78,57.43

3.09

2.94

3.02
,.74

2.98

2.48

2.73

2.64

2.61

2.57

8.94

8.53

8.73

8.30

8.54

2.62

2.78

2.57

2.48

2.69

r.94

r.94

2.0r

1.91

1.90

Table 4.1: Ternperature and fitness values obtained by using the Fe¡ret genetic algorithrn for' 5

trials of each of 5 fields. The results dellonstrate consistency in the fitting method. Results show
are for Stokes Q.
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4.2 Versatility of Software and F\rture 'Work

determining the accuracy of data collected by the DRAO synthesis telescope, but it also has

applications to other telescopes and projects.

4.2.L Other Synthesis Telescopes

The basis of this software is a fairly simple equation, 2.2, which relates the variance of antenna

pairs. In the immediate exatnple we ale dealing with a seven-eletnent linear array, which is

also geornetrically uncomplicated. Despite being developed for the purpose of evaluating this

particular problern, the software can easily be extended to more cornplex situations. Most

synthesis telescopes are unique and possess different geometries and nurnber of antennas.

For example, the addition of more telescopes to the linear array can be accomplished by

simpÌy increasiug the number of parameters sent to Ferret. This ivould allow us to apply the

code to other linear arrays. Changing the geometry of the telescope to something like a VLA-

style Y-shaped pattern or a log spiral, could easily be accomplished, but the change would mean

more variability per telescope (as there would be a larger number of redundant baselines in th.e

visibility plane) and could increase the run time. Regardless, the ability to make these changes

trreans that the noise temperatur-e determination rnethod coul.d be applied to any synthesis

telescope, making it a very useful tool for radio astronomy.

4.2.2 DRAO Data

In addition to the ELAIS-NI deep field, DRAO carried out another deep field survey, the

Spider deep field (named after the appearance of an infrared feature of the field). Our software

can easily be applied to the Planck field visibility data to compare noise properties to diffuse

emission. The parameters of the problem are identical so this task may be carlied out as future

work, as both of the deep fields contain information useful to cosmologists.

4.2.3 Square Kilometer Array

The noise properties of an interferometer are highly dependent on its components. This means

that any change iu the electronics of the telescope would rnanifest itself in the noise. Thanks to

this property, the softwale can now be used to accurately measure diffelences in noise contri-

bution of low noise arnplifiers inexpensively and accurately. Because DRAO is now being used

as a test bed for Square Kilometer Array technology, the techniques used in this project could

be directly applicable to the futule of radio astronomy.
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4. DISCUSSION

4.3 Conclusions and Summary

We have emerged from this resealch having developed a new method for characterizing the

system noise in a synthesis telescope, in particular, the DRAO interferometer'. This method,

uses a m.odel interferometer and fits its visibility output to visibility data from the ELAIS-N1

deep field survey, using the Ferret genetic algorithm. The robustness of genetic algorithms and

sophistication of Ferret have provided particularly accurate resul.ts (as represented by the chi-

squared of the fiü) and a good grasp on the accuracy to which we know these temperatures, as

is shown by the solution surfaces.

Thought it was developed for the purpose of aiding cosmologist in improving the accuracy of

CMB measurentents, the software is also extrernely versatile and can be beneficial to other areas

of radio astronomy. It can be easily rnodified to include different geometries. so although this
project focused on a linear array, it would be easy to use this method on an array such as the

Very Large Array (VLA) or upcoming configurations such as tìre Australian Square Kilor-¡eter

Alray Pathfinder (ASKAP), allowing systern temperature measulerlrents for these instruments.

At the forefront of this research is its benefit to cosmologists and in particular those using

and obtaining data with the Planck CMB satellite. The system temperatures that were derived

were used to create images of the noise they ploduce on the sky, and were used to show that
in the ELAIS-N1 field, there is a diffuse signal which can be detected slightly above the range

of system noise. The knowledge of this diffuse emission will allow those using the Planck data

to assess their polarization rneasurements in relation to the foreglound in hopes of producing a

sufficiently accurate rnap of the CMB to obtain knowledge of the early universe that was not
previously accessible.
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Appendix

5.1 System Temperature Derivation Code

f unct i on extPar= init-Tot alField (Fief dNunber )

BandA= ['ENUA), num2str(FieldNumber)] ;

BandB=l'ENUB), num2str(FieldNunber)l ;

Al_lBands= [ , ENU, , num2str (FieldNr:nber) ] ;

%---Loading al-l- required data fil-es for a batch run
"/"---of 30 f iel-ds

extpar. fi1e.A= [BandA,, . dat,] ;

extpar . f ile . g= [BandB , , . dat , ] ;

extPar . f i1e . imgA= [BandA , ' . f its ' J ;

extPar. f iIe. imgB= [Ba¡dB,' . f its' ] ;

extPar. file. imgAll= [A]-fBands, ' . fits'J ;

extPar . Pl-otSave= | ' Spectra-EN-U' , num2str (Fiel-dNunber) ] ;

extPar . PLotTitle= . . .

['Power Spectra Noise (blue) Vs. Signal (red), Stokes U, EN',num2str(Fie]-dNunber)l;
extPar. FitsName= [, expENU,,nuro2str(FieldNr:mber),, . f its, J ;

extPar . TempName= ['Temperatures-ENU' , num2str (FieldNulbêr) , ' . ¡nat ' ] ;

extPar. ImageName=['Image-ENU' ,num2str(FieldNunber) , ' .nat'] ;

extPar . Min= [ 'Min' , num2str (FieldNurnber) , ' . nat ' ] ;

T,

extPar . K=DRA0- const ant s ;

extPar=cal-cVisData ( extPar) ;
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5. APPENDIX

i"-- -- -----

f unct ion K=DRAO-constant s

%---Ä'lf constânts rel-evant to the synthesis
%---tefescope and ELAIS-NI field
K. minaxis=59 ;

K . maj axi s=73 ;

K. lanbda=.21 ;

K. Jy-per-beam-to-K=1 . 359783487*K . l-anbda^2/K.najaxis,/K. minaxis ;

K. ant=1 :7;
K. base=5: 144;

K. NBase=l-ength (K. base) ;

K. NAnt=l-ength(K. a¡t) ;

K. NVis=480;

K. startBaseline=12;
K. lastBasel-ine=140;
K. emptybas edat,a=I27 : I28;
K. lambda=O.21 ;

K. degree=pil180;
K. arcmin=K. degree/60 ;

K. longestBaseline=6 17 . 18 ;

K. beam. a=K. arcmin;

K. beam. b=K . arcmin;

K. pixPerBeam=3 ;

K. radPerPj-x=K. beam. a/K. pixPerBearn;

K. increment=4.286i
K. baseline=K. incrementxK. base ;

K. dec=S5*pi/ IB0;
K. decspect¡¿-pi/180;
K. gauss-taper=false;
K. NPix=1024;

K. aag=11o"pace (0,pi / 2,f 0000) ;

K. NStack=10;

K. dtheta=K. arcnin,/K . pixPerBeam;

K.dx=K.lanbda/K.NPix/K.dtheta; "/" -4.286;'/,Size of a UV plane pixel in m.

K. dU=K. dx/K. l-a.nbda;
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5.1 System Temperature Derivation Code

K. dV=K. dU;

K. NuroberSample=100;

if mod(K.NPix,2)

K. NPix=K. NPix+l ;

end

g=zeros (K. NAnt,K.NAnt,K. NBase) ;

% ;The fist of ântennas used for each baseline

7"(without including the redunda¡cies) :

7" ; Baselines:
"/";3 to 14

"/" ; 15 to 26

"/" ', 27 to 38

"/" ; 39 to 45

'A;46to57
'/, ; 58 to 69

"/" | 70 to 81

"/" ; 82 to 93

"/" ; 94 to 105

"A ; 106 to 117
o/o i 7I8 xo I29
"A ; 130 to 141

o/o ) I44

g(t ,2,3: 14) =1 ;

g(1,3,15:26)=1;
g(1,4,27:38)=I;
g (4,5,39 : 45) =1 ;

g(3,5 ,46:57)=r;
g(2,5,58 : 69) =1 ;

g(4,6,70: 81) =1;

g(3,6,82:93)=1;
g(2,6,94: 105) =1 ;

g(4,7, 106 : 117) =1 ;

E(3,7,118: 129) =1;

fnt erf ero¡oet er :

Ix2
lXJ

tx4
5x4
5x3
5x2
6x4
6x3
6x2
7x4
7 x3
7 x2

7x7
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5. APPENDIX

g(2,7, 130: 141) =1 ;

g(r,7 ,144)=7;

To

/o

y"

y"

"/"

y"

v,

v,

Basel-ine (x+. Zg0m) :

I2
24

34

35

óo

37

38

72

108

744

# of observations and antennas total
I(Ix2), 12(2x3), 12(3x4)

1(1x3) , I2(2x4)
1(1x4), 1(4x5)

1(1x4), 1(4x5)

1(1x4), 1(4x5), 12(5x6), I2(6x7)
1(1x4), 1(4x5)

1(1x4), 1(4x5)

1 (4x6) , t2(5x7),12(1x5)
t(4x7), 12(1x6)

12(Ix7)

tlnes observed

25

13

2

2

26

2

2

25

13

T2

7" Format: g(alt1,ant2,baseline #)=redundancy

g(r ,2,12)=r;
g(2,3,12)=I2;
g(3,4,12)=I2;
%

g(1,3 ,24)=r;

E(2,4,24)=I2;
y"

g ( 1 ,4,34) =1 ;

g (4, 5,34) =1 ;

y"

g(t ,4,35) =1 ;

g (4,5 ,35) =1 ;

y"

g(r ,4,36) =1 ;

g (4, 5,36) =1 ;

g (5, 6 ,36) =12 ;

g(6,7 ,36)=I2;
%

g(t ,4,37) =1 ;

g(4,5,37)=7;
,/,

g(I ,4,38) =1;
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5.1 System Temperature Derivation Code

g (4, 5 ,38) =1 ;

y"

g(4,6,72)=!;
g(5,7 ,72)=12;
g(1,5,72)=t2;
v,

g(4,7, 108) =1 ;

g(1,6, 108) =12;

g(I,7 ,I44)=I2;
,/,

% Store g
K a=o.¡¡.ö öt

y"---------
function extPar=calcVisData (extPar)

% Calc variances.
%----Reading binary outputs of visibifities
fid=fopen(extPar. fiIe.A,'r' ) ;

f id1=f open(extPar.f i1e.B, 'r') ;

databandA=f read (f id,' 1loat32' ) / 1000x extPar . K . Jy-per-beam-t o-K ;

databandB=fread (f id1 , ' fl-oat32 ' ) / 1000*extPar . K . Jy-per-beam-t o-K;

% This is in K - NOT K^2.

7"----Renoving flagged data points
%----which are l-arge and nagative (-1E38)

darabandA(darabandA < -1E37) =NaN;

databandB (databandB < -1E37) =NaN ;

%----Subtraction of freq bands for noise

re spons e= ( dat abandA) - (dat abandB ) / sqrt ( 2 ) ;

7" N=databandA;

N=length(response);
M=l-ength (databandA) ;

%----Data is sorted in real then conplex

response=response(1 : 2 :N-1)+sqrt (-1) *response(2 : 2 :N) ;

¿at abandA=dat abandA ( 1 : 2 : M- 1 ) +sqrt ( - 1 ) *,dat aba¡dA ( 2 : 2 : 14) ;

7"----Taking an average over 90 visibll,lties
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5. APPENDIX

Y,----(Variance is const¡nt over hour angle)

extPar. baseline=1 : extPar. K. lastBaseline;
extPar. signa=NaN (1, extPar. K. lastBasel-ine) ;

extPar . s igmaErr=NaN ( 1 , extPar . K . lastBasel-ine ) ;

basel- ine . a= ( extPar . K . basel ine/extPar . K . l-ambda) / extP ar. K . dU ;

baseline.b=baseline. a*sin(extPar.K. dec) ;

NAng=length ( extPar . f . ang) ;

grid.signa=[J;
for q=4;-I:7 o/o 4 quadrants

grid. grid . UV-no ise-quadrants{q}=zeros ( extPar . K. NP ixl2) ;

end
y"

for b=extPar.K. lastBaseline : -1 : extPar. K. startBasel-ine ;

j = (b-1) xextPar. K. NVis+1 ;

responsel=response (j : j+s¡¡p.r. K. NVis-1) ;

responsel (isna¡(responsel) )= [J ;

extPar.sigma(b)=std(responsel) i 7" sqrt(2) higher than std(real-(TNoisel)) . lK 2l

NR1=length (response 1 ) ;

databandAl=databandA(j : 3+s¡1p.r. K. NVis-1) ;

databa¡rdA1 ( isnan (databandAl ) ) = [] ;

extPar.signa(b)=std(responsel) ; 7" sqrt(2) higher than std(real(TNoisel)). lK^21

NR1=length (response 1) ;

if -isempty(responsel)

response 1-MC=response 1 ( cei l- (NR1 *rand ( extPar . K . NumberSample, URf ) ) ) ;

sigroal=std (responsel-MC, 0, 2) ;

extPar. sigmaErr (b) =std (signal) ;

,/,

% Create an image by Monte Carl-o'ing the actual- distribution in
% responsel.
ix=1./sqrt(1./baseline.a(b).^2+tan(extPar.K.ang).^2./baseline.b(b).^2);
iy=ix. *ta¡(extPar. K. ang) ;

i=nax(1, ceil (ix) ) ;

j =max ( 1 , ceil ( iy) ) ;

for q=4'-1't
grid. grid.UV-noise-quadrants{q} (i+extPar. K. NPix/2*j ) . . .

=responsel (cei1 (NR1*rand(1, NAng) ) ) ;

end
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5.1 System Temperature Derivation Code

end

end

grid.W-noise= [ lgrid. grid.UV-noise-quadrants{1}, . . .

fliplr(grid. grid.UV-noise-quadrants{Z})l ; . . .

flipud( [grid. grid.UV-noise-quadrants{3}, . . .

f lipf r (grid . grid . UV-no i se-quadrant s {+} ) I ) I ;

img-data=(fitsread(extPar.fil-e.imgA)-fitsread(extPar.fil-e.imgB))...
* 1000*extPar . K . Jy_per_bearn_to_K/ sqrt (2) ;

data_std=std(ime_data(: ) ) ;

index=f ind(grid. W-noise) ;

model-std=std (grid. UV-noise ( index) ) ;

extPar . f act or=data-std,/mode1-std ;

extPar, sigma=extPar . factor*extPar . signa;
extPar. TEST= (grid. UV-noise) +extPar . factor;
extPar . s i gmaErr=extPar . f act or* extP ar . s i gnaErr ;

extPar. sigmaErr(1 : extPar.K. startBaseline)= [] ;

extPar. sigrna(1 : extPar.K. startBasel-ine)= U ;

extPar . basel-ine ( 1 : extPar . K . startBaseline) = [] ;

extPar. sigmaErr(extPar. K. emptybasedata)= [] ;

extPar. sigrna(extPar. K. emptybasedata) = [] ;

extPar.baseline (extPar. K. enptybasedata) = U ;

1,--------

function TEMP=computePower(X1, extPar)

T=Yi , .

"/" X --> 1 column from the X matrix that Ferret receives.

Ti=repnat (T, extPar. K. NAnt, 1) ;

Tj=Ti' ;

TEMP=zeros (1, extPar. K. NBase) ;

for n=extPar.K.NBase : -1 : 1 ;

gNorm=(sum(sum(extPar.K. g( :, :,n) ) ) ) ;

if gNorm == 0
TEMP (n) =0 ;

else
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5. APPENDIX

% Calcul-ate the Vari¡nce
NoiseTemp=sqrt (sum(sun( extPar. K. g( :, :,r) . *Ti. *Tj ) ) /gNorn^2) ;

TEMP (n) =NoiseTemp;

end

end

io---------

function F=f itness (X, extPar)

7"--cafculate the fitness of each generation
NSol=size (X,2) ;

f or sol-n=NSol-: -1:1
X1=X(: , sofn) ;

TEMP=conoputePoi¡er (X1 , extPar) ;

F(sol-n)=(sum(((TEMP(:)-extPar.sigma(:)).^2.,/extPar.sigmaErr(:).^2)))...
/ (length (extPar. sigma) -length (X1 ) ) ;

pause(0.001);
end

i"---------

f unct ion nakelnage ( Opt imalsol-ut ions )

[FMin, index] =nin(Optimal-Solutions. F) ;

X=0ptinalSolutions.¡(: , index) ;

extPar=OptiroalSolutions . Par . user. extPar;

save (extPar. TempName , 'X' ) ;

TEMP=computePor+er (X , extPar) ;

%TEMP=extPar. sigma;

% Do facor of 2 stuff. .

ofo wriiue image.
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5.1 System Temperature Derivation Code

basel ine . ¿= ( extPar . K . basel-in e / extP ar. K . lanbda) / extP ar. K . dU ;

basel-ine . b=bas el- ine . a*s in ( extPar . K . dec ) ;

extPar. K. ang=llttspace (O ,pi/2,48O/2) ;

NAng=length ( extPar . K . ang) ;

grid.sigma=[];
TEMP-ALL=zeros ( 1 , length (TEMP) +s¡1p"r . K. startBaseline) ;

TEMP-ALL (1 , extPar. K. startBaseline : length(TEMP) +extPar. K. startBaseline-1) =TEMP;

lor q=4:-I:! "/, 4 quadrants
grid . grid . UV-TEMP-quadrant s{q}=zeros ( extPar . K . NPix/2 ) ;

end

TEMp 1=zeros ( 1 , extpar . K . NVis/2*length (TEMp_ALL) ) ;

for b=1: length(TEUP-ALL) ;

j = (b-1) *extPar. K. NVis/2+1 ;

TEMPl (j : j+s¡¡p.r.K.NVis/2-1)=TEMP-ALL(b) ;

if -isenpty(TEMP1)

ix=1 .,/sqrt ( 1 . /basel-ine . a (b) . ^2+ta¡r (extPar . K. a¡rg) . ^ 2 . /baseLine . b (b) . ^2) 
;

iy=ix. *tan(extPar. K. ang) ;

i=max(1,cei1(ix));
j=max(1,ceil-(iy));
for q=4'-1't

index=i+extPar . K . NPix/2*j ;

7" normal-ized sampling

grid. grid . UV-TEMP-quadra-nt s{q} ( index) =TEMP-ALL (b) *ones ( 1 , NAng) ;

end

end

end

grid.UV-TEMP=[[grid.grid.UV-TEMP-quadrants{1},f1ip1r(grid.grid.UV-TEMP-quadra¡ts{2})];...
flipud ( [grid . grid. UV-TEMP-quadrants{3} , flipl-r (grid . grid . UV-TEMP-quadrant s{4} ) ] ) I ;

N=conplex (randn ( extPar . K . NPix), rendn ( extPar . K . NPix) ) / sqrt (2) ;

grid. W-TEMP=f f tshif t (grid . UV-TEMP . *N,/extPar . K . Jy-per-bea¡-t o-K) ;

% read in data
data= ( (f itsread (extPar. f il-e . imgAl1) ) ) x 1000 ;

UV-data=fftshift( itttZ(data')*extPar.K.NPix ) ;

r07



5. APPENDIX

IX=-extPar.K.NPix/2+O. 5 : extPar.K.NPix/2 ; IY=IX;

[lX, IY] =ndgrid ( IX, IY) ;

R=sqrt(IX. ^2+Iy. ^2) 
;

RMax=min(extPar. K.NPix/2, extPar.K.NPix/2) ;

7"--take a posier spectrum

NRBins=round(RMax/4) ; % ARBITRARY.

REdges=linspace (0, RMax, NRBins+1 ) ;

dR=REdges (2) -REdges ( 1) ;

dist= (REdges ( 1 : end-1)+dR/2) *extPar. K. dx;

PBase= [] ;

PBaseS= U ;

for n=NRBins: -1:1
index=R > REdges(n) g R < REdges(n+1) ;

PBaseS (n) =std (grid . UV-TEMP ( index) ) ;

pBase (n) =srd (UV_data ( index) ) ;

end

spectra=figure(3) ; plot(dist,PBaseS) ;

hol-d on

plot (dist , PBase, 'r')
hol-d off
xl-abel- ( 'Baseline (meters) ' )
ylabeJ-('Power (mJy)')

titl-e (extPar . PlotTitle)
print(spectra,'-depsc', extPar.Pl-otSave)

7"--Create a synthetic image

Temp-Image =f ft2( grid . UV-TEMP ) ;

save (extPar. fmageNane , 'Temp-Image' ) ;
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