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Abstract

The ELAIS N-1 deep field is a low column density window into the extragalactic
universe. The diffuse galactic foreground of this window must be understood in order
to measure anisotropies in the Cosmic Background Radiation Field - a principal
goal of the Planck science team. The Dominion Radio Astrophysical Observatory
(DRAO) synthesis telescope can be used to distinguish low-level signal from noise in
order to map the galactic foreground and improve the accuracy of the Planck CMB
measurements. This is accomplished by modeling system temperature noise for the
synthesis telescope in order to create a noise map, which allows positive detection
of the low-level polarization features that exist in the field. This difficult non-
linear optimization problem does not lend itself well to standard local optimization
techniques. We have developed software, based on an advanced genetic algorithm
(Ferret), to characterize the spatial distribution of noise power in synthesis telescope

mosaic images.
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Introduction

Since its discovery in 1964, the Cosmic Microwave Background (CMB), a field of electro-
magnetic radiation which fills the universe, has been essential to Big Bang theory. The presence
of this radiation field, which emits most strongly in the microwave region, has been vital in sup-
porting early Universe theories. The Universe shortly after time zero can be described by an
extremely hot (4000K to 3000K) plasma-filled space from which photons escaped as the Uni-
verse cooled. This cooling began as the rapid expansion of space at time 10~%3s. Current data.
suggests that inflation, or something similar, occurred during the evolution of the Universe as
we know it. These photons now present themselves as the CMB which is nearly isotropically
present throughout space (1}.

The Planck satellite has been launched by the European Space Agency with the intention of
providing the most accurate CMB study to date. Planck will measure both the temperature and
polarization properties of the CMB, which have been shown to correlate in previous observations
(2). This study, along with the European Large Area ISO Survey N1 (ELAIS-N1) deep field
survey which has been carried out at the Dominion Radio Astrophysical Observatory, can
provide us with essential foreground information to improve the accuracy of Planck’s CMB
measurements. Using these tools to study the CMB will potentially provide the most accurate

picture of the early Universe to date (3).



1. INTRODUCTION

1.1 The Cosmic Microwave Background

The Big Bang model predicts that small fluctuations in the early universe have grown into the
large scale structure that we see today. Under this model, we can unfold primordial fluctuations
in the early Universe by measuring the temperature anisotropies around us. If we are indeed
measuring fluctuations in the early Universe, this means that the temperature anisotropies were
present at last scattering and we are able to observe a polarized CMB (2).

Scientists have measured polarization features in the CMB, meaning that we have some
certainty that our predictors stand, but there are still several things that an accurate study of
CMB polarization could tell us. These are the science goals of the Planck CMB project, which
are outlined in the next section.

The polarized components of the CMB exist in E-mode and B-mode polarization. Theorists
state that E mode polarization arises naturally from the Thomson scattering in an inhomoge-
neous plasma. In the CMB case, the E-modes are detections of the remnants of last-scattering.

B-mode polarization has a vanishing curl, and a maximum amplitude of 0.1 pK. Tt is believed
that B-modes are determined by the density of gravitational waves in the primordial plasma
which existed before inflation. This type of polarization has not yet been detected because of
technological restrictions. Detection would require sensitivities lower than 1pK at frequencies
around 70GHz (where the Galactic synchrotron signal is ten times this value) (4). B-modes
give us vital information of the early Universe and would provide support for current inflation
theories.

The gravitational waves that B-mode polarization would allow us to detect should exist
everywhere in the Universe. These waves would have been created in the primordial plasma
when gravitons came into existence but were pulled apart by inflation before being annihilated
by an anti-particle. At this time, virtual gravitons became real gravitons and, as the Universe
expanded, the gravitational waves were stretched to large wavelengths.

Gravitational waves would be useful to astronomers because they are not absorbed by media
as are other types of radiation, meaning that gravitational waves would allow us to observe
previously undetectable objects. This is also true of the early Universe. Gravitational waves
produced during the Big Bang would not be impeded by anything in the early Universe plasma,
making them the clearest record of the Universe after the Big Bang. Measuring the polarization
of the CMB allows us to ‘see’ these waves because there was nothing else present in the early
universe that had the ability to polarize radiation. The mass anisotropies had no left or right
hand orientations, meaning that gravitational waves, which propagate in a screw motion, must

have polarized the CMB (5).
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1.2 The Planck Mission

Planck, a European Space Agency satellite, was launched in May 2009 to measure CMB
anisotropies in both temperature and polarization. T he third mission of its kind after COBE
and WMAP, Planck is designed to collect data with improved sensitivity and angular resolution
to create the most accurate CMB maps to date. New implications for cosmological science

include (1):

Improved test of early Universe models

Accurate estimates of cosmological parameters
e Test of non-Gaussianity in CMB fluctuations
e New secondary science probes (eg. lensing, dark energy)

e Measurements of polarization power spectra

Early polarization measurements of the CMB have been consistent with the predicted level,
supporting the case for adiabatic perturbations in the decoupling era of cosmology as well as
reinforcing inflation. However, current CMB polarization data does not begin to match the
certainty of the temperature data. For example, WMAP has an angular resolution of 14 arcmin
while Planck has a resolution of 5 arcmin, and while WMAP had only five frequency channels,
Planck is able to measure in nine. This makes the addition of Planck data exceptionally valuable
to early universe cosmology, with the first possibility of measuring B-mode polarization (2).

Knowledge of the Galactic foreground is invaluable to CMB scientists. The higher the
accuracy of the foreground determination, the higher the accuracy of the CMB measurement
itself. At 50 GHz, Planck is equipped with an onboard foreground detector which is capable
of 3 arcmin resolution. For the purpose of foreground study, a group of Canadian scientists,
using the Dominion Radio Astrophysical Observatory, launched the DRAO Planck deep fields
(DPDF) project in preparation for the Planck mission. This foreground study, which uses data
with one arcminute resolution, is the main goal of this project, with the intention of aiding
Planck in increasing the accuracy of its polarization measurements.

Full details of Planck construction and measurement capabilities in polarization can be found

in the Planck primer (1).
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1.3 The ELAIS-N1 Deep Field Survey

The European Large Area ISO Survey N1 (ELAIS-N1) deep field is a window into the extra-
galactic universe, containing very low amounts of Galactic emission (6). The field is located
at 50 degrees Galactic latitude and 80 degrees Galactic longitude. A Survey of this field was
carried out by the Dominion Radio Astrophysical Observatory (DRAQO) synthesis telescope in
1420MHz HI, total intensity, and Stokes Q and U. The deep field consist of 40 fields (30 of
which are considered for this project) which are spaced very close together and observed for

long integration times, providing high sensitivity for a small region of sky.

Figure 1.1: ELAIS-N1 - Field location upper right in relation to the Canadian Galactic Plane
Survey and the Planck Deep Field (upper left). (7)

Its low level diffuse foreground makes it ideal for observing the extragalactic Universe. For
this reason, this region will be analyzed for cosmological purposes, including the most accurate
measurement of the Cosmic Background Radiation Field which is to be carried out by the
Planck project. Although this field is considered to be relatively empty, there does exist some
low level diffuse emission in the field. Planck, which intends to look through this window to
map the CMB, must have knowledge of the location and intensity of this diffuse emission in

order to accurately measure CMB anisotropies.
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1.4 Polarization

Radio emission is measured by a telescope as an electric field E. This electric field can be ob-
served using Stokes parameters in different polarization and intensities. The Stokes parameters

are given as follows (8):

I=E?+E? (1.1)
Q= Ef - E} (1.2)
U = 2F; Eycosf (1.3)
V = 2E, Eysinf (1.4)

Restrictions in bandwidth mean we are not necessarily measuring radiation that is 100%

polarized. This is because Stokes parameters are defined in terms of mean quantities, therefore,

I?>Q*+U?+Vv? (1.5)

These equations describe monochromatic radiation where E; and FEs are the amplitudes of
field components E; and E, and § = 6, — 6, is the phase offset between E, and E, . These
vectors can describe both circular and linear polarization. Circular polarization occurs when
E1 = E, 6 =% and U = Q = 0. Linear polarization occurs when V = 0 and E; # E», which
shows that E is oscillating with time. As it does so it traces out an ellipse on the xy-plane.

This is elliptical polarization. Linear polarized intensity is described by,

Pl =+/Q2+U? (1.6)
with fraction of polarization given by,

Yeau a

I
Angle of polarization is measured from North towards East on the sky and is given by,

1
P = §tan_1§

Synthesis telescope antennas cannot directly detect Stokes parameters. Instead the synthesis

(1.8)

telescope receives both hands, R and L, of circular polarization. Stokes parameters in terms of

these quantities are

_RR+LL
S

I (1.9)
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_RL+LR

Q . (1.10)
U= 3@——}—2—2_—52 (1.11)

More detailed information can be found in Rohlfs and Wilson, Tools of Radio Astronomy,
Chapter 3.

1.5 The DRAO Synthesis Telescope

The DRAO synthesis telescope is a seven element antenna array. The parabolic reflector anten-
nas make up an east-west interferometer with a maximum baseline of 617.18m and a minimum
baseline of 12.86m. A synthesis telescope with only seven elements cannot take a complete
sample of the uv-plane in one synthesis, and therefore, in order to maximize the telescopes
sampling, the array consists of four stationary antennas (1,5,6,7) and three antennas (2, 3, 4)
which move along a rail track. Two of the antennas (1,7) have a diameter of 9.14m while the

remaining 5 (2, 3, 4, 5, 6) have a diameter of 8.53m (9).

West Antenna Number Fast

1 2 3 4 5 6 7

KARK~NK = =W X
stz

| 72 36 ‘ 36 |

Figure 1.2: The DRAO synthesis array - The figure shows the seven element interferometer
configuration displayed on the lower axis with baselines in units of L=4.286m. Displayed on the
upper axis, s, is the spacing number for a particular antenna pair. (9)

The telescope observes atomic hydrogen emission using the 21-cm HI spectral line and

continuum with two bands centred at 408MHz and 1420MHz in four sub-bands as shown in
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figure 1.3. The 1420MHz band, which observes in Stokes I, Q and U is the one being considered
for this project. The total field of view of this band is 2.65 degrees.

Allocated Radio Astronomy Band |
]

Frequency, MHz 1427.0

1406.65 1414.15 ! 1426.65 1434.15

12.5 20.0 27.5 32.5 40.0 47.5
30.0

Intermediate Frequency, MHz

Figure 1.3: Frequency bands - Frequency sub-bands of the DRAO synthesis array. (9)

In order to complete a full observation, a complete synthesis consists of twelve 12-hour
observations for each baseline configuration of the telescope. As in Figure 1.2, the movable
dishes are moved in increments of L=4.29m. Each synthesis maps out the uv-plane. This plane

can be Fourier transformed to obtain the spacial distribution of emission on the sky.
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1.5.1 Noise Properties of an Interferometer

As a telescope detects astronomical signal, it also picks up a certain amount of noise from
thermal origins and from electronic processes with spectra similar to thermal spectra. This is
a common form of additive noise that manifests itself as the system temperature of a radio

telescope. The contributions to system temperature are:

e Receiver noise- The 1420MHz receiver under consideration has a sensitivity which is
primarily determined by a low-noise amplifier, having a noise temperature of Tr = 35K,
or 18K < Tr < 38K and (Tr)=33.4K for 16 amplifiers built.

¢ Ground noise- Antenna sidelobes detect spillover and scattering from ground. For the
DRAO synthesis telescope this occurs at 3K-8K depending on the antenna being consid-

ered.

e Atmospheric emission- Radio spectrum contribution from the atmosphere. At 1420MHz

this contributes 2K at the zenith and 3K at a zenith angle of 45 degrees.

e Cosmic Microwave Background- Low level background contributor to noise which

contributes 2.7K.

e Galactic emission- Additional background noise contribution from our own Galaxy

which typically contributes 0.5K-1.5K to the overall system temperature.

All of these contributors present themselves in the images we observe as the r.m.s. noise:

_ W2k T
NenAAV NeNIpAfr

Where W is a weighting factor applied during imaging, k is the Boltzmann constant, 7, is

AS (1.13)

the correlator efficiency, 74 is the aperture efficiency of the array, which when multiplied by the
collecting area A which gives the effective area A., Ny is the number of baselines, Nyr is the
number of IF channels with bandwidh Af (Hz), 7 is the integration time and T is the system
temperature (K). This temperature is characterized for the DRAO synthesis telescope by the
technique described in the next chapter.

The goal of this work is to determine if we are able to reliably detect diffuse Galactic emission
in the foreground of the ELAIS-N1 field. This emission is of such low intensity that it can be
difficult to distinguish from the system temperature noise of the DRAO synthesis telescope,
making it necessary to characterize the system temperature, a secondary goal of this project.

The following chapters describe:
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How genetic algorithms are used to derive the system temperatures of the 7 antennas of
the DRAO interferometer (Chapter 2).

Error analysis of synthesis telescope observations of the ELAIS-N1 field (Chapter 2).
How synthetic images are made from derived system temperatures (Chapter 2).
Temperature results for 30 ELAIS-N1 fields in Stokes Q and U (Chapter 3).

Power spectra of Mosaics of ELAIS-N1 data vs. synthetic data in Stokes Q and U (Chapter
3).

Other applications of the software used and how it is relevant to industry and other

branches of astronomy (Chapter 4)
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Techniques

The ELAIS-N1 field is an ideal region through which to view the universe beyond our Galaxy.
However, despite its low column density, there still exists some low level emission in the field.
This signal is of such a low intensity that it is difficult to distinguish from the system noise of the
synthesis telescope. If the signal were of higher intensity, we could simply apply conventional
imaging techniques to analyze the field, however, the signal is so weak that new methods must be
used to determine what the noise looks like. To separate this weak signal most effectively from
the noise, a new technique has been developed to characterize the noise of an interferometer.
Once this noise is characterized, it will be possible to differentiate real astronomical signal from
what is created by the telescope.

This chapter describes the analytic technique that was developed to complete this task, a
genetic algorithm based model interferometer. Also described are the error analysis techniques

as well as details of the data used in this analysis.

2.1 Aperture Synthesis

In radio astronomy, resolution is limited by the extent of a telescope. The larger the physical
size, the higher the angular resolution of the image. This means that we are limited by our
inability to create larger telescopes. The solution to this problem is the technique of aperture
synthesis.

In aperture synthesis, several telescopes are used to simulate a large collecting area. This

array of telescopes measures the spatial coherence function (8):

—2iruS(r1-T5)
Viry,ra) = [ Ie c aQ (2.1)

11
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Figure 2.1: The DRAO synthesis telescope - The DRAO telescope which uses aperture Syn-
thesis to simulate a large effective area. (7)

where [is the specific intensity and r; —r; is the spherical separation vector. This separation
vector, known as a baseline, represents the separation of two antennas in the array. The function,
Vir,,r,), known as the visibility, is measured by correlator output of individual interferometers
(pairs of antennas). The visibilities are written on to the uv-plane where u and v are rectangular
coordinates that project in a plane. Dominance of data in short spacing suggest broad structure,
while higher data levels in long spacing suggest fine detail.

As the Earth rotates beneath a synthesis telescope, the antennas map out the uv-plane, a
Fourier space which can be transformed to create the image of a field. The number of data points
collected by the array during an observation determines the completeness of an image. This
effect is shown in figure 2.2, which compares the uv-plane and image plane for an observation
of a supernova remnant.

Similar to the way signal is distributed across a baseline, the system temperature noise is as
well. Each antenna is equipped with two receivers, one for each hand of circular polarization.
These receivers are not identical, so each contributes a different noise level to the visibility data.
A consequence of this is that the noise is not distributed uniformly throughout the uv-plane,
making the noise from each antenna difficult to disentangle. This is evident in the visibility plane
images that will be shown in sections 3.8 and 3.9. Each plateau represents the temperature of

a particular pair and it is clear from the figures that they are not equal. There is no analytical
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way to derive the system temperature noise of each of the DRAO antennas, therefore, a model
must be created which can characterize the noise generated by an interferometer. To arrive at
a set of system temperatures, we can compare the noise generated by a model, to the measured

noise which occurs from the antenna pairs.

2.2 Genetic Algorithms

In this project a genetic algorithm is used to derive system temperatures for the synthesis tele-
scope. Genetic algorithms are a form of evolutionary computing inspired by biological paradigms
such as natural selection and genetic variation. These methods are used to evolve a population
of solutions and optimize a large number of parameters. These types of algorithms are ideal for
searching through computational problems with a large number of possible solutions, which are
typically found in science and engineering (10).

Genetic algorithms rely on three types of operators :

o Selection - gives preference to individuals with good fitness. Fitter individuals are more

likely to be selected to reproduce.

e Crossover - chooses two individuals which are exchanged. This offspring is then intro-
duced into the population. Crossover can take two good individuals and create a better

individual.

e Mutation - In most GA’s this is done by randomly flipping some of the bits of an individ-
ual. In Ferret, discussed in the next section, this is done with real number representations.
This occurs with a very low probability but ensures diversity in the population. Muta-
tion promotes random searches throughout the parameter space preventing premature

convergence.

These operators are common in most genetic algorithms, however, basic to a genetic algo-
rithm is an operator that combines solutions, taking two parents solutions and creating children
with similar properties, and a mutation operator which introduces a random kick to the system.
A common application of genetic algorithms, and the one applied in this case, is optimization.
In the case of this problem the objective is to obtain the most favorable set of solutions by

finding the global minimum of some fitness value.
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Figure 2.2: This image shows the uv-plane and image plane for various stages of synthesis. From
the top going right, these represent images after lhour, 4 hours, 10 hours, 12 hours, 4 days, 8 days,
10 days and 12 days. These images are of a super nova remnant and were created by Roland Kothes,
DRAO.
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2.3 Ferret

Ferret, an advanced genetic algorithm, written by Dr. Jason Fiege, can efficiently solve difficult
optimization problems with many parameters. Ferret extends the basic genetic algorithm by
identifying non-linearities in the search space and using this information to divide large problems
into several small ones that can be solved more easily(3).

Ferret has the ability to stretch beyond the capability of most traditional genetic algo-
rithms because of improvements built into the code. These include but are not limited to
eMulti-objective search and parameter space mapping eSimple handling of discrete and cyclic
parameters eAutomatic zooming eCritical Parameter Detection eLinkage-Learning eAdvanced
Lethal Suppression eStrategy Auto-Adaptation ePausing, stopping, and resuming runs eAnal-
ysis and integration of polishers and eIntegrated visualization (3). The Ferret environment is

shown in Figure 2.3.
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Figure 2.3: Ferret environment - The figure shows the Ferret window during a run. Top left :
Evaluation statistics: Number of individuals and average fitness value is shown for each generation.
Top right : Optimal fitness bounds, maximum and minimum, throughout the run. Bottom left :
Distribution of parameters, in this case 77 and T3, in 2-D. Bottom Right :User plot showing the
fit between DRAO visibility data and modeled visibility data.

Ferret is able to return a family of solutions within ¢ of the minimum. In this case ¢ refers
to a tolerance set by the user for a particular problem. For this model, Ferret returns solutions
within one of the minimum. These solutions map out a surface in the parameter space that
displays the confidence of our minimized parameters (3). Figure 2.4 shows an ellipse-like surface

representing the possible solutions while optimizing antenna temperature for ELAIS-N1-7 in

15



2. TECHNIQUES

Stokes Q.

2.4 Data

The DRAO synthesis telescope, shown in figure 2.1, observes in ninety second intervals over
twelve hours for each of its configurations. Each field is observed for 12 hours in each of 12
telescope configurations for a total observing time of 144 hours. The deep field data used for
this project includes 30 deep fields which are located near a=16h 11m, §=55d.

The data used for the model is polarization data in the visibility plane. In order to prepare
the data for the fitting process, the visibility data for a complete field is sorted by baseline and
averaged over the 12 hour observing time. This process is done by the program srtavg written
by Andrew Gray, DRAO (11). Data sorted in this way can be fit to equation 2.2. It is an

ordered representation of quantities read directly from an antenna.

2.5 Detecting Foregrounds

In order to determine whether a significant signal is detected, it will need to be compared to
the signal of the system noise. The most effective way of doing this is by analyzing the power
spectrum of both of these quantities. A power spectrum is a measure of power against spectral
frequency. Power spectra will be created for each of the individual fields as well as the lower
noise central region of the complete image mosaic.

In order to create a power spectrum, an image must first be transformed back into the
uv-plane. This will revert the image to an ellipse representing the plane of the telescope at the
declination of the field being considered. The pixel values along each track of the ellipse are
averaged for a complete synthesis, and sorted in order of spacing. The power spectra of data

vs. noise will show us where the real signal in the field lies.

2.5.1 Deriving System Temperature

Pure noise from the synthesis telescope is approximated by subtracting bands A and B of the
DRAQO interferometer, which have frequency 1406.65 MHz and 1414.15 MHz. These adjacent
bands are close enough in frequency that subtracting them removes practically all astronomical
signal, leaving only signal produced by the system temperature of the telescope. The variance,

o2 of a particular baseline 4,7 can be described by:

> i 9 1T
> imj 9is

o?=
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2.5 Detecting Foregrounds

where T; is the system temperature of the i** antenna, T} is the system temperature of the
4t antenna, and 9i; is the redundancy (how many times a spacing is measured in a complete
observation) of the antenna pair i, j. It is this equation that is used in our code to derive
antenna temperature. The basis of the code is fitting the equation to pure noise visibility data
using Ferret in order to derive the seven temperature parameters. After completing the number
of generations specified by the output file (for the case of this project 200, or typically 150
past convergence), Ferret returns a seven parameter solution which is equivalent to the system
temperatures of the seven antennas.

The software for this project is written in Matlab. A detailed description of the code can
be found in the last section of this chapter and the software can be found in its entirety in the

appendix.
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Figure 2.4: Left: Analysis window of solution surface returned by Ferret. This surface is produced
after 100 generations. Right: Histogram of the 480 band A minus band B data points that are
averaged into one baseline. The distribution suggests standard gaussian error analysis cannot be
applied. The temperature values differ from the final results by an arbitrary factor of approximately
2.

2.5.2 Bootstrap Monte Carlo Method

As is shown in figure 2.4, the data that are averaged to one visibility data point are not visually
gaussian. This distribution is common to all data sets which make up the visibility plot being
considered as the fit for our model. This means that in order to properly analyze the errors in

our data and results, a method independent of distribution must be used.

17



2. TECHNIQUES

For unknown distributions, the bootstrap method is a good estimator of errors. This method
uses the data set being considered to generate a new, synthetic data set with any number of
points. That is, considering some data set, D; which contains N data points, we can obtain any
number n data sets D1, Ds ... D, from the original set.This is possible because replacement
is allowed, therefore returning a resampling of the original data set with a random fraction of

data points, on which we can carry out commonly known error analysis techniques and statistics
(12).

2.5.3 Noise Characterization in Short Spacings

It is common for interferometric data to be unusable at short spacings. These spacings contain
large amounts of noise because of the proximity of the telescopes that make up these baselines.
Though it is not really known, it is suspected that these antennas “talk” to each other and
create greater noise because they detect spillover from each others sidelobes and share common

ground noise. This effect is shown in figure 2.5.
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Figure 2.5: Noise at Short Spacings - Visibility data for EN08 Stokes Q, in which we can see
a large spike in the signal at short spacings.

The figure shows a large spike at short spacings which contain information about the broad
structure in the sky. Often, in order to compensate for this unusable data, single dish obser-
vations are used to supplement the synthesis telescope data because of their ability to resolve
broad structure.

For the purposes of this experiment, these short spacings have been removed. Because of

the robust genetic algorithm technique being used, very little information is lost due to this
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2.5 Detecting Foregrounds

removal, when deriving system temperature.

2.5.4 Mosaics

In order to achieve a high sensitivity level, the 30 fields of the ELAIS-N1 deep field are observed
close together. A technique designed to increase sensitivity is producing a tiled image of the total
field called a Mosaic. This mosaic is created by averaging data from each field and weighting
that value by a value that is determined by distance from the field centre. The weighting factor

is given as (13):

Wiy = (ét(j-pml)y (2.3)

Where A is the primary beam attenuation, p,, is the offset of the pixel in field m, and o,

is the rms noise level at the centre of the field. The rms noise in the final mosaic is (13):

N =z
o= <Z wm> (2.4)
m=1

The centre of the mosaic is close to the centre of several fields, meaning that this area of
the mosaic has the least noise.
Note: Polarization images and data mosaics of the ELAIS-N1 field were processed by Julie

Grant, University of Calgary.

2.5.5 Creating Images

When an image plane is created by Fourier transforming the simulated visibility data, it needs
to be output into a readable format in order for a mosaic to be created. The MATLAB package
mfitsio (14), which contains a fits writing package, is used to create fits files of each of the
individual fields. These fits files, are then converted into madr format so that a mosaic can be
made using the DRAO supertile routine. The output of supertile is a 1024x1024 Mosaic image.
This process is done on the synthetic system temperature data. The mosaics of the entire
30 ELAIS-N1 fields which are used for comparison were created by Julie Grant, University of
Calgary. For more information see “Compact Polarized Radio Sources in the ELAIS-N1 Field”

2.5.6 Mosaic Analysis

In order to get an idea of what type of noise is present in a large portion of the sky, the mosaic
of both the synthetic system temperature field and the ELAIS-N1 field are compared in both

Stokes QQ and U. For this purpose, point sources are removed from the real data mosaics so that
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the signal we are left with is mainly diffuse structure. This can only done for either positive or
negative point sources at a time, so, four different mosaics have been considered for this project.

During the mosaicing process, images are tiled in order to reduce the noise level in the field
centre. The best data from which to take a power spectrum would be near the image centre
and not the sides of the mosaic (which are much noisier than the centre.) Therefore, a section
of the image centre is transformed into the uv-plane, and a power spectrum is taken along this
plane. This allows us to determine if there is any detectable diffuse emission in the centre of

the field. The results of these processes are shown in the following section.

2.6 Creating and Analyzing Images

In this section, the software which was developed throughout the course of this project is
described in detail. The previous sections of this chapter are intended to provide information
which makes the scientific processes in the code understandable. This section is supplemented

by the Appendix which contains a printed version of code with comments.

2.7 Software Outline

The following description of the software written for this project follows the actual code shown
in the Appendix. This description will explain initial setup files, the fitting process, and any

post processing done to the results.

2.7.1 Initial Setup: init_AllFields.m, DRAO_Constants.m, and CalcVisData.m

init_AllFields.m is an initial program which loads all the data files that are required for cal-
culating visibility data for the the model. This program also calls DRAO_constants.m, which
contains all of the constants relevant to the DRAO synthesis telescope and its observation of
the ELAIS-N1 fields considered for this project. Also contained in this file is the information
about the redundancies of each baseline, and which antennas make up particular baselines. This
information is used to create a synthetic visibility plane and to properly assign a temperature
to each pair, so that the individual temperatures can be extracted by the model.

After loading the data and constants, the visibility data must be prepared so it can be fit
by the model. This is done in the program CalcVisData.m by the following methods. First,
visibility data from bands A and B of the synthesis telescope are subtracted and devided by /2

to remove all astronomical signal and produce a visibility place that consists entirely of noise.

20



2.7 Software Outline

BandA — BandB
V2

Flagged data points (bad data) are removed and the visibility plane is converted into units

Response = (2.5)

Kelvin. The data must now be sorted into a usable form, so it is placed in baseline order and
the standard deviation of the 480 observations that make up a full synthesis is taken. The value
at each baseline now represents the variance of that antenna pair. The error in this baseline
value is determined by using bootstrap Monte Carlo methods on these 480 observations. This
is the type of data that we wish to fit our model to, but the problem at this stage is that we
are missing a calibration factor that is characteristic of synthesis telescopes.

This factor arises from the subtleties of the Fourier relationship between the uv-plane and
the image plane; More specifically, the fact that no uv-plane is complete unless all baselines are
present, which is not true in the case of DRAO because spacings 141, 142 and 143 are not filled
in during synthesis. Limitations in image resolution can also allow for gaps or missing pixels
in the plane. If a uv-plane is to be represented as a large image, say 1024x1024, this means
more zero value pixels than an image of size 256x256. The uv-plane translates to power on
the sky, and therefore a uv-plane which contains only noise should have the same value when
averaged as the noise of the image it creates. So, when data is taken by the telescope and is in
its unprocessed visibility form, the power lost to missing spacings is not accounted for. Because
the data being used for the fitting is unprocessed, the missing power factor must be derived by
some means before the true system temperature can be determined.

In order to derive this factor, a uv-plane is created from the visibility data. This is done
by distributing the data along an ellipse that is geometrically defined by the declination of the
field. The data is distributed along one quadrant, simulating an observation, and then that
quadrant is placed on all corners of a grid. This forms an image of the uv-plane.

The non-zero tracks on the uv-plane created should have the same standard deviation as a
noise image created by subtracting bands A and B in the image plane. Therefore in order to
calibrate the visibility data, a noise image is simulated by subtracting the single band image
data. The ratio of its standard deviation and the standard deviation of the created uv-plane is
the calibration factor.

The visibility data is then multiplied by the calibration factor. The short spacings are
removed to eliminate unexplainable noise spikes in the data (see section 2.5.3). The data is now

ready to be fit by the model.
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2.7.2 Fitting Process: ComputePower.m, fitness.m

In the code ComputePower.m, derivation of the antenna temperatures is carried out by allowing
the seven temperatures to be free parameters during the fitting process. A visibility plane is

modeled by use of the variance equation:

2 iz 95 LT
2 i=j 9ij

As the temperatures are varied this equation is fit to the data described in the previous

Varmodel = (2.6)

section. The model is fit to the data using the Ferret genetic algorithm and reduced in fitness.m

using reduced x2 equation:

2
model

o2ngny

2
2 _ Var —Varg,..

(2.7)

X

Where Varpege is the variance value evaluated by Ferret, Vargg, is the variance value of
the data, o is the error in the data, ng is the number of data points and np is the number of
parameters. For this problem, Ferret was run for 100 generations for each field in Stokes Q and
U polarizations. The outputs are a surface of possible solutions, and a plot of the model to

data. These are shown for each field in the results chapter.

2.7.3 Post Processing, makelmage.m

The post processing code takes the seven temperatures which are derived and uses them to
make a synthetic noise image. The seven temperatures are converted from Kelvin to mJy and
distributed across the uv-plane in quadrants by the same method as in 2.7.1. This uv-plane is
sampled in the same way as the DRAO interferometer. That is, each twelve hour observation
contains 480 observed data points, meaning each quadrant contains 240 sampled points per
baseline. These sampled points are placed on a uv-plane which contains random gaussian noise.
The ellipse that is created is then analyzed to show a power spectra of the synthetic temperature
data. It is important to note that, as with the DRAO synthesis telescope software, each elliptical
baseline is considered to contain the same number of points regardless of the physical length of
the track. This presents itself as the slight tapering of the power spectra at higher spacings and
can be seen in the figures presented in the next section.

The synthetic power spectrum is compared to one taken from the data. The fast fourier
transform of the image of the field is taken, and then a power spectrum is taken of the resulting
ellipse. The difference in the two spectra shows where the signal in the field is located relative

to the noise.
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2.7.3.1 Making Mosaics

A mosaic allows us to reduce the noise in an image, which is why the ultimate goal is to compare
the synthetic and real data at that level. In order to create a mosaic of the synthetic data, the
uv-plane which is created purely from derived temperatures is fast fourier transformed to create
an image that is entirely system temperature noise. These images are made in fits format
files that are turned into mosaics using DRAO software. A 256x256 section is selected from
both the synthetic and real images, and a power spectrum is taken in the same manner as in

makelmage.m. The results are shown in the next chapter.

2.8 Summary

Software, written in Matlab, uses the Ferret genetic algorithm to derive the seven system tem-
peratures of the DRAO antennas. It does so by fitting a model interferometer to visibility data
from which all signal has been removed, leaving data which contains only noise. Images are
then created from this data and a mosaic is made.

The individual field images are compared by power spectra to the real data. The same is
done for a low-noise section of the mosaics, from which either positive or negative point sources
have been removed. These power spectra show the level of noise of the synthesis telescope in
relation to the real data. From these spectra it can be deduced if there is any detectable diffuse

emission in the field.
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Results

There is no analytical way to measure the system temperature of a synthesis telescope because no
two antennas can be completely identical. This is especially true of the DRAO interferometer.
The results presented in this chapter show the derived system temperatures for the DRAO
synthesis telescope for 29 ELAIS-N1 fields in Stokes Q and U polarizations. Also included are
the power spectra for each field taken from an image created by the temperature data, and an
image of real data. It is from this image we can deduce the foreground contribution in each
field. These spectra can be found at the end of the chapter. In addition, the quality of the
Ferret results will be demonstrated in this chapter by comparing temperature and x? quantities
to those obtained using other optimizers.

For the purpose of this experiment, the visibility data for ENO1 was not complete enough
to be fit by the software within confidence. Because ENO1 lays on the outside of the ELAIS-N1
field, it will not be present in the final power spectrum (which only includes a mosaic of the
field centre), and therefore will not impact the final result.

Mosaics of the system temperature noise for Stokes Q and U are presented, as well as a
power spectrum of this mosaic vs. the ELAIS-N1 mosaics.

While optimizing system temperature, Ferret outputs an error surface representing all pos-
sible solutions within one of the optimal, as well as a user plot which has been specified to show

the fit between the model and data. These plots are included at the end of this chapter.

3.1 Ferret System Temperature Results
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Field Name Antenna Temperatures (K) Chi-squared
ENO02 76.41, 61.78, 50.91, 52.00, 97.95, 80.11, 57.58 2.98
ENO3 73.91, 59.39, 48.20, 49.79, 89.98, 74.08, 55.21 2.51
EN04 56.68, 53.40, 47.02, 49.29, 80.76, 64.97, 45.98 8.54
ENO05 64.18, 47.49, 43.33, 44.23, 86.57, 69.25, 49.41 2.69
ENO06 67.63, 49.21, 45.62, 45.78, 89.01, 75.78, 51.43 1.90
ENO7 65.99, 57.17, 47.24, 47.99, 85.67, 69.40, 48.66 2.40
ENO08 76.52, 58.75, 48.66, 50.32, 98.22, 78.75, 57.70 2.59
ENO09 64.69, 49.29, 42.28, 46.55, 84.93, 66.18, 48.24 2.11
EN10 62.24, 54.19, 48.42, 51.17, 76.68, 59.94, 44.30 2.30
EN11 67.20, 52.92, 43.05, 43.32, 90.04, 72.99, 51.52 1.83
EN12 65.35, 55.02, 43.83, 43.69, 86.99, 70.43, 49.75 1.34
EN13 61.42, 50.25, 42.89, 45.42, 80.04, 61.73, 44.86 1.89
EN14 54.26, 56.94, 44.39, 45.00, 71.05, 57.08, 41.52 2.27
EN15 56.81, 54.36, 42.41, 42.92, 74.43, 59.93, 43.39 2.33
EN16 78.46, 53.38, 45.09, 44.96, 96.55, 78.13, 59.02 2.38
EN17 65.27, 58.68, 48.87, 50.95, 84.10, 69.60, 50.41 2.09
EN18 62.50, 52.80, 46.81, 47.63, 76.93, 63.50, 45.37 2.46
EN19 58.28, 52.07, 45.05, 48.05, 72.81, 58.51, 43.28 2.80
EN20 59.69, 51.38, 44.59, 45.84, 76.27, 60.35, 45.03 2.42
EN21 59.90, 56.17, 43.01, 43.63, 76.71, 60.91, 44.74 1.58
EN22 62.68, 50.31, 44.91, 45.31, 84.85, 68.45, 47.98 2.07
EN23 60.47, 54.52, 48.29, 49.65, 74.00, 59.10, 44.16, 3.00
EN24 62.46, 53.99, 47.33, 48.32, 78.59, 63.06, 47.66 3.81
EN25 60.09, 52.94, 44.28, 45.92, 79.10, 63.81, 46.45 2.77
EN26 68.35, 50.92, 39.63, 39.79, 88.26, 68.22, 51.34 1.73
EN27 64.64, 49.79, 43.67, 44.86, 84.43, 65.89, 47.82 2.50
EN28 66.47, 50.52, 43.71, 45.13, 85.25, 66.47, 48.55 4.72
EN29 65.57, 58.58, 45.99, 45.69, 83.71, 65.44, 49.24 2.04
EN30 59.04, 69.15, 54.83, 54.89, 77.50, 63.52, 44.42 1.59

Table 3.1: Temperature and fitness values obtained by using the Ferret genetic algorithm, Stokes
Q. The temperatures are shown to vary from field to field as the factors which contribute to system
temperature are not constant between observations. There are also randomizations present in genetic
algorithms that can contribute to small differences between runs.
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Field Name Antenna Temperatures (K) Chi-squared
ENO2 78.71, 59.11, 49.18, 49.96, 100.00, 83.03, 58.91 2.30
ENO3 73.28, 60.08, 49.46, 51.70, 91.86, 72.50, 54.47 2.50
ENO04 57.12, 34.72, 47.43, 49.51, 78.60, 63.75, 45.10 9.01
ENO05 66.99, 44.56, 42.08, 41.41, 93.85, 73.81, 51.99 2.81
ENO06 64.77, 50.66, 47.51, 46.97, 85.16, 74.10, 49.68 2.69
ENO7 67.69, 55.96, 46.32, 47.07, 87.66, 71.29, 50.06 2.49
ENO08 70.70, 63.99, 52.73, 54.59, 90.00, 72.87, 53.42 2.63
EN09 67.91, 46.47, 40.12, 42.16, 91.47, 69.98, 50.53 1.86
EN10 63.44, 53.03, 46.18, 49.05, 78.75, 63.15, 46.20 2.40
EN11 66.76, 52.48, 42.60, 42.66, 89.99, 73.51, 51.47 1.57
EN12 63.95, 57.55, 45.68, 44.44, 84.28, 68.83, 48.40 2.10
EN13 64.22, 46.34, 40.45, 41.81, 85.88, 67.07, 49.48 1.69
EN14 64.61, 47.34, 41.44, 43.68, 86.06, 68.74, 51.23 5.77
EN15 65.18, 48.41, 37.36, 38.82, 85.83, 67.33, 49.04 1.99
EN16 80.14, 52.89, 44.65, 44.44, 98.49, 79.50, 59.97 2.39
EN17 64.14, 59.17, 49.27, 51.49, 82.89, 68.71, 49.75 2.15
EN18 63.68, 51.55, 45.78, 46.60, 78.59, 65.14, 46.31 2.45
EN19 57.08, 55.06, 46.39, 49.99, 69.71, 57.78, 42.53 3.99
EN20 64.84, 48.89, 41.53, 43.64, 80.32, 65.20, 48.49 2.36
EN21 60.25, 54.61, 43.01, 43.49, 77.12, 61.12, 45.28 1.87
EN22 62.97, 49.42, 43.43, 44.59, 86.36, 69.77, 48.95 1.60
EN23 57.27, 56.74, 50.74, 51.95, 71.39, 56.42, 42.61 2.56
EN24 67.51, 49.63, 42.83, 44.26, 85.11, 70.39, 53.13 3.01
EN25 66.20, 47.53, 40.70, 41.61, 86.32, 70.37, 51.80 3.01
EN26 66.59, 52.13, 41.34, 41.23, 84.21, 67.71, 50.27 2.01
EN27 62.05, 50.43, 44.47, 46.34, 82.24, 64.09, 47.34 2.20
EN28 69.77, 47.50, 41.59, 43.03, 92.01, 70.85, 51.46 3.18
EN29 66.85, 56.80, 44.51, 44.48, 86.70, 67.63, 51.34 2.20
EN30 67.36, 59.48, 48.21, 47.67, 89.88, 72.64, 51.46 1.92

Table 3.2: Temperature and fitness values obtained by using the Ferret genetic algorithm, Stokes
U.
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3.2 Mosaics

Shown in this section are the Mosaics created from images synthesized using the system tem-
perature derived, which are shown in the previous section. A power spectrum of the centre
256x256 pixels is then taken and compared to the same section of the real data mosaic, which

was created by Julie Grant. Those power spectra are also presented here.
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Figure 3.1: Stokes Q synthesized mosaic
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Stokes Q Power Spectrum, Positive Point Sources Removed
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Figure 3.4: Stokes Q power spectra where the spectrum of the real data has positive point sources
removed. Note the red line is the data mosaic and the blue line is the synthetic mosaic.
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Stokes Q Power Spectrum, Negative Point Sources Removed
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Stokes U Power Spectrum, Positive Point Sources Removed
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Figure 3.9: Stokes U power spectra where the spectrum of the real data has positive point sources
removed. Note the red line is the data mosaic and the blue line is the synthetic mosaic.
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Stokes U Power Spectrum, Negative Point Sources Removed
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Figure 3.10: Stokes U power spectra where the spectrum of the real data has negative point
sources removed. Note the red line is the data mosaic and the blue line is the synthetic mosaic.
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3.3 Validation of Technique: Trials with other Optimizers

3.3 Validation of Technique: Trials with other Optimizers

The Qubist package includes other optimizers which could be effective in solving the seven-
parameter problem which is presented. To demonstrate the robust nature of genetic algorithms,
the problem was approached with the other optimizers available. Results from the other opti-
mizers in the package are compared to those of Ferret in the following sections.

Details about the type of optimizer used as well as the features of the optimizers in the
Qubist package will be discussed. A more detailed description of the package and its contents

can be found in the Qubist user guide (3).

3.3.1 Locust

Particle swarm optimizers (PSO) are based on swarm intelligence and the social behavior of
flocking birds or schools of fish. Like a genetic algorithm, PSOs begin with a population of
random solutions and search a space generation by generation, however in a PSO potential

solutions swarm the space as particles and find the best solution by (15):

o Keeping track of the position of the best solution a particle has achieved in the solution

space.
e Knowing the best solution found in the particles neighborhood.

e Keeping track of the best solution that any particle in the solution space has achieved so

far.

Locust is a PSO in the Qubist package which is capable of solving multi-objective problems.
While not as sophisticated as Ferret, it serves as one of the primary optimizers in the package,
and is able to obtain solutions for this problem which are nearly, or as good, as those produced
by ferret. These results are displayed in tables 3.3 and 3.4, and are done for ten fields in Stokes
Q and U.
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Field Name Antenna Temperatures (K) Chi-squared
ENO02 69.02, 68.03, 55.64, 56.85, 88.80, 72.83, 52.25 3.25
EN03 70.33, 62.29, 50.46, 52.04, 85.63, 71.60, 52.97 2.70
EN04 55.22, 54.29, 48.04, 50.04, 79.23, 64.19, 45.66 8.46
ENO5 63.71, 48.20, 43.73, 44.52, 85.49, 68.76, 49.34 2.76
ENO06 61.70, 54.01, 49.96, 50.49, 82.23, 69.39, 46.26 2.11
ENO7 67.27, 56.07, 46.20, 46.79, 86.88, 71.41, 49.82 2.48
ENOS8 70.14, 63.46, 52.52, 54.26, 89.94, 72.53, 52.93 2.63
ENO09 61.77, 51.80, 44.51, 48.79, 80.41, 62.32, 45.96 2.27
EN10 66.85, 50.57, 45.045, 47.78, 83.68, 65.12, 47.96 2.53
EN11 63.10, 56.01, 45.19, 45.72, 84.75, 68.47, 48.46 1.94

Table 3.3: Locust System Temperature Results: Stokes Q - Temperature and fitness values
obtained by using the Locust optimizer.

Field Name Antenna Temperatures (K) Chi-squared
ENO02 71.86, 65.20, 53.66, 54.56, 89.50, 75.43, 53.55 2.61
ENO03 66.31, 65.98, 54.59, 56.76, 81.82, 65.80, 49.22 2.64
EN0O4 57.45, 53.92, 46.82, 47.93, 79.97, 65.45, 45.42 8.81
ENO5 62.82, 47.77, 45.20, 43.79, 83.80, 68.83, 48.64 2.79
ENO06 62.17, 53.20, 49.21, 48.80, 81.68, 70.89, 47.48 2.57
ENQ7 64.09, 58.77, 48.39, 49.39, 83.70, 67.63, 47.61 2.53
ENO08 71.25, 63.64, 52.48, 54.44, 89.99, 73.56, 53.22 2.64
ENO09 61.39, 51.73, 44.69, 47.04, 80.93, 62.89, 45.84 2.06
EN10 68.86, 49.00, 42.41, 45.06, 86.10, 68.76, 50.07 2.54
EN11 66.02, 52.84, 43.21, 43.05, 89.14, 72.61, 51.29 1.52

Table 3.4: Locust: Stokes U - Temperature and fitness values obtained by using the Locust

optimizer.
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3.3 Validation of Technique: Trials with other Optimizers

3.3.2 Anvil and SAMOSA

Anvil, which is also a multi-objective optimizer, is a simulating annealing (SA) code. Simulated
annealing is based on annealing in metallurgy, in which the cooling of metal is slow to minimize
lattice imperfections. In the code, particles are at a high energy and as they ‘cool’ they are able
to search the space for a global solution.

SAMOSA or “Simple Approach to a Multi-Objective Simplex Algorithm” is based on a
Nelder-Mead simplex algorithm. In these types of algorithms, a simplex, or polygon which has
n+1 sides searches n dimensions by contorting itself throughout the search space. SAMOSA’s
advantage is it’s speed. It is mainly used as a polisher for Ferret and Locust.

The Anvil and SAMOSA optimizes were used to derive system temperatures for ten EN
fields in Stokes U. While they don’t produce results with as favorable a y?value as Ferret or

Locust, which are more suited to this type of problem, they do produce reasonable results (3).
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Figure 3.11: Left: The Locust optimizer environment. Right: The Anvil optimizer environment.
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Field Name Antenna Temperatures (K) Chi-squared
ENO2 67.52, 66.63, 56.87, 57.54, 87.81, 71.43, 50.43 2.59
ENO03 68.67, 63.28, 52.82, 55.06, 84.31, 67.95, 50.60 2.48
EN04 40.26, 76.87, 65.70, 66.87, 56.13, 47.09, 32.02 11.26
ENO05 44.71, 66.68, 62.66, 63.17, 61.49, 49.34, 33.90 4.15
EN06 51.36, 62.37, 58.88, 59.04, 68.95, 59.47, 40.54 3.15
ENO7 56.26, 66.96, 55.49, 55.64, 73.39, 59.12, 42.06 2.75
ENOS8 68.28, 66.00, 54.61, 55.76, 86.56, 70.68, 52.11 2.57
ENO09 49.41, 62.82, 54.76, 57.27, 66.10, 51.23, 37.42 2.56
EN10 52.55, 65.18, 55.93, 59.47, 64.38, 51.77, 38.08 2.64
EN11 45.76, 77.10, 63.08, 62.40, 62.02, 49.76, 35.29 2.47

Table 3.5: SAMOSA System Temperature Results: Stokes U - Temperature and fitness
values obtained by using the Locust optimizer.

Field Name Antenna Temperatures (K) Chi-squared
ENO2 67.25, 69.82, 57.24, 58.68, 83.97, 72.30, 49.71 2.74
ENO3 64.49, 73.44, 62.38, 62.32, 79.23, 64.18, 47.98 2.98
ENO04 51.98, 57.64, 51.26, 52.48, 71.98, 62.35, 40.43 9.78
ENO05 46.65, 66.32, 60.61, 60.80, 61.06, 51.23, 35.59 4.05
ENO06 52.33, 59.27, 54.59, 55.74, 72.95, 67.40, 42.97 3.48
ENO7 62.36, 61.52, 54.15, 52.69, 77.46, 59.78, 44.09 3.41
ENO8 60.30, 74.68, 61.91, 64.37, 75.40, 62.53, 44.39 3.05
EN09 46.78, 62.44, 56.09, 59.50, 67.64, 51.57, 36.38 3.06
EN10 59.15, 57.00, 49.34, 51.73, 76.77, 60.98, 43.78 2.61
EN11 65.55, 42.76, 33.03, 33.84, 84.98, 68.74, 49.18 2.27

Table 3.6: Anvil System Temperature Results: Stokes U - Temperature and fitness values
obtained by using the Anvil optimizer.
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3.4 Power Spectra: Stokes Q

For each ELAIS-N1 field, a power spectrum of an image created from the derived system
temperatures of that field, is compared to a spectrum of the real field. These results are

presented for this section in Stokes Q.
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Figure 3.12: Comparison of power spectra EN02-ENOQ5, Stokes Q.
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3.4 Power Spectra: Stokes Q
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3.5 Power Spectra: Stokes U

3.5 Power Spectra: Stokes U

The same power comparison of power spectra is done for Stokes U.
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3.5 Power Spectra: Stokes U
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3.6 Ferret Solution Surfaces: Stokes Q

3.6 Ferret Solution Surfaces: Stokes Q

For problems with multiple parameters, Ferret is able to output a family of solutions within a
user specified value of the optimal (in this case, one). These surfaces are mapped out generation

by generation as Ferret searches the parameter space.
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3.7 Ferret Solution Surfaces: Stokes U

3.8 Model Fitness Plots: Stokes Q
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4

Discussion

4.1 CMB Foregrounds in ELAIS-N1

From figures 3.4, 3.5, 3.9 and 3.10, which show power spectra from both the synthesized data and
the real ELAIS-N1 data, we can conclude that significant polarized emission has been detected
in all baselines in the ELAIS-N1 field. This is true for both the spectra from the individual
fields, and from the mosaics. By producing these spectra we can see that the Galactic emission
appears to be 2 to 3 times higher intensity than the noise, depending on the baseline. The
process of mosaicing has reduced the noise level significantly in both images, and thus reduced
the difference in the noise levels as well. However despite the small difference in magnitude, it
is obvious where there is signal present.

Common to the power spectra of the individual fields (section 3.4 and 3.5) and of the mosaic
(fig 3.4, 3.5, 3.9 and 3.10), is the presence of a large noise peak at short spacings. The possible
causes for this peak have been discussed in Chapter 2. While the mosaic has reduced the peak
significantly it is still obviously larger than any other signal in the spectrum. This is a difficult
area to analyze, because hidden in the high level of spurious signal, are the broadest structures
we would like to observe. The spectra also show that a large amount of the signal is being
detected at approximately 300 meters, suggesting a characteristic size of 2 arcminutes.

Now that it has been established that there is an extended structure in the this area of the
Galactic foreground two questions arise, the first, ‘what is this emission in the field?’ and the
second, ‘how can this be distinguished from the CMB?’. The fact that this emission disperses
itself throughout an image makes it difficult to analyze in the image plane, however, looking at
it in the visibility plane proves to be an efficient method for classifying the emission. Aperture

synthesis gives us an idea of the structure of the emission we are looking at.
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4.1.1 Confidence in Results

The sensitivity of these measurements, and the consequence of their analysis means that we
need to have a good handle on the accuracy of our measurements. CMB polarization is ex-
tremely sensitive to small perturbations and we need to be sure that the system temperature
measurements come with reasonable errors that will not affect the results of Planck. Consider-
ing the results presented in chapter 3, we can demonstrate our errors by considering both the
chi-squared values presented in tables 3.1 and 3.2 (which are supported by the fitness plots in
sections 3.8 and 3.9) and the solution surfaces which are presented in sections 3.6 and 3.7.

First, considering the chi-squared values, there is a visible and quantifiable correlation be-
tween chi-squared and quality of data. For example, ELAIS-N1 fields which have the highest
chi-squared are EN0O4, EN14. Looking at their visibility fits shows that these fields have partic-
ularly large errors in the data, which can be verified by the magnitude of their errors. Despite
the fitness of the model to the data appearing near-perfect, these large uncertainties in the data
mean a less reliable temperature derivation. Though, if we look at the difference in temperature
values between EN04, and EN14 with a field with a chi-squared closer to one, we see very little
variation in temperature. There is rarely a difference of more than 1.5K.

The family of solutions in section 3.6 and 3.7 show a sampling of possible solutions that exist
within the specified tolerance. This feature in Ferret maps out a range of possible solutions.
The figures show (for the first two parameters, system temperatures for antenna 1 and antenna
2) a range of solutions where most of them lie within 5K of each other, with the exception of
very few outliers. This compact surface suggests a high level of precision for our temperature
values, especially given the consistency across all fields and polarizations.

Also, in considering errors, recall that in order to optimize system temperature determi-
nation, noise peaks at short spacings were removed. Because it is somewhat uncertain where
this phenomenon comes from, it is difficult to assess how far this peak might travel down the
visibility plane. In an effort to quantify how this removal may be affecting the system tem-
perature results baselines were removed one by one and the temperatures were derived after
each removal. Figure 4.1, is a plot showing by how much each antenna (T1-T7) is affected by
each baseline removal up to 43. We see large dips in temperature when we approach an area
where a particular baseline ends. That is, for example, when all the baselines containing T1,T2
and T3 are removed, we see a drop in their temperature because they are contributing less to
the complete spectrum of data. For the results presented, baselines were not removed up to or
beyond the first major dip in the results, which occurs after removing ten baselines. For this

experiment only 8 baselines have been removed, which suggests, given the plot, an adequately
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stable data set. However, the fact that T1, T2, and T3 vary so much across this plot, suggest

that they are large contributors to the data, and thus are highly sensitive to baseline removal.
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Figure 4.1: Removing baselines - Removing baselines and optimizing system temperature
changes the values as removals get farther down the telescope line. The figure shows how the
temperature values change throughout that process. We see large variations, particularly at value
ten which corresponds to baseline 12, because this highly redundant baseline is removed. The
antenna temperatures here have been normalized to T7.

Another demonstration of confidence in our methods is table 4.1. This table shows the
variation in system temperature from one run to another. As shown, the variation in both
temperature and x? are minimal, meaning that Ferret is consistent between trials and it is not

expected that optimization errors have occurred.

4.2 Versatility of Software and Future Work

The result of this project and the methods described in the previous chapters have shown that a
method has been developed that can accurately measure the system temperature of the DRAO
synthesis telescope. Knowing system temperatures is a common endeavour of astronomers and
engineers as it provides them with both information on how efficient a telescope is and tells

them the accuracy of the data it collects. This result of this method is not only useful for
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Field Name

Antenna Temperatures (K)

Chi-squared

ENO02 trial 1 71.39, 65.36, 53.87, 55.11, 92.26, 75.39, 54.16 3.09
ENO02 trial 2 71.37, 65.49, 54.03, 55.29, 92.06, 75.11, 54.21 2.94
ENO02 trial 3 73.65, 63.32, 52.28, 53.43, 95.21, 77.51, 55.79 3.02
ENO2 trial 4  75.57, 60.05, 49.68, 50.56, 99.83, 81.80, 58.79 2.74
ENO2 trial 5 76.41, 61.78, 50.91, 52.00, 97.95, 80.11, 57.58 2.98
ENO3 trial 1 70.03, 62.91, 50.93, 52.65, 85.00, 70.17, 52.18 2.48
ENO3 trial 2 68.24, 64.11, 51.84, 53.69, 83.50, 68.98, 51.46 2.73
ENO3 trial 3 71.27, 61.52, 49.82, 51.52, 86.89, 71.60, 53.40 2.64
ENO3 trial 4  73.50, 59.32, 47.97, 49.69, 89.85, 74.11, 55.05 2.61
ENO3 trial 5 73.91, 59.39, 48.20, 49.79, 89.98, 74.08, 55.21 2.51
ENO4 trial 1 57.40, 53.24, 46.64, 48.58, 80.79, 65.29, 46.35 8.94
ENO4 trial 2 61.16, 49.87, 43.96, 45.81, 85.87, 69.71, 49.26 8.53
ENO4 trial 3 58.92, 50.78, 44.99, 46.52, 84.23, 68.19, 48.18 8.73
ENO4 trial 4  55.79, 55.76, 48.72, 51.00, 77.38, 63.10, 44.40 8.30
ENO4 trial 5 56.68, 53.40, 47.02, 49.29, 80.76, 64.97, 45.98 8.54
ENO5 trial 1 65.97, 46.19, 42.25, 42.86, 88.78, 71.02, 50.74 2.62
ENO5 trial 2 67.31, 45.49, 41.44, 42.20, 89.99, 72.57, 51.66 2.78
ENO5 trial 3 65.99, 46.47, 42.43, 42.90, 88.86, 70.85, 50.69 2.57
ENO5 trial 4  65.98, 46.74, 42.89, 43.42, 89.25, 71.42, 50.76 2.48
ENO5 trial 5  64.18, 47.49, 43.33, 44.23, 86.57, 69.25, 49.41 2.69
ENO6 trial 1  70.75, 46.87, 43.56, 43.65, 94.38, 79.31, 53.93 1.94
ENO6 trial 2 69.76, 47.39, 43.96, 44.07, 92.99, 77.92, 52.65 1.94
ENOG6 trial 3 70.68, 46.84, 43.37, 43.56, 94.70, 79.11, 53.84 2.01
ENOG trial 4 69.62, 47.53, 43.99, 44.08, 93.28, 78.28, 53.09 1.91
ENO6 trial 5 67.63, 49.21, 45.62, 45.78, 89.01, 75.78, 51.43 1.90

Table 4.1: Temperature and fitness values obtained by using the Ferret genetic algorithm for 5
trials of each of 5 fields. The results demonstrate consistency in the fitting method. Results show
are for Stokes Q.
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determining the accuracy of data collected by the DRAO synthesis telescope, but it also has

applications to other telescopes and projects.

4.2.1 Other Synthesis Telescopes

The basis of this software is a fairly simple equation, 2.2, which relates the variance of antenna
pairs. In the immediate example we are dealing with a seven-element linear array, which is
also geometrically uncomplicated. Despite being developed for the purpose of evaluating this
particular problem, the software can easily be extended to more complex situations. Most
synthesis telescopes are unique and possess different geometries and number of antennas.

For example, the addition of more telescopes to the linear array can be accomplished by
simply increasing the number of parameters sent to Ferret. This would allow us to apply the
code to other linear arrays. Changing the geometry of the telescope to something like a VLA-
style Y-shaped pattern or a log spiral, could easily be accomplished, but the change would mean
more variability per telescope (as there would be a larger number of redundant baselines in the
visibility plane) and could increase the run time. Regardless, the ability to make these changes
means that the noise temperature determination method could be applied to any synthesis

telescope, making it a very useful tool for radio astronomy.

4.2.2 DRAO Data

In addition to the ELAIS-N1 deep field, DRAO carried out another deep field survey, the
Spider deep field (named after the appearance of an infrared feature of the field). Our software
can easily be applied to the Planck field visibility data to compare noise properties to diffuse
emission. The parameters of the problem are identical so this task may be carried out as future

work, as both of the deep fields contain information useful to cosmologists.

4.2.3 Square Kilometer Array

The noise properties of an interferometer are highly dependent on its components. This means
that any change in the electronics of the telescope would manifest itself in the noise. Thanks to
this property, the software can now be used to accurately measure differences in noise contri-
bution of low noise amplifiers inexpensively and accurately. Because DRAO is now being used
as a test bed for Square Kilometer Array technology, the techniques used in this project could

be directly applicable to the future of radio astronomy.
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4.3 Conclusions and Summary

We have emerged from this research having developed a new method for characterizing the
system noise in a synthesis telescope, in particular, the DRAO interferometer. This method,
uses a model interferometer and fits its visibility output to visibility data from the ELAIS-N1
deep field survey, using the Ferret genetic algorithm. The robustness of genetic algorithms and
sophistication of Ferret have provided particularly accurate results (as represented by the chi-
squared of the fit) and a good grasp on the accuracy to which we know these temperatures, as
is shown by the solution surfaces.

Thought it was developed for the purpose of aiding cosmologist in improving the accuracy of
CMB measurements, the software is also extremely versatile and can be beneficial to other areas
of radio astronomy. It can be easily modified to include different geometries, so although this
project focused on a linear array, it would be easy to use this method on an array such as the
Very Large Array (VLA) or upcoming configurations such as the Australian Square Kilometer
Array Pathfinder (ASKAP), allowing system temperature measurements for these instruments.

At the forefront of this research is its benefit to cosmologists and in particular those using
and obtaining data with the Planck CMB satellite. The system temperatures that were derived
were used to create images of the noise they produce on the sky, and were used to show that
in the ELAIS-N1 field, there is a diffuse signal which can be detected slightly above the range
of system noise. The knowledge of this diffuse emission will allow those using the Planck data
to assess their polarization measurements in relation to the foreground in hopes of producing a
sufficiently accurate map of the CMB to obtain knowledge of the early universe that was not

previously accessible.
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Appendix

5.1 System Temperature Derivation Code

function extPar=init_TotalField(FieldNumber)

BandA=[’ENUA’, num2str(FieldNumber)];
BandB=[’ENUB’, num2str(FieldNumber)];
Al11Bands=[’ENU’, num2str(FieldNumber)];

%-~-Loading all required data files for a batch run

%=---of 30 fields

extPar.file.A=[BandA,’.dat’];

extPar.file.B=[BandB,’.dat’];

extPar.file.imgA=[BandA,’.fits’];
extPar.file.imgB=[BandB,’.fits’];
extPar.file.imgAll=[Al1Bands,’.fits’];
extPar.PlotSave=[’Spectra_EN_U’ ,num2str(FieldNumber)];
extPar.PlotTitle=...

[?Power Spectra Noise (blue) Vs. Signal (red), Stokes U, EN’,num2str(FieldNumber)];
extPar.FitsName=[’expENU’ ,num2str (FieldNumber),’.fits’];
extPar.TempName=[’Temperatures_ENU’,num2str (FieldNumber),’ .mat’];
extPar.ImageName=[’Image_ENU’ ,num2str (FieldNumber),’.mat’];
extPar.Min=[’Min’ ,num2str (FieldNumber),’.mat’];

%

extPar.K=DRAO_constants;

extPar=calcVisData(extPar);

99



5. APPENDIX

function K=DRAO_constants

%--—A11 constants relevant to the synthesis

%---telescope and ELAIS-N1 field

K.minaxis=59;
K.majaxis=73;
K.lambda=.21;
K.Jy_per_beam_to_K=1.3597834E7*K.lambda"2/K.majaxis/K.minaxis;
K.ant=1:7;

K.base=5:144;
K.NBase=length(K.base) ;
K.NAnt=length(K.ant) ;
K.NVis=480;
K.startBaseline=12;
K.lastBaseline=140;
K.emptybasedata=127:128;
K.lambda=0.21;
K.degree=pi/180;
K.arcmin=K.degree/60;
K.longestBaseline=617.18;
K.beam.a=K.arcmin;
K.beam.b=K.arcmin;
K.pixPerBeam=3;
K.radPerPix=K.beam.a/K.pixPerBeam;

K.increment=4.286;

K.baseline=K.increment*K.base;

K.dec=55%pi/180;

K.decspectra=pi/180;

K.gauss_taper=false;

K.NPix=1024;

K.ang=linspace(0,pi/2,10000);

K.NStack=10;

K.dtheta=K.arcmin/K.pixPerBeam;

K.dx=K.lambda/K.NPix/K.dtheta; % ~4.286; %Size of a UV plane pixel in m.
K.dU=K.dx/K.lambda;
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5.1 System Temperature Derivation Code

K.dV=K.dU;
K.NumberSample=100;

if mod(K.NPix,2)
K.NPix=K.NPix+1;
end

g=zeros(K.NAnt,K.NAnt,K.NBase) ;

% ;The list of antennas used for each baseline

%(without including the redundancies):

% ; Baselines: Interferometer:
% ; 3 to 14 1x 2
% ; 15 to 26 1 x3
% ; 27 to 38 1 x4
% ; 39 to 45 5x 4
% ; 46 to 57 5 x 3
% ; 58 to 69 5x 2
% ; 70 to 81 6 x 4
% ; 82 to 93 6 x 3
% ; 94 to 105 6 x 2
% ; 106 to 117 7 x 4
% ; 118 to 129 7 x 3
% ; 130 to 141 7x 2

% ; 144 7 x 1

g(1,2,3:14)=1;
g(1,3,15:26)=1;
g(1,4,27:38)=1;
g(4,5,39:45)=1;
g(3,5,46:57)=1;
g(2,5,58:69)=1;
g(4,6,70:81)=1;
g(3,6,82:93)=1;
g(2,6,94:105)=1;
g(4,7,106:117)=1;
g(3,7,118:129)=1;
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g(2,7,130:141)=1;
g(1,7,144)=1;

)
%
)
b
A
/)
/A
)
A
)
A

A

3

;: Baseline (%4.286m):

12
24
34
35
36
37
38
72
108
144

# of observations and antennas
1(1x2), 12(2x3), 12(3x4)

1(1x3),
1(1x4),
1(1x4),
1(1x4),
1(1x4),
1(1x4),
1(4x86),
1(4x7),
12(1x7)

12(2x4)

1(4x5)
1(4x5)

1(4x5), 12(5x6), 12(6x7)

1(4x5)
1(4x5)

12(5x7),12(1x5)

12(1x6)

Format: g(antl,ant2,baseline #)=redundancy

g(1,2,12)=1;
g(2,3,12)=12;
g(3,4,12)=12;

pA

g(1,3,24)=1;
g(2,4,24)=12;

A

g(1,4,34)=1;
g(4,5,34)=1;

pA

g(1,4,35)=1;
g(4,5,35)=1;

h

g(1,4,36)=1;
g(4,5,36)=1;
g(5,6,36)=12;
g(6,7,36)=12;

pA

g(1,4,37)=1;
g(4,5,37)=1;

A

g(1,4,38)=1;
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g(4,5,38)=1;

%

g(4,6,72)=1;
g(5,7,72)=12;
g(1,5,72)=12;
A
g(4,7,108)=1;
g(1,6,108)=12;
%
g(1,7,144)=12;
%

% Store g
K.g=g;

function extPar=calcVisData{(extPar)

% Calc variances.

%———-Reading binary outputs of visibilities
fid=fopen(extPar.file.A,’r’);

fidi=fopen(extPar.file.B,’r’);

databandA=fread(fid, ’float32’)/1000*extPar.K.Jy_per_beam_to_K;
databandB=fread(fidl, ’float32’)/1000*extPar.K.Jy_per_beam_ to_K;
% This is in K - NOT K~2.

%-—-—-Removing flagged data points

%----which are large and nagative (-1E38)
databandA(databandA < -1E37)=NaN;
databandB(databandB < -1E37)=NaN;

%----Subtraction of freq bands for noise
response=(databandA) - (databandB) /sqrt (2);

% N=databandA;

N=length(response) ;

M=length(databandA) ;

%--—--Data is sorted in real then complex
response=response(1:2:N-1)+sqrt(-1)*response(2:2:N);
databandA=databandA(1:2:M-1)+sqrt(-1)*databandA(2:2:M);

%----Taking an average over 90 visibilities
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%----(Variance is constant over hour angle)
extPar.baseline=1:extPar.K.lastBaseline;
extPar.sigma=NaN(1,extPar.K.lastBaseline);
extPar.sigmaErr=NaN(1,extPar.K.lastBaseline);
pA
baseline.a=(extPar.K.baseline/extPar.K.lambda)/extPar.K.dU;
baseline.b=baseline.a*sin(extPar.K.dec);
NAng=length(extPar.K.ang);
grid.sigma=[1;
for g=4:-1:1 % 4 quadrants
grid.grid.UV_noise_quadrants{q}=zeros(extPar.K.NPix/2);
end
%
for b=extPar.K.lastBaseline:-1:extPar.K.startBaseline;
j=(b-1)*extPar .K.NVis+1;
responsel=response (j:j+extPar.K.NVis-1);
responsel(isnan(responsel))=[];
extPar.sigma(b)=std(responsel); % sqrt(2) higher than std(real(TNoisel)). [K~2]
NR1=length(responsel);
databandAl=databandA(j:j+extPar.K.NVis-1);
databandAl (isnan(databandAl))=[1;
extPar.sigma(b)=std(responsel); % sqrt(2) higher than std(real(TNoisel)). [K~2]
NRi=length(responsel) ;
if “isempty(responsel)
responsel_MC=responsel(ceil (NR1*rand(extPar.K.NumberSample, NR1)));
sigmal=std(responsel_MC,0,2);
extPar.sigmaErr(b)=std(sigmal);
A
% Create an image by Monte Carlo’ing the actual distribution in
% responsel.
ix=1./sqrt(1./baseline.a(b). 2+tan(extPar.K.ang) . 2./baseline.b(b)."2);
iy=ix.*tan(extPar.K.ang);
i=max(1l,ceil(ix));
j=max(1l,ceil(iy));
for g=4:-1:1
grid.grid.UV_noise_quadrants{q}(i+extPar.K.NPix/2*j)...
=responsel(ceil (NR1*rand (1, NAng)));

end
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end
end
grid.UV_noise=[[grid.grid.UV_noise_quadrants{1}, ...
fliplr(grid.grid.UV_noise_quadrants{2})];...
flipud([grid.grid.UV_noise_quadrants{3},...
fliplr(grid.grid.UV_noise_quadrants{4})1)];

img_data=(fitsread(extPar.file.imghA)-fitsread(extPar.file.imgB))...

*1000*extPar.K.Jy_per_beam_to_K/sqrt(2);
data_std=std(img_data(:));
index=find(grid.UV_noise);
model_std=std(grid.UV_noise(index));
extPar.factor=data_std/model_std;
extPar.sigma=extPar.factor*extPar.sigma;
extPar.TEST=(grid.UV_noise)*extPar.factor;
extPar.sigmaErr=extPar.factor*extPar.sigmaErr;
extPar.sigmaErr (1:extPar.K.startBaseline)=[];
extPar.sigma(l:extPar.K.startBaseline)=[];
extPar.baseline(1l:extPar.K.startBaseline)=[];
extPar.sigmaErr(extPar .K.emptybasedata)=[];
extPar.sigma(extPar.K.emptybasedata)=[];
extPar.baseline(extPar.K.emptybasedata)=[];

function TEMP=computePower (X1, extPar)

T=X1";

% X =—> 1 column from the X matrix that Ferret receives.

Ti=repmat (T,extPar.K.NAnt,1);
Tj=Ti’;
TEMP=zeros (1,extPar.K.NBase) ;
for n=extPar.K.NBase:-1:1;
gNorm=(sum(sum(extPar.K.g(:,:,n))));
if gNorm ==
TEMP (n)=0;

else
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% Calculate the Variance
NoiseTemp=sqrt (sum(sum( extPar.K.g(:,:,n) .*Ti.*Tj ))/gNorm~2);
TEMP (n)=NoiseTemp;

end

function F=fitness(X,extPar)

%--calculate the fitness of each generation

NSol=size(X,2);

for soln=NSol:-1:1
X1=X(:,so0ln);
TEMP=computePower (X1, extPar);
F(soln)=(sum(((TEMP(:)-extPar.sigma(:))."2./extPar.sigmaErr(:)."2)))...
/(length(extPar.sigma)-length(X1));
pause(0.001);

end

function makeImage (OptimalSolutions)

[FMin, index]=min(OptimalSolutions.F);
X=OptimalSolutions.X(:,index);
extPar=0ptimalSolutions.par.user.extPar;
save (extPar.TempName, ’X’) ;
TEMP=computePower (X, extPar) ;
%TEMP=extPar.sigma;

% Do facor of 2 stuff..

% write image.
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baseline.a=(extPar.K.baseline/extPar.K.lambda)/extPar.K.dU;
baseline.b=baseline.ax*sin(extPar.K.dec);
extPar.K.ang=linspace(0,pi/2,480/2);
NAng=length(extPar.K.ang);
grid.sigma=[];
TEMP_ALL=zeros(1,length(TEMP)+extPar.K.startBaseline);
TEMP_ALL(1,extPar.K.startBaseline:length(TEMP)+extPar.K.startBaseline-1)=TEMP;
for g=4:-1:1 % 4 quadrants
grid.grid.UV_TEMP_quadrants{q}=zeros(extPar.K.NPix/2);
end
TEMP1=zeros(1,extPar.K.NVis/2*length(TEMP_ALL));
for b=1:length(TEMP_ALL);
j=(b-1)*extPar.K.NVis/2+1;
TEMP1(j: j+extPar.K.NVis/2-1)=TEMP_ALL(b);
if "isempty (TEMP1)
ix=1./sqrt(l./baseline.a(b). " 2+tan(extPar.K.ang). 2./baseline.b(b)."2);
iy=ix.*tan(extPar.K.ang);
i=max(1,ceil(ix));
j=max(1,ceil(iy));
for g=4:-1:1
index=i+extPar.K.NPix/2xj;
% normalized sampling
grid.grid.UV_TEMP_quadrants{q}(index)=TEMP_ALL(b)*ones(1,NAng) ;
end
end

end

grid.UV_TEMP=[[grid.grid.UV_TEMP_quadrants{1},fliplr(grid.grid.UV_TEMP_quadrants{2})];...
flipud([grid.grid.UV_TEMP_quadrants{3},fliplr(grid.grid.UV_TEMP_quadrants{4})]1)];

N=complex (randn(extPar.K.NPix) ,randn(extPar.K.NPix))/sqrt(2);

grid.UV_TEMP=fftshift(grid.UV_TEMP.*N/extPar.K.Jy_per_beam_to_K);

% read in data

data=((fitsread(extPar.file.imgAll)))*1000;
UV_data=fftshift( ifft2(data’)*extPar.K.NPix );
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5. APPENDIX

IX=-extPar.K.NPix/2+0.5:extPar.K.NPix/2; IY=IX;
[IX,IY)=ndgrid(IX,IY);

R=sqrt (IX. 2+IY."2);

RMax=min(extPar.K.NPix/2, extPar.K.NPix/2);

%--take a power spectrum

NRBins=round (RMax/4); % ARBITRARY.
REdges=linspace(0,RMax,NRBins+1);
dR=REdges (2) -REdges (1) ;
dist=(REdges(1:end-1)+dR/2)*extPar.K.dx;

PBase=[];

PBaseS=[];

for n=NRBins:-1:1
index=R > REdges(n) & R < REdges(n+1);
PBaseS(n)=std(grid.UV_TEMP(index)) ;
PBase(n)=std(UV_data(index));

end

spectra=figure(3); plot(dist,PBaseS);
hold on

plot(dist, PBase,’r’)

hold off

xlabel(’Baseline (meters)’)

ylabel (’Power (mJy)’)
title(extPar.PlotTitle)

print(spectra, ’-depsc’, extPar.PlotSave)
%--Create a synthetic image

Temp_Image=fft2(grid.UV_TEMP);

save (extPar.ImageName, ’Temp_Image’) ;
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